siuuday aplIS €0. Vd ('Spa) ‘[e19 0183y £-£0-SN SOldd

BRICS

Basic Research in Computer Science

Slide Reprints from the Workshop on
Process Algebra:
Open Problems and Future Directions

PA 03

Bologna, Italy, 21-25 July, 2003

Luca Aceto

Zoltan Esik

Willem Jan Fokkink
Anna Ing6lfsdottir
(editors)

BRICS Notes Series NS-03-3
ISSN 0909-3206 November 2003

Copyright © 2003, Luca Aceto & Zoltan Esik & Willem Jan
Fokkink & Anna Ing Olfsdottir
(editors).
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLSs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/03/3/

Slide Reprints from the Workshop on

Process Algebra:
Open Problems and Future Directions

Bologna, Italy, 21-25 July, 2003

Luca Aceto
ZoltanEsik
Wan Fokkink
Anna Inglfsdottir

Foreword

This volume of the BRICS notes series contains reprints of the slides of most of the
talks that were delivered during the workshop| on “Process Algebra: Open Problems
and Future Directions” that was held in the period 21-25 July, 2003, at the University
Residential Centre of Bertindro, Farltaly.

This was a lively scientific event, held in a relaxed workshop atmosphere that al-
lowed for an informal, but intense, discussion of the status of research in the field of
process algebra, broadly construed. The workshop has witnessed the continuing vitality
of this branch of concurrency theory, and we trust that, apart from being a celebration
of over twenty years of research in this field, it will contribute to its healthy devel-
opment by highlighting some open problems, and possible new avenues for research.
We believe that the slides of the talks collected in this volume will offer the process
algebra community at large some inspiration for reflection on past achievements, and
some suggestions for further research. Our efforts in organizing this workshop will be
amply rewarded by the solution of some of the open problems that were raised during
the event, or by the further development of work along the future directions that were
pointed out in Bertinoro.

As mentioned above, this workshop was held in the beautiful setting of the Uni-
versity Residential Centre of Bertinoro under the sponsorship of BICIB#rénoro
International Center for InformaticsBICI is an association whose mission is to foster
cutting-edge research and advanced education (at PhD and post-doctoral level) in Com-
puter Science. BICI sponsored events, like our workshop, take place in Bertinoro at the
University Residential Centre of the University of Bologna. Typical events sponsored
or organized directly by BICI include thematic research workshops, strategic meetings
charting new research agenda and advanced schools.

We welcome the establishment of such an association devoted to the development
of research in Computer Science via the sponsorship of high quality events in an envi-
ronment that offers excellent support, and a congenial atmosphere, for the hosting of
research activities. We encourage our colleagues interested in organizing workshops
on all aspects of Computer Science to consider the University Residential Centre of
Bertinorg as a possible location for their events.

In addition to BICI, we received sponsorship from BR|CS and CWI. We thank
both these institutions for their generous financial assistance. Our gratitude goes to all
of our colleagues that made the trip to Bertinoro, and contributed to the success of the
workshop. Last, but not least, our thanks go to Elena Della Godenza (University Resi-
dential Centre of Bertinolo) for her tireless organizational and secretarial assistance at
all times, and to Uffe Engberg (BRICS) for his work in the production of this volume.

Luca AceTo (Aalborg, Denmark)
ZOLTAN Esik (Szeged, Hungary)
WAN FOKKINK (Amsterdam, The Netherlands)
ANNA INGOLFSDOTTIR (Aalborg, Denmark, and Reykj# Iceland)
Workshop Organizers and Editors of this Volume

http://www.cs.auc.dk/~luca/BICI/pa2003.html
http://www.cs.auc.dk/~luca/BICI/pa2003.html
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.cs.unibo.it/bici/
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.brics.dk
http://www.cwi.nl
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.brics.dk

Contents

ROBERTOAMADIO, Max-plus Quasi-interpretations. 01

Jos BAETEN, Over Thirty Years of Process Algebra: Some History and Some Future
DIrECHIONS . ot o 7

MARCO BERNARDG, On the Usability of Process Algebra: An Architectural View [13

MARIO BRAVETTI, AXiomatizing Process Algebra with Time: Real-time and Stochastic-
1121] 29

ILARIA CASTELLANI, AXxiomatizing Weak Equivalences for Asynchronous Calculi

FLAviO CORRADINI, On Equational Axiomatizations of Milner Bisimulation in Kleene

SIS ottt e 1 43
RoccoDE NicoLA, Open Nets, Contexts and Their Properties................ 47
RoB VAN GLABBEEK), Liveness Respecting Semantics. 59
JAN FRISO GROOTE, The Need for Proof Methodologies. 65
HOLGERHERMANNS, Axiomatising Divergence.c.cooiiiiineeennnnnns [Tl

JOOSTFPIETER KATOEN, On the Design of the Stochastic Process Algebra MoDeS[I 1

ANNA LABELLA| Process Algebras and Arithmetics. [83
BAS LUTTIK|, Unique Parallel Decomposition.coiiiiiiiiinee... [b1
DALE MILLER) Encryption as an Abstract Datatype..................ccovvnn.. 7
UGO MONTANARI, Tile Systems for Process Algebras 103
UwEe NESTMANN, Modeling Consensus in a Process Calculus. [109
CATUSCIA PALAMIDESSI, Probabilistic Asynchronous-Calculus 1715
ALBAN PONSE, Orthogonality and Logic, of course in Process Algebra.
IREK ULIDOWSKI, Actions in Formats of SOSRules.ccooiin.t. [1p7

WALTER VOGLER, Measuring the Performance of Asynchronous Systems with PAESS

http://www.cmi.univ-mrs.fr/~amadio/
http://www.win.tue.nl/~josb/
http://www.sti.uniurb.it/bernardo/
http://www.cs.unibo.it/~bravetti/
http://www-sop.inria.fr/mimosa/personnel/Ilaria.Castellani.html
http://w3.dm.univaq.it/~flavio
http://www.dsi.unifi.it/~denicola/
http://theory.stanford.edu/people/rvg/home.html
http://www.win.tue.nl/~jfg/
http://www.cs.utwente.nl/~hermanns
http://www.cs.utwente.nl/~katoen
http://www.dsi.uniroma1.it/personal/labella/eng/
http://www.cs.vu.nl/~luttik/
http://www.cse.psu.edu/~dale/
http://www.di.unipi.it/~ugo/ugo.html
http://lampwww.epfl.ch/~uwe/home.shtml
http://www.cse.psu.edu/~catuscia/
http://www.science.uva.nl/~alban/
http://www.mcs.le.ac.uk/~iu3/
http://www.informatik.uni-augsburg.de/skripts/personen?name=Vogler

Vi

Max-plus quasi-interpretations

Roberto AMADIO

University of Marseille

Wish list 1: determinism
System behaviour is deterministic — explicit account of scheduling.
motivation debugging, portability, no locking,. ..

examples Kahn networks, cooperative threads.

Wish list 3: reactivity

A system receiving data of bounded size runs in bounded memory

and reacts in bounded time.
motivation embedded programming.

examples Lustre, Esterel,. ..

e Process algebra broadly conceived as design principles for

composing sequential programs.

e This talk is —not— about process algebra but the motivations

are.

NB We are interested in composing programs —not— specifications.

Wish list 2: synchrony
Processes share a common time scale — there is notion of instant.

motivation can react to absence of reply, can share a signal for an
instant, bounded buffers,. ..

examples Synchronous Kahn networks (Caspi-Pouzet),
Cooperative threads with round robin and broadcast events
(Boussinot).

Wish list 4: flexibility

Can handle arbitrary inductive data types and virtual machine

accomodates mobile code.
e No model from the past seems to accomodate this.
e Future: design a coordination language.

e Present=this talk: what can be said of the sequential modules.

A first-order functional language

e Inductive types

pt.(co.cim, e T — 8,)

Context e Values, patterns, expressions
e Complexity bounds for (first-order) functional programs. va=c(v,...,v)
e One ‘classical’ thread: functional algebras characterization of pu=z|cp,....p)
small complexity classes. ex=x|cle...,e)| fle,...,e)
e A more ‘technological’ thread: worry also about algorithms and e Functions definitions by pattern matching and evaluation by
automatic extraction of certificates. value.
flag,...,zy) =
T1 =P1y..,Tp =Pn =€

Example: insertion sort over binary words

pt(e:t,0:t—1t,1:¢t—1¢) (binary words) Some history: bounded recursion on notation (Cobham)

inserto(x) = 0(x)

flz,y) =
insert;(z) = T =€ / = Z(?j) / /

=i = N 7H7 7H :071
R =i S D))

ith 7| < P 7]), P pol ial.
v = 1) = 1(1(2")) wi |f(z,9)| < P(|z|,|7]), P polynomia

x = 0(z') = 0(insert1(z"))

sort(l) = Problem Has to stick to primitive recursion and guess the
l—em e polynomial P.
l =i(x) = inserti(sort(z)) i=0,1

Insertion sort does not type

Ramification (Bellantoni-Cook and Leivant) inserto(x:) = 0(x)
inserto(xz;) = 0(z

o f(Z;¥): split arguments in Normal (Z) and Safe (g).

e N <S5t Normal can be regarded as a subtype of Safe. inserty(x;) =

o fliz...;..)=h(...;f(z,...5..0),...). x=€=1(e)
Recurrence parameters are Normal, Result of a recurrence is r=1(z") = 1(1(z"))

Safe (= typing of exponential fails). z = 0(z') = O(insert,(';))

e Constructors are overloaded, sending safe to safe and normal to
normal. sort(l;) =
o Composition: g(hy(Z;_); ha(Z; 7). l=c=¢
Problem (cf. Caseiro): Some simple algorithms such as insertion I =i(z) = insert;(sort(z;);) i=0,1

sort do not type.

insert; waits for normal but gets safe.

Jones’ no cons condition

General recursive programs coupled with ‘implicit’ way to bound
the size of the results.

e No constructors of positive arity on the right-hand side of the
rule.

e Enough to characterize PTIME problems.

e Simple algorithm such as list reverse cannot be represented.

Example: insertion sort with resource types

%% =pt.(e:t,0:p,t > t,1:pt—1)
p,W—=W i=0,1
sort W —-W

insert;

inserto(r,z) = 0(r, x)

sort(l) =
l=ec=c¢€
I =i(r,z) = insert;(r,sort(x)) i=0,1

Problem Would like to —infer— the resource types.

Quasi-interpretation (continued)

Obvious extension of assignment ¢ to expressions:
Qz =X
e(er,.nen) = Gelders -+ Ge,,)
Af(er,oen) = A (Geys - Ge,)

An assignment ¢ is a quasi-interpretation if:
bn) = €
qf(qplv"'vqpn) 2 Qe

NB Quasi-interpretations are inspired by polynomial simplification

for every rule f(py,...

interpretations for termination proofs.

Hofmann’s type system for in-place update
e Relies on an —empty— resource type p and affine typing.
e An element of resource type is understood as a memory cell.

e Constructors take an extra-argument of type p. Also functions
may get extra-arguments of type p.

e In arule x1 = p1,...,T, = pn = e, resources have to be
balanced:

I'kpi,i=1,....,.n = Thkege

e Data transformations are non-size increasing and language can
be compiled so that no dynamic heap memory allocation is
required.

Quasi-interpretations (Marion et al.)

Given a program interpret constructors and functions of arity n as
follows:

0 ¢ constant

d+Xi=1,. . nTi

q =
‘ otherwise, with d > 1

g5 - (QT)" — Q1 monotonic and ¢; > m;

Quasi-interpretation for the insertion sort

It admits the following quasi-interpretation:

¢ =+ 17 qsort = Ty {Ginsert; = T + 1.

For instance, the rule
sort(i(x)) = inserti(sort(x))
satisfies

qsort (Q| (x)) =z+1 >x+ 1= qinsert;(q‘sort (l’))

Basic properties of quasi-interpretations
1. |v| < g, < d|v|, for v value, d constant.
2. e v then ¢. > g, > |v].

3. If there is a quasi-interpretation ¢ then f(vq,...,v,) can be

evaluated with an activation record of size B.

4. Or, equivalently by Cook’s theorem, in time 28 where
B = O(qf(vl,“.,vn))-

NB In particular, if gy is linear in the size n of the input then the

size of an activation record is O(n) and the program can be run in

time 20(")

An evaluator with memoization

Eval,,(e) = case

e = Blf(vr, 00 f(p1r- -) = ¢, and o(p;) = v
(new,v"”) := Insert(f(vi,...,vp));
case

new : let v' = Evaly,(o(e')) in
Update(f(v1,...,vn),0");
Eval,,(E[v'])
—new,v” # L Fval,(E"])
else : Return L
e value : e

else : Return L

Quasi-interpretation for programs with affine typing

If a program has an affine typing then its erasure of resource

arguments admits the following multi-linear quasi-interpretation:

Ge=14+3i=1,. 0T qgr =7(f) + Ziz=1,.. o

where r(f) is the number of resource arguments of f.

