
B
R

IC
S

N
S

-00-6
M

osses
&

de
M

oura
(eds.):

A
S

2000
P

roceedings

BRICS
Basic Research in Computer Science

Proceedings of the Third International Workshop on

Action Semantics
AS 2000

Recife, Brazil, May 15–16, 2000

Peter D. Mosses
Hermano Perrelli de Moura
(editors)

BRICS Notes Series NS-00-6

ISSN 0909-3206 August 2000



Copyright c© 2000, Peter D. Mosses & Hermano Perrelli de Moura
(editors).
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/00/6/



AS 2000

Third International Workshop on

Action Semantics

15-16 May 2000, Recife, Brazil

Proceedings





Foreword

Action Semantics1 is a practical framework for formal semantic description of
programming languages. Since its appearance in 1992, Action Semantics has been
used to describe major languages such as Pascal, SML, ANDF, and Java, and
various tools for processing action-semantic descriptions have been developed.

The AS 2000 workshop included reports of recent achievements with the foun-
dations and applications of Action Semantics, presentations and demonstrations
of tool support for action-semantic descriptions, and discussion of a proposal for
a new (and significantly simpler) version of Action Notation.

AS 2000 was, like the previous workshops in this series [?,?], intended primarily
for those working with Action Semantics and related approaches, but partici-
pation was open to all those familiar with the basic ideas of Action Semantics.
The 2-day workshop allowed 45-minute presentations of the submitted work,
with reasonable time for discussion. Holding the workshop as a satellite event of
SBLP’2000 (the 4th Annual Brazilian Symposium on Programming Languages)
in Recife not only gave participants the opportunity to combine attendance of
the two events, but also drew extra attention to Action Semantics.

This was the first time that the AS workshop took place outside Europe, and
the extent of participation by groups working on Action Semantics in Brazil
was particularly gratifying: apart from the group in Recife, there were reports
on current work with Action Semantics from three separate projects at PUC in
Rio de Janeiro, as well as from one at UFPR in Curitiba. Special thanks to the
invited speaker, David Watt (presenting joint work with Deryck Brown), and to
all those who gave presentations at AS 2000.

In 2001, LDTA, a 1-day workshop on Language Descriptions, Tools, and Ap-
plications, is to be held as a satellite event of ETAPS, in Genova, Italy. Action
Semantics is mentioned as one of the topics of interest of LDTA in the Call
for Papers2, and authors are encouraged to submit full papers by the end of
November 2000. Consequently, no separate AS workshop is planned for 2001,
and further discussion of the proposed new version of Action Notation will have
to take place on the AS mailing list: action-semantics@brics.dk. Proposals
for hosting an AS workshop in 2002 are most welcome, and should be sent to
Peter Mosses by March 2001.

Peter D. Mosses Hermano Perrelli de Moura
BRICS & Dept. of Computer Science Centre for Informatics, UFPE
Univ. of Aarhus, Denmark Recife, Brazil
1 http://www.brics.dk/Projects/AS/
2 http://www-sop.inria.fr/oasis/LDTA/ldta.html



Final Programme

Monday 15 May:

09:00 Theoretical Foundations

Action Semantics for Logic Programming Languages
Luis Carlos de Souza Meneses, Hermano Perrelli de Moura,
Geber Lisboa Ramalho (UFPE, Recife, Brazil)

09:45 CASL and Action Semantics
Peter D. Mosses (BRICS & University of Aarhus, Denmark)

10:30 Coffee

11:00 Theoretical Foundations, ctd.
Postfix Transformations for Action Notation
Kent Lee (Luther College, Iowa, USA)

11:45 Modular SOS and Action Semantics
Peter D. Mosses (BRICS & University of Aarhus, Denmark)

12:30 Lunch

14:00 Invited talk:

Formalizing the Semantics of Java
David A. Watt (University of Glasgow, Scotland),
Deryck F. Brown (The Robert Gordon University,
Aberdeen, Scotland)

15:15 Recent Action-Semantic Descriptions

A Formal Description of SNMPv3 Standard Applications
using Action Semantics
Diógenes Cogo Furlan, Martin A. Musicante,
Elias Procópio Duarte Jr. (UFPR, Curitiba, Brazil)

16:00 Coffee

16:30 Recent Action-Semantic Descriptions, ctd.
D2L: A Design Description Language
Sergio E.R. de Carvalho†, Christina von Flach G. Chavez,
Sylvia de Oliveira e Cruz (PUC, Rio de Janeiro, Brazil)

17:15 An Action Semantics for STG
Francisco Heron de Carvalho Junior, Hermano Perrelli de
Moura, Ricardo Massa Ferreira Lima, Rafael Dueire Lins
(UFPE, Recife, Brazil)

18:00 Close of Session

21:00 Workshop Dinner



Tuesday 16 May:

09:00 Tools and Demos

Abaco System : An Action Semantics Based
Compiler Generation System
Luis Carlos de Souza Meneses, Hermano Perrelli de Moura
(UFPE, Recife, Brazil)

09:45 Maude Action Tool: Using Reflection to Map
Action Semantics to Rewriting Logic
Christiano Braga, E. Hermann Haeusler (PUC, Rio de Janeiro,
Brazil), José Meseguer (SRI International, USA),
Peter D. Mosses (BRICS & University of Aarhus, Denmark)

10:30 Coffee

11:00 Tools and Demos, ctd.

A Modular Implementation of Action Notation
Leonardo de Moura, Carlos de Lucena,
E. Hermann Haeusler (PUC, Rio de Janeiro, Brazil)

11:45 Discussion

12:30 Lunch

14:00 AN-2: The Proposed New Version of Action Notation

Introduction to AN-2
Søren B. Lassen (Digital Fountain, USA),
Peter D. Mosses (BRICS & University of Aarhus, Denmark),
David A. Watt (University of Glasgow, Scotland)

15:00 Discussion

16:00 Coffee

16:30 Coordination of Projects

18:00 End of Workshop

Sponsorship

The organizers of AS 2000 gratefully acknowledge funding and sponsorship from:

BRICS (Centre for Basic Research in Computer Science, Denmark)3

Centre for Informatics, UFPE, Recife, Brazil

3 Established by the Danish National Research Foundation, in collaboration with the
Universities of Aarhus and Ålborg.



Table of Contents

Invited Talk

Formalising the Dynamic Semantics of Java . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

David A. Watt, Deryck F. Brown

The Proposed New Version of Action Notation

An Introduction to AN-2: The Proposed New Version of Action Notation . 19

Søren B. Lassen, Peter D. Mosses, and David A. Watt

Theoretical Foundations

Postfix Transformations for Action Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Kent D. Lee

Action Semantics for Logic Programming Languages . . . . . . . . . . . . . . . . . . . 47

Luis Carlos Menezes, Hermano Perrelli de Moura, Geber Ramalho

CASL and Action Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Peter D. Mosses

Modular SOS and Action Semantics (Abstract) . . . . . . . . . . . . . . . . . . . . . . . . 79

Peter D. Mosses

Recent Action-Semantic Descriptions

An Action Semantics for the D2L Design Description Language . . . . . . . . . . 81

Christina von Flach G. Chavez, Sylvia de Oliveira e Cruz, Sergio E.R.
de Carvalho



An Action Semantics for STG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Francisco Heron de Carvalho Junior, Hermano Perrelli de Moura, Ri-
cardo Massa Ferreira Lima, Rafael Dueire Lins

A Formal Description of SNMPv3 Standard Applications using Action
Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Diógenes Cogo Furlan, Mart́ın A. Musicante, Elias Procópio Duarte
Jr.

Tools and Demonstrations

Maude Action Tool: Using Reflection to Map Action Semantics to Rewrit-
ing Logic (Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Christiano de O. Braga, E. Hermann Haeusler, José Meseguer, Pe-
ter D. Mosses

A Modular Implementation of Action Notation . . . . . . . . . . . . . . . . . . . . . . . . 134

Leonardo M. de Moura, Carlos J. P. de Lucena and E. Hermann
Haeusler



Author Index

Braga, Christiano de O., 133
Brown, Deryck F., 1

Carvalho Junior, Francisco Heron de, 98
Carvalho, Sergio E.R. de, 81
Chavez, Christina von Flach G., 81
Cruz, Sylvia O., 81

Duarte Jr., Elias Procópio, 118

Furlan, Diógenes Cogo, 118

Haeusler, E. Hermann, 133, 134

Lassen, Søren B., 19

Lee, Kent D., 37
Lima, Ricardo Massa Ferreira , 98
Lins, Rafael Dueire, 98
Lucena, Carlos J. P. de , 134

Menezes, Luis Carlos, 47
Meseguer, José, 133
Mosses, Peter D., 19, 62, 79, 133
Moura, Hermano Perrelli de, 47, 98
Moura, Leonardo M. de, 134
Musicante, Martin A., 118

Ramalho, Geber, 47

Watt, David A., 1, 19



Formalising the Dynamic Semantics of Java?

David A. Watt1 and Deryck F. Brown2

1 Department of Computing Science, University of Glasgow,
Glasgow G12 8QQ, Scotland. Email: daw@dcs.gla.ac.uk

2 School of Computer and Math Sciences, The Robert Gordon University,
St Andrew Street, Aberdeen AB25 1HG, Scotland. Email: db@scms.rgu.ac.uk

Abstract. In this paper, we review three different formal descriptions
of the dynamic semantics of the Java programming language. The first
description uses denotational semantics [2], the second uses abstract state
machines [3], and the third uses action semantics [4].
We compare these descriptions by systematically comparing how they
deal with selected Java language constructs: control flow using while
and break statements; methods, invocation expressions, and return state-
ments; and exceptions using throw and try-catch statements. From these
comparisons we draw conclusions about the success or otherwise of the
three reviewed descriptions, and about the underlying formalisms them-
selves.

1 Introduction

In this paper, we study three different formal descriptions of the Java program-
ming language, each of which uses a different semantic formalism. The descrip-
tions to be studied are:

– Alves-Foss and Lam’s denotational-semantic (DS) description [2]
– Börger and Schulte’s abstract state machines (ASM) description [3]
– our own action-semantic (AS) description [4].

In each case, we give an overview of the overall structure of the description,
and show in detail the semantics of selected Java language constructs: control
flow using while and break statements; method invocation and the return state-
ment; and exceptions using the throw and try-catch statements. To facilitate
comparison, we have slightly modified some of the notation used in the original
papers.

Only the ASM description claims to describe the entire Java language. The
DS description omits threads, and the AS description omits both threads and
overloading.

The remainder of this paper considers the DS description in Section 2; the
ASM description in Section 3; and the AS description in Section 4. Section 5 con-
cludes by comparing the three descriptions for correctness, intelligibility, modu-
larity, and extensibility.
? Java is a trademark of Sun Microsystems Inc.

1



2 Denotational Semantics

In this section we study Alves-Foss and Lam’s DS description of Java’s semantics
[2].

[2] uses Greek letters for names of variables and semantic functions. For
the benefit of our readers, the Greek letters are replaced by more meaningful
identifiers in the extracts presented here. Also, [2] uses universal quantification
to bind variables; here the more conventional λ-notation is used.

The DS description is written in the continuation passing style. Using this
style, the semantics of each syntactic construct is represented by a higher-order
function, where the type of this function depends on the syntactic construct
being specified. One of the arguments of this function is a continuation, which
is a function used to represent the behaviour of the remainder of the program.

As in most classical DS descriptions, there is an environment that provides
the bindings of identifiers declared in the program, and a store that maps storage
locations to their contents. In this particular DS description, the environment
is also used to hold auxiliary semantic variables, which are used to propagate
information about the current declaration, the flow of control, and the current
object.

Several different kinds of continuation are used in the description: package,
declaration, statement, expression, and location continuations. In our extracts,
we will only need three of these: expression, statement, and declaration contin-
uations. Their types are as follows:

ExprCont = V alue× Type× Store → Answer
StmtCont = Env × Store → Answer
DeclCont = Env → Env

and they are typically used as follows:

econt(val, typ, sto) = ans
scont(env, sto) = ans
dcont(env1) = env2

– An expression continuation, econt, represents the remainder of the program
following the evaluation of an expression. It receives a value, val, a type, typ,
and a store, sto, where typically val and typ are the result of evaluating the
expression, and sto is the resulting store.

– A statement continuation, scont, represents the remainder of the program
following the execution of a statement. It receives an environment, env, and
a store, sto, that are typically the modified environment and store produced
by executing a single statement.

– A declaration continuation, dcont, represents the declarations produced by
the remainder of the program. It receives an environment, env1, that is
typically the environment produced by elaborating a single declaration.

For each syntactic construct, there is a corresponding semantic function: eval
for expressions, exec for statements, and elab for declarations. Their types are
as follows:

2



eval :: [[ Expr ]] → Env → ExprCont → Store → Answer
exec :: [[ Stmt ]] → Env → StmtCont → Store → Answer
elab :: [[ Decl ]] → Env → DeclCont → Env

The effect of each of these semantic functions is as follows:

– An expression, Expr, is evaluated using the semantic function eval. This
function takes an initial environment, env, an expression continuation, econt,
and an initial store, sto. The expression Expr is evaluated, using env and
sto, to produce a value, val, its type, typ, and a modified store sto1. If the
expression evaluation terminates normally, the triple (val, typ, sto1) is simply
passed to econt, and program execution continues. If the expression throws
an exception, econt is ignored, and program execution continues using some
other continuation, typically fetched from an environment.

– A statement, Stmt, is executed using the semantic function exec. This func-
tion takes an initial environment, env, a statement continuation, scont, and
an initial store, sto. The statement Stmt is executed, using env and sto,
to produce a modified environment, env1, and a modified store, sto1. If the
statement terminates normally, env1 and sto1 are passed to scont, and pro-
gram execution continues. If the statement throws an exception, scont is
ignored, and program execution continues using some other continuation,
typically fetched from the environment.

– A declaration, Decl, is elaborated using the semantic function elab. This
function takes an initial environment, env, and a declaration continuation,
dcont. The declaration Decl is elaborated to produce a modified environ-
ment, env1, which is passed to dcont, and the elaboration continues. In Java,
the elaboration of a declaration cannot terminate exceptionally.

2.1 Control flow

Let us now study the description of Java’s control structures, exemplified by
while and (unlabeled) break statements. In Java, executing an unlabeled break
has the effect of jumping to the statement after the current loop or switch state-
ment.

The semantic equation for the while statement is as follows:

(1) exec [[ while ( Expr ) Stmt ]] env scont sto =
scont1(env[&break ← scont], sto) where rec

scont1 = λ(env1, sto1). eval [[ Expr ]] env1 econt sto where
econt = λ(val, typ, sto2).

if val = true
then exec [[ Stmt ]] env1 scont1 sto2

else scont(env, sto2)

This is defined recursively using the continuations scont1 (which starts with
the evaluation of Expr) and econt (which either starts with the execution of
Stmt or is the rest of the program). The loop body, Stmt, is executed in an

3



environment where the auxiliary variable &break is bound to scont, the contin-
uation representing the rest of the program. This variable is used by the break
statement.

The semantic equation for the unlabeled break statement is as follows:

(2) exec [[ break ; ]] env scont sto =
scont1(env, sto) where

scont1 = env.getStmtCont(&break)

This is relatively straightforward. Control is passed to the statement continua-
tion, scont1, bound to &break. This binding is created by the enclosing construct,
e.g., equation (1). Note that scont is ignored, being the continuation representing
normal control flow through the enclosing construct.

2.2 Methods

Let us now study the description of methods. Note that [2] appears not to
handle instance method invocation, where the target object is determined by an
expression, but only class method invocation.

A method is represented by the partial application of exec to the method
body. As such, this is a function that takes an environment, a statement contin-
uation, and a store, and returns an answer.

The semantic equation for the class method invocation (which is an expres-
sion in Java) is as follows:

(3) eval [[ Name ( Arglist ) ]] env econt sto =
eval [[ Arglist ]] env econt1 sto where

econt1 = λ(vals, typs, sto1). meth(env, scont, sto1) where
sig = getSigs(vals) and
meth = env.getMethod(fst (id[[Name]] env), sig) and
scont = λ(env2, sto2).

econt(env2[&returnV al], env2[&returnType], sto2)

This involves evaluating the list of arguments, Arglist, using the expression
continuation representing the method body, econt1. Identifying the method to
invoke involves constructing a method signature, sig, using the values of the ac-
tual parameters, vals. Overloaded method names are handled by the auxiliary
function getMethod by using the method signature sig. From [2], it is unclear
how the actual parameters, vals, are passed to the method, meth. The only
apparent route is via the operation of the auxiliary function getSigs, but the
behaviour of this operation is not given. The curious term “fst(id[[Name]]env)”
is used (amongst other things) to convert the syntactic name Name into its cor-
responding semantic value, which is a pair consisting of the name itself and its
type. The method body, meth, is passed its environment when invoked, which
is unusual for a statically-bound language. This environment is required, how-
ever, to access the (dynamic) values bound to auxiliary semantic variables. The
result of the method is stored in the environment using two semantic variables,

4



&returnV al and &returnType. These values are retrieved by scont and passed
to econt along with the store produced by the method body, sto2.

The semantic equation for the return statement is as follows:

(4) exec [[ return Expr ; ]] env scont sto =
eval [[ Expr ]] env econt sto where

econt = λ(val, typ, sto1). scont1(env1, sto1) where
scont1 = env.getStmtCont(&return) and
typ1 = env[&returnType] and
val1 = promote(typ1, (val, typ)) and
env1 = env[&returnV al← val1]

Since equation (3) expects to find the result in the environment, the return
statement must evaluate the return expression and construct a new environment,
env1, with the required binding. Note that equations (3) and (4) both fetch the
expected return type, &returnType, from the environment. It is unclear from
[2] how this return type is placed in the environment received by the method
body. Equation (4) also ignores scont, which represents the rest of the method
body, and instead transfers control to scont1, which is bound to the auxiliary
variable &return. This will immediately pass control back to the location of the
method invocation, without executing the rest of the method body.

2.3 Exceptions

Let us now study the description of exceptions. We will consider the throw and
try-catch statements.

The semantic equation for the throw statement is as follows:

(5) exec [[ throw Expr ; ]] env scont sto =
eval [[ Expr ]] env econt sto where

econt = λ(val, typ, sto1). scont1(env2, sto1) where
env2 = env1[&thrown← (val, typ)] and
scont1 = env[&throw]

The throw statement transfers control to scont1, which is bound to the auxiliary
variable &throw in env. It passes to scont1 a modified environment, env2, where
the auxiliary variable &thrown is bound to the result of evaluating Expr. Equa-
tion (5) is incorrect when this result is null. In this case, the throw statement
should throw a NullPointerException, and not the value null as specified in
the equation.

The semantic equation for the try-catch statement is as follows:

5



(6) exec [[ try Block Catches ]] env scont sto =
exec [[ Block ]] env1 scont1 sto where

env1 = env[&throw ← scont2] and
scont1 = λ(env2, sto2). scont(env, sto2) and
scont2 = λ(env2, sto2).

exec [[ Catches ]] env scont3 sto2 where
scont3 = λ(env3, sto3).

if (env3[&thrown] = (null, “V”))
then scont(env3, sto3)
else (env3[&throw])(env3, sto3)

The try-catch statement performs Block in an environment, env1, where the aux-
iliary variable &throw is bound to scont2, which represents the catch-clauses,
Catches. It is vital that scont2 ignores the environment, env2, passed to it, and
instead uses the original environment, env. env2 contains the current binding
for &throw, which represents the catch-clauses associated with this try-catch
statement, whereas env contains a binding for &throw that represents some
outer statement. If no exception is thrown by Block, control is passed to scont1,
which discards the environment it is passed, effectively deactivating the excep-
tion handlers in the catch-clauses, and replaces it with the original environment,
env. Equation (6) ignores the situation where the value thrown is null, since
the description uses the null value to signal that an exception has been han-
dled. In Java, the value of an exception can never be null. However the error in
equation (5) has the consequence that throwing the value null will be ignored
altogether.

When an exception is handled, the catch-clauses must be inspected in turn
until one is found that matches the class of the thrown value. If no match is
found, the exception is re-thrown to be handled at an outer level. The equation
for a single catch-clause is as follows:
(7) exec [[ catch ( Formal ) Block ]] env scont sto =

let (exc, typ) = env[&thrown] and
(id, typ1) = id [[ Formal ]] env

in if typ = typ1

then exec [[ Block ]] env1 scont sto1 where
env1 = env[&thrown← (null, “V”)] and
sto1 = sto[env[id]← exc]

else scont(env, sto)

This first determines the value and type of the thrown value, (exc, typ), and
then compares typ with the type of exception handled by this catch-clause,
typ1. In Java, if the type of the handler is assignment compatible with the type
of the thrown value, the handler should be performed. However, equation (7)
incorrectly specifies that these types should be equal. When a handler is chosen,
the block it contains should be executed in an environment where the formal
parameter, id, is bound to a location initialised with the exception value, exc.
Although equation (7) constructs a store, sto1, containing the exception value,
it does not construct an environment containing the required binding.

6



2.4 Summary

In our view, this DS description of Java is highly unpromising and any attempt
to develop it into a complete description of Java is likely to fail. Our main
observations are as follows:

– The DS description contains numerous errors, both typographic and concep-
tual. Apart from the errors mentioned above, there are many other flaws. For
example, the for statement is specified by a translation to the corresponding
while statement. However, this translation produces an incorrect scope for
any variables declared in the initialisation expression of the for statement,
which should be restricted to the body of the for statement and not the block
that contains it.

– The DS description is very difficult to read, even after renaming variables
and semantic functions as in the above extracts. The continuation passing
style relies heavily on the reader keeping track of the different continuations
used and the arguments they are given. This is particularly true when so
much dynamic information is hidden in the environment.

– Like most classical descriptions, this DS description lacks any modular struc-
ture and would be difficult to modify, since the semantic equations are tightly
coupled to the choice of semantic domains.

– The DS description is not entirely compositional.
– The DS description misuses the environment to store auxiliary semantic vari-

ables. A clean separation of the dynamic part of the environment (containing
the auxiliary information), and the static part (containing the program iden-
tifiers) would be preferable and easier to understand.

– The DS description cannot be extended to deal with threads. To specify the
concurrent aspects of Java, a completely new DS description would have to
be written using power domains.

3 Abstract State Machines

In this section we study Börger and Schulte’s ASM description of Java’s seman-
tics [3].

The description is structured as a series of sub-descriptions, one for each of
five nested sub-languages:

– JavaI contains expressions, statements and blocks.
– JavaC adds classes and class methods. This is an imperative language with

simple encapsulation.
– JavaO adds objects and instance methods. This is a true object-oriented

language.
– JavaE adds exceptions. This corresponds to the sequential subset of Java.
– JavaT adds threads. This is essentially the full language.

The ASM description assumes a highly simplified abstract syntax. For exam-
ple, it assumes that for and do statements have been reduced to equivalent while

7



statements, and switch statements to equivalent if statements. Also eliminated
are compound assignment operators (such as += and -=), prefix and postfix oper-
ators (++ and --), conditional operators (&& and ||), variable initialisers, arrays
and strings.

The ASM description also invents abstract syntax not present in Java itself.
For example, a method invocation expression is extended with information about
the kind and signature of the invoked method.

The ASM description, as its name suggests, works essentially by defining a
state space together with transitions between states. The state has a complex
structure, part of which is explained here.

The most important part of the state is the stack, more precisely a triple of
stacks:

stack ≡ (taskStack, valStack, locStack)

taskStack : Phrase*

valStack : (Exp→ V alue)*

locStack : (V ar → V alue)*

task ≡ top(taskStack)
val ≡ top(valStack)
loc ≡ top(locStack)

Each element of taskStack is a so-called task, i.e., a phrase about to be exe-
cuted. A task may be understood as an abstract program counter. The topmost
task in the stack, task, is the current program counter, and the underlying tasks
are return addresses.

Each element of locStack contains the current values of some method’s local
variables. Thus locStack may be understood as a stack of frames, where the
topmost frame, loc, belongs to the currently-active method.

Each element of valStack contains the value of each expression in some
method. We can think of each expression’s value being assigned to an anonymous
temporary variable, and valStack is a stack of such temporaries.

The term abruption is coined to mean an abrupt termination of a phrase: a
break from a loop, a return from a method, or a throw of an exception. When
an abruption occurs, the reason for it is recorded in the following state variable:

mode : Reason

In JavaO, the state also contains:

classOf : Reference→ Class
dyn : Reference× FieldSpec→ V alue

Let ref be a reference to an object. Then the object to which r refers contains
a class tag, classOf(ref), and a group of field values, dyn(ref, field).

Transitions between states are captured by the following functions:

fst : Phrase→ Phrase

8



nxt : Phrase→ Phrase

up : Phrase→ Phrase

Let task be a phrase (statement or expression). Then fst(task) is the first child
phrase of task to be executed; nxt(task) is the next sibling phrase to be executed
when task terminates normally, or task’s parent phrase if task has no such
sibling; and up(task) is the next (usually ancestor) phrase that might handle an
abruption in task, or finished if task has no such ancestor. The ASM description
defines fst, nxt, and up appropriately for each phrase in the language.

3.1 Control flow

Let us now study the description of Java’s control structures, exemplified by
while, break, and labeled statements.

For the while statement, fst and nxt are defined as follows:

(1) let stm = (while ( exp ) stm1) in
fst(stm) = fst(exp)
nxt(exp) = stm
nxt(stm1) = fst(exp)

Written in terms of these, the semantic rule for a while statement is as follows:

(2) if task is (while ( exp ) stm1) then
if val(exp) = true then

task := fst(stm1)
else

task := nxt(task)

The semantic rules for break and labeled statements are as follows:

(3) if task is (break lab ;) then
mode := Break(lab)
task := up(task)

(4) if task is (lab : stm) then
if mode = Break(lab) then

mode := undef
task := nxt(task)

else
task := up(task)

If stm abrupts by executing “break lab ;”, then control flows on to the corre-
sponding labeled statement’s next sibling, nxt(task). Otherwise control flows up
to an enclosing labeled statement, up(task).

9



3.2 Methods

Let us now study the description of instance methods (in JavaO).
The syntax of an instance method invocation is assumed to have been ex-

tended with the sub-phrase “{kind}”, where kind has three possible values:

– Nonvirtual: the invoked method is private, and must be in the current class.
– V irtual: the invoked method is to be selected dynamically, starting with the

target object’s class.
– Super: the invoked method is to be selected dynamically, starting with the

current class’s superclass.

Moreover, the method identifier is assumed to have been replaced by methodSpec,
which includes signature information necessary for overload resolution. Here we
see a particularly clear example of invented abstract syntax, which simplifies the
semantic rule but glosses over how to specify the mapping from concrete syntax
to abstract syntax.

The following is the semantic rule for an instance method invocation expres-
sion:

(5) if task is (exp . methodSpec {kind} ( exp1, . . . , expn ) )
∧ val(exp) 6= null then

stack := invoke(〈val(exp)〉vals, 〈this〉vars, fst(body), stack)
where

(vars, body) = instMethod(methodSpec, class, kind)
vals = 〈val(exp1), . . . , val(expn)〉
class = case kind of Nonvirtual : currClass

V irtual : classOf(val(exp))
Super : super(currClass)

Here val(exp) yields a reference to the target object; class is the class in which
the invoked method is to be sought; currClass ≡ classScope(task) is the class
containing the method invocation; vals is a tuple of argument values, to which
val(exp) is prepended; vars is a tuple of parameter names, to which this is
prepended; and body is the body of the invoked method. The auxiliary function
instMethod selects the appropriate instance method, capturing dynamic method
dispatch.

The following is the semantic rule for a return statement:

(6) if task is (return exp ;) then
mode := Result(val(exp))
task := up(task)

The return statement abrupts with reason Result(v), where v is the value of
exp. This abruption propagates up until eventually task is finished. Then the
following rule is applied:

(7) if task is finished ∧ mode = Result(res)
∧ length(taskStack) > 1 then

mode := undef
stack := result(res, stack)

10



The auxiliary functions invoke and result manipulate the stack in a way
that will be familiar to programming language implementors:

(8) invoke(〈val1, . . . , valn〉, 〈var1, . . . , varn〉, body,
(taskStack, valStack, locStack))≡

(〈body〉 taskStack, 〈∅〉 valStack,
〈{(var1, val1), . . . , (varn, valn)}〉 locStack)

(9) result(res, (〈 , inv〉 tasks, 〈 , val〉 vals, 〈 〉 locs)) ≡
(〈nxt(inv)〉 tasks, 〈val⊕ {(inv, res)}〉 vals, locs)

3.3 Exceptions

Finally, let us study the description of exception handling (in JavaE).
The throw statement abrupts with reason Throw(exc), where exc is the

thrown exception:

(10) if task is (throw exp ;) then
if val(exp) 6= null then

mode := Throw(val(exp))
task := up(task)

else
fail(NullPointerException)

The auxiliary function fail generates an error, which is in fact treated just like
an exception.

For the try-catch statement, fst, nxt, and up are defined as follows:

(11) let stm = (try block catches)
catches = (catch( . . . ) block0 . . . catch( . . . ) blockn)

in fst(stm) = fst(block)
nxt(block) = nxt(blocki) = nxt(stm), 0 ≤ i ≤ n
up(block) = catches
up(blocki) = up(stm), 0 ≤ i ≤ n

Thus any abruption in block will be handled (potentially) in catches, whereas
any abruption in catches itself will be handled outside the try-catch statement.

Finally, here is the semantic rule for a group of catch clauses:

(12) if task is (catch(c0v0) b0 . . . catch(cnvn) bn) then
if mode = Throw(exc) ∧ ∃i : 0 ≤ i ≤ n : catches(ci) then

loc(vk) := exc
mode := undef
task := fst(bk)
where k = ı i : 0 ≤ i ≤ n : catches(ci)

∧ ∀j : 0 ≤ j < i : ¬catches(cj)
else task := up(task)
where catches(c) = compatible(classOf(exc), c)

If at least one of the catch clauses can handle the thrown exception (catches(ci)),
the first such catch clause is selected (catch(ckvk) bk)), the thrown exception is
stored in loc(vk), and control is transferred to the phrase fst(bk).

11



3.4 Summary

Our main observations about the ASM description are as follows:

– The ASM description spans the entire language. It is, however, incomplete
in that it treats quite a large number of constructs as syntactic sugar, with-
out taking the trouble to specify precisely how these constructs should be
translated to the core constructs.

– The ASM description assumes an abstract syntax that is somewhat different
from Java’s concrete syntax. As well as elimination of syntactic sugar, there
are many syntactic inventions, each of which encodes knowledge that would
have to be inferred by a compiler.

– The ASM description is non-compositional. This was a deliberate decision
by the authors, who argue that a compositional semantics is inappropriate
for a concurrent programming language.

– The ASM description is very concrete and low-level, even by the standards
of an operational description. The description clearly exposes stack manip-
ulations, for example, and the control flow is explicitly encoded.

– The ASM description is moderately intelligible. The main problem is the
low-level nature of the description. If a programmer wishes to understand
a programming language, he/she should not be forced to understand its
implementation (even an abstract implementation).

– The ASM description overloads the state with data that would better be
handled explicitly by the semantic rules, such as the reason for an abruption
or the current class.

– The ASM description is modular only in the limited sense that it progres-
sively specifies a sequence of nested sub-languages.

In our view, the ASM description of Java is only moderately successful. De-
spite the implicit claim in the title of [3], this ASM description of Java is by no
means programmer-friendly.

4 Action Semantics

In this section we study our own AS description of Java [4].
The description covers all of the Java language except threads and overload-

ing. Moreover, it is entirely compositional, and is structured as a collection of
modules. The top-level module, Semantic Functions, contains sub-modules each
of which contains the semantic equations for a particular syntactic class, e.g.,
statements, expressions, or declarations. The module Semantic Entities contains
sub-modules that specify the different sorts of data and their associated opera-
tions, e.g., primitive data, values, variables, types, classes, and objects.

4.1 Control flow

Let us now study the AS description of Java’s control structures, exemplified by
the while and break statements.

The semantic equation for the while statement is as follows:

12



(1) execute [[ “while” “(” E :Expression “)” S :Statement ]] =
unfolding

evaluate E then
check (the given value is true) then
execute S then unfold

or
check (the given value is false) then
complete

trap an unlabeled-break then complete .

This is almost the stereotypical equation for a while loop in AS. The only novelty
is the use of the auxiliary combinator “ trap then ”, which is here used to
trap an unlabeled break and then immediately complete. More generally, this
auxiliary combinator:

• trap then :: action[escaping], reason-for-escape, action → action .

takes an action that may escape, a reason for escaping, and a second action, and
performs the second action only if the first action escapes for the given reason. If
the first action escapes for a different reason, the combined action also escapes
for that same reason. Some of the reasons for escaping are as follows:

• reason-for-escape = break return throw (disjoint) .
• unlabeled-break : break (individual) .

(Note that returning from a method and throwing an exception are also reasons
for escaping; these will be used in Sections 4.2 and 4.3, respectively.)

The (trivial) semantic equation for the unlabeled break statement is as fol-
lows:

(2) execute [[ “break” “;” ]] = escape with the unlabeled-break .

4.2 Methods

Let us now study the AS description of instance methods.
The semantic equation for the instance method invocation expression is as

follows:

(3) evaluate [[ E :Expression “.” I :Identifier “(” A:Arguments? “)” ]] =
evaluate E and then
respectively evaluate A

then
enact the application of

the instance-method I of the class of the given object#1

to the given (object, value*)
or

check there is given (null-reference, value*) then
escape with a throw of . . . .

13



This evaluates the expression E, yielding the target object reference, and the
tuple of arguments A. If the reference is not null, we enact the target object’s in-
stance method named I. If the reference is null, we throw a NullPointerException.

Equation (3) does not handle overloaded method names, where the types of
the actual parameters would be used to select the correct method.

In the Java AS, a method body is represented by an abstraction of the
following sort:

• instance-method = abstraction [giving a value? . . . ]

[using the given (object, value*) . . . ] .

