
B
R

IC
S

N
S

-00-1
B

.G̈artner:
R

andom
ization

and
A

bstraction
—

U
sefulTools

for
O

ptim
ization

BRICS
Basic Research in Computer Science

Randomization and Abstraction
Useful Tools for Optimization

Bernd Gärtner

BRICS Notes Series NS-00-1

ISSN 0909-3206 February 2000

Copyright c© 2000, Bernd G̈artner.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/00/1/

Randomization and Abstraction – Useful Tools in
Optimzation

Bernd Gärtner∗

Abstract

This report contains notes for a course on randomized methods in geo-
metric optimization, held first at BRICS, Aarhus University, Denmark and
later at the Institute for Computer Science, ETH Zürich, Switzerland.

∗work supported by the Swiss Science Foundation (SNF), Project No. 21-50647.97

1

Introduction

This report contains the course notes (copies of the slides), exercises and solutions
for the course Randomization and Abstraction—Useful Tools for Optimization. I
have given this course first at BRICS in Aarhus, Denmark,1 and later at ETH in
Zürich.2.

The BRICS course notes did not yet contain solutions. For the ETH course, I
added them. In this process, I replaced exercises that did not make sense or were
plain wrong (which I only noticed when I wrote up the solutions, of course. . .).

The course deals with two approaches to Linear Programming (and related
problems): the “abstract” one via LP-type problems, due to Matoušek, Sharir
and Welzl [3], and the “concrete” one via the well-known simplex method under
Kalai’s pivot rule Random-Facet [2]. In the course, I put both approaches in
relation and show that they are dual to each other, under the concept of LP
duality. This was first observed by Goldwasser [1].

I also review the best theoretical complexity bounds that are known in either
of the approaches, and I point out that they were developed independently almost
at the same time for both of them [2, 3].

Postscript files containing the sources for the course are available from my
homepage at www.inf.ethz.ch/personal/gaertner. The course consists of
about 85 slides; at BRICS, I tried to manage them in two slots, 90 minutes each,
which was a little too ambitious, although the audience was fairly advanced. I
still did all the slides, but it took me about 45 minutes longer in total.

At ETH, I had to face a less advanced audience, and I made it through roughly
two thirds of the slides in 200 minutes. This means, I omitted some material. In
part I, I only got to the first linear bound for the expected performance of the
LP-type algorithm.

I now think that three or even four 90 minutes slots would be ideal to cover the
material without any haste, even for a less advanced audience (undergraduates,
say).

Acknowledgment

This course goes back to an initiative from Devdatt Dubhashi whom I first met
at the RANDOM’98 workshop in Barcelona. Devdatt invited me to BRICS to
give a mini-course, and he made my stay in Aarhus very enjoyable.

1BRICS Mini-course, held at BRICS Research Center, University of Aarhus, July 6–7, 1999
2Late Summer School “Facets of the Polytope World”, held together with Jürgen Richter-

Gebert and Emo Welzl at the computer science department of ETH Zürich, September 13–16,
1999

2

References

[1] M. Goldwasser. A survey of linear programming in randomized subexponen-
tial time. ACM-SIGACT News, 26(2):96–104, 1995.

[2] G. Kalai. A subexponential randomized simplex algorithm. In Proc. 24th
annu. ACM Symp. on Theory of Computing., pages 475–482, 1992.

[3] J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear
programming. In Proc. 8th annu. ACM Symp. on Comput. Geom., pages
1–8, 1992.

3

Facets of the Polytope
World

Late Summer School · ETH Zürich ·
1999

Randomization and Abstraction –

Useful Tools for Optimization

Part I

by Bernd Gärtner

1

A few geometric optimization
problems. . .

2

Smallest enclosing ball

Given n points in Rd, find the ball of smallest

volume covering all the points.

3

Smallest enclosing ellipsoid

Given n points in Rd, find the ellipsoid of smallest

volume covering all the points.

4

Smallest enclosing annulus

Given n points in the plane, find the annulus

of smallest area covering all the points.

5

Largest disk in kernel

Given a starshaped polygon with n edges, find

the largest disk in the kernel of the polygon.

6

Distance of polytopes

Given two polytopes defined by overall n halfs-

paces (or n points), find the shortest distance

between them.

7

Angle-optimal placement

Given a starshaped polygon with n edges, find

the point p in its kernel such that the smallest

angle in the graph consisting of the polygon

edges and the connections between p and the

vertices is maximized.

p

α

α

8

What is common to all these
problems?

9

(1) Small basis size: Solution determined by

small number δ of input objects (points, poly-

gon edges, halfspaces, . . .), independent of

the number n of objects!

Problem δ

d + 1

d(d + 3)/2

4

3

d + 2

p

α

α

3

10

(2) Monotonicity: solution does not get bet-

ter if more input objects are added!

Status: trivial.

11

(3) Locality: if solution gets worse by adding

more input objects, it already gets worse by

adding them to the at most δ objects that de-

termine it!

Status: not so trivial anymore.

12

Non-local problems (I)

Smallest enclosing axis-parallel square

13

Non-local problems (II)

Closest pair of points

14

One more problem. . .

Linear Programming (LP).

Minimize a linear function φ in d variables sub-

ject to n linear inequalities (here: n � d).

d=2, n=5

opt

φ

15

LP and locality

• Locality does not hold. . .

φ

φ

• . . . but that can be fixed!

minimizing

φ(x) + εx1 + ε2x2 + · · · + εdxd, ε small

makes solution vector unique and deter-
mines it by d constraints (locality follows),
or the problem becomes unbounded

16

LP-type Problems

An LP-type problem is a pair (H, w), H a finite
set of constraints, w : 2H → W ∪ {−∞,∞} (W
some ordered set) an objective function, such
that for any F ⊆ G ⊆ H

• w(F) ≤ w(G) (monotonicity)

• if w(F) = w(G) 6= −∞ and

w(G ∪ {h}) > w(G) for h ∈ H, then also
w(F ∪ {h}) > w(F) (locality)

Interpretation:

• Minimization problem; −∞ ≈ unbounded,
∞ ≈ infeasible

• w(G) is the minimum value subject to the
constraints in G

17

Problems revisited (I)

H set of point; w(F) the radius of the smallest
ball (ellipsoid) containing all points in F

H set of points; w(F) the area of the smallest
annulus containing all points in F

H a set of halfplanes; w(F) the negative ra-
dius of the largest ball in the intersection of all
halfspaces in F (can be −∞,∞)

18

Problems revisited (II)

H = H1∪H2 a set of halfspaces; w(F1∪F2) the

smallest distance between the two polytopes

defined by F1 and F2 (can be ∞; locality needs

to be enforced like in LP)

or

H1∪H2 a set of points; w(F1∪F2) the negative

smallest distance between the two polytopes

defined by F1 and F2 (can be −∞)

p

α

α

. . . Exercise!

19

Problems revisited (III)

d=2, n=5

opt

φ

Linear Programming

H a set of halfspaces in Rd; w(F) the minimum

value of φ(x) + εx1 + ε2x2 + · · · + εdxd over

the intersection of the halfspaces in F (can be

−∞,∞)

Unique optimal solution x∗ is the lexicographi-

cally smallest point that minimizes φ(x).

20

Bases and combinatorial di-
mension

(H, w) LP-type problem

• Basis of F ⊆ H: inclusion-minimal subset

B ⊆ F with

w(B) = w(F).

• Combinatorial dimension δ: size of largest

basis

• (H, w) basis-regular if all bases of sets F

with |F | ≥ δ and w(F) 6= −∞ have size

exactly δ

• Note: even then, the basis B of F need

not be unique!

21

Bases in LP / smallest ball

Bases ∼ local minima determined by d half-

spaces ⇒ basis-regular

Bases ∼ locally minimal balls determined by

≤ d + 1 points ⇒ not basis-regular

22

One more table. . .

Problem δ basis-regular?

d + 1 no

d(d + 3)/2 no

4 yes

3 yes

d + 2 no

p

α

α

3 no
d=2, n=5

opt

φ

d yes

23

Solving LP-type problems

Given: (H, w)

Wanted:

• The optimal value wopt := w(H)

r

• A basis B of H

24

The LP-type algorithm (I)

Two primitives needed (B a Basis, h a con-
straint).

• violation test: w(B ∪ {h}) > w(B)?

?

