
B
R

IC
S

LS
-96-1

L.A
rge:

E
xternal-M

em
ory

A
lgorithm

s
w

ith
A

pplications
in

G
IS

BRICS
Basic Research in Computer Science

External-Memory Algorithms with
Applications in
Geographic Information Systems

Lars Arge

BRICS Lecture Series LS-96-1

ISSN 1395-2048 September 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Lecture Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/

ftp://ftp.brics.dk/

This document in subdirectoryLS/96/1/

External-Memory Algorithms with
Applications in
Geographic Information Systems

Lars Arge

Lars Arge
Center for Geometric Computing
Department of Computer Science

Duke University
Durham, NC 27708–0129

USA

Preface

In the design of algorithms for large-scale applications it is essential to con-
sider the problem of minimizing Input/Output (I/O) communication. Geo-
graphical information systems (GIS) are good examples of such large-scale
applications as they frequently handle huge amounts of spatial data. In
this note we survey the recent developments in external-memory algorithms
with applications in GIS. First we discuss the Aggarwal-Vitter I/O-model
and illustrate why normal internal-memory algorithms for even very simple
problems can perform terribly in an I/O-environment. Then we describe the
fundamental paradigms for designing I/O-efficient algorithms by using them
to design efficient sorting algorithms. We then go on and survey external-
memory algorithms for computational geometry problems—with special em-
phasis on problems with applications in GIS—and techniques for designing
such algorithms: Using the orthogonal line segment intersection problem we
illustrate the distribution-sweeping and the buffer tree techniques which can
be used to solve a large number of important problems. Using the batched
range searching problem we introduce the external segment tree. We also
discuss an algorithm for the reb/blue line segment intersection problem—
an important subproblem in map overlaying. In doing so we introduce the
batched filtering and the external fractional cascading techniques. Finally, we
shortly describe TPIE—a Transparent Parallel I/O Environment designed to
allow programmers to write I/O-efficient programs.

These lecture notes were made for the CISM Advanced School on Algorithmic

Foundations of Geographic Information Systems, September 16–20, 1996, Udine,

Italy. Most of this work was done while I was with BRICS and supported in part

by the ESPRIT Long Term Research Programme of the EU under project number

20244 (ALCOM–IT). At Duke the work was partially supported by the U.S. Army

Research Office MURI grant DAAH04–96–1–0013.

Lars Arge
December 1996

v

vi

Contents

1 Introduction 1
1.1 The Parallel Disk Model . 2
1.2 Outline . 4

2 RAM-Complexity and I/O-Complexity 5
2.1 Fundamental External-Memory Bounds 6
2.2 Summary . 8

3 Paradigms for Designing I/O-efficient Algorithms 8
3.1 Merge Sort . 9
3.2 Distribution Sort . 10
3.3 Buffer Tree Sort . 12

3.3.1 External-Memory Priority Queue 14
3.4 Sorting on Parallel Disks . 15
3.5 Summary . 17

4 External-Memory Computational Geometry Algorithms 17
4.1 The Orthogonal Line Segment Intersection Problem 20

4.1.1 Distribution Sweeping 21
4.1.2 Using the Buffer tree 23
4.1.3 Experimental Results 24

4.2 The Batched Range Searching Problem 29
4.2.1 The External Segment Tree 30

4.3 The Red/Blue Line Segment Intersection Problem 32
4.3.1 The Endpoint Dominance Problem 33
4.3.2 External-Memory Fractional Cascading 35
4.3.3 External Red/Blue Line Segment Intersection Algorithm 37

4.4 Other External-Memory Computational Geometry Algorithms 39
4.5 Summary . 41

5 TPIE — A Transparent Parallel I/O Environment 41

6 Conclusions 44

vii

viii

External-Memory Algorithms with Applications in GIS

1 Introduction

Traditionally when designing computer programs people have focused on the
minimization of the internal computation time and ignored the time spent on
Input/Output (I/O). Theoretically one of the most commonly used machine
models when designing algorithms is the Random Access Machine (RAM)
(see e.g. [6, 87]). One main feature of the RAM model is that its memory
consists of an (infinite) array, and that any entry in the array can be accessed
at the same (constant) cost. Also in practice most programmers conceptually
write programs on a machine model like the RAM. In an UNIX environment
for example the programmer thinks of the machine as consisting of a processor
and a huge (“infinite”) memory where the contents of each memory cell can
be accessed at the same cost (Figure 1). The task of moving data in and
out of the limited main memory is then entrusted to the operating system.
However, in practice there is a huge difference in access time of fast internal
memory and slower external memory such as disks. While typical access time
of main memory is measured in nanoseconds, a typical access time of a disk
is on the order of milliseconds [35]. So roughly speaking there is a factor of
a million in difference in the access time of internal and external memory,
and therefore the assumption that every memory cell can be accessed at the
same cost is questionable, to say the least!

In many modern large-scale applications the communication between in-
ternal and external memory, rather than the internal computation time, is ac-
tually the bottleneck in the computation. As geographic information systems
(GIS) frequently store, manipulate, and search through enormous amounts
of spatial data [41, 54, 65, 79, 86] they are good examples of such large-scale

P M DMP

D

Figure 1: A RAM-like machine model. Figure 2: A more realistic model.

1

External-Memory Algorithms with Applications in GIS

applications. The amount of data manipulated in such systems is often too
large to fit in main memory and must reside on disk, hence the I/O commu-
nication can become a very severe bottleneck. An especially good example
is NASA’s EOS project GIS system [41], which is expected to manipulate
petabytes (thousands of terabytes, or millions of gigabytes) of data!

The effect of the I/O bottleneck is getting more pronounced as internal
computation gets faster, and especially as parallel computing gains popular-
ity [75]. Currently, technological advances are increasing CPU speeds at an
annual rate of 40–60% while disk transfer rates are only increasing by 7–10%
annually [78]. Internal memory sizes are also increasing, but not nearly fast
enough to meet the needs of important large-scale applications.

Modern operating systems try to minimize the effect of the I/O bottleneck
by using sophisticated paging and prefetching strategies in order to assure
that data is present in internal memory when it is accessed. However, these
strategies are general purpose in nature and therefore they cannot take full
advantage of the properties of a specific problem. Instead we could hope to
design more efficient algorithms by explicitly considering the I/O communi-
cation when designing algorithms for specific problems. This could e.g. be
done by designing algorithms for a model where the memory system consists
of a main memory of limited size and a number of external memory devices
(Figure 2), where the memory access time depends on the type of memory
accessed. Algorithms designed for such a model are often called external-
memory (or I/O) algorithms. In this note we consider basic paradigms for
designing efficient external-memory algorithms and external-memory com-
putational geometry algorithms with applications in GIS.

1.1 The Parallel Disk Model

Accurately modeling memory and disk systems is a complex task [78]. The
primary feature of disks that we want to model is their extremely long access
time relative to that of internal memory. In order to amortize the access
time over a large amount of data, typical disks read or write large blocks
of contiguous data at once. Therefore we use a theoretical model with the
following parameters [5]:

N = number of elements in the problem instance;

M = number of elements that can fit into internal memory;

B = number of elements per disk block;

2

1. Introduction

where M < N and 1 ≤ B ≤M/2.
In order to study the performance of external-memory algorithms, we use

the standard notion of I/O complexity [5]. We define an I/O operation to be
the process of simultaneously reading or writing a block of B contiguous data
elements to or from the disk. As I/O communication is our primary concern,
we define the I/O complexity of an algorithm simply to be the number of
I/Os it performs. Internal computation is free in the model. Thus the I/O
complexity of reading all of the input data is equal to N/B. Depending on
the size of the data elements, typical values for workstations and file servers
in production today are on the order of M = 106 or 107 and B = 103.
Large-scale problem instances can be in the range N = 1010 to N = 1012.

An increasingly popular approach to further increase the throughput of
the I/O system is to use a number of disks in parallel [49, 50, 96]. Several
authors have considered an extension of the above model with a parameter
D denoting the number of disks in the system [20, 70, 71, 72, 96]. In the
parallel disk model [96] one can read or write one block from each of the D
disks simultaneously in one I/O. The number of disks D range up to 102 in
current disk arrays.

The parallel disk model corresponds to the one shown in Figure 2, where
we only count the number of blocks of B elements moved across the dashed
line. Of course the model is designed for theoretical considerations and is
thus very simple in comparison with a real system. For example one cannot
always ignore internal computation time and one could try to model more
accurately the fact that (in single user systems at least) reading a block
from disk in most cases decreases the cost of reading the block succeeding it.

CPU

C D

D

IC DC

P

M

B = 32 b
B = 246 b

B = 8 Kb

16 Kb

32 Mb

1 Mb

Figure 3: A “real” machine with typical memory and block sizes [35].

3

External-Memory Algorithms with Applications in GIS

Also today the memory of a real machine is typically made up of not only
two but several levels of memory (e.g. on-chip data and instruction cache,
secondary cache, main memory and disk) between which data are moved in
blocks (Figure 3). The memory in such a hierarchy gets larger and slower
the further away from the processor one gets, but as the access time of the
disk is extremely large compared to that of all the other levels of memory
we can in most practical situations restrict our attention to the two level
case. Thus theoretical results obtained in the parallel disk model can help to
gain valuable insight. This is supported by experimental results which show
that implementing algorithms designed for the model can lead to significant
runtime improvements in practice [31, 32, 88, 91]. We will discuss some of
these experiments in later sections.

