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Foreword

Action Semantics [http://www.brics.dk/Projects/AS/ ] is a practical
framework for formal semantic description of programming languages. Since
its appearance ten years ago, Action Semantics has been used to describe major
languages such as Pascal, SML, ANDF, and Java, and various tools for process-
ing action semantic descriptions have been developed.

The AS 2002 workshop included contributed talks on:

– recent development and applications of tool support for Action Semantics;

– ways of increasing the modularity of action semantic descriptions and of
the definition of Action Notation;

– analysis of information flow and types of actions; and

– test suite generation based on Abstract State Machines.

Thanks to Egon Börger for giving an invited talk on

– Computation and specification models: A comparative study.

The workshop concluded with a discussion of plans for future projects involv-
ing Action Semantics.

Thanks to the authors for the papers that they have contributed to this Pro-
ceedings volume. These papers should not only improve awareness of ongo-
ing projects within the Action Semantics community, but also encourage more
widespread interest in the use and development of Action Semantics. (The pa-
pers have not been refereed, and copyright remains with the authors, who are
encouraged to submit similar papers to workshops and conferences with wider
audiences.)

Thanks to Dines Bjørner for the suggestion of holding an Action Semantics
workshop as a satellite event of FME, and to the local organizers of FLoC’02
in Copenhagen for logistic support. Finally, thanks to BRICS for financial sup-
port in connection with the workshop, and to Uffe Engberg for help with the
production of the Proceedings.

Peter D. Mosses
BRICS & Department of Computer Science
University of Aarhus, Denmark
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Final Programme

21 July, Morning

08:45-09:00 Session 1: Opening and Introduction

09:00-10:30 Session 2: Tools and Applications

09:00 How ASF+SDF technology can be used to develop an action seman-
tics environment
Mark van den Brand and Jurgen Vinju, CWI Amsterdam, The Nether-
lands

09:30 The Abaco system: An action tool for programming language de-
signers
Luis Carlos Meneses, Hermano Moura, Wanderley Cansancao, Monique
Monteiro, and Pablo Sampaio; Federal University of Pernambuco, Brazil

10:00 Using Abaco to animate a real-time specification language
Adnan Sherif, Ana Cavalcanti, and Hermano Moura; Federal University
of Pernambuco, Brazil

10:30-11:00 Refreshments

11:00-12:30 Session 3: Foundations

11:00 An object-oriented view of action semantics descriptions
Cláudio R. V. Carvilhe and Martı́n A. Musicante, Federal University of
Paraná, Brazil

11:30 An extensible definition for action notation
Luis Carlos Meneses and Hermano Moura, Federal University of Pernam-
buco, Brazil

12:00 A modular SOS for action notation, revisited
Peter D. Mosses, University of Aarhus, Denmark

12:30-14:00 Lunch
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21 July, Afternoon

14:00-15:30 Session 4: Related Frameworks

14:00 Computation and specification models: A comparative study
(Invited talk)
Egon Börger, University of Pisa, Italy

15:00 Using ASM specification for automatic test suite generation for
mpC parallel programming language compiler
Alexey Kalinov, Alexander S. Kossatchev, Mikhail Posypkin, and
V. Shishkov; ISP/RAS Moscow, Russia

15:30-16:00 Refreshments

16:00-17:00 Session 5: Foundations

16:00 The analysis of secure information-flow in actions by abstract inter-
pretation
Ki-Hwan Choi, Hanyang University, South Korea; Kyung-Goo Doh,
Hanyang University, South Korea; and Seung Cheol Shin, Dongyang
University, South Korea

16:30 Type inference for the new action notation
Jørgen Iversen, University of Aarhus, Denmark

17:00-17:30 Session 6: Tools

17:00 AN-2 tools
Tijs van der Storm, University of Amsterdam, The Netherlands

17:30-18:00 Session 7: The Future of AS and Related Frameworks
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The Abaco System: an Action Tool for
Programming Language Designers

Hermano Moura,
Luis Carlos Menezes,
Monique Monteiro,

Pablo Sampaio,
Wanderley Cansanção

Centre of Informatics,Federal University of Pernambuco
CP 7851, CEP 50732-970, Recife, Brazil.

E-mail: {hermano,lcsm,mlbm,pas,woc}@cin.ufpe.br

Abstract We describe the structure of the Abaco System, an action
semantics tool that enables the programming language designer to build
and test action semantics descriptions. The system is formed by a set of
compiler generation tools like parser generators, specification processors,
including sort checkers and interpreters for action semantic descriptions.
These tools can be used to process action semantics descriptions for
programming languages and to generate interpreters and compilers for
them.
Abaco’s tools are integrated in a graphical user interface environment,
allowing a friendly design of new specifications and their immediate test.
One important Abaco’s feature is its ability to handle complex descrip-
tions that use new user-defined actions. It allows the building of semantic
libraries that can be useful to facilitate the description of complex lan-
guages and to improve the reusability of a specification.
We also propose to demonstrate the newest release of the system, which
is freely available on the net (http://www.cin.ufpe.br/∼rat), and which
is based on a more generic action semantics interpreter that can be used
to execute both current versions of action notation and allows the user
to describe and to execute action extensions for them.

1 Introduction

Natural language based programming languages specifications frequently suffer
from ambiguities and other problems. These problems tend to be solved by the
use of mathematical formalisms and software tools which aid in the language
specification process and allow the resultant specification to be complete and
free of errors.

Secondly, the manual writing of interpreters and compilers tend to be a te-
dious and error prone activity, and the generated tools are not reusable for other
languages. We should have tools capable of automatically generating compilers
based on the syntactical and semantic specifications of the source languages.

1
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The main idea in this article is to demonstrate a tool whose aim is to help to
solve the cited problems by offering an iterative environment for programming
languages specifications based on an already known formalism - Action Seman-
tics. This tool - the Abaco system - is already able to generate interpreters and,
in future versions, it will be capable of generating portable code.

First we shall give a general vision of the system, describing its use and func-
tionalities. Secondly we will describe its formal notation, then its architecture,
and finally possible improvements and future directions.

2 The Abaco System

The Abaco (Algebraic Based Action COmpiler) system consists of an editing
environment for action semantics [Mos92] which helps the programming language
designer to build and test action semantics descriptions. It contains tools that
help the design of action semantics descriptions, such as parsers generators,
descriptions checkers and interpreters.

The Abaco System consists basically of a specification compiler, an action
library and a graphical system interface.

The specification compiler is used by the system interface to process abstract
syntax and action semantics descriptions. It receives a source specification, writ-
ten in the algebraic formalism used by Abaco, processes it to verify if there are
syntactical errors, and produces interpreters for the specification. The produced
interpreter is able to recognize valid terms and evaluate them, reducing them by
applying the rewriting equations contained in the source specification.

The action library is formed by the following components:

– the action notation version 1 and version 2 descriptions written in the al-
gebraic formalism used by ABACO. They allow ABACO to understand
action semantics descriptions.

– the action interpreter that is responsible to simulate the performance of
action written in the first version of the action notation.

The system interface is a friendly graphical interface, which consists of menus,
specification editors, action editors and console windows. Each one of these com-
ponents is used in a phase of the programming language design, (ie.: specification
or testing). The menus contain options which allow us to create new projects,
add specifications to the currently open project, remove specifications from the
currently open project, print specifications, configure and preview printing, ac-
cess help information (including searching options) and access the particular
functionalities of the system. Many of the menu items and menu options are
general and self-explainable, others are system specific, such as the ones which
will be explained in the next subsections.

2.1 Specific Menu Items

The Run menu item contains options which allow us to compile the current
edited specification (ie.: Compile option). When selected, this option creates a

2



compilation window that shows the status of the specification processing and
eventual compilation errors found by the specification compiler. If the compiler
does not find any errors, a console window will be opened to allow the user to
test the specification. In future versions options for type checking and generation
of C++ and Java standalone code may be included.

The available tools in the Tools menu item allow us to interpret and debug
actions currently edited in the action editor window. If the option for interpreting
is chosen, the results of the execution of the action are displayed in a new window,
and are expressed by means of its transients, bindings and storages. The option
for debugging the actions performs a similar task, but shows each step of the
execution of an action. There are also options to export specifications to HTML
and LaTeX formats. In future versions options for customizing this menu item
by means of adding and removing tools may also be included, and will allow the
user to add and remove system functionalities.

2.2 Editors

The editors present in the Abaco system consist of specification editors, action
editors and console windows.

The specification editors enable the user to edit specifications, which should
be written in the Abaco algebraic formalism, and may be created by the menu
option for creation of new specifications (in the menu File item), or with the
project panel, a graphical component responsible for displaying all existing spec-
ifications in current project. The specifications are organized in a tree structure,
which is stored in project files in XML (Extensible Markup Language) format.
The system contains at most one current project file, which can be selected by
the File menu item.

The action editors enable the typing and testing of small actions. Once the
action is typed, the user can interpret or debug it by selecting the corresponding
option in the menu bar.

The console window allows the user to test compiled specifications, typing
valid terms and evaluating them.

3 Abaco’s Formal Notation

To define action semantics descriptions, Abaco uses an algebraic specification
formalism based on unified algebras’ features. An specification written in this
formalism is composed by:

– An introduces sentence that lists the datatypes (sorts) defined by the speci-
fication:

introduces: sort1,sort2,...,sortN
– A needs sentence that lists other specifications used by the current specifi-

cation.
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needs: spec1,spec2,...,specN

– A list of formula that defines the relationship existent between the defined
sorts and the behavior of the defined operators for these sorts. The Abaco’s
specification formalism contains the following kinds of formula:
• Operator’s functionalities: defines signatures for the specification opera-

tors. This sentence has the following syntax:
opName :: arg1 , ... , argN → result.
which declares the operator opName, which accepts arguments of the
sorts argx and returns a new element of the result sort. opName can
be formed by a sequence of words and the arguments placement is rep-
resented by the symbol inside the operator name. The symbols arg1,
arg2, ..., argN are the operands of this operator. The symbol result
specifies the return value after application of this operator.

• Subsort formulae:
eq sort1 <= sort2 .
which defines sort1 as a subsort of sort2;

• Sort equation formulae:
eq sort1 = sort2.
which defines that sort1 and sort2 are the same sort;

• Sort element formulae:
eq el : S .
which declares that el is an element (individual sort) of sort S. Equations
beginning with eq defines the datatype hierarchy in current specification.

• Rewrite equation:
re term1 = term2 .
which declares that the term1 can be rewritten as the term2. Terms
in rewriting equations can be organized with the ”|”-notation used by
action semantics; Variables names are prefixed by ” ”. Typed variables
are expressed using the following notation ”( varName : type )”.

• Pretty printer statements:
pp opName = rule .
which specifies the way on which Abaco displays terms formed by the
operator opName. The rule fields can be a sequence of the following
operators:
∗ ”string” : displays this string;
∗ n : new line;
∗ % x : displays the x-th operator’s argument;
∗ (indent ”s” rule): displays rule prefixing it with the string ”s”

• syntax declaration: specifies operators functionalities, subsorts and ele-
ments using a BNF like notation. Example:

syntax
stack = [[ "push" element stack ]] |

[[ "pop" stack ]] |
[[ "empty-stack" ]] .

element = [[ integer ]] |
[[ string ]] .
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end syntax

"push" and "pop" are operators,"empty-stack" is a subsort of sort
stack,integer and string are elements.

Below, an example of a stack in the abaco’s notation

introduces: stack .
needs: integer .
op push _ _ :: integer, stack -> stack .
op pop _ :: stack -> stack .
op top _ :: stack -> integer .
eq empty : stack .
eq stack <= datum .
re pop push ~x ~y = ~y .
re top push ~x ~y = ~x .

4 Implementation

In this section we describe the implementation architecture of the Abaco sys-
tem. The Abaco System is composed of the following modules :

– Algebric Specifications Compiler: Process unified algebras specifications. You
can write your own programming language and programs in this language.
At this point, it defines:
• Data structures as lists, sorts and other structures ,allowing build other

data from this structures;
• Programs using this data structures or creating abstract data types from

these primitive data;
• Action Notation, starting from ActionNotation 1;
• Programming Languages Descriptions, using Action Notation.

The Algebric Specification Compiler is composed with the sub modules:
• Parser Generator - Generates a parser for the defined language.
• Specification Parser - Checks a programming language description and

processes it, accepting valid programs and executing it.
• Plug-ins - Allow native data types definition. They are activated using

definition import ”className”.
• Execution engine - Applies the operators, using matching patterns and

manipulation variables functions.
• Specification processor - Coordinates all modules above, obeying this

sequencing of events :
∗ Calls the Specifications parser;
∗ Resolves dependencies(imports);
∗ Builds a parser and resolves necessary imports;
∗ Recognizes rewriting rules and terms;
∗ Defines execution engine.

5



– Actions library: With this module, the Abaco System can process Action
Semantics descriptions. It can be described in two parts:
• Action Semantics description : Uses Action Notation 1. In future releases,

Abaco will support Action Semantics descriptions using Action Notation
2.

• Action Interpreter : Checks actions, returning an outcome of each exe-
cution.

– Graphical User Interface: Offers specifications and actions editing facilities
and executes the system’s modules. You can create projects, adding one or
more specifications, validating and executing your specifications.

– XML Module: In the Abaco System, a project is defined with a unique
DTD. So, any project built using Abaco is according this DTD. And any
project is built XML-like. This module is interconnected with the Algebric
Specifications Compiler.

Figure1. Specification and action editors

– Help System: Shows how to use the Abaco System and has a tutorial about
Action Notation 1 and Action Notation 2. In Action Notation 1 tutorial, you
can execute small examples, viewing the outcome of the action executed. This
help system is useful as a reference for novice action semantic users.

– Specifications Exporter: Exports one or more specifications to HTML,LaTeX
and ASCII text.

– Action Debugger: Edits one or more actions and calls Action Debugger. You
can execute step-by-step, viewing incoming and outcoming information.

6



Figure2. Help system

Going to previous page, you can see screenshots of Abaco System. In the
first screenshot, you can see specification and action editors. In the second one,
you see the help system.

5 Conclusions and future work

Abaco is a tool designed to aid programming languages specifications by means
of Action Semantics formalism. The use of this kind of tools, in spite of not
being common at present time, is extremely useful to avoid errors in program-
ming languages implementations due to ambiguities commonly found in natural
language based descriptions.

A proposal to improve Abaco’s performance consists of adapting the speci-
fications execution engine to support code generation, which would improve the
speed of specification executions. In this intention, an API (Application Program-
ming Interface) named Abaco Generic Object Oriented Language - AGOOL,
was implemented to dynamically generate and load bytecodes (instructions in-
terpreted by the Java Virtual Machine - JVM [LY97]) on memory or on disk
during the execution of a specification. It should also be possible to adapt this
API to generate native code. It would cause a maximum performance, but re-
duce portability. The user should be able to choose between these two approaches
(bytecode or native code generation) in Abaco interface.

Another improvement to be added to future versions of the system is the ho-
mogeneity of the syntactical analysis system. At present time, Abaco has two
parsers: one automatically generated by a parser generator and other dynami-
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cally generated by an internal compilation engine whose function is to recognize
the terms of the specification. The first one was important in the beginning of the
implementation due to instabilities and inefficiencies in the first versions of the
compilation engine. However, the use of a single tool for both parsers will con-
tribute to the homogeneity of the system. This tool is already at implementation
stage and will consist both of a lexical analyzer generator and a parser gener-
ator. A regular expressions library and a deterministic automata based lexical
processor were implemented for the module responsible for the lexical analyzer
generation. The module responsible for the parser generation is capable of gen-
erating simple LR parsers [ASU85], efficient and sufficiently powerful for Abaco
purposes, and supports ambiguous grammars and the definition of precedence
and associativity rules. These rules are not supported in Abaco’s current ver-
sion. The support to ambiguities is achieved by generating two optional forms of
parsers: backtracking parsers or pseudo-parallel parsers, in the same way it was
proposed by ASF-SDF [BH89].

Other future works are the improvement of the interface with the Java lan-
guage, which would allow new primitive types to be defined in Abaco through
Java source code; the support to other types of specifications, such as unified
algebraic specifications, operational semantics and others; and the creation of a
generic configurable editor, which would use some kind of language to describe
syntax (formatting) and semantics (typesetting) of the input text and an in-
terface to a compilers generator to the incremental construction of syntactical
trees.
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Abstract. The Algebraic Based Action COmpiler (ABACO) is an ac-
tion semantics specification tool. It is used to explore and animate lan-
guage semantics specification written in Action Notation. In this work,
we focus on the framework provided by the ABACO tool that allows
specification using Java. This framework can be used in the definition of
new yielders and actions like a Java class. The yielders and actions can
be used to represents the environment the system interacts with.

We illustrate the use of the framework with a case study: We study a
real-time specification language similar to Timed CSP. We first create
a Java class to represent a threaded timer; this will be the environment
in which our semantics will interact with. We then implement, using
the ABACO Java framework, a yielder to return the current reading of
the clock. We also implement actions to stop the clock. The semantics
of our case study language is given with focus on integration with the
previously created classes.

1 Introduction

Many languages, after released by the designers and used by programmers, were
noted to have problems in their design; an example is Eiffel, an object-oriented
programming language that preceded Java. After Eiffel was released and exten-
sively used a bug was found in the language design. To avoid such problems,
language developers have relied on formal language specification and tools to
support them.

The study of the language semantic is a fundamental part of the language
design. Formal techniques are used to give the semantics of the language. Tools

? Special thanks to Luis Carlos Menezes, for his kind help and guidance on the use of
the Abaco system.
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are used to support these formal techniques allowing developers to study and
explore the desired and undesired behavior of the language.

Action semantics was developed by Peter Mosses and David Watt [5]. As
denotational semantics, this formalism uses semantic functions to map programs
into semantic entities. The action notation is a simple algebric form of expressing
the language semantics. ABACO is a tool that is used to animate and study
specifications written in Action Notation.

In a previous work [10], we illustrated the definition of an action semantics
for a subset of Timed CSP. Because Timed CSP is a real-time specification lan-
guage, and because ABACO does not support time properties, we developed an
extension which made it possible to use ABACO to explore the time properties
of the language. In this work, we concentrate on the extension developed of the
tool and how it is used.

The rest of this document is organized as follows: The next section gives a
brief description of action semantics. The following section describes the exten-
sion developed to add time facilities to ABACO. In Section 4, Timed CSPm is
explored as a case study with the aim of illustrating the use of the extension;
finally Section 5 lists our conclusions.

2 Action Semantics

Action semantics was developed by Peter Mosses and David Watt [5] in an effort
to make semantic specifications more intelligible and, therefore, more widely
accepted. Action semantics, as denotational semantics, uses semantic functions
to map programs into semantic entities. There are three types of semantic entities
used in action semantics:

– Actions: dynamic, compositional entities. The performance of an action di-
rectly represents information processing behavior and reflects the gradual
stepwise nature of computation.

– Data: static entities of a specification, representing pieces of information.
Action semantics offers a rich set of data types such as datum, integer,
rational, set, list, and others; it also offers constructs to create new sorts of
data.

– Yielders: an unevaluated item of data, whose value depends on the current
information. An yielder may evaluate to the datum currently stored in a
particular cell, which changes during the performance of an action. Another
use of a yielder is to represent input from the external world; for example,
the external system clock.

The notation used to specify the semantic functions and entities is called Action
Notation. The information processed by an action may be classified according
to how far it tends to be propagated:

– Transient: tuples of data, corresponding to intermediate results;
– Binding: tuples which associate tokens to data, corresponding to a symbol

table;
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– Storage: data stored in storage cells, corresponding to values assigned to
variables;

– Permanent: data communicated between distributed actions.

The different kinds of information give rise to so-called facets of actions, focused
on the processing of at most one kind of information at a time:

– Basic facet: processes independently of information (control flow). Examples
of actions that make part of this facet are the terminating actions such
as: complete, which indicates a normal termination, fail, which is used to
indicate unsuccessful termination, and escape, which is used for exceptional
termination. An action that terminates with escape can be treated using
an action operator trap. It associates two actions and creates a new action
which behaves as the first action, until it completes, terminates normally, or
escapes. If the first action escapes, then the second action is executed. Other
operators for choice and parallel execution are available.

– Functional facet: processes transient information. Consider the following ac-
tion.

give 5 and give 6
then
give sum (the given integer # 1 , the given integer # 2) .

This action composes two actions sequentially using the then operator: the
transients produced by the first action are input to the second action. The
give action returns the data produced by the argument yielder as transient.
Therefore give 5 and give 6 produce transient values 5 and 6 respectively.
The and is used to create a parallel composition of the two actions using
interleaving. The composed action above produces the sum of the transients
produced by each action. The yielder the given integer # 1 produces the first
transient in the list of input transients.

– Declarative facet: processes scope information; for example, bind 10 to ”x” is
an action that produces a binding associating the value 10 to the token x.
The yielder current bindings returns a mapped-set of all the current bindings.

– Imperative facet: processes storage information, including actions to reserve
and unreserve storage cells, and to change the data stored in the cells. Con-
sider the following example:

allocate a cell
then
bind the given cell to “x” and store 10 in the given cell .

The action allocate reserves a free cell of memory and gives this reserved cell
as transient. In our example, after allocating the cell, the token x is bound
to the cell, and the value 10 is stored in the cell.

– Communicative facet: processes permanent information, including actions to
send messages, receive messages in buffers, and offer contracts to agents.
Agent is a new concept added in this facet, which represents the action
executing environment (machine or software). Communication is carried out
by these agents.
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A specification in action semantics uses a mixture of actions from all these
facets, according to the need of the language designer. The designer can also
produce new sets of actions and facets which are a combination of those above.

3 Extending ABACO with Time

The Algebraic Based Action COmpiler (ABACO) tool is used to study and
animate specifications written in Action Notation. The use of a tool helps in the
detection of problems related to the specification as it analysis various algebraic
properties of the language. To make it possible to animate a real-time language,
we we needed to add the notion of time to ABACO.

The ABACO tool was developed in Java with the objectives of portability,
extensibility and reusability in mind. The tool offers a set of interfaces to add
user code to the available API. Based on this fact, and using the interface we
built an extension to add time facilities.

The extension consists of the addition of a yielder current time and an ac-
tion stop timer to the current library of ABACO. The yielder returns a value
representing the time passed since the start of the execution, while the action
stop timer is used to terminate the timer. The timer itself was implemented as a
singleton class and runs as a separate thread permitting the time to pass along
with the execution of the actions which have no timing constraints.

3.1 The yielder

The ABACO tool accepts add-ons to be used from within a specification through
the use of the import reserved word in the specification document.

import "TimedCSP.CurrentTime"

This directive instructs the tool to load the class TimedCSP.CurrentTime at
compilation time. The class contains two methods dependencies and register.
The first returns an array of strings indicating which environment objects need
to be created before the extension can be executed. The tool uses this method
to determine the order in which the extension is to be loaded and used within
the tool.

public static String[] dependencies() {
return new String[]

{ "br.ufpe.abaco.ActionInterpreter.Interpreter" };
}

In our case, only the Interpreter is need, so the compilation framework
guarantees that this environment object is created and properly initialized before
the actions and yielder of the extension are used.

The register method is used to include the evaluators associated to the
extension. This is done by first obtaining the current ActionInterrpreter and
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then inserting an evaluator for each extension. The insertion indicates the term
used to identify the component. In the case of our example the value current
time is used to identify the current time yielder and stop timer is used to
identify the stop timer action. The insertion also requires the Evaluator object
associated to the identifier, which is used to evaluate the term.

public static void register(CompiledSpecification espec) {
Interpreter inte = (Interpreter)espec.getKey

("ActionInterpreter");

inte.insertEvaluator("current time", new YielderEvaluator(){
public Term evaluateYielder(Term yielder,

RuntimeAction runtime) {

int t = TimedCSPTimer.getInstance().getCurrentTime();
return new NumeralTerm(t);

}
}
);

inte.insertEvaluator("stop timer", new ActionEvaluator() {
public RuntimeAction evaluateAction(Term yielder,

RuntimeAction runtime) {
TimedCSPTimer.stopTimer();
return runtime;

}
}
);

}

There are two main types of evaluators, YielderEvaluator which has a
single method evaluateYielder that is responsible for the evaluation of the
yielder and returns the term produced by the yielder Term. ActionEvaluaters
has a similar method evaluateAction used to execute the action. The method
receives the environment values as an instance of the class RuntimeAction. The
methods evaluateAction also returns the modified environment in an instance
of the same type. For further details please refer to the ABACO manual.

In our case the yielder current time gets the active instance of the timer
and obtains the time counter; it then creates an integer NumeralTerm with the
given value and terminates by returning this value. The action stop timer is
passive; it calls the stopTimer method to stop the timer and then returns the
same income it received from the system. This is to say that the action has
no effect on the income and outcome; it deactivates the timer and returns the
received parameter to the system.
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3.2 The timer

The specification of Timed CSPm was developed based on a continuous model
of time, but the ABACO tool in its current state does not support rational
numbers. The ideal implementation, for the timer, is to obtain the system clock
and convert it to a real value that is used later by the specification.

In the absence of rational numbers, however we decided to use the discrete
model of time for the simulation. The semantics of the program is maintained,
as all the time restrictions can be considered as integers.

The timer is implemented as a singleton thread, which is activated by the
ABACO tool. As all singleton classes, the timer contains a static reference to
itself, the constructor is private, and the static method getInstance() is used
to obtain an instance of the class.

public final class TimedCSPTimer extends Thread {

private int currentTime = 0;
private static TimedCSPTimer ref;
private final int DELAY=100;
private static boolean active = false;

private TimedCSPTimer() {
super();

}
public static TimedCSPTimer getInstance() {

if (ref== null){
ref = new TimedCSPTimer();
ref.active =true;
ref.start();

}
if (! ref.active) {

ref.currentTime=0;
ref.active=true;

}
return ref;

}

The timer operates in two states: either it is active and running, or it is idle
(stopped). The timer state is indicated by a boolean variable active. When
active is true, the timer is in a running state, otherwise the timer is idle.
When the timer is active, it increments an internal variable currentTime at
fixed intervals given by the variable DELAY in milliseconds.

The timer has two public methods: The method getCurrentTime() returns
the value of the counter currentTime. The method stopTimer() is used to put
the timer in an idle mode.
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public int getCurrentTime() {
return currentTime;

}
public static void stopTimer() {

if(active) {
ref.active=false;
ref.interrupt();

}
}

The main functionality of the timer is implemented in the method run().
This method is executed as soon as an instance of the class is created. The main
body of the method is an infinite loop. The body of the loop starts by sleeping
for a period of time determined by the variable DELAY, then it increments the
counter by one.

public void run() {
try{

while(true) {
try{

while(true){
sleep(DELAY);
currentTime = currentTime+1;}

}catch(InterruptedException e){ }
// Wait for timer to be reactivated.
while(!active){ sleep(DELAY);}

}
}catch(InterruptedException e){return;}

}

This operation implements the normal behavior of the timer. The normal be-
havior of the timer can be interrupted (see the method stopTimer()), and in
this case the timer waits (idle state) until it is reactivated again by the user.

4 Case Study: Timed CSPm

To show the use of the extension described in the previous section, we study the
semantics of a real-time specification language. It is not of our interest to show
the complete specification of the language; this was explored in [10]. We study
here only the aspects of the language related to time and illustrate how the tool
is used.

Timed CSP adds time to CSP [2]. Like CSP, Timed CSP uses processes and
events to define the behavior of a program. A process is a set of observations
which define a pattern of behavior [7], and an event is an observation mark
indicating the occurrence of an associated action or stimuli. The Timed CSP
semantic model is influenced by the same properties of the untimed model of
CSP [1]:
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– Maximum progress: A program executes until it terminates or requires some
external synchronization.

