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SOS 2004 Preliminary Version

Toward the concept of backtracking
computation

M. Kulaš

FernUniversität Hagen, FB Informatik, D-58084 Hagen, Germany 1

Abstract

This article proposes a new mathematical definition of the execution of pure Pro-
log, in the form of axioms in a structural operational semantics. The main advantage
of the model is its ease in representing backtracking, due to the functionality of the
transition relation and its converse. Thus, forward and backward derivation steps
are possible. A novel concept of stages is introduced, as a refinement of final states,
which captures the evolution of a backtracking computation. An advantage over
the traditional stack-of-stacks approaches is a modularity property. Finally, the
model combines the intuition of the traditional ‘Byrd box’ metaphor with a com-
pact representation of execution state, making it feasible to formulate and prove
theorems about the model. In this paper we introduce the model and state some
useful properties.

Key words: backtracking, Prolog, operational semantics

1 Motivation, aims and results

In this paper, we introduce S1:PP, a new operational semantics for pure Pro-
log, and establish some useful properties, aiming toward an algebraic defi-
nition of the concept of Prolog computation. On the way, we obtain some
new concepts useful for characterizing backtracking, but possibly also useful
for objects which evolve over time. Such an object is in logic programming
the goal, in its dynamic sense (‘this unique, run-time invocation of a Prolog
procedure’), as opposed to its static or syntactic sense (‘this goal formula’).

The goal is a basic concept of logic programming, but nevertheless one
which proved hard to grasp in a formal way, even in the case of pure Prolog.
The problem is the possible evolution of ‘the’ goal through slightly different
identities, in case of a non-deterministic procedure.

1 Email: marija.kulas@fernuni-hagen.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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For example, assume we pose the following query to a Prolog system:
p(X, Y), q(Y), fail. Assume two answers for p(X, Y), say p(a, Z) and p(b, 3). In
the static sense, we have only one goal q(Y), but dynamically we can have two
different goals: first q(Z), and if q(Z), fail terminates, then q(3). Both goals
have their own creation, lifetime of forward and backward execution, and
possible expiration. It is vital for an operational semantics of backtracking to
differentiate between such separate objects.

In the rest of this paper we proceed as follows. First a canonical form of
predicates is defined, into which the original pure Prolog program shall be
transformed. Then, in section 3, a novel operational semantics of pure Prolog
is defined, in a structural operational manner. Throughout the section 4 –
section 7 we develop formal tools (concepts and theorems) suitable for char-
acterizing Prolog computation. This obviously includes defining in some way
or other the (dynamic) concept of the goal as well. We solved this problem
by means of stages, through which an initial event (representing the creation
of a goal) passes in the course of computation. Stages can be seen as a gen-
eralization of the normal form idea, in the sense that stages are independent
on the context of computation, as shown in section 7, but organized by macro
transitions. Starting from individual transitions as given in the model, simple
derivations (forward and backward) are built, which are the basis of simple
passes, and simple passes aggregate into composed passes. Finally, we show
in section 8 how composed passes model Prolog computations.

Our approach can be seen as a formalization of the original Byrd model.
But there is an important detail: we extend the notion of a port, initially
conceived by Byrd for selected atoms, to general goal formulas. The shifting
of attention from atoms to general goal formulas proved to be a key idea and
made a very simple model possible. The model in its first version, called S:PP,
was proposed in [17]. But the handling of variables turned out to be difficult.
The new model S1:PP improves on this.

2 Preliminaries

Before it can be interpreted in our model, the original Prolog program has to be
transformed into a canonical form, the common single-clause representation.
This representation is arguably ‘near enough’ to the original program, the only
differences concern the head-unification (which is now delegated to the body)
and the choices (which are now uniformly expressed as disjunction).

Definition 2.1 (canonical form) We say that a predicate P/n is in canon-
ical form, if its definition consists of a single clause P (X1, ..., Xn) :− B; Bs.
Here B is a canonical body, of the form X1=T1, . . . , Xn=Tn, G, Gs, and
P (X1, ..., Xn) is a canonical head, i. e. X1, ..., Xn are distinct variables not
appearing in G ,Gs,T1 , ...,Tn . Further, Bs is a disjunction of canonical bod-
ies (possibly empty), Gs is a conjunction of goals (possibly empty), and G is
a goal (for facts: true).

2
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For example, the following program

q(a,b).
q(Z,c) :− r(Z).
r(c).

would be canonically represented as

q(X,Y) :− X=a, Y=b, true; X=Z, Y=c, r(Z).
r(X) :− X=c, true.

3 The semantics S1:PP

The model S1:PP we are proposing fits naturally into a structural operational
format. For easy reference, the model is defined in two figures, Figure 1 (syn-
tax) and Figure 2 (rules). Notice that there are no premisses to the transition
rules, so the calculus consists solely of axioms.

Definition 3.1 (event) An event is a quadruple (Port ,Goal ,A-stack ,B-stack),
as given by the grammar in Figure 1.

Intuitively, an event is a state of Prolog computation, and it is determined
in our model by four parameters:

port: call , exit , fail or redo

current goal: a general goal formula

history of current goal: stack of ancestors, for short: A-stack

current environment: stack of bets, for short: B-stack

Definition 3.2 (transition) Let Π be a pure Prolog program in canonical
form, as defined by Figure 1 and Definition 2.1. The transition relation _Π

is defined in Figure 2. The converse relation shall be denoted by ^Π . If
E1 _Π E, we say that E1 leads to E. Alternatively, we say that E1 is a
predecessor to E, and E is a successor to E1. An event E can be entered, if
some event leads to it. An event E can be left, if it leads to some event.

The left-hand sides of the transition rules are mutually disjoint, i. e. there
are no critical pairs, so we have

Lemma 3.3 (transitions are deterministic) The relation _Π is functional,
i. e. for each event E there can be at most one event E1 such that E _Π E1.

Remark 3.4 (converse relation) The converse of the port transition rela-
tion is not functional, since there may be more than one event leading to
the same event. For example, call T1=T2 〈

nil

nil
〉 _Π fail T1=T2 〈

nil

nil
〉, and

redo T1=T2 〈
σ • nil

nil
〉 _Π fail T1=T2 〈

nil

nil
〉. Further down it will be shown that,

for events that are legal, the converse relation is functional. In our example,
redo T1=T2 〈

σ • nil

nil
〉 is not a legal event.

3
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Definition 3.5 (derivation) Let E0, E be events. A Π-derivation of E from
E0 in k steps, written as E0 _Π

k E, is a path of length k from E0 to E in
the graph of _Π . We say that E can be reached from E0. Derivation of
a nonzero length is denoted by E0 _

+
Π E, and derivation of any length by

E0 _
∗

Π E.

Definition 3.6 (initial event) An initial event is call Q 〈nil

nil
〉 for any Q.

Intuitively, the goal Q of an initial event corresponds in Prolog to a top-
level goal (query).

Definition 3.7 (legal derivation, legal event) If there is a goal Q such
that call Q 〈nil

nil
〉 _

∗

Π E0 _
∗

Π E, then we say that E0 _
∗

Π E is a legal Π-
derivation, and E is a legal Π-event.

Definition 3.8 (final event) A legal Π-event E is a final Π-event, if there
is no transition E _Π E1.

Notation 1 (impossible event) As a notational convenience, all the events
which are not final and do not lead to any further events by means of _Π

are depicted as leading to the impossible event, written as ⊥. Analogously for
events that are not initial and cannot be entered.

In particular, redo fail _Π ⊥ and exit fail ^Π ⊥ for any Π. Some more
examples: call G 〈σ • nil

nil
〉 ^Π ⊥, redo G 〈 Σ

nil
〉 ^Π ⊥ (cannot be entered,

non-initial), and redo p 〈nil

U
〉 _Π ⊥ (cannot be left, but not legal, p being an

atomary goal). The last example is perhaps less obvious, but shall be proven
later (Lemma 4.1).

3.1 Remarks on the calculus

(i) In S1:PP, the word goal is used in both its usual senses (section 1): as a
syntactic domain, meaning ‘goal formula’, and as one of the four compo-
nents of an execution state, meaning ‘current goal’.

(ii) SLD-resolution is operating on the selected atom, but S1:PP is operating
on the whole current goal.

(iii) For the syntactic domains that have not been defined in Figure 1, we
refer to [14] (substitutions), [20] (logic programming) and [12] (Prolog).

(iv) The most general unifiers σ shall be chosen to be idempotent, namely
σ(σ(T )) = σ(T ). This is always possible.

(v) Resolution is modeled by (S1:atom:1), and it is the only rule actually
depending on Π. If the predicate of the atomary goal has a definition in
Π, the resolution will succeed, because of canonical form.

(vi) Note the requirement σ(GA) = GA in (S1:atom:1). Since the clauses are
in canonical form, unifying the head of a clause with a goal could do no
more than rename the goal. We prefer the mgu to operate only on the
clause.

4
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(vii) A fresh variable, at a certain point of a derivation, represented by an
event, is a variable not appearing in the previous course of the derivation,
represented by the goal and the A-stack of the event.

(viii) It is not necessary to specify the semantics of fail explicitly, as in (S1:fail).
Instead, fail can be regarded as a user’s predicate with an empty defini-
tion.

Notation 2 (distinguishing two levels) Object-level terms (i. e. actual Pro-
log terms) are shown in sans serif, like true. Meta-level terms (i. e. anything
else in the calculus) are shown in italics, like call,α.

Notation 3 (dropping Π) In the following we usually drop any reference to
Π, since a program in pure Prolog cannot change during a derivation. How-
ever, a fixed program Π is always assumed. Observe that all the new relations
in this paper, built upon the transition relation, also implicitly depend on Π.

Notation 4 (auxiliary) Here is some additional notation used in theorems.

(i) Anonymous meta-variable: If some parts of an event are of no interest
in a topic at hand, they shall be abstracted away by the underscore ” ”.

(ii) To navigate an ancestor X, two functions are used: bXc, which is the
selected branch of X, as defined in Figure 1, and dXe, which is X without
tags: dN /A,Be := A,B , dN /A; Be := A; B , dGAe := GA.

(iii) Stack addition and subtraction: Concatenation to the right of a stack we
denote by +, and if U +V = W , then W−V := U . Concatenating to both
stacks of an event we denote by �, with Γ G 〈Σ

U
〉� 〈∆

V
〉 := Γ G 〈Σ +∆

U +V
〉,

and Γ G 〈Σ +∆

U +V
〉� 〈∆

V
〉 := Γ G 〈Σ

U
〉.

(iv) Stack order: If there is W such that U = W +V , then we say that U � V .

(v) σ |T means substitution σ restricted to the variables of the term T .

(vi) Macro transitions
.

_,
/

_,−→, =⇒ will be defined in section 5 and section 6.

4 Uniqueness claim

First we state a useful property, which we call the pendant lemma. Observe
that the formulation is non-deterministic in that we only claim the existence
of a pendant event (with the identical B-stack), but it is not known whether
it is the only one.

Lemma 4.1 (pendant) If call G 〈nil

nil
〉_

∗ fail H 〈 Θ
W
〉, then

call G 〈nil

nil
〉_

∗ call H 〈 Θ
W
〉_∗ fail H 〈 Θ

W
〉.

If call G 〈nil

nil
〉_∗ redo H 〈 Θ

W
〉, then

call G 〈nil

nil
〉_

∗ exit H 〈 Θ
W
〉_

∗ redo H 〈 Θ
W
〉.

The pendant lemma enables us to prove a vital property of our calculus: there
can be only one successor to a given event, and moreover, for a legal event

5



event ::= port goal
〈

B-stack
A-stack

〉

program ::= {definition.}+

definition ::= atom :− goal
port ::= push | pop
push ::= call | redo
pop ::= exit | fail
goal ::= true | fail | atom | term = term | goal; goal | goal, goal
ancestor ::= atom | tag/goal; goal | tag/goal, goal
tag ::= 1 | 2
memo ::= BY (goal) | OR(tag)
bet ::= mgu | memo
A-stack ::= nil | ancestor • A-stack
B-stack ::= nil | bet • B-stack

Meta-variables

E : event
Π : program
Γ : port, Push : push, Pop : pop

U , V : A-stack, a, b, Ĝ : ancestor, N : tag
Σ, Θ, Ψ , Ω, ∆ : B-stack, α : bet
σ : substitution
A, B , C , G , H : goal
GA : atom
T : term

Meta-functions

b1/A,Bc := A, b2/A,Bc := B , and analogously for disjunction
σ(T ) = application of σ upon T
mgu(T1 ,T2 ) = mgu of T1 and T2

subst(Σ) = current substitution = composition of all mgus from Σ;
subst(Σ)(T ) shall be abbreviated to Σ(T ), and is defined as follows:

nil(T ) := T

α •Σ(T ) :=

{
α(Σ(T )), if α is an mgu
Σ(T ), if α is a memo

Syntactic domains taken in their usual sense:

term (taken in the Prolog sense, as a superset of goal);
atom (user-defined predication in logic programming);
substitution, renaming, mgu.

Fig. 1. Language of events



Conjunction

call A,B 〈Σ
U
〉 _ call A 〈 Σ

1/A,B •U
〉 (S1:conj:1)

exit A 〈 Σ

1/A,B •U
〉 _ call B 〈 Σ

2/A,B •U
〉 (S1:conj:2)

fail A 〈 Σ

1/A,B •U
〉 _ fail A,B 〈Σ

U
〉 (S1:conj:3)

exit B 〈 Σ

2/A,B •U
〉 _ exit A,B 〈Σ

U
〉 (S1:conj:4)

fail B 〈 Σ

2/A,B •U
〉 _ redo A 〈 Σ

1/A,B •U
〉 (S1:conj:5)

redo A,B 〈Σ
U
〉 _ redo B 〈 Σ

2/A,B •U
〉 (S1:conj:6)

Disjunction

call A; B 〈Σ
U
〉 _ call A 〈 Σ

1/A;B •U
〉 (S1:disj:1)

fail A 〈 Σ

1/A;B •U
〉 _ call B 〈 Σ

2/A;B •U
〉 (S1:disj:2)

fail B 〈 Σ

2/A;B •U
〉 _ fail A; B 〈Σ

U
〉 (S1:disj:3)

exit C 〈 Σ

N/A;B •U
〉 _ exit A; B 〈OR(N ) •Σ

U
〉, with C ...2 (S1:disj:4)

redo A; B 〈OR(N ) •Σ

U
〉 _ redo C 〈 Σ

N/A;B •U
〉, with C ...2 (S1:disj:5)

True and Fail

call true 〈Σ
U
〉 _ exit true 〈Σ

U
〉 (S1:true:1)

redo true 〈Σ
U
〉 _ fail true 〈Σ

U
〉 (S1:true:2)

call fail 〈Σ
U
〉 _ fail fail 〈Σ

U
〉 (S1:fail)

Explicit unification

call T1=T2 〈
Σ

U
〉 _

{
exit T1=T2 〈

σ •Σ

U
〉, if mgu...3

fail T1=T2 〈
Σ

U
〉, otherwise

(S1:unif:1)

redo T1=T2 〈
σ •Σ

U
〉 _ fail T1=T2 〈

Σ

U
〉 (S1:unif:2)

User-defined atomary goal GA

call GA 〈
Σ

U
〉 _

{
call σ(B) 〈 Σ

GA •U
〉, if H :−B ...4

fail GA 〈
Σ

U
〉, otherwise

(S1:atom:1)

exit B 〈 Σ

GA •U
〉 _ exit GA 〈

BY (B) •Σ

U
〉 (S1:atom:2)

fail B 〈 Σ

GA •U
〉 _ fail GA 〈

Σ

U
〉 (S1:atom:3)

redo GA 〈
BY (B) •Σ

U
〉 _ redo B 〈 Σ

GA •U
〉 (S1:atom:4)

2 with C = bN /A;Bc.
3 if mgu(Σ(T1 ), Σ(T2 )) = σ.
4 if H :− B is a fresh renaming of a clause in Π, and σ = mgu(G ′

A
,H ) with

G ′

A
:= Σ(GA) and σ(G ′

A
) = G ′

A
.