Finally, it should be mentioned that several authors have considered ex-
tended theoretical models that try to model the hierarchical nature of the
memory of real machines [1, 2, 3, 4, 7, 58, 80, 94, 97, 95], but such mod-
els quickly become theoretically very complicated due to the large number
of parameters. Therefore only very basic problems like sorting have been
considered in these models.

1.2 Outline

In this note we survey the basic paradigms for designing efficient external-
memory algorithms and especially for designing external-memory algorithms
for computational geometry problems. As the area of external-memory algo-
rithms is relatively young it is difficult to give really good examples of prac-
tical GIS applications. Therefore this note focuses on fundamental external-
memory design techniques more than on algorithms for specific GIS problems.
The presentation is survey-like with a more detailed discussion of the most
important techniques and algorithms.

In Section 2 we first illustrate why normal internal-memory algorithms
for even very simple problems can perform terribly when the problem in-
stances get just moderately large. We also discuss the theoretical I/O lower
bounds on fundamental problems like sorting. In Section 3 we then discuss
the fundamental paradigms for designing I/O-efficient algorithms. We do
so by using the different paradigms to design theoretically optimal sorting
algorithms. Many problems in computational geometry are abstractions of
important GIS operations, and in Section 4 we survey techniques and algo-
rithms in external-memory computational geometry. We also discuss some

4

2. RAM-Complexity and I/O-Complexity

experimental results. Finally, we in Section 5 shortly describe a Transparent
Parallel I/O Environment (TPIE) designed by Vengroff [88] to allow pro-
grammers to write I/O-efficient programs.

We assume that the reader has some basic knowledge about e.g. fun-
damental sorting algorithms and data structures like balanced search trees
(especially B-trees) and priority queues. We also assume that the reader is
familiar with asymptotic notation (O(·), Ω(·),Θ(·)). One excellent textbook
covering these subjects is [38].

2 RAM-Complexity and I/O-Complexity

In order to illustrate the difference in complexity of a problem in the RAM
model and the parallel disk model, consider the following simple problem:
We are given an N-vertex linked list stored as an (unsorted) sequence of
vertices, each with a pointer to the successor vertex in the list (Figure 4).
Our goal is to determine for each vertex the number of links to the end of
the list. This problem is normally referred to as the list ranking problem.

In internal memory the list ranking problem is easily solved in O(N)
time. We simply traverse the list by following the pointers, and rank the
vertices N − 1, N − 2 and so on in the order we meet them. In external
memory, however, this simple algorithm could perform terribly. To illustrate
this imagine that we run the algorithm on a (rather memory limited) machine
where the internal memory is capable of holding two blocks with two data
elements each. Assume furthermore that the operating system controlling
the I/O uses a least recently used (LRU) paging strategy, that is, when a
data item in a block not present in internal memory is accessed the block
containing the least recently used data items is flushed from internal memory
in order to make room for the new block. Finally, assume that the list is
blocked as indicated in Figure 5. First we load block 1 and give A rank

A B C D E G HF A B C D E G HF

Figure 4: List ranking problem. Figure 5: List ranking in external
memory (B = 2).

5

External-Memory Algorithms with Applications in GIS

N − 1. Then we follow the pointer to E, that is, we load block 3 and rank
E. Then we follow the pointer to D, loading block 2 while removing block 1
from internal memory. Until now we have made an I/O every time we follow
a pointer. Now we follow the pointer to B, which means that we have to load
block 1 again. To do so we have to remove block 3 from internal memory.
Next we remove block 2 to get room for block 4. This process continues
and we see that we do not utilize the blocked disk access, but do an I/O
every time we access a vertex. Put another way we use O(N) I/Os instead of
O(N/B) I/Os which would correspond to the O(N) internal-memory RAM
bound because O(N/B) is the number of I/Os we need to read all N vertices.
As typical practical values of B are measured in thousands this difference can
be extremely significant in practice.

In general the above type of behavior is characteristic for internal-memory
algorithms when analyzed in an I/O-environment, and the main reason why
many applications experience a dramatic decrease in performance when the
problem instances get larger than the available internal memory. The lesson
one should learn from this is that one should be very careful about following
pointers, and be careful to ensure a high degree of locality in the access to
data (what is normally referred to as locality of reference).

2.1 Fundamental External-Memory Bounds

After illustrating how simple internal-memory algorithms can have a terrible
performance in an I/O environment, let us review the fundamental theoretical
bounds in the parallel disk model. For simplicity we give all the bounds in
the one-disk model. In the general D-disk model they should all be divided
by D.

Initial theoretical work on I/O-complexity was done by Floyd [46] and by
Hong and Kung [55] who studied matrix transposition and fast Fourier trans-
formation in restricted I/O models. The general I/O model was introduced
by Aggarwal and Vitter [5] and the notion of parallel disks was introduced
by Vitter and Shriver [96]. The latter papers also deal with fundamental
problems such as permutation, sorting and matrix transposition, and a num-
ber of authors have considered the difficult problem of sorting optimally on
parallel disks [4, 20, 70, 71]. The problem of implementing various classes of
permutations has been addressed in [36, 37, 39]. More recently researchers
have moved on to more specialized problems in the computational geome-
try [11, 14, 18, 31, 51, 98], graph theoretical [12, 14, 31, 33, 69, 64] and string

6

2. RAM-Complexity and I/O-Complexity

processing areas [15, 34, 44, 45].

As already mentioned the number of I/O operations needed to read the
entire input is N/B and for convenience we call this quotient n. One normally
uses the term scanning to describe the fundamental primitive of reading (or
writing) all elements in a set stored contiguously in external memory by
reading (or writing) the blocks of the set in a sequential manner in O(n)
I/Os. Furthermore, one says that an algorithm uses a linear number of I/O
operations if it uses O(n) I/Os. Similarly, we introduce m = M/B which is
the number of blocks that fit in internal memory. Aggarwal and Vitter [5]
showed that the number of I/O operations needed to sort N elements is
Ω(n logm n), which is then the external-memory equivalent of the well-known
Ω(N log2N) internal-memory bound.1 Furthermore, they showed that the
number of I/Os needed to rearrange N elements according to a given per-
mutation is Ω(min{N, n logm n}).

Taking a closer look at the above bounds for typical values of B and M
reveals that because of the large base of the logarithm, logm n is less than 3
or 4 for all realistic values of N and m. Thus in practice the important term
is the B-term in the denominator of the O(n logm n) = O(N

B
logm n) bound,

and an improvement from an Ω(N) bound (which we have seen is the worst
case I/O performance of many internal-memory algorithms) to the sorting
bound O(n logm n) can be extremely significant in practice. Also the small
value of logm n in practice means that in all realistic cases the sorting term
in the permutation bound will be smaller than N . Thus min{N, n logm n} =
n logm n and the problem of permuting is as hard as the more general problem
of sorting. This fact is one of the important facts distinguishing the parallel
disk model from the RAM-model, as any permutation can be performed in
O(N) time in the latter. Actually, it turns out that the permutation bound
is a lower bound on the list ranking problem discussed above [33], and as an
O(n logm n) I/O algorithm is known for the problem [11, 31, 33] we have an
asymptotically optimal algorithm for all realistic systems. Even though the
algorithm is more complicated than the simple RAM algorithm, Vengroff [89]
has performed simulations showing that on large problem instances it has a
much better performance than the simple internal-memory algorithm. In the
parallel algorithm (PRAM) world list ranking is a very fundamental graph
problem which extracts the essence in many other problems, and it is used

1We define logm n = max{1, logn/ logm}. For extremely small values of M and B the
comparison model is assumed in the sorting lower bound—see also [16, 17]

7

External-Memory Algorithms with Applications in GIS

as an important subroutine in many parallel algorithms [8]. This turns out
also to be the case in external memory [31, 33].

2.2 Summary

• RAM algorithms typically use Ω(N) I/Os when analyzed in par-
allel disk model.

• Typical bounds in one-disk model (divide by D in D-disk model):

– Scanning bound: Θ(N
B

) = Θ(n).

– Sorting bound: Θ(N
B

logM/B
N
B

) = Θ(n logm n).

– Permutation bound: Θ(min{N, n logm n}).

• In practice:

– logm n < 4 and B is the important term in O(N
B

logm n)
bound. Going from Ω(N) to O(n logm n) algorithm ex-
tremely important.

– Permutation bound equal to sorting bound.

3 Paradigms for Designing I/O-efficient Al-

gorithms

Originally Aggarwal and Vitter [5] presented two basic paradigms for design-
ing I/O-efficient algorithms; the merging and the distribution paradigms.
In Section 3.1 and 3.2 we demonstrate the main ideas in these paradigms
by showing how to use them to sort N elements in the optimal number
of I/Os. Another important paradigm is to construct I/O-efficient versions
of commonly used data structures. This enables the transformation of effi-
cient internal-memory algorithms to efficient I/O-algorithms by exchanging
the data structures used in the internal algorithms with the external data
structures. This approach has the extra benefit of isolating the I/O-specific
parts of an algorithm in the data structures. We call the paradigm the data
structuring paradigm, and in Section 3.3 we illustrate it by way of the so

8

3. Paradigms for Designing I/O-efficient Algorithms

called buffer tree designed in [11]. As we shall see later I/O-efficient data
structures turn out to be a very powerful tool in the development of efficient
I/O algorithms. For simplicity we only discuss the paradigms in the one
disk (D = 1) model. In Section 3.4 we then briefly discuss how to make the
sorting algorithms work in the general model.