A simple call-by-value evaluator

Eval(e) = case

e=E[f(vi,...,vn)], f(p1,...
let o' = Fwval(o(e’)) in Eval(E[v'])

,Pn) = €, and o(p;) = v; :

evalue : e

else : Return L

NB This program can be run on a linearly bounded APDA and, by

Cook’s theorem, it can be transformed to run in EXPTIME.

Quasi-interpretation for no cons programs

A program conforming to Jones’ restriction admits the following
multi-linear quasi-interpretation

g =1+%i=1, . nz g = maz(T1,...,Ty) .

NB Affine typing may fail here.

Search space: max-plus polynomials

e We shift from the algebra (+, x) to the algebra (maz, +).

e Work over Q. = QT U{—cc}. —oo0 is the unit of maz and 0

max

is the unit of +.
e Distribution: x + maz(y, z) = maz(x + y, z + 2).

e Exponentiation: aux.

e For a —given— degree the synthesis problem can be expressed as

the validity of a 3V Pressburger formula.

NB We look for something more efficient. ..

Lower bound on complexity of synthesis

Prop The synthesis problem is NP-hard, and it stays so for any
combination of the following:

1. Rules of bounded size (for a small bound).
2. Max-plus polynomials of bounded degree d > 1.

3. Uniform choice of constructors’ coefficients.

Multi-linear max-plus polynomials
e Multi-linear = Degree of every variable is at most 1.

e A generic multi-linear of n variables is determined by 2"
coefficients. FE.g. for n = 2:

max(ao,xl +a1,T2 + a2, + 22 + (11,2)
e One can always normalise so that
ap > ai,az > a2

and then compare polynomials by comparing the coefficients.

Upper bound (continued)

3. Get a system with constraints of the shape:

xr = —00 y>1

T Ym0y > i, BT+ X 175

4. Send to —oo all the variables for which no x > 0 constraint can
be inferred. Idea on boolean variables: satisfaction of formulae
Vjeszjorz =\, ;x; can be decided efficiently.

5. Hence reduce to a linear programming problem over Q7 (it is
possible to look for optimal solutions).

NB If the size of the rules is not bound then the method requires

exponential space just to write the solution.

Outline proof lower bound
1. Write rules so that can force ¢f = maz(z1,...,zy).

2. Reduction from 3 — SAT"

e Non-uniform choice of constructors: code literals as

coefficients of unary constructors.

e Uniform choice: write rules so that can force
qqg = maz(x1 + a1, T2 + az) and use coefficients aq,as to

represent literals.

Upper bound on complexity of synthesis

Prop The synthesis problem for multi-linear polynomials for
programs with rules of bounded size is NP-complete.

1. Compute the interpretations of gy, .. »,) and g. and reduce to

the satisfaction of a system of inequalities over Q! .

2. Use non-determinism to eliminate max from qy(p,, .. p,.) on the
left-hand side of the inequality.

maz (A, B) > C becomes (A>CANA>B)V(B>CABZ>A)
Eliminate maz on the right-hand side g, in polynomial time. Idea:

A > maz(B,C) becomes A > z,2> B,z > C

Lower bounds on expressivity: Qbf

qbf (¢) = check (¢, nil)

check(p,1) =

¢ =v(x) = mem(z,1)

¢ =0(¢',¢") = or(check(¢',1), check(¢",1))

¢ =all(z,¢') = and(check(¢',cons(z,1)), check(d',1))

Quasi-interpretation:

Go=qan =x+y+1,
QCheck:¢+l

qv:x+17 qqbf = T,

Gor = dmem = maa:(ac, y)7

Lower bound on expressivity for general recursion:
exponential time TM

e Can also simulate TM running in 20",

Quasi-interpretations and termination ordering e Define

e Quasi-interpretations are most useful when combined with a
? hati P deri T : Input x Step x Position — State x Letter
ermination ordering.

e Consider the class of programs that admit a polynomially o T(x,s,p) = (¢, a) iff the machine with input = after s steps

bound quasi-interpretation (usual polynomial here). arrives in state ¢ with character a at position p.

e Marion et al: the programs that terminate by product recursive ® s,p can be stored in osﬁaf)e O(|z]) and we can do basic
. . -

path order characterize PTIME and those that terminate by arithmetic modulo 2)

lexicographic recursive path order characterize PSPACE. e T(x+1,s,p) can be defined recursively in terms of

T(z,s,p—1), T(x,s,p), T(x,s,p+1).

NB Again, this is a rephrasing of Cook’s theorem (from EXPTIME
to APDA).

Some perspective

e Cobham: Primitive recursion plus polynomial bound on size
gives you polynomial time. Yes, but how do you find the

polynomial?

e Ramification: You can use a type system, the polynomial is
implicit. Yes, but many algorithms will not type!

e Hofmann: Use a type system to bound the size of the data.
You'll loose functions which have super-linear space growth but

gain some algorithms.
o Max-plus quasi-interpretations: Instead of types, use small

polynomials to bound the size of data.

NB Hofmann’s type system for in-place update and Jones’ no cons
syntactic restriction correspond to certain polynomial classes of

multi-linear quasi-interpretations.

TU/e technische universiteit eindhoven TU/e technische universiteit eindhoven

Over 30 years of What is a process algebra?

process algebra: From universal algebra:
past, present and future A group has a signature (G,*,u,"") with laws
« a*(b*c) = (a*b)*c
* Uta=a=a‘u
Jos Baeten, TU/e «a'a'=a'™a=u

TU/e technische universiteit eindhoven TU/e technische universiteit eindhoven

Definition History (situation in 1970)

A process algebra is any mathematical

structure satisfying the PA axioms Denotational semantics (Scott - Strachey)
A process is an element of a process algebra Operational semantics (McCarthey)

A process algebra allows calculation on/with

Axiomatic semantics (Floyd - Hoare)

processes .
? Parallel composition

We consider only concurrency

TU/e technische universiteit eindhoven TU/e technische universiteit eindhoven
Main differences Hans Beki¢ (1936 - 1982)

A program is an input/output function
IBM Vienna

Towards a mathematical theory of
processes

December 1971

A state is a valuation of variables

TU/e technische universiteit eindhoven TU/e technische universiteit eindhoven
A quote: Law for quasi-parallel

Our plan to develop an algebra of processes composition
may be viewed as a high-level approach: we

are interested in how to compose complex (A/IB)S =

processes from simpler (still arbitrarily (cases A& null - BE

complex) ones. (f,A") — f,(A’ /] B))
or

Null, action, or, // (cases BE: null — Ag

(9.B) > 9,(A//B)

TU/e technische universiteit eindhoven TU/e technische universiteit eindhoven

In a letter from 1975: Robin Milner (1934), from 1973:
Non-terminating - i
fulfil certain desirable equivalences, such as: programs with side
a0 =a a;(b;c) = (a;b);c allb =blla effects
etc. Non-deterministic
programs

Parallel programs
A lecture on this in 1974 even contains a “left-

parallel” operator, with laws ! x 9 I

TU/e technische universiteit eindhoven TU/e technische universiteit eindhoven

Calculus of Communicating Tony Hoare (1934), from 1976:
Systems Communicating
Gradually developed 1973 - 1980 Sequential Processes:

. message passing
Static laws

guarded command

Ports: names and co-names language
T IS communication trace trace theory

Expansion law
Bisimulation by David Park 1981

TU/e technische universiteit eindhoven TU/e technische universiteit eindhoven
Theoretical CSP, 1984:

With Stephen Brookes and Bill Roscoe
Failure semantics

T-jump and two alternative composition
operators

™X+y=tx+1(X+Yy) AX + Ay = A(x +
y)

1982, from work of aco de Bakker and Jeff Zucker
on metric concurrency theory

L. PRICESS ALGEORLS

In this section we introduce procsss algebras and their projections, fix
zome kemminology and notacisng, and establish aowe useful algebraical

ideptities valid in process algebras.

1.1. Procead algebras: preliminaries.

1.1.1. DEFINITION. Let A = {a |icI} be some set of atomic “actions".

L procegs dlgebra cver A 1z 8 structure o = {A'+"'u—'ai[i‘ 1] >
whers p is a =et containing &, the A, are constant symbels porreapend ing
to the a, <&, and + unfon), * (eoncotenation or aomposttiont, || | Laft
marget EatisEy for a4ll x.y¥,2 g and e A the followibg axioms:

FAL H+Y = y+x

FA2 u+iy+zE] = {x+yl+z

Fhl EtH = x

Fad {Hylze = Wiyz)

FaR {KtylzE = wzt+yx

=¥ 7 ety | 2 = x|| = +-¥]_ =
BLT -!I.HIL}":-EI.{}!U_]'.I'i-?H_'HJ
R all y = ay

1.1.1.1. NOTATIOM. We write xy instead of x-y and a instead of a.

1.1.1.2. BREMARK. Kote the absorption law Ffor + and note that thers is no
left distributive law z{x+y] = zx+zy. Also there is no '4' satisfying

x+0 = x, Ok = ¥ = %, slnce this would lead ta
Yy = [X+d}y = Xy+0y = by,

coptrary to our intentions (to have the "isomorphism® described in Seeckiaq
4} . (However, gec Sectlon 3.} '

l.k.2. DEFINITION. The cperator || (merge) is defiped by

xlly = =iy + ¥[| =

TU/e technische universiteit eindhoven

Fixed point semantics in process
algebra

 Published in 10 years of concurrency
semantics, 1992

* Process algebra in strict sense
* ACPin 1983

TU/e technische universiteit eindhoven
The variety of process algebra

Baeten, Bergstra, Hoare, Milner, Parrow &
De Simone

1991
Uniform notation is desirable?

TU/e technische universiteit eindhoven
What is left to do?

Verification techniques - upscaling

Equational reasoning together with model
checking and theorem proving

Extended tooling

10

TU/e technische universiteit eindhoven

Other process algebras

MEIJE, Austry & Boudol
LOTOS, Brinksma

ATP, Hennessy

Trace theory, Rem

TU/e technische universiteit eindhoven

Developments

Tooling

Decidability - complexity - expressivity
Verification techniques

Data

Time

Mobility

Probabilities - stochastics

TU/e technische universiteit eindhoven
Timing

Integrated theory

Applications - upscaling

Abstraction of actions vs. abstraction of
timing

Approximation

TU/e technische universiteit eindhoven
Mobility

Unravel concepts
Integrated theory - notion of equality
Practical use

TU/e technische universiteit eindhoven

Hybrid process algebra

Just at beginning
Connection with dynamic control

TU/e technische universiteit eindhoven
Conclusion

There is enough to do
Process algebra is alive and kicking
Theory and applications

11

TU/e technische universiteit eindhoven

Probabilities - stochastics

Integrated theory
Applications
Abstraction
Approximation
Performance analysis

TU/e technische universiteit eindhoven
Theory

Relationship with other concurrency models
Comparison of process algebras
Axiomatizations that are complete, m-complete
Decidability - complexity

12

On the Usability
of Process Algebra:
An Architectural View

Marco Bernardo

University of Urbino - Italy

Strengths and Weaknesses

+ System modeling is compositional thanks
to a small number of constructs for building
larger descriptions up from smaller ones.

+ Structural operational semantics that pre-
cisely defines for each process term the state
transition graph that it stands for.

+ Syntax-oriented and semantics-oriented be-
havioral reasoning via equivalences that
capture the notion of same behavior, possi-
bly abstracting from unnecessary details.

+ Deal with multiple aspects like mobility,
performability, real time, and security.

— They are difficult to learn and use by
practitioners.

— Their technicalities — the synchroniza-
tion discipline — often obfuscate the way
in which the systems are modeled.

