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Preface

These notes from the BRICS course “Pearls of Theory” are an introduction
to Linear Programming and its use in solving problems in Combinatorics and
in the design and analysis of algorithms for combinatorial problems.

Devdatt P. Dubhashi
February, 1996
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Dr. Cheng’s Diet and LP

1 Dr. Cheng’s Diet and LP

In anticipation of the lazy afternoons at the beaches in the coming sum-
mer, Dr. Cheng is prescribing the Magnificent Body Diet. He reckons
one needs energy (2,000 kcal), protein (55g) and calcium (800 mg) every
day. According to taste and dietary restrictions2 of the participants in his
programme, Dr. Cheng has narrowed down the following food items for
consumption (listed according to the values corresponding to one serving):

Food Energy(kcal) Protein(g) Calcium(mg) Price (Dkr)
Gyldenmix 110 4 2 3
Eggs 160 13 54 13
Milk 160 8 285 9
Cherry Pie 420 4 22 20
Soyabean 260 14 80 19

There are of course some limits on how much of each kind one can consume
per day:

Food Max servings
Gyldenmix 4
Eggs 2
Milk 8
Cherry Pie 2
Soyabean 2

The problem is: how does one select a diet to meet all these requirements?
Being a professional mathematician, Dr. Cheng abhores trial and error; in-
stead he proposes the following systematic approach. A general diet consists
of x1 servings of Gyldenmix, x2 of eggs, x3 of milk, x4 of cherry pie and x5

of soyabean, then we can list the constraints on the diet systematically:

2One of us is vegetarian.
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Dr. Cheng’s Diet and LP

• The limits on servings:

0 ≤ x1 ≤ 4

0 ≤ x2 ≤ 2

0 ≤ x3 ≤ 8

0 ≤ x4 ≤ 2

0 ≤ x5 ≤ 2

• The requirements for energy, proteins and calcium:

110x1 + 160x2 + 160x3 + 420x4 + 260x5 ≥ 2000

4x1 + 13x2 + 8x3 + 4x4 + 14x5 ≥ 55

2x1 + 54x2 + 285x3 + 22x4 + 80x5 ≥ 800

The cost of the diet would be (in Dkr):

3x1 + 13x2 + 9x3 + 20x4 + 19x5.

Dr. Cheng’s problem is to minimise this cost subject to the constraints listed
above: a prototypical linear programming (LP) problem.

After

Dr. Schwartzbach and the Magnificent Body Diet

Before

2



1. Dr. Cheng’s Diet and LP

A general form of the linear programming problem for minimisation is the
following: for positive integers m and n,

min
∑
j∈[m]

c(j)y(j)

subject to (1)∑
j∈[m]

a(i, j)y(j) ≥ b(i), i ∈ [n]

y(j) ≥ 0, j ∈ [m].

or, more succinctly, in matrix notation 3,

min{cy | Ay ≥ b, y ≥ 0}. (2)

Symmetrically, a general maximisation LP problem can be framed as:

max
∑
j∈[m]

c(j)x(j)

subject to (3)∑
j∈[m]

a(i, j)x(j) ≤ b(i), i ∈ [n]

x(j) ≥ 0, j ∈ [m].

or, more succinctly, in matrix notation

max{cx | Ax ≤ b, x ≥ 0} (4)

In Problem 10.1, you are asked to show how one can convert seemingly
different formulations into this form.

3To try and keep notational fuss to a minimum, we shall write vectors and matrices
using normal letters, and interchangeably write vectors as columns and rows, leaving the
context to resolve ambiguities. Thus in writing matrix–vector products, if A is a n ×m
matrix, the notation Ax will imply by coherence, that x is a m–column vector while in
the product yA, y is a n–row vector.

3



Dr. Cheng’s Diet and LP

Exercise 1.1 Why is it not particularly interesting to consider the following
kind of problem:

max{cx | Ax ≥ b},
or

min{cy | Ay ≤ b},
with A a non–negative matrix?

The good news is that linear programming problems can be solved efficiently.
Beware however! For this statement means different things to different peo-
ple! For the practitioner, there is the celebrated Simplex algorithm of George
Dantzig which has been implemented and used for many years now. The
theoretician however, regards the simplex algorithm as inefficient since it is
known to take an exponential amount of time albeit on some isolated patho-
logical instances. For him, there is the so–called Ellipsoid method developed
by the Soviet school of mathematicians or Karmarkar’s algorithm, which run
provably in polynomial time. The perversity of the situation is completed
by the fact that the practitioner would balk at implementing these latter
algorithms regarding them as the truly inefficient ones!