The semantic equation for the instance method declaration is as follows:

• the instance methods of [[ M :Modifier* R:(“void” Type) I :Identifier

“(” F :Formal-Parameters? “)” T :Throws-Clause?

B :Block ]] =
if “static” is in the set of M then

the empty-map
else

the map of the method-token of I to
the closure of the abstraction of

furthermore
bind this-token to the given object#1 and
produce the field-variable-bindings

of the given object#1
before

give the rest of the given data then
respectively formally bind F

hence
execute B
trap a return then give the returned-value of it .

The declaration of an instance method results in a singleton binding of the
method name to an instance-method. Note that, unlike in [2], the method body is
closed with the bindings at the point of declaration. An instance-method does not
use the current bindings at the point of invocation. The instance-method is given
a tuple of values that consists of the target object and the actual parameters. The
method body first creates the correct initial environment for the block B, which
contains a binding for “this”, the bindings for the object’s fields, and bindings
for the formal parameters. The block B is then executed in this environment.
Finally the escape of the return is trapped and the return result is given as a
transient.

The sorts of the various auxiliary operations used are as follows:

• this-token : token (individual) .
• class :: object → class (total) .
• field-variable-bindings :: object → variable-bindings (total) .

14



• instance-method of :: Identifier, class → instance-method (partial) .

The semantic equation for the return statement is as follows:

(4) execute [[ “return” E :Expression “;” ]] =
evaluate E then
escape with the return of the given value .

4.3 Exceptions

Let us now study the AS description of exceptions.
The semantic equation for the throw statement is as follows:

(5) execute [[ “throw” E :Expression ]] =
evaluate E then

check (the given reference is not null) and then
escape with the throw of the given value

or
check (the given reference is null) and then
escape with the throw of the null-pointer-exception .

We evaluate E and either throw the given reference if is not null, or throw a
NullPointerException if it is null.

The semantic equation for the try-catch statement is as follows:

(6) execute [[ “try” B :Block C :Catch-Clause+ ]] =
execute B
trap a throw then catch in C .

We execute the block B and, if it escapes with a throw, we trap it and pass the
throw to the catch-clauses C to be handled. If B escapes for a different reason,
i.e., a break or return, then the escape is just propagated.

The details of handling an exception is specified by the “catch in ” operation,
which is defined as follows:

(7) catch in 〈 [[ “catch” “(” [[ T :Type I :Identifier ]] “)” B :Block ]]
C :Catch-Clause* 〉 =

check (the exception of the given throw
is an instance of the type denoted by T ) and then

furthermore
allocate a variable initialized to

the exception of the given throw then
bind I to the given variable

hence execute B
or

check not (the exception of the given throw is
an instance of the type denoted by T ) and then

catch in C .

15



(8) catch in 〈 〉 =
escape with the given throw .

A particular catch-clause is only selected if the thrown value is an instance of the
class handled by the clause (using the “ is an instance of ” auxiliary operation).
When a match is found, the thrown value is used to initialise a new variable
and the binding for the catch-clause is created. The matched block B is then
executed. If B itself throws an exception, it will also escape with a throw, which
will be handled at an outer level. If no match for the throw is found, equation (8)
propagates the throw.

4.4 Summary

In our view, the AS description is largely successful. Our main observations
about it are as follows:

– The AS description is highly modular. A change in the modeling of ob-
jects, for example, would be largely localised to the module Semantic Enti-
ties/Objects; the semantic equations would hardly be affected at all.

– The AS description is highly intelligible. Anyone familiar with the terminol-
ogy used in the Java Language Specification [5], should find the AS descrip-
tion easy to understand.

– The AS description is capable of being extended to describe threads, with
only modest difficulty. In the current version of action notation (AN-1) every
agent has its own local storage, so Java’s shared storage would have to be
handled by a shared-storage agent, and all accesses to storage (“the stored
in ” and “store in ”) would have to be replaced by actions to exchange
messages with the shared-storage agent. In the proposed revised version of
action notation (AN-2) agents share storage, so this difficulty would disap-
pear.1

5 Comparison and Conclusions

In this paper we have attempted a systematic, but inevitably impressionistic,
study of three formal descriptions [2–4], each of which covers a large subset of
Java. When we compare the three descriptions, in terms of correctness, intelligi-
bility, modularity, extensibility, or any other reasonable criteria, the conclusions
are quite clear: the DS description is a disastrous failure, the ASM description
is a partial success, and the AS description is mainly successful.

– Correctness: The DS description is riddled with errors, major and minor.
The ASM and AS descriptions seem to be reliable, with at most a few minor
errors.

1 Of course, the whole AS description would first have to be rewritten in AN-2!

16



– Intelligibility: The DS description is practically unintelligible, even after a
systematic replacement of Greek symbols with meaningful names. The ASM
description is moderately intelligible, but its low-level operational nature
forces the reader to understand details of the state space that are irrelevant
to an understanding of the language itself. The AS description is highly
intelligible, and should be accessible to ordinary Java programmers.

– Modularity: The DS description makes no attempt at modularity; a change
in any of the semantic domains, or in the style of description (currently
continuation passing), would force global changes to the semantic equations.
The ASM description is modular only in the sense that it incrementally
describes a sequence of nested sub-languages; a change in the state space
would force global changes to the semantic rules. The AS description is
highly modular. (Extending it to describe threads will be a good test of this
claim.)

– Extensibility: The DS description is incapable of being extended to cover the
whole language, since describing threads would force a change of semantic
style, and consequently a complete rewrite of the existing semantic equations.
The ASM description already covers the whole language, except for syntactic
sugar, which probably could be added very easily. The AS description is
capable of being extended to cover the whole language, with some localised
changes to handle access by threads to shared storage.

Of course, it would be unreasonable to use this comparative study to draw
firm conclusions about the semantic formalisms themselves. To a lesser or greater
extent, there is room for improvement in all of the reviewed descriptions. It
seems reasonable to conclude, however, that DS is intrinsically unsuitable for
a formal description of Java: technically, because of its difficulty in describing
concurrency, and practically, because of its poor intelligibility and its inability
to scale up to languages of Java’s complexity. ASM is harder to assess, given
our limited experience with this formalism, but it too has problems with scaling
up, and it seems that ASM descriptions are rather too low-level. We remain
convinced that AS is the best available formalism, partly because it has just
about the right level of abstractness, but also because its pragmatics encourage
the writer to make the language description modular and readable. Nevertheless,
AS still faces the challenge of attracting a critical mass of supporters.

References

1. J. Alves-Foss, editor. Formal Syntax and Semantics of Java, volume 1523 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

2. J. Alves-Foss and F. S. Lam. Dynamic Denotational Semantics of Java, pages 201–
240. In [1], 1999.

3. E. Börger and W. Schulte. A Programmer Friendly Modular Definition of the Se-
mantics of Java, pages 353–404. In [1], 1999.

4. D. F. Brown and D. A. Watt. JAS: A Java action semantics. In Proceedings of
the 2nd International Workshop on Action Semantics (AS 1999), volume NS–99–3

17



of BRICS Notes Series, pages 43–55. Dept. of Computer Science, Univ. of Aarhus,
1999. ISSN 0909-3206.

5. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,
1996.

18



An Introduction to AN-2: The Proposed
New Version of Action Notation

Søren B. Lassen1?, Peter D. Mosses2, and David A. Watt3

1 Digital Fountain, San Francisco, USA
2 BRICS & Dept. of Computer Science, Univ. of Aarhus, Denmark

3 Dept. of Computing Science, Univ. of Glasgow, Scotland

Abstract. Action Notation provides a suggestive formal notation for
expressing fundamental concepts of computation. It is used in Action
Semantics for specifying the denotations of constructs of programming
languages.
This document compares the (proposed) revised version of Action Nota-
tion, AN-2, with the original Action Notation, and motivates the changes.
It also gives an illustration of the use of AN-2 in an elementary action-
semantic description. A complete informal description of the intended
syntax and semantics of AN-2, and a formal definition of AN-2, are to
be made available in separate documents.

1 Background

Action Notation (AN) is a general notation for expressing the actions that are
used as semantic entities in Action Semantics. The original version of AN from
1992 (here referred to as AN-1) was described in the Action Semantics book [3],
and formally defined by giving an SOS for its kernel, together with definitions
of bisimulation and testing equivalences, and some laws that allowed the full
AN-1 to be reduced to its kernel. AN-1 is however quite a rich notation, and its
original formal definition is not easy to follow. The unconventional framework of
“unified algebras” was used as a meta-notation for defining AN-1, and features
of unified algebras were exploited in AN-1 itself; this may have discouraged the
wider use of AN-1, and thus of Action Semantics as well.

In 1999, a modular SOS for AN-1 was provided [4, 5], confirming some sus-
pected sources of excessive complexity in AN-1, and a revision of the design was
initiated. The main aims of the revision are to simplify the syntax and semantics
of AN, to facilitate the development of a significantly stronger equational theory
for AN, and to eliminate various idiosyncrasies.

A proposal for the revised design of AN, to be known as AN-2, has been
developed by the authors; a preliminary version of it (0.6) was presented at
the AS 2000 workshop. The proposal included an informal summary of AN-2,
some illustrative examples of the use of AN-2 in AS descriptions, and a formal
? Main contributions made while working at the University of Cambridge Computer

Laboratory, supported by grant number GR/L38356 from the UK EPSRC.

19



definition of the syntax and semantics of AN-2. A revised version of the proposal
is to be circulated on the AS mailing list for discussion between all interested
parties, with the aim of reaching a consensus regarding whether or not to adopt
AN-2 for future use in Action Semantics.

After recalling the design of AN-1 in Sect. 2, the current version of the
tentative proposal for AN-2 is outlined and motivated in Sect. 3. An illustration
of the use of AN-2 in an elementary action-semantic description is given in
App. A. Some preliminary conclusions are suggested in Sect. 4.

2 The Original Action Notation, AN-1

AN-1 provides action primitives and action combinators. Action primitives may
involve yielders, which evaluate to data depending on the information current
when the primitive is performed.

AN-1 has eight parts, providing constructs for expressing the following kinds
of actions:

Basic Actions: processing independently of information (action performances
may terminate normally, exceptionally, fail, or diverge—perhaps non-
deterministically);

Functional Actions: processing transient information (actions are given and
give tuples of data);

Declarative Actions: processing scoped information (actions receive and pro-
duce bindings of tokens to data);

Imperative Actions: processing stable information (actions reserve and unre-
serve cells, and inspect or change the data stored in cells);

Reflective Actions: processing actions as data (abstracting actions and en-
acting abstractions);

Communicative Actions: processing permanent information (distributed ac-
tions performed by separate agents send messages, receive messages in buffers,
and offer contracts to agents);

Directive Actions: processing scoped and stable information (actions estab-
lish indirect bindings, and redirect them to establish circular bindings); and

Hybrid Actions: involving more than one kind of information processing.

(Those parts of AN-1 concerned with just one kind of information processing
were called facets.)

Orthogonally to the above parts, AN-1 has two levels:

Kernel AN-1: defined using SOS [3, App. C], and redefined using Modular
SOS [4, 5];

Full AN-1: defined by laws that can be used to reduce Full AN-1 terms to
Kernel AN-1 terms [3, App. B].

AN-1 is parameterized by a Data Notation [3, App. E] specified using Unified
Algebras [3, App. F].

Grammars for the different parts of each level of AN-1 are given below in an
appendix. Each construct has a reasonably clear operational interpretation [3,
App. D].

20



3 A Tentative Proposal for AN-2

The main overall difference between the proposed revised AN-2 and the original
AN-1 is that Kernel AN-2 is significantly smaller and simpler than Kernel AN-1.
In particular, yielders are not included in Kernel AN-2, and are defined only
in Full AN-2—essentially as abbreviations for compound kernel actions. More-
over, primitive actions do not take sorts of data as arguments, so there is no
dependence on the special features of Unified Algebras in AN-2.

The treatment of bindings in AN-2 is such that although received bindings
flow through sub-actions much as in AN-1, the produced bindings of AN-1 are
regarded as computed values in AN-2, and simply given as transients. This re-
sults in a welcome simplification of the part of AN concerned with bindings: only
a single combinator is needed in Kernel AN-2, and other binding combinators
are defined as abbreviations in Full AN-2, using the data operations on binding
maps. In AN-1, actions that give transients as well as producing bindings were
very rarely used in practice, so the hybrid functional and binding combinators
have been dropped altogether in AN-2..

Another simplification in AN-2 is to let actions themselves be treated as
data, instead of requiring an explicit embedding as abstractions; this also elimi-
nates the need for duplicating all the action combinators as data operations on
abstractions. This change was inspired by examples of Monadic Denotational Se-
mantics [1, 2], where the distinction between computations and computed values
corresponds exactly to that between actions and data in Action Semantics.

Various other concepts have been eliminated altogether in AN-2. These in-
clude commitment, choice from arbitrary data sorts, indirect bindings, snapshots
of the current storage, local storage, reuse of cells and agents, message buffers,
contracting agents, message senders, message serial numbers, and offers of con-
tracts.

The elimination of some of these concepts from AN was a high priority. For
instance, commitment was often inconvenient in connection with choice between
alternation actions in AN-1, and a considerable complication in its equational
theory; the treatment of alternative actions in AN-2 is quite different (see the
more detailed explanation below). The possibility of nondeterministic choice
from sorts of cells, agents, and actions in AN-1 invalidated desirable laws that
relied on locality of information. Indirect bindings were used in AN-1 merely
to establish recursive closures, which is done more directly in AN-2; in any
case, almost the same effect can be achieved by storing closures in ordinary
cells. Snapshots of the current storage in AN-1 were potentially expensive to
implement, and of little use.

In contrast, support for some of the other eliminated concepts could eas-
ily be reinstated in the Full AN-2. For instance, local use of storage could be
ensured by pairing cells with the agents creating them, and checking that the
agent paired with a cell matches the current agent when inspecting or updating
it. Reuse of cells and agents could be allowed by storing the available ones in
lists, just as received messages could be stored to give the effect of a buffer.

21



Contractors, senders, and serial numbers may be inserted explicitly in messages,
when required.

A few concepts have been found to be lacking in AN-1, and are now supported
by the proposed AN-2. These include global access to storage (appropriate when
the “distributed” actions are actually threads of the same program), an “other-
wise” combinator for recovering from failure, and a combinator for exceptional
data sequencing. Each agent now has access to the current time, permitting the
intended semantics of delay and time-out constructs to be expressed in AN-2.

To give an impression of the degree of simplification obtained in the proposed
AN-2, take the size of the abstract syntax grammar for Kernel AN-2 as 1 unit.
Then the size of its extension to Full AN-2 is also about 1 unit. In contrast, the
size of Kernel AN-1 is almost 3 units, whereas that of its extension to Full AN-1
is less than 1 unit. Overall, Full AN-2 is little more than half the size of Full
AN-1.

A thorough check will have to be made that the simplifications obtained
in AN-2 have not undermined its expressiveness, nor the conciseness of action-
semantic descriptions; initial experiments with taking existing descriptions writ-
ten using AN-1 and reformulating them in AN-2 are, however, quite encouraging,
and the degree of backwards compatibility between AN-1 and AN-2 is surpris-
ingly high.

The rest of this section outlines the (tentative) proposed syntax for AN-2,
and comments on some of the differences from AN-1. The corresponding syntax
for AN-1 is given in an appendix. Note that the opportunity has been taken to
replace some of the symbols used in AN-1 by new symbols that should read more
naturally—for instance, “regive” has been renamed to “copy”, and “escape” to
“raise”.

In contrast to the eight parts of AN-1, AN-2 has only five main parts, con-
cerned with:

– Flow of Data and Control
– Scopes of Bindings
– Actions as Data
– Effects on Storage
– Interactive Processes

The separation of the flow of data and control into the functional and basic facets
in AN-1 turned out not to be useful, and it has been abandoned. The other parts
of AN-2 correspond closely to single parts of AN-1; the parts of AN-1 concerned
with directive or hybrid binding actions have simply been eliminated.

AN-2, like AN-1, has two levels:

– Kernel Action Notation, defined using Modular SOS
– Full Action Notation, defined by reduction to Kernel Action Notation

AN-2 is also parameterized by a Data Notation that provides a collection of data
sorts, operations, and predicates.

22



3.1 Kernel AN-2

Kernel AN-2 is intended to be as small as possible: all constructs which can be
defined straightforwardly in terms of Kernel AN-2 are left to Full AN-2.

Data

Data ::= Datum∗

DataOp ::= #i
DataPred ::= =

DataOp consists of elements that represent operations on Data, including #i ,
representing the selection of the ith component of a tuple (for each i > 0 );
similarly, DataPred consists of elements that represent predicates on Data, in-
cluding = , representing the equality of two elements of Datum. By using
such representations of operations and predicates, the need for a higher-order
meta-notation (letting data operations and predicates themselves be arguments
of primitive actions) is avoided. The distinction between operations and pred-
icates caters for frameworks (such as Casl) where predicates are regarded as
primitive, and not identified with (e.g. boolean-valued) operations.

Flow of Data and Control

Action ::= provide Data | copy | Action then Action |
Action and then Action |
Action and Action | indivisibly Action |
raise | Action exceptionally Action |
Action and exceptionally Action |
give DataOp | check DataPred |
fail | Action otherwise Action |
select (Action or . . . or Action) |
choose natural

This part of Kernel AN-2 combines the Basic and Functional facets of AN-1.
Notice that there are no yielders: the effect of yielder evaluation in AN-1 is
achieved in Kernel AN-2 by combinations of provide d and give o, using and
and then. (However, yielders are introduced, and the kernel action give o is
extended to yielder arguments, in Full AN-2.)

For expressing normal and exceptional dataflow, AN-2 provides the same
combinators as AN-1 (renaming regive to copy , escape to raise, and trap to
exceptionally). It also provides the exceptional counterpart of and then, writ-
ten A1 and exceptionally A2 , where A2 is performed—with the same data as
A1—only if A1 terminates exceptionally, and the data given by A1 and A2

are concatenated only if A2 also terminates exceptionally. For example, when

23



A terminates exceptionally with data d , A and exceptionally raise terminates
exceptionally with d appended to the data given to A.

The treatment of alternative actions and failure in AN-2 is quite different
from that in AN-1. There is now no explicit “commitment” to a selected action:
storing or communicating actions do not discard alternative actions, and if a
failure occurs in a selected action, an alternative action simply continues with
the current information, which may well differ from that at the beginning of the
first-performed alternative. However, selecting to perform an “infallible” action
(i.e., one that cannot fail) corresponds to an implicit commitment, since any
alternatives to it can never be performed.

AN-2 includes a new combinator, A1 otherwise A2 , where A2 is an alter-
native action to A1 , but not vice versa: A2 gets performed only if A1 fails.
Symmetric choice between alternatives A1 or A2 is still available; however, all
the alternatives of a particular selection now have to be enclosed in select (. . .).
Thus select(A1 or . . . or An) performs any of the Ai first; on failure of the
selected Ai , it performs the choice between the remaining Aj with the same
data. A symmetric binary deterministic selection (where one action fails iff the
other one does not) can in practice often be replaced by a simpler action using
otherwise.

The only primitive action in AN-2 that can fail is the fail action itself: all
other primitive actions that cannot terminate normally (e.g., due to being given
inappropriate data) are supposed to terminate exceptionally, with no data, rather
than failing. Failure is thus reserved to control choice between alternative ac-
tions, and it is expected that actions representing the semantics of most program
constructs will be infallible. Note that check p terminates exceptionally unless
p holds, rather than failing, so it cannot be used directly as the guard of an
alternative; however, Full AN-2 defines the notation when p to abbreviate a cor-
responding action that fails unless p holds, so when p then A1 otherwise A2

expresses the deterministic selection of A1 or A2 , depending on whether p holds
or not.

The new treatment of alternative actions appears to be significantly simpler
than the original one, both regarding the theory and the implementation of
Action Notation.

In AN-1, choose could be used to select individual values from arbitrary
sorts, including cells, agents, and actions. Thus there was no guarantee that
a freshly-allocated cell or contracted agent was previously unknown, nor that
knowledge of its identity could be kept local. In AN-2, choose is restricted so
that it cannot be used for cells, agents, or actions. For simplicity (and to avoid
the need for data sorts as arguments of actions) the only sort from which one
may select values arbitrarily is Natural , the sort of natural numbers (this allows
indirect selection also from sorts that have enumeration operations, e.g., sorts of
characters).

Finally, note that unfolding A and unfold are no longer kernel actions in
AN-2, but are regarded as abbreviations, and defined in Full AN-2. Essentially,
unfolding A corresponds to the declaration and immediate call of a recursive

24



parameterless procedure with body A, and unfold to its recursive call, which
can be expressed straightforwardly using Kernel AN-2 actions for binding and
enaction.

Scopes of Bindings

Action ::= give current bindings | Action hence Action
Datum ::= Token | Bindable | Bindings
DataOp ::= binding | overriding | disjoint union

The main difference between this part of Kernel AN-2 and the Declarative facet
of Kernel AN-1 is that here, the bindings resulting from an action are simply
given as transients, rather than “produced” separately from the transients. How-
ever, bindings are still “received” separately from transients, as in AN-1.

The combinator A1 hence A2 is used just as before, only now A1 is supposed
to give the bindings map that A2 is to receive, and the only data given by the
whole action is that given by A2 .

Various data operations are available for expressing bindings, and for com-
bining the bindings produced by sub-actions. For instance, binding(tk , bv) forms
the map taking the token tk to the bindable value bv ; and overriding(b1 , b2 )
returns the bindings map where bindings in b2 take precedence over those in
b1 (i.e., the opposite of the operation overlay provided by AN-1). Most of the
binding primitives and combinators of AN-1 are defined as abbreviations in Full
AN-2. Note that since bindings are no longer produced separately from tran-
sients, there is no need for any hybrid functional-binding combinators at all in
AN-2.

The built-in distinction of a special value unknown, and the AN-1 primitive
action for “unbinding”, are omitted in AN-2, since they were rarely used in
practice in AN-1.

Actions as Data

Action ::= enact
Datum ::= Action

This part of AN-2 corresponds to the “Reflective” part of AN-1. Action, the
sort of actions, is a subsort of Data in AN-2. Thus all action combinators (and
the data operation provide ) are automatically represented by elements of the
sort DataOp, and can be used to compute actions—for instance, given actions
A1 and A2 as data, performing the action give then computes A1 then A2 .
In AN-1, actions occurring in data had to be embedded as “abstractions”, and
abstraction combinators corresponding to action combinators were needed.

The action enact has essentially the same interpretation in AN-2 as in AN-1,
except that the action to be enacted is given to it as data, rather than as an
explicit argument.

25



The abstraction-forming data operations provision d and production d of
AN-1 were mainly used to define applications and closures of abstractions. The
Kernel AN-2 action provide d corresponds to provision d in AN-1; the treatment
of produced bindings as data in AN-2 has allowed produce d to be eliminated
altogether.

Effects on Storage

Action ::= create | destroy | update | inspect
Datum ::= Cell | Storable

The Kernel AN-2 notation for effects on storage differs substantially from the
corresponding imperative facet of AN-1. The main change is that in AN-2, cells
of storage are no longer reusable: in any performance, each cell can only be given
at most once by the create action—even if the use of the cell is subsequently
stopped explicitly by the action destroy . In AN-1, reserved cells that became
“unreserved” were regarded as no longer in the storage, and could be reserved
again.

Another difference is that in AN-2, cells are always initialized when created
(with a given storable value), and there is no built-in support for a distinct
“uninitialized” value. Moreover, the AN-1 action “unstore” was seldom used,
and has been dropped in Kernel AN-2.

Since there are no yielders in Kernel AN-2, update has to be given a cell
and a storable value as data, and inspection of the value stored in a cell has
to be an action. There is no AN-2 action corresponding to the AN-1 yielder
current storage, which has not been of much use in practice.

A further difference between the treatment of storage in AN-2 compared to
that in AN-1 is that storage is in principle global, and cells created by one agent
may be updated, inspected, or even destroyed by other agents.

Interactive Processes

Action ::= activate | deactivate | give current agent |
send | receive | give current time

Datum ::= Agent | Message | MessageTag

This part of Kernel AN-2 corresponds to the Communicative facet of AN-1.
When given an action as data, activate adds a new agent performing that action
to the system, and gives the identity of the agent; this has a similar effect to
offering a contract in AN-1, and waiting for the action of the contract to send
back a message revealing its performing agent. The action deactivate, which
(eventually) stops the performance of a given agent, is included mainly because
of the difficulty of adding it later as an abbreviation (but it is presently unclear
whether it is sufficiently useful to warrant its inclusion in AN-2 at all).

26



Sending a message in AN-2 is the same as in AN-1, except that the sender of
the message is not implicitly included (so anonymous messages are now possible).
The action to receive a message in AN-2, however, does not wait patiently for
an appropriate message to arrive: it simply terminates exceptionally if such a
message is not already available. A further difference is that the AN-1 buffer
of messages that have arrived at an agent, but which have not yet been dealt
with, is left implicit in AN-2. Moreover, discrimination between different kinds of
messages in AN-2 is purely on the basis of message tags provided by the senders,
instead of by specifying an entire sort of messages.

A new feature of AN-2 is that each agent has access to the (local) current
time. Various data operations will be provided to select the year, month, hour,
minute, second, millisecond, etc., from the time, as well as for addition and
subtraction of times. Even though nothing is assumed about the (absolute or
relative) speeds of the agents that perform actions, it seems both desirable and
realistic to allow delaying, i.e. checking the current time until it exceeds some
absolute value before proceeding. (It would be possible to represent clocks by
agents, but it may then involve an excessive amount of communication to obtain
the time—and when there is more than one clock agent, an elaborate protocol
would be needed to keep the different clocks “on time”.)

As mentioned above, storage is no longer local to particular agents. Since
buffers, explicit serial numbers, and information about contracting agents have
been eliminated in AN-2, the representation of an agent performing an action is
much simpler than it was in AN-1.

3.2 Extension to Full AN-2

To extend Kernel AN-2 to Full AN-2 we introduce values representing subsorts
of Data, we introduce yielders, and we define many of the remaining AN-1 action
primitives and combinators as straightforward abbreviations.

Data

DataOp ::= the DataSort | a DataSort | an DataSort | it

DataSort includes elements representing all subsorts of Data, written as the
lowercase spelling of the sort symbols. For any s in DataSort , the data operation
the s is defined as the projection from Data to the subsort represented by s (the
result being the argument when it is in the subsort, otherwise undefined). The
data operations a s and an s are the same as the s, but intended for use when first
referring to some given data (as in English). The data operation it abbreviates
the datum, being defined only on 1-tuples.

27



Flow of Data and Control

Yielder ::= Data | DataOp | DataOp Yielder | (Yielder , . . . ,Yielder)
Enquirer ::= DataPred | DataPred Yielder
Action ::= give Yielder | Action Yielder |

given Yielder | when Enquirer |
skip | err | tentatively Action | infallibly Action

Data operations occurring in yielders are applied either to the current given
data, or to explicit yielder arguments. For instance, the yielder the s refers to
the given data, and projects it onto the subsort s, thus corresponding to given s
in AN-1. The compound yielder the s Y in AN-2 corresponds to the AN-1 yielder
the s yielded by Y , so in particular, the s#i projects the ith component of the
data onto the subsort s, and corresponds to given s#i in AN-1. All components
of a tuple yielder (Y1 , . . . ,Yn) are required to yield elements of Datum.

As may be expected, the action give Y gives the data yielded by Y . The
action A Y merely abbreviates give Y then A. Typically, A here will be a
simple action (such as update, inspect , or raise) that expects to be given certain
data, and Y will be a yielder that computes the expected data. An example is
update (the cell#2 , the storable#1 ). If the expected data is already available,
the insertion of Y may still be useful for emphasis (or for fluency of reading),
as in inspect the cell . Notice that the compound action raise Y expresses the
same as the AN-1 action escape with Y .

In AN-2, given Y is an action, and intended for use as a guard: when the
given data is identical to the data yielded by Y , it simply copies the given data,
but otherwise it fails. Thus given d tests that the given data is the same as d ,
and given an s tests that the given data is in the subsort represented by s.

An enquirer is a generalization of data predicates to allow their composition
with yielders. The action when Q checks whether the enquirer Q holds or not,
copying the arguments of the predicate if it does, but failing otherwise.

The remaining actions are all rather trivial: skip abbreviates provide (); err
abbreviates provide () then raise; tentatively A fails whenever A terminates
exceptionally with no data, and vice versa for infallibly A.

Scopes of Bindings

Yielder ::= current bindings | bound to Yielder |
closure Yielder

Action ::= bind | furthermore Action |
Action moreover Action | Action before Action |
recursively Action | unfolding Action | unfold

The AN-2 yielder bound to Y is equivalent to the AN-1 yielder the bindable
bound to Y . The yielder the s bound to Y has the same meaning in both AN-1

28



and AN-2, but is parsed in AN-2 as the s (bound to Y ), where the s is the data
operation projecting onto the subsort corresponding to s.

The action bind may be written with arguments as bind (tk , Y ), corre-
sponding closely to the AN-1 action bind tk to Y . The binding combinators
furthermore, moreover , and before are defined to give essentially the same effect
as in AN-1.

Recursion was provided only for single bindings in AN-1, and mutual re-
cursion had to be expressed using explicit indirect bindings. Despite the close
relationship of indirect bindings to “forward” declarations in programming lan-
guages, it is preferable to provide a general combinator for mutual recursion,
and this has now been achieved in the proposed AN-2: recursively A is as A,
except that recursively A is also inserted (appropriately) in any closures formed
when performing A. In particular, recursively bind(tk , closure A′) is equivalent
to

bind tk to closure (furthermore (recursively bind(tk , closure A′))
hence A′)

and similarly for mutually-recursive bindings to closures. Note however that if
A has effects on storage or interactions with other processes, these get repeated
every time any closure in recursively A is enacted; in general, to avoid unexpected
consequences, A should be formed only from dataflow and binding actions.

The Kernel AN-1 notation for unfolding is provided merely as an abbreviation
in Full AN-2, but the usage and intended interpretation remain the same.

Actions as Data

In AN-2, the AN-1 yielder application Y1 to Y2 can be written as the yielder
(provide Y2 ) then Y1 , so there seems to be no need for the former notation
in AN-2. Notice that here, provide Y2 is not an action but an action-yielder,
composing the data operation provide (which maps data to actions) with the
yielder Y2 .

Effects on Storage

Yielder ::= stored in Yielder

The AN-2 yielder stored in Y is equivalent to the AN-1 yielder the storable
stored in Y . The yielder the s stored in Y has the same meaning in both AN-1
and AN-2, but is parsed in AN-2 as the s (stored in Y ), where the s is the data
operation projecting onto the subsort corresponding to s.

The action update may be written with arguments as update (Y1 , Y2 ), cor-
responding exactly to the AN-1 action store Y2 in Y1 , so there seems to be no
need for the latter notation in AN-2.

29



Interactive Processes

Yielder ::= current agent | current time
Action ::= patiently Action

Note that the identity of the contracting agent is not provided in AN-2. The
combinator patiently A abbreviates unfolding (A otherwise unfold); busy waiting
for a message to arrive can then be expressed as patiently tentatively receive.

4 Conclusion

The proposed revised version of Action Notation, AN-2, is substantially smaller
than the original version, yet manages to retain much of its expressiveness. AN-2
does not rely on any special features of the formalism used to specify data; in
particular, familiarity with Unified Algebras is no longer a prerequisite for under-
standing Action Notation. The smaller size of Kernel AN-2 should be especially
advantageous for the development of a strong equational theory for Action No-
tation, as as for those providing tool support for Action Semantics.

It should be straightforward to convert existing action-semantic descriptions
to use AN-2. More work would be needed to convert existing tools for Action Se-
mantics, but the change to a new version should also encourage a greater degree
of uniformity between tools regarding the details of the syntax and semantics of
the action notation that they accept.

Those working on or with Action Semantics are asked to take a close critical
look at the details of the proposed revised version [6], and let the authors know
about any problems. It is hoped to reach a consensus by the end of year 2000
regarding the desirability of adopting AN-2 for future use in Action Semantics.

References

1. S. Liang and P. Hudak. Modular denotational semantics for compiler construction.
In ESOP’96, Proc. 6th European Symposium on Programming, Linköping, volume
1058 of LNCS, pages 219–234. Springer-Verlag, 1996.

2. E. Moggi. An abstract view of programming languages. Technical Report ECS-
LFCS-90-113, Computer Science Dept., University of Edinburgh, 1990.

3. P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1992.

4. P. D. Mosses. A modular SOS for Action Notation. Research Series RS-99-56,
BRICS, Dept. of Computer Science, Univ. of Aarhus, 1999. http://www.brics.dk/
RS/99/56. Full version of [5].

5. P. D. Mosses. A modular SOS for Action Notation (extended abstract). In P. D.
Mosses and D. A. Watt, editors, AS’99, number NS-99-3 in Notes Series, pages
131–142, BRICS, Dept. of Computer Science, Univ. of Aarhus, 1999. Full version
available at http://www.brics.dk/RS/99/56/.

6. P. D. Mosses. AN-2: Revised action notation—informal summary. Available at
http://www.brics.dk/~pdm/, Sept. 2000.

30



A Illustrative Action-Semantic Description

The action-semantic description given below illustrates the use of most of the
full AN-2, apart from that concerned with interactive processes. (The meta-
notation used is experimental, and leaves implicit the modular structure of the
description.)