Process Algebra
e Semantics of concurrent programs.

e Formal description technique for modeling
and verifying computer, communication and
software systems.

e Specifications consisting of a sequence of pos-
sibly recursive defining equations of the form
A(formal par list; local var list) = E

e Algebraic operators:
E = stop

| A(actual par list)

| aE

| a?(var_list).E

| al(ezpr list).E

| E4E

| E/L

| E\H

| E[#]

| E[E

An Architectural View

e Need to support a friendly component-
oriented way of modeling systems within
PA ——> the designer can reason in terms
of components and their interactions while
abstracting from PA technicalities.

e Need to integrate the use of PA in the
right phase of the system development cycle.
(Requirement analysis? ~ Architectural de-
sign? Component design? Implementation?
Deployment? Testing? Maintainance?).

e Architectural design level: A precise
document, used in all the subsequent phases
of the system development, must be defined
to describe the structure of the system as
well as its behavior at a high level of ab-
straction.

e Analyzing the system properties at this
level is beneficial for the whole system devel-
opment cycle in terms of time and money:.

e Both goals achievable using a revised PA.

13

Guidelines

e Separation of concerns between behavior and
topology.

e Typing activities through explicit qualifiers:

— internal activities vs. interactions;

—anput nteractions vs. output interactions;

— architectural interactions vs. local interactions.

e Classifying communications:
— 1-1;

— conjunctive 1-m;

— disjunctive 1-m.

e Dealing with parametricity.

e Supporting hierarchy.

Textual Notation

ARCHI_TYPE Pipe_Filter_Type(void)
ARCHI_ELEM_TYPES
ELEM_TYPE Filter_Type(void)
BEHAVIOR Filter_O(void; void) = choice {

accept_item . Filter_1(),
fail . repair . Filter_0()
};
Filter_1(void; void) = choice {
accept_item . Filter_2(),
process_item . Filter_0(),
fail . repair . Filter_1()
};
Filter_2(void; void) = choice {
process_item . Filter_1(),
fail . repair . Filter_2()

}
INPUT_INTERACTIONS UNI accept_item
OUTPUT_INTERACTIONS UNI process_item
ELEM_TYPE Pipe_Type (void)
BEHAVIOR Pipe(void; void) = accept_item
INPUT_INTERACTIONS UNI accept_item
OUTPUT_INTERACTIONS OR forward_item

. forward_item

ot to oo o T oo oo o to T oo oo oo oo o oo oo oo oo oo oo oo oot oo oo o oo o oo o oo

ARCHI_TOPOLOGY
ARCHI_ELEM_INSTANCES
F_0, F_1, F_2 : Filter_Type();
P : Pipe_Type()
ARCHI_INTERACTIONS
F_0.accept_item;
F_1.process_item;
F_2.process_item
ARCHI_ATTACHMENTS
FROM F_0O.process_item TO P.accept_item;
FROM P.forward_item TO F_1.accept_item;
FROM P.forward_item TO F_2.accept_item
END

PADL: A PA-Based ADL

e Define each architectural element type (AET)
by specifying its parameters, its behavior,
the qualifiers of its activities, and the forms
of communication in which they can be in-
volved.

e The behavior of an AET is expressed through
a list of sequential PA defining equations,
with the occurring actions representing the
activities of the AET.

e Declare the instances of each architectural
element type (AEI) that form the system

topology.

e Establish which activities of the AEIs are
architectural interactions.

ﬂ:ta&%ﬂteracmons of dlfgerent AEls to make

interact according to the system
topology.

Graphical Notation

accept_item

‘F_O:Filter_Type

process_item

accept_item

‘ P:Pipe_Type

forward_item
accept _item accept item

. Pipe()

‘F_l:Filter_Type

process_item

14

‘F_Z:Filter_Type

process_item

Translation Semantics into PA

e [irst step: the semantics of each AEI is the
behavior of the corresponding AET, where:

— every action that is not an interaction is
made unobservable;

— every or-interaction is turned into a choice
among as many fresh uni-interactions as
there are attachments involving the or-

interaction.
e Fxample:
[F.0] = Filter_0/{fail, repair}
[F-1] = Filter.0/{fail, repair}
[F2] = Filter_0/{fail, repair}
[PF] = or-rewrite(Pipe)

where or-rewrite(Pipe) is given by:
Pipe’ (void; void) = accept_item . choice
{

forward_item_1

}

Modeling Families of Systems

e An architectural style defines a vocabulary
of components and connectors and a set of
constraints on how they should be combined.

e Architectural styles developed over the years
as designers recognized the value of specific
organizational principles and structures for
certain classes of systems:

— call-and-return systems (main program
and subroutines, object-oriented, client-
server, hierarchical layers);

— dataflow systems (pipe-filter);
— independent components (event systems);

— virtual machines (interpreters);

— repositories (databases, hypertexts).

e Should enable the designers to specity, an-
alyze, plan, and monitor the construction
of systems with high levels of efficiency and
confidence.

. Pipe’ (),
forward_item_2 . Pipe’ ()

e Second step: the semantics of the whole sys-
tem description is the parallel composition
of the semantics of its AEIs according to the
specified attachments.

e Since the parallel composition operator al-
lows only actions with the same name to
synchronize, attached interactions need to
be relabeled to the same fresh action.

e Example:

[Pipe Filter Type(void)] = [F_0][process_item — a]||(s}
[P][accept_item > a,
forward item 1 +— a_1,
forward_item 2 — a_2] ||{a 1}

[F-1][accept_item — a_1] ||{a o
[F-2][accept_item — a_2]

Architectural Types

e The formal description of an architectural
style is useful to analyze the properties com-
mon to all of its instances.

e Difficult because of at least two degrees of
freedom:

— Variability of the component/connector
internal behavior.

— Variability of the system topology.

e An architectural typeis an intermediate no-
tion allowing the component/connector in-

ternal behavior and the system topology to
vary in a controlled way.

15

e Gen rationbof_the i_nstanc%s 1élgf_a_n architec-
tural type by invoking 1ts definition.

e Parameter passing:

— Actual AETSs preserving the observable
behavior of the formal AETs according
to some notion of behavioral equivalence
(must be weak and compositional).

— Actual topology complying with the for-
mal topology according to some allowed
extension (exogenous, endogenous, and /or):

* Actual AEls.
* Actual architectural interactions.

* Actual attachments.

e Hierarchical modeling: the behavior of an
AET can be an invocation to a previously
defined architectural type.

e Example: a pipe-filter system with perfect
filters:

Pipe_Filter_Type(;
Perfect_Filter_Type, Pipe_Type;
F_0, F_1, F_2 : Perfect_Filter_Type(),
P : Pipe_Type();
F_0.accept_item,
F_1.process_item, F_2.process_item;
FROM F_O.process_item TO P.accept_item,
FROM P.forward_item TO F_1.accept_item,
FROM P.forward_item TO F_2.accept_item;
)

without actual Vahhes for the variables and
1zzm_ctuad names for the architectural interac-
101S.

e Definition of the new actual AET:

ELEM_TYPE Perfect_Filter_Type(void)
BEHAVIOR P_Filter_0(void; void) =
P_Filter_1(void; void) =

accept_item . P_Filter_1(Q);
choice {
accept_item .
process_item
}
P_Filter_2(void; void) = process_item .
INPUT_INTERACTIONS UNI accept_item
OUTPUT_INTERACTIONS UNI process_item

P_Filter_2Q),
. P_Filter_0()

P_Filter_1()

e Behaviorally conforms to the corresponding
formal AET ——> the invocation is a legal

jﬁnstance of the definition of the architectural
ype.

Behavioral Conformity

e Every actual AEI must be weakly bisimu-
lation equivalent to the corresponding for-
mal AEI (up to injective relabelings unify-
ing their corresponding interactions).

e This guarantees the architectural type in-
vocation to be weakly bisimulation equiva-
lent to the architectural type definition (up
to injective relabelings unifying their corre-
sponding interactions).

e The complexity of the check is linear in the
number of AETSs (instead of being exponen-
tial in the number of AEIs).

Hierarchical Modeling

ARCHI_TYPE Client_Server_Type(void)
ARCHI_ELEM_TYPES
ELEM_TYPE Client_Type(void)
BEHAVIOR Client(void; void) =
send_request . receive_outcome
INPUT_INTERACTIONS UNI receive_outcome
OUTPUT_INTERACTIONS UNI send_request
ELEM_TYPE Server_Type(void)
BEHAVIOR Server(void; void) =
Pipe_Filter_Type(;
Filter_Type, Pipe_Type;
F_0, F_1, F_2 : Filter_Type(),
P : Pipe_Type();
F_O.accept_item,
F_1.process_item, F_2.process_item;
FROM F_O.process_item TO P.accept_item,
FROM P.forward_item TO F_1.accept_item,
FROM P.forward_item TO F_2.accept_item;
receive_request,
send_outcome, send_outcome)
INPUT_INTERACTIONS UNI receive_request
OUTPUT_INTERACTIONS UNI send_outcome
T TeToToToToTo oo o o oo o o oo oo o o o o o o o o o o o o o o o o T o o 1o o T T T T T T T T T T o T o o oo o T o o o oo o oo
ARCHI_TOPOLOGY
ARCHI_ELEM_INSTANCES
C : Client_Type();
S : Server_Type()
ARCHI_INTERACTIONS
ARCHI_ATTACHMENTS
FROM C.send_request TO S.receive_request;
FROM S.send_outcome TO C.receive_outcome

. Client()

V V VV VYV VVVVYV

END

16

C:Client_Type

send_request

receive_request

receive_outcome

send_outcome

S:Server_Type

accept_item |

F_0:Filter_ Type

process_item

accept_item

‘ P:Pipe_Type

forward_item
accept_item accept_item

F_1l:Filter Type

. b
process_item -

F_2:Filter Type

process_item “----

accept_item

‘FiozFilteriType

process_item

accept_item

‘ P:Pipe Type

Exogenous Topological Extensions

e The topological extension occurs at some of
the AEIs forming the border of the topology
of the architectural type.

e An AEI is part of the border of the topology
if it has an architectural interaction.

e Every addendum must comply with the orig-
inal topology.

Endogenous Topological Extensions

e The topological extension occurs within the
topology of the architectural type.

e Some of the AEIs of the topology are re-
placed with other AEIs.

e Fvery replacement must comply with the
original topology.

forward_item
accept_item accept_item

‘F_l:Filter_Type

process_item

‘F_Z:Filter_Type

process_item

‘ P_l:Pipe_Type

forward_item
accept_item accept_item

accept_item

accept_item

‘ P_2:Pipe_Type

forward_item
accept_item accept_item

F_3:Filter_Type

‘F_4:Filter_Type

F_5:Filter Type

‘F_G:Filter_Type

process_item

process_item

process_item

process_item

17

send ISs:Init_Station_Type receive
recelve send

S_1: Statlon . Type ‘ ‘ S_3: Statlon_Type

send receive
receive S_2:Station_Type send
d . .]
sen IS:Init_Station_Type recetive
recelve send

S_1l:Station_Type ‘ ‘ S_3:Station_Type

receive

\

send‘\\\\
\\\X*receive send_////
. receive
‘ S_2_1l:Station_Type +§5534444%+ S_2_2:Station_Type ‘

Comparison with PA

e Separation of concerns between behavior and
topology, instead of encoding both of them
through the parallel composition operator
and the related synchronization sets.

e The intended use of every action is made
clear through its explicit qualifiers, instead
of having to be inferred from the synchro-
nization sets.

e Error-prone situations can easily be detected
(e.g.: no attachment between two output or
two input interactions, no attachment be-
tween two interactions of the same AEI, no
multiple attachments involving the same uni-
interaction, no internal action involved in an
attachment, no isolated groups of AEIs).

e Only the simpler operators (action prefix
and choice) can be used.

e Higher degree of specification reuse (both at
the component and at the system level).

Comparison with Related Work

e The textual notatlo({l and the translatlon se-
mantics are mspire Wright

— No distinction between components and
connectors to avoid trivial connectors.

— Exploiting the hiding operator instead of
specifying ports and roles.

— Qualifiers of activities and communica-
tions.

— Support for architectural types.

e The graphical notation is inspired by flow
graphs, suitably extended to represent the
qualifiers of activities and communications.

18

Component-Oriented Analysis

e For modeling purposes PADL is easier to use
than PA. What about analysis?

e All the analysis techniques developed for PA
can be reused for PADL. Is it enough?

e Architectural mismatch detection:

— Verify properties compositionally, i.e.
infer the properties of the whole system
from the properties of its components.

— Provide component-oriented diagnostic
information in case of violation.

Modeling with Amilia

mlha 1118 an extension of PADL bised on

e stochastic process algebra EMP

e Action extensions:

—<a, A> has an exponentially distributed
duration of rate A (race policy);

—<a, inf(1, w)> haszero duration, pri-
ority level 1, and weight w (generative
preselection policy);

—<a, *(1, w)> hasunspecified duration,
priority level 1, and weight w (reactive
preselection policy).

e Exponentially timed and immediate actions
can synchronize only with passive actions
——> every set of attached interactions can
contain at most one nonpassive interaction.

e Rates, weights, and priorities can be param-
eters of architectural types and AETSs.

e Performance evaluation via Markov chains.

