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Preface

Testing is an important technique for validating and checking the correctness of soft-
ware. However, effective and efficient testing turns out to be difficult, expensive, la-
borious, error-prone and time consuming. Formal methods are a way of specifying
and verifying software systems by applying techniques from mathematics and logic.
This enables the analysis of systems and the reasoning about them with mathematical
precision and rigour. Formal methods and testing used to be a difficult combination.
Formal methods aim at verifying and proving correctness, while testing can only show
the presence of errors. Validation in practice is most often performed by testing, while
academic research was concentrated on formal verification.

Recently, there is an increasing interest in the use of formal methods in software test-
ing. It is recognized that formal methods and testing are complementary techniques
which can, and should be used in combination. The use of formal methods can help
in alleviating some of the challenges of software testing. In particular, a formal, and
formally verified specification provides a more precise, more consistent and more com-
plete starting point for the testing process and the obtained tests can be formally val-
idated whether they test what should be tested. Moreover, the use of formal methods
allows automating the generation of tests from formal specifications, thus leading to a
faster, cheaper and less error-prone testing process. And finally, formal testing turns
out to be a good starting point for introducing formal methods in software develop-
ment.

The aim of the workshop FATES — Formal Approaches to Testing of Software — is to
be a forum for researchers, developers and testers to present ideas about and discuss
the use of formal methods in software testing. Topics of interest are formal test theory,
test tools and applications of testing based on formal methods, including algorithmic
generation of tests from formal specifications, test result analysis, test selection and
coverage computation based on formal models, and all of this based on different formal
methods, and applied in different application areas.

This volume contains the papers presented at FATES’01 which was held in Aalborg
(Denmark) on August 25, 2001, as an affiliated workshop of CoNcuRr’01. Out of 18
submitted papers the programme committee selected 9 papers and 1 tool demonstration
for presentation at the workshop. Together with the keynote presentation by David Lee
from Bell Labs Research China they form the contents of these proceedings.

The papers present different approaches to using formal methods in software testing.
The main theme is the generation of an efficient and effective set of test cases from
a formal description. Different formalisms are used as the starting point, such as fi-
nite state machines, Z, Statecharts, SDL, constraint languages, grammars and timed



automata, and different algorithms are discussed for the generation process, ranging
from formalization of the manual testing process to the (re)use of techniques from
model checking.

The papers give insight in what has been achieved in the area of software testing with
formal methods. Besides, they give clear indications of what has to be done before we
can expect widespread use of formal techniques in software testing. The prospects for
using formal methods to improve the quality and reduce the cost of software testing are
good, but still more effort is needed, both in developing new theories and in making
the existing methods and theories applicable, e.g., by providing tool support.

We would like to thank the programme committee and the additional reviewers for
their support in selecting and composing the workshop programme, and we thank the
authors for their contributions without which, of course, these proceedings would not
exist.

Last, but not least, we thank Brian Nielsen and Arne Skou for arranging all local
matters of organizing the workshop, Aalborg University for giving the opportunity to
organize FATES’01 as a satellite of CoNcuUR’01, BRICS for supporting the printing
and distribution of these proceedings, and Jan Feenstra en René de Vries for setting up
the FATES’01 web page.

Enschede, August 2001 i
Ed Brinksma

Jan Tretmans
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Efficient Algorithms for Test Sequence Selection

(Extended Abstract)

David Lee and Ruibing Hao
Bell Labs Research China, Beijing, China

Abstract: We study the test sequence selection problem. Given a large number of
tests for a protocol system, we want to select a subset of tests so that the number of tests
is reduced yet the test coverage is not sacrificed. We discuss the complexity of the test
selection problem and propose a class of algorithms for different protocol system
information requirements, test coverage criteria, and cost. This article is an extended
abstract of [LH], and we refer the interested readers to the full paper for a detailed study and
experimental results.

1. INTRODUCTION

With advanced computer technology protocol systems are getting larger to fulfil complicated
tasks. However, they are also becoming less reliable. Testing is an indispensable part of system
design and implementations; yet it has proved to be a formidable task for complex systems.
Because of its practical importance and theoretical interest, there have been a lot of activities on
protocol system testing. There are conformance testing, interoperability testing, and
performance testing. Conformance testing is to test conformance of system implementations to
their specifications [Br, LY1, PBG]. Interoperability testing tends to uncover faults when
different system components are interoperating or interfacing with each other [GHLS, KKI.
Conformance and interoperability testing are designed to check the correctness of system
behaviors whereas performance testing is related to the system performance, such as its
transmission rate.

For certain complicated legacy protocol systems, such as 5SESS (AT&T/Lucent No. 5
Electronic Switching System), tests have been generated and applied to the systems over the
years at different development stages and by different test engineers. There are thousands of test
sequences in the available test set. To test such systems, it is impractical to generate tests from
scratch, since it is often impossible to model the systems because they are too complex.
Therefore, we want to use the available test set accumulated over years. However, we do not
want to execute all of them, since there are too many and to run each test takes a substantial
amount of time. A natural solution in practice is to select test sequences among the available test
set.

The test selection problem was studied in [LPB] based on the valuations of the test
sequences to be selected, and it was reduced to an optimisation problem over Boolean algebra.
For testing in context, the problem was studied in [YCL]. An important issue of test selection is
the possible loss of coverage. This problem was investigated in [LPB] for partially specified
machines and also in [CV, VC, ZV] with an elegant metric of coverage. The selection criteria
and their notations were studied in [Pa].



In this paper, we study the following test selection problem. We have a large set of test
sequences, and we want to select a minimal subset of tests to execute without sacrificing the
fault coverage. For a formal study, we use extended finite state machine to model protocol
systems. We discuss the complexity of the problem and propose efficient algorithms for the test
sequence selection.

After describing an extended finite state machine model and its reachability graph, we
formulate a problem of test sequence selection, discuss the coverage criteria, and study the
problem complexity. We then discuss efficient algorithms for the test selection.

A finite state machine contains a finite number of states and produces outputs on state
transitions after receiving inputs. It is often used to model control portions of protocol systems.
However, data portions of protocols include variables and operations based on their values;
ordinary finite state machines are not powerful enough to model in a succinct way the physical
systems any more. Extended finite state machines (EFSM), which are finite state machines
extended with variables, have emerged from the design and analysis of communication
protocols [LY1]. For instance, IEEE 802.2 LLC [ANSI] is specified by 14 control states, a
number of variables, and a set of transitions (pp. 75-117). For a formal definition of EFSM and
the related concepts, see [LY1].

Each combination of a state and variable values is called a configuration. An EFSM usually
has an initial state s, and all the variables have an initial value x;,;; we have the initial
configuration (soXini). A reachability graph consists of all the configurations and transitions,
which are reachable from the initial configuration. It is a directed graph where the nodes and
edges are the reachable configurations and transitions, respectively. Obviously, a control state
may have multiple appearances in the nodes (along with different variable values) and each
transition may appear many times as edges in the reachability graph.

For a path from the initial node (configuration) of the reachability graph, the input/output
(I/0O) labels on the transitions of the path provide an I/O sequence. Conversely, if an 1/O
sequence corresponds to a unique path from the initial node in the reachability graph, then the
underlying EFSM is deterministic. Otherwise, it is non-deterministic. For clarity, in this paper
we only consider systems, which are modelled by deterministic EFSM’s. Our approaches can be
modified to handle non-deterministic EFSM’s, as we shall comment in the conclusion of the

paper.

Given an input sequence, there is at most one path from the initial node in the reachability
graph such that the transitions on the path are labelled with the input sequence, since the
machine is deterministic. If such a path exists, then the given input sequence is valid. Otherwise,
it is invalid. Obviously, a valid input sequence corresponds to a unique I/O sequence, which are
the labels on the corresponding unique path from the initial node.

We first study the test selection problem, assuming that the underlying system reachability
graph is available. We then relax the problem with an assumption that only the EFSM
specification of the underlying system is available. Finally, we present algorithms for a general
case when no information of the underlying system is available for test selection.



2. TEST SEQUENCE SELECTION PROBLEM AND ITS COMPLEXITY

A test sequence (or a scenario) is valid input sequence of a protocol system that is modelled
by an EFSM. Since the system is deterministic, there is a one-to-one correspondence between
test sequences and paths in the reachability graph from the initial configuration. In practice, a
test sequence usually consists of an I/O sequence; the input sequence is applied to the system
under test, and the output sequence is to be observed from the system response. Therefore, a test
sequence can be represented by a valid input sequence, a valid I/O sequence, or a path from the
initial configuration in the reachability graph of the underlying protocol system. For
convenience, we shall use these terms interchangeably.

Informally, the test sequence selection problem is: Given a set of test sequences S, select
from S a subset of tests S with a desirable fault coverage. Fault coverage is essential for testing.
However, it is often specified differently from different system models and practical needs.

A commonly used criterion of fault coverage is to test each edge in the reachability graph at
least once. It has been a well-accepted criterion in practice, and we first consider this criterion.
Formally, given an EFSM M, let G be its reachability graph with an initial configuration vy,
which corresponds to the initial state of M and the initial variable values. A test sequence of M
is a path in G from v,. A covering test set is a set of test sequences such that each edge of G is
covered by at least one of the test sequences. We want to select a subset of tests such that it is
still a covering test set and contains a minimal number of tests:

Problem 1. Test selection with a reachability graph. Given the reachability graph of an
EFSM and a covering test set S, select a subset of test sequences S* from S, such that S” is a

covering test set with a minimal cardinality.

The problem is NP-hard [LH]. Therefore, it is hard to obtain an optimal solution for test
selection in general. We discuss heuristic methods next.

3. TEST SEQUENCE SELECTION

We first consider the case that the underlying system reachability graph is available, and
then study the more general case without such reachability graphs.

3.1. Test Sequence Selection with a Reachability Graph
We consider the following greedy method. We first find a test sequence in S that covers a

maximal number of uncovered edges of the reachability graph, and add this test to S". We then
repeat the process until all the edges of the reachability graph are covered. Formally,



Algorithm 1.
input: reachability graph G and a covering test set S
output: a covering test set S*, which is a subset of S

1. mark all edges in graph G as uncovered;

2. S*=A; /* an empty set */

3. repeat

4. find a test sequence s in § that covers a maximal number of
uncovered edges of the graph G, and mark these edges as covered;

5. S=8-{s}, S*=S*U{s};

6. until all edges in G are covered

7. return S*

Figure 1. Algorithm 1

A routine analysis shows that Algorithm 1 takes time O(MN) to select a covering test set
where M and N are the total length and number of all the test sequences in the given covering
test set.

To reduce the cost we may want to avoid examining all the tests in the set. We can conduct
the following preprocessing and variations of Algorithm 1.

We first sort the tests in S according to their lengths in a descending order, and then examine
them in that order. The rationale is: longer tests correspond to longer paths in the reachability
graph and may cover more edges of the graph. Furthermore, if we have found a test, which
covers k uncovered edges, then there is no need to examine tests of length k or less. Since there
are N tests in the set, the added cost of sorting is O(NlogN), which is negligible since it is
dominated by O(MN).

Randomisation often helps. We can select each test sequence to be examined from S
uniformly at random.

Another variation is that we sort the test sequences by their input symbols alphabetically
rather than their lengths, remove all the tests which are a proper prefix of other tests, and then
apply Algorithm 1. Obviously, this pre-processing reduces redundant tests and we have fewer
tests to process. We shall further discuss this variation in the next section.

3.2. Test Sequence Selection without a Reachability Graph

Often we only have a test set available but do not have the corresponding reachability graph
of the underlying system or it is too costly to construct such a graph. The problem becomes
harder since we do not know whether a selected test set covers all the edges in the reachability
graph.

Suppose we have the underlying system specification EFSM yet without its reachability
graph. We have:

Problem 2. Test selection with an EFSM. Given an EFSM and a covering test set S, select
a subset of test sequences S  from S, such that S° is a covering test set with a minimal
cardinality.



Similar to Problem 1, the test selection problem 2 is NP-hard. Therefore, it is hard to obtain
an optimal solution for test selection in general.

We can use the following heuristic procedure. We examine all the test sequences in S, trace
each sequence in the EFSM, and record all the edges covered in the corresponding reachability
graph. We then select test sequences in S until all the recorded edges are covered. The selection
procedure is similar to Algorithm 1, and the variations of Algorithm 1 also apply here. Note that
we do not construct the reachability graph explicitly.

Algorithm 2.
input: EFSM M and covering test set S
output: a covering test set S*, which is a subset of S

1. E=A; /*identify all edges of reachability graph; E is an empty edge set */

2. for each test sequence s;in S, i =1, ..., N

3 u=uy=< Sy Ximis > ; /* uy is the initial configuration of M */

4 forj=1, ...,k /* k;is the number of transitions in s; */

5. trace transition #; in M and determine next configuration v;

6 if corresponding edge in reachability graph (u,v)eE

7 E=EuU{wv)};

8. u =v;

9. setall edges in set £ as uncovered; /* find a covering subset S */

10. §*=A; /* an empty set */

11. repeat

12. find a test sequence s in S that covers a maximal number of uncovered
edges in set E, and mark these edges as covered;

13. §=8-{s}, §*=85* U{s};

14. until all edges in E are covered

15. return S*

Figure 2. Algorithm 2

Algorithm 2 takes time O(MNlogM) to select a covering test set where M and N are the total
length and number of all the test sequences in the given covering test set.

Algorithm 2 is for a more general test selection Problem 2 where there is no reachability
graph and also no need to construct one. However, there is an extra price to pay in terms of the
run time, i.e., a factor of logM.

Often in practice the underlying system model may not be available, especially for those
legacy systems, and we only have a set of tests to select. This is the most general case of the test
selection problem:

Problem 3. Test selection without any information of the underlying protocol system.
Given a covering test set S for a protocol system, for which there is no information available,
select a subset of test sequences S, such that S is a covering test set.

Different from Problem 1 and 2, in general it is impossible to select a minimal covering test
set since there is no information of the underlying protocol system.

For this problem we only consider the following redundancy criterion. Let s and s be two

test sequences where s is a prefix of s. Let p and p~ be the corresponding paths from the initial
configuration in the reachability graph, which we do not know. Since the corresponding EFSM

5



is deterministic, p~ is a prefix of p as paths in the reachability graph, and we can remove s* from
the test set without sacrificing the coverage. Consequently, if S is a covering test set, the test
subset S°, selected by discarding all the prefixes, is still a covering test set. As a matter of fact,
in the worst case, we cannot reduce the tests anymore. Consider the following reachability
graph. It consists of separate paths from the initial node. For test selection, we can only discard
the paths (tests), which are a proper prefix of another path; any further reduction will lose the
coverage.

The above observations lead to the following algorithm. Consider the alphabet set of all the
input symbols. We sort all the input sequences in S alphabetically and then remove all the input
sequences (test sequences), which is a prefix of another input sequence.

Algorithm 3.
input: test sequence set S and alphabet set of all the input symbols X
output: subset S* of S with redundant tests removed

sort all input sequences of S alphabetically;
S*=A; /* an empty set */
fori=1,...,N-1 /* N is the cardinality of S */
if 5; is not a prefix of 5.,
S*=8*U{si};
S*=8*U{sn};
return S*

N hw =

Figure 3. Algorithm 3

Given a test set S, Algorithm 3 removes redundant tests and selects a subset of tests S'. If S
is a covering test set of the reachability graph of the underlying protocol system, then S
remains a covering test set.

Note that Algorithm 3 may select test sequences that are redundant in terms of covering the
reachability graph since we do not have its information. Therefore, the resulting number of tests
may be larger than that from Algorithm 1 and 2.

It takes time O(MlogN) to select tests using Algorithm 3 where M and N are the total length
and number of all the test sequences in the given test set.

The cost of the test selection of Algorithm 3 is dominated by sorting the test sequences. We
now discuss another method, using trees. It is optimal in terms of run time; it takes time
proportional to the total lengths of the test sequences to be selected.

We grow a tree as follows. Initially, we have a root node v,. Each edge is labeled with an
input symbol. For each input sequence (test), we walk down the tree as follows. At a node u of
the tree with an input symbol « in the sequence, if there is an outgoing edge from u labeled with
a, then we walk down along that edge, arrive at the end node v, and process the input symbol in
the test sequence after a. However, if there are no outgoing edges labeled with a, then we add a
tree edge (u,v) from u, label it with a, walk down along (u,v), and continue processing from v as
before. Each test requires a tree walk. After all the tests have been processed, we can obtain the
selected tests as follows. We only have to select the tests (or paths) from the root to a leaf node;
all the other tests (paths) a prefix of these selected tests. Note that each step of the tree walk
takes a constant time (if we have a bitmap at each node to keep track of the labels of all the



outgoing edges). Therefore, it takes time proportional to the length of a test sequence to process.
Hence the total cost is O(M).

It takes time O(M) to select tests using Algorithm 4 where M is the total length of all the test
sequences in the given test set.

Obviously, Algorithm 4 removes the prefixes and selects the same test set as Algorithm 3. It
is more efficient but involves an on-line tree construction process. Again, if the given test set is
a covering set then the selected subset is also a covering. But it may contain redundant tests in
terms of covering the reachability graph, of which we have no information.

Algorithm 4.
input: test sequence set S and alphabet set of all the input symbols X
output: subset S* of S with redundant tests removed

1. V={vy}; /*Visnode set of tree T; each node keeps track of all input
symbols of its outgoing edges by a bitmap, */

2. fori=1,...,N /*Nisthe number of test sequences in S */

3 u = vy; /* a tree walk from initial node v, */

4 forj=1, ...,k /* k; is number of input symbols in sequence s; */

5. let #;; be transition of s; under examination with input #,->a;

6 if (u.bitmap(a)=0) /* not recorded yet */

7 initialize a new node v;

8 construct a new tree edge (u, v);

9 u.bitmap(a) =1; /* record this input symbol at u */

10. u =v; /* walk down tree to v along newly constructed edge */

11. else /* input has been recorded and tree edge exits for a walk */

12. u=v;

13. §*=A; /* an empty set */

14. for cach leaf node v of tree T},

15. let s be test sequence corresponding to path from v, to v;

16. S*=S*Ufs};

17. return S*

Figure 4. Algorithm 4

4. CONCLUSION

In this paper, we have discussed the test sequence selection problem. Given a test sequence
set, we want to select a subset of tests; without sacrificing the coverage we want to minimize the
number of the selected tests to reduce the test execution time. We have proposed several
algorithms with different required information and coverage, at different costs, and with
different redundancy of the selected tests.

So far we assume that the underlying protocol system is deterministic, and in this case, a
valid test sequence corresponds to a unique path in the reachability graph. If the system is non-
deterministic, then a valid test sequence may correspond to multiple paths in the graph. Since
the execution sequence is non-deterministic, the coverage of the edges in the reachability graph
is probabilistic. While the union of all the possible paths, which are associated with a valid test
sequence, is considered for coverage, we can only claim in a probabilistic sense.
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1 Introduction

Distributed real-time computer systems are very complex and intrinsically dif-
ficult to specify and implement correctly. One cause is the lack of adequate
methods and tools to deal with this complexity. The use of UML for develop-
ing such systems is gaining more and more attention both from research and
industry.

A major goal in developing such systems is a validation that the design
fulfills certain properties. Although there are some approaches with the goal of
a formal proof of the correctness of a design [5, 4], testing still plays a dominant
role. The reasons are the limited applicability of the methods which strive for
a formal proof:

— Fully automatic methods (model checking) can only be applied to small
designs and simple properties.

— Semi-automatic (with the help of theorem provers) or manual proofs are
often very difficult and require significant knowledge and experience.

Conventional testing on the other hand is easier to do, but does not necessarily
uncover all error situations. Therefore a fusion of the formal verification and
testing approaches promises to improve the validation of software. Here we
present a UVS (UML Validation Suite) tool for testing UML models designed
with the Rhapsody tool of I-Logix, Inc. We add semantic rigor to the Rhapsody
Sequence Diagrams (SDs) and use them to monitor or drive the interactive
simulation of the UML model.

This proposal is organized as follows: We start with the formal foundation
of Sequence Diagrams in section 2, followed by a quick overview of the features
of the UVS tool and how it can be integrated into the design process in section
3. We conclude with information about the implementation of the tool in Sect.
4.

2 Sequence Diagrams

The Sequence Diagrams we are considering here are an enhanced version of the
ones offered by the Rhapsody tool at the moment. In the context of monitoring
and driving an UML design we need more expressiveness than that provided



10

by the UML standard. For this reason we have added a feature which we feel
is essential for this application area: the capability to specify when a scenario
described in a SD should be activated, i.e. when should we start to monitor
the system or generate certain inputs? The simplest possibility would be to
only consider initial SDs, i.e. those which are activated at system start. This is
clearly too restrictive, since we also want to be able to use scenarios which are
active more than once. We therefore introduce the concept of activation mode
which can be either initial or iterative, where the second choice indicates that
the SD can be activated several times, whenever the activation condition is true
during a run of the system and the SD is not already active. For the iterative case
another feature is needed, which allows us to specify when exactly the SD should
be activated. Here we use an activation condition, a Boolean expression which
characterizes the state of the Rhapsody design when the scenario should start.
Both the activation mode and condition we have adopted from Live Sequence
Charts (LSCs) [1] which are the formal base of the UVS tool.

Activation Mode: Initial
Activation Condition: TRUE

X.itsConnection
ENV X : Telephone X.itsLineLine Connection Y.itsLinelLine Y :Telephone
< \ | \ | \ | \ | \ |
OffHook()
DiaTone()
Dial(nr=Y.nr)
Dia(nr=Y.nr)
Dia(nr=Y.nr)
evRing()
evRing()
S

Fig. 1. Sequence diagram example SD1

Figure 1 shows an example SD, where a connection between two telephones is
set up. The environment informs the telephone system that the receiver has
been lifted off the hook, then the dial tone is heard in the receiver. Now the
caller dials the telephone number of the callee which is propagated through the
system. In the end the callee’s phone rings.

The formal semantics for our SDs is given by an automaton which represents all
the communication sequences allowed by the SD from which it is constructed.
The algorithm for deriving this automaton from an SD is again taken from the
LSC world (see [3] for a detailed description).

An error is indicated by the UVS tool when the order defined in the SD is
violated by the simulation run, i.e. when an event or method call is observed
at the wrong time. Consequently the only permissible order of the messages is
the one shown in the SD. At this point also the activation of an SD comes into



play, since an error can only be detected when the corresponding SD has been
activated.

3 Methodology

The typical UML development process (e.g. Rapid Object-oriented Process for
Embedded Systems (ROPES) [2]) is iterative, starting with an early, fairly
abstract version and progressing to more and more concrete prototypes. The
first version will often be incomplete having some classes which are already well
developed and others which are just empty shells, i.e. the classes exist together
with their (incomplete) set of events and methods which are not implemented
yet. An appropriate validation technique has to support such a development
process which is often not the case.

Therefore we aim at an approach which supports validation throughout
the whole development process. We use Sequence Diagrams as a graphical lan-
guage to describe certain functional and real-time properties. We believe that
Sequence Diagrams are well suited for such a testing process because of several
reasons, e.g

— SDs are used early in the development process to capture the relevant use
cases of the desired system. Therefore the testing process can run in parallel
with the development process which allows early detection of functional or
timing errors.

— The graphical fashion of SDs eases the communication between users, devel-
opers and test engineers. Therefore the acceptance of the developed systems
will increase.

— Most of the common real-time properties (e.g. response times) can be ex-
pressed using SDs.

We show the application of our testing approach at 3 typical stages in the
development process where we incrementally create early prototypes (testing
during design), a first fully implemented design (unit testing) and an enhanced
design (regression testing).

— Suppose we have a system under construction where we want to test the
already implemented classes. This is possible by designating the incomplete
classes as stubs in the SD(s) and letting the test tool take over their be-
havior. The stubbed classes have to provide at least those interface objects
(operations and event! receipts) which appear in the SD. The difference be-
tween monitoring and testing a SD is the way the environment is treated.
If we want to monitor a SD, then we only observe if all described events
and method calls occur in the right order and within the right time inter-
valls. If we want to test a SD, then the events coming from the environment
(and the ones from stubbed instances) are generated automatically at the
appropriate points in time, and all other messages are monitored.

! Signals in UML terminology.

11
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Fig. 2. Communication between UVS and Rhapsody

— In later iterations as the design becomes more and more complete the
stubbed SD instances can be transformed into regular ones as the underlying
classes become more complete. In general, SDs which have been specified
in earlier iterations can be used for regression testing in the later phases,
thereby becoming invariants of the model. Another important aspect of
reusing SDs is the possibility to parameterize them. By using parameters
such as “X” and “Y” as object names on SD instances all combinations of
objects of the corresponding classes can be treated in one SD. If we want
to use such an SD for monitoring or testing, we have to instantiate these
parameters with concrete objects of the system.

— In each new iteration the existing SDs can be supplemented by new ones
which specifically test those features which have been added in this itera-
tion cycle. Of course, when inserting new functionality into a design, other
functions should not be affected. To test this, we can use the SDs from the
previous iterations for regression testing.

In our example we always used only one SDs at a time for testing, but our
approach also allows complex tests consisting of several SDs whose activation
can be controlled either implicitly by their activation mode and activation con-
dition or explicitly by an ordering given by the user. Each test can consist of
arbitrary many instances of SDs, which are SDs with instantiated parameters.
This allows the definition of very complex tests where messages can be sent in
parallel or sequentially to the application, whereas many monitors can observe
the behaviour of the application.

4 Implementation

At present, the UVS tool is being integrated into Rhapsody and it will be part
of the next release. In this section we briefly outline the software architecture
of the UVS and its interaction with Rhapsody.

A prerequisite of our notion of testing is the possibility to interact with the
system under test. For our approach it is important that the tester is informed



about every event and method call which is described in the considered SDs.
Furthermore the tester must have the possibility to send events to the system
under test. These capabilities can be realized in different ways (e.g. code in-
strumentation, model executor etc.). Figure 2 shows how UVS and Rhapsody
interact with each other. The UVS manages the definition of the test cases and
controls the test execution sending stimuli when required and observing the
actions taken in the simulator.

We have integrated the whole test environment directly in Rhapsody. For
each project the user can define arbitrarily many tests which are automatically
stored together with the project files. For each test it can be specified which
SDs it should contain, how the parameters should be instantiated and which
SDs should run in parallel or sequentially. During the execution of the test the
user is informed about which parts of the test behave as expected and which
not. If an error was detected, a SD is generated automatically to visualize the
error.

Rhapsody generates instrumented code, which communicates with a simu-
lation interface (TOM API) during runtime. Whenever relevant things occur
with regard to the considered SDs, the simulation interface informs the testing
tool about them. Based on these notifications the testing tool detects possi-
ble errors or generates events automatically which can be send back to the
implementation through the simulation interface.
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Abstract

This paper discusses the application of model checking to test generation from specifications written in
statecharts. We consider a family of coverage criteria based on the flow of control and data in statecharts
and formulate the problem of test generation as finding counterexamples during the model checking of
statecharts. The ability of model checkers to construct counterexamples allows test generation to be
automatic.

To illustrate our approach, we are based on the temporal logic CTL and its symbolic model checker
SMV. We describe how to translate statecharts to inputs to SMV after defining the semantics of state-
charts in terms of Kripke structures. We, then, describe how to express various coverage criteria in CTL
and show how SMV can be used to generate only executable tests.

1 Introduction

This paper addresses the problem of test generation from statecharts [12] that have been widely used for
specifying reactive systems. Statecharts can be regarded as extended finite state machines (EFSM) that
support the hierarchical and concurrent structure on states and the communication mechanism through
event broadcasting. Among several variants of statecharts considered in the literature [2], we concentrate
on the STATEMATE semantics for statecharts [13]. Our approach, however, can be immediately applied to
other variants of statecharts semantics, for example, the UML statecharts [24].

A statechart specification typically allows an infinite number of executions and hence exhaustive testing
is impossible, which requires all the possible executions be performed. The prevalent testing practice is to
construct a test suite, that is, a finite set of test sequences according to certain coverage criteria. For test
coverage, we adapt the notions of control flow and data flow coverage used traditionally in software and
protocol testing to statecharts. For test generation, we present an approach that involves the application of
the temporal logic CTL [8] and its symbolic model checker SMV [21] to statecharts.

An overview of our approach is shown in Figure 1. The problem of test generation is formulated as a CTL
model checking problem. A given coverage criterion is expressed as a parameterized collection of formulas
in CTL that are instantiated for a given statecharts specification. Each formula describes a test sequence in
abstract terms in such a way that the formula is true if and only if a statechart specification does not allow
the test sequence. If the test sequence described by the formula can be performed by the specification, model
checking will fail and the tool will generate a counterexample giving an execution sequence that explains why
the formula cannot be satisfied. This counterexample is easily mapped into the test sequence by projecting
it onto the observable events of the specification.

The contributions of this paper can be summarized as follows. We give a formal semantics for statecharts
consistent with the STATEMATE informal interpretation. We apply a family of control-flow and data-
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flow coverage criteria to statecharts and give a CTL characterization of each coverage criterion. Finally,
we demonstrate how to use SMV, an off-the-shelf CTL model checking tool, for the purpose of automatic
generation of test suites from statecharts.

Related work. Widely-used models for reactive systems in the testing literature include finite state ma-
chines (FSM), especially in hardware and protocol conformance testing. FSM-based testing methods primar-
ily focus on the control-flow oriented test generation such as transition tour, unique-input-output sequence,
distinguishing sequence, and characterizing sequence (see [3, 20] for survey). In protocol conformance testing,
these methods have been extensively applied to formal description techniques [17] such as SDL and Estelle,
and a number of automated tools have been developed (see [9] for survey).

EFSMs extend FSMs with variables to support the succint specification of data-dependent behaviors.
If the state space of an EFSM is finite, one can obtain the equivalent FSM by unfolding the EFSM. Thus
testing based on EFSMs with finite state space is reduced in principle to testing based on ordinary FSMs.
This approach, however, suffers from the well-known state explosion problem which makes test generation
often impractical. Even when test generation is feasible, this approach is often impractical because of the test
explosion problem, i.e., the number of constructed tests might be too huge to be applied to implementations
under test.

A promising alternative is to apply conventional software testing techniques to the generation of tests
from EFSMs. In this approach, an EFSM is transformed into a flow graph that models the flow of both
control and data of the EFSM and then tests are generated by identifying control and data flow information
such as definitions and uses of variables in the flow graph [25]. The flow-graph test generation method is
also applied to statecharts [15]. This approach abstracts from the values of variables and hence it can be
applicable even if the state space is infinite. The approach, however, requires posterior analysis such as
symbolic execution or constraint solving to determine the executability of tests and for the the selection of
variable values which make tests executable.

The approach we advocate here is based on translating statecharts into Kripke structures and also suffers
from the state explosion problem. However, the formulation of test generation as model checking in our
approach enables the use of symbolic model checking [5], a technique that has been proven successful for
controlling the state explosion problem. Second, our approach overcomes the test explosion problem by using
the flow information of both control and data like the flow-graph approach. Finally, our approach can be
seen as complementary to the flow-graph approach. On the one hand, flow graphs can be constructed for
systems that are not finite-state. On the other hand, our approach has the advantage that only executable
tests are produced.

Recently connections between test generation and model checking has been considered in the literature.
A tool that uses test generation algorithms inspired by model checking algorithms is described in [18].
Test generation using counterexamples constructed by model checkers has been applied in several contexts.
Mutation analysis is used in the approach of [1]. In [6], test generation is performed from user-specified
temporal formulas, while in [10] testing purposes are used to generate tests. No consideration is given to
coverage criteria. Some control-flow coverage criteria are considered in [11]. We are not aware of any work
that considers the model checking approach to data-flow oriented test generation.

Organization of the paper. Section 2 reviews statecharts and CTL model checking. Section 3 gives a for-
mal definition of the STATEMATE semantics. Section 4 introduces several notions relevant to specification-
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based testing with statecharts. Section 5 and 6 describe a family of coverage criteria and a test generation
method, respectively. Finally, Section 7 concludes the paper with a description of future work.

2 Preliminaries

This section provides a brief introduction to statecharts and CTL model checking.

2.1 Statecharts

A statechart is a tuple Z = (S, II, V, ©, T') where S, II, V, and T are sets of states, events, variables, and
transitions. © is an interpretation of V' which assigns to each variable its initial value. To demonstrate the
main features of statecharts, we use as the running example the statechart shown in Figure 2, which specifies

a simple coffee vending machine. The variable m in Figure 2 is of integer subrange [0,10] and its initial value
is defined by ©(m) = 0.

4 I
CVM
OFF
t1: power-on ta: power-off
/light-on /light-off
ON m:=0
Y
4 N
COFFEE t3: coffeelm>0]
/ start;dec
IDLE | BuUsY
t4: done/stop
MONEY te: incm<10]/m:=m+1
ts: inc/m:=1
EMPTY | NOTEMPTY
ts: decm=1]/m:=0
tr: decfm>1]/m:=m—1
L [m>1]/ )
- J

Figure 2: Example of Statecharts specification

One of the main features of statecharts is the hierarchical and concurrent structure on states. A state is
either basic or composite. A composite state is classified as either OR-state or AND-state. An OR-state has
substates related by exclusive-or-relation and has exactly one default substate. For example, the OR-state
¢vM in Figure 2 consists of OFF and ON with OFF as its default substate. Being in cvM implies being in OFF
or in ON, but not in both. An AND-state has substates related by and-relation. Being in the AND-state ON
implies being in COFFEE and MONEY at the same time. There is a unique state called the root at the highest
level on the state hierarchy, say CVM.

For a state s, define children(s) as the set of substates of s and children™ as the reflexive-transitive closure
of children. For two states s; and ss, s; is an ancestor of ss if so € children™(s1). If, in addition, s; # s,
we say that s; is a strict ancestor of sa.

A configuration is a maximal set of states in which a system can be simultaneously. Precisely, C C S is
called a configuration if (i) C' contains the root state; (ii) for every AND-state s, either s and all substates
of s are in C or they are all not in C; (iii) for every OR-state s, either s and exactly one substate of s are
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in C' or s and all substates of s are not in C. Each configuration can be uniquely characterized by its basic
states. In Figure 2, we have the following configurations with {OFF} as the initial configuration: {OFF},
{IDLE, EMPTY}, {IDLE, NOTEMPTY}, {BUSY, EMPTY}, {BUSY, NOTEMPTY }.

We partition the set IT of events into three disjoint subsets Iy, II;, and IIp comprising input, local,
and output events, respectively. The occurrence of input events is determined by the environment of a
system while local and output events are generated by the system itself. Local events are used for internal
communications and are assumed to be invisible to the environment. Input and output events are visible
to the environment and constitute the observables of a statechart. In Figure 2, we have II} = {power-on,
power-off, coffee, done, inc}, Il = {dec}, and Ilp = {light-on, light-off, start, stop}.

A transition ¢ is a tuple (source(t), trigger(t) guard(t), action(t), target(t)) where source(t), target(t) € S,
trigger(t) is a predicate on II, guard(t) is a predicate on V', action(t) consists of a set of assignments to V,
denoted by assignments(t), and a set of events in I, UTlp, denoted by generated(t).

For a transition t, define Fxits(t) (resp. Enters(t)) as the set of states that a system exits (resp. enters)
on taking transition ¢. For example, we have that Fzits(t;) = {OFF} and Enters(t;) = {ON, COFFEE, IDLE,
MONEY, EMPTY}. The formal definition for Ezits(t) and Enters(t) can be found in [7]. The scope of a
transition ¢, denoted by scope(t), is defined as the lowest OR-state in the state hierarchy that is a proper
ancestor of both source(t) and target(t). For example, scope(tz) = cvM and scope(ts) = COFFEE. Two
transitions ¢ and t' conflict if scope(t) is an ancestor of scope(t’)). For example, to and ¢3 conflict because
CVM is an ancestor of COFFEE.

2.2 CTL Model Checking

Symbolic model checking [5] is a proven successful technique for the automatic verification of finite state
systems. A widely-used temporal logic for symbolic model checking is the branching time temporal logic
CTL [8]. Let AP be the underlying set of atomic propositions. The syntax for CTL is defined by the
following grammar:

¢pu=p|=9|dANG | EX¢|AXS| E[pU'] | A[pU']

where p € AP and ¢, ¢’ range over CTL formulas. The remaining temporal operators are defined by the
equivalence rules: EF¢ = E[trueU¢]; AF¢ = AftrueU¢|; EGp = ~AF(—¢); AGp = ~EF(—¢).

The semantics of CTL is defined with respect to a Kripke structure M = (@, Qo, L, R) where @ is a finite
set of states; Qo C @ is the set of initial states; L: Q — 24F is the state-labeling function; and R C Q x Q
is the set of transitions. A sequence qo, ¢1, q2, ... of states is a path if (¢;,q¢i+1) € R for all i > 0. A path p
is a g-path if p(0) = ¢. The satisfaction relation |= is inductively defined as follows:

e qpiffpe L(gh g9 ~(¢=¢); g ¢A ¢ iff ¢ = ¢ and ¢ |= ¢';
o g =EX¢ (resp. AX9¢) iff for some (resp. all) g-path p, p(1) = ¢;

e g = E[¢U¢'] (resp. A[pU¢']) iff for some (resp. all) g-path p, there exists ¢ > 0 such that p(i) | ¢
and p(j) E ¢ for all 0 < j <.

SMV [21] is a symbolic model checker for CTL which represents the state space and transition relation of
Kripke structures using OBDDs [4]. An SMV program contains a set of variable declarations to determine
its state space and descriptions of the initial states and transition relation, as well as a list of CTL formulas
to be checked. Given a system model and a CTL formula, SMV automatically provides either a claim that
the formula is satisfied in the system model or else a counterexample falsifying the formula.

Let V be a set of variables. We call v’ as the primed version of a variable v € V and use V' to denote
the set of primed versions of all variables in V. We define a SMV program as a tuple (V, Init, Trans) where
V is a finite set of variables; Init is a predicate on V'; and Trans is a predicate on V U V'. Let (V) be the
set of all interpretations of V. A SMV program (V', Init, Trans) defines the Kripke structure (@, Qo, L, R)
such that @ = E(V); Qo = {0 € E(V) | 0 = Init}; L(o) = {v=0(v) | v € V}, for each ¢ € E(V); (0,0")
€ R if and only if (0,0') |E Trans, where {o,0’) is the interpretation that assigns o(v) to v € V and o’ (v)
tov' e V.
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3 A Formal Definition of the STATEMATE Semantics

This section formally defines a statechart as a Kripke structure based on the STATEMATE semantics. We
call each element in @ of a Kripke structure (@), Qo, L, R) a global state to distinguish it from a state
of Statecharts. Similarly we call each element in R as a global transition. The formalization is used as
the semantic foundation of the test coverage criteria and test generation method presented in the following
sections.

The STATEMATE semantics uses the set of nonnegative integers N as the time domain and provides
two models of time: synchronous and asynchronous. The main notion of the STATEMATE semantics is a
step. A step represents the response of a system to the input events generated by the environment or the
local events generated by the system itself. Both time models assume that the execution of a step takes
zero time and differ in the way of how time is advanced relative to the execution of steps. In the former
model, time is incremented by one time unit after the execution of each step. This time model is mainly
used for highly synchronous systems such as synchronous circuits. In the latter, several steps are allowed
to take place within a single point in time and time is incremented only when the system becomes stable.
Intuitively, stability means that further steps are impossible without new input events. This paper focuses
on the asynchronous time model.

State space. We give a set of rules that identify each component of a Kripke structure from a given
statechart. First we represent the state space of a statechart Z = (S, II, V, ©, T') using the following set of
global states.

Q = Config x B(V) x 21 x 2TVIT

where Config is the set of all configurations of Z, 3(V) is the set of all interpretations of V, and IT is the
set of implicit transitions which shall be discussed in the next section. The set () of global states captures
the following information about a statechart: (i) the states in which a system is; (ii) the values of variables;
(iii) the events generated; (iv) the transitions taken.

The set of initial global states is defined as follows: (Co,0q, Eo, 7o) € Qo if Cy is the initial configuration,
o0 = O, Ey € II;, and 70 = 0. This definition states that only input events can be generated and no
transitions are taken prior to the system initialization.

The definition of the label of each global state (C, o, E, ) is straightforward:
L((C,o,E, 7)) =in(C) U {v=0(v) |[veEVI}UEUT

where in(C) is a set of propositions defined as {in(s) | s € C}.

Transition relation. In the asynchronous time model, input events can be introduced to a system only
when the system becomes stable. Once input events are introduced, a sequence of steps is executed until the
system becomes stable again. A global state (C, o, E,7) is stable if there exists no generated input or local
event, i.e., E N (Il UTI) = (), and there exists no transition that may occur at that state.

We represent the transition relation of a statechart by the set of global transitions R = R; U Ry, where
each global transition in R; (resp. Rs) is called step (resp. tick). A step transition starts from a non stable
global state and manipulates configurations, variables and local and output events, while a tick transition
starts from a stable global state and manipulates input events.

Definition 3.1 Let (C,0,E,7) and (C',0', E',7') be global states. ((C,o,E, 1), (C',o',E" 7)) is a step
transition if and only if (1) (C, o, E, ) is not stable; (2) C" = (C' — U, Exits(t)) U, Enters(t); (3) o'
= a(0), where a = |J,¢, assignments(t); (4) E' = U,c,. generated(t); (5) each transition ¢ € 7' is enabled
at (C,0), i.e., source(t) € C and o |= guard(t), and is triggered by E, i.e., trigger(t) evaluates to true for E;
no two transitions in 7’ conflict; and 7' is maximal, i.e., each transition not in 7' but triggered by E and
enabled at (C,o) conflicts with some transition in 7'.

Definition 3.2 Let (C,0,E,7) and (C',0', E',7') be global states. ((C,o,E,7), (C',0',E',7")) is a tick
transition if and only if (C,0, E, ) is stable; C' = C; o' = o; E' CIy; 7 = 0.
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Intuitively, a step transition ((C,o, E,7), (C',0', E',7")) corresponds to the execution of the transitions in
7'. A tick transition corresponds to the introduction of input events to a system.

Nondeterminism. A statechart Z is deterministic if each non-stable global state has only one successor.
Note that stable global states may have more than one successor because tick transitions correspond to the
introduction of input events. In this paper, we consider test generation only for deterministic Statecharts.
Section 7 discusses a way to extend our approach to non-deterministic Statecharts.

In order to resolve certain classes of nondeterminism, the STATEMATE semantics provides a priority
scheme based on the scope of transitions. Let ¢ and ¢’ be transitions conflicting each other. If scope(t) is a
strict ancestor of scope(t'), then ¢ has priority over ¢'. If scope(t) is equivalent to scope(t'), t and ' have the
same priority. For example, in Figure 2 t, has priority over ts, t4, t5, t¢, t7, and tg, while ¢ and ¢7 have the
same priority. With this priority scheme, the coffee vending machines becomes deterministic with respect
to ({power-on},{inc},{power-off,coffee}) because now we have ({light-on},0,{light-off}) as the only possible
output sequence.

