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Preface

These lecture notes are a polished version of notes from a BRICS PhD course
which I gave in the spring term 1998.

Their purpose is to give an introduction to two major proof theoretic tech-
niques: functional interpretation and (modified) realizability. We focus on
the possible use of these methods to extract programs, bounds and other
effective data from given proofs.

Both methods are developed in the framework of intuitionistic arithmetic in
higher types.

We also discuss applications to systems based on classical logic. We show
that the combination of functional interpretation with the so-called nega-
tive translation, which allows to embed various classical theories into their
intuitionistic counterparts, can be used to unwind non-constructive proofs.

Instead of combining functional interpretation with negative translation one
can also use in some circumstances a combination of modified realizability
with negative translation if one inserts the so-called A-translation (due to H.

Friedman) as an intermediate step.

Acknowledment: I am grateful to the participants of my BRICS PhD
course for helpful and clarifying comments.
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Chapter 1

Introduction: Unwinding proofs

Proof interpretations of the kind we are going to study in these lectures
are tools to extract constructive (computational) data from given proofs by
recursion on the proof.

Such data quite often cannot directly be read off from a proof but are hidden
behind the use of quantifiers.

G. Kreisel was the first to formulate the program of unwinding proofs under
the general question:

‘What more do we know if we have proved a theorem by restricted means
than if we merely know that it is true?’

What do we mean by ‘constructive data’?

E.g.

1) Realizing terms from a proof of an existential theorem A ≡ ∃xB(x)

(closed).

A weaker requirement is to construct a list of terms t1, . . . , tn which are
candidates for A, i.e. such that B(t1) ∨ . . . ∨ B(tn) holds.

More general: If A ≡ ∀x∃y B(x, y), then one can ask for an algorithm

p such that ∀xB(x, p(x)) holds (or – weaker– for a bounding function

b such that ∀x∃y ≤ b(x)B(x, y), if e.g. y ranges over the natural

numbers).
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Chapter 1. Unwinding Proofs

2) weakening of the assumptions used in the proof: e.g. replacing general
assumptions by specific instances of them.

What type of information one can expect (in general) depends of course on
the structure of the theorem A to be proved and the principles used in its
proof.

A first VERY ROUGH division of the structure of a sentence1 A can be made
according to the quantifier complexity of A:

1) A purely universal, i.e. A ≡ ∀xA0(x), where A0 is quantifier-free.2

Such sentences A, sometimes called complete, don’t ask for any witnessing
data. So the problem of extracting data is empty here.

2) A purely existential, i.e. A ≡ ∃xA0(x). We treat this as a special case of

3) A ≡ ∀x∃y A0(x, y). Lets consider the case where x, y ∈ IN and A0 ∈ L(PA)

(here PA denotes first-order Peano arithmetic which we assume to contain

all primitive recursive functions). A0 is decidable (Exercise: A0(x) ∈ L(PA),
then one can construct a primitive recursive function term t such that PA
` ∀x(tx = 0 ↔ A0(x))) and therefore defines a partial recursive function f ,
namely

f(x) :=

 min y[A0(x, y)], if ∃y A0(x, y)

undefined, otherwise.

A just says that f is total recursive.

Questions: How to extract a non-trivial program for f (different from simple

unbounded search) from a proof of A? What is the complexity and the rate
of growth of f if A is proved in a certain theory T ?

Theorems expressing that a set {y ∈ IN : A(y)} ⊆ IN is infinite have the form

∀x ∈ IN∃y ≥ xA(y). Quite often A can be expressed in a quantifier-free way

1As usual a sentence is a closed formula.
2From now on A0, B0, C0, . . . always denote quantifier-free formulas. Instead of a single

variable we may have (here and in the following) also a tuple x = x1, . . . , xn of variables.

2



Chapter 1. Unwinding Proofs

A0 in PA, so that this falls under the general form ∀x∃y B0(x, y), where

B0(x, y) :≡ (y ≥ x ∧ A0(y)).

As an example consider the following

Proposition 1.1 There are infinitely many prime numbers.

The predicate P (x) :≡ ‘x is a prime number’ can be expressed in a quantifier-

free way as a primitive recursive predicate (see e.g. [27],[68]).

Proof 1 (Euclid): Define a := 1 +
∏
p≤x

p prime

p. a cannot be divided by any

prime number p ≤ x. By the decomposition of every number into prime
factors it follows that a contains a prime factor q ≤ a with q > x. 2

¿From this proof one immediately gets the bound g(x) := 1 + x! (≥ 1 +∏
p≤x

p prime

p). By the Stirling formula we obtain

g(x) ∼ 1 + (2πx)
1
2 (x

e
)x = 1 +

√
2π · ex log x−x+ 1

2
log x and hence g(x) ≤ ex log x

for sufficiently large x.

Proof 2 (Euler): Suppose that there are only finitely many prime numbers

p0, . . . , pr (listed in increasing order). One has

∑
0≤α0,...,αr≤n

1
p
α0
0 ·...·p

αr
r

=
(

n∑
i=0

1
pi0

)
· . . . ·

(
n∑
i=0

1
pir

)
< 1

1− 1
p0

· . . . · 1
1− 1

pr

= p0

p0−1
· . . . · pr

pr−1

≤ 2
1
· 3

2
· 4

3
· . . . · pr

pr−1
= pr

(note that this holds for all n ∈ IN).

It follows (using the decomposition into prime numbers) that for all n ∈ IN

n∑
i=1

1

i
≤ pr.

But this contradicts the fact that
∞∑
i=1

1
i

=∞. 2

3



Chapter 1. Unwinding Proofs

Quantitative analysis of Euler’s proof:

We need a quantitative version of ‘
n∑
i=1

1
i

n→∞→ ∞’, more precisely we need a

bound on ∃n(
n∑
i=1

1
i
> pr). It is known that

n∑
i=1

1
i
− ln(n) ↘ C, where C ≈

0.5772... is the so-called Euler-Mascheroni constant. Hence for nr := depr−Ce
we have

nr∑
i=1

1
i
> pr (and this is essentially optimal). From the proof above it

follows that for all n ∈ IN

∑
0≤α0,...,αr≤n

1

pα0
0 · . . . · pαrr

≤ pr.

Hence there must be an i (1 ≤ i ≤ nr) which contains a prime factor p with
pr < p ≤ i ≤ nr. So put together

∃p(p prime ∧ pr < p ≤ depr−Ce).

Applying this argument to all prime numbers p0 < . . . < prx ≤ x we obtain

∀x∃p(p prime ∧ x < p ≤ dex−Ce).

So we can take g(x) := dex−Ce (or an appropriate upper bound of this to

make it computable).

Conclusion: Euler slightly better than Euclid!

Proof 3: Let p1, . . . , pj be the first j primes and define

N(x) := {n ≤ x : n is not divisible by any prime p > pj } . We can express

n ∈ N(x) in the form n = n2
1m where m is ‘squarefree’, i.e. is not divisible

by a square of any prime.

We have m = pb11 · pb22 · . . . · p
bj
j , where bi ∈ {0, 1} . There are 2j possible

exponents and consequently at most 2j different values of m. Also, because

of n1 ≤
√
n ≤ √x, there are not more than

√
x different values of n1. Hence

|N(x)| ≤ 2j
√
x. Now if there were only finitely many primes p1, . . . , pj , then

|N(x)| = x for every x and so 2j
√
x ≥ x for all x which is a contradiction.

4



Chapter 1. Unwinding Proofs

¿From this proof one gets a bound as follows: Let p1, . . . , pj be the first j

primes. Define x := (2j)2 + 1 = 22j + 1. Then 2j
√
x < x. Hence ∃n ≤ x(n is

divisible by some prime p > pj) and so ∃p(p prime ∧ pj < p ≤ 22j + 1).

So we get a bound g(j) := 22j + 1 which is exponential in j (and no longer

in x ≥ pj) which (for large enough j) is a significant improvement (e.g. from

this bound one easily gets the lower bound log x
2 log 2

(for x ≥ 1) for the Euler

π-function π(x) := | {p : p prime ∧ p ≤ x} | whereas the bound from Euclid’s

proof only yields log log x (for x ≥ 2) as a lower bound, see [23] for details).

For still another proof (in fact a variant of proof 3) see the exercise 1.

Discussion:

1) All three proofs provide more information than the mere fact that ‘there
are infinitely many primes’ is true. By making their quantitative con-
tent explicit one can compare them with respect to their numerical
quality.

2) The unwindings of the proofs 1)-3) were straightforward and didn’t re-
quire any tools from logic as guiding principles. However there are more
complicated proofs where the use of proof-theoretic tools turned out to
be decisive in practice(see e.g. [14],[53],[31],[32]). The final verification
of the data extracted will always be again an ordinary mathemati-
cal proof (obtained by a proof-theoretic transformation of the original

proof) which does not rely on any logical meta-theorems (in contrast

to the verification of the general procedure of transformation). This
differs from many model theoretic applications to mathematics where
the provability or the truth in some model of the conclusion is estab-
lished without exhibiting a proof which doesn’t rely on model theoretic
theorems.

3) Already the a-priori information, provided by a general meta-theorem,
that e.g. a certain computable bound must be extractable from a given
proof which is formalizable in a certain system T can be an impor-
tant step in actually finding such a bound even if the latter is carried

5



Chapter 1. Unwinding Proofs

out by ad hoc methods and doesn’t follow closely any proof-theoretic
procedure.

Remark 1.2 If A does not have the form ∀x∃y A0(x, y) right away it may
have so after some logical transformations, e.g.

A :≡ (∃x∀y A0(x, y)→ ∀u∃v B0(u, v))

is logically equivalent to the prenex normal form

Apr :≡ ∀u, x∃v, y(A0(x, y)→ B0(u, v))

so that the reasoning above applies to the Apr.

4) A ≡ ∃x∀y A0(x, y): From a proof of A (even in PL) one cannot (in

general) obtain a realization ∀y A0(t, y) nor a list of candidates such that
n∨
i=1
∀y A0(ti, y) (t, t1, . . . , tn not containing y) holds:

Proposition 1.3 There exists a Σ0
2-sentence A ≡ ∃x∀y A0(x, y) ∈ L(PA)

in the language of Peano arithmetic PA such that there is no list of closed
terms t1, . . . , tk ∈ L(PA) such that

PA `
k∨
i=1

∀y A0(ti, y).

Proof: Take Px :≡ ProvPA(x, 0 = 1) and A0(x, y) :≡ Px ∨ ¬Py (here

‘ProvPA(x, 0 = 1)’ expresses primitive recursively ‘x is the Gödel number of

a PA-proof of 0 = 1’ (see e.g. [27]). Suppose there are closed terms t1, . . . , tk
such that

(1) PA `
k∨
i=1

∀y A0(ti, y).

Within PA each ti can be computed to a numeral ni:

(2) PA ` ti = ni for 1 ≤ i ≤ k.

6



Chapter 1. Unwinding Proofs

By (1) and (2) we have

(3) PA `
k∨
i=1

∀y A0(ni, y).

By the consistency of PA we know that

(4) IN |=
k∧
i=1

¬Pni.

Hence by the numeralwise representability of primitive recursive predicates
in PA we have

(5) PA `
k∧
i=1

¬Pni.

But (3) and (5) imply

(6) PA ` ∀y¬ProvPA(y, 0 = 1),

which contradicts Gödel’s second incompleteness theorem. 2

However, although PA is not able to verify
k∨
i=1
∀y A0(ti, y) for some terms ti

we can (assuming the consistency of PA). In fact for any term t, e.g. for 0,

we know that A0(t) is true in IN simply because IN |= ∀y¬ProvPA(y, 0 = 1).

But there are other examples where –in general– even this is not possible,
e.g. take

Ae :≡ ∃x∀y(T (e, e, x) ∨ ¬T (e, e, y)),

where T is the (primitive recursive) Kleene-T-predicate, i.e. Txyz :≡ ‘the
Turing machine with Gödel number x applied to the input y terminates with
a computation whose Gödel number is z’ (see e.g. [68]).
In general we are not able to determine closed terms t1, . . . , tk such that

IN |=
k∨
i=1

∀y(T (e, e, ti) ∨ ¬T (e, e, y)),

7



Chapter 1. Unwinding Proofs

since this would allow us to decide whether ∃xT (e, e, x) or not (simply check

whether
k∨
i=1

T (e, e, ti) is true or not).