Performance of Architectural Designs

e The designer may need to choose among

several alteﬁn%tlve architectures for the
system, wit e choice being driven espe-

cially by performance considerations.

e For a specific architecture of the system, the
designer may want to understand whether
its performance can be improved and,
if so, it would be desirable for the designer to
have some diagnostic information that
guide the modification of the architecture it-

self.

e Need for a practical methodology that
allows for a quick prediction, improve-
ment, and comparison of the perfor-
mance of different architectures for the sys-
tem under construction.

ARCHI_TYPE Pipe_Filter_Type(void;

rate i, ft1, 2, Po, P15 P25 P05 P15 P25
weight Prouting)

ARCHI_ELEM_TYPES

TootoToloto oo o 1o te o Totos o Toto o ToTodo o oto o Totodo o otato oo oo oo ot oo s oo oo ota oo oo oo oo o o fo oo oo oo

ELEM_TYPE Filter_Type(void; rate p, ¢, p)
BEHAVIOR Filter_0(void; void) =
choice { <accept_item, *>
<fail, ¢> . <repair, p>
Filter_1(void; void) =
choice { <accept_item, *>
<process_item, pu>
<fail, ¢> . <repair, p>
Filter_2(void; void) =
choice { <process_item, u>
<fail, p> . <repair, p>
INPUT_INTERACTIONS UNI accept_item
OUTPUT_INTERACTIONS UNI process_item
ELEM_TYPE Pipe_Type(void; weight p)
BEHAVIOR Pipe(void; void) =
<accept_item, *> .
choice { <forward_item_1, inf(1l, p)>
<forward_item_2, inf(1,
INPUT_INTERACTIONS UNI accept_item
OUTPUT_INTERACTIONS UNI forward_item_1;

. Filter_10Q),
. Filter_00) 3;

. Filter_20),
. Filter_0Q),
. Filter_1() 3;

. Filter_1(),
. Filter_2() }

. Pipe(),
1 - p)>

forward_item_2

ARCHI_TOPOLOGY

END

ARCHI_ELEM_INSTANCES

F_0 : Filter_Type(; o, %o, po);

F_1 : Filter_Type(; ps,p1,p1);

F_2 : Filter_Type(; i, P2, p2);

P : Pipe_Type(; Prouting)
ARCHI_INTERACTIONS

F_O.accept_item; F_1.process_item; F_2.process_item
ARCHI_ATTACHMENTS

FROM F_O.process_item TO P.accept_item;

FROM P.forward_item TO F_1.accept_item;

FROM P.forward_item TO F_2.accept_item

19

. Pipe() }

Analysis with Queueing Networks

e Markov chains are state-based performance

mod(f 1not suited for the architectural de-
sign leve

e ONs are structured performance models:
— The system components are elucidated.
— Computation of typical average perfor-
mance indices both at the system level

and at the component level.

— Fast solution algorithms for some classes

of QNs.

— Symbolic analysis possible in some cases.

Methodology

e Objective: quick prediction, improvement,
and comparison of the performance of dif-
ferent architectural designs.

e How to use in practice the combination of
Amilia and QNs?

e Multi-phase methodology with feedback.
e Variable number of alternative designs.
e Approximations.

e Focus on four specific, average performance
indices providing 1ns1ghts for the achieve-
ment of general performance requirements.

e Computed at the component level and at
the system level.

Combining Amilia and QNs

e Action-based, component-oriented, general-
purpose formal specification language

V8.
queue-oriented graphical notation for per-
formance modeling only, with some details
expressed in natural language.

e Only the Emilia specifications of a reason-
ably wide class can be translated into QN
models.

e The AEIs of an Amilia specification cannot
be mapped to QN service centers, but to
finer parts called QN basic elements: ar-
rival processes, buffers, fork processes, join
processes, and service processes

e Use syntax restrictions to make sure that

all the AEIs of an Amilia specification can
be translated into QN basic elements.

e Complexity of the translation linear in the
number of AEIs of the Amilia specification.

Average Performance Indices

e Throughput: measure of the productivity of
the components; singles out the components
that are bottlenecks.

e Utilization: measure of the relative usage
of computational resources by the compo-
nents; provides information useful at deploy-
ment time.

e Mean queue length: measure of the aver-
age size of data repositories; avoids compo-
nent execution blocking (under-sized buffers)
and waste of memory (over-sized buffers).

e Mean response time: measure of the aver-
age running time of the components; pre-
dicts the QoS perceived by the users.

20

system

requirements

Comparing Compiler Architectures

e Five phases: lexical analysis, parsing, type
checking, code optimization, and code gen-

phase 1 eration.
software software software L. .
architecture | architecture , architecture , [] TWO ClaSSGS Of programs (Optlle&thH).
phase 2 | | <_translate > | < translate > < translate > . . : -
e Different architectures: sequential, pipeline,
AEmilia AEmilia AEmilia concurrent
specification, specification, specification, :
phase 3 e Comparing them in some scenarios of inter-
appr. AEmilia appr. AEmilia appr. AEmilia eSta based OI:
specification, specification, specification, .
— mean number of programs compiled per
phase 4 @ m te w unlt of tlme;
o — average fraction of time during which the
phase 5 approximate approximate oo approximate Compller 1 belng used;
— mean number of programs in the com-
piler system;
phase 6 evaluate s
) . : — mean compilation time.
scenario based scenario based v scenario based
measures measures, measures
shase 7 | | iRt | < nierprer —merpret > @ Application of the methodology.
phase 8 compare
selected
architecture
phase 9
Sequential Compiler
e Only one program at a time can be com-
piled.
e Each of the five phases introduces an expo-
nentially distributed delay: gy, fip, fic, fho, tig-
e The arrival processes of the two classes of
programs are Poisson processes with rates
)\1 and AQ.
e Compiler system comprising two program
generators and a buffer.
deli
pe1 4 eliver prog
\ put_prog;
get_prog; select_prog;
get_progz' FB put_prog, sc
% select_prog;
PG2 ¢ .
deliver_ prog

21

ARCHI_TYPE
ARCHI_ELEM_TYPES

ELEM_TYPE
BEHAVIOR

INPUT_INTERACTIONS
OUTPUT_INTERACTIONS

ELEM_TYPE
BEHAVIOR

INPUT_INTERACTIONS
OUTPUT_INTERACTIONS

ELEM_TYPE
BEHAVIOR

INPUT_INTERACTIONS
OUTPUT_INTERACTIONS

ARCHI_TOPOLOGY
ARCHI_ELEM_INSTANCES

ARCHI_INTERACTIONS
ARCHI_ATTACHMENTS

SeqCompSys (void;rate Ay, Ag, i1, flp, fhe, flo; [g)

ProgGenT(void; rate \)
ProgGen(void; void) =
<generate_prog, \>.<deliver_prog, inf>.ProgGen()

UNI deliver_prog

ProgBufferT(integer hy, hy; void)
ProgBuffer(integer hy, hy; void) =
choice
{
<get_prog;, *>.ProgBuffer(h; + 1,h,),
<get_prog,, *>.ProgBuffer(h;,h, + 1),
cond(h; > 0) = <put_prog;, *>.ProgBuffer(h; — 1,hy),
cond(h; > 0) = <put_progy, *>.ProgBuffer(h;,h, — 1)
}
UNTI get prog;; get progs
UNI put_prog;; put_progs

SeqCompT(void; rate /i1, flp, fhc, o, Hg)
SeqComp(void; void) =
choice
{
<select_prog;,inf>.<recognize_tokens, ji;>.
<parse.phrases, 11, >.<check_phrases, ji.>.
<optimize_code, ji,>.<generate_code, /1g>.Seqump(),
<select_prog,,inf>.<recognize_tokens, /i, >.
<parse.phrases, yi,>.<check_phrases, ji.>.
<generate_code, j15>.SeqComp()

}

UNI select_prog;;select_prog,

PG, : ProgGenT(; \y);

PGy : ProgGenT(; \2);

PB : ProgBufferT(0, 0;);

SC : SeqCOmpT (; fix, fip, fle, Lo, flg)

FROM PG, .deliver_prog TO PB.get_prog;;
FROM PG,.deliver prog TO PB.get progy;
FROM PB.put_prog; TO SC.select_progs;
FROM PB.put_prog, TO SC.select_prog,

END
PG, PB
1 deliver prog,inf get_prog; ,* ® _put_prog; ,*
exphy) = |
get_prog; ,* gCEs put_prog,,*
PG, sc
b 1 deliver_ prog,inf select_prog,,inf > serv_time(SC, 1)
expl . i
select prog,,inf serv_time(SC, 2

SeqCompSys

select_prog;,inf

1 deliver prog,inf ©
get_prog; ,*

serv_time(SC, 1)

put_prog; , *
serv_time(SC, 2

put_prog,,*
select_prog,,inf

1 get_prog, ,*
w deliver_prog,inf pgepg

22

e Scenario-specific parameters: Ageq 1, Aseq,2;
Mseq,15 Useq,pr Mseq,cs Mseq,05 Mseq,g-

e Approximations to get a QS M/M/1:

— Single arrival process with rate Ageq =
Aseq1 T Aseq2 (probabilities Ageq 1/Aseq
and Ageq2/Aseq)-

— Exponential service time for the first class

with rate figeq 1 such that /L;elq71 = ugelq71+
-1 -1 -1 —1
:useq,p + :useq,c + :useq,o + :useq,g'

— Exponential service time for the second
class with rate figeq2 such that ,us’elq’2 =
:us_elq,l + lus_elq,p + :us_elq,c + :us_elq,g'

— Single class of programs with rate pigeq
such that Mgelq = ()‘seqyl/)‘seq>) Mgelq,l +
(/\seq,Q/)\seq>) :u’s_elq,Q'

Pipeline Compiler

e Simultaneous compilation of several programs
at different stages.

e The five phases are carried out by five dis-
tinct components, each having its own buffer,
operating in parallel on different programs.

o Stability: pseq = Aseq/lseq < 1.

e Sequential compiler throughput:
Xseq =)\seq

e Sequential compiler utilization:
Useq = Pseq

e Mean number of programs in the sequential
compiler system:

Nseq = pseq/(l - pseq)

e Mean sequential compilation time:
Rseq = 1/[tseq " (1 — pseq)]

23

PG,

PG,

deliver prog

get_item,

deliver prog

get_item;

LB

put_item,

get_progz

put_item;

send_tokens,

get_item,

put_item,

get_tokens,

send_phrases;

get_item,

put_item,

get_phrases;

send_checked_phrases,

get_item,

get_prog;
L
send_tokens;
get_item;
PB
put_item;
get_tokens;
P
send phrases;
get_item;
CB
put_item;
get_phrases;
send_checked_phrases;
¢ get_item 0B
put_item

get_checked_phrases

GB

send_optimized_phrases

get_item;

put_item,

get_checked_phrases

put_item;

get_optimized_phrases

ARCHI TYPE PipeCompSys(void;rate Ay, Ao, fi1, fip, e, Hhos [lg)
ARCHI_ELEM_TYPES
ELEM_TYPE ProgGenT(void;rate \)
BEHAVIOR ProgGen(void; void) =

<generate_prog, \>.<deliver_prog, inf>.ProgGen()
INPUT_INTERACTIONS
OUTPUT_INTERACTIONS UNI deliver_prog

ELEM_TYPE OneClassBufferT(integer h;void)
BEHAVIOR OneClassBuffer(integer h;void) =
choice
{

<get_item, x>.0neClassBuffer(h + 1),
cond(h > 0) > <put_item, *>.
OneClassBuffer(h — 1)
}

INPUT_INTERACTIONS UNI get_item
OUTPUT_INTERACTIONS UNI put_item

ELEM_TYPE TwoClassesBufferT(integer hy, hy; void)
BEHAVIOR TwoClassesBuffer(integer h,, hy; void) =
choice
{

<get_itemy, *>.TwoClassesBuffer(h; + 1,h,),
<get_item,, x>.TwoClassesBuffer(h;,hy + 1),
cond(h; > 0) = <put.item,*>.
TwoClassesBuffer(h; — 1,hy),
cond(h, > 0) = <put._item, *>.
TwoClassesBuffer(h;,h, — 1)
}

INPUT_INTERACTIONS UNI get_item;;get_item;
OUTPUT_INTERACTIONS UNI put_item;;put_item,

ELEM_TYPE LexerT(void; rate y)
BEHAVIOR Lexer(void;void) =
choice

<get_prog;, inf>.<recognize_tokens, ji;>.
<send_tokens,, inf>.Lexer(),
<get_prog,, inf>.<recognize_tokens, ji;>.
<send_tokens,, inf> Lexer()
}
INPUT_INTERACTIONS UNI select_prog;;select_prog,
OUTPUT_INTERACTIONS UNI send_tokens;;send_tokens,

24

ELEM_TYPE
BEHAVIOR

INPUT_INTERACTIONS

ParserT(void; rate j,)
Parser(void; void) =
choice

{

<get_tokens;, inf>.<parse phrases, ji,>.