We shall come away with the optimist’s view: Linear Programming problems
are solvable efficiently in theory and practice.

Let us quickly introduce some typical LP verbiage. In (3) or (1), the linear
function

∑
j∈[m] c(j)x(j) that is maximised or minimised is called the objective

function. The inequalities
∑
j∈[m] a(i, j)x(j) ≤ (≥)b(i), i ∈ [n] are called the

LPconstraints. Any vector x satisfying these constraints is called a feasible
solution. Thus the LP problem is to maximise or minimise the objective
function over the space of feasible solutions.

It is often helpful to think of the LP problem geometrically. The feasible
solution space is then seen to be region of euclidean space carved out by
the constraint inequalities. Such a set is called a polytope. The polytope
corresponding to the inequalities Ax ≤ b is a convex set: i.e. if two points
are in it, then so is the entire line between them. One can easily verify
this fact algebraically: if Ay ≤ b and Az ≤ b, then also Ax ≤ b for any
x = λy + (1 − λz) with 0 ≤ λ ≤ 1, It is a general fact of optimisation over

4



1. Dr. Cheng’s Diet and LP

convex sets that the optimum (maximum or minimum) is always attained at
an extreme or corner point. Thus the corner points of the polytope Ax ≤ b

are of special interest; in fact the simplex algorithm proceeds from one corner
to a neighbouring one until it discovers the optimum.

We conclude this introduction to LP with some historical comments. A diet
problem involving 77 different foods, to meet the minimum requirements of
nine different nutrients at minimum cost was published by G.J. Stigler in
1945. The formulation was essentially a LP in 77 non–negative variables
with 9 inequality constraints. Stigler was unaware of LP technology and
obtained an approximate solution by trial and error leading to a diet that
met the minimum requirements at an annual cost of $ 39.93 in 1939 prices.
After George E. Dantzig developed the Simplex algorithm in 1947, Stigler’s
diet problem was one of the first large problems to be solved by the Simplex
method and it gave the true optimum diet with an annual cost of $39.67 at
the 1939 prices. Stigler’s trial and error wasn’t too far off after all!

Dantzig was employed at that time in the US Air Force Headquarters as
a mathematician with the responsibility for devising improved methods for
planning air force activities. Although Dantzig is generally credited (at least
in the West) with the development of the theory of linear programming and
the Simplex algorithm for solving LP problems, there were at least two pre-
cursors. During World war II, the Dutch mathematician Tjalling C. Koop-
mans actually developed the essential priciples of linear programming in a
special case. later Koopmans went on to successfully apply linear program-
ming priciples to the fundamental problems of economics as embodied in
various models such as the famous one proposed by L. Walras in 1874. In the
Soviet Union, Leonid V. Kantorovic working for a Soviet production enter-
prise made the discovery independently. In his mongraph published in 1939,
he introduced the basic LP formulation, developed the general theory using
methods very close to the ones used even today and outlined a method for
solving LP problems on desk calculators (this was the pre–computer era). In
view of all this, the continued attribution of the discovery of linear program-
ming to Dantzig alone is explicable only on the grounds that Kantorovich
couched his formulation in terms of maximising production while Dantzig
phrased his in terms of maximising profit! However, recognition was ac-
corded when on October 14, 1975, the Royal Sweedish Academy of Sciences

5



Dr. Cheng’s Diet and LP

awarded the Nobel Prize in economics to L.V. Kantorovich and T.C. Koop-
mans “for their contributions to the optimal allocation of resources.” This
time, in a perverse compounding of errors, Dantzig was excluded because his
work was considered “too mathematical”!

Another interesting anecdote from the history of LP is related by Dantzig
describing his first encounter with the famous Hungarian–American mathe-
matician John von Neumann:

On October 1, 1947, I visited von Neumann for the first time
at ... Princeton. I remember trying to describe .. the Air force
problem. I began with the formulation of the linear programming
model in terms of activities and items etc. ... “Get to the point”,
he said impatiently ... I said to myself: “OK, if he wants a quick
version of the problem, then that’s what he’ll get.”In under a
minute I slapped the geometric and algebraic version of the prob-
lem on the board. Von Neumann stood up and said: “Oh that!”.
He then proceeded for the next hour and a half to lecture to me
on the mathematical theory of linear programs ... At one point,
seeing me sitting there with my eyes popping and my mouth open
(after all, I had searched the literature and found nothing), von
Neumann said: “I don’t want you to think that I am generating
all this on the spur of the moment. I have just recently completed
a book with Oscar Morgenstern on the Theory of Games. What I
am doing is conjecturing that the two are equivalent. The theory
I am outlining to you is really an analogue of the one we have de-
veloped for the Theory of Games.” Thus I learned about Farkas’
Lemma and duality for the first time.