In fact for

A :≡ ∀x∃y∀z(Txxy ∨ ¬Txxz)

A is provable in PA (using only the logical axioms and rules), but there is
no computable bound g on ‘∃y’, i.e. no computable g such that

∀x∃y ≤ gx∀z(Txxy ∨ ¬Txxz)

since this would make the (special) halting problem {x ∈ IN : ∃y ∈ IN(Txxy)}
decidable by the then computable function

fx :=

 0, if ∃y ≤ gx(Txxy)

1, otherwise.

Two examples of non-constructive proofs from number theory:

Proposition 1.4 ∃a, b ∈ IR (a, b irrational ∧ ab rational )︸ ︷︷ ︸
(sightly more complex than Π0

1)

.

Proof: Case 1:
√

2
√

2
is rational. Put a := b :=

√
2.

Case 2:
√

2
√

2
irrational. Put a :=

√
2
√

2
, b :=

√
2. 2

¿From this proof we get two candidates for (a, b), namely (
√

2,
√

2) and

(
√

2
√

2
,
√

2) but no decision which one satisfies the proposition.

Remark 1.5 ¿From a deep result of Gelfand and Schneider, stating that

if a, b are algebraic, a 6= 0, 1 and b irrational, then ab is transcendental, it

follows that
√

2
√

2
is transcendental and therefore irrational. So it is the pair

(
√

2
√

2
,
√

2) which satisfies the proposition.

8



Chapter 1. Unwinding Proofs

Here is an example (communicated by H. Friedman) of a simple non-construc-
tive PA-proof in number theory of a disjunction where none of the two dis-
juncts is known to be true up to now:

Proposition 1.6 PA ` (e− π is irrational) or (e+ π is irrational).

Proof: One easily formalizes the proof of the irrationality of e as given e.g.
in [23] in PA. If both e − π and e + π were rational, then also their sum 2e
and therefore e would be rational which is a contradiction. 2

We have seen that already for Σ0
2,Π

0
3-sentences A it is not possible in general

to compute witnesses resp. bounds. However one can obtain such witness
candidates and bounds (and even realizing function(al)s) for a weakened

version of A, namely its so-called Herbrand normal form AH :

Definition 1.7 A ≡ (∀y0)∃x1∀y1 . . .∃xn∀ynA0(y0, x1, y1, . . . , xn, yn). Then
the Herbrand normal form of A is defined as

AH :≡ ∃x1, . . . , xnA0(y0, x1, f1x1, . . . , xn, fnx1 . . . xn),

where f1, . . . , fn are new function symbols, called index functions.

Remark 1.8 In theories with function variables and function quantifiers we
take the Herbrand normal form of A to be

AH :≡ ∀(y0), f1, . . . , fn∃x1, . . . , xnA0(y0, x1, f1x1, . . . , xn, fnx1 . . . xn).

A and AH are equivalent with respect to logical validity, i.e.

|= A⇔|= AH ,

but are not logically equivalent since in general

PL /̀ AH → A

However the converse implication holds

PL ` A→ AH .

9



Chapter 1. Unwinding Proofs

Let PL2 denote the extension of PL obtained by the addition of n-ary function
variables (for every n) and function quantifiers.

Let furthermore AC denote the schema of choice

AC : ∀x∃y A(x, y)→ ∃f∀xA(x, fx) (x = x1 . . . xn),

then it is an easy exercise to show that

PL2 + AC ` A↔ AH .

We now consider again the sentence

A ≡ ∀x∃y∀z(Pxy ∨ ¬Pxz),

where P is some predicate symbol. In contrast to A, the Herbrand normal

form AH of A

AH ≡ ∃y(P (x, y) ∨ ¬P (x, gy))

allows an interpretation in form of a list of candidates (uniformly in x, g) for

‘∃y’, namely (x, gx) and also (c, gc) for any constant c does the job since the
disjunction

AH,D :≡ (P (x, c) ∨ ¬P (x, gc)) ∨ (P (x, gc) ∨ ¬P (x, g(g(c))))

is a tautology.

A tautology remains a tautology if we replace all occurrences of a term s by

a variable y: Replace gc by y and g(g(c)) by z. Then AH,D becomes

AD :≡ (P (x, c) ∨ ¬P (x, y)) ∨ (P (x, y) ∨ ¬P (x, z)),

which still is a tautology. From AD we can derive A by a so-called direct
proof (which uses only appropriate quantifier introduction rules, the shift of

quantifiers over ∨ and contraction):

10



Chapter 1. Unwinding Proofs

P (x, c) ∨ ¬P (x, y) ∨ P (x, y) ∨ ¬P (x, z)

⇓ (∀-introduction)

P (x, c) ∨ ¬P (x, y) ∨ ∀z(P (x, y) ∨ ¬P (x, z))

⇓ (∃-introduction)

P (x, c) ∨ ¬P (x, y) ∨ ∃y∀z(P (x, y) ∨ ¬P (x, z))

⇓ (∀-introduction)

∀y(P (x, c) ∨ ¬P (x, y)) ∨ ∃y∀z(P (x, y) ∨ ¬P (x, z))

⇓ (∃-introduction)

∃u∀y(P (x, c) ∨ ¬P (x, y)) ∨ ∃y∀z(P (x, y) ∨ ¬P (x, z))

⇓ ( contraction)

∃y∀z(P (x, y) ∨ ¬P (x, z))

⇓ (∀-introduction)

∀x∃y∀z(P (x, y) ∨ ¬P (x, z))

Definition 1.9 A formula A in the language of first-order predicate logic
with equality (PL=) is called a quasi-tautology if it is a tautological conse-
quence of instances of =-axioms.

Theorem 1.10 (Herbrand’s Theorem)

Let A ≡ ∃x1∀y1 . . .∃xn∀ynA0(x1, y1, . . . , xn, yn). Then the following holds:

PL ` A iff there are terms t1,1, . . . , t1,k1, . . . , tn,1, . . . , tn,kn (built up out of the

constants and variables of A and the index functions used for the formation

of AH) such that

AH,D :≡
k1∨
j1=1

. . .
kn∨
jn=1

A0(t1,j1, f1(t1,j1), . . . , tn,jn, fn(t1,j1, . . . , tn,jn))

is a tautology.

11



Chapter 1. Unwinding Proofs

The terms ti,j can be extracted constructively from a given PL-proof of A and

conversely one can construct a PL-proof for A out of a given tautology AH,D.
The theorem holds for PL= if ‘tautology’ is replaced by ‘quasi-tautology’.

Proof: See e.g. [60]. 2

The most difficult part of the proof of Herbrand’s theorem is the construction
of the Herbrand terms ti,j . The reverse direction for PL follows similar to the

special case treated above: the terms fi-terms in AH,D are replaced by new
variables (starting from terms of maximal size) yielding an index-function-

free Herbrand disjunction AD. From this A is derived by a direct proof.
For PL= the reverse direction is more complicated to establish since also
instances of equality axioms x = y → fix = fiy are now allowed in the proof

of AH,D.

In applications, the Herbrand disjunction AD without index function has
been particular useful (see [47],[53]). Although it is quite complicated to

write down the general form of such a disjunction it is easy for Π0
3-sentences

(which is sufficient for many applications in mathematics):

For sentences A ≡ ∀x∃y∀z A0(x, y, z), AD can always be written in the form

A0(x, t1, b1) ∨ A0(x, t2, b2) ∨ . . . ∨ A0(x, tk, bk),

where the bi are new variables and ti does not contain any bj with i ≤ j (see

[47]).

Herbrand’s theorem immediately extends to so-called open theories, i.e. first-
order theories T whose non-logical axioms G1, . . . , Gn are all purely universal

(Gi ≡ ∀aiGi
0(ai)), if ‘(quasi-)tautology’ is replaced by ‘tautological conse-

quence of instances of equality axioms and the non-logical axioms’.

Proof: Apply Herbrand’s theorem for logic to

Ã :≡ ∃x1∀y1 . . .∃xn∀yn∃a1, . . . , am(
n∧
i=1

Gi
0(ai)→ A0(x1, y1, . . . , xn, yn)).

2

12



Chapter 1. Unwinding Proofs

Warning: For the extension of Herbrand’s theorem to open theories T it

is important that the index function used in defining AH are new and do
not occur in the non-logical axioms. In particular if we have a schema of
purely universal axioms then in the statement of Herbrand’s theorem this
schema is always understood with respect to the original language (without

the index functions). Otherwise the reverse direction in Herbrand’s theorem

in general would fail (see [29] for a discussion of this and related matters

thereby pointing out errors in the literature).

In general Herbrand’s theorem in the form stated above does not hold for
theories which are not open, e.g. it fails for PA.
However there are ways to extend the general idea behind Herbrand’s theo-
rem to theories like PA and beyond: in these lectures we will discuss Gödel’s
functional interpretation and the so-called no-counterexample interpretation
(due to G. Kreisel [42],[43]). We conclude the first lecture by motivating the
latter:

Lets consider again the example

A ≡ ∀x∃y∀z(P (x, y) ∨ ¬P (x, z)).

If P is formulated in some theory like PA with decidable prime formulas, e.g.

if P (x, y) ≡ T (x, x, y), then we can realize the Herbrand normal form AH

of A instead of using a disjunction also by a computable functional of type
level 2 which is defined by cases:

Φ(x, g) :=

 x if ¬T (x, x, gx)

gx otherwise.

¿From this definition it easily follows that

∀x, g(T (x, x,Φxg) ∨ ¬T (x, x, g(Φxg)).

If A is not provable in PL but e.g. in PA we no longer can expect that
functionals as simple as Φ above will be sufficient. In addition to the use of
definition by cases we also have to allow certain recursive definitions whose

13



Chapter 1. Unwinding Proofs

complexity depends on the strength of the theory in which A is proved. In
these lectures we will characterize in the case of PA (and subsystems) what
functionals are needed.

Definition 1.11 Let A ≡ ∃x1∀y1 . . .∃xn∀ynA0(x1, y1, . . . , xn, yn). If a tuple

of functionals Φ1, . . . ,Φn realizes the Herbrand normal form AH of A, i.e. if

∀fA0(Φ1f, f1(Φ1f), . . . ,Φnf, fn(Φ1f, . . . ,Φnf))

is true (where f = f1, . . . , fn), then we say that Φ(= Φ1, . . . ,Φn) satisfies the

no-counterexample interpretation of A (short: Φ n.c.i. A).
If A starts with a universal quantifier ∀y0 then y0 is considered as a 0-place
index function and Φi now depends on y0 and f .

Motivation for the name ‘no-counterexample interpretation’:

Let A be as above. Then ¬A is equivalent to

∀x1∃y1 . . .∀xn∃yn¬A0(x1, y1, . . . , xn, yn).

So a counterexample to A is given by functions f1, . . . , fn such that

(+) ∀x¬A0(x1, f1(x1), . . . , xn, fn(x1, . . . , xn))

holds. Hence functionals Φ satisfying the n.c.i. of A produce a counterex-
ample to (+) i.e. to the existence of counterexample functions f1, . . . , fn.

Definition 1.12 A functional F of type level ≤ 2 is called primitive re-
cursive in the sense of Kleene if it can be defined by the following schemas
(x = x0, . . . , xp−1 is a list of number variables and f = f0, . . . , fq−1 is a list

of function variables):

(i) (Identity) F (x, f) = xi (for i < p),

(ii) (Function application) F (x, f) = fi(xj0, . . . , njl−1
)

(for i < q and j0, . . . , jl−1 < p),

(iii) (Successor) F (x, f) = xi + 1 (for i < p),

14



Chapter 1. Unwinding Proofs

(iv) (Substitution)

F (x, f) = G(H0(x, f), . . . , Hl−1(x, f), λy.K0(y, x, f), . . . , λy.Kj−1(y, x, f)),

(v) (Primitive recursion)

F (0, x, f) = G(x, f), F (y + 1, x, f) = H(F (y, x, f), y, x, f).

