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Foreword

The main mathematical disciplines that have been applied in theoretical
computer science are discrete mathematics (especially, graph theory and or-
dered structures), logics (mostly proof theory for all kinds of logics, classical,
intuitionistic, modal etc.) and category theory (cartesian closed categories,
topoi etc.). General Topology has also been used for instance in denotational
semantics, with relations to ordered structures in particular.

Recently, ideas and notions from mainstream “geometric” topology and al-
gebraic topology have entered the scene in Concurrency Theory and Distributed
Systems Theory (some of them based on older ideas). They have been applied
in particular to problems dealing with coordination of multi-processor and dis-
tributed systems. Among those are techniques borrowed from algebraic and
geometric topology: Simplicial techniques have led to new theoretical bounds
for coordination problems. Higher dimensional automata have been modelled
as cubical complexes with a partial order reflecting the time flows, and their
homotopy properties allow to reason about a system’s global behaviour.

This workshop aims at bringing together researchers from both the math-
ematical (geometry, topology, algebraic topology etc.) and computer scientific
side (concurrency theorists, semanticians, researchers in distributed systems
etc.) with an active interest in these or related developments.

The first workshop on the subject “Geometric and Topological Methods in
Concurrency Theory” was held in Aalborg, Denmark, in June 1999. GETCO
2000 was held at Penn State University as a satellite to CONCUR 2000 in
August 2000, and GETCO 2001 took place at Aalborg University as a satellite
to CONCUR 2001 in August 2001.

The workshop has been financially supported by the Basic Research Institute
in Computer Science (Aarhus, Denmark) and also by GDR ARP and GDR
ALP of the French CNRS. I would like to thank them for this support. Special
thanks are due to Uffe Engberg from BRICS, who kindly and swiftly handled
the printing of this preproceedings volume.

I also wish to thank the referees, the authors and the programme committee
members for their very precise and timely job. Many thanks are also due to
Michael Mislove who kindly supported the workshop by letting us submit the
papers through the Electronic Notes in Theoretical Computer Science. Last but
not least, I wish to thank the organizers of DISC 2002, Mamoun Filali, Philippe
Mauran, Gérard Padiou and Philippe Quéinnec, for their cooperation regarding
this workshop.

Eric Goubault, the 11’th of October 2002.
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Abstract

This paper contributes to the characterization of synchronous models of distributed

computing using topological techniques. We consider a generic synchronous model

with send-omission failures and use a topological structure corresponding to a

bounded number of rounds of the model. We observe some nice properties of the

structure and derive from these properties necessary and suÆcient conditions to

solve consensus in this model.

1 Introduction

Motivations

Several distributed computing models have proliferated in the last decades.

Results that have been proven in these models are diÆcult to compare, essen-

tially because relationships between these models are not clear. Quite recently,

some preliminary steps have been taken towards providing a mathematical

framework to unify these models: basically, the observation that connectivity

is at the heart of many distributed computing lower bounds has led to some

topological (or graph-based) characterizations of distributed models [4,7]. To

our knowledge, however, the only complete characterization has been given so

far for the asynchronous model with process crash failures [7]: the idea is to

? This work is partially supported by the National Competence Center in Research on
Mobile Information and Communication Systems (NCCR-MICS), a center supported by
the Swiss National Science Foundation (under grant number 5005-67322).
1 G. Adagio is a short name for Gruppo di Algoritmi Distributi e AlGebra a l'InstitutO

Politecnico di Losanna. The group gathers, in alphabetical order, S. Blanc, R. Guerraoui,
K. Hess, P. Kouznetsov, P.-E. Parent, B. Pochon, and O. Sauvageot.

c2002 Published by Elsevier Science B. V.

1

http://www.elsevier.nl/locate/entcs/volume52.html


Adagio

represent a set of global states of the system as a mathematical structure called

a simplicial complex [9]. Interestingly, the iterative model based on the im-

mediate snapshot memory [2] has a very regular structure, corresponding to a

subdivision of a simplicial complex, and is used to completely characterize the

asynchronous model [7]. Very few problems are solvable in the asynchronous

model however, and it is very tempting to seek characterizing models with

some synchrony assumptions. Some topological constructs characterizing par-

ticular executions of a synchronous model have indeed been proposed [6], and

were used to derive nice and succinct proofs of various lower bounds results.

These were however only partial characterizations (i.e., considering particular

executions only) and concerned a completely synchronous system. 2 An open

and rather challenging question is how to completely characterize a generic

model, parametrized with some synchrony assumptions, in a comprehensible

and easy-to-use way.

Contributions

Our approach is based on the iterative round-by-round failure detector

model [5], where we consider send-omissions as the only source of failures.

In this preliminary attempt, we illustrate our characterization with a no-

tion of graph sequences, and we (1) give a proof of the lower bound of f + 1

rounds for consensus in the f -resilient omission model and (2) derive from our

characterization an algorithm that matches the lower bound. We believe that

the main contribution of this note is the way we derive the algorithm: we use

two observations from our characterization about connected components con-

taining omission-free executions. The �rst observation is a suÆcient condition

for a connected component to contain a omission-free execution, and the sec-

ond observation relates, for a connected component with a certain number of

rounds, the number of faulty processes with the existence of an omission-free

execution in that component.

Our graph-based characterization has a major limitation, however: it is

based on the indistinguishability of two global states for one process (it is, in

a sense, customized for consensus), and its extension (e.g., to set agreement)

is not trivial. We show that such a characterization allows us to reason about

executions of an omission model with f possible faulty processes.

Roadmap

Section 2 introduces our system model. Section 3 presents the characteri-

zation. Section 4 presents an application of our characterization to consensus

by showing that f + 1 rounds are necessary and suÆcient to solve consensus

in the f -resilient model.

2 A semi-synchronous model is also considered in [6], but the di�erence with a synchronous
model is rather small.

2
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2 Model

We consider a distributed system of n processes � = fp1; : : : ; png. Processes

communicate by message-passing, and each pair of processes is connected by

a reliable channel. Processes may however fail by send-omissions. We assume

that, in any execution of the system, at most f processes may lose messages,

and we call such processes faulty processes. We call such a model the f -

resilient omission model [5]. An execution of the f -resilient omission model is

omission-free, if and only if all messages are sent and received in every round.

We represent executions in our model as in the communication graphs

approach of [4,8]. We assume that processes execute a full-information proto-

col [7]: in each round, every process sends its entire local state to every other

process. One round of any such execution can be described by a directed

graph, the vertexes of which are labeled by the process ids and their local

state in that round [4,8]. There is a directed edge in this graph from process

pi to process pj, whenever pj receives the message from pi. A lack of an edge

between processes means that the message is lost. We always assume that a

process receives its own message, and we omit the corresponding edge. There-

fore, a multi-round execution of such a system is represented by a sequence of

graphs, one graph per round.

We call an r-round execution an execution in which all processes execute

a full-information protocol for r rounds and do not execute any step for any

round r
0

> r. An r-sequence is the sequence of graphs corresponding to an

r-round execution.

3 Topological characterization

Before presenting our characterization, we �rst recall some basic concepts

borrowed from algebraic topology (formally de�ned, for instance, in [9]). The-

se concepts have been recently used in distributed computing, for instance,

in [3,4,6,7].

3.1 Background

We represent a global state of our system of n processes by a (n�1)-dimensional

simplex S
n�1 = fs1; : : : ; sng of n vertexes, where each vertex si = hpi; vii cor-

responds to a process pi and its local state vi [7]. A non-empty simplex T

is a face of a simplex S if and only if all vertexes of T are vertexes of S. A

simplicial complex C is a set of simplexes, closed under containment, such that

any face of any simplex of C is also part of C.

In our model, we consider an initial con�guration (i.e., an initial global

state) where processes have generic input values. The state of the system

at the end of an execution in which processes started with generic values is

represented by a simplex.

3
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3.2 Moves

A move from an execution e consists in adding or removing a single arrow to

e. For an execution e and a move s, we denote by s(e) the execution resulting

from applying s to e.

An elementary move s from an r-round execution e to an r-round execution

e
0 is a move such that e0 = s(e), and there exists at least one process pi such

that pi's local state after round r in e or e0 is identical when starting from the

same initial state in both executions.

A process pi can change its mind at the beginning of a r-round execution e

if and only if there exists a process pj such that pj's local state after r rounds

does not depend on pi's initial state.

We de�ne a notion of path between two executions as in [4] (called a

similarity chain in [4]). For a given execution e, a k-path P is a sequence

fsig
k
i=1 of elementary moves, such that s1 is an elementary move for e, s2 is

an elementary move for s1(e), etc. We denote by length(P ) the length of the

sequence and we simply say a path when the length of the sequence is not

relevant.

For any execution e, we denote by P (e) the execution resulting from suc-

cessively applying the elementary moves of P to e (that is, applying s1 to e, s2
to s1(e), etc.). For two executions e and e

0, we say that e0 is reachable from e,

and we write e � e
0, if and only if there exists a path P such that P (e) = e

0.

3.3 Characterization and Connectivity

The characterization takes into account all possible executions of a full-infor-

mation protocol running in the f -resilient omission model, and corresponds to

a generalization of [1]. The generalization is threefold: (i) we consider an arbi-

trary number of failures f ([1] considers only one failure), (ii) we generalize the

failures to send-omissions (which allows for some synchrony assumptions [5])

and (iii) we have a notion of degree of similarity between two global states

(the degree of similarity corresponds to the dimension of the intersection of

the two corresponding simplexes) [6].

We established a correspondence between a set of r-sequences of graphs

and a simplicial complex, by identifying an r-sequence of graphs in our model

with a simplex of dimension n� 1. In our characterization, we thus consider

the simplicial complex that represents all possible r-executions of our system.

For any given r-execution e and elementary move s, consider the execution

e
0 = s(e). Executions e and e

0 both correspond to simplexes in a simplicial

complex. By de�nition of s, there exists at least one process pj which does

not distinguish between e and e
0, so we can glue the simplexes corresponding

to e and e
0 on the vertex corresponding to pj (or on the simplex determined

by processes that do not distinguish the two global states).

Figure 1 gives an example of how simplexes are glued together. A tetra-

hedron represents an execution of a 4-process protocol. The di�erent ways of

4

4



Adagio

p1

p2

p3

p4

p1

p1

p1

p2

p2

p3

p3

p3

p3

p4

p4

p1

p2

p2

(a) (b) (c)

Fig. 1. Gluing simplexes

gluing two simplexes are given by the following three situations. In case (a),

process p4 is the only process that cannot distinguish between the two exe-

cutions. In case (b), processes p4 and p2 cannot distinguish between the two

executions. In case (c), processes p4, p3 and p1 cannot distinguish between

the two executions.

Two simplexes Si and Sj are said to be adjacent in a simplicial complex

if their corresponding executions ei and ej di�er by at least one elementary

move. Two adjacent simplexes Si and Sj always have a face, corresponding

to Si \ Sj, in common.

A k-path for an execution e implies a sequence of k+1 simplexes S0; : : : ; Sk

in a simplicial complex, of dimension (n� 1) each, such that S0 corresponds

to execution e, for every i 2 [1; k � 1], Si and Si+1 are adjacent.

Two simplexes of a simplicial complex are congruent if and only if there ex-

ists a path in the simplicial complex that connect both simplexes. Congruency

is a reexive, symmetric and transitive relation, and we can therefore parti-

tion a simplicial complex into congruency classes, which form the connected

components of the complex. In the rest of the paper, we interchangeably use

the notion of execution, simplex, or sequence of graphs.

3.3.1 On the suÆciency for omission-freedom

The following lemma gives a suÆcient condition for a connected component

to contain the omission-free execution. Roughly speaking, it says that if a

component includes a path in which every process can change its mind, then

the component also includes the omission-free execution.

Lemma 3.1 If a connected component contains executions ei (1 � i � n),

such that process pi can change its mind in ei, then this component contains

the omission-free execution e0.

Proof. Let C be any connected component satisfying the condition of the

lemma, i.e., there exists an execution e 2 C and a path P = fsig of ele-

mentary moves, de�ned on e, that passes through executions e1; : : : ; en where,

respectively, processes p1; : : : ; pn change their mind. We want to show that

5

5



Adagio

there exists a sequence of elementary moves that connects e with the omission-

free execution e0.

Consider an elementary move s, de�ned on an execution e, that modi�es

(adds or removes an arrow in) the r-th round of e. Let e0 be an execution that

is identical to e in rounds r0 � r. Obviously, s applied to e0 is also elementary,

as the same process cannot distinguish e
0 and the result of applying s to e

0.

Now it is easy to see that if we drop from P all elementary moves which

remove arrows in the �rst round of executions, then we still obtain a path P
0

of elementary moves. The corresponding execution e
0

1 di�ers from e1 in the

�rst round only. Thus p1 can change its mind at the end of the �rst round of

e
0

1, and some process does not see it at the end of the execution (otherwise p1
could not change its mind in e1). So we can let p1 receive all messages in the

�rst round of e01, i.e., adding arrows from all processes to p1 in the �rst round

is an elementary move. We then continue applying the moves of P 0 until we

reach e
0

2 and so on.

As a result, we obtain a path that connects e to an execution in which every

message is received in the �rst round. Moreover, the sequence passes through

executions e11; : : : ; e
1
n where, respectively, processes p1; : : : ; pn can change their

states at the end of the �rst round.

Inductively applying the argument to the second round etc., we �nally

obtain a path that connects e to the omission-free execution. Note that we

modify the elementary moves only by adding arrows, i.e., we do not introduce

more failures. As a result, we cannot violate the limit of at most f faulty

processes in every execution of our model. 2

3.3.2 On the necessity of omissions

We observe another property of connected components. Roughly speaking,

this property gives the least number of faulty processes in some execution of

a connected component which contains at the same time (i) the omission-

free execution and, (ii) an execution in which the initial local state of several

processes is never received by some process.

Lemma 3.2 Any path P that connects the r-round omission-free execution

e0 with an execution e
i in which i processes can simultaneously change their

minds (i < n), passes by an execution in which at least r+ i� 1 processes are

faulty.

Proof. We proceed by induction on r. The case r = 1 is trivial: a process

can change its mind in a 1-round execution only if it is faulty. Now assume

that the claim holds for r-round executions, for any i. Consider a path P

that satis�es the condition of the lemma, namely, P connects the (r + 1)-

round omission-free execution e0 with an execution e
i in which i processes can

simultaneously change their minds.

(i) Assume that a set X of i processes can change their minds in e
i. It is not

diÆcult to see that we can remove all the links departing from the set X

6
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in the �rst round in an elementary way: for any process p 2 X, there is a

process q that cannot see the change of p's initial value. Thus, q cannot

see that a link from p is removed. We de�ne by ~P an extension of path

P by adding the moves in which all the links from X are removed. The

last execution of ~P is ~ei in which no message from X is ever received.

(ii) It is important to notice that the set of processes that are faulty in all

executions between e
i and ~ei are also faulty in e

i. Indeed all processes of

X are already faulty in e
i and no more faulty processes can be obtained

by removing links from them.

(iii) Consider the last move of ~P in which the last link fromX to some process

p 2 �nX is removed. We denote the resulting execution by e
i
r+1 and the

last r rounds of it by e
i
r.

(iv) Since the removal of the link to p in the �rst round is an elementary

move, then p can change its initial value in the beginning of the second

round. As a result, p can change its mind in e
i
r. Since all processes from

X can change their minds in e
i
r+1, they can change their minds also in e

i
r.

As a result, path P restricted to the last r rounds leads to an execution

e
i
r in which i+ 1 processes from the set X [ fpg can change their minds.

(v) By the induction hypothesis, ~P passes through an execution e, in which

at least r+ i processes are faulty. The executions obtained by the moves
~PnP do not contain more faulty processes than e

i. Thus, P also passes

through an execution in which at least r + i = (r + 1) + i � 1 processes

are faulty.

2

4 Application to Consensus

Informally, in the consensus problem, each process proposes a value, and all

processes must then agree (or decide) on a single value among the proposed

ones. More precisely, we require that (validity) every decided value is a pro-

posed value, (agreement) no two process decide di�erently, and (termination)

every process eventually decides. 3 In particular, if all processes propose the

same value, then by the validity requirement this value must be decided. As

an immediate consequence we obtain the following proposition.

Proposition 4.1 Consensus cannot be solved if and only if there exists a

connected component C containing, for every i 2 [1; n], an r-round execution

ei, such that process pi can change its mind in ei.

Proof. \If" direction (():

Consider a connected component C that satis�es the condition of the propo-

sition, namely, C contains, for every i 2 [1; n], execution ei in which process

3 Note that a process is not allowed to halt in our model, and thus, every process must
eventually decide.

7
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pi can change its mind. Consider the initial state of the system in which all

processes propose the value 0. By validity, all processes decide 0, in any exe-

cution, and in particular in e1. Consider executions feig for increasing values

of i, starting from e1, and ending at en. Considering execution ei, one can

change the initial value of process pi to a di�erent value, say 1. After consider-

ing execution en, all processes now propose 1. By validity, they all decide 1 in

en. There are two cases to consider: (i) there exists two adjacent executions

e
0, where processes decide 0, and e

00, where processes decide 1, or (ii) there

exists an execution ej after which processes decide on 0 if pj proposes 0 and

decide 1 if pj proposes 1. For case (i) and because of adjacency, there exists

at least one process pj which has the same local state at the end of executions

e
0 and e

00 and which decide 0 in e
0 and 1 in e

00 { a contradiction. For case

(ii), by de�nition there exists a process pj0 whose local state at the end of

execution ei does not contain pi's local state, thus pj0 decides the same value

in ei independently of pi's value { a contradiction.

\Only if" direction ()):

We prove the contrapositive of the claim, namely that if there is no connected

component which contains executions ei (1 � i � n), such that process pi can

change its mind in ei, then consensus is solvable.

For any connected component C, we denote by K the set of processes

such that for any execution e 2 C, processes in K cannot change their minds.

For any connected component C satisfying the condition of the proposition,

jKj � 1 and every process is aware of the initial values of processes in K, in

any execution e 2 C. We can thus de�ne a deterministic decision function ÆC

of the initial values of processes in K. Function ÆC outputs the decision value

associated with the component C. By construction, ÆC outputs just a single

decision value within C, and thus ensures agreement. Validity follows from the

fact that ÆC only takes as arguments initial values of processes. Termination

follows from the fact the each process executes a bounded number of rounds

before deciding (each execution in C is composed of r rounds). 2

4.1 Application to Consensus: Necessity

In this section, we observe another speci�c property of a connected component.

Basically, in any connected component containing the omission-free r-round

(1 � r � f) execution e0, there exists a path from e0 to an r-execution where

a process can change its mind. This allows us to deduce a lower bound of

f + 1 rounds for solving consensus in the f -resilient omission model.

Theorem 4.2 If a connected component C contains the omission-free r-round

(1 � r � f) execution e0, there exists an execution e 2 C, such that a process

p can change its mind in e.

Proof. First note that it suÆces to prove the proposition for r = f , as this

proof immediately leads to the case where r < f . By symmetry, as C contains

8
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Fig. 2. Execution e with n = 4 and f = 3

the failure-free execution e0, the theorem implies that any process can change

its mind in some execution in C.

Consider now the f -round execution e where, in each round k, exactly k

processes fail by omission. (An execution e is given in Fig. 2 for the case where

n = 4 and f = 3.)

Round 1: Exactly one process pi1 fails by omitting all its messages.

Round 2: Exactly two processes pi1 ; pi2 fail by omitting all their messages.

. . .

Round f: Exactly f processes pi1 ; : : : ; pif fail by omitting all their messages.

In execution e, as pi1 fails by omitting all its messages, it can clearly change

its mind. We show how one can construct a path P from the omission-free

execution e0 to execution e. In round f , it is easy to see that we can remove any

arrow of any execution so that some process cannot notice it. As a result, we

can construct a sequence of elementary moves that connect e0 to an execution

e1 in which no arrows depart from processes pi1 ; : : : ; pif .

Suppose by induction that, for any k+1 processes pi1; : : : ; pik+1, there exists

an execution ef�k (ef�k � e0) in which pi1; : : : ; pik+1 fail by omitting all their

messages in round k
0 � k + 1. We exhibit a sequence of elementary moves to

reach execution ef�k+1, where k processes pi1 ; : : : ; pik fail by omitting all their

messages in round k.

Denote by e
0
f�k+1 the execution identical to ef�k except that, in round

k, no message is exchanged among processes pi1 ; : : : ; pik . Indeed, all these

processes are silent starting from the next round. Thus, ef�k � e
0
f�k+1. We

also denote by m1; : : : ; mj; : : : ; ml the messages sent in round k, from pro-

cesses pi1; : : : ; pik to the remaining processes. We consider the sequence of

elementary moves that successively remove messages m1; : : : ; mj; : : : ; ml, and

we denote by e1f�k+1; : : : ; e
l
f�k+1 the corresponding executions (in e

j
f�k+1, mes-

sages m1; : : : ; mj are lost). We show, by induction on j, that e0 � e
j
f�k+1.

Initially, we have seen that execution ef�k � e
0
f�k+1. By the induction

hypothesis, there is an execution e
j�1
f�k+1 � e

0
f�k+1. Consider execution e

j
f�k+1

9
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Fig. 3. Induction step for round 2 with n = 4 and f = 3

where messages m1; : : : ; mj are lost. Denote by pik+1 the process that receives

mj in e
j�1
f�k+1. As pik+1 does not send any message starting from round k+1, by

construction, then e
j
f�k+1 is indistinguishable from e

j�1
f�k+1. By the induction

hypothesis, ejf�k+1 � e
j�1
f�k+1 � e

0
f�k+1, which implies in turn that ejf�k+1 �

e
0
f�k+1. For j = l, we have ef�k � ef�k+1. We conclude by considering

execution ef = e.

The example presented in Fig. 3 considers round 2 of executions e1 and e2

for the case where n = 4 and f = 3. Figure 3 illustrates the inductive step to

connect e1 to e2. The two graphs at the top illustrate the connection from e
0
2

to e12, by considering that process pi3 fail by omitting all its messages in round

3. The two graphs at the bottom illustrate the connection from e
1
2 to e

2
2, by

considering that process pi4 fail by omitting all its messages in round 3. The

resulting execution corresponds to e2.

2

From Proposition 4.1 we immediately obtain the following corollary.

Corollary 4.3 In an f -resilient omission model, no protocol can solve con-

sensus in f rounds.

10
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4.2 Application to Consensus: SuÆciency

In this section, we show how one can reason about the solvability of consensus

by using the properties on connected components previously observed. We

establish a contradiction with the base assumption on our f -resilient omission

model, which allows us to conclude that consensus is solvable in the f -resilient

model in exactly f + 1 rounds.

Precisely, Lemma 3.1 gives a suÆcient condition for a connected component

to contain the omission-free execution, whereas Lemma 3.2 gives a character-

istic of the connected component containing the omission-free execution. We

deduce an upper bound on the number of rounds to solve consensus by using

the two lemmas in a complementary way.

Theorem 4.4 There is a protocol that solves consensus in an f -resilient omis-

sion model processes in f + 1 rounds.

Proof. Assume no protocol solves consensus in f + 1 rounds. By Propo-

sition 4.1, there exists a component that, for every process pi, contains an

execution in which pi can change its mind. By Lemma 3.1, the component

also contains the omission-free execution. Thus there is a path P that links

the omission-free execution with an execution in which one process can change

its initial value. By Lemma 3.2, P passes through an execution in which f +1

processes are faulty. This contradicts with the assumption that at most f

processes can omit messages in any execution of our model. 2
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Abstract

This paper considers the k-set agreement problem in a synchronous distributed

system model with send-omission failures in which at most f processes can fail by

send-omission. We show that, in a system of n+1 processes (n+1 > f), no algorithm

can solve k-set agreement in bf
k
c rounds. Our lower bound proof uses topological

techniques to characterize subsets of executions of our model. The characterization

has a surprisingly regular structure which leads to a simple and succinct proof. We

also show that the lower bound is tight by exhibiting a new algorithm that solves

k-set agreement in bf
k
c+ 1 rounds.