For a nice ccount of the discovery of Linear programming, see the article of
that name by Dorfman [2].

6



2. LP versus NP: A Panacea?

2 LP versus NP: A Panacea?

What else can one do with LP besides prescribing diets? Let us take the
following maximum satisfiability problem which is known to be a tough nut
to crack (it is NP–hard). Given:

• a set of boolean variables x1, . . . , xm;

• a CNF–formula over them i.e. a set of clauses C1, . . . , Cn each in con-
junctive normal form (each clause has the form (y1∨y2∨· · ·∨yk) where
each yi is either a variable or a negated variable) and

• a non–negative weight w(C) for each clause C.

The problem is to find an assignment of 0/1 values to the variables so as to
maximise the total weight of the satisfied clauses. A clause is satisfied by a
0/1 assignment of the variables if on substituting the assigned values to the
variables, it evaluates to 1. That is, if at least one of the variables in the set
C+ of positively occuring literals is assigned 1 or at least one of the variables
in the set C− of negatively occuring literals is assigned 0.

Let us introduce 0/1 variables z(C) for each clause C with the interpretation
that z(C) = 1 iff clause C is satisfied; then one can formulate this problem
to look like the LP problem 3:

max
∑
C w(C)z(C) (5)

subject to ∑
xj∈C+ xj +

∑
xj∈C−(1− xj) ≥ z(C), for each clause C, (6)

xj , z(C) ∈ {0, 1}. (7)

Exercise 2.1 Convince yourself that a feasible solution to the above program
corresponds to an assignment and a set of satisfied clauses and hence that
the solution to the above program is indeed the maximum weight of satisfied
clauses under any assignment.

7



Dr. Cheng’s Diet and LP

For a second example, consider the minimum–weight vertex cover problem
from graph theory: given a graph G := (V,E) and non–negative weights
w(v), v ∈ V , find a vertex cover of minimum weight. A vertex cover is a set
of vertices S ⊆ V such that for every edge (u, v) ∈ E, we have u ∈ S or v ∈ S
i,e the edge e is covered by S. The weight of a cover S is defined naturally
by w(S) :=

∑
u∈S w(u). The minimum vertex cover problem is known to be

a NP–hard problem.

Let us introduce variables x(v), v ∈ V so that each variable takes only the
values 0 and 1 with the interpretation that x(v) = 1 iff v ∈ S. Then one can
formulate the minimum vertex cover problem as the following program:

min
∑
v∈V w(v)x(v) (8)

subject to

x(u) + x(v) ≥ 1, for each (u, v) ∈ E, (9)

x(v) ∈ {0, 1}, v ∈ V. (10)

These two examples illustrate the

Pearl 1 Many combinatorial optimisation problems can be formulated as lin-
ear programming problems.

Exercise 2.2 Why is this not the end of the story? Given the polynomial
time algorithms for the LP problem mentioned in § 1, why does this not imply
that P=NP?

3 Duality

While you are puzzling over this conundrum, let us quickly develop some basic
LP theory. Multiplying the constraints in (3) by non–negative multipliers
y(1), . . . , y(n) (so that the inequalities are preserved) and adding, we get:

∑
j∈[m]

∑
i∈[n]

y(i)a(i, j)

x(j) ≤
∑
i∈[n]

y(i)b(i).

8



3. Duality

Comparing with the objective function
∑
j∈[m] c(j)x(j), we see that provided

the multipliers y(1), . . . , y(n) are chosen so that

∑
i∈[n]

y(i)a(i, j) ≥ cj, j ∈ [m],

the optimum sought is bounded from above by
∑
i∈[n] y(i)b(i). Thus we are

naturally led to consider the following dual problem:

min
∑
i∈[n] y(i)b(i)

subject to (11)∑
i∈[n] y(i)a(i, j) ≥ cj , j ∈ [m]

y(i) ≥ 0, i ∈ [n]. (12)

or, more succinctly,

min{yb | yA ≥ c, y ≥ 0}. (13)

The problems (3) and (11) or equivalently, (4) and (13) are said to be duals
of each other; the first in each pair is (rather arbitrarily) called the primal
problem and other, the dual. Notice that

• a variable in the dual is paired with an inequality in the primal, (and
vice–versa);

• the objective function of the dual is determined by the right hand side
of the primal constraints (and vice–versa);

• the constraint matrix of the dual is the transpose of the constraint
matrix of the primal.