B

h

B h

• basis computation: compute a basis B′ of
B ∪ {h} (B′ = basis(B, h))

B
h

B’

25

The LP-type algorithm (II)

Input: LP-type problem (H, w), basis-regular

Output: A Basis B of H (so wopt = w(B))

lp-type(G, C): (* G ⊆ H, C ⊆ G some basis *)

IF G = C THEN

RETURN C

ELSE

choose h ∈ G \ C at random

C ′ := lp-type(G \ {h}, C)

IF w(C ′ ∪ {h}) > w(C ′) THEN

C′′ := basis(C′, h)

RETURN lp-type(G, C ′′)
ELSE

RETURN C′
END

END

26

lp-type on LP

h

C ′
Copt

C ′′
C

• remove h not contributing to C and recur-
sively solve the subproblem (⇒ C ′)

• if optimum not reached yet, compute the
basis of C ∪ {h} (⇒ C ′′)

• repeat from C′′

27

lp-type – Correctness

Induction on

|G| (“problem size”)

and

w(G) − w(C) (“optimality gap”).

Induction basis.

• |G| = δ (⇔ w(C) = w(G)) implies that C

is a basis of G (basis-regularity!) ⇒ return
value C correct

Inductive step:

• In first recursice call, problem size decreases

• In second recursive call, optimality gap de-
creases

28

lp-type – Analysis (I)

Observation: h ∈ C′′, and h is contained in all

bases appearing during the call to

lp-type(G, C′′).

Proof: Let C0 ⊆ G \ {h} be any basis not con-

taining h, C1 any basis traced during the call

to lp-type(G, C ′′). Then

w(C1) ≥ w(C′′) > w(C′) = w(G \ {h}) ≥ w(C0).

It follows that h ∈ C1.

Definition 1: h is enforced in (G, C), C ⊆ G if

w(C) > w(G \ {h}). (It follows that h ∈ C.)

Definition 2: The hidden dimension (“degree

of freedom”) of (G, C) is the number

δ(G, C) := δ − #{h ∈ G | h enforced in (G, C)}.
29

lp-type – Analysis (II)

t(n, k) := maximum expected number of vi-
olation tests in a call to lp-type(G, C) with
|G| = n and δ(G, C) ≤ k.

Lemma 1:

t(δ, k) = 0,

t(n,0) = n − δ,

t(n, k) ≤ t(n − 1, k) + 1 +
k

n − δ
t(n, k − 1).

Proof: (i) e enforced in (G, C) implies e en-
forced in (G \ {h}, C), (G, C′′) and e ∈ B for
any basis B of G. (ii) h is enforced in (G, C′′).
(iii) Second recursive call only occurs for ele-
ments h ∈ B which are not yet in C (there are
at most k).

Theorem 1:

t(n, k) ≤
k∑

j=0

1

j!
k! (n − δ) ≤ e k! (n − δ).

30

LP – Randomized complexity

Theorem: Any linear program with n con-

straints in d variables can be solved in expected

time O(n) if d is fixed.

Proof: lp-type performs an expected number

of at most t(n, d)

• violation tests → O(d)

• basis computations → O(d3)

Expected runtime

O(d3 d! n).

Still an exponential algorithm if n = O(d)!

31

lp-type – Analysis (III)

Have seen: hidden dimension decreases by 1
from (G, C) to (G, C′′).

Now show: hidden dimension halves on aver-
age from (G, C) to (G, C ′′)!

Consider the (at most) k elements in B \ C
leading to a second recursive call, ordered such
that

w(G \ {h1}) ≤ w(G \ {h2}) ≤ · · · ≤ w(G \ {hk}).

With h = hi, we get

w(C ′′) > w(C′) = w(G\{hi}) ≥ · · · ≥ w(G\{h1})
⇒ h1, . . . , hi are enforced in (G, C′′)
⇒ k(G, C ′′) ≤ k(G, C) − i.

Lemma 2:

t(n, k) ≤ t(n−1, k)+1+
1

n − δ

min(k,n−δ)∑
i=1

t(n, k−i).

32

lp-type – Analysis (IV)

Theorem 2:

t(n, k) ≤ 2k(n − δ).

Improvement in the “big-Oh”:

e k! → 2k.

For n not too large, the following is the best

possible result.

Theorem 3:

t(n, k) ≤ exp
(
2
√

k lnn + O(
√

k + lnn)
)

.

Subexponential algorithm (Matoušek, Sharir,

Welzl ’92)!!

33

The situation n = 2δ. . .

. . . is in a sense the most difficult.

• Theorem 1:

t(n, δ) ≤ e δ δ!.

• Theorem 2:

t(n, δ) ≤ δ 2δ.

• Theorem 3:

t(n, δ) ≤ eO(
√

d ln δ).

34

Dual cubes

or: understanding the subexponential bound
in a special scenario

A toy LP:

min x1 + . . . + xd

subject to
xi ≥ 0
xi ≥ 1

, i = 1 . . . d.

optv

hi := {xi ≥ 0}, h̄i := {xi ≥ 1}

H := {hi | i = 1 . . . d} ∪ {h̄i | i = 1 . . . d}

w(G) =

{
−∞, if ∃i : G ∩ {hi, h̄i} = ∅,
#{i | h̄i ∈ G}, otherwise

35

Definition 3: A dual cube of dimension δ is a
basis-regular LP-type problem L = (H, w) with

• |H| = 2δ

• there is an involution ¯ : H → H, i.e.

h̄ 6= h
¯̄h = h

, for all h ∈ H

• w(G) = −∞ if and only if G∩{h, h̄} = ∅ for
some h

Implications:

• B is basis if |B| = δ and |B∩{h, h̄}| = 1, h ∈
H. Thus, there are 2δ bases

• the toy LP defines a dual cube

36

lp-type on dual cubes (I)

b(n, k) := maximum expected number of basis

computations in a call to lp-type(G, C) with

|G| = n and δ(G, C) ≤ k.

β(k) := max
m≤n

b(m, k).

Lemma 3:

β(0) = 0,

β(k) ≤ β(k − 1) +
1

k

k∑
i=1

(1 + β(k − i)).

37

lp-type on dual cubes (II)

Proof: Let (G, C), |G| = m, δ(G, C) ≤ k be the

“worst-case problem” defining β(k).

Case 1: δ(G, C) < k. Then β(k) = β(k − 1).

Case 2: δ(G, C) = k. Then

β(k) ≤ m − δ − k

m − δ
β(k)

+
k

m − δ

β(k − 1) + 1 +

1

k

k∑
i=1

β(k − i)

 .

⇒ Lemma 3.

δ−k

D D

G

C

enforced non-enforced

EE

k k m−δ−k

38

lp-type on dual cubes (II)

Case 2 (contd.):

Let h ∈ G \ C be the element removed for the

first recursive call.

Case (a): h ∈ E. Because h̄ is enforced, h is

‘redundant’ ⇒ δ(G\{h}, C) = δ(G, C) = k, and

no second recursive call.

Case (b): h ∈ D̄. Then h̄ is enforced in (G \
{h}, C) ⇒ δ(G\{h}, C) ≤ k−1. Let h1, . . . hk ∈ D̄

be ordered such that

w(G \ {h1}) ≤ · · · ≤ w(G \ {hk}).
If h = hi, then h1, . . . hi are enforced in (G, C ′′)
(because w(C′′) ≥ w(G \ {hi})) ⇒ δ(G, C ′′) ≤
k − i.

39

lp-type on dual cubes (IV)

Theorem: The expected number of basis com-

putations needed to solve a dual cube of di-

mension δ is bounded by

b(2δ, δ) ≤ β(δ).

Corollary: The expected number of violation

tests is bounded by

t(2δ, δ) ≤ δ · (β(δ) + 1).

Proof: Any basis computation is followed by

at most δ violation tests in a row, and there

might be δ violation tests charged to the initial

basis.

40

Analysis of β(k)

Define

f(0) = 1,

f(k) = f(k − 1) +
1

k

k∑
i=1

f(k − i).

Then β(k) ≤ f(k) − 1.

Theorem 4:

f(k) =
k∑

i=0

1

i!

(k
i

)
.

41

The asymptotics of f(k)

f(k) =
k∑

i=0

(k
i

)1
i!

≤
k∑

i=0

ki

i!

1

i!