Fig. 2. Operational semantics S1:PP of pure Prolog



Kulaš

there can be only one predecessor.

Theorem 4.2 (legal transitions are unique) If E is a legal event, then
E can have only one legal predecessor, and only one successor. In case E is
non-initial, there is exactly one legal predecessor. In case E is non-final, there
is exactly one successor.

Having established functionality of the transition relation and its converse,
we may unfold a legal derivation from each of its endpoints. First let us see
how far we can go from an initial event by means of transitions.

Lemma 4.3 (ancestor) If Γ G 〈 Σ

a •V
〉 is a legal event, then there are Push

and Σ ′ such that Push dae 〈Σ
′

V
〉_

+ Γ G 〈 Σ

a •V
〉 is a legal derivation.

Lemma 4.4 (tagged parent) If Γ G 〈 Σ

a •V
〉 is a legal event, and a = N /A,B

or a = N /A; B, then G = bac.

Lemma 4.5 (final event) If E is a legal pop event with a non-empty A-
stack, then there is always a transition E _ E1.

Lemma 4.6 If call G 〈nil

nil
〉 _

+ Γ H 〈Θ
W
〉 and Γ H 〈 Θ

W
〉 6= Pop 〈

nil
〉, then

W = V + Ĝ •nil for some V and an ancestor Ĝ such that dĜe = G.

Lemma 4.7 If call G 〈nil

nil
〉_∗ Pop H 〈 Σ

nil
〉, then H = G.

The above lemmas suggest events of the form Pop 〈
nil
〉 as natural end-

points of derivation. For this reason we develop a concept of derivation around
such events. We start with a concept of simple derivation.

5 Simple derivation and subevent

In this section, we set about defining some new, ‘macro’ transition relations,
by collapsing whole sequences of transition steps into one big step. Arguably,
illegal derivations do not make much sense in such a context, therefore we
exclude them:

Notation 5 (only legal derivations) In the transition relations that we shall

define from now on, namely
.

_,
/

_,−→, =⇒, it is always assumed that the
derivations are legal.

Definition 5.1 (forward or backward simple derivation) Consider a le-
gal derivation Push G 〈Σ

U
〉 _

+ E such that there is no Pop 〈
U
〉 within this

derivation, i. e. Push G 〈Σ
U
〉 _

+ Pop 〈
U
〉 _

+ E is not allowed. Such a

derivation we call a forward derivation relative to U , and denote by Push G 〈 Σ
U
〉

.

_

E. Analogously, a legal derivation Pop G 〈Σ
U
〉 _

+ E such that there is no
Push 〈

U
〉 within this derivation, is a backward derivation relative to U , de-

noted by Pop G 〈Σ
U
〉

/

_ E. A forward or a backward derivation relative to U is
a simple derivation relative to U .

Forward derivation gives rise to subevents:

8
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Definition 5.2 (subevent) If Push G 〈Σ
U
〉

.

_ Γ H 〈 Θ
W
〉 then Γ H 〈 Θ

W
〉 is a

subevent of Push G 〈Σ
U
〉.

Lemma 4.6 and Lemma 4.7 can be generalized to provide for the case of
an arbitrary push event and an arbitrary A-stack, and proven in the same
manner as the original lemmas:

Theorem 5.3 (the subevent property) If Push G 〈Σ
U
〉

.

_ Γ H 〈 Θ
W
〉 and

Γ H 〈 Θ
W
〉 6= Pop 〈

U
〉, then W = V + Ĝ •U for some V and an ancestor

Ĝ such that dĜe = G.

Lemma 5.4 (endpoint) If Push G 〈Σ
U
〉

.

_ Pop H 〈Θ
U
〉 then H = G.

Obviously, each push transition is a forward derivation. Some forward
derivations can be composed as well. This follows from the subevent property.

Corollary 5.5 If Push1 G 〈Σ
U
〉

.

_ Push H 〈 Θ

a •U
〉

.

_ E, then Push1 G 〈Σ
U
〉

.

_

E. Also, if Push G 〈Σ
U
〉

.

_ E _ E1 with E 6= Pop 〈
U
〉, then Push G 〈Σ

U
〉

.

_

E1.

Lemma 5.6 (forward pass) If Pop G 〈Σ
U
〉 is a legal event, then Pop G 〈Σ

U
〉

/

^

Push G 〈Σ
◦

U
〉 for some Push and Σ◦.

The next statement follows from the subevent property. Analogous claim
with pop and push swapping places, holds due to the simple pass lemma.

Lemma 5.7 (no pop no push) Let Push0 G 〈
U
〉 _

∗ E be a legal deriva-
tion, such that there is no Pop 〈

U
〉 within the derivation. Then there is no

Push 〈
U
〉 within the derivation as well. The same holds for derivations of

the form E _
∗ Push0 G 〈

U
〉.

Taking into account composition of forward derivations, we can prove a
stronger version of the ancestor lemma. The new version has the advantage
of determinism, i. e. there is only one place in a derivation where the parent
event can be: the most recent past event of the form Push dae 〈

V
〉.

Lemma 5.8 (ancestor, stronger) If Γ G 〈 Σ

a •V
〉 is a legal event, then there

are Push and Σ ′ such that Push dae 〈Σ
′

V
〉

.

_ Γ G 〈 Σ

a •V
〉 is a legal derivation.

Lemma 5.9 (subevent, converse) If for a legal event Γ H 〈 Θ

W
〉 holds that

W = V + a •U , then Γ H 〈 Θ
W
〉 is a subevent of Push dae 〈Σ

U
〉 for some Push

and some Σ.

As we have seen, forward or backward derivations between events with
identical A-stack and identical goal play a special role in the calculus. We
abstract such derivations to a new concept:

Definition 5.10 (forward or backward simple pass) A forward deriva-

tion Push G 〈
U
〉

.

_ Pop G 〈
U
〉 we call a forward pass relative to G and U .

Analogously, a backward derivation Pop G 〈
U
〉

/

_ Push G 〈
U
〉 we call a back-

ward pass relative to G and U . A forward or a backward pass from E1 to E2

9
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is a simple pass, denoted by E1 −→ E2. The events E1, E2 are called stages.
To denote stages we may use the fixed parts (the goal and the A-stack) as
superscripts, like this: EG,U .

6 Composed derivation

Fortified with the useful results like the pendant and forward pass lemma, we
are now in a position to prove stronger results. As with the stronger version of
the ancestor lemma, the advantage is in the deterministic specification of the
correlated events from the past. For example, for a fail event we now know
that its pendant call (with the identical B-stack) is the most recent call event
bearing the same goal and the same A-stack.

Theorem 6.1 (pendant, stronger) Let fail H 〈 Θ

W
〉 be a a legal event. Then

fail H 〈 Θ
W
〉^∗ call H 〈 Θ

W
〉, where call H 〈

W
〉 does not appear within the deriva-

tion. Furthermore, if redo H 〈 Θ

W
〉 is a legal event, then redo H 〈 Θ

W
〉 ←− exit H 〈 Θ

W
〉.

Lemma 6.2 (B-stack) If call G 〈Σ
U
〉 −→ Γ H 〈Σ

′

U
〉, then Σ ′ � Σ.

Lemma 6.3 (no call no fail) If E _
∗ Pop G 〈

U
〉 is a legal derivation, and

call G 〈
U
〉 is not within this derivation, then fail G 〈

U
〉 is also not within this

derivation.

From Lemma 5.6 and Theorem 6.1 we know that a legal pop event can run
through a series of past stages, like exit 〈

U
〉 ←− redo 〈

U
〉 ←− exit 〈

U
〉 ←−

... Due to the finiteness of a converse derivation and Lemma 5.6, a call 〈
U
〉 is

bound to appear. So we must ultimately reconstruct a derivation exit 〈
U
〉^∗

call 〈
U
〉, where no events of the form call 〈

U
〉 intervene. Similarly for a fail

event.

Definition 6.4 (composed pass) Consider a sequence of simple passes
EG,U

1 −→+ EG,U
2 such that there is no call G 〈

U
〉 within this sequence, i. e.

EG,U
1 −→+ call G 〈

U
〉 −→+ EG,U

2 is not allowed. Such a sequence is called

composable, or a composed pass relative to G and U , and denoted by EG,U
1 =⇒

EG,U
2 .

It can be seen that call G 〈
U
〉 cannot appear within a composed pass rela-

tive to G and U even if regarded as a derivation, i. e. neither among the stages
of the simple passes nor somewhere in between. One important question re-
mains: How do the B-stacks of the particular stages relate to each other? This
is the main concern of our next claim, companion to Lemma 5.6.

Theorem 6.5 (composed pass) The following two relationships hold:

If fail G 〈Σ
U
〉 is legal, then fail G 〈Σ

U
〉 ⇐= call G 〈Σ

U
〉. (1)

If exit G 〈Σ
U
〉 is legal, then exit G 〈Σ

U
〉 ⇐= call G 〈Σ

◦

U
〉, with Σ � Σ◦ (2)

For (2) further holds: If G is a disjunction, then Σ � Σ◦, starting with
OR(N ) for some N , and analogously for a unification or an atomary goal.

10
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We already know that for a legal redo event holds redo G 〈Σ
U
〉 ←− exit G 〈Σ

U
〉,

which adds some more relationships like

If fail G 〈Σ
U
〉 ⇐= redo G 〈Σ

′

U
〉, then Σ ′ � Σ (3)

If redo G 〈Σ
U
〉 is legal, then redo G 〈Σ

U
〉 ⇐= call G 〈Σ

◦

U
〉, with Σ � Σ◦ (4)

As a by-product, the following supplement to Lemma 4.5 can be obtained,
leading to a conclusion that the only final events are legal pop events with an
empty A-stack:

Lemma 6.6 (non-final event) If E is a legal push event, then there is al-
ways a transition E _ E1.

7 Independence claim and modularity

Remark 7.1 (up-to-date calls) Bearing in mind the canonical form of the
clauses, as well as idempotency of the mgus in our model, it can be seen from
the rule (S1:atom:1) that for any event call σ(B) 〈 Σ

GA •U
〉 holds: Σ(σ(B)) =

σ(B). In other words, the goal part of such an event is up-to-date with respect
to the B-stack.

Theorem 7.2 (adding stacks) Let call G 〈nil

nil
〉 _ E1 _ ... _ En _

Pop G 〈 Ω

nil
〉 be a legal derivation. Then for every G ◦, U and Σ such that

call G◦ 〈Σ
U
〉 is a legal event and Σ(G ◦) = G, holds:

call G◦ 〈Σ
U
〉 _ E ◦

1
� 〈Σ

U
〉 _ ... _ E ◦

n
� 〈Σ

U
〉 _ Pop G◦ 〈Ω +Σ

U
〉

is also a legal derivation. Here if Ei = Γ H 〈Θ
V
〉, then E◦

i := Γ H ◦ 〈 Θ

V ◦
〉, where

Σ(H ◦) = H and Σ(V ◦) = V .

Theorem 7.3 (subtracting stacks) Let call G 〈Σ
U
〉 _ E1 _ ... _ En _

Pop G 〈Ω
U
〉 be a legal derivation, and Ei 6= Pop 〈

U
〉 for every i. Then for

G ′ := Σ(G) holds:

call G ′ 〈nil

nil
〉 _ E ′

1
� 〈Σ

U
〉 _ ... _ E ′

n
� 〈Σ

U
〉 _ Pop G ′ 〈Ω −Σ

nil
〉

is also a legal derivation. Here if Ei = Γ H 〈Θ
V
〉, then E ′

i := Γ H ′ 〈 Θ

V ′
〉, where

Σ(H ) = H ′ and Σ(V ) = V ′.

The previous two claims show that a simple pass, starting with a call event,
is independent on the starting contents of the stacks. The stacks represent
the context of the computation for the goal at hand.

It would be interesting to see whether similar properties hold for a sim-
ple pass starting with a redo event. First note that if redo G 〈Σ

U
〉 is a le-

gal event, then, according to Theorem 6.1, redo G 〈Σ
U
〉 ←− exit G 〈Σ

U
〉. Us-

ing Theorem 6.5, we further obtain that redo G 〈Σ
U
〉 ⇐= call G 〈Σ

◦

U
〉, where

Σ � Σ◦. This gives us a hint on how much we may cut off of the stacks.
Observe that, as opposed to a call event, we do not necessarily arrive at a

11
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legal redo event by means of adding or subtracting stacks. (For example, a
redo event with an empty A-stack cannot be reached.) But if we do, then we
may know its next stage, due to the following claim:

Lemma 7.4 (starting with redo) Let redo G 〈Σ
U
〉 _ E1 _ ... _ En _

Pop G 〈Ω
U
〉 be a legal derivation, and Ei 6= Pop 〈

U
〉 for every i. Further let

redo G 〈Σ
U
〉 ⇐= call G 〈Σ

◦

U
〉. Then for G ′ := Σ◦(G) and E ′

i analogous as in
Theorem 7.3 holds:

redo G ′ 〈Σ −Σ◦

nil
〉 _ E ′

1 � 〈Σ
◦

U
〉 _ ... _ E ′

n � 〈Σ
◦

U
〉 _ Pop G ′ 〈Ω −Σ◦

nil
〉.

Moreover, for Θ(G ◦) = G and E◦

i analogous as in Theorem 7.2 holds:

redo G◦ 〈Σ +Θ

U +V
〉 _ E ◦

1
� 〈Θ

V
〉 _ ... _ E ◦

n
� 〈Θ

V
〉 _ Pop G◦ 〈Ω +Θ

U +V
〉.

Our next aim is to prove: even upon backtracking, the goal shall pass
always the same stages, independent on the starting contents of the stacks.