<send_phrases,, inf> Parser(),

<get_tokensy, inf>.<parse phrases, ji,>.

<send_phrases,, inf> Parser()

UNI get_tokens;; get_tokens,

OUTPUT_INTERACTIONS UNI send_phrases;;send_phrases,

ELEM_TYPE
BEHAVIOR

INPUT_INTERACTIONS

CheckerT(void;rate yi.)
Checker(void;void) =
choice

{

<get_phrases;,inf>.<check_phrases, ji.>.
<send_checked phrases;, inf>.Checker(),

<get_phrases,,inf>.<check_phrases, ji.>.
<send_checked_phrases,, inf >.Checker()

}

UNI get_phrases;; get_phrases;

OUTPUT_INTERACTIONS UNI send_checked_phrases;;send_checked_phrases,

ELEM_TYPE
BEHAVIOR

INPUT_INTERACTIONS

OptimizerT(void;rate /i)
Optimizer(void;void) =
<get_checked phrases,inf>.
<optimize_phrases, ji,>.

<send_optimized phrases, inf>.0ptimizer()

UNI get_checked_phrases

OUTPUT_INTERACTIONS UNI send_optimized_phrases

ELEM_TYPE
BEHAVIOR

INPUT_INTERACTIONS

GeneratorT(void;rate fig)
Generator(void;void) =
choice
{
<get_optimized_phrases, inf>.
<generate_code, j1;>.Generator(),
<get_checked phrases,inf>.
<generate_code, ji;>.Generator|()

}

OUTPUT_INTERACTIONS

UNI get_optimized_phrases; get_checked_phrases

PipeCompSys

ARCHI_TOPOLOGY

ARCHI_ELEM_INSTANCES PG, : ProgGenT(; \1);

ARCHI_INTERACTIONS
ARCHI_ATTACHMENTS

END

PG, : ProgGenT(; \2);

LB : TwoClassesBufferT(0, 0;);
L: LexerT(; i1);

PB : TwoClassesBufferT(0, 0;);
P : ParserT(; iip);

CB : TwoClassesBufferT(0, 0;);
C: CheckerT(; c);

0B : OneClassBufferT(0;);

0 : OptimizerT(; fto);

GB : TwoClassesBufferT(0, 0;);
G : GeneratorT(; g):

FROM PG, .deliver_prog TO LB.get_item;

FROM PGy.deliver prog TO LB.get items;

FROM LB.put_item; TO L.get_prog;;

FROM LB.put_item, TO L.get_progy;

FROM L.send_tokens; TO PB.get_items;

FROM L.send_tokens, TO PB.get_itemy;

FROM PB.put_item; TO P.get_tokens;;

FROM PB.put_item, TO P.get_tokensy;

FROM P.send_phrases; TO CB.get_item;

FROM P.send_phrases, TO CB.get_item,;

FROM CB.put_item; TO C.get_phrases;;

FROM CB.put_item, TO C.get_phrasess;

FROM C.send_checked_phrases; TO OB.get_item;
FROM C.send_checked_phrases, TO GB.get_itemy;
FROM OB.put_item TO 0.get_checked_phrases;
FROM O.send_optimized_phrases TO GB.get_item;;
FROM GB.put_item; TO G.get_optimized_phrases;
FROM GB.put_item, TO G.get_checked phrases

serv_time(O) L

e}
1 1 —
FCFS © FCFS
|- . .
1 1
serv_time(L, 1) serv_time(P , 1) serv_time(C , 1)
serv_time(L, 2) serv_time(P , 2) serv_time(C , 2)
FCFS FCFS

FCFS

serv_time(G, 1)
serv_time(G, 2)

e Scenario-specific parameters: Apipe,1, Apipe,2;
Hpipe,1, Hpipe,ps Hpipe,c; Hpipe,o0) Hpipe,g-

e Approximation to get a product form open
QN composed of five QSs M/M/1: single
=)\pipe,l +

arrival process with rate Apipe
/\pipe72~

e At equilibrium the arrival rate for the lexer,
the parser, the checker, and the generator is
Apipe While for the optimizer is Apipe,1.

e The probability that a program leaving the
checker enters the optimizer (resp. the gen-

erator) is)\pipe71/)\pipe (resp.)\pipe,Q/)‘pipe)'

25

i Stablhty)‘pipe < min(:upipe,la ,upipe,pa ,Uinpe,ca
Hpipe,o * (Apipe/ Apipe,1); Hpipe,g):

e Phase j throughput:
X for j £ o

pipe,j — >‘pipe

X
Xpipe,o = >\pipe,1

e Phase j utilization:

Ubpipe,j = Ppipe,j

e Mean number of programs in phase j:
Nopipe,j = Ppipe,j/ (1 = Ppipe.;)

e Mean duration of phase j:
RPipe,j - 1/[:“112'106,]' ' (1 - Ppipe,j>]

Concurrent Compiler

e Two sequential monolithic compilers oper-
ating in parallel on two different programs.

e The programs are taken from a shared buffer.

e Pipeline compiler throughput:

X =X

pipe pipe,g

e Pipeline compiler utilization:
Upipe = 1 — (1 — Upipe,j)
j

e Mean number of programs in the pipeline
compiler system:
Npipe = % Npipe,j

e Mean pipeline compilation time:

_ Ao _
__ 7\pipe,1
pipe J

)\ie2 o)
pp"ZRie'
pipe j#o

26

ConcCompSys

) deliver prog

L
deliver prog

select prog;

get_progl'

get_progz' PB

put_progz

select prog,

sC;

SC,

serv_time(SC, 1)
serv_time(SC, 2

serv_time(SC, 1)
serv_time(SC, 2

ARCHI_TYPE
ARCHI_ELEM_TYPES

ELEM_TYPE
BEHAVIOR

INPUT_INTERACTIONS
OUTPUT_INTERACTIONS

ELEM_TYPE
BEHAVIOR

INPUT_INTERACTIONS
OUTPUT_INTERACTIONS

ELEM_TYPE
BEHAVIOR

INPUT_INTERACTIONS
OUTPUT_INTERACTIONS

ARCHI_TOPOLOGY
ARCHI_ELEM_INSTANCES

ARCHI_INTERACTIONS
ARCHI_ATTACHMENTS

END

ConcCompSys(void; rate A1, Aa, fi1, Llp, fhe, o, Hg)

ProgGenT(void;rate \)
ProgGen(void;void) =
<generate_prog, \>.<deliver_prog, inf>.ProgGen()

UNI deliver_prog

ProgBufferT(integer hy, hy; void)
ProgBuffer(integer h;, hy;void) =
choice
{
<get_progi, *>.ProgBuffer(h; + 1,h,),
<get_prog,, *>.ProgBuffer(hs,h, + 1),
cond(h; > 0) = <put_prog;, *+>.ProgBuffer(h; — 1,h,),
cond(h, > 0) = <put_progs, *>.ProgBuffer(hs,hy — 1)
}
UNI get_prog; get_prog,
OR put_prog;; put_progs

SeqCompT(void; rate /i1, fip, flc, fo, Hg)
SeqComp(void; void) =
choice
<select_prog;,inf>.<recognize_tokens, ji;>.
<parse phrases, ji,>.<check phrases, ji.>.

<optimize_code, ji,>.<generate_code, (1;>.SeqComp(),

<select_prog,,inf>.<recognize_tokens, /i, >.
<parse phrases, yi,>.<check phrases, ji.>.
<generate_code, j1;>.SeqComp()

}

UNI select_prog;select_prog,

PG, : ProgGenT(; \;);

PG, : ProgGenT(; \p);

PB : ProgBufferT(0, 0;);

SCi, SCa : SeqCompT(; i1, [ip: fhe, o, Hg)

FROM PG, .deliver_prog TO PB.get_prog;;
FROM PG,.deliver_prog TO PB.get_progy;
FROM PB.put_prog; TO SCy.select_progs;
FROM PB.put_prog; TO SC,.select_progs;
FROM PB.put_progs, TO SCy.select_progs;
FROM PB.put_prog, TO SCy.select_prog,

Scenario-specific parameters: Aconc,1; Aconc,2
HMconc,15 Hecone,py Mconc,cy Hconc,0y Hconc,g:-

Approximations to get a QS M/M /2 similar
to those for the sequential architecture.

Stablhty Pconc =)\conc/(2 : ,U/conc) <L

Concurrent compiler throughput:
Xecone =)\conc

Concurrent compiler utilization:
Uconc =2 pconc/(l + pconc>

Mean number of programs in the concurrent
compiler system:

Nconc =2 pCOHC/<1 - pzonc>

Mean concurrent compilation time:
Reonc = 1/[,UCOIIC) (1 - pZonc)]

27

Scenario-Based Comparison e Heavy load: all the architectures work close
to their maximum throughputs, which can

e Fair comparigon: HMseq,j = Mpipe,j = HMconc,j be derived from the corresponding stability
= pjforall j € {1,p,c,0,g}.

conditions:
:)\se = Xse max — HMse
e Preservation of the frequency of each class L o4
of programs: Ageq.c/Aseq = Apipe,c/Apipe = Apipe = Kpipe’max - mm(’ul’up”uc”u"/pl’ug)
/\conc,c/)\conc = Pe forall c € {]_, 2} Aconc = Xconc,max =2 Hconc

e Throughput: mean number of programs that e Consider three sub-scenarios.
are compiled per unit of time.

e The five compilation phases have approxi-
matively the same average duration p~!:

X (4+p)~" - p

i

2-(4+p)~p

e Two scenarios: light load and heavy load.

e Light load: the specific architecture does ;X seq,max
not really matter, as the relations among X pipe max
the three throughputs directly depend on X
the relations among the three arrival rates:
Xy, R Xy, itand only if Ay, R Ay, forall ¢4, ¢
€ {seq,pipe,conc} and R € {<,=,>}.

112 1R

Xconc,max

It follows that:
zpipe;maxgseq,max =44
&ipeymax/)&onc,max = 2+0.5py
Xconc,max/Xseq,max = 2
The pipeline architecture wins.

e The average duration of a compilation phase References
18 Several OrderS Of magnitUde greater tha,ﬂ [1] M. Bernardo, P. Ciancarini, and L. Donatiello, “Architecting Fami-
. . lies of Software Systems with Process Algebras”, in ACM Trans. on
the average dgatlon Of the Other phases- Software Engineering and Methodology 11:386-426, 2002.
~
Xseq,max = [2] M. Bernardo and F. Franzé, “Ezogenous and Endogenous Ertensions
Y . of Architectural Types”, in Proc. of the 5th Int. Conf. on Coordination
1 f Archi | Types”, in P f the 5th Int. Conf. Coordinati
* " pipe,max ~ 1 Models and Languages (COORDINATION 2002), LNCS 2315:40-55,
)(Conc’maX = 2. York (UK), 2002.
It fOHOWS that: [3] M. Bernardo and F. Franze, “Architectural Types Revisited: Extensible
y) /X ~ And/Or Connections”, in Proc. of the 5th Int. Conf. on Fundamental
_“*pilpemax/ <% seqmax Approaches to Software Engineering (FASE 2002), LNCS 2306:113-
X /X . >~ 9 128, Grenoble (France), 2002.
conc,max pipe,max
7 /7 ~ 2 [4] A. Aldini and M. Bernardo, “A General Deadlock Detection Approach
conc,max/ <% seq,max ~ for Software Architectures”, to appear in Proc. of the 12th Int. Formal
The concurrent architecture wins. Methods Europe Symp. (FME 2003), LNCS, Pisa (Italy), 2003.