4 Specification-Based Testing with Statecharts

Runs. Let Z = (5,1,V,0,T) be a statechart. A naive approach to characterizing the behavior of a
statechart is to use all the finite paths of its Kripke structure M (Z). This approach, however, is of little use
because a path ending at a non stable global state may not provide the information of the output sequence
that is supposed to be generated as the response to an input sequence. Therefore we are concerned about
only finite paths ending at a stable global state, which we call runs. Figure 3 shows a run of the coffee vending
machine in which double rectangles represent stable global states. The run corresponds to the execution of
the transition sequence t1, t5, t3, tsg in Figure 2.

gsi: ({orF}, m=0, {power-on}, 0)

step

gsa: ‘ ({ipLE, EMPTY}, m=0, {light-on}, {t1}) ‘

tick

gss3: ({ipLE, EMPTY}, m=0, {inc}, 0)

step

gs4: ‘ ({ipLE, NOTEMPTY}, m=1, 0, {t5}) ‘

tick

gss: | ({IDLE, NOTEMPTY}, m=1, {coffee}, 0)

step

9se: | ({BUSY, EMPTY}, m=1, {start, dec}, {t3})

step

gst: ‘ ({BUsy, EmMPTY}, m=0, @, {ts}) ‘

Figure 3: A run for test sequence {power-on},{inc},{coffee}/{light-on}D,{start}

A subsequence (C;, 04, E;, 75), ..., (Cj,05, E;,7;) of arun (Cy, 00, Eo,70), ---, (Cn,0n, En,T) is a superstep
if (Ci—1,04-1,FE;_1,7;—1) is stable, (Ck, o, Er, i) is not stable for i < k < j, and (C}, 0;, Ej,7;) is stable.
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We refer to E; as the input of the superstep and IloN |J; ;< j E}, as the output of the superstep. For

example, the following shows the three supersteps in Figure 3.

superstep input output

gs1, gs2 {power-on} || {light-on}

983, gs4 {inc} 0
gss, g9Se, gS7 {coffee} {start}

Test sequences. We refer to a finite word i = i;...i,, over 2! as input sequence and a finite word 0 =
01...0,, over 210 as output sequence. We say that a pair of input and output sequences, written as i/0, is a
test sequence if there is a run such that ¢; and o; are the input and output of the j-th superstep of the run,
respectively. Note that since we consider only deterministic statecharts, there is only one output sequence
corresponding to each input sequence. Intuitively a test sequence i/6 describes the expected or required
response o of implementations under test to the input sequence i. We say that a test suite is a set of test
sequences. For example, we have the test sequence {power-on},{inc},{coffee}/{light-on},0,{start} from the
run in Figure 3.

Exit nodes. We compare the nature of test sequences for reactive systems with those for transformational
systems. Most of analysis and testing models for transformational systems, e.g., flow graphs[14] and program
dependency graphs[19], contain a distinguished node called exit node to model the terminating behavior of
such systems. Test sequences in such graphs are naturally defined in terms of paths whose first node is the
entry node and last node is the exit node of the graphs. On the other hand, there is no corresponding notion
in reactive system models, because the behavior of reactive systems is characterized by their non-terminating
computations.

When defining test sequences for statecharts, we do not put any constraint on input sequences and thus
allow the execution of test sequences may end at any stable global state. That is, we regard each stable
global state as a pseudo-exit node. There are, however, more elaborate approaches to defining exit nodes.
A widely used approach in EFSM-based testing is to require that the execution of test sequences end at an
initial state from which another test sequence can be applied. In general, testers may want to designate an
arbitrary state as an exit node. An interesting notion is marker state in the supervisory control theory by
Ramadge and Wonham[22]. This theory distinguishes the paths ending at a state designated as a marker
from others and interprets such paths as completed tasks of the modeled system. For example, a tester may
want to designate the configuration {IDLE, EMPTY} as a marker for the coffee vending machine and require
that the execution of every test sequence end at the marker. In this case, the input sequences in Figure 3
and can be extended with {done} to guarantee that the machine end at the marker.

Testing quiescence. Often we need to test that the system does not produce any output in response to
some input. For example, the coffee vending machine in configuration {IDLE, EMPTY} when m = 0 does not
respond to input {coffee} simply because there are no enabled transitions in the corresponding global state.
However, if we want to generate a test for such quiescent behavior using the same technique as for observable
behaviors, we need to make the absence of output explicit. For this, we extend the set of transitions of the
statechart with implicit transitions. Implicit transitions are always self-loops with the empty set of output
events. The following shows the implicit transitions for the coffee vending machine.

it = it(OFF,power-off) = (OFF, power-off, true, §, OFF)
ita = it(OFF,coffee) = (OFF, coffee, true, ), OFF)

it3 = it(OFF,done) = (OFF, done, true, (), OFF)

ity = it(OFF,inc) = (OFF, inc, true, (), OFF)

its = it(OFF,dec) = (OFF, dec, true, (), OFF)

ite = it(ON,power-on) = (ON, power-on, true, (), ON)

ity = it(IDLE,coffee) = (IDLE, coffee, =(m > 0), (), IDLE)
its = it(BUSY,coffee) = (BUSY, coffee, true, B, BUSY)

ity = it(IDLE, done) = (IDLE, done, true, §), IDLE)
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it10 = it(NOTEMPTY, inc) = (NOTEMPTY,inc, =(m < 10), ), NONEMPTY)
it11 = it(EMPTY,dec) = (EMPTY,dec, true, ), EMPTY)
it12 = it(NOTEMPTY, dec) = (NOTEMPTY,dec, —=(m > 1V m = 1), }, NONEMPTY)

An input sequence i is explicit if there exists a test sequence i/d such that each step transition of its
run corresponds to the execution of an explicit transition. Otherwise, it is implicit. For example, the input
sequence ({power-on}, {inc}, {coffee}) is explicit (see Figure 3), while ({power-on}, {coffee}) is implicit
because the step transition (gss, gs4) in Figure 4 corresponds to the execution of ity.

gsi1: ({oFr}, m=0, {power-on}, 0)

step

gsa2: ‘ ({ipLE, EMPTY}, m=0, {light-on}, {t1}) ‘

tick

gss: ({IDLE, EMPTY}, m=1, {coffee}, 0)
step

gs4: ‘ ({ioLE, EMPTY}, m=0, 0, {itz}) ‘

Figure 4: A run for test sequence {power-on},{coffee}/{light-on},)

Conformance. Finally we present a conformance relation between specifications written in determinsitic
statecharts and implementations under test. For a statechart Z and implementation I, we write Z(i) and
I(i) for the output sequences of Z and I to an input sequence i, respectively. We say that I weakly conforms
to Z if Z(i) = I{i), for all explicit input sequences i. We say that I strongly conforms to Z if Z{i) = I{i),
for all input sequences i.

5 Test Coverage Criteria for Statecharts

Statecharts specify the required behavior of implementations under test by describing the possible sequences
of input and output events in terms of control and data dependencies between the events. Specification-based
testing with statecharts aims at determining whether an implementation establishes the desired flow of both
control and data expressed in its specification.

5.1 Control Flow Oriented Coverage Criteria

Obviously the strongest test coverage criteria is path coverage which requires that all the runs of a statechart
be traversed, or equivalently all the input sequences of the statechart be applied to implementations under
test. Because there is an infinite number of input sequences, we need to have systematic coverage criteria
that select a finite and reasonable number of test sequences satisfying certain conditions. This paper presents
a family of test coverage criteria based on the flow information of both control and data in statecharts.

We say that a test sequence /6 covers a state s (resp. configuration C and transition t) if its run contains
global state (C;, 0, E;, 7;) such that s € C; (resp. C = C; and t € 7).

State coverage. A test suite P satisfies state coverage if each state is covered by a test sequence in P.
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Configuration coverage. A stronger criterion than state coverage may be defined which requires the
traversal of each configuration. A test suite P satisfies configuration coverage if each configuration is covered
by a test sequence in P.

Transition coverage. A test suite P satisfies weak transition coverage if each explicit transition is covered
by a test sequence in P. A test suite P satisfies strong transition coverage if each explicit and implicit
transition is covered by a test sequence in P.

5.2 Data Flow Oriented Coverage Criteria

We adopt the following convention which classifies each variable occurrence of a transition as being a defi-
nition, computation use (c-use), and predicate use (p-use). Let v be a variable and ¢ be a transition. v is
defined at t if assignments(t) includes an assignment that defines v; v is c-used at t if assignments(t) includes
an assignment that references v; v is p-used at t if guard(t) references v. We denote by def(v), c-use(v), and
p-use(v) the sets of transitions that define, c-use, and p-use v, respectively. In the coffee vending machine,
we have def(m) = {t1,t5,t6,t7,ts}, c-use(m) = {tg,t7}, p-use(m) = {t3,t6,t7, s}

Let t and t' be transitions and gsg,. .., gs, be a run. Suppose that the step transitions (gs;, gs;+1) and
(955, 9sj+1) such that 0 < i < j < n correspond to the execution of ¢ and ¢, respectively. The run is a
definition-clear run with respect to v from ¢ to t' if each step transition (gsy, gsk1) does not correspond to
the execution of any transition at which v is defined, for i < k < j.

We define associations between definitions and uses of a variable as follows: a tuple (v, t,t') is a def-c-use
association (resp. def-p-use association) if t € def(v), t' € c-use(v) (resp. t' € p-use(v)), and there exists a
definition-clear run with respect to v from ¢ to t'. A def-use association is either a def-c-use association or
def-p-use association. Table 1 shows the def-use associations for the coffee vending machine. For example,
consider the def-p-use association (m,ts,t3). The definition of m at t5 can reach the use of m at t3 through
the definition-clear run shown in Figure 3. In general, there are three types of associations between definitions
and uses in statecharts. The first type includes associations which occur within an OR-state, e.g., (m, ts, tg)-
Associations occurring in ordinary EFSMs belong to this type. The second type is caused by the hierarchical
structure on states, e.g., (m, t1, ity). The third type is caused by the concurrent structure on states, e.g.,
(m, ts, t3).

Table 1: The def-use associations for the coffee vending machine

def-c-use associations def-p-use associations
(m7 ts, tG) (ma ts, t3), (ma ts, tﬁ): (my ts, tg)
(ma te, tﬁ)a (m: te, t7) (ma ts, t3), (ma te, t6): (m7 ts, t7)
(m: t7, tﬁ)a (m7 tr, t7) (ma tr, t3)7 (m’ t7, t6): (mz t7, t7): (ma tr, ts)

We also account for the data flow caused by implicit transitions. A def-use association for a variable v
is called implicit if v is referenced by the guard of an implicit transition. Note that only p-uses are possible
for implicit transitions. In the coffee vending machine, we have the following implicit def-p-use associations:
(m, t1,it7), (m,te,iti0), (Mm,1s,it7).

We say that a test sequence /0 covers a def-use association (v,t,t') if its run is a definition-clear run
with respect to v from ¢ and ¢'.

All-def coverage. A test suite P satisfies weak all-def coverage if for each variable v and each transition
t such that ¢t € def(v), some def-use association (v,t,t') is covered by a test sequence in P. A test suite P
satisfies strong all-def coverage if for each variable v and each transition ¢ such that ¢ € def(v), some explicit
def-use association (v,t,t") or implicit def-use association (v, t,it) is covered by a test sequence in P.

All-use coverage. A test suite P satisfies weak all-use coverage if for each variable v and each transition
t such that ¢t € def(v), each def-use association (v,t,t') is covered by a test sequence in P. A test suite P
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satisfies strong all-use coverage if for each variable v and each transition ¢ such that ¢ € def(v), each explicit
def-use association (v,t,t') and implicit def-use association (v, t,it) is covered by a test sequence in P.

6 A Test Generation Method for Statecharts

This section shows that test generation from statecharts can be automatically performed by using the SMV’s
ability to construct counterexamples. Briefly the generation of a test suite from a statechart and a test
coverage criterion consists of the following steps.

e An SMV program is constructed from the statechart.
e A set of CTL formulas is constructed from the criterion.

e A test suite is constructed by model-checking the CTL formulas against the SMV program and pro-
jecting the obtained counterexamples onto the observable events.

6.1 Statecharts as SMV Programs

Because we use the symbolic model checker SMV, we do not enumerate Kripke structures explicitly but
encode them symbolically using a set of variables and predicates. That is, we translate a statechart into a
SMV program, which is a symbolic representation of Kripke structure, by encoding the semantics given in
Section 3 in terms of variables and predicates. A detailed description of the translation is straightforward
but tedious and is omited here due to the space limit. Full details, along with a correctness proof, can be
found in [16].

During the translation, we introduce several predicates that are used in the CTL formulas expressing the
coverage criteria. For each state s of a statechart, we define predicate in(s) which is true in a global state if
it corresponds to a configuration that contains s. A predicate stable is true in stable global states. Finally
the following predicates are used to encode the information on definitions and uses of a variable v.

d(’U) n= Vtedef(’v) t

u(v) = tep—use(v)uc—use(v)t
im-u(v) == Viteimplicit—p—use(v) it

For example, we have d(m) =1tV t5 \% t6 \% t7 Vtg, u(m) o= t3 \% t(; \% t7 \% ts, and zm—u(m) n= it7 \% itlo Vitlz
for the coffee vending machine.

6.2 Coverage Criteria as CTL Formulas

FEach coverage criterion is represented as a set of CTL templates. For a given statechart, the set of templates
is instantiated into a set of CTL formulas with the predicates defined for the statechart. The resulting set
of CTL formulas captures exactly the coverage criterion for the given statechart.

6.2.1 CTL Formulas for Control Flow Coverage Criteria

We begin with the state coverage criteria which requires that for each state s of a statechart, there exists
at least one run covering s. The Kripke structure corresponding to a statechart has a run covering s if and
only if (i) there exists global state gs; which is reachable from an initial global state gso and at which in(s)
is satisfied and (ii) there exists a global state gs; which is reachable from gs; and at which stable is satisfied
(see Figure 5). We express the requirement as the CTL formula EF (in(s) A EF stable).

Now we take the negation of the above formula and run SMV against the negated formula —=EF (in(s) A
EF stable) because we are interested in generating runs covering s instead of checking the satisfiability of
the original formula. If there exists a run covering s, SMV generates a counterexample which corresponds to
a run covering s. Otherwise, SMV provides the result of true. There are two cases in which SMV provides
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Figure 5: A test sequence covering state ¢

true against the negated formula. First, the global state gs; is not reachable from any initial global state,
i.e.,, EFin(s) is not satisfied. Second, a statechart cannot reach a global state at which stable is satisfied,
i.e., EF stable is not satisfied. For example, consider ~EF (in(B) A EF stable) whose purpose is to cover the
state B in Figure 6. Although B is reachable from an initial global state, there is no run covering B because
there is an infinite sequence consisting of only step transitions

({A},m =1, {Oé},@), ({B}am =1, {6}7 {tl})a ({A},m =1, {a}’ {tg}),. ..

and hence the statechart cannot reach a stable global state.

ti: a/Bym:=1

A @

ta: Blm=1]/a

Figure 6: A non-terminating statechart

As mentioned before, it may be required that each run end at an initial state or an arbitrary state
marked by testers. Let erit be a predicate defined as stable if there is no marker, and stable A in(C) if
C is a configuration designated as a marker. We can simply express the requirement of markers using
EF (in(s) A EF exzit).

Let BS C S be the set of basic states. We note that a test suite covering all basic states also covers
all other states because of the hierarchy. To generate test sequences satisfying state coverage, we use the
following set of CTL formulas.

State coverage. {-EF (in(s) A EF ezit) | s € BS}
We can define the CTL formulas for other control-flow oriented criteria in a similar way.

Configuration coverage. {-EF (in(c) A EF ezit) | ¢ € Config}
Weak transition coverage. {—~EF (t A EF exit) |t € T}
Strong transition coverage. {—EF (t AEF ezit) |t € T}U{—EF (it N EF exit) | it € IT}

6.2.2 CTL Formulas for Data Flow Coverage Criteria.

The requirement for a def-use association (v, t,t') can be stated as follows: (i) there exists a global state gs;
which is reachable from an initial global state gsg and at which ¢ is satisfied; (ii) there exists a path gs; 1
... gs;—1 which starts from a successor of gs; and contains no definition of v until gs; at which ¢’ is satisfied;
(iii) there exists a global state gs; which is reachable from the global state gs; and at which ezit is satisfied
(see Figure 7). We express this requirement as EF (t A EX E[~d(v) U (' A EF exit)]).

We determine whether each tuple (v,t,t') such that ¢t € def(v) and t' € use(v) is a def-use association
or not by associating the negation of the above formula —~EF (¢t A EX E[-d(v) U (t' A EF exit)]) with the
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t —d(v) —d(v) t' exit

Figure 7: A test sequence covering def-use association (v, t,t')

tuple. If SMV generates the result of true against the negated formula, the tuple is not a def-use association.
Otherwise, the counterexample generated by SMV corresponds to a run covering the def-use association
(v, t,t').

Weak all-def coverage. {—EF (tAEX E[-d(v)U (u(v) A EF ezit)]) |v € V,t € def (v)}

Strong all-def coverage.

{-EF (t N\EX E[-d(v) U ((u(v) V im-u(v)) A EF ezit)]) | v € V,t € def (v)}

Weak all-use coverage.

{=EF (t N\EX E[~d(v)U (t' AN EF exit)]) | v € V,t € def (v),t € use(v)}

Strong all-use coverage.

{~EF (t N\EX E[~d(v)U (' A EF ezit)]) | v € V,t € def (v),t' € use(v) U implicit-p-use(v)}

6.3 Test generation as Model Checking

Each formula in the set representing the coverage criterion for a statechart is model checked against the
SMYV program of the statechart. If the formula is false, SMV produces a counterexample which, projected
onto the input and output event of the statechart, yields a test sequence to be included in a test suite. If the
formula is true, no counterexample is produced which implies that there is no test sequence for the coverage
expressed by the formula.

For example, consider the formula =EF (t3 A EF stable) from the transition coverage criterion formula
set for the coffee vending machine. Model checking of this formula produces the counterexample shown
in Appendix A. The counterexample is the symbolic representation of the run in Figure 3 and covers the
transition t3. When generating counterexamples, SMV describes an initial state by providing the values of all
variables and predicates. The other states are described in terms of only the values that are changed from one
state to the next. The counterexample is mapped into the test sequence {power-on},{inc},{coffee}/{light-
on},0,{start}. Test suites for the coffee vending machine with respect to several coverage criteria are shown
in Appendix B.

7 Conclusions and Future Work

We have presented a model checking approach to automatic test generation from statecharts. Test suites are
generated according to a set of widely used coverage criteria based on the flow of control and data. Each
coverage criterion is expressed as a set of formulas in the temporal logic CTL. Each formula defines one
test sequence in such a way that the formula is satisfied by a statechart if and only if the test sequence is
infeasible in the specification. Otherwise, the model checker produces a counterexample for the formula. The
counterexample, projected onto the observable events of the statechart, yields a test sequence. The main
advantage of the approach is that only feasible or executable test sequences are generated, which obviates
the need of posterior analysis such as symbolic execution or constraint solving.
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Formalisms. This paper does not consider several important features of statecharts such as actions asso-
ciated with states, transitions with multiple source and target states, compound transitions, histories, and
real-time constructs such as timeout events and scheduled actions. However, it is fairly simple to extend our
test generation method once we have a formal definition for these features in terms of Kripke structures.

Many variants of semantics have been proposed for statecharts [2]. Semantic differences affect only the
translation method from statecharts into inputs to a model checker. In fact, our formalization of coverage
criteria as collections of CTL formulas is language-independent and is applicable with minor modifications
to any kind of specification languages based on EFSMs, e.g., SDL or Estelle.

Other coverage criteria. A number of other coverage criteria based on control and data flow analysis
have been proposed in the software testing literature (see, for example, [23]). Some of these coverage criteria
cannot be handled using SMV, because their CTL properties contain universal path quantifiers. For example,
all-du-paths coverage criterion requires that all definition-clear runs for a definition-use pair be traversed.
To generate tests for this criterion correctly, SMV would have to produce all counterexamples to each CTL
formula instead of only one. Such coverage criteria can be handled by extending SMV to produce multiple
counterexamples or by using a different model checker that has this facility.

Nondeterminism. In the case of non-deterministic statecharts, there may be more than one possible
output sequence for a given input sequence. In this situation, a single counterexample produced by the
model checker is not enough for the input sequence, since it will identify only one output sequence among
all possible ones. A possible solution to this problem is to treat the counterexample as prescribing only
the input sequence. An extra step is then needed to find all output sequences corresponding to this input
sequence. If we have a model checker that produces multiple counterexamples to a formula, as discussed in
the previous paragraph, we can express the input sequence as a CTL formula and give its negation to the
model checker. The set of counterexamples produced by the model checker will contain all feasible output
sequences.

Optimizations. Often the test suite constructed by our approach will contain redundant tests. For exam-
ple, in the transition coverage test suite for the coffee vending machine, the test sequence to cover transition
tz: {power-on},{inc},{inc},{dec}/{light-on},0,0,0 will also cover transitions t1,t5, and tg. It is, therefore,
necessary to have heuristics to minimize the number of generated tests without sacrificing the coverage they
provide.
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A The counterexample for -EF(tsAEFstabie)

-- specification !EF (t3 & EF stable) is false

—-- as demonstrated by the following execution sequence

state 1.1:

stable=0

CVM=off COFFEE=idle MONEY=empty

in-notempty=0 in-empty=0 in-money=0 in-busy=0 in-idle=0 in-coffee=0 in-on=0 in-off=1 in-cvm=1
m=0

power-on=1 power-off=0 coffee=0 done=0 inc=0 dec=0 light-on=0 light-off=0 start=0 stop=0
conflict-t8=0 conflict-t7=0 conflict-t6=0 conflict-t5=0

conflict-t4=0 conflict-t3=0 conflict-t2=0 conflict-t1=0

mayoccur-t8=0 mayoccur-t7=0 mayoccur-t6=0 mayoccur-t5=0

mayoccur-t4=0 mayoccur-t3=0 mayoccur-t2=0 mayoccur-ti=1

t1=0 t2=0 t3=0 t4=0 t5=0 t6=0 t7=0 t8=0

it1=0 it2=0 it3=0 it4=0 it5=0 it6=0 it7=0 it8=0 it9=0 it10=0 it11=0 it12=0

state 1.2:
stable=1
CVM=on in-empty=1 in-money=1 in-idle=1 in-coffee=1 in-on=1 in-off=0 power-on=0 light-on=1 mayoccur-t1=0 ti=1

state 1.3:
stable=0 inc=1 light-on=0 mayoccur-t5=1 t1=0

state 1.4:
stable=1 MONEY=notempty in-notempty=1 in-empty=0 inc=0 m=1 mayoccur-t5=0 t5=1

state 1.5:
stable=0 coffee=1 mayoccur-t3=1 t5=0

state 1.6:
COFFEE=busy in-busy=1 in-idle=0 coffee=0 dec=1 start=1 mayoccur-t8=1 mayoccur-t3=0 t3=1

state 1.7:
stable=1 MONEY=empty in-notempty=0 in-empty=1 m=0 dec=0 start=0 mayoccur-t8=0 t3=0 t8=1

resources used:

user time: 0.36 s, system time: 0.03 s

BDD nodes allocated: 14070

Bytes allocated: 1376256

BDD nodes representing transition relation: 4496 + 6

B Test Suites for the Coffee Vending Machine

State Coverage

state result

OFF 0/0

IDLE {power-on} / {light-on}

BUSY {power-on},{inc},{coffee} | {light-on},0,{start}
EMPTY {power-on} / {light-on}

NOTEMPTY || {power-on},{inc},{inc} / {light-on},0,0

Configuration Coverage

state result

{orr} 0/0

{IDLE, EMPTY} {power-on} | {light-on}

{IDLE, NOTEMPTY} || {power-on},{inc},{inc} / {light-on},0,0

{BUSY, EMPTY} {power-on},{inc},{coffee} | {light-on},0,{start}
{BUsY, NOTEMPTY} || {power-on},{inc},{coffee} | {light-on},0,{start}




Strong Transition Coverage

transition || result

t1 {power-on} | {light-on}

ta {power-on},{power-off} | {light-on},{light-off}

t3 {power-on} {inc},{coffee} | {light-on},0,{start}

t4 {power-on} {inc},{coffee},{done} [/ {light-on},0,{start},{stop}

ts {power-on} {inc} / {light-on},0

te {power-on} {inc},{inc} / {light-on},0,0

t7 {power-on} {inc},{inc},{dec} | {light-on},0,0,0

ts {power-on} {inc},{dec} / {light-on},0,0

it1 {power-off} / 0

its {coffee} | 0

its {done} / 0

its {inc} / 0

its infeastble

ite {power-on} {power-on} [/ {light-on},0

ity {power-on} {coffee} | {light-on},d

its {power-on} {inc},{coffee},{coffee} / {light-on},0,{start},0

itg {power-on},{done} / {light-on},D

it10 {power-on},{inc},{inc},{inc},{inc},{inc}, {inc},{inc},{inc},{inc},{inc},{inc} /
{light-On},0,@,@,@,0,@,0,0,@,@,@

it11 infeasible

it1o infeastble

Strong all-use coverage

tuple result

(m, t1, itr) {power-on},{coffee}/{light-on},0

(m, ts, t3) {power-on},{inc},{coffee} | {light-on},0,{start}

(m, ts, t6) {power-on},{inc},{inc} | {light-on},0,0

(m, ts, ts) {power-on},{inc},{dec} | {light-on},0,0

(m, te, t3) {power-on},{inc},{inc},{coffee} |/ {light-on},0,0,{start}

(m, te, ts) {power-on},{inc},{inc},{inc} / {light-on},0,0,0

(m, te, t7) {power-on},{inc},{inc},{dec} / {light-on},0,0,0

(m, te, it10) || {power-on},{inc},{inc},{inc},{inc},{inc}, {inc},{inc},{inc},{inc} {inc},{inc} /
{light-on},0,0,0,0,0,0,0,0,0,0,0

(m, tz, ts) {power-on},{inc},{inc},{dec},{coffee} | {light-on},0,0,0,{start}

(m, t7, to) {power-on},{inc},{inc},{dec},{inc} / {light-on},0,0,0,0

(m, tz7, tr) {power-on},{inc},{inc},{inc},{dec},{dec} / {light-on},0,0,0,0,0

(m. tr, ts) || {power-on}.{inch{inc}{dech{dec} / {light-on} 0.0,

(m, ts, it7) || {power-on},{inc},{dec},{coffee} | {light-on},0,0,0

Infeasible associations: (m, t1, t3), (m, t1, tﬁ), (m, t1, t7), (m, t1, tg), (m, t1, itlo), (m, t1, it12), (m, ts,
t7)7 (ma ts, it7)7 (ma is, itlo)a (ma is, itl?)a (ma te, t8)7 (m7 te, it7)7 (ma te, itl?)a (ma tr, it7)7 (ma tr, itlo)a

(m7 t7a itl?)a (ma t87 t3)7 (ma t85 tﬁ)a (m7 t87 t7)7 (ma tS: t8)7 (ma tSa ith): (ma tS: 7:t12)-
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Abstract

This paper describes how forma methods can be exploited in the automatic generation of tests
from Statechart specifications, and in amanner that can be extended to other graphical and tabular
notations. Intermediate formal representations of both the specification and the testing conditions
are generated. Based on these formalisations, properties of the specification and the tests are
analysed and a combination of constraint solvers and automated theorem proving tools are used
to generate the tests. The paper also summarises experience in applying the techniques to an
industrially relevant case study.

1 Introduction

Graphical notations such as Statecharts [13], SDL [35] and UML [9] and tabular notations such
as the SCR method [16] are becoming increasingly popular as a means of specifying software
systems. Noteworthy applications of these techniques are telecommunication systems and embed-
ded controllers for safety-critical systems. The functional correctness of such systems is crucial
to ensure their safe and/or economic operation. Testing is the primary means of verifying these
systems at present. However, the methods currently employed by industry are expensive, time
consuming and error prone. A more reliable and automated approach to testing systems designed
using graphical and tabular specifications is therefore required.

Forma methods can greatly benefit the testing process. They allow for a precise and unam-
biguous representation of the system specification and are amenable to rigorous and automated
analysis. However, formal methods have still to gain widespread use in the software industry. One
of the perceived barriers to the acceptance of formal methods is their reliance on mathematical
notations that are not well accepted by the domain engineers who are typically not from a com-
puter science background. Thereisaneed, as Ould [27] put it, to “disguise” the formality so that
an impractical amount of formal methods skill is not a pre-requisite to effective V&V. Graphi-
cal and tabular specification notations are one means of bridging the “semantic gap” between the
engineers and the formal methods.

This paper describes how combining graphical and tabular notations with formal methods
can facilitate rigorous and automated testing. The paper presents the results of an industrially
sponsored research program to develop a framework of automated testing techniques that can be
applied to a number of graphical and tabular notations. The framework consists of the following
3 elements. An intermediate formal representation of the specification is automatically generated
based on an understanding of the semantics of the source notation. Testing heuristics (both parti-
tioning and fault-based) are al'so formalised using the same intermediate notation. This alows test
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Figure 1. Example Statechart - Thrust Limitation

cases to be automatically generated that are correct through construction with respect to the orig-
inal specification and testing heuristics. Where the specification includes reference to a persistent
data state, the test cases are sequenced to alow theinitia state for atest to be set and the effects of
atest on the state to be verified. The formalisation aso allows for properties of the specifications
and testing heuristics to be analysed. The notions of weak and strong detectability, normally as-
sociated with program-based mutation testing, are described in the context of specification-based
testing. Wesak and strong fault detection conditions are used to assess the testability of the specifi-
cations and to select appropriate testing strategies. Automation is achieved through the integration
of anumber of constraint solving and theorem proving technologies. By using the same interme-
diate notation, the techniques can be re-used across a number of source notations. The framework
isillustrated in this paper by describing its application to the Statechart notation. In addition to
the use of non-Statechart specific testing techniques, this paper differs from others which discuss
test generation from Statecharts in the testing methods used. For example, Bogdanov et a. [4]
assume that transition operations are independently testable while Hong et a. [18] apply data flow
analysis to derive test sequences.

In sections 2 to 4 we show how specifications written in a subset of Statecharts can be for-
malised, how testing heuristics can be formalised and how constraint solvers and theorem provers
can be used to generate the test case instances. Section 5 describes experience in applying the
technigues to redlistic systems and the paper concludes with a summary of the key contributions
of the work, a discussion of further applications of the techniques and directions for future work.

2 Formalising Statechart transitions

A subset of the Statecharts [13] notation was adopted for the study that was sufficient to model the
applications of interest (aerospace control systems) yet restrictive enough to allow a straightfor-
ward formalisation. The semantics of the subset were taken from Harel and Naamad's definition
[15] and are also implemented by the STATEMATE tool [14] which was used in the production
of the case study material. The example Statechart in Figure 1 istypical of those specified in the
target domain and describes a portion of the software in an Electronic Engine Controller (EEC).
The Statechart describes the cancellation of athrust limiting mechanism following an inadvertent
deployment (e.g. due to amechanical fault) of the engine thrust reverser doors.

Statecharts are an extension of finite state machines that include concurrency, state hierarchy
and data. States in the system can be OR-states, AND-states or basic states. When an OR-state
is active, one and only one of its immediate sub-states is active (where the hierarchy is enforced
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through diagrammatic inclusion). The OR-states in Figure 1 are ThrustLimitation, LockDetect,
AwaitLock and OnGroundDetect. AND-states are used to model concurrency and allow sets of
transitions to be simultaneously enabled. Whenever an AND-state is active, al of its immediate
sub-states are active. InadvertentDeploy is the only AND-state in the example and its sub-states
(LockDetect and OnGroundDetect) are partitioned using the dotted line. A basic state is a state
with no sub-states. The basic states of Figure 1 are Idle, Unstowed, Wait, Locked, InAir and
OnGround.

At any point in time, aset of states in the Statechart is active, known as a configuration. The
set of valid configurations (V') is restricted by the semantic definition of OR and AND-states.
Contral is passed between configurations via transitions. Each transition is labeled with an event
expression, a guarding condition and an action, each of which is optional. Event expressions
consist of predicates defining the presence or absence of internal or external events. Guarding
conditions are formed by predicates over input parameters and interna variables, which in the
subset discussed here may take boolean, integer or enumerated types. Actions consist of a combi-
nation of event broadcast expressions and assignments to output parameters and internal variables.
If more than one action is associated with a transition, all actions are considered to be taken si-
multaneously. The syntax used for forming transition labels is as follows:

EventExpression [GuardCondition]/Actions
The semantics of alabel can be described as follows:
EventEzpr(I, V) A GuardCond(I, V') = Action(I, V, V', O)

where I, V, V', O represent possible combinations of the individual input parameters, internal
variables, updated internal variables and output parameters respectively! EventExzpr returns true

if the currently active input or internal events satisfy the event expression. GuardCond returns
true if the present values of theinput parameters and internal variables satisfy the guard condition.
Action defines the relation between the input parameters, internal variables, updated internal vari-
ables and the output parameters as defined in the transition actions. Each OR-state has a default
transition used to set the initially active sub-state on entry to the OR-state (unless the entering
transition explicitly terminates at a sub-state). The default transitions of Figure 1 are T1, T4, T7
and T9.

The computation that is performed by the Statechart is represented by a series of statuses and a
trace of input and output parameters. A status consists of a set of currently active states, the set of
internal events generated in the last computation step and the values of al internal variables. The
synchronous time model was chosen for the subset and specifies that the system executes a single
step every time unit, reacting to changes made in the status or to the parameters since the last step.
The changes to the status caused by the transitions enabled by the current inputs are processed in
the next step along with the values of any input parameters that may have been altered during the
execution of the step.

The Statechart semantics impose constraints on the behaviour which are left implicit in the
diagrams. However, in order to mechanically derive accurate and compl ete tests using generic test
automation techniques, this behaviour must be made explicit in any formal notation on which the
test generation techniques will be based. Generic tools can then be used that do not require an
understanding of the semantics of the notation from which the formal specification was generated.
For the subset of Statecharts under consideration, this implicit behaviour occurs in the following
four situations.

'For example, I isdefined as (L x L x ... x I,,),where I, . . . I, represent the types of each of theinput parameters.
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e Transtionsterminating at a non-basic state. If atransition terminates at anon-basic state,
the transition is composed with the default transition of the target state. The composition is
continued until a default transition terminates at a basic state. Example transitions of this
kind in Figure 1 are T2 and T5.

e Transitions originating from non-basic states. If atransition originating at a non-basic
state is active, then it must be possible to take the transition if any one of the sub-states of its
source state is enabled. The transition is partitioned such that each newly created transition
originates at adistinct basic state that isa descendent of the original transition’s source state.
T6 isthe only transition of thiskind in Figure 1.

e Priority resolution mechanism. If two conflicting transitions are enabled simultaneously,
the transition with the higher scope is given priority. The scope of a transition is defined
as the lowest common OR-state that is an ancestor of all its source and target states. The
guard of the lower priority transition is updated by conjoining with it the negation of the
guard of the higher priority transition. In the example, transition T3 would take priority
over transitions T6 and T10.

e Completeness assumption. The semantics of Statecharts specify that if a state is active
and no transitions are enabled in a step, events generated in the previous step are consumed
and the active state is maintained. Additional transitions are added to explicitly define this
behaviour.

Once the above semantic issues have been resolved, the resulting transitions are translated into
Z schemas using the following template:

_ StepTemplate
AStatus
Parameters

Source Configuration C ActiveStates
FEventFEzxpression
GuardingCondition

Actions

TargetConfiguration C ActiveStates’

Status is a schema used to store the currently active states (configuration), internal events
generated in the last step and the values of internal variables. Status also contains an invariant
that ensures the set of active states conform with the semantics of the Statechart. Parameters is
a schema defining the input and output parameters (as events or data-items). EventExpression,
GuardingCondition and Actions are derived from the transition label elements, updated appropri-
ately to resolve transition priorities. AStatus is used to specify that the contents of the status are
updated by the operation and the” * ” decoration is used to refer to the updated val ues of the status.
Based on this template, the transition T3 would be specified asin Figure 22 Feasible combinations
of concurrently active transitions are represented by sets of transitions whose Z representations,
when conjoined, do not conflict.

The automatic generation of the Z specification was acheived using an Application Program-
ming Interface (API) to the STATEMATE tool. A program was written that extracts a model of
the Statechart, performs the semantic resolution steps described above and writes out the full Z
specification including operations based on the step template. Several other variants of Statecharts

2where ? and ! are standard Z convention for labeling inputs and outputs respectively.
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T3
AStatus |

Parameters

{ ThrustLimitation, InadvertentDeploy,
LockDetect, OnGroundDetect, AwaitLock,
Locked} C ActiveStates

ThrottleReq? < Fwdldle

_T3BVA1
AStatus

Parameters

{ ThrustLimitation, InadvertentDeploy,
LockDetect, OnGroundDetect, AwaitLock,
Locked} C ActiveStates

| ThrottleReq? < Fwdldle — 1|

RestowComplete! = Present
LimitThrust! = False
{ ThrustLimitation, Idle} C Actz’veStates’|

ThrottleReq? < Fwdldle
RestowComplete! = Present
LimitThrust! = False

{ ThrustLimitation, Idle} C ActiveStates’|

_T3BVA2 _T3BVA3
AStatus | AStatus
Parameters Parameters

{ ThrustLimitation, InadvertentDeploy,
LockDetect, OnGroundDetect, AwaitLock,
Locked} C ActiveStates
| ThrottleReq? = Fwdldle |
ThrottleReq? < Fwdldle
RestowComplete! = Present
LimitThrust! = False
{ ThrustLimitation, Idle} C Actz’veStates’|

{ ThrustLimitation, InadvertentDeploy,
LockDetect, OnGroundDetect, AwaitLock,
Locked} C ActiveStates
| ThrottleReq? = Fwdldle — 1|
ThrottleReq? < Fwdldle
RestowComplete! = Present
LimitThrust! = False
{ ThrustLimitation, Idle} C ActiveStates’

Figure 2: Z specification for transition T3 and boundary value analysis partitions

(MATLAB/Stateflow [31], PFS Statecharts [11]) have been formalised in a similar way, as well
as atabular notation (PFS tables [11]) used for specifying the reactive components of aerospace
control software. The same subset of Z was used to represent al of these notations. This allowed
the test generation toolset described in Section 4 to be re-used for al of the source notations.
Predicates in the Z subset consist of combinations of logical, relational and arithmetic operators
and the C operator used to constrain state configurations. The following sections now describe
techniques that are not particular to Statecharts but have been developed for the subset of Z used
to model the above mentioned set of notations.

3 Formalising testing heuristics

3.1 Equivalence classtesting

Testing techniques that have been developed for model-based notations such asZ (e.g. [1, 10, 30,
17, 29]) are typically based on the principle of equivalence classes [12]. Equivalence classes are
formed by partitioning the input domain into sets of data that, for testing purposes, exhibit the
same behaviour. Based on the uniformity hypothesis only one test point need be selected from
each equivalence class to verify the implementation against the specification. In the methodol ogy
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described here, equivalence classes are identified using testing heuristics. A partitioning heuristic
partitions the specification into equivalence classes that completely cover the input space of the
specification and can be based on the signature (variable type declarations) or predicate part of the
specification. Selecting datafrom each subdomain isthen assumed to reveal acertain class of faults
in the implementation. A fault-based heuristic identifies an equivalence class in the specification
which contains those values that reveal a particular hypothesised fault.

Automatically applying testing heuristics to the specification requires a method of describing
the heuristics. Inahighintegrity process it should also be possible to demonstrate that the resulting
test cases accurately represent the testing heuristic and maintain conformance with the origina
specification. It may also be desirable to compare the various fault-finding abilities of different
heuristics (e.g. partitioning vs. fault-based heuristics) in order to optimise the set of heuristics
that must be applied to each specification for a particular fault coverage. Formally specifying the
heuristics allows all of these issues to be addressed.

3.2 Partitioning heurisitcs

Partitioning heuristics can be formally specified as follows, where the input space defined by
predicate P is partitioned into the subdomains P, ..., P,, and Vars(P) represents the declarations
of al variables in the predicate to be partitioned:

V Vars(P)e P < P,V ..V P,

A boundary value analysis partitioning heuristic based on the integer < operator could therefore
be defined as follows:

VAB:ZeA<B&(A<B—-1)V(A=B—-1)V (A=B)

Applying this heuristic to the Z schema representation of transition T3 would result in the three
test cases shown in Figure 2, where the equival ence class defining each test caseis highlighted and
the operands to the partitioned predicate (ThrottleReq? and Fwdldle) have been substituted for
the generic values A and B in the testing heuristic. If a partitioning heuristic can be shown,
through proof, to be complete and result in digoint sub-domains, test cases based on this template
will inherit these properties. An automated method of applying the heuristics that guarantees that
these properties is described in Section 4.1.

3.3 Fault-based heuristics

Fault-based (or mutation) testing can be an effective means of assessing other testing strategies,
such as partition testing. A test set can be evaluated against a number of hypothesised faults
that are considered representative of alarge proportion of the actual faults likely to appear in the
implementation. The effectiveness of the target test set at detecting these faults is then used as a
measure of test effectiveness or completeness. Performing this evaluation using mutations of the
specification allows such an analysis to be performed much earlier in the life-cycle as it does not
rely on the pre-existence of an implementation. Fault-based testing can aso be an effective means
of generating the test set itself based on the intuition that if a test is adequate to detect a slight
variation in the correct behaviour, that part of the system is being exercised adequately [2]. Due
to the large number of potential mutations, this approach may lead to an infeasibly large number
of test cases. However, selective (program-based) mutation testing studies [23, 22, 25] suggest
that a relatively small number of mutations can lead to the detection of a large class of faults.
Automation may allow significant examination of similar results applied to specification-based
mutants.
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If afault in the implementation can reveal itself asamutation of the sub-expression E to E' in
the specification, then the necessary condition for detecting the fault can be generically described
as follows (based on a definition by Kuhn [24]):

3 Vars(E); Vars(E') ¢ E # E'

Informally, there exists a set of values for the variables in E and £’ such that £ and E’
evaluate differently. Selecting values from this set will ensure that the fault reveals itself in the
evaluation of the sub-expression. By allowing the sets Vars(E) and Vars(E') to differ, the class
of faults covered by variable replacement can aso be modelled. If no values can be found to
satisfy the necessary condition, the fault does not reveal itself and can therefore be classed as an
equivalent mutant. Asan example, the following heuristic defines the fault condition for avariable
replacement mutation applied to an addition expression:

JA4,B,C:ZeA+B£A+C

This heuristic can be instantiated with variables from Figure 1 to detect a mutation of transition
T11 where Timer is incremented by itself rather than 1. The instantiation would result in the
following fault detection condition:

3 Timer : Z o Timer + 1 # Timer + Timer

Any number of such generic fault-based heuristics can be defined, limited only by the subset of
the notation used to specify the system under test. A hypothesised fault can be shown to be weakly
detectable if the formalisation of the necessary condition can be shown to be a valid premise.
That is, some values can be found that reduce the expression to true. The fault is said to be weakly
detectable because there is no guarantee that other expressions in the system will not mask the fault
at the outputs. However, the probability of detecting the fault is strongly increased if the necessary
condition is satisfied. The manner in which faults in the implementation reveal themselves as
mutations of the specification will depend on the refinement (between specification and code).
Examination of this relationship may therefore point towards more testable implementations of
the specifications. Fault-based heuristics can aso be used to generate the abstract test casesin a
similar fashion to partitioning heuristics. The parameters are instantiated with the operands of the
expression containing the hypothesised fault. The resulting predicate then defines the equivalence
class of the test.

The formulation of necessary fault detection conditions can be used to assess the fault de-
tection ability of various partition and fault-based heuristics and therefore be used to identify an
efficient set of heuristics for a particular subset of Z (based on the possible mutations of specifi-
cations written in that subset). For example, a partitioning heuristic that results in the subdomains
(P41, ..., Py) weakly detects the mutation of E to E' if:

(Py=—-(E< E)V..V(P,=~(E<E))

The results of such an analysis applied to mutants of A vV B and the partitioning strategy
AV B<& (ANB)V (AAN-B)V (mA AN B) ae summarised in Table 1. The analysis
demonstrates that the partitioning strategy is not adequate to detect certain mutations that include
additional or replaced expressions (C').

