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Foreword

A large class of systems can be speci�ed and veri�ed by abstracting away

from the temporal aspects. In time-critical systems, instead, time issues be-

come essential. Their correctness depends not only on which actions a sys-

tem can perform but also on their execution time. Due to their importance,

time-critical systems have attracted the attention of a considerable number of

computer scientists from various research areas.

This volume contains the preliminary proceedings of the 3rd International

Workshop on Models for Time-Critical Systems (MTCS 2002); MTCS 2002

was held on August 24, 2002 as one of seven satellite workshops co-located

with the 13th International Conference on Concurrency Theory (CONCUR

2002), held in Brno (Czech Republic) August 20-23, 2002.

The �rst workshop, MTCS 2000, was held in State College (Pennsylvania,

USA) on 26 August 2000, co-chaired by Flavio Corradini and Paola Inverardi,

while the second workshop, MTCS 2001, was held in Aalborg (Denmark) on

August 25, 2001, co-chaired by Flavio Corradini and Walter Vogler. As for

the �rst two workshops, the objectives of MTCS 2002 were (i) to present and

discuss promising new proposals on models for time-critical systems, rang-

ing from theory to practice and (ii) to promote interaction between di�erent

research areas in the �eld of time-critical systems. Despite its focus on time-

critical systems, MTCS 2002 was also open for time-related issues in general,

e.g. performance in systems where time is not critical for the functional be-

haviour.

The eight papers in this volume were selected for presentation by the Pro-

gram Committee from submissions received in response to a Call for Papers.

The �nal versions of these papers are considered for publication in Electronic

Notes in Theoretical Computer Science: http://www.elsevier.nl/locate/entcs.

This volume also includes a short abstract of the contribution by the invited

speaker Walter Vogler (University of Augsburg). Many thanks are due to the

other invited speaker P. S. Thiagarajan (Chennai Mathematical Institute)

and to the members of the Program Committee as well as their sub-referees

for their accurate work. We would also like to thank Michael Mislove for

his help during the editorial process for these proceedings and to BRICS for

the publication of these preliminary proceedings. Finally, our thanks go to

Petr Jancar and Mojmir Kretinsky (CONCUR 2002 Conference Chairs) and

Antonin Kucera (Workshops Coordinator) for the opportunity they gave us

to organize MTCS 2002 and for their support.

Walter Vogler, University of Ausburg, Germany

Kim G. Larsen, University of Aalborg, Denmark
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Measuring the Performance of Asynchronous
Systems in the PAFAS Approach

Walter Vogler 1

Institut f�ur Informatik

Universit�at Augsburg

Germany

Flavio Corradini 2

Dipartimento di Informatica

Universit�a dell'Aquila

Italy

Abstract

PAFAS (Process Algebra for Faster Asynchronous Systems) is a process algebra

where actions are assumed to occur within a given time bound, which for simplicity

is taken to be 1. A testing-based faster-than relation is presented that compares

asynchronous systems according to their worst-case eÆciency [4,3]. Main results

are: the resulting pre-order based on the more realistic real-valued time is the same

as the pre-order based on the simpler integer-valued time { so we use the latter; the

faster-than relation can be characterized with some sort of refusal traces. A larger

example studying implementations of a bu�er can be found in [1].

While the testing de�nition is qualitative, we point out that it can also be seen

as considering a quantitative performance measure. Then we adapt the PAFAS-

approach to a setting, where user behaviour is known to belong to a very speci�c,

but often occurring class of request-response behaviours, and show how to determine

an asymptotic performance measure for �nite-state processes [2].
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An Algebraic Approach for Compiling
Real-Time Programs

Alvaro E. Arenas
1;2

Laboratorio de C�omputo Especializado

Universidad Aut�onoma de Bucaramanga

Bucaramanga, Colombia

Abstract

Compiler Veri�cation has been identi�ed as a vital process in the implementation of

correct safety-critical systems. We extend here Hoare's re�nement-algebra approach

to compilation in order to include real-time languages in which processes interact

asynchronously via communication queues. The existence of unique �xed-points is

exploited to verify the implementation of crucial operators such as asynchronous

input, delay and timeout.

1 Introduction

In the development of safety-critical systems, compiler correctness represents

an essential process. Since many safety-critical systems have timing con-

straints, some approaches have been expanded to include the concept of time

[7,13]. This paper extends the re�nement-algebra approach proposed by Hoare

in [8,10] to model compilation for real-time languages in which processes com-

municate asynchronously via communication queues called shunts. A shunt

can be seen as a directed channel with the capability of bu�ering messages.

As the sender transmits a message, it stores it into the corresponding shunt

and proceeds with the execution. When the receiver reads a shunt, it takes

the oldest message deposited in it. However, if the shunt is empty, the receiver

is blocked until a message arrives. The main advantage of this asynchronous

mechanism is the loose coupling it provides between system parts: a sender is

never blocked because a receiver is not ready to communicate. This commu-

nication scheme is adopted by several asynchronous models such as versions

of CSP [12] and SDL [15].

1 Thanks to He Jifeng for proposing exploration of �xed points in verifying the implemen-

tation of real-time programs. I am grateful to Je� Sanders for valuable suggestions. This

work was partially funded by the Colombian Research Council (Colciencias-BID).
2 Email:aearenas@bumanga.unab.edu.co

This is a preliminary version and considered for the �nal proceedings, to be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Arenas

The work presented here is part of research aiming to achieve means of

formally dealing with compilation and scheduling of real-time programs within

a single framework [1]. The main contribution of this paper consists in devising

a strategy for verifying the implementation of operators that require \waiting"

for the occurrence of an event, such as bu�ered input, delay or timeout. The

strategy is based on the existence of unique �xed points in recursive equations.

Section 2 describes the source programming language and presents its main

algebraic laws. Next, section 3 introduces the target language and develops

some algebraic properties of machine-level programs. Section 4 formalises

the compiling correctness relation that must hold between source and target

code and illustrates the compilation of constructors for sequential programs.

Finally, section 5 gathers some concluding remarks.

2 The Source Language

Our programming language is a concurrent language with asynchronous com-

munication and real-time facilities. Its syntax is given by the following de-

scription:

P ::= ? j II j x := e j s ! e j s ? x j �d j [d ]P

j P ;P j P u P j P � b � P j while(b;P) j [P �
s

d
P ] j P k P

where P stands for a process, x is a list of variables, x is a variable, s is a

shunt, e is a list of expressions, e is an expression, b is a Boolean expression,

and d is a time expression.

The chaotic process ? is the worst one; its execution is arbitrary and

beyond control. The skip process II does nothing, terminating immediately.

The multiple assignment x := e, where x is a list of distinct variables and e

an equal-length list of expressions, evaluates the components of e and stores

these results simultaneously into list x , preserving the original ordering of the

elements. We assume here that the evaluation of an expression always delivers

a result and does not change the value of any variable, i.e. no side-e�ect is

allowed. The output s ! e writes the value of the expression e into the output

shunt s, leaving all program variables unchanged. The input s ? x reads the

oldest message from shunt s and stores it into variable x . If the shunt is empty,

the process is blocked until a message arrives. We adopt the realistic premise

that all communicating processes take time, the amount of time consumed by

the instruction not being speci�ed.

Composition P ;Q represents a process that executes P �rst and, at ter-

mination of P , starts with the execution of Q . It is assumed that there is

no delay associated with the transfer of control from P to Q . Process P u Q

represents the non-deterministic choice between the participating processes.

The conditional P � b � Q represents a choice between alternatives P and

Q in accordance with the value of Boolean expression b; it behaves like P if

b is true, and like Q if b is false. It is assumed that some arbitrary time is

4
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spent in the evaluation of b. The iteration while(b;P) executes process P

while condition b is true, and terminates when the condition is false. It is also

assumed that some time is spent in each iteration evaluating expression b.

The delay process �d is guaranteed to wait for a minimum of d time units

before terminating. The process [d ]P behaves as P and its execution does

not take more than d time units. Another useful real-time constructor is the

timeout process [P �s

d
Q ], which monitors shunt s for d time units; if there

is a message in s during that time, it executes process P , otherwise it executes

process Q . Finally, the parallel composition of P and Q , denoted by P k Q ,

describes the concurrent execution of the two processes. Each process has its

own program state, which is inaccessible to its partner, and interacts with its

partner and the external world via communication through shared shunts.

In previous work [2], we have given a speci�cation-oriented semantics to our

language and derived its main algebraic laws. The semantic is constructed by

following the predicative approach described in [9], where a process is modelled

as a predicate that describes all the observations that it can generate. In

[1] we have proposed notation P � Q to denote that processes P and Q

are semantically equivalent and proved that all derived laws are sound with

respect to the model. Let us now introduce a subset of the laws useful in

verifying the compiler described in later sections.

Laws for primitive programs coincide with classical laws for imperative

sequential programs and communicating processes.

Law 2.1 Laws for Primitive Programs

(1) P ; II � II ; P � P (4) x ; y := e; y � x := e

(2) ?; P � ? (5) x := e; x := f (x ) � x := f (e)

(3) x := e; s ! f (x ) � x := e; s ! f (e) (6) s ? y ; x := y � s ? x ; y := x :

Let us explain some of the above laws. Law 2.1 (2) expresses that once a

process is out of control, its sequential composition with another process does

not redeem the situation. In our formal model [2], an assignment may take

time, but the amount of time consumed by the instruction is not speci�ed;

this allows us to derive law 2.1 (5).

We de�ne an ordering relation P vQ to mean that Q is at least as deter-

ministic as P . It is de�ned in terms of choice as P vQ b= (P uQ) � P . All

compound processes are monotic with respect to the ordering relation [1].

The following laws describe some properties of the real-time operators.

Law 2.2 Laws for Real-Time Operators

(1) �d1; �d2 � �(d1 + d2) (3) [P �
s
1
[P �

s

d
Q ]] � [P �

s

d+1
Q ]

(2) [d1]P v [d2]P provided d2 � d1 (4) [[P �
s

0
R] �s

d
Q ] � [P �

s

d
Q ] :

5
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2.1 Some Auxiliary Processes

We introduce here some auxiliary processes useful in reasoning about process

behaviour. The idle process � represents a process that may terminate at any

arbitrary time without changing any variable or shunt. The conditional pro-

cess (P � b � Q) selects one alternative depending on the value of expression

b; if b is true, it acts like process P , otherwise it behaves like Q . It di�ers

from the conditional of our programming language in that it is assumed that

the evaluation of b does not take time. The miracle program, denoted by >,

stands for a product that can never be used because its conditions of use are

impossible to satisfy. The assumption of b, denoted by b>, can be regarded

as a miracle test: it behaves like II if b is true; otherwise it behaves like >.

By contrast, the assertion of b, denoted by b?, also behaves like II if b is

true, otherwise it fails, behaving like ?. The next law illustrates the use of

assumption/assertion.

Law 2.3 Laws Applying Assumption and Assertion

(1) b>; (P � b � Q) � b>; P (3) (s 6= hi)>; [P �
s

d
Q ] � (s 6= hi)>; �; P

(2) x := e; (x = e)> � x := e (4) (s = hi)>; [P �
s

0
Q ] � (s = hi)>; �; Q

The declaration var x introduces new program variable x and permits x

to be used in the portion of the program that follows it. The complementary

operation, end x , terminates the region of permitted use for variable x .

Let X be the name of a recursive program we wish to construct, and F (X )

a function on the space of processes denoting the intended behaviour of the

program. We can show that the space of processes forms a complete lattice

[1]. Notation �X :F (X ) stands for the least �xed point of function F and

notation �X :F (X ) denotes the greatest �xed point of F . The following law

illustrates the main properties of these operators.

Law 2.4 Fixed Point Laws

(1) F (�X :F (X )) � �X :F (X ) (3) F (�X :F (X )) � �X :F (X )

(2) F (Y )vY ) �X :F (X )vY (4) F (Y ) w Y ) �X :F (X ) w Y :

The iteration b � P can be de�ned as the least �xed point of the equation

�X :((P ; X ) � b � II ). Typical laws for the loop include the following.

Law 2.5 Loop Laws

(1) b>; b � P � b>; P ; b � P (2) (: b)>; b � P � (: b)> :

There is an interesting case in which the least and greatest �xed points

coincide, as described below.

Theorem 2.6 Unique Fixed Point

Let F (X ) be a monotonic function on the space of processes. If it is guaranteed

that there is a delay of at least one time unit before invoking the recursion,

then the �xed point of F is unique. 2

6
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3 The Target Language

Our target machine has a rather simple architecture, consisting of a store

for instructions m : Addr ! Instr , modelled as a function from the set of

addresses to the set of machine instructions; a program counter pc : Addr

that points to the current instruction; and a data stack st : seq :Z, used to

hold temporary values. The target language is an intermediate-representation

language close to, but more abstract than the �nal machine code. Following

tradition, the machine instructions are represented by updates to machine

components. These instructions are introduced in Table 1.

Let us explain some of the instructions. Instruction LD(x ) has variable x

as its operand; its execution pushes the value of x onto the evaluation stack,

and increases the value of the program counter pc by 1. Symbol ++ denotes

concatenation of sequences; last:st stands for the last element of sequence st ;

front:st corresponds to the sequence obtained from eliminating last element

of st . Instruction ST(x ) pops the value at the top of the stack into variable

x , and then passes the control to the next instruction; the requirement of

having at least one element in the stack is expressed as an initial assumption

in the instruction. Instructions EV(e); EVB(b) and EVT(d) are used to evaluate

integer, Boolean and time expressions respectively; the instructions push the

result of evaluating the expression onto the top of the stack and increment the

program counter by one. When non-integer values are stored into the stack,

they are translated into the appropriate representation by using a represen-

tation function RT , of type T ! Z for each basic type T , as presented in

[14,13]. Arithmetic instructions are introduced by means of the ADD and SUB

instructions; the operation front2:st obtains the front of front:st ; similarly,

the operation last2:st obtains the last element of front:st . Comparison of

the last two elements of the evaluation stack is introduced by the instructions

LE and LT. Instructions JP, JPF and JPT are used for unconditional and con-

ditional jump respectively. The instruction DUP duplicates the value stored at

the top of the evaluation stack st . The output instruction OUT(s) sends the

value on top of the stack through shunt s, taking that value out of the stack.

The input instruction IN(s) is executed only when shunt s is not empty; it

inputs the oldest message from s and leaves it at the top of the stack. Instruc-

tion TST(s) tests whether there is a message in shunt s. Instruction STM(s)

stores in top of the stack the time stamp of the oldest unread message of s.

The TIM instruction reads the current time and places it on top of the stack;

it is simply a speci�cation that the hardware implementator must guarantee.

The target language is a distinguished subset of the modelling language.

The assignment statements are \timed" assignments so that time passes while

an instruction executes. Let T : Instr ! Time be a function denoting the

duration of executing a machine instruction such that T (INSTR) > 0 for

INSTR 2 Instr . Notation T is used later to de�ne the execution time of

blocks of machine code.

7
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Table 1

The Target Language

LD(x ) b= pc; st := pc + 1; st ++ hx i

ST(x ) b= (#st � 1)>; pc; st ; x := pc + 1; front:st ; last:st

EV(e) b= pc; st := pc + 1; st ++ hei

EVB(b) b= pc; st := pc + 1; st ++ hRB :bi

EVT(d) b= pc; st := pc + 1; st ++ hRTime :di

ADD b= (#st � 2)>; pc; st := pc + 1; front2:st ++ hlast2:st + last:sti

SUB b= (#st � 2)>; pc; st := pc + 1; front2:st ++ hlast2:st � last:sti

LE b= (#st � 2)>; pc; st := pc + 1; front2:st ++ h1 � last:st � last2:st � 0i

LT b= (#st � 2)>; pc; st := pc + 1; front2:st ++ h1 � last:st < last2:st � 0i

JP(l) b= pc := l

JPF(l) b= (#st � 1)>; pc; st := (l � last:st = 0 � pc + 1); front:st

JPT(l) b= (#st � 1)>; pc; st := (l � last:st = 1 � pc + 1); front:st

DUP b= (#st � 1)>; pc; st := pc + 1; st a hlast(st)i

OUT(s) b= (#st � 1)>; s ! last:st ; pc; st := pc + 1; front:st

IN(s) b= ( �s 6= hi)>; var x ; s ? x ; pc; st := pc + 1; st ++ hx i; end x

TST(s) b= pc; st := pc + 1; st ++ h1 � �s = hi � 0i

STM(s) b= ( �s 6= hi)>; pc; st := pc + 1; st ++ hstamp( �s )i

TIM b= pc; st := pc + 1; st ++ hti where t 2 [t�; t!] and t�; t! stand for the time

when starts and �nishes the execution of the instruction

3.1 Execution of Target Programs

The execution of a target program is represented by the repetition of a set

of machine instructions. In this part we formalise such concepts, borrowing

some elements from [9].

De�nition 3.1 Labelled Instruction

Let INSTR : Instr be a machine instruction as de�ned in Table 1 and l : Addr

a machine location. Labelled instruction l : INSTR expresses that instruction

8
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INSTR is executed when the program counter has value l . It is de�ned as

l : INSTR b= (INSTR � pc = l � II ) :

Labelled instructions are used to model the possible actions during the

execution of a target program. The fact that the executing mechanism can

perform one of a set of actions according to the current value of the pro-

gram counter can be modelled by a program of the form l1 : INSTR1 [] l2 :

INSTR2 [] � � � [] ln : INSTRn where locations l1; � � � ; ln are pairwise disjoint and

operator [] denotes the assembly of machine programs.

De�nition 3.2 Assembly and Continuation Set

{ Let C be a machine program consisting only of labelled instruction l : INSTR.

Then, C is an assembly program with continuation set L:C = flg.

{ Let C and D be assembly programs with disjoint continuation sets L:C and

L:D respectively. The assembly program (C []D) and its continuation set are

de�ned as follows:

C []D b= (C � pc 2 L:C � D) � (pc 2 L:C [ L:D) � II

L:(C []D) b= L:C [ L:D :

The continuation of assembly C denotes its set of valid locations. The

value of the program counter determines the instruction to be executed.

Law 3.3 Program Counter and Assembly Program

Let C = (l1 : INSTR1 [] l2 : INSTR2 [] � � � [] ln : INSTRn) be an assembly program.

Then (pc = li ^ li 2 L:C )>; C � (pc = li ^ li 2 L:C )>; INSTRi :

The execution of an assembly program is modelled as a loop which iterates

the program as long as the program counter remains within the continuation

set.

De�nition 3.4 Execution

Let C be an assembly program. Execution of program C is de�ned as follows:

C �
b= (pc 2 L:C ) � C . The evaluation of the guard in the loop does not

consume time. All execution time overheads are accounted for in the machine

instructions.

4 Compiling Sequential Programs

This section speci�es a compiler that translates a sequential program into

a target program represented as an assembly of single machine instructions

whose behaviour represents an improvement with respect to that of the original

source program. We also derive the execution time of each target program

generated by the compiler.

De�nition 4.1 Compilation

The correct compilation of a program is represented by a predicate C(P ; a;C ; z )

where P is the source program; C is a machine program stored in the code

9
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memory m, consisting of an assembly of single machine instructions; a and z

stand for the initial and �nal addresses of program C , respectively. Predicate

C(P ; a;C ; z ) is formally de�ned by the following re�nement:

C(P ; a;C ; z ) b= P v (var pc; st ; (pc = a)>; C �; (pc = z )?; end pc; st) :

The declaration var pc; st introduces the machine components. The assump-

tion (pc = a)> expresses that program counter pc should be positioned at

location a at the beginning of execution of C . The assertion (pc = z )? states

the obligation to terminate with program counter pc positioned at location z .

Notation TC(P) is used to denote the worst-case execution time of the machine

code that compiler speci�cation C associates to source program P .

The compiler is speci�ed by de�ning predicate C recursively over the syntax

of sequential source programs. Correctness of the compiling relation follows

from the algebraic laws of the language. We omit the proof for the classical

sequential operators, since it follows lines similar to those of the untimed

case, and refer the reader to [1]. We outline the proof for input and timeout

operators.

Assignment x := e is implemented by a piece of code that evaluates ex-

pression e and stores the result into the corresponding program-variable store.

Note that the duration of an assignment was unspeci�ed at source level, how-

ever the code implementing it has an exact duration equal to the addition of

the duration of each participating machine instruction.

Theorem 4.2 Assignment Compilation

C ( x := e; a; (a : EV(e) [] a+1 : ST(x )); a + 2) .

TC(x := e) = T (EV) + T (ST) .

Notation l+i : INSTR states that machine instruction INSTR is located

at position l + i . For simplicity, we are assuming that the evaluations of the

integer expressions all have the same duration. We can determine the duration

of evaluating an expression by using techniques for simplifying expressions.

Skip is implemented as an empty segment of code. Obviously, the duration

of the code implementing the skip is zero. Let us assume that II also denotes

a machine program with an empty location set, i.e L:II = ;.

Theorem 4.3 Skip Compilation

C ( II ; a; II ; a ) .

TC(II ) = 0 .

The output process is implemented by a piece of code that evaluates the

expression to be transmitted and then sends the value to the corresponding

shunt. The duration time of the implementation is equal to the addition of

its constituent machine instructions.

Theorem 4.4 Output Compilation

C ( s ! e; a; (a : EV(e) [] a+1 : OUT(s)); a + 2 ) .

10
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TC(s ! e) = T (EV) + T (OUT) .

The implementation of input instruction s ? x is split into three parts. The

�rst one, code A below, tests whether there exists a message in shunt s. The

second part, code B below, jumps back to execute code A again if there is

no message in s. Finally, in case there is a message in s, code I does input

the oldest message and �nishes storing it into variable x . To determine the

execution time of the implementation of an input is an infeasible problem, since

the arrival of messages into a shunt depends on the environment's behaviour;

however, we can estimate the execution time of the input implementation if

we know that the shunt is not empty.

Theorem 4.5 Input Compilation

Let A = ( a : TST(s) [] a+1 : JPF(a+3) ) , B = ( a+2 : JP(a) )

and I = ( a+3 : IN(s) [] a+4 : ST(x )).

Then C ( s ? x ; a; (A []B [] I ); a + 5 ) .

If s is not empty, then TC(s ? x ) = T (A) + T (I )

= T (TST) + T (JPF) + T (IN) + T (ST) :

Proof. We use a novel strategy in which the uniqueness of the �xed point

for recursive equations plays an important role. Let us start by de�ning a

function F that portrays the execution of code (A []B [] I ).

Let M = pc; st , C = (A []B [] I ) , START = varM ; (pc = a)>

END = (pc = a+4)?; endM , END0 = (pc = a _ pc = a+4)?; endM ,

G(X ) = A�; ((B�; X ) � pc = a+2 � I �) and

F (X ) = START ; G(X ); END0 .

Function F starts by executing code A. Depending on the value of the program

counter at the end of the execution of A, it proceeds either to execute code I or

to execute code B and then to invoke parameter programX . As all involved in-

structions take time, function F is time-guarded for variable X . From theorem

2.6, it follows that F has a unique �xed point. Our strategy consists in proving

�rst that s ? x is a pre-�xed point of F , i.e. s ? x v F (s ? x ), concluding by

the strongest �xed point law, law 2.4 (4), that s ? x v �X � F (X ). Then we

proceed by proving that (START ; C �; END) is a post-�xed point of F , i.e.

F (START ; C �; END) v (START ; C �; END), concluding by the weakest

�xed point law, law 2.4 (2), that �X � F (X ) v (START ; C �; END). The

desired result follows from the transitivity of the re�nement relation. Com-

plete proof of this theorem is presented in [1]. 2

The strategy employed in the implementation of the input program can be

used to prove the implementation of constructors that require to wait for the

occurrence of an event, namely delay and timeout. The code implementing

the delay program �d is divided into two parts: codes S and T . Execution

11
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of code S determines the time when delay �d should �nish: it is equal to

the addition of the current time to the value of time parameter d , leaving the

result on top of the evaluation stack. Code T compares the current time with

the value at the top of the stack, in order to determine whether the delay has

expired.

Theorem 4.6 Delay Compilation

Let S = ( a : TIM [] a+1 : EVT(d) [] a+2 : ADD )

and T = ( a+3 : DUP [] a+4 : TIM [] a+5 : LT [] a+6 : JPT(a+3) ) .

Then C (�d ; a; (S []T ); a + 7 ) .

TC(�d) = d + T (S ) + T (T ) :

Let us now turn to the implementation of compound processes. Sequen-

tial composition can be compiled componentwise, having as target code the

assembly of its components.

Theorem 4.7 Sequential Composition Compilation

Let C (P ; a; C ; h) , C (Q ; h; D ; z ) and (L:C \ L:D) = ; .

Then C (P ;Q ; a; (C []D); z ) .

TC(P ;Q) = TC(P) + TC(Q) .

The compilation of a timed conditional includes an initial piece of code

that evaluates the corresponding guard and then, depending on the result of

the evaluation, chooses one of the participating programs.

Theorem 4.8 Conditional Compilation

Let B = ( a : EVB(b) [] a+1 : JPF(h) ) , C (P ; a+2; C ; z ) , C (Q ; h; D ; z ) ,

(L:C \ L:D) = ; and (L:B \ L:C \ L:D) = ; .

Then C (P � b � Q ; a; (C []B []D); z ) .

TC(P � b � Q) = T (EVB) + T (JPF) + max(TC(P); TC(Q)) .

The iteration program is implemented by a piece of machine code that

evaluates the guard. In case the guard holds, the body of the program is

executed. Once it has terminated, it jumps back to repeat the whole process.

To determine the execution time of the iteration program, it is necessary to

know the upper bound on the possible number of iterations.

Theorem 4.9 Iteration Compilation

Let B = ( a : EVB(b) [] a+1 : JPF(z ) ) , J = ( j : JP(a) )

C (P ; a+2; C ; j ) and (L:B \ L:J \ L:C ) = ; .

Then C (while(b;P); a; (B []C [] J ); z ) .

12
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Let T be the maximum number of iterations of the program while(b;P).

Then, TC(while(b;P)) = T � (T (B) + T (C ) + T (J )) + T (B) .

The timeout [P �s

d
Q ] is implemented by a machine program that moni-

tors shunt s for at most d time units. If a message arrives in that period of

time, the program jumps to execute the code associated to program P . After

d time units, if a message has not arrived on shunt s, the program jumps to

execute the code associated to program Q .

Theorem 4.10 Timeout Compilation

Let S = ( a : TIM [] a+1 : EVT(d) [] a+2 : ADD ) ,

E = ( a+3 : TST(s) [] a+4 : JPF(a+10) ) ,

T = ( a+5 : DUP [] a+6 : TIM [] a+7 : LT [] a+8 : JPF(h) ) ,

J = ( a+9 : JP(a+3) ) ,

M = ( a+10 : STM(s) [] a+11 : LE [] a+12 : JPF(h) ) ,

C (P ; a+13; B ; z ) , C (Q ; h; D ; z ) , (L:B \ L:D) = ; ,

(L:S \ L:E \ L:T \ L:J \ L:M \ L:B \ L:D) = ; and

C = (S []E []T [] J []M []B []D) .

Then C ([P �s

d
Q ]; a; C ; z ) .

TC([P �s

d
Q ]) = d+T (S )+T (E )+T (T )+T (J )+T (M )+max(TC(P); TC(Q)) :

Proof. Let us �rst explain the implementation of [P �s

d
Q ], assuming that

C (P ; a+13; B ; z ) and C (Q ; h; D ; z ). Code S refers to the evaluation of the

timeout parameter; it reads the current time, and then adds to it the value

of parameter d , leaving the result at the top of the evaluation stack. Code E

determines whether there exists messages in the shunt. In case there are no

messages in the shunt, code T compares the current time with the value at the

top of the stack, to determine if a timeout has occurred. In case of a timeout,

the program jumps to location h to execute piece of code D . If there is no

timeout, the program proceeds with the execution of code J , which simply

jumps to repeat code E . If there is a message in shunt s, code M determines

if it arrived before the timeout; to do so, it obtains the time stamp of the

oldest unread message, and compares it with the timeout value that is stored

at the top of the evaluation stack. In case of the stamp being less than the

timeout, codeM jumps to location a+13, where it continues with the execution

of B . In case of the stamp being greater than the timeout value, a timeout

has happened (although some messages could have arrived after the timeout,

in which case they are not considered), code M jumps then to location h, the

initial location of D .

In the proof, we follow a strategy similar to the one used for proving the

input instruction. It starts with the de�nition of a function F that mimics
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the execution of code C and then exploits the uniqueness of its �xed point to

get the desired result.

Let START = M ; (pc = a)> , END = (pc = z )>; endM ,

G(X ) = E �; [ (T �; (J �; X � pc = a+9 � D�) ) � pc = a+6 �

(M �; (B� � pc = a+13 � D�) ) ]

F (X ) = START ; S �; G(X ); END .

Invocation of X in F (X ) is preceded by instructions that take time. Then,

by Theorem 2.6, it follows that F has a unique �xed point. The proof strategy

consists in showing �rst that [P �s

d
Q ] v F ([P �s

d
Q ]). Such proof follows

by induction on time parameter d , using law 2.2 (3). Then, according to

the strongest �xed point law, it follows that [P �s

d
Q ] v �X � F (X ). The

second part consists in showing that (START ; C �; END) is a post �xed point

of F , F (START ; C �; END) v (START ; C �; END). By the weakest �xed

point law, it follows that �X � F (X ) v (START ; C �; END). The result

arises from transitivity of the re�nement relation. 2

Our compilation process restricts the compilation of deadline to the case

in which it is the outermost operator. Let notation CD(P ; a; C ; z ) stand

for ([D ]P v (var pc; st ; (pc = a)>; [D ]C �; (pc = z )?; end pc; st)). The

following theorem illustrates the compilation of deadline.

Theorem 4.11 Deadline Compilation

Let C(P ; a;C ; z ) and TC(P) � D .

Then CD(P ; a; C ; z ).

TC([D ]P) = TC(P) .

We are following an approach similar to [6] by considering the compilation

of deadline as a sort of annotation on the target code, annotation that will be

used in the later stage of scheduling analysis.

We have not dealt with compilation of concurrent programs. Intended

future work includes extending the approach in order to enable compilation of

concurrency by modelling the scheduling of parallel machine programs into a

uniprocessor machine. We plan to de�ne a priority-based scheduler that takes

into consideration the deadline associated with each program, assuming that

the set of programs has passed some schedulability test such as the worst-case

response time analysis [11].

5 Concluding Remarks

Many authors have shown that unique �xed points arise naturally in real-

time contexts when restricting the model to allow the progress of time [5].

In this paper we have taken advantage of this characteristic to verify the
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implementation of a real-time language using the re�nement-algebra approach

to compilation.

Implementation of classical sequential constructors (such as assignment,

sequential composition, conditional and iteration) has followed lines similar

to those of the untimed case. The novelty in our work consisted in devising a

strategy for proving the implementation of constructors that are required to

wait for the occurrence of an event (input, delay and timeout). The strategy

can be summarised as follows. Let P be the source program to be implemented

and C the associated target code. In order to prove that C implements P ,

i.e. P vC , we pursued the following steps: (1) �nding a recursive function

F (X ) that simulates the execution of C ; (2) showing that the recursion in F

is time-guarded, which implies uniqueness of its �xed point; (3) proving that

P is a pre-�xed point of F , i.e. P vF (P); (4) proving that C is a post-�xed

point of F , i.e. F (C )vC . The result P vC followed from properties of �xed

points and transitivity of the re�nement relation.

The approach to prove correctness of compiling speci�cation using alge-

braic laws was originally suggested by Hoare in [8,10]. Hoare's work was

accomplished in the context of the ProCoS project [4] and has inspired sev-

eral investigations. Notable is the work of M�uller-Olm [14], that describes

the design of a code generator translating the language of while programs |

extended by communication statements and upper-bound timing | to the

Inmos Transputer. Emphasis is put on modularity and abstraction of the

proofs, which is achieved by constructing a hierarchy of increasingly more ab-

stract views of the Transputer's behaviour, starting from bit-code level up to

assembly levels with symbolic addressing.

In [7], a compilation is de�ned for a real-time sequential language with

memory-mapped input and output commands. Both the source and target

languages are modelled in the Interval Temporal Logic, and a set of algebraic

laws are derived in a way similar to that presented here. The compilation pro-

cess is simpli�ed by representing the compilation of communication processes

as a compilation of assignments to port variables.

Also inuenced by Hoare's work, but using an alternative approach, Ler-

mer and Fidge de�ne compilation for real-time languages with asynchronous

communication [13]. Their semantic model is based on the real-time re�ne-

ment calculus of Hayes where communication is achieved by shared variables,

and the language o�ers delay and deadline constructors. Our intermediate

target language is very close to their target code, also modelled as a subset

of the source language. The operation of composition of machine programs is

achieved by means of an operation for merging loops, similar to our model of

execution of machine programs. Although there are many similarities between

the two studies, this approach does not de�ne a compiling relation. Instead,

a set of \compilation laws" are derived, where each law looks like a rule of the

well-known re�nement calculus of Morgan.

15



Arenas

References

[1] A. E. Arenas. Implementation of an Asynchronous Real-Time Programming

Language. D.Phil Thesis, Oxford University Computing Laboratory, 2000.

[2] A. E. Arenas. A Speci�cation-Oriented Semantics for Asynchronous Real-

Time Programming. In Proceedings of CLEI'2001, XXVII Conferencia

Latinoamericana de Inform�atica, 2001.

[3] J. P. Bowen, editor. Towards Veri�ed Systems, volume 2 of Real-Time Safety

Critical Systems. Elsevier, 1994.

[4] J. P. Bowen, C. A. R. Hoare, H. Langmaack, E.-R. Olderog, and A. P. Ravn. A

ProCoS II Project Final Report: ESPRIT Basic Research Project 7071. Bulletin

of the European Association for Theoretical Computer Science (EATCS), 59:76{

99, 1996.

[5] J. Davies and S. Schneider. Recursion Induction for Real-Time Processes.

Formal Aspects of Computing, 5(6):530{553, 1993.

[6] C. Fidge, I. Hayes, and G. Watson. The Deadline Command. Software,

146(2):104{111, 1999.

[7] R. W. S. Hale. Program Compilation. In Bowen [3], chapter 7, pages 131{146.

[8] C. A. R. Hoare. Re�nement Algebra Proves Correctness of Compiling

Speci�cations. In C. C. Morgan and J. C. P. Woodcock, editors, 3rd Re�nement

Workshop, Workshops in Computing, pages 33{48. Springer-Verlag, 1991.

[9] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice

Hall Series in Computer Science, 1998.

[10] C. A. R. Hoare, He Jifeng, and A. Sampaio. Normal Form Approach to

Compiler Design. Acta Informatica, 30(8):701{739, 1993.

[11] M. Joseph and P. K. Pandya. Finding Response Times in a Real-Time System.

The Computer Journal, 29(5):390{395, 1986.

[12] K. N. Kumar and P. K. Pandya. ICSP and its Relationship with ACSP and

CSP. In R. K. Shyamasundar, editor, Foundations of Software Technology

and Theoretical Computer Science, volume 761 of Lecture Notes in Computer

Science, pages 358{372. Springer-Verlag, 1993.

[13] K. Lermer and C. Fidge. A Formal Model of Real-Time Program Compilation.

In J. P. Katoen, editor, Formal Methods for Real-Time and Probabilistic

Systems, volume 1601 of Lecture Notes in Computer Science, pages 192{210.

Springer-Verlag, 1999.

[14] M. M�uller-Olm. Modular Compiler Veri�cation, volume 1283 of Lecture Notes

in Computer Science. Springer-Verlag, 1997.

[15] A. Sarma. Introduction to SDL-92. Computer Networks and ISDN Systems,

28(12):1603{1615, 1996.

16



MTCS 2002 Preliminary Version

Balanced timed regular expressions 1

Eugene Asarin
2
C�at�alin Dima

3

VERIMAG, 2 av. de Vignate, 38610 Gi�eres, France

Abstract

Several classes of regular expressions for timed languages accepted by timed au-

tomata have been suggested in the literature. In this article we introduce balanced

timed regular expressions with colored parentheses which are equivalent to timed

automata, and, di�erently from existing de�nitions, do not refer to clock values,

and do not use additional operations such as intersection and renaming.

1 Introduction

Regular expressions are an important and convenient formalism to specify sets

of discrete behaviors. The lack of such a language-based algebraic formalism

for timed behaviors motivated several researchers to look for some variants of

\timed regular expressions" equivalent to timed automata. The formalisms

suggested in the literature give some solutions to this problem, but none of

them is as perfect as classical \discrete" regular expressions of Kleene. In fact

some of them [5,6,7] make use of information external to the language (such

as clock values), while others [3,4] use heavy operations such as intersection

and renaming.