A.1 Abstract Syntax

• Expression ::= Literal | UnaryOperator Expression |
Expression BinaryOperator Expression | Identifier

• Literal ::= Natural | Boolean

• UnaryOperator ::= - | !
• BinaryOperator ::= + | - | * | == | < | >
• Identifier ::= String

• Statement ::= Block | Identifier = Expression; |
if(Expression)Statement else Statement |
while(Expression)Statement | break; |
Statement or Statement | Identifier();

• Block ::= { } | { Statement Statement } | { Declaration Statement }
• Declaration ::= Type Identifier = Expression; | void Identifier() Block

• Type ::= int | boolean

A.2 Semantic Functions

• evaluate[[ ]] : Expression → Action
%{ normally giving a value }%

• operate1 [[ ]] : UnaryOperator → Action
%{ given a value, normally giving a value }%

• operate2 [[ ]] : BinaryOperator → Action
%{ given (a value, a value), normally giving a value }%

• execute[[ ]] : Statement → Action
%{ normally giving (), exceptionally giving a break }%

• declare[[ ]] : Declaration → Action
%{ normally giving a bindings }%

31



A.3 Semantic Entities

AN-2 version 0.7.3
DN-2 %{ forthcoming }%

• Datum ::= Value | Break

• Bindable ::= Variable | Procedure

• Storable ::= Value

• Value ::= Integer | Boolean

• Variable ::= Cell

• Break ::= break

• Procedure ::= Action

A.4 Semantic Equations

E , E1 , E2 : Expression; L : Literal ; UO : UnaryOperator ; BO : BinaryOperator ;
I : Identifier ; S , S1 , S2 : Statement ; D : Declaration; T : Type;

Expressions

• evaluate[[L]] = give L

• evaluate[[UO E ]] = evaluate[[E ]] then operate1 [[UO ]]

• evaluate[[E1 BO E2 ]] = (evaluate[[E1 ]] and evaluate[[E2 ]])
then operate2 [[BO ]]

• evaluate[[I ]] = inspect the variable bound to I

Unary Operators

• operate1 [[-]] = give (−the integer)

• operate1 [[!]] = give (not the boolean)

Binary Operators

• operate2 [[+]] = give (the integer#1 + the integer#2 )

• operate2 [[-]] = give (the integer#1 − the integer#2 )

• operate2 [[==]] =
select(when (the integer#1 = the integer#2 ) or

when (the boolean#1 = the boolean#2 ))
then give true otherwise give false

32



• operate2 [[<]] =
when (the integer#1 < the integer#2 )
then give true otherwise give false

• operate2 [[>]] =
when (the integer#1 > the integer#2 )
then give true otherwise give false

Statements

• execute[[I = E;]] =
(give the variable bound to I and evaluate[[E ]])
then update

• execute[[if(E)S1 else S2 ]] =
evaluate[[E ]] then infallibly select(
(given true then execute[[S1 ]]) or
(given false then execute[[S2 ]]))

• execute[[while(E)S ]] =
unfolding(
evaluate[[E ]] then infallibly select(
(given true then execute[[S ]] and then unfold) or
(given false then skip)))
exceptionally (given break then skip otherwise raise)

• execute[[break;]] = raise break

• execute[[I();]] = enact the procedure bound to I

Blocks

• execute[[{ }]] = skip

• execute[[{ S1 S2 }]] = execute[[S1 ]] and then execute[[S2 ]]

• execute[[{ D S }]] = furthermore declare[[D ]] hence execute[[S ]]

Declarations

• declare[[T I = E;]] =
evaluate[[E ]] then create then bind(I , the variable)

• declare[[void I() B ]] =
recursively bind(I , the procedure closure execute B)

33



B The Syntax of the Original Action Notation, AN-1

B.1 Kernel AN-1

Note that Data in AN-1 includes not only individual values but also proper
subsorts of values (exploiting the treatment of sorts in Unified Algebras).

Basic

Action ::= complete | escape | fail | commit | unfold |
unfolding Action | indivisibly Action |
Action or Action | Action and Action |
Action and then Action | Action trap Action

Yielder ::= the Data yielded by Yielder |
dataop(Yielder , . . . ,Yielder)

Functional

Action ::= give Yielder | choose Yielder | Action then Action
Yielder ::= them
Data ::= Datum∗

Declarative

Action ::= bind Yielder to Yielder | unbind Yielder |
produce Yielder | Action moreover Action |
Action hence Action | Action before Action

Yielder ::= current bindings |
Yielder receiving Yielder

Data ::= Tokens | Bindable | Bindings |
unknown | known Data

Imperative

Action ::= store Yielder in Yielder | unstore Yielder |
reserve Yielder | unreserve Yielder

Yielder ::= current storage
Data ::= Cell | Storable | Storage |

uninitialized | initialized Data

34



Reflective

Action ::= enact Yielder
Data ::= Abstraction | abstraction of Action |

actionop(Data, . . . ,Data) |
provision Data | production Data

Communicative

Action ::= send Yielder | remove Yielder |
offer Yielder | patiently Action

Yielder ::= current buffer | performing agent |
contracting agent

Data ::= Agent | Buffer | Communication | Message | Sendable |
Contract | user agent | contents Data |
sender Data | receiver Data | serial Data |
Data [containing Data] | Data [from Data] |
Data [to Data] | Data [at Data]

Directive

Action ::= indirectly bind Yielder to Yielder |
redirect Yielder to Yielder |
undirect Yielder | indirectly produce Yielder

Yielder ::= current redirections
Data ::= Indirection | Redirections | indirect production Data

Hybrid

Action ::= Action and then moreover Action |
Action then moreover Action |
Action thence Action | Action then before Action

Data ::= owner Data | Data [on Data]

35



B.2 Extension to Full AN-1

Basic
(None)

Functional

Action ::= escape with Yielder | regive | check Yielder
Yielder ::= given Yielder | given Data # Pos | it

Declarative

Action ::= rebind | furthermore Action
Yielder ::= the Data bound to Yielder

Imperative

Yielder ::= the Data stored in Yielder

Reflective

Yielder ::= application Yielder to Yielder | closure Yielder

Communicative
(None)

Directive

Action ::= recursively bind Yielder to Yielder
Yielder ::= indirect closure Yielder

Hybrid

Action ::= allocate Yielder | receive Yielder | subordinate Yielder

36



Postfix Transformations for Action Notation

Kent D. Lee

Luther College
leekentd@luther.edu

Abstract. Actions are a relatively high-level description of computa-
tion when compared to assembly language. If compilers are to be auto-
matically generated from action semantic descriptions of programming
languages, some transformations will be necessary to simplify the re-
sulting actions and make them suitable for code generation in a target
architecture. Hermano Moura studied action transformations in his PhD
thesis. This paper describes a different approach to action transforma-
tion that is desirable when generating code for RISC and stack-based
architectures.

1 Introduction

Action Semantics is a formal language for the description of programming lan-
guages. Actions describe computations in terms of the manipulation of transient
data, bindings of identifiers to data, and a store mapping cells to data. For a
complete description of Action Semantics, see [6]. As a formal language, it is
possible to generate compilers automatically from Action Semantic descriptions
of programming languages. Action Semantics directed compiler generation has
been studied by several groups [2][3][8].

Figure 1 illustrates the structure of the Genesis compiler generator, which is
similar in structure to other Action Semantics-based compiler generators. The
resulting compilers translate a source program into a program action. A program
action represents the computation of a particular source language program. In
the final stage of the generated compilers, the program action is given to a code
generator, which translates the program action to a target program. In the case
of Genesis, the target language is Java byte code for the Java Virtual Machine.

2 Action Transformation

Action transformation is the process of simplifying an action for two purposes.
The first goal is to enable efficient code to be generated from the action. A
second goal is to make the code generation stage as simple as possible. Hermano
Moura[7] studied action transformations with the goal of eliminating as many
bindings and transients as possible to satisfy the first goal above while using
the C programming language as the target to satisfy the second goal [2]. For
purposes of this paper, consider the Small programming language (a subset of

37



Semantic Specification

Action Semantic Definition (ASD)

Assembly

Tokens ActionProgram

Postfix
Actionfiles

.class

Jasmin Assembler Code Generator

ParserScanner Sort Checker

Transformer

Lexical Specification Grammar

ML-yaccML-lex

Common Language SpecificKey:

Annotated Action

Generator
Parser

Generator
Scanner

Fig. 1. structure of an Action Semantics-based Compiler Generator

ML). The Small program given below is described by the program action given
in figure 2, which is derived from the Action Semantic description for the Small
language given in [3].

let val i=5+4
in
output(i)

end

Moura describes an action transformation algorithm in his thesis[7]. Using Moura’s
algorithm, after binding elimination, the action in figure 2 may be simplified to
the action given in figure 3. After further performing transient elimination on
the action, the action in figure 4 is derived. Notice that there are still transients
in the residual action. The sum of 4 and 5 is not known statically because in this
case the action transformer does not know how to compute the sum of integers.
If the transformer were a partial evaluator it could carry out the sum operation
on the static data. Partial evaluation of actions has been studied in [1]. Intro-
ducing partial evaluation in the transformer creates other problems that must
be solved. Assuming that the transformer is not a partial evaluator, the problem
that this paper addresses is how to transform an action to get efficient target
programs while keeping the code generator simple.

38



give 5
and then
give 4

then
give the sum of the given data

then
bind “i” to the given integer

hence
give the integer bound to “i”
then
enact application of the native abstraction bound to “output” to the given data

Fig. 2. program action for a Small program

give [integer]cell(0,0)

and then
give 5
and then
give 4

then
give the sum of the given data

then
store the given integer#2 in the given [integer]cell#1

hence
give [integer]cell(0,0)

then
give the integer stored in the given [integer]cell

then
enact application of the native abstractionoutput to the given data

Fig. 3. program action after binding elimination

give the sum of (5,4)
then
store the given integer in [integer]cell(0,0)

hence
give the integer stored in [integer]cell(0,0)

then
enact application of the native abstractionoutput to the given data

Fig. 4. after performing transient elimination on the action in figure 3

39



3 Code Generation

To keep code generation simple, it is desirable to transform actions to as small
a subset of action notation as possible. The transformations performed to arrive
at the action in figure 4 result in inconsistency in the residual action. Consider
the Small program given below.

give the sum of (5,4)
then
give the sum of (the given integer,3)

then
store the given integer in [integer]cell(0,0)

hence
give the integer stored in [integer]cell(0,0)

then
enact application of the native abstractionoutput to the given data

Fig. 5. an action that inconsistently gives transients

let val i=5+4+3
in
output(i)

end

After performing the transformations on the program action for this program
we arrive at the action given in figure 5. The code generator would have to be
written to generate code for summing integers where both integers are known
and where only one integer is known while the other is given as a transient. This
results in three different cases for generating code for summing integers. However,
if transients were not eliminated, the residual action for the first program would
look like the one given in figure 3. While transients are left in the residual action
in figure 3, it is consistent with respect to how transients are handled within
the action. Moreover, the action closely resembles low-level code that would be
generated for this program on both stack-based and RISC architectures. The
Java Virtual Machine is one such machine. Jasmin is an assembler of Java byte
code [5]. A excerpt from a Jasmin assembly language program for the action
given above is

.method public run_Main()V
.throws java/io/IOException
.limit stack 4
.limit locals 1
aload_0
getfield test25_Frame/localData [I

40



iconst_0
iconst_5
iconst_4
iadd
iastore
getstatic java/lang/System/out Ljava/io/PrintStream;
aload_0
getfield test25_Frame/localData [I
iconst_0
iaload
invokevirtual java/io/PrintStream/println(I)V
return

.end method

Notice the similarity between this program and the action presented in figure 3.
In this program the address for the given cell is pushed on the stack first, followed
by the 5 and 4. Then the sum of 5 and 4 is computed and the result is stored
in the given cell. This is nearly identical to the performance of the action. In a
stack-based architecture the stack holds transient values given by actions.

RISC architectures are similar to stack-based architectures in many ways if
you use a simple register allocation scheme. A framework for one such allocation
scheme is presented in [4]. An excerpt from a MIPS assembly language program
for the given action is

move $t0, $sp
li $t1, 5
li $t2, 4
add $t1,$t1,$t2
store $t1,0($t0)

The code above follows a simple demand based register allocation scheme. There
is support in the literature for just such an allocation scheme [9]. This demand
allocation scheme emulates a stack using the general purpose registers of the
RISC architecture.

4 Postfix Actions

This paper proposes the definition of a postfix form for actions. The action given
in figure 3 is in postfix form. An action is in postfix form if

– all datum that are used in the action are given (i.e. Individuals never yield
themselves except in the context of an action that gives them).

– transients may not be regiven.

The first criterion insures that all datum appear as transients. This is important
during code generation because transients are equivalent with the contents of

41



the stack in a stack-based architecture and the contents of registers in RISC
architectures. By requiring every datum to appear as a transient in the action,
the datums are likewise required to appear on the stack or in a register during
execution on the target architecture.

The second criterion preserves the first in/first out nature of a stack. When
a datum is given by a postfix action it corresponds to pushing it on a stack
in a stack-based architecture. The goal of the postfix form is to allow action
performance using a stack to hold the transient values. If an action regives a
datum that is not on the top of the stack it would violate the first in/first out
stack property, which means a stack is no longer a sufficient data structure to
hold the transient data. Therefore, postfix actions are just those actions where
a stack is sufficient to hold the transient values during their performance. On
RISC architectures, the register allocation framework presented in [4] requires
that registers be allocated in a first in/first out-like fashion as well, so the postfix
form for actions applies to RISC architectures as well.

5 Action Transformation for Postfix Actions

Actions that are generated by a grammatical interpretation of a source program
generally give their data as transients as required by the postfix form described
above. Therefore, transient elimination is not generally needed during action
transformation for postfix actions. Binding elimination is still needed to reduce
the overhead of creating bindings at run-time. The transformation algorithm for
postfix actions proceeds by eliminating bindings in a bottom-up fashion. Actions
like

bind “id” to y

where y yields an unknown value may be replaced with

give [datum type]celli
and then
give y

then
store the given datum type#2 in the given [datum type]cell#1

where datum type is a sort containing the datum yielded by y. Subsequent ref-
erences to the eliminated binding can be transformed to refer to the contents
of the named cell, [datum type]celli, instead. Notice that the bind action is re-
placed by an action that seems to adhere to the postfix property. Unfortunately,
this transformation does not preserve the postfix property of the action. For
instance, consider the action given in figure 2. After applying the binding elimi-
nation transformation above, the action in figure 6 is obtained. But, this action
contains an occurrence of give the given integer which violates the second post-
fix condition above. To fix this a relatively complex transformation has to be
applied. If an action of the form

42



give 5
and then
give 4

then
give the sum of the given data

then
give [integer]cell(0,0)

and then
give the given integer

then
store the given integer#2 in the given [integer]cell#1

hence
give [integer]cell(0,0)

then
give the integer stored in [integer]cell(0,0)

then
enact application of the native abstractionoutput to the given data

Fig. 6. program action for a Small program

a1

then
give y
and then
give the given s

then
a2

is encountered and y does not refer to transients or the contents of a cell, then
it may be transformed to

give y
and then
a1

then
a2

The action given in figure 3 was derived by applying this transformation to the
action given in figure 6. It is possible to apply a slightly different transformation
for binding elimination. Bind actions like the one above may be replaced with
the action

give y
and then
give [datum type]celli

then
store the given datum type#1 in the given [datum type]cell#2

43



This transformation leads to a similarly malformed action requiring another
complex transformation to keep the action in postfix form. The complex trans-
formation replaces actions of the form

a1

then
give the given s
and then
give y

then
a2

with the action

a1

and then
give y

then
a2

assuming that y does not refer to transient data.

give 5
then
bind “i” to the given integer

hence
give the integer bound to “i”
then
enact application of the native abstraction bound to “output” to the given data

Fig. 7. program action for a Small(er) program

give 5
then
complete

hence
give 5
then
enact application of the native abstraction bound to “output” to the given data

Fig. 8. program action after applying binding elimination to eliminate a known value

Finally, bind actions that bind identifiers to known values may be replaced
by the action complete. Consider the (even smaller) Small program

44



let val i = 5
in
output(i)

end

The program action for this program is given in figure 7. In this case, “i” is
bound to a known value and a cell is not needed to store a known value. The
bind action may be replaced by complete and references to the bound value may
be replaced with the value itself. After applying these transformations the action
in figure 8 is derived.

consume : action→ action
consume a1 and a2 = consume a1 and consume a2

| consume a1 and then a2 = consume a1 and then consume a2

| consume a1 hence a2 = consume a1 hence consume a2

| consume a1 moreover a2 = consume a1 moreover consume a2

| consume a1 before a2 = consume a1 before consume a2

| consume a1 else a2 = consume a1 else consume a2

| consume a1 or a2 = consume a1 or consume a2

| consume a1 then a2 = a1 then consume a2

| consume a1 thence a2 = a1 thence consume a2

| consume give y = complete
| consume allocate y = complete
| consume a = a

Fig. 9. The consume Operation

give 5
then
enact application of the native abstraction bound to “output” to the given data

Fig. 10. program action after consuming unneeded transients and applying identities

The action in figure 8 now gives transients that are not needed. While this
does not violate the postfix property of actions, it is unnecessary and could lead
to extra garbage being pushed onto the stack of a stack-based architecture. To
eliminate unneeded transients, an operation called consume may be applied to
an action, a, when discovered in the context of

a
then
complete

45



or when it appears in the context of

a
thence
complete

The consume operation is defined in figure 9. After consuming unneeded tran-
sients, identities involving complete may have to be applied to further simplify
the action. After consuming the unneeded transients in the action in figure 8
and applying the identity transformations the result is the action in figure 10.

6 Conclusion

Moura presented a transformation algorithm that was suitable for targeting
higher level languages like C as targeted in the Actress compiler generator. When
targeting lower level languages, issues like the contents of the stack or registers
become more important.

This paper has presented a definition of postfix actions and motivated their
use during the code generation phase of Action Semantics directed compilers
targeting stack-based and RISC architectures. The two goals of efficient target
programs and simple code generation have been addressed in the context of
action transformations that preserve the postfix property of actions.

Work that remains in this area involves extending Genesis and other Ac-
tion Semantics directed compiler generators to support a larger subset of action
notation and/or to support newer versions of action notation.

References

1. A. Bondorf and J. Palsberg. Compiling actions by partial evaluation. In Proceedings
of Conference on Functional Programming Languages and Computer Architecture
(FCPA ’93), Copenhagen, DK, 1993.

2. D.F. Brown, H. Moura, and D.A. Watt. Actress: an action semantics directed
compiler generator. In Proceedings of the Workshop on Compiler Construction,
Paderborn, Germany, 1992.

3. K.D. Lee. Action Semantics-based Compiler Generation. PhD thesis, Department
of Computer Science, University of Iowa, 1999.

4. K.D. Lee. Minimal register allocation. Technical Report 99-06, University of Iowa,
Department of Computer Science, Iowa City, IA, 1999.

5. J. Meyer. Jasmin. WWW Home Page, Media Research Laboratory, New York
University, March 1997. URL: http://www.cat.nyu.edu/meyer/jasmin.

6. P.D. Mosses. Action Semantics: Cambridge Tracts in Theoretical Computer Science
26. Cambridge University Press, 1992.

7. H. Moura. Action Notation Transformations. PhD thesis, Department of Computer
Science, University of Glasgow, 1993.

8. P. Ørbæk. Oasis: An optimizing action-based compiler generator. In Proceedings of
the International Conference on Compiler Construction, Volume 786, Edinburgh,
Scotland, 1994. LNCS.

9. T. Pittman and J. Peters. The Art of Compiler Design. Prentice Hall, Englewood
Cliffs, NJ 07632, 1992.

46



Action Semantics for Logic Programming
Languages

Luis Carlos Menezes?,
Hermano Perrelli de Moura, Geber Ramalho

Centre of Informatics
Federal University of Pernambuco

CP 7851, CEP 50732-970, Recife, Brazil.
E-mail: {lcsm,moura,glr}@cin.ufpe.br.

Abstract. Logic programming languages have some particular concepts
which require the definition of complex structures if one tries to give a
formal semantics to them. This complexity difficulties the writing of for-
mal descriptions and makes the resultant specifications too complex and
hard to be read and understood by others. This paper proposes to ex-
tend action semantics with some new semantic entities to represent these
concepts. Using these entities, the description of logic programming lan-
guages becomes easy and the produced specifications are more readable.
We expect that it could also improve the use of formal methods in the
design of logic programming languages and could help in the definition
of new languages in this paradigm.

1 Introduction

Action semantics defines facets to describe the most common concepts
found in programming languages (like values, functions, bindings, stor-
age, sequencing, parallelism, interleaving). Using these facets the descrip-
tion of programming languages like Pascal, C and ML becomes easier.
The logical programming paradigm facilitates the design of complex pro-
grams because their structures, based in first order logic, frees the pro-
grammer to handle directly with lower level control structures like the
existing in imperative programming languages.
When we work in formal description of logic programming languages, the
facets of action semantics are not helpful because they do not support
some complex concepts used by these languages (relations, backtracking,
unifications, etc). The produced specifications are too complex and hard
to manipulate.
To reduce this problem, we propose to improve the support of these con-
cepts in action semantics. This paper shows some new primitive actions
and combinators to represent the control flow and data structures found
in languages like Prolog. Using these new actions, the specifications be-
comes shorter and more readable.
This text is organized in the following way:

? Supported by CNPq, Brazil.

47



– the first section shows the properties of logic programming lan-
guages;

– the second and third sections justify and present an extension of
action notation, designed to represent the properties described in
the first section;

– the fourth section exemplifies the use of the proposed extension giv-
ing a semantics for the Prolog programming language;

– the last section analyses the results obtained with the semantics
entities proposed in this paper.

2 Logic Programming Languages

parent(Peter, John).

parent(Wally, Fred).

parent(John, Al).

Question :- parent(X,Y),parent(Y,Z).

Fig. 1. Small example of a logic program.

The logic paradigm uses first order logic to specify the programs behav-
ior. The most important structure in a logic program is the first order
predicate, formed by a predicate name and a set of arguments. A logic
program is described by a set of rules which defines when a predicate
holds. The rules are positive Horn clauses and they are defined using a
notation like:

P :- P1, P2, ..., Pn.
indicating that the predicate P is true when all conditional predicates
Pi are also true. Unconditional rules (with no conditional predicates):

P .
are called facts and indicates that the predicate P is true. An example
of logic program is showed in Figure 1.
The basic task performed by logic programs is query about predicates.
A query is used to check if a set of predicates are true according to the
program sentences. The algorithm used to test a query is:

Test query: p1,p2,...,pm

1. find a rule: “q :- c1, ... , cn”, n ≥ 0. and p1[V1/C1] =
q[V2/C2], where q[V2/C2] means the predicate q with the
variables V2 replaced by the terms C2.

2. if (found no rule) then output “query is false” ; finish
3. if (found a rule)

(a) replaces the query to cx[V2/C2], py[V1 / C1]
(b) if (the resulted query is empty) then output “query is

true”; finish

48



(c) goto 1;
Another important property of logic programs is the existence of implicit
backtracking. If the used rule does not satisfy the query, the older state
of the query is retrieved and another applicable rules are tried until there
is no more possible rules.

3 Semantics for Logic Languages

To express accurately the semantic of a logic programming language, the
researcher needs to specify:
– the process of searching for applicable rules;
– the variable substitution process;
– the retrieve of old states when backtracking;
– etc.

Some researchers [NF89] tried to give the semantics of Prolog (the
most known logic programming language) using the environments given
by common formal methods like denotational semantics. The results are
too complex and hard to be understood and reused.

4 Logic Extension of Action Notation

To simplify the description of logic programming languages we propose
the definition of new actions to describe the basic concepts found in this
kind of language. These new actions can be divided in two classes:
– control actions to model the control structures existing in logic pro-

gramming languages; and
– unification actions to model the variables existing in logic program-

ming languages.

4.1 Control Actions

We define the following control actions:
(1) backtracking :: action, action → action .
(2) continue : action .
(3) terminating :: action → action .
(4) terminate : action .

The action combinator ( backtracking ) was designed to model the se-
quencing command existing in the logic paradigm. When the action a
backtracking b is performed the action a is performed. During the perfor-
mance of a, the performing of the action continue transfers the control
to the second action (b) of the last performed backtracking combinator.
After the performance of b the control returns to after the performed
continue action. To exemplify the use of these actions, when the action:

(1)

(2)

(3)

(4)

give 0
then
continue
then
continue

backtracking
give the successor of the given integer

49



is performed, the action (1) produces a transient information which is
passed to the continue action (2), this action transfers the execution to
the action (4). When (4) is performed the execution returns to action
(3) (the action following (2)) that will perform (4) again. After the
performance of (4), the control returns to the action following action (3),
which does not exist, then the whole action terminates. The transients
given to the action (4) are the same ones given to the caller actions
(2) and (3). The bindings received by the action (4) are the bindings
received be the backtracking combinator.
These actions are useful to describe logic programs. In fact, Prolog
rules like: “P1 :- P2 , P3”, can be directly expressed using the action:
“P2 backtracking P3”; and Prolog facts like: “P1.”, can be expressing
using the action continue. The semantics of the example showed in Figure
1 (not considering the semantics of variables) can be expressed by the
following program action:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

bind “parent” to the closure abstraction
give ( “Peter”, “John”) then continue
and then
give ( “Wally”, “Fred”) then continue
and then
give ( “John”, “Al”) then continue

hence
enact the abstraction bound to “parent”
backtracking
enact the abstraction bound to “parent”
backtracking
... do something ...

The action (1) creates a binding between the token “parent” and the
abstraction which represents the predicate “parent”. The semantics of
this abstraction is try to continue the program for each possible solution
to the query (lines (2),(3) and (4)). The query is modeled by the action
in the lines (5)-(7). This action calls the predicate parent two times
combining with backtracking and make some undefined task in the
(8). The action (8) will be performed for all solutions found by the
both performances of “parent”.
Another set of control actions, defined to handle the control transfers
existing in logic programming languages, are formed by the actions ter-
minate and terminating a. The action terminating a performs the action a
which can perform some backtracking actions. During the performance
of a the action terminate aborts all backtracks performed inside a and
transfers the execution point to after the terminating action. For example,
when the action:

(1)

(2)

(3)

continue and then continue
backtracking
terminating ( continue and then continue)
backtracking
terminate

is performed, the continue actions in (1) perform the actions in (2)

twice. When (2) is performed it should perform (3) twice too, but (3)

50



performs the action terminate which cancels the performance of (3) and
the backtracking of (2) and returns immediately to (1). A similar action
like:

(1)

(2)

(3)

terminating (continue and then continue)
backtracking
continue and then continue
backtracking
terminate

performs differently because when (3) is performed, both backtracking
actions are aborted.

4.2 Unification Actions

Unification actions define actions to express the variable behavior in logic
programming languages. The defined actions were designed to handle
unifiable cells. An unifiable cell is a memory location which can store the
following values:
– the undefined value, meaning that there is no value which unifies

with the cell;
– an unifiable value, indicating that this value is unified with the cell;
– another unifiable cell, indicating that the cell is unified with the cell

it points to.
The values stored in unifiable cells are changed by unifications. The uni-
fication process has the following alternatives:
– When an unifiable cell is unified with a value, the value [stored in]

unified with this unifiable cell is compared with the given value. If
both values are the same, the unification succeeds. If these values
are different, the unification fails. If the unifiable cell is not already
unified with any value, the unification succeeds too.

– When two unifiable cells are unified, the values unified with these
cells are compared and the unification succeeds if the values are the
same. If one of them is not unified with any value, the value stored
by this cell is changed to the value stored by the other cell; If both
cells stores the undefined value, the unifiable binds the values stored
by the cells and next changes in one of these cells will affect the
other cell too;

– When two values are unified, the both values are compared. A defi-
nition for the comparation of two values is language dependent and
is left opened to be defined by the language definition.

The defined actions designed to handle unifiable cells are:
– the action allocate an unifiable cell reserves an unused unifiable cell.

Initially, the returned cell is not unified with any value;
– the action unify x with y unifies the values produced by the yielders

x and y;
– the action unify values x and y is called by the action unify x with y to

compare two values, the semantics of this action should be defined
by the user during the language specification. The semantics of this
action should perform the action unification error if the unification
can not be done;

51



– the action unifying a, performs the action a and when its performance
finishes, the state of the unifying memory is recovered, erasing all
unifications performed by a. This action also captures escapes pro-
duced by wrong unifications made in a;

– the yielder the x unified with y produces the value stored in the
position y.

The unification actions use the following data structures:

– the sort unifiable represents values which can be stored in unifiable
cells. Its definition is left open and should be defined by languages
specifications;

– the sort unifiable-cell represents memory positions in the unifiable
memory. It was defined like ordinary cell positions;

Some examples of actions using the unification are shown below:

(1)

(2)

(3)

allocate an unified cell
then
bind “i” to the given unified-cell

hence
unify the unifiable-cell bound to “i” with 4
and then
unify the unifiable-cell bound to “i” with 5.

The action (1) produces a binding between a token and a new unifiable
memory position. The action (2) unifies this position with the value 4.
After this, the action (3) tries to unify the same position with the value
5. This action will not be succeed because it is inconsistent with the last
unification.

Consider the following action:

(1)

(2)

(3)

(4)

(5)

allocate an unified cell
then
bind “i” to the given unified-cell

and
allocate an unified cell
then
bind “j” to the given unified-cell

hence
unify the unified-cell bound to “i” with
the unified-cell bound to “j”
and then
unify the unified-cell bound to “i” with 5
and then
give the number unified with the unified-cell bound to “j”

Actions (1) and (2) make bindings between tokens and new unifiable
memory positions. The action (3) unifies these memory positions. The
action (4) unifies the first memory position with the value 5. It makes
with the second memory position be unified with these value too, because
both memory position are unified. The action (5) tests this fact returning
the value unified with the second memory position.

In the action

52



(1)

(2)

(3)

allocate an unified cell
then
bind “i” to the given unified-cell

hence
unifying
unify the unified-cell bound to “i” with 5

and then
unify the unified-cell bound to “i” with 4.

the action (1) produces a binding between a token and a new unifiable
memory position. The action (2) makes an unification inside the combi-
nator unifying, this unification will be erased when this action completes.
The action (3) tests this property by making another unification that
should be inconsistent with that made in (2).

These proposed actions are useful to model the behavior of the variables
in logic programs. The full program action that gives the semantics of
the program showed in Figure 1 is:

53



(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

bind “parent” to the closure abstraction
unifying
unify the given datum#1 with “Peter”
and then
unify the given datum#2 with “John”
and then continue

and then
unifying
unify the given datum#1 with “Wally”
and then
unify the given datum#2 with “Fred”
and then continue

and then
unifying
unify the given datum#1 with “John”
and then
unify the given datum#2 with “Al”
and then continue

hence
allocate an unified cell then bind “X” to it
and
allocate an unified cell then bind “Y” to it
and
allocate an unified cell then bind “Z” to it

before
give (the value bound to “X”,the value bound to “Y”)
then
enact the abstraction bound to “parent”

backtracking
give (the value bound to “Y”,the value bound to “Z”)
then
enact the abstraction bound to “parent”

backtracking
ShowAnswer.

The action (1) produces the bindings for the predicate, this abstraction
tries each possible solution (actions (2),(3) and (4)). For each solution,
the action unifies the given values with the current solution and contin-
ues the execution. The action (5) produces the bindings for the used
variables, these variables are used in actions (6) and (7) when enacting
the queries. Finally, the action (8) is performed for each possible solution
found and should make some processing to use it.

5 Case Study: Prolog Action Semantics

To test the semantic entities proposed in this paper we describe the
Prolog programming language.

54



5.1 Abstract Syntax

Program = [[ Predicate+ “in” Variable Question+ ]].

Rule = [[ “pred” identifier “is” Variable Clause+ “end” ]].

Question = [[ “:-” Predicate+ “.” ]].

Variable = [[ “vars” Identifier+ “.” ]]

Clause = [[ Predicate “:-” Predicate+ ]]
[[ Predicate “.” ]].

Predicate = [[ “!” ]] [[ Identifier “(” Term+ “)” ]].

Term = Variable Constant [[ Identifier “(” Term+ “)” ]].

5.2 Semantic Functions

• run :: Program → action.
(1) run [[ p: (Predicate+) “in” v :Variable q :Question+ ]] =

predicate elaborate p
and
variable elaborate v

hence
execute q .

• variable elaborate :: Variable → action.
variable elaborate [[ “vars” (i1,i2) “.” ]] =

variable elaborate [[ “vars” i1 “.” ]]
and
variable elaborate [[ “vars” i2 “.” ]]

variable elaborate [[ “vars” i :Identifier “.” ]] =
allocate an unifiable cell
then
bind i to the given unifiable-cell

(1) predicate elaborate :: Predicate+ → action.
predicate elaborate () = complete.
predicate elaborate (p1,p2) = elaborate p1 and elaborate p1.

predicate elaborate [[ “pred” i :Identifier “is” v :Variable c:Clause+

“end” ]] =
bind i to abstraction of
furthermore variable elaborate v
hence
try c.

• execute :: Question+ → action.
execute (q1,q2) =

execute q1

and then
execute q2.

execute [[ “:-” p:Predicate+ “.” ]] =
do p
backtracking
complete.

• try :: Clause+ → action.

55



try (c1,c2) = try c1 and then try c2.
try [[ p1:Predicate “:-” p2:Predicate+ ]] =

unifying
check predicate p1

and then
do p2

and then
continue.

try [[ p:Predicate “.” ]] =
unifying
check predicate p1

and then
continue.

• check predicate :: Predicate → action.
check predicate [[ Identifier “(” t :Term+ “)” ]] =

evaluate t
then
give operator “()” with the given data

and
give operator “()” with the given data

then
unify the given term#1 with the given term#2.

• do :: Predicate+ → action.
do (p1,p2) =

do p1

backtracking
do p2.

do [[ “!” ]] =
continue
and then
terminate.

do [[ p:Identifier “(” t :Term+ “)” ]] =
evaluate t
then
enact the application of
(the abstraction bound to p)
to the given data.

• evaluate :: Term+ → action.
evaluate (t1,t2) = evaluate t1 and then evaluate t2.
evaluate v :Variable = give the value bound to v .
evaluate c:Constant = give the value of c.
evaluate [[ i “(” t “)” ]] =

evaluate t
then
give operator i with the given data.

5.3 Semantic Entities

introduces: term, operator with , the operator of , arguments of .

