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Foreword

The EXPRESS workshops aim at bringing together researchers interested in

the relations between various formal systems, particularly in the �eld of Con-

currency. More speci�cally, they focus on the comparison between program-

ming concepts (such as concurrent, functional, imperative, logic and object-

oriented programming) and between mathematical models of computation

(such as process algebras, Petri nets, event structures, modal logics, rewrite

systems etc.) on the basis of their relative expressive power.

The EXPRESS workshops were originally held as meetings of the HCM

project EXPRESS, which was active with the same focus from January 1994

till December 1997. The �rst three workshops were held respectively in Am-

sterdam (1994, chaired by Frits Vaandrager), Tarquinia (1995, chaired by

Rocco De Nicola), and Dagstuhl (1996, co-chaired by Ursula Goltz and Rocco

De Nicola). The workshop in 1997, which took place in Santa Margherita

Ligure and was co-chaired by Catuscia Palamidessi and Joachim Parrow, was

organized as a conference with a call for papers and a signi�cant attendance

from outside the project. The 1998 workshop was held as a satellite work-

shop of the CONCUR'98 conference in Nice, co-chaired by Ilaria Castellani

and Catuscia Palamidessi, and like on that occasion EXPRESS'99 was hosted

by the CONCUR'99 conference in Eindhoven, co-chaired by Ilaria Castellani

and Bj�orn Victor. The EXPRESS'00 workshop was again held as a satellite

workshop of CONCUR 2000, Pennsylvania State University, USA, co-chaired

by Luca Aceto and Bj�orn Victor.

This volume contains the preliminary proceedings of EXPRESS'01, which

was held in Aalborg, Denmark, on 20 August 2001. It includes the eight

papers that were selected for presentation by the program committee. The

�nal proceedings will appear as volume 52 in the ENTCS series, which can be

found at the URL:

http://www.elsevier.nl/locate/entcs/volume52.html.

We would like to thank the authors of the submitted papers, the invited

speakers, and the members of the program committee for their contribution to

both the meeting and this volume. Many thanks to KimG. Larsen and Mogens

Nielsen (CONCUR 2001 Conference Chairs), Anna Ing�olfsd�ottir (Chair of the

CONCUR 2001 Organizing Committee) and Hans H�uttel (Satellite Workshops

Chair) for the opportunity they gave us to organize EXPRESS'01, and for their

continuous support. We would also like to thank Michael Mislove and U�e

Engberg for their great help with the editing of the proceedings. Finally, we

gratefully acknowledge the support of BRICS (Basic Research in Computer

Science), Centre of the Danish National Research Foundation.

Luca Aceto, BRICS, Aalborg University, Denmark

Prakash Panangaden, McGill University, Canada
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An Automata-Theoretic Approach to the

Reachability Analysis of RPPS Systems

A. Labroue 1 and Ph. Schnoebelen 2

Laboratoire Sp�eci�cation & V�eri�cation,

ENS de Cachan & CNRS UMR 8643,

61 av. Pdt. Wilson, F-94235 Cachan Cedex, France

Abstract

We show how the tree-automata techniques proposed by Lugiez and Schnoebelen

apply to the reachability analysis of RPPS systems. Using these techniques requires

that we express the states of RPPS systems in a tailor-made process rewrite system

where reachability is a relation recognizable by �nite tree-automata.

Keywords: veri�cation of in�nite-state systems, process algebra, reacha-

bility analysis, tree automata, model checking.

1 Introduction

This paper is concerned with the veri�cation of RPPS systems (for Recur-

sive Parallel Program Schemes), an abstract model introduced in [13,15] that

models the control 
ow of programming languages with recursive coroutines.

As shown in, e.g., [9,10], the reachability analysis of such models has impor-

tant applications in the static analysis of programming languages with parallel

constructs.

While RPPS systems can be seen as some kind of Petri nets with nested

markings (the viewpoint adopted in [13,15]), we argue that it is worthwhile to

see them as an in�nite-state process algebra (or process rewrite system). This

approach is very active (see [4] for a recent survey of achievements), partly

because it tackles a wide range of veri�cation problems (bisimulation check-

ing, temporal logic model checking, etc.), and also partly because there exist

several interesting process algebras (with quite di�erent expressive power) ob-

tained by simple syntactic restrictions on the allowed rewrite rules [20,18].

1 Email: labroue@lsv.ens-cachan.fr
2 Email: phs@lsv.ens-cachan.fr

c
2001 Published by Elsevier Science B. V.
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Labroue and Schnoebelen

Tree automata

Recently [17] showed how reachability problems for the PA process algebra 3

could be solved simply and elegantly via tree-automata techniques. Beyond

the use of tree-automata, the approach heavily relies on an important idea:

one should not consider process terms modulo any of the usual structural

congruences. These congruences make process notations much lighter, and

bring them closer to the intended semantics, but they hide regularity and are

not really compatible with the tree-automata approach.

The tree-automata approach to PA is further developed in [16] where it

is shown that the reachability relation between PA processes is an e�ectively

recognizable relation, which gives decidability of the �rst-order transition logic

over PA.

Our contribution

In this paper, we investigate whether the Lugiez & Schnoebelen approach to

PA can be made to work for RPPS systems.

There are three main results in the paper. First we design RPA, a process

rewrite system that encodes RPPS systems in a carefully chosen way. Then

we prove that reachability between RPA terms is a recognizable relation: we

use alternating tree-automata for a more direct proof. Finally, we show how

reachability between RPPS markings can be reduced to reachability questions

between RPA terms, ending with a direct automata-theoretic algorithm. As

a corollary, we obtain a proof of NP-completeness for reachability between

RPPS markings.

The diÆculties in this work come from the fact that natural ways of encod-

ing RPPS markings in a process-algebraic notation make it hard to de�ne cor-

responding transitions via SOS (for Structural Operational Semantics, see [1])

rules without losing the recognizability theorem we aim at. In particular, we

see no way of using the PA process algebra for this task.

Related works

Previous decidability results on RPPS [13,15] relied on more ad-hoc tableaux

methods or the well-structure of RPPS [11]. These results were weaker than

what we o�er in section 7.

The use of recognizable sets of con�gurations for symbolic model checking

has recently been called \Regular model checking" in [3]. This approach is

weaker (but more practical) since it does not require that iterated successors

or predecessors of a set of states form an e�ectively computable recognizable

language: only immediate predecessors or successors are handled (sometimes,

the transitive closure of loops can be handled).

There exist several other systems for which the reachability relation is

3 A fragment allowing recursive de�nitions mixing sequential and parallel composition,

without synchronization [2].

2
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Labroue and Schnoebelen

recognizable: it is semilinear for BPP [8], de�nable in the additive theory

of reals for timed automata [7], a recognizable relation between words for

some string rewrite systems [5] including pushdown processes (see [14] for

applications to �-calculus model checking). Our approach di�ers in two points:

recognizability is in a tree-automata framework, and it requires that we invent

a new process algebra in which to encode RPPS systems.

Plan of the paper

We �rst recall RPPS schemes (Section 2) before we introduce RPA (Section 3)

and show how to encode RPPS schemes faithfully (Section 4). Then we recall

the basic tree-automata notions (Section 5) we need to prove our main theorem

(Section 6) and explain the practical implications (Section 7). A �nal section

explains how reachability between RPPS markings can be solved in NP with

tree automata.

2 Recursive-parallel program schemes

RPPS systems were introduced as an abstract model for RP programs: we

refer the reader to [13,15] for motivations and examples. Here we present the

formal model without justi�cation.

2.1 The structure of RPPS systems

A = fa; b; : : :g is a set of action names that does not contain the special

actions call, wait, and end. We write ~A (ranged over by �; �; : : :) for A [

fcall; wait; endg.

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

call

call

a

b

wait

a

end

c

wait

end

Fig. 1. A scheme

A scheme is a �nite rooted graph G = hQ; q0;�i where

� Q is a �nite set of nodes,

� q0 2 Q is the initial node,

3
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Labroue and Schnoebelen

� � is the labeled 
ow function that maps any node q to a tuple in (A�Q)[

(fcallg �Q�Q) [ (fwaitg �Q) [ fendg.

� has a clumsy mathematical appearance but is graphically easy to un-

derstand: every node is followed by in general one node, sometimes a pair

of nodes or no node at all. For example, the system depicted in Fig. 1 has

�(q0) = ha; q1i;�(q1) = hcall; q2; q6i; : : : ;�(q9) = end.

2.2 Behavioral semantics

The behavioral semantics of G is given via an in�nite labeled transition

system MG. Informally, a state of MG is a multiset of nodes (denoting the

current control states of concurrent processes) organized with a father-son

relationship (relating a process with the father process that spawned it via a

call instruction). The corresponding formal de�nition is given below, and

we refer to [13,15] for more intuitions.

Formally, the set of hierarchical states (also, \markings", or \states")

of a system G is the least set M(G) s.t. for any n nodes (not necessarily

distinct) q1; : : : ; qn of G, and hierarchical states s1; : : : ; sn 2 M(G) the

multiset s = f(q1; s1); : : : ; (qn; sn)g is in M(G) 4 . In particular, ; 2 M(G).

We use the customary notations \s + s0", \s � s0", : : : to denote sum,

inclusion, : : : of multisets and hence of hierarchical states. Below we write

(q; s) for the singleton multiset f(q; s)g. The size jsj of a state is given by

jf(qi; si) j i = 1; : : :gj
def

=
P

i=1;:::(1 + jsij).

We now formally de�ne what are the transitions !� M(G)� ~A�M(G)

between hierarchical states: ! is the least set of triples (s; a; s0), written

s
a
�! s0, satisfying the following rules:

action: if �(q) = (a; q0) then (q; s)
a
�! (q0; s) for all s, (Ga)

end: if �(q) = end then (q; s)
end

�! s for all s, (Ge)

call: if �(q) = (call; q0; q00) then (q; s)
call

�! (q0; s+ (q00; ;)) for all s, (Gc)

wait: if �(q) = (wait; q0) then (q; ;)
wait

�! (q0; ;), (Gw)

paral1: if s
�
�! s0 then s+ s00

�
�! s0 + s00 for all s00, (Gp1)

paral2: if s
�
�! s0 then (q; s)

�
�! (q; s0) for all q 2 Q. (Gp2)

Rules paral1 and paral2 for parallelism express that any activity s
�
�! s0

can still take place when brothers are present (i.e. in some s + s00) or when

a parent is present (i.e. in some (q; s)). The wait rule states how we can

4 A hierarchical state of the form s = f(q1; s1); : : : ; (qn; sn)g has n completely indepen-

dent concurrent activities. One such activity, say (qi; si), is the invocation of a coroutine

(currently in state/node qi) together with its family of children invocations (the si part).

4
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Labroue and Schnoebelen

only perform a wait statement in state q if the invoked children are all ter-

minated (and then not present anymore). The other rules state how children

invocations are created and kept around.

Finally, MG is hM(G); ~A;!; s0i where the initial state is s0
def

= (q0; ;).

Example 2.1 (q0; ;)
a
�! (q1; ;)

call

�! (q2; (q6; ;))
c
�! (q2; (q7; ;))

call

�!

(q2; (q8; (q6; ;)))
b
�! (q3; (q8; (q6; ;))) � � � is an execution sequence of the sys-

tem MG associated with the scheme of Fig. 1.

As the wait rule shows, nodes that can only be exited via a wait step

behave conditionally: we denote by Q? the set of the states q of Q such that

�(q) = (wait; q0) for some q0, while Q! denotes Q nQ?.

3 The process algebra RPA

We now de�ne RPA, a process algebra designed to encode RPPS schemes.

3.1 RPA terms

We assume a scheme G = hQ; q0;�i is �xed and consider the set Const
def

=

Q [ f0g ranged over by c; : : : TG, the set of RPA terms, or just \terms",

ranged over by t; u; v; : : : is given by the following syntax:

t; u ::= c j t I u:

For t a term, we write State(t) the set of all nodes from Q that occur in t.

The size of t, denoted jtj, is the number of symbols in t, given by jcj
def

= 1 and

jt I uj
def

= 1 + jtj+ juj.

RPA terms are binary trees but the left- and right-hand sides do not play

the same rôle, so that it is more natural to see them as combs with some c

from Const at the deep left end, and a list of subterms on the right of the

spine (see example on Fig. 2). This motivates introducing the convenient

abbreviation \c In (u1; : : : ; un)", de�ned inductively by c I0 () = 0 and

c In (u1; : : : ; un) =
�
c In�1 (u1; : : : ; un�1)

�
I un. We only use the \In"

abbreviation with a c 2 Const in the left-hand side.

u1

un�1

un

c

I

I

I

...

...

Fig. 2. c I
n (u1; : : : ; un)

5
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A (guarded) RPA declaration is a �nite set � � Q � ~A � Const � TG of

rules, written fqi
�
�!� ci; ti j i = 1; : : : ; ng. The qi's need not be distinct. For

technical convenience, we require that all q 2 Q appear in the left-hand side

of at least one rule.

3.2 Semantics

Let Act
def

= ~A � f!; ?g. For convenience, we write �! and �? rather than (�; !)

and (�; ?). A declaration � de�nes a labeled transition �!� TG � Act � TG,

given by the following SOS rules:

R1
q

�!

�! q0 I t
if (q

�
�!� q0; t) 2 � and q 2 Q! R3

t
�!

�! t0

u I t
�!

�! u I t0

R2
q

�?

�! q0 I t
if (q

�
�!� q0; t) 2 � and q 2 Q? R4

t
�?

�! t0

u I t
�!

�! u I t0

R5
t
�!

�! t0

t I u
�!

�! t0 I u
R6

t
�?

�! t0

t I u
�?

�! t0 I u
if State(u) = ;

The intuition is that a step t
�x

�! u in TG encodes a step st
�
�! su in MG

(where st is the hierarchical state denoted by t). The extra label x =! (resp.

x =?) means that this step can (resp. cannot) occur on top of active children

processes. The label is chosen by rules R1, R2, tested by rules R5, R6, and

propagated according to the semantics.

We write u
!

�! v (resp. u
?

�! v) when u
�!

�! v (resp. u
�?

�! v) for some �,

and u �! v when u
!

�! v or u
?

�! v. For n 2 N , we let \
n
�!" and \

n;!
�!" denote

respectively the iterated relations (!)
n
and

�
!

�!
�n

. Also ! � denotes the

closure
S

n2N

n
�!. As usual, \u �!" and \u 6�!" mean respectively that u �! v

for some v (resp. for no v).

3.3 Basic properties of RPA steps

We now list some key lemmas about the transitions between terms. These

results aim at explaining how one can decompose a compound step into smaller

steps and will be the basis of the construction in section 6.

Lemma 3.1 If u I v ! w then w has the form u0 I v0 and either (u ! u0

and v = v0) or (v ! v0 and u = u0).

Proof. By case analysis of rules R3{R6. 2

Lemma 3.2 If u! v then jvj > juj.

6
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Proof. By induction on the derivation u �! v. The base cases are transitions

q �! q0 I t. 2

Lemma 3.3 q ! � q0 i� q = q0.

Proof. q
n
�! q0 entails n = 0 (Lemma 3.2). 2

The next six lemmas are proved in the Appendix. Lemma 3.5 gives a

characterization of
!

�! � .

Lemma 3.4 u �! i� State(u) 6= ;.

Lemma 3.5 u
!

�! � v i� for all t 2 TG, u I t! � v I t.

Lemma 3.6 v I t
!

�! � v0 I t0 i� v
!

�! � v0 and t! � t0.

Lemma 3.7 v I t! � v0 I t0 i� t! � t0 and

(
t0 6! and v ! � v0,

or v
!

�! � v0.

Lemma 3.8 q ! � v I t i� there exist c and u s.t. (q !� c; u) is a rule in

�, u! � t, and

(
t 6! and c! � v,

or c
!

�! � v.

Lemma 3.9 q
!

�! � v I t i� q 2 Q! and there exist c and u s.t. q !� c; u is a

rule in �, u! � t and c
!

�! � v.

4 Embedding RPPS schemes into RPA

The behavior of an RPPS scheme G can be faithfully encoded in RPA. We

consider a set of rules �G obtained from �. For any q 2 Q,

action: if �(q) = (a; q0) then �G contains q
a
�! q0; 0, (Da)

end: if �(q) = end then �G contains q
end

�! 0; 0, (De)

call: if �(q) = (call; q0; q00) then �G contains q
call

�! q0; q00, (Dc)

wait: if �(q) = (wait; q0) then �G contains q
wait

�! q0; 0. (Dw)

Thus �G can be seen as an application from Q to ~A� Const� TG.

We now associate a hierarchical state S(t) with any term t 2 TG and,

reciprocally, a term T (s) with any s 2 M(G). The aim is to de�ne what

hierarchical state is encoded by term t, and what term can be used to encode

hierarchical state s.

7
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The mappings S and T are de�ned inductively by

T (f(q1; s1); : : : ; (qn; sn)g)
def

= 0 In (q1 I T (s1); : : : ; qn I T (sn)) (T)

S (0 In (u1; : : : ; un))
def

= S(u1) + � � � + S(un) (S1)

S (q In (u1; : : : ; un))
def

= (q;S(u1) + � � � + S(un)) (S2)

where equation (T) for T (s) requires that one picks some ordering of the

elements of the multiset s.

S and T behave like an abstraction-concretization pair:

Lemma 4.1 For all s 2M(G), S(T (s)) = s.

Proof. By structural induction on s, using equations (T,S1,S2). 2

S gives rise to an equivalence between RPA terms: t �S u
def

, S(t) = S(u).

We write [u] for the equivalence class of u w.r.t. �S , and T�S
for the set of

the equivalence classes of TG.

Observe that �S is not a congruence: (0 I u) �S u whereas

(0 I u) I v 6�S u I v

It is now possible to state how steps between RPA terms are related to

steps between RPPS hierarchical states. This is done by abstracting over the !

or ? extra label that RPA steps carry, and that is only used for a compositional

de�nition of steps. Write u
�
�! t when u

�"

�! t for some " 2 f!; ?g.

Proposition 4.2 1. For all u; v in TG and � in ~A, if u
�
�! t then S(u)

�
�! S(t).

2. For all s; s0 in M(G) and � in ~A, if s
�
�! s0, then T (s)

�
�! u for some u 2 TG

such that S(u) = s0.

Proof (Idea). 1. (resp. 2.) is proved by induction on u (resp. s) and a tedious

case analysis. 2

The meaning of Proposition 4.2 is that, modulo the abstraction mapping

from Act to ~A that sends �" to �, S is a bisimulation between the RPA

transition system generated by �G and the transition systemMG we want to

analyze.

5 Tree languages and tree automata

Here we recall the classical tree-automata notions we need. We refer to [6]

and [22] for more details.

5.1 Tree languages

Given a �nite ranked alphabet F = F0 [F1 [ : : : [Fm, TF denotes the set of

�nite trees (or terms) built from F : for example, with F0 = fa; bg, F1 = fg; hg

8

8



Labroue and Schnoebelen

and F2 = ffg, TF contains trees like a, f(a; b) and f(g(f(h(b); a)); b). A tree

language is any subset L of TF .

5.2 Tree automata

A tree automaton is a tuple A = hF ;Q; F; Æi where F is a �nite ranked

alphabet, Q = fp; p0 : : :g is a �nite set of control states, F � Q is a set of

accepting states and Æ � [n2N (Q�Fn�Q
n) is a �nite set of transition rules.

We refer to [6] (or [17]) for the classical de�nition of when a tree t is

recognized by state p of A, written p
�
7! t. For p 2 Q; L(p) denotes ft j p

�
7! tg.

L(A)
def

=
S

p2F L(p) is the tree language recognized by A.

Example 5.1 Continuing with our previous example, and setting Q =

fp0; p1g, the set of rules describes a top-down tree automaton

p0 7! a p0 7! b p1 7! g(p0)

p0 7! g(p1) p0 7! h(p1) p1 7! h(p0)

p0 7! f(p1; p1) p0 7! f(p0; p0) p1 7! f(p0; p1)

p1 7! f(p1; p0)

A possible derivation of f(h(b); a) by A is p1 7! f(p1; p0) 7! f(h(p0); p0) 7!

f(h(p0); a) 7! f(h(b); a). So p1
�
7! f(h(b); a).

5.3 Alternating tree automata

An alternating tree automaton is a tuple A = hF ;Q; F; Æi where now Æ is

a n-indexed family of maps from Q � Fn to B+(f1; : : : ; ng � Q). Here, for

a given set X, B+(X) is the set of positive Boolean formulas over X (i.e.,

Boolean formulas built from elements in X using ^ and _), where we also

allow the formulas true and false. For example we could have Æ(p; f) = (1; p1)_

((1; p2) ^ (2; p3) ^ (2; p4)).

We refer to [22] for the classical de�nition of when a tree t is recognized by

state p of some alternating A. It is well-known that standard tree automata

can be seen as alternating automata where only disjunctions are used, and that

the class of trees languages recognized by alternating tree automata is exactly

the class of tree languages recognized by non-alternating tree automata.

5.4 Recognizable relations on trees

We follow [6, Chapter 3] and [16]. A tuple ht1; : : : ; tni of n trees from TF
can be seen as a single tree, denoted t1 � � � � � tn, on a product alphabet

F�n def

= (F [ f?g)n where the arity of f1 : : : fn is the maximum of the arities

of the fi, assuming ? has arity 0.

For instance the pair hf(a; g(b)); f(f(a; a); b)i can also be seen as

ff(af(?a;?a); gb(b?)).

9
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We say a n-ary relation R � T n
F is recognizable i� the set of all t1�� � �� tn

for (t1; : : : ; tn) 2 R is a regular tree language over F�n.

6 Recognizability of the reachability relation for RPA

The reachability relations! � and
!

�! � between RPA terms are recognizable:

Lemma 6.1 The set Lterm

def

= fu 2 TG j u 6!g of terminated terms is recog-

nizable.

Proof. u 6! i� State(u) = ; (Lemma 3.4). Thus the automaton with an

unique accepting state p# and the transition rules

Æ(p#; 0) = true; Æ(p#; q) = false; Æ(p#;I) = (1; p#) ^ (2; p#) (1)

recognizes Lterm. 2

We now consider the alternating automaton A �

�!
whose states are p, �p, p#

and all pt and �pt for t a subterm of some term appearing in � (thus jQj is in

O(j�j)).

A �

�!
recognizes pairs of terms. Here we de�ne the alternating transition

function Æ with the following assumptions: (1) we omit the rules for Æ(p#; : : :),

(2) when Æ(p0; fg) is not explicitly de�ned (for some p0 2 Q and some f; g 2

(F [ f?g)) this means Æ(p0; fg) is false, and (3) we quantify over all q 2 Q,

all c 2 Const , and all f 2 (F [ f?g).

Æ(p; 00) = Æ(�p; 00) = true (2)

Æ(p; qq0) = Æ(�p; qq0) =

(
true if q = q0,

false otherwise
(3)

Æ(p;II) = (2; p) ^
�
(1; �p) _ ((2; p#) ^ (1; p))

�
(4)

Æ(�p;II) = (1; �p) ^ (2; p) (5)

Æ(p; q I) =
_

q�!�c;u

(2; pu) ^
�
(1; �pc) _ ((2; p#) ^ (1; pc))

�
(6)

Æ(�p; q I) =

8><
>:

_
q�!�c;u

(2; pu) ^ (1; �pc) if q 2 Q!,

false otherwise

(7)

10
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Æ(pt; f0) = Æ(�pt; f0) =

(
true if t = 0,

false otherwise
(8)

Æ(pt; fq) = Æ(�pt; fq) =

(
true if t = q,

false otherwise
(9)

Æ(pt1It2; f I) = (2; pt2) ^
�
(1; �pt1) _ ((2; p#) ^ (1; pt1))

�
(10)

Æ(�pt1It2; f I) = (1; �pt1) ^ (2; pt2) (11)

Æ(pq; f I) = Æ(p; q I) (12)

Æ(�pq; f I) = Æ(�p; q I) (13)

This automaton satis�es the following correctness property:

Lemma 6.2

L(p) = fu� v j u! � vg; L(�p)= fu� v j u
!

�! � vg; (14)

L(pt) = fu� v j t! � vg; L(�pt) = fu� v j t
!

�! � vg; (15)

L(p#) = fu� v j v 6!g; (16)

where u; v are any terms of TG [ f?g.

Proof (Sketch). The rules for Æ(p#; : : :) are the obvious modi�cations of (1)

so that they apply to the second element of a pair u� v while we do not take

care of the �rst element.

The proof is by induction over the derivations u ! � v, . . . , for the (�)

directions, and by induction over the product term for the (�) directions.

It turns out every transition rule between (2) and (13) is justi�ed by a

behavioral property we already proved. For example, Lemma 3.3 accounts for

(3) while Lemma 3.4 accounts for all rules Æ(p#; fg). Similarly, (5) is a direct

transposition of Lemma 3.6. 2

We obtain the important corollary:

Theorem 6.3 The relations ! � and
!

�! � are recognizable. Furthermore, a

tree automaton recognizing them only needs O(j�j) states.

Proof. Our construction used an alternating automaton for clarity (the

clauses de�ning Æ mimic lemmas from section 3.3) but it is easy to adapt the

construction and get a (non-deterministic bottom up) tree automaton with

O(j�j) states. 2

7 Applications

Theorem 6.3 immediately leads to decidability results for RPA terms (and

RPPS schemes). The nice thing with these results is that they all involve the

11
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same smooth and general automata-theoretic reasoning.

Reachability sets. For any recognizable language L, the sets Pre�(L)
def

=

fu j u
�
�! v for some v 2 Lg and Post�(L)

def

= fu j v
�
�! u for some v 2 Lg

are recognizable, and the corresponding automata can be obtained in

polynomial-time by standard intersection and projection constructs on au-

tomata (assuming an automaton for L is known).

Reachability under constraints. These result extend to reacha-

bility under constraints, i.e. to the sets Pre�C(L)
def

= fu j u
�
�!

v for some v 2 L and � 2 Cg and Post�C(L)
def

= fu j v
�
�!

u for some v 2 L and � 2 Cg where C � Act� is a constraint on ac-

ceptable labels for reachability. Not all regular C � Act� can be dealt with

in this approach (see [17,16]) but interesting regular constraints, called

decomposable constraints, are allowed [21].

Model checking the logic EF. Using Pre� and standard constructs for in-

tersection and complementation, one can compute for any formula ' of the

modal logic EF, the set Mod(') of all terms that satisfy ' (see [17,19]).

Here, EF can even be enriched with decomposable constraints.

Note that since bisimilar processes satisfy the same EF formulas, we have

s j= ' i� T (s) j= ', so that this approach allows model checking RPPS

schemes.

Model checking the transition logic. EF only needs e�ective recogniz-

ability of Pre�(L) for recognizable L. But with recognizability of
�
�!, we

get a simple model checking algorithm for the full transition logic 5 , i.e. the

�rst-order logic FO(�!;
�
�!). See [16] for details and applications.

8 Reachability between RPPS markings

Here we reduce the problem of reachability between RPPS markings to

reachability questions between RPA terms. As a result, we get a simple

automata-theoretic algorithm for RPPS reachability, from which NP-

completeness of reachability is easily derived.

Write u
�
) v when u �S u

0 �
�! v0 �S v for some u0; v0. We adopt the usual

extensions u
�
) v (for � 2 Act�) and u

�
) v. Reachability between RPPS

markings reduces to
�
)-reachability between RPA terms, in the following for-

mal sense:

Proposition 8.1 Given two RPPS markings s and s0, s
�
�! s0 in MG i�

T (s)
�
) T (t) in TG.

5 It is diÆcult to extend this decidability result: by encoding a grid structure into RPA,

one can easily show that model checking MSO(�!), the monadic second-order logic with

�! as the only predicate, is undecidable over RPA terms.

12
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Proof. Combine Prop. 4.2 and the de�nition of ). 2

8.1 Another characterization of �S

Our next task is to obtain a characterization of �S that is more manageable

from a regular tree languages viewpoint. We do this with in several small

steps, with the help of some simpli�cation or permutation relations between

RPA terms. The basic concepts (con
uence, commutations, . . . ) used in this

subsection are standard in the study of reduction systems (see e.g. [12]).

8.1.1 Simpli�cation

The relationsy and& are de�ned inductively by the following erasing rules:

0 I uy u (E1)

c In (t1; : : : ; ti�1; 0 I
m (u1; : : : ; um); ti+1; : : : ; tn)&

c In+m�1 (t1; : : : ; ti�1; u1; : : : ; um; ti+1; : : : ; tn)
(E2)

if ti& u, then c In (t1; : : : ; tn)& c In (t1; : : : ; ti�1; u; ti+1; : : : ; tn) (E3)

We let&& denotey[& and will use juxtaposition to denote the composition

of relations. Observe that ty&u implies t&yu, and that tyyu implies

t&yu. Thus, writing&&� for the re
exive-transitive closure of&&, we deduce

that&&� coincide with&�
y

� and then with&y=, wherey= denotesy[ Id .

When t&&�u, we say that u is a simpli�cation of t. We write.. and �.. to

denote the reverse relations (&&)
�1

and (&&�)
�1
. Since u&& t implies juj > jtj,

&& is noetherian and &&� is a well-founded partial ordering.

Lemma 8.2 (Con
uence) If u.. v&& w, then u = w or u&& v0 .. w for

some v0.

Proof. By induction on v and case analysis. See Appendix A.7. 2

Hence, by Newman's Lemma, && is convergent: we let t# denote the sim-

pli�cation normal form of t, i.e. the unique u one obtains by simplifying t as

much as possible.

8.1.2 Permutation

The relation � is de�ned inductively by the following rules:

c In (t1; : : : ; tn)� c In (t1; : : : ; ti�1; ti+1; ti; ti+2; : : : ; tn) (P1)

if ti � u, then c In (t1; : : : ; tn) � c In (t1; : : : ; ti�1; u; ti+1; : : : ; tn) (P2)

� is symmetric. We write
�

� to denote the re
exive-transitive closure of �.

When t
�

� u, we say t and u are permutationally equivalent.

The next lemma allows commuting simpli�cation and permutation:

Lemma 8.3 (Commutation) If u� v&&w, then u.. v0
�

�w for some v0.

13
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Proof. By induction on u and case analysis. See Appendix A.8. 2

By symmetry, u..�w entails u
�

�..w.

8.1.3 Convertibility

Finally, we combine simpli�cations and permutations in!, a relation de�ned

as
�
&& [ � [ ..

��
. When u! v, we say that u is can be converted in v.

Lemma 8.4 The following are equivalent:

(a) u! v,

(b) there exist two terms u0 and v0 s.t. u&&� u0
�

� v0 �.. v,

(c) u#
�

� v#.

Proof. Obviously (c) ) (b) ) (a). One proves (a) ) (b) by a standard

\peaks into valleys" normalization: Lemmas 8.2 and 8.3 allow erasing local

peaks. Termination is guaranteed because
�

� &&
�

� is noetherian, so that

the multiset of peaks strictly decreases (in the well-founded multiset ordering

obtained from
�

�&&
�

�) after every local transformation.

Then (b) ) (c) is easy: u! v entails u# �.. u! v&&� v# or shortly

u#! v#. Thus u# &&�
�

�

�.. v# by (a) ) (b). But since u# and v# cannot

be simpli�ed further, we get u#
�

� v#. 2

Proposition 8.5 u �S v if and only if u! v.

Proof. The (() direction is obvious: a simple inspection of the rules show

that u&v or uyv or u�v implies S(u) = S(v). The ()) direction is proved

in Appendix A.9. 2

Having decomposed �S into \permutation" and \simpli�cation" allows a

partial answer to the question of \what is the set of terms that belong to some

regular set L modulo S-equivalence?".

For a tree language L de�ne

[L]
�

def

= fu j 9t 2 L; u
�

� tg; [L]..
def

= fu j 9t 2 L; u&&� tg;

[L]!
def

= fu j 9t 2 L; u! tg: [L]&&
def

= fu j 9t 2 L; t&&� ug;

If L is regular, then [L]
�

and [L]! are not regular in general, while [L]..
and [L]&& are. For our purposes, we shall need the following:

Lemma 8.6 If L is regular then [L].. is regular. Furthermore, from a tree

automaton A recognizing L, one can build in polynomial-time a tree automaton

A0 for [L].. with jA0j = O(jAj
2
).

Proof (Idea). First, for any pair p; q of states of A, we add a state rqp and

rules such that t
�
7! rqp i� t is some 0 In (t1; : : : ; tn) and p In (t1; : : : ; tn)

�
7! q

14
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in A. Then, whenever q I q0
�
7! q00, we add all rules of the form rqp I q0 7! rq

00

p .

With further rules p I rqp 7! q and rqp I rrq 7! rrp, the resulting automaton has

t
�
7! p i� t&� u for some u with u

�
7! p in A.

Then the construction is easily completed in view of &&� = &�
y

=. 2

8.2 Transitions modulo �S

We can now prove that �S (or equivalently!) respects behaviours in a sense

stronger than just being included in the largest bisimulation:

Proposition 8.7 �S is a bisimulation relation modulo the abstraction of

f!; ?g labels, i.e. u �S v and u
�
�! u0 implies that v

�
�! v0 for some v0 with

v �S v
0.

Proof (Idea). Standard but tedious. One proves that �, & and y are

bisimulations up-to!. Prop. 8.5 concludes. 2

Proposition 8.8 For any � 2 Act�, t
�
) u i� t

�
�! u0 for some u0 �S u.

Proof. By induction on the length of � and using Prop. 8.7. 2

With Prop. 8.5 and Lemma 8.4, we get

Lemma 8.9 u
�
) v i� u

�
�! w for some w s.t. v#

�

� w#.