=
k∑

i=0

ki

i!2

=
k∑

i=0

(

√
ki

i!
)2

≤ (
k∑

i=0

√
ki

i!
)2

≤ (
∞∑

i=0

√
ki

i!
)2 = e2

√
k.

Theorem: the expected number of basis com-
putations needed to solve a dual cube is bounded
by

b(2δ, δ) ≤ β(δ) ≤ f(δ) − 1 ≤ e2
√

δ − 1.

42

Exercise 1.1 Prove that the problem angle-optimal placement can be formu-
lated as an LP-type problem. You may assume general position in the sense that
there is always a unique angle-optimal placement, in the problem itself and in
subproblems you define.

Furthermore, prove that the combinatorial dimension of the problem is bounded
by 3.
Hint: You may assume Helly’s Theorem:

Let C be a collection of n ≥ d + 1 convex sets in R
d. If any

d + 1 members of C have a point in common, then there is a point in
common to all members of C.

Exercise 1.2 Show that the problems smallest enclosing annulus and largest
disk in kernel are LP-type problems by showing that they can be formulated as
Linear Programs.

Exercise 1.3 Prove the “easy” bounds

t(n, k) ≤
k∑

j=0

1

j!
k! (n − δ)

and
t(n, k) ≤ 2k(n − δ)

(Theorem 1 and 2) for the number of violation tests in a call to lp-type(G, C)
with |G| = n and δ(G, C) ≤ k.

Exercise 1.4 Prove the explicit formula

f(k) =
k∑

i=0

1

i!

(
k

i

)

(Theorem 4) for the function f(k) defined on page 41.

Exercise 1.5 What is the expected number of basis computations resp. viola-
tion tests performed by lp-type in solving the “toy LP” (page 35)?

Exercise 1.6 Consider LP-type problems that are not necessarily basis-regular.
Does algorithm lp-type still work? If not, how can we make it work again? Prove
that the O(n) bound for fixed combinatorial dimension δ still holds.

Exercise 1.7 What is the combinatorial dimension of LP in the LP-type frame-
work when also infeasible problems are considered? What about basis-regularity
in this case?

Exercise 1.8 Consider the non-local problems smallest enclosing axis-parallel
square and closest pair of points. Are they inherently non-local, or can one
achieve locality by a trick similar to the one we used to make LP local?

Facets of the Polytope
World

Late Summer School · ETH Zürich ·
1999

Randomization and Abstraction –

Useful Tools for Optimization

Part II

by Bernd Gärtner

1

Games on natural numbers
Game A(n):

x := n

WHILE x > 0 DO

set x to a random number in [0, x − 1]
END

457
↓

266
↓
43
↓
7 6 rounds
↓
6
↓
1
↓
0

a(n) :=expected number of rounds in A(n)

2

Game B(n):
x := n = (bd−1, . . . , b0) in binary encoding
WHILE x > 0 DO

choose random k with bk = 1
FOR i := 0 TO k DO

bi := 1 − bi
END

END

1 1 0 1 1 27
↓

1 1 0 0 0 24
↓
0 0 1 1 1 7

↓ 5 rounds
0 0 1 0 0 4

↓
0 0 0 1 1 3

↓
0 0 0 0 0 0

b(n) :=expected number of rounds in B(n)

3

Analysis of Game A

a(0) = 0

a(n) = 1 +
1

n

n−1∑
i=0

a(i)

This implies

a(n) = Hn = 1 +
1

2
+

1

3
+ · · · + 1

n
≈ lnn.

4

Analysis of Game B

d = blog2 nc + 1, number of significant bits

• b(n) ≤ d(d + 1)/2 ≈ log2 n

• Papadimitriou & Steiglitz (Exercise 8.10*):

b(n) = O(d)

• Papadimitriou (personal communication):

b(n) = O(d log d) (maybe)

• Kelly (conjecture, based on empirical tests):

b(n) = O(d log2 d)

• Gärtner, Ziegler (1994):

∃n (d bits) : b(n) ≥ d2

4(Hd+1 − 1)
≈ d2

log d

5

Do the games mean anything?

Just like LP-type problems are a combinato-

rial abstraction of linear programming . . .

LP-type ProblemsGames

combinatorial level

Simplex Method LP

geometric / algebraic level

. . . the games are a combinatorial abstraction

of the simplex method for solving linear pro-

gramming problems!

6

The simplex method

Linear Programming (Standard form).

(LP) maximize cTx
subject to Ax ≤ b,

x ≥ 0,

Example.

maximize x1 + x2
subject to −x1 + x2 ≤ 1,

x1 ≤ 3,
x2 ≤ 2,

x1, x2 ≥ 0.

After introducing slack variables:

maximize x1 + x2
subject to x3 = 1 + x1 − x2,

x4 = 3 − x1,
x5 = 2 − x2,

x1, . . . , x5 ≥ 0.

7

Tableaus

Rewrite the LP in tableau form.

x3 = 1 + x1 − x2
x4 = 3 − x1
x5 = 2 − x2
z = x1 + x2

• Tableau expresses basic variables xB and

the objective function value z in terms of

nonbasic variables xN

• Any tableau solution with x ≥ 0 is an LP

solution

• xN = 0 ⇒ basic feasible solution (BFS)

8

The pivot step (I)

Given: Tableau

x3 = 1 + x1 − x2
x4 = 3 − x1
x5 = 2 − x2
z = x1 + x2

and associated basic feasible solution

x∗ = (0,0,1,3,2).

Goal: increase z by making some nonbasic
variable positive, keeping the basic ones non-
negative

Candidates: the ones with positive coefficient
in the z-row.

If x2 is chosen:

x3 = 1 + x1 − x2 ⇒ x2 ≤ 1,
x4 = 3 − x1 ⇒ no limit for x2
x5 = 2 − x2 ⇒ x2 ≤ 2.︸ ︷︷ ︸
⇒ increase x2 by 1, x3 becomes zero

9

The pivot step (II)

Rewriting the tableau:

x2 ∼ entering variable

x3 ∼ leaving variable

Solve the equation

x3 = 1 + x1 − x2

for x2 and subsitute

x2 = 1 + x1 − x3

on the right hand side of the tableau.

New tableau:

x2 = 1 + x1 − x3
x4 = 3 − x1
x5 = 1 − x1 + x3
z = 1 + 2x1 − x3

New BFS:

x∗ = (0,1,0,3,1), z = 1

10

The pivot step (III)
x2 = 1 + x1 − x3
x4 = 3 − x1
x5 = 1 − x1 + x3
z = 1 + 2x1 − x3

x∗ = (0,1,0,3,1), z = 1

x1 enters, x5 leaves:

x2 = 2 − x5
x4 = 2 − x3 + x5
x1 = 1 + x3 − x5
z = 3 + x3 − 2x5

x∗ = (1,2,0,2,0), z = 3.

x3 enters, x4 leaves:

x2 = 2 − x5
x3 = 2 − x4 + x5
x1 = 3 − x4
z = 5 − x4 − x5

x∗ = (3,2,2,0,0), z = 5

11

Termination
x2 = 2 − x5
x3 = 2 − x4 + x5
x1 = 3 − x4
z = 5 − x4 − x5

x∗ = (3,2,2,0,0), z = 5

z cannot be increased anymore by increasing

nonbasic variables (local optimum).

Observation: Any local optimum is a global

optimum.

Proof:

z = 5 − x4 − x5
x4 ≥ 0

x5 ≥ 0︸ ︷︷ ︸
implies z ≤ 5

Current value z = 5 is optimal!

12

Geometric interpretation

Feasible region → polyhedron P
BFS ↔ vertex of P

Pivot step ↔ move along an edge of P ,
monotonically increasing z

x2 ≥ 0

x2 ≤ 2

x1 ≤ 3x1 ≥ 0 −x1 + x2 ≤ 1

(0,0)

(0,1)

(1,2)

(3,2)

BFS vertex z = x1 + x2
(0,0,1,3,4) (0,0) 0
(0,1,0,3,1) (0,1) 1
(1,2,0,2,0) (1,2) 3
(3,2,2,0,0) (3,2) 5

13

Unboundedness (I)

maximize x1
subject to x1 − x2 ≤ 1,

−x1 + x2 ≤ 2,
x1, x2 ≥ 0.

x1 − x2 ≤ 1
x2 ≥ 0

x1 ≥ 0

−x1 + x2 ≤ 2

Initial tableau:

x3 = 1 − x1 + x2
x4 = 2 + x1 − x2
z = x1

14

Unboundedness (II)

x3 = 1 − x1 + x2
x4 = 2 + x1 − x2
z = x1

x1 enters, x3 leaves:

x1 = 1 + x2 − x3
x4 = 3 − x3
z = 1 + x2 − x3

No bound on the increase of x2 ⇒ zopt = ∞

Geometric interpretation: Polyhedron is un-

bounded in the optimization direction.