Lemma 7.5 (backward independence) Consider the sequences

call G 〈Σ
U
〉 −→ exit G 〈Σ

′

U
〉 −→ redo G 〈Σ

′

U
〉 −→ exit G 〈Ω

U
〉

call H 〈Θ
V
〉 −→ exit H 〈Θ

′

V
〉 −→ redo H 〈Θ

′

V
〉 −→ exit H 〈Ψ

V
〉

where Θ(H ) = Σ(G). Then Θ′ = Σ ′−Σ +Θ and Ψ = Ω−Σ + Θ.

In other words, the second derivation starts from a different context, but
from the same goal, and it passes the same stages as in the first derivation.
Notice the presence of backtracking.

This result can be generalized for arbitrary composed passes. Bearing in
mind that there can be only one appearance of a fail stage in a composed
pass, due to Lemma 6.3, we arrive at a general claim of independence upon
the context of derivation.

Theorem 7.6 (independence) Let the following sequences be composable,
where m, k ≥ 1, and let Θ(H ) = Σ(G).

call G 〈Σ
U
〉 −→ EG,U

1 −→ ... −→ EG,U
m

call H 〈Θ
V
〉 −→ EH ,V

1 −→ ... −→ EH ,V
k

Then for any i in common (i ≤ m, k) holds:

If EG,U
i := Γ G 〈Σ

′

U
〉 then EH ,V

i = Γ H 〈Θ
′

V
〉, such that Θ′ = Σ ′−Σ +Θ.

Independence on the context reveals a form of modularity or composition-
ality in S1:PP, to be illustrated at the end of section 8.

Motivated by the independence result above, we now define a concept
of computation intended to mimick SLD-derivations in the style of Prolog,
i. e. SLD-derivations with leftmost selection and depth-first search. In the
following we call such SLD-derivations Prolog computations.

12
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8 Modeling pure Prolog computations

Based on the concept of stages, it is possible to express Prolog computation
in a succinct way. Throughout this section, Π denotes again a pure Prolog
program in canonical form, as defined in Figure 1 and Definition 2.1.

Theorem 8.1 (existential termination, success, failure) Prolog compu-
tation of a goal G relative to Π terminates existentially if there is a simple
pass

call G 〈nil

nil
〉 −→Π Pop G 〈 ∆

nil
〉

In case Pop = exit, the Prolog computation of G is successful, otherwise it is
failed.

Theorem 8.2 (the first computed answer) If call G 〈 nil

nil
〉 −→Π exit G 〈 ∆

nil
〉,

then subst(∆) |G is the first computed answer substitution for G relative to Π
in Prolog.

Theorem 8.3 (all computed answers, universal termination) In a com-
posable sequence

call G 〈 nil

1/G,fail • nil
〉 −→Π

2k−1 exit G 〈 ∆

1/G,fail • nil
〉

is subst(∆) |G the kth computed answer substitution for G relative to Π in
Prolog. Furthermore, G is universally terminating relative to Π if

call G 〈 nil

1/G,fail • nil
〉 =⇒Π fail G 〈 nil

1/G,fail • nil
〉

Actually we can be a bit more precise, by considering a goal G as a subgoal
of other goals. Recall that, if call G 〈Σ

U
〉 is legal and U = an • ... • a1 • nil , then

call G 〈Σ
U
〉

/

^Π Push da1e 〈nil
〉. In other words, call G 〈Σ

U
〉 is a subevent of the

most recent Push da1e 〈nil
〉. Moreover, since a push event with an empty A-

stack cannot be reached, we know that ours must be the oldest event of the
derivation, of the form call da1e 〈

nil

nil
〉. In analogy to subgoals in Prolog, let us

define two new concepts:

Definition 8.4 (S1-supergoal, S1-subgoal) Let call G 〈Σ
U
〉 be legal. If U =

an • ... • a1 •nil , we say that da1e is the S1-supergoal of G ′, and G ′ is a S1-
subgoal of da1e, where G ′ := Σ(G). In case U = nil, we define G ′ to be its
own S1-supergoal.

Theorem 8.5 (supergoal) Let call G 〈Σ
◦

U
〉 be a legal event. Consider the

maximal composable sequence call G 〈Σ
◦

U
〉 −→Π

2k−1 exit G 〈Σ
U
〉. Then holds:

subst(Σ−Σ◦) |G′ is the kth and last computed answer substitution for G ′

relative to Π in Prolog, where G ′ := Σ◦(G) and the query of the Prolog
computation was the S1-supergoal of G ′.

13
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In conclusion, we show an example of a modular derivation. Let exit A,B 〈Σ
U
〉

be a legal event. How could it have been derived? Luckily, inverse transitions
are deterministic for legal events (uniqueness property), so we may unfold a
legal derivation from whichever endpoint it seems more promising.

exit A,B 〈Σ
U
〉

^ exit B 〈 Σ

2/A,B •U
〉, by (S1:conj:4)

⇐= call B 〈 Σ◦

2/A,B •U
〉, by Theorem 6.5.(2), with Σ � Σ◦

^ exit A 〈 Σ◦

1/A,B •U
〉, by (S1:conj:2)

⇐= call A 〈 Σ◦◦

1/A,B •U
〉, by Theorem 6.5.(2), with Σ◦ � Σ◦◦

^ call A,B 〈Σ
◦◦

U
〉, by (S1:conj:1)

Additionally, it can be seen that the whole derivation is a composable
sequence. So we obtain

Lemma 8.6 (conjunction) Let exit A,B 〈Σ
U
〉 be a legal event. Then Σ◦, Σ◦◦

exist with Σ � Σ◦ � Σ◦◦ such that exit A,B 〈Σ
U
〉 ⇐= call A,B 〈Σ

◦◦

U
〉, and also

exit B 〈 Σ

2/A,B •U
〉 ⇐= call B 〈 Σ◦

2/A,B •U
〉 and exit A 〈 Σ◦

1/A,B •U
〉 ⇐= call A 〈 Σ◦◦

1/A,B •U
〉.

In a similar way we can unfold a disjunction and an atomary goal, thus
simulating the vanilla meta-interpreter in our model.

9 Related work and outlook

S1:PP was inspired by the traditional metaphor of a box with four ports,
known as the Byrd model [9], designed to represent the evolution of a proce-
dure call in Prolog. The Byrd model is a seminal work in control flow, but it
proved hard to formalize, and variable handling was not tackled in the original
work at all. There are very interesting proposals like the graph-based model
of Tobermann and Beckstein [23], who formalize the graph traversal idea of
Byrd, defining the notion of a trace (of a given query with respect to a given
program), as a path in a trace graph. The ports are quite lucidly defined as
hierarchical nodes of such a graph. However, trace graphs are not very man-
ageable. A finitary algebraic ‘translation’ of this model would be interesting.
Another formal approach in the spirit of Byrd model is a continuation-based
approach of Jahier, Ducassé and Ridoux [15]. There is also a stack-based
attempt in [18], but although it provides for some parametrizing, it suffers es-
sentially the same problem as the continuation-based approach, or the tracer
given in [9], taken as a specification of Prolog execution: In these attempts, the
mutable character of a goal in Prolog (as discussed in section 1) has not been
captured. Rather, they provide a cumulative view of a derivation (‘trace’),
sacrificing lots of structure, which has to be reconstructed from the trace by
some other device. In contrast to the few specifications of the Byrd box, there
are many more general models of pure (or even full) Prolog execution. We
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mention here only some models, directly relevant to S1:PP, and for a more
comprehensive discussion see e. g. [18]. Comparable to our work are stack-
based approaches. Stärk gives in [22], as a side issue, a simple operational
semantics of pure logic programming. A state of execution is a stack of frame
stacks, where each frame consists of a goal (ancestor) and an environment.
The seminal paper of Jones and Mycroft [16] was the first to present a stack-
of-stacks model of execution, applicable to pure Prolog with cut added. Such
approaches (including our previous attempt [18]) are in general suffering from
the lack of modularity, i. e. it is not possible to abstract the execution of a
subgoal.

This paper has given a simple mathematical definition S1:PP of pure Pro-
log, especially suited to represent backtracking computation, and fulfilling a
modularity claim. Some useful properties of the calculus have been shown. It
would be important to see how this model can be extended to accomodate full
Standard Prolog language. Also, the potential for specifying other languages,
notably in a constraint programming area, seems worth investigating.
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A An example proof

As an illustration of S1:PP, here is a proof of the pendant lemma, and its application
in proving uniqueness of legal transitions. Although lengthy, the proof of Lemma 4.1
is rather schematic.

Lemma 4.1 (pendant) If call G 〈 nil

nil
〉_∗ fail H 〈 Θ

W
〉, then

call G 〈nil

nil
〉_

∗ call H 〈 Θ
W
〉_

∗ fail H 〈 Θ
W
〉. (5)

If call G 〈nil

nil
〉_∗ redo H 〈 Θ

W
〉, then

call G 〈nil

nil
〉_

∗ exit H 〈 Θ
W
〉_∗ redo H 〈 Θ

W
〉. (6)

Proof. We shall use induction on the length n of derivation to prove the two parts
of the lemma simultaneously. The inductive assumption for each of the parts shall
be denoted as Ind(fail) and Ind(redo) respectively. First let us construct base
cases. With Lemma 4.1.(5) we are lucky, since derivations of length n = 1 can be
failed. There are three such cases, and they directly satisfy Lemma 4.1.(5):

call fail 〈nil

nil
〉 _ fail fail 〈nil

nil
〉, by (S1:fail) (7)

call T1 =T2 〈
nil

nil
〉 _ fail T1 =T2 〈

nil

nil
〉, by (S1:unif:1), if no mgu (8)

call GA 〈
nil

nil
〉 _ fail GA 〈

nil

nil
〉, by (S1:atom:1), if no resolvent (9)

With Lemma 4.1.(6) we have a harder time since no derivation of length n ≤ 2
can end up in a redo, so with the number of derivations getting out of hand, we
turn to reconstructing a minimal legal derivation of a redo. A legal redo event
stems from a redo or from a fail, so for a minimal derivation it had to be a fail:
fail B 〈 Σ

2/A,B •V
〉 _ redo A 〈 Σ

1/A,B •V
〉. Now we are looking for a minimal deriva-

tion of this fail event, which may not include any redo events. The predecessor
may be a fail (pushing the A-stack) or a call (not affecting the stacks). In case of
a call, we get exit A 〈 Σ

1/A,B •V
〉 _ call B 〈 Σ

2/A,B •V
〉 _ fail B 〈 Σ

2/A,B •V
〉. In this

manner we eventually reconstruct the minimal derivations for redo, and they satisfy
Lemma 4.1.(6):

call A,B 〈nil

nil
〉 _ call A 〈 nil

1/A,B • nil
〉 _ exit A 〈 nil

1/A,B • nil
〉 _ call B 〈 nil

2/A,B • nil
〉 _

_ fail B 〈 nil

2/A,B • nil
〉 _ redo A 〈 nil

1/A,B • nil
〉

Assume Lemma 4.1 holds for derivations of length 1 ≤ n < k and consider a
derivation of length k. We shall use the following simple observation: If call G 〈 nil

nil
〉_

∗

Γ A 〈 Θ
W
〉, and W 6= nil or Γ 6= call , then also

call G 〈nil

nil
〉_

+ Γ A 〈 Θ
W
〉 (10)

First we discuss the cases for a legal fail event. There are eight possibilities for the
last step of its derivation: (S1:fail), (S1:unif:1), (S1:atom:1), (S1:conj:3), (S1:disj:3),
(S1:atom:3), (S1:true:2) and (S1:unif:2). The first three cases are again directly
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satisfied. Case (S1:conj:3):

call G 〈nil

nil
〉_+ fail A 〈 Θ

1/A,B •W
〉 _ fail A,B 〈 Θ

W
〉, the last step (11)

call G 〈nil

nil
〉_∗ call A 〈 Θ

1/A,B •W
〉_

∗ fail A 〈 Θ

1/A,B •W
〉, by Ind(fail) (12)

call G 〈nil

nil
〉_∗ call A,B 〈 Θ

W
〉 _ call A 〈 Θ

1/A,B •W
〉, predecessor & (10) (13)

call G 〈nil

nil
〉_∗ call A,B 〈 Θ

W
〉_

∗ fail A,B 〈 Θ
W
〉, by (11)-(13), q.e.d.

Case (S1:atom:3) is similar to the previous. Case (S1:disj:3) can be handled by
double use of Ind(fail):

call G 〈nil

nil
〉_+ fail B 〈 Θ

2/A;B •W
〉 _ fail A;B 〈 Θ

W
〉, the last step (14)

call G 〈nil

nil
〉_∗ call B 〈 Θ

2/A;B •W
〉_

∗ fail B 〈 Θ

2/A;B •W
〉, by Ind(fail) (15)

call G 〈nil

nil
〉_∗ fail A 〈 Θ

1/A;B •W
〉 _ call B 〈 Θ

2/A;B •W
〉, predecessor & (10) (16)

call G 〈nil

nil
〉_∗ call A 〈 Θ

1/A;B •W
〉_

∗ fail A 〈 Θ

1/A;B •W
〉, by Ind(fail) (17)

call G 〈nil

nil
〉_∗ call A;B 〈 Θ

W
〉 _ call A 〈 Θ

1/A;B •W
〉, predecessor & (10) (18)

call G 〈nil

nil
〉_∗ call A;B 〈 Θ

W
〉_

∗ fail A;B 〈 Θ
W
〉, by (14)-(18), q.e.d.

For the last two cases (redo-fail transitions) we shall use Ind(redo). Case (S1:true:2):

call G 〈nil

nil
〉_

+ redo true 〈 Θ
W
〉 _ fail true 〈 Θ

W
〉, the last step (19)

call G 〈nil

nil
〉_

∗ exit true 〈 Θ
W
〉_

∗ redo true 〈 Θ
W
〉, by Ind(redo) (20)

call G 〈nil

nil
〉_

∗ call true 〈 Θ
W
〉 _ exit true 〈 Θ

W
〉, predecessor & (10) (21)

call G 〈nil

nil
〉_

∗ call true 〈 Θ
W
〉_

∗ fail true 〈 Θ
W
〉, by (19)-(21), q.e.d.

The last case (S1:unif:2) can be handled in the same manner.

It remains to discuss the cases for a legal redo event. There are four possi-
bilities for the last step of its derivation: (S1:conj:5), (S1:conj:6), (S1:disj:5) and
(S1:atom:4). Here a symmetry between ‘entering redo’ and ‘leaving exit’ takes over.
Namely, if we take the rules for entering redo, turn the arrow around and replace
exit for redo and call for fail, then we obtain the rules for leaving exit. Due to
determinacy of such transitions, each ‘entering redo’ can be simulated with an ap-
propriate ‘leaving exit’, which reconstructs the stacks in exactly the same manner.
The case (S1:conj:5) is special because it uses Ind(fail):

call G 〈nil

nil
〉_+ fail B 〈 Θ

2/A,B •W
〉 _ redo A 〈 Θ

1/A,B •W
〉, the last step (22)

call G 〈nil

nil
〉_∗ call B 〈 Θ

2/A,B •W
〉_

∗ fail B 〈 Θ

2/A,B •W
〉, by Ind(fail) (23)

call G 〈nil

nil
〉_∗ exit A 〈 Θ

1/A,B •W
〉 _ call B 〈 Θ

2/A,B •W
〉, predecessor & (10) (24)

call G 〈nil

nil
〉_∗ exit A 〈 Θ

1/A,B •W
〉_

∗ redo A 〈 Θ

1/A,B •W
〉, by (22)-(24), q.e.d.