1 Introduction

Context.

A generalization of the consensus problem [7], k-set agreement [4], consists

of processes deciding on some �nal values based on their initial proposed values
in such a way that: (1) the set of decided values contains at most k distinct
values, (2) every decided value is a proposed value, and (3) every correct

process eventually decides. The problem cannot be solved in a crash stop

asynchronous model if the number f of processes that can crash is at least k
[2,10]. This is a generalization of the FLP impossibility result [7] stating that
consensus is not solvable if at least one process can crash: in this case, k = 1

and f = 1. It can be shown that in a synchronous model of n + 1 processes,

where up to f processes can crash, k-set agreement requires exactly bf=kc+1

rounds if bf
k
ck � n � k, and exactly bf=kc rounds if bf

k
ck > n � k: this is a

simple generalization of [5], where only the case f � n� k was considered.

? This work is partially supported by the National Competence Center in Research on
Mobile Information and Communication Systems (NCCR-MICS), a center supported by
the Swiss National Science Foundation under grant number 5005-67322.

c2002 Published by Elsevier Science B. V.
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Model.

In this paper, we consider a synchronous message-passing model with send-

omission failures (we will simply say an omission model). In this model,

processes proceed in a round-by-round manner: in each round, every process

sends a message to all, receives messages from other processes, and updates its

local state. The only failures allowed in our model are send-omission failures

(we will simply say omissions): a process can send a message that is never

received.

Contributions.

We show that in the omission model of n + 1 processes, where at most

f processes can fail by omission (f � n), k-set agreement cannot be solved

in bf=kc rounds. To prove this lower bound, we use the convenient notion

of pseudosphere from [9] to describe the topological structure corresponding

to a one-round execution of our model. In comparison with the proofs given

in [5,9] on k-set agreement lower bounds in a synchronous model with crash

failures, our result is much easier to derive. This is due to the observation
that the protocol complex corresponding to a bounded number of rounds of our
omission model has a very regular structure: it is a complex homeomorphic to
a union of n-dimensional pseudospheres. As a result, the connectivity of the
complex giving the lower bound for k-set agreement can be easily computed.

We also present a new algorithm that solves the problem in bf=kc+1 rounds.
Thus, for any f < n + 1, k-set agreement requires exactly bf=kc + 1 rounds
of a synchronous model of n + 1 processes with at most f processes that can
fail by omission.

Roadmap.

Section 2 discusses the link between our result and known lower bounds
on k-set agreement. Section 3 presents our model. Section 4 recalls some
basic topological results used in this paper. Section 5 proves the lower bound.
Section 6 proves that the lower bound is tight by giving an algorithm that

matches it.

2 Related work

An execution of a synchronous model of n + 1 processes with up to f crash
failures can be viewed as an execution of our omission model: a crash failure
is modeled in our case as a special case of an omission where, having failed

by omission in a given round, a process fails by omitting all its messages in

the subsequent rounds. In a synchronous model of n + 1 processes, with up
to f crash failures where bf

k
ck � n � k, k-set agreement cannot be solved

in bf=kc rounds [5,9]. Hence, no algorithm can solve k-set agreement in our
omission model where up to f processes can fail by omission (we will call these

processes unreliable in order to disambiguate with the notion of faulty process

2
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in the crash-prone model) and bf
k
c � n � k, using less than bf

k
c + 1 rounds:

this would otherwise contradict the lower bound of [5].

However, in the case where bf=kck > n� k, the lower bound of bf=kc+1

rounds does not hold anymore for the synchronous model with crash failures:

one can easily derive an algorithm that solves the problem in exactly bf=kc

rounds. We show in this paper that the lower bound for the omission model

holds for all f < n+ 1 (not only for bf
k
ck � n� k). Thus, for the case where

n� k < bf=kck < n+ 1, our result does not follow from [5].

With respect to k-set agreement, a round-based asynchronous model of

n + 1 processes with the strong failure detector S of [3] is equivalent to our

omission model with f = n in following sense: whenever k-set agreement is

solvable in one model, it is also solvable in the other model. Thus, the lower

bound of n+ 1 rounds for consensus holds for this model too. Note that the

lower bound for consensus in this model was obtained in [6] independently of

our general proof for k-set agreement. On the other hand, in a synchronous

model with at most n crash failures, consensus can be solved in n rounds. In

this sense, our tight lower bound captures an interesting di�erence between

the synchronous model with omission failures and the synchronous model with
crash failures.

An alternative proof of our lower bound for the omission model was ob-
tained in [8] by reduction of the �rst bf=kc rounds of the model to the
asynchronous round-by-round failure detector atomic snapshot shared memory

model with at most k crash failures. The latter model is known to be too weak
to solve k-set agreement [2] which implies that bf=kc rounds of the omission
model are not enough. The lower bound proof is based on two fundamental
results in distributed computing: the impossibility of k-set agreement in the
asynchronous model [2] and the atomic snapshot shared memory construction

[1]. Neither of these is easy to derive. The proof we give in this paper is self-
contained and simple: it is based on an interesting regularity of the omission
model. Moreover, we show here that the lower bound is tight by presenting
an optimal k-set agreement algorithm.

3 Model

The system we consider is a set of n + 1 processes � = fp0; :::; png(n > 0).

The processes evolve in synchronized rounds. In each round r, every process pi
executes the following steps: pi sends a message to all other processes, receives

a set of messages Mi;r from other processes, and then updates its state.

We assume that all protocols we consider are full-information protocols

where, in each round, every process sends its local state to all processes. The
only failures allowed are (send) omission failures: messages sent by a process

to a subset of other processes can be lost. It is known that no deterministic
algorithm can solve k-set agreement in a model with omissions where, in every

round, some k processes can fail by omission [2,12]. We assume here that at

3
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most f processes can fail by omission (f < n + 1). As we pointed out in the

introduction, we call these processes unreliable. By de�nition, in our model,

every process is correct. Thus, when the k-set agreement problem is invoked in

the omission model, every process, even an unreliable one, should eventually

decide on some value according to the problem speci�cation (recalled in the

introduction).

4 Background

This section recalls some notions and results from basic algebraic topology

(presented, for example in [11]) and some remarkable de�nitions and results

from [9] that we use in this paper.

4.1 Simplexes and complexes

It is convenient to model a global state of a system of n + 1 processes as an

n-dimensional simplex Sn = (s0; :::; sn), where si = hpi; vii de�nes local state

vi of process pi [10]. We say that the vertexes s0; :::; sn span the simplex Sn.
We say that a simplex T is a face of a simplex S if all vertexes of T are
vertexes of S. A set of global states is modeled as a set of simplexes, closed

under containment, called a complex.

4.2 Protocols

A protocol P is a subset of executions of our model. For any initial state
represented as an n-simplex S, a protocol complex P(S) de�nes the set of �nal

states reachable from them through the executions in P. In other words, a
set of vertexes hpi0 ; vi0i; :::; hpin; vini span a simplex in P(S) if and only if (1)
S de�nes the initial state of pi0; :::; pin, and (2) there is an execution in P in
which pi0 ; :::; pin �nish the protocol with states vi0; :::; vin. For a set fSig of
possible initial states, P([iSi) is de�ned as [iP(Si). If S

m is a face of Sn, then

we de�ne P(Sm) to be a subcomplex of P(Sn) corresponding to the executions

in P in which only processes of Sm take steps and processes of SnnSm failed
by omitting all their messages. For m < n�f , P(Sm) = ;, since in our model,
there is no execution in which more than f processes fail by omissions.

For any two complexes K and L, P(K \ L) = P(K) \ P(L): any state

of P(K \ L) belongs to both P(K) and P(L), any state from P(K) \ P(L)

de�nes the �nal states of processes originated from K \ L and, thus, belongs
to P(K \ L).

We denote by I a complex corresponding to a set of possible initial con-

�gurations. Informally, a protocol P solves k-set agreement for I if there

exists a map � that carries each vertex of P(I) to a decision value in such a
way that, for any Sm = (hpi0 ; vi0i; :::; hpim; vimi) 2 I (m � n � f), we have

�(P(Sm)) � fvi0; :::; vimg and j�(P(Sm))j � k. (The formal de�nition of a
solvable task is given in [10].)

4
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Thus, in order to show that k-set agreement is not solvable in r rounds, it

is su�cient to �nd an r-round protocol P that cannot solve the problem for

some I. Such a protocol can be interpreted as a set of worst-case executions

in which no decision can be taken.

4.3 Connectivity

Informally, a complex is said to be k-connected if it has no holes in dimension

k or less. More precisely:

De�nition 4.1 A complex K is k-connected if every continuous map of the

k-sphere to K can be extended to a continuous map of the (k + 1)-disk. By

convention, a complex is (�1)-connected if it is non-empty, and every complex

is k-connected for k < �1.

We will also use the following corollary to the Mayer-Vietoris sequence

[11] that helps de�ne the connectivity of the result of P applied to a union of

complexes:

Theorem 4.2 If K and L are k-connected complexes, and K \ L is (k � 1)-

connected, then K [ L is k-connected.

4.4 Pseudospheres

To prove our lower bound, we use the notion of pseudosphere introduced in

[9] as a convenient abstraction to describe the topological structure corre-
sponding to a bounded number of rounds of our model. To make the paper
self-contained, we recall the de�nition of [9] here:

De�nition 4.3 Let Sm = (s0; :::; sm) be a simplex and U0; :::; Um be a se-
quence of �nite sets. The pseudosphere  (Sm;U0; :::; Um) is a complex de�ned
as follows. Each vertex of  (Sm;U0; :::; Um) is a pair hsi; uii, where si is a

vertex of Sm and ui 2 Ui. Vertexes hsi0; ui0i; :::; hsil; uili de�ne a simplex of
 (Sm;U0; :::; Um) if and only if all sij (0 � j � l) are distinct. If for all

0 � i � m, Ui = U , the pseudosphere is written  (Sm;U).

The following properties of pseudospheres follow from their de�nition:

(i) If U0; :::; Um are singleton sets, then  (Sm;U0; :::; Um) �= Sm.

(ii)  (Sm;U0; :::; Um) \  (S
m;V0; :::; Vm) �=  (Sm;U0 \ V0; :::; Um \ Vm).

(iii) If Ui = ;, then  (Sm;U0; :::; Um) �=  (Sm�1;U0; :::; bUi; :::; Um), where
circumex means that Ui is omitted in the sequence U0; :::; Um.

4.5 Impossibility and connectivity

The following theorem, borrowed from [9], is based on Sperner's lemma [11]:
it relates the connectivity of a protocol complex derived from a pseudosphere,

with the impossibility of k-set agreement:

5
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Theorem 4.4 Let P be a protocol. If for every n-dimensional pseudosphere

 (p0; :::; pn;V ), where V is non-empty, P( (p0; :::; pn;V )) is (k�1)-connected,

and there are more than k possible input values, then P cannot solve k-set

agreement.

5 Lower bound

In this section we prove our lower bound by presenting a counter-example:

a protocol P, such that the corresponding complex satis�es the precondition

of Theorem 4.4: for any pseudosphere  (p0; :::; pn;V ), where V is non-empty,

P( (p0; :::; pn;V )) is (k � 1)-connected. More precisely, we consider a set of

executions in which, in every round, at most k processes are allowed to fail by

omission. The corresponding protocol complex can be viewed as a union of n-

dimensional pseudospheres which makes the reasoning about its connectivity

very simple.

5.1 Connectivity theorem

The following generalization of Theorem 9 and Theorem 11 of [9] helps de�ne
the connectivity of a union of pseudospheres. The proof which basically reuses
the arguments from [9] is given here to make the paper self-contained.

Theorem 5.1 Let P be a protocol, Sm a simplex, and c a constant integer.

Let for every face Sl of Sm, the protocol complex P(Sl) be (l�c�1)-connected.

Then for every sequence of �nite sets fA0j
gmj=0; :::; fAljg

m
j=0, such that for any

j 2 [0;m],
lT

i=0

Aij 6= ;, the protocol complex

P

 
l[

i=0

 (Sm;Ai0; :::; Aim)

!
is (m� c� 1)-connected. (Eq. 1)

Proof. Since for any sequence V0; :::; Vl of singleton sets,  (S
l;V0; :::; Vl) �= Sl,

we notice that P( (Sl;V0; :::; Vl)) �= P(Sl) is (l � c� 1)-connected.

(i) First, we prove that, for any m and any non-empty sets U0; :::; Um, the

protocol complex P( (Sm;U0; :::; Um)) is (m� c� 1)-connected. We in-
troduce here the partial order on the sequences U0; :::; Um: (V0; :::; Vm) �

(U0; :::; Um) if and only if each Vi � Ui and for some j, Vj � Uj. We

proceed by induction on m. For m = c and any sequence U0; :::; Um, the
protocol complex P( (Sm;U0; :::; Um)) is non-empty and, by de�nition,

(�1)-connected.
Now assume that the claim holds for all simplexes of dimension less

than m (m > c). We proceed by induction on the partially-ordered
sequences of sets U0; :::; Um. For the case where (U0; :::; Um) are sin-

gletons, the claim follows from the theorem condition. Assume that

6
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the claim holds for all sequences smaller than U0; :::; Um and there is

an index i, such that Ui = v [ Vi, where Vi is non-empty (v =2 Vi).

P( (Sm;U0; :::; Um)) is the union of K = P( (Sm;U0; :::; Vi; :::; Um)) and

L = P( (Sm;U0; :::; fvg; :::; Um)) which are both (m � c � 1)-connected

by the induction hypothesis. The intersection is:

K \ L = P( (Sm;U0; :::; Vi \ fvg; :::; Um)) =

= P( (Sm;U0; :::; ;; :::; Um)) �=

�= P( (Sm�1;U0; :::;b;; :::; Um)):

The argument of P in the last expression represents an (m�1)-dimensional

pseudosphere which is (m�c�2)-connected by the induction hypothesis.

By Theorem 4.2, K[L = P( (Sm;U0; :::; Um)) is (m� c� 1)-connected.

(ii) Now we prove our theorem by induction on l. We show that for any l � 0

and any sequence of sets fAijg satisfying the condition of the theorem,

Equation 1 is guaranteed. The case l = 0 follows directly from (i). Now

assume that, for some l > 0,

K = P

 
l�1[
i=0

 (Sm;Ai0; :::; Aim)

!
is (m� c� 1)-connected. (Eq. 2)

By (i), L = P( (Sm;Al0; :::; Alm)) is (m � c � 1)-connected. The inter-
section is

K \ L = P

�
(
l�1S
i=0

 (Sm;Ai0; :::; Aim)) \  (S
m;Al0; :::; Alm)

�
=

= P

�
l�1S
i=0

 (Sm;Ai0 \Al0; :::; Aim \Alm)

�
:

By the initial assumption (Equation 2), for any j,
l�1T
i=0

(Aij\Alj) =
lT

i=0

Aij 6=

;. Thus by the induction hypothesis,

K\L = P

 
l�1[
i=0

 (Sm;Ai0 \Al0; :::; Aim \Alm)

!
is (m�c�1)-connected.

By Theorem 4.2, K [ L is (m� c� 1)-connected.

2

Considering an identity protocol gives

Corollary 5.2
lS

i=0

 (Sm;Ai0; :::; Aim) is (m� 1)-connected.

7
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5.2 One round

Now we de�ne the protocol complex R1(Sl) corresponding to one round of

execution of our model, starting from an initial con�guration Sl, in which up

to k processes can fail by omission. 1

Lemma 5.3 Let Sl = (pi0 ; :::; pil) be a simplex. If l � n� k, then

R1(Sl) �=
[

jKj�k

 (Sl; 2K�fpi0g; :::; 2K�fpi
l
g): (Eq. 3)

If l < n� k, then R1(Sl) is empty.

Proof. Consider �rst the case l � n � k. Each vertex of R1(Sl) has the

form hpi;Mii, where pi 2 Sl and Mi is the set of messages received by pi in

the �rst round. Consider a particular set of executions in which exactly a

subset K � � failed by omission in the �rst round. Each process pi receives

all messages from �nK and a subset of messages from K � fpig (pi always

knows its own message). Thus we can map in a one-to-one manner each vertex

hpi;Mii of our protocol complex to a vertex labeled with a value from 2K�fpig.
All combinations of the form hpi; uii, where pi 2 Sl and ui 2 2K�fpig, give us
a pseudosphere  (Sl; 2K�fpi0g; :::; 2K�fpi

l
g). The union over all sets K, such

that jKj � k gives the characterization of Equation 3.

The case l < n�k is trivial: by the initial assumption, at most k processes
can fail by omission. Thus no execution in which less then n+1� k processes
participate exists in the protocol complex. 2

Example. Figure 1 depicts a protocol complex R1(Sn), where n = 2,

f = 1 and k = 1, corresponding to one round of the omission model of 3
processes of which at most one can fail by omission. Each vertex of the protocol
complex corresponding to a reachable local state of a process is de�ned by the
process id and the set of messages received by this process in the �rst round.

Since at least two processes never fail by omission, each process receives at

least two messages in each round. Moreover, in every simplex of the protocol

complex corresponding to a reachable global state of the system, all sets of
received messages include at least two common elements and every process is
aware of its own message. Geometrically, the complex of Figure 1 consists of

four pyramids starring from the vertexes p : fp; q; rg, q : fp; q; rg, r : fp; q; rg

with the base quadrangles corresponding to all possible executions where pairs

of processes (q; r), (p; r) and (p; q) can miss the message of, respectively, p,

q and r. These pyramids are homeomorphic to pseudospheres of the type
 (fp; q; rg; 2K�fpg; 2K�fqg; 2K�frg), where K is, respectively, fpg, fqg and frg.

By Lemma 5.3 and Corollary 5.2, R1(Sl) is (l � 1)-connected for all l �

n� k. Since for all l < n � k, R1(Sl) is (�2)-connected, we have:

1 Naturally, we consider the case where k � f . Otherwise the protocol complex is trivial.

8
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p:{p,q,r} q:{p,q,r}

r:{p,q,r}

p:{p,q}q:{p,q}

r:{p,r}

p:{p,r}

r:{q,r}

q:{q,r}

p q

r

Fig. 1. One-round protocol complex for three processes and one unreliable process.

Lemma 5.4 For all l, R1(Sl) is (l � (n� k) � 1)-connected.

5.3 Multiple rounds

Now we are ready to derive our main result.

Theorem 5.5 If rk � f , then no algorithm can solve k-set agreement in r

rounds.

Proof. We apply Theorem 4.4 by showing that, for any non-empty set V and
rk � f , Rr( (Sn;V )) is (k � 1)-connected. First, we prove that, for any m,
Rr(Sm) is (m� (n� k)� 1)-connected. Then we apply Theorem 5.1 showing
that Rr( (Sn;V )) is (k � 1)-connected.

We proceed by induction. The initial step (r = 1) trivially follows from
Lemma 5.4. Now assume that, for all m, Rr�1(Sm) is (m � (n � k) � 1)-
connected under the condition rk � f . Thus,

Rr(Sm) = Rr�1(R1(Sm)) �= Rr�1

0
@ [

jKj�k

 (Sm; 2K�fpi0g; :::; 2K�fpimg)

1
A :

Since, for any j 2 [0; n],
T

jKj�k

2K�fpi
j
g = f;g 6= ;, by Theorem 5.1, Rr(Sm) is

(m� (n� k)� 1)-connected. 2

6 Algorithm

Figure 2 presents an algorithm that matches our lower bound of Theorem 5.5.

The algorithm solves k-set agreement in our model and guarantees that, in

every execution, every process decides in round bf=kc+1. The algorithm can
be viewed as a generalization of the consensus algorithm of [3] de�ned for the
asynchronous model augmented with the strong failure detector S. 2 The idea

2 The generalization is twofold: (1) we extend the algorithm from consensus to k-set
agreement and (2) we make it f-resilient (f � n) instead of n-resilient (for a system of n+1
processes) as in [3].
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of our algorithm is the following:

(i) Each process pi sets its decision estimate esti to its initial proposal vi.

(ii) In each round r from 1 to bf
k
c+1, every process pi, such that (r� 1)k �

i � rk � 1, sends its current decision estimate to all.

(iii) Each process pi receives the set Mi;r of messages from other processes. If

at least one estimate is received, then it is adopted by pi.

(iv) Each process pi decides its esti after running b
f

k
c + 1 rounds.

1: esti := vi
2: for r = 1::bf

k
c+ 1 do

3: if i 2 [(r� 1)k; rk � 1] then

4: send (i; esti) to all processes

5: receiveMi;r

6: if (9j)(9u)((j; u) 2Mi;r) then

7: esti := u

8: decide esti

Fig. 2. An algorithm for k-set agreement: process pi.

Theorem 6.1 The algorithm of Figure 2 solves k-set agreement in an omis-

sion model with f < n+ 1 unreliable processes.

Proof. Every process decides after bf
k
c + 1 rounds of computation. By the

algorithm, the decided value is a proposed value of some process. Now we
need to show that, in any execution, the set of decided values does not include
more than k distinct values.

In any execution, there are in total (bf
k
c + 1)k distinct processes that

broadcast their estimates. Since, (bf
k
c + 1)k > f and there are at most f

unreliable processes in the system, there exist a round r0 2 [1; bf
k
c + 1] and

pj 2 �, such that 8pi 2 � : (j; u) 2Mi;r0. By the algorithm, in each round, at

most k processes broadcast their estimates. Thus, at most k distinct estimates

can stay in the system after round r0 and k-set agreement is guaranteed. 2
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1 Introduction

Rewriting is a method to look at equational theories from a computational

point of view. This method is related to representation theory of �nite dimen-

sional algebras. Oriented equations, called rewriting rules, equip equational

theories with decision procedures [13]. Many problems of decision arising in

equational theories, for instance, the fundamental word problem or the com-

binatorial enumeration problems, require speci�c presentations by rewriting

systems. Both con�uent and strongly normalizing presentations, called com-

plete presentations, are methods to solve these problems in an algorithmic

way. D. Knuth and P. Bendix [14] proved that there exists for every rewrit-

ing system an equivalent complete system which may be in�nite. In general,

equational theories do not have a presentation by a �nite Complete Rewriting

System (fCRS), even if the equational theory is �nite.

Our purpose is two-fold. First, we would like to enlarge a categorical

framework for rewriting on associative and unitary equational theories. The

second goal is to construct homological �niteness conditions for presentations

of such theories by complete rewriting systems. The aim of this paper is to
study the case of small categories presented by graphs and relations that can
be viewed as algebras in the monoidal category of graphs.

1.1 Rewriting on Algebras in Monoidal Categories

Rewriting occurs in many contexts, rewriting acts on words in algebraic struc-
tures (monoids, multisets, groups, algebras), on paths in oriented structures

(small categories, trees, graphs) or on terms in terms rewriting systems. All
these processes of rewriting lie in a common framework given by the notion of
algebras in monoidal categories on which concepts of rewriting such as con-
�uence or presentations by fCRS can be generalized. The word problem has
a natural extension to algebras in monoidal categories de�ned by generators

and relations. This framework allows us to generalize Squier's criterion on the

rewriting on words in a monoid to the rewriting on words in an algebra into a
monoidal category. We hope that there is a way to extend it to term rewriting
systems. This categorical framework also uni�es a variety of algebraic struc-

tures involved in computer science and includes various kinds of monads such

as algebraic theories [12] and linear operads [5].

1.2 Homological Criterion

The second purpose is to construct projective resolutions to re�ect the combi-

natorial properties of the rewriting systems. How can one detect the obstruc-

tion to the presentation by a fCRS ? In rewriting theory, only a few criteria

giving necessary conditions to the existence of such presentations are known

2
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[20]. Some of them are homological �niteness conditions. after the works of

C.C. Squier [22], Y. Kobayashi [15], J.R.J Groves [9] and D.J. Anick [1], [2], it

is known that properties such as con�uence for the presentation of monoids by

rewriting systems can be characterized in terms of resolutions of the involved

monoid.

