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Preface

The π-calculus [MPW92] is a name-passing calculus that allows the descrip-
tion of distributed systems with a dynamically changing interconnection
topology. Name communication, together with the possibility of declaring
and exporting local names, gives the calculus a great expressive power. For
instance, it was shown that process-passing calculi, which express mobility
at higher order, can be encoded naturally in π-calculus [San93a] .

Since its inception, the π-calculus has proliferated into a family of calculi
differing slightly from one another either in the communication paradigm
(polyadic vs monadic, asynchronous vs synchronous) or in the bisimulation
semantics (labelled vs unlabelled, late vs early vs open vs barbed vs ...).

These short notes present a collection of the labelled strong semantics3 of
the (synchronous monadic) π-calculus. The notes could not possibly replace
any of the standard references listed in the Bibliography. They are an attempt
to group together, using a uniform notation and the terminology that got
assessed over the last years, a few definitions and concepts otherwise scattered
throughout the π-calculus literature.

I would like to thank James J. Leifer for his careful reading of the manu-
script, and the helpful suggestions he provided.

3The definition of weak late semantics requires some ingenuity. But for this case, the
weak corresponding of each of the semantics we present can be easily defined by mimicking
the standard CCS-like pattern.
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The π-Calculus: Notes on Labelled Semantics

1 Preliminaries

The most primitive notion in the π-calculus is that of naming: data val-
ues communicated along channels (names) are themselves channels (names).
As naming is distributed and involved in communication, the π-calculus
builds on traditional process algebras (CCS [Mil89], MEIJE [AB84], ACP
[BK84, BK85], CSP [BHR84, Hoa85]) in a precise sense. It allows one to
specify the behaviour of distributed systems in which the interaction among
independent and cooperating components may cause a dynamic change of
the single partners acquaintances.

As an example, the π-calculus permits us to describe in an elegant and
natural way common behaviours of, e.g., operating systems. Think of the
cooperation in the sharing of a common resource such as a printer. When-
ever the printer manager is specified by a π-calculus agent, misbehavings
in the communication protocol are prevented by the fact that the printer-
process can settle down, by-need, private links with each client-process. In
CCS an analogous scenario could at best be described by resorting to non-
determinism and setting up in advance as many distinct port names as the
number of potential requests to the printer.

The name-passing interaction paradigm is also responsible for the seman-
tic enrichment of the π-calculus over synchronization process calculi. The
parameter y of the input action x(y) is a placeholder for something to be
received. Then, depending on the operational intuition about input actions,
the π-calculus semantics naturally proliferate (at least) in two distinct fam-
ilies: early and late [MPW93]. The early paradigm considers the act of
committing on the input channel and the choice of the actual parameter as
one single atomic event [MPW93]. The late view interprets the derivative of
an inputting process as a function of the received name [MPW92]. Besides
the early and the late semantics, other paradigms become natural as well,
building on the intuition that name instantiation can be delayed more and
more (see, for instance, open bisimulation [San96]).

The expressive power of the π-calculus is largely confirmed by the fact
that it allows us to encode, usually in a fully abstract way:

• values and data structures [MPW92, Mil92b];

• the λ-calculus [Mil92a, San94a, San97];

• process-passing interaction paradigms [San93a, San93b, Ama93];
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The π-Calculus: Notes on Labelled Semantics

• concurrent object-oriented languages [Jon93, Wal95, LW95a];

• locality and causality dependencies [San94b, BS94] which are typical
of true concurrent semantics (see, for example [DDNM90, BCHK93,
NC95]).

Also, the polyadic version of the calculus [Mil92b] was shown to be suit-
able for reasoning about concurrent typing disciplines (see, e.g., [Gay93,
PS93, VH93, LW95b]). Eventually, the π-calculus is being used as theoretical
foundation in the design of experimental concurrent programming languages
[PT95, FG96].

2 Syntax

The π-calculus allows the description of process behaviours in terms of the
actions they can perform, or equivalently, of the interactions they may be
involved in. Processes are then given an operational interpretation as points
of a labelled transition system. More abstract semantics are obtained by in-
troducing equivalences which identify those processes that behave the same
w.r.t. fixed notions of observation, i.e. of interaction with a possible external
observer. These last semantics are defined either operationally as bisimula-
tion games, or axiomatically by a set of appropriate algebraic laws.

In the following we will recall the π-calculus syntax. Operational and
bisimulation semantics will be addressed in later sections.