56



• (operator t1 with a1) is compatible with (operator t2 with a2) =
both(t1 is t2, count a1 is count a2).

• unifiable = string token number term.

unify value t1:term t2:term =
bind “T1” to t1
and
bind “T2” to t2

hence
check the term bound to “T1” is
compatible with the term bound to “T2”
and then
give 1
then
unfolding
unify the (the given number) argument of

(the term bound to “T1”) with
the (the given number) argument of
(the term bound to “T2”)

and then
check not the given number is
count of arguments of
(the term bound to “T1”)
and then
give the successor of the given number
then
unfold

or
check the given number is
count of arguments of
(the term bound to “T1”)
and then
complete

or
check not the term bound to “T1”
is compatible with the term bound to “T2”
and then
escape with unification-error.

• v1 : (string token number) ⇒
unify values v1 v2 =
give v1 is v2

then
complete
else
escape with unification-error.

57



v2 : (string token number) ⇒
unify values v1 v2 =
give v1 is v2

then
complete
else
escape with unification-error.

• term = operator token with data.
• the operator of (operator t with a) = t .
• arguments of (operator t with a) = a.
• the n argument of (operator t with a) = a.

6 Conclusions and Future Works

We showed that action semantics can be used to express the seman-
tics of logic programming languages like Prolog. The semantic entities
proposed in this paper can be easily described using standard action no-
tation as we show in Appendix A. But our experience shows that they
are more powerful to describe logic programming languages, because it
makes specifications more legible and simpler than if we use only the stan-
dard action notation. These facts can justify the adoption of the entities
showed in this paper for action semantic descriptions of programming
languages.
Thus, using the proposed semantic entities, we think that research and
application on semantics of this kind of languages and the design of
multi-paradigm languages becomes simpler.

References

[NF89] T. Nicholson and N. Foo. A denotational semantics for pro-
log. ACM Transactions on Programming Languages and Systems,
11(4):650–665, oct 1989.

A Formal Specification for the Logic Actions

The next sections will define the semantics for the proposed action com-
binators using the original action notation.

A.1 Control Actions

The semantics of the backtracking combinators can be expressed by the
following specification:

• action-backtracking : token.
• next-action : cell.
• backtracking :: action, action → action.
• backtracking :: action, action → action.

58



(1) a backtracking b =
store (closure abstraction of b,the data stored in next-action)
in next-action
and then

a
and then
store the rest of the data stored in next-action
in next-action

trap
store the rest of the data stored in next-action
in next-action
and then
escape with them

• continue : action.
(2) continue =

give the data stored in next-action
then
store the rest of them in next-action
and then
enact the abstraction#1
and then
store them in next-action.

A.2 Unification Action

The semantics of the unification actions can be expressed by the following
specification:

A.2.1 Storage
• unifiable-cell = cell [ unifiable unifiable-cell undefined ]] .
• undefined : datum .
• unifiable = 2 .

An unifiable-cell is a cell which can stored the value undefined, an unifi-
able or another unifiable-cell. The sort unifiable defines the values which
can be stored on unifiable cells and it should be defined by program-
ming language specifications. The idividual undefined is a datum used to
specify that there is no value stored in some unifiable cell.

• allocate an unifiable cell =
allocate a cell
then
store undefined in it
and
regive.

allocating a new unifiable cell has the same semantics for allocate a
ordinary cell, the initial value of an unifiable cell is undefined.

• last cell :: unifiable-cell → yielder[producing an unifiable-cell].
c2 = the datum stored in c ⇒

last cell c1 = if (c2 : datum) then last cell c2 else c1.

• the unificated with :: unifiable, unifiable-cell → yielder.

59



the d unificated with c = the d stored in last cell c.

• restore to and :: unifiable-cell, unifiable, restore → restore.

• stop :: restore → restore.

• no-restore : restore.

• changes-cell : cell[restore].

• undo-changes :: restore → action.

undo-changes no-restore = give no-restore.

undo-changes stop r = give r .

undo-changes (retore c to u and r) =
store u in c
and then
undo-changes r .

undo : action.

undo =
undo-changes the changes stores in changes-cell
then
store the given restore in changes-cell.

• unifying :: action → action.

unifying a =
store (stop the restore stored in changes-cell) in changes-cell
and then

a
and then
undo

trap
check the given data is unification-failing
and then
undo

or
check not the given data is unification-failing
and then
undo
and then
escape with the given data

• unify with :: yielder, yielder → action.

unify d1 with d2 =
give last-cell d1 and give last-cell d2

then
do unify the given data

• undoable store in :: cell, storable → action.

undoable store v in c =
store (restore (the value stored in c) to c and
(the changes stored in changes-cell)) in changes-cell
and then
store v in c.

• do unify :: (data, data) → action.

do unify (v1:unifiable, v2:unifiable) = unify values v1 and v2.

60



do unify (c1:unifiable-cell,c2:unifiable)=
give the value stored in c1 is undefined
then
undoable store c2 in c1

else
do unify (the value unified with c1,c2)

do unify (c1:unifiable,c2:unifiable-cell)=
give the value stored in c2 is undefined
then
undoable store c1 in c2

else
do unify (the value unified with c1,c2)

do unify (c1:unifiable-cell,c2:unifiable-cell)=
give the value stored in c1 is undefined
then
undoable store c2 in c1

else
do unify (the value unified with c1,c2)

61



CASL and Action Semantics

Peter D. Mosses

BRICS & Dept. of Computer Science, Univ. of Aarhus, Denmark

Abstract. Casl, the Common Algebraic Specification Language, might
be used as a meta-notation in action-semantic descriptions, instead of
Unified Algebras. However, it appears that direct use of Casl as a meta-
notation would have some drawbacks; a compromise is proposed.

1 Background

Casl, the Common Algebraic Specification Language [2, 9, 10] developed by
CoFI, the Common Framework Initiative [1], is an expressive language intended
for use when specifying software requirements and design. Basic specifications
in Casl allow declaration of both total and partial operations, predicates, sub-
sorts, and datatypes with constructors and (optionally) selectors; axioms are
first-order formulae, and mixfix notation may be used. Structured specifications
allow extension, translation, hiding, both loose and initial semantics, and generic
specifications. A higher-order extension of Casl [5] allows operations and pred-
icates to be passed as arguments, and provides notation for tuples.

Several libraries of basic datatypes in Casl have been developed [13]. More-
over, the use of Casl is supported by the availability of parsers and interfaces
to theorem-provers [4]. The formal semantics of Casl has been defined [3].

A simple (yet expressive) framework called Unified Algebras (UA) [7] has
previously been used as meta-notation in Action Semantics for defining Action
Notation and Data Notation, and for specifying abstract syntax, semantic func-
tions and semantic entities in action-semantic descriptions [8]. Unfortunately,
UA is not widely known, and is generally regarded as somewhat idiosyncratic.
Using Casl instead of UA would significantly increase the accessibility of Action
Semantics. Moreover, the use of sorts as values in UA could be represented in
Casl by declaring constants corresponding to the sorts, and by providing op-
erations such as union and intersection on these sort representatives. The basic
datatypes of Casl could replace the standard Data Notation [8, App. E]. (The
higher-order extension of Casl is needed for specifying the embedding of data
operations in Action Notation, and for providing notation for tuples, but the
specification of data may itself remain first-order.)

In this paper, we first give an overview of Casl, indicating how its various
constructs are written. We then consider the use of Casl for specifying Data
Notation, Action Notation, abstract syntax of programming languages, semantic
functions, and semantic entities. We also discuss the use of Casl to express
the modular structure of action-semantic descriptions. Our tentative conclusion

62



is that it could be advantageous to use Casl for specifying Data Notation,
Action Notation, and semantic functions, hereas there appear to be significant
drawbacks to using it for specifying abstract syntax and semantic entities, and
for expressing the modular structure of action-semantic descriptions..

The reader is assumed to be familiar with Action Semantics, and with the
use of Unified Algebras in action-semantic descriptions [8, Ch. 3 and App. F].

2 Introduction to CASL

2.1 Overview

Casl, the Common Algebraic Specification Language [2, 9, 10], has been devel-
oped by CoFI, the Common Framework Initiative [1]. Its main features are as
follows:

– The Casl design is based on a critical selection of the concepts and con-
structs found in existing frameworks.

– Casl is an expressive specification language with simple semantics and good
pragmatics.

– Casl is appropriate for specifying requirements and design of conventional
software packages.

– There is a coherent family of sub-languages and extensions of Casl.

Casl consists of the following major parts, which are quite independent and
may be understood (and used) separately:

Basic Specifications

– Basic specifications denote classes of partial first-order structures: algebras
where the functions are partial or total, and where also predicates are al-
lowed.

– Subsorts are interpreted as embeddings.
– Axioms are first-order formulae built from definedness assertions and both

strong and existential equations. Sort generation constraints can be stated.
– Datatype declarations are provided for concise specification of sorts equipped

with some constructors and (optional) selectors, including enumerations and
products.

Structured Specifications

– Structured specifications allow translation, reduction, union, and extension
of specifications.

– Extensions may be required to be free; initiality constraints are a special
case of free extensions.

– A simple form of generic (parameterized) specification is provided, together
with instantiation involving parameter-fitting translations.

63



Architectural Specifications

– Architectural specifications express that the specified software is to be com-
posed from separately-developed, reusable units with clear interfaces.

Libraries

– Libraries allow the distributed storage and retrieval of named specifications.

The following sections indicate how the various constructs of Casl are written.

2.2 Basic Specifications

sorts . . . ops . . . preds . . . types . . . vars . . . axioms . . .
lists symbol declarations/definitions and axioms, which may be given
in any order with declaration occurring before use.

keyword item1 ;. . . itemn;
abbreviates keyword item1 ;. . . keyword itemn; the terminating semi-
colon is optional, as is the use of the plural form of keyword .

Symbol Declarations and Definitions

Sorts (s)

sorts s1 , . . . , sn
declares some sorts.

sorts s1 , . . . , sn < s
declares some subsorts and their supersort.

sort s = {v : s ′ • F}
declares the sort s to consist of those values of the variable v in s ′

for which the formula F holds.

Operations (f )

op f : s1 × . . .× sn → s
declares a total function with argument sorts s1 , . . . , sn and result
sort s.

op f : s1 × . . .× sn →? s
declares a partial function with argument sorts s1 , . . . , sn and result
sort s.

op f : . . . , assoc
declares a binary function to be associative.

op f : . . . , comm
declares a binary function to be associative.

op f : . . . , idem
declares a binary function to be idempotent.

64



op f : . . . , unit T
declares a binary function to have the value of the term T as both
left and right units.

ops f1 , . . . , fn : type
abbreviates op f1 : type;. . . ;op fn : type.

op f (v1 : s1 ; . . . ; vn : sn) : s = T
declares a total function with argument sorts s1 , . . . , sn and result
sort s, and specifies its value on v1 , . . . , vn to be the value of the
term T .

op f (v1 : s1 ; . . . ; vn : sn) :?s = T
declares a partial function with argument sorts s1 , . . . , sn and result
sort s, and specifies its value on v1 , . . . , vn to be the (perhaps
undefined) value of the term T .

Constants (c)

op c : s
declares a constant whose value is of sort s.

op c :?s
declares a constant whose value is of sort s or undefined.

op c : s = T
declares a constant of sort s and specifies its value to be the value of
the term T .

op c :?s = T
declares a constant whose value is of sort s and specifies its value to
be the (perhaps undefined) value of the term T .

Predicates (p)

pred p : s1 × . . .× sn
declares a predicate with argument sorts s1 , . . . , sn.

pred p(v1 : s1 ; . . . ; vn : sn)⇔ F
declares a predicate with argument sorts s1 , . . . , sn and specifies its
holding on v1 , . . . , vn to be the same as that of the formula F .

preds p1 , . . . , pn : type
abbreviates pred p1 : type;. . . ;pred pn : type.

Datatypes

types s1 ::= A1 ;. . . ;sn ::= An
declares the sorts s1 , . . . , sn to have the constructors, selectors, and
subsorts specified by the corresponding alternatives A1 , . . . , An,
which may use sorts before they are declared.

generated types s1 ::= A1 ;. . . ;sn ::= An
declares also that the sorts s1 , . . . , sn are generated by their con-
structors.

free types s1 ::= A1 ;. . . ;sn ::= An
declares also that the sorts s1 , . . . , sn are uniquely generated by
their constructors.

65



Alternatives (A)

f (s1 ; . . . ; sn)
declares f to be a total constructor function with argument sorts s1 ,
. . . , sn.

f (s1 ; . . . ; sn)?
declares f to be a partial constructor function with argument sorts
s1 , . . . , sn.

c
declares c to be a constant constructor value.

f (. . . ; f1 , . . . , fm : si ; . . .) . . .
declares f to be a constructor operation with m arguments of sort
si , and f1 , . . . , fm to be total selector operations with result sort si .

f (. . . ; f1 , . . . , fm :?si ; . . .) . . .
declares f to be a constructor operation with m arguments of sort
si , and f1 , . . . , fm to be partial selector operations with result sort
si .

sorts s1 ′, . . . , sk ′

declares the embeddings of the sorts s1 ′, . . . , sk ′ to be total con-
structor operations.

A1 | . . . | An
lists multiple alternatives.

Sort Generation

generated { sorts . . . ops . . . preds . . . types . . . }
declares that the sorts declared by the grouped symbol declarations
and definitions are generated by the operations declared there.

Axioms

axioms F1 ; . . . ; Fm
asserts that all the formulae F1 , . . . , Fm hold for all values of the
globally-declared variables.

vars v1 , . . . , vn : s
declares the variables v1 , . . . , vn for use in subsequent axioms.

vars v1 , . . . , vn : s • F1 . . . • Fm
asserts that all the the formulae F1 , . . . , Fm hold for all values of
the variables v1 , . . . , vn.

66



Formulae (F)

∀ v1 , . . . , vn : s • F
is universal quantification of F with the variables v1 , . . . , vn.

∃ v1 , . . . , vn : s • F
is existential quantification of F with the variables v1 , . . . , vn.

∃!v1 , . . . , vn : s • F
is unique-existential quantification of F with the variables v1 , . . . ,
vn.

∀ . . . ; . . . • F
abbreviates ∀ . . . • ∀ . . . • F , and similarly for existential quantifica-
tion.

F1 ∧ . . . ∧ Fn
is conjunction of formulae.

F1 ∨ . . . ∨ Fn
is disjunction of formulae.

F ⇒ F ′

is implication.

F ′ if F
is reverse implication.

F ⇔ F ′

is equivalence.

¬F
is negation.

true , false
are constant formulae.

p(T1 , . . . ,Tn)
is application of a predicate p to argument terms.

t0 T1 t1 . . .Tn tn
is mixfix application of a predicate t0 t1 . . . tn to argument terms.

q
is use of a constant predicate q .

T = T ′

is ordinary (strong) equality, holding also when the values of both T
and T ′ are undefined.

T e= T ′

is existential equality, holding only when the values of both T and
T ′ are defined.

T ∈ s
is subsort membership, holding when the value of T is in the sub-
sort s.

67



Terms (T)

f (T1 , . . . ,Tn)
is application of a function f to argument terms.

t0 T1 t1 . . .Tn tn
is mixfix application of a function t0 t1 . . . tn to argument terms.

t0 T1 , . . . ,Tn t1
is literal syntax for repeated application of a binary function (asso-
ciated with t0 t1 by a list annotation) to argument terms.

c
is use of a constant value c.

T : s
is interpreting T as a value of sort s.

T as s
is projecting T onto a subsort s.

T when F else T ′

is conditional choice between T and T ′, depending on whether the
formula F holds or not.

Symbols (SY )

Words are sequences formed from:

A, . . . ,Z , a, . . . , z , 0 , . . . , 9 ,′ , ,

starting with a letter (optionally preceded by a dot), with no double underscores,
and different from the reserved words:

and, arch, as, assoc, axiom, axioms, closed, comm, def, else, end, ex-
ists, false, fit, forall, free, from, generated, get, given, hide, idem, if, in,
lambda, library, local, not, op, ops, pred, preds, result, reveal, sort, sorts,
spec, then, to, true, type, types, unit, units, var, vars, version, view,
when, with, within.

Signs are sequences formed from:

+, −, ∗, /, \, &, =, <, >, !, ?, :, ., $, @, ,̂ ,̃ |, [, ], {, },
¡, ¿, ×, ÷, £, c©, ±, ¶, §, 1 , 2 , 3 , ·, 6c, ◦, ¬, µ

different from the reserved signs:

:, :?, ::=, =, =>, <=>, ., ·, |, |−>, \/, /\, ¬.

Mixfix symbols sre sequences formed from single words or signs separated by
double underscores as place-holders, and with any brackets ([, ], {, }) being
balanced.

68



Numbers are of the form:

n, n.n ′, nEn ′, n.n ′En ′′,

where n, n ′, n ′′ are sequences of decimal digits.

Characters are of the form ’c’, where c is a single character or an escape
sequence starting with \.
Strings are of the form "c1 . . . cn", where each ci is a single character or an
escape sequence starting with \.

2.3 Structured Specifications

Specifications (SP)

SP with SM
translates the symbols declared by SP using the symbol map SM .

SP hide SL
hides the symbols declared by SP that are also in the symbol list
SL.

SP reveal SM
hides the symbols declared by SP other than those listed or mapped
by the symbol map SM .

SP1 and . . .and SPn
is union of specifications.

SP1 then . . . then SPn
is extension of specifications.

free SP
is free extension when used in an extension, and restriction to initial
models otherwise.

local SP within SP ′

is local specification of hidden symbols.
closed SP

is ensuring that SP is not interpreted as an extension.

Named and Parameterized Specifications

spec SN = SP end
is naming a specification (the end is optional).

spec SN [SP1 ]. . . [SPn] = SP end
is naming a specification with parameters SP1 , . . . , SPn.

spec SN [SP1 ]. . . [SPn] given SP1 ′′,. . . ,SP1 ′′ = SP end
is naming a specification with parameters SP1 , . . . , SPn and imports
SP1 ′′, . . . , SP1 ′′.

SN
is reference to the non-parameterized specification named SN .

SN [FA1 ]. . . [FAn]
is instantiation of the parameterized specification named SN with
fitting arguments FA1 , . . . , FAn.

69



Fitting Arguments (FA)

SP ′ fit SM
is fitting the symbols declared by the parameter specification to those
declared by the argument SP ′ using the symbol map SM .

SP ′

is fitting the symbols declared by the parameter specification to those
declared by the argument SP ′ using a uniquely-determined implicit
symbol map.

FV
is fitting the symbols declared by the parameter specification using
a fitting view FV .

Named and Parameterized Views

view VN : SP to SP ′ = SM end
is naming the view from SP to SP ′ determined by the symbol map
SM (the end is optional).

view VN [SP1 ]. . . [SPn] : SP to SP ′ = SM end
is naming a view with parameters SP1 , . . . , SPn.

view VN [SP1 ]. . . [SPn] given SP1 ′′,. . . ,SP1 ′′ : SP to SP ′ = SM end
is naming a view with parameters SP1 , . . . , SPn and imports SP1 ′′,
. . . , SP1 ′′.

Fitting Views (FV )

view VN
is reference to the non-parameterized view named VN .

view VN [FA1 ]. . . [FAn]
is instantiation of the parameterized view named VN with fitting
arguments FA1 , . . . , FAn.

Symbol Lists (SL) and Maps (SM )

SY1 , . . . , SYn
lists the symbols, optionally with keywords (sorts, ops, and preds)
to indicate the kind of the subsequent symbols in the list.

SY1 7→ SY1 ′, . . . , SYn 7→ SYn ′

maps each symbol SYi to SYi ′, optionally with keywords (sorts,
ops, and preds) to indicate the kind of the subsequent symbols in
the map; identity maps SYi 7→ SYi ′ may be abbreviated to SYi , so
a symbol list SL is a special case of a symbol map.

2.4 Architectural Specifications

Omitted here, since the structure of models of specifications appears to be irrel-
evant to Action Semantics.

70



2.5 Specification Libraries

library LN . . .
associates a library name LN with a sequence of downloadings, named spec-
ifications, and/or views.

Downloadings

from LN get IN1 ,. . . , INn end
copies the items with the listed names IN1 ,. . . , INn from the library named
LN .

from LN get . . . IN 7→ IN ′ . . . end
renames the copied item named IN to IN ′.

Library Names (LN )

LI version N1 . . . . .Nm
refers to a particular version of the library with identifier LI .

FI1/ . . . /FIn
identifies an installed library; an uninstalled library is identified by its (ab-
solute) URL.

2.6 Comments and Annotations

Comments are of the form:

%{ . . . }% or %% . . .

the latter being terminated by the end of the line.

Annotations are generally of the form:

%word(. . . )% or %word . . .

the latter being terminated by the end of the line. Some annotations may affect
parsing and display throughout the enclosing library; others record purported
facts about the specification (e.g. that an extension is conservative). An anno-
tation of the form:

%(. . . )%

generally labels the preceding item with ‘. . . ’.

71



3 Specifying Data Notation

Casl might be considered as an attractive language for specifying the abstract
datatypes that form the Data Notation used in Action Semantics: the libraries of
basic datatypes being developed for Casl are already more comprehensive than
the standard Data Notation [8, App. D]; tools for checking Casl specifications
have been implemented; Casl interfaces to interactive theorem-provers (such as
HOL/Isabelle and INKA) are available; and Casl is already quite widely known
(at least within the algebraic specification community).

However, there could be some drawbacks. For instance, the symbols for op-
erations and predicates declared by the Casl libraries of basic datatypes tend
to be conventional mathematical signs (such as + and ≤), in marked contrast
to the suggestive words used in the standard Data Notation (e.g. sum and
is less than ). A translated version of each Casl library, declaring verbose

symbols rather than mathematical signs, could be provided (perhaps using the
Casl construct for translation rather than actually carrying out the transla-
tion); those familiar with the Casl libraries from their use in other contexts
might however find such a translation counter-productive and alienating. On
the other hand, it is conceivable that users of Action Semantics might welcome
the more conventional mathematical notation for familiar basic datatypes pro-
vided by the Casl libraries, despite the lack of backwards compatibility with
previous action-semantic descriptions.

Apart from the style of symbols used for data operations and predicates in
standard libraries, there are are some general differences between what is allowed
in Casl and the Unified Algebras meta-notation previously used in Action Se-
mantics. For instance, at the lexical level, place-holders in mixfix operation and
predicate symbols are written as double underscores in Casl, and single un-
derscores are used to separate words—spaces and hyphens are not allowed in
verbose symbols. Thus the UA symbol is in would have to be written is in
when declared in Casl. A benefit of the Casl use of single underscores instead
of spaces is that the intended grouping of words into complete operation symbols
may be clearer than in UA specifications. However, terms and formulae in Casl
cannot mimic natural language as closely as those in UA.

A minor lexical bother is that the words true and false in Casl are reserved
for atomic formulae, and cannot be used as Boolean constants; an alternative
spelling would be needed. More seriously, commas and parentheses are reserved
signs in Casl, and cannot be used at all in declared symbols, so the notation for
tuples provided by the standard Data Notation (and used extensively through-
out action-semantic descriptions) cannot be specified directly. A higher-order
extension of Casl provides what looks like the desired notation for tuples, e.g.
allowing (1 , 2 , 3 ); however, tuple construction there is non-associative, so that
(1 , (2 , 3 )), ((1 , 2 ), 3 ), and (1 , 2 , 3 ) are all different, in contrast with their inter-
pretation in the standard Data Notation. Thus use of Casl would require either
abandoning the associativity of tupling, or the use of a different notation (such
as 〈1 , 2 , 3 〉) for associative tuple construction.

72



Casl does not allow the declaration of sort-constructing operations (not
even in its higher-order extension). It would however be quite straightforward to
represent sorts by ordinary values, equipping these values with membership and
inclusion predicates, and with union and intersection operations; then operations
representing sort constructors may be specified much as in UA (for instance the
construction of sorts of lists from sorts of components).

Casl allows the use of compound identifiers for sorts declared in generic
specifications, e.g. List [Item] for the sort of lists with components in the param-
eter sort Item. When the generic specification declaring List [Item] is instantiated
with Int for Item, the resulting sort of lists is written List [Int ]; however, subsorts
such as List [Nat ] are not automatically declared, and would have to be specified
by separate instantiations. Moreover, the subsort embedding Nat < Int does not
entail List [Nat ] < List [Int ], and such embeddings might be needed.

Apart from the problems concerning notation for tuples, it seems atractive
to adopt Casl for specifying Data Notation.

4 Specifying Action Notation

The specification of Action Notation consists of:

– a (possibly modular) structural operational semantics for a kernel of Action
Notation;

– a definition of an appropriate equivalence, based on the operational seman-
tics; and

– a reduction from the full Action Notation to the kernel.

Casl is particularly convenient for expressing structural operational semantics:
it allows transition relations to be declared as (infix or mixfix) predicates, and
specified as the least predicates satisfying some conditional formulae; it also
allows the use of partial operations in side-conditions (which is quite common in
ordinary SOS, and essential for Modular SOS). For an example, see the Modular
SOS description of the original Action Notation [11], which is specified entirely
in Casl (except for a rule involving arbitrary data operations, which has to be
understood schematically, as in the original definition using UA). Conditional
axioms in Casl can be made to resemble the inference rule notation of SOS by
using a comment line to separate the conditions from the conclusion.

Thanks to the provision of general first-order formulae, Casl may also be
used for formally defining bisimulation and testing equivalence. (Such equiva-
lences could only be described informally in the original definition of Action
Notation, since UA is restricted to Horn clauses.)

Use of operation definitions in Casl would allow the reduction of the full
Action Notation to its kernel to be specified clearly and concisely. Such explicit
definitions may be preferable to the algebraic equations that were used in the
original definition, and which left both the kernel and the process of reduction
to it rather too implicit.

73



Thus Casl appears to be well-suited for specifying Action Notation. There
would however be some minor bother with using the particular symbols of Ac-
tion Notation that contain reserved words of Casl (or , and , then): such symbols
would have to be written differently when declared and used in Casl specifica-
tions.

5 Specifying Abstract Syntax

Abstract syntax is specified in UA using algebraic equations between sort con-
stants and sort terms. The latter are formed from individual characters, list
constructors (with literal strings being simply lists of characters), and regular
expression constructors: sort union, tuple concatenation, and repetition (arbi-
trary, at least once, or at most once). Using the keyword ‘grammar’ before a
set of equations in the UA specification indicates the implicit introduction of all
the sort constants given by the left-hand sides of the equations (as well as the
importation of standard modules providing the notation for characters, strings,
and lists).

grammar: Stm = [[ “if” Exp “then” Stm 〈“else” Stm〉? ]] | . . . .
Exp = . . .

Specifying abstract syntax in UA exploits all the main features of the meta-
notation: equations between sorts, sort union, and application of sort construc-
tors to individuals as well as to proper sorts. At the level of structured specifi-
cation, mutual recursion between the definitions of syntactic sorts may lead to
mutual reference between UA modules.

Although UA allows particularly concise specifications of abstract syntax,
the use of double square brackets [[. . .]] in grammars as list constructors, and
the need to enclose terminal symbols in quotes, may be regarded as nuisances,
especially by casual readers.

In Casl, the most concise way of specifying abstract syntax is to use datatype
declarations. For instance, the abstract syntax of if-then-else statements may be
specified as follows:

free types Stm ::= IF THEN ELSE (Exp; Stm; Stm) | . . . ;
Exp ::= . . .

As with grammars in UA, the sorts that occur on the left-hand sides of the BNF-
like productions are implicitly declared, and alternatives for the same sort may
be combined using . . . | . . .. In most other respects, however, the expressiveness
of the Casl specification is quite restricted. In particular, strings and characters
cannot be used directly as component sorts, so suggestive terminal symbols have
to be incorporated in the symbols for constructors. Mixfix constructors have to be
indicated with explicit place-holders, which may look a bit clumsy. Component
sorts cannot be replaced by sort terms—except for compound sort symbols such
as List [Exp] (the instantiations that give rise to such sorts would need to be
given explicitly, before the datatype declarations). It is unclear how best to

74



specify optional components in Casl: by introducing a further constructor, such
as IF THEN (Exp; Stm), or by use of a generic datatype for optional values,
as in IF (Exp; Stm; Opt [Stm]). By the way, if is a reserved word in Casl, hence
the uppercase spelling above.

Rather than specifying abstract syntax directly in Casl, it would seem to
be preferable to specify it in a meta-notation close to grammars in UA (perhaps
eliminating the double square brackets, and exploiting systematic case differences
to distinguish sorts from ordinary constant values). From such a specification, a
(somewhat less concise) Casl specification could be generated automatically.

6 Specifying Semantic Functions

When using UA as meta-notation in action-semantic descriptions, the operation
symbols for semantic functions have to be first uced, and then their function-
alities specified separately. In Casl, the declaration of an operation symbol is
combined with the specification of its argument and result sorts, so it would be
written more succinctly, e.g.:

op execute : Stm → Action

In the semantic equations that define the semantic functions, each variable rang-
ing over a syntactic sort is declared “on the fly” in UA, the sort being indicated
when the variable is first used in each equation. In Casl, one may use explicit
universal quantification to declare variables for use in a semantic equation; al-
ternatively, declarations of variables that are used in several semantic equations
may be collected together and specified either globally or locally. The Casl
style appears to have the advantage of making the left-hand sides of semantic
equations clearer, e.g.:

op execute : Stm → Action
vars E : Expr ; S1 , S2 : Stm
• execute[[IF E THEN S1 ELSE S2 ]] =

. . . evaluate E . . . execute S1 . . . execute S2

Another point to note is that in UA, the double square brackets used in the
left-hand side of semantic equations are part of the notation for nodes of abstract
syntax trees. In Casl, one might specify them to be an identity operation on
each syntactic sort:

ops [[ ]](S : Stm) : Stm = S ;
[[ ]](E : Exp) : Exp = E ; . . .

Alternatively, the square brackets could be incorporated in the symbols for the
semantic functions themselves:

op execute[[ ]] : Stm → Action
• execute[[IF E THEN S1 ELSE S2 ]] =

. . . evaluate[[E ]] . . .execute[[S1 ]] . . .execute[[S2 ]]

75



In either case, Casl allows a usage closer to that of conventional denotational
semantics, with the double brackets employed both in the left- and right-hand
sides of the equations.

Thus it seems that Casl is well-suited for specifying semantic functions by
semantic equations.

7 Specifying Semantic Entities

One major advantage of Casl would be for specifying abstract sorts equipped
with constructors and selectors, which are typically used to represent semantic
entities such as arrays and procedures. So-called datatype declarations in Casl
(reminiscent of datatype definitions in Standard ML) allow such specifications
to be written very succinctly. For instance, an abstract datatype of pairs can be
specified as follows:

free type Pair ::= pair(left : X ; right : Y )

The declarations of the constructor operation pair : X ×Y → Pair , the selector
operations left : Pair → X and right : Pair → Y , and the axioms defining the
selectors, are all implicit in the above specification. When there is more than
one constructor, the selectors are usually partial, e.g.:

free type List ::= nil | cons(head :?Item; tail :?List)

although partiality may alternatively be swept under the carpet by restricting
the selectors to subsorts:

free types List ::= nil | sort NonEmptyList ;
NonEmptyList ::= cons(head : Item; tail : List)

When the keyword ‘free’ is omitted in a datatype declaration, extensions of the
specification may add further constructors and embedded subsorts. Many some-
what tedious specifications of abstract datatypes in action-semantic descriptions
could be expressed much more concisely by exploiting the datatype declarations
provided by Casl.

In connection with some parts of Action Notation, certain sorts of data have
to be specified: Datum, Bindable, Storable, etc. Typically, the elements of such
a sort is the union of various other specified sorts, e.g. Integer , Cell . Using UA
as meta-notation, a sort may be simply equated with a union of other sorts, or
sort inclusions may be specified. The Casl notation for datatype declarations
where the alternatives are embedded subsorts is quite close to UA:

free types Datum ::= sort Integer | sort Cell

However, with free datatype declarations in Casl, embedded subsorts cannot
have any common elements, in contrast with unions in UA. It would thus be
safer to declare subsort embeddings directly in Casl (or at least to remove the
freeness constraints when using datatype declarations).

76



Finally, when reconsidering how the data used in action-semantic descrip-
tions may be specified, the interests of those implementing prototyping and
compiler-generation tools for Action Semantics should be taken into account.
The unrestricted axiomatic specification style used for specifying datatypes in
UA and Casl is appropriate for stating abstract properties of operations, and
for reasoning about the consequences of the specification, but it makes it dif-
ficult for tools to determine efficient representations of data and to implement
the specified operations and predicates. It might be advantageous to restrict to
a more explicit definitional style of data specification, with a clear distinction
between declarations of constructors and selectors, and with other operations de-
fined (perhaps inductively) using very restricted forms of equations. This would
correspond to adopting a “functional programming” sub-language of Casl [6].
The Casl libraries of basic datatypes are currently specified using full Casl,
but the relevant ones could probably be re-specified in such a sub-language.

8 Modular Specification

The meta-notation for modules in UA was designed specifically for use in Action
Semantics. The main idea is to use conventional section titles as the names of
modules, with submodules inheriting all the notation introduced at the enclosing
levels (but not that introduced by submodules on the same or lower levels). A
module may moreover explicitly import other modules, either for local use or for
re-export. and mutual reference between modules is allowed.

In contrast, named modules in Casl are indicated in a more explicit defini-
tional style, with importation of other modules expressed by structured specifi-
cation terms, for instance:

spec Statements =
Expressions and Declarations then . . .

Modules in Casl cannot be nested, nor can the common importation of a module
by a group of modules be factored out. Even mutual reference between modules
is prohibited in Casl: module names have linear visibility (although mutual ref-
erence can be simulated by introducing auxiliary modules that merely declare
the common symbols, replacing the mutual references by references to the aux-
iliary modules). The direct use of Casl for expressing the modular structure
of action-semantic descriptions might thus be relatively obtrusive and tedious,
compared to UA.