In order to guarantee detection of a fault in situations where monitoring the evaluation of al
sub-expressions in the implementation is not possible, the sufficient condition must be constructed.
Whereas the necessary condition restricts the range of values of the variables to those that distin-
guish between the original and mutated expression, the sufficient condition must restrict the values
of the inputs to those that can distinguish between the original and mutated relation between the
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Mutated form of A V B | Detected by

A -AANB

B AN-B

ANB AN-B,-ANB

A XOR B ANB

-(AV B) ANB,-ANB,AN-B

AV C Not necessarily detected

CVB Not necessarily detected

AVBVC Not necessarily detected (never by this heuristic)
AVBAC Not necessarily detected

Table 1. Effectiveness of the disjunction partitioning heuristic

controllable inputs and observable outputs. The sufficient condition is constructed using the fol-
lowing pattern:

3 Inputs_Outputs(P) e =(P < P’)

where P denotes the original predicate part of the operation and P’ denotes the predicate part of
the schema with the mutation applied and Inputs- Outputs(P) represents the controllable inputs
and observable outputs of P. If the sufficient condition can be satisfied, the fault is said to be
strongly detectable.

The number of possible solutions to the sufficient conditions can be used as a measure of how
testable an implementation isagainst faults that reveal themselves as mutationsin the specification.
The larger the number of solutions to the sufficient conditions, the higher the probability that one
of these solutions would be selected during standard (e.g. random or partition) testing procedures.
The construction of sufficient test data may involve solving greatly more complicated constraints
than for necessary conditions. Therefore in some cases, the use of necessary conditions may be
preferred as a trade-off between confidence in the test results and the effort required to generate
the test data.

The formulation of sufficient conditions for state-based systems is complicated by the fact
that updated internal variables are typically not referenced until a later operation. Under these
circumstances, the sufficient condition as presented above may not be satisfiable. Testing under
these conditions involves finding sequences of operations that are sufficient to detect mutations of
the system state. Thisisthe implicit assumption behind many of the the FSM-based test sequence
generation techniques such as the W-Method [ 7] and the UIO method [28]. However, for Extended
Finite State Machine (EFSM) based notations such as Statecharts, the system state may consist of
acombination of state (in the classic FSM definition of the term) and internal variables and events.
A fault in the system state can be said to be strongly detectable in n steps if the sufficient condition
for detecting the fault requires a sequence of no more than » operations.

4 Automatically generating tests

This section describes how a combination of techniques have been used to generate test cases
and sequences from the subset of Z used to model the specifications of interest. The generation
procedure follows three steps. Partitioning and fault-based test cases are first generated from the
Z specification using an automated theorem prover. If the specification includes a persistent state
and faults in the state are only strongly detectable in n-steps, an abstract finite state machine is
constructed from the test cases and used to derive checking sequences for equivalence classes
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of the system state that are not directly observable at the testing interface. A combination of
constraint solvers isthen used to populate the test cases and sequences with test data.

4.1 Applying testing heuristics

The formalised testing heuristics are automatically applied to the specification using the general
purpose theorem prover CADIZ. CADIZ [32, 34] is aZ type checker and theorem prover that al-
lows auser to interactively browse, type check and perform proofs upon aZ specification. CADIZ
also alows proof tactics to be written in alazy functional notation [33]. The tactic language in-
cludes parameterisation and pattern matching facilities to enable generic tactics to be written for
implementing particular proof patterns. When such atactic is applied, the parameters are instan-
tiated with the currently selected parts of the specification (or typed input from the user). Generic
proof tactics were used to automate the generation of test cases based on the formal specification
of the testing heuristic.

Testing heuristics are specified as named “lemmas’ and stored in a separate Z file that is
included within the scope of any specifications being tested. Completeness, disjointness and satis-
fiability properties of these heuristics can be proven using the CADIZ interactive proof mode. The
corresponding proofs can be recorded as proof tactics to be replayed at a later date (for example,
by a new user who is as yet unconvinced of the heuristics' validity). A proof tactic was written
that, given an expression in the specification and the name of atesting heuristic, instantiates the
generic parameters of the chosen heuristic with the operands of the expression and conjoins the
result with the predicate part of the operation under test (this is avalid proof step if the heuristic
has been previously proven to be a tautology). The result is then simplified to produce a new
Z schema for each test case. Testing heuristics can be repeatedly applied in order to generate a
hierarchy of test cases for an operation based on a number of different testing hypotheses. If al
(hypothesised) faults are strongly detectable in 1 step, these test cases can be used to verify the
implementation against the set of testing hypotheses. Otherwise, the test cases must be sequenced
to detect faults in the system state.

4.2 Test sequences
4.2.1 Constructing the abstract finite state machine

Dick and Faivre [10] proposed the construction of an abstract finite state machine (AFSM) as
a means of sequencing test cases derived from and specified using the VDM-SL notation [21].
Murray et a. [26] have since shown how the technique can be applied to Z specifications. These
techniques are extended here to include abstraction of the inputs and outputs and to apply stan-
dard FSM-based test sequence generation techniques to the resulting AFSM. States in the AFSM
correspond to the equivalence classes to be tested in the system state, identified using partitioning
and fault-based heuristics, as described earlier in this paper. The operations in the specification are
used to calculate the transitions between the abstract states by defining the transformation of the
system state from one equivalence class to another. Particular equivalence classes in the system
state can be indirectly tested by finding sequences through the AFSM that cover and check the
abstract states corresponding to the equivalence classes of interest.

Assuming that the elements of Status are not controllable or observable in the testing envi-
ronment, the abstract states for the specification described in Section 2 would be based on the pre
and postconditions in the test cases projected on to the elements of Status. The abstract states are
calculated by finding the minimal partition of these predicates. For any overlapping predicates,
the minimal partition is calculated using the following partitioning strategy [10] (automated using
the method described above):

AVB & (ANB)V(=AAB)V (AA-B)
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As an example, the post-condition of transition 7'5 from Figure 1 (conjoined with 7'7 during
the trand ation to Z) would result in the following equivalence class for Status :

__ AbstractState,
Status

{ ThrustLimitation, InadvertentDeploy, LockDetect,
OnGroundDetect, AwaitLock, Locked} C ActiveStates N Timer = 0

A similar abstraction is applied to each of the input and output parameters resulting in the
set of digoint combinations of the equivalence classes of the parameters. The AFSM is specified
in terms of the abstract states, inputs and outputs using the following tuple and definitions. An
AFSM M isrepresented by thetuple (S, s, X, Y, d, A) where:

e S isthe set of abstract states, where g istheinitial state derived from the post-condition of
the initialisation operation,

X istheinput language (minimal partition of the input predicates),

Y isthe output language (minimal partition of the output predicates),

0 isthe non-deterministic state transfer relation, X x S < S,

e and )\ isthe non-deterministic output relation, X x S < Y.

The elements of the § relation are calculated by checking, for each combination of states .S;
and §; (including equivalent states) and input X;, whether there exists an operation Op such that
the following predicate is true:

Xz-/\S,-/\S]f/\Op

Similarly, the elements of the A function are calculated by checking, for each combination of
state .S;, input X; and output Y;, whether there exists an operation Op such that the following
predicate is true:

XiNSiNY; A Op

Two possible approaches to modeling concurrency in the models were considered. The simple
abstraction described above results in forming the product machine of any orthogonal components
(such as InadvertentDeploy in Figure 1). However, this can lead to state explosion and greatly
reduces the efficiency of the test sequence generation techniques. Instead, concurrency is mod-
elled using a system of communicating finite state machines. If references to shared state can
be assumed to be restricted to a single writer, multiple reader relationship, the communications
between the components can be represented as references to the other component’s abstract state
(constraints) in the pre-condition of the transitions. The definitions of § and A\ are updated as
follows:

e =X XSXCi x..xCp+< S

e AN=XXSXxXCix..xC,+Y
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for n orthogonal components where C; represents the set of abstract states for each AFSM
(¢ # j) that are referenced in the pre-condition of the transition. Testing the system based on the
set of testing hypotheses used in selecting the partitioning and fault-based heuristics reduces to
covering each abstract state and transition. In order to ensure strong detectability of faults in the
system state, the value of the abstract state must be checked after the execution of each transition.

Thederivation of the AFSM may introduce non-determinism. However, thiswill typicaly only
apply to asubset of the state variables that are used to form the abstract state. Several approaches
were explored for resolving this non-determinism, including the use of a model checker (see be-
low) for generating concrete feasible sequences based on those derived from the non-deterministic
AFSM.

4.2.2 Generating test sequences

State checking sequences can be generated from the AFSMs using traditional FSM-based tech-
niques [7, 28, 36]. The authors chose to use the Unique Input/Output (UIO) sequence algorithm
[28]. The agorithm attempts to find, for each state, a sequence of inputs and outputs that is unique
to that state. Such a sequence can then be used to distinguish that state from all others. UIO se-
guences are generated for each AFSM separately. A sequence is said to be output distinguishable
from another if the sequences produce different traces of outputs. The UIO sequence generation
algorithm is applied to each state s; in turn and can be summarised as follows:

1. Set thelength (/) of the current sequence to 1.

2. For all sequences of length [ originating at state s, check for output distinguishability against
al sequences that can be triggered by the same trace of inputs and constraints originating
a all states s;, where s; # s;. If the sequence is output distinguishable against all these
sequences, it isthe UIO sequence for state s;.

3. If no output distinguishing sequence is found of length [, increase [ by 1 and repeat steps
2-3.

The use of shared outputs (more than one orthogonal component writes to the same output)
complicates the calculation of output distinguishability as the output may have been produced by
the transition under examination or an orthogona component in the system. Such shared outputs
could be removed from the output abstraction and therefore not used in the calculation of distin-
guishable transitions. However, this may result in no UIO sequences being generated for certain
components that wrote to only shared outputs. Therefore, the outputs are still used to generate
the UIO sequences and the SMV model checker (see below) was used to validate whether other
components could update the shared output at the same point in the sequence.

Model checking is atechnique for verifying properties of state-based systems. A computation
tree of amodel of the system is enumerated and checked against a specification of the properties
to be verified. If the model violates a property, a counter-example showing a sequence that leads
to astate that does not satisfy the property is generated. The ability to generate counter-examples
makes model-checking a convenient means of generating test sequences from finite state machines.
The finite state machine is defined as the model and the negation of the path constraint for the
desired test sequence is defined as a liveness property to be checked against the model [6]. The
model checker will then attempt to find a counter-example to this property that corresponds to
a test sequence satisfying the path constraint. Model checking also has the advantage that tests
according to different criteria can be generated by simply varying the property to be checked
against themodel. Thisresultsin asimilar level of flexibility asthe pattern-based operation testing
techniques described earlier.
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Themodel checker SMV [3] was used to explore the possiblities of model checking-based test
sequence generation. Each AFSM is specified asa SMV module. A module consists of a number
of variables which are used to represent the inputs, outputs and state variables of the AFSM.
The § and X functions are implemented as a pair of case statements over pairings of S and X.
Each case statement defines the next value of S and Y respectively. The specification property
places constraints on the abstract states, inputs and outputs. Test sequences can be generated by
finding counter-examples to the negated specification of the desired properties of the sequence.
This approach to test sequence generation was found useful in generating initialisation sequences,
validating UIO sequences (particularly dependencies between orthogonal components that may
make the sequence infeasible) and to generate sequences based on a partial specification of the
ordering of certain inputs, outputs or states. The SMV model was automatically generated based
on the same XML (eXtensible Markup Language) [8] specification of the AFSM as was used to
generate the UIO sequences (where the minimal partition of the inputs and outputs was cal culated
automatically). The generation of the XML specification from the Z specification is yet to be
automated but is considered feasible given an extension of the current tool set. XML is becoming
increasingly popular as a common interchange format for different modelling tools. Future work
aimsto capitalise on the standardisation of these interchange formats to extend the applicability of
the tool set described here to awider range of commercial modelling tools and notations.

4.3 Constraint solvers

A number of constraint solvers were used to generate the test data. The CADIZ built in constraint
solvers (alinear constraint solver, simulated annealing optimisation-based constraint solver and
the SMV model checker) were used wherever possible. In unit testing situations or for reactive
components where no test sequences were needed, the test data was generated directly from the
test case descriptions. This was achieved by writing a proof tactic that automatically selects the
constraint solver applicable to the particular constraint being solved. Using an API to CADIZ the
process of generating test data for unit tests was automated by writing a program to apply the test
data generation tactic to each of the test case specifications in a particular Z file and write the
results out as an AdaTEST [20] test script. After some transformation of the resulting script to
incorporate refinement, the script could then be run against the programs under test. In some cases
anon-linear constraint solver was required, for these predicates, the stand-alone constraint solver
Lingo [19] was found to be very effective.

The test sequence generation techniques result in sequences of constraints over the inputs and
outputs described as sequences of abstract inputs and outputs. Where the concrete values were not
trivial to calculate, the same set of constraint solvers as described above were used to generate the
test data.

5 Reaults

The techniques described in this paper were evaluated as part of a case study to develop an EEC
software application using model-based specifications. Z specifications were automaticaly gen-
erated from approximately 100 pages of Statecharts, reactive tabular requirements and supporting
text. These were then used as the basis for automatically validating the completeness and deter-
minism of the specifications (described in more detail in [5]). Tests were then generated from
these validated specifications. Objectives of the case study included evaluating the efficiency of
the automated test generation, assessing the testability of the specifications and evaluating the
effectiveness of standard testing heuristics.

The case study specifications consisted of 9 Statecharts (48 states, 112 transitions) and 34
reactive specification tables. These were translated into 146 Z operation schemas from which 499
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test cases were generated using boundary value analysis and disjunction partitioning heuristics.
These test cases were automatically populated with test data and converted into AdaTEST [20]
test scripts to be run against the implementation as part of unit testing. This process was amost
fully automated and the large majority of the effort involved selecting the testing heuristics to
apply to each Z schema (a process that also has the potential for automation). The automatic
generation of test sequences (for integration testing) was not as fully automated as the production
of unit tests and the XML specification of the AFSMs was produced by hand based from the Z
specification of the test cases. However, once this XML specification was written, the generation
of UIO sequences and the SMV model was fully automatic.

For many of the Statecharts studied, no UIO sequences were found for at least one abstract
state. The length and feasibility of the test sequences were found to be a good measure of the
testability of the specifications. Factors that affected the testability of the Statecharts are thought
to be acombination of ratios of the inputs and states to the outputs, corresponding to the domain to
range ratio of the ¢ and A functions of the AFSMs. The higher the ratios, the longer the sequences
tended to be and the greater the probability that no sequences were found. The Statecharts used
in the case study were not designed with testability in mind and the information was useful in
defining guidelines for future Statechart specifications and also justifying the expense of current
unit testing practices. Due to these limitations, integration testing was mainly limited to scenario
style testing using sequences generated from the SMV model and use cases derived from the
high level requirements of the system. Work is continuing to investigate the factors affecting the
testability of the specifications.

Part of the code was subjected to mutation analysis as a means of assessing the effectiveness
of the partitioning heuristics used. The mutation adequacy of the test set ranged from 82.98% to
91.3% based on different versions of the program. Two versions of the program were written by
hand using aternative refinement patterns and three versions of the program were automatically
generated from the Z specification with varying levels of optimisation using an experimental tool
developed by other members of the research group. The fault detectability of the partitioning
heuristics was also evaluated based on the formalised partitioning heuristics and fault detection
conditions (as described in Section 3.3). This analysis confirmed the empirical results and sug-
gests that traditional decision coverage and MCDC coverage approaches to unit testing should be
augmented with additional tests for better fault coverage.

6 Conclusionsand further work

This paper has described how tests can be automatically generated from Statechart specifications
using an intermediate formal representation and aformal approach to specifying testing heuristics.
The toolset is applicable to a number of graphical and tabular notations due to the common inter-
mediate formal notation and makes use of theorem provers and constraint solvers to generate the
tests. The use of graphical and tabular notationsisintended as ameans of bridging the gap between
specialist domain engineers and formal methods. Therefore, future work will investigate how the
automated Z-based testing techniques described in this paper can be presented to the engineers
in away such that the flexibility (in terms of testing heuristics) of the methods are maintained,
while not requiring the engineers to work directly with the Z representation of the specifications.
This work may include the specification, and subsequent automatic translation to Z, of testing
heuristics in similarly intuitive notations to Statecharts and the presentation of the results of the
test generation process using similar notations (e.g. test sequences could be presented as message
sequence charts).

Formalising both the specifications and the testing heuristics facilitated a high degree of au-
tomation and a rigorous method of analysing the testability of the specifications and the compar-
ative fault finding abilities of different testing heuristics. Section 5 discussed how the techniques
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were applied to an industrially relevant case study. The techniques resulted in not only the large
scale automation of test cases and (to alesser extent) sequences but al so the identification of factors
that affect the testability of Statechart specifications and highlighted the shortcomings of severa
commonly used testing heuristics. The formal definition of the the testing heuristics and fault de-
tection conditions also allowed this latter analysis to be performed formally aswell as empirically.
Ongoing work is looking to generate conditions that will enhance the range of faults detected by
these heuristics and investigate in more detail the factors affecting the testability of Statecharts.

UIO sequences can only be used to detect operation and state transfer faults. The detection
of additional states in the implementation cannot be gauranteed. Therefore as part of future work,
aternative approaches, such as the W-method should be investigated. Furthermore, a better under-
standing of how faults in the implementation can reveal themselves as mutations of specification
and the relationship of this mapping to the method of refinement into code will provide a more
informed choice as to which testing methods are most suitable for a particular application.

Future work also aims to better integrate the different areas of automation, in particular, ex-
tending the range of integrated constraint solvers to handle non-linear constraints and automating
the generation of the abstract finite state machine from the formal specification of the test cases.
The applicability of the techniques to awider range of graphical notations (such as SDL and UML)
and other application domains is also under consideration.
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Abstract

Test case generation for concurrent reactive systems on the grounds of symbolic execution
basically amounts to searching their state space. As in the case of model checkers, different
search strategies (depth-first, breadth-first, best-first, tabu) together with different strategies
for storing visited states have a significant impact on the performance of the generation
algorithm. We present experimental data for the performance of different search strategies
and discuss the results, taking into account counter examples as generated by model checkers.
Keywords. CASE, Model Checking, State Representations, Symbolic Execution.

1 Introduction

Usually, errors in early software development design phases result in disproportionately high costs
if they have to be corrected. This is due to the increasing number of implications of each design
decision: the earlier a decision is made, the more implications it involves.

One commonly accepted solution to this problem is an incremental approach to software/
hardware development. The idea is to get possibly executable pieces of software (or models
of hardware) in early phases that can be used for validation by interacting with a respective
customer, and for verification w.r.t. given specifications (properties).

The focus of this paper is on reactive (embedded) systems, and we thus concentrate on behavior
models. In order to get executable behavior models of such a system, a suitable high-level,
preferably graphical, specification formalism is needed. Finite state machines have been identified
as a practically usable candidate. With adequate CASE tools, systems can be built, simulated,
and verified. Simulation not only helps the developer in understanding the system and detecting
errors, but can also be used for customer interaction (validation). Verification and validation
are usually achieved by testing, e.g., checking if, given a certain input, the system’s output
corresponds to the desired one.

Testing is, however, incomplete. Besides semi-automatic proof systems, model checkers aim at
guaranteeing that the system satisfies a certain property. Basically, they exhaustively search the
system’s state space. This necessarily requires finite state spaces (e.g., SMV or SPIN) or built-in
abstractions (e.g., Uppaal or HyTech for a restricted class of hybrid systems). The problem with
state space explosion is obvious.

Along side these practical considerations, the concept of model checkers is such that they focus
on verifying properties of models. Not only in the area of embedded systems the system model is
just one step in the development process: the system has to be implemented after the specification
(or model, respectively) has been validated. The implementation process may introduce errors
that have to be detected. One instance of conformance testing amounts to showing that the
behaviors of the implementation constitute a subset of the behaviors of the specification.

With this article, we continue a series of papers [21, 22, 26, 27, 28, 29] on model based test
case generation for reactive systems specified with the CASE tool AuTOFocUS. The idea is to
use the system model (a network of hierarchic components with associated behaviors) for the

*Supported by the DLR (project MOBASIS) and the DFG (project KONDISK/IMMA; ref.no. Be 1055/7-2).
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generation of test cases that later on, are fed into the actual implementation (hardware). Note
that test cases can also be used for validating the system model itself, but this induces the lack
of an instance that decides whether or not the behavior as exhibited by the test case is a correct
one—when testing the implementation, the model plays the role of this instance.

Our tool prototype takes an AUTOFOCUS system description, translates it into Constraint
Logic Programming (CLP) and symbolically executes the resulting system. This sometimes
involves, however, a guessing procedure for the next transition to be taken. It is this guessing
procedure that makes up the difference between search strategies such as breadth-first, depth-
first, or best-first. In this paper, we re-examine an example from earlier work, apply different
search strategies for the test case generation procedure, and compare them quantitatively.

Its contribution consists of a number of statistics that indicate the superiority of best-first
search. If no suitable fitness function can be defined, random depth-first search with global state
storage when deployed in a competitive parallel setting is a good choice. Furthermore, the paper
discusses some conceptual differences between search strategies for model checkers with strategies
for test case generation.

Related work. Incremental SW development processes include the Rapid Prototyping, the
spiral (meta) model, Extreme Programming/Modeling [3, 4], and, more geared towards reactive
systems, the Cleanroom Reference model (CRM, [30]). The benefit of models is particularly
acknowledged in the Rational Unified Process [20] and the CRM. The embedding of model based
testing in incremental processes is discussed in [27]. A theory of formal testing is tackled in [16, 5].
They share the commonality of defining an observational congruence (“selection hypotheses”) on
systems. Similar relations are used in [32, 31] to compute whether or not a system (model)
conforms to its specification. We differ from this approach in that we do not want to prove such a
conformance relation but rather approximate its proof as done in traditional testing. (Constraint)
Logic Programming for test case generation has been used in [24, 7, 23]; our approach differs
(1) in the class of systems we consider, (2) in the input language with a concept of interface
and a combined approach to behavior specifications with automata and functional definitions
on transitions, and (3) in the thereby induced necessity for powerful constraint handlers on the
grounds of Constraint Handling Rules (CHR, [15]). Lutess [12] is a tool for the generation of test
cases for Lustre (as is Gatel [23], see above). The difference with our approach is the use of model
checkers or random number generators for the generation of test cases as well as a restriction to
boolean data types.

Code generation on the grounds of CLP is, for various non-modular [25] automata considered
in [17, 14]. The relationship of Model Checking and (C)LP with possibly tabled resolution
procedures is discussed (and used) in [10, 13, 9]. Bounded Model Checking with propositional
solvers for test case generation is considered in [33].

Test case generation on the grounds of mutation analysis is, among others, treated in [2]. In
the context of mutation testing, constraints for the generation of test cases for transformational
systems are used in [11]. The idea is to formulate constraints that approximate criteria for killing
mutants.

[6] uses a mixture of BDDs and Presburger constraints for the representation of sets of states
in reactive systems. [1] uses linear constraints on real numbers for model checking hybrid systems.
Clearly, the focus is on model checking. The difference with our approach is that (1) we are mixing
enumerative and symbolic techniques rather than computing fixed points on sets of constraints
and (2), again, use CHR with constraint solvers on arbitrary domains (e.g., FD) for allowing
convenient interactions and user-defined specifications of test cases.

Overview. The remainder of this paper is organized as follows. In the next section, we give
a brief overview of the specification concepts of the CASE tool AUTOFOCUS and introduce an
example, taken from [28], that is used for assessing the different search strategies: a smart card
for inhouse access control.

In the main part of this paper, in Section 3, we then present our approach to test case
generation on the grounds of CLP. Several search strategies and state storage algorithms are
discussed and assessed. We also examine the relationship between search strategies for test case



generation and for model checking. Section 4 concludes with an outlook on current and future
work.

We assume familiarity with the basic concepts of CLP, finite state machines, and those of
depth-first, breadth-first, and best-first search strategies.

Terminology. The terminology in this paper is that of [22]. A test sequence is a sequence of
input/output event tuples. A test case describes a set of test sequences by imposing constraints
on unbound variables in the I/O tuples. A test case specification is the formalization of a test
purpose (e.g., “ensure coverage criterion C”); the aim of test case generation is to find test
cases/sequences that satisfy a certain test case specification. Note that this may include the test
of “unspecified” parts of the system’s behavior.

2 AvutoFocus

In this section, we briefly present the modeling concepts of the CASE tool AuToFocus (http://
autofocus.in.tum.de, [18]) and present an example from earlier work that we will use as a basis
for the generation of test cases with CLP.

AuTtoFocus. Similar to the UML-RT, systems are modularly specified by different views. The
architectural view shows the system structure that consists of possibly hierarchic components
interconnected by typed and directed channels. Typing is achieved by predefined or user-defined
data types; possibly recursive types are defined by means of a Gofer-like functional language.

The bottom level component of each hierarchic component is equipped with an extended finite
state machine, and each such machine can access the component’s local variables. Transitions are
equipped with a guard that accesses local variables as well as, by means of pattern matching, input
channels of the respective component. The language of guards is the same functional language as
mentioned above; it is thus possible not only to define functionality by means of state machines
but also by means of possibly recursive functions. If the guard holds true, the transition may
fire, resulting in an update of the component’s local variables as well as the change of the current
control state. Initial states are marked with a black dot; there is no such thing as an acceptance
condition. If more than one transition can fire, one is selected non-deterministically; if none can,
the system idles, i.e., remains in its current state.

Components are timed by a global clock, and they all perform their computations (firing
transitions) simultaneously. Communication is synchronous (asynchronous communication is im-
plemented by explicit buffer components).

In addition to the architecture, behavior, and data view, AUTOF0OCUS makes use of sequence
charts. Even though we do not consider them further here, they play an important role in the
development process: for specification, definition of test cases, and for the graphical representation
of simulation results.

AvuToFocus is equipped with code generators for Java, C, Prolog, and ADA. Furthermore, it
is connected to a plethora of external tools. These include model checkers such as SMV or ucke
as well as the propositional solver SATO, ATTOL/UnitTest for coverage measurements of test
cases for generated ADA code, and DOORS for requirements tracing.

Example. Our example is the model of a smart card that may be used for inhouse access.
After inserting the card and a personal identification number (PIN) into a terminal, the terminal
may or may not, according to the rights a user owns, grant access to a particular door. This
involves running authentication/identification protocols between card and terminal. A PIN may
be blocked if the authentication process fails several times, and it can be unblocked if a corre-
sponding personal unblocking key (PUK) is being entered. This example is part of an industrial
case study we carried out in order to assess practical applicability of our tool prototype, and it
is discussed in more detail in [28].

The card part of the system we consider consists of a single component that accepts commands
on the input channel. These commands are provided by the terminal, and they include commands
for authentication/identification, reading/writing data on the card, etc. The output is a signal
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Figure 1: Inhouse Card [28]

that signifies whether or not the input command is a legal one. Its behavior is depicted in Fig. 1.
Roughly speaking, the different states correspond to different access right levels to several parts
of the card’s data. The state is changed by an adequate authentication process. If this process
fails, the respective counter (one for each state except for MF00) is decremented by one, and the
card is locked if one of the counters reaches zero. By providing the corresponding PUK, it can
be unlocked.

The test cases we will consider concern those that drive the card, for different counters, into
the corresponding locked state. cntg is the counter associated with state DFO4Admin with initial
value 15; enty is the counter associated with state DFO0Init with initial value 14. The difficulty
in finding a sequence that decrements cnty to zero lies in the fact that between two decrements,
a well-defined sequence of three transitions needs to be executed.

Note that this example contains a control state that is encoded by an internal variable. It
stores the current status of the authentication process (three possible values). This reflects the
experience that finite state machines alone quickly become too complicated.

3 Test case generation with CLP

In this section we first describe our algorithm for the computation of test cases based on symbolic
execution with CLP. As mentioned before, this approach amounts to searching the system’s state
space. In our implementation, the part of the program that is concerned with implementing
the search strategy is held rather orthogonal from its rest. We can thus modify the search



strategy without altering the rest of the code that is automatically generated from an AuToFocus
specification. A user interface for specifying the search strategy to be employed is the subject of
current work; thus far, a strategy with interleaved choice of transitions is generated automatically
(see below).

After the description of the principal ideas, we discuss and assess several search strategies:
(1) bounded depth first with (1a) naive left-right choice of transitions, (1b) interleaved choice,
(1c) global and (1d) local state storage, and (1le) best-first choice of transitions. We also briefly
discuss (2) breadth first search. In addition, we take into account the possibility of storing sets
of states by means of constraints.

Code generation for CLP is presented in more detail in [21]; interleaving transitions in our
setting has first been described in [27]. The use of constraints is described in [22]; the advantages
of using constraints are more thoroughly discussed in [26].

(Constraint) Logic Programming. In Logic Programming, problems are specified as sets of
first order predicates (disjunctions with at most one positive literal—implications). Common LP
languages such as Prolog then interpret (“solve”) these predicates in a procedural manner (reso-
lution); backtracking mechanisms are built-in. In our context, the possibility of function inversion
plays a crucial role: Under certain circumstances, given the result of a function application, one
can infer the function’s arguments (or a set of them). This is achieved by binding free variables
and backtracking until these desired arguments are found.

However, there are some pitfalls in LP. On the one hand, solutions of programs (models of
logical formulae) are always based on the same carrier set, a term universe (the so-called minimal
Herbrand model). On the other hand, in implementations of LP languages, there is a certain
order in which predicates are evaluated (in the procedural sense, see above) which may result in
infinite evaluations even though the succeeding predicate could prevent infinite backtracking by
imposing constraints that its preceding predicate can only satisfy in a finite number of ways. This
led to the idea of merging Constraint Languages with LP into Constraint Logic Programming
(CLP) languages [19]. These languages allow for the formulation of constraints that are checked
for satisfiability in every step of the evaluation of a set of logical formulae (expansion of a node
in the resolution tree), and they hence necessitate mechanisms for delaying subexpressions. This
yields the possibility of a priori cutting the evaluation tree of these formulae; the “generate and
test” paradigm of LP languages is modified to “constrain and generate”. On the other hand,
with CLP, one can calculate in domains other than the Herbrand universe, for instance finite
(integer) domains FD, or rational or real numbers Q and R (one crucial point in the latter two
domains is to calculate on finitely representable intervals.) One can, for instance, formulate Linear
Programming Problems with a set of unknown variables, and if the CLP language is equipped with
suitable constraint solvers (e.g., Simplex), the desired optimal results can be found by binding
variables to the corresponding rational numbers or intervals. LP is an instance of CLP with
constraints being equations over terms, or finite trees, respectively.

Even though there are many constraint solvers available, it turned out that sometimes people
do not want to calculate on one specific domain but rather a mixture of different domains, and
that there sometimes is a need to create new domains and constraint handlers. This led to
the development of Constraint Handling Rules (CHR [15]), a meta language that allows for the
definition of new constraint handlers (solvers) that, subsequently, can be translated into the
corresponding target language, CLP in our case.

Idea. Test case generation is achieved by running CLP code automatically generated from spec-
ifications. Since CLP allows for unbound variables as arguments, we run an ordinary simulation,
but we do not specify inputs at all moments of time. In fact, by not restricting the system at all,
we get an enumeration of all possible system traces.

Each bottom level component (components with associated behaviors) is translated into a
set of predicates each of which models one particular transition. The predicates’ heads include
thus not only source and destination states as well as the name of the transition, but also formal
parameters for histories of local variables, and for those input and output channels that are
connected to the component.
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Bottom level components (or rather the predicates that implement them) are run by a driver
predicate that corresponds to the component that contains those bottom level components. Chan-
nels between components are modeled by local variables (existential quantification). This simple
translation scheme can be applied recursively, and the driver predicates thus reflect the hierarchy
of AUTOFOCUS components.

In terms of function and data type definitions used for guards and postconditions, they are
translated into constraint handlers or Prolog code and integrated into the model [21, 22].

As mentioned above, test case generation is done by simulating the system w.r.t. constraints
as imposed by the test case specification. These constraints may refer to structural-such as
“all transitions should be fired at least once” or “all control states are to be visited once”—or
functional criteria (such as “find a trace that makes output o; happen and then output 02” or
“find a trace that includes input ¢ and exhibits nothing but outputs from a set O”). These
constraints are formulated by appropriate constraint handlers for Booleans or enumerative types
(finite domains). In practice, this is, however, not enough for an adequate formalization of
test purposes. User-defined constraint handlers based on Constraint Handling Rules [15] are a
powerful tool for specifying test cases with predefined as well as user-defined constraint handlers,
and they are integrated into our system.

While the possibility of a-priori-pruning the search tree is one advantage of using constraints,
we consider the possibility of restricting the model to be the key to scalability: Often, designers
know that for a particular functional test case, certain parts of the model are irrelevant; constraints
allow to ad-hoc slice the model without actually altering it [26]. This also leaves room for
techniques widely used in program analysis.

A further advantage of using constraints is that they allow for reducing the number of traces.
As an example, consider a transition with a guard i(t) = ¢; Vi(t) = c2 V... Vi(t) = ¢, for input
channel  at time ¢ and commands ¢; (elements of a data type “Command”). In a naive flattening
Prolog translation of this fragment, n transitions need to be tried: ¢ has to be bound to each c;.
Using constraints, we are happy with one single member constraint: {i(t) € U;_, ¢;}-

In this way, a computed test case may represent a set of test sequences (those with i(t) €
U?Zl ¢; which might have been strengthened in the further computation). When testing the actual
implementation, we need fully instantiated traces; how to perform this instantiation intelligently
is, however, not the focus of this paper.

Naive —. The simplest possible search strategy is a naive left-right-choice of transitions. As
stated above, transitions are encoded by predicates that contain, among other things, the source
and the destination state of a transition in their head. Choosing a transition can then be left to
the evaluation mechanism of CLP: the transition predicate that occurs first is tried first, then the
second, and so on. However, this approach is rather inefficient for it (1) revisits states that have
been visited before and (2) is likely to run into cycles (see below).

Interleaving. In previous papers [27, 26], we have described our implementation based on a
bounded depth-first search with an interleaved choice of transitions. This means that when a state
is revisited, its outgoing transitions are not tried in exactly the same order as before; the list of
transitions is rather shifted by one. If Tr;; =< T3,T5,..., T, > is the sequence of transitions that
are tried in that order from state s for the ith time, then Trg ;11 =< 15,T3,...,T,, T} > is the
respective sequence when s is visited the ¢ 4+ 1st time. This simple mechanism, though imposing a
little overhead, usually results in significant performance gains in terms of time since it decreases
the likelihood of running into (control state) loops (Fig. 2 (a); with a naive left-to-right choice of
transitions, the dashed ones are never taken.)

Storing states globally. One problem with naive bounded depth-first search is that states
may be visited more than once. A state here refers to the cross product of tuples of data and
control states for each component (one in the case of our example; the role of I/O as well as
internal communication channels is discussed below). The obvious solution is to store each state
once it has been visited. However, there is a price to pay: With this approach, the maximum
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Figure 2: Search strategies

depth of the search tree becomes more important. In Fig. 2 (b), the black state that makes a trace
satisfy the corresponding test case specification, is not reached (the horizontal line indicates the
maximum depth). The reason is that the dashed transition is not taken for its destination state
has already been visited and thus stored, indicating that it is not to be considered for further
search. This is even though the black state could, on backtracking, be reached in fewer steps than
the maximum depth. Note that for testing purposes, it is not even always desirable to exclude
states from being visited twice; this reflects the strange kind of errors where something goes well
n times, but not n + 1.

Storing states locally. This motivates another search strategy. States are prevented from
being revisited only when the depth at the moment of their storage is below the depth of the
new visit (Fig. 2 (c) where the right transition from the initial state may be taken even though
the corresponding destination state has already been visited). The problem with this approach is
that it necessitates the storage of a large number of additional states; its benefit is that it usually
allows for detecting shorter traces than the ones detected by strategies that store states globally.
However, for our examples of decremented counters, no performance gains could be achieved.
Since the number of possible traces increases with this local storage algorithm, the performance
is rather significantly reduced.

Note that for structural test purposes such as “find a transition tour” the approach of storing
states is not applicable. In Fig. 2 (d) the dashed transitions result in unsuccessful traces since
the initial state has already been visited. A transition tour cannot be computed in this way. Also
note that it depends on both the test case specification and the system whether or not the stored
states need to include information about input and output channels.

Storing sets of states. The use of CLP enables one to store sets of states by simply storing
the constraints that describe this set. Deciding whether or not a stored state entails a potentially
reachable one is then crucial for deciding whether or not the respective transition needs to be
taken. This issue is the subject of future work; [10] contains a discussion in the setting of deductive
model checking with CLP.

To illustrate the idea, we consider a naive first implementation. Rather than storing each state
s = (ctl, auth_stat,ci, ..., cs) (control state, data state for authentication process, six counters)
separately, we look if there is already a stored state s’ that differs from s in exactly one component.
Say that the difference occurs in the control component, i.e., s' = (ctl’, auth_stat, c1, ..., cg) with
ctl' # ctl. We now delete s from the database and replace it by ({ctl, ctl'}, auth_stat, cy, ..., cg).
If later on, we run into a state s” which again, differs from s and s’ in nothing but the first
component, we delete the corresponding entry from the database and replace it by ({ctl, ctl’, ctl"},

auth_stat,cy,...,cq), and so on. Doing so for all components, this simple strategy results in a
reduced need for memory: all components of the vectors except for the first just need to be stored
just once.

Since storing sets of states is not the central issue of this paper, we do not go into further
detail here. Two remarks are, however, in order. It is easy to see how the simple strategy can
be made more powerful: Rather than restricting the search for already visited states to one
component, we could look for the projection onto two or even more of them and update the
database accordingly. This does require some further intelligence though: While different entries
in the database correspond to a disjunction of states, the components of a state vector correspond
to conjunctions: Consider a stored vector ({ctly, ctly, ctls}, auth_stat,cy,...,cs) and a newly
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SP = sorted_shortestPaths(s)
forall p € SP

Tpp1) = trans(p[1], p[2])

for i = 1..||SP||
if SPi] # p then Tpp) = Ty o trans(p[1], (SPLi])[1])
return UP€SP Tp[l]
Figure 3: Transition ordering for best-first
visited state (ctly, auth_stat’,cy,...,ce) with auth_stat’ # auth_stat. Clearly, we cannot simply
coalesce both entries into ({ctls, ctle, ctlz}, { auth_stat, auth_stat'},c1,...,c6). We can, on the

other hand, combine sets of states when it is sound to do so, but this requires efficient comparisons
of sets of sets with the above mentioned suitable definition of entailment—obviously, we are
looking for generalizations of Binary Decision Diagrams to domains other than the Booleans.

The second remark aims in the same direction. We will later see how an implementation of the
above idea does indeed result in considerable reduction of allocated memory. This implementation
stores states in the above mentioned manner but does not use them for the computation of traces
itself. This would enable one to compute with sets of states rather than single states, something
that is referred to as the “collecting semantics” in the literature on abstract interpretation (e.g.,
[8]). Knowledge of this computed collecting semantics may turn out to be a good starting point
for the definition of an abstract semantics that can, in turn, be used for an actual abstract
interpretation.

Best-first. As we will undermine quantitatively in the following, the ordering in which tran-
sitions from a given (control) state are taken is crucial for the performance of the test case
generation. This issue becomes increasingly important when there are many transitions from
that state. In some cases, it is possible to define a fitness function that w.r.t. a test case speci-
fication computes the (approximately) best transition to be taken. In the case of control states
to be reached or transitions to be taken, this fitness function is comparatively easy to define:
From each control state ¢ € S, we compute the shortest path p. to reach the desired destination
state s. We then implement a best-first search by defining the transition ordering for state c as
follows. Transitions that connect ¢ with the second state in p. are tried first. For the remaining
transitions emanating from ¢, we choose those that lead to a state d satisfying the requirement
that there is no d’ where the length of pg is strictly shorter than that of pg.

Tterating this procedure leads to a transition ordering that first tries transitions from ¢ that
are on p.. It then tries those transitions that lead to states with minimum shortest paths to s,
then those that lead to states with the second minimum paths, etc. This algorithm works because
each subpath of an optimal path is itself optimal.

More formally, in Fig. 3, SP with length ||SP|| is the sequence of shortest paths (sequences
of control states) from all states s' € S to s. It is assumed to be sorted with the shortest
path occurring first (this could be the path from s to itself; thus modeling the idle transition).
Furthermore, it does not contain duplicates. For a sequence g, g[i] denotes the ith element of
q, and for sequences p,q, po g denotes their concatenation. T); is the transition sequence that
should be taken in this order when state p[i] is to be left. trans(sy, s2) returns a sequence of all
transitions from s; to sy in arbitrary order. The existence of idle transitions prevents trans from
returning the empty sequence in Fig. 3. Note that if there is no path from a state to s, it does not
occur as the first element of a sequence in SP. This implies that transitions that lead to states
that cannot reach s are (safely) ignored.

In our example, we are interested in optimal orderings w.r.t. reaching state DF00Init for
decrementing cnt;, and to reaching DF04Admin in order to decrement cnts. This is because
transition noAuth4 is responsible for decrementing cnt;, and transition noAuthCH is responsible
for decrementing cnts. We thus use the algorithm for reaching states as one that is capable of
finding good transition orderings for reaching transitions; as a further step, we move transitions
noAuth4 and noAuthCH in front of the respective transition sequences.

Note that this simple heuristics is, in general, applicable only to control states for the number
of data states may be too large. When the system contains data states, it is only a heuristic.



Table 1: ¢ntg — 0

| Crmaz states | time | mem [MB] | len/succ |

30 1 1982 14.8 3.0 30
— 3348 36.1 3.5 —

T 934-2424-4160 3.9-23.7-457.3 2.6-3.1-3.8 1/10

bf 21 0.0 2.1 21

40 i 1442 8.3 2.8 40
— 7137 157.6 5.0 -

r 2149-5239-8399 18.0-91.3-209.5 3.0-4.2-5.4 4/10

bf 21 0.0 2.1 21

50 i 1375 7.9 2.7 50
n 10520 316.2 6.3 50

T 1884-8183-14626 13.7-236.3-596.4 4.4-6.2-7.8 7/10

bf 21 0.0 2.1 21

100 i 4789 65.7 4.1 100
— 1346 7.7 2.7 100

r 731-7860-15571 2.8-233-595.8 2.5-5.2-8.2 10/10

bf 21 0.0 2.1 21

150 i 197 0.2 2.3 150
— 1528 9.2 2.8 150

T 446-7866-26714 1.2-285.8-1552.4 2.3-4.9-12.3 10/10

bf 21 0.0 2.1 21

200 1 518 1.2 2.4 200
— 1468 8.6 2.8 200

T 3426-21279-62565 39.7-1542.6-6821 | 3.4-10.3-21.3 10/10

bf 21 0.0 2.1 21

250 1 535 0.7 2.4 250
— 2704 26.6 3.3 250

r 359-13977-43397 0.4-744.6-3304.4 2.2-7.5-18.8 10/10

bf 21 0.0 2.1 21

500 1 1518 4.6 2.8 281
— 705 1.1 2.5 500

r 5171-43030-115563 | 65.6-5289.2-20452.1 | 4.1-20.5-46.5 10/10

bf 21 0.0 2.1 21

1000 i 1884 6.9 2.9 281
— 900 0.9 2.6 739

bf 21 0.0 2.1 21

This is the case in our example.

Breadth-first.

The desire to get the shortest possible traces makes breadth-first search come

into the game for it guarantees traces of minimum length. However, breadth first search severely
suffers from memory explosion (at least if we do not employ symbolic representations such as
BDDs). For the sake of a smaller memory allocation, we did not store the traces in the experiment.
It is noteworthy that the architecture of our system does not necessitate the implementation of
a naive meta interpreter (as usually done in breadth-first implementations in Prolog).