In this paper we suggest a new approach to this problem. We introduce

balanced timed regular expressions with colored parentheses which are equiv-

alent to timed automata, do not refer to clock values, and do not use \bad"

operations. The price to pay is a two-stage semantics of our expressions and

a non-trivial algorithm for checking whether an expression is syntactically

correct.

The structure of the paper is the following: in section 2 we recall some

de�nitions concerning timed automata and timed languages and state the key

technical result: Theorem 2.1 on transforming timed automata to a special

form. In Section 3 we recall timed regular expressions from [4], discuss their
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drawbacks, and come up with our de�nition of balanced timed regular expres-

sions and their semantics. At the end of this section we state the main result

of the paper: balanced timed regular expressions are as expressive as timed

automata. In section 4 we give an algorithm for checking correctness of an

expression.

We are thankful to Christian Boitet for a motivating question and to Paul

Caspi, Oded Maler and Matthieu Moy for useful discussions.

2 Timed automata

Behaviors of timed systems can be modeled by timed words over a set of

symbols �. A timed word is a �nite sequence of nonnegative numbers and

symbols from �. For example, the sequence 1:2 a 1:3 b denotes a behavior

in which an action a occurs 1:2 time units after the beginning of the obser-

vation, and after another 1:3 time units action b occurs. The set of timed

words over � can be organized as a monoid, and be represented as the di-

rect sum of the monoid of nonnegative numbers (R�0 ;+; 0) and the free

monoid (��; �; ") [4,11]. We denote this monoid as TW(�). Note that in

this monoid, concatenation of two reals amounts to summation of the reals.

Thence, a 1:3 � 1:7 b = a(1:3 + 1:7)b = a 3 b. The length `(w) of a timed word

w is the sum all the reals in it, e.g. `(1:2 a 1:3 b) = 1:2 + 1:3 = 2:5.

A timed automaton [1] is a tuple A = (Q;X ;�; Æ; Q0; Qf) where Q is a

�nite set of states, X is a �nite set of clocks, � is a �nite set of action symbols,

Q0; Qf � Q are sets of initial, resp. �nal states, and Æ is a �nite set of tuples

(transitions) (q; C; a;X; r) where q; r 2 Q, X � X , a 2 � [ f"g and C is a

�nite conjunction of clock constraints of the form x 2 I, where x 2 X and

I� [0;1[ is an interval with integer (or in�nite) bounds.

For each transition (q; C; a;X; r) 2 Æ, the component C is called the guard

of the transition, a is called the action label of the transition, and X is called

the reset component of the transition. We will usually order the set of clocks

X = fx1; : : : ; xng, and then identify each reset component X with the subset

of indices of the clocks in X, that is, with
�
i j i 2 [n]; xi 2 X

	
(here [n] stands

for f1; : : : ; ng).

The semantics of a timed automaton is given in terms of a timed transition

system T (A) = (Q; �;Q0;Qf) where Q = Q � R
n
�0 , Q0 = Q0 � f0ng, Qf =

Qf � R
n
�0 and

� =
�
(q; v)

t
�! (q; v0) j v0i = vi + t; 8i 2 [n]

	
[�

(q; v)
a
�! (q0; v0) j 9(q; C; a;X; q0) 2 Æ such that v j= C and for all i 2 [n];

if i 2 X then v0i = 0 and if i 62 X then v0i = vi
	

Informally, the automaton can make t-transitions representing time-passage

in a state, in which all clocks advance by t, and discrete transitions, in which

state changes. The discrete transitions are enabled when the \current clock
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valuation" v satis�es the guard C of a certain tuple (q; C; a;X; r) 2 Æ, and

when they are executed, the clocks in the \reset component" X are set to

zero.

A run in T (A) is a chain (q0; v0)
�1
�! (q1; v1)

�2
�! : : :

�k
�! (qk; vk) of tran-

sitions from �. An accepting run in T (A) is a run which starts in Q0 and

ends in Qf (the last transition should not be a t-transition). The accepted

language of A is then the set of timed words which label some accepting run

of T (A). Two timed automata are called equivalent i� they have the same

language.

The �rst theorem gives a \normal form" to which each timed automaton

can be brought. For it, we need several notations and conventions: for each

clock xi 2 X and each transition � = (q; C; a;X; r) 2 Æ, if i 2 X then we say

that xi is reset on � . If the guard C contains a constraint xi 2 I for some

interval I, then we say that � checks xi, and we also write (xi 2 I) 2 C. Note

that the true guard contains no constraint.

Theorem 2.1 Any timed automaton A is equivalent to a timed automaton A

in which on each accepting run, each clock is checked exactly once after each

reset.

Proof. We will decompose the construction into two steps as follows:

(i) We transform the given automaton into an automaton in which, each

clock is checked against the same interval I, wherever it is checked.

(ii) We obtain the desired construction by splitting each clock x into two

copies such that each copy is checked only once after each reset.

The �rst construction is accomplished along the following ideas: for each

clock x 2 X and interval I for which (x 2 I) occurs on some guard, we

create a new clock xI . The set of all clocks xI will replace the clock x, in the

following sense: each time x is reset, we reset all clocks xI ; then, each time

(x 2 I) occurs on the guard of some transition, we replace this constraint with

(xI 2 I).

More formally we replace each transition (q; C; a;X; r) 2 Æ by the transi-

tion (q; C 0; a;X 0; r) with

C 0 =
^

(x2I)2C

(xI 2 I)

and with X 0 = fxI j x 2 Xg.

If we want to be practical, we should also remove the \unused clocks" as

described in [10] (see also [9]).

The second construction is an adaptation of the convexity-based techniques

of [4,2]. The rough idea is that in a chain of transitions which all contain

(x 2 I) and do not reset x, all but the �rst and the last are \redundant".

That happens because if the value of clock x on the �rst and on the last

transition of the chain is in the interval I, then it must be in the interval
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I throughout all the behavior of the timed automaton in between these two

transitions { as a consequence of the convexity of I.

Therefore, we create two copies of each clock x 2 X 0, denote them x1 and

x2, and utilize them as follows: we reset both on each transition on which

x is reset, we check (x1 2 I) on the �rst transition after the reset on which

(x 2 I) occurs, we ignore all the other checks for (x 2 I) before the next

reset, with the exception of the last, on which we check (x2 2 I). This last

transition before a reset of x on which the constraint (x 2 I) occurs is not

deterministically found, but rather \guessed".

The states of the resulting automaton will be tuples (q; �) in which q 2 Q0

and � : X 0 ! f0; 1; 2g gives our guess for the utilization of each clock x.

An attribute �(x) = 0 means that, since the last reset for x we have never

encountered the constraint (x 2 I) (remind that each clock is tested against a

unique interval!). The attribute is set to �(x) = 1 the �rst time when such a

constraint is met. It then remains 1 until we \guess" that, from now on and

before the next reset for x, we will never take a transition with (x 2 I). Of

course, such a guess is made on a transition on which (x 2 I) occurs, and this

guess sets x's attribute to �(x) = 2.

We will also use two copies of each clock x, denoted x1 and x2. They will

actually replace x on each transition, in the following sense: each time x is to

be reset, we reset both x1 and x2. Subsequently, on the �rst transition which

checks (x 2 I), we put the constraint (x1 2 I), and on the last transition

which checks (x 2 I), we put the constraint (x2 2 I).

Formally, for each transition (q; C; a;X; r) 2 Æ0 and for each state (q; �)

in the resulting automaton we draw a transition
�
(q; �); C; a; Y; (r;  )

�
if and

only if the following conditions are satis�ed:

� x 2 X i� x1; x2 2 Y .

� If �(x) = 2 then (x 2 I) 62 C and also (x1 2 I); (x2 2 I) 62 C.

� If x 2 X then �(x) = 2 and  (x) = 0.

� If (x 2 I) 2 C then �(x) 6= 2;  (x) 6= 0.

� If (x 2 I) 2 C and �(x) = 0 then either  (x) = 1 and (x1 2 I) 2 C, or

 (x) = 2 and (x1 2 I); (x2 2 I) 2 C.

� If (x 2 I) 2 C and �(x) = 1 then either  (x) = 1 and (x1 2 I); (x2 2 I) 62

C, or  (x) = 2 and (x2 2 I) 2 C.

2

3 Expressions

3.1 Expressions from [4]

The class of timed regular expressions is built using the following grammar:

E ::= 0 j " j tz j E + E j E � E j E� j hEiI; (1)
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where z 2 � [ f"g and I is an interval.

The semantics of timed regular expressions is in terms of timed words:

ktzk = ftz j t 2 R�0g kE1 + E2k = kE1k [ kE2k

kE1 � E2k = kE1k � kE2k khEikI = f� 2 kEk j `(�) 2 Ig

kE�k = kEk� k0k = ; ; k"k = f"g

We abuse notation and write hEi� for hEi[�;�]. We also denote �t = � [ ftg.

The following theorem shows a nice relationship between timed automata

and timed regular expressions:

Theorem 3.1 ([4]) The class of timed languages accepted by timed automata

equals the class of timed languages accepted by timed regular expressions with

intersection and renaming, that is, expressions generated by the grammar

E ::= 0 j " j tz j E + E j E � E j E� j hEiI j E ^ E j [a 7! z]E;

where z 2 � [ f"g; a 2 �.

We interpret ^ as intersection, and [a 7! z] as renaming of any occurrence

of the symbol a with the symbol z. For example,
[a 7! b](ta)k = ktbk.

It was shown in [3] that intersection is necessary for representing timed

automata. The example there is the timed regular expression tahtbtci1 ^

htatbi1tc, which cannot be expressed without conjunction. The timed lan-

guage accepted by this expression is

L0 = ft1at2bt3c j t1 + t2 = 1; t2 + t3 = 1g

Moreover, in [13] it was shown that renaming is necessary too, his example

being the timed automaton in the �gure 1.

y := 0 x = 1? y = 1?

a

a a a

a

Fig. 1.

The language of this automaton equals

[x 7! a]
�
(ta)�htx(ta)�i1 ^ h(ta)

�txi1(ta)
�
�
:

These results show that, in spite of their ease in use, timed regular expres-

sions su�er from some expressiveness problems.
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a

b

x = 1?

y = 1?

x := 0

y := 0

x := 0
x 2 ]0;1[ ?

a

Fig. 2.

3.2 Colored parentheses

In [4], the authors suggest that, by employing \colored" parentheses, these

drawbacks might be overcome. For example, L0 would be speci�ed by the

expression hta btbi1 tcc1. Similarly, the language of the timed automaton in

Figure 1 would be speci�ed by h(ta)�btai1(ta)
�c1. Note that these expressions

no longer use intersection or renaming.

But then, if we want to specify also cyclic behaviors, we cannot cope with

the simple automaton on the �gure 2. The expression with intersection for its

language is

htai]0;1[htbtai
�
1 ^ htatbi

�
1ta

We conjecture that the semantics of this formula cannot be expressed with

colored parentheses (in the sense of the suggestion from [4]).

Another problem with colored parentheses is that the set of syntactically

correct expressions is non-context-free. Indeed, let us consider J an index set

(the set of colors) and card(J ) sets of matching parentheses:

Pi =
�
`hi`; `iiI` j I interval ; I � [0;1[

	
for all i 2 J (2)

� =
[
i2J

Pi: (3)

We may de�ne card(J ) deletion morphisms (or color �lters), (�i)i2J , �i :

� ! Pi, each �i deleting all parentheses not in Pi. E.g., for Pblue =
�
`h`; `iI` j

I � [0;1[
	
and Pred =

�
`b`; `cI ` j I � [0;1[

	
�blue

�
h b i1 h c1 i1

�
= h i1 h i1.

For each set of parentheses Pi =
�
`hi`; `iiI ` j I interval; I � [0;1[

	
, we

denote by �i the set of words with balanced parentheses 4 over Pi, which is

generated by the following context-free grammar:

S ::= " j hiSiiI j SS

The language of balanced parentheses over
[n

i=1
Pi is de�ned as follows:

Lpar =
n
w 2 �� j for each i 2 [1 : : : n]; �i(w) 2 �i

o
This language is unfortunately context-sensitive for card(J ) � 2: just

consider the intersection of Lpar with
�
h
���

b
���

i1
���

c1)
��
, which gives a lan-

guage of the form fakblckdl j k; l 2 Ng, which is an easy prey to the Bar-Hillel

4 This is a slight generalization of the notion of Dyck languages [14].
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(pumping) lemma for context-free languages [14]. In a related paper [12], one

of the authors investigates on the possibility to de�ne regular expressions with

colored parentheses by using a di�erent concatenation operation.

3.3 Balanced timed expressions

We explain our approach with an example: consider again the language of the

automaton from the �gure 2. This language can be regarded as the union of

all the \word expressions" of the kind

hbtac]0;1[ btbi1htac1btbi1 : : :

The following expression generates all these \word expressions":

E = btac]0;1[ + hbtac]0;1[
�
btbi1htac1

��
btbi1tac1 (4)

Note that the resulting expression E contains the subexpression btbi1htac1
in which the parentheses are not balanced { the �rst blue parenthesis is the

right one. In order to give a sense to E and to other expressions of this

kind we adopt a two-step semantics approach, in which we �rst build the

classical semantics of the expression { i.e. a set of words over �t [ �. In

the second step we give timed semantics to these words, provided they have

well-balanced parentheses. Hence, a balanced timed regular expression will

be de�ned as an expression over �t [ � which generates only words with

well-balanced parentheses, and its timed semantics will be the union of the

semantics of these words.

Observe that this process is not \compositional", that is, we do not de�ne

the semantics of a balanced timed regular expression by induction on their

structure. In fact, even the de�nition of the class of regular expressions with

balanced parentheses is not a \structural" once. This is the point of di�erence

with [12].

The problem of checking whether an expression generates only well-balanced

words is the subject of the last section.

Formalization

For the sequel, we will work with n sets of colored parentheses Pi, as

de�ned in (2) on the previous page. That is, we assume J = f1; : : : ; ng. We

will utilize here the deletion morphism �i : (�t [ �)� ! P �
i , which deletes all

symbols not in Pi, and the \partial" deletion morphism �i : (�t [ �)� ! P �
i ,

which deletes from each word the symbols not in Pi or not in �t. For example,

�blue
�
btai1htac1

�
= i1h

�blue
�
btai1htac1

�
= tai1hta
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De�nition 3.2 A balanced word over �t with parentheses from � is a word

w 2 (�t [ �)� such that �i(w) 2 �i for all i. The set of balanced words over

(�t [ �)� is denoted W�(�).

Note that, for each 1 � i � n and w 2 W�(�), �i(w) is a timed regular

expression. The timed semantics of a balanced word is the set of timed

words � which belong to the semantics of each �i(w), regarded as a timed

regular expression:

kwk =
�
� 2 TW(�) j 8i 2 J ; � 2 k�i(w)k

	
Our regular expressions with colored parentheses are classical regular ex-

pressions over �t [ �, that is, generated by the grammar

E ::= 0 j a j t j hi j iiI j E + E j E �E j E�

where a 2 � and hi; iiI 2 Pi, for some 1 � i � n. As classical regular

expressions, they have a word semantics in terms of languages over (�t [�)�:

jaj = fag jtj = ftg

j0j = ; jhij = fhig;

jiiI j = fiiIg jE1 + E2j = jE1j [ jE2j

jE1 � E2j = jE1j � jE2j jE�j = jEj�

De�nition 3.3 A balanced (timed) regular expression with colored paren-

theses in � is a regular expression with colored parentheses whose word se-

mantics contains only balanced words.

The timed semantics of a balanced regular expression is then the union of

the timed semantics of each balanced word in its (word) semantics:

kEk =
[�

kwk j w 2 jEj
	

This de�nition already points out the diÆculty of constructing regular

expressions over �t [ � that correspond to timed automata: we �rst need

to build classical semantics of regular expressions in order to check whether

all the words in this semantics have balanced parentheses. Only after this

validation we may construct the timed semantics of the given expression.

Thanks to the particular form of timed automata provided by Theorem

2.1, we may prove the following form of the Kleene theorem:

Theorem 3.4 (Kleene theorem for timed automata) The class of timed

languages accepted by timed automata equals the class of timed languages which

are the timed semantics of some balanced regular expression.

Proof. We transform each timed automaton in the special form provided by

Theorem 2.1 into a �nite automaton whose transitions are labeled with words
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over �t [� (such automata are called extended, e.g., in [16]). The rough idea

is very simple: each reset for clock xi is transformed into the parenthesis hi,

while each clock check xi 2 I is transformed into the parenthesis iiI. We apply

next the classical Kleene theorem to convert this automaton into a regular

expression over �t [�. This expression is balanced since the automaton is in

the special form of Theorem 2.1.

The reverse proof follows by mirroring the above pattern, that is, by trans-

forming each parenthesis hi into a clock reset, and each parenthesis iiI into a

clock check. However, the exact identity of the clock which is reset when en-

countering hi depends on the \nesting" of the parentheses of color i { that is,

for each parenthesis hi we need to create several clocks, as many as the maxi-

mal nesting degree of the parentheses of color i. The �niteness of this maximal

nesting degree is a consequence of Proposition A.1 from the appendix. The

proof of this implication will be given in the full version of our paper.

2

4 Checking regular expressions for balance

In this section we give an algorithm for deciding whether an expression E

over �t [ � is balanced. The idea is to associate special attributes to each

sub-expression of E. These attributes represent the number of left and right

parentheses of each color which are not balanced. The algorithm computes

recursively these attributes for all the sub-expressions and decides that E is

balanced if and only if all its attributes are zero.

In this section we use the \nonnegative" subtraction (\monus"),

a _� b =

(
a� b i� a� b � 0

0 i� a� b < 0

We extend this operation and the addition to sets of naturals, in the straight-

forward manner: given two sets of natural numbers A;B � N , we put A+B =�
a+ b j a 2 A; b 2 B

	
and A _�B =

�
a _� b j a 2 A; b 2 B

	
.

Let us do �rst the following exercise:

Proposition 4.1 Consider the binary operation 	 on N � N, de�ned by

(a; b)	 (c; d) =
�
a _� d+ c; d _� a + b

�
Then

�
N � N ;	; (0; 0)

�
is a monoid.

Furthermore, the mapping ' : N � N ! Z de�ned by '(a; b) = a� b, is a

monoid morphism to the target monoid (Z;+; 0).

We extend all these operations onto sets of n-tuples of naturals (resp.

integers). As a corollary of Proposition 4.1,
�
N
n � N

n ;	; (0n; 0n)
�
is also a

monoid and the mapping 'n : Nn � N
n ! Z

n de�ned by 'n(a; b) = b� a is a

monoid morphism.
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We also use the \unit" vectors ei = (e1i ; : : : ; e
n
i ) 2 N

n , given by

e
j
i =

(
1 for j = i

0 for j 6= i

And �nally, for any set A � N
n � N

n let

Ak	 = A	 : : :	 A| {z }
k times

We proceed now to our construction of attributes: we �rst associate, to

each word w 2 (�t [ �)�, two naturals l(w) and r(w) which, intuitively, give

the number of left, resp. right parentheses which are not balanced in w. The

formal de�nition proceeds by induction on the length of the word:

l(") = r(") = 0n; l(w�) = l(w); 8� 2 �t

l(whi) = l(w) + ei; r(whi) = r(w) _� ei

l(wiiI) = l(w) _� ei; r(wiiI) = r(w) + ei

Together, l and r de�ne a mapping from (�t [ �)� to N � N , denoted in

the sequel by lr:

lr(w) =
�
l(w); r(w)

�
Proposition 4.2 lr : (�t[�)

� ! N�N is a monoid morphism, i.e. lr(w1w2) =

lr(w1)	 lr(w2).

Remark 4.3 w is a balanced word i� l(w) = r(w) = 0. Or, in other words,

the set of balanced words is the kernel of the morphism lr, that is, lr�1(0; 0).

The next step is to extend lr to regular expressions, by the rule

lre(E) =
[�

lr(w) j w 2 jEj
	

Proposition 4.4 E is a balanced timed regular expression if and only if

lre(E) =
�
(0n; 0n)

	
:

Our �rst aim is to show that lre can be computed by structural induction

on the expression E. The following property paves the way for this approach:

Proposition 4.5 For any regular expressions E;E1; E2 over �t [ �,

lre(E1 + E2) = lre(E1) [ lre(E2)

lre(E1 � E2) = lre(E1)	 lre(E2)

lre(E
�) =

[
k2N

lre(E)
k	
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For example, for P1 =
�
`h`; `iI ` j I � [0;1[

	
and P2 =

�
`b`; `cI ` j I � [0;1[

	
,

lre

��
tabb

���
=

���
0

k

�
;

�
0

0

������ k 2 N

�
(5)

lre

��
btai1htac1+c2tab

���
=

=

���
1

0

�
;

�
1

0

��
;

��
0

1

�
;

�
0

1

��
;

��
1

1

�
;

�
1

1

���
(6)

The result from Proposition 4.5 is not suÆcient for deciding whether an

expression E is balanced. The reason is that star might generate in�nite sets

of tuples of naturals { as we can see in example (5) above.

The �rst idea to bypass this problem is the following: whenever A � N�N

is an in�nite set, for any set B � N � N , A 	 B will be an in�nite set. This

means that, in our inductive calculus on the structure of a regular expression,

whenever we would obtain an in�nite lre, we should halt the computation and

decide that the whole expression is non-balanced. Therefore, it only remains

to �nd out when does lre(E
�) consist of an in�nite set.

A further observation helps us here: note, from example (6) above, that,

when in an expression E the di�erence between the left and the right paren-

theses of a certain kind is not zero, then lre(E
�) will be an in�nite set. On the

contrary, whenever lre(E) contains only tuples which give the same di�erence

between left and right parentheses, lre(E
�) is �nite.

The idea is then to consider, for each expression E, the set

'e(E) =
�
l(w)� r(w) j w 2 jEj

	
=
�
a� b j (a; b) 2 lre(E)

	
Then we may observe that if, for an expression E, card('e(E)) � 2, that

is, if E generates at least two words in which the di�erence between left and

right parentheses is not the same, then for any expression E 0 which contains

E as a subexpression, lre(E
0) would contain two or more elements. Therefore,

E 0 cannot be balanced.

Recall that a Kleene algebra [8] is an algebra
�
A;[; �; �; ;; feg

�
that ver-

i�es all the equations valid in the structure
�
P(��);[; �; �; ;; f"g

�
. Further-

more, remind that each monoid (M; e; �) naturally generates a Kleene algebra�
P(M);[; �; �; ;; f"g

�
, by putting, for each S �M ,

S� =
[

n2N

�
S � : : : � S| {z }

n times

�

Therefore, the monoid
�
N
n � N

n ;	; (0n; 0n)
�
generates a Kleene algebra,

in which the star is denoted ~:

A~ = f(0n; 0n)g [
[
k2N

Ak	
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Furthermore, the monoid (Zn;+; 0n) generates, on its turn, a Kleene alge-

bra, in which

A� = f0ng [
[
k2N

�
A+ : : :+ A| {z }

k times

�

Proposition 4.6 (i) Consider the monoid morphism 'n : Nn � N
n ! Z

n

de�ned in Proposition 4.1. Then, for any A � Z
n, card('�1

n (A)) �

card(A).

(ii) 'n can be lifted to a Kleene algebra morphism { which we denote 'n too.

It is the morphism 'n : P(Nn�Nn)! P(Z) de�ned by 'n(A) =
�
'n(a) j

a 2 A
	
.

(iii) For any two sets A;B � Z
n,

card(A+B) � card(A) + card(B) and card(A�) � card(A):

(iv) For any �nite set A � N
n�Nn , card('n(A

~)) <1 if and only if 'n(A) =

f0ng, and in this case we have

A~ = f02ng [
[

k�card(A)

Ak	

As a corollary, A~ is �nite.

Proof. We will only prove the last property. The left-to-right implication is

straightforward, since 'n(A) 6= f0ng implies that, for any a 2 'n(A), ka =

(ka1; : : : kan) 2 'n(A
~). For the reverse implication, suppose 'n(A) = f0ng.

Hence, for any (a; a0) 2 A, a = a0.

Let us observe that, for any a; b 2 N
n ,�

a; a
�
	
�
b; b
�
=
�
b; b
�
	
�
a; a

�
(7)�

a; a
�
	
�
a; a

�
=
�
a; a

�
(8)

Then for any c 2 Ak	, with k > card(A), we have that

c = c1 	 c2 	 : : :	 ck: (9)

But since A has less than k elements, two cis must be equal { say, ci = cj, for

1 � i < j � k. On the other hand, by identity (7) above, we may rearrange

the decomposition of c from (9) such that ci and cj occur one next to the other.

But then identity (8) assures us that ci 	 cj = ci, hence c is decomposed into

k � 1 elements from A. The result then follows by induction on k. 2

Proposition 4.7 Suppose card('e(E)) � 2 for some expression E over �t [

�. If E 0 is a regular expression with colored parentheses which contains E as

a subexpression, then E 0 cannot be balanced.

Proof. We will actually prove that, for any regular expression with colored

parentheses E 0 which contains E as a subexpression we have the inequality
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card('e(E
0)) � 2 and card(lre(E

0)) � 2. The result will then follow by means

of Remark 4.4.

The proof of the two claims runs by straightforward structural induction

on E 0, using Proposition 4.6. The interesting cases are when E 0 = E1 �E2 and

when E 0 = E�
1 . 2

By assembling results from Propositions 4.5 and 4.6, we may give the

following e�ective variant of the mapping lre:

e�(�) =
�
(0n; 0n)

	
for all � 2 �t

e�(hi) =
�
(ei; 0n)

	
e�(iiI) =

�
(0n; ei)

	
e�(E1 + E2) =

(
? i� e�(E1) =? or e�(E2) =?

e�(E1) [ e�(E2) otherwise

e�(E1 � E2) =

(
? i� e�(E1) =? or e�(E2) =?

e�(E1)	 e�(E2) otherwise

e�(E�) =

8><
>:
? i� e�(E) =?

? i� '(e�(E)) 6= f0ngS
k�card(e�(E))

e�(E)k	 otherwise

Since the recursive de�nition above involves only �nite sets, it can be used as

an algorithm to compute e�(E). The relation between e�(E) and lre(E) is

described in the following proposition:

Proposition 4.8 For each regular expression E over �t [ �,

e�(E) =

(
? i� card(lre(E)) =1

lre(E) otherwise

The main result of this section is now immediate:

Theorem 4.9 A regular expression E over �t [ � is balanced i� e�(E) =

f(0n; 0n)g.

5 Conclusion

The main contribution of this paper is a new class of regular expressions

capable to describe all timed regular languages. This formalism, unlike its

predecessors, does not use strange operations nor explicit clocks in the ex-

pressions, at the price of having a two-stage non-compositional semantics.

The problem of practical methods to specify timed behaviors, which could be

based on existing or new formalisms, needs further investigation (see [15] for

a preliminary discussion).
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Another (more technical) contribution of this paper is theorem 2.1 based

on a convexity-based \normalisation" of timed automata. We have found this

transformation very useful. A similar transformation has been applied directly

to expressions in [4].
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A Appendix. Finiteness of the maximal nesting degree

for balanced regular expressions

We will show that the semantics of each balanced regular expression is com-

posed of words in which, at each \decomposition point", the number of \un-

balanced" parentheses has an upper bound which does not depend upon w.

Proposition A.1 For each balanced regular expression E there exist two n-

tuples of naturals M l;M r 2 N
n such that for all words w 2 jEj, and for any

decomposition w = w1 �w2 we have

l(w1) �M l and r(w2) �M r

Here, the order is the usual extension of � from the naturals to tuples of

naturals, i.e., for all a;2Nn , a � b i� ai � bi for all 1 � i � n.

Proof. We will actually prove that for each regular expression with the fol-

lowing property:

lre(E) �
�
(a; a) j a 2 N

n
	

(A.1)

we may get two n-tuples M l;M r with the properties from the statement of

this proposition. The proof of this fact runs by structural induction on E.

Before starting this proof by structural induction, let us observe that we

also need that Property A.1 be preserved by structural induction, that is,

whenever E;E1; E2 satisfy A.1, then so do E1 + E2, E1 � E2 and E
�.

But this property is a corollary of the following observation: for each

a; b 2 N
n , (a; a) 	 (b; b) = (c; c), where ci = ai i� ai � bi and ci = bi

otherwise.

We may then do our structural induction as follows: observe �rst that

the basic cases and the case E = E1 + E2 are trivial. Consider then the

case E = E1 � E2, and suppose we have proved the property for E1 and E2.

Hence, by hypothesis we have four n-tuples of naturals M
1

l ;M
1

r;M
2

l ;M
2

r that

assure the uniform bound for the number of \unbalanced" parentheses at each

decomposition point in words from jE1j, resp. jE2j.

We will prove that

M l =M
1

l +M
2

l ; resp. M r =M
1

r +M
2

r

are uniform bounds for words in jEj:

Take some w 2 E1 � E2 and consider a decomposition of it, w = w1 � w2.

Two symmetric situations occur then:
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(i) w1 = w0
1 � w

00
1 with w0

1 2 jE1j and w
00
1 � w2 2 jE2j, or

(ii) w2 = w0
2 � w

00
2 with w0

2 2 jE2j and w1 � w
00
2 2 jE1j.

Therefore, we will only prove the result for the �rst situation: a �rst straight-

forward conclusion is that r(w2) �M
2

r �M , by the hypothesis on M
r

2. What

for l(w1), we have the following sequence of inequalities:

l(w1) = l(w0
1) _� r(w00

1) + l(w00
1) � l(w0

1) + l(w00
1) �M

1

l +M
2

l

again by the hypotheses on M
1

l and M
2

l .

Consider now the case E = E�
1 , and suppose we have proved the result for

E1. Therefore, by hypothesis we have two n-tuples M
1

l ;M
1

r which bind the

number of unbalanced parentheses at each decomposition point of a word in

jE1j. We will prove that

M l = max
�
l(w) j w 2 jE1j

	
+M

1

l resp. M r = max
�
r(w) j w 2 jE1j

	
+M

1

r

are uniform bounds for words in jEj:

Take some w 2 jEj, that is, w = w1�: : : wk with wj 2 jE1j, for all 1 � j � k.

Let us �rst observe that property (A.1) implies that for each 1 � j � k,

l(w1 � : : : � wj) = maxfl(wi) j 1 � i � jg: (A.2)

and similarly, r(w1 � : : : � wj) = maxfr(wi) j 1 � i � jg.

Consider now a decomposition w = w0 � w00 of w. Suppose the \decompo-

sition point" falls inside the word wj, for some 1 � j � k. That is,

w0 = w1 � : : : � wj�1 � !; and w
00 = !0 � wj+1 � : : : � wk

where ! � !0 = wj.

But then, by identity (A.2), we have

l(w0) = l(w1 � : : : � wj�1) _� r(!) + l(!) � maxfl(wi) j 1 � i � j � 1g+M
1

l

and similarly for r(w00). 2
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Abstract

A formal approach for the speci�cation and analysis of concurrent systems is pro-

posed which integrates two di�erent orthogonal aspects of time: (i) real-time,

concerning the expression of time constraints and the veri�cation of exact time

properties, and (ii) probabilistic-time, concerning the probabilistic quanti�cation

of durations of system activities via exponential probability distributions and the

evaluation of system performance. We show that these two aspects, that led to

di�erent speci�cation paradigms called timed automata and Markovian process al-

gebras, respectively, can be expressed in an integrated way by a single language: a

process algebra capable of expressing activities with generally distributed durations.

In particular, we consider the calculus of Interactive Generalized Semi-Markov Pro-

cesses (IGSMPs) and we present formal techniques for compositionally deriving,

from an IGSMP speci�cation, (i) a pure real-time model (called Interactive Timed

Automaton), by considering the support of general distributions, and (ii) a pure

probabilistic-time model (called Interactive Weighted Markov Chain), by approxi-

mating general distributions with phase-type distributions.

1 Introduction

The importance of considering the behavior of concurrent systems with re-

spect to time during their design process has been widely recognized (see

e.g. [15,3,8,2,18,19]). In particular two approaches for expressing and analyz-

ing time properties of systems have been developed which are based on formal

description paradigms: (i) the real-time approach (see e.g. [2,18,19]), mainly

concerned with the expression of time constraints and the veri�cation of exact

time properties, and (ii) the probabilistic-time approach (see e.g. [15,3,13]),

mainly concerned with the probabilistic quanti�cation of durations of system

1 Email: bravetti@cs.unibo.it

This is a preliminary version and considered for the �nal proceedings, to be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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activities via exponential probability distributions and the evaluation of sys-

tem performance.

The di�erent aspects of time expressed by the Stochastic Time and Real-

Time approaches can be seen as being orthogonal. According to the probabilistic-

time approach the possible values for the duration of an activity are quanti�ed

through probabilistic (exponential) distributions, but no time constraint is ex-

pressible: all duration values are possible with probability greater than zero.

According to the real-time approach some interval of time is de�nable for

doing something, but the actual time the system spends in-between interval

bounds is expressed non-deterministically. A speci�cation paradigm capable

of expressing both aspects of time should be able of expressing both time

constraints and a probabilistic quanti�cation for the possible durations which

satisfy such constraints. We can obtain such an expressive power by consid-

ering stochastic models capable of expressing general probability distributions

for the duration of activities. In this way time constraints are expressible via

probability distribution functions that associate probability greater than zero

only to time values that are possible according to the constraints. Technically,

the set of possible time values for the duration of an activity is given by the

support of the associated duration distribution. This idea of deriving real-

time constraints from distribution supports, that we have introduced in [6],

was subsequently applied also in [9] and [11].

with phase−type distributions
approximation of general dist.

(time bounds are lost)

Stochastic compositional mapping:

(prob. quantification lost)

derivation of time bounds from
support of general distributions

Real−Time compositional mapping:

Stochastic Process Algebra
with General Distributions

Pure Real−Timeevaluation of 
performance

measures
via mathematical

analysis of
CTMCs

verification of

model checking
of Timed
Automata

real−time 
properties via

derivation of the
minimization, 

event simulation,

underlying
GSMP

discreteIntegrated Stochastic Real−Time

Pure Stochastic Time

system specification via a

via a Markovian
Process Algebra Timed Automata

via (nets of)
system specification system specification

Fig. 1. Stochastic Real-Time Integrated Approach

Representing the real-time and probabilistic-time in a single speci�cation

paradigm allows us to model a concurrent system more precisely by expressing

and analyzing the relationships between the two aspects of time. Moreover,

the capability of expressing general distributions gives the possibility of pro-

ducing much more realistic speci�cations of systems. System activities which

have an uncertain duration could be represented probabilistically by more

adequate distributions than exponential ones (e.g. Gaussian distributions or

experimentally determined distributions).
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In Fig. 1 we show how process algebra with generally distributed time can

o�er the possibility of an integrated approach for the modeling and analy-

sis of Stochastic Real-Time concurrent/distributed systems. In particular we

consider the calculus of Interactive Generalized Semi-Markov Processes in-

troduced in [8,7,5]. IGSMP speci�cations can be directly analyzed through

standard discrete event simulation (see e.g. [12]) and by means of the tech-

niques introduced in [8]: minimization via a notion of bisimulation based

congruence which abstracts from internal system activities, and derivation of

the underlying performance model in the form of a GSMP for IGSMPs which

are complete both from the interactive and from the performance viewpoints.

Besides the possibility of performing combined analysis, here we introduce

formal techniques for compositionally deriving, from an IGSMP speci�cation:

(i) A pure stochastic time (Markovian) speci�cation in the form of a term of

the calculus of Interactive Weighted Markov Chains (IWMCs) { basically

an extension of Interactive Markov Chains (IMCs) of [13] with the ca-

pability of representing probabilistic choices through transitions labeled

with weights [21] { by approximating general distributions with combina-

tions of exponential distributions (the so called phase-type distributions).

A consequence of this transformation is that all duration values for de-

lays get probability greater than 0. Hence the information about time

constraints (related to the real-time behavior of the system) is lost.

(ii) A pure real-time speci�cation in the form of a net (a parallel compo-

sition) of Interactive Timed Automata (ITA) { a variant of Timed Au-

tomata [2,19] where action executions, events enabled on the basis of

clock constraints and clock reset events are expressed by means of sepa-

rate transitions { by considering the support of general distributions, i.e.

the set of time values that are given probability (density) greater than 0,

and by turning probabilistic choices into non-deterministic choices. As a

consequence the information related to the probabilistic-time behavior of

the system is lost.

Deriving a pure Markovian representation (the IWMC) and a pure real-time

representation (the ITA) is very important from a practical viewpoint in that

gives the opportunity of reusing existing techniques and tools alredy developed

for performance evaluation and model-checking of non-probabilistic real-time

properties. Moreover, the advantage of deriving an IWMC and an ITA from

the same initial IGSMP speci�cation (w.r.t. generating them independently)

is that they are guaranteed to be consistent, in that they represent di�erent

aspects of the same initial system speci�cation.