8.3 A NP-algorithm for
�
)-reachability

We can now prove the following

Theorem 8.10
�
)-reachability between RPA terms is NP-complete.

Proof. NP-hardness is well-known already for simpler process algebra like

BPP [8].

We now show membership in NP. Given u and v, we compute v# in

polynomial-time, guess a w s.t. v#
�

� w (note that jwj � jvj), build a tree

automaton for L = [w].. using Lemma 8.6, and then an automaton for

L0 = Pre�(L) = ft j t
�
�! t0 2 Lg using Theo. 6.3 (these automata can be

built in polynomial-time). We answer yes if u 2 L0. Lemma 8.9 states that

this algorithm is correct. 2

9 Conclusion

We encoded RPPS systems into RPA, a process rewrite system that combines

several features:

� it has an e�ectively recognizable reachability relation,

� hence an uniform tree automata method can compute the models of any

formula written in the transition logic TL,
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� which can be used for the reachability analysis of RPPS systems.

The diÆculty in that work was to discover a process-algebraic presentation of

hierarchical states where transitions are local enough so that the reachability

relation is recognizable, which is the sensitive problem. The consequence

is that the link between hierarchical states and RPA terms is not direct:

�S is not a congruence, we need to use two notions \u
�!

�! v" and \u
�?

�! v", etc.

We see this work as more proof of the power of process rewrite systems

for the analysis of various kind of of in�nite state systems. At the same time,

it also shows that tree-automata are a powerful tool for the analysis of such

process rewrite systems.

A Appendix

A.1 Proof of Lemma 3.4

()): by induction on the derivation u �!.

(() by induction on u. If u = 0 then State(u) = ;. If u = q 2 Q then we

assumed � has at least one rule q
a
�! q0; v. If u is some u1 I u2, then either

State(u1) 6= ; or State(u2) 6= ;:

1. if State(u2) 6= ; then u2 �! by ind. hyp. and then u �! by R3-R4.

2. if State(u2) = ; then State(u1) 6= ;, u1 �! by ind. hyp., and then u �!

by R5-R6. Observe that the condition on the application of R6 causes no

problem.

A.2 Proof of Lemma 3.5

The ()) direction is obvious with rule R5.

For the (() direction we pick q 2 Q and show by induction on n 2 N that

u I q
n
�! v I q implies u

!

�! � v:

1. n = 0: then u I q = v I q. It follows that u = v and u
!

�! � v.

2. n > 0: then u I q
n�1
�! t! v I q. t must be some t1 I t2 (Lemma 3.1)

and t2
i
�! q for some 0 � i � 1. Necessarily i = 0 (Lemma 3.2) and then

t2 = q. t �! v I q is obtained by R5 since State(q) 6= ; rules out R6. Hence

t1
!

�! v. We conclude by noting that the ind. hyp. gives u
!

�! � t1.

A.3 Proof of Lemma 3.6

((): Assuming v
!

�! � v0 and t! � t0, we have v I t
!

�! � v I t0 by R3-R4 and

v I t0
!

�! � v0 I t0 by R5.

()): Assume v I t
!

�! v0 I t0. This was obtained by R3, R4 or R5, so that

(v
!

�! v0 and t = t0), or (v = v0 and t �! t0). Hence v
!

�! � v0 and t �!� t0.
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If now v I t
n;!
�! v0 I t0 for some n 2 N , the previous reasoning and an easy

induction on n gives v
!

�! � v0 and t �!� t0.

A.4 Proof of Lemma 3.7

((): one gets v I t
!

�! � v I t0 by R3-R4, and follows with v I t0 �!� v0 I t0

by R5 if v
!

�! � v0, or by R5-R6 if v ! � v0 and t0 6!.

()): we have either (a) v I t
!

�! � v0 I t0 or (b) v I t ! � v1 I t1
?

�! v2 I

t2 !
� v0 I t0. In case (a), Lemma 3.6 concludes. In case (b), rule R6 requires

State(t1) = ; so that t1 6!. It follows that t0 = t1 and t0 6!.

A.5 Proof of Lemma 3.8

()): the �rst step of q ! � must be some q �! c I u obtained by R1-R2 via

some q !� c; u in �. Then c I u! � v I t and Lemma 3.7 concludes.

((): this direction is obvious by combining R1-R2 and Lemma 3.7.

A.6 Sketch Proof of Lemma 3.9

This extends Lemma 3.6 exactly like the previous lemma extended Lemma 3.7.

A.7 Proof of Lemma 8.2

We prove the lemma by induction on v. Assume u.. v && w with u 6= w,

write v under the form c In (v1; : : : ; vn), and consider the following cases:

� If v&&u using rule (E1), then v = 0 I u and, since u 6= w, w = 0 I u0 with

u&& u0. Then u&& u0.. w.

� If v&&u using rule (E2) on vi, then if v&&w also uses rule (E2) (on vj with

j 6= i) it is easy to show u&&..w. If v&&w uses rule (E3), then u&&..w

is equally obvious.

� If v && u using rule (E3), then u = c In (v1; : : : ; vi�1; ui; vi+1; : : : ; vn)

with vi & ui. The only interesting case for v && w is when w = c In

(v1; : : : ; vi�1; wi; vi+1; : : : ; vn) with vi & wi (the other cases are mirror im-

ages of cases we already considered). Here, since ui 6= wi, the ind. hyp.

gives ui&& v00.. wi for some v00 and we deduce u&&..w.

A.8 Proof of Lemma 8.3

We assume u� v && w and prove the Lemma by induction on w. Write w

under the form c In (w1; : : : ; wn). If n = 0 then v = 0 I c and no u exists

s.t. u� v. Thus n > 0 and we now consider all cases for v&& w:

� If v&& w by rule (E1), then v = 0 I w and u = 0 I w0 with w0
� w. We

are done since u&& w0.
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� If v && w by rule (E2), then v is some c In�m+1 (w1; : : : ; wi�1; 0 I
m

(wi; : : : ; wi+m�1); wi+m; : : : ; wn) with m possibly 0. Now there are several

cases for u� v:

If u� v by rule (P2), or by rule (P1) in a way that does not touch the

0 Im (wi; : : : ; wi+m�1) subterm of v, then it is easy to see that u&&�w.

Otherwise the 0 I
m (wi; : : : ; wi+m�1) subterm of v is

swapped with wi�1 or wim . In the �rst case u is c I
n�m+1

(w1; : : : ; wi�2; 0 I
m (wi; : : : ; wi+m�1); wi�1; wm; : : : ; wn) and u && v0 =

c In (w1; : : : ; wi�2; wi; : : : ; wi+m�1; wi�1; wm; : : : ; wn) works since v0
�

� w

with m uses of rule (P1). The second case is similar.

� If v&& w by rule (E3), v is c In (w1; : : : ; wi�1; w
0
i; wi+1; : : : ; wn) for some i

and w0
i s.t. w

0
i && wi. The cases where u� v by rule (E1), or by rule (E2)

on a subterm di�erent from w0
i, are easy to deal with.

The interesting case is when u = c In (w1; : : : ; wi�1; w
00
i ; wi+1; : : : ; wn)

and w00
i � w0

i. Then the induction hypothesis applied on w00
i � w0

i && wi

yields w00
i && v00

�

�wi for some v00, and we deduce u&& v0
�

�w with v0 = c In

(w1; : : : ; wi�1; v
00; wi+1; : : : ; wn).

A.9 Proof of Proposition 8.5

There only remains to prove the ()) direction of Prop. 8.5. We start with

the following lemma:

Lemma A.1 u! u0 implies c In (: : : ; u; : : :)! c In (: : : ; u0; : : :).

Proof. By induction on the length of the derivation ti ! u. For the base

case, assume u&u0 (resp. uyu0, u�u0): one concludes using rule (E3) (resp.

(E2), (P2)). 2

We are now ready to prove that S(u) = S(v) entails u! v. The proof is

by induction on juj+ jvj. We assume that u and v are resp. c In (u1; : : : ; un)

and c0 Im (v1; : : : ; vm) and consider several cases:

� If c 2 Q and c0 = 0, then S(u) = (c;
P

i S(ui)) and S(v) =
P

j S(vj).

Hence there is some k s.t. S(vk) = S(u) and for all j 6= k, S(vj) = ;. By

ind. hyp. we have vk ! u and vj ! 0 for j 6= k. Thus v ! 0 Im

(0; : : : ; 0; u; 0; : : : 0) by Lemma A.1. Then v! 0 I u by (E2) and v! u

by (E1). The case where c = 0 and c0 2 Q is symmetric.

� If c = 0 = c0, then S(u) =
P

i S(ui) and S(v) =
P

j S(vj). If c; c
0 2 Q, then

S(u) = (c;
P

i S(ui)) and S(v) = (c0;
P

j S(vj)). In both cases, c = c0 andP
i S(ui) =

P
j S(vj).

Now, if each ui and each vj has the form q I� (: : :) with q 2 Q, then

n = m and there is a bijective h s.t. S(ui) = S(vh(i)). By ind. hyp.,

ui ! vh(i), then u! c In (vh(1); : : : ; vh(n)) by Lemma A.1, then u! v

by (P1).

Otherwise some ui or vj has the form 0 Ik (w1; : : : ; wk), we use rule (E2)
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to 
atten the corresponding term in u or v and we repeat the process until

no such ui and vj exists. Eventually we obtain u&� u0 and v&� v0 with u0

and v0 having the form of the previous subcase, concluding the proof.
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Abstract

An adequate set of temporal connectives for CTL is a subset of the logic's temporal

connectives that is suÆcient to express equivalents for all CTL formulas.

In this paper, a characterization of all such adequate sets is presented. Speci�cally,

it is shown that a subset of CTL's temporal connectives is adequate if and only if

it contains one of fAX;EXg, one of fEG;AF;AUg, and EU.

The proof requires, among other things, the analysis of a certain class of mod-

els, the re
exive models. These models have the desirable property that several

connectives become redundant, thus simplifying the analysis.

1 Introduction

Recall the de�nition of an adequate set of connectives:

De�nition 1.1 An adequate set of connectives for a logic is a subset S of its

connectives such that every formula of the logic is equivalent to some formula

of the sublogic generated by S.

Why should we be interested in adequate sets? There are several reasons.

One is the tradeo� between expressive power and diÆculty of proof and imple-

mentation. For instance, it is certainly easier to express typical propositional

sentences using :, ^, _, and! rather than using a single adequate connective

such as the She�er stroke (NAND). But inductive proofs and computer imple-

mentations will be simpler if there are fewer connectives. So it is of interest

to have ways to express formulas using a larger set of connectives in terms of

a smaller set.

1
Research supported in part by NSERC and the University of Ottawa.

2
Email: martin@igs.net

c
2001 Published by Elsevier Science B. V.

21



Martin

Adequate sets of connectives are also connected to the problem of clas-

sifying sublogics generated by subsets of connectives. Determining which of

these are distinct up to equivalence of formulas is equivalent to describing the

adequate sets of connectives for each of the sublogics. In practice it is usually

only necessary to consider the original logic and a few of its sublogics.

Most reasonable logics have a substitution theorem, which states that uni-

form replacement of an atom with an arbitrary formula preserves validity and

equivalences. If this is the case then an adequate set of connectives can be used

to express equivalents not only for formulas, but also for formula schemes.

In this paper, we are particularly interested in Computation Tree Logic, or

CTL, a branching-time temporal logic due to Clarke and Emerson [1]. Some

earlier work on branching-time temporal logics [4,7] allowed the application

of path quanti�ers to linear-time temporal logic (LTL) formulas. A very gen-

eral such logic is CTL* (see, for example, [6]), a logic with good expressive

power but an NP-complete model-checking problem [1]. CTL was developed

as a logic that provides much expressive power, but unlike CTL*, admits an

eÆcient model-checking algorithm.

CTL has been used as the basis for model checking systems in practice.

The model checker SMV [9] is based on CTL, and it has been used to verify

properties of various systems, for example a cache coherence protocol for an

IEEE bus architecture standard (see [2]).

In this paper, we will de�ne the formulas of CTL using the BNF:

� ::=Atom j > j ? j :� j � ^ � j � _ � j �! � j A� j E�

� ::=X� j F� j G� j � U �

Here � de�nes the state formulas, while � de�nes the path formulas. This

mutually recursive de�nition is derived from CTL*, of which CTL is a sublogic;

only the state formulas are considered to be CTL formulas, but the use of path

formulas simpli�es the semantics. Accordingly, the temporal connectives of

CTL are considered to be the combinations of path quanti�ers A and E with

modal connectives X, F, G, and U. That is, there are unary connectives

fAX;AF;AG;EX;EF;EGg and binary connectives fAU;EUg.

A model M for CTL consists of a set S of states, a labelling function

L : S ! Atoms, and a transition relation Tran � S � S, such that for every

s 2 S, there is s0 2 S such that (s; s0) 2 Tran.

The satisfaction relation j= is de�ned by mutual recursion over state formu-

las and path formulas, according to the following rules, where M is a model,

s 2 S, and � = (s0 ! s1 ! s2 ! � � � ) is a path in M:

� M; s j= A� if and only if for all paths �0 in M starting at s, M; �0 j= �.

� M; s j= E� if and only if there exists a path �0 in M starting at s such

that M; �0 j= �.

� M; � j= X' if and only if M; s1 j= '.

� M; � j= F' if and only if there is i � 0 such that M; si j= '.

2
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� M; � j= G' if and only if for all i � 0, M; si j= '.

� M; � j= 'U  if and only if there exists i � 0 such that M; si j=  and for

all j such that 0 � j < i, M; sj j= '.

The usual rules apply for propositional connectives and constants, and an

atom p is satis�ed at those states s with p 2 L(s).

This paper presents a complete characterization of the adequate sets of

temporal connectives for CTL.

After this paper had been written, the author learned that the main result

of Lemma 3.5 had been previously proven [8].

1.1 Acknowledgements

This paper was written as part of the author's M.Sc. thesis at the University

of Ottawa under the supervision of Dr. Richard Blute. The author would

like to thank Dr. Blute and the University of Ottawa, as well as Dr. Prakash

Panangaden of McGill University who read an earlier version.

2 Adequacy Theorem

Theorem 2.1 The adequate sets of temporal connectives for CTL are exactly

those sets of temporal connectives containing at least one of fAX;EXg, at least
one of fEG;AF;AUg, and EU.

The requirement for EU may seem surprising at �rst. However, the fact

that there is no such requirement for AU does not give a contradiction, since

AU and EU are not dual. If we allow boolean combinations of path formulas

with the usual semantics (as in CTL*), we can write the path formula equiva-

lence :('U ) � ((: )U(:'^: ))_G: (see, for example, [6]). However,

when we apply a path quanti�er to both sides of this equivalence, we get a

CTL equivalence only if that quanti�er distributes over _, that is, only for E

(in which case we get equivalence (6), below), not for A.

One direction of the proof is straightforward: to prove that every such set

of temporal connectives is in fact adequate.

Lemma 2.2 The sets of temporal connectives speci�ed in Theorem 2.1 are

adequate.

Proof. We claim that the following are equivalences in CTL:

AX'�:EX:'(1)

AF'�:EG:'(2)

AG'�:EF:'(3)

AF'�A[> U '](4)

EF'�E[> U '](5)

A[' U  ]�:E[:' U (:' ^ : )] ^ AF (6)

3
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Fig. 1. ModelM demonstrating inadequacy of S1

For proofs of these and similar equivalences, see, for example, [6].

Given any set of connectives S as speci�ed in Theorem 2.1 and any CTL

formula ', we can use equation (1) to write whichever of AX and EX does not

occur in S in terms of the other one. Then, if one of EG or AF occurs in S,

we can use equations (2) and (6) to write all of EG, AF, and AU in terms of

EU and whichever of them occurs in S. Otherwise, AU occurs in S and we

can use equations (2) and (4) to write EG and AF in terms of AU. Finally, we

can use equations (3) and (5) to write AG and EF in terms of EU. In all cases

we have found a formula ' 0 of the sublogic generated by S that is equivalent

to the given formula '. 2

The other direction is more diÆcult. We must show that any set of tem-

poral connectives not meeting the conditions of Theorem 2.1 is not adequate.

Since a superset of an adequate set is adequate, it is enough to consider only

three sets of temporal connectives:

S1 :=C n fAX;EXg

S2 :=C n fEG;AF;AUg

S3 :=C n fEUg

where C := fAX;AF;AG;AU;EX;EF;EG;EUg is the set of all CTL temporal

connectives.

Lemma 2.3 The set of temporal connectives S1 := C n fAX;EXg is not ad-

equate.

Proof. We consider the CTL formula EX p and the model M shown in Fig-

ure 1.

There is only one path, � = (s0 ! s1 ! s2 ! s2 ! � � � ), starting at s0,

and similarly there is only one path �0 = (s1 ! s2 ! s2 ! � � � ) starting at s1.

We have M; s0 6j= EX p and M; s1 j= EX p. But we claim that if ' is a

formula not using AX or EX, then M; s0 j= ' if and only if M; s1 j= ', so in

particular ' cannot be equivalent to EX p. This will show that S1 is not an

adequate set.

We will prove this claim by structural induction on '. We may assume by

equivalences (1){(6) that ' uses only the temporal connectives EG and EU.

The base case is if ' is an atom, >, or ?. In this case the claim is obvious,

since s0 and s1 are identically labeled.

If ' has a propositional connective as its principal connective, then the

claim follows trivially from the induction hypothesis.

4
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Fig. 2. ModelM demonstrating inadequacy of S2

If ' = EG , then M; s0 j= ' if and only if M; si j=  for i 2 f0; 1; 2g,
and M; s1 j= ' if and only if M; si j=  for i 2 f1; 2g. But by the induction

hypothesis, M; s0 j=  if and only if M; s1 j=  ; so we can conclude that

M; s0 j= ' if and only if M; s1 j= '.

If ' = E[ U  0], then M; s0 j= ' if and only if there exists i � 0 such

that M; �i j=  0, and for all j with 0 � j < i, M; �j j=  . (Here �i denotes

the i th state of �, numbered from zero.) Using the induction hypothesis,  

and  0 each have the same truth value at s0 and s1. We consider cases: if

i < 2, then M; s0 j=  0, and if i � 2, then M; s0 j=  and M; s2 j=  0.

Each of these implies M; s0 j= ', so we can conclude that M; s0 j= ' if

and only if one of these conditions holds. We can do a similar case analysis

and �nd that M; s1 j= ' if and only if either M; s1 j=  0, or M; s1 j=  

and M; s2 j=  0. But using the induction hypothesis again, the two sets of

conditions are equivalent, so again we conclude that M; s0 j= ' if and only if

M; s1 j= '. This completes the induction. 2

We have seen the �rst technique that will be needed to prove that a set S

is not adequate: Find a CTL formula ', which is claimed not to be equivalent

to any formula in the sublogic generated by S. Then for any given CTL

formula  with temporal connectives from S, �nd two states (in the same or

di�erent models) such that ' is true at one and false at the other, but  has

the same truth value at both. (Similar techniques were used by Lamport [7].)

Lemma 2.4 The set of temporal connectives S2 := C n fEG;AF;AUg is not

adequate.

Proof. In this case we will consider an in�nite model M. Its states are si
for i � 0 and s0

i
for i < 0. All states are labeled with ; except for s0 which is

labeled with fpg. There are transitions from si to si+1, from s0
i
to si+1, from

s0
i
to s0

i
for i < 0, and from s0 to s0. Part of this model is shown in Figure 2.

There is a unique path starting at any state si, which eventually reaches

s0 which satis�es p. So for all i � 0, M; si j= AF p. But starting at any

state s0
i
, there are in�nitely many paths that may remain at s0

i
for some time

5
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but eventually transition to si+1 and continue on to s0, as well as a constant

path remaining at s0
i
forever. The latter path does not satisfy F p, so for all

i < 0, M; s0
i
6j= AF p. But we claim that for any formula ' not using EG, AF,

or AU, there exists n' < 0 such that ' has the same truth value at all states

si and s
0

i
with i � n', so in particular ' cannot be equivalent to AF p. This

will show that S2 is not an adequate set.

Again we proceed by structural induction on '. We may assume, using

the equivalences (1){(6), that ' uses only the temporal connectives EX and

EU. The base case, where ' is an atom, >, or ?, is trivial. If the principal
connective of ' is propositional, we can take n' to be the minimum of the n

values for the operand(s) of this connective and the claim clearly holds.

If ' = EX , let n' := n � 1. For i � n', M; si j= ' if and only if

M; si+1 j=  , and M; s0
i
j= ' if and only if either M; s0

i
j=  or M; si+1 j=  .

But by the induction hypothesis,  has a constant truth value on si and s0
i

for i � n , and i � n' implies i+ 1 � n . So we can conclude that ' has the

same truth value on si and s
0

i
for i � n' as  has on si and s

0

i
for i � n , and

the claim holds.

If ' = E[ U 0], then by the induction hypothesis,  has a constant truth

value on si and s
0

i
for i � n , and  

0 has a constant truth value on si and s
0

i

for i � n 0. Let n' := min(n ; n 0). If  0 is true at the states si and s
0

i
for

i � n', then so is ' and the claim holds. Otherwise we may assume  0 is false

at all of these states, since it has a constant truth value on them. In this case,

we consider  . If it is false at the states si and s
0

i
for i � n', then so is ' and

the claim holds. So we may also assume that  is true at all of these states.

Now if any state si or s
0

i
for i � n' satis�es ', then the path from that state

satisfying  U  0 must go through sn'+1, and we must have M; sn'+1 j= '.

But every state si or s
0

i
with i � n' has a path to sn'+1 along which every

state satis�es  ; then all of these states satisfy '. So either all of these states

satisfy ' or none of them do, and in either case the conclusion holds. This

completes the induction. 2

This time we needed a slightly di�erent approach. For any �xed �nite

n, every CTL formula is equivalent on models with at most n states to some

formula using only the next-time connectives AX and EX. (This can be shown

using �xed-point techniques; see, for example, [6].) So when proving that a set

of temporal connectives that includes AX or EX is not adequate, it is necessary

to consider arbitrarily large models. (Again, similar techniques were used in

[7].)

Showing that S3 is not adequate will use both of the techniques we have

seen already. But �rst we need some results on re
exive models.

3 Re
exive models

De�nition 3.1 A model M is re
exive if its transition relation is re
exive,

i.e. if there is a loop on every state.

6
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Re
exive models are of interest for a variety of reasons. In modal logics,

re
exiveness corresponds to a meaningful axiom, and in models of compu-

tation, re
exiveness corresponds to allowing idling. But our interest in this

property is simply that it will eliminate many of the diÆculties involved in a

proof that S3 is not an adequate set.

When considering a subclass of models, it is natural to ask about equiva-

lence (and validity) relative to this subclass. Since equivalence means having

equal truth values in all models, a smaller class of models yields a coarser

equivalence relation.

De�nition 3.2 Let ' and  be CTL formulas. Suppose that for all re
exive

models M and states s of M, M; s j= ' if and only if M; s j=  . Then we

will say that ' and  are equivalent on re
exive models, and we will write

' �r  .

There is, as usual, a substitution theorem:

Theorem 3.3 If ' �r '
0,  �r  

0, and p is any atom, then '[ =p] �r

' 0[ 0=p].

Proposition 3.4 The following equivalences hold on re
exive models, where

' and  are arbitrary CTL formulas:

EG'�r '(7)

AF'�r '(8)

A[' U  ]�r  (9)

Proof. Suppose M is a re
exive model and s is a state inM. Then M; s j=
A[' U  ] if and only if for every path � starting at s, M; � j= ' U  . In

particular, the constant path at s (which must exist since M is re
exive)

satis�es 'U , soM; s j=  . Conversely, ifM; s j=  , clearlyM; s j= A['U ].

So we have proved (9). The other cases are similar. 2

We have shown that the connectives EG, AF, and AU are redundant on

re
exive models. This will make the job of proving that S3 is not an adequate

set much easier.

On the other hand, the connectives AG, EF, and EU behave exactly the

same on any modelM and its re
exive closureM0 (which has the same states

asM). That is, any CTL formula using only these three temporal connectives

has the same truth values on corresponding states of M and M0. This can

be proved by induction; the base case and the cases AG and EF are obvious.

The case EU is more interesting. Suppose ' and  have the same truth

values on corresponding states of M and M0. Clearly, for any path � in M,

M; � j= 'U  if and only ifM0; � j= 'U  . Conversely, if �0 is a path inM0

satisfying ' U  , de�ne a path � in M with the same starting state as �0 by

eliminating loop edges from �0 up to the �rst state satisfying  . This gives a

�nite path in M since all non-loop edges of M0 are edges of M, and it can

7
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be extended arbitrarily to an in�nite path. Clearly we have M; � j= ' U  .

Using the de�nition of satisfaction for E, the inductive step for EU follows.

Lemma 3.5 The set of temporal connectives S3 := C nfEUg is not adequate.

Proof. We will consider the formula E[p U q]. Suppose ' is an arbitrary

formula not using the connective EU; we want to show that it is not equivalent

to E[p U q]. This will show that S3 is not an adequate set and thus complete

the proof of Theorem 2.1.

We may assume, using our earlier equivalences (1){(6), that ' uses only the

connectives EX, EF, and AU. (We cannot eliminate EF using equivalence (5)

because it would leave us with EU, nor can we replace AU with another

connective using equivalence (6) for the same reason.)

Now using equivalence (9) and Theorem 3.3, we can replace each occur-

rence of AU in ' with its second operand to obtain a formula ' 0 using only

the connectives EX and EF with ' �r '
0. We may further assume that none

of the subformulas of ' 0 with principal connective EF are equivalent in re
ex-

ive models to ?, without loss of generality since we could replace any such

subformulas with ? and still have ' �r '
0.

Let '1; '2; : : : 'm be the subformulas of ' 0 with principal connective EF.

By assumption, none of them is equivalent to ? in re
exive models, so letMi

be a re
exive model and ti a state of that model such that Mi; ti j= 'i, for

1 � i � m. Now we will de�ne two re
exive modelsM andM0 as follows: M
will consist of the disjoint union of the states of the Mi, together with states

ri for 0 � i � m and si for i � 0. The labelling of the states from the Mi

will be unchanged, the labelling of the states ri will be ;, and the labelling

of the states si will be fpg. The transitions of the Mi will be retained, and

there will also be transitions from ri to ti for 1 � i � m, from si to si+1 for

i < 0, from s0 to ri for 0 � i � m, and from every state to itself. This model

is shown in Figure 3. M0 will be identical toM, with its states distinguished

by primes, except that the labelling of r0
0
will be fqg.

ClearlyM; si 6j= E[pU q] andM0; s0
i
j= E[pU q] for all i � 0. Indeed, in the

former case every path from si must either remain among the sj, or eventually

reach one of the rj, and in either case it does not satisfy p U q. In the latter

case, the path s0
i
! s0

i+1
! � � � ! s0

0
! r0

0
! r0

0
! � � � starting at s0

i
satis�es

p U q.

But we claim that for any subformula  of ' 0, there exists n � 0 such

that  has a constant truth value on all states si and s0
i
with i � n . We

again use induction. The base case of atoms, >, or ? is trivial. Also, as in

the proof of Lemma 2.4, if  has a propositional principal connective, we can

take n to be the minimum of the n values of this connective's operand(s). So

only the temporal cases are left.

If  = EF 0, then  = 'k for some k. In this case M; tk j=  and

M0; t0
k
j=  . But this means that there are states s and s0 reachable from tk

and t0
k
respectively withM; s j=  0 andM0; s0 j=  0. But by construction, for
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#
"
 
!r1

�
�� �
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-

#
"
 
!t1 M1

� � �

#
"
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�1

�
�� �
�

-

#
"
 
!p

s0

�
�� �
�

-

-

-

-

#
"
 
!r2

�
�� �
�

-

#
"
 
!t2 M2

...
... ...

#
"
 
!rm

�
�� �
�

-

#
"
 
!tm Mm

#
"
 
!r0�
���
�

Fig. 3. ModelM demonstrating inadequacy of S3

any i � 0, tk is reachable from si by the path si ! si+1 ! � � � ! s0 ! rk ! tk,

so by concatenating paths, s is reachable from si; similarly s0 is reachable from

s0
i
. So M; si j=  and M0; s0

i
j=  for all i � 0; so we can take n := 0 and

the claim is satis�ed.

Finally we have the case  = EX 0. But this case is similar to the EX

case in the proof of Lemma 2.4, and the same argument holds. This completes

the induction.

Since our modelsM andM0 are re
exive by construction, we can conclude

that ' 0 6�r E[p U q]. Since �r is an equivalence relation, this implies ' 6�r

E[p U q]; a fortiori, ' 6� E[p U q], as required. 2

Thus we have completed the proof of Theorem 2.1.

Laroussinie [8] gives a much more direct proof of Lemma 3.5 using just a

single CTL model and without using results on re
exive models. The proof

given here was developed independently by the author.

4 Further questions

We have characterized the adequate sets of temporal connectives for CTL.

Where do we go from here? There are several possibilities.

� Characterize the sublogics generated by subsets of connectives.

We have identi�ed the subsets of the set C of temporal connectives that

are adequate for CTL; but what about the sublogics generated by subsets

that are not adequate? Some of them are equivalent in terms of expressive

power, others are not. The equivalences (1){(6), together with Theorem 2.1,

9
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go a long way toward characterizing these sublogics. The key fact is that

if S; S 0 � C are two sets of connectives generating equivalent sublogics,

then S [ S 00 and S 0 [ S 00 generate equivalent sublogics for any S 00 � C.

This means that the pairs of nonequivalent sublogics consisting of CTL it-

self together with the inadequate sets of Lemmas 2.3, 2.4, and 3.5 induce

additional pairs of nonequivalent sublogics generated by smaller sets of con-

nectives. However, there is still some more work to be done, in particular

to determine whether S and S[fAUg can generate nonequivalent sublogics

for S containing EG or AF but not EU.

� Consider other types of sublogics.

There is also the question of sublogics not generated by subsets of con-

nectives. For example, some recent research on this topic by Etessami and

Wilke is [3], in which sublogics of LTL are de�ned by limiting the nesting

depth of certain connectives. The possibilities for de�ning such sublogics

appear endless. Some of them are interesting in their own right, as in [3],

and it may also be an interesting question whether or not such sublogics

can be treated systematically.

� Consider combinations of temporal logic and linear logic.

Another possibility is to consider the e�ect of changing the base logic,

speci�cally using Girard's linear logic [5] instead of classical logic. A CTL-

like semantics can be de�ned using trees whose nodes are labeled with mod-

els of linear logic, such as phase spaces. The question of expressiveness and

adequate subsets of connectives applies in this setting as well, and it may

be an interesting question given the unique properties of linear logic such

as resource sensitivity.
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Abstract

We consider modal analogues of Hintikka et al.'s `independence-friendly �rst-order

logic', and discuss their relationship to equivalences previously studied in concur-

rency theory.

Key words: Independence, concurrency, branching quanti�ers,

modal logic.

1 Introduction

In [1], Alur, Henzinger and Kupfermann introduced Alternating Temporal

Logic, based on certain imperfect information games, in which independent

`teams' synchronize. In [3], the �rst author proposed the application of logics

based on Henkin quanti�ers to modal logic in computer science; such logics

include ATL, but also allow more powerful forms of expression. In that paper,

we argued that making sense of such logics required some notion of locality

in processes. After establishing some basic facts about such logics, we left

open the obvious question of how such logics relate to established notions of

independence and concurrency in computer science.

In this paper, we �rst interpret Henkin modal logics in a setting without

locality (at least, without explicit locality), and then relate them to some of

the natural true concurrent notions in the literature. The results here are

preliminary, but, we believe, go some way towards a satisfactory explanation,

and open up many further questions.

2 Henkin quanti�ers and independence-friendly logic

We give a brief summary of the notions of Henkin quanti�er and independence-

friendly logic.

Preprint submitted to Elsevier Preprint 26 July 2001

33



A branching quanti�er Q is a set fx1; : : : ; xm; y1; : : : ; yng of variables, car-

rying a partial order �; the xi are universal, the yi existential. The semantics

of Q� is de�ned to be that of 9f1 : : : fn: 8x1 : : : xm: �[fi(yi#)=yi], where yi# is

the list of variables � yi, and [�=�] denotes syntactic substitution: thus fi is

a Skolem function for yi, but it refers only to variables preceding yi in the

partial order.

In particular, the Henkin quanti�er 89

89 = fx1; x2; y1; y2g with xi � yi is

written 8x1 9y1
8x2 9y2

; thus 8x 9y
8u9v�(x; y; u; v) is equivalent by de�nition to 9f; g: 8x; u:

�(x; f(x); u; g(u)).

Henkin quanti�ers turn out to have existential second-order power, and

are thus a strong operator to add to one's logic.

An alternative way of giving semantics to branching quanti�ers is via

games. Recall the Hintikka model-checking game for �rst-order logic (in pos-

itive form): given a formula  and a structure M , a position is a subformula

�(~x) of  together with a deal for �, that is, an assignment of values ~v to its

free variables ~x. At a position (8x: �1; ~v), Abelard chooses a value v for x,

and play moves to the position (�1; ~v � v); similarly Eloise moves at 9x: �. At

(�1^�2; ~v), Abelard chooses a conjunct �i, and play moves to (�i(~x
0); ~v0), where

~x0; ~v0 are ~x;~v restricted to the free variables of �i; and at (�1 _ �2; ~v), Eloise

similarly chooses a disjunct. A play of the game terminates at (negated) atoms

(P (~x); ~v) (resp. (:P (~x); ~v)), and is won by Eloise (resp. Abelard) i� P (~v) is

true. Then it is standard that M � � exactly if Eloise has a winning strategy

in this game, where a strategy is a function from sequences of legal positions

to moves.