15

Degeneracy (I)

maximize x2
subject to −x1 + x2 ≤ 0,

x1 ≤ 2,
x1, x2 ≥ 0,

x2 ≥ 0

−x1 + x2 ≤ 0
x1 ≤ 1

x1 ≥ 0

Initial tableau:

x3 = x1 − x2
x4 = 2 − x1
z = x2

16

Degeneracy (II)

x3 = x1 − x2
x4 = 2 − x1
z = x2

x2 enters, and . . . the increase in z is zero!

This does not imply global optimality!

x2 enters, x3 leaves:

x2 = x1 − x3
x4 = 2 − x1
z = x1 − x3

x∗ = (0,0,0,2), z = 0

x1 enters, x4 leaves:

x1 = 2 − x4
x2 = 2 − x3 − x4
z = 2 − x3 − x4

x∗ = (2,2,0,0), z = 2 ⇒ optimal

17

Degeneracy (III)

Geometric interpretation: vertex is overde-

termined; more than d hyperplanes go through

it.

Degeneracy can lead to cycling!

Fix: Symbolic perturbation: Ax ≤ b+(ε, ε2, . . .)T

x3 = ε + x1 − x2
x4 = 2 + ε2 − x1
z = x2

x2 enters, x3 leaves:

x2 = ε + x1 − x3
x4 = 2 + ε2 − x1
z = ε + x1 − x3

This time, we made ε-progress in z! In the

end, ignore the ε’s!

18

Infeasibility (I)

maximize −x2
subject to −x1 − x2 ≤ −2,

x1 − x2 ≤ −1,
x1, x2 ≥ 0.

x2 ≥ 0

−x1 − x2 ≤ −2x1 ≥ 0

x1 − x2 ≤ −1

Initial tableau:

x3 = −2 + x1 + x2
x4 = −1 − x1 + x2
z = − x2

does not give a BFS!

19

Infeasibility (II)

Fix: set up auxiliary problem

maximize −x0
subject to −x1 − x2 − x0 ≤ −2,

x1 − x2 − x0 ≤ −1,
x0, x1, x2 ≥ 0.

Observation:

(i) Auxiliary problem is feasible (choose x0 large)

(ii) Original problem feasible ⇔ auxiliary prob-

lem has optimal value x0 = 0.

20

Infeasibility (III)

Initial tableau:

x3 = −2 + x1 + x2 + x0
x4 = −1 − x1 + x2 + x0
w = − x0

Increase x0 to obtain a BFS (w gets worse!)

x0 enters, x3 leaves:

x0 = 2 − x1 − x2 + x3
x4 = 1 − 2x1 + x3
w = −2 + x1 + x2 − x3

x2 enters, x0 leaves:

x2 = 2 − x1 + x3 − x0
x4 = 1 − 2x1 + x3
w = − x0

In the feasible case, x0 is nonbasic in the end!

21

Infeasibility (IV)

To obtain a tableau for the original problem:

• Remove x0 from the tableau

• Express z in the nonbasic variables

x2 = 2 − x1 + x3 − x0
x4 = 1 − 2x1 + x3
w = − x0

z = −x2 = −2 + x1 − x3

Initial tableau for original problem is

x2 = 2 − x1 + x3
x4 = 1 − 2x1 + x3
z = −2 + x1 − x3

x∗ = (0,2,0,1)

22

Pivot rules (I)

How to choose the entering variable in case
there are several choices?

x3 = 1 + x1 − x2
x4 = 3 − x1
x5 = 2 − x2
z = x1 + x2

Every choice corresponds to one z-increasing
edge of the feasible region.

x2 ≥ 0

x2 ≤ 2

x1 ≤ 3x1 ≥ 0 −x1 + x2 ≤ 1

(0,0)

(0,1)

(1,2)

(3,2)

Two increasing edges in the initial vertex (0,0)

23

Pivot rules (II)

Dantzig’s rule: Choose the increasing vari-

able with largest coefficient

Bland’s rule: Choose the increasing variable

with smallest index (according to some order)

Largest increase: Choose the increasing vari-

able which leads to the largest increase in z

Steepest edge: Choose the increasing edge

which is steepest w.r.t. the optimization direc-

tion

Random-Edge: Choose an increasing variable

uniformly at random

24

Game A revisited (I)

{0, . . . , n} ↔ vertices v0, . . . , vn of n-simplex,
such that

cTv0 < cTv1 < · · · < cTvn

for some linear function cTx.

v

v

v

v

3

2

1

0

Game A(n):
v := vn

WHILE v 6= v0 DO

set v to random neighbor v′, cT v′ < cTv
END

25

Game A revisited (II)

Game A models the simplex method with pivot
rule Random-Edge on the LP

maximize c1x1 + c2x2 + · · · + cdxd
subject to x1 + x2 + · · · + xd ≤ 1,

x1, x2, . . . , xd ≥ 0.

x1 ≥ 0

x2 ≥ 0

x1 + x2 ≤ 1c > 0

v

v

v

v

3

2

1

0 Simplex LP in standard form

26

Game B revisited (I)

{0, . . . ,2d − 1} ↔ vertices v0, . . . , v2d−1 of d-
dimensional Klee-Minty cube, such that

cTv0 < cTv1 < · · · < cTv2d−1

for some linear function cTx.

(0, 0, 1)

(0, 1, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(0, 0, 0)

(0, 1, 1)

(1, 0, 0) minimize xd
subject to

0 ≤ x1 ≤ 1
εxi−1 ≤ xi ≤ 1 − εxi−1,

i = 2, . . . , d

Game B(n):
v := vn

WHILE v 6= v0 DO

set v to random neighbor v′, cT v′ < cTv

END

27

Game B revisited (II)

Game B models the simplex method with pivot
rule Random-Edge on the LP

maximize xd + εxd−1 + · · · +εd−1x1
subject to xi + 2εxi−1 + · · · +2εi−1x1 ≤ 1,

i = 1, . . . , d
x1, x2, . . . , xd ≥ 0.

(0 < ε < 1/2)

c

x1 ≥ 0

x2 ≥ 0

x1 ≤ 1

x2 + 2εx1 ≤ 1

(0, 0, 1)

(0, 1, 0)

(1, 0, 1)

(1, 1, 0)

(1, 1, 1)

(0, 0, 0)

(0, 1, 1)

(1, 0, 0)

Klee-Minty cube LP in standard form, op-
timization direction reversed (ε = 1/4)

28

Simplex complexity (I)

Def.: Let fP(n, d) denote the maximum (ex-

pected) number of pivot steps taken by the

simplex method with pivot rule P on any lin-

ear program with n constraints and d variables.

• For P ∈ {Dantzig’s rule, Bland’s rule, Lar-

gest increase, Steepest edge,. . .}
fP(2d, d) ≥ cd (exponential!)

• fRandom-Edge(n, d) = poly(n, d) ???

• Is some pivot rule polynomial? This is the

major open question in connection with the

simplex method.

29

Simplex complexity (II)

Worst-case constructions:

• find polytope with exponentially long path
of decreasing edges

• “Deform” the polytope such that the pivot
rule is tricked into taking that path

“Default” polytope: Klee-Minty cube KM(d)

• fRandom-Edge(KM(d)) = O(d2) (this was
the analysis of Game B!)

30

Kalai’s pivot rule (I)

Polyhedra terminology:

k-dimensional faces
0 vertices
1 edges

d − 2 ridges
d − 1 facets

vertex

facet

edge=ridge

Every k-dimensional face is the intersection of
d − k facets.

31

Kalai’s pivot rule (II)

Random-Facet(v): v ∼ current BFS

Choose a facet F containing v uni-
formly at random, and recursively opti-
mize over F . If the vertex v′ obtained
is not the global optimum yet, move
to its unique neighbor v′′ with smaller
objective function value, and repeat.

F

v

v’
v’’

vopt

32

Kalai’s pivot rule (III)

Thm.: (Kalai ’92):

fRandom-Facet(2d, d) = eO(
√

d).