Exercise 3.1 In a similar manner, develop the dual of a primal problem
posed as a minimisation problem, (1).

Exercise 3.2 What is the dual of the dual?

9



Dr. Cheng’s Diet and LP

There is a close relation between the values of the primal and dual programs4.
We argued above that the so–called Weak Duality Theorem holds:

max{cx | Ax ≤ b, x ≥ 0} ≤ min{yb | yA ≥ c, y ≥ 0}.

In fact the values are equal !

Theorem 3.3 (Duality Theorem) The values of a LP and its dual are
equal; that is:

max{cx | Ax ≤ b, x ≥ 0} = min{yb | yA ≥ c, y ≥ 0}. (14)

Moreover, there is a curious relation between the primal and dual solutions,
the so—called complementary slackness conditions: if x∗ is an optimal pri-
mary solution and y∗ an optimal dual solution, then

(primal) If x∗(j) > 0 then
∑
i∈[n] y

∗(i)a(i, j) = cj .

(dual) If y∗(i) > 0 then
∑
j∈[m] a(i, j)x∗(j) = bi.

That is, if in an optimal solution, a variable is non–zero, then the correspond-
ing inequality in the dual is satisfied with equality.

4 Linear versus Integer

Let us return to the conundrum posed at the end of § 2. The catch is that
the programs we wrote there were in fact, not linear programs! There were
constraints that the variables involved must be integers, in particular 0/1–
valued. Unfortunately, integer linear programming (ILP), that is, the LP
problem under the restriction that feasible solutions must be integral is also
a NP–complete problem (even if the variables are only 0/1 valued)!

4We shall always assume that all LPs we write have finite optimal solutions to avoid
various technicalities.

10



5. Luck: Unimodularity

5 Luck: Unimodularity

Sometimes however, we may be lucky: the optimal solution of the linear
programming might just turn out to be integral! Geometrically, the polytope
Ax ≤ b might just turn out to have integer vertices. In particular, this can
happen if the constraint matrix has a special structure.

Pearl 2 Exploit structure in the constraint matrix of a LP.

A matrix is said to be totally unimodular if each subdeterminant of the matrix
is −1, 0 or +1. (In particular, each entry of a totally unimodular matrix is
one of these three values.) A beautiful result of Hoffman and Kruskal is the
following:

Theorem 5.1 An integral matrix A is totally unimodular iff

• for all integral vectors b, the polytope Ax ≤ b is integral i.e. has integer
vertices.

• for all integral vectors b and c, both sides of the linear programming
duality equation (14):

max{cx | Ax ≤ b, x ≥ 0} = min{yb | yA ≥ c, y ≥ 0}.

are achieved by integral vectors x∗ and y∗.

To use this pearl, we must be able to recognise when the constraint matrix
is totally unimodular. We can employ the following characterisation:

Proposition 5.2 A matrix is totally unimodular iff each collection of its
rows can be split into two parts such that the sum of the rows in one part
minus the sum of the rows in the second part is a vector with entries −1, 0
or +1.

11



Dr. Cheng’s Diet and LP

Let M be the incidence matrix of a graph G := (V,E); so M is indexed by
vertices on the rows and by edges on the columns with M(v, e) = 1 if e is
incident on v and 0 otherwise. We shall use the following fact to give slick
proofs of some classical results in graph theory.

Exercise 5.3 Use Proposition 5.2 to show that M is totally unimodular iff
G is bipartite.

Let G be a bipartite graph and M its incidence matrix. By the Hoffman–
Kruskal theorem 5.1, we have,

max{y1 | yM ≤ 1, y ≥ 0, integral} = min{1x |Mx ≥ 1, x ≥ 0, integral}.

(Here 1 stands for the all 1 vector of dimension |V | on the left side and |E|
on the right!). This is

Theorem 5.4 (König’s Covering Theorem) The maximum cardinality
of an independent set in a bipartite graph is equal to the size of a minimum
edge cover (i.e. a set of edges incident on every vertex).