Exercises:

1) Consider Ψ(x) :=

|{n ∈ IN : 1 ≤ n ≤ x∧ n is not divisible by any square number 6= 1 }|.
Show that Ψ(x) ≥ x − ∑

pprime
p≤x

[ x
p2 ] and use this to show that there are

infinitely many primes. Use this proof to obtain an upper bound g(j)
for the next prime pj+1 as in the 3. proof of this statement above. Can

you improve the bound we obtained from the latter (see Hacks [22])?

2) Let (an)n∈IN be a sequence of rational numbers in [0, 1] with

∀n ∈ IN(an+1 ≤ an). Since rational numbers can be coded by natural

numbers one can consider (an) as a number theoretic function. The
order relation ≤ and the usual arithmetical operations between rational
numbers are primitive recursive in their codes. Construct a primitive
recursive functional Φ which satisfies (uniformly in (an)) the n.c.i. of
the theorem

∀x ∈ IN∃y ∈ IN∀z ∈ IN (z > y → ay − az ≤
1

x+ 1
).

3) Construct primitive recursive functionals Φ which satisfy the n.c.i. of

(some prenex normal form of) the second-order axiom of Σ0
1-induction:

∀f(∃y(f0y = 0)∧∀x(∃y(fxy = 0)→ ∃y(fx′y = 0))→ ∀x∃y(fxy = 0))

uniformly as a functional in f and the index functions.
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Chapter 1. Unwinding Proofs

Suggested further reading

1) On the general program of unwinding proofs: [47],[48],[49].

2) On Herbrand’s theorem: [8],[14],[29],[47],[60].

3) On the no-counterexample interpretation: [14],[40],[42],[43].
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Chapter 2

Intuitionistic logic and
arithmetic in all finite types

In the following we formulate an axiomatic system for intuitionistic first-
order predicate logic IL. The particular axiomatization we choose is due to
[17] and particular suited to carry out proof interpretations inductively over
the proof tree.

Intuitionistic first-order predicate logic IL

I. The language L(IL) of IL:

As logical constants we use ∧,∨,→,⊥ (absurdity of ‘falsum’), ∃, ∀.
L(IL) contains variables x, y, z, . . . (which can be free or bound). Fur-
thermore we have function constants f1, f2, f3, . . . and predicate con-
stants P1, P2, P3, . . . (both n-ary for every n).

Abbreviations:

¬A :≡ A→ ⊥, A↔ B :≡ (A→ B) ∧ (B → A).

II. Axioms of IL:

(i) A ∨ A→ A, A→ A ∧A (axioms of contraction)

(ii) A→ A ∨ B, A ∧B → A (axioms of weakening)

17



Chapter 2. Intuitionistic Arithmetic

(iii) A ∨B → B ∨A, A ∧ B → B ∧ A (axioms of permutation)

(iv) ⊥ → A (ex falso quodlibet)

(v) ∀xA(x) → A(t), A(t) → ∃xA(x), where t is free for x in A

(quantifier axioms).

1) Rules of IL:

(i)

A , A→ B

B
,
A→ B , B → C

A→ C

(modus ponens and syllogism)

(ii)

A ∧ B → C

A→ (B → C)
,
A→ (B → C)

A ∧B → C

(exportation and importation)

(iii)

A→ B

C ∨ A→ C ∨ B (expansion)

(iv)

B → A(x)

B → ∀xA(x)
,

A(x)→ B

∃xA(x)→ B
, where x is not free in B

(quantifier rules).

The Brouwer-Heyting-Kolmogorov (‘BHK’) proof interpretation of

the intuitionistic logical constants1

This interpretation is an informal attempt to explain the meaning of the

logical constants of IL in terms of proof constructions:2

1Our exposition makes use of [58].
2‘Proof’ is understood here as ‘verification by a construction’ and not as a formal proof

in some fixed deductive framework like HA below.
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Chapter 2. Intuitionistic Arithmetic

(i) There is no proof for ⊥.

(ii) A proof of A ∧ B is a pair (q, r) of proofs, where q is a proof of A and
r is a proof of B.

(iii) A proof of A ∨B is a pair (n, q) consisting of an integer n and a proof
q which proves A if n = 0 and resp. B if n = 1.

(iv) A proof p ofA→ B is a construction which transforms any hypothetical

proof q of A into a proof p(q) of B.

(v) A proof of ∀xA(x) is a construction which produces for every construc-

tion cd of an element d of the domain a proof p(cd) of A(d).

(vi) A proof p of ∃xA(x) is a pair (cd, q), where cd is the construction of an

element d of the domain and q is a proof of A(d).

Exercise 2.1 1) Convince yourself that the axioms and rules of IL are
sound under this interpretation.

2) Convince yourself that ¬¬A → A in general is not valid under this
interpretation.

Discussion: There is one problem with the BHK-interpretation: from a
strictly constructive point of view one would like to have a constructive veri-
fication of ‘p is a proof of A’ in case this is true, i.e. one would like to recognize
a proof if one sees it. For (i), (ii), (iii), (vi) there is no problem with this re-

quirement. But for the universal statements in (iv), (v) one would need an

additional clause as suggested by Kreisel in [46]:

(iv)’ A proof p of A → B is a pair (r, q), where q is a construction which

transforms any hypothetical proof s of A into a proof q(s) of B and r

is a proof which verifies that q is such a construction.

(v)’ A proof p of ∀xA(x) is a pair (r, q) where q is a construction which
produces for every construction cd of an element d of the domain a proof
q(cd) of A(d) and r is a proof of the fact that q is such a construction.
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Chapter 2. Intuitionistic Arithmetic

Remark 2.2 There are various ways to formalize the idea behind the BHK-
interpreta-tion which give rise to various forms of so-called realizability in-
terpretations. The first version of realizability, the so-called recursive realiz-
ability, was introduced by Kleene in [26]. In these lectures we will focus on
a typed variant of Kleene’s type-free interpretation which is called ‘modified
realizability’ and is due to Kreisel [44],[45].

Intuitionistic (‘Heyting’-)arithmetic HA

L(HA) contains the logical constants of L(IL), number variables x, y, z, . . .,

a constant 0 (zero), a unary function constant S (successor), function con-

stants for all primitive recursive functions (more precisely for all derivations

of primitive recursive functions) and a single binary predicate =.

Axioms and rules of HA:

(i) axioms and rules of IL (based on L(HA))

(ii) =-axioms: x = x, x = y → y = x, x = y ∧ y = z → x = z,

x = y → f(x) = f(y) for every n-ary function constant f

(x = x1, . . . , xn, y = y1, . . . , yn)

(iii) successor axioms:  Sx 6= 0,

Sx = Sy → x = y

(iv) defining equations for the primitive recursive functions

(v) axiom schema of complete induction

IA : A(0) ∧ ∀x(A(x)→ A(Sx))→ ∀xA(x)

for every formula A ∈ L(HA)

Convention: We often write x′ or x+ 1 for Sx.
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Remark 2.3 In HA we may identify ⊥ with 0 = 1.

Instead of the axiom schema IA we could have formulated HA equivalently
using the rule of induction

IR:
A(0) , A(x)→ A(Sx)

A(x)
.

Exercise 2.4 Show that IA is derivable from IR. Compare the complexity of

the induction formula Ã(x) of the IR-instance needed to prove an IA-instance

with induction formula A(x) with that of A(x).

Extensional intuitionistic (‘Heyting’-) arithmetic E-HAω in all fi-
nite types

The set T of all finite types is generated inductively by the clauses

(i) 0 ∈ T, (ii) ρ, τ ∈ T ⇒ τ(ρ) ∈ T.

The type 0 is the type natural numbers. Objects of type τ(ρ) are functions

which map objects of type ρ to objects of type τ (some authors write (ρ)τ

or ρ→ τ instead of τ(ρ).

We often omit brackets which are uniquely determined and write e.g. 0(00)

instead of 0(0(0)).

The set P ⊂ T of pure types is defined by

(i) 0 ∈ P, (ii) ρ ∈ P ⇒ 0(ρ) ∈ P.

Pure types are often denoted by natural numbers: 0(n) := n + 1 (e.g. 00 =

1, 0(00) = 2).

The type level or degree deg(ρ) of a type ρ is defined as

deg(0) := 0, deg(τ(ρ)) := max(deg(τ), deg(ρ) + 1)

(note that for pure types ρ, deg(ρ) is just the number which denotes ρ).
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Chapter 2. Intuitionistic Arithmetic

Objects of type ρ with deg(ρ) > 1 are usually called functionals.

The language L(E-HAω) of E-HAω is based on a many-sorted version
ILω of IL which contains variables xρ, yρ, zρ, . . . and quantifiers ∀xρ, ∃yρ for

every type ρ. As constants E-HAω contains 00 (zero), S00 (successor), Πρτρ
ρ,τ

(projector), Σδ,ρ,τ (combinator of type τδ(ρδ)(τρδ)) and recursor constants

Rρ of type ρ(ρ0ρ)ρ0 for all δ, ρ, τ ∈ T. Furthermore L(E-HAω) contains a

binary predicate constant =0 for equality between object of type 0.

Terms of E-HAω are built up by

(i) constants cρ and variables xρ of type ρ are terms of type ρ

(ii) if tτρ is a terms of type τρ and sρ is a term of type ρ, then (st) is a
term of type τ .

Formulas of E-HAω are built up by

(i) prime formulas (also called ‘atomic formulas’) s =0 t are formulas

(where s0, t0 are terms of type 0)

(ii) if A,B are formulas, then also A ∧B, A ∨ B and A→ B are formulas

(iii) if A(xρ) is a formula, then also ∀xρA(x) and ∃xρA(x) are formulas.

Abbreviations:

1) Higher type equations s =ρ t between terms s, t of type ρ = 0(ρk) . . . (ρ1)

(where k ≥ 1) are abbreviations for

∀yρ1
1 , . . . , y

ρk
k (sy1 . . . yk =0 ty1 . . . yk),

where y1, . . . , yk are variables which don’t occur in s, t.

2) As before: ¬A :≡ A→ ⊥, where ⊥ :≡ (0 = 1).

A↔ B :≡ (A→ B) ∧ (B → A).

Axioms and rules of E-HAω

(i) all axioms and rules of ILω
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(ii) equality axioms for =0

(iii) higher type extensionality:

Eρ : ∀zρ, xρ1
1 , y

ρ1
1 , . . . , x

ρk
k , y

ρk
k (

k∧
i=1

(xi =ρi yi)→ zx =0 zy),

where ρ = 0ρk . . . ρ1

(iv) successor axioms

(v) induction schema

IA: A(0) ∧ ∀x0(A(x)→ A(Sx))→ ∀x0A(x),

where A(x0) is an arbitrary formula of E-HAω

(vi) axioms for Πρ,τ ,Σδ,ρ,τ and Rρ:

(Π) : Πρ,τx
ρyτ =ρ x

ρ,

(Σ) : Σδ,ρ,τxyz =τ xz(yz) (xτρδ, yρδ, zδ),

(R) :

 Rρ0yz =ρ y

Rρ(Sx
0)yz =ρ z(Rρxyz)x (yρ, zρ0ρ).

Definition 2.5 Later on we will need also a variant WE-HAω of E-HAω,
where the extensionality axioms Eρ are weakened to a quantifier-free rule of

extensionality

QF-ER:
A0 → s =ρ t

A0 → r[s] =τ r[t]
,

where sρ, tρ, r[xρ]τ are terms of WE-HAω (ρ, τ ∈ T arbitrary).

Warning: WE-HAω does not satisfy the deduction theorem.

WE-HAω allows the definition of λ-abstraction in the following sense:
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Lemma 2.6 For every term t[xρ]τ one can construct in WE-HAω a term

λxρ.t[x] of type τρ (with FV(λxρ.t[x]) = FV(t[x]) \ {x})3 such that

WE-HAω ` (λxρ.t[x])(sρ) =τ t[s].