Experiments. We now give some experimental data, measured on a Pentium IIT with 850MHz
and 256MB of memory. The CLP implementation we use is Eclipse (www.icparc.ic.ac.uk/
eclipse) As mentioned above, we consider two functional test case specifications, namely decre-
ment counters cnt; and cnts. Since a naive interleaving strategy without storing states as well
as the strategy with local state storage resulted in prohibitive amounts of time needed, we omit
mentioning the respective numbers here.

Concerning the test case that decrements cntg to zero, Tab. 1 summarizes resource allocation
for a strategy with globally storing states for interleaving (i), naive left-to-right (—), random
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Table 2: ent; — 0

Crmaz states | time [s] [ mem [MB] [ len/succ |

300 i 986 2.0 2.6 300
— 13138 420.2 7.3 300

T 326-21488-56444 | 0.3-2146-7600.3 | 2.2-10.3-23.8 10/10

bf 43 0.0 2.1 44

400 1 512 0.6 2.4 325
— 34715 3284.6 15.4 400

r 328-1319-6286 0.3-10.9-86.0 2.3-2.7-4.6 10/10

bf 43 0.0 2.1 44

500 i 512 0.5 2.4 325
— 22251 1386.4 10.7 500

r 445-892-3397 0.5-3.5-27.4 2.4-2.6-3.5 10/10

bf 43 0.0 2.1 44

1000 i 512 0.5 2.4 325
— 1188 1.8 2.7 846

T 383-604-1176 0.4-782-2120 2.4-2.4-2.7 10/10

bf 43 0.0 2.1 44

(r) and best-first (bf) choice of transitions. For random choice, ten simulations have been run;
the respective entries consist of min-mean-max triples. The first column shows the number of
(globally) stored states, the second the time needed to find the first sequence satisfying the test
case specification, the third the required memory (including 2.1MB required for the runtime
system and the code), and the fourth the length of the respective trace (or, in the case of random
choice, the number of runs that led to a successful trace). Since we consider bounded depth-first
search in this case, we give data for several values of the maximum depth, ¢4, Tab.2 contains
the respective data for cnty.

Tab. 3 contains some data on breadth-first-search. Since the considered test cases lead to
sequences longer than the maximum depth of 12, we just show the cumulative amounts of time
and memory needed to proceed up to the specified depth.

In conjunction with breadth-first search, an implementation of the above mentioned simple
approach to storing sets of states allows us, under the given resources, to enumerate states up
to a depth of 14 rather than 12 (for a depth of 15, the virtual memory of 750MB gets again
exhausted).

The last experiment we conducted consisted of manually slicing the model by prohibiting the
system of firing those transitions that lead to decrements of the other four counters. This is
done by means of constraints rather than by altering the model itself. The results are almost
identical to those of best-first-search. However, the approach of imposing additional constraints
is, in a sense, more general than using a best-first search: It may not always be possible to define
a suitable fitness function. Slicing by constraints does, on the other hand, necessitate detailed
knowledge of the system under consideration. We also used the approach of interactive slicing in
the original study [28].

Discussion. As mentioned above, local state storage increases performance, but in our exam-
ples, the necessary resources still were too high as to consider this strategy a serious candidate.
Its advantage lies is in potentially detecting shorter sequences.

Not surprisingly, breadth-first search results in an explosion of memory requirements. It is,
however, a serious candidate for deductive model checking when storing sets of states by means
of constraints together with approximation procedures as proposed in [10] are taken into account.

The experiments with depth-first search with global storage exhibit the commonality of finding
rather long sequences (which is usual for depth-first search). As suspected, the choice of the
ordering of transitions is crucial w.r.t. performance of the algorithms. This becomes evident with
the results on random choice of transitions where the minimum and maximum performance in
terms of time differs as much as four orders of magnitude. Storing states may lead to unsuccessful



Table 3: Enumerating states

| depth | time [s] | mem [KB] |

6 0.0 57
7 0.2 160
8 0.7 529
9 2.3 1,879
10 8.9 6,870
11 33.7 23,476
12 | 127.8 86,792
13| >600 | >750,000

runs for a given maximum search depth even though in principle, the test case specification could
be satisfied by a trace shorter than this maximum depth.

According great importance to the transition ordering is consistent with the data on best-first
search. This strategy is able to compute short sequences with negligible overhead. In fact, it was
able to compute traces of minimum length; regardless of of ¢;,,s, resource allocation remained
constant. A simpler version of the fitness function that simply consists of always trying transitions
noAuth4 or noAuthCH, respectively, first, and not caring about the ordering of the remaining
transitions, leads to sequences that are a little longer, but can be found with comparable resources.
It is likely, however, that this finding does not generalize when systems with more control states
are to be tested. In fact, if a second version [28] of the model that replaces a data state by a
set of additional control states (for the authentication protocols) is used for test case generation,
the differences between the two fitness functions result in performance gains of one order of
magnitude for the fitness function that is based on shortest paths. Furthermore, the automaton
in this paper is heavily interconnected which explains why depth-first search with interleaving
comparably efficiently produces traces for large maximum depths. In these cases, the larger the
maximum depth, the more likely it is to quickly find a trace. In [27] we noticed that the choice
of ¢mqer has an important influence on the performance. Good heuristics for finding suitable
maximum depths remain to be found.

An interleaving choice of transitions is usually preferable to an arbitrary fixed ordering; the
advantage becomes negligible with growing ¢,,q,. This is due to the nature of depth-first search
in highly interconnected graphs when augmented by a strategy that stores states.

With these findings, the numbers for random choice of transitions with a stunningly high stan-
dard deviation are easily explained. In the optimal cases (minimum requirements), the random
choice is such that it is favorable for finding the particular test sequence.

These results suggests that if it is easy to define a fitness function, one should consider using
a best-first strategy. If it is not, one should instead try a random choice of transitions (states
globally stored) and perform several computations simultaneously. An additional process should
use an interleaving choice. The first process to terminate successfully then kills the others.
In our examples, that multiplies the minimum requirements by 11 (plus a little overhead for
process scheduling), but this seems to be reasonable when taking into account the rather small
requirements for the optimal solutions.

Finally, while our example is not a concurrent one, the encoding into CLP that keeps different
components separate, is likely to assure that the results also hold in a concurrent setting. This
claim remains to be verified; we are planning a new study with smart card systems that can best
be modeled by concurrent components.

Model Checking. The resemblance of many issues discussed in this paper with model checking
is eye-catching. This is for several reasons. Firstly, using the capability of model checkers to
produce counterexamples for test case generation is an old idea. In fact, at least when they are
reasonably short, they are used for localizing errors in specifications. Second, the problem of
identifying a suitable search strategy does constitute large parts of work done in areas such as
non-symbolic on-the-fly model checkers like SPIN. Thirdly, and maybe less obviously, the main
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problem consists of computing (approximations of) fixed points or subsets thereof. We will briefly
address these issues in the remainder of this section.

Model checkers, at least without built-in abstraction capabilities as found in Uppaal or
HyTech, are inherently restricted to small finite systems. A CLP based approach to test case gen-
eration like ours is not. This is because we explicitly construct parts of the state space on-the-fly
rather than first constructing and then computing fixed points on it as done in symbolic checkers.
Constraints—in a sense, a generalization of boolean formulae encoding transition relations and
encoded by BDDs—are useful in at least two ways. Firstly, they allow for storing possibly infinite
sets of states (see also [10, 13], the latter of which notes that the boundary between traditional
model checkers and CLP systems has become blurry, as in the case of HyTech). Secondly, power-
ful self-defined constraint handlers like CHRs can be used for interactively slicing the model [26].
Again, we consider this a key to scalability of our approach.

The problem of finding suitable search strategies is very similar in non-symbolic model check-
ing. In fact, as bounded depth-first search has become an option in available tools, our approach
is not really different. At least conceptually, there is a slight difference between model checking
and generating test cases for the latter always tries to find a witness. Model checkers usually aim
at proving a property of an entire system. This difference allows us to adopt the search strategy
w.r.t. a given test case specification (note that this is also principally possible for on-the-fly model
checkers, but this requires exact knowledge of the respective search algorithm). It is noteworthy
that in testing, one is mainly interested in existentially path-quantified properties. The approach
of first generating the entire state space may thus not be the prime solution in this context.

Again, the use of constraints can help in storing possibly infinite sets of states which, in con-
junction with a suitable concept of entailment, may lead to more powerful search strategies. This
claim remains to be verified empirically. Note that partial reduction, as used in SPIN, is unlikely
to yield performance gains for AUTOFOCUS systems are inherently synchronous. However, we
consider it interesting to apply partial reduction to test case generation for discretized mixed
discrete-continuous (or hybrid) systems.

Finally, CLP with suitable memoing techniques can be used directly for model checking [9, 10].
Results from the area of deductive databases (e.g., bottom-up evaluation with magic templates)
may prove powerful also for model checking reactive systems. The idea is to generate fixed points
or approximations thereof in a bottom-up manner. This results in deductive model checking
procedures for possibly infinite systems (by means of widening/narrowing operators). While thus
far we have concentrated on test case generation, our existing infrastructure directly provides
an experimentation platform for deductive model checking (e.g., with the post-u calculus and
appropriate query logics).

To summarize, model checking and test case generation (on the grounds of CLP) are different
w.r.t. their purpose, and it seems reasonable to advocate a complementary use of them. While
they are quite similar in terms of problems related to search strategies, the use of constraints may
prove a powerful tool to handle complex systems.

4 Conclusion

We have presented experimental data for several search strategies implemented in our CLP-based
tool prototype for generating test cases from AUTOFOCUS system specifications. An example
from an earlier feasibility study was used to identify circumstances under which certain strategies
are likely to perform better than others. Furthermore, we have discussed the relationship of
model checking with our approach that is based on symbolic execution with constraints. The
main differences are grounded on the handling of infinite (or large) state spaces as well as the
opportunity of using constraints to naturally slice models (without actually having to alter them).

There is a plethora of future work to be done in this area. The need for research in the area
of good fitness functions for different system topologies and/or properties to be tested is obvious.
In addition, we consider efficient strategies for storing sets of states as a prerequisite for handling
very large systems, too. In the following, we pick some additional aspects from a recent position
paper [26].

One issue is the use of our approach to generating test cases for mixed discrete-continuous



systems [29]. Storing sets of states as well as partial order reduction techniques seem promising
candidates to successfully tackle this particularly difficult class of systems.

The exact relationship between a set of test cases and the system to be tested is not entirely
clear. Rather than defining a congruence on traces and use this congruence to generate tests, we
generate tests and are interested in how they relate to the system (or specification) to be tested.
This is likely to result in the definition of a suitable approximation order on finite state machines
(classical notions of refinement/abstraction with chaos completion pose problems when lifting
traces to systems and being concerned with resulting input-enabled nondeterministic systems;
the role of idling—or & [32]-transitions makes such systems difficult to embed in a refinement
context).

In addition, suitable input languages for test case specifications are needed. One might con-
sider message or live sequence charts, but they would require an intuitive notation for and se-
mantics of negation.

The problem of finding good heuristics for instantiating test cases into test sequences has been
mentioned above. For numeric values, one can use limit analyses, e.g., instantiating an interval
to three single values.

This example also leads to a notion of “bad test cases”. Experience shows that specifications
are incomplete (while a simulation semantics, in particular with idle transitions, suggests com-
pleteness), and that errors tend to occur where designers forgot to specify some special cases
(e.g., a missing else-branch in an if-statement). Test case generators should be able to compute
test cases that test these cases; this is related to (a) the role of idle transitions and (b) the def-
inition of suitable coverage metrics. For state machines with functional definitions as allowed in
AvuToFocus, such metrics do not, to the author’s knowledge, even exist.

Furthermore, generating large sets of test cases to satisfy some coverage metrics only makes
sense if the generated test cases on the level of models can be lifted to the implementation
level (i.e., generated code, or hand-written code when generators produce inadequate code) by
maintaining the respective coverage criterion. On the implementation level, such test cases are
used by certification authorities to verify conformance with a given standard (e.g., DO-178B for
aircraft).

With a component-oriented specification language, we consider a compositional approach to
test case generation promising: Generating test cases for (simple) components and combining
them into test cases for larger systems. The problem is that a test case for one component may
(and often will) be a forbidden behavior of the composed system.

Finally, a model-based development process and automatic test case generation needs to pay
off. Some of our industrial partners in the area of safety-critical systems seriously consider
implementing such a process which will provide an opportunity to assess benefits and problems.

Acknowledgment. The tool prototype is developed together with Heiko Létzbeyer whose con-
tributions are gratefully acknowledged. Oscar Slotosch built the original model [28].

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1):3-34,
February 1995.

[2] P. Ammann and P. Black. Test Generation and Recognition with Formal Methods. In Proc. 1st Intl.
workshop on Automated Program Analysis, Testing, and Verification (WAPATV’00), pages 64-67,
2000.

[3] K. Beck. Eztreme Programming Ezxplained: Embrace Change. Addison Wesley, 1999.

[4] M. Boger, T. Baier, F. Wienberg, and W. Lamersdorf. Extreme modeling. In Proc. Eztreme
Programming and Flezible Processes in SW Engineering (XP’00), 2000.

[6] E. Brinksma. A theory for the derivation of tests. In Proc. 8th Intl. Conf. on Protocol Specification,
Testing, and Verification, pages 63-74, 1988.

[6] T. Bultan. Automated symbolic analysis of reactive systems. PhD thesis, University of Maryland,
1998.

[7] A. Ciarlini and T. Friihwirth. Using Constraint Logic Programming for Software Validation. In 5th
workshop on the German-Brazilian Bilateral Programme for Scientific and Technological Coopera-
tion, Konigswinter, Germany, March 1999.

59



60

8]

[9]

[10]
[11]
[12]

[13]

[14]
[15]
[16]
[17]

(18]

23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]
(31]
(32]

(33]

P. Cousot and R. Cousot. Abstract Interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Proc. Jth ACM symp. on Principles of
Programming Languages (POPL’77), pages 238-252, 1977.

B. Cui, Y. Dong, X. Du, K. Narayan Kumar, C. Ramakrishnan, I. Ramakrishnan, A. Roychoudhury,
S. Smolka, and D. Warren. Logic programming and model checking. In Proc. PLILP/ALP, Springer
LNCS 1490, pages 1-20, 1998.

G. Delzanno and A. Podelski. Model Checking in CLP. In Proc. Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS’99), pages 223-239, 1999.

R. DeMillo and A. Offutt. Constraint-Based Automatic Test Data Generation. IEEE Transactions
on Software Engineering, 17(9):900-910, 1991.

L. du Bousquet and N. Zuanon. An overview of lutess, a specification-based tool for testing syn-
chronous software. In Proc. 14th IEEE Intl. Conf. on Automated SW Engineering, October 1999.
L. Fribourg. Constraint logic programming applied to model checking. In Proc. 9th Int. Workshop
on Logic-based Program Synthesis and Transformation (LOPSTR’99), LNCS 1817, Venice, 1999.
Springer Verlag.

L. Fribourg and M. Veloso-Peixoto. Automates Concurrents & Contraintes. Technique et Science
Informatiques, 13(6):837-866, 1994.

T. Frithwirth. Constraint Handling Rules. In Constraint Programming: Basics and Trends (LNCS
910), pages 90-107. Springer Verlag, 1995.

M. Gaudel. Testing can be formal, too. In Proc. Intl. Conf. on Theory and Practice of Software
Development (TAPSOFT’95), LNCS 915, pages 82-96, Aarhus, Denmark, May 1995.

G. Gupta and E. Pontelli. A Constraint-based Approach to Specification and Verification of Real-
time Systems. In Proc. IEEE Real-time Symposium, pages 230-239, San Francisco, December 1997.
F. Huber, B. Schitz, and G. Einert. Consistent Graphical Specification of Distributed Systems. In
Industrial Applications and Strengthened Foundations of Formal Methods (FME’97), LNCS 1313,
pages 122-141. Springer Verlag, 1997.

J. Jaffar and M. Maher. Constraint Logic Programming: A Survey. J. Logic Programming, 20:503—
581, 1994.

P. Kruchten. The Rational Unified Process - An Introduction. Addison Wesley, 2000.

H. Lotzbeyer and A. Pretschner. AutoFocus on Constraint Logic Programming. In Proc. (Constraint)
Logic Programming and Software Engineering (LPSE’2000), London, July 2000.

H. Lotzbeyer and A. Pretschner. Testing Concurrent Reactive Systems with Constraint Logic Pro-
gramming. In Proc. 2nd workshop on Rule-Based Constraint Reasoning and Programming, Singa-
pore, September 2000.

B. Marre and A. Arnould. Test Sequence Generation from Lustre Descriptions: GATEL. In Proc.
15th IEEE Intl. Conf on Automated Software Engineering (ASE’00), Grenoble, 2000.

C. Meudec. ATGen: Automatic Test Data Generation using Constraint Logic Programming and
Symbolic Execution. In Proc. 1st Intl. workshop on Automated Program Analysis, Testing, and
Verification, Limerick, 2000.

O. Miiller and T. Stauner. Modelling and verification using Linear Hybrid Automata. Mathematical
Computer Modeling of Dynamical Systems, 6(1), March 2000.

A. Pretschner and H. Lotzbeyer. Model Based Testing with Constraint Logic Programming: First
Results and Challenges. In 2nd ICSE Intl. Workshop on Automated Program Analysis, Testing, and
Verification (WAPATV’01), May 2001. To appear.

A. Pretschner, H. Lotzbeyer, and J. Philipps. Model Based Testing in Evolutionary Software De-
velopment. In Proc. 11th IEEE Intl. Workshop on Rapid System Prototyping (RSP’01), June 2001.
To appear.

A. Pretschner, O. Slotosch, H. Lotzbeyer, E. Aiglstorfer, and S. Kriebel. Model Based Testing for
Real: The Inhouse Card Case Study, 2001. Submitted to FMICS’2001.

A. Pretschner, O. Slotosch, and T. Stauner. Developing Correct Safety Critical, Hybrid, Embedded
Systems. In Proc. New Information Processing Techniques for Military Systems, Istanbul, October
2000. NATO Research and Technology Organization.

S. Prowell, C. Trammell, R. Linger, and J. Poore. Cleanroom Software Engineering. Addison Wesley,
1999.

V. Rusu, L. du Bousquet, and T. Jéron. An Approach to Symbolic Test Generation. In Proc.
Integrated Formal Methods, 2000.

J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software—Concepts
and Tools, 17(3):103-120, 1996.

G. Wimmel, H. Loétzbeyer, A. Pretschner, and O. Slotosch. Specification Based Test Sequence
Generation with Propositional Logic. J. Software Testing, Validation, and Reliability, 10(4):229-
248, 2000.



Towards Formal Test Purposes

René G. de Vries and Jan Tretmans *
University of Twente
Formal Methods and Tools group, Department of Computer Science
P.O. Box 217, 7500 AE Enschede, The Netherlands

{rdevries, tretmans}@cs.utwente.nl

Abstract

This paper proposes a framework to formalize test purposes. It introduces the notion
of exhibition and the concept of observation objectives. Observation objectives are related
to test purposes, and are used for test selection. The framework gives means for reasoning
about observation objectives, test suites and test results based on observation objectives. We
instantiate the presented framework with the ioco conformance test theory and present an
algorithm to derive an e-complete and sound test suite. Finally, we discuss some ideas on how
to put observation objectives into practice.

1 Introduction

In this paper we consider conformance testing of reactive systems. A reactive system is a system
that interacts with its environment by accepting inputs and producing outputs. Conformance
testing is the activity of checking whether a system is correctly implemented according to its func-
tional specification. Such a specification typically prescribes the interactions between the system
and its environment. Testing performance, robustness, etc., although important, are outside our
scope.

Testing consists of doing experiments with a system in a controlled way. Where the system
normally interacts with its environment, the tester now pretends it is the environment. The tester
stimulates and observes the system. The experiment carried out by the tester is defined by a test
scenario, often referred to as a test case. Conformance testing involves black box testing, i.e.,
testing without knowing the internals of the system. We can only interact with the system by
using the available, external interfaces.

Testing is laborious, error-prone and expensive, hence it is preferably automated as far as pos-
sible. This concerns both the generation of tests from a specification and the subsequent execution
of these tests. Automation of test generation is only feasible if the specification is amenable to
automatic processing by a test generation tool. This implies that it should be expressed in some
formal language. Many theories have been developed for automatic derivation of tests from formal
specifications, e.g., [LY96, Tre96].

A problem with automatic test generation is that it may result in large and unstructured test
suites. Test generation algorithms can produce large, or even infinite numbers of test cases. The
result is that the execution of such a test suite is not feasible within reasonable time limits — or
even impossible, when it is infinite. Moreover, the relation between a test case and the specification
requirement that it tests, i.e., its test purpose, gets lost. To overcome this problem we have to
reduce the test suite by making a selection from the set of all possibly generated tests. Moreover,
for each selected test its purpose should be clear. We refer to this activity as test selection.

*This research was supported by the Dutch Technology Foundation STW under project STW TIF.4111: Céte
de Resyste — COnformance TEsting of REactive SYSTEms.
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Test selection can be done at random, but the purpose of a randomly selected test case
will be difficult to establish. The random approach is the one currently taken in the test tool
TorX [BFV*T99]. A second approach is having criteria or heuristics added to the test generation
algorithm so that it produces only a subset of all possible tests. A third approach to test selection
is to have a test person specifying criteria, strategies or objectives to steer the generation of tests.
Examples of such criteria are a particular coverage to be reached by the generated tests, or some
particular behaviour, in terms of sequences of inputs and outputs of the system under test, that
a test person would like to see during the testing process. This approach is taken in the test tools
TGV [JM99] and Autolink [SEK'98]; the test tool user has to specify a test purpose which is a
sequence of possible interactions, for which the tools then derive a corresponding test case. In
this paper we will pursue this third approach, and we refer to such criteria, strategies, purposes
or objectives as observation objectives.

Observation objectives are very much related to test purposes. Different descriptions of what
a test purpose is exist, both informally and formally. In the formal framework [ISO96] a test
purpose is a set of models of implementations (P € MODS). In the informal setting of [ISO91]
a test purpose is a prose description of the goal of what is being tested by a particular test case,
referring to a particular conformance requirement. Other uses of the concept of a test purpose
include automata [JM99], traces [SEK 98] or syntactic restrictions on a specification [Hol99]. In
[DRS00], which uses test purposes in the automata sense of TGV [JM99), it is concluded that a
precise notion of a test purpose on the theoretical and methodological level is needed.

In this paper we propose such a precise notion of a test purpose. We try to formalize test
purposes in the vein of [ISO96] and consistent with their use in tools like TGV and Autolink.
Since, to our opinion, the word test purpose is already overloaded with many different meanings,
we use the term observation objective instead.

The first point, when using observation objectives to steer the test generation process, is that
we need a formal way of specifying an observation objective. By the nature of our black box testing
approach, we can only make observations of the interactions of a system with its environment.
Hence, the observations that we can make during testing will form the basis for defining an
observation objective. Secondly, we need a clear and precise notion of how an observation objective
is related to a test suite. This will be the basis to decide whether a particular test case will be
selected. Thirdly, we must know how to interpret the results of test execution with respect to
an observation objective, i.e., there must be a notion of satisfying, or reaching, an observation
objective. The formal elaboration of these concepts in Section 3 constitutes the main part of this
paper.

It is important to note the difference between conformance and observation objectives. Confor-
mance expresses the notion of formal correctness: if during testing any non-conforming behaviour
is observed, then this is sufficient to reject the implementation. It is a decision about correctness
based on purely formal arguments. On the other hand, an observation objective describes desired
behaviour which we wish to observe but which is not directly related to required behaviour or
correctness. If this desired behaviour is actually observed then it may contribute to increased
confidence in the implementation’s correctness. If the observations described in the observation
objective are not actually observed then no definite conclusion can be based solely on this informa-
tion. Additional information from outside the realm of formal reasoning is necessary to interpret
a missed observation objective.

Consider as an example a coffee machine which is specified to produce coffee after a coin has
been inserted, but which, e.g., due to lack of cups, may also respond with a red light after a
coin has been inserted. An example of an observation objective is that a test person wishes to see
coffee being supplied after a coin has been inserted. If after several test runs the machine each time
responds with the red light this observation objective is certainly not satisfied. However, there is
also no reason to declare the machine non-conforming since the red light response constitutes valid
behaviour according to the specification. In the terminology of [ISO91] this test would get the
verdict inconclusive. The decision whether this implementation is acceptable, is outside the formal
domain. It depends on the context, the test person and/or future users whether a machine which
has never exhibited the ability to supply coffee can be put into operation. On the other hand,



suppose the coffee machine would produce tea after insertion of the coin then a formal argument
suffices to decide that the machine is non-conforming and should be rejected. In Section 3 we will
formally elaborate this orthogonality between conformance and observation objectives. We will
see that the coffee machine above passes the test but misses the observation objective.

As the basis for the formalization of observation objectives we take the framework Formal
Methods in Conformance Testing [ISO96] and related frameworks [Tre99]. Section 2 recalls the
main concepts of them. Then Section 3 presents the formalization of observation objectives as an
extension of this framework. The concepts of exhibiting and revealing an observation objective,
hitting an observation objective by a test case, the objective verdicts hit and miss and the relation
between conforming and revealing implementations are discussed. Subsequently, we instantiate
these concepts within the ioco-based, transition system conformance test theory of [Tre96]. First,
Section 4 recalls the basics of this theory. Then Section 5 develops ioco-based observation objec-
tives and ioco-based exhibition. This leads to a test derivation algorithm which derives, from a
given specification and an observation objective, an ioco-sound test case with the ability to hit
that observation objective. Finally, Section 6 gives some concluding remarks, including a brief
discussion about putting the observation objective ideas into practice.

2 Formal Framework for Testing

This section presents the formal framework for conformance testing [BALT90, ISO96, Tre99] which
forms the basis for the formalization of observation objectives in the next section. The presentation
in this section is taken from [Tre99]. The presented framework can be used for testing of an
implementation with respect to a formal specification of its functional behaviour. It introduces,
at a high level of abstraction, the concepts used in a formal conformance testing process and it
defines a structure which allows to reason about testing in a formal way. The most important
part of this is to link the informal world of implementations, tests and experiments with the
formal world of specifications and models. To this extent the framework introduces the concepts
of conformance, i.e., functional correctness, testing, observations, sound and exhaustive test suites,
and test derivation.

Conformance For talking about conformance we need implementations and specifications. The
specifications are formal, so a universe of formal specifications denoted SPECS is assumed. Im-
plementations are the systems that we are going to test, henceforth they will be called IUT,
implementation under test, and the class of all IUT’s is denoted by IMPS. So, conformance could
be introduced by having a relation conforms—to C IMPS x SPECS with IUT conforms—to s
expressing that IUT is a correct implementation of specification s.

However, unlike specifications, implementations under test are real, physical objects, such as
pieces of hardware or software; they are treated as black boxes exhibiting behaviour and interacting
with their environment, but not amenable to formal reasoning. This makes it difficult to give a
formal definition of conforms—to which should be our aim in a formal testing framework. In order
to reason formally about implementations, we make the assumption that any real implementation
IUT € IMPS can be modeled by a formal object 4y € MODS, where MODS is referred to as the
universe of models. This assumption is referred to as the test hypothesis [Ber91]. Note that the
test hypothesis only assumes that a model i+ exists, but not that it is known a priori.

Thus the test hypothesis allows to reason about implementations as if they were formal objects,
and, consequently, to express conformance by a formal relation between models of implementations
and specifications. Such a relation is called an implementation relation imp C MODS x SPECS
[BAL™90, ISO96]. Implementation IUT € IMPS is said to be correct with respect to s € SPECS,
IUT conforms—to s, if and only if the model 4,y € MODS of IUT is imp-related to s: 4y imp s.

Observation and testing The behaviour of an implementation under test is investigated by
performing experiments on the implementation and observing the reactions that the implementa-
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tion produces to these experiments. The specification of such an experiment is called a test case,
and the process of applying a test to an implementation under test is called test execution.

Let test cases be formally expressed as elements of a domain TESTS. Then test execution
requires an operational procedure to execute and apply a test case t € TESTS to an implemen-
tation under test IUT € IMPS. This operational procedure is denoted by ezec(t,IUT). During
test execution a number of observations will be made, e.g., occurring events will be logged, or the
response of the implementation to a particular stimulus will be recorded. Let (the formal inter-
pretation of) these observations be given in a domain of observations OBS, then test execution
exec(t,IUT) will lead to a subset of OBS. Note that ezec is not a formal concept; it captures the
action of “pushing the button” to let ¢ run with IUT. Also note that exec(t,IUT) may involve
multiple runs of ¢ and IUT, e.g., in case nondeterminism is involved.

Again, since ezec(t,IUT) corresponds to the physical execution of a test case, we have to model
this process of test execution in our formal domain to allow formal reasoning about it. This is
done by introducing an observation function obs : TESTS x MODS — P(OBS). So, obs(t, tur)
formally models the real test execution exec(t,IUT).

In the context of an observational framework consisting of TESTS, OBS, exec and obs, it can
now be stated more precisely what is meant by the test hypothesis:

VIUT € IMPS Fiyyr € MODS ¥Vt € TESTS : exec(t,IUT) = 0bs(t, iryr) (1)

This could be paraphrased as follows: for all real implementations that we are testing, it is assumed
that there is a model, such that if we would put the IUT and the model in black boxes and would
perform all possible experiments defined in TESTS, then we would not be able to distinguish
between the real IUT and the model. Actually, this notion of testing is analogous to the ideas
underlying testing equivalences [DNH84, DN87].

Usually, we like to interpret observations of test execution in terms of being right or wrong.
So we introduce a family of verdict functions verd; : P(OBS) — {fail, pass} which allows to
introduce the following abbreviation:

IUT passes t =qof verd:(exec(t,IUT)) = pass (2)

This is easily extended to a test suite T C TESTS: IUT passes T < Vit € T : IUT passes t.
Moreover, an implementation fails test suite T if it does not pass: IUT fails T < TUT pasges T.

Conformance testing Conformance testing involves assessing, by means of testing, whether
an implementation conforms, with respect to implementation relation imp, to its specification.
Hence, the notions of conformance, expressed by imp, and of test execution, expressed by ezxec,
have to be linked in such a way that from test execution an indication about conformance is
obtained. So, ideally, we would like to have a test suite T such that for a given specification s

IUT conforms—to s <= IUT passes T (3)

A test suite with this property is called complete; it can distinguish exactly between all conforming
and non-conforming implementations. Unfortunately, this is a very strong requirement for practi-
cal testing: complete test suites are usually infinite, and consequently not practically executable.
Hence, usually a weaker requirement on test suites is posed: they should be sound, which means
that all correct implementations, and possibly some incorrect implementations, will pass them;
or, in other words, any detected erroneous implementation is indeed non-conforming, but not the
other way around. Soundness corresponds to the left-to-right implication in (3). The right-to-left
implication is called ezxhaustiveness; it means that all non-conforming implementations will be
detected.

To show soundness (or exhaustiveness) for a particular test suite we have to use the formal
models of implementations and test execution:

Vie MODS : ( iimps <= VteT: verdi(obs(t,i)) = pass ) (4)



Once (4) has been shown it follows that:

IUT passes T'
iff  (x definition passes T' x)
VteT : IUT passes t
iff  (x definition passes t *)
YVt € T : wverd(exec(t,IUT)) = pass
iff (% test hypothesis (1) x)
YVt e T : verdi(obs(t,iyr)) = pass
iff  (x completeness on models (4) applied to 4y *)
hyr iMp s
iff (% definition of conformance x)
IUT conforms—to s

So, if the completeness property has been proved on the level of models and if there is ground to
assume that the test hypothesis holds, then conformance of an implementation with respect to its
specification can be decided by means of a testing procedure.

3 Observation Objectives in the Formal Framework

Our aim in this section is to extend the framework of the previous section with observation
objectives.

An observation objective describes the observations that we wish to see from the implemen-
tation during the test. Whether an implementation is able to show these observations is called
exhibition: an implementation exhibits an observation objective if it has the possibility to show
the observations described in the observation objective. In the next paragraph this concept of ex-
hibition is elaborated completely analogous to the concept of conformance in the previous section.

The next task is to test for exhibition. Given an observation objective (and a specification),
a test case should be derived such that it allows the implementation to show the observations
described in the observation objective. Preferably, the derived test case should be such that all
and only all implementations that have the possibility to show the observations will indeed do so.
Analogous to completeness in the previous section this will be called e-completeness.

Finally, in the last paragraph, the orthogonality between conformance and exhibition is further
elaborated.

Exhibition and observation First we introduce the formal notion of a observation objective.
An observation objective is a formal specification of the behaviour that we would like to observe
explicitly during testing. The universe of observation objectives is called TOBS. We introduce
a relation that relates an observation objective with all implementations that are able to exhibit
that observation objective. Exhibition of an observation objective by an implementation expresses
that an implementation can possibly manifest the behaviour specified by the observation objective.
When we execute a well chosen set of experiments, the implementation will show behaviour that is
specified by the observation objective. The notion of showing the specified behaviour is determined
by this relation. We call the relation exhibits C IMPS x TOBS.

To formally reason about exhibition, we have to link the informal, experimental world and
the formal world. Analogous to the definition of conforms—to, we need a relation of exhibits
in the formal domain in order to reason about exhibition of an observation objective and to
decide whether experiments would be able to challenge an implementation to exhibit the requested
observations. We make again the assumption of the test hypothesis. We call this relation the reveal
relation rev C MODS x TOBS. So the implementation IUT € IMPS satisfies an observation
objective e € TOBS, if and only if the model ity € MODS of IUT is rev-related to e: ity rev e.

To decide whether an implementation exhibits an observation objective, we use testing and in-
terpret the gained observations obtained by the experiments. Recalling the introduced observation
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and testing framework and its formalisms, we use a verdict function that relates the observations
with respect to an observation objective resulting in a verdict whether we have seen evidence of
exhibition. We call such a function the hit-function H, : P(OBS) — {hit, miss}. Here hit is the
verdict that expresses that we have found such evidence during experimenting. We introduce the
following abbreviation, where t. is a test case related to an observation objective e, i.e. developed
based on e.

IUT hits e by t. =gt He(ezec(te, IUT)) = hit

This is extended to a test suite T, and we abbreviate IUT hits e by T, =def
H.(U{exec(t,IUT) | t € T.}) = hit. Note that this abbreviation differs from the
IUT passes T abbreviation. An implementation misses a test suite 7T, if it does not hit:
IUT misses e by T. =qef — (IUT hits e by T¢).

Exhibition testing FExhibition testing is the process of deciding whether an implementation is
rev-related to its observation objective, by means of experimentation. We need to relate the test
execution and rev, aiming at getting a verdict from the test execution such that we obtain an
indication about exhibition of the observation objective. Ideally we would like to have a test suite
T, such that:

IUT exhibits e <= IUT hits e by T, (5)

Analogous to conformance testing, we can introduce notions of completeness, ex-
haustiveness and soundness. We call a test suite of Equation 5 e-complete. Such
a test suite can distinguish among all exhibiting and non-exhibiting implementations.
A test suite is e-exhaustive when it only can detect non-exhibiting implementations
(IUT exhibits e implies TUT hits e by T.). A test suite is e-sound when it only can detect
exhibiting implementations (IUT exhibits e if IUT hits e by T¢).

To reason whether a test suite is able to challenge an implementation to exhibit an obser-
vation objective and to detect all exhibiting implementations we have to show e-soundness and
e-completeness of such a test suite. For this we use the formal models of implementation and test
execution:

Vie MODS : (ireve iff He(| J{obs(te,i) | te € T.}) = hit ) (6)
Once (6) has been shown it follows that:

IUT hits e by T,
iff (% abbreviation hits e by T, x)
H.(\U{exec(t.,IUT) | t. € Tc}) = hit
iff  (x test hypothesis (1) x)
He(U{ObS(te,iIUT) | te € Te}) = hit
iff  (* e-completeness on models (6) *)
iiuT rev e
iff (% definition of exhibition x)
IUT exhibits e

We can now decide whether an implementation exhibits an observation objective by means of
testing, provided that this completeness property has been proven and it is plausible that the test
hypothesis holds.

Combining conformance and exhibition We return to the test selection problem, where we
combine exhibition and conformance for the derivation of a test suite. The observation objective
is used as a criterion for the selection: we aim at obtaining a test suite that is e-complete and
sound. We want e-soundness so that we can conclude that an implementation exhibits, based on
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the test results. Furthermore we require e-exhaustiveness, because we want to be able to find all
implementations that are able to exhibit. The soundness property provides us with the ability to
detect erroneous implementations. So the test derivation process can be reformulated as given an
observation objective e and a specification s, find a test suite T . such that T . is sound with
respect to imp and T . is e-complete with respect to rev.

When we apply observation objectives for conformance testing, it appears that not every
observation objective is feasible. As said, we use the test results of exhibition to support the
confidence of correctness of an implementation. Ideally, we try to detect by experimentation all
implementations IUT that pass and hit, i.e. for some T, : {IUT € IMPS | IUT passes T,
and IUT hits e by Ts.}. This gives some restrictions on the specification of an observation
objective. We study this in the domain of formal models of the implementations.

Consider Figure 1. Let ¢ imp s be the set with all conforming models of implementations, and
i passes T, the models that pass a sound test suite of T'. The set i rev e is the set of models that
exhibit observation objective e. Notice that this set corresponds to the set of implementations
IUT hits e by T, with T, being an e-complete test suite. We distinguish four different scenarios
of intersection of ¢ rev e and i passes 1. These are visualized in Figure la-d.

irev e MODS MODS
(a) ()
irev e MODS irev e MODS

- passes T’ 7 passes™¥

(b) (d)

Figure 1: Scenarios of choosing an observation objective

Figure 1(a) visualizes the empty intersection. This means that there exists no implementation
that exhibits and that will be passed as a correct implementation. A test suite for this situation is
infeasible, since for all exhibiting implementations, we will get a fail verdict during execution of
the test suite. In Figure 1(b), we have chosen a test suite where we detect (following a (pass, hit)
verdict) implementations that exhibit but that are incorrect (not in ¢ imp s). This situation is
not desirable. Fortunately, we can check during test derivation whether these situations (a) and
(b) occur (based on our formal models and formal relations), and decide not to derive such test
suites.

The ideal situation is depicted in Figure 1(d) (this might also include the situation
treve D i passes T). Here all correct implementations also exhibit. However, this would
in general make it very complicated to specify an observation objective. It would imply that
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observation objectives would be restricted to the ones with the property {i € MODS | i rev e}
D {i € MODS |i imp s}. This is hard to prove taking all nondeterminism and complexity of
a specification into account. So we loosen such a requirement and in practice we try to develop
a test suite that is visualized in Figure 1(c). We have the most confidence in the correctness of
an implementation that conforms and exhibits (verdict (pass, hit)). However, we still might find
an implementation that is correct, but does not exhibit (which corresponds to the notion of the
inconclusive verdict [ISO91]), or an implementation that is incorrect and exhibits.

Summarizing all, we can formulate our practical approach to conformance testing using exhi-
bition. We choose an observation objective e such that:

{i|ireve}n{i|iimp s} #0 (7)

From such an observation objective and formal specification we derive a test suite T . that
is e-complete and sound. After execution of T . we reject an implementation that gives a fail
verdict. We have an increased confidence in the correctness when the test results evaluate to a
(pass, hit) verdict. An experiment that evaluates to a (pass, miss) verdict has not found any
evidence of non conformance of the implementation, but has also not detected any behaviour that
supports our confidence in the correctness of the implementation.

4 Testing with ioco

We will instantiate the discussed framework with the ioco based conformance testing theory, c.f.
[Tre96]. In this section we recall the basics of the ioco theory and its related notation.

Labelled transition systems Labelled transition systems provide a formalism to specify,
model, analyse and reason about system behaviour. A labelled transition system description
is defined in terms of states and labelled transitions between states.

Definition 4.1
A labelled transition system is a 4-tuple (S, L, T, sg) where
o S is a non-empty set of states;
L is a finite set of labels;
T CSx(LU{r}) xS is aset of triples, the transition relation;
so € S is the initial state.

O O O

O

The labels in L represent the observable interactions of a system. The special label 7 ¢
L represents an unobservable, internal action. We denote the class of all labelled transition
systems over L by £7S(L). Transition systems without infinite paths of transitions with only
internal actions are called strongly converging. For technical reasons we restrict L7S(L) to strongly
converging transition systems.

A trace is a finite sequence of observable actions. The set of all traces over L is denoted by
L*, with € denoting the empty sequence. If 01,02 € L*, then o;-09 is the concatenation of o1 and
02. Some additional notations and properties are introduced in Definitions 4.2 and 4.3.

Definition 4.2
Let p = (S, L, T, s0) be a labelled transition system with s,s’ € S, and let p;) € LU{7T}, a¢;y € L,



o€ L* and n > 0.

s =def S=¢
123 ! _ /
st s =def (syu,8) €T
gHlling, o =g JSgy..., 8,1 §=89 s 2 Ay =4
s R =def ElSI - M1y SI
v
5 i =def DOt I’ : g Hriethn
€ . .
s=s =det S—=T55
a. € a €.
s=s =def 351,82 s= 851 L s50=>5
ai...-Qp / . _ ay az an !
s=—s =dof J50...8p: S§=S)=—=>8] —> ... =5, =S
g / g /
s = =def ds’: s=s
[ea
(e
s=5 =gof — 35 :1s5=5

O

We will not always distinguish between a labelled transition system and its initial state: if
p={(S,L, T, s0), then we will identify the labelled transition system p with its initial state sq, and
we write, for example, p=—> instead of sy =—>.

Definition 4.3
Let p be a (state of a) labelled transition system and let P be a set of states.
init(p) =daet {peELU{r}|pLt>}
nit(P) =aet U { init(p) |p e P}
traces(p) =gt {0 E€L*|p== }
pafteroc =4 {9 |p==p'}
Pafteroc =g |J { pafterc |pe P}
A labelled transition system can also be denoted by a process-algebraic behaviour expression.
We introduce a (for this paper) limited set with syntax:

—_

CU W o

O

B =4 stop|o;B|B+B|XB

Here o € L and B is a countable set of behaviour expressions. The semantics are defined by
the following inference rules and axioms:

F stop—/ ,a€ LU{r}
F ;BB
Bl,aﬂBi,OCEL H B1+B2~Q—>Bi
By % Blael F By + B B
BB ,BeB,acL + YXB-%B

Input-output transition systems We assume that the label set L can be partitioned into
input actions L; and output actions Ly: L = L; U Ly and Ly N Ly = . Moreover, we consider
systems which always accept any input. In terms of transition systems: all inputs, i.e., all actions
in Ly, are enabled in any reachable state of the transition system. Such transition systems are
called input-output transition systems. In input-output transition systems, inputs of one system
communicate with the outputs of the other system, and vice versa, (cf. IOA [LT89]).

Definition 4.4

An input-output transition system p is a labelled transition system in which the set of actions L
is partitioned into input actions L; and output actions Ly (Ly U Ly = L, Ly N Ly = 0), and for
which all inputs are enabled in any reachable state:

whenever p==p’ then VacL;: p ==

The class of input-output transition systems with input actions in L; and output actions in Ly is

denoted by ZOTS(L;, Ly) € LTS(L; U Ly). o
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Implementation relation We will use the relation ioco as implementation relation. This
relation assumes that the specification is expressed as a labelled transition system in which inputs
and outputs can be distinguished (not necessarily ZO7S), and that the implementation behaves
as, i.e., can be modeled by, an input-output transition system (cf. test hypothesis Section 2):
ioco C IOTS(L[, LU) X ETS(L[ @] LU)

An implementation ¢ € ZOTS(Ly, Ly) is ioco-correct with respect to the specification s €
LTS(L; U Ly) if 4 can never produce an output which could not have been produced by s in
the same situation, i.e., after the same specification trace. Moreover, ¢ may only stay silent, i.e.,
produce no output at all, if s can do so. The absence of outputs is called quiescence and is denoted
by a special label § (§ € L U {7}), cf. [Vaa9l].