Similarly, we also have:

max{1x |Mx ≤ 1, x ≥ 0, integral} = min{y1 | yM ≥ 1, y ≥ 0, integral}.

This is the famous

Theorem 5.5 (König–Egerváry Theorem) The maximum cardinality of
a matching in a bipartite graph is equal to the minimum cardinality of a vertex
cover (i.e. a set of vertices covering every edge).

6 Rounding

Most often, though we are not so lucky! In that case, we could still try to
relax the integrality constraints and see what the solution of the resulting

12



6. Rounding

LP can tell us. Let us consider the LP relaxation of the vertex cover problem
from § 2:

min
∑
v∈V w(v)x(v)

subject to (15)

x(u) + x(v) ≥ 1, for each (u, v) ∈ E,
0 ≤ x(v) ≤ 1, v ∈ V.

Notice that we have relaxed the integrality constraint x(v) ∈ {0, 1} into
weaker linear constraints. This enlarges our space of feasible solutions, so
if Z∗IP is the optimum value of the integer program (8) (and hence the true
optimum value of the vertex cover problem) and Z∗LP is the optimum value
of the LP relaxation, then we have the relation Z∗IP ≥ Z∗LP , an observation
which we will use repeatedly.

Exercise 6.1 What is the analogous relation between a maximisation ILP
problem and its LP relaxation?

Solving the LP will give us an optimal solution x∗ which is in general frac-
tional. In order to extract from this a meaningful solution to the original
problem, a natural strategy that suggests itself is to round the fractional
solution. In our example, if x∗ is the optimal LP solution, one can round it
to an integral solution x̄ according to the following simple rule:

x̄(v) :=
{

1, if x∗(v) ≥ 0.5;
0, otherwise.

This 0/1 solution will be (the characteristic vector of) the vertex cover we
output.

First, observe that x̄ is indeed a feasible solution i.e. it is the incidence vector
of a vertex cover. For any edge (u, v), the corresponding constraint forces
max(x∗(u), x∗(u)) ≥ 0.5, hence at least one of x̄(u) or x̄(v) will be rounded
to 1, that is, at least one of the two endpoints will be in our cover, so our set
is indeed a vertex cover. Moreover, x̄(v) ≤ 2x∗(v) for any v ∈ V , hence∑

v∈V
w(v)x̄(v) ≤ 2

∑
v∈V

w(v)x∗(v).

13



Dr. Cheng’s Diet and LP

Finally we bring in our observation that the value of the LP solution cannot
exceed the value of the true optimal vertex cover; hence we have just found
a conceptually simple algorithm that approximates the vertex cover problem
within a factor of 2. In fact no better approximation is known to be attainable
in polynomial time!

The example above was an illustration of

Pearl 3 Seek help from the LP relaxation of an integer programming prob-
lem. Round the fractional LP solution to an integral one to get a reasonable
approximation to the true value.

This algorithm is simple to describe, but requires the solution of a linear
program which can be substantial task. In § 8, we shall see an algorithm
that has the same approximation guarentee but obviates the need to solve a
linear program, although it still comes out of LP!

7 Randomised Rounding

Now let us consider the other example from § 2: the maximum satisfiability
problem which we wrote as an integer program (5). In the spirit of Pearl 3,
we write down the LP relaxation immediately:

max
∑
C w(C)z(C) (16)

subject to ∑
xj∈C+ xj +

∑
xj∈C−(1− xj) ≥ z(C), for each clause C,

0 ≤ xj , z(C) ≤ 1.

So we solve this LP and round the solution as before, right?

Exercise 7.1 Suppose we employ the rounding rule we had before: round a
variable to 1 if it exceeds 0.5 and to 0 otherwise. Argue that one cannot give
any good performance guarantee in this case.

14



7. Randomised Rounding

It’s time for a new

Pearl 4 Introduce randomness: interpret the fractional LP solutions as
probabilities to guide the rounding process.

We propose the following randomised algorithm for the MAXSAT problem:
solve the LP relaxation (16), and then use the (fractional) LP solution x∗ as
probabilties for a rounding procedure: round x(i) to 1 with probabilty x∗(i)
and to 0 with probability 1− x∗(i).

To analyse the approximation one obtains, let us estimate the probability
that a particular clause C is satsified. Clause C fails to be satisfied exactly
if all the literals in it are set to 0; hence C is satisfied with probability

Pr(C is satisfied) = 1−
∏

xj∈C+

(1− x∗(j))
∏

xj∈C−
x∗(j).