Using the Fox's di�erential calculus, Squier [22], has shown that if a monoid

is de�ned by a fCRS then it is of type FP3 over Z. In particular, its third

homology group is of �nite type. In addition, he constructed a monoid which

has a decidable word problem but cannot be of type FP3. Consequently, a

�nititely presented monoid with a decidable word problem do not admit in

general a fCRS presentation. Numerous generalizations of this result have

been made. Kobayashi [15] proved, under the same hypotheses, that such

monoids are of type FP1 over any commutative ring. He constructed recur-

sively a free resolution of modules over the algebra of the monoid in which the

chains are paths in the graph of the irreducibles. A general method, based on

antichains, for constructing such resolutions was given by Anick, and applied

both to associative augmented algebras over a �eld and to path algebras [1],

[2].

The idea we want to develop in this paper is to construct a free resolution
for small categories, using Kobayashi construction [15]. Our method is a

way to extend the criterion of Squier and Kobayashi to algebras in monoidal
categories. The resolution is constructed using the additive Kan extension of
Anicks's antichains of the irreducibles. Let us note that Kan extensions can
be thought as a way of extending the domain of a functor from �one object� to
�several objects�. Thus, we prove that if a small category has a presentation

by a fCRS then its Hochschild-Mitchell homology is of �nite type.

1.3 Conventions and notations

In the following, k is a commutative ring. A small k-category C is a small

category provided with a structure of k-module on its hom sets and where the
composition is k-bilinear. Ce will denote the enveloping k-category Co 
k C
andMod(k)C the category of k-functorsM : C �!Mod(k) called C-modules.

This category is isomorphic to the category of additive functors AbC. A C-

bimodule is a k-functor M : Ce �!Mod(k). If C is a small category, we will
denote by jCj its set of object, by Cd the discrete category associated and

by Ce = Co �C the enveloping category. The k-category kC is the category
generated by C such that jkCj = jCj and kC(p; q) is the k-module freely

generated by C(p; q), p; q 2 jCj. For a morphism w in C, we will denote �(w)
the source of w and � (w) its target.

3

26



2 Rewriting Systems for Small Categories

Small additive categories presented by graphs and relations and path algebras

both give a way to compute projective resolutions of modules over rings [3], [2].

In algebra, the main interest of small additive categories and their quotients

is that they are natural generalizations of rings [19]. There are applications

of path algebras to the study of free algebras, group algebras, but the main

interest lies in the representation of �nite dimensional algebras through Morita

theory. Another reason to study path algebras is their use in many contexts

in computer science: process algebras, data structures like Giavitto's Group-

Based Field [8] or reduction graphs in the diagrammatic presentation of the

axiomatic rewriting systems [16], [18].

2.1 Notation and Rewriting Systems

For monoidal categories and algebras in monoidal categories we refer to [11]

and [5]. Let Q be a directed graph, Q0 and Q1 will denote respectively the

set of vertices and the set of arrows. Let us consider the slice category Q =
Set=Q0 �Q0, where objects are morphisms X ! Q0 �Q0 in Set and where

morphisms are commutative triangles of the obvious kind. For Q : Q1 !
Q0 � Q0 and Q0 : Q0

1
! Q0 � Q0 in jQj, the product Q �Q0

Q0 is de�ned as
the composition: � � p� : Q1�Q0

Q0
1
! Q0�Q0 where � is the �rst projection

and p� is given by the following pullback diagram:

Q1 �Q0
Q0

1

p
�

//

��

Q0 �Q0 �Q0

1���1

��

Q1 �Q0
1

Q�Q0

// Q0 �Q0 �Q0 �Q0:

The product �Q0
endows the category Q with a structure of non-symmetric

monoidal category where the unit is given by the diagonal � : Q0 ! Q0 �Q0.

Let Alg(Q) be the category of algebras in (Q;�Q0
; �). The forgetful functor

U : Alg(Q) �! Q has a left adjoint L. For every directed graph Q 2
jQj, (L(Q); �; 1) is the free category generated by Q. L(Q) is the morphism

L(Q1) ! Q0 �Q0 where L(Q1) =
`

n2NQn and Qn is the n-ith iterate :

Qn = Qn�1�Q0
Q1, n � 2. Multiplication L(Q1)�Q0

L(Q1)
�
! L(Q1) is given

by pullback and the unit Q0

1

! L(Q1) is obvious. Let (T = UF; �Q; �Q) be the
monad on Q given by the adjunction above. For Q 2 jQj the free T -algebra

(T (Q); �Q) is called the path algebra of Q, where �Q is the concatenation of
paths. We will denote by � the empty path. The slice category Q is cartesian

with product given by pullback over Q0 � Q0; thus, the category QT of free
T -algebras on Q is also cartesian with product induced by �Q0�Q0

.

A rewriting system < Q j R > on Q consists of an object Q 2 jQj together

4
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with a subset R � T (Q)�Q0�Q0
T (Q). We denote by

R

! the transitive re�exive

closure of R, and by
R

= the congruence generated by R, i.e, if w
R

= w0 then

�Q(v; �Q(w; v))
R

= �Q(v; �Q(w0; v)), for every v;w 2 T (Q). The small category

presented by < Q j R > is the quotient of the free T -algebra (T (Q); �Q) by the

congruence
R

=. A rewriting system < Q j R > associated to a small category

C is said to be complete (CRS) if the following two conditions hold:

i) R is strongly normalizing, that is, the relation
R

! is well founded,

ii) R is con�uent, that is, each congruence class of
R

=, de�ning C as a quotient

of L(Q), contains exactly one element which represent the normal form of

the elements of the class.

In order to �x notation, we recall some facts about rewriting system. A critical

pair is a pair (�; �) 2
R

! �
R

! describing one of the following situation:

i) inclusion ambiguities: uwv
�

! w0 and w
�

! w00, w 6= �,

ii) overlap ambiguities: uw
�

! w0 and wv
�

! w00, w 6= �.

A resolution of a critical pair (�; �) is a pair (�0; �0) such that � (�) = �(�0)
and � (�) = �(�0) and � (�0) = � (�0). According to Knuth-Bendix theorem, a
strongly normalizing rewriting system is con�uent if and only if there exist a
resolution for each its critical pair. Thus, if < Q j R > is a complete, each
path w in L(Q) can be rewritten into a unique irreducible path, denoted bybw, representing the same element in C. Moreover, a CRS < Q j R > is said

to be a �nite complete rewriting system (fCRS) if Q is a �nite graph and R is
�nite.

2.2 Anick's Chains

Let C be a category presented by < Q j R >. We denote by � the order on
the paths de�ned by u � w if u = 1�(w) or u = v1v2:::vs and w = v1v2:::vn for

some 1 � s � n and vi 2 L(Q). The set I = fw 2 L(Q) j w is irreducibleg is

an order ideal of paths pointed by source, i.e., u 2 I and w � v implies w 2 I.
The set of antichains for I is de�ned by:

AI = fv 2 L(Q) j v =2 I and u � v imply u 2 Ig:

Let us note that the notion of antichains in the sense of [1] could be de�ned
with another order ideal in order to adapt it to other processes of completion.

We denote by:

Cn = f(v1; :::; vn) 2 I�Q0
n j v1 2 Q1; vivi+1 2 AIg;

the set of n-chains for the rewriting system < QjR >. We set by convention

5
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that C0 = Q0 and C1 = Q1 \ I. For each n � 0 and p; p0 2 Q0, let Cn(p; p
0)

be the free abelian group generated by Cn \C(p; p0). Thus Cn can be viewed

as an additive functor from the discrete enveloping ZCe

d
to Ab.

We recall ([19], sec.6) that, if C is a small additive category, the functor


C : AbC 
ZAb
Co �! Ab is de�ned by F 
C G =

L
p2jCj

F (p) 
ZG(p)=M

where M is the abelian group generated by < F (x)(u)
v�u
G(x)(v) j x 2
C(p; q); u 2 F (p); v 2 G(q) >.

The module of Anick's n-chains of < QjR > is the left Z-linear Kan

extension of Cn along the inclusion functor i :ZCe

d
�!ZCe, i.e, the bifunctor:

ZC[Cn] = Cn 
ZCe
d
ZCe; (1)

such that the following diagram commutes:

ZCe

d

i
//

Cn
##
GG

GG
GG

GG
ZCe

ZC[Cn]
{{ww
ww
ww
ww
w

Ab:

3 Finitely Generated Resolutions for Small Categories

3.1 Categories of type FPn

Let C be a small k-category, we recall that M 2 AbC is �nitely generated

if it is the quotient of a �nite coproduct of representables, or equivalently if
the natural transformation

L
i2I

C(pi;_) �!M which sends 1pi to jpij 2M(pi)

is an epimorphism in AbC. A resolution P� in AbC is said to be of �nite
type if each Pi is �nitely generated. A C-module M 2 AbC is said to be
of type FPn, n � 0, if there is a partial projective resolution of �nite type

Pn ! ::: ! P0 ! M ! 0 in AbC. By adapting the proof of [7], VIII prop.

4.3, we have:

Lemma 3.1. Let M be a C-module, and n � 1. The following conditions are

equivalent:

i) M is of type FPn,

ii) M is �nitely generated, and for every partial projective resolution of �nite

type Pk

�k! Pk�1 ! :::! P0 ! M ! 0, k < n, the kernel ker �k is �nitely

generated as C-module.

Thus, a C-module M is said to be of type FP1 if it is of type FPn for all
integers n � 0.

A small category C is said to be of type (right-left-)FPn over k, if kC is

of type FPn as kC-bimodule. If C is of type FPn over Zthen, by tensoring

6
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by kCe, C is of type FPn over any commutative ring k. We will say that C

is of type FPn if it is of type FPn over Z.

By the projection C �! 1, every small category C is of type FP0. Let C

be small category and M be a C-bimodule. A derivation d : C �! M is a

family of applications: dp;q : C(p; q) �!M(p; q), p; q 2 jCj, satisfying:

d(xy) = d(x)y + yd(x); p
y

! q
x

! r 2 C:

More generally, for every path (�1; �2; :::; �n) in C we have:

d(�1:::�n) =
nX
i=1

�1:::�i�1d(�i)�i+1:::�n:

Let � :ZC
ZQ0
ZC �!ZC be the augmentation: �(w
w0) = ww0. The

augmentation ideal of C is the C-bimodule IC de�ned by the exact sequence:

0 �! IC �!ZC
ZQ0
ZC

�

�!ZC�! 0: (2)

The ideal IC as C-bimodule is generated by the set f1
w�w
1; w 2 Cg.
Let Q : Q1 ! Q0 � Q0 be a directed graph, C be the category presented
by the rewriting system < QjR > and I<QjR> the augmentation ideal of C.
Then there exist an unique derivation d : C �! I<QjR> such that: d(f) =
1 
 f � f 
 1, for every f 2 Q1. By the universal property of the derivation,
we get that I<QjR> is a free L(Q)-bimodule with basis (d(f))f2Q1

. Thus C is
�nitely generated if and only if C is FP1. In the same way, we prove that C
is FP2 if and only if C is �nitely presented. For n � 2, the FPn condition
constitutes a strengthening of the �nite presentation re�ecting combinatorial

properties of C.

3.2 Small Categories fCRS are FP1

Let C be a small category presented by a rewriting system < QjR >, where
Q : Q1�Q1 ! Q0. The right-C

e-moduleZC[Cn] = Cn
ZCe
d
ZCe is equivalent

to the C-bimoduleZC
ZQ0
Cn
ZQ0

ZC via cn
 (wo
w0) = wo
 cn
w0. A
generator [cn] in ZC[Cn] will be denoted by 1�(cn) 
 cn 
 1�(cn), and a n-chain

vn
!

vn�1

!! :::!
v1!;

will be denoted by (v1; :::; vn).

For n � 1, let Xn be a set of paths of length n in C. The relations R

induce on Co �Q0
Xn �Q0

C a partial order de�ned by: (buo; v1; :::; vn; bw) >
(bu0o; v0

1
; :::; v0

n
; bw0) if buov1:::vn bw R

!bu0ov0
1
:::v0

n
bw0. Let ZC[Xn] be the C-bimodule

generated by Xn, and X =
P

l

i=1
�i buio 
 xi 
 bwi 2 ZC[Xn], �i 2 Z. The

element bu1o 
 x1 
 cw1 is said to be the hight term of X, and denoted by

7
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HT (X), if l = 1 or bu1o 
 x1 
cw1 > buio 
 xi 
 bwi for all i � l. R induces

a partial order on
ǹ

ZC[Xn] de�ned by: for X;Y 2
ǹ

ZC[Xn], X > Y if

for X =
P

l

i=1
�i buio 
 xi 
 bwi, �i 2 Z, we have buio 
 xi 
 bwi > HT (Y ) for

every i 2 1; :::; l. An exact sequence of C-bimodules (ZC[Xn]; �n) is said to

be n÷therian if for every n, �n( bwo 
 xn 
 bw0) < bwo 
 xn 
 bw0 for the order

induced by R. Moreover,if there is a left contracting homotopy in such that

in( bwo
xn
 bw0) < bwo
xn
 bw0 we say that (ZC[Xn]; �n) is n÷therian acyclic.

Theorem 3.2. Let < QjR > be a complete rewriting system for a small

category C. Then there exists a n÷therian acyclic resolution of ZC by C-

bimodules:

:::ZC[Cn]
�n
! ZC[Cn�1]! :::!ZC[C1]

�1!ZC[Q0]
�

!ZC! 0;

where � is the augmentation, �([p]) = 1p, p 2 jCj, and

�n([v1; :::; vn]) = 1
 [v1; :::; vn�1]
 vn �X; (v1; :::; vn) 2 Cn;

where HT (X) < 1 
 [v1; :::; vn�1]
 vn, for the order induced by R.

Proof. As in [15], �n and the left C-linear contracting homotopy in are con-

structed inductively.

First, the augmentation ideal ker(�) is the C-bimodule generated by the
set < d(v) j v 2 C1 >. Let � :ZC �!ZC[Q0] be the left-C-linear morphism
de�ned by �( bw) = bw 
 1�(w) 
 1. We de�ne the morphism of C-bimodules �1
by

�1([v]) = 1
 [1�(v)]
 v � ��(1 
 [1�(v)]
 v):

The left-contracting homotopy i0 :ZC[Q0] �!ZC[Q1] is de�ned inductively
by:(
i0(1
 �) = 0;

i0(1
 bwwi) = i0(1 
 bw)wi + bwoi0(1 
wi); if bw 2 jCj, wi 2 I and bwwi 2 I:

It is easy to check that ��+ �1i0 = 1ZC[Q0]
, �1(bwo
 v
 bw0) < bwo
 v
 bw0 and

i0(1
 bw) < bw.
In order to construct �2 from �1 and from i0 as for �1, that is:

�2(1 
 (v1; v2)
 bw) = 1
 v1 
 v2 bw � i0�1(1 
 v1 
 v2 bw); (v1; v2) 2 C2;

we have to resolve the ambiguities in the construction of i2 : ZC[C1] �!
ZC[C2]. Indeed, there is an ambiguity for i1(1
v1
 bw) since v1 bw can be either
reducible or irreducible. If v1 bw is irreducible then we set: i1(1
v1
bw) = 0, and
thus (i0�1+�2i1)(1
v1
 bw) = i0�1(1
1
v1bw)�i0(��(1
1
v1) bw) = 1
v1
 bw.
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Whereas if v1 bw is reducible, then there exist v2 2 I such that v1 bw = v1v2 bw0

and v1v2 2 AI. We can de�ne i1 inductively by

i1(1
 v1 
 bw) = 1
 (v1; v2)
 bw0 + i1(i0�1(1 
 v1 
 v2) bw0):

Indeed i0�1(1
 v1 
 v2) bw0 = i0(1 
 1 
 v1v2) bw0 � i0(v1 
 1 
 v2) bw0, moreover

i0(1 
 1 
 v1v2) bw0 < 1 
 v1 
 bw and i0(v1 
 1 
 v2) bw0 < 1 
 v1 
 bw, thus
i0�1(1
 v1 
 v2) bw < 1
 v1 
 bw and i1(i0�1(1 
 v1 
 v2)bw) is already de�ned.

The next steps of the resolution are constructed in the same way. Suppose

now that (ZC[Ck]; �k; ik)0�k�n is an acyclic and n÷therian resolution of ZC,

satisfying, for 0 � k � n:

(Ak)

(
ik�1�k(1
 (v1; :::; vk)
 bw) < 1
 (v1; :::; vk)
 bw; if vk bw is reducible,

ik�1�k(1
 (v1; :::; vk)
 bw) = 1
 (v1; :::; vk)
 bw; otherwise.

Let �n+1 be de�ned by:

�n+1([v1; :::; vn+1]) = 1
 v1:::vn 
 vn+1 � in�1�n(1 
 v1:::vn 
 vn+1):

By construction we have �n�n+1 = 0. In order to construct a left contracting
homotopy in(1
 (v1; :::; vn)
 bw) as we did for n = 2, we distinguish two cases

depending of the irreducibility of vn bw.
If vn bw is irreducible we set in(1
 (v1; :::; vn)
 bw) = 0. If vn bw is reducible,

then there exists a unique irreducible vn+1 such that vn bw = vnvn+1w
0 and

(v1; :::; vn; vn+1) 2 Cn+1. As vnvn+1 is reducible, according to (An), we have

in�1�n(1 
 (v1; :::; vn) 
 dvn+1) < 1 
 (v1; :::; vn) 
 dvn+1 and consequently, by
induction, in(in�1�n(1
 (v1; :::; vn)
dvn+1)w0) is de�ned. Thus we put

in(1
(v1; :::; vn)
bw) = 1
(v1; :::; vn; vn+1)
w
0+in(in�1�n(1
(v1; :::; vn)
dvn+1)w

0):

We consider also this two cases to check that in�n+1 + in�1�n = 1ZC[Cn] and to
show (An+1).

If the rewriting system < QjR > is �nite, then for every n � 0 the sets Cn

are �nite. Thus we have:

Theorem 3.3. If a small category C has a presentation by a �nite complete

rewriting system < Q j R > then C is of type FP1 over any commutative

ring k.

4 Hochschild-Mitchell Homology for Complete Categories

LetC be a small category, andM be aC-bimodule. The cohomologyHn(C;M)
and homology Hn(C;M) can be described using the functors Ext and Tor

9
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on the category AbC
e

which is abelian with enough projectives. The func-

tor TorC
e

n
is derived from the functor 
Ce: for every C-bimodules F and G,

TorC
e

n
(F;G) = Hn(F
CeP�) where P� is a projective resolution of G inAbC

e

.

In the same spirit, the functor Extn
Ce is derived from the functor HomCe : for

every C-bimodules F and G, Extn
Ce(F;G) = Hn(HomCe(P�; G)) where P� is

a projective resolution of F in AbC
e

. The k-category kC can be considered

as a kC-bimodule, the n-th Hochschild-Mitchell homology group of C ([19],

sec. 12) is de�ned by:

Hn(C;M) = TorC
e

n
(ZC;M):

See [4] for its relations with other homological theories.

If the presentation < QjR > is �nite, for each n � 0 the set of n-chains

is �nite, and the complex obtained by tensoring by the resolution of Theorem

3.2 over kCe is a �nitely generated resolution of k. Thus we have:

Corollary 4.1. If a small category C has a presentation by a fCRS < Q j R >

then the Hochschild-Mitchell homology groups Hn(C; k) are �nitely generated.

Several consequences can be deduced from the property FP1. In partic-
ular, let us consider �(QjR) the graph of irreducible of < QjR >: the set
of vertices is the set I of irreducibles, and the edges are pairs (v1; v2) such
that v1v2 2 AI. Let us denote by m(QjR) the maximal length of a path

in �(QjR) beginning in I \ Q1. Then, if C admits a fCRS presentation, its
Hochschild-Mitchell dimension dimk C = Supfn j Extn

kCe(kC;_) 6= 0g is
�nite and bounded by m(QjR).

5 Conclusion and Further Work

Following the framework de�ned in [5] for the (co)homology of algebras in
monoidal categories we want to construct the same kind of resolution as in

Theorem 3.2 for algebras G in a monoidal category V, presented by rewriting
systems. Moreover, Alg(V) can be viewed as the category of models of the

algebraic theory of monoids M in the category V, i.e, the category of functors
QM preserving �nite products: we can also consider models of an arbitrary

algebraic theory A inV. In this setting, we have to work out a construction for

the contracting homotopy involved in (3.2). We will then be able to construct a
simplicial object in the category of coe�cients of G re�ecting the combinatorial

properties of the involved rewriting system and this will lead to geometrical
interpretations. We can also adapt the techniques of Anick's antichains to

other procedures of completion than Knuth-Bendix's one. On the other hand,
the constructive resolution used in the present paper gives a way to compute

the (co)homology of a small category. For a �nitely presented category, we

have to implement the algorithm which perform such computation.
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In addition, we believe that our construction can be adapted to monads

over various kind of categories in order to obtain this condition for algebraic

theories and term rewriting systems, which can be respectively modeled by

�nitary monads over the category Set and Pre, the category of preordered

sets [12], [17]. M. Jiblaze and T. Pirashvili [21] de�ne the (co)homology for

algebraic theories A in terms of the Hochschild-Mitchell (co)homology, thus

we hope that our construction gives a way to extend the �niteness condition

à la Squier to terms rewriting systems.
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Abstract

Recent advances in Multiagent Systems (MAS) and Epistemic Logic within Dis-
tributed Systems Theory, have used various combinatorial structures that model

both the geometry of the systems and the Kripke model structure of models for
the logic. Examining one of the simpler versions of these models, interpreted sys-

tems, and the related Kripke semantics of the logic S5n (an epistemic logic with
n-agents), the similarities with the geometric / homotopy theoretic structure of

groupoid atlases is striking. These latter objects arise in problems within algebraic
K-theory, an area of algebra linked to the study of decomposition and normal form

theorems in linear algebra. They have a natural well structured notion of path and
constructions of path objects, etc., that yield a rich homotopy theory.

In this paper, we examine what an geometric analysis of the model may tell us of

the MAS. Also the analogous notion of path will be analysed for interpreted systems
and S5n-Kripke models, and is compared to the notion of `run' as used with MASs.
Further progress may need adaptions to handle S4n rather than S5n and to use

directed homotopy rather than standard `reversible' homotopy.

Geometric Aspects of Multiagent Systems

Timothy Porter

1 Introduction

In many studies of distributed systems, a multiagent model is used. An agent
is a processor, sensor or �nite state machine, interconnected by a communi-

cation network with other `agents'. Typically each agent has a local state
that is a function of its initial state, the messages received from other agents,

observations of the external environment and possible internal actions. It has

c2002 Published by Elsevier Science B. V.
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become customary when using formal models of distributed systems to use

modal epistemic logics as one of the tools for studying the knowledge of such

systems. The basic such logic for handling a system with n-agents is one

known as S5n. Unless the system is very simple the actual logic will be an

extension of that basic one, that is, it may have more axioms. For instance,

the way the various agents are connected inuences the logic in subtle ways.

Suppose that agent 1 sends all its information immediately to agents 2 and 3,

then if we denote by Ki�, the statement that agent i `knows' proposition �,

we clearly expect within the logic of that system that K1�) K2� ^K3�.

The logic S5n is obtained from ordinary propositional logic by adding

`knowledge operators', Ki as above. (In the literature the notationKi� is often

replaced by 2i�.) It models a community of ideal knowledge agents who have

the properties of veridical knowledge (everything they know is true), positive

introspection (they know what they know) and negative introspection (they

know what they do not know). These properties are reected in the axiom

system for the logic. The axioms include all propositional tautologies, plus

the schemata of axioms: Ki(� )  ) ) (Ki� ) Ki ), Ki� ) �, Ki� )

KiKi�, and :Ki:� ) Ki:Ki:�, where i 2 A, the set of `agents'. (We
will see an alternative presentation of the logic later on.) Two comments
worth making are (i) several of these axioms and in particular the last one
- negative introspection - are considered computationally infeasible and (ii)

ideas such as common knowledge (represented by an additional operator, C)
can be introduced to give a richer extended language. Here however we will
be restrict attention largely to models for S5n and extensions that may reect
the geometry of the system being modelled. How is this `epistemic analysis
used in practice? We mention three examples. One is given in [19] (x1.9)

as due to Halpern and Zuck. It shows the way in which epistemic operators
give compact and exact speci�cations of protocols that are veri�ably `safe'.
Another worth mentioning is the analysis of AI data / knowledge searches,
such as the Muddy Children problem (cf. Lomuscio and Ryan, [17]). Finally
the study of knowledge based programming, [12], in which languages one may

require statements such as : if i knows �, set x = 0, by formalising what

`knows' means in this context requires analyses of this type. The book, [19],
and several of the papers cited here contains numerous further examples.

