sBuipasdoid [ewlojul 002 X-Nv1d :(‘pa) yoeqzuemyss | ‘W #-£0-SN SOIdg

BRICS

Basic Research in Computer Science

PLAN-X 2004 Informal Proceedings

Venice, Italy, 13 January, 2004

Michael |. Schwartzbach
(editor)

BRICS Notes Series NS-03-4
ISSN 0909-3206 December 2003

Copyright (© 2003, Michael I. Schwartzbach
(editor).
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/03/4/

PLAN-X 2004 Informal Proceedings
Venice, Italy
13 January 2004

The workshop aims at providing a meeting ground for researchers from the
XML, programming language, and database communities. XML is already a
de-facto industry standard for data exchange, it has from an early stage been
embraced by database researchers, and it is gaining increasing interest from
programming language researchers.

At this workshop we hope to present recent results, identify new challenges,
and inspire the programming language community to focus on XML.

The focus of the workshop is on methods, tools, and theories for processing
XML. Example topics include (but are not limited to) XML parsing, XML
type system and schemas, analysis and implementation of technologies such as
XPath, XSLT, and XQuery, and integration of XML in both general-purpose
and domain-specific programming languages.

Greedy Regular Expression Matching
(Frisch, Cardelli)

Regular Expression Filters for XML
(Hosoya)

Regular Tree Language Recognition with Static Information
(Frisch)

An XQuery-Based Language for Processing Updates in XML
(Sur, Hammer, Simeon)

Efficient XPath Axis Evaluation for DOM Data Structures
(Hidders, Michiels)

STAX/bc: A Binding Compiler for Event-Based XML Data Binding APIs
(Reuter, Luttenberger)

Mixed XML/Relational Data Processing
(Kadiyska, Suciu)

A Language for Bi-Directional Tree Transformations
(Greenwald, Moore, Pierce, Schmitt)

BREREE=

E] & & [

ii

PLAN-X 2004 Informal Proceedings

Greedy regular expression matching

Alain Frisch *

Ecole Normale Supérieure

Abstract

This paper studies the problem of matching sequences
against regular expressions in order to produce structured
values. More specifically, we formalize in an abstract
way a greedy disambiguation policy and propose efficient
matching algorithms. We also formalize and address a
folklore problem of non-termination in naive implemen-
tations of the greedy semantics.

Regular expression types and patterns have been in-
troduced in the setting of XML-oriented functional lan-
guages. Traditionnaly, all the XML values and sequences
Our

work suggests an alternative implementation technique,

share a common uniform runtime representation.

where regular expression types define not only a set of
abstract flat sequences, but also a custom structured rep-
resentation for such values. This paves the way to a vari-
ety of language designs and implementations to integrate
XML structural types in existing languages (class-based
0O languages, imperative features, constrained runtime
environment, ...).

1 Introduction

1.1 Motivation

Regular expressions play a key role in XML. They are
used in XML schema languages (DTD, XML-Schema,
Relax-NG, ...) to constrain the possible sequences
of children of an element. They naturally lead
to the introduction of regular erpression types and
reqular expression patterns in XML-oriented func-
tional languages (XDuck [HVP00, HP03, Hos01],
XQuery [BCF*03b], CDuce [BCF03a]). These works

*This work was supported by an internship at Microsoft
Research.

Luca Cardelli

Microsoft Research

introduce new kinds of questions and give results in
the theory of regular expression and regular (tree)
languages, such as efficient implementation of in-
clusion checking and boolean operations, type in-
ference for pattern matching, checking of ambiguity
in patterns [Hos03], compilation of pattern match-
ing [Lev03] and optimization of patterns in presence
of static information [BCF03a], etc. ..

This work is a preliminary step in introducing sim-
ilar ideas to imperative or object-oriented languages.
One possible approach is the one pursued by the
XTATIC language [GP03], which is a merger between
XDucE and C# [ECM02a]. The value and type alge-
bra are stratified, to allow mixing XDUCE types (reg-
ular expressions) and standard .NET CLR [ECMO02b]
types (classes). Concretely, there is a uniform repre-
sentation of sequences, and all the XML types col-
lapse to a single native CLR class at runtime. Be-
cause of the uniform representation, XTATIC can im-
port subtyping from XDUCE (namely, set inclusion):
the CLR does not see any of it at runtime. In order to
have a type-safe implicit subtyping (that is, regular
language inclusion), the XML fragments must be im-
mutable, or some runtime checks must be introduced
at runtime (as for arrays in Java or C#). Also, the
uniform representation adds a lot of boxing and in-
directions. This can be good if the application relies
a lot on subtyping, but it can hurt if the applica-
tion needs fast random access on data (for instance,
accessing an element in the middle of a Kleene-star
requires a traversal of the sequence), want to mutate
data, or needs to cooperate with non-XML parts of
the application (that don’t expect uniform and boxed
values). Finally, collapsing all the XML types to a
unique type means that type information is lost after
compilation; this raises issues for separate compila-

PLAN-X 2004 Informal Proceedings

tion.

The starting point of this work was to consider
another approach, and study an alternative imple-
mentation technique for XTATIC. Instead of having
a uniform representation of sequences, we want to
represent them with native CLR constructions. In
this paper, we consider types that are regular expres-
sions. Unlike XDUCE, our types describe not only a
set of possible sequences, but also a concrete struc-
tured representation of values. We use x, +, *, € to
denote concatenation, alternation, Kleene star and
the singleton set containing the empty sequence.

Typically, a value of type (System.Object X int)
should be a struct with two members (that is, a value
type in the terminology of the CLR [GS01]), whose
second member is a CLR unboxed integer. Similarly,
a Kleene-star type int* could be an array or another
collection with random access features. The bene-
fits of this approach are: (1) data is stored more
compactly; (2) it can be accessed (and mutated) effi-
ciently, and (3) it can be made compatible with non-
XML specific code (and if the mapping to CLR, types
retains enough information from XML types, sepa-
rate compilation is made possible without keeping
extra information). The drawback is that we now
need coercions between set-theoretic subtypes. For
instance, (int x int) is a set-theoretic subtype of
int*, but we need a coercion to use a value of the
former where a value of the latter is expected, be-
cause the runtime representations of the two types
are different.

Such a coercion can always be decomposed (at least
conceptually) in two phases: flatten the value of the
subtype to a uniform representation, and then match
that flat sequence against the super type. The match-
ing process is a generalization of pattern matching in
the sense of XDUcCE [HP01], and one might want to
make it available to the programmer as well. Note
that coercions cannot fail, though general pattern
matching can.

Another work worth mentioning in this area is the
Xen language [MS03], which adds to C# some dose
of structural types reminiscent of regular expression
types. They bind structural types to native CLR
types. However, they loose the nice semantic prop-
erties of subtyping and equivalences from regular ex-

pression types, and they don’t have the equivalent
of XDUCE/XTATIC pattern matching. Our work can
also be seen as an attempt to follow the Xen approach
while sticking to “pure” regular expressions types and
patterns.

However, this paper does not propose a language
design, such as language features or type systems. In-
stead, we study the theoretical problem of matching
a flat sequence against a type (regular expression).
The result of the process is a structured value of the
given type. The algorithms we develop could be used
in a variety of language designs (how to access infor-
mation in a structured value; implicit or explicit coer-
cions; mutability of values; different binding seman-
tics for pattern matching, etc). For instance, they
can directly be applied to implement the second pass
of coercions between subtypes (building structured
values from flat sequences).

1.2 The matching problem

The classical theory of regular expressions and au-
tomata deals mainly with the recognition problem,
namely deciding whether a word belongs to the reg-
ular language described by some regular expression.
In particular, two regular expressions are equivalent
with respect to the recognition problem if they denote
the same language.

In the matching problem, regular expressions don’t
only describe a language, but also a way to extract
information from words in this language. This can
be formalized in different ways, for instance adding
capture variables to regular expressions. In this pa-
per, we take a different approach and say that regular
expressions actually denote sets of structured values.
Each value can be flattened to obtain a word. For
instance, the regular expression t* denotes an array
or list of values, each of type ¢t. In particular, it is
possible to access efficiently any element of the array.
Similarly, the sequence regular expression (¢1 X t2)
denotes pairs (vq,vs).

Now, regular expression matching can be seen as
the process of mapping flat words to structured val-
ues. This raises two issues:

e Semantic issue: How to deal with ambiguity in

PLAN-X 2004 Informal Proceedings

regular expressions? We can distinguish three
kinds of solutions: (1) return all the possible
matches, (2) disallow ambiguous regular expres-
sions [Hos03], or (3) specify a disambiguation
policy to pick a “best” result. In the setting
of programming languages, we usually want to
return a single result. Also, we don’t want to
force the programmer to rewrite regular expres-
sions to remove ambiguities, because this pro-
cess changes the structure of regular expressions
and thus the structure of resulting values. Fur-
thermore, accepting ambiguous regular expres-
sions cannot be avoided if we want to import,
say XML Schema specifications. Also, they usu-
ally lead to more compact expressions. In this
paper, we focus on the point (3), and study in
detail a given disambiguation policy.

e Implementation issue: How to implement
matching efficiently? The classical technique of
determinization allows recognition of a regular
language in linear time (in the size of the word
to be recognized). Can this be adapted to the
matching problem?

1.3 Related work

Problematic regular expressions There is a
rich literature on efficient implementation of regu-
lar expression pattern matching. For instance, Lau-
rikari [Lau01] studies the submatch addressing prob-
lem, which extracts less information than our match-
ing problem. Other works [Kea91, DF00] address the
matching problem (referred to as “parse extraction”).
A key contribution of our work is the treatment of so-
called problematic regular expressions, together with
a clean formalization of a specific disambiguation pol-
icy.

Indeed, there is a folklore problem with expression-
based implementations of regular expression match-
ing (as opposed to purely automaton-based ap-
proaches, which are not suitable for the matching
problem): they don’t handle correctly the case of a
regular expression t* when ¢ accepts the empty word.
Indeed, an algorithm that would naively follow the
expansion t* ~» (¢t x t*) + € could enter an infinite

loop. Actually, this could even be a problem for defin-
ing the disambiguation policy when it is only given
by a matching algorithm.

Harper [Har99] and Kearns [Kea91] (who speaks of
“horrible possibility” for the non-termination prob-
lem) propose to keep the naive algorithm, but to use
a first pass to rewrite the regular expressions so as
the remove the problematic cases. For instance, let
us consider the regular expression ¢t = (a* x b*)*. We
could rewrite it as t' = ((a x a*) x b* + (b x b*))*.
In general, the size of the regular expression can ex-
plode in the rewriting. Moreover, this solution has
two drawbacks when we consider the matching prob-
lem:

e Changing the regular expression changes the
type of the resulting values. A value of type t' is
not a value of type t.

e The interaction with the disambiguation policy
(see below) is not trivial. In particular, we don’t
see any way to design a rewriting strategy that
preserves the disambiguation policy.

Therefore, we do not want to rewrite the regular ex-
pressions. Another approach is to patch the naive
recognition algorithm to detect precisely the prob-
lematic case and cut the infinite loop [Xi01]. This
is an ad hoc way to define the greedy semantics in
presence of problematic regular expressions.

Our approach is different since we want to axiom-
atize abstractly the disambiguation policy. We iden-
tify three notions of problematic words, regular ex-
pressions, and values (which represent the ways to
match words), relate these three notions, and pro-
pose matching algorithms to deal with the problem-
atic case.

Disambiguation policy Specifying a disambigua-
tion policy can be done by providing an ex-
plicit matching algorithm. For instance, Vansum-
meren [Van03] axiomatizes a longest match semantics
for the Kleene star with a formal system describing
the matching relation. This semantics has a “global”
flavor, in the sense that the part of the word matched
by a Kleene star t* depends only on the language ac-

PLAN-X 2004 Informal Proceedings

cepted by t and the context of the star, not its inter-
nal structure.

A more classical semantics is defined by expanding
the Kleene star t* to (t x t*) + ¢ and then relying
on a disambiguation policy for the alternation (say,
first-match policy). This gives a “greedy” semantics,
which is sometimes meant as a local approximation of
the longest match semantics. However, as described
by Vansummeren [Van03], the greedy semantics does
not implement the longest match policy. As a matter
of fact, the greedy semantics really depends on the
internals of Kleene-stars. For instance, consider the
regular expressions t; = ((a x b) +a)* x (b+¢€) and
ts = (a + (a x b))* x (b+¢), and the word w = ab.
With the greedy semantics, when matching w against
t1, the star captures ab, but when matching against
ta, the star captures only a.

Because of its local nature, the greedy semantics
seems eagsier to implement, and maybe to understand
(this point is questionable). Moreover, it has actually
been used as the disambiguation policy in several pro-
gramming languages (XDUCE, CDuce, A™ [TSY02]),
and at least for this reason it deserves attention.

In this paper, we formalize the greedy semantics
by a specification that is independent of any con-
crete matching algorithm. We define a total ordering
on values and specify that the largest possible value
must be extracted. The disambiguation policy is then
formalized as an optimization problem (extract the
largest value with the given flattening). This is sim-
ilar to the formalization of XDuce pattern matching
relation [Hos01, section 2.4.2], except that we tackle
with the difficulty of problematic expressions which
are rejected in [Hos01].

Implementation of matching A naive back-
tracking implementation of the greedy semantics is
quite easy to give (for the recognition problem, see for
instance [TSY02], or [Har99] for the ungreedy vari-
ant). In this paper, we provide a linear time algo-
rithm that works in two passes. The idea is to use a
first pass to annotate the word and avoid backtrack-
ing in the second pass, when the value is constructed.

The first pass scans the word by running a finite
state automaton. The automaton is build directly

on the syntax tree of the regular expression itself (its
states correspond to the nodes of the regular expres-
sion syntax tree). A reviewer pointed us to a previous
work [Kea91] which uses the same idea. Our pre-
sentation is more functional (hence more amenable
to reasoning) and is extended to handle problematic
regular expressions.

The second pass follows closely the syntax of the
regular expression, and is thus very flexible. For in-
stance, one can easily add actions to each node of the
regular expression, extract only relevant information,
or in the setting of a compiler, generate specialized
code for a given regular expression.

2 Notations

Sequences For any set X, we write X* for the
set of sequences over X. Such a sequence is written
[z1;...;2pn]- The empty sequenceis [|. We writez :: s
for the sequence obtained by prepending x in front of
s and s :: z for the sequence obtained by appending x
after s. If s; and s are sequences over X, we define
$1@s4 as their concatenation. We extend these nota-
tions to subsets of X: z :: X1 = {z :: s | s € X1},
XQX, = {31@32 | S; € Xz}

Symbols, words We assume to be given a fixed
alphabet ¥, whose elements are called symbols (they
will be denoted with c,c1,...). Elements of £* are
called words. They will be denoted with w, wy,w’,...

Types The set of types is defined by the following
inductive grammar:

teT == C| (t1 th) | (t1+t2) |t* |E

Values The set of values V(t) of type t is defined
by:

V(c) = {c}

V(tl X tz) = V(tl) X V(tg)

V(tl + tz) = V(t1) + V(tg)

V(t*) = V()*

V(e) = {e}

PLAN-X 2004 Informal Proceedings

On the right-hand side of this definition, x denotes
the usual Cartesian product, and + the disjoint
union. A value of type t; X to is written (vy,vs)
(with v; € V(t;)). A value of type t1 + to is writ-
ten e : v (with e € {1,2} and v € V(¢;)). Elements of
V(t*) can be seen as lists or arrays of values of type
t; we will use the letter o to denote them. Note that
the values are structured elements, and no flattening
happen automatically.

The flattening flat(v) of a value v is a word de-
fined by:

flat(c) = [c]

flat((vl, ’Uz)) flat(vl)@flat(v2)
flat(e : v) = flat(v)
flat([vi;...;v,]) = flat(v;)@...Qflat(v,)
flat(e) =

We write T (t) = {flat(v) | v € V(t)} for the lan-
guage accepted by the type t.

3 All-match semantics

In this section, we introduce an auxiliary definition of
an all-match semantics that will be used to define our
disambiguation policy and to study the problematic
regular expressions. For a type t and a word w €
flat(t), we define

My(w) :={v € V(t) | w'. w = flat(v)Qu'}

This set represents all the possible way to match a
prefix of w by a value of type t. For a word w and a
value v € My(w), we write w/v the (unique) word w’
such that w = flat(v)Quw'.

Definition 1 A type is problematic if it contains a
sub-ezpression of the form t* where [| € T ().

Definition 2 A wvalue is problematic if it contains a
sub-value of the form [...;v;...] with flat(v) = [.
The set of non-problematic values of type t is written

VRR(H).

Definition 3 A word w is problematic for a type t
if Mg(w) is infinite.

The following proposition establish the relation be-
tween these three notions.

Proposition 1 Lett be a type. The following asser-
tions are equivalent:

1. t is problematic;
2. there exists a problematic value in V(t);
3. there exists a word w which is problematic for t.

We will often need to do induction both on a type ¢
and a word w. To make it formal, we introduce a well-
founded ordering on pairs (t,w): (t1,w1) < (t2,w2)
if either ¢; is a strict sub-expression of t5 or t; = to
and w; is a strict suffix of ws.

We write M;?(w) = Mi(w) N V*(¢) for the set of
non-problematic prefix matches.

Proposition 2 The following equalities hold:

p ¢} . .cuw =w

Me" (w) (g } oftherwise

Mitxe (W) = {(vi,02) | v1 € M (w),
vy € MP(w/v)}

My, (W) {e:v]ee{l,2},ve P (w)}

M;? (w) = {v:uo |veMP(w),| flat(v) #[] |,
o € M2 (w/v)} UA{[}

= (w) = {e}

This proposition gives a naive algorithm to compute
M;®(w). Indeed, because of the condition flat(v) #]
in the case for M;¥(w), the word w/v is a strict suffix
of w, and we can interpret the equalities as an induc-
tive definition for the function M;*(w) (induction on
(t, w)).

Note that if we remove this condition flat(v) # [|
and replace M"P(_) with M_(_), we get valid equalities.

Corollary 1 For any word w and type t, M;* (w) is
finite.

4 Disambiguation

Let ¢ be a type. The matching problem is to compute
from a word w € T (t) a value v € V(t) whose flat-
tening is w. In general, there are several different so-
lutions. If we want to extract a single value, we need

PLAN-X 2004 Informal Proceedings

to define a disambiguation policy, that is, a way to
choose a best value v € V(t) such that w = flat(v).
Moreover, we don’t want to do it by providing an al-
gorithm, or a set of ad hoc rules. Instead, we want to
give a declarative specification for the disambiguation
policy.

A first step is to reject problematic values. This is
meaningful, because if w € T(t), then there always
exist non-problematic values whose flattening is w.
Moreover, if there is a problematic value whose flat-
tening is w, then there are an infinite number of such
values. Since we want to specify the best value as be-
ing the largest one for a specific ordering (see below),
having an infinite number of them is problematic.

Now we need to choose amongst the remaining non-
problematic values. To do this, we introduce a to-
tal ordering on the set V(t), and we specify that the
best value with a given flattening is the largest non-
problematic value for this order.

We define a total (lexicographic) ordering < on
each set V(t) by:

c<c = false
(v1,v9) <(vi,vh):= (v1 < vy)V (v1 =] Avy < v))
(e:v) <(e':v):=(e>e)V(ie=€eAv<)

[<o = o' #]]
vio<v o =@Ww<v)Vw=v Ao <o)
e<e := false

This definition is well-founded by induction on the
size of the values. It captures the idea of a specific
disambiguation rule, namely a left-to-right policy for
the sequencing, a first match policy for the alterna-
tion and a greedy policy for the Kleene star.

Definition 4 Let ¢t be a type and w € T(t).
define:
mg(w) := max<{v € V**(¢) | flat(v) = w}

We

The previous section gives a naive algorithm to com-
pute m;(w). We can first compute the set M;* (w), then
filter it to keep only the values v such that w/v =[],
and finally extract the largest value from this set (if
any). This algorithm is very inefficient because it has
to materialize the set M;* (w), which can be very large.

The recognition algorithm in [TSY02] or [Har99]
can be interpreted in terms of our ordering. It gener-
ates the set M;*(w) lazily, in decreasing order, and it

stops as soon as it reaches the end of the input. To
do this, it uses backtracking implemented with con-
tinuations. Adapting this algorithm to the matching
problem is possible, but the resulting one would be
quite inefficient because of backtracking (moreover,
the continuation have to hold partial values, which
generates a lot of useless memory allocations).

5 A linear time matching algo-
rithm

In this section, we present an algorithm to compute
m(w) in linear time with respect to the size of w, in
particular without backtracking nor useless memory
allocation.

This algorithm works in two passes. The main (sec-
ond) pass is driven by the syntax of the type. It builds
a value from a word by induction on the type, con-
suming the word from the left to the right. This pass
must make some choices: which branch of the alter-
native type t; + t3 to consider, or how many times
to iterate a Kleene star t*. To allow making these
choices without backtracking, a first preprocessing
pass annotates the word with enough information.

The preprocessing pass consists in running an au-
tomaton right-to-left on the word, and keeping the
intermediate states as annotations between each sym-
bol of the word.

5.1 Non-problematic case

We first present an algorithm for the case when w is
not problematic. Recall the following classical defini-
tion.

Definition 5 A finite state automaton (FSA) with
e-transitions is a triple (Q,qy,d) where Q is a finite
set (of states), qr is a distinguished (final) state in
Q,anddC (QxITxQ)U(Q xQ).

The transition relation ¢ — ¢» (for q1,q2 € Q,
w € X*) is defined inductively by the following rules:

e q lﬂ]z if g1 =¢q20r (g1,92) €0

e q ﬂ) ¢ if (q1,¢,q2) €6

PLAN-X 2004 Informal Proceedings

o g Y g if g U gy and gy - gs.

We write £(gq) = {w | ¢ — ¢7}-

From types to automata Constructing a non-
deterministic automaton from a regular expression
is a standard operation. However, we need to keep
a tight connection between the automata and the
types. To do so, we define a structure of au-
tomaton directly on types seen as abstract syntax
trees. Formally, we introduce the set of locations (or
nodes) A(t) of a type t (a location is a sequence over
{fst, snd, 1ft,rgt, star}):

Ae) = {[}

A(= {[J}Ufst :: A(t1) Usnd :: A(t2)
At + t2) == {[J}ULEL = A(t1) Uzgt 2 A(t2)
At*) = {[]} U star : A(¢)

A({0}

For a type t and a location | € A(t), we define t.l as
the subtree rooted at location I:

£) :

£ —
(tl X tz).(fst : l) =t
(t1 X t3).(snd :: 1) = ol
(tl + tz).(lft : l) = 1.0
(tl + tg).(rgt : l) = 9.l
(t*).(star :: 1) = tl

Now, let us consider a fixed type to. We take: @ :=
A(to) U {qs} where gy is a fresh element.

If | is a location in tg, the corresponding state will
match all the words of the form w; Qw, where w; is
matched by t9.l and wy is matched by the “rest” of
the regular expression (Lemma 1 below gives a formal
statement corresponding to this intuition).

This notion of “rest” is formalized by the successor
function A(tg) = Q.

sucel(]) _
succ(l:: fst) := [:: snd
succ(l:: snd) := succ(l)
succ(l :: 1ft) := succ(l)
succ(l :: rgt) := succ(l)
succ(l :: star) := [

We now define the § relation for our automaton:

0 = {(,¢,succ(l)) | to.l =c}

l,succ(l)) | to.l =€}

Il fst) | to.l =11 X ta}

1,1 1ft), (1,1 s rgt) | tol = t1 + 12}
1,1 : star), (I, succ(l)) | to.l =t*}

cccc

An example for this construction will be given in the
next session for the problematic case.

The following lemma relates the behavior of the au-
tomaton, the succ(_) function, and the flat semantics
of types.

L) =

Lemma 1 For any location | € \(to):

T (to.l)@QL(succ(l))

First pass We can now describe the first pass of
our matching algorithm. Assume that the input is
w = [c1;...;¢n). The algorithm computes n + 1 sets

of states Qn,...,Qo defined as Q; = {q | ¢ leitaigien]
gr}- That is, it annotates each suffix w' of the input
w by the set of states from which the final state can
be reached by reading w’.

Computing the sets @); is easy. Indeed, consider
the automaton obtained by reversing all the transi-
tions in our automaton (@, g5,d), and use it to scan w
right-to-left, starting from gy, with the classical sub-
set construction (with forward e-closure). Each step
of the simulation corresponds to a suffix [¢;11;. . . ; €]
of w, and the subset built at this step is precisely Q;.

This pass can be done in linear time with respect
to the length of w, and more precisely in a time
O(Jw| |to|) where |w| is the length of w and tg is
the size of tq.

Second pass The second pass is written in pseudo-
ML code, as a function build, that takes a pair (w,1)
of a word and a location I € A(tp) and returns a value
v € V(tol)

let build(w,l) =
(* Invariant:
match to.l with
| ¢ ->c¢
| t1 Xty =>

w € L) *

PLAN-X 2004 Informal Proceedings

let v; = build(w,!: fst) in
let v2 = build(w/v1,l:: snd) in
(v1,v2)
| t1 4+t —>
if w € L(I:1ft) then
let v; = build(w,l :: 1ft) in
1:v;
else
let vy = build(w,! : rgt) in
2: vy
| ¢ ->

if w € L(I: star) then

let v = build(w,! :: star) in
let o = build(w/v,l) in
vio
else
I
| e >¢

The following proposition explains the behavior of
the algorithm, and allows us to establish its sound-
ness.

Proposition 3 If w € L(I) and if to is non-
problematic, then the algorithm build(w,l) re-
turns max<{v € V(to.l) | ' € L(succ(l)). w =
flat(v)Quw'}.

Corollary 2 If w € T(to) and if to is non-
problematic, then the algorithm build(w,[]) re-
turns mgy (w).

Implementation The tests w € £(I) can be im-
plemented in constant time thanks to the first pass.
Indeed, for a suffix w' of the input, w' € £(l) means
that the state [is in the set attached to w' in the first
pass. Similarly, the precondition w € T (to) can also
be tested in constant time.

The second pass also runs in linear time with re-
spect to the length of the input word (and more pre-
cisely in time O(|w| |to|)), because build is called
at most once for each suffix w' of w and each loca-
tion [(the number of locations is finite). This prop-
erty holds because of the non-problematic assump-
tion (otherwise the algorithm may not terminate).

Note that w is used linearly in the algorithm: it can
be implemented as a mutable pointer on the input
sequence (which is updated when the ¢ case reads a
symbol), and it doesn’t need to be passed around.

5.2 Solution to the problematic case

Idea of a solution Let us study the problem with
problematic types in the algorithm from the previous
section. The problem is in the case t* of the algo-
rithm, when [] € 7(t). Indeed, the first recursive call
to build may return a value v such that flat(v) = [],
which implies w/v = w, and the second recursive call
has then the same arguments as the main call. In
this case, the algorithm does not terminate.

This can also be seen on the automaton. If the type
at location [accepts the empty sequence, there are in
the automaton non-trivial paths of e-transitions from
I tol. Theidea is to break these paths, by “disabling”
their last transition (the one that returns to /) when
no symbol has been matched in the input word since
the last visit of the state [.

Here is how to do so. A location [is said to be a
star node if ty.l = t*. Any sublocation [’ is said to be
scoped by [. Note that when the automaton starts
an iteration in a star node (by using the ¢ transition
(1,1 :: star)), the only way to exit the iteration (and
to reach the final state) is to go back to the star node
. The idea is to prevent the automaton to enter back
a star node unless some symbol has been read during
the last iteration. This can be done by disabling the
e-transitions of the form (I, succ(l)), where succ(l)
is a star node scoping [. Concretely, the automaton
keeps track of its current state plus a flag b that re-
members if something has been read since the last
beginning of an iteration in a star.

When a symbol is read, that is, when a transition
of the form (I,¢,1') is used, the flag is set. When an
iteration starts, that is, when a transition (1,1 :: star)
is used, the automaton reset the flag. Then, we just
need to disable the e-transitions (I, succ(l)) where
succ(l) is a star node that scopes ! when the flag
is not set. The flag can then be interpreted as the
requirement: Something needs to be read in order to
exit the current iteration. Consequently, it is natural
to start running the automaton with the flag set, and
to require the flag to be set at the final node.

From problematic types to automata Let us
make this idea formal. We write P for the set of
locations [such that succ(l) is an ancestor of [in the

PLAN-X 2004 Informal Proceedings

abstract syntax tree of ¢p (this implies that succ(l) is
a star node). Note that the “problematic” transitions
are the e-transition of the form (I, succ(l)) with [€

P.
We now take: @ := (A(to) U{qs}) x {0,1}. Instead
of (¢,b), we write ¢°. The final state is ¢;. Here is

the transition relation:

do = {(lb c succ()!) | to.l = ¢}

U {(fSt)|t0l—t1Xt2}

U {(: 1ft),(rgt) | to.l =t +t2}
u {(, staro) | tg l =t*}

U {(lb SUCC()) [()}

where the condition (*) is the conjunction of:
(I) to.l is either ¢ or a star t*
(Il) ifl € P, then b=1

Note that the transition relation is monotonic with
respect to the flag b: if ¢ = ¢8, then ¢? = ¢¢' for
some b’ > b.

We write £(¢") := {w | ¢ — g¢}}. As for any
FSA, we can simulate the new automaton either for-
wards or backwards. In particular, it is possible to
annotate a word w with a right-to-left traversal (in
linear time w.r.t the length of w), so as to be able
to answer in constant time any question of the form
w' € L(q®) where w' is a suffix of w. This can be
done with the usual subset construction. The mono-
tonicity remark above implies that whenever ¢° is in
a subset, then ¢! is also in a subset, which allows to
optimize the representation of the subsets.

For a set X and a condition C, we write 1j¢)(X)
to denote X when C holds, and @ otherwise.

Lemma 2 Letl € A(to) and L =T (to.l). Then:
LYY = LQL(succ(l)l)
%) = (L\{IHeL(suce)")

(G

1pgpaper)(L(succ(l)?))

Algorithm We now give a version of the linear-
time matching algorithm which supports the prob-
lematic case. The only difference is that it keeps
track (in the flag b) of the fact that something has
be consumed on the input since the last beginning of

an iteration in a star. The first pass is not modified,
except that the new automaton is used. The second
pass is adapted to keep track of b.

let build’ (w, %) =
(* Invariant: w € E(lb) *)
match to.] with
l ¢ ->c¢
| t1 Xty —>
let w1 = build’ (w,l ::
let b = if (w/v1 =

£st’) in
w) then b else 1 in

let vy = build’ (w/vi,l: sndbl) in
(v1,02)
| t1+t2 >
if w € L(I:1£t%) then
let v; = build’ (w,!: 1ft%) in
1:un
else
let vy = build’ (w,l:: rgt?) in
2: V2
| ¢ >
if w € L(I: star’) then
let v = build’ (w,! : star®) in

(* Invariant: w/v # w *)

let o = build’ (w/v,l') in
vio
else
[
l e > ¢

Proposition 4 Let w € L(I%). Let V be the set
of non-problematic values v € V(to.l) such that
Ju' € L(succ()Y). w = flat(v)Quw' with b = 1
if flat(w) # [] and (b = 1VI & PYAVY = b) if
flat(v) = []. Then the algorithm build'(w,I®) re-
turns max< V.

Corollary 3 If w € T(ty), then the algorithm

build'(w,[]') returns my, (w).

Implementation The same remarks as for the first
algorithm apply for this version. In particular, we can
implement w and b with mutable variables which are
updated in the case ¢ (when a symbol is read); thus,
we don’t need to compute b’ explicitly in the case
t1 X ta.

PLAN-X 2004 Informal Proceedings

Example To illustrate the algorithm, let us con-
sider the problematic type to = (¢} x ¢5)*. The pic-
ture below represents both the syntax tree of this
type (dashed lines), and the transitions of the au-
tomaton (arrows). The dotted arrow is the only prob-
lematic transition, which is disabled when b = 0.
Transitions with no symbols are e-transitions. To
simplify the notation, we assign numbers to states.

o] o)

b+ 0 !

Let us consider the input word w = [e2;¢1]. The
first pass of the algorithm runs the automaton back-
wards on this word, starting in state 6!, and applying
subset construction. In a remark above, we noticed
that if i° is in the subset, then 3! is also in the subset.
Consequently, we write simply ¢ to denote both states
i%,4*. The e-closure of 6! is Sy = {6%,0%,3%, 2! 11}.
Reading the symbol ¢; from S5 leads to the state
4, whose e-closure is S1 = {4,2,1,0,3'}. Reading
the symbol ¢o from S; leads to the state 5, whose
e-closure is Sp = {5,3,2,1,0}.

Now we can run the algorithm on the word w with
the trace [Sp; S1;S2]. The flag b is initially set. The
star node 0 checks whether it must enter an itera-
tion, that is, whether 1 € Sy. This is the case, so
an iteration starts, and b is reset. The star node 2
returns immediately without a single iteration, be-
cause 4 € Sp. But the star node 3 enters an iteration
because 5 € Sy. This iteration consumes the first
symbol of w, and sets b. After this first iteration, the
current subset is S;. As 5 is not in Sy, the iteration
of the node 3 stops, and the control is given back to
the star node 0. Since 1 € Sj, another iteration of
the star 0 starts, and then similarly with an inner
iteration of 2. The second symbol of w is consumed.

10

The star node 3 (resp. 0) refuses to enter an extra
iteration because 5 ¢ Sy (resp. 1 € Ss); note that
1! € Sy, but this is not enough, as this only means
that an iteration could take place without consuming
anything - which is precisely the situation we want to
avoid.

The resulting value is [([], [¢2]); ([¢1],[])]- The two
elements of this sequence reflect the two iterations of
the star node 0.

6 Extensions, variants

More regular expressions We have presented a
limited set of regular expression constructors. We
could easily extend all our definitions and results, to
include for instance:

e Kleene-star with ungreedy-semantics: for this
constructor, the empty sequence is the largest
value instead of being the smallest one, in the
disambiguation ordering. The corresponding
case in the matching algorithm simply tries to re-
turn [] when possible, instead of trying to make
an extra iteration. Note that the two kinds of
Kleene-star could easily cohabit in our frame-
work.

e Non-empty iteration operators t+, with two vari-
ants (greedy and ungreedy).

e Right-context sensitivity operator: %t that
“matches” t but do not remove the correspond-
ing subsequence from the input sequence.

It would be possible to adapt our formalism to cap-
ture only interesting parts of sequences by introduc-
ing explicit capture variables.

Whether our technique can be adapted to deal with
the longest match semantics [Van03] is an open ques-
tion.

Language design We presented here regular ex-
pressions over a finite set of symbols. In a real lan-
guage design with named typing, we could imagine
that regular expressions are built on top of named
types, plus some singleton values (character single-
tons, for instance).

10

PLAN-X 2004 Informal Proceedings

In the design of a language, we can imagine that
the programmer could provide custom types to im-
plement containers for regular expression types (this
would allow the programmer to use pre-existing types
of the language). For instance, in the setting of an
extension to C#, the programmer could match a se-
quence against an existing struct type with public
fields, or a class type (the pattern matcher would then
call the constructor of this class to store the result).
In the setting of an XML-oriented language, there
would probably be a specific type PCDATA, equiv-
alent to char* as for the denoted languages, but
with a compact string representation (for instance
System.String). The idea here is that our match-
ing algorithm allows the implementation to choose
custom concrete representation for values.

Our algorithm can also be adapted to add to an
existing language (without regular expression types)
some kind of regular expression pattern matching of
sequences. For instance, we have implemented as
an extension to a C# compiler a construction that
matches an array of type object[] against a regular
expression built from C# types; it is possible to bind
identifiers to elements of the array and to perform
arbitrary operations (C#statement) at each node of
the regular expression.

Type inference In this work we don’t address the
question of type inference, that is computing for each
node of a type the regular language of all substrings
that can be matched by that node (with the given
disambiguation policy), when the input is restricted
to belong to some given regular language. We be-
lieve that an algorithm for computing these regular
languages could be derived from our matching algo-
rithm, by applying it symbolically to a whole regular
language instead of a single input word.

Optimizations We presented our algorithm as a
two passes process. The first one scans completely
the input word. In some cases, this can be avoided.
For instance, if one knows statically that the flat
sequence is matched by the type (for instance be-
cause the flat sequence was obtained from flattening
a structured value whose type is known at compile

11

time), we can start running the main algorithm, and
only when some test is needed, we run the automaton
(on the current suffix of the input). In some case, a
bounded look-ahead on the sequence can completely
avoid the scan. This is the case if the automaton
associated to the type has the so-called Glushkov de-
terministic property, namely that looking at the next
symbol of the input removes non determinism. In
particular, this is the case with regular expressions
in DTD and in XML Schema specifications.

Acknowledgments

We would like to express our gratitude to the anony-
mous reviewers of PLAN-X 2004 for their comments
and in particular for their bibliographical indications.

References

[BCF03a] Véronique Benzaken, Giuseppe
Castagna, and Alain Frisch. CDuce: An
XML-centric general-purpose language.

In ICFP 03, 2003.

S. Boag, D. Chamberlin, M. Fernandez,
D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu. XQuery 1.0: An XML
Query Language. W3C Working Draft,
http://www.w3.org/TR/xquery/, May

[BCF+03b]

2003.

[DF00] Danny Dub and Marc Feeley. Efficiently
building a parse tree from a regular ex-
pression. Acta Informatica, 37(2):121-
144, 2000.

[ECM02a] ECMA. C# Language Specifica-
tion. http://msdn.microsoft.com/
net/ecma/, 2002.

[ECM02b] ECMA. CLI Partition I - Archi-
tecture. http://msdn.microsoft.com/
net/ecma/, 2002.

[GP03] V. Gapayev and B.C. Pierce. Regular

object types. In Proceedings of the 10th
workshop FOOL, 2003.

11

[GS01]

[Har99)

[Hos01]

[Hos03]

[HPO1]

[HPO3)]

[HVP00]

[Kea91]

[Lau01]

[Lev03]

[MS03]

PLAN-X 2004 Informal Proceedings

Andrew D. Gordon and Don Syme. Typ-
ing a multi-language intermediate code.
ACM SIGPLAN Notices, 36(3):248-260,
2001.

Robert Harper. Proof-directed debug-
ging. Journal of Functional Program-
ming, 9(4):463-469, 1999.

Haruo Hosoya. Regular Expression Types
for XML. PhD thesis, The University of
Tokyo, 2001.

H. Hosoya. Regular expressions pattern
matching: a simpler design. Unpublished
manuscript, February 2003.

Haruo Hosoya and Benjamin C. Pierce.
Regular expression pattern matching
for XML. In The 25th Annual
ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Lan-
guages, 2001.

Haruo Hosoya and Benjamin C. Pierce.
XDuce: A typed XML processing lan-
guage. ACM Transactions on Internet
Technology, 3(2):117-148, 2003.

Haruo Hosoya, Jéréme Vouillon, and
Benjamin C. Pierce. Regular expression
types for XML. In ICFP 00, volume
35(9) of SIGPLAN Notices, 2000.

Steven. M. Kearns. Extending regular
expressions with context operators and
parse extraction. Software - practice and
experience, 21(8):787-804, 1991.

Ville Laurikari. Efficient submatch ad-
dressing for regular expressions. Master’s
thesis, Helsinki University of Technology,
2001.

Michael Levin. Compiling regular pat-
terns. In ICFP 03, 2003.

Erik Meijer and Wolfram Schulte. Uni-
fying tables, objects, and documents. In
DP-COOL 2003, 2003.

12

[TSY02]

[Van03]

[Xi01]

12

Naoshi Tabuchi, Eijiro Sumii, , and Aki-
nori Yonezawa. Regular expression types
for strings in a text processing language.
In Workshop on Types in Programming
(TIP), 2002.

Stijn Vansummeren. Unique pattern
matching in strings. Technical report,
University of Limburg, 2003. http://
arXiv.org/abs/cs/0302004.

Hongwei Xi. Dependent types for pro-
gram termination verification. In Logic
in Computer Science, 2001.

PLAN-X 2004 Informal Proceedings

Regular Expression Filters for XML

Haruo Hosoya

The University of Tokyo and Ecole Normale Supérieure
hahosoya@is.s.u-tokyo.ac.jp

Abstract

XML data are described by types involving regular expres-
sions. This raises the question of what language feature is
convenient for manipulating such data. Previously, we have
given an answer to this question by proposing regular ex-
pression pattern matching. However, since this construct
is derived from ML pattern matching, it does not have an
iteration functionality in itself, which makes it cumbersome
to process data typed by Kleene stars. In this paper, we
propose a novel programming feature reqular expression fil-
ters. This construct extends the previous proposal by per-
mitting pattern clauses to be closed under arbitrary regular
expression operators. This yields many convenient program-
ming idioms such as non-uniform processing of sequences
and almost-copying of trees. We further develop a type in-
ference mechanism that obtains (1) types for pattern vari-
ables that are locally precise with respect to the type of input
values and (2) a type for the result of the whole filter ex-
pression that is also locally precise with respect to the types
of the body expressions. We discuss how our construct is
useful in the practice of XML processing and, in particu-
lar, how our type inference is crucial for avoiding changes
of programs when types of data to be processed frequently
evolve.

1 Introduction

XML [3] is a representation of typed data structures for
trees. As it becomes popular, a big demand has emerged
for special-purpose languages dedicated to processing XML
data, in particular, those capable of statically guaranteeing
generated data to conform to given types [7, 22, 11, 25, 23,
14, 28, 18].

A peculiarity of XML data is that there is ordering
among sibling nodes and, in order to give structure on these
nodes, types for XML data typically involve regular expres-
sions [3, 10, 6, 19]. This gives rise to the question: what
is a convenient programming feature for manipulating such
data? Previously, we have given an answer to this question
by proposing regular expression pattern matching [17, 16].
In one sense, this design is natural since it combines regular
expressions with the ML-style pattern matching paradigm,
which has already established its usefulness in tree process-
ing in functional programming languages. However, since
pattern matching does not have an iteration functional-
ity in itself, it is quite cumbersome to process data values
typed with regular expressions, in particular, those involv-

13

ing Kleene stars. Typically, an explicit recursive function
is required each time the program processes such data.'As
a construct more suitable for this purpose, many languages
for XML, such as XSLT [5], XQuery [11], and CDuce [2],
provide a “for-each” iterator, which performs a given oper-
ation on each node of a sequence independently. However,
such a construct is ad hoc in the sense that it has no connec-
tion to regular expressions. More practically, it is difficult
for this to manipulate data that repeat groups of several el-
ements. For example, for a value of type (a,b)*, we would
typically want to process each pair of a and b rather than
each a or b. (Although such “complex” regular expressions
are not very typical, they can occasionally be found in real
XML schemas, such as DocBook [26], MusicXML [20], and
RecipeML [13]. We give concrete instances in Appendix B.)

This paper proposes regular expression filters as an XML
manipulation construct that is elegant, i.e., strongly con-
nected to regular expressions, and has both functionalities
of pattern matching and iteration. The idea behind this is
to extend regular expression pattern matching, which can be
seen as an alternation of pattern clauses, by allowing arbi-
trary regular expressions over pattern clauses. This yields a
significant expressiveness, allowing various convenient pro-
gramming idioms, such as “non-uniform processing of se-
quences” (processing nodes with the same label differently
depending on their positions) and “almost-copying of trees”
(copying the whole tree structure with slight changes), that
go beyond the capability of pattern matching or a naive for-
each style iterator.