Let’s take a look at the clause constraint in (16). Suppose we have a set S
of k elements partitioned into two subsets S := A ∪ B, and such that∑

a∈A
a+

∑
b∈B

(1− b) ≥ z.

Notice that this is equivalent to∑
a∈A

(1− a) +
∑
b∈B

b ≤ k − z.

Now, using the arithmetic–geometric mean inequality,

∏
a∈A

(1− a)
∏
b∈B

b ≤ (

∑
a∈A(1− a) +

∑
b∈B b

k
)k

≤ (1− z/k)k.

Taking S to be the set of literals in our clause C with A := C+ and B := C−,
the partition into positively and negatively occuring literals respectively, we
get that if C is a clause with k literals, then

Pr(C is satisfied) ≥ 1− (1− z∗(C)/k)k.

15



Dr. Cheng’s Diet and LP

Exercise 7.2 Verify by elementary calculus or otherwise, that in the interval
[0, 1],

1− (1− z/k)k ≥ βkz,

where βk := 1− (1− 1/k)k ≥ (1− 1
e
).

Let WOPT be the optimum value of the MAXSAT problem, and let Z∗LP
be the optimal value of the LP–relaxation (16). Thus WOPT ≤ Z∗LP . The
expected weight of the assignment produced, Ŵ satisfies:

Ŵ =
∑
C

w(C)Pr(C is satisfied)

≥
∑
C

w(C)(1− 1

e
)z∗(C)

≥ (1− 1

e
)
∑
C

w(C)z∗(C)

= (1− 1

e
)Z∗LP

≥ (1− 1

e
)WOPT .

Thus we have a randomised algorithm that delivers an approximation that
is at least a factor of (1− 1

e
) of the optimal. In Problem 10.7, we investigate

how to remove the randomisation and get a deterministic algorithm wih the
same performance. Should you care for our Delicious Oyster of the Week,
Problem 10.8, you are guided towards an improved solution.

8 Primal–Dual

The basic idea of the primal–dual method may be summarised in

Pearl 5 Manipulate solutions to the primal and dual problems together, us-
ing the complementary slackness conditions to drive towards optimality.

16



8. Primal–Dual

Recall that if we have a primal solution x̂ and a dual solution ŷ, that together
satisfy the complementary slackness conditions, then this is a certificate that
both solutions are optimal. Otherwise, one can improve either the primal or
dual solution and continue.

In cases of interest to us, we must modify this strategy somewhat; since we
are interested in integer solutions, we should not blindly pursue the comple-
mentary slackness conditions to optimality of the linear relaxations. A useful
strategy in such cases is to maintain only a dual feasible solution and enforce
only one half of the complementary clackness conditions, namely, the primal.
This will lead to a good approximate solution.

We illustrate this by returning to the vertex cover problem which we formu-
lated as a ILP (8) and whose LP relaxation, (15) is reproduced below for
convenience:

min
∑
v∈V w(v)x(v)

subject to (17)

x(u) + x(v) ≥ 1, for each (u, v) ∈ E,
0 ≤ x(v) ≤ 1, v ∈ V.

We want to consider concurrently the dual:

max
∑
e∈E y(e)

subject to (18)∑
e∈δ(v) y(e) ≤ w(v), v ∈ V,

y(e) ≥ 0, e ∈ E. (19)

We will only enforce the primal complementary slackness conditions:

x∗(v) > 0 →
∑
e∈δ(v)

y∗(e) = w(v).

To start, we can let x := 0 and y := 0; note that the latter is a dual feasi-
ble solution and the primal complemtary slackness conditions hold trivially.
Now, let us try to improve the dual solution: pick any edge e and increase y(e)
as much as possible. That is, until the node constraint

∑
e∈δ(v) y(e) ≤ w(v)

17



Dr. Cheng’s Diet and LP

becomes tight for one of its endpoints. At this stage, add this tight node v to
the vertex cover by setting x(v) := 1, and delete the edge e from further con-
sideration. Note that feasibility of the dual was maintained and so were the
primal complementary slackness conditions. Continue until all edges have
been processed in this fashion. This is a simple linear time algorithm.