A subexponential pivot rule!

Flashback:

• Algorithm lp-type, dual cubes, . . .

• The expected number of basis computa-

tions needed to solve a dual cube is bounded

by

b(2δ, δ) ≤ e2
√

δ − 1.

33

Random-Facet vs. lp-type(I)

Random-Facet(v):

Choose a facet F con-
taining v uniformly at ran-
dom, and recursively op-
timize over F . If the
vertex v′ obtained is not
the global optimum yet,
move to its unique neigh-
bor v′′ with smaller objec-
tive function value, and
repeat.

lp-type(G, C):
IF G = C THEN

RETURN C
ELSE

choose h ∈ G \ C at random
C ′ := lp-type(G \ {h}, C)
IF w(C ′ ∪ {h}) > w(C ′) THEN

C ′′ := basis(C ′, h)
RETURN lp-type(G, C ′′)

ELSE
RETURN C ′

END
END

vopt Coptv′′

F
v′

v

h

C ′
C

C ′′

34

Random-Facet vs. lp-type(II)

• Random-Facet recursively fixes constraints;

v is always feasible but only (locally) opti-

mal in the end

• lp-type recursively removes constraints; C

is always (locally) optimal but only feasible

in the end

It’s the same by LP duality!

35

LP duality (I)

lp-type setup

⇓

(LP) min cTx (d variables)
s.t. Ax ≥ b (n constraints)

Let x be a feasible solution of (LP).

• for y ∈ Rn, y ≥ 0 we have yTAx ≥ yTb

• if yTA = cT , then cTx ≥ yT b

(LP’) max bTy (n variables)
s.t. ATy = c (d constraints)

y ≥ 0

⇑

Random-Facet setup (standard form LP
after introducing slack variables)

36

LP duality (II)

Assume (LP) is feasible and bounded (⇒ (LP)

has an optimal solution).

Weak duality theorem: if (LP’) is feasible,

then

max bTy ≤ min cTx.

Follows from the previous considerations.

Strong duality theorem: (LP’) is feasible,

and

max bTy = min cTx.

(LP) and (LP’) are dual to each other

37

LP duality (III)

(LP’) max bTy (n variables)
s.t. ATy = c (d constraints)

y ≥ 0

y

> 0

0>

> 0y

y

3

1

2

TA y=c

Feasible region is a polyhedron

• of dimension n − d,

• with n facets yi = 0, i = 1, . . . , n

38

LP duality (IV)

A

b

y cT

T

=

n

d>

>y 0

>y 0

>

x bA

cT

d

n

x bA

cT

d

n A

b

y cT

T

=

n

d

Removing constraint Aix ≥ bi in the primal
(lp-type)

m

Fixing a variable (facet) yi = 0 in the dual
Random-Facet

39

Random-Facet vs. lp-type(III)

Kalai (working on polytopes)

⇓

Subexponential Random-Facet rule on (LP’)

l
it’s the same thing!

l
Subexponential lp-type on (LP)

⇑

Matoušek, Sharir and Welzl (working on

geometric optimization problems)

40

Dual cubes revisited (I)

The toy LP (dual cube):

min x1 + . . . + xd

subject to
xi ≥ 0
xi ≥ 1

, i = 1 . . . d.

optv

Parameters:

cT =
(

1 1 · · · 1
)

A =

1 0 · · · 0
0 1 · · · 0
...
0 · · · 0 1
1 0 · · · 0
0 1 · · · 0
...
0 · · · 0 1

, b =

0
0
...
0
1
1
...
1

.

41

Dual cubes revisited (II)

Dual Parameters:

bT =
(

0 0 · · · 0 1 1 · · · 1
)

AT =

1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0
...
0 · · · 0 1 0 · · · 0 1

 , cT =

1
1
...
1

Dual toy LP:

min z1 + . . . + zd

subject to
yi + zi = 1
yi, zi ≥ 0

, i = 1 . . . d

Equivalent to cube

min z1 + . . . + zd

subject to
zi ≤ 1
zi ≥ 0

, i = 1 . . . d

42

Cubes

Theorem: The Random-Facet simplex algo-
rithm solves any d-cube with an expected num-
ber of at most

e2
√

d − 1

pivot steps.

Follows from the bound for lp-type on dual
cubes.

Remarks:

(i) Cubes may of course look more general!

(ii) Even for cubes, no better algorithm is known!

43

Exercise 2.1 Prove that the two formulations of the Klee-Minty cube LP on
pages 27 and 28 are equivalent.

Exercise 2.2 Show that Game B indeed models the behavior of the simplex
method with pivot rule Random-Edge on the standard form Klee-Minty cube
LP of page 28.
Hint: Develop a formula for the z-row of the tableau, depending on the set of
nonbasic variables.

Exercise 2.3 Which pivot rule forces the simplex method to take the worst-case
number of pivot steps on the standard form Klee-Minty cube LP?

Exercise 2.4 Modify the Klee-Minty cube LP in such a way that Dantzig’s
rule leads to the worst-case behavior.

Exercise 2.5 Prove that every dual cube has exactly
(

δ
k

)
bases with k violating

constraints, provided every set G with w(G) > −∞ has a unique basis.

Exercise 2.6 Construct the dual of the Simplex LP on page 26. What is the
dimension of its feasible region? Certify that primal and dual have the same
optimal value (which one, depending on c?)

Exercise 2.7 Consider the following variant of Game A:

Game A′(n):
x := n
WHILE x > 0 DO

choose a random number i in [0, n − 1]
set x to min(i, x)

END

(i) What is the expected number of rounds in this game?

(ii) Describe the pivot rule under which the simplex method applied to the sim-
plex LP on page 26 corresponds to Game A′, and give a scenario where this
rule might make sense, although it apparantly leads to more pivot steps than
Random-Edge.

Solutions to Exercises for Part I

Exercise 1.1 We let H be the set of polygon edges. We assume them to be
oriented, so that every edge has an “inner” side with respect to the polygon.
For G ⊆ H and a point p, the quality of p with respect to G is the smallest angle
over all triangles formed by p and edges of G, with p on the inner side of the edge
(see Figure 1). If p is on some line spanning an edge, the quality is zero, and the
quality of p with respect to the empty set is defined to be ∞.

α4α1 α2

p

α α

α

3

5

6

Figure 1: Quality of a point with respect to a set of edges

Now we define w(G) to be the value αG, where αG is the largest quality of any
point with respect to G. Let pG be the point of quality αG—by our nondegeneracy
assumption, there is only one such point for every set G.
The ordering on the values α is simply the decreasing one, meaning that larger
angles come first.
From this definition, it is clear that w(H) = αH is the smallest angle in an optimal
placement with respect to the whole polygon, and pH is the unique point that
defines this optimal placement.
To see that w indeed defines an LP-type problem, we have to check monotonicity
and locality. Monotonicity is obvious by definition: if more edges are added, the
largest possible quality can at most become smaller.
For locality, we have to characterize violation: what does it mean that w(G ∪
{h}) > w(G)? We have w(G ∪ {h}) = w(G) if and only if the smallest angle
in the new triangle formed by the inner side of h and pG is no smaller than αG.
Because exactly in this case, pG is still the angle-optimal point of quality αG with
respect to the larger set G ∪ {h}.
This means, violation only depends on the relative position of the new “con-
straint” h with respect to the optimal point pG. By nondegeneracy, if αF = αG,
then also pF = pG, so w(G∪{h}) > w(G) holds if and only if w(F ∪{h}) > w(F)
holds, which is the locality property.

1

To prove that the combinatorial dimension is bounded by three, we apply Helly’s
Theorem.
Namely, the observation is that the region of points with quality at least some
value α is the intersection of simple convex regions and is therefore convex itself.
What are these simple regions? Consider an edge e. Then we know that any
point p which achieves quality at least α has to satisfy three constraints: all
three angles in the triangle formed by e and p must be at least α. By Thales’
Theorem, the region of points p where the angle incident to p is at least α, is a
spherical cap over e. If in addition, the two angles incident to e must be at least
α, this cap gets intersected with two halfplanes, see Figure 2.