The technique leading to the derivation of the IWMC is particularly sig-

ni�cant in that: (i) it shows process algebra to provide exactly the machinery

necessary for approximating GSMPs with CTMCs through phase-type dis-

tributions, and (ii) it con�rms ST semantics to be the adequate semantics

for generally distributed time (as claimed e.g. in [8,5]) in that approxima-
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tion of activity durations with phase-type distributions is a form of action

re�nement. From the practical viewpoint the approximation of general dis-

tributions with phase-type distributions will cause an approximation on the

obtained performance measures. In particular the measures obtained will tend

to the exact measures as the approximating phase-type durations tend to the

exact duration distributions (by increasing the number of phases considered

in the approximating phase-types). The problem of evaluating the error in-

troduced in the measures depending on the level of approximation is a very

diÆcult and known problem of statistics (see e.g. [4]) whose solution is some-

how orthogonal to the results presented in this paper. Moreover note that, the

better the approximation is, the greater the state space explosion caused by

phase-type expansion is. Obviously this may become a problem if we want to

reach certain levels of precision. Again solutions of this well-known problem

are somehow orthogonal to the contents of this paper, e.g. we could adopt the

technique introduced in [20] where the state-space is represented with Kro-

necker matrix expressions. On the other hand in spite of its inconveniences,

for most systems with general distributions, approximation with phase-type

is the only practical way to do performance analysis not based on simulation.

As far as the mapping into ITA is concerned, it just turns probability dis-

tributions into set of possible values for clocks by using distribution supports

(de�ned by adopting the technical shrewdness introduced in [11]) without

modifying the \structure" of the transition system. Therefore it has the de-

sirable property of not increasing the number of states of the IGSMP when

translating it into an ITA. Such a simple technique, which cannot be correctly

applied to the Stochastic Automata model of [10] (see [11]), is convenient

w.r.t. the more complex one introduced in [11] in that it avoids a blow up

in the number of states which is exponential in the number of clocks used in

the initial speci�cation (see Sect. 4.2 for the details). As discussed in more

details in [11], the mappings based on supports like this one guarantee that

each behavior of the IGSMP which was executable with probability greater

than zero becomes a possible behavior of the resulting ITA, but in general the

converse cannot be stated. Hence at least non-probabilistic real-time safety

properties of the IGSMP can be checked in the resulting ITA. As far as live-

ness properties are concerned only some kind of them (e.g. those related to

possible action behaviors and not to particular time values) can be shown to

hold in the initial IGSMP.

Unfortunately, in order not to make presentation too long, we do not in-

clude in this paper the de�nition of IGSMPs and their semantics, which can be

found in [7,5]. The same holds for the calculus of IGSMPs, which is simply a

variant of the calculus of IMC [13] where pre�xes <f;w> (representing delays

whose duration has general distribution f and are chosen according to weight

w) are used instead of � pre�xes (representing exponentially timed delays of

rate �), and its semantics (which maps algebraic terms into IGSMPs) which

are de�ned in [8,5].
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The paper is organized as follows. In Sect. 2 we introduce the calculus of

IWMCs, which constitutes the �rst extension of IMC [13] with probabilistic

choices endowed with a complete axiomatization for weak bisimultion. Then,

in Sect. 3 we introduce ITA, which consitute the �rst variant of timed au-

tomata [2,19] endowed with a weak version of (structural) bisimulation equiv-

alence and a compositional semantics. Finally, in Sect. 4 we present the two

formal mappings from IGSMP speci�cations to IWMC and ITA speci�cations

and we show that: (i) the IGSMP - IWMC mapping preserves performance

measures once we replace generally distributed durations with the approx-

imating phase-type durations in the initial IGSMP, (ii) the IGSMP - ITA

mapping is such that the traces of \supported" behaviors (originating from

time values in the support of distributions) starting in a state of the IGSMP

are the same as the traces of possible behaviors starting in the corresponding

state of the ITA (as in [11]), and (iii) both mappings are compositional and

preserve weak bisimulation equivalence. In Appendix A we show an axiomati-

zation for weak bisimulation which is complete over �nite state IWMC terms,

while in Appendix B we present the semantics of ITA and we show that it is

compositional and preserves equivalence.

Proofs of theorems can be found in [5] Chapters 4,5 and 8.

2 Interactive Weighted Markov Chains

Interactive Weighted Markov Chains are an extension of Continuous Time

Markov Chains with action transitions, representing the ability of the process

to interact with other processes, and probabilistic transitions, representing

probabilistic choices internally performed by the process. In particular Inter-

active Weighted Markov Chains basically extend Interactive Markov Chains

of [13] with the capability of representing probabilistic choices through prob-

abilistic transitions labeled with weights [21].

Extending IMCs in this way is very convenient in that it signi�cantly sim-

pli�es the task of modeling real systems (in that alternative system behaviors

can be expressed via probabilistic choices) without increasing the \complex-

ity" of the underlying class of stochastic processes. This because probabilistic

choices just give rise to vanishing states which can be eliminated via a simple

procedure (see [3] Chapter 4) when evaluating performance.

Similarly to [13], in IWMCs the interrelation between standard action

transitions and performance related transitions (probabilistic and exponen-

tially timed transitions) is governed by the so-called maximal progress as-

sumption [18]: the possibility of executing � transitions prevents the execu-

tion performance related transitions, thus expressing that the system cannot

wait if it has something internal to do. But di�erently from [13], where such

a priority is captured in the de�nition of equivalence among IMCs, we prefer

to express priority by cutting transitions which cannot be performed when

de�ning and composing IWMCs (a solution also hinted in [14]). This allows
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us to obtain smaller system models and to de�ne a notion of bisimulation

among IWMCs more simply, without having to discard any transitions when

establishing equivalence.

As for IMCs [13], we will compose in parallel several IWMCs via a CSP-like

synchronization policy. Alternative � transitions in an IWMC represent inter-

nal non-deterministic choices which are performed in zero time and can never

be \resolved" through synchronization with other system components. On the

contrary, visible actions a in an IWMC are seen as incomplete actions which

wait for a synchronization with other system components (they represent po-

tential interaction with the environment). Therefore the choice of such actions

in any IWMC state is governed by an external form of non-determinism, as

their execution completely depends on the environment. We will also make

use of an hiding operator which turns (incomplete) visible action transitions

of an IWMC into (complete) � transitions.

2.1 De�nition of Interactive Weighted Markov Chain

In an IWMC we have four di�erent kinds of state:

- silent states, enabling invisible action transitions � and (possibly) visible

action transitions a only. In such states the IWMC just performs a non-

deterministic choice among the � transitions in zero time and may poten-

tially interact with the environment through one of the visible actions.

- probabilistic states, enabling probabilistic transitions and (possibly) visible

action transitions a only. In such states (also called vanishing states) the

IWMC just performs a probabilistic choice among the probabilistic transi-

tions in zero time (proportionally to the weights labeling the transitions)

and may potentially interact with the environment through one of the visible

actions.

- timed states, enabling exponentially timed transitions and (possibly) visible

action transitions a only. The IWMC sojourns in these states (also called

tangible states) until one of the exponential delays terminates and the cor-

responding transition is performed. While the IWMC sojourns in the state,

it may (at any time) potentially interact with the environment through one

of the outgoing visible action transitions.

- waiting states, enabling standard visible actions only or no transition at

all. In such states the IWMC remains inde�nitely. It may, at any time,

potentially interact with the environment through one of the outgoing visible

action transitions.

In the following we present the formal de�nition of Interactive Weighted

Markovian Transition System (IWMTS), then we will de�ne interactive weighted

Markov chains as IWMTSs possessing an initial state. Formally, rates, belong-

ing to RI +, are ranged over by �; �0; : : : while weights, belonging to RI +, are

ranged over by w;w0; : : :. We use �; �0; : : : to range over both rates and weights.
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Moreover, we denote the set of standard action types used in a IWMTS by

Act , ranged over by �; �0; : : :. As usual Act includes the special type � de-

noting internal actions. The set Act � f�g is ranged over by a; b; : : :. The set

of states of an IWMTS is denoted by �, ranged over by s; s0; : : :. We assume

the following abbreviations that will make the de�nition of IWMTSs easier.

Let us suppose that T � (� � Labels � �) is a transition relation, where

Labels is a set of transition labels, ranged over by l. In the remainder we use

s
l

�����! s0 to stand for (s; l; s0) 2 T , s
l

�����! to stand for 9s0 : s
l

�����! s0,

and s
l

�����!= to stand for 6 9s0 : s
l

�����! s0.

De�nition 2.1 An Interactive Weighted Markovian Transition System

(IWMTS) is a tupleM = (�;Act ; Tw; Te; Ta) with

� � a set of states,

� Act a set of standard actions,

� Tw � (� � RI + � �), Te � (� � RI + � �), and Ta � (� � Act � �) three

transition relations, containing probabilistic, exponentially timed and action

transitions, respectively, such that: 2

(i) 8s 2 �: s
�

�����! =) 6 9�: s
�

�����!

(ii) 8s 2 �: 9w: s
w

�����! =) 6 9�: s
�

�����!

An Interactive Weighted Markov Chain (IWMC) is a tupleM = (�;Act ; Tw;
Te; Ta; s0), where s0 2 � is the initial state of the IWMC and (�;Act ; Tw; Te; Ta)

is an IWMTS.

The constraints over transition relations Tw, Te and Ta guarantee that each

state of the IWMC belongs to one of the four kind of states above. In partic-

ular, the �rst requirement says that if a state can perform internal � actions

then it cannot perform exponentially timed or probabilistic transitions. Such

a property derives from the assumption of maximal progress: the possibility

of performing internal actions prevents the execution of delays. The second

requirement says that if a state can perform probabilistic transitions then it

cannot perform exponentially timed transitions. Such a property derives from

the assumption of urgency of choices: probabilistic choices cannot be delayed

but must be performed immediately, hence they prevent the execution of ex-

ponentially timed delays.

2.2 The Calculus of IWMCs

Let Var be a set of process variables ranged over by X; Y; Z. Let ARFun =

f' : Act �! Act j '(�) = � ^ '(Act � f�g) � Act � f�gg be a set of action

relabeling functions, ranged over by '.

2 For the sake of readability here and in the rest of the paper we assume the following

operator precedence when writing constraints for transition relations: existential quanti�er

> \and" operator > implication.

39



Bravetti

�:P
�

�����! P

P
�

�����! P 0

P +Q
�

�����! P 0

Q
�

�����! Q0

P +Q
�

�����! Q0

P
�

�����! P 0

P kS Q
�

�����! P 0 kS Q
� =2S

Q
�

�����! Q0

P kS Q
�

�����! P kS Q
0

� =2S

P
a

�����! P 0 Q
a

�����! Q0

P kS Q
a

�����! P 0 kS Q
0

a 2 S

P
a

�����! P 0

P=L
�

�����! P 0=L
a 2 L

P
�

�����! P 0

P=L
�

�����! P 0=L
� =2 L

P
�

�����! P 0

P [']
'(�)

�����! P 0[']

PfrecX:P=Xg
�

�����! P 0

recX:P
�

�����! P 0

Table 1

Standard Rules

De�nition 2.2 We de�ne the language IWMC as the set of terms generated

by the following syntax

P ::= 0 j X j w:P j �:P j �:P j P + P j P=L j P ['] j P kS P j recX:P

where L; S � Act � f�g. An IWMC process is a closed term of IWMC . We

denote by IWMCg the set of strongly guarded terms of IWMC . 3

\0" denotes a process that cannot move. The operators \:" and \+" are

the CCS pre�x and choice. \=L" is the hiding operator which turns into �

the actions in L, \[']" is the relabeling operator which relabels visible actions

according to '. \kS" is the CSP parallel operator, where synchronization over

actions in S is required. Finally \recX" denotes recursion in the usual way.

The semantics of IWMC terms produces a transition system labeled by

actions in Act , weights in RI + and rates in RI +. We use ; 0; : : : to range over

transition labels. Such a transition system is de�ned as being the IWMTS

M = (IWMCg;Act ; Tw; Te; Ta), where: Ta is the least subset of IWMCg�Act�

IWMCg satisfying the standard operational rules of Table 1, Tw is obtained

from the least multiset over IWMCg� RI +�IWMCg satisfying the operational

rules of Table 2 (similarly to [15,13], we consider a transition to have aritym if

and only if it can be derived in m possible ways from the operational rules) by

summing the weights of the multiple occurrences of the same transition, and Te
is obtained from the least multiset over IWMCg� RI +� IWMCg satisfying the

operational rules of Table 3 by summing the rates of the multiple occurrences

3 We consider w and � pre�xes as being guards in the de�nition of strong guardedness.
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Rules for Probabilistic Moves
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�����! P 0

recX:P
�

�����! P 0

Table 3

Rules for Exponentially Timed Moves

of the same transition. In Tables 2 and 3 we use P
a

�����! to stand for

9P 0 : P
a

�����! P 0, P
�

�����!= to stand for 69Q : P
�

�����! Q and P
w

�����!=

to stand for 69w;Q : P
w

�����! Q.

The rules of Table 2 de�ne probabilistic transitions, by taking into account

the priority of \�" actions over weights. Note that we consider a \global" kind
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of weights which are applied also across the parallel operator. Moreover we

can just interleave parallel weight transitions because they are executed in

zero time.

De�nition 2.3 The semantic model M[[P ]] of P 2 IWMCg is the IWMC

de�ned byM[[P ]] = (SP ;Act ; Tw;P ; Te;P ; Ta;P ; P ), where: SP is the least subset

of IWMCg such that P 2 SP and, if P 0 2 SP and P 0


�����! P 00, then P 00 2 SP ;

moreover Tw;P ; Te;P and Ta;P are the restriction of Tw; Te and Ta to SP �Act �

SP , SP � RI + � SP and SP � RI + � SP .

2.3 Observational Congruence for IWMCs

Observational congruence over IWMCs deals with exponentially timed

choices according to Markovian bisimulation [15], deals with probabilistic

choices according to probabilistic bisimulation [16], and abstracts from stan-

dard � actions as in [17].

In our context we express cumulative probabilities and cumulative expo-

nential times by aggregating weights and rates, respectively. In particular, if

I is a set of states, TW (s; I) represents the cumulative weight of probabilistic

transitions leaving s and going into a state of I. Similarly, TR(s; I) represents
the cumulative rate of exponentially timed transitions from s to I.

The de�nition of weak bisimilarity is an adaptation of that presented in [13]

to our context.

Let
�

=) denote (
�
�! )�

�
�! (

�
�! )�, i.e. a sequence of transitions includ-

ing a single � transition and any number of � transitions. Moreover we de�ne
�̂

=) =
�

=) if � 6= � and
�̂

=) = (
�
�! )�, i.e. a possibly empty sequence of �

transitions.

De�nition 2.4 Let M = (�;Act ; Tw; Te; Ta) be a IWMTS. An equivalence

relation � on � is a weak bisimulation i� s1 � s2 implies

� for every � 2 Act and s01 2 �,

s1
�
�! s01 implies s2

�̂
=) s02 for some s02 with s01 � s02,

� s2
�̂

=) s02 for some s02 such that, for every equivalence class I of �,

TW (s1; I) = TW (s02; I) and TR(s1; I) = TR(s02; I)

Two states s1 and s2 are weakly bisimilar, denoted by s1 �IWMC s2, i� (s1; s2)
is included in some weak bisimulation.

Di�erently from [13], for the sake of simplicity, we do not express conditions

about the stability of bisimilar states because we are interested in obtaining

a congruence result only for strongly guarded processes of our calculus. Such

processes cannot produce an IWMC which is forced in a � loop, hence we do

not have to recognize this situation.
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De�nition 2.5 Two closed terms P;Q of IWMCg are observational congru-

ent, written P 'IWMC Q, i�:

� for every � 2 Act and P 0 2 IWMCg,

P
�
�! P 0 implies Q

�
=) Q0 for some Q0 with P 0 �IWMC Q0,

� for every � 2 Act and Q0 2 IWMCg,

Q
�
�! Q0 implies P

�
=) P 0 for some P 0 with P 0 �IWMC Q0,

� for every equivalence class I of �,

TW (P; I) = TW (Q; I) and TR(P; I) = TR(Q; I)

Theorem 2.6 'IWMC is a congruence over terms of IWMCg w.r.t. all the

operators of IWMC, including recursion.

It is easy to to produce an axiomatization for 'IWMC which is complete

over �nite-state IWMCg terms (due to lack of space we refer to Appendix A

for the details).

3 Interactive Timed Automata

Interactive Timed Automata are a variant of classical Timed Automata [2,19],

where action executions, events enabled on the basis of clock constraints and

clock reset events are expressed by means of separate transitions. The advan-

tage of ITA with respect to existing timed automata, where usually we have

one single kind of transition expressing all these features in a combined fash-

ion, is that action transitions can be dealt with separately from time-related

transitions, hence making it easy to de�ne, e.g., a notion of weak bisimulation

as a simple extension of the standard notion of [17]. Therefore, with respect

to the existing equivalence notions for timed automata, abstracting from �
transitions, improves the capability of minimizing the state space of speci�ed

systems. ITA can be straightforwardly mapped into existing timed automata

(e.g. those de�ned in [19]), hence previous decidability results and software

tools can be exploited for analysing real-time properties in ITA speci�cations.

Time delays are modeled in ITA by means of clocks Cn which are set to zero

and count upwards while time passes. An ITA represents the behavior of a

system component by employing both clock reset transitions and clock bound

transitions, representing the timed behavior of the component and standard

action transitions, representing the interactive behavior of the component.

Clock reset transitions are labeled with a clock name Cn and represent the

event of reset of the clock (which is set to zero). After such event, Cn counts

upwards while time passes and states are traversed by the automaton. When

several clock reset transitions are enabled in an ITA state, the choice among

them is just non-deterministic. Clock bound transitions are labeled with a

clock constraint � (an expression built from bounds on the clock values) and

they can be executed only when the status of clocks satis�es such a constraint.

A system is allowed to stay in a state enabling several clock bound transitions
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as long as all clock constraints labeling the transitions can be satis�ed at

present time or in the future. The role and the meaning of visible and invis-

ible action transitions, related to composition of ITA via a CSP-like parallel

composition and hiding, is exactly the same as for IWMCs.

3.1 De�nition of Interactive Timed Automaton

In an ITA we have four di�erent kinds of state:

- silent states, enabling invisible action transitions � and (possibly) visible ac-

tion transitions a only. The meaning of such states is exactly as in IWMCs.

- reset states, enabling reset transitions Cn and (possibly) visible action tran-

sitions a only. In such states the ITA just performs a choice among the

clock reset transitions in zero time and may potentially interact with the

environment through one of the visible actions.

- timed states, enabling clock bound transitions � and (possibly) visible action

transitions a only. In such states all the clocks of the ITA count upwards

as time passes. The system is allowed to sojourn in the state as long as

all clock constraints labeling its outgoing transitions can be satis�ed at the

present time or in the future. Moreover, it can non-deterministically leave

the state at any time through a bound transition � whose constraint � is

(at present time) satis�ed. Moreover, while the ITA sojourns in the state,

it may (at any time) potentially interact with the environment through one

of the outgoing visible action transitions.

- waiting states, enabling standard visible actions only or no transition at all.

In such states the ITA remains inde�nitely. It may, at any time, potentially

interact with the environment through one of the outgoing visible action

transitions.

In the following we present the formal de�nition of Interactive Timed Au-

tomaton Transition System (ITATS), then we will de�ne Interactive Timed

Automata as ITATSs possessing an initial state. Formally, we use T; T 0; : : :,

representing sets of time values, to range over subsets of RI + [ f0g. More-

over, we denote the set of standard action types used in an ITATS by Act ,

ranged over by �; �0; : : :. As usual Act includes the special type � denoting

internal actions. The set Act � f�g is ranged over by a; b; : : :. The set of

clocks of an ITATS is denoted by C = fCn j n 2 CNamesg, where CNames

is a set of clock names. Given a set C, we denote with C�, ranged over by

�; �0; : : :, the set of constraints over clocks of C (the labels of clock bound tran-

sitions), which is de�ned as the set of terms generated by the following syntax:

� ::= Cn 2 T j � ^ �

Moreover, let C [ C� be ranged over by �; �0; : : :. The set of states of an

ITATS is denoted by �, ranged over by s; s0; : : :. We assume the following

abbreviations that will make the de�nition of ITATSs easier.
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De�nition 3.1 An Interactive Timed Automata Transition System (ITATS)

is a tuple T = (�; C;Act ; Tr; Tb; Ta) with

� � a set of states,

� C a set of clocks,

� Act a set of standard actions,

� Tr � (� � C � �), Tb � (� � C� � �), and Ta � (� � Act � �) three

transition relations representing clock reset and clock bound events and

action execution, respectively, such that:

(i) 8s 2 �: s
�

�����! =) 6 9�: s
�

�����!

(ii) 8s 2 �: 9Cn: s
Cn

�����! =) 6 9�: s
�

�����!

An Interactive Timed Automata (ITA) is a tuple T = (�; C;Act ; Tr; Tb; Ta; s0),

where s0 2 � is the initial state of the ITA and (�; C;Act ; Tr; Tb; Ta) is an

ITATS.

The constraints over transition relations Tr, Tb and Ta guarantee that each

state of the ITA belongs to one of the four kind of states above. In particular,

the �rst requirement says that if a state can perform internal � actions then

it cannot perform clock reset transitions or clock bound transitions. Such

a property derives from the assumption of maximal progress: the possibility

of performing internal actions prevents the execution of time-related activity.

The second requirement says that if a state can perform clock reset transitions

then it cannot perform clock bound transitions. Such a property derives from

an assumption of urgency of clock resets: clock reset transitions cannot be

delayed but must be performed immediately and they are just assumed to

prevent the execution of clock bound transitions.

3.2 Composing ITA

In the following we present the formal de�nitions of parallel composition and

hiding of ITA. It can be easily shown that the transition system obtained by

the composition is still an ITA (see [5]) due to the fact that maximal progress

and urgency of clock resets assumptions are enforced when composing ITA.

Given a clock renaming function ren : C �! C, we assume ren(�) to be the

constraint �0 obtained from � by renaming clocks in � according to function

ren. In particular we de�ne the renaming function l : C �! C by f(Cn; Cn;l) j

Cn 2 Cg and, similarly, function r : C �! C by f(Cn; Cn;r) j Cn 2 Cg.

De�nition 3.2 The parallel composition T1 kS T2 of two ITA T1 = (�1; C1;

Act ; Tr;1; Tb;1; Ta;1; s0;1) and T2 = (�2; C2;Act ; Tr;2; Tb;2; Ta;2; s0;2), with S �
Act�f�g being the synchronization set, is the tuple (�; C;Act ; Tr; Tb; Ta; (s0;1;

s0;2)) with

� � = �1 � �2 �M the set of states,

� C = fCn;l j Cn 2 C1g [ fCn;r j Cn 2 C2g
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� Tr � (��C ��), Tb � (��C���), and Ta � (��Act ��) are the least

transition relations, such that 8(s1; s2) 2 �:

1l s1
�

�����! s01; � 62 S =) (s1; s2)
�

�����! (s01; s2)

2 s1
a

�����! s01 ^ s2
a

�����! s02; a 2 S =) (s1; s2)
a

�����! (s01; s
0

2)

3l s1
Cn

�����! s01 ^ s2
�

�����!= =) (s1; s2)
Cn;l

���������! (s01; s2)

4l s1
�

�����! s01 ^ s2
�

�����!= ^ 6 9Cn: s2
Cn

�����! =) (s1; s2)
l(�)

�����! (s01; s2)

and also the symmetric rules 1r; 3r; 4r referring to the local transitions of

T2, which are obtained from the rules 1l; 3l; 4l by exchanging the roles of

states s1 (s
0

1) and s2 (s
0

2), by turning l into r in the subscripts of clocks, and

by turning the renaming function l into r, hold true.

� (s0;1; s0;2) 2 � the initial state

Each state s 2 � of the composed model is represented by a pair of states

(s1 2 �1 and s2 2 �2). Moreover we rename clocks of both ITA T1 and T2
so to avoid a name conict whenever two clocks with the same name Cn are

simultaneously in execution in both ITA. Rules 1 (2) describe the behavior

of the composed model in the case of a standard action � performed by one

(or both, via a synchronization) ITA, when � 62 S (� 2 S). Rules 3 and

4 de�ne the behavior of the composed model in the case of clock reset and

clock bound transitions, respectively, locally performed by components. Note

that the negative clauses in the premises enforce the maximal progress and

the urgency of clock resets assumptions.

De�nition 3.3 The hiding T =L of a ITA T = (�; C;Act ; Tr;1; Tb;1; Ta;1; s0)
with L � Act � f�g being the set of visible actions to be hidden is the tuple

(�; C;Act ; Tr; Tb; Ta; s0) where Tr � (� � C � �), Tb � (� � C� � �), and

Ta � (�� Act � �) are the least set of transitions, such that 8s 2 �: 4

1 s
�

�����!1s
0; � 62 L =) s

�

�����! s0

2 s
a

�����!1s
0; a 2 L =) s

�

�����! s0

3 s
�

�����!1s
0 ^ 6 9a 2 L: s

a

�����!1 =) s
�

�����! s0

Rules 1 and 2 are standard. Rule 3 says that the e�ect of the hiding

operator over states of T which enable standard actions in L is to preempt all

clock related transitions according to the maximal progress assumption.

3.3 Weak bisimulation for ITA

Now we will introduce a notion of weak bisimulation over ITA which matches

the clock related transitions as in [1] and abstracts from standard � actions

similarly to [17].

4 In order to distinguish transition of Tr;1, Tb;1 and Ta;1 from transitions of Tr, Tb and Ta
we denote the former with \�����!1" and the latter simply with \�����!".
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Given an ITATS T = (�; C;Act ; Tr; Tb; Ta), weak bisimulation over states

is de�ned by associating clock names as in [1] so that equivalence does not

depend on the particular names used for clocks. We use H to range over

association histories of clock names, i.e. partial bijections from C to C. We

denote by H the set of all association histories.

We now present weak bisimulation for ITA which is de�ned by means of

a family of bisimulations �H , each indexed by an association history. First

of all, let us say that a H-indexed family of binary relations f�H j H 2 Hg

over � is symmetric if and only if (s1; s2) 2 �H implies (s2; s1) 2 �H , where

H = f(Cn0; Cn) j (Cn; Cn0) 2 Hg. Moreover, we use H  (Cn; Cn0) to denote

the association history H 0 obtained from H by adding the pair (Cn; Cn0) and

removing old associations (Cn; Cn00) and (Cn000; Cn0), for some Cn00 and Cn000,

already contained in H, thus preserving the structure of bijection from C to

C. We use  to range over transition labels, i.e. Act [ C [ C�.

De�nition 3.4 Let T = (�; C;Act ; Tr; Tb; Ta) be a ITATS. A symmetric H-

indexed family B = f�H � � � � j H 2 Hg of binary relations over � is a

weak bisimulation family i� s1 �H s2 implies

� for every � 2 Act and s01 2 �,

s1
�
�! s01 implies s2

�̂
=) s02 for some s02 with s01 �H s02

� for every Cn 2 C and s01 2 �,

s1
Cn

�! s01 implies s2
C
n0

=) s02 for some s02; Cn0 with s01 �H (Cn;Cn0 ) s
0

2

� for every � 2 C� and s01 2 �,

s1
�
�! s01 implies � 2 dom(H) and s2

H(�)
=) s02 for some s02 with

s01 �H s02

Two states s1 and s2 are weakly bisimilar with respect to association his-

tory H 2 H, denoted by s1 �ITA;H s2, i� there exist some weak bisimulation

family B = f�H j H 2 Hg such that (s1; s2) 2 �H . Two ITA (T1; s0;1) and

(T2; s0;2) are weakly bisimilar, denoted by (T1; s0;1) �ITA (T2; s0;2) if their ini-
tial states s0;1 and s0;2 are such that s0;1 �ITA;; s0;2 in the ITATS obtained

with the disjoint union of T1 and T2.

3.4 Semantics of ITA

ITA are endowed with a semantics which maps an ITA onto a transition system

where: (i) the passage of time is explicitely represented by transitions labeled

with numeric time delays t 2 RI + [ 0 and (ii) clock reset transitions and

clock bound transitions are turned into prioritized transitions reecting the

precedence of clock reset transitions over clock bound transitions. Di�erently

from existing approaches, we express semantic models of ITA by means of

\interactive" timed transition systems which can be themselves composed and

for which we de�ne a notion of weak bisimulation. This allows us to develop a

semantic mapping which is compositional with respect to parallel composition
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and hiding and preserves equivalence, similarly to what is done in [7,5] for

IGSMPs. Due to lack of space we refer the reader to Appendix B for a complete

presentation of the semantics of ITA.

4 Mapping IGSMPs onto Pure Markovian and Real-

Time Processes

In this section we present the two formal mappings from IGSMPs, representing

the stochastic and real-time behavior of a concurrent system in an integrated

way, into IWMCs, representing the pure stochastic (Markovian) behavior of

the system, and into ITA, representing the pure real-time behavior of the sys-

tem. The former mapping is obtained by approximating generally distributed

durations with phase-type durations. Technically, such mapping is performed

compositionally at the algebraic level by replacing each delay pre�x <f;w>

occurring in an algebraic term of an IGSMP speci�cation with an IWMC term

w:P , where P is the algebraic representation of a phase-type distribution ap-

proximating f . In this way we map a term of the calculus of IGSMPs into

a term of IWMC. The latter mapping is obtained by abstracting from prob-

ability related information. Such mapping is still performed compositionally,

but at the level of models (not at the level of algebraic terms). In particu-

lar we de�ne how to derive an ITA from an IGSMP by turning probabilistic

choices into non-deterministic choices and by considering the support of the

distribution of a clock, i.e. the set of time values that may happen with prob-

ability (density) greater than 0, as the set of possible values for its duration.

Moreover we show that such mapping is compositional, i.e. is preserved by

CSP parallel composition and hiding. If every distribution used in the GSMP

has a support which is a �nite collection of intervals, then the derived ITA is

analyzable with existing techniques and tools.

4.1 Deriving the Pure Markovian Process

Given an IGSMP term P 2 IGSMPg (see [8] or [5] Chapter 7), we derive an

IWMC term Q 2 IWMCg by approximating general distribution with phase-

type distributions.

Since phase-type distributions can be seen as the time to absorption of a

continuous time Markov chain, any phase-type distribution pht can be repre-

sented by some term Ppht of IWMC, made up of only weighted pre�xes \w: ",

exponentially timed pre�xes \�: ", choice operators \ + " and occurrences

of a variable X representing absorbing states.

Given a function approx : PDF+ �!o PhT , which associates with each gen-

eral distribution f occurring in an IGSMP speci�cation P its approximating

phase-type distribution pht, term Q 2 IWMCg is obtained as follows. De-

noted with R[R0=X] the term obtained from a term R by replacing R0 for X

inside R, we just replace each occurrence of a subterm <f;w>:P 0 in P with
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w:(Papprox (f)[P
0=X]).

De�nition 4.1 Given P 2 IGSMPg and a function approx : PDF+ �!o PhT ,

which associates with each general distribution occurring in P an approxi-

mating phase-type distribution, we de�neM[[P; approx ]] 2 IWMCg to be the

term obtained by replacing each occurrence of a subterm <f;w>:P 0 in P with

w:(Papprox (f)[P
0=X]).

The following theorem, where we denote by approx(P ) the term of IGSMPg
obtained from P 2 IGSMPg by replacing distributions f in pre�xes <f;w>

according to approx , shows the correctness of the mapping from IGSMP to

IWMC terms (performance measures are preserved).

Theorem 4.2 Given P 2 IGSMPg and approx : PDF+ �!o PhT, we have

that, for every �xed adversary resolving non-deterministic choices, the stochas-

tic process underlying approx(P ) is the same as that underlyingM[[P; approx ]]

(provided that in M[[P; approx ]] we only consider states which do not enable

derivatives of terms Papprox (f), for any f , as states of the underlying stochastic

process).

The following theorem shows that, thanks to the fact that the semantics

of IGSMP delays are de�ned by means of an ST semantics, observational

equivalence is preserved when delays are re�ned by means of phase-type dis-

tributions. We denote with 'IGSMP observational equivalence over IGSMP

terms (de�ned in [8] or [5] Chapter 7).

Theorem 4.3 Given P;Q 2 IGSMPg and a function approx : PDF+ �!o

PhT, we have that P 'IGSMP Q impliesM[[P; approx ]] 'IWMC M[[Q; approx ]].

The simple mapping above from IGSMP terms into IWMC terms is sig-

ni�cant from a pure performance viewpoint in that it shows process algebra

to provide exactly the machinery necessary for approximating GSMPs with

CTMCs through phase-type distributions. This because, while directly trans-

forming at the model level a GSMP into a CTMC via phase-type approxima-

tion is really cumbersome due to the interleaving of the exponential phases,

when using process algebra we just have to approximate general distributions

at the term level and then the parallel operator automatically computes the

interleaving of exponential phases for us. Finally, such a mapping con�rms ST

semantics to be the adequate semantics for generally distributed time in that

approximation of activity durations with phase-type distributions is a form of

action re�nement.

4.2 Deriving the Pure Real-Time Process

Given an IGSMP G = (�; C; D;Act ; T+; T�; Ta; s0) (see [7] or [5] Chapter 6), we

derive an ITA T = (�; C;Act ; Tr; Tb; Ta; s0), by turning probabilistic choices

into non-deterministic choices and by considering the support of the distribu-

tion of a clock as the set of possible values for its duration. In particular, clock
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start transitions C+
i are turned into reset transitions Ci, while clock termi-

nation transitions C�i are turned into clock bound transitions Ci 2 T , where

T is the support of the distribution D(Ci). Note that a technique like this,

which is based on the idea that we introduced in [6] of considering support of

distributions as constraints over clocks, was also used in [9] for deriving timed

automata from the stochastic automata model of [10]. Subsequently, in [11]

it was shown that a more complex technique, which generates new states for

each interval composing the domain of the support of the probability distribu-

tion of clocks, is actually needed for correctly deriving timed automata from

the model of [10]. This because it can be seen that in such a model the di-

rect transformation of clock termination transitions into transitions requiring

clocks to assume values in the support of their distributions causes timed au-

tomata which behave di�erently from the original system to be derived. This

is due to the fact that in the model of [10] it may happen that a clock ter-

mination transition is executed some time after the clock the transition refers

to actually terminates. Since such a phenomenon cannot happen in IGSMPs,

our simple technique which does not increase the system state space, can be

correctly applied.

Now we present the precise de�nition of support of a probability distribu-

tion that we need for the translation. We follow the idea of [11] of de�ning the

support (therein called \useful domain") in such a way that, if a time value

is in the support set, then either it has non-zero measure, or it is internal, i.e.

it belongs to an open interval which is all included in the support set (and

which must have non-zero measure). This avoids considering traces contain-

ing action orderings which in the original IGSMP occur with zero probability

(see [11]).

De�nition 4.4 Given a probability distribution f over RI , the support of f ,
denoted by supp(f), is the set obtained from the least closed subset of RI with

measure 1 by eliminating non-internal values with measure 0.

It is trivial to verify that for each probability distribution f , supp(f) has
measure 1 (hence that the de�nition is correct).

De�nition 4.5 Given an IGSMP G = (�; C; D;Act ; T+; T�; Ta; s0), we de�ne

T [[G]] to be the ITA (�; C;Act ; Tr; Tb; Ta; s0), where Tr and Tb are given by

� Tr = f(s; Ci; s
0) j (s; C+

i ; s
0) 2 T+g

� Tb = f(s; Ci 2 T; s
0) j (s; C�i ; s

0) 2 T
�
^ T = supp(D(Ci))g

In order to show the correctness of the mapping from IGSMP to ITA, we

assume the following. Given a state s of an IGSMP and a valuation function v

assigning a time value to each of its clocks, we call a \supported execution of

an IGSMP starting in (s; v)" a �nite sequence of timed transitions t 2 RI + [ 0

and actions transitions � 2 Act executable by the IGSMP according to its

semantics (see [7,5]) when it starts in the state s with initial valuation v and

when we consider as possible values sampled for a clock with distribution f
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the time values in supp(f) only. Similarly a \possible execution of an ITA

starting in (s; v)" is a �nite sequence of timed transitions t 2 RI + [ 0 and

actions transitions � 2 Act executable by the ITA according to its semantics

(see Appendix B) when it starts in the state s with initial valuation v.