Case (S1:conj:6):

call G 〈nil

nil
〉_

+ redo A,B 〈 Θ
W
〉 _ redo B 〈 Θ

2/A,B •W
〉 (25)

call G 〈nil

nil
〉_

∗ exit A,B 〈 Θ
W
〉_

∗ redo A,B 〈 Θ
W
〉, by Ind(redo) (26)

call G 〈nil

nil
〉_

∗ exit B 〈 Θ

2/A,B •W
〉 _ exit A,B 〈 Θ

W
〉, predecessor & (10) (27)

call G 〈nil

nil
〉_

∗ exit B 〈 Θ

2/A,B •W
〉 _ redo B 〈 Θ

2/A,B •W
〉, by (25)-(27), q.e.d.
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The last two cases (S1:disj:5) and (S1:atom:4) can be handled in the same manner.
This concludes the proof of Lemma 4.1. 2

Theorem 4.2 (legal transitions are unique) If E is a legal event, then E can
have only one legal predecessor, and only one successor. In case E is non-initial,
there is exactly one legal predecessor. In case E is non-final, there is exactly one
successor.

Proof. The successor part follows from the functionality of _ . Looking at the
rules, we note that only two kinds of events may have more than one predecessor:
fail GA 〈

Σ

U
〉 and fail T1 =T2 〈

Σ

U
〉. Let fail T1 =T2 〈

Σ

U
〉 be a legal event. Then it has

at least one derivation from an initial event, say call G 〈 nil

nil
〉. Its predecessor in this

derivation may have been call T1=T2 〈
Σ

U
〉, on the condition that Σ(T1 ) and Σ(T2 )

have no mgu, or it may have been redo T1=T2 〈
σ •Σ

U
〉. In the latter case we obtain:

call G 〈nil

nil
〉_

∗ redo T1=T2 〈
σ •Σ

U
〉 _ fail T1 =T2 〈

Σ

U
〉, assumption (28)

call G 〈nil

nil
〉_

∗ exit T1 =T2 〈
σ •Σ

U
〉_

∗ redo T1 =T2 〈
σ •Σ

U
〉, Lemma 4.1.(6) (29)

call G 〈nil

nil
〉_

∗ call T1=T2 〈
Σ

U
〉 _ exit T1=T2 〈

σ •Σ

U
〉, by (S1:unif:1) (30)

Let us comment a bit on (29)-(30). From (29) we know that exit T1 =T2 〈
σ •Σ

U
〉

is a legal event, i. e. it is reachable from an initial event. But there is only one
possibility to enter exit T1=T2 〈

σ •Σ

U
〉, namely via (S1:unif:1), under the condition

mgu(Σ(T1 ), Σ(T2 )) = σ. To sum up: If redo T1 =T2 〈
σ •Σ

U
〉 is a legal predecessor

of fail T1 =T2 〈
Σ

U
〉, then mgu(Σ(T1 ), Σ(T2 )) = σ.

So depending on the existence of this particular mgu, either redo T1 =T2 〈
σ •Σ

U
〉

or call T1 =T2 〈
Σ

U
〉 is a legal predecessor of fail T1 =T2 〈

Σ

U
〉, but never both.

By a similar argument, this time using Lemma 4.1.(5), we can prove that
fail GA 〈

Σ

U
〉 can have only one legal predecessor. 2
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Abstract

We present a call-by-need λ-calculus λND with an erratic non-deterministic operator
pick and a non-recursive let. A definition of a bisimulation is given, which has to
be based on a further calculus named λ≈, since the näıve bisimulation definition is
useless. The main result is that bisimulation in λ≈ is a congruence and coincides
with the contextual equivalence.

The proof is a non-trivial extension of Howe’s method. This might be a step
towards defining useful bisimulation relations and proving them to be congruences
in calculi that extend the λND-calculus.

Key words: Bisimulation, Congruence, Contextual Equivalence,
Non-determinism, Call-by-need Lambda Calculus

1 Introduction

Equality plays a prominent role in reasoning about programs. Thus specifi-
cally for λ-calculi, there is a certain range of concepts when two terms should
be considered equal. First, there is the notion of convertibility, i.e. two terms
are equivalent if they could be transformed to each other according to the con-
version rules of the calculus. Usually conversion is permitted inside arbitrary
contexts, i.e. program fragments, hence convertibility is a congruence.

For deterministic calculi, there is a large number of reasonable equations,
e.g. useful program transformations, which neither are provable by, nor stand
in contradiction to, convertibility. Hence there is a serious interest in λ-
theories (cf. [5, Part IV]), that is, consistent extensions of the λ-calculus which
are closed under derivation.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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The contextual equivalence due to [22], which discriminates terms by their
behaviour in all contexts, falls into this category. Typically, termination is
observed (cf. [18]). Thus, with ⇓ denoting termination while C stands for
program contexts, contextual equivalence 'c can be expressed as

s 'c t ⇐⇒ (∀C : C[s] ⇓ ⇐⇒ C[t] ⇓)

This obviously establishes a congruence and since it is based on the observation
of some behaviour, it is often called observational congruence. We consider
contextual equivalence more significant than convertibility for several reasons.
First, contextual equivalence does not directly depend on the reduction rules of
a calculus and therefore can be used as a separate justification for its design.
Secondly, contextual equivalence validates more meaningful equations than
convertibility, the latter of which may, e.g., only relate terms of the same
asymptotic complexity in some cases (cf. [28]).

In a non-deterministic setting, on the other hand, convertibility in general
leads to an inconsistent theory. Hence there are, of course, convertible terms
which are not contextual equivalent. But in many cases, the deterministic
part of a calculus can be proven sound w.r.t. contextual equivalence.

Thus contextual equivalence is of great interest in the important field of
correct program transformations, for both, deterministic and non-deterministic
calculi. However, proofs of contextual equivalence could turn out to be non-
trivial, since all contexts have to be taken into account. Hence it is common to
reduce the number of contexts by a context lemma (cf. [18]), e.g. in [19] the ob-
servation of specific machine configurations is sufficient whereas [20,14,13,30]
use evaluation contexts. This is unquestionably a very useful, and for many
tasks adequate, approach. But it does not resolve the issue in principle, since
still a generally infinite number of contexts has to be considered.

Bisimulation, the origins of which date back to the work of Park [24]
and Milner [17], provides a more stepwise approach for proving equations
and hence bisimulation techniques have been applied frequently to functional
programming (e.g. [2,26,8,9]) since then. In this area, there is some variety
of relations, but in general the definition of bisimilarity involves the greatest
fixed point of some monotonic operator.

Because of this, a bisimulation proof can be very concise where the corre-
sponding proof of contextual equivalence is subtle, as example 4.9 will show.
So it lends itself to a powerful proof instrument, but in order to employ it
for proving correctness of program transformations, one has to ensure that
it is a congruence. E.g. Groote and Vaandrager, in the introduction of [10],
emphasise that proving bisimulation a congruence is vital. But as the effort
in [2,11,12] shows, this is in general not a trivial task. Moreover, we demon-
strate in example 3.3, that within the scope of non-determinism combined
with sharing, bisimulation has to be designed carefully.

The aim of this work now is to establish a sensible definition of bisimulation
for a non-deterministic call-by-need λ-calculus and to show that it complies

2
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with contextual equivalence. Therefore the structure of the paper is as fol-
lows: In section 2, after we survey several λ-calculi with non-determinism
and/or sharing, we discuss the major techniques for proving bisimulation a
congruence.

The λND-calculus, the subject of our study, will be introduced in section 3
then. We have intentionally chosen a very basic calculus to act as a starting
point for further studies. Since for several reasons we will explain there, a
definition of bisimulation in λND working directly with let-environments is
problematic, we develop in section 4 with the λ≈-calculus a way to prune
the evaluation in environments at an arbitrary finite depth. We accomplish
this by adapting the reduction rules, so that bisimulation may be based upon
reduction to pure abstractions without a surrounding let-environment while
recording every possible outcome of the original environment. This empowers
us to define bisimulation and eventually prove it a congruence in theorem 5.2
by an extension of Howe’s method in [11,12], i.e. that the so-called “precongru-
ence candidate” is preserved under reduction. The section concludes with its
main result, namely that in λ≈ bisimulation matches contextual equivalence.

In section 6, the link between the λND- and the λ≈-calculus is established.
The achievement of theorem 6.3 is, that the contextual equivalence of the λ≈-
calculus agrees with the one of the λND-calculus. Its proof relies heavily on
the diagram method as e.g. [14,13] use it. Due to space limitations we present
sketches for the most important proofs and will refer to [15] for supplying
complete evidence.

2 Related Work

Of course, there has been a lot of research on extended λ-calculi and also a
fair amount on how to prove bisimulation a congruence in this area. Since it
seems impossible to take all of the publications on this subject into account,
we will briefly discuss only some of the related work.

2.1 Non-Determinism and Sharing in λλλ-Calculi

When introducing a non-deterministic construct into a programming language
or, e.g. a λ-calculus, a number of questions have to be clarified. Apart from
the classification of non-determinism as e.g. in [31], we consider a major topic
the decision, what kind of terms should be permitted to be copied.

Non-determinism in languages without sharing, i.e. those that retain a
copying (β)-rule like e.g. [23,7,29], is completely different from our work be-
cause it will distinguish λx.(x + x) from λx.(2 ∗ x). Likewise is the situation
with [6], since, as usual also in explicit substitution-calculi (cf. [1]), substitu-
tions are distributed over applications and hence duplicated.

The deterministic call-by-need calculi of [4,3,16] realise explicit sharing
using a let-construct (or special syntactic entities, as is the case in [3]) and

3
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restrict copying to abstractions. However, their equational theory is based on
convertibility rather than on contextual equivalence.

Thus the calculi in [20,14,13,30] which all provide a non-deterministic
choice, sharing and contextual equivalence roughly represent the direction
of our investigations. Though there are a few differences. Since these papers
do not discuss bisimulation, it seemed sensible to carry out our studies in a
rather elementary calculus, as this should increase readability, too.

Hence, like the work of [14,13], the λND-calculus only has a non-recursive
let, whereas the calculi in [20,30] provide recursive bindings. Furthermore,
like [14,13] but in contrast to [20,30], the λND-calculus neither has a case nor
data constructors.

2.2 Proving Bisimilarity a Congruence

As indicated before, for non-deterministic λ-calculi in combination with shar-
ing there has not been much research on bisimulation in relation to contextual
equivalence. The lazy lambda calculus of [2] is a deterministic, and in fact call-
by-name λ-calculus. Denotational approaches of this kind are connected to op-
erational techniques by Pitts, but [25] does not incorporate non-determinism.

Of the purely operational methods, the rule format of [27] is determinis-
tic, while the approach of Howe [11,12] in principle permits non-deterministic
evaluation. Also in [10] bisimulation is shown a congruence, but their rule
format is too restricted to represent our calculus. As Howe already remarks,
the definition of the precongruence candidate in [10] is too weak to be proven
stable under substitutions [12, Lemma 3.2]. Like his earlier work [11], the
technique of Howe assumes that every term may be copied, and hence has to
be adapted in order to cope with sharing.

Even though not dealing with sharing, Sands demonstrates in [26] the
extensibility of Howe’s approach by applying it to express improvements; and
also [8,9] makes use of the method, but for typed programs. So the decision
to base our work on [11] looked most promising.

3 λλλND – a Non-Deterministic λλλ-Calculus with Sharing

The λND-calculus closely resembles the one of [14], apart from the difference
that the nondeterministic choice is modelled by the syntactic construct pick
rather than a constant. In the grammar of figure 1, let V denote a non-

E ::= V | (λx.E) | (E E) | (let x = E in E) | (pick E E)

Fig. 1. Syntax for expressions in the language ΛND

terminal for variables. Hence the terms of the language, referred to as ΛND,
are variables or formed by application as well as the operators λ, let and

4
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pick. Since the symbol = is part of the let-construct, we use ≡ for syntactic
equality up to renaming of bound variables. Furthermore, we write s[t/x] for
substituting every free occurrence of x in s by t and adopt the distinct variable
convention, i.e. suppose all bound variables to be distinct from each other and
the free variables. We implicitly assume this convention to take effect after
every reduction step, so e.g. the double occurrence of the term λy.r in the
specification of the (cp)-rule below, does not pose a problem.

let x = (let y = ty in tx) in s
llet−−→ let y = ty in (let x = tx in s) (llet)

(let x = tx in s) t
lapp−−→ let x = tx in (s t) (lapp)

(λx.s) t
lbeta−−→ let x = t in s (lbeta)

pick s t
ndl−−→ s (ndl)

pick s t
ndr−−→ t (ndr)

nd−→ =
ndl−−→ ∪ ndr−−→ (nd)

let x = λy.r in D[x]
cp−→ let x = λy.r in D[λy.r] (cp)

Fig. 2. The reduction rules of the λND-calculus

As usual, a context is a term with a single hole and with C[s] we denote
filling the hole of a context C with the term s. Note, that the distinct variable
convention does not apply to variables which become bound in the hole of a
context. The λND-calculus will be equipped with an operational semantics
based on a small-step reduction relation. We will give a succinct account of
these rules from figure 2. The purpose of (llet) and (lapp) is mainly to rear-
range let-bindings for subsequent reductions. The ordinary (β)-rule is super-
seded by (lbeta) which just creates a let-binding. The rules (ndl) and (ndr)
implement the non-deterministic choice and are combined into (nd).

With (cp) one occurrence of a variable bound to an abstraction may be re-
placed with a copy of this abstraction. Note that in contrast to the λ≈-calculus
of section 4, the rule (cp) copies an abstraction only to one location at a time.
This not only conforms with earlier work on call-by-need λ-calculi (cf. [4,3,16])
but is also closer to the implementation of lazy functional languages than a
simultaneous substitution would be.

In order to obtain call-by-need evaluation, the normal-order reduction de-
fined later will always take place in reduction contexts. These do not introduce
a hole in the argument of an application, nor in the binding of a let, nor within
a λ-term either. In figure 3 the sets R and S of reduction and surface con-
texts are designated by the symbols R and S respectively. Surface contexts
do not possess a hole under an abstraction and will become more important
in section 4. Note, that every reduction context is also a surface context.