3.1 Merge Sort

External merge sort is a generalization of internal merge sort. First, in
the “run formation phase”, N/M (= n/m) sorted “runs” are formed by
repeatedly filling up the internal memory, sorting the elements, and writing
them back to disk. The run formation phase requires 2n I/Os as we read
and write each block ones. Next we continually merge m runs together to
a longer sorted run, until we end up with one sorted run containing all the
elements—refer to Figure 6.

N
M

= n
m

runs

N items

n

m2 runs

n

m3 runs

1 = n

mi
runs

Figure 6: Merge sort.

The crucial property is that we can merge m runs together in a linear
number of I/Os. To do so we simply load a block from each of the m runs
and collect and output the B smallest elements. We continue this process
until we have processed all elements in all runs, loading a new block from a
run every time a block becomes empty. Since there are logm n/m levels in
the merge process, and since we only use 2n I/O operations on each level,
we in total use 2n + 2n · logm n/m = 2n + 2n(logm n − 1) = 2n logm n I/Os
and have thus obtained an optimal O(n logm n) algorithm.

9

External-Memory Algorithms with Applications in GIS

N items

m buckets

Size of bucket is M

m2 buckets

Figure 7: Distribution sort.

3.2 Distribution Sort

External distribution sort is in a sense the reverse of merge sort and the
external-memory equivalent of quick sort. Like in merge sort the distribution
sort algorithm consists of a number of levels each using a linear number of
I/Os. However, instead of repeatedly merging m run together, we repeatedly
distribute the elements in a “bucket” into m smaller “buckets” of equal size.
All elements in the first of these smaller buckets are smaller than all elements
in the second bucket and so on. The process continues until the elements in
a bucket fit in internal memory, in which case the bucket is sorted using an
internal-memory sorting algorithm. The sorted sequence of elements is then
obtained by appending the small sorted buckets—refer to Figure 7.

Like m-way merge, m-way distribution can also be performed in a linear
number of I/Os, by just keeping a block in internal memory for each of the
buckets we are distributing elements into—writing it to disk when it becomes
full. However, in order to distribute the N elements in a bucket into m
smaller buckets we need to find m “pivot” elements among the N elements,
such that the buckets each defined by two such pivot elements are of equal
size (corresponding to finding the median in the quicksort algorithm). In
order to do so I/O-efficiently we need to decrease the distribution factor and
distribute the elements in a bucket into

√
m instead of m smaller buckets. If

the elements are divided perfectly among the buckets this will only double
the number of levels as log√m n = logm n/ logm

√
m = 2 logm n. Thus we will

still obtain an O(n logm n) algorithm if we can process each level in a linear
number of I/Os.

The obvious way to find the
√
m pivot elements would be to find every

N/
√
m’th element using the k-selection algorithm

√
m times. The k-selection

10

3. Paradigms for Designing I/O-efficient Algorithms

algorithm [25] finds the k’th smallest element in O(N) time in internal mem-
ory and it can easily be modified to work in O(n) I/Os in external memory.
The

√
m elements found this way would give us buckets of exact equal size,

but unfortunately we would use O(n ·
√
m) and not O(n) I/Os to compute

them. Therefore we first choose 4N/
√
m of the N elements by sorting the

N/M memory loads individually and choosing every
√
m/4’the element from

each of them. Then we can use k-selection
√
m times on these elements to

obtain the pivot elements using only
√
m · O(n/4

√
m) = O(n) I/Os. How-

ever, now we cannot be sure that the
√
m buckets have equal size N/

√
m, but

fortunately one can prove that they are of approximately equal size, namely
that no bucket contains more than 5N/4

√
m elements [5, 61]. Thus the num-

ber of levels in the distribution is less than log4/5
√
m n/m = O(logm n) and

the overall complexity remains the optimal O(n logm n) I/Os.

Even though merge sort is a lot simpler and efficient in practice than
distribution sort [62], the distribution paradigm is the most frequently used
of the two paradigms. Mainly two factors make distribution sort less efficient
in practice than merge sort, namely the larger number of levels in the recur-
sion and the computation of the pivot elements. Especially the last factor
(the k-selection algorithm) can be very I/O expensive. However, in many
applications it turns out that one can compute all the pivot elements used
during the whole algorithm before the actual distribution starts, and thus
both avoid the expensive k-selection algorithm and obtain an m distribution
factor. We will see an example of this in Section 4.1.

Both the distribution sort and merge sort algorithm demonstrates two of
the most fundamental and useful features of the I/O-model, which is used
repeatedly when designing I/O algorithms. First the fact that we can do
m-way merging or distribution in a linear number of I/O operations, and
secondly that we can solve a complicated problem in a linear number of I/Os
if it fits in internal memory. In the two algorithms the sorting of a memory
load is an example of the last feature, which is also connected with what is
normally referred to as “locality of reference”—one should try to work on
data in chunks of the block (or internal memory) size, and do as much work
as possible on data once it is loaded into internal memory.

11

External-Memory Algorithms with Applications in GIS

3.3 Buffer Tree Sort

In internal memory we can sort N elements in O(N log2 N) time using a
balanced search tree; we simply insert all N elements in the tree one by
one using O(log2N) time on each insertion, and then we can easily obtain
the sorted set of element in O(N) time. Similarly, we can use a priority
queue to sort optimally; first we insert all N elements in the queue and then
we perform N deletemin operations. Why not use the same algorithms in
external memory, exchanging the data structures with I/O-efficient versions
of the structures?

The standard well-known search tree structure for external memory is
the B-tree [21, 40, 63]. On this structure insert, delete, deletemin and search
operations can be performed in O(logB n) I/Os. Thus using the structure in
the algorithms above results in O(N logB n) I/O sorting algorithms which is
a factor of B logm

logB
away from optimal. This factor can be very significant in

practice. In order to obtain an optimal sorting algorithm we need a structure
where the operations can be performed in O(logm n

B
) I/Os.

The inefficiency of the B-tree sorting algorithm is a consequence of the fact
that the B-tree is designed to be used in an “on-line” setting, where queries
should be answered immediately and within a good worst-case number of
I/Os, and thus updates and queries are handled on an individual basis. This
way one is not able to take full advantage of the large internal memory.
Actually, using a decision tree like argument as in [59], one can show that
the search bound is indeed optimal in such an “on-line” setting (assuming
the comparison model). However, in an “off-line” environment where we are
only interested in the overall I/O use of a series of operations on the involved
data structure, and where we are willing to relax the demands on the search
operations, we could hope to develop data structures on which a series of N
operations could be performed in O(n logm n) I/Os in total. Below we sketch
such a basic tree structure developed using what is called the buffer tree
technique [11]. The structure can be used in the normal tree sort algorithm.
In Section 3.3.1 we also sketch how the structure can be used to develop an
I/O-efficient external priority queue.

Basically the buffer tree is a fan-out m/2 tree structure built on top of
n leaves, each containing B of the N elements stored in the structure. Thus
the tree has height O(logm n)—refer to Figure 8. A buffer of size m/2 blocks
is assigned to each internal node and operations on the structure are done
in a “lazy” manner. In order to insert a new element in the structure we

12

3. Paradigms for Designing I/O-efficient Algorithms

do not (like in a normal tree) search all the way down the tree to find the
place among the leaves to insert the element. Instead, we wait until we have
collected a block of insertions, and then we insert this block in the buffer
of the root (which is stored on disk). When a buffer “runs full” its element
are then “pushed” one level down to buffers on the next level. We call
this a buffer-emptying process, and it is basically performed as a m/2-way
distribution step; we load the M/2 elements from the buffer and the m/2
partition elements into internal memory, sort the elements from the buffer,
and write them back to the appropriate buffers on the next level. If the
buffer of any of the nodes on the next level becomes full by this process the
buffer-emptying process is applied recursively.

The main point is now that we can perform the buffer-emptying process
in O(m) I/Os, basically because the elements in a buffer fit in memory and
because the fan-out of the structure is Θ(m). We use O(m) I/Os to read and
write all the elements, plus at most one I/O for each of the O(m) children
to distribute elements in non-full blocks. Thus we push m/2 blocks one
level down the tree using O(m) I/Os, or put another way, we use a constant
number of I/Os to push one block one level down. In this way we can
argue that every block is touched a constant number of times on each of the
O(logm n) levels of the tree, and thus inserting N elements (or n blocks) in
the structure requires O(n logm n) I/Os in total. Of course one also has to
consider how to empty a buffer of a node on the last level in the tree, that is,
how to insert elements among the leaves of the tree and perform rebalancing.
In [11] it is shown that by using an (a, b)-tree [56] as the basic tree structure
this can also be handled in the mentioned I/O bound. An (a, b)-tree is a
generalization of the B-tree. Deletions (and queries) can be handled using

O(logm n)

B

m/2 blocks

m/2

Figure 8: Buffer tree.