These games have perfect information; both players know everything that

has happened, and in particular when one player makes a choice, they know

the other player's previous choices. Game semantics for the Henkin quanti�ers,

following [8], use games of imperfect information: in the game for 8x 9y
8u9v�, when

Eloise chooses for v, she does not know what Abelard chose for x. To make

this explicit, the logic is written with a more general syntax which is linear

rather than two dimensional. A full account of the appropriate logic requires

several new constructs, some of which raise subtle issues [9]; we shall work

with a restricted version which is suÆcient to express all Henkin quanti�ers.

In addition to the usual �rst-order syntax, we also have independent quan-

ti�cation: If � is a formula, x a variable, and W a �nite set of variables, then

8x=W: � and 9x=W: � are formulae. The intention is that W is the set of

independent variables, whose values the player is not allowed to know at this

choice point: thus the Henkin quanti�er 8x 9y
8u9v can be written as 8x=?: 9y=?:

8u=fx; yg: 9v=fx; yg: If one then plays the usual model-checking game with

this additional condition, which can be formalized by requiring strategies to

be uniform in the `unknown' variables, one gets a game semantics which char-

acterizes the Skolem function semantics in the sense that Eloise has a winning
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strategy i� the formula is true.

This logic is called by Hintikka `independence-friendly' logic. Study of this

particular formalism has been mostly carried out by Hintikka and colleagues;

but there has been over the last thirty years a continued interest in branching

quanti�cation in natural language semantics, increased now by the current

popularity of `Game Theoretical Semantics'. (The recent thesis [12] contains

a most useful account of this area.) However, there has been little interest in

the computer science temporal logic community.

3 Independence-friendly modal logic

One reason for this is that at �rst sight, independence-friendly modal logic

makes little sense. Suppose that we extend the usual syntax of modal logic

with the Hintikka slash; we will also need to assign a tag to each modality, so

that we can refer back to it after a slash.

De�nition 3.1 The syntax of independence-friendly modal logic (IFML) is

given as follows. Let �; �; : : : range over a countable set of tags, a; b; : : : over

a set of labels. tt and � are IFML formulae. If �1 and �2 are IFML formulae,

so are �1 _ �2 and �1 ^ �2; and so are hai�=�1;:::;�m�1 and [a]�=�1;:::;�m�1.

Certain syntactic conditions may be imposed:

De�nition 3.2 An IFML formula � is well-formed if

(a) in every subformula hai�=�1;:::;�m	, the bound tag � is uniquely bound in

�;

(b) every independent tag �i of � is bound in some higher modality in �.

It is moreover good if

(c) the dependency relation on tags given by � � � if � is not an independent

tag of �, is transitive.

We will for this paper restrict ourselves to good formulae.

Of the well-formedness requirements, (a) is a convenience to avoid renam-

ing, but (b) is more controversial: it implies, for example, that a subformula

of a well-formed formula is not in general well-formed. This is an issue related

to questions of compositional semantics; see [9] for a discussion.

The `goodness' requirement is a restriction largely for technical conve-

nience. If the dependency relation is not transitive, one can have a phe-

nomenon called `signalling' [9], whereby intendedly independent choices can

be made dependent. Although this is interesting in certain linguistic applica-

tions, in `normal' mathematics, and arguably in logics for concurrency, it is

undesirable.

Obviously, the intended semantics of an independence-friendly modal logic

is that the existential choice in the hai�=�1;:::;�m must be made independently

3
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of the choices made in the modalities tagged by �i. However, in a standard

transition system semantics for modal logic, the choices available at a modality

are determined by the choices made in earlier modalities, and thus in general

it makes no sense to ask for an independent choice.

This problem is removed if the events referred to in the modalities are `in-

dependent' in some sense. For example, in a system comprising two parallel,

non-communicating, components, two independent modalities can reasonably

refer to choices made in di�erent components. Moreover, the two independent

local choices may result in only a single action at a global system level, as

when in CCS two actions synchronize; it is this situation that gives the new

expressive power in the ATL of [1], and in the `Henkin modal logic' of [3]. This

observation then naturally raises the question of the relationship between in-

dependence in the meaning of Hintikka, and independence in semantic models

for concurrency.

To examine this question, we shall revert from models with independence

implicitly given by locality, to a model with explicit independence. Of the

many possibilities, let us choose transition systems with independence; these

are perhaps the nearest model to ordinary labelled transition systems, and

have been used by Nielsen and others to study branching-time logics of (con-

current) independence.

First, we banish a confusing clash of terminology. In `transition systems

with independence', the independence is concurrency, in the model; we wish

to relate this to Hintikka-style logical `independence'. Therefore, henceforth,

concurrent model independence will be called `concurrency'; `independence'

will be used only to refer to logical independence. We stress that `concurrency'

is here being used as an ad hoc term to distinguish model independence from

logic independence. In the literature, `concurrency' is a distinct concept from

model `independence'; because we will make restrictions on our classes of

models, the distinction does not occur in our setting. (We welcome suggestions

for better terminology.)

De�nition 3.3 A coherent transition system with concurrency (TSC) is a

labelled transition system with states S, labels L, and transition relation ! �

S � L� S, together with a relation C � !�! and an initial state s0. Two

transitions t1 = (s1
a1
�!s01) and t2 = (s2

a2
�!s02) are concurrent if (t1; t2) 2 C.

A relation � between transitions with the same label is de�ned by

s1
a
�!s01 � s2

a
�!s02 , 9b: (s

0

1

b
�!s02) C (s1

a
�!s01) C (s1

b
�!s2) C (s2

a
�!s02)

(i.e., the two a transitions form a diamond with two b transitions independent

of a; notionally, the two a transitions are the same a `event', and the two b

transitions are the same b `event'); � is the re
exive, symmetric and transitive

closure of �, and it groups transitions into events. In addition, the relation
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C is required to satisfy four natural axioms which ensure that an event has

a unique outcome at a given state, that concurrent transitions may occur in

either order, that concurrency respects events, and that two concurrent events

can occur one after the other:

1: s
a
�!s1 � s

a
�!s2 ) s1 = s2

2: s
a
�!s1 C s1

b
�!u) 9s2: s

a
�!s1 C s

b
�!s2 C s2

a
�!u

3: s
a
�!s1 � s2

a
�!u C w

b
�!w0 ) s

a
�!s1 C w

b
�!w0

and w
b
�!w0 C s

a
�!s1 � s2

a
�!u) w

b
�!w0 C s2

a
�!u

4: s
a
�!s1 C s

b
�!s2 ) 9u: s1

b
�!u C s

a
�!s1

(a plain TSC need not satisfy axiom 4, the coherence axiom; however, most

reasonable models and classes of models are coherent, and we need it for The-

orem 6.10, so we adopt it as a standard requirement). Consequently, a �ring

sequence of transitions gives rise to a partial order of events, which can be lin-

earized into several di�erent transition sequences, in the usual way of partial

order semantics. (Note: in the literature, I is used rather than C, as TSCs

are called TSIs.)

In graphical depictions of TSCs, concurrent transitions are denoted by

putting the symbol C inside the commutative square, and the initial state is

marked by a circle (when it is not obvious).

We can now de�ne a semantics for IFML, given �a la Hintikka, by de�ning

its model-checking game as a game of imperfect information. A consequence

of this is that the semantics is not de�ned on states, but requires some history

to be kept.

De�nition 3.4 A tagged run of a TSC is a sequence s0
a0
�!�0 : : :

an�1

�!�n�1
sn, where

the �i are distinct tags; we shall also use the tag �i to refer to the transition

si
ai
�!si+1. We let �; � etc. range over tagged runs, and use obvious notations

for extensions of runs.

A position of the model-checking game for an IFML formula � on a TSC

is a pair of a tagged run and a subformula, written � ` 	.

The initial position is s0 ` �.

The rules of the game are as follows:

� At a position � ` tt, Eloise wins; at � ` �, Abelard wins.

� At � ` �1 _ �2 (resp. ` �1 ^ �2), Eloise (resp. Abelard) chooses a new

position � ` �i.

� At � = s0
a0
�! : : :

an�1

�!sn ` hbi�=�i1 ;�i2 ;:::;�im	 (resp. ` [b]�=�i1 ;�i2 ;:::;�im	),

Eloise (resp. Abelard) chooses a transition sn
b
�!t that is concurrent with

all the transitions �ij , and the new position is �
b
�!
�
t ` 	.

5
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Tags are, of course, merely syntactic sugar; it suÆces to identify the ith

transition by i. However, tags are convenient to match the de�nition of IFML.

As usual, a strategy for Eloise is a function from her positions to choices.

Imperfect information games are handled by imposing additional conditions

on strategies.

De�nition 3.5 An Eloise strategy � is uniform if the choice at a hi position

is uniform in the speci�ed independent earlier choices, in the following sense:

Let � ` hbi�=�i1 ;�i2 ;:::;�im	 be as above. The strategy � must choose sn
b
�!t

such that if s0 = s00
a0
�! : : :

an�1

�!s0n ` hbi�=�i1 ;�i2 ;:::;�im	 is any other position such

that j =2 fi1; : : : ; img ) �j � �0
j, � chooses a transition s0n

b
�!t0 � sn

b
�!t. (In

words, � must choose the same event regardless of the events chosen in the

independent modalities. If no such event can be chosen, there is no uniform

strategy.) Abelard uniform strategies are de�ned similarly.

De�nition 3.6 An IFML formula � is true in a given TSC, written s0 � �,

i� Eloise has a uniform winning strategy for the model-checking game s0 ` �.

� is false i� Abelard has a uniform winning strategy.

� is determined i� it is either false or true.

The non-determinacy in general of the model-checking game is a charac-

teristic feature of independence-friendly logic. For a simple example, con-

sider the TSC generated by the CCS process ((a:c + a:c) j (b:c + b:c))nc (in

which the a transitions are independent of the b transitions), and the formula

[a]�hbi�=�h�itt. This formula is not true, since Eloise cannot choose a b transi-

tion so as to synchronize unless she knows which a transition was chosen; but

it is also not false, since Abelard has no strategy for falsifying it. For practical

purposes, we may consider untruth to be falsehood.

4 IFML equivalence

One of the �rst questions about any logic is, what is the induced equivalence?

In the case of IFML (or indeed the simpler Henkin modal logic of [3]), the

de�nition of equivalence itself is problematic, because of the non-determinacy.

We take the weaker (practical) de�nition, and say

De�nition 4.1 Two TSCs S and T are IFML-equivalent, S �IFML T , if for

every IFML formula �, S � �, T � �.

Logically induced equivalences are typically characterized by a game nat-

urally related to the satisfaction game: for modal logic, we have bisimulation

games and model-checking games, for �rst-order logic we have Ehrenfeucht{

Fra��ss�e games and Hintikka games. For IF logics, the outscoping nature of

the = makes such a formulation harder, and to our knowledge none has been
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presented. We will consider E{F games for independence logics in a later ar-

ticle; here we study IFML equivalence by relation to known equivalences in

true concurrency.

5 Restrictions on models

For the remainder of this paper, we will consider restricted classes of models.

Analysing the e�ect of removing the restrictions is left to later work.

Firstly, all TSCs will be image-�nite: that is, for any state s and label a,

there are only �nitely many a-successors of s. This is a standard restriction

required to obtain an exact match between �nitary modal logic and bisimula-

tion.

Secondly, all TSCs will be acyclic: that is, no state is reachable from itself.

This restriction avoids the necessity of distinguishing between models and

their unfoldings, which in turn avoids the necessity to distinguish multiple

occurrences of the `same' event.

6 Equivalences for concurrency

There are numerous equivalences for concurrency, but there is one spectrum of

particularly natural equivalences that appears promising: the spectrum from

bisimulation through to coherent hereditary history preserving bisimulation.

These equivalences have several characterizations; we will de�ne them in the

style of classical bisimulation, and also give the game characterizations, which

will be useful in our results.

The weakest equivalence is ordinary `strong bisimulation'; this is well

known to be too weak for true concurrent properties, but we de�ne it just

to help clarify the other de�nitions. In particular, we will de�ne it on runs,

rather than states.

De�nition 6.1 A relation R on pairs of runs of two TSCs S and T is a

(strong) bisimulation if

A (s0; t0) 2 R

B if (�; �) 2 R and �0 = �
a
�!s is a run, then there is t such that � 0 = �

a
�!t

and (�0; � 0) 2 R; and symmetrically.

Systems S and T are (strongly) bisimilar), S �b T , if there is a strong bisim-

ulation between them.

Bisimulation makes no use of the history of a run, and ignores the concur-

rency, and thus is de�nable on states of the TSCs, as is usually done. The

de�nition can also be cast in game-theoretic terms:

De�nition 6.2 The bisimulation game played between Duplicator and Spoiler

7
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on two TSCs S and T is played as follows. Positions are pairs (�; �) of runs

from S and T . The initial position is (s0; t0). The two players alternate, with

Spoiler starting. The rules are:

I Spoiler chooses one of S or T , say S, and chooses a transition sn
an
�!sn+1.

Duplicator must respond in the other system with a transition tn
an
�!tn+1

extending � , or else she loses.

II If either player cannot move, the other wins; if play continues for ever,

Duplicator wins.

S and T are bisimilar i� Duplicator has a winning strategy for the bisimulation

game i� Duplicator has a history-free winning strategy.

Since modal logic characterizes bisimulation, and IFML includes modal

logic, it is immediate that �IFML implies �b.

A stronger notion of equivalence is obtained [7,13] by requiring the equiv-

alence to preserve the concurrency relation between matching events. The

following formulation is not the original de�nition, but is equivalent in our

framework:

De�nition 6.3 R is a history-preserving bisimulation (hpb) if

A (s0; t0) 2 R

C if (�; �) 2 R and �0 = �
a
�!s is a run, then there is t such that � 0 = �

a
�!t,

and transitions i and j in �0 are concurrent i� transitions i and j in � 0 are

concurrent, and (�0; � 0) 2 R; and symmetrically.

and we write S �hpb T if there is an hbp between S and T .

and there is the obvious analogous game characterization.

Hpb detects at least some true concurrent features; for example, it dis-

tinguishes a:b + b:a from ajb. However, it has been argued [6,5] that hpb

and similar relations such as local/global cause equivalence are really about

causality, not about concurrency, and that true concurrency is more correctly

captured by the stronger equivalences. The development in this paper will

provide further backing to such a view.

The �rst, initially discouraging, result is that hpb can make distinctions

that IFML cannot.

Theorem 6.4 �IFML 6� �hpb

Proof. Consider the following systems:

�
b
�!� �

b
 ��

b
�!�

a" C a" a" C a"

Æ
b
�!� Æ

b
�!�

These systems are not hpb, but it may be veri�ed by exhaustive checking that

no IFML formula distinguishes them. 2

8
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This example will suggest later a possible modi�cation to the de�nition of

IFML; for the present, we continue with the investigation.

It would be surprising if hpb were �ner than IFML-equivalence, and indeed

it is not, although this is not quite so easy to demonstrate.

Theorem 6.5 �hpb 6� �IFML

Proof. The simplest counter-example we have at present is rather complex

to draw in full, so we will give a combined graphical and syntactic description.

Let A and C be the two systems

11
b1%

1
b2
�!12

a1%

Æ

&a2

2
b1�!21

&b2

22

11
d1%

1
d2
�!12

c1%

Æ

&c2

2
d1�!21

&d2

22

and let P be their concurrent composition, which is a pyramid with 16 distinct

�nal states on the square face. The systems S and T are formed by adding an

e transition to some of these �nal states, as indicated by the following matrix

in which the columns are the A states 11; 12; 21; 22, the rows are the C states

11; 12; 21; 22, and the entries indicate the presence of an e transition in the

given systems.

� ST � S

ST � S T

S T ST �

� S � ST

It may be veri�ed (and has been checked with the Edinburgh Concurrency

Workbench!) that S and T are strongly bisimilar, and since the concurrency

relations are the same, they are also history-preserving bisimilar. However,

the following IFML formula is true of S but not of T :

[a]�hbi�[c]
=��hdiÆ=��heitt:

(This is because in S, Eloise can choose b1 after Abelard's a1 and b1 after

Abelard's a2; then she can choose d2 after c1 and d1 after c2, without depending

on a, and she ends up in a state with an e transition. In T , on the other hand,

no such uniform choice of d exists.) 2

A stronger equivalence from concurrency theory is hereditary (or strong)

history-preserving bisimulation (hhpb) [2,10]. Its relational characterization is

9
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De�nition 6.6 R is a hereditary history-preserving bisimulation (hhpb) if

A (s0; t0) 2 R

B if (�; �) 2 R and �0 = �
a
�!s is a run, then there is t such that � 0 = �

a
�!t

and (�0; � 0) 2 R; and symmetrically;

D if (� = s0
a0
�!�0 : : : sn; � = t0

a0
�!
�0

: : : tn) 2 R, and transition �i is backwards

enabled in �, meaning that �i is concurrent with every later �j, then �i
is backwards enabled in � and (�0; � 0) 2 R, where �0 is obtained from � by

using the TSC diamond axioms to push �i to the end, and then deleting

�i, and similarly � 0 is obtained from � by likewise `backtracking' �i; and

symmetrically.

The rather complex looking clause D is nothing more than undoing the latest

action in some concurrent component; viewing a run as a partial order, rather

than a sequence, it is simply the deletion of a maximal element.

It is easy to see that clauses B and D imply that hhpb also satis�es clause

C of the hpb de�nition, and so hhpb is �ner (and indeed strictly �ner) than

hpb. The natural game characterization [11] of hhpb is

De�nition 6.7 The hhpb game played between Duplicator and Spoiler on two

TSCs S and T is played as follows. Positions are pairs (�; �) of runs from S

and T . The initial position is (s0; t0). The two players alternate, with Spoiler

starting. Spoiler may move in two ways, to which Duplicator must respond.

(i) Spoiler chooses one of S or T , say S, and chooses a transition sn
an
�!sn+1.

Duplicator must respond in the other system with a transition tn
an
�!tn+1

extending � , or else she loses.

(ii) Alternatively, Spoiler chooses S or T (say S), and a transition si
ai
�!si+1

in � which is backward-enabled. He then `backtracks' along this tran-

sition, as in the relational de�nition. Duplicator must then respond by

backtracking the ith transition in the other system; if this transition is

not backwards enabled, she cannot move.

(iii) If either player cannot move, the other wins; if play continues for ever,

Duplicator wins.

Hhpb looks like a good candidate for comparison with IFML. For the

same reasons as hpb, hhpb can distinguish systems that IFML cannot; but one

might wonder whether hhpb is �ner than IFML-equivalence (for our restricted

models). We have a counter-example for in�nite-branching models, but for

image-�nite models we have not so far constructed a counter-example (or

proved the assertion). We make the

Conjecture 6.8 �hhpb 6� �IFML

10
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(As an illustration of how hhpb is stronger than hpb, and how it is intuitively

related to IFML, note that the two systems of Theorem 6.5 are distinguished

by the formula

[a]hbi[c]hdi b
 a
[a]hbiheitt

of the characteristic logic [11] for hhpb (where a
 is the modality of back-

tracking an a action). We shall discuss in a later article the nature of the

relationship between this formula and the IFML formula.)

Fortunately, the concurrency literature contains a yet stronger equiva-

lence than hhpb, which is even more naturally related to IFML, and is easily

shown to be �ner than IFML. This is the equivalence called strong coher-

ent history-preserving bisimulation in [4]; we shall call it coherent hereditary

history-preserving bisimulation (chhpb).

Chhpb is most simply de�ned in a partial order setting:

De�nition 6.9 A hpb R is coherent hereditary if, for any pair of partial

order runs (�; �) with � =
S

i2I �i, (�; �) 2 R i� � =
S

i2I �i for some �i, and

every (�i; �i) 2 R.

In other words, in a chhpb, any partial order can be matched by putting

together the matchings for its `concurrent components'; and in particular, the

matching of a given event can be chosen independently of any concurrent

events. This is exactly the property required to prove easily:

Theorem 6.10 If S and T are chhpb, then they are IFML-equivalent.

Proof. (Sketch) Let S �chhpb T be two TSCs, and let � be an IFML formula

such that S � �. We shall use the chhpb relation and Eloise's winning uniform

strategy for S ` � to allow her to win T ` �.

Suppose that in the model-checking games we have reached positions � ` 	

and � ` 	. If it is Abelard's turn to move in T , Eloise copies his move to S

using the chhpb. If it is Eloise's turn to move, her move in T is given by taking

her move in S and mapping it to T via the chhpb. Since the chhpb maps a

given S event to a T event that depends only on the causal predecessors, if

Eloise's choice is uniform in S, it is also uniform in T . 2

Chhpb can be de�ned in terms of (linear) runs thus:

De�nition 6.11 (Alternative to Defn 6.9) R is a coherent hereditary

history-preserving bisimulation (chhpb) if

The clauses of hhpb, together with

E if (�
a
�!� s; �

a
�!
�
t) 2 R and (�

a0
�!
�0
s0; �

a0
�!
�0
t0) 2 R and � C �, then �0 C � 0

and (�
a
�!s

a0
�!s00; �

a
�!t

a0
�!t00) 2 R.

Lemma 6.12 De�nitions 6.9 and 6.11 are equivalent. 2

11
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Using this de�nition, a more direct proof of the preceding theorem can be

given without invoking explicitly the partial order structure.

7 Alternatives to IFML?

The fact that all the concurrent equivalences (apart from bisimulation itself)

distinguish systems that IFML does not, is unsatisfactory. Upon inspection of

the counter-example of Theorem 6.5, one can see that this is due to a rather

simple mismatch between the expressivity of the concurrent logics and IFML:

the concurrent logics can express `a followed by a concurrent b', `a followed

by a dependent b', and also `a followed by choice of concurrent and dependent

b'. IFML, on the other hand, can express `a followed by a concurrent b', and

`a followed by a dependent b and no concurrent b', but cannot distinguish the

case where there is a dependent b as well as a concurrent b.

It is possible to make a small change to the semantics of IFML which

addresses this issue. Let us call the result IFMLd (IFML with explicit depen-

dence), de�ned by the following change to the model-checking game of Defn

3.4:

De�nition 7.1 The IFMLd game is as for IFML except that:

� At � = s0
a0
�! : : :

an�1

�!sn ` hbi�=�i1 ;�i2 ;:::;�im	 (resp. ` [b]�=�i1 ;�i2 ;:::;�im	),

Eloise (resp. Abelard) chooses a transition sn
b
�!t that is concurrent with

all the transitions �ij and not concurrent with any other transition �k, and

the new position is �
b
�!
�
t ` 	.

That is, choices in modalities are required to be concurrent with previous

choices if and only if they are logically independent, rather than just if.

For this modi�cation to make sense, we must require the dependency rela-

tions in the models to be transitive; this is formally, but not actually, a further

restriction, since events that are formally concurrent but actually causally de-

pendent can be made formally non-concurrent without change to the model.

This is super�cially attractive, and certainly deals with the example of

Theorem 6.5, and we

Conjecture 7.2 �IFMLd � �hpb

but have not established this conjecture.

It is also very tempting to conjecture that �IFMLd � �hhpb and even to

make the highly desirable conjecture �IFMLd = �chhpb which would give the

�rst logical characterization of the coherent equivalence. Unfortunately, these

conjectures fail.

Theorem 7.3 �IFMLd 6� �hhpb

Proof. The following is a notorious example [11] of two systems that are not

12
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hhbp (although they are hbp):

�
c%

� �
b. -a a% &b

� C Æ C �
a- .b b& %a
� �

d&
�

�
c%

� �
b. -a a% &b

� C Æ C �
a- .b b& %a
� �

d.
�

It may be veri�ed by exhaustive (and in this case somewhat exhausting) check-

ing that neither IFML nor IFMLd can distinguish them.

It should, however, be pointed out that despite the naturalness of IFMLd,

there are some unpleasant consequences of adopting it. In particular, it be-

comes impossible to express the ordinary modal logic formula [a]hbi�, where

the choice of b may depend on a, if a and b happen to be concurrent. (It is

for this reason that Conjecture 7.2 is not the simple result one would like.)

8 Conclusion

We have shown that it is possible to de�ne a modal version of the Hintikka{

Sandu independence-friendly logic, and that such a logic naturally requires

true concurrent models. We have looked at the relationship between the in-

duced equivalence and the equivalences associated with true concurrent mod-

els. The results so far indicate that although there is a natural connection, it

is not as clean as one would like; however, we are hopeful that further work

will throw more light on this. We expect in the full version of this paper

to settle all the issues explicitly labelled as conjectures; but we think it will

take a more substantial e�ort to complete the analysis. There are intrigu-

ing questions about the exact relationship between backtracking (as used in

hhbp), and uniformity (as used in chhpb and in IFML), and we suspect that

these questions may provide a useful notion of Ehrenfeucht{Fra��ss�e game for

independence logics. (To coin a slogan, the art of independence is in doing

second-order things without appearing to do so.) In turn, independence logics

may give new insight into the complexity of the concurrent equivalences.
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Abstract

We extend a widely used concept of rewrite systems with a unit holding a kind of

global information which can in
uence and can be in
uenced by rewriting. The

unit is similar to the store used in concurrent constraint programming, and can be

also seen as a special (weak) state unit. We present how this extension changes

the expressive power of rewrite systems classes which are included in Mayr's PRS

hierarchy [8]. The new classes (fcBPA, fcBPP, fcPA, fcPAD, fcPAN, fcPRS) are

described and inserted into the hierarchy.

1 Introduction

The cornerstone of concurrency theory is the notion of labelled transition
system. Caucal [4] presents an elegant classi�cation of transition systems

using families of sequential rewrite systems related to the Chomsky hierarchy.
Caucal's classi�cation has been generalised by Moller [11] to both parallel
and sequential rewrite systems. Moller's approach was further generalised by

Mayr [8], who de�nes the dynamics for rewrite systems using sequential and
parallel composition together. The resulting model is called process rewrite

systems (PRS).

Concurrent constraint programming (CCP) [14] is one of the most suc-

cessful applications of the ideas of concurrency and computing with partial

information. In CCP processes work concurrently with a shared store, which

is seen as a constraint on the values that variables can represent. In any state

of the computation, the store is given by the constraint established until that

moment. CCP provides two operations to deal with the store, tell and ask.
The tell monotonically updates the store by adding a constraint (provided the

store remains consistent). The ask is a test on the store { it can be executed

only if the current store is strong enough to entail a speci�ed constraint. If this

1 This work has been partially supported by the Grant Agency of Czech Republic, grant

No. 201/00/0400.
2 Email: xstrejc@fi.muni.cz

This is a preliminary version. The �nal version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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is not the case, then the process suspends (waiting for the store to accumulate

more information by contributions of the other processes).

We transfer some principles of CCP to process rewrite systems. Previously,

we have introduced an analogous modi�cation of purely sequential and purely

parallel rewrite systems in [15]. In both cases, the aim is to characterise

the changes of expressive power of these systems. The mechanism of PRS

is extended with the store, which can contain some global (monotonically

evolving) information. We add two constraints to every rewrite rule. A rule

can be applied only if the actual store is strong enough to entail the �rst

constraint; the second constraint is added to the store when the extended

rule is used (the rule is applicable if the store is kept consistent). Extended

process rewrite systems are called process rewrite systems with �nite constraint

systems (fcPRS). 3

We obtain some interesting results by studying which labelled transition

systems (up to bisimulation) can be denoted by speci�c classes of PRS sys-

tems (accordant with well-known formalisms like �nite state systems, basic

process algebra (BPA), basic parallel processes (BPP), process algebra (PA),

pushdown processes, Petri nets, etc.) and by corresponding fcPRS classes.

The expressive power of �nite state systems, pushdown processes, and Petri
nets keeps unchanged by adding the store. This does not hold in the case
of BPA, BPP, PA, PAD, and PAN class when the expressive power strictly

increases, thus some new classes are obtained in this way. Hence this new
framework can be used to solve some interesting open problems, e.g. to exam-
ine the decidability border within the process hierarchies already maintained

(in case of bisimilarity it is known that the border line goes between BPP
and its \state-extended" version MSA continuing between (normed) PA and

its \state-extended" version etc.); our new process classes are situated in this
grey area.

2 Basic de�nitions

In this section we recall the notions of labelled transitions systems, language
generated by such system, and bisimulation equivalence.

De�nition 2.1 A labelled transition system (LTS) L is a tuple (S;Act;�!
; �0), where S is a set of states or processes, Act is a set of atomic actions

or labels, �!� S � Act� S is a transition relation (written �
a
�! � instead

of (�; a; �) 2�!), �0 2 S is a distinguished initial state. A state � 2 S is

terminal (or deadlocked, written � 6�!) if there is no a 2 Act and � 2 S such

that �
a
�! �.

The transition relation �! can be homomorphically extended to �nite

3 Note that rules of fcPRS systems can be also seen as a new special \format" of SOS rules

(in the sense of [6]) with side conditions referring to a global (monotonic) store. However

this viewpoint is not examined in this paper.

2
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sequences of actions � 2 Act� so as to write �
"
�! � and �

a�
�! � whenever

�
a
�! 


�
�! � for some state 
. The set of states � such that �0

�
�! � for

the initial state �0 and some � 2 Act� is called the set of reachable states.

De�nition 2.2 The language generated by the labelled transition system L

is the set L(L) = L(�0), where L(�) = fw 2 Act� j 9� : �
w
�! � 6�!g. States

� and � of the system L are language equivalent, written � �L �, i� they

generate the same language, i.e. L(�) = L(�).

Language equivalence is generally taken to be too coarse in the framework

of concurrency theory. The second presented equivalence, bisimulation equiv-

alence, is perhaps the �nest behavioural equivalence studied. Bisimulation

equivalence was de�ned by Park [13] and used by Milner [9,10] in his work on

CCS.

De�nition 2.3 A binary relation R on states of labelled transition system is

a bisimulation i� whenever (�; �) 2 R we have that

� if �
a
�! �0 then �

a
�! � 0 for some � 0 with (�0; � 0) 2 R,

� if �
a
�! � 0 then �

a
�! �0 for some �0 with (�0; � 0) 2 R.

� and � are bisimulation equivalent or bisimilar, written � � �, i� (�; �) 2 R
for some bisimulation R.

3 Process rewrite systems (PRS)

This section summarise the �rst part of Mayr's paper titled \Process Rewrite

Systems" [8].

The process rewrite systems (PRS) developed by Mayr represent a very

general term rewriting formalism o�ering a way for �nite description of pos-
sibly in�nite transition systems. The formalism covers many widely known

models like �nite-state processes (FS), basic parallel processes (BPP), context-

free processes (BPA), pushdown processes (PDA), process algebras (PA), Petri
nets (PN), and provides a uni�ed view of these models. The de�nition of PRS

is more general than the de�nitions of rewrite system given by Caucal [4] (only

with sequential composition) and by Moller [11] (only purely sequential and

purely parallel rewrite systems).

Let Const = fX; Y; Z; � � �g be a countably in�nite set of process constants.

The set T of process terms is de�ned by the abstract syntax

t = " j X j t1:t2 j t1kt2;

where " is the empty term, X 2 Const is a process constant (used as an

atomic process), \k" means parallel and \:" means sequential compositions
respectively.

We always work with equivalence classes of terms modulo commutativity

and associativity of parallel composition and modulo associativity of sequential

composition. Also we de�ne ":t = t = t:" and tk" = t.

3
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The set Const(t) is the set of all constants occurring in a process term t.

We distinguish four classes of process terms.

\1" Terms consisting of a single process constant like X.

\S" Sequential terms - without parallel composition. For example X:Y:Z.

\P" Parallel terms - without sequential composition. For example XkY kZ.

\G" General terms with arbitrarily nested sequential and parallel composi-

tions like (X:(Y kZ))kW .

We also let " 2 S; P;G, but " 62 1.

De�nition 3.1 Let Act = fa; b; � � �g be a countably in�nite set of atomic

actions, �; � 2 f1; S; P;Gg such that � � �. An (�; �)-PRS (process rewrite

system) � is a pair (R; t0), where

� R is a �nite set of rewrite rules of the form t1
a
�! t2, where t1 2 �, t1 6= ",

t2 2 � are process terms and a 2 Act is an atomic action,
� t0 2 � is an initial state.

A (G;G)-PRS is simply called PRS.

We write (t1
a
�! t2) 2 � instead of (t1

a
�! t2) 2 R, where � = (R; t0).

For a given � we de�ne Const(�) as the set of all constants that occur in

rewrite rules or initial state, and Act(�) as the set of all actions that occur in
rewrite rules of �. The sets Const(�) and Act(�) are both �nite.

Each process rewrite system denotes a labelled transition system (LTS)
that represents its dynamics. Let � = (R; t0) be an (�; �)-PRS. The LTS L
denoted by � is a tuple (S;Act(�);�!; t0), where S = ft 2 � j Const(t) �

Const(�)g is the set of states, t0 is the initial state and transition relation
�! is the least relation that satis�es the inference rules 4

(t1
a
�! t2) 2 �

t1
a
�! t2

;
t1

a
�! t01

t1kt2
a
�! t01kt2

;
t1

a
�! t01

t1:t2
a
�! t01:t2

;

where t1; t2; t
0

1 2 T .

We speak about \process rewrite system" meaning \labelled transition

system generated by process rewrite system".

Obviously, it can be assumed (w.l.o.g.) the initial state t0 of a (�; �)-PRS

is a single constant as there are only �nitely many terms ti such that t0
ai�! ti.