Theorem 4.6 Given an IGSMP G = (�; C; D;Act ; T+; T�; Ta; s0), we have

that for each state s and valuation function v associating a time value to the

clocks of G (belonging to C) the set of all supported executions of G starting

in (s; v) is equal to the set of all possible executions of the T [[G]] starting in

(s; v).

The following theorem shows that weak bisimulation equivalence is pre-

served when well-named IGSMPs are mapped into ITA. We denote with

�IGSMP weak bisimulation over well-named IGSMPs (de�ned in [8,7] or [5]

Chapter 6).

Theorem 4.7 Given two well-named IGSMPs G 0 and G 00, we have that G 0

�IGSMP G
00 implies T [[G 0]] �ITA T [[G

00]]. Moreover, for each S; L � Act � f�g,

we have T [[G 0]] kS T [[G
00]] �ITA T [[G

0 kS G
00]] and T [[G]]=L �ITA T [[G=L]].
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A A Complete Axiomatization for �nite state IWMC

terms

In this section we present an axiom system which is complete for 'IWMC on

�nite state IWMCg terms.
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(A1) P +Q = Q+ P (A2) (P +Q) +R = P + (Q+R)

(A3) �:P + �:P = �:P (A4) P + 0 = P

(Tau1) :�:P = :P (Tau2) P + �:P = �:P

(Tau3) �:(P + �:Q) + �:Q = �:(P + �:Q)

(Prob) w:P + w0:P = (w + w0):P

(ExpT ) �:P + �0:P = (�+ �0):P

(Pri1) �:P + �:Q = �:P (Pri2) w:P + �:Q = w:P

(Hi1) 0=L = 0 (Hi2) (:P )=L = :(P=L)  =2 L

(Hi3) (a:P )=L = �:(P=L) a 2 L (Hi4) (P +Q)=L = P=L+Q=L

(Rel1) 0['] = 0 (Rel2) (�:P )['] = '(�):(P ['])

(Rel3) (�:P )['] = �:(P [']) (Rel4) (P +Q)['] = P ['] +Q[']

(Par) P kS Q = P bbS Q+Q bbS P + P jS Q

(LM1) 0 bbS P = 0

(LM2) (a:P ) bbS Q = 0 a 2 S

(LM3) (:P ) bbS Q = :(P kS Q)  =2 S

(LM4) (P +Q) bbS R = P bbS R+Q bbS R

(SM1) P jS Q = Q jS P

(SM2) 0 jS P = 0

(SM3) (:P ) jS(
0:Q) = 0 ( =2 S _  6= 0) ^ � =2 f; 0g

(SM4) (�:P ) jS Q = P jS Q

(SM5) (a:P ) jS(a:Q) = a:(P kS Q) a 2 S

(SM6) (P +Q) jS R = P jS R+Q jS R

(Rec1) recX:P = recY:(PfY=Xg) provided that Y is not free in recX:P

(Rec2) recX:P = PfrecX:P=Xg

(Rec3) Q = PfQ=Xg ) Q = recX:P provided that X is strongly guarded in P

Fig. A.1. Axiomatization for IWMC

The axiom system AIWMC for 'IWMC on IWMCg terms is formed by the

axioms presented in Fig. A.1. In this �gure \bb" and \j" denote, respectively,

the left merge and synchronization merge operators. We recall from Sect. 2

that � ranges over weights in RI + and rates in RI +, while ; 0; : : : range over

actions in Act , weights and rates.
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The axioms (Pri1) and (Pri2) express the two kinds of priorities of IWMC ,

respectively, priority of � actions over weights and rates and priority of weights

over rates. The axiom (Par) is the standard one which expresses parallel

composition in terms of left and synchronization merge. The axioms (Rec1�3)

handle strongly guarded recursion in the standard way.

If we consider the obvious operational rules for \bbS" and \jS" that derive

from those we presented for the parallel operator 5 then the axioms of AIWMC

are sound.

A sequential state is de�ned to be one which includes \0", \X" and oper-

ators \:", \+", \recX" only; leading to the following theorem.

Theorem A.1 If an IWMCg process P is �nite state, then 9P 0 : AIWMC `

P = P 0 with P 0 sequential state.

For sequential states the axioms of AIWMC involved are just standard

axioms plus the axioms for priority and probabilistic and exponentially timed

choice, hence we have the following.

Theorem A.2 AIWMC is complete for 'IWMC over �nite state IWMCg pro-

cesses.

B A Semantics for Interactive Timed Automata

In Sect. B.1 we introduce Interactive Prioritized Timed Transition Systems

(IPTTSs) that will be used in Sect. B.2 to de�ne a semantics for ITA.

B.1 Interactive Prioritized Timed Transition Systems

In this section we formally introduce Interactive Prioritized Timed Transition

Systems (IPTTS) which essentially include three type of transitions: standard

action transitions, representing the interactive behavior of a system compo-

nent, prioritized transitions, representing behaviors of the system component

executed according to a certain priority level, and numeric time transitions

representing a �xed temporal delay.

As far as standard action transitions are concerned they have exactly the

same behavior as in ITA. Prioritized transitions are labeled with a certain

priority level p 2 NI + and, where transitions with a higher priority level take

priority (e.g. when composing two IPTTSs in parallel) over prioritized transi-

tions with a lower priority level. Moreover, we assume standard � transitions

to take priority over prioritized transitions, no matter which is the priority

level of such transitions (due to the maximal progress assumption). Given a

time domain TD � RI +, numeric time transitions are labeled with a certain

delay t 2 TD representing the passage of t time units. As usual in the real

5 The de�nition of the operational rule for \jS" must allow for actions \�" to be skipped,

as reected by axiom (SM4).
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time literature (see e.g. [19]), several timed transition leaving a state o�er the

possibility to the observer to choose the amount of time after which he wants

to observe the status of the system.

In IPTTS we have two di�erent kinds of state:

� silent states which are exactly like in ITA.

� non-silent states enabling numeric timed transitions and/or prioritized tran-

sitions all with the same priority level and (possibly) visible action transi-

tions a, only. In such states numeric timed transitions (which cause the

amount of time labeling the transition to pass) and prioritized transitions

are chosen by means of a non-deterministic choice. Moreover the IPTTS

may potentially interact with the environment through one of its visible

actions.

In the following we present the formal de�nition of Interactive Prioritized

Timed Transition System (IPTTS), then we will de�ne Rooted Interactive

Prioritized Timed Transition Systems as IPTTSs possessing an initial state.

Formally, given a time domain TD � RI +, we use t; t0; : : :, representing time

values, to range over TD . Moreover we use p; p0; : : :, representing priority

levels, to range over NI +. Finally we use � to range over time values in TD

and priorities in NI +.

De�nition B.1 An Interactive Prioritized Timed Transition System (IPTTS)

is a tuple D = (�;TD ;Act ; Tp; Tt; Ta) with

� � a set of possibly in�nite states,

� TD a time domain, i.e. the set of possible values over which the labels of

the numeric timed transitions range.

� Act a set of standard actions,

� Tp � (� � NI + � �) and Tt � (� � RI + � �) and Ta � (� � Act � �)

three transition relations representing prioritized behaviors, time passage

and action execution, respectively. Tp, Tt and Ta must be such that 8s 2 �:

- s
�

�����! =) 6 9t:s
t

�����! ^ 6 9p:s
p

�����!

- s
p

�����! =) 6 9p0 < p:s
p0

�����!

- s
�

�����! _ 9t:s
t

�����! _ 9p:s
p

�����!

De�nition B.2 A Rooted Interactive Prioritized Timed Transition System

(RIPTTS) is a tupleD = (�;TD ;Act ; Tp; Tt; Ta; s0), where s0 2 � is the initial

state and (�;TD ;Act ; Tp; Tt; Ta) is an IPTTS.

The meaning of the constraints over transition relations is the following.

The �rst requirement says that (similarly as in ITA) if a state that can perform

internal � actions then it cannot perform time-related transitions (maximal

progress assumption). The second requirement says that if a state can perform

prioritized transitions with a certain priority level then it cannot perform
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prioritized transitions with a lower priority level. The third requirement says

that (similarly as in ITA) we cannot have states where time is not allowed to

pass (time deadlocks).

B.1.1 Parallel of Rooted IPTTSs

Now we de�ne, similarly as for ITA, the parallel composition �a la CSP of

RIPTTSs.

In such a parallel composition the discrete timed transitions of the com-

posed RIPTTSs are constrained to synchronize, so that the same amount of

time passes for both systems, i.e. when time advances for one RIPTTS it must

also advance for the other RIPTTS.

De�nition B.3 The parallel composition D1 kS D2 of two RIPTTSs D1 =

(�1;TD ;Act ; Tp;1; Tt;1; Ta;1; s0;1) and D2 = (�2;TD;Act ; Tp;2; Tt;2; Ta;2; s0;2),

with S � Act�f�g being the synchronization set, is the tuple (�;TD ;Act ; Tp;

Tt; Ta; (s0;1; s0;2)) with:

� � = �1 � �2 the set of states

� Tp � (�� NI + � �), Tt � (�� TD � �) and Ta � (�� Act � �) the least

transition relations, such that

1l s1
�

�����! s01; � 62 S =) (s1; s2)
�

�����! (s01; s2)

1r s2
�

�����! s02; � 62 S =) (s1; s2)
�

�����! (s1; s
0

2)

2 s1
a

�����! s01 ^ s2
a

�����! s02; a 2 S =) (s1; s2)
a

�����! (s01; s
0

2)

3l s1
p

�����! s01 ^ s2
�

�����!= ^ 6 9p0 > p:s2
p0

�����! =)

(s1; s2)
p

�����! (s01; s2)

3r s2
p

�����! s02 ^ s1
�

�����!= ^ 6 9p0 > p:s1
p0

�����! =)

(s1; s2)
p

�����! (s1; s
0

2)

4 s1
t

�����! s01 ^ s2
t

�����! s02 =) (s1; s2)
t

�����! (s01; s
0

2)

� (s0;1; s0;2) 2 � the initial state.

When evaluating action transitions we just make use of standard rules.

Prioritized transitions are determined by taking into account priorities ac-

cording to a \global" notion of priority where priorities are applied across the

parallel operator. Finally timed transitions are evaluated by just requiring

them to synchronize.

Theorem B.4 Let D1 and D2 be two RIPTTSs. Then for each S � Act�f�g,

D1 kS D2 is a RIPTTS.

B.1.2 Hiding of Rooted IPTTSs

Now we de�ne, similarly as for ITA, the hiding of RIPTTSs.

De�nition B.5 The hidingD=L of a RIPTTSD1 = (�;TD ;Act ; P1; Tp;1; Tt;1;

Ta;1; s0), with L � Act � f�g being the set of visible actions to be hidden, is
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the tuple (�;TD ;Act ; P; Tp; Tt; Ta; s0), with:

� P the partial function obtained from P1 by removing from its domain those

states (and the associated probability spaces) which enable at least one

transition labeled with an action in L

� Tp � (�� NI + � �), Tt � (�� TD � �) and Ta � (�� Act � �) the least

transition relations, such that 8s 2 �: 6

1 s
�

�����!1s
0; � 62 L =) s

�

�����! s0

2 s
a

�����!1s
0; a 2 L =) s

�

�����! s0

3 s
�

�����!1 ^ 6 9a 2 L: s
a

�����!1 =) s
�

�����!

Similarly as for ITA, in the de�nition of the hiding operator in addition

to standard rules we make use of rules which enforce the maximal progress

assumption.

Theorem B.6 Let D be a RIPTTS. Then for each L � Act �f�g, D=L is a

RIPTTS.

B.1.3 Equivalence of Rooted IPTTSs

Now we introduce a notion of weak bisimulation for RIPTTSs which matches

prioritized and timed transitions according to strong bisimulation and ab-

stracts from standard � actions similarly as in [17].

De�nition B.7 Let D = (�;TD ;Act ; Tp; Tt; Ta) be an IPTTS. An equiva-

lence relation � on � is a weak bisimulation i� s1 � s2 implies

� for every � 2 Act ,

s1
�

�����! s01 implies s2
�̂

=) s02 for some s02 with s01 � s02,

� for every � 2 NI + [ TD ,

s1
�

�����! s01 implies s2
�

�����! s02 for some s02 with s01 � s02,

Two states s1 and s2 are weakly bisimilar, denoted by s1 � s2, i� (s1; s2)

is included in some weak bisimulation. Two RIPTTSs (D1; s0;1) and (D2; s0;2)

are weakly bisimilar, if their initial states s0;1 and s0;2 are weakly bisimilar in

the IPTTS obtained with the disjoint union of D1 and D2.

B.2 De�nition of the Semantics for ITA

In this section we present a semantics for interactive timed automata which

maps them onto interactive prioritized timed transition systems. Such a se-

mantics explicitely represents the passage of time by means of transitions

labeled with numeric time delays and turns clock reset transitions into prior-

6 In order to distinguish transition of Tp;1, Tt;1 and Ta;1 from transitions of Tp, Tt and Ta
we denote the former with \�����!1" and the latter simply with \�����!".
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itized transitions with priority level 2 and clock bound transitions into prior-

itized transitions with priority level 1.

(P1)
s

�

�����! s0 ^ v ` �

hs; vi
1

�����!hs0; vi
(P2)

s
Cn

�����! s0

hs; vi
2

�����!hs0; v  (Cn; 0) i

(T )
9t0 � t : v + t0 `

V
f� j s

�

�����!g

hs; vi
t

�����!hs; v + ti

(A)
s

�

�����! s0

hs; vi
�

�����!hs0; vi

Table B.1

Semantic rules for ITA

We now formally de�ne the semantics of an ITA.

De�nition B.8 The semantics of an ITA T = (�; C;Act ; Tr; Tb; Ta; s0) is the

RIPTTS [[T ]] = (�0; RI + [ f0g;Act ; Tp;Tt ;T
0

a ; s
0

0) where:

� �0 = (� � Spent) is the set of states of the RIPTTS, where Spent , ranged

over by v, is the set of functions from C to RI + [ f0g, expressing the time

already spent in execution by the clocks of the ITA from the last reset event

� RI + [ f0g is the time domain: we consider continuous time.

� Act is the set of standard actions considered in the ITA.

� Tp is the set of prioritized transitions which are de�ned as the least rela-

tion over �0 � NI + � �0 satisfying the operational rules in the �rst part of

Table B.1.

� Tt is the set of timed transitions which are de�ned as the least relation over

�0 � ( RI + [ f0g)� �0 satisfying the operational rules in the second part of

Table B.1.

� T 0a is the set of action transitions which are de�ned as the least relation over

�0�Act ��0 satisfying the operational rules in the third part of Table B.1.

� s00 = hs0; 0i, with 0 = f(Cn; 0) j Cn 2 Cg is the initial state of the RIPTTS,

where the ITA is in the initial state and all clocks start from zero.

In Table B.1 we make use of the following notation. v ` � holds true if

and only if the formula obtained from � by replacing clocks with time values
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according to v is true. Moreover we de�ne v  (Cn; t) to be the function

obtained from v by replacing the pair (Cn; t
0) already contained in v with the

new pair (Cn; t). Finally, we de�ne v + t, with t 2 RI + [ 0, to be the function

obtained from v by adding t to the time value associated with each clock in v.

Theorem B.9 Let T 0, T 00 be two ITA. If T 0 � T 00 then [[T 0]] � [[T 00]].

The following theorems show that the semantics of ITA is indeed compo-

sitional.

Theorem B.10 Let T 0, T 00 be two ITA. For each S � Act � f�g we have

[[T 0]] kS[[T
00]] � [[T 0 kS T

00]].

Theorem B.11 Let T be an ITA. For each L � Act �f�g we have [[T ]]=L �

[[T =L]].
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Abstract

The usage of process algebras for the performance modeling and evaluation of con-

current systems turned out to be convenient due to their feature of compositionality.

A particularly simple and elegant solution in this �eld is the calculus of Interactive

Markov Chains (IMCs), where the behavior of processes is just represented by Con-

tinuous Time Markov Chains extended with action transitions representing process

interaction. The main advantage of IMCs with respect to other existing approaches

is that a notion of bisimulation which abstracts from � transitions (\complete" in-

teractions) can be de�ned which is a congruence. However in the original de�nition

of the calculus of IMCs the high potentiality of compositionally minimizing the

system state space given by the usage of a \weak" notion of equivalence and the el-

egance of the approach is somehow limited by the fact that the equivalence adopted

over action transitions is a �ner variant of Milner's observational congruence that

distinguishes � -divergent \Zeno" processes from non-divergent ones. In this paper

we show that it is possible to reformulate the calculus of IMCs in such a way that we

can just rely on simple standard observational congruence. Moreover we show that

the new calculus is the �rst Markovian process algebra allowing for a new notion of

Markovian bisimulation equivalence which is coarser than the standard one.

1 Introduction

The advantages of using process algebras for the performance modeling and

evaluation of concurrent systems due to their feature of compositionality have

been widely recognized (see [12,2,18,9,5,3] and the references therein). Par-

ticularly simple and successful has been the extension of standard process

algebras with time delays whose duration follows an exponential probabil-

ity distribution, called Markovian process algebras (see e.g. [12,2,18,9]). The

\timed" behavior of systems speci�ed with a Markovian process algebra can

represented by a continuous time Markov chain (CTMC), i.e. a simple contin-

uous time stochastic process where in each time point the future behavior of

1 Email: bravetti@cs.unibo.it

This is a preliminary version and considered for the �nal proceedings, to be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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the process is completely independent on its past behavior. Due to their sim-

plicity CTMCs can be analyzed with standard mathematical techniques and

software tools (see e.g. [19]) for deriving performance measures of systems.

1.1 Interactive Markov Chains

In [9] specifying concurrent systems as the parallel composition of interact-

ing subsystems described by CTMCs is made possible simply by extend-

ing CTMCs with standard action transitions, thus giving rise to Interactive

Markov Chains (IMCs). An IMC represents the behavior of a component

by employing both standard action transitions, representing the interactive

behavior of the component, and exponentially timed transitions, representing

the timed probabilistic behavior of the component. Action transitions are just

standard CCS/CSP [14,13] transitions labeled with an action \�", which can

be either an internal � action or a visible action \a". They are executed in zero

time: when several action transitions are enabled in an IMC state, the choice

among them is just performed non-deterministically and when IMCs are com-

posed in parallel they synchronize following the CSP [13] approach, where the

actions belonging to a given set S are required to synchronize. Exponentially

timed transitions are, instead, labeled with a rate � (the parameter of the ex-

ponential distribution) and represent timed choices performed according to a

\race" between exponential delays. The interrelation between standard action

transitions and exponentially timed transitions is governed by the so-called

maximal progress assumption [17]: the possibility of executing � transitions

prevents the execution of exponentially timed transitions, thus expressing that

the system cannot wait if it has something internal to do. Visible a transi-

tions are, instead, interpreted as representing a \potential" interaction with

the environment, hence their execution can be inde�nitely delayed. Therefore

in the IMC obtained from the speci�cation of \complete concurrent system"

no visible action transition occurs. In [9] a process algebra (called calculus

of IMCs) is de�ned, which is just a simple extension of a standard process

algebra (containing CCS [14] pre�x \�:P" and choice \P +Q" and CSP [13]

parallel composition \P kS Q" and hiding \P=L") with a new form of pre�x

\�:P" representing an exponential time delay. The semantics of the calculus

of IMC derives IMCs from algebraic terms by using the standard CCS/CSP

semantics for action transitions and by essentially using an interleaving se-

mantics for \�" delay pre�xes (this is correct due to the memoryless property

of exponential delays).

The notion of weak bisimulation for IMCs that is presented in [9] essen-

tially matches exponentially timed transitions according to Markovian bisim-

ulation [12] and abstracts from standard � similarly to [14]. Since such an

equivalence is shown to be a congruence for the calculus, it makes it possible

to signi�cantly and eÆciently minimize the state-space of complete systems

by abstracting from process interaction in a compositional way.
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However the high potentiality and the elegance of the approach of [9] is

somehow limited by the fact that the equivalence adopted over action transi-

tions is a �ner variant of Milner's observational congruence that distinguishes

� -divergent \Zeno" processes from non-divergent ones. In particular, similarly

to [8], the additional requirement is introduced that two bisimilar terms must

have the same opportunity to silently become stable terms, i.e. terms that

cannot perform � actions.

In [11] it is claimed that, since the maximal progress assumption generates

a priority mechanism, it is somehow necessary to have such a � -divergence

sensitive equivalence. In particular [11] shows how to adapt the standard

Milner's sound and complete axiomatization of observational congruence for a

basic algebra with pre�x, choice and recursion, when exponential delay pre�xes

are introduced (in such a way that the corresponding operators of the calculus

of IMCs are obtained) and the � -divergence sensitive equivalence of [9] is

considered.

1.2 Simplifying the Notion of Weak Equivalence

In [6] we made a �rst step in the direction of eliminating the condition about

stability from the equivalences of [8,9] in the context of interactive timed

processes. We showed that maximal progress and Milner's standard notion

of observational congruence are indeed compatible: it is possible to obtain a

complete axiomatization for the basic interactive timed algebra of [11] even if

the equivalence considered is not sensible to � divergence.

Moreover, it is worth noting that in [6] we express priority arising from

maximal progress by cutting transitions which cannot be performed directly in

the operational semantics, instead of capturing such priority in the de�nition

of equivalence as done in [9] (a solution also hinted in [10]). This technique

allows us to obtain smaller system models and to further simplify the notion

of equivalence considered in [9].

Unfortunately the results obtained in [6] for the basic interactive timed al-

gebra do not scale to the full calculus of IMC [9]. This because the equivalence,

being it not sensible to � divergence, would not be a congruence for the parallel

operator. The problem with congruence is that, e.g., while �:0 ' recX:�:X,

since the parallel operator behaves in such a way that the presence of a �

action within the actions immediately executable by a process pre-empts the

other process from executing a timed action � (global pre-emption [7]) we have

that �:0 k; �:0 6' recX:�:X k; �:0.
2 This because the semantics of �:0 k; �:0

is that of �:�:0, while the semantics of recX:�:X k; �:0 is that of recX:�:X

(where no � action can be executed). Note that this problem arises both in

the case we capture priority in the notion of equivalence as done in [9] and

in the case we enforce it in the de�nition of the operational semantics of the

2 Here and in the rest of the paper we assume the following operator binding precedence:

pre�x > recursion > parallel composition > choice.
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parallel operator with the technique of [6]. In the following we will suppose

priority to be captured in the semantics of operators and equivalence to be

\neutral" with respect to priority.

Conceptually, the problem above derives from the fact that the parallel

operator deals with the terminated process 0 (and in general with processes

which cannot execute neither � actions nor � actions) as if it let time pass. For

example 0 k; � may execute � and become 0 k; 0. This is obviously in contrast

with the fact that 0 is weakly bisimilar to recX:�:X, which is clearly a process

that does not let time pass (it represents a so-called time deadlock).

1.3 A New Markovian Calculus

As a consequence of the previous discussion, a very clean solution is to consider

as processes which can let time pass only processes which can actually execute

� actions. In this way 0 is interpreted not as a terminated process which may

let time pass, but as a time deadlock. As a consequence the de�nition of

the parallel operator changes. In particular the parallel operator must be

de�ned, similarly as in [8], in such a way that the absence of � actions within

the actions executable by a process (which means that the process cannot

let time pass) pre-empts the other process from executing a timed action

�. Pre-emption caused by the absence of � actions di�ers from pre-emption

caused by the presence of � actions exactly for the class of processes that

were misinterpreted, i.e. processes which cannot execute neither � actions

nor � actions. The new interpretation of such processes (as in [8]) is that,

consistently with weak bisimilarity, either they immediately execute a visible

action or they cause a time deadlock.

Based on this idea, in this paper we will de�ne the new calculus of \Revis-

ited" IMCs (RIMCs). In particular, the di�erence between IMCs and RIMCs

at the transition system level is just in the meaning of states which cannot

execute neither � actions nor � actions: RIMCs do not allow time to elapse

in such states as, instead, IMCs do. Note that, as for IMCs, we can derive a

CTMC from a complete system speci�cation only if the derived RIMC cannot

incur time deadlocks, i.e. states executing in�nite sequences of � transitions

(as for IMCs) or equivalently states with no outgoing transitions (for RIMCs

only).

As already explained, in the calculus we will de�ne the rules for the parallel

operator in such a way that, when we derive an exponentially timed move of

P kS Q from a corresponding move of P we require that also Q may perform

an exponentially timed move, instead of requiring that Q must not perform a

� move. Note that, di�erently from [8], even if we require that Q may perform

an exponentially timed move, we do not actually perform it because of the

memoryless property of exponential delays.

Moreover, w.r.t the calculus of IMCs, in the calculus of RIMCs it is im-

portant (for \modeling convenience" and for the reasons that we will explain
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in Sect. 1.4) to also modify pre�x and choice by considering operators similar

to those of [8]:

� A new pre�x operator ;P which is de�ned: as :P if  is � or �, as

recX:(:P +~�:X), for some ~�, otherwise (where \recX" denotes recursion).

Such a pre�x, which allows visible actions to be delayed as in the calculus of

IMCs (hence is suitable for specifying systems), becomes the unique pre�x

operator in the new calculus, while we will use the \basic" pre�x :P as an

auxiliary operator to be used just for building an axiomatization.

� A new choice operator P �Q which, similarly as for the new parallel operator,

allows one of P and Q to let time pass only if the other one may let time

pass and is de�ned in such a way that delay execution does not resolve

the choice. Such a choice operator, which allows new pre�xes a;P (where

a is a visible action) to be used without causing the delays � preceding

the execution of the a to solve the choice (hence is suitable for specifying

systems), becomes the unique choice operator in the new calculus, while we

will use the \basic" choice P + Q as an auxiliary operator to be used just

for building an axiomatization.

Finally, we also include in the calculus of RIMC a new symbol \1" representing

a terminated process which may let time elapse (as for \0" in the calculus of

IMCs) de�ned as recX:~�:X, for some ~�.

It is worth noting that, from the modeling viewpoint, we can mimic the

behavior of the choice operator of the calculus of IMCs, where �:P + �:Q

represents a choice between P and Q decided by a \race" between the � and

� delays, by means of term �; � ;P � �; � ;Q of the calculus of RIMC.

1.4 A New Notion of Markovian Equivalence

As we will see, the calculus of RIMCs, based on the ideas presented in the

previous section, also allows for a new notion of Markovian bisimulation equiv-

alence which is coarser than the standard one of [12]. The new version of

Markovian equivalence is based on the new idea of \observability" of expo-

nential delays.

As explained in the previous section, the behavior of the new pre�x \;P"

and of the new symbol \1" is de�ned in terms of a generic rate ~� whose

particular value is not important. In particular, ~� is the rate of an exponen-

tially timed transition leading back to the state in which it is executed (a

\seloop"). Such a de�nition is consistent from the probabilistic viewpoint

because the (transient) behavior of a CTMC (hence also its steady state be-

havior), de�ned as the probability of being in a certain state at a certain time,

does not depend on the presence of exponentially timed seloops in states

(hence on the particular values for the rate labeling such seloops). Intu-

itively, as long as we consider the �ring of exponentially timed transitions to

be unobservable as in CTMCs, it is easy to see that the particular values cho-

sen for seloop rates in a state of a RIMC do not change its behavior (hence
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that of derived CTMCs). We distinguish the following two cases. If the state

has other outgoing exponentially timed transitions (which are not seloops)

then, the behavior of the RIMC in the state will be just as if seloops are not

present. This because, in the case a seloop �res before one of the outgoing

exponentially timed transitions causes the RIMC to leave the state, when the

state is re-entered we can consider, thanks to the memoryless property, out-

going exponentially timed transitions to continue from the accomplishment

level they reached before such event. Otherwise, if the state does not have

other outgoing exponentially timed transitions, the RIMC will stay in the

state forever, independently of the particular values of seloop rates.

Even if in principle considering exponential delays as being \unobserv-

able" could be done for every Markovian speci�cation paradigm, to the best

of our knowledge the calculus of RIMCs is the �rst Markovian process alge-

bra to be compatible with unobservable exponential delays. This because,

while all Markovian process algebras previously developed in the literature

(see [12,2,18,9] and the references therein) make use of a \P +Q" choice oper-

ator such that an exponential move of P or Q resolves the choice (hence such

a move is indeed \observed by the operator"), all the operators of the calcu-

lus of RIMCs (excluding the auxiliary ones to be used in the axiomatization)

intuitively do not observe individual exponential �rings, but just the global

time to the occurrence of the next standard � action.

More precisely, supposing exponential delays are unobservable, we can

modify the standard de�nition of Markovian bisimulation equivalence [12] as

follows. Instead of requiring that every bisimulation equivalence class must be

reached with the same aggregated rate by bisimilar terms, we can just require

that this must hold for all equivalence classes apart from the class including

the terms themselves. We will show that the new notion of Markovian bisim-

ulation equivalence, which preserves the behavior of the underlying CTMC

since it just adds insensitivity to rate of seloops, is a congruence for the

calculus of RIMC. On the contrary, such a notion is not a congruence for all

existing Markovian process algebras, due to the presence of the \observing"

choice operator \P +Q".

The notion of observational equivalence that we consider for the calculus

of RIMCs is a combination of standard observational congruence and the new

notion of Markovian bisimulation equivalence above. In spite of the problem

with congruence arising with unobservable delays, the pre�x �:P and choice

\P +Q" operators of the calculus of IMC [9] (which are also part of the basic

interactive timed calculus for which we have developed a complete axioma-

tization of observational congruence in [6]) will play a fundamental role in

building an axiomatization of such an equivalence. In particular we will build

the axiom system by extending the calculus of RIMC with the \observable"

exponential delays of [9], denoted by �o, and by considering standard Marko-

vian bisimulation equivalence over such delays. In this way, by supposing that

� can be an observable delay �o and that \P + Q" only works with delays
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which are observable, we do not break the congruence property.

1.5 Contents of the Paper

In Sect. 2 we de�ne RIMCs and the syntax and semantics of the calculus of

RIMCs which contains the \;P", the \P �Q", the \P kS Q" and the \P=L"

operators and the symbols \1" and \0". Moreover we de�ne observational

congruence over RIMC terms simply as a combination of our \improved"

notion of Markovian bisimulation and the standard notion of observational

congruence of [14] and we show that it is indeed a congruence for the new

calculus.

In Sect. 3 we present a sound axiomatization for our notion of observational

congruence which is complete for strongly guarded �nite-state processes of the

new calculus. Such an axiomatization is built by: (i) introducing transition

systems extending RIMCs with the \observable" exponential delay transitions

used in IMCs, (ii) by consequently extending our notion of observational con-

gruence so that standard Markovian bisimulation [12] is used over \observ-

able" exponential delays, and (iii) by introducing some auxiliary operators:

the pre�x \�:P" (extended to sequences) and the choice \P + Q" operators

of the calculus of IMCs [9]; the new operator \H(P )" which \hides" expo-

nential delays by turning each \observable" �o into an \unobservable" �; the

operator pri(P ) introduced in [6] (where we show it to be necessary also for

axiomatizing unguarded recursion) that eliminates non-prioritized behaviors;

the operators \P bbS Q" and \P jS Q" that are simple variants of the left merge

and synchronization merge operators of [1], and �nally the operator \P / Q"

which is a sort of left merge operator used for axiomatizing choice \P � Q".
We present the semantics of all auxiliary operators and we show that they

preserve the congruence property.

Note that, since, to the best of our knowledge, developing an axiomati-

zation of observational congruence for �nite-state processes with unguarded

recursion in the presence of \static" operators (like e.g. parallel composition)

is an open problem also for standard CCS/CSP, obtaining an axiomatization

for strongly guarded �nite-state processes is the best that can be done with-

out solving such an open problem. On the other hand in [6] we have already

shown how to axiomatize unguarded recursion by means of the pri(P ) oper-

ator for interactive timed processes without static operators (the adaptation

of the axiomatization of [6] to exponential delays is trivial), similarly to what

Milner did for CCS in [16].

2 Calculus of Revisited Interactive Markov Chains

2.1 Revisited Interactive Markov Chains

In the following we present the formal de�nition of Interactive Markovian

Transition System (IMTS). Interactive Markov Chains are IMTSs possessing
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an initial state. Formally, we denote the set of rates by Exp = RI +, ranged

over by �; �. Moreover, we denote the set of standard action types used in

a IMTS by Act , ranged over by �; �0; : : :. As usual Act includes the special

type � denoting internal actions. The set Act �f�g is ranged over by a; b; : : :.

We use ; 0; : : : to range over Act [Exp, i.e. labels of IMTS transitions. The

set of states of an IMTS is denoted by �, ranged over by s; s0; : : :. In the rest

of the paper we will assume the following abbreviations. Let us suppose that

T � (��Labels��) is a transition relation, where Labels is a set of transition

labels, ranged over by l. In the remainder we use s
l

�����! s0 to stand for

(s; l; s0) 2 T ; s
l

�����! to stand for 9s0 2 � : s
l

�����! s0; and s
Set

�����! ,

where Set � Labels, to stand for 9s0 2 �; l 2 Set : s
l

�����! s0. s
l

�����!=

and s
Set

�����!= , where Set � Labels, denote the negations of s
l

�����! and

s
Set

�����! , respectively.

De�nition 2.1 An Interactive Markovian Transition System (IMTS) is a tu-

ple (�;Act ; Te; Ta) with

� � a set of states,

� Act a set of standard actions,

� Te � (�� Exp � �) and Ta � (�� Act � �) two transition relations, con-

taining exponentially timed and action transitions, respectively, such that

8s2�:

s
�

�����! implies s
Exp

�����!=

2.2 Syntax and Semantics of the Calculus of RIMCs

Let Var be a set of process variables ranged over by X; Y; Z. Let ARFun =

f' : Act �! Act j '(�) = � ^ '(Act � f�g) � Act � f�gg be a set of action

relabeling functions, ranged over by '.

De�nition 2.2 We de�ne the language RIMC as the set of terms generated

by the following syntax

P ::= 1 j 0 j X j ;P j P � P j P=L j P ['] j P kS P j recX:P

where L; S � Act � f�g. A RIMC process is a closed term of RIMC . We

denote by RIMCc the set of RIMC processes and by RIMCcg the set of strongly

guarded RIMC processes. 3

\1" denotes a terminated process which allows for the passage of time. \0"

denotes a time deadlock. \;P" is the pre�x operator. Similarly as in [8], if 

is � or a delay � then it is immediately executed, otherwise (it is a visible action

3 We consider � pre�xes as being guards in the de�nition of strong guardedness. Moreover

we consider the notion of strong guardedness to account for relabeling and hiding operators:

e.g. (recX:a:X)=fag is not strongly guarded (see e.g. [3] Appendix A for a precise de�nition).

67



Bravetti

�;P
�

�����! P

P
�

�����! P 0

P �Q
�

�����! P 0

Q
�

�����! Q0

P �Q
�

�����! Q0

P
�

�����! P 0

P kS Q
�

�����! P 0 kS Q
� =2S

Q
�

�����! Q0

P kS Q
�

�����! P kS Q
0
� =2S

P
a

�����! P 0 ^ Q
a

�����! Q0

P kS Q
a

�����! P 0 kS Q
0

a 2 S

P
a

�����! P 0

P=L
�

�����! P 0=L
a 2 L

P
�

�����! P 0

P=L
�

�����! P 0=L
a =2 L

P
�

�����! P 0

P [']
'(�)

�����! P 0[']

PfrecX:P=Xg
�

�����! P 0

recX:P
�

�����! P 0

Table 1

Standard Rules

a) it can be arbitrarily delayed. \P �Q" is the choice operator. Similarly as

in [8], as long as P or Q execute delays � then they just evolve internally and

the choice remains (as if they were in parallel). In particular time is allowed

to advance for one process only if the same holds for the other one. The �rst

between P and Q which executes an action � resolves the choice. \P=L" is the

hiding operator which turns the actions in L into � actions by consequently

cutting alternative delay transitions, \P [']" is the relabeling operator which

relabels visible actions according to '. \P kS Q" is the CSP parallel operator,

where synchronization over actions in S is required and where, similarly as

in [8], time is allowed to advance for one process only if the same holds for

the other one. Finally \recX:P" denotes recursion in the usual way.

The semantics of RIMC terms is de�ned as being the RIMTS (RIMCc;Act ;

Te; Ta), where: Ta is the least subset of RIMCc � Act � RIMCc satisfying the

standard operational rules of Table 1 and Te is obtained from the least multiset

over RIMCc�Exp�RIMCc satisfying the operational rules of Table 2 (similarly

to [12,9], we consider a transition to have aritym if and only if it can be derived

in m possible ways from the operational rules) by summing the rates of the

multiple occurrences of the same transition. As already explained in Sect. 1.4,

any value can be chosen for the rate ~� occurring in Table 2 (di�erent values

give rise to equivalent RIMTSes).
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�;P
�

�����! P a;P
~�

�����! a;P 1
~�

�����! 1

P
�

�����! P 0 ^ Q
Exp
�!