13

External-Memory Algorithms with Applications in GIS

similar ideas [11].
Note that while N insertions (and deletions) in total take O(n logm n)

I/Os, a single insertion (or deletion) can take a lot more than O(logm n

B
) I/Os,

as a single operation can result in a lot of buffer-emptying processes. Thus
we do not as in the B-tree case have a worst-case I/O bound on performing
an update. Instead we say that each operation can be performed in O(logm n

B
)

I/Os amortized [84].
In order to use the structure in a sorting algorithm we also need an

operation that reports all the elements in the structure in sorted order. To
do so we first empty all buffers in the structure using the buffer-emptying
process from the root of the tree and down. As the number of internal nodes
is O(n/m) this can easily be done in O(n) I/Os. After this all the elements
are stored in the leaves and can be reported in sorted order using a simple
scan. Using the buffer idea we have thus obtained a structure with the
operations needed to sort N elements in O(n logm n) I/O with precisely the
same tree sort algorithm as can be used in internal memory. The algorithm
has the extra benefit of isolating the I/O-specific parts in the data structure.
Preliminary simulation results suggests that in practice the algorithm has a
bit worse performance than merge sort, but that it performs much better
than distribution sort.

3.3.1 External-Memory Priority Queue

Normally, we can use a search tree structure to implement a priority queue
because we know that the smallest element in a search tree is in the leftmost
leaf. Thus when we want to perform a deletemin operation we simply delete
and return the element in the leftmost leaf. The same general strategy can
be used to implement an external priority queue based on the buffer tree.
However, in the buffer tree we cannot be sure that the smallest element is
in the leftmost leaf, since there can be smaller elements in the buffers of
the nodes on the leftmost path. There is, however, a simple strategy for
performing a deletemin operation in the desired amortized I/O bound.

When we want to perform a deletemin operation, we simply do a buffer-
emptying process on all nodes on the path from the root to the leftmost
leaf. This requires O(m) · O(logm n) I/Os. Now we can be sure not only
that the leftmost leaf consists of the B smallest elements in the tree, but
also that the m/2 · B = M/2 smallest elements in the tree are in the m/2
leftmost leaves. As these elements fit in internal memory we can delete them

14

3. Paradigms for Designing I/O-efficient Algorithms

all and hold them in internal memory in order to be able to answer future
deletemin operations without having to do any I/Os at all. In this way
we have used O(m logm n) I/Os to answer M/2 deletemin operations which
means that we amortized use O(logm n

B
) I/Os on one such operation. There is

one complication, however, as insertions of small elements may be performed
before we have performed M/2 deletemin operations. Therefore we also on
each insertion check if the element to be inserted is smaller than the largest
of the minimal elements we currently hold in internal memory. If this is the
case we keep the new element in memory as one of the minimal elements and
insert the largest of the smallest elements in the buffer tree instead. Note
that this extra check do not require any extra I/Os.

To summarize we have sketched an external priority queue on which inser-
tions and deletemin operations can be performed in O(logm n

B
) I/Os amortized

and thus we are able to sort optimally with yet another well-known algorithm.
It should be noted that recently an alternative priority queue was developed
in [64].

3.4 Sorting on Parallel Disks

In the previous sections we have discussed a number of sorting algorithms
working in the one-disk model. As mentioned in the introduction, one ap-
proach to increase the throughput of I/O systems is to use a number of disks
in parallel. In this section we briefly survey results on sorting optimally using
D independent disks. We assume that by the start of the algorithm the N
elements to be sorted are spread among the D disks with n/D blocks on each
disk.

One very simple method of using D disks in parallel is disk striping, in
which the heads of the disks are moving synchronously, so that in a single
I/O operation each disk reads or writes a block in the same location as each
of the others. In terms of performance, disk striping has the effect of using
a single large disk with block size B′ = DB. Even though disk striping
does not in theory achieve asymptotic optimality when D is very large, it is
often the method of choice in practice for using parallel disks [91]. The non-
optimality of disk striping can be demonstrated via the sorting bound. While
sorting N elements using disk striping and one of the previously described
one-disk sorting algorithms requires O(n

D
logm/D n) I/Os, the optimal bound

is O(n
D

logm n) I/Os [5]. Note that the optimal bound gives a linear speedup
in the number of disk.

15

External-Memory Algorithms with Applications in GIS

In order to use the D disks optimally in merge sort we should be able
to merge Θ(m) sorted runs containing N elements in O(n/D) I/Os, that is,
every time we do an I/O we should load Θ(D) useful blocks from the disks.
However, as we only have room in internal memory for a constant number
of blocks from each input run, we cannot hold D blocks from each run and
just load the next D blocks once the old ones expire. Instead, every time we
want to read the next block of a run, we have to predict which Θ(D) block
we will need to load next and “prefetch” them together with the desired
block. The prediction can be done with a technique due to Knuth called
forecasting [63]. However, in order to prefetch the blocks efficiently they must
reside on different disks, and that is the main reason why merge sorting on
parallel disk is difficult—during one merge pass one has to store the output
blocks on disks in such a way that they can be efficiently prefetched in the
next merge pass. But the way the blocks should be assigned to disks depends
on the merge steps forming the other m − 1 runs which will participate in
the next merging pass, and therefore it seems hard to figure out how to
assign the blocks to disks. Nevertheless, Nodine and Vitter [70] managed to
developed a (rather complicated) D-disk sorting algorithm based on merge
sort. Very recently Barve et al. [20] develop a very simple and practical
randomize D-disk merge sort algorithm.

Intuitively, it seems easier to make distribution sort work optimally on
parallel disks. During one distribution pass we should “just” make sure
to distribute the blocks belonging to the same bucket evenly among the
D disks, such that we can read them efficiently in the next pass. Vitter
and Shriver [96] used randomization to ensure this and developed an algo-
rithm which performs optimally with high probability. Later Nodine and
Vitter [71] managed to develop a deterministic version of D disk distribution
sort. An alternative distribution-like algorithm is develop by Aggarwal and
Plaxton [4].

The buffer tree sorting algorithm can also be modified to work on D
disks. Recall that the buffer-emptying process basically was performed like
a distribution step, where a memory load of elements were distribute to m/2
buffers one level down the tree. Thus using the techniques developed in [71]
the buffer-emptying algorithm can be modified to work on D disks, and we
obtain an optimal D-disk sorting algorithm. As already mentioned, distri-
bution sort is rather inefficient in practice, mainly because of the overhead
used to compute the pivot elements. Also the deterministic D-disk merge
sorting algorithms is rather complicated. As the computation of the pivot el-

16

4. External-Memory Computational Geometry Algorithms

ements is avoided in the buffer tree, the D-disk buffer tree sorting algorithm
could be very efficient in practice. In the future we hope to investigate this
experimentally.

3.5 Summary

• Three main paradigms: Merging, distributing, and data struc-
turing.

• Main features used:

– m-way merging/distribution possible in linear number of
I/Os.

– Complicated small problems can be solved in linear number
of I/Os.

– Buffered data structures. Using B-trees typically yields al-
gorithms a factor B away from optimal.

• In practice:

– All three paradigms can be used to develop optimal sorting
algorithms. One-disk merge sort fastest, followed by buffer
and distribution sort.

4 External-Memory Computational Geome-

try Algorithms

Most GIS systems at some level store map data as a number of layers. Each
layer is a thematic map, that is, it stores only one type of information.
Examples are a layer storing all roads, a layer storing all cities, and so on.
The theme of a layer can also be more abstract, as for example a layer of
population density or land utilization (farmland, forest, residential). Even
though the information stored in different layers can be very different, it is
typically stored as geometric information like line segments or points. A
layer for a road map typically stores the roads as line segments, a layer for

17

External-Memory Algorithms with Applications in GIS

cities typically contains points labeled with city names, and a layer for land
utilization could store a subdivision of the map into regions labeled with the
use of a particular region.

One of most fundamental operations in many GIS systems is map overlaying—
the computation of new scenes or maps from a number of existing maps.
Some existing software packages are completely based on this operation
[9, 10, 74, 86]. Given two thematic maps the problem is to compute a new
map in which the thematic attributes of each location is a function of the
thematic attributes of the corresponding locations in the two input maps.
For example, the input maps could be a map of land utilization and a map
of pollution levels. The map overlay operation could then be used to pro-
duce a new map of agricultural land where the degree of pollution is above a
certain level. One of the main problems in overlaying of maps stored as line
segments is “line-breaking”—the problem of computing the intersections be-
tween the line segments making up the maps. This problem can be abstracted
as the in computational geometry well-known problem of red/blue line seg-
ment intersection. In this problem one is given a set of non-intersecting red
segments and a set of non-intersecting blue segments and should compute all
intersection red-blue segment pairs.

In general many important problems from computational geometry are
abstractions of important GIS operations [42, 86]. Examples are range search-
ing which e.g. can be used in finding all objects inside a certain region, pla-
nar point location which e.g. can be used when locating the region a given
city lies in, and region decomposition problems such as trapezoid decompo-
sition, (Voronoi or Delaunay) triangulation, and convex hull computation.
The latter problems are useful for rendering and modeling. Furthermore, as
mentioned in the introduction, GIS systems frequently store and manipulate
enormous amounts of data, and they are thus a rich source of problems that
require good use of external-memory techniques. In this section we there-
fore consider external-memory algorithms for computational geometry prob-
lems. Like we in the previous section focused on the fundamental paradigms
for designing efficient sorting algorithms, we will present the fundamental
paradigms and techniques for designing computational geometry algorithms,
and at the same time present some of the algorithms for problems with appli-
cations in GIS systems. In order to do so we define two additional parameters
in our model:

K = number of queries in the problem instance;

18

4. External-Memory Computational Geometry Algorithms

T = number of elements in the problem solution.