Let N be a denumerably infinite set of names (ranged over by x, y, z,
. . . ). The syntax of π-calculus processes (ranged over by P , Q, . . . ) is defined
by the following grammar:

P ::= nil inaction

| α.P prefix

| [x = y]P match

| P + P non-deterministic choice

| P | P parallel composition

| νy P restriction

| !P replication or bang

2



3. Labelled semantics

A CCS-like precedence relation among operators is assumed, e.g. unary
operators bind more than binary ones. Prefixes α are given by:

α ::= τ silent action

| x(y) input action

| xy output action

The prefix x(y) means ‘input some name along the link named x and call
it y’. It is called bound input , recording that brackets act as formal binder.
Namely the prefix x(y) in x(y).P binds the free occurrences of y in P in the
same way as in the λ-calculus λy.t binds the name y in t.

The prefix xy means ‘output the name y along the link named x’. The
prefix xy is called free output , as opposed to the bound output x(y). This
last action is not available at the syntactic level and denotes the ability of
communicating the private name y. Either in x(y) or in xy or in x(y), the
name x is said the subject, while y is called the object or parameter. Also, for
the bound input x(y), the name y is sometimes referred to as a placeholder .

Besides the prefix x(y), another kind of formal binder is the restriction
operator νy in νy P . If a name is not bound, it is called free. The set of the
names which occur free in an action α (agent P ) is written fn(α) (fn(P )).
Dually, the set of bound names is written bn(α) (bn(P )). Sometimes fn(P,Q)
is used as a shorthand for fn(P ) ∪ fn(Q). The set of the names of an action
α (agent P ) is defined to be the union of its free and bound names and it
is written n(α) (n(P )). Obviously, the unobservable action τ is such that
n(τ) = ∅.

The relation of α-convertibility, denoted by ≡α, is defined in the standard
way. Syntactic identity of P and Q is written P = Q.

Sometimes we freely omit from process syntax all the unnecessary details
(e.g. the trailing ‘. nil’).

3 Labelled semantics

The π-calculus semantics often resorts to name substitutions (ranged over
by σ, σ′, . . . ). Name substitutions are functions from N to N defined
almost everywhere as identities. Sometimes, when the substitution σ dif-
fers from the identity for the names in { x1, . . . , xn }, σ is simply written
{ x1σ/x1, . . . , xnσ/xn }. The term Pσ denotes the process obtained from P by
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The π-Calculus: Notes on Labelled Semantics

Tau τ.P
τ−→ P

Inp x(y).P
x(w)−→ P {w/y} w /∈ fn(νy P ) Out xy.P

xy−→ P

Match
P

α−→ P ′

[x = x]P
α−→ P ′

Sum
P

α−→ P ′

P +Q
α−→ P ′

Par
P

α−→ P ′

P | Q α−→ P ′ | Q
bn(α) ∩ fn(Q) = ∅

Com
P

xy−→ P ′ Q
x(z)−→ Q′

P | Q τ−→ P ′ | Q′ {y/z}
Close

P
x(w)−→ P ′ Q

x(w)−→ Q′

P | Q τ−→ νw (P ′ | Q′)

Open
P

xy−→ P ′

νy P
x(w)−→ P ′ {w/y}

y 6= x, w /∈ fn(νy P ′) Res
P

α−→ P ′

νy P
α−→ νy P ′

y /∈ n(α)

Bang
P |!P α−→ P ′

!P
α−→ P ′

Table 1: The π-calculus operational semantics

simultaneously substituting, for each x, any free occurrence of x in P by xσ,
with change of bound names to avoid name clashes. So, for instance, in or-
der to prevent the capture of the name y, the application of the substitution
{y/x} to the process νy xy. nil results in νw yw. nil with w 6= y.

The π-calculus operational semantics is defined inductively, in the style of
[Plo81], by the rules shown in Tab. 1 together with additional symmetric rules
for the binary operators of non-deterministic choice and parallel composition.
In Tab. 1 the transition label α stands for either the perfect event τ , or a
bound input, or an output action, either free or bound.

The rules Tau, Out, Sum, Par, Com, and Res are similar to the corre-
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3. Labelled semantics

sponding rules of CCS.
The side condition of the rule Par merits some discussion. Briefly, it is

intended to avoid the name captures which could arise from the joint applica-
tion of the rules for asynchronous parallel composition and communication.
For instance, by violating the side condition of Par, the following incorrect
behaviour could be inferred:

Q = x(y).y
x(y)−→ y

Q | R = x(y).y | y x(y)−→ y | y S = xz.z
xz−→ z

(Q | R) | S τ−→ ( (y | y) {z/y} | z ) = (z | z) | z

The expected behaviour of (Q | R) | S is instead (Q | R) | S τ−→ (z | y) | z.
This reflects the intuition that the transmission of z must not cause the
substitution of the name y in R. In fact, as in the λ-calculus, the rightmost
occurrence of y in x(y).y is just a nameless pointer to the binder (y) of the
prefix x(y). So, it is in any respect distinct from the name y occurring in R.