We claim that the result is a vertex cover of value at most twice the optimal.
That we do produce a cover is immediate from the fact that an edge is only
deleted when one of its endpoints (the tight one) is added to the cover. For
the second part of the claim, imagine that when the value of a variable y(e)
is increased by k, we pay k to each of its endpoints. Then the total value
paid to all nodes is exactly twice the value of the dual solution, which is a
lower bound on the value of the optimal cover. Finally note that a vertex is
only added to the cover when it is “fully paid for”, that is it is paid w(v).

If this was too slick a sleigh of hand, here is a more careful verification
that brings out exactly what linear–programming principles are being used.
Let V COPT denote the value of an optimal vertex cover, and let Z∗ be the
optimal value of the primal LP problem and Ẑ the value of any feasible dual
solution. By the nature of a relaxation, V COPT ≥ Z and by the Weak Duality
Theorem, Z∗ ≥ Ẑ. Hence we conclude that V COPT ≥ Ẑ. In particular, with
our specific dual feasible solution from the algorithm, Ẑ =

∑
e y(e) and we

have

V COPT ≥
∑
e∈E

y(e)

=
1

2

∑
v∈V

∑
e∈δ(v)

y(e)

≥ 1

2

∑
v∈V,x(v)>0

∑
e∈δ(v)

y(e)

=
1

2

∑
v∈V,x(v)>0

w(v),

where in the last line, we employed the fact that the primal complemantary
slackness conditions were enforced. Thus the value of the solution produced
saisfies

∑
v∈V,x(v)>0 w(v) ≤ 2V COPT , as claimed.

18
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9 If You Want to Prospect for more Pearls

...

The best introduction to linear programming is the elegant book of Chvátal
[1] in which you can find many other applications of linear programming. A
more advanced and comprehensive book for the theorist is that of Schrijver
[3]. A nice, insightful survey of the utility of linear programming related tech-
niques for approximation algorithms is given by Shmoys [4]. Our examples
from § 6 through § 8 are discussed there together with many other examples,
applications and references. A detailed discussion of randomised rounding in
the context of packing and covering type of LP problems is given in [5].

10 Problems

Problem 10.1 Show how to bring the following LP into the standard form
in § 1:

max 3x1 + 5x2 − 7x3

subject to x1 + x2 + 3x4 = 5

x1 + x2 − x3 ≤ 6

x1 ≥ 0.

Problem 10.2 Apply the duality equation (14) to derive the following vari-
ant:

max{cx | Ax ≤ b} = min{yb | yA = c, y ≥ 0}.

Problem 10.3 Generalise the reasoning in § 3 to prove a Weak Duality
Theorem that is suggestive of the following Duality Theorem for integer linear
programming. Call a function F : Rn → R super–additive if F (u + v) ≥
F (u) + F (v) and non–decreasing if u ≤ v implies F (u) ≤ F (v). Let F
denote the class of super–additive, non–decreasing functions. Then

max{cx | Ax ≤ b, x ≥ 0, integral} = min{F (b) | F (a(j)) ≥ cj , F ∈ F}.
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Problem 10.4 Use the complementary slackness conditions to set up and
solve a system of linear equations to check if the alleged optimal solution

x∗1 = 2, x∗2 = 4, x∗3 = 0, x∗4 = 0, x∗5 = 7, x∗6 = 0,

to the LP problem

max 18x1 − 7x2 + 12x3 + 5x4 + 8x6

subject to 2x1 − 6x2 + 2x3 + 7x4 + 3x5 + 8x6 ≤ 1

−3x1 − x2 + 4x3 − 3x4 + x5 + 2x6 ≤ −2

8x1 − 3x2 + 5x3 − 2x4 + 2x6 ≤ 4

4x1 + 8x3 + 7x4 − x5 + 3x6 ≤ 1

5x1 + 2x2 − 3x3 + 6x4 − 2x5 − x6 ≤ 5

x1, x2, x3, x4, x5, x6 ≥ 0.

is indeed so.

Problem 10.5 (Oyster of the Week) A permutation matrix is a square
0/1 matrix with exactly one 1 in each column and row. A doubly–stochastic
matrix is a square matrix with non–negative entries with each row and col-
umn sum equal to 1. (Thus, in particular, a permutation matrix is also
doubly–stochastic.) By formulating a LP with a totally unimodular constraint
matrix, establish the following famous theorem of Birkhoff and von Neumann:

Theorem 10.1 (Birkhoff–von Neumann) Every doubly stochastic ma-
trix can be written as a convex combination of permutation matrices.