In analogy with the definition of n and m we define k = K/B and t = T/B to
be respectively the number of query blocks and number of solution element
blocks.

In internal memory one can prove what might be called sorting lower
bounds O(N log2N + T) on a large number of important computational
geometry problems. The corresponding bound O(n logm n + t) can be ob-
tained for the external versions of the problems either by redoing standard
proofs [17, 51], or by using a conversion result from [16].

Computational geometry problems in external memory were first consid-
ered by Goodrich et al. [51], who developed a number of techniques for design-
ing I/O-efficient algorithms for such problems. They used their techniques to
develop I/O algorithms for a large number of important problems. In internal
memory the plane-sweep paradigm [76] is a very powerful technique for de-
signing computational geometry algorithms, and in [51] an external-memory
version of this technique called distribution sweeping is developed. As the
name suggests the technique relies on the distribution paradigm. In [11] it
is shown how the data structuring paradigm can also be use to solve compu-
tational geometry problems. It is shown how data structures based on the
buffer tree can be used in the standard internal-memory plane-sweep algo-
rithm for a number of problems. In [51] two techniques called batched con-
struction of persistent B-trees and batched filtering are also discussed. Some
external-memory computational geometry results are also reported in [48, 98].
In [18] efficient I/O algorithms for a large number of problems involving line
segments in the plane are designed by combining the ideas of distribution
sweeping, batched filtering, buffer trees and a new technique, which can be
regarded as an external-memory version of fractional cascading [30]. Most
of these problems have important applications in GIS systems. In [31, 32]
some experimental results on the practical performance of external-memory
algorithms for computational geometry problems are reported.

We divide our survey of external-memory computational geometry into
four main parts. In the next section we illustrate the distribution sweeping
and the data structure paradigm using the orthogonal line segment intersec-
tion problem. We also present some experimental results. In Section 4.2 we
then use the batched range searching problem to introduce the external seg-
ment tree data structure. Section 4.3 is then devoted to a discussion of the
red/blue line segment intersection problem. In that section we also discuss

19

External-Memory Algorithms with Applications in GIS

batched filtering and external fractional cascading. Finally, we in Section 4.4
survey some other important external-memory computational geometry re-
sults.

For simplicity we restrict the discussion to the one-disk model. Some of
the algorithms can be modified to work optimally in the general model and we
refer the interested reader to the research papers for a discussion of this. For
completeness it should be mentioned that recently a number of researchers
have considered the design of worst-case efficient external-memory “on-line”
data structures, mainly for (special cases of) two and three dimensional range
searching [19, 24, 57, 59, 77, 83, 92]. While B-trees [21, 40, 63] efficiently
support range searching in one dimension they are inefficient in higher di-
mensions. Similarly the many sophisticated internal-memory data structures
for range searching are not efficient when mapped to external memory. This
has lead to the development of a large number of structures that do not have
good theoretical worst-case update and query I/O bounds, but do have good
average-case behavior for common problems—see [68, 59]. Range searching
is also considered in [73, 81, 82] where the problem of maintaining range trees
in external memory is considered. However, the model used in this work is
different from the one considered here. In [26] an external on-line version of
the topology tree is developed and this structure is used to obtain structures
for a number of dynamic problems, including approximate nearest neighbor
searching and closest pair maintenance.

4.1 The Orthogonal Line Segment Intersection Prob-
lem

The orthogonal line segment intersection problem is that of reporting all
intersecting orthogonal pairs in a set of N line segment in the plane parallel
to the axis. In internal memory a simple optimal solution to the problem
based on the plane-sweep paradigm [76] works as follows (refer to Figure 9):
We imagine that we sweep with a horizontal sweep line from the top to
the bottom of the plane and every time we meet a horizontal segment we
report all vertical segments intersecting the segment. To do so we maintain
a balanced search tree containing the vertical segments currently crossing
the sweep line, ordered according to x-coordinate. This way we can report
the relevant segments by performing a range query on the search tree with
the x-coordinates of the endpoints of the horizontal segment. To be more

20

4. External-Memory Computational Geometry Algorithms

precise we start the algorithm by sorting all the segment endpoints by y-
coordinate. We use the sorted sequence of points to perform the sweep, that
is, we process the segments in endpoint y order. When the top endpoint of
a vertical segment is reached the segment is inserted in the search tree. The
segment is removed again when its bottom endpoint is reached. This way
the tree at all times contains the segments intersection the sweep line. When
a horizontal segment is reached a range query is made on the search tree. As
inserts and deletes can be performed in O(log2N) time and range querying
in O(log2N + T ′) time, where T ′ is the number of reported segments, we
obtain the optimal O(N log2N + T) solution.

As discussed in Section 3.3 a simple natural external-memory modifica-
tion of the plane-sweep algorithm would be to use a B-tree as the tree data
structure, but this would lead to an O(N logB n + t) I/O solution, while we
are looking for an O(n logm n + t) I/O solution. In the next two subsec-
tions we discuss I/O-optimal solutions to the problem using the distribution
sweeping and buffer tree techniques.

4.1.1 Distribution Sweeping

Distribution sweeping [51] is a powerful technique obtained by combining
the distribution and the plane-sweep paradigms. Let us briefly sketch how
it works in general. To solve a given problem we divide the plane into m
vertical slabs, each of which contains Θ(n/m) input objects, for example
points or line segment endpoints. We then perform a vertical top to bottom
sweep over all the slabs in order to locate components of the solution that

Figure 9: Solution to the orthogonal
line segment intersection problem using
plane-sweep.

Figure 10: Solution to the orthogonal
line segment intersection problem using
distribution sweeping.

21

External-Memory Algorithms with Applications in GIS

involve interaction between objects in different slabs or objects (such as line
segments) that completely span one or more slabs. The choice of m slabs
ensures that one block of data from each slab fits in main memory. To find
components of the solution involving interaction between objects residing
in the same slab, the problem is then solved recursively in each slab. The
recursion stops after O(logm n/m) = O(logm n) levels when the subproblems
are small enough to fit in internal memory. In order to get an O(n logm n)
algorithm we thus need to be able to perform one sweep in O(n) I/Os.

To use this general technique to solve the orthogonal line segment in-
tersection problem we first sort the endpoints of all the segments twice and
create two lists, one with the endpoints sorted according to x-coordinate and
the other by y-coordinate. The list sorted by y-coordinate is used to per-
form sweeps from top to bottom as in the plane-sweep algorithm. The list
sorted according to x-coordinate is used to locate the pivot elements used
throughout the algorithm to distribute the input into m vertical slabs. In
this way we avoid using the complicated k-selection algorithm as discussed
Section 3.2.

The algorithm now proceeds as follows (refer to Figure 10): We divide
the plane into m slabs and sweep from top to bottom. When a top endpoint
of a vertical segment is reached, we insert the segment in an active list (a
stack where we keep the last block in internal memory) associated with the
slab containing the segment. When a horizontal segment is reached we scan
through all the active lists associated with the slabs it completely spans.
During this scan we know that every vertical segment in an active list is either
intersected by the horizontal segment, or will not be intersected by any of
the following horizontal segments and can therefore be removed from the list.
The process finds all intersections except those between vertical segments
and horizontal segments (or portions of horizontal segments) that do not
completely span vertical slabs (the solid parts of the horizontal segments in
Figure 10). These are found after distributing the segments to the slabs,
when the problem is solved recursively for each slab. A horizontal segment
may be distributed to two slabs, namely the slabs containing its endpoints,
but it will at most be represented twice on each level of the recursion. It
is easy to realize that if T ′ is the number of intersections reported, one
sweep can be performed in O(n + t′) I/Os—every vertical segment is only
touched twice where an intersection is not discovered, namely when it is
distributed to an active list and when it is removed again. Also blocks can
be used efficiently because of the distribution factor of m. Thus by the

22

4. External-Memory Computational Geometry Algorithms

general discussion of distribution sweeping above we report all intersections
in the optimal O(n logm n+ t) I/O operations.

4.1.2 Using the Buffer tree

As discussed previously, the idea in the data structuring paradigm is to de-
velop efficient external data structures and use them in the standard internal-
memory algorithms. In order to make the plane-sweep algorithm for the
orthogonal line segment intersection problem work in external memory, we
thus need to extend the basic buffer tree with a rangesearch operation.

Basically a rangesearch operation on the buffer tree is done in the same
way as insertions and deletions. When we want to perform a rangesearch we
create a special element which is pushed down the tree in a lazy way during
buffer-emptying processes, just as all other elements. However, we now have
to modify the buffer-emptying process. The basic idea in the modification is
the following (see [11, 14] for details). When we meet a rangesearch element
in a buffer-emptying process, instructing us to report elements in the tree
between x1 and x2, we first determine whether x1 and x2 are contained in
the same subtree among the subtrees rooted at the children of the node
in question. If this is the case we just insert the rangesearch element in the
corresponding buffer. Otherwise we “split” the element in two, one for x1 and
one for x2, and report the elements in those subtrees where all elements are
contained in the interval [x1, x2]—refer to Figure 11. The splitting only occurs
once and after that the rangesearch element is treated like inserts and deletes
in buffer-emptying processes, except that we report the elements in the sub-
trees for which all elements are contained in the interval. In [11, 14] it is show
how we can report all elements in a subtree (now containing other rangesearch
elements) in a linear number of I/Os. Using the normal argument it then
follows that a rangesearch operation requires O(logm n

B
+ t′) I/Os amortized.