To formalize this notion of conformance ioco we first define quiescence as the absence of
outputs. Then we extend traces of actions with the special action §. Occurrence of § in a state
p, denoted by p i>, expresses that state p cannot produce any output. Since no ‘normal’ action
in p is executed in that case, p cannot move to another state, so always p 2> p’ implies p’ = p.
Traces in which both normal actions in L and the special action § may occur are called suspension
traces. To denote suspension traces the notations -+ and == (Definitions 4.1, 4.2 and 4.3) are
extended to Ls = LU{d}, and to traces in L}, respectively. Note that this overlapping of notation
does not introduce conflicts.

Definition 4.5
Let p € ETS(L[ @] LU)
1. A state g of p is quiescent, denoted by ¢ - ¢, if Yu e Ly U{r}: ¢—Lb
2. The suspension traces of p € LTS(L; U Ly) are:
Straces(p) =aet {0 € (LU{6})" |p==},

where == is as in Definition 4.2 extended with d-transitions ¢ -2 ¢.
O

We can now define the possible outputs out(p after o) of a process p after a suspension trace
o. The action § may occur in out(p after o) as a special action indicating that after o it is
possible to observe no outputs at all, i.e., quiescence. Using out(p after o) the definition of ioco
is now straightforward by requiring that after any suspension trace of the specification any possible
output of the implementation should be a possible output of the specification.

Definition 4.6
Let p be a (state of a) labelled transition system, and let P be a set of states; let i € ZOTS(Ly, Ly)
and s € LTS(L; U Ly), then

1. out(p) =gt {x€LyU{d}|p= }

2. out(P) =aet U { out(p)|peP}

3. iioco s =qef Vo € Straces(s): out(iaftero) C out(safter o)
O

Test generation In order to present the test derivation algorithm we first define a test case
and a test suite. We use the special label § ¢ L; U Ly to represent the observation of quiescence.
Furthermore Ly = L U {6}. The notation & represents replacement of d-actions by #-actions and
vice versa, i.e. the action that models quiescence is replaced by the action that observes quiescence.

Definition 4.7

1. A test case t is a labelled transition system (S, Ly U Ly U {6}, T, so) such that
o t is deterministic and has finite behaviour;
o S contains the terminal states pass and fail, with init(pass) = init(fail) = 0);
o for any state t' € S of t, t' # pass, fail: init(¢t') = {a} for some a € L; or init(t') =

Lyu {9}
The universe of all test cases of Ly and Ly is denoted as TEST (Ly, Ly).
2. A test suite T is a set of test cases: T C TEST(Ly, Ly).
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Algorithm 4.8

Let s be a specification with initial state sg. Let S be a non-empty set of states, with initially
S = sp after €. Then a test case ¢ is obtained from S by a finite number of recursive applications
of one of the following three cases:

1. (* terminate the test case *)

t = pass
2. (% give a next input to the implementation x)
t = a;t ,if a€init(S)

where a € Ly, and ' is obtained by recursively applying the algorithm for S’ := S after a .
3. (* check the next output of the implementation )
t:= Y{o;fail | a € Ly U {0} and a & out(S)}
+ X{@ta | @ € out(S)}
where t,, is obtained by recursively applying the algorithm for S’ := S after «.
O

This algorithm was proved in [Tre96] to produce only sound test cases, i.e., test cases which
never produce fail while testing an ioco-conforming implementation. Moreover, it was shown
that any non-conforming implementation can always be detected by a test case generated with
this algorithm. For more details about the relation ioco, for a rationale for its use, and for more
generic definitions we refer to [Tre96].

5 Observation Objectives in IOTS

In this section we instantiate the framework presented in Section 3 with the ioco theory of Sec-
tion 4. We start with an example to clarify the introduced concepts.

(a (b)

Figure 2: Coffee machines

Example 5.1

Consider the specification s of a simple coffee machine in Figure 2(a), with L; = {coin} and Ly =
{milk, coffee}. This coffee machine provides a user with coffee with milk after the insertion of a coin.
We want to test an implementation for conformance. However, we will not do this exhaustively,
but we are interested in only those experiments that will challenge the system to provide coffee.
If we find during testing no evidence of non conformance and we will observe coffee, than we
assume that the implementation is correct. The specification of the coffee machine describes
two traces of interactions that let the machine provide coffee. These two traces are captured
in the observation objective, since during the experiments we might observe these sequences of
interactions. So we choose the formal observation objective e={coin-coffee-milk, coin-milk-coffee}.
Furthermore we define the hit-function as H.(O) = hit iff OnNe # §; if we observe any test run
that is included in the observation objective, we conclude that the system exhibits. Note that here
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TOBS is the power set of a set of traces of the specification with label set L = {coffee,coin,milk}
(TOBS = P(L*)). Now let Ts . be a sound en e-complete test suite for s and e. When during
testing using test suite T ., we observe either coin-coffee-milk or coin-milk-coffee as a test run we

conclude that IUT exhibits e. -

Reveal relations We instantiate the presented framework of Section 3 with the ioco theory.
We inherit TESTS = TEST(Ly,Ly), OBS = (L; ULy U{8})* and MODS = ZOTS(L;, Ly). We
first consider singular observation objectives. A singular observation objective can be exhibited
by one observation of a test case execution. The used observation objective in Example 5.1 is
a singular observation objective. For singular observation objectives it would be sufficient to
specify it by a set of traces which consists of all potential observations that will lead to exhibition
during testing. We take as the specification of the observation objective a set of traces from L,
i.e. the counterpart of a subset of OBS (d versus ). So TOBS = P(L}) and we instantiate
rev CZTOTS(Ly,Ly) x P((Ly ULy U{d})*). We define the reveal input output singular relation
rios for the singular case. This relation relates formally all models of implementations that are
potentially able to exhibit a singular test objective to that observation objective. A model of an
implementation exhibits the singular test objective if one of its suspension traces is an element
of the observation objective. So a hit-function H. for a singular observation objective evaluates
to hit if one of the prefixes of an observation (test run, i.e. trace from Lj) is included in the
observation objective.

Definition 5.2
Let i € ZOTS(Ly, Ly) be an implementation, O C L} a set of observations and e C L} a singular
observation objective, then
1. prefix(0) = {01 | 01-02 € O with 09 € L}}
2.4 rios e =g Straces(i)Ne # 0
3. Hros(0) = hit =g prefix(O) Ne # 0
O

For example, reconsider Figure 2(a) as an implementation 4 after making it input complete.
Then ¢ rios { coin - milk, coin - coffee - milk } holds. This observation objective insists on the
observation of milk.

With a singular observation objective we can only require the exhibition of one trace from
that observation objective. This is a limited expressiveness of an observation objective. We want
to specify more than one trace that should be exhibited during the experiment. We can do this
with plural observation objectives. A plural observation objective is composed out of singular
observation objectives, which all should be individually exhibited during the execution of the test
suite in order to satisfy the composed (plural) observation objective. The following example shows
an application of this.

Example 5.3

Consider the coffee machine in Figure 2(b), with L; = {coin} and Ly = {milk, coffee, tea, sugar}.
During testing we want to observe evidence that the machine can deliver coffee with milk and
tea with sugar. We specify this by a plural observation objective and choose the set of singular
observation objects E = {{ coin - coffee - milk, coin - milk - coffee }, { coin - tea - sugar, coin -

sugar - tea }}. The hit-function is defined by Hg(O) = hit iff Vee€ E:One # 0. 5

In ioco terms a plural observation objective is a set which is an element of TOBS = P(P(L}))
and the reveal relation rev C ZOTS(Ly, Ly) x P(P(L})). The exhibition of a plural test objective
E requires in general more than one observation during testing, since seldom (\{e | e € E} # 0,
which can be satisfied by just one observation. We can, analogously to, the singular case define
the reveal input out plural relation riop and the hit-function Hy°P(0).



Definition 5.4
Let ¢ € ZOTS(Ly, Ly) be an implementation, O C L} a set of observations and E C P(Lj) a
plural observation objective then:
1.4 riop E =gt Ve€ F:i rios ¢
2. Hp°P(0O) = hit iff Vee E: HMs(0)
O

For example, consider Figure 2b as an implementation 7 after making it input complete. Then
i riop {{ coin - milk, coin - coffee - milk }, { coin - tea, coin - sugar - tea }} holds. This plural
observation objective insists on the observation of milk and tea.

Test generation We first consider the singular case. We have a formal definition of the rev
relation and of the imp-relation, which are respectively rios and ioco. We want to generate a test
suite that is sound and e-complete. Furthermore we restrict our observation objective such that
{i € MODS |i rios e} N {i € MODS |iioco s} # 0 (c.f. Section 3 Equation 7). Proposition
5.5 shows that it is sufficient to choose the test objective as a subset of the suspension traces of
the specification to satisfy this constraint.

Proposition 5.5
Let s € LTS(L; U Ly) be a specification and let e € P(L}) be an observation objective.

if e C Straces(s) then {i € ZOTS(L;,Ly) |4 rios e} N{i € ZOTS(L;,Ly) | i ioco s} # 0
O

The restriction of an observation objective to a subset of the suspension traces of the specifi-
cation is a sufficient condition to guarantee a non empty intersection of conforming and exhibiting
implementations. This restriction excludes observation objectives that challenge implementations
to react on inputs that are not specified by the specification. Since our goal is to test for con-
forming implementations it makes no sense to check for exhibition of non-specified behaviour.
From now on we choose singular and plural observation objectives such that e C Straces(s), and
E C P(Straces(s)), respectively. From practical point of view, a test engineer might want to
specify an observation objective in a less strict way, i.e. including traces which are not in the spec-
ification. Then we take as semantics for the observation objective, the intersection of Straces(s)
and the specified traces.

We present a simple algorithm to derive a test suite from an observation objective and a
specification.

Algorithm 5.6
Let s € LTS(L; U Ly) be a specification, and let e C Straces(s) C L} be a singular observation
objective. Then a test suite T'C TEST(Ly, L) can be generated, by adding a test case te , to T
for every trace o of e, i.e. T = {t., | 0 € e}. The test case t., is obtained by application of the
following rules:
1. t,e:=pass
2. tpao = a5l Witha € Ly
3. tpwo = S{a;fail | « € Ly U {d} and o & out( s after p)}
+ X{@;pass | o € out(s after p)\{z}}
+ Titpao, withaz € Ly U {0}

O
Proposition 5.7
1. A test suite obtained with Algorithm 5.6 is sound with respect to s and ioco.
2. A test suite obtained with Algorithm 5.6 is e-sound with respect to rios and e.
3. A test suite obtained with Algorithm 5.6 is e-exhaustive with respect to rios and e.
O
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As a consequence of Proposition 5.7 the obtained test suite is e-complete. The next example
shows a resulting test suite produced by the algorithm.

Example 5.8

The test cases depicted in Figure 3 will be generated when we apply Algorithm 5.6 for the spec-
ification s in Figure 2a, using the singular observation objective { coin - milk - coffee, coin -
coffee }, expressing that we wish to see evidence of delivery of coffee. Note that now TOBS =
P(({coin,coffee,milk,5})*). For clarity we marked the states where the observation objective is
exhibited with hit. Notice that this can only be done with singular observation objectives, since
in general we need more than one observation before we can conclude that a plural observation
objective exhibits.

coin coin
milk
of f )

pass pass fail
hit

pass fail fail
hit

Figure 3: Test suite for a singular observation objective

O

In order to judge if we have found evidence whether an implementation exhibits the observation
objective, we gather all the observations during testing, i.e. a set of test runs. By applying the
hit-function HI'*® we get the exhibition verdict.

The test generation of test suites for plural observation objectives is straightforward. We
flatten the set of singular observation objectives to one set and apply Algorithm 5.6. So, let
s € LTS(Lr U Ly) be a specification and E C P(Straces(s)) be a plural observation objective.
Then a test suite T' € TEST(Ly, L) for testing can be obtained by applying Algorithm 5.6 with
e = JE. To obtain a verdict of exhibition of a plural observation objective, we evaluate H;Jic’p
for the obtained set of test runs during execution of the test suite.

The presented algorithm is not optimized for efficiency. For instance, one might combine several
traces of a singular observation objective to generate one test case instead of the generation of one
test case for every trace. In the case of Figure 3 we can reduce the test suite to only the leftmost
test case.

During testing, it is possible that we do not detect that an implementation exhibits a plural ob-
servation objective, but only some of the composing singular observation objectives are exhibited.
This can be due to many reasons like nondeterministic behaviour of the implementation, limited
execution time etc. It is possible to define a measure to see how much of a plural observation
objective has been exhibited during the test execution. This can be done in a straightforward way
by counting how many elements of the observation objective have been hit. We call this coverage
erhibition coverage.
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Definition 5.9
Let E C P(Lj) be a plural observation objective and let O C L} be a set of observations. Then
the exhibition coverage vg is defined as:

{e € E | HF**(O) = hit}|
|E]

YE =def

6 Concluding Remarks

In this paper we have proposed a formal framework for observation objectives and we have shown
how to use it as means for test selection in the field of conformance testing. The major contribution
of this framework is that we have a clear and precise notion of what an observation objective is,
when it is satisfied and how test results based on observation objectives should be interpreted.
Furthermore we have instantiated the framework with ioco-based testing theory and we have
presented an e-complete and sound test derivation algorithm.

One of the major questions is how to represent and specify an observation objective. As we
showed by our examples, a test engineer can specify a test object by explicitly writing down a
set of suspension traces. However, in practice we would like to put a level above that and use
observation objectives as a semantic object for traditional test purposes. Given a specification
and a TGV like test purpose, i.e. an automaton, or a regular expression over traces (Autolink), we
would like to automatically translate this to an observation objective. Another idea is to represent
a test purpose by a property of a specification in a logic, e.g. LTL, and define the semantics in
terms of observation objectives.

However, observation objectives give not only means to represent test purposes that some-
how are related to the specification, but can also be used to specify strategies. Examples of
these are maximum execution length in terms of number of observations, or specifying an output
eager observation strategy. The latter might be expressed by a regular expression over traces:
(Li-(Ly)6)").

Another issue is the combination of several observation objectives. As an example one might
think of a combination of a test purpose together with a pragmatic (often applied) strategy. Having
the formal framework, with the formal semantics, we can define a logic over observation objectives
to facilitate these combinations.

Currently we have already implemented the basics of the observation objectives approach
in the on-the-fly test derivation and execution tool TorX [BFVT99]. An observation objective
is represented by a labelled transition system, which is again represented by a process algebra
(LOTOS) and offers a functionality to specify a strategy for the test derivation instead of only
randomness. The first experiments are promising, in the sense that we indeed succeed in steering
the test derivation process.
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Complexity Issues of Connectivity Testing

Jens Chr. Godskesen
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Abstract

This paper deals with complexity issues of con-
nectivity testing, an approach put forward for
testing embedded systems. Instead of testing
the conformance of a system against its speci-
fication, which often turns out to be infeasible,
in connectivity testing only the composition of
the software and the hardware in which the soft-
ware is embedded is tested. The testing frame-
work is based on the notion of a fault model,
that is a model which formally captures errors
in the interface between the hardware and the
software. A complete test suite for a fault model
is a test suite that detects the faults of the model
with 100 % coverage. We prove the problem
of computing a smallest complete test suite to
be NP-hard. Therefore we devise approximative
polynomial time algorithms computing minimal
complete test suites.

1 Introduction

Connectivity testing is a testing framework cen-
tered around testing of embedded systems, it
has previously been presented in the papers
[10, 7, 9, 8]. Embedded systems are dedicated
systems like mobile phones, hi-fi equipment, re-
mote controls etc., with a very limited user in-
terface, for instance a few push buttons, and a
simple display, where the software, typically a
finite state machine (FSM), is embedded in the
hardware.

Testing of embedded systems has become more
and more difficult because the advances in pro-
cessor speed and memory size at a low cost have

made the manufacturing of sophisticated embed-
ded systems feasible. Also, because products are
often manufactured in large scale testing should
have high focus in order to avoid a cumbersome
an expensive updating of errors in the products.

Traditionally the problem of testing a system
correct with respect to a specification is often re-
ferred to as conformance testing. The goal is to
derive, hopefully automatically, a set of tests, a
test suite, from the specification that may help to
ensure the conformance of the system behaviour
against the specification. That is, the goal is to
check whether the behaviour of the implemen-
tation is the one of its specification. The test
suite should at least enjoy the property that if
the system does not pass all the tests in the test
suite then it is not in conformance with its spec-
ification. A formal framework for conformance
testing has been outlined in [3, 17].

The problem with conformance testing in general
however is the size of the test suites, which may
turn out to be infinite. Therefore the outcome of
applying a finite number of tests in a test suite
may only approximate a full conformance test.
As a consequence conformance testing may be
practically infeasible.

For specifications being FSM’s it has been shown
although that test suites need not be infinite.
In [5] it was proven that conformance between
a specification S and its implementation I can
be tested by a test suite that is polynomial in
the size of the number of states and the num-
ber of input symbols in S, given that I is an
FSM with the same input alphabet and the same
number of states as S, and that S can be reset
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to its initial state at any time. ' A polynomial
time algorithm for constructing the test suite was
outlined in [5].Unfortunately, if/ has more states
than S then the size of the test suite is expo-
nential. Occasionally even stronger assumptions
about S may be taken and in that case other
methods can be applied, for instance the Rural
Chinese Postman Tour [2] (for an overview see
e.g. [11] and [13]).

For industrial sized examples it may often be
however that S contains so many states and in-
put symbols that even if S and I are of equal size
the conformance testing problem is intractable,
either because the test generation procedure is
too time consuming or because the test suite is
too large.

Connectivity testing is an alternative, although
still formally rooted, approach for testing embed-
ded systems. The idea being that the focus is on
testing the composition of the two system com-
ponents: the embedded software and the hard-
ware in which the software is embedded. Hence,
in contrast to conformance testing, our goal is
not to test conformance between the behaviour
of the system specification and the behaviour of
its implementation. Instead we want to test for
errors that may be detected as faults in the in-
terface between the two composed components.
We define that kind of errors by means of fault
models.

A test suite that detects the faults defined by a
fault model with 100 % coverage is said to be
complete. In turns out however that the prob-
lem of generating a smallest complete test suite
is NP-hard. We therefore provide approximative
and greedy polynomial time algorithms for com-
puting minimal complete test suites. A minimal
complete test suite is complete, albeit not neces-
sarily a smallest one, but no test may be removed
from it in order to maintain it complete.

'Recently this approach has been carried out in a
timed setting in [16] and [4]. The results in [16] is mainly
of theoretical interest because of its double exponential
test generation algorithm, and the ideas in [4] has been
shown useful for specification with a little more than 100
states.
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Figure 1: Embedded systems.

The rest of the paper is organized as follows. In
Sec. 2 we motivate our approach. In Sec. 3 we de-
fine notions and terminology related to FSM’s.
Fault models are introduced in Sec. 4 and test
suites in Sec. 5. The existence of minimal com-
plete test suites as well as the NP-hardness of
computing a smallest such one is addressed in
Sec. 6. In Sec. 7 we show that minimal complete
test suites may be computed in polynomial time.
Sec. 8 is the conclusion. Proofs can be found in
the appendix.

2 Motivation

Conceptually an embedded system may be re-
garded as depicted in Fig. 1. That is, an embed-
ded system consists of embedded software en-
capsulated by hardware. Notably all communi-
cations between the system environment and the
embedded software pass through the hardware.
In Fig. 1 this is visualized by letting the inputs
from the system environment to the software
(a,b,c,d,e) pass through the hardware towards
the software via connections (the unlabeled ar-
rows). Similarly, the outputs (0,1,2,3) gener-
ated by the software have to pass via connections
through the hardware in order to emerge at the
system environment.

Each connection is assumed to be related to pre-
cisely one input or output. This assumption im-
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Figure 2: A faulty embedded systems.

plicitly implies that there is a one to one cor-
respondence between external inputs to the sys-
tem and the inputs to the embedded software,
likewise there is a one to one correspondence be-
tween the outputs from the software and the out-
puts from the system. Connections are consid-
ered to be abstract notions, they may have no
direct physical counterpart.

Ideally it should be ascertained that the spec-
ification of the software component is correct.
For instance, it may have been verified by some
FSM verification technique. Then exploiting the
ability to automatically generate executable code
from specifications and assuming a careful con-
struction of such compilers it would be reason-
able to expect the generated code to be correct
with respect to the specification, that is the two
perform the same FSM behaviour.

In the composition of the two system compo-
nents it then follows that the hardware (and
probably drivers managing the interaction be-
tween the hardware and the software) may be
the only error prone part. Therefore in order
to manage the multitude of potential errors we
shall make an abstraction and regard the hard-
ware (and the drivers) as a black box interfacing
the embedded software through the connections.
As a consequence system errors may now only
be referred to in terms of the connections.

Given these assumptions and in order to con-

clude that the system is correct it should be
tested that there are no errors manifested as
faults in the connections between the hardware
component and the embedded software. In the
system in Fig. 1 a fault could for instance be
that one of the connections is missing as shown
in Fig. 2 where the b-input is disconnected. In
the physical world, say a mobile phone, this may
correspond to the situation where some button
of the system is not connected such that the soft-
ware will never receive the input, and therefore
the pressing of the button will cause no effect. In
order to make sure the faults are testable they
are assumed to be permanent, that is no con-
nection may alter between being connected and
disconnected.

Testing in order to detect the kind of faults ad-
dressed in this paper is a matter of providing
sequences of inputs that will reveal the miss-
ing connections. If say the b-input connection
in Fig. 1 is missing this may be revealed by an
input sequence containing b. The fault may be
revealed directly if the system on input b immedi-
ately is expected to return some output, because
the erroneous system displays no output. The
fault may be exposed indirectly if the system af-
ter input b eventually is expected to return some
output and it turns out that this output is dis-
tinct from the one actually shown by the faulty
system.

Following the ideas outlined above we outline in
the remaining part of this paper a framework
for testing embedded systems by means of fault
models. It is assumed that embedded software
behaves as FSM’s. We introduce one type of
fault models for disconnected inputs.

The notion of a fault model has appeared else-
where in the literature. In particular, fault mod-
els has been used for test generation for embed-
ded systems in [15, 14]. However, although simi-
lar their notion of a fault model is in the setting
of conformance testing. Another significant dif-
ference is that they consider the embedded com-
ponent to be the erroneous part. In the hard-
ware community structural fault models, like for
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instance the “stuck at” model, has for decades
been used for circuit testing (see e.g. [1]).

3 Finite state machines

We consider a variant of deterministic finite state
machines (FSM’s) where a set of outputs (possi-
bly the empty one) is produced on each input.

Definition 1 An FSM, M, with input type £ is
a five tuple (S,E,Q,T,sp1) where S is a finite set
of states, £ is a finite set of inputs, 2 is a finite
set of outputs, and T is a tramsition function,
T:SxE =8 x22 sp €S8 is the initial state.

In the remaining part of this paper we presup-
pose for any FSM, that the sets S, £ and 2 are
ranged over by s, «, and w respectively. Also we
let o range over 2 and we let o range over £,
including the empty sequence e. If ¢’ is a prefix
of o we write ¢’ < 0. |o]| is the length of o. The
notation ola denotes o where all occurrences of
« are removed, that is

€ ifo=c¢
ocla = ola ifo=0ca
(d'la)d  ifo=0dd,a#d

For a transition function 7 we write s a—/o> s" and
s for 8" if 7(s,a) = (s',0). If ;41 = 8;% fori =
1,...,n we write s for s, 1 where o = oy ... ay.
Whenever s = s3/7 for some o we say that s is
reachable. Often we shall regard a state s as a
function s : £* — 22 defined by

hifo=c¢
S(U) = r ajo

oifo=c'a, s7 — s
We generalize this notion to machines and write
M (o) for sp(o).

Definition 2 Let M and M' be two (not neces-
sarily distinct) FSM’s with the same input type
and let s and s' be states in M and M’ respec-
tively. Then s ~; s' if s(o) = §'(0) for all o with
lo| <i. s~ s ifs~; s foralli. M ~ M if
SM R~ Sppr.
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Suppose in the following two FSM’s M and M’
with the same input type £ and with disjoint
state sets S and S’ respectively. Similarly to the
proof of Theorem 10-2 in [12] on may prove that:

Lemma 3 Let m = |S| + |S'|. Then s % s iff
s %; s' for some i < m.

Let A, C S x 8’ be defined by

Ao = {(s,) | s(a) # &'(a)}

For any i = 1,2,... define the set A; C S x &
inductively by

A = |J A
acl
Aipi = {(s1,82)[Fa(s1%,52%) € Ai}

Let B; = A; UA;,~" for i = 1,2,.... Then the
proof of inequivalence being characterized as de-
scribed by the following lemmas follows directly
from the definition of B’.

Lemma 4 s %; s' iff (s,s') € B'.

In order to help defining fault models in Sec. 4
we introduce a syntactic convention for defining
mutations of FSM’s.

Definition 5 M|a] is M where any transition

. . 0
S a—/o> s' in M is replaced by s ﬂ) s.

2Empty outputs and transitions to the same state with
empty output are left out.



Letting M denote the machine in Fig. 3, M[b]
is the machine in Fig. 4. One interpretation of
M]Ja] is that the input « has no longer any ef-
fect in M[a] because the machine remains in its
state and generates no output. This intuition is
represented by the lemma and corollary below:

Lemma 6 Ma](cd') = M(od/ ) if a # .
Corollary 7 M(o) = M[a(o) if o = ola.

We end this section with a characterization of
when an FSM mutation, M|[a], is inequivalent to
its origin M. First however, some terminology is
introduced.

Definition 8 s is a-active if s(a) # 0. s is a-
distinguishable (of degree i) if s %; s®. M is a-
active (a-distinguishable) if it contains a reach-
able a-active (a-distinguishable) state. M is a-
sensitive if it is a-active or a-distinguishable.

From the definition above it follows that M
is a-active if M(oca) # (0 for some o and M
is a-distinguishable if M(oia0o9) # M(o109)
for some o1 and some distinguishing sequence
2. As an example, in Fig. 3 it turns out
that s; and s5 are the only a-active states, sy4
is d-distinguishable of degree 1, and s5 is e-
distinguishable of degree 2.

The characterization as to whether a mutation is
equivalent or not to its origin are stated by the
lemma below.

Lemma 9 M % M|«a] iff M is a-sensitive.

®———6 ®

a/0,2
c/1,2 €

al0,2

ol

(s) S c/L2

Figure 4: The FSM in Fig. 3 with input b re-
moved.

4 Fault models

As already touched upon in Sec. 2 the purpose
of a fault model is to capture the errors that are
manifested as disconnections between the hard-
ware and the software components. For instance,
we would like that the fault shown in Fig. 2
where the b-input is disconnected can be han-
dled by a fault model. Importantly, a fault model
should be the formal basis for the generation of
test suites.

The fault in Fig. 2 implies that the input b never
will occur as input to the embedded software.
Recalling that we stipulated the embedded soft-
ware to be correct relative to its FSM specifica-
tion, it then follows that at the specification level
we may choose to model a fault as a modifica-
tion of the original specification. If for instance
the specification of the embedded software is the
FSM in Fig. 3 then the error prone version of
that FSM where input b has no effect is the mu-
tation in Fig. 4. We therefore may choose to let
a fault relative to some M be any mutation of
M, say M', such that M % M’ and we may let
a fault model be a set of such modified FSM’s.
In general we define a fault model as follows

Definition 10 A fault model for M is a set of
FSM’s MM each with the same input type as M
such that M & M' for all M' € MM,

The fault models for disconnected inputs are ex-
pected to capture faults as the one described at
the beginning of this section where the b-input is
disconnected, that is they should cover the faults
that arise when input connections are disrupted.
A fault like this occurs for instance when the
pressing of a button on a mobile phone does not
cause any effect because the input corresponding
to the button is disconnected.

A single disconnection fault can be modeled by
the mutation M[«a| because it specifies that the
input o has no behavioural effect. The fault
models for disconnected inputs consists of sets
of such specifications. Let £ C &£ where £ is the
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input type for some M. Then, if M is a-sensitive
for any a € &', a fault model for disconnected in-
put for M may be defined by

MY = (M[a]|a € €}

This fault model represents any one implemen-
tation in which precisely a single input « is dis-
connected for some o € &', but otherwise the
implementation behaves as specified by M. If
we for instance let M denote the FSM in Fig. 3
then

(1)

is an input fault model for M containing a mu-
tation of M for each of its inputs. For instance
it contains the FSM defined in Fig. 4.

M
M{abede

We let Mg/[ range over the set of fault models for
M where £ is a subset of the input type of M.
Note that any fault model Mgf is finite because
the input type is finite for any M.

5 Tests

The system to be tested obviously is a non-
formal object. Hence often when developing a
formal testing framework some assumption that
allows for regarding the system as a formal ob-
ject is taken. This step is traditionally referred
to as the testing hypothesis.

Recall the conceptualization of embedded sys-
tems put forward in Sec. 2 and in particular
the one to one correspondences between exter-
nal and internal inputs and outputs.
testing framework we shall adopt the convention
that the names for the external inputs to (out-
puts from) the embedded system are identical to
the names for the inputs to (outputs from) the
embedded software. This assumption, together
with the overall assumption of embedded soft-
ware being correctly compiled from some FSM
specification, facilitates that the embedded sys-
tem to be tested can be considered an FSM with
the same input type as its software specification.

In our

2See for instance [17, 4].
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Taking advantage of this testing hypothesis we
may now formally define the notions related to
tests and how to apply a test to a system.

Definition 11 Let £ be a set of inputs. A test
is a finite sequence of inputs o € £*. A test suite
T CE&* is a finite set of tests.

Given a set of tests T' we would like to filter out
those tests in 7" with the maximal respectively
minimal length, so let

maz (T) = {0 € T|Vo' € T. |o| > |0'|}
and let
min(T) = {o € T|Vo' € T. |o| < |0'|}

We let the size of a set of tests T' be defined by
T| = Xoerlol.

For a family of sets of tests (T;);c; we let, when
it is clear from the context, (T;);c; denote the
set of set of tests such that T € (T;)ier if T =
{oi|i € I} with 0; € T; for all s € I. That is, T
contains a test from each member of the family
(T;)icr and any test in T belongs to a member
of the family.

Definition 12 Let £ be a set of inputs. Let
ce&, T CE* andletT; C E* for alli € 1.
The cover of o with respect to a family (T;)icr,
o({Ti)icr), is defined by

o((Ty)ier) = {i € I|30' < 0. o' € T}

The cover of T with respect to (T;)ier is
T({Toier) = Uger o((Ti)icr)-

That is, a test covers a family member of (T3);cr
if it contains a prefix that belongs to the member.
A set of tests covers a family member if one of
its tests does. For instance, it is obvious that
T((n)zej) =] forall T € <,I'Z>ZEI

Let M and M’ be two FSM’s with the same input
type £. 4 The application of a test 0 € £* and

‘E.g. M may be the specification of the software in the
embedded system M.



a set of tests T C &£* respectively to M’ with
respect to M is defined by

apply (M’ 0) =

pass if Vo' < 0. M(o') = M'(0")
fail  otherwise
apply (M, T) =
pass it Vo € T. apply;(M',0) = pass
fail  otherwise

Knowing how to apply tests we introduce the
notions of sound, exhaustive, and complete for
sets of tests.

Definition 13 T is sound for Mg/[ if for any
o € T there exists some M' € M% such that
apply pr(M',0) = fail. T is exhaustive for MY
if for all M € MM, apply ,,(M', T) = fail. T is
complete for Mgf if it is sound and exhaustive

for M.

That is, a set of tests T is sound for a fault model
if any o € T is guaranteed to detect some fault of
the model, and T is exhaustive for a fault model
if any fault of the model is detectable by some
oceT.

Complete test suites for the fault models of dis-
connected inputs can be obtained by means of
sets of tests that characterize the faults in the
models. A characterization of M[«a] can be de-
fined by TM = Ty U Ty where

Ty = {oca|M(ca) # 0}
and
Ty = {od |M(cd') # M(cd' | o), o # a}

Hence a test for M[a| may be oa for some o
where o takes sjs to an a-active state. Or, a
test for M[a] may be oo’ for some o and o
where o # « such that M does not produce
the same output on oo’ and the test constructed
by removing all a’s from oa’. For instance, if
M is the FSM in Fig. 3, then {aa,ab,ac} C
TM, {ab,aab,acdb} C TM, {ac,acdc} C TM,

{acda,acde} C TM, and {acdeaa,acdebb} C
™.

Notice, that a characterizing set may in general
be infinite. Actually all the characterizing sets
mentioned in the examples above are infinite.

In order to prove that these characterizations can
be applied for the construction of complete test
suites we use the following:

Lemma 14 Let £ be the input type of M. Then
for all a € &, applyy (Mo, o) = fail iff o' €
™. o' < 0.

Corollary 15 IfT € (TM) cer for some &' C &
then T is sound for Mgf

Corollary 16 The cover of T wrt. (TM)ce is
E iff T is exhaustive for M.

From Corol. 15 and 16 it follows that a complete
test suite can be defined as shown below.

Theorem 17 If T € (TM)oee, T' C T, and the
cover of T" wrt. (TM) e is & then T' is complete
for M%

Notice, no complete test suite for a fault
model M}W needs to contain more tests than
the number of faults in M. As an ex-
ample, letting Mé‘/f be as defined by Eqn. 1
then T3 = {aa,ab, ac,acda,acdeaa} and Ty =
{ab, ac,acda, acdeaa} are complete for MY be-
cause they belong to (T, )ace. However, also the
subset {ab, acdeaa} is complete for M}’ because

its cover with respect to (TM)c¢ is {a, b, c,d, e}.

6 Minimal complete test suites

As indicated at the end of the previous section
some complete test suites for a fault model con-
tain fewer tests than other complete test suites
for the same fault model. Clearly, in practice one
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would be interested in complete test suites that
are as small as possible. Ideally, for some fault
model Mg/[ , it would be preferable to construct
a smallest complete test suite T for Mé” That
is, a test suite T where |T'| < |T'| for any test
suite 7" that is complete for MY . However,

Theorem 18 The problem of computing a
smalles complete test suite for some fault model

MM s NP-hard.

Hence we settle with an easier problem. The
problem we want to solve is to find a test suite
that is complete for a fault model and which does
not contain genuine subsets that are also com-
plete for the same fault model. Such a test suite
we call minimal complete.

Definition 19 A test suite T is minimal com-
plete for Mgf if T is complete for Mgf and if
no T' C T is complete for MM

Because any test in a minimal complete test suite
T for a fault model Mgf detects at least one fault
in Mé‘/f it holds that T' contains no more tests
that the number of faults in Mgf .

Given a fault model MY and given a test suite
T € (TM),ce, the problem of determining a min-
imal complete test suite can, due to Th. 17, be
rephrased as a set-covering problem. That is, we
have to cover the set £ by sets in

{o((T3"ace) |0 € T}

and in particular we have to cover £ by as few of
these sets as possible. In other words, we have
to find a smallest possible subset of T" with a
cover £. The set-covering problem however is
known to be NP-complete, although approxima-
tive methods for computing set-covers exists (see
e.g. [6]). Our contribution in the remaining part
of this section may be regarded as an approx-
imative and greedy method for computing set-
covers in that we outline a general procedure for
obtaining minimal complete test suites. In Sec. 7
the procedure is shown to have polynomial time

complexity. First however we need some termi-
nology.

Definition 20 Let (T;)icr be a family of sets of
tests. Then p(T;)icr is the smallest set of sets of
tests satisfying that T € p(TyYier if T € (Ty)icr
and if

VoeT.Jiel Tnmin(T;)={c} (2)
That is, T € pu(T;)icr if any T; has a test in T
and if any test in 7" uniquely among the tests in
T belongs to the smallest tests in some T;. If
T € pu(T;)icr we say that T is minimalized with
respect to the family (73);cr.

For a family of non-empty set of tests (Tj)icr
a minimalized set of tests may be constructed
by first selecting a set T' € (min(T;))ier. Then
tests in T' not satisfying Eq. 2 are iteratively re-
moved from T one at a time until the remaining
tests in T satisfy the equation. For instance, let
M be the FSM defined in Fig. 3 and let T be
the test suite {aa,ab,ac,acda,acdeaa} then T
belongs to (Té‘”)ae{a’b’c,d,e}, but T does not be-

long to p(Tf)ae{a’b’c,d,e} because {aa,ab,ac} €
min(TM) and therefore Eq. 2 is not satisfied by
It turns out that {ab,ac,acda,acdeaa} is

minimalized with respect t0 (Ta7)qe(ab.cde}-

aa.

If T € (min(T;))ier we let pry,.,(T) denote a
minimalized subset of T' with respect to (T;)icr.
I(T;);e; can be considered a function

(T Yier <mzn(Tz)>z€I — M(Ti>iel

because the resulting set of tests can be con-
structed deterministically as outlined above if we
presuppose some lexicographical ordering on the
set of tests according to which tests are consid-
ered for removal. °

For any family of set of tests (T;);c; we next de-
fine the functions Hryy,.;, G(1),c;> and Frmy,e,
that are used for computing minimal complete
test suites.

5In this paper we do not consider the problem of com-
puting a smallest minimalized subset of T' € (min(T;))icr
with respect to (T;)ier.



Definition 21 Define for T; C £*, i € I the
function Hgyy, ., (min(T;))ier — 257 by
0 aifT=0
Hirier (T) = { T'  otherwise
where T' = )., (maz(T)) and where I' =
{i € I'|30 € maz(T). o0 € min(T;)}.

That is, Hr;),.,(T) returns a minimalized set
of tests with respect to the family to which
the largest tests in T belong. For instance, if
M is the FSM defined in Fig. 3 and if T is
the test suite {aa ab,ac} that belongs to the
family (min(TM )acfabey then Hery ooy (T)
equals {ab,ac}. If T is {aa, ab, ac, acda, acdeaa}
that belongs to (min(Té‘/[))ae{a,b,c’d’e} then
H(To)actaneae (I) is {acdeaa}.

Definition 22 Define for T; C £*, i € I the
{min(T;))ier — 257 by

function Gy,
0 ifT =0
G(T)ier (T) = { T" otherwise

where T = {o; |i € I}, T' =
T" ={oili € INT'((Ti)ier)}-

Hiryyier (T), and

That is, on input {ai |1 € I} € (min(T;))ier
the function Q )ic; Teturns a subset of this
set. The tests not returned are those that be-
long only to family members which are cov-
ered by T'. T' is a minimalized set with re-
spect to the family to which the largest tests
in {o; | i € I} belongs. As an example, let-
ting M be the FSM defined in Fig. 3, if T' is the
test suite {aa, ab, ac, acde,acdeaa} that belongs
to (min(Ty"))actabeder then Gimyciopor (T)
equals {ab}. The reason why is, as shown
above, that Hr,y .., (T) is {acdeaa} and
because the cover of acdeaa with respect to
(To)ac{ab,c,de) 18 {a, ¢, d, e} as shown in the pre-
vious section.

The following lemma ensures that the function
F13),e; defined below is well defined.

Lemma 23 g
I’—I\(

o (T) € (min(T;))icrr where
M) ((Tier)-

’LEI (

Definition 24 Define for T; C &, 14 E I the

function Fipy,., + (min(T;))ier — 28" induc-
tively by

0 ifT =10
Fitiyer (T) = { T'"UF 1y, (T")  otherwise

where T = "y, (T), T" = Giryy,e, (T), and
= I\T'({(T3)ier)-

The functions may as results give minimal com-
plete test suites.

Theorem 25 If T € (min(TM))pce then
f(Té”Mes(T) is minimal complete for Mgf
Intuitively, a minimal complete test suite for a
fault model is constructed by first selecting a set
of tests T containing a smallest test for each fault
in the fault model. The test for a fault is selected
from the set of tests that characterizes the fault.
Secondly, all the longest tests in T' are collected
and among those some tests may be eliminated
resulting in a minimalized set of tests 7" that
will be contained in the resulting test suite. All
faults in the model that may be detected by at
least one of the tests in T' are disregarded and
not considered further in the computation. The
process is repeated for the faults still to be dealt
with until no fault in the model needs consider-
ation.

For instance, letting M be as defined in Fig. 3
and let T be {aa,ab,ac,acda,acdeaa}l, then
whenever I = {a,b,c,d, e}

i ieI(
H<TiM>i€ (T)u ‘7:(TM> e{b}(g< iM>i€I(T))
= {acdeaa} U Fipmy Yacis) ({ab})

= {ab,acdeaa}

that is, first acdeaa is selected as the longest test
and since the cover of acdeaa is {a, ¢, d, e} the re-
cursive call only has to consider the fault M[b].
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(1) For each s € S; associate (0s,|0s|) to s where o
is a shortest test such that s = s3;7s.

The unreachable states are removed from S.

(2) Forall a € £ and s € S; if s is a-active then
associate (osa,|osal) to a.

( 3) For each a € &'; walk through the pairs associated
to a, select one (0a,in) Where iq < i for any pair
(0, 1) associated to a. If for some o € £’ no pairs
are associated to « let (0q,ia) be (€,00). Let T
be {(0a,ia,a)|a € '}

( 4) Compute B!. For each (s,s’) € B! associate a pair
(a, 1) such that s(a) # s'(a).

(5) Fori=2,...,2|S| — 1 compute B¢. If (s1,52) € B
and no pair is associated to (s1,s2) then associate
(e, i) to it for some a where (0,7 — 1) is associated
to (510‘,520‘) € Bi—1,

(6) For all @ € £ and s € S; if some (0,14) is associated
to (s,s%) and if |os| + 1 +4 < i’ where (0/,i',0) € T
then replace (¢/,¢,a) by (osao, |os| + 1+ i,a).

( 7) If i = oo for some (o, 4,) € T then terminate with
an error.

( 8) Compute a partition 1:"11 e ,Tln of T where Tll is
{(oyl;ya) [ (oyliya) €T and U1 <o < ... <y

(9) For i =n,...,1; compute
(a) & = {a|3o. (0,l;,a) € Tli}, and .

(b) Ti, = ieran e, ({0130 (0,15, 0) € T, 1),
(c) and remove from each T;, where I; < I; all
(Uajz a) ifac€ Tli ((Té\/I)aEE’)'
(10) Return T;, U ... U Ty, .

Figure 5: A polynomial time algorithm for com-
puting minimal complete test suites.

7 Complexity

In this section we argue that the problem of com-
puting a minimal complete test suite has poly-
nomial time complexity. The correctness of the
algorithms is due to Theorem 25, although the
family of sets of tests that characterizes fault
in the fault model is never explicitly computed,
only a smallest test in each family member is
searched for. Recall that in general it would be
impossible to compute a set that characterizes a
fault because the set may be infinite.

The algorithm is presented in Fig. 5. Its input is
an FSM M = (S,&,Q, 7, s)) and a set of inputs
&' C £. In the first part on the algorithm (line
1-6) it computes a set T such that whenever M
is a-sensitive for all o € &' then

T = {o|3e,i. (0,i,0) € T}

belongs to (min(TM))pecer. If M is not a-
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sensitive for some o« € &' then an error is re-
ported in line 7 and the algorithm terminates,
otherwise (line 8-10) Fipary _, (T) is computed.

eg!