The classical models for multimodal logics, and for S5n and its extensions
in particular, are combinatorial models known as Kripke frames and, for S5n,

Kripke equivalence frames. These consist of a set W , called the set of possible

worlds, and n-equivalence relations �i, one for each agent. The interpretation
of �i is that if w1, w2 are two possible worlds and w1 �i w2, then agent i

cannot tell these two worlds apart. In a series of papers and books (see in
particular [6]) Fagin, Halpern, Moses and Vardi, in various combinations, have

put forward a simpler combinatorial model known as an interpreted system.

These have the same formal expressive power as Kripke frames, but are nearer
the intuition of interacting agents than is the more abstract Kripke model.

2
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In each case the underlying frame / set of global states, has a very simi-

lar combinatorial structure to that underlying a structure, global actions (or

groupoid atlases), introduced by A. Bak, [1,2]. These arose from an analysis of

algebraic problems related to the solution of systems of linear equations over

arbitrary rings. (The mathematical area is algebraic K-theory and lies at the

interface between algebraic topology and algebra / algebraic geometry). Any

action of a group on a set leads to a set of orbits. These are the equivalence

classes for an equivalence by a `reachability' or `accessibility' relation gener-

ated by the group action. (Translating and weakening to a monoid action, one

has a variant of the reachability of states in a �nite automaton.) In a global

action, the set X is divided up into a family of patches, each of which has

a group attached, which acts on that patch (see below for the more detailed

de�nition). If the patches all coincide the resulting `single domain global ac-

tion' is essentially a set with a collection of (possibly independent/ possibly

interacting) group actions. As group actions yield groupoids by a well known

construction, and the resulting equivalence relations are also groupoids, a use-

ful generalisation of global actions is that of groupoid atlas introduced by Bak,

Brown, Minian and the author, [3]. These therefore present a context in which
both the algebraic ideas and the logical models of S5n can �t. Moreover both
global actions and groupoid atlases have a rich homotopy theory. This ho-
motopy theory is based on a notion of path that, suitably modi�ed, bears an

uncanny resemblance to that of the `runs' considered in multiagent systems,
but seems to be better structured and, in fact, more computationally realistic.

The point of this paper is to examine these models in some more de-
tail and to start the analysis of the necessary modi�cations to the global
action/groupoid atlas homotopy theory that will allow its application to the

problem of the geometric analysis of multiagent systems: how does the geom-
etry of a multiagent system inuence its inherent logic and thus its compu-
tational ability? The author's hope is that such an analysis will aid in three
speci�c problem areas: �rstly, any analysis of systems such as these hits the
combinatorial explosion problem, the e�ective state space is too large for e�-

cient search to be implemented. By reducing the search space via homotopical

methods, it is expected that some progress in this can be achieved. Next, some
distributed systems can be modularised thereby aiding veri�cation that their
description and behaviour matches their speci�cation. This modularisable at-

tribute should be identi�able by a combination of algebraic and geometric

tools. A related question here is as to whether or not it is better to group a
set of agents together as one `super-agent' and under what condition can this

be done without changing the behaviour of the system for the worse. 1 This,
of course, presupposes a mechanism for comparison of MASs with di�erent

numbers of agents, a point to which we will return. The �nal hope is that a

1 Our models of agents tend to work as if they are given `atomic' entities, however if they
interact or if they themselves consist of `subagents', (processors), a di�erent grouping into
`full agents' may be bene�cial to analysis, optimisation and veri�cation.
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geometric homotopical overview may aid in the description and handling of

knowledge evolution without MAS.
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2 Preliminaries.

(As references for basic modal logic, try Kracht, [13], Meyer and van der Hoek,

[19] and Blackburn, de Ryke and Venema, [4].) In the following, at least to

start with, there will be n-agents and A = f1; 2; : : : ; ng will denote the set of

such `agents'.

S5 and S5n.

To introduce these logics fairly formally we suppose given a set of variables
and form a language L!(n) given by

� ::= p� j ? j :� j �1 _ �2 j Mi�

where the p� are the propositional variable ordered by the �nite ordinals �,

and Mi is a modality for each agent i = 1; : : : ; n.

In contrast to some treatments, we are using operators, Mi, corresponding
to \possibility" , rather than \knowledge" operators, i.e. we interpretMi� as
\agent i considers � is possible". The relation with Ki� (\agent i knows �")

is Mi = :Ki:�, \agent i does not know that � is false". For computational

purposes these may be expected to yield di�erent methods, since : is not well
behaved computationally, however for this paper we will not be considering
computational/ implementational problems, so the M v. K debate need not

concern us greatly.

A logic in L!(n) is any set � of L!(n)-formulae such that

� � includes all L!(n)-formulae that are instances of tautologies,

and

� � is closed under the inference rule
if �, �!  2 � then  2 �

i.e. detachment or modus ponens

The logic is uniform if it is closed under the rule of uniform substitution
of L!(n)-formulae for propositional variables and is normal if it contains the

schemata

4
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(K) Mi( _ �)!Mi( ) _Mi(�)

(N) :Mi(?)

and monotonicity (for each i):

if  ! � 2 � then Mi !Mi� 2 �.

As is well known, S5n is de�ned to be the smallest normal logic in L!(n)

containing

(T )i �!Mi�

(4)i MiMi�!Mi�

and

(B)i �! KiMi�,

(so is K4:BT or S4:B in the notation used in Kracht, [13], p.72).

Of course �!  is shorthand for :� _  

As we are in the classical rather than the intuitionistic case, it is easy to

rewrite this in terms of Ki instead of Mi. The logic S51 is usually called S5.

The related logic S4n, mentioned earlier, does not require the schemata

(B)i.

The usual semantics of S5n is given by Kripke equivalence frames and
models .

Kripke equivalence frames

An equivalence frame (or simply frame) F = (W;�1; : : : ;�n) consists of
a set W with, for each i 2 A, an equivalence relation �i on W . Elements of

W are called worlds and are denoted w, w0, etc. We will write [w]i for the
equivalence class of the element w 2 W for the ith equivalence relation, �i. A
Kripke frame is very like a labelled transition system, but it has equivalence
relations rather than partial orders as its basic relational structure. The logic
gives a semi-static view of the system. To get a dynamic aspect one needs to

look at knowledge evolution, cf. for example, Lomuscio and Ryan, [17].

An equivalence (Kripke) model (or simply model) M = (F; �) is a frame
F together with a relation

R� � P �W;

where P = fp� : � 2 Ng. This relation yields an interpretation

�R : W ! P(P );

which interprets as : �R(w) is the set of basic propositions \true" at w, or

dually a valuation

L� : P ! P(W )

giving : L�(p) is the set of worlds at which p is \true". Of course �R and L�

contain the same information and will be merged in notation to � when no

confusion will result.

A weak map or weak morphism of frames f : F ! F 0 = (W 0;�0
1; : : : ;�

0
n)

is a function f : W ! W 0 such that for each i,

if w �i w
0, then f(w) �0

i f(w
0):

5
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The map f will give a map of models f : (F; �)! (F 0; �0) if

W
f

//

�
""
F
F
F
F
F
F
F
F W 0

�0

{{x
x
x
x
x
x
x
x

P(P )

commutes.

Weak maps are too weak to react well with the logic so a stronger notion

of bounded morphism (or p-morphism) is also used.

A weak morphism f : F ! F 0 of frames is bounded if for each i, 1 � i � n

and u 2 W , v0 2 W 0,

f(u) �0
i v

0 if and only if there is a v 2 W with f(v) = v0 and u �i v:

Remark:

A discussion of some of the properties of the resulting categories of frames
and weak maps (or of frames and bounded maps) can be found in [21]. In this
paper we will not be considering bounded morphisms nor models in any great
detail due to restrictions on space.

Global states for interpreted systems

Interpreted systems were �rst proposed by Fagin, Halpern, Moses and
Vardi, [6] to model distributed systems. They give simple combinatorial mod-
els for some of the formal properties of multiagent systems. As before one has

a set, A = f1; 2; : : : ; ng, of agents, and now one assumes each agent i can be
in any state of a set Li of local states. In addition one assumes given a set Le
of possible states of the `environment'. More formally:

A set of global states (SGS) for an interpreted system is a subset S of the
product Le�L1�: : :�Ln with each Le, Li non-empty. If S = Le�L1�: : :�Ln,

then the SGS is called a hypercube, cf. [14].

The idea behind allowing the possibility of considering a subset and not

just the whole product is that some points in
Q
L = Le �

Qn

i=1
Li may not

be `feasible', because of explicit or implicit constraints present in the multia-

gent system (MAS). The explicit way these constraints might arise is usually
not considered central for the general considerations of the multimodal logic

approach to MASs, yet it seems clear that it represents the interconnection

of the network of agents and, if the local states are the states of a �nite state
automaton, questions of reachability may also arise. This will be where the

`topology' of the MAS is most clearly inuencing the combinatorial topology
of the model. As a simple example, suppose we have agent 1 acts solely as a

sensor for agent 2, so anything agent 1 knows, agent 2 automatically knows,
K1� ) K2�. The e�ect of this can be illustrated where L1 has two local

states, x1 and x2. In x1, p is true; in x2, :p is true. Suppose L2 has 5 local

6
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states, y1; : : : ; y5, and p is true only in y1 and y2, :p being true in the remain-

der. Then S = f(x1; y1); (x1; y2); (x2; y3); (x2; y4); (x2; y5)g is as large a SGS

(or more precisely interpreted system as the valuation plays a role) as one can

get within this setting. The situation mentioned earlier, K1� ) K2� ^K3�,

will lead to a similar 3-dimensional example. The link between the structure

of the SGS, the logic inherent in the interrelations between agents and the

computational power of the system is subtle, see [16] for a set of examples.

Other restrictions may also play a role. Agents may share resources, e.g. in a

context where they need to access a distributed database and one agent may

block another from an otherwise feasible transition. 2

Any SGS yields a Kripke frame. If we write L = (Le; L1; : : : ; Ln) and

(S;L) for an SGS based on L, then set F(S;L) to be the frame with S as its

set of possible worlds with �i de�ned by:

` �i `
0

, `i = `0i;

i.e. ` and `0 correspond to the same local state for agent i. For simplicity we

will assume that Le is a singleton set.

There are notions of weak map and bounded map of SGSs and an adjoint
equivalence between the categories of frames and those of SGSs modulo a
notion of essential equivalence. If F = (W;�1; : : : ;�n) is an equivalence

frame, then for each agent i, letWi = W= �i, be the set of equivalence classes
of elements of W for the relation, �i, and set W = (W1; : : : ;Wn). There is a
`diagonal' function

� : W !
Y

W;

given by

�(w) = ([w]1; : : : ; [w]n)

and (�W;W ) is an SGS. Setting G(F ) = (�W;W ) gives the functor, left
adjoint to F , that is used in [21] to prove the equivalence mentioned above.

Mathematical Interlude: Global Actions and Groupoid Atlases.

A very similar structure to a Kripke equivalence frame is that of a global

action, see [1,2]. Their generalisation in [3] to groupoid atlases gives a con-

text where both Kripke equivalence frames and global actions coexist and it
is a situation with a well de�ned and quite well behaved homotopy theory,
therefore it yields a potential tool for the geometric analysis of MASs.

The prime example of a global action is a set X with a family of groups
acting on it. In particular if G is a group (in the usual mathematical sense)

then given a family of subgroups fHi : i 2 Ig of G, we can consider the actions

2 For simplicity, it is assumed that each local agent is a reversible transition system. Thus
if a transition s ! s

0 can occur in Li, then s
0
!

�
s as well, i.e. we can get back from s

0

to s by some sequence of transitions, even if this requires reinitialising Li, but any given
transition in Li may not be feasible at some state of S, being blocked by the actions of
other agents, whence the complication of the system.
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of each Hi on the set of elements of G by left multiplication. The important

point to note is that the di�erent subgroups Hi may be related, e.g. we may

have Hi � Hj, which implies structural relationships between the equivalence

relations generated by the actions of Hi and Hj . In more detail, we have for

each i 2 I, an equivalence relation �i on the set of elements of G de�ned by

x �i y if and only if there is some hi 2 Hi with x = hiy:

If Hi � Hj , then x �i y implies x �j y, which is exactly the sort of relationship

that results from `knowledge passing' within a MAS, (cf. [15]). In a global

action or groupoid atlas, this relationship is explicitly speci�ed from the start.

The example above is a single domain global action as there is one set on

which all the groups act. The general form assumes only that the groups act

on subsets of the `domain'. This adds additional exibility and adaptability

to the concept. (In addition to the notes, [3], the original de�nition and

discussion of global actions can be found in [1,2].)

A global action A consists of a set XA, together with a family f(GA)� y

(XA)� j � 2 �Ag of group actions on subsets (XA)� � XA. The various
local groups (GA)� and the corresponding subsets (local patches), (XA)�, are
indexed by the index set, �A, called the coordinate system of A. This set �A
is equipped with a reexive relation, written �, and it is required that

- if � � � in �A, then (GA)� leaves (XA)� \ (XA)� invariant (so (XA)� \
(XA)� is a union of equivalence classes for the (GA)�-action), and
- there is given for each pair � � �, a group homomorphism

(GA)��� : (GA)� ! (GA)�

such that if � 2 (GA)� and x 2 (XA)� \ (XA)�, then

�x = (GA)���(�)x:

This second axiom says that if � and � are explicitly related and their

domains intersect then the two actions are related on that intersection. Again
this is the sort of structural compatibility that arises in MASs, except that, as

so far considered, interpreted systems, etc. do not allow for the `multi-patch'

setting.

Any global action yields on each (XA)� an equivalence relation due to the

(GA)�-action. The equivalence classes (local orbits or local components) for
these `local equivalence relations' form a structure that is sometimes useful,
regardless of what group actions are used, i.e. we need the local equivalence

relations rather than the local groups that were used to derive them. As

both equivalence relations and group actions yield groupoids (small categories
in which all the morphisms are isomorphisms), it is convenient to adapt the

notion of global actions to give a generalisation which handles the local equiv-
alence relations as well. This generalisation is called a groupoid atlas in [3].

Fuller details of that transition are given in that source.
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A groupoid atlas A on a set XA consists of a family of groupoids (GA)�
de�ned with object sets (XA)� which are subsets of XA. These local groupoids

are indexed by an index set �A, called the coordinate system of A, which is

equipped with a reexive relation, written �. This data is required to satisfy:

(i) if � � � in �A, then (XA)�\ (XA)� is a union of components of (GA)�, i.e.

if x 2 (XA)� \ (XA)�, and g 2 (GA)�, g : x! y, then y 2 (XA)� \ (XA)� ;

and

(ii) if � � � in �A, then there is given a groupoid morphism,

(GA)�

���
(XA)�\(XA)�

! (GA)�

���
(XA)�\(XA)�

;

de�ned between the restrictions of the local groupoids to the intersections,

and which is the identity on objects.

Example 1. (From Kripke frames to Groupoid Atlases.)

Let X be a set and �i, i = 1; 2; : : : ; n; n equivalence relations on X.

Then F = (X;�1; : : : ;�n) is a Kripke frame, but also, if we specify the local

groupoids

Gi := Objects X; arrows x1 !i x2 if and only if x1 �i x2;

and � to be discrete, i.e. \ � " = \ = ", we have a simple groupoid atlas,

A(F ), (cf. example 2 x2 of [3]). In fact later we will introduce a second method
for turning a frame into a groupoid atlas.

Example 2. The Line

The simplest non-trivial groupoid is I. This is the groupoid corresponding
to the Kripke frame W = f0; 1g, � = the indiscrete / universal equivalence
relation so 1 � 0. (If the number of equivalence relations / agents is needed
to be kept constant, then set �i = � for i = 1; : : : ; n. This is sometimes
useful, but should not concern us too much for the moment.

The line, L, is obtained by placing in�nitely many copies of I end to end, so

jLj := the set;Z;of integers

� :=Z[ f�1g; where �1 � �1; �1 < n for all n 2Zand n � n;

but that gives all related pairs.

What about models?

The above construction (Example 1 and later on its variant) gives us a
way to think of Kripke frames and SGSs as groupoid atlases, but they do not
directly consider the interpretations / valuations that are needed if Kripke

models and interpreted systems are to be studied via that combinatorial gad-

getry. Given a frame F = (W;�1; : : : ;�n) and an interpretation

� :W ! P(P );
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we can get a bounded morphism of frames

�� : F ! S�
P

for � = S5n or an extension. This frame S�
P is the canonical frame for the logic

� with the given set of variables P . Its `possible worlds' are the �-maximal

sets of L!(n)-formulae, and �� assigns to a world w the set of � such that

(F;w) j=� �, i.e. the set of � valid at the world w given � as interpretation,

(cf. [13] p.63). Thus, if the homotopy theory of frames / SGSs informs us

about their `geometry', the homotopy theory of frames over S�
P should inform

us of the corresponding `geometry' of the �-models in each context. Because

of this and our relative ignorance of `homotopy over' in this context, we will

put models aside for this paper and concentrate on frames and SGSs.

3 Morphisms, Runs, Curves and Paths.

In the previous section, we have seen that groupoid atlases form a class of

structures that encompasses Kripke equivalence frames as well as more general
objects such as global actions. This by itself need not be useful. The general
notion of a categorical model of a situation demands that serious attention

be paid to the morphisms. We have seen that Kripke frames and interpreted
systems have both weak morphisms and bounded morphisms available for use,
the latter preserving more of the internal logic. We therefore need to consider
morphisms of groupoid atlases. The payo� will be if the known function space
structure on certain classes of morphisms between groupoid atlases (cf. [1,2])
can allow a similar structure to be made available for models of MASs.

A function f : jAj ! jBj between the underlying object sets of two
groupoid atlases is said to support the structure of a weak morphism if it
preserves local frames, (the term comes from the original work on global ac-
tions and is not connected with the model theoretic meaning). Here a local

frame in A is a set fx0; : : : ; xpg of objects in some connected component of

some (GA)�, i.e. � 2 � and there are arrows gi : x0 ! xi in (GA)� for
i = 1; 2; : : : ; p. The function f preserves local frames if for fx0; : : : ; xpg is a
local frame in A then ff(x0); : : : ; f(xp)g is a local frame in B.

Any weak morphism of Kripke frames will give a weak morphism of the cor-
responding groupoid atlases, but not conversely since if A = (W;�1; : : : ;�n)

and B = (W 0;�0
1; : : : ;�

0
n), the notion of weak morphism of groupoid atlases

allows f :W ! W 0 to ignore which agents are involved, i.e. fw0; : : : ; wpg is a
local frame in A if there is some agent i such that w0 �i wk, k = 1; : : : ; p, so

agent i considers these worlds equivalent; if f preserves this local frame, then
there is some agent j such that f(w0); : : : ; f(wp) are considered equivalent by

that agent. Note however that agent j need not be the same agent as agent
i, nor necessarily have the same position in the lists of agents if the sets of

agents in the two cases are represented by disjoint lists. In fact the number
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of agents in the context of the two Kripke frames did not actually need to be

the same for a weak morphism to exist between them. This added exibil-

ity would seem to be essential when discussing modularisation, as mentioned

above, but also for interacting MASs and the resulting interaction between the

corresponding epistemic logics, however note these are weak morphisms so the

link with the logic here is fairly weak. There is a notion of strong morphism

of groupoid atlases, but this will not be strong enough either for the logic. In

fact Bak's notion of stong morphisms in this particular context reduces to that

of weak morphisms. The di�erence is that in a weak morphism the `reasons',

i.e. the elements gi above, that a set of objects forms a local frame is not

considered a part of the data of the morphism, with strong morphisms this

data is recorded. In the groupoid atlases derived from Kripke frames, there

is only one `reason' possible. If it exists, it is unique! Thus the di�erence

between the two types of morphism can be safely ignored for the moment. We

hope to return to morphisms of groupoid atlases that correspond to bounded

morphisms of Kripke frames and SGSs in a future paper.

Runs (cf. [19], p. 59).

A run in a Kripke modelM = (F; �) associated with a distributed system /
MAS is simply a �nite or in�nite sequence of states s(1); s(2); : : : ; with s(i) 2 S,

the set of possible worlds of F , here being thought of as being an SGS for an
interpreted (S;L).

A weakness in this de�nition is that no apparent restriction is put on
adjacent states in a run. This thus ignores essential structure in the SGS, and
any link between runs and morphisms is not immediately clear. Because of

this, we will take the view that as formulated, this notion of `run' is not quite
adequate for the analysis of these systems. It needs re�ning, bringing it nearer
to the mathematical notion, not just for �sthetic reasons but also because it
does not do the job for which it was `designed'! It does work well in some
situations however. If we, for the moment, write x! x0 to mean x �i x

0 for

some i and then extend to the corresponding category (reexive, transitive
closure) to give x!� y, then (cf. again [19], p. 60), for hypercubes with more

than one agent, any two states are related via !�.

Lemma 3.1

If M is a hypercube SGS associated to a distributed system with more than

one agent, then given any states s; t in S, s!� t.

Proof

If s = (s1; : : : ; sn) and t = (t1; : : : ; tn) then

(s1; : : : ; sn)! (t1; s2; : : : ; sn)! (t1; : : : ; tn):

The �rst arrow comes from �i, and i 6= 1, the second from �1. �

Of course, this argument may fail if (S;L) is not a hypercube as simple
examples show.
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Proposition 3.2

If M is a Kripke frame or SGS, considered, as above, as a groupoid atlas, then

any weak morphism

f : L!M

for which f(n) = f(0) for all n < 0, determines a run s(i) = f(i) in S �

Often the form of the set of global states is not speci�ed that precisely.

Sometimes local transition functions are used so that the Li are transformed

into \local transition systems" with the actions involved being coupled with

each other (cf. for instance, the VSK systems of Wooldridge and Lomuscio

[18]). The feasible runs would seem in any case to be those for which s(i+1)

is reachable from s(i) so there is some set of transitions in the various agents

that leads from s(i) to s(i+1), or precisely:

a run (s(k)) is feasible if for each k = 1; 2; : : : ; s(k) !� s(k+1):

Of course, hidden within this notion is a certain potential for concurrency.

We do not specify in (s(k)) how s(k) becomes s(k+1) except that by some set

of local transitions within the state spaces of the di�erent agents, components

of s(k) have changed to become those of s(k+1) and at all times the resulting

intermediate list of local states is a valid one, i.e. is a list of global states
within S.

Looking at �ner granularity, assume that s(k) and s(k+1) are not linked
directly, i.e. s(k) !� s(k+1) but it is not the case that s(k) ! s(k+1).

If s, t are two states in (S;L), we will write

HC(s; t) = fx 2
Y

L : for each i; 1 � i � n; xi = si or tig

and say this is the hypercube interval between s and t .

Proposition 3.3

Suppose (s(k)) is a run in M = (S;L). If HC(s(k); s(k+1)) � S for each k,

then there is a morphism

f : L!M

of groupoid atlases satisfying f(n) = s(1), n � 2

f(2k) = s(k); k = 1; 2; : : :

�

In other words, if at each stage, the hypercube interval between adjacent

states of a run is contained in S, we can replace (s(k)) by a curve. Within each

hypercube interval, there are many possible concurrent paths between adja-
cent states of the run. We therefore have not only that a `curve' can be given

to represent the run, but the di�erent representing curves are in some sense
`homotopic', i.e. equivalent via deformations (or interleaving equivalence). Of

course, the condition is far from being necessary. If each s(k) !� s(k+1), we
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could �nd a curve, but would not be able to specify it as closely. The inter-

mediate `odd' points of the curve can be given, up to interleaving equivalence,

as in the earlier lemma.