– Maximum parallelism: Each component of a parallel composition has suffi-
cient resources for its execution.

– Synchronous communication: Each communication event requires the simul-
taneous participation of every program involved.

– Instantaneous events: Events have zero duration.

For a complete reference to the untimed CSP model see, [8].
In this paper we use a subset of Timed CSP. We singled out some simple

operators, with a special interest in the time operators of Timed CSP. The new
language has no communication channels, but has events; we omit the parallel
composition and external choice, but include the interleave operator. Parallel
composition and communication are considered in [3].

4.1 The Time Model

There are several time models for Timed CSP. We base our work on the Timed
Trace Model MT T as presented by Davis and Schneider [1]. In this model, a
process is represented by a set of timed traces. A timed trace is a sequence of
timed events.

The original model has a time domain of non-negative real numbers. In our
simulation, we use a positive integer time domain .

TIME = [0,∞)

The set of all timed events is the cartesian product below, where Σ is the set of
all the possible events of the observed process.

TE = TIME × Σ

A timed trace is a finite sequence of timed events, such that events appear in a
chronological order:

TT = {s ∈ Seq TE | 〈 (t1,a1),(t2,a2)〉 � s ⇒ t1 ≤ t2 }

where s1 � s2, if and only if, s1 is a subsequence of s2.

4.2 Syntax and Informal Description

In this section we give a brief descrition of the syntax and informal semantics of
Timed CSPm.
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4.2.1 Specification

Syntax

(1) Specification = [[ ProcessDeclarations Process ]] .
(2) ProcessDeclarations = [[]]

[[ ProcessDeclaration ]]
[[ ProcessDeclarations ]] .

(3) ProcessDeclaration = [[ Identifier “=” Process ]] .

A specification is composed of two main parts: the first part is a possibly-
empty sequence of process declarations; the second part is the specification of
the main behavior. As an example, consider a one-shot printer described by the
Timed CSP process below.

accept→ print→ SKIP

Initially, the printer is enabled to accept a job, after which it behaves as print →
SKIP . This subsequent process will be enabled to perform a print operation,
and then behave as SKIP . This can be described in Timed CSPm as follows.

PRINTER0 = accept -> print -> SKIP

PRINTER0

The first line declares a process PRINTER0 defined just as the Timed CSP process
above. The second line defines the main process of the specification as PRINTER0;
this is the execution point of the program.

4.2.2 Process

Syntax

• Process = “SKIP” (1)
“STOP” (2)
Identifier (3)
[[ Process “[]” Process ]] (4)
[[ Event “->” Process ]] (5)
[[ Process “ ” Process ]] (6)
[[ Process “;” Process ]] (7)
[[ “Wait” Expression ]] (8)
[[ Process “[” Expression “>” Process ]] (9)
[[ Process “/” Expression “\ ” Process ]] . (10)

A process can be a simple predefined process such as SKIP (1), which simply
terminates normally. STOP (2) is another predefined process that suspends the
execution of a process, but indicates a failure or an abnormal termination, after
which the process cannot engage in any operation. This is known as a deadlock
state. A process can also behave as a previously declared process, referenced
using the process identifier (3).
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The choice operator (4) is used to combine two processes to give a new process
which behaves as either one or the other. Event prefix (5) was exemplified above:
it combines an event, in which the process is prepared to engage, with a process
that gives it behavior after the event. The interleaving composition operator (6)
permits the execution of two processes in parallel without any synchronization.
The sequential composition operator (7) is used to combine the behavior of two
processes. The resulting process behaves initially as the first process until it
terminates normally, and then it behaves as the second process. If any of the
two processes fails, then the sequential composition also fails.

The Wait t process (8) is the first of the three operators involving time; it
waits for a defined amount of time (defined by the parameter t) before termi-
nating normally. The time out operator (9) is used to suspend a process, if it
does not start within a predefined amount of time. Finally, the timed interrupt
operator (10) is used to suspend the execution of a process after executing for a
predefined amount of time.

4.3 Semantic Entities

In this section we introduce the semantic entities used is the specification.

Trace. This entity is defined to represent the timed traces of a process. A trace
is the observable result of program animation. A traceitem is composed of a
token, representing the event that occurred, and a time stamp associated to it,
indicating the time in which the event occurred. Special tokens TAU and TIC are
created to indicate an internal choice and a normal termination, respectively.

A trace is stored as a list of traceitem, therefore, the type storable is
of type list. The function t ( , ) is the constructor of the trace item. It
associates a toke to a time stamp. The last line indicates that the function t
can be used with yielder as parameters and it can be itself used as a yielder.

eq token >= string .
eq TIC : token .
eq TAU : token .
eq traceItem <= datum .
op t ( _ , _ ) :: token, time -> traceItem .
op t ( _ , _ ) :: yielder, yielder -> yielder .

eq storable = list .

Time. The time is defined to be of type number. The yielder current time is
defined to be of type yielder and an action stop timer is also declared. The
file containing the Java class described in the previous section is imported into
the tool at this point. The Java code should contain the same names as the ones
declared in tool.
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eq time = number .
eq current time : yielder .
eq stop timer : action .
import "TimedCSP.CurrentTime" .

The definition of Bindable and Values can be found in the complete speci-
fication [10].

4.4 Semantic Functions

Here, we discuss the main technique used in the specification of the Timed CSPm
semantics using actions. Action semantics uses actions to describe the program
semantics. In our case, the main action associated to a specification is run, which
takes a specification written in Timed CSPm and gives the action representing
this specification.

op run _ :: Specification -> action .

re run ( ~d ~p ) =| elaborate ~d
before
| execute ~p .

re run ~p = execute ~p .

The action run depends on the form of the specification. If the specification is a
list of process declarations ~d followed by a process ~p, the behavior associated
to the specification is to elaborate the declaration part of the specification and
then execute the process ~p. If the specification is simply a process without any
declarations, it is associated to an action which simply executes the process ~p.

op elaborate _ :: ProcessDeclarations -> action .

re elaborate ( ~d1 ~d2 ) = elaborate ~d1 before elaborate ~d2 .
re elaborate ( ~i = ~p ) = recursively bind token of ~i to

abstraction of (execute ~p) .

The declaration of a process creates an association between the body ~p of the
declaration and its declared identifier ~i. This association is in the form of a
binding from the identifier ~i to an abstraction of the action associated to the
execution of the process ~p.

The next action to be specified is execute, which takes a process and gives an
action representing the behavior of the given process. Here we explore only the
implementation of the SKIP, STOP and Wait operations. The complete definition
of the function and others can be found in [10]

op execute _ :: Process -> action .

re execute ( STOP ) = fail .
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re execute ( SKIP ) =
| init
before
| register t (TIC, the time bound to "init") .

The termination and failure of a Timed CSPm process is modeled with the help
of action semantics basic actions. This can be noticed clearly in the function
execute for the Skip and Stop processes. The Stop process is interpreted by
the fail action that simple halts the execution of the program. The Skip, on
the other hand, terminates normally, and control is passed to the next process or
if there are no more processes it terminates. Before the process Skip terminates
it registers an internal event TIC to record the termination of the process and
the time in which it terminated.

eq init : action .
re init =

| | give current time
| then
| | bind "init" to the given time
before
| | check bindings "trace"
| then
| | | complete
| | else
| | | | | allocate a cell
| | | | then
| | | | | | bind "trace" to the given cell
| | | | | and
| | | | | | store empty-list in the given cell .

The action init creates a binding associating the current time to the iden-
tifier init. It also checks if an identifier trace was previously created. If it was
not created, then it associates it to the empty list. The identifier trace contains
the timed trace of the process execution.

re execute ( Wait ~e ) =
| init
before
| | | | evaluate ~e
| | | and
| | | | give the bindable bound to "init"
| | then
| | | bind "FinalTime" to ( sum (the given time # 1,

the given time # 2) )
| before
| | unfolding
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| | | give current time
| | then
| | | | give (the given time is greater than

the time bound to "FinalTime" )
| | | then
| | | | | register t ( TIC , the time bound to "FinalTime" )
| | | | else
| | | | | unfold .

The Wait process waits for a given amount of time before terminating nor-
mally. This is done by evaluating the expression ~e and then obtaining the
FinalTime. The process then enters a loop which is executed while the current
time is not greater than or equal to the time bound to FinalTime.

5 Conclusions

The use of action semantics makes the specification more readable and closer to
the programmers way of reasoning. This simplifies the understanding of specifi-
cations written in the language, and helps less experienced users.

An important contribution of this work is the use of a tool, ABACO (Alge-
braic Based Action COmpiler) [4, 6], to aid in the elaboration of the specification,
to test the correctness of the specification, and analysis, by simulation, the be-
havior of programs written in the specified language. ABACO has a well-defined
framework and interfaces for the elaboration of extensions to the standard ac-
tion notation. This facility of ABACO was used to implement the current time
yielder, which allows animation of specifications and debugging the generated
actions.

This work shows the use of the tool in the specification of the semantics of
Timed CSPm, a subset of Timed CSP. In this case study, we concentrate on time
aspects, leaving aside the communication and synchronization aspects semanti-
cally identical to CSP. The specification involves the elaboration of semantic
functions, using action semantics to map the different components of the syntax
to their corresponding behavior within the system execution. A new sort Time
was added, and an associated yielder current time was defined to represent
the system current time. Using these extensions, it was possible to describe the
behavior of a Timed CSPm specification using action semantics.

A similar work was presented in [3], where the authors concentrate on describ-
ing the semantics of CSPm and, in particular, on the use of the communicative
facet of the action notation to describe the communication between processes.
The Label Transition System (LTS) is used as an implementation model to guide
and define the behavior of the CSPm specification.

Our approach here is slightly different, as we use the action semantics logic
and constructs to express the action behavior. This is possible because the com-
munication and synchronization are not taken into consideration. A future work
is to combine these two approaches to form a complete specification of the timed
and untimed features of the language.
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Another approach to the specification of an operational semantics for Timed
CSP is proposed in [9]. In that approach, the authors express the semantics of
a Timed CSP program in terms of two relations: an evolution relation, which
describes when a process becomes another simply by allowing time to pass; and
a timed transition relation, which describes when a process may become another
by performing an action at a particular time.
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Abstract. Action semantics has been designed as a framework for the
formal yet readable definition of programming languages. The english-
like syntax of Action Notation (AN) has indeed many pragmatic ad-
vantages over other formalisms especially when the definition of real-life
programming languages is involved. Modularity of action semantics def-
initions increases scalability and reusability which in the software engi-
neering community have been considered major benefits long since.
However, to put action semantics definitions to real use, one would like
to have a way of executing semantic specifications or even compiling
actions to some kind of object code. A number of such systems have
been developed but most of them are based on AN1 which has been
superceded by a new version: AN2.
We present a number of action interpreters and compilers based on the
new proposed action notation. Our effort can be seen as a testcase for
different approaches towards implementing actions. In addition to the
benefits of executing actions, we concentrated on three desirable prop-
erties: portability, scalability and deployability. The tools presented all
support the complete kernel of the proposed new Action Notation, in-
cluding the interacting facet (with one exception). We will discuss the
overall architecture of the tool suite and some implementation issues. We
conclude with preliminary performance results.

Introduction

Action Semantics is a formal, readable and modular formalism for the definition
of programming languages. As such it greatly improves the maintainability and
reuse of language definitions. However, given such pragmatic advantages over
other semantic formalisms, we would like to be able to use the languages defined
using action semantics. In this paper we explore strategies for executing actions.
These strategies comprise: execution by term rewriting, compilation to Java and
C, and using an intermediate language. We have focussed on the following issues:

Generality The tools to execute actions should support the full kernel of AN2.
This includes the interacting facet as well as reflection.

Self-containment Compiled actions should be a self-contained black box which
can be subject to reflection (as provided by AN2).

Deployability It should be an easy job to embed actions, either interpreted or
compiled, into existing software environments.
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Extendibility Users should be able to extend interpreters or specialize com-
piled actions to their needs. Furthermore, the specifications of the compilers
and interpreters themselves should be maintainable enough to allow (future)
extensions or changes.

Portability There should be no restriction as to the platforms that are sup-
ported by the interpreters and compilers.

Efficiency Although not a primary goal, the performance of executing actions
should be reasonable.

From these desiderata one can deduce that we deem the software engineering
aspects of executing actions most important. This is a natural consequence of
our view that action semantics is not only a formalism to define the mathemat-
ical semantics of programming languages, but also a language to define domain
specific languages.

Organization First we give a very short introduction to the new Action Nota-
tion and discuss some distinctive features. In Section 2 we describe the term
rewriting strategy which is divided in two parts. First we use the Asf+Sdf
Meta-Environment to derive a term rewriting system from the Modular SOS
definition of the kernel of AN2 (AN-K). The second part discusses the pros and
cons of reimplementing this term rewriting system by hand in C. In the next sec-
tion we discuss a way to compile actions to C and Java. Section 4 describes the
intermediate language approach. We conclude with assessment of the strategies
presented, and a discussion of related work.

Acknowledgements Paul Klint provided useful hints during the preparation of
this paper.

1 Action Semantics for Dummies

In this section we give a short introduction to the new Action Notation [10,13].
The central concept of action semantics is the action. An action is a compu-

tational entity that takes tuples of data and gives tuples of data. Actions can be
primitive (e.g. computing a data operation, updating a cell) or combined using
combinators that capture the various flows of data and control. For example: the
then combinator is used for functional composition. This means that in action
A1 then A2 the data given by A1 is passed as input to A2. Other combinators ex-
ist for sequential composition, interleaved composition, non-deterministic choice
etc. Actions are able to terminate in three ways: normal, exceptional or failing.
Normal and exceptional termination is accompanied by a data value (given resp.
raised data). Combinators such as exceptionally and otherwise can be used
to trap non-normal termination. For example: the action raise exceptionally
provide () will terminate normally and give the empty tuple as a result.

Action Semantics is divided over a number of so called facets which capture
different ways of information processing. For instance, the functional facet con-
sists of all actions having to do with information flow without side effects. Side
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give current bindings and (provide ("unf", copy and provide 0 then (check =
exceptionally fail) then provide 1 otherwise (copy and provide 1 then (check =
exceptionally fail) then provide 1) otherwise (copy and provide 2 then give - then
(give the data then give provide and (give current bindings then give provide
and (give current bindings and provide "unf" then give bound then give the action
[taking () giving bindings] ) then give hence ) then give then then enact) and
(copy and provide 1 then give - then (give the data then give provide and (give
current bindings then give provide and (give current bindings and provide "unf"
then give bound then give the action [taking () giving bindings] ) then give
hence ) then give then then enact)) then give + )) then give binding ) then
give overriding hence (copy and provide 0 then (check = exceptionally fail)
then provide 1 otherwise (copy and provide 1 then (check = exceptionally fail)
then provide 1) otherwise (copy and provide 2 then give - then (give the data
then give provide and (give current bindings then give provide and (give current
bindings and provide "unf" then give bound then give the action [taking () giving
bindings] ) then give hence ) then give then then enact) and (copy and provide 1
then give - then (give the data then give provide and (give current bindings then
give provide and (give current bindings and provide "unf" then give bound then
give the action [taking () giving bindings] ) then give hence ) then give then
then enact)) then give + ))

Fig. 1. Recursive Fibonacci in AN-K

effects are covered in the imperative facet. One of the distinctive differences be-
tween the AN1 and AN2 is that for the latter the facet responsible for the flow
of bindings is included in the functional facet. That is, bindings have become a
subsort of Datum (the sort of individual values) and can be processed as such
by actions. There is only one basic combinator that deals with bindings: hence.
Consider the action A1 hence A2. If A1 terminates normally with bindings as a
result, these bindings become available in A2. The primitive action give current
bindings returns the current set of bindings as data. It is then possible to obtain
bound values using specific data operations.

Although facets were present in AN1, AN2 additionally distinguishes two
levels of notation: Full AN2 and Kernel AN2 (AN-K). The semantics of Full
AN2 is defined in terms of AN-K. As a consequence, AN-K is the only level tool
support has to deal with to obtain full generality. Many familiar constructs from
AN1 are now defined in terms of AN-K actions using reflection. Reflection in
this case amounts to the dynamic construction of actions using combinators, as
opposed to inspection of actions (like reflection in Java). The concept is simple,
yet very powerful. The idea is that the sort of actions is subsort of Datum and
consequently all action combinators are data operations. Consider for example
the following Full AN2 action which computes the Fibonacci number for a given
integer:

unfolding(
(copy and provide 0 then (check _=_ exceptionally fail) then provide 1)
otherwise
(copy and provide 1 then (check _=_ exceptionally fail) then provide 1)
otherwise
((copy and provide 2 then give _-_ then unfold) and
(copy and provide 1 then give _-_ then unfold) then give _+_)

)

The same action reduced to AN-K is displayed in Figure 1. Note how the be-
haviour of unfolding and unfold is mimicked by binding the special token “unf”
and employing reflection to inline the unfolded body.
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We will use the AN-K action displayed in Figure 1 to assess the runtime
performance of the tools presented here as a running example. Furthermore, it
gives a good impression of what kind of input we are dealing with here. As we
require full support of the kernel of AN2, all tools presented here are able to
execute this action in its kernel form without any knowledge of the higher level
constructs behind it.

2 Execution by Term Rewriting

AN−K

P

AN−K

evalan

AN−K AST
implode

P

AST

acr

C

C

ASTAN−KLL

P

Asf+Sdf

Asf+Sdf

Fig. 2. Interaction of term rewriting tools

In this section we will review two term rewriting approaches to the problem
of executing actions. In the first approach we used the Asf+Sdf-formalism [9,
3] to specify the semantics for the kernel using conditional equations which
are very close to the Modular SOS transitions of AN2 [13]. An interpreter is
obtained by viewing these equations as rewrite rules. The second approach is a
reimplementation in C of the derived term rewriting system.

In Figure 2 the interactions between the various translators and interpreters
are displayed using T-diagrams [6]. The primary input is a program P written in
language L. This program is translated to a kernel action by some specification in
Asf+Sdf. The resulting kernel action can be executed directly by evalan, the
interpreter implemented using Asf+Sdf. Secondly, an implosion step converts
an AN-K parse tree to an abstract syntax tree (AST)1. The resulting AST can
then be executed by the action rewriter acr which is implemented in C.

2.1 Kernel AN2 in Asf+Sdf

Since the semantics of Kernel AN2 is defined operationally, Asf+Sdf is a useful
tool for specifying it. The marriage of Sdf to Asf enables one to write condi-
1 This step is provided for by a tool accompanying Asf+Sdf: implodePT. Since this

tool is provided as is, the implementation language (C) is in fact irrelevant.
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tional equations on terms using concrete syntax. Directing these equations gives
rise to a (derived) term rewriting system, which can be compiled to an efficient
standalone tool. The interpreter evalan is such a specification. The specifica-
tion of evalan consists of roughly forty five modules defining both syntax and
semantics of data and actions. To actually see how the Modular SOS transition
relations are translated to Asf+Sdf, let’s compare one of the relations defining
the then combinator in Casl and Asf+Sdf. If the left hand operand to then
has terminated normally, the following transition rule applies:

α′ = α[d1/data] ∧A2
α′

−→ A′
2

normal d1 then A2
α−→ normal d1 then A′

2

The transition declares that d1 is known during the one-step execution of
A2 in the data field of label α′ . In Asf+Sdf this transition is defined in one
(conditional) equation:

↓ A2 = false,
α.data := d1 = α′,

[[A2, α
′]] = 〈A′

2, α
′′〉

[[normal d1 then A2, α]] = 〈normal d1 then A′
2, α

′′〉

Since Asf+Sdf has no notion of truth and we want our specification to be
executable, assertions are replaced with equations that faithfully represent the
intended semantics of the Casl specification. This involves for example the ter-
mination check ↓ A to ensure that this equation does not fire for normal d1 then
normal d2. The concept of a Modular SOS label is captured by an environment
passed throughout the evaluation of [[ ]]. The equation assigns a new environment
updated with d1 in the data field of α which is passed to the one step execution
of A2 resulting in a residual and a (possibly modified) environment. The result
of the equation is a tuple of the original action with A′

2 substituted for A2 and
the new environment.

To enforce the composition constraints defined on labels, we explicitly ensure
that no local updates to labels are passed through multiple steps in the definition
of the transitive closure of [[ ]]. Thus, the equations for [[ ]]+ compute a valid
environment based on the incoming environment and the environment resulting
from the computed step using $ (which is similar to $ defined in [13]).

↓ A = false
[[A,α]] = 〈A′, α′〉

[[A,α]]+ = [[A′, α$α′]]+
[[A,α]] = 〈T, α′〉

[[A,α]]+ = 〈T, α$α′〉

The interpretation function to perform an action A with input d is defined as
follows:

perform(A, d) = [[normal d then (normal no bindings hence A), ε]]+

In this equation ε denotes the empty environment.
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2.2 Action Rewriting in C

Although Asf+Sdf provides a useful framework for specifying the semantics of
Kernel AN there are some drawbacks. Since term rewriting is the only compu-
tational device Asf+Sdf (currently) supports, even the most primitive opera-
tions are to be specified using equations. For instance addition of two integers
is computed in a term rewriting fashion. Of course we would like to use native
support to compute integer operations to speed up execution. The same holds
for updating of stores, rotating the schedule and so on. Furthermore, Asf+-
Sdf’s capabilities seemed far too general for our purposes: since signatures are
described by production rules in Sdf we had to devise concrete syntax for all
auxiliary structures such as stores, bindings, finite maps etc. Disambiguation
of all these sorts—using syntactic sugar—hindered a perspicuous implementa-
tion even more. Finally, we thought we could improve upon the performance of
evalan. These considerations taken together, led to the decision to reimplement
the term rewriting system by hand in C. Having a valuable prototype in Asf+-
Sdf and the ATerm library [16] to implement a data notation, this was not a
hard job.

Acr takes an Abstract Syntax Tree as input. The algorithm traverses the
tree in a Modular SOS fashion: the traversal is directed by combinators, until a
subtree can be collapsed. The tree thus decreases in depth in a bottom up fashion,
while traversing it top down for each step. The main difference between acr and
evalan is that acr employs term rewriting only to reduce combined actions. All
primitive actions (including data operations and predicates) are hardcoded in C.
Especially for interacting actions the performance gain is expected to be more
than marginal since no matching is involved in rotating the schedule (and this
is likely to occur very often).

2.3 Comparing evalan and acr

Since both acr and evalan traverse the action tree for each computational step,
the complexity of the reduction algorithm should be roughly the same as for
evalan. However, primitive actions such as updating a cell have complexity
O(1) in acr. The complexity of primitive actions in evalan depends on the data
structures involved. For example, updating a cell in evalan will cost O(n) in the
worst case, where n is the number of allocated cells. This is due to the fact that
finite maps in Asf+Sdf are essentially lists of tuples. To assess the influence of
these primitive actions more concretely, we compared the performance the of the
Fibonacci action presented earlier and an iterative version. The results show that
acr is on average two times as fast as evalan for the recursive algorithm. Since
no imperative actions are used and bindings are implemented using bounded
balanced trees [1] both in acr and evalan this can only be accounted for by
the arithmetic operations and the more complex matching of terms in evalan.
For the iterative Fibonacci algorithm we see that for larger values of n (≈ 100)
evalan takes considerably more time than acr and this difference is growing
fast. Again term rewriting of arithmetic is probably the cause of this.
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Remark The fact that acr traverses the tree and constructs new ones on the way
up for each step, could have been avoided by using a different tree representa-
tion. (Abstract) Syntax trees resulting from Asf+Sdf related components are
always represented by ATerms which allow no destructive updates (copy-on-write
semantics). Using a tree representation that would allow destructive updates on
subterms, an executing agent could have been represented by a cursor walking
over the tree, collapsing and creating trees only locally. However, there is one
’small’ problem to this approach: syntax trees would need an enormous amount
of memory compared to the corresponding ATerm, since ATerms are maximally
shared. Precisely this problem of explosion in size has been one of the reasons
for making ATerms maximally shared [16].

Assessment While experiments show that acr is generally faster than evalan,
there are a number of drawbacks to the handcoded approach. First, acr uses
a fixed length representation for integers. Thus, integer values are restricted to
the size native to the machine acr is running on. A related problem is that
the used data notation of acr is hard to extend by the user. For evalan one
has the full algebraic power of Asf+Sdf available to extend the interpreter
with arbitrary data types. This is achieved using an interface mechanism. If a
user specifies his own data constructors and data operations one can extend
the interpreter by complying to this interface and adding his equations to the
equations of the evalan specification. Using the interface the interpreter can
“know” about foreign data constructs. The meaning of the data operations is
specified using the generic result function which is used by evalan to execute
give o actions. Depending on the importance of full generality and extendibility
it might not be such a good idea at all to reimplement the term rewriting system
by hand. Moreover, acr has been designed to primarily optimize non-functional
aspects such as scheduling and store updates, so for purely functional actions
the performance penalty induced by evalan is expected to be relatively small
and constant (as is corroborated by the comparison of recursive Fibonacci).

3 Compilation to Java and C

In this section we describe ways to compile actions to Java and C. In Figure
3 the compilers acc and ajc are depicted using T-diagrams. Both compilers
are implemented using Asf+Sdf. As before, we only consider kernel notation,
with the exception of unfoldings which are detected by ajc. For the compilation
to C we restrict ourselves to single threaded actions. We require our compiled
actions to be self-contained and compositional. Self-containment allows for easy
deployment of actions, while compositionality ensures the possibility of (off line)
reflection. To achieve these requirements, we introduce Action Functors in C and
Enactables in Java. Both are interfaces (signatures) to which compiled actions
should comply. Since we require that reflection is supported, this opens the way
to separate compilation of actions (even from different source languages) and
then combining them into one. Furthermore, in Java, an action implementing the
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Fig. 3. Compilation of AN-K to Java resp. C

Enactable interface can also implement the standard Serializable interface, which
makes it possible to store actions on file or send it over a network connection.

First we describe acc the action to C compiler. We then compare this com-
piler to ajc, the java compiler.

3.1 Action Functors

An Action Functor in C is a type definition describing a function that represents
an action, that is, a function that transforms data and bindings into data, while
perhaps referencing cells. Its definition in C is as follows:

typedef AN Data (∗ACCFunctor)(AN Data,AN Data);

The acc runtime library defines all Kernel AN2 primitive actions in such a way
that they obey this function type. The compiler translates an action tree by
mapping each subtree to an Action Functor. So for example Ai0 then Ai1 at
position i in the tree is compiled to:

AN Data actioni(AN Data data, AN Data bindings) {
register AN Data temp = actioni0(data, bindings);
return actioni1(temp, bindings);

}

One would expect that this way of compiling actions to C would result in inef-
ficient code, since the number of function calls is equal to the number of nodes
in the action tree. However, we have experimented with different compilation
schemes (such as using intermediate variables in one big function, or exploit-
ing the runtime stack) but they, suprisingly, all turned out to be slower than
the compilation scheme presented here. This is probably due to sophisticated
optimizations of GCC.

To cope with exception handling and (non deterministic) choice we use a
choice point library which allows non-local jumps at a very high level [11]. To
illustrate this, the code for Ai0 exceptionally Ai1 looks like this:
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AN Data actioni(AN Data data, AN Data bindings) {
if (!ACC try())

return actioni0(data, bindings);
else {

register AN Data temp = ACC catch exception();
return actioni1(temp, bindings);

}
}

Here ACC try returns 0 when setting the choice point and returns 1 when
actioni0 raised an exception or failure. In the else branch ACC catch exception
returns the raised data in case of an exception and rethrows a failure otherwise.
When an exception or failure occurs all registers and local variables are restored.