We will give a plenty of examples in Section 2, but let us
see here a small one. Suppose that we have a value items
of type Item* where Item is defined as follows

type Item = item[Content]

(where the Content type is defined somewhere else), that is,
the value items is a sequence of item labels each of which
contains a value of type Content. Let us format each item in
this value, inserting separators between the resulting values.
Make sure not to put a separator in the end, and return the
empty sequence if the input is the empty sequence. To do
this with filters, we first regard the input type Item* as the
following equivalent one

() | (Item*,Item)

1 This might not be the case if the language supported parametric
polymorphism and higher-order functions like ML. However, how to
incorporate them in our setting, especially polymorphism, is still a
difficult question. CDuce [14] gives an answer for higher-order func-
tions.

PLAN-X 2004 Informal Proceedings

and write the filter expression below, which processes the
input value according to the structure indicated by the new
regular expression.

filter items {
Q) {032
| (item[Any as c] { format(c), sep[]l })*,
(item[Any as c] { format(c) })
}

That is, when the input is the empty sequence, we use the
first clause to emit the empty sequence. In the other case,
we use the second clause to format each node and append
a separator except for the last node, for which we use the
third clause to format the node without adding a separator.

In order for our construct to comfortably be used in a
statically typed language, we have designed a type inference
mechanism. Similarly to our previous inference technique
for regular expression pattern matching [17], the inference
here is local and locally precise. By local, we mean that we
calculate types relevant to a filter by using only type infor-
mation obtained from its adjacent expressions. By locally
precise, we mean that the types to be computed precisely
represent the values of the corresponding expressions, with
the conservative assumption that the type information from
the adjacent expressions is also precise.

More specifically, the inference computes types for two
parts of a given filter: the bound variables and the result.
For the first part, we have already shown [17], in the set-
ting of regular expression patterns, how to calculate types
for bound variables from a given type for the input. How-
ever, the previous technique has the limitation that it can
infer types only for “tail” variables (binding a sub-sequence
up to the end of the input sequence), which is not accept-
able in the present setting since most filters actually use
variables to capture intermediate sequences (as in the above
example). Therefore we have developed a novel inference
technique based on the combination of a tree automata en-
coding involving “sequence-capturing variables” (Section 4)
and product construction of automata (Section 5). (Frisch,
Castagna, and Benzaken have solved the same problem inde-
pendently using a different algorithm [14].) The second part
of the inference is to compute a type for the result of the fil-
ter from both the type for the input and a given type for each
body expression. We have achieved this by using automata
augmented with “action annotations” (Section 4). For the
practical implication, the inference is, of course, quite con-
venient for eliding obvious type annotations, thus increasing
the writability and readability of programs. However, in the
setting of XML, we believe that such type inference is more
important than this usual benefit, in particular, it is actually
mandatory in reducing the burden of changes of programs
caused by evolution of the types the programs work with,
as we will argue in Section 2.5.

An important piece of related work is CDuce’s map and
transform constructs [2], which are similar to our regular
expression filters except that theirs are restricted to uniform
processing of sequences. They also have a somewhat sim-
ilar but different type inference technique for both bound
variables and the result. We will make a more detailed com-
parison in Section 6.

Although we intend this work to be a feature proposal
independent of a specific language, we have incorporated
regular expression filters and the type inference in our de-
sign and implementation of the typed language XDuce for

14

XML processing. The reader is encouraged to try out our
prototype system available through:

http://xduce.sourceforge.net

The rest of the paper is organized as follows. Section 2
shows a series of examples to illustrate regular expression
filters and the type inference. We then formalize these in
Section 3. In Section 4, we introduce an automata model for
regular expression filters that is suitable for performing the
type inference. The inference algorithm itself is described
in Section 5. Section 6 compares our work with other work
and Section 7 closes this paper. Appendix A shows an algo-
rithm from filters in the surface language to our automata
model. Appendix B collects examples of “complex” regular
expressions found in real-world DTDs.

2 Examples

This section gives an informal presentation of our language
constructs and illustrates their practical uses. The formal
definitions can be found in Section 3.

2.1 Values and types

Values in our type system are sequences of labeled values
(or base values) and thus representing fragments of XML
structures. For example, a sequence of several labeled values
like

name ["Hosoya"] ,email ["hahosoya"],tel["123-456"]
and a single label containing some other sequence like
person[name["Pierce"] ,,email["bcpierce"]]

are values.
Types are regular expressions over labeled types (or base
types such as String). For example, the following type

name [String] ,email [String]*,tel[String]?

allows a sequence of a name label followed by zero or more
email labels and an optional tel label where each label con-
tains a string. We can also nest types as in the following.

person[
name [String] ,email [String]*,tel[String]?
1%

We also allow recursive types (and type abbreviations)
through type definitions. For example, the following de-
fines a type for trees where each node can have an arbitrary
number of subtrees.

type Tree = node[Treex] | leaf[String]

We do not impose any restriction on regular expressions,
such as determinism or unambiguity (e.g., we allow unions
of the same labels like a[b[1] |a[c[1]1). This makes types to
correspond to nondeterministic finite tree automata, which
form the basis of our framework. More discussions can be
found in [19].

A labeled type can actually have a label set instead
of a single label. For example, we can use union la-
bel sets as in (name|email) [String], the universal la-
bel set as in ~[Stringl, and negation label sets as in
“(tell|email) [String]. In particular, we use the types Any
(matching any value) and AnyOne (matching any singleton
sequence) defined as follows.

PLAN-X 2004 Informal Proceedings

type Any = AnyOnex*
type AnyOne = ~[Any]l | String

(We assume here that the only base type is String.)

The subtype relation between two types is simply in-
clusion between the sets of values that they denote. For
example, (Name*,Tel*) is a subtype of (Name|Tel)* since
the first one is more restrictive than the second. That is,
Names must appear before any Tel in the first type, while
Names and Tels can appear in any order in the second type.

2.2 Regular expression filters

The basic blocks of regular expression filters are clauses. A
clause has the form pattern { ezpression } and means
“if the input value is matched by the pattern, execute the
expression,” just like ML pattern matching. Patterns are
syntactically identical to types except that patterns may
contain variables to which the corresponding substructures
of the input value are bound. (Therefore a type itself can be
used as a pattern by putting no variable.) We do not give a
specific definition of expressions in this paper; however, ex-
amples shown in the sequel use the following kinds of expres-
sion, labelling constructors 1[e], concatenations el,e2, the
empty sequence (), variables x, base values such as strings,
function calls f(e), and filter expressions themselves (here,
e is another expression) .

We can connect or enclose clauses by regular expression
operators, forming filters. For example, the following filter
expression gives a value v to the filter connecting several
clauses by the union operator |.2

filter v {
person[Any as il { 1i[...1 %
| company[Any as j] { 1i[...1 }
| comment[Any as s] { pl[] }

}

Here, the form pattern as wariable binds the variable to
the value matched by the pattern. Thus, the above filter
matches any singleton sequence where the label of the only
element is either person, company, or comment. In the first
case, it executes the first body expression creating a label
1i (containing some sequence not shown here), and similarly
for the other cases. As one can see, this use of filters is simi-
lar to ML pattern matching and, in fact, is exactly the same
as our previous proposal, regular expression pattern match-
ing [17] (except that the union operator in filter expressions
does not have the first-match semantics, i.e., top-to-bottom
evaluation of clauses, but instead it chooses an arbitrary
match if there are multiple possibilities; we will come back
to this point in Section 3.)

A filter can be enclosed by Kleene closure *, enabling
iteration on sequences. For example, the following wraps
the above filter by *.

filter v {
(person[Any as b] { 1i[...] }
| company[Any as f] { 1i[...] }
| comment[Any as s] { pls] })=

}

2The precedence rule for operators usable in filters is as follows
(from stronger to weaker):

x o+ 7 as {} (suffix operators)

15

The filter matches any sequence of labels person, company,
or comment, converts each label to either 1i or p in the same
way as above, and concatenates all the result in the left-to-
right order.

The concatenation of two filters splits the given sequence
in the middle so that the first sub-sequence matches the first
filter and similarly for the second one, then evaluates each
filter with the corresponding sub-sequence, and finally con-
catenates the two results. (Again, when there are multiple
ways of matching, the system chooses an arbitrary one.) For
example, the following filter expression

filter v {
(email[Any as e] { emailAddress[e] 1}),
(tel[Any as t] { tellNumber[t] B
}

matches any value of type email[Any],tel[Any] and re-
places the label email with emailAddress and tel with
telNumber.

When a filter is enclosed by a label, it matches a value
with this label, processes the content with the enclosed filter,
and puts the label back to the result. For example, the
following filter

filter v {
person[Any as pc { proc_person_content(pc) }]

}

processes the content of a person label by the
proc_person_content function (defined somewhere else),
keeping the label itself.

2.3 Non-uniform sequence processing

Since we can use arbitrary combinations of regular expres-
sions over clauses, this allows us to process a sequence in a
much more complex way than “for-each” iteration—such as
processing elements with the same label in a different way
depending on their positions, or operating on each group
of elements in a sequence rather than on each individual
element.

We have already seen a small example of non-uniform
processing. Let us show here another, slightly more com-
plex one. In the second example shown in Section 2.2, the
output may mix 1is and ps in the same sequence. However,
since this is actually not allowed in XHTML, we want to
put consecutive 1is together in a d1 label this time. For
this, we need to process each consecutive list of persons and
companys separately from intervening comments. Our solu-
tion is to first view the type

(Person | Company | Comment)*
as the following equivalent type
((Person | Company)*, Comment)*, (Person | Company) *.

Here, we assume that the following type definitions are
given.

type Person = person[Info]
type Company = company[Info]
type Comment = comment[String]

Then, we write a filter that corresponds to the above regular
expression.

PLAN-X 2004 Informal Proceedings

filter v {
(((Person|Company)* as s
comment [Any as s]
((Person|Company) * as s

{ dllproc_mix(s)] 1),
{ plsl D=,

{ dllproc_mix(s)] })
}

This filter calls the function proc_mix defined below (which
takes an argument of type (Person|Company)#), which in
turn uses another filter to process a sequence of persons
and companys.

fun proc_mix ((Person|Company)#* as seq) : ... =
filter seq {

(person[Any as i]

| company[Any as il

}

{ 1il[...1 1}
{ 1Li[...1 3})=

2.4 Almost-copying of trees

In practical XML processing, we often want to modify small
bits of the input document, retaining the rest of the struc-
ture. For this purpose, regular expression filters are quite
convenient.

For example, consider the following type definitions.

type Person = person[Name,Email*,Tel?]

type Name = name[String]
type Email = email[String]
type Tel = tel[String]

Suppose that we want to “clean up” a sequence of persons
by processing the string of each name, email, or tel by a
corresponding tidying function. Then, we can write a filter
expression by copying the structure of the Person type and
inserting an appropriate variable binder and a body expres-
sion after each String type.

filter ps {
person[
name [String as n { tidy_name(n) }],
email[String as e { tidy_email(e) }]1x*,
tel[String as t { tidy_tel(t) }1°7
1%
}

(We assume that the tidy_name etc. functions from strings
to strings are defined somewhere else.) Note that two Kleene
stars are nested, around person and around email. If we
had to write the same function only with pattern matching,
we would need two recursive functions, which would be much
more cumbersome.

Although the examples so far have been horizontal pro-
cessing of XML data, filters can also easily express vertical
processing. Let us slightly change the last example by allow-
ing each person to have a sequence of persons recursively.

type Person = person[Name,Email*,Tel?,Personx*]

We would like to tidy leaf information in the same way as
before, but, this time, the type involves recursion. For such
situation, we can use a recursively defined filter. In our
example, we first declare a filter named tidy_persons in
the following way.

rule tidy_persons =
person[
name[String as n { tidy_name(n) }],
email [String as e { tidy_email(e) }1*,

16

tel[String as t
tidy_persons

1%

{ tidy_tel(t) 1}17,

That is, the filter tidy_persons processes a sequence of
persons similarly to the previous paragraph, except that,
for the sequence of persons appearing in the end of the
content of each person, we apply the tidy_persons filter
recursively. To invoke this filter for a given value, we sim-
ply refer to the filter’s name in a filter expression as in the
following.

filter ps { tidy_persons }

In writing an almost-copying program, we often want
to retain the whole substructure of a value, delete it, or
insert a substructure. For example, suppose that we have
the following type definitions

type Personl = person[Name,Emailx]
type Person2 = person[Name,Tel]

and want to convert a value from type Personl to type
Person2, retaining the name element, delete the sequence
of email elements, and insert a “default” tel element. The
following filter achieves this in a simple way.

filter p {
person[
Name,
Email* { (O 1},
QO { tel["unknown"] }
]
}

Here, we use the type Name as a filter, which simply retains
the value matched by the type. Also, note that we use a
clause with the empty sequence pattern, by which we can
insert any value even though there is nothing corresponding
in the original value.

2.5 Type inference

We now turn our attention to the type inference mechanism
dedicated to our filter facilities. As mentioned in the intro-
duction, the type inference has two parts: inference of types
for bound variables and that of a type for result values.

2.5.1 Types for variables

The type inference for variables is local in the sense that
it depends only on a type for input values and a subject
filter (thus using no constraint from distant expressions).
The inference is locally precise in the following sense. First,
we conservatively assume that all the values from the input
type may be passed to the filter. (Note that, at real run
time, not all of the values may be passed.) Then, under this
assumption, we compute, for each pattern variable, a type
that contains exactly the values that may be bound to the
variable.

For example, consider the following filter where the input
bookcontent has type (Person|Company|Comment)*.

filter bookcontent {
O
{ O 1}
| AnyOne+ as ¢

{ diC

PLAN-X 2004 Informal Proceedings

filter ¢ {
(AnyOne as e { lil[proc_each(e)] })+
1

}

The purpose of the filter is to process each node
in the input by the proc_each function (taking type
(Person|Company | Comment) and defined somewhere else),
put a 1li to each result, and enclose all the results by a
dl. We need, however, to handle the case of the empty
sequence specially since XHTML requires that a d1 must
contain one or more 1is. In this case, we return the empty
sequence as the whole result. From the fact that input val-
ues have type (Person|Company|Comment)* and the second
clause matches only sequences of length one or more, the in-
ference computes the type (Person|Company|Comment)+ for
the variable c. From this type, we further infer the type
(Person|Company | Comment) for the variable e.

One benefit from this type inference is, of course, to
avoid verbose type annotations. Another, potentially bigger
benefit is that the inference can make program code robust
against changes of types. For example, suppose that we have
changed the input type (Person|Company|Comment)* to
(Person|Company | Shop|Comment) *. (In general, the most
common way of evolving a type is to make it larger in deno-
tation.) If we want to process the input exactly in the same
way as before (except that the proc_each function should
now handle the new case), then it is desirable that we need
not change the above code fragment. Thanks to the precise
inference, the types computed for c and e will be augmented
with Shop in their choices, which makes the code remain the
same.

2.5.2 Types for result values

The inference for result types is also local in the sense that
it depends only on a type for each body expression in ad-
dition to the input type and the filter. The type for each
body expression may have been obtained by some typing
algorithm from the types inferred for bound variables. We
do not, however, assume any concrete typing algorithm for
body expressions; rather, this is given as a parameter to our
inference scheme.

Then, the inference is, again, locally precise. Before de-
scribing what we mean by this, let us show an example.
Consider the following filter

filter v {
(email [String as s] { emailAddr[s] })*

}

Suppose that we have the type emailAddr [String] for the
body expression. What should be the result type of this
filter? Naively, we may answer emailAddr [String]#* from
the structure of the filter. However, we could go further.
That is, the result type can depend on the input type. For
example, it can be emailAddr [String]+ if the input type is
email [String]+ since the filter produces one output node
for each input node. In general, we first conservatively as-
sume that all the values in the input type may be passed to
the filter, as before, and that all the values in the type of
each body may be returned by it. (Again, some values from
the body type may not actually be returned at run time.)
Under these assumptions, we compute a type, for result val-
ues of the filter, that contains exactly the values that may
be returned by the filter.

17

One may wonder why we need such a precision. Our
answer is, again, robustness against type evolution. Let
us consider the following hypothetical scenario. Suppose
that a schema for address book documents is maintained by
a (big) standard committee and you are an engineer in a
(small) company writing filters from address books to ad-
dress books. As in the reality, the committee often changes
the type when there are enough external requirements. How-
ever, you may not want to change your filter programs every
time they change the type especially when you write many
different filters for address books. Therefore you may want
to make your programs as general as possible in the first
place so that they work after foreseeable type changes.

For concreteness, suppose that the address book schema
contains the type PersonInfo, which is defined as follows at
the beginning.

type PersonInfo = Name,Addr+,Email*,Tel?

You could write a filter with the same structure as this type,
but this would not be robust against any type change. The
committee might allow any addr to be omitted or allow more
than one tel to be present. So it is better to write in the
following way.

filter content {
(name[Any as n] { name[tidy_name(n)] b,
(addr[Any as a] { addr[tidy_addr(a)] Px*,
(email[Any as e] { emaill[tidy_email(e)] })*,
(tel[Any as t] { telltidy_tel(t)] =
}

The question is: does this filter typecheck (with the ex-
pected type Name,Addr+,Email*,Tel?) before the antici-
pated type change actually happens? The naive inference
would compute the result type as Name,Addr* ,Emailx,Tel*
and makes the filter ill-typed since this type is larger than
the expected type. On the other hand, our precise in-
ference answers exactly the same type as the input type
Name,Addr+,Email*,Tel? (which is the same as the ex-
pected type) since our inference recognizes, from the input
type, that there are only one or more addrs and zero or one
tel in any input value, and therefore so in any output value.

If you further suspect that the committee might change
the PersonInfo type in a way that allows an arbitrary order
among addrs, emails, and tels. Then, you can make the
filter more general in the first place as follows.

filter content {

(name[Any as n] { name[tidy_name(n)] }

| addr[Any as a] { addr[tidy_addr(a)] }

| email[Any as e] { email[tidy_email(e)] }

| tel[Any as t1 { telltidy_tel(t)] =
}

The type inference still gives you the right type—
Name ,Addr+,Email*,Tel?—for the result. If you guess that
they might allow more possible fields to be added, then you
can write an even more general filter to ignore such fields.

filter content {
(name[Any as n] { mname[tidy_name(n)] }
| addr[Any as a] { addr[tidy_addr(a)] }
| email[Any as e] { emaill[tidy_email(e)] }
| tel[Any as t] { telltidy_tel(t)] }
| ~(name|addr|email|tel) [Any] { 0O })x
}

PLAN-X 2004 Informal Proceedings

The type inference still does the right job.

Caveat: our type inference has the restriction that it
uses only one type for each body expression. For example,
consider the following filter expression with the input type
al[T]Iv[Ul.

filter v {
“[Any as x { c[x] } 1
}

This filter copies the input value, inserting an intermedi-
ate label c just under the top label a or b. One may
expect the result type to be alc[T]1]|b[c[U]]. However,
since we can give only one type to the body, the best
type we can give is c[T|U], and therefore the result type
is alc[TIUI] Ib[c[TIU]], which is larger than the expected
one. We know that this limitation is undesirable and can
have a negative impact on practice. Unfortunately, this
seems the best we could do in the present local inference ap-
proach. Indeed, if we remove this restriction, then there is an
example where we can obtain unboundedly better types by
repeating the inference on the same body expression, which
makes it difficult to define the specification of the inference.
We will describe this point in Section 3.3 in more detail.

3 Formalization

In this section, we give the syntax and semantics of types,
patterns, and filters, as well as the specification of our type
inference.

3.1 Syntax

We assume a (possibly infinite) set A of labels, ranged over
by a. A walue v is a sequence of labeled values, where a
labeled value is a pair of a label and a value. We use the
following syntax for writing values.

v ou= € empty sequence
alv] labeled value
vv concatenation

For brevity, we omit base values and types (such as strings)
from the formalization. (The changes required to add them
are straightforward.)

We assume a countably infinite set S of sets of labels.
Each member of S is called label set and ranged over by L.
Let the set S closed under union, intersection, and comple-
mentation. We also assume countably infinite sets of pat-
tern names ranged over by X, filter names ranged over by
Y, variables ranged over by z, and body ids ranged over by
e. Then, patterns P and filters F' are defined as follows.

P := Pasz binder
PP concatenation
P|P alternation
P repetition
L[X] label
€ empty sequence
F = P —e clause
FF concatenation
F|F alternation
F* repetition
LlY] label
€ empty sequence

18

A pattern grammar [filter grammar] is a finite mapping from
pattern names [filter names] to patterns [filters] where the
names appearing in each pattern [filter] must be in the do-
main of the grammar. Throughout this paper, we assume
fixed, global pattern grammar E and filter grammar G to
be given. (Note that, in the formalization, we forbid nest-
ing of labels and require names to occur only inside labels.
This does not, however, lose generality since any defini-
tions without these restrictions can be translated to ones
with the restrictions®.) We define types, ranged over by T,
to be patterns from which no variables are reachable, i.e.,
reach(T) = {.

In the formal system here, we do not concretely spec-
ify what “body expressions” are, but rather treat them in
an abstract way by using body ids. We will show the op-
erational semantics and the type inference specification for
filters, which take evaluation and typing algorithms defined
on body ids as parameters.

In order to ensure a given pattern to always bind the
same set of variables, we impose a “linearity” restriction on
them. Let reach(P) be the set of all variables reachable
from P—that is, the smallest set satisfying the following:

U reach(E (X)),

X €EeFN(P)

reach(P) = BV(P) U

where BV (P) is the set of variables bound in P and FN(P)
is the set of pattern names appearing in P. We say that a
pattern P is linear iff, for any (reachable) subphrase P’ of
P, the following conditions hold.

x € reach(Py) if P' = P; as x.

reach(P;) Nreach(P,) = 0 if P' = P, P».

reach(P;) = reach(P,) if P' = P, | P.
reach(P;) =0 if P = P,*.

In what follows, we assume that all patterns are linear and
that, if there are clauses Pi — e1 and P> — e» in a filter with
e1 # es, then P; and P> do not contain the same variable.
(We will see examples where different occurrences of clauses
have the same body ids.)

Several features not appearing in the syntax can be ex-
pressed as shorthands. An optionality operator F'? can be
rewritten to F'|e and a one-or-more-repetition filter F™ to
F F*. (Note that each body appearing in F here is dupli-
cated in the expanded form but still has the same id, e.g.,
no new id is not allocated. This is important for ensuring
the expansion not to break the restriction that each body in
the original program is typechecked only once.)

As mentioned in Section 2.2, our alternation operator
has the nondeterministic semantics, i.e., Fi|F> matches F;
or F» nondeterministically, as opposed to the first-match
semantics used in our previous framework [17]. However,
since first-matching is often convenient for writing “default”
clauses, we suggest providing (and indeed the current XDuce
does support) a separate “first-match” alternation operator
Fy||F>, where F> matches only when F; does not match.
One easy way to implement this is to convert the filter F}||F>
to F1|F; (using the nondeterministic alternation) where Fj
is a filter that behaves exactly the same as F> except it

3More precisely, even if we drop the above-mentioned restrictions,
we still need a restriction to ensure patterns not to have the power of
context-free grammars. See [19] for details.

PLAN-X 2004 Informal Proceedings

matches only values not matched by Fi. This conversion
can easily be done by taking a “set-difference” between F>
and F; preserving binding and action information in Fs.
Further details are omitted in this paper. (The first-match
alternation suggested here is less expressible than our pre-
vious first-match semantics of patterns. In particular, the
previous can express greedy matching, e.g., longest or short-
est matching. However, we chose a nondeterministic seman-
tics since the first-match semantics introduces a significat
complication in the language definition and implementation.
More discussions on this topic can be found in [16].)

3.2 Evaluation

We now define the operational semantics of patterns and
filters. As mentioned above, the semantics is parametrized
over an evaluation algorithm eval(V,e) that takes an envi-
ronment V' and a body id e and returns a value. An environ-
ment is a finite mapping from variables to values, written
T1:V1...Tp : Up.

The semantics of patterns is described by the matching
relation v € P = V, read “value v is matched by pattern P
and yields environment V.” The relation is defined by the
following rules.

veEP=V PV
AR
vEPasz=(z:v)V
Vi.v; € P, = V; H.veEP=>V
PCAT ———— POr

vive €E PPy =V Vs VEP |Po=V

Vi.v; e P=>V;

= PREP
V1 ..o EP =V ...V,

a€L veEX)=>V

av] € LIX] =V LA

We write v € P when v € P = V for some V. Given a type
T, we write L(T) for the set of values matched by T'.

For the semantics of filters, a straightforward way would
be to define a three-place relation on input values, filters,
and output values, but we make a slight detour for the ease
of formalizing the specification of type inference later. We
first define the relation v € F' = h, read “from input value v,
filter F yields thunk h.” A thunk h is a sequence of pairs of
environments and expressions or labeled thunks, as defined
by:

h = Ve
hh
alh]

After evaluating a filter, we execute each body in the result-
ing thunk under the corresponding environment, and com-
bine all the results by concatenation and labeling. The filter
evaluation relation v € F = h is defined by the following

19

set of rules

veEP=>V e
LA
vEP—se=V e
Vi.v; € F; = h; FO di.ve F; = h FO
AT _— R
viv2 € Fy F» = hy ho vEF |Fa=h
Vi.v; € F = h;
FREP

V1 ...UnGF*=>h1 . hy

a€l veEGY)=h

Al €LY = afn] AP

and the thunk evaluation relation A => v by the following.

TC
V = e=eval(V,e) cra
hi1 = v ha = vo T h=wv L
A ————— TLaA
hi he = vi v2 ! alh] = a[v] s

3.3 Type Inference

The type inference specification is also parameterized over a
typing algorithm type(T,e) that takes a type environment
I' and a body id e and returns a type. A type environment
is a mapping from variables to types.

In the first step of type inference, we assume that a type
T is given for input values and obtain a type environment
I for the variables appearing in the filter. (Note that we
compute one type environment for the whole filter. There is
no danger of name crashes since, as already mentioned, pat-
terns with different body ids have distinct sets of variables.)
We compute the type environment in the way that, for each
variable z, the type I'(xz) contains exactly the set of values
captured by z as a result of matching values from the input
type T against the filter. Formally, we first define the set,
written h(zx), of values assigned to z in a given thunk h.

(V= e)(x) {V(x)}
(h1 h2)(z) hi(z) U ha(z)
(a[h])(x) h(x)

Then, the type environment I' satisfies:

L(D(z)) = Ufh(z)|veT, veF = h)

In the second step of inference, we assume that a type for
each body id e is given by type(T,) and obtain a type U for
result values. We compute it in the way that U contains the
set of values returned by the filter with the assumption that
all values from T may be passed to the filter and all values
from type(T',e) may be returned by the body e. Formally,
we first define the set, written h(T), of values resulted from
a given thunk h.

(V=e)l) = L(type(T,e))
(h1 hz)(r) = {’Ul V2 | V1 € hl(F), v € hg(F)}
(a[R])(T) {alv] [v € R(D)}

Then, the result type U to compute satisfies:
LU) = YHrT)|veT, veF = h}

As mentioned before, our inference uses only one type for
each body. This restriction is reflected in the fact that we

PLAN-X 2004 Informal Proceedings

obtain one type environment for the whole filter, from which
the typechecking of each body can yield only one result type.
What if we remove this restriction and allow more than once
to typecheck each body? The answer is that there is an ex-
ample where we can always get better types by typechecking
the same body more times. Consider the filter

filter v {
al[l* as x { x, b[l, x }
}

with the input type a[l*. The current scheme typechecks
the body by giving the type a[]l* to x and obtains the result

type
all*,b[]1,all*.

However, if we split the input type into the case of the empty
sequence and the case of sequences of length one or more,
we obtain the result type

0,b[1,0 | all+,b[],all+

which is more specific than the previous one. In this way,
by splitting the input type into more cases, we can always
obtain strictly better types. In the limit, we could split the
input type into all the cases of possible input values, where
the set of result values would be

{all™,b[1,al1” | n > 0}.

But this set is not expressible by our types (since it is not
regular). (Note that this argument already applies to regu-
lar expression pattern matching: the problem appears when
we consider the precision of the result type, not when we ex-
tend the language feature.) Although this limitation is quite
disappointing, this seems inevitable as long as we stick to
the current approach. We will continue this issue in Sec-
tion 7, where we will show some possible future directions
to address this problem.

4 Automata model

In this section, we introduce a notion of filter automata,
which is a finite-state machine model corresponding to reg-
ular expression filters. We will use this for describing our
type inference algorithm in the next section. The basic part
of the model is standard, nondeterministic top-down tree
automata accepting binary trees. We extend these to han-
dle the additional functionalities provided by filters. First,
recall that a filter has the two-layered structure, i.e., the
whole is a regular expression over clauses and each clause
associates a body id with a pattern, which is a regular ex-
pression augmented with variable binders. We represent the
whole structure by a tree automaton and add extra annota-
tions to indicate which parts correspond to clauses or vari-
able binders. For each clause, we insert a special transition
marked in(e) (where e is the associated body id) at the en-
trance of the clause and another transition marked out at
the exit. We will call the subpart of the automaton be-
tween the in(e) and the out transitions scope of e. For each
variable binder, we put the variable on each of the transi-
tions corresponding to the regular expression captured by
the binder.

Formally, a filter automaton A is a tuple
(Q,Q™Mt, Q" T) where Q is a finite set of states,
Q™ C Q is a set of initial states, Q" C Q is a set of final

20

states, and T is a set of transition rules of the form ¢; EN Q2
where) is defined by the syntax below, each ¢ is a member
of), and T is a set of variables.

A = T:L[q] label
in(e) action-in
out action-out
€ silent

For a transition ¢1 2 q2, we call q1 source state and g2 sink
state; when A =T : L[q], we call g content state. Note that,
as in the surface language, we allow a label set in each la-
bel transition (as opposed to standard automata formalisms
using single labels). We annotate a label transition with
a set of variables rather than a single variable since vari-
able binders may be nested in the surface language (e.g.,
((all as x),b[1) as y). We sometimes omit the set of
variables from a label transition if the set is empty. A filter
automaton is said e-free if it does not have an e-transition.
A tree automaton is a filter automaton that has no action
transition and whose each label transition has the empty
variable set.

For example, we can represent the following filter in the
surface language

((all,bl]) as x { e H*
by the filter automaton depicted below.

start i {I}w[qu{z}:b[qe] out

€

Here, we suppose that the state g accepts the empty se-
quence. The filter automaton accepts a sequence of inter-
changing a and b nodes where each node contains the empty
sequence. For each pair of a and b nodes in the input, we
first enter the scope of e, then capture both nodes by the
variable z, and finally exit from the scope (“executing” the
body e).

We make several syntactic restrictions on filter automata
to reflect the structure of the surface language syntax. Let
us first make some definitions for a given filter automaton
A = (Q,Q™* Q" T). A (global) path from ¢ to g, is
a sequence qi,...,qn of states where, for s = 1,...,n — 1,
either

C1 ¢ EN qi+1 € T for some A\, or

C2 ¢ Tilai, q' € T for some ¢, 7, and L.

In this case, g, is said (globally) reachable from q1; we de-
fine reach4(q) to be the set of states reachable from ¢ and
reach4(R) (for a set R of states) to be |J, ., reacha(q).
A local path from q1 to qn is a sequence qi,...,q, of states
where, for ¢ = 1,...,n — 1, either C1 holds with A\ having
the form T : L[¢'] or €, or C2 holds. In this case, we say
that g, is locally reachable from g and define local4(q) to
be the set of locally reachable states from gq. We define

BVy4(q) = U{E| q1 € locala(q), ¢1 ERCEIN qs €T}.

in(e)

A state q is in the scope of e if ¢ — g2 € T and ¢q €
local4(g2) for some ¢1 and ¢2. Define scope,(e) to be the

PLAN-X 2004 Informal Proceedings

set of states in the scope of e. A state ¢ is said in scope
when ¢ is in the scope of some body id, and said out of scope
when ¢ is not in the scope of any body id. A horizontal path
from ¢ to ¢ is a sequence qi,...,q, of states where, for
i=1,...,n— 1, C1 holds with X having the form Z : L[q']
or €. In this case, we say that ¢, is horizontally reachable
from ¢1 and define horiz4(q) to be the set of horizontally
reachable states from g. A state ¢1 is an in-state when

T« —>m(e) q2 € T for some e, g2, and an out-state when

@ out q2 € T for some ¢q2. Now, we impose the following
restrictions:

e FEach state is either in the scope of a unique body id or
out of scope.

e No state is an out-state if it is out of scope.
e No state is an in-state if it is in scope.
z:L[q2] . .
e When ¢t — ¢3 € T with ¢ in scope, no state
reachable from ¢ is either an in-state or an out-state.
z:L[q2]

e When ¢ — ¢3 € T with ¢: in scope, we have that
BVa(g) N (ZUBV A(g3)) = 0.

The last condition corresponds to the linearity restrictions
in the surface language.

Next, we define the semantics of filter automata. Analo-
gously to the surface language, a given automaton produces,
from an input value, an intermediate structure called anno-
tated value rather than directly emitting an output. The
produced annotated value is, in fact, identical to the in-
put value except that it is augmented with variable and ac-
tion annotations. The annotated value is then processed for
forming environments, executing bodies, and constructing a
result value. Formally, an annotated value p is defined by
the following syntax.

p == pp concatenation
alp]® label with variable set
€ empty sequence

in(e) action-in
out action-out

An annotated value is in-out-free when it does not contain
in(e) or out. We define BV (p) by the union of the variable
sets appearing in p. Now, the semantics of filter automata
is described by the relation A F, v = p, read “automaton
A in state ¢ accepts value v and yields annotated value p,”
and inductively defined by the following set of rules.

qEQﬁn qli>q2€T Al—q2m=>p
——— FIN EPs
Abje=¢ Abgy vi=p
a€L q1 L[(13]>(]2€T
AI—(B V1 = p1 Al—qz V2 = p2
= LAB
A kg alvi]v2 = a[p1]” p2
qlw)qQGT Abgpv=0p
- ENTER
Alg v=in(e)p
qlo—llt)qQET Abgpv=0p
ExIT

Alg, v=outp

21

We form an environment from an in-out-free annotated
value by using the following envof function

envof(a[p1]” p2)(z)

alerase(pi)] envof(pz)(z) (z € T)
={ envof(pi)(z) (€T, z € BV(p1))
envof(ps)(z) (z €T, = ¢ BV(p1))
envof(e)(z) = €

where erase(p) is the value after eliminating all variables
from p:

erase(a[p1]® p2) = alerase(p;)]erase(p2)
erase(e) = €

To understand the definition of envof, first note that lin-
earity ensures that, in any annotated value resulted from
a matching, the same variables occur only in the same se-
quence. For example, we may have an annotated value

bla[" ™)’

but never]
bla[l"H? af] .

Thus, when the envof function visits each node a[p1]” p2 of
the given annotated value, there are only three cases. First,
the node’s variable set contains z, in which case we retain
this node (by erasing all the annotations from its content
p1) and proceed to the remaining sequence p2. In the second
case, x occurs in pi. Then, x does not in ps, so we ignore
p2. In the third case, x does not occur in p;. Then, x may
occur in p2, so we proceed to pa.

Finally, to construct the result value from an annotated
value, we use the relation p ~» v defined as follows.

eval(envof(p),e) = v1 0~ U2

- RCLA
in(e) pout o ~ v1 v2
g1~ U1 a2 ~> V2
RLAB RFIN
alo1] o2 ~ afvi] v2 €~ €

The relation uses the same evaluation function eval as in
the previous section.

It is easy to translate regular expression filters to filter
automata by using a variation of the standard translation
algorithm from string regular expressions to string automata
[15]. A translation algorithm is given in Appendix A. Also,
we can easily convert any filter automata to e-free filter au-
tomata by the standard e-elimination. The details are omit-
ted from this abstract.

Since the presented semantics contains nondeterminism,
a naive implementation of this with backtracking would be
inefficient. Although we have not yet figured it out, we
believe that we can construct a linear-time algorithm for
evaluating filters by adapting existing linear-time algorithms
for checking membership of tree automata, e.g., [24].

5 Inference algorithm

In this section, we describe our inference algorithm using
filter automata introduced in the last section and give a
brief discussion of its correctness.

PLAN-X 2004 Informal Proceedings

5.1 Inference for variables

For bound variables, the inference takes as inputs a tree
automaton A (representing the input type) and a filter au-
tomaton B. For simplicity, we assume that both automata
are e-free. The inference algorithm works in two steps. First,
we specialize the filter automaton B with respect to the tree
automaton A such that the resulting automaton D behaves
exactly the same as the original B except that it accepts
only values accepted by the automaton A. For this, we use
a variation of standard product construction where we pre-
serve the action and the variable binding behaviors in the
automaton B. Second, we obtain, for each variable z, a tree
automaton H®" (where z is bound in the scope of e) such
that H*" accepts a value v if and only if the filter automa-
ton D accepts some value from A and binds z to v. We
compute the automaton H® from the filter automaton D
by retaining all the transitions with variable sets containing
z and eliminating all the other transitions.

Formally, we first construct a product automaton C' =
(@c. Q¥ Q. To) from A = (Qa, @Y™, Q%".Ta) and

= (@5, QE™, Q%" Tp) as follows.
Qo = QaxQs
QICI/:'; — Q:éut % Qﬁgut
o = QA" x QBn_
T {(Ih,th) M} <p27QQ> | 1 Klps]
z:L
p2 € Ta, qlﬂ)qQGTB, KﬂL;éQ)}

n() in(e)
U {(p,q1> Pyg) |p € Qa, i —= g2 €

7o)

U {p,q1 = (p,a2) | PEQa, @ —>qz€TB}
The first clause of T¢ follows the standard technique of prod-
uct construction except that we take the intersection of the
label sets from both transitions (making sure that the in-
tersection is not empty) and that we copy the variable set
in the transition from the automaton B. For the second
and the third clauses, we keep the action annotation on the
transition from the automaton B. Since the automaton A
should not consume any input while the automaton B takes
this action, the created transition connects the state (p,q1)
to (p, q2) where the first component remains the same.

Next, we eliminate all useless states from the automa—
ton C and obtain the automaton D = (Qp, Q%*, Qir Tp)
defined as follows.

Qp = {r | r € reachc (Q'), Cl—r'u:>p}
QP = Q&*NQp

fin _ ﬁn

D = NQ@po

Tp = { Zialas], quTC|Q1,QQ,Q3EQD}

C

{QI &qz €Tc|q,q € QD}

u {QI o €Te | qi g0 € QD}

That is, we keep only the states that are reachable from
initial states and accept some values.?

The final step is, from the automaton D, to extract, for
each variable z, an automaton H®® representing the set of

4In tree automata, states that can reach final states do not neces-
sarily accept some values, unlike string automata (cf. [8]).

10

22

values that x may capture. Note that such a captured value
is the concatenation of the nodes that are matched by z-
annotated label transitions between an in(e)-transition and
an out-transition in the automaton D. Thus, the basic idea
of the inference is to obtain an automaton after extracting
only such label transitions from D. A subtlety here is, how-
ever, that each state in the automaton D can have two dif-
ferent behaviors. That is, after following an in-transition,
we are in the “capture mode,” where we skip the nodes
matched by transitions without z; when we take a label
transition with x, we get into the “duplicate mode” from the
content state of the transition, where we completely retain
the structure of the input. Thus, in creating the new au-
tomaton H*" we copy two complete sets of states from the
automaton D: a capture-mode state (r,0) and a duplicate-
mode (r, 1) for each state r of D. Formally7 the final step is

to compute H®® = (Qpee, Q. QR o, Tie.=) defined as

follows.
Ques = {n0),(n 1) [reQn})
Q. = {0 2 rets)
e = {(rno), (1) | re Qi)
U {(r,0)|r°—m>r GTD}
SR T I TS
Tp, mEm}
U {01,005 (2,00 |10 T e Tp, we
va(m)\z}
U {r,0) S (rs,0) |1 T s e T, o gt
va(m)uz}
o e 2 1) e 2 g e T)

In the first clause of Te.=, we copy all the z-annotated label
transitions in the capture mode, where the content state is
in the duplicate mode. In the second and third clauses, we
create an e-transition in the capture mode for each label
transition without x in D, where the sink state is either the
remainder 72 or the content r3 depending on whether z is
bound in r2 or not. (Recall that the linearity restriction
ensures that z is never bound both in 7, and in r3.) The
fourth clause copies all the label transitions in the duplicate
mode.

Let k be the number of variables appearing in B. The
complexity of the inference algorithm for variables is O(|T4|-
|T'B|- k) since the number of the generated transitions in the
first phase (C) is proportional to |Tal| - |T&|?, the second
phase (D) is linear, and the final phase (He) creates k
automata each with a linear number of transitions relative
to the one in the second phase.

5.2

For result values, the inference takes as inputs a tree au-
tomaton Je for each body id e (representing the set of val-
ues returned by e), in addition to the filter automaton D

Inference for result values

5Here, the complexity of computing K N L and checking its empti-
ness is not made clear. However, it does not, at least, depend on m
or n.

PLAN-X 2004 Informal Proceedings

obtained in the last subsection (which represents the target
filter restricted to the input type). For simplicity, we assume
that J. is e-free. (Note that D is also e-free from its defi-
nition.) We then produce a tree automaton K representing
the set of values returned by the filter automaton D.

To see what values should be contained in K, let us trace
the behavior of the filter automaton D. Starting from its
initial state, we retain all the labels matched by label tran-
sitions that are out of scope. After entering in the scope of a
body id e, we perform variable binding. When exiting from
the scope, we execute the body and emit the resulting value,
which, as we have assumed, is contained in J.. We then go
back to the behavior of out-of-scope states. We continue
these until we reach a final state.

Thus, in building the automaton K, we basically need
to replace each subautomaton in D enclosed by an in(e)-
transition and an out-transition by the corresponding au-
tomaton J.. The replacement can be done by reconnect-
ing the source state of each in(e)-transition to J.’s initial
states and reconnecting J.’s final states to the sink state of
the out-transition. However, there are two subtleties here.
First, several subautomata in different places may have the
same body id but may have out-transitions with different
sink states. Therefore we cannot simply reconnect the au-
tomaton J.’s final states to all these sink states; rather, we
have to duplicate the automaton J. for each of such sub-
automata. Second, since we intend to concatenate a value
resulted from e to the continuing value, we need to link
only the “top-level” (i.e., horizontally reachable from .J.’s
initial states) final states of J. to the sink state of the out-
transition. Therefore we duplicate the top-level states of the
automaton J., but we leave the final states in deeper levels
not to be reconnected. Thus, in creating K, we copy one
complete set of states from D (“out-of-scope” states), one
complete set of states from .J. for each subautomaton de-
scribed above (“top-level” states), and one complete set of
states from J. (“deeper-level” states). Each state in the sec-
ond set is written (p, g) where p is the sink state of the in(e)-
transition and q is a state from D. Formally, given J. =
(Qu., Q7™ Q7. Ts.), we obtain K = (Qx, Q%" Q% Tx)
defined as follows.