The precise de�nition of a curve in a groupoid atlas is given as follows:

If A is a groupoid atlas, a (strong) curve in A is a (strong) morphism of

groupoid atlases

f : L! A;

so for each n, one gets a � 2 �A and f(im) : f(n)! f(n+1) in (GA)�, where

we have written f(im) for fG(im), where im : m! m+ 1 in (XL)m: N.B. the

� and g� are part of the speci�cation of the strong curve. The corresponding

weak notion of curve only asks for the existence of � and g�, but does not

specify them

A (free) path in A will be a curve that stabilises to a constant value on

both its left and right ends, i.e. it is an f : L! A such that there are integers

N� � N+ with the property that

for all n � N�, f(n) = f(N�),

for all n � N+, f(n) = f(N+),
Of more use for modelling runs is the notion of a based path (i.e. when a

basepoint / initial state is speci�ed, but no �nal point is mentioned). Given
a basepoint a0 2 A, a based path in (A; a0) is a `free' path that stabilises to
a0 on the left, i.e. f(N�) = a0. We can similarly de�ne a based curve by
requiring merely left stabilisation at a0. Runs correspond to such curves in
which N� = 1.

4 Objects of Curves, and Paths

Within the interpreted systems approach to MASs, a set R of runs is often
considered as a model (see, for example, [11] or [12]). The equivalence frame
structure given to R may involve the local history of each processor / agent
or merely the various `points' visited at the same time; see the discussion in

[19] p.39. The groupoid atlas viewpoint provides a local frame structure on R

that is canonical, but, of course, that will need evaluating for its relevance to
the problems of MASs.

Let A be a groupoid atlas with coordinate system �A, underlying set XA,

etc, as before. We will write Curves(A) for the set of curves in A.

If f : L ! A is a curve in A, a function � : jLj ! �A frames f if � is a

function such that

(i) for m 2 jLj, f(m) 2 (XA)�(m);
(ii) for m 2 jLj, there is a b in �A with b � �(m), b � �(m + 1) and a
f(im) : f(m)! f(m+ 1) in (GA)b.

Remarks:

(a) The intuition is that the local set containing f in Curves(A) will consist

of curves passing through the same local sets (XA)� in the same sequence.
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The idea of a framing of f is that � picks out the local sets (XA)�(m) that

receive f(m). Condition (ii) then ensures that these choices are compatible

with the requirement that f be a curve.

(b) We have used several times the groupoid atlas associated to a Kripke frame

or SGS. The set � in that case was just the set of agents with the discrete

order. This use of the discrete order is too simplistic in general as it hides the

relationships between the agents. Mathematically this simple model breaks

down �rst on considering framings, since the condition (ii) implies b � �(m)

and b � �(m+1) so �(m) = �(m+1) if the order is discrete, but then if � is to

frame f , f must never have left a single equivalence class of the Kripke frame

which was not the intention! To avoid this silly restriction, we can replace the

set of agents by the �nite non-empty subsets of that set.

Kripke frames to Groupoid Atlases revisited.

Suppose F = (X;�1; : : : ;�n) is a Kripke frame. De�ne a new groupoid

atlas A0(F ) by :

jXA0(F )j = X, the underlying set of F ;

�A0(F ) = the set of non-empty subsets of A ordered by �, i.e. � � � if
� � �;

jXA0(F )j� = X, for all � 2 �A0(F )

and

��=
T
f�i: i 2 �g, i.e. the equivalence relation

x �� y ,
^

i2�

(x �i y)

Remark.

We can think of A0(F ) as a `subdivision' of A(F ), rather like the barycentric
subdivision of a simplicial complex, a construction to which it is very closely
related. To any global action or groupoid atlas, one can assign two simplicial
complexes; see Appendix. These encode valuable geometric information about
the system and relate to the interaction of the di�erent equivalence classes.

(Fuller details can be found in [3].) Our subdivision above makes no signi�cant

change to the homotopy information encoded in the corresponding complexes.

This subdivision is just what is needed to encode runs in `framings'. Log-
ically, it seems to correspond to the enrichment of our language with `group
common knowledge' operators K�, � � A, or dually `group possibility' oper-

ators M�, where

K�� =
^

i2�

Ki�; etc.

Here it should be possible to adapt the `subdivision' to reect more closely the
geometry of the distributed system. For instance, not all �nite sets of agents

might be included as there might be no direct link between certain of them.
The clique complexes used in analyses of scheduling problems in distributed

systems and in the theory of traces may be relevant here.
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Now let A be a general groupoid atlas and let AL be the following data for

a groupoid atlas:

jXAL j = Curves(A);

�AL = f� : jLj ! �A j � frames some curve f in Ag

For � 2 �AL,

(XAL)� = ff 2 Curves(A) j � frames fg

(GAL)� = f(�m) j source(�m) 2 (XAL)�; �m 2 (GAL)�(m)g

Note that it is easy to see that target(�m) is also in (XAL)� in this situation

(see lemma in section 4 of [3]).

Finally de�ne

� � �0 , �(m) � �0(m) for all m 2 jLj:

Proposition 4.1

With the above notation, AL is a groupoid atlas. If A is a global action, then

so is AL . �

It is natural to ask if A = A0(F ) for F a Kripke frame, is AL associated
to some Kripke frame. In general the answer would seem to be no as there

will be more than one local `patch', (XAL)�, in this case and the index set
is that of all framings. In fact this structure is not obviously in the MAS
literature. Each framing � of a curve f in A0(F ) de�nes a sequence (�(m))
of �nite non-empty subsets of the set of agents, satisfying the Kripke frame
version of condition (ii) namely that if m 2 jLj, there is a b with b � �(m),

b � �(m+ 1) and f(m) �b f(m + 1). In other words b � �(m) \ �(m+ 1)
and f(m) �b f(m + 1). For a given set of runs, the framings may reect
a possiblility of some modularisation as they indicate which agents are idle
during the run. This raises an interesting problem of using the framings to

optimise use of resources.

Each of the local groupoids in A0(F )L is an equivalence relation on that

local patch. Given f , f 0 2 (XA0(F ))�, so � frames both f and f 0, they will be

equivalent if

f(m) ��(m) f
0(m)

for each m. These linked pairs together with the fact that f(m) �b f(m+ 1)

and f 0(m) �b0 f
0(m+1), for some b; b0 � �(m)\�(m+1) give a pattern rather

like a ladder of linked `squares'. This is more or less a `homotopy' between f
and f 0 .
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Remark

Perhaps a framing can best be thought of as the sequence of those subsets

of A involved in a computation at each instant. Thus a particular agent may

be idle throughout a run if no framing of that run/curve involves that agent.

Sometimes more than one agent is involved in a transition at a particular

time step, so if, at time m, the corresponding set of agents is �(m), this

interprets as saying that the two global states f(m) and f(m+ 1) are �(m)-

equivalent, i.e. f(m) �i f(m + 1) for all the agents i in �(m). (In a SGS,

which we can imagine as a hypercube for simplicity, then, for example, if

n = 5, f(m) = (s1; s2; s3; s4; s5), and f(m) = (s1; s2; s3; s
0
4; s

0
5) are f1; 2; 3g-

equivalent.)

The notion of homotopy between based curves should correspond to that

of a path in AL, where we do need `path' not curve so that it stabilises to

the given two curves at the two `ends' of that path. We will not explore this

here due to lack of space. The basics of a general treatment of homotopy for

groupoid atlases can be found in [3] and in more detail in [20] (from the point

of view of a cylinder based theory as against a cocylinder theory as would be
natural from the viewpoint we have explored here). Another extremely useful
source for this type of theory is [10].

Cartesian closedness?

Clearly the object of paths as de�ned corresponds to a mapping object
with domain L. This raises the important but di�cult question of the carte-

sian closedness of the category of groupoid atlases and more importantly of
the part of it corresponding to the Kripke frames. Bak has shown [1,2] that
global actions do allow a function space construction that is well behaved on
a large class of examples. A closely related construction occurs with equilog-
ical spaces as de�ned by Scott, [23]. These are T0-spaces together with an
equivalence relation. Kripke equivalence frames for a `single agent system'

give equilogical spaces and equilogical spaces form a cartesian closed category.

No analogues of equilogical spaces for systems of n-agents seem to have been
developed. Similarly no analogues are known where di�erent models have
di�erent numbers of `agents'. Yet from a logical point of view and for an an

adequate logical language to handle multiagent systems, some setting in which

a cartesian closed category structure is available is clearly desirable.

5 Conclusions, Critique and Future Directions

In this paper, I have tried to examine some of the methodological links be-

tween the theory of global actions / groupoid atlases and the general context

of combinatorial models for studying multiagent systems. Within the space
available, no �rm conclusions can be reached as to the potential usefulness

of these links, but the possibility of a better structured object of runs in a
distributed system has been shown that extends the Kripke frames of runs
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considered in the MAS literature.

What has not been done? It is clear that a more detailed examination of

homotopy is required, especially with respect to its interpretation in terms of

computation. The problem of cartesian closedness has been noted, but, delib-

erately, set aside due to lack of space and �rm knowledge. The whole question

of the relationship between these constructions and bounded morphisms (and

thus with the logic) has also been set aside. It is conjectured that bounded

morphisms will form a (subclass of the) class of `�brations' in the homotopy

theory of this context, since, for a bounded morphism f : A ! B of frames,

for each i, the condition corresponds to being a �bration of groupoids.

Finally, but crucially, the computational infeasibility of S5n suggests that

a separate study using S4n, probably in an intuitionistic form, cf. [8,9], will

be worth doing. This will presumably need a version of directed homotopy,

but which variant of the many available, cf. [7], will best suit is not yet clear.

(The ideas in [10] are also very relevant here.) Perhaps then, some deeper

evaluation of how the geometry of a distributed system inuences its inherent

logic and thus its computational ability will become possible.
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Appendix : Simplicial complexes from Kripke frames

The two constructions mentioned in the main text are classical, dating in their

initial forms to the embryonic algebraic topology of the 1920s and 30s. The

local equivalence classes of a Kripke frame give a covering of the underlying

set, X of the frame. It thus gives a relation fromX to the set Y of equivalence

classes. Abstracting, let R � X �Y be a relation. (In our case xRy is exactly

x 2 y, where y is an equivalence class for any of the equivalence relations).

Using a formulation due to Dowker, [5], any such relation determines two

simplicial complexes

(i) K = KR :

- the set of vertices is the set, Y ;

- p-simplex of K is a set fy0; � � � ; ypg � Y such that there is some

x 2 X with xRyj for j = 0; 1; � � � ; p.

(ii) L = LR :

- the set of vertices is the set X;

- a p-simplex of K is a set fx0; � � � ; xpg � X such that there is some
y 2 Y with xiRy for i = 0; 1; � � � ; p.

These are, in some sense, dual constructions. In the topological context, KR

is often called the Nerve of the covering and LR the Vietoris complex.

As a simple example, let X = f1; 2; : : : ; 6g,
a �1 b if a� b is a multiple of 2;

a �2 b if a� b is a multiple of 3.

This corresponds to a hypercube, L1 � L2, with L1 having 3 elements, L2

having 2. Y has 5 elements. X has 6.

KR is a bipartite graph:

f1; 4g

K
K
K
K
K
K
K
K
K

XXX
XXX

XXX
XXX

XXX
XXX

XXX
XXX

XXX
XXX

X f3; 6g

s
s
s
s
s
s
s
s
s

K
K
K
K
K
K
K
K
K

f2; 5g

fff
fff

fff
fff

fff
fff

fff
fff

fff
fff

f

s
s
s
s
s
s
s
s
s

f1; 3; 5g f2; 4; 6g

LR is a prism with two �lled triangular faces:

4

1

3

5

2

6
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They have both the homotopy type of a �gure 8. (For instance in the

prism, shrink the triangles to points and then shrink one vertical edge.)

The main result of Dowker's paper was that for an arbitrary relationR, the

two complexes have the same homotopy type. The question of the inuence

of the homotopy type of these complexes on the complexity of searches in the

state space of the original MAS seems to be a very interesting one.
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Abstract

We introduce a real-time extension of the PV language: A timed PV program con-

sists of a number of timed automata which synchronize by locking and releasing

common resources. We give a geometric semantics to such programs in terms of

local po-spaces, and we lay out the foundations for making the established geometric

techniques available for detecting deadlocks and unsafe con�gurations in timed PV

programs.

1 Introduction

The PV formal language was introduced by Dijkstra in [3] and has since been

applied in various areas of veri�cation. Already in [3], a geometric understand-

ing of PV programs is developed, in terms of progress graphs. In [6], these ideas

are pursued further to develop an algorithm which is geometric in spirit, to

detect deadlocks and unsafe states in simple PV programs without loops and

branching.

The case of PV programs with loops is treated in [5] and [7], and in [5] it is

noted that treating branching is easier than treating looping, hence the geo-

metric techniques are applicable to the full calculus of untimed PV programs.

Dating back to [3], a PV process is commonly de�ned to be a regular ex-

pression on an alphabet fPa; Va j a 2 Og, subject to certain restrictions. Here

O is a �nite set of resources which can be locked (P) or released (V) by the

processes, and a PV program then consists of a number of PV processes which

synchronize by locking and releasing the common resources.

In this article we consider �nite PV automata rather than PV processes, i.e.

�nite automata on the alphabet f�; Pa; Va j a 2 Og. This makes the transition

to geometric objects much more simple than in [7], and it also enables us

to introduce time into the PV formalism, by passing from �nite automata to

timed automata.

After a review of the geometric realization technique for untimed PV pro-

grams from [5] and [7], rewritten to treat PV automata instead of PV processes,

c2002 Published by Elsevier Science B. V.

56



Fahrenberg

in section 2, we introduce our timed PV formalism in sections 3 and 4. In sec-

tion 5 we de�ne a geometric realization mapping from timed PV programs to

local po-spaces, and in section 6 we elaborate on how this geometric realization

technique could be applied to yield results similar to the ones of [5,6,7].

This article is based on the author's Master's thesis [4]; note however that

notation and terminology have been changed slightly.

2 Untimed PV Programs

Throughout this article, we �x a �nite set O of resources, which can be locked

(P) and released (V) by the PV automata in question, and a semaphoricity

mapping s : O ! N+. We also let � = f�; Pa; Va j a 2 Og.

2.1 PV Automata

A PV automaton is a �nite automaton P = (QP ; q
0
P ; EP ; fP ; LP ) on the alpha-

bet �. Here QP is a �nite set of locations, q0P 2 QP is the initial location, EP

is a �nite set of edges, fP : EP ! QP�QP is the edge attaching mapping, and

LP : EP ! � is the edge labeling. For the mapping fP , if fP (e) = (q1; q2), we

will write q1 = f0P (e), q2 = f1P (e). If no confusion is possible, we will omit the

indices P . Note that we allow multiple edges between any pair of locations.

In a PV automaton, we declare all locations to be accepting. Hence the

language of a PV automaton (the set of its possible executions) is pre�x-closed.

To justify our approach, we show that the formalism of [7] embeds nicely

into it: [7] is concerned with (non-branching) PV processes, which are +-free

regular expressions on the set fPa; Va j a 2 Og. These are given the semantics

that the set of (possible) executions of a PV process is the set of pre�xes of the

regular language generated by the expression. Hence the transition from PV

processes to PV automata is achieved by �rst translating the regular expression

to a �nite automaton generating the same language, and then declaring all

locations of the automaton to be accepting.

We introduce a successor relation � � Q � Q by letting q1 � q2 if and

only if q1 = q2 or there exists e 2 E such that f(e) = (q1; q2). Without loss of

generality we can assume our PV automata to be connected in the sense that

there exists a path q0 � � � � � q for any q 2 Q.

PV automata are subject to a well-behavedness condition: During any of

their executions, resources are only to be released if they have been previously

locked, and once they have been locked, they cannot be locked again without

being released �rst. Hence execution sequences like, e.g., Va:Pa and Pa:Pa are

to be disallowed.

Imposing the well-behavedness condition on a given PV automaton P =

(Q; q0; E; f; L) is achieved by associating with it a resource-use characteristics

mapping r : O �Q!Zas follows:

(i) Let ra(q
0) = 0 for all a 2 O.

2
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Pb

Va

Pa

Pa

Pc

Vc

Pb

Pa

Va

Pa

Pc

Vc

Pa

Pc

Vc

Pb

Vb

Pc

Pa

Fig. 1. Examples of resource-use conicts. On the left, the shaded location has

a conict in rb: Coming from the left, rb = 0, coming from above, rb = 1. The

conict is resolved by splitting up the o�ending location in the second automaton.

The automaton on the right has an unresolvable resource-use conict.

(ii) For all e 2 E, f(e) = (q1; q2), such that ra(q1) has been de�ned and ra(q2)

has not for some a 2 O, let

ra(q2) =

8><
>:

ra(q1) + 1 if L(e) = Pa;

ra(q1)� 1 if L(e) = Va;

ra(q1) else

for all a 2 O.

Step (ii) is to be repeated until no more such e exist. As P is connected,

the algorithm terminates with resource-use characteristics assigned to every

location in Q. We assume that P has no resource-use conicts, that is, the

resource-use characteristics of a location is independent of which path one

takes to it from q0. This condition can easily be veri�ed within the above al-

gorithm, and some of the conicts can be resolved by splitting up the o�ending

locations, cf. �gure 1.

With resource-use characteristics assigned to every location, the automa-

ton is said to be well-behaved if and only if ra(q) 2 f0; 1g for all a 2 O,

q 2 Q.

2.2 PV Programs

A PV program is a �nite set P = fP1; : : : ; Png of well-behaved PV automata.

The semantics of a PV program is, as in [7], given by associating a transition

system with it:

A con�guration of P is a function � : P !
Sn

i=1QPi
mapping each au-

tomaton in P to one of its locations, i.e. such that �Pi 2 QPi
for all Pi 2 P.

The initial con�guration is �0 given by �0Pi = q0Pi
for all Pi 2 P. We transfer

the successor relation � to con�gurations of PV programs by letting �1 � �2
if and only if �1Pi �Pi

�2Pi for all Pi 2 P, and we let �� denote the transitive

3
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closure of �.

The resource-use characteristics of a con�guration � is ra(�) =
Pn

i=1 ra(�Pi),

i.e. ra(�) is the number of locks the processes together hold on resource a in

the con�guration �.

A con�guration � is allowed i� ra(�) � s(a). If �1 � �2 and both �1
and �2 are allowed, then �1 � �2 is an allowed computation step. An allowed

computation step is denoted �1 7! �2; the transitive closure of 7! we indicate

by 7!�.

If ConaP denotes the set of allowed con�gurations of the PV program P,

then the transition system (ConaP; �0; 7!) gives the semantics of P. Note

that 7! = � \ (Cona�Cona).

2.3 Geometric Realization

The underlying digraph (Q;E; f) of a PV automaton P = (Q; q0; E; f; L) can

be understood as a geometric object: The nodes in Q are discrete points, and

the edges in E are directed unit intervals ~I. This assigns a local po-space to

the digraph (Q;E; f) called its geometric realization and denoted �gP .

We carry over the resource-use characteristics ra to the geometric realiza-

tion as follows: Given x 2 �gP , let

rga(x) =

8><
>:

ra(x) if x 2 Q;

ra(f
1(e)) if x 2 e 2 E and L(e) = Pa;

ra(f
0(e)) else:

If x is a point on an edge, the above means that ra(x) is 1 as soon as ra
equals 1 in one of the endpoints of the edge, that is, any locations in which

the automaton holds a lock on some resource are \fattened up" such that it

also holds the lock on the edges incident with these locations.

The geometric realization of a PV program P = fP1; : : : ; Png is the prod-

uct space �gP =
Qn

i=1
�gPi, which as a product of local po-spaces again

is a local po-space. Resource-use characteristics is carried over to �gP by

letting rga(x) =
Pn

i=1
rga(�i x), where �i x = xi is projection on the ith coor-

dinate. Con�gurations of P are mapped into �gP by declaring that �g� =

(�P1; : : : ; �Pn) 2 �gP.

A point x 2 �gP is said to be allowed if rga(x) � s(a) for all a 2 O. It is

straightforward to see that rga(�g�) = ra(�) for all con�gurations �, hence �

is allowed if and only if �g� is allowed. The set of all allowed points in �gP

is denoted �a
gP. It can be shown that �gP is a compact local po-space, and

that �a
gP is a closed subspace of �gP.

If E � �gP � �gP denotes the local order 1 on the local po-space �gP,

it is easy to see that �1 �
� �2 if and only if �g�1 E �g�2. The following

1 Compare [9, def. 26] for a de�nition of local order.

4
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proposition, where x 4� y denotes the property that there exists a dipath from

x to y in �a
gP, is much more di�cult to prove and constitutes the core of the

applicability of the geometric realization technique for untimed PV programs.

Proposition 2.1 Given two con�gurations �1, �2, then �1 7!
� �2 if and only

if �g�1 4
� �g�2, and as a consequence, �1 is a deadlock or unsafe if and only

if �g�1 is a deadlock or unsafe.

2.4 Linear PV Programs

A PV automaton P = (Q; q0; E; f; L) is said to be linear if there exist labelings

Q = (q0; : : : ; qm), E = (e1; : : : ; em), with q0 = q0, such that f(ej) = (qj�1; qj)

for all j = 1; : : : ;m. Linear PV automata correspond to the loopless processes

of [7].

A PV program is called linear if all the automata that constitute it are

linear. The geometric realization of a linear PV program is a (global) po-

space, and in [6], an e�cient algorithm is developed for �nding deadlocks and

unsafe points in the geometric realization of linear PV programs.

In [5], a technique called delooping is introduced, which makes the algo-

rithm of [6] applicable to PV programs with loops. This is done by associating

with a looping PV program a number of linear PV programs such that the

unsafe region of the original program can be found as the intersection of the

unsafe regions of the linear programs.

3 Timed PV Automata

As hinted in the introduction, we de�ne a timed PV automaton to be a timed

automaton P = (Q; q0; E; f; L;C; '; �) on the alphabet � = f�; Pa; Va j a 2

Og. In this expression, Q, q0, E, f , and L are as in the untimed case, C is a

�nite set of clocks, ' : Q[E ! �(C) is a mapping assigning a clock constraint

to each location and every edge, and � : E ! 2C assigns a set of clocks to be

reset to every edge.

As before, all locations are accepting. For clock constraints, clock valua-

tions, and valuation resets we use the terminology of [1], except that we also

allow constraints on di�erences of clocks.

The following is standard in the timed automata formalism, see e.g. [1];

we state it here only to �x notation: A state of a timed PV automaton P is

an element (q; v) of the set S = Q�RC
�0. A state (q; v) is allowed if v � '(q).

If (q1; v1), (q2; v2) are allowed states, then (q1; v1) 7! (q2; v2) if either

� q2 = q1, and there exists t 2 R�0 such that v2 = v1+ t and for all 0 � t0 � t,

v + t0 � '(q1), or

� there is e 2 E such that f(e) = (q1; q2), v1 � '(e), and v2 = v1[�(e) 0].

To maintain analogy with the untimed case, we need to de�ne a \successor"

relation � on S such that the allowed-successor relation 7! is a subset of �.

5
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This is done by declaring that (q1; v1) � (q2; v2) if there is t 2 R�0 such that

q2 = q1 and v2 = v1 + t, or there is e 2 E such that f(e) = (q1; q2) and v2 =

v1[�(e) 0]. Note that � coincides with 7! if and only if '(Q[E) = ftrueg,

i.e. if the automaton has no timing constraints at all.

The initial state of the timed PV automaton P is (q0; v0) 2 S, where v0 is

the clock valuation given by v0(c) = 0 for all c 2 C. We demand the initial

state to be allowed; denoting the set of allowed states by Sa, the semantics of

P is given by the transition system (Sa; 7!; (q0; v0)).