Proof: Define

λx.x := ΣΠΠ,

λx.t := Πt, if x 6∈ FV(t)

λx.(ts) := Σ(λx.t)(λx.s), if x ∈ FV(ts)

(here Π,Σ of suitable types). 2

Exercise:
It is known that the function α(x, y) defined by the equations

(∗)


α(0, y) = y′

α(x′, 0) = α(x, 1)

α(x′, y′) = α(x, α(x′, y))

is not primitive recursive (in the sense of Kleene). In fact α is a variant due
to R. Peter of the well-known Ackermann function.

Show that α is definable in in WE-HAω by a closed term t0(0)(0) (i.e. WE-HAω

proves the equations (∗) for t).

Suggested further reading:
See [64] for further information on the BHK-interpretation. For more infor-

mation on (W)E-HAω and its variants see [65].

3FV(t) (FV(A)) denotes the set of all free variables of t (A).
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Modified realizability

Definition 3.1 (modified realizability) For each formula A of E-HAω

we define a formula x mr A (in words: ‘x modified realizes A’) of E-HAω

whose free variables are contained in that of A and x, where x is a – possibly
empty – tuple of variables which do not occur free in A. The length of x
and the types of these variables are determined by the logical structure of A,
since the definition of x mr A proceeds by induction over the logical structure
of A:

(i) x mr A :≡ A with the empty tuple x, if A is a prime formula.

(ii) x, y mr (A ∧ B) :≡ x mr A ∧ y mr B.

(iii) z0, x, y mr (A ∨ B) :≡ [(z = 0→ x mr A) ∧ (z 6= 0→ y mr B)].

(iv) y mr (A→ B) :≡ ∀x(x mr A→ y x mr B).

(v) x mr (∀yρA(y)) :≡ ∀yρ(xy mr A(y)).

(vi) zρ, x mr (∃yρA(y)) :≡ x mr A(z).

Definition 3.2 1) A formula A ∈ L(E-HA)ω is called ∃-free if it is built
up from prime formulas by means of ∧,→ and ∀ only.

2) A formula A ∈ L(E-HA)ω is called negative if it is built up from negated
prime formulas by means of ∧,→ and ∀ only.
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Remark 3.3 In WE-HAω all prime formulas P are decidable and therefore
¬¬P ↔ P is provable in WE-HAω. Hence every ∃-free formula is equivalent
to a negative formula in WE-HAω.

Remark 3.4 1) For ∃-free formulas A we have (x mr A) ≡ A with x
being the empty tuple.

2) (x mr A) is always an ∃-free formula.

We will also need a variant ‘modified realizability with truth’ mrt of mr:

Definition 3.5 x mrt A is defined analogously to x mr A except that clause
(iv) is replaced by

(iv)′ y mrt (A→ B) :≡ ∀x(x mrt A → y x mrt B) ∧ (A→ B).

The name ‘modified realizability with truth’ is motivated by the following

Lemma 3.6 WE-HAω ` (x mrt A)→ A, for every formula A.

Proof: Straightforward. 2

Exercise 3.7 WE-HAω ` (x mrt ¬A)↔ ¬A for every formula A.

The schema of choice AC:=
⋃

ρ,τ∈T
{ACρ,τ} is given by

ACρ,τ : ∀xρ∃yτA(x, y)→ ∃Y τρ∀xρA(x, Y x),

where A is an arbitrary formula of E-HAω.

The independence-of-premise-schema IPω
ef :=

⋃
ρ∈T
{IPρ

ef} for ∃-free formulas

is given by

IPρ
ef : (A→ ∃xρB(x))→ ∃xρ(A→ B(x)),

where A is ∃-free and doesn’t contain x free.
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Theorem 3.8 (soundness for mr) Let A be an arbitrary formula in L(E-

HAω). Then the following rule holds

E-HAω + AC + IPω
ef ` A ⇒ E-HAω ` t mr A,

where t is a suitable tuple of terms of E-HAω with FV (t) ⊆ FV (A) which
can be extracted from a given proof of A.

Proof: Induction on the length of the derivation of A:

1) Axioms. A ∨ A→ A: If z0, x, y mr (A ∨ A), then tz0x y mr A, where t

such that tz0x y :=

 x, if z = 0

y, if z 6= 0

(ti can easily be defined using R0: exercise!). Hence t mr (A ∨ A→ A).

A→ A ∧A is realized by λx.(x, x).

A→ A ∨B: Let x mr A, then (0, x,O) mr (A ∨B) and hence

λx.[0, x,O] mr (A → A ∨ B) (here O is a suitable tuple Oρ1
1 , . . . ,Oρkk with

suitable types ρi so that O mr B is syntactically correct1).

A ∧B → A: if (x, y) mr A ∧B, then x mr A. Hence

λx, y.x mr (A ∧ B → A).

⊥ → A is realized by O mr(⊥ → A) such that O mr A is syntactically
correct.
A ∨B → B ∨A is realized by λz0, y, x.[sg(z), x, y], where

sg(z) :=

 00, if z 6= 0

10, otherwise.

A ∧B → B ∧A is realized by λy, x.x, y.

∀xρA(x)→ A(tρ): Let y mr ∀xA(x). Then y(t) mr A(t). Hence

λy.y(t) mr (∀xA(x)→ A(t)).

A(tρ)→ ∃xρA(x) is realized by λy.[t, y], where y is a tuple of variables such

that y mr A(t) is well-formed.

2) Rules. A ,A→B
B

: Assume t mr A and s mr (A→ B). Let r be the terms

which result from t(s) be replacing all free variables a which occur in A but
not in B by O. Then r mr B.

1Here for ρ = 0(ρk) . . . (ρ1), Oρ := λxρ1

1 , . . . , x
ρk
k .0

0.
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A→B ,B→C
A→C : s mr (A → B), t mr (B → C). If x mr A, then s x mr B and

hence t(s x) mr C. Thus λx.t(s x) mr (A → C) (if necessary replace free

variables which don’t occur in A→ C by O).
A∧B→C
A→(B→C)

and A→(B→C)
A∧B→C are trivially satisfied: use the terms from the premise

for the conclusion.
A→B

C∨A→C∨B : Assume t mr (A → B) and z0, x, y mr (C ∨ A). Then either

z = 0, x mr C or z 6= 0, y mr A. In the second case we have t y mr B.

Hence λz0, x, y.[z0, x, t y] mr (C ∨ A→ C ∨B).
B→A(xρ)
B→∀xρA(x)

: Assume t[x] mr (B → A(x)) and z mr B.

Then λx.(t[x]z) mr ∀xA(x) and therefore λz, x.(t[x]z) mr (B → ∀xA(x)).
A(xρ)→B
∃xρA(x)→B : Assume t[x] mr (A(x)→ B) and x, z mr ∃xA(x). Then z mr A(x)

and therefore t[x]z mr B. Thus λx, z.(t[x]z) mr (∃xA(x)→ B).

3) Axioms for =0, S,Π,Σ, R and Eρ: These axioms are all ∃-free and

therefore realized by themselves.

4) The induction schema: Let x mr A(0) and y mr ∀z0(A(z)→ A(z+1)).

Define t by simultaneous primitive recursion in higher types (which can be

reduced to ordinary primitive recursion in higher types, exercise!) such that t x y0 = x

t x y(z + 1) = yz(t x yz).

By induction on z0 one shows that t x yz mr A(z) and hence t x y mr ∀z A(z).

5) The interpretations for AC and IPω
ef are trivial (note that AC and IPω

ef

are not needed to verify their mr-interpretation). 2

Definition 3.9 ([65]) The subset Γ1 of formulas ∈ L(E-HAω) is defined in-
ductively by

1) Prime formulas are in Γ1.2

2) A,B ∈ Γ1 ⇒ A ∧ B,A ∨B, ∀xA(x), ∃xA(x) ∈ Γ1.

2Note that in our theories quantifier–free formulas can be written as prime formulas
s =0 t.
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3) If A is ∃–free and B ∈ Γ1, then (∃xA→ B) ∈ Γ1.

Lemma 3.10 For A ∈ Γ1 we have

E-HAω ` (x mr A)→ A.

Proof: Straightforward induction on the generation of Γ1. 2

Corollary 3.11 E-HAω+ AC + IPω
ef is conservative over E-HAω with re-

spect to formulas A ∈ Γ1.
In particular E-HAω+ AC + IPω

ef is consistent relative to E-HAω since

(0 = 1) ∈ Γ1.

Remark 3.12 One can show by much more complicated methods that E-
HAω+ AC is conservative over HA. For a ‘neutral’ version of E-HAω without
extensionality this is due to [19],[20],[21] (see also [54],[57]). The extension

to E-HAω is due to [2].

In contrast to corollaries 3.11 and 3.14 (below), this result does not relativize

to subsystems with restricted induction (see [39]).

Theorem 3.13 (soundness for mrt) Let Hω := E-HAω +
− AC +

− IPω
ef and

A be an arbitrary formula in L(E-HAω). The following rule holds

Hω ` A ⇒ Hω ` t mrt A,

where t is a suitable tuple of terms of E-HAω with FV (t) ⊆ FV (A) which
can be extracted from a given proof of A.

Proof: The treatment of the logical axioms is analogous to the one for
the mr-interpretation in the proof of of theorem 3.8. The same applies for
the modus ponens. For the remaining rules the new second clause in the
mrt-interpretation of the conclusion follows from the corresponding second
clause(s) of the premise(s) using the same rule. Only in the case of the
→-introduction rule one has to be a bit more careful because of the nested
implications:
By induction hypothesis we have terms s such that

s mrt (A ∧B → C).
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Hence

∀x, y(x mrt A ∧ y mrt B → s x y C) ∧ (A ∧ B → C),

which is equivalent to

∀x(x mrt A→ ∀y(y mrt B → s x y mrt C)) ∧ (A→ (B → C)).

By lemma 3.6 we have (x mrt A)→ A. Hence

∀x(x mrt A→ ∀y(y mrt B → s x y mrt C) ∧ (B → C)) ∧ (A→ (B → C))

and hence

∀x(x mrt A→ s x mrt (B → C)) ∧ (A→ (B → C)),

i.e.

s mrt A→ (B → C).

We leave it as an exercise to the reader to adopt the mr-interpretation of
the non-logical axioms and rules from the proof of theorem 3.8 to the mrt-
interpretation. 2

Corollary 3.14 Let Hω := E-HAω +
− AC +

− IPω
ef . Then the following rules

hold:

1)

Hω ` A ∨ B ⇒ Hω ` A or Hω ` B,

for closed formulas A ∨B (disjunction property DP)

2)

Hω ` ∃xρA(x) ⇒ Hω ` A(t),

for a suitable term tρ of Hω with FV (t) ⊆ FV (A) \ {xρ} (the special

case of this property for closed formulas ∃xρA(x) is called existence

property EP)
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3)

Hω ` ∀xρ∃yτA(x, y) ⇒ Hω ` ∃Y τρ∀xρA(x, Y x)

(closure of Hω under the rule of choice ACR).

4)

Hω ` (A→ ∃xρB(x)) ⇒ Hω ` ∃xρ(A→ B(xρ)),

where A is ∃-free and doesn’t contain x free (closure of Hω under the

rule of independence of premise for ∃-free formulas IPRω
ef).

Proof: 1) Suppose that Hω ` A∨B for a closed formula A∨B. By theorem

3.13 one finds closed terms t0, s, r such that

Hω ` (t =0 0→ s mrt A) ∧ (t 6= 0→ r mrt B).

In E-HAω the closed number term t0 can be reduced (computed) to a numeral
n and so

Hω ` t =0 n.

The conclusion now follows from the fact that

Hω ` n = 0 or Hω ` n 6= 0

and lemma 3.6.
2) By theorem 3.13 the assumptions yields terms tρ, s with FV (t, s) ⊆
FV (A) \ {x} such that

Hω ` s mrt A(t).

The claim now follows using lemma 3.6.
3) By 2) applied to the open formula ∃yτA(xρ, yτ) we get a term t[xρ]τ such
that

Hω ` A(x, t[x]).

The conclusion follows by taking Y := λxρ.t[xρ].