9 Tentative Conclusion

Since this paper is of a rather speculative nature, it would be unwise to try and
draw any definite conclusions. Nevertheless, it appears from the above consider-
ations that it might be advantageous to use Casl for specifying Data Notation,
Action Notation, semantic functions, and semantic entities. On the other hand,

77



it does not seem desirable to adopt Casl for direct use as a meta-notation for
specifying abstract syntax and the modular structure of action-semantic descrip-
tions; Casl (and its associated tools) may however still be used indirectly, by
providing a translation to it from whatever meta-notation is used there. Although
it has not yet been investigated in detail, such a translation could probably be
given fairly easily for a meta-notation close to the Unified Algebra meta-notation
presently used for specifying abstract syntax and modular structure in action-
semantic descriptions.

References

1. CoFI. The Common Framework Initiative for algebraic specification and
development, electronic archives. Notes and Documents accessible from
http://www.brics.dk/Projects/CoFI.

2. CoFI Language Design Task Group. Casl – The CoFI Algebraic Specification
Language – Summary. Documents/CASL/Summary, in [1], Oct. 1998.

3. CoFI Semantics Task Group. Casl – The CoFI Algebraic Specification Language
– Semantics. Note S-9 (Documents/CASL/Semantics, version 0.96), in [1], July
1999.

4. CoFI Tools Task Group. The Common Framework Initiative for algebraic specifi-
cation and development: Tools. http://www.loria.fr/~ hkirchne/CoFI/Tools/.

5. A. Haxthausen, B. Krieg-Brückner, and T. Mossakowski. Subsorted partial higher-
order logic as an extension of Casl. Note L-10, in [1], Oct. 1998.

6. T. Mossakowski. Two “functional programming” sublanguages of Casl. Note L-9,
in [1], Mar. 1998.

7. P. D. Mosses. Unified algebras and institutions. In LICS’89, Proc. 4th Ann. Symp.
on Logic in Computer Science, pages 304–312. IEEE, 1989.

8. P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1992.

9. P. D. Mosses. CoFI: The Common Framework Initiative for Algebraic Specifi-
cation and Development. In TAPSOFT’97, volume 1214 of LNCS, pages 115–
137. Springer-Verlag, 1997. Also available at http://www.brics.dk/RS/97/48/,
http://www.brics.dk/Projects/CoFI/Documents/Tentative/Mosses97TAPSOFT.

10. P. D. Mosses. CASL: A guided tour of its design. In WADT’98, vol-
ume 1589 of LNCS, pages 216–240. Springer-Verlag, 1999. Also available at
http://www.brics.dk/RS/98/43/.

11. P. D. Mosses. A modular SOS for Action Notation. Research Series RS-99-56,
BRICS, Dept. of Computer Science, Univ. of Aarhus, 1999. http://www.brics.dk/
RS/99/56. Full version of [12].

12. P. D. Mosses. A modular SOS for Action Notation (extended abstract). In P. D.
Mosses and D. A. Watt, editors, AS’99, number NS-99-3 in Notes Series, pages
131–142, BRICS, Dept. of Computer Science, Univ. of Aarhus, 1999. Full version
available at http://www.brics.dk/RS/99/56/.

13. M. Roggenbach and T. Mossakowski. Basic datatypes in Casl. Note L-12, version
0.4.1, in [1], May 2000.

78



Modular SOS and Action Semantics

(Abstract)

Peter D. Mosses

BRICS & Dept. of Computer Science, Univ. of Aarhus, Denmark

Abstract. Modular SOS (MSOS) [5] is a variant of Plotkin’s familiar
Structural Operational Semantics framework. The main idea of MSOS
is to use labelled transition systems where the configurations are simply
syntax, and the labels on the transitions carry any auxiliary information
that is needed, such as environments, store-updates, and signals. New
components can be added to the labels without any reformulation of
MSOS rules, and a high degree of modularity is obtained.
The Action Notation (AN) used in Action Semantics (AS) was originally
defined using SOS. In 1999, the definition of AN was reformulated in
MSOS [7]—partly as a major demonstration of the usefulness of MSOS,
partly for use in connection with a reconsideration of the design of AN.
The MSOS of AN is specified in CASL, the Common Algebraic Specifi-
cation Language [3, 4, 9].
An MSOS of AN-2, the proposed new version [2] of AN, has been devel-
oped, and is currently being polished and checked. The original MSOS
rules for many primitive actions and action combinators are being reused
in the MSOS of AN-2.
The modularity of MSOS appears to be as good as that of AS regarding
independence of the description from details of the processed informa-
tion. Concerning control flow, however, it is just as tedious to specify
control flow in MSOS as in conventional SOS; in particular, axioms for
the propagation of exceptions have to be given for each normal construct.
In contrast, exceptions in AN are automatically propagated through all
action combinators other than those concerned with exception-handling,
the modularity of AS for specifying exceptional control flow is signifi-
cantly better than that of MSOS.

References

1. AS 2000, Proc. 3rd International Workshop on Action Semantics, Recife, Brazil,
Notes Series, BRICS, Dept. of Computer Science, Univ. of Aarhus, 2000. This
volume.

2. S. B. Lassen, P. D. Mosses, and D. A. Watt. An introduction to AN-2, the proposed
new version of Action Notation. In AS 2000 [1].

3. P. D. Mosses. CoFI: The Common Framework Initiative for Algebraic Specifi-
cation and Development. In TAPSOFT’97, volume 1214 of LNCS, pages 115–
137. Springer-Verlag, 1997. Also available at http://www.brics.dk/RS/97/48/,
http://www.brics.dk/Projects/CoFI/Documents/Tentative/Mosses97TAPSOFT.

79



4. P. D. Mosses. Casl: A guided tour of its design. In WADT’98, volume 1589 of LNCS,
pages 216–240. Springer-Verlag, 1999. Also available at http://www.brics.dk/
RS/98/43/.

5. P. D. Mosses. Foundations of modular SOS. Research Series RS-99-54, BRICS, Dept.
of Computer Science, Univ. of Aarhus, 1999. http://www.brics.dk/RS/99/54; full
version of [6].

6. P. D. Mosses. Foundations of Modular SOS (extended abstract). In MFCS’99,
volume 1672 of LNCS, pages 70–80. Springer-Verlag, 1999. Full version available at
http://www.brics.dk/RS/99/54/.

7. P. D. Mosses. A modular SOS for Action Notation. Research Series RS-99-56,
BRICS, Dept. of Computer Science, Univ. of Aarhus, 1999. http://www.brics.dk/
RS/99/56. Full version of [8].

8. P. D. Mosses. A modular SOS for Action Notation (extended abstract). In AS’99,
number NS-99-3 in Notes Series, pages 131–142, BRICS, Dept. of Computer Science,
Univ. of Aarhus, 1999. Full version available at http://www.brics.dk/RS/99/56/.

9. P. D. Mosses. Casl and Action Semantics. In AS 2000 [1].

80



An Action Semantics for the D2L
Design Description Language

Christina von Flach G. Chavez1,2, Sylvia de Oliveira e Cruz1, and
Sergio E.R. de Carvalho?

1 Department of Informatics, Pontifical Catholic University of Rio de Janeiro,
Rio de Janeiro, Brazil. (flach,sylvia)@inf.puc-rio.br

2 Department of Computing Science, Federal University of Bahia,
Salvador, Brazil. flach@dcc.ufba.br

Abstract. D2L is a language for expressing object-oriented designs. It
provides mechanisms for the representation of classes and their relation-
ships, object life-cycles, scenarios, state-dependent behavior and object
communication in general, as well as some less conventional features,
such as several new semantics for object behavior and some predefined
automatic relationships between objects. D2L is currently inserted in a
CASE tool, through which methodology-independent designs can take
place.
This paper reports the work in progress concerning the development of a
complete formal specification for D2L using Action Semantics. The first
stage of this work comprises the formal specification of D2L dynamic
semantics. Up until now, the effort to formalize D2L has motivated some
relevant questions about the language’s semantics and also about the use
of Action Semantics to formalize some features.
With the complete action-semantic specification for D2L, we hope to pro-
vide an executable model for designs expressed in D2L that can be sim-
ulated and also automatically translated to source code in some object-
oriented languages.

1 Introduction

In the last decade, several object-oriented development methods appeared, each
with its own terminology, notation and processes. Since these methods have been
built around the same concepts, some attempts to unify them emerged naturally.

D2L (Design Description Language) [Car97] is a language for expressing
object-oriented designs. It reifies not a new methodology or unification of fea-
tures, but rather a carefully organized object-oriented discourse, which can be
visually and textually realized. D2L has been designed to be the textual real-
ization for such object-oriented discourse. It is currently embedded in 2GOOD
(2nd Generation Object Oriented Development) [CCO98], a CASE tool that
supports graphical descriptions of object-oriented designs (discourse’s visual re-
alization), providing mechanisms to represent classes and their relationships, ob-
ject communication, state-dependent behavior and scenario diagrams, as well as
? in memoriam

81



a framework for transformational development from design to implementation.
The fact that both graphical design tool and textual design description language
reflect exactly the same object-oriented discourse promotes development without
discontinuities, documentation, and traceability.

In its original purpose, D2L code was expected to be automatically obtained
from 2GOOD designs, and also automatically transformed into some object-
oriented language source code, to be eventually compiled, generating executable
code. This second transformation step was instantiated with C++ as the target
object-oriented language, and was implemented using TXL [CCH95], a semantic-
preserving transformational system. This configuration was experimented in pi-
lot projects but it was noticed a kind of programmer’s resilience with respect
to writing code using an intermediate language. Moreover, TXL execution was
very inefficient (both time and space-consuming): the transformation of a D2L
program with 10 classes (a small number for a real-life project) was almost im-
practicable. Finally, the generated C++ code was quite unreadable. The need
for a D2L compiler was rather obvious. Nevertheless, D2L does not have an
implemented compiler yet.

In the last few months, new extensions have been proposed to 2GOOD/D2L,
mainly to provide design-level support to aspects [CL00a] and extensions to
pronoun-based communication [CL00b]. These two parallel efforts are centered
around D2L and require a complete and unambiguous formal description of the
language. Besides, we are interested in providing an executable model for designs
expressed in D2L that can be not only translated to source code in some object-
oriented languages (including C++), but also simulated prior to translation.
Again, a formal description of D2L can be very useful. Having these goals in
mind, the formalization of D2L turned out to be an intrinsic part of both efforts
[CL00a,CL00b].

Although Denotational Semantics has been the most popular tool among
programming language researchers for studying and describing several aspects
of programming languages, we have adopted the Action Semantics framework
to develop the formalization of D2L. Actions Semantics provides a high-level
notation to formally describe the semantics of programming languages, which
gives a novice the intuition about what is being formalized. Furthermore, Ac-
tion Semantics specifications are compositional and modular. Hence, they can
be straightforwardly modified to reflect language design changes, and to reuse
parts of an existing language definition in the specification of similar, related
languages. With these features, the specification of the new proposed extensions
may be easily incorporated into D2L specification, with low impact over the
previous specification.

This paper is structured as follows. In section 2 we provide a brief descrip-
tion of D2L. Section 3 presents some parts of the current specification stage.
In section 4, we present some specification problems found up until now and in
section 5, we compare our work to previous similar approaches. Finally, in sec-
tion 6 we discuss the actual specification stage and the next steps to complete
the specification.

82



2 Overview of D2L

D2L is a textual design description language for object-oriented systems, whose
main purpose is to minimize discontinuities from design to code. D2L is a
strongly-typed, concurrent, pure object-oriented language. It provides common
features found in ordinary object-oriented languages, such as classes, inheritance
and polymorphism. Less conventional features are also provided by D2L. For ex-
ample, D2L objects are polymorphic and can satisfy requests in several different
ways: procedurally, answering asynchronous, handshake and future messages, co-
operatively and exceptionally. Concurrency in an inherent aspect in D2L. Other
D2L features include automatically created relationships among objects, denoted
by pronouns, and the textual realization of state-dependent behavior.

D2L design criteria include simplicity and familiarity. The language is small
and most of its object-oriented constructs can be explained in terms of well-
known constructs provided by other object-oriented languages.

In the present section, we elaborate only those features that will be covered
in section 3.

2.1 Programs

From a static point of view, a D2L program is a collection of possibly nested
classes, declared in the program or brought in from libraries. There is no external
referencing environment (no main program, external data or functions). This is
a pure object-oriented environment.

Class collections can be constructed for execution or for storage in libraries.
D2L applications are essentially brokered [BMR+96]: an executable program
must have at least one top-level class containing a procedure called “Main”.
One of these classes, indicated via the execution environment, is the main class
in the program. On the other hand, a class library does not need (but may
contain) one or more classes with defined “Main” procedures.

From a dynamic point of view, a D2L program is a collection of concurrent
interacting objects. The execution of a program begins with the application of
the “Main” procedure to an automatically created object of the main class.

2.2 Classes and Interfaces

Classes model objects, prescribing their structure and behavior. Interfaces do
not model objects; they only define behaviors to be implemented by classes.

Classes can be concrete, abstract or generic. Abstract classes allow the dec-
laration but not the creation of objects, since at least one of its operations is not
fully defined. These classes are useful in inheritance hierarchies, promoting poly-
morphism. Concrete classes allow the declaration and creation of objects; they
may inherit from abstract classes (but not vice-versa), implementing incomplete
operations, and thus allowing the creation of objects. Generic or parameterized
classes are class models, which can be instantiated with argument classes.

83



CLASS SuperFoo<S>; INTERFACE IntFoo1; INTERFACE IntFoo2;

... ... ...

END CLASS PROCEDURE p1; PROCEDURE p2;

... ...

END INTERFACE END INTERFACE

CLASS AbstractFoo; CLASS Foo; CLASS GenericFoo <S,T>

... OBJECT INHERITS SuperFoo<S>

PROCEDURE p; SuperFoo<INT> f; IMPLEMENTS IntFoo1,IntFoo2;

END CLASS END OBJECT ...

... PROCEDURE p1;

PROCEDURE p; ...

... END PROCEDURE

END PROCEDURE PROCEDURE p2;

... ...

END PROCEDURE

END CLASS END CLASS

Fig. 1. An Example

D2L provides simple inheritance between classes, creating a super-type/sub-
type relationship, and multiple inheritance between classes and interfaces, cre-
ating interface/implements relationships.

Figure 1 presents several examples of D2L classes. Foo is a concrete class
with a member f of type SuperFoo<INT>. The class SuperFoo<INT> corresponds
to the generic class SuperFoo<S>, with every ocurrence of S replaced by INT.
The generic class GenericFoo inherits from class SuperFoo, introducing one
more generic parameter T; parameter correspondence is nominal, not positional.
The class GenericFoo also implements two interfaces: IntFoo1 and IntFoo2.
AbstractFoo is an abstract class, since it declares a procedure named P with no
defined body.

A class declaration may optionally contain the following members:

– nesting: a class A may be contained in a class B, having full visibility of its
features, and being protected from accesses external to B;

– object structure: a record of attribute declarations, each containing the name
of an attribute and its modeling class name. Corresponding to each object
there exists, at execution-time, a block of data for its attributes. At ob-
ject creation time, a default initial value is assigned to each object. Object
components are automatically protected from external accesses, being vis-
ible only to class operations. This protection can be explicitly relaxed by
programmers;

– common structure: another record, statically allocated, unique and visible
to all class objects, through class operations; direct access to this structure
is denied to class users, but may be explicitly given by programmer’s option;

84



– state component: a special object component, modeling the state-dependent
behavior of class objects;

– class constants: read-only class objects;
– class messages: declarations of messages that class objects may send to pro-

nouns;
– class exceptions: declarations of exceptions that class objects may propagate;
– object behavior: declarations of the operations applicable to class objects.

2.3 Objects

Objects may be declared as members of other objects, in the class common area,
locally in operations, as operation parameters, and as operation results. They
can be collected in containers, such as arrays and lists (objects of instantiated
generic classes).

All D2L objects are polymorphic and may change class at execution-time
(always in the hierarchy rooted by their declaration classes). These objects are
heap allocated, and their life cycles are programmer controlled.

Each object is controlled by a monitor, in charge of handling several aspects
relating to its behavior, as for example message receiving, guard evaluation, and
operation scheduling [CCO00].

The modeling of an object’s monitor starts when the monitored object is
created. At this time, the monitor acquires as components a descriptor and a
message queue to be used at execution time. The descriptor will record informa-
tion such as the objects current class. The message queue will hold the operation
requests the object receives. The monitor intercepts all object messages, orga-
nizing them in its message queue, and sends to the object the next message to be
executed. If no operation is found that corresponds to a message, perhaps due
to some polymorphic transformation suffered by the object, then the message is
lost. The monitor needs to control a thread and an execution stack to fulfill the
expected operation concurrency.

Real time features, guard evaluation, message priorities and exception han-
dling are all part of D2L. They are not described here due to space considerations.

Pronouns. Certain automatic relationships between objects are created at
execution-time: creator-creature and parent-son. The creator is an object that,
while servicing a request, creates another object, its creature. The parent is
an object that, in its structure declaration, contains the declaration of its son.
These relationships are represented in D2L by the generic designators CRE-
ATOR and PARENT, respectively. Using these designators, class decoupling
can be increased, if classes model objects that relate to the outside world by
sending asynchronous messages to their creators or parents (their clients).

The automatic creation of parent-son and creator-creature relationships re-
lieves programmers of complicated code that must be written to allow generic
references of this kind (as recommended in the Composite and Chain of Re-
sponsibility patterns [G+95]). It also alleviates the restriction that objects must
know the identifiers of their message-receiving collaborators.

85



2.4 Object behavior

D2L objects can satisfy requests in several different ways: procedurally, answer-
ing asynchronous, handshake and future messages, cooperatively, and exception-
ally. Special syntax and semantics exist for expressing this varied object behavior;
it is up to designer to select the most appropriate in each situation.

The procedural or methodical behavior is that found in other object-oriented
languages: the clients execution is suspended until the invoked procedure execu-
tion terminates.

Objects in D2L may receive asynchronous messages, messages with hand-
shake protocols, or messages with future synchronism. Asynchronous message
receiving does not block the client; handshake message receiving blocks the client
until the reception is acknowledged; future message clients may self-block to re-
ceive parameters from the server object.

Coroutines and iterators can also be declared in classes, offering a coopera-
tive behavior for objects. Iterators are associated to loops, controlled by objects
whose next values are computed outside the loop, in the iterator provided by
their modeling classes. Threads are also useful here, mainly to save local execu-
tion environments and resume addresses.

Finally, to handle exceptional conditions that may arise during program exe-
cution, D2L allows for the definition of exception handlers at the operation level
and in classes. Class exception handlers specify another handling scope, being
automatically applied to the receiving object if no local handler is defined for
some raised exception.

2.5 State-dependent behavior

In object-oriented systems, the behavior of an object, when responding to a
stimulus, may depend on the values of its components at that time, or on its
state. Several object-oriented methods use states and transitions to define object
behavior, when this behavior depends on the past history of stimuli received by
objects (see Schaler-Mellor [SM94], ROOM [SGW94], Rumbaugh [R+91], Booch
[Boo95]).

A state is actually an abstraction of the past requests made to an object,
and transitions indicate behavior requests (they usually cause state changes). A
state transition diagram [Har87] or table is used in most methods to represent
valid sequences of such stimuli. To describe this feature textually, D2L adapts
the State pattern described in [G+95].

The State pattern consists basically in representing diagrams’ states as classes
in an inheritance hierarchy, and diagrams’ transitions as method requests. A
state component is an instance of the root class in this hierarchy. Any request
sent to an object that contains a state component is delegated to it. This state
component plays the role of navigating in this hierarchy, i.e., it is responsible for
the implementation of its parent’s state-dependent behavior.

86



3 D2L Action Semantics

In this section, we present the first results related to the provision of a specifi-
cation for D2L dynamic semantics using Action Semantics.

3.1 Classes

As stated in section 2.2, D2L classes can be concrete, abstract or generic. In
Java, a class declaration introduces a new reference type, which denotes a class.
Java Action Semantics [BW99] specifies that class declarations are elaborated
through the semantic function elaborate that binds each declared class name
to a value of sort class. In D2L specification, generic classes motivated us to
adopt a distinct approach to elaborate class declarations. A generic class is a
class template that when used with actual parameters, as for example, in object
declarations, instantiates a new concrete class with its class parameters bound
to the given actual parameters. The reference to the generic class must be kept
as well as the reference to the instantiated class. The solution we propose in D2L
Action Semantics is to encapsulate each class declaration as a class abstraction.

class-abstraction = abstraction [giving a class]
[using the given type*]

A class abstraction is an abstraction that, when enacted for the first time, intro-
duces a new reference type, denoted by a class. Further enactions of a previously
enacted class abstraction give the corresponding introduced reference type. The
given type* yields the actual parameters that will be bound to class parame-
ters, for generic classes.

The following sort describes a D2L class in Action Semantics:

class = class of (derived-name, interface-bindings,
nested-classes, class-variable-bindings,
instance-variable-allocator,
state-component-allocator, class-constants,
class-messages, class-exceptions,
method-bindings, class?)

– derived-name specifies the name of the class (suffixed by the names of the
classes used as actual parameters, if the class is generic).

– interface-bindings is a mapping for the direct superinterfaces of the class;
– nested-classes is a mapping for the nested classes of the class;
– class-variable-bindings is a mapping for the class variables of the class;
– class-constants is a mapping for class constants;
– class-messages is a mapping for class message signatures of the class;
– class-exceptions is a list of class exceptions names;
– method-bindings is a mapping for the method abstractions of the class;
– instance-variable-allocator and state-component-allocator are ab-

stractions that, when enacted, allocate storage for the instance variables and
for the state component of the class, respectivelly;

– class is the direct superclass of the defined class.

87



Class Elaboration. Class elaboration is performed by a semantic function
that takes class declarations as arguments and gives an action that binds each
declared class name to a class abstraction.

elaborate _ :: Class-Declaration ->

action [binding]

[using current bindings]

(*) elaborate [[ "CLASS" S:Class-Specifier

H:Inheritance-Clause

P:Implements-Clause?

B:Class-Body? "END" "CLASS" ]] =

bind the simple name of S to the class-abstraction of (

the closure of the abstraction of (

furthermore

| actualize class parameters of S (1)

thence

| | give the derived-name of S (2)

| then

| | | give the class bound to (3)

| | | the given derived-name

| | or

| | | | check not (there is a class bound (4)

| | | | to the given derived-name)

| | | and then

| | | | | | give the given derived-name and

| | | | | | enact (application

| | | | | | (the class-abstraction bound to the

| | | | | | simple name of H) to the arguments of H)

| | | | | then

| | | | | | recursively bind the given derived-name#1

| | | | | | to the class of (the given derived-name#1,

| | | | | | ... , the given class#2)

| | | | and then

| | | | | give the class bound to the given derived-name)).

Fig. 2. Class elaboration

Figure 2 presents the semantic function elaborate1 defined for class decla-
rations. The sequence of actions encapsulated by a class abstraction implements
the following steps:

1. The class parameters defined in S are bound to the classes given as actual
parameters;

1 In the semantic equation (*), we suppose the inheritance clause is always present.
Assume there is also an equation where the inheritance clause is not present.

88



2. The derived name of the class is established. For example, the generic class
GenericFoo<S,T> has a simple name, GenericFoo. The instantiated class
GenericFoo<INT,REAL> has a derived name, (GenericFoo, (INT, REAL)).

3. If there is a class bound to the class derived-name, this class is returned.
4. If there is not a class bound to the class derived-name, a new class is created

and then returned.
(a) The enaction of the class abstraction bound to the class’ superclass (de-

clared in the inheritance clause H) applied to the superclass’ arguments
may introduce its recursive instantiation, if it has not been instanti-
ated yet, or returns the class bound to the superclass derived-name.
the arguments of H yields a list of the actual parameters bound to the
class parameters names declared in the inheritance clause H.

(b) The class members declared in the class body are elaborated; details are
omitted here, but the specification of class members elaboration is quite
similar to the one found in [BW99].

(c) The derived-name of the class is bound to its corresponding sort class.

The results of the elaboration of the classes presented in Figure 1 are given
below.

Source Action

elaborate [[ CLASS SuperFoo<S> ; ]] before
elaborate [[ CLASS GenericFoo<S,T>

INHERITS SuperFoo<S> ; ]] before
elaborate [[ CLASS Foo ; ]]

Bindings

{ SuperFoo -> abstraction ... }
{ GenericFoo -> abstraction ... }
{ Foo -> abstraction ... }

Enaction of a class abstraction occurs every time a class name is used, as for
example, in object declaration (see next section); it gives a new named reference
type or the type previously bound to the corresponding class name.

3.2 Objects

Objects in D2L are inherently concurrent dynamic entities. In D2L Action Se-
mantics, each object is modeled as a sort object.

object = object of (class, agent, creator)

In the sort object, we have the following elements:

– class is the modeling class of the object;

89



– agent corresponds to an agent subordinated to the object. Storage for the
object’s instance variables is allocated in the storage associated to this agent.
The object’s message queue corresponds to the agent’s message buffer;

– creator is another object that, servicing some request, has created the ob-
ject.

The reference to creator in the sort object is redundant, since it must be
defined in the agent’s local bindings. It is used there for documentation purposes.

Object Declaration. Object declarations allocate storage that will hold refer-
ences to objects, but do not allocate storage for objects themselves; they must
be explicitly created. The syntax for object declaration consists of a class name
(denoting the modeling class) followed by an identifier (denoting the variable
that will hold the object reference).

Object declaration is performed by a semantic function elaborate that takes
an object declaration as its argument and gives an action that binds the given
identifier to a variable. This variable is allocated to hold a reference to an object
or a value of some predefined class (INT, REAL, etc.).

elaborate _ :: Object-Declaration ->
action [binding | storing]

[using current bindings | current storage] .

(*) elaborate [[ C: Modeling-Class-Name I: Identifier ]] =
| | elaborate the type denoted by C
| then
| | allocate a variable of the given type
| | initialized to the default-value of the given type
then
| bind the token of I to the given variable .

The action elaborate the type denoted by C (defined in the semantic
function elaborate given above) corresponds to the enaction of the class ab-
straction bound to C, applied to the given arguments, if any, and gives a class.

elaborate the type denoted by _ :: Modeling-Class-Name ->
action [binding | giving type] [using current bindings]

(*) elaborate the type denoted by
[[ I: Identifier "<" C:Class-Instances ">" ]] =
enact (application (the class-abstraction bound

to the token of I)
to the actual parameters of C) .

The next example shows the outputs after performing the action elaborate
the type denoted by applied to GenericFoo<INT, REAL>.

90



Source Action
elaborate the type denoted by [[ GenericFoo<INT, REAL> ]]

Bindings
-- bindings for SuperFoo, GenericFoo, ...
(SuperFoo,INT) -> class of (...)
(GenericFoo,(INT,REAL)) -> class of ((GenericFoo,(INT,REAL)),

... , (SuperFoo, (INT)) )
Transients
class of (...) -- the class bound to GenericFoo<INT, REAL>

Object Creation. Objects in D2L must be explicitly created, using the opera-
tion CREATE. During object creation, an agent is subordinated to it. The object’s
agent receives an offer for a contract containing a protocol that defines all the
distinct object behaviors provided in D2L (asynchronous, future and handshakes
messages, coroutines, etc.).

Object creation is performed by a semantic function evaluate that takes an
expression for object creation as argument (a class name followed by the keyword
CREATE) and gives an action that creates an instance of the given class name,
denoted by an object.

evaluate _ :: Object-Creation ->
action [giving an object | ... | communicating]

[using current buffer]

(*) evaluate [[ C:Modeling-Class-Name "CREATE" ]] =
| elaborate the type denoted by C
then
| | | give the given type
| | and
| | | | | | offer a contract [to any agent]
| | | | | | [containing abstraction of object-behavior]
| | | | | then
| | | | | | receive a message[containing an agent]
| | | | and
| | | | | give the instance-variable-allocator of given type
| | | then
| | | | | send a message [to the agent yielded by
| | | | | the contents of the given message#1][containing
| | | | | the given instance-variable-allocator#2]
| | | | and
| | | | | give the agent yielded by
| | | | | the contents of the given message#1
| then
| | give the object of (the given type#1, the given agent#2,
| | the object bound to the self-token) .

91



Figure 3 presents object-behavior, the protocol offered to objects’ agents.
While performing this protocol, each subordinated agent:

1. Sends its identification to the contracting agent;
2. Waits for an abstraction corresponding to the instance-variable-allocator;
3. Enacts this abstraction, allocating storage for the object’s instance variables;
4. Produces agent’s local bindings, and finally,
5. Executes a loop that continuously waits for a message containing a request

for a service with optional arguments, and then selects the suitable protocol
depending on the kind of the request received.

method = procedure | async | handshake | future |

exception | coroutine | iterator .

object-behavior = action .

(*) object-behavior =

| | send a message [to the contracting-agent] (1)

| | [containing the performing agent]

| | and then

| | receive a message [from the contracting-agent] (2)

| | [containing an abstraction]

| then

| | enact the abstraction yielded by (3)

| | the contents of the given message

before

| | | bind self-token to the performing agent (4)

| | before

| | | bind creator-token to the contracting agent

| hence

| unfolding (5)

| | | receive a message [from any agent]

| | | [containing msg(method, arguments)]

| | then

| | | | check (method in msg is handshake) then

| | | | send a message [to the contracting-agent]

| | | | [containing the ack-signal]

| | | | and then ...

| | | | ... << the behavior of handshake method >>

| | | | then unfold

| | | or ... << other behaviors >>

Fig. 3. The object-behavior protocol

An Example: Handshake. Suppose that, during its execution, obj1 sends a
handshake message to obj2: obj2 <- handshakeMethod. The handshake pro-
tocol states that the sender obj1 is supposed to wait for an ack-signal from
the receiver obj2 in order to proceed.

92



The Action Semantics description for the handshake protocol on the client’s
side (in this case, obj1) is given in Figure 4. The action receive a message
[from the agent of the given object#1] [containing the ack-signal]
is specific to the handshake protocol on the client’s side; in fact, it must be
embedded in a multiple or action combinator (similar to the one defined in
object-behavior, that checks for each defined behavior in D2L, and chooses
one, based on the type of the message that has been sent).

evaluate _ :: Application -> action

[giving a value? | ... ]

[using current bindings ... ]

(*) evaluate [[ T:Application-Target "<-"

O:Operation-Name ";" ]] =

| | give the receiver denoted by T

| then

| | | give the given object

| | and

| | | | give the class of the given object

| | | then

| | | | give the method bound to the token of O

| | | | in the given class

then

| | send a message[to the agent of the given object#1]

| | [containing msg(the given method#2)]

| and then

| | receive a message [from the agent of the given object#1]

| | [containing the ack-signal]

...

Fig. 4. Method Call

4 Specification Problems

The communicative/hybrid facets (agents and send/receive actions) have been
quite suitable to model the behavior of D2L objects. Agents provide the desirable
intrinsic asynchronism demanded by D2L and the agent’s message buffer plays
the role of the object’s message queue. The semantics of the receive action
(busy-waiting semantics), however, has imposed some difficulties in modeling
the various kinds of synchronous communication provided by D2L.

The modeling of the well-known procedural synchronous behavior, for exam-
ple, has presented some problems. In a straighfoward implementation for this
behavior, the sender object remains blocked (after the synchronous message dis-
patch) until it receives a “end” message from the receiver object. Within this
implementation, however, in case the receiver object sends, directly or not, other

93



synchronous message to sender object, this message will not be received, because
the sender object is blocked waiting for the original “end” message. This behav-
ior is not the desired one, of course, since ordinary synchronous communication
(by message exchange between objects) shall simulate procedural or methodical
behavior, where there is no blocking, but simply pushing in a execution stack.
On the other hand, freeing the synchronous message sender object to receive any
other messages, corresponds by no means to the desired behavior, since we do
not want to allow this object to receive, from a third object, any message that
is not concerned to the current execution line.

The provision of a receive action with no blocking at all (as promised by the
Action Notation 2) may facilitate our work, but does not solve the specification
problems associated to all D2L synchronous behaviors.

The second problem we have approached refers to class binding. The solution
provided to the generic class instance problem, using class abstractions and class
late-bindings, has given rise to another kind of problem: the binding of a class
name to a recently created class entity is done in the local bindings of the
agent of the first class instance’s creator. This binding and the class variables
allocation, however, should be done in a global scope and not in the current
local (of agent) scope. This global scope will have to be specified as a separate
agent; the class global bindings are all expected to be there. Class variables, in
turn, will have to be stored in separate agents, one per class, modeling shared
memory among class objects. This agent proliferation further complicates system
synchronization and storage management.

5 Related Work

In [Mos96b], Mosses provides an action-semantic description for a subset of the
Ada language, where tasks and rendez-vous are modeled using the communica-
tive facet. Mosses also reports the use of Action Semantics to describe concurrent
languages in [Mos96a].

As stated in section 3, the class definition adopted in D2L specification is
very similar to the one found in the JAS project [BW99]. The main difference
is the class binding time. Since Java does not have generic classes, classes can
be bound and their class variables allocated at declaration time. Consequently,
classes and their variables are statically created; they already exist when the
main object is created. In D2L, classes are late-bound at object creation time.
A class and its class variables are created when its first object is created.

The JAS current stage does not approach concurrency aspects, disregarding
executions in parallel generated for java.lang.Thread objects. This simplifica-
tion is not useful here since concurrency is an inherent aspect in D2L.

In [Rep91] the standard ML language is extended with the introduction of
mechanisms for spawning new processes and for synchronous exchange of values
between these processes over typed channels. In [MM94], this extension is de-
scribed with Action Semantics and analogous to D2L, agents are used in parallel
processing. The ML proposal, however, is to provide a low-level language with

94



primitives that allow programmers to control threads and channels. In D2L these
features are built-in, so it is up to the language to manage and to have control
over them. Furthermore, D2L descriptions may be richer and more complicated
due to the several distinct semantics provided for object behavior.