Now, the hard part is, of course, reflection. To accomplish real reflection in a
portable way, we employed Paolo Bonzini’s GNU Lightning. Lightning has been
designed to implement fast just-in-time compilers, and has been used as such
in GNU Smalltalk. It provides a set of macros that define a generic assembly
language. These macros allow a programmer to build ordinary C functions at
runtime for a number of platforms (i386, Sparc and PowerPC). Data operations
defined on action operands are implemented by this runtime assembler, special-
ized for Action Functors. Since any action may be operand to, e.g. then we
have to ensure that all actions present in the runtime have the function type de-
fined earlier. Currently, acc does not yet detect unfoldings to prevent reflection
at runtime, but a memotable prohibits the construction of an action for each
pass through a loop.

3.2 Enactables

Enactables are the Java equivalent of Action Functors. Enactables are classes
that implement the Enactable interface. This interface declares one method
enact, accepting Data and Bindings and returning Data. Enactables can be
embedded in Action classes which are subject to reflection. The compilation to
Java proceeds much in the same way as for acc, except that ajc generates a class
implementing the Enactable interface for the top action, and private methods
for each subaction. Provided actions are compiled to an inner class implement-
ing the Enactable interface. The action data operations receive Action instances
that are constructed from Enactables. This way it is easy to combine compiled
actions with hand written java classes. Another difference is the implementation
of the data notation. Since the subclass concept resembles the subsort relation
in AN2, implementation of the basic data types was straightforward. Runtime
type checks are performed using standard casting operators of Java. The Data
Notation is implemented using the Factory design pattern [8] to allow future
changes2 to the representation of values.
2 For example, an implementation based on ATerms would allow communication be-

tween actions compiled to Java and actions compiled to C.
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3.3 Comparing acc and ajc

Since acc and ajc compile actions almost in the same way, the comparison in
performance between C-compiled actions and Java-compiled actions does not
say us much about the compiler, but more about the difference between C and
Java as a target. Generally speaking, the recursive fibonacci action compiled
to C executes approximately 2.5 times faster than the same action compiled to
Java. For the iterative version this factor is close to 5.

Assessment It is obvious that actions compiled to C are more efficient than
actions compiled to Java. However, the actions in Java have a number of impor-
tant pragmatic advantages. It is our view that these advantages outweigh the
performance penalty by far. This is motivated by the following observations:

– First of all the slogan “compile once, run anywhere” applies here.
– The use of the Enactable interface allows the combination of compiled actions

with arbitrary Java code. This is also possible for actions compiled to C but
the process is more tricky and less type safe.

– For extension or specialization of compiled actions one has the complete Java
runtime library at one’s disposal.

– Java classes are mobile. E.g. sending compiled actions over a network con-
nection using serialization should pose no problem.

– Object Orientation alleviates the burden of changing and/or maintaining
the ajc runtime library. Since the java runtime library contains a host of
standard data structures the supported data notation can be extended uni-
formly.

4 Action Intermediate Language

AN−K AIL
an2ail

P

AIL AIL B−AIL
bail

PP

AN−K C
ailcc

C

B−AIL B−AIL

Asf+Sdf B−AIL

C

avm

C

Fig. 4. Compilation of Actions to AIL

It is evident that the way action trees are reduced in the term rewriting paradigm
is a source of inefficiency. The compilation to C remedies most of this, but at
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the cost of full generality: multi threading is not supported. Another drawback
is that compiled actions are not mobile in a dynamic way. Combination of two
compiled actions always involves writing a glue function which uses the reflection
operations of the acc runtime and (re)compiling the result. In this section we
discuss the intermediate language approach to compilation of actions. Using
Action Intermediate Language (AIL) we obtain full generality and performance
comparable to that of actions compiled to C.

The interaction of the tools involved in the compilation of actions to AIL is
depicted in Figure 4. We assume that P is available as a Kernel AN2 action. This
action is first translated to an AIL parse tree (an2ail) which is then converted
to a binary representation by the independent tool bail. The resulting object
can be executed by the Action Virtual Machine (avm) or compiled to C.

Speed is achieved by translating the action tree to a sequence of instructions.
The advantages are obvious. For example, in case of an exception, we can now
jump to the appropriate handler instead of stepwise proliferating the exception
up te action tree. One execution step now corresponds to incrementing an in-
struction pointer, instead of traversing a very large tree. Action Intermediate
Language (AIL) has primarily been designed to remedy the efficiency problems
of the term rewriting approach. Of course, since a number of SOS steps are col-
lapsed into one jump, the behaviour of multi threaded actions can significantly
differ. We expect, however, that it is possible to achieve correct operational
behaviour modulo exceptional/alternative flow for multi threaded actions by
inserting appropriate yield points in AIL byte code.

Action Intermediate Language can be seen as a typed assembly language of
the stack based kind. AIL instructions can accept one (optional) parameter. If
a parameter is present it must be an integer (indicating a non-datum constant
value), a label, an ATerm (representing a datum or a data sort) or AIL code
itself. The last argument type allows for reflection. Labels are translated to
offsets by the bytecode compiler to ensure compositionality for AIL bytecode.
Again, we use ATerms for the representation of data. One of the reasons to
use ATerms for AIL bytecode lies in the efficient IO capabilities of the ATerm
library. ATerms can be written to file while retaining maximal sharing. So we
get serialization of all data (including actions provided as data) for free. The
standalone tool bail takes an AIL parsetree as input and then builds an array
of bytes, mapping instructions to opcodes and serializing data to binary ATerm
format within the stream. The resulting byte stream is converted to a BLOB
(Binary Large OBject) ATerm and written on file.

A part of the instruction set of AIL is displayed in Table 1. Data operations,
predicates and primitive instructions more or less correspond directly to Kernel
AN2 primitive actions and are not listed in the table. A difference is that typed
primitive instructions do not check their arguments for type correctness. This
is dealt with by the special instruction cast. The data flow instructions all
operate on a number of stacks the function of which is explained in the next
section. Control flow instructions are able to change the instruction pointer.
The instruction goto l just does this. If a frame needs to be allocated, the
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Aspect Instructions

Given Data Flow prov, push, drop, copy, merge

Raised Data Flow eprov, epush, edrop, ecopy, emerge

Argument Data Flow publish, unpublish, epublish

Scope Data Flow enter, leave, scope

Normal Control Flow frame, goto, return, enact

Escaping Control Flow trye, tryf, raise, throw, fail, catch

Table 1. Subset of AIL Instructions

instruction frame can be used. The label argument to this instruction denotes a
return address. The instructions trye and tryf install a handler at the program
point specified by the argument label.

4.1 AIL Runtime Environment

The runtime environment for AIL programs consists of a store, a schedule and
a code region. When a program is run, an AIL Control Block (ACB) is created
for agent “main”. ACBs contain all necessary data structures that are local
to a thread (or agent). At runtime, new ACBs may be added to the schedule
by the activate instruction. ACBs consist of two registers and a number of
stacks. The first register is used for normal data flow (nreg) and the second for
exceptional data flow (ereg). Each register has an associated stack (nresult resp.
eresult) that is used for saving computed values. All primitive instructions not
merely concerned with flow of data, take arguments from the registers and return
values in the registers. If a sequence of instructions needs the same argument,
the register is first saved on the argument stack and copied back into the register
when needed. The third kind of stack is used for binding flow: the scope stack.
Bindings can be transferred to and from the normal flow component. Finally,
ACBs contain a context stack and a frame stack. The context stack is used
for exception and failure handling. Contexts contain snapshots (shallow copies)
of the result stacks, argument stack and scope stack, used for restoring the
environment after an exception has occurred. Furthermore, a context contains
a reference to the frame in which it was saved and a continuation address. The
frame stack is used to save the return address when AIL code is enacted. To
elucidate the way data may flow at runtime, the basic data flow instructions are
depicted in Figure 5.

4.2 Mapping AN-K to AIL

Let’s look at how the basic action combinators are translated to AIL. The nor-
mal data flow and binding flow translations are rather obvious. The following
four sequences represent the then, and then, and hence combinators ([[A]]
denotes the translation of a sub action of a combinator).
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Fig. 5. Transfer graph relating stacks and registers

[[A1]]
publish;
[[A2]]
unpublish;

[[A1]]
push;
copy;
[[A2]]
merge;

[[A1]]
cast bindings(<term>);
enter;
copy;
[[A2]]
leave;

In the first sequence A1 executes and leaves its result in nreg. This result
is published onto the argument stack. Then A2 executes, probably using the
published value. Finally the published data is withdrawn. In the second sequence,
after A1 has finished the value in nreg is pushed onto the result stack. Then the
published value (incoming data) is copied from the argument stack back into
nreg. So, when A2 executes it receives the same input as A1. Finally the merge
instruction prepends the top of the result stack to the data in nreg. The third
sequence involves scoping. Since hence is the only typed combinator we have to
ensure that the data given by A1 is of the proper type. The cast instruction
leaves nreg as it is when the data is of the argument type, i.c. bindings, and
throws an exception otherwise. If A1 returned bindings they are pushed onto
the scope stack, making them the current set of bindings. Then the published
data is copied and after A2 has finished, the current scope is left.

To see how exceptional control flow is mimicked in AIL, the translation of
the and exceptionally combinator is an interesting case. An action A1 and
exceptionally A2 terminates exceptionally if both subactions terminate excep-
tionally. This exception is accompanied by the concatenation of the raised data
values of the subactions. In AIL this is achieved by guarding the righthand ac-
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tion with a trye block and throwing an exception with concatenated data in the
handling part. Thus, A1 and exceptionally A2 is mapped to:

trye l1; // install handler at l1
[[A1]]

catch l2; // branch to l2
l1: epush; // push raised data onto eresult

trye l3; // install another handler
[[A2]]

catch l4;
l3: emerge; // merge raised data

throw; // throw exception
l4: edrop; // pop datum of first exception
l2: ...

Recall that emerge prepends the top of eresult to the data in ereg (the data
raised by A2). Note also that the catch instruction just pops the context stack
and branches to the argument label.

The output of an2ail for the fibonacci action presented earlier is displayed
in Figure 6. Note that no reflection is present since unfolding and unfold are
detected by the compiler.

4.3 Simple Optimization of AIL

The reason to separate the type checking from the actual computation of data
operations is that if the type is statically known, the cast instruction can be
left out. The use of registers in combination with stacks allows a number of
simple optimizations of AIL code that reduce the number of stack operations
considerably.

publish; i; unpublish; = i;

update; push; copy; i; merge; = update; copy; i;

copy; copy; = copy;

copy; prov term; = prov term;

The first rule states that if only instruction i uses the published data (which
still resides in nreg after publish), the data need not be pushed onto the ar-
gument stack at all. In the second equation, the merging of data can be left
out, since update (if terminating normally) returns the empty tuple. The third
equation is obvious. Finally, for an instruction that never uses the data given to
it, the published data does not have to be copied into nreg.

4.4 Assessing avm

Experiments with the recursive fibonacci action show that interpreting bytecode
is slightly slower than the action compiled to C but this difference is growing for
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{
frame @l2;

@l1:
tryf @l11;
tryf @l101;
copy;
push;
prov int(0);
merge;
publish;
trye @l100002;
cast [〈appl(〈term〉)〉,〈appl(〈term〉)〉];
eq;
catch @l100003;

@l100002:
fail;

@l100003:
unpublish;
prov int(1);
catch @l102;

@l101:
copy;
push;
prov int(1);
merge;
publish;
trye @l100102;
cast [〈appl(〈term〉)〉,〈appl(〈term〉)〉];
eq;
catch @l100103;

@l100102:
fail;

@l100103:
unpublish;
prov int(1);

@l102:
catch @l12;

@l11:

copy;
push;
prov int(2);
merge;
publish;
cast [int(〈term〉),int(〈term〉)];
sub;
unpublish;
publish;
frame @l101001;
goto @l1;

@l101001:
unpublish;
push;
copy;
push;
prov int(1);
merge;
publish;
cast [int(〈term〉),int(〈term〉)];
sub;
unpublish;
publish;
frame @l101011;
goto @l1;

@l101011:
unpublish;
merge;
publish;
cast [int(〈term〉),int(〈term〉)];
add;
unpublish;

@l12:
return;

@l2:
return;

}

Fig. 6. Recursive Fibonacci in AIL

large values of n. We have not yet tested the additional compilation to C, since
this is not fully operational yet.

The pragmatic advantages of the intermediate language approach are ob-
vious. Actions are compiled to a single object which is mobile, compositional
and self contained. Offline combination of different actions is straightforward
using the reflection primitives of AIL;—the result is just another binary object
file. This is an improvement with respect to actions compiled to C where one
has to recompile the separate compiled actions if one wants offline combination.
Another pragmatic advantage is the extendibility of avm. Although this cannot
be done dynamicly or on request, avm is designed in such a way that exten-
sion consists only of adding instructions to the instruction set and defining their
semantics in C. No changes to bail or ailcc have to be made.
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5 Conclusions and Discussion

In this final section we compare our work to previously conducted research in
this area and present some conclusions.

5.1 Discussion

The generation of interpreters and compilers from action semantic descriptions
has a long history (cf. [4, 17, 15]). For the new Action Notation however, this
field of research has only just begun. In this paper we have presented some
strategies for interpreting and compiling actions in ways that have not been
explored before. Our approach differs in a number of aspects from the previously
conducted research in this field.

The first and foremost difference is the central role of the algebraic specifi-
cation formalism Asf+Sdf. The Action Semantic Description (ASD) tools [17]
used Asf+Sdf to generate term rewriting systems from an ASD, a formalism
on its on. That is, the ASD tools operated by first parsing an ASD and then
generating an number Asf+Sdf modules which could be used to check and exe-
cute the language defined. In our approach, however, Asf+Sdf itself is used as
action semantic description formalism. Syntax is defined in Sdf, which is then
rewritten to action terms by the Asf component. This approach has a number of
important advantages. First, since Sdf is a declarative formalism that allows the
full class of context-free grammars, the syntax of a language is easily specified
and need not be molded into the class of LR or LALR grammars. This has the
additional advantage that grammars can be designed in a modular way, since
only full context-free grammars are closed under union. Furthermore, the compo-
sitionality of action notation and the algebraic defined data notation make Asf
a perfect formalism for mapping syntax to semantics. This can be done using
concrete syntax which makes action semantic descriptions all the more read-
able. Finally, a specification can easily be used outside the Meta-Environment
by reusing the standalone components of Asf+Sdf. In this paper we have de-
scribed an interpreter of actions which is independent of the language defined:
the interpreter is only defined for Kernel AN2. The composition of a language
specification and the interpreter yields an interpreter for the language defined.

Previous efforts to execute actions were primarily focussed on performance
issues relative to hand written compilers and interpreters. The execution speed
of, e.g., Oasis [15], depends largely on thorough analysis of actions, involving for
example binding time analysis and on restricting the set of action combinators
and primitives that are supported. While not disregarding the issue of perfor-
mance, we take the opposite route, by stating that support for the full kernel
of AN2 is the primary goal. This includes the interacting facet and reflection.
Of course, we probably have to pay for this in terms of execution speed, but
since bindings have become data and loops are defined using reflection in Kernel
AN2, this may turn out to be unavoidable without the analysis of Full AN2 con-
structs. In the framework we have presented compilation and/or interpretation
can always be preceded by numerous analysis and optimization phases if this
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Fig. 7. Execution times in s for Recursive Fibonacci executed using evalan and
acr.

turns out to be desirable. A related design decision is to strive for portability.
Therefore the option of compiling to native code has never even been considered.

A third difference to existing approaches is our focus on using actions in
the real world. Put differently, we see action semantics not only as a formalism
to mathematically define an programming language’s semantics, but possibly
also as a way to define domain specific languages [5]. This poses the question
on how to connect generated interpreters or compiled actions to existing soft-
ware environments. One solution to this has been provided by the Asf+Sdf
Meta-Environment itself: compiled specifications can be connected to the Tool-
bus coordination architecture [2]. A second solution, addressed in this paper, is
compilation of actions to a Java class definition. By letting this class implement
the Enactable interface, a compiled action can be combined with handcoded
“enactables” using reflection as provided by AN2.

5.2 Conclusions

We have presented a number of interpreters and compilers to put action semantic
descriptions to use. From the experiments we have performed some conclusions
can be drawn. First of all, if performance is important, the term rewriting ap-
proaches will not do. The difference in execution time between the term rewriting
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approach and the compiled actions (C, Java and AIL) is indeed dramatical. This
conclusion can be drawn immediately from the plots displayed in Figure 7 and
Figure 83. The reason why one would still want to use evalan lies in the fact
that it can be augmented with arbitrary algebraic data types. Additionally, the
tight integration with the Asf+Sdf Meta-Environment allows for the interac-
tive specification as well as testing of programming languages. The interpreter
evalan might best be used during the process of designing a language.

Compiling actions has numerous advantages over interpretation. The result-
ing objects are faster and easier to embed in existing software environments. The
compilers can be instructed to map certain (primitive) actions to user provided
native code. This way it is possible to let actions really connect to the real world.
We conclude that, if performance is not the main objective, the compilation to
Java has the best credits for defining domain specific languages, since it combines
Object Orientation with deployability and mobility.

5.3 Future Work

First of all we will have to test the tools presented here with interacting actions
as input. Since we have only assessed the performance of a very small action in
3 All tests have been executed on an AMD Athlon XP1800+ running Linux.
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this paper, the question whether the interpreters and compilers will scale up to
larger actions is an urgent one. We are currently working on the migration of
the JOOS action semantics [19] to Asf+Sdf.

Although it is explicitly not our intention to compete with commercial com-
pilers, more benchmarking should enable us to assess the performance penalties
of the various strategies more accurately. There is reason to assume that there
is room for improvement, especially for the compilers. Restricting the composi-
tionality requirement to apply only to the top action is an option we will have
to explore. But this is probably hardly possible without a thorough analysis of
actions. These analyses should take both Full AN2 constructs and Kernel AN2
constructs into account. The problem is, that, whereas it is easier to analyse Full
AN2 constructs only, a user is still permitted to use Kernel AN2 in his language
definitions. As a consequence any agressive optimization that does not take both
levels into account may lead to loss of information. For example, algebraic sim-
plification of Kernel AN2 actions might destroy the link between some kernel
subactions and their Full AN2 origins (e.g. unfolding). An important step to
more efficient compilation (especially to C and Java) would be the availability
of a staticness condition. It would then be possible to eliminate all bindings and
possibly many type checks.

Apart from the issue of performance, we plan to center our future work
around increased usability and deployability of actions. This work includes mak-
ing the interpreters as well as compilers extendible, connecting all tools to the
Toolbus coordination architecture, and targeting .NET intermediate language.
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How Asf+Sdf technology can be used to
develop an Action Semantics Environment
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Abstract

Asf+Sdf [2] and action semantics [7] have had a close relation over the years.
This relation is two-fold: both formalisms can be used to describe (programming)
language [5] and Asf+Sdf technology has been used to develop tools for action
semantics. The first version of the Asf+SdfMeta-Environment [6] was used to
develop a prototype of an action semantics environment [3]. The approach taken
there was quite complicated because of the use of mixfix syntax used in action
semantics on one hand and the lack of re-usability of components, such as the
parser, in the Meta-Environment on the other hand. The problem was solved
by generating new modules and incorporating these modules to parse the action
semantics expressions.

The next generation of the Asf+SdfMeta-Environment [1] is again used to
develop an environment for action semantics [8]. The approach is quite different
this time. The modularity of Asf+Sdf has been fully exploited, each language
construct is formulated in a separate module [4]. Furthermore, the syntax and
semantics of the action semantics constructs is directly specified in Asf+Sdf,
which makes the generation phase used in the old action semantics system ob-
solete.

We will present the technical background of the new Asf+SdfMeta-Envi-
ronment from the perspective of developing the action semantics environment.
The new Asf+SdfMeta-Environment is based on a software coordination archi-
tecture and this should offer the possibility to connect tools like a type checker,
an interpreter, and a compiler for action semantics in a straightforward manner.
We will discuss the various approaches to do this. The aspect of genericity of
the Meta-Environment will be discussed and what has to be done when the ac-
tion semantics modules become less Asf+Sdf like. The current prototype if the
action semantics environment based on Asf+Sdf technology uses directly Sdf
to describe the syntax rules. This means that quite some Sdf specific keywords
are used, given the fact that only one syntax rule is specified per module, half
of such a module consists of Sdf keywords. A logical step would be to develop
an action semantics specific Sdf variant. This step has quite some consequences
on the architectural level of the Asf+SdfMeta-Environment.
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Abstract. Action Semantics is a well known formalism for specifying
programming languages. Recently methods were proposed to provide
modularity, allowing for the specification reusability and extension in Ac-
tion Semantics. Modules can also be seen as objects from object-oriented
paradigm, increasing the specification organization, once concepts as in-
stantiation and inheritance can be employed. A Pascal like imperative
Language is specified using Action Semantics objects, as well as a lan-
guage extension, obtained by extending the object´s hierarchy represent-
ing the original language.

1 Introduction

Action Semantics represents a spreading framework for specifying programming
languages. According to [MM1] Action Semantics descriptions has proven to be
adequate for reusing and extension. However, the standard Action Semantics,
as proposed by [Mo1] lacks of syntactic support for the definition of libraries,
whose components would be reused in new descriptions.

Two solutions for this problem have been proposed by different authors. In
[DM1], the standard Action Notation is extended to define modules, while the
definition of components is described in [MM2].

In this work, we propose the use of Object-Oriented concepts for the defi-
nition of yet another extension of Action Notation. Our proposal is motivated
by the study of the two previous ones, where some problematic aspects were
detected.

A main advantage of our proposal is the use of standard Action Notation for
the specifications “in small”, combined with class constructors, to provide an
object-oriented way of composing specifications.

This work is organized as follows: The next two sub-sections present Ac-
tion Semantics, as well as the introduction of modules and components in the
formalism.

Section 2 presents Object-Oriented Action Semantics by means of an exam-
ple. The operational semantics of our notation is also given in this section.

Section 3 is a case study: a simple imperative language is specified, and
then this description is extended, in order to demonstrate the capabilities of our
proposal.

Section 4 is devoted to the conclusions of this work.
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1.1 Action Semantics

Action Semantics [Mo1] is a formal framework for describing languages seman-
tics. Specifications in Action Semantics framework, employ the same structure as
those in Denotational Semantics, using semantic functions and semantic equa-
tions. The meaning of each phrase is specified using actions. An Action, is an
entity which receives and propagates data and can be executed. An action, when
performed, may produce some outcomes:

– complete: indicating normal termination;
– escape: representing abnormal termination;
– fail: representing that the execution failed;
– diverge: indicating no termination - the action will be executed forever;

Action Semantics is a simpler way for defining formal specifications. Its en-
glish language-based writing style constitutes an important factor on such sim-
plicity. However, as reported by [La1], traditional action semantics does not allow
the definition of reusable building blocks. Such a requirement, constitutes an im-
portant feature on the context of creating new languages specifications based on
existing languages structures.

In order to improve modularity, some methods were proposed. Such methods
are sumarized in the following section.

1.2 Structuring Action Semantics Descriptions

In [DM1], Doh and Mosses proposed the use of Action Semantics modules. Each
part of a programming language specification is defined in isolation, allowing
for separated view of specification elements; module composition; specification
reusability. In [MM2], Menezes and Moura proposed the Component Based Ac-
tion Semantics, allowing the creation of generic components and component
libraries.

In both approaches, specification parts can be reused in new projects. A
module or component can be written in an abstract way and extended to meet
actual needs. The readability is increased since small specification parts compose
a large project. In what follow, we summarize some positive and negative points
of both approaches:

Modules

( + ) The notation for defining modules is simple, improving readability of the
resulting specification;

( + ) Reusability is enhanced. Specification parts can be used in new specifications;
( + ) Modules can be combined, including existing modules in the actual project;
( – ) Modules combination is problematic, and can cause inconsistencies (as de-

tailed in [DM1]).
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Components

( + ) Component notation and Programming Language Notation provide an ad-
vanced way to create components and to define language specifications;

( + ) Components are generic and can be used in new projects avoiding repetition;
( + ) A component library can be defined;
( – ) Functions and operations provided by the framework are cumbersome. Spec-

ifications can be obscure.

Focused in the specification reusability and extension context, we introduce
another approach for the organization of specifications in Action Semantics. Our
proposal, consists in the use of Object-Oriented concepts for structuring Action
Semantics specifications. The details of our approach are given in the following
section.

2 Object-Oriented Action Semantics

An Object-Oriented Action Semantics specification consists on the definition of
a hierarchy of classes, in which the objects are defined by means of a standard
Action Semantics. The class hierarchy for a given language is derived from its
syntactic structure. Each language phrase (declarations, commands, expressions,
etc) is represented by one or more objects. Let us exemplify these concepts using
a toy command language:

Example 1 (Commands Abstract Syntax).

• Command = [[“skip”]]
[[Identifier “:=” Expression]]
[[“do” Command “while” Expression]]
[[Command “;” Command]] .

The non-terminal symbol Command defines the commands present in the
language. They are respectively: the null command, assignments, iterations and
sequences. There are some features that are common to all commands. However,
each one of them presents a particular structure and meaning. Such context can
be represented using a class hierarchy, defined in figure 1.

Command represents common command features. Specific features can be
expressed by Command sub-classes which are: Null, Assignment, DoWhile and
Sequencing.

In Object-Oriented Action Semantics classes are divided in two basic parts:
syntax and semantics, using the same idea from [DM1] and [MM2].

Example 2 (Command Semantics).

Class Command
syntax:

Com
semantics:

execute _ : Com -> Action
End Class
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Command

Null Assignment DoWhile Sequencing

Fig. 1. Example 1 language´s class hierarchy

The class Command, detailed in example 2, is defined to be the command
base-class. In the syntax section (syntax), the syntactic sort Com is introduced.
This sort will contain all the command syntactic trees.

A semantic function ‘execute _’ is defined in the semantic section (seman-
tics) indicating a mapping from syntactic sort Com to an Action. In Object-
Oriented Action Semantics, semantic functions and semantic equations has the
same role as methods in Object-Oriented framework [Ru1,Me1]. The semantic
function ‘execute _’ can be seen as a method of the class Command, and can
be overloaded3 by its sub-classes.

Example 3 (Do-While command semantics).

Class DoWhileCommand
extending Command
using E:Expression, C:Command
syntax:

Com ::= "do" C "while" E
semantics:

execute[[ "do" C "while" E ]]=
unfolding

execute C
and then

evaluate E
then unfold else complete

End Class

Let us see the example 3. The extending directive indicates that Do-While-
Command class is an extension from Command class. Two objects (E:Expression
e C:Command) are instantiated on the using directive.

In the syntax section we add a new command structure, redefining the syntax
tree (Com). The ‘execute _’ method is overloaded and the do-while command
action semantics is given.

3 This concept is called polymorphism by the Object-Oriented community.
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The classes Command and Expression must provide the methods ‘execute _’
and ‘evaluate _’. In the definition of the method ‘execute _’ for Do-While-

Command class, the functions (methods) ‘execute _’ and ‘evaluate _’ of objects
C e E, respectively, are called.

The next sections present the syntax and semantics of Object-Oriented Ac-
tion Notation. The syntax extends standard Action Notation to express object-
oriented concepts. The big-step operational semantics of the notation is given in
section 2.2.