[5] M. Bernardo, L. Donatiello, and P. Ciancarini, “Stochastic Process Al-
gebra: From an Algebraic Formalism to an Architectural Description

e The average durations range between a min- Language”, in Performance Evaluation of Complex Systems: Tech-
. —1 . -1 niques and Tools, LNCS 2459:236-260, 2002.
imum value p;, and a maximum value g,

th t 1 d f t d t: [6] S. Balsamo, M. Bernardo, and M. Simeoni, “Performance Evaluation
al are several or erS_O magnl ude apart: at the Software Architecture Level”, in Formal Methods for Software
(4 4 p1> . Pmin <)ipipe,max < 4 + D1 Architectures, LNCS 2804:209-260, 2003.
Hmax i(seq,max [7] M. Bernardo, “TwoTowers 3.0: Enhancing Usability”, to appear in
(4 + p1> . Hmin / 2 < m < (4 + pl) / 2 Proc. of the 11th Int. Symp. on Modeling, Analysis and Simulation of
Hmax - {conc,max - Computer and Telecommunication Systems (MASCOTS 2003), IEEE-
9 < Xconc,max < 9 CS Press, Orlando (FL), October 2003

Xse ,max
The concurrent architecture is always twice
as faster as the sequential one, while the
pipeline architecture can perform worse than
the other two.

28

1. Basic priority: maximal progress
- 171 ¢ Extension of the standard Milner’s sound and
AXI Omatl ZI ng proceSS complete axiomatization when a new “5” prefix is
I b - th t . introduced representing a time delay.
d ge ra Wi Ime. ¢+ If we assume that time may elapse only when no
. .. standard action can be performed (maximal
real-time and stochastic-time progress assumption) then such extension is not

trivial.

Mario Bravetti « Tecnically, we assume a simple form of priority

Universita di Bologna of “7” actions over “&” actions: visible actions
are interpreted as representing potential for
Parts are joint work with: Roberto Gorrieri execution only.
Process Algebra: Open Problems and Future Directions 1 Process Algebra: Open Problems and Future Directions

1.1 The basic calculus 1.2 Weak bisimulation equivalence
¢ Similarly as for standard CCS we start from o The notion of equivalence is just standard
axiomatizing a basic calculus with recursion: Milner’s observational bisimulation equivalence
Pi= 0| nP| P+P | RecXP | X where “&” is treated as a visible action.

¢ Technically, when we’ll consider static operators

where “7.P” is either “o..P” (o Is a or 1) or “5.P”. we’ll need a slightly different treatment of &~

+ The operational semantics of this calculus is a and visible actions: in observational congruence
simple variant of the standard one: after an (intial) “5” step we do not consider weak
pd.p QAT ' bisimulation, but still observational congruence.
5 . ¢ In any case it is a conservative extension of
P+Q—FP Milner’s observational congruence.
+ model of “6.P + z.Q™ is isomorphic to “z.Q™. + It is a congruence for our prioritized calculus!
Process Algebra: Open Problems and Future Directions 3 Process Algebra: Open Problems and Future Directions

1.3 Problems with standard 1.4 A solution based on “scope”
axiomatization ¢ The role of (Ung2) is important! It equates z-
axioms for unguarded recursion (the second one): ¢ A previous proposal (Hermanns — Lorey ’98)
(Ungl) RecX.(X + E) = RecX.E solved the problem by using an equivalence

(Ung2) RecX.(t.X + E) = RecX.t.E which is sensible to ~divergence.

(Ung3) RecX.(t.(X + E) + F) = RecX.(t.X + E + F) ¢ ldea: introducing a new operator “pri(E)” which

. ey computes the prioritized behavior of E! (removes
¢ The problem arises when E is “4.F" in (Ung2). initial “5” transitions and subsequent behaviors).

T - -
Q ;ﬁ — e o F ¢ The new axiom is:
o F

>é (Ung2) RecX.(t.X + E) = RecX.t.pri(E)

Process Algebra: Open Problems and Future Directions 5 Process Algebra: Open Problems and Future Directions

29

1.5 A complete axiomatization

¢ Priority:
(Pril) pri(0) =0
(Pri2) pri(c.) = o.E
(Pri3) pri(d.E) =0
(Pri4) pri(E +F) = pri(E) + pri(F)
(Pri5) pri(pri(E)) = pri(E)
(Pri6) T.E+F = t.E+ pri(F)

¢ Note: “t. £+ 0.F = t.E” is a special case

Process Algebra: Open Problems and Future Directions 7

1.6 Problems with parallel operator

¢ If local priority are assumed (e.g. in “t.E | 6.F”, &

Is not pre-empted) then we obtain a calculus for

which observational equivalence is a congruence:
— we need to deal with locations in the semantics!

¢ In the case of global priority (e.g. in “t.E | 8.F”, 6
is pre-empted):

PO.p QAL
PIIQ 2 PIQ
observational equivalence is not a congruence!

Process Algebra: Open Problems and Future Directions 9

¢ On the contrary, observational equivalence treats
them as processes which do not allow time to
elapse: e.g. “1.0” is equivalent to “RecX.t. X”, i.e.
time deadlock.

¢ A possible solution, adopted, e.g., in Hermanns-
Lohrey 98, is to consider a finer notion of
equivalence which is sensitive to zdivergence, so
to get a congruence.

Process Algebra: Open Problems and Future Directions 11

30

¢ Unguarded recursion:

(Ungl) RecX.(X + E) = RecX.E
(Ung2) RecX.(t.X +E) = RecX.1.pri(E)
(Ung3) RecX.(t.(X+E)+F) = RecX.(t.X+E+F)

(Ung4) RecX.(t.(pri(X)+E)+F) = RecX.(t.X+E+F)
¢ (Ung4) is needed to remove weakly unguarded
occurences of pri(X) introduced by new (Ung2)

¢ The proof is based on unique solution of standard
equation sets whose characterization is a variant
of the standard Milner’s one.

Process Algebra: Open Problems and Future Directions 8

1.7 The problem with global priority

eRecXt. X X t0 but
RecX.t. X || 8.0 % 0] 8.0

¢ The problem with congruence in the global
priority approach is related to the behavior of
parallel in the presence of processes which may

execute neither ““7” prefixes, nor “& prefixes.

¢ Such processes (among which is “0) are
managed as allowing any amount of time to
elapse before executing visible prefixes (if any).

Process Algebra: Open Problems and Future Directions 10

2. Discrete real-time

¢ In the discrete real-time approach elapsing of
time is represented, exactly as in our basic
calculus, by a special action ¢ called a “tick”™.

¢ In this context simple solution to the problem of
introducing parallel in the basic calculus:

— adopting the particular form of priority in the
Hennessy-Regan calculus which is neither local nor
really global, but is specialized for time.

Process Algebra: Open Problems and Future Directions 12

2.1 The Hennessy-Regan approach

¢ The parallel operator in such a calculus allows for
time to elapse in a process only when the other
process may explicitely allow for time to pass via
d transitions:

pS.p g d.¢
PllsQ 2P ||sQ’

¢ This is similar to global priority, but changes the
interpretation of processes which may execute
“7” prefixes nor “¢&” prefixes as desired:

neither *“7
e.g. now “0” is correctly treated as a time-
deadlock from the parallel operator as well!

Process Algebra: Open Problems and Future Directions 13

2.3 Axiomatization of new operators

¢ Complete axiomatizations for the new “n . P” and
“P + Q” operators and the parallel operator are
produced by turning terms into normal forms:
terms of the basic calculus

¢ For parallel and “new” choice this is done in a
standard way by introducing auxiliary operators:
— left and syncronization merge for parallel
— analogous of synchronization merge for choice

Process Algebra: Open Problems and Future Directions 15

3.1 Introducing a parallel operator

¢ Extending the basic Markovian calculus with the
parallel operator is not trivial and presents exactly
the same problems that we have explained.

¢ If we consider a parallel operator with a global
priority mechanism then we have to modify the
notion of weak bisimultion equivalence that we
consider so to get a congruence.

¢ This is exactly the case of Hermann’s calculus of
Interactive Markov Chains which adopts a notion
of bisimulation sensible to zdivergence.

Process Algebra: Open Problems and Future Directions 17

31

2.2 New prefix and choice operators

¢ The calculus that we consider (for specifications):
p:= 0| mP| PP [P P|P/L|RecxP|X
¢ Old “m . P” and “P + Q” are auxiliary operators

¢ The new operator “z. P” is defined to be ““RecX
(0. X+ zP)”if “2”” is visible (it must be expli-
citely allowed to be delayed), “n . P” otherwise.

¢ The new operator “P + Q" is defined in such a
way that the execution of delays by “P” or “Q”
(now used just to represent time passage) does
not resolve the choice (they must synchronize).

Process Algebra: Open Problems and Future Directions 14

3. Markovian stochastic time

¢ Elapsing of time is represented by special
prefixes “A” (4 is a real number), denoting time
delays with a probabilistic duration:
— a (continuous) exponential distribution with
parameter “A” (intuitively the speed of the delay).
¢ Limitation to exponential distributions:
— parallel of delays is simply their interleaving
— we get a simple Continuous-time Markov Chain

+ We consider a trivial variant of the basic calculus:

— numerical “A” prefixes replace the “&” prefix and
“A” transitions are matched according to standard
Markovian bisimulation.

Process Algebra: Open Problems and Future Directions 16

3.2 A technique a la Hennessy-Regan

+ An alternative way is to adopt a technique similar
to the Hennessy-Regan one where we say that
time is allowed to pass for a process only if the
other one may explicitely make it pass:

2,

pLl.p
A Do
PllsQ—=P"[[sQ

¢ This has the advantage of relying on a simpler
and coarser notion of equivalence.

Process Algebra: Open Problems and Future Directions 18

3.3 The calculus

¢ The calculus that we consider (for specifications):
P:= 0| mP| PP [P P|P/L|RecxP|X
where “m.P” is either “a.P” (v is a or t) or “A.P”.

¢ Old “n . P” and “P + Q” are auxiliary operators.
The new operators “n . P” and “P + Q” are de-
fined similarly as for the discrete real-time case.

¢ The new prefix and choice operators allow for an
even coarser notion of equivalence which
abstracts from exponential selfloops (they can
never be unfolded by an operator like “+”).

Process Algebra: Open Problems and Future Directions 19

4. Non-atomic time delays

¢ In order to represent more complex time models,
we need to consider semantics where:
— delays not executed atomically in a single transition

— but that start in a given state, evolve through several
states and terminate in another state

¢ This is needed, e.g., to represent continuous real-
time (as in Alur and Dill’s timed automata) or
stochastic-time with general distributions.

Process Algebra: Open Problems and Future Directions 21

4.2 Decide & axiomatize ST semantics

¢ We have introduced 3 techniques for decideing
and axiomatizing ST semantics:

— static name technique:

« statically generates a name for every action according to its
syntactical position in the term (location w.r.t. parallel)

« allows ST bisimulation to be decided for finite-state terms

— dynamic name technique:

« dynamically generates a canonical name for every starting
action according to the order of execution of actions:
smallest number not in use by actions of the same type

« ST bisimulation in terms of standard bisimulation: com-
plete axiomatization and decidability for finite-state terms

— stack technique:

« based on pointers: same properties of dynamic name tech-
nique for an algebra including semantic action refinement

Process Algebra: Open Problems and Future Directions 23

32

3.4 Complete axiomatization

¢ Complete axiomatization is produced by turning
terms into normal forms:

— terms of the basic (Markovian) calculus

¢ For parallel and “new” choice this is done in a
standard way by introducing auxiliary operators:
— left and syncronization merge for parallel
— analogous of left merge for choice

¢ A completely new axiom characterizes abstrac-
tion from selfloops in Markovian calculi:
(ExpRec) RecX.(A.X+A.P + Q) =RecX.(A’.P +Q)

Process Algebra: Open Problems and Future Directions 20

4.1 Not a new problem!

¢ Considered a simple calculus like:
P:= 0 |nP| P+P | PP |P/L|RecXP|X
where “n.P” is either “a..P” (av is a or t) or “6.P”.

¢ How to represent the execution of a time delay
“d” as the combination of the two events of:

delay start delay termination

in such a way that termination of a given delay is
uniquely related to its start?

¢ Already considered in the literature: ST semantics
(van Glabbeek and VVaandrager “87)

Process Algebra: Open Problems and Future Directions 22

4.3 ST semantics for time delays

¢ Techniques based on names particularly adequate
for timed models:
— they keep the relationship between delay start and

terminations by producing unique names which are
like clock names in a timed automata.

¢ In particular, dynamic name techinque allows us:
— to simply use standard (weak) bisimulation

— to produce axiomatizations via a standard approach
based on left and synchronization merge:

is based on the technique of levelwise renaming: canonical
names are recomputed every time delays are taken out from
the scope of a parallel operator in the rule for left merge.