The fact that the process Q | R = x(y).y | y of the above example can
only be allowed to perform input moves x(w), with w 6= y, justifies the

definition of the axiom Inp. A CCS-like axiom of the shape x(y).P
x(y)−→ P

would deadlock Q in the parallel context ( | R). Analogously, choosing

any other suitable name z and defining the axiom as x(y).P
x(z)−→ P {z/y}

would stop Q in the parallel context ( | z). That is why Inp can be applied
infinitely many times to the same process. More generally, that is why the
π-calculus transition system is such that whenever a process P may perform
a bound action α (cf. Inp and Open), it can also perform infinitely many
other actions differing from α only for the identity of the bound name.

The matching operator is used to test names for equality. Process [x =
y]P behaves like P if x and y are the same name, it behaves like the inactive
process otherwise.

The restriction operator inherits very little from CCS. Analogously to
local variable declarations of block-structured languages, the restriction of
y on top of P declares a new unique name for use in P . In view of its
privacy, the name y cannot be used as communication subject. Anyway y is
not necessarily destined to remain local to P . It can be exported outside by
means of an output action. The rule Open, while removing the restriction
operator, transforms the free output action xy into the bound output action
x(w), where w is a new name. The information that w refreshes a name that
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was private is directly represented in the action, where w appears enclosed
between brackets.

The joint use of the rules Open and Close causes a so-called extrusion.
A bound output combines with an input action, and once the bound name
has been received, a restriction is put on top of the synchronizing processes,
meaning that the name is still private although its scope has grown.

The replication (or bang) operator ‘!’ is used to express infinite be-
haviours. The rule for the replication operator suggests that process !P
can be thought of as the parallel composition of as many instances of P
as desired. In fact, whatever is the action α that P |!P can perform, the
replication !P can execute α as well.

As in the case of CCS-like languages, processes are quotiented by strong
or weak equivalence relations defined as bisimulation games. In the following
we recall the strong versions of late [MPW92], and early [MPW93], and open
[San96] semantics.

3.1 Late semantics

The strong bisimulation game between the CCS-like processes P and Q re-
quires any move of P to be matched by a move of Q, and vice-versa, with the
derivatives P ′ and Q′ able to play a similar game. This notion of behavioural
equivalence does not fit with naming, the critical case being that of input
actions.

The parameter of any input action is a placeholder for something to be
received, and can become substituted by an arbitrary name. Then, mimicking
an input action requires some care of the degree of non-determinism in the
actual instantiation of the placeholder.

The late semantics [MPW92] gives input actions a functional operational
intuition. When inputting, a process becomes a function of the actual trans-
mitted name. So, the input clause of the definition of strong late bisimulation
claims that the derivatives of the inputting processes continue to simulate
for all instantiations of the formal parameter.

Definition 1 A binary symmetric relation S is a late bisimulation if P S Q
implies that

• if P
α−→ P ′ with α 6= x(y) and bn(α) /∈ fn(P,Q), then for some Q′,

Q
α−→ Q′ and P ′ S Q′

6



3. Labelled semantics

• if P
x(y)−→ P ′ with y /∈ fn(P,Q), then for some Q′, Q

x(y)−→ Q′ and, for all
w, P ′ {w/y} S Q′ {w/y}

P is late bisimilar to Q, written P ∼̇L Q, if P S Q for some late bisimulation
S. �

Example 2 Let P = x(y).τ. nil+x(y). nil and Q = P +x(y).[y = z]τ. nil.
Then P 6∼̇L Q, the reason being that P cannot properly match the transition