Figure 1 shows a graphical description of the hierarchy of (�; �)-PRS, sim-

ply called PRS-hierarchy. Some classes included in the hierarchy correspond

to widely known models:

� (1; 1)-PRS are equivalent to �nite-state systems (FS). Every process con-

stant corresponds to a state and the state space is bounded by jConst(�)j.

Every �nite-state system can be encoded as a (1; 1)-PRS.

4 Note that parallel composition is commutative and, thus, the inference rule for parallel

composition also holds with t1 and t2 exchanged.

4
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PRS

(G;G)-PRS

zz
zz

zz
z

DD
DD

DD
D

PAD

(S;G)-PRS

DD
DD

DD
D

PAN

(P;G)-PRS

zz
zz

zz
z

PDA

(S; S)-PRS

PA

(1; G)-PRS

zz
zz

zz
z

DD
DD

DD
D

PN

(P; P )-PRS

BPA

(1; S)-PRS

DD
DD

DD
D

BPP

(1; P )-PRS

zz
zz

zz
z

FS

(1; 1)-PRS

Fig. 1. The PRS-hierarchy

� (1; S)-PRS are equivalent to Basic Process Algebra processes (BPA) de�ned
in [1], which are the transition systems associated with Greibach normal
form (GNF) context-free grammars in which only left-most derivations are

allowed.
� (1; P )-PRS are equivalent to communication-free nets, the subclass of Petri

nets where every transition has exactly one place in its preset [3]. This class
of Petri nets is equivalent to Basic Parallel Processes (BPP) [5].

� (1; G)-PRS are equivalent to PA-processes, Process Algebras with sequential
and parallel composition, but no communication (see [1] for details).

� It is easy to see that pushdown automata can be encoded as a subclass
of (S; S)-PRS (with at most two constants on the left-hand side of rules).

Caucal [4] showed that any unrestricted (S; S)-PRS can be presented as a
pushdown automaton (PDA), in the sense that the transition systems are

isomorphic up to the labelling of states. Thus (S; S)-PRS are equivalent

to pushdown processes (which are the processes described by pushdown

automata).
� (P; P )-PRS are equivalent to Petri nets (PN). Every constant corresponds
to a place in the net and the number of occurrences of a constant in a term

corresponds to the number of tokens in this place. This is because we work

with classes of terms modulo commutativity of parallel composition. Every

rule in � corresponds to a transition in the net.
� (S;G)-PRS is the smallest common generalisation of pushdown processes

and PA-processes. They are called PAD (PA + PDA) in [8].
� (P;G)-PRS are called PAN-processes in [7]. It is the smallest common

generalisation of Petri nets and PA-processes and it strictly subsumes both

of them (e.g., PAN can describe all Chomsky-2 languages while Petri nets

cannot).

5
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� The most general case is (G;G)-PRS (here simply called PRS). PRS have

been introduced in [8]. They subsume all of the previously mentioned

classes.

The hierarchy is not strict w.r.t. language equivalence. For example, both

BPA and PDA de�ne exactly the ("-free) context-free languages. The strict-

ness of the hierarchy w.r.t. bisimulation equivalence follows from previous

results [2,11] and the proof, that there is a PDA system (described in Exam-

ple 3.2) which is not bisimilar to any PAN system and a Petri net (described

in Example 3.3) which is not bisimilar to any PAD process.

Example 3.2 Let us consider the following PDA system with initial state

U:X.

U:X
a
�! U:A:X U:A

a
�! U:A:A U:B

a
�! U:A:B

U:X
b

�! U:B:X U:A
b

�! U:B:A U:B
b

�! U:B:B

U:X
c

�! V:X U:A
c

�! V:A U:B
c

�! V:B

U:X
d
�!W:X U:A

d
�!W:A U:B

d
�!W:B

V:X
e
�! V V:A

a
�! V V:B

b
�! V

W:X
f
�!W W:A

a
�!W W:B

b
�!W

Example 3.3 Consider following Petri net given as (P; P )-PRS with initial
state XkAkB.

X
g
�! XkAkB Y kA

a
�! Y

X
c

�! Y Y kB
b

�! Y

XkA
d
�! Z Y kA

d
�! Z

XkB
d
�! Z Y kB

d
�! Z

4 PRS with �nite constraint systems (fcPRS)

In this section we extend the PRS formalism with a unit (called store) able
to keep a sort of global information which is accessible to all parallel threads
of the term. It is quite surprising that this unit (which is not as powerful as

a general �nite-state control unit which gives Turing power even to the PA

class) increases the expressive power of classes like PAN and PAD.

The state space and possible evolution of the store used by PRS with �nite

constraint system are described by a constraint system, i.e. a set of constraints

with a structure of an algebraic lattice.

De�nition 4.1 A constraint system is a bounded lattice (C;`;^; tt; ff), where

C is the set of constraints, ` (called entailment) is an ordering on this set,

^ is the lub operation, and tt (true), ff (false) are the least and the greatest

6
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elements of C respectively (ff ` tt and tt 6= ff).

In algebra, the symbol ^ usually denotes the glb operation, while lub operation

is rather marked with symbol _. Our notation of lub operation corresponds

to logical conjunction (as in CCP).

We say that a constraint m is consistent with a constraint n i� m^n 6= ff.

The state of the store cannot be ff as we require the consistency of the store

initialised to tt. We use C� to denote C r fffg.

Example 4.2 Let C" be the trivial constraint system (ftt; ffg;`;^; tt; ff), where

`= f(ff; tt); (tt; tt); (ff; ff)g, and Cmn the constraint system Cmn = (ftt; m; n; ffg;`

;^; tt; ff), where ` = f(ff; tt); (m; tt); (n; tt); (ff; m); (ff; n)g [ f(o; o) j o 2 Cg.

These constraint systems are depicted below.

ff

tt

ff

~~
~~ >>

>>

m
CC

CC n
}}

}}

tt

De�nition 4.3 Let �; � 2 f1; S; P;Gg such that � � �. An (�; �)-fcPRS

(PRS with �nite constraint system) � is a tuple (C; R; t0), where

� C = (C;`;^; tt; ff) is a �nite constraint system describing the store; the
elements of C represent the states of the store,

� R is a �nite set of rewrite rules of the form (t1
a
�! t2; m; n), where t1 2 �,

t1 6= ", t2 2 � are process terms, a 2 Act is an atomic action, and m;n 2 C�

are constraints,
� t0 2 � is a distinguished initial process term.

A (G;G)-fcPRS is simply called fcPRS.

We use human-readable abbreviations fcFS, fcBPA, fcBPP, fcPA, fcPDA,
fcPN, fcPAD, fcPAN, and fcPRS for classes (1; 1)-fcPRS, (1; S)-fcPRS, (1; P )-
fcPRS, (1; G)-fcPRS, (S; S)-fcPRS, (P; P )-fcPRS, (S;G)-fcPRS, (P;G)-fcPRS,

and (G;G)-fcPRS respectively.

Again, instead of (t1
a
�! t2; m; n) 2 R where � = (C; R; t0), we usually

write (t1
a
�! t2; m; n) 2 �. The meaning of sets Const(�) (process constants

used in rewrite rules) and Act(�) (actions occurring in rewrite rules) for a

given fcPRS � is the same as in PRS case. Again, it can be assumed the
initial term t0 of an (�; �)-fcPRS is a single constant.

Every PRS with �nite constraint system denotes a labelled transition sys-

tem. Let � = (C; R; t0) be an (�; �)-fcPRS. The LTS L denoted by � has the

form (S;Act(�);�!; (t0; tt)), where S = ft 2 � j Const(t) � Const(�)g�C�

is the set of states, (t0; tt) is the initial state and transition relation �! is de-
�ned as the least relation that satis�es the inference rules

(t1
a
�! t2; m; n) 2 �

(t1; o)
a
�! (t2; o ^ n)

if o ` m and o ^ n 6= ff;

7
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(t1; o)
a
�! (t01; p)

(t1kt2; o)
a
�! (t01kt2; p)

;
(t1; o)

a
�! (t01; p)

(t1:t2; o)
a
�! (t01:t2; p)

;

where t1; t2; t
0

1 2 T and m;n; o; p 2 C�.

The two side conditions in the �rst inference rule are very close to principles

used in CCP. The �rst one (o ` m) ensures the rule (t1
a
�! t2; m; n) 2 � can

be used only if the current state of the store o entails m (it is similar to

ask(m) in CCP). The second condition (o ^ n 6= ff) guarantees that the store

stays consistent after application of the rule (analogous to the consistency

requirement when processing tell(n) in CCP).

An important observation is that the state of the store (starting at tt) can

move in a lattice C only in one direction, from tt upwards. This can be easily

seen from the fact that the actual state of the store o can be changed only by

applying some rewrite rule (t1
a
�! t2; m; n) 2 � and after this application the

new state of the store o^n always entails o. Intuitively, the partial information

can only be added to the store, not retracted. We say the store is monotonic.

Note that when the system (with o on the store) executes a transition
generated by a rule (t1

a
�! t2; m; n) 2 � then for every subsequent state of

the store p conditions p ` m and p ^ n 6= ff are satis�ed. The �rst condition

p ` m comes from the monotonic behaviour of the store. The second condition
comes from the facts that the constraint n in the rule can change the store

only in the �rst application of the rule and that for each subsequent state p
of the store p ^ n = p holds.

On the other hand, the fact that some rule is applicable (hence entailment
and consistency are satis�able) does not imply that this rule is applicable
forever. The insidious point is the consistency requirement. The store can

evolve to a state inconsistent with the second constraint from the rule.

The �rst information about the relationship between fcPRS and PRS is
provided by the following lemma.

Lemma 4.4 Let �; � 2 f1; P; S;Gg. The systems (�; �)-PRS �0 = (R0; t0)

and (�; �)-fcPRS � = (C"; R; t0) are isomorphic on the assumption that R0 =
ft1

a
�! t2 j (t1

a
�! t2; tt; tt) 2 Rg.

Proof. It is easy to check that if we remove tt from the states of LTS generated

by fcPRS �, we get an isomorphic system which corresponds to the PRS �0.2

The lemma above says that PRS classes can be seen as fcPRS classes with

a trivial constraint system. The lemma can be used in both directions, to
show that any fcPRS of the speci�ed form has an equivalent PRS as well as

for constructing an fcPRS equivalent to a given PRS.

8
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Fig. 2. The fcPRS-hierarchy

5 The fcPRS-hierarchy

Figure 2 shows the hierarchy of PRS and fcPRS classes, simply called fcPRS-

hierarchy. The relations depicted in the hierarchy partly result from the de�-
nition of classes and Lemma 4.4. The rest of the paper is dedicated to three

equalities (fcFS = FS, fcPDA = PDA, and fcPN = PN) and the strictness of
the hierarchy.

Theorem 5.1 (i) Let � be an fcFS. There exists FS �0 denoting a labelled

transition system isomorphic to the one given by �.

(ii) Let � be an fcPDA. There exists PDA �0 denoting a labelled transition

system isomorphic to the one given by �.

(iii) Let � be an fcPN. There exists PN �0 denoting a labelled transition

system isomorphic to the one given by �.

Proof. (i) The construction is obvious, every state (X;m) of � is transformed

into state X(m) of �0.

(ii) The idea of the proof is based on the fact that we can add special

process constants corresponding to the actual states of the store, one to each

state of fcPDA. Then the content of the store will be represented by such

special constants.

Let � = (C; R; t0), where C = (C;`;^; tt; ff). Let S = fS(m) j m 2 C�g be

the set of special process constants. A PDA �0 is constructed as (R0; S(tt):t0),

where S(tt):t0 is the initial term with the special constant holding the initial

state of the store. We replace every rule

(t1
a
�! t2; m; n) 2 R

by the set of rules

(S(o):t1
a
�! S(o^n):t2) 2 R0

9
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for every o 2 C� which satis�es the entailment condition o ` m and the

consistency condition o ^ n 6= ff. The new rules are constructed to abide by

the entailment and consistency conditions connected with the original rules.

The isomorphism of � and �0 is obvious as every state S(m):t of �0 corresponds

exactly to the state (t;m) of the system �.

(iii) The proof is the same as for (ii) if we replace every sequential compo-

sition by the parallel composition. 2

As the PRS-hierarchy is not strict w.r.t. the language equivalence, the

fcPRS-hierarchy cannot also be strict on the language expressibility level.

However, the fcPRS-hierarchy is strict w.r.t. the bisimulation equivalence with

possibly one exception: the relation between PRS and fcPRS (this case will

be discussed later). To prove that each of the classes fcBPA, fcBPP, fcPA,

fcPAD, and fcPAN di�ers from the corresponding standard class, we present

two fcPRS systems. The �rst one is an fcBPA system which is not bisimilar to

any PAN system. The second system will be an fcBPP which is not bisimilar

to any PAD system.

Example 5.2 Let us consider an fcBPA system with the constraint system
Cmn from Example 4.2 and the initial process term U:X.

(U
a
�! U:A; tt; tt) (A

a
�! "; tt; tt)

(U
b

�! U:B; tt; tt) (B
b

�! "; tt; tt)

(U
c

�! "; tt; m) (X
e
�! ";m; tt)

(U
d
�! "; tt; n) (X

f
�! "; n; tt)

The fcBPA above is bisimilar to the PDA system described in 3.2 which is

not bisimilar to any PAN system and thus also the considered fcBPA process
is not bisimilar to any PAN system. Hence we obtain a following corollary,
where X ( Y means that X is a strict subclass of Y and X 6� Y means that

X is not a subclass of Y .

Corollary 5.3 BPA ( fcBPA, PA ( fcPA, PAN ( fcPAN and fcBPA 6� PA,

fcBPA 6� PAN, fcPA 6� PAN.

Proof. Directly from the de�nition of BPA and PAN classes and from it
follows that the BPA class is a subclass of the PAN class. Lemma 4.4 implies

that the BPA class is a subclass of the fcBPA class. We know that there exists
an fcBPA system which is not bisimilar to any PAN system and thus also to

any BPA system. Hence we know that BPA is strict subclass of fcBPA. The

proofs of the other relations are similar. 2

Example 5.4 Let us consider an fcBPP system with the constraint system

10
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depicted below and the initial state (X; tt).

ff

o

tt

(X
a
�! XkA; tt; tt)

(X
b

�! XkB; tt; tt)

(X
e
�! "; tt; o)

(A
c

�! "; o; tt)

(B
d
�! "; o; tt)

Lemma 5.5 If there is a PAD system bisimilar to the fcBPP system from

Example 5.4, then there is also a PDA system bisimilar to this fcBPP.

Proof. Let � be a PAD with the initial state Q (w.l.o.g.) such that Q is

bisimilar to the initial state (X; tt) of considered fcBPP system. As on the

left-hand side of rewrite rules � only sequential composition can occur, some

part of parallel composition t1kt2 can in
uence the behaviour of such system

only if there is a reachable state of the form (t1kt2):t3 where t3 can be ". If
there is no such a state, we can remove all parallel compositions from the

rules and we get a PDA system bisimilar to � and thus also bisimilar to the
considered fcBPP process.

Another situation arises if there is a reachable state of � of the form
(t1kt2):t3, where t3 can be ". Let us assume that during the derivation of the
state (t1kt2):t3 from Q there is no other state of the form (t01kt

0

2):t
0

3 (t3 can be

"). As Q is a single process constant and any parallel composition s1ks2 in a
term p:(s1ks2):p

0 cannot be changed by any rewriting until p is ", there must

be some rewrite rule (t
x
�! l:(t1kt2):r) 2 � (l; r can be ", x 2 fa; b; c; d; eg)

such that t1kt2 is the mentioned parallel composition. There are two cases.

(i) The state (t1kt2):t3 was derived from Q under a word w 2 fa; bg�. We
show that t1 or t2 is then deadlocked. With respect to the de�nition of
PAD, which does not provide any form of communication or synchroni-

sation between processes in a parallel composition, just one component

of t1kt2 can enable the action e, let us assume that it is t2. Then t1 is

deadlocked { it cannot do neither the actions a or b (as these actions are

disabled after the action e) nor the actions c or d (as these actions are
disabled before e). Nevertheless, the term t1:t

0 is not necessarily dead-

locked for some term t0. Hence, the parallel composition t1kt2 in the rule

(t
x
�! l:(t1kt2):r) 2 � can be changed to the sequential composition t2:t1.

We should insert some separator between t2 and t1 (resp. l and t2) to keep

the impossibility of communication between parts of parallel composition
(resp. between l and part of the following parallel composition). Thus

we replace the rule (t
x
�! l:(t1kt2):r) 2 � by the rule t

x
�! l:X:t2:X:t1:r

(resp. t
x
�! t2:X:t1:r if l = "), where X =2 Const(�) is a new con-

stant, and we add new rewrite rule X:s
x
�! s0 to � for every rewrite

rule s
x
�! s0 2 � (if we already have the rules of the form X:s

x
�! s0

11
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in modi�ed �, we do not need to add them again in the future). These

changes do not a�ect the behaviour of �.

(ii) The action e occurs during the derivation of the state (t1kt2):t3 from Q.

The state (t1kt2):t3 is then bisimilar to a state (AnkBm; o) 5 of considered

fcBPP and thus every possible sequence of actions performed by the

process (t1kt2):t3 is �nite, as well as every possible sequence performed

by the term t1kt2. We construct a �nite labelled (acyclic) transition graph

where the vertices are processes reachable from the parallel composition

t1kt2 (which is the root of the graph) and edges naturally correspond to

actions (resp. applications of rewrite rules). Now we assign a fresh process

constant to each vertex of the graph which has some parallel composition

inside (the vertices without any parallel composition keep unchanged).

We replace the rule (t
x
�! l:(t1kt2):r) 2 � by the rule t

x
�! l:Z:r,

where Z =2 Const(�) is a process constant assigned to t1kt2. For every

edge of the graph from the vertex A (where A is a fresh constant) to

the vertex v we add a rule A
x
�! v (where x is the label of the edge)

to �. The behaviour of � is still unchanged thanks to the fact that
if (t1kt2):t3

�

�! t0:t3 then the term t3 can be changed by the following

transition only if there is no parallel composition in t0, and the fact that
the vertices without any parallel composition are unchanged.

In both cases, the number of parallel compositions in rewrite rules has de-
creased (with one exception { when we add rules of the form X:s

x
�! s0, then

the number of parallel compositions can be doubled, but it does not matter as

we make it only once). If there is still a reachable state of the form (t1kt2):t3
in modi�ed �, we can use the same method again. As the number of parallel

compositions in rewrite rules is �nite, after �nite number of steps we get a
PAD system without any reachable state of the form (t1kt2):t3, which is the
situation discussed at the beginning of this proof. 2

The class of context-free languages (i.e. the class of languages generated
by PDA processes) is closed under intersection with regular languages. The

language L generated by the fcBPP system from Example 5.4 is not context-

free, as L \ a�b�ec�d� = fanbmecndm j m;n � 0g which is not context-free.
Thus there is no PDA process bisimilar to fcBPP from Example 5.4 and from

Lemma 5.5 it follows that there is no PAD process bisimilar to the fcBPP

presented above. Hence we get:

Corollary 5.6 BPP ( fcBPP, PAD ( fcPAD and fcBPP 6� PA, fcPA 6� PAD,

fcBPP 6� PAD.

The fcBPP class di�ers from PN even w.r.t. language equivalence. The

language L = fanbcndenf j n � 0g generated by PN from Example 5.7 is an

5 The expression An is an abbreviation for n copies of process constant A in parallel com-

position. The abbreviation Bm has an analogous meaning.
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instance of a language generated by PN, which cannot be described by any

fcBPP due to the following Pumping Lemma.

Example 5.7 Let � = (R;W ) be a Petri net with rewrite rules as below.

W
a
�!WkAkB Y kB

e
�! Y

W
b

�! X Y
f
�! Z

XkA
c

�! X ZkA
z
�! ZkA

X
d
�! Y ZkB

z
�! ZkB

Lemma 5.8 (Pumping Lemma for fcBPP) Let L be a language of an

fcBPP system �. There exists a constant h such that if u 2 L and juj > h

then there exist x; y; z; w 2 Act� such that u = xz, jyj > 1, and 8i � 0 it holds

that xyizwi 2 L. 6

Proof. The proof can be found in Appendix A. 2

To prove the strictness of the fcPRS-hierarchy completely we introduce a
PDA process which is not bisimilar to any fcPAN process and a PAN process

which is not bisimilar to any fcPAD process.

Example 5.9 Let us consider a PDA system described in Example 3.2 with
initial state U:X:Y and with the following additional rewrite rules.

V:Y
x
�! U:X:Y W:Y

x
�! U:X:Y

V:Y
z
�! Z W:Y

z
�! Z

This system behaves like that de�ned in Example 3.2, but when the origi-

nal system terminates, the enhanced system can choose between termination
under the action z and restart under the action x.

Lemma 5.10 There is no fcPAN system bisimilar to the PDA process given

in Example 5.9.

Proof. We assume the contrary and derive a contradiction. Let � be an

fcPAN bisimilar to the PDA process de�ned in Example 5.9. From the
�niteness of the constraint system used in � follows that there exists a non-

terminal reachable state (t; o) of � such that every non-terminal state reach-
able from (t; o) has also o on the store (the contrary implies the in�nite-

ness of the constraint system). As (t; o) is non-terminal, there exist a word

w 2 fa; b; c; d; e; fg� such that (t; o)
w:x
�! (s; o), where (s; o) is bisimilar to the

state U:X:Y of the PDA process from Example 5.9. If the rules labelled by

actions x; z are removed from � and (s; o) is taken as an initial state, we
obtain the system whose reachable states all have o as their store, bisimilar

to the pushdown process from Example 3.2.

6 juj denotes the length of the word u.
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Now, let �0 be a PAN system with the initial state s and with the set of

rewrite rules consisting of rules l
v
�! r, where (l

v
�! r;m; n) 2 �, o ` m,

o ^ n = o and v 2 fa; b; c; d; e; fg. It is obvious that this PAN system �0 is

bisimilar to the PDA system de�ned in Example 3.2. This is a contradiction.2

Corollary 5.11 fcBPA ( PDA, fcPA ( fcPAD and fcPAD 6� fcPAN.

Example 5.12 Let � be a PAN process with the initial state (XkAkB):W

and the following rewrite rules.

X
g
�! XkAkB Y kA

a
�! Y X

y
�! " W

x
�! (XkAkB):W

X
c

�! Y Y kB
b

�! Y Y
y
�! " W

z
�! D

XkA
d
�! Z Y kA

d
�! Z Z

y
�! "

XkB
d
�! Z Y kB

d
�! Z A

y
�! "

B
y
�! "

The �rst two columns of rewrite rules include the same rules as Petri net

given by Example 3.3. This PAN system can behave as mentioned Petri net
(it can deviate from the behaviour of PN only under action y). States of PAN
corresponding to terminal states of considered PN can perform a sequence of

actions y� to reach the state W and then terminate under action z or restart
the system under action x.

Lemma 5.13 There is no fcPAD system bisimilar to the PAN process from

Example 5.12.

Proof. The proof is similar to the proof of the previous lemma, instead of

PDA from Example 3.2 it uses Petri net from Example 3.3. 2

Corollary 5.14 fcPA ( fcPAN and fcPAN 6� fcPAD.

The incomparability of fcPAD and fcPAN implies that these classes are

strict subclasses of fcPRS.

The edge between PRS and fcPRS classes in the fcPRS-hierarchy is dot-

ted as we have no proof that the fcPRS class is strictly more expressive
(w.r.t. bisimilarity) than the PRS class. It is obvious from the de�nitions

that PRS � fcPRS, but we can provide only intuition for PRS ( fcPRS. The

conjectured witness of the inequality can be found in the fcPA below.

Example 5.15 Let � be an fcPA system with the initial process term XkY

14
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and the following constraint system and rewrite rules.

ff

o

p

tt

(X
a
�! X:A; tt; tt) (A

a0

�! "; o; tt)

(X
b

�! X:B; tt; tt) (B
b0

�! "; o; tt)

(Y
c

�! Y kC; tt; tt) (C
c0

�! "; o; tt)

(X
x
�! "; tt; p)

(Y
y
�! "; p; o)

We can prove that this fcPA system is not bisimilar to any PAD process

and to any Petri net either.

Now we try to explain why we conjecture that there is no PRS process

bisimilar to the considered fcPA. The weak point of PRS (or rewrite system

in general) is the \local potency" of rewriting. Having a parallel composition

with at least one sequential component larger than the left side of any rewrite

rule, the rule cannot in
uence both this large component and the rest of the

parallel composition at once. Roughly speaking, communication between large

component and other component(s) of parallel composition is not possible in
general. Any PRS process bisimilar to the fcPA system under consideration
should have such a parallel composition with one component which has a

sequential character (as it is necessary to keep the information about the
order in which the actions a and b are performed) and it can be arbitrary

large. And we need to announce to the term that action y has just been done.

6 Conclusion

We have enriched process rewrite systems with the mechanism related to com-
puting with partial information in the form used in widely studied concurrent
constraint programming. In the case of process rewrite systems, this mecha-

nism can be e�ectively used to provide some information to every part of the
process term, thus it can be seen as a unit holding a special kind of global
information.

It has been proven that enriching the classes of �nite systems, pushdown
processes, and Petri nets with a �nite constraint system does not change their

expressibility even w.r.t. isomorphism of the generated labelled transition sys-

tems. On the contrary, the process rewrite systems classes BPA, BPP, PA,

PAD, and PAN extended with �nite constraint systems establish correspond-

ing new classes fcBPA, fcBPP, fcPA, fcPAD, and fcPAN as the expressive
power of such systems increases. This may seem quite surprising in the cases

of PAD and PAN classes as the formalism of these classes subsumes the for-

malism of PDA or PN respectively. However PDA and PN do not increase

their expressive power if enriched with a �nite constraint system.

The hierarchy of fcPRS classes has been introduced and its strictness

w.r.t. the bisimulation equivalence (with the exception in the relation between
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PRS and fcPRS classes) has been proven.

The area of process rewrite systems with �nite constraint systems still

o�ers some interesting topics for further research. One interesting challenge

is to specify the boundary of decidability of the bisimulation equivalence and

the weak bisimulation equivalence with �nite-state processes in the area of

fcBPP class (as both problems are decidable for BPP and undecidable in the

case of MSA 7 ). Another possible topic for further research is to replace the

constraint system with a (�nite) state unit, where the evolution of the actual

state is determined by a given ordering. A totally di�erent mission is to employ

an in�nite constraint system.
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A Appendix - Pumping lemma for fcBPP (Lemma 5.8)

The pumping lemma for fcBPP is formulated and proved in this appendix.

The proof is similar to the one presented by Christensen for BPP case [5]
thanks to the fact that every possible sequence of actions contains a �nite

number of transitions which change the state of the store due to �niteness of
a constraint system.

Let � = (C; R; t0) be an fcBPP. For every process constant X 2 Const(�)
and every constraint m 2 C�, let Sm(X) denote the set

Sm(X) = fY 2 Const(�) j 9t 2 P : (X;m) �!+ (Y kt;m)g;

i.e. the set of process constants Y which can be derived 8 from (X;m) without
changes on the store. We extend this de�nition to parallel terms in obvious

manner:

Sm(A1kA2k : : : kAj) =
[

i2f1;2;:::;jg

Sm(Ai)

Lemma A.1 Let � = (C; R; t0) be an fcBPP. If there exists some derivation

of a word u = u1u2 : : : uk 2 L(�) of the form

(t0; tt) = (t0; m0)
u1�! (t1; m1)

u2�! : : :
uk�! (tk; mk) 6�!

such that 8i 2 f0; 1; 2; : : : ; kg; 8X 2 ti it holds X =2 Smi
(X), then juj � h,

where h is a constant depending only on �.

8 The relation �!+ (resp. �!�) is apprehended as usual, i.e. (t1;m) �!+ (t2; n)

(resp. (t1;m) �!� (t2; n)) i� there exists w 2 Act+ (resp. w 2 Act�) such that (t1;m)
w

�!

(t2; n).

17
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Proof. At �rst we focus on maximum \
at" parts of the above derivation,

which are of the form

(ti; mi)
ui+1
�! (ti+1; mi+1)

ui+2
�! : : :

ui+j

�! (ti+j; mi+j);

where the state of the store (in following marked as m) keeps unchanged

(m = mi = mi+1 = : : : = mi+j), i = 0 or mi�1 6= m, and i + j = k or

m 6= mi+j+1. We denote u0 = ui+1ui+2 : : : ui+j. From this 
at part we deduce

another derivation sequence

(r0ks0; m)
v1
�! (r1ks1; m)

v2
�! : : :

vp
�! (rpksp; m);

where v1; v2; : : : ; vp 2 Act+, r0ks0 = ti, in r0 there are all constants from

ti which are rewritten in the derivation sequence (ti; m)
u0

�! (ti+j; m), and

in s0 there are constants which do not actively participate in this derivation

sequence. Now rlksl (l = 1; 2; : : : ; p) rises from rl�1ksl�1 by one rewriting of

each constant from rl�1 in the same way as a constant has been rewritten in

the original 
at derivation sequence (thus jvlj = jrl�1j) and still it holds that rl
contains constants, which are rewritten in the original 
at derivation sequence,

while sl contains the other constants (thus sl�1 � sl). We �nish rewriting when

rl is empty (thus rp = " and sp = ti+j). It is clear that v = v1v2 : : : vp is a

permutation of u0, especially jvj = ju0j. By replacing (ti; m)
u0

�! (ti+j; m) with

(r0ks0; m)
v
�! (rpksp; m) in the original derivation we get a correct derivation

of the word u1 : : : uivui+j+1 : : : un of the length k. Further, for each X in rl
(l = 0; 1; 2; : : : ; p) there exists tz (i � z � i + j) such that X 2 tz.

Now we show that Sm(rl�1) ) Sm(rl) for each 1 � l < p.

\�" It comes directly from the fact that each constant from rl has an ancestor

in rl�1.

\6=" Let us assume that for some 1 � l < p we have Sm(rl�1) = Sm(rl). For
each X 2 rl (rl 6= ") it holds that X 2 Sm(rl�1) and thus X 2 Sm(rl).

From the premise X =2 Sm(X) follows that there exists some Y 2 rl, Y 6= X

such that X 2 Sm(Y ). Analogous reasoning as for X can be done for Y ,

i.e. from Y 2 rl it follows that Y 2 Sm(rl�1) = Sm(rl) and Y =2 Sm(Y ),

Y =2 Sm(X). In conclusion we get Y 2 Sm(rl) and Y =2 Sm(XkY ). Again,
there exists Z 2 rl, Z =2 fX; Y g such that Y 2 Sm(Z) and thus also

fX; Y g � Sm(Z). We know Z 2 rl and Z =2 Sm(Z), hence we get Z 2 Sm(rl)

and Z =2 Sm(XkY kZ). We can continue in this fashion to the point where

we have the contradiction W 2 Sm(rl) and W =2 Sm(rl).

Hence we have

jConst(�)j � jSm(r0)j > jSm(r1)j > : : : > jSm(rp�1)j � 0:

This implies jConst(�)j � p� 1. Further, for each 1 � l � p it holds that

jvlj = jrl�1j � jr0ja
l�1 � jr0ja

p�1 � jr0ja
jConst(�)j;

where a is a maximum number of constants in right sides of rewrite rules in

�. Now we restrict the length of u0

18
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ju0j= jvj =

pX

l=1

jvlj �

pX

l=1

jr0ja
jConst(�)j = pjr0ja

jConst(�)j;

ju0j � pjr0ja
jConst(�)j � (jConst(�)j+ 1)jtija

jConst(�)j:

In conclusion we get the restriction on the length of 
at parts of the original

derivation

ju0j � jtijb;

where b = (jConst(�)j+ 1)ajConst(�)j.

In general it holds that each sequence of derivation steps consists of non-
at

steps and 
at derivation sequences. The number of \un
at" steps (ti; mi)
ui+1
�!

(ti+1; mi+1), where mi 6= mi+1, is limited by jC�j � 1. The cardinality of the

set C also constrains the number of 
at parts to jC�j. Therefore

juj � jC�j � 1 +

jC�
jX

j=1

jt0jjb;

where (t0j; m
0

j) is the �rst state of the j-th 
at derivation sequence, i.e. m0

j is
the j-th di�erent state of the store used in the original derivation and (t0j; m

0

j)

is the �rst state in this derivation with the constraint m0

j in the store. Hence
(t01; m

0

1) = (t0; tt).

The last step is to restrict the length of t0j for j > 1. We can deduce a
restriction

jt0jj � jt0j�1j+ (a� 1)(jt0j�1jb+ 1)

thanks to the facts that each application of a rewrite rule cannot add more

than a � 1 constants to the string of constants in the actual state and that
the number of these applications is limited by the length of the previous 
at
string plus one (the un
at derivation step). The previous inequality can be

modi�ed in the following way.

jt0jj � jt
0

j�1j+ a(jt0j�1jb+ 1)

jt0jj � jt
0

j�1j(1 + ab+ a)

jt0jj � jt
0

1j(1 + ab + a)j�1

jt0jj � jt0j(1 + ab + a)j�1

By summarisation we get

juj � jC�j � 1 + bjt0j

jC�
jX

j=1

(1 + ab + a)j�1;

where b = (jConst(�)j+1)ajConst(�)j. The sum on the right side of the previous

inequality can be modi�ed as it is an geometric progression. The �nal form
of desired h is then

h = jC�j � 1 + bjt0j
(1 + ab + a)jC

�
j � 1

ab + a
;

19

65



Strej�cek

where a is the maximum number of constants in right sides of rewrite rules in

� and b = (jConst(�)j+ 1)ajConst(�)j. 2

The pumping lemma formulated below is a simple consequence of the pre-

vious lemma.