In [PMM95] a parallel object-oriented language – POOL – is described us-
ing Action Semantics. Like D2L, this language has integrated parallelism in the
object-oriented model by supplying each object with a local independent pro-
cess that is executed in parallel with all the other objects in the system. The
communication mechanism in POOL, however, is only synchronous, unlike D2L,
where asynchronous communication is provided. POOL objects are agents and
the communication between these agents is made via message exchange as in
D2L. However, the busy-waiting problem presented in section 4 is not mentioned
in [PMM95].

6 Conclusions

This paper introduces D2L, a textual design description language for object-
oriented systems and presents the first results related to the specification of the
dynamic semantics of D2L classes, objects and object behavior using Action
Semantics. The main goal of this work is the provision of a complete formal
specification for D2L.

Up until now, the contributions of our effort to formalize D2L using Action
Semantics are the specification of class declarations using class abstractions, the
specification of concurrent objects using agents and also the specification of the
several object behaviors provided by D2L. Furthermore, we anticipate that the
formalization of a language for expressing object-oriented designs can be very
useful to software development as a whole.

The specification of D2L using AS has given us some insights about many
language aspects, as well as design decisions that possibly had not been explicitly
stated before.

Surprisingly, the task of formalizing D2L using Action Semantics, guided
through some useful examples [Mos96b,BW99], has been amazingly easy, espe-
cially considering the authors do not have a solid background or previous relevant
experience on formalization.

6.1 Future Work

As part of the current specification stage, we expect to be able to describe the
whole set of semantics for object communication provided by D2L. The proposed
changes in the forthcoming version of Action Notation (AN-2) [LMW00] seem
to facilitate our job and to provide solutions to the problems stated in section 4.

In AN-2, message reception is fair and messages are tagged. This sort of non-
determinism seems more appropriate to languages with intrinsic asynchronism
such as D2L. The primitive actions for explicit agent creation and agent destruc-
tion resembles the computation model. Besides, transients passing seems to be

95



less expensive in AN-2, generating more concise specifications, a very important
characteristic for languages with rich semantics such as D2L.

To complete the description of D2L dynamic semantics, the following fea-
tures must be specified: nested classes, visibility, state-dependent behavior, state
component inheritance, class constants and exceptions. These features have not
been approached in the current stage of D2L specification, but we hope that
their introduction will not cause undue difficulties, since other languages’ sim-
ilar features have been modeled using Action Semantics (such as inner classes
and access modifiers in Java, for example).

The next stage of this work will comprise the specification of D2L static
semantics. After a reliable version of D2L Action Semantics is developed, i.e,
verified using ASD or related tools [BMW92,RAT], we will be able to extend
D2L with the features proposed in [CL00b] and [CL00a], and give their formal
specification using Action Semantics.

Acknowledgements

We wish to thank Prof. Lucena, our advisor, for having “adopted” us without any
restrictions, as well as for keeping the work initiated with Prof. Sergio Carvalho
in our post-graduate (PhD) programme.

Finally, we dedicate this work to the D2L designer, Prof. Sergio Carvalho,
whose bright ideas and remarkable contributions in the field of object-oriented
systems, we have the honor (and audacity) to try to keep alive.

References

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stahl.
Pattern-Oriented Software Architecture. Wiley, 1996.

[BMW92] Deryck F. Brown, Hermano Moura, and David A. Watt. Actress: an action
semantics directed compiler generator. In CC’92, Proc. 4th Int. Conf. on
Compiler Construction, Paderborn, volume 641 of Lecture Notes in Com-
puter Science, pages 95–109. Springer-Verlag, 1992.

[Boo95] G. Booch. Object-Oriented Design with Applications. Benjamin Cummings,
2nd edition, 1995.

[BW99] Deryck F. Brown and David A. Watt. JAS: a Java Action Semantics. In
Proc. of 2nd International Workshop on Action Semantics, pages 43–55,
Amsterdam, March 1999. BRICS Notes Series.

[Car97] Sergio E. R. Carvalho. DDL: An Object-Oriented Design Description Lan-
guage. Technical Report PUC-RioInf.MCC29/97, Pontifical Catholic Uni-
versity of Rio de Janeiro (PUC-Rio), Department of Informatics, Rio de
Janeiro, Brazil, 1997.

[CCH95] James R. Cordy, Ian H. Carmichael, and Russel Halliday. The TXL Pro-
gramming Language. Legasys Corp., 1995.

[CCO98] Sergio E. R. Carvalho, S. O. Cruz, and T. C. Oliveira. Second Generation
Object-Oriented Development. Electronic Notes in Theoretical Computer
Science. WWW2, 1998.

2 http://www.elsevier/nl/locate/entcs/volume14.html

96



[CCO00] Sergio E. R. Carvalho, Sylvia O. Cruz, and Toacy C. Oliveira. Concurrency
Features in 2GOOD/DDL. In Proc. IDEAS 2000, pages 100–111, Cancun,
Mexico, April 2000.

[CL00a] Christina von Flach G. Chavez and Carlos J. P. Lucena. Design-Level
Support for Aspects. Ph.D. Thesis Proposal, Pontifical Catholic University
of Rio de Janeiro, Department of Informatics, 2000.

[CL00b] Sylvia O. Cruz and Carlos J. P. Lucena. Pronoun-based Object Commu-
nication. Ph.D. Thesis Proposal, Pontifical Catholic University of Rio de
Janeiro, Department of Informatics, 2000.

[G+95] Erich Gamma et al. Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley, 1995.

[Har87] D. Harel. Statecharts: a Visual Formalism for Complex Systems. Science
of Computer Programming 8, pages 231–274, July 1987.

[LMW00] Soren B. Lassen, Peter D. Mosses, and David A. Watt. AN-2: Revised
Action Notation – Informal Summary. DRAFT PROPOSAL AN-2/v0.6,
2000.

[MM94] Peter D. Mosses and Mart́ın A. Musicante. An action semantics for ML
concurrency primitives. In FME’94, Proc. Formal Methods Europe: Sym-
posium on Industrial Benefit of Formal Methods, Barcelona, volume 873 of
Lecture Notes in Computer Science, pages 461–479. Springer-Verlag, 1994.
WWW3.

[Mos96a] Peter D. Mosses. Theory and practice of action semantics. In MFCS ’96,
Proc. 21st Int. Symp. on Mathematical Foundations of Computer Science
(Cracow, Poland, Sept. 1996), volume 1113 of Lecture Notes in Computer
Science, pages 37–61. Springer-Verlag, 1996. WWW4, FTP5.

[Mos96b] Peter D. Mosses. A tutorial on action semantics. 50pp. Tutorial notes for
FME’94 (Formal Methods Europe, Barcelona, 1994) and FME’96 (Formal
Methods Europe, Oxford, 1996). WWW6, FTP7, March 1996.

[PMM95] Giovanny L. Palma, Martin Musicante, and Silvio R. L. Meira. A Novel
Formal Semantics for a Parallel Object-Oriented Language. In Proc. of XV
Intl. Conf. Of the Chilean Computer Science Society, Arica, November 1995.

[R+91] J. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice-Hall,
1991.

[RAT] Recife Action Tools. WWW8.
[Rep91] J. H. Reppy. CML: A higher-order concurrent language. In Proc. SIG-

PLAN’91, Conf. on Prog. Lang. Design and Impl., pages 293–305. ACM,
1991.

[SGW94] B. Selic, G. Gullekson, and P. Ward. Real-Time Object-Oriented Modeling.
John Wiley, 1994.

[SM94] S. Schlaer and S. Mellor. Object Life Cycles: Modeling the World in State.
Yourdon Wiley, 1994.

3 http://www.brics.dk/RS/94/20/
4 http://www.brics.dk/RS/96/53/
5 ftp://ftp.brics.dk/Projects/AS/Papers/Mosses96MFCS
6 http://www.brics.dk/NS/96/14/
7 ftp://ftp.brics.dk/Projects/AS/Papers/Mosses96DRAFT
8 http://www.di.ufpe.br/∼rat

97



An Action Semantics for STG

Francisco Heron de Carvalho Junior, Hermano Perreli de Moura, Ricardo
Massa Ferreira Lima, and Rafael Dueire Lins

Federal University of Pernambuco
Centre of Informatics

Recife, Brasil
{fhcj,hermano,rmfl,rdl}@cin.ufpe.br

Abstract. STG (Shared Term Graph) is a very simple higher order
non-strict pure functional language, primarily designed to be the “ab-
stract machine code” of STG-machine (Spineless Tagless G-Machine),
an abstract machine designed to support implementation of lazy func-
tional languages, like Haskell, on stock hardware[13]. GHC[14] and Has-
kell/µΓCMC[11] are compilers for Haskell that use STG as intermediate
code. This paper gives an action semantics for STG, trying to capture
its essential characteristics, like lazy evaluation, higher order functions,
pattern matching by case expressions and support for algebraic values.

1 Introduction

Action semantics is a very useful formalism to describe the meaning of pro-
grammming language concepts [7], with some desirable properties like clarity,
modularity, and extensibility[5]. Action notation allows us to specify fundamen-
tal aspects of programming languages in a closer way to their implementation
mechanisms, but without losing power of expressing the meaning of programs in
a high level of abstraction. This is due to its intermediary level of abstraction,
between denotational and operational semantics. Higher order non-strict pure
functional languages have a straitforward denotational semantics. However, us-
ing this formalism, some of their control features should be described in some
specific style, like continuation passing style, which makes language specification
hard to modify and extent in the design process [5]. One of the primary goals of
a development of action semantics formalism has been to remedy this problem.

STG is a realistic functional language used as intermediate code by some
functional language compilers. In spite of its simplicity, STG supports many
important features that appear in an actual higher order non-strict pure func-
tional languages, like bindings, lazy evaluation, higher order functions, algebraic
values, and pattern matching. Thus, a STG action semantics specification can
be used as a starting point for defining an action semantics specification for a
higher level, more complex, functional language that supports these features,
like Haskell, due to the high degree of modularity and extensibility of the ac-
tion semantics formalism. The possibility for automatic generation of compiler
prototypes from a semantic specification is another desirable feature of action

98



semantics formalism, allowing evaluation of semantic and syntax features of new
designed languages. With that, there is some tools available. See [1] for a survey.

In addition to this introduction, in this paper there are three more sections.
In Sect. 2, we talk about STG language, focusing on its main characteristics and
on describing its use as intermediate code by some functional language compilers.
In Sect. 3, we present the action semantics specification defined in this work for
STG, showing how its main characteristics were specified using action notation.
Finally, in Sect. 4, we present some conclusions of this work and give some lines
for future work. The bibliography is presented in the end of the document.

2 The STG Language

The STG (Shared Term Graph) language was originally designed to be the “ab-
stract machine code” of the STG-machine (Spineless Tagless G-machine), a vir-
tual machine that supports implementation of lazy functional languages on stock
hardware. STG is a very austere pure non-strict functional language with a for-
mal operational semantics expressed as a state transition system, as well as the
usual denotational semantics. This is the main characteristic that distinguish
STG from other languages used as intermediate code by functional language
compilers[13].

STG has many salient characteristics that are supported only for improving
efficiency of programs when running under STG-machine. For example, its syn-
tax exposes when a closure is constructed and whether it is updated, usually
implicit matters. In spite of this fact, STG can be seen as entirely independent
from STG-machine. However, in account of the importance of these salient char-
acteristics to the action semantics specification presented in this paper, following
we talk about some of them, as in [13]:

– All function and constructor arguments are simple variables or constants.
This unnested syntax (there is not sub-expressions) is a consequence of the
operational reality that, in STG-machine, all functional arguments are pre-
pared prior to the call, either by constructing a closure or evaluating them.
When translating an usual functional language, like Haskell, to STG, non-
trivial arguments are represented by let bindings. As a consequence, STG
programs can be very unreadable from a user point of view. But, in fact,
as we implicitly said early, STG is not a language for final programmers,
but an intermediate core language in the compiling process of higher level
functional languages;

– All constructors and built-in operators are saturated. This characteristic is
not usual in common higher order languages, but simplifies the operational
semantics of STG programs.

– Pattern matching is performed only by case expressions and patterns are one-
level. This characteristic also simplifies the operational semantics of STG
programs. More complex forms of pattern matching can be translated into
this form [9]. The selector expression of a case can be arbitrary, not only a
simple variable or constant;

99



– There is a special form of binding. Its general form is:

f = {v1, · · · vn} \π {a1, · · · an}→ expression

The free variables v1, · · · vn and the update flag π do not have denotational
meaning, only operational. Thus, we decided to ignore these syntactic com-
ponents from the semantic specification. This decision is a mere consequence
of our goal on describing only the meaning of STG programs, not how they
execute on STG-machine;

– Support for unboxed-values. In functional languages, unboxed values [16] are
a way for improving performance of numeric calculations, avoiding the in-
direction generated by storing all primitive values in closures. In STG, all
primitive values are unboxed.

2.1 GHC Compiler

GHC (Glasgow Haskell Compiler) [14] is one of the most popular, complete and
efficient free compilers for Haskell [15], a pure non strict higher order functional
language developed by an international group of researchers since 1987. Now,
it became a de facto standard for research in functional languages program-
ming and implementation, and for development of real applications under this
programming paradigm.

GHC uses STG as intermediate code. In fact, most of program transforma-
tions used to improve the performance of functional code, an important charac-
teristic of GHC compiler, is performed over the generated STG code, not over
the original Haskell code. This simplifies the construction of the compiler and
reduces its complexity without loss of optimization opportunities. Also, as we
explained early, STG exposes some important usually implicit matters, like when
a closure is constructed and when it is updated, useful information for improving
performance of functional code.

In Fig. 1, we show the main compilation phases of GHC, as described in
[14]. The Haskell code is translated to Core language code, a very much simpler
(desugared) version of the original Haskell code, over which some optional trans-
formations can be applied for improving it. A simple pass converts the Core code
to STG code and, again, a variety of optional transformations are applied. The
STG code is then translated to Abstract C (maximizing portability) or, if pre-
ferred, to assembly language for a particular machine (maximizing efficiency).
Finally, if the first one is assumed, a target code printer prints abstract C in a
form acceptable to a C compiler.

2.2 Haskell/µΓCMC Compiler

µΓCMC is an abstract machine for efficient implementation of functional lan-
guages, based on Categorical Multi-Combinators[17]. In order to obtain porta-
bility and efficiency, it transfers the control of execution flow to C when it is

100



Intermediate
Code

Abstract

Binary
Code CodeCode

Core 

Haskell

C

C

Initial Final

check
type

C compiler

optimization optimization
passpass

STG

Intermediate
Code

Fig. 1. GHC Compiling Process

possible. The evaliation mechannisms of µΓCMC is employed only to comput-
ing complex structures, such as lists and partial functions.

µΓCMC was used to implement the back-end of a Haskell compiler. In or-
der to reduce the implementation efforts the front-end of an existent Haskell
compiler was used. In particular, the front-end of the Glasgow Haskell Compiler
(GHC)[14] was chosen. It translates Haskell code into STG code. As can be seen
in the Figure 2, STG is the interface between GHC and the back-end based on
µΓCMC machine.

Code Generator
Front-End

GHC
STG Code C

Code

CMCµΓ
Code

C
Compiler

Code
Haskell

Executable

Code

Fig. 2. Structure of Haskell/µΓCMC compiler

3 The Action Semantics Specification

In this section, we describe the action semantics specification for STG language.
This specification is composed by three parts: abstract syntax, semantic entities

101



and semantics functions. In this paper, our focus is on describing how some
characteristics judged more relevant in STG were specified using action nota-
tion. As a consequence, some less relevant parts of the specification are not
shown in this paper. If you would like to see the detailed specification, point to
www.cin.ufpe.br/~fhcj/stgas.tar.gz. The characteristics are:

– Bindings;
– Higher order functions;
– Lazy evaluation;
– Algebraic Values;
– Pattern Matching.

First, we will show the complete abstract syntax of STG and discuss its most
relevant aspects. After this discussion there will be five sections talking about
the characteristics listed above.

3.1 Abstract Syntax

In Fig. 3, we present the abstract syntax of STG. A STG program is a collection
of bindings. One of them is the value of the program and is denoted by main. The
bindings declared at the top-level are called globals while the others, declared in
let or letrec expressions, are called locals. Each binding associates an identifier
to a λ-form, which is composed by a list of free variables, an update flag, a list
of arguments and an expression, which denotes, when applied, the value of the
λ-form based on the actual values of the formal arguments. As we said earlier,
the free variables and the update flag do not have denotational meaning, only
operational. Their main purpose is to model construction and update of closures
in STG-machine. We will ignore them in the semantic specification.

Note that there is not nesting of expressions. As we discussed in the pre-
vious section, all function and constructor arguments are simple variables or
constants. Programmers should use let bindings to build more complex forms
of expressions. This characteristic makes STG programs very unreadable.

The let expressions build local bindings that will be in the scope of an
expression. The difference from letrec expressions is that the latter supports
mutual recursion among bindings. The case expressions make possible pattern
matching. The selector expression inside a case expression have to be evaluated
strictly and the given value is used in choosing the appropriate case alternative.
The value of the case expression is then the value of the choosen alternative
expression. The default alternative is applied when there is no alternative to
choose. Algebraic values are builded applying a constructor identifier to argu-
ments (literals or variables). For differentiating constructor identifiers from func-
tion identifiers, the former must have an upper case letter as first letter, while
the latter must have a lower case letter in the beginning. The syntax of function
and primary operation application and the syntax of literals are straitforward.

The scope rules of STG are static. The bindings accessed by an expression
are the globals and the locals defined in the let or letrec expressions where it
is defined.

102



needs: Data Notation/Characters/ASCII (letter,digit,graphic-character).
closed

grammar:
• Programs
(1) Program = [[ Binding+ ]].

• Bindings
(2) Binding = [[ Var “=” λ-Form ]].

(3) λ-Form = [[ “{” Vars? “}” “\”π “{” Vars? “}” “→ ” Expression ]] .
(4) π = “u” “n” .

• Expressions
(5) Expression = [[ “let” Binding+ “in” Expression ]]

[[ “letrec” Binding+ “in” Expression ]]
[[ “case” Expression “of” Alternatives ]]

[[ Var “{” Atoms? “}”]]

[[ Constructor “{” Atoms? “}”]]
[[ Prim “{” Atoms “}”]]
[[ Literal ]] .

• Case Alternatives
(6) Alternatives = [[ Primitive-alternative* Default-alternative ]] [[ Algebraic-alternative*

Default-alternative ]] .
(7) Primitive-alternative = [[ Literal “→ ” Expression ]].

(8) Algebraic-alternative = [[ Constructor “{” Vars? “}” “→ ” Expression ]].
(9) Default-alternative = [[Var “→ ” Expression ]] [[“default → ” Expression ]] .

• Vars
(10) Vars = 〈Var 〈 “,” Var 〉* 〉.
(11) Var = [[ lowercase letter 〈 letter digit 〉* ]] .

• Constructors
(12) Constructor = [[ uppercase letter 〈 letter digit 〉* ]] .

• Primary Functions
(13) Prim = “+” “-” “*” “/” “<” “>” “≤” “≥” “==” “!=”

“&” “|” “!” .

• Atoms
(14) Atoms = 〈Atom 〈 “,” Atom 〉* 〉.
(15) Atom = [[ Var ]] [[ Literal ]].

• Literals
(16) Literal = [[ Numeric-literal ]] [[ Character-literal ]].

(17) Numeric-literal = [[ digit+ ]] [[ digit+ ‘.’ digit+ ]] .
(18) Character-literal = [[ ‘’’ graphic-character ‘’’ ] .

Fig. 3. Abstract Syntax

103



3.2 Bindings

In STG, functions are declared as λ-forms. To allow refering them in the program
code, λ-forms are associated to names (identifiers). These associations are called
bindings. A Binding can be global, when declared at the top level of the source
code, or local, when declared in a let or letrec expression. We assume that an
expression, when evaluated, has access to the global bindings and to the local
bindings declared in let or letrec expressions that contain it. The difference
between let and letrec expressions is that in the latter mutual recursion is
allowed. Global bindings are elaborated by the semantic function run, shown
below.

introduces: run .

• run :: Program → action [giving value].

(1) run [[B :Bind+]] =
elaborate-bind-rec B
before
evaluate [[ “main { }” ]]
then
enact the thunk-abstraction of the given thunk.
or
give the given function

Note that run elaborates global bindings allowing mutual recursion among
them, and then evaluates the identifier main, which must be bound to a param-
eterless λ-form which returns the value of the STG program when applied. This
is the semantic of the initialization of a STG program.

The equations of the semantic function evaluate for let and letrec expres-
sions were defined as follows.

(1) evaluate [[ “let” B :Bind+ “in” E :Expression ]] =
elaborate-bind B
before
evaluate E .

(2) evaluate [[ “letrec” B :Bind+ “in” E :Expression ]] =
make-indirection B
before
elaborate-bind-rec B
before
evaluate E .

Essentially, each one in a set of binding declarations is elaborated by the
semantic function elaborate-bind or elaborate-bind-rec and the expression is
evaluated using the elaborated bindings and the other bindings already in scope.
For letrec expressions, indirections are created for allowing mutual recursion.
The equations for semantic-function make-indirection are shown next.

• make-indirection :: Bind+ → action [binding].

104



(1) make-indirection 〈B1:Bind B2:Bind+ 〉 =
make-indirection B1

before
make-indirection B2 .

(2) make-indirection [[ I :Var “=” L:λ-Form ]] = indirectly bind I to unknown.

The semantic function make-indirection only creates indirections for each
binding, which will be redirected by the semantic function elaborate-bind-rec.
This semantic function and the semantic function elaborate-bind were defined
as follows.

• elaborate-bind :: Bind+ → action [binding].

(1) elaborate-bind [[ I :Var “=” L:λ-Form ]] =
elaborate-function L
then
recursively bind token of I to the given unevaluated-value.

(2) elaborate-bind 〈B1:Bind B2:Bind+ 〉 =
elaborate-bind B1

before
elaborate-bind B2 .

• elaborate-bind-rec :: Bind+ → action [binding].

(3) elaborate-bind-rec [[ I :Var “=” L:λ-Form ]] =
elaborate-function L
then
redirect token of I to the given unevaluated-value.

(4) elaborate-bind-rec 〈B1:Bind B2:Bind+ 〉 =
elaborate-bind-rec B1

and
elaborate-bind-rec B2 .

For each binding declaration, elaborate-bind and elaborate-bind-rec call
the semantic function elaborate-function for elaborating an action represen-
tation for a function (λ-form), using the reflective facet of action notation (ab-
stractions). We will discuss this representation and the definition of elaborate-
function in the next section (3.3). The identifier of the binding declaration is
bound to the abstraction given by elaborate-function.

3.3 Higher Order Functions

In a programming language, if functions are treated as first class values, allowing
them to be stored in data structures, passed as arguments, and returned as
a result of evaluation of another function, they are referred as higher order
functions [9].

Since λ-calculus, the mathematical foundation of functional languages, the
support for higher order functions is one of the most intrinsec characteristics

105



of these languages and, as a consequence, their desirable properties to the pro-
gramming practice have been extensively studied. Higher order functions are a
powerful tool for increasing modularity and abstraction of programs.

Except for primitive functions, which must be always saturated, STG pro-
vides support to higher order functions. For that, in our specification, each func-
tion is treated as a curried function, that is, a function with only one argument
that returns, when applied to a value, another curried function, which can be ap-
plied to another argument, or a simple value. Thus, the application of a function
f , with three arguments, can be seen as follows.

f{x, y, z} ∼ ((f{x}){y}){z}
The application of the function f can be interpreted as the application of f

to the first argument, returning another function that is applied to the second
argument, returning another function that is finally applied to the third argu-
ment, returning a simple value. In fact, the semantics of application of functions
in STG coincides with the semantics of application of curried functions, unlike
its syntax suggests and in spite of that STG-machine, in a function application,
passes actual arguments all at a time. The support for partial application of
functions allows functions being passed as arguments to other functions.

In the semantic entities definition, we defined a sort, called function, for
encapsulating an abstraction that is an action representation of a function, the
function abstraction.

introduces: function, function of .

(1) a:action ⇒ function of abstraction of a :function.
(2) f = function of a ⇒ the function-abstraction of f :function = a.

A function abstraction is elaborated by the semantic function elaborate-
function. It receives a λ-form and builds the correspondent function abstraction,
which is bound to the appropriate identifier by elaborate-bind or elaborate-
bind-rec semantic functions, shown later in this paper.

• elaborate-function :: λ-Form → action [giving a function].

(1) elaborate-function [[ “{” Fv :Vars “}” “\”π “{” 〈A1:Var “,” An:Vars 〉 “}” “→ ”
E :Expression ]] =

give function of closure abstraction of
bind token of A1 to the given argument
before
elaborate-function [[ “{” Fv “} \” π “{” An “}” “→ ” E ]].

(2) elaborate-function [[ “{” Fv :Vars “}” “\”π “{” A:Var “}” “→ ” E :Expression ]] =
give function of closure abstraction of
bind token of A to the given argument
before
evaluate E .

106



(3) elaborate-function [[ “{” Fv :Vars “}” “\”π “{” “}” “→ ” E :Expression ]] = evaluate E .

For a λ-form with more than one argument, note that its function abstrac-
tion, when enacted, binds the given actual argument to the name of the first
formal argument and then returns another function abstraction that will con-
sume the remaining arguments in the same manner. In the case of a function
abstraction having only one argument, the expression is evaluated, using the
generated bindings for the arguments, local bindings in scope and global bind-
ings. Curried functions are implemented in this way. The following equation
for evaluate semantic function specifies the correspondent action for a function
application.

• evaluate :: Expression → action [using current bindings][giving an unevaluated-value].
...

(1) evaluate [[ I :Var “{” A:Atoms “}” ]] =
give the function bound to the token of I
then
saturate-function A

or
give the thunk bound to the token of I

(2) evaluate [[ I :Var “{” “}” ]] =
give the thunk bound to the token of I
or
give the function bound to the token of I

...

In a function application, when more than necessary actual arguments are
passed to a function, the remaining actual arguments are ignored. The semantic
function saturate-function applies the given arguments, one by one, to the
function abstraction bounded to the identifier. In the case of less than neces-
sary arguments being passed to a function (partial application), the result of
the application is a function abstraction which can consume the remaining ar-
guments when applied. The referred semantic function give-atom only gives,
as a transient, the argument which can be a literal or a “value” bounded to an
identifier.

• saturate-function :: Atoms → action [giving unevaluated-value].

(1) saturate-function A:Atom =
give the given function
and then
give-atom A

then
enact the application of the function-abstraction of the given function#1

to the given argument#2 .

107



(2) saturate-function 〈A:Atom “,” As:Atoms 〉 =
saturate-function A
then
give the given thunk
or
give the given function
then
saturate-function As .

In the specification, the reader can see that an identifier can be bound to
a function or a thunk. Thus, these are the sort of values that can be given as
transients by give-atom semantic function, when it is applied to an identifier.
This explains how functions are passed as arguments to other functions.

3.4 Lazy Evaluation

There are two main groups of functional languages: the first one contains the
functional languages with strict semantics while the other includes the functional
languages that support non-strict semantics. Respectively, the most important
languages in each group are ML[2] and Haskell. A function with a strict seman-
tics have the following property: whenever one of its arguments has an undefined
value, its value is undefined too (Fig. 4). This is not necessarily true for non-strict
functions. For example, if the value of the undefined argument is not referenced
in the body of the function and the other arguments are defined, the function
value can be defined. In functional languages, non-strict semantic is guaranteed
when normal order reduction from λ-calculus is supported while strict semantics
is a characteristic of functional languages that support applicative order reduc-
tion[9]. In modern non-strict functional languages, normal order reduction is
implemented by lazy evaluation mechanism.

f ⊥=⊥

Fig. 4. Strict Semantics Property

In the lazy evaluation mechanism, the arguments of a function are passed
unevaluated. They are evaluated only when their values are strictly necessary
(Fig. 5 show a simple example of lazy evaluation using a syntax of λ-calculus).
Naively implemented, this approach can lead to low performance in respect to
time and space [10]. Fortunately, the recent development in technology for com-
piling lazy functional languages[12], like haskell, has shown that lazy evaluation
can be as efficient as eager evaluation, the technique in which arguments are
evaluated before being applied to the function (mechanism of implementation
of applicative order reduction). In fact, some applications execute faster when
implemented with lazy functional languages[10]. Benchmarks have shown that

108



actual compiled functional language code can run fastest as compiled C and
Fortran code for important practical applications [8].

(λxλy → × x y)(× 2 6)(+ 3 2)

⇒ × (× 2 6) (+2 3) ⇒ (λxλy → × x y) (× 2 6) 5
⇒ × (× 2 6) 5 ⇒ (λxλy → × x y) 12 5
⇒ × 12 5 ⇒ × 12 5
⇒ 60 ⇒ 60

Lazy Evaluation (Normal) Eager Evaluation (Applicative)

(λxλyλz → + x y)(+ 2 20) 4 (/ 1 0)

⇒ + (+ 2 20) 4 ⇒ (λxλy → × x y) (+ 2 20)4 ⊥
⇒ + 40 4 ⇒ ⊥
⇒ 80

Lazy Evaluation (Normal) Eager Evaluation (Applicative)

Fig. 5. Two Examples of Evaluation using Lazy and Eager Mechanisms

Many researchers have argued that lazy functional languages are more pow-
erful and general than its eager counterparts because they have some desirable
properties that influences the programming practice[9, 3, 10]:

– independence of the program semantics from the evaluation mechanism;
– support for representation of infinity data structures;
– high degree of modularity.

Because STG was originally developed to be the “abstract machine code” for
an abstract machine that supports implementation of non-strict (lazy) functional
languages (STG-machine), it is natural that STG is non-strict too. In this action
semantics specification, we provide support for unevaluated expressions (thunks).
The evaluate semantic function, when applied to an expression always returns
a thunk or a function, as discussed before. A thunk (unevaluated expression)
is a sort that, like function, encapsulates an abstraction (thunk abstraction),
which returns a value when enacted. A thunk is only enacted when its value is
strictly necessary. Following, we show the specification for thunks contained in
the semantic entities definition.

introduces: thunk, thunk of .
...

109



(1) a:action a ⇒ thunk of abstraction of a :thunk.
(2) t = thunk of a ⇒ the thunk-abstraction of t :thunk = a.
(3) unevaluated-value = thunk function. (disjoint)
(4) argument = unevaluated-value.

Note the similarity between the definitions of the sorts thunk and function.
The sort unevaluated-value contains individuals that belongs to the sorts thunk
or function. The same can be said about the sort argument.

As we presented in the previous section, the semantic function run elaborates
the global bindings and evaluates the function main, which have access to the
elaborated global bindings. This evaluation can return a thunk, which can return
a value when its thunk abstraction is enacted, or a function. Another situation
where a thunk must be enacted is when it is applied to primary operations. The
general form of the evaluation of a primary operator application is described
below.

• evaluate :: Expression → action [using current bindings][giving an unevaluated-value].
...

(1) evaluate [[ P :Prim “{” A:Atoms “}”]] =
give-arguments A
then
apply-operator P .

...
• apply-operator :: Prim → action [using given data][giving a thunk].

...
(2) apply-operator [[ bin oper ]] =

give the application of the thunk of
abstraction of

enact the thunk-abstraction of the given thunk#1
and
enact the thunk-abstraction of the given thunk#2

then
give the action bin oper(the given number-value#1,

the given number-value#2)
to the given data

...

In this evaluate semantic function equation, all the arguments are given at
the same time to the apply-operator semantic function. The bin oper argument
is a primitive operation while action bin oper is its correspondent action. For
example, sum is the action correspondent to the primary operation “+”. In
the returned abstraction, the thunks of the actual arguments of the primary
operation are enacted and the values are used for calculating the result of the
operation.

Later in this paper, in Sect. 3.6, when discussing about pattern matching,
we will see that the third point where a thunk is enacted is when scrutinizing

110



the selector value of a case expression, by evaluating its selector expression and
enacting the given thunk.

We pointed to the three points in the specification where thunks must be
enacted. In all other cases, values are kept unevaluated in thunk abstractions,
leading to a lazy evaluation schema.

3.5 Algebraic Values

Algebraic data types (ADT’s) can help programmers to increase data abstrac-
tion, whether or not the language is functional. Data abstraction, a disseminated
concept of programming languages in general, improves the modularity, security,
and clarity of programs[9].

In Haskell, an ADT is defined through a data declaration. For example,
following we show the definition of an ADT that represents a tree of values of
type t.

data Tree t = Nil |
Node t (Tree t) (Tree t)

In Fig. 6, we show a binary tree of integers and its representation as a Tree
Int ADT value. See that values are builded by the application of a constructor
(Node or Nil in this case) to component values of a required type.

In STG, there is not a way of declaring ADT’s, like data declarations in
Haskell, but algebraic values can be builded by the application of constructors
to literals or identifiers. In fact, in STG, there is no need for a way of defining
an ADT, because it is proposed to be an intermediate “low level” language
and, in general, type checking and inference should be performed before the
translation of the high level code to it. This is the strategy adopted by GHC
and indirectly adopted by Haskell/µΓCMC compiler, which uses the STG code
generated by GHC. The application of a constructor to its components must
be always saturated (There is not partial application for constructors) and the
components can be scrutinized by pattern matching (case expressions).

In the semantic specification, the evaluation of an application of a constructor
to its components (construction of an algebraic value), gives a thunk which gives
an individual of the sort algebraic-value when enacted. This sort is defined as
follows in the semantic entities definition.

introduces: primitive-value , algebraic-value, value.
...

(1) algebraic-value = (string, unevaluated-value*).

An algebraic value is represented in action notation as a tuple, where the
first component is the name of the constructor and the others are its compo-
nents. The components are stored as unevaluated values (thunks or functions)
until their values be strictly necessary (lazy evaluation). The equations of the

111



20

47 58

72 36

4

Nil

Nil Nil Nil

Nil Nil

Nil

Node 20 (Node 47 Nil Nil) ( Node 58 (Node 72 Nil Nil) (Node 36 (Node 4 Nil Nil)
Nil))

Fig. 6. Tree of Integers and its representation through an algebraic value

semantic function evaluate for application of constructors and the equations of
the semantic function saturate-constructor are presented below.