P �Q
�

�����! P 0 �Q

Q
�

�����! Q0 ^ P
Exp
�!

P �Q
�

�����! P �Q0

P
�

�����! P 0 ^ Q
Exp
�!

P kS Q
�

�����! P 0 kS Q

Q
�

�����! Q0 ^ P
Exp
�!

P kS Q
�

�����! P kS Q
0

P
�

�����! P 0 ^ 69a 2 L:P
a

�����!

P=L
�

�����! P 0=L

P
�

�����! P 0

P [']
�

�����! P 0[']

PfrecX:P=Xg
�

�����! P 0

recX:P
�

�����! P 0

Table 2

Rules for Exponentially Timed Moves

2.3 Observational Congruence for RIMCs

As explained in Sect. 1.4, the notion of observational congruence over RIMCs:

(i) deals with exponentially timed choices according to a coarser variant of

Markovian bisimulation [12] which abstracts from seloops, and (ii) abstracts

from standard � actions as in observational congruence [14].

Given a RIMTS (�;Act ; Te; Ta), a state s 2 � and a set of states C � �, in

the following we denote the total rate of exponentially timed transitions from s

to C by TR(s; C) =
P
fj� j 9s0 2 C : s

�

�����! s0 jg. 4 Moreover we use
�

=)
to denote (

�
�! )�

�
�! (

�
�! )�, i.e. a sequence of transitions including a single

� transition and any number of � transitions. We also de�ne
�̂

=) =
�

=) if

� 6= � and
�̂

=) = (
�
�! )�, i.e. a possibly empty sequence of � transitions.

De�nition 2.3 Let (�;Act ; Te; Ta) be a RIMTS. An equivalence relation �

on � is a weak bisimulation i� s1 � s2 implies:

(i) for every � 2 Act and s0
1
2 �,

s1
�
�! s0

1
implies s2

�̂
=) s0

2
for some s0

2
with s0

1
� s0

2

(ii) s1
Exp
�! implies: s2

�̂
=) s0

2
for some s0

2
such that s0

2

Exp
�! and

for every C 2 �=� with C 6= [s1]�,

TR(s1; C) = TR(s0
2
; C) 5

4 We use \fj" and \jg" as brackets for multisets. Moreover we assume summation over the

empty multiset to yield 0.
5 We use \�=�" to denote the set of the equivalence classes of � de�ned over �.
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s1; s2 2 � are weakly bisimilar, denoted by s1 � s2, i� (s1; s2) is included in

some weak bisimulation.

Note that for a state s0
2
satisfying condition (ii) it must be that s1 � s0

2

(otherwise it would not be possible that s1 � s2 since s1
Exp
�! implies that

s1
�

6�! ), hence [s1]� = [s0
2
]�, i.e. for both s1 and s0

2
we do not consider expo-

nential transitions leading to their own equivalence class. Moreover note that,

as shown in [11], trying to \weaken" any further the notion of weak bisimu-

lation above, e.g. by allowing � transitions to be executed after exponential

delays to reach an equivalence class, does not generate a coarser notion of

equivalence.

De�nition 2.4 Let (�;Act ; Te; Ta) be a RIMTS. An equivalence relation �

on � is an observational bisimulation i� s1 � s2 implies:

(i) for every � 2 Act and s0
1
2 �,

s1
�
�! s0

1
implies s2

�
=) s0

2
for some s0

2
with s0

1
� s0

2

(ii) s1
Exp
�! implies: s2

Exp
�! and

for every C 2 �=� with C 6= [s1]�,

TR(s1; C) = TR(s2; C)

s1; s2 2 � are observationally congruent, denoted by s1 ' s2, i� (s1; s2) is

included in some observational bisimulation.

Note that, since [s1]� = [s2]�, again, in condition (ii) for both s1 and s2 we

do not consider exponential transitions leading to their own equivalence class.

We consider ' as being de�ned also on the open terms of RIMC by ex-

tending observational congruence with the standard approach of [14].

Theorem 2.5 ' is a congruence for the calculus of RIMCs w.r.t. all its

operators, including recursion.

Proof. Let us start from the choice operator \P �Q". It suÆces to show that

� = f(P1�Q;P2�Q) j P1; P2; Q 2 RIMC c^P1 ' P2g[IDRIMC c (where IDRIMC c

is the identity relation over RIMC c) is an observational bisimulation. Given

(R1; R2) 2 �, either (R1; R2) 2 IDRIMC c and the proof is trivial, or R1 � P1�Q
and R2 � P1 �Q for some P1; P2 and Q. In the latter case:

� If P1 � Q perfoms a standard action � then P2 � Q may perform a corre-

sponding move by resorting to standard machinery [14].

� If P1 �Q
Exp
�! then P1

Exp
�! and Q

Exp
�! . Since P1 ' P2, we have P2

Exp
�!

and for every C 2 RIMC c= ' with C 6= [P1]', TR(P1; C) = TR(P2; C).

Therefore P2 � Q
Exp
�! and for every C 2 RIMC c=� with C 6= [P1 � Q]�,

we have:

� either C = fRg for some term R whose outermost operator is not \�"
and TR(P1 �Q;C) = TR(P2 �Q;C) = 0,
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� or there exists C 0 2 RIMC c= ' and Q0 2 RIMC c such that C = fP �Q0 j
P 2 C 0g. In this case:

if C 0 6= [P1]' and Q = Q0 then TR(P1�Q;C) = TR(P1; C
0) = TR(P2; C

0)

= TR(P2 �Q;C);
if C 0 = [P1]' and Q 6= Q0 then TR(P1 �Q;C) = TR(Q; fQ0g) = TR(P2 �
Q;C);

if C 0 6= [P1]' and Q 6= Q0 then TR(P1 �Q;C) = 0 = TR(P2 �Q;C);

As far as the parallel operator \P kS Q" is concerned, we preliminarily show

that \P kS Q" is a congruence w.r.t. weak bisimulation, i.e. that, for a given

set S, � = f(P1 kS Q;P2 kS Q) j P1; P2; Q 2 RIMC c ^ P1 ' P2g [ IDRIMC c
is

a weak bisimulation. Given (R1; R2) 2 �, either (R1; R2) 2 IDRIMC c
and the

proof is trivial, or R1 � P1 kS Q and R2 � P1 kS Q for some P1; P2 and Q. In

the latter case:

� If P1 kS Q perfoms a standard action � then P2 kS Q may perform a corre-

sponding move by resorting to standard machinery [14].

� If P1 kS Q
Exp
�! then P1

Exp
�! and Q

Exp
�! . Since P1 � P2, we have P2

�̂
=) P 0

2

and P 0
2

Exp
�! and for every C 2 RIMC c= � with C 6= [P1]�, TR(P1; C) =

TR(P2; C). Therefore P2 kS Q
�̂

=) P 0
2
kS Q and P 0

2
kS Q

Exp
�! and for every

C 2 RIMC c=� with C 6= [P1 kS Q]�, we have:

� either C = fRg for some term R whose outermost operator is not \kS"
and TR(P1 kS Q;C) = TR(P2 kS Q;C) = 0,

� or there exists C 0 2 RIMC c= � and Q0 2 RIMC c such that C = fP kS Q
0 j

P 2 C 0g. In this case:

if C 0 6= [P1]� and Q = Q0 then TR(P1 kS Q;C) = TR(P1; C
0) = TR(P 0

2
;

C 0) = TR(P 0
2
kS Q;C);

if C 0 = [P1]� and Q 6= Q0 then TR(P1 kS Q;C) = TR(Q; fQ0g) =

TR(P 0
2
kS Q;C);

if C 0 6= [P1]� and Q 6= Q0 then TR(P1 kS Q;C) = 0 = TR(P 0
2
kS Q;C);

Now it suÆces to show that, for a given set S, � = f(P1 kS Q;P2 kS Q) j
P1; P2; Q 2 RIMC c ^ P1 ' P2g [ IDRIMC c is an observational bisimulation.

The proof of this fact is identical to the proof above for weak bisimulation (with

\'" replacing \�"), apart from the case of a standard action � performed by

P1 kS Q. In paricular, we derive P 0
1
kS Q � P 0

2
kS Q, where P

0
1
and P 0

2
are the

terms reached by P1 and P2 respectively, from P 0
1
� P 0

2
by exploiting the result

above about congruence of weak bisimulation w.r.t. parallel.

As far as the hiding operator \P=L" is concerned, we preliminarily show

that \P=L" is a congruence w.r.t. weak bisimulation, i.e. that, for a given

set L, � = f(P1=L; P2=L) j P1; P2 2 RIMC c ^ P1 ' P2g [ IDRIMC c is a weak

bisimulation. Given (R1; R2) 2 �, either (R1; R2) 2 IDRIMC c
and the proof is

trivial, or R1 � P1=L and R2 � P1=L for some P1; P2. In the latter case:

� If P1=L perfoms a standard action � then P2=L may perform a corresponding

move by resorting to standard machinery [14].
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� If P1=L
Exp
�! then P1

Exp
�! and 69a 2 L : P1

a
�! . Since P1 � P2, we have

P2

�̂
=) P 0

2
and P 0

2

Exp
�! and for every C 2 RIMC c= � with C 6= [P1]�,

TR(P1; C) = TR(P2; C). Therefore P2=L
�̂

=) P 0
2
=L and (since P 0

2
� P1,

hence 6 9a 2 L : P 0
2

a
�! ) P 0

2
=L

Exp
�! and for every C 2 RIMC c=� with

C 6= [P1=L]�, we have:

� either C = fRg for some term R whose outermost operator is not \=L"

and TR(P1=L; C) = TR(P2=L; C) = 0,

� or there exists C 0 2 RIMC c= �, with C 0 6= [P1]�, such that C = fP=L j
P 2 C 0g. In this case TR(P1=L; C) = TR(P1; C

0) = TR(P 0
2
; C 0) =

TR(P 0
2
=L; C).

Now it suÆces to show that, for a given set L, � = f(P1=L; P2=L) j P1; P2 2
RIMC c ^ P1 ' P2g [ IDRIMC c is an observational bisimulation. The proof

of this fact is identical to the proof above for weak bisimulation (with \'"
replacing \�"), apart from the case of a standard action � performed by P1=L.

In paricular, we derive P 0
1
=L � P 0

2
=L, where P 0

1
and P 0

2
are the terms reached

by P1 and P2 respectively, from P 0
1
� P 0

2
by exploiting the result above about

congruence of weak bisimulation w.r.t. hiding.

The proof of congruence w.r.t. pre�x \;P" and relabeling \P [']" is triv-

ial.

As far as recursion \recX:P" is concerned, we apply the technique we intro-

duced in [4]. We have to show that, for all P1; P2 2 RIMC c containing at most

the variable X free, we have that P1 ' P2 implies recX:P1 ' recX:P2. We

do this by showing that the relation � = f(QfrecX:P1=Xg; QfrecX:P2=Xg) j
Q 2 RIMC cg is such that, given � 0 = � [ ��1, whenever R1 � R2 we have:

(i) for every � 2 Act and R0
1
2 RIMC c,

R1

�
�! R0

1
implies R2

�
=) R0

2
for some R0

2
with R0

1
� [� R0

2

(ii) R1

Exp
�! implies: R2

Exp
�! and

for every C 2 RIMC c=(' [� 0)+ with C 6= [R1]('[�0)+,

TR(R1; C) = TR(R2; C)

In particular we induce on the maximum depth of the inference of the tran-

sitions leaving term R1 and we show TR(R1; C) � TR(R2; C) only. The

converse is obtained by a symmetrical argument on the moves of R2. In such

an induction, the only signi�cant novelty w.r.t. the proof of [4] is the exclu-

sion of seloops when evaluating total rates. However such an exclusion is

\compatible" with the proof because when an equivalence class C considered at

maximum depth d is expressed in terms of the corresponding ones Ci; i 2 I

considered at maximum depth d � 1, we have that if C does not constitute a

seloop none of the classes Ci; i 2 I constitutes a seloop. Intuitively a recur-

sion recX:P cannot unfold a seloop already present in P (thus making the

total rate of the seloop \observable"). Note that from the statement above it

is immediate to conclude that (� [� 0)+ is a weak bisimulation and, then, that

(' [� 0)+ is an observational bisimulation. Therefore, by taking Q � X in �,
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we are done. 2

3 Axiomatizing Revisited Interactive Markov Chains

In this section we present an axiom system which is complete for ' on strongly

guarded �nite-state RIMC processes.

In order to build the axiomatization we need to extend RIMTSes and our

notion of observational equivalence with the \observable" exponential delays

of [9] and to introduce some auxiliary operators. Formally, we denote the set

of rates of observable delays by Expo = RI +, ranged over by �o; �o; : : :. We use

�; �0; : : : to range over Act [ Exp [ Expo. Moreover we use !; !0; : : : to range

over (Act[Exp[Expo)+, i.e. non-empty �nite sequences over Act[Exp[Expo,
and �; �0; : : : to range over (Exp)+.

De�nition 3.1 An Extended Interactive Markovian Transition System

(EIMTS) is a tuple (�;Act ; To; Te; Ta) with

� � a set of states,

� Act a set of standard actions,

� To � (� � Expo � �), Te � (� � Exp � �), and Ta � (� � Act � �)

three transition relations, containing observable exponentially timed, unob-

servable exponentially timed, and action transitions, respectively, such that

8 s 2 �:

(i) s
Expo

�����! implies s
Exp

�����!= (or equivalently s
Exp

�����! implies s
Expo

�����!= )

(ii) s
�
�! implies: s

Expo

�����!= and s
Exp

�����!=

Now we formally introduce the auxiliary operators needed to build the ax-

iomatization, whose semantics is presented in Table 3. The operators \!:P"

and \P+Q" are those of the calculus of IMCs [9] (apart from extension of pre-

�x to sequences); in particular \P +Q" works on observable delays only. The

new operator \H(P )", which \hides" exponential delays by turning \observ-

able" �o immediately executable by P into \unobservable" � (and \restricts"

unobservable delays previously executable by P ), will play a fundamental role

in the axiomatization. In particular it will allow us to express the operators of

the calculus of RIMCs in terms of the pre�x and choice operators of the cal-

culus of IMCs [9]. The operators \P bbS Q" and \P jS Q" are simple variants

of the left merge and synchronization merge operators of [1], while \P /Q" is

a sort of left merge operator used for axiomatizing choice \P �Q". Note that
\P bbS Q" and \P / Q" are de�ned in such a way that: (i) since they have to

be used as arguments of a \P +Q" operator, they require delays immediately

executable (by P ) to be observable; and (ii) they can execute exponential

delays of P also in the case Q can execute � transitions (and, e.g., not de-

lay transitions), so that the axioms (LC3) and (LM4) of Table 1 are sound.

Moreover, the de�nition of the operational rule for \P jS Q" allows for actions
\�" to be skipped so to get a congruence [1]. Finally, the operator \pri(P )",
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(�!):P
�

�����! !:P �:P
�

�����! P

P
�

�����! P 0

P +Q
�

�����! P 0

Q
�

�����! Q0

P +Q
�

�����! Q0

P
�o

�����! P 0 ^ Q
�

6�!

P +Q
�o

�����! P 0

Q
�o

�����! Q0 ^ P
�

6�!

P +Q
�o

�����! Q0

P
�

�����! P 0

H(P )
�

�����! P 0

P
�o

�����! P 0

H(P )
�

�����! P 0

P
�

�����! P 0

P / Q
�

�����! P 0

P
�o

�����! P 0 ^ (Q
Exp
�! _Q

�
�! )

P / Q
�o

�����! P 0 �Q

P
�

�����! P 0

P bbS Q
�

�����! P 0 kS Q
� =2S

P
�o

�����! P 0 ^ (Q
Exp
�! _Q

�
�! )

P bbS Q
�o

�����! P 0 kS Q

P
a

=) P 0 ^ Q
a

=) Q0

P jS Q
a

�����! P 0 kS Q
0
a 2 S

P
�

�����! P 0

pri(P )
�

�����! P 0

Table 3

Rules for Auxiliary Operators

which we introduced in [6] for axiomatizing unguarded recursion, eliminates

non-prioritized behaviors (those immediately starting in P with an observable

or unobservable exponential delay). Such an operator will play a important

role in the axiomatization of parallel composition and choice \P �Q" in that it

allows us to check for the absence of executable exponential delays (see axioms

(LC4) and (LM5) of Table 1).

We de�ne the language EIMC to be the set of terms obtained by extending

the calculus of RIMCs with the auxiliary operators above (we denote the set

of closed EIMC terms by EIMCc). Moreover we de�ne the semantics of EIMC

terms to be the EIMTS (EIMCc;Act ; To; Te; Ta) obtained from the operational

rules of Table 1, Table 2 and Table 3 plus an additional rule for both the hiding

\P=L" and the relabeling \P [']" operators which is obtained from that of

Table 2 by replacing �o transitions for � transitions. Note that \P=L" and

\P [']" are conservatively extended.

The notions of weak bisimulation and observational congruence for EIMC

are conservative extensions of those for RIMC. In the following, we denote

the total rate of observable exponentially timed transitions from s to I by

TRo(s; I), which is de�ned similarly as for \unobservable" delays.
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De�nition 3.2 Let (�;Act ; To; Te; Ta) be an EIMTS. An equivalence rela-

tion � on � is a weak bisimulation i� s1 � s2 implies: the 2 conditions of

De�nition 2.3 and the additional condition

(iii) s1
Expo

�! implies: s2
�̂

=) s0
2
for some s0

2
such that s0

2

Expo

�! and

for every C 2 �=�, TRo(s1; C) = TRo(s0
2
; C)

s1; s2 2 � are weakly bisimilar, denoted by s1 � s2, i� (s1; s2) is included in

some weak bisimulation.

De�nition 3.3 Let (�;Act ; To; Te; Ta) be an EIMTS. An equivalence relation

� on � is an observational bisimulation i� s1 � s2 implies: the 2 conditions of

De�nition 2.4 and the additional condition

(iii) s1
Expo

�! implies: s2
Expo

�! and

for every C 2 �=�, TRo(s1; C) = TRo(s2; C)

s1; s2 2 � are observationally congruent, denoted by s1 ' s2, i� (s1; s2) is

included in some observational bisimulation.

The extension of the calculus of RIMCs preserves the congruence property.

Theorem 3.4 ' is a congruence for the calculus of EIMCs w.r.t. all its

operators, including recursion.

Proof. Given P ' Q, for each operator \op" it just suÆcies to show that the

(symmetric and transitive closure of the) relation obtained by adding (op(P );

op(Q)) to ' is an observational bisimulation, by exploiting the congruence

property of observational congruence w.r.t. both parallel \kS" and choice \�",
and the congruence property of weak bisimulation w.r.t. parallel \kS". Note

that for obtaining congruence w.r.t. the operator \/" it is essential that in item

3 of De�nition 3.3 we consider equivalence classes w.r.t. relation � instead of

just considering relation �. 2

We are now in a position to present the axiom system AEIMC for ' on

EIMC terms, which is formed by the axioms presented in Fig. 1. The axioms

(Ter) � (SM6), with the help of axioms (Pri1); (Pri2); (A4) and (Rec1) �
(Rec3), are used to transform RIMC cg processes into normal form.

De�nition 3.5 A process P 2 RIMC c is in normal form if it is either of the

form \H(
P

i2I �i:Pi)"
6 or \recX:H(

P
i2I �i:Pi)" or \X", where:

� for each i2I, �i2Exp
o[Act ,

� if there exists i2I such that �i = � then there is no i2I such that �i2Exp
o,

� for each i2I, Pi is again in normal form and satis�es the following condition:

if �i2Exp
o then, supposing that the transitions leaving Pi and corresponding

derivative terms are described in the normal form by means of �0j and P 0
j,

with j2 I 0, we must have that f(�j; Pj) j j2 I�figg � f(�0j; P
0
j) j j2 I

0g (i.e.

exponential delay transitions preserve alternative behaviors).

6 We assume
P

i2I
�i:Pi to be \0" when I = ;.
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(A1) P +Q = Q+ P (A2) (P +Q) +R = P + (Q+R)

(A3) �:P + �:P = �:P (A4) H(P + 0) = H(P )

(Seq) �:!:P = (�!):P

(Tau1) (��):H(�:P ) = (��):P

(Tau2) H(P + �:H(P ) +Q) = H(�:H(P ) +Q)

(Tau3) �:H(P + �:Q) + �:Q = �:H(P + �:Q)

(ExpT1) �o:P + �o:P = (�o + �o):P (ExpT2) H(�o:P ) = �:P

(MProg) �:P + �o:Q = �:P

(Pri1) pri(�:P ) = �:P (Pri2) pri(P +Q) = pri (P ) + pri(Q)

(Ter) 1 = recX:H(�o:X)

(Dead) 0 = H(0)

(Pre1) a;P = recX:H(a:P + �o:X) (Pre2) � ;P = H(�:P )

(Pre3) �;P = H(�o:P )

(Hi1) H(P )=L = H(P=L) (Hi2) 0=L = 0

(Hi3) (�:P )=L = �:(P=L) � =2 L (Hi4) (a:P )=L = �:(P=L) a 2 L

(Hi5) (P +Q)=L = P=L+Q=L

(Rel1) H(P )['] = H(P [']) (Rel2) 0['] = 0

(Rel3) (�:P )['] = '(�):(P [']) (Rel4) (�:P )['] = �:(P ['])

(Rel5) (P +Q)['] = P ['] +Q[']

(Ch) H(P ) � H(Q) = H(P /H(Q) +Q /H(P ))

(LC1) 0 / P = 0

(LC2) (�:P ) / Q = �:P

(LC3) (�o:P ) /H(�o:Q+R) = �o:(P � H(�o:Q+R))

(LC4) (�o:P ) /H(pri(Q)) = 0

(LC5) (P +Q) / R = P / R+Q / R

(Par) H(P ) kS H(Q) = H(P bbS H(Q) +Q bbS H(P ) + P jS Q)

(LM1) 0 bbS P = 0

(LM2) (a:P ) bbS Q = 0 a 2 S

(LM3) (�:P ) bbS Q = �:(P kS Q) � =2 S

(LM4) (�o:P ) bbS H(�o:Q+R) = �o:(P kS H(�o:Q+R))

(LM5) (�o:P ) bbS H(pri(Q)) = 0

(LM6) (P +Q) bbS R = P bbS R+Q bbS R

(SM1) P jS Q = Q jS P

(SM2) 0 jS P = 0

(SM3) (�:P ) jS(�
0:Q) = 0 (� =2 S _ � 6= �0) ^ � =2 f�; �0g

(SM4) (�:P ) jS Q = P jS Q

(SM5) (a:P ) jS(a:Q) = a:(P kS Q) a 2 S

(SM6) (P +Q) jS R = P jS R+Q jS R

(Rec1) recX:P = recY:(PfY=Xg) provided that Y is not free in recX:P

(Rec2) recX:P = PfrecX:P=Xg

(Rec3) P = QfP=Xg implies P = recX:Q if X is serial and strongly guarded in Q

(ExpRec) recX:H(�o:X + �o:P +Q) = recX:H(�o:P +Q)

Fig. 1. Axiomatization for RIMC
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The standard axioms (A1)� (A4); (Tau1)� (Tau3) and (Rec1)� (Rec3)

(the slight variation of the axiom (Tau1) w.r.t. the standard one reects the

fact that our notion of observational congruence requires an action transition,

as opposed to a delay transition, to be performed before weak bisimulation

is considered) plus the axiom (Seq), which allows a sequence of pre�xes to

be \merged" into a single pre�x so that (Tau1) can be applied, the axiom

(ExpT1), which captures additivity of exponential delays, the axiom (ExpT2),

which allows \H(�o:P )" states to be expressed by \�:P" so that axiom (Tau1)

can be applied, the axiom (MProg), which captures the maximal progress

assumption, and the totally new axiom (ExpRec) which captures the insen-

sitivity to seloops of exponential delays, are used to equate normal forms

which are equivalent according to '. In particular note that axiom (Tau1)

is suÆcient to get completeness over normal forms because delay transitions

preserve alternative behaviors. Concerning axiom (Rec3), we de�ne X to be

serial in a term if each free occurrence of X in that term is in the scope of

�:P , P +Q, H(P ) and recX:P only. Moreover we assume the standard de�-

nition of [14] for strong guardedness of serial variables (� and �o pre�xes are

considered as being guards) and of terms in normal form.

Theorem 3.6 The axioms of AEIMC are sound for ' over EIMC terms.

Proof. For each pair of equated terms it is suÆcient to show that there exists

an observational bisimulation which includes such a pair. 2

Lemma 3.7 If a process P 2 RIMC cg is �nite state, then 9P 0 2 EIMC c :

AEIMC ` P = P 0 with P 0 strongly guarded term in normal form.

Proof. Let P1 : : : Pn be the states of the RIMC derived from the semantics of

P , Pn � P . Since P is strongly guarded, each state Pi of the semantics of P

is �nitely branching. It can be easily seen that (thanks to an inductive usage

of axioms (Ter) � (SM6), with the help of axioms (Pri1); (Pri2); (A4) and

(Rec1) � (Rec2), on the syntactic structure of states) for each i 2 f1 : : : ng,
there exist mi 2 NI , f�ijgj�mi

, fkijgj�mi
s.t. AEIMC ` Pi = H(

P
j�mi

�ij:Pkij
)

where:

� for each j � mi, �
i
j2Exp

o[Act,

� if there exists j � mi such that �ij = � then there is no j � mi such that

�ij2Exp
o,

� for each j � mi, Pkij
satis�es the following condition: if �ij 2 Expo then,

f(�ij0; Pki
j0
) j j 0 � mi ^ j 0 6= jg � f(�

kij
j0 ; P

k
ki
j

j0

) j j 0 � mkij
g (i.e. exponential

delay transitions preserve alternative behaviors).

Hence we can characterize the behavior of P by means of a set of equations

similarly to [15]. Moreover, similarly to the unique solution of equations theo-

rem of [15], we have that there is a (strongly guarded) term P in normal form

such that AEIMC ` P = Pn � P . This can be shown as follows. For each i,
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from 1 to n, we do the following. If i is such that 9j � mi : k
i
j = i we have,

by applying (Rec3), that Pi = recX:H(
P

j�mi:k
i
j
6=i �

i
j:Pkij

+
P

j�mi:k
i
j
=i �

i
j:X).

Then we replace each subterm Pi occurring in the equations for Pi+1 : : : Pn

with its equivalent term. When, in the equation for Pn � P , we have replaced

Pn�1, we are done. 2

Lemma 3.8 If P;Q 2 EIMC c are strongly guarded terms in normal form

such that P ' Q then AEIMC ` P = Q

Proof. The proof is carried out similary to [6] and [9] by using the standard

technique based on \guarded equation sets" [16]. In particular, when apply-

ing such a technique, we take \standard guarded equation sets" to be guarded

equation sets whose structure follows exactly our de�nition of normal forms

for terms. Given that, it is quite simple to verify that each strongly guarded

term in normal form satis�es some standard guarded equation set and that,

by using axioms (A1) � (A4), (Seq), (Tau1) � (Tau3), (ExpT1); (ExpT2),

(MProg), (Rec1) � (Rec3) and (ExpRec), it is possible to build a common

standard guarded equation set which is satis�ed by both P and Q, thus obtain-

ing AEIMC ` P = Q (see the explanation above of the role of these axioms in

proving equality of equivalent normal forms). 2

Theorem 3.9 AEIMC is complete for ' over �nite state processes of RIMC cg.

Proof. A direct consequence of Lemmas 3.7 and 3.8 2

4 Conclusion

We would like to observe that our � -divergence insensitive notion of observa-

tional congruence (simpli�ed so that \ticks" replace exponential delays) is a

congruence also for the timed algebra of [8] and in this context a much sim-

pler and suitably varied version of the axiom system that we have presented

(where the operator \H(P )" is not used and delays synchronize instead of be-

ing interleaved) can be used to obtain an axiomatization that is complete over

strongly guarded �nite-state processes. Moreover we believe that the same

\transformation" we performed on the calculus of IMC [9] can be applied also

to other interactive timed calculi, as, e.g., the calculus of IWMC (see [3] Chap-

ter 4) and the calculus of IGSMP (see [5] or [3] Chapters 6 and 7) which are

basically extensions of the calculus of IMC [9] with probabilistic choices and

generally distributed delays.
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Abstract

We present a new approach to the modelling of time constrained systems. It is

based on untimed high-level Petri nets using the concept of causal time. With this

concept, the progression of time is modelled in the system by the occurrence of a

distinguished event, tick , which serves as a reference to the rest of the system. In

order to validate this approach as suitable for automated veri�cation, a case study

is provided and the results obtained using a model-checker on high-level Petri nets

are compared with those obtained for timed automata using prominent tools. The

comparison is encouraging and shows that the causal time approach is intuitive and

modular. It also potentially allows for e�cient veri�cation.

1 Introduction

This paper presents a case study in modelling and veri�cation of systems with

time constraints. We use an original approach based on untimed high-level

Petri nets, using a concept of so called causal time [17], inspired by [5,18].

This widely di�ers from the classical approaches where time is introduced in

Petri nets in terms of intervals or durations labelling nets elements, as in time

or timed Petri nets (see [4] for a survey and a comparison of the di�erent

approaches), referring to a progression of time external to the system. The

main characteristic of the causal time approach is that the progression of time

is modelled in the system by a distinguished event, called tick . Thus, the

occurrences of the other events may depend on the occurrences of tick . The

time constraints of the kind �at most� or �at least 5 ticks between events t

and t0 � are realized by counting the appropriate number of ticks between the

1
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occurrences of t and t0. So, the occurrence of t0 is causally dependent on those

of tick and may only occur if the time constraint is satis�ed. The modelled

system and the counter of ticks are both represented by high-level Petri nets

interacting with each other.

We use a model of high-level Petri nets provided with a structure of pro-

cess algebra, the algebra of M-nets [2], in which Petri nets can be composed

together with operators like sequential and parallel composition. The model

also allows for synchronous communication, as in CCS [16]. In this context,

introducing causal time amounts to consider a net expressing a tick counter

being able to interact with the system and to produce the required number of

ticks between occurrences of transitions (as proposed for instance in [12]).

The main goal of this paper is to show that the causal time approach in

this context allows one to model systems in an intuitive and modular way,

with the potentiality of e�cient veri�cation. For this purpose, we present

a comparative case study concerning the railroad crossing problem and give

its speci�cation in terms of timed automata as well as in terms of high-level

nets with causal time. Various versions of the speci�cation having di�erent

properties (for instance the absence or presence of deadlocks) are then veri�ed

using model-checkers Kronos [20] and Uppaal [13] for the timed automata,

and MARIA [15] for the high-level Petri nets. The results obtained are very

promising since in many cases, the causal time approach allows for a more

e�cient veri�cation. At the end of the paper, we discuss the current limitations

concerning the approach and the tools, and we point out some ways which can

lead to signi�cant improvements.

Throughout the paper, we assume that the reader has basic knowledge

about timed automata [1,9] and coloured Petri nets [10,2].

2 Railroad crossing system (RC)

The railroad crossing system is composed of nt trains (each of them moving

on its own track) and of a pair of gates which prevent cars from crossing the

tracks when a train is present.

The trains move independently and, initially, none is present. Each train

starts far from the railroad crossing; it triggers a signal app when it approaches

close enough to the gates. From this point, it reaches the gates in at least am
and at most aM time units. Then, it passes inside the gates during at least em
and at most eM time units and �nally leaves the gates triggering a signal exit .

The gates are initially open. They close in at least gm and at most gM time

units after receiving a signal down. They require the same delay for opening

after receiving a signal up. It may happen that the gates receive the signal

down when they are already going up; in this case also, the time needed in

order to close is in the same boundaries.

A controller receives the signals from the trains and reacts by sending

signals to the gates in at least cm and at most cM time units. It must ensure
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the safety property which states that if a train is present at the crossing, then

the gates must be closed.

The purpose of this paper is to show the usability of the causal time ap-

proach and to compare its performances with timed automata. This, we will

use a simpli�ed speci�cation of the railroad crossing problem. For instance,

we do not verify the availability property (gates are open as much as possible).

3 A modelling of RC with timed automata

We consider here a version of timed automata [1] which allows, in particular,

for state invariants [9], integer variables (in addition to clocks which take real

values) and binary synchronisations. A state invariant is a condition involving

clocks and variables which must be true while the automaton stays in this

state. Invariants are often used to express deadlines, for instance, c � max c
labelling a state s means that the maximal value of the clock c in s is max c.

A transition label contains three parts separated by bars: a condition called a

guard, a communication action (such as act ! or act?, expressing respectively

a sending and a receiving on a canal act) and an expression specifying the

clocks to be reset and the integer variables to be modi�ed. For instance,

c � minc j act ! j c := 0;n := n+ 1

indicates that the transition is possible if c is greater than minc; if it oc-

curs, signal act ! is sent, clock c is reset and the variable n is incremented.

Timed automata may be composed using synchronised product inducing the

synchronisation of complementary actions (like act ! and act?).

It is easy to give a modelling of RC with timed automata. The variant

presented here is depicted in �gure 1. A train is modelled by the automaton

Train and the gates by the automaton Gate. The link between trains and

gates is obtained by the automaton Controller . The complete speci�cation is

the synchronised product of Gate, Controller and nt copies of the automaton

Train.

Initially, the controller is idle, and the variable n is set to 0, the gates are

open and all the trains are far from them. If a train approaches, the controller

receives a signal app and reacts sending down to the gates and incrementing

n. When a train leaves the crossing, it sends exit to the controller which

decrements n. If it was equal to 1, then, up is sent to the gates, otherwise, no

special reaction is needed.

One may notice that when the controller is in state AppDown it cannot

receive any signal (app or exit) and delays their reception until it reaches the

state Idle. This is unrealistic since trains cannot be stopped; however, we

preferred to use this simpli�ed version since our goal is more a comparison

than a complete case study.

The tools used for this work are Kronos [20] and Uppaal [13] because they

have the reputation to o�er e�cient veri�cation. Deadlock freeness and safety
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.

.
Far

t�aM

Before

t�eM

Inside

�japp!jt:=0

t�amj�jt:=0

t�emjexit!j�

Train : clock t
.

.
Open

g�gM

GoDown

Closed

g�gM

GoUp

�jdown?jg:=0

g�gmj�j�

�jup?jg:=0

g�gmj�j� �jdown?jg:=0

�jdown?j�

�jdown?j�

Gate : clock g

.

.

Idle

c�cM AppDown

c�cM ExitUp

�japp?jc:=0 c�cmjdown!jn:=n+1

n=1jexit?jc:=0

c�cmjup!jn:=0n>1jexit?jn:=n�1

Controller : clock c; int n := 0

Fig. 1. The timed automata Train , Gate and Controller . The initial states are

depicted with bold circles.

properties may be expressed through temporal logic formulas; for instance,

with Uppaal, we have:

82(:deadlock) ^ ((Train1:Inside _ � � � _ Trainnt:Inside) ) Gate:Closed) :

The automata presented above are directly usable with Uppaal; a non-

trivial translation is necessary in order to adapt them for Kronos. Indeed,

this tool uses a lower-level model without integer variables and with multi-way

synchronisation. So, the automata used for Kronos are much more complicated

than those presented above but they are functionally equivalent. Notice also

that while Uppaal have a very nice user-friendly interface, Kronos is much

more a low-level tool.

4 Composable high-level Petri nets with causal time

In this paper, we use modular high-level Petri nets, called M-nets [2], which

are well suited for specifying large concurrent systems. As usual for high-level

nets, their places, transitions and arcs are annotated in a speci�c way. In

the simplest case each place has a type which is the set of values (tokens) it

can hold; each arc is labelled by a multi-set of expressions (the simplest ones
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being just values or variables); and each transition carries a guard which is a

boolean expression playing the role of an execution condition.

An example of such a marked high-level net is shown in �gure 2. This net

may evolve by �ring transitions. During the execution, the variables in the

guards and in the arc annotations are bounded to values. A transition may

�re if its guard is true and if the arcs carry only tokens belonging to the types

of adjacent places. A possible execution of the net of �gure 2 starts by �ring

t1, which consumes the token � from its unique input place and produces a

new marking composed of a token � and a token 0, each in the corresponding

output place of t1. Then, the transition t is the only enabled because of the

guard of t2 which is false for the binding associating z to 0, denoted fz 7! 0g.

The �ring of t with the binding fx 7! 0g consumes 0 and produces 1 instead.

One more �ring of t is possible producing the marking 2 in its output place.

Then, t2 becomes enabled with the binding fz 7! 2g and its �ring consumes

tokens � and 2 from its input places and produces � in the output place. With

this marking, the net may not evolve anymore.