2.1 Syntax

Specifications in Object-Oriented Action Semantics are structured by a finite
class set. The relationship between classes is specified using directives, indicating:
which objects will be instantiated by the actual class as well as its position in
the class hierarchy. The syntactic structure for classes is defined as follows, using
BNF. This syntax definition simply extends the standard Action Notation to
include the class apparatus.

(1) Class-Module =
[[ “Class” Class-Name Class-Body “End-Class” ]].

(2) Class-Body =
[[ 〈 “extending” Base-Class-Name 〉? 〈 “using” Objects-Declaration 〉?
〈Class-Definition 〉?]].

(3) Base-Class-Name =
[[ Class-Name Class-Name “::” Base-Class-Name ]].

(4) Objects-Declaration =
[[ Object-Declaration ]] [[ Object-Declaration “,” Objects-Declaration ]]

(5) Object-Declaration =
[[ Identifier “:” Class-Name ]]

(6) Class-Definition =
[[ “syntax” “:” Syntactic-Part “semantics” “:” Semantic-Part ]]

(7) Syntactic-Part =
[[ TokenName TokenName “::=” syntax-tree ]]

(8) Semantic-Part =
[[ 〈 Semantic-Functions 〉? 〈 Semantic-Equations 〉? ]].

(9) Semantic-Functions =
[[ Semantic-Function ]] [[ Semantic-Function Semantic-Functions ]].

(10) Semantic-Function =
[[ Function-Name “ ”* Tokens “-¿” “Action” data ]].

(11) Tokens =
[[ TokenName ]] [[ TokenName “,” Tokens ]].

(12) Semantic-Equations =
[[ Semantic-Equation ]] [[ Semantic-Equation Semantic-Equations ]].

(13) Semantic-Equation =
[[ Function-Name “[[” syntax-tree “]]” “=” Action ]].
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(14) Action =
[[ “complete” ]] [[ “fail” ]] [[ “unfold” ]]
[[ Action “and” Action ]] [[ Action “and then” Action ]]
[[ “unfolding” Action ]] [[ “give” Yielder ]]
[[ “check” Yielder ]] [[ Action “then” Action ]]
[[ “bind” Yielder “to” Yielder ]]
[[ “furthermore” Action ]] [[ Action “hence” Action ]]
[[ Action “moreover” Action ]] [[ Action “before” Action ]]
[[ “store” Yielder “in” Yielder ]] [[ “deallocate” Yielder ]]
[[ “enact” Yielder ]] [[ Action “else” Action ]]
[[ “recursively” “bind” Yielder “to” Yielder ]]
[[ “allocate a” Sort ]] .

(15) Yielder =
[[ “the” Sort “#”n ]]
[[ “the” Sort “bound” “to” k ]]
[[ “the” Sort “stored” “in” Yielder ]]
[[ Yielder “with” Yielder ]]
[[ “closure” Yielder ]]
[[ “abstraction of” Action ]] .

(16) Sort =
[[ “bindable” ]] [[ “cell” ]] [[ “cell” “[” Sort “]” ]]
[[ “storable” ]] [[ “abstraction” ]] [[ “datum” ]]
[[ “integer” ]] [[ “value” ]] [[ “truth-value” ]]
[[ Sort “—” Sort ]] .

The following section defines the operational semantics of this notation.

2.2 Semantics

Base-classes defined using our notation are implicitly part of a hierarchy. Object-
Oriented Action Notation defines a class to which all classes belong. This super-
class is called State. All classes defined in Object Oriented Action Semantics are
sub-classes of State.

The class State has generic attributes, corresponding to transient informa-
tion, bindings and storage; and provide operations, allowing us to handle such
attributes. Both attributes and operations are visible to all specific classes. We
define the State methods behavior by means of a big-step operational semantics
[Wi1], characterized by the following relation:

S = B, t, b, s ` o � o′, t′, b′, s′

The relation schema above identifies B as the methods environment (user-
defined methods), t as the transient information, b as bindings and s as the
current store. We say that the operation (action) o, when performed produces
the outcome o′, together with transient information t′, bindings b′ and storage
s′. The definition of such a relation is adapted from [Mo2].
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2.2.1 Operations on State Operations are functions on State attributes.
Operations maps the triple (t, b, s) to (t′, b′, s′) and are classified according to
the action facets [Mo1], being divided as follows:

• basic: when applied to flow control;
• functional : when applied to transients ;
• imperative: when applied to current storage;
• declarative: when applied to the bindings ;
• reflective: defining abstractions;
• hybrid : applied to more than one attribute.

The next rules define some basic operations.

B, t, b, s ` complete � completed, {}, {}, s (1)

B, t, b, s ` fail � failed, {}, {}, s (2)

B, t, b, s ` a1 � completed, t1, b1, s1 B, t, b, s1 ` a2 � completed, t2, b2, s2

mergeable t1t2 mergeable b1b2

B, t, b, s ` a1 and then a2 � completed, t1 ⊕ t2, b1 ⊕ b2, s2

(3)

B, t, b, s ` a1 � o1, t1, b1, s1 o1 6= completed

B, t, b, s ` a1 and then a2 � o1, t1, b1, s1

(4)

B, t, b, s ` a1 � completed, t1, b1, s1 B, t, b, s1 ` a2 � o2, t2, b2, s2

o2 6= completed

B, t, b, s ` a1 and then a2 � o2, t2, b2, s2

(5)

B, t, b, s ` a1 � o1, t1, b1, s1 o1 6= failed

B, t, b, s ` a1 or a2 � o1, t1, b1, s1

(6)

B, t, b, s ` a1 � failed, {}, {}, s1 B, t, b, s1 ` a2 � o2, t2, b2, s2

B, t, b, s ` a1 or a2 � o2, t2, b2, s2

(7)

Rules (1) and (2) indicate the semantics of the operations complete and fail,
respectively. Rules (3), (4) and (5) defines the behavior of the and then operation.
Rule (3), establishes the behavior of the and then operation when both sub-
operations (sub-actions) a1 and a2 completes. Rule (4) defines the behavior of
the and then operation when the first sub-operation a1 does not complete, and
rule (5) establishes the behavior when sub-operation a2 does not complete.

Rules (6) and (7) defines the behavior of the operation or. Rule (6) defines
the behavior of the or operation when sub-operation a1 does not fail, and rule
(7) indicates the results when a1 fail.
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Notice that all kinds of operations can be obtained using operational rules.
A full description can be seen in www.ppgia.pucpr.br/˜carvilhe/full.

2.2.2 Methods environment All user-defined methods are stored in the
methods environment. Two operations are needed to handle methods: insertion
and fetch. These operations are defined in this section.

Methods are structured as f [[H ]] = o, being H a syntax-tree schema4 [Mo1]
and o an operation (action). The behavior of the operations is defined by the
following rules:

B ` f [[H]] = O � B[f [[H]] → O]
(8)

(f [[H]]) ∈ dom(B), B, t, b, s ` O[H/h] � o, t′, b′, s′

B, t, b, s ` f [[h]] � o, t′, b′, s′

(9)

Rule (8) indicates that methods defined by means of the syntax ‘f [[H ]] = O’
must be inserted in the methods environment. The notation B[f [[H ]] → O] in-
dicates that a new method is inserted in the environment. Rule (9) defines that
methods defined as f [[h]] produces de result o, t′, b′, s′, provided that the method
f exists in the methods environment B, and that the method can be executed
by substituting the syntax-tree schema H by the actual syntax-tree h.

3 A case study - The µ-Pascal Language

In this section we present the Object-Oriented Action Semantics of a toy lan-
guage similar to Pascal. µ-Pascal is a simple imperative programming language
which contains simple commands and expressions. The language possesses a
block-structure.

The Object-Oriented Action Semantics of µ-Pascal is defined in this work
to exemplify the extensibility properties of our framework. In section 3.3, the
µ-Pascal Object-Oriented Action Semantics will be extended to a language with
procedures and functions.

µ-Pascal syntax is defined as follows.

3.1 µ-Pascal Syntax

(1) Program =
[[ “declare” Declaration “used-in” Command ]].

4 We call a syntax tree schema as a syntax tree with (free) variables standing for

sub-trees.
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(2) Declaration =
[[ “var” Identifier “:” Type 〈 “=” Expression 〉? ]]
[[ “const” Identifier “:” Type “=” Expression ]] .

(3) Type =
“boolean” “integer”

A Program is formed by a declaration followed by commands. The tokens
declare and used-in delimitates these structures. Constants and Variables can be
declared indicating their type.

(1) Command =
[[ “declare” Declaration “used-in” Command ]]
[[ Identifier “:=” Expression ]]
[[ “if” Expression “then” Command 〈 “else” Command 〉? “end-if” ]]
[[ “repeat” Command “until” Expression ]]
[[ Command “;” Command ]] .

(2) Expression =
[[ “true” ]] [[ “false” ]] [[ Numeral ]] [[ Identifier ]]
[[ Expression “+” Expression ]] [[ Expression “-” Expression ]]
[[ Expression “*” Expression ]] [[ Expression “¡” Expression ]]
[[ Expression “=” Expression ]].

(3) Identifier =
[[ Letter 〈 Letter — Digit 〉* ]].

(4) Numeral =
[[ Digit 〈Digit 〉* ]].

Commands in µ-Pascal contains assignment, selection, iteration and sequences.
Expressions can be arithmetical or logical.

3.2 µ-Pascal Semantics

Based on the µ-Pascal abstract syntax a class hierarchy can be defined. The
syntactic rules of the language definition can be mapped into objects which
incorporate syntax and semantics. Some diagrams will be constructed using a
tree notation to express the hierarchy.

Let us begin by constructing classes to represent the language identifiers,
numerals and types. After this phase, we define the declarations, commands and
expressions hierarchy to express the meaning of the language.

3.2.1 Identifiers, Numerals and Types

Class Identifier

syntax:

Id ::= letter [ letter | digit ]*

End Class
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Class Numeral
syntax:

N ::= digit+
semantics:

valuation _ : N -> integer
End Class

Class Type
syntax:

T ::= "boolean" | "integer""
semantics:

allocate-for-type _ : T -> Action
allocate-for-type[[ "boolean" ]] =

allocate a cell [ truth-value ]
allocate-for-type[[ "integer" ]] =

allocate a cell [ integer ]
End Class

The class Identifier represents names (variables and constants). This class
has only syntactic definition.

The class Numeral represents integer numbers. In the semantics section a
‘valuation _’ method is defined, mapping numerals to integers. The definition
of the ‘valuation _’ function is straightforward.

The class Type represents the language data types. The method ‘allocate-

for-type’ is defined, establishing truth-value or integer data types allocation.

3.2.2 Declarations Constants and variables can be declared in µ-Pascal. The
declarations hierarchy can be constructed based on figure 2 as follows:

Declaration

ConstantDec VariableDec

Fig. 2. µ-Pascal´s declarations hierarchy

Class Declaration
using I:Identifier, E:Expression
syntax:

Dec
semantics:

elaborate _ : Dec -> Action
End Class
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The class Declaration instantiates two objects: I and E, respectively of
Identifier and Expression. Both objects are not used by the class itself. They
are defined at this point to be available to the sub-classes of Declaration. A
non-terminal symbol Dec is introduced at the syntax section to be redefined by
the sub-classes. In the semantics section an ‘elaborate _’ method is declared,
to be overloaded by the sub-classes of Declaration.

Let us define the first sub-class of Declaration:

Class ConstantDec
extending Declaration
syntax:

Dec ::= "const" I ":" T "=" E
semantics:

elaborate[["const" I ":" T "=" E]]=
evaluate E then
bind I to the value

End Class

The Dec token is redefined in the ConstantDec class (above), establishing the
structure for constant declarations. In the semantics part, the ‘elaborate _’

method is redefined. The objects I:Identifier and E:Expression are used at
this point, and the semantics of a constant declaration is defined using standard
Action Notation.

Class VariableDec
extending Declaration
using T:Type
syntax:

Dec ::= "var" I ":" T ["=" E]
semantics:

elaborate[["var" I ":" T]]=
allocate-for-type T

then
bind token I to the cell #0

elaborate[["var" I ":" T "=" E]]=
evaluate E

and
allocate-for-type T

then
bind I to the cell #1

and
store the value #0 in the cell #1

End Class

The VariableDec class instantiates a T:Type object. The variable declara-
tion syntax is redefined at the syntax section. The ‘elaborate _’ method is
redefined twice, considering the absence (or not) of an expression E.
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3.2.3 Commands The commands class hierarchy is defined based on the
figure 3. The main class of this hierarchy is Command, as follows.

Command

DecCommand Assignment Selection Repeat Sequencing

Fig. 3. µ-Pascal´s commands hierarchy

Class Command
syntax:

Com
semantics:

execute _ : Com -> Action
End Class

In the syntax section, the token Com is introduced to represent the syntactic
sub-trees of commands. The method ‘execute _’ is declared in the semantics
section to be redefined by the sub-classes of Command.

Class DecCommand
extending Command
using D:Declaration, C:Command
syntax:

Com ::= "declare" D "used-in" C
semantics:

execute[["declare" D "used-in" C]]=
furthermore elaborate D

hence
execute C

End Class

The class DecCommand is introduced in the commands hierarchy on the ‘ext-
ending’ directive. Two objects are instantiated by DecCommand class: D:Declar-
ation and C:Command. In the syntax section the token Com is redefined to express
declarations followed by commands. In the semantics section the standard action
semantics description is defined.
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Class Assignment
extending Command
using I:Identifier, E:Expression
syntax:

Com ::= I ":=" E
semantics:

execute[[I ":=" E]]=
evaluate E

then
store the value in the cell bound to I

End Class

The class Assignment instantiates two objects I:Identifier and E:Exp-

ression. In the syntax section the assignments structure is represented. In the
semantics section, assignment´s semantics is defined.

Notice that the remaining classes Selection, Repeat and Sequencing are
structured in the same way as DecCommand and Assignment. Thus, their defini-
tions are omitted in this paper.

3.2.4 Expressions The expressions class hierarchy is defined based on figure
4.

Expression

SumExp

SubtExp

ProductExp

NumeralExp

IdentifierExp

Equality

LessThan

FalseExp

TrueExp

Fig. 4. µ-Pascal´s expressions hierarchy

Class Expression
syntax:

Exp
semantics:

evaluate _ : Exp -> Action
End Class
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The super-class Expression presents a similar structure from Command. In
the syntax section a token Exp is introduced to represent the syntactic sub-trees
of expression. In the semantics section the method ‘evaluate _’ is introduced.

Class SumExp
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 "+" E2
semantics:

evaluate[[ E1 "+" E2 ]] =
evaluate E1

and
evaluate E2

then
give sum(the integer#0, the integer#1)

End Class

The class SumExp, instantiates two objects from class Expression (E1 and
E2). The token Exp is redefined in the syntax section, and the semantics of a
sum of expressions is specified in the semantics section.

Class IdentifierExp
extending Expression
using I:Identifier
syntax:

Exp :: = I
semantics:

evaluate [[ I ]] =
give the value bound to I

or
give the value stored in
the cell bound to I

End Class

The class IdentifierExp instantiates an object I:Identifier. The syntax
of expressions is extended to represent identifiers. In the semantics section, the
action semantics of a identifier is defined.

Notice that the classes SubtExp and ProductExp can be obtained in the same
way as SumExp. Both SubtExp and ProductExp classes, and also NumeralExp,
TrueExp, FalseExp, LessThan and Equality are omitted in this paper.

3.2.5 The Language Once the declarations, commands and expressions hier-
archies are defined, it is possibly now to specify the class representing the whole
µ-Pascal language.
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Class muPascalLanguage
using D:Declaration, C:Command
syntax:

Prog ::= "declare" D "used-in" C
semantics:

run _ : Prog -> Action
run[[ "declare" D "used-in" C ]]

elaborate D
hence

execute C
End Class

Two objects are instantiated in the muPascalLanguage class: D:Declaration
and C:Command. The Prog token defines the µ-Pascal program general structure.
In the semantics section, a ‘run _’ method is defined mapping a program to an
action.

3.3 Extending the Specification - The m-Pascal Language

Let us now use the class hierarchy defined in the previous sections, to create a new
language, which we will call m-Pascal. The language incorporates two imperative
languages fundamental structures to µ-Pascal: procedures and functions. First
of all, the language syntax must be extended to contain the new structures.

3.3.1 m-Pascal syntax

(1) Declaration =
...

[[ “proc” Identifier “(” Formal-Par “)” “=” Command ]]
[[ “func” Identifier “(” Formal-Par “)” “=” Expression ]] .

(2) Formal-Par =
[[ “var” Identifier “:” Type ]].

(3) Command =
... [[ “call” Identifier “(” 〈Actual-Par 〉 “)” ]] .

(4) Expression =
... [[ Identifier “(” 〈Actual-Par 〉 “)” ]].

(5) Actual-Par =
[[ Expression ]].

The abstract syntax of declarations is extended by rule (1) to consider pro-
cedures and functions. Commands and expressions are also changed in (3) e (4)
respectively, to include procedure calls and function applications.

3.3.2 Procedures and Functions The objects, containing the definitions
of procedures and functions are expressed by extending the Declaration class
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Declaration

ConstantDec VariableDec ProcedureDec FunctionDec

Fig. 5. m-Pascal´s declarations hierarchy

defined in the m-Pascal specification (section 3.2.2). The declarations hierarchy
will be changed to include two new sub-classes: ProcedureDec and FunctionDec,
according to figure 5:

Class ProcedureDec

extending Declaration

using C:Command, FP:FormalPar

syntax:

Dec ::= "proc" I "(" FP ")" ":" C

semantics:

elaborate[["proc" I "(" FP ")" ":" C]]=

recursively bind I

to closure abstraction of

furthermore elaborateFP FP

hence

execute C

End Class

Class FunctionDec

extending Declaration

using T:Type, FP:FormalPar

syntax:

Dec ::= "func" I "(" FP ")" ":" E

semantics:

elaborate[["func" I "(" FP ")" ":" E]]=

recursively bind I

to closure abstraction of

furthermore elaborateFP FP

hence

evaluate E then give the value

End Class

Notice that the actions describing the semantics of the new constructors are
written in standard action notation, being similar to those in [Mo1].

Two auxiliary classes are now defined to represent formal and actual param-
eters. The classes FormalPar and ActualPar are defined as follows:
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Class FormalPar

using I:Identifier, T:Type

syntax:

FP ::= "var" I ":" T

semantics:

elaborateFP _ : FP -> Action

elaborateFP [[ "var" I ":" T ]] =

allocate-for-type T

then

bind I to the cell #0

End Class

Class ActualPar

using E:Expression

syntax:

AP ::= E

semantics:

evaluateAP _ : AP -> value

evaluateAP [[ E ]] =

evaluate E

End Class

3.3.3 Procedure Call and Function Application Procedure calls and
function applications require additions to Command and Expression hierarchy.
These changes are represented in figure 6 and figure 7, respectively:

Command

DecCommand Assignment Selection Repeat Sequencing ProcedureCom

Fig. 6. m-Pascal´s commands hierarchy
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Expression

SumExp

SubtExp

ProductExp

NumeralExp

IdentifierExp

FunctionExp

Equality

LessThan

FalseExp

TrueExp

Fig. 7. m-Pascal´s expressions hierarchy

Class ProcedureCommand

extending Command

using I:Identifier, AP:ActualPars

syntax:

Com ::= "call" I "(" AP ")"

semantics:

execute[["call" I "(" AP ")"]]=

evaluateAP AP

then

enact ( the procedure bound to I

with the value )

End Class

Class FunctionExpression

extending Expression

using I:Identifier, AP:ActualPars

syntax:

Com ::= I "(" AP ")"

semantics:

execute[["call" I "(" AP ")"]]=

evaluateAP AP

then

enact(the function bound to I

with the value)

End Class
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3.3.4 The Extended Language Object-Oriented features where applied to
extend the µ-Pascal language. ProcedureDec and FunctionDec objects were cre-
ated extending Declaration, to represent procedures and functions. Procedure
calls were incorporated to Command, based on the creation of the ProcedureCom

object and function applications were incorporated to expressions, once the
FunctionExp class was defined in the Expression hierarchy.

Since specialization were applied to define the new language features, the
main class can be defined as follows:

Class mPascalLanguage

using D:Declaration, C:Command

syntax:

Prog ::= "declare" D "used-in" C

semantics:

run _ : Prog -> Action

run[[ "declare" D "used-in" C ]]

elaborate D

hence

execute C

End Class

Notice that since the language was redefined at the declarations, commands
and expressions levels, the body of the most general class for the language re-
mains the same.

4 Conclusions And Future Work

The application of object-oriented concepts represents an interesting approach
to Action Semantics descriptions. We have shown, based in a simple case study, a
way to construct objects that can be instantiated by others and also specialized,
building specifications based on objects hierarchy.

Object-Oriented Action Semantics represents a new way to organize Action
Semantics descriptions. In the case study we built a class hierarchy represent-
ing the µ-Pascal language semantics and using object-oriented features we pro-
vided specifications reusability and extension, defining a new language named
m-Pascal.

We summarize the contributions of our approach, as follows:

• Object-Oriented Action Notation is simple. The class structure is based on
modules notation introduced in [DM1], and was inspired by the class syntax
for object-oriented programming languages;

• Reusability is reached using instantiation and extension reached defining
a class hierarchy. Specification parts reuse and extension can be obtained
avoiding repetition.
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Our future research topics are summarized as follows:

• Formal approach were only defined to operations and user-defined methods.
Formal definition of classes, hierarchy, extension and instantiation are still
under development;

• Action Notation defined in this work is based on [Mo2]. One future research
is the extension of our approach considering the standard Action Notation,
including interleaving and concurrency, as in [Mo1].
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Abstract. Action notation allows the elegant formal definition of pro-
gramming languages. However, this notation does not contain any well-
defined process to define new action operators. This lack of extensibility
makes difficult define new operators to express semantic features witch
were not supported by original action notation.
To bypass this problem, the action notation formal semantics has been
recently redesigned using more extensible approaches (Modular SOS).
This redesign simplified the process of defining new actions.
However, this change demands that compiler generator tools have to
deal with this action semantics definition for processing action semantics
descriptions using new actions. This feature makes these systems complex
and hard to propose generic optimization techniques.
This paper proposes a new approach to improve the action notation
extensibility using a modular meta-notation, formed by a set of generic
operators that can be used to define the action notation facet’s behaviors.
By defining the action notation semantics using the proposed meta-
notation, the programming language designer can use the same operators
that described the action notation to create action notation extensions,
which describe programming languages’ new features, or customize the
action notation to better fitting in the described language properties.

1 Introduction

Action semantics [3] is a useful formalism designed to describe programming lan-
guages using a friendly meta-notation (action notation). Besides their friendly
notation and support of programming language’s concepts found in conventional
programming languages, it is difficult using the action notation to describe un-
usual programming languages because action notation is not designed to allow
the inclusion of the features in the model.

Another problem found in action semantics is the complexity of its notation
that difficulties the study of the programming languages properties and define
more efficient analysis algorithms.

To resolve these problems, the action notation has been recently redesigned
and new proposed action notation were defined to resolve these problems. The
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proposed notation is based on a reduced kernel [5] with a small number of prim-
itive operators and their formal definition is based on a modular extension of
structural operational semantics (modular SOS) [4] that would allow the inser-
tion of new features, preserving the existing operators’ properties.

However, the revised action notation is still based on a fixed set of primitive
facets. This feature difficulties the definition of new kinds of data and control
flow because these definitions demand the change of the action notation formal
definition written in modular SOS.

The building of action semantics processors for defined programming lan-
guages that use new action operators written in modular SOS is a complex
task because it forces the analysis system to deal with the two different used
formalisms (unified algebras and modular SOS).

This paper presents a new action notation kernel that can be used to define
actions of the original notation and the new proposal one. Initially, we describe
the most important primitive actions existing in our proposal; the following
section shows how the proposal notation can be used to describe one of the
action notation facets; the following section compares the primitive operators
existing in the proposal action notation version 2 and our proposal; finally the
last section shows some of the proposal notation advantages to build action
semantics compiler generators systems and concludes this paper with future
research directions.

2 An Extensible Definition

This paper proposes to define the action notation using a simple meta-notation
formed by operators that can be used to define the action notation facet’s be-
haviors.

Our proposed notation improves the reusability and simplicity in action se-
mantics because it does not fix the existing set of facets. The standard action
notation defines a fix set of facets and operators that implicitly manipulate them
(for example the yielders the given integer and the integer bound to ”a”). In the
proposed notation, the designer has to specify the desirable facet set (transients,
bindings, etc) and the primitive operators are parameterized with the facet that
it will access (for example: current transients, current bindings).

This property makes the primitive operators become more general and able
to express similar concepts in different facets (retrieve the current facet value, for
example) and the operators can be used in the definition of new facets, avoiding
the meta-notation redefinition.

The proposed meta-notation operators are classified according to the kind of
concept they manipulate. The next sections will describe each kind of concept
and the primitive operators that manipulate them.

2.1 Basic Actions

complete : action
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and then :: action, action → action.
; :: action, action → action.

(x ; y) = x and then y .
choice :: action, action → action.
2 :: action, action → action.

x 2 y = x choice y .

The basic actions are used to model simple kinds of control flows used by
actions, the following basic operators are defined: The action complete represents
an action that, when is executed, generates no execution error neither produces
any kinds of side effects; the sequential combinator a and then b (or the simplified
form a ; b) executes the action a and b sequentially; and the action choice com-
binator a choice b (or the simplified form a 2 b) chooses one of its sub-actions
to execute.

The following action illustrates the basic actions’ behavior:

complete ; complete
2

complete

This action chooses between execute the complete action once or twice.

2.2 Stack of Sorts

push :: datum → action.
apply :: datumOp → action.
dup : action.

In the proposed notation, the operations are executed by manipulating a stack
of terms that holds temporarily calculated values. To manipulate this stack the
following primitive actions were proposed: The action push c pushes a constant
datum into the stack; the action apply o pops terms from the stack (according
to the arity of o), applies the operators with these terms and put the result in
the stack; finally, the action dup duplicates the term stored in the stack top.

To exemplify the stack manipulation actions, the following action:

push 2;
dup;
push 3;
apply sum ( , );
apply product ( , )

initially pushes the constant 2, duplicates the stack top term (2) and pushes the
constant 3. After this initialization, the following actions sums apply sum ( , )
and multiplies apply product ( , ) two values of the stack top and pushes the
resulted value.
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2.3 Producers

produce :: producer → action.
frame :: producer, action → action.

Actions can produce useful information to be used later by the program. In order
to model this feature, the action processor maintains a list of produced values.
Each one of these produced values are labeled with a producer value to express
the information type.

To model the produced information handling, the following actions are de-
fined: the action produce p gets one term from the stack and stores it in the list
of produced terms with the label p; and the action frame p a executes the action
a and, after the execution, a tuple formed by the values with label p produced
by a is pushed into the stack.

The following action illustrates the use of produced values in actions:

frame P1
frame P2
push 2 ; produce P1 ;
push 3 ; produce P2 ;
push 4 ; produce P2
and then
apply sum ; produce P1

and then
apply product

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

This action initially produces the values 2,3,4 respectively labeled with the pro-
ducers P1,P2,P2 (lines 3-5). After this execution the internal frame action (line
2) takes the values produced with label P2 (3,4)and pushes them into the stack.
The next action (line 7) gets these values and applies the sum operator to them,
resulting a value (7) that will be produced with label P1. After the execution of
this action, the external frame action (line 1) will take all produced values with
label P1 and push them into the stack. Finally, the last performed action (line
9) will take the tuple of values from the stack and calculate their product.

2.4 Consumers

select :: consumer, action → action.
current :: consumer → action.