4) Theorem 3.13 applied to

Hω ` A→ ∃xρB(x)
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yields terms tρ, s such that (using that (x mrt A)↔ A with the empty tuple

x for ∃-free formulas A)

Hω ` A→ s mrt B(t)

and hence (by lemma 3.6)

Hω ` A→ B(t)

and so
Hω ` ∃x(A→ B(x)),

where x is not free in A. 2

Proposition 3.15 For all formulas A of E-HAω one has

E-HAω + AC + IPω
ef ` (x mr A)↔ A.

This also holds for mrt instead of mr.

Proof: Straightforward induction on the logical structure of A. 2

Exercise:

The so-called Markov Principle in all finite types is the schema

MPω : ¬¬∃xA0(x)→ ∃xA0(x),

where A0 is an arbitrary quantifier-free formula of WE-HAω and x is a tuple
of variables of arbitrary types.

Show, using modified realizability, that already for x = x0, MPω is not
derivable in E-HAω+AC+IPef .

Suggested further reading: [65] (chapter III, section 4) provides a very
concise and detailed treatment of modified realizability interpretation. For a
general survey on various forms of realizability interpretations see [67]. For
an application of modified realizability to the extraction of a program from
a specific proof see [3].
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Majorizability and the fan rule

In this lecture we investigate an interesting structural property of the func-
tionals which are definable by the closed terms of E-HAω, namely their ma-
jorizability. We will indicate the far-reaching use one can make out of this

observation by showing the closure of E-HAω+
−AC +

− IPef under the so-called

fan rule:

Definition 4.1 For arbitrary ρ ∈ T we define the relation x1 ≥ρ x2 between

functionals x1, x2 of type ρ by induction on ρ:

 x1 ≥0 x2 :≡ x1 ≥ x2 (for the usual primitive recursive relation ≥)

x1 ≥τρ x2 :≡ ∀yρ(x1y ≥τ x2y).

Lemma 4.2 Let ρ = τρk . . . ρ1. Then
WE-HAω ` x1 ≥ρ x2 ↔ ∀yρ1

1 , . . . , y
ρk
k (x1y ≥τ x2y).

Definition 4.3 (W.A. Howard [24]) We define the relation x∗ majρ x

(x∗ majorizes x) between functionals of type ρ by induction on ρ:

 x∗ maj0 x :≡ x∗ ≥0 x,

x∗ majτρ x :≡ ∀y∗, y(y∗ majρ y → x∗y∗ majτ xy).
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Lemma 4.4 WE-HAω proves:

(i) x̃∗ =ρ x
∗ ∧ x̃ =ρ x ∧ x∗ majρ x→ x̃∗ majρ x̃.

(ii) x∗ majρ x ∧ x ≥ρ y → x∗ majρ y.

(iii) For ρ = τρk . . . ρ1 :

x∗ majρ x↔ ∀y∗1, y1, . . . , y
∗
k, yk(

k∧
i=1

(y∗i majρi yi)→ x∗y∗ majτ xy).

Proof: Induction on the type respectively on k. 2

Definition 4.5 Define ϕ1(1) by recursion (using only R0) such that

ϕ(x1, 0) =0 x0

ϕ(x, z + 1) =0 max0(ϕ(x, z), x(z + 1)),

where max0 is the usual (primitive recursively definable) maximum between
natural numbers.
We write xM := λz0.ϕ(x, z) (note that xM(z) = max

i≤z
(x(i))).

This definition easily extends to finite types by λ-abstraction: For x of type ρ0

with ρ = 0ρk . . . ρ1 we define xM := λz, v.ϕ(λz.xzv, z), where v = vρ1
1 , . . . , v

ρk
k .

One easily proves the following

Lemma 4.6
WE-HAω ` ∀xρ0(xM0 =ρ x0 ∧ xM(z + 1) =ρ maxρ(x

Mz, x(z + 1))),

where maxτρ(x1, x2) :≡ λyρ.maxτ (x1y, x2y) for complex types.

Remark 4.7 Using recursion of type ρ one can define xM directly by iter-
ation of maxρ. However our a bit more complicated approach shows that

actually R0 is sufficient.

Lemma 4.8 WE-HAω ` ∀xρ0, x̃ρ0(∀n0(x̃n majρ xn)→ x̃M majρ0x).
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Proof: Let ρ = 0ρk . . . ρ1 and v = vρ1
1 , . . . , v

ρk
k . One easily shows by

(quantifier-free) induction on n that

∀n0(∀m ≤ n(x̃Mnv ≥0 x̃mv)).

Together with the assumption that ∀n(x̃n majρ xn) this yields

∀n,m, v∗, v(n ≥0 m ∧ v∗ maj v → x̃Mnv∗ ≥0 xmv)

and hence x̃M majρ x. 2

Corollary 4.9 WE-HAω ` ∀x1(xM maj1 x).

Proposition 4.10 (W.A. Howard [24]) For each closed term tρ of WE-

HAω one can construct a closed term t∗
ρ

of WE-HAω such that

WE-HAω ` t∗ majρ t.

Proof: Induction on the structure of t:

Constants c: 00 maj0 00, S maj1 S. Using lemma 4.4(iii) we also have
Πρ,τ maj Πρ,τ and Σδ,ρ,τ maj Σδ,ρ,τ .

By induction on x0 one shows (using again lemma 4.4(iii))

∀x0(Rρx maj Rρx).

Hence by lemma 4.8

R∗ := RM
ρ maj Rρ.

So for every constant c of WE-HAω we have a closed term t∗ such that

WE-HAω ` t∗ maj c.

The proposition now follows from that fact that t∗ majτρ t∧s∗ majρ s implies
t∗s∗ majτ ts. 2
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Theorem 4.11 ([28]) Hω:=E-HAω+
− AC +

− IPef . Let s be a closed term,

A(x, y, z) a formula containing only x, y, z as free variables and deg(τ) ≤ 2.
Then the following rule holds: Hω ` ∀x1∀y ≤ρ sx∃zτA(x, y, z) ⇒

Hω ` ∀x1∀y ≤ρ sx∃z ≤τ txA(x, y, z),

where t is a suitable closed term which can be extracted from a given proof of
the assumption.

Remark 4.12 Note that in the previous theorem the bound tx on ‘∃z’ does
not depend on y.

Corollary 4.13 (Fan Rule [66]) Let A be a formula of E-HAω containing
only free variables of type levels ≤ 1. Then for Hω as above the following rule
holds  Hω ` ∀x ≤1 y∃n0A(x, n) ⇒

Hω ` ∃m0∀x ≤1 y∃n ≤0 mA(x, n).

Proof of the theorem 4.11: Suppose that

Hω ` ∀x1∀y ≤ρ sx∃zτA(x, y, z).

Then by corollary 3.14,2)-4) one can extract a closed term t such that

Hω ` ∀x1∀y ≤ρ sxA(x, y, txy).

By proposition 4.10 there are closed terms s∗, t∗ such that

E-HAω ` s∗ maj s ∧ t∗ maj t.

By lemma 4.4 we have in E-HAω:

∀x1(s∗xM majρ sx)

and therefore
∀x1∀y ≤ρ sx(s∗xM majρ y).
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Hence
∀x1∀y ≤ρ sx(t∗(xM , s∗xM) majτ txy).

For simplicity lets now consider only the case τ = 2:

∀x1∀y ≤ρ sx∀z1((t∗(xM , s∗xM ))zM ≥0 txyz).

Hence
∀x1∀y ≤ρ sx(t̃x ≥2 txy),

where t̃ := λx, z.[(t∗(xM , s∗xM ))(zM)]. Thus t̃ satisfies the claim of the theo-
rem. 2

For further applications of modified realizability combined with majorization
see [38].

Exercises:

Define the type-structure Sω of all set-theoretic functionals as follows:

S0 := IN

Sτρ := { all set-theoretic functionals ϕ : Sρ → Sτ }

Sω :=
⋃
ρ∈T

Sρ.

It is clear that Sω is a model of E-HAω. We can relativize ‘maj’ to Sω. In
the following we refer to this majorizability in Sω.

1) Construct a functional ϕ2 ∈ S2 such that no functional ϕ∗ ∈ S2 exists

with ϕ∗maj ϕ (not even on primitive recursive arguments).

2) Show that if ϕ ∈ S2 is continuous (in the sense of the Baire space),
then it can be majorized by a suitable ϕ∗ ∈ S2.
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Gödel’s functional
(‘Dialectica-’)interpretation

The Gödel functional interpretation, introduced in [17], assigns to each for-

mula A(a) of WE-HAω a formula AD ≡ ∃x∀y AD(x, y, a), where AD is

quantifier-free (and hence decidable) and x, y are tuples of variables of fi-

nite type.

In contrast to the no-counterexample interpretation, which we briefly dis-
cussed in the first lecture, the functional interpretation does not require A
to be in prenex normal form and therefore is applicable in an intuitionistic
context like WE-HAω where not every formula is provably equivalent to a
prenex one.

In the next lecture we will introduce a translation of the classical variant WE-
PAω of WE-HAω (i.e. WE-HAω plus the tertium-non-datur schema A∨¬A)

into WE-HAω, the so-called negative translation A 7→ A′ due to [16]. We

will see that the composition of ′ and D, A 7→ (A′)D provides a very subtle
constructive interpretation of A which faithfully reflects the proof-theoretic
and computational strength of A (in contrast to the no-counterexample in-

terpretation of (a prenex normal form of) A which in general is a much
weaker interpretation and can be established as a particular corollary of the
functional interpretation). The price to be paid for this is the necessity to

use functionals of arbitrary finite types already for A ∈ L(PA). Moreover
the functional interpretation is much more involved than the modified real-
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Chapter 5. Functional Interpretation

izability interpretation but has the crucial benefit that it trivially interprets
the Markov principle Mω which has no constructive modified realizability
interpretation as we have seen. It is this fact which makes the composi-
tion of negative translation and functional interpretation a powerful tool of
extractive proof theory for classical non-constructive proofs. Note that in
contrast to this the combination of negative translation and modified realiz-
ability interpretation x mr A′ would be useless since A′ is an ∃-free formula

and therefore (x mr A′) ≡ A′ where x is the empty tuple.1

Functional interpretation has the same nice behaviour with respect to the
logical deduction rules as the modified realizability interpretation.

Motivation of the functional interpretation:

The definition of AD (like x mr A) proceeds by induction on the logical

structure of A (i.e. the length and the types of x, y only depend on the

logical structure of A).

The most interesting and difficult case again is the implication whose treat-
ment we are going to motivate now:

Suppose we have already defined the functional interpretations

AD ≡ ∃x∀y AD(x, y) and BD ≡ ∃u∀v BD(u, v). We are trying to define

(A→ B)D :

First consider

(AD → BD) ≡ (∃x∀y AD(x, y)→ ∃u∀v BD(u, v)).

Our strategy to obtain from this a formula of the form ∃a∀b(A→ B)D (with

(A → B)D quantifier-free) is to transform (AD → BD) into prenex normal
form and then to apply the axiom of choice AC.

It is an easy exercise to verify that there are four different prenex normal

forms of AD → BD. We try to choose the most constructive (or rather: the

least non-constructive) one:

1One can however use modified realizability in connection with the negative translation
if one applies the so-called Friedman-Dragalin A-translation as an intermediate step. See
lecture 7 below.
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For the first step we have two possibilities:

∃x∀y AD(x, y)→ ∃u∀v BD(u, v)

7→

 (1) ∀x(∀y AD(x, y)→ ∃u∀v BD(u, v))

(2) ∃u(∃x∀y AD(x, y)→ ∀v BD(u, v)).

Here the choice is obvious: the passage to (1) is intuitionistically valid,

whereas the passage to (2) not even holds in ILω+ IPω
ef+ Mω.

¿From (1) there are two ways to proceed further:

(1) 7→

 (1.1) ∀x∃u(∀y AD(x, y)→ ∀v BD(u, v))

(1.2) ∀x∃y(AD(x, y)→ ∃u∀v BD(u, v)).

This time the choice is more difficult since both implications (1) → (1.1)

and (1) → (1.2) are not provable in ILω. So we have to compromise our
goal to use only strictly constructive transformation steps. However the first
implication only requires a weak form of IPω

ef (for purely universal formulas

A) in addition to ILω which has some constructive justification by the results

of lecture 3. So lets choose (1.1).
¿From there we have two possibilities to finish our prenexation:

(1.1) 7→

 (1.1.1) ∀x∃u∀v∃y(AD(x, y)→ BD(u, v))

(1.1.2) ∀x∃u∃y∀v(AD(x, y)→ BD(u, v)).