Qx = @pUU{(@pxQu)UQu}
o - g

Kn — DnUQ,]:

Tk = {p1ﬂ>p2€TD}

U {pr S @2 a) 91 = p2 €T, g € Q)
Llq2] Llg2]
U {wa) X (a) |peQp, g 2 g €
7.}
U U, T

U {(Po,fh) S ps | @ € QO p2 €

horizp(po), p2 out, p3 € TD}

In the first clause of Tk, we simply copy all the transitions
from D. In the second clause, we connect the source state
of each in(e)-transition to each initial state of J. duplicated
for the transition’s sink state. The third clause copies the
transitions of .J. for each duplicate, where we tag the dupli-
cate’s “representative” state on their source and sink states.
The fourth clause copies these transitions without tagging.
Note that each transition in the third clause has a content

11

23

state in the fourth clause. The fifth clause connects a final
state of po’s duplicate of J. to the sink state of each corre-
sponding out-transitions. Such a transition has the source
state horizontally reachable from the state po.

Let I be the sum of the numbers of transitions in the
automata J. for all e. By noticing that each clause of Tk
contains at most |Tp| - transitions, we can easily see that
the complexity of the inference algorithm for result values
is O(|Tal - |T&| - 1).

5.3 Correctness

Let us first discuss the correctness of the first part of the
inference—for bound variables. We prove that, for each
variable z, the automaton H®® accepts the values that x
is bound to as a result of matching the filter automaton B
against values from the input type A. To precisely state
that = is bound to a value w, we actually need to say that
the annotated value yielded by the matching contains an in-
out-free annotated value p as a substructure enclosed by an
in(e) and an out, and that the extraction of the z-marked
subnodes from p results in the value w. Formally, we first de-
fine contexts, i.e., annotated values containing a single hole
il

S =

We write S[p] for the annotated value after replacing S’s
hole with p. Now, the main theorem for the first part of the
inference is as follows.

Theorem 1 The following are equivalent.

1. A+ v and B F v = S[in(e) pout] where p is in-out-
free and envof(p)(z) = w.

2. H*" +w.

This theorem follows from three lemmas shown below
(Lemma 1, Lemma 2, and Lemma 3) corresponding to the
three steps of the algorithm.

For the first step, we show that the created filter automa-
ton C (in the state (p,q)) exactly simulates the behavior of
the original filter automaton B (in the state ¢) for the values
accepted by the tree automaton A (in the state p).

Lemma 1 Abty, v and B kg v = pif and only if C F,
v = p.

For the second step, we show that the automaton C' and
the automaton D with no useless states behave the same in
the states that are reachable from C’s initial states.
Lemma 2 C +, v = p and q € reacho(QH*
if DFqv=p.

) if and only

For the third step, we show that the automaton H®"
accepts a value w if and only if the automaton D yields
an annotated value that contains an in-out-free annotated
value between an in(e) and an out and w is the extraction
of the z-marked subnodes.

Lemma 3 The following are equivalent.

1. D F v = S[in(e) pout] where p is in-out-free and
envof(p)(z) = w.

PLAN-X 2004 Informal Proceedings

2. H*" F w.

Next, we turn our attention to the second part of the
inference—for result values. First, we define a relation ~»
for constructing a result value from an annotated value,
which slightly modifies the relation ~» defined in Section 4 so
as to incorporate the assumption that e’s result values come
from J. (instead of eval applied to e with the environment
envof(p)).

Je F 1 g~ V2
S JCLA
in(e) pout o ~>; vi v2
g1 ~>g V1 a2 ~> g V2
JLAB JFIN
a[0'1]0'2 ~ g a[v1]v2 €~ €

(Note that JCLA ignores the annotated value p between
the in(e) and out.) Clearly, the relation ~»; is more
conservative than ~» in the sense that o ~» v implies
o ~»; v, provided J. + eval(envof(p),e) for any p where
o = S[in(e) pout].

Then, the second main theorem shown below states that
the tree automaton K accepts the values that are obtained
by executing the filter automaton B for values from A and
evaluating the produced annotated value o by ~~;.

Theorem 2 A+ v and B+ v = o with o ~; w if and
only if K Fw.

6 Related Work

With the same motivation as ours, the CDuce language
[2] supports a feature called map (and a similar one called
transform) that combines pattern matching and iteration.
Unlike ours, their constructs are limited to the uniform pro-
cessing of each element, that is, equivalent to writing filters
like

filter e {
(pt { et }
| ...
| pn { en 1})%
}

where each pattern here is required to match only a sin-
gle element. (They also support another feature called
xtransform to allow recursive descending.) Another sim-
ilar proposal is a simple for-each style iterator with a type-
matching facility in XML Query Algebra [12]. As briefly
discussed in the introduction, since these constructs do not
have a strong connection to regular expressions, it is quite
difficult to process XML data with slightly unusual types
such as (a,bx)*%or process data in a non-uniform way as
discussed in Section 2.3 and Section 2.4.

CDuce also supports type inference both for bound vari-
ables and result values. The difference from ours is, however,
what types to be computed. First, they allow the inference
to go over each body expression more than once, whereas
we limit it to only once. As a result, they can obtain better

SFor skeptists who do not believe that such types actually exist,
the following line appears in line 1667 of file dbhierx.mod of the DTD
of DocBook XML 4.2.

<!ELEMENT indexentry %ho; (primaryie, (seeie|seealsoie)x,
(secondaryie, (seeiel|seealsoie|tertiaryie)#*)*)>

12

24

types than ours. However, in return, they have no accurate
specification of the type inference and therefore the user
might have a difficulty in figuring out the reasons of type
errors reported by the system. XML Query Algebra, on the
other hand, uses a syntax-based specification of their type
inference, with no desirable property of precision.

A popular idiom found in many query languages for XML
[9, 4, 1, 11] is a construct of the form select e where p,
which collects the set of all bindings resulted from matching
the input value against the pattern p, then evaluates the ex-
pression e under each binding, and finally concatenates all
the results. Usually in this style of features, the “matching”
part uses powerful pattern languages and therefore is quite
expressive, whereas the “processing” part is not as satisfac-
tory since it allows only one expression for any match. In
particular, it is typically difficult to process different occur-
rences (or cases) of data in different ways, which is exactly
what regular expression filters are good at.

Other type inference methods are known for other com-
putation models for XML, including k-pebble tree transduc-
ers [23], subsets of XSLT [28, 21], and extended-path-based
queries [25]. Although these use their own techniques for
handing special properties of their models, all of these, like
us, use product construction for specializing the target pro-
gram with respect to the input type.

7 Conclusions

We have shown that the simple idea of regular expressions on
pattern clauses can yield significant expressiveness allowing
non-trivial and useful programming idioms. Though, no sin-
gle language feature is suitable for every purpose. Indeed,
the kind of processing that filters permit is, roughly, the
map operation as in usual functional languages; we cannot
express fold-like processing, for example. However, rather
than trying to extend our feature to allow as many pro-
gramming patterns as possible, we prefer to keep it simple
and easy to use. On the other hand, the effort required for
implementing filters is not so big. The type inference is a
series of simple operations on automata and the addition
from our previous inference for pattern matching is rather
moderate.

One dissatisfaction about the present proposal is the pre-
cision of the type inference, as discussed in Section 3—the
computed types are sometimes not precise enough due to
the restriction that the inference can use only one type for
each body expression. For breaking through this obstacle,
there are at least two directions. One possibility, taken by
CDuce’s map and transform [2], is to give up having an
accurate specification of type inference and compute some
type that is more precise than ours. Whether this lack of
specification is acceptable from the user’s point of view is,
however, yet to be seen. (There might be an intermedi-
ate solution that gives both a simple specification and a
better precision, but whether it exists is still an open ques-
tion.) Another possibility is to pursue a backward inference
approach, which computes input types from output types
(the opposite to our inference) [23, 28]. This approach has
successfully dealt with similar problems in several different
settings, and therefore seems to be the most promising at
the moment.

PLAN-X 2004 Informal Proceedings

Acknowledgments

I would like to express my best gratitude to Vladimir
Gapeyev, Michael Levin, Makoto Murata, and Alain Frisch

for precious comments and useful discussions.

The paper

was greatly improved by the comments made by the anony-
mous reviewers of POPL’04 and PLAN-X’04. This work was
supported by Kayamori Foundation of Information Science
Advancement.

References

(1]

[10]

(11]

(12]

Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer
Widom, and Janet L. Wiener. The Lorel query language
for semistructured data. International Journal on Digital
Libraries, 1(1):68-88, 1997.

Véronique Benzaken, Giuseppe Castagna, and Alain Frisch.
CDuce: An XML-centric general-purpose language. In Pro-
ceedings of the International Conference on Functional Pro-
grammang (ICFP), 2003.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve
Maler. Extensible markup language (XMLT™). http://
www.w3.org/XML/, 2000.

Luca Cardelli and Giorgio Ghelli. A query language for
semistructured data based on the Ambient Logic. In Proceed-
ings of 10th European Symposium on Programming, number
2028 in LNCS, pages 1-22, 2001.

James Clark. XSL Transformations
http://www.w3.org/TR/xslt.

James Clark and Makoto Murata. RELAX NG. http://

www.relaxng.org, 2001.

(XSLT), 1999.

Sophie Cluet and Jéréme Siméon. Using YAT to build a
web server. In Intl. Workshop on the Web and Databases
(WebDB), pages 118-135, 1998.

Hubert Comon, Max Dauchet, Rémy Gilleron, Flo-
rent Jacquemard, Denis Lugiez, Sophie Tison, and
Marc Tommasi. Tree automata techniques and applica-
tions. Draft book; available electronically on http://
www.grappa.univ-1ille3.fr/tata, 1999.

Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy,
and Dan Suciu. XML-QL: A Query Language for XML,
1998. http://www.w3.org/TR/NOTE-xml-ql.

David C. Fallside. XML Schema Part 0: Primer, W3C Rec-
ommendation. http://www.w3.org/TR/xmlschema-0/, 2001.

Peter Fankhauser, Mary Fernandez, Ashok Malhotra,
Michael Rys, Jéréome Siméon, and Philip Wadler.
XQuery 1.0 Formal Semantics. http://www.w3.org/TR/
query-semantics/, 2001.

Mary F. Ferndndez, Jéréme Siméon, and Philip Wadler. A
semi-monad for semi-structured data. In Jan Van den Buss-
che and Victor Vianu, editors, Proceedings of 8th Interna-
tional Conference on Database Theory (ICDT 2001), vol-
ume 1973 of Lecture Notes in Computer Science, pages 263—
300. Springer, 2001.

FormatData. RecipeML. http://wuw.formatdata.com/
recipeml/.
Alain Frisch, Giuseppe Castagna, and Véronique Benzaken.

Semantic subtyping. In Seventeenth Annual IEEE Sympo-
sium on Logic In Computer Science, pages 137-146, 2002.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Addison-
Wesley, 1979.

Haruo Hosoya. Regular expression pattern matching — a
simpler design. Technical Report 1397, RIMS, Kyoto Uni-
versity, 2003.

13

25

17

[19

[20

[21

[22

[23

[24

[25

[26
[27

In

] Haruo Hosoya and Benjamin C. Pierce. Regular expression
pattern matching for XML. Journal of Functional Program-
ming, 13(4), 2002. Short version appeared in Proceedings of
The 25th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 67-80, 2001.

] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed
XML processing language. ACM Transactions on Internet
Technology, 3(2):117-148, 2003. Short version appeared in
Proceedings of Third International Workshop on the Web
and Databases (WebDB2000), volume 1997 of Lecture Notes
in Computer Science, pp. 226-244, Springer-Verlag.

] Haruo Hosoya, Jérome Vouillon, and Benjamin C. Pierce.
Regular expression types for XML. In Proceedings of
the International Conference on Functional Programming
(ICFP), pages 11-22, September 2000.

ecordare . usic . http://www.recordare.com
R d LLC. MusicXML p:// /
xml.html.

] Wim Martens and Frank Neven. Typechecking top-down
uniform unranked tree transducers. In Proceedings of In-
ternational Conference on Database Theory, pages 64-78,
2003.

Erik Meijer and Mark Shields. XMA\: A functional program-
ming language for constructing and manipulating XML doc-
uments. Manuscript, 1999.

] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for
XML transformers. In Proceedings of the Nineteenth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pages 11-22. ACM, May 2000.

] M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema
languages using formal language theory. In Extreme Markup
Languages, 2001.

Makoto Murata. Extended path expressions for XML. In
Proceedings of Symposium on Principles of Database Sys-
tems (PODS), 2001.

OASIS. DocBook. http://www.docbook.org.

NAA Classified Ad-
http://www.naa.org/

Newspaper Association of America.
vertising Standards Task Force.
technology/clsstdtf/.

] Akihiko Tozawa. Towards static type checking for XSLT. In

Proceedings of ACM Symposium on Document Engineering,
2001.

W3C. Synchronized Multimedia Integration Language.
http://www.w3.org/AudioVideo/.

W3C. W3C XML Specification. http://wuw.w3.org/XML/
1998/06/xmlspec-report.htm.

Translation from filters to filter automata

this section, we show an algorithm to translate a filter to

a filter automaton. The correctness proof of the translation
is omitted here.

Given a pattern definition E, a filter definition G, and

a “starting” filter name Yp, we create an automaton A2l =

@

Aarn, QU QB8 Tyan) where

Qpan = Uxedom(E)(QE(X),ﬂ U{gx})
U Uyedome)(Qar) Udar})
lea“l:l = 4y
2211 = Uxedom(E) Q%?X),w U UYEdOm(G) ng(ly),@
Tran = Uxecaomm (Tex)oU{ax} = QFi% o))

U Uyedom(c)(TG(Y),w U({gv} = Qlcn(l;)w))

PLAN-X 2004 Informal Proceedings

. a &
(QP,T7 Qan,%:7 P?E7 PT‘E) a‘nd AF =

(Qr, Q=" Qfin Q") are inductively defined as follows.

Ay = {a} {a} {au}, 0)

AL[X],E = ({q17q2}7 {q1}7 {q2}7 {ql

and Apz =

[qx])

A(P1 Py, = (QPmc U sz,fv Qi}?li,tfy QPQ T TPLE U
Tp, = U (QF 7 = QBY%))
A iryz = (@Qpr7U Qpy7, Q;‘ff U QlF’ngi,tE7 QP1,

QP2 T TPhE U TPzw)

Aprz = (QPEU{m,qz} {a1}, {2}, TraU(QF%U
{a}) = (@FE U {e}))
Apaso)z = Apzus)
Ae = {a}, {e}, {a}, 0)
Ay = Hanaed {a), a2} {o 225 g0}y
Apryy = (QF1 U QFzr QR Q% Tp, UTr, U
(QF 5 QRY))
Ay ry) = ;QF)lUQFz, QPEFUQRE, QFrUQEr, TrU
Fa
Ap- = (QrU{q, g}, {}, {g}, Tru((QF"U
{m}) = (QF* U{e}))
Apse = (Qpo U {1,402}, {a1}, {a=}, Tpy U
({an} 2 Qi) U (@ 2% {g2)))

Here, Q1 EN Q2 means {q EN @ | ¢ € Q1, g2 € Q2}. Note
that the construction for the empty sequence, labels, con-
catenations, alternations, and repetitions of both patterns
and filters is exactly the same as the standard one [15].

B Complex Regular Expressions

In this section, we give a collection of regular expressions
taken from real-world DTDs. These regular expressions have
a certain complex structure that can defeat the use of a stan-
dard for-each style of language features mentioned in the
introduction. Specifically, we choose the following charac-
terization of such structure: a regular expression is complez
if it has, as subexpression, either

e a concatenation of two expressions containing the same
label, or

e a repetition containing a concatenation.

An example of the first is ((a,b) ,a) and an example of the
second is (a,b)*.

Below, we pick up six DTDs and quote their element
and entity declarations with complex regular expressions.
We omit the definitions of some of the entities referenced
here when they are not important for the present purpose.
The other entities are already expanded.

B.1 DocBook 4.2 [26]

The element declarations shown below can be found in the
file dbhierx.mod. Almost the same structure as the ele-
ment appendix is used for the elements chapter, preface,

14

26

section, sectl, sect2, sect3, sect4, and sect5 (omitted
here).

<!ELEMENT appendix
(beginpage?,
appendixinfo?,
(%bookcomponent.title.content;),
(toc|lot|index|glossary|bibliography) *,
tocchap?,
(%bookcomponent.content;),
(toc|lot|index|glossary|bibliography) *)>

<!ELEMENT indexentry
(primaryie, (seeie|seealsoie)*,
(secondaryie, (seeie|seealsoie|tertiaryie)*)x*)>

<!ELEMENT refmeta
((indexterm)*,
refentrytitle, manvolnum?, refmiscinfox*,
(indexterm) *) >

B.2 MusicXML 0.8 [20]

The elements key and time are declared in the file
attributes.dtd, the element harmony in direction.dtd,
and the elements ornaments and lyric in note.dtd.

<!ELEMENT key
((cancel?, fifths, mode?) |
((key-step, key-alter)*))>

<!ELEMENT time
((beats, beat-type)+ | senza-misura)>

<!ELEMENT harmony
(((root | function),
inversion?, bass?,

kind,
degreex)+)>

<!ELEMENT ornaments
(((trill-mark | turn | delayed-turn |
shake | wavy-line | mordent |
inverted-mordent | schleifer |
other-ornament) ,
accidental-mark*)*)>

<!ELEMENT 1lyric
((((syllabic?, text),
(elision, syllabic?, text)*, extend?) |
extend | laughing | humming),
end-line?, end-paragraph?)>

B.3 RecipeML 0.5 [13]

<!ENTITY % amt.cont °’(amt, (sep?, amt)*)’>
<!ENTITY % time.cont ’(time, (sep?, time)*)’>
<!ENTITY % temp.cont ’(temp, (sep?, temp)*)’>
<!ELEMENT equipment

(equip-div+ | (note*, tool, (note | tool)*))>
<!ELEMENT equip-div

(title?, description?, note*, tool,

(note | tool)*)>

PLAN-X 2004 Informal Proceedings

<!ELEMENT ingredients
(ing-div+ | (note*, ing, (mote | ing)*))>

<!ELEMENT ing-div
(title?, description?, note*, ing,
(note | ing)*)>

<!ELEMENT directions
(dir-div+ | ((note | ing)*, step,
(note | ing | step)*))>

<!ELEMENT dir-div
(title?, description?, (note | ing)*, step,
(note | ing | step)*)>

<!ELEMENT amt
((qty | range)?, size?, unit?, size?)>
B.4 Adex 1.2 [27]

<!ELEMENT transfer-info
(transfer-number, (from-to, company-id)+,
contact-info) *>

<!ELEMENT days-and-hours
(date, time)+>
B.5 SMIL 2.0 [29]
The following is in the file smil-model-1.mod.

<!ENTITY % SMIL.head.content
(metax,
(customAttributes, metax)?,
(metadata, metax)?,
((layout|switch), metax)7?,
(transition+, metax)?)>

B.6 W3C XML Specification 2.1 [30]

<!ELEMENT prod
(lhs, (rhs, (com|wfc|vclconstraint)*)+)>

15

27

PLAN-X 2004 Informal Proceedings

Regular tree language recognition with static information

Alain Frisch
Département d’Informatique

Ecole Normale Sugrieure, Paris, France
Alain.Frisch@ens.fr

Abstract tern matching in CDude To simplify the presentation,

the paper studies only a restricted form of pattern match-
This paper presents our compilation strategy to produce efficiéig, without capture variable and with a very simple kind
code for pattern matching in the CDuce compiler, taking in@f trees. Of course, our implementation handles capture
account static information provided by the type system. Indeariables and the full set of types and patterns construc-
this information allows in many cases to compute the result (ti@rs in CDuce. In the simplified form, the pattern match-
is, to decide which branch to consider) by looking only ata sméilg problem is a recognition problem, namely deciding
fragment of the tree. Formally, we introduce a new kind of devhether a tree belongs to a regular tree languageor
terministic tree automata that can efficiently recognize regula®ot.

tree languages with static information about the trees and we

propose a compilation algorithm to produce these automata. 1. If the regular language is given by a tree automaton,
a top-down recognition algorithm may have to back-

track, and the recognition time is not linear in the

1 Introduction size of the input tree.

2. It is well-known that any tree automaton can be

Emergence of XML has given tree automata theory a re- transformed into an equivalent bottom-up determin-
newed importance[Nev02]. Indeed, XML schema lan- istic automaton, which ensures linear execution time;
guages such as DTD, XML-Schema, Relax-NG describe the size of the automaton may be huge even for sim-
more or less regular languages of XML documents (con- ple languages, which can make this approach unfea-
sidered as trees). Consequently, recent XML-oriented sible in practice.
typed programming languages such as XDuce [Hos00,
HP02], CDuce [BCF03, FCB02], Xtatic [GP03] have type 3- The static type system of the language provides an
algebras where types denote regular tree languages. The UPPer approximation for the type of the matched tree
type system of these languages relies on a subtyping re- v, that is some regular languagé, such thatv is
lation, defined as the inclusion of the regular languages hecessarily inXy. Taking this information into ac-
denoted by types, which is known to be a decidable prob- count, it should be possible to avoid looking at some
lem (new and efficient algorithms have been designed for Subtree ofv. However, classical bottom-up tree au-
this purpose, and they behave well in practice). tomata are bound to look at the whole tree, and they

An essential ingredient of these languages is a power- cannot take this kind of static knowledge into ac-
ful pattern matching operation. A pattern is a declarative €ount.
way to extract information from an XML tree. Because . . .
of this declarative nature, language implementors have t etus give an example to |IIustra.te the last point. Con-
propose efficient execution models for pattern matchin&.I er the following CDuce program:
This paper describes our approach in implementing pat-*Cbuce is available for download http://www.cduce.org/

28

PLAN-X 2004 Informal Proceedings

type A = <a>[A*] of information from trees. More precisely, a NUA will
type B = [B*] skip a subtree if and only if looking at this tree does not

bring any additional relevant information, considering the
let f ((AIB)->Int) A >0 | B ->1 initial static information and the information already gath-
let g ((A|B)->Int) <a>_->0 | _ ->1 ered during the beginning of the run.

The first lines introduce two type& andB. They de- Remark 1.1 A central idea in XDuce-like languages is
note XML documents with onlyxa> (resp.) tags that XML document live in an untyped world and that
and nothing else. Then two functiofisandg are de- XML types are structural. This is in contrast with the
fined. Both functions take an argument which is eith&ML Schema philosophy, whose data model (after val-
a document of typé\ or of type B. They return 1 when idation) attaches typ@amesto XML nodes. Moreover,
the argument is of typA, and 0 when the argument is ofn XML Schema, the context and the tag of an element
type B. The declaration off suggests an efficient execuare enough to know the exact XML Schema type of the
tion schema: one just has to look at the root tag to ansveéement. In XDuce-like languages, in general, one may
the question. Instead, if we consider only the body pf have to look deep inside the elements to check type con-
we have to look at the whole argument, and check that etraints. Our work shows how an efficient compilation of
ery node of the argument is tagged with> (resp. with pattern matching can avoid this costly checks: our com-
); whatever technique we use - deterministic bottorpilation algorithm detects when the context and the tag
up or backtracking top-down - it will be less efficient thaare enough to decide of the type of an element without
g. looking at its content. This work supports the claim that

But if we use the information given by the function ina structural data moded la XDuce can be implemented
terface, we know that the argument is necessarily of type efficiently as a data model with explicit type namés
Aor of typeB, and we can compilé exactly as we com- XML Schema.
pile g.

This example demonstrates that taking static informrelated work Levin [Lev03] also addresses the imple-
tion into account is crucial to provide efficient executiomentation of pattern matching in XDuce-like program-
for declarative patterns asfn ming languages. He introduces a general framework (in-

The main contribution of this paper is the definitiotermediate language, matching automata) to reason about
of a new kind of deterministic bottom-up tree automatehe compilation of patterns, and he proposes several com-
called NUA (non-uniform automata) and a compilatiopilation strategies. He leaves apart the issue of using static
algorithm that produces an efficient NUA equivalent to@gpes for compilation, which is the main motivation for
given non-deterministic (classical) automaton, taking intr work. So the two works are complementary: our com-
account static knowledge about the matched trees. pilation algorithm could probably be re-casted in his for-

Informally, non-uniform automata enrich classicahalism.
bottom-up automata with a “control state”. The control Neumann and Seidl [NS98] introduce push-down au-
state is threaded through the tree, during a top-down aothata to locate efficiently nodes in an XML tree. Our
left-to-right traversal. In some cases, it is possible sutomata shares with push-down automata the idea of
stop the traversal of a whole subtree only by looking #ireading a control-state through the tree. The formalisms
the current state. Non-uniform automata combine the ade quite different because we work with simpler kind of
vantage of deterministic bottom-up and deterministic toputomata (binary trees with labeled leaves, whereas they
down tree automata, and they can take benefit from statave unranked labeled forests), and we explicitly distin-
information. guish betwen control states (threaded through the tree)

In order to discriminate several regular tree languagesd results (used in particular to update the state). How-
a NUA does not necessarily need to consider a given seler, using an encoding of unranked trees in binary trees,
tree at all. The “magic” of the compilation algorithm isve believe that the two notions of automata are isomor-
to compute a NUA that will extract only minimal set phic. But again, they don't address the issue of using

29

PLAN-X 2004 Informal Proceedings

static information to improve the automata, which is olny #. There are two classical notions of deterministic
main technical contribution. It should be possible to adapee automata:

our compilation algorithm to their push-down automata
setting, but it would probably result in an extremely com-
plex technical presentation. This motivates us working
with simpler kinds of tree and automata.

e Top-down deterministic automata (TDDTA) satisfy
the property:{(ry,r2) | (r1,72,7) € §} has at most
one element for any node These automata are
strictly weaker than NDTA in terms of expressive
power (they cannot define all the regular languages).

2 Technical framework e Bottom-up deterministic automata (DTA) satisfy the

property: {r | (r1,r2,7) € ¢} has at most one ele-
ment for any pair of node@g-, r»), and similarly for
the setdr | (a,r) € §} with @ € 3. These automata
have the same expressive power as NDTA.

In this section, we introduce our technical framework. We
consider the simplest form of trees: binary trees with la-
beled leafs and unlabeled nodes. Any kind of ordered
trees (n-ary, ranked, unranked; with or without labeled
nodes) can bencoded, and the notion of regular Ianguag(i2

L iant under th di Using thi) emark 2.3 We use the non-standard terminology of
IS Invanant under these encodings. 1Jsing this very S'mq%des instead of states. The reason is that we are going to
kind of trees simplifies the presentation.

split this notion in two: results and control states. Results
will correspond to nodes in a DTA, and control states will
2.1 Trees and classical tree automata correspond to nodes in TDDTA.

Definition 2.1 Let ¥ be a (fixed) finite set of symbols. An order to motivate the use of a different kind of au-
treev is either a symbok € X or a pair of trees(vi, v2). tomata, let us introduce different notions of context. Dur-
The set of trees is writte’. ing the traversal of a tree, an automaton computes and
) athers information. The amount of extracted information
CDuce actually Uses this form of trees to represent AMian only depend on the context of the current location in
documgnts: forgetting about X_ML attributes, an XML elt'he tree. A top-down recognizer (for TDDTA) can only
ement is represented as a pditg, content) wheretag propagate information downwards: the context of a loca-
is a leaf representing the tag anghtent is the encoding tion is thus the path from the root to the location (“upward

of :jhedsequ?nac; of cgndren. The empty sequences 'Z Sgﬁtext”). A bottom-up recognizer propagates informa-
coded as a leafil, and a non-empty sequence is encodgl, | \nards: the context is the whole subtree rooted at
as a pait(head, tail). We recall the classical definition ofthe current location (“downward context’)

a tree automaton, adapted to our definition of trees. Top-down algorithms are more efficient when the rel-

Definition 2.2 (Tree automaton) A (non-deterministic) evant information is located near the root. For instance,
tree automaton (NDTAJs a pair & = (R, J) where R going back to the CDuce examples in the introduction, we

is a finite set ohodesands C (2 x R) U (R x R x R). see _easily that the functiayn should be impleme_nted by
starting the traversal from the root of the tree, since look-

Each noder in a NDTA defines a subset/[r] of ¥. ing only at the root tag is enough (note that because of
These sets can be defined by the following mutually rdte encoding of XML documents in CDuce, the root tag
cursive equations: is actually the left child of the root). Patterns in CDuce
tend to look in priority near the root of the trees instead
Ar] ={a€X|(a,r) €d}U U o [r] x < [rs] of their leafs. However, because of their lack of expres-
(r1,ra,m)ES sive power, pure TDDTA cannot be used in general. Also,
since they perform independant computations of the left
We write 7 [r]*> = &/ [r]N¥ x ¥ . By definition, a regu- and the right children of a location in a tree, they cannot
lar language is a subset of the forsr] for some NDTA use information gathered in the left subtree to guide the
o/ and some node. We say that this languagedefined computation in the right subtree.

30

PLAN-X 2004 Informal Proceedings

The idea behind push-down automata is to traverseWhen the automaton is facing a trég, v-) in a state
each node twice. A location is first entered in a given cog;it starts with some computation @n using a new state
text, some computation is performed on the subtree, and= left (¢) computed from the current one, as for a
the location is entered again with a new context. Wherf®DTA. This gives a result; which is immediately used
location is first entered, the context is the path from tiie compute the stat@ = right (g,r1). Note that con-
root, but also all the “left siblings” of these locations anttary to TDDTA, ¢» depends not only oq, but also on the
their subtrees (we call this the “up/left context” of the locomputation performed on the left subtree. The computa-
cation). After the computation on the children, the contetibn onwv, is done from this state,, and it returns a result
also include the subtree. The notion of non-uniform aus. As for classical bottom-up deterministic automata, the
tomata we are going to introduce is a slight variation aasult for (vq, v2) is then computed from; andr, (and
this idea: a location is entered three times. Indeed, whgn
computing on a tree which is a pair, the automaton con-Let us formalize the definition of non-uniform au-
siders the left and right subtree in sequence. Between thmata. We define only the deterministic version.
two, the location is entered again to update its context, and
possibly use the information gathered on the left subtrgfinition 2.5 A non-uniform automatox/ is given by a
to guide the computation on the right subtree. finite set of state§), and for each statg € Q:

This richer notion of context allows to combine the ad- , A finite set of result®(q).
vantages of DTA and TDDTA, and more.

Due to lack of space, we cannot give more backgrounde A stateleft (q) € Q.
information about regglar Ianggage and tree automata. 'To. For any result r, € R(eft (q)), a state
understand the technical details that follow, some famil- ight (q,71) € Q
iarity with the theory of tree automata is expected (see for ot '
instance [Nev02] for an introduction to automata theory e For any resultr; € R(left (g)), and any result
for XML and relevant bibliographical references). How- », ¢ R(right (q,71)), a result6%(q,r,72) €
ever, we give enough intuition so that the reader notfamil- - R(q).

iar with this theory can (hopefully) grasps the main ideas.))
e Apartialfunctioné®(q,) : ¥ — R(q).

2.2 Non-uniform automata The result of the automaton from a stateon an input

v € ¥, written &7 (¢, v), is the element of?(¢) defined
We now introduce a new kind of tree automata: nofy induction onv:
uniform automata (NUA in short). They can be seen as

(a generalization of) a merger between DTA and TDDTA. (g, a) = 52(% a)

Let us call “results” (resp. “control state”) the nodes of (g, (v1,v2)) = 6°(q;71,72)

DTA (resp. TDDTA). We are going to use these two no- where r= o (left (g),v1)
tions in parallel. A current “control state” is threaded and ro = /(right = (g,71),v2)

updated during a depth-first left-to-right traversal of t L0 .
; . ecause the functiong®(q,_) are partial, so are the
tree (this control generalizes the one of TDDTA, where .
. < (q,-). We write Don{q) the set of trees such that
the state is only propagated downwards), and each 029-

trol stateq has its own set of resultB(q). Of course, the (g,v) Is defined.

transition relation is parametric i Remark 2.6 Note that this definition boils down to that

of a DTA whenQ is a singleton{q}. The set of results
Remark 2.4 We can see these automata as determing-the NUA (for the only state) corresponds to the set of
tic bottom-up automata enriched with a control state thabdes of the DTA.
makes their behavior change according to the current lo- It is also possible to convert a TDDTA to a NUA of the
cation in the tree (hence the terminology “non-uniform”)same size. The set of states of the NYA corresponds to the

31

PLAN-X 2004 Informal Proceedings

set of nodes of the TDDTA, and all the states have a singlér'his condition means that any result of any state can be
result. reached for some tree in the domain of the state. Since

Our definition of NUAs (and more generally, the claghe NUA will skip a subtree if and only if the séi(q) is
of push down automata [NS98]) is flexible enough to sira-ssingleton, it is important to enforce this property.
ulate DTA and TDDTA (without explosion of size). They Of course, the set of reachable results can be computed
allow to merge the benefit of both kind of determinist{this amounts to checking emptiness of states of a NDTA,
automata, and more (neither DTA nor TDDTA can threaghich can be done in linear time), and so we can remove
information from a left subtree to the right subtree). unreachable results.

Neumann and Seidl [NS98] introduce a family of reg- The point is that we are going to present a top-down
ular languages to demonstrate that their push-down acempilation algorithm (it defines a NUA by giving ex-
tomata are exponentially more succint than determinisiidicitly for each statey the set of resultsR(¢) and the
bottom-up automata. The same kind of example appltesnsition functions, see Section 3.8). Hence the produced
for NUAs. NUA does not need to be fully built at compile time. Con-

sequently, it is meaningful to say that this construction di-

A pair (¢,r) with ¢ € Q andr € R(q) is called a rectly yields a reduced NUA, and does not require to fully

state-resultpair. For such a pair, we write7[¢;r] = materialize the automaton in order to remove unreachable
{v | & (q,v) = r} for the set of trees yielding resutt resylts.

starting from initial statg. The reader is invited to check

that a NUA can be interpreted as a non-deterministigji_recyrsion Running a NUA on a tree requires a size
tree automata whose nodes are state-result pairs. C@nsiack proportional to the height of the tree. This is
sequently, the expressive power of NUAs (that is the clggghiematic when dealing with trees obtained by a trans-
of languages of the form[g; r]) is the same as NDTAS 4ti from, say, huge XML trees to binary trees. Indeed,

(ie: they can define only regular languages). The poifs transiation transforms long sequences to deep trees,
is that the definition of NUAs gives an efficient executlogtrong|y balanced to the right.

strategy. The following definition will help us in these cases.

Running a NUA The definition of</(¢, v) defines an Definition 2.8 A NUA is tail-recursiveif, for any state
effective algorithm that operates in linear time with rel €

spect to the size af. We will only run this algorithm for Vr1 € R(left (q)).Vry € R(right (¢,71)).
treesv which are knowm priori to be inDon{g). This is 62(q,m1,7m9) =12

because of the intended use of the theory (compilation of

CDuce pattern matching): indeed, the static type system' N€ idéa is that a tail-recursive NUA can be imple-

in CDuce ensures exhaustivity of pattern matching mented with a tail-recursive call on the right subtree. The
An important remark: the flexibility of having a dif_stack—size used by a run of the NUA is then proportional to

ferent set of results for each state makes it possibletl?ft‘?r:argeSt number of “left” edges on an arbitrary branch
short-cut the inductive definition and completely ignor% the tree.)
phe theorem above shows how to turn an arbitrary

subtrees. Indeed, as soon as the algorithm reaches a sub-"- _)

treev’ in a stateg’ such thatR(¢) is a singleton, it can NUA Into a tail-recursive one.

directly returns without even looking at. Theorem 2.9 Let.<7 be an arbitrary NUA, and?”’ be the
NUA defined by:

Reduction A first criterion for a NUA to be good isthe o' — 1(4. ¢/ 0) | ¢,¢' € Q,0 : R(q) — R(¢)}

following condition: R((¢,q,) = o(R(q))
initi i if: left ((¢,4',0)) = (left (q),q,!d)

Definition 2.7 A NUA ./ is reduced if: tight ((g,4',0),71) = (right (g, 71),4',0 0 8%(q,71,))

62((q7 ql70)7rlvr2) =T2

Vg € Q.Vr € R(q). Jv € Domg). < (q,v) =7 (. ¢, 0),a) = o 0 8°(q,)

32

PLAN-X 2004 Informal Proceedings

Then: 3.1 Intuitions
e o/’ is tail-recursive Let us consider four regular languag&s, X», X3, X4,
and letX = (X; x X3) U (X3 x X4). Imagine we want
e Foranytreev: &'((q,¢',0),v) = 00 < (q,v) to recognize the languag& without static information
(Xo = 7). If we are given a treév,, v2), we must first
e If &7 isreduced, theny’ is also reduced. perform some computation an. Namely, it is enough

to know, after this computation, if; is in X; or not, and
When the original automaton enters the right subtree, @igilarly for X5. It is not necessary to do any other com-
set of results changes: a result returned by the compyiatation; for instance, we don’t care whetheris in X,
tion on the right subtree will have to be translated to make not. According to the presenceof in X; and/orXs,
it compatible with the set of result for the current locatiofve continue with different computations of:

The idea is to push this translation in the computation

on the right subtree. This is done by encoding the trans» It v, is neither inX; nor in X3, we already know
lation in the control state passed to the right subtree. In thatv is notinX without looking atv;. We can stop
a triple (¢, ¢’, o), the real “control-state” i ando en- the computation immediately.
codes the translation from resultsgfo result ofg’. This o _
means that if ¢, ¢, o) is the current control state of the ® If v1 is in X3 but not in X3, we have to check
new NUA, theng would be the control state of the origi- ~ Whetherv; is in Xs.
nal NUA at the same point of the traversal, anevould

be the translation to be applied to the result by ancestors® !f v1 i in X3 but not in X, we have to check

whetherv, is in X,.

Remark 2.10 If for some statey, any R(right (¢,71))

is a singleton{c’(r1)}, it is possible to implement this
state with a tail recursive-call on the left-subtree; in the
construction above, we would takdeft (q,¢’,0) =

e If v; isin X; and inX3, we must check whethes,
is in X, or not, and inX, or not. But actually, this
is too much work, we only have to find whether it is
in Xy U X4 or not, and this can be easier to do (for

(left (9),q',000") instance, ifX, U X, = ¥, we don't have anything
to do at all).
3 The algorithm This is the general case, but in some special cases, it is not

necessary to know both wgther is in X; andwhether

Different NUA can perform the same computation witht is in X3. For instance, imagine tha&, = X,. Then
different complexities (that is, they can ignore more ave don't have to distinguish the three cases X;\ X3,
fewer subtrees of the input). To obtain efficient NUA, the; € X3\ Xy, v; € X; N X3. Indeed, we only need to
objective is to keep the set of resuliq) as small as check whethep; is in X; U X3 or not. We could as well
possible, because whek(q) is a singleton, we can drophave merged(; x X, andX3 x X, into (X; U X3) x X»
the corresponding subtree. in this case. We can also merge them if one is a subset of

Also, we want to build NUAs that take static informathe other.
tion about the input trees into account. Hopefully, we haveNow imagine we have some static informatiafy. If
the opportunity of definingartial states, whose domainfor instance, X, N (X; x X3) = &, we can simply ig-
is not the whole set of trees. nore the rectanglé(; x X,. Also, in general, we de-

In this section, we present an algorithm to build an efluce some information about: it belongs tor; (Xy) =
ficient NUA to solve the dispatch problem under statig? | (v9,v9) € Xo}. After performing some computa-
knowledge. Namely, givem + 1 regular languagestion on vy, we get more information. For instance, we
Xo, ..., Xn, we want to compute efficiently for any treemay deduce; € X;\X3. Then we know thats is in
vin Xotheset{i =1..n | v € X;}. m(Xo N (X1\X3) x ¥). In general, we can combine the

33

PLAN-X 2004 Informal Proceedings

static information and the results we get for the a left sub- pair (r{,75) # (r1,r2) suchtha(r],r5,r) € 6, then
tree to get a better static information for the right subtree. o7[r1] N &/[ri] = @ and?[ra] # o/ [rs].
Propagating a more precise information allows to ignore_
more rectangles. It is well-known that the class of all regular tree lan-
The static information allows us to weaken the condd/@ges is closed under boolean operations. The first
tion to merge two rectangle¥; x X, andX; x Xy4. In- Property says that the class of languages dgfined by the
deed, itis enough to check whether XN (X1 x X)) = f|xed NDTA o is closed unde_r _these operations. Start-
72(Xo N (X3 x X4)) (which is strictly weaker tha, = N9 from an arbitrary NDTA, it is possible to extend it
X). to .a Boolean-complete one. #f,r, are two nodes, we
In some cases, there are decisions to make. Imagiféi€ 71V r2 (resp.ry A ra, —r1) for some node- such
that Xy = X; x X, U X5 x X4, and we want to checkthat #[r] = @[] U #[rs] (resp. &/[ri] N &/ [r],
if a tree (v1,v2) is in X; x X,. If we suppose that Y\ [r]).
X;NX; = @andX, N X, = @, we can work on; The Canonicity property forces a canonical way to de-
to see if is inX; or not, or we can work om, to see if COMpose the set/[r]” as a finite union of rectangles
is in X, or not. We don't need to do both, and we musif the form.«/[ri] x «/[r,]. For instance, it disallows
thus choose which one to do. We always choose to pdle following situation: {(ry,r2) | (r1,72,7) € 6} =
form some computation o if it allows to gain useful {(a,c), (b, c)}. In that case, the decomposition.ef[r]*
knowledge orv. This choice allows to stop the top-dowr@iven by § would have two rectangles with the same
left-to-right traversal of the tree as soon as possible. T@cond component. To eliminate this situation, we can
choice is relevant when considering the encoding of XMRerge the two rectangles, to keep oty v b,c). We
sequences and trees in our binary trees. Indeed, the chalge want to avoid more complex situations, for instance
correspond to{1) extracting information from an XML Where a rectangle in the decompositionasfr]” is cov-
tag to guide the computation on the content of the eled by the union of others rectangles in this decomposi-
ment, and(2) extracting information from the first chil-tion. Itis always possible to modify the transition relation
dren before considering the following ones. o of a Boolean-complete NDTA to enforce the Canonic-
ity property (first, by splitting the rectangles to enforce
non-intersecting first-components, and then by merging

3.2 Types rectangles with the same second component).

We have several regular languagés X1,..., X, asin- We will use the word “type” to refer to the nodes of our

puts, and our algorithm needs to produce other languafjged NDTA <. Indeed, they correspond closely to the

as intermediate steps. types of the CDuce (internal) type algebra, which sup-

Instead of working with several different NDTA to deport boolean operations and a canonical decomposition of
fine these languages, we assume that all the regular lpreducts. Note that the set of types is finite, here. We
guages we will consider are defined by the same fixedite [¢] instead ofe/[t], A2(t) = {(t1,t2) | (t1,t2,t) €
NDTA « (each language is defined by a specific stai¢, andA°(t) = {a | (a,t) € §}. This allows us to reuse
of this NDTA). This assumption is not restrictive since the symbolse/, r, . .. to refer to the NUA we will build,
is always possible to take the (disjoint) union of severabt the NDTA we start from.

NDTA. Moreover, we assume that this NDTA has the fol-

lowing properties: 3.3 Filters

e Boolean-completenessThe class of languages de- . . .
fined by (thatis, the languages of the formi[]), Even_ if V\ge start with a single check to perform (“is th_e
is closed under boolean operations (union, interséf:qe in X7, we may r‘]five. several chec.k to p,(,ar.form n
tion, complement with respect t6). pqrallel on a sgptree (“is1 in X1 and/or inX3?"); we

will call filter a finite set of checks to perform.

e Canonicity. If (ry,ra,7) € 6, then: &/[ri] # A filter is intended to be applied to any tregrom a

@, [ra] # @. Moreover, if we consider anothergiven language; for such a tree, the filter must compute

PLAN-X 2004 Informal Proceedings

which of its elements contain Left Assume we are given a trae = (v1,v2) which
is known to be in a type. What can we say about ?