The reason why T € (min(TM))aeer if M is
a-sensitive for all a € £’ is as follows. For all
a € &', if there exists a-active states in S then
after line 1-3 T contains (oo, |oal, ) where o
is a smallest test from sp; to an «-active state.
Then in line 4-5, all inequivalent pairs of states
are associated with a shortest test that distin-
guishes them. It is obvious that if (sq,s2) € B’
for some 7 and if no pair is associated to (s1, s2)
then (s1,s0) ¢ B’ for all j < i. Hence s RS9
for all j < 7 due to Lem. 4, so the test associated
to (s1,$2) indeed is shortest possible. Note that
according to Lem. 3 at most 2|S| — 1 iterations
are needed in order to find a shortest test that
distinguishes any two inequivalent states.

The information computed in line 4-5 is used in
line 6 where T may be updated. Updating takes
place whenever (0,7, ) € T but for some s,
(s,s%) is associated with a test o such that |os|+
1+ |o| < i'. Hence updating takes place in case
there exists an a-distinguishable state s where s
and s are distinguishable by some test o such
that osao is shorter that the current test kept
with « in T. If updating takes place then the
last event in osa0 cannot be a. ©

Formally, in order to conclude that o €
min(TM) for any (0,i,a) € T we take advan-
tage of the following lemma.

Lemma 26 min(T}) = min(Ty) whenever
Ty = {od |M(0d') # M(cd'|a), o # o}
and

T2 = {0'1010'201, |
M(ojao2d’) # M(o109d), o' # o}

SUpdating takes place only if M(osa0) # M(oso).
Suppose in order to obtain a contradiction that osao =
g.ao’ o for some o', Then either s37°% or sas is an
a-active state. However then o,ac would not be shorter
than the current test kept with « in 7.
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From Lem. 26 it then follows that min(T) may
be defined as min(T; U Ty) where T = {oa |
M(oa) # 0} and Ty is {o1ao2d! | M (01 02") #
M (o109¢), o # a}. That is, any o € min(TM)
either is a shortest test to an a-active state to
which « is appended (as computed in line 1-3)
or a concatenation caoc’ where o is a shortest
test from sjs to an a-distinguishable state s and
where o’ is a shortest test, not ending with a,
that distinguishes s and s (as computed in line
4-6).

The total time complexity of the algorithm
is O(ISPIE] + ISPIENQ] + [SIIEPIR) (see Ap-
pendix A.8).

8 Conclusion

In this paper we have outlined the framework,
connectivity testing, for the testing of embed-
ded systems.
formance testing the approach is focused on de-
tecting errors manifested as faults in the inter-
face between the two system components: the
hardware and the embedded software. Since we
assume the software to be fault free the errors
we address belong to the hardware, or probably
software drivers not being part of the software
model. Formally we choose to model errors by
means of a fault model for disconnected inputs.

In contrast to for instance con-

A test suite is complete if it detects all faults in
the fault model, and if no test in the suite is use-
less. We have proven that the problem of com-
puting a smallest possible complete test suite is
NP-hard. Therefore we devised approximative
greedy polynomial time algorithms that com-
putes minimal complete test suites. A test suite
is minimal complete if all its tests are needed
in order to make it complete. Importantly, the
test suites contain no more tests than the num-
ber of faults in the fault model and the length
of any test in a test suites is bounded by twice
the number of states in the FSM specification
of the software (in practice the length may be
much smaller of course as demonstrated by the

experiments carried out).

Other types of fault models than the ones re-
ported in this paper may be of interest. For
instance, the single-fault fault models presented
here may be generalized to multi-fault fault mod-
els. This kind of fault model are dealt with in
[7], although no algorithms for test generation
is provided there. Fault models and algorithms
dealing with redirected inputs and outputs are
presented in [9] and [8]. Mixing input and out-
put faults is yet another research topic.

A Appendix

A.1 Proof of Lem. 6

Let M be an FSM with state set S. Let S’ be
the set of states in M|[«]. By definition of M|«]
there exists a 1 : 1 mapping f : S — &', such
that f(sa) = sae) and whenever a # o then

o' /o a /o

s —> ' is a transition in M only if f(s) —
f(s') is a transition in M|a/].

We prove that if a # o then s(ocd'la) =
f(s)(od!) for all s € S. Hence in particular
sp(odLa) = sya)(0d’) if a # o and therefore
M(od'|a) = Ma](od') if a # o. The proof is
by induction in the length of o.

Let o be some event such that a # o' and let
s€S.

Basis: (0 = ¢€) Consider s /¢ ', Then f(s) il
f(s') so s(a) = f(s)(a') and since o' |a = o it
follows that s(a/la) = f(s)(c).

Step: Suppose that s(oa/la) = f(s)(oa’) for all
o with |o| < n (IH). Let 0 = o0’ for some o
and some o’ with |o/| = n.

If " = « then od/la = o'd’|a so s(od|a) =
s(o’a’La). Then by IH we obtain s(o’a/|a) =
f(s)(c’a’). Moreover, since f(s)® = f(s) by
definition of M|[a] it follows that f(s)(ccd') =
f(s)(c'a’) and therefore s(od’|a) = f(s)(od).
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If ' # « then consider s*”. Due to the property
of f, f(5)® = f(s*"). Then by IH, s'(c’a/ Lat) =
f(s)(c'a’) and therefore s(od/la) = f(s)(od).

|

A.2 Proof of Lem. 9

(If) Suppose M is a-sensitive. If M is a-active
then M(owa) # 0 for some o. However, since
Mlal(ca) = 0 then M % Mla]. If M is a-
distinguishable then for some o, s3” % sa7%.
Suppose, in order to obtain a contradiction, that
M ~ Mla]. Then sy = spria]; S0 M7 = Sp1(a]”
and sp7% = spre)°® By definition of M[al,
Smla]” = Sma)”" and then, since ~ is an equiv-
alence relation, sy = s)/%. Hence we obtain
a contradiction.

)

(Only if) Suppose M is not a-sensitive. That
is, M is neither a-active nor a-distinguishable.
Let f be the mapping introduced in Sec. A.1. It
is sufficient to prove for all s € S that s(o) =
f(s)(o) for all o. The proof is by induction in
lo] > 1.

Basis: (Jo|] = 1) Let s be any state and let
o = o for some o. If @/ # « then due to
the properties of f, s(a/) = f(s)(¢). If & =«
then because M is not a-active it follows that
s(a/) = 0. From the definition of M[a] we con-
clude that also f(s)(a/) = 0.

Step: Assume for all s and for all o with |o] <
n + 1 that s(o) = f(s)(o) (IH). Let s € S and
let o = /¢’ for some o' and some ¢’ with |o'| =
n. If o/ # « then due to the property of f,
f(s)® = f(s*). Hence, since s(c) = s (¢’) and
since by TH s® (o) = f(s%)(c"), it follows that
s(o) = f(s)(o). If @/ = « then because M is
not a-distinguishable it must be that s ~ s
From the definition of M[a] we infer that f(s) =
f(s)®. Tt then follows that s(c) = s(0”) and that
f(s)(o) = f(s)(o’). Hence, since by TH s(o') =
f(s)(c"), we conclude that s(c) = f(s)(0). ]
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A.3 Proof of Lem. 14

Suppose applyy (M [a], o) = fail. Then for some
o <o, M(c') # M[a](c"). Hence from Corol-
lary 7 it follows that o’ # ¢'|a, so ¢/ must con-
tain at least one a. Therefore o’ can be par-
titioned into ojaos for some o; and o9 where
o9 = o9la. Then, if o9 = € it must be that
M (o1a) # 0 because M[a](o1c) = 0. Hence,
o' € TM. 1f 09 # € then since M[a](o1a0y) =
M(oi1ao9la), due to Lem. 6, it follows that
o109 € Téw.

Suppose o/ < o for some o' € TV, If o/ = 01«0
and M (o1«) # () then clearly M (o") # M[ca](o”),
so applyy (M[a], o) = fail. Otherwise, o’ = o1/
and a # o such that M(o') # M(o'|la), but
then since M[a](0’) = M (o'|«), due to Lem. 6,
it follows that applya(M[al, o) = fail. |

A.4 Proof of Lem. 23

Follows from the definitions of the functions
9(1yyie; and Hiryy,.,, and the definition of a cover
of a set of tests with respect to a family (T;);c;.

A.5 Proof of Th. 25

Let M} be a fault model and let T belong to
(min(TM))4cer. The proof is by induction in the
size of £'.

Basis: If £’ = () the theorem holds vacuously.

Step: Let & # 0. Assume for all £ C
£ that whenever T' € (min(TM))pcer then
Firay, en (T') is minimal complete for MY, (In-

duction Hypothesis).

Soundness is preserved by subsets. Hence sound-
ness of Fipary __ (T) follows because T' is sound
T)C

aES’( -

acé’

due to Theorem 17 and because F 1,
T.

In the rest of the proof we let T' =

H(Té‘/’>aey(T)7 T" = g<TéM>a€£,(T), and £ =



E'\T'((TM),cer). Due to Lem. 23 if follows
that T” € (min(T%))aegu.

In order to prove exhaustiveness let M[a] €
M. Hence a € &'. Then either o« € £" or
a € T'((TM)cer). In the latter case, for some
o € T' there exists o/ < o with o/ € TM, so
applyn (M[a], o) = fail for some o € T' due to
Lem. 14. In the former case M[a] € MY, and
because T € (min(TM)),een it follows by in-
duction that Fipuy (T") is exhaustive, hence
T") it must be that

acgl!

for some o € Fiany ., (

applyy (Mo, o) = fail

Finally, we prove minimality. The proof is by
contradiction.

Assume for some Ty C Fquy _, (T') that Tp

is complete for M% . Moreover, let oy €
f(TéV[>aes' (T) \ Ty. Since oy € f(Té\/[>aes' (T) it
follows by the definition of Fi7a, _ , that either

oo € T or o9 € Fpmy, ., (T"). We prove that
both cases leads to a contradiction.

Suppose oy € T'. Then because T’ €

p{TM) pee, , where & is
{a € &'3o € maz(T). o € min(TN)}

it follows that 7' N min(TM) = {oo} for some
a € &. Since Ty is assumed to be com-
plete there must exists o1 € 7T such that
applyy (M[al,01) = fail. Hence for some oy <
o1, o3 € TM. Then |og| < |o2| because oy €
min(TM), but also |og| > |o1| because oy € T
and o9 € maz(T). Therefore 01 = o9 and
loo| = |o1]. Since Ty C Fpary ., (T) it must
be that either o1 € T" or 0 € Firny, con (7).
However, o1 € T' because T' Nmin(TM) = {oy}.
Also, o1 & Firay, oo (T") because o1 € maz(T)
and maz(T) N Fary ., (T") = 0. Hence we
obtain a contradiction.

If og € f<Té\/I> T”), let M be

aES” (
{M' € M) | applyri(M', 00) = fail}

Then in order for T to be exhaustive, it must
be that for all M’ € M, there exists oy € Ty

such that applyy/(M',opp) = fail. Because of
Lem. 14 and the definition of £" if follows that
oye € T for all M' € M. Hence, since T
is assumed to be exhaustive, it must be that
for all M' € M, one € Fppy ., (T"). But
then we have a contradiction since by induc-
tion Fipary ., (T") is minimal complete since

T" € (min(TM))4cen. N

A.6 Proof of Lem. 26

Let Th = {od' | M(0d!) # M(od'|a), o # a}
and let

Ty = {10020 |
M (o1a09a’) # M(01020"), o # o}

It is sufficient to prove that min(T}) C Ty and
that min(Ty) C Ty. 7

We first prove that min(Ty) C Ty. If T1 = () we
are done so suppose T} # 0. Let o € min(Ty).
Then o = o'’ for some ¢’ and o' where o # o/.
Also, 0 = o1aoza’ for some o1 and o9 because
o # ola since M(0) # M(ola). Suppose, in
order to obtain a contradiction, that o & T5.
Then M (c) = M (0102¢") for all o1 and o5 where
o = ojaoea’. Now, let o0y and o9 be such
that o = oyaoaa’. Obviously, ola = 01090/ |«
so M(ola) = M(o102¢/la). But then, since
M(o) # M(ola), it follows that M (oi02a’) #
M (01090 La). However, then oj03¢’ € Ty and
we obtain a contradiction because |o102¢/| < |o].

Next we prove that min(Ty) C Ty. If To = () we
are done so suppose Ty # 0. Let o € min(T).
Then o = o109’ for some o4, 09, and o where
a# d. If ola = o109a it follows by the def-
inition of T that M(0) # M(ola) and hence
o € Ty. Suppose instead that ola # o090/, Let

"That for any two sets of tests T and T", min(T) C T’
and min(T') C T implies min(T) = min(T) can be shown
as follows. Let min(T) C T" and let min(T') C T. Sup-
pose, min(T) # min(T). Hence, without loss of gener-
ality, there exists o € min(T) such that o € min(T").
However, since o € T’ it must be that there exists
o' € min(T') such |0'| < |o|. But, then since o' € T
and because o € min(T) we obtain a contradiction.
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01 = 011Q012 . .. Q01 for some o11,...,01m,
where o1; = oyla for ¢ = 1,...,m. Let
09 = 0910029(...Q0y, for some o91,...,09,,

where 09; = o9;la for ¢ = 1,...,n. Since ei-
ther o1 # o1la or o9 # o9la it must be that
either m > 1 or n > 1. Next, let

!
011012 ...01m021022 ...092,X

!
UO —
! !
01 = 0110012...01p021022...02p X
!
Un+m—2 = 01100192C...

... 0010910092200 . .. ozogno/

that is, o} is 0102a’ where the last n+m —i — 2
a’s have been removed. Note that o) = ol
and that o],,,,_o = o1020¢/. Since |oj| < |o]
and because o € min(Ty) it must be that
M(ol) = M(o}_,) for alli =1,...,n4+m — 2.
Hence M(oy) = M(o,,,,,_») and consequently
M(ola) = M(o1020/). Therefore, since M (o) #
M (o1090)), M(0) # M(ola) and hence o € Tj.

|

A.7 Proof of Th. 18

The proof consists of establishing a polyno-
mial deterministic time reduction from the NP-
complete Directed Hamiltonian-Cycle problem
(see e.g. [6]). Actually, the reduction is to the de-
cision problem: Does Mé\/[ have a smallest com-
plete test suite of size k? However, since if it is
easy to compute a smallest complete test suite
then it is also easy to determine the size of such
a test suite, and hence to decide the decision
problem. Or the other way around, if the deci-
sion problem is NP-hard then so is the problem
of determining a smallest complete test suite.

Let G = (V,E) be a directed graph. Let & =
{ay |v € V} such that if u # v then a, # ay.
Construct G' by modifying G such that all edges
(u,v) are labelled «,. Hence any edge entering
a node v is labelled by «,. Also, for any ver-
tices u and v if (u,v) € FE then add an edge
from u to u labelled by «a,. Choose some vertex
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vgr € V and let {eq,...,en} be the edges in G’
that enter vgr and that are labelled by ay ., . Let
Q={wi,...,w,}. Let G’ be G’ where ey, ..., e,
are labelled by {wi},...,{wn} respectively and
where all other edges are labelled by the empty
set. Observe that G” = (V, E"”) may be consid-
ered an FSM MGW = (V, 5, Q, E”, UGu).

Clearly, G" can be constructed from G in poly-
nomial deterministic time. The correctness of
the reduction follows from Lem. 27.

Lemma 27 G contains a Hamilton-cycle iff
there exists a smallest complete test suite for
Méwc" of size |V|.

Proof: Suppose G contains a Hamilton-cycle cy-
cle v1,v2,...,vy,v1. Assume (without loss of
generality) that vy = vgr. Then in G” (leaving
out the output labels)

!

) ah v
?)1—)’()2—)...?)“/‘ — V1
for some events 0/1,0/2,...,04‘/'. Due to the
construction of G", & = {a'l,...,aiv‘}. Let
M,
o = diady...al,. Then o € T ,%" because
104 \4 aly,
vgr(o) # 0 since afy, = oy, ,. Also, because

edges in G” that are labelled by «,_, all are
labelled by distinct outputs or the empty out-
put it turns out that for all a € &, if a # aiw
then v (o) # vgr(ola). Hence o cover £ wrt.
(T(yg")aeg so according to Lem. 16 MQ/IG" is a
fault model. From Theorem 17 it follows that
{0} is complete for MQ/IG”. Clearly, {o} is a
smallest complete test suite because all o € £
must occur in a test in order for a test suite to

be complete.

Suppose Mé\/IG” is a fault model with a smallest
test suite T of size |V|. Then T covers £ wrt.

(Ta'" ) oce due to Lem. 16. Hence for all o € €
there is a test in T containing «. Then since
|T| = |€] and because only the event o, may
cause output 7" contains only one test o. Finally,
in order for o to contain all « € £ it must be that
o visits all vertices in G”, so therefore G' contains
a Hamilton-cycle. |



A.8 Complexity

Consider the algorithm in Fig. 5. Line 1 is
O((|S]+17]) 1g|S|) if a modified version of Dijk-
stra’s single-source shortest paths algorithm (see
e.g. [6]) is applied. Recall the functionality of
7, then the complexity of line 1 can be rewrit-
ten as O(|S]|€]1g|S|). Line 2 is O(|S]|E']|€2])
and both line 3 and 6 are O(|S||E'|). Line 4
is O(|S|%|€]192]) because s(a) # s'(a) is O(|Q)]).
For i > 2, computing B’ is O(|S|?|€|), hence line
5 is O(|SP’|€]). Clearly, line 7, 8 and 10 are
O(|€']). The minimalizations in line 9 can be
performed as follows: For each (o,l;,a) € f}l in
turn, remove it if o/ € TM for some other triple
(o',1;,0/) € Ty,. Checking o' € TM is O(l; + |9))
because we have to check if M(o') # 0 and
o' = o"a for some o” or if o' # "« for some o”
and M(o') # M(o'|«). Hence the complexity of
all the minimalizations is O (X%, (|1, |?(l; +|9])))
which is O(Z%_,(|T,12(|S| + |9]))) becase I; is
O(|S|). Then because O(Z2_, (|T,]?)) = O(|€'[?)
it turns out that the complexity of the min-
imalizations is O(|'[2(|S] + |€|)). The cover
of Tj, is O(l;|T;,||E"||€2]): for each o € Tj, and
o € £ we must check for all o/ where o'a < &
whether M (c'a) # () and we must check for
all o/ where o'd/ < o and o # o whether
M(o'a’) # M(o'd’|«). Hence the complexity of
computing all the covers is O(XI,;|T,||E']|€2])
which is O(|S||€|?|€2]). All the removals are
OS2, S04 [Ty;|) which is O(|€'|?). Hence the
complexity of line 9 is O(|S||€"|?|©2]). The total
complexity of the algorithm thus is O(|S|?|€| +
SPIENI0) + SIIEPI). .
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Abstract

Conformance testing of timed systems is still a new field even it could help many
designer since a long time. This study presents an new approach to testing com-
plex systems having timing constraints. This technique aims to prove if any timed
system implementation respects some properties described by timed test purposes.
The region graph model (generated from timed automata model) is used for the
specification of timed systems. The kernel of this method is the extraction of exe-
cutable timed test cases from the user timed test purposes. Then, these test cases
will be submitted to the implementation, by means of a specific architecture, and
the implementation reactions indicate us whether the implementation achieves the
timed test purpose or not.

Key-words : Timed automata, region graph, conformance testing, real-time
systems, test purpose, test execution.

1 Introduction

The design of complex and critical systems becomes more and more difficult and
very expensive. Before industrial development, systems need to be tested. A large
part of the development effort is spent in this last step. For the near future, the main
challenge is to provide a solid theoretical framework as well as a useful, practical
and automated tools dedicated to testing systems (especially with their behavioral
and temporal aspects). In the last decade, some studies and tools have been used in
practice [BFGT00, CH96]|, but most of them are only used for academic experiments
[CKM92, CGPT95].

This paper copes with the conformance testing of complex timed systems. Con-
trary to many other studies on timed testing, we use the region graph model [AD94].
The main disadvantage is the generation of a region graph which is a hard task (ex-
ponential complexity on the number of clocks). But we prefer to use it since it has a
high expression power for timed systems and can be used in practice if the number
of clocks is low. We believe that real systems can be specified by a reduced num-
ber of clocks [DY96]|. Then, we extract executable timed test cases from timed test
purposes. A timed test purpose is a sequence of events required by a designer with
his own timing constraints. The extraction of timed test cases is performed by a
synchronous product between the test purpose and the specification. The main aim
of this product is to select the periods of the test purpose which can be found on
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the specification for the execution of an action. We show the execution of the timed
test cases on the implementation. This step is performed by building an execution
tree on which we highlight the set of actions to execute, the set of actions to observe
and their appropriate sets of moments. Our main care is to cover the entire region
where an action has to be submitted to the implementation, then the action will be
submitted at the starting moment of the region graph and at the ending moment
of the region. All these steps (except the execution) are being implemented in a
prototype timed testing tool.

This paper is structured as follows: the main works about the timed testing field
are cited in Section 2. In this section, we present also the usual models on timed
systems. Section 3 details all the main aspects about the derivation of timed test
cases. Section 4 is dedicated to the execution of test cases on the implementation.
The complexity of this methodology is expressed in section 5. Section 6, gives the
conclusion and some ideas about future works.

2 Background

The conformance testing on timed systems is still a new field. We will give a brief
overview on some studies of this area. We will talk about two models for timed
systems used since a decade.

2.1 Related work

There are many works dedicated to the verification of timed automata [ACH94,
DOY94, DY95]. Some tools [DOTY95, BLLT98] have been developed for this pur-
pose. But some other studies proposed various testing techniques for timed systems.
[Kon95] deals with an adaptation of the canonical tester for timed testing and it has
been extended in [LCIT7|. In [CLI7|, the authors derive test cases from specifications
described in the form of a constraint graph. They only consider the minimum and
the maximum allowable delays between input/output events. [SVDO01]| gives a gen-
eral outline and a theoretical framework for timed testing based of the adaptation
of the classical testing techniques to timed systems. [ENDKE98| presents an adap-
tation of the Wp-method [FBK*91] to timed systems to a reduced model of timed
automata (grid automata). [COG98| presents a specific testing technique which sug-
gests a practical algorithm for test generation. [RNHWO8] gives a particular method
for the derivation of the more relevant inputs of the systems. [PF99a] suggests a
technique for translating a region graph into a graph where timing constraints are
expressed by specific labels using clock zones. The last study [NSO01], suggests a
selection technique of timed tests from a restricted class of dense timed automata
specifications. It is based on the well known testing theory proposed by Hennessy
in [DNH84|. As we can notice, there are different ways to tackle the problem of
timed testing. All of these studies focuss on reducing the specification formalism in
order to be able to derive test cases feasible in practice. In contrast to these studies,
we use thw region graph model but we don’t extract all possible test cases we only
consider test cases derived from test purposes given by the user.



2.2 Timed system models
2.2.1 Timed automata model

Timed automata [AD94] are graphs representing timed systems during their exe-
cutions. To represent time in a timed system, a set of clocks is associated to the
automaton. FEach clock is represented by a real value (dense time representation)
and grows strictly monotonically. All clocks are set to 0 in the initial state. Clocks
can be reset on any transition. To execute a transition, all the clocks of the system
must satisfy the transition constraints.

Timed Input Output Automata (TIOA) are extended timed automata where
actions are divided into input ones and output ones.

”
A transition S; —» S;, labeled by the input action "?x" models an input action

submitted by the environment. A transition S; N S, labeled by the output action
"Ix" represents an output action generated by the implementation.
An example of TIOA is illustrated in Figure 1.

Figure 1: An example of timed automaton

2.2.2 Region graph model

This model has been formally defined in [AD94]. A Region Graph is an equivalent
representation of a timed automaton where a state collects all the moments where
the system has the same behaviour. Clearly, a region graph state is composed of a
timed automaton state (representing the system behaviour) and a clock region (it is
a polyhedron representing the inequations of the state timing constraints). Finally,
we can say that in region graphs the timing constraints are moved to states. The
transformation algorithm of timed automata into region graphs is defined in [AD94].
The theoretical framework about this model is detailed in [AD94].

Definition 2.1 (A region graph ) A region graph RG is a tuple

(Sray Sras $%ay Rray Cra, Ere) where Sge is the set of actions, Sg is the set of
states, SORG is the initial state, Rpq is the set of clock regions of RG, Cr¢g is the set
of clocks, Erq is the transition relation defined as:

e (s,s',a) from state s to state s', labeled with the symbol a. s is a tuple (z, R)
where x is a state of the initial timed automaton and R is the clock region
during which a can be executed. s' is a tuple (¢, R') where 2’ is a state of the
initial timed automaton and R' is the reached clock region.
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e (s,8',0) from state s to state s', representing the elapse of time, needed to
reach the clock region R' from R.

Definition 2.2 (A state clock region) Let RG a region graph as defined below.
Let s a state of RG. There exists only one clock region, denoted C'Reg(s), associated
with this state.

In order to reduce the state explosion problem, some works have focused on the
reduction and the minimization of the region graph model [YL93, ACHT92, SV96].
The aim of [YL93, ACH"92] is to generate the portion of the minimized region graph
that is reachable in polynomial time. That is, all clock regions, in which the same
actions can be executed, are gathered into one clock region, i.e., the state number is
strongly reduced, what decreases validation costs.

3 Test cases derivation

In the classical conformance testing techniques (in the protocol engineering area),
there are two main techniques :

e the automatic test case generation methods which are able to derive all the
possible test cases of the whole system (the Unique Input/Output technique
[SD88], the W technique [ChoT78], ...). Here, systems are in general described
by the Input/Output Finite State Machine model (IOFSM).

e the test purpose based methods which derive test cases from the test purpose
given by the designer. But here, systems are usually specified by the Labeled
Transition System model (LTS) [Bri87, Tre96|.

In the present study, we suggest a testing technique based on timed test purposes.
We will define the concept of Timed Test Purpose (TTP), which will express the
user needs. And then, we will show how to extract test cases by using a timed
synchronous product between the specification and the test purpose.

3.1 Timed test purpose

In classical (untimed) test purpose based methodologies, a test purpose is an abstract
description of the specification. It helps the designer to choose behaviours to test
and then to reduce the specification exploration. A test purpose is a graph where
final states may be either accepting states (the purpose is reached) or refusing states
(behaviour parts which would be rejected). It must contain events which should be
found on the specification.

For timed systems, test purposes must also contain timing properties. We define
such a purpose as a Timed Test Purpose (TTP).

Definition 3.1 (A Timed Test Purpose) A timed test purpose TTP is defined
as a tree. Fach path from the root expresses a partial trace on the specification.
The nodes do not need to have the same labels than the specification ones.

An example of a timed test purpose required on the system described in Figure
1 is given in Figure 2. We should notice that timed test purposes are not parts of
the specification, but are sequences containing behaviour and timing properties of
the specification.



Figure 2: A Timed Test Purpose

Among many works dealing with automatic test purpose generation we can cite
[CCKS95, CGPT95, PLC98]|. No one deals with the region graph model, and most
of them do not consider the time aspect.

3.2 Testing hypothesis

The following assumptions about the specification and the TUT must be satisfied for
our methodology.

e Since we will use the region graph model, we should deal carefully with the
clock regions. Then the clock regions to use in test purpose will be built with
the same clocks than the specification ones. But the test purpose clock regions
have not to be as the specification ones. So, the specification and the TUT
must have the same number of clocks.

e The specification must be timed deterministic on the set of alphabet. That is,
from any state, we cannot have two outgoing transitions labeled with the same
symbol, whose timing constraints are satisfied simultaneously.

e From any state, we cannot have an outgoing transition, labeled with an input
action and an outgoing transition, labeled with an output action, whose timing
constraints are satisfied simultaneously.

3.3 Test case generation

Test cases, containing a timed test purpose and satisfying the specification will be
generated in order to be applied to the TUT.

Test cases are generated from a kind of intersection of the timed test purpose
TP and the specification S, defined as a timed synchronous product between TP
and S. This operation generates a graph including TP and respecting the timing
and the behaviour properties of S.

The different steps of this methodology are presented more precisely below. The
specification S and the test purpose T'P are modelled by the timed automata model:

e The whole specification is not necessary, since the designer checks only a part of
it. So, transition sequences of S, containing all the actions of the test purpose,
in the same order, are first extracted and named 7'S1(S), ..., T'S,, (S). If this set
is empty, the process terminates and the following steps cannot be performed.

e All the sequences T'S1(S), ..., T'S,(S) and TP are translated into region graphs
named respectively RG(T'S1(S)), ..., RG(TS,(S)) and RG(TP).

e Each region graph is then minimized, using the algorithm described in [ACH92],
and named RGMin(RG(TS1(S5))), ..., RGMin(RG(TS,(S))) and
RGMin(RG(TP)).

e Each minimized region graph is synchronized with the timed test purpose. The
definition of the timed synchronous product is given in section 3.4.
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e From each synchronous product we extract all the possible paths which are
transformed in timed test cases.

From the timed automaton illustrated in figure 1, we obtain, before the syn-
chronous product, a sequence of transitions which generates the clock regions on
Figure 3 and the corresponding region graph is given on Figure 4.

R4 R6

R3

R1

Figure 3: Clock regions obtained from the specification

Figure 4: The specification region graph

In the same way, we obtain from the test purpose, illustrated in Figure 2, the
clock regions of Figure 5 and the region graph of Figure 6.

Figure 5: Clock regions obtained from the test purpose

3.4 Timed Synchronous Product

The timed synchronous product between two transitions s; A s9 (of a part of the

specification S) and s A sh (of the timed test purpose T'P), labeled with the same
symbol A, can generate different synchronized clock regions, depending on C' Reg(s1)
and on C'Reg(s]).

The different types of synchronized clock regions are:

e PASS region:
The clock region R,,ss gathers clock valuations satisfying the execution of
the specification action A, and the test purpose constraints, that is, the clock
valuations which belong to Rg and Rrp. And if an action is executed at



Figure 6: Region graph obtained from the test purpose

clock valuations of the PASS region, then the implementation conforms either
to the specification or to the test purpose. If the PASS region is empty, an
INCOHERENT one will be obtained.

e INCONCLUSIVE region:
The clock region R, conclusive TePresents clock valuations which satisfy the exe-
cution of A in the specification, but not the execution of A in the test purpose.
If, A is executed in this region, the implementation respects the specification,
but its behaviour does not match with the test purpose. Rjnconclusive CON-
tains clock valuations of Rg except clock valuations of R,4ss, and is denoted
RS/Rpass .

e FAIL region:
This region represents all of the clock valuations which do not satisfy the
execution of A in the specification. In this case, if A is executed, in this region,
the implementation is faulty.

¢ INCOHERENT region:

This is a sub-region of the FAIL region. It represents the clock valuations
satisfying the execution of A in the test purpose, but not in the specification.
This region is INCOHERENT since the IUT is still faulty while it satisfies the
execution of A in the test purpose. This happens if we synchronize two clock
regions in the situation that no clock valuation belongs to both clock regions
simultaneously. This region is represented by Rrp/Rs.

Pass Region
Inconclusive Region
Incoherent Region

Fail Region

Figure 7: The regions obtained from a timed synchronous product

Figure 7 shows an example of regions which can be generated from a timed syn-
chronous product of two clock regions with two clocks. The Timed synchronous
product between a part of the specification S and a test purpose TP, is inspired by
the definition of the product of two ETIOSM (Extended Timed Input Output State
Machine which are Timed automata with non-temporal variables) [Lau99, PLC98].

In the following, we will consider two region graphs, a part of the specification
(named S) and the test purpose (named T'P). The resulting product is called SP.
We will show in the following how to derive all the paths of this synchronous product.
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Algorithm

INPUT:
TP(test purpose), S(specification part), PTP (set of TP paths), PS(set of S paths)
OUPUT:
SP(set of paths of the synchronous product)
BEGIN:
countSP := 0
FOR countTP = 0 TO LENGTH(PTP)
/* computation of all TP paths */
currentTP := PTP[countTP]
Spaths:= search (currentTP, S)
1. FOR countpath=0 TO LENGTH(Spaths)
path:=Spaths|countpath|
countTR:=0
2. FOR countTR—0 TO LENGTH(path)
tp[countTR].Label := path[countTR].Label
tp[countTR].pass := CReg(path[countTR|.StartingState)
tp[countTR].inconclusive := ()
ENDFOR
lengthTP:=countTR
countTR:=0
3. FOR count=0 TO LENGTH(currentTP)
label:=current TP[count].Label
4. WHILE (label dif ferent tp[countTR|.Label) countTR := countTR + 1
tp[countTR].inconclusive := tp[countTR].pass / CReg(currentTP[count].StartingState)
tp[countTR].pass := tp[countTR|.pass N CReg(currentTP|count|.StartingState)
ENDFOR
SP|countSP|.length := lengthTP
SP[countSP|.tp := tp
countSP := countSP + 1
ENDFOR
ENDFOR

This algorithm can be commented as follows:

1. The tp path is a partial path of the specification, then we extract in this loop
all the specification paths containing a tp path;

2. The tp is first set with the transition from the specification path. Each transi-
tion is labeled by a tuple (label, pass,inconclusive). label is deduced from the
transition ts of the specification. pass is the region of the starting state of ts.
inconclusive is set to the empty set.

3. This loop looks for the common transitions between ¢p and the specification.
Here the pass region is set to the intersection between the specification region
and the test purpose region. The inconclusive region is set with the specifica-
tion region less the test purpose one.

4. This loop provides to skip the transitions which are found on the test purpose
since the test purpose is a partial path of the specification path.

Finally, test cases are all the paths of the synchronous product.
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We should mention that, the synchronous product may also generate a test case
where the regions Ry and Ry of two successive states s; and s3 are not time successor.
In this case, it could be difficult to test any action in Rs: this clock region is not
always reachable by the system clocks. This aspect is illustrated by the synchronous
product of the figure 9 between the two timed automata of the figures 4 and 6.

R4 R6
2
R3

1

| R2 R5

|

R1

RL
1 2

Figure 8: The obtained clock regions from the synchronous product

e PASS(R1) e e PASS(R2) e PASS(R3) e PASS(RL) @
1(0) 10) 10) I(RL/R1)

Figure 9: The obtained test case

4 Test Execution

4.1 Test Architecture

In order to apply the test cases on the implementation, a specific architecture for
timed systems is described in [PF99b].

In this architecture, no assumption is done about how time is modeled inside
the TUT (Implementation Under Test). The tester is composed of two parts, com-
municating with one another : the clock part, which contains the clocks appearing
in the specification, and the behaviour part, whose role is to communicate with the
implementation through the single PCO (Point of Control and Observation), i.e. to
send inputs to the IUT and receive outputs from it.

The behaviour part of the tester may ask the clock part at any time for the value
of one or more clocks and receive instantaneously the answer, this communication
is internal to the tester.

On the other hand, the actions to be performed on the clocks, i.e the resets, do not
involve the implementation anymore. The tester performs the resets independently
from the IUT. During the testing process, temporal and behaviour properties of the
implementation are checked, by means of test cases. These ones contain actions
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which must be checked in the PASS region. Unfortunately, clock regions are dense
representation of time, which contain infinite tuples of values. Therefore, we cover
the time space by the application of the following three rules:

Let "?A" be an input action, a PASS region R, and let v;,;y € R be the first
clock valuation reached by the clocks. We propose that the tester sends "A"
to the IUT as soon as possible and the latest possible, that is for v;,;; and the
last clock valuation reached by the clocks vfinq € R. In order to reach vyipal,
an elapse of time (denoted wait) is necessary and it must be computed on the
fly during the test, on account of the dynamic behavior of the TUT.

Let "A" be an output action to test, R a PASS region and R’ an INCON-
CLUSIVE region. The tester waits the reception of the symbol "A" from the
IUT. If it is done in the region R, then the TUT respects the specification and
the test purpose. But if it is done only in the INCONCLUSIVE region, the
specification is respected but not the test purpose.

For an elapse of time "¢", allowing to reach the next clock region, no test is
needed. However, the tester must compute on the fly the duration of § and
must wait as long as this duration (section 4.2.1 for its calculation)

Consequently, we consider that input actions are checked for two clock valuations
within the PASS region. So, a test case must be applied to the IUT 2" times with n
the number of input actions. To express all of these cases, we develop the execution
of the test case into a tree, called Ezxecution Tree.

4.2

Execution Tree

We suppose that we have a test sequence obtained from the synchronous product
of two region graphs. The following algorithm transforms such a sequence into an
Execution Tree. This tree is composed of states and the edges of the graph region:

send(A) represents the sending of the input symbol ?A by the tester,
recv(A) represents the sending of the output symbol !A by the TUT,

wait represents the time needed to reach vy;nq by the IUT clocks in a clock
region,

0 represents the elapse of time needed to reach the next clock region.



Algorithm

A,PASS(R),INCONCLUSIVE(R'
Const-tree(SEQ,s (R) - ("), s')
t

IF A=¢ /* Elapse of time

0
Cons-tree(SEQ,next transition of SEQ)

IF A=71 /* Input action
IF two clock valuations can be reached by the tuple of clocks

) it send(T
Add a branch %%% s’
t

Cons-tree(SEQ,next transition of SEQ)

THEN send(I)
— S

Add a second branch i>

Rt
Cons-tree(SEQ,next transition of SEQ)
§ send(I) ,
pLsE | Add =
Cons-tree(SEQ,next transition of SEQ)

IF A=!0 /* Output action

recv(0),PASS(R),INCONCLUSIVE(R'
Add a branch ©) ") (®) s’

Rt
Cons-tree(SEQ,next transition of SEQ)

THEN

Finally, each branch of this tree can be given to the tester. The elapse of time
wait and § are computed as follows:

4.2.1 The calculation of § and wait

. AR P B,R
Consider the sequence s1 T1> S9 — 83 T2> s4. We need to calculate the elapse of
¢ ¢

time needed to reach Ry from any clock valuation vi,;; = (v1,...,v,), reached after
executing the action "A", that is the minimal value d such as v, + d € Rs.

.-~ Reachable Vfinal

Time ;alaps ng

init

Figure 10: Reaching another clock region in vgine from vy

As, the clocks grow with the same manner and strictly monotonically, they take
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T1— T2 = U1 — V2
as values the solutions of the equation
ITn—-1 —Tp =Up—-1 — Up
S0, Vfinal, reached by the clocks in R, is unique and is obtained by resolving
the system of inequations
Inequations of Ry
A= X1 — T2 = V1 — V9
ITn—-1 —Tp = Up—1 — Up
Finally, the elapse of time 0 equals to the difference between v;,;; and the minimal
solution vfine of A, minus the time value €, necessary for the resolution of the
previous system of inequations. The example given in Figure 10 illustrates this
aspect.
In the same manner, we can compute the elapse of time needed to reach a clock
valuation of a clock region, denoted wait.

5 Complexity

In this section, we will analyze the complexity of each step of our technique. These
calculations are difficult to express with accuracy since they depend on the number
of states, actions and clocks of the the timed system.

e Extraction of specification parts: The complexity to obtain sequences of
the specification, including the test purpose is proportional to M x K (M: the
number of states of the test purpose, K: the number of transitions of the test
purpose). In the worst case, it is necessary to build a tree on S which contains
all the transitions of S.

e Region graph generation: The complexity to build region graphs depends
mainly on the number of states, the number transitions and the number of
clocks of the timed automata. Each sequence SE(Q, obtained with the previous
step, have at most M states, K transitions and C' = card(Cg) clocks. So,
according to [AD94], for each sequence, the complexity to build a region graph
is proportional to (M + K) * 29(SEQ) and where the number of clock regions is
proportional to (2°(5%Q)) and where §(SEQ) is the number of clock constraints
of SEQ. In the worst case, we will have K sequences, so the complexity to
generate all of the region graphs is proportional to (M + K) x K x* 20(SEQ)

e Synchronous product: The complexity to synchronize two region graphs
depends on the maximal number of transitions in both of them and on the
number of clocks used during the resolution of the system of inequations to
produce the PASS region. The number of transitions is still at most K %20(5EQ)
so the complexity of the synchronous product is proportional to K x20(5SE@) x (.
At most, we have K region graphs, thus the complexity to synchronize theses

ones with the test purpose is proportional to K2 x 20(SEQ) 4 ('

e Execution tree: The complexity to build execution trees depends on the
length and the number of test cases. Timed automata have at most K *20(SF@)
transitions, the length of one test case, obtained from it, equals to K % 20(5EQ)
If test cases contains only input actions, for each one, two branches are added at
the tree, thus the complexity to build all of the execution trees is proportional

to QK20 EFD N, with N the number of test cases.

Consequently, the global complexity of the methodology depends mainly on the
number of clock regions generated in the second step. The number is exponential,
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the main complexity is exponential. However, the minimization of region graphs
strongly reduces this number, but the number ofminimized clock regions is difficult
to know before the minimization step.

6 Conclusion

We presented a practical technique to testing timed system based on timed pur-
poses. It insures to check user properties (behavior and temporal aspects) on an
implementation. These properties are specified as a tree of partial traces to find on
the specification. We performed a synchronous product between the specification
and the test purpose. This product selects pertinent clock regions where the testing
process is possible. This last step allows to reduce the time space where the test has
to be executed. Then, we extracted timed test cases from the synchronous product.
Finally, we have shown how to execute these test cases on the implementation.

The originality of this study is to deal with the entire region graph deduced from
the timed automaton describing any timed system. We considered the complete
cycle from the specification to the execution of test cases.

Recently, we had developed a prototype tool accepting a timed automaton as a
system specification and a test purpose as well. It executes the synchronous product
and extracts the timed test cases. But this tool does not deal with more than two
clocks.

Our main limitation is the use of only two clocks for the specification of timing
constraints. We have not present any conformance relation between the specification
and the implementation since we do not perform an total fault coverage of the
implementation. Our purpose is only to detect errors by applying selected test
purposes of the use.
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Abstract. A signature-parametric (say generic) framework for test case characterisation,
and definition of test set coverage criteria is developed. The signature might correspond to a
programming language syntax, the format of a data structure, a computational or semantical
structure, e.g., for derivations, proof trees, or control-flow graphs. Test set characterisation is
based on regular expressions describing paths for terms over the signature at hand. Necessary
and convenient properties for test set coverage criteria can be conceived in the framework.
The framework is simple in the sense that it is solely based on term algebras and basic
regular language theory. The specifications in the framework can be effectively used for
coverage analysis, and for test case and test set generation.

1 Introduction

Generic automated testing We are interested in specification languages and tooling involved in au-
tomated testing of software and specifications. We relate test case characterisations and coverage
criteria either directly to the programs and specifications themselves, or to the corresponding com-
putational, implementational or semantical models. The fundamental contribution of the present
article is that we setup a formal testing framework which is generic w.r.t. the actual syntax, format
or model. All what we assume is the following;:

— One can extract a signature X' from the concrete testing scenario.
— The signature is useful to characterise test cases by regular expressions for the scenario.
— Terms over X are related to test data for the scenario in an effective manner.

These preconditions are met by many testing scenarios where in some sense a grammar, or a
graph- or tree-like structure is a primary artifact, namely in compiler testing (cf. [Bur94]), and
traditional program testing (cf. [Mye79,Bei90]). Such a link is not obvious for testing centered
around observable behaviour, e.g., in testing transition system [BT00]. In the generic framework,
one can characterise test cases and define coverage criteria for test sets, and one can perform
coverage analysis for test sets, and generation of test cases and test sets. The framework is based
on regular language theory to deal with paths for terms over Y. There are coverage criteria which
were generically approved to meet valuable properties like completeness. The framework enforces
an effective style of specifications for test cases and test sets, that is, there exist simple algorithms
to perform coverage analysis, test case generation, and test set generation.