α

α
e

p

Figure 2: Region of quality at least α

The angle-optimal point p thus is the unique point in the intersection of 3n convex
regions associated with the optimal angle αopt.
Now we prove that there is a subset of at most three edges wich does not allow for
a better solution than αopt. For this, consider the 3n convex regions associated
with the angle αopt + ε, for some very small ε > 0. Because αopt was the optimal
angle, the intersection of those 3n sets is empty. By Helly’s Theorem, we then
have a subset of at most three sets whose intersection is empty. The three sets
come from at most three edges, and those edges do not allow for a solution with
quality αopt +ε. In other words, the three edges contain some basis, which proves
that no basis can have size more than three; equivalently, the combinatorial
dimension of the problem is bounded by three.

Exercise 1.2 The smallest enclosing annulus problem can be formalized as
follows. Let pi = (xi, yi), i = 1, . . . , n be the n points. An annulus can be
specified by its center p = (x, y), the large radius R and the small radius r. The
area is then proportional to R2 − r2. The smallest enclosing annulus is obtained
as the solution of the following optimization problem.

2

minimize R2 − r2

subject to r2 ≤ ‖pi − c‖2 ≤ R2, i = 1, . . . , n.

This can be rewritten as

minimize R2 − r2

subject to r2 − x2 − y2 + 2xix + 2yiy ≤ x2
i + y2

i , i = 1, . . . , n
R2 − x2 − y2 + 2xix + 2yiy ≥ x2

i + y2
i , i = 1, . . . , n

Defining new variables a := r2 − x2 − y2 and b := R2 − x2 − y2, the problem
becomes a linear program in four variables a, b, x, y and 2n constraints:

minimize b − a
subject to a + 2xix + 2yiy ≤ x2

i + y2
i , i = 1, . . . , n

b + 2xix + 2yiy ≥ x2
i + y2

i , i = 1, . . . , n

It is clear that a, b, x, y form an optimal solution to this linear program if and
only if r2, R2, x, y form an optimal solution to the original problem, where

r2 = a + x2 + y2,

R2 = b + x2 + y2.

To formulate the largest disk in kernel problem as a linear program, we do not
want to give formulas but rather argue geometrically. What we are looking for
is a point p which is on the inner side of every edge and maximizes the smallest
distance to any edge.
Now consider “raising a roof” above the polygon by erecting n planes, each one
going through an edge and tilting upwards at an angle of 45 degrees (see Figure
3).

Figure 3: Roof above a polygon

The requirement that p is inside the polygon translates to the requirement that
p is “under the roof” in the sense that it is below all the n planes. Because of the
45-degree angles, the vertical distance of any point to the roof (i.e. to the lowest
plane above the point) equals the smallest distance to any edge. This means,

3

the point p we are looking for is located under the highest point of the roof. To
find this highest point is nothing else than a linear program in three variables
x1, x2, x3, the latter being the height coordinate: we need to maximize x3 under
the constraint that the point (x1, x2, x3) lies under the roof, i.e. below all the n
planes. This condition boils down to a system of n linear inequalities.

Exercise 1.3 This is simply by induction. Consider first the recurrence relation

t(δ, k) = 0,

t(n, 0) = n − δ,

t(n, k) ≤ t(n − 1, k) + 1 +
k

n − δ
t(n, k − 1), n > δ, k > 0.

The claim is that

t(n, k) ≤
k∑

j=0

1

j!
k!(n − δ),

which is obviously true for n = δ (where we get 0) and k = 0 (where we get
n − δ). For n > δ, k > 0 we inductively get

t(n, k) ≤ t(n − 1, k) + 1 +
k

n − δ
t(n, k − 1)

≤
k∑

j=0

1

j!
k!(n − 1 − δ) + 1 +

k

n − δ

k−1∑
j=0

1

j!
(k − 1)!(n − δ)

=

k∑
j=0

1

j!
k!(n − 1 − δ) + 1 +

k−1∑
j=0

1

j!
k!

=

k∑
j=0

1

j!
k!(n − 1 − δ) +

k∑
j=0

1

j!
k!

=

k∑
j=0

1

j!
k!(n − δ).

The second bound of
t(n, k) ≤ 2k(n − δ)

is derived from the recurrence relation

t(δ, k) = 0,

t(n, 0) = n − δ,

t(n, k) ≤ t(n − 1, k) + 1 +
1

n − δ

min(k,n−δ)∑
i=1

t(n, k − i), n > δ, k > 0.

4

As before, for n = δ or k = 0, the bound holds with equality. For n > δ, k > 0
we inductively get

t(n, k) ≤ t(n − 1, k) + 1 +
1

n − δ

min(k,n−δ)∑
i=1

t(n, k − i)

≤ 2k(n − 1 − δ) + 1 +
1

n − δ

min(k,n−δ)∑
i=1

2k−i(n − δ)

≤ 2k(n − 1 − δ) + 1 +

k∑
i=1

2k−i

= 2k(n − 1 − δ) + 2k

= 2k(n − δ).

Exercise 1.4 This is also an easy induction, applying standard binomial coef-
ficient identities.
For k = 0, the bound holds. For k > 0, we inductively get

f(k) = f(k − 1) +
1

k

k∑
i=1

f(k − i)

=

k−1∑
i=0

1

i!

(
k − 1

i

)
+

1

k

k∑
i=1

k−i∑
j=0

1

j!

(
k − i

j

)

=

k−1∑
i=0

1

i!

(
k − 1

i

)
+

1

k

k−1∑
j=0

1

j!

k−j∑
i=1

(
k − i

j

)

=

k−1∑
i=0

1

i!

(
k − 1

i

)
+

1

k

k−1∑
j=0

1

j!

k−1∑
i=j

(
i

j

)

=

k−1∑
i=0

1

i!

(
k − 1

i

)
+

1

k

k−1∑
j=0

1

j!

(
k

j + 1

)
.

The latter equation uses the “summation on upper index” identity

m∑
i=0

(
i

j

)
=

(
m + 1

j + 1

)
.

Using the absorption identity

1

k

(
k

j + 1

)
=

1

j + 1

(
k − 1

j

)
,

this further gives

5

f(k) =
k−1∑
i=0

1

i!

(
k − 1

i

)
+

k−1∑
j=0

1

(j + 1)!

(
k − 1

j

)

=
k−1∑
i=0

1

i!

(
k − 1

i

)
+

k∑
i=1

1

i!

(
k − 1

i − 1

)
.

We can extend the first sum to i = k and the second sum to i = 0 without
changing the value; this means, we get

f(k) =
k∑

i=0

1

i!

(
k − 1

i

)
+

k∑
i=0

1

i!

(
k − 1

i − 1

)

=
k∑

i=0

1

i!

((
k − 1

i

)
+

(
k − 1

i − 1

))

=
k∑

i=0

1

i!

(
k

i

)
,

by the most basic binomial coefficient identity.

Exercise 1.5 Let’s start with the number of basis computations. By con-
struction of the toy LP, every basis computation replaces some constraint hi ≡
{xi ≥ 0} with its counterpart h̄ ≡ {xi ≥ 1}. Because we start with the basis
C = {h1, . . . , hd} and end up with the basis Copt = {h̄1, . . . , h̄d}, the algorithm
performs exactly d basis computations, regardless of the random choices.
Now let t(d) be the expected number of violation tests performed with start
basis C = {h1, . . . , hd}. In the first recursive call, we have a subproblem which
is isomorphic to a toy LP of dimension d − 1. The basis we get back is C ′ =
{h̄1, . . . , h̄i−1, hi, h̄i+1, . . . , h̄d}, where h̄i was the constraint removed for the first
recursive call. Then there is one violation test, followed by a basis computation
which already gives the optimal basis C ′′ = {h̄1, . . . , h̄d}. It is easy to see that
the second recursive call then performs exactly d violation tests, one for every
level of recursion.
Thus we get

t(0) = 0,

t(d) = t(d − 1) + 1 + d.

This solves to

t(d) = (d + 1) + d + . . . + 2 =

(
d + 2

2

)
− 1.

Again, this number does not depend on the random choices performed by the
algorithm.