Definition 3.1 Letr be a type. Ar-filter is a set of types Trivially, it is in one of the setdt,] for (t1, t5) € A2(r).

p such thatvt € p. [t] C [7].

We define:
If p' C p, letp/|p be a type such that: € define o= V&
el =70 (N () P\ (t1,t2)€A2(7)
rer! tep\p! It is the best information we can find about 2. Note

(such a type exists thanks to Boolean-completeness.) that: [(7)] = {v1 [(v1,v2) € [7]}

The result of ar-filter p for a treev € [r], writtenv/p,is ~ Now assume we are giverrdilter p that represents the

defined by: tests we have to perform an Which tests do we have to
v/p={tep|velt} perform onv,? It is enough to consider those tests given

Equivalently, we can defing/p as the only subset C p by ther ()-filter:
/

suchthaw € [le]. m(p) = {t1 | (11, t2) € A%(1), t € p}

Our construction consists in building a NUA whos
states are pairg-, p) of a typer and ar-filter p. Note that
the set of all these pairs is finite, because we are work
with a fixed NDTA to define all the types, so there is onl
a finite number of them.

%his set is indeed & (7)-filter. It corresponds to our

" oice of performing any computation en which can
tentially simplify the work we have to do later en.

ndeed, two different rectangles ih?(¢) for somet € p

have different second projections because of the Canonic-

. . ity property.
3.4 Discussion This discussion suggests to take:
The typer represents the static information we have about
the tree, ang represents the tests we want to perform on left (7, p)) = (m(7), m1(p))
a treev which is known to be irr. The expected behavior
of the automaton is: Right Let us continue our discussion with the tree-
(v1,v2). The NUA performs some computation an
Vv e [r]. Z((1,p),v) =v/p from the statgr, p1) With 7, = 7 (7) andp; = 71 (p).

Let p; be the returned result, which is the set of all the
typest; € p; such that, € [t1].
What can be said about? It is in the following type:

Moreover, the statér, p) can simply reject any tree
outside[7]. Actually, we will build a NUA such that:

Doni(r, p)) = [7] /
The rest of the section describes how the NUA should ma(T3 p1) = . \/ /
behave on a given input. It will thus mix the description (t1,2)€A%(0) | [o] 22

of the expected behavior of the NUA at runtime and thgjs type represents the best information we can get about
(compile-time) construction we deduce from this behay; nowing thatv € [7] andv, € [p)|p1]. Indeed, its

ior. interpretation is:

to

Results In order to have a reduced NUA, we take for the {va | (v1,v2) € [7], P} = v1/p1}
set of results of a given state, p) only thep’ C p that
can be actually obtained for an inputin Now we must compute the checks we have to perform
. . onwy. Let us consider a given typee p. If (t1,t2) €

R((r,p)) ={p" S p|'lp] # 2} A2(t), we havet; € p;, so we know ifv; € [t1] or
Note thatp’ is in this set if and only if there isa € [7] 2Here we use the assumption that the rectangles in the decomposition
such that/p = p'. are not empty - this is part of the Canonicity property.

8

35

PLAN-X 2004 Informal Proceedings

not (namely,v; € [t1] <= t; € p)). Thereis e right ((7,p),p}) = (m2(7;p}), m2(p; p})) where:
at most one paift;,tz) € A%(t) such thatv; € [t]. 7o (73) = Vita | (t1,t2) €
Indeed, two rectangles in the decompositidf(t) have AZ(7), [t1 A (py|p1)] # @} and

non-intersecting first projection (Canonicity). If there is m(p; p}) = {t2 | (t1,t2) € A%(t),t € p,t1 € p} };

such a pair, we must checkadf is in [t2] or not, and this

will be enough to decide i is in [¢] or not. We thus take: ® 9°((7, p), p1, p3) = {t € p| A*()N(p} x) # D};

ma(p1 p)) = {ta | (t1,t2) € A2(t),t € p,ty € pl} o °((r,p),a) ={t € pla € A°t)}if a € A%(r)
(undefined otherwise)

The cardinal has at most as many elementp ay the

remark above. Finally, the “right” transition is: Once again, it is out of question to actually materialize
this NUA. Indeed, we are interested only in the part acces-
right ((1,p), p}) = (m2(7; 0)), m2(p; p})) sible from a given statér, p) corresponding to the pattern

matching we need to compile. This abstract presentation

Computing the result We write 7o = mo(7; p}) and has the advantage of simplicity (exactly as for the abstract
ps = ma(p:p,). We can run the NUA from this stateSubset construction for the determinization of automata).

(72, p2) on the treess, and get a resul, C ps collecting
thets € py such that, € [to]]. For atypet € p, and a
rectanglg(ty, t2) in its decompositiom!\?(¢), we have:

Remark 3.2 This construction has a nice property: the
efficiency of the constructed NUA (that is, the positions
where it will ignore subtrees of an input) does not depend
on the typer and the types im (which are syntactic ob-
jects), but only on the languages denoted by these types.
So the result of running the NUA from the stdte p) on This is because of the Canonicity property. As a conse-
the treev is: guence, there is no need to “optimize” the types before
running the algorithm.

v e [t x [t2] = (tr € p1) A (t2 € p3)

32 ((1,p), P, P2) = {t € p | A(t) N (py x p3) # B}
. _ ., 3.6 Soundness
Result for atomic symbols Finally, we must consider
the case when the treds a symbok € ¥. The NUA has The following theorem states that the constructed NUA
only to accept for the staie, p) trees in the sefr]); soif computes what it is supposed to compute.
a ¢ A°(7), we canlet®((r, p), a) undefined. Otherwise,

we take: Theorem 3.3 The above construction is well defined and
0 0 explicitly computable. The resulting NUAnsducedand
§°((r,p),a) ={t € plaec A°(t)} it satisfies the following properties for any stdte p):
3.5 Formal construction e Doni(r,p)) = [7]

We can summarize the above discussion by an abstract Yv € [7]. &/ ((7,p),v) =v/p

construction of the NUA:
The proof is by induction on trees, and follows the lines

¢ the set of states are the pafrs p) wherer is a type of the discussion above.
andp a r-filter;
Remark 3.4 It is possible to relax the Canonicity prop-

— / / .
* B((r.p)) ={p" S p| 1] # 2}; erty for types and keep a sound compilation algorithm.
o left ((r,p)) = (m(7),m(p)) where: However, optimality properties (Section 3.9) crucially de-
mi(7) = \{t1 | (t1,t2) € A%(7)} and pends on the simplifications dictated by the Canonicity
mi(p) = {t1 | (t1,t2) € A%(t), t € p}; property.
9

36

PLAN-X 2004 Informal Proceedings

3.7 Anexample techniques developed for the implementation of XDuce
nd CDuce subtyping algorithms can be used to do it effi-

;) ciently. In particular, because of caching, the total cost for
produced by our algorithm. We assume thatontains at all the calls to the emptiness checking procedure does not

least two symbola,b_ and possibly others. We c_on3|der %epend on the number of calls (there is a single exponen-
typet, (resp.,) which denotes all the trees with ony tial cost), so they are “cheap” and we can afford a lot of

leaves (respb leaves). Our static information is ta Vs, them. CDuce also demonstrates an efficient implementa-

ffjmd the filter we are interested ing = {ta, t.b}' Assum- tion of the “type algebra” with boolean combinations and
ing proper choices for the NDTA that defines the typeg, ..o decomposition

the construction gives for the initial staje = (7o, po): The number of stateér, p) is finite, but it is huge.

In this section, we give a very simple example of a NU

o R(qo) = {{ta}, {ts}} How_ever, our anstruction prqceec_is in_a top-down way:
starting from a given state, p), it defines its set of results
e left (q0) =qo and its transitions explicitly. Hence we are able to build
. _ the NUA “lazily” (either by computing all the reachable
o fight (g0, {ta}) = (ta, {ta}) states, or by waiting to consume inputs - this is how the
e right (qo, {ts}) = (ts, {ts}) CDuce implementgtion works). . .
) We haven't studied the theoretical complexity of our
e 0%(qo, {ta}, {ta}) = {ta} algorithm, but it is clearly at least as costly as the inclusion
52 " oY) = (¢ problem for regular tree languages. However, in practice,
* (a0, {tohs {to}) = {to} the algorithm works well. It has been successfully used to
e §%qo,a) = {ta} compile non-trivial CDuce programs.
0 Preliminary benchmarks [BCFO03] suggests very good
* 0°(q0,0) = {tv} runtime performances, and we believe that our compila-
o 3°(qo, c) undefined ife # a,c # b :lr?nt strategy for pattern matching is the main reason for
at.

There is no need to give the transition functions for the
statesq, = (tq,{ta}) andq, = (t, {t}) because they . .
each have aEsin{gIe}zesuR(qa) :({{{ta}}}) andR(q) = 3.9 Optimality
{{ts}}), so the NUA will simply skip the correspondingremember that one the advantages of NUAs over DTAs
subtrees. Note that the NUA is tail-recursive. Its behavigythat they can ignore a whole subtree of input when the
is simple to understand: it goes directly to the leftmoskt r(q) for the current statg is a singleton. We would
leaf and returns immediatly. In particular, it traverses|ige to have som@ptimality for the NUA we have built,
single path from the root to a leaf and ignore the rest &f be sure that no other construction would yield a more
the tree. efficient NUA for the same problem. Due to the lack of
As another example, we can consider the functibnsspace, and because this part is work in progress, we keep
andg from the introduction, together with the CDuce enhe presentation informal.
coding of XML documents. Our compilation algorithm First, we make precise the notion of information. We
indeed produces equivalent automata for the two pattegy that an information is a partial equivalence relation
matchings: they directly fetch the root tag and ignore theER)= on ¥ (that is, an equivalence relation whose do-

rest of the tree. main Don{=) is a subset of¢'). We define an ordering
on PERs. Lets; and=, two PERs. We say that the in-

3.8 Implementation formation=; is larger than=; and we write=; <=, if
either:

We rely a lot on the possibility of checking emptiness of
atype (t] = ©). For instance, the definition dt((r, p)) ¢ the domain of=, is a strict subset of the domain of
requires to check a lot of types for emptyness. All the of =;: Dom{=,) C Don{=,)).

10

37

PLAN-X 2004 Informal Proceedings

e or they have the same domain, anglis coarserthan Now let r be a type ang a r-filter. Let <7 be an arbi-
=11 U] =1 Vg = U] =2 Vs, trary NUA with an initial statey. We assume that this state
extracts enough information from the inputs, as specified
Now we define the information of a stagein a NUA py the filter p. Formally, we assume the existence of a
</ as the PER=, with domainDon{g) defined by: functiono : Ry(q) — 2(p) such that

v =q V2 = H(q,v1) = (q,02) Vo € [7]. o(#(q,v)) ={t € p|v € [t}

e the intuiti b he orderi or equivalently, that the PER associated to this state
Let us give the intuition about the ordering on PERs. Ti smaller than the one associated to the statg) in

idea is that the domain of a PER represents the inforrqﬁé constructed NUA). We say thét/, q) is correct for
tion we have before doing any computation (static infoy- ' '

. AR) (T, p). The optimality property can now be stated:
mation), and the partition itself represents the information
we extract by doing some computation on a tree (namehjaim 3.5 (Optimality) Let </ be the NUA built in the
finding the class of the PER the tree belongs to). We wal{gvious sections. For any tree € [r], the trace of
to minimize both the static information we propagate ad”» (7, p)) onv is better than the trace of any other NUA

the amount of computation we require, so we want a NUghich is correct for(r, p).

to traverse states with largest possible PERs in its traversajhe proof should follow the lines of the discussion we
of atreé. used to establish the construction. However, we don’t
Here we need to take the traversal order into accounive a formal proof of this property yet. The intuition
because we have made the following choice: when facigghat the NUA performs as much computation on a left
atreev = (v1,vz), the NUA we have built in previous subtree as necessary to get the most precise information
sections extracts any information framthat allows it to on the right subtree (combining static information and the
get more precise static information op (using the static result on the left subtree) - but no more. So it is not pos-
information it has orv and the result of the computatiorsible, under the static knowledge at hand, to extract more
onwy). static information about the rest of the tree in the traversal
For an arbitrary NUA<7, we have defined the result ofof the NUA. Having more information means having less
&/ on an inputv from a statey. In this section, we needcomputation to do on the rest of the tree, hence smaller
to consider that running a NUA annotates the tree. Faimbers of possible results, and more opportunities for
each subtree, we can define a statuch that the NUA stopping the traversal early.
entered this subtree in staje We annotate the subtree However, our ordering on PERs makes it a priority to
with the PER associated to the stgteSo we get a tree maximize the static information, before minimizing the
of PERs. We can flatten it using a right-to-left traversaimount of computation to do. This corresponds to the
(opposite to the operation of the NUA), to get a sequengiRoice in our algorithm to performs as much computation
of PERs (whose length correspond to the number of nodgsa left subtree as necessary to get the most precise infor-
and leaves in the treg). We call it the trace of.<7, ¢) on mation on the right subtree (combining static information
. and the result on the left subtree). This is motivated by
We can compare the runs of two NUAs with initiathe fact that having more information means having less
stateq .2/, g1) and(2#, ¢2) (provided that the domains ofcomputation to do on the rest of the tree, hence more op-
the initial states contain). We say that.<7, ¢1) is better portunities for stopping the traversal early.
than (e, ¢2) for the inputw, if the trace of(«#,¢;) onv But it is not always true that having strictly more in-
is larger than the trace @£+, ¢2), for a lexicographic ex- formation allows us to do strictly less computation, and
tension of the ordering on PERs (note that the two trad@#s depends on the way the atomic cases (dispatch on the
have the same length). value of the leaves) are implemented. Let us give an ex-

N o ample* . LetY = {a,b,c} and Xy = {a} x L U {b} x

SNote that a state has a trivial PER (a partition with only one class) if
and only if it has only one result (provided the NUA is reduced), which “In this example, we manipulate subsetsSbinstead of types for
is the case that allows the NUAs to stop the traversal. simplicity.

11

38

PLAN-X 2004 Informal Proceedings

{a,b}, X1 = {a} x {b,c} U {b} x {b}. Given the static ACKnowledgments

information X, we want to recogniz&(;. The NUA that

we have constructed will start on the left subtree with thavould like to express my best gratitude to Haruo Hosoya
filter {{a}, {b}}, that is, it wants to know if the left com-for his his help in improving the presentation of this paper.
ponent ina or b (we are necessarily in one of these two

cases because dfy). If it is a, the static information

about the right subtree 15, and the filter is{{b, ¢} }. If it References

is b, the static information about the right subtre¢dsb}, BcFo3] Veronique Benzaken, Giuseppe Castagna, and Alain

and the filter is{{b} }. Note that in both cases, itis enoug Frisch. CDuce: an XML-centric general-purpose lan-
to check if the right subtree is nat so we're not doing guage. INCFP, 2003.

less computation by distinguishing these two cases, ©YEBR02] Alain Frisch, Giuseppe Castagna, an@rdhique

if we have more precise static information for the right Benzaken. Semantic subtyping. LICS, 2002.
subtree. It would be possible to avoid any computation

. R 03] Vladimir Gapeyev and Benjamin Pierce. Regular ob-
the left subtree because the information it gives cannot'te ject types. IFFOOL, 2003.

used to improve the rest of the computation.)

Note that this depends on low-level implementatidhl0s00] Haruo Hosoya. Regular expression types for XML.
details, namely the way to implement the dispatch for Ph.D thesis. The University of Toky2000.
atomic symbols. It could be the case that indeed, the cdifP02] Haruo Hosoya and Benjamin Pierce. Regular expres-
putation in the second case above is more efficient than sion pattern matching for XML. Journal of Func-
the one in the first case (because of the representation of ~ fional Programming 2002.
transition tables, . ..), thus motivating the computation ¢ev03] Michael Levin. Compiling regular patterns. IGFP,

the left subtree. This kind of situation occurs in the actual 2003.
CDuce implementation, because of complex basic tygesv0o2] Frank Neven. Automata theory for XML researchers.
(the analog of the symbols 1 in this presentation): inte- In SIGMOD Record, 31(3), 2002002.
ger intervals, finite or cofinite sets of atoms, ... A mor@sgg] Andreas Neumann and Helmut Seidl. Lo-
extensive discussion on this issue is left for a future pub- Cating matches of tree patterns in forests.
lication. In Foundations of Software Technology and
Theoretical Computer Science pages 134—

) 145, 1998. Extended abstract available at

4 Conclusion http://www.informatik.uni-trier.

de/"seidl/conferences.html
In this paper, we have formalized the core of the compi-
lation algorithm for pattern matching as implemented in
CDuce. To simplify the presentation, we have considered
only basic trees, and a pure recognition problem (no cap-
ture variable).
The actual implementation deals with:

e The full type algebra, including records, infinite ba-
sic types, and arrow types.

e The full patern algebra, with capture variables (in-
cluding non-linear ones), default values, alternation
and disjunction patterns, ...

We plan to report on the complete algorithm and study
the optimality property in more details in a future publi-
cation.

12

39

PLAN-X 2004 Informal Proceedings

An XQuery-Based Language for Processing Updates in XML

. . A .k
Gargi M. Sur, Joachim Hammer, and Jérome Siméon

CISE Department, University of Florida, {gsur, jhammer}@cise.ufl.edu
*Bell Labs, Lucent Technologies, simeon@research.bell-labs.com

Abstract

Extensive usage of XML for information exchange and data processing has led to the development
of standard languages for querying and publishing of XML data. However, a key problem in XML
data management is the absence of a standard language to update XML. As a result, updates are
carried out in a mostly ad-hoc fashion at the application level by writing code to modify tree-based
structures representing XML documents in memory. So far very little research has been conducted
on language-based updates and their impact on XML processing. In this paper we present
UpdateX, our implementation of a declarative update language that can be used to directly update
XML data using queries. Our update language is based on XQuery 1.0, W3C’s XML query
language, and seamlessly integrates with all of its constructs and capabilities. We describe the
user-level syntax of our update language and present a framework for its implementation. The
UpdateX prototype, which has been implemented on top of the Galax XQuery 1.0 processor, is
fully functional and its source code distribution is publicly available on the Web.

1. Introduction

In the recent years, many applications have been migrated to XML to satisfy flexible data
processing needs. As larger amounts of XML data must be processed and maintained
efficiently, an expressive language to update XML becomes of primary importance.
Update capabilities are necessary not only to modify existing XML documents but also to
manage native XML repositories or XML data published from relational sources.
However, there is no agreed upon XML update language yet and there is very little
experience in building XML update processors. As a result, existing XML storage
engines have little support for XML updates, and often rely on ad hoc solutions. Most
XML applications use the XML Document Object Model' (DOM) programming
interface to update XML. The DOM interface contains primitives which operate on a
tree-based representation of the XML document or fragment in memory. Hence,
programmers are subjected to writing code tailored to every XML document that must be
processed. In the absence of a high-level, declarative update language, maintaining that
code can also be tedious and error-prone. Finally, the lack of an easily accessible XML
update infrastructure makes research about the impact of updates on XML processing
difficult to carry out.

In this paper, we describe an XML update language that is tightly integrated with
XQuery 1.0 [BCF+], the W3C XML query language, and present an implementation of
that language. The language itself is based on an internal W3C working draft [CFL+] that
extends the powerful, declarative syntax of XQuery to provide update semantics. Thanks
to its tight integration with XQuery, this language is powerful yet intuitive and easy to

"http://www.w3c.org/DOM/

40

PLAN-X 2004 Informal Proceedings

learn. Moreover, an implementation can be obtained fairly rapidly by modifying an
existing XQuery processor. We have developed a complete implementation of that
language as part of the UpdateX project between University of Florida and Bell
Laboratories. Our implementation has been carried out on top of the Galax XQuery 1.0
engine. Galax and its source code, including the update implementation, are publicly
available from the Galax Web site”.

In this paper, we describe the update language itself using examples based on the
XML Benchmark Project [AWK+], also known as XMark. The XMark benchmark
proposes a set of queries operating on a document containing information about auctions,
and has been widely accepted in the XML research community. The XMark queries have
been carefully picked up in order to exercise various aspects of XML querying as is
meant to evaluate the performances of XML query implementations for different
application contexts. It is interesting to note here that the authors of XMark have cited the
lack of support for updates as one of the prominent shortcomings of the current W3C
XQuery specification. The demand for concurrent XML queries and updates is in fact not
specific to the XMark scenario, but prevails in a number of other application domains,
such as in Web services (e.g., an on-line travel agent must support both access to flight
information and perform changes to reservations), in the context of the Semantic Web (to
query and maintain an ontology written in RDF), in XML messaging (e.g., to route
existing customer transactions or add annotations to them), or in XML publishing (e.g., to
update an XML view over an underlying relational store).

Our work is based on an XML update language originally proposed in [CFL+],
which addresses the issues discussed in this paper by providing the required update
extensions on top of XQuery itself. Although a number of previous XML updates
proposals have been made [TIH+,MR02,PL01], this language is the first that provides
XML update support tightly coupled with XQuery. Our UpdateX prototype, which is
based on Galax, validates the claim that this language can be easily incorporated into
existing XML query engines, and is targeted to provide the desired DML functionalities
in the above-mentioned and many other domains.

The rest of the paper is organized as follows. Section 2 gives and overview of the
XML update language itself by means of examples. Section 3 presents the low-level
XML update operations at the data model level, which are used to implement the
language. Section 4 presents the rest of the architecture for UpdateX and details about the
compilation process from the declarative XML updates to the low-level operations.
Section 5 reviews related work and Section 6 concludes the paper.

2. The XML Update Language

The proposed XML update language borrows design principles from both XQuery and
SQL. The main features of the language include statement-based update execution, use of
XQuery expressions to compute target nodes and update content, constraint checking,
complex updates, and snapshot semantics to enforce consistency of complex updates.

The primary building block in XQuery is an expression, which always evaluates to
a value. XQuery uses various types of expressions such as path, sequence, arithmetic,
logical, comparison, conditional, and FLWOR expressions. The XML update language,

? http://db.bell-labs.com/galax/

41

PLAN-X 2004 Informal Proceedings

on the other hand, introduces the notion of statement, which is semantically different
from the expression used in XQuery: an update statement modifies an existing value
rather than simply returning one.

Updates are classified into simple and complex updates. Simple updates represent
the basic data modification operations such as add, remove, or update. Complex updates
can be either conditional or iterative, allowing complex operations based on simple
updates. In the following subsections we highlight some of the most important features of
our update language.

3.1. Simple Updates

Simple updates support either insertion of new XML fragments, deletions of existing
XML fragments, or ‘replacement’ of an existing XML fragment by a new one. In each
case, XQuery is used to compute the location where the update occurs and the content of
the update. The syntax of the simple update statements is as follows:

* INSERT UpdateContent InsertLocation TargetNode
where InsertLocation = INTO /AS FIRST INTO / AS LAST INTO / BEFORE / AFTER

* DELETE TargetNode
* REPLACE <value of> TargetNode WITH UpdateContent

For example, the simple insert statement inserts a copy of the item sequence
returned by the ‘UpdateContent’ expression into the location determined by the
‘TargetNode’. The order of the inserted nodes is specified using the ‘InsertLocation’
clause. The language provides several means to indicate the insert location, either as the
children of a given node, or before/after a given node as a sibling. For example, a new
item can be inserted into the XMark database using following insert statement:

i nsert
<itemid="{id}">
<l ocation>Brazil </l ocati on>
<quantity>200</quantity>
<name>XM. i n a Nutshel | </ nhane>
<paynent >Credit Card, Personal check</paynent>
<shi ppi ng>W |1 ship internationally</shippi ng>
<i ncat egory category="categoryl"/>
<litenp
as last into docunent (“xmark.xm ")/sitel/regi ons/sanerica,;

Update 1. Insert Statement.

Note that in this case the item is inserted as the last element. Also note that XQuery
element node constructor is used to construct a new item element, and the parameter ‘id’
can be computed using XPath, e.g. $auction/regions//item[last()] + 1, where the $auction
variable binds to the document node ‘site’. Similarly the following delete statement can
be used to delete the last bid of the second open auction:

del ete
$aucti on// open_aucti ons/ open_auction[@d = "open_auction2"]/bidder[last()];

Update 2. Delete Statement.

42

PLAN-X 2004 Informal Proceedings

Finally, the following replace statement updates the credit card information of person
with reference identifier 10:

repl ace
$auction/ site/ peopl e/ person[@d="personl0"]/creditcard
Wi th <creditcard>2334 3423 3484 2743</creditcard>;

Update 3. Replace Statement.
3.2. Complex Updates

Complex updates can be built from simple updates using either conditionals or FLWOR
expressions. The syntax for conditional update and FLWUpdate is as follows:

* Conditional Update:
UPDATE
IF (ConditionExpr) THEN SimpleUpdatel ELSE SimpleUpdate?2

* FLWUpdate:
UPDATE
(FORClause|LETClause)+ WHEREClause? SimpleUpdate+

A complex conditional update first computes the value of the ‘ConditionExpr’. If the
Effective Boolean Value® of ConditionalExpr is true, then the SimpleUpdate in the then clause is
evaluated; otherwise, the SimpleUpdate in the else clause is evaluated. The ‘then’ and ‘else’
branches can also contain an empty update statement, which is written as “()” and used to
indicate that no data modification needs to be performed. The following conditional update
statement replaces the category name of ‘category4’ if it exists or inserts a new category into the
database as follows:

updat e
i f ($auction/sitelcategories/category[@d="category4"])
t hen
repl ace $aucti on/site/categories/category[@d="cat egory4"]/ name
wi th <nane>2003 Car Sal es</nane>
el se
i nsert <category id="category4">
<nane>2003 Car Sal es</ nane>
<descri pti on>
<parlist>
<listitenp
<t ext >New <bol d> Toyota Canry </bol d> 2003</t ext >
</listitenp
</parlist>
</ descri ption>
</ cat egory>
into $auction/sitel/categories;
Update 4. Conditional Update Statement.

Finally, for more complicated updates, the FLWUpdate statement can be used to apply
simple updates through iterations. The for (and /et) clause in the FLWUpdate allows the
binding of a variable to the results of a query expression. The FLWUpdate then iterates

3 The effective Boolean value is defined as the result of invoking the fn:boolean function on a XQuery
sequence.

43

PLAN-X 2004 Informal Proceedings

through this sequence of variable bindings to execute the list of simple updates
sequentially. For instance, the following FLWUpdate can be used to insert a count of
total number of bids for every open auction into the database:
updat e

for $a in $auction/sitel/ open_auctions/open_auction

where fn:count ($a/bidder) > 1
insert <bid_count>{ fn:count(%$a/bidder) }</bid_count> as last into $a;

Update 5. FLWUpdate Statement.

3.3. Joins

The FLWUpdate can also compute joins over various parts of a document or across
documents. For example, the following FLWUpdate performs a join between ‘person’
and ‘closed auction’ elements to compute the total purchase amount for each person and
inserts it into his profile:

updat e
for $p in $auction/sitel peopl el person
let $s := fn:sun(for $0 in $auction/sitel/closed_auctions/closed_auction

wher e $o/ buyer/ @erson=$p/ @d
return $o/ price)
insert <purchase_history>{ $s }</purchase_history> into $p

Update 6. FLWUpdate Statement.
3.4. Constraints and Semantics

A set of basic semantic constraints must be preserved while executing updates. These
constraints aim to preserve the logical structure of the data model instance. The most
important constraints are as follows:

* The target node of a simple insert must be a single node. If the insert location
evaluates to an empty value, or contains more than one node, then an error must be
raised and the insertion is not performed.

* When the into clause is used in a simple insert, the target node must evaluate to
document or element node; when the affer or before clause is used, the target node
must be an element, comment, or processing instruction node.

* During insertion or execution of a replace statement, for each adjacent sequence of
one or more atomic values, a new text node is constructed. This new text node
contains the result of casting each atomic value to a string, with a single blank
character inserted between adjacent values.

* After insertion or deletion, adjacent text nodes must be coalesced into a single text
node by concatenating their contents, with no intervening blanks.

* While replacing the value of an element or document node, the update content must
be a content sequence. A content sequence is any sequence of zero or more element
nodes, atomic values, processing instruction, and comment nodes.

In addition to these basic constraints, the data model must satisfy additional constraints
in the case the input XML document has a DTD or XML Schema associated with it.
Using XML schema one can describe key and referential integrity constraints, and

PLAN-X 2004 Informal Proceedings

restrictions on the values of attributes and elements. Such value-based constraints must
be handled before the updates are processed. Most of the value-based constraints can be
checked explicitly using the conditional update statement. Note that a promising direction
would be to hook up the update processor with an incremental constraint checker, such as
AX [BBG+], which generates code based on first order predicate logic that can be used to
check constraints on the fly while processing updates.

One of the main difficulties in designing and implementing such an XML update
language is to ensure its semantic integrity. Most notably, one must carefully deal with
cases where consecutive updates in a single FLWUpdate statement impact the same XML
nodes. To avoid inconsistent results, the language imposes a so-called “snapshot
semantics”. According to snapshot semantics, all the variables in the ‘for’ and ‘let’
clauses of FLWUpdate must be bound with respect to the initial snapshot before the
simple updates in the body of the FLWUpdate are executed. The simple update
statements are then executed sequentially based on the initial snapshot and evaluated
independently of each other. In the future, a complete specification for XML updates
using XQuery will be published by the W3C XML Query Group, highlighting all the
necessary constraints and semantics.

3. The UpdateX Data Model API

We now describe the underlying data model and its API which is based on the XQuery
data model. Again, all examples are drawn from the XMark benchmark application.

3.1 The XQuery Data Model

In XQuery and XPath, every XML document instance is represented using a set of nodes.
The XQuery 1.0 and XPath 2.0 data model specification [FMM+] defines seven different
kinds of nodes: document, element, attribute, namespace, comment, processing
instruction, and text. These nodes are used to capture the abstract, logical structure of a
document, which is known as its data model. Every node in the data model is assigned a
unique identifier by the query processor. These identifiers are used to maintain the
original document order amongst the data model nodes. The query specification also
defines various terms to describe content type such as atomic value, item, sequence, etc.
Atomic value defines a value corresponding to the XML Schema atomic type (a simple
type). An item is either a node or atomic value. A sequence is an ordered collection of
Zero or more items.

The XMark database, which we have used in our examples, is modeled after an
Internet auction site. The main entities are: item, open auction, closed auction, person,
and category. An item is an object on sale. Every item is assigned a unique identifier. An
open auction has properties like privacy status, bid history, along with references to the
bidders and sellers, the current bid and default increase, the type of auction, status of
transaction, and a reference to the item being sold. Closed auctions describe completed
auctions and include seller and buyer references, sold item reference, date when the
transaction was closed, its type, and the annotations after the bidding process. The person
elements are characterized by personal details, credit card number, profile of their
interests, and a set of open auctions they watch. Categories feature name and descriptions
used to classify items while a category-graph links categories into a network.

45

PLAN-X 2004 Informal Proceedings

Figure 1 shows the data model for the complete XMark document. As one can

see, the root entity site is represented by a top-level document node while the remaining
entities and their properties are represented using nested element and associated attribute

nodes.
site
regions pecple open_auctions closed_aunctions catgraph categories
1africa, asia, .. person closed_auction category
homepage crediteard amnotation price itemref description
name profile I
) 1 deseription edge
item . -
ncome //\\
from to
description | reserve name open_auction

mailbox % .
annotation bidder initial iternref

mail description increase

Figure 1. Data model of XMark Auction Database

3.2 Data Model Update Primitives

We require two data interfaces for the UpdateX language. Firstly, basic primitives to
create and access the data model elements, and secondly, update primitives to execute
basic data-modification operations such as insert, delete, and replace. Specifically, the
update API has the following interfaces:

Insert(Sequence update-content, Node parent-node, Node sibling-node). The insert
primitive adds new nodes into the data model which are inserted as children of the
parent node and can be ordered with respect to a sibling node.

Delete(Node target-node). The delete primitive removes given target node from the
data model.

ReplaceNode(Sequence update-content, Node target-node, Node parent-node). This
particular replace primitive replaces a given target node with one or more new nodes
and updates the parent node pointers.

ReplaceValue(Sequence update-content, Node target-node). This replace primitive
replaces the value of given target node with one or more nodes given in the update
content.

Other useful update operations are move and rename [TIH+, MRO02], but we do not

include them in our API as they can be simulated using basic operations. For example,
the move operation which moves an existing sub-tree from one location to a new one can
be simulated by an insertion of a copy of the sub-tree at the new location followed by a

46

PLAN-X 2004 Informal Proceedings

deletion of the original sub-tree. Similarly, the rename operation is a specific case of the
replace, i.e., replacement of qualified name of a data model node. We have implemented
the update primitives using tree-based, recursive algorithms. These primitives are
available to the query engine in the form of library functions in Galax.

4. Implementation of the UpdateX Language

We have implemented a fully functional prototype to serve as a reference implementation
of the UpdateX language. The prototype was implemented on top the Galax query engine
[FSB+] developed at Bell Laboratories. Galax is an open source implementation of
XQuery 1.0 and closely conforms to the XQuery specification suite. It implements most
of the features of XQuery like path and FLWOR expressions, arithmetic and comparison
operators, node constructors, document order, etc. It also supports several advanced
features namely XML Schema import and validation, static type checking, and type/value
based optimization. Galax is written in OCaml and is portable to various platforms
(Linux, Solaris, Macintosh, and Windows). OCaml [XLO02] is an object-oriented variant
of ML with sophisticated features, like typed compilation, automatic memory
management, polymorphism and abstraction. It is an ideal language to implement
XQuery as well as update extensions, as its algebraic types and higher-order functions
help to simplify the symbolic manipulation that is central to query transformation,
analysis, and optimization.

Update Update _
Statement AST Update %t
Parser . -
- Normalizer 3
o
=
©
Normalized ©
AST =]
Evaluation Data Model XML
Engine Primitives Data
Internal
Data Model
XML XML
Document XML AST Data Model
—_ >
Parser Loader

Figure 2. Architecture of the Update Processor.

The update processing model is based on the XQuery Formal Semantics [DFF+].
The architecture of the UpdateX processor is shown in Figure 2. The inputs to the
processor consist of update statements and one (or more) XML document(s) that are
subject to modification. The system consists of three main layers: parsing, normalization
and execution. We explain the main features in more detail below.

a7

PLAN-X 2004 Informal Proceedings

4.1. Parsing Layer

The parsing layer implements the parsing phase of the XQuery processing model. It takes
the inputs, parses them, and builds abstract syntax trees (AST) corresponding to the
inputs. The parsing layer consists of two modules: update parser and XML parser. The
update parser parses the input update statement to build an update AST. Updates are
parsed according to the grammar rules specified in the Appendix. The input XML
document is processed by a SAX-based XML parser. The advantage of using a SAX
parser is that the AST corresponding to the XML document is never materialized. The
SAX parser optimizes memory usage by generating stream of SAX events which are
directly consumed by the data model loader to create an instance of the XQuery data
model in memory.

4.2. Normalization Layer

The update normalizer implements the normalization phase of the XQuery processing
model. It maps the update AST into an internal representation that can be directly
executed by the evaluation engine. XQuery normalization judgments are applied to
transform the update AST to equivalent XQuery Core expressions. Normalization
judgments are transformations or rewriting rules that expand the abbreviated, hidden, or
implied syntax of the top-level language and make them explicit.

For instance, the FLWUpdate syntax allows one or more For- (and Let) clauses in
the same statement. During normalization, every FLWUpdate statement containing
nested For- (and Let) clauses is normalized separately. Also, a For-clause in a
FLWUpdate can contain more than one variable, where as a core expression can bind and
iterate over only one variable. In such a case the FLWUpdate is normalized to sequence
of nested For-expressions with a single variable binding.

FLWOR For-Tuple
WHERE INSERT Build [X=>$a] INSERT
FOR $a/bidder WHERE Get_X
$a /lopen_auction FOR

$a /lopen_auction

Figure 3. Normalization process for FLWUpdate

In addition to the above judgments, a special tuple construction rule is applied that
helps to enforce snapshot semantics. Consider the FLWUpdate described in Update 5.
When the FLWUpdate executes, the For-expression is evaluates to a sequence of tuples,
which is used to evaluate expressions in the simple update list. This implies that a tuple
(structure) must be present in the update AST to hold the tuple sequence values. When

48

PLAN-X 2004 Informal Proceedings

the FLWUpdate is normalized, we insert a “for-tuple” construct into the update AST,
which is later materialized during execution phase. The normalization process is shown
in Figure 3. The “Build” and “Get X" clauses represent internal tuple construction and
extraction operations respectively.

4.3. Execution Layer

The execution layer implements the dynamic evaluation phases of the processing model.
After an input update statement is parsed and normalized, it is executed by the evaluation
engine. The update execution consists of three logical phases: pre-update processing,
semantic checking, and update evaluation, which are shown in Figure 4 below.

4.3.1. Pre-update Processing

In the pre-update processing phase, all the XQuery expressions in the normalized AST
are evaluated. A pre-update list is used in the algorithm, which holds the values of the
query expressions based on the initial snapshot. For example, when FLWUpdate is pre-
processed, the following steps are performed:

* The variable bindings in the ‘for’ and ‘let’ clauses of the update statement are
computed by evaluating the query expressions and stored in a tuple sequence. These
bindings actually define the scope of the update.

e The evaluation engine iterates through the list of simple updates and evaluates the
sub-expressions in each simple update statement, with respect to the values in the
tuple sequence.

e The resulting values are stored in a pre-update list according to the order of update
statements in the simple update list.

For instance, the statement in Update 5 is normalized to the following core
expression:
updat e
for-tuple $dot in
(for $a in $auction/sitel/ open_auctions/open_auction

return [a: $a])
insert <bid_count>{fn:count($dot #a/bi dder)}</bid_count> as |last into $a;

Normalized Update 5. Core expression.

When this expression is executed, the ‘for’ expression is evaluated first. The intermediate
results are stored in the for-tuple data structure that is inserted in the AST during the
normalization phase. Next, the values of the ‘bid-count’ element for each iteration of ‘$a’
variable in the simple insert is computed and stored in a pre-update list.

49

PLAN-X 2004 Informal Proceedings

Normalized AST

l

Pre-Update Processing

Pre-update List

Semantic Checking

Validated Pre-update List

Update Evaluation

Data Model Primitive Invocation

XQuery Data Model

Figure 4. Update Execution Phases
4.3.2. Semantic Checking

In this step, semantic checks are applied to ascertain whether the target nodes and update
content values are valid and whether basic constraints are satisfied. The evaluation engine
performs necessary checks on the values in the pre-update list. During this validation
step, if any constraint is not met, the execution is aborted and an update error is raised.

4.3.3. Update Evaluation

In the final step, updates are executed by invoking the data model primitives. Actual
modifications to the underlying data model are performed by these primitives. Based on
the type of update, the evaluation engine invokes the required primitives and passes the
values stored in the validated pre-update list as arguments. The invoked primitive
modifies the data model and returns control to the evaluation engine for further
processing. After the update operations are completed, the update processor may perform
additional book-keeping tasks such as updating the node identities and indexes if
required.

The data model primitives are implemented as atomic functions. Here we discuss
the implementation of the insert primitive. Its signature is given below:

I nsert (Sequence updat e-content, Node parent-node, Node sibling-node)

The update-content consists of a sequence of items, which are inserted as children
of the parent node. The insert operation is deterministic. It preserves the order of children
nodes in the parent node. A pseudo-code version of the insert algorithm is as follows:

* Create a deep copy of the sequence of items to be inserted, viz., copy of update-
content.

* Check the node kind of the parent; the parent node should be a document or an
element node; otherwise raise an error.

* Compute the child axis of the parent node to retrieve its children.

50

PLAN-X 2004 Informal Proceedings

e If a sibling node is specified, determine its position in the children node
sequence.

* Compute the insert location as follows: if the sibling node parameter is null,
then the insert location is after the last child of the parent node; otherwise the
insert location is before the current position of the sibling node in document
order.

* Insert the items in the update-content recursively at the insert location.
* Update the parent pointers of the newly inserted items.

It is important to note that the syntax for simple insert allows five InsertLocation
clauses: insertion into, as last, as first, before, or after the target node. Although this may
indicate the need for multiple insert primitives, we have implemented a single primitive
that simulates all the required variations. The evaluation engine computes the values of
the parent node and target node based on the InsertLocation clause, and then determines
if the sibling node value is to be computed. These values are passed to the insert primitive
when it is invoked during update execution.

The distinction made between low-level data model operations and a higher-level
update evaluation provides a degree of independence with respect to the physical
implementation of the update processor. The data model primitives can be implemented
using in-memory, tree-based algorithms (this prototype), on top of indexed XML
structures in a native XML repository, or by converting them into SQL DML queries
which can be issued to a relational database system. For example, the delete primitive can
be implemented as a pre-delete SQL trigger that can be fired when parent-child nodes of
an XML document are stored in the form of tuples in a relational database [SGT+] and a
parent tuple is deleted. The body of the trigger contains SQL code to delete the relevant
tuples from the child relations. Moreover, since data model operations execute
atomically, it becomes possible to define transactions over the XML data model by
enhancements to the update processing model.

5. Related Work

Until recently, there as been relatively little work on XML updates. One of the first
languages for XML updates was proposed by Tatarinov et al in [TIH+]. They proposed a
fairly simple update language not directly integrated with XQuery, and whose
expressiveness is limited to the basic updates supported by UpdateX at the data model
level. In [LMOO], Laux and Martin proposed an ad hoc language using XPath 1.0 to
support XML updates in the XML:DB native XML database. Many of the updates
presented in Section 3 cannot be expressed with those languages. Our work relies on a
more recent proposal by the XML query working group [CFL+], which itself was
inspired by proprietary proposals in [MR02] and [PLO1]. An important limitation of the
language is the lack of compositionality between the update expressions and the rest of
the language. Even though powerful, the update primitives can only occur as top-level
statements, in a way similar to SQL. This has to be distinguished from ‘updates’, or in-
place modifications as present in most modern functional programming languages, such
as ML [LWO1]. Trying to support this kind of feature raises difficult questions in terms
semantics and optimizations. We believe this is an important requirement for complex

51

PLAN-X 2004 Informal Proceedings

XML applications, notably for Web services, and we hope to work on XML updates as
first-class expressions in the language in the future.

6. Conclusion

We have described a new approach to XML update processing that uses a declarative,
functional language based on XQuery 1.0. The language is easy to learn and powerful. It
consists of various constructs, such as simple insert, delete, replace, conditional, and
FLWUpdate statements, which can be used to efficiently modify XML data model
instances. These constructs have been explained with examples from the XMark auction
database. We also describe a complete framework for processing and implementation.

One of the most important contributions of the processing framework is that it
eliminates tedious and ad hoc programming techniques (e.g., updating XML using DOM
primitives) that are currently used to update XML documents. In addition, application
developers benefit from use of an integrated query and update language to perform many
different types of retrievals and modifications on XML documents (e.g. embedded
XQuery queries or statements) in their software applications. Moreover, in this research,
we have developed a vendor-independent, standard API to update native and relational
XML repositories, which is beneficial to the database community at large. Lastly, for
researchers, we provide a flexible architecture to study the impact of updates on XML
processing and scope for refinement or improvement of update processing algorithms.