Q
x(y)−→ [y = z]τ. nil. A straightforward way to see this is rewriting the

behaviours of the derivatives of Q and of P as functions of the name y.
The function λy.if y = z then τ. nil else nil (which interprets process
[y = z]τ. nil) is distinct from both the constant function λy.τ. nil (given rise

to by the move P
x(y)−→ τ. nil), and the constant function λy. nil (originated

by P
x(y)−→ nil). �

Equational theories for strong late bisimilarity, which are shown to be com-
plete over finite processes, are presented both in the original paper on the
π-calculus [MPW92], and in [PS95]. The two axiomatizations essentially dif-
fer for the use in [PS95] of a mismatching construct which allows to test for
name inequality. The mismatching [x 6= y]P behaves just the opposite of
[x = y]P , i.e. as the conditional ‘if x 6= y then P else nil’. Mismatch-
ing does not preserve the following monotonicity property of process action
capability w.r.t. name substitutions:

if P
α−→ P ′ then Pσ

β−→ P ′′ with β.P ′′ ≡α (α.P ′)σ

For instance, [x 6= y]τ
τ−→ but not ([x 6= y]τ) {x/y} τ−→. The above property

is crucial to the π-calculus mathematical theory. So, the mismatching oper-
ator cannot be added with the π-calculus syntax in a completely harmless
way. Nevertheless, the use of mismatching gives the axiom system of [PS95]
great generality and flexibility, e.g. early semantics can be characterized by
adding the late system with one single law.

Late bisimulation is an equivalence relation, but is not preserved by sub-
stitution of names, and then by input prefix. For this reason it is denoted by
a dotted relational symbol, and sometimes referred to as a ground relation.

Example 3 The agent P = [x = y]xx. nil, having no outgoing transition,
is late bisimilar to the inactive process Q = nil. This is not the case after
substituting x for y, e.g. after putting x(y) on top of P and of Q. �

7
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Late full congruence (also called non-ground late bisimilarity) is obtained by
closing the ground equivalence over all name substitutions.

Definition 4 P and Q are late congruent, written P ∼L Q, if Pσ ∼̇L Qσ
for all substitutions σ. �

A complete axiom system for late congruence of finite processes appears in
[PS95]. Just like the equational theory for ground bisimilarity which was
investigated in the same paper, the system makes use of the mismatching
constructor.

3.2 Early semantics

The fact that names can be transmitted in interactions makes the π-calculus
semantics naturally proliferate in two distinct families – late and early – de-
pending on the operational intuition about input actions. We already com-
mented on the late paradigm. It interprets the derivative of the inputting
process as a function of the received name, and then insists for an input
move to be matched by a single input step. The more liberal early view
allows an input transition to be matched by distinct moves, depending on
the actual transmitted parameter. Then, the input clause of early bisimula-
tion [MPW93] only requires that for each received name there is a matching
transition.

Definition 5 A binary symmetric relation S is an early bisimulation if P S
Q implies that

• if P
α−→ P ′ with α 6= x(y) and bn(α) /∈ fn(P,Q), then for some Q′,

Q
α−→ Q′ and P ′ S Q′

• if P
x(y)−→ P ′ with y /∈ fn(P,Q), then for all w there exists Q′ such that

Q
x(y)−→ Q′ and P ′ {w/y} S Q′ {w/y}

P is early bisimilar to Q, written P ∼̇E Q, if P S Q for some early bisimu-
lation S. �

The following example shows that early semantics is strictly coarser than
late.

8



3. Labelled semantics

x(y).P
xw−→ P {w/y}

P
xy−→ P ′ Q

xy−→ Q′

P | Q τ−→ P ′ | Q′

Table 2: Rules for the early π-calculus transition system

Example 6 Let P = x(y).τ. nil+x(y). nil and Q = P +x(y).[y = z]τ. nil.
In Ex. 2 it was shown that P 6∼̇L Q. This is because P cannot match the

transition Q
x(y)−→ [y = z]τ. nil in a late bisimulation game. When the game

is assumed to follow an early strategy, depending on whether w 6= z or not,

process P may react to Q
x(y)−→ [y = z]τ. nil either by P

x(y)−→ nil or by

P
x(y)−→ τ. nil, respectively. Then P ∼̇E Q. �

As for late semantics, early bisimulation is a ground equivalence relation,
namely it is not preserved by input prefix. This can be shown by using the
same processes considered in Ex. 3. Again, the corresponding congruence is
defined by requiring bisimilarity over all substitutions.

Definition 7 P and Q are early congruent, written P ∼E Q, if Pσ ∼̇E Qσ
for all substitutions σ. �

Axiomatizations of early bisimilarity and congruence, which are proved to
be complete over finite processes, are defined in [PS95].