Process Algebra: Open Problems and Future Directions 24

5. Continuous real-time

¢ Elapsing of time can be represented by delay
prefixes “D”’, where D represents a set of non-
negative real numbers: the possible durations for
the delay.

¢ D can, e.g.,, be an interval or a set of intervals
obtained via a set of constraints.

¢ Since we are in a continuous domain we want to
obtain models based on clocks (like a timed
automata) where time elapsing is not explicit, but
expressed symbolically via start and termination
of clocks.

Process Algebra: Open Problems and Future Directions 25

5.2 Equivalence and axiomatization

¢ Equivalence is just Milner’s observational
congruence (where D prefixes are considered to
be visible actions): the effect is that it matches
delays with the same set of possible durations D.

¢ A complete axiomatization is produced by by
turning terms into normal forms:

— terms of a basic calculus (where we use “rt . P” and
“P + Q” operators and D;*, D; prefixes)

by combining the two techniques related to
priority (maximal progress) and ST semantics.

Process Algebra: Open Problems and Future Directions 27

6.1 The calculus

¢ The calculus that we consider (for specifications):
P:= 0 |mP| PP [P P|P/L|RecxP|X

where “n . P” is either “a . P” or “<f,w> . P”
¢ “n.P”and “P + Q” are auxiliary operators.

¢ We apply ST semantics with dynamic names to
delays <f,w>, thus producing clock names f;:

— *“1”” distinguishes clocks derived from delays of the
same type (with the same distribution f).

— the weight ““w”” is associated to the transition of start

Process Algebra: Open Problems and Future Directions 29

33

5.1 The calculus

¢ The calculus that we consider (for specifications):
Pz 0 |mP| PP [P P|P/L|RecxP|X

where “r . P” is either “o. . P” or “D . P”
¢ “m . P”and “P + Q” are auxiliary operators.

¢+ We apply ST semantics with dynamic names to
delay prefixes, thus producing clock names D;:
— “I”” is a number generated by the semantics to

distinguish clocks derived from delays of the same
type (with the same set of possible durations D).

Process Algebra: Open Problems and Future Directions 26

6. General stochastic time

¢ Elapsing of time is represented by delay prefixes
“f”, where f is a general probability distribution
over non-negative real numbers: it expresses the
probabilistic duration of the delay.

¢ Since we consider continuous general distribu-
tions we want to obtain models based on clocks
where time elapsing is not explicit, but expressed
symbolically via start and termination of clocks: a
Generalized Semi-Markov Process

Process Algebra: Open Problems and Future Directions 28

6.2 Equivalence and axiomatization

¢ Equivalence is just Milner’s observational
congruence combined with standard probabilistic
bisimulation for start of delays: the effect is that it
matches delays with the same distribution f.

¢ A complete axiomatization is produced by by
turning terms into normal forms:
— terms of a basic calculus (where we use “n . P” and
“P + Q” operators and <f;*,w>, f;- prefixes)

by combining the two techniques related to
priority (maximal progress) and ST semantics.

Process Algebra: Open Problems and Future Directions 30

Open problems and future directions

¢ The continuous real-time and general stochastic
time models could support the possibility of
aggregating, besides t actions, also time delays.
How to express this in the semantics and the
equivalence is a difficult open problem (a
possibility could be using the stack technique).

¢ When the capability of expressing time is used in
real case studies, often it turns out that an elegant
way to express internal/external probability and
priority is also needed. In spite of the several so-
lutions proposed we still miss a very elegant one.

Process Algebra: Open Problems and Future Directions

31

References

M. Bravetti, R. Gorrieri A Complete Axiomatization for Observational
Congruence of Prioritized Finite-State Behaviors”, in Proc. of the 27th Int.
Colloquium on Automata, Languages and Programming (ICALP 2000) , U.
Montanari, J.D.P. Rolim and E. Welzl editors, LNCS 1853:744-755, Geneva
(Switzerland), July 2000.

M. Bravetti, R. Gorrieri “"Deciding and Axiomatizing Weak ST Bisimulation
for a Process Algebra with Recursion and Action Refinement”, in ACM
Transactions on Computational Logic 3(4):465-520, 2002.

M. Bravetti, R. Gorrieri “"The Theory of Interactive Generalized Semi-Markov
Processes”, in Theoretical Computer Science 282(1):5-32, 2002.

M. Bravetti, ““Specification and Analysis of Stochastic Real-Time Systems”,
PhD Thesis, University of Bologna, Padova and Venezia, February 2002.

M. Bravetti, “Revisiting Interactive Markov Chains”, in Proc. of the 3rd
Workshop on Models for Time-Critical Systems (MTCS 2002) , ENTCS 68(5),
Brno (Czech Republic), August 2002.

Process Algebra: Open Problems and Future Directions

SEMANTIC THEORIES

FoR ASYNCHRONOVS CALCULI

Tlarie Castellani

INRIA J’orkm Awhralu

Bertinoro
Jw’y 21 -5, 2003

Procecs Alj ehra works kor

UNSOLVED PROBLEMS

1) Axiomatisation of weak a,:ym,clu'onou.: bisimulation
owaujlv fo add 4he L laws Iu,Jjul’cJ in [ACS36] 4

Problem ¢ ¥ -lawe need /fw” jua.ra((_ol choice .

L) Axiomatisation of uynckronou wews "'u{'l‘n:j

- vJL.i(J»v mormw’ ,jorm! ?

- ned ,for Tr"o; rules ?

Some law s {u:jjurco(T [CHﬂﬁ.] -

35

Metivatiows dor weynechromows - ealenlue

Ax)u\.ckro nows commani catiow

° Sivwlecr Imla‘ow»cw{'zd’iow:

channe manoges
o~

semder - _ receiver
A %ﬁ‘""' ey

(\aﬁ w0, R
¥

=> basis for PlCT, Join- ealewlus , oe.

e

° jw The - ecadewlus : sfwvlylf,r J/VWJFM/

same ex Pre,uivcwws :

(,woaolinj.(_()/p\,c,h,ro noud —) a—«)/h.clu‘owoud

e A sy wehoronous observetio :

a.FFrol:ria,f‘c, —for mucssiw& e,h,wofiv\js

2

Aim & Overview The e“"ﬁ""'d" TACCS

A:ymknmu: ealenli ((Like wiyme. T) A:ywokrowows cces | m,cla/P‘f’col Aor ’Fesh'w\ﬁ

weed L?Fro?rimh, semantic «‘rrmcc«)ark;

Async'rurouou,x bicimulakion [Honde.,
Tokoro, ynxlvuiola., AMA.J:'.;) CMT) Sou\.jiot:ﬁil

L

A sy ehronouns Tuh‘wj

(a: o De Nicola & Hame.\‘f/)

o async. notions 04 E"’""Y and S st
o alternative charactericatiouns

o OXI ometitation

Semantics o.f TACCS

X . o(./ﬂ = a,,i:,’b’
IW]’“ a..f) ——)P
waPwT a,P -—’t—>0-b”'P Atom @ —5:—)0
Porelle :
PSP 459 P —p
plg & o'lg' pig L p'llg

36

iwpuf prefix
asynchromous outpul
atom

Pa,ra,fle,l

infernel choice

e,\,fu-wa.’ choice

Semantics (ch) New rule for +

jwf ’P@Cl —’E—J' ’F s CCLS : + s @ S}'Wd"mw""‘“’tﬁ oycr.

a v ! » “E’P'
Ext P a"P P - P
[B P*9 — P *9q Ptqg o p
P ——b? ow‘f'];u_+s are - o TACCS a,sywckrmows world
F'rq L a‘”?' a.,sywokl‘owou,s wrl + by \
P
g —> &l p!

The ou-T-lwa 8 c,on,.ru,vwcol Ooter

New rule Jor + A:ynokﬂwy o" ou"rwh

Proru+its oaj a,syvvolvr‘owou,s actions :

e« CCS . + s a sywckrowixivu oper.
d r [Seliwjer 93 _]

PP
“) Backward commu.fd’n'vl"r
Prg P
& o
P—>P1 P—_‘>P1
o TACCS };u.;”e,r— intewsitive . lﬁ = f5, lﬂ
v oz
- . %5,
0 ~ a.a P Ps P
with ¢S rule : FGGALA.J(
0 #mu‘f a. a P _E_) F: ? o]91
Ry
mus? 5,+(w©‘w) m/«:f Z.+(w@m) P \41}1
8 g

37

AsyM. o4 w.f'lauh (etd)

FO rw bl'd

comm w"a.l‘u‘w‘fy

@
P~ P
fbl =>
P2
cither fB=a 4 Ps=pz or 2 cades :
o Z
P—Ps p—> P
sl e |
a Y L
?z"“>F3 P2
40

Tu‘fu'n.J teenario (cfd)

. Tu‘l’in rruvhn
? Emhy q
A AN

€ wmust
P wsf 9

7 P Emeyq A P Ewud g

E:im‘va'uuu: ¥ = L£oga

42

TESTING SCENARID

Observe via Teste : procesies with sre,cia,l

" "
fweeess action W

Ex .

w

¢z a.w + b

P moy € 14 3J weoximel comFuJa.Tfa‘n.
%

ple 5t phe S0

such that & 2

P must e l); Y mex. comp. PANLAN

 —

11

Tuh'w, rnorhrc ! uumrlu

i$ Ve ('pmyc :>qma,)/e:

I§ Ve (;}; musTe = L] mu,s'rc;

O Ewmey & o

38

Charoctericatiom of way
(syn.ckrou.ou:)

Testing rnorhr: i Xamples

a € (0]
\ Observable sequences = (/A,: a, Z\)
'mws‘r 3, w
€
P =7
T ! 1S u s "
PUPp D 2 p=p
O C’M- A O a 1 1 n
~ &y Mulf : »P AF) P :_'S->P = ‘P é’S)Fu
| D&cw{eock on o aS)/wc : (a”w " 0~) ' 'Fa-cf.' 'P =5> <:> 'P M&)' E.CO
sywe. (w@w)-r'a',

{ Lip) = {sl 39" pSp]

eclwach with bw{fu—iws onw A
Muy 'fcs‘h'n.a :

0O ~ a.

Y

must (a.w I &)

14 15
Charncherication of may | | Charackerication of way | X
& Emay O & € may O
bt L(a) ¢ L(0) bt d(a) & 4(o)
P (£ opomy S P (FE pomey S0
0 doao 5% 0llw , but 0 <&, 0 doao 5* 0lw, but 0 2&
Asynchronous sequemces =>
p 25 bllp Y iwput b
L5(p) = ['s] ip'. F=_s—>,vf>'}
16 I+

39

Characterication of M“’)’J ~ Choracterisation of muwef
(synehromous)

o Emuy 0

bt ‘é(“) ? L(O) ﬁta.d)/ set

R(p) = {a|astn , p5Y
P =S.—> => p may S.W

a

Acoc,Fhu\,cc wl" og- ’]D A«ﬂ'u S

aa

0ol &a.a.w —’E;*'O”co and 0 =>_ v
A (p.6) = {RGND [259" 5 }
As)mc,krowow sequences _~i_>a’ :
L, - p&kq 4 VS,VAeJt(q,s)
p—u bllp ¥ input b FNek(ps) s AcA
) = {sl3p. pSap'] Muit decting
Muy ‘fufiwjz : P €t = P << q

P Emy q &> L7(p)c L9

’ Char. o} musT (etd)

Chorancterisation o; ww.sf

Remoark 4 M}_

‘Zuw{/v sets restricted o ouTFwT:
0“(pe)={8} cc 0(q.e)= {4}

w.a Emvdr 0
K- Hay o Alqe)= (4] b Zoer O
mu!f a_,H 19.(0
: Kcmuk 2

T 9{;(?,5) s should be a,sywckrouou‘ (90; (P' s) = {O (P") J P *;>,L PI\U; ']>"}

0 G..0

1 musl

P<< 9 i1 Vs,VOe(D(q,s),VIs.T.._
’)t(p,a,)= ¢ c/c Jt(c],w) = {{&5} 10'e @:(p,s) ¢t 0'\I co
Must 1cx‘rin.d

' P Emut 9 => 7 <« q

©a.(?‘s> = {O(?')l ? _—s_.>a"P17'Z_) }

20 <1

40

AXIOMATISATION

Roth rrurh.n :

o Standard faws o;} ’rufn'wj:

x@y < x+y

o New lawe Sor a:ynekran/ :