5
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AL ::= [ ] e A∗
L ::= [ ] | AL[A∗

L]

LR ::= let x = e in [ ] L∗
R ::= [ ] | LR[L∗

R]

R ::= L∗
R[A∗

L] | L∗
R[let x = A∗

L in R[x]]

S ::= [ ] | S e | e S | let x = e in S |
let x = S in e | pick S e | pick e S

Fig. 3. Major context classes for ΛND

Let a ∈ {llet, lapp, lbeta, ndl, ndr, cp} be any of the reduction rules in fig-

ure 2. We then denote with
R, a−−→ the application of the rule (a) in any reduc-

tion context R ∈ R and write −→∗ for the reflexive-transitive closure of reduc-
tion relations. The normal-order reduction of the following definition uniquely
identifies a normal-order redex and is, except for the non-deterministic rules,
also unique.

Definition 3.1 A reduction s
R, a−−→ t is called normal-order and depicted by

s
n, a−−→ t if it is one of the following.

(i) If s ≡ L∗
R[A∗

L[r]] and rule (lapp), (lbeta), (ndl) or (ndr) is applied to r.

(ii) If s ≡ L∗
R[let x = A∗

L[r] in R[x]] with some reduction context R such
that rule (lapp), (lbeta), (ndl) or (ndr) is applied to r.

(iii) If s ≡ L∗
R[let x = λy.r in R[x]]

n, cp−−−→ L∗
R[let x = λy.r in R[λy.r]] ≡ t

by rule (cp) for some reduction context R.

(iv) If rule (llet) is applied as follows:

s ≡ L∗
R[let x = (let y = ty in tx) in R[x]]

n, llet−−−→
L∗

R[let y = ty in (let x = tx in R[x])] ≡ t

The above definition complies with [13] and slightly differs from [4] as dis-
cussed in [13, p. 42]. Intuitively, it can be described as follows. Descend into
contexts of the form LR and subsequently AL, until (nd), (lapp) or (lbeta) be-
comes applicable, the case (i). If during this process a variable is encountered,
follow its binding. Whenever possible, perform (cp) or (llet) for the variable
in question, i.e. cases (iii) and (iv) respectively. Otherwise, in case (ii), if
the variable is bound to an application, descend into the A∗

L-context as far as
possible in order to apply (nd), (lapp) or (lbeta).

The notion of convergence is then defined by a normal-order reduction
sequence to a term of the form L∗

R[λx.t], i.e. a weak head normal form, WHNF

for short. So we write s ⇓ t if and only if s
n−→
∗

t and t is a WHNF, s ⇓ if
there exists such a t and s 6⇓ if not. Apparently, the normal-order reduction
is neither confluent nor terminating, i.e. a term may reduce to multiple weak
head normal forms or none at all.

6
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The procedure to determine the normal-order redex is quite complex, so
it is not obvious how to represent the normal-order reduction directly by
a structural operational semantics. E.g. the structured evaluation systems
of [12], apart from being geared to big-step operational semantics, seem not
capable of this. This arises from the fact that both, normal-order reducible
terms and weak head normal forms, could be formed with the let-operator.

3.1 Contextual Equivalence

Convergence, as defined in the previous section, exhibits the so-called “may
convergence”, i.e. s ⇓ holds if there is any normal-order reduction sequence
starting with s and leading to a WHNF. The notion of “must convergence”,
i.e. that all normal-order reduction sequences starting with s lead to a WHNF,
also makes sense for a non-deterministic calculus (cf. [20,13,30]). However, for
reason of simplicity, the following definition only regards “may convergence”.

Definition 3.2 The contextual approximation .ΛND, c is defined by

s .ΛND, c t ⇐⇒ ∀C : C[s] ⇓ =⇒ C[t] ⇓

and contextual equivalence 'ΛND, c by s 'ΛND, c t ⇐⇒ s .ΛND, c t ∧ t .ΛND, c s.

The goal is to define bisimulation so that it complies with contextual equiv-
alence. The following example makes clear that it is impossible to employ
the usual “reduce to weak head normal form and apply to fresh arguments”-
approach like e.g. in [2].

Example 3.3 Let the combinators K ≡ λx1.λx2.x1 and K2 ≡ λy1.λy2.y2 as
well as the non-converging term Ω ≡ (λz.z z) (λz.z z) be as usual.

Then s ≡ let v = pick K K2 in λw.v and t ≡ λw.pick K K2 could be
distinguished by the context C ≡ let f = [ ] in ((f K) (f K)ΩΩK) in the
following way: Concerning t we may construct a normal-order reduction se-
quence C[t]

n−→
∗

L∗
R[K] whereas there is no converging normal-order reduction

sequence for C[s] since v is shared.

Obviously, the terms s and t are weak head normal forms and if applied
to an arbitrary (dummy) argument both may either yield K or K2. Hence s
and t could not be distinguished by application to an argument.

The previous example also reveals that in the λND-calculus the transfor-
mation λy.let x = s in t ; let x = s in λy.t, i.e. shifting let over λ, in
general is not correct w.r.t. contextual equivalence. This is so, because the
term let v = pick K K2 in λw.v becomes λw.let v = pick K K2 in v by
a reverse application of this transformation. One could simply play through
the example with these two terms or, alternatively, argue that the latter is
contextual equivalent (cf. [13, rule (ucp)]) to the term t in the example.

7
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The example suggests, that because of the let-environments, weak head
normal forms do not carry enough information in order to be distinguished
solely by application to arguments. There may be several ways to adjust
bisimulation so that examples of the above sort work, but it is not clear which
one will really produce a suitable definition of bisimulation.

Our approach eliminating the environments has the additional benefit that
proving the precongruence candidate stable under the rule (llet) becomes obso-
lete, a task which seems to be infeasible for the other variations of a definition
we have tried.

So before we introduce the special calculus λ≈ which eliminates let-
environments by collecting all possible outcomes, we illustrate by an example
that in the λND-calculus the rule (llet) in general is necessary to find a WHNF.

Example 3.4 Consider the term s ≡ let x = (let y = ty in λz.t) in x
which obviously has a WHNF by the following normal-order reduction:

let x = (let y = ty in λz.t) in x
n, llet−−−→ let y = ty in (let x = λz.t in x)
n, cp−−−→ let y = ty in (let x = λz.t in λz.t)

Apparently, the effect of (llet) cannot be accomplished neither by a different
scope nor target for the (cp)-rule. Obviously, making a copy of the whole
environment let y = ty in λz.t is in general no option either, since then e.g. for
a term of the form let f = (let y = pick K K2 in λx.x y) in f (f Ω) this
would alter its value w.r.t. contextual approximation.

4 λλλ≈ – Approximating Expressions of the λλλND-Calculus

As figure 4 shows, a special constant } is added to the language which is now
designated by Λ≈. The reduction rules of the λ≈-calculus in figure 5 evolve

E ::= V | } | (λx.E) | (E E) | (let x = E in E) | (pick E E)

Fig. 4. Syntax for expressions in the language Λ≈

from the ones in λND as follows. First, by the rule (stop) which may reduce
every non-} term to }, a further level of non-determinism is introduced. As
there is no rule for }, this delimits the reduction, i.e. evaluation is pruned
underneath. Along with the existing non-determinism of the calculus, we will
utilise rule (stop) in order to represent every term by, so to speak, a set of
terms which have been evaluated to varying depth.

Since it is our goal to eliminate top-level environments, it is natural to
completely copy terms that could not be reduced further, namely } and ab-
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stractions, and garbage-collect their binding with the rule (cpa) in parallel. So
we are able to show in section 6 that the original (cp)-rule becomes obsolete.

Furthermore, all these reductions will be permitted inside arbitrary surface
contexts, which are denoted by the symbol S as before. Hence there is no

(let x = tx in s) t
lapp−−→λ≈ let x = tx in (s t) (lapp)

(λx.s) t
lbeta−−→λ≈ let x = t in s (lbeta)

pick s t
ndl−−→λ≈ s (ndl)

pick s t
ndr−−→λ≈ t (ndr)

let x = s in t
cpa−−→λ≈ t[s/x] (cpa)

where s ≡ λz.q or s ≡ }

s
stop−−→λ≈ } if s 6≡ } (stop)

Fig. 5. The reduction rules of the λ≈-calculus

need for the rule (llet) either, since we could first reduce inside the binding
of a let-environment before collapsing it using (cpa). We will give a more
detailed account on this process in section 6 where we show that convergence
in λND and λ≈ coincides.

As indicated above, the reductions of the λ≈-calculus may take place in

surface contexts; hence
S, a−−→λ≈ stands for an application of the rule (a) inside

any surface context S ∈ S. Since it is possible to evaluate up to an arbitrary
depth before cutting off with the rule (stop), we call this an approximation
reduction and will omit the subscript λ≈ for the remainder of this section if no
confusion arises. The notion of convergence in the λ≈-calculus is then defined

by s ⇓ λx.t ⇐⇒ s
S−→
∗
λ≈ λx.t, i.e. if there exists an approximation reduction

sequence to an abstraction.

4.1 Transformation on Reduction Sequences

In anticipation of bisimulation proofs, it can be shown that applications of
the rules (cpa) and (lbeta) never do any harm to an approximation reduction
sequence. In case of the former, this is valid only w.r.t. some (stop)-reductions
inside arbitrary contexts.

Definition 4.1 A
C, stop−−−−→-reduction is called internal, depicted by

i, C, stop−−−−−→,
if C ∈ C is a context which is not a surface context, i.e. C /∈ S.

These internal (stop)-reductions may always be moved to the end of an
approximation reduction sequence.

9
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Lemma 4.2 Let s, λx.t ∈ Λ≈ be terms with s (
S−→λ≈ ∪

i, stop−−−→)∗ λx.t. Then

there is also a reduction s
S−→
∗
λ≈ λx.t′ such that λx.t′

i, stop−−−→
∗

λx.t holds.

Internal (stop)-reductions may become necessary to clean up forking situa-
tions as follows. Consider the case that an ordinary (stop)-reduction is applied
to an abstraction bound to a variable in a let-expression. If the rule (cpa)
is used afterwards for this let-expression, the }-terms previously introduced
may be found under abstractions. Therefore a simple commutation of the
above (stop)- and (cpa)-reductions cannot achieve the same effect.

Hence we can show that for every converging approximation reduction
sequence the preference of reductions by rule (cpa) leads to abstractions with
some internal (stop)-reductions delayed.

Lemma 4.3 Let s, s′, λx.t be terms so that s
S, cpa−−−→ s′ and s

S−→
∗
λ≈ λx.t hold.

Then s′ has an approximation reduction to an abstraction λx.t′ which differs

from λx.t only by internal (stop)-reductions, i.e. λx.t′
i, stop−−−→

∗
λx.t holds.

For reductions by rule (lbeta), a stronger statement applies. That is to
say, if (lbeta) is applicable in a surface context, it does not matter whether a
different reduction is performed first.

Lemma 4.4 Let s, t be terms such that s
S, lbeta−−−−→ t holds. Then for all ab-

stractions λz.q we have s
S−→
∗
λ≈ λz.q if and only if t

S−→
∗
λ≈ λz.q holds.

The proofs for lemma 4.3 and 4.4 use the technique of complete sets of fork-
ing and, in the case of lemma 4.2, commuting diagrams (cf. [13,30]). Further
details can be found in [15, section 2.3.1].

Another essential result consists in reordering converging approximation
reduction sequences so that reduction first takes place inside the let-bindings.

Theorem 4.5 For every reduction let x = s in t
S−→
∗
λ≈ λz.q there is also an

approximation reduction sequence of the following form:

let x = s in t
let x=S in t−−−−−−−−→

∗
λ≈ let x = s′ in t

[ ], cpa−−−−→ t[s′/x]
S−→
∗
λ≈ λz.q

where s′ represents } or an abstraction.

Proof. Induction on the length of the approximation reduction sequence. 2

4.2 Similarity

Owing to the rules (stop) and (cpa), we now have the potential to equip
abstractions with the information about their let-environments up to an ar-
bitrary depth. This fact will be exploited through non-determinism, i.e. by
considering all possible approximation reductions to abstractions.
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We use the terms “bisimulation” and “bisimilarity” like e.g. [2,25] and
therefore define the notion of a simulation first.

Definition 4.6 The operation [·]≈ : Λ0
≈ × Λ0

≈ → Λ0
≈ × Λ0

≈ over relations on
closed terms is defined by

s′ [η]≈ t′ ⇐⇒ ∀λx.s : (s′ ⇓ λx.s =⇒
∃λy.t : (t′ ⇓ λy.t ∧ ∀r : r ∈ Λ0

≈ =⇒ (λx.s) r η (λy.t) r))

and called an experiment. A relation η ⊆ Λ0
≈×Λ0

≈ is a simulation if η ⊆ [η]≈.

It is clear that [·]≈ is monotonic, i.e. η1 ⊆ η2 =⇒ [η1]≈ ⊆ [η2]≈, hence its
greatest fixed point exists.

Definition 4.7 Define the similarity .b to be the greatest fixed point of [·]≈,
i.e. .b = gfp([·]≈), and the bisimilarity ∼b by s ∼b t ⇐⇒ s .b t ∧ t .b s.

So two terms s and t are considered bisimilar as long as their approximation
reduction leads to sets of abstractions such that there are elements from each
set which are bisimilar if applied to arbitrary arguments. The next example
underpins that this is exactly what we need to obtain the same capability in
distinguishing terms as with contexts.

Example 4.8 As is known, the two terms s ≡ let v = pick K K2 in λw.v
and t ≡ λw.pick K K2 of example 3.3 could be distinguished by contexts.

Now we can show that t 6.b s does not hold either. Since t already is
an abstraction, we therefore consider all possible approximation reduction
sequences for s that lead to an abstraction:

s
let v=[ ] in λw.v, ndl−−−−−−−−−−−−−→ let v = K in λw.v

[ ], cpa−−−−→ λw.K

s
let v=[ ] in λw.v, ndr−−−−−−−−−−−−−→ let v = K2 in λw.v

[ ], cpa−−−−→ λw.K2

Since the non-deterministic choice has been fixed, neither of these abstractions
exposes the necessary behaviour. Particularly, t may converge when applied to
the argument sequences Ω,Ω,K and Ω,K,Ω, while λw.K does not converge
for the former, nor does λw.K2 for the latter.

What follows is an example of a proof which is straightforward for similarity
but seems rather involved using the definition of contextual approximation.

Example 4.9 Let r, s, t ∈ Λ0
≈ be arbitrary closed terms. Then we have

r .b t ∧ s .b t =⇒ pick r s .b t

i.e. if t behaves “better” than both r and s, then it is immaterial which one is
chosen thereof. So assume pick r s ⇓ λy.p, then r ⇓ λy.p or s ⇓ λy.p. Since
by the premise we have r .b t and s .b t, the proposition is shown.
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We will now extend similarity to open terms. The motivation for doing so
is twofold. First, the notion of a congruence is less meaningful when dealing
with closed terms. E.g., inferring λx.s ∼b λx.t from s ∼b t for closed s and
t does not gain much, since x is only a dummy variable. Secondly, the proof
method interacts closely with the extension of .b to open terms anyway.