We introduce the resource-use characteristics mapping r : O � Q ! Z

as in the untimed case; this also gives us a notion of well-behaved timed PV

automata. The mapping is extended to the states of P by decreeing that

ra(q; v) = ra(q).

4 Timed PV Programs

A timed PV program is a �nite set P = fP1; : : : ; Png of well-behaved timed PV

automata. The semantics of a timed PV program is again given by introducing

a set of con�gurations and de�ning a transition system on it:

A con�guration of P is a mapping � : P !
Sn

i=1 SPi
such that �Pi 2 SPi

for all Pi 2 P. The initial con�guration �
0 is given by �0Pi = (q0Pi

; v0) for all

Pi 2 P. Again we de�ne a successor relation � on con�gurations by declaring

that �1 � �2 if and only if �1Pi �Pi
�2Pi for all Pi 2 P.

Also as before, the resource-use characteristics of a con�guration � is

ra(�) =
Pn

i=1 ra(�Pi). � is allowed if �Pi is allowed in SPi
for all Pi 2 P

and ra(�) � s(a) for all a 2 O. As initial states of timed PV automata are

de�ned to be allowed and ra(�
0) = 0 for all a 2 O, the initial con�guration �0

is allowed itself.

A successor relation �1 � �2 is an allowed computation step, again denoted

�1 7! �2, if �1, �2 are allowed and �1Pi 7!Pi
�2Pi for all Pi 2 P. Again letting

ConaP denote the set of allowed con�gurations of P, the semantics of P is

given by the transition system (ConaP; �0; 7!).

Note that, compared to the untimed case, the de�nition of allowed con-

�gurations and allowed computations now has an extra component stemming

from the individual automata the program is composed of.

5 Geometric Realization

To obtain an analogy of the geometric realization notion for timed PV pro-

grams, we have to apply the technique of section 2.3 twice. The geometric

realization of a single (untimed) PV automaton was simply a digraph, i.e. a

one-dimensional local po-space, whereas the geometric realization of a timed

PV automaton with d clocks will be a (d+1)-dimensional local po-space. Also,

we will have the notion of allowed and forbidden points already for the geo-

metric realization of timed PV automata, not only for the programs.

6
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Given a set C = fc1; : : : ; cdg of clocks, there is a bijective correspondence

between clock valuations in RC
�0 and points of the space Rd

�0 given by ~v =

(v(c1); : : : ; v(cd)). Also, given a clock constraint ' 2 �(C), we can de�ne

an associated subset ~' 2 Rd
�0|sometimes called a clock zone|by ~' = f~v j

v � 'g. Dividing out logical equivalence in �(C), the mapping ' 7! ~' also

becomes bijective. With a valuation reset v[D 0] we associate a projection

mapping �D : Rd
�0 ! R

d
�0 setting all coordinates xi with ci 2 D to 0 and

leaving the others untouched. For later use we record the following basic facts

about the interplay between these three mappings:

Lemma 5.1 Given v 2 RC
�0, D � C, and ' 2 �(C), then

� v � ' if and only if ~v 2 ~',

� (v[D 0])� = �D(~v), and

� v[D 0] � ' if and only if ~v 2 ��1
D ( ~').

Proof. The �rst two assertions are clear from the de�nitions. As for the last,

v[D 0] � ' if and only if (v[D 0])� 2 ~', which in turn is the case if and

only if �D(~v) 2 ~', and the latter is equivalent to ~v 2 ��1
D ( ~'). 2

5.1 Timed PV Automata

The geometric realization of a timed PV automaton P = (Q; q0; E; f; L;C; '; �),

with C = fc1; : : : ; cdg, is the space �gP = (Q;E; f) � ~Rd
�0, where (Q;E; f)

again is to be understood as a local po-space, and ~Rd
�0 is the space R�0 with

the standard order

(x1; : : : ; xd) � (y1; : : : ; yd) i� xi � yi for all i = 1; : : : ; d:

�gP itself is a local po-space, however unless d = 0, it is not compact. We

call (Q;E; f) the location space, ~Rd
�0 the clock space.

Given a state (q; v) 2 S, its geometric realization is the point (q; ~v) 2 �gP .

A point (x; ~v) 2 �gP is said to be allowed if either x 2 Q and ~v 2 ~'(x), or

x 2 e for some e 2 E and

~v 2 ~'(f0(e)) \ ~'(e) \ ��1
�(e)

( ~'(f1(e))): (1)

The following proposition, where �a
gP � �gP denotes the set of allowed

points in �gP , shows that our de�nition of �a
gP is the \right" one:

Proposition 5.2 Given (x; ~v) 2 �gP , then (x; ~v) 2 �a
gP if and only if, either

x 2 Q and v � '(x), or x 2 e for some e 2 E and

� v � '(f0(e)),

� v � '(e), and

� v[�(e) 0] � '(f1(e)).

7
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Proof. The case x 2 Q is trivial. If x 2 e for some e 2 E, the �rst two items

correspond to ~v 2 ~'(f0(e)) \ ~'(e) in equation (1) above. Hence we are left

with showing that ~v 2 ��1

�(e)
( ~'(f1(e))) if and only if v[�(e)  0] � '(f1(e)),

which however is clear by the last item of lemma 5.1. 2

Resource-use characteristics is de�ned on �gP by �rst introducing it on

the space (Q;E; f) as in section 2.3, and then \fattening it up" by declaring

that ra(x; ~v) = ra(x).

5.2 Timed PV Programs

The geometric realization of a timed PV program P = fP1; : : : ; Png is the

local po-space �gP =
Qn

i=1
�gPi. For resource-use characteristics we have to

change the de�nition of the untimed case, as now the components of �gP are

not (one-dimensional) digraphs but multi-dimensional local po-spaces. Hence

now we have to project on subspaces rather than coordinates; given x 2 �gP,

we set

rga(x) =

nX
i=1

rga( ix);

where  i is projection on the ith subspace �gPi of �gP. However as r
g
a(�j x) =

0 for all a 2 O if �j is projection on a time coordinate, the sum can as well be

taken over all projections on the coordinates.

Con�gurations are again mapped into �gP by de�ning �g� = (�P1; : : : ; �Pn),

where the correspondence between states (q; v) and points (q; ~v) is implicit.

As for allowed points in �gP, we again have the duality between points

being forbidden due to over-use of resources and points being forbidden in the

respective timed PV automata: We say that a point x 2 �gP is allowed if  ix

is allowed in all �gPi and r
g
a(x) � s(a) for all a 2 O.

Again we have rga(�g�) = ra(�), hence by proposition 5.2, � is allowed if

and only if �g� is allowed.

6 Applying the Geometric Realization

So far we have introduced a timed PV formalism and de�ned a geometric

realization function in close analogy to what had been done previously for

untimed PV programs. To actually make our proposed geometric realization

technique work, we should provide an analog of proposition 2.1 of section 2.3:

Given con�gurations �1, �2, there should be an (allowed) execution path from

�1 to �2 if and only if there is a dipath (in �a
g) from �g�1 to �g�2. In the

present section we shall see that this is not the case, and we shall propose

di�erent ways to handle the problems encountered.

For sake of simplicity, we con�ne ourselves to treat only timed PV automata

in this section; let P be a given timed PV automaton with d clocks.

8
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m
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c

wait

reset

q0 q1 q2 q3 q4 q5

Fig. 2. A typical execution path in a timed automaton with one clock. As the clock

is reset during the transition from q1 to q2, the execution path is not continuous.

6.1 The Reset Problem

An essential feature of timed automata is their ability to reset clocks. Indeed,

if the timed automaton in question never resets its clocks, then all clocks have

the same value in any reachable state, hence we might as well have only one

clock|and the results of [8] imply that a timed automaton with one clock is

strictly less expressive than one with two or more clocks.

However if clocks can be reset, there exist execution paths which are neither

continuous nor directed, cf. �gure 2.

This problem can be solved in several di�erent ways. A �rst attempt is to

simply change the order relation on �gP , such that now

(p; x1; : : : ; xd) � (q; y1; : : : ; yd) i� p � q and 8i : (xi � yi or yi = 0):

This makes execution paths directed, but still not continuous; however it

also means that �gP is not a local po-space anymore: Given any point x =

(q; 0; : : : ; 0), there exists no neighbourhood of x in which � is a partial order.

This last problem might be avoided by de�ning the new order relation in

another way, but execution paths are still not continuous.

Our second proposal is to identify certain points in �gP : If me, for any

e 2 E, denotes the midpoint of e (where e is seen as a directed unit interval),

de�ne an equivalence relation � on �gP by

(me; ~v) � (me; ��(e)(~v))

for any e 2 E, ~v 2 Rd
�0, and pass to the quotient �gP=�. Certainly execution

paths in �gP=� are continuous (if the convention is applied that clocks are

reset at the midpoints of edges); we believe that �gP=� is a local po-space,

and that execution paths in �gP=� are dipaths.

This approach has the caveat that �gP=�, even though it might be a local

po-space, is a rather involved space which is likely to be di�cult to handle

in applications. A third way to attack this problem is to enhance the timed

automata formalism such that the values of certain clocks can remain zero

9
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c2

c1

x

forbidden

y

Fig. 3. An example of an execution path through a clock space constituted of two

clocks. Both x and y are allowed, and there is a dipath from x to y, yet there is no

execution path from x to y. In fact, x is a deadlock, as is y.

while the others are already started, an approach we will detail in section 6.3.

6.2 The Global-Time Problem

In the timed automata formalism, time is global, i.e. all clocks proceed at the

same speed. This implies that execution paths run diagonally through the

clock space, hence not all dipaths correspond to execution paths, cf. �gure 3.

This situation can again be remedied by changing the order relation on

�gP , the new one being

(p; x1; : : : ; xd) � (q; y1; : : : ; yd) i� p � q;

8i : xi � yi; and

y1 � x1 = � � � = yd � xd:

With this order relation, all dipaths are execution paths. However this ap-

proach �ts badly with our solution to the Reset Problem proposed in the next

section.

If we want to stay with the standard order on Rd
�0, there is no other

solution to this problem than abandoning the global-time approach altogether

and consider local-time formalisms instead: As long as at least some of the

clocks are synchronized with each other, there will be dipaths which do not

correspond to execution paths.

6.3 Linear Timed PV Automata

In analogy to the approach in the untimed case, we should develop techniques

to �nd deadlocks and unsafe con�gurations in linear timed PV programs, and

we should attempt to transfer the delooping techniques of [5] to the timed

case. In this paper we concentrate on the former; the latter is left open for

future research.

As in the untimed case, a timed PV automaton P = (Q; q0; E; f; L;C; '; �)

is said to be linear if there exist labelings Q = (q0; : : : ; qm), E = (e1; : : : ; em),

10
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with q0 = q0, such that f(ej) = (qj�1; qj) for all j = 1; : : : ;m. The geometric

realization of a linear timed PV automaton is a po-space.

For linear timed PV automata, the Reset Problem of section 6.1 has a third

and much more elegant solution: to avoid resets altogether by introducing new

clocks. Let P be the automaton from above, ej one of its edges, and ck one of

its clocks, and assume that ck 2 �(ej). Introduce a new clock ~ck;j, and in all

invariants '(qi), '(ei+1), i � j, replace any occurrence of ck by ~ck;j . The clock

~ck;j is to be started only when location qj is reached, i.e. its value remains 0

before qj; it is clear that this replacement does not alter the semantics of P .

After all resets have been resolved by the procedure above, we have an

automaton without resets, but instead with a new start function � : C ! Q,

assigning to every clock the location in which it is started. In the geometric

realization of this new automaton, execution paths are dipaths.

6.4 Deadlocks and Unsafe Con�gurations

In the untimed case, the notions of deadlock and unsafe con�guration are very

intuitive: A non-�nal con�guration � is a deadlock if and only if there does

not exist any �0 such that � 7! �0, and � is unsafe if and only if no �nal

con�guration can be reached from �, i.e. if "� \ F = ;. Here F is the set of

�nal con�gurations, and "� = f�0 j � 7!� �0g.

For linear untimed PV programs, these notions are connected in that a

con�guration is unsafe if and only if any execution from it reaches a deadlock. 2

The algorithm of [6] �nds all unsafe con�gurations in a given linear untimed

PV program by recursively �nding all deadlocks and \tracing them back" to

�nd their associated unsafe con�gurations.

For timed PV automata the situation is somewhat more complicated. First,

there are two kinds of deadlocks: Applying the de�nition from above gives a

notion of state deadlock ; a state is a state deadlock if no location switch can

occur and time cannot increase. However we also need a second notion; a

location deadlock is a state in which time is permitted to increase, but at no

reachable future state a location switch is possible. Hence the automaton is

locked in the present location, but time might increase inde�nitely:

De�nition 6.1 A state (q; v) 2 Q� RC
�0 is called a location deadlock if, for

all t 2 R�0 such that (q; v) 7! (q; v+ t) and for all e 2 E such that f0(e) = q,

� (q; v + t) is non-�nal, and

� v + t 2 '(e) or (v + t)[�(e) 0] 2 '(f1(e)).

It is clear that every state deadlock is also a location deadlock.

Second, turning our attention to linear timed PV automata and assuming

that the �nal states are exactly those whose location is qm, i.e. the \last" loca-

2 Here it is to be assumed that the only �nal con�guration is the one consisting of the �nal

locations of the individual automata.
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tion, we see that a state is unsafe if and only if any execution from it reaches a

location deadlock. Hence we should �nd all location deadlocks and trace them

back to �nd their associated unsafe states, however a straightforward applica-

tion of the algorithm of [6] only �nds state deadlocks. In the next section we

shall propose a recti�cation of this problem.

6.5 Compactness

If we want to imitate the algorithm of [6], we should not just work in a po-

space, but in a compact po-space|however the geometric realization of a linear

timed PV automaton is not compact.

It is known that any timed automaton can be converted into an equivalent

one whose clocks are guaranteed not to exceed a certain maximal value, and if

M is this maximal value, the geometric realization of such a timed automaton

can be taken to be (Q;E; f)� [0;M ]d, which is a compact space. However the

conversion introduces a number of new loops into the automaton and involves

resetting clocks to values other than 0. We prefer another solution which also

copes with the \location deadlock problem" of the previous section:

Instead of the time axes in the geometric realization being ~R�0, we propose

to take their one-point compacti�cations ~R�0[ f1g, which are dihomeomor-

phic to the ordered unit interval ~I. The geometric realization of a timed PV

automaton is then (Q;E; f)� ~Id, which is a compact local po-space.

In this new setting, location deadlocks can be detected in a straightforward

way as \deadlocks at time 1 =1", which makes the algorithm of [6] applicable

for detecting location deadlocks as-is. However for �nding unsafe points, it will

have to be adapted, as the backtracking in the timed setting is di�erent from

the untimed setting. Note also that now execution paths do not necessarily

run diagonally through the clock space anymore.

6.6 What We End Up With

With the changes proposed in sections 6.3 and 6.5, our geometric realization

technique takes the following form:

Let P = (Q; q0; E; f; L;C; '; �) be a linear timed PV automaton, where we

instead of the reset mapping � now have a start function � : C ! Q, and

let C = fc1; : : : ; cdg, Q = fq0; : : : ; qmg, E = fe1; : : : ; emg, where q0 = q0 and

f(ej) = (qj�1; qj) for all j = 1; : : : ;m. The geometric realization of P is

	gP =
���!
[0;m]� ~Id;

which is a compact po-space. We use the symbol 	g to distinguish it from the

\old" geometric realization �gP .

12
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Let � : (R�0 [ f1g)
d
! Id be the dihomeomorphism given by

�(x1; : : : ; xd) =
� x1

1 + x1
; : : : ;

xd

1 + xd

�
:

With this dihomeomorphism in use, a clock valuation v 2 �(C) of P corre-

sponds to the point v̂ = �(~v) 2 Id, and the de�nition of clock zone has to be

adapted accordingly.

A state (qj; v) of P corresponds to the point (j; v̂) 2 	gP , and if tildes

are replaced by hats, the de�nition of allowed points in 	gP (equation (1) on

page 7) can be taken over unchanged.

As now clocks are started in locations di�erent from q0, we need to keep

track of which way execution paths are allowed to run in the geometric real-

ization. We do this by introducing a mapping �̂ : Q� Id! R
d
�0, derived from

the start function � and de�ning a vector �eld on every instance of the m+1

clock spaces. Execution paths are then (piecewise smooth) curves through

	gP which are integral curves to the vector �elds in the clock spaces and run

horizontally in [0;m].

First, de�ne an accumulated start function R : Q ! 2C , where R(q)

contains all clocks which are running, i.e. have been started already, in q:

R(qj) = fc 2 C j �(c) = qi; i � jg

This mapping translates to a function ~� : Q ! f0; 1gd, by ~�i(q) = 1 if and

only if ci 2 R(q). The mapping ~�(q; ~v) = ~�(q) de�nes a (very simple) vector

�eld on all clock spaces in the original space �gP = [0;m]�Rd
�0, and in this

space execution paths are integral curves to these vector �elds.

Conjugating the vector �elds given by ~� with the homeomorphism � then

yields our new mapping �̂ : Q� Id ! R
d
�0:

�̂(q; v̂) =
�
(1 � v̂1)

2~�1(q); : : : ; (1� v̂d)
2~�d(q)

�
:

With this in place, we are now able to give an exact characterization of the

execution paths in 	gP : A dipath  : ~I ! 	gP =
���!
[0;m]� ~Id is an execution

path if and only if there exists a partition 0 = t0; t1; : : : ; tn = 1 of I such that

� (ti) 2 Q� I
d for all i = 0; : : : ; n,

� j[ti;ti+1] is smooth for all i = 0; : : : ; n� 1, and

� for all i = 0; : : : ; n� 1, either

dj[ti;ti+1] j(t) =
�
(ti+1 � ti)

�1; 0; : : : ; 0
�

for all t 2 [ti; ti+1], or

dj[ti;ti+1] j(t) =
�
0; (1 � 1(t))

2~�1((ti)); : : : ; (1� d(t))
2~�d((ti))

�

for all t 2 [ti; ti+1].
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Here dj[ti;ti+1] j(t) denotes the di�erential of  restricted to the interval [ti; ti+1],

taken in the point (t). Note that any path ful�lling these constraints is auto-

matically a dipath, hence the condition on  being a dipath can be removed.

7 Future Work

We believe that in the setting laid out in section 6.6, we are not far from being

able to apply the algorithm of [6] to �nd deadlocks and unsafe con�gurations

in timed PV programs. There are two issues still to consider; however to us

they are mainly of a computational, rather than conceptual, nature:

First, in the algorithm of [6], deadlocks are critical intersection points of

isothetic hyperrectangles, where in our setting they are critical intersection

points of \skew" regions in space. Computing intersections of hyperrectangles

is easy, computing intersections of skew regions is more di�cult. Also, in [6]

deadlocks are critical intersection points of n hyperrectangles, where n is the

dimension of the po-space in question, whereas in our setting, all clocks are

stopped from running by a restriction on just one clock (since time is global),

hence for us, deadlocks are critical intersection points of just two forbidden

regions.

Second, in the original algorithm the set of unsafe points associated to a

certain deadlock is a hyperrectangle \below" the critical intersection point. In

our setting, the unsafe set would again be (the interior of) a \skew" region in

space, bounded by certain hypersurfaces adhering to the constraints on exe-

cution paths above. Computing this set might be computationally expensive,

but it is certainly possible.

We also believe that a generalization of our approach to a certain class

of hybrid automata is feasible, namely these hybrid automata (cf. [2]) where

clock resets are deterministic. For timed automata, our approach of section

6.6 might be a bit clumsy, but for hybrid automata we believe it is the right

way to go.
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A case for po-manifolds

in chase after a good topological model for concurrency

Stefan Soko lowski�

Gda�nsk, 2nd October 2002

Abstract

It has repeatedly been argued that the semi-cubical complexes1, which derive di-

rectly from the higher-dimensional automata, are as general a model for concurrency

as one may ever need. In fact, most (but not all) classical examples of interacting

concurrent processes have an adequate semi-cubical description. I believe this is

only due to the fact that most classical examples are built around the notion of

discrete event, or action, which makes the transition from the example's idea to

higher-dimensional automata, to semi-cubical complexes, very natural.

But it is not di�cult to provide realistic examples of concurrency not based on

such discrete events, which leads to local po-spaces with no \cubi�cation". Although

the concept of local po-space is very general and admits many pathologies, the

examples of concurrency I have in mind are well-behaved and not a pathology at

all, so the generality of the local po-spaces is for them a large overkill. Still, they

do not �t into the semi-cubical strait jacket.

This report puts forward the notion of po-manifold, a subcategory of the lo-

cal po-spaces slightly bigger than the semi-cubical complexes. A po-manifold is

locally homeomorphic to a block, which is an extremely nice global po-space. The

local homeomorphisms satisfy a simple consistency condition. This means the po-

manifolds are \locally nice" even though they may be too smooth to admit a cubi-

�cation.

�Institute of Computer Science, Polish Academy of Sciences, Gda�nsk Division, ul. Abrahama 18,
81-825 Sopot, Poland, e-mail: stefan@ipipan.gda.pl.

1The italicized technical terms in this abstract are given de�nitions within the paper. Still, the reader
is assumed to be more or less familiar with them. The main reference is [5] by Fajstrup, Goubault and
Raussen; for some other, see inside.
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1 Generalized this and that

Let us have a closer look at new incarnations of some examples of concurrency that we all
know and love. The variants considered will di�er from the original versions in the uniform
way: the events will take time to happen and their e�ects will accumulate gradually.

1.1 Generalized producer and consumer

Your employer is paying you money while magazines are taking it from you. These two

activities must be coordinated in time but the coordination is not exactly a succession of

discrete \earn" and \pay" events. That is, unless one wants to use a very small grain,

like earning or paying a single z loty, which would make the picture extremely complicated

obscuring the main idea of the coordination.
The spark-plugs in your car are drawing from the battery while the alternator is

charging it. People are dying while other people are being born. All these are examples
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of the generalized producer and consumer problem in which the bu�er is very large. So

large that it is infeasible, or at least highly impractical, to regard single atomic ins and

outs as happening instantly | one would rather view them as smeared over a larger time

span. But the big bu�er can still be overown or exhausted, if one of the processes does

not keep pace with the other. Can we model such coordination geometrically?

There is, certainly, a nice po-space for it | the diagonal ribbon

X
def

=
�
hx; yi 2 R2

�� 0 � y � x � 1
	

depicted opposite. The picture presents a di-

path, which begins in point a with the empty

bu�er; then the producer works alone until in b

the bu�er is full; then the producer rests while

the consumer works alone until in c the bu�er is

half full; and then both the producer and the con-

sumer work together at the same pace until d. At
every point hx; yi, the di�erence y � x measures
the occupancy of the bu�er.

If, for some reason, a compact space is prefer-
able to the in�nite ribbon, one can wrap it around

a cylinder bX obtaining a local instead of a global
po-space. Neither the po-space X nor the lo-
cal po-space bX are geometric realizations of �nite
semi-cubical complexes.

-
cons

6

p
ro
d

a

b

c

d
�
�

6

- �

fu
ll:
y
�
x
=
1

em
pt
y:
y
�
x
=
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1.2 Not quite exclusive access

The diagonal ribbon X from Sec. 1.1 will now be used to a di�erent game. Let it corre-
spond to a single process whose demand for a resource may be changing with time (which

ows diagonally: to the right and upwards). This demand is now measured by y � x:

y � x = 0 | the process does not need the resource,
y � x = 1 | the process needs the whole resource,

0 < y � x < 1 | the process needs a part of the resource
(and is prepared to share it with another process).

(classically, the latter case is not considered).

Two such processes running concurrently and competing for the same resource give
rise to a subset of the Cartesian square of X:

@
@

@
@

@
@

@

y1�x1 !

y
2
�
x
2

!
Y def

=
�
hhx1; y1i ; hx2; y2ii 2 X �X

�� y1 � x1 + y2 � x2 � 1
	

| the demands for the resource from both processes must remain

within the white triangle in the picture opposite (the time directions
of both processes are not depicted).