References

[AWK+] A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. Manolescu, M. Carey, and R.
Busse, “XMark: A Benchmark for XML Data Management,” in Proceedings of
International Conference on Very Large Data Bases (VLDB’02), Hong Kong,
pages 974-985, August 2002.

[BBG+] Micheal Benedikt, Glenn Bruns, Julie Gibson, Robin Kuss, and Amy Ng,
“Automated Update Management for XML Integrity Constraints”, PLAN-X
2002, Pittsburg, PA, October 2002.

[BCF+] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan
Robie, and J. Siméon, “XQuery 1.0: An XML Query Language,” World Wide
Web Consortium, W3C Working Draft, 22 August 2003.

[CFL+] Don Chamberlin, Daniela Florescu, Patrick Lehti, Jim Melton, Jonathan Robie,

Michael Rys, and Jerome Simeon . Updates for XQuery. W3C working draft.
October 2002, Unpublished.

[DFF+] Denise Draper, Peter Fankhauser, Mary Fernandez, Ashok Malhotra, Kristoffer
Rose, Michael Rys, Jerome Simeon, Philip Wadler, “XQuery 1.0 and XPath
2.0 Formal Semantics”, W3C Working Draft, 22 August 2003.

[FMM+] M. F. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh, “XQuery 1.0
and XPath 2.0 Data Model,” W3C Working Draft, 2 May 2003.
[FSC+] Mary Fernandez, Jerome Simeon, Byron Choi, Amelie Marian, Gargi Sur,

“Implementing XQuery 1.0: The Galax Experience”, in Proceedings of VLDB
2003, Berlin, Germany, September 2003.

52

[LM00]
[LW91]
[MR02]

[PLO1]

[SGT+]

[TIH+]

[XLO02]

PLAN-X 2004 Informal Proceedings

Andreas Laux and Lars Matin. XUpdate working draft. October 2000.
http://ww. xm db. or g/ xupdat e

Xavier Leroy, Pierre Weis: Polymorphic Type Inference and Assignment.
POPL 1991: 291-302.

Michael Rys, “Proposal for an XML Data Modification Language,” Microsoft
Corp., Redmond, WA, Proposal May 2002.

Patrick Lehti, “Design and Implementation of a Data Manipulation Processor
for an XML Query Processor,” Technical University of Darmstadt, Darmstadt,
Germany, Diplomarbeit, August 2001.

J. Shanmugasundaram, H. Gang, K. Tufte, C. Zhang, D. J. DeWitt, and J. F.
Naughton, “Relational Databases for Querying XML Documents: Limitations
and Opportunities.” In Proceedings of 25" International Conference on Very
Large Data Bases (VLDB’99), Morgan Kaufmann, pages 302-304, Sept. 1999.

I. Tatarinov, Z. Ives, A. Halevy, and D. Weld, “Updating XML.” In
Proceedings of ACM SIGMOD Conference, Santa Barbara, California, pages
413-424, May 2001.

X. Leroy, “The Objective Caml system, release 3.06, Documentation and
User’s Manual.” Institut National de Recherche en Informatique et en
Automatique (INRIA), August 2002.

Appendix UpdateX Grammar in EBNF

[1] Update = SimpleUpdate | ComplexUpdate

[2] SimpleUpdate
[3] ComplexUpdate

Insert | Delete | Replace | EmptyUpdate
FLWUpdate | ConditionalUpdate

[4] FLWUpdate = T"update" (ForClause | LetClause)+ WhereClause?

[5] ConditionalUpdate

SimpleUpdate+
"update" <"if" "("> ConditionExpr ")"
"then" SimpleUpdate "else" SimpleUpdate

[6] ConditionExpr = XQueryExpr
[7] Insert == "insert" UpdateContent InsertLocation
[8] InsertLocation m= ((<"as" "last">| <"as" "first">)? "into" TargetNode

| ("after" TargetNode)
| ("before" TargetNode)

[91 UpdateContent 2= XQueryExpr

[10] TargetNode = XQueryExpr

[11] Replace == '"replace" <"value" "of">? TargetNode
"with" UpdateContent

[12] EmptyUpdate a=ttm"

[13] Delete == "delete" TargetNodes

[14] TargetNodes = XQueryExpr

Note: XQueryExpr refers to the Expr [40] grammar production in the XQuery
specification.

53

PLAN-X 2004 Informal Proceedings

Ffficient XPath Axis Evaluation for DOM Data Structures

Jan Hidders

Philippe Michiels

University of Antwerp

Dept. of Math. and Comp. Science
Middelheimlaan 1, BE-2020 Antwerp, Belgium,
{jan.hidders,philippe.michiels}@ua.ac.be

Abstract

In this article we propose algorithms for imple-
menting the axes for element nodes in XPath
given a DOM-like representation of the docu-
ment. Each algorithm assumes an input list that
is sorted in document order and duplicate-free
and returns a sorted and duplicate-free list of
the result of following a certain axis from the
nodes in the input list. The time complexity
of all presented algorithms is at most O(l + m)
where [is the size of the input list and m the size
of the output list. This improves upon results in
[4] where also algorithms with linear time com-
plexity are presented, but these are linear in the
size of the entire document whereas our algo-
rithms are linear in the size of the intermediate
results which are often much smaller.

1 Introduction

The XQuery Formal Semantics [3] requires that
the result of an XPath path expression returns
a list of document nodes that is sorted in doc-
ument order and duplicate free. This can be
achieved by always sorting the list at the end
of the evaluation of the path expression or even
sorting after each step in the path expression.
The first approach may seem more efficient but
as shown in [4] can lead to an exponential blow-
up of the intermediate results in the size of the
query. The second approach, however, has the
drawback that the sorting operations become a
major bottleneck in the evaluation of the ex-
pression. One way to improve this situation is
presented in [8] where given a straightforward
implementation of the axes unnecessary sorting
operations are detected and removed. In this
paper we investigate the possibilities for alter-
native implementations of the axes such that

these use the fact that the previous intermedi-
ate result is sorted and return a result that is
always sorted and duplicate-free. For this pur-
pose we will assume that the document is stored
in a DOM-like pointer structure [1] and that the
nodes are numbered with their so-called pre-
numbers and post-numbers, i.e., their position
in a preorder and postorder tree-walk, respec-
tively.

2 Related Work

Previous research on the complexity of XPath
evaluation has shown us that it is possible to
construct efficient algorithms for the evaluation
of XPath [5, 9]. In fact, there even exists a frag-
ment of XPath (Core XPath) that can be evalu-
ated in the linear combined complexity O(|D| *
|Q|), where |D| is the size of the instance and
|Q| the size of the query [4]. We improve these
results in the sense that our approach leads to
linear evaluation in the size of the intermediate
results, which can be much smaller than the size
of the document.

This work is mostly inspired by the results
presented in [6] and [7]. There it is shown that if
the document nodes have prenumbers and post-
numbers associated with them then it possible
to efficiently retrieve the results of certain axes
in document order and without retrieving nodes
that are not in the result. For example, if we let
pre(n) and post(n) be the pre- and postnumber
of n then we can efficiently test their relative
positions because then n’ is a descendant of n
iff pre(n’) > pre(n) A post(n’) < post(n), and n’
is a follower of n’ iff pre(n) < pre(n’) Apost(n) <
post(n').

PLAN-X 2004 Informal Proceedings

3 The Data Model

The logical data model that we will use is a sim-
plification of the XML data model where a doc-
ument is an ordered node-labelled tree and for
such a tree the document order is defined as the
strict total order over its nodes that is defined
by the preorder tree-walk over the tree.

The physical data model describes in an ab-
stract way how we assume that documents are
stored. The first assumption that we make is
that the following partial functions are available
for document nodes (if undefined the result as
assumed to be null) and can be evaluated in
O(1) time:

e fc(n) returns the first child of n
(n) returns the next sibling of n
(n)

ps(n) returns the previous sibling of n

® ns
[]

e pr(n) returns the parent of n

(n)
(n)
(n)

pr(n) returns the last predecessor of n

e fo(n) returns the first follower of n

Note that except for the last two functions these
are all existing pointers in the Document Object
Model.

The second assumption that we make is that
there are functions such that we can retrieve the
pre- and postnumbers in O(1) time:

e pre(n) returns the prenumber of n
e post(n) returns the postnumber of n

The reasonableness of these assumptions is demon-
strated by the fact that this physical data model
can be generated from a SAX representation [2]
that consists of a string of opening and closing
tags in LOGSPACE. This can be shown by an ex-
tension of the proof given in [9] for the original
DOM data model.

The data type we will use the most is that
of List. We use the following operations:

e newList() returns a new list

[]

first(L) returns first element of L

e last(L) returns last element of L

empty (L) determines if L is empty

addAfter(L,n) adds n at end of L

addBefore(L,n) adds n at begin of L

55

e delFirst(L) removes and returns the first
element of L

e delLast(L) removes and returns the last
element of L

e isList(L) determines if L is a list

The lists are assumed to be represented as a ref-
erence to a pair that consists of a reference to the
beginning and the end, respectively, of a doubly
linked list. Therefore we can assume that all
the operations above and assignments and pa-
rameter passing can be done in O(1) time. Fur-
thermore this means that if an argument of a
function or procedure is a List then it is passed
as a reference and therefore all the operations
applied to the formal argument are in fact ap-
plied to the original list that was passed as an
argument.

We now proceed by giving for each axis the
corresponding algorithm.

4 Descendant Axis

4.1 Informal Description

Given a list of document nodes that is in doc-
ument order and without duplicates we cannot
compute a sorted list of descendants by simply
concatenating the lists of descendants. The rea-
son for this is that if n; and no appear in the
list in that order and ngy is a descendant of nj
then the descendants of ny will appear twice in
the result of the concatenation. However, if ng
is not a descendant of n; then all descendants
of ny will follow in document order the descen-
dants of ny. It follows that we only have to skip
the nodes in the input list that are preceded by
an ancestor, to get a result that is in document
order and without duplicates.

4.2 The Algorithm

We first present a procedure that adds the de-
scendants of a document node n behind a list L
in document order.

1 proc addDesc(L,n)

2 n = fc(n);

s while n’ # null do

4 addAfter(L,n’);
5 addDesc(L,n’);
6 n' :=ns(n’)

7 od

s end

PLAN-X 2004 Informal Proceedings

The procedure iterates over all children of n in
document order and for each (1) adds the child
to L and (2) adds its descendants to L. Since
the descendants of a node precede in document
order the descendants of the following siblings,
it follows that the result is indeed that all de-
scendants of n are added to L. Furthermore, it
is easy to see that the time complexity is O(m)
where m is the number of added elements to L.

Next, we present the function that given a
sorted and duplicate-free list L;, returns the
sorted and duplicate-free list of descendants of
the nodes in L;,.

1 funct allDescOrd(L;y,)

2 Loyt := newList();

3 while —empty(L;,) do

4 n := delFirst(L;y);

5 addDesc(Loyt, 1));

6 while —empty (L) A
7 post(first(L;y)) < post(n)
8 do

9 delFirst(L;,)

10 od

11 od;

12 Lout

13 end

The function iterates over the elements in L;,
and adds their descendants to L., unless they
are preceded in the list by an ancestor. In line 7
this is tested by comparing the post numbers of
first(L;,) and n. Since n appeared in L;,, before
first(L;y,) if follows that pre(n) < pre(first(L;y,))
and therefore that first(L;,)) is a descendant of
n iff this condition is true. The time complexity
of the function is O(l 4+ m) where [is the size of
L;, and m the size of L,y:.

5 Descendant-or-self Axis

The algorithm for this axis is identical to that
of the descendant axis except that for each node
in L;, that is not preceded by an ancestor we
retrieve not only the descendants but also the
node itself. The time complexity is therefore
the same as the previous algorithm.

6 Ancestor Axis

6.1 Informal Description

The problem for this axis is similar to the de-
scendant axis because two distinct nodes can

56

have common ancestors. Moreover, this can not
only happen for nodes that have an ancestor-
descendant relationship, but also for nodes that
do not. The solution for this problem is to re-
trieve for each node in the input list only those
ancestors that were not already retrieve before.
Because the input list is sorted in document or-
der we can do this by walking up the tree and
stopping if we find a node that is an ancestor of
the previous node in the input list.

6.2 The Algorithm

We first present two helper procedures. The first
retrieves all ancestors of a document node n and
appends them in document order after a list L.

1 proc addAnc(L,n)
n' := pa(n);
if n’ # null
then addAnc(L,n’);
addAfter(L,n")

SRS N NGO)

g
‘o. =

If the number of ancestor nodes in m then
the time complexity if this procedure is in O(m).

The next helper procedure will, given a list
L, a document node n and a document node
n' that precedes n in document order, retrieve
the ancestors n that are not ancestors of n’ and
append them in document order after L.

1 proc addAncUntilLeft(L,n,n’)

2 n' :=pa(n);

g ifn” # null A pre(n”) > pre(n’)

4 then addAncUntilLeft(L,n" ,n’);
5 addAfter(L,n")

6 fi

7 end

Note that since n’ precedes n in document
order it holds that the condition pre(n’”’) > pre(n’)
indeed checks if an ancestor n” of n is an ances-
tor of n’. Also here the time complexity is O(m)
where m is the number of retrieved ancestors.

Finally, we present the function that given a
sorted and duplicate-free list of document nodes
L;, returns a sorted duplicate-free list of all
their ancestors.

1 funct allAncOrd(L;y)
Loyt := newList();
if ~empty (Lin)
then n := delFirst(Lin);
addAnc(Loyt,n)
fi;
while —empty(L;,) do
n' := delFirst(Liy);

SRS EES TR S

PLAN-X 2004 Informal Proceedings

9 addAncUntilLeft(Loyt,n’, n);
10 n:=n’'
11 od;
12 Lout
13 end

In the first part of the algorithm (line 3-6) all
ancestors of the first node in L;, are retrieved.
After this a while loop (line 7-11) iterates over
the remaining nodes in L;,, and retrieves for each
node n’ all ancestors of n’ that are not ancestors
of n, the node that preceded n’ in L;,. Since
n also precedes n’ in document order it follows
that all the ancestors of n’ that are retrieved
indeed follow those that were retrieved for n.
As a result all ancestors that are retrieved are
appended in document order. The time com-
plexity of this function is O(l+m) if [is the size
of L;, and m is the size of the result.

7 Ancestor-or-self Axis

The algorithm for this axis as similar to the one
for the ancestor axis except that we we retrieve
the ancestors of a node we also add the node
itself. The time complexity is therefore also the
same.

8 Child Axis

8.1 Informal Description

We cannot use the approach of the previous axes
here. Consider for example the fragment in Fig-
ure 1. If, for example, we only retrieve for each
node the children that we know to precede in
document order the children of the next node
then for the list L;, = [1,3] we only obtain
[2,3,4]. To solve this we introduce a stack on
which we store the children of node 1 which were
not retrieved already such that we can return to
them when we are finished with the children of
node 3.

<b id="2"/>
<b id="3"> <c id="4"/>
<b id="5"/>

Figure 1: An XML fragment

57

8.2 The Algorithm

Before we present the actual algorithm we present
a helper function that results in a list of all chil-
dren of a document node n in document order.

1 funct allChildren(n)

2 L := newList();

s n':=fc(n);

4 while n’ # null do

5 addAfter(L,n’);
6 n' :=ns(n’)

7 od;

s L

9 end

The function simply goes to the first child
of n and then follows the following-sibling ref-
erence until there is no more following sibling.
The time complexity of this function is O(m) if
m is the number of retrieved children.

Next, we present the actual algorithm that
given a sorted and duplicate-free list of docu-
ment nodes L;, returns a sorted duplicate-free
list of all their children.

1 funct allChildOrd(L;y)

2 Lout := newList();

8 Lg := newList();

4 while —empty(Li,) do

5 n := first(Lin);

6 if empty(Lst)

7 then L' := allChildren(n);

8 addBefore(Lst, L');

9 delFirst(Lin);
10 elsif empty (first(Lst))
11 then delFirst(Lst)
12 elsif pre(first(first(Ls¢))) > pre(n)
18 then I’ := allChildren(n);
14 addBefore(Lst, L');

15 delFirst(Lix)
16 else n' := delFirst(first(Ls:));
17 addAfter(Lout,n’)

18 fi
19 od;
20 while —empty(Ls:) do
21 if empty (first(Lst))
22 then delFirst(Ls:)
23 else n’ := delFirst(first(Lst));
2/ addAfter(Lout,n’)
25 fi
26 od;
27 Lout
28 end

The algorithm consists of two while loops.
The first (line 4-19) iterates over the nodes in
L;, and retrieves the children that it knows it
can send to the output list L,,; and stores the

PLAN-X 2004 Informal Proceedings

others on the stack Lg;. The second while loop
(line 20-26) iterates over the remaining children
on the stack Lg; and appends those behind L.
In the following we discuss each while loop in
more detail.

The first loop stores unprocessed children on
the stack Lg; where the beginning of Lg; is the
top of the stack. Each position on the stack
contains a sorted list of siblings that were not
yet transferred to L,y,:. The loop maintains an
invariant that states that the nodes in lists that
are higher on the stack precede in document or-
der those that are lower on the stack. This is
mainly achieved by the if statement on line 12
that tests if the node at the beginning of L;,
precedes the first child node on top of the stack.
If this is true then the list of children of n are
pushed on the stack and n is removed from L;,,
otherwise the first child node on top of the stack
is moved to the end of L,,;. Note that in the
latter case it indeed holds that all the children of
the remaining nodes in L;,, indeed succeed this
child in document order.

The second loop simply flushes the stack which
indeed results in adding the remaining nodes to
Loyt in document order because of the invariant
that was described for the previous loop.

Since the algorithm iterates over all the nodes
in L;, and retrieves only those nodes that are
added to L, it follows that the time complex-
ity is O(l + m) where [is the size of L;, and m
the size of Loy;-

9 Parent Axis

9.1 Informal Description

The fundamental property that will be used for
this axis is that if for a duplicate-free sorted list
of document nodes we retrieve the parent nodes
we obtain a sublist of the list of nodes that we
meet when we follow the contour of the tree. For
example, if we follow the contour of the nodes
in the tree for the fragment in Figure 1 then we
obtain the list [1,2,1,3,4,3,1,5,1]. If we start
with the list [2,3,4,5] and we retrieve the list
of parents, then we obtain [1,1,3,1] which is
indeed a sublist of the first list.

This information can be used by the algo-
rithm because when it iterates over the list of
parents and encounters a parent n that precedes
the last parent in the output list then it is walk-
ing up the tree in the contour walk. As a con-

58

sequence it knows that after it inserts n in the
output list the tail of the output list that starts
with n will not change anymore because all the
following nodes in the input list will either be af-
ter or before this tail in document order. There-
fore the algorithm can simply summarize this
tail and pretend it corresponds to the node n.
It does this by replacing it with a nested list
that contains this tail.

As an illustration consider the following pos-
sible list of parents: [1,2,5,4,9,8,2]. For rea-
sons of homogeneity we represent the output list
as a list of lists and if we add a single node it is
represented as a singleton list. Therefore after
processing the nodes 1, 2 and 5 we obtain the
list [[1], [2], [5]]. Since the next node 4 precedes 5
the algorithm represents the tail as a nested list
that starts with 4 and obtains [[1], [2], [4, [5]]].
From this point on the nested list [4,[5]] will
be considered as if equal to [4], i.e., the algo-
rithm considers only the first node of the nested
lists. Since the next node 9 follows 4 it is simply
added, giving [[1], [2], [4, [5]], [9]]. The next node
is 8 which precedes 9 but follows 4, so we ob-
tain [[1], [2], [4, [5]], [8, [9]]]- Also here the nested
list [8,[9] is considered as equivalent to [8]. Fi-
nally the node 2 is added and since it precedes
node 4 the two lists starting with 4 and 8 are
nested in a list starting with 2 and we obtain
(1], 2], 2, [4, 5]], [3, (9]

As will be clear from the previous example,
the result is a nested list that when flattened
gives the sorted list of parents but may still con-
tain duplicates. Since the list is sorted these can
be eliminated easily.

9.2 The Algorithm

We first present a helper function and a helper
procedure. The following function will, given a
sorted list L, return a sorted list that contains
all the elements in L but no duplicates.

1 funct dupElimSort(L)

2 Lout := newList();

8 if —empty(L) then n := delFirst(L) fi;
4 while —empty (L) do

5 n' := delFirst(L);

6 ifn #n

7 then addAfter(Lout,n')
8 n:=n'

9 fi
10 od;

11 Lout
12 end

PLAN-X 2004 Informal Proceedings

The time complexity of this function is clearly
O(1) if I is the size of L.

Te following procedure will, given a list L
and a nested list Ly, of document nodes, flatten
the list Ly and append it to L.

1 proc addFlatList(L, L¢,)
while —empty (L) do
n := delFirst(L¢y);
if isList(n)
then addFlatList(L, L)
else addAfter(L,n)
fi

2
3
4
5
6
7
8 end
9 end

If at each level every nested list in Ly, con-
tains at least one document node then the time
complexity if this procedure is O(m) if m is the
number of document nodes in the result.

Finally, we present the actual algorithm that
given a duplicate-free sorted list of document
nodes will return a duplicate-free sorted list of
their parents.

1 funct allParOrd(L;y)

2 Ly = newList();
s while —empty(L;,) do
4 n := pa(delFirst(Lin));
5 L := newList();
6 while —empty (L) A
7 pre(first(last(Lyy))) > pre(n)
8 do
9 n' := delLast(L4);
10 addBefore(L,n')
11 od;
12 addBefore(L,n);
13 addAfter(Lir, L)
14 od;
15 Lagup := newList();
16 addFlatList(Lqup, Ltr);
17 Lout := dupElimSort(Lqup);
18 Lout
19 end

The list Ly, is used to represent the list of
nested lists. Note that in L. every nested list
will always start with a document node. The
crucial part is the while loop on lines 6-11 that
determines the tail L of L;, where the first nodes
of the lists in this tail follow n in document order
and removes this tail from L;.. On line 12 this
tail is extended with n and finally on line 13 the
tail is put back as a nested list at the end of Ly,..
At the end of the algorithm, when all the nodes
of L;, have been processed, the resulting nested
list Ly, is flattened and duplicates are removed
from it.

59

The time complexity if this algorithm is O(l)
where [is the size of Lin. To understand this
consider the number of times the pre-numbers of
two nodes are compared in the while condition
starting on line 6. The number of equations that
were false are at most [, one for each parent
that is considered. The number of successful
equations is also at most [because a successful
comparison means that the node is from then
on nested and will no longer be considered, so
in the final L. every document node has been
successfully compared at most once.

10 Following Axis

10.1 Informal Description

To find all the followers of the nodes in a duplicate-
free sorted list of document nodes it is sufficient
to retrieve the followers of the first node in the
list that is not an ancestor of the next node in
the list. To understand this consider the follow-
ing. Let n be this node and n’ a node that
is in the list after n. Since the node in the
list immediately after n is not its descendant
n’ and its followers are also not descendants of
n. Therefore it follows that (1) n’ is a follower
of n and (2) all followers of n’ are also followers
of n. Since n’ is not a follower of itself, it holds
that the set of followers of n’ is a proper sub-
set of those of n. On the other hand it can be
shown that if n’ is an ancestor of n then the set
of followers of n’ is a subset of those of n.

10.2 The Algorithm

We first present a helper procedure that, given
a list L and a document node n, appends to L
all followers of n.

1 proc addFoll(L,n)
if fo(n) # null
then addAfter(L, fo(n));
addDesc(L, fo(n));
addFoll(L,fo(n))

=2

2
3
4
5
6
7 €

Q.

n

The correctness of this procedure follows from
the fact that fo(n) returns the smallest node (in
document order) that is a follower of n, and that
the followers of a node n are defined as those
nodes that are larger in document order but not
a descendant of n. Its time complexity is O(m)
where m is the number of followers added to L.

PLAN-X 2004 Informal Proceedings

Next we present the actual algorithm that
given a duplicate-free sorted list L;, of docu-
ment nodes returns a duplicate-free sorted list
of all the followers of these nodes.

1 funct allFollOrd(L;y,)

2 Lout := newList();

8 if mempty(Lin)

4 then n := delFirst(Liy);

5 while —~empty(Lin) A

6 pre(first(Lin)) > pre(n) A
7 post(first(L;y,)) < post(n)
8 do

9 n := delFirst(Lixn)

10 od;
11 addFoll(Lout,n);
12 fi
13 Lout
14 end

The correctness of this function follows from
what was said before and the fact that the while
condition indeed tests that the first node in L;,
is a descendant of n. Because the algorithm it-
erates over all the nodes in L;,, determines a
single node n and then applies addFoll, it fol-
lows that the time complexity is O(l 4+ m) if [is
the size of L;, and m the size of Ly;.

11 Preceding Axis

11.1 Informal Description

To find the preceding nodes of a sorted list of
document nodes we only have to retrieve the
preceding nodes of the last node in the list. If
this is node n we can retrieve its preceding nodes
in document order as follows. We first apply
to n the function fo repeatedly until there is
no more immediate predecessor. Let the nodes
we encounter be ng = n,ny,...,ng. Then ng
is the first predecessor of n in document order.
For this node we first retrieve all its ancestors
in document order that are not ancestors of n
and ny, itself. After this we return to nj;_; and
retrieve all its ancestors in document order that
are not ancestors of n; and also not ancestors
of n, and we retrieve ny_ itself. We repeat
this for each n; with 0 < ¢ < k by retrieving
all ancestors of n; in document order that are
not ancestors of n;41 or n, and n; itself. It is
easy to see that for each n; the retrieved nodes
follow in document order those of n;;1 and that
those nodes are predecessors of n. Conversely
all predecessors of n are either in nq,...,n; or
one of their ancestors.

60

11.2 The Algorithm

Before we present the actual algorithm we present
three helper algorithms. The first algorithm

will, given a list L and three document nodes

n, n’ and n” such that n’ is a predecessor of n

and n is a predecessor of n”, adds after L in

document order the ancestors of n that are not

ancestors of n’ or n”.

1 proc addAncBetween(L,n,n’,n")
2 n'":=pa(n);

s ifn"” #null A

4 (pre(n”) > pre(n’)) A

5 (post(n’") < post(n”))

6 then addAncUntil(L,n"",n’);
7 addAfter(L,n'")

8
9

end

Note that to test if n’” is not an ancestor
of n’ it must be tested whether —(pre(n”’) <
pre(n’) A post(n’) > post(n')) or equivalently
pre(n”’) > pre(n’) Vv post(n’’) < post(n’). How-
ever, since n is a follower of n’ it holds that
post(n) > post(n’) and since n'’ is the parent of
n it holds that post(n”’) > post(n), from which
it follows that post(n”) > post(n’). A similar
argument shows that the test for n””/ and n” in
the if-expression is also sufficient to test whether
n'" is not an ancestor of n”. The time complex-
ity of this procedure is O(m) if m is the number
of nodes added to L.

The second helper function is similar and
will, given a list L and document nodes n and
n/ such that n is a predecessor of n’, add all the
ancestors of n that are not ancestors of n’ to L
in document order.

1 proc addAncUntilRight(L,n,n’)
n” 1= pa(n);
if n” # null A post(n”’) < post(n')
then addAncUntilRight(L,n" ,n’);
addAfter(L,n")

=D

2
3
4
5
6
7 €

Q.

n

The correctness of this procedure can be shown
in a way similar to that of the previous one.
Also here the time complexity is O(m) if m is
the number of added document nodes.

The third helper procedure will, given a list
L and two document nodes n and n’ such that
n is a predecessor of n’, adds all those nodes to
L in document order which are (1) predecessors
of n but not ancestors of n’, (2) ancestors of n
but not ancestors of n’ or (3) n itself.

1 proc addLeftUntil(L,n,n’)

PLAN-X 2004 Informal Proceedings

2 if pr(n) # null

3 then n” := pr(n);

4 addLeftUntil(L,n" ,n’);

5 addAncBetween(L,n,n",n')
6 else addAncUntilRight(L,n,n’)
7 A

8 addAfter(L,n)

9 end

The correctness of this procedure follows from
the correctness of the previous procedures. The
time complexity is O(m) if m is the number of
added document nodes.

Finally, we present the algorithm itself which,
given a list L;, of document nodes returns a
duplicate-free sorted list of all their predeces-
SOTS.

1 funct allPredOrd(Liy)

2 Lout := newList();

3 if ~empty(Lin)

4 then n := last(Lin);

5 if pr(n) # null

6 then addLeftUntil(Loyt, pr(n),n)
7

8

fi
fi;
9 Lout
10 end

The correctness follows from the correctness
of the helper procedures. The time complexity
is O(m) if m is the size of Ly;.

12 Following-Sibling Axis

12.1 Informal Description

The problems for this axis are very similar to
those of the child axis and can be solved in the
same way, i.e., by introducing a stack of lists
of nodes that contains the nodes that still need
to be move to the output list. An extra com-
plication is here that the following siblings of
two different nodes may have nodes in common.
The solution for this is simple: if we encounter
simultaneously the same node in the input list
and at the beginning of the list on top of the
stack the we ignore the node in the input list.

12.2 The Algorithm

We first present a helper function that given a
document node n returns a duplicate-free sorted
list of all the following siblings of n.

1 funct allFollSibl(n)
2 L := newList();

61

s n':=ns(n);

4 while n’ # null do

5 addAfter(L,n’);
6 n’ :=ns(n’)

7 od;

8§ L

9 end

Correctness of this function follows from the
fact that the function ns returns the first sibling
of n that follows n in document order. The time
complexity is O(m) where m is the size of the
result.

Next we present the actual algorithm which
given a list L;, of document nodes returns a
duplicate-free sorted list of all following siblings
of the nodes in this list.

1 funct allFollSiblOrd(L;y,)
2 Loyt := newlList();

8 Lgt := newList();

4 while —empty(L;,) do
5 n = first(Liy);
6
7
8
9

if empty (L)
then L' := allFollSibl(n);
addBefore(Lst, L');
delFirst(Lin);

10 elsif empty (first(Ls¢))

11 then delFirst(Ls:)

12 elsif pre(first(first(Ls¢))) > pre(n)
18 then L' := allFoliSibl(n);

14 addBefore(Lst, L');

15 delFirst(Lixn)

16 elsif pre(first(first(Lst))) < pre(n)
17 then n' := delFirst(first(Lst));
18 addAfter(Lout,n’)

19 else delFirst(Liy)

20 fi

21 od;

22 while —empty(Ls) do

23 if empty (first(Lst))

24 then delFirst(Ls:)

25 else n’ := delFirst(first(Lst));
26 addAfter(Loyt,n')

27 fi

28 od;

29 Loyt

30 end

The correctness of this function is similar to
that of the corresponding function for the child
axis. The main difference is in line 19 where the
case is considered that the current node in the
input list, n, is equal to the first node of the list
on top of the stack Lg;. In this case the node n
is removed from the input list without copying
its siblings to the stack or the output list. The
time complexity is also similar, i.e., O(l + m)

PLAN-X 2004 Informal Proceedings

where [is the size of L;, and m is the size of
Lout-

13 Preceding-Sibling Axis

13.1 Informal Description

This axis is symmetric to the following-sibling
axis in the sense that we can use the same al-
gorithm except that we have to do everything
in reverse, i.e., we iterate over the input list in
reverse and we move nodes from the back of the
lists on the stack to the front of the output list.

13.2 The Algorithm

We first present a helper function that give a
document node n returns a duplicate-free sorted
list of all preceding siblings of n.

1 funct allPrecSibl(n)
2 L = neWL1st()
3 = ps(n);
4 wh11e n' # null do
5 addBefore(L,n’);
6 n' = ps(n’)
7 od;
8§ L
9 end
Similar to the previous axis correctness of
this function follows from the fact that the func-
tion ps returns the last sibling of n that precedes
n in document order. Also here the time com-
plexity is O(m) where m is the size of the result.
Finally we present the algorithm that given a
duplicate-free and sorted list of document nodes
L;, returns a duplicate-free and sorted list of all
the preceding siblings of these document nodes.

1 funct allPrecSiblOrd(Liy)

2 Lout := newList();

3 Lgt := newList();

4 while —empty(Lin) do

5 = last(Lin);

6 if empty (Lst)

7 then L' := allPrecSibl(n);

8 addBefore(Lgt, L');

9 delLast(Lin);
10 elsif empty (first(Lst))
11 then delFirst(Ls:)
12 elsif pre(last(first(Ls:))) > pre(n)
138 then L' := allFollSibl(n);
14 addBefore(Ls, L');
15 delLast(Lir)
16 elsif pre(last(first(Ls:))) < pre(n)
17 then n' := delLast(first(Lst));

62

18 addBefore(Loyt,n’)
19 else delFirst(Lixn)

20 fi

21 od;

22 while —empty(Ls:) do

23 if empty (first(Lst))

24 then delFirst(Ls:)

25 else n’ := delLast(first(Lst));
26 addBefore(Lout,n’)

27 fi

28 od;

29 Lout

30 end

The correctness follows from the symmetry
with the previous axis, and for the same reason
the time complexity is also O(l +m) with [the
size of L;, and m the size of L.

14 Conclusion

The presented algorithms allow us to efficiently
evaluate XPath axes, preserving both order and
duplicate freeness, assuming that the document
is stored as a DOM structure and pre- and post-
numbers are available. The algorithms only eval-
uate the axis and do not evaluate node tests or
predicates. As long as the predicates do not re-
fer to the context set of the resulting nodes, i.e.,
use directly or indirectly the functions position()
and last (), these can be easily applied to the re-
sult of the algorithms afterwards. If there is a
reference to the context set then there is a prob-
lem because the resulting list of nodes does not
contain any information about the context set.
In this case we can either attempt to reconstruct
the context set (e.g., if the step was child::*
then the context set of n is simply all its siblings)
or fall back to the optimization techniques pro-
posed in [8]. Because both techniques guarantee
that the result of each step is duplicate-free and
sorted it is possible to mix the two techniques
within the same path expression.

References
[1] Document Object Model (DOM). Available
at: http://www.w3c.org/dom/.

[2] Simple API for XML (SAX). Available at:

http://www.saxproject.org/.

D. Draper, P. Fankhauser, M. Fernandez,
A. Malhotra, K. Rose, M. Rys, J. Siméon,
and P. Wadler. XQuery 1.0 and XPath

PLAN-X 2004 Informal Proceedings

2.0 formal semantics, w3c working draft 2
may 2003, 2002. http://www.w3.org/TR/
query-semantics.

G. Gottlob, C. Koch, and R. Pichler.
Efficient algorithms for processing XPath
queries. In Proc. of the 28th Interna-
tional Conference on Very Large Data Bases
(VLDB 2002), Hong Kong, 2002.

G. Gottlob, C. Koch, and R. Pichler.
The complexity of XPath query evalua-
tion. In Proc. of the 22nd ACM SIGACT-
SIGMOD-GIGART Symposium on Priciples
of Database Systems (PODS), San Diego
(CA), 2003.

T. Grust. Accelerating XPath location steps.
In Proceedings of the 2002 ACM SIGMOD
international conference on Management of
data, pages 109-120, Madison, 2002.

T. Grust, M. van Keulen, and J. Teubner.
Staircase Join: Teach a Relational DBMS
to Watch its (Axis) Steps. In VLDB 2003,
2003.

J. Hidders and P. Michiels. Avoiding Un-
necessary Ordering Operations in XPath. In
DBPL 2003, 2003.

L. Segoufin. Typing and querying XML
documents: Some complexity bounds.
In Proc. of the 22nd ACM SIGACT-
SIGMOD-GIGART Symposium on Priciples
of Database Systems (PODS), San Diego
(CA), 2003.

10

63

PLAN-X 2004 Informal Proceedings

STAX/bc: A binding compiler for event-based XML data
binding APIs

Florian Reuter, Norbert Luttenberger

Communication Systems Research Group
Christian-Albrechts-University in Kiel, Germany

{firinl}@informatik.uni-kiel.de

ABSTRACT

In this article we present the STAX/bc! binding compiler which
generates event-based data binding APIs out of W3C Schema
descriptions. The event-based nature of the generated data binding
APIs alows programmers the development of:

e applications for processing large XML documents or XML
data streams,

e gpplications for resource constraint systems without enough
space to deserialize XML documents into main memory, and

e applications which must have full control about the data
structures used.

STAX/bc binding compiler can be written targeting any object
oriented language, like C++, Javaor C#, e.g.

1. Introduction

For the development of XML-processing applications powerful
XML-APIs are needed which allow programmers to concentrate
on the application logic rather than on the mapping between XML
documents and programming language objects.

Data binding frameworks provide a good way to achieve this
deserialization- and serialization mapping of XML documents to
programming language objects resp. vice versa instead of using
low-level APIs like DOM and SAX. Data binding frameworks
provide a binding compiler which, given a grammar of the XML
documents as input, produces a set of classes together with
deserialization and serialization functions, which transform XML
documents into instances of the generated classes and vice versa.
Current data binding frameworks use schema languages like
DTDs, W3C Schema and RelaxNG to describe the document
grammar. The following figure shows the functioning of data
binding frameworks graphically:

compile

compile-time Schema Classes
|va|id instanceof
deserialize .
run-time Document Objects

serialize

1 STAX is afour letter acronym for Simple Typed API for XML,
which aludes to the event-based nature of its namesakes SAX
(Simple API for XML) and StAX (Streaming API for XML) but
stresses the fact that STAX is Schema-typed. To avoid confusion
with StAX we will write STAX/bc for the presented binding
compiler.

64

The STAX/bc binding compiler presented in this paper works
differently. STAX/bc shares the idea with data binding
frameworks of using a binding compiler which takes a schema
description as input, but the STAX/bc-binding compiler does not
produce classes. Instead, the STAX/bc-binding compiler produces
interfaces between the application logic and the XML parser. By
implementing these interfaces an application can create any kind
of objects at runtime out of the parsed XML document. The

following figure shows the functioning of STAX/bc
schematicaly:
compile-time Schema —ome gene.. Classes
}va\id Interfaces I Ef-af-} ------
run-time Document parser calls Objects

This concept alows the development of

e gpplications for typed processing of XML documents or
XML data streams,

e applications for resource constraint systems without
enough space to deserialize XML documents into main
memory,

e gpplications which must have full control about the data
structures used.

2. Related Work

Currently available data binding frameworks like the W3C
schema based XSD[28], JAXB[20,9], Castor[21], jBIND[22],
gSOAP[2], the RelaxNG-based Relaxer[10] or the DTD-based
Zeug23,9] or Quick[24,9] generate classes together with
deseridization and seridization functions as shown above. These
classes explicitly define the in-memory representation of the
deseridized XML documents.

When an XML document is parsed, the whole XML document is
deserialized into main memory. This is problematic for large
XML documents and impossible for XML streams.

Another disadvantage of the previously mentioned data binding
frameworks is that the programmer has no, or little, control about
the data structures in which the information from the XML
documents is deserialized. Some data binding compiler apply
design pattern like factory e.g. or customization options to
overcome this, but for example the deseriaization of XML
documents directly into Java/Swing components as shown in
chapter 8 of this paper is not possible with current data binding
frameworks.

Event-based XML-APIs generate a sequence of events while
parsing XML documents. These events then can be handled by an

PLAN-X 2004 Informal Proceedings

application which dlows an application to process XML
documents on-the-fly. A well known event-based APl is SAX.
The SAX-API reports XML Infoset-like events to the application
viathe contentHandler interface. Applications can handle the
events by implementing this interface.

The difference to its namesake STAX/bc is that SAX reports
XML Infoset-like events via a single interface contentHandler,
whereas the STAX/bc binding compiler generates interfaces out
of a schema description. Informally spoken, SAX generates
“untyped” events whereas STAX/bc generates “typed” events.

The advantages of event-based APIs are, that XML parsers with
event-based XML-APIs can be implemented very resource
sparing, since they only generate events and do not have to load
the whole XML document into main memory. Furthermore
programmers can, by handling the events in an appropriate way,
store the information from the XML documents in data structures
of their choice or process the information on-the-fly.

Beside the mentioned data binding frameworks there exist severa
other kinds of data binding XML-APIs. Another class of XML-
APIs are used in data binding frameworks like [1,18,21]. Here a
binding function explicitly defines how XML documents should
be bound to programming language objects. E.g. a XML-
document <member><name>Mr. X</names></member> Can be
bound to the class class Member{String name;}; by the
following binding function: <member >—>Member,
<name>—Member .name Without using an intermediate schema.
Often this binding function is (semi-)automatically inferred by the
binding framework. These kinds of XML-APIs are favorably
used, when “red” semistructued data — e.g. data for which no
schemais available or can’t be specified for some reasons — must
be processed[1].

Yet another class of XML-APIs are used in XML programming
languages like [5,14, 30]. XML programming languages are based
on XML Infoset-like structures and they use schemas to perform
XML type checking[13].

To the best knowledge of the authors STAX/bc is the first data
binding compiler which generates event-based XML data binding
APIs out of W3C schema descriptions. Herewith STAX/bc
combines the advantages of data binding frameworks and event-
based XML-APIs, which are:

e processing of large XML documents and data streams as
well as on-the-fly processing,

e free choice of data structures used to maintain the data,
and

e easy access to the information within your programming
language due to specially tailored interfaces.

3. STAX/bc’s concept

STAX/bc' s technical concepts can be summarizes as follows:

e Every W3C schematype is mapped into an interface. By
implementing these interfaces an application can bind
itself to a STAX/bc-aware XML parser.

e The interffaces own create and add methods which
are caled a runtime by the STAX/bc-aware XML
parser.

65

e The create method plays the role of a factory method
with which the XML parser creates new objects. The
add method is used by the XML parser to report the
generated objects to the application logic.

Since STAX/bc deds only with interffaces and makes no
assumptions about the programming languages primitive types,
the STAX/bc binding compiler can be used to generate code for
any object oriented programming language.

We will first present in chapter 4 the STAX/bc-binding compiler
which maps W3C schema descriptions to the interfaces.
Thereafter we explain in chapter 5 how the generated interfaces
are invoked by the STAX/bc-runtime system. In chapter 6 we
present a slight modification of the basic rules given in chapter 4
and 5 which lead to a structural improvement of the generated
interface structure. In chapter 7 we address the naming problem
and chapter 8 shows the STAX/bc programming exemplarily.

4. STAX/bc-Binding Compiler

This section describes the STAX/bc-binding compiler. As
mentioned above the binding compiler is responsible for mapping
W3C schema descriptions into interfaces.

The STAX/bc-binding compiler applies four mapping-rules,
which are sufficient to map any entirely named W3C schema
description into interfaces. A W3C schema description is entirely
named if it does not contain neither an anonymous complex type
definition, nor an anonymous simple type definition, nor an
anonymous model group. This can be achieved for any W3C
schema by applying a naming preprocessor. This step is explained
in section 7. In the following we assume that the input W3C
schemais entirely named.

The mapping-rules are shown in figure 1. We will discuss them
briefly now.

Rule 1: Built-in types:

The W3C Schema built-in types, as defined in W3C specification,
are mapped to the interfaces bearing the same name as the built-in
type suffixed by creator asshownin figure 1.