Testing a program Let us discuss a few scenarios where we want to generate test data from a
program P to test this very program, or we want to assess a given test set for P. As an aside,
in both cases, we are concerned with white-box testing. Suppose P is a Prolog program. Several
scenarios with different extracted signatures X are conceivable, e.g.:

— Let us choose the scenario that we want to generate test data (say roots of proof trees of
the goal clause of P) which exercise the clauses of P in a certain way, namely all clauses
are applied in all possible contexts. We choose the skeleton of P (i.e., the clauses with the
parameters stripped away), as Y. The generic framework immediately provides a suitable
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coverage criterion, namely context-dependent branch coverage. We perform test set generation
in the generic framework accordingly. Thereby, we obtain a set of terms over Y. In this scenario,
a term over X corresponds roughly to a proof tree skeleton (where the parameters are not
constrained). Mapping back such a term to the Prolog context means that we need to execute
the program P in a way to enforce a proof tree which matches the given proof tree skeleton.
This can be done by controlling the program execution via a meta-program interpreter (cf.
[Den91]). In worst case, we cannot complete the given proof tree skeleton into a proof tree.

— Alternative choices for X are the structure of proof trees for P, the structure of SLD derivations
for P, the functors used for data representations in P, the interface for library functionality
used in P, or some signature of debugging traces for P. All these choices are useful for some
scenario of testing. We need to employ, for example, the structure of proof trees for P (instead
of the skeleton of P above) if we want to constrain the parameters of predicates in some way
or another, e.g., if we want to enforce that a certain depth of nesting is exercised in some
parameter position of P.

As an aside, extracting X' from a testing scenario is usually simple. Mapping back terms to the
testing scenario often involves computational, semantical and implementational models as in the
above scenario where proof tree skeletons had to be completed to proof trees. In the present article,
we focus on the generic part, that is, the characterisation of test cases and coverage criteria w.r.t.
a signature X.

Testing a program against a specification If we, for example, talk about a programming language
L, the signature X' might correspond to the concrete or abstract syntax of L, to a library signature,
to an intermediate format, or to a derived format (e.g., for control-flow and data-flow analysis).
Let us consider the simple case that we want to test the frontend implementation I (say parser)
of the language L, and that a grammar specification G is available for L. The signature X' is then
simply extracted from G. By this, we can pursue test set generation or coverage analysis in the
generic framework. If we indeed generate test cases, we can easily map them back to the testing
scenario, that is, terms over the extracted X have to be rephrased as words in the language L.
Subsequently, we can feed the obtained strings to the frontend to perform black-box testing of the
frontend implementation I against the grammar specification G. As for the purpose of testing, we
might want to test for completeness of I by exercising all language constructs admitted by G, or
we deal with stress testing. In yet another case, a test suite for the implementation I might be
available, and we want to assess it to decide if the suite achieves coverage of the specification G
according to a criterion adopted from the generic framework.

Research context In white-box testing for programs of a certain language L, one can use differ-
ent structural properties (cf. [Mye79,Bei90]), e.g., folklore properties such as statement or path
coverage. One can also try to use more abstract aspects like the data flow in a program (cf.
[RW85,FW88]). Even if the derivation of a data-flow (or a control-flow) graph involves the se-
mantics of L, the graph is finally again a structure which admits testing concepts similar to those
for abstract syntax trees. Hence, there are several candidates for the signature X', namely the ab-
stract or concrete syntax of L, the structure of control-flow graphs or data-flow graphs. Our generic
framework is the result of an attempt to abstract from the actual structure of a testing scenario,
and to study testing notions once and for all in a largely generic manner. On the other hand, we
were driven by the intriguing question if there is some unified style for test case characterisation
and for coverage criteria for different kinds of specifications like syntax definitions, attribute gram-
mars, algebraic specifications, and logic programs. Such a unified style could be helpful to compare
coverage criteria, and to realise the potential for additional criteria. So far, coverage criteria were
defined in a rather specific context. The seminal paper by Purdom [Pur72b] defines a coverage cri-
terion for rule coverage of a context-free grammar, and algorithms for test set generation are given.
In logic programming, some coverage criteria have been studied (cf. [Den91,Jac96]) which seem
to have a useful interpretation for other forms of specifications and programs, too. In the context
of language implementation, the problem of generating test sets from various kind of grammars
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has been studied extensively (cf. [CRV+80,BSd82,HS89,Rie92]). Most approaches suggested in the
literature are not as formal as Purdom’s approach, that is, they are hardly based on a formal
coverage criterion. Instead, heuristics, mutation, and randomization are employed. Grammars are
often instrumented in a pragmatic manner. In [CRVT80], for example, a special grammar formal-
ism (with actions working on the internal data structures of the test set generator) is used. A
survey on test set generation for compiler testing is given in [Bur94]. Recently, we contributed ap-
proximation coverage for attribute grammars (cf. [HLOO]), and context-dependent branch coverage
for syntax definitions (cf. [L&mO01]). In the generic framework, we favour regular path expressions
on terms over a signature as the formal tool for characterising test cases and coverage criteria.
In certain application domains related to testing, some kind of path expressions also have been
used, e.g., for querying graph-models of a database and for querying semi-structured data (cf.
[Abi97]), or for testing of VHDL programs based on control-flow paths (cf. [VK95]). Our abstract
and unified style indeed allows us to compare coverage criteria, and to enforce general properties
like completeness. In [Wey89], informal requirements for coverage criteria are stated and reviewed.
By contrast, the present article contributes a formal model for coverage criteria.

Structure of the article In Section 2, some notation for dealing with regular expressions and terms
is spelled out for convenience. In Section 3, a formal framework for test case characterisation is
developed. Test cases according to a signature X are essentially characterised by regular expressions
over the paths for terms over X. In Section 4, test set characterisation as opposed to simple test
case characterisation is accomplished. The corresponding sets of classes of paths are subject to
a number of properties, e.g., minimality and completeness, ultimately leading to the notion of a
proper coverage criterion. As for the effectiveness of the specifications, we rely on basic regular
language theory. In Section 5, a number of coverage criteria are developed. We start from of an
abstraction of rule coverage [Pur72b]. Then, a number of more involved criteria are defined. A
more elaborated article (with proofs, more examples, and hints on applications) is under the way.

Acknowledgement The authors are indebted to Guido Wachsmuth for helping us with the implementation
of the ideas formalised in the article. We used the FSA utilities [No097] by Gertjan van Noord on top
of SWI-Prolog [Wie00] by Jan Wielemaker to implement the framework (with great pleasure). The work
of the first author was supported, in part, by the Dutch research organisation NWQ, in the project
“Generation of Program Transformation Systems”.

2 Preliminaries

Term algebras A signature X' is pair (S, F'), where S is a finite set of sorts, and F is a finite set of
function types of the form f : 0y X --- X 0, = 09, n > 0. Here, f is a function symbol, and the o;
are sorts in S. We denote the arity n of f as arity(f). For convenience, we also sometimes write
f € F,i.e., without giving the type of f. We use 7, (X) to denote the set of ground or variable-free
terms of sort ¢ in the common term-algebraic sense. We assume terminated term algebras in the
sense of context-free grammars, that is for all o € S it holds that 7, (%) # 0. We also assume that
function symbols are not overloaded. These restrictions are easy to lift.

Regular expressions We assume familiarity with basic regular language theory (cf. [HU80,ASU86]).
We use finite state automata (FSAs) to visualise regular languages. We use the common notation
for regular expressions. Below, we provide an inductive definition of the domain REr of regular
expressions over some set of terminals T'.

—teRErforteT (terminals)
— e, e €eREP=>ee' € RET (concatenation)
—ee €RET = el €eRET (alternatives)
—e€RET="ecRET (complement)
—e€RET=>e*€eRET (star-notation)
—e€eREr=et € REY (plus-notation)
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Furthermore, we use some less common notation for star- and plus-notation to constrain the
number of iterations:

—e€RET, a,w €Ny, a<w=e*s € RET
—e€RET,a,weN,a<w=eta e RET

The intended meaning of e*« and et= is that the number of iterations is at least o and at most w.
Np and N; are the naturals starting from 0 or 1, respectively. e*: and e*# are abbreviations for e*i
and eti, respectively. The set of terminal strings generated by a regular expression e is denoted
with [e]. We also might be interested in terminal strings generated by a regular grammar starting
from one of its nonterminals. The terminal strings generated from the nonterminal n according
to G is denoted by [n],. In general, we can also consider the terminal strings [e], generated
by a regular expression which contains nonterminals. If G is obvious from the context, we omit
G in [e] . Finally, we declare a convenient abbreviation, that is Some. Its intended meaning is
[Some] = T*. Assuming T = {t,...,t,}, we can easily give a regular expression defining Some,
namely Some = (t1 | --- |tn)*.

3 Test case characterisation

A signature X induces a class of paths for terms over X.! Obviously, a term can be regarded as a set
of paths. Test cases can be characterised by regular expressions intended to model classes of paths.
We have chosen a simple functional language as the running example. We want to characterise
some programs in this language.

3.1 Paths

We define a regular grammar PG(X) which models the paths for the terms according to a given
signature Y. Technically, PG(X) is defined to generate selector sequences to descend into terms.
These selector sequences are called paths in the sequel.

Definition 1. PG(X) denotes the Y-paths grammar with a finite set of nonterminals N, a finite
set of terminals T, NNT = 0, and a finite set of productions P. N and T are defined as follows:
N=S§
T={ffeF}U{l,...,maz ({arity(f) | f € F,arity(f) > 0})}

For all f: 01 X --- X 0 = 09 € F there are the following rules in P:

—n=0: O'o—)f
- n>0: 0'0—)f].0'1

oo = fnoy,

According to the definition, the function symbols from F' are regarded as terminals in PG(X),
and there are special terminals corresponding to parameter positions 1,2, ... modelling selection
of subterms. For each constant symbol in F' there is a trivial rule in PG(X). For each function
symbol f € F with arity(f) > 0, there is one rule per parameter position of f in PG(X). Paths
are complete per definition, i.e., they are terminated with a constant symbol.

Ezxample 1. Let us consider a syntax definition of a simple functional language, and the corre-
sponding grammar of paths. There are three forms of expressions, namely variables (cf. lvar),
A-abstractions (cf. lambda), and function applications (cf. apply). Furthermore there are two

1 We usually talk about classes of paths as opposed to sets of paths for the sake of a suggestive terminology. We
will later have to consider sets of classes of paths. In fact, sets of sets of paths does not sound very appealing.
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forms of type expressions, namely type-variables (cf. tvar) and arrow types (cf. arrow). We use
naturals to represent A-variables and type variables.

Xy PG(EN):
lvar : Nat — Ezp Ezp — lvarl Nat Type — tvarl Nat
lambda : Nat x Type x Exzp — Exp Ezp — lambdal Nat Type — arrow 1 Type
apply : Ezp X Exzp — Ezp Ezp — lambda?2 Type Type — arrow 2 Type
tvar : Nat — Type Ezp — lambda3 Ezp Nat — zero
arrow : Type x Type — Type Ezp — apply 1 Ezp Nat — succl Nat
zero : — Nat Ezp — apply 2 Ezp

succ : Nat — Nat

Paths of sort Ezp are represented as an FSA in Figure 1. To this end, the above regular grammar
is trivially transformed into an FSA. To be precise, the FSA accepts the regular language [Ezp].

Fig. 1. The FSA accepting [Ezp]

A term can be associated with the set of all its paths in a natural way. Such a mapping is obviously
useful to decide if a given term exercises a given set of paths (meant to characterise a test case).
The decision would be simply based on a test for non-empty intersection.

Definition 2. The set [t] C [o] of paths of the term ¢ of sort o is defined as follows:

[t]]:{{f}’ fOT‘th
Umi {fiz | z € [t:]}, for t = f(t1,...,tn),n > 1

Ezxample 2. Consider the following term of sort Exp over the signature from Example 1:
apply (lvar(zero), apply (lvar(zero), lvar(succ(zero))))
The set of paths for this term is the following;:
{ apply 11lvar 1 zero,

apply 2 apply 11lvar 1 zero,
apply 2 apply 2lvar 1 succ 1 zero }
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3.2 Regular path expressions

We use regular expressions over the terminals and nonterminals of PG(X) to specify classes of
paths, hence we call them regular path expressions. Such sets characterise the kind of terms, that
is, the test cases which we are interested in. Regular path expressions serve as convenient finite
representations of potentially infinite sets of paths. Usually, we consider paths of a certain sort o.
A regular expression e, which one writes down in the first place, is often more productive, and
hence, [e] has to be restricted to proper paths (of sort o) by intersection with [o]. To express our
intention that e should characterise paths of sort o, we use declarations of the form e : ¢. Since
regular languages are closed under intersection, the restriction of e to proper paths of sort o is
solely performed at the level of regular languages.

Definition 3. ¢ C T™* is a set of paths of sort ¢ if ¢ C [o]. Given a sort-annotated regular path
expression e : o, we use [e : o] = [e] N[o] to denote the set of paths of sort o corresponding to
e. A term t € T,(X) exercises the set ¢ of paths of sort o if cN [t] # 0.

Exzample 3. Consider again the language syntax introduced in Example 1. We want to charac-
terise paths for nested function applications. The following regular expression provides a suitable
characterisation for paths with precisely ¢ > 0 nested function applications:

apply; = (Tapply)” (apply (1|2) ("apply)*)*

Our intention is to consider expressions only, hence we annotate apply, with the sort Ezp. The
FSA accepting the language [apply, : Ezp] = [apply,] N [Ezp] is shown in Figure 2. As an aside,
the example instantiates a simple scenario which we often find in testing parsers or language
processors, that is, stress testing. Using a larger ¢ in the above specification, and applying test
set generation to inhabit the corresponding set of paths, we can enforce complex terms for stress
testing.

lambda

apply

Fig. 2. The FSA for [apply, : Ezp]

Note that it does not really make a difference if we say that a term ¢ exercises

— an annotated regular path expression e : g, or a
— class ¢ C T™* of paths of sort o

since the class of paths corresponding to e : ¢ is trivially obtained by [-]. In the sequel, we will
assume the convention that regular path expressions can be used whenever classes of paths are
appropriate. This will simplify our presentation.

Example 4. The sample term given in Example 2 exercises the i-indexed expressions apply; : Exp
for nested function applications characterised in Example 3 as follows:

Path | i in apply; : Exp
apply 1lvar 1 zero 1
apply 2 apply 1 lvar 1 zero 2

apply 2 apply 21lvar 1 succ 1 zero | 2
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3.3 Feasibility and productivity

We are hardly interested in regular path expressions which do not admit any proper path. They
are somewhat uselus since they cannot be exercised. By contrast, we mostly favour feasible regular
path expressions, that is:

Definition 4. The sort-annotated regular path expression e : o is feasible if [e : o] # 0.

An expression e : ¢ can be infeasible for different reasons. A function symbol might be used with
the wrong arity, or the path expression is incomplete. We might disclose such expressions by a
static well-formedness check for expressions. This is not pursued in the article. Other reasons
for infeasibility are more like an indication that paths of the specified kind do not exist due
to reachability arguments. Feasibility is a fundamental requirement. There is a related problem.
One might want to require that all subexpressions in a regular path expression e, especially all
alternatives and all stars and pluses in e, contribute to [e : o] (and not just to [e]). We call that
property productivity. The property could be enforced by a static productivity check, too.

Ezxample 5. The following expressions deal with the signature in Example 1.

e; = lambdal
es = lambda1lvar Some
ez = Somelambda Some

es = Somelambda Some | arrow Some

Let us examine these expressions with regard to feasibility and productivity. To this end, we
select certain sorts to annotate the expressions. e; : Exp is not feasible because e; is obviously
incomplete, that is, it is not terminated with a constant symbol. e : FEzp is not feasible for simple
type arguments. The symbol lvar is of sort Ezp as opposed to the first parameter position of
lambda which is of sort Nat. e3 : Type is not feasibly for reachability reasons, that is the function
symbol lambda is of sort Ezp but expressions are not reachable on paths of sort Type. The first
alternative of e4 : Type is not productive because it is equal to the infeasible es.

4 Sets of test cases

A single regular expression e is usually sufficient to provide an abstract description of a test case
or a class of test cases. If we want to characterise a test set, we also need to resort to a set E of
regular expressions. Each expression in such a set corresponds to a different class of test cases.
For single expressions, we considered feasibility and productivity. For sets of expressions, several
other properties are naturally defined, e.g., minimality and completeness. Ultimately, the section
provides requirements for sets of regular path expressions to denote a proper coverage criterion.

4.1 Sets of regular path expressions

The following definition provides a kind of example for sets regular path expressions. It introduces
two basic sets of expressions. The set CC's; models coverage of all constant symbols in X'. The set
FC 5y models coverage of all other function symbols f in X' (i.e., arity(f) > 0).

Definition 5.
CCx :0 ={const. | c € F,arity(c) =0} where const. = Somec
FCs :0 = {func; | f € F,arity(f) > 0} where func; = Some f Some

Note that it is essential to consider sets of regular path expressions in order to effectively separate
the classes of test cases. One might feel tempted to define these sets as a list of alternatives using
the regular operator “|”, e.g., for FC's, : Exp:

Somelvar Some | Somelambda Some | --- | Somesucc Some
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In accordance to Definition 3, it would be sufficient to exercise one alternative to exercise the
entire expression. This is in conflict with the desired meaning of FC'x, : Exp to characterise a set
of a different classes of test cases. To exercise a set of classes of paths, in general, we might also
need a set of terms rather than just a single term. Let us generalise Definition 3 accordingly.

Definition 6. ¢ C P(T*) is a set of classes of paths of sort o if every ¢ € C is a set of paths of
sort o. Given a sort-annotated set of reqular expression E : o, we use [E : o] = {[e]N[o] | e € E}
to denote the set of classes of paths of sort o corresponding to E. The set S C T,(X) of terms
ezercises the set C of classes of paths of sort o if for all classes ¢ € C there exists a termt € S
such that t exrercises c.

Consider the case that different sets of sort-annotated regular expressions should be compared. An
interesting question is if one can define a pre-order on sets for the same sort . Such a pre-order
could model if one set of expressions is more challenging than the other in the sense that all test
sets for the former also exercise the latter. In fact, in Section 5 we will examine several concrete
coverage criteria in this respect.

Definition 7. Given two sets C and C' of classes of paths of sort o, C' is called a refinement of
C (notation C C C') if for all S C T,(X) it holds that S exercises C' implies S exercises C. C' and
C are equivalent (notation C =C') if both CC C' and C' C C.

4.2 Properties

For single expressions (or classes of paths) we considered the properties of feasibility and produc-
tivity. Feasibility can be trivially lifted for sets. Regarding a set of expressions F : ¢, it might
be the case that some of the corresponding sets of classes coincide in [E : ¢]. We call E erasing
in that case. One could also say that E is not productive in this case. Of course, E is also not
productive if some expressions in E are not productive on their own.

Definition 8. The set C of classes is feasible if ) € C. E : o is called erasing if |E| > |[E : o]|.

Like for infeasibility, an erasing set of expressions E might indicate a specification error, or it
might just be implied by the concrete signature at hand. Note also that if two or more classes are
not feasible in [E : o], E is necessarily erasing.

Ezample 6. Consider the following trivial signature Xy,, with the function symbols f : s3 = s1,
g: 83 = 82, h:— s3. One can check that FCx,, : 51 is erasing because [func; : s1] = [func, : s1],
i.e., f and g always “go together”. For a signature X,,, which in addition to Xy,, also contains
f':s2 = s1 and ¢' : s3 = 592, FCx,,. 1 81 is not erasing.

Let us consider more interesting properties of sets of classes of paths, e.g., completeness (i.e., all
proper paths are in some class), and minimality (i.e., no class of paths is completely subsumed by
another).

Definition 9. Let C be a set of classes of paths of sort o w.r.t. a signature X. The complement
C of C is defined as [o] \ UC. We say that the set C of classes is

— complete if C = 0),

— minimal if Ac,d € C. cC ¢,

— disjunctive if Ac,d’ € C.c#c Aendc #0.

There are some simple observations worth mentioning:

— If C is minimal, then C is feasible.

— If C is disjunctive and feasible, then it is minimal.

— If C is complete, then C UC' is complete for all C'.

— C is a partitioning of [o], iff it is feasible, complete and disjunctive.
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4.3 Recovery of feasibility, minimality, completeness

In turns out that the specifications one writes down in the first place, are initially hardly non-
erasing, feasible and minimal, and sometimes they are not complete. We will encounter such
situations in Section 5 when we define certain coverage criteria. Feasibility, minimality, and com-
pleteness can be recovered by the following operators:

Definition 10.
Let C be a set of classes of paths of some sort o.
The sets |C], [C] are defined as follows:

el ={c\|JC' |cec,c'={ceC | ce}}\ {0}

_fc, ifC=10
[c1= {C U {C}, otherwise

We might also apply |-| and [-] to sets of expressions without further notice. The definition of
[C] for completing C is straightforward, that is, completion is done by including another set of
paths in C corresponding to the complement of (the union of all sets in) C. The definition of |C] to
minimalise C is more involved. For every ¢ € C the subset ¢\ JC' is preserved as a class. Here, C’
denotes all classes ¢’ which are proper subsets of ¢. Thus, in a sense, we preserve greatest subsets of
¢ not covered by C’. The operators meet some convenient properties summarized in the following
theorem. All these properties are easily proved.

Theorem 1. For all sets C, C' of classes of paths of some sort o:

|C| is minimal.

The operator |-| is idempotent.

[C] is complete.

The operator [-] is idempotent.

LICT] = TIC].

If C is minimal, then [C] is also minimal.
If C is complete, then |C| is also complete.
uc=ulcl.

CLCI[C].

CC[C].

[cjclcuc].

NSO RSO e~

N~

It is instructive to consider two candidates for simpler definitions for |-]|. These definitions are
appealing at a first glance:

1. {ceClc#bNABdeC.cCd} (Greatest elements)
2. {ceC|c#DNALeC.#DN Cc} (Smallest elements)

In the first formulation, the smaller elements do not contribute separate classes. In the second
formulation, the additional paths covered by the larger elements do not contribute. For both
formulations, the valuable property (9.) in Theorem 1 is invalid. For the second formulation, not
even (7.) is valid anymore.

If we are faced with infeasibility, non-minimality, and incompleteness, |-] and [-] should not
be applied blindly for the sake of minimality and completeness. We should understand what
causes non-minimality and incompleteness in each particular case. In fact, there are sometimes
good reasons why some of the desirable properties do not hold. We illustrate this problem in the
following theorem and the corresponding proof.

Theorem 2.

1. CCyx : o is disjunctive and complete but not necessarily feasible for oll X, o.
2. FCx : o is neither necessarily feasible, complete, minimal, nor disjunctive for oll X, o.
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Proof.

1. CC is disjunctive because constants only occur as path terminators, i.e., a path can never
contain two (different) constants. Thereby, the classes of paths for the various constants are
disjoint. CC might indeed contain the empty set if certain sorts and thereby constants of that
sort are not reachable from the given o. CC is complete because all constants are exhausted
by it, and otherwise the paths are not constrained.

2. FC might indeed contain the empty set if certain sorts and thereby symbols of that sort are not
reachable from the given . FC'yx; : ¢ is incomplete if there are no other function symbols of sort
o but constant symbols. FC'x; : ¢ is not disjunctive. Here is an example: Consider FC'y, : Ezp.
Obviously, funcappry @ Ezp and funciampda @ Ezp have some paths in common. This reflects
that there are paths in which both apply and lambda occur. As for non-minimality, we see
that funcy,,, : Ezp subsumes func : Exp and funciumpaa @ E2p, since any expression of

apply -
sort Ezp necessarily has to exercise the symbol lvar.

The section is concluded with the ultimate definition of a coverage criterion. It is certainly desirable
that a proper coverage criterion C meets completeness, that is, every possible path is contained
in some class in C. In the following definition, we also postulate minimality. Our experience with
defining coverage criteria indicates that the requirement for minimality is possibly debatable. We
definitely do not insist on disjunctive sets since the specifications one writes down in the first
place hardly meet this requirement. In fact, the above proof illustrates that non-disjunctive sets
of classes might be sensible. An operator for recovery of disjunctive sets is conceivable.

Definition 11. A set C of classes of paths of sort o is a proper coverage criterion if C is minimal
and complete.

Although the definition talks about sets of classes of paths rather than sets of regular path expres-
sions, we will usually reason about coverage criteria mainly at the level of the path expressions.

5 Coverage criteria

We develop various coverage criteria starting from an abstract form of rule coverage known for
context-free grammars. The subsequent criteria are original contributions of the article.

5.1 Branch coverage

CC and FC from Definition 5 provide the basis for a simple coverage criterion called branch cover-
age. This criterion corresponds to rule coverage when applied to context-free grammars [Pur72b].
Branch coverage (BC) is a suitable term because given a sort 7, the various function symbols of
sort 7 provide the alternatives to construct terms of sort 7. BC enforces that all symbols of all
sorts are exercised. Thus, we might say that all branches are covered.

Definition 12. BC'x denotes the branch coverage criterion for X':
BCy :0=|CCxUFCy|
Example 7. Consider the following two terms:

— apply(lambda(zero, tvar(zero), lvar(zero)), lvar(succ(zero)))
— apply(lvar(zero), lvar(zero))

The first term exercises BC Ezp because it covers all function symbols of the signature from

Example 1. Instead of this large term, we could also favour smaller terms covering the various
function symbols in separation. The second term above is the smallest term (in terms of the
number of function symbols involved) covering apply.
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Theorem 3.

1. BCx : o is a proper coverage criterion for all X, o.
2. CCx:0CBCyx:0, FCx C BCyx forall X, 0.
3. There exists X, o such that CCx :0 ZBCyx:0, FCx:0# BCyx : 0.

Proof.

1. Completeness follows from the union with CC'y which is complete on its own.

2. Implied by (11.) in Theorem 1.

3. Here are examples exploring the additional expressiveness gained by BC's; compared to CC'x
and FC'5: Consider again the signature from Example 1. We have that CC's, : Fzp # BC's, :
Ezp because lvar(zero) exercises CCyx, : Ezp, but not BCx, : Exp. We also have that
FCsx, : Exp = BCsx, : Exp because all terms necessarily exercise the one and only constant
zero. Assume that we add another constant int :— type to X resulting in an extended
signature Xy/. Then, we can show that FCx,, : Exp # BCx,, : Exp because there are terms
exercising FC'y,, : Ezp without using int, e.g.:

apply(lambda(zero, arrow (tvar(zero), tvar(zero)), lvar(zero)), lvar(succ(zero)))

5.2 Position coverage

A minor generalisation of branch coverage is to take parameter positions of the function symbols
into account. We call this generalisation position coverage (PC). As it will turn out, PC is not a
proper refinement of BC, but PC and BC are simply equivalent. Hence, we consider PC as an
illustrative example.

Definition 13. PCy denotes the position coverage criterion for X:
PCx:0=[CCxU{pos;; | f € F,1<i< arity(f) }| where pos; ; = Some f i Some
Theorem 4.

- [pos;; : o] C [funcy : o] for all X, o, f, i where 1 <i < arity(f).

ce. C..ain 1df arity(f) > 1.

There exist X, o such that |BCx : 0| < |PCx : gl.

. t exercises [func; : 0] & t exercises [pos;; : o] for all X, o, t € T,(X).
.BCx:0=PCyx:0 foradl X, o.

I

Proof.

funcy is subdivided into the various pos; ;.

Obvious. (Hence, one might think that PC is more fine-grained than BC'.)

Obvious. (Still, one might think that PC is more fine-grained than BC.)

Any term with an application of f necessarily exercises the various parameter positions of f.
Hence, there are paths in [¢] which do not exercise a certain parameter position ¢ of f, but
there are necessarily other paths which do.

5. Directly implied by 4.

=W

5.3 Context-dependent branch coverage

Let us consider a more involved criterion. We want to characterise paths where a function symbol
g is used on the i-th parameter position of another function symbol f. If we consider all possi-
ble classes, we obtain—in a sense—a context-dependent version of BC. Thus we call it context-
dependent branch coverage (CDBC).
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Definition 14. CDBC(C's; denotes the context-dependent branch coverage criterion for X':

fio1X--- X0, >0 €F,
CDBCyx:0=|(CCx UL links;q | g:--— 0; €F,
1<i<n

where link¢; , = Some f i g Some.

Note how the types of f and g are constrained in the definition to enforce well-formed expressions,
that is, ¢’s result sort is the same as f’s i-th parameter sort.

Theorem 5.

1. CDBC'x : 0 is a proper coverage criterion for all X, o.
2. BCx C CDBCsx for all X, o.
3. There exist X, o such that BCx : 0 # CDBCy : 0.

Proof. Omitted. The scheme of the proof for Theorem 3 can be reused.

Ezxample 8. These are all combinations of function symbols, parameter positions, and function
symbols on the latter positions for the signature X'y from Example 1:

lvar 1 zero lambda 3 apply tvar 1 succ

lvar 1 succ apply 1 lvar arrow 1 tvar
lambda 1 zero apply 1 lambda arrow 1 arrow
lambda 1 succ apply 1 apply arrow 2 tvar
lambda 2 tvar apply 2 lvar arrow 2 arrow
lambda 2 arrow apply 2 lambda succ 1 zero
lambda 3 lvar apply 2 apply succ 1 succ
lambda 3 lambda tvar 1 zero

As we argued for branch coverage in Example 7, we might favour either small test cases exercising
these combinations, or larger test cases covering more of the combinations at once. For brevity, we
do not include an (already somewhat larger) test set exercising CDBC' for the running example.
In Figure 3, one particular set contributing to CDBC'x;, : Ezp is shown, namely the class which
deals with a A-abstraction on the first parameter position of a function application.

5.4 Reachability coverage

There is a rather obvious way how context-dependent coverage can be generalised. CDBC is
sufficient to exercise all possible function symbols in all direct contexts, that is in parameter
positions of function symbols of a suitable sort. We can also look for remote pairs of function
symbols. Context-dependent branch-coverage only relates adjacent symbols in terms.

Definition 15. RCx denotes the reachability coverage criterion for X':

f:o1 X - X0y, > 09 €F,
RC:0= |CDBCx U remotes;q | g:--- — 0y €F,
1<i<n,o4 #0;

where remotey ; o, = Some f i Some g Some.

The expression remotey ; , characterises paths where g is reachable from f via the i-th parameter
position of f. We restrict the types of f and g in a way that g cannot directly be applied on the
i-th parameter position of f because this case is handled by CDBC anyway. Note also that a more
coarse-grained formulation of RC is conceivable, where g to be reachable from f is not restricted
to a certain parameter position i of f.
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Fig. 3. The FSA accepting [link

: Exp]

apply,i,lambda

Theorem 6.

1. RCyx : o is a proper coverage criterion for all X, o.
2. CDBCx C RCx for all X, 0.
3. There exist X, o such that CDBCx : 0 Z RCx : 0.

Proof. Omitted. The scheme of the proof for Theorem 3 can be reused.

RC is potentially erasing in the sense that a considerable amount of classes is likely to be infeasible,
i.e., certain combinations of function symbols cannot occur in the given order in a path. This
insight triggers the question if RC could maybe be formulated in a more verbose style so that only
feasible classes are included. In principle, this is possible since we can constrain the combinations
by reachability arguments. There is room for future work to suggest an ultimate style of the
definition of coverage criteria so that feasibility or other properties are more likely to hold.

5.5 Unfolding coverage

The coverage criteria so far did not address recursion in the underlying term algebra. A specific
treatment of recursion is sensible in the same way as special rules do exist for testing loops and
recursive functions in imperative programs. We present a coverage criterion enforcing a certain
number of recursive unfoldings for a fixed sort 7. To this end, we also need to introduce an inductive
scheme for the definition of sets of regular expressions. Let us start with UC'x; ;o characterising
all paths not at all restricted regarding possibly recursive occurrences of sort 7:

UCx o :0 = {Some}

We defined UC 5 ;o as a set of expressions rather than a single expression for conformity because
the subsequent UC x ;,; are proper sets of expressions. UCx ;1 exhausts all symbols of sort 7 at

least once:
UCsx,r1:0={SomefSome | f:---—7€F}
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The corresponding set of classes is potentially incomplete since there might be paths where no
function symbol of sort 7 is involved. Since we are solely interested in recursive unfoldings of
symbols of sort 7, we can accept this incompleteness. Non-minimality can happen in the same
harmless way as for FC'5;. The next level of recursive unfolding is modelled by the following set:

UCx 2 :0 = {Some fSomegSome | f,g:--- > 7€ F}

Note that we cannot use star-notation (*) subscripted with an 4 for the number of recursive
unfoldings to define UC'x ; ;. The problem is that we rely on a new variable for 7-sorted function
symbols for each new level of recursive unfolding. Instead, an inductive scheme is convenient for
the definition of UCx ; ;.

Definition 16. [|UCx ;|| denotes the unfolding coverage criterion for X' with ¢ unfoldings of
sort T where

{Some}, fori=0

UCz,r,i:U:{{Somefe | f:-->T7€F,ec UCxri1},fori>0

Unfolding coverage is not a refinement of any other coverage criterion discussed so far. It is, for
example, different from FC, CC, and BC because we do not attempt to exercise all symbols but
only symbols of the distinguished sort 7. It would be possible to derive UC from another criterion.
We favour the status of UC to be solely concerned with the coverage of recursive unfoldings. The
operator [-] is used to recover completeness. Note that in all other definitions of coverage criteria,
we only had to recover minimality because the complete CC was used as a starting point.

6 Concluding remarks

Implementation There are two important uses of test case characterisation and test set coverage
criteria, namely coverage analysis and test set generation. Both uses are easy to accomplish using
basic regular language theory (cf. [HU80,ASU86]) and corresponding tool support.

As for coverage analysis, we are interested in the coverage of a test set T w.r.t. a criterion
modelled by some set C. First, we accumulate all paths induced by the test data. Because the
classes C of paths induced by a coverage criterion are usually infinite, the various classes in C are
rather represented by regular expressions or grammars. Then, all the paths in T are just parsed
by the FSAs corresponding to C. If a certain FSA accepts some path, the corresponding class is
covered. Alternatively, T' can also be regarded as a regular language. A class in C is covered if the
intersection with the regular language corresponding to T is non-empty.

As for test set generation, we are interested in the generation of test sets achieving coverage
w.r.t. a coverage criterion modelled by some set C of classes of paths. All possible test data can
basically be enumerated because the terms of a term algebra can be enumerated. For every term
t, we check if it exercises one of the classes in C. If this is the case, we add ¢ to the test set, and
¢ is removed from C for the rest of the generation process. This process will terminate since all
the classes in C are feasible. The efficiency of the basic generation algorithm can be very much
improved if the generation of terms is driven by C rather than solely by the underlying signature.
As we will see below, the bottleneck (if any) of the approach is not the generation but the class
minimalisation.

Proof of concept Some feasibility experiments have been performed. We considered, for example,
context-dependent branch coverage for full Pascal. The experiment is summarized in Figure 4.
We derived all FSAs for the CDBC classes for the start symbol of the Pascal grammar. We also
minimalised the classes via |-]. Finally, we also generated a test set achieving coverage. Test set
generation consists of two phases. First, paths are derived from the automata for the various
classes. Then, the paths are completed to complete terms based on shortest completions [Pur72b].
All the computations were performed in SWI-Prolog [Wie00] relying on the FSA utilities [Noo97].
The system we used was a Sun Ultra 5. It turns out that the performance for computing the
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Category [Figure

Grammar constructors 142
States FSA for PG 141
Generation time FSA for PG | 5sec
CDBC

Number of classes 598
States for FSA of largest class| 153
Generation of all automata 5 min
Minimalisation time 2h
Path generation 5 min
Path completion 7 min

Fig. 4. Case study for Pascal

FSAs from a CDBC is acceptable. Coverage analysis and test set generation does also not pose
performance problems. Minimalisation is problematic which is not too much of a surprise due to
the quadratic formulation of |-|. We already had to use a simple heuristic for - C - on FSAs to speed
up the computation of |-|. In this heuristic, we first check - C - for the alphabets of the FSAs. The
challenging question is if the approach will scale up for even larger grammars, and other coverage
criteria than CDBC. The problem with the complexity of the minimalisation encouraged us to
think of other ways to approve coverage criteria. Since one is obliged to approve non-minimality
anyway, an obvious question is, if we can discipline the definition of coverage criteria any further
so that minimality is actually guaranteed. This is a topic for future work.

Generic testing technology We envision that the discussed framework contributes to generic testing
technology to form an integral part of generic language technology (just in the same way as nowa-
days parser generators, tree-walkers, code generators and others do). Similar ideas are pursued in
[DRW96] but on less formal grounds. According to the general tone in [HKO00], a testing framework
for a language is yet another tool to be derived from the formal language definition (maybe en-
riched by ingredients specific to testing). Generic language technology enriched by generic testing
technology would be beneficial in the following contexts:

— Design of domain-specific languages: To get acquainted with a language under development,
test case generation is helpful. One could simply derive a complete program from a particular
pattern at hand. Coverage analysis is useful to approve the completeness of a test suite for
an (evolving) language. The link between testing and language design has first been pointed
out in [Rie92]. We might also include intermediate and exchange formats, and also virtual
machines in our discussion (cf. [SB99]). Language design is a challenging application domain
for testing because one is maybe not satisfied with syntactically correct test programs, but the
generated programs should also be statically correct. In [HLOO], we show in a specific setting
how this can be accomplished.

— Automated software renovation: Test case characterisation can be used for querying source
code (cf. [PP94,MER99]) to approve transformation rules in automated software renovation
[CC90,BSV00]. Also, coverage analysis can be used to backup assumptions in the renovation
tools. One particular technique is to minimalise a grammar according to a code base at hand.
Testing concepts are also useful for the mere recovery of the grammars needed in software
renovation if syntax-based tools are employed (for the relevant languages in the code base).
We call the corresponding discipline grammar re-engineering or grammar recovery [LVO01].
Coverage analysis, coverage visualisation, and test set generation considerably helps to validate
the correctness and completeness of a recovered grammar (cf. [LAm01]).
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Abstract

We present an ongoing project on reasoning on properties of distributed systems based
on monitoring of their executions. The proposed approach uses SDL to model an
execution trace of the system under test and an existing model checker to perform the
analysis of properties of interest specified in the SDL-like language GOAL. For this
purpose, we use the available Object GEODE tool set. We describe how SDL models are
built from collected traces, and show how the desired properties are specified. An
exampleis used to illustrate the approach. The proposed methodology can be applied to
test distributed systems and to diagnose their faults.

1 Introduction

Recent technological advances, especially in communications, triggered a growing need
for distributed systems. However, the cost of developing such applications is getting
ever higher. In fact, the main characteristics of distributed systems, which include
asynchrony and absence of a global timing reference, add to the complexity of their
design and test. In addition, development of distributed systems rarely yields formal
specifications of their behavior that would make formal methods fully applicable in the
testing phase. A number of tools that ease the development problems in the debugging
and testing phase have been developed, both in the academia and industry. Such tools
usually rely on other tools that provide monitoring of distributed systems and produce
log files of execution traces. Debugging tools offer various levels of automation of
testing activities, from visualization of traces to property verification. There exists a
large body of work on developing various tools to visualize traces, see, e.g., [2, 15, 19].
Their goal isto facilitate efforts of the designer or tester for locating and correcting bugs
by filtering out unrelated data and properly visualizing executions of his concern. The
analysisis performed manually either online (simultaneously with the system execution)
or post mortem. The other group of tools targets the analysis phase by offering means to
automatically verify whether the system under test exhibits certain properties [8, 9, 13].
It is the task of the tester to formally specify the “suspected” property of the system.
Such property verification is based on execution traces using specially developed model
checking mechanisms.

Developing a tool for testing properties in execution traces, one usually faces a choice

of either to elaborate algorithms and to implement them in a specialized tool for a
specific class of properties or to reuse an off-the-shelf model checker. In the first
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scenario, one faces the daunting task of implementing from scratch al the phases of the
approach, i.e., modeling the system, specifying the properties of interest, and, most
importantly, building a model checker. Realizing difficulties inherent to this approach,
the work in [13] proposes to reuse an existing model checker in the last step of the
analysis. However, we are not aware of any attempt to apply commercia or research
model checkers to the whole process of property verification even in the post mortem
mode. Reuse of these tools allows the developers of debugging tools to rely on reliable
and highly sophisticated products, in which many years of research and experience have
been invested.

In this paper, we report on an ongoing research project that has the goal to evaluate the
applicability of a commercial model checking environment to automate the process of
post-mortem property testing in a recorded execution trace of a distributed system under
test. We decide to use the Specification and Description Language (SDL) to model the
aspects of the system under test. SDL was chosen because of its ability to model
adequately communicating systems as well as its user friendliness. In addition, the
existence of commercia design and analysis tools that support the language is a major
point in favor of SDL. We selected ObjectGEODE (OG) from Verilog (now Telelogic).
This tool allows not only modeling systems in SDL but also performing simulation and
model checking. The OG tool set provides the SDL-like language GOAL (GEODE
Object Automata Language) to specify the desired properties, which simplifies the task
of the user by relieving him from the burden of mastering temporal logic [1]. This, in
fact, adds greatly to the practicality of thetool.

The main issue in our project — automating the process of performing trace-based
analysis of distributed systems — can be detailed as follows: Given a system under test
(SUT), an executed trace that was collected by monitoring the SUT's behavior before,
and a set of properties (certain characteristics of interest), we need to verify within the
OG environment whether the SUT's behavior represented by the trace exhibits the
required properties. To do so, we build an SDL model of the system based on the
recorded trace, specify the properties of interest in GOAL, and use the OG model
checker to verify whether the specified properties are present or missing in the trace.

The remainder of this paper is organized as follows. The next section summarizes
related work. In Section 3, we describe our approach to solve the trace-based analysis
problem in distributed systems. We detail the approach and discuss the basic conditions
for its validity and consistence. In Section 4, we discuss some important properties for
the trace-based verification of distributed systems. Then in Section 5, we illustrate the
approach and the use of the tools through an example. Finally, we conclude the paper in
Section 6.

2 Redated Work

Different approaches exist for modeling properties of distributed systems. In [16], an
approach is devised to allow a debugger to halt the execution of the system at some
specified breakpoints that are defined as predicates of system’s events. However, the
expression power of the linked predicates is limited. In addition, the local state of each
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process needs to be known which is not aways feasible, especialy in the case of
distributed systems.

Much work on trace based analysis was done in the field of intrusion detection. The
work in [14] shows such an approach that targets intrusion detection in network systems
and models intrusion patterns using Colored Petri-Nets. The approach can be
generalized to cover awider range of properties, but it still lacks an implementation that
shows its efficiency. In [8], flow graphs are used to represent potential communications
between the processes of a distributed system. Properties, meanwhile, are represented
using quantified regular expressions (QRE). This approach requires deep knowledge of
tiny details in the processes of the tested system. This approach is not feasible all the
time and defies the advantage of using execution traces to test the system’s behavior.
The approach in [18] describes the tool GrIDS to detect large scale intrusion attacks on
network systems. The concept isto build activity graphs of the executions of the various
processes in the system by monitoring them individually and to analyze them based on
some reference rules to decide on an intrusion. The approach requires heavy means to
protect the GrIDS modul es themselves against attacks.

The papers [2] and [19] present an approach to visualize the collected traces. [9] and
[13] describe an approach, centered on the concept of the lattice, to perform trace
checking in distributed systems. Following this approach, a lattice is built, based on the
monitored events and the relations between them, to represent the system under test.
The lattice is then used in a model-checker to verify the behavior of the system against a
desired property. In a recent work [15], a method of specifying abstraction hierarchies
to define level-wise views of a distributed message-based system is outlined. This
method utilizes event-pattern mappings and complex events to represent a system's
behavior.