Again the choice is not obvious: both implications are not provable in ILω.
Lets consider (1.1)→ (1.1.1) first: The first step to

∀x∃u∀v(∀y AD(x, y)→ BD(u, v))

is perfectly valid from an intuitionistic point of view. However from there we
– intuitionistically – only get

∀x∃u∀v¬¬∃y(AD(x, y)→ BD(u, v))
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and so need the Markov-principle Mω to obtain (1.1.1).

For (1.1)→ (1.1.2) the first step to

∀x∃u∃y(AD(x, y)→ ∀v BD(u, v))

is not intuitionistically valid but again only the passage to the weaker

∀x∃u¬¬∃y(AD(x, y)→ ∀v BD(u, v)).

However this time not even Mω suffices to get rid of ¬¬ since ‘AD(x, y) →
∀v BD(u, v)’ is not quantifier-free.

So the implication ‘(1.1) → (1.1.1)’ is less non-constructive than ‘(1.1) →
(1.1.2)’. Hence we now ‘officially’ choose (1.1.1) as our prenex normal form

of AD → BD. Applying AC to (1.1.1) we finally obtain

(A→ B)D :≡ ∃U, Y ∀x, v(AD(x, Y x v)→ BD(U x, v)︸ ︷︷ ︸
(A→B)D :≡

).

Despite of the fact that we had to make various compromises to end up with

(A→ B)D, this interpretation works while any of the remaining three prenex

normal forms of AD → BD would result in a definition of (A → B)D which

even for B :≡ A in general would fail to have a constructive (computable)

realization (exercise).

Definition 5.1 (Gödel [17]) To every formula A of WE-HAω we assign a

translation AD ≡ ∃x∀y AD(x, y) in the same language. The free variables of

AD are that of A. The types and length of x, y depend only on the logical

structure of A. AD is a quantifier-free formula.

(i) AD :≡ AD :≡ A for prime formulas A.

(ii) (A ∧ B)D :≡ ∃x, u∀y, v[A ∧ B]D

:≡ ∃x, u∀y, v[AD(x, y) ∧ BD(u, v)],

(iii) (A ∨ B)D :≡ ∃z0, x, u∀y, v[A ∨ B]D

:≡ ∃z0, x, u∀y, v[(z = 0→ AD(x, y)) ∧ (z 6= 0→ BD(u, v))],
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(iv) (∃zρA(z))D :≡ ∃z, x∀y(∃z A(z))D :≡ ∃z, x∀y AD(x, y, z),

(v) (∀zρA(z))D :≡ ∃X∀z, y(∀z A(z))D :≡ ∃X∀z, y AD(Xz, y, z),

(vi) (A→ B)D :≡ ∃U, Y ∀x, v(AD(x, Y x v)→ BD(U x, v)),

(A→ B)D :≡ (AD(x, Y x v)→ BD(U x, v)).

Remark 5.2 As a consequence of the treatment of implication we obtain

(i) (¬A)D ≡ ∃Y ∀x¬AD(x, Y x),

(ii) (¬¬A)D ≡ ∃X∀Y ¬¬AD(X Y , Y (X Y )) ↔ ∃X∀Y AD(X Y , Y (X Y )),
where the equivalence is provable in WE-HAω.

Definition 5.3 The independence-of-premise schema IPω
∀ for universal pre-

mises is the union (for all types) of

IPρ
∀ : (∀xA0(x)→ ∃yρB(y))→ ∃yρ(∀xA0(x)→ B(y)),

where y not free in ∀xA0(x).

Theorem 5.4 (soundness of functional interpretation [17],[65])

 WE-HAω+ AC + IPω
∀+ Mω ` A(a), then

WE-HAω ` ∀y AD(t a, y, a),

where t is a suitable tuple of closed terms of WE-HAω which can be extracted
from a given proof of the assumption.

Proof: As in the proof of the soundness theorem for modified realizability
we proceed by induction on the length of the derivation.

1) Logical axioms and rules: We will discuss only two axioms and two

rules to give an idea of the general proof (for full details see [65],[52]).

A→ A ∧ A:
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(A→ A ∧ A)D ≡

(∃x∀yAD(x, y, a)→ ∃x′, x′′∀y′, y′′(AD(x′, y′, a) ∧AD(x′′, y′′, a)))D

∃Y ,X ′, X ′′∀x, y′, y′′(AD(x, Y x y′y′′, a)→ AD(X ′x, y′, a) ∧ AD(X ′′x, y′′, a)).

Hence

tX′ := tX ′′ := λa, x.x

tY a x y
′y′′ :=

 y′, if tADx y
′a 6= 0

y′′, if tADx y
′a = 0,

satisfy the functional interpretation of A→ A∧A (here tAD is a closed term

of WE-HAω such that WE-HAω ` tADx y a =0 0↔ AD(x, y, a)).

A→ A ∨B :

(A→ A ∨ B)D ≡ (∃x∀yAD(x, y, a)→

∃z0, x′, u∀y′, v((z = 0→ AD(x′, y′, a)) ∧ (z 6= 0→ BD(u, v, a′))))D

≡ ∃Y , Z,X ′, U∀x, y′, v(AD(x, Y x y′v, a)→

((Zx = 0→ AD(X ′x, y′, a)) ∧ (Zx 6= 0→ BD(U x, v, a′)))).

Hence tY := λã, x, y′, v.y′, tZ := λã, x.00, tX′ := λã, x.x, tU := λã, x.O,

where ã = {a} ∪ {a′}, satisfy the functional interpretation of A→ A ∨ B.

The modus ponens rule: Assume

(1) ∀yAD(t1a, y, a)

and
(2) ∀x, v(AD(x, t2ã x v, a)→ BD(t3ã x, v, a

′)),

where again ã = {a} ∪ {a′}.
We have to construct t4 such that

∀v BD(t4a
′, v, a′).

Apply (1) to y := t2ã x v, then

(3) ∀x, vAD(t1a, t2ã x v, a).
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Apply (2) and (3) to x := t1a. Then

(4) ∀v(AD(t1a, t2(ã, t1a, v), a)→ BD(t3(ã, t1a), v, a′))

and
(5) ∀v AD(t1a, t2(ã, t1a, v), a).

Hence
(6) ∀vBD(t3(ã, t1a), v, a′).

Let t[a′] be the result of replacing all variables ai in t3(ã, t1a) which do not

occur in a′ by O of appropriate type. Then t4 := λa′.t[a′] does the job.

The rule A→B ,B→C
A→C : For notational simplicity we omit the free parameters

this time.
Assume

(1) ∀x, v(AD(x, t1x v)→ BD(t2x, v))

and
(2) ∀u, w(BD(u, t3uw)→ CD(t4u, w)).

We have to construct t5, t6 such that

∀x, w(AD(x, t5xw)→ CD(t6x, w)).

Apply (1) to v = t3(t2x, w) and (2) to u = t2x. Then

(3) ∀x, w(AD(x, t1(x, t3(t2x, w)))→ CD(t4(t2x), w)).

Hence
t5 := λx, w.t1(x, t3(t2x, w)), t6 := λx.t4(t2x)

do the job.

2) Axioms for =0, S,Π,Σ, R: These purely universal axioms are identical
with their own functional interpretation.

3) The quantifier-free extensionality rule QF-ER: Both the premise
and the conclusion are purely universal and so are identical to their functional

interpretation.2

2We may assume that A0 in QF-ER does not contain any ∨, since A0(x) can be written
as tx =0 0 in WE-HAω.
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4) The schema of induction: It is easier to use the equivalent induction

rule: Let B(y0)D ≡ ∃u∀vBD(u, v, y, a) and assume that we have already
proved

 ∀v BD(t1a, v, 0, a) and

∀u, w(BD(u, t2y a uw, y, a)→ BD(t3y a u, w, y + 1, a)).

Define t by simultaneous primitive recursion in higher types such that

 t(a, 0) = t1a

t(a, y + 1) = t3(y, a, t(a, y)).

Then ∀vBD(t(a, 0), v, 0, a) and

∀w(BD(t(a, y), t2(y, a, t(a, y), w), y, a)→ BD(t(a, y + 1), w, y + 1, a))

and therefore ∀vBD(t(a, 0), v, 0, a) and

∀vBD(t(a, y), v, y, a)→ ∀vBD(t(a, y + 1), v, y + 1, a).

Hence by the induction rule we obtain

∀vBD(t(a, y), v, y, a).

5) The functional interpretations of AC, Mω and IPω
∀ only need simple λ-

terms and can be verified already in WE-HAω without the use of AC, Mω

and IPω
∀ . 2

Warning: The soundness theorem does not hold for E-HAω(see [24]).
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Remark 5.5 Gödel actually established the conclusion of the soundness the-
orem in (an intensional variant of) a quantifier-free fragment qf-(WE-HAω)
of WE-HAω which results if quantifiers are omitted from the language, the
axiom schema of induction is replaced by a quantifier-free rule of induction

QF-IR :
A0(0) , A0(x0)→ A0(x+ 1)

A0(x)

and a substitution rule

Sub :
A(xρ)

A(tρ)

(replacing ∀-elimination) is added.

To verify AD(t a, y, a) in qf-(WE-HAω) requires a somewhat more complicated

treatment of induction (see e.g. [65]).

Definition 5.6 ([65]) The subset Γ2 of formulas ∈ L(WE-HAω) is defined
inductively by

1) Prime formulas are in Γ2.

2) A,B ∈ Γ2 ⇒ A ∧ B,A ∨B, ∀xA(x), ∃xA(x) ∈ Γ2.

3) If A is purely universal and B ∈ Γ2, then (∃xA→ B) ∈ Γ2.

Lemma 5.7 For A ∈ Γ2 one has WE-HAω ` AD → A.

Proof: Easy induction on the logical structure of A. 2

Corollary 5.8 WE-HAω+ AC + IPω
∀+ Mω is conservative over WE-HAω

with respect to formulas A ∈ Γ2.

Proof: The corollary follows from theorem 5.4 and lemma 5.7. 2

Proposition 5.9 For all formulas A of WE-HAω one has

WE-HAω+ AC + IPω
∀+ Mω ` A↔ AD.
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Proof: Easy induction on the logical structure of A. 2

Corollary 5.10 WE-HAω+ AC + IPω
∀+ Mω has the disjunction property

DP, the existence property EP and is closed under the rules of choice ACR
and of independence-of-premise for purely universal formulas IPRω

∀ .

Proof: The corollary follows similarly to corollary 3.14 but with theorem
5.4 and proposition 5.9 instead of modified realizability with truth. 2

An application of functional interpretation and majorization

Definition 5.11 (hereditarily extensional equality [65]) x1 ≈0 x2 :≡ (x1 =0 x2),

x1 ≈τρ x2 :≡ ∀yρ1 , yρ2(y1 ≈ρ y2 → x1y1 ≈τ x2y2).

Lemma 5.12 WE-HAω ` x1 =ρ x̃1 ∧ x2 =ρ x̃2 ∧ x1 ≈ρ x2 → x̃1 ≈ρ x̃2.

Proof: Induction on ρ. 2

Proposition 5.13 Let tρ be a closed term of WE-HAω. Then

WE-HAω ` t ≈ρ t.

Proof: Induction on the structure of t.
(i) Constants: One easily verifies that 00 ≈0 00, S ≈1 S, Πρ,τ ≈ Πρ,τ ,

Σδ,ρ,τ ≈ Σδ,ρ,τ .

Rρ: We show by induction on x0 that Rρx ≈ Rρx:

Suppose that y1 ≈ y2, z1 ≈ z2:
Rρ0y1z1 = y1 ≈ y2 = Rρ0y2z2 ⇒ Rρ0y1z2 ≈ Rρ0y2z2.

Rρ(x+ 1)y1z1 = z1(Rρxy1z1)x
I.H.≈ z2(Rρxy2z2)x = Rρ(x+ 1)y2z2

⇒ Rρ(x+ 1)y1z1 ≈ Rρ(x+ 1)y2z2.