.

.

�f�g t1

true

�

f�g

�
t2

z=2

�
f�g

�

f0;1;2g

0

t x<2

x x+1

z

Fig. 2. A high-level Petri net.

The behaviour of an initially marked high-level Petri net may be described

by a reachability graph whose nodes are the reachable markings and whose

arcs correspond to the bounded transitions allowing to produce one marking

from another. The set of all paths (starting from the initial marking) in

this graph corresponds to an interleaving semantics of the Petri net. Several

concurrent semantics may be considered, including step [7] or partial order

semantics [14,6], however they are not considered in this paper.

These high-level nets may be composed in parallel by simply putting the

nets side by side. They may also by synchronised (using the operation called

scoping) in order to enforce all synchronous communications between transi-

tions. For this purpose, we consider for the high-level nets used in this paper

an labelling on transitions allowing for synchronisations. Some examples of

such extended initially marked nets are given in �gure 4. Their transitions are

decorated by additional labels (the guards being as before) which are multi-

sets of CCS-like communication actions (possibly with arguments which are

variables or constants) as, for instance, app, down, clock(x; a; b) ordapp,[down,
[clock(z; 2; c).
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Notice that the following are always omitted in the �gures: empty transi-

tion labels; guards which are always satis�ed; arcs inscriptions and place types

of the form f�g.

The parallel composition of nets NGa, NTr, NCo and NCl is ParSys =

NGakNTrkNCokNCl represented in �gure 4. The scoping (which is a synchro-

nisation followed by a restriction) is illustrated in �gure 3; it is applied to a

fragment of the net ParSys with transitions t1, t0 and t4 coming from nets

NGa, NCl, and NTr, respectively. The synchronisation of ParSys w.r.t. action

clock yields new transitions: t10 (gluing t1 and t0) and t04 (gluing t0 and t4).

These new transitions are obtained in several steps. First, the variables ap-

pearing in the surroundings of t1, t0 and t4 are renamed in order to avoid name

clashes. This is necessary because, by synchronisation, these surroundings are

combined into a single one. Then, a new transition is created for each pair of

actions clock and[clock if there is an uni�er for their arguments. For instance,

fz 7! x; t 7! c1; c2 7! 0g is a uni�er allowing to synchronise t1 and t0. Finally,

the guard of the new transition is the conjunction of the two constituent substi-

tuted guards; its label is the multi-set sum of the two constituent substituted

labels, without the matching pair of actions; the arcs are all those of both for-

mer transitions (with substituted inscriptions). A restriction of the resulting

net w.r.t. clock gives a net in which all transitions whose labels contain at

least one action clock(� � �) or[clock(� � �), together with their surrounding arcs,

are deleted, see the right hand side of �gure 3 which corresponds also to the

scoping of the net w.r.t. clock , denoted ParSys sc clock .

Scoping may be applied with respect to a set of actions (because synchro-

nisation is commutative and so is restriction [2]). Moreover, scoping w.r.t.

action clock is possible even if a transition holds several instances of this ac-

tion as on t2 in 4. In such a case, one action, say clock(y; t; !), is �rst chosen

for synchronisation, leading to a new transition which still holds the second

action (here, clock(y0; t0; 0)). This new transition is then synchronised, yield-

ing a new transition holding without action clock and inheriting the arcs from

t2 and two pairs of arcs from t0 (one pair for each synchronisation).

.

.

::: t4

\down ;clock(1;g;0)

:::

::: t0 [clock(x;c1;c2)

(x;c1)

(x;c2)

::: t1

app;clock(y;t;0)

y=2i

:::i i

.

.

:::

::: :::

::: :::
t10

app

x=2i

i i

(x;c1)

(x;0)

t04

\down

(1;g)

(1;0)

Fig. 3. A fragment of the net ParSys (on the left) and a fragment of ParSys sc clock

(on the right).
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4.1 Introduction of causal time in high-level Petri nets

The basic idea behind the concept of causal time is to represent the occurrence

of successive ticks (modelling the progression of time) in the same way as any

other event in the system. In the context of Petri nets, events are represented

by occurrences of transitions, and so, a time scale may be built by the �ring of

some reference transition, called tick. For instance, �gure 2, represents a time

constrained system composed of transitions t1 and t2 where two occurrences

of t (representing the tick) are enforced between those of t1 and t2.

It is possible to temporally constrain a given system in a modular way.

The approach consists in considering a particular net modelling a clock , being

able to generate occurrences of ticks, to evolve in parallel to the system and

to synchronise with it in order to enforce some temporal constraints. If the

system has more than one independent time constraint, the clock net should

be capable to manage several counting requests concurrently.

For the railroad crossing problem, we consider the clock net NCl, repre-

sented on the bottom of �gure 4; it manages nc+1 counting requests. Initially,

the place Time carries nc + 1 pairs of the form (j; c) where j 2 f0; : : : ; ncg

is the number of the request and c is the current value of the corresponding

tick counter. Each request j has a �xed maximum value of its tick counter,

max j, which cannot be overtaken. A tick counter c = ! for some request

means that this request is unused. The constant ! is assumed to be equal to

max + 1, where max is the maximum of all the max j's (for 0 � j � nc), and

we state ! + 1 = !. The transition tick may occur at any time provided that

its guard is true (which is the case if all the temporal constraints are ful�lled

and will still be true after the tick, and, in particular, if no max j is reached).

The occurrence of tick increments the tick counters of all requests. Initially,

all the requests are unused and can be started at any time by the �ring of a

transition coming from the synchronisation w.r.t. clock .

5 A modelling of RC using Petri nets with causal time

RC is modelled by the net:

ParSys sc fclock ; down; up; app; exitg :

The resulting net has the same places as ParSys but di�erent transitions

coming from the scoping w.r.t. all the communication actions. The scoping

w.r.t. up and down ensures that the gates move exactly as the controller allows

it. Analogously, the scoping w.r.t. app and exit enforces the communication

between the trains and the controller. The scoping w.r.t. clock ensures that

all counting requests are correctly handled.

The number of tick counters in clock NCl depends on the number of trains

in the system because we use two counters for each train, with the following

setting.
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.

.

Far

f1;:::;ntg

t1

app;clock(y;t;0)

y=2i

Before

f1;:::;ntgt2

clock(y;t;!);

clock(y0;t0;0)

t�am^y=2i^y
0=2i+1

Inside

f1;:::;ntg

t3

exit;

clock(y0;t0;!)

t0�em^y
0=2i+1

i i

i
ii

i

.

.Open

t4

\down ;clock(1;g;0) GoDown

\down

t5 clock(1;g;!)g�gm

Closed

\down

cup;clock(1;g;0)GoUp

clock(1;g;!) g�gm

\down ;clock(1;g;0)

.

.

Idle

f0;:::;ntg

t6
dapp;

clock(0;c;0)

AppDownf0;:::;ntg

t7 down ;clock(0;c;!);c�cm

t8

dexit;clock(0;c;0)

ExitUpt9

up;clock(0;c;!);c�cm

dexit

x�2 x

x�1
x

x x

x+1

1

0

.

.

Time

Ctrs�Ticks

tick
V
i�nc

ci 6=maxi t0 [clock(x;c1;c2)

f(0;c0);:::;(nc;cnc)g

f(0;c0+1);:::;(nc;cnc+1)g (x;c1)

(x;c2)

Fig. 4. The nets NTr, NGa, NCo and NCl (from top to bottom, if taken separately),

or their parallel composition, ParSys (if taken as a single net). In the �gure, nt
is the number of trains, nc = 2nt + 1 is the greatest counting request number,

Ctrs = f0; : : : ; ncg is the set of all these numbers, and Ticks = f0; : : : ; !g is the set

of the possible values of tick counters. Places in bold are initially marked as follows:

f1; : : : ; ntg for Far; f�g for Open; f0g for Idle; and f(0; !); : : : (nc; !)g for Time.

The counter 0 is reserved to the controller, and its maximal value ismax 0
df

=

cM (see section 2). This counter is reset when a train is approaching (see

transition t6) and is used in order to ensure that signal down is sent to the

gates after at least cm ticks (see transition t7). The maximum number of
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ticks allowed here, cM , is enforced in the guard of transition tick in the clock.

Then, the same counter is used once again (for a di�erent purpose) when

the last train leaves the crossing (see transitions t8 and t9). Notice that if

we have had di�erent constraints in these two cases, we should have used two

di�erent counters. (This is not an intrinsic limitation of causal time but rather

a limitation of the simple clock we choose to use.)

The counter 1 is reserved to the gates and its maximal value is max 1
df

= gM .

It is reset when the gates receive the signal to go down (see transition t4) and

it ensures that the gates are down after at least gm and at most gM ticks (see

transition t5 and the guard of tick). The same counter is used in order to

ensure the opening of the gates under the same time constraints.

For each train i, for i 2 f1; : : : ; ntg, we use two distinct counters: 2i and

2i + 1, with max 2i
df

= aM and max 2i+1
df

= eM , respectively. When a train

approaches, at least am and at most aM ticks can occur between the sending

of signal app and the arriving of the train between the gates. This constraint

is ensured by the counter 2i (see transitions t1 and t2). The counter 2i + 1

ensures that there must be at least em and at most eM ticks between the

crossing of the road by a train and its leaving sending the signal exit (see

transitions t2 and t3). In particular, t2 �res when the train enters the crossing;

the counter 2i must then indicate a value greater than am (thanks to t � am
in the guard t2) and the counter 2i+ 1 is reset.

In this system, the controller holds only one token and is synchronised

to all the other nets, and so, most events are interleaved. Moreover, almost

all the transitions of the system are synchronised on action clock and thus

the resulting transitions are in con�ict with tick . This reduces again the

concurrency in the system which is in fact purely sequential (which is suitable

for a comparison with timed automata).

5.1 Tools used

We modelled the above speci�cation using PEP toolkit [8] which proposes a

lot of tools gathered in a convenient graphical interface. In particular, it al-

lows one to edit high-level nets, to apply scoping on them and to convert the

resulting nets into low-level (place/transition) nets which are suitable for ver-

i�cation using one of the model-checkers integrated with PEP. Unfortunately,

we were not able to use PEP from the beginning to the end. The reason is

mainly the size of the low-level nets equivalent to our high-level speci�cation,

which cannot be handled by PEP.

We used instead a high-level tool, MARIA [15], in order to check our spec-

i�cation against deadlock-freeness and safety. Such a tool does not need to

produce low-level nets and thus it does not generate more than necessary, con-

trasting with the transformation from high-level nets to low-level ones which

may generate, for instance, many places which will never be marked. This is

particularly true in our speci�cation, where place Time in NCl cannot hold ar-

bitrary combination of tokens because the progression of time is not arbitrary
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itself and only a small subset of possible markings are actually reachable.

MARIA works on the reachability graph of coloured Petri nets and allows

one to check for deadlocks and for the reachability of partial markings (sub-

markings) during the generation of the graph. Deadlock freeness and the

safety property could be expressed as:

deadlock fatal;

reject !(place Inside equals empty)

&& (place Closed equals empty) && fatal;

The �rst line speci�es that if a deadlock is found, the computation of

the reachability graph must be interrupted and the error reported. The rest

speci�es states which has to be rejected if reached. It is a C-like boolean

expression on the marking of places, with lazy evaluation: if place Inside

is marked and then, if place Closed is not marked, then fatal is evaluated,

leading to abort the computation and to report the encountered rejected state.

The �les produced by PEP have been converted to the �le format sup-

ported by MARIA. Then, these �les have been made generic, and so we are

able to produce the speci�cation for any number of trains and all kind of time

constraints using a simple preprocessing. At the current state of the work,

only a preprocessor and MARIA are involved in the generation and the veri-

�cation of the railroad speci�cation, but PEP was necessary in the �rst steps

in order to produce the scoping of the nets.

6 Results

We report now the performances of the di�erent tools during the deadlock

analysis and safety veri�cation of various versions of the speci�cation. All

the checks have been performed on a Sun Sparc station at 440Mhz, with 1Gb

of physical memory and 1Gb of swap space. We worked in the /tmp direc-

tory which, thanks to Sun's TMPFS �le system [19], is located in the virtual

memory so all the work, even �le accesses, was actually made in memory with

proper swap. When a pre-compilation of some �les has been necessary, the

time consumed is included into the durations given below. This was the case

for Kronos which needs to synchronise timed automata before to check them,

and for MARIA which can build the guards of the transitions into libraries

being then dynamically loaded by the tool in order to speed-up the evaluation.

Finally, we used Unix time tool in order to measure the time consumed by

each process (the �real� time is the one reported below).

We checked safe and deadlock-free systems for one to six trains with the

following values for the di�erent constants: am = 4, aM = 5, cm = 0, cM = 1,

em = 4, eM = 6, gm = 0 and gM = 2. The times measured for each tool are

reported in the top part of �gure 5 (see also the left graph on �gure 6). After

about 12h30m, Uppaal exhausted all the memory and begun to be heavily

swapped, using less than 1% of CPU, so we preferred to stop it since the

reported time would have been meaningless.
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trains 1 2 3 4 5 6

safe systems with no deadlock

MARIA 0.2s 0.2s 0.9s 12s 4m 1h12m

Kronos 0s 0.1s 1.6s 20s 5m 1h36m

Uppaal 0.3s 0.5s 0.7s 27s 57m -

unsafe systems with no deadlock

MARIA 0.1s 0.2s 0.2s 0.2s 0.3s 0.4s

Kronos 0s 0.2s 1.7s 21.4s 6m57s 5h59m

Uppaal 0s 0s 0s 0s 0s 0s

deadlocking safe systems

MARIA 0.1s 0.2s 0.2s 0.2s 0.3s 0.4s

Kronos 0s 0.2s 1.7s 21.4s 6m55s 6h02m

Uppaal 0s 0s 0s 0s 0s 0.1s

Fig. 5. The performances of the tools for �good� systems (top part), unsafe systems

(middle part) and deadlocking ones (bottom part). We used speci�cations taking

into account up to six trains.

Unsafe systems were produced with the same constants values as those

used for good systems except for gM which was here set to 3. Thus, the gates

could go down too slowly and a train could cross the road while they are not

yet closed. The performances are given in the middle part of �gure 5 (see also

the right graph on �gure 6). Notice that the line for Uppaal is correct: this tool

was incredibly fast with wrong systems (i.e., unsafe and deadlocking ones).

Systems with deadlock were produced with the same values as for good

ones. We suppressed the capability for the gates to receive a signal down when

being or going down, by removing two transitions in each speci�cation. Notice

that for one train only, this does not produce a deadlock. The performances

are reported in the bottom part of �gure 5 (see also the right graph on �gure 6).

6.1 Causal time w.r.t. dense time and consistency of the results

Using causal time is very natural provided that one has in mind that time

constraints are expressed with respect to a time scale built by a causal clock,

i.e., by the occurrence of a tick which is not itself directly observable (but its

consequence on the marking can be observed). Therefore, the causal time is

available through tick counters, which is fairly di�erent from reading values on

a dense (or real) time scale. For instance, if c is a tick counter, equation c = 3

on a causal time scale means of course that �exactly three ticks occurred�, but
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Fig. 6. The graphical representations of the performances measured for MARIA

(continuous lines), Kronos (dashed lines) and Uppaal (dotted lines). The left graph

is for good systems, the other for deadlocking or unsafe ones. Notice that the

vertical scales are logarithmic. On the right graphics, lines for MARIA and Uppaal

completely overlap.

this may mean also that a fourth tick is just about to occur. On a dense time

scale, this would be expressed as 3 < c < 4. Notice that we do not have 3 � c

because the third tick has to be counted, and thus must have occurred. (We

assume that actions which cannot occur concurrently are not simultaneous,

and thus are separated by a non zero delay.)

Another example is the segment 5 < c � 6 on a causal time scale which

corresponds to 6 < c < 7 on a dense time scale. This is not surprising if one

remembers that the �rst constraint has to be read as �strictly more than 5 and

at most 6 ticks occurred� which corresponds to �at least 6 ticks and strictly

less than 7 occurred�.

One can see that causal time di�ers from real time in many ways. However,

in our case study, we used for each speci�cation the more natural expression

of time constraints, regardless of the introduced di�erences. Actually, we

conjecture that a wide class of timed automata can be translated this way

and that we can have a bisimilarity relation between the automata and the

translated M-nets. In order to verify in practice this intuition, and before to

obtain theoretical results, we checked many di�erent versions of RC for many

di�erent values of the constants and with or without deadlock. These results

are not presented here since they do not give more information than what we

already provided. But it is worth noting that all the checks were consistent.

For instance, if a given set of constants led to an unsafe system with one tool,

the same happened for the other tools. Moreover, the tools always reported

equivalent counter examples. As an illustration, consider the unsafe system

described above for 3 trains. MARIA reports a transition sequence leading to

an unsafe state which corresponds to:

(i) The token 1 in place Far (identifying the �rst train) is moved to place

Before while the token in the controller moves from Idle to AppDown.

(ii) One tick.
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(iii) The token in the controller moves from AppDown to Idle and the token

for the gates from Down to GoDown

(iv) Three ticks.

(v) Train 1 moves from Before to Inside.

With Uppaal (the case of Kronos is similar), we obtain a trace which corre-

sponds to:

(i) Train 1 goes from state Far to state Before while the controller goes from

Idle to AppDown.

(ii) Delay of 1 time unit.

(iii) The controller goes from AppDown to Idle while the gates goes from

Open to GoDown.

(iv) Delay of 3 time units.

(v) Train 1 goes from Before to Inside.

One may notice that a delay of three ticks with Petri nets corresponds to a

delay of exactly three time units with Uppaal (and actually with Kronos also).

6.2 State space explosion

In the results reported above, it happens that the performances obtained with

MARIA are generally better than those obtained with the other tools. This

optimistic results have to be moderated a little bit. Actually, using MARIA,

the causal time approach su�ers of the well known state space explosion prob-

lem: when we increase the constants in the system, the number of reachable

markings increases very fast. Since MARIA explicitly generates these mark-

ings, its performances become very bad.

One way to alleviate this problem would be to abstract from the net the

intermediary states generated by counting ticks between two boundaries. For

instance, if counter c is used in order to ensure a constraint 1 � c � 6, only

values 1 and 6 are interesting for this counter. Removing the intermediary

values would reduce the number of states while preserving the interesting be-

haviour. This would amount for this example to consider three �meta-values�:

�before 1�, �between 1 and 6�, and �after 6�. With this kind of technique, the

preformances of the causal time approach would be still dependent on the

number of tick counters, but not on the values of the constants compared to

them.

In Petri nets, there are also other techniques trying to provide a solution

to the state space explosion problem. They are typically based on the inde-

pendence of some actions, often relying on the partial order view of concurrent

computation. Based on such a view, the entire state space of a system may be

represented implicitly, using an acyclic net in order to represent system actions

and local states (see MacMillan's �nite pre�xes of Petri net unfoldings [14,6]).

Such techniques are so far limited to low-level models of Petri nets, but recent
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researches in this area showed that it is possible to produce high-level pre�xes

of high-level nets [11]. It is even possible to improve dramatically the e�ciency

of this analysis by de�ning an equivalence between markings, which gathers

many states in the generated pre�xes. This amounts to abstract data from

the Petri net when it has no in�uence on the execution. For instance with our

railroad example, place Time would appear in the pre�x only when the values

it holds lead to a new branch in the execution of the Petri net. Similarly, most

occurrences of the transition tick would not be present in the pre�x.

This kind of new developments will certainly soon lead to alleviate the

state space explosion problem presented above. In such a case, it would not

only solve this problem, but it would also increase again the performances

already measured because working on �nite pre�xes is most of time much

more e�cient than the exploration of the reachability graph. This gain of

performance would of course depend of the degree of concurrency we can

introduce in the speci�cation.

7 Final remarks

We presented a new approach to the modelling of time constrained concurrent

systems, and developed a case study illustrating how it can be used for veri�-

cation. It showed that causally timed Petri nets are easy to use (the obtained

speci�cation is similar to that given with timed automata), and o�ers also a

quite e�cient veri�cation. This paper is the �rst attempt to use this model

for veri�cation, and we are aware of many improvements which could be pro-

vided. In particular, we should alleviate the state space explosion problem

and the sensitivity to the constants clocks values are compared to. However,

even without these optimisations, performances were quite satisfactory, what

is very encouraging for the future.

We already plan further investigations in this way. On the practical side,

we would like to make more case studies, in order to better appreciate the

kind of problems that causal time can address e�ciently. On the theoretical

side, we wish to give a characterisation of a class of timed automata that could

be translated into Petri nets with causal time. We think that this class may

be quite wide and that it will be possible to establish a bisimilarity relation

between timed automata and their translation.

A very important point in this paper is that we showed that it was possible

to use successfully untimed Petri nets for the modelling of systems incorpo-

rating time constraints. Usually, various Petri net extensions were used for

this purpose, where time was associated to net components like places, tran-

sitions, arcs or tokens, under the form of durations or dates. For one of these

extensions, time Petri nets, it was proposed to compute branching processes

including tick transitions [3]. Contrasting with this approach, we provide this

kind of representation of time at the level of modelling and not only as a

interpretation of another notion of time for the purpose of veri�cation.
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We plan to provide case studies comparing causal time with tools based on

extended Petri net models. However, we would like to use a speci�cation which

allows for concurrency (which is not the case in this paper) because sequential

systems are often the worst case for many Petri net tools (in particular for

those relying on the partial order execution semantics).

Finally, we hope that tools will be developed in order to support the needs

of the causal time approach. In particular, we discovered that PEP was un-

able to generate low-level nets from our high-level speci�cation because of

their size. Some work is already in progress in order to solve this problem.

Another possibility would be to generate pre�xes directly from high-level nets,

as proposed in [11].
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Abstract

We study the problem of privacy in the framework of Timed Automata with an

alphabet partitioned in two subsets of symbols representing secret and observable

actions. We study two main kinds of timing attacks to privacy. The aim of the

paper is to contribute to a classi�cation of timing attacks on privacy.

1 Introduction

Several papers (see, among others, [3,4,5,9,8]) dealing with privacy, consider

two-level systems, where the high level (or secret) behavior is distinguished

from the low level (or observable) one. In the mentioned papers, systems

respect the property of privacy if there is no leaking of private information,

namely there is no information ow from the high level to the low level. This

means that the secret behavior cannot inuence the observable one, or, equiva-

lently, no information on the observable behavior permits to infer information

on the secret one. In the present paper we pursue the study of privacy in

real-time systems begun in [7]. The framework we assume is that of Timed

Automata [1]. When using this formalism, the possible behaviors of a sys-

tem are described by a set of in�nite timed words, namely in�nite sequences
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of pairs (action performed, time of �ring). In describing two-level systems,

we distinguish between high-level and low-level actions. In [7] we have for-

mulated in the formalism of automata and studied a timing attack on web

privacy proposed in [2].

By a timing attack we mean an attack in which timing of events, and

not only their \ordering" is important. We assume that attackers have some

knowledge about the internal structure of the system to be attacked. For ex-

ample, by carefully measuring the amount of time required to perform private

key operations, attackers may be able to �nd �xed DiÆe-Hellman exponents,

factor RSA keys, and break other cryptosystems (see [6]).

We assume in general that attackers are passive, namely that they base

their attacks only on observing a given timed sequence of low actions, and

deriving from this observation the certainty that a certain secret (high) action

has been performed. We consider two types of passive timing attack. We

distinguish an attack for which the attacker uses a stopwatch, and one for

which the attacker uses a watch. We consider generalizations of the problem

tackled in [7] and we give solutions for the two types of attack mentioned.

More precisely, we show that the following problems are decidable for both

the types of attack: with a given attack description, can an attacker detect a

given private (high level) action h?; is there any timing attack such that an

attacker can detect a given private (high level) action h? (the action h is or

is not secure); is there any high level action h such that an attacker with a

given attack description can detect the action h?; is there any timing attack

and a high level action h such that an attacker can detect the action h? (the

system is or is not secure). Moreover we show that an attacker with watch is

strictly more powerful than that one with stopwatch.

2 LH-Timed Automata

The formalism of LH-Timed Automata [7] is an extension of Alur and Dill's

Timed Automata [1] suitable to model two-level systems and to deal with

problems of privacy. LH-Timed Automata are compositions of Timed Au-

tomata with the alphabet partitioned in two sets, the set H of high symbols

and the set L of low symbols.

2.1 Security alphabet and timed words

A security alphabet is a pair consisting of two disjoint sets of actions (L;H).

The set L contains the low actions, which can be performed by the system and

can be observed by the external environment. The set H contains the high

actions, which can be performed by the system and are visible only inside the

system. We let l, h and a range over L, H and L [H, respectively.

Given any time domain T (natural numbers or non-negative rational num-

bers, as examples), we consider (possibly �nite) timed sequences of the form

(a1; t1) : : : (an; tn) : : :, with ai 2 (L [ H) and ti 2 T , ti < ti+1 describing the
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temporal behavior of a system that performs action ai at time ti.

Given a �nite timed sequence !1 = (a1; t1) : : : (an; tn) and a in�nite timed

sequence !2 = (a0
1
; t0
1
) : : : (a0m; t

0

m) : : :, we say that !1 2 !2 if and only if

there exists i such that for any 1 � j � n it holds that a0i+j = aj and

t0i+j = tj. Moreover with !1 + t, where t is a time, we denote the sequence

(a1; t1 + t) : : : (an; tn + t).

An in�nite timed sequence (a1; t1) : : : (an; tn) : : : satisfying the time progress

property, namely that for each time value t 2 T there is some index i such

that ti > t, is called a timed word.

Given a timed word ! = (a1; t1) : : : (an; tn) : : :, let us denote with !L the ob-

servable part of !, i.e. the (possibly �nite) timed sequence (ai1 ; ti1) : : : (aim ; tim) : : :

such that for each index ij, aij 2 L and, for each ij < k < ij+1, ak 2 H.

2.2 Clock valuations and clock constraints

We assume a set X of variables measuring time, called clocks, ranged over by

x. Intuitively, clocks increase uniformly with time when an automaton is in

whatsoever state.

A clock valuation over a set of clocks X is a mapping v : X ! T assigning

time values to clocks. For a clock valuation v and a time value t, let v + t

denote the clock valuation such that (v+t)(x) = v(x)+t. For a clock valuation

v and a subset of clocks Y � X, let v[Y ] denote the clock valuation such that

v[Y ](x) = 0, if x 2 Y , and v[Y ](x) = v(x), otherwise.

Given a set of clocks X, we consider the set of clock constraints over X,

denoted �(X), that is de�ned by the following grammar, where � ranges over

�(X), x 2 X, c 2 T and # 2 f<;�;=; 6=; >;�g:

� ::= x# c j � ^ � j :� j � _ � j true :

We write v j= � when the clock valuation v satis�es the clock constraint �.

More precisely, v j= x# c i� v(x)# c, v j= �1 ^ �2 i� both v j= �1 and v j= �2,

v j= �1 _ �2 i� either v j= �1 or v j= �2, v j= :� i� v 6j= �, and v j= true. We

will assume, without loss of expressivity, that every constant c is integer (see

[1]).

2.3 The formalism

De�nition 2.1 A LH-Timed Automaton is a tuple

A = ((L;H); A1; : : : ; Am; F );

where:

(i) (L;H) is a security alphabet.

(ii) For each 1 � i � m, Ai = (Qi; q
0

i ; Xi; Æi) is a sequential automaton, with:
� a �nite set of states Qi
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� an initial state q0i 2 Qi

� a set of clocks Xi

� a set of transitions Æi � Qi ��(Xi)� (L [H)� 2Xi �Qi.

The sets of clocks X1; : : : ; Xm are pairwise disjoint.

(iii) F � 2�1�i�mQi is a �nite set of sets of �nal states.

Intuitively, a transition (q; �; a; Y; q0) of an automaton Ai �res in corre-

spondence with the performance of action a when state q is active and the

clock valuation of Ai satis�es the clock constraint �. In such a case, state q0

is entered and the clocks in Y are reset.

Let us describe now the behavior of A = ((L;H); A1; : : : ; Am; F ).

A con�guration of A is a tuple s = ((q1; v1); : : : ; (qm; vm)) such that, for

each 1 � i � m, qi is a state in Qi and vi is a clock valuation over clocks Xi.

The initial con�guration s0 is the tuple ((q0
1
; v0

1
); : : : ; (q0m; v

0

m)), with q0i the

initial state of Ai and with v0i the valuation such that v0i (x) = 0 for each clock

x 2 Xi.

There is a step from con�guration s = ((q1; v1); : : : ; (qm; vm)) to con�gu-

ration s0 = ((q0
1
; v0

1
); : : : ; (q0m; v

0

m)) at time t with action a, written s !a
t s

0, if

and only if, for each 1 � i � m, either there is a transition (qi; �i; a; Yi; q
0

i) 2 Æi
such that vi + t j= �i and v0i = (vi + t)[Yi], or q

0

i = qi, v
0

i = vi + t and no

transition hq; #; a0; Y; q0i in Ai is such that a0 = a.

A timed word ! = (a1; t1) : : : (an; tn) : : : is accepted by A if there exists an

in�nite sequence of steps r = s1 !
a1
t1

s2 !
a2
t2�t1

: : : sn !
an
tn�tn�1

sn+1 : : : such

that s1 is the initial con�guration and the states crossed in�nitely many times

are a set in F . The language accepted by A is the set of timed words accepted

by A and is denoted by L(A) and called a timed regular language.

In the next section we will use the following properties of Timed Automata.

Their proofs can be found in [1].

Theorem 2.2 The class of timed regular languages is closed under (�nite)

union and intersection.

Theorem 2.3 The emptiness problem of timed regular languages is decidable.

By application of a cartesian product construction, any LH-Timed Au-

tomaton can be transformed into an equivalent one (namely, a LH-Timed

Automaton accepting the same language) consisting of only one sequential

component.

2.4 An Example

Let us assume a user's browser that interacts with its cache, with a given site

w, and with other sites which may be treated as one only site e.

In Figure 1 we model this system by a LH-Timed Automaton. Automaton

Au represents the behavior of the user. This can perform a request re to the

site e and then receive the answer ae. Moreover, it can perform a request
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Fig. 1. The web system

rc to the cache to obtain a web page in w. If the requested page is in the

cache, then the cache gives a positive answer ac. Otherwise, the cache gives a

negative answer nc, the user downloads the page from w (actions rw and aw)

and, then, the page is cached (action sc).

Automaton Aw represents the site w. The time elapsed between a request

rw (which resets clock y) and an answer aw is in the interval T2 = [100; 250].

Automaton Ac represents the cache. When a page in w is requested by the

user (action rc) and the page is not yet in the cache (state c1), the cache gives a

negative answer (action nc). In this case the user downloads the page, which is

cached (action sc, which resets clock u). Now, if the page is not requested for a

time greater than 10000 the page is removed from the cache (such a deadline

is checked by clock u) and the next request rc causes Ac to reach state c1.

When the page is in the cache (state c2 is active and u � K holds), the time

elapsed between a request rc and an answer ac is in the interval T1 = [2; 5].

Now, assume that the only observable actions for the site e are re and ae,

since interactions between the browser and the cache and between the browser

and w cannot be seen. In [2] it is shown that, when the user visits the site

e, this can infer whether the user has recently visited some web page in w or

not and thus violate the privacy of the user. In fact, assume that e contains

an applet that, when executed, causes a request of the page in w and, then, a

request to e itself. The automaton Aa in Figure 2 represents the applet. When

the user's browser downloads the page of e, it performs the applet. Therefore,

if e receives the original request and the request caused by the applet within

100 units of time, it infers that no communication between the user and w has

happened in the meantime, i.e. that the page was in the cache of the user. In

fact, the browser takes at least 100 units of time to download a page from w.

The overall system is described by the LH-Timed-Automaton

A = ((fre; aeg; fac; rc; sc; rw; awg); Au; Ac; Aw; Aa; F );

where F is the set of all states of the composed automata.
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Fig. 2. The applet

2.5 Region graph

Let us recall now the notion of region graph of a Timed Automaton, as given

in [1]. We can consider, without loss of generality, automata with only one

sequential component. Moreover, as it was mentioned before, we assume that

all constants in clock constraints of automata are integers.

Let us consider the equivalence relation � over clock valuations such that:

� for each clock x, either bv(x)c = bv0(x)c, or both v(x) and v0(x) are greater

than cx, with cx the largest integer appearing in clock constraints over x.

� for each pair of clocks x and y with v(x) � cx and v(y) � cy, fract(v(x)) �

fract(v(y)) if and only if fract(v0(x)) � fract(v0(y)) (fract( ) indicates

the fractional part).

� for each clock x with v(x) � cx, fract(v(x)) = 0 if and only if fract(v0(x)) =

0.

From the de�nition it follows that for each pair of valuations v and v0, and

for each clock constraint �, it holds that:

if v � v0 then v j= � i� v0 j= �:

A clock region is an equivalence class of clock valuations, induced by �.

We denote by [v] the clock region to which the clock valuation v belongs. Note

that the set of the clock regions is �nite.

A region is a pair (q; [v]), with q a state and [v] a clock region. The initial

region is the pair (q0; [v0]) with q0 the initial state and v0 the valuation such

that v0(x) = 0, for each clock x.

The region graph R(A) is a graph having the regions of A as set of nodes

and having an edge h(q; [v]); a; (q0; [v0])i if and only if, for some pair of valua-

tions v 2 [v] and v0 2 [v0], (q; v)!a
t (q

0; v0) for some time t.

By introducing \empty" transitions, i.e. transitions which represent only

elapsing of time, we can construct a new region automaton in which every

transition takes at most one time unit. So a computation is divided into

several steps which represent moves from a clock region to the next time

successor region, given by the elapsing of time. From now on we assume this

kind of region automata.

102



Gruska, Lanotte and Maggiolo-Schettini

3 Timing Attacks

A timing attack is an attack in which timing of events is important and not

only their \ordering". We assume that an attacker has some knowledge about

the internal structure of the system to be attacked.

We consider four questions:

1 Is it decidable whether an attacker with a given attack description can

detect a given private (high level) action h?

2 Is there any timing attack such that an attacker can detect a given private

(high level) action h? (the action h is or is not secure)

3 Is there any high level action h such that an attacker with a given attack

description can detect the action h?

4 Is there any timing attack and a high level action h such that an attacker

can detect the action h? (the system is or is not secure)

As anticipated, we study two major kinds of attacks.

3.1 A Passive Stopwatch Attacker

An attacker observes only low level actions and with the help of his stopwatch

he can measure time which elapsed between any two of them (it is the same

as he would have no information about the time of an attacked system initial-

ization and/or system history till the moment when the attack starts). His

input is the sequence of low level actions ! = (l1; 0)(l2; t2) : : : (lk; tk) such that

t2 and ti � ti�1; 3 � i � k, represent the time which is elapsed between l1 and

l2 and between li�1 and li, respectively. We will call timing of the sequence

l1; : : : ; lk the sequence of delays between the low level actions li.

De�nition 3.1 (stopwatch timing attack) A �nite sequence of low level ac-

tions ! = (l1; 0)(l2; t2) : : : (lk; tk) is a stopwatch timing attack on privacy of A

to detect h, with notation A
sw
)! h, i�

(i) there exist !0 2 L(A) and t such that ! + t 2 !0

L,

(ii) for every !0 2 L(A) if !+t 2 !0

L, for some t, then there exists t0 2 [t; t+tk]

such that (h; t0) 2 !0,

(iii) there exist !00 2 L(A) and (l1; t
0

1
); : : : ; (lk; t

0

k) 2 !00

L such that for any

t0 2 [t0
1
; t0k] it holds that (h; t

0) 62 !00. (i.e. it is really a timing attack -

with di�erent timing h cannot be detected).

Note that from the second condition it follows that timing of !00 in the

third condition is indeed di�erent from that of ! in the sense that there is no

t such that !00 = !+ t i.e. that ti� ti�1 di�ers from t0i� t0i�1 for at least one i.

An attack (l1; 0)(l2; t2) (only two low level actions and time between them

are observed) will be called a simple stopwatch timing attack (question/answer
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Fig. 3. The automaton accepting L!;i;h

scenario). The attack to \smart cards" [6] is a simple stopwatch timing attack.

With reference to our example, the low sequence (ae; 0) (re; 50) (ae; 250)

(re; 300) permits to infer that the web system has performed the secret symbol

ac (i.e. the page was in the cache).

Answer to Question 1: Given ! = (l1; 0)(l2; t2) : : : (lk; tk) and h 2 H. Does

it hold A
sw
)! h ?