Similar to the approach in [13], we base our model on the concept of the lattice.
However, we suggest going further. We describe in SDL each component of the SUT
involved in the given trace as a state machine, and we let the SDL simulator in OG build
the composite (global) machine of the system (an SDL state graph) that represents the
same interleavings as the lattice. This is done at runtime when the model checker
verifies the given property (pattern). We believe that our approach steps further in the
direction of full automation of the process especially by means of a front-end tool that
builds the SDL models from the collected trace and helps the user specify the properties
of interest in the GOAL language.

3 The Proposed Approach

3.1 Overview

We base our work on two fundamental concepts that reflect concurrency in
communicating systems: a partially ordered set (poset) of events, where the partial order
is the traditional "happens before" relation [3], and the corresponding lattice. In fact,
these two concepts are at the heart of the main existing approaches to analyze traces of
distributed systems. For example, the approach of [13] considers building the lattice of
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the poset of the collected events and performing the verification of a pattern on the
lattice using existing model checking techniques. Similar to this approach, we consider
using an existing tool, rather than relying on home developed algorithms and methods
for model checking. In our post mortem analysis approach, we first build an SDL model
of a system from a collected trace (the trace is completed, i.e., we do a post mortem
analysis of a performed system run). Then we use the model checker, i.e., the
ObjectGEODE simulator, to perform the checking of a given property.

In detail, an SDL model of the tested system that relies on a given trace reflects the
following aspects: structure, behavior, communication, and data. The structure of the
system can be modeled using the hierarchy of system/block/process/procedure
statementsin SDL. In our case, it is sufficient to define a system with a single block that
is composed of several processes. The overall behavior of the system is modeled by the
joint behavior of a set of communicating processes in SDL. These processes correspond
to entities of the real system whose behaviors are recorded in the trace; thus making
each of the processes linear, as in most cases we cannot identify any two states of it, so
no cycles can be deduced. The representation of a process can be obtained by projecting
the collected trace into the set of events it executes: send, receive, and local events and
subsequently inserting states in between communication events, while representing local
events as SDL tasks. The asynchronous communication between processes is achieved
via signals with optional signal parameters (that represent exchanged data) and
channels. Input signals to a process are stored in a queue before reading them. Thus,
unknown delays in real communication channels of the distributed system are
represented by those of input queues, associated to each SDL process. This means that
in our framework, the whole communication media of the system is simply modeled
with individual queues of SDL processes.

The property to be checked (the pattern) is expressed as an observer [10] in the GOAL
language. A GOAL observer implements in fact a finite automaton with accepting states
[1]. GOAL is similar to SDL, but has some syntactic and semantic differences [1].
Observers are usually described in terms of entities (objects, signals etc.) of the tested
system, e.g., they can be associated to the SDL system. This makes communication
signals directly accessible for observation while other model data, e.g., variables and
states, are accessible to observers using probes. The latter represent pointers to SDL
entities. In addition, GOAL alows the declaration of two types of designated states:
success states and error states. Entering success states (error states) indicates that the
system respects (violates) the property expressed in the observer. The use of the
success/error convention is completely up to the user and has no formal meaning.

Once the representation of the distributed system and the property is complete, the
ObjectGeode model checker can be employed to verify whether the system satisfies the
property. This is achieved in the so-called exhaustive simulation mode, when the tool
performs all the possible executions of the system and builds a state graph of the SDL
system.

The state graph represents all the possible interleavings of events in the collected trace.

To perform model checking, the tool builds the synchronous product of the observer and
the specification of the system. The OG simulator outputs a report of the number of
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errors and successes encountered, and presents the scenarios that lead to the observer
errors and successes.

The approach based on the use of the OG environment can be summarized in the form

of a workflow shown in Figure 1. As it is clear from this figure, the implementation

efforts are reduced to building just a front-end to OG containing the three main blocks:

1. System specification tool that builds an SDL specification from the collected trace.

2. Pattern specification tool that eases the process of writing the patterns for
verification.

3. A user interface module that allows the operator to control the whole process.

M onitoring T ool

Trace

Front-End to OG

User System Pattern
Interface Specification [| Specification

e

Model checking results: Object GEODE
1. Pattern present or not Tool

2. Scenarios

Figure 1: The diagram of the workflow.

In order to model the behavior of the SUT in SDL, as it is recorded in the execution
trace, we haveto:

a) Match each receive event with its corresponding send event.
b) Preserveinthe SDL system’s behavior the local order of eventsin each process.
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3.2 Matching Receive with Send Events

The problem of matching receive and send events is crucial to determine the partial
order of events and eventually build an adequate (SDL) model from the recorded trace.
Much depends on how the distributed system is instrumented and what exactly is
monitored. In this paper, we assume that each event in the trace collected by the
monitoring system carry the following information:

Name and type of the event: Send, Receive, or Local.

ID of theissuing process.

Thelocal ordinal number of the event in the process.

The source process (for Receive).

The destination process(es) (for Send).

The message parameters of the event: a list of typed parameters that includes a
message name and other message attributes (for Send and Receive events).

The local parameters of the issuing process: alist of typed parameters that reflect its
current state.

ouhkwNE
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We assume that in a par of source and destination processes, each Receive event
matches with a single Send event in the sense that the values of all the message
parameters coincide. Moreover, we take for granted that in the given trace, each Send
event matches with at least one Receive event. The loca ordina number of events
allows us to compute a total order of events in each process. Such total order has to be
preserved in the partial order of the events in the whole system.

3.3 Preservation of the Event Orders

To illustrate a potential problem that is related to the violation of a local order by an
SDL model directly deduced from a given trace, we consider the trace represented by
the MSC in Figure 2. Process P1 issues a "Send" event S1, which reflects sending the
message m1 to P2. Upon receiving the message, process P2 issues the "Receive" event
R1. Similar events are generated when P3 sends the message m2 to P2. Notice that
events S1 and S2 are independent while R1 and R2 depend on S1 and S2, respectively.
The trace indicates that R1 occurs before R2 regardless of the order between S1 and S2.
In other words, it can be easily deduced from the trace that S1 < R1, S2 < R2, R1 < R2,
where < isthe "happened before" relation.

P1 P2 P3
s1 ml m2 52
R1
R2

Figure 2: M SC of the sampletrace.
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A simple SDL process corresponding to P1 should just output a single output signal m1.
The same appliesto P3. P2 in turn should just receive two signals, namely, m1 followed
by m2. When the OG simulator executes such SDL system, it treats S1 and S2 as
concurrent events, i.e., firing them in all possible orders ([S1, S2] and [S2, S1]). This
means the OG simulator reaches a global state where the queue of P2 contains the
signals m2 and m1 received in the reversed order, i.e.,, m2 precedes m1, contrary to what
the trace prescribes. In this state, the SDL specification of P2 foresees the reception of
m1l only; this process considers m2 as an implicit input and discards it. The resulting
global state graph would then contain an execution that violates the local order
perceived by P2.

It turns out that SDL offers a ssimple, elegant solution to this problem. To prevent a
signal loss, SDL contains the SAVE construct that prohibits the process in its current
state from consuming the declared signals from the queue. The saved signal is kept for
future consumption. In our example, the use of SAVE in the state with the input of
signal m1 would prevent the SDL process from consuming m2 first and thus prevents
the OG simulator from building executions that contradict to the given trace.

Therefore, we use the SAVE construct in each state of each SDL process to store all the
unexpected signals that the OG simulator may try to put into the queue. Adding Save
completes the construction of the model of the system that can be obtained from the
given trace. The resulting SDL model alows us to verify any system property that can
be specified in the Goal language.

4 Propertiesin Execution Traces

Here, we discuss the properties of distributed systems that can be verified with the
approach. To address this issue we turn to the properties that are believed to be mostly
used in practical applications. The existing research in the field has explored a wide
range of properties that can be sought in distributed systems. These properties can be
classified into two types: state based and event based.

Event based patterns alow detecting simple atomic or composite events in the behavior
of the SUT. State based patterns, on the other hand, formulate assertions on the state
variables of the processes in the SUT. The work of Dwyer et al. a Kansas State
University to build arepository of specification patterns (similar to design patterns) [7],
[11] shows an effort to cover both types of properties. For our project, we plan to
eventually build a repository of typica and frequently used specification property
templatesin GOAL.

To make the specification of patterns portable, a mapping to several formalisms (LTL,

CTL, GIL, QRE, and INCA Queries) has aready been provided in [11]. There are two

classes of patterns in the repository:

1. Occurrence patterns. They include patterns that express universality, existence,
absence, and bounded existence of an event (or state) or sequence of events (or
states).
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2. Order patterns. These express relations between events (or states) or sequences of
events (or states); and they include precedence, response, chain precedence, and
chain response.

Each pattern is defined over a scope that expresses the extent of the execution, over
which the pattern must hold. Five basic kinds of scopes exist in the repository. A scope
of a pattern can be: global (the complete execution), before (up to a given state/event in
the execution), after (the part of the execution after a given state/event), between (any
part of the execution from one given state/event to another given state/event), or after-
until (like between but the designated part of the execution continues even if the second
state/event does not occur). In the repository, each scope is determined by specifying
state/event delimiters for the pattern: the scope consists of all states/events beginning
with the starting state/event and up to but not including the ending state/event [11].

We present here two illustrative examples, the universality and existence properties.
Universality: We consider the global universality of a predicate P, where P represents

an assertion on events or state formula. This pattern can be stated in CTL as: AG(P).
The corresponding observer is shown in Figure 3.

event observer universality

error state g2; Iﬁ

- B

Figure 3: Observer for global universality.

To check that the property P holds in a given system, we should detect whether the
negation of P ever occurs in it. In the case of events, the negation would mean the
occurrence of any event other than in P (P might be a disunction of events). In the case
of a state formula, the negation of the Boolean predicate P is required. The
corresponding observer in GOAL uses the WHEN construct to describe the universality
property. The property holds if the observer does not terminate in the error state s2.

Existence: Here, we also consider the global existence of P. This pattern is stated in
CTL as. AF(P). The corresponding observer is shown in Figure 4.

Clearly, this observer has to verify P on al the paths of the state graph built from the

trace. To do so, we let the observer watch for P while concurrently checking the
termination of the involved processes using assertions on the state of each process.
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When all the processes reach their fina states, and P has not been detected yet, the
observer enters an error state. Note that the negation of the predicate itself should hold
true when the processes reach the final states to account for the case when P holds in the
final state of any of the processes.

observer existence global

error state s3; j .

sl
|
(probell state = probell!final) and
(probe2!state = probe2!final).... and ( not P)

Figure 4. Observer for global existence of P.

The presented examples confirm that GOAL alows the expression of a wide range of
patterns.

5 Example

We use an example to further illustrate our approach. Figure 5 shows an event sequence
diagram deduced from a hypothetical trace. Here we do not discuss its structure to keep
the example simple and transparent. In this trace, the two processes communicate
between each other and issue local events. All Send, Receive and Local events are
considered to be observable by the monitor.

n1=3 mlpr2  nl=4 sm2-prl m3-prl n1=5

prl

pr2

n2=6  smi-pr2 n2=4 sm3-pr2 m2-prl n2=2

Figure5: The event sequence of the collected trace, where hanging arrows correspond to local
events, and sloped arrows to communications.
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The two processes prl and pr2 have local variables nl and n2, respectively, that are
updated during the execution of the two processes. The values of these variables are
sent in Local events only. From the trace in Figure 5, the representation of both
processes can be extracted as a sequence of events belonging to either process.

Process prl isrepresented in the trace by the following event sequence:

1. Locd event with nl instantiated to 3, n1=3.

2. Receive event, denoted sm1_pr2, this indicates that the message #1 is received; it is
amessage from pr2.

3. Loca event n1=4.

4. Send event, denoted sm2_prl, this indicates that the message #2 is sent by prl to
pr2.

5. Receive event, denoted rm3_pr2, this indicates that the message #3 is received; it is
amessage from pr2.

6. Local event n1=5.

Similarly, the second process pr2 is represented in the trace by the following event
sequence:

Local event n2=6.

Send event sm1 pr2.

Local event n2=4.

Send event sm3_pr2.

Receive event rm2_prl.

Loca event n2=2.

ouhkwNE

The block diagram and the corresponding processes of the SDL model are shown in
Figures 6, 7, and 8, respectively. Communication between the two processes is carried
out through a two-way channel. Note that, in Figures 7 and 8, we model the Local
events of each process using the TASK construct of SDL. On the other hand, we use the
message names to represent the communication eventsin the SDL model.

block Blockl
prl pr2
[ m1, m2] Channel [m3]
- 7 - 7

Figure 6: Block diagram of the system model in SDL.
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process prl

dcl nlinteger ;& @ < s1 ) < s3
I

- — - < i
;; |

*
| I
s6
nl:=4 m3

process p2

dcl n2 integer; N < s1 ) < s2 ) ( s3
I I I
n2:=6 < true > < true > < true

0 OO

Figure 8: The SDL modd for the second process.
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The OG simulator returns the state graph with 27 states and 40 transitions described in
textual representation. The lattice itself is shown in Figure 9.

The transitions are |abeled with the names of the corresponding events. Asfor the states,
they express local states of the processes and the corresponding values of the variables.
Here, we only show the local variables of the processes. We use them to formulate the
patterns we would like to recognize with the model checker and to demonstrate that they
are eventually identified correctly. The sign "?" indicates the fact that the value of the
corresponding variable is unknown in the corresponding state as there was no report
from the process on the value of this variable yet. As a result, the detection of a pattern
formulated in terms of both variables cannot be accurately performed in any of the five
global states, where the value of either variable is still unknown. Note that the OG
simulator assumes zero values for these variables by default.
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Figure9: Thelattice of the collected trace of events. (sm1_pr2 standsfor send m1 by process pr2,
and rm1_pr2 standsfor receive m1 from process pr2, and local events areindicated by the variables
and their values)

To fix this problem, we introduce two auxiliary Boolean variables in the SDL models of
the processes that act as flags. After the first assignment on a variable (n1 or n2) is
done, the corresponding flag is set. This amounts to modifying only the transitions that
first affect the variables. The modified transitions of prl and pr2 are shown in Figure 10
a) and b), respectively. The settings of the flags are then used in order to initialize any
observers that watch the values of the variables.
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fl1:= true fl2:=true

sl
sl

@ (b)

Figure 10: The modified transitions of prl (a) and pr2 (b).

For our example, we consider the following two patterns. The patterns use the values of
the two variables, n1 and n2.

Pattern 1: It is possible that the variable n2 exceeds the variable n1 by 2 or more, i.e,,
n2>nl+ 2, and later nl exceeds n2 by 2 or more, i.e., N1 >n2 + 2.

Note that the pattern expresses a temporal property. It can be thought of as an
instantiation of the existence pattern with scope "after". We check the occurrence of the
state formula P = (n1 > n2 + 2) after the state formula Q = (n2 > nl1 + 2). By direct
ingpection of the graph in Figure 9, one can check that this pattern is present. Clearly,
there are five adjacent global states of the system (shown in bold frames), where the
condition Q holds. From either state, the system can reach the other three states (also
shown in bold frames) where P holds.

In order to illustrate a pattern that is not present in the given trace, we reverse the order
of the two predicatesin Pattern 1.

Pattern 2: It is possible that the variable n1 exceeds the variable n2 by 2 or more, i.e,,
nl>n2+ 2, and later n2 exceedsnl by 2 or more, i.e, n2>nl+ 2.

Obvioudly, this pattern is not in the observed behavior of the system.

We build two GOAL observers that monitor the values of n1 and n2, and implement the
patterns. The two observers for Pattern 1 and Pattern 2 are shown in Figure 11 on the
left and right side, respectively. Note how the flags are used to initialize the observers.
The observation of the values of the variables does not begin until the flags are set.

The exhaustive simulation of the SDL models together with the observers allows us to
verify each property in the trace. The results of the exhaustive simulation (Figure 12)
show that there are three scenarios that verify the existence of Pattern 1. On the other
hand, Pattern 2 is not detected in the collected trace; no scenario leads to the success
state of the observer. These results could be verified by inspecting Figure 9.
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event observer patternl event observer pattern2

'

success state  s3; ﬁ S| |success state s3; 'ﬁ s0

< obpl!fl1 = true and obp2!fl2 =true > < obpl!fl1 = true and obp2!fl2 =true >

- < obpl!nl >= obp2!n2+2 > - < obp2!nl >= obpl!nl+2 >

< 3 ) < obp2!n2>= obpl!nl+2 > ( s3 ) < obpl!n1>= obp2!n2+2 >

I
I

4
4

I
I

Figure 11: The observer for patterns 1 (left) and 2 (right).

Number of states : 44

Number of transitions : 64
Maximum depth reached : 13
duration : 0 mn 1 s

o

Number of exceptions
Number of deadlocks : 4

Number of stop conditions : 0

Transitions coverage rate : 100.00 (0 transitions not covered)
States coverage rate : 100.00 (0 states not covered)

Basic blocks coverage rate : 100.00 (0 Dbasic Dblocks not
covered)

Number of errors : 0

Number of success : 3

observer antl: 0 errors, 3 success
observer ant2: 0 errors, 0 success

Figure 12: Verification resultsfor the two patterns.

6 Conclusions

We proposed an approach to property verification of execution traces from distributed
systems that is based on SDL and uses the commercial off-the-shelf model checker, the
ObjectGEODE simulator. The approach assists in checking whether the distributed
system satisfies certain properties and in pinning down errorsto their origins.

The suggested approach takes into account the usua lack of forma design
specifications in practice. It requires merely that the aspects of the distributed system
the designer or tester is interested in be modeled as patterns. The approach relies on the
availability of atracing and monitoring tool that must be integrated with the distributed
system to obtain an execution trace as the basis for analysis. It turns out that in practice
this requirement is not hard to meet since developers usualy implement their own
tracing mechanisms to help them debug the system. Moreover, non-intrusive methods
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exist aready for a number of operating systems that do not require changes of the
original source code to collect trace data.

The validity of our approach depends on two main factors. correct matching of
communication events and preservation of the local orders of events as stated in the
collected traces. Concerning the first factor, we stated the required assumptions on the
trace to guarantee correct matching. As for the second factor, we use the SDL special
construct "SAVE" to preserve the local orders of events.

In addition, we have considered the problem of specifying the desired properties. For
this purpose, we used a repository of specification patterns [9], and we demonstrated
how typical patterns are mapped into GOAL observers. Moreover, an example has been
used to illustrate the approach.

Finally, this ongoing work includes implementing the front-end tool that automates the
process of extracting the SDL models and supports the specification of properties in
GOAL. Currently, the finished parts of the tool alow us to build SDL models from
execution traces of real systems.

Acknowledgements. Siemens AG, Germany, financially supports this research project.
Fruitful discussions on observers and Goal language with R. Groz and D. Vincent are
greatly appreciated.
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Abstract

This paper presents a formal approach to the practical test selection problem
that arises in conformance test laboratories when the question is which test cases
from a given test suite should be executed. The existing standard ([1]), which
provides a formal framework to conformance testing, does not deal with this
aspect, although it is an important part of the test laboratories’ activity. Our
goal is to work out a theoretical background to formal methods tackling the test
selection problem. To this aim, we define the relevant notions unambiguously.

Keywords: Telecommunication Systems, Conformance Testing, Test Selection,
Formal Approach

1 Introduction

The reduction of the time or effort put into conformance testing while keeping the
test coverage under control is very important for those who perform conformance
testing, usually in a test laboratory. If the time for conformance testing is limited,
i.e., there is no time to execute all the test cases, then testers have to select the most
efficient test cases from the whole test suite in order to make testing possible within
a shorter period of time. A good selection has important economic advantages. Test
laboratories can complete testing faster or they can achieve higher coverage in a
given time. Therefore, a method which can help them in making the selection more
efficient has considerable practical advantages.

Such a method should be efficient, it should make the test process faster by
losing only a relatively small part of coverage. It also has to be applicable to different
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types of real-life protocols as the laboratories have to test several implementations of
different vendors. The method has to be flexible, meaning that special preferences of
the test laboratories and their knowledge of the specific protocol can be incorporated.
An important requirement of any kind of testing is that it has to be reproducible,
that is, the selection can be repeated if it is needed and the same input data should
result in the same selected test set, to ensure objective decisions.

To satisfy these requirements formal methods have to be used. But formal meth-
ods need formal notations. The main purpose of this paper is to present a formal
description of the test selection problem by introducing a mathematical model. We
first define the notions and relations relevant to test selection formally, then using
these definitions we translate the test selection to two optimization problems.

The existing methods do not handle the problem from the practical point of
view. Their aim is either to find efficient test generation methods (see e.g. [2]),
the purpose of which is to produce an optimal test suite, or to provide a generic
framework to test selection. The most elaborated method of this latter approach is
due to Tretmans ([3]), which bases on the Labeled Transition System description of
protocols. Another theoretical test selection method is the metric based selection ([4,
5, 6]), which uses execution sequences to describe the protocol’s behaviour. Despite
the unarguable theoretical advantages of these methods (including test generation),
their main drawback is that they cannot easily be applied in real-life situations. This
is mainly because they use formal notations that are not available (and cannot be
expected that they will be available in the near future) for any real protocol.

Our approach, however, follows the practice by selecting test cases from the
Abstract Test Suite (ATS) of a protocol. Besides the fact that it is the ATS that
is used in test laboratories, another advantage of using it as a basis for selection is
that it is the only available standardized form in conformance testing. To achieve
minimal testing time for a given lower bound of coverage or maximal coverage for an
upper bound of the cost, our method determines which test cases have to be selected
for execution. The method is protocol independent, so it can be used in the testing
of any protocol.

In what follows, we give a short introduction to conformance testing, listing
the most important notions that are relevant to test selection. Then, in Section 3,
we define these notions formally, and introduce a new concept, the subpurposes.
Section 4 presents the mathematical model of test selection. In Section 5 we show
how the theory can be put in practice.

2 Conformance testing

Conformance testing is an important step in the life-cycle of telecommunication
protocols ([7]). Its purpose is to check whether the implemented protocol is conform
to standards, and by that to increase the probability that different implementations
are able to interwork. Conformance testing involves verifying that the external



behaviour of the implementations comply with the requirements contained in their
relevant protocol specifications ([8]).

As a background to our method, in this section we introduce the most important
and relevant notions of conformance testing:

Conformance requirements During conformance testing, a protocol is tested
to ensure that it meets the conformance requirements contained informally in the
relevant protocol specification ([8]). Basically, a protocol specification is made up of
the conformance requirements.

Test purposes, test cases The standard ([9]) defines a Test Purpose (TP) as
“a prose description of a well defined objective of testing, focusing on a single con-
formance requirement or a set of related conformance requirements as specified in
the appropriate OSI specification (e.g.: verifying the support of a specific value of a
specific parameter)”.

Standardization institutes collect the conformance requirements of a protocol
specification and produce test purpose documents. These standardized documents
contain several test purposes in a well-defined form. Different standardization in-
stitutes use different forms. For example, within ETSI this task is described in the
“Test Purpose style guide” ([10]), guiding the document writers in preparing a test
purpose document.

A test purpose is usually based on a single conformance requirement. In practice,
however, test purposes may well concern a set of conformance requirements. The
“Test Purpose style guide” lists the following cases when this is allowed: When
the test case concerns an aspect specific to a profile, or when the size of the ATS
demands a limitation in the number of test purposes ([10]).

Based on the test purpose document, Test Cases (TCs) are derived: one test
case for each test purpose. This derivation can be done automatically or manually.
The automatic test case derivation is based on test generation methods (see e.g.:
[2]). The manual test case writing focuses on the protocol specification and the
informally given conformance requirements collected in the test purpose document.

The Abstract Test Suite In order to get a reliable and repeatable verdict of
conformance testing, a standardized test suite, the Abstract Test Suite (ATS) has
to be used. The ATS contains a considerable number of test cases, which focus on
the specific parts of the protocols’ behaviour described in their purposes, and which
can be executed independently from each other. The test suite is called abstract
because it is independent from the implementation. This implies that an ATS is not
directly executable, as it needs further parameterization and compilation.

Ideally, an ATS should be complete, that is, an implementation passes it if and
only if the implementation is correct. Since it is generally not possible to construct
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a finite complete test suite, an ATS is required to be sound, meaning that all imple-
mentations that do not pass it are not correct. A sound test suite is complete if and
only if it is also exhaustive; that is, if all passing implementations are conforming

([1)-

Tree and Tabular Combined Notation (TTCN) Test suites must be specified
according to a test notation. A good test notation is well-defined, independent of
the implementation, and is generally accepted. The standard ISO 9646 recommends
a semi-formal language, the Tree and Tabular Combined Notation (TTCN).
TTCN can be given in two forms: a graphical form, denoted as TTCN.GR, and
a machine-processable form, denoted as TTCN.MP. The graphical form is defined
using tabular proformas, thus it is suitable for human reading or visual interpreta-
tion and it is easy to understand. TTCN.MP is suitable for transmission of TTCN
descriptions between different machines and is possibly suitable for other automated
processing. Consequently, TTCN is defined in such a way that its automatic execu-
tion is possible. In fact, the two different representations of an ATS in graphical and
machine processable format are equivalent. Moreover, using a commercial TTCN
editor, it is easy to convert a TTCN.GR to TTCN.MP and vice versa ([7, 9, 11]).

Test selection The methodology of conformance testing ([9]) defines test selec-
tion as a selection process of test cases from an Abstract Test Suite based on specific
parameter values contained in the Protocol Implementation Conformance Statement
(PICS) and the Protocol Implementation eXtra Information for Testing (PIXIT).
The test laboratory selects the set of test cases the corresponding protocol behavior
of which are actually implemented in the IUT. This is usually an automatic selec-
tion and keeps the mandatory capabilities, as well as the optional and conditional
capabilities in view during the selection process ([7]).

In this paper, however, we will use the phrase test selection in a different context.
In our terms, and in this we follow [3], test selection means selecting test cases
from a given test suite in order to get a test set which is executable within limited
resources. During the conformance testing process, the preparation for testing and
the test operation is time intensive and expensive. For this reason, test laboratories
usually have to omit some test cases and execute only certain ones ([12]). By this
selection, the soundness of the test suite is kept, though its error-detecting capability
may decrease.

Coverage The coverage ([1]) is a widely used, though not exactly defined, metric
to measure the completeness of a set of test cases with respect to checking the
conformance of a protocol. Generally speaking, the coverage of a test suite quantifies
the percentage the protocol behaviour is ‘covered’. In other words, the coverage is
a measurement of the error-detecting capabilities of a test suite. The coverage can
be used to compare test suites; high coverage expresses high quality test suite.



As the whole ATS is usually not complete, the requirements it tests may not
cover the entire behaviour of the protocol. However, since the task is to select test
cases of a given ATS, the coverage of a set of test cases can be viewed as its relative
completeness with respect to the whole ATS. That is, it measures how much the
requirements of the test suite are covered by the selected test cases. In other words,
we can assume the coverage of the whole ATS to be 100%.

3 Formal description

In the previous sections we outlined conformance testing and introduced the test se-
lection problem. We listed the requirements an efficient test selection method has to
fulfill: it has to be efficient and reproducible. Furthermore, an efficient test selection
method has to stand alone, as in that it has to involve as little human intervention
as possible. These requirements need the automation of the test selection process.
On the other hand, as we are going to apply a mathematical model to test selection,
we have to formalize it.

In this section we give a formal description of the basic notations of confor-
mance testing presented previously, and introduce a new notation: the subpurposes.
They are mathematically well defined parts of a protocol which are automatically
detectable in the ATS. Finally, we present how the data elements can be used in the
test selection method.

3.1 Definition of subpurposes

Let us suppose that the standardized test suite T'S = {t1, t, ..., t,} consisting of test
cases t1,ta,...,t, and the set of corresponding test purposes TP = {p1,p2,...,Pn}
are given. As we explained in Section 2, there is a one-to-one connection between
the test cases and test purposes: p; corresponds to t; (i =1,2,...,n ).

Let REQ = {ri,r2,...,mm} denote the set of conformance requirements. As
defined in Section 2, test purposes are related to a set of conformance requirements,
and a test case is written to check the requirements involved in the corresponding
test purpose. The following relation describes this connection between the test cases
and the conformance requirements:

t; check r; 24 t; is able to check r; (1)

Although test purposes describe conformance requirements, this description is
prose and informal. To apply formal methods, we need a formal representation of
test purposes. To this aim, let us introduce the abstract test purpose P, for each
test case t; as a set of conformance requirements that the test case is able to check:

P = {r € REQ | ticheckr} (i=1,2,...,n).
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Note that in the ETSI terminology ([10]) “formal test purpose” is used to de-
note a special format of test purposes. This format is a structured description, but
it is not suitable for automated processing. On the other hand, conformance re-
quirements, which describe the basic features of the protocol behaviour that have to
checked to ensure the conformance of the protocol, are not given in an appropriate,
automatically processable or even formal format.

Hence, neither the test purposes nor the conformance requirements are available
in a format that is suitable for automated test selection. That is why we introduce
subpurposes.

Definition 1. The subpurposes are automatically detectable approximations of the
conformance requirements.

Figure 1 illustrates the relationship between conformance requirements, test pur-
poses and subpurposes. Test purposes are made up of conformance requirements,
while the requirements can be associated with a set of subpurposes.

Requirement - p2
Test Purpose

re

Subpér(poseﬁ

Figure 1: Requirements, test purposes and subpurposes

Conformance requirements provide a subdivision of the protocol behaviour: ev-
ery relevant aspect of the protocol is described with one or more requirements.
Subpurposes provide another subdivision. As both the entire set of conformance
requirements and the subpurposes cover the protocol behaviour, the building blocks
of the original subdivision (the conformance requirements) can be described by the
building blocks of the second subdivision (the subpurposes).

To formulate this relationship, let SP = {s1, s2, ..., sk} be the set of subpurposes
and for each requirement we associate a subset of SP:

rj—— SP., CSPfor j=1,2,....,m (2)



We can extend relation check to subpurposes by defining the set of subpurposes
that are checked by test case t; (i =1,2,...,n ):

t;— S, C SP where S, " {s € SP|3r € REQ, r € P,,, s € SP,}

. 3)
t; check s; Cé:{ sj € Sy,

So far we have described the theoretical way of introducing subpurposes and
defining sets of Sy,. In practice, the requirements and therefore the sets P, are
not given, so we have to define the sets S;, directly and skipping the association
described in (2). We discuss this method in the next section.

As a summary, we classified the most important notions of test selection with
respect to their properties (Table 1). Test cases and test purposes are available in
standardized test documents, while subpurposes and requirements are usually not.
The difference between requirements (given or not given) and subpurposes is that
subpurposes are automatically detectable by definition.

Table 1: The classification of the most important notions of test selection

‘ H Automatically detectable ‘ Not automatically detectable ‘

Given test case test purpose

Not given subpurpose requirement

3.2 Determination of subpurposes

In the previous section we introduced subpurposes as automatically detectable parts
of the protocol behaviour which can approximate the conformance requirements. In
this section we present a possible way to determine subpurposes.

The conformance requirements have four components ([13]):

e Messages and their parameters
e Time periods

States

e Protocol mechanisms

Furthermore, according to the standard ([9]), OSI protocol specifications define
dynamic conformance requirements in terms of Protocol Data Units (PDUs) and
Abstract Service Primitives (ASPs), that is, data elements.

On the other hand, messages and their parameters from the list above, in other
words the data, play an increasingly important role in recent protocols. Take for
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example the modern WWW protocols (HTTP1.1), or the latest internet protocol
(IPv6).

For these reasons, we make the data elements equivalent with the subpurposes.
That is, we relate the purpose of a test case to the set of data elements sent or
received in the test case. Of course, this way we get only an approximation of the
real purpose of the test case but as experimental results show, this approach can be
justified.

On the other hand, data elements used in a test case can be detected automati-
cally with the help of the TTCN machine processable format of an ATS.

To make it formal, let DATA = {d;,ds,...,d,} be the data elements used by
the protocol. To every test case t; we assign the protocol data elements sent or
received in t;:

Dy, = {d € DATA | d used in t;}

Now, as mentioned above, let us map the data elements onto subpurposes, i.e.,
SP := DAT A by identifying the set of subpurposes checked by a test case with the
set of data elements used in it:

StZ' = Dti, (z=1,2,,n) (4)

3.3 Abstract data levels

Data elements are not well-defined notions in conformance testing, for different
reasons. First, because protocols are different with respect to data content. There
are protocols where the data have much more importance than the behaviour control
part, while in other protocols there is more emphasis on the control. In this latter
case, the variety of data is usually poor and its characterizing part lies ‘deeper’, for
example, in the parameters of the messages.

Secondly, different standardization institutes and test suite writers issue ATSs
written in different ways. One prefers to use few, highly parameterized ASPs and
PDUs, while the other employs more ASP and PDU constraints.

To get a generic view of data elements, let us now examine what is common
in the data of every ATS. Evidently, there is always a hierarchy in data elements.
There are data elements on higher or lower level. Thus, let us define the abstract
data levels as a generic frame to describe this hierarchy. A simple possible set of
abstract data levels is the following:

1. level of data type
2. level of data

3. level of data parameter



This model is the simplest possible one, as further levels, such as the level of the
parameters’ parameters can be included, depending on the structure of the data.

To determine the subpurposes, we have to decide which level is the most impor-
tant in the ATS. The level which expresses most of the protocol behaviour will play
the role of subpurposes. This decision is made intuitively, based on the protocol and
the way the ATS was written.

If the ATS is written in TTCN, the data levels are the following:

1. ASP and/or PDU type level
2. ASP and/or PDU constraint level

3. parameters of ASPs and/or PDUs: simple types, structured types, etc...

In 2000, ETSI standardized the new version of TTCN (TTCN version 3 [14]).
The TTCN-3 does not distinguish between ASP and PDU types, so it is necessary
to change the above structure:

1. message type level
2. template level

3. parameters of template level

Naturally, by the abstract data levels this hierarchy can be applied to any other
testing language.

4 Mathematical model for test selection

In the previous section we gave formal definition of the relations relevant to test
selection. Now we show that using this formal description, a mathematical model
of the test selection problem can be developed. In that we will use the theory of
mathematical programming by introducing two optimization problems. We also
formally define the cost and the coverage of a test set.

We partly presented these ideas in [15], [17] and [18]. Here we show how the
formal description of the previous section helps in unambiguous definitions.

4.1 Problem formulation

Let us recall that T'S = {t1,t2,...,t,} and SP = {s1, s2,..., s} denote the set of
test cases and subpurposes related to a test suite. We define a positive cost function
c: TS — Ry measuring the amount of resources the execution of a test case requires.
The relative importance of the subpurposes with respect to the correct behaviour of
the protocol is represented by the weight function w : SP — Ry . In Section 5.2 we
will discuss how these functions can be determined.
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In (3) we defined S;,, the subset of subpurposes test case ¢; is able to check. From
another point of view, a subset of test cases, T, is associated with each subpurpose
s; (i=1,2,...,k) containing the test cases which are able to check the subpurpose:

Ts, def {t € T | tcheck s;} (i=1,2,...,n).

We will call these tests related to the subpurpose. For the sake of simpler no-
tations, let b; denote the number of test cases related to subpurpose s;, namely let
b; = |Ts,| for each subpurpose.

Following the definitions presented above, we can define the subpurpose-test
case incidence matrix which we will denote as A. Subpurposes (s1, S2,. .., Sk)
are placed in the rows, test cases (t1,t2,...,t,) are placed in the columns. Matrix
A has the following entries:

1 if t; checks;
Alsity) = { 0 otherwise
Let T be an arbitrary set of the test cases, T' C T'S. The cost of this test set is
defined as the sum of the costs of the test cases belonging to 1"

o(T) = clt) (5)

teT

Let cov(T) denote the coverage of test set T', that is cov(T') measures how large part
of the protocol is tested by T' (below, in (8), we give a formal definition as well).

Two optimization problems can be defined according to our purposes and limi-
tations.

Minimal cost problem: Given a lower bound (K) for the coverage. Find the set
of test cases that satisfies this bound with minimal cost.

min ¢(T)
subject to cov(T) > K (6)
TCTS

Maximal coverage problem: Given an upper bound (L) for the cost. Find the
subset of test cases the cost of which is not more than L and checks as large
part of the protocol (i.e. has as big coverage) as possible.

max cov(T)
subject to ¢(T) <L (7)
TCTS



Subpurposes represent separate parts of the protocol behaviour and their impor-
tance is denoted by their weights. This implies that the coverage of a test set can
be expressed as the weighted sum of the individual coverages of the subpurposes.

cov(T) = Z w(s;) - purpcov(s;, T) (8)
s;, €SP

where purpcov(s;,T) measures in what proportion 7' covers the basic conformance
feature represented by subpurpose s;. Naturally, 0 < purpcov(s;,T) < 1 for all
si € SPand T C TS. It is assumed that purpcov(s;,T') is a function of the number
of test cases that are related to s; and belong to test set T

purpcov(s;, T) = fi(|Ts, NT]) (i=1,2,...,k)

for some f; : {0,1,...,|Ts,|} — [0, 1]. The exact values of these functions depend on
the methodology the construction of the test suite followed. We presented possible
alternatives in [15], where we called them coverage models as they determine the
coverage of a test set. We will use this name in this paper too.

5 Test selection process

In this section we show how the theory can be turned into practice. We give a
possible approach to the test selection process using the previously presented math-
ematical apparatus.

optimization problem

coverage model
cost 1
Y

TTCN.MP _ | CREATION OF | inc. matrix OPTIMIZATION selected TESTER
THE MATRIX test set
| A
weight !
bound

Figure 2: The process of selection
Figure 2 illustrates the main phases of the test selection process. Its steps are:

1. Creating the subpurpose-test case incidence matrix manually or automatically.

2. Determining the cost and weight functions (¢ and w), deciding which optimiza-
tion problem (minimal cost or maximal coverage) and coverage model will be
used, inputting the cost or coverage bound (L or K), and choosing a suitable
optimization algorithm.
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3. Loading the selected test cases into the tester.

For a given ATS of a protocol, the first step (i.e. the creation of the incidence
matrix) has to be done only once. This step can be the most time consuming of the
test selection process and it is where the most human interface is necessary. (If done
with the manual matrix filling method, described later.) The fact that the same
incidence matrix can be used for subsequent selections means that the efficiency of
test selection can be strongly improved once the incidence matrix is available from
a previous session.

Furthermore, if the incidence matrix is available, we can try to carry out the
optimization for different cost, weight functions, optimization problems or different
coverage models and bounds in order to find the best test set that meet our aims.

5.1 Creation of the subpurpose-test case incidence matrix

In the test selection process, the most crucial step is the creation of the subpurpose-
test case incidence matrix. The incidence matrix contains the most crucial informa-
tion about the protocol, that is why it is so important to fill this matrix precisely.
On the other hand, this matrix filling can be done only once for a protocol, and it
is possible to use it in any optimization method later as many times as needed.

5.1.1 Manual matrix filling

There are protocols (see e.g.: [16]) in which conformance requirements are given in
the ATS standard accompanied by the test cases which can be used to check them.
In this case we do not need to deal with deriving subpurposes because we can easily
construct a matrix which describe the connection between the requirements and test
cases.

In other cases, when the requirements are not given explicitly, they have to be
determined, or approximated by subpurposes. If the ATS is not given in a ma-
chine processable form, (i.e.: in TTCN.MP) the incidence matrix can be filled only
manually. In this case we cannot speak about subpurposes as they have to be auto-
matically detectable by definition. What we do instead is finding the conformance
requirements implicitly given in the protocol description and the test cases and
fill the requirement-test case incidence matrix by examining which test case checks
which requirement. This is a difficult task and requires deep knowledge of the cho-
sen protocol and test description, as well as considerable time for real-life protocols.
On the upside, the matrix filled by an expert is the one which is the closest to the
theoretical conformance requirement-test case incidence matrix.

An example when manual matrix filling is needed is function testing, a test
methodology widely used in e.g. Ericsson. This test method uses neither the con-
formance testing methodology nor the TTCN. For this reason it is impossible to
create the incidence matrix automatically based on TTCN.MP and the manual ma-
trix filling has to be used.



5.1.2 Automatic matrix filling

When a machine processable form of the ATS (usually TTCN.MP) is given, then
the cumbersome manual matrix filling can be avoided by using subpurposes. Sub-
purposes are defined as automatically detectable parts of the protocol’s behaviour
(see Section 3.1), so automatic methods can be used to fill the subpurpose-test case
incidence matrix.

A good subpurpose definition result in closer approximation of the theoretical
requirement-test case incidence matrix, so one has to pay due attention to this step.
On the other hand, the determination of the subpurposes needs only a good general
view of the structure of the ATS and the behaviour of the protocol. It does not
require detailed examination and comparison of test cases as in the case of the
manual matrix filling where the conformance requirements and their relation to the
test cases have to be fully detected.

We have to decide first what segment of the protocol is going to play the role of
subpurposes, in other words, following Section 3.2, we have to choose an abstract
data level (see Section 3.3) which will represent the subpurposes. Although PDUs
are the most natural candidates for subpurposes, sometimes it is worth stepping
one layer up or down, and choosing the PDU types or the parameters of the PDUs
respectively to be subpurposes, if it results in more efficient selection. The most
appropriate choice of subpurposes depends on the structure of the ATS.

We implemented a PERL program that is able to find the PDUs used in the
test cases and fill the incidence matrix independently of the size of the ATS. This
program can also detect PDUs that are used in the test steps or defaults appearing
in the test case. So the PDUs related to a test case are sent either in its main body
or in a test step or default used in the test case. By this the dependencies of he test
cases are handled. For example, when a test case appears as the preamble of another
test case, the incidence matrix will reflect this fact, consequently this dependency is
taken into account in the optimization. The program also deletes the all zero rows
if there are any (i.e.: eliminate the PDUs not used in the ATS), and merge equal
rows, because in this case the PDUs related to these rows can be together viewed
as one subpurpose.

5.2 Creation of cost and weight vectors

Determining the costs of the tests and the weights of the subpurposes is up to the test
laboratories’ individual preferences, but we think that choosing them to be the same
for each test case and subpurpose, respectively is the most natural solution. As for
the coverage, this is because at first sight there is no theoretical basis to distinguish
between the subpurposes. The costs can be chosen to be the same because the most
time consuming task during the conformance assessment process is preparation and
parameterization, the time of which is in direct proportion to the number of the
executed tests. Therefore, in most cases all-one vectors can be used as cost and
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weight vectors. In our experiments we also used randomly generated vectors as well
as costs and weights based on the estimation of experts.

5.3 Optimization

Having the subpurpose-test case incidence matrix, the cost and weight vectors at
hand we have to decide on the optimization problem, coverage model and upper or
lower bound. Then the optimization problem should be solved to achieve an optimal
test set which can be executed. There are several possible methods to find optimal
or very good quality suboptimal solutions of a mathematical programming problem.

We can transform them to an Integer Linear Programming (ILP) problem and
solve with efficient optimization algorithms (e.g.: Branch and Bound) using com-
mercial ILP solving softwares. We published this way in [17]. Another possibility is
to directly solve the optimization problems with heuristic algorithms, as presented
in [18]. Anyway, the result of the optimization is a test set which is the best possible
subject to the constraint, and which, because it was selected from the ATS, can be
directly loaded into the tester.

6 Conclusion

We have introduced the test selection problem arising in the practice of conformance
test laboratories, where the task is to select test cases for execution from the Abstract
Test Suite. We have given a formal description of the problem, on the basis of which
a mathematical model of test selection can be given. We have presented a possible
approach which translates test selection to mathematical programming problems.
We have also shown how this model fits in the practice of conformance testing,
making it more efficient.

In particular, we defined subpurposes, an automatically detectable approxima-
tion of the conformance requirements and the abstract data levels, which help in
finding good subpurposes in a protocol.

The presented approach, possibly with slight modifications, can be applied to
other kinds of testing, e.g. function or regression testing.
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