Note that the above procedure means that the rangesearch operation gets
batched in the sense that we do not obtain the result of a query immediately.
Actually, parts of the result will be reported at different times as the query
element is pushed down the tree. However, this suffices in the plane-sweep
algorithm in question, since the updates performed on the data structure do
not depend on the results of the queries. This is the crucial property that
has to be fulfilled in order to used the buffer tree structure. Actually, in
the plane-sweep algorithm the entire sequence of updates and queries on the
data structure is known in advance, and the only requirement on the queries

23

External-Memory Algorithms with Applications in GIS

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���

��
��
��

��
��
��

x1

b

x2

Figure 11: Buffer-emptying process with rangesearch-elements. Elements in
marked subtrees are reported when buffer b is emptied

is that they must all eventually be answered. In general such problems are
known as batched dynamic problems [43].

To summarize, the buffer tree, extended with a rangesearch operation,
can be used in the normal internal-memory plane-sweep algorithm for the
orthogonal segment intersection problem, and doing so we obtain an optimal
O(n logm n+ t) I/O solution to the problem.

4.1.3 Experimental Results

One main reason why we choose the orthogonal line segment intersection
problem as our initial computational geometry problem is that Chiang [31,
32] has performed experiments on the practical performance of several of the
described algorithms for the problem.

Chiang considered four algorithms, namely the distribution sweeping al-
gorithm, denoted Distribution, and three variants of the plane-sweep al-
gorithm, denoted B-tree, 234-Tree, and 234-Tree-Core. As discussed the
theoretical I/O cost of the distribution sweeping algorithm is the optimal
O(n logm n + t). The plane-sweep algorithms differ by the sorting method
used in the preprocessing step and in the dynamic data structure used in the
sweep. The first variation, B-tree, uses external merge sort and a B-tree as
search tree structure. As discussed previously this is the simple natural way
to modify the plane-sweep algorithm to external memory. It uses O(n logm n)
I/Os in the preprocessing phase and O(N logB n+ t) I/Os to do the sweep.
The second variation, 234-Tree, also uses external merge sort but uses a
2-3-4 Tree [38] (a generic search tree structure equivalent to a red-black tree)
as sweep structure, viewing the internal memory as having an infinite size

24

4. External-Memory Computational Geometry Algorithms

and letting the virtual memory feature of the operating systems handle the
page faults during the sweep. This way O(N log2N + t) I/Os is used to do
the sweep. Finally, the third variation, 234-Tree-Core, uses internal merge
sort and a 2-3-4 tree, letting the operating system handle page faults at all
times. The last variant is the most commonly used algorithm in practice,
as viewing the internal memory as virtually having infinite size and letting
the operating system handle the swapping is conceptually simplest. The I/O
cost is O(N log2N) and O(N log2N + t) in the two phases, respectively.

In order to compare the I/O performance of the four algorithms, Chi-
ang generated test data with particular interesting properties. One can
prove that if we just randomly generate segments with lengths uniformly
distributed over [0,N], place them randomly in a square with side length N ,
and make horizontal and vertical segments equally likely to occur, then the
expected number of intersections is Θ(N2). In this case any algorithm must
use O(N2/B) I/Os to report these intersections and thus the reporting cost
will dominate in all four algorithms. Thus Chiang generated test data with
only a linear number of intersections. Also, it is conceivable that the number
of vertical overlaps among vertical segments at a given time decides the tree
size at that moment of the plane-sweep and also the total size of the active
lists at that time of the distribution sweep. Thus we would like the vertical
overlap to be relatively large in order to study I/O issues. In the three data
sets generated by Chiang the average number of vertical overlaps among ver-
tical segments, that is, the average number of vertical segments intersected
by the horizontal sweep line when it passes through an event, is 1

4

√
N , 1

8
N

and 1
4.8
N , respectively. The average is taken over all sweeping events.

Chiang experimented on a Sun Sparc-10 workstation with a main memory
size of 32Mb and with a page size of 4Kb. The performance measures used
was total running time (wall not cpu), number of I/O operations performed
(i.e. number of blocks read and written by the program), and the number of
page faults occurred (I/Os controlled by the operating system)—see [32] for a
precise description of the experimental setting. The first surprising result of
the experiments was that the main memory available for use is typically much
smaller than what would be expected. The algorithms were implemented
such that the amount of main memory used could be parameterized, and
Distribution was run on a fixed data set with various sizes of main memory.
In theory one would expect that the performance would increase with main
memory size up close to the actual 32Mb of main memory, but it turned out
that 4Mb gave the best performance—refer to Figure 12 where the number of

25

External-Memory Algorithms with Applications in GIS

0 4 8 12 16 20

0

25000

50000

75000

100000

125000

150000

175000

200000

225000

250000

VaryMem: I/O

0 4 8 12 16 20

0

70000

140000

210000

280000

350000

420000

490000

560000

630000

700000

VaryMem: fault

* X-axis: size of the main memory used (Mb)

Figure 12: Number of I/Os and page faults when running Distribution on
a data set of 1.5 · 106 segments with various sizes of main memory.

I/Os and page faults is plotted as a function of the memory used. Going from
1Mb to 4Mb the same number of page faults occur and the number of I/Os
decrease slightly, so that the actual running time is decreasing slightly. Going
from 4Mb to 20Mb the number of I/Os again decreases only slightly while
the number of page faults increase significantly, thus resulting in a much
worse overall performance. The reason is that a lot of daemon programs
are also taking up memory in the machine. Chiang thereafter performed all

26

4. External-Memory Computational Geometry Algorithms

0 500 1000 1500 2000 2500

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00
500.00
550.00
600.00
650.00
700.00data-rect: time (mins)

Distribution

B-Tree

234-Tree

234-Tree-Core

(a)

0 500 1000 1500 2000 2500

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

12000000data-rect: I/O

(b)

Distribution

B-Tree

234-Tree

234-Tree-Core

0 500 1000 1500 2000 2500

0

300000

600000

900000

1200000

1500000

1800000

2100000

2400000

2700000

3000000data-rect: fault

Distribution

B-Tree

234-Tree

234-Tree-Core

(c)

* X-axis: # segments (x 1000)

Figure 13: Experimental results for the algorithms running on the data set
with an average number of vertical overlaps of 1

4.8
N . (a) running time in

minutes, (b) number of I/O operations, (c) number of page faults.

27

External-Memory Algorithms with Applications in GIS

experiments with the parameter of the main memory size set to 4Mb
Experiments were performed with the four algorithms on data sets of sizes

ranging from 250 thousand segments to 2.5 million segments. The overall con-
clusion made by Chiang is that while the performance of the tree variations
of plane-sweep algorithms depends heavily on the average number of vertical
overlaps, the performance of distribution sweeping is both steady and effi-
cient. As could be expected 234-Tree-Core performs the best for very small
inputs in all experiments, but as input size grows the performance quickly
becomes considerably worse than that of the other algorithms. Excluding
234-Tree-Core, 234-Tree always runs the fastest and Distribution always
the slowest for the data set with a small average number of vertical overlaps
(1

4

√
N)—because the search tree structure is small enough to fit into internal

memory. Another reason is that Distribution sorts the data twice in the
preprocessing step, while 234-Tree only sorts ones. However, for the data
set with a large average number of vertical overlaps (1

4.8
N) Distribution

runs much faster than the other algorithms for just moderately large data
sets. For example, for N = 1.37 · 106 Distribution runs for 45.29 minutes,
B-Tree for 74.54 minutes, but 234-Tree for more than 10.5 hours. Also, for
N = 2.5 · 106 Distribution runs for less than 1.5 hours, while B-Tree runs
for more than 8.5 hours. The full result of Chiang’s experiments with this
data set is shown in Figure 13. Note that Distribution always performs
less I/Os than B-Tree. Recall that the I/O cost of the two algorithms is
O(n logm n+ t) and O(N logB n+ t), respectively. With the parameter of the
main memory size set to 4Mb the two logarithmic terms in these bounds are
almost the same, so it is the 1/B term that makes the difference significant.

From the experiments performed by Chiang one may conclude that ex-
plicitly considering the I/O cost of solving a problem can be very important,
and that algorithms developed for the theoretical parallel disk model can
very well have a good practical performance and can lead to the solution of
problems one would not be able to solve in practice with algorithms devel-
oped for main memory. Chiang did not perform experiments with the buffer
tree solution described in the last subsection. Even though the constants in
the I/O bounds of the buffer tree operations are small, the buffer emptying
algorithm for buffers containing rangesearch elements is quite complicated, so
a worse performance could be expected of the buffer tree algorithm compared
to the distribution sweeping algorithm. On the other hand the buffer tree
algorithm does not need to sort the input twice as the distribution sweeping
algorithm does. We plan to perform experiments with the buffer tree solution

28

4. External-Memory Computational Geometry Algorithms

q

Figure 14: The batched range searching
problem.

Figure 15: Stabbing query with q. Dot-
ted segments are reported.

in the future. Finally, it should be mentioned that Vengroff and Vitter [91]
have also performed some experiments with I/O algorithms. We will return
to these experiments in Section 5 when we discuss the TPIE environment
developed by Vengroff [88].