To answer this question we have to show that:

� there is at least one word in L(A) that contains ! and also the high level

action h which occurred between l1 and lk,

� there is not a word in L(A) that contains ! but does not contain the high

level action h which occurred between l1 and lk (this and the previous re-

quirement together correspond to (i) and (ii) in De�nition 3.1),

� there is at least one word in L(A) that contains low level actions l1; : : : ; lk
but does not contain the high level action h which occurred between l1 and

lk. Note that if the previous requirement is satis�ed then clearly the timing

of l1; : : : ; lk is di�erent from that of !.

The problem can be reduced to the emptiness problem. First we need

some notation. Let ! = (l1; 0)(l2; t2) : : : (lk; tk), i 2 [1; k � 1] and h 2 H;

with L!;i;h we denote the set of words such that h appears between li and

li+1. The LH-Timed Automaton in Figure 3 recognizes L!;i;h. With L!;h we

denote the set of words such that h does not appear between l1 and lk. The

LH-Timed Automaton in Figure 4 recognizes the language L!;h. Moreover, let

! = (l1; 0)(l2; t
0

2
) : : : (lk; t

0

k) for some t0i; with L!;h we denote the set of words

such that h does not appear between l1 and lk (there is no need to require that

the timing of ! is di�erent from the timing of !). The LH-Timed Automaton

in Figure 5 recognizes L!;h. Now, for a given ! = (l1; 0)(l2; t2) : : : (lk; tk) and

h 2 H, it holds A
sw
)! h if and only if

� L(A) \
Sk�1

i=1 L!;i;h 6= ;,

� L(A) \ L!;�h = ;,

� L(A) \ L!;�h 6= ;.

So, the following proposition derives directly (see Theorems 2.2 and 2.3).

Proposition 3.2 Let ! = (l1; 0)(l2; t2) : : : (lk; tk) and h 2 H; it is decidable

whether A
sw
)! h.
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Answer to Question 2: Given ! = (l1; 0)(l2; t2) : : : (lk; tk), is there any

h 2 H such that A
sw
)! h ? (i.e., can we deduce anything private by the

attack !?)

The problem can be reduced to Question 1. We check, for every action h

from H, whether A
sw
)! h.

Answer to Question 3: Given h, is there any ! = (l1; 0)(l2; t2) : : : (lk; tk)

such that A
sw
)! h ? (i.e., is the high level action h secure?)

First, we will assume only simple stopwatch attacks, i.e. attacks of the form

(l1; 0)(l2; t2). There are �nitely many pairs of low level actions with in�nitely

many possible time durations among them, but the next lemma claims that for

every automaton there exists a constant Cmax such that if there is an attack

then there is also an attack with delay between l1 and l2 shorter than Cmax.

Lemma 3.3 For every LH-Timed Automaton A there exists a constant Cmax

such that for every simple stopwatch timing attack ! = (l1; 0)(l2; t2) to detect

h, i.e. A
sw
)! h, there exists a simple stopwatch timing attack (l1; 0)(l2; t

0

2
) to

detect h, such that t0
2
� Cmax.

Proof. The idea of the proof is the following. Any computation path between

l1 and l2 can be shortened in two ways: all cycles which do not contain h can

be removed; all delays longer than the biggest constant in clock constraints

can be shortened. Hence the high level action can be detected in a shorter

time.

Let R(A) be the region automaton corresponding to A. Suppose that

it has m transitions and Cmax = 2m + 2, and let ! = (l1; 0)(l2; t2) such

that A
sw
)! h. The existence of a timing attack means that there is at least

one computation path between l1 and l2 such that the high level action h

is always in it whenever a time delay between these two low level actions

is t2. For every such a computational path, there exists a computational

path of a corresponding R(A). Region automaton does not contain direct

timing information, but from the choice of the automata we know that each
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transition takes at most one time unit. Suppose that t2 > Cmax. This means

that the number of transitions in the subpath of the \computation" of the

region automaton starting with transition l1 and �nishing with l2 exceeds

twice the number of all transitions. Moreover, since A
sw
)! h, somewhere in

this path there must be a h transition. It is clear that at least one of the

\subcomputations" from l1 to h and from h to l2 can be shortened in such

a way way that they will contain each transition at most once. And, since

every transition represents at most one time unit of elapsed time, it is clear

that there exists a simple attack with time between the two observable actions

shorter than Cmax. 2

Theorem 3.4 For every LH-Timed Automaton A and every action h it is de-

cidable whether there exists a simple stopwatch timing attack ! = (l1; 0)(l2; t2)

such that A
sw
)! h.

Proof. For every pair of visible actions l1; l2 we try all durations t2 in the

set fn
2
jn = 1; : : : ; 2Cmax + 1g. According to Lemma 3.3 it has no sense to

check delays between l1; l2 longer than Cmax + 1 but we have to check all

smaller values. Since our timed automaton has only integer constants in clock

constraints it is enough to check all integers smaller than Cmax + 1 as well as

some time delay between i and i+ 1, for every i; 0 � i � Cmax. 2

The results of Lemma 3.3 and Theorem 3.4 can be generalized to stopwatch

timing attacks.

Theorem 3.5 For every LH-Timed Automaton A and every action h it is

decidable whether there exists an attack ! such that A
sw
)! h.

Proof. Suppose that the region automaton corresponding to A has m tran-

sitions and suppose that there is an attack ! = (l1; 0)(l2; t2) : : : (lk; tk) which

detects a high level action h. It is clear that the same action can be detected

with the attack !0 such that the number of its low level actions before and

also after h does not exceed the number of transitions of the corresponding

region automaton. This means that any attack can be shortened by removing

\cycles" before and after transition labeled by h, i.e. for any attack there

exists the attack which contains at most 2m transitions. Therefore, in order

to decide whether there exists an attack to detect h, it is enough to try all

sequences of low level actions shorter than 2m. As regards the time elapsing

between any two low level subsequent actions, one has to try every duration

from the set fn
2
jn = 1; : : : ; 2Cmax + 1g. 2

Answer to Question 4: Are there any ! and h such that A
sw
)! h ? (is

the automaton A secure?) The decidability of this problem follows from the

following corollary of the previous theorem.

Corollary 3.6 For every LH-Timed Automaton A its security is decidable,

i.e. it can be decided whether there exists an attack ! and h 2 H such that

A
sw
)! h.
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Fig. 6. The LH-Timed Automaton A.

Proof. According to the previous theorem it is enough to check every action

from H. 2

3.2 A Passive Watch Attacker

An attacker observes only low level actions and, with the help of a watch, he

can observe also the (absolute, not relative) time of their occurrence. So, he

observes a sequence of actions ! = (l1; t1) : : : (lk; tk).

De�nition 3.7 (watch timing attack) A �nite sequence of low level actions

! = (l1; t1) : : : (lk; tk) is a watch timing attack on privacy of A to detect h,

with notation A
w
)! h, i�

(i) there exist !0 2 L(A) such that ! 2 !0

L,

(ii) for every !0 2 L(A) if ! 2 !0

L then there exists t 2 [t1; tk] such that

(h; t) 2 !0,

(iii) there exist !00 2 L(A) and (l1; t
0

1
); : : : ; (lk; t

0

k) 2 !00

L such that for any

t; t 2 [t1; tk] (h; t) 62 !0 (i.e. it is really a timing attack, with di�erent

timing h cannot be detected). Note again (as with stop watch attacks)

that from the second condition it follows that timing of !00 in the third

condition is indeed di�erent from that of !, in the sense that that ti
di�ers from t0i for at least one i.

We shall call a simple watch timing attack, a watch attack consisting of

the observation of just one low level action and time of its occurrence, i.e.

! = (l1; t1). In this special case we will require that h occurred before time t1.

The four questions considered for the stopwatch attack have the same

answer for the watch attack. It is suÆcient to delete the reset of clock x in the

automaton of Figures 3, 4 and 5. So, the following theorem derives directly

from the proofs of the results of the previous section.

Theorem 3.8 Properties of stopwatch attacks as stated in the previous sec-

tion hold also for watch attacks.

Consider a LH-Timed Automaton A in Figure 6 with L = flg; H = fhg.

It is easy to see that under stopwatch attack the above automaton is secure,

i.e. there is no attack of any length to detect h. On the other side it is enough

to observe (l; 1) for a watch attacker to detect that the high level action h was

performed. This example justi�es the following theorem.

Theorem 3.9 A watch attacker is strictly more powerful than a stopwatch

attacker.
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4 Conclusions and further work

Timing attacks can \break" systems which use \unbreakable" algorithms.

Hence the importance of their study for privacy.

In this paper we have considered two types of timing attack and proved

decidability of four questions about them. The obtained results can be easily

extended to timing attacks which detect not just a single high level action but

a sequence of high level actions or a set of them. We see our work as a very

preliminary step towards an analysis and a classi�cation of timing attacks on

privacy. Further study will concern more eÆcient decision algorithms than

the ones based on region automata, and possibly the individuation of other

types of attack.
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Abstract

Recent approaches to the combination of process algebras and temporal logic have

shown that it is possible to specify logical formulae as processes. The presented work

exploits the applicability of these approaches, in the context of globally clocked

process algebras, and shows how logical expressions describing the history of a

system can be used to simplify system speci�cations with process algebras. In order

to allow modelling of composed systems at a high level, one-way communication is

used to build the model of the system. Finally, an outline of how these models can

be re�ned is given.

1 Motivation and Related Work

Process algebras have been successfully applied to various systems as a formal

modelling language. Their strength lies in their ability to easily abstract from

details of a system model by means of the hiding operator.

The analysis of these models usually involves either another formalism to

specify properties, like temporal logical expressions that can be veri�ed using

a model checker, or re�nement relations that compare two models of a system

at di�erent levels of abstraction.

More recently, logical formulae have been translated to processes such that

re�nement relations can be used to verify properties of a system model. The

�rst paper explaining this relationship was published recently in [3]. It presents

two attempts to use re�nement-based approaches for the veri�cation of LTL

formulae.

In the �rst attempt, a property was represented by the most non-determin-

istic process such that all processes satisfying the property are trace re�ne-
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ments of the property process. As re�nement checkers like FDR [2] use �nite

traces, only pure safety properties can be veri�ed like this. These are exactly

the properties for which it is decidable after a �nite number of transitions of

the system whether the property is not satis�ed.

In the second attempt, a constraining process was introduced. This process

was put in parallel composition with the system. Using failure re�nement it

was possible to verify the represented property for system models that have a

�nite state space and are deadlock-free.

In practice, it appeared to be diÆcult to get convincing results from this

property checking method because a negative answer from it can result either

from the fact that the property does not hold for the system or from a mod-

elling error in the system itself. The way FDR handles system and property

processes makes it very laboriously to distinguish between the two cases.

The second approach about speci�cations as re�nement is presented in

[6]. The authors deal with safety properties in timed CSP and de�ne a new

semantics for dense-time. They suggest to discretise the problem and reduce

it to untimed CSP processes such that the re�nement can be checked using

FDR, provided that priority is given to clock signals.

Both approaches use processes to describe properties that are equivalent

to logical formulae. This is advantageous because the properties are expressed

in the same language as the system model. Moreover, they can be analysed

with well-established re�nement methods for processes.

In the work presented here, this approach is used to extend the modelling

capabilities of process algebras. The system and its properties are modelled

as di�erent processes. When they are placed in parallel the latter can reect

whether the system satis�es the property or not. The property process can

be seen as an online-diagnostic process; it observes the system and represents

its state.

The observation of the system by the diagnostic process is realized us-

ing one-way communication. One-way communication and broadcasting in

a framework of programming languages was studied in [7]. The Calculus of

Broadcasting Systems (CBS) that is closely related to CCS [4] is presented

in that publication. A process in CBS describes its ability to speak to its

environment. All processes are input-enabled, i.e. they always listen to ev-

erything that other processes output. This implies that all processes progress

synchronously and only one process can speak at a time. The one-to-one

communication realized in CCS is converted to a one-to-all communication.

Furthermore, there is no general way in CBS to distinguish between an

action that is heard by a process and one that is ignored by all parallel pro-

cesses because it depends on the implementation of the communication in the

programming language underneath whether an action is heard or not. In the

process algebra this is hidden by means of an abstract, so-called translator

function. This function translates all actions into either heard (audible) or

ignored (non-audible) actions.
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The presented process algebra can be seen as an implementation of a

slightly amended version of CBS on top of a classical process algebra. The re-

striction in CBS that only one process can speak at a time is not practical for

modelling diagnostic processes. Therefore, a new process algebra is developed

that allows both broadcasting communication and multicast communication

in CSP-style. Processes can listen to synchronised and unsynchronised ac-

tions. Furthermore, processes can progress asynchronously. In contrast to

CBS, they are not necessarily input-deterministic.

This process algebra can model systems and properties as well as a com-

bination of both. A property processes placed in parallel composition with a

system records the current state of the system without changing or constrain-

ing its behaviour. To access this state from the system process an if-then-else

construct is added to the process algebra.

The �rst process algebra augmented with conditional choice was ACP de-

scribed in [1]. The conditional choice construct is extended here to proposi-

tional logic with past operators.

The next section introduces the process algebra that is used as the mod-

elling language. A global clock signal and a second type of action that is

used for one-way communication is included in its alphabet. In Section 3 it

is explained how properties can be expressed in the process algebra. Finally,

the use of the if-then-else construct is presented. Its applicability is shown by

means of an example in Section 5.

2 Process Algebra with a Global Clock and One-way

Communication

2.1 Informal Description

The process algebra used as a basis for the extension is similar to CSP [9].

It consists of a set of actions A, the pre�x operator !, the external choice

operator + and the parallel composition operator k. The parallel operator

is augmented with a synchronisation set S that allows to specify actions the

two processes in parallel composition have to synchronise on, denoted by kS.
Furthermore, the result of communication is again a visible action. Therefore,

multicast communication is possible.

Like in ATP [5] a clock action clk is introduced that allows for synchro-

nisation of all components of a system. The components that are ready to

perform a clk action are blocked until all their parallel components are ready

to perform it. Within two clock actions the components can progress indepen-

dently and asynchronously as long as they do not have to synchronise with

each other on some other actions. The interval between two clock actions is

often referred to as a clock cycle.

The beginning, resp. the end, of a clock cycle form particular states of

the system because all components are in synchronisation and have not yet
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performed any action, resp. have performed all actions possible within the

clock cycle. These states will be used later to evaluate whether the model

satis�es certain safety properties.

As the process algebra was chosen for modelling hardware protocols actions

are not delayable. This decision does not inuence the further development

of the process algebra, but it means that timelock can occur.

By introducing a new type of action the process algebra can express one-

way communication actions. Normal actions can be seen as sending actions.

The new type acts as receiving actions { listening to the sender. Sending and

receiving are complementary to each other but not symmetrical. The new

action can only be performed in synchronisation with the sending action, the

process performing the sending action, however, can progress independently

if its parallel components do not listen to the action (and, of course, do not

have to synchronise on it). In other words, on that instant the sending process

is not inuenced by its parallel processes and it will not be held up from

progressing. Therefore, the action that the receiver performs is called \passive

synchronisation". This distinguishes one-way communication from classical

communication where both the sender and receiver processes can be delayed.

In contrast to asynchronous communication, the sender and receiver in a one-

way communication system communicate without delay.

The new action type can be integrated into a process algebra with synchro-

nised communication without the need for the clock action. The clock action

is only used when properties are modelled. Note also that normal synchroni-

sation is not a�ected by passive synchronisation actions. The blocking due to

non-readiness of a parallel component can still occur. Passive synchronisation

action are added orthogonally and have no inuence on the existing semantics.

For convenience, the new listening actions are denoted by a tilde on top

of an action. Hence, the process Q = ~a ! P is ready to receive an action a.

This can be read as \Q is listening to a".

2.2 Remarks on One-way Communication

The implication of the passive synchronisation actions is that the behaviour

of synchronisation changes temporarily. In classical process algebras the syn-

chronisation set is �xed, in the presented extension the synchronisation set

depends on the state of the system. The two active semantic rules in Table 1

specify how to adapt the synchronisation set. The rules state that passive

synchronisation actions always have to be performed in synchronisation with

all other parallel processes. That means, in the following example, if the pas-

sive synchronisation action ~a is enabled the synchronisation set must contain

a, otherwise it should be kept empty. Note, that the processes are equal in the

sense that normal actions are de�ned to be equal whether they are received
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by another component or not. 3

(b! STOP + ~a! STOP)kfga! STOP =

b! (STOPkfga! STOP) + (a! STOPkfaga! STOP) =

b! a! STOP + a! STOP

The extension of the process algebra is a conservative extension as the

properties of classical process algebra are retained if the new actions are not

applied. It is truly an extension as it adds expressiveness with respect to the

synchronisation behaviour. To be more precise, in classical process algebra it

is not possible to model actions that are performed in synchronisation only if

another process is ready to do so.

The following examples show the two possibilities of classical communica-

tion in process algebra. In the �rst example both processes have to synchronise

on a. Therefore, only one a can be performed. In the second one, the synchro-

nisation set is empty and actions can be performed in an interleaving manner

preserving the de�ned order of each process.

a! a! STOPkfaga! b! STOP =(1)

a! b! STOP

a! a! STOPkfga! b! STOP =(2)

a! a! a! b! STOP +

a! a! b! a! STOP +

a! b! a! a! STOP

In contrast, passive synchronisation actions allow the modelling of be-

haviour that is more restrictive than interleaving actions, but less constrain-

ing than synchronised actions. Therefore, passive synchronisation adds further

expressiveness to the process algebra. In the third example, the �rst a has to

be performed in synchronisation. Thereafter, a and b can occur in any order.

a! a! STOPkfg~a! b! STOP =(3)

a! a! b! STOP +

a! b! a! STOP

This behaviour cannot be modelled in classical process algebra. The

only way to approximate the behaviour is using an auxiliary communication

medium, e.g. modelled by a channel such as in [9]. The main de�ciency is that

the medium delays the sending and receiving action. It is an important prop-

erty of one-way communication that sent messages are received immediately.

This plays a major role when modelling logical formulae as processes.

3 Later, action transitions are augmented by a boolean variable to distinguish between

received and ignored actions.
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passive pre�x

~a! p
~a
�! p

passive parallel sync

p
~a
�! p0 q

~a
�! q0

pkSq
~a
�! p0kSq0

passive parallel nosync

p
~a
�! p0 q 6

~a
�!

pkSq
~a
�! p0kSq

passive external choice

p
~a
�! p0

p+ q
~a
�! p0

Rules for passive synchronisation

actions

active parallel sync

p
a;M
=) p0 q

~a
�! q0

pkSq
a;T
=) p0kSq0

a 62 S

active parallel nosync

p
a;M
=) p0 q 6

~a
�!

pkSq
a;M
=) p0kSq

a 62 S

active hiding

p
a;M
=) p0

pnS
�;F
=) p0nS

a 2 S

Additional rules for progress

transitions

Table 1

Semantics rules

2.3 Formal De�nition

The new one-way communication is de�ned by a second set of actions. For

processes that use actions of this set new deduction rules are added to the

operational semantics of classical process algebras

De�nition 2.1 (Passive Synchronisation) Let A be the set of (normal) ac-

tions, then ~A = f~aja 2 Ag is called the set of passive synchronisation actions.

The semantics for passive synchronisation actions is de�ned by means of

a labelled transition system LTS p = (P; ~A;�!; Pinit) where P is the set of

processes, �! � (P � ~A � P) de�nes the labelled transition relation, and

Pinit 2 P is the initial process.

The transition rules are presented in the left column of Table 1. The intu-

ition behind these transitions is that they represent the ability to synchronise

on the corresponding normal action. The transitions are used in the opera-

tional semantics of classical process algebra to support passive synchronisation

actions.

The operational semantics of the new process algebra is de�ned by means

of a second labelled transition system LTSn = (P; �A;=); Pinit) that uses

the same set of processes P. The alphabet is extended by clk and � , �A =

A[ fclk; �g. =) � (P � ( �A� fT; Fg)� P) de�nes the transition relation.
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time determinism

p
clk ;T
=) p0 q

clk ;T
=) q0

p+ q
clk ;T
=) p0 + q0

time progress

p
clk ;T
=) p0 q

clk ;T
=) q0

pkq
clk ;T
=) p0kq0

Table 2

Operational semantics for clock actions

The label of a transition describes the actual progress of the process. It

consists of an action and a boolean value T or F . The boolean value indicates

whether the action is heard by a listening process. It adds information to the

transition relation to simplify veri�cation. The value is contained in the syn-

tactical description of the process and can be deduced from it: only processes

that are built from a composition of a sending process and a process ready

to synchronise passively can progress with a received action. In this case the

boolean value is T .

The deduction rules for operators of classical process algebras can be easily

augmented with such a boolean value. In the right column of Table 1 only the

additional rules for the parallel composition operator that involve passive syn-

chronisation actions and the rule for the hiding operator are listed, described

in the next two paragraphs.

Only composed systems are inuenced by passive actions. If one compo-

nent listens to a normal action both components progress in synchronisation.

This is described by rule active parallel sync. Otherwise, only the component

performing the normal action can progress, described in rule active parallel

nonsync. It is an important requirement that the normal action is not subject

to normal synchronisation requirements; it must not be contained in the syn-

chronisation set. This requirement ensures that the extension is a conservative

one.

The hiding rule is mentioned to clarify that � actions do not reect whether

passive synchronisation has taken place. A corresponding passive rule does

not exist. If a passive synchronisation action is hidden the process cannot

listen to its environment. Therefore it deadlocks. The � action is the only

invisible action. It is not possible to synchronise on it neither in the classical

sense nor with passive synchronisation.

There are two deduction rules for the clock action shown in Table 2. In

addition, the clk action has to be excluded from those deduction rules of the

classical process algebras that would lead to contradictions with these two

rules. Furthermore, the clk action has no impact on the rules with passive
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synchronisation actions because there is no passive action fclk .
The transition relation =) is used to de�ne traces of a process in the usual

way. It corresponds to the de�nition in classical process algebras [9].

To simplify the de�nition of traces a sequence of invisible actions followed

by a normal action a, followed by another sequence of invisible actions is

combined into one new transition. It is denoted by
��

=)
a;M
=)

��

=).

De�nition 2.2 (Traces) The set of traces of a process P is de�ned as the set

of all �nite sequences consisting of normal actions and clock actions that a

process can perform.

traces (P ) = ftr 2 (A [ fclkg)�finjn = length(tr) ^

9P1; : : : ; Pn9M 2 fT; Fgn 8i 2 f1; : : : ; ng : Pi�1
��

=)
tri;Mi
=)

��

=) Pig

where P0 = P .

Passive actions have a strong inuence on traces of composed processes.

It is not true anymore that a trace of a composed process can be separated

into the subtraces produced by each component. As an example consider the

traces of process P = a ! STOP and process Q = b ! ~a ! b ! STOP .

They are de�ned as traces(P ) = f<>;< a >g and traces(Q) = f<>;< b >g.
The second b action in process Q cannot occur because there is no a action

the process ~a! b! STOP can listen to. However, if P is placed in parallel

composition with Q, the composed system can perform b twice if the �rst b

occurs before a. The traces of PkfgQ are f<>;< a >;< b >;< a; b >;<

b; a >;< b; a; b >g.

In the usual way traces de�ne a re�nement relation between process by

means of subset relation. For example, the process PkfgQ would be an

equivalent process in the sense of trace re�nement to the process a ! b !
STOP + b! a! b! STOP because the processes re�ne mutually.

3 Property Processes

3.1 Introduction

In [3] the semantics of a property was de�ned by the set of all in�nite traces

that satisfy the property. Two classes are distinguishable: Safety properties

where it is decidable on the basis of a �nite pre�x of a trace if the property

does not hold, and liveness properties where any �nite pre�x can be extended

to a satisfying trace.

The same semantics is used here. However, the purpose of the property

processes is slightly di�erent. Instead of verifying that a system satis�es the

properties represented by the processes, here the processes are used to add a

new modelling feature: a property process can be seen as an online-diagnostic

process. It indicates whether the system in the actual state satis�es a certain

property or not.
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3.2 Modelling Property Processes

The properties that will be modelled as processes are equivalent to logical for-

mulae of a propositional logic with past operators. The set of atomic propo-

sitions covers the actions contained in the alphabet A. A formula can consist

of �rst order logic and two timing operators Pclk and Bclk that describe prop-

erties in previous clock cycles. Pclk� means that � holds in the previous clock

cycle and �Bclk means that � holds in every clock cycle back to the cycle

where  holds.

The grammar for a property  is as follows where a denotes an atomic

proposition indicating that a certain action a 2 A occurred.

 = � j  _  j : j a j true

� = Pclk j  Bclk 

Now we can de�ne when a trace tr satis�es the property �, written tr j= �.

To do this we reverse the trace. This is necessary because the logic deals with

the past of the process. Recall that a trace is �nite. Its reversal is denoted by

rev(tr).

tr j= � i� rev(tr) j=r �

The de�nition of j=r is as follows:

tr j=r true

tr j=r :� if tr 6j=r �

tr j=r a if tr0 6= clk ^ trtail j=r a

_tr0 = a

tr j=r � _  if tr j=r � _ tr j=r  

tr j=r � ^  if tr j=r � ^ tr j=r  

tr j=r Pclk� if tr0 6= clk ^ trtail j=r Pclk�

_tr0 = clk ^ trtail j=r �

tr j=r �Bclk if tr0 6= clk ^ trtail j=r �Bclk 

_tr0 = clk ^ (trtail j=r  _ trtail j=r � ^ �Bclk )

A property process representing a property in this logic consists of two

parts running in parallel. One component enables an appropriate action rep-

resenting the truth value of the property, that the system model might want

to use, the other component evaluates the actual truth value of the property.

The enabling process is a simple process modelling a read-write variable.

It can be read by all components of the system and is written to by the evalu-

ating component of the property process. The truth value has to be updated
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immediately after every clk action. The whole process looks like this:

E� = clk ! E0
�

E0
� = set�true ! E+

� + set�false ! E�
�

E+

� = read�true ! E+

� + clk ! E0
�

E�
� = read�false ! E�

� + clk ! E0
�

To make sure that the value is set exactly at the beginning of each clock

cycle, priority has to be given to set�value over normal actions. Alternatively,

the clock action can be divided into two clock actions, clk start and clk finish
that all components have to synchronise on. The setting of the values is then

performed between these two actions.

The evaluating process uses one-way communication and listens to the

actions that appear in the formula, call them relevant actions. At the begin-

ning of each clock cycle the process indicates whether the system satis�es the

property or not. An action set�value is performed in synchronisation with the

enabling process. This action indicates the truth value of the formula at the

very beginning of each clock cycle.

The structure of the process is dependent on the formula. We distinguish

two types: formulae whose truth value is determined by actions that were

performed in the previous clock cycle (past properties) and formulae whose

relevant actions are performed within the actual clock cycle (present proper-

ties). The formulae useful to express practical properties are typically past

properties with present properties as subformulae.

Formulae of the form Pclk� or �Bclk , and the logical combination of both

are the only past properties. These properties are easily translated to processes

because the clk action de�nes a state where further actions cannot inuence

their value. At the time when the truth value is updated the relevant actions

were performed in the previous clock cycle. Therefore, the property process

can revert to another property process for the formula � in the case of Pclk�

or on processes for � and  in the case of �Bclk . The relevant actions are

the read�value actions for the subformulae � and  .

The corresponding processes for Pclk� and �Bclk are presented below.

P (Pclk�) = gread�true ! clk ! setPclk�true ! P (Pclk�)

+gread�false ! clk ! setPclk�false ! P (Pclk�)

P (�Bclk ) = gread true ! clk ! set�Bclk true ! P 0(�Bclk )

+gread false ! clk ! set�Bclk false ! P (�Bclk )

P 0(�Bclk ) = gread�_ true ! clk ! set�Bclk true ! P 0(�Bclk )

+gread�_ false ! clk ! set�Bclk false ! P (�Bclk )

The subformula �, say in property Pclk�, is a present property because

the truth value for � in the actual clock cycle is used, represented by the
gread�value actions in the process for Pclk . These read actions have to be re-
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placed by a sequence of actions that captures the value of � in the actual clock

cycle in order to get the complete property process P (Pclk�). For example, to

know whether action a is performed in the actual clock cycle, i.e. when � = a,

the process has to listen to a. Thus, greadatrue has to be replaced by ~a. How-

ever, the absence of a in the clock cycle is more diÆcult to prove. The absence

of a is only assured if the clk action occurs before any a action. Therefore,
greadafalse cannot be replaced by any action, but has to be removed. The

occurrence of clk will resolve the choice whether � = a is true or false in that

clock cycle. Table 3 shows the relevant values of the six basic formulae for
gread�true and gread�false.

� gread�true gread�false
a ~a �

:a � ~a

Pclk� greadPclk�true
greadPclk�false

:Pclk� greadPclk�false
greadPclk�true

�Bclk gread�Bclk true
gread�Bclk false

:�Bclk gread�Bclk false
gread�Bclk true

Table 3

Relevant actions for basic present properties

For a general subformula � in DNF, i.e.
W
i=1:::n(

V
j=1:::mi

�ij) where each

�ij is a basic present formula, the following de�nition has to be used for
gread�value. It recursively de�nes a process that generates the relevant ac-

tion sequences. Those sequences ending with label TRUE indicate that the

property � holds in the actual clock cycle, those ending with label FALSE

describe the conditions when the property fails. The de�nition is as follows:

(Ii describes the index set for the ith conjunction. A hat on top of a parameter

means that it is left out.)

P (I1; : : : ; In) =
P

j2Ii 6=fjg

gread�ij
true ! P (I1; : : : ; Iinfjg; : : : ; In)

+
P

j2Ii=fjg

gread�ij
true ! TRUE

+
P
j2Ii

gread�ij
false ! P (I1; : : : ; Îj; : : : ; In)

P () = FALSE
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To get the �nal property process for the formula that uses � as a subformula

the label TRUE , resp. FALSE , has to be replaced by what follows gread�true,
resp. gread�false.

The whole generation process of the property process can be automated.

The designer only has to think about the property. As an example, the prop-

erty process for � = Pclk(� _  ) with � = a and  = b is derived here:

P (�) = P (Pclk(� _  )) =

~a! clk ! set�true ! P (�)

+ ~b! clk ! set�true ! P (�)

+ greadafalse ! (~b! clk ! set�true ! P (�)

+gread bfalse ! clk ! set�false ! P (�))

+ gread bfalse ! (~a! clk ! set�true ! P (�)

+greadafalse ! clk ! set�false ! P (�))

As greadafalse and gread bfalse have no corresponding actions the process

simpli�es to:

P (�) =

~a! clk ! set�true ! P (�)

+ ~b! clk ! set�true ! P (�)

+ clk ! set�false ! P (�)

4 Conditionals in Process Algebra

Conditional choice was introduced into process algebra in the context of ACP

in [1]. Choice was resolved depending on the value of a propositional logic

expression. It is represented by an if then else construct and is de�ned as

follows:

De�nition 4.1 (If-then-else)

The process P = if � then P1 else P2 is de�ned as

8<
:
P1 if � holds

P2 otherwise.

The formula � can be a formula of any propositional logic. Its truth value

is usually determined independently of process P .

However, the logic presented earlier takes the state of the process into

account. Therefore, the truth value depends on the state of the process, in

particular on the trace of the process that led to P . When an if then else

construct is used a property process for � is created automatically and placed

in parallel composition with the system model. Using the property process
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P (�) the if then else construct can be translated into a normal choice

expression:

P = gread�true ! P1 + gread�false ! P2

The construction of the property process guarantees that the process P

continues as

8<
:
P1 if tr j= �

P2 otherwise.
where tr is the trace that led to P .

The fact that the system indeed satis�es � when P1 is chosen, and does

not satisfy � when P2 is chosen can be formally established by constructing

an appropriate Kripke structure that represents the relevant behaviour and

properties of the system.

5 Example

The example presented in this section illustrates how conditionals can be used

with property processes. It describes the speci�cation of a clocked sender com-

ponent from the model of the alternating bit protocol (ABP). For a detailed

discussion of the ABP modelled with process algebras see for example [8].

The example is too small for the new modelling feature to be of real bene�t.

However, it shows the di�erences to classical process algebras and makes clear

what the advantages are.

The sender can be separated into two components with a well-de�ned

interface (ack data): one component for sending data and one that deals

with its acknowledgement. In the ABP, the data sent is only acknowledged as

received correctly if the control bit of the acknowledgement has the same value

as the control bit of the data message sent. Otherwise, the same message is

re-sent. In the example code the value of the control bit is used as a subscript

in the process and action names. The sender process S0 has sent the control

bit 0 and is expecting an acknowledgement rcv 0, and so on. The process S1
has the same structure as S0 modulo the value of the control bit; it is therefore

left out.

S0 = clk ! if Pclkack data0 then

send1 ! S1
else

send0 ! S0

R = clk ! (rcv 0 ! ack data0 ! R

+rcv1 ! ack data1 ! R

+R)

Sys = (S0kfgRkfgP (Pclkack data0)kfgP (Pclkack data1))nH0 [H1

where Hi = fack datai; setPclk ack data i
value; readPclk ack datai

valueg

The speci�cation of a sender in classical process algebra would probably

consist of one sequential process; it is much harder to model it as a concurrent

system. All possibilities have to be taken into account when synchronisation
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between a sending and an acknowledging component has to take place. The

speci�cation could look like the following:

S0 = clk ! (send0 ! (rcv 0 ! S1 + rcv1 ! S0 + S0)

+rcv0 ! send0 ! S0
+rcv1 ! send0 ! S0)

Sys = S0

Using the trace semantics de�ned in Section 3 it can be shown that both

models are equivalent. However, the model in classical process algebra is

much harder to maintain. It is more diÆcult to change the protocol because

the aspects of sending and receiving are merged into one process. In contrast,

the �rst model clearly separates the components S and R which makes it easy

to replace one component by a new one. This becomes important when several

designers are developing di�erent parts of a system or when models should be

re-used.

6 Conclusion and Future Work

A new modelling approach for globally clocked systems was presented. It

integrates temporal logical formulae and behavioural description in process

algebras. The logical formulae are translated into processes that are connected

with the system model using one-way communication.

The applicability of this approach for high-level speci�cation was shown

by the example of a sender component using the alternating bit protocol. A

more complex case study analysing the PI-Bus protocol [10] will follow.

Currently, a re�nement method is developed that allows to translate the

speci�cation into a new model using pure classical process algebra. The main

idea is to replace one-way communication by communication of classical pro-

cess algebras and to split the states with conditional choice into several states

such that only normal choice is used in the model.

As an extension to the presented logic, an operator might be added in the

future that describes that an action occurs before another one, but within

the same clock cycle. It gives additional expressiveness without increasing

complexity.
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Abstract

Given a timed automaton M , a linear temporal logic formula ', and a bound k,

bounded model checking for timed automata determines if there is a falsifying path

of length k to the hypothesis that M satis�es the speci�cation '. This problem

can be reduced to the satis�ability problem for Boolean constraint formulas over

linear arithmetic constraints. We show that bounded model checking for timed

automata is complete, and we give lower and upper bounds for the length k of

counterexamples. Moreover, we de�ne bounded model checking for networks of

timed automata in a compositional way.

1 Introduction

Timed automata [4] are state-transition graphs augmented with a �nite set of

real-valued clocks. The clocks proceed at a uniform rate and constrain the

times at which transitions may occur. Given a timed automaton and a prop-

erty expressed in a timed logic such as TCTL [3] or T� [18], model checking

answers the question whether the timed automaton satis�es the given formula.

The fundamental graph-theoretic model checking algorithm by Alur, Courcou-

betis and Dill [3] constructs a �nite quotient, the so-called region graph, of the

in�nite state graph. Algorithms directly based on the explicit construction of

such a partition are however unlikely to perform eÆciently in practice, since

the number of equivalence classes of states of the region graph grows exponen-

tially with the largest time constant and the number of clocks that are used to

specify timing constraints. Symbolic model checking algorithms are obtained

by characterizing regions as Boolean combinations of linear inequalities over
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clocks [18]. Based on these algorithms, tools for verifying timed automata,

such as, for example Uppaal [22], Kronos [11], HyTech [17], Tempo [30], have

been developed.

The technique of bounded model checking has been recently introduced [8],

as an alternative to classical model checking. Given a system M modeled as a

state machine, a temporal logic speci�cation ', and a bound k, the bounded

model checking (BMC) problem consists in searching for counterexamples of

length k to the model checking problem M j= '. The BMC problem for �nite

state models can be reduced to a propositional satis�ability problem, and

o�-the-shelf propositional satis�ability (SAT) checkers are used to construct

counterexamples from satisfying assignments to the propositional variables. It

has been demonstrated that BMC is in many cases more e�ective in falsifying

designs than traditional model checking techniques [8,9]. In [13] the BMC

paradigm has been extended to programs over in�nite state space, and LTL

formulas augmented with a decidable set of constraints. For an in�nite state

system M , a linear temporal logic formula with constraints ', and a bound k,

a Boolean constraint formula, [[M;' ]]k, can be constructed that is satis�able

if and only if there is a counterexample of length k for the model checking

problem M j= '. BMC for in�nite state systems is sound, and for invariant

properties also complete, but incomplete for the entire LTL logic [13].