Lemma A.2 (Pumping Lemma for fcBPP) Let L be a language of an

fcBPP system �. There exists a constant h such that if u is a word of L and

juj > h then there exist x; y; z; w 2 Act� such that

� u = xz,

� jyj > 1,

� 8i � 0 : xyizwi 2 L.

Proof. We have an fcBPP � such that L = L(�). It follows from Lemma A.1

that each derivation

(t0; tt) = (t0; m0)
u1�! (t1; m1)

u2�! : : :
uk�! (tk; mk) 6�!

of the word u = u1u2 : : : uk 2 L(�), juj > h contains some state (tj; mj) =

(Xkt0j; mj), where X 2 Smj
(X). The de�nition of Smj

(X) says that there

exist t 2 P and y 2 Act+ such that (X;mj)
y
�! (Xkt;mj). Further, let

w 2 Act� be a word in L((t;mk)), i.e. there exists a terminal state (t0; n) such

that (t;mk)
w
�! (t0; n). Now the derivation

(t0; tt)
u1:::uj
�! (tj; mj)

yi

�! (tjt
i; mj)

uj+1:::uk
�! (ti; mk)

wi

�! (t0i; n) 6�!

is the correct one for all i � 0. To make the proof complete we should add
that x = u1 : : : uj and z = uj+1 : : : uk. 2
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Abstract

We study the decidability of a reachability problem for various fragments of the

asynchronous �-calculus. We consider the combination of three main features: name

generation, name mobility, and unbounded control. We show that the combination

of name generation with either name mobility or unbounded control leads to an

undecidable fragment. On the other hand, we prove that name generation without

name mobility and with bounded control is decidable by reduction to the coverability

problem for Petri Nets.

1 Introduction

We are interested in properties of the reduction relation such as reachability,

deadlock, liveness,: : : for process calculi based on the asynchronous �-calculus

[2,7,1].

We recall that `asynchronous' here refers to a communication mechanism

where messages are put in an unbounded and unordered bu�er and that in

the process calculus jargon this amounts to disallow the output pre�x. By

opposition, the synchronous �-calculus forces a synchronization between the

sender and the receiver.

Our interest in the asynchronous �-calculus stems from the observation

that the core of concurrent programming languages such as Pict [13], Join [4],

or Tyco [17] are based on it and the remark that object-oriented programming

languages enjoy a rather direct representation in these formalisms.

In this paper, we will mainly consider a minimal asynchronous, polyadic,

simply sorted �-calculus not including external choice and we will concentrate

on three main `features' of this minimal calculus:

1 famadio,meyssonng@cmi.univ-mrs.fr.
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� Name generation, i.e. the possibility of generating fresh names (values,

channels,: : :).

� Name mobility, i.e. the possibility of transmitting names.

� Unbounded control, i.e. the possibility of dynamically adding new threads

of control.

In the absence of name generation, our formalism can be mapped to Petri

Nets (see, e.g. [15]). This encoding, that basically goes back to early work [5]

on the translation of ccs [11] to Petri Nets, settles most interesting decision

problems for the fragment without name generation. Therefore, the main issue

that, in our opinion, remains to be clari�ed is whether there exist decidable

fragments that include some form of name generation.

So far, most decidability results we are aware of concern the synchronous

�-calculus with bounded control (see, e.g., [3,12]). In the asynchronous case,

our main results are as follows:

� The combination of name generation and name mobility leads to an unde-

cidable fragment even assuming the control �nite.

� The combination of name generation and unbounded control leads to an un-

decidable fragment even assuming that no name is transmitted (this re�nes

a well-known undecidability result for ccs).

� Name generation without name mobility and with bounded control is de-

cidable by reduction to Petri Nets. This is our main technical result which

is based on an analysis of the use of generated names. The analysis, which

appears to be original, distinguishes between `persistent' and `temporary'

names and provides a method to reuse the same name for generated tem-

porary names which are alive at di�erent times.

We regard these results as a �rst step towards the systematic introduction

of approximated decision methods for languages including name generation.

We expect that a fruitful approach is to understand these methods by factoring

the approximation through a translation into Petri Nets. Once the behaviour

is mapped to a Petri Net further standard approximation techniques are avail-

able based, e.g., on semi-linear sets (see, e.g., [16], for an up to date survey).

2 Asynchronous �-calculus

As usual, we assume given a denumerable set of names, that we denote a; b; : : :

Vectors of names (possibly empty) are denoted ~a;~b; : : : We denote with [~b=~a]

a substitution on names. If ~a � a1; : : : ; an then we use (�~a) as a shorthand

for (�a1) : : : (�an).

We suppose that every name a has an associated sort st(a) and that names

are used consistently with their sort. We will just rely on simple sorts as

2
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de�ned by the following grammar

s ::= o jj Ch(s; : : : ; s)(1)

where o is some ground sort.

We consider a polyadic, simply sorted, asynchronous �-calculus with the

standard operations of message creation a~b, input pre�x a(~b):P , parallel com-

position P j Q, name generation (�a)P , and parametric recursive de�nitions.

The latter is preferred to iteration because it allows a better control on the

creation and termination of parallel threads.

We denote with A;B; : : : parametric process identi�ers. A process is pre-

sented by a �nite system E of parametric equations A(~a) = P and an initial

con�guration where we assume that: (i) every process identi�er is de�ned by

exactly one equation, and (ii) the names occurring free in P are included in

f~ag. It will be convenient to assume that every equation has the following

normalised shape:

A(~a) = a(~a0):(� ~a00)(�i2Iai~ai j �j2JAj(~aj)) :(2)

Such an equation speci�es a process that inputs a message and then generates

new names, sends a number of messages, and runs a number of continuations.

The sets I and J are assumed �nite (possibly empty, in which case the parallel

composition reduces to the terminated process 0). We note that in equation

(2) the names ~a, ~a0, and ~a00 are bound. We will assume that they are renamed

so that they are all distinct.

Given a �nite system of recursive equations as above, a con�guration is a

normalised process of the shape:

(�~a)(�i2Iai(~ai) j �j2JAj(~aj))

where as usual `�' stands for the parallel composition. Let P;Q be two con�g-

urations. We write P � Q if P is syntactically equal to Q up to renaming of

bound names, permutation of name generations, and associativity and com-

mutativity of parallel composition. We denote with fn(P ) the set of names

occurring free in P .

Next we introduce the reduction relation on con�gurations. All we want

to capture is the usual reduction rule

a~b j a(~c):P ! [~b=~c]P

allowed to take place under name generation and parallel composition, up to

a suitable structural equivalence. Our de�nition of reduction is a bit technical

because it has to evaluate the actual parameters, unfold a recursive de�nition

to �nd an input pre�x matching a message, and then bring the name genera-

tions, the messages, and the continuations under the input pre�x at top level.

The advantages of this approach, is that we can then limit the structural rules

to the ones stated above, give a compact normal form for con�gurations, and

provide a simple translation to Petri Nets.

De�nition 2.1 If the equation associated to the process identi�er A is (2)

3
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and

(i) P � (�~b0)(A(~b) j c(~c) j Q),

(ii) the sets f~a; ~a0; ~a00g and f~b0g [ fn(P ) are mutually disjoint,

(iii) � � [~b=~a;~c=~a0],

(iv) and �(a) = c

then

P ! (�~b0; ~a00)(�i2I�(ai~ai) j �j2JAj(�~aj) j Q) :(3)

We may wonder whether our normalised con�gurations can represent all

usual processes of the �-calculus, say:

p ::= a~b jj a(~b):p jj!(a(~b):p) jj (�a)p jj (p j p) :

Indeed, this can be easily checked. We note that, up to structural equivalence,

a process p can always be written as:

p � (�~a)(�i2Iai~ai j �j2Jaj(~aj):pj j �k2K!(ak(~ak):pk)) :

We claim that we can build a con�guration P and a set of equations E whose

behaviour is equivalent to p's. We proceed by induction on the structure of

p to generate the set of equations. For every process aj(~aj):pj we introduce

a fresh process identi�er Aj(: : :) and the equation Aj(: : :) = aj(~aj): : : :, and

we apply inductively the transformation to pj. Similarly, for every process

!(ak(~ak):pk)) we introduce a fresh process identi�er Ak(: : :) and the equation

Ak(: : :) = ak(~ak):(Ak(: : :) j : : :), and we apply inductively the transformation

to pk.

Reassured about the expressivity of our formalism, we can now formally

state the reachability problem we address in this paper.

De�nition 2.2 Given a system of equations E containing a process identi�er

A and a related initial con�guration P , the reachability problem asks whether

P reduces to a con�guration containing the process identi�er A, i.e. P !�

(�~a)(: : : j A(~b) j : : :), for some ~a;~b.

In section 3.4, we will relate this problem to the well known coverability

problem for Petri Nets.

3 The fragment without name generation reduces to

Petri Nets

We consider the fragment where the equation (2) is restricted to having the

shape:

A(~a) = a(~b):(�i2Ici~di j �j2JAj(~ej)) :(4)

In this fragment no name generation is allowed. Given such a system of

equations and an initial con�guration P we will recall below the standard

construction of a Petri Net that simulates the reduction of the process.

4
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3.1 Parameterless systems of equations

First we recall the notion of parameterless system of equations (a notation

used, e.g., in the context of ccs [11]). In this case, all names have sort Ch()

and an equation has the shape

A = �k2Kak:(�i2Ikai j �j2JkAj)(5)

where K is a �nite set and � stands for the external choice (external choice

is just used here to represent an intermediate step towards the translation

to Petri Nets). If K is empty, we take conventionally the left hand side as

the terminated process 0. No renaming is allowed and a process identi�er is

literally replaced by the right hand side of the equation de�ning it.

3.2 From parameterless systems of equations to Petri Nets

We �x a system of equations without parameters of the shape (5). Let P be

an initial con�guration. Without loss of generality, we may assume that P

contains no name generators �; otherwise we replace the names bound by �

by fresh names. Let N be the collection of names free in P . Since there is

no name generation, these are all the names that can appear in a reachable

con�guration.

(1) We associate a distinct place to every name a 2 N and to every process

identi�er A. The intended interpretation is that a token at place a corresponds

to a message a while a token at place A means that the control of a thread is

at A. Following this interpretation we determine the initial marking.

(2) To every equation we associate a set of transitions which are connected to

the places as follows. If A = a1 : : :+� � �+an : : : then we introduce n transitions

t1; : : : ; tn and for k = 1; : : : ; n an edge from place A to transition tk and an

edge from place ak to transition tk. Moreover, if the continuation of ak has

the shape

(�i2Iai j �j2JAj)

then we add an edge from transition tk to place ai for i 2 I and from transition

tk to place Aj for j 2 J .

3.3 From systems without name generation to parameterless systems

We �x a system of parametric equations without name generation of the shape

(4). For the sake of notational simplicity we assume that all channels have a

recursive sort s = Ch(s), and that all process identi�ers depend on k param-

eters. Then:

� for every pair of channel names a; b 2 N , we introduce a new channel name

ab of sort Ch().

� for every equation of the shape (4) and for every vector of names ~a0 2 Nk

5
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we produce an equation

A~a0 = �b02N(�(a)b0 :(�i2I�(ci)�(di) j �j2JAj;�(~ej))) :

where � � [~a0=~a; b0=b].

To summarize, we transform a parametric system into a system without pa-

rameters but with external choice, and in turn, we transform the latter system

into a Petri Net.

3.4 From reachability to coverability, and back

In terms of Petri Nets, the reachability problem we have formulated in de�ni-

tion 2.2 amounts to checking whether certain places, corresponding to a given

process identi�er, will contain a token. This is an instance of the coverability

problem for which Lipton [10] has provided a 2O(
p
n) space lower bound and

Racko� [14] a 2O(n log n) space upper bound.

On the other hand, it is easy to see that the coverability problem for

Petri Nets can be reduced to the reachability problem 2.2. Given a Petri

Net, for every transition t taking, say, one token from places a1; : : : ; an and

putting one token in places b1; : : : ; bm, we introduce the equations (we omit

the parameters):

At = a1:A
1
t A1

t = a2:A
2
t : : : An�1

t = an:(b1 j � � � j bm j At)

Thus a transition of the Petri Net is now simulated by serialising the reading

of the tokens. If we want to know, whether, say, the place a will ever contain

a token we add the equation A = a:B. Then the initial con�guration contains

the process identi�er At for every transition t, a number of messages corre-

sponding to the initial marking, and the process identi�er A. To determine

whether the place a will contain a token it is then enough to check whether

the initial con�guration reaches one containing the process identi�er B.

This reduction is polynomial and it shows that even without mobility and

without name generation the reachability problem 2.2 we consider requires

exponential space. We expect that our reachability problem could be gen-

eralized mimicking what has been done for Petri Nets [18]. On the other

hand, the quest for decidability results on the equivalence problem (trace,

bisimulation,: : :) is discouraged by the negative results known for Petri Nets

[6,9].

4 The fragment with bounded control is undecidable

We say that a con�guration has bounded control if there is a natural number

that bounds the number of live threads running in parallel in any accessible

con�guration. One can imagine various syntactic conditions that imply this

property and are eÆciently checkable. To show our negative results, it will be

enough to consider the fragment where the equation (2) is restricted to having
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the shape:

A(~a) = a(~b):(� ~d)(�i2Iai~bi j A0(~c))

A(~a) = A1(~a1)� A2(~a2) :

where � denotes the internal choice. This means that, up to internal choice,

every control point has exactly one continuation and thus the control is basi-

cally bounded by the number of parallel threads present in the initial con�gu-

ration.

Remark 4.1 It is well known that internal choice is de�nable from parallel

composition and name generation. In our case, there is just a little twist to

�t the shape of the normalised equations (2). Thus we replace the equation

A(: : :) = A1(: : :)� A2(: : :) by the equations

A(: : :) = t:(�c)(A0
1(c; : : :) j A

0
2(c; : : :) j c j t)

A0
i(: : :) = c:Ai(: : :) for i = 1; 2

where t is a `global' channel provided in the initial con�guration with a message

t (the t channel plays the role of the ccs � action).

A similar trick applies if we want to de�ne the internal choice of two

messages a1 � a2. Then we introduce an identi�er A and the equations:

A(: : :) = t:(�c)(A0
1(c; : : :) j A

0
2(c; : : :) j c j t)

A0
i(: : :) = c:ai for i = 1; 2 :

Proposition 4.2 The reachability problem for the fragment with bounded con-

trol is undecidable.

Proof. The proof is loosely inspired by the encoding of the computation

mechanism of Turing machines into a deduction system for Horn clauses with-

out function symbols, also known as datalog. Readers familiar with the lat-

ter might �nd it inspiring to look at an `existential' Horn clause 8~x (a(~x) �
9~y b(~x; ~y)) as a recursive process A = a(~x):(�~y)(b(~x; ~y) j a(~x) j A).

We now turn to the technical development. We simulate a 2-counter ma-

chine (see, e.g. [8]) and reduce the halting problem to the reachability problem

2.2. We assume that the 2-counter machine contains instructions of the form:

(1) q : Ck := Ck + 1; goto q0

(2) q : (Ck = 0)! goto q0; Ck := Ck � 1; goto q00

where C1; C2 denote the two counters. An instruction of type (1) increments

the counter k and jumps to another point of the control. An instruction of

type (2) tests whether the counter Ck is 0 and if it is the case it jumps to

a control point q0, otherwise it decrements the counter and jumps to control

point q00.

A counter is represented as a stack of cells where the bottom cell contains

0 and all the others contain 1. Thus the value 2 is represented by the stack

7
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011. For every state, we assume a channel q of sort Ch(). Moreover, for every

counter Ck we assume channels

Topk of sort Ch(Ch(Ch();Ch();Ch())) and

Adj k of sort Ch(Ch(Ch();Ch();Ch());Ch()) :

Every cell of the stack is assigned a distinct channel a of sort Ch(Ch();Ch();Ch()).

We associate to every such channel three more distinct channels a0; a1; at and

a message a(a0; a1; at). Moreover:

� If the channel a refers to the bottom cell then we introduce a message a0,

and otherwise we introduce a message a1.

� If the channel a refers to the cell at the top of the stack we introduce a

message Topka.

� If the channels a and b refer to two adjacent cells (the �rst under the second)

then we introduce a message Adj k(a; bt).

For instance, the stack 011 could be represented by the following messages:

a(a0; a1; at) j a0 j Adj k(a; bt) j (bottom cell)

b(b0; b1; bt) j b1 j Adj k(b; ct) j (second cell)

c(c0; c1; ct) j c1 j Topkc (top cell)

We now consider the problem of implementing on this data structure the 2-
counter machine operations. An instruction of type (1) is translated as:

A = q:Topk(a):(�a
0; a00; a

0
1; a

0
t)(q

0 j Adj k(a; a
0
t) j Topk(a

0) j a0(a00; a
0
1; a

0
t) j a

0
1 j A);

and an instruction of type (2) becomes:

A = q:Topk(a):a(a0; a1; at):

(a0:(q0 j Topk(a) j a(a0; a1; at) j a0 j A)� (if Ck = 0)

a1:Adj k(b; bt):(at j bt:(q
00 j Topk(b) j A))) (if Ck > 0) :

Note that in the equations above we have omitted the parameters (which

can be easily inferred) as well as the intermediate process identi�ers. The

case (Ck > 0) reveals the role of the channel at: it is used to simulate via a

communication an equality test between at and bt so as to make sure that the

received channel b corresponds to the cell preceding a's. 2

4.1 Undecidability with generated values and conditional

The encoding above relies on channel mobility and moreover processes may in-

put on received channel names. A frequently used extension of the �-calculus

includes a conditional on name equality. To formalise this extension, we as-

sume equations may have the shape:

A(~a) = [a = a0]A0(~a0); A00( ~a00)(6)

8
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with the expected meaning that we branch on A0 if a � a0 and on A00 otherwise.

Now if we allow a conditional on names of basic sort o then a simpler

encoding is possible where all transmitted names have sort o. We assume

additional channels Contk to indicate the contents of a cell (values 0 or 1).

The sorts are now as follows:

Topk of sort Ch(o); Adj k of sort Ch(o; o); and Contk of sort Ch(o; o) :

An instruction of type (1) is translated as:

A = q:Topk(a):(�a
0)(q0 j Adj k(a; a

0) j Contk(a
0; 1) j Topk(a

0) j A);

and an instruction of type (2) is translated as:

A = q:Topk(a):Contk(a
0; v):[a0 = a]

([v = 0](q0 j Topk(a) j Contk(a; 0) j A);

Adj k(a
0; a00):[a00 = a](q0 j Topk(a

0) j A)) :

5 The fragment without name mobility is undecidable

We consider the fragment where all names have sort Ch(), i.e., no name

mobility is allowed. Then the equation (2) is restricted to having the shape:

A(~a) = a:(� ~d)(�i2Iai j �j2JAj(~cj)) :(7)

In the absence of name mobility, generated names cannot be extruded and

therefore name generation is essentially ccs restriction. Milner [11] shows that

synchronous ccs with restriction, relabelling, and external choice is powerful

enough to simulate a 2-counter machine. We will show that this simulation

can be still carried on while dropping external choice and relabelling and using

just asynchronous communication. Schematically, we replace (i) synchronous

communication by asynchronous communication plus an acknowledgement,

(ii) external choice by internal choice (of course, this is possible because we

are just looking at a reachability property), and (iii) relabelling by parametric

equations.

Proposition 5.1 The reachability problem for the fragment with name gen-

eration and without name mobility is undecidable.

Proof. Again we simulate a 2-counter machine in the form described in the
proof of proposition 4.2 and reduce the halting problem to the reachability
problem 2.2. The basic issue is to represent a stack. To this end we de�ne
the following system of equations (inspired by [11]). The channel i stands for
increment, z for counter is zero, and d for decrement. Each of these channels
comes with a corresponding `acknowledgement' channel ia, za, and da which

9
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are kept implicit below.

B(i; z; d) = Bi(i; z; d) �Bz(i; z; d)

Bi(i; z; d) = i:(i
a
j CB(i; z; d))

Bz(i; z; d) = z:(za j B(i; z; d))

C(i; z; d; z0; d0) = Ci(i; z; d; z
0; d0)� Cd(i; z; d; z

0; d0)

Ci(i; z; d; z
0; d0) = i:(i

a
j CC (i; z; d; z0; d0))

Cd(i; z; d; z
0; d0) = d:((d0 � z0) j D(i; z; d; z0; d0))

D(i; z; d; z0; d0) = Dd(i; z; d; z
0; d0)�Dz(i; z; d; z

0; d0)

Dd(i; z; d; z
0; d0) = (d0a:(d

a
j C(i; z; d; z0; d0)))

Dz(i; z; d; z
0; d0) = (z0a:(d

a
j B(i; z; d)))

CB(i; z; d) � (�i00; z00; d00)(C(i; z; d; z00; d00) j B(i00; z00; d00))

CC (i; z; d; z0; d0) � (�i00; z00; d00)(C(i; z; d; z00; d00) j C(i00; z00; d00; z0; d0)) :

A process C receives on i; d and sends on z0; d0. A process B receives on
i; z. When decrementing, a process C sends messages to its neighbour. The
message goes on d if the neighbour is C and on z if the neighbour is B. Here
is a schematic intuition of what happens:

DCCCBB ! DDCCBB ! DDDCBB ! DDDDBB !

DDDBBB ! DDCBBB ! DCCBBB! CCCBBB :

The D is propagated towards the right till it meets B and when this

happens it becomes B and shortcuts the last B.

Note the peculiar way in which we use the internal choice. If a `server'

can receive requests on two channels then it guesses non-deterministically on

which channel the next message is coming. Symmetrically, a `client' with two

requests internally guesses which request is going to be served. If client and

server guess consistently we obtain the desired behaviour. Otherwise client

and server get stuck.

We translate a program of a 2-counter machine as a `�nite' control process

that acts as a client for two counters' processes initialised by:

B(i1; z1; d1) j B(i2; z2; d2) :

10
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The instructions of type (1) and (2) are simulated as follows:

(1) Aq = q:(ik j i
a
k:(q

0 j Aq)) ;

(2) Aq = Az
q � Ad

q

Az
q = q:(zk j zak :(q

0 j Aq))

Ad
q = q:(dk j dak:(q

00 j Aq)) :

It is clear that by a suitable selection of internal choices we can simulate

the behaviour of the 2-counter machine. On the other hand, suppose an

attempted communication gets stuck because of wrong internal choices. This

may happen (i) when the control sends a request to a counter, or (ii) when

a decrement instruction propagates towards the right in a counter. In both

cases the control is stuck. In the �rst case this is clear, in the second case this

happens because the control waits for an acknowledgement which is delivered

only after the propagation is completed. 2

Remark 5.2 In all the equations above, an input is followed, up to inter-

nal choice, by exactly one output. This implies that the number of messages

present in a reachable con�guration is bounded.

6 The fragment without mobility and with bounded

control is decidable

We consider the fragment where all names have the sort Ch(), and the equation

(2) is restricted to the shape:

A(~a) = a:(� ~d)(�i2Iai j B(~b)) :(8)

For the sake of simplicity, we assume that all the equations in a given system

depend on k parameters. We note that in systems without name mobility and

with bounded control there is a bound on the number of `live' names appearing

in any reachable con�guration. Indeed, the only form of name transmission

allowed in these systems is via the recursion parameters: once a name dis-

appears from the recursion parameters, no input can ever be performed on

that name again. Therefore, without loss of generality we suppose that in the

equation (8) above f~dg � f~bg.

The basic idea is to generalise the reduction to Petri Nets presented in

section 3 and to replace name generation by the reusing of `dead' names.

We will begin by transforming the system into an equivalent parameterless

system of equations with reset (and without name generation), which in turn

we transform into a Petri Net with reset arcs. The latter can be reduced to a

standard Petri Net, provided that the number of tokens in resetable places is

bounded (in general Petri Nets with reset arcs are undecidable).
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In the following, a parameterless system of equations with reset is a variant

of the parameterless system presented in section 3.1. In such a system, the

equations have the shape

A = a:reset ~d:(�i2Iai j B) ;(9)

and the semantics of the reset operator is to erase all messages sent on names

belonging to its argument.

6.1 Lifetime analysis of names

In order to reduce a Petri Net with reset arcs to a standard Petri Net, we

need a bound on the number of tokens in any resetable place. This leads

us to distinguishing two kinds of names in the original system: persistent

names, for which there is no bound, but which never need to be reset, and

temporary names. We will give a bound on the number of messages sent on

any temporary name.

To this end, we introduce the parameter 
ow graph of the system, which

is de�ned as follows.

De�nition 6.1 The parameter 
ow graph of a system E is a directed graph

G = (L; 7!), where:

� The set of nodes L is given by the parameter positions fAi j A identi�er in E and i 2
[1; k]g.

� Ai 7! Bj is an edge of the graph if if the equation associated to A in the

system E is

A(~a) = a:(� ~d)(: : : j B(~b)) ;

and the i-th component of ~a is equal to the j-th component of ~b.

Positions leading to a cycle in G will be referred to as persistent positions,

while the others will be called temporary positions. Accordingly, when a name

occurs in A(~a) we will call that name persistent if it is used in at least one

persistent position, and temporary if it is used only in temporary positions.

Note the peculiar structure of G: if we consider the class of positions

associated to one process identi�er, all edges from vertices in this class lead to

vertices in a unique class, due to our syntactic de�nition of �nite control. Also,

since all names in f~ag are distinct, we cannot have, for i 6= j, Ai 7! Bl and

Aj 7! Bl. It follows from these observations that the set of vertices reachable

from a temporary position is a �nite tree. If e is the number of equations

in E then the size of the tree is bounded by e � k which is the number of

parameter positions. Moreover, if m is the maximum number of outputs on

any parameter in any equation of E , then the number of outputs performed

on any temporary name is bounded by e � k � m, which is polynomial in the

size of E .

12
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A2 B2 C2

A1 B1 C1

Fig. 1. The parameter 
ow graph for E

Example 6.2 Let us consider the system E de�ned by the equations

A(a; b) = b:(a j B(a; a))

B(a; b) = a:C(a; b)

C(a; b) = b:(�c)(c j A(c; a)) ;

and the initial con�guration

P � a j a j b j A(a; b) :

In this system, all newly generated names are temporary names used in

position A1. Since the tree rooted in A1 has 6 nodes, and no equation in E
performs more than 1 output on any of its parameters, we can take 6 as a

bound on the number of messages sent on any temporary name.

6.2 From systems without mobility and with bounded control to parameterless

systems with reset

We �x a system E of equations of the type (8), and an initial con�guration P ,

which does not contain any generated names. Let N0 be the set of names free

in P , and n the number of process identi�ers in P . Without loss of generality,

we may suppose that every process identi�er in E relates to a unique thread

of the initial con�guration (if process identi�ers are shared among di�erent

threads then we can always rename them so as to satisfy this condition).

We will construct a system E 0 of equations of the shape (9) and show that

the reachability problem for E and P reduces to a �nite number of reachability

problems for E 0 and a suitable initial con�guration P 0.

We assume, for every j 2 [1; n], pairwise disjoint sets Pj and Tj, of re-

spective cardinalities k and 2k, which will represent the j-th thread's pri-

vate name space (Pj is used for persistent names and Tj for the temporary

ones). The parameterless system E 0 will be de�ned over the name space

N = N0 [ ([j2[1;n]Pj [ Tj).

De�nition 6.3 The vector of names (a1; : : : ; ak) is compatible with the pro-

cess identi�er A of the jth thread (written (a1; : : : ; ak) # A; j) if for all a 2
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fa1; : : : ; akg

a 2

8<
:
N0 [ Pj if 9 i (ai = a and Ai is a persistent position)

N0 [ Tj otherwise.

Next we de�ne the system E 0 associated to (P; E).

De�nition 6.4 Fix an equation of the shape (8) in E relating, say, to the

thread j. Then:

(i) for every ~a0 such that ~a0 # A; j,

(ii) for every injective substitution [~d0=~d] such that

f~d0g � Pj [ Tj, f~d0g \ f~a0g = ;, � = [~a0=~a; ~d0=~d], and �~b # B; j

we introduce an equation

A~a0 = �(a):reset ~r:(�i2I0�ai j B�~b
)

where f~rg = Tjnf�~bg and I 0 = fi 2 I j �ai =2 f~rgg.

Roughly, we consider all compatible instances ~a0 of a process identi�er A

of a thread j, we replace the generated names ~d by unused names in Pj [ Tj
(a simple cardinality argument show that they exist), and we reset all the

channels on temporary names that are not used in the continuation.

Next, we introduce a binary relation R relating con�gurations and param-

eterless con�gurations.

De�nition 6.5 Let Q � (� ~d0)(� ~d)(�i2Iai j �j2[1;n]Aj(~aj)) be a con�guration

where we assume that:

(i) f~d0g \ (
S

j2[1;n]f~ajg) = ;,

(ii) the identi�er Aj relates to the jth thread, and

(iii) if d 2 f~dg then d occurs in exactly one set of parameters f~ajg.

Then Q R (�i2I0�ai j �j2[1;n]Aj;�~aj ) whenever:

� I 0 = fi 2 I j ai 2 N0 [ (
S

j2[1;n]f~ajg)g and

� � is an injective substitution from ~d to
S

j2[1::n](Tj[Pj) such that �~aj # Aj; j,

for j 2 [1; n].

Here we follow the same approach as in the previous de�nition 6.4: we

replace the generated names occurring in the parameters of exactly one process

identi�er by compatible names in the set Tj [ Pj, while removing useless

restrictions and messages.

Given an initial con�guration P , we can easily compute a P 0 such that

P R P 0. Then we have to check that the relation R is suÆciently general to

keep the two con�gurations in lockstep.

Lemma 6.6 If Q R Q0, we have:

� if Q! R then there is R0 such that R R R0 and Q0 ! R0.

14
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� if Q0 ! R0 then there is R such that R R R0 and Q! R.

The proof of this lemma is a simple, although laborious, manipulation of

de�nitions 2.1, 6.4, and 6.5. We can then reduce the reachability problem for

(P; E) to a �nite number of reachability problems for (P 0; E 0).

Proposition 6.7 The reachability of the process identi�er A in (P; E) is equiv-
alent to the reachability of one of the (�nitely many) parameterless identi�ers

A~a0 in (P 0; E 0).

Proof. We apply lemma 6.6 inductively on the length of the considered re-

duction chain and exploit the de�nition of the relation R. 2

6.3 From parameterless systems with reset to Petri Nets with reset arcs

In this section, we show how to extend the reduction from parameterless sys-

tems to Petri Nets described in section 3.2, to a reduction from parameterless

systems with reset to Petri Nets with reset arcs.

We suppose given a parameterless system of equations with reset E 0, and
an initial con�guration P 0 without name generation. Let N be the �nite name

space over which the system is de�ned (note that this may be strictly larger

than the collection of names free in P 0).

Like in section 3.2, we build a Petri Net that has one place for each param-

eterless process identi�er in E 0, and one place for each name in N (remember

that we do not consider mobility). The intended interpretation is still that a

token in place a corresponds to a message a, while a token in place A corre-

sponds to the presence of a parameterless process identi�er A in the current

con�guration.

The transitions are set as in section 3.2, except that we no longer have to

care for external choice (i.e. there is only one transition per equation), and

that if the equation associated to A is A = : : : reset~r : : :, then for each a 2 f~rg
we add a reset arc going from transition tA to the place a.

Note that, thanks to the analysis performed in subsection 6.1, we can

guarantee that all the places pointed to by reset arcs are bounded.

Proposition 6.8 The reachability of A in (P 0; E 0) is equivalent to the cov-

erability of place A with 1 token in the Petri Net with reset arcs described

above.

6.4 From Petri Nets with reset arcs to Petri Nets

Finally, we recall how to simulate a Petri Net with reset arcsN with a standard

Petri NetN0, provided that all resetable places are bounded (this is a standard

result for Petri Nets).

For each resetable place p, we add a complementary place p0. If b is the

bound on the number of tokens in place p, in all reachable markings M we

will maintain the invariant M(p) +M(p0) = b.
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To this end, we modify the existing transitions so as to add as many

outgoing arcs to p0 as the number of incoming arcs from p, and as many

incoming arcs from p0 as the number of outgoing arcs to p.

Then, for any transition t that points a reset arc at p, we replace t by the

transitions t0; : : : ; tb, where, ti is connected to the places of the net by the

same arcs as t, plus an arc of weight i incoming from p, an arc of weight b� i

incoming from p0, and an arc of weight b outgoing to p0.

Proposition 6.9 A marking M is reachable in N if and only if the marking

M 0 is reachable in N0, where

� for any place p of N , M 0(p) = M(p),

� and for any resetable place p of N , M 0(p0) = b�M(p).

To summarize, given a system in the fragment without mobility and with

bounded control, by composing the three reductions presented above, we re-

duce the reachability problem for that system to a �nite number of coverability

problems for a standard Petri Net.

Theorem 6.10 The reachability problem for the fragment without mobility

and with bounded control is decidable.

Our decision result could be extended from equations of the shape (8) to

equations of the following shape:

A(~a) = a:(�~c)(�i2Iai j B(~b) j �j2JAj)(10)

where Aj are parameterless process identi�ers that refer to parameterless equa-

tions of the shape (5) whose free names do not intersect the generated names

~c.