4.2 The Batched Range Searching Problem

In this section we consider another computational geometry problem with
applications in GIS which is normally solved using plane-sweep; the batched
range searching problem. Given N points and N (axis-parallel) rectangles in
the plane (Figure 14) the problem consists of reporting for each rectangle all
points that lie inside it.

The optimal internal-memory plane-sweep algorithm for the problem uses
a data structure called a segment tree [22, 76]. The segment tree is a well-
known dynamic data structure used to store a set of N segments in one
dimension, such that given a query point all segments containing the point
can be found in O(log2N+T) time. Such queries are normally called stabbing
queries—refer to Figure 15. Using a segment tree the algorithm works as fol-
lows: A vertical sweep with a horizontal line is made. When the top horizon-
tal segment of a rectangle is reached it is inserted in a segment tree. The seg-
ment is deleted again when the corresponding bottom horizontal segment is
reached. When a point is reached in the sweep, a stabbing query is performed
with it on the segment tree and in this way all rectangles containing the point
are found. As insertions and deletions can be performed in O(log2N) time
on a segment tree the algorithm runs in the optimal O(N log2N + T) time.

In external memory the batched range searching problem can be solved

29

External-Memory Algorithms with Applications in GIS

√
m slabs σi

FE

O(logm n) · · ·· · ·· · ·· · · · · ·

· · ·· · ·· · ·· · ·· · ·

C D
σ4σ3σ2σ1σ0

BA

√
m nodes

.

.

.

N/B = n leaves

m nodes

Figure 16: An external-memory segment tree over a set of N segments, three
of which, AB, CD, and EF , are shown.

optimally using distribution sweeping [51] or an external buffered version of
the segment tree [11]. As we will also use the external segment tree structure
to solve the red/blue line segment intersection problem in Section 4.3, we
will sketch the structure below.

4.2.1 The External Segment Tree

In internal memory a static segment tree consists of a binary base tree storing
the endpoints of the segments, and a given segment is stored in up to two
nodes on each level of the tree. More precisely a segment is stored in all
nodes v where it contains the interval consisting of all endpoints below v,
but not the interval associated with parent(v). The segments stored in a
node are just stored in an unordered list. A stabbing query can be answered
efficiently on such a structure, simply by searching down the base tree for
the query value, reporting all segments stored in the nodes encountered.

When we want to “externalize” the segment tree and obtain a structure
with height O(logm n), we need to increase the fan-out of the nodes in the
base tree. This creates a number of problems when we want to store segments
space-efficiently in secondary structures such that queries can be answered
efficiently. Therefore we make the nodes have fan-out Θ(

√
m) instead of the

normal Θ(m). As discussed in Section 3.2 this smaller branching factor at
most doubles the height of the tree, but as we will see it allows us to efficiently
store segments in a number of secondary structures of each node.

30

4. External-Memory Computational Geometry Algorithms

The external segment tree [11] is sketched in Figure 16. The base struc-
ture is a perfectly balanced tree with branching factor

√
m over the endpoints.

A buffer of size m/2 blocks and m/2−
√
m/2 lists of segments are associated

with each node in the tree. A list (block) of segments is also associated with
each leaf. A set of segments is stored in this structure as follows: The first
level of the tree partitions the data into

√
m intervals σi—for illustrative rea-

sons we call them slabs—separated by dotted lines in Figure 16. Multislabs
are then defined as contiguous ranges of slabs, such as for example [σ1, σ4].
There are m/2 −

√
m/2 multislabs and the lists associated with a node are

precisely a list for each multislab. The key point is that the number of mul-
tislabs is a quadratic function of the branching factor. Thus by choosing the
branching factor to be Θ(

√
m) rather than Θ(m) we have room in internal

memory for a constant number of blocks for each of the Θ(m) multislabs.
Segments such as CD in Figure 16 that spans at least one slab completely
are called long segments. A copy of each long segment is stored in the list
of the largest multislab it spans. Thus, CD is stored in the list associated
with the multislab [σ1, σ3]. All segments that are not long are called short
segments. They are not stored in any multislab, but are passed down to
lower levels of the tree where they may span recursively defined slabs and
be stored. AB and EF are examples of short segments. Additionally, the
portions of long segments that do not completely span slabs are treated as
small segments. There are at most two such synthetically generated short
segments for each long segment. Segments passed down to a leaf are just
stored in one list. Note that we at most store one block of segments in each
leaf. A segment is thus at most stored in two lists on each level of the tree
and hence total space utilization is O(n logm n) blocks.

Given an external segment tree with empty buffers a stabbing query can
in analogy with the internal case be answered by searching down the tree for
the query value, and at every node encountered report all the long segments
associated with each of the multislabs that spans the query value. However,
because of the size of the nodes and the auxiliary multislab data, the external
segment tree is inefficient for answering single queries. But by using the
general idea from Section 3.3 and 4.1 and make updates and queries buffered,
we can perform the whole batch of operations needed to solve the batched
range searching problem in the optimal O(n logm n + t) I/Os. When we
want to perform an update or a query we thus just keep an element for the
operation in internal memory, and when we have collected a block of such
operations we insert it in the buffer of the root. If this buffer now contains

31

External-Memory Algorithms with Applications in GIS

more than m/2 blocks we perform a buffer-emptying process on it as follows:
First we load the elements in the buffer into internal memory. Then we in
internal memory collect all the segment that need to be stored in the node
and distribute a copy of them to the relevant multislab lists. After that we
report the relevant stabbings, by for every multislab list in turn decide if
the segments in the list are stabbed by any of the query points from the
buffer. Finally, we distribute the segments and queries to the buffers of the
nodes on the next level of the tree. As previously we obtain the O(logm n

B
)

and O(logm n

B
+ t) amortized I/O bounds for the update and query operation,

respectively, if the buffer-emptying process can be performed in O(m + t′)
I/Os. That this is indeed the case can easily be realized by observing that
we use O(m) I/Os to load the element in the buffer and to distribute them
back to the buffers one level down, and that we only use O(m) I/Os extra
to manage the multislab lists—basically because the number of such lists is
Θ(m). Note that like the range searching operation on the buffer tree, the
stabbing queries become batched. Thus, as discussed previously, the external
segment tree can in general only be used to solve batched dynamic problems.

As mentioned in the beginning of this section distribution sweeping can
also be used to solve the batched range searching problem. Also having
obtained an algorithm for this problem, as well as for the orthogonal line
segment intersection problem, one can also obtain an optimal external algo-
rithm for the pairwise rectangle intersection problem—the problem of given
N rectangles in the plane (with sides parallel to the axes) to report all in-
tersecting pairs of rectangles [23]. Also the external segment tree approach
for solving the batched range searching problem can be extended from 2 to
d dimensions. A couple of new ideas is needed and the resulting algorithm
uses O(d · n logd−1 n+ t) I/Os [13].

4.3 The Red/Blue Line Segment Intersection Problem

After having presented the basic paradigms for designing I/O-efficient com-
putational geometry algorithms through the development of optimal algo-
rithms for the relatively simple problems of orthogonal line segment inter-
section and batched range searching, we now turn to the more complicated
red/blue line segment intersection reporting problem: Given two internally
non-intersecting sets of line segments, the problem is to report all intersec-
tions between segments in the two sets.

As previously discuss the red/blue line segment intersection problem is

32

4. External-Memory Computational Geometry Algorithms

at the core of the important GIS problem of map overlaying. Unfortunately,
it turns out that distribution sweeping and buffer trees are inadequate for
solving the problem, as well as other problems involving line segments which
are not axis-parallel. In the next subsection we try to illustrate this before
we in subsections 4.3.2 and 4.3.3 sketch how to actually solve the problem in
the optimal number of I/Os.

4.3.1 The Endpoint Dominance Problem

Let us consider the endpoint dominance (EPD) problem defined as follows [18]:
GivenN non-intersecting line segments in the plane, find the segment directly
above each endpoint of each segment—refer to Figure 17.

Even though EPD seems to be a rather simple problem, it is a powerful
tool for solving other important problems. As an example EPD can be used
to sort non-intersecting segments in the plane, an important subproblem in
the algorithm for the red/blue line segment intersection problem. A segment
AB in the plane is above another segment CD if we can intersect both AB
and CD with the same vertical line l, such that the intersection between
l and AB is above the intersection between l and CD. Two segments are
incomparable if they cannot be intersected with the same vertical line. The
problem of sorting N non-intersecting segments is to extend the partial order
defined in this way to a total order.

Figure 18 demonstrates that if two segments are comparable then it is
sufficient to consider vertical lines through the four endpoints to obtain their
relation. Thus one way to sort N segments [18] is to add two “extreme” seg-
ments as indicated in Figure 19, and use EPD twice to find for each endpoint

⇐⇒

b

a

a above b

a

a

a

a

ya > yb

ya

yb

b

b

b

b

Figure 17: The endpoint dominance
problem.

Figure 18: Comparing segments. Two
segments can be related in four different
ways.

33

External-Memory Algorithms with Applications in GIS

Figure 19: Algorithm for the segment sorting problem.

the segments immediately above and below it. Using this information we
create a (planar s, t-) graph where nodes correspond to segments and where
the relations between the segments define the edges. Then the sorted order
can be obtained by topologically sorting this graph in O(n logm n) I/Os us-
ing an algorithm developed in [33]. This means that if EPD can be solved
in O(n logm n) I/Os then N segments can be sorted in the same number of
I/Os.