(1) evaluate [[ C :Constructor “{” A:Atoms “}” ]] =
give (token of C )
then
saturate-constructor A .

(2) evaluate [[ C :Constructor “{” “}” ]] =
give the thunk of the provision of the (token of C ).

...

• saturate-constructor :: Atoms → action [giving thunk].

(3) saturate-constructor A:Atom =
give-atom A
and
give the given algebraic-value

then
give (the given algebraic-value, the given unevaluated-value)

then
give the thunk of provision of the given algebraic-value.

112



(4) saturate-constructor 〈A:Atom “,” As:Atoms 〉 =
give-atom A
and
give the given algebraic-value

then
give (the given algebraic-value, the given unevaluated-value)

then
saturate-constructor As .

The semantic-function named saturate-constructor builds the tuple that
corresponds to the algebraic value. Note that when the constructor has no com-
ponents, only the name of the constructor is given as transient. In the next
section, when talking about pattern matching we will see how components of an
algebraic value are scrutinized.

3.6 Pattern Matching

Equational reasoning is one of the most important and strongly encouraged
programming methodology in the design and construction of programs. It is
supported intrinsecly by functional languages, which have no side effects[9, 4].
In general, in these languages, equations are part of the syntax and pattern
matching goes along with that, allowing write several equations for defining the
same function, only one of which should be applicable in a given situation.

The mechanism of pattern matching of STG, only by case expressions, makes
STG programs very difficult to understand, but it is general, in the sense that
pattern matching can be seing as the primitive behavior of a case expression.
The general form of a case expression is:

case e of
pat1 → e1;
pat2 → e2;

...
patn → en;
id → edefalut;

The guard expression e is strictly evaluated. Then, the value scrutinized
should or not match one of the patterns (pati i = 1, . . . , n). If a pattern pati
matches the scrutinized value then the value of the case expression is the value of
ei. If no patterns match the value, it is bounded to the identifier id and the value
of the case expression is edefault. There are two kinds of patterns: for primitive
values and for algebraic values. The former corresponds to a value while the latter
has the form C{v1, . . . , vn}, where C is a constructor and vi is an identifier. The
components of the algebraic value are bounded to the identifiers of the pattern
that have the same constructor as the scrutinized value constructor. Following
we show the evaluate semantic function equation for case expressions.

113



(1) evaluate [[ “case” E :Expression “of” A:Alternatives ]] =
evaluate E
then
enact the thunk-abstraction of the given thunk
then
exhaust-alternatives A
trap
give the given thunk.

.

The selector expression e is evaluated and its thunk is enacted. The se-
mantic function exhaust-alternatives, presented below, try to discover which
pattern (pati) matches the value and returns the thunk resulted from evalua-
tion of the correspondent expression (ei). Following we also show the seman-
tic functions accept-primitive-alternative, accept-algebraic-alternative,
accept-default-alternative, and bind-vars-to-components, used in testing
each case alternative and in choosing the appropriate one based on the scruti-
nized value in the case selector. The first semantic function is for testing primitive
alternatives and the second is for algebraic ones. The third applies the default
alternative when none of the primitive or algebraic alternatives were choosen.
The fourth only binds the name identifiers from algebraic guards to its cor-
respondent values in a scrutinized and choosen algebraic value. It is used by
accept-algebraic-alternative semantic function.

• exhaust-alternatives :: Alternatives → action [giving thunk].

(1) exhaust-alternatives [[ P :Primitive-alternative+ D:Default-alternative ]] =
accept-primitive-alternative P
and then
accept-default-alternative D .

(2) exhaust-alternatives [[ A:Algebraic-alternative+ D:Default-alternative ]] =
accept-algebraic-alternative A
and then
accept-default-alternative D .

(3) exhaust-alternatives [[ D:Default-alternative ]] = accept-default-alternative D .

• accept-primitive-alternative :: Primitive-alternative+ → action [giving thunk].

(1) accept-primitive-alternative [[ L:Literal “→ ” E :Expression ]] =
check (value of L is the given value)
and then
evaluate E
then
escape with the given thunk.

(2) accept-primitive-alternative 〈P1:Primitive-alternative P2:Primitive-alternative+ 〉 =
accept-primitive-alternative P1

and then
accept-primitive-alternative P2.

• accept-algebraic-alternative :: Algebraic-alternative+ → action.

114



(1) accept-algebraic-alternative [[ C :Constructor “{” I :Vars “}” “→ ” E :Expression ]] =
check (value of C is the first of the given algebraic-value)
and then
give the rest of the given algebraic-value
then
bind-vars-to-components I
then
evaluate E
then
escape with the given thunk.

(2) accept-algebraic-alternative [[ C :Constructor “{” “}” “→ ” E :Expression ]] =
check (value of C is the first of the given algebraic-value)
and then
evaluate E
then
escape with the given thunk.

(3) accept-algebraic-alternative 〈P1:Algebraic-alternative P2:Algebraic-alternative+ 〉 =
accept-algebraic-alternative P1

and then
accept-algebraic-alternative P2.

• accept-default-alternative :: Default-alternative → action [giving thunk].

(1) accept-default-alternative [[I :Var “→ ” E :Expression ]] =
bind token of I to the thunk of the provision of the given data
before
evaluate E
then
escape with the given thunk.

(2) accept-default-alternative [[“default → ” E :Expression ]] =
furthermore
evaluate E
then
escape with the given thunk.

• bind-vars-to-components :: Vars → action.

(1) bind-vars-to-components I :Var =
bind token of I to the first of the given tuple.

(2) bind-vars-to-components 〈 I :Var “,” I s:Vars 〉 =
bind-vars-to-components I
and
give the rest of the given tuple

then before
bind-vars-to-components I s.

115



4 Conclusions and Lines for Future Works

In this paper, we presented an action semantics for STG, a pure non-strict higher
order functional language intended to be an intermediate code for compiling
process of higher level functional languages. In spite of the close relashionship
between STG and STG-machine, a virtual machine that supports implementa-
tion of functional languages, our main goal was to show the meaning of STG
programs independently from how they execute on STG machine, showing how
some important aspects of a non-strict higher order functional language can be
specified using action semantic, like bindings, higher order functions, lazy evalu-
ation (non-strict semantics), algebraic values and pattern matching.

Action semantics was a very useful tool in the specification of STG semantics.
It gave us a very modular and easy to understand and extent documentation
and could allow us to generate a compiler for STG from the specification. With
that, we could use some of the compiler generator systems available[1]. This is a
very useful feature of action semantic formalism that can be used for evaluation,
using a compiler prototype, of semantic and syntax aspects of new developed
languages. For this purpose, we intend to use the compiler generator ABACO[6].
Besides, due to the high degree of modularity provided by action notation, this
work can be seen as an intial step for specification of “higher level” functional
languages, like Haskell. Also, we think that, due to its clear understanding,
action notation is a very useful tool for teaching purposes, allowing programming
languages students in understanding the meaning of the most relevant aspects
of programming languages and paradigms.

References

1. Macedo A. C. B. , Moura, H. P.: Investigating Compiler Generator Systems.
Proceedings of the 4th Brazilian Symposium on Programming Languages (2000),
259-265

2. Wikströn, A.: Standard ML. Prentice-Hall, Englewood Cliffs, New york, 1988.

3. Hughes, J.: Why Functional Programming Matters. The Computer Journal (1989),
Vol.32(2).

4. Hammond, K., Michaelson, G.: Research Directions in Parallel Functional Pro-
gramming. Springer Verlag (1999)

5. Kyung-Goo-Doh. Action Semantics: A Tool for Developing Programming Lan-
guages. Technical Report 93-1-005, The University of Aizu (1993)

6. Meneses, L. C. S.: Uso de Orientação o a Objetos na Prototipação de Semântica
de Ações. Master’s Thesis, Federal University of Pernambuco (1998)

7. Mosses, P. D.: Action Semantics. Cambridge Tracts in Theoretical Computer
Science, Vol. 26, Department of Computing Science, University of Glasgow (1992)

8. Hartel, P. H. , Alt, M. , Beemster, W., Lins, R. D., et al: Benchmarking Implemen-
tation with “PseudoKnot”, a Float Intensive Benchmark. Journal of Functional
Programming (1996)

9. Hudak, P.: Conception, Evolution, and Application of Functional Programming
Languages. ACM Computing Surveys (1989), Vol. 21(3-4), 359-411

116



10. Bird, R., Jone, G., and de Moor, O.: More Haste, Less Speed: Lazy Versus Eager
Evaluation. Journal of Functional Programming, Vol. 7 (1997), 541-547

11. Lima, R. M. F.: Doctor Thesis, Centre of Informatics, UFPE, July 2000.
12. Jonhson, T.: Compiling Lazy Functional Languages. PhD Thesis, Chalmers

Tekniska Hgskola, Gteborg, Sweend (1987)
13. Peyton Jones S. L.: Implementing lazy functional languages on stock hardware:

the Spineless Tagless G-machine Version 2.5
14. Peyton Jones, S. L., Hall, C., Hammond, K., Partain, W.: The Glasgow Haskell

Compiler: a Technical Overview. Proceedings of Joint Framework for Information
Technology Technical Conference, Keele (1993) 249-257

15. Peyton Jones, S. L., Hughes, J., et al: Report on the Programming Language
Haskell, A Non-Strict, Purely Functional Language, Version 1.4 (1997)

16. Peyton Jones, S. L., Launchburry, J.: Unboxed Values as First Classes Citizens in a
Non-Strict Functional Language. Proceedings of the 1991 Conference of Functional
Programming Languages and Computer Architecture, Cambridge (1991)

17. Thompson, S., Lins, R. D.: The Categorical Multi-Combinator Machine: CMCM.
The Computer Journal (1992), Vol.3, P. 2, 170-176

117



A Formal Description of SNMPv3 Standard
Applications using Action Semantics

Diógenes Cogo Furlan, Mart́ın A. Musicante, and Elias Procópio Duarte Jr.

Federal University of Paraná. Dept. Informatics
P.O.Box 19081 - CEP 81531-990 - Curitiba PR - Brazil

{diogenes,mam,elias}@inf.ufpr.br

Abstract. The Simple Network Management Protocol version 3 (SN-
MPv3) is the Internet standard management architecture. A system
based on SNMPv3 is composed of management entities which communi-
cate using the management protocol. Entities are composed of an engine,
and a number of standard applications. An entity uses standard applica-
tions to communicate using SNMP. These applications include command
and notification generators and responders. Applications use the services
of the engine to send and receive messages. The specification of SNMPv3
is given informally in a series of IETF documents. This work presents
a formal description of SNMPv3 standard applications using Action Se-
mantics. The main goals of our formal description are to enhance the
understandability of standard applications, as well as to establish the
foundation for the automatic generation of SNMP entities implementa-
tions in the future.

1 Introduction

As networks become larger and more complex the need for effective network
management systems becomes critical. The purpose of these systems is to help
human managers in the tasks of monitoring and controlling computer networks.
The Simple Network Management Protocol version 3 (SNMPv3) is the Internet
standard management architecture. An SNMPv3 system is composed of man-
agement entities which communicate using the management protocol [15, 2].
SNMPv3 entities have traditionally been called managers and agents. Managed
nodes contain an agent, i.e. a management entity which have access to man-
agement instrumentation. Each system has at least one Network Management
Station, which runs at least one manager entity. Managers are collections of
user-level applications, which may aim at performance evaluation or fault di-
agnosis, among others. There is currently a very large number of SNMP-based
systems available, both commercial and on the public-domain.

SNMP management entities (figure 1) are composed of an engine, and a
number of standard applications. An entity uses standard applications to com-
municate using SNMP. These applications include the command generator, the
notification generator, the notification generator and the notification responder,
which are all formally specified in this work. This is seen as the first step towards

118



fully defining whole management entities, and allowing the automatic generation
of MIB implementations from specifications.

Aplications

Dispatcher
Message

Processing
Subsystem

Security
Subsystem

SNMP Engine

SNMP Entity

Network

Fig. 1. SNMPv3 Entity.

Currently the semantics of SNMP components is give informally in [4, 2].
There is informal English text explaining each object’s behavior. These informal
descriptions are usually vague and incomplete. They are open to misinterpreta-
tion and may lead to inconsistent implementations. In this work we use Action
Semantics [10] to formally describe the semantics of SNMPv3 standard appli-
cations. Action Semantics is a formal framework for semantic description, de-
veloped to provide readable descriptions of real-life languages. Action semantic
descriptions map abstract syntax to semantic entities, which are defined in-
ductively using semantic equations. The semantic entities employed are actions
rather than higher-order functions, used in other formalism, and the essence of
actions is much more computational than that of pure mathematical functions.

In [5] Action Semantics was used to define the semantics of an specific man-
agement entity, the Routing Proxy [6].

The rest of the paper is organized as follows. Section 2 reviews the standard
SNMPv3 architecture, concentrating on the standard applications and how their
role within a management entity. Section 3 presents an introduction to Action
Semantics, the notation we use to formally define the standard applications.
Section 4 is the formal specification of the command and notification generators
and responders. Section 5 contains the conclusions.

119



2 SNMPv3 Standard Applications

The Simple Network Management Protocol version 3 (SNMPv3) is the Inter-
net standard management architecture [4]. An SNMPv3 system is composed of
nodes running management entities which communicate using the management
protocol. Each system has at least one Network Management Station, which runs
at least one manager entity. Managed nodes contain an agent, i.e. a management
entity which have access to management instrumentation. There are other kinds
of management entities, like proxies [4].

Each SNMPv3 entity can behave as an agent as well as as a manager [2]. An
SMNP entity is acting as a manager when it initiates a management operation
(i.e. when it generates requests for the operations get, getNext, getBulk, set ; or
inform) or when it answers to notifications. A SNMP entity is acting as an agent
when it responds to management operations and when it sends a notification.
The same SNMP entity can act as a manager and as an agent.

The management protocol is used to communicate management information
among SNMP entities. Management information can be seen as a collection
of objects, organized in Management Information Bases (MIB’s). The abstract
syntax of each MIB is defined using a subset of the Abstract Syntax Notation
1 (ASN.1) language [3]. Messages exchanged among entities contain Protocol
Data Units (PDU’s) defined in [1, 2].

Trap

Get

GetNext

GetBulk

Set

Inform

Response

Response

Manager

Agent

Manager

Fig. 2. SNMPv3 Interactions.

There are three types of interactions among SNMPv3 entities, as shown in
figure 2. The first one is the request-response, sent when an entity acting as man-
ager sends a requirement to an entity acting as agent. This kind of interaction is
used to retrieve or update management information which is associated to the

120



managed device. The second type of interaction is a request-response between
managers. This is called a notification among managers.

The third type of interaction between entities occurs when an entity acting
as an agent sends an alarm trap to a manager. This type of interaction does not
employ acknowledgements, and is used to notify the manager that an exceptional
situation has been detected.

The architecture of a SNMP entity is described in figure 1 [4]. It is composed
of a number of standard SNMP applications , which define the functionality
of that entity. An SNMP engine, which provides services and support to the
applications, such as lower level communication with other entities, including
cryptography, authentication and control over the managed objects.

In this work we consider that standard applications communicate which each
other by sending and receiving PDU’s. In an actual implementation, the commu-
nication is performed at the engine level: SNMP engines receive the PDU’s from
their applications, encoding them into messages which will be sent to adequate
entities.

In the next section, the following four standard SNMP applications are for-
mally specified [9]:

– Command Generators are applications which monitor and manipulate
management data by sending requests and processing replies.

– Command Responders are applications that receive and process requests.
They also generate replies for the received requests.

– Notification Originators are applications that generate messages, which
are based on particular events or conditions.

– Notification Receivers are applications that wait for notification mes-
sages.

An entity is acting as a manager when it contains applications of the type Com-
mand Generator, Notification Originator and Notification Receiver. An entity is
acting as an agent when it contains applications of the type Command Respon-
der and Notification Originator.

3 Action Semantics

Action semantics [10] is a formal framework for the specification of program-
ming concepts. Action Semantics was developed to enhance the readability of
descriptions; it uses English words, in a way that formal descriptions can be
understood by readers not used to with mathematical notation. A number of
real-life languages and applications has been described using action semantics,
among them, we can cite [13, 14, 8, 12].

Action semantics uses a special notation to describe actions. This notation
is called Action Notation , and it is used in action semantic descriptions very
much in the same way as the λ-notation is used in denotational semantics [16].

121



The symbols used in action notation are intentionally verbose, so that English-
like phrases can be used -completely formally- to express most of the concepts
present in computing.

In Action Semantics, the meaning of each phrase of a language is represented
by special entities called actions. Actions can be performed, yielding various pos-
sible outcomes: normal termination (complete), exceptional termination (escape),
unsuccessful termination (fail) or non-termination (diverge). Action notation pro-
vides some primitive actions , and various combinators for forming complex
actions, corresponding to the main fundamental concepts of programming lan-
guages.

A data notation is used to describe the information processed by actions.
The standard data notation (included in action notation) provides a collection of
algebraically defined abstract data types, including numbers, characters, strings,
sets, tuples, maps, etc.; further data may be specified ad hoc.

There is also a third class of entities in action notation, called yielders .
A yielder is an expression representing unevaluated data, whose value depends
on the current information available to the primitive action in which it occurs.
Yielders are evaluated to yield data. An example of a standard yielder is the value
stored in the given cell, which depends on the current contents of the storage and
the information passed to the action in which the yielder appears.

The behavior of each primitive action and action combinator of Action No-
tation can be classified according to the following facets:

Basic: This facet deals exclusively with flow of control. The control behaviors
contained in this facet include sequential and interleaved composition of
actions, as well as bounded non-deterministic. For example, the basic facet
of the action combinator “A1 and A2” specifies that its left and right sub-
actions are performed in interleaving. The behavior of the action “A1 and
then A2” is such that A1 must be finished before A2 is started. The action
“A1 or A2” represents a choice between actions; it can be used to describe
if-then-else control structures.

Functional: This facet deals with transient data, which is given to or received
by an action. For example, when the basic action “give the given natural”
receives a natural number as transient data, it completes and gives the re-
ceived natural number as a transient. The compound action “A1 then A2”
performs action A1 first, and the transient data produced by A1 are supplied
to A2, which is performed after A1 completes.

Declarative: This facet deals with the manipulation of scoped information,
represented by associations of tokens to bindable data. For example, the basic
action “bind “max-length” to 256” completes its performance, producing a
binding that maps the token “max-length” to the natural number 256.

Imperative: Storage handling primitives are provided by this facet. A store,
in the action notation context, is a mapping from cells to storable data. For
example, the action

122



allocate a cell
then
store 26 in the given cell

allocates a new cell of the store, and stores a value 26 in it. This action
combines features of both the functional and imperative facets. (Vertical
bars are used to guide the correct association of actions, as an alternative to
parentheses.)

Communicative: This facet provides a system of agents, whose task is to per-
form actions. Agents can communicate using asynchronous message passing.
Each agent has its own communication buffer, in which all the messages sent
to the agent are placed. Communication is reliable, in the sense that no
message is ever lost during transmission; however, there is no bound to the
time taken for a message to arrive to its destination buffer after transmission
begins. Each agent is created with its own store.

Encapsulation of actions as data is also provided within Action Semantics. This
feature gives a simple way to support the description of procedure and function
abstractions in programming languages. For example, the performance of the
action

give abstraction of allocate a cell
then
store 26 in the given cell

completes, giving an abstraction as a transient. An abstraction is an item of data
which encapsulates an action. Abstractions can be enacted ; this operation results
in the performance of the encapsulated action. Both transients and bindings can
be supplied to the abstraction.

For a more detailed description of action notation, the reader can refer to
[11] or [17] (the former covers all the aspects related to the formal system; the
latter does not cover the communicative facet nor the operational semantics of
the notation).

4 SNMPv3 Entities

The purpose of this work is to specify the standard applications within a SN-
MPv3 entity. Four applications are specified: the core of the Command Respon-
der and the Notification Receiver, as well as primitives for the specification of
Command Generators and Notification Originators. The first two applications
are responsible for the reception and processing of incoming requests. The latter
primitives can be used in the formal description of specific client applications.

The other components of SNMPv3 entities, i.e: the SNMP engine, as defined
in [4], are beyond the scope of this work, and are being specified in a companion
paper [7].

123



4.1 Command Responder

The action “CommandResponder” below, represents the Command Responder
application. This application awaits for Get, GetNext, GetBulk or Set requisi-
tions. The action defines one case for each type of requisition. The “or” combi-
nator represents a choice among actions. Only one of the “service” actions will
be chosen, depending on a tag of the received PDU.

• CommandResponder :: action

(1) CommandResponder =
unfolding
accept a message[from any entity][containing a PDU]
then
service Get
or
service GetNext
or
service GetBulk
or
service Set

then
unfold

The “CommandResponder” action fetches the communication buffer for a mes-
sage containing a PDU. One of the services will be chosen, depending on a tag,
which is attached to the PDU. The received message is passed to the services as
functional information.

The “unfolding . . . unfold” construction represents a loop: Each time “unfold”
is reached, the enclosing action is performed once more, from the point of the
previous, more internal “unfolding” on.

Each of the “service ” actions above corresponds to one SNMPv3 operation,
for an entity acting as an agent.

The general definition of a service can be described as follows:

124



• service :: tag → action

(2) service Op:tag =
give the given PDU tagged with Op
then
producePduBindings
hence
process Op
then
give a PDU containing (the integer bound to “request-id”,

the given integer#1, the given integer#2,
the given VarBindList#3)

then
send a message[to the entity bound to “request-entity”]

[containing the given PDU tagged with Response ]

• serviceWithoutResponse :: tag → action

(3) serviceWithoutResponse Op:tag =
give the given PDU tagged with Op
then
producePduBindings
hence
process Op

The action “service ” receives a message as functional information. The prim-
itive action “give ” will complete, in the case that the PDU in it is of the kind
specified by Op, and will fail otherwise. The combination this checks and the com-
binator “or” (in the Command Responder action) achieves the result of choosing
at most one service for each message received by the application.

After receiving the message, the service must interpret the PDU inside the
message. This is done by “producePduBindings”, which binds standard names to
parts of the contents of the received PDU.

The service is then processed following the informal specification in [2]. These
actions are defined ahead in section 4.2.1.

After the received PDU is processed, a reply must be sent back to the entity
that requested the service. This is done by assembling the corresponding PDU,
which will be sent, within a message, to the requesting entity.

The “serviceWithoutResponse ” action is similar to “service ”. The only dif-
ference is that no reply is composed. This action will be used by the notification
receiver, to process Traps.

4.2 Notification Receiver

The “NotificationReceiver” waits for Inform and Trap requests. Its description
is similar to that of the command responder:

125



• NotificationReceiver :: action

(4) NotificationReceiver =
unfolding
accept a message[from any entity][containing a PDU]
then
service Inform
or
serviceWithoutResponse Trap

then unfold

4.2.1 Processing services Let us now describe the SNMP services. The
service Get is used to fetch the value of a specific object. This service is defined
in [2, section 4.2.2] as:

Upon receipt of a GetRequest-PDU, the receiving SNMPv2 entity pro-
cesses each variable binding in the variable-binding list to produce a
Response-PDU. All fields of the Response-PDU have the same values
as the corresponding fields of the received request except as indicated
below. Each variable binding is processed as follows:

1. If the variable binding’s name exactly matches the name of a variable
accessible by this request, then the variable binding’s value field is
set to the value of the named variable.

2. Otherwise, if the variable binding’s name does not have an OBJECT
IDENTIFIER prefix which exactly matches the OBJECT IDENTI-
FIER prefix of any (potential) variable accessible by this request,
then its value field is set to ‘noSuchObject’.

3. Otherwise, the variable binding’s value field is set to ‘noSuchIn-
stance’.

If the processing of any variable binding fails for a reason other than
listed above, then the Response-PDU is re-formatted with the same val-
ues in its request-id and variable-bindings fields as the received GetRequest-
PDU, with the value of its error-status field set to ‘genErr’, and the value
of its error-index field is set to the index of the failed variable binding.

Otherwise, the value of the Response-PDU’s error-status field is set to
‘noError’, and the value of its error-index field is zero.

The formal specification of each service is given by the “process ” actions. There
is one action definition for each possible service of the SNMPv3 entity acting
as an agent. For example, the description of the SNMP Get operation can be
stated:

• process :: tag → action

126



(5) process Get =
setError(noError, 0)
and
give the VarBindList bound to “variable-bindings”
then
proceedList consultVarBind

trap
setError(genErr, the given integer)
and
give the VarBindList bound to “variable-bindings”

The auxiliary action “proceedList” takes an action A as parameter, and per-
forms the action A with each of the elements of a given list as functional in-
formation. The results of the application of A to each element of the list are
assembled in a list, which is the result of “proceedList”.

The action combinator “A1 trap A2” behaves like the exception handling
mechanisms in programming languages: The action A1 is performed; in the case
of an exceptional termination of A1, the action A2 is performed (otherwise, A2

is ignored).
The action “consultVarBind” corresponds to the numbered items of the infor-

mal specification. It fetches the value stored in a single MIB object.

Let us give another example of the formal description of operations: GetBulk
is one of the most complex operations of the protocol. It is defined in [2, section
4.2.3].

The formal definition of the operation GetBulk, using Action Semantics, can
be stated as:

127



(6) process GetBulk =
setError(noError, 0)
and

give min(the integer bound to “non-repeaters”,
count items the VarBindList bound to “variable-bindings”)

and give the VarBindList bound to “variable-bindings”
then

break(the given list#2, the given integer#1) then give the given list#1
then proceedList consultNextVarBind
and then

give the integer bound to “max-repetitions”
and
break(the given list#2, the given integer#1) then give the given list#2

then proceedListRepetition consultNextVarBind
then give concatenation(the given list#1, the given list#2)

trap
setError(genErr, the given integer)
and give the VarBindList bound to “variable-bindings”

Some auxiliary actions were used above: the action “break” takes a list L and
an integer N as arguments, returning a pair of lists, such that:

– the concatenation of the two resulting lists is the list L.
– The number of elements of the first resulting list is N .

The auxiliary action “proceedListRepetition” is similar to “proceedList”, with the
only difference that the action A will be performed a given number of times over
each element of a list.

The action “consultNextVarBind” is similar to “consultVarBind”, but fetches
the object which is next to the received object name in the MIB.

Its informal specifications is defined in [2, section 4.2.3] as:

Upon receipt of a GetBulkRequest-PDU, the receiving SNMPv2 entity
processes each variable binding in the variable-binding list to produce a
Response-PDU with its request-id field having the same value as in the
request. Processing begins by examining the values in the non-repeaters
and max-repetitions fields. If the value in the non-repeaters field is less
than zero, then the value of the field is set to zero. Similarly, if the value
in the max-repetitions field is less than zero, then the value of the field
is set to zero.
The values of the non-repeaters and max-repetitions fields in the request
specify the processing requested. One variable binding in the Response-
PDU is requested for the first N variable bindings in the request and
M variable bindings are requested for each of the R remaining variable
bindings in the request. Consequently, the total number of requested
variable bindings communicated by the request is given by N + (M *
R), where N is the minimum of: a) the value of the non-repeaters field

128



in the request, and b) the number of variable bindings in the request;
M is the value of the max-repetitions field in the request; and R is the
maximum of: a) number of variable bindings in the request - N, and b)
zero.
The receiving SNMPv2 entity produces a Response-PDU with up to
the total number of requested variable bindings communicated by the
request. The request-id shall have the same value as the received Get-
BulkRequest-PDU.
If N is greater than zero, the first through the (N)-th variable bindings
of the Response-PDU are each produced as follows:
1. The variable is located which is in the lexicographically ordered list

of the names of all variables which are accessible by this request and
whose name is the first lexicographic successor of the variable bind-
ing’s name in the incoming GetNextRequest-PDU. The correspond-
ing variable binding’s name and value fields in the Response-PDU
are set to the name and value of the located variable.

2. If the requested variable binding’s name does not lexicographically
precede the name of any variable accessible by this request, i.e.,
there is no lexicographic successor, then the corresponding variable
binding produced in the Response-PDU has its value field set to
‘endOfMibView’, and its name field set to the variable binding’s
name in the request.

If M and R are non-zero, the (N + 1)-th and subsequent variable bindings
of the Response-PDU are each produced in a similar manner. For each
iteration i, such that i is greater than zero and less than or equal to M,
and for each repeated variable, r, such that r is greater than zero and
less than or equal to R, the (N + ( (i-1) * R ) + r)-th variable binding
of the Response-PDU is produced as follows:
1. The variable is located which is in the lexicographically ordered list

of the names of all variables which are accessible by this request and
whose name is the first lexicographic successor of the variable bind-
ing’s name in the incoming GetNextRequest-PDU. The correspond-
ing variable binding’s name and value fields in the Response-PDU
are set to the name and value of the located variable.

2. If the requested variable binding’s name does not lexicographically
precede the name of any variable accessible by this request, i.e.,
there is no lexicographic successor, then the corresponding variable
binding produced in the Response-PDU has its value field set to
‘endOfMibView’, and its name field set to the variable binding’s
name in the request.

While the maximum number of variable bindings in the Response-PDU
is bounded by N + (M * R), the response may be generated with a lesser
number of variable bindings (possibly zero) for either of three reasons.
(1) If the size of the message encapsulating the Response-PDU containing
the requested number of variable bindings would be greater than either
a local constraint or the maximum message size of the originator, then

129



the response is generated with a lesser number of variable bindings. This
lesser number is the ordered set of variable bindings with some of the
variable bindings at the end of the set removed, such that the size of the
message encapsulating the Response-PDU is approximately equal to but
no greater than either a local constraint or the maximum message size of
the originator. Note that the number of variable bindings removed has
no relationship to the values of N, M, or R.

(2) The response may also be generated with a lesser number of variable
bindings if for some value of iteration i, such that i is greater than zero
and less than or equal to M, that all of the generated variable bindings
have the value field set to the ‘endOfMibView’. In this case, the variable
bindings may be truncated after the (N + (i * R))-th variable binding.

(3) In the event that the processing of a request with many repetitions
requires a significantly greater amount of processing time than a normal
request, then an agent may terminate the request with less than the full
number of repetitions, providing at least one repetition is completed.

If the processing of any variable binding fails for a reason other than
listed above, then the Response-PDU is re-formatted with the same val-
ues in its request-id and variable-bindings fields as the received GetBulk-
Request-PDU, with the value of its error-status field set to ‘genErr’, and
the value of its error-index field is set to the index of the variable binding
in the original request which corresponds to the failed variable binding.
Otherwise, the value of the Response-PDU’s error-status field is set to
‘noError’, and the value of its error-index field to zero.

4.3 Command Generators

Managing entities generate commands to be sent to agents. The function of
each command generator application depends on the purpose of the service to
be offered. In this work, we describe the SNMPv3 operations, which are to be
included in command generator applications.

The “snmpGet( , )” action describes the manager side of the Get protocol
operation. It can be specified as follows:

• snmpGet( , ) :: entity, list of ObjectName+ → action
(7) snmpGet(E :entity, N :list of ObjectName+) =

generateVarBindList from N
then
request Get [to E ][containing (0, 0, the given VarBindList)]

This action generates a “VarBindList”, in accordance to [2, section 4.2.7], and
then requests the service. The action “request” is defined next:

• request [to ][containing ( )] :: tag, agent, (integer, integer, VarBindList) →
action

130



(8) request Op:tag [to E :entity][containing (S :integer, I :integer, V :VarBindList)]
=

generateRequestID
then
send a message[to E ]

[containing a PDU of (the given integer,S ,I ,V ) with tag Op]
then
accept a message[from E ][containing a PDU tagged with Response]
then
give (the given integer#3, the given integer#4, the given VarBindList#5)

This action sends a message to the agent responsible for the service and waits
for an answer. As required in the informal specification, the message includes a
request ID. The “request” action returns a triple containing an error-status, an
error-index and a variable-bindings.

The formal specification of the complete set of SMNP operations (including
“snmpGet”, “snmpGetBulk”, “snmpSet”, “snmpInform” and “snmpTrap”) will be
soon available.

4.4 Notification Originators

Notification originators are applications that monitor specific conditions of the
managed devices. These applications send notification messages to specified man-
agers. Notification originators primitives can be specified in the same way as the
operations in section 4.3.

5 Conclusions

Although SNMPv3 is the Internet standard management architecture, the se-
mantics of SNMP components is given informally in the IETF documents. In
this paper we have used Action Semantics to formally describe the semantics
of four SNMPv3 standard applications: the command generator, the command
responder, the notification originator and the notification receiver. All manage-
ment entities based on SNMPv3 use these standard applications to communicate
with other entities using the protocol. Depending of the applications it uses, an
entity may have different roles in the system.

Future work include fully defining the messages the entities exchange and
the services offered by the engine, which the applications use to communicate.
When these basic components are fully defined, it will be possible to produce
formal specifications of the entities themselves. From those formal specifications,
implementations of managers and agents can be generated automatically.

131



References

1. J.Case, M.Fedor, M.Schoffstall, and J.Davin. A Simple Network Management Pro-
tocol (SNMP). Request for Comments 1157, May 1990.

2. J.Case, K.McCloghrie, M.Rose, and S.Waldbusser. Protocol Operations for Version
2 of the SNMP. Request for Comments 1905, January 1996.

3. J.Case, K.McCloghrie, M.Rose, and S.Waldbusser. Structure of Management In-
formation for Version 2 of the SNMP. Request for Comments 1902, January 1996.

4. D.Harrington, R.Presuhn, and B.Wijnen. An Architecture for Describing SNMP
Management Frameworks. Request for Comments 2571, May 1999.

5. E.P.Duarte Jr. and M.A.Musicante. Formal specification of snmp mib’s using
action semantics: The routing proxy case study. In Proc. of the Sixth IFIP/IEEE
Int’l Symp. on Integrated Network Management, pages 417–430, Boston, USA, May
1999. IEEE Publishing.