Actions can also receive information necessary to calculate the execution result.
To model this behavior, the action processor maintains a list of values given
to this action by external entities. Like the producer list, each value given by
the action is labeled by a consumer information, indicating its kind. Differently
of the producers, that support several values labeled with the same values, the
consumer list can have at most one value labeled with the same value.
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To handle this kind of information the following action were defined: The
action current c that pushes into the stack the information labeled with c, stored
in the list of current values; and the action select c a that removes one element
from the stack and executes the action a. During the execution of a, the term
removed from the stack is stored in the list of current values with label c. If
there is other value labeled with the same consumer, this value is temporally
overridden during the action of a.

The following action exemplifies the use of consumers actions.

push 10 ; select C1
push 20 ; select C2
current C1;
current C2;
apply sum ( , )

(1)
(2)
(3)
(4)
(5)

The first performed actions (lines 1,2) calculate 2 values (10, 20) and put them
into the list of given values with labels C1 and C2, respectively. The following
action retrieves these values (lines 3,4) and calculate the sum of both values (line
5).

2.5 Storage

allocate : action.
store : action.
stored : action.
deallocate : action.

The action allocate reserves an unused memory location and pushes this posi-
tion into the stack. The action store removes a pair of terms (representing the
memory position and the updated value) from the stack and stores the value
in the memory position. The action stored removes a memory position from the
stack and pushes the value stored in this memory position. Finally, the action
deallocate pops a memory position from the stack and makes it available to be
used in later memory allocations. The following action exemplifies the proposed
storage actions.

allocate ; dup ;
push 2 ; store ;
stored ;

This action, when it is performed, allocates a free memory cell, and duplicates
the value stored in the stack top (the allocated memory cell). The following
action puts the value 2 into the stack and execute the action store. This action
takes the recently allocated memory cell and the value 2 from the stack and
stores this value into the memory position. The following action takes a memory
position from the stack and returns the value stored in it.
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2.6 Jumps

jump-id = 2 .
jump : action.

trap :: action, handler+ → action.
: ; :: jump-id, action → handler.

fail-action : action.
fail-action = 2 .

Jumps are concerned to model breaks in the normal sequencing execution flow
defined by the basic actions. To handle jumps the following action were defined:
The action jump gets a tuple from the stack and makes the jump, the first
value of the retrieved tuple must be of the sort jump-id that identifies the jump
type; the action combinatory a trap h executes the action a and captures the
jumps produced during this action performance. The combinator trap contains
a sequence of jump handlers (h) that specifies how the combinator will act when
a jump is performed by the action.

Each jump handler is formed by a pair of a jump identification jump-id sub-
sort and an action. It means that when jump identified by a subsort of the
specified identification happens, the associated action should be performed. If
no handler is able to capture the performed jump, it will be propagated.

The notation of jumps also defines a constant action fail-jump is executed
when an action tries to push the soft nothing into the stack and is used to model
the action processor behavior when a evaluation error occurs.

The following action exemplifies the jump actions execution:

push (j2,10); jump;
push 3 ; produce RESULT;
trap
j1: complete;
j2: push 2; apply element of ;

produce RESULT;

(1)
(2)
(3)
(4)
(5)
(6)

When this action is performed, the first action (line 1) executes a jump identified
with the pair (j2,10). The following action (line 2) will not be executed and
the control will be transferred to the handlers of the current performed trap
combinator (line 3). This combinator will select the appropriated handler to be
executed (according to the jump kind) and execute the associated action (lines
5,6).

2.7 Reflexive Actions

enact : action

The only reflexive action defined by this notation is the action enact, that gets
an action from the stack and executes it. The following action exemplifies this
action:
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push (push 5; sum);
select Proc
push 2; retrieve Proc; enact;
retrieve proc; enact

The first action pushes an action that sums 5 to a value from the stack. This
action is labeled with Proc and passed as given value to the rest of action, which
twice retrieves the labeled action and executes the specified procedure.

2.8 Processes

process-id = 2 .
create a process :: action → action.
sleep : action.
wakeup : action.
destroy : action.
wait : action.

The process notation deals with process that parallely performs actions. In
the proposal notation environment, several processes can be executing in par-
allel. Each process has a private process identification number, stack and cur-
rent/produced values lists. All processes share the same memory.

The action create a process a defines a new process that will execute the action
a. The created process will import the current consumer values and their stack
are initialized with two process identifications that specify the recently created
process and the process that performed the action create a process. After its
performance, this action put in the stack the created process identification.

The action sleep suspends the execution of the current process until another
process executes the action wakeup. This action gets a suspended process iden-
tification from the stack and reactivates it. The action destroy gets a process
identification from the stack and removes it from the list of active processes.

The last defined action: wait, gets a tuple of process identifications from the
stack and waits until their normal performance or one of them terminates ab-
normally with a jump. If all processes terminate normally, the values produced
by these actions are retrieved by the wait action and propagated to the cur-
rent action processor. If one of these processes terminates abnormally, the other
processes are killed and the wait action terminates abnormally with the same
information.

The following action specifies how the concurrent process action can be used
to specify an interleaving combinator for the action notation.

x and x =
create a process x ;
create a process y ;
apply ( , );
wait
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To execute two actions in parallel, we created two process to execute each sub-
action and we wait until both process finish to allow the program processing
continue.

3 Example of Definition

To exemplify the use of the proposed notation in the definition of complex be-
haviors, we use it to specify the semantics of the action notation functional facet.
The functional facet is used to store temporally calculated values and specifies
a transient information, which is received and given by actions. The functional
facet defines the following actions to handle with transients: the action give e
evaluates the expression e and gives the resulted value as transient information;
The action combinator x then y executes the sub-action sequentially and all
transients given by the first action execution are passed as input for the second
action execution; the current transient given by an action can be retrieved using
the expression the given x that returns the current transient value if it is of type
x.

The semantics of the functional operators can be given in terms of our pro-
posed notation as shown by the following specification:

transients : (producer & consumer).

give x =
evaluate x
and then
produce transients.

x then y =
frame transients x
and then
select transients y .

evaluate the given x =
current transients and then apply x
and then
apply &

The transient information is defined to behave like both producers and consumers
(functional facet produces values to the external environment and receive values
from it).

The give action just evaluates the argument and the resulted value is prop-
agated as a transient value. The functional combinator then is modeled like an
action that executes the first sub-action and the produced transients are com-
pacted into a tuple that will be passed as transient to the execution of the second
action. Finally, the the given x is modeled like an action that retrieves the current
transient and checks if it conforms to the expected type.
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Proposed Notation AN2 MSOS

Calculations stacks transient values OS rules

Kinds of stacks, consumers transients, bindings, computation results,
Information producers, storage storage, messages environments, storage

Extensibility Yes No Yes

Number of Operators 20 26 No applicable

Fig. 1. Comparison with Proposed Action Notation and Modular SOS

4 Comparison

The proposed meta-notation can be compared with two recently proposed for-
malisms: the proposed new version of action notation and modular structural
operational semantics. The summary of their comparisons is shown by the Figure
1.

The proposed new version of action notation is an action notation redesign
whose main aim is to reduce the notation complexity. It is based on small kernel
of primitive operations (about 26 actions) that can be composed to describe the
full notation. Comparing it with our proposal, the most notorious difference is
that the proposed new version of action notation is based on a fixed set of facets
(transients, bindings, storage, messages, etc) and our proposed notation is based
on a fixed set of kinds of facets (consumers, producers, jumps). It allows the
designer to define new facets and change the current actions behavior.

The modular structured operational semantics (MSOS) extends operational
semantics with labeled transitions that are useful to abstract the data flow ex-
isting in the specified language. Like our notation, MSOS is based on kinds of
facets (environments, storage, etc.) and allows the designer to specify new facets.
The difference between both approaches is that MSOS uses operational seman-
tics rules to express the program semantics and our approach combines actions
to express it. We think that the last approach is more suitable to build an ac-
tion semantics based environment because it does not demands the tool support
one more formalism (operational semantics rules) to become able to recognize
extended notations, simplifying the building of analysis tools.

5 Implementing

At the present moment we are design an implementation for an action semantics
compiler generator based on the proposed meta-notation. This compiler gener-
ator is planned to be integrated in release 3.0 of the Abaco system [1] to be
released.

Besides allow the designer defines your own action extensions set, We think
that another big advantage of these models is that the same compilation gener-
ator engine will be able to handle action written in the current version of the
action notation and the proposal new version. It will avoid we implement specific
engines for each version.
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6 Conclusions

Using the meta-notation proposed in this paper, we will be able to build more
efficient action semantics environments that can be used to test complex kinds
of languages. In particular, we used in [2] the ideas of this papers to describe new
action combinators to model operations found in logic programming languages
and agent programming languages and use them to simplify the descriptions of
these languages.

We think that another big advantage of our meta-notation is their simplicity,
because each element handles with single and isolated concepts. We think that
this feature could be useful to simplify the building of analysis algorithms for
action notation and we will try to proposed algorithms for this notation in future
research papers.
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Abstract

Action Notation (AN) is a general notation for expressing the actions that are
used as semantic entities in Action Semantics. The original version of AN from
1992 (here referred to as AN-1) was described in the Action Semantics book [2],
and formally defined by giving a Structural Operational Semantics (SOS) for its
kernel, together with definitions of bisimulation and testing equivalences, and
some laws that allowed the full AN-1 to be reduced to its kernel. The framework
of Unified Algebras was used as a meta-notation for defining AN-1, and features
of Unified Algebras were exploited in AN-1 itself.

The SOS of AN-1 was unfortunately not easy to read, nor to work with. The
large size of kernel AN-1 (with most primitive actions having so-called yielders
as arguments) and the monolithic nature of its SOS were perhaps the major
difficulties. As a prelude to the redesign of AN with a smaller, more tractable
kernel [1], the author developed a more modular style of SOS [3], and used it to
give a reformulated SOS for AN-1 [4].

A draft modular SOS for the new version of AN, referred to as AN-2, has
been available via the AN-2 web pages at http://www.brics.dk/Projects/AS/
AN-2.html since 2000. It is written in CASL (Common Algebraic Specification
Language) and has been checked for well-formedness using CATS (CASL Tool
Set). It appears to be significantly more accessible than the original SOS of
AN-1. However, it now appears that further improvements are possible:

– The description of exceptions and failures can be made completely modular.
– A more perspicuous notation for accessing and changing components of labels

is available.

It may also be desirable to avoid the explicit use of CASL, using a more stream-
lined meta-notation for the modular SOS rules.

After discussing the issues, we look at some illustrative examples taken from
an improved modular SOS of AN-2 (in preparation). We also look at the possi-
bility of empirical testing of the modular SOS by a straightforward translation
to Prolog.
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Abstract

This talk reports our ongoing work on the analysis of secure information-flow in
actions.

Information flow analysis is to statically determine how an action’s outputs
are dependent, directly and indirectly, on its inputs. The analysis is used to
certify that an action is secure meaning that the information classified as ”se-
cret” is not revealed to unauthorized objects during its flow through the action’s
performance.

The analysis is defined using the abstract interpretation framework, and is
to be proved sound.
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Abstract. Inferring types for actions has shown to be very useful in
language design tools and action semantics based compiler generation.
It provides the user with useful information about the safety of actions,
and enables compiler generators to generate optimising compilers doing
transformations based on type annotations. We point out some of the
problems with inferring types for the new version of action notation and
present an algorithm that solves the problems.

1 Introduction

Inferring types for actions has shown to be very useful in language design tools
and action semantics based compiler generation. It provides the user with useful
information about the safety of actions (i.e. will type errors cause the action
to err when executed), and enables compiler generators to generate optimising
compilers doing transformations based on type annotations. There has already
been put a lot of effort into this area of research, but the appearance of a new
version of action notation (AN-2) prompted us to improve on existing work.
This paper presents a type inference algorithm that annotates AN-2 actions with
function types. We solve some of the problems that have arisen in connection
with the simplification of Action Notation (AN), and we also infer types for a
bigger subset of AN, only omitting actions from the communicative facet.

According to the definition of AN all actions are legal, but some of them
might always terminate exceptionally or failing. A type error in an action (for
instance if a sub-action receives an integer instead of a boolean as expected) will
just lead the sub-action to terminate exceptionally, which is completely legal,
and the exception can always be trapped. In our notation an action is said to
be type correct if every sub-action receives and produces data of the expected
type based on the sub-actions it is combined with. Fig. 1 gives some examples
of actions containing type errors.

The first action is not type correct, because the right-hand side of the then
combinator is not given a pair of integers as it expects. In the second action the
right-hand side of the action two values, but it is only given one. The second
action can terminate normally in two ways, either it performs division by zero,

� Basic Research in Computer Science (http://www.brics.dk), funded by the Danish
National Research Foundation
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1. (give truth and give 5) then give (the int#1 + the int#2)
2. give the cell then update
3. give (the int#1 / the int#2) exceptionally give truth
4. bind(”x”, truth) hence give the int bound to ”y”

Fig. 1. Examples of actions with type errors

raises an exception, traps the exception and gives a boolean value, or it does
not perform division by zero and gives an integer value. The problem is that the
action must yield data of the same type in both cases to be type correct. In the
fourth action the right-hand side of the hence combinator does not receive the
correct bindings.

Contrary to previous work we shall use the word type instead of sort to
emphasise that AN-2 is no longer dependent on unified algebras, and to be more
consistent with programming language terminology.

In section 2 we give an overview of previous work in the area, both the work
on which we build and other approaches is described. The main reason for our
work is the development of AN-2, which is described in section 3. Section 4
is devoted to explaining the algorithm, including the grammar of the types,
examples of typing rules and illustration of how unification works. This section
also contains a thorough specification of the problems we have solved. In section 5
we report on how the algorithm has been implemented and tested. And finally
before the conclusion in section 7 we state the current status of our work and
suggest various improvements in section 6.

We assume that the reader has some knowledge of the previous version of
action notation.

2 Previous work

Inferring types for actions has been a research area since the beginning of the
1990’s, and there have been different approaches to the problem. It is interesting
to take a look at the different approaches to the problem and kinds of actions
typeable in existing systems.

Even and Schmidt [1] were the first to infer types for actions. Their typing
system supports an ML-style type inference algorithm, that does unification on
type schemes, which means assigning types to type-variables to obtain equality
between two type schemes. The subset of AN handled by the type inferrer only
contains actions from the functional and the declarative facet, and they can
only terminate normally. Furthermore it does not allow unfolding but it allows
abstractions.

In the Cantor system Palsberg [2] chose to restrict the subset of AN handled,
so that the languages describable were monomorphic and statically typed, so
that type inference could be avoided and code generation would be easier. The
actions used are typed and self-referential bindings are not allowed (they could
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have been used in a semantics for recursive functions). All in all the type system
is more restricted than Even and Schmidt’s (and systems based on Even and
Schmidt’s).

Ørbæk’s type checker [3], implemented in the OASIS system, is similar to
Palsberg’s. One exception is that he allows non-tail-recursive unfoldings, and
this means that calculating a fixpoint, when typing unfolding, becomes a bit
more complicated.

The work done by Doh and Schmidt [4] seems not to be comparable to other
work done in this area, because their objective is to generate a type checker for
the source-language and not for the actions, which describes the source-language.
This has the advantage that they can give the user better error-messages. On the
other hand it might be more useful for compiler generation to type the actions.

In [5] Doh and Schmidt emphasise the use of facets in type inference. They
do not improve on the type system, but they claim that their way of specifying it
is clearer. Since actions as data (abstractions) and unfolding are not allowed, it
becomes impossible to describe interesting programming language features such
as procedures and loops, but they are able to keep their type system very simple.
Doh allows a bigger subset of AN in the algorithm described in [6], including
both unfolding and abstractions, but his analysis of abstractions is still a bit
weak. He also combines type-inference with an analysis of statically known data.
This is done by using a two level type system describing compile-time types and
run-time types.

Brown improved Even and Schmidt’s type system and implemented it in the
ACTRESS system [7]. The subset of AN used includes most of AN except the
communicative facet and escaping actions. His use of action types as function
types from pairs of records (transients and bindings) to pairs of records allows
a very precise analysis of actions. The essential work of the algorithm lies in
unifying records.

The type system used by Lee in his Genesis system [8] is almost the same
as Brown’s with a few minor improvements, the most important being type
inference over tuples of yielders.

The algorithms used by Doh, Schmidt, Palsberg and Ørbæk are comparable
because they can all be described as attribute grammars with inherited and
synthesised attributes, whereas Even, Schmidt, Brown and Lee’s algorithms use
a style comparable to the ML type inferrer, which does a bottom-up traversal
of the AST while collecting constraints.

3 AN-2

Two years ago Lassen, Mosses and Watt proposed a new version of Action No-
tation (AN-2) ([9], [10]). The main difference is that the kernel of AN-2 is signif-
icantly smaller than the kernel of the previous version of AN. Other interesting
features of AN-2 are

– Bindings produced by actions are regarded as computed values and given as
transients
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– All yielders are expanded to data and data operation application
– Actions can be treated as data directly (no use of abstractions)
– All action combinators are also data operations that work on actions
– Self reference is described by binding actions to special tokens

This should make it easier to develop tools for working with AN that include
all of AN, because it is only necessary to look at the kernel. The new notation is
not adopted yet, it still needs to be checked whether there are some disadvantages
or shortcomings when it comes to practical usage in tools.

4 Overview of the type inference algorithm

The structure of our type inference algorithm (TI) is identical to the one used
in Genesis [8]. It has three stages:

1. Annotate the action AST in a bottom-up traversal using type inference rules.
During the traversal records are unified and constraints are collected.

2. Solve the constraints. To infer the correct type all the constraints must be
solvable. The constraints are solved by unifying types schemes.

3. Reduce types. The types are simplified by applying the global substitution.

Step one is an implementation of the type rules, where meeting the premises
gives rise to a recursive call of TI on the sub-actions occurring in the premises.
A rule without premises corresponds to an action constant (a leaf in the action
AST).

There are around ten different constraints which will be described in later
sections. Solving the constraints is done by iterating over the set of constraints
trying to solve each one of them individually. If the constraint is solvable, by
changing the global substitution (a global mapping from variables to types), it
is removed from the set and the global substitution is updated. While satisfying
some of the constraints we might assign default types ({} for row variables,
datum to type variables) to unbound variables.

Reducing the types removes all type variables bound to other types. This is
done by applying the substitution to all variables.

4.1 Type schemes

Fig. 2 shows a grammar of the type schemes used by TI.
Every action is annotated with an action type ((τ, β) ↪→ (τ ′, τ ′

e, κ)), which
is a function type from transients (τ) and bindings (β) to a pair of transients
and a flag. τ ′ and τ ′

e represents the type of data produced by the action in the
case where it terminates normally (τ ′) and exceptionally (τ ′

e). The flag (κ) indi-
cates whether the action terminates exceptionally without giving any data (for
instance when data operator application goes wrong), if this is the case the flag
is err otherwise it is ok (also in cases where the action terminates exceptionally
with data). This allows us to infer types for an action like inspect then raise,
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(data type) σ ::= nothing ||| datum ||| integer ||| boolean ||| cell[σ] ||| token(id?) |||
σ1 ∪ . . . ∪ σn ||| θ ||| list[σ] ||| Γ ||| α

(action) α ::= (τ, β) ↪→ (τ ′, τ ′
e, κ)

(termination) κ ::= err ||| ok
(transients) τ ::= Γ
(bindings) β ::= Γ
(record) Γ ::= Γ1 ∧ Γ2 ||| ΦΨ ||| µρ. Γ ||| Ø
(fields) Φ ::= {id1 : σ1, . . . , idn : σn}
(row) Ψ ::= ε ||| γ ||| ρ

Fig. 2. Type Schemes

where inspect can terminate exceptionally with no data and raise terminates ex-
ceptionally with a storable. Combining them with then gives an action that can
terminate exceptionally with and without data. If we didn’t have this property,
both sides would have to terminate exceptionally giving the same type of data.
We are not representing storage in action types, which means that TI can not
determine if a cell given to inspect exists.

A type similar to this was proposed by Brown in his PhD thesis [7], but he
used a simpler type in the Actress system, because it did not allow exceptionally
terminating actions.

Both transients and bindings are represented by records, the only difference
being that the identifiers in the transients are numbers which means we are
representing a tuple by a record. A record can be a concatenation of two records
(used when giving a type to the and combinators) or it can be a mapping from
identifiers to fields together with a row-variable. The row variable is necessary
because of the inherent polymorphism in AN, for instance the type of copy can be
seen as a polymorphic identity function (see app. A rule 2). If the row variable is
γ the meaning is that more fields are allowed but not used by the action. ρ means
that more fields are allowed and they are propagated or used by the action. If
no more fields are allowed the row variable is ε. Finally a record can also be the
empty record type Ø. In an action type like ({1 : int}, γ) ↪→ ({1 : bool}, Ø, ok) it
indicates that the corresponding action can only terminate normally (it can be
used in a symmetric way to indicate exceptional termination).

The other types include nothing which is the empty type, usually the result
of trying to unify two non-unifiable types. The type datum is the top element of
the lattice of types, the union of all types. We also have some type constructors
like unions, lists and cells and atomic types like integer and boolean. Notice that
records is included among the regular types, which is useful when an action gives
a bindings map as output (i.e. give current bindings, app. A rule 19). Also the
action type is a regular type, because it is allowed (and very useful) for an action
to give an action as output.

Among the data types we also find type variables, they serve the purpose of
allowing polymorphism on the single fields and not just on the number of fields
as it is the case with the row variables.
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Compared to previous work we have added some more record types, changed
the action type and removed individuals as types. AN-2 is not based on unified
algebras so there is no need to look at individuals as types, and moreover this
is very uncommon in type systems so we decided to remove them.

4.2 Typing rules

Most of the typing rules in our system are the same as the ones used in Genesis
[8]. We have added and removed some rules because we are working on AN-2
and are looking at a bigger subset of AN. The rules looks somewhat different,
because the type of an action has changed in two ways: it does not produce any
bindings (except as transients) and it considers exceptional termination, which
has not been handled in previous work.

Fig. 3 shows an example of a typing rule. The rule says that if A1 has a type
and A2 has a type then A1 and A2 has a type. The transients (bindings) given
to the two sub-actions should be the same as the transients (bindings) given to
the whole action, and the resulting transients is the concatenation of the output
of the sub-actions (⊕ is a concatenation operator on record schemes).

ε � A1 : (τ, β) ↪→ (τ ′
1, τ

′
e)

ε � A2 : (τ, β) ↪→ (τ ′
2, τ

′
e)

τ ′ = τ ′
1 ⊕ τ ′

2

ε � A1 and A2 : (τ, β) ↪→ (τ ′, τ ′
e)

Fig. 3. Typing rule for and combinator

All the typing rules can be found in app. A.

4.3 Unification

In the typing rules a premise for some of the typings is the equality of two
type schemes (for instance the input transients to the two sub-actions of the
and combinator must be equal). Two ensure this equality we have a unification
operator, unify. The operator takes two type schemes as argument and returns a
new type scheme, while altering the global substitution. Our unification operator
is an extended version of the one found in [8] and can be seen in app. B. The
two most important extensions define unify on the new record types.
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unify : σ × σ → σ (perhaps altering the global substitution)
unify(µρ1.Γ1, µρ2.Γ2) =

if (ρ1 � ρ2) then µρ1.Γ1

else [ρ1 � ρ2; fold(unify(unfold(µρ1.Γ1), unfold(µρ2.Γ2)))]
| unify(µρ1.Γ1, Γ2) =

if (Γ1 � Γ2) then µρ1.Γ1

else [µρ1.Γ1 � Γ2; fold(unify(unfold(µρ1.Γ1), Γ2))]
| unify(σ, µρ.Γ ) = unify(µρ.Γ, σ)

unify(σ, Ø) = σ
unify(Ø, σ) = σ

The meaning of Ø is the empty record type used to indicate that an action
does not terminate exceptionally/normally, and in that context it is clear that
any type unified with Ø should return the type (if the second subtree of an
action combinator might terminate exceptionally and the first subtree always
terminates normally the whole action can terminate normally and exceptionally).
Unification of recursive types is inspired by the standard technique as it was
described by Kfoury and Pericas-Geertsen in [11]. The term [t1 � t2; f(t1, t2)]
means that the equality relation between types is updated, and that this relation
is used in the type expression f(t1, t2).

4.4 The ML type inferrer

A nice way to infer types for actions might be to translate an action into an ML
expression and then let the ML type inferrer do the job. Let’s try to look at an
example

bind(”y”, 4) hence ((give current bindings and give ”x”) then give bound)

This should not type check since the right-hand side of the hence combinator
does not receive any bindings of “x” to anything. Under the assumption that
actions are translated into functions from transients and bindings to transients,
it appears not to be possible for ML’s type inferrer to catch the type error in
the above action. It would require every identifier to have its own type, and the
type of bindings to depend on the identifiers contained in the bindings. But ML
does not allow dependent types, so we can not translate actions into ML and let
the ML type inferrer infer the types for us.

4.5 The declarative facet

In the declarative facet all action combinators are defined in terms of kernel ac-
tions involving combinators from the functional facet, hence, give current bind-
ings and various data operations. Fig. 4 shows how moreover is expanded to
kernel notation.

Since TI only works on kernel actions we apply it to the action on the right
hand side of the equation. In previous work there was just a single typing rule
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A1 moreover A2 = (A1 and A2) then give overriding

Fig. 4. moreover expanded to kernel actions

for moreover, but now TI has to combine three rules. This is illustrated in fig. 5
(notice that the typing rules has been simplified in this example; exceptional
termination is not considered).

ε �A1:(τ,β)↪→τ1 ε �A2:(τ,β)↪→τ2 τ3=concat τ1τ2
ε �A1 and A2:(τ,β)↪→τ3

ε �overriding:τ3→σ σ&Γ �=nothing
ε �give overriding:(τ3,β)↪→σ

ε � A1 and A2 then give overriding : (τ, β) ↪→ σ

Fig. 5. Proof tree for typing moreover

For TI to infer the correct type, τ3 must be the type of a tuple of two records,
and σ must be the type of the record which is the result of overriding the first
record with the second. Since TI starts at the leafs of the action AST it cannot
know anything about τ3, because it depends on the type of A1 and A2. Therefore
TI must “postpone” the type assignment to give overriding, and it does so by
demanding the constraint in fig. 6 to be satisfied. By postponing the handling
of overriding hopefully the row-variables will have been assigned record-types.

OverridingConstraint(ρ1, ρ2, ρ3)
ε � overriding : {1 : {}ρ1, 2 : {}ρ2} → {1 : {}ρ3}

ε � give overriding : ({1 : {}ρ1, 2 : {}ρ2}, {}γ) ↪→ {1 : {}ρ3}

OverridingConstraint(ρ1, ρ2, ρ3)

⇔ unify(override(ρ1, ρ2), ρ3) �= nothing

Fig. 6. Overriding-constraint

Similar things have to be done for the data operations binding, bound and
disjoint-union, which is used in the expansion of the other yielders and actions
from the declarative facet.

4.6 Actions as data

AN-2 allows actions to be used directly as data without any abstraction wrapper.
It is also allowed to use action combinators as data operations from actions to
actions, and this causes some problems similar to the ones we had with data
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operations in the declarative facet. Furthermore the solution seems to be the
same. Fig. 7 illustrates how then can be used as a data operation.

(give the datum#1) and (give the action#2) then give then

Fig. 7. then used as data operation

When TI tries to annotate give then with a type, the same problem arises
as we saw with the data operations in the declarative facet, TI does not have
enough information at this point to assign a meaningful type to this action.
Again we postpone the annotation by introducing a constraint (see fig. 8).