So we have to bear in mind which terms may be copied in the λ≈-calculus.
Since this is the case for } and abstractions only, the technique to use all
closing substitutions is not applicable, as the following example substantiates.

Example 4.10 Consider the open terms f f and let x = f in x x which are
contextual equivalent in the λND-calculus since copying variables is permitted
(cf. correctness of rule (lcv) in [13]).

But demanding the terms to be bisimilar for every closing substitution is
not possible: (f f)[pick K K2/f ] may yield KK2 which, along the lines of
example 3.3, converges if successively applied to the arguments Ω, Ω and K,
whereas (let x = f in x x)[pick K K2/f ] clearly does not.

Hence what we need is a restriction of the substitutions such that free
variables are mapped only to } or closed abstractions.

Definition 4.11 Let s, t ∈ Λ≈ be (possibly open) terms. We then write
s .b

o t if and only if σ(s) .b σ(t) holds for all closing substitutions σ whose
range rng(σ) satisfies rng(σ) ⊆ { p ∈ Λ0

≈ | p ≡ } ∨ p ≡ λz.q }.

In [15, section 4.7], we show that an equivalent notion may be defined by
considering all closing let-environments.

4.3 The Precongruence Candidate

In this section, let τ stand for any operator of the Λ≈-language (i.e. }, λ, let,
pick or application) and ai for a sequence of its operands. With ai η bi we
denote the condition that ai η bi for every i holds. A relation η ⊆ Λ≈ × Λ≈
is then called operator-respecting, or compatible, if and only if ai η bi implies
τ(ai) η τ(bi) for all operators. A precongruence is a compatible preorder.

The following defines a relation which is compatible by definition but not
necessarily transitive. The intention is to show that it coincides with .b

o for
which the criteria will be developed in this section.

Definition 4.12 Let η ⊆ Λ0
≈ × Λ0

≈ be a preorder. Then define its precongru-

ence candidate .̂b ⊆ Λ≈ × Λ≈ by

• x .̂b b if x ∈ V is a variable and x .b
o b.

• τ(ai) .̂b b if there exists a′i such that ai .̂b a′i and τ(a′i) .b
o b.

Howe [11, p. 201] aptly gives the informal account that a .̂b b if b can
be obtained from a via one bottom-up pass of replacements of subterms by
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terms that are larger under .b
o. As noted before, in the λ≈-calculus only }

and abstractions may be copied. Hence the following two lemmata reflect our
counterpart to [11, Lemma 1] and [12, Lemma 3.2] respectively.

Lemma 4.13 Let b, b′ ∈ Λ≈ be terms. Then b .̂b b′ implies b[}/x] .̂b b′[}/x].

Lemma 4.14 For all b, b′ ∈ Λ≈ and closed abstractions λz.r, λz.r′ ∈ Λ0
≈ the

following holds: b .̂b b′ ∧ λz.r .̂b λz.r′ implies b[λz.r/x] .̂b b′[λz.r′/x].

Both lemmata are proven by induction on the definition of the precongru-
ence candidate in which we take advantage of how .b

o is defined.

Let in the following η 0 stand for the restriction of a preorder η ⊆ Λ≈×Λ≈
to closed terms, i.e. η 0 = η ∩ Λ0

≈ × Λ0
≈, then from the above we can show:

Theorem 4.15 The relation (.̂b) 0 ⊆ .b holds, if and only if .̂b ⊆ .b
o, if

and only if .b
o is a precongruence.

We will establish the first set inclusion (.̂b) 0 ⊆ .b which, by co-induction,

follows from (.̂b) 0 ⊆ [(.̂b) 0]≈, since .b is the greatest fixed point of [·]≈
and contains all simulations. To use induction on the length of converging

approximation reductions sequences, we therefore have to show that (.̂b) 0 is
preserved under every single-step reduction.

5 Proving .b
o a precongruence

Preservation of (.̂b) 0 under every single-step reduction amounts to the condi-

tion that s (.̂b) 0 t ∧ s
S−→λ≈ s′ implies s′ (.̂b) 0 t in which the terms s, s′, t all

are closed. Note that the only closing surface contexts, i.e. those with which
open terms can be closed, involve a LR-context somewhere.

It can be shown that for every converging approximation reduction there
is also an approximation reduction sequence to the same abstraction, where
no approximation reduction takes place in a closing surface context. Hence in
the following, it is sufficient to examine top-level reductions on closed terms.

Lemma 5.1 Let r, s ∈ Λ0
≈ be closed terms such that r

[ ], a−−−→λ≈ s holds. Then

for every closed term t ∈ Λ0
≈ we have: r (.̂b) 0 t implies s (.̂b) 0 t.

Proof. In the case of a ∈ {ndl, ndr, stop} the claim is obvious. The remain-
ing reduction rules are by induction on the definition of the precongruence
candidate, where for (lapp) and (lbeta) compatibility of .b w.r.t. contexts of
the form ([ ] e) is applied.

The proof of the rule (cpa) is done distinguishing the cases for } and
abstractions, while exploiting lemma 4.13 and 4.14, respectively. 2

It is remarkable, that by virtue of Howe’s method we achieve a modular
proof. Because it could be done for each of the rules separately, it is easily
extensible if new reduction rules are added to the calculus.
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Furthermore, using (cpa) instead of (cp) greatly simplifies matters, since
by the integrated garbage collection there is no need to keep track of the
copied term at its target location w.r.t to its binding in the let-environment.

Theorem 5.2 The similarity .b
o is a precongruence.

Proof. With lemma 5.1, the premises for theorem 4.15 are satisfied. 2

Since the language Λ≈ contains strictly more contexts than ΛND due to the
constant }, we define contextual approximation for λ≈ separately. We will
show in section 6 that these contexts do not add any computational power.

Definition 5.3 The contextual approximation .Λ≈, c for λ≈ is defined by

s .Λ≈, c t ⇐⇒ ∀C : C[s] ⇓ =⇒ C[t] ⇓

and contextual equivalence 'Λ≈, c by s 'Λ≈, c t ⇐⇒ s .Λ≈, c t ∧ t .Λ≈, c s.

By virtue of theorem 5.2 it becomes nearly straightforward to show that
similarity .b

o coincides with the contextual approximation in the λ≈-calculus.

Theorem 5.4 Let s, t ∈ Λ≈ be terms. Then s .b
o t iff s .Λ≈, c t holds.

6 Correspondence of Equality in λλλND and λλλ≈

Since our aims were a method to prove the contextual equivalence 'ΛND, c in
the λND-calculus, we have an obligation to show that this is indeed the same
as the contextual equivalence 'Λ≈, c in the λ≈-calculus. Hence, we first recall
how the contextual approximation is defined:

s .c t ⇐⇒ (∀C : C[s] ⇓ =⇒ C[t] ⇓)

It is quite evident that the correspondence of .ΛND, c and .Λ≈, c requires the
following property: For every term t ∈ Λ≈ there is a normal-order reduction
to a weak head normal form if and only if t has an approximation reduction to
an abstraction. We therefore understand the notion of normal-order reduction
in λND as extended to terms from Λ≈ in the obvious way, i.e. regarding } as
a constant which has no normal-order reduction.

Moreover, it can be shown that for every Λ≈-context C which distinguishes
two terms s, t ∈ ΛND there is also a ΛND-context C ′ such that C ′[s] converges
but C ′[t] does not, or vice versa. For this purpose we may obtain C ′ from C by
simply replacing all occurrences of } with Ω, whose normal-order reduction
does not terminate.

Thus, the contexts of ΛND and Λ≈ are equally powerful in distinguishing
terms and we also obtain a sufficient condition from the above mentioned
property. I.e., we may confine attention to the transformation of converging
reduction sequences between the two calculi in the following.
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6.1 Transforming
S−→λ≈- into

n−→λND
-reduction sequences

The process of constructing a normal-order reduction to a WHNF is by induc-
tion on the length of a converging approximation reduction. Since (cpa) and
(nd) are the only approximation reductions to reach an abstraction within a
single step, the induction base should be clear.

For the induction step it is then to show that every approximation reduc-
tion may be moved to the end of a normal-order reduction sequence. For
approximation reductions which are performed inside surface contexts that
are not reduction contexts, this is an obvious task, since the corresponding
contexts are disjoint. So it turns out that only reductions by rule (cpa) inside
reduction contexts are of particular interest. For these, in [15, section 5.1] a
complete set of commuting diagrams w.r.t. normal-order reductions is estab-

lished. These diagrams do not duplicate
R, cpa−−−−→-reductions and hence could

be composed by induction which leads to the following result.

Lemma 6.1 Let r, λx.s ∈ Λ≈ be terms such that r
S−→
∗
λ≈ λx.s holds. Then

there is also a normal order reduction r
n−→
∗
λND

t where t is a WHNF.

Proof. Using the arguments discussed above for an induction on the length
of an approximation reduction sequence to an abstraction. 2

6.2 Transforming
n−→λND

- into
S−→λ≈-reduction sequences

Since every reduction context is also a surface context, the only normal-order
reductions which are no approximation reductions are those by the rules (cp)
and (llet). Since with (cpa) the former has a counterpart in the λ≈-calculus,
its treatment is not difficult.

But in order to make the latter superfluous, the reduction strategy has to
be adapted so that for a term like let x = (let y = ty in tx) in R[x] the
approximation reduction first proceeds inside let y = ty in tx until } or
an abstraction is reached, which could be copied into R[x] using (cpa) then.
Because of theorem 4.5, this procedure is always possible and may also be
applied recursively to the subterm let y = ty in tx of the above scenario.

Lemma 6.2 Let r, s ∈ Λ≈ be terms such that s is a WHNF and r
n−→
∗
λND

s

holds. Then there is also an approximation reduction r
S−→
∗
λ≈ λx.t to some

abstraction.

Proof. By induction on the length of a normal-order reduction sequence. 2

Putting all these parts together we achieve the correspondence of similarity
with contextual approximation, both in the λND- and the λ≈-calculus.

Theorem 6.3 Let s, t ∈ Λ≈ be arbitrary λ≈-terms. Then s .b t holds, if
and only if s .Λ≈, c t, if and only if s .ΛND, c t is valid.
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Our main objective of proving contextual equivalences in the λND-calculus
now becomes a simple consequence.

Corollary 6.4 For all terms s, t ∈ ΛND we have s ∼b
o t iff s 'ΛND, c t holds.

7 Conclusion and Future Work

To the best of our knowledge, for the first time a sensible bisimulation has been
defined for a non-deterministic call-by-need calculus and shown to be equiv-
alent to contextual equivalence. The proof that bisimulation is a congruence
extended Howe’s method, where two points emerged to be of significance.

First, we have seen that testing terms by just reducing them to weak
head normal form and applying these WHNF’s to arbitrary arguments is not
appropriate. Instead, the terms to be tested have rather be equipped with
all the information about which choices have to be shared and which may be
copied. We accomplished this by performing evaluation inside surface contexts
up to every arbitrary depth, in which also choices in let-environments may
be forced. Since we non-deterministically collect all these possible outcomes,
we therefore have enough potential to discriminate terms.

The other aspect concerns the kind of terms that may be copied. As we
have seen, the precongruence candidate or, strictly speaking, the extension
of the bisimilarity to open terms had to be adapted such that only } and
abstractions are considered. This might point out a general way for the proof
of the fundamental substitution lemma to go through, i.e. for [11, Lemma 1]
and [12, Lemma 3.2] respectively, or lemma 4.13 and 4.14 in our case.

On the basis of these explanations, we feel confident that the technique
demonstrated in this paper is powerful enough for the treatment of a lan-
guage extending the λND-calculus with a case and data constructors. It
could also be worth to apply the results of this paper to the design and de-
velopment of generic and purely syntactic systems of structural operational
semantics, e.g. like the structured evaluation systems of [12] but suited for
non-determinism combined with sharing.

As remarked earlier, the contextual equivalence does not regard must con-
vergence nor, on a par with it, divergence. Like the work of [20,13,30] suggests,
it is quite reasonable in a non-deterministic calculus to regard possibly infinite
reduction sequences. Hence as a further extension of the λND-calculus, also
divergent behaviour might be incorporated. So, writing s ⇑ if s has a non-
terminating normal-order reduction, a possible — and sensible — definition
of the contextual equivalence might be given by

s 'c t ⇐⇒ ((∀C : C[s] ⇓ ⇐⇒ C[t] ⇓) ∧ (∀C : C[s] ⇑ ⇐⇒ C[t] ⇑))

Using contextual approximation, the above contextual equivalence may be
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established in several ways. It may seem appealing to adopt a definition like

s .c t ⇐⇒ (∀C : (C[s] ⇓ =⇒ C[t] ⇓) ∧ (C[t] ⇑ =⇒ C[s] ⇑))

from [13] for the contextual approximation. But for our method, this will pose
technical difficulties in showing that similarity equals contextual approxima-
tion. This is, because then e.g. K .c pick Ω K will not hold anymore and

therefore s
S−→λ≈ t =⇒ t .b s neither. We preferably would like to retain

this property, since it has turned out to be extremely helpful in the proof. It
appears to us that, by the duality of convergence and divergence, it is feasible
to define a separate “approximation” relation for divergence. For that relation
a method similar to the one presented in this paper seems possible.

There is another aspect concerning the omission of divergence: As we
have indicated before, there are equalities in the λND-calculus which are not
true in a calculus regarding divergence, e.g. [13]. These include the following
equivalences, where ⊥ stands for an arbitrary term which does not have a
weak head normal form:

pick s ⊥ 'ΛND, c s

pick ⊥ t 'ΛND, c t

So in the λND-calculus the operator pick behaves bottom-avoiding which sug-
gests that it could be worthwhile to apply our results to this kind of calculi.

Further enhancements may be devoted to making bisimulation proofs eas-
ier to handle. Since the approximation reduction in the λ≈-calculus is highly
non-deterministic, a direct definition of bisimulation in λND is desirable, which
provides more information on how to proceed comparing two terms.

Moreover, because sharing does not change the termination behaviour of
terms in a deterministic setting, an application of our results to the improve-
ment theory of [19], where terms could be distinguished if they differ in the
number of reductions necessary to reach a weak head normal form, may be of
interest for future research.
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Abstract

Esterel is a synchronous design language for the specification of reactive systems.
There exist two main semantics for Esterel. On the one hand, the logical behavioral
semantics provides a simple and compact formalization of the behavior of programs
using SOS rules. But it does not ensure deterministic executions for all programs
and all inputs. As non-deterministic programs have to be rejected as incorrect, this
means it defines behaviors for incorrect programs, which is not convenient. On the
other hand, the constructive semantics is deterministic (amongst other properties)
but at the expense of a much more complex formalism. In this work, we construct
and thoroughly analyze a new deterministic semantics for Esterel that retains the
simplicity of the logical behavioral semantics, from which it derives. In our view, it
provides a much better framework for formal reasoning about Esterel programs.

Key words: synchronous languages, concurrency theory,
structural operational semantics.