6. E.P.Duarte Jr., G.Mansfield, T.Nanya, and S.Noguchi. Improving the dependabil-
ity of network management systems. International Journal of Network Manage-
ment, 8:244–253, 1998.

7. D.C.Furlan, M.A.Musicante, and E.P.Duarte Jr. An Action Semantics Descrip-
tion of the SNMPv3 Dispatcher. Prod. of SBLP2000, IV Brasilian Symposium on
Programming Languages, 186–199, 2000.

8. S.B.Lassen. Action semantics reasoning about functional programs. Technical
report, University of Aarhus, Department of Computer Science, 1995. Available
at URL: http://www.brics.dk/~thales/docs/ldpl.dvi.gz.

9. D.Levi, P.Meyer, and B.Stewart. SNMPv3 Applications. Request for Comments
2573, May 1999.

10. P.D.Mosses. Action Semantics. Cambridge University Press, Cambridge, UK, 1992.
11. P.D.Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 1992.
12. P.D.Mosses and M.A.Musicante. An action semantics for ML concurrency primi-

tives. Number 873 in Lecture Notes in Computer Science, Barcelona, Spain, Oc-
tober 1994. FME, Springer-Verlag.

13. M.A.Musicante. The Sun RPC language semantics. In Proceedings of PANEL’92,
XVIII Latin-American Conference on Informatics. Universidad de Las Palmas de
Gran Canaria, 1992.

14. J.P.Nielsen and J.U.Toft. Formal specification of ANDF, existing subset. Technical
Report 202104/RPT/19, issue 2, DCC International A/S, Lundtoftvej 1C, DK-
2800 Lyngby, Denmark, 1994.

15. M.T.Rose. The Simple Book: an Introduction to Internet Management. Prentice
Hall, second edition, 1994.

16. D.A.Schmidt. Denotational Semantics: A Methodology for Language Development.
Allyn & Bacon, 1985.

17. D.A.Watt. Programming Language Syntax and Semantics. Prentice Hall, UK,
1991.

132



Maude Action Tool: Using Reflection to Map
Action Semantics to Rewriting Logic

(Abstract)

Christiano de O. Braga1,2, E. Hermann Haeusler2, José Meseguer1, and
Peter D. Mosses3

1 Computer Science Laboratory, SRI International
2 Departamento de Informática, Pontif́icia Universidade Católica do Rio de Janeiro

3 BRICS & Department of Computer Science, University of Aarhus

Abstract. Action semantics (AS) is a framework for specifying the se-
mantics of programming languages, in a very modular and readable way.
Recently, the operational semantics of action notation (action semantics’s
specification language) has been rewritten using Modular SOS (MSOS),
a new modular approach for specifying operational semantics. The new
modular specification of action notation facilitates the creation of exten-
sions to action semantics, to deal with new concepts, such as components.
The Maude Action Tool uses the reflective capabilities of rewriting logic,
implemented on the Maude system, to create an executable environment
for action semantics and its potential extensions.
This is achieved by a mapping between the MSOS and rewriting logic
formalisms which, when applied to the MSOS semantics of each facet
of action notation, yields a corresponding rewrite theory. Such rewrite
theories are executed on action programs, that is, on the action notation
translation of a given program P in a language L, according to L’s action
semantics.
We refer to [1] for a short presentation of the frameworks used in the
mapping and the description of a prototype implemented in the Maude
system. An extended version of [1], with a formal explanation on the
mapping is available as a technical report at PUC-Rio University and can
be requested via email to Christiano Braga, cbraga@inf.puc-rio.br.

References

1. C. de O. Braga, E. H. Haeusler, J. Meseguer, and P. D. Mosses. Maude action tool:
Using reflection to map action semantics to rewriting logic. In AMAST 2000, Proc.
8th Intl. Conf. on Algebraic Methodology and Software Technology, Iowa City, Iowa,
USA, volume 1816 of LNCS, pages 407–421. Springer-Verlag, 2000.

133



A Modular Implementation of Action Notation

L. M. de Moura, C. J. P. de Lucena and E. H. Haeusler

Departamento de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro
(PUC-Rio), Rua Marquês de São Vicente, 225, 22543-900 Rio de Janeiro, Brazil

moura@les.inf.puc-rio.br

Abstract. This paper describes the implementation of a modular inter-
preter for the new modular semantics of action notation, the formal nota-
tion used in action semantics. Our interpreter supports nondeterministic
features of action semantics, and allows the user to explore different exe-
cution traces. The implementation is based on a new logic programming
language called PAN. A brief and pragmatic introduction to modular
structured operational semantics is also provided.

1 Introduction

We present here an implementation of a modular interpreter for the new modular
semantics of action notation, the formal notation used in action semantics [8].
Such implementation involves the use of a new logic programming language
called PAN which we specially developed to implement language interpreters,
analysis and verification tools. PAN has several features which are extremely
useful for specifying the operational semantics of programming languages. An
interpreter for action notation is particularly interesting, since it allows us to
experiment in the early stages of the language design, which is very useful to
consolidate our understanding of the language design.

Action Semantics [8] is a framework for the formal description of program-
ming languages. Not only denotational semantics [16, 20], but also action se-
mantics are compositional, i.e. the semantics of each phrase is determined by
the semantics of its sub-phrases. The difference is that the semantics of phrases
are actions instead of higher-order functions, which are commonly used in de-
notational semantics descriptions. Thus, action semantics might be regarded as
denotational, where the denotations are actions. Action Notation, the notation
used in action semantics descriptions, has an operational semantics, and nice
algebraic properties [8]. The main concept in action semantics is the concept of
action.

In structural operational semantics (SOS) [13] literature modularity issues
have largely been neglected, and SOS descriptions of programming languages
typically exhibit rather poor modularity. Thus, the original operational seman-
tics of action notation was not modular. Therefore, we would not be able to
reuse the existing semantic description when extending or changing the action
notation. Recently, Mosses described how to obtain a high degree of modularity
in SOS [9], and the SOS of Action Notation is currently being reformulated in
the proposed modular style.

134



2 A Brief Introduction to MSOS

In this section we provide a brief introduction to the method of Modular Struc-
tural Operational Semantics (MSOS), which is a modular variation of SOS. SOS
represents computations by means of deductive systems, transforming an ab-
stract machine into a system of logical inferences. SOS definitions are given by
inference rules consisting of conclusions that follow from a set of premises. Such
rules describe possible transitions (small steps) of a computation. Each proof in
the deductive system describes a state transition.

SOS involves abstract syntax, computed values, configurations and inference
rules for (labelled) transitions. A SOS description specifies a labelled transition
system (Γ, T, A,→), where Γ is a set of configurations, T ⊆ Γ is a set of terminal
configurations, A is a set of labels, and →⊆ Γ × A× Γ is a transition relation.
For configuration γ, γ′ ∈ Γ and labels α ∈ A, the assertion that (γ, α, γ′) is in
the transition relation is written as γ

α→ γ′.
On the other hand, for our objectives SOS descriptions can be seen as inter-

preters implemented in a logic programming language. The main predicate of
these logical programs is the one which defines the transition relation.

However, most of the SOS descriptions lack modularity. Local modifications
in language semantics usually imply global modifications in SOS descriptions.
This also means that it is almost impossible to reuse SOS descriptions when
defining a new language. To cope with this problem, we use an approach similar
to the one defined in [9]. In this approach, the modularity is achieved by using
encapsulation techniques. Figure 1 shows a small fragment of a modular SOS
description for a simple imperative language. In this example, the configurations
are restricted to abstract syntax trees, where nodes may be replaced by the
values they computed, as in conventional SOS. The initial configurations are pure
syntax, and terminal configurations are simply computed values. Value completed
represents normal termination. All usual semantic components of configurations,
such as stores, are incorporated into the labels on transitions. All labels contain
a pair of stores reflecting the value of the store before and after the transition.
The structure of the label is encapsulated, and should only be accessed by means
of predicates. We can view the label as an object 1 and the predicates as the
interface (methods) of the object.

All labels contain a partial composition predicate used to assert whether two
transitions may be adjacent. In the example in Figure 1, this predicate is defined
as:

compose(α1, α2, α) def=




α1 = 〈store1, store2〉∧
α2 = 〈store2, store3〉∧
α = 〈store1, store3〉

This predicate asserts that label α is the composition of labels α1 and α2. Notice
that in [9] such predicate is represented by the operation _;_, thus we may see
α = α1; α2 as a syntactic sugar for compose(α1, α2, α). Every label can always
be composed on the left and on the right with a specific identity label. The
1 Using the object-oriented terminology.

135



skip
i→ completed

set-store(α, Id, V al)

Id := Val
α→ completed

Be
α→ Be′

if Be then S1 else S2
α→ if Be′ then S1 else S2

if true then S1 else S2
i→ S1 if false then S1 else S2

i→ S2

while E do S
i→ if E then S; while E do S else skip

S1
α→ S′

1

S1;S2
α→ S′

1; S2

completed ;S2
i→ S2

Fig. 1. Modular SOS example

notion of identity labels is defined by the predicate id. In the given example, this
predicate is defined as:

id(α) def= (α = 〈store, store〉)

We use γ
i→ γ′ as a syntax sugar for:

id(α)

γ
α→ γ′

As already mentioned, all labels should provide predicates to access their internal
structure. In the given example, the label contains two predicates:

set-store(α, Id, V al) def= α = 〈S1, S2〉 ∧ S2 = S1[Id← V al]

get-store(α, Id, V al) def= α = 〈S1, S2〉 ∧ V al = S1(Id)

The predicate set-store “modifies” the value of a given variable in the store. The
predicate get-store “accesses” the value of a given variable.

Using this approach, we do not need to completely modify a SOS description
when we extend or modify the language semantics.

3 The PAN Programming Language

In our implementation, the operational semantics of a language must be specified
in a programming language called PAN. PAN is a logic programming language
specially developed to specify interpreters, program analyzers and verifiers. The
PAN syntax and semantics have some similarities with Prolog [19]. The PAN
compiler uses global analysis to produce code with a performance comparable
to the one produced by imperative language compilers.

136



All PAN programs must be properly qualified by providing the kind, type
and mixfix declarations. For instance, consider the following specification of the
concatenation of lists in PAN syntax:

append nil X X.
append (X :: Xs) Ys (X :: Zs) :- append Xs Ys Zs.

This specification contains four variables X, Xs, Ys and Zs, one logical connective,
namely :- for the converse of implication, and three non-logical connectives,
namely nil, :: and append, denoting the empty list, the list constructor, and
the concatenation relation, respectively. Two of these connectives, namely :-
and :: are also used as infix symbols. This specification is only meaningful if
mixfix declarations and type declarations are given for these connectives.

type nil : list A.
type _ :: _ : A -> list A -> list A {prec 8 r-assoc}.
type append : list A -> list A -> list A -> o.

PAN has a polymorphic type system similar to the type system of ML [7]. In
type declarations, tokens with an initial upper case letter denote type variables.
The type declaration for nil above asserts that for every type A, the symbol nil
is of type (list A). The type declaration for _ :: _ asserts that given a term H
of type A, and a term T of type list A, then the term T :: H is of type list A.
If the target type of a type declaration is o, then the connective is a predicate
symbol. In the above example, append is a predicate symbol that takes three
arguments.

The underbars in connectives like _ :: _ are place holders that indicate
where terms of type A and list A should go, respectively. The precedence at-
tribute prec n tells how tightly a symbol binds. The higher the number the
tighter the symbol binds. The attributes r-assoc and l-assoc tell if a symbol
is right or left associative. Precedence and associativity information is used to
disambiguate the parsing. Notice that the above declarations have introduced
two new constants not in the original specification, namely o and list. These
type constants will need declarations, called kind declarations. Kind declarations
are used to introduce type constructors. An example of kind declaration is:

kind list : type -> type.

Here, list takes a type and returns another type. For example, list (list int)
is the type of a list of lists of integers.

PAN also supports higher orders predicates, i.e. predicates that have other
predicates as arguments. For example:

type map : (A -> B -> o) -> list A -> list B -> o.
map P nil nil.
map P (X :: Xs) (Y :: Ys) :- (P X Y), map P Xs Ys.

The goal (map F Xs Ys) is provable, if Xs and Ys are lists of equal length and
corresponding elements of these lists are related by the predicate P.

137



Prolog has various all-solutions predicates (e.g. findall/3), all of them having
semantic problems. PAN has the builtin predicate called solutions. We avoid the
variable scoping problems of most Prolog versions. Rather than taking a goal to
execute and an aliased term holding the resulting value to collect, the predicate
solutions take as input a single higher-order predicate. The declaration of the
predicate solutions is:

type solutions _ _ : ((A0 -> o) -> (list A0) -> o)

PAN compiler is based on state of the art logic programming compilation
technology [14, 18]. The compiler uses several global analyses (mode analyses,
determinism analyses, switch detection, etc) to produce efficient code. It is out of
scope of this article to explain each one of such analyses algorithms. The output
of the PAN compiler is portable C code. Hence, the PAN compiler allows us to
invoke C code from PAN code and vice-versa.

PAN does not have “impure” features like Prolog 2. We avoid the efficiency
problems by using an approach similar to the one found in pure functional lan-
guages [21]. Briefly, the user can decorate the code with uniqueness marks. Such
marks tell the compiler that a given argument of a given predicate can only have
one variable referencing it. As there is only one reference to a given argument,
destructive updates can be safely performed. This safety condition is checked by
the compiler, and if not satisfied produces a warning message. This feature is
used to allow PAN code to invoke C code which performs destructive updates
in a safe way. Figure 2 shows an example of interface between PAN and C code.
The first three lines show how to instruct the compiler to add arbitrary C code
into the produced code. The cdecl declarations tell the compiler that the respec-
tive predicates are implemented by using C code. The marks in and out are
used to indicate which arguments are input or output. The uniqueness marks
are represented by the symbol unq. For instance, the predicate update-array re-
ceives an index, a value and the array that will be updated. The resulting array
is returned in the fourth argument.

The PAN features are extremely useful for specifying the operational seman-
tics of a programming language. The mixfix notation allows us to specify the
abstract syntax of a programming language and to describe the transition rules
in a clear way. For instance, Figure 3 shows part of the abstract syntax definition
of the simple imperative language.

Figure 4 shows part of the translation to PAN of the SOS description of
Figure 1. The symbol |- is an alternative for :- that simplifies the descrip-
tion of SOS rules. It allows us to write a clause as Body |- Head instead of
Head :- Body. The predicate _ -- _ --> _ specifies the transition relation.

4 Implementing Action Notation

Action Notation [8] is a rich algebraic notation for expressing actions, which
are used to represent the semantics of constructs of conventional programming
2 The only non-logical feature of the PAN language is the cut.

138



C{{

#include "array.h"

}}C.

kind array : type -> type.

cdecl create-empty-array : unq out array A -> o {det}

C{{ // C code ... }}C.

cdecl update-array : in int -> in A -> unq in array A ->

unq out array A -> o {det}

C{{ // C code ... }}C.

Fig. 2. Interface with the C language

kind stmt : type.

kind expr : type.

type _ ; _ : stmt -> stmt -> stmt {prec 80 l-assoc}.

type skip : stmt.

type if _ then _ else _ end :

expr -> stmt -> stmt -> stmt {prec 65}.

type while _ do _ end : expr -> stmt -> stmt {prec 70}.

type _ := _ : id -> expr -> stmt {prec 100}.

Fig. 3. Abstract syntax definition

139



kind label : type.

kind config : type.

sub stmt : config.

type completed : config.

type _ -- _ --> _ : config -> label -> config -> o.

S1 -- L --> S1’

|-

S1 ; S2 -- L --> S1’ ; S2.

id L

|-

while E do S end -- L --> if E then S ; (while E do S end) end.

(is-val E V), (set-store L ID V)

|-

ID := E -- L --> completed.

Fig. 4. Fragment of language semantics

languages. Such notation is verbose and suggestive, which improves readability
of semantic descriptions.

The performance of an action directly represents information processing be-
havior and reflects the gradual, stepwise nature of computation: each step of an
action performance may access and/or change the current information. Yielders
occurring in actions may access, but not change, the current information.

A performance of an action either: completes, corresponding to normal ter-
mination; or escapes, corresponding to exceptional termination; or fails, corre-
sponding to abandoning an alternative; or diverges.

Action notation consists of several independent parts called facets. AN con-
tains the following facets:

Basic: is used to specify the flow of control in actions;
Functional: is used to specify the flow of the data;
Declarative: is used to specify the scopes of the bindings that are received and

produced by actions;
Imperative: is used to specify the allocation of storage for values of variables;
Reflective: is used to specify procedural abstraction and application;
Communicative: is used to specify message passing.

In our implementation, each facet is coded in an independent PAN mod-
ule. Each module requires some features from the label data structure, i.e.
the label definition module should implement some predicates which provide
the desired services. For example, the basic facet requires the predicates: set-
commitment, get-commitment, set-unfolding, and get-unfolding. Notice that in

140



the formal description of action semantics [10], each label provides the opera-
tions set(α, data, d) and get(α, data). In this way, the predicate call

set-commitment(α, committed , α′)

used in our description is equivalent to

α′ = set(α, commitment , committed)

The PAN module action-support (Figure 5) provides the basic definitions
that are used in our implementation. Notice that the predicate _ -- _ -->+ _
is the transitive closure of the predicate _ -- _ --> _.

module action-support.

kind action : type.

kind yielder : type.

kind label : type.

// basic label "methods"

type id : label -> o.

type compose : label -> label -> label -> o.

type _ -- _ --> _ : action -> label -> action -> o.

// definition of the transitive closure of _ -- _ --> _

type _ -- _ -->+ _ : action -> label -> action -> o.

type _ -- _ --> _ : yielder -> label -> yielder -> o.

A1 -- L --> A2

|-

A1 -- L -->+ A2.

A1 -- L1 --> A2, A2 -- L2 -->+ A3, (compose L1 L2 L)

|-

A1 -- L -->+ A3.

Fig. 5. Fragment of the module action-support

The implementation of such modules is almost identical to the formal descrip-
tion of the facets [10]. For example, Figure 6 contains a fragment of the formal
definition of the basic facet. Such fragment was extracted from [10]. As stated
above, it is quite straightforward to code a SOS description in PAN. Figure 7
contains the definition of the abstract syntax tree in PAN. Figure 8 contains
additional definitions. Note that we defined a new predicate called is-terminated
which specifies if an action has been terminated or not. Figure 9 contains the

141



implementation of the module. It is clear that such implementation is almost
identical to the formal definition described in Figure 6. The implementation of
the other facets is also straightforward [3].

type Terminated ::= completed | escaped | failed
type Action ::= or (Action ; Action) | fail | commit |

and (Action; Action) | complete |
indivisibly (Action) | and then (Action;Action) |
unfolding (Action) | unfold
. . .
sort Terminated | @ (Action ; Action)

A1
α→ A′

1

A1 or A2
α→ A′

1 or A2

A2
α→ A′

2

A1 or A2
α→ A1 or A′

2

completed or A2
i→ completed A1 or completed

i→ completed

. . .

A1
α→ A′

1 get(α, commitment) = committed

A1 or A2
α→ A′

1

A2
α→ A′

2 get(α, commitment) = committed

A1 or A2
α→ A′

2

. . .

var t : Terminated

A
α→+ t

indivisibly A
α→ t

. . .

unfolding A
i→ A @ A t @ A0

i→ t

α′ = set(α, unfolding , A0) A
α′
→ A′

A @ A0
α→ A′ @ A0

get(i, unfolding) = A0

unfold
i→ A0

. . .

Fig. 6. Fragment of the Basic Facet

The implementation of the label module was also quite simple. Basically, it
contains the context (e.g. transients and bindings), mutable (e.g. storage) and
emitted (e.g. commitment) information. Transients, bindings and storage are

142



// ----------- Abstract Syntax Tree ---------------

type _ or _ : action -> action -> action {prec 60 l-assoc}.

type _ and _ : action -> action -> action {prec 70 l-assoc}.

type indivisibly _ : action -> action {prec 50 l-assoc}.

type unfolding _ : action -> action {prec 50}.

type unfold : action.

type diverge : action.

type fail : action.

type complete : action.

type escape : action.

type commit : action.

Fig. 7. Fragment of the abstract syntax tree definition coded in PAN

// values added to the AST

type _ @ _ : action -> action -> action {prec 100 l-assoc}.

type completed : action.

type failed : action.

type escaped : action.

type nothing : yielder.

// auxiliar "method"

type is-terminated : action -> o.

is-terminated completed.

is-terminated failed.

is-terminated escaped.

Fig. 8. Additional definitions

143



A1 -- L --> A1’

|-

A1 or A2 -- L --> A1’ or A2.

A2 -- L --> A2’

|-

A1 or A2 -- L --> A1 or A2’.

A1 -- L --> A1’, (get-commitment L committed)

|-

A1 or A2 -- L --> A1’.

A2 -- L --> A2’, (get-commitment L committed)

|-

A1 or A2 -- L --> A2’.

id L, (set-commitment L committed L’)

|-

commit -- L’ --> completed.

A -- L -->+ T, (is-terminated T)

|-

indivisibly A -- L --> T.

id L

|-

unfolding A -- L --> A @ A.

id L, is-terminated T

|-

T @ A -- L --> T.

(set-unfolding L A0 L’), A -- L’ --> A’

|-

A @ A0 -- L --> A’ @ A0.

(get-unfolding L A0)

|-

unfold -- L --> A0.

Fig. 9. Fragment of the Basic Facet coded in PAN

144



implemented by using mappings. The performance of our interpreter is improved
by using the C language to implement the mapping data structure.

Notice that was not necessary to implement a parser for action notation,
since the abstract syntax definition was sufficient due to the mixfix capabilities
of the PAN language. For example, if we desire to obtain the result of performing
action

| give 2
then
| give the successor of (the given integer)

we should simply perform the following PAN query

(give 2)
then
(give the successor of (the given integer)) -- L -->+ T,
is-terminated T.

The label L and the final configuration contains the outcome of the computation,
i.e. transients, bindings and storage. The user may use the predicate display-
results to print such mappings on the screen. It is important to remember that
PAN does not have side effects, therefore we use an approach similar to the one
used in the Haskell [5] language to implement IO. In this way, the signature of
predicate display-results is:

type display-results: unq in io -> unq out io ->
in label -> in config -> o.

The first two parameters represents the state of the “world” (IO devices) before
and after executing the predicate display-results. The uniqueness marks allows
the predicate to perform destructives updates in the “world”, i.e. to print on
the screen.

4.1 Handling the nondeterminism

It is extremely simple to describe nondeterministic and concurrent languages by
using SOS, differently from denotational semantics. Action Notation provides
several nondeterministic combinators such as _or_ and _and_. Therefore, it is
important to define how the nondeterminism will be handled by our interpreter.

We say a language is nondeterministic, when a given state of a given program
written in such language has more than one successor state 3. In other words, a
given program has more than an execution trace. We define trace as a finite or
infinite sequence of states (s0, s1, . . . , si, . . .), where there is a transition from si

to si+1.
Thus, one interpreter (simulator) for such kind of language must clearly state

how the successor state is chosen. A naive interpreter always selects a specific
3 We say s′ is a successor of s if there is a transition from s to s′

145



trace, and it is not capable of reproducing all possible behaviors of a given
nondeterministic program.

Our implementation provides infrastructure to define different “flavors” of
interpretation starting from the operational semantics. Our framework supports
the following “flavors” of interpretation:

Standard: the successor state is chosen deterministically. The choice is based
on the order in which the rules are described.

Random Selection: the successor state is chosen randomly. For deterministic
languages this “flavor” behaves as the standard interpreter.

Guided: the user chooses the successor state.
Oracle: the user provides a function that chooses the successor state. Notice

that such function may request user interaction in specific points of the
simulation.

Abstractly, all “flavors” described above can be seen as instances of the algo-
rithm described in Figure 10. The only difference is the way the function select
is implemented. It is important to notice that the all possible successors of a
state is obtained by using the builtin predicate solutions.

If desired, the user can also select interpretation algorithms that store the
selected trace during the simulation, saving the history of the computation. We
also provide support for common debugging operations like setting breakpoints
and inspecting the value of program variables. Obviously, none of such features
are described in Figure 10.

interpret (State s0)
{

State s = s0;
while (successors(s) 6= ∅)

s = select(successors(s));
}

Fig. 10. The “abstract” interpretation algorithm

4.2 Interpreting Programs

Although our interpreter may interpret arbitrary actions, it is much more useful
to interpret actions which are denotations of programs. We may use two different
approaches to handle such issue. The first approach uses the actioneer genera-
tor [11]. The actioneer generator is a program that given a semantic description
of a language L, it produces a program P which transforms abstract syntax trees
of programs coded in L into their denotations (abstract syntax tree ast coded in

146



action notation). In order to interpret ast , we must first convert it into a format
of the PAN language. Fortunately, such process is straightforward.

The other approach is similar to the one described in [17]. It is based on
the fact that logic programming languages are extremely useful for applying
programming transformations [19]. The following semantic equations:

execute [[ C1 ; C2 ]] = execute C1 and then execute C2.
elaborate [[ var I : T ]] =

allocate a cell
then
bind I to the given cell

are coded in PAN as:

type execute [[ _ ]]= _ : Command -> Action -> o.
type elaborate [[ _ ]]= _ : Declaration -> Action -> o.

execute [[ C1 ; C2 ]]= ExecuteC1 and then ExecuteC2 :-
execute [[ C1 ]]= ExecuteC1,
execute [[ C2 ]]= ExecuteC2.

elaborate [[ var I : T ]]= (allocate a cell)
then
(bind I to the given cell).

By using such approaches, it is possible to interpret the abstract syntax of
programs coded in a language L. A parser for language L may be implemented
by using tools such as YACC, allowing us to implement a complete interpreter
for language L. The interpreter coded in PAN may call the generated parser
coded in C.

An interpreter should provide some kind of traceability, i.e. an association
between the abstract syntax tree nodes and the original source code. Such fea-
ture is important if we desire to interact with the interpreter, and to perform
actions such as setting breakpoints and selecting execution traces. Thus, our im-
plementation uses mappings to associate abstract syntax tree nodes with source
code information such as line and column numbers.

5 Future Work (Partial Evaluation)

We are currently developing an automatic partial evaluator for the PAN language
based on the ideas used to implement Mixtus 4 [15]. The absence of “impure” fea-
tures in the PAN language avoids several problems found in the implementation
of Mixtus.

Partial evaluation is a program transformation which specializes a program to
a particular context reducing its execution time and, in some cases, its size [6]. A
4 Mixtus is an automatic partial evaluator for Prolog.

147



specialization context is defined by assigning values to some subset of a program’s
inputs.

Futamura [4] showed that a partial evaluator applied to an interpreter (for
language X , written in a language Y ) given a program will yield a new program
(in language Y ). This is called the first Futamura projection, and is probably
the most useful and widely used aspect of partial evaluation, as the overhead of
the interpreter might be eliminated.

More specifically, consider our interpreter I for action notation. The inputs
of our interpreter are an action a and an initial state s0 (transients, bindings, and
storage). Now, using partial evaluation, we obtain Ia which is a specialization
of I with respect to the action a. Notice that, Ia is a PAN program, and our
compiler should be used to convert it in an equivalent C program.

Such process may be used to produce compiled code starting from action
semantics descriptions. A similar approach using Scheme is described in [1].

6 Conclusion

We described a modular interpreter for action notation which was implemented
by using a new logic programming language called PAN. Such interpreter may
be used to obtain action semantics executable specifications.

The interpreter has several features to handle nondeterministic actions, and
it allows the user to explore different execution traces. Such feature is interesting
when handling nondeterministic or concurrent programming language. As far as
we know, previous interpreters and compilers [11, 1, 12, 2] for action notation
are only able to handle deterministic actions, i.e. the nondeterministic action
primitives and combinators are handled (approximated) in a deterministic way.

Due to the modular implementation, new facets may be simply introduced
in our implementation allowing us to extend and modify action semantics. For
example, a new facet seems necessary to provide elegant semantic descriptions
of complex concurrent languages.

References

1. A. Bondorf and J. Palsberg. Generating action compilers by partial evaluation.
Journal of Functional Programming, 6(2):269–298, 1996.

2. D. F. Brown, H. Moura, and D. A. Watt. Actress: An action semantics directed
compiler generator. In Proc. of CC’92, 4th International Conference on Compiler
Construction, volume 641 of LNCS, pages 95–109. Springer-Verlag, 1992.

3. L. M. de Moura. Um framework para análise e verificação de programas. Ph.D.
Thesis, Departamento de Informática, Pontif́ıcia Universidade Católica do Rio de
Janeiro (PUC-Rio), 2000.

4. Y. Futamura. Partial evaluation of computation process – An approach to a
compiler-compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

5. P. Hudak, S. P. Jones, and P. Wadler. Report on the programming language
Haskell: a nonstrict, purely functional language, version 1.2. Technical Report
YALEU/DCS/RR-777, Yale University Department of Computer Science, Mar.
1992.

148



6. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, 1993.

7. R. Milner. Theory of type polymorphism in programming. J. of Computer and
System Sciences, 17(3):348–375, 1978.

8. P. D. Mosses. Action Semantics. Cambridge University Press, 1992.
9. P. D. Mosses. Foundations of modular SOS (extended abstract). In MFCS’99, Proc.

24th Intl. Symp. on Mathematical Foundations of Computer Science, Szklarska-
Poreba, Poland, LNCS, 1999.

10. P. D. Mosses. A modular SOS for Action Notation. Technical Report BRICS-RS-
99-56, BRICS, Dept. of Computer Science, Univ. of Aarhus, 1999.

11. H. Moura. An implementation of action semantics. Draft, 1993.
12. J. Palsberg. A provably correct compiler generator. In Proc. of ESOP’92 European

Symposium on Programming, volume 582 of LNCS, pages 418–434. Springer-Verlag,
Feb. 1992.

13. G. D. Plotkin. A Structural approach to Operational Semantics. Technical Report
FN-19, DAIMI, University of Aarhus, Denmark, Sept. 1981.

14. P. L. V. Roy and A. Despain. High-performance logic programming with the
aquarius prolog compiler. IEEE Computer, 25(1):54–68, Jan. 1992.

15. D. Sahlin. An automatic partial evaluator for full Prolog. Ph.D. thesis TRITA-
TCS-9101, Kungliga Tekniska Hgskolan, Stockholm, Sweden, 1991.

16. D. A. Schmidt. Denotational Semantics: A Methodology for Language Develop-
ment. Allyn and Bacon, 1986.

17. K. Slonneger and B. L. Kurtz. Formal Syntax and Semantics of Programming
Languages. Addison-Wesley, 1995.

18. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1–3):17–64, 1996.

19. L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, second edition, 1994.
20. J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. MIT Press, 1977.
21. P. Wadler. Linear types can change the world! In M. Broy and C. Jones, editors,

Programming Concepts and Methods, pages 547–566, Sea of Galilee, Israel, Apr.
1990. North Holland. IFIP TC 2 Working Conference.

149



Recent BRICS Notes Series Publications

NS-00-6 Peter D. Mosses and Hermano Perrelli de Moura, editors.Pro-
ceedings of the Third International Workshop on Action Seman-
tics, AS 2000,(Recife, Brazil, May 15–16, 2000), August 2000.
viii+148 pp.

NS-00-5 Claus Brabrand. <bigwig> Version 1.3 — Tutorial. Septem-
ber 2000.

NS-00-4 Claus Brabrand.<bigwig> Version 1.3 — Reference Manual.
September 2000. ii+56 pp.

NS-00-3 Patrick Cousot, Eric Goubault, Jeremy Gunawardena, Mau-
rice Herlihy, Martin Raussen, and Vladimiro Sassone, edi-
tors. Preliminary Proceedings of the Workshop on Geometry
and Topology in Concurrency Theory, GETCO ’00,(State Col-
lege, USA, August 21, 2000), August 2000. vi+116 pp.

NS-00-2 Luca Aceto and Bj̈orn Victor, editors. Preliminary Proceedings
of the 7th International Workshop on Expressiveness in Concur-
rency, EXPRESS ’00,(State College, USA, August 21, 2000),
August 2000. vi+130 pp.

NS-00-1 Bernd G̈artner. Randomization and Abstraction — Useful Tools
for Optimization. February 2000. 106 pp.

NS-99-3 Peter D. Mosses and David A. Watt, editors.Proceedings of the
Second International Workshop on Action Semantics, AS ’99,
(Amsterdam, The Netherlands, March 21, 1999), May 1999.
iv+172 pp.

NS-99-2 Hans Ḧuttel, Josva Kleist, Uwe Nestmann, and Ant́onio
Ravara, editors. Proceedings of the Workshop on Semantics of
Objects As Processes, SOAP ’99,(Lisbon, Portugal, June 15,
1999), May 1999. iv+64 pp.

NS-99-1 Olivier Danvy, editor. ACM SIGPLAN Workshop on Par-
tial Evaluation and Semantics-Based Program Manipulation,
PEPM ’99, (San Antonio, Texas, USA, January 22–23, 1999),
January 1999.

NS-98-8 Olivier Danvy and Peter Dybjer, editors. Proceedings of
the 1998 APPSEM Workshop on Normalization by Evaluation,
NBE ’98 Proceedings,(Gothenburg, Sweden, May 8–9, 1998),
December 1998.


	BRICS-NS-00-6
	Foreword
	Final Programme
	Table of Contents
	Author Index
	Formalising the Dynamic Semantics of Java
	An Introduction to AN-2: The Proposed New Version of Action Notation
	Postfix Transformations for Action Notation
	Action Semantics for Logic Programming Languages
	CASL and Action Semantics
	Modular SOS and Action Semantics
	An Action Semantics for the D2L Design Description Language
	An Action Semantics for STG
	A Formal Description of SNMPv3 Standard Applications using Action Semantics
	Maude Action Tool: Using Re ection to Map Action Semantics to Rewriting Logic
	A Modular Implementation of Action Notation