ε � then : {1 : σ1, 2 : σ2} → {1 : σ3}
InfixActionConstraint(σ1, σ2, σ3, then)

ε � give then : ({1 : σ1, 2 : σ2}, {}γ) ↪→ {1 : σ3}
where

InfixActionConstraint(σ1, σ2, σ3, ac)

⇔ ∃A1, A2.σi ∈ TI(Ai) ∧ σ3 ∈ TI(A1 ac A2)

Fig. 8. Infix-action-constraint

(TI(A) means the type assigned to A by our typing algorithm TI). Similar things
should be done for provide and prefix-actions.

4.7 Recursion

The problem with action combinators as data operators becomes even worse
when we look at actions with recursive bindings. Let’s look at the unfold action
as an example (fig. 9). A pseudo parse tree of the interesting part with some
simplified type annotations is shown in fig. 10 (notice that we have made the
same simplifications as we did with the example in fig. 5, and furthermore we are
using meta-variables to range over records (t and b)). The reader can convince
herself of the correctness of the simplified type annotations by following a simple
argument like: The output of give current bindings then give provide is an action
giving a bindings map that binds “unf” to another action, because the current
bindings must contain a binding of “unf” to an action, otherwise we could not
type check give the action bound to ”unf”. The type of the and -action has the
same input as the two sub-actions, and as output a concatenation of the two sub-
actions output. Since the typing rule for the hence combinator dictates that the
output transients of the left action should contain bindings, which are unifiable
with the bindings used by the right action, we have to do the following unification
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unify({unf : (t, b) → t′}, b)

We have to make b “equal” to some construct containing b by changing the
substitution of type variables. This is only possible if b is a recursive type and
{unf : (t, b) → t′} is an unfolding of this recursive type. Therefore we have
introduced recursive types in our type system.

unfold = (give the data then give provide )
and

((give current bindings then give provide )
and
(give current bindings and provide “unf”
then give bound then give the action)
then give hence )

then give then
then enact

Fig. 9. Expansion of unfold

give the action bound to "unf"

then

give _hence_

({}, {unf: (t, b) −> t’}) −> 

{1: ({}, {}) −> {1:{unf: (t, b) −> t’}}}

and

({},{unf: (t, b) −> t’}) −> {1: (t, b) −> t’}

give current bindings
then give provide_

({},{unf: (t, b) −> t’}) −> 
{1: ({}, {}) −> {1: {unf: (t, b) −> t’}}, 2: (t, b) −> t’}}

?

Fig. 10. AST of the interesting part of unfold expanded
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4.8 Constraints

During the first stage of the algorithm we collect some constraints. Besides the
constraints mentioned in the previous sections, we also have the Unity constraint
used in connection with concatenation of records. This constraint has been de-
scribed in [8].

Compared to previous work we collect more constraints to solve in the second
stage of the algorithm. The extra generality of our constraints means that the
order of solving them is important. We are investigating an optimal ordering.

4.9 Problems

Unfortunately we are not able to infer types for all the actions we would like.
Actions describing recursive functions, TI tries to annotate with action types
containing recursive record types so complicated, so that when the unification
operator is applied to these types it can only return nothing. This result is of
course correct, but not very useful because it means that TI must reject a type
correct action.

One way of solving it would be to improve TI, and this is our preferred so-
lution. Another solution is to change AN-2. The development of AN-2 is not
completed yet, and feedback from using AN-2 may still have an impact on the
design of it. Our experiences with using AN-2 could help in improving it, such
that constructing tools for working with AN-2 becomes easier. We suggest intro-
ducing the recursively combinator in the kernel. This would avoid the problems
described above. There is also a third solution, which consist in letting the user
annotate actions in the semantic functions with types. The annotations would
then be a help to TI and would only be necessary in the cases where TI rejects
actions that are type correct.

5 Implementation

TI has been implemented in C++. There were many reasons for choosing this
language for the implementation.

– Efficiency, the C++-compiler gives a very fast executable.
– Portability, C++ compilers exists for almost any platform.
– Tool support, There is a large set of programming tools and libraries for the

language.
– Maintainability, the modularity of C++ makes it easy to maintain large-scale

software.

The implementation has been tested on a representative set of examples based
on a small imperative language. More exhaustive tests should be performed in
the future, involving actions generated from languages supporting other pro-
gramming paradigms like functional and object oriented. The algorithm should
also be run on actions coded by hand, which can test some special cases.
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6 Future work

There are several ways of improving TI.

– Allowing a bigger subset of AN-2 to be typeable. As described in section 4.9
there are some actions which will run without problems but which are not
accepted by TI. Furthermore we do not handle actions including the commu-
nicative facet. We are only allowing statically typeable actions, but it might
also be interesting to be able to do something with the dynamically typeable
actions.

– Introduce overloaded operators. In some way we allow overloaded operators
in TI namely the builtin operators on bindings (binding, bound, overriding
and disjoint-union). They are overloaded in the way that they operate on
many different bindings maps, and the type system regards two bindings
maps as different types if they are not equivalent mappings. This might give
us a clue of how to implement overloaded operators in general; we could use
constraints as we did with the operators on bindings.

– Introduce subtypes. Having subtype relations between the types could give
partly the same effect as overloaded operators, for instance instead of having
a plus operator on integers and one on naturals we could have a subtype rela-
tion between the two types. Sekiguchi and Yonezawa proposed an algorithm
for inferring types in a system with subtyped recursive types [12], which we
might use as inspiration.

In most of the previous work done in inferring types for actions a proof
for the soundness of the algorithms has been given. Proving soundness in this
context means proving that the type inferred for an action is consistent with
the transients and bindings received and produced by an action. For proving
soundness of TI it might be useful to use the same framework as the one Brown
used in his thesis [7], in which he relates each type inference rule for an action
combinator or constant to the corresponding semantic rule.

Inferring types serves different purposes. First of all it is useful to see whether
an action is safe with respect to types. This of course only goes for the statically
typeable actions. Secondly if we want to do action transformations like binding
elimination as part of compiling actions we need type information for the actions.
Our long-term goal is to compile actions, as part of an action semantics based
compiler generator, so TI will be used as one of the first modules in our compiler.

7 Conclusion

We have shown how to infer types for AN-2 actions using an algorithm similar
to the ML type inferrer. Our work is an improvement and adjustment of the
work performed by Brown and Lee in their PhD thesis.

Our improvements are in the following areas: First of all the algorithm now
works on the new version of AN, which is not a trivial improvement due to
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the enhanced expressibility in AN-2. Secondly we have tried to handle a bigger
subset of actions, including every facet except the communicative one.

We conclude that it is possible to infer types for an non-trivial subset of
AN-2. Our algorithm has been implemented and it has shown to be useful in
practice. At the same time we observe that our work can be improved and that
the design of AN-2 could be changed to aid the construction of tools.

Acknowledgements The author is grateful for improvements to drafts of this
paper suggested by Peter D. Mosses.
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A Typing rules

provide d

ε � d : τ ; τ&Γ �= nothing

ε � provide d : ({}γ, {}γ) ↪→ (τ, Ø, ok)
(1)

copy

ε � copy : ({}ρ, {}γ) ↪→ ({}ρ, Ø, ok)
(2)

A1 then A2

ε � A1 : (τ, β) ↪→ (τ ′, τ ′
e, κ1)

ε � A2 : (τ ′, β) ↪→ (τ ′′, τ ′
e, κ2)

ε � A1 then A2 : (τ, β) ↪→ (τ ′′, τ ′
e, κ1 ∨ κ2)

(3)

A1 and then A2

ε � A1 : (τ, β) ↪→ (τ ′
1, τ

′
e, κ1)

ε � A2 : (τ, β) ↪→ (τ ′
2, τ

′
e, κ2)

τ ′ = τ ′
1 ⊕ τ ′

2

ε � A1 and then A2 : (τ, β) ↪→ (τ ′, τ ′
e, κ1 ∨ κ2)

(4)

A1 and A2

ε � A1 : (τ, β) ↪→ (τ ′
1, τ

′
e, κ1)

ε � A2 : (τ, β) ↪→ (τ ′
2, τ

′
e, κ2)

τ ′ = τ ′
1 ⊕ τ ′

2

ε � A1 and A2 : (τ, β) ↪→ (τ ′, τ ′
e, κ1 ∨ κ2)

(5)

indivisibly A

ε � A : (τ, β) ↪→ (τ ′, τ ′
e, κ)

ε � indivisibly A : (τ, β) ↪→ (τ ′, τ ′
e, κ)

(6)

raise

ε � raise : ({}ρ, {}γ) ↪→ (Ø, {}ρ, ok)
(7)
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A1 exceptionally A2

ε � A1 : (τ, β) ↪→ (τ ′, τ ′
e, κ1)

ε � A2 : (τ ′
e, β) ↪→ (τ ′, τ ′′

e , κ2)
ε � A1 exceptionally A2 : (τ, β) ↪→ (τ ′, τ ′′

e , κ1 ∨ κ2)
(8)

A1 and exceptionally A2

ε � A1 : (τ, β) ↪→ (τ ′, τ ′
e1, κ1)

ε � A2 : (τ, β) ↪→ (τ ′, τ ′
e2, κ2)

τ ′
e = τ ′

e1 ⊕ τ ′
e2

ε � A1 and exceptionally A2 : (τ, β) ↪→ (τ ′, τ ′
e, κ1 ∧ κ2)

(9)

give o

ε � o : τ →?σ
σ&Γ �= nothing

ε � give o : (τ, {}γ) ↪→ (σ, Ø, err)
(10)

ε � o : τ → σ
σ&Γ �= nothing

ε � give o : (τ, {}γ) ↪→ (σ, Ø, ok)
(11)

give #i

ε � give #i : ({1 : ∆, 2 : ∆, · · · , i : θ}γ, {}γ) ↪→ ({1 : θ}, Ø, ok)
(12)

give the σ

unify τ σ �= nothing

ε � give the σ : (τ, {}γ) ↪→ (τ, Ø, ok)
(13)

check p

ε � p : pred τ

ε � check p : (τ, {}γ) ↪→ ({}, Ø, err)
(14)

fail

ε � fail : ({}γ, {}γ) ↪→ (Ø, Ø, ok)
(15)
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A1 otherwise A2

ε � A1 : (τ, β) ↪→ (τ ′, τ ′
e, κ1)

ε � A2 : (τ, β) ↪→ (τ ′, τ ′
e, κ2)

ε � A1 otherwise A2 : (τ, β) ↪→ (τ ′, τ ′
e, κ1 ∨ κ2)

(16)

select(A1 or ... or An)

∀i ∈ 1..n. ε � Ai : (τi, βi) ↪→ (τ ′
i , τ

′
ei, κi)

τ = switch τ1 . . . τn

β = switch β1 . . . βn

τ ′ = select τ ′
1 . . . τ ′

n

τ ′
e = select τ ′

e1 . . . τ ′
en

ε � select(A1 or . . . or An) : (τ, β) ↪→ (τ ′, τ ′
e,

∨
i κi)

(17)

choose natural

ε � choose natural : ({}γ, {}γ) ↪→ ({1 : integer}, Ø, ok)
(18)

give current bindings

ε � give current bindings : ({}γ, {}ρ) ↪→ ({1 : {}ρ}, Ø, ok)
(19)

A1 hence A2

ε � A1 : (τ, β1) ↪→ (τ ′
1, τ

′
e, κ1)

ε � A2 : (τ, β2) ↪→ (τ ′
2, τ

′
e, κ2)

unify τ ′
1{1 : β2} �= nothing

ε � A1 hence A2 : (τ, β1) ↪→ (τ ′
2, τ

′
e, κ1 ∨ κ2)

(20)

enact

ε � enact : ({1 : ({}, {}) ↪→ ({}ρ, Ø, ok)}, {}γ) ↪→ ({}ρ, Ø, ok)
(21)

create

unify(storable, θ) �= nothing

ε � create : ({1 : θ}, {}γ) ↪→ ({1 : cell[θ]}, Ø, err)
(22)
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destroy

unify(storable, θ) �= nothing

ε � destroy : ({1 : cell[θ]}, {}γ) ↪→ ({}, Ø, err)
(23)

update

unify(storable, θ) �= nothing

ε � update : ({1 : cell[θ], 2 : θ}, {}γ) ↪→ ({}, Ø, err)
(24)

inspect

unify(storable, θ) �= nothing

ε � inspect : ({1 : cell[θ]}, {}γ) ↪→ ({1 : θ}, Ø, err)
(25)
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Auxiliary operations

∧ and ∨ are binary operators ({err, ok} × {err, ok} → {err, ok}) defined in the
following way

A B A ∧ B
err err err
err ok err
ok err err
ok ok ok

A B A ∨ B
err err err
err ok ok
ok err ok
ok ok ok

The concatenation operator on records, ⊕, is defined as

⊕ : Γ × Γ → Γ
⊕(Ø, Γj) = Ø
⊕(Γj , Ø) = Ø
⊕(Φiρi, Γj) = (unity((Φiρi) ∧ Γj , {}ρ); {}ρ)

| ⊕(Γi, Φjρj) = (unity(Γi ∧ (Φjρj), {}ρ); {}ρ)
| ⊕(Γi, Γj) = (unity(Γi ∧ Γj , {}γ); {}γ)

where the execution of the operator leads to the creation of a unity-constraint.
If we try to concatenate something with the empty record type we get back a
the empty record type. This corresponds to concatenating the output from an
and -combinator where one of the subactions doesn’t terminate normally.

The rest of the operators used are defined in app. B
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B Unify

unify : σ × σ → σ (perhaps altering the global subsitution)

(1) unify(θi, θj) = ([θi 
→ θ, θj 
→ θ]; θ)
(2) | unify(θi, σj) = ([θi 
→ σj ]; θi)
(3) | unify(σi, θj) = unify(θj , σi)

(10) | unify((σi1 | · · · |σim), (σj1 | · · · |σjn)) =
let M = (σi1 | · · · |σim) & (σj1 | · · · |σjn)

σ′
i = prune(unify(σi1 , M) | · · · |unify(σim , M))

σ′
j = prune(unify(σj1 , M) | · · · |unify(σjn , M))

in
case (σ′

i, σ
′
j) of

(σ′
i1 | · · · |σ′

ig
, σ′

j1 | · · · |σ′
jh

) ⇒ |g,h
k=1,l=1 unify(σik

, σjl
)

where σik
&σjl

�= nothing
| ( , ) ⇒ unify(σ′

i, σ
′
j)

end
(11) | unify((σi1 | · · · |σin), σj) =

let M = (σi1 | · · · |σin) & σj in
unify(σj , M); ∀k. unify(σik

, M); ∀k. unify(σik
, σj)

where σik
&σj �= nothing;

prune (σi1 | · · · |σin)
end

(12) | unify(σi, (σj1 | · · · |σjn)) = unify((σj1 | · · · |σjn), σi)

(13) | unify(token(I1), token(I2)) = if (I1 = I2) then token(I1) else nothing
(14) | unify(token(I1), token()) = token(I1); set identifier of token()
(15) | unify(token(), token(I2)) = token(I2); set identifier of token()
(16) | unify(token(.), σ) = nothing

(17) | unify(cell[σ1], cell[σ2]) =
let σ3 = unify(σ1, σ2) in

if (σ3 �= nothing) then cell[σ3]
else nothing

end
(20) | unify(cell[σ1], σ2) = nothing

(21) | unify(list[σ1], list[σ2]) =
let σ3 = unify(σ1, σ2) in

if (σ3 �= nothing) then list[σ3]
else nothing

end
(22) | unify(list[σ1], σ2) = nothing
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(27) | unify(Γ, Ø) = Γ
(28) | unify(Ø, Γ ) = Γ

(24) | unify(µρ1.Γ1, µρ2.Γ2) =
if (ρ1 � ρ2) then µρ1.Γ1

else [ρ1 � ρ2; fold(unify(unfold(µρ1.Γ1), unfold(µρ2.Γ2)))]
(25) | unify(µρ1.Γ1, Γ2) =

if (Γ1 � Γ2) then µρ1.Γ1

else [µρ1.Γ1 � Γ2; fold(unify(unfold(µρ1.Γ1), Γ2))]
(26) | unify(Γ1, µρ.Γ2) = unify(µρ.Γ2, Γ1)

(23) | unify(Γ1, Γ2) = combine(unify, unifyRow, Γ1, Γ2)

(4) | unify(({} ∧ σj), σk) = unify(σj , σk)
(5) | unify((σi ∧ {}), σk) = unify(σi, σk)
(6) | unify((Φi ∧ Φj), σk) = unify((Φi · Φj), σk)
(7) | unify((ΦiΨi ∧ ΦjΨj), Φk) =

if (length(Φi · Φj) = length(Φk) then
([Ψi 
→ {}, Ψj 
→ {}]; unify((Φi · Φj), Φk))

else if(Ψi = ε ∧ Ψj �= ε) then
unify((Φi · Φj)Ψj , Φk))

else
raise concatFailure

(8) | unify((Γi ∧ Γj), Γk) = raise concatFailure

(29) | unify((τ1, β1) ↪→ (τ ′
1, τ

′
e1, κ1), (τ2, β2) ↪→ (τ ′

2, τ
′
e2, κ2)) =

let
τ3 = unify(τ1, τ2)
β3 = unify(β1, β2)
τ ′
3 = unify(τ ′

1, τ
′
2)

τ ′
e3 = unify(τ ′

e1, τ
′
e2)

κ3 = κ1 ∨ κ2

in
if (τ3 �= nothing) ∧ β3 �= nothing ∧ τ ′

3 �= nothing ∧ τe3′ �= nothing
then (τ3, β3) ↪→ (τ ′

3, τ
′
e3, κ3)

else nothing
end

(30) | unify(integer, integer) = integer
(30) | unify(boolean, boolean) = boolean

(31) | unify(σ1, σ2) = nothing
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If a type variable has already been assigned a type then this type must be unified
with the type we want to assign to it and the result assigned to the type variable.

unifyRow

unifyRow : Ψ × Ψ → Ψ (perhaps altering the global substitution)
unifyRow(ε, ε) = ε

| unifyRow(ε, ρj) = ([ρj 
→ {}]; ε)
| unifyRow(ε, γj) = ([γj 
→ {}]; ε)
| unifyRow(ρi, ρi) = ρi

| unifyRow(ρi, ρj) = ([ρj 
→ {}ρi]; ρi)
| unifyRow(γi, γi) = γi

| unifyRow(γi, γj) = ([γj 
→ {}γi]; γi)
| unifyRow(ρi, γj) = ([γj 
→ {}ρi]; ρi)
| unifyRow(Ψi, Ψj) = unifyRow(Ψj , Ψi)

If a row variable has already been assigned a type then this type must be
unified with the type we want to assign to it and the result assigned to the type
variable. An occurrence check is also performed to see if we should introduce a
recursive record type.

combine

combine (opf , opr, ΦiΨi, ΦjΨj) =
let{id1 : φ′

1i
, · · · , idn : φ′

ni
}Ψ ′

i = extendRecord((Φj − Φi), ΦiΨi)
{id1 : φ′

1j
, · · · , idn : φ′

nj
}Ψ ′

j = extendRecord((Φi − Φj), ΦjΨj)
Φ = {id1 : opf (φ′

1i
, φ′

1j
), · · · , idn : opf (φ′

ni
, φ′

nj
)}

Ψ = opr(Ψ ′
i , Ψ

′
j)

in
ΦΨ

end

extendRecord assures that that the records have the same number of fields
by assigning new records to the row variables.

The select and switch operations are similar to the ones used in Lee’s thesis [8]
and compared to the unify operator they return the union of two types schemes,
instead of trying to find a substitution, such that the type schemes becomes
identical.

98



Using ASM specification for automatic test suite

generation for mpC parallel programming
language compiler

A. Kalinov, A. Kossatchev, M. Posypkin, and V. Shishkov
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Abstract. The paper presents an approach to automatic compiler test
suite generation based on formal language specification. The language
specification implemented using ASM formalism is discussed. The prac-
tical results for mpC parallel programming language compiler are pre-
sented. The advantages and drawbacks of proposed approach are dis-
cussed.

1 Introduction

Developing an adequate set of tests also called a test suite is an important part
of software development process. We faced this problem while working on mpC
parallel programming language [9] compiler. The general task was to develop a
test suite for checking whether the particular compiler implementation correctly
processes the programming language.

In this case study we focus on testing language expressions. mpC provides
powerful operators for array-based and parallel computations. That is why mpC
expressions are complicated and difficult to implement and require thorough
testing. However the proposed technique is also applicable to other parts of the
language.

Our approach is a sort of “specification-based testing” [11, 12, 2]. We use Ab-
stract State Machines [6] formalism for modeling mpC expressions semantics.
The formal specification is implemented using the ASM-based Montages frame-
work [8] – a new method for giving the semantics of a programming language.

We use the specification for three different purposes:

– Generating test cases. mpC specification consists of several Montages.
Each montage defines the semantics of a particular abstract syntax tree
node. Test programs are generated by combining abstract syntax tree nodes.
Incorrect tests are filtered out by the specification. Correct tests constitute
the test suite.

– Generating test oracle. Executable specification is used for generating
trustable output of the given test program. Test oracle compares actual and
trustable outputs for a particular test. If results are not identical the verdict
is failure.
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– Providing test coverage criteria. Analysis of the specification coverage
allows one to see whether all specification rules were involved while executing
the test suite. If the coverage criteria are satisfied then no more test cases
are needed, otherwise additional test programs should be added to the test
suite.

The paper is organized as follows. Section 2 explains how mpC expressions
semantics was defined using Montages. Section 3 overviews the test generation
process. Practical results and future work are discussed in sections 4 and 5
respectively.

2 The ASM Specification for mpC Expressions

2.1 Overview of the mpC Language.

mpC is a parallel programming language supporting computations on a vari-
ety of parallel platforms ranging from local area networks to high performance
supercomputers. mpC language is a strict two-level ANSI C extension.

First level (also called C[]) [5] supports array-based computations in the spirit
of FORTRAN 90 [10]. The language introduces special operators for manipulat-
ing arrays as a whole.

The grid operator is used for addressing array sections. It has the following
syntax:

expr[l : r : s]

where expr is an expression of an array or a pointer type and expressions l, r, s
are expressions of integral type. The operands must satisfy the conditions: l ≤ r,
l ≤ 0, r ≤ 0, and s > 0. The result of the expression is a vector (an ordered
sequence of objects) v containing (r − l)/s + 1 elements, with the value of the
i-th element of the vector v being the value of the expression expr[l + s ∗ i].
If e[l + s ∗ i] is an address expression, then vi denotes the same object in the
memory as expr[l + s ∗ i]. Two or more grid operators applied consequently
address sections of multidimensional arrays.

In C[] language unary and binary operators admit vector operands. In this
case the operator is applied elementally to vector operands. For instance the
following code computes the sum of arrays a and b elements and stores the
result in array c:

int a[N], b[N], c[N];

...

c[0 : N - 1] = a[0 : N - 1] + b[0 : N - 1];

Another feature of C[] is reduction operators. The binary operators +, *,
|, &, ^, ||, &&, ?>, and ?< have corresponding reduction counterparts: [+], [*],
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[|], [&], [^], [||], [&&]. If op is a binary operator admitting operands of type
T then corresponding reduction operator [op] is applicable to an expression
of type “vector of elements of type T ”. The value of the expression [op] expr
equals to the value of the expression (...(v1 op v2) ... vn), where v is a
n-element vector value of expr and vi denotes its i-th elements.

The following code gives an example of calculating dot product of two vectors:

double a[N], b[N], c;
...

c = [+](a[0 : N - 1 : 1] * b[0 : N - 1 : 1]);

mpC extends C[] with facilities for parallel computations. mpC expressions
could be used for expressing both computations and data exchange between
different computing nodes. More information could be found at [9] or [1]. For
simplicity, examples in this paper use only vector expressions. However the pro-
posed technique is implemented for all kinds of mpC expressions.

Expressions in mpC have much more sophisticated semantics than in C lan-
guage. Thus the part of the mpC compiler implementing expressions is rather
complex and require thorough testing.

2.2 Abstract State Machines

Abstract State Machine (ASM) is a new and powerful approach to specification
of large-scale realistic software and hardware systems. We refer the reader to [6]
for a detailed definition.

The state of an Abstract State Machine is given by the collection of func-
tions on an abstract set called superuniverse. The basic ASM operation is an
update which is defined as a function value modification at a given location (set
of arguments):

f(t1, . . . , tr) := tr+1

The ASM is driven by transition rules. The expression above called an up-
date instruction is a basic transition rule. More complex transition rules are
obtained by recursive application of sequence and conditional constructors.

Sequence constructor The sequence of rules is a rule. The execution of a sequence
of rules is defined as a simultaneous execution of rules comprising the sequence
(i.e. all updates defined by the rules take place simultaneously).
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Conditional constructor If g1, . . . , gk are Boolean terms and R1, . . . , Rk are rules
then the following expression is a rule:

if g1 then R1

elseif g2 then R2

...
elseif gk then Rk

endif

If at a given state S guard gi holds and every gj with j < i fails then the
execution of the rule described above is defined as the execution of the rule Ri.

The pure ASM constructs described above provides sufficient basis for the
specification of any system. However in practice pure ASM specification may
appear to be too cumbersome. That is why a number of ASM extensions have
been introduced. One of those extensions is the XASM [3] language. It enriches
ASM with several constructs providing more convenient way for specification of
different aspects of the system behavior.

The XASM do-forall construct:

do forall i in domain

R

enddo

executes the rule R for all i from domain in parallel. This facility is extremely
useful for giving the semantics of data-parallel language constructs such as binary
operators and assignments of vector operands in mpC.

2.3 Montages.

Montages [8] are a semi-visual formalism for describing programming language
syntax, static and dynamic semantics. Montages have been successfully used for
the specification SQL [4], C [7] and other programming languages.

A language specification is given as a collection of Montages, each of which is
associated with a production rule. A Montage consists of a production rule, static
semantics rule, condition, dynamic semantics rules and a control-flow graph.
Condition, static and dynamic semantics rules are written in XASM. Sample
Montage for assignment operator is demonstrated on Fig. 1.

The specification of mpC expression semantics was implemented using Gem-
Mex – a tool for developing Montages based specifications. The tool produces
executable module implementing the interpreter for the specified language.

2.4 The Specification of mpC Expressions

The specification for mpC expressions consists of more then 30 Montages for mpC
declarations and operators. In addition to V alue and Addr attributes which are
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Fig. 1. Montage for assignment operator.

typically used for describing C expressions semantics two new – V ecV alue and
V ecAddr are introduced. Those attributes hold the vector value elements and
addresses of vector elements respectively.

The XASM code portion below defines the dynamic semantics of a binary
operator for the case of vector operands of the same size:

do forall i in set {0..left.T ype.Size− 1}
self.V ecV alue(i) = ApplyBinaryOper(S − BinaryOper.Sign,

left.V ecV alue(i), right.V ecV alue(i))
enddo

In this example elements of the expression vector value are assigned to the result
of applying the binary operator to corresponding elements of operands vector
values.

The semantics of mpC expressions is given for AST nodes. The input language
for executable specification is a text form of mpC AST representation. The
fig. 2 demonstrates mpC expression and corresponding abstract syntax tree in
graphical and text forms.