1 Introduction

Esterel [7,8] is a high-level imperative parallel programming language for the
specification of reactive systems [9,13]. It was born in the eighties [6], and
evolved since then. In this work, we consider the Esterel v5 dialect [4,5]
endorsed by current academic compilers [1,10]. Pure Esterel is the subset of
the full Esterel language where data variables and data-handling primitives
are abstracted away. As the issues we are interested in in this work are not
related to data in any way, we shall concentrate on the pure Esterel language.

Esterel is a synchronous language [2]. Primitives constructs execute in zero
time except for one pause instruction. Hence, time flows as a sequence of log-
ical instants separated by explicit pauses. In each instant, several elementary
instantaneous computations take place simultaneously.

Esterel deals with signals. Signals have a Boolean status, which obeys the

1 Email: olivier.tardieu@sophia.inria.fr
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
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signal coherence law: in each instant, a signal is absent by default, present if
emitted in this instant. In “present A then emit B end” for instance, B is
emitted, thus present, if A is present.

Both absence and presence are instantly broadcast, and simultaneously
available to all threads of execution. This perfect synchrony hypothesis may
result in causality cycles [4,14], as for example in the parallel composition:

present A then emit B end || present B then emit A end

which admits two possible executions conforming to the signal coherence law:

• both A and B are present and emitted;

• both A and B are absent and not emitted.

This program is said to be non-deterministic. Similarly, there exist non-
reactive programs with no possible execution, for example:

present A then emit B end || present B else emit A end

In Esterel, we want programs to have deadlock-free deterministic executions.
Therefore, non-reactive and non-deterministic programs have to be rejected
as incorrect. Two main semantics have been formalized for Esterel:

• The logical behavioral semantics [3] simply formalizes the signal coherence
law. It defines no execution for a non-reactive program, and several distinct
executions for a non-deterministic program 2 .

• The constructive semantics [4] is inspired from digital circuits and three-
valued logic. It only defines a subset of the executions defined by the logical
behavioral semantics. By rejecting more “unreasonable” programs than just
non-reactive and non-deterministic programs, it ensures that executions can
be “causally” computed. As a result, it defines no execution for non-reactive
as well as non-deterministic programs.

These two semantics handle non-determinism in opposite manners. Neither is
truly convenient.

• On the one hand, an execution defined by the logical behavioral semantics
is not necessarily correct, as it may be the execution of a non-deterministic,
thus incorrect program. Moreover, non-determinism sometimes compen-
sates for non-reactivity making a program reactive and deterministic al-
though it contains non-reactive or non-deterministic pieces of code.

• On the other hand, the constructive semantics only defines correct execu-
tions, but at the expense of a much more complex formalism.

Therefore, we introduce in this work a third alternative semantics that we
derive from the logical behavioral semantics. It retains the simple formalism
of the logical behavioral semantics, while only defining correct executions. In
particular, it makes sure errors do not cancel one another.

2 In general, determinism and reactivity depend on inputs (cf. Section 4).
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The paper is organized as the following. In Section 2, we describe the
pure Esterel language. We formalize its logical behavioral semantics in Sec-
tion 3, and discuss reactivity and determinism in Section 4. We build our
deterministic semantics in Section 5. In Section 6, we thoroughly compare
the two semantics. We briefly discuss the constructive semantics of Esterel in
Section 7, and conclude in Section 8.

2 Syntax and Intuitive Semantics

p, q ::= nothing does nothing, terminates instantly
pause stops the execution till next instant
p; q runs p, then q if/when p terminates
p || q runs p in parallel with q
loop p end repeats p forever
signal S in p end declares signal S in p
emit S emits signal S
present S then p else q end runs p if S is present, q otherwise
trap T in p end declares, catches exception T in p
exit Td raises exception T of depth d

Fig. 1. Primitive Pure Esterel Constructs

Without loss of generality, we focus in this work on a kernel language
inspired from Berry [4], which retains just enough of the pure Esterel language
to attain its full expressive power. Figure 1 describes the grammar of our
kernel language, as well as the intuitive behavior of its constructs.

The non-terminals p and q denote statements (i.e. programs), S signals
and T exceptions. Signals and exceptions are identifiers lexically scoped and
respectively declared within statements by the constructs “signal S in p end”
and “trap T in p end”.

The infix “;” operator binds tighter than “||”. Brackets “[” and “]” may
be used to group statements in arbitrary ways. In a present statement, then
or else branches may be omitted. For example, “present S then p end” is
a shortcut for “present S then p else nothing end”.

2.1 Instants and Reactions

An Esterel statement runs in steps called reactions in response to the ticks of
a global clock. Each reaction takes one instant. Primitive constructs execute
in zero time except for the pause instruction. When the clock ticks, a reaction
occurs, which computes the output signals and the new state of the program,
from the input signals and the current state of the program. It may either
finish the execution instantly or delay part of it till the next instant, because it
reached at least one pause instruction. In the latter case, the execution is re-
sumed when the clock ticks again from the locations of the pause instructions

3
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reached in the previous instant. And so on.

“emit A; pause; emit B; emit C; pause; emit D” emits the signal A
in the first instant of its execution, then emits B and C in the second instant,
finally emits D and terminates in the third instant. It takes three instants
to complete, that is to say proceeds by three reactions. The signals B and
C are emitted simultaneously, as their emissions occur in the same instant of
execution. In particular, “emit B; emit C” and “emit C; emit B” cannot
be distinguished in Esterel.

2.2 Synchronous Concurrency

Concurrency in Esterel is synchronous. One reaction of the parallel composi-
tion “p || q” is made of exactly one reaction of each non-terminated branch,
until the termination of all branches. For example,

[

pause; emit A; pause; emit B

||

emit C; pause; emit D

];

emit E

emits C in the first instant of its execution, then emits A and D in the second
instant, then emits B and E and terminates in the third instant.

2.3 Exceptions

Exceptions are lexically scoped, declared and caught by the “trap T in p end”
construct, raised by the “exit Td” instruction. The integer d encodes the depth
of “exit T”:

• if “exit Td” is enclosed in a declaration of T then d must be the number of
exception declarations that have to be traversed before reaching that of T ;

• if “exit Td” is not enclosed in a declaration of T then d must be greater or
equal to the number of exception declarations enclosing this exit statement.

For example,

trap T in

trap U in

exit T1 has depth 1 because of the declaration of U
||

exit U0 has depth 0
||

exit V3 could have any depth greater or equal to 2
end;

exit T0 has depth 0
end

4
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Such a “De Bruijn” encoding of exceptions for Esterel was first advocated for
by Gonthier [11]. As usual, we shall only make depths explicit when necessary.

In sequential code, the exit statement behaves as a “goto” to the end of
the matching trap block. For example,

trap T in

emit A; pause; emit B; exit T; emit C

end;

emit D

emits A in the first instant, then B and D and terminates in the second instant.
Signal C is never emitted.

An exception raised in a parallel context causes all parallel branches to
terminate instantly. In the example below, A and E are emitted in the first
instant, then B, F, and D in the second and final one. Neither C nor G is emitted.

trap T in

emit A; pause; emit B; exit T; emit C

||

emit E; pause; emit F; pause; emit G

end;

emit D

Remark exceptions implement weak preemption: “exit T” in the first branch
does not prevent F to be simultaneously emitted in the second one.

Exception declarations may be nested. In the following example, A is not
emitted, as the outermost exception T has priority over inner ones, U here.

trap T in

trap U in

exit T1 || exit U0

end;

emit A

end

In other words, the exception of greater depth has always priority.

2.4 Loops

The statement “loop emit S; pause end” emits S at each instant and never
terminates. Finitely iterated loops may be obtained by combining loop, trap
and exit statements, as for instance in the kernel expansions of “await S”:

trap T in loop pause; present S then exit T end end end

Loop bodies may not be instantaneous [17]. For example, “loop emit S end”
is not a correct program. Such a pattern would prevent the reaction to reach
completion. Therefore, loop bodies are required to raise an exception or retain
the control for at least one instant, that is to say execute a pause or an exit

statement in each iteration.

5
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2.5 Signals

The instruction “signal S in p end” declares the local signal S in p. The
free signals of a statement are said to be interface signals for this statement.

In an instant, a signal S is emitted iff at least one “emit S” statement is
executed in this instant. In an instant, the status of a signal S is either present
or absent. If S is present then all “present S then p else q end” statements
executed in this instant, execute their “then p” branch in this instant; if S is
absent they all execute their “else q” branch.

• A local signal is present iff it is emitted.

• An interface signal is present iff it is provided by the environment.

Remark an interface signal may be both absent and emitted. For example,

• In “signal S in emit S; pause; present S then emit O end end”, S
is present in the first instant of execution only, thus O is not emitted by this
statement, as S is absent at the time of the “present S” test.

• In “signal S in present S then emit O end || emit S end”, both S

and O are emitted, S is present.

• In “emit X; present X then emit O end”, the status of X depends on
the environment, hence O is emitted iff X is provided by the environment.

3 Logical Behavioral Semantics

The logical behavioral semantics of Esterel [4,11] formalizes the informal se-
mantics of the previous section. It describes the reactions of a statement p
via a labeled transition system:

p
O, k−−→

I
p′

where:

• the set I is the set of present signals,

• the set O is the set of emitted signals,

• the integer k is the completion of the reaction,

• the statement p′ is the residual of the reaction.

Figure 2 expresses the logical behavioral semantics of Esterel as a set of facts
and deduction rules in a structural operational style [16].

3.1 Completion Code and Residual

The completion code k and the residual p′ encode the status of the execution:

• If k = 1 then this reaction does not complete the execution of p.
It has to be continued by the execution of p′ in the next instant.

6
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• If k 6= 1 then this reaction ends the execution of p (p′ does not matter):
· k = 0 if the execution completes normally (without exception).
· k = d + 2 if an exception of depth d escapes from p.

In particular, the completion code of “exit Td” is “2+d”. In order to compute
the completion code “↓k” of “trap T in p end” from the completion k of p,
we define:

↓k =


0 if k = 0 or k = 2
1 if k = 1
k − 1 if k > 2

Conveniently, if p terminates with completion code k and q with completion
code l then “p || q” terminates with code “max(k, l)”. For example,

trap T in exit T0 || exit V4 end
∅, 3−−→
I

trap T in nothing end

3.2 Present and Emitted Signals

The set I, written below the arrow, lists the signals provided by the environ-
ment. It drives the reactions of present statements:

• if S ∈ I and p
O, k−−→

I
p′ then present S then p else q end

O, k−−→
I

p′.

• if S /∈ I and q
O, k−−→

I
q′ then present S then p else q end

O, k−−→
I

q′.

The set O, written above the arrow, lists the emitted interface signals. In
particular,

emit S
{S}, 0−−−→

I
nothing

The signal coherence law – a local signal is present iff emitted – is enforced
for the statement “signal S in p end” by the rules:

(signal+) if S is supposed present in p then it is emitted by p;
(signal−) if S is supposed absent in p then it is not emitted by p.

For instance, for inputs I = {A},

emit S
{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in emit S end
∅, 0−−→
{A}

signal S in nothing end
using (signal+)

pause
∅, 1−−→
{A}

nothing S /∈ ∅

signal S in pause end
∅, 1−−→
{A}

signal S in nothing end
using (signal−)

We shall further discuss these rules later.

7
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nothing
∅, 0−−→
I

nothing (nothing)

pause
∅, 1−−→
I

nothing (pause)

exit Td
∅, d+2−−−−→

I
nothing (exit)

emit S
{S}, 0−−−→

I
nothing (emit)

p
O, k−−→

I
p′ k 6= 0

loop p end
O, k−−→

I
p′; loop p end

(loop)

p
O, k−−→

I
p′ q

O′, l−−→
I

q′

p || q
O∪O′, max(k, l)−−−−−−−−−→

I
p′ || q′

(parallel)

S ∈ I p
O, k−−→

I
p′

present S then p else q end
O, k−−→

I
p′

(present+)

S /∈ I q
O, k−−→

I
q′

present S then p else q end
O, k−−→

I
q′

(present−)

p
O, 2−−→
I

p′

trap T in p end
O, 0−−→
I

nothing
(trap-catch)

p
O, k−−→

I
p′ k 6= 2

trap T in p end
O, ↓k−−−→

I
trap T in p′ end

(trap-through)

p
O, k−−→

I
p′ k 6= 0

p; q
O, k−−→

I
p′; q

(sequence-p)

p
O, 0−−→
I

p′ q
O′, k−−−→

I
q′

p; q
O∪O′, k−−−−−→

I
q′

(sequence-q)

p
O, k−−−−→

I∪{S}
p′ S ∈ O

signal S in p end
O\{S}, k−−−−−→

I
signal S in p′ end

(signal+)

p
O, k−−−−→

I\{S}
p′ S /∈ O

signal S in p end
O, k−−→

I
signal S in p′ end

(signal−)

Fig. 2. Logical Behavioral Semantics

8
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3.3 Execution

An execution of the statement p is a potentially infinite chain of reactions,
such that all completion codes are equal to 1, but the last one in the finite
case:

• finite execution: p
O0, 1−−→

I0
p1

O1, 1−−→
I1

...
On, k−−−→

In

pn+1, with k 6= 1, for some n ∈ N.

• infinite execution: p
O0, 1−−→

I0
p1

O1, 1−−→
I1

...
On, 1−−−→

In

...

We say that I = (I0, I1, ..., In) in the finite case and I = (In)n∈N in the infinite
case is the sequence of inputs of the execution. Similarly, O is the sequence
of outputs.

For example, the statement “emit A; pause; emit B” emits A and does
not terminate instantly, with the residual “nothing; emit B” remaining to
be executed. In the second and final instant of execution, B is emitted.

emit A; pause; emit B
{A}, 1−−−→

I0
nothing; emit B

{B}, 0−−−→
I1

nothing

We note p → p′ iff there exists I and O such that p
O, 1−−→
I

p′. We say that q is

reachable from p iff p
∗→ q where

∗→ is the reflexive transitive closure of →.

4 Logical Correctness

Depending on the statement p and inputs I, the logical behavioral semantics
may define zero, one or several reactions. Moreover, a given reaction may ad-
mit more than one proof, that is to say result from more than one composition
of the rules of the semantics. For example, for I = {A},

reaction proof
nothing 1 1

loop nothing end 0 0
signal S in present S else emit S end end 0 0
signal S in present S then emit S end end 1 2

signal S in present S then emit S else pause end end 2 2

In particular, for “signal S in present S then emit S end end”, the se-
mantics defines exactly one reaction, but with two possible proofs, obtained
by using either the (signal−) or the (signal+) rule:

S /∈ {A} nothing
∅, 0−−→
{A}

nothing

present S then emit S end
∅, 0−−→
{A}

nothing S /∈ ∅

signal S in present S then emit S end end
∅, 0−−→
{A}

signal S in nothing end

9
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S ∈ {A, S} emit S
{S}, 0−−−→
{A,S}

nothing

present S then emit S end
{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in present S then emit S end end
∅, 0−−→
{A}

signal S in nothing end

The internal behavior of “signal S in present S then emit S end end”
is not deterministic, since the local signal S can be both present or absent. Its
observed behavior is nevertheless deterministic.