Do not overlook a subtlety: topologically, Y is the Cartesian product of the white

triangle in the picture by the plane R2; but ditopologically, it is not. The triangle is not
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a po-space; in particular, for any two points a and b in the triangle there exists a dipath

in Y whose projection onto the triangle goes from a to b.

And, as before, neither the global po-space Y nor the compact local po-space bY
resulting from Y by wrapping theR2 component around a torus, are geometric realizations

of �nite semi-cubical complexes.

1.3 Generalized philosophers

The 2-dining philosophers example is the case where two

processes compete for the exclusive access to two re-

sources (cf. [12]). The resources are allocated indepen-

dently, so this may lead to deadlock, if each process grabs

one resource and waits for the other. The directions in

which the two philosophers are moving and the deadlock

point are depicted opposite. This local po-space is a ge-
ometric realization of a semi-cubical complex.
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Should every process need the exclusive access to more
resources, rather than to two forks as the philosophers do,

the number of deadlock points would grow. Assume, for
instance, that Mary and John have 1500 z lotych together,
enough either for a bicycle for John, or for skis for Mary,
but not for both. If each of them takes some (more than
zero) money from the common pool and would not give it

back again, then neither a bicycle nor skis can be bought.

In this case, the corresponding local po-space is the torus with a triangular hole and
the deadlock set is the hypotenuse of the triangle (the solid line). Again, this is not a
geometric realization of a semi-cubical complex.

1.4 Non-cubical motivations

The concept of semi-cubical complexes arises very naturally from the notion of higher

dimensional automata (cf. [14] by van Glabbeek). This is a formalism for discrete actions
performed concurrently.

Playing with concurrent processes which are continuous, i.e., not based on discrete

events, is not a novelty in computer science. Every mature formalism eventually attempts
to do this. For instance, see [2] or [3] by David and Alla for continuous and hybrid Petri

nets.
My feeling is that the geometric/topological view of concurrency is, by its very nature,

better tailored to continuity than, e.g., Petri nets, so it would be a shame to leave this

direction of research unexplored. Admittedly, the concept of local po-space is very general
and allows for many pathologies. It seems a good idea though, to generalize the semi-
cubical complexes just slightly, to overcome their �nitary and combinatorial nature. The

following section will show how this aim is served by the notion of po-manifold. So please,

read on.

Please, refer to App. A on page 15 and to App. B on page 18 for short reviews of
directed topology and of semi-cubical complexes.
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2. Pleading for po-manifolds 5

2 Pleading for po-manifolds

The po-spaces, global or local, such as the ones from Sec. 1, are simple and have strong

concurrency motivations. Still, they do not correspond to any semi-cubical complexes.

The moral is that semi-cubical complexes are not a su�cient formalism for some strongly

motivated concurrent systems. On the other extreme, local po-spaces are way too general.

One would need a more speci�c category of \nice" local po-spaces, good enough for non-

pathological real life examples. The generalization presented in this paper begins, in a

sense, from the �nite semi-cubical complexes and goes in two directions:

� The local po-spaces are glued together from \nice" subsets of the directed cubes ~In

rather than from the whole cubes. This way, the resulting local po-spaces are still

\locally nice", but not necessarily discrete.

� They are not necessarily glued along their faces | a certain overlap is allowed,

under natural consistency conditions on the common parts.

This reminds of a topological manifold with a structure (such as smooth manifold), which
is why I call them po-manifolds. The main di�erence is that not all the cubes taking part
in the construction of po-manifolds are necessarily in the same dimension. This makes
po-manifolds a proper generalization of semi-cubical complexes (as shown in Sec. 3 on
page 12).

2.1 S-manifolds as such

Manifolds are topological spaces locally modeled on Euclidean spaces. It turns out that an
analogous concept de�ned for a certain subcategory S of po-spaces instead of Euclidean

spaces leads to a class of local po-spaces. In particular, if S consists of all compact po-
spaces, then we get all local po-spaces (see below). Playing with S, one gets restricted
subcategories of LPO, the category of local po-spaces2.

More precisely, the eligible categories S are the po-pattern categories as de�ned below:

1 De�nition (po-pattern category)

A po-pattern category is an arbitrary full subcategory3 S of compact-PO, the category of

compact po-spaces, such that

� the closure of every open subspace of an S-object is an S-object, and

� for any S-objects S0, S1 and S2 and any dihomeomorphic embeddings
S0 S1

S2

'

 

-

?
,

the pushout of ' and  is in S.

An important example of a po-pattern category will be given in Sec. 2.3 on page 10.

2 De�nition (S-manifold)

Let S be a po-pattern category. An S-manifold is a compact space X with

2See App. A on page 15 for a short review of basic notions and notations in the directed topology.
3A subcategory S of T is full i� every T -morphism between S-objects is an S-morphism.
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6 Stefan Soko lowski A case for po-manifolds

� an open cover U , and

� a family � def

=
�

�U 2 S
��U 2 U

	
of S-objects (one for each

open set from the cover), and

� a family � def

=
�
�U : clXU ! �U

��U 2 U
	

of homeomorphisms

referred to as coordinate patches such that the composition

�U2 � �
�1
U1 j�U1(clX(U1\U2))

: �U1(clX(U1 \ U2)) ! �U2 (1)

is a dimap for all U1; U2 2 U .
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(clXU denotes the closure of U in X).

Note that there is no a priori ordering in an S-manifold nor in the opens in its cover.

But the orderings may be retrieved from the orders in the po-spaces �U for U 2 U :

3 Proposition

Assume hX; U ;�; �i is an S-manifold. The relation � � X �X de�ned by

x � y def

() 9U2U x �U y where x �U y
def

() �Ux �SU �Uy

is a local order in X, making X a local po-space (see Def. 26 on page 17).

Proof of Prop. 3:

The order �U is carried over from the one in �U via the homeomorphism ��1U . There-
fore, each hclXU;�Ui is a po-space.

Take two opens U; V 2 U and two points x; y 2 clX(U \ V ). By the de�nition of the
local orders,

x �U y () �Ux �SU �Uy (since �V � �
�1
U is a dimap)

=) (�V � �
�1
U )(�Ux) �SV (�V � �

�1
U )(�Uy)

() �V x �SV �V y

() x �V y

Since the orders are consistent (cf. Prop. 28 on page 18), X is a local po-space.

�

4 De�nition (sub-manifold)

A sub-manifold of an S-manifold hX; U ;�; �i is any S-manifold hX 0; U 0;�0; �0i such that

X 0 � X, U 0 =
�
U \X 0

��U 2 S
	

and for any U 2 S, the diagram

U \X 0 U

�0U\X 0 �U

�0U\X 0
�U

? ?

-

-

commutes (this means the primed �'s are the restrictions of

the unprimed ones).

5 De�nition (S-manifold morphisms)

An S-manifold morphism ' : hX; U ;�; �i ! hY;V;�; �i is a continuous map ' : X ! Y

such that the composition �V � ' � �
�1
U : �U ! �V is a dimap for all U 2 U and V 2 V.
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2. Pleading for po-manifolds 7

An S-manifold homeomorphism is an S-manifold morphism for which there exists an

inverse S-manifold morphism. An S-manifold morphism ' : hX; U ;�; �i ! hY;V;�; �i
is an S-manifold embedding i� ' is an S-manifold homeomorphism from hX; U ;�; �i to

a certain sub-manifold hY 0;V 0;�0; �0i of hY;V;�; �i.

6 Proposition

S-manifolds with S-manifold morphisms form a category. Its isomorphisms are the S-
manifold homeomorphisms.

The proof of Prop. 6 is left to the reader.

This category will be denoted by S-Man.

7 Corollary

The introduction of the local order in an S-manifold described in Prop. 3 is a functor from

S-Man onto a full subcategory of LPO. This functor will be denoted by

j ::: j : S-Man ! LPO

and called the realization of S-manifolds.

The proof of Cor. 7 is left to the reader.

The functor from Cor. 7 can be, with some restrictions, reversed. Assume

� hX;�i is a compact local po-space,

� U is its po-basis (cf. Prop. 27 on page 18),

� V is a \�ner" basis: for each V 2 V there is an U 2 U s.t. clXV � U (this implies
that V is a po-basis too).

8 Proposition

Given a compact local po-space and its po-bases, as required above, the quadruple

X; U ;

�
clXV

��V 2 V
	
;
�

Id clXV

��V 2 V
	�

is a compact-PO-manifold. Moreover,

� the manifolds obtained for di�erent selections of po-bases U and V are homeomor-

phic to each other, and

� this construction is functorial.

Cor. 7 and Prop. 8 imply together that

compact-PO-Man = compact-LPO up to manifold homeomorphism.

Proof of Prop. 8 (draft):

The important part of this proof is the demonstration that compact-PO is a po-pattern

category. This follows from Cor. 25 on page 17.

For the manifold homeomorphism related to the transiton between di�erent po-bases,
take the identity on X.

�

S-manifolds are, in a sense, a way of assigning a category of local po-spaces to every

po-pattern category S.
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8 Stefan Soko lowski A case for po-manifolds

2.2 The pushout property of S-manifolds

9 Theorem

Assume S is a po-pattern category. Let hX; U ;�; �i, hY;V;�; �i and hZ;W;�; �i be

S-manifolds. For every pair
X Y

Z

'

 

-

?
of S-manifold embeddings, there exists a pushout

in S-Man.

Proof of Thm. 9:

Let �1 : Y ! Y �Z and �2 : Z ! Y �Z be the natural embeddings of the topological

spaces into their disjoint union. Take '' to be the least equivalence relation in Y �Z
such that �1('x) '' �2( x) for any x 2 X. De�ne the quotient

Q
def

= (Y �Z)�'' 

with the natural quotient map � : Y �Z ! Q. By virtue of the com-
pactness of X, Y and Z, the quotient Q is compact4. Now, the dia-
gram opposite commutes and Q with � � �1 and � � �2 is the topological

pushout of ' and  .
It still needs to be demonstrated that Q is an S-manifold pushout

too. To this aim, a cover R and coordinate patches � and  on Q have
to be de�ned and respective correctness properties veri�ed.

X Y

Z Q

'

 

�
�
�
1

� � �2
-

-

? ?

Select arbitrary opens from the covers: U 2 U , V 2 V and W 2 W . The set

A def

= U \ '�1(V ) \  �1(W )

is open in X. Since ' and  are S-manifold embeddings, the set '(A) is open in '(X)
and contained in V , while the set  (A) is open in  (X) and contained in W . Therefore,

there exist opens B � V � Y and C �W � Z such that

A = '�1(B) and A =  �1(C) (2)

(the selection of such B and C is arbitrary). Now let

R def

= (� � �1)(B) [ (� � �2)(C) � Q

This set is open in Q because its coimages B = (� � �1)
�1(R) and C = (� � �2)

�1(R) are

open. Besides, clQR is the topological pushout of the restrictions 'j clXA and  j clXA .
De�ne an appropriate S-object �R and a coordinate patch R : R! �R by the following
diagram:

4Note that without this precaution, Qmight even fail to be T0 | see App. A.3 on page 17 for su�cient
conditions for Q's compactness.
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2. Pleading for po-manifolds 9

clXA clYB

clZC clQR

'j clXA

 
j
c
lX

A

�
�
�
1

� � �2

�U (clXA)

�

�U

�R

�V (clYB)
�

�V

�W (clZC)

�

�W

~'

~ �

�

1

2

3

-

-
??

I
�
U
j
clX
A

R

R

�

� V
j c
lY
B

	�
W
j c
lZ
C

-

-
??

The inner square 1 accounts for the pushout property of clQR, � � �1 and � � �2. The
coordinate patches �U , �V and �W are homeomorphisms, so the sets �U(clXA) � �U ,
�V (clYB) � �V and �W (clZC) � �W are closed subsets of S-objects, so they are S-objects
themselves.

The mappings ~' and ~ are easy to de�ne so as to make the trapezoids 2 and 3

commute (just reverse the homeomorphism �U j clXA ). These are di-embeddings because '
and  are S-manifold embeddings. By the pushout property of S, there exists an S-
object �R with two dimaps � and � such that everything in solid lines commutes. Now,
since (� � �V ) � 'j clXA = (� � �W ) �  j clXA , there is a unique R : R! �R (recall that R
is the pushout of 'j clXA and  j clXA ) closing the diagram. To show an inverse to R,

reverse the homeomorphisms �U j clXA , �V j clY B and �W j clZW and use the fact that �R is a

pushout of ~' and ~ .

De�ne now the required po-manifold hQ;R;�; i by taking the least cover R of Q, the
least set � of S-objects and the least set  of coordinate patches such that:

� for all U 2 U , V 2 V, W 2 W and for all B and C satisfying (2):

{ R contains the open set R,
{ � contains the compact space �R,
{  contains the homeomorphism R

as constructed above;

� for any V 2 V:

{ R contains the open set (� � �1)(V r '(X)),
{ � contains the compact space �V (clY (V r '(X))),
{  contains the homeomorphism

�V � (� � �1)
�1 : clQ((� � �1)(V r '(X))) ! �V (clY (V r '(X)))

� for any W 2 W | symmetrically.
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10 Stefan Soko lowski A case for po-manifolds

It still remains to be veri�ed that:

1. R is a cover of Q;

2. the coordinate patches in � satisfy the consistency condition (1) in Def. 2 on page 5;

3. � � �1 and � � �2 are manifold morphisms;

4. Q with � � �1 and � � �2 is the S-manifold pushout required.

These veri�cations are left to the reader.

�

10 Example

The S-manifold embeddings ' and  from Thm. 9 cannot be replaced by arbitrary S-

manifold morphisms. At least not for compact-PO-manifolds or local po-spaces; in other

words, the category compact-PO-Man is not �nitely cocomplete.

To see this, consider the diagram opposite with ' | em-
bedding a directed interval ~I into a directed square ~I2 as its

diagonal; and  | contracting the interval to a point (the in-
terval and the square are ordered from left to right and from
bottom upwards). All three are respectable compact po-spaces.
The topological pushout, however, has a \singularity": a point
around which there does not exist a local order consistent with
the circular arrows5.
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2.3 Blocks and po-manifolds

6-R
6*s6	
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AQQ
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A
A����QQ
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@

From the computational point of view, the most important of
the S-manifold categories is BLCK-Man, where BLCK is the
category of blocks, presented below.

Informally, blocks result from glueing nice sub-po-spaces of

the directed cubes~In respecting the orders. The picture opposite

presents an example block consisting of ~I1, ~I3, a triangle which
is a sub-po-space of ~I2 and a prism which is a sub-po-space of ~I3.

The family of blocks will now be described in more detail.

11 De�nition (block)
BLCK is the least po-pattern category containing the directed cubes ~In for all n � 0; its
objects are called blocks.

12 De�nition (po-manifold)

BLCK-manifolds are called po-manifolds. The category of po-manifolds is denoted by

PMAN; this means PMAN
def

= BLCK-Man.

5This is not a complete argument for the non-existence of the pushout, but may easily be turned into
one.
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2. Pleading for po-manifolds 11

Do not confuse PMAN with compact-PO-Man which is equal to LPO (cf. Prop. 8 on

page 7).

13 Example

Take the image bX of the diagonal ribbon X from Sec. 1.1 on page 2 under the wrapping6

� : X = R� I ! bX = S1� I

� hx; yi def

= hei�x; yi

The result is, evidently, a local po-space. Consider its cover by three overlapping opens:

�
�

3 0
�

3

2��

3
� 4��

3

5��
3

1� �

3 1 1 + �

3
1 + 2��

3
1 + � 1 + 4��

3
1 + 5��

3

U�1
def

= � (
�
hx; yi 2 R� I

�� y � 2��
3
< x < y + �

3

	
)

U0

def

= � (
�
hx; yi 2 R� I

�� y < x < y + �
	

)

U1

def

= � (
�
hx; yi 2 R� I

�� y + 2��
3
< x < y + 5��

3

	
)

(since y + 5��
3
� y � �

3
(mod (2 � �)) for all y 2 I, the left slanted side of the parallelogram

is, under �, the same as its right slanted side).

There exist coordinate patches

'Uj : cl
bX
Uj ! 'Uj(cl

bX
Uj) �~I

2

for j 2 f�1; 0; 1g de�ned by:

'Uj(� hx; yi)
def

=

1

�
� (x� y � j � 2��

3
) ; 1

2+�
� (x+ y � j � 2��

3
)
�

The picture opposite suggests the way 'U0 embeds
its domain into the unit square (do not overlook the

preservation of the ordering!), the others are similar.

By a straightforward check, the compositions
'j1 � '

�1
j2

are monotone, hence they are dimaps, as
required by Def. 2 on page 5 of S-manifold.

�

R

h0; 0i h�; 0i

h1; 1i h1 + �; 1i

'U0(cl bXU0)

The reader may want to demonstrate on her/his own that the remaining two examples
from Sec. 1 are po-manifolds as well.

�

6The ribbon is now positioned di�erently on the plane than in Sec. 1.1. In particular, coordinate x
corresponds to time.
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12 Stefan Soko lowski A case for po-manifolds

3 Are we more general than the semi-cubists?

Once we know what po-manifolds are (cf. Sec. 2), we still need to prove that they generalize

semi-cubical complexes. This will also imply that they generalize higher dimensional

automata and many other models for concurrency. In a nutshell, a semi-cubical complex

is a blueprint for glueing cubes In (for various dimensions n) to make a po-manifold7.

It is shown below how such a blueprint may be realized.

14 De�nition (po-manifold realization)

The po-manifold realization is the assignment � of

� a po-manifold �M to any non self-linked semi-cubical complex M , and

� a po-manifold embedding

�� : �P ! �M

to any semi-cubical embedding � : P !M

de�ned by recursion on the total number of M 's faces, as given in Fig. 1 on the next page.

15 Proposition

For any semi-cubical pushout diagram
M P

Q R

'

 

�

�

-

-? ? where ' and  are embeddings, the

translation

�M �P

�Q �R

�'

� 

��

��

-

-
? ?

is a po-manifold pushout diagram.

16 Theorem (realization functor)
The po-manifold realization can be extended to a a functor � : SCC0 ! PMAN (SCC0

is the category of �nite non self-linked semi-cubical complexes) such that

1. for any M 2 SCC0 and any m 2Md:

� � Id = Id,
� �Kd�1 = Kd�1 ,

� � (�d : Kd�1
,! Id) is the natural inclusion of Kd�1 into Id;

2. for any semi-cubical embedding ' : M ! P , the corresponding manifold-mophism
�' : �M ! �P is a manifold-embedding;

3. for every semi-cubical pushout diagram
M P

Q R

'

 

�

�

-

-? ? where ' and  are embeddings,

the translation

�M �P

�Q �R

�'

� 

��

��

-

-
? ?

is a po-manifold pushout diagram.

7See App. B on page 18 for a short review of basic notions and notations on the semi-cubical complexes.
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3. Are we more general than the semi-cubists? 13

Case M is empty:

Put �M def

= ; too.

Case dimM = d � 0 with an m 2Md:

Let M 0 be the complex given by M 0
d

def

=Md r fmg and M 0
n

def

=Mn for n 6= d. By the induc-

tion hypothesis, for any semi-cubical embedding � : P ,!M 0,

� the po-manifolds �P and �M 0 are already constructed (by virtue

of the embedding �, this makes sense because P is \not bigger"

than M 0), and

� the po-manifold embedding �� : �P ,! �M 0 is already con-

structed.

Consider the semi-cubical pushout diagram from Prop. 47 on page 22. De-

�ne

Kd�1 M 0

Id M

'

�d
push-
out

-

-
??

� � Id as Id, and

� �Kd�1 as Kd�1 , and

� � (�d : K
d�1

,! Id) as the natural inclusion of Kd�1 into Id, and

� �M , � and � as the po-manifold pushout of the embeddings �' and � �d.

Kd�1 �M 0

Id �M

�'

� �d

�

�
push-
out

-

-
??

By Thm. 9 on page 8, this gives rise to the manifold pushout diagram

opposite.

We still need to explain how an arbitrary semi-cubical em-

bedding � : P ,!M is translated into a po-manifold embedding

�� : �P ,! �M .

If there is no face p 2 Pd such that � p = m then the whole image of � sits in M 0 and,

by the induction hypothesis, �� : �P ,! �M 0 is already de�ned; just compose it with

� : �M 0
,! �M .

If there is a (unique) face p 2 Pd with � p = m then the com-

plex P may be decomposed into a complex P 0 | which is P with-

out the face p | and a d-dimensional cube. Together with �,

this yields the diagram opposite. This diagram may be partially

translated to po-manifolds, as done above forM ; but note that so

far we have no translation for �.

Kd�1 P 0 M 0

Id P M

� �jP 0

�

�d

'

push-
out

- -

- -
???

.

..............................

.............................

............................

..........................

......................... .......................
..

.....
........

........
....

....
.....
.....
.....
.....
..

..

....
....
....
...
....
....
..

...
...
...
...
...
..
...
...
...
.s

.

....
...
...
...
....
...
...
...
...
.

....
....
....
....
....
....
...
..

......
.....
.....
......
.....
.

.....
.........

........
....

................
......... .........................

.........................

..........................

...........................

...........................3

Kd�1 �P 0 �M 0

Id �P �M

� �d

�
'

push-
out

- -

- -
???

.

..............................

.............................

............................

..........................

......................... ......................
...

.....
........

........
....

....
.....
.....
.....
.....
..

....
....
....
...
....
....
...
.

...
...
...
...
..
...
...
...
...
.s

.

....
...
...
...
...
....
...
...
...
.

....
...
....
....
....
....
....
..

......
.....
.....
......
.....
.

.....
.........

........
....

...............
.......... .........................

.........................

..........................

...........................

...........................3

--

But both the small square and the large rectangle (spanned

by �' and � �d) are pushout diagrams. Therefore, there

exists a unique morphism denoted by the dotted line, closing

the diagram. Call this morphism ��; it is, clearly, a po-

manifold embedding.

It is obvious that the construction of �M and of ��

does not depend on the initial selection of face m 2Md.

Figure 1: The recursive po-manifold realization (cf. Def. 14 on the facing page).
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14 Stefan Soko lowski A case for po-manifolds

Proof of Thm. 16:

The construction of �� for a semi-cubical morphism

� : M ! P is recursive on the number of M 's faces and simi-

lar to the construction in Fig. 1. For the inductive step, con-

sider the diagram opposite. By the induction hypothesis, the

po-manifold morphism � (� � �) : �M ! �P is already de-

�ned and, since � � � : Id !M is an embedding (cf. Prop. 46

on page 22), � (� � �) is de�ned too.

Kd�1 M 0

Id M

P

'

�d

�

�

�

push-
out

-

-
??

R

K
d�1 �M 0

I
d �M

�P

�'

� �d

��

��

�

(�
�
�
)

� (� � �)

push-
out

-

-
??

R

.

.

..
..
..
..
..
...
..
..

..

..

..
.
..
..
..
.
..
..
..
.

..

..

..

..

.

..

..

..

..
.
..
..
.

..

.

..

.

..

..

..

..

..

.

..

..

..

.

.

..

.

..

.

..

..

..

.

..

..

..

.

..

..

..

.

.
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.
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.
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.
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..

.
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.
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.
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.
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.
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.

.
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.
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.
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.
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.
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.

..
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.
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.
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.
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.
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.
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.
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.
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.
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.

?.
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..
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...
...
...
...
.

...
....
....
....
....
....
....
....

.....
......

.....
......

.....
.....

.....
........

........
........

....

.........
..............

...........

......................
..............-

Since �M is the pushout (cf. the construction in Fig. 1),

there exists a unique po-manifold morphism to �P (the dotted

line). Call this morphism ��.

It is easy to show that this morphism does not depend on

the original choice of m 2Md; that the de�ned assignment is

a functor; and that the requirements 1{3 are met.