3 Generating the Test Suite from the Specification

The Test Suite Architecture. The test suite consists of mpC programs accom-
panied with their trustable outputs. A test program contains several initializa-
tions of variables involving in testing expression, testing expression itself and the
“printf” function call for outputting the expression value.
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b = [+] a[0 : 2 : 1]

BinaryExpr

b

a

Grid

a a a

=

RedExpr +

BinaryExpr(=:b:RedExpr(+:Grid(a:0:2:1))

Fig. 2. mpC expression and its AST in graphical and text forms.

The test suite run is organized as follows. First, every program from the
test suite is compiled by the compiler under test. Second, obtained binary file
is executed to produce actual output. Third, actual output is compared with
trustable one produced by the specification. If one of the mentioned steps fails
the verdict is failure.

The Test Cases Generation Scheme. The proposed scheme of test suite gener-
ation is depicted at Fig. 3. We omit some technical details in order to make
explanation clear and concise.

Fig. 3. The scheme of the test suite generation.
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The Iterator produces syntactically correct mpC expressions. Then pro-
duced expressions are processed by the Montages specification and expressions
violating semantics constraints are filtered out.

Each expression from the generated set is used for constructing corresponding
test program by adding the initialization and output parts to it. Obtained test
program is processed by the specification in order to produce trustable output.

The Iterator generates test programs from two files: Template and Input.
Template is a set of several mpC operators. Input is a set of several mpC
expressions. The generating is implemented as a substitution of operands from
Input as operands of operators from Template.

Initially Input consists of basic expressions like constants and identifiers.
Therefore first step of the generating produces only expressions containing one
operator. At the second step expressions generated at the first step are used as
an Input thus allowing to generate expressions containing two operators. The
third step uses expressions generated at the second step and so on.

The natural question arises: when to stop? Intuitively it is clear that first step
(expressions with only one operator) is not enough. Obvious approach in testing
is to use coverage-based heuristics to measure the test suite quality. We consider
the coverage of the specification in order to provide implementation-independent
test suite adequacy criterion.

We incorporate the coverage tracking into the Filter. It provides the pos-
sibility to track the coverage and a possibility to adjust filtering criteria upon
coverage.

For the moment we use an update rule coverage [2] to check whether every
update rule in static and dynamic semantics parts of each Montage is exercised.
Experimental evaluation shows that second step produces the test suite satisfying
this coverage criterion.

Obtaining the Test Case. Once the expression is generated we need several steps
further to obtain a test case (see Fig. 4).

The first step is the normalization. The problem is that the generated ex-
pression may have an arbitrary type. If the expression has an arithmetic type
the comparison with the trustable output is simple. In either case the normal-
ization may be more difficult. For example if the expression has pointer type the
straightforward comparison of values is senseless. The utility called normalizer
applies several mpC operators to the generated expression in order to obtain the
expression of the arithmetic type.

The test program is constructed by accomplishing the normalized expression
with necessary declarations and initializations. The test program is processed by
the executable specification to obtain the trustable output.

The final step in constructing the test case is the restoration of mpC source
code from the AST test program. It is performed by the utility called restorer.

Example. Here we present a sample run of the generating scheme. Consider
following Input and Template files:
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Expression
Under Test

Restorer

Normalizer
Normalized
Expression

Test
Program

(AST)

+ Declarations & Initalizations

Executable
Specification

Trustable
Output

Test
Program
(mpC)

Test Case

Fig. 4. Constructing the test case.

File Contents Semantics
Input s the variable of structure type

Grid(I:0:2:1) and the expression I[0:2:1]
Template BinaryExpr(+ : $1 , $2) the binary operator

Tokens $1 and $2 denotes positions for substituting strings from the Template
file. Having 2 entries in Input file and 2 places for substituting in Template file
the Iterator produces 4 combinations:

BinaryExpr(+ : s : s),
BinaryExpr(+ : s : Grid(I:0:2:1)),
BinaryExpr(+ : Grid(I:0:2:1) : s),
BinaryExpr(+ : Grid(I:0:2:1) : Grid(I:0:2:1)).

Since the “+” operator doesn’t admit operators of structure type the only se-
mantically valid expression is BinaryExpr(+ : Grid(I:0:2:1) : Grid(I:0:2:1)),
three remaining expressions are filtered out.

The first iteration produces one test case based on BinaryExpr(+ : Grid(I:0:2:1)
: Grid(I:0:2:1)) and the second iteration Input file consists of three entries:
s,
Grid(I:0:2:1),
BinaryExpr(+ : Grid(I:0:2:1) : Grid(I:0:2:1)).

The listing below demonstrates the resulting mpC test program obtained at
the first iteration:

#include<stdio.h>
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main(){
typedef int tInt;
typedef tInt*:(1) tPointer;
typedef struct {
tInt f;
tInt g;
} tStruct;
typedef tInt tArrInt[(3):(1)];
typedef tPointer tArrPointer[(3):(1)];
typedef tStruct tArrStruct[(3):(1)];
typedef tArrInt tArrArrInt[(3):(1)];
tInt i;
tPointer p;
tStruct s;
tArrInt I;
tArrPointer P;
tArrStruct S;
tArrArrInt II;
tInt Result;
(i)=(1);
(p)=(I);
((s).f)=(1);
((s).g)=(1);
((I)[(0):(2):(1)])=(i);
((P)[(0):(2):(1)])=(p);
((S)[(0):(2):(1)])=(s);
(((II)[(0):(2):(1)])[(0):(2):(1)])=(i);
printf("%d\n",([+](((I)[(0):(2):(1)])+((I)[(0):(2):(1)]))));
}

4 Practical Results

The proposed technique has been successfully applied to mpC compiler testing.
The initial Template contains all mpC operators. The first and second steps
of the test suite generation produces 135 and 13473 test cases respectively. The
following table presents the results of testing for both test suites:

1st Step 2nd Step
No Errors 47 1007
Static Semantics 51 7271
Code Generating 30 3995
Segmentation Fault 6 1138
Result Mismatch 1 60
Run-time Error 0 2
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Analysis of failed tests shows that there are 11 distinct errors in the compiler
under test. Step 2 introduces a new kind of errors (run-time error) and new errors
of existing kinds. This confirms the intuitive idea that test suite consisting of
expressions with only one operator is not sufficient for comprehensive testing.

The advantage of the proposed approach is that the test suite generator
is obtained for the price of almost nothing. The formal specification is a useful
thing itself: the specification for mpC expressions discovered a lot of inconsistent
places in the language specification as well as bugs in the compiler. In the test
generating process we reuse the formal specification three times: for oracle, for
filtering and for coverage tracking. The only thing we developed specifically for
test generator is a set of simple scripts implementing the scheme depicted at
Fig. 3.

5 Future Work

The bottleneck of the proposed technique is a huge amount of tests. For example
in our case second step consumed 63 hours on a 1GHz Linux workstation. The
estimated time for the third step is approximately one year. The main time-
consuming part of the test suite generation is a run of the specification for
filtering out incorrect test cases.

For typical language a very small percentage of syntactically correct programs
are also semantically correct. Thus we can significantly reduce the time of tests
generation by providing more “intelligent” Iterator producing less amount of
semantically incorrect tests. Currently we are working on more complex Iterator
relying not only on syntactic but on semantics structure of the language also.

Another direction of future research is developing more elaborate coverage
notion for Montage specification. For the moment we use update rule coverage
– a weakest of all possible coverage measures for ASM-based specification. We
plan to consider other coverage measures for both dynamic and static semantics
parts of the specification.

Since Montages specifications are based on BNF representation of the lan-
guage syntax from one hand and ASM specification of the language semantics it
seems to be reasonable to combine grammar coverage and ASM-coverage metrics
to obtain integral coverage measure.

Besides testing compiler on correct input it is very important to check whether
compiler processes semantics errors properly, i.e. generates adequate error report.
We plan to develop an efficient technique for handling not only correct but also
incorrect test cases which are filtered out for the moment (see Fig. 3).

Acknowledgments. We would like to thank Philipp Kutter and Mathias
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inspired this work in ISPRAS.

References

1. www.ispras.ru/∼ mpc.

108



2. A. Gargantini and E. Riccobene. ASM-based Testing: coverage criteria and au-
tomatic tests generation. In Formal Methods and Tools for Computer Science
(Proceedings of Eurocast 2001), pages 262–265, February 2001.

3. M. Anlauff. XASM – An Extensible, Component-Based Abstract State Machines
Language. In Y. Gurevich and P. Kutter and M. Odersky and L. Thiele, editor,
Abstract State Machines: Theory and Applications, volume 1912 of LNCS, pages
69–90. Springer-Verlag, 2000.

4. B. DiFranco. Specification of ISO SQL using Montages. Master’s thesis, Università
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Abstract. For each of the principal current models of computation and
of high-level system design, we present a uniform set of transparent eas-
ily understandable descriptions, which are faithful to the basic intuitions
and concepts of the investigated systems. Our main goal is to provide a
mathematical basis for the technical comparison of established models of
computation which can contribute to rationalize the scientific evaluation
of different system specification approaches in the literature, clarifying
in detail their advantages and disadvantages. As a side effect we ob-
tain a powerful yet simple new conceptual framework for teaching the
fundamentals of computation theory.

1 Introduction

The presentation of this work in the Action Semantics workshop started from
Peter Mosses’ question to compare Action Notation (AN) [46] and Abstract State
Machines (ASMs) [27]. Answering that question naturally led to a broader inves-
tigation, namely a comparative analysis of current specification and computation
systems in terms of ASMs.

In this paper we assume the reader to know the definition of AN and of the
notion of ASM. The main difference between the Action Semantics framework
and the ASM method is their different goal. Action Notation has been tailored
to support the development of programming languages. The notion of ASMs
has been equipped with a general purpose method for high-level hardware and
software system analysis and design and its stepwise refinement to code. There is
also a difference in the origin of AN and ASMs which shaped the two approaches.
AN was developed aiming at enriching denotational features with practically
useful operational ones. In an attempt to overcome pragmatically dissatisfactory
aspects of a purely denotational approach, primitive and composed actions were
directly reflected in close correspondence to programming concepts (semantic
mapping of abstract syntax trees to predefined actions) and led to a compromise
between competing language development requirements, corresponding to views
of the designer, the implementer and the programmer. Gurevich’s foundational
� A preliminary version has been presented under the title Definitional Suggestions

for Computation Theory to the Dagstuhl Seminar on “Theory and Application of
Abstract State Machines”, Schloss Dagstuhl, March 4-8, 2002.
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concern to sharpen the Church-Turing thesis [39] led to an arguably most general
notion of virtual machine which became the mathematical basis of the broad-
spectrum high-level ASM method for practical system design and analysis [17].

The differences in origin and goal explain also the major technical differences
in the realization of AN and ASMs. Actions in AN categorize what in ASMs
comes as abstract, a priori unclassified function updates and declarations. Three
parameters, organized into so-called facets, serve as basis for the classification:
a) different computational aspects, b) types of effect propagation of actions,
and c) types of action performance. The basic facet covers fundamental control
patterns like sequentiality, parallelism, non-determinism; data storage phenom-
ena are dealt with in the functional facet in case they are transient between
actions, or in the imperative facet if they are stable in cells; the communica-
tive facet describes interactions between distributed agents; scope information is
treated in the declarative facet. Most of these features are not directly available
in ASMs, though they are definable in a natural way (see [27]). Furthermore AN
aims at the generation of a tool environment from language specifications, e.g.
the semantics-directed generation of interpreters, compilers, etc., whereas ASMs
support a general-purpose method which covers all system design and analysis
aspects. In fact ASMs have been specialized to provide an executable semantics
for AN, see [6] which contains also further details on tailoring ASMs to fit the
AN framework.

In the rest of this paper we use ASMs as a framework for a comparative
analysis of other specification and computation systems, comprising the following
ones:

– UML Diagrams for System Dynamics
– Classical Models of Computation

• Automata: Moore-Mealy, Stream-Processing FSM, Co-Design FSM, Timed
FSM, PushDown, Turing, Scott, Eilenberg, Minsky, Wegner

• Substitution systems: Thue, Markov, Post
• Tree computations: backtracking in logic and functional programming,

context free grammars, attribute grammars, tree adjoining grammars
• Structured and functional programming

∗ Programming constructs: seq, while, case, alternate, par
∗ Gödel-Herbrand computable functions: Böhm-Jacopini Theorem
∗ Recursion

– Specification and Computation Models for System Design
• Executable high-level design languages: UNITY, COLD
• State-based specification languages

∗ distributed (Petri Nets)
∗ sequential: VDM, Z, B

• Virtual machines
• Logic-based modeling systems

∗ axiomatic systems: denotational, algebraic
∗ process algebras (CSP, LOTOS, etc.)
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2 Motivation

Since we will use Abstract State Machines (ASMs) as modeling framework, a
question to answer before proceeding is why we do not use the proof for the
synchronous parallel version of the ASM thesis which claims a form of com-
putational universality for ASMs. The general thesis, as formulated in 1985 by
Gurevich in a note to the American Mathematical Society [39], reads as follows
(where dynamic structures stand for what nowadays are called ASMs):

Every computational device can be simulated by an appropriate dynamic
structure—of appropriately the same size—in real time

For the synchronous parallel case of this thesis Blass and Gurevich [11] discovered
postulates from which every synchronous parallel computational device could be
proved to be simulatable in lock-step by an appropriate ASM. Why are we not
satisfied with the ASMs constructed by this proof?

The answer has to do with the price to be paid for proving computational
universality from abstract postulates which cover a great variety of systems.
On the one side, the ASM method emphasizes to model algorithms and systems
closely and faithfully, at their level of abstraction, laying down the essential com-
putational ingredients completely and expressing them directly, without using
any encoding which is foreign to the computational device under study. On the
other side, if one looks for a mathematical argument proving from explicitly
stated assumptions the computational universality of ASMs as claimed in the
thesis, some generality in stating the postulates is unavoidable, to capture the
huge class of data structures and of the many ways they can be used in a basic
computation step, which for every proposed concrete system have to be derived
(decoded) from the postulates.

The construction by Blass and Gurevich in op.cit., which associates to every
synchronous parallel computational system an ASM simulating the system step-
by-step, depends in fact on the way the abstract postulates capture the amount
of computation (by every single agent) and of the communication between the
synchronized agents which is allowed in a synchronous parallel computation step.
The necessity to uniformly unfold arbitrary concrete basic parallel communica-
tion and computation steps from the postulates as a matter of fact yields some
encoding overhead, to guarantee for every computational system which possibly
could be proposed a representation by the abstract concepts of the postulates. As
side effect of this— epistemologically significant—generality of the postulates,
the application of the general transformation scheme to established models of
computation may yield ASMs which are more involved than necessary and may
blur features which really distinguish different concrete systems.

Furthermore, postulating by an existential statement e.g. that states are
appropriate equivalence classes of structures of a fixed signature (in the sense
of logic), that evolution happens as iteration of single steps, that the single-step
exploration space is bounded (i.e. that there is a uniform bound on memory
locations basic computation steps depend upon, up to isomorphism), does not
by itself provide, for a given computation or specification model, a standard
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reference description of its characteristic states, of the objects entering a basic
computation step, and of the next-step function. In addition no proof is known
to include distributed systems.

Our goal is that of naturally modeling systems of specification and compu-
tation, based upon a careful analysis of the characteristic conceptual features
of each of them. We look for ASM descriptions for each established model of
computation or of high-level system design which

– for every framework directly reflect the basic intuitions and concepts, by gen-
tly capturing the basic data structures and single computation steps which
characterize the investigated system,

– are formulated in a way which is uniform enough to allow explicit compar-
isons between the classical system models,

– include asynchronous distributed systems.

By deliberately keeping the ASM model for each proposed system as close as
possible to the original usual description of the system, so that it can be recog-
nized to be simulated faithfully and step by step by the ASM model, we provide
for the full ASM thesis a strong pragmatic argument which

– avoids a sophisticated existence proof for the ASM models from abstract
postulates,

– avoids decoding of concrete concepts from abstract postulates,
– avoids a sophisticated proof to establish the correctness of the ASM models.

Since despite of listening carefully to the specifics of each investigated system
and of tailoring the simulating ASM models accordingly we can achieve a cer-
tain uniformity, we provide a mathematical basis for technical comparison of
established system design approaches which we hope will

– contribute to rationalize the scientific evaluation of different system specifi-
cation approaches, clarifying their advantages and disadvantages,

– offer a powerful yet simple framework for teaching computation theory, un-
raveling the basic common structure of the myriad of different machine con-
cepts which are studied in computation theory.

3 UML Diagrams for System Dynamics

For the modeling purpose, we use a generalization of Finite State Machines
(FSMs) to a class of Abstract State Machines (ASMs) which have been intro-
duced in [15] under the name of control state ASMs and are tailored to UML
diagram visualizable machines. A control state ASM is an ASM whose rules are
all of the following form:
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if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

In a given control state i, these machines do nothing when no condition condk

is satisfied; otherwise for every condk which is satsfied, rulek is executed and
the control state changes to jk so that usually the conditions are supposed or
guaranteed to be disjoint to avoid conflicting updates which would stop the ASM
computation. Control state ASMs represent a normal form for UML activity
diagrams (see[18]) from where they inherit the graphical representation of control
states by circles or by (possibly named) directed arcs, to visually distinguish the
control-passing role of control states from that of the update actions concerning
the underlying data structure which are expressed by the ASM rules inscribed
into rectangles, separated from the rule guards written into rhombs. Control state
ASMs thus offer to use arbitrarily complex parallel (synchronized) data structure
manipulations below the main control structure of finite state machines. The
resemblance to FSMs is reflected by the following notation:

Fsm(i, if cond then rule, j) =
if ctl state = i and cond then

rule
ctl state := j

so that the control state ASM rule above becomes the set of rules Fsm(i, if
condk then rulek, jk) for k = 1, . . . , n.

When writing ASMs M we will use below the distinction between functions
which are controlled by M (meaning that they are updated by rules of M and
not by the environment) and those which are monitored by M (i.e. updated only
by the environment, but read by M) or shared (i.e. updatable and readable by
both M and the environment).

This intuitive understanding of control state ASMs and of different function
types suffices for most of the machines defined in this paper. Otherwise we will
state what more is needed. For a detailed textbook definition of these machines
and of their synchronous or asynchronous multi-agent version we refer the reader
to [27].
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4 Classical Models of Computation

We show here that the classical automata and substitution systems, ranging
from FSMs to computationally universal systems including the structured and
the functional programming approaches, are all natural variations of classes of
(mostly control state) ASMs. Introducing those formalisms as ASMs, as we do
in our lectures on computation theory, avoids having to redefine the semantics
of such systems again and again for each variation of the underlying concept
of algorithm. This generalizes the uniform semantical frame underlying Scott’s
definitional suggestions for automata theory [52]. In this section we suppose the
reader to know the basic concepts of computation theory (see any textbook on
the subject, e.g. [14]).

4.1 Automata

We model here classical automata concepts, computationally universal ones as
well as restricted machines.

Finite State Machines The standard FSMs, also known as Mealy automata,
are control state ASMs whose rules have the following form with a dynamic
input function in and a dynamic output function out:

Fsm(i, if in = a then out := b, j)

in, out usually range over letters a, b, but one may also have words or other value
types and also sets or sequences of input or output lines (ports), like in networks
of finite automata [28].

The subclass of Moore automata is characterized by the same form of rules
but with skip instead of the output assignment. This give rise to the general-
ization to Mealy/Moore ASMs defined in [15], a subclass of control state ASMs
where the emission of output is replaced by arbitrary ASM rules:

MealyAsm = Fsm(i, if in = a then rule, j).

MealyAsms appear for example as components of co-design FSMs where rules
are needed to compute arbitrary combinational (external and instantaneous)
functions. Co-design FSMs are used in [44] for high-level architecture design and
specification and for a precise comparison of current models of computation.
Other examples of MealyAsms will be shown below.

If one prefers to write FSM programs in the usual tabular form, with one
entry (i, a, j, b) for every instruction “in state i reading input a, go to state
j and print output b”, one obtains the following guard-free Mealy FSM rule
scheme for updating (ctl state, out). The parameters Nxtctl, Nxtout are the two
projection functions which define the program table, mapping ‘configurations’
(i, a) of control state and input to the next control state j and next output b.

115



MealyFsm(Nxtctl, Nxtout) =
ctl state := Nxtctl(ctl state, in)
out := Nxtout(ctl state, in)

Since the input functions in are monitored, they are not updated in the rule
scheme, though one can certainly make them shared, e.g. to formalize an input
tape which is scanned piecemeal say from left to right.

1-way automata are turned into 2-way automata by including into the in-
structions also Moves of the input head (say on the input tape), yielding ad-
ditional updates of the head position and a refinement of in to in(head) (the
input portion seen by the new reading head):

TwoWayFsm(Nxtctl, Nxtout, Move) =
ctl state := Nxtctl(ctl state, in(head))
out := Nxtout(ctl state, in(head))
head := head + Move(ctl state, in(head))

Non-deterministic versions of FSMs, as well as of all the machines we consider
below so that there we will only mention deterministic machine versions, are
obtained by placing the rules R1, . . . , Rm to be chosen from under the choose
operator, obtaining ASMs with rules of the following form:

choose R ∈ {R1, . . . , Rm} in R.

Stream Processing FSMs Stream processing FSMs are a specialization of
FSMs to machines which compute stream functions Sm → Sn over a data set
S (typically the set S = A∗ of finite or S = AN of infinite words over a given
alphabet A), yielding an output stream out resulting from consumption of the
input stream in. Non-deterministically in each step these automata

– read (consume) at every input port a prefix of the input stream in,
– produce at each output port a part of the output stream out,
– proceed to the next control state ctl state.

This can be captured by introducing into the MealyFsm model two choice-
supporting functions Prefix: Ctl × Sm → PowerSet(Sm

fin), yielding sets of fi-
nite prefixes among which to choose for given control state and input stream,
and Transition: Ctl × (Sm

fin) → PowerSet(Ctl × Sn
fin) describing the possible

choices for the next control state and the next finite bit of output. The rule ex-
tension for stream processing FSMs is then as follows, where input consumption
is formalized by deletion of the chosen prefix from the shared function in:

StreamProcessingFsm(Prefix, T ransition) =
choose pref ∈ Prefix(ctl state, in)

choose (c, o) ∈ Transition(ctl state, pref)
ctl state := c
out := concatenate(o, out)
in := delete(pref, in)
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In [42] these machines are used to enrich the classical networks of stream process-
ing FSMs (stream processing components communicating among each other via
input/output ports) by ASM state transformations of individual components.

Timed Automata In timed automata [5] letter input comes at a real-valued
occurrence time which is used in the transitions where clocks record the time
difference of the current input with respect to the previous input:

time∆ = occurrenceT ime(in)− occurrenceT ime(previousIn).

Firing of transitions may be subject to clock constraints and includes clock up-
dates (resetting a clock or adding to it the last input time difference). Typically
the constraints are about input to occur within (<,≤) or after (>,≥) a given
(constant) time interval, leaving some freedom for timing runs, i.e. choosing se-
quences of occurrenceT ime(in) to satisfy the constraints. Thus timed automata
can be modeled as control state ASMs where all rules have the following form:

TimedAutomaton(Constraint, Reset) =
Fsm(i, if T imedIn(a) then ClockUpdate(Reset), j)
where

T imedIn(a) = (in = a and Constraint(time∆) = true)
ClockUpdate(Reset) =

forall c ∈ Reset do c := 0
forall c �∈ Reset do c := c + time∆

Push Down Automata In pushdown automata the Mealy automaton ‘reading
from the input tape’ and ‘writing to the output tape’ is extended to reading from
input and/or a stack and writing on the stack. Since these machines may have
control states with no input-reading or no stack-reading, pushdown automata
are control state ASMs with rules of one of the following forms and the usual
meaning of the stack operations push, pop (optional items are enclosed in []):

PushDownAutomaton =
Fsm(i, if Reading(a, b) then StackUpdate(w), j)
where

Reading(a, b) = [in = a] and [top(stack) = b]
StackUpdate(w) = stack := push(w, [pop](stack))

Turing-like Automata Writing pushdown transitions in tabular form

PushDownAutomaton(Nxtctl, Write) =
ctl state := Nxtctl(ctl state, in, top(stack))
stack := Pop&Push(stack, Write(ctl state, in, top(stack)))
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identifies the ‘memory refinement’ of FSM input and output tape to input and
stack memory. The general scheme becomes explicit with Turing machines which
combine input and output into one tape memory with moving head. All the
Turing-like machines we mention below are control state ASMs which in each
step, placed in a certain position of their memory, read this memory in the
environment of that position and react by updating mem and pos. Variations of
these machines are due to variations of mem, pos, env, whereas their rules are
all of the following form:

TuringLikeMachine(mem, pos, env) =
Fsm(i, if Cond(mem(env(pos)) then update (mem(env(pos)), pos), j)

For the original Turing machines this scheme is instantiated by mem = tape
containing words, integer positions pos: Z where single letters are retrieved,
env = identity, Writes in the position of the tape head. This leads to extend-
ing the rules of TwoWayFsm as follows (replacing in by tape and Nxtout by
Write):

TuringMachine(Nxtctl, Write, Move) =
ctl state := Nxtctl(ctl state, tape(head))
tape(head) := Write(ctl state, tape(head))
head := head + Move(ctl state, tape(head))

The extension of the 1-tape Turing machine to a k-tape and to an n-dimensional
TM results from data refining the 1-tape Turing memory and the related op-
erations and functions. Register machines are a data refined instance of k-tape
Turing machines ([14, Ch.AI1]).

Scott [52] and Eilenberg [32] instead of read/write operations on words
stored in a tape provide data processing for arbitrary data, residing in abstract
memory, by arbitrarily complex global mem-transforming functions. Eilenberg’s
X-machines (and similarly their stream processing version) can be modeled as
instances of Mealy ASMs whose rules in addition to yielding output also update
mem via global memory functions f (one for each input and control state):

XMachine = Fsm(i, if in = a then {out := b, mem := f(mem)}, j)
The global memory Actions of Scott machines together with their standard

IfThenElse control flow, directed by global memory Test predicates, yield con-
trol state ASMs consisting of rules of the following form:

ScottMachine(Action, T est) =
ctl state := IfThenElse(ctl state, T est(ctl state)(mem))
mem := Action(ctl state)(mem)

Interacting Turing Machines Wegner’s interactive Turing machines [54] in
each step can receive some input from the environment and yield output to the
environment. Thus they simply extend the TuringMachine by an additional
input parameter and an output action
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TuringInteractive(Nxtctl, Write, Move) =
ctl state := Nxtctl(ctl state, tape(head), input)
tape(head) := Write(ctl state, tape(head), input)
head := head + Move(ctl state, tape(head), input)
output(ctl state, tape(head), input)

Considering the output as written on an in-out tape comes up to define
output := concatenate(input, Out(control, tape(head), input)) as the output ac-
tion using a function Out defined by the program. Viewing the input as a com-
bination of preceding inputs/outputs with the new user input comes up to de-
fine input as a derived function input = combine(output, user input) depend-
ing on the current output and user input. The question of single-stream versus
multiple-stream interacting Turing machines (SIM/MIM) is only a question of
instantiating input to a stream vector (inp1, . . . , inpn).

Substitution Systems Replacement systems à la Thue, Markov, Post are
Turing-like machines operating over mem: A∗ for some finite alphabet A with a
finite set of word pairs (vi, wi) where in each step one occurrence of a ‘premisse’ vi

in mem is replaced by the corresponding ‘conclusion’ wi. The difference between
Thue systems and Markov algorithms is that Markov algorithms have a fixed
scheduling mechanism for choosing the replacement pair and for choosing the
occurrence of the to be replaced vi. In the semi-Thue ASM rule below we use
mem([p, q]) to denote the subword of mem between the p-th and the q-th letter
of mem, which matches v if it is identical to v. By mem(w/[p, q]) we denote the
result of substituting w in mem for mem([p, q]). The non-determinism of Thue
systems is captured by two selection functions.