An interesting open problem, concerns the decidability of the fragment

with name generation, bounded control, and weak forms of name mobility

where, e.g., a process cannot receive on received names.
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Abstract

A function M is given that takes any process p in the calculus of broadcasting sys-

tems CBS and returns a CCS processM (p) with special actions fhear?, heard!, say?,

said! g such that a broadcast of w by p is matched by the sequence say? ��said (w) by

M (p) and a reception of v by hear (v) ? ��heard!. It is shown that p �M (p), where

� is a bisimulation equivalence using the above matches, and that M (p) has no

CCS behaviour not covered by �. Thus the abstraction of a globally synchronising

broadcast can be implemented by sequences of local synchronisations. The criteria

of correctness are unusual, and arguably stronger than the usual one of preserving

equivalences. Since � has meaning only with the above matches, it is a matter

of dicussion what the result says about Holmer's (CONCUR'93) conjecture, par-

tially proved by Ene and Muntean (FCT'99), that CCS cannot interpret CBS upto

preservation of equivalence.

1 Background

Broadcast communication as in CBS, the calculus of broadcasting systems

[14], di�ers obviously from handshake communication as in CCS [11] in that

the former is one-to-many while the latter is one-to-one. But a perhaps more

important di�erence shows up even when just one process observes just one

other: actions in CCS are either visible and interactive or invisible and au-

tonomous, while CBS has autonomous output actions. So to get the result

of a CCS program, the user has to interact with it, for example after the

computation, which itself is silent. In contrast, the user can eavesdrop on a

CBS computation while it is running. This gives a very simple way to run

a CBS program, expressed using a set of coordination primitives on top of

any sequential language, which turn out to be remarkably easy to implement.
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CBS has been used for experiments in parallel programming and in courses

on protocols, etc., and has several implementations.

This paper presents a particular CCS implementation of CBS, fashioned

after the top-down sequential randomised interpreter (\TSR") [13,14] for CBS

presented in Section 2. The paper is self-contained, and no prior knowledge

of CBS is needed, but readers unfamiliar with CCS or process calculus in

general are referred to [11]. An informal overview of CCS and CBS is given in

Section 2, and the formal syntax and semantics of both calculi in Section 3.

1.1 TSR in CCS

TSR is suitable for this paper because it is very simple. It has been formally

shown to be correct (some techniques are reported in [6]) and the proof used

to formally prove a sorter correct [2]. Similar uses of CBS are reported in [5].

TSR has also been used for experiments with the grain of parallelism [14],

done with a quasi-parallel machine [16].

TSR is cast in CCS via a translation function M that takes a process p in

CBS and returns a processM (p) in CCS. The behaviour of this process mimics

that of TSR applied to p in the following sense: the call-return sequences in

TSR that correspond to CBS actions are encoded as simple CCS protocols.

Then M (p) is shown to behave like p when seen through these protocols.

1.2 Motivation: Global synchronisation via local synchronisations

The original motivation for the present work was not to relate CBS to CCS,

but to clarify an abstraction that has often been seen as problematic: that

the CBS model assumes global synchronisation on every broadcast. And yet

the intuition from sequential implementations of CBS, particularly lazy and

quasi-parallel ones, is that this global synchronisation does not have to be

taken literally, but can in fact be an abstraction from sequences of local syn-

chronisations. The CBS model also assumes that even local hidden broadcasts

synchronise with the environment, while in the implementation the environ-

ment is undisturbed.

To capture and validate these intuitions about implementations of CBS

processes, the author recast them as abstract machines | originally in a low

level notation with states and unlabelled transitions. This paper uses CCS

notation instead. In so doing, it runs into another thread of research.

1.3 CBS in CCS

Given di�erent calculi of communicating systems, a very natural question that

arises is whether any one can be expressed in terms of any other.

Holmer (1993) [8] gives a translation function S from CBS to SCCS [10]

such that if p1, p2 2 CBS then p1 � p2 () S (p1) � S (p2), where � is strong

bisimulation equivalence. The existence of this translation is unsurprising, as

2
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(a variant of) SCCS is known to be universal among process calculi [3], but

several facts about it are interesting. First, note that the result proved is what

appears to be the standard one in translating from one calculus to another:

preservation of equivalences (abbreviated \standard result" below). Next,

corresponding to CBS broadcast actions labelled w! and reception actions

labelled v?, the SCCS translation uses actions with precisely these labels. It

also uses many others, but only these survive through to the bisimulation. The

question does not arise how SCCS actions be combined into a broadcast; one

SCCS action is merely assigned to represent the latter. There is no limitation

on how SCCS actions may be combined, and the translation exploits the

freedom of interpretation this a�ords.

Holmer (1993) also conjectures that it is not possible to translate CBS

to CCS. His reason is that a broadcast has to be implemented by di�erent

numbers of handshakes in di�erent contexts, depending on the number of

receivers. This makes it hard to see how M (p) can be independent of the

context of p. Holmer does not say in what sense the sequence of handshakes

would be required to be equivalent to a broadcast, were a translation possible,

but it seems safe to assume he would require a standard result w.r.t. some

reasonable equivalences.

Ene and Muntean (1999) [4] prove a version Holmer's conjecture for the

case that M is \uniform", a condition examined in Section 5, and ful�lled by

neither the translation in this paper nor by Holmer's SCCS translation. They

show that there is no uniform encoding of CBS into CCS that preserves a

\reasonable semantics". What is relevant here is not the exact nature of their

\reasonable semantics", but their remark that they would like the encodings

of two terms equivalent under a certain semantics in the �rst calculus to be

equivalent under a related semantics in the second. That is, they require a

standard result, but also want the two equivalences be related.

The result in this paper relates the behaviours of p and M (p) directly, and

not via equivalences over the two calculi. It is thus non-standard. Section 5

discusses this departure from tradition.

2 Informal Overview

First, an informal summary of the operational semantics of both calculi. [11]

or [14] must be consulted for more explanation.

2.1 CCS

The notationm
a(w)?
����!m0 says that the process m can receive a value w on the

channel a and become the process m0. Similarly, m
a(w)!
����!m0 says that m can

send w along a and become m0. The arrow notations
a(w)?
����! or

a(w)!
����! need

no further decoration to say they are CCS actions as opposed to CBS ones,

because the latter, described below, use no channel names. Further down,

3
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CBS experiments are de�ned over CCS processes. Context should distinguish

CCS processes from CBS ones, but as an aid, CCS processes are usually called

m (with primes and subscripts) while CBS processes are called p.

The inference rule below for parallel composition j says how matching o�ers

of reception and transmission can be combined.

m1

a(w)?
����!m0

1 m2

a(w)!
����!m0

2

m1 j m2
�
�!m0

1 j m
0
2

The resulting communication action � is both autonomous and unobservable,

and is the only action with either of these properties.

Finally, the type of the values w above is determined uniquely by the

channel. Types are needed in this paper only to describe the CBS scoping

operator. They are usually clear from the context and dropped.

2.2 CBS

Each CBS process communicates along a lone channel implicitly associated

with the process. Processes in parallel share this implicit channel, and syn-

chronise on every broadcast on it. Processes are input-enabled, that is, they

are always prepared to receive any broadcast value. It helps to think of broad-

casting as akin to speaking and receiving to hearing. Speech is autonomous,

while hearing only happens when someone else speaks. Processes speak one

at a time, contention between speakers being resolved non-deterministically.

A CBS channel carries data of only one type, say �. Let w 2 �� = �[f�g,

where � =2 � is a special value standing for a hidden broadcast. Then p
w?
��!p0

means p can hear w and become p0 as a result, and p
w!
��!p0 means p can say w

and become p0 as a result. Note that the implicit lone channel is not named.

The characteristic communication rule for CBS is

p1
w?
��! p01 p2

w!
��! p02

p1 j p2
w!
��! p01 j p

0
2

The notation p w!��=! is used to mean 6 9p0: p
w!
��! p0, and p w?��=! to mean

6 9p0: p
w?
��! p0. It is convenient to de�ne, for any CBS process p, a predicate

p
Æ!
��! () p � !��=! and 8v: p v!� =!

and to write p
Æ!
��! as p

Æ!
��! p so that \p has nothing to say" is written as a

pseudo speech action. There is no corresponding receive action: 8p. p Æ?��=!.

To take advantage of this convention, w is allowed to range over ��Æ = � [

f�g [ fÆg, where Æ =2 � is a special value standing for \no broadcast".

Except that Æ! never causes a change of state, it is rather like a clock tick

in a timed CBS [15] with maximal progress: it is what happens when no has

anything to say.

4
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The following properties will hold by induction for every CBS process p.

(i) p
�?
��! p0 =) p � p0

(ii) 8v: 9! p0: p
v?
��! p0

The �rst is obviously in keeping with the design of the communication model,

but there are versions of CBS without the second property, which says that

CBS processes are input-deterministic. This simplifying property holds here

because a restricted choice operator is used instead of a general + as in CCS.

Hiding, restriction and translation are provided as follows. Processes whose

implicit channel carries data of type � are assigned type Proc (�) and can be

thought of as speaking the language �. If f : � ! �� , and g:�! �� , then Tf
gp

is a process that speaks � while p speaks �. The functions f and g translate

broadcast values from and to the subsystem, and translation to � means the

value is hidden or restricted, respectively. The functions are extended by

setting f (�) = g (�) = � .

p
g(w)?
����! p0

T
f
gp

w?
��! T

f
gp0

p
w!
��! p0

T
f
gp

f(w)!
����! T

f
gp0

2.3 Interpreting CBS in CCS

This paper �nds an interpretation of CBS in CCS. This development is in

three steps.

2.3.1 TSR

The starting point is TSR. It represents CBS processes as members of an

abstract data type, and provides a function

say: Proc (�)! Int! h��Æ;Proc (�)i

such that

9r: say p r = hw; p0i () p
w!
��! p0

Here r is a random seed, needed if p � p1 j p2 is a parallel composition. TSR

uses r to pick one of p1, p2 as speaker. Say it picks p1. Let say p1 r1 = hw; p01i,

where r1 is a new random number. Then there are three cases.

If w 2 �, then the other component is made to hear w. That is, say p r =

hw; (p01 j hear p2 w)i, where

hear: Proc (�)! �! Proc (�)

such that

hear p v = p0 () p
v?
��! p0

A function suÆces for this version of CBS because it is input-enabled and

-deterministic.

5
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If w = � , that is, p1 makes a hidden broadcast, then say p r = hw; p01 j p2i.

That is, the hear invocation is skipped.

If w = Æ, that is, p1 has nothing to say, then say is applied to p2 and three

similar cases arise. If p2 too has nothing to say, then p has nothing to say.

The other cases, where the outermost constructor of p is not j, are easier.

If say p r1 = hw1; p1i, say p r2 = hw2; p2i, : : :, say p ri = hwi; pii, then p is said

to produce the trace w1, w2, : : :, wi. The trace ends at wi if wi = Æ.

TSR has been formally shown [2,6] to be sound and complete w.r.t. the

operational semantics of CBS. That is, every execution sequence produced by

TSR can be justi�ed by the semantics of CBS, and every trace derivable from

the semantics is produced by a run of TSR for some random seed.

2.3.2 TSR in CCS

Next, for any CBS process p 2 Proc (�), the say and hear functions partially

applied to p are provided as commands to a CCS process M (p), which is the

CCS encoding of p.

The CCS equivalent of evaluating say p r is to send M (p) the message say.

No random seed is needed, since M (p) can be non-deterministic. If p
w!
��! p0,

M (p) responds said (w) and evolves to M (p0). Since w 2 ��Æ, M (p) will

always have some response, even if w = � or w = Æ.

The CCS equivalent of evaluating hear p v is to send M (p) the message

hear (v). If p
v?
��! p0, M (p) responds heard! and evolves to M (p0).

The function M is de�ned in Table 3.

2.3.3 Relating p and M (p)

Lastly, the behaviour of p is related to that of M (p) by de�ning CBS experi-

ments over CCS processes.

De�nition 2.1 [CBS experiments over CCS processes] Let m, m0 be arbi-

trary CCS processes. The following CBS experiments are de�ned over CCS

processes, for w 2 ��Æ and v 2 �.

m
w!
��!m0 () m

say
�
?

����!
�
�!

� said�(w)!
�������!m0

m
v?
��!m0 () m

hear�(v)?
�������!

�
�!

� heard�!
������!m0

m
�?
��!m

The subscript � is usually clear from the context and is dropped. \CBS

experiment" is usually abbreviated \experiment". Bisimulations over these

experiments are called CBS bisimulations, usually abbreviated just \bisimu-

lations".

CCS processes of the form m � M (p), for some CBS process p, are said

to be in CBS form. De�nition 2.1 applies to any CCS processes m and m0,

6
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but of course only those in CBS form are explicitly constructed to have CBS

experiments de�ned over them. A CCS process in CBS form will evolve by

CCS moves through processes not of this form, but will eventually always o�er

complete CBS experiments, as shown by Proposition 4.4. That the result of

such a CBS experiment is another CBS form is shown in passing by Proposi-

tion 4.5, which establishes a CBS bisimulation between p and M (p) for any

CBS process p.

The last clause in the de�nition above saves the trouble of explicitly pro-

viding each M (p) with a sum branch hear (�) ? heard!M (p). As the reader

can guess, the CCS interpreter will optimise by not delivering � 's as messages

to be heard.

2.4 Relating one kind of transition to another

Now that a CBS process p and its CCS interpretation M (p) have the same

kinds of transitions, it is possible to look for bisimulation or observational

equivalence.

Most work in process calculus relates systems that use the same communi-

cation model. For example, weak bisimulation is usually formulated as relating

single transitions
�
�! to sequences

�
�!

� �
�!

�
�!

�
. Alternatively, the latter se-

quence can be formulated in terms of a single derived \experiment" transition,

also labelled with �. Weak bisimulation is then just ordinary bisimulation over

such experiments. This is the style this paper uses, but in contrast to standard

formulations of bisimulation relates a communication of one kind, broadcast,

to one of a completely di�erent kind, handshake.

Note that the CBS experiments above put external actions on either side

of �s, in contrast to the weak bisimulation experiments.

3 Formal Syntax and Semantics of CBS and CCS

3.1 CBS

This paper is restricted to �nite CBS processes. The key idea, how to interpret

multi-way communication pairwise, has nothing to do with recursive CBS

processes, and the proofs need induction over the structure of CBS processes.

If recursive CBS processes are included, \induction over depth of guardedness"

would be needed instead, as in [14]. This isn't hard, but seems an unnecessary

distraction in this paper, so recursive CBS processes have been dropped for

expository reasons. Thus \CBS" in this paper is a subset of that in [14].

Much of the needed notation has already been introduced. Let x:� be

a variable, and u; v:� be expressions. Let b be a boolean expression. Let

p�: Proc (�), w�: ��Æ, f : � ! �� , and g:�! �� . Note that � is an existential

type. Then the processes speaking � are given by

p : : = 0

�
�
� x? p

�
�
� v! p

�
�
� hx; pi&hv; pi

�
�
� p j p

�
�
� b! p; p

�
�
� Tf

gp�

7
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p
�?
��! p

0
v?
��! 0

x? p
v?
��! p[v=x]

u! p
v?
��! u! p u! p

u!
��! p

hx; pi&hu; qi
v?
��! p[v=x] hx; pi&hu; qi

u!
��! q

p
w?
��! p0 q

w?
��! q0

p j q
w?
��! p0 j q0

p
w!
��! p0 q

w?
��! q0

p j q
w!
��! p0 j q0

p
T
#
(w)?

�����! p0

Tp
w?
��! Tp0

p
w!
��! p0

Tp
T"(w)!
����! Tp0

p
v?
��! p0

(tt ! p; q)
v?
��! p0

p
w!
��! p0

(tt ! p; q)
w!
��! p0

Metavariables: Here v ranges over �, and w over �� .

There are symmetric rules for p j q where q speaks, and for (� ! p; q).

p
Æ!
��! p () p � !��=! and 8v: p v!� =!

Table 1

Operational rules for CBS

The notation b! p; q means \if b then p else q".

The subscripts � are usually dropped. In processes of the form Tf
gp, it is

convenient if f is called T" and g is called T#. The convention is that T
T
"

T
#
p is

abbreviated to Tp.

No syntax or computation rules are given for �, but the evaluation of

expressions is assumed to terminate. Thus closed data expressions merely

stand for their values. It must be possible to determine when two elements

8
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a (x) ?m
a(v)?
����!m[v=x] a (u) !m

a(u)!
����!m

m1

�
�!m0

1

m1 +m2

�
�!m0

1

m1

�
�!m0

1

(tt ! m1; m2)
�
�!m0

1

m1

�
�!m0

1

m1 jm2

�
�!m0

1 jm2

m1

a(v)!
����!m0

1 m2

a(v)?
����!m0

2

m1 jm2
�
�!m0

1 jm
0
2

m
�
�!m0

m " I
�
�!m0 " I

m
�
�!m0

m " I
�
�!m0 " I

name (�) 2 I

m[d=z]
�
�!m0

A (d)
�
�!m0

A (z) = m
m

�
�!m0

�m
��
��! �m0

There are symmetric rules for m1+m2 and m1 jm2 where m2 acts and sends;

also a symmetric conditional.

Table 2

Operational rules for CCS

of � are equal. CBS is �rst order. That is, � may not itself involve the type

Proc (�) for any �.

Occurrences of x are bound in x? p and hx; pi&hv; qi, and the scope of x

here is p. p[v=x] denotes the result of substituting v for x in p. (Data)-open

and closed processes are de�ned in the obvious way; thus x? x! 0 is closed while

x! 0 is open. Only closed processes act. Table 1 shows the inference rules for

CBS.

The following rules de�ne
Æ!
��! independently of

� !
��! and

v!
��!, and agree

with the previous de�nition of
Æ!
��!.

0
Æ!
��! x? p

Æ!
��!

p
Æ!
��! q

Æ!
��!

p j q
Æ!
��!

p
Æ!
��!

(tt ! p; q)
Æ!
��!

p
Æ!
��!

Tp
Æ!
��!

3.2 CCS

The syntax of CCS is given by

m : : = 0

�
�
� a (x) ?m

�
�
� a (v) !m

�
�
� m+m

�
�
� mjm

�
�
� b! m;m

�
�
� m " I

�
�
� T�m

�
�
� A (d)

9
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where a ranges over channel names, I ranges over sets of channel names, and

processes are de�ned in an environment of equations of the form A (z) = m,

where z is a variable and d a constant of the data type parameterising the

equation. The relabelled process T�m, where � is a bijection over channel

names is simply written �m. If an action � = a (v) ! then � (a) (v) ! is simply

written ��, i.e., the relabelling � applies only to the channel name of the

action. Table 2 shows the inference rules for CCS.

4 A CCS interpreter for CBS

This is given in Table 3 and follows the sketch in Section 2.

M (p) has the interface

I� = fhear� (�) ? ; heard�! ; say�? ; said� (��Æ) ! g

where the types in parentheses refer to the data carried along the respective

channels. The subscripts � are usually clear from the context and are dropped.

M should be thought of as polymorphic: applied to p 2 Proc (�), it produces

a CCS process that uses channels subscripted by �. Alternatively, M can be

thought of as monomorphic, and being subscripted by �; this subscript too is

usually dropped.

The �rst four CBS constructors are simple. Here bisimulation between

p and M (p) is immediate in terms of the CBS transitions of De�nition 2.1,

without even any mention of � moves.

The conditional combinator is easiest understood by seeing that the b has

to be evaluated before any moves can be derived for either of b ! p; q and

b ! M (p) ;M (q). If b is tt, then these two have respectively the behaviours

of p and M (p).

The behaviour of M (p j q) has already been explained informally. The

components M (p) and M (q) are relabelled by �l and �r, and cannot interact

directly with the environment; only PAR does that. If it gets a hear (v) ?

command, it distributes the v to bothM (p) and M (q), waiting until each has

acknowledged it by a heard, and then sends its own heard! to the environment.

If M (p j q) gets a say command, this is o�ered, suitably relabelled, to both

M (p) and M (q). If the �rst taker says Æ, the second gets a chance. If both

say Æ, that is reported by said (Æ). If either has a w 6= Æ to say, it is passed up

to the environment via said; if w 6= � , it is �rst given to the other via a hear.

The � consideration is an optimisation.

The implementation of the scoping construct should be easy to understand.

4.1 CBS forms have no CCS moves other than CBS experiments

Proposition 4.5 establishes 8p 2 CBS: p � M (p), and shows that CBS forms

have all the necessary CBS experiments and no other. This subsection shows

that CBS forms have no irrelevant CCS moves, i.e. that every sequence of

10
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M (0) = hear (v) ? heard!M (0) +say? said (Æ) !M (0)

M (x? p) = hear (v) ? heard!M (p[v=x]) +say? said (Æ) !M (x? p)

M (u! p) = hear (v) ? heard!M (u! p) +say? said (u) !M (p)

M (hx; p1i&hu; p2i) = hear (v) ? heard!M (p1[v=x]) +say? said (u) !M (p2)

M (b! p1; p2) = b!M (p1) ;M (p2)

M (p1 j p2) = (�1 (M (p1)) j �2 (M (p2)) j PAR) " I

M (Tp) =
�
�1 (M (p)) j TRANS

�
T";T#

��
" I

I = fhear (�) ? ; heard! ; say? ; said (��Æ) ! g

for i 2 f1; 2g, �i = f hear (�) ? 7! heari (�) ? ;

heard! 7! heardi! ;

say? 7! sayi? ;

said (��Æ) ! 7! saidi (��Æ) ! g

PAR = hear (v) ? hear1 (v) ! heard1?

hear2 (v) ! heard2?

heard! PAR

+say? SAY

SAY =
P

i=1;2 sayi! saidi (w) ? (w = Æ ! LAST (1� i) ; SAID (1� i; w))

LAST (i) = sayi! saidi (w) ? (w = Æ ! said (Æ) ! ; SAID (1� i; w))

SAID (i; w) = w = � ! said (�) ! PAR;

heari (w) ! heardi? said (w) ! PAR

TRANS (f; g) = hear (v) ? g (v) = � ! heard! TRANS (f; g) ;

hear1 (g (v)) ! heard1? heard! TRANS (f; g)

+ say? say1! said1 (w) ? said (f (w)) ! TRANS (f; g)

Table 3

CCS interpreter for CBS
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CCS moves from a CBS form either includes a CBS experiment as a lead-

ing subsequence, or can be extended, and every extension leads to a CBS

experiment.

This is done by three lemmas. The �rst shows that every CBS form is

open to any CBS experiment, and has no other initial CCS moves. The next

two show that every subsequent CCS evolution completes the experiment that

has begun.

All three lemmas use the same structure of proof, induction on the struc-

ture of p. The only cases not immediate areM (p1 j p2) andM (Tp), where the

initial moves come not from the components but from PAR and from TRANS

respectively.

Lemma 4.1 (Command enabled) 8p 2 CBS, M (p) has a say? move and

hear (v) ? moves for all v, and no other moves.

Proof. The induction here is only used to show the absence of � moves from

components. 2

Lemma 4.2 (Input completion) 8p 2 CBS. 8v. every sequence of CCS

moves starting with M (p)
hear(v)?
������! leads to a v? CBS experiment.

Proof. Note that there is only one sequence for each v. The induction is used

to show that M (p1 j p2) completes a v? experiment assuming that p1 and p2
both do. That these components have such an experiment is guaranteed by

Lemma 4.1. 2

Lemma 4.3 (Output completion) 8p 2 CBS. every sequence of CCS moves

starting with M (p)
say?
����! leads to a w! CBS experiment.

Proof. Non-determinism arises here because either component in M (p1 j p2)

might respond to the relayed say? command. Three cases arise depending on

the w! from this component (there will be one by induction), and in the case

w 6= � and w 6= Æ, Lemmas 4.1 and 4.2 guarantee that the other component

has a matching w? experiment and will complete it. 2

Proposition 4.4 Every CCS evolution of a CBS form includes a CBS exper-

iment as a leading subsequence.

Proof. Implied by the preceding lemmas. 2

4.2 CBS forms implement CBS processes upto CBS bisimulation

Proposition 4.5 8p: p �M (p)

Proof. Directly, by showing that fhp;M (p)i j p 2 CBSg is a CBS bisimula-

tion. It is convenient to let \ range over f! ; ? g.

Forwards Let p
w\
��!np

0 mean p
w\
��!p0 can be derived in at most n inferences.

Then it is to be shown that 8n � 1: H (n), where H (n) is the hypothesis
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that 8p; w; \ ; p0. p
w\
��!n p

0 =)M (p)
w\
��!M (p0). The proof is by induction

on n.

The base case is H (1). This arises from the constructors 0, x? p, v! p and

hx; pi&hu; qi. They are easy. H (1) also includes the rule p
�?
��! p, which is

covered by the clause m
�?
��!m in De�nition 2.1.

For the step, H (n + 1) is to be proved from H (n). Here p has three

cases, where the constructors are the conditional, parallel composition and

scoping. Just three subcases are o�ered as examples; the others are similar.

Conditional. Suppose (b! p; q)
w\
��!n+1 p

0 and b is tt. Then it must be

that p
w\
��!np

0. Then by H (n), M (p)
w\
��!M (p0), soM (b! p; q)

w\
��!M (p0)

and H (n+ 1) follows.

Parallel composition. Suppose p j q
v!
��!n+1 p

0 j q0. One way this can arise

is p
v!
��!np

0 and q
v?
��!n q

0. By H (n), M (p)
v!
��!M (p0), and M (q)

v?
��!M (q0).

Then M (p j q)
v!
��!M (p0 j q0) follows via several � 's, giving H (n+ 1).

Scoping. If T# (v) = � , then Tp
v?
��!2Tp, as p

�?
��!1p is given. No induction

is involved, forM (Tp)
v?
��!M (Tp) is direct. Only TRANS acts,M (p) is not

involved. The case where T# (v) 6= � is no harder than parallel composition.

Backwards Let m, m1, m2 range over CCS processes. Let H (p) be the

property that 8w; \ ;m. M (p)
w\
��!m =) 9p0: m �M (p0) and p

w\
��! p0. It

is to be shown that 8p:H (p). The proof is by structural induction on p.

The base case is H (0) and is easy.

The three pre�xes too follow directly without need for induction. For

example, M (x? p) has only two CBS moves, one via
Æ!
��! to M (x? p) and

one via
v?
��! to M (p[v=x]), and H (x? p) follows without using H (p).

If b is tt, then M (b! p1; p2) has exactly the behaviour of M (p1), and

then b ! p1; p2 has exactly the behaviour of p1. So H (b! p1; p2) follows

from H (p).

Suppose H (p1) and H (p2) and M (p1 j p2)
v!
��!m. This can only arise by

cases such as m � (�1 (m1) j �2 (m2) j PAR) " I where M (p1)
v!
��!m1 and

M (p2)
v?
��! m2, say. Then by H (p1), m1 � M (p01) for some p01 such that

p1
v!
��! p01, and by H (p2), m2 � M (p02) for some p02 such that p2

v?
��! p02.

Then p1 j p2
v!
��! p01 j p

0
2, yielding H (p1 j p2).

H (Tp) similarly follows from H (p).

2

A simple extension to the interpreter is to change PAR so that after a

hear (x) ? it �rst transmits both hear1 (x) ! and hear2 (x) ! and then waits for

heard1? and heard2? in either order. This introduces some parallelism, but a

similar proof goes through.

A more diÆcult and interesting development would be to drop the heard

acknowledgements. They make the present proof easier, by ensuring that

the derivative m of a CBS move M (p)
v?
��!m is already of the form M (p0)
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rather than a few � moves away from it. Without heard, both M (p1 j p2)

and M (Tp) would accept a hear (v) ? command and be immediately ready

for other commands while the v was still trickling down through the system.

Then p
v?
��!p0 would be matched by just M (p)

hear(v)?
������!m � M (p0). A proof

that M (p) � p still holds with this setup would validate a more accurate CCS

encoding of a lazy interpreter.

A further interesting development would be to drop the say commands.

This would mimic a bottom up interpreter where the components of a parallel

composition generate requests to speak rather than respond to a command to

speak. Such an interpreter resolves contention between speakers by parallelism

rather than by pseudo-random numbers.

5 On the translation of operational semantics

Propositions 4.5 and 4.4 establish a more direct relation between p and M (p)

than a standard result would. This new direct relation makes no use of equiv-

alences over CCS processes (though of course it induces one | two CCS

processes can be de�ned to be equivalent if they are equivalent to the same

CBS process). Thus the result here is very di�erent from the standard ones, a

departure from tradition that calls for comment. The next subsection argues

that the present result is stronger than a standard one would be.

5.1 Preserving semantics upto equivalence

First, note that preservation of equivalences by itself is not suÆcient to estab-

lish the most fundamental requirement of any translation, the preservation of

meaning. For example, a translation from English to Swedish that takes each

equivalent of \come" to some equivalent of \go" in Swedish preserves seman-

tics upto equivalence, but is nonsensical. If a standard result is augmented

by a relation between the languages, it is only the augmentation that actually

says something direct about the preservation of meaning! This paper takes an

altogether more direct route.

But this problem with the unadorned standard result is usually not an

issue. For example, as has been pointed out, the SCCS actions in Holmer's

translation carr exactly the labels of the corresponding CBS action. (In fact,

more can be said than p1 � p2 () S (p1) � S (p2), for a kind of bisimulation-

upto-bisimulation can be established between p and S (p)). Similarly, abstract

machines often produce the exact value or action of the interpreted program,

so no relation has to be set up between the implemented language and the

machine language.

It is a matter of discussion what the present result says about a conjecture

that CCS cannot interpret CBS upto any reasonable equivalence, since the

equivalence over CCS that is preserved is de�ned with respect to the CCS

protocols for TSR procedures (though not with respect to M itself!), and
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therefore means something only in this context. What is clear is that M (p)

is independent of the context of p, yet implements a broadcast by di�erent

numbers of handshakes in di�erent contexts, and ensures M (p) � p where

� is a new relation, though hopefully meaningful. Holmer's conjecture was

inspired by the belief that these were unlikely achievements, and therefore can

be said to be disproved in spirit if not in letter.

5.1.1 Uniformity conditions

Ene and Muntean prove that Holmer's conjecture is true if the translation is

\uniform", which requires among other things that

M (p1 j p2)
def=M (p1) jM (p2)

As pointed out above, M in this paper is not uniform. The relevant frag-

ment is

M (p1 j p2)
def= (�1 (M (p1)) j �2 (M (p2)) j PAR) " I

where �1 and �2 are (CCS) relabelling operators, " is (CCS) restriction, and

PAR is a CCS process that distributes broadcasts over the components M (p1)

and M (p2). Holmer's SCCS translation too uses a similar structure. Indeed

the present author �nds this uniformity condition rather a strong require-

ment, and would �nd interesting any function that satis�es it and yet relates

signi�cantly di�erent modes of communication.

Another \uniformity condition", adopted by Ene and Muntean and broken

by both the SCCS and CCS interpreters for CBS, says something like

M (�p) def= � (M (p))

This condition is in any case not directly applicable to this paper, as CBS

replaces the relabelling and restriction operators of CCS by a single scoping

construct. The details are irrelevant here; what is interesting is that this

condition too applies to static operators whose de�nition is an integral part

of the communication model, thus strengthening the feeling that a uniform

translation is only meant to link two quite similar modes of communication.

6 Conclusions and further work

6.1 Conclusions

Both [8,4] and informal conversations suggest that the general guess has been

that CCS cannot interpret CBS. So the �rst achievement here has to be the

positive answer, disproved Holmer's conjecture at least in spirit, however sim-

ple it turned out to be. It can be debated whether it shows that CCS can

interpret CBS upto a reasonable equivalence, since the preserved equivalence

over CCS is de�ned with respect to the CCS protocols for TSR procedures.
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The style of result, linking very di�erent calculi, seems unusual, as does the

speci�c de�nition of CBS experiments over CCS processes. This author does

not know of similar de�nitions to link an abstraction with an implementation,

or of de�nitions of experiment that bracket a sequence of internal moves by

external ones, though both seem very natural. However, these departures from

tradition should be treated with caution until they have passed scrutiny.

The critiques of the \preservation of equivalence" criterion for implemen-

tation, and of the \uniformity" conditions, may be of some interest.

The present result does not say that CCS has the properties of CBS. It says

that the subset of CCS processes of the formM (p), where p is a CBS process,

have CBS properties when viewed through CBS experiments. In the light of

Holmer's conjecture, it does say something new about the expressive power of

CCS, by combining the new experiment de�nition with the well-known facts

that CCS can encode procedure calls and that CBS already had a functional

interpreter.

The original goal, of showing that the global synchronisation of the CBS

model is an abstraction from a sequence of local synchronisations, has been

achieved modulo the non-standard correctness requirement. Similar abstrac-

tions from local to global synchronisation are of interest in the setting of

LUSTRE and other synchronous languages [1]).

6.2 Future work

Several issues vy for immediate attention. Variant implementations have al-

ready been mentioned, and are listed below in order of increasing complexity.

It remains to be seen whether these can be proved correct.

Getting rid of the heard communications would make for a lazy implemen-

tation, which is already available in practice: TSR implemented using a lazy

language.

Getting rid of the say communications would make for a distributed imple-

mentation. The author has implemented such a bottom up interpreter, where

components generate speech requests autonomously. These bubble up the pro-

cess tree, while heard values and permits to speak travel down, obliterating

any requests they meet on the way.

TSR does not feed a � produced by one component to another, but one

can go further, and not regard � as a value to be passed up along said. Various

alternatives are possible; one, discussed in [14], allows � 's to synchronise and

hardly changes CBS. Others would induce a new weak equivalence on CBS,

which may be related to the barbed bisimulations of [7].