Since x1 =0 x2 ↔ x1 ≈0 x2, we have by =0-axioms

∀x1, x2(x1 ≈0 x2 → Rρx1 ≈ Rρx2),

i.e. Rρ ≈ Rρ.

(ii) t ≈τρ t ∧ s ≈ρ s→ ts ≈τ ts. 2
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Corollary 5.14 Let t1(1) be a closed term of WE-HAω. Then

WE-HAω ` ∀x1, y1(x =1 y → tx =1 ty).

Proof: This follows from proposition 5.13 since
WE-HAω ` x =1 y ↔ x ≈1 y. 2

Proposition 5.15 Let t1(1) be closed. Then t1(1) is uniformly continuous on
each set {x : x ≤1 y} with a modulus of uniform continuity which is definable

in WE-HAω (uniformly in y), i.e. there is a closed term t̃0(1)(0) of WE-HAω:

WE-HAω ` ∀k0∀x1, x2 ≤1 y(
t̃ky∧
i=0

(x1i =0 x2i)→
k∧
j=0

(tx1j =0 tx2j)).

Proof [28]: By the corollary above we have

WE-HAω ` ∀x1, x2(∀i(x1i =0 x2i)→ ∀k∀j ≤ k(tx1j =0 tx2j)).

Hence

WE-HAω +Mω ` ∀k∀x1, x2∃i(x1i =0 x2i→
k∧
j=0

(tx1j =0 tx2j)).

By theorem 5.4 there exists a term t̂ such that

WE-HAω ` ∀k∀x1, x2(x1(t̂kx1x2) =0 x2(t̂kx1x2)→
k∧
j=0

(tx1j =0 tx2j)).

By proposition 4.10 there exists a closed term t̂∗ such that

WE-HAω ` t̂∗ maj t̂

and hence by lemma 4.4

WE-HAω ` ∀k∀x1, x2 ≤1 y(t̂∗kyMyM ≥0 t̂kx1x2).

So t̃ := λk0, y1.t̂∗kyMyM does the job. 2
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Exercises:

1) Solve the functional interpretation of

¬¬(∃xA0(x) ∨ ¬∃xA0(x))

by a closed term of WE-HAω.

2) In addition to the prenex normal form we used in the definition of

(A → B)D, there are three more prenex normal forms of (AD → BD)

which give rise to corresponding functional interpretations (A → B)i

(i = 1, 2, 3) of A→ B.

For all three of them already (A → A)i fails to have a computable
solution for suitable A.

Compute these interpretations (A→ B)i and give a counterexample to

the computable solvability of (A→ A)i for at least one of them.

Suggested further reading: [17] (the original paper which introduced
functional interpretation; an English translation with extended introductory
notes by A.S. Troelstra can be found in [18]), [65] (chapter 3, section 5; this is

a very concise and compact treatment of functional interpretation), [52] (cov-
ers in detail C. Spector’s extension of functional interpretation to analysis
by means of bar recursion), [1] (a very readable and comprehensive treat-

ment of the whole subject). [5] contains an interesting discussion about the
functional interpretation of ‘→’ from a constructive point of view. Applica-
tions of functional interpretation to systems of bounded arithmetic are given
in [9]. For further applications of functional interpretation combined with

majorization see [30],[33],[34],[35],[36],[37]. For applications of functional in-

terpretation (and majorization) in the context of approximation theory see

[31],[32].
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Negative translation and its use
combined with functional
interpretation

There are several interpretations – so-called ‘negative’ or ‘double-negation’
translations – of classical logic as well as many theories based on classical
logic into their intuitionistic variant. All these translations A 7→ A′ have in
common that A′ is (or is intuitionistically equivalent to) a negative formula.

The first such translation is due to Gödel [16] (although G. Gentzen inde-

pendently discovered a similar translation). There is some preceding work by

Kolmogorov [41] and Glivenko [15]. Two further variants of Gödel’s trans-

lation are due to Kuroda [50] and it his one of these which we will adopt
here:

Definition 6.1 Let A be a formula in a theory based on L(ILω). A′ is defined

as A′ :≡ ¬¬A∗, where A∗ is defined by induction on the logical structure of
A:

(i) A∗ :≡ A, if A is a prime formula,

(ii) (A2B)∗ :≡ (A∗2B∗), where 2 ∈ {∧,∨,→},

(iii) (∃xρA(x))∗ :≡ ∃xρ(A(x))∗,

(iv) (∀xρA(x))∗ :≡ ∀xρ¬¬(A(x))∗.
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Chapter 6. Negative and Functional Interpretation

Definition 6.2 PLω (WE-PAω, E-PAω) is the extension of ILω (WE-HAω,

E-HAω) obtained by adding the tertium-non-datur schema A ∨ ¬A.

Proposition 6.3 (i) PLω ` A ⇒ ILω ` A′,

(ii) (W)E-PAω ` A ⇒ (W)E-HAω ` A′.

Proof: (i) Induction on the length of the derivation: We only treat the
tertium-non-datur schema, the modus ponens and the ∀-introduction rule:

(A ∨ ¬A)′ ≡ ¬¬(A∗ ∨ ¬A∗) which is provable in ILω (it is an easy exercise

that ¬¬(A ∨ ¬A) holds intuitionistically for arbitrary formulas A).

Consider A ,A→B
B

: By induction hypothesis we have ¬¬A∗ and ¬¬(A∗ → B∗).

By intuitionistic logic we get ¬¬A∗ → ¬¬B∗ and hence by modus ponens
¬¬B∗, i.e. B′.

Consider A→B(x)
A→∀xB(x)

: By induction hypothesis we have ¬¬(A∗ → (B(x))∗)

and therefore (by intuitionistic logic) A∗ → ¬¬(B(x))∗. By ∀-intoduction
we obtain
A∗ → ∀x¬¬(B(x))∗, i.e. (A→ ∀xB(x))∗ and therefore (A→ ∀xB(x))′.

(ii) We only have to extend the proof of (i) by the treatment of the non-
logical axioms and rules: The negative translation of the purely universal
=0, S,Π,Σ, R-axioms trivially follows from the axioms themselves (note that
WE-HAω ` ¬¬A0 ↔ A0 and so the translation of purely universal axioms is
in fact equivalent (relative to WE-HAω) to the axioms since intuitionistically

¬¬∀x¬¬A(x) ↔ ∀¬¬A(x)). Similarly the negative translation of (E) (resp.

of the premise and the conclusion of QF-ER) can be seen to be equivalent to

(E) in WE-HAω.

The induction rule: By the induction hypothesis we have ¬¬(A(0))∗ and

¬¬((A(x))∗ → (A(x + 1))∗). Hence also ¬¬(A(x))∗ → ¬¬(A(x + 1))∗. Thus

by the induction rule we obtain ¬¬(A(x))∗, i.e. (A(x))′. 2

Definition 6.4 The schema QF-AC of quantifier-free choice is the restric-
tion of AC to quantifier-free formulas A0 ≡ A. For convenience we formulate
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Chapter 6. Negative and Functional Interpretation

this schema for tuples1:

QF-AC : ∀x∃yA0(x, y)→ ∃Y ∀xA0(x, Y x),

where A0 is quantifier-free.

Proposition 6.5
WE-PAω+ QF-AC ` A ⇒ WE-HAω+ QF-AC +Mω ` A′.

Proof: We only have to extend the proof of proposition 6.3 by showing that

WE-HAω+ QF-AC +Mω ` (QF-AC)′.

We have in WE-HAω

(
∀x∃yA0(x, y)→ ∃Y ∀xA0(x, Y x)

)′
↔(

∀x¬¬∃yA0(x, y)→ ¬¬∃Y ∀x¬¬A0(x, Y x)
)
,

which clearly is implied by

(∗) ∀x¬¬∃yA0(x, y)→ ∃Y ∀xA0(x, Y x),

which in turn follows from Mω and QF-AC. 2

Theorem 6.6
WE-PAω+ QF-AC ` A(a)

⇒ one can extract closed terms t of WE-HAω such that

WE-HAω ` ∀y(A′)D(t a, y, a).

Proof: Combine proposition 6.5 with theorem 5.4. 2

1Actually one can show in WE-HAω that finite tuples x of variables (of different types)
can be coded together into a single variable x whose type depends on the types of x (see
[65] for details on that).
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Corollary 6.7 Let A0(x, y) be a (quantifier-free) formula of WE-PAω which
only contains x, y as free variables. Then the following rule holds:

WE-PAω+ QF-AC ` ∀xρ∃yτA0(x, y)

⇒ one can extract a closed term t of WE-HAω such that

WE-HAω ` ∀xA0(x, tx).

Proof:

WE-PAω+QF-AC ` ∀x∃yA0(x, y)
prop.6.5⇒

WE-HAω+QF-AC +Mω ` ¬¬∀x¬¬∃yA0(x, y)
Mω

⇒

WE-HAω+QF-AC +Mω ` ∀x∃yA0(x, y)
thm.5.4⇒

WE-HAω ` ∀xA0(x, tx) for a suitable closed term t

(note that A0 can be treated as a prime formula in WE-HAω). 2

Combined with the majorization technique from lecture 4 we obtain

Proposition 6.8 ([28]) Let A0(x1, yρ, zτ ) be a (quantifier-free) formula of
WE-PAω containing only x, y, z as free variables, τ ≤ 2 and s be a closed
term. Then

WE-PAω+ QF-AC ` ∀x1∀y ≤ρ sx∃zτA0(x, y, z)

⇒ one can extract a closed term t of WE-HAω such that

WE-HAω ` ∀x1∀y ≤ρ sx∃z ≤τ txA0(x, y, z).

As a further application of corollary 6.7 we obtain the no-counterexample
interpretation of PA by terms of WE-HAω:

Proposition 6.9 Let A ∈ L(PA) be a prenex sentence. Then the following
rule holds:

PA ` A

⇒ one can extract closed terms Φ of WE-HAω such that

WE-HA ` Φ n.c.i. A.
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Proof: Apply corollary 6.7 to AH . 2

Remark 6.10 Strictly speaking PA is not a subsystem of WE-PAω since
we have included symbols for all primitive recursive functions as primitive
notions in PA whereas they are defined notions in WE-PAω. However PA is
a subsystem of a corresponding definitorial extension of WE-PAω to which
corollary 6.7 applies as well.

The combination of negative translation and functional interpretation (A′)D

is much closer related to A than the no-counterexample interpretation is

(for prenex arithmetical A), since the equivalence of A and (A′)D can be

proved using only quantifier-free choice (although in higher types) whereas
the no-counterexample interpretation of A only implies A in the presence of
(number-theoretic) choice for arithmetical formulas:

Proposition 6.11 Let A be an arbitrary formula of WE-PAω. We may
assume that A does not contain ∨ (which can be defined in terms of ∧ and

¬ in WE-PAω). Then PLω+ QF-AC ` A↔ (A′)D.

Proof: Exercise (Hint: Show that PLω+ QF-AC ` A ↔ AD for ∃-free for-

mulas A). 2

Elimination of extensionality

Definition 6.12 We define Eρ(xρ) and x =e
ρ y by induction on ρ :

E0(x) :≡ (x =0 x), x =e
0 y :≡ (x =0 y),

Eτρ(x) :≡ ∀y, z(y =e
ρ z → xy =e

τ xz),

x =e
τρ y :≡ ∀zρ(Eρ(z)→ xz =e

τ yz) ∧ Eτρ(x) ∧ Eτρ(y).

Definition 6.13 For every formula A of E-PAω we define a translation Ae
by relativizing all quantifiers to hereditarily extensional functionals in the
sense of Eρ:

(i) Ae :≡ A, if A is a prime formula,
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(ii) (A2B)e :≡ (Ae2Be), where 2 ∈ {∧,∨,→},

(iii) (∃xρA(x))e :≡ ∃xρ(Eρ(x) ∧ Ae(x)),

(iv) (∀xρA(x))e :≡ ∀xρ(Eρ(x)→ Ae(x)).

Proposition 6.14 E-PAω+ QF-AC0,1+ QF-AC1,0 ` A(a) ⇒

WE-PAω+ QF-AC0,1+ QF-AC1,0 ` E(a)→ Ae(a),

where a are all the free variables of A.