ThueSystem(ReplacePair) =
let (v, w) = selectrule(ReplacePair)
let (p, q) = selectsub(mem)

if match(mem([p, q]), v) then mem := mem(w/[p, q])

The Markov ASM is obtained from the Thue ASM by a pure data re-
finement, instantiating selectrule(ReplacePair, mem) to yield the first (v, w) ∈
ReplacePair with a premise occurring in mem, and selectsub(mem, v) to deter-
mine the leftmost occurrence of v in mem. Note that we include the condition on
matching already into the specification of these selection functions. Similarly by
instantiating selectrule(ReplacePair, mem) the ASM for Post normal systems is
obtained to yield a pair (v, w) ∈ ReplacePair with a premise occurring as initial
subword of mem, selectsub(mem) to determine this initial subword of mem, and
by updates of mem which delete the initial subword v and copy w at the end of
mem.

4.2 Tree Computations

In this section we model some basic tree computation schemes including language
generating grammars like context free, attribute and tree adjoining grammars.
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Essentially we show how the notion of tree generation and traversal using a
backtracking scheme can be captured by an ASM in such a way that applying to
it appropriate data refinements yields well-known logic and functional program-
ming patterns and generative grammars (context free and attribute grammars).
For the underlying refinement notion see [16].

Backtracking We define here a Backtrack machine which dynamically con-
structs a tree of alternatives and controls its traversal. When its ctl state which
we call here mode is ramify, it creates as many new children nodes to be com-
putation candidates for its currnode as there are computation alternatives,
provides them with the necessary environment and switches to selection mode.
In mode = select, if at currnode there is no more candidate the machine
Backtracks, otherwise it lets the control move to TryNextCandidate to get
executed. The external function alternatives determines the solution space de-
pending upon its parameters and possibly the current state. The dynamic func-
tion env records the information every new node needs to carry out the computa-
tion determined by the alternative it is associated with. The macro Back moves
currnode one step up in the tree, to parent(currnode), until the root is reached
where the computation stops. TryNextCandidate moves currnode one step
down in the tree to the next candidate, where next is a possibly dynamic choice
function which determines the order for trying out the alternatives. Typically
the underlying execution machine will update mode from execute to ramify, in
case of a successful execution, or to select if the execution fails. This model is
summarized by the following definition.

Backtrack =
if mode = ramify then

let k = |alternatives(Params)|
let o1, . . . , ok = new(NODE)

candidates(currnode) := {o1, . . . , ok}
forall 1 ≤ i ≤ k

parent(oi) := currnode
env(oi) := i-th(alternatives(Params))

mode := select
if mode = select then

if candidates(currnode) = ∅ then Back else
TryNextCandidate
mode := execute

where
Back =

if parent(currnode) = root then mode := Stop
else currnode := parent(currnode)

TryNextCandidate =
currnode := next(candidates(currnode))
Delete(next(candidates(currnode)), currnode)
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We show now that by pure data refinements Backtrack can be turned into the
backtracking engine for the core of ISO Prolog [22], of IBM’s constraint logic
programming language CLP(R) [24], of the functional programming language
Babel [20], and also for context free and for attribute grammars [43].

Logic Programming Engine We data refine here Backtrack to the back-
tracking engine for Prolog by instantiating the function alternatives to the
function procdef(stm, pgm). This is a Prolog specific function which yields the
sequence of clauses in pgm to be tried out in this order to execute the cur-
rent goal stm; these clauses come together with the needed state information
from currnode. We determine next as head function on sequences, reflecting the
depth-first left-to-right tree traversal strategy of ISO Prolog. It remains to add
the execution engine for Prolog specified as ASM in [22], which switches mode
to ramify if the current resolution step succeeds and otherwise switches mode
to select.

The backtracking engine for CLP(R) is the same, one only has to extend
procdef by an additional parameter for the current set of constraints for the
indexing mechanism and to add the CLP(R) engine specified as ASM in [24].

The functional language Babel uses the same function next, whereas the
function alternatives is instantiated to fundef(currexp, pgm) yielding the list
of defining rules provided in pgm for the outer function of currexp. The Babel
execution engine specified as ASM in [20] applies the defining rules in the given
order to reduce currexp to normal form (using narrowing, a combination of
unification and reduction).

Context-Free and Attribute Grammars To instantiate Backtrack
for context free grammars G generating leftmost derivations we define
alternatives(currnode, G) to yield the sequence of symbols Y1, . . . , Yk of the
conclusion of a G-rule whose premisse X labels currnode, so that env records
the label of a node, either a variable X or terminal letter a. The definition of
alternatives includes a choice between different rules X → w in G. For leftmost
derivations next is defined as for Prolog. As machine in mode = execute one can
add the following rule. For nodes labeled by a variable it triggers further tree
expansion, for terminal nodes it extracts the yield (concatenating the terminal
letter to the word generated so far) and moves the control to the parent node to
continue the derivation in mode = select.

Execute(G) =
if mode = execute then

if env(currnode) ∈ V AR then mode := ramify else
output := output ∗ env(currnode)
currnode := parent(currnode)
mode := select

For attribute grammars it suffices to extend the instantiation for context free
grammars as follows. For the synthesis of the attribute X.a of a node X from
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its childrens’ attributes we add to the else-clause of the Back macro the corre-
sponding update, e.g. X.a := f(Y1.a1, . . . , Yk.ak) where Yi = env(oi) for children
nodes oi and X = env(parent(currnode)). Inheriting an attribute from the par-
ent and siblings can be included in the update of env (e.g. upon node creation),
extending it to update also node attributes. The attribute conditions for gram-
mar rules are included into Execute(G) as additional guard to yielding output,
of the form Cond(currnode.a, parent(currnode).b, siblings(currnode).c).

In a similar way one can formulate an ASM for tree adjoining grammars,
generalizing Parikh’s analysis of context free languages by ‘pumping’ of contex
free trees from basis trees (with terminal yield) and recursion trees (with terminal
yield except for the root variable), see [43].

4.3 Structured Programming

In this section we model standard structured programming constructs by natural
classes of ASMs. In [25] two operators seq and iterate have been defined to
compose ASMs sequentially and iteratively, capturing these two notions in a
black-box view which fits the synchronous parallelism of ASMs, hiding internals
of subcomputations by compressing them into one step (so that the resulting
machines became known as turbo ASMs). This allows one to provide succinct
ASMs for standard programming constructs, as we are going to illustrate by
turbo ASMs for the celebrated Structured Programming Theorem of Böhm and
Jacopini [12], thus showing how to combine the advantages of Gödel-Herbrand
style functional and of Turing style imperative programming.

Call Böhm-Jacopini-ASM any ASM M which can be defined, using only seq,
while, from ASMs whose non-controlled functions are restricted to one (a 0-ary)
input function (whose value is fixed by the initial state), one (a 0-ary) output
function, and the initial functions of recursion theory as static functions. The
purpose of the 0-ary input function which we write inM is to contain the number
sequence which is given as input for the computation of the machine. Similarly
outM is used to receive the output of M . The initial functions of recursion theory
are the following functions from Cartesian products of natural numbers into the
set of natural numbers: +1, all the projection functions Un

i , all the constant
functions Cn

i and the characteristic function of the predicate �= 0. The while-
operator can be defined in the usual way from an iteration operator:

while (cond) R = iterate (if cond then R).

As usual a number theoretic function f : Nn → N is called computable by an ASM
M if for every n-tuple x ∈ Nn of arguments on which f is defined, the machine
started with input x terminates with output f(x). By ‘M started with input x’
we mean that M is started in the state where all the dynamic functions different
from inM are completely undefined and where inM = x. Assuming the monitored
function inM not to change its value during an M -(turbo) computation, it is
natural to say that M ‘terminates in a state with output’ y, if in this state outM
gets updated for the first time, namely to y. In the machines F we are going to
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construct now by induction for every partial recursive function f , the termination
state will always be the state in which the intended turbo-computation reached
its final goal.

Each initial function f is computed by the machine F of only one function
update which reflects the defining equation of f .

F ≡ outF := f(inF )

In the inductive step we construct, for every partial recursive definition of a
function f from its constituent functions fi, a machine F which mimics the
standard evaluation procedure underlying that definition. We use the following
macros which describe inputting from some external input source in to a ma-
chine F before it gets started respectively extracting the machine output upon
termination of F to some external target location out. These macros reflect the
mechanism for providing arguments and yielding values which is implicit in the
standard use of functional equation systems to determine the value of a function
for a given argument.

F (in) ≡ inF := in seq F
out := F (in) ≡ inF := in seq F seq out := outF

Function Composition If functions g, h1, . . . , hm are computed by Böhm-
Jacopini-ASMs G, H1, . . . , Hm, then their composition f defined by f(x) =
g(h1(x), . . . , hm(x)) is computed by the following machine F = FctCompo
where for reasons of simplicity but without loss of generality we assume that the
submachines have pairwise disjoint signatures:

FctCompo(G, H1, . . . , Hm) =
{H1(inF ), . . . , Hm(inF )} seq outF := G(outH1 , . . . , outHm)

Unfolding this structured program reflects the order one has to follow for eval-
uating the subterms in the defining equation for f , an order which is implicitly
assumed in the equational (functional) definition. First the input is passed to
the constituent functions hi to compute their values, whereby the input func-
tions of Hi become controlled functions of F . The parallel composition of the
submachines Hi(inF ) reflects that their computations are completley indepen-
dent from each other; what counts and is expressed is that all of them have to
terminate before the next ‘functional’ step is taken. That next step consists in
passing the sequence of outHi as input to the constituent function g. Finally g’s
value on this input is computed and assigned as output to outF .

Primitive Recursion Let a function f be defined from g, h by primitive re-
cursion:

f(x, 0) = g(x), f(x, y + 1) = h(x, y, f(x, y))

and let Böhm-Jacopini-ASMs G, H be given which compute g, h. Then the fol-
lowing machine F = PrimitiveRecursion computes f , composed as sequence
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of three submachines. The start submachine evaluates the first defining equation
for f by initializing the recursor rec to 0 and the intermediate value ival to g(x).
The while submachine evaluates the second defining equation for f for increased
values of the recursor as long as the input value y has not been reached. The
output submachine provides the final value of ival as output. As in the case of si-
multaneous substitution, the sequentialization and iteration described here make
the bare minimum on ordering computational substeps explicit which is assumed
and in fact needed in the standard functional use of the defining equations for f .

PrimitiveRecursion(G, H) = let (x, y) = inF in
{ival := G(x), rec := 0} seq
(while (rec < y) {ival := H(x, rec, ival), rec := rec + 1}) seq
outF := ival

Minimalization If f is defined from g by the µ-operator, i.e. f(x) = µy(g(x, y) =
0), and if a Böhm-Jacopini-ASM G computing g is given, then the following ma-
chine F = µ-Operator computes f . The start submachine computes g(x, rec)
for the initial recursor value 0, the iterating machine computes g(x, rec) for in-
creased values of the recursor until 0 shows up as computed value of g, in which
case the reached recursor value is set as output.

µ-Operator(G) =
{G(inF , 0), rec := 0} seq
(while (outG �= 0) {G(inF , rec + 1), rec := rec + 1}) seq
outF := rec

4.4 Functional Programming (Recursion)

In this section we show how to model basic functional programming constructs
by a natural subclass of turbo ASMs. A black-box submachine concept for value
returning turbo ASMs has been defined in [25] which abstractly models the stan-
dard imperative calling mechanism. Triggered by the question raised in [45]: ‘If
algorithms are machines, then which machine is the mergesort?’, the definition
has been applied in [13] for simultaneous calls of multiple submachines, to seam-
lessly integrate functional description and programming techniques into ASMs.
We illustrate this by a natural model for widely used forms of recursion.

The atomic view of an entire turbo ASM computation as one step is rendered
by a set [[R(a1, . . . , an)]]A of updates produced through executing the turbo ASM
call R(a1, . . . , an) in state A. This set represents the total effect of executing the
submachine R in the call state A and is defined by

[[R(a1, . . . , an)]]A = [[body[a1/x1, . . . , an/xn]]]A,

where the submachine R is declared by R(x1, . . . , xn) = body. The characteristic
functional abstraction consists in abstracting from everything in a computation
except the intended input/output relation, for example when using a machine to
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return a value and then passing it by value to other machines S. This is easily
reflected in turbo ASMs by projecting that value out of the total computational
effect [[R(a1, . . . , an)]]A and passing it to S via the let-construct. Without loss
of generality we assume expected output to be stored in a reserved location
result which the programmer can change to a location l where he wants the
expected return value to be transfered. We adopt the standard notation l ← R(a)
to denote the turbo computation outcome [[Rl(a)]]A where Rl is the result of
replacing result in R by l, i.e. Rl = R(l/result), so that when the computation
is terminated its expected value can be retrieved from the location l. We use a
function new to provide for each submachine call a fresh location (read: a 0-ary
dynamic function, the variables of programming) where to record the result of
the subcomputation, given that simultaneous calls—also of the same machine
but with different parameters—may yield different results. This explains the
following definition.

Definition. Let Ri, S be arbitrary turbo ASMs where Ri may come with
formal parameter sequences xi and S with formal parameter sequences yi . We
define:

let {y1 = R1(a1), . . . , yn = Rn(an)} in S =
let l1, . . . , ln = new(FUNCTION0) in

forall 1 ≤ i ≤ n do li ← Ri(ai)
seq
let y1 = l1, . . . , yn = ln in S

The use of turbo ASM return values allows one to explicitly capture the ab-
stract machine(ry) which underlies the common mathematical evaluation pro-
cedure for functional expressions, including those defined by forms of recursion.
We illustrate this by the following turbo ASM definitions of Quicksort and of
Mergesort which exactly mimic the usual recursive definition of the algorithms
to provide as result a sorted version of any given list. This answers the question
raised in [45]: ‘If algorithms are machines, then which machine is the mergesort?’

Quicksort The computation suggested by the well-known recursive equations
to quicksort L proceeds as follows: first partition the tail of the list into the
two sublists tail(L)<head(L), tail(L)≥head(L) of elements < head(L) respectively
≥ head(L) and quicksort these two sublists separately (independently of each
other), then concatenate the results taking head(L) between them. The fact that
this description uses various auxiliary list and comparison operations is reflected
by the appearance of corresponding auxiliary functions in the following turbo
ASM.

Quicksort(L) =
if | L |≤ 1 then result := L else

let
x = Quicksort(tail(L)<head(L))
y = Quicksort(tail(L)≥head(L))

in result := concatenate(x, head(L), y)
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Mergesort The computation suggested by the usual recursive equations to
mergesort a given list L consists in first splitting it into a LeftHalf(L) and a
RightHalf(L) (if there is something to split) and mergesort these two sublists
separately (independently of each other), then to Merge the two results by an
auxiliary elementwise Merge operation. This is expressed by the following turbo
ASM which besides two auxiliary functions LeftHalf , RightHalf comes with
an external function Merge defined below as a submachine.

Mergesort(L) =
if | L |≤ 1 then result := L else

let
x = Mergesort(LeftHalf(L))
y = Mergesort(RightHalf(L))

in result := Merge(x, y)

Usually also Merge is defined by a recursion, suggesting the following compu-
tation scheme which is formalized by the turbo ASM below. If both lists are
non-trivial, by a case distinction the smaller one of the two list heads is deter-
mined and placed as the first element of the result list, concatenating it with
the result of a separate and independent Merge operation for the two lists re-
maining after having removed the chosen smaller head element. The ι-operator
in ιx(P ) denotes the unique x with property P (if there is such an x).

Merge(L, L′) =
if L = ∅ or L′ = ∅ then result := ιl(l ∈ {L, L′} and l �= ∅)
elseif head(L) ≤ head(L′) then

let x = Merge(tail(L), L′) in result := concatenate(head(L), x)
else

let x = Merge(L, tail(L′)) in result := concatenate(head(L′), x)

5 System Design Models

In this section we show how to model by ASMs the basic semantical concepts of
currently used high-level design languages. We use in this section also the concept
of asynchronous multi-agent ASMs, roughly speaking sets of ASMs whose runs
are defined by appropriately constrained partial orders to reflect the intended
causal dependencies between steps of different machines. The definition can be
found in [40] and in [27, Ch.6].

5.1 Executable High-Level Design Languages

We discuss here two major executable high-level design languages of the 90’ies.
We relate their characteristic semantical features to ASMs, without mentioning
further the important executability aspect which clearly influenced the choice of
the language constructs. The languages are UNITY [29] and COLD [33].
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UNITY Unity computations are sequences of state transitions where each step
comprises the simultaneous execution of multiple conditional variable assign-
ments, including quantified array variable assignments of form forall 0 ≤ i <
N do a(i) := b(i). States are formed by variables (0-ary dynamic functions which
may be shared, respecting some naming conventions), conditions are typically
formulated in terms of <, =, steps are executions of program statements which
correspond in a direct way to ASM rules. The steps are scheduled using a global
clock (the Unity system time) which synchronizes the system components for
an interleaving semantics: per step one statement of one component program in
the system is scheduled using non-deterministic schedulers (required to respect a
certain fairness condition on infinite runs). (Dijkstra’s guarded commands come
with the same type of non-deterministic choice of one command per step.) Like
in basic ASMs, there is no further control flow. Identifying components with ba-
sic ASMs and systems with sets of components leads therefore to the following
computational model for Unity systems. Unity comes with a particular proof
system, geared to extract proofs from the program text, equipped with appro-
priately specialized composition and refinement concepts we do not discuss here.

UnitySystem(S) =
choose com ∈ Component(S)

choose rule ∈ Rule(com)
rule

COLD In the Common Object-oriented Language for Design states are real-
ized as structures, including abstract data types (ADT) linked to an underlying
dynamic logic proof system which is geared to provide proofs for algebraic spec-
ifications of states and their dynamics (à la Z and VDM). Computations are
sequences of state transitions (due to the execution of procedure calls, built
from statements viewed as expressions with side effects) allowing synchronous
parallelism of simultaneous multiple conditional variable assignments (but no
explicit forall construct) and non-deterministic choices among variable assign-
ments and rules (procedure invocations). Thus a Cold class (with a set of states,
one initial state, and a set of transition relations) corresponds in a standard
way to a control state ASM, except that different states of a same class are
allowed to have different signatures. The black box view offered for sequencing
and iteration is directly reflected by the corresponding turbo ASM constructs,
taking into account that Cold provides a separate guard statement for blocking
evaluation of guards which is executed only (with skip effect) when the guard
becomes true.

There is an idiomatic high-level construct Mod of Cold which supports non-
determinism in choosing subsets of variables to be updated by chosen values. It
is modeled by the following ASM.

ColdModify(V ar) =
choose n ∈ N, choose x1, . . . , xn ∈ V ar, choose v1, . . . , vn ∈ V alue

forall 1 ≤ i ≤ n do val(xi) := vi
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A similar construct Use permits to choose procedures from a set Proc to be
called in sequence.

ColdUse(Proc) = choose n ∈ N, choose p1, . . . , pn ∈ Proc
p1 seq . . . seq pn

5.2 State-based Specification Languages

For sequential state-based specification languages we discuss three representa-
tive systems: VDM [34] (denotational), Z [58] (axiomatic), and B [1] (pseudo-
code). As representative distributed state-based modeling systems we relate Petri
nets [48] to asynchronous ASMs.

VDM, Z, B These three high-level design languages share the notion of com-
putation as sequence of state transitions given by a before-after relation, where
states are formed by variables taking values in certain sets (in VDM built up
from basic types by constructors) with explicitly or implicitly defined auxiliary
functions and predicates. The single (in basic B sequencing-free and loop-free)
transitions can be modeled in a canonical way by basic ASM rules which cap-
ture also the ‘unbounded’ as well as the ‘bounded’ choice and the parallelism
B offers in terms of simultaneous (‘multiple generalized’) substitution. The ba-
sic scheme is determined by what Abrial calls the ‘pocket calculator model’
which views a machine (program) as offering a set of operations (in VDM pro-
cedures with side effects) which are callable one at a time, e.g. in the non-
deterministic form choose R ∈ Operation in R or harnessed by a scheduler
let R = scheduled(Operation) in R; similarly for events which in event-B are
allowed to happen only one per time unit.

This view points to a methodological difference between the forces which
drove the development of the B method compared to that of the ASM method.
Abrial’s B method is the result of an engineer’s bottom-up analysis: ‘The ideas
behind the concept of abstract machine have all been borrowed from those ideas
that are behind some well-known programming features such as modules, pack-
ages, abstract data types or classes’ [2, pg.175]. Also the event-B notion of basic
events, which corresponds to the guarded update rules of basic ASMs, came out
of the concern to ‘separate assignments from scheduling’. Gurevich’s concept
of ASMs is the result of a logician’s top-down analysis, brought to light by a
mathematical investigation of the ASM thesis (and supported by an extensive
experimentation with the concept, see [17], [27, Ch.10] for the historical details).

The structuring mechanisms for large and refined B machines are captured
by turbo ASMs, including also the machine state hiding mechanism operations
typically come with: it is allowed to activate (call) an operation for certain pa-
rameters, which results in an invariant preserving state modification, but besides
calling the operation and taking its result no other direct access to the state is
granted. Historically, this view has led to a certain bias to functional modeling
one can observe for uses of VDM.
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By the logical nature of Z specifications, their before-after expressions define
the entire system dynamics. In B as in the ASM method, the formulation of
the system dynamics—in B by operations (in event-based B by events [2–4]), in
ASMs by rules—is separated from the formulation of the static state invariants
and of the dynamic run constraints, which express desired system properties one
has to prove to hold through every possible state evolution. However for carrying
out these proofs, in contrast to the ASM method, there is a fixed link between
B and a computer assisted proof system relating syntactical program constructs
to proof rules which are used to establish program invariants and dynamic con-
straints along with the program construction. Thus defining modules becomes
intimately related to inventing lemmas. This fits also the basically axiomatic
foundation of B as of Z and VDM: VDM by a denotational semantics; Z by
axiom systems formulated in (mainly first-order) logic; B by Dijkstra’s weakest
precondition theory, interpreted in set-theoretic models and based upon the syn-
tactic global concept of substitution (from which local assignment x := t and
parallel composition are derived). Differently from Z, which due to the purely ax-
iomatic character of Z descriptions has intrinsic problems to turn specifications
into executable code (see [41]), VDM and B are geared to obtain software mod-
ules from abstract specifications via refinements which are tailored to the proof
rules used for proving that the refined operations satisfy ‘unchanged’ properties
of their abstract counterparts.

Petri Nets The general view of Petri nets is that of distributed transition sys-
tems transforming objects under given conditions. In Petri’s classical instance
the objects are marks on places (‘passive net components’ where objects are
stored), the transitions (‘active net components’) modify objects by adding and
deleting marks on the places. In modern instances (e.g. the predicate/transition
nets) places are locations for objects belonging to abstract data types (read:
variables taking values of given type, so that a marking becomes a variable in-
terpretation), transitions update variables and extend domains under conditions
which are described by arbitrary first-order formulae. The distributed nature
of Petri nets is captured by modeling them as asynchronous ASMs, associating
to each transition one agent to execute the transition. Each single transition is
modeled by a basic ASM rule of the form defined below, where pre/post-places
are sequences or sets of places which participate in the ‘information flow rela-
tion’ (the local state change) due to the transition and Cond is an arbitrary
first-order formula. By modeling Petri net states as ASM states we include the
abstract Petri net view proposed in [48] where states are interpreted as logical
predicates which are associated to places and transformed by actions.

PetriTransition = if Cond(preP laces) then Updates(postP laces)
where Updates(postP laces) = a set of function updates

Virtual Machines Virtual machines by definition are machines. Typically they
work over a specific set of states, appropriate to the specific purpose. Thus

129



they ‘are’ particular ASMs. In fact for design or analysis purposes numerous
virtual machines have been explicitly modeled as ASMs, e.g. the Warren Abstract
Machine [23] and its extensions [8, 24, 10, 9, 7], the Transputer [19], the RISC
machine DLX [21], the Java Virtual Machine [53], the Neural Net (abstract data
flow) Machine [26], the UPnP architecture [37]), etc.

5.3 Logic Based Modeling Systems

There is a myriad of logic-based and algebraic specification and ‘declarative pro-
gramming’ languages and calculi, like Prolog and its numerous variants, VDM,
Z, structural operational or natural semantics systems, process algebra languages
like CSP, LOTOS, innumerable ‘logics of programs’, dynamic logics, temporal
logics, rewriting logics, offering proof calculi to support verification of program
properties, etc. These approaches have the pattern of logic in common: specifi-
cations are typically expressed by systems of equations (with fixpoint operators
to solve equations) or of general axioms and inference rules, so that they all are
exposed to the frame problem and the difficulty to control the order of inference
rule applications. Most of these systems are not conceived to serve general-
purpose specifications but are tailored to specific goals, the way Plotkin’s Struc-
tural Operational Semantics [36] or Kahn’s Natural Semantics or Mosses’ Action
Semantics [46] are tailored for dealing with the semantics of programming lan-
guages. Numerous of these approaches are driven by structural patterns where
the syntax dictates the principles of compositionality. Since this is not the place
to evaluate the advantages or disadvantages of such often stateless approaches
with respect to state-based transition systems, we limit ourselves to observe
that the ASM method allows one to use such logic-based design and verification
techniques where appropriate—desired, technically feasible and cost-effective—,
integrating them into the high-level but state-based, genuinely semantical and
computation oriented specification and analysis techniques which are possible
with ASMs. Successful projects in this direction have been reported using theo-
rem proving systems (KIV, PVS, Isabelle) and model checkers, see e.g. [47, 38,
50, 59, 31, 30, 51, 49, 35] and [55–57] for details.
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12. C. Böhm and G. Jacopini. Flow diagrams, Turing Machines, and languages with
only two formation rules. Communications of the ACM, 9(5):366–371, 1966.

13. T. Bolognesi and E. Börger. Remarks on turbo asms for computing functional
equations and recursion schemes. In E. Börger, A. Gargantini, and E. Riccobene,
editors, Abstract State Machines 2003, volume xxx of LNCS. Springer, 2003.

14. E. Börger. Computability, Complexity, Logic (English translation of Berechen-
barkeit, Komplexität, Logik , volume 128 of Studies in Logic and the Foundations
of Mathematics. North-Holland, 1989.

15. E. Börger. High level system design and analysis using abstract state machines.
In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Current Trends
in Applied Formal Methods (FM-Trends 98), number 1641 in LNCS, pages 1–43.
Springer-Verlag, 1999.

16. E. Börger. The ASM refinement method. Formal Aspects of Computing, 14, 2002.
17. E. Börger. The origins and the development of the ASM method for high level

system design and analysis. J. of Universal Computer Science, 8(1):2–74, 2002.
18. E. Börger, A. Cavarra, and E. Riccobene. An ASM semantics for UML activity

diagrams. In T. Rus, editor, Algebraic Methodology and Software Technology, 8th
International Conference, AMAST 2000, Iowa City, Iowa, USA, May 20-27, 2000
Proceedings, volume 1816 of LNCS, pages 293–308. Springer-Verlag, 2000.
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An BDD-Based Implementation of the Allegro Software. August
2002. 2 pp.

NS-02-3 Walter Vogler and Kim G. Larsen, editors. Preliminary Pro-
ceedings of the 3rd International Workshop on Models for Time-
Critical Systems, MTCS ’02,(Brno, Czech Republic, August 24,
2002), August 2002. vi+141 pp.
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