�

In [5], Fajstrup, Goubault and Raussen de�ne a functor j ::: j : SCC0 ! LPO realizing

semi-cubical complexes in local po-spaces8. The method of the proof is di�erent: the stars

of the vertices are translated directly to open sets in the cover of the local po-space.
I believe the essence of the construction is the same:

17 Conjecture

The diagram of functors opposite commutes (j ::: j1 is the realization
functor from [5]; j ::: j2 is the realization functor from Cor. 7 on
page 7; � is the functor from Thm. 16).

-

U �

SCC0 PMAN

LPO

�

j ::: j1 j ::: j2

But I have not proven this, sorry. . .

4 My grudge against complexes

Sec. 1 suggests that semi-cubical complexes are not an adequate formalism for \continuous
concurrency". Generalizing them just a bit, as done in Sec. 2 can make the world of
di�erence in this respect. But this is not the only problem bugging the semi-cubical

complexes.

A minor problem is the de�nition of semi-cubical morphisms (Def. 41 on page 21).
They preserve the dimensions, which makes them unsuitable for comparisons between

systems of processes. One may, for instance, want to implement a higher level process by

a system of cooperating lower level processes. For the correctness of such an implementa-
tion, one would need to prove that the two systems are dihomeomorphic, or dihomotopy
equivalent, or whatever | in any case, one would need morphisms going both ways and

meeting some correctness requirements. But this is impossible because of the arbitrary

de�nition which rules out any morphisms from many processes to a single process.

8The construction in [5] is more general in that it does not require the �niteness of the complexes. It
does, however, require their non self-linkedness, as mine does.
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A. Appendix: a bird's eye view on directed topology 15

This problem can probably be treated by substituting cubical for semi-cubical com-

plexes (see footnote 10 on page 19).

More importantly, the notion of semi-cubical complex is very combinatorial and does

not �t smoothly with the rest of the directed topology.

The simplicial approximations of topological spaces are combinatorial too. This fact

does not hurt because they are accompanied by respective invariance theorems. Continu-

ous maps between topological spaces induce homomorphisms of the respective homologies

or homotopies; and homeomorphisms induce isomorphisms (cf., e.g., Munkres [8], Chap. 2;

or Spanier [13], Chap. 3). Changing simplicial subdivisions of a topological space does not

a�ect the resulting invariants. The combinatoriality of the semi-cubical subdivisions of a

local po-space is not sweetened by any property of the sort: a di�erent cubi�cation means

di�erent everything9.

This may lead, therefore, to two opposing viewpoints: either

1. the computational reality is best reected by semi-cubical complexes, while local
po-spaces are only an auxiliary generalization, or

2. the computational reality is best reected by local po-spaces, while semi-cubical
complexes are only a way of getting to them.

In Sec. 1, I have given some evidence against viewpoint 1. But do we really need to pass
through complexes in order to get to local po-spaces, as claimed in viewpoint 2?

In fact, a number of times I have seen a similar story happening: somebody comes
up with a reasonable topological conjecture about computations, then a pathological
counterexample is found, and then it is hoped that the conjecture is true at least for the

geometric realizations of semi-cubical complexes. In most cases, however, this involves
a combinatorial rather than topological reasoning, so nobody would volunteer to write
down the ugly proof.

I believe most of these reasonable conjectures are true of po-manifolds and, due to the

topological nature of the concept, their proofs may be made beautiful.

A Appendix: a bird's eye view on directed topology

For the convenience of a reader without a thorough knowledge of global and local po-

spaces, this is a brief reminder of the basic concepts and facts (no proofs here!). The

main reference for most of the knowledge is [5] by Fajstrup, Goubault and Raussen.

Wherever particular formulations depart from [5], they follow [11] by Soko lowski.

A.1 Po-spaces

18 De�nition (po-space)
A po-space (or: a global po-space) consists of

� a set X,

9As noted by a referee, the total homology for Kan semi-cubical complexes is invariant under subdi-
visions.
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16 Stefan Soko lowski A case for po-manifolds

� a topology O on X, and

� a partial order � in X

such that the order � is closed as a subset of the Cartesian product X �X.

The notion of po-space appeared in [9] by Nachbin. It was further studied in [5] by

Fajstrup, Goubault and Raussen and in other papers on ditopology that followed.

19 Proposition Every po-space is Hausdor�.

20 Proposition (�-preservation in the limit)

Assume two convergent sequences in a po-space X are given

x = lim
n!+1

xn and y = lim
n!+1

yn

Assume further that xn � yn for all n 2 N. Then the same inequality holds for the limit

points: x � y.

21 Example

The interval [0 : : 1] with the usual order is denoted by ~I; the same interval with the trivial

order (equality) is denoted by I. They are both po-spaces.
The Cartesian product X � Y of po-spaces X and Y is a po-space with the product

topology and the coordinate-wise ordering:

hx1; y1i �X�Y hx1; y1i
def

() x1 �X x2 & y1 �Y y2

In particular, the cubes ~In and In are po-spaces.
The hollow cube Kn�1 def

=
�
hx1; : : : ; xni 2 I

n
��9i xi 2 f0; 1g	 is a sub-po-space of In.

�

A.2 Dimaps of po-spaces

In order to make a respectable mathematical notion, the po-spaces should be equipped

with morphisms.

22 De�nition (dimap and dihomeomorphism)
A function ' : X ! Y between two partially ordered sets is monotone if 'x � 'y for

any x; y 2 X such that x � y. A dimap (or: a global dimap) is any continuous and

monotone mapping ' : X ! Y between two po-spaces. A dimap with an inverse which

is also a dimap is called a dihomeomorphism. A dimap ' is a di-embedding if it is a

dihomeomorphism between X and the image '(X).

It is obvious that po-spaces with dimaps form a category. In this report, this category

is denoted by PO. The dihomeomorphisms are isomorphisms in PO. By compact-PO is

denoted the full subcategory of PO consisting of compact po-spaces only.

23 De�nition (dipath and long dipath)

A dipath is a dimap � :~I! X of the directed interval into a po-space. A long dipath is a

dimap � : ~R�0 ! X of the directed half-line ~R�0 into a po-space.

Since the monotonicity is required, dipaths correspond to the \trajectories" of points in

a po-space that only \move forwards".
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A. Appendix: a bird's eye view on directed topology 17

A.3 Factorization of po-spaces

When a po-space is factorized, we want to make sure that

1. the resulting topological quotient is Hausdor�,

2. the resulting quotient order is a partial order, and

3. the quotient order is closed in the quotient topology.

Simple examples show that each of these requirements may fail. For this reason, I will

only concentrate on the special case of glueing two po-spaces along a common sub-po-

space. Given compact po-spaces X, Y and Z and a pair of di-embeddings ' : X ! Y

and  : X ! Z, de�ne '' as the least equivalence in the disjoint union Y �Z such that

�1('x) '' �2( x) for all x 2 X

where �1 : Y ! Y �Z and �2 : Z ! Y �Z are the natural embeddings of the components

into the disjoint union. For the ordering in the quotient (Y �Z)='' , take the transitive

hull of the orders from Y and Z.

24 Theorem The result (Y �Z)='' of the glueing is a compact po-space.

25 Corollary

Under the assumptions as above, the quotient

Q def

= (Y �Z)='' with the dimaps � � �1 : Y ! Q and � � �2 : Z ! Q

is a pushout of ' and  in compact-PO.

A.4 Local po-spaces

The rationale for the notion of local po-space is in the situations, where several partial
orders combine to a \local directedness" but cannot be globally reconciled to form a
partial order.

The �rst formal de�nition of local po-spaces appeared in [5] by Fajstrup, Goubault

and Raussen. Subtle changes were made to the notion later | �rst written down in [6]
by Fajstrup and Soko lowski | because we had thought it did not correctly reect the
intuitions. Later, Fahrenberg [4] showed that the two original de�nitions of local po-space

were equivalent and our counterexample was wrong. More importantly, he gave a di�erent

simpler de�nition and proved its equivalence with the two preceding. This simpler notion
is the one appearing in Def. 26 below. Prop. 27 comes from [4] too.

26 De�nition (local po-space)

A local po-space is a Hausdor� space X with a local order, i.e., a relation � � X �X

satisfying the following local po-property: every point x 2 X has an open neighbourhood
Ux 3 x such that



Ux; �jUx�Ux

�
is a po-space.

The local order is obviously reexive and closed in X �X but it is only \locally" anti-

symmetric and transitive.
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18 Stefan Soko lowski A case for po-manifolds

27 Proposition

A Hausdor� space X with a relation� � X �X is a local po-space i� it has a basis U of

open sets such that


U; �jU�U

�
is a po-space for any U 2 U . Every such basis is called

a po-basis.

28 Proposition (glueing a local po-space from global po-spaces)

Assume X is a Hausdor� space with a cover U by open sets which are po-spaces, whose

partial orders are consistent:

x �U1 y () x �U2 y for all U1; U2 2 U and all x; y 2 U1 \ U2:

Then the relation x � y
def

() 9U2U x �U y is a local order in X.

The idea is that when you look at a local po-space from very close, you see a po-space.

29 Proposition Every po-space is, in a natural way, a local po-space.

A.5 Local dimaps

Assume X and Y are local po-spaces with the bases (as required in Prop. 27) U and V,
respectively.

30 De�nition (local dimap and local dihomeomorphism)
A function ' : X ! Y is said to be locally monotone if for any point x 2 X there exist
open neighbourhoods U 2 U , U 3 x and V 2 V, V 3 'x such that

x1 �X x2 implies 'x1 �Y 'x2 for all x1; x2 2 U \ '
�1(V ) (3)

Every function ' : X ! Y which is continuous and locally monotone will be called a local

dimap. A local dimap ' : X ! Y with an inverse which is also a local dimap is called a

local dihomeomorphism. A local dimap ' is a local dihomeomorphic embedding if it is a
local dihomeomorphism between X and '(X) � Y .

It is obvious that local po-spaces with local dimaps form a category. In this report,
this category is denoted by LPO. The local dihomeomorphisms are the isomorphisms in

LPO.

Note that PO is not a full subcategory of LPO: a local dimap between two global
po-spaces is not necessarily a global dimap.

B Appendix: a bird's eye view on semi-cubical com-

plexes

For the convenience of the reader, the de�nition and the basic properties of a semi-cubical

complex will be recalled (no proofs here again). This follows more or less [5] by Fajstrup,
Goubault and Raussen who, in turn, attribute the development of the concept to [10] by

Serre and to [1] by Brown and Higgins. Some minor changes come from [11] by Soko lowski.
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B. Appendix: a bird's eye view on semi-cubical complexes 19

B.1 Semi-cubical complexes

31 De�nition (semi-cubical complex)

A semi-cubical complex is a family M def

=
�
Mn

��n � 0
	

of sets with face maps

@ki : Mn !Mn�1 for 1 � i � n and k 2 f0; 1g

satisfying the semi-cubical relations:

@ki � @
`
j = @`j�1 � @

k
i whenever i < j (4)

The elements of M0 are called vertices; the elements of Mn are called n-dimensional faces

of the complex (for n � 0). Whenever (@k1i1 � : : : � @
kp
ip

)m = m0, m0 is called a face of m,

denoted m0 E m. A �nite semi-cubical complex is one for which the set
S
M of faces is

�nite10.

32 De�nition (dimension)
If Md 6= ; and Mn = ; for all n > d then the semi-cubical complex M is said to be d-

dimensional, denoted: dimM = d. If no such d exists and at least one of the sets

M0;M1;M2; : : : is nonempty then the complex is said to be in�nitely dimensional, de-
noted dimM = +1. By convention, the dimension of the empty complex is �1; the
empty complex is M such that Mn = ; for all n � 0.

33 De�nition (sub-complex)
A sub-complex of a semi-cubical complex M def

=
�
Mn

��n � 0
	

is any semi-cubical complex

P def

=
�
Pn
��n � 0

	
with Pn �Mn for n � 0 and with the face maps being the restrictions

of the bigger complex's face maps: @kP;i = @kM;ijPn for 1 � i � n.

34 De�nition (generated complex)
Let M def

=
�
Mn

��n � 0
	

be a semi-cubical complex. For any set F �
S
n�0Mn of its faces,

de�ne the sub-complex generated by F , denoted GMF , as the smallest sub-complex of M
containing F .

35 Proposition

The sub-complex generated by a given set F �
S
n�0Mn consists of the following faces:

(GMF )n =
�
m0 2Mn

�� there exists an m 2 F s.t. m0 E m
	

for n � 0.

36 Example (cube)
Let d be a natural number. A canonical example of a semi-cubical complex is the d-

dimensional cube Id de�ned by

Idn
def

=

(
hx1; : : : ; xdi 2

�
0;

1

2
; 1

�d ���� exactly n components are 1

2
, i.e.,

card
�
i 2 f1; : : : ; dg

��xi = 1

2

	
= n

)

10Semi-cubical complexes are also called precubical sets. A category of cubical complexes (or cubical

sets) is also considered; it is richer than the semi-cubical complexes by degeneracy maps going up the
dimension. For some relations between these categories and also for other models for concurrency, see [7]
by Goubault.
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20 Stefan Soko lowski A case for po-manifolds

and the face maps given by

@ki hx1; : : : ; xdi
def

= hx1; : : : ; k
ĥ

; : : : ; xdi for hx1; : : : ; xdi 2 I
d
n, k 2 f0; 1g and 1 � i � n

where h is the i-th least index such that xh = 1

2
, i.e.,

card
�
j 2 f1; : : : ; hg

��xj = 1

2

	
= i

(hx1; : : : ; k
ĵ

; : : : ; xni stands for: the tuple hx1; : : : ; xni with k replaced for the j-th co-

ordinate). Note that Idn = ; for n > d. In particular, the only nonempty set in the

zero-dimensional cube is I0
0

=
�

0; 1
2
; 1
	0

= f�g.
To visualize the 2-dimensional cube, denote

a
def

= h0; 0i A
def

=


0; 1

2

�
b

def

= h1; 0i B
def

=


1; 1

2

�
c def

= h0; 1i C def

=


1

2
; 0
�

d def

= h1; 1i D def

=


1

2
; 1
� � def

=


1

2
; 1
2

�

The 2-dimensional cube I2 def

= fI2
0
; I2

1
; I2

2
; : : :g is given by

�

�

�

-

-

-

? ? ?

6 6 6

a b

c d

A B

C

D

�

@0
1

@0
1

@0
1

@1
1

@1
1

@1
1

@0
1

@0
1

@1
1

@1
1

@0
2

@1
2

I2
0

def

= fa; b; c; dg I2
2

def

= f�g

I2
1

def

= fA;B;C;Dg I2n
def

= ; for n > 2

and the face maps8>>>>><
>>>>>:

@0
1
; @1

1
; @0

2
; @1

2
: I2

2
! I2

1

@0
1
� def

= A

@1
1
� def

= B

@0
2
� def

= C

@1
2
� def

= D

8>>>>><
>>>>>:

@0
1
; @1

1
: I2

1
! I2

0

@0
1
A def

= a @1
1
A def

= c

@0
1
B def

= b @1
1
B def

= d

@0
1
C def

= a @1
1
C def

= b

@0
1
D def

= c @1
1
D def

= d

�

37 Example (hollow cube)
Another example of a semi-cubical complex is the (d � 1)-dimensional hollow cube Kd�1

given by

Kd�1
n

def

=

�
Idn for n � d � 1

; for n � d

This is, clearly, a sub-complex of Id generated as follows:

Kd�1 = GId(�m) where m 2 Idd and �m def

=
�
@kim

�� 1 � i � d & k 2 f0; 1g
	

�

38 De�nition (non self-linkedness)

A semi-cubical complex is non self-linked if @kim = @`jm implies k = ` and i = j for any

m 2
S
M .
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39 Example

The cubes Id and Kd�1 are non self-linked.

.

.........................

......................

...................

................

...............

.............
............
............
.............. ................ .................. .................. ................ .............. ............

...........
.

.........
....

.........

......

.........

.......

..........

.........

..........
.........
...

..........
..........
.....

N

A

a

@0
1

@1
1

An example of a self-linked semi-cubical complex is M with

� M0 = fag | a single vertex,

� M1 = fAg | a single face in dimension 1,

� Mn = ; for n � 2,

� @0
1
A = @1

1
A = a.

�

The non self-linkedness guarantees that, informally speaking, the complex has no loops

consisting of a single face.

40 Proposition A sub-complex of a non self-linked complex is non self-linked.

B.2 Semi-cubical morphisms

41 De�nition (semi-cubical morphism)
A semi-cubical morphism between two semi-cubical complexes M

and P is a family
�
'n : Mn ! Pn

��n � 0
	

of maps commuting
with the face maps:

'n � @
k
M;i = @kP;i � 'n+1

The category of semi-cubical complexes with the semi-cubical

morphisms is denoted by SCC. The full subcategory of SCC

consisting of the �nite non self-linked semi-cubical complexes is
denoted by SCC0.

Mn+1 Pn+1

Mn Pn
? ?

-

-

? ?

? ?

���
���

���
���

@kM;i @kP;i

'n+1

'n

Note that the semi-cubical morphisms must preserve dimensions.

42 De�nition (embedding)

A morphism ' : M ! P between two semi-cubical complexes is a semi-cubical embedding

if it is an isomorphism in SCC between M and the complex GP
�
'm

��m 2
S1

n=0
Mn

	
.

43 Proposition

Given a semi-cubical complex M and its arbitrary sub-complex P , the natural inclusion
of P into M is a semi-cubical embedding.

44 Corollary

The natural inclusion �d : Kd�1
,! Id is a semi-cubical embedding.

45 Proposition

Let M be a d-dimensional non self-linked complex and let m 2Md be one of its top-

dimensional faces. Then

1. the sub-complex GMfmg is isomorphic to the cube Id, and

2. the sub-complex GM (�m) (cf. Ex. 37) is isomorphic to the hollow cube Kd�1, and
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22 Stefan Soko lowski A case for po-manifolds

3. M is the semi-cubical pushout of the embedding �d : Kd�1
,! Id and the embedding

' : Kd�1 ' GM (�m) ,!M 0, where M 0
d

def

= Md r fmg and M 0
n

def

= Mn for n 6= d.

Note that the assumption in Prop. 45 about the non self-linkedness of M cannot be

skipped.

46 Proposition

An arbitrary semi-cubical morphism ' : Id�1 !M , where M is non self-linked, is an

embedding.

47 Proposition

For every non empty complex M 2 SCC0 and every top-dimensional

face m 2MdimM ,M is the pushout of two embeddings, see the diagram

opposite. In this diagram, d def

= dimM ; M 0 is given by M 0
d

def

= Md r fmg
and M 0

n
def

= Mn for n 6= d; and ' : Kd�1 ' GM (�m) ,!M 0 (cf. Prop. 45
on the page before).

Kd�1 M 0

Id M

'

�d
push-
out

-

-
??
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1 The category of ows

This paper is a long abstract of [4].

One has introduced in [8] the category of globular CW-complexes glCW

and an equivalence relation on it called dihomotopy.

Globular complexes are su�cient to model all higher dimensional automata
(HDA). Indeed there is a implementation (see [1]) of the semantics of a real
concurrent language in terms of precubical sets, demonstrating the relevance

of this approach, and a functor from the category of precubical sets to that of
globular CW-complexes.

Dihomotopy is an equivalence relation which preserves computer-scienti�c
properties of globular CW-complexes (deadlocks, unreachable states, sched-

ules of execution, �nal and initial points, serializability) [5] [7]. So one can

work directly in the quotient category for the study of these computer-scienti�c
properties.

However the category of globular CW-complexes does not have any \good"

mathematical property. So we introduce in [4] a new category of ows Flow, a

new equivalence relation called weak dihomotopy, and a functor cat : glCW!

Flow such that

(i) The functor cat induces an equivalence of categories between the globu-

lar CW-complexes up to dihomotopy and the ows up to weak dihomo-

topy 1 .

(ii) The category Flow is complete and cocomplete.

1 The proof of this fact is more than 100-page long and requires a lot of technical works

both in algebraic topology and in category theory.

c2002 Published by Elsevier Science B. V.
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Fig. 1. Comparison of geometric models of HDA

(iii) The category Flow has a model structure (an abstract setting for doing
homotopy which is introduced by Quillen in [10]) explaining partially the
behaviour of dihomotopy.

(iv) The category Flow is not cartesian closed but does have a closed monoidal
structure called tensor product corresponding to the interleaving of asyn-

chronous processes ; in particular the tensor product of the ow corre-
sponding to the m-dimensional cube by the ow corresponding to the
n-dimensional cube is equal to the ow corresponding to the (m + n)-
cube.

De�nition 1.1 A ow X is a (compactly generated) topological space PX

together with a discrete space X0 equipped with three continuous maps s :
PX ! X0, t : PX ! X0 and � : f(x; y) 2 PX � PX; tx = syg ! PX

satisfying (x � y) � z = x � (y � z), s(x � y) = sx, t(x � y) = ty. The elements

of PX are called the non-constant execution paths of X.

So the category of ows is at the same time mathematically rich enough

and not too big modulo weak dihomotopy. It is then a convenient framework

to study HDA and related problems.

2 Comparison with other geometric approaches

Figure 1 is a recapitulation of the other existing geometric approaches. Surely

a lot of people by reading these pages will wonder whether there are links

2
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Mathematical setting Question (i) Question (ii) Question (iii)

precubical set hopeless yes yes

PV diagram no no meaningless

strict !-category yes yes yes

local po-space no no meaningless

d-space no yes meaningless

globular CW-complex yes no meaningless

ow yes yes meaningless

Table 1

Comparison of all geometric approaches for dihomotopy

with other approaches and maybe they will also wonder why I gave up the
!-categorical setting. I do not want to be polemical in this conclusion.

In this paper, we have introduced a new category (the category of ows)

whose weak dihomotopy classes are exactly the dihomotopy classes of globular
CW-complexes. So this new setting is still relevant for the study of HDA. Its
main advantage is that the new category is complete and cocomplete.

We can by this way get rid of the combinatorial complexity of the strict
!-category setting as for instance the so-called thin elements conjecture (see

conjectures in [6]). Indeed it is even not yet possible to prove that the branch-
ing homology of the n-cube vanishes in strictly positive dimension while it
is trivial in the setting of globular CW-complexes. This means that we can-
not yet prove in the strict !-category setting that a HDA consisting of a n-
dimensional transition (i.e. the concurrent execution of n 1-transitions) does

not contain any non-deterministic branching !

The mathematical properties of the di�erent frameworks are compared in
Table 1. The questions are for each theoretical framework :

(i) Does one know a global notion of dihomotopy for the whole category ?
By dihomotopy, one means an equivalence relation which preserves the
computer-scienti�c properties of the corresponding HDA in the same

equivalence class.

(ii) Is the category complete, cocomplete ? Does it have a closed monoidal

structure, if possible representing something in computer science ?

(iii) Are there highly complicated combinatorial questions which prevent from
carrying out the simplest homological calculations ?

The two �rst lines of the table treat the old cases of precubical sets and

of PV diagrams [2]. They can be viewed as a subcategory of that of local

po-spaces [3]. PV diagrams present the same drawbacks as the local po-space

3
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setting. The precubical set is the worst theoretical framework : there is even

not enough morphism to take into account dihomotopy (see Introduction in

[6]).

The answer for Question 1 is positive for the strict !-category setting since

it is easy to �nd the right notion of dihomotopy for these objects starting from

what happens with ows.

The answer for Question 2 is negative for the local po-space setting. How-

ever we can make the conjecture that it could be possible to embed the cate-

gory of compact local po-spaces in the category of ows.

To conclude, let us mention Grandis's approach [9] : he introduces an-

other geometric setting (the one of d-spaces) having nice categorical proper-

ties. However the equivalence relations he de�nes do not seem to preserve

the computer-scienti�c properties of the corresponding HDA because they

contract the oriented segment. So Grandis's notion of d-homotopy does not

correspond to our notion of dihomotopy. This is the reason why the answer for

Question 1 is negative for the d-space framework even if d-homotopy could be

also relevant for computer science (after bipointing the d-space for instance).
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