Indeed even the present result induces equivalences on both CCS and CBS

and both are worth studying. While that on CCS may be regarded as a

curiosity, adding to a very large number of existing CCS equivalences, that on

CBS is a physically meaningful equivalence, generated by an implementation.
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6.3 Related work

[8,4] are of course the main references, but many others have already been

mentioned. There are also several more implementations of CBS than those

already mentioned: an object oriented one by Wilhelmi (2000) [17], and other

styles of functional CBS implementation by Jones (1993) [9] and Petersson

(1994) [12].

6.4 Acknowledgements

I thank the referees for their detailed criticisms. They insisted on Proposi-

tion 4.4, which I had not put in even though the equivalent exists in the formal

proofs of correctness of TSR, and on a more careful statement of what has

actually been achieved.

The abstract machines reported here were �rst developed long ago and

presented at various meetings, though not written up. Andy Gordon sug-

gested encoding these in CCS, making the hoped for equivalence result much

more signi�cant. A version of this proof was presented at the IFIP WG 2.2

meeting (1999) and at the Chalmers Winter meeting (2000). Joachim Parrow

encouraged a clean up of that proof.
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an impression that the goal was to disprove Holmer's conjecture. The present
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ects the full picture better, with the main goal being a formalisation

of concurrency issues in implementations of CBS.
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Abstract

We show how the �-calculus can express local communications within a distributed

system, through an encoding of the local area �-calculus, an enriched system that

explicitly represents names which are known universally but always refer to local

information. Our translation replaces point-to-point communication with a system

of shared local ethers; we prove that this preserves and re
ects process behaviour.

We give an example based on an internet service d�mon, and investigate some

limitations of the encoding.

1 Introduction

Part of the power of the �-calculus is that names serve a dual rôle: as well

as carriers of communication, they have unique identity. By default the scope
of these coincide, so that any two processes that know a common name can

also use it to communicate. In many distributed systems, however, this is not

so natural: widely-known names may be intended to refer always to local
information. For example, the standard finger service operates on well-

known port number 79, but should of course give a di�erent answer on di�erent

machines. We can even take this as a de�ning characteristic of a distributed

system: that a single name may refer to di�erent things depending on where
it is used.

The local area �-calculus (la�) captures this phenomenon of names which
are known universally but always refer to local information. It extends the
�-calculus so that a channel name can have within its scope several disjoint

local areas. Such a channel name may be used for communication within an

area, it may be sent between areas, but it cannot itself be used to transmit

1 Supported by the UK Engineering and Physical Sciences Research Council

This is a preliminary version. The �nal version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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information from one area to another. Areas are arranged in a hierarchy of

levels, distinguishing for example between a single application, a machine, or

a whole network.

In previous work we introduced the local area �-calculus and showed how

a combination of static typing and dynamic checks can give 
exible scope for

name identity while suitably restricting communication to local areas [8]. In

this paper we give a compositional translation of la� into the plain �-calculus,

and prove that it correctly encodes process behaviour.

The main challenge for representing local areas in the �-calculus is how

to prevent communication on a channel between di�erent areas, while still

preserving the identity of names. Our solution is to replace communication

inside an area with communication on a new channel created just for that

area. As well as sending the original data, an encoded output sends the

channel name as well. Output action �ahbi becomes �eha; bi where e is a name

that corresponds to the appropriate local area | a shared ether. An input

action on a channel translates to a process that listens for communication

on the relevant ether. When it receives a message it tests the �rst element

against the desired channel name; if they match it accepts the input, otherwise

it rebroadcasts the message.

This translation makes explicit the di�erent rôles of names, identity and

communication, by mapping them to two distinct sets of names. Names like
a and b serve purely as data, for identi�cation; ether names like e are for
communication only. The scope of data names manages who knows what,

while the scope of ether names handles locality of communication.

The evident motivation for this model is packet communication on an

ethernet: instead of sending data directly to its destination, we drop a packet
into the ether. Listening processes pick up all packets and sift out the ones

they are interested in. In our case the tree of nested areas (applications,
machines, networks) gives rise to a hierarchy of ethers, with a process using a
di�erent ether for each level of communication (local to an application; within

a machine; over the network).

There is a close match between the behaviour of a process in la� and its �-

calculus translation; we show a form of weak bisimilarity on outputs. There is
some loss of information though, in that translated terms may make additional

silent moves, as packets pass over the ether, and an ether may indiscriminately

accept and rebroadcast packets in which no receiver is interested.

The rest of the paper is arranged as follows. Section 2 presents the local
area �-calculus, its type system and operational semantics. Section 3 reviews

the version of the �-calculus we use. Section 4 gives the encoding between

these, and Section 5 outlines the result that a process and its encoding are

weakly bisimilar on output. Section 6 presents an example of the translation

at work, and Section 7 concludes.
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Related work

Local areas are in some sense a more regular form of CCS restriction or

CHOCS blocking. Vivas and Dam have studied the e�ect of these on the

higher-order �-calculus, and given an encoding into the �-calculus [23]. How-

ever, their encoding relies on blocking being carried out explicitly on individual

names, and is (in their own words) both complex and indirect (though chie
y

because it also handles higher-order operations).

Cardelli, Ghelli and Gordon take a di�erent approach to limiting commu-

nication with their notion of name groups [5]. Ingeniously, introducing these

into the type system allows one to check statically that a process never passes

out certain names. In our system, by contrast, names may be passed anywhere

| only their action is limited.

There are numerous projects addressing locations in the �-calculus [3,4,13],

and distributed systems more generally [7,10,18,21]. These overlap with our

approach to varying degrees; some look at issues of when locations fail, others

limit communication in particular ways. In the extreme, systems like mobile

ambients make all interaction local: remote agents must move around to talk
to each other [6].

Translating miscellaneous concurrent systems into each other is also a pop-
ular sport. Nestmann and Pierce give a good overview of what makes for a

good encoding in their work on deconstructing choice [16]. Among many ex-
amples, Fournet and others have implemented mobile ambients in the JoCaml
languages [9]; this translates one notion of distributed areas into another,

whereas we make areas disappear entirely. Moreover, their focus is on provid-
ing a basis for a implementation of Mobile Ambients, so much attention is paid

to making it run eÆciently. Sangiorgi describes in great detail a rather di�er-
ent encoding of locations in order to express non-interleaving semantics [20].

2 A �-calculus with local areas

The local area �-calculus extends a standard �-calculus with nested local ar-

eas arranged in levels. The �-calculus part is unexceptional: it happens to

be polyadic (channels carry tuples rather than single values [14]) and asyn-

chronous (output actions always succeed [2]). To illustrate the extensions, we
present a brief example, based on a mechanism for selecting internet services.

When a browser contacts a web server to fetch a page, or a person operates

finger to list the users on another machine, both connect to a numbered

\port" on the remote host: port 80 for the web page, port 79 for the �nger

listing. Of course, this only works if both sides agree; and there is a real-world

committee to set this up [12]. Under Unix, the �le /etc/services holds a

list mapping numbers to services. There is also a further level of indirection:

most machines run only a general meta-server inetd, the Internet d�mon,

which listens on all ports. When inetd receives a connection, it looks up the
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port in /etc/services, and then consults a second �le which identi�es the

program to provide that service. The inetd starts the program and hands it a

connection to the caller. A model of this procedure in the local area �-calculus

looks like this (we omit detailed type information).

Client Carp = host [ �c:(pikeh�nger ; ci j c(x):printhxi) ]

Server Pike = host [ !pike(s; r):�shri j !�nger(y):�yhPikeUsersi

j !daytime(z):�zhPikeDatei ]

System net [Carp jPike]

Names pike and c operate at net level;

�nger , daytime and print operate at host level

This shows a client machine Carp that wishes to contact a server Pike with a

�nger request; the host [�] and net [�] markers indicate local areas. The client

has two components: the �rst transmits the request, the second prepares to

print the result. Server Pike comprises three replicating processes: a general

Internet d�mon, a Finger d�mon, and a time-of-day d�mon. Channel pike

is the internet address of the server machine, while the free names �nger and
daytime represent well-known port numbers. In operation, Carp sends its
request to Pike naming the �nger service and a reply channel c. The Internet

d�mon on Pike handles this by retransmitting the contact c over the channel
named �nger . The Finger d�mon collects this and passes information on

PikeUsers back to the waiting process at Carp. Figure 1 gives a graphical
representation of the interaction.

In the plain �-calculus, this models leaks: because the names �nger and
daytime are visible everywhere, even when the Internet d�mon on Pike has
collected the request there is no protection against a Finger d�mon on some

di�erent server actually handling it. Restricting the scope of �nger to host
Pike would be no solution, because then Carp could not formulate the request

because it has to know the name of the service.

In the local area �-calculus, each channel has an assigned level of operation,

which limits how far communication on that channel may travel. In this case,

although �nger is globally known, messages over it remain within a single host .
This breaks the Catch-22: Carp and Pike agree on the name for the �nger

service, but di�erent Finger d�mons on separate machines do not interfere
with each other.

2.1 Syntax

The calculus is built around two classes of identi�ers:

channels a; b; c; x; y; query; reply; : : : 2 Chan

and levels `;m; app; host ; net ; : : : 2 Level:

4
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Net

Finger Inetd

4

Carp

2: over "finger" at the host level

1

3Communications:
1: over "pike" at the net level

3: over "c" at the net level

4: data offered on "print" at the host level

Pike

Daytime

2

Fig. 1. Operating a remote finger service through an inet d�mon

Channel names are drawn from a countably in�nite supply, Chan. Syntacti-

cally, they behave exactly as in the �-calculus. Levels are rather more con-
strained: we assume prior choice of some �nite and totally ordered set Level.
Throughout the paper we use app < host < net , and take ` andm as metavari-

ables for levels.

Processes are given by the following syntax, based on the asynchronous

polyadic �-calculus.

Process P;Q ::= 0 inactive process j �ah~bi output tuple

j P jQ parallel composition j a(~b):P input

j `[P ] local area at level ` j !a(~b):P replicated input

j �a:�:P fresh channel a of type �

The only novelty here is `[P ], which represents a process P running in a local

area at level `; we refer to a process of this form as an agent. Areas, like
processes, are anonymous; this is in contrast to systems for locations, which

are usually tagged with identi�ers.

Channel names may be bound or free in any process. The binding pre�xes

are as usual the input pre�xes a(~b), !a(~b) and restriction �a:�; the type � gives

information about the level of operation of a and the tuples it carries. We

write fn(P ) for the set of free names of process P .

5
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We identify process terms up to structural congruence `�', the smallest

congruence relation containing the following equations:

P j 0 � P a(~b):P � a(~c):Pf~c=~bg ~c \ fn(P ) = ;

P jQ � Q jP !a(~b):P � !a(~c):Pf~c=~bg ~c \ fn(P ) = ;

(P jQ) jR � P j(Q jR) �a:�:P � �b:�:Pfb=ag b =2 fn(P )

�a:�:0 � 0 �a:�:�b:�:P � �b:�:�a:�:P a 6= b

`[�a:�:P ] � �a:�:(`[P ]) (�a:�:P ) jQ � �a:�:(P jQ) a =2 fn(Q)

2.2 Scope and areas

The interesting equation in this structural congruence is `[�a:�:P ] � �a:�:(`[P ]),

commuting name binding and area boundaries. A consequence of this is that

the scope of a channel name, determined by �-binding, is quite independent

from the layout of areas, given by `[�]. Scope determines where a name is

known, and this will change as a process evolves: areas determine how a name

can be used, and these have a �xed structure.

For a process description to be meaningful, this �xed structure of nested
areas must accord with the predetermined ordering of levels. For example, a
net may contain a host , but not vice versa; similarly a host cannot contain

another host . Writing <1 for the one-step relation in the total order of levels,
we require that in a well-formed process every nested area must be <1-below

the one above.

Consider some occurrence of a bound channel name a in a well-formed

process P , as the subject of some action: �ah�i, a(�), or !a(�). The scope

of a is the enclosing �-binding �a:�:(�). The local area of this occurrence of a
is the enclosing level ` area `[�]. A single name may have several disjoint local

areas within its scope. It is also possible for a name to occur outside any local
area of the right level; in this case it may only be treated as data, not used

for communication.

2.3 Type system

Channel types have the following rather simple grammar.

Type � ::= ~�@`

A type declaration of the form a : ~�@` states that a is a level ` channel carrying

tuples of values whose types are given by the vector ~�. The base types are

those with empty tuples: a channel of type ()@` is for synchronization within
an `-area. Additional base datatypes like int or string can be incorporated

without diÆculty.

Figure 2 presents the rules for deriving type assertions of the form � ``

P , where � is a �nite map from channel names to types. This states that

6
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� `` 0
� `` P � `` Q

� `` P jQ

�;~b : ~� `` P

� `` a(~b):P

�(a) = ~�@m

with ` � m

� `` P

� `m `[P ]
` <1 m

�; a : � `` P

� `` �a:�:P

�;~b : ~� `` P

� `` !a(~b):P

�(a) = ~�@m

with ` � m

� `` �ah~bi if �(a) = ~�@m, �(~b) = ~� and ` � m

Fig. 2. Types for processes in the local area calculus

OUT � `` �ah~bi
�ah~bi
�! 0

IN � `` a(~b):P
a(~b)
�! P ~b \ dom(�) = ;

IN! � `` !a(~b):P
a(~b)
�! P j !a(~b):P ~b \ dom(�) = ;

PAR
� `` P

�

�! P 0

� `` P jQ
�

�! P 0 jQ

COMM
� `` P

�ah~ci
�! P 0 � `` Q

a(~b)
�! Q0

� `` P jQ
�

�! P 0 jQ0f~c=~bg

BIND
�; a : � `` P

�

�! P 0

� `` �a:�:P
�

�! �a:�:P 0
a =2 fn(�)

AREA
� `` P

�

�! P 0

� `m `[P ]
�

�! `[P 0]

if � is �ah~bi or a(~b)
then �(a) = ~�@m0

with ` <1 m � m0

Fig. 3. Operational semantics for the local area calculus

process P is well-typed at level ` in context �. The static checking provided

by the type system makes two assurances: tuples sent over channels will always
be the right size, and a well-typed process will not attempt to communicate

on a name above its level of operation.

2.4 Operational semantics

We give the calculus a late-binding, small-step transition semantics, following
the regular �-calculus. There is only one addition: although the static type

system guarantees that a process will not initiate communication on a name

above its operating level, we still need a dynamic check to make sure that no

active communication escapes from its local area.

The operational semantics is given as an inductively de�ned relation on

well-typed processes, indexed by their level ` and context �. Figure 3 gives

7
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rules for deriving transitions of the form

� `` P
�

�! Q

where � `` P and � is one of the following.

Transition � ::= �ah~bi output

j a(~b) input

j � silent internal action

We make a few observations of these rules and the side-conditions attached to

them.

� Active use of the structural congruence `�' is essential to make full use of

the rules: a process term may need to be rearranged or �-converted before

it can make progress. For example, there is no symmetric form for the PAR

rule (and no need for one).

� In order to apply the COMM rule it may be necessary to use structural con-

gruence to expand the scope of communicated names to cover both sender
and recipient.

� Late binding is enforced by the side-condition ~b \ dom(�) = ; on the input

rules; this ensures that input names are chosen fresh, ready for substitution
Qf~c=~bg in the COMM rule. Again, we can always �-convert our processes
to achieve this.

� The side-condition m � m0 on AREA is the dynamic check that prevents
communications escaping from their local area.

In previous work [8] we demonstrated that reduction preserves types, and as
a consequence the semantics does successfully capture the intuition behind
areas and levels: areas retain their structure over transitions, and actions on

a channel are never observed above the correct operating level.

2.5 Example: Internet daemon

Recall the internet service example given earlier: a host Carp wishes to con-

tact a Finger d�mon running on host Pike, through a general Inet d�mon.
Figure 4 �lls out the details of this, including type de�nitions.

The type service for �nger and daytime expands to (string@net)@host .
This means that these channels can be used only for host-level communica-

tion, but the values carried will themselves be net-level names. The host-level

communication is between Inet and Finger or Daytime; the net -level com-
munication is the response sent out to the original enquirer, in this case over

channel c to machine Carp. Channel pike has a net-level type that acts as
a gateway to this, reading the name of a service and a channel where that

service should send its reply.

8
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Carp = host [ �c:response:(pikeh�nger ; ci j c(x):printhxi) ]

Pike = host [ Inet jFinger jDaytime ]

Inet = !pike(s; r):�shri

Finger = !�nger(y):�yhPikeUsersi

Daytime = !daytime(z):�zhPikeDatei

� = f�nger ; daytime : service

pike : (service; response)@net

print : string@hostg

service = response@host

response = string@net

� `net (Carp jPike)

Fig. 4. Example of processes using local areas: an Internet server d�mon

We can now apply our operational semantics to see this in action.

� `net (Carp jPike) � ( host [ �c:response:(pikeh�nger ; ci j c(x):printhxi) ]

j host [ Inet jFinger jDaytime ] )

extend scope of c � �c:response: ( host [ pikeh�nger ; ci j c(x):printhxi ]

j host [ Inet jFinger jDaytime ] )

expand Inet � �c:response: ( host [ pikeh�nger ; ci j c(x):printhxi ]

j host [ !pike(s; r):�shri

j Finger jDaytime ] )

communication
on pike@net

�

�! �c:response: ( host [ c(x):printhxi ]

j host [ �ngerhci j Inet

j Finger jDaytime ] )

expand Finger � �c:response: ( host [ c(x):printhxi ]

j host [ �ngerhci j Inet

j !�nger(y):�yhPikeUsersi jDaytime ] )

communication

on �nger@host

�

�! �c:response: ( host [ c(x):printhxi ]

j host [ Inet j �chPikeUsersi

j Finger jDaytime ] )

communication

on c@net

�

�! �c:response: ( host [ printhPikeUsersi ]

j host [Inet jFinger jDaytime ] )

After a sequence of internal communications at the net and host level, the

�rst host Carp is ready to print the information PikeUsers, and host Pike is

restored to its original con�guration.

9
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3 The target �-calculus.

The target calculus is an asynchronous �-calculus [1,2,11], with guarded re-

cursion and name testing.

P ::= a(b):P j �ahbi j 0 j (P jQ) j �X:P j �x:P j if x = y then P elseQ

The absence of output pre�xing and choice re
ects the local area calculus.

Other aspects are tuned to make the encoding as simple as possible by reduc-

ing internal transitions and avoiding inert processes. For example, we could

easily use replication !P rather than recursion, but this needs an extra trigger

channel.

Unusually, our channels carry non-empty lists of values rather than tuples;

we write b for this, with ; for list concatenation. This is because the translation

multiplexes the action of several polyadic la�-channels onto a single ether, and

hence a single �-channel may carry packets of di�erent sizes. We use head/tail

pattern matching on these lists to unwrap packets; in fact, testing on the head

element of a list is always enough to determine its length. An alternative would
be to further encode lists using standard �-calculus techniques [22], or possibly

type packets with some polymorphic datatype [17].

We need to test names for both equality and inequality, and so combine

these into a conditional with operational rules derived from those for match-
ing [15].

P
�

�! P 0

if x = x then P elseQ
�

�! P 0

Q
�

�! Q0

if x = y then P else Q
�

�! Q0
x 6= y

With these rules we can consistently add the following convenient structural
congruence:

(if x = x then P elseQ) � P :

The operational semantics of the calculus is otherwise quite standard, and we
omit the details.

4 Encoding local areas

In this section we present a compositional encoding of la�-terms into the �-

calculus, following the scheme outlined in the introduction. All communication

is mapped into packets passing over designated ether channels; thus tuple
output �ah~bi becomes list output �eha; bi where ether e varies according to the

level of a. To keep track of which ether to use, we maintain an environment �
mapping levels to ether names. The encoding is parameterized over this, and

takes the form

[[� `` P ]]�
where P is a well-typed term of level ` in context �, and � assigns ethers to

levels ` and above.
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Structure:

[[� `` 0]]� = 0

[[� `` P jQ]]� = [[� `` P ]]� j [[� `` Q]]�

[[� `` m[P ]]]� = �e:[[� `m P ]]�;m7!e
e =2 fn(P ) [ cod(�)

[[� `` �a:�:P ]]� = �a:[[�; a:� `` P ]]�

Actions, all with e = �(m) where �(a) = ~�@m:

[[� `` �ah~bi]]� = �eha; bi

[[� `` a(~b):P ]]� = �X:e(x; b):if x = a then [[�; b:~� `` P ]]� else (�ehx; bi jX)

[[� `` !a(~b):P ]]� = �X:e(x; b):(X j if x = a then [[�; b:~� `` P ]]� else �ehx; bi)

Fig. 5. Rules for encoding la� into the plain �-calculus

Figure 5 presents the full encoding, with one clause for each constructor;
here we go through each one individually. The null process, parallel composi-

tion, and name restriction are unchanged.

[[� `` 0]]� = 0

[[� `` P jQ]]� = [[� `` P ]]� j [[� `` Q]]�
[[� `` �a:�:P ]]� = �a:[[�; a:� `` P ]]�

To place a process in a local area, as an agent, we create a new ether name and

assign it a level in the environment �. A side condition ensures that we do
not accidentally capture any existing names when introducing the new ether.

[[� `` m[P ]]]� = �e:[[� `m P ]]�;m7!e
e =2 fn(P ) [ cod(�)

Translating an output action uses the environment and the assignment of
levels to ethers to �nd the correct ether for the output channel. It then sends

both the output channel and the data for transmission over this ether name

as a list.

[[� `` �ah~bi]]� = �eha; bi with e = �(m) where �(a) = ~�@m

An encoded input also uses the environment and the assignment of levels

to ether names to �nd which ether it should listen on. When it receives a

packet over this ether, it tests the head of the list to see if it matches the

input channel name. If it does, then the packet is meant for this input and

execution continues as appropriate. If the names do not match, then this

packet is meant for some other channel in the same area. The packet is resent

11
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and the process restarts.

[[� `` a(~b):P ]]� = �X:e(x; b):if x = a then [[�; b:~� `` P ]]� else (�ehx; bi jX)

with e = �(m) where �(a) = ~�@m.

Replicated input is the same, except that the process restarts whether or not

the input key is correctly matched.

[[� `` !a(~b):P ]]� = �X:e(x; b):(X j if x = a then [[�; b:~� `` P ]]� else �ehx; bi)

with e = �(m) where �(a) = ~�@m.

The encoding is well-de�ned up to structural congruence.

Proposition 4.1 For any la�-terms P and Q, if P � Q then [[P ]]� � [[Q]]�.

Proof. Because the encoding is compositional, it is enough to check that all

of the structural axioms for la� given at the end of x2.1 translate to valid �-

calculus equivalences. All of these are immediate; the only signi�cant case is

that `[�a:�:P ] � �a:�:(`[P ]) becomes exchange of name binders �e:�a:[[P ]]� �

�a:�e:[[P ]]� for some ether e. 2

It is worthwhile noting that the encoding uses �-calculus channels in a

highly stereotyped manner. Names fall into two distinct classes: data names,
like a and b, which correspond directly to la� channels, and ether names like e.
All communication involves sending data over ethers. Data names are never

used as channels, while ether names are never transmitted, nor do they appear
in match tests. One consequence of this is that all our terms happen to lie

in the subset studied by Merro [13] as the local �-calculus, where names sent
over channels may not be used for further communication.

In the introduction we mentioned that in general �-calculus names have a
dual rôle, for identity and for communication; what happens in the translation
is that each rôle is mapped to a di�erent name.

5 Correctness of the encoding

A la�-process and its encoding behave in very similar ways, and this is pre-
served under reduction. Our main result is that they enjoy a form of bisimi-
larity on outputs, up to the translation between direct and ether-based com-

munication.

Theorem 5.1 For any well-typed process � `` P in the local area �-calculus

and transition � = �ah~bi or � = � , the following hold.

(i) If � `` P
�

=) P 0 then [[� `` P ]]�
[[�]]
�=) [[� `` P

0]]�.

(ii) If [[� `` P ]]�
[[�]]

�=) Q then there is P 0 such that � `` P
�

=) P 0 and

[[� `` P
0]]� � Q.
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Here [[� ]]� = � and [[�ah~bi]]� = �eha; bi where e = �(m) for �(a) = ~�@m.

This result says nothing about inputs: in fact, a term and its encoding

generally have di�erent input behaviour, with the translated terms being more

receptive than the original. It is conventional though in asynchronous calculi

to regard only output as observable, as there is no way in principle to know

when an input has been received.

In the terminology of Nestmann and Pierce [16], this is an operational cor-

respondence between the calculi. Although expressed in terms of weak tran-

sitions, the correspondence is in fact rather close. Transitions match exactly,

except that a single internal �-transition may map to zero la�-transitions.

Unfortunately this does introduce the possibility of divergence: most trans-

lated terms can perform an unbounded sequence of � steps as they collect and

return ether packets. Divergence also arises in Nestmann and Pierce's choice

encoding, except that there it is inserted by design, to give a more convenient

full abstraction result; their initial encoding is divergence free. In our system,

divergence arises rather naturally from mechanism of ethers. We expect that

replacing this with more pragmatic lists of readers and writers would lead to
a divergence-free encoding, but at a cost of considerable complexity.

Theorem 5.1 follows without diÆculty from the following more precise
results, which characterise exactly the possible actions of encoded processes.

Lemma 5.2 For any well-typed process � `` P in the local area �-calculus the

following hold. In each case Q = [[� `` P ]]� and e = �(m) where �(a) = ~�@m.

(i) If � `` P
�ah~bi
�! P 0 then Q

�eha;bi
�! Q0 where Q0 � [[� `` P

0]]�.

(ii) If � `` P
a(~b)
�! P 0 then Q

e(x;b)
�! Q0 such that for any vector of names ~c we

have Q0fa; c=x; bg � [[�0 `` P
0f~c=~bg]]�.

(iii) If � `` P
�

�! P 0 then Q
�

�! Q0 where Q0 = [[� `` P
0]]�.

(iv) If Q
�eha;bi
�! Q0 then � `` P

�ah~bi
�! P 0 with [[� `` P

0]]� � Q0.

(v) If Q
e(x;b)
�! Q0 then either Q0 � �ehx; bi jQ or � `` P

a(~b)
�! P 0 where for any

vector of names ~c we have Q0fa; c=x; bg � [[�0 `` P
0f~c=~bg]]�.

(vi) If Q
�

�! Q0 then either Q � Q0 or � `` P
�

�! P 0 with [[� `` P
0]]� � Q0.

This makes clear the close connection between la�-transitions and ether

packets. For output, the correspondence is exact: a process can perform
an output if and only if its translation can. For input, recall that when an
encoded process reads a packet, it tests it and if unsuitable it retransmits

the packet again and continues as before. This means that an input in the

encoded system may be matched by a similar input in the system it encodes

or it may perform an output and revert to the original process.

This choice of two possible responses to any input action is carried over to

the case of an encoded process performing a � . This may either re
ect a � in

13

115



Chothia and Stark

[[ � `net Carp jPike ]]fnet 7!ng
= Carp0 jPike 0

Carp 0 = �q:�c: ( �nhpike; finger; ci

j �X:n(x;y):if x = c then �qhprint;yi else (�nhx;yi jX) )

Pike 0 = �p:(Inet 0 jFinger 0 jDaytime 0)

Inet 0 = �X:n(x;y):(X j if x = pike then �phyi else �nhx;yi)

Finger 0 = �X:p(s; r):(X j if s = �nger then �nhr;PikeUsersi else �phs; ri)

Daytime 0 = �X:p(s; r):(X j if s = daytime then �nhr;PikeDatei else �phs; ri)

Ether names: n; p; q

Data names: pike; �nger ; daytime; print ; c; r; s

Fig. 6. Example of processes using local areas: an Internet server d�mon

the system it encodes or it may be a rejected communication, in which case

the process it reduces to is congruent to the original.

The proofs for each clause in the lemma follow a similar pattern. For

clauses (i){(iii), we break down a process into the part that performs the
action and a surrounding context. Next we use the encoding rules to encode

these parts. Then we show how the encoding of the part of the la�-process
that performs the action can perform a matching �-action. Finally, we show
that the encoding of the context allows this similar action to escape. There is

a dependency, in that we must prove parts (i) and (ii) before (iii).

Clauses (iv){(vi) are proved similarly, but in the reverse direction. First

we break down Q, into the parts that perform the action and a context, then
using this decomposition we characterize P , �nally we show that this P can

perform the required action and reduce to a process matching Q0.

The direct relationship between the behaviour of a process and its encoding

make the proof much easier. In particular, there are no intermediate forms on

the �-calculus side to be analysed. If there were such additional \housekeep-
ing" steps, then we would need to enlarge the lemma to cover a one-to-many

relation R� between la�-processes and �-terms.

6 Encoding of the internet daemon

To illustrate how this works we encode the inetd example from Section 2.5.

Figure 6 shows the result, which can be compared with Figure 4. The trans-

lation uses three ethers, for which we take names n, p and q to cover the

network, server host Pike and client host Carp respectively. All la�-channel

names like �nger map to themselves.

Figure 7 represents graphically the behaviour of the translated system.

Grey bars indicate the local ethers; compare this to the direct links of Figure 1.
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Daytime Finger Inetd

CarpPike

Net

Packet addressed to "Finger"

Packet addressed to "Pike"

Packet addressed to "c"

Packet addressed to "print"

Communications:

Fig. 7. Ether-based encoding of inet d�mon relaying finger service

As we expect from Lemma 5.2, reductions of the translated process closely
match those of the original given earlier.

Carp 0 jPike 0 � ( �q:�c:(�nhpike; �nger ; ci j�X:n(x;y) : : :

j �p:(Inet 0 jFinger 0 jDaytime 0) )

extend scope

of p, q and c

� �p; q; c: ( �nhpike; �nger ; ci j�X:n(x;y) : : :

j Inet 0 jFinger 0 jDaytime 0 )

unroll Inet 0 � �p; q; c: ( �nhpike; �nger ; ci j�X:n(x;y) : : :

j n(x;y):(Inet 0 j if x = pike then �phyi else �nhx;yi)

j Finger 0 jDaytime 0 )

communication

of pike over n

�

�! �p; q; c: ( �X:n(x;y) : : :

j if pike = pike then �ph�nger ; ci else : : :

j Inet 0 jFinger 0 jDaytime 0 )

apply test and

unroll Finger 0
� �p; q; c: ( �X:n(x;y) : : :

j �ph�nger ; ci

j p(s; r):(Finger 0 j if s = �nger

then �nhr;PikeUsersi else : : : )

j Inet 0 jDaytime 0 )
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communication

of �nger over p

�

�! �p; q; c: ( �X:n(x;y) : : :

j if �nger = �nger then �nhc;PikeUsersi else : : :

j Inet 0 jFinger 0 jDaytime 0 )

apply test � �p; q; c: ( �X:n(x;y):if x = c then �qhprint;yi else : : :

j �nhc;PikeUsersi

j Inet 0 jFinger 0 jDaytime 0 )

communication

of c over n

�

�! �p; q; c: ( if c = c then �qhprint;PikeUsersi else : : :

j Inet 0 jFinger 0 jDaytime 0 )

apply test � �p; q; c: ( �qhprint;PikeUsersi

j Inet 0 jFinger 0 jDaytime 0 )

Comparing the reduction in given in Section 2.5, notice how communication

restricted to a local area (\communication on �nger@host") is replaced by

communication on a local ether (\communication of �nger over p").

Unlike the original la�-term, other reduction sequences are possible, though

they will only add extra � -transitions. For example, the Daytime 0 server may
mistakenly pick up the �nger request, but will always immediately rebroadcast

it.

7 Conclusion and further work

We have encoded a notion of distributed areas and local communication into
the �-calculus, by giving a translation of the local area �-calculus. At the

core of this encoding is the technique of replacing communication on a channel
name with communication over an ether associated with the appropriate local

area.

The operational correspondence of Section 5 says that there is a close

relation between the actions of processes and their translations. The next step
is to build on this to investigate the degree to which the encoding preserves

and re
ects equivalences between processes. We would expect adequacy, but

not full abstraction, as encoding local areas by ethers exposes them to probing
by general �-calculus terms. For example, it is possible to eavesdrop on all top-

level communications, even ones involving private names (\packet-snooping"),

Well-known names that mean di�erent things in di�erent places are remi-

niscent of dynamic binding in programming languages; that slippery concept

whereby the meaning of a local variable at a program point depends on how

we got there. While there seems to be no direct connection, it would be in-

teresting to know how local areas a�ect the classic encoding of functions as

�-calculus processes [19].

Limiting communication to local areas can be seen as a form of \security".
The la�-calculus does not itself prove processes to be secure, but instead can

show how particular protocols operate under imposed security constraints.
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(In this sense it is about liveness, rather than safety.) We hope to use this to

model aspects of Network Address Translation (NAT), a standard method for

shared internet access, which is known to interact poorly with certain kinds

of application.

The �xed arrangement of local areas in la� does not lend itself to a dynamic

runtime structure. There is however some 
exibility: where areas appear

under replication, they will be freshly created during execution; and empty

areas are indistinguishable from the null process. For more general mobility,

we are working on an extension of la� with primitives for relocating areas,

and an associated type system. The encoding given in the present paper does

not extend to handle mobility, because it assumes that each process has direct

access to the ethers for every containing level. We can suggest a solution

though, using an encoding with a network of controllers. Within an area,

each process communicates only through its immediate local area controller.

Packets are routed by controllers to their destination, and mobile areas can

be represented by reprogramming the controllers.
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Abstract

We present Persistent Turing Machines (PTMs), a new way of interpreting Turing-

machine computation, one that is both interactive and persistent. We show that the

class of PTMs is isomorphic to a very general class of e�ective transition systems.