We expect programs to have deterministic deadlock-free executions. So,
we have to discard as “incorrect” programs with no or too many possible
behaviors. In this section, we formalize such a correctness criterion.

We define:

• p is reactive iff for all I, there exists at least one tuple (O, k, p′) s.t. p
O, k−−→

I
p′.

• p is deterministic iff for all I there is at most one tuple (O, k, p′) s.t. p
O, k−−→

I
p′.

• p is strongly deterministic iff p is deterministic and for all (I, O, k, p′) the

proof of p
O, k−−→

I
p′ is unique if it exists.

• p is logically correct iff for all q reachable from p, q is reactive and deter-
ministic.

• p is strongly correct iff for all q reachable from p, q is reactive and strongly
deterministic.

Determinism ensures that the observed behavior of a statement is determinis-
tic. Strong determinism guarantees that its internal behavior is deterministic,
too. Reactivity combined with (strong) determinism ensures that there ex-
ists a unique reaction (with a unique proof) for this statement, whatever the
inputs.

Logical correctness characterizes statements that have deterministic dead-
lock-free executions for any sequence of inputs. In addition, strong correctness
ensures strong determinism. Strong correctness becomes a concern as soon as
side effects or debugging have to be taken into account, as both may expose the
internal behavior of a program. Of course, strong correctness implies logical
correctness.

5 Deterministic Semantics

The logical behavioral semantics provides a very compact, structural formal-
ization of the behavior of Esterel programs, which makes formal reasoning
about the language tractable. Moreover, it defines reactivity and determin-
ism, which are the agreed minimal correctness criteria for Esterel programs.

However, working with these criteria can be tedious. While, reactivity may
be attested with a simple proof tree, establishing (strong-)determinism is more

10
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complex and formally requires a proof about proof trees (proof of uniqueness).

Moreover, defining first many (proofs of) reactions for non-(strongly)-
deterministic statements, which we then discard because there are too many,
seems utterly inefficient.

Therefore, we propose to rewrite the rules for local signal declarations:

p
O, k−−−→

I∪{S}
p′ S ∈ O

signal S in p end
O\{S}, k−−−−−→

I
signal S in p′ end

(signal+)

p
O, k−−−→

I\{S}
p′ S /∈ O

signal S in p end
O, k−−→

I
signal S in p′ end

(signal−)

as the following (where k+, k−, etc. are nothing but convenient names):

p pO
−, k−−−−−→

I\{S}
p− S ∈ O− p pO

+, k+

−−−−→
I∪{S}

p+ S ∈ O+

signal S in p end pO
+\{S}, k+

−−−−−−−→
I

signal S in p+ end

(signal++)

p pO
−, k−−−−−→

I\{S}
p− S /∈ O− p pO

+, k+

−−−−→
I∪{S}

p+ S /∈ O+

signal S in p end pO
−, k−−−−−→
I

signal S in p− end

(signal−−)

We call the resulting semantics the deterministic semantics, and denote the
corresponding reactions by the transition symbol “7→”.

Intuitively, it consists in enforcing in each signal rule that the other one
does not apply, without introducing negative premises [12] such as:

S, p, I, O, k, and p′ are not such that p
O, k−−−→

I∪{S}
p′ and S ∈ O

Rather than negating the whole precondition, we only swap the binary decision
S ∈ O for S /∈ O, and vice versa. In the logical behavioral semantics, we had:

• (signal+): if S is supposed present in p then it is emitted by p.

• (signal−): if S is supposed absent in p then it is not emitted by p.

In our deterministic semantics, the rules for the signal construct become:

• (signal++):
· if S is supposed present in p then it is emitted.
· if S is supposed absent in p then it is still emitted.

• (signal−−):
· if S is supposed absent in p then it is not emitted.
· if S is supposed present in p then it is not emitted either.

11

49



Tardieu

5.1 Examples

For example, the deterministic semantics produces the same reactions as the
logical behavioral semantics, in the following two cases (cf. Section 3):

pause p∅, 1−−→
{A}

nothing S /∈ ∅ pause p ∅, 1−−−→
{A,S}

nothing S /∈ ∅

signal S in pause end p∅, 1−−→
{A}

signal S in nothing end

emit S p{S}, 0−−−→
{A}

nothing S ∈ {S} emit S p{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in emit S end p∅, 0−−→
{A}

signal S in nothing end

The deterministic semantics defines no reaction for:

• the non-reactive statement:
“signal S in present S else emit S end end”

• the non-deterministic statement:
“signal S in present S then emit S else pause end end”

• the non-strongly-deterministic statement:
“signal S in present S then emit S end end”

5.2 Determinism

The new semantics is globally deterministic:

Theorem 5.1 For all p and I, there exists at most one (O, k, p′) s.t. p pO, k−−→
I

p′.

Theorem 5.2 For all p, I, O, k, p′, the proof of p pO, k−−→
I

p′ is unique if it exists.

Proof. Simple structural induction on p. 2

There is no need to count proofs and reactions in the deterministic semantics.

5.3 Properness

Since, the uniqueness of proofs and reactions is ensured, we shall say that the
statement p is correct with respect to the deterministic semantics, i.e. proper,
iff the deterministic semantics defines at least one reaction at any stage of the
execution of p for any sequence of inputs. Formally, we define:

• p is initially proper iff for all I, there exists (O, k, p′) such that p pO, k−−→
I

p′.

• p 7→ p′ iff there exists I and O such that p pO, 1−−→
I

p′.

• ∗7→ is the reflexive transitive closure of 7→.

• p is proper iff for all q such that p
∗7→ q, q is initially proper.
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6 Comparison

We now precisely relate the logical behavioral and the deterministic semantics.

6.1 Properness implies strong correctness

Theorem 6.1 If p pO, k−−→
I

p′ then p
O, k−−→

I
p′.

Theorem 6.2 If p pO0, k0−−−→
I

p′0 and p
O1, k1−−−→

I
p′1 then O0 = O1, k0 = k1, p′0 = p′1.

Theorem 6.3 If p pO, k−−→
I

p′ then the proof of p
O, k−−→

I
p is unique.

Proof. cf. Appendix A. 2

By writing

p pO, k−−→
I

p′

we not only express that p may react to inputs I, with outputs O, completion
code k, and residual p′ in the deterministic semantics, thus in the logical
behavioral semantics as well (Th. 6.1), but also that it must react this way in
both semantics (Th. 5.1 and 6.2), and that its internal behavior is deterministic
(Th. 5.2 and 6.3). As a consequence,

Corollary 6.4 If p is proper then p is strongly correct.

6.2 Strong correctness does not imply properness

Reciprocally, a strongly correct statement is not necessarily proper, as reac-
tivity combined with strong determinism does not imply initial properness.
Let’s consider two examples:

• signal S in

present S then loop nothing end end

end

For all inputs I, the logical behavioral semantics defines the following unique
proof tree for this program:

S /∈ I\{S} nothing
∅, 0−−−→

I\{S}
nothing

present S then loop nothing end end
∅, 0−−−→

I\{S}
nothing S /∈ ∅

signal S in present S then ... end end
∅, 0−−→
I

signal S in nothing end

The deterministic semantics however defines no reaction for this statement,
whatever I. Neither the rule (signal++), nor the rule (signal−−) applies,
as “loop nothing end”, thus “present S then loop nothing end end”
are not initially proper.

13

51



Tardieu

• loop

signal S in

present S then emit S else pause end

end

end

The body “signal S in present S then emit S else pause end end”
of the loop may react in two possible ways in the logical behavioral seman-
tics, whatever I, with respective completion codes 0 and 1:

signal S in present S then emit S else pause end end
∅, 0−−→
I

...

signal S in present S then emit S else pause end end
∅, 1−−→
I

...

Since exactly one of these two reactions admits a non-zero completion code,
the whole loop statement is both reactive and strongly deterministic. On
the other hand, the deterministic semantics defines no reaction for the body,
hence no reaction for the loop.

6.3 Strongly correct non-proper statements

In the logical behavioral semantics, non-determinism may compensate for non-
reactivity, or the other way around, so that a piece of incorrect code may be
embedded into a strongly correct program. More precisely,

Theorem 6.5 If p is reactive and strongly deterministic but not initially
proper then there exists a subterm q of p such that q is not reactive or not
strongly deterministic.

Proof. cf. Appendix B. 2

Intuitively, q behaves well in p only because of its context of occurrence, which
constrains the execution of q from the outside, making sure the non-reactive or
non-strongly-deterministic behaviors of q are never triggered. In other words,
q could be simplified while preserving the behavior of p. Let’s consider again
our two examples in this new light:

• signal S in

present S then loop nothing end end

end

The subterm “present S then loop nothing end end” is not reactive
because of its then branch, but never used with S present. Therefore, it can
be replaced by its implicit else branch, that is to say nothing, leading to
the equivalent 3 program “signal S in nothing end”, which is proper.

3 Technically, they are strongly bisimilar [15] w.r.t. the logical behavioral semantics.
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• loop

signal S in

present S then emit S else pause end

end

end

The body “signal S in present S then emit S else pause end end”
is not deterministic, but the enclosing loop enforces S to be absent. Again,
the “present S then emit S else pause end” statement can simplified.
The resulting program “loop signal S in pause end end” is proper and
logically equivalent.

Therefore, there is something wrong with these programs, even if neither logi-
cal correctness nor strong correctness are sensitive to it. In any case, they are
intricate constructions with no practical purpose.

7 Constructive Semantics

The constructive semantics of Esterel [4] ensures that behaviors can be effec-
tively computed, that is to say causally computed. For instance, although the
following program is logically correct, even strongly correct as S can only be
present, it is rejected by the constructive semantics:

signal S in present S then emit S else emit S end end

Intuitively, this program is not constructive because the status of S must be
“guessed” prior to its emission. Such an argument however is not relevant to
the deterministic semantics, which considers this program to be proper.

On the other hand, the deterministic semantics sometimes rejects construc-
tive programs, such as:

signal S in

present S then

signal T in present T else emit T end end

end

end

Since S cannot be emitted – there is no “emit S” statement – the then branch
of the present statement is never “visited” by the constructive semantics. As
a result, this program is constructive. On the other hand, the deterministic
semantics does explore this branch, so that the program is not proper.

Executions in the constructive semantics being defined by a (complex)
monotonous information propagation process, there is at most one reaction
defined for each program and each set of inputs. In other words, the construc-
tive semantics is globally deterministic in the sense of Section 5.

In summary, even if both semantics are globally deterministic, the reasons
for this property are very different, and the corresponding correctness criteria
are unrelated. They both make sense and could be combined.
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8 Conclusion

In contrast with the logical behavioral semantics of Esterel, the deterministic
semantics we introduce in this work, defines at most one execution for all
programs and all inputs. In particular, if the deterministic semantics defines
the execution of a program, then this execution is unique, thus correct.

Importantly, the deterministic semantics does not change the semantics
of “reasonable” programs. If the deterministic semantics of a program is
defined then it matches its logical behavioral semantics. Reciprocally, if the
deterministic semantics of a program is not defined then the program or some
subterm of the program is incorrect w.r.t. the logical behavioral semantics.

Moreover, our new semantics achieves determinism at a much lower cost
than the constructive semantics of Berry. As a result, we claim that the deter-
ministic semantics provides a much better starting point for formal reasoning
about Esterel programs than both the logical behavioral semantics and the
constructive semantics.

A Proof of Theorems 6.1 to 6.3

By structural induction on p, we prove that if p pO, k−−→
I

p′ then:

• p
O, k−−→

I
p′ with a unique proof;

• if p
O0, k0−−−→

I
p′0 then O = O0, k = k0, p′ = p′0.

Proof. Let’s consider the case p = “signal S in q end”, and choose a set I.
By hypothesis, there exists (O, k, p′) such that:

signal S in q end pO, k−−→
I

p′

Either rule (signal++) or (signal−−) has to be used to define this reaction.
Let’s for instance consider the case (signal−−). The case (signal++) is similar.
There exists (O−, k−, q−, O+, k+, q+) such that:

• q pO
−, k−−−−−→

I\{S}
q− and q pO

+, k+

−−−−→
I∪{S}

q+

• S /∈ O−, S /∈ O+, O = O−, k = k−, p′ = “signal S in q− end”.

so that the following deduction holds in the deterministic semantics:

q pO
−, k−−−−−→

I\{S}
q− S /∈ O− q pO

+, k+

−−−−→
I∪{S}

q+ S /∈ O+

p = signal S in q end pO, k−−→
I

signal S in q− end = p′

By induction hypothesis:
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• q
O−, k−−−−−→
I\{S}

q− with a unique proof.

• if q
O−

0 , k−0−−−−→
I\{S}

q−0 then O− = O−
0 , k− = k−0 , q− = q−0 .

• q
O+, k+

−−−−→
I∪{S}

q+ with a unique proof.

• if q
O+

0 , k+
0−−−−→

I∪{S}
q+
0 then O+ = O+

0 , k+ = k+
0 , q+ = q+

0 .

On the one hand, as S /∈ O+, no reaction for p can be defined using (signal+).
On the other hand, by rule (signal−),

• p
O−, k−−−−−→

I
signal S in q− end with a unique proof.

• if p
O0, k0−−−→

I
p′0 then O0 = O−, k0 = k−, p′0 = signal S in q− end.

And similarly for all other cases. 2

B Proof of Theorem 6.5

By structural induction on p, we prove that if p and all its subterms are
reactive and strongly deterministic then p is initially proper.

Proof. Let’s consider the case p = “signal S in q end”, and choose a
set I. By hypothesis, q and all its subterms are reactive and strongly de-
terministic. By induction hypothesis, q is initially proper. Thus, there exists
(k−, O−, q−, k+, O+, q+) such that:

q pO
−, k−−−−−→

I\{S}
q− and q pO

+, k+

−−−−→
I∪{S}

q+

There are four cases:

• S ∈ O−, S ∈ O+, then by rule (signal++), p pO
+\{S}, k+

−−−−−−−→
I

signal S in q+ end.

• S /∈ O−, S /∈ O+, then by rule (signal−−), p pO
−, k−−−−−→
I

signal S in q− end.

• S ∈ O+, S /∈ O−:

· by rule (signal+), p
O+\{S}, k+

−−−−−−−→
I

signal S in q+ end

· by rule (signal−), p
O−, k−−−−−→

I
signal S in q− end

Therefore, p is not strongly deterministic. Contradiction.

• S /∈ O+, S ∈ O−, then neither (signal+) nor (signal−) is applicable. There-
fore, p is not reactive. Contradiction.

Similarly, in all other cases, the deterministic semantics defines a reaction for
p, whatever I. As a consequence, p is initially proper. 2
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