Any simple type inherits the addContent (content:char([])
method from the AnySimpleTypeCreator-Interface.

The interface representing the W3C Schema built-in type oName
additionally has an addNamespaceBinding (prefix:char(],
namespace:char[]) method, since gNameS need access to the
actual prefix-namespace mapping.

Rule 2: Top level attribute and element declarations:

Each schema definition is mapped into an interface named
DocumentCreator. FOr every top level particle a create and an
add method are added to the Document Ccreator interface.

The DocumentCreator interface represents a whole XML
document and is always generated. It serves as an entry point for
the XML parser.

Rule 3: Type definitions, named model groups, attribute groups:
A named complex type with complex content, a named simple
type, a named model group and an attribute group definition are

mapped into an interface with the type name suffixed by
Creator:

PLAN-X 2004 Informal Proceedings

Figure1: The STAX-binding compiler’smapping rules:

AnyTypeCreator

[e)

AnySimpleTypeCreator ®

addContent(content:char])

]

I [
| DurationCreator ° || DateTimeCreatorOH TimeCreator O” DateCreatorOH GYearMonthCreator Ol
L I I J L J L J

T T T T T]
O
| GYearCreatorol | GMonthDayCreator Ol | GDayCreatorol | GMonthCreator | | AnyURICreatorol | NOTATIONCreatoro
L 1L 1L 1L 10 J L]

T

I I I 1
| BooleanCreatoroH Base64BinaryCreat0ro|| HexBinaryCreatoroH FloatCreator O” DoubIeCreatorol
L J L J L J L J L J

1

| StringC'reator O” DecimaI'Creatorol
L J L J

QNameCreator

O

addNamespaceBinding(prefix:char[], namespace:char(])

Rule 1. Built-in types.

<schema>
(<element name="ElementName" type="ElementType"/>

|<attribtue name="AttrName" type="AttrType"/>
)

</schema>

v

DocumentCreator

(J

Creator-Methods:
createQName():QNameCreator
createElementType():ElementTypeCreator
createAttrType():AttrTypeCreator
Add-Methods:
addElementName(i:ElementTypeCreator)
addAttrName(i:AttrTypeCreator)

Rule2. Top level element and top level attribute declarations.

<(complexType|simpleType|grouplattributeGroup) name="TypeName">
(<(complexContent|simpleContent)>
<(restriction|extension) base="BaseType">)?
((<(all|sequence|choice)>)?
(<element name="ElementName" type="ElementType"/>
|<group ref="GroupRef"/>
|<any ...>)*

(</(alllsequence|choice)>)?)?

v

(<attribute name="AttrName" type="AttrType"/>
|<attributeGroup ref="AttrGroupRef"/>
|<anyAttribute .../>)*
(</(restriction|extension)>
<(complexContent|simpleContent)>)?

</(complexType|simpleType|grouplattributeGroup)>

BaseTypeCreator O AttrGroupRefCreator Q

T T

TypeNameCreator

Creator-Methods:
createElementType():ElementTypeCreator
createGroupRef():GroupRefCreator
createAttrType():AttrTypeCreator
createDocument():DocumentCreator
Add-Methods:
addElementName(i:ElementTypeCreator)
addGroupRef(i:GroupRefCreator)
addAttrName(i:AttrTypeCreator)
addDocument(i:DocumentCreator)

Rule 3. Type definitions, named model groups and attribute groups

<simpleType name="TypeName">
<list itemType="ltemType"/>
</simpleType>

Rule 4. Simpletypelists.

<simpleType name="TypeName">
<union memberTypes="MemberType, ... MemberType,"/>

</simpleType>

Rule5. Simpletypeunions.

TypeNameCreator

Creator-Methods:
createltemType():ltemTypeCreator
Add-Methods:
additemType(i:ltemTypeCreator)

()

TypeNameCreator

Creator-Methods:
createMemberType,():MemberType,Creator
createMemberType,():MemberType,Creator

createMemberType, ():MemberType, Creator
Add-Methods:

addMemberType, (:MemberType,Creator)
addMemberType, (:MemberType,Creator)

addMemberType, (i:MemberType, Creator)

66

PLAN-X 2004 Informal Proceedings

Figure 2: The STAX-runtime system:

‘ current ‘

j,:GrougRefJCreator

in.1:GroupRef, ,Creator

‘ XML parser ‘

<tag>

createGroupRef,()
createGroupRef,()

createGroupRef. ()

createElementType()

addElementName(i,.,

iizGroupReficreator
in.:ElementTypeCreator

XML parser current

content

addContent (content) R

Rule 2. Content.

‘ XML parser ‘ ‘ current ‘
addGroupRef,(i;) content
: createType(, -
addGroupRef,(i,) E ypeCreator
addGroupRef,(i,) addContent (content)
</tag>
addType(i:TypeCreator) ,
Rule1. Elements. Rule 3. Attributes.
Rule 4: Smpletypelists
W3C schema construct mapped to A simple type which defines a list is mapped into an interface
with appropri methods:
<complexType name="TypeName"> appropriate add and creat.e methods
W h nstr m t
<simpleType name="TypeName"> Interf 3C schema construct apped to
roup ref="TypeName" Tner ace <simpleType name="TypeName"> | Interface
< = >
group ypeNamecreator <list itemType="ltemType"> TypeNamecreator
<attributeGroup </simpleType> with createltemType
name="TypeName" /> and aadltemType.

A derivation is mapped to a corresponding generalization:

W3C schema construct mapped to

<extension base="BaseType"s Generdlization. from

BaseTypecreator to

<restriction base="BaseType">
w TypeNamecreator

Particles and attribute declarations are mapped into create and
add methods:

W3C schema construct mapped to

<element
name="ElementName-
type="ElementType" >

createElementType resp.
createGroupRef resp.
createAttrType

<group ref="GroupRef"> and

addElementName resp.
addGroupRef resp.
addAttrType

<attribute
name="AttrName-
type="AttrType" >

An attribute group reference is mapped into a generalization:

W3C schema construct mapped to

<attributeGroup Generdlization from

ref="AttrGroupRef" /> AttrGroupRefcreator to
TypeNamecCreator.

The wildcards <any> and <anyaAttribue> are mapped into a
createDocument and an addbocument Method.

67

Rule 5: Smple type unions

A simple type which defines a union is mapped into an interface
with appropriate create and add methods.:

W3C schema construct mapped to

<simpleType

name="TypeName" > Interface named

<union TypeNamecreator with

memberType="MemberType,

...MemberType," />
</simpleType>

createMemberTypg and
addMemberType methods.

The above rules cover al W3C schema key concepts namely

<schema>, <element>, <group>, <attribute>,

<simpleType>, <complexType>, <simpleContents>,
<complexContent>, <restrictions>, <extensions>, <alls,
<sequences>, <choice>, <anys>, <anyAttributes, <lists,
<union>, <attributeGroup>, <enumerations>, <patterns,
<any>, <anyAttribute>. However, there is one unsupported
special case. Element declarations of type anyType (eg.
<element name="name" type="xsd:anyType"/>). ThiS is,
because anyType elements allow “rea” semistructured data,

which means that a priory no classes can be generated.

The create-Methods instal an abstract factory into every
interface which arose from a complex type definition. This gives
every implementing class the chance to define the type of its
children.

PLAN-X 2004 Informal Proceedings

Figure 3: Statically structureimproving rules:

<group name="TypeName">
<choice>

(<element name="ElementName" type="ElementType"/>

_—

|<group ref="GroupRef"/>
[<any ...>)*
</choice>

</group>

Rulel: Choicegroups

<simpleType name="TypeName">
<union memberTypes="MemberType, ... MemberType, "/>

</simpleType>

Rulell: Union

i

TypeNameCreatol rO

———

GroupRefCreator O

EIemeanypeCrea(orO DocumentCreator O

TypeNameCreator O

MemberType,Creato_)| | MemberType,Creator()| | MemberType,Creator(_)

An dternative would be the usage of a single global factory. This
would remove the create-Methods from the generated interfaces
and thus would reduce the number of methods an implementing
class must implement. We choose not to use a single global
factory, since we want to give parent classes full control over their
child types.

5. STAX/bc-Runtime System

In this section we describe the STAX/bc-Runtime system which
builds upon a vaidating W3C Schema-aware XML parser.
Depending on the currently parsed XML information item, the
runtime system invokes appropriate create and add methods.

A W3C schemais a singe-type tree grammar which can be parsed
by an event-based deterministic top-down tree automaton[15].
Consider the following agorithm:

1. Upon every start element <tag> we differentiate two
Cases:

a. Weare currently at the root state. We then
search for atop level element declaration
<element name="tag" type="T"/> and
push T onto the stack.

b. Thestack isnon-empty. Let T be the stack’s
topmost type. We search for a<element
name="tag" type="T..,"/> declaration
(resp. <element ref="tag"> together with
the top-level element declaration <element
name="tag" type="T..;"/>) reachablevia
none or more <group>Sin T's complex type
definition and push T4 Onto the stack.

2. Upon every end element tag </tag> we check the
sequence of child types Ty, ... T, against the regular
expression defined by the current type.

3. Simple content c is checked according to the simple
type definition.

4. Attributesname="value" are checked by searching an
appropriate <attribute name="name" type="T"/>
declaration in the current type and then checking the
value using the type T.

68

The above algorithm can easily be extended to produce the
STAX/bc create and add events by applying the following
rules:

Rule 1: Elements

For every starting tag <tag> validated by the schema constructs
<group ref="GroupRef,"/>...<group
ref="GroupRef,"/><element name="ElementName"
type="ElementType"/> in step 1 of the above agorithm the
runtime environment generates the following create methods:
First every group involved in the vaidation of <tag> is created
using the appropriate create function. Then the complex type
associated with the tag is created by the appropriate create
function.

After the tag’s attributes and children have been processed in the
same manner, the created instances are added in step 2 of the
above agorithm in reverse order to the belonging parent instance
by performing the appropriate add calls. Figure 2 illustrates the
invocation mechanism.

Rule 2: Content

For every content event content processed in step 3 of the above
algorithm the runtime system uses the addcontent method to
pass the incoming content to the simple type (resp. complex type
with simple content) instance.

Rule 3: Attributes

For every attribute name="value" processed in step 4 of the
above algorithm the runtime system first creates the appropriate
simple type by calling the appropriate create method, and then
uses the addcontent method to pass the incoming content to the
simple type instance. Finally the simple type instance is added to
the parent instance by using the appropriate add method.

6. Improvement of the static structure

There exist two W3C schema constructs for which only one of
more given possibilities can occur: The <choices> and the
<union> constructs.

With the previously presented mapping rules these constructs
would be mapped to interfaces in a way that this “either ... or”
property gets lost.

PLAN-X 2004 Informal Proceedings

Figure4: Naming Rules:

<(element]attribute) name="Name">
<(complexType|simpleType)>

<(element|attribute) name="Name" type="Name[0-9]*">

<(complexType|simpleType) name="Name[0-9]*"'>

</(complexTypel|simpleType)>

</(element|attribute)>

</(complexType|simpleType)>

Rulel: Anonymoustype definitions

<(alllsequence|choice)>
Particle *

<(all|sequence|choice)>
Particle,*
<(alllsequence|choice) minOccurs="min" maxOccurs="max">
(<element name="ElementName" type="ElementType"/>
|<group ref="GroupRef"/>

|<any ...>)*
</(all|sequence|choice)> EE——
Particle;*
</(alllsequence|choice)>
</group>

<group ref="(Sequence|All|Choice)Of(ElementName|GroupRef|Any)*[0-9]* minOccurs="min" maxOccurs="max"/>
Particle;*
</(all|sequence|choice)>

<group name="(Sequence|All|Choice)Of(ElementName|GroupRef|Any)*[0-9]*">
<(alllsequence|choice)>

(<element name="ElementName" type="ElementType"/>
|<group ref="GroupRef"/>
|<any ...>)*

<l/(alllsequence|choice)>

Rulell: Anonymous model group definitions

<simpleType>
<restriction base="BaseType">
<(max|min)(In|Ex)clusive value="BoundValue"/>
(<enumeration value="EnumValue"/>)*

<simpleType>

 —

<simpleType>

<simpleType name="(EnumValue)*BaseType(_BoundValue)*0-9]*">
<restriction base="BaseType">

<(max|min)(In|Ex)clusive value="BoundValue"/>
<enumeration value="EnumValue"/>

</restriction>

Rulelll: Anonymous simple type definitions without surrounding declarations

For example consider the schema fragment
<group name="AorB">
<choice>
<element name="a" type="A"/>
<element name="b" type="B"/>
</choice>
</group>
It would be mapped to the following interfaces by a non-improved
binding compiler:

AorBCreator O | ACreator O |

BCreator O

createA():ACreator
createB():BCreator
addA(a:ACreator)
addB(b:BCreator)

A much better
polymorphism and inheritance to express the “either
relationship:

design is the usage of the OOP concepts
. or

AorBCreator O

A

O| | BCreator Ol

This idea is close to the fagcade design pattern, which provides a
unified interface for a set of interfaces in the subsystem[11].

We will now show how the rules from section 4 must be altered in
order improve the static design of the generated interfaces.

[Acreator

We highly recommend the usage of these improvements. In all our
tests the improvements lead to an interface structure, which was
more understandable and easier to program with.

The rules to improve the static structure are shown in fig. 3. We
will discuss them briefly now:

69

Rulel: Choice groups

Model Group definitions whose variety is a digunction are
mapped into an empty interface and a generalization is added to
all particles types.

Furthermore every createTypeName method in referencing
interfaces is replaced by the create methods which would have
been generated by the default rule.
Consider for the exampl e the following schema fragment:
<complexType name="Root"s>

<group ref="AorB"/>
</complexType>
<group name="AorB">

<choice>

<element name="a" type="A"/>

<element name="b" type="B"/>

</choices>
</group>
which leads to the following interface structure by applying ruleI:
L]

RootCreator O

createA():ACreator
createB():BCreator
addAorB(aorb:AorBCreator)

Ol | BCreator Ol

| ACreator

Rulell:

The interface structure generated for simple type definitions
which define new simple types by uniting a set of other smple
types is atered by applying the facade-like pattern in the same
way as above.

Union

PLAN-X 2004 Informal Proceedings

Figure5: Theaddressbook sample

<?xml verson="1.0" encoding="UTF-8" 2>
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/X ML Schema">
<xsd:element name="addressbook" type="Addressbook" />
<xsd:complexType name="Addr essbook">
<xsd:complexContent>
<xsd:restriction base="xsd:any Type">
<xsd:sequence>
<xsd:element name="address" type="Address" minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="Address'>
<xsd:complexContent>
<xsd:restriction base="xsd:any Type">
<xsd:sequence>
<xsd:element name="name" type="xsd:string" minOccurs="1" maxOccurs="1" />
<xsd:element name="firstName" type="xsd:string" minOccurs="0" maxOccurs="1" />
<xsd:group ref="Contact" minOccurs="0" maxOccurs="4" />
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
<xsd:group name="Contact">
<xsd:choice> ‘ ‘ ‘
<xsd:element name="mail" type="Mail" />) > . o)
<xsdel t "phone’ type="Phone" /> AddresshookCreator AddressCreator AnySimpleTypeCreator
</xsd:choice> createAddress():AddressCreator createString():StringCreator addContent(content:char[])
) addAddress(address:AddressCreator) createMail():MailCreator
</XSC'I'QTOUP> AR Al createPhone():PhoneCreator [|
<x3j.5mp!eType name="Mail"> addName(name:StringCreator) o) " o)
<xsd:restriction base="xsd:anyURI" /> addFirstName(firstName:StringCreator) [AnyURiCreator O [stringCreator O |
</xsd:simpleType> addContact(contact:ContactCreator) ') ! !
<xsd:simpleType name="Phone"'>
<xsd:restriction base="xsd: string" /> DocumentCreator (o]
<Ixsd:smpleType> createAddressbook():AddressbookCreator
<Ixsd:schema> addA ok(address:A yookCreator) MailCreator © phonecreatog
XML Parser document:DocumentCreator
<addressbook> | !
I
] createAddressbook() ! addressbook:AddressbookCreator
<address> ! > .
%‘ createAddress() :
! >
<name> i i 'i address:AddressCreator
_ i |
: createString() : :
\ i | »
"Albrecht" ! ! ! ':
_ ¥ ! 1 1
: addContent("Albrecht") : : :
</name> L H H : »
J addName(s1) ! ! i
<add§§SSbOOk> <firstName> L 1 | N
<a ress> | N T kg . il
: g
<name>Albrecht</name> ~Christian” createString() | \ s2:StringCreator
<firstname>Christian</firstname> ristian ! ! — : N
<mail>christianeuni-kiel.de</mail> - addContent("Christian") | I :
<phone>+49 431 8800</phone> </firstName> : | : : »
</address> _ N ¢ [l
</addressbook> . 1 addFllrstName(SZ) : : 1
<mail> T 1 »
N createMail() : :
g “christian@uni-kiel.de" H »
w | addContent("christian@uni-kiel.de") ! 1
</mail> ; i I I »
%: addContact(mail) ! ! |
<phone> ! 1 I »
. createPhone() ! ! hone:PhoneCreator
"+49 431 8800" 1 I : »
P addContent("+49 431 8800") | i T
L 1 1 I o
</phone> : addContact(phone) : : ':
% I I |
</addi > »
address i addAddress(address) : ':
I | I
</addressbook> »
addAddressbook(addressbook) i 'i i
I] 1 1
I I I I
I I 1 I
For every member type of the union a generalization is added and </complexType>
the createTypecCreator method in referencing types is replaced <simpleType name="IntegerOrUnbounded">
by the appropriate create methods. <union memberType="xsd:integer unbounded"/>
Consider for the example the schema fragment: </simpleType>
complexType name="Root"> <simpleType name="unbounded">
<element name="value" type="IntegerOrUnbounded"/> <restriction base="xsd:token">

70

PLAN-X 2004 Informal Proceedings

<enumeration value="unbounded"/>
</restrictions
</simpleType>
By applying rule Il the following interface structure is generated:

RootCreator O | IntegerOrUnboundedCreator O |

createlnteger():IntegerCreator I I
createUnbounded():UnboundedCreator
addValue(value:IntegerOrUnboundedCreator)

| IntegerCreator O| | UnboundedCreatorOl

7. Naming

The interfaces generated by the STAX/bc-binding compiler need
to be named. If the type declaration from which an interface
should be generated is anonymous, then the binding compiler
must generate a name. For code quality this name should be
meaningful, i.e. the binding compiler should not generate type
names from "unknownQ" to "unknown999".

We next present the naming applied in the STAX/bc-binding
compiler. The rules are summarized in figure 4.

Rule I: Anonymous type definitions

Anonymous type definitions are named with the surrounding
declaration’s name. Additionally a number may be appended
when conflicts must be resolved.

For example the element declaration which contains an
anonymous type definition
<element name="a">
<complexType>
<sequences..</sequence>
</complexType>

</element>

is mapped to:

<element name="a" type="A">

<complexType name="A">
<sequences..</sequences>

</complexType>
Rule1l: Anonymous model group definitions

Anonymous model group definitions are named by creating a new
named group whose name is build out of the model group variety
(al, sequence or choice) and the concatenation of the particles
names. Again, additionaly a number may be appended when
conflicts must be resolved.

Rule 111: Anonymous simple type definitions without surrounding
declarations

Anonymous simple type definitions without surrounding
declarations are named by prefixing the BaseType with the
enumeration values and suffixing the BaseType with the given
bounding values.

8. STAX/bc Programming

We will now explain the STAX/bc-based programming by
example of the address book schema shown in fig. 5. It models an
address book which contains a set of address entries. Each address
entry contains a name, optionaly a first name and up to four
contacts. A contact information is either an e-mail address or a
telephone number. A sample address book is shown in fig. 5.

71

The interfaces generated by the STAX/bc-compiler (structural
improvements enabled) are also shown in fig. 5. For convenience
we also illustrated in the sequence diagram of fig. 5 how the
STAX/bc-runtime system calls the generated interfaces when the
address book sample of fig. 5 is parsed.

We will now develop an Java-application which deserializes the
sample address book of fig. 5 diretly into a Swing instance as
shown in fig. 6. This is done without any intermediate
representation.

Albrecht Christian christian@uni-kiel.de +49 431 8800

=10 x|

Figure®6.

Firss we implement the interfaces SstringCreator,
MailCreator and PhoneCreator asaSwing JLabel:

public class MyString extends JLabel implements
StringCreator, PhoneCreator, MailCreator {
public void addContent (java.lang.String content) {
setText (content) ;

1}
Next we implement the addressCreator interface as a Swing

Jpanel which holds the JLabels:

public class MyAddress extends JPanel implements
AddressCreator {
public StringCreator createString() {
return new MyString();}
public void addName (StringCreator name) {
add ((MyString) name) ;}
public void addFirstname (StringCreator name) {
add ((MyString) name);}
public ContactCreator createPhone () {

return new MyString();}
public ContactCreator createMail()
return new MyString();}

public void addContact (ContactCreator contact) {
add ((MyString) contact) ;

Finally the addressbookCreator interface is implemented by a
Swing grrame which holds the addresses in a tabbed pane:

public class MyAddressbook extends JFrame implements
AddressbookCreator {
private JTabbedPane pane =
MyAddressbook () {
super ("STAX sample") ;
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
getContentPane () .add (pane) ; }
public AddressCreator createAddress() {
return new MyAddress();}
public void addAddress (AddressCreator address) {
pane.add ("Address", (MyAddress) address);

new JTabbedPane () ;

The following implementation of the DocumentCreator

interface will instantiate the frame:

public class GUI implements DocumentCreator {
public AddressbookCreator createAddressbook () {
return new MyAddressbook() ;}
public void addAddressbook (AddressbookCreator
addressbook) {
((MyAddressbook) addressbook) .pack () ;
((MyAddressbook) addressbook) . show () ; } }

Further applications of the STAX/bc-API are e.g. the storage of
XML encoded data into relational data bases. By performing
appropriate INSERT resp. UPDATE SQL-functions within the
create and add methods, XML content can easily be stored into
arelational data base —typed and on-the-fly.

PLAN-X 2004 Informal Proceedings

9. Conclusion

We presented the STAX/bc data binding compiler. STAX/bc is
the first binding compiler which generates event-based data
binding APIs out of W3C schema descriptions. Therewith
STAX/bc unites the advantages of data binding frameworks
together with the advantages of event-based XML-APIs. These
ae:

e the processing of large XML documents and data
streams as well as on-the-fly processing

e freechoice of data structures used to maintain the data

e easy access to the information within your programming
language due to specially tailored interfaces.

STAX/bc generated XML-APIs are successfully deployed in
several applications. Many of these applications use non-trivial
W3C schemata.

The STAX/bc binding compiler is integrated in the <<astax-
Framework which is available in an early apha version at
http://www.ccastax.net.

Literature

[1] Fabio Simeoni, David Lievens, Richard Connor, Paolo
Manghi. Language Bindingsto XML. |IEEE Internet
Computing 7(1), Jan., Feb. 2003, p. 19-27.

Robert van Engelen, Gunjan Gupta, Saurabh Pant.
Developing Web Servicesfor C and C++. |[EEE Internet
Computing 7(2), Mar., Apr. 2003, p. 53-61.

Joseph Williams. J2EE vs. .NET, The Web Services
Debbate. Communications of the ACM 46(6), June 2003, p.
59-63.

Gerry Miller. .NET vs. J2EE. Communications of the ACM
46(6), June 2003, p. 64-67.

Haruo Hosoya, Benjamin C. Pierce. XDuce: A statically
typed XML processing language. ACM Transactions on
Internet Technology (TOIT) 3(2), May 2003.

Richard Connor, David Lievens, Fabio Simeoni, Steve
Neely, George Russell. Projector: A Partially Typed
Language for Querying XML. Plan-X: Programming
Language Technologies for XML, 2002.

(2]

(3]

(4]

(5]

(6]

(7]

Paolo Manghi, Fabio Simeoni, David Lievens, Richard
Connor. Hybrid Applications over XML: Integrating the
Procedural and Declarative Approaches. Proceedings of the
fourth international workshop on Web information and data
management 2002, McLean, Virginia, USA. Nov. 2002.

[8] Simeoni, F., Manghi, P., Lievens, D., Connor, R.C.H. and
Neely, S. An approach to high-level language bindings to
XML. Information and Software Technology 44(4), Mar.

2002, p. 217-228.

Brett McLaughlin. Java& XML DataBinding. O'Reilly &
Associates. 1st. ed. 2002.

[10] Hiroshi Maruyama, Kent Tamura, Nachiko Uramoto,
Makoto Murata, Andy Clark, Yuichi Nakamura, Ryo
Neyama, Kazuya K osaka, Satoshi Hada. XML and Java:
developing Web applications. Pearson Education. 2nd ed.
2002.

(9]

72

[11] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides. Design Peatterns: elements of reusable object-
oriented software. Addison-Wesley Publishing. 1996.

[12] Eric van der Vlist. XML Schema. O'Reilly & Associates.
1. ed. 2002.

[13] Dan Suciu. The XML Typechecking Problem. SIGMOD
Record 31(1), Mar. 2002, p. 89-96.

[14] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-
Centric General-Purpose Language. Proceedings of the ACM
International Conference on Functional Programming, 2003.

[15] Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy
of XML Schema Languages using Formal Language Theory.
Extreme Markup Languages 2000, August 13-14, 2000.
Montreal, Canada

WWW-Links
[16] XML Data Binding Resources.
http://www.rpbourret.com/xml/XM L DataBinding.htm.

[17] Code Fast, Run Fast with XML Data Binding.
http://java.sun.com/xml/jaxp/dist/1.0.1/docs/binding/DataBin
ding.html.

[18] XML and Java technologies: Data binding. http://mww-
106.ibm.com/devel operworks/xml/library/x-databdopt/.

[19] Java Specification Request 31: XML Data Binding
Specification. http://www.jcp.org/en/jsr/detail 21d=031.

[20] Java Architecture for XML Binding (JAXB).
http://devel oper.java.sun.com/devel oper/technical Articles’W
ebServices/jaxbl.

[21] Castor. http://www.castor.org.
[22] jbind. http://jbind.sourceforge.net/.
[23] Zeus. http://zeus.enhydra.org/.

[24] Quick. http://gare.sourceforge.net/web/2001-
12/products/index.html#quick.

[25] SAX. http://www.saxproject.org.
[26] DOM. http:/mww.w3.0rg/DOM/.
[27] IDOM. http://www.jdom.org/.

[28] XML Schema Definition Tool (Xsd.exe).
http://msdn.microsoft.comvlibrary/default.asp?url=/library/en
-us/cptool &/html/cpconxml schemadefiniti ontool xsdexe.asp.

[29] XML Information Set. http://www.w3.org/TR/xml-infoset/.

[30] XML Processing Plus Plus. A typed and stream-based XML
processing extension for Java.
http://al phaworks.ibm.com/aw.nsf/FAQs/xml processingpl usp
lus

PLAN-X 2004 Informal Proceedings

Mixed XML/Relational Data Processing

Yana Kadiyska‘and Dan Suciu
University of Washington

Abstract

Presently, XML is either processed with an XQuery
engine, or shredded into relations and processed with a
SQL engine. We argue that neither of these strategies
is satisfactory, given today’s state of the art relational
databases and XML query engines. This paper proposes
a mixed processing model, in which XML native data
coexists with relational data. In this model, two different
query engines, a SQL engine and an XQuery engine
are also integrated. We discuss several alternatives for
shredding XML data into a mixed storage, and show
that the main challenge in any such approach is query
performance. We introduce several optimization methods
that improve the query performance dramatically, by
essentially pushing more work from the XQuery to
the SQL query engine. Finally, we describe a system
implementing a mixed XML/relational storage, and
evaluate it on the XMark benchmark.

1 Introduction

Currently, two approaches for XML processing exist.
In native XML processing a specialized XML engine
evaluates queries, expressed in XQuery or XSLT, over
XML native data [FMO01, FS02]. In relational processing
the XML data is shredded into tables, and XML queries
are translated into SQL then executed entirely on the
relational engine [STH*99, CFIT00, FST00, SSB+00,
FMS01, SK+01, TVB*02, Moe02, FKM*02].

There are tradeoffs between these two approaches.
Native XML processors can support the entire XML
query language, and can be optimized to handle XML
specific features, such as ordered data, mixed content,
and data whose schema is difficult to map to a relational
structure. Moreover, native XML engines are easy to
extend to support new XML features, for example XML
encryption [IDS02, HIM02], XML signatures [BBF+02],
XML key management [HBO02] or XLink [DMOTO1].
Native XML processors, however, do not scale to large
data instances and large numbers of concurrent users,
and do not offer transaction management, recovery, and
ACID semantics.

*Contact author: yana@s. washi ngt on. edu.

This has led researchers to propose the second ap-
proach to XML processing that “shreds” the entire XML
data into tables, then translates all XML queries into rela-
tional queries on the shredded data. Work in this direction
has shown that a large fragment of XQuery can be effi-
ciently translated to a relational query [FKM™02] and run
on a relational engine. It is possible to translate nested
queries, queries on ordered XML data [TVB*02], queries
performing complex transformations on the XML data,
and updates [TIHWO1]. Even fragments of XSLT can be
translated to SQL [JMS02, Moe02]. However, these tech-
niques are restricted to data-oriented XML queries, do not
support features such as mixed content, entities, or pro-
cessing instructions, and are more difficult to extended to
new features, say XLink or encryption. Moreover, despite
the existing technology for mapping XQuery to SQL, ma-
jor database vendors adopt a wait-and-see approach, and
only support some fragments of XPath in their engines.

In this paper, we argue for the need of an integrated
approach to processing XML data, which uses both a rela-
tional engine and a native XML engine. In our approach,
XML data kept as text may coexist with XML data shred-
ded and stored in a relational engine. Correspondingly,
two query engines coexist, a native XML query engine
and a relational database engine, and they are coordinated
by a middleware in order to process the mixed data. This
approach offers the best of both worlds. The part of the
XML documents that is regular, order independent, and
generally data-like can be shredded, while the part that
is too irregular, ordered, with an unknown schema, or
with features not supported by the relational engine is
kept natively. While attractive, such an approach raises
a major challenge, because it has to combine two differ-
ent query engines, a SQL engine and an XQuery engine.
The two engines are asymmetric. The SQL engine is fast
and scales to large data instances, but runs on a different
server than the application and it is expensive to retrieve
data over an ODBC or JDBC connection. The XQuery en-
gine is light-weight, and can be integrated with the client
application, but it does not scale to large data instances,
has no cost-based optimizer, and uses no indexes: this is
typical for today’s XML engines, such as xal an [Apa02]
and gal ax [FS02].

This paper makes the following contributions. First,
it describes the space of XML shredding strategies. Our

73

PLAN-X 2004 Informal Proceedings

XML fragments in the “Fine Shredding"

XML fragments in the "Coarse Shredding”

(G

XML fragments in the “Client-side Shredding

* * *
Closed_auction
Open_auction

@D

Descnplmn
@ Annotation

Figure 1: The DTD graph of the XMark benchmark (fragment). A * denotes a one-many relationship, while no label
denotes a one-one relationship. Dotted edges denote hr ef (s) references.

second contribution consists of a framework for speci-
fying and processing mixed storage. An administrator
defines a logical XML view over a relational schema
that contains XML fields. Users see the resulting virtual
XML view, and query it with XQuery. The XQuery is
composed with the logical XML view, and results in a
mixed XQuery/SQL expression, which is then processed
by the two engines. Third, we describe how to evaluate
the mixed expression on the two engines, and propose
several optimization techniques. Finally, we evaluate our
techniques on the XMark benchmark [SWK™01], using
different shredding strategies.

Related Work Several techniques for mapping rela-
tions to XML, or storing XML into relations have been
discussed in the past [DFS99, STH*99, CFIT00, FSTOO,
SSB*00, FMS01, SK*01, YASUO01, TVB*™02, Moe02,
FKM*02]. Our work is based on SilkRoute [FKM*02],
which describes a translation of XQuery into SQL®. All
these systems assume a pure relational storage, with the
exception of STORED([DFS99]) which also considers an
overflow storage.

A mixed storage of XML data into relations and XML
files is described by Deutsch and Tannen [Ali02] and in
Deutsch’s thesis [Deu02]. That approach is far more gen-
eral than ours: XML data can be stored redundantly, and
the connections between different parts are expressed by
constraints. XQueries are reformulated into queries over
the stored data using a technique called chase-backchase.
By contrast, our approach is simpler, less powerful, and
lets us focus on system-level optimization techniques.

Organization Section 2 describes the mixed XML/
relational processing model by presenting different shred-
ding alternatives and by describing several heuristic-based

1SR2 standsfor SilkRoute 2.

optimizations for queries in this model. Section 3 de-
scribes the SR2 system’s architecture. Central to SR2
is a formalism for specifying mappings from the mixed
XML/relational storage to XML: we describe it in
Sec. 4, and describe the query translation, optimization,
and scheduling in Sec. 5. We provide an experimental
evaluation in Sec. 6, and conclude in Sec. 7.

2 The XML/Relational Processing
Model

In this section, we describe the XML/relational process-
ing model, by examining the shredding alternatives and by
illustrating query processing in this model. Throughout
the paper, we use XML data and queries from the XMark
benchmark [SWK™01] for illustration. The DTD for this
data has 77 elements and 14 attributes; a small fragment
of the DTD graph is shown in Fig. 1. The graph shows
some of the elements in the DTD and their inclusion re-
lationship. For example, the root element is Si t e, and
since its content model is?:

<I ELEMENT Site (Regions, Categories, People,
Open_auctions, C osed_auctions)>

the node Si t e has five children in Fig 1: Regi ons,
Categories, People, Open_auctions, and
Cl osed_aucti ons.

2.1 Typesof Shreddings

We classify the different shredding alternatives according
to the granularity of XML fragments that are kept in na-

2\We omit a sixth subelement, to reduce clutter.

74

PLAN-X 2004 Informal Proceedings

tive format (text format). The choice between the alter-
natives is dictated by the type and availability of a DTD.
Although the different types of shreddings affect query
performance, we assume that the shredding is determined
purely based on the schema properties and without knowl-
edge of the query load that the query engines will face.

Pure relational shredding In this method, the entire
XML data is mapped into tables. The advantage is that
every XQuery expression can be translated entirely into
SQL and, thus, processed efficiently on the relational en-
gine. The disadvantage is that the entire XML schema
needs to be known in advance, and the method is restricted
to schemas that are relatively regular and non-recursive.
Shredding techniques for XML data without a schema
have also been studied [FK99, DFS99, YASUO01] but they
are, in general, less efficient for querying and, especially,
reconstructing the XML data. The pure relational shred-
ding method has been studied intensively in the past and
we will not discuss it further in this paper.

Relational shredding with fine XML fragments
Here, most of the XML data is mapped into tables, except
for some relatively small elements that happen to have
a highly irregular structure. These fragments are often
small enough to be stored in attributes of type VARCHAR,
and do not require a CLOB. The schema needs to be
known in advance, but some isolated irregular parts may
be tolerated. In some case query performance can be
better than in pure relational shredding because it does
not decluster small, irregular XML fragments.

The term regular is defined here in relation to ease of
conversion to a relational schema. For example, elements
that occur infrequently would likely require the frequent
insertion of null values in the database, or introduce the
need for an extra join if such elements are shredded into a
separate table. Similarly, recursive XML schemas would
require the computation of a transitive closure over a given
table. (For example, see the Descri pti on element in
1).

Example 2.1 Fig. 2 illustrates a shredding with fine XML
fragments for the data in Fig. 1. It generally corresponds
to the mappings described in [STHT99], except for the
dark blocks in Fig. 1, which are stored as XML text in the
tables. An example is the attribute Pr of i | e of Peopl e.
There are a total of six attributes of type XML in the tables
shown in Fig. 2, corresponding to the six dark boxes in
XML schema in Fig. 1. In most cases, such small XML
fragments can be implemented as var char, with some
fixed upper bound on he size. This allows for relatively
efficient storage.

Relational shredding with coarse XML fragments
In this strategy larger (coarser) XML fragments are
kept as text, even if they could be further shredded into
relations. The reasons for keeping them as native XML

Region

[1d] Name |

Category

[1d [Name | Description (XML) |

People

[1d | Name | Email | Watches(XML) [Profi le(XML) ||
Open_auction

[Seller T Quant [Initial | ... [Author [Description(XML) ||
Closed_auction

[Seller [Buyer | Item [... [Author | Description(XML) ||
Item

[1d [Name | RegionlD | Shipment | ... [Description(XML)]
Bidder

[| Date | Time [Increase | Bidder | Auction ||

Item2Category

[CategorylD | ItemiD |

Figure 2: Part of the relational schema with fine XML
fragments.

Open_auction
[Seller T Quant | ... | Description(XML) | Bidder(XML) |

Figure 3: Part of the relational schema with coarse
XML fragments. Tables Open_aucti on and Bi d-
der in Fig. 2 have been replaced by the single table
Open_auct i on with a Bi dder attribute of type XML.

may vary: their schema may not be known, or they
may have specific features that are not supported by the
relational engine, or by the specific shredding technique.
For example, consider an XML message broker that
needs to manage SOAP messages exchanged by different
applications. The message header has a well-defined
structure [GHMNOla, GHMNO1b] and the broker can
define a fixed relational schema to store it. But the
message body depends on the application, and a fixed
relational schema is not possible. A less efficient schema-
independent shredding technique [FK99, YASUO1] is
also not possible, because some of the esoteric features
of XML, such as processing instruction, comments, and
white spaces between elements, are lost when the XML
message body is shredded into relational format, and this
may be unacceptable for some applications. The solution
is to store the message body as a coarse XML fragment.
In general, coarse XML fragments need to be stored as
CLOBS, and this contributes to decreased performance.
In addition, any query that accesses the data in the CLOB
will further degrade the performance significantly.

Example 2.2 Fig. 3illustrates the table OQpen_auct i ons
with coarse XML fragments: the corresponding XML
fragment kept natively is shown in light gray in Fig. 1.
Previously, we had two tables, Open_aucti ons and
Bi dder, representing the nested Bi dder elements
(Fig. 2): now the table Bi dder disappeared and, instead,

75

PLAN-X 2004 Informal Proceedings

we store the Bi dder elements as XML text.

Client-server XML storage The last shredding alter-
native is to keep an entire fragment of the XML data in
text format, and store it in an XML file at the client site.
At alogical level, this is equivalent to a very coarse shred-
ding, where the table containing the XML fragment has
been reduced to a single tuple. But at the physical level
there is an important difference, since the XML fragment
is now on the client’s site, and we must integrate relational
data at the database server with XML files at the client.

Example 2.3 Continuing our example, we may decide to
store the entire Regi ons element natively, as XML (see
the white box in Fig. 1). Since there is only one such
element we store it locally, at the client, in one XML file.

Under all strategies the user sees a pure XML view of
the entire, integrated data, and queries it with XPath or
XQuery expressions. We explain now how XQueries can
be processed on this mixed storage.

2.2 Queriesin the XML/Relational Model

For our running example,we assume the fine shredding in
Fig. 2.

Pure relational queries As a warm-up, consider the
following simple XPath query:

/ Si t e/ Regi ons/ Europe/ | tem
[l ncategory/ | dref()->Category
[Narme/text ()= "auction"]]/ Nane

FoIIowin%the navigation path in the graph in Fig. 1, one
can see that this query touches only the pure relational
data. Our system translates it into the following SQL

query:

sel ect |tem Name
from Region, Item
Cat egory, |tenRCategory
wher e
Itenm2Category.ltem D = Item|d and
I t en2Cat egory. Categoryl D = Category.|ld and
Cat egory. Name="aucti on’ and
Itemregi onl D=Regi on.ld and
Regi on. Name=" Eur ope’

Naive navigation inside the XML data Now consider
the following:

/ Si t el Cat egori es/ Cat egory
[Description[Text/Bol d/text ()="main"]
[/ Parlist//Listitem Text/text()= "closeout"]
/ Nane

Here, the predicate

[Description[Text/Bol d/text()="nmain"]
/lParlist//Listitem Text//text()= "closeout"]

navigates through the XML fragment stored in the
Descri pti on attribute of the table Cat egory. This
query is evaluated in two stages, as follows. In the first
stage, the following SQL statement is submitted to the
relational engine:

sel ect Category. Name, Category. Description
from Category

The result consists of a set of tuples of the form (Nane,
Descri pti on). Inthe second stage, each tuple is sub-
mitted to an XQuery engine which evaluates the following
predicate on the Descri pti on attribute (assuming $D
to be bound to the Descr 1 pti on XML fragment):

if not enpty($D[Description
[Text/Bol d/ text () ="main"]
[/ Parlist//Listiten Text/text()="closeout"])
then true
el se fal se

If the predicate returns f al se, then the tuple is dis-
carded; otherwise the Narme component is added to the
answer set. Thus, the initial query was translated into one
SQL query followed by several XQuery predicates.
Notice that in this example all Cat egory records
need to be retrieved from the relational database and all
are submitted to the XQuery engine. This is inefficient,

because most will be discarded by the XQuery filter.

Navigation using LIKE A better way to answer the
previous query is to issue and optimized SQL query to the
relational backend:

sel ect
from
wher e

Cat egory. Name, Category. Description
Cat egory

Cat egory. Description LIKE "%mi n% and
Cat egory. Description LIKE "%l oseout %

This returns only tuples where Descri pti on con-
tains both strings mai n and cl oseout . We still need to
run the same XQuery predicates as before, but on much
fewer tuples.

Clearly, the LI KE operator will still return many false
positives. The next optimization addresses this problem.

Navigation with the Occurs table The idea is as fol-
lows: for each attribute of type XML, create a separate
table storing all attribute values (CDATA) and all element
values (#PCDATA) that occur in that XML fragment. In
our example, there will be six such tables, because there
are six XML attributes in Fig. 2:

Qccursl(Categoryl D, Path, Dat a, Posi tion)
Cccur s2(Personl D, Pat h, Dat a, Posi ti on)

Cccurs6(ltem D, Pat h, Data, Position)

Consider the table Cat egory. For every #PCDATA
value in the XML fragment stored in Descri pti on
there will be one entry in Cccursl. The same will
be done for every CDATA value (i.e., attribute value).
These tables can be used to further filter the tuples at
the database server, as illustrated by the following SQL

query:

sel ect Category. Name, Category. Description

from Category, Cccursl tl, Cccursl t2

where Category.ld = t1.Categoryl D and
Category.ld = t2. Categoryl D and

tl.Data = "main" and t1.Pat h="Description/ Text/Bol d"

and t2.Data = "cl oseout” and
t2.Path LIKE "%arlist/Listitenm Text’

76

PLAN-X 2004 Informal Proceedings

Joins between XML fragments So far, all queries have
been simple navigational queries, and we have already
seen that simple optimizations can improve queries signif-
icantly. Now consider a more complex XQuery, involving
a join between two XML fragments:

from$x in /Site/ Regions/Item

$y in /Sitel/ Categories/ Category
where $x/ Mail/Parlist/Text/text() =

$y/ Description/Listitem Text/text()
return <Answer> $x/ Narme, $y/Price </ Answer>

The join condition between $x and $y requires us to
query both XML fragments under | t emand Cat egory.
We still want to answer such queries in two stages: a SQL
query followed by several XQuery queries. A naive way
to achieve that is to issue the following SQL query, which
computes the cross product of | t emand Cat egory:

select Item Nane as | Nane, Item Mail,

Relational
Database XMLises
tuple
streams
XQuery
Processor
SQL
XQuery tuple
. streams
Optimizer/ | template
Scheduler
ser
Relational m XML
Schema Tagger
N Query
[» Translator
Global
X-mapping SRZ

XQuery

XML

ﬂ answer
— |

User

i

Administrator

Cat egory. Nane as CNane, Category.Description

from Item Category

This results in a tuple stream where each tuple has four
attributes: | Nare, Mai | , CNane, and Descri pti on.
Then, for each tuple, an XQuery expression can decide
whether that tuple satisfies the join condition:

if $m Mail/Parlist/Text/text() =
$d/ Description/Listitem Text/text()
then true
el se fal se

where $mand $d refer to Mai | and Descri pti on,
respectively. Clearly, this is very inefficient since the
product of the two tables is much larger than the result
that we need. We can optimize this by using the Cccur s
tables:

select Item Nane, Item Mail,

Cat egory. Nane, Category. Description
Item Category, Cccursl d, Occurs6é m
Itemld = d.Item D and

Category.ld = m Categoryl D and

d. Path "/ Description/Listitem Text’
m Pat h "/ Mail/Parlist/Text’

d.Data = m Data

from
wher e

and

The relational engine will only return those tuples for
which the Mai | and the Cat egory XML fragments
have some word in common. Notice that the query is
still evaluated in two stages: one SQL query followed by
several XQuery queries.