One may therefore conclude that the extensions to the Turing-machine model em-

bodied in PTMs are suÆcient to make Turing machines expressively equivalent to

transition systems. We also de�ne the persistent stream language (PSL) of a PTM

and a corresponding notion of PSL-equivalence, and consider the in�nite hierarchy

of successively �ner equivalences for PTMs over �nite interaction-stream pre�xes.

We show that the limit of this hierarchy is strictly coarser than PSL-equivalence,

a \gap" whose presence can be attributed to the fact that the transition systems

corresponding to PTM computations naturally exhibit unbounded nondeterminism.

We also consider amnesic PTMs and a corresponding notion of equivalence based

on amnesic stream languages (ASLs). It can be argued that amnesic stream lan-

guages are representative of the classical view of Turing-machine computation. We

show that the class of ASLs is strictly contained in the class of PSLs. Furthermore,

the hierarchy of PTM equivalence relations collapses for the subclass of amnesic

PTMs. These results indicate that, in a stream-based setting, the extension of the

Turing-machine model with persistence is a nontrivial one, and provide a formal

foundation for reasoning about programming concepts such as objects with static

attributes.
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1 Introduction

Several researchers have recently observed that the Turing-machine model of

computation, the focus of which is on a theory of computable functions, falls

short when it comes to modeling modern computing systems whose hallmarks

are interaction and reactivity. For example, van Leeuwen in [LW00b] states:

: : : the classical Turing paradigm may no longer be fully appropriate to

capture all features of present-day computing.

Also, Wegner[Weg98] has conjectured that interactive models of computation

are more expressive than \algorithmic" ones such as Turing machines. It
would therefore be interesting to see what extensions are necessary to Turing
machines to capture the salient aspects of interactive computing. Moreover,
it would be desirable if the alterations made to the classical model could in
some sense be kept minimal.

Motivated by these goals, we investigate a new way of interpreting Turing-
machine computation, one that is both interactive and persistent. In partic-
ular, we present persistent Turing machines (PTMs). A PTM is a nondeter-
ministic 3-tape Turing machine that upon receiving an input token from its

environment, computes for a while and then outputs the result to the envi-
ronment, and this process is repeated forever. A PTM is persistent in the
sense that a notion of \state" (work-tape contents) is maintained from one
computation to the next.

The main results we have obtained about PTMs are the following.

� We formalize the notions of interaction and persistence in PTMs in terms
of the persistent stream language (PSL) of a nondeterministic 3-tape Turing

machine (N3TM) (Section 2). Given an N3TM M and work-tape contents

w, PSL(M;w) is coinductively de�ned to be the set of in�nite sequences
(interaction streams) of pairs of the form (wi; wo) such that each pair repre-
sents a computation performed by the N3TM in response to receiving input

token wi from the environment, producing output token wo. Moreover,

the contents of the work tape (initially w) are left intact from the previ-
ous computation upon commencing a new computation. Persistent stream

languages induce a natural, stream-based notion of equivalence for PTMs.

� We then de�ne a very general kind of e�ective transition system called in-

teractive transition systems (ITSs), and equip ITSs with three notions of

behavioral equivalence: ITS isomorphism, interactive bisimulation and in-

1 Research supported in part by NSF grant IRI-9733678. Email: dqg@cse.uconn.edu
2 Research supported in part by NSF grant CCR-9988155 and ARO grants

DAAD190110003 and DAAD190110019. Email: sas@cs.sunysb.edu
3 Email: pw@cs.brown.edu
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teractive stream equivalence (Section 3). We show that ITS isomorphism

re�nes interactive bisimulation, and interactive bisimulation re�nes interac-

tive stream equivalence.

Our main result concerning ITSs is that the class of ITSs is isomorphic to

the class of PTMs, thereby allowing one to view PTMs as ITSs \in disguise"

(Section 4). This addresses a question heretofore left unanswered concerning

the relative expressive power of Turing machines and transition systems.

Till now, the emphasis has been on showing that various kinds of process

algebras, with transition-system semantics, are capable of simulating Turing

machines in lock-step [Bou85,dS85,BBK87,BIM88,Dar90,Vaa93]. The other

direction|namely: What extensions are required of Turing machines so

that they can simulate transitions systems?|is answered by our result.

� We also de�ne an in�nite hierarchy of successively �ner equivalences for

PTMs over �nite interaction-stream pre�xes and show that the limit of
this hierarchy does not coincide with PSL-equivalence (Section 5). The
presence of this \gap" can be attributed to the fact that the transition

systems corresponding to PTM computations naturally exhibit unbounded
nondeterminism. In contrast, it is well known that classical Turing-machine
computations are nondeterministically bounded.

� Finally, we de�ne the amnesic stream language (ASL) of an N3TM and a
corresponding notion of amnesic PTM (Section 6). In this case, the N3TM
begins each new computation with a blank work tape. Our main result

about ASLs is that the class of ASLs is strictly contained in the class of
PSLs. Amnesic stream languages are representative of the classical view of
Turing-machine computation. One may consequently conclude that, in a
stream-based setting, the extension of the Turing-machine model with per-
sistence is a nontrivial one, and provides a formal foundation for reasoning

about programming concepts such as objects with static attributes. We
additionally show that ASL-equivalence coincides with the equivalence in-
duced by considering interaction-stream pre�xes of length one, the bottom

of our equivalence hierarchy; and that this hierarchy collapses in the case
of amnesic PTMs.

2 Persistent Turing Machines

In this section, we show how classical Turing machines can be reinterpreted as

interactive computing devices. We shall consider, in fact, non-deterministic
3-tape Turing machines (N3TMs), each equipped with an input, work, and

output tape. It is well known that N3TMs are equivalent to single-tape TMs.
That is, given an N3TM M accepting some language L, there exists a single-

tape TM accepting L [HU79].

The key concept we need to render Turing machines interactive is inter-

action streams: in�nite sequences of token pairs of the form (wi; wo). Each
such pair represents a computation performed by the N3TM, producing out-

3
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put tape contents wo, in response to wi being placed on its input tape by

the environment. Moreover, the N3TM is allowed to \remember" its previous

\state" (work-tape contents) upon commencing a new computation. We shall

therefore refer to such N3TMs as persistent Turing machines (PTMs) and to

the sets of interaction streams they generate as persistent stream languages.

To begin our formal treatment of PTMs, we de�ne a macrostep of an

N3TM as a shorthand notation for a (possibly divergent) computation of a

Turing machine. Our choice of terminology is inspired by the treatment of

Statecharts semantics in [PS91].

De�nition 2.1 Let M be an N3TM having alphabet �, and let wi, w, w
0

and wo be words over �. We say that hwi; wi j=)M hw0; woi (yields in one

macrostep) if M , when started in its initial control state with wi, w, � on

its input, work, and output tapes, respectively, has a halting computation that

produces wi; w
0; wo as the respective contents of its input, work, and output

tapes.

Should M 's computation diverge, we write hwi; wi j=)M hsdiv; � i, where
sdiv; � 62 �� and sdiv is a special \divergence state" such that hwi; sdivi j=)M

hsdiv; � i for all inputs wi.

We sometimes omit the subscript M from the macrostep notation when it
is clear from the context.

We view macrosteps as transitions from one PTM \state" (encoded in
the contents of the work tape) to another, an idea that is formalized in Sec-
tion 4. Divergent computations of the underlying N3TM bring the PTM to

the \divergence state," a special absorbing state not in �� that outputs � (in
analogy with the internal � action of CCS [Mil89]) in conjunction with the
current and all subsequent inputs. Our treatment of divergence is consistent
with the failures-divergence re�nement model of CSP [BR85].

The contents of the input tape is not changed by a macrostep, re
ecting
the read-only nature of input tapes in our framework. Moreover, a macrostep
begins with a blank output tape (� is the empty word) re
ecting a write-only
semantics for output tapes. Note, however, that a macrostep may begin with

a non-blank work tape, in contrast to the classical setting where the work tape

is assumed to be blank at the start of computation. This convention plays an
essential role in the de�nition of a PTM's \persistent stream language" given

below (De�nition 2.2).

To formally de�ne interaction streams and persistent stream languages, �x
the alphabet of an N3TM to be �, and let A be an enumerable set of action

tokens. SA, the class of streams over A, is de�ned as follows: SA = A�SA:
4

Then the class of interaction streams is given by S�����]f�g, the members of

which are pairs of the form h(wi; wo); �
0i with (wi; wo) 2 �� � (�� ] f�g) and

�0 2 S���(��]f�g).

4 We have de�ned streams coinductively; see, e.g, [BM96]. This style of de�nition will allow

us to apply coinduction as a proof technique later in the paper.
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De�nition 2.2 Given an N3TM M and some w 2 �� ] fsdivg, PSL(M;w)

(the persistent stream language of M with memory w) is de�ned as follows:

PSL(M;w) = fh(wi; wo); �
0i 2 S�����]f�g j 9w

0 2 �� ] fsdivg :

hwi; wij=)M hw0; woi and �
0 2 PSL(M;w0)g

PSL(M), the persistent stream language of M , is de�ned as PSL(M; �).

N3TMsM1 andM2 are PSL-equivalent, notationM1=PSLM2, if PSL(M1) =

PSL(M2). We also have that PSL = fPSL(M) jM is an N3TMg.

Example 2.3 Consider the N3TM MLatch that outputs the �rst bit of the in-

put token it received in conjunction with its previous interaction with the en-

vironment (except for the �rst interaction where it outputs a 1). PSL(MLatch)

therefore contains interaction streams of the form

f(w1; 1); (w2; w1[1]); (w3; w2[1]); : : :g;

where, in general, w[i] denotes the i th bit of the string w.

For example, if the input tokens MLatch receives from the environment are
single bits, and the �rst four of these form the bit sequence 1001, then the
corresponding interaction stream �io 2 PSL(MLatch) would be of the form:

�io = f(1; 1); (0; 1); (0; 0); (1; 0); : : :g

We also consider M 0
Latch, an unreliable version of MLatch. Apart from

behaving like MLatch, it can nondeterministically exhibit a divergent (non-

terminating) computation in conjunction with any input but the �rst.

For an interaction stream � 2 PSL(MLatch), PSL(M
0
Latch) will contain �

as well as, for all k > 1, a k-divergent version of � where the computation
diverges at the k th macrostep. In this case, the �rst k � 1 pairs in � remain
the same, and the output tokens for all subsequent pairs are replaced by � . For

example, a 3-divergent version of �io is f(1; 1); (0; 1); (0; � ); (1; � ); : : :g.

One might argue that the interaction betweenMLatch and its environment

is not essential; rather its behavior could be modeled by a machine that re-
ceives its entire (in�nite) stream � of input tokens prior to computation and

then proceeds to output (the �rst bit of each element of) � prepended with a
1. The problem with this approach is that, in general, the elements of � are

generated dynamically and therefore cannot be known in advance.

3 Interactive Transition Systems

In this section, we introduce a kind of \e�ective" transition system (see, for

example, [Vaa93]) that we shall refer to as \interactive transition systems."
An important result about interactive transition systems is that they are iso-

morphic to PTMs (Theorem 4.7).

Let � be a �nite alphabet not containing � , the \internal action."

5
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De�nition 3.1 An interactive transition system (ITS) is a triple hS;m; ri
where:

� S � ��]fsdivg is the set of states, where sdiv 62 �� is a special \divergence"

state.

� m � S � �� � S � (�� ] f�g) is the transition relation. We require that

m, restricted to S ����S ���, is recursive, i.e., its interpretation as the

function m : S � �� ! 2S��
�

is recursively enumerable. Moreover, m is

such that:

- if hs;wi; sdiv; woi 2 m, then wo = � , for all s,wi; and

- if hsdiv; wi; s; woi 2 m, then wo = � and s = sdiv, for all wi.

� r 2 S is the initial state (root).

We use � to encode the states of an ITS. This is for convenience only;

any e�ective encoding will do. Intuitively, a transition hs;wi; s
0; woi of an

ITS T means that T , while in state s and having received input string wi

from its environment, transits to state s0 and outputs wo. Moreover, such
transitions are e�ective. Divergent computation is modeled by a � -transition

to the absorbing state sdiv. We assume that all states in S, with the possible
exception of sdiv, are reachable from the root.

We now de�ne three notions of equivalence for ITSs, each of which is
successively coarser than the previous one.

De�nition 3.2 Two ITSs T1 = hS1;m1; r1i and T2 = hS2;m2; r2i are isomor-
phic, notation T1=iso T2, if there exists a bijection  : S1 ! S2 such that:

(i)  (r1) = r2

(ii) 8wi; wo 2 ��; s; s0 2 S : hs;wi; s
0; woi 2 m1 i� h (s); wi;  (s

0); woi 2 m2

De�nition 3.3 Let T1 = hS1;m1; r1i and T2 = hS2;m2; r2i be ITSs. A rela-

tion R � S1 � S2 is a (strong) interactive bisimulation between T1 and T2 if
it satis�es:

(i) r1Rr2

(ii) if sRt and hs;wi; s
0; woi 2 m1, then there exists t0 2 S2 with

ht; wi; t
0; woi 2 m2 and s0Rt0;

(iii) if sRt and ht; wi; t
0; woi 2 m2, then there exists s0 2 S1 with

hs;wi; s
0; woi 2 m1 and s0Rt0.

T1 and T2 are interactively bisimilar, notation T1 � T2, if there exists an

interactive bisimulation between them.

Note that our de�nition of interactive bisimilarity is such that if sRt, then
s is divergent (has a � -transition to sdiv) if and only if t is divergent.

De�nition 3.4 Given an ITS T = hS;m; ri and a state s 2 S, ISL(T (s))
(the interactive stream language of T in state s) is de�ned as follows:

ISL(T (s)) = fh(wi; wo); �
0i 2 S�����]f�g j 9s

0 2 S : hs;wi; s
0; woi 2 m ^

6
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�0 2 ISL(T (s0))g

ISL(T ), the interactive stream language of T , is de�ned as ISL(T (r)). Two

ITSs T1 and T2 are interactive stream equivalent, notation T1 � T2, if

ISL(T1) = ISL(T2).

It is straightforward to show that =iso , �, and � are equivalence relations.

Proposition 3.5 =iso � � and � � �.

Proof. The proof that ITS isomorphism (strictly) re�nes interactive bisimi-

larity is straightforward. The proof that interactive bisimilarity re�nes inter-

active stream equivalence is by coinduction on the structure of the interaction

streams in ISL(T1).

To show that interactive bisimilarity strictly re�nes interactive stream

equivalence, consider the following pair of ITSs over alphabet � = f0; 1g:

T1 = hfr1; s1; t1g; ;m1; r1i and T2 = hfr2; s2g;m2; r2i, where
m1 = fhr1; 0; s1; 1i; hr1; 0; t1; 1i; hs1; 0; r1; 1i; ht1; 1; r1; 0ig and
m2 = fhr2; 0; s2; 1i; hs2; 0; r2; 1i; hs2; 1; r2; 0ig:

It is easy to see that T1 � T2 but T1 6� T2. 2

4 Isomorphism of ITS and PTM

In this section, we show that the class of PTMs and the class of ITSs are
isomorphic. For this purpose, we assume a �xed alphabet �, denote the class
of PTMs with alphabet � by M, and denote the class of ITSs with alphabet
� by T .

We begin by de�ning the \reachable memories" of a PTM. Recalling (De�-

nition 3.1) that the states of an ITS are assumed to be reachable from the ITS's
root, reachable memories provide us with an analogous concept for PTMs.

De�nition 4.1 Let M 2 M be a PTM with alphabet �. Then reach(M), the
reachable memories of M , is de�ned as:

reach(M)= fw 2 �� ] fsdivg j

9k � 0;9w1
i ; : : : ; w

k
i ; w

1
o; : : : ; w

k
o ; s

1; : : : ; sk 2 �� ] fsdivg :

hw1
i ; �ij=)M hs1; w1

oi; hw
2
i ; s

1ij=)M hs2; w2
oi;

: : : ; hwk
i ; s

k�1ij=)M hsk; wk
oi and w = skg

As noted above, we will show that M and T are isomorphic, preserving
natural equivalence relations. For T , the relation in question is ITS isomor-
phism (De�nition 3.2), and for M it will be macrostep equivalence, which we

now de�ne.

De�nition 4.2 Two PTMs M1;M2 are macrostep equivalent, notation

M1=msM2, if there exists a bijection �: reach(M1)! reach(M2) such that:

(i) �(�) = �

7
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(ii) 8wi; wo 2 ��; s; s0 2 reach(M1) :

hwi; s; �ij=)M1
hwi; s

0; woi i� hwi; �(s)ij=)M2
h�(s0); woi

The mapping � : M ! T is given by �(M) = hreach(M);m; �i, where
hs;wi; s

0; woi 2 m i� hwi; sij=)M hs0; woi. Note that �(M) is indeed an ITS,

as reach(M) is enumerable, m is e�ective, and the set of states of �(M) is

reachable from its root. By de�nition, � is a transition-preserving isomorphism

from the reachable memories of M to the states of T .

Example 4.3 The ITSs of Figure 1 depict the image, under �, of the PTMs

MLatch and M 0
Latch of Example 2.3. Transitions such as (1�; 0) represent the

in�nite family of transitions where, upon receiving a bit string starting with 1

as input, the ITS outputs a 0.

#

0

1(1*, 1)

(0*, 1)

(1*, 0)

(0*, 0)

(1*, 1)

(0*, 1)
sdiv#

0

1(1*, 1)

(0*, 1)

(1*, 0)

(0*, 0)

(1*, 1)

(0*, 1)

(1*, τ)
(0*, τ)

(1*, τ)
(0*, τ)

(1*, τ)
(0*, τ)

(a) (b)

Fig. 1. (a) �(MLatch) and (b) �(M 0
Latch)

It is easy to see that persistent stream languages are preserved by �.

Proposition 4.4 For all M;M 0 2 M, PSL(M) = ISL(�(M)) and
M =PSLM

0 i� �(M) � �(M 0).

The proof uses coinduction to establish a stronger result, namely, if � 2
PSL(M;w), for any reachable memory w 2 �� ] fsdivg of M , then � 2
ISL(T (w)).

Proof. We prove only one direction, namely that PSL(M) � ISL(�(M));
the other direction is analogous. Let w 2 �� ] fsdivg be a reachable memory

of M and � a stream in PSL(M;w). According to De�nition 2.2, there exists

w0 2 �� ] fsdivg such that � = h(wi; wo); �
0i where hwi; wij=)M hw0; woi and

�0 2 PSL(M;w0).

Let T = �(M); by de�nition, w is a state of T . Since w0 is also reach-

able memory of M , it is also a state of T . We prove coinductively that
� 2 ISL(T (w)). By de�nition of �, hw;wi; w

0; woi is a transition of T . By

coinduction, we have that �0 2 ISL(T (w0)). Therefore, by De�nition 3.4,

� 2 ISL(T (w)). Since w was arbitrary, let w = �. It follows that for all
� 2 PSL(M), it is the case that � 2 ISL(T ). 2

8
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The following proposition shows that � maps equivalent PTMs to equiva-

lent ITSs.

Proposition 4.5 For all M1;M2 2 M;M1=msM2 i� �(M1)=iso �(M2).

Proof. Set  in the de�nition of =iso (De�nition 3.2) to the � in the de�nition

of =ms (De�nition 4.2), for the )-direction of the proof, and vice versa for

the (-direction of the proof. 2

The following proposition shows that � is surjective.

Proposition 4.6 For all T 2 T , there exists M 2 M such that T = �(M).

Proof. Let T = hS;m; �i. To prove the result, we exhibit a bijective mapping

! : S ! ��]fsdivg and a PTMM 2 M such that that !(r) = �, !(sdiv) = sdiv
and

hs;wi; s
0; woi 2 m i� hwi; !(s)i j=)M h!(s0); woi

where wo 2 �� ] f�g. Let T0 = hS0;�;m0; �i, where

S0 = f!(s) j s 2 Sg;m0 = fh!(s); wi; !(s
0); woi j hs;wi; s

0; woi 2 mg

Clearly, �(M) = T . Also, T0=iso T , where ! is the desired mapping. 2

The main result of this section, which essentially allows one to view persis-
tent Turing machines and interactive transition systems as one and the same,
now follows.

Theorem 4.7 The structures hM; =ms i and hT ; =iso i are isomorphic.

Proof. It follows from Propositions 4.5 and 4.6 that � is a structure-preserving

bijection. 2

5 Equivalence Hierarchy

All stream-based notions of equivalence presented so far for PTMs are relative
to in�nite streams. In this section, we de�ne equivalences over �nite stream

pre�xes, to obtain an in�nite hierarchy of equivalence relations for PTMs.

We show that there is a gap between the limit of the hierarchy and PSL
equivalence. When proving the existence of this gap, we also demonstrate

that PTM computations exhibit unbounded nondeterminism.

We �rst de�ne the family of stream pre�x operators, prefk.

De�nition 5.1 Let SA be the set of streams over some set A of tokens and

let � 2 SA. Then � = ha; �0i for some a 2 A;�0 2 SA. For all k � 1, prefk(�)
is de�ned inductively as follows:

prefk(�) =

8<
:
ha; �i if k = 1

ha;prefk�1(�
0)i otherwise

9
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We next de�ne the k-pre�x language of a PTM M , the set of pre�xes of

length � k of the interaction streams in PSL(M). PTMs with the same

k-pre�x language are called k-equivalent.

De�nition 5.2 For any k � 1 and any PTM M , the k-pre�x language of M

is given by Lk(M) = [i�k fprefi(�) j� 2 PSL(M)g. Moreover, the pair of

PTMs M1;M2 are k-equivalent, notation M1=kM2, if Lk(M1) = Lk(M2).

Proposition 5.3 For any k � 1, (k+1)-equivalence strictly re�nes k-equiva-

lence, i.e., =k+1 � =k .

Proof. That (k + 1)-equivalence re�nes k-equivalence follows from De�ni-

tion 5.2. To prove that the re�nement is strict, consider the sequence of PTMs

MCt
1;MCt

2; : : :, where, for any k, MCt
k is the PTM with binary outputs that

ignores its inputs, outputting k 1's and thereafter outputting 0's only.

Essentially, these PTMs are counters, counting o� k inputs. It can be
shown that for all k � 1, Lk(MCt

k) = Lk(MCt
k+1), but Lk+1(MCt

k) 6=
Lk+1(MCt

k+1). This is accomplished by observing that the stream behav-
ior of MCt

k and MCt
k+1 is identical up to and including stream pre�xes of

length k, but < (1; 1); (1; 1); : : : ; (1; 1); (0; 0) >2 Lk+1(MCt
k)�Lk+1(MCt

k+1).

2

Proposition 5.3 establishes an in�nite hierarchy of stream-based equiva-
lence relations for PTMs, the limit point of which is 1-equivalence.

De�nition 5.4 PTMs M1 and M2 are called 1-equivalent, notation
M1=1M2, if L1(M1) = L1(M2), where L1(M) = [k�1 Lk(M).

Clearly, =1 re�nes =k , for all k. But how do =1 and =1 (the end
points of the hierarchy) relate to the stream-based equivalences we de�ned
earlier in Section 2? We consider this question in Propositions 5.5 and 6.4.

Proposition 5.5 PSL-equivalence strictly re�nes 1-equivalence, i.e.,
=PSL � =1 .

Proof. That PSL-equivalence re�nes 1-equivalence follows from the de�ni-
tions. To prove that the re�nement is strict, we de�ne PTMs M1� and M1�0,

which ignore their inputs, and output a zero or a one with each macrostep.

PTM M1� has a persistent bit b and a persistent string n representing some
natural number in unary notation, both of which are initialized at the begin-

ning of the �rst macrostep. In particular b is nondeterministically set to 0 or
1, and n is initialized to some number of 1's using the following loop:

while true do

write a 1 on the work tape and move head to the right;

nondeterministically choose to exit the loop or continue

od

M1�'s output at every macrostep is determined as follows:

if b = 1

10
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then output 1;

else if n > 0

then decrement n by 1 and output 1;

else output 0

PTM M1�0 behaves the same as M1� except that b is always initialized to 0.

Now note that the L1-languages of these PTMs is the same, consisting of all

�nite sequences of pairs of the form:

f(in1; out1); : : : ; (ink; outk)g,

where the inj 2 �� are input tokens and outj is 1 for the �rst j pairs in the

sequence (for some j � k) and 0 for the rest (if any). However, PSL(M1�) 6=
PSL(M1�0); in particular, the stream f(1; 1); (1; 1); :::g 2 PSL(M1�)�
PSL(M1�0). 2

The ITS corresponding to M1�0, i.e., �(M1�0), is depicted in Figure 2 and
demonstrates that PTMs are capable of exhibiting unbounded nondeterminism
in a natural way. Though the number of 1's at the beginning of each interaction
stream is always �nite, it is unbounded. The ITS for M1� is similar.

b = 0
n = 0

ε

b = 0
n = 2

b = 0
n = 1

b = 0
n = 3 ...

(Σ*,1)

(Σ*,1) (Σ*,1)

(Σ*,1) (Σ*,1) (Σ*,1) (Σ*,1)

(Σ*,1) (Σ*,1)(Σ*,0)

Fig. 2. The ITS corresponding to the PTM M1�0.

6 Amnesic Stream Computation

In this section, we present the notion of amnesic stream computation, where

the contents of the persistent work tape is erased (or simply ignored) at each

macrostep. We show that amnesic stream languages (ASLs) constitute a
proper subset of PSLs, and that ASL equivalence coincides with the bottom

of the in�nite equivalence hierarchy presented in Section 5.

The amnesic stream language for an N3TM is de�ned similarly to the

NT3M's persistent stream language (De�nition 2.2). However, each compu-
tation of the N3TM begins with a blank work tape; i.e., the N3TM \forgets"

the state it was in when the previous computation ended. As before, �x the

alphabet of an N3TM to be �.

De�nition 6.1 Given an N3TM M , ASL(M) (the amnesic stream language
of M) is de�ned as follows:

11
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ASL(M) = fh(wi; wo); �
0i 2 S�����]f�g j 9w

0 2 �� : hwi; �i j=)M hw0; woi^
�0 2 ASL(M)g.

N3TMsM1 andM2 are ASL-equivalent, notationM1=ASLM2, if ASL(M1) =

ASL(M2). We also have that ASL = fASL(M) jM is an N3TMg.

Example 6.2 The interaction streams in ASL(MLatch) (Example 2.3) are of

the form f(w1; 1); (w2; 1); : : :g.

It is also possible to de�ne amnesic stream languages for ITSs, and a PTM's

amnesic stream language would be preserved by the mapping � de�ned in

Section 4. The interaction streams contained in the amnesic stream language

of an ITS T would be constructed by always returning to T 's initial state

before moving on to the next input-output token pair in the stream. Although

amnesia makes sense for Turing machines|in the classical, non-interactive

setting, every Turing-machine computation commences with a blank work
tape|its applicability to transition systems is questionable.

The following proposition is used in the proofs of Propositions 6.4 and 6.5.

Proposition 6.3 Given an N3TM M , let L(M) be de�ned as follows:

f(wi; wo) 2 �� ��� ] f�g j 9w0 2 �� : hwi; �ij=)M hw0; woig

Then, ASL(M) = SL(M), the set of all streams over L(M).

Proposition 6.4 =ASL = =1

Proposition 6.5 ASL � PSL

Proof. To prove ASL � PSL, it suÆces to show that, given an N3TM
M , we can construct an N3TM M 0 such that PSL(M 0) = ASL(M). The
construction is as follows:

M 0 always starts its computation by erasing the contents of its work tape
and moving the work-tape head back to beginning of tape; it then proceeds
just likeM .

From De�nitions 2.2 and 6.1, it follows that PSL(M 0) = ASL(M).

To prove that the inclusion of ASL in PSL is strict, we refer toMLatch and

�io 2 PSL(MLatch) de�ned in Example 2.3 to show that there does not exist
an N3TM M such that ASL(M) = PSL(MLatch). Assume such an N3TM M

exists; then, �io 2 ASL(M). Therefore, by Proposition 6.3, (0; 0), the third

element of �io, is in L(M). This in turn implies that there are interaction

streams in ASL(M) starting with (0; 0). But no stream in PSL(MLatch) can

start with (0; 0), leading to a contradiction. Therefore, no such M exists. 2

We say that a PTM M is amnesic if PSL(M) 2 ASL.

Example 6.6 MLatch is not amnesic. Neither are the MCt PTMs de�ned in

the proof of Proposition 5.3. Even though they ignore their input values, these

12
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PTMs remember the number of inputs they have consumed, and are therefore

not amnesic.

On the other hand, some recently proposed extensions of Turing-machine

computation to the stream setting do not capture persistence. For example,

the squaring machine of [PR98, Figure 1], which repeatedly accepts an integer

n from its environment and outputs n2, is clearly amnesic.

Most of the results obtained in this paper rely on the persistence of PTMs;

that is, they do not hold if we restrict our attention to amnesic PTMs. For

example, the whole equivalence hierarchy collapses in this case.

Proposition 6.7 For any pair of amnesic PTMs M1 and M2, M1=ASLM2

i� M1=PSLM2.

7 Related Work

The notions of persistency and interaction embodied in PTMs and ITSs can be
found in one form or another in various models of reactive computation includ-
ing data
ow and related areas [KM77,PS88,RT90,PSS90,KP93,BE94], process
calculi [Mil89,MPW92], synchronous languages [Har87,BG92], �nite/push-
down automata over in�nite words [EHRS00,BCMS01], interaction games

[Abr00], reactive modules [AH99], and I/O automata[Lyn96]. The main dif-
ference between these approaches and our own is that our focus is on the
relationship between Turing machines and transition systems, and on the ef-
fects of unbounded nondeterminism on the equivalence hierarchy for PTMs.
The other approaches tend to emphasize issues such as correctness and pro-

gramming, and the computability of a transition step is often left implicit.
Moreover, these models of computation are typically purely functional in na-
ture, and, therefore, the notion of persistency or \state" present in PTMs is
absent.

Persistency, however, can be captured in data
ow models by \feedback

loops" and in process calculi by explicitly modeling the data store. For ex-
ample, PTM MLatch of Example 2.3 can be modeled in a data
ow setting by

the stream transformer f(s) = (1; s), which can be evaluated lazily/on-the-
y.

MLatch is a simple example of a PTM: its history dependence only goes back
one interaction in time and PTMs are in general capable of expressing his-

tory dependence of an unbounded nature. It would therefore be interesting to
determine whether stream transformers can encode the behavior of all PTMs.

Persistent Turing machines formalize the notion of Sequential Interaction

Machines introduced in earlier papers by the �rst and third authors, includ-

ing [Weg98,GST00]. A major emphasis of this body of work is to show how
such a computational framework can be used as a basis for modeling various

forms of interactive computing, such as object-oriented, agent-based, and dy-

namical systems. PTMs also formalize the notion of embedded components,
according to the criteria presented in [LW00a].

13
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An alternative approach to extending the Turing-machine model to inter-

active computation is captured by the Interactive Turing Machines with Ad-

vice (ITMAs) of [LW00b]. Like PTMs, ITMAs are persistent, interactive, and

stream-based. Additionally, they incorporate several features aimed at cap-

turing \practical" computing devices, including multiple input/output ports

and advice, a kind of oracle modeling hardware and software upgrades. In

contrast, PTMs, which have single input and output tapes and do not ap-

peal to oracles, represent a minimal extension to the classical Turing-machine

model (persistence of the work tape) needed to attain transition-system ex-

pressiveness.

8 Conclusions

We have presented Persistent Turing Machines (PTMs), a stream-based ex-
tension of the Turing-machine model with appropriate notions of interaction
and persistency. A number of expressiveness results concerning PTMs have
been presented, including the expressive equivalence of PTMs and interac-

tive transition systems; the strict inclusion of the set ASL of amnesic stream
languages in the set PSL of persistent stream languages (showing that \per-
sistence pays"); the \gap" between the limit of the equivalence hierarchy based
on �nite interaction-stream pre�xes and PSL-equivalence; and the collapse of
the equivalence hierarchy in the case of amnesic PTMs.

Our results are summarized in Figure 3.

=ASL

≈ ∼

=ms

=iso

(defn. 6.1)

(defn. 2.2) (defn. 4.2)

(defn. 3.2)(defn. 3.3)(defn. 3.4)

⊃

⊃ ⊃

PTMs

ITSs

prop. 3.5 prop. 3.5

prop.5.3

(thm. 4.7)(prop. 4.4)

ASL PSL⊂
Prop. 6.5

(defn. 6.1) (defn. 2.2)

=PSL=

(defn. 5.4)

=2

(defn. 5.2)

=1

(defn. 5.2) ⊃
prop. 5.3

⊃
prop. 5.5

⊃
prop. 5.3

...

=  (prop. 6.4)

∞

Fig. 3. Summary of results.

It should be noted that, by virtue of our isomorphism result, every equivalence
de�ned for PTMs can be carried over to ITSs, and vice versa. For example,

a relation can be de�ned for PTMs that is analogous to ITS bisimulation;

by contrast, bisimulation makes no sense in the traditional Turing-machine

context. On the other hand, the transition-system analog of ASL equivalence
makes little sense, even though it is natural in the traditional (i.e., non-stream-

based) Turing-machine world.
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As ongoing work, we are developing a model of PTM computation where

PTMs execute concurrently and communicate with each other through their

input and output tapes. We conjecture that concurrent PTMs are more ex-

pressive than sequential ones in terms of the stream languages they produce.

We are also interested in developing a \weak" theory of persistent stream

languages and interactive bisimulation in which divergent computation (� -

transitions) is abstracted away.
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