6

Exercise 1.6 First of all, the algorithm still works. The only problem could be
the return statement in case of G = C. But the invariant is that C is always a
basis of some F ⊆ G. Thus, if G = C, C must be the basis of G, and it is correct
to return C in this case.
To see that the linear runtime still holds, let us reconsider the recurrence relation
for the expected runtime. Lemma 2 gives a bound for the expected number of
violation tests in the basis-regular case. For the general case, the recurrence has
to be changed. As it turns out, t(δ, k) is no longer zero in any case. But t(δ, k)
can be no more than δ2k: δ − k out of the δ elements are already fixed and
will never leave the basis again (see the definition of hidden dimension). This
means, at most 2k bases will ever be considered in the call, each of which might
be followed by up to d violation tests.
This gives the recurrence relation

t(δ, k) ≤ δ2k,

t(n, 0) = n − δ,

t(n, k) ≤ t(n − 1, k) + 1 +
1

n − δ

min(k,n−δ)∑
i=1

t(n, k − i).

We claim that
t(n, k) ≤ 22kδ(n − δ + 1),

which is still linear in n. This is not the best possible bound, but an easily
provable one.
For n = δ or k = 0 the bound holds, and for n > δ, k > 0 we inductively get

t(n, k) ≤ 22kδ(n − δ) + 1 + δ
1

n − δ

k∑
i=1

22(k−i)(n − δ + 1)

≤ 22kδ(n − δ) + 1 + δ
n − δ + 1

n − δ
(22k−1 − 1)

≤ 22kδ(n − δ) + δ
n − δ + 1

n − δ
22k−1

≤ 22kδ(n − δ) + δ22k

= 22kδ(n − δ + 1).

Exercise 1.7 The combinatorial dimension becomes d+1 instead of d. Because
by Helly’s Theorem, if the problem on constraint set G is infeasible (meaning
w(G) = ∞), there is a subset C of at most d+1 constraints which already defines
an infeasible problem (meaning w(C) = ∞). Figure 4 (“inverted simplex”) shows
that less than d + 1 constraints won’t do in general.
The problem is no longer basis-regular, because some sets G might define fea-
sible subproblems (and have bases of size d), while others may define infeasible
subproblems with bases of size d + 1.

7

Figure 4: Infeasible LP on d + 1 constraints

Exercise 1.8 The smallest enclosing axis-parallel square problem is actually
a linear programming problem in disguise. With variables x, y, α (representing
lower left corner and side length), it can be formulated as

minimize α
subject to xi ≤ x ≤ xi + α, . . . i = 1, . . . , n

yi ≤ y ≤ yi + α, . . . i = 1, . . . , n.

This means, the problem can be made local just like LP, by slightly perturbing
the objective function. Equivalently, one looks for the smallest square covering
all the points that has the lexicographically smallest lower left corner.
The closest pair problem cannot be made into an LP-type problem with constant
combinatorial dimension, so it is a truly non-local problem. The reason is that
there is an Ω(n log n) lower bound for that problem in the algebraic decision tree
model. As an LP-type problem, it would have to be solvable in O(n) time.

8

Solutions to Exercises for Part II

Exercise 2.1 To rewrite the LP on page 27 into that on page 28, we substitute

y1 := x1,

yi := xi − εxi−1, i = 2, . . . , d.

Then the d constraints

0 ≤ x1,

εxi−1 ≤ xi

become nonnegativity constraints

yi ≥ 0, i = 1, . . . , d.

To rewrite the other constraints, one easily proves by induction that

xi =
i∑

j=1

εi−jyj, i = 1, . . . , d, (1)

which yields

xi + εxi−1 = yi + 2

i−1∑
j=1

εi−jyj, i = 2, . . . , d.

In other words, the constraints

x1 ≤ 1,

xi ≤ 1 − εxi−1, i = 2, . . . , d

become

yi + 2

i−1∑
j=1

εi−jyj ≤ 1, i = 1, . . . , d.

The objective function xd translates to the desired form via (1), with the only
difference that on page 28, we want to maximize, while on page 27, we started
with a minimization problem.
Both versions are equivalent, though: substituting xd := 1 − zd, transforms the
LP on page 27 into

minimize 1 − zd

subject to
0 ≤ x1 ≤ 1
εxi−1 ≤ xi ≤ 1 − εxi−1, i = 2, . . . , d − 1,
εxd−1 ≤ zd ≤ 1 − εxd−1,

which has the same feasible region, but now the last coordinate zd gets maximized.

1

Exercise 2.2 Starting with the LP on page 28, the simplex method introduces
slack variables

si := 1 − xi − 2

i−1∑
j=1

εi−jxj , i = 1, . . . , d, (2)

Then the z-row of the initial tableau (with the original variables being nonbasic)
reads as

z =
d∑

j=1

εd−jxj

= xd + εxd−1 + · · · + εd−1x1.

The cube structure implies that for every j, exactly one of the variables xj and
sj is nonbasic (we cannot have xj = sj = 0 for ε < 1/2). Let’s analyze how the
z-row changes when xi is replaced with si for some i.
When we apply (2), we get

z = xd + · · ·+ εd−i−1xi+1 + εd−ixi + εd−i+1xi−1 + · · · + εd−1x1

= xd + · · ·+ εd−i−1xi+1 + εd−i

(
1 − si − 2

i−1∑
j=1

εi−jxj

)
+ εd−i+1xi−1 + · · · εd−1x1

= xd + · · ·+ εd−i−1xi+1 +

(
εd−i − εd−isi − 2

i−1∑
j=1

εd−jxj

)
+ εd−i+1xi−1 + · · · εd−1x1

= xd + · · ·+ εd−i−1xi+1 − εd−isi − εd−i+1xi−1 − · · · − εd−1x1 + εd−i.

This means, the coefficient of the j-th variable (xj resp. sj) keeps its absolute
value but flips its sign for j ≤ i.
The same happens when we replace another variable xk by sk, where k < i (i.e.
we replace a variable further to the right in the z-row as we have written it down
in the previous equations): again, the coefficient of xj resp. sj flips its sign for
j ≤ k, but its absolute value stays the same.
The pattern we get when substituting xj ’s by sj’s from left to right is therefore
the following: the absolute value of the coefficient of the j-th variable is always
εd−j, and its sign is determined by the number of s-variables to the left of it
(including position j). If this number is even, the sign is positive, otherwise the
sign is negative.
If we associate positive signs with the digit 1 and negative signs with the digit
zero, we get a binary number representing the current z-row (in the beginning,
it’s the number 11. . . 1). A pivot step choses a variable at some position j with
positive coefficient and replaces it with its partner variable. By the above pattern,
this flips the signs of all coefficients further to the right, including the coefficient
at position j. In the binary number representation, this is exactly the behavior
of game B, when the variable with positive coefficient is chosen among all the
candidates at random.

2

Exercise 2.3 Bland’s rule leads to the worst-case behavior, if the ordering of
the variables is

x1, s1, x2, s2, . . . , xd, sd.

Namely, in the z-row ordering of the previous solution, the rule then always
chooses the rightmost variable with positive coefficient as the entering variable.
In the binary number representation this means that in every step the rightmost
one-entry gets flipped (together with all the zero-entries to the right of it). In
other words, the number gets smaller by exactly one in every step. Starting with
11 . . . 1 thus generates the worst possible number of 2d − 1 pivot steps.

Exercise 2.4 If we had ε > 1, Dantzig’s rule (choose the variable with largest
positive coefficient) would behave exactly like Bland’s rule with the variable or-
dering as before: namely, as we have seen, the coefficient of the j-th variable xj

resp. sj is always of absolute value εd−j , which means that the variables are nicely
ordered from left to right by incresing absolute coefficient in case of ε > 1.
Unfortunately, the problem is no longer a cube for such values of ε—for this we
needed ε < 1/2. It can happen that there are feasible solutions with xi = si = 0
for some i, in which case the pattern developed above is messed up.
To fix this, we manipulate the right-hand sides of the problem to make it a cube
again. Changing the input to

maximize xd + εxd−1 + · · · +εd−1x1

subject to xi + 2εxi−1 + · · · +2εi−1x1 ≤ ε2i,
i = 1, . . . , d

x1, x2, . . . , xd ≥ 0

will do it. What we need is that for any i, we can independently choose one of
the variables xi or si as nonbasic (meaning it has value zero), and the other one
will automatically be basic. For this we compute

si + xi = ε2i − 2
i−1∑
j=1

εi−jxj

≥ ε2i − 2
i−1∑
j=1

εi−jε2j

= ε2i − 2
i−1∑
j=1

εi+j

> ε2i − 2

2i−1∑
k=0

εk

= ε2i − 2
ε2i − 1

ε − 1

3

> 0,

if ε ≥ 3. This means xi = 0 (nonbasic) implies si > 0 (basic) and vice versa.