As a final remark about early semantics, we want to point out that the
early paradigm considers the act of committing on the input channel and
the choice of the actual parameter as one single atomic event. Indeed, in
[MPW93] the early semantics was given an alternative characterization in
terms of strong bisimulation over the specialized early transition system. The
early π-calculus transition system is obtained by replacing the Com rule in
Tab. 1 with the two rules in Tab. 2. Contrary to the original π-calculus oper-
ational semantics (referred to as late transition system), the early transition
system makes explicit use of free input actions. The free input xy informally
means ‘input the name y along the link named x’. In this respect free inputs
naturally correspond to the kind of input actions obtained when translating
CCS with value-passing into pure CCS with infinite summations.

Remarkably, coincidence results of the early semantics with the ordinary
CCS-like bisimulation semantics can be stated. In order to show this, we first

9



The π-Calculus: Notes on Labelled Semantics

recall the usual definition of strong bisimulation over a CCS-like transition
relation −−..

Definition 8 Assume −−. to be the operational transition relation between
processes of a given calculus P. A binary symmetric relation S over processes
of P is a strong bisimulation if P S Q implies that

if P
α−−. P ′ then for some Q′, Q

α−−. Q′ and P ′ S Q′

P is strong bisimilar to Q, written P ∼ Q, if P S Q for some strong bisimu-
lation S. �

Lemma 9 [MPW93] Assume that the transition relation and the actions
considered in Definition 8 are, resp., the early transition relation, and actions
α such that bn(α) ∩ fn(P,Q) = ∅. Then ∼̇E = ∼.

Proof: The coincidence of ∼̇E and ∼ can be proved relying on the rela-
tionship between the late and the early transition relations. In the following,
let us denote them by −→L and by −→E, respectively. The result shown in
[MPW93] establishes that, for all α 6= xy, P

α−→
E
P ′ iff P

α−→
L
P ′. Also, it

allows one to infer that the following two requirements on any relation S are
equivalent:

∀P, P ′, Q, x, w : if P
xw−→E P

′ then ∃Q′ : Q
xw−→E Q

′ and P ′ S Q′

∀P, P ′′, Q, x, y : if P
x(y)−→L P

′′ then ∀w∃Q′′ : Q x(y)−→L Q
′′ and

P ′′ {w/y} S Q′′ {w/y} �

3.3 Open semantics

The open bisimulation [San96] builds on the intuition of moving name in-
stantiation inside the definition of bisimulation, so to immediately capture
the flavour of non-groundness.

Definition 10 A binary symmetric relation S is an open bisimulation if
P S Q implies that for all name substitutions σ

if Pσ
α−→ P ′ with bn(α) /∈ fn(Pσ,Qσ), then for some Q′, Qσ

α−→ Q′ and

P ′ S Q′

10



3. Labelled semantics

∼O

||yyyyyyyy

∼L

||yyyyyyyy

��

∼E

��

∼̇L

}}{{{{{{{

∼̇E

Table 3: Relationship among late, early, and open semantics

P is open bisimilar to Q, written P ∼O Q, if P S Q for some open bisimu-
lation S. �

The open paradigm delays the late view about input actions. Precisely, it
delays the instantiation of the input formal parameter until it is really needed.

Example 11 Let the processes P and Q be defined as follows.

P = x(y).(τ.τ + τ)
Q = x(y).(τ.τ + τ + τ.[y = z]τ)

Although P ∼L Q, it holds that P 6∼O Q. This depends on the fact that P

cannot properly react to the game Q
x(y)−→ τ−→ Q′ = [y = z]τ . If P chooses to

move by executing the transitions P
x(y)−→ τ−→ P ′ = nil, then the substitution

{z/y} is such that Q′ {z/y} 6∼O P
′ {z/y} = nil. The only other possibility for

P is moving by P
x(y)−→ τ−→ P ′′ = τ . In this case the identity substitution is

sufficient to discriminate between Q′ and P ′′. �

The definition of open bisimulation, involving a universal quantification over
substitutions, requires at each step an infinite number of checks. Neverthe-
less, a more efficient characterization of open bisimilarity was proposed. It
is based on a specialized transition system. Labels are pairs (M,α), where
M collects the conditions on names which are requested for action α to be

11



REFERENCES

performed. Intuitively, M represents the minimal requirement on substitu-

tions to ensure the firing of action α. For instance [x = y]α.P
([x=y],α)−→ P .

The specialized notion of bisimulation involves (essentially) only checks on
the minimal substitution induced by the first component of labels.

A complete axiomatization of open bisimilarity of finite processes is pro-
posed in [San96].

As a final remark, notice that open congruence is strictly finer than late
equivalence, which in turn is finer than early (cf. Ex. 6 and Ex. 11). The re-
lationship among the equivalences considered so far is summarized in Tab. 3,
where any arrow stands for strict inclusion.
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