It is possible, depending on the schema, that the SQL
query above produces no false positives. In such cases,
the XQuery stage is no longer needed: the entire query
would be pushed to the relational engine.

Mixing Server-site and Client-site data Finally, we
illustrate how queries over both server-site and client-site
data can still be executed in two stages. Assume that the
Regi ons element is stored at the client site, in a large
XML file (this is the white rectangle in Fig. 1). Consider
the first query presented in this section:

Figure 4: Architecture of the SR2 system

/ Si t e/ Regi ons/ Europe/ | tem
[l ncategory/|dref()->Category
[Narme/text ()= "auction"]]/ Name

Apparently, this requires us to navigate through the
Regi ons first, and only then to enter the table Cat -
egory, but this would violate our two stage evaluation
strategy. Instead, we start by issuing the following SQL

query:
sel ect

from
wher e

distinct ItenRCategory.ltemd

Cat egory, |tenRCategory

| tenRCat egory. Categoryl D = Category.|ld and
Cat egory. Name=" aucti on’ and

_ This results in a tuple stream where each tuple con-
tains one I t enl d. Next, each tuple is submitted to the
XQuery engine as follows:

for $x in docunent("regions.xm")
/ Regi ons/ Eur ope/ | t en]f @ d=$I t eml D] / Nane
return $x

3 Architecture

We have built a system, called SR2, that allows data to be
shredded into a mixed relational/XML storage, and trans-
lates XQuery expressions into SQL and XQueries. Its ar-
chitecture is shown in Fig. 4. SR2 integrates two query en-
gines: the relational query engine, running on a database
server, and an XQuery engine running in the client’s ad-
dress space. Users formulate XQuery expressions over the
integrated XML view, and the SR2 system evaluates them
in two stages: first, by issuing a small number of SQL
queries to the database backend, then by running some
XQuery on each tuple in the tuple stream(s). It should be

77

PLAN-X 2004 Informal Proceedings

noted that the number of SQL queries executed is always
small, typically 1 or 2, and depends only on the query,
and not the data. By contrast, many XQueries may be
executed, one for each tuple.

To start, the data administrator specifies a mapping
from the mixed storage (relational database plus var-
ious XML fragments) into a unique XML view. The
mapping is called the global SQL/XQuery-mapping, or
SX-mapping® and embeds both SQL expressions and
XQuery expressions. Users see the virtual, unified XML
view, and never see the underlying storage directly.
They formulate XQueries against that view, which are
translated by the system into an internal representation
called user SX-mapping. The user SX-mapping is then
split by the optimizer/scheduler into three parts: a set of
SQL queries that are submitted to the database engine,
a set of XQueries sent to the XQuery engine, and a
template for reassembling the data into XML. Several
heuristic-based optimizations, including those described
in Sec. 2.2, are applied at this stage. Each SQL query
generates a tuple stream, which may have some attributes
containing XML fragments. Next, one tuple at a time is
submitted to the XQuery engine, which may discard the
tuple, or keep it and construct some transformed data.
While processing the XML fragment in a given tuple, the
XQuery engine may also inspect the (much larger) XML
files stored locally. Finally, the tuple stream is submitted
to the XML tagger, which adds XML tags and nests the
XML elements according to the template. The tagger is
very simple and efficient, because the tuples are already
sorted by the relational engine: it is a constant space
tagger according to the terminology in [SSB*00].

4 The SQL-XQuery Mapping

We describe now our logical framework for specifying
mixed XML/relational storage. In this framework a
database administrator defines a logical XML view of
the relational data containing XML fragments. Users
query this view with XQuery. The system composes the
XQuery with the logical XML view, and generates a
mixed SQL/XQuery mapping, called SX-mapping.
Definition of the SX-Mapping An SX-mapping con-
sists of a tree, whose nodes have two labels: an XML
tag label or data type, and a query. The query consists
of a SQL fragment, an XQuery fragment, and a combined
wher e clause. The SQL fragment consists of af r omand
awher e clause, while the XQuery fragment consists of a
f or and awher e clause. Each fragment defines and uses
variables in that language. There is uni-directional com-
munication between these two fragments: a tuple variable
defined in SQL may be used as a starting point for navi-

3This generalizes the public view in [FKM*02].

from Category C
where C.name <> "household"

for $P in C.Description//Parlist
$T in $P/Bold/text()
$D in $P//Text

where $T = C.name

return $D

select C.name

Figure 5: An Example of an SX-mapping.

gation in XQuery. More complex predicates that involve
both SQL and XQuery variables are moved to the joint
wher e clause. Finally, leaf nodes in the SX-mapping
tree have an additional clause, which may be either a SQL
sel ect clause, or an XQuery r et ur n clause.

Example 4.1 Consider the following XQuery expression,
over an XML data whose schema is shown in Fig. 1:

<result>
{ for $x in /Sitel/Categories/ Category
$y in $x/ nanme/text()
where $y <> "househol d"
return
<cat >
<nane> { $y } </ nane>
{ for $z in $x/Descriptions//Parlist
[Bol d/ t ext () =$y]// Text
return <desc> { $z } </desc>

}
</ cat>
}
</result>

Assume that the data is shredded in relations with fine
XML fragments (Example 2.1), with the tables in Fig. 2.
Then the corresponding SX-mapping is shown in Fig. 5.
The top four nodes are labeled with the XML labels r e-
sul t, cat, nane, and desc, while the two leaves are
labeled with the data typest ext () and xm () : the lat-
ter means a t ext () type whose string denotes a well-
formed XML fragment. The nodes are also labeled with
query fragments: missing query fragments are empty. The
cat node is labeled with a pure SQL fragment:

from Category C
where C. nane <> "househol d"

Because of the iteration over Cat egory, several cat
nodes will be created, one for each binding of the tuple
variable C. The node name has no query fragment, mean-
ing that exactly one such node will be created for each
instance of the parent node: in other words, every cat

78

PLAN-X 2004 Informal Proceedings

will have exactly one nane child. The t ext () node is
labeled with the SQL fragment:

sel ect C. nane

meaning that the actual value of the XML text node is the
result of the expression C. narre. Notice that variables in-
troduced by some query fragments may be used in query
fragments below the point where they were introduced:
for example, C is introduced by the query fragment for
cat, and used in the query fragment for t ext (). Now
consider the node desc. Its associated query fragment
is an XQuery f or expression, that binds three variables,
plus a mixed SQL/XQuery wher e expression. The tu-
ple variable C is used twice: once in the f or statement,
as starting point of the navigation, and once in the mixed
wher e clause, to connect the XML part to the SQL part.
The meaning is that one instance of a cat node will be
created for each combination of variables introduced in
the f or clause that satisfy the wher e predicate. Finally,
the query fragment on the xmi () node consists of a sin-
gle r et ur n clause. The meaning is that the entire XML
tree bound to the variable $Diis returned here.

SX-mappings occur in two places in the system, see
Fig. 4. First the global SX-mapping describes how the
entire XML view is obtained from the mixed storage.
This mapping is described in XQuery, by the data
administrator, and is typically a large query. In one
application to a medical database the XQuery describing
this mapping had over one thousand lines, and it took
a programmer a few weeks to write, which included
designing the XML schema. Second,SX-mappings occur
as representations of user queries, and are called the user
SX-mappings. Such queries needs to be “composed” with
the global SX-mapping using a complex composition
algorithm (denoted query translator in Fig. 4). The user
SX-mapping is much smaller, since users usually request
simple XML structures, and only require small fragments
of the data. The most complex part of the of our system
is this composition algorithm.

5 Quey Trandation, Optimization,
and Scheduling

The query translation takes a user query, expressed
in XQuery, and translates it into an SX-mapping, i.e.,
essentially a mixed SQL/XQuery expression. To do that
it needs the global SX-mapping, which specifies how
the XML view is obtained from the mixed storage. In
essence, the translation consists of composing the two
queries, and simplifying the resulting expressions.

The optimizer is heuristic-based and its aim is to shift
as much of the load as possible into the database, as-

suming that state of the art XML processors are still lag-
ging behind relational database engines in terms of perfor-
mance. In addition to the heuristics described in Sec. 2.2,
we are interleaving SQL and XQuery joins, performing,
in effect, a semi-join between the relational and XML
sources, and also eliminating some SQL joins that return

almost all pairs, e.g. like in cartesian products.

The scheduler takes an SX-mapping and decomposes
it into a number of SQL queries, plus a number of
XQueries to be applied to the tuples. We apply the
following heuristics: nodes in the SX-mapping that
are in a one-one relationship become part of the same
SQL (1ueries, while one-many relationships are part of
multiple queries. For example, referring to Fig. 5, there
is a one-many relationship between the following pairs
of nodes: (result, cat), and (cat, desc), hence at
most three SQL queries will be generated. However,
the SQL query for r esul t is empty, hence no query is
issued, and the SQL query for desc is empty too (it has
no f r omclause). As a consequence, a single SQL query
is issued to the database engine, on behalf of the nodes
cat,name,andtext ():

sel ect *
from Category C
where C. nane <> "househol d"

An XQuery is needed for the nodes desc and xmi ().

6 Experiments

We evaluated our system on the XMark bench-
mark [SWK*01] using two different shreddings: a
fine shredding and a coarse shredding that also included
a client-site XML file: they correspond to the dark boxes
in Fig. 1 and to the gray and white boxes respectively.
We measured three parameters: the total number of
tuples transfered between the relational database and
the middleware, the total number of bytes transferred,
and the total query running time, which consists of the
SQL running time plus the XQuery running time. In our
experiments, we used the full version the benchmark,
whose XML document (before shredding) has 116MB.
For the SQL engine we used SQL Server 8.0 and for
the XQuery engine we used Galax 0.2.0 [FS02]. The
average and maximum sizes of the native XML fragments
in the two shreddings are shown in Fig. 11.

In the graphs, we only show those queries that touched
at least one XML fragment, i.e., we omit the pure rela-
tional queries. We investigated several approaches to eval-
uating mixed queries, corresponding to the optimizations
described in Sec. 2.2, and call them “naive”, “LIKE”, and
“Occurs”.

Fig. 6 shows the total number of tuples shipped from
the relational engine to the XQuery engine. Notice that
the scale is logarithmic. The improvements in the num-
ber of tuples due to the various optimizations is dramatic:
most of the queries involving joins timed out after 10 min-
utes when using the naive approach, but using the Occurs

79

PLAN-X 2004 Informal Proceedings

Number of Tuples to XQuery
(Fine Shredding)

100000

10000 —
= Naive

m Like

1000

Number of Tuples

100

Q10 Q11 Q12 Q14 Q15 Q16

Query

Figure 6: Number of tuples sent to client site under fine
shredding

File Size (bytes) to XQuery

1.00E+08
1.00E+07

1.00E+06

@ Naive
mLike

Time (Coarse Shredding)

100 m Galax
@mSsaL

Time (seconds)

Q3_naive
Q3_like
Q3_occurs

Q2_naive
Q2_like

Q2_occurs

Query

Figure 10: Total query time (RDBMS+XQuery engine)
XQuery timed out for Q3 under the naive and LIKE approaches

| | XML attribute | Avg | Max ||
Itenm(description) 1389 | 13262
Fine | Person(profile) 223 | 1222
Cl osed_auction(description) | 1409 | 16644
Open_aucti on(descri ption) 1397 | 13312
Coarse | Open_aucti on(bi dder) 644 | 7933

Size (Bytes)

1.00E+05

1.00E+04
Q10 Q11 Q12 Q14 Q15 Q16

Query

Figure 7: Total size of the data sent to client site (bytes)
under fine shredding

Time (Fine Shredding)

10000
1000

m Galax
mSQL

Time (seconds)
.28

Q12_naive |

=5

Q16_naive |

Q10_naive |
Q10_like |
Q10_occurs |
Q11_naive
Qi1_like
Q11_occurs
Q12_like]|
0 Q12_occurs |
< Q14_naive |
Q14_like |
Q14_occurs |
Q15_naive
Qi5_like
Q15_occurs
Q16_like |
Q16_occurs

<
o

Figure 8: Total query time (RDBMS+XQuery engine).
XQuery timed out for Q10, Q11, and Q12 under the naive and Like
approaches.

Number of Tuples to XQuery
(Coarse Shredding)

100000

10000 -+

= Naive
W Like

1000 -

Number of Tuples

100
Q2 Q3

Query

Figure 9: Number of tuples sent to client. Coarse Shred-
ding

Figure 11: Sizes (in bytes) of the XML fragments stored
in the relational tables for two different shreddings of the
XMark benchmark

table eliminated the need for an XQuery stage completely.
For comparison, we also show the total amount of data
shipped to the client in Fig 7: the relative savings is still
high, but a bit smaller, because the LIKE predicate is a
better filter for small XML fragments than for larger frag-
ments. Fig. 8 reports the total running time for the fine
shredding under each optimization method, broken into
the SQL running time plus the XQuery running time. In
three cases (Q10, Q11, Q12) the XQuery engine did not
finish and we aborted it. Queries Q15 and Q16 returned
much fewer tuples under “LIKE” optimization,since the
navigation path is relatively long and thus ensured high
selectivity. Using the Occurs tables, all queries could be
answered entirely in the SQL engine, without a need for
the XQuery stage.

The graphs 9, 10, show the same experiments but for
the coarse shredding. Four queries (Q2,03,Q9 and Q14)
accessed the coarse XML fragments, but only two of these
(Q2 and Q3) benefited from the “Occurs” method, and
only these are included in Fig. 10. Overall, the coarse
shredding method resulted in poorer query performance.

The reason no performance improvement was ob-
served with queries 9 and 14 is that they accessed
the large XML file stored on the client site (the white
box in Fig. 1). This document was not subject to our
optimizations.

Summary In summary, the experiments show
the following. First, query evaluation over mixed
XML/relational data is perfectly feasible, under two
conditions: one implements some simple optimizations,

80

PLAN-X 2004 Informal Proceedings

and there are no joins between XML fragments stored
in as text. When the latter occurs then it is almost im-
possible to do efficient filtering on the relational engine.
In applications where such joins are indeed needed one
needs to complement the XML fragments with a pure
relational shredding of those XML fragments, using a
schema-less technique like [YASUO1]. Then the query
can be processed by the relational engine, while the
XML fragment can still be returned in its original format.
Our second finding confirms one of the premises of this
work: today, the XQuery engine is much slower than the
relational engine, and forms the main bottleneck in mixed
data processing.

7 Conclusions

We have described a flexible method for storing and pro-
cessing XML data that mixes native XML data (stored as
text) with relational data. We argue that such a processing
model is needed, given the current state of database and
XML technology. While the performance gap between
the two types of engines may narrow in the future, it will
likely remain significant, because XQuery engines need
to emphasize full compatibility with the complete XML
specification and other standards, while relational engines
can afford to support a cleaner, data-like fragment. We
showed that a mixed XML/relational processing model is
possible, offering the best of both worlds.

References
[Ali02] Alin Deutsch and Val Tannen. Querying
XML with Mixed and Redundant Storage.
Technical Report MS-CIS-02-01, Depart-
ment of Computer and Information Sci-
ence, University of Pennsylvania, Philadel-
phia, PA 19104, 2002.

[Apa02] Apache. Xalan-C++, 2002.
http://xml.apache.org.

[BBFT02] M. Bartel, J. Boyer, B. Fox,
B. LaMacchia, and E. Simon. XML-
signature syntax and processing, 2002.
http://ww. w3. org/ TR/ xm si g-
core.

[CFIT00] M. Carey, D. Florescu, Z. lves, Y. Lu,

J. Shanmugasundaram, E. Shekita, and
S. subramanian. XPERANTO: publishing
object-relational data as XML. In Proceed-
ings of WebDB, Dallas, TX, May 2000.

[Deu02]

[DFS99]

[DMOTO1]

[FK99]

[FKM+02]

[FMO1]

[FMS01]

[FS02]

[FST00]

[GHMNO1a]

[GHMNO1b]

81

Alin Deutsch. An Experimental Evaluation
of the MARS System. PhD thesis, University
of Pennsylvania, 2002.

A. Deutsch, M. Fernandez, and D. Suciu.
Storing semistructured data with STORED.
In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of
Data, pages 431-442, 1999.

S. DeRose, E. Maler, D. Orchard,
and B. Trafford. XML linking lan-
guage (xlink) wversion 1.0, 2001

http: //www. w3. or g/ TR/ xl i nk.

Daniela Florescu and Donald Kossmann.
Storing and querying XML data using an
rdbms. IEEE Data Engineering Bulletin,
22(3), 1999.

M. Fernandez, Y. Kadiyska, A. Morishima,
D. Suciu, and W. Tan. SilkRoute : a
framework for publishing relational data in
XML. ACM Transactions on Database
Technology, 27(4), December 2002.

T. Fiebig and G. Moerkotte. Algebraic
XML construction and its optimization in
natix. Journal of the WWW, 4(3):167-187,
2001.

M. Fernandez, A. Morishima, and D. Su-
ciu. Efficient evaluation of XML middle-
ware queries. In Proceedings of ACM SIG-
MOD Conference on Management of Data,
Santa Barbara, 2001.

M. Fernandez and J. Simeon. Galax:
the XQuery implementation for dis-
criminating hackers, 2002. avail-

able from http://db. bell -
| abs. com gal ax/.

M. Fernandez, D. Suciu, and W. Tan.
SilkRoute: trading between relations and
XML. In Proceedings of the WWW9, pages
723-746, Amsterdam, 2000.

M. Gudgin, M. Hadley, J.J. Moreau,
and H. Nielsen. SOAP version
1.2 part 1 Messaging framework,
2001. available from the Wa3C,

http: //ww. w3. or g/ 2000/ xp/ G- oup/ .

M. Gudgin, M. Hadley, J.J. Moreau, and
H. Nielsen. SOAP version 1.2 part 2:
Adjuncts, 2001. available from the W3C,

http://ww. w3. or g/ 2000/ xp/ G oup/ .

[HBO2]

[HIMO02]

[1DS02]

[IMS02]

[Moe02]

[SK*01]

[SSB+00]

[STH+99]

[SWK*01]

[TIHWO1]

[TVB+02]

PLAN-X 2004 Informal Proceedings

P. Hallam-Baker. XML key
management specification, 2002.
http://ww. w3. or g/ TR/ xkns2.

M. Hughes, T. Imamura, and
H. Maruyama. Decryption trans-
form for XML signature, 2002.

http://ww. w3. org/ TR/ xm enc-
decrypt.

T. Imamura, B. Dilaway, and
E. Simon. XML encryption
syntax and processing, 2002.

http://ww. w3. org/ TR/ xm enc-
core.

S. Jain, R. Mahajan, and D. Suciu. Trans-
lating XSLT programs to efficient SQL
queries. In Proceedings of WWW, pages
616-626, 2002.

G. Moerkotte. Incorporating xsl process-
ing into database engines. In VLDB, Hong
Kong, August 2002.

J. Shanmugasundaram, , J. Kiernana,
E. Shekita, C. Fan, and J. Funderburk.
Querying XML views of relational data.
In Proceedings of VLDB, pages 261-270,
Rome, Italy, September 2001.

J. Shanmugasundaram, E. Shekita, R. Barr,
M. Carey, B. Lindsay, H. Pirahesh, and
B. Reinwald. Efficiently publishing rela-
tional data as XML documents. In Proceed-
ings of VLDB, pages 65-76, Cairo, Egipt,
September 2000.

J. Shanmugasundaram, K. Tufte, G. He,
C. Zhang, D. DeWitt, and J. Naughton. Re-
lational databases for querying XML doc-
uments; limitations and opportunities. In
Proceedings of VLDB, pages 302-314, Ed-
inburgh, UK, September 1999.

A. Schmidt, F. Waas, M. Kersten, D. Flo-
rescu, M. Carey, |. Manolescu, and
R. Busse. Why and how to benchmark
XML databases. Sigmod Record, 30(5),
2001.

I. Tatarinov, Z. lves, A. Halevy, and
D. Weld. Updating XML. In SIGMOD,
May 2001.

I. Tatarinov, S. Viglas, K. Beyer, J. Shan-
mugasundaram, E. Shekita, and C. Zhang.
Storing and querying ordered XML using

[YASUO1]

82

a relational database system. In SIGMOD,
May 2002.

M. Yoshikawa, Oshiyuki Amagasa,
T. Shimura, and S. Uemura. Xrel: A path-
based approach to storage and retrieval of
xml documents using relational databases.
In ACM TOIT, 1(1), 2001.

PLAN-X 2004 Informal Proceedings

A Language for Bi-Directional Tree Transformations

Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt

University of Pennsylvania

ABSTRACT

We present a semantic foundation and a core program-
ming language for bi-directional transformations on tree-
structured data such as XML. In one direction, these trans-
formations map a “concrete” tree into a simplified “ab-
stract” one; in the other, they map a modified abstract tree,
together with the original concrete tree, to a correspondingly
modified concrete tree. The challenge of understanding and
designing these transformations—called lenses—arises from
their asymmetric nature: information is discarded when
mapping from concrete to abstract, and must be restored
on the way back.

We identify a natural mathematical space of well-behaved
lenses, in which the two components are constrained to fit
together in a sensible way. We study definedness and con-
tinuity in this setting and state a precise connection with
the classical theory of “update translation under a constant
complement” from databases. We then instantiate our se-
mantic framework as a small programming language, called
Focal, whose expressions denote well-behaved lenses oper-
ating on trees. The primitives include familiar constructs
from functional programming (composition, mapping, pro-
jection, recursion) together with some novel primitives for
manipulating trees (splitting, pruning, pivoting, etc.). An
extended example shows how Focal can be used to define
a lens that translates between a native XHTML representa-
tion of browser bookmarks and a generic abstract bookmark
format.

1. INTRODUCTION

Computing is full of situations where one wants to trans-
form some structure into a different form—a view—in such
a way that changes made to the view can be reflected back
as updates to the original structure.

This paper addresses a specific instance of “updating
through a view” that arises in a larger project called Har-
mony [25]. Harmony is a generic framework for synchro-
nizing tree-structured data—a tool for propagating updates
between different copies, possibly stored in different formats,
of tree-shaped data structures. For example, Harmony can
be used to synchronize the bookmark files of several differ-
ent web browsers, allowing bookmarks and bookmark fold-
ers to be added, deleted, edited, and reorganized in any
browser and propagated to the others. The ultimate aim is
to provide a platform on which a Harmony programmer can
quickly assemble a high-quality synchronizer for a new type
of tree-structured data stored in a standard low-level for-
mat such as XML. Other Harmony instances currently used

83

daily or under development include synchronizers for calen-
dars (Palm DateBook, ical, and iCalendar formats), address
books, Keynote presentations, structured documents, and
generic XML and HTML.

Views play a key role in Harmony: to synchronize dis-
parate data formats, we define a single common abstract
view as well as lenses that transform each concrete for-
mat into this abstract view. For example, we can syn-
chronize a Mozilla bookmark file with an Explorer book-
mark file by using appropriate lenses to transform each into
an abstract bookmark structure and synchronizing the re-
sults. However, we are not done: we then need to take the
updated abstract structures resulting from synchronization
and transform them back into correspondingly updated con-
crete structures. To achieve this, a lens must include not one
but two functions—one for extracting an abstract view from
a concrete one and another for pushing an updated abstract
view back into the original concrete view to yield an updated
concrete view. We call these the get and put components,
respectively. The intuition is that the mapping from con-
crete to abstract is commonly some sort of projection, so
the get direction involves getting the abstract part out of a
larger concrete structure, while the put direction amounts to
putting a new abstract part into an old concrete structure.

Not surprisingly, the tricky aspects of constructing lenses
arise in the put direction. If the get part of a lens is
a projection—i.e., information is suppressed when moving
from concrete to abstract—then the put part must restore
this information in some appropriate way. (We will see a
concrete example shortly.) The difficulty is that there may,
in general, be many ways of doing so.

Our approach to this problem is to design a language in
which every expression simultaneously specifies both a get
function and the corresponding put. All the primitives in
this language denote lenses whose get and put functions fit
together in a suitable sense, and all the combining forms
preserve this property.

We begin by identifying a natural mathematical space of
well-behaved lenses. There is a fair amount to be said about
this space at a general level, even before we fix the domain
of structures being transformed (trees) or the syntax for
writing down transformations. First, we must phrase our
basic definitions to allow lenses to be partial—i.e., to capture
the fact that there may be structures to which a given lens
cannot sensibly be applied. Second, we need some laws that
express our intuitions about how the get and put parts of a
lens should behave in concert. For example, if we use the get
part of a lens to extract an abstract view a from a concrete

PLAN-X 2004 Informal Proceedings

view ¢ and then use the put part to push the very same a
back into ¢, then we should get back to the original c. These
laws must take partiality into account. Third, we must deal
with the fact that we will later want to define lenses by
recursion (because the trees that our lenses manipulate may
in general have arbitrarily deep nested structure—e.g., when
they represent directory hierarchies, bookmark folders, etc.).
This raises familiar issues of monotonicity and continuity.

With these semantic foundations in place, we develop a
syntax for constructing lenses for the specific domain of
trees. Our surface language, Focal, comprises a collection
of primitive lenses for tree transformations and lens combi-
nators (composition, conditionals, mapping, etc.) that allow
complex lenses to be built up from simpler ones. From these
basic constructs, we can build a rich variety of useful derived
forms—e.g., lenses for manipulating list-structured data en-
coded as trees.

We begin in Section 2 with a small example illustrating the
fundamental ideas. Section 3 develops the semantic foun-
dations of lenses in a general setting, addressing issues of
partiality and continuity. Section 4 instantiates this generic
framework with primitive lenses and lens combinators for
our specific application domain of lenses over trees. Sec-
tion 5 illustrates the use of these constructs in actual lens
programming by walking through a substantial example de-
rived from the Harmony bookmark synchronizer. Section 6
surveys a variety of related work from both the programming
languages and the database literature and states a precise
correspondence (amplified in [24]) between our well-behaved
lenses and the closely related idea of “update translation
under a constant complement” from databases. Section 7
sketches some directions for future research. For brevity,
proofs are omitted; these can be found in an accompanying
technical report [15].

2. ASMALL EXAMPLE

Suppose our concrete data source c is a small address book,
represented as the following tree:

Phone — 333-4444

URL +— http://pat.com
Phone — 888-9999
URL — http://chris.org

Pat —
Chris +—

We draw trees sideways to save space. Each curly brace de-
notes a node, and each “X — ...” on the right of the curly
brace denotes a child labeled X. In running text, we add
closing braces to show where trees end. Also, to avoid clut-
ter, when an edge leads to an empty tree, we usually omit
the braces, the — symbol and the final childless node—e.g.,
“333-4444" above actually stands for “{333-4444 — {}}.”
In the parts of the paper that concern the surface language
(i.e., everywhere except Section 3), we work with unordered,
edge-labeled trees in which each node has at most one child
of a given name. (Although our trees are unordered, we
will see in Section 4.4 that they can also be used to repre-
sent and manipulate ordered data such as XML via a simple
encoding.)

Suppose that, for some reason, we want to edit the data
from this concrete tree in a simplified format, where each
name is associated directly with a phone number.

Pat +— 333-4444

@ T Chrisr 888-9999

84

Why would we want this? Perhaps because the edits are go-
ing to be performed by synchronizing this abstract tree with
another replica of the same address book in which no URL
information is recorded, or perhaps there is no synchronizer
involved but the edits are going to be performed by a hu-
man who is only interested in phone information and whose
screen should not be cluttered with URLs. Whatever the
reason, we are going to make our changes to the abstract
tree a, yielding a new abstract tree a’ of the same form but
with modified content.

For example, let us change Pat’s phone number, drop
Chris, and add a new friend, Jo.

, Pat s 333-4321
@ T Jor 555-6666

Note that we are only interested in the final tree a’, not
the actual sequence of edit operations that may have been
used to transform a into a’. This design choice arises from
the fact that synchronization in Harmony is based on the
current states of the replicas, rather than on a trace of mod-
ifications (the tradeoffs between state-based and trace-based
synchronizers are discussed in [26]).

Finally, we want to compute a new concrete tree ¢’ re-
flecting the new abstract tree a’. That is, we want the parts
of ¢ that were kept when calculating a (e.g., Pat’s phone
number) to be overwritten with the corresponding informa-
tion from a’, while the parts of c that were filtered out (e.g.,
Pat’s URL) should have their values carried over from c.

Pat o Phone — 333-4321
/ URL — http://pat.com
Phone — 555-6666

Jo = URL — http://google.com

We also need to “fill in” appropriate values for the parts of ¢/
(in particular, Jo’s URL) that were created in a’ and for which
c therefore contains no information. Here, we simply set the
URL to a constant default, but in more complex situations
we might want to compute it from other information.

Together, the transformations from c to a and from a’ and
c to ¢ form a lens. Our goal is to design a programming
language that allows lenses to be described in a concise,
natural, and mathematically coherent manner.

3. SEMANTIC FOUNDATIONS

While our surface language, Focal, is specialized for dealing
with tree transformations, its semantic underpinnings can
be presented in an abstract setting that is parameterized
by the data structures manipulated by lenses, which we call
views.! In this section, we simply assume we are given some
set C' of concrete views and some set A of abstract views; in
Section 4 we will choose both of these to be the set of trees.

3.1 Basic structure

A lens is a pair of partial functions: one that gets an abstract
view from a concrete view, and one that puts a new abstract
view into an old concrete view to yield a new concrete view.

!Note that we use the word “view” here in a slightly different
sense than some of the database papers that we cite, where
a “view” is a query that maps concrete to abstract states—
i.e., it is a function that, for each concrete database state,
picks out a view in our sense.

PLAN-X 2004 Informal Proceedings

3.1.1 Definition [Lenses]: A lens | comprises two partial
functions: a get function from C' to A, written [, and a
put function from A x C to C, written I'\.

We write dom(l) for the subset of C' on which [is de-
fined and dom(I\) for the subset of A x C' on which I\ is
defined. We often say “put a into ¢” instead of “apply the
put function to (a,c).” The intuition behind the notations
1/ and I\, is that the get part of a lens “lifts” an abstract
view out of a concrete one, while the put part “pushes down”
a new abstract view into an existing concrete view.

3.1.2 Definition [Well-behaved lenses]: A lens is well
behaved iff its get and put functions obey the following laws:

(GETPUT) cedom(l) = I\, (I¢,c)=c
(PurGET) (a,c) € dom(I\) = I/ (I\\(a,) =a

The GETPUT law states that, if some abstract view obtained
from a concrete view ¢ is unmodified, putting it back into c
must yield the same concrete view. This law also requires
the put function to be defined on (I ¢, c) whenever [/¢ is
defined. The PUTGET law states that the put function must
capture all of the information contained in the abstract view:
if putting a view a into a concrete view c yields a view ¢,
then the abstract view obtained from ¢’ is exactly a. This
law also requires that the get function be defined at least on
the range of the put function.

An example of a lens satisfying PUTGET but not GETPUT
is the following. Let C' = string X int and A = string,
and define [as:

I/ "(s,n)=s
IN (s, (s,m)) = (5,0

Then I\, (I, (s,1), (s,1)) = (s,0) # (s,1). Intuitively, this
law fails because the put function has some “side effects”:
it modifies information from the concrete view that is not
contained in the abstract view.

An example of a lens satisfying GETPUT but not PUTGET
is the following. Let C' = string and A = string X int,
and define [as:

1s=(s,0)
IN((s',n), s) =5

PUTGET fails in this case because some information con-
tained in the abstract view does not get propagated to
the new concrete view. For example, I 7 (I\, ((s',1), 5)) =
L/ = (,0) # (5, 1).

The GETPUT and PUTGET laws are essential, reflecting
fundamental expectations about the behavior of lenses. Re-
moving either law significantly weakens the semantic foun-
dation. We may also optionally consider a third law, called
PurPuT:

(a,c) € dom(IN\) = I\, (¢, I\ (a,¢))=1\.(d,)

This law states that the effect of a sequence of two puts is just
the effect of the second, as long as the first put is defined. We
say that a well-behaved lens that also satisfies PUTPUT is
very well behaved. Both well-behaved and very well behaved
lenses correspond (modulo some details about partiality) to
well-known classes of “update translators” from the classical
database literature; see Section 6.

85

The PUTPUT law intuitively states that a series of changes
to an abstract view may be applied incrementally or all at
once, resulting in the same final concrete view in both cases.
This is a natural and intuitive constraint, and the foun-
dational development in this section is valid for both well-
behaved and very well behaved variants of lenses. However,
when we come to defining Focal in Section 4, we will drop
PuTPUT because one of our most important lens combina-
tors, map, fails to satisfy it. This point is discussed in more
detail in Section 4.2.

3.2 Basic Properties

We now explore some simple consequences of the lens laws.

Let f be a partial function from A x C' to C. Abusing
terminology slightly, we will say that f is injective if it is
injective in its first argument wherever it is defined—i.e., if,
for all views a, a’, and ¢ such that f(a,c) and f(a’,c) are
defined, we have a # a' = f(a,c) # f(d’,c).

The following lemma provides an easy way to show that
a lens is not well behaved. We used it many times while
designing the Focal surface language, to quickly generate
and test candidate lenses.

3.2.1 Lemma: Let [be a well-behaved lens. Then the func-
tion I\, is injective, and, for all (a,c) € dom(l\), we have
IN(a, 1N (a, ¢)) =1\ (a,).

Conversely, the next Lemma shows that for each in-
jective put function satisfying the additional condition of
Lemma 3.2.1, there is a unique get function that makes a
well-behaved lens.

3.2.2 Lemma: Let [\, be an injective partial function from
A x C to C such that for all (a,c) € dom(I\,) we have
I\ (a, I\ (a, ¢)) = I\ (a, c). Then there is exactly one
function I/ such that I = (I, I\|) is a well-behaved lens?.

This lemma shows that we can define a well-behaved lens
simply by giving a suitable put function. However, in most
cases, we have found it more convenient to write out both get
and put functions explicitly and directly check the original
laws.

3.3 Recursion

Since our lens framework will be instantiated with trees,
and since trees in many interesting application domains may
have unbounded depth (e.g., a bookmark item can be either
a link or a folder containing a collection of bookmark items),
we will need to define lenses by recursion. Our final task for
this foundational section is to set up the necessary structure
for interpreting recursive definitions in the surface language.

The development follows familiar lines. We introduce an
information ordering on lenses and show that the set of
lenses equipped with this ordering is a complete partial or-
der (cpo). We then apply standard tools from domain the-
ory, giving us interpretations of a variety of common syn-
tactic forms from programming languages—in particular,
functional abstraction and application (i.e., “higher-order
lenses”) and lenses defined by (single or mutual) recursion.

We say that a lens I’ is more informative than a lens I,
written [< I’, if the put function of I’ is an extension of the
put function of I—that is, if I\, is defined on a larger domain

2This get function is total on the range of I\; it is defined
by taking I (I (a, ¢)) = a for all (a,c) € dom(I\).

PLAN-X 2004 Informal Proceedings

than I\, and if the two put functions are equal on their
common domain, dom(I\). As the put function determines
the get function (Lemma 3.2.2), this ordering only needs to
take the put function into account. This relation is a partial
order.

A cpo is an ordered set in which every increasing chain
of elements has a least upper bound in the set. A cpo with
bottom is a cpo that contains an element, L, that is smaller
than every other element. In our setting, this is the lens
whose put and get functions are undefined everywhere.

3.3.1 Theorem: Let £ be the set of well-behaved lenses
between C' and A. Then (£, <) is a cpo with bottom.

We can now apply standard domain theory to interpret
a variety of constructs for defining continuous lens combi-
nators. In particular, every continuous function on well-
behaved lenses has a least fixed point that is a well-behaved
lens.

4. TRANSFORMING TREES

We now describe our surface language, Focal. We first in-
troduce convenient notations for trees and simple operations
on them. We then present some primitive lenses and lens
combinators, which we assemble to create several derived
lenses. We finally describe an encoding of lists as trees and
introduce some specialized derived lenses for manipulating
them. We give intuitions and small examples along the way;
an extended example using most of the lenses together ap-
pears in Section 5. The expressiveness of the language is
discussed in Section 7.1.

4.1 Trees

From now on, we will be working with the set of finite,
unordered, edge-labeled trees, with labels drawn from some
infinite set of names—e.g., character strings. Each tree can
be viewed as a partial function from names to other trees.
We write dom(¢) for the domain of a tree t—i.e. the set of
the names of its immediate children. The variables a, ¢, d,
and ¢ range over trees; by convention, we use a for trees that
are thought of as abstract and ¢ or d for concrete trees.

The Harmony system targets data stored in XML (among
other formats). However, the form of trees that we use in-
ternally is much simpler than XML, which associates each
node with both unordered children (attributes) and ordered
ones (sub-elements). We show in Section 5 how XML trees
can be encoded into ours. We chose to restrict Focal to un-
ordered trees for engineering reasons: experience has shown
that the (huge) resulting reduction in the complexity of the
lens definitions far outweighs the modest increase in com-
plexity of lens programs due to manipulating XML via this
encoding instead of primitively.

There are cases where we need to apply a put function, but
where no old concrete tree is available (as we saw with Jo’s
URL in Section 2). To deal with these cases, we enrich the
set of trees with a special placeholder €2, pronounced “miss-
ing.” Intuitively, [\ (a,) means “create a new concrete
tree from the information in the abstract tree a.” Formally,
we write T for the set of trees and Tq for T'U {Q}, and
take both C' and A in the definition of lenses to be T. By
convention, €2 is only used as the second argument to the
put function: in all of the lenses defined below, we maintain
the invariants that Q & dom(l"), that (£2,c) & dom(I\) for

86

any ¢, that Q ¢ ran(l), and that Q & ran(\\). To sim-
plify some lens definitions below, we sometimes treat €2 as a
tree with dom(€2) = (0. There are other, formally equivalent,
ways of handling missing concrete trees. We chose this one
for pragmatic reasons, after exploring several alternatives;
its advantages are discussed below, after the definition of
the map combinator.

Let t be the tree that associates t; to ni, t2 to na, ...,
and tr to ny. We write ¢ as {ny — #1...n5 — tr} when
it appears in running text, and as an opening brace and
a vertical list of name/subtree pairs (dropping the closing
curly brace) when it appears in a displayed figure. We write
“{}” (in running text) or “{” (in displays) for the empty
tree, and t(n) for the tree associated to name n in ¢.

We often define trees by extension. For instance, let t be
a tree and p be a set of names such that p C dom(¢); we
may define a tree w as w = {n +— t(n) | n € p}. Whenpisa
set of names (not necessarily a subset of dom(t)), we write
t|, for the tree {n — t(n) | n € pNdom(t)}. By convention,
we take Q|, = Q for any p (this shortens some definitions
below), and we write p for the complement of the set p.

It is also convenient to define a notation for concatenation
of trees. Let t,t' € T, with dom(t) Ndom(t') = 0. We write

t +t' (in running text) or i/ (in displays) for the tree

n—t(n) n € dom(t)
n—t'(n) n € dom(t).

A walue is a tree of the special form {k — {}}, often writ-
ten just k. For instance, the phone number {333-4444 —
{}} in the example of Section 2 is a value.

4.2 Primitive Lenses

In this section we define several atomic lenses and lens com-
binators (we will often just say “lenses” for both). We begin
with a few generic lenses that do not depend on the data
structure being trees: the identity lens, the constant lens,
and sequential composition of lenses. We then introduce
several lenses that inspect and manipulate tree structures—
three atomic lenses (rename, hoist, and pivot) and two lens
combinators (xfork and map).

All lenses introduced in this section, with the exception of
the const lens, preserve all information when building the
abstract tree in the get direction. The two lens combinators
also preserve all information when applied to information-
preserving lenses. Most lenses thus do not need to use the
concrete tree in the put direction.

Every atomic lens defined in this section is very well be-
haved, and every lens combinator is continuous and pre-
serves well-behavedness. In fact, most lens combinators pre-
serve very well behavedness, with the single exception of
map.

In the following, we assume that lens application is strict,
i.e. the application of a lens to some arguments is defined
only if the computations it depends on (in particular other
lens applications) are all defined.

Generic Lenses

The simplest lens is the identity. It does nothing in the
get direction and copies the whole abstract tree in the put
direction.

PLAN-X 2004 Informal Proceedings

id "¢
id\/(a, ¢)

|
2o

Another simple lens is the constant lens, const ¢ d, which
transforms any tree into the provided constant ¢ in the get
direction. In the put direction, it is defined iff the abstract
tree is equal to t.> In this case, the put function of const
simply restores the old concrete tree if it is available; if the
old concrete tree is missing (), the put function returns a
default tree d.

(const td), "¢ = t
(const t d)\((a,c) = ¢ ifa=tand c#Q
d ifa=tand c=Q
undef. otherwise

The lens composition combinator [; k places two lenses [
and k in sequence.

k) ¢ = k1 ¢
BB) = INGEN(6 L 0, ¢) et
IN(EN\(a,Q),Q) ifec=Q

The get direction applies the get function of | to yield a
first abstract tree, on which the get function of k is applied.
In the put direction, if a concrete tree is available, the put
functions are applied in turn: first, the put function of k is
used to put a into the concrete tree that the get of k was
applied to, i.e., [/ ¢; the result of this put is then put into
c using the put function of [. If the concrete tree is missing,
then k is used to put a into the missing tree and then [to
put the result again into the missing tree.

Atomic Lenses

The rename lens changes the names of the immediate chil-
dren of a tree according to some bijection b on names.

(rename b) ¢ = b(n)+— c(n)
(rename b) \,(a, ¢) = b7 '(n)+— a(n)
In examples, we use the notation
{’h3’ = ’name’ ’dl’ = ’contents’}

for the bijection that maps *h3’ to ’name’, ’name’ to *h3’,
’d1l’ to ’contents’, and ’contents’ to ’dl’.

In practice, one also sometimes wants a “deep rename”
lens that changes all the names in a tree, rather than just
the immediate children of the root; this can be defined from
rename using map and recursion.