Proof: See [52]. 2

Let ̂(W)E-PA
ω
|\ ( ̂(W)E-HA

ω
|\) be the fragment of (W)E-PAω ((W)E-HAω)

where we only have the recursor R0 for type-0-recursion and the induction
schema is restricted to the schema of quantifier-free induction

QF-IA : A0(0) ∧ ∀x0(A0(x)→ A0(x+ 1))→ ∀x0A0(x).

Lemma 6.15 ̂WE-PA
ω|\+ QF-AC0,0 ` Σ0

1 -IA, where

Σ0
1-IA : ∃y0A0(0, y) ∧ ∀x0(∃yA0(x, y)→ ∃yA0(x+ 1, y))→ ∀x∃yA0(x, y).

Proof: Assume ∃y0A0(0, y0) and ∀x, y1∃y2(A0(x, y1) → A0(x + 1, y2)). By

QF-AC0,0 we get

∃f∀x, y1(A0(x, y1)→ A0(x+ 1, fxy1)).

Define  Φ(0, y, f) :=0 y

Φ(x+ 1, y, f) :=0 f(x,Φ(x, y, f))

(note that this can by done by R0). Then by QF-IA one easily shows that

∀xA0(x,Φ(x, y0, f))

for y0 such that A0(0, y0) and therefore ∀x∃yA0(x, y). 2
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Proposition 6.16 ([11])


̂WE-PA

ω|\ + QF-AC ` A(a)

⇒ ∃ closed terms t of ̂WE-HA
ω|\ such that̂WE-HA

ω|\ ` ∀y(A′)D(t a, y, a)

(Here a are all of the free variables of A(a).

Proof: The proof theorem 6.6 easily relativizes to ̂WE-PA
ω|\. 2

One can show that the function(al)s of types ≤ 2 definable by closed terms in̂WE-HA
ω|\ are just the usual primitive recursive ones in the sense of Kleene

(see [11]). From the proof of this fact combined with the previous proposition
plus elimination of extensionality one gets

Proposition 6.17 Let R(x, y) be a primitive recursive relation (in the sense

of PRA). Then the following rule holds:


Ê-PA

ω|\ + QF-AC1,0 + QF-AC0,1 ` ∀x0∃y0R(x, y)

⇒ ∃ primitive recursive function p such that

PRA ` R(x, px).

Let PA1 be the restriction of PA to induction for Σ0
1-formulas only.

Corollary 6.18 (Parsons,Mints,Takeuti,...) PA1 is Π0
2-conservative over

PRA.
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Extensions to fragments of analysis

An analytical principle which has received great attention during the last 20
years in proof theory is the binary (‘weak’) König’s lemma WKL formalized
by the following axiom

WKL :≡

∀f 1(T (f) ∧ ∀x0∃n0(lth(n) =0 x ∧ f(n) =0 0)→ ∃b ≤1 1∀x0(f(bx) =0 0)),

where

T (f) :≡ ∀n0, m0(f(n∗m) = 0→ f(n) = 0)∧∀n0, x0(f(n∗〈x〉) = 0→ x ≤ 1)

(here lth, ∗, bx, 〈·〉 refer to a standard primitive recursive coding of finite

sequences of numbers).

The interest in WKL rests on the following facts:

1) Already relative to a second-order fragment RCA0 of ̂WE-PA
ω|\+ QF-

AC0,0, WKL proves substantial parts of (non-constructive) classical

mathematics and in particular of analysis (see e.g. [12],[62],[63],[6],[7],

[25],[59]).

2) Despite of the mathematical strength of WKL, it is weak from the
proof-theoretic point of view, namely a classical result due to H. Fried-

man states that RCA0+ WKL is Π0
2-conservative over PRA.

One can use functional interpretation combined with majorization to prove
various generalizations of Friedman’s result, e.g.:

Theorem 6.19 ([30]) Let A0(x, y, z) be a (quantifier-free) formula of Ê-PA
ω|\

containing only x1, y1, z0 as free variables and let s be a closed term. Then
the following rule holds:

Ê-PA
ω|\ + QF-AC1,0 + QF-AC0,1 + WKL ` ∀x1∀y ≤1 sx∃z0A0(x, y, z)

⇒ one can extract a primitive recursive (in Kleene’s sense) Φ such that̂WE-HA
ω|\ ` ∀x1∀y ≤1 sx∃z ≤0 ΦxA0(x, y, z).
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Corollary 6.20 ([30]) Ê-PA
ω|\+QF-AC1,0+QF-AC0,1+ WKL is Π0

2-conser-
vative over PRA.

The proofs for these results go beyond the scope of our lectures. One prob-
lem to be dealt with is that the functional interpretation of the negative
translation of WKL is not even solvable in E-PAω.
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The Friedman A-translation

In [13] H. Friedman introduced a strikingly simple device to establish closure
under the Markov rule in the form

Ti ` ¬¬∃xP (a, x)⇒ Ti ` ∃xP (a, x)

(P is a prime formula)1 which works for many intuitionistic theories Ti. As
we have seen one can use functional interpretation to obtain closure under
the Markov rule of those theories to which functional interpretation applies.
The important feature of Friedman’s so-called A-translation however is that
it is much easier to apply and also works for some systems like intuitionistic
Zermelo-Fraenkel set theory ZFI for which no functional interpretation has
been developed yet.
Combined with the negative translation, Friedman’s A-translation therefore

can be used to show Π0
2-conservation of many classical theories T over their

intuitionistic counterpart Ti.
As a corollary of this one gets that T has the same provably recursive func-
tions as Ti.
By combining negative translation and A-translation with modified realiz-
ability one obtains an alternative method (to the use of negative translation

and functional interpretation) for unwinding proofs of Π0
2-sentences in e.g.

PA. Note that the direct combination of negative translation and modified
realizability without the intermediate step of the A-translation would be

1In theories in which every quantifier-free formula A0(x) can be written as a prime
formula tA0(x) = 0 this implies the usual form of the Markov rule.
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useless since the modified realizability interpretation is trivial for negative
formulas which result under negative translation.

However one should mention also some serious limitations of the approach
based on the A-translation:

1) the A-translation is not sound for QF-ER and so doesn’t apply to our

systems WE-HAω and ̂WE-HA
ω|\ while functional interpretation does.

2) A-translation only shows closure under the Markov rule but doesn’t
establish conservation results for the Markov principle with respect to
general classes of formulas (which functional interpretation does). In

particular it is not sound for the negative translation of QF-AC (which

follows from QF-AC only in the presence of the Markov principle) and
therefore cannot be used to show that e.g. the provably recursive func-
tions of WE-PAω+ QF-AC are just the ones definable by closed terms
of WE-HAω even if we omit the extensionality rule QF-ER.

3) The combination of negative translation, A-translation and modified
realizability is not known to be faithful for subsystems PAn of PA with
restricted induction (respectively for corresponding finite type exten-

sions of PAn) whereas negative translation combined with functional

interpretation is (see [56] for the latter).

Remark 7.1 The A-translation was independently also discovered by A. Dra-
galin in [10].

In this lecture we will establish the A-translation only for HA since this
suffices to illustrate the general pattern. For extensions to other systems like
ZFI the reader should consult Friedman’s original paper [13].

Definition 7.2 ([13]) Let A ∈ L(HA) be a formula of HA. For every for-

mula F ∈ L(HA) (such that A doesn’t contain free variables which are bound

in F ) we define the A-translation FA of F as follows: FA results if all prime
formulas P in F are replaced by P ∨A.
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Proposition 7.3 HA ` F ⇒ HA ` FA.

Proof: Easy induction on the length of the derivation. 2

Corollary 7.4 HA ` ∀x¬¬∃yA0(x, y)⇒ HA ` ∀x∃yA0(x, y).

Proof: In HA, A0(x, y) can be written as a prime formula tA0(x, y) = 0.

Hence (since ¬G is an abbreviation for G→ 0 = 1)

HA ` ∀x¬¬∃yA0(x, y)

implies
HA ` (∃y(tA0(x, y) = 0)→ 0 = 1)→ 0 = 1.

By the A-translation for A :≡ ∃y(tA0(x, y) = 0) we get

HA ` ((∃y(tA0(x, y) = 0)→ 0 = 1)→ 0 = 1)∃y(tA0
(x,y)=0)

,

i.e. HA proves

(∃y(tA0(x, y) = 0∨∃y(tA0(x, y) = 0))→ ∃y(tA0(x, y) = 0))→ ∃y(tA0(x, y) = 0),

and hence HA proves

((∃ytA0(x, y) = 0∨∃y(tA0(x, y) = 0))→ ∃y(tA0(x, y) = 0))→ ∃y(tA0(x, y) = 0).

Since G ∨G→ G holds by intuitionistic logic, we get

HA ` ∃y(tA0(x, y) = 0)

and hence
HA ` ∀x∃yA0(x, y).

2

For more information on the A-translation see [51]. Applications of the
combination of negative translation, A-translation and realizability can be
found in [4] and [55].
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Final comments

In the previous lectures we have studied various proof interpretations and
indicated their use as tools for unwinding the computational content of proofs
(both constructive as well as non-constructive ones).

A common feature of all these interpretations is that they translate a system
T into another system S by assigning to every formula A of the former a
formula A∗ of the latter such that the implication

T ` A ⇒ S ` A∗

holds. Moreover the proof of A∗ in S can be obtained by a simple recursion
over a given proof of A in T since the interpretations respect the logical
deduction rules (locality or modularity of proof interpretations).

As a consequence of this such proof interpretations preserve to a certain ex-
tent the structure of the original proof and the resulting S-proof of A∗ will
not be much longer than the original proof of A in T . This is in sharp
contrast to structural proof transformations like cut-elimination or normal-
ization which in general cause a non-elementary recursive blow-up of the
original proof. Of course at a few places (proposition 6.17, corollary 6.20) we
had to normalize the term extracted by the proof interpretation which again
is of non-elementary complexity. However as we have seen one can also make
substantial use of terms involving higher types by exploiting the mathemat-
ical structure of the functionals denoted by these terms without having to
normalize them (see e.g. theorem 4.11, corollary 4.13, proposition 5.15 and
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– if we allow Φ to be an arbitrary closed term of ̂WE-HA
ω|\– also theorem

6.19)! So proof interpretations of the sort we investigated in the present
lectures allow to separate those aspects of unwinding proofs which can be
carried out locally by recursion over the proof from those which involve a
global rebuilding of a proof or a term like normalization.

Another important consequence of the modularity of proof interpretations

is that they can be easily extended to systems T̃ ⊃ T obtained by adding
further non-logical axioms Γ to T . If the interpretation Γ∗ of Γ is provable in

S (resp. in some extension S̃ of S), then the given interpretation immediately

extends to an interpretation of T̃ in S (resp. in S̃). So it suffices to consider
the new axioms.

As a simple example for such an extension consider e.g. the following: both
functional interpretation and negative translation are trivial for purely uni-
versal sentences Γ := ∀xA0(x). Because of this the proofs of e.g. theorem 6.6
and corollary 6.7 immediately extend to WE-PAω + Γ, WE-HAω + Γ instead
of WE-PAω, WE-HAω (for Γ in the language of WE-PAω).

As a corollary we obtain that the addition of (Sω-true) universal axioms to
WE-PAω+ QF-AC doesn’t change the provably recursive functionals of the
system. This observation –which has been stressed in the context of first-
order arithmetic by G. Kreisel– can be extended also to more general classes
of formulas (see e.g. [30]).

Finally, proof interpretations can easily be combined with each other: e.g in
chapter 6 we used a combination of three different interpretations: elimina-
tion of extensionality, negative translation and functional interpretation.

63



Bibliography
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[18] Gödel, K., Collected Work, Vol.2, S. Feferman et al. eds. Oxford Uni-
versity Press. New York

[19] Goodman, N., The faithfulness of the interpretation of arithmetic in the

theory of constructions. J. Symbolic Logic 38, pp.453-459 (1973).

65



Bibliography

[20] Goodman, N., The theory of the Gödel functionals. J. Symbolic Logic
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