M. Ga.x = al«x
A2, a.(allx)+x =x
_Mo.y ‘ru"'in:’ : add
x < x@y
A2 . caw be derind afrvm o (i”x\) { X

L2

FUTURE / RELATED WoRK

. Covvuled’f, wiomadi sativn ,far C et

o Extencion o,g the ’Hucor}/ to the

a,sy;'\,olurmvows m- CG.JC(A—’(A,J

Related work

o Boreale of ol. (38}99):

Axiomaticabiom O,f m.aly /r“h"{ﬁ

over a,xywdvronou_s CCS and ™

Mu:ef 14:".'»\3_:

AXIOMATISATION (cfd)

add

X®y £ X

o Another a,sywd’vrowy o

A3,

(x+3,.y) ® 3,.)/

x+a,.y$

Conditional rules R4, R2, R3 :

X+)/fx

R3,
(x+2u.z)@y < x

. (bido)@0 < b

Rack o q,«ywckrowou.« breimuwledion

(il’ W e Jt}fwwl ow ’ﬂ\«t— M/wblvron.ou T'Lk‘c.

with inu.+ and T Ju.n,ro‘cal s, but we
concider here dhe cade o} uywclvrowovw CCJ)

25

41

Axiomakicabivg Jor ACLS (‘h“‘:ﬁ ease)

ASYNCHRONOVS CCS (Aces)

A.fywokromy Low

Go=0 | wP | G+6 psoa,t
Pa=a | ?la | P\a P za,d, w-(alP)+2.P = 2.7
Norwdb! —‘{orw,a
wr Lop P 0 ~
' - Tz, | (Zt-PJ'w*fah.Qk)
« \ a 'Pj
C"'t')t)G‘l 'P—ﬁ'P} 0(74-‘&,; Qy 3 %
byt by 55 G P\a 5 ?'\a Weak, case ?
\ Y Ae Wva(OW lawe
7 5 p PSP, asal A
: ” |
Ple, 5 Pl Pl % P'lQ w (316)+6 =G
[(51&?) = a.P
26 2+
A_sywcl-vromu.: bisimulation ~g coNCLU.JI ON <
Intuition : a,sywckrowau.: observer comndl
shserve the ‘wpw‘h 04 o Tm(‘ur W eak Myw. bigim. teke ((u.,l jukrACJ
;%‘. e« % ¢!
ML o (x).ax T -
(‘\—\ / G"G’“ - wl&l
[r —_—
and add wew axiom an = Ta

| olab
- AJyw. R +M+7V-j ;

Bisimulationn ~a . PRGQ fvv\,])li(,::

TLvuuk(to orgemivens

4) Usuwal cowolition for ou.’r?u,f: and T
2) ‘P—a'l,»P' =>

{ci’rkar ahq . P'RQ
or &5 Q' 4 PR (Q]ab)

28

42

ol-vofcc

neet cdition o,I the u)orV.J‘r\,oT

24

An Equational Axiomatization of

Milner Bisimulation in Kleene Stars Regular Expressions

Fix an alphabet
A={a,bc,..}

The set of regular expressions is defined by:

Flavio Corradini Ei= 0 | 1 | a | E+E | EsE | E¥,

acA

Universita di L'Aquila, Italy

Regular Languages Language (Trace) Equivalence

Dipartimento di Informatica L[0]=0Q E=FifL[E]=L[F]
flavio@di.univagq.it LL11=4{}
L[a]l={a}

LLE+F]=LE]UL[F]
L[EsF]=L[E]eL[F]
LLE*]=(LLED*

Joint Work with:
Rocco De Nicola
Anna Labella

Workshop on “Process Algebra: Open
Problems and Further Directions” 1

Workshop on “Process Algebra: Open

Bertinoro 21-25.07.2003 Bertinoro 21-25.07.2003 Problems and Further Directions” 2

The “Non Deterministic”

Axioms for Language Equivalence Interpretation of Regular Expressions

Salomaa’s Axiomatization . .)
Regular Expressions and their Interpretation

X+Y=Y+X (XeY) eZ=Xe (YeoZ)
(X+Y)+Z=X+(Y+2) Xel=X=Xel E::= 0| Deadlock
X+0=X Xe0=0=0eX 1] Successful Termination
X4+X=X a (aeA)]| Basic Process
E+E | Non Deterministic Composition
EeE | Sequential Composition
eo/= L] L[] *: L] *
(X+Y) oZ=(XeZ)+(Ye2) X¥=1+XeX E* Recursive Definition
X o(Y+2Z)=(XeY)+(Xe2Z) X*=(1+X)*) .) N
Operational Semantics (via labelled transition systems):
iii*.r;z and X does not possess the e.w.p. E é F “Process” E becomes F after performing “action” a
Where a regular expression E possesses the e.w.p., written ewp(E), if EV "Process” E can immediately terminate

ewp(1), ewp(E*),
ewp(E) v ewp(F) implies ewp(E+F)
ewp(E) A ewp(F) implies ewp(E e F)

Observational Semantics

Bisimulation Equivalence

Workshop on “Process Algebra: Open
Problems and Further Directions” 3

Workshop on “Process Algebra: Open

Bertinoro 21-25.07.2003 Bertinoro 21-25.07.2003 Problems and Further Directions” 4

The Observational Semantics and

The Operational Semantics Milner’s Open Problem

Act —— — Ter
a—2 1 lv E~ F iffvacA
a : .
E—F E 0) EV iff Fv
Sum —M— + symmetric TSum Ev. s .
E+F 2 L p E+FV (i) E—"—>FE implies F———>F and E~ F
a a
a (i) F———F implies E E' and E'~ F
SeqliE — TSeq EV.FV
a EeFV
EeF——— F .
Milner’s Open Problem (JCSS’ 84)
a a
E—— F'#1 EV, F——F
Seq2 . Seq3 . Is Salomaa Axiomatization without axioms
EeF———— E'oF EeF—— F
o : o X o (Y+Z)=(XoY)+(Xe2)
Kegt £E——1 Keg E———F*1 e Ke0=0
Ex— 2 L E* B2 Fepx Exv complete with respect to bisimulation?
Workshop on “Process Algebra: Open Workshop on “Process Algebra: Open
Bertinoro 21-25.07.2003 Problems and Further Directions” 5 438ertinoro 21-25.07.2003 Problems and Further Directions” 6

The question is still open...

but interesting results are due to Aceto, Fokkink, Ingolfsdottir, Zantema...
Wan Fokking axiomatization regards regular expressions

- without 0 and 1

- with “Binary Kleene Stars” : E*F (where =FV)

Ex: a*b and a*b*c are “well-formed” regular expressions, a*b* is not

X+Y=Y+X (XeY)eZ=Xe (YoZ)
(X+Y)+Z=X+(Y+2) (X+Y)eZ=(XeZ)+(YoZ)]
X+X=X X*(YoZ)=(X*Y)eZ Fokkink's
Complete
XKY =Y+ XoX*¥Y Axiomatization
(X+Y)*eZ=X*(Z+Yo(X+Y)*Z)

Workshop on “Process Algebra: Open

Bertinoro 21-25.07.2003 Problems and Further Directions”

Main result

Under the hereditary non empty word property assumption, the set of
axioms:

X+Y=Y+X (XeY)oZ=Xe (Yo2)
(X+Y)+Z=X+(Y+Z) (X+Y)eZ=(XoZ)+(Yo2)
X+X=X Xel=1eX=X
X*=1-+XoX*
(XHY)*=X*K(1+Yo(X+Y)*)

provides a sound and complete finite equational axiomatization of
Milner’s bisimulation.

F.Corradini: A Step Forward Towards Equational Axiomatizations of Milner Bisimulation in Kleene Star.
Proceedings of “Fixed Points in Computer Science”, FICS 2000.

F. Corradini, R. De Nicola. A. Labella: An Equational Axiomatization of Bisimulation over Regular
Expressions. Journal of Logic and Computation, 12, pp. 301-320, 2002.

Workshop on “Process Algebra: Open

Bertinoro 21-25.07.2003 Problems and Further Directions”

Is our Axiomatization Complete for
L (general) Regular Expressions?

Consider

(a+b)* and a*(ba*)*

they are bisimilar but --- (a+b)*= a*(ba*)* --- cannot be proven in our
axiom system!

The formal proof resorts on the following property.

Property:
If E~ Fand (G+H)*, where — (G ~ H) appears in E then (X+Y+2)*
appears in FwithG~ XandH ~ Y

If we abondon the hnewp then such a property does not hold anymore...

Note: (a+b)* and a*(ba*)* do not even have Salomaa’s ewp!

Workshop on “Process Algebra: Open

Bertinoro 21-25.07.2003 Problems and Further Directions”

“Our Question”

Is there a finite equational axiomatization of Milner’s bisimulation over
regular expressions with 0 and/or 1?

Consider 1, first.

We strenghten Salomaa’s Empty Word Propert:

E* possesses the hereditary non empty word property if there is

no E’ such that E —* A L E~14F 4 EC

Ex: a*b* has the hnewp as ((1+a)b)*.
(b(1+a))* does not have the hnewp.

Workshop on “Process Algebra: Open

7 Bertinoro 21-25.07.2003 Problems and Further Directions”
Key Observations for the Proof
(i) We need a well-founded ordering over regular expressions
E < F which makes sure:
(@) E' < E*F, where E’, F’ derivatives of E, F respectively
(b) F' < E*F
o
(i Inacycle EXF, .., E'E*F, ... a derivative of g« /\
F cannot be an immediate derivative of E’ 7
E* F (recall the hnewp). >
E*F
(iii) Decomposition of Regular Expressions
EeF ~ GeFimpliessE~G E
Proof by Structural Induction
Workshop on “Process Algebra: Open
9 Bertinoro 21-25.07.2003 Problems and Further Directions”

Some Concluding Remarks

Language Equivalence is not finitely axiomatizable even in the
language we consider.

(Redko's counterexample a*
also under the hnewp)

~ee (@0*(1+a+..+a™) applies

If star expressions do not possess the hnewp then “non
deterministic behaviours” are not preserved by bisimulation.

If star expressions do not posses the hnewp the our axiom system is
no more complete

Workshop on “Process Algebra: Open

11 44Bertinoro 21-25.07.2003 Problems and Further Directions”

10

12

Our Conjecture Axioms for O

e Milner's 0 Object

The set of regular expressions (without 0) with hnewp is the largest It satisfies the axioms: but neither

language for which bisimulation admits a finite equational X+0=X X'e 0 =0, nor

axiomatization. 0 eX=0 Xe 0=X

_ A result by Sewel states that bisimulation cannot be finitely axiomatizable.
Consider: An instance of his counterexample is: a*xe0 ~ (asa)tel

Note 1: a* ¢ 0 and (a » a)* 0 have the hnewp.

Note 2: a*eQ~ (aea)*e0

E=(a + 1)* and

F= (a(a(...(a(@+1)+1)..)+1)+1)* EeF~ G eFdoesnotimplyE ~ G
N
p times, p prime : wna : ofi
e But if we take “0” which satisfies
X+0=X
/ 0eX=0
Dotted lines being for X e0=0
“equivalent states” and 1- .. . - . .
 labelled arrows mean that then bisimulation can be finitely axiomatized.
the source states have
Workshop on “Process Algebra: Open the e.w.p. Workshop on “Process Algebra: Open
Bertinoro 21-25.07.2003 Problems and Further Directions” 13 Bertinoro 21-25.07.2003 Problems and Further Directions” 14

45

46

Klaim, Formulae and Contexts

Rocco De Nicola
Dip. Sistemi e Informatica
Universita di Firenze
denicola@dsi.unifi.it

Joint, work mainly, with M. Loreti
but also with R. Pugliese, G.L. Ferrari, L. Bettini

i Outline

Motivations
Klaim

p-Klaim
A Logic for u-Klaim
Systems Properties
Open Nets
Contexts
Approximation and Refinements
A couple of results
Conclusions
The Klaim Project

= On Going Work

= Software

= References

R. De Nicola ProcessAlgebras@Bertinoro 2

i Global Systems

= Are Distributed Systems with

i Programming Global Systems

Explicit Primitives for

distinguishing features such as: = Distribution i (exlicit) localiti
» Wide area distribution compu_tmg over different (explicit) localities
. . ' = Mobility
= Variable interconnection structures moving agents and computations over localities
s (Physical and Logical) Mobility = Concurrency
= Latency and bandwidth issues considering parallel and non-deterministic
computations

= Failures m Access Rights

maintaining privacy and integrity of data

R. De Nicola R. De Nicola

|+

m Process Calculus Flavored

ProcessAlgebras@Bertinoro 3 ProcessAlgebras@Bertinoro 4

Klaim
Kernel Language for Agent Interaction and Mobility

i Objectives

Developing a simple programming