Exercise 2.5 This is a nice application of double counting. For every j, we
count the number of pairs (G, B), where |G| = δ + j, w(G) > −∞ and B is a
basis of G. On the one hand, there are fj such pairs, where fj is the number
of possible G’s, i.e. subsets of H with δ + j elements that contain at least one
element of h, h̄ for every h ∈ H . This follows from the assumption that every set
G has a unique basis B.
Let’s consider a fixed basis B. How many sets G, |G| = δ + j are there such that
B is a basis of G? By the LP-type axioms, B is a basis of G if and only if B has
no violating constraints in G. Assume B has k violating constraints in total.
Then G has B as a basis if and only if its j extra elements (the ones that don’t
belong to B) are chosen from the δ − k constraints not violating B. There are(

δ − k

j

)
possibilities to do this. If hk denotes the number of bases with k violating con-
straints, then the overall number of pairs (G, B) for a fixed j is

fj =
∑

k

hk

(
δ − k

j

)
=
∑

k

hδ−k

(
k

j

)
. (3)

Remember that it’s the hk we are trying to compute. As a first step, we can
evaluate the fj : to choose a G that is counted for fj, we must specify j pairs h, h̄
representing all elements in G whose “partner” is also in G. There are(

δ

j

)
possibilities to do this. For every such choice, we have exactly

2δ−j

ways to pick the remaining δ − j elements without partner, one from every re-
maining pair of elements. This means, we get

fj =

(
δ

j

)
2δ−j .

Now that we know the fj , we can consider (3) as a system of δ+1 linear equations
(one for every 0 ≤ j ≤ δ) in δ + 1 unknowns h0, . . . , hδ, and we might hope for a
unique solution.

4

Indeed, there is such a solution. To get it without grinding, we apply the following
generating function trick. Define

F (x) :=
∑

j

fjx
j ,

H(x) :=
∑

k

hδ−kx
k. (4)

We are going to develop a closed form for H(x) from which we can read off the
coefficients hδ−k. By (3) we can write

F (x) =
∑

j

fjx
j

=
∑

j

∑
k

hδ−k

(
k

j

)
xj

=
∑

k

hδ−k

∑
j

(
k

j

)
xj

=
∑

k

hδ−k(x + 1)k

= H(x + 1).

Furthermore, we get

F (x) =
∑

j

(
δ

j

)
2δ−jxj

= (x + 2)δ,

which gives

H(x) = F (x − 1)

= (x + 1)δ

=
∑

k

(
δ

k

)
xk.

By comparing coefficients with (4), we obtain

hδ−k =

(
δ

k

)
=

(
δ

δ − k

)
= hk,

which finishes the proof.

5

The proof exhibits a more general pattern, known as the inversion formula. If
we have sequences (aj) and (bk), related by the formula

aj =
∑

k

(
k

j

)
bk,

then we can express the bk by the aj via the formula

bk =
∑

j

(−1)j−k

(
j

k

)
aj.

To prove this, we define as above

A(x) :=
∑

j

ajx
j ,

B(x) :=
∑

k

bkx
k,

and observe that A(x) = B(x + 1) holds, which in turn yields

B(x) = A(x − 1)

=
∑

j

aj(x − 1)j ,

=
∑

j

aj

∑
k

(
j

k

)
(−1)j−kxk

=
∑

k

(∑
j

(−1)j−k

(
j

k

)
aj

)
xk,

from which the formula for the bk follows by comparing coefficients.

Exercise 2.6 To construct the dual, we write the Simplex LP in the form

min −cT x (d variables)
s.t. Ax ≥ b (d + 1 constraints),

where

A =

1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 0 1
−1 · · · −1 −1

 , b = (0, . . . , 0,−1)T .

Then the dual problem has d + 1 variables y1, . . . , yd, and reads as

6

max −yd+1

s.t. yi − yd+1 = −ci, i = 1, . . . , d,
y ≥ 0.

The feasible region consists of the line

(y1, . . . , yd+1)
T = (−c1, . . . ,−cd, 0)T + λ(1, . . . , 1)T ,

intersected with the positive orthant {y ≥ 0}. It is therefore of dimension 1.
The optimal solution of the primal problem is maxi ci, achieved by setting xi = 1
and xj = 0, j 6= i. No larger value is achievable, because any objective function
value attained over the feasible region is a convex combination of the ci and
therefore lies between mini ci and maxi ci.
The dual tries to minimize yd+1, but the nonnegativity constraints imply that
yd+1 ≥ ci for all i. The smallest possible value of yd+1 (the optimal solution of
the dual) is therefore yd+1 = maxi ci.

Exercise 2.7
(i) In every round, a random number between 0 and n − 1 is drawn, and the
game ends exactly at the first time the number 0 is drawn. We can model this
as a sequence of independent Bernoulli trials with probability of success equal to
p = 1/n. It is well known that the expected number of trials needed until the
first success is 1/p = n.
So, the expected number of rounds in game A′(n) is exactly n.

(ii) The pivot rule is the following: choose a random nonbasic variable; if its
coefficient in the z-row is positive, let it enter the basis, otherwise ignore the
choice and choose again. Let us call this rule Random-Variable.
A scenario in which this rule makes sense arises when it is expensive to compute
coefficients in the z-row. For example, the LP might be given implicitly, and the
coefficients are computed only on demand. In fact, this is exactly the case in the
revised simplex method where the tableau is not explicitly kept. Counting the
complexity in terms of coefficient evaluations (“violation tests” in the abstract
LP-type settings), Random-variable wins over Random-Edge. The former
performs one violation test per round, leading to an expected total of n violation
tests. Random-Edge on the other hand performs n violation tests per round,
leading to an expected total of nHn = Θ(n log n) violation tests. This means, if
the violation test is for some resaon much more expensive than the pivot step
itself (basis computation), Random-variable will outperform Random-Edge.

7

Recent BRICS Notes Series Publications

NS-00-1 Bernd G̈artner. Randomization and Abstraction — Useful Tools
for Optimization. February 2000. 106 pp.

NS-99-3 Peter D. Mosses and David A. Watt, editors.Proceedings of the
Second International Workshop on Action Semantics, AS ’99,
(Amsterdam, The Netherlands, March 21, 1999), May 1999.
iv+172 pp.

NS-99-2 Hans Ḧuttel, Josva Kleist, Uwe Nestmann, and Ant́onio
Ravara, editors. Proceedings of the Workshop on Semantics of
Objects As Processes, SOAP ’99,(Lisbon, Portugal, June 15,
1999), May 1999. iv+64 pp.

NS-99-1 Olivier Danvy, editor. ACM SIGPLAN Workshop on Par-
tial Evaluation and Semantics-Based Program Manipulation,
PEPM ’99, (San Antonio, Texas, USA, January 22–23, 1999),
January 1999.

NS-98-8 Olivier Danvy and Peter Dybjer, editors. Proceedings of
the 1998 APPSEM Workshop on Normalization by Evaluation,
NBE ’98 Proceedings,(Gothenburg, Sweden, May 8–9, 1998),
December 1998.

NS-98-7 John Power.2-Categories. August 1998. 18 pp.

NS-98-6 Carsten Butz, Ulrich Kohlenbach, Søren Riis, and Glynn
Winskel, editors. Abstracts of the Workshop on Proof Theory
and Complexity, PTAC ’98,(Aarhus, Denmark, August 3–7,
1998), July 1998. vi+16 pp.

NS-98-5 Hans Ḧuttel and Uwe Nestmann, editors. Proceedings of the
Workshop on Semantics of Objects as Processes, SOAP ’98,(Aal-
borg, Denmark, July 18, 1998), June 1998. 50 pp.

NS-98-4 Tiziana Margaria and Bernhard Steffen, editors.Proceedings
of the International Workshop on Software Tools for Technol-
ogy Transfer, STTT ’98,(Aalborg, Denmark, July 12–13, 1998),
June 1998. 86 pp.

NS-98-3 Nils Klarlund and Anders Møller. MONA Version 1.2 — User
Manual. June 1998. 60 pp.

NS-98-2 Peter D. Mosses and Uffe H. Engberg, editors.Proceedings
of the Workshop on Applicability of Formal Methods, AFM ’98,
(Aarhus, Denmark, June 2, 1998), June 1998. 94 pp.