The lens hoist n is used to “shorten” a tree by removing
an edge. In the get direction, it expects a tree that has
exactly one child, named n. It returns this child, removing
the edge n. In the put direction, the value of the concrete
tree is ignored and a new tree is created, with a single edge
n pointing to the given abstract tree.

(hoist n) ¢ = ¢t ifc= n—t
undef. otherwise

(hoist n) \,(a,¢c) = nr—a

3By the PUTGET law, this is the only possible
definition: if comnsttd\,(a,c) is defined, then
const t d,/ (const t d\,(a, ¢)) =a ="1.

87

The lens pivot n rearranges the structure at the top of a
tree.

nr—

. becomes k—t

Intuitively, the value {k — {}} under n represents a key k
(a name uniquely identifying the tree) for the rest of the
tree t. The get function of pivot returns a tree where k
points directly to t. The put function performs the reverse
transformation, ignoring the old concrete tree.

(pivot n) "¢ = kr—t ifc= ?'_) K
undef. otherwise
(pivot n) \,(a, c) = ?H k ifa= k—t
undef. otherwise

Lens Combinators

The lens combinator xfork is
used to apply different lenses
to different parts of a tree.
Intuitively, it splits a tree
into two parts according to
the names of its immediate
children. It then applies one pa pa
lens to the first part and an- /T(ll/‘)

other lens to the other part

and concatenates the results. pc pe
Formally, xfork takes as ar- . =7

guments two predicates on e .ll

names and two lenses. The

get direction of xfork pc pa

l1 lo can be visualized as in the inset figure (the concrete
tree is at the bottom). The triangles labeled pc denote trees
whose immediate child edges have labels satisfying pc; dot-
ted arrows represent splitting or concatenating trees. The
result of applying l1 / to c|pc (the tree formed by dropping
the immediate children of ¢ whose names do not satisfy pc)
must be a tree whose top-level labels satisfy the predicate pa,
and, similarly the result of applying l2 / to ¢|pe must satisfy
pa. That is, the lenses I; and [l are allowed to change the
sets of names in the trees they are given, but each must map
from its own part of pc to its own part of pa. Conversely, in
the put direction, l; must map from pa to pc and Il from pa
to pc. Formally:

7

74

(xfork pcpaly l2),/c =
(I clpe) + (I clpe) if (1)
undef. otherwise
(xfork pc pa l1 12) \\(a, c) =
(I \ (alpa, clpe)) + (I2 \ (alpa, clpe)) if (2)

undef. otherwise

(1) dom(li /clpe) € pa
and dom(l2,c|zz) C Pa
) d0m81 N\ (alpa; Clpc)%

C pc
and dom(l2 \ (alpa, clpe)) C Pe

We now define our last primitive lens and only iterator,
map. This is a combinator that, in the get direction, applies
a given lens [one level deeper in the tree, leaving the top of

PLAN-X 2004 Informal Proceedings

the tree intact.

ny — t1 ny — l/‘ t1
becomes
ng — ti ne — 1tk

The put direction of map is more interesting. In the simple
case where a and ¢ have equal domains, the definition is

straightforward:
ni — l\ (t17 t/l)

The general case is a bit more involved. If (map 1)\ (a, ¢)
is defined, then, by rule PUTGET, we should have
(map 1) /" ((map I) \\ (a, ¢)) = a. Thus we necessarily have
dom((map !) \, (a, ¢)) = dom(a). Children bearing names
that occur both in dom(a) and dom(c) are dealt with as de-
scribed above. Children bearing names that only occur in
dom(c) are dropped. Children of a that have names that
only appear in dom(a) need to be passed through [so that
they can be included in the result; to do this, we need to
put them into some concrete tree. No suitable tree can
be obtained from ¢, as there is no corresponding child in
¢, so instead these abstract trees are put into the missing
tree).

/
ni — t1 ni — 11

(map 1)\ BEG =

ne — ti nkl—>t;c

nw—1,/c(n) n € dom(c)

n =1\ (a(n), ¢(n))

n € dom(a) N dom(c)
n— 1\ (a(n), Q)

n € dom(a) \ dom(c)

(map 1) /¢ =

(map 1)\ (a, ¢)

Interestingly, the map combinator does not obey the Pur-
PuT law. Consider a lens | and (a,c¢) € dom(I\) such that

I\ (a, ¢) #1\,(a,). We have

(map [) \, ({n — a}, ((map)\
(map [) \. ({n — a}, {})
{fn—iN(a, @)}

{fn—1IN(a o)}

(map I) \, ({n — a}, {n—c}).

Intuitively, there is a difference between, on the one hand,
modifying a child n and, on the other, removing it and then
adding it back: in the first case, any information in the
concrete view that is “projected away” in the abstract view
will be carried along to the new concrete view; in the second,
such information will be replaced with default values.
Another point to note is the relation between the map lens
combinator and the missing tree 2. The put function of
every other lens combinator only results in a put into the
missing tree if the combinator itself is called on Q. In the
case of map [, calling its put function on some a and ¢ where
c is not the missing tree may result in the application of the
put of [to 2 if a has some children that are not in ¢. In an
earlier version of Focal, we dealt with missing children by
providing a default concrete child tree to map, which would
be used when no actual concrete tree was available. How-
ever, we discovered that, in practice, it is often difficult to
find a single default concrete tree that fits all possible ab-
stract trees, particularly because of xfork (where different

({} {n—=¢}))

S

88

lenses are applied to different parts of the tree) and recur-
sion (where the depth of a tree is unknown). We tried pa-
rameterizing this default concrete tree by the abstract tree
and the lens, but noticed that most primitive lenses ignore
the concrete tree when defining the put function, as enough
information is available in the abstract tree. The natural
choice for a concrete tree parameterized by a and | was thus
I\ (a,), for some special tree Q. The only lens for which
the put function needs to be defined on €2 is const, as it is
the only lens that discards information. This led us to the
present design, where the const lens expects a default tree
d. This approach is much more “local” than the others we
tried, since one only needs to provide a default tree at the
exact point where information is discarded.

4.3 Derived Lenses

We now derive some useful lenses from the primitive ones of
Section 4.2. Most of the lenses defined here and in Section
4.4 are used in the example of Section 5. Note that these
derived lenses are all well behaved by construction.

In many uses of xfork, the predicates specifying where to
split the concrete tree and where to split the abstract tree
are identical. We define the simpler fork as:

fork p l1 lo = xfork p p l1 l2

We may now define a lens that discards all of the children
of a tree that do not satisfy some predicate p:

filter p d = fork p id (const {} d)

In the get direction, this lens takes a concrete tree, keeps
the part of the tree whose children have names in p (using
the lens id), and throws away the rest of the tree (using the
lens const {} d). The default tree d is used when putting
an abstract tree into a missing concrete tree. It provides
a default for the information that does not appear in the
abstract tree and is necessary to build a concrete tree.
Another way to filter, or prune, a tree is to explicitly
specify a child that should be removed from the tree:

prune n d = fork {n} id (const {} {n — d})

This lens is very similar to filter, with two differences:
the name given is the one of the child to be removed, thus
the predicate “all other names” {n} must be built, and the
default tree is the one to go under n if the concrete tree is
missing.
The next lens is useful to focus on a single child n:
focus n d = (filter {n} d); (hoist n)
In the get direction, it filters away all other children, then
removes the edge n to return the corresponding subtree. As
usual, the default tree is only used in case of creation, where
it is the default for children that have been filtered away.
It is often useful to restrict the action of map to a subset
of all children of a tree using a predicate p.

mapp p | = fork p (map /) id

This lens splits the tree in two according to the predicate
p, applies map to the first half, and passes the rest through
unmodified.

In order to apply different lenses to different parts of
the tree and concatenate the results, we define the lens

PLAN-X 2004 Informal Proceedings

dispatch, parameterized on a list of tuples each contain-
ing a concrete predicate, an abstract predicate, and a lens:

dispatch [] = id
dispatch (pc, pa,l) :: rest = xfork pc pa | (dispatch rest)

In the get direction, dispatch considers the first tuple (pe,
pa, 1). It splits the concrete tree according to pc and applies
[to it. It recurses with the rest of the tuples and the rest
of the tree, and concatenates the results back together. A
typical use of dispatch is as a conditional, assuming all the
lenses it uses return the empty tree when given the empty
tree (see for instance the item lens in Figure 3).

4.4 Lists

XML and many other concrete data formats make heavy use
of ordered lists. We describe in this section how we repre-
sent lists, using a standard cons cell encoding, and introduce
some derived lenses to manipulate them.

4.4.1 Definition: A tree t is a list iff either it is empty or
else it has exactly two children, one named *h and another
named ¢, and t(xt) is also a list.

In the following, we use the lighter notation [ti...%x]
(writing, in displays, ¢1 through ¢, vertically and dropping
the closing bracket) for the tree

*h +— tq
*h +— to

* *
t= *t — R h—t,
*t.

‘We now define some lenses to work on lists. The first ones
extract the head or the tail of the list.

hd d = focus {*h} {*t — d}
tl d = focus {*t} {*h +— d}

The lens hd expects a default tree which will be the tail of
the created tree if the concrete tree is missing. In the get
direction, the lens hd returns the tree under name *h. The
lens t1 works analogously

The map_list lens iterates over a list, applying its argu-
ment to every element of the list:

map-list | = mapp {*h} [; mapp {*t} (map_list)

This lens simply applies [to every child named *h and re-
curses on every child named *t.

We close by defining a lens that transforms a list into a
“bush,” flattening it. Such a lens may only be defined on
lists of trees that have pairwise-disjoint domains. Depending
on whether the order matters if creation occurs, two such
lenses may be defined. One lens, flatten (not shown here),
does not care about the order when putting an abstract tree
into a missing concrete tree, and the resulting list has an
arbitrary order. The other, hoist_list, expects a list of
(pairwise-disjoint) predicates describing the elements of the
list: each view in the list must satisfy the corresponding
predicate in the predicate list. The predicate list indicates,
in the put direction, the position in the list where each child
of the flattened bush should be put.

hoist_list [] = id
hoist_list p:: rest = xfork {*h} p
(hoist {*h})
(hoist {*t}; hoist_list rest)

89

{x ->
[{html -> {* ->
[{head -> {* -> [{title ->
{x ->
[{PCDATA -> Bookmarks}]}}1}}
{body > {* —>
[{h3 -> {* —>
[{PCDATA -> Bookmarks Folder}]}}
{d1 > {x >
[{dt > {x ->
[{a => {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]}}
{dd -> {x ->
[{h3 -> {* -> [{PCDATA —>
Conferences Folder}]}}
{d1 -> {*x —>
[{dt -> {x —>
[{a —>
{* -> [{PCDATA -> POPL}]
add_date -> 1032528670
href -> cristal.inria.fr/POPL2004
FRIFFIFFIFFIFRIFIIAAY

Figure 1: Bookmarks (concrete tree)

5. ABOOKMARK LENS

With these definitions in hand, we are ready to develop an
extended example of programming in Focal. The example
comes from a demo application of our data synchronization
framework, Harmony, in which bookmark information from
diverse browsers, including Internet Explorer, Mozilla, Sa-
fari, Camino, and OmniWeb, is synchronized by transform-
ing each format from its concrete native representation into
a common abstract form. We show here a slightly simplified
form of the Mozilla lens, which handles the HTML-based
bookmark format used by Netscape and its descendants.
The overall path taken by the bookmark data through
the Harmony system can be described as follows. Harmony
first uses a generic HTML reader to transform the HTML
bookmark file into an isomorphic concrete tree. This con-
crete tree is then transformed, using the get direction of the
bookmark lens, into an abstract “generic bookmark tree.”
The abstract tree is synchronized with some other abstract
bookmark tree (obtained from some other bookmark file by
transforming its native format using an appropriate lens, not
shown here), yielding a new abstract tree, which is trans-
formed into a new concrete tree by passing it back through
the put direction of the bookmark lens (supplying the original
concrete tree as the second argument). Finally, the new con-
crete tree is written back out to the filesystem as an HTML
file. We now discuss these transformations in detail.
Abstractly, bookmark data has this recursive structure:
an item is either a link, with a name and a url, or a folder
with a name and a contents, which is a list of items. Con-
cretely, in HTML, a bookmark item is represented by a <dt>
element containing an <a> element whose href attribute
gives the link’s url and whose content defines the name. The
<a> element also includes an add_date attribute, which we
have chosen not to reflect in the abstract form because it is

PLAN-X 2004 Informal Proceedings

{name -> Bookmarks Folder
contents ->
[{1ink -> {name -> Google
url -> www.google.com}}
{folder —>
{name -> Conferences Folder
contents ->
[{1ink —>
{name -> POPL
url -> cristal.inria.fr/POPL2004}}]1}}1}

Figure 2: Bookmarks (abstract tree)

link = rename {dt = link};
map (hoist *;
hd {};
hoist a;
rename {href = url * = namel};
prune add_date {$today};
mapp {name} (hd {}; hoist PCDATA))

folder = rename {dd = folder};
map (hoist *; folder_contents)

folder_contents =
hoist_list [{h3} {d1}];
rename {h3 = name dl = contents};
mapp {name} (hoist *; hd {}; hoist PCDATA);
mapp {contents} (hoist *; map_list item)

item =
dispatch [({dd},{folder},folder)
({dt},{link},link)]

bookmarks =
hoist *; hd {}; hoist html; hoist *;
tl {head -> {* -> [{title -> {x ->
[{PCDATA -> Bookmarks}]}}1}};
hd {}; hoist body; hoist *;
folder_contents

Figure 3: Bookmark lenses

not supported by all browsers. A bookmark folder is repre-
sented by a <dd> element containing an <h3> header (giving
the folder’s name) followed by a <d1> list containing the
sequence of items in the folder. The whole HTML book-
mark file follows the standard <head>/<body> form, where
the contents of the <body> have the format of a bookmark
folder, without the enclosing <dd> tag.

The generic HTML reader and writer know nothing about
the specifics of the bookmark format; they simply transform
between HTML syntax and trees in a mechanical way, map-
ping an HTML element named tag, with attributes attri
to attrm and sub-elements subeltl to subeltn,

<tag attril="vall" . attrm="valm">
subeltl ... subeltn
</tag>

90

into a tree of this form:

attrl — vall

attrm — valm

tag — subeltl

subeltn

Note that the sub-elements are placed in a list under a distin-
guished child named *. This preserves their ordering from
the original HTML file. (The ordering of sub-elements is
sometimes important—e.g., in the present example, it is
important to maintain the ordering of the items within a
bookmark folder. Since the HTML reader and writer are
generic, they always record the ordering from the the origi-
nal HTML in the tree, leaving it up to whatever lens is ap-
plied to the tree to throw away ordering information where
it is not needed; the flatten lens described in Section 4.4
provides one convenient way to do this.) A leaf of the HTML
document—i.e., a “parsed character data” element contain-
ing a text string str—is converted to a tree of the form
{PCDATA -> str}. Figure 1 shows a tree representing a
small bookmark file.

The transformation between this concrete tree and the ab-
stract bookmark tree shown in Figure 2 is implemented by
means of the collection of lenses shown in Figure 3. Most of
the work of these lenses involves (in the get direction) strip-
ping out various extraneous structure and then renaming
certain branches to have the desired “field names.” Con-
versely, the put direction restores the original names and
rebuilds the necessary structure.

In practice, composite lenses are developed incrementally,
gradually massaging the trees into the correct shape. Fig-
ure 4 shows the process of developing the link lens above
by transforming the representation of the HTML <dt> ele-
ment containing a link into the desired abstract form. At
each level of the structure, tree branches are relabeled with
rename, undesired structure is removed with prune, hoist,
and/or hd, and then work is continued at a lower level via
map or mapp.

The put direction of the 1ink lens restores original names
and structure automatically, by composing the put direc-
tions of the constituent lenses of link in turn. For ex-
ample, suppose the abstract link tree at the bottom right
of Figure 4 were updated to change name from Google to
Search-Engine. The put direction of the hoist PCDATA lens,
corresponding to moving from step iz to step viii in Figure 4,
puts the updated string in the abstract tree back into a more
concrete tree by replacing Search-Engine with {PCDATA ->
Search-Engine}. In the transition from step vii to step vi,
the put direction of prune add-date {$today} utilizes the
concrete tree to restore the value, add_date -> 1032458036,
projected away in the abstract tree. If the concrete tree had
been €, in the case of a new bookmark added in the new
abstract tree, then the default argument {$today} would
have been used to fill in today’s date. (Formally, the whole
set of lenses is parameterized on the variable $today, which
ranges over names.)

In a manner similar to the 1ink lens, the get direction of
the folder lens renames the <dd> tag to folder, then pro-
ceeds to separate out the folder name and its contents, strip-

PLAN-X 2004 Informal Proceedings

Step Lens expression

Resulting abstract tree (from ’get’)

20 id

{dt -> {x —>
[{a —> {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]}}

ii: rename {dt = link}

{link -> {x ->
[{a -> {* -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]}}

41%: rename {dt = link};
map (hoist *)

{link -> [{a -> {x -> [{PCDATA -> Google}]
add_date -> 1032458036
href -> www.google.com}}]}

iw: rename {dt = link};
map (hoist *;

{link -> {a -> {* -> [{PCDATA -> Googlel}]
add_date -> 1032458036

hd {}) href -> www.google.com}}}
v: rename {dt = link}; {link -> {* -> [{PCDATA -> Googlel}]
map (...; hd {}; add_date -> 1032458036
hoist a) href -> www.google.com}}
vi: rename {dt = link}; {link -> {name -> [{PCDATA -> Google}]
map (... ; hoist a; add_date -> 1032458036

rename {* = name, href = url})

url -> www.google.com}}

vii: rename {dt = link};
map (...; rename {* = name, href = url};
prune add_date {$today})

{1ink -> {name -> [{PCDATA -> Googlel}]
url -> www.google.com}}

viti: rename {dt = link};
map (...; prune add_date {$today};
mapp {name} (hd {}))

{link -> {name -> {PCDATA -> Google}
url -> www.google.com}}

ir: rename {dt = link};
map (...; mapp {name} (hd {};
hoist PCDATA))

{link -> {name -> Google
url -> www.google.com}}

Figure 4: Building up a link lens incrementally.

ping out undesired structure where necessary. (We have sep-
arated out the content processing into the folder_contents
lens for the sake of code reuse, since the top-level book-
mark file itself looks almost like a folder.) Note the use of
hoist_list instead of flatten to access the <h3> and <d1>
tags containing the folder name and contents respectively;
although the order of these two tags does not matter to us,
it matters to Mozilla, so we want to ensure that the put
direction of the lens puts them to their proper position in
case of creation. Finally, we use map_list to iterate over the
contents.

The item lens processes one element of a folder’s con-
tents; this element might be a link or another folder, so
we want to either apply the 1link lens or the folder lens.
Fortunately, we can distinguish them by whether they are
contained within a <dd> element or a <dt> element, and we
use dispatch to call the correct sublens.

The main lens is bookmarks, which (in the get direction)
takes a whole concrete bookmark tree, strips off the boil-
erplate header information using a combination of hoist,
hd, and t1, and then invokes folder_contents to deal with
the rest. The huge default tree supplied to the t1 lens cor-
responds to the head tag of the html document, which is
filtered away in the abstract bookmark format. This de-
fault tree would be used to recreate a well-formed head tag
if it was missing in the original concrete tree.

6. RELATED WORK

Focal is the product of a long odyssey through a large design
space, driven by the practical needs of the Harmony system

91

as it evolved. The overall architecture of Harmony and the
role of lenses in building synchronizers for various forms of
data are described in [25], along with a detailed discussion
of related work on synchronization.

Our foundational structures—lenses and their laws—are
not new: closely related structures have been studied for
decades in the database community. However, our “pro-
gramming language treatment” of these structures has led
us to a formulation that is arguably simpler (transforming
states rather than “update functions”) and more refined in
its treatment of partiality. Our formulation is also novel in
considering the issue of continuity (not addressed in earlier
work), thus supporting a rich variety of surface language
structures including definition by recursion.

The idea of defining a programming language for con-
structing bi-directional transformations has also been ex-
plored previously. However, we appear to be the first to
have connected it with a formal semantic foundation, choos-
ing primitives that can be combined into composite lenses
whose well-behavedness is guaranteed by construction.

6.1 Foundations of View Update

The foundations of view update translation were studied
intensively by database researchers in the late '70s and ’80s.
This thread of work is closely related to our semantics of
lenses in Section 3.

Dayal and Bernstein [11] gave a seminal formal account
of the theory of “correct update translation.” Their notion
of “exactly performing an update” corresponds to our PuT-
GET law. Their “absence of side effects” corresponds to our

PLAN-X 2004 Informal Proceedings

GETPUT and PUuTPUT laws. Their requirement of preserva-
tion of semantic consistency corresponds to the partiality of
our put functions.

Bancilhon and Spyratos [6] developed an elegant seman-
tic characterization of the update translation problem, in-
troducing the notion of complement of a view, which must
include at least all information missing from the view. When
a complement is fixed, there exists at most one update of
the database that reflects a given update on the view while
leaving the complement unmodified—i.e., that “translates
updates under a constant complement”. In general, a view
may have many complements, each corresponding to a pos-
sible strategy for translating view updates to database up-
dates. The problem of translating view updates then be-
comes a problem of finding, for a given view, a suitable
complement.

Gottlob, Paolini, and Zicari [14] offered a more refined
theory based on a syntactic translation of view updates.
They identified a hierarchy of restricted cases of their frame-
work, the most permissive form being their “dynamic views”
and the most restrictive, called “cyclic views with constant
complement,” being formally equivalent to Bancilhon and
Spyratos’s update translators.

Recent work by Lechtenborger [19] establishes that trans-
lations of view updates under constant complements are pos-
sible precisely if view update effects may be undone using
further view updates.

In a companion paper [24], we establish a precise corre-
spondence between our definition of lenses and the struc-
tures studied by Bancilhon and Spyratos and by Gottlob,
Paolini, and Zicari. Briefly, our set of very well behaved
lenses is isomorphic to the set of translators under constant
complement in the sense of Bacilhon and Spyratos, while
our set of well-behaved lenses is isomorphic to the set of dy-
namic views in the sense of Gottlob, Paolini, and Zicari. To
be precise, both of these results must be qualified by an ad-
ditional condition regarding partiality. The frameworks of
Bacilhon and Spyratos and of Gottlob, Paolini, and Zicari
are both formulated in terms of translating update functions
on A into update functions on C, i.e., their put functions
have type (A — A) — (C — ('), while our lenses trans-
late abstract states into update functions on C, i.e., our
put functions have type (isomorphic to) A — (C — C).
Moreover, in both of these frameworks, “update translators”
(the analog of our put functions) are defined only over some
particular chosen set U of abstract update functions, not
over all functions from A to A. These update translators
return total functions from C' to C. Our put functions, on
the other hand, are more general as they are defined over
all abstract states and return partial functions from C' to
C. Finally, the get functions of lenses are allowed to be par-
tial, whereas the corresponding functions (called wviews) in
the other two frameworks are assumed to be total. In order
to make the correspondences tight, the sets of well-behaved
and very well behaved lenses need to be restricted to subsets
that are “total” in a suitable sense.

The view update problem has also been studied in the
context of object-oriented databases. School, Laasch, and
Tresch [27] restrict the notion of views to queries that pre-
serve object identity. The view update problem is greatly
simplified in this setting, as the objects contained in the
view are the objects of the database, and an update on the
view is directly an update of objects of the database.

92

6.2 Updates for Relational Views

Research on view update translation in the database litera-
ture has tended to focus on taking an existing language (e.g.,
relational algebra) for defining get functions and then con-
sidering how to infer (either automatically or with some pro-
grammer assistance) corresponding put functions. By con-
trast, we have designed a completely new language in which
the definitions of get and put go hand-in-hand. Our ap-
proach also goes beyond classical work in the relational set-
ting by directly transforming and updating tree-structured
data, rather than flat relations. (Of course, trees can be
encoded as relations, but it is not clear how the opera-
tions we consider could be expressed using the recursion-
free relational languages considered in previous work in this
area.) Conversely, the problem we address here is easier
because our language lacks an analog of relational join, a
major source of update ambiguity in the relational world.
(We have not yet encountered a need for join in the setting
in which Focal is being used—transforming trees to render
them suitable for synchronization.) We briefly review the
most relevant research from the relational setting.

Masunaga [20] described an automated algorithm for
translating updates on views defined by relational algebra.
The core idea was to annotate where the “semantic ambi-
guities” arise, indicating they must be resolved either with
knowledge of underlying database semantic constraints or
by interactions with the user.

Keller [17] outlined all possible strategies for handling up-
dates to a select-project-join view, and showed that these
are exactly the set of translations that satisfy a small set
of intuitive criteria. He later [18] proposed allowing users
to choose an update translator at view definition time by
engaging in an interactive dialog with the system and an-
swering questions about potential sources of ambiguity in
update translation. Building on this foundation, Barsalou,
Siambela, Keller, and Wiederhold [7] described a scheme
for interactively constructing update translators for object-
based views of relational databases.

Medeiros and Tompa [21] presented a design tool for ex-
ploring the effects of choosing a view update policy. This
tool shows the update translation for update requests sup-
plied by the user; by considering all possible valid concrete
states, the tool predicted whether the desired update would
in fact be reflected back into the view after applying the
translated update to the concrete database.

Atzeni and Torlone [5, 4] described a tool for translating
views and observed that if one can translate any concrete
view to and from a meta-model (shared abstract view), one
then gets bi-directional transformations between any pair of
concrete views. They limited themselves to mappings where
the concrete and abstract views are isomorphic.

A variety of complexity results have been shown for dif-
ferent versions of the view update inference problem. In
one of the earliest, Cosmadakis and Papadimitriou [9, 10]
considered the view update problem for a single relation,
where the view is a projection of the underlying relation,
and showed that there are polynomial time algorithms for
determining whether insertions, deletions, and tuple replace-
ments to a projection view are translatable into concrete
updates. More recently, Buneman, Khanna, and Tan [8] es-
tablished a variety of intractability results for the problem
of inferring “minimal” view updates in the relational setting
for query languages that include both join and either project

PLAN-X 2004 Informal Proceedings

or union.

Another body of work that is sometimes mentioned in
connection with view update translation is the problem of
incremental view maintenance (e.g., [3])—efliciently recal-
culating an abstract view after a small update to the un-
derlying concrete view. Although the phrase “view update
problem” is sometimes (confusingly) used for work in this
domain, there is little technical connection with our prob-
lem of translating view updates to updates on an underlying
concrete structure.

6.3 Languages for View Update

In the programming languages literature, laws similar to
our lens laws (but somewhat simpler, dealing only with to-
tal get and put functions) appear in Oles’ category of “state
shapes” [23] and in Hofmann and Pierce’s work on “pos-
itive subtyping” [16]. Another related idea, proposed by
Wadler [30], extended algebraic pattern matching to ab-
stract data types using programmer-supplied in and out op-
erators. This is essentially the special case of our lenses in
which the get and put functions always form an isomorphism.

Abiteboul, Cluet, and Milo [1] defined a declarative lan-
guage for describing correspondences between parts of trees
in a data forest. In turn, these correspondence rules can be
used to translate one tree format into another through non-
deterministic Prolog-like computation; however, this pro-
cess requires an isomorphism between the two data formats
(again, a special case of our lenses).

The same authors [2] later defined a system for bi-
directional transformations based around the concept of
structuring schemas (parse grammars annotated with se-
mantic information). Thus their get involved parsing,
whereas their put consisted of “unparsing.” Again, to re-
solve ambiguous abstract updates, they restrict themselves
to lossless grammars that define an isomorphism between
concrete and abstract views.

Ohori and Tajima [22] developed a statically-typed poly-
morphic record calculus for defining views on object-oriented
databases. They specifically restricted which fields of a view
are updatable, allowing only those with a ground (simple)
type to be updated, whereas our lenses can accommodate
structural updates as well.

6.4 Updates and Trees

There have been many proposals for query languages for
trees (e.g., XQuery [13] and its forerunners, UnQL, StruQL,
and Lorel), but these either do not consider the view update
problem at all or else handle update only in situations where
the abstract and concrete views are isomorphic.

For example, Braganholo, Heuser, and Vittori [12], and
Braganholo, Davidson, and Heuser [29] studied the prob-
lem of updating relational databases “presented as XML.”
Their solution requires a 1:1 mapping between XML view
elements and objects in the database, to make view updates
unambiguous.

Tatarinov, Ives, Halevy, and Weld [28] described a mech-
anism for translating updates on XML structures that are
stored in an underlying relational database. In this setting
there is again an isomorphism between the concrete rela-
tional database and the abstract XML view, so updates are
unambiguous—rather, the problem is choosing the most effi-
cient way of translating a given XML update into a sequence
of relational operations.

93

7. FUTURE WORK

Our interest in bi-directional tree transformations arose in
the context of our data synchronization framework, Har-
mony. We are currently developing a number of additional
synchronizers as instances of Harmony; this exercise pro-
vides valuable stress-testing for both the concrete Focal lan-
guage and its formal foundations. Further ahead, we see a
number of opportunities for future work.

7.1 Expressiveness

We have not yet addressed the important question of the
ezpressiveness or completeness of our approach.

To begin with, the Focal language—i.e., the particular
collection of lenses and lens combinators described in Sec-
tion 4—is certainly mot complete, in the sense that any tree
transformation that might ever be required in the context
of XML synchronization can be described in it. For exam-
ple, Focal includes no facilities for string manipulation (e.g.,
concatenation of node labels), for arithmetic, etc., etc. For-
tunately, our goal for Focal in the context of the Harmony
system is modest: we do not hope to capture all conceivable
tree transformations, but just to be able to express 99% of
the ones needed to build a range of synchronizer instances.
As in most high-level programming languages, we expect,
occasionally, to need to drop down to a lower level language
to code some special-purpose “native function” to be used
as a new primitive in the high-level language. In Focal, this
simply means implementing a pair of get and put functions
and declaring this pair to be a lens; the obligation of verify-
ing that the lens laws are satisfied rests on the programmer.
In the early days of constructing and using the Harmony pro-
totype, we added new lenses (and lens combinators) fairly
often. Lately, we do it rather rarely.

Nevertheless, from a theoretical perspective the question
of expressiveness is of obvious interest—and, we have found,
quite challenging.

To get at the question, we might first think of trying to
show that, if we project out the get functions from all the
lenses expressible in Focal (or some other language sharing
Focal’s basic goal of guaranteeing that the lens laws are sat-
isfied by construction for all expressible lenses), we obtain
a class C' of tree transformations that is previously known
or, at least, easily characterizable. That is, we would like to
show that Focal is complete for C.

However, by itself, this form of completeness is uninterest-
ing. To see this, take an arbitrary set G of get functions—
i.e., of partial functions from C' to A. For every g € G, we
can define a put function p from A x C' to C such that (g, p)
is immediately a well-behaved lens: for every a,c € A x C,
if g(¢) = a then p(a,c) = ¢, otherwise p is undefined. This
lens language is complete (the first projection of the set of
lenses contains every desired get function), but useless: for
every concrete view ¢, a put function can only push back
the abstract view obtained from ¢, and no other. In other
words, these lenses solve the view update problem for the
trivial case where there is no update of the view!

Clearly, in order for completeness to mean anything in-
teresting, we must make stronger demands on the put func-
tions of a complete set of lenses: they should be able to
put back “enough” abstract views into each concrete view.
We can formalize this notion by saying that a lens is closed
if every abstract view generated by its get function can be
put into every concrete view accepted by its get function,

PLAN-X 2004 Informal Proceedings

that is when dom(I\,) 2 ran({”) x dom(l). For our syn-
chronization application, this property is both necessary and
sufficient: if one replica has not changed since the previous
synchronization, then Harmony will completely overwrite its
abstract view with the abstract view from the other replica;
thus, the abstract argument to the put function may be any
abstract view that can be obtained from the get function (of
the other replica).

We conjecture that the lenses defined in this paper are all
closed. In view of this, it seems reasonable to add the closure
requirement as an additional lens law. Indeed, doing so
actually seems to simplify the development in several places.

Having discussed closure, we must again face the question
of completeness. The approach we are currently pursuing
is twofold. First, continue a practical exploration based on
the development of many synchronizers, adding primitives
to Focal as they become necessary. Second, consider a more
theoretical approach based on the classical framework of tree
transducers (over ranked, node-labeled trees)—i.e., try to
find some tree-transducer-like syntax for binary put func-
tions (we call them “tree combiners”), with the property
that, for every definable tree combiner p, we can find an or-
dinary tree transducer g (drawn from some well-known class
such as linear, top-down, finite-lookahead transducers) such
that (g,p) satisfies the lens laws. So far, though, we have
been able to create such correspondences only for extremely
simple classes of transducers.

7.2 Static Analysis

From a programming point of view, a static type system
for views and Focal programs would be useful, particularly
when building large and complicated lenses. Such a type
system would allow the programmer to express the well-
formedness of certain views (e.g., “this tree should have ex-
actly one child, named foo (because I want to hoist it)”).
We also plan to address other questions related to static
analysis of lenses. For instance, can we characterize the com-
plexity of Focal programs? Is there an algebraic theory of
lens combinators that would underpin optimization of Focal
programs in the same way that the relational algebra and
its algebraic theory are used to optimize relational database
queries? (For example, the combinators we have described
here have the property that map l1; map l2 = map (I1;12) for
all [; and Iz, but the latter should run substantially faster.)

7.3 Lens Inference

It would be useful to generate lens programs automatically
from schemas for concrete and abstract views, or by infer-
ence from a set of pairs of inputs and desired outputs (“pro-
gramming by example”). Such a facility could perhaps do
most of the work for a programmer wanting to add synchro-
nization support for a new application (where the abstract
form was already defined, for example), leaving just a few
spots to fill in.

7.4 Beyond Trees

A growing body of work deals with the problem of translat-
ing between heterogeneous representations of similar data
to enable different applications to cooperate. Such repre-
sentations (e.g. directed graphs and XML) are a superset
of the concrete views (namely trees) that we handle. Al-
though much of this work (one way transformations that do
not address the update problem) is not directly relevant to

94

Focal, it may be useful as a set of examples against which
to compare the expressiveness of Focal. Further, one class
of proposed solutions uses schema matching (as well as rep-
resentation mapping and model mapping) to perform all or
part of the translation automatically. We may be able to
employ similar methods to automatically construct lenses
to translate between two given views.

Finally, we would like to experiment with instantiating our
semantic framework with relations instead of trees, thereby
establishing a closer link with existing research in databases.

Acknowledgements

The Harmony project was begun in collaboration with Zhe
Yang; Zhe contributed numerous insights whose generic ma-
terial can be found (generally in much-recombined form) in
this paper. Trevor Jim provided the initial push to start
the project by observing that the next step beyond the Uni-
son file synchronizer (of which Trevor was a co-designer)
would be synchronizing XML. Conversations with Nate Fos-
ter, Owen Gunden, Martin Hofmann, Zack Ives, Sanjeev
Khanna, William Lovas, Kate Moore, Cyrus Najmabadi,
and Steve Zdancewic helped us sharpen our ideas. Serge
Abiteboul, Zack Ives, Dan Suciu, and Phil Wadler pointed us
to related work. We would also like to thank Karthik Bhar-
gavan, Vanessa Braganholo, Peter Buneman, Owen Gunden,
Michael Hicks, Zack Ives, Trevor Jim, Kate Moore, Wang-
Chiew Tan, Stephen Tse, Zhe Yang, and the anonymous
referees for very helpful comments on earlier drafts of this
paper.

The Harmony project is supported by the National Sci-
ence Foundation, grant ITR-0113226, Principles and Prac-
tice of Synchronization.

8. REFERENCES

[1] S. Abiteboul, S. Cluet, and T. Milo. Correspondence
and translation for heterogeneous data. In Proceedings
of 6th Int. Conf. on Database Theory (ICDT), 1997.

[2] S. Abiteboul, S. Cluet, and T. Milo. A logical view of
structure files. VLDB Journal, 7(2):96-114, 1998.

[3] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and
J. L. Wiener. Incremental maintenance for
materialized views over semistructured data. In Proc.
24th Int. Conf. Very Large Data Bases (VLDB), 1998.

[4] P. Atzeni and R. Torlone. Management of multiple
models in an extensible database design tool. In
Proceedings of EDBT’96, LNCS 1057, 1996.

[5] P. Atzeni and R. Torlone. MDM: a multiple-data
model tool for the management of heterogeneous
database schemes. In Proceedings of ACM SIGMOD,
Ezxhibition Section, pages 528-531, 1997.

[6] F. Bancilhon and N. Spyratos. Update semantics of
relational views. TODS, 6(4):557-575, 1981.

[7] T. Barsalou, N. Siambela, A. M. Keller, and
G. Wiederhold. Updating relational databases through
object-based views. In PODS’91, pages 248-257, 1991.

[8] P. Buneman, S. Khanna, and W.-C. Tan. On
propagation of deletions and annotations through
views. In PODS’02, pages 150-158, 2002.

[9] S. S. Cosmadakis. Translating updates of relational
data base views. Master’s thesis, Massachusetts
Institute of Technology, 1983. MIT-LCS-TR-284.

PLAN-X 2004 Informal Proceedings

[10] S. S. Cosmadakis and C. H. Papadimitriou. Updates
of relational views. Journal of the ACM,
31(4):742-760, 1984.

[11] U. Dayal and P. A. Bernstein. On the correct
translation of update operations on relational views.
TODS, 7(3):381-416, September 1982.

[12] V. de Paula Braganholo, C. A. Heuser, and C. R. M.
Vittori. Updating relational databases through XML
views. In Proc. 3rd Int. Conf. on Information
Integration and Web-based Applications and Services
(ITWAS), 2001.

[13] P. Fankhauser, M. Ferndndez, A. Malhotra, M. Rys,
J. Siméon, and P. Wadler. XQuery 1.0 Formal
Semantics. http://www.w3.org/TR/
query-semantics/, 2001.

[14] G. Gottlob, P. Paolini, and R. Zicari. Properties and
update semantics of consistent views. TODS,
13(4):486-524, 1988.

[15] M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. A language for bi-directional tree
transformations. Technical Report MS-CIS-03-08,
University of Pennsylvania, 2003.

[16] M. Hofmann and B. Pierce. Positive subtyping. In
POPL’95, 1995.

[17] A. M. Keller. Algorithms for translating view updates
to database updates for views involving selections,
projections, and joins. In PODS’85, 1985.

[18] A. M. Keller. Choosing a view update translator by
dialog at view definition time. In VLDB’86, 1986.

[19] J. Lechtenborger. The impact of the constant
complement approach towards view updating. In
Proceedings of the 22nd ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 49-55. ACM, June 9-12
2003. San Diego, CA.

[20] Y. Masunaga. A relational database view update
translation mechanism. In VLDB’8/, 1984.

[21] C. M. B. Medeiros and F. W. Tompa. Understanding
the implications of view update policies. In VLDB’85,
1985.

[22] A. Ohori and K. Tajima. A polymorphic calculus for
views and object sharing. In PODS’9/, 1994.

[23] F. J. Oles. Type algebras, functor categories, and
block structure. In M. Nivat and J. C. Reynolds,
editors, Algebraic Methods in Semantics. Cambrige
University Press, 1985.

[24] B. C. Pierce and A. Schmitt. Lenses and view update
translation. Manuscript; available at http://
www.cis.upenn.edu/ bcpierce/harmony, 2003.

[25] B. C. Pierce, A. Schmitt, and M. B. Greenwald.
Bringing Harmony to optimistic replication: A
synchronization framework for heterogeneous
tree-structured data. Technical Report MS-CIS-03-42,
University of Pennsylvania, 2003.

[26] B. C. Pierce and J. Vouillon. How to specify a file
synchronizer. Technical Report MS-CIS-03-36, Dept.
of CIS, University of Pennsylvania, 2003.

[27] M. H. Scholl, C. Laasch, and M. Tresch. Updatable

Views in Object-Oriented Databases. In C. Delobel,
M. Kifer, and Y. Yasunga, editors, Proc. 2nd Intl.
Conf. on Deductive and Object-Oriented Databases

95

(DOOD), number 566. Springer, 1991.

[28] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld.
Updating XML. In SIGMOD Conference, 2001.

[29] Vanessa Braganholo and Susan Davidson and Carlos
Heuser. On the updatability of XML views over
relational databases. In WebDB 2003, 2003.

[30] P. Wadler. Views: A way for pattern matching to
cohabit with data abstraction. In POPL’87. 1987.

Recent BRICS Notes Series Publications

NS-03-4

NS-03-3

NS-03-2

NS-03-1

NS-02-8

NS-02-7

NS-02-6

NS-02-5

NS-02-4

NS-02-3

Michael I. Schwartzbach, editor. PLAN-X 2004 Informal Pro-
ceedings,(Venice, ltaly, 13 January, 2004), December 2003.
ii+95.

Luca Aceto, Zolén Esik, Willem Jan Fokkink, and Anna
Ingolfsdottir, editors. Slide Reprints from the Workshop on Pro-

cess Algebra: Open Problems and Future Directions, PA '03,
(Bologna, Italy, 21-25 July, 2003), November 2003. vi+138.

Luca Aceto. Some of My Favourite Results in Classic Process
Algebra September 2003. 21 pp. To appear in th8ulletin of
the EATCS volume 81, October 2003.

Patrick Cousot, Lisbeth Fajstrup, Eric Goubault, Maurice
Herlihy, Kurtz Alexander, Martin RaufR3en, and Vladimiro Sas-
sone, editors. Preliminary Proceedings of the Workshop on
Geometry and Topology in Concurrency Theory, GETCO '03,
(Marseille, France, September 6, 2003), August 2003. vi+54.

Peter D. Mosses, editoProceedings of the Fourth International
Workshop on Action Semantics, AS 2008 openhagen, Den-
mark, July 21, 2002), December 2002. vi+133 pp.

Anders Mgller.Document Structure Description 2.(December
2002. 29 pp.

Aske Simon Christensen and Anders MglledWIG User Man-
ual. October 2002. 35 pp.

Patrick Cousot, Lisbeth Fajstrup, Eric Goubault, Maurice
Herlihy, Martin Raul3en, and Vladimiro Sassone, editors.Pre-
liminary Proceedings of the Workshop on Geometry and Topol-
ogy in Concurrency Theory, GETCO ’'02(Toulouse, France,
October 30-31, 2002), October 2002. vi+97.

Daniel Gudbjartsson, Anna In@lfsdottir, and Augustin Kong.
An BDD-Based Implementation of the Allegro Softwarédugust
2002. 2 pp.

Walter Vogler and Kim G. Larsen, editors. Preliminary Pro-
ceedings of the 3rd International Workshop on Models for Time-
Critical Systems, MTCS '02Brno, Czech Republic, August 24,
2002), August 2002. vi+141 pp.

	Alain Frisch and Luca Cardelli. Greedy regular expression matching
	Haruo Hosoya. Regular Expression Filters for XML
	Alain Frisch. Regular tree language recognition with static information
	Gargi M. Sur, Joachim Hammer and Jérôme Siméon. An XQuery-Based Language for Processing Updates in XML
	Jan Hidders and Philippe Michiels. Efficient XPath Axis Evaluation for DOM Data Structures
	Florian Reuter and Norbert Luttenberger. STAX/bc: A binding compiler for event-based XML data binding APIs
	Yana Kadiyska and Dan Suciu. Mixed XML/Relational Data Processing
	Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce and Alan Schmitt. A Language for BiDirectional Tree Transformations