That is, for every doubly stochastic n×n matrix D, there exist non–negative
reals λ1, . . . λn! summing to 1 such that D =

∑
i λiPi, where P1, . . . , Pn! are

all the permutation matrices.
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10. Problems

Problem 10.6 (Oyster of the Week: Alternate Menu) A subset of ver-
tices in a graph G := (V,E) is said to be independent or stable, if no two
vertices in the subset are adjacent. Let us assign real numbers x(u), u ∈ V
subject to the conditions:

x(u) + x(v) ≤ 1, (u, v) ∈ E,

and x(u) ≥ 0, u ∈ V .

1. Argue that integer solutions to this set of inequalities correspond exactly
to stable sets in the graph.

2. Deduce that there is a polynomial time algorithm for finding the max-
imum size of a stable set in a bipartite graph. (Note that this problem
is NP–complete for general graphs.)

Problem 10.7 In this problem, we will outline a general technique for de-
randomisation, that is, for coverting a randomised algorithm into a deter-
ministic one (with the same performance guarantees).

1. Consider the following simple randomised algorithm for the MAX–SAT
problem: set each variable xi independently to 1 or 0 equiprobably. By
analysing the probability that a fixed clause is satisfied, show that for
the special case of MAX–3SAT, namely where each clause has at most
3 literals, this gives a 7/8–approximation algorithm.

2. Now we outline a scheme to set the values of the variables x1, x2, . . .
sequentially and deterministically. When setting the value of xi, we
will consider a 3–SAT formula φi involving only the variables xi, . . . , xn;
initially i = 1 and φ1 := φ the input formula. Let W (φi) be the expected
weight of satisfied clauses if we set the variables xi, . . . , xn independently
and equiprobably to 0 or 1. Let φ1

i be obtained from φi as follows: if xi
occurs positively in a clause C, replace the clause by 1 (which is always
satisfied) and if it occurs negatively in C, delete xi from the clause C.
Here is the rule: if W (φ1

i ) ≥ W (φ0
i ), then set xi := 1 and φi+1 := φ1

i ,
else xi := 0 and φi+1 := φ0

i . Argue that this is indeed a deterministic
scheme to set the variables.
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3. Argue that W (φi) ≤ W (φi+1) for each 1 ≤ i < n. Hence dedeuce that
our deterministic scheme outputs an assignment with weight at least
7/8 times the optimal: we have derandomised the algorithm from the
first part.

4. Why is this called the method of conditional probabilities?

5. Apply the method of conditional probabilities to derandomise the algo-
rithm from § 7.

Problem 10.8 (Delicious Oyster of the Week) In this problem, we will
outline an improvement to the randomised rounding procedure used in § 7.

1. For 0 < α ≤ 1, say that a function f : [0, 1]→ [0, 1] has the α–property,
if for all y1, . . . , yk ∈ [0, 1] and for any partition [k] = I ∪ J,

1−
∏
i∈I
f(yi)

∏
j∈J

f(1− yj) ≥ αmin(1,
∑
i∈I

(1− yi) +
∑
j∈J

yj).

Given a function f with the α property, employ the following rounding
rule: instead of using the LP solution x∗ directly to do the rounding,
apply f and round xi to 1 with probability f(x∗(i)) and to 0 with proba-
bility 1−f(x∗(i)). Show that the resulting algorithm delivers a solution
of value at least α times the optimal.

2. Show that the following functions have the 3/4 property: any function
f satisfying 1 − 4−y ≤ f(y) ≤ 4y−1 or the linear function fγ(y) :=
γ + (1 − 2γ)y, for 2 − 3

41/3 ≤ γ ≤ 1
4
. Deduce that there is a 3/4

approximation algorithm for MAXSAT.

3. Show that there are no functions with the α–property for α > 3/4.

4. Derandomise the algorithm from above to obtain a deterministic 3/4–
approximation algorithm.
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Problem 10.9 (Delicious Oyster of the Week: Alternate Menu) The
Hitting Set Problem is as follows: given a ground set E, with non–negative
costs c(e), e ∈ E, and subsets T1, . . . , Tn ⊆ E, find a subset A ⊆ E of mini-
mum cost that hits all the given sets, i.e. A ∩ Ti 6= ∅ for each i ∈ [n].

1. Formulate the vertex cover problem as a special case of the hitting set
problem. Can you find other well known problems that are special cases
of the hitting set problem?

2. Develop a primal–dual algorithm for the hitting set problem and analyse
its performance.
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