The main contribution here is to show that BMC for timed automata is

indeed complete for all LTL formulas with clock constraints. We describe how

a timed automaton can be directly encoded into a Boolean constraint formula,

without constructing the corresponding region graph. Our approach is com-

positional in that Boolean constraint formulas encoding networks of timed

automata can be obtained by Boolean combinations of the encoding of the

components. This compositional approach reduces the size of the generated

formula considerably. Moreover, we give bounds for the length k of counterex-
amples for the model checking problemM j= ' that depend on the size of the

LTL formula ' and the size of the region graph corresponding to the given

timed automaton M .

The paper is structured as follows. In Section 2 we review the basic notions

of timed automata. Section 3 presents the details of BMC for timed automata

together with the completeness results. Lower and upper bounds for the length

k of counterexamples are given. Section 4 illustrates BMC for networks, that

is, parallel composition of timed automata, and shows how complex systems

can be encoded into a Boolean constraint formula in a compositional way,

without �rst computing the product automaton of the components. Finally,

in Section 5 we present some experimental results using train gate controller

and Fischer's mutual exclusion protocol as benchmarks, and draw conclusions.
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2 Timed Automata

We review some basic notions of transition systems and timed automata.

Timed automata, as introduced by Alur, Courcoubetis, and Dill [3], are state-

transition graphs augmented with a �nite set of real-valued clocks. Given a

set of clock variables (or simply clocks) Cl = fx1; : : : ; xng, a clock-valuation

function v : Cl ! IR+
0 assigns a (positive) real value to each clock. Clock

constraints compare clock values with rational constants. Given a set Cl of

clock variables, x1; x2 arbitrary clocks,  2 IQ+
0 , and � 2 f�;�; <;>;=g, the

set � of clock (or timing) constraints over Cl is de�ned by the grammar

g := tt j ff j x1 �  j x1 � x2 �  j g1 ^ g2:

For a positive integer c, �(c) is the �nite subset of all timing constraints x � ,

x � y � , where x; y 2 Cl , � 2 f<;�;=;�; >g and  2 f0; : : : ; cg. Clock

constraints over Cl are interpreted with respect to clock-valuation functions

v : Cl ! IR+
0 . For a clock-valuation function v and a clock constraint g over

Cl , we write v j� g (to be read as \v satis�es g") to denote that according to

the values given by v the constraint g evaluates to true. Formally, v j� g is

de�ned inductively over the syntactic structure of g, where x1; x2 2 Cl are

arbitrary clocks,  2 IQ+
0 , and � 2 f�;�; <;>;=g:

v j6� ff v j� tt v j� x1 � x2 �  i� v(x1)� v(x2) � 

v j�x1 �  i� v(x1) �  v j� g1 ^ g2 i� v j� g1 and v j� g2

For Æ 2 IR+
0 , v+Æ denotes the clock valuation that maps each clock x 2 Cl

to the value v(x)+ Æ. For a clock x 2 Cl , v[r := 0] denotes the clock valuation

for Cl that maps the clocks in r to the value 0 and leaves all the other clock

values unchanged.

A timed automaton S is a tuple hL; l0;Cl ; E; Invi, where L is a nonempty

�nite set of locations, l0 � L is the initial location, and Cl is a �nite set

of clocks. Inv : L ! � assigns a set of downward closed clock constraints

to each location L; the elements of Inv(l) are the invariants for location l.
E � L � P(�) � P(Cl) � L is a �nite set of edges. An edge e = hl; g; r; l0i

represents a transition from location l to location l0. A transition may only

be �red if the timing constraint (guard of the transition) g holds with respect

to the current value of the clocks, and if the invariant of the target location is

satis�ed with respect to the modi�ed value of the clocks. Firing a transition

does not only change the current location but also resets the clocks in r to 0.

A timed automaton with three locations l0, l1, l2 and two clocks x, y is

displayed in Figure 1. The initial location is l0, transitions are decorated with

both timing constraints and clock resets such as x := 0. The invariant for

location l0 is y � 1. Timing constraints that are true are omitted.

Alur, Courcoubetis, and Dill [3] introduce the fundamental notion of clock

regions, which partition the space of possible clock evaluation for a timed

automaton into �nitely many regions. For a timed automaton S with clocks Cl
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l0
y � 1

l1 l2

x := 0

x := 0 y > xy := 0

x � y

Fig. 1. Example of a timed automaton (the simple example).

and largest constant c, occurring in any timing constraint of S, a clock region

is a set � of clock valuations, such that for all timing constraints g 2 �(c) and

for any two v1; v2 2 � it is the case that v1 j� g if and only if v2 j� g. In this

case we write v1�S v2. We will use [v] to denote the clock region to which v

belongs.

A state of a timed automaton S is a pair (l; v) where l 2 L is a location of

S and v a clock valuation for Cl . An initial state is of the form (l0; v0) where l0
denotes the initial state of S and v0 maps all clocks in Cl to 0. We extend the

satis�ability relation for clock constraints on states, as follows: for a state (l; v)
and a timing constraint g, (l; v) j� g i� v j� g. A timed step is either a delay

step, where time advances by some positive real-valued Æ, or an instantaneous

state transition step. For a timed automaton S = hL; l0;Cl ; E; Invi, and

Æ � 0, we say that the state (l; v + Æ) is obtained from (l; v) by a delay

step (l; v)
Æ
�!(l; v + Æ), if the invariant constraint v + Æ j� Inv(l) holds. A

state transition step (l; v)
g;r
�!(l0; v0) occurs if there exists an edge hl; g; r; l0i,

and v j� g, v0 = v[r := 0], and v0 j� Inv(l0). The union of delay and state

transition steps de�nes the timed transition relation) of a timed automaton

S. Now, a path � is an in�nite sequence of states (l0; v0); (l1; v1); : : : such that

(li; vi))(li+1; vi+1); 8i � 0.

3 System Veri�cation

Given a BMC problem for a timed automaton, an LTL formula with linear

arithmetic constraints, and a bound of the length of counterexamples to be

searched for, we describe a sound and complete reduction to the satis�ability

problem of Boolean constraint formulas. The encoding of the transition rela-

tions of the given automaton follows the now-standard approach already taken

in [18]. Whereas in [8,5,27] LTL formulas are translated directly into propo-

sitional formulas, we use B�uchi automata for this encoding. This simpli�es

substantially the notations and the proofs, but a direct translation can some-

times be more succinct in the number of variables needed. We use the common

notions for �nite automata over �nite and in�nite words, and we assume as
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given a theory C of linear arithmetic constraints with a satis�ability solver.

This theory includes the clock constraints �, and di�erence constraints of the

form x0 � x = y0 � y, or x0 = x + Æ where x; x0; y; y0 2 Cl are clock variables,

and Æ a positive real valued variable. Pratt observed that most inequalities

in program veri�cation are of the form x� y � c, where c is constant. Given

a conjunction C of such constraints, satis�ability of C can be decided using

the Bellman-Ford algorithm in time quadratic to the number of variables in

C. Shostak's [28] loop residue algorithm generalizes Pratt's results to arbi-

trary linear inequalities. For the simplicity of the presentation we consider

only timed automata that are nonzeno. Nonzenoness can be guaranteed, for

example, by restricting the model of timed automata to certain delay steps,

as illustrated in [24].

In order to make this paper as self-contained as possible, we recall some

notions and de�nitions from [13]. Consider a set V := fx1; : : : ; xng of variables

interpreted over nonempty domains D1 through Dn, together with a type

assignment � such that �(xi) = Di. For a set of typed variables V , a variable

assignment is a function � from variables x 2 V to an element of �(x). The

variables in V := fx1; : : : ; xng are also called state variables, and a program

state is a variable assignment over V . A pair hI; T i is a C-program over V

if I 2 Bool(C(V )) and T 2 Bool(C(V [ V 0)), where V 0 is a primed, disjoint

copy of V . V denotes the current state variables, while V 0 states for the next

state variables. I is used to restrict the set of initial program states, and

T speci�es the transition relation between states and their successor states.

The set of C-programs over V is denoted by Prg(C(V )). The semantics of a

program P is given in terms of a transition system M in the usual way, and,

by a slight abuse of notation, we sometimes write M for both the program

and its associated transition system.

A timed automaton S = hL; l0;Cl ; E; Invi can easily be described in

terms of a program with linear arithmetic constraints over state variables

V = fat ; x1; : : : ; xng, where at is interpreted over the set L of locations and

the clock variables x1; : : : ; xn 2 Cl are interpreted over IR+
0 .

De�nition 3.1 Given a timed automaton S = hL; l0;Cl ; E; Invi with Cl =

fx1; : : : ; xng the set of clocks. S can be de�ned as a hI; T i program in

Prg(C(V )) over the set V = fat ; x1; : : : ; xng, and V 0 = fat 0; x01; : : : ; x
0
ng as

follows.

� De�nition of the initial state

I := (at = l0 ^ x1 = 0 ^ : : : ^ xn = 0):

� De�nition of a state transition step corresponding to e = hl; g; r; l0i 2 E

T (e) := (at = l ^ g ^ x01 = z1 ^ : : : ^ x0n = zn ^ at 0 = l0 ^

Inv(l0)(x01; : : : ; x
0
n))

where zi = 0 if xi 2 r; otherwise zi = xi. The state formula Inv(l
0)(x01; : : : ; x

0
n)

is obtained from the invariant of location l0, Inv(l0), by replacing the vari-
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ables x1; : : : ; xn in the constraints of Inv(l
0) by the primed variables x01; : : : ; x

0
n.

� De�nition of delay steps (Inv(S) is the set of all locations that have an

invariant di�erent from true.)

D :=9Æ � 0: (
^

l2Inv(S)

(at = l ) Inv(l)(x01; : : : ; x
0
n))

^ (at 0 = at)

^ (x01 = x1 + Æ) ^ : : : ^ (x0n = xn + Æ)):

� De�nition of the transition relation T

T :=
_
e2E

T (e)
_

D:

The timed automaton depicted in Figure 1, for example, is expressed in

terms of the program hI; T i over state variables V = fat ; x; yg, and V 0 =

fat 0; x0; y0g, where at and at 0 are interpreted over the set of locations fl0; l1; l2g,

and the clock variables x; y; x0; y0 are interpreted over IR+
0 . Initially, the pro-

gram is in location l0 and the value of the clocks x; y is equal to 0. The

transitions are encoded by a conjunction of constraints over the current state

variables at ; x; y and the next state variables at 0; x0; y0.

I(at ; x; y) := (at = l0 ^ x = 0 ^ y = 0)

T (at ; x; y; at 0; x0; y0) := (at = l0 ^ x0 = 0 ^ y0 = y ^ at 0 = l0 ^ y0 � 1) _

(at = l0 ^ x0 = 0 ^ y0 = y ^ at 0 = l1) _

(at = l0 ^ y > x ^ x0 = x ^ y0 = y ^ at 0 = l1) _

(at = l1 ^ y0 = 0 ^ x0 = x ^ at 0 = l0) _

(at = l1 ^ x � y ^ x0 = x ^ y0 = y ^ at 0 = l2) _

D(at ; x; y; at 0; x0; y0)

The delay steps are encoding as

D(at ; x; y; at 0; x0; y0) =

9Æ � 0: ((at = l0 ) y0 � 1) ^ (at0 = at) ^ (x0 = x + Æ) ^ (y0 = y + Æ)):

The above formula is not contained in Bool(C), since the de�nition of D con-

tains an existential quanti�er, but the existential quanti�er can easily be elim-

inated.

D(at ; x; y; at 0; x0; y0) :=

((at = l0 ) y0 � 1) ^ (x0 � x � 0) ^ (y0 � y = x0 � x)^ (at 0 = at)):

Instead of using 4 clock variables, this formula can be als expressed using 3

variables as follows:

D(at ; x; y; Æ; at 0; x0; y0) :=

((at = l0 ) y0 � 1) ^ Æ � 0 ^ x0 = x+ Æ ^ y0 = y + Æ ^ (at 0 = at)):

This fact will be used for the compositional encoding of networks of timed

automata.
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The formulas of the constraint linear temporal logic LTL(�) are linear-time

temporal logic formulas with the usual \until" and \release" operators, and

constraints c 2 � as atoms.

' ::= true j false j c j '1 ^'2 j '1 _'2 j '1U '2 j '1R '2

The formula '1U '2 holds on a path � if there is a state on the path where

'2 holds, and at every preceding state on the path '1 holds. The release

operator R is the logical dual of U. It requires that '2 holds along the path

up to and including the �rst state, where '1 holds. However, '1 is not required

to hold eventually. The derived operators F' = trueU ' andG' = falseR '

denote \eventually '" and \globally '". Our logic does not contain a next-

step operator. The main interest in removing the next-step operator stems

from the fact that we do not want to distinguish between one delay step of

duration, say, 1 and two subsequent delay steps of durations 2=5 and 3=5, since

these traces are considered to be observationally equivalent. Logics without

explicit next-step operator have also been considered, for example, by Alur [1],

Henzinger, Nicollin, Sifakis and Yovine [18], and by Dams [10].

Given a programM 2 Prg(C) and a path � inM , the satis�ability relation

M;� j= ' for an LTL(�) formula ' is given in the usual way with the notable

exception of the case of constraint formulas c. In this case, M;� j= c if and

only if c holds in the start state of �. Assuming the notation above, the C-

model checking problem M j= ' holds i� for all paths � = s0; s1; : : : in M with

s0 2 I it is the case that M;� j= '.

The following lemma states that the logic LTL(�) preserves bisimulation.

The proof is by induction over the syntax of LTL(�).

Lemma 3.2 Given a program M with a �nite bisimulation M 0 (i.e. M �

M 0), and a formula ' 2 LTL(�); then M j= ' i� M 0 j= '.

Now, given a bound k, a program M 2 Prg(C(V )) and a formula ' 2

LTL(�) we consider the problem of constructing a formula [[M;' ]]k 2 Bool(C(V )),

which is satis�able if and only if there is a counterexample of length k for the

C-model checking problem M j= '. This construction proceeds as follows.

(i) De�nition of [[M ]]k as the unfolding of the program M up to step k from

initial states (this requires k disjoint copies of V ).

(ii) Translation of :' into a corresponding B�uchi automaton B:' whose lan-

guage of accepting words consists of the satisfying paths of :'.

(iii) Encoding of the transition system for B:' and the B�uchi acceptance

condition as a Boolean formula, say [[B ]]k.

(iv) Forming the conjunction [[M;' ]]k := [[B ]]k ^ [[M ]]k.

(v) A satisfying assignment for the formula [[M;' ]]k induces a counterexam-

ple of length k for the model checking problem M j= '.

De�nition 3.3 [Encoding of C-Programs] The encoding [[M ]]k of the kth un-

folding of a C-program M = hI; T i in Prg(C(fx1; : : : ; xng)) is given by the
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Boolean constraint formula [[M ]]k.

I0(x[0]) := Ihfxi 7! xi[0] j xi 2 V gi

Tj(x[j]; x[j + 1]) :=T hfxi 7! xi[j] j xi 2 V g [ fx0i 7! xi[j + 1] j xi 2 V gi

[[M ]]k := I0(x[0])^

k�1̂

j=0

Tj(x[j]; x[j + 1])

where fxi[j] j 0 � j � kg is a family of typed variables for encoding the state of

variable xi in the jth step, x[j] is used as an abbreviation for x1[j] : : : ; xn[j],

and T hxi 7! xi[j]i denotes simultaneous substitution of the xi by xi[j] in

formula T .

A two-step unfolding of the simple program in Figure 1, for example, is en-

coded by [[ simple ]]2 := I0 ^ T0 ^ T1 (�).

I0 := (at [0] = l0 ^ x[0] = 0 ^ y[0] = 0)

T0 := (at [0] = l0 ^ x[1] = 0 ^ y[1] = y[0] ^ at [1] = l0 ^ y[1] � 1) _

(at [0] = l0 ^ x[1] = 0 ^ y[1] = y[0] ^ at [1] = l1) _

(at [0] = l0 ^ y[0] > x[0] ^ x[1] = x[0] ^ y[1] = y[0] ^ at [1] = l1) _

(at [0] = l1 ^ y[1] = 0 ^ x[1] = x[0] ^ at [1] = l0) _

(at [0] = l1 ^ x[0] � y[0] ^ x[1] = x[0] ^ y[1] = y[0] ^ at [1] = l2) _

((at [0] = l0 ) y[1] � 1) ^ (x[1]� x[0] � 0) ^

(y[1]� y[0] = x[1]� x[0])^ (at [1] = at [0]))

T1 := (at [1] = l0 ^ x[2] = 0 ^ y[2] = y[1] ^ at [2] = l0 ^ y[2] � 1) _

(at [1] = l0 ^ x[2] = 0 ^ y[2] = y[1] ^ at [2] = l1) _

(at [1] = l0 ^ y[1] > x[1] ^ x[2] = x[1] ^ y[2] = y[1] ^ at [2] = l1) _

(at [1] = l1 ^ y[2] = 0 ^ x[2] = x[1] ^ at [2] = l0) _

(at [1] = l1 ^ x[1] � y[1] ^ x[2] = x[1] ^ y[2] = y[1] ^ at [2] = l2) _

((at [1] = l0 ) y[2] � 1) ^ (x[2]� x[1] � 0) ^

(y[2]� y[1] = x[2]� x[1])^ (at [2] = at [1]))

The translation of linear temporal logic formulas into a corresponding

B�uchi automaton is well-studied in the literature (for example, [16]) and does

not require additional explanation. Notice however, that, the translation of

LTL(�) formulas yields B�uchi automata with C-constraints as labels. Both

the resulting transition system and the bounded acceptance test based on the

detection of reachable cycles with at least one �nal state can easily be encoded

as Boolean constraint formulas [13].

De�nition 3.4 [Encoding of B�uchi Automata] Let V = fx1; : : : ; xng be a set

of typed variables, B = h�; Q;�; Q0; F i be a B�uchi automaton with labels �

in Bool(C), and pc be a variable (not in V ), which is interpreted over the �nite

set of locations Q of the B�uchi automaton. For a given integer k, we obtain,
as in De�nition 3.3, families of variables xi[j], pc[j] (1 � i � n, 0 � j � k)

for representing the jth state of B in a run of length k. Furthermore, the
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q0 q1
at = l2

at 6= l2

Fig. 2. Automaton for F (at = l2).

transition relation of B is encoded in terms of the C-program BM over the set

of variables fpcg[V , and [[BM ]]k denotes the encoding of this program as in

De�nition 3.3. Now, given an encoding of the acceptance condition

acc(B)k :=

k�1_
j=0

�
pc[k] = pc[j]^

n^
v=1

xv[k] = xv[j]^
� k_

l=j+1

_
f2F

pc[l] = f
��

the k-th unfolding of B is de�ned by [[B ]]k := [[BM ]]k ^ acc(B)k. The accep-

tance condition for B�uchi automata requires that some �nal state appears on

a run in�nitely often. This is encoded by the formula acc(B)k. The �rst 2

conjuncts pc[k] = pc[j] and
Vn

v=1 xv[k] = xv[j] describe the presence of a cycle

in the run between states j and k, while
Wk

l=j+1

W
f2F pc[l] = f guarantees

that inside the cycle, that is, between state j +1 and state k, there is at least

one �nal state contained.

An LTL(�) formula is said to be R-free (U-free) i� there is an equiva-

lent formula (in negation normal form) not containing the operator R (U).

Note that U-free formulas correspond to the notion of syntactic safety formu-

las [19,29]. Now, it can be directly observed from the semantics of LTL(�)

formulas that every R-free formula can be translated into an automaton over

�nite words that accepts a pre�x of all in�nite paths satisfying the given for-

mula.

De�nition 3.5 Given an automaton B over �nite words and the notation

as in De�nition 3.4, the encoding of the k-ary unfolding of B is given by

[[BM ]]k ^ acc(B)k with the acceptance condition

acc(B)k :=

k_
j=0

_
f2F

pc[j] = f .

Consider the problem of �nding a counterexample of length k = 2 to the

hypothesis that our running example in Figure 1 satis�es G:(at = l2), that

is, the timed automaton never reaches location l2. The negated property

F (at = l2) is an R-free formula, and the corresponding automaton B over

�nite words is displayed in Figure 2. This automaton is translated, according

to De�nition 3.5, into the formula

[[B ]]2 := I0(B)^T0(B)^T1(B)^ acc(B)2 . (��)

The variables pc[j] and at [j] (j = 0; 1; 2) are used to represent the �rst three

states in a run.

I0(B) := (pc[0] = q0)

T0(B) := (pc[0] = q0 ^ :(at [0] = l2) ^ pc[1] = q0) _
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(pc[0] = q0 ^ at [0] = l2 ^ pc[1] = q1)

T1(B) := (pc[1] = q0 ^ :(at [1] = l2) ^ pc[2] = q0) _

(pc[1] = q0 ^ at [1] = l2 ^ pc[2] = q1)

acc(B)2 := (pc[0] = q1 _ pc[1] = q1 _ pc[2] = q1)

The bounded model checking problem [[ simple ]]2 ^ [[B ]]2 for the simple pro-

gram is obtained by conjoining the formulas (�) and (��). Using the BMC

procedure over linear arithmetic constraints one �nds the counterexample

(l0; x = 0; y = 0)! (l1; x = 0; y = 0)! (l2; x = 0; y = 0)

of length 2. Counterexamples for timed property, such asG (at = l1 ) x > y),

can also be found by the BMC procedure.

The following two theorems are stated in [13].

Theorem 3.6 (Soundness) Let M 2 Prg(C) and ' 2 LTL(�). If there

exists a natural number k such that [[M;' ]]k is satis�able, then M j== '.

Theorem 3.7 (Completeness for Finite State Systems) Let M be a

C-program with a �nite set of reachable states, ' be an LTL(�) formula, and

k be a given bound; then: M j== ' implies 9k 2 IN: [[M;' ]]
k
is satis�able.

In general, BMC over in�nite domains is not complete. Consider, for

example, the model checking problem M j= ' for the program M = hI; T i

over the variable V = fxg with I = (x = 0) and T = (x0 = x + 1) and the

formula ' = F (x < 0). M can be seen as a one-counter automaton, where

initially the value of the counter x is 0, and with every transition the value of

x is increased with 1. Obviously, it is the case that M 6j= ', but there exists
no k 2 IN , such that the formula [[M;' ]]k is satis�able. Since :' is not an

R-free formula, the encoding of the B�uchi automaton Bk must contain, by

De�nition 3.4 a �nite accepting cycle, described by pc[k] = pc[0]^ x[k] = x[0]
or pc[k] = pc[1]^x[k] = x[1] etc. Such a cycle, however, does not exist, since

the program M contains only one noncycling, in�nite path, where the value

of x increases in every step, that is x[i + 1] = x[i] + 1, for all i � 0.

Theorem 3.8 (Completeness for Timed Automata) LetM be a timed

automaton de�ned as a C-program over a set of state variables V = fx1; : : : ; xng,

and ' be a formula in LTL(�); then:

M j== ' implies 9k: [[M;' ]]k is satis�able.

Proof. LetM 0 be the �nite region graph corresponding toM , also de�ned

as a C-program over the set of state variables V . From M j== ', it follows by
Lemma 3.2, that M 0 j== '. Let

[[M 0; ' ]]k := [[B ]]k ^ [[M
0 ]]k

be the bounded model checking problem for M 0 and '. Since M 0 is �nite,

by Theorem 3.7 there exists a k such that [[M 0; ' ]]k is satis�able. It remains

to show, that if [[M 0; ' ]]k is satis�able then also [[M;' ]]k is satis�able. From
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[[M 0; ' ]]k satis�able it follows that [[M 0 ]]k and [[B ]]k are satis�able. By De�-

nition 3.3

[[M 0 ]]k := I 00(x[0])^

k�1̂

j=0

T 0
j(x[j]; x[j + 1])

where the state formula I 00(x[0]) encodes the initial state (l0; [v0]), and the for-

mula T 0
j(x[j]; x[j + 1]) de�nes the transition relation. Obviously, the formula

I 00(x[0]) is equivalent to the state formula I0(x[0]), which describes the initial

state (l0; v0) of the program M . Let �0 = s00; s
0
1; : : : ; s

0
k�1, where s

0
i = (l0i; [v

0
i])

be a k-path in M 0. In [31] it has been shown that the region equivalence is

a bisimulation relation. Since M and M 0 are bisimilar, it follows that there

exists a k-path � = s0; s1; : : : ; sk�1 in M , where si = (li; vi) such that li = l0i
and vi 2 [v0i]. Similarly to the unfolding of M 0, M can be unfold up to step k

to make [[M ]]k and [[M 0 ]]k equisatis�able. 2

Lower bounds for the length k of counterexamples can be found by exam-

ining the structure of the B�uchi automaton for a given LTL(�) formula. A

lower bound is given by the length of the shortest path from the initial state

to a �nal/accepting state of the automaton. For a timed automaton M with

c the largest constant appearing in the guards and invariants of M , and t the

number of clocks, an upper bound for k is given by k � n � 2O(t log(ct)) � 2O(j'j),

where n is the number of locations ofM and n �2O(t log(ct)) the number of states

in the region graph of M [2].

Corollary 3.9 Let M be a timed automaton with c the largest constant

appearing in the guards and invariants of M , and t the number of clocks.

Further, let ' be a formula in LTL(�). If k = n �2O(t log(ct)) �2O(j'j) then M j= '

i� [[M;' ]]j is unsatis�able for all j � k.

4 BMC for Networks of Timed Automata

Complex systems are modeled as networks of timed automata, that is, parallel

composition of timed automata. Given two timed automata A1 and A2. For

de�ning synchronization on same events 2 , we assume two �nite alphabets

�1 and �2, whose elements are used to label the transitions of A1, respec-

tively A2. An edge of an automaton over an input alphabet � is now a tuple

e = hl; a; g; r; l0i. The product A1kA2 is de�ned in the obvious way [2]. The

locations of the product automaton are pairs of locations of its constituent

automata. The invariant of a new location consists of the conjunction of the

invariants of the component locations. Symbols that belong to both alphabets

are used for synchronization and must be taken simultaneously by both au-

tomata. Figure 3 illustrates two timed automata together with the resulting

2 We present here communication based on synchronized transitions. Communication based

on shared variables can be handled similarly.
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A1
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2

a; x := 0

x = 1; b A2

0 1

2

a; y = 2

c

A1 k A2

0; 01; 1

2; 0

0; 2

2; 2

a; y = 2; x := 0

b; x = 1

c

c

x = 1; b

Fig. 3. Product construction for timed automata.

product automaton.

In order to encode the system A1kA2 into a C-program, as described in

Section 3 using De�nition 3.1, the product automaton has to be constructed

�rst. For networks consisting of a large number of components this leads to

an exponential blow up in the number of resulting locations and transitions,

and therefore also in the length of the Boolean constraint formulas. Here, we

propose a method for encoding a network of timed automata into a C-program

in a compositional way, which does not require the construction of the product

automaton.

For encoding the actions of a timed automaton we use a variable act that

ranges over �1 [ : : :[�n [ fdelayg, where �i (i = 1; : : : ; n) are the alphabets

corresponding to the n input automata. The special action delay denotes the

fact that a time elapse step is performed.

For a timed automaton A with alphabet � and set of clocks Cl the formula

�x(A) is used to encode \inactivity", that is, the fact that A does not perform

any transition.

�x(A) := (at 0 = at ^
^
x2Cl

x0 = x ^

^
�2�[delay

act 6= �):

Every component is encoded in a similar way as illustrated in De�ni-

tion 3.1, with the additional encoding of transition actions.

De�nition 4.1 Consider a network of timed automata A1k : : : kAn, where

Ai = hLi; l
0
i ;�i;Cl i; Ei; Inv ii, over the set of clocks Cl i = fxi1 ; : : : ; xing, for

i = 1; : : : ; n. The network is encoded over the set of state variables V =

V1 [ : : : [ Vn, as the program

hIs; T s
i :=

^
i=1;:::;n

hIi; Tii ^ Æ � 0;

where Æ is a state variable interpreted over IR+
0 , and hIi; Tii encodes the au-
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tomaton Ai over the set Vi = fat i; xi1 ; : : : ; xin ; act ; Æg as follows:

� De�nition of the initial state (as in De�nition 3.1)

Ii := (at i = li0 ^ xi1 = 0 ^ : : : ^ xin = 0):

� De�nition of a state transition step corresponding to e = hl; a; g; r; l0i 2 Ei

Ti(e) := (at i = l ^ act = a ^ g ^ x0i1 = z1 ^ : : : ^ x0in = zn ^

at 0i = l0 ^ Inv i(l
0)(xi0

1
; : : : ; xi0

n
))

where zij = 0 if xij 2 r; otherwise z = x. The state formula Inv i(l
0)(xi0

1
; : : : ; xi0n)

is obtained from the invariant of location l0, Inv i(l
0), by replacing the

variables xi1 ; : : : ; xin in the constraints of Inv i(l
0) by the primed variables

xi0
1
; : : : ; xi0n .

� De�nition of delay steps (Inv(Ai) is the set of all locations that have an

invariant di�erent from true.)

Di :=
^

l2Inv(Ai)

(at i = l ) Inv i(l)(xi0
1
; : : : ; xi0n)) ^

act = delay ^

x0i1 = xi1 + Æ ^ : : : ^ x0in = xin + Æ ^

at 0i = at i:

� De�nition of the transition relation T

Ti := (_e2Ei
Ti(e)) _ �x(Ai) _ Di:

The network consisting of the timed automata A1 and A2 from Figure 3,

for example, is de�ned as a program

hIs; T s
i = hI1; T1i ^ hI2; T2i ^ Æ � 0

over the set of variables

V = fat1; at2; x; y; act ; dg; and V 0 = fat 01; at
0
2; x

0; y0g;

where hI1; T1i encodes the timed automaton A1, and hI2; T2i encodes A2.

I1=(at1 = 0 ^ x = 0)

I2=(at2 = 0 ^ y = 0)

T1=(at1 = 0 ^ at 01 = 1 ^ x0 = 0 ^ act = a) _

(at1 = 0 ^ at 01 = 2 ^ x = 1 ^ x0 = x ^ act = b) _

(at1 = at 01 ^ x0 = x ^ act 6= a ^ act 6= b ^ act 6= delay) _

(at1 = at 01 ^ x0 = x + Æ ^ act = delay)

T2=(at2 = 0 ^ at 02 = 1 ^ y = 2 ^ y0 = y ^ act = a) _

(at2 = 0 ^ at 02 = 2 ^ y0 = y ^ act = c) _

(at2 = at 02 ^ y0 = y ^ act 6= a ^ act 6= c ^ act 6= delay) _

(at2 = at 02 ^ act = delay ^ y0 = y + Æ)

Theorem 4.2 (BMC for Networks of Timed Automata) Consider two

timed automata with disjoint set of clocks, Ai = hLi; l
0
i ;�i;Cl i; Ei; Inv ii, for
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i = 1; 2. Let M s = hIs; T s
i be the program corresponding to the network

A1kA2 as given in De�nition 4.1, and M = hI; T i be the program encoding

the product automaton A1�A2 according to De�nition 3.1. Then for a k 2 IN ,

the kth unfolding of M s and M are equisatis�able, that is [[M s ]]k � [[M ]]k.

Proofsketch. By induction over k we show that [[M ]]k and [[M s ]]k are

equisatis�able.

5 Discussion and Conclusion

We presented a bounded model checking procedure (BMC) for timed automata

and linear temporal logic with real-valued clock constraints. The main con-

tribution is a complete BMC algorithm for timed automata 3 , which is com-

positional in that Boolean constraint formulas encoding complex systems can

be obtained by Boolean combinations of the encoding of the components. A

direct encoding of the product automaton would cause an exponential blow

up in the length of the resulting Boolean constraint formula. Further, we give

lower and upper bounds for the length k of counterexamples, that depend on

the structure of the B�uchi automaton of the given formula, and the region

automaton corresponding to the timed automaton.

Recently and independently, bounded model checking for timed systems

has also been studied by other researchers. Niebert, Mahfoudh, Asarin, Bozga,

Jain, and Maler [25] give a translation for timed automata into formulas in

Pratt's di�erence logic, and express bounded reachability problems for timed

automata as formulas in this logic. Audemard, Cimatti, Kornilowicz, and Se-

bastiani [5] extend the techniques from [8] to timed systems, and illustrates

that the performance time for bounded reachability for timed systems can

considerably be improved using symmetry reduction. Penczek, Wozna, and

Zbrzezny [27] also extend the techniques from [8] to timed automata and

TACTL. The region graph corresponding to the timed automaton, together

with a TACTL formula are encoded into a Boolean constraint formula, whose

satis�ability is checked using an in-house developed tool. The presented tech-

nique is not compositional.

The main problem of the BMC approach is to come up with eÆcient algo-

rithms for solving the satis�ability problem for Boolean constraint formulas.

Specialized data structures for timed automata, such as di�erence bounded

matrices (DBM) [14], clock di�erence diagrams (CDD) [21], or di�erence de-

cision diagrams (DDD) [23], can not be applied directly for BMC, since the

generated formulas contain clock constraints of the form x0 � x = y0 � y, as

needed for encoding the delay steps. However, timing constraints that relate

4 clock variables can be reduced to equivalent timing constraints with 2 vari-

ables, expressible in Pratt's di�erence logic, by introducing a global variable T

that measure the time since the system start, without beeing reset, as shown

3 The completeness proof can be adapted to any systems with a �nite bisimulation.
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in [25]. For every clock xi the variable Ci = T � xi represents the last time

when xi was reset. Now, guards and invariants are evaluated on T�Ci instead

of on xi, time elapse a�ects only T , and a reset of xi at time T corresponds

to the assignment Ci := T .

On the other hand, general-purpose theorem proving, such as PVS [26],

which uses a combination of BDDs [7] and linear arithmetic reasoning based

on loop residue [28], does not work very eÆcient. For example, �nding a coun-

terexample of length k = 2 in the (modi�ed) train gate controller protocol re-

quires around 70 seconds, and for k = 3 around 8500 seconds. Recently, new

techniques for checking satis�ability of Boolean constraint formulas, have been

developed, by combining SAT solvers with domain-speci�c decision procedures

based on lemmas on demand [13,6]. A prototypical satis�ability solver [13,12]

has been implemented that combines an own SAT solver with the decision pro-

cedures ICS [15]. The core of the satis�ability solver is a re�nement algorithm

based on lazy theorem proving. In each re�nement step, the Boolean satis-

�ability checker is used to suggest candidate assignments. Then ICS checks

whether such a Boolean assignment determines a consistent assignment for

the corresponding set of constraints. Whenever such a consistency check fails,

the current Boolean formula is re�ned by adding a Boolean analogue of this

inconsistency. The SAT solver is restarted, and a new candidate assignment

for the re�ned formula is suggested.

We have performed some initial experiments, using the train gate controller

and Fischer's mutual exclusion protocol [20], with a slight modi�cation of

the timing constraints. We encoded the system consisting of train, gate, and

controller as a Boolean constraint formula in a compositional way, as described

in Section 4, and checked the safety property that whenever the train is in

the crossing the gate should be closed. On a Pentium III, 500 MHz, 1GB,

we found a counter example of length 4 in 0.01 seconds. Using the correct

version of the protocol, that is with timing constraints that guarantee the

above safety property, we prove that there is no counterexample of length i, for

i � 100. The timing performance for k = 10; 20; 30; 40; 50; 60; 70 is illustrated
in Figure 4. For k = 80 the obtained time was greater then 4 hours, and for

k = 100 greater then 5 hours. Note, that in the case of the correct version of

the train gate controller we are performing bounded veri�cation, and not only

searching for counterexamples.

We also encoded Fischer's mutual exclusion protcol with of n = 2; : : : ; 10

processes as a Boolean constraint formula in a compositional way. On a Pen-

tium III, 500 MHz, 1GB, for 5 processes a counterexample of length 9 was

found in 25.87 seconds. For a system consisting of 10 processes a counterex-

ample of length 8 was found in 62.42 seconds.

Although in an initial phase, the performed experiments show that BMC

is a promising technique for verifying timed systems. Errors in larger systems

for which conventional timed model checking tools fail or are ineÆcient, can

be found using BMC.
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Fig. 4. Train gate controller { time for searching for counterexamples of length 5

to 100. For length 10 we obtain 0.46 seconds, for length 50, 508 seconds, and for

length 70, 1655 seconds.
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