In internal memory EPD can be solved optimally with a simple plane-
sweep algorithm. We sweep the plane from left to right with a vertical line,
inserting a segment in a search tree when its left endpoint is reached and
removing it again when the right endpoint is reached. For every endpoint
we encounter, we also perform a search in the tree to identify the segment
immediately above the point (refer to Figure 17). One might think that it is
equally easy to solve EPD in external memory, using distribution sweeping
or buffer trees. Unfortunately, this is not the case.

One important property of the internal-memory plane-sweep algorithm
for EPD is that only segments that actually cross the sweep-line are stored
in the search tree at any given time during the sweep. This means that all
segments in the tree are comparable and that we can easily compute their
order. However, if we try to store the segments in a buffer tree during the
sweep, the tree can (because of the “laziness” in the structure) also contain
“old” segments which do not cross the sweep-line. This means that we can
end up in a situation where we try to compare two incomparable segments.
In general the buffer tree only works if we know a total order on the elements
inserted in it or if we can compare all pair of elements. Thus we cannot
directly use the buffer tree in the plane-sweep algorithm. We could try to
compute a total order on the segments before solving EPD, but as discussed
above the solution to EPD is one of the major steps towards finding such an
order so this seems infeasible.

34

4. External-Memory Computational Geometry Algorithms

For similar reasons using distribution sweeping seems infeasible as well.
Recall that in distribution sweeping we need to perform one sweep in a linear
number of I/Os to obtain an efficient solution. Normally this is accomplished
by sorting the objects by y-coordinate in a preprocessing phase. This e.g.
allows one to sweep over the objects in y order without sorting on each level
of recursion, because as the objects are distributed to recursive subproblems
their y ordering is retained. In the orthogonal line segment intersection case
we presorted the segments by endpoint in order to sweep across them in
endpoint y order. In order to use distribution sweeping to solve EPD it
seems that we need to presort the segments and not the endpoints.

4.3.2 External-Memory Fractional Cascading

As attempts to solve EPD optimally using the buffer tree or distribution
sweeping fail we are led to other approaches. It is possible to come close to
solving EPD by first constructing an external-memory segment tree over the
projections of the segments onto the x-axis and then performing stabbing
queries at the x-coordinates of the endpoints of the segments. However,
what we want is the single segment directly above each query point in the y
dimension, as opposed to all segments it stabs. This segment could be found
if we were able to compute the segment directly above a query point among
the segments stored in a given node of the external segment tree. We call
such a segment a dominating segment. Then we could examine each node on
the path from the root to the leaf containing the query point, and in each
such node find the dominating segment and compare it to the segment found
to be closest to the query so far. When the leaf is reached we would then
know the “global” dominating segment.

However, there are a number of problems that have to be dealt with in
order to find the dominating segment of a query point among the segments
stored in a node. The main problems are that the dominating segment could
be stored in a number of multislab lists, namely in all lists containing seg-
ments that contain the query point, and that a lot of segments can be stored
in a multislab list. Both of these facts seem to suggest that we need a lot
of I/Os to find the dominating segment. However, as we are looking for
an O(n logm n) solution, and as the segment tree has O(logm n) levels, we are
only allowed to use a linear number of I/Os to find the positions of all the N
query points among the segments stored in one level of the tree. This gives
us less than one I/O per query point per node!

35

External-Memory Algorithms with Applications in GIS

Fortunately, it is possible to modify the external segment tree and the
query algorithm to overcome these difficulties [18]. To do so we first strengthen
the definition of the external segment tree and require that the segments in
the multislab lists are sorted. Note that all pairs of segments in the same
multislab list can be compared just by comparing the order of their end-
points on one of the boundaries of the multislab, and that a multislab list
thus can be sorted using a standard sorting algorithm. In [18] it is shown
how to build an external segment tree with sorted multislab lists on N non-
intersecting segments in O(n logm n) I/Os. The construction is basically done
using distribution sweeping.

The sorting of the multislab lists makes it easier to search for the domi-
nating segment in a given multislab list but it may still require a lot of I/Os.
We also needs to be able to look for the dominating segment in many of the
multislabs lists. However, one can overcome these problems using batched
filtering [51] and a technique similar to what in internal memory is called
fractional cascading [29, 30, 85]. The idea in batched filtering is to process
all the queries at the same time and level by level, such that the dominating
segments in nodes on one level of the structure are found for all the queries,
before continuing to consider nodes on the next level. In internal memory
the idea in fractional cascading is that instead of e.g. searching for the same
element individually in S sorted lists containing N elements each, each of the
lists are in a preprocessing step augmented with sample elements from the
other lists in a controlled way, and with “bridges” between different occur-
rences of the same element in different lists. These bridges obviate the need
for full searches in each of the lists. To perform a search one only searches
in one of the lists and uses the bridges to find the correct position in the
other lists. This results in a O(log2N + S) time algorithm instead of an
O(S log2N) time algorithm.

In the implementation of what could be called external fractional cascad-
ing , we do not explicitly build bridges but we still use the idea of augmenting
some lists with elements from other lists. The construction is rather technical,
but the general idea is the following (the interested reader is referred to [18]
for details): First a preprocessing step is used (like in fractional cascading) to
sample a set of segments from each slab in each node and the multislab lists
of the corresponding child are augmented with these segments. The sampling
is done in O(n logm n) I/Os using the distribution paradigm. Having prepro-
cessed the structure the N queries are filtered through it. In order to do so
in the optimal number of I/Os the filtering is done in a rather untraditional

36

4. External-Memory Computational Geometry Algorithms

way—from the leaves towards the root. First the query points are sorted
and distributed to the leaves to which they belong. Then for each leaf in
turn the dominating segment among the segments stored in the leaf is found
for all query points assigned to the leaf. This can be done efficiently using
an internal-memory algorithm, because the segments stored in a leaf easily
fit in internal memory. This is also the reason for the untraditional search
direction—one cannot in the same way efficiently find the dominating seg-
ments among the segments stored in the root of the tree, because more than
a memory load of segments can be stored there. Next the actual filtering
up the O(logm n) levels is performed, and on each level the dominating seg-
ment is found for all the query points. This is done I/O efficiently using the
merging paradigm and the sampled segments from the preprocessing phase.
In [18] it is shown that one filtering step can be performed in O(n) I/Os, and
thus EPD can be solved in O(n logm n) I/O operations.

4.3.3 External Red/Blue Line Segment Intersection Algorithm

Using the solution to the EPD problem, or rather the ability to sort non-
intersecting segments, we can now solve the red/blue line segment intersec-
tion problem with (a variant of) distribution sweeping. Recall that we in
the solution to the orthogonal line segment intersection problem presorted
the endpoints of the segments by y-coordinate, and used the sorted sequence
throughout the algorithm to perform vertical sweeps. The key to solving the
red/blue problem is to presort the red and the blue segments (not endpoints)
individually, and perform the sweep in segment order rather than in y order
of the endpoints. Thus given input sets Sr of non-intersecting red segments
and Sb of non-intersecting blue segments, we construct two intermediate sets

Tr = Sr ∪
⋃

(p,q)∈Sb
{(p, p), (q, q)}

Tb = Sb ∪
⋃

(p,q)∈Sr
{(p, p), (q, q)}

Each new set is the union of the input segments of one color and the endpoints
of the segments of the other color (or rather zero length segments located at
the endpoints). Both Tr and Tb are of size O(|Sr| + |Sb|) = O(N) and can
thus be sorted in O(n logm n) I/Os.

We now locate intersections with distribution sweeping with a branching
factor of

√
m. Recall that the structure of distribution sweeping is that we

37

External-Memory Algorithms with Applications in GIS

divide the plane into
√
m slabs, and that we then find intersections involving

parts of segments that completely span one or more slabs, before we solve the
problem recursively in each slab. The recursion continues through O(logm n)
levels until the subproblems are small enough to be solved in internal memory.
If we can do a sweep in O(n) I/Os plus the number of I/O’s used to report
intersections, we obtain the optimal O(n logm n+ t) I/O solution.

So let us consider the sweep algorithm. In one sweep we define long
segments as those crossing one or more slabs and short segments as those
completely contained in a slab. Furthermore, we shorten the long segments
by “cutting” them at the right boundary of the slab that contains their
left endpoint, and at the left boundary of the slab containing their right
endpoint. Thus our task in a sweep is to report all intersections between long
segments of one color and long and short segments of the other color—refer to
Figure 20. To find the intersections between long and short segments we use
the sweep algorithm used in Section 4.1 to solve the orthogonal line segment
intersection problem—except that we sweep in the order of Tr and Tb. We
use the algorithm twice, treating long segments of one color as horizontal
segments and short segments of the other color as vertical segments. For
long red and short blue segments we proceed as follows: We sweep from top
to bottom by scanning through the sorted list Tr of red segments and blue
endpoints. When a top endpoint of a small blue segment is encountered we
insert the segment in the active list associated with the slab containing the
segment. When a long red segment is encountered we then scan through all
the active lists associated with the slabs it completely spans. During this
scan we know that every small blue segment is either intersected by the red
segment, or will not be intersected by any of the following red segments and
can therefore be removed from the list. As previously we use O(n+ t′) I/Os
to do the sweep.

Note that whereas the important property that a small segment not in-
tersected by a long segment is not intersected by any of the following long
segments in the orthogonal case followed from the fact that we were working
on the segments in y order, it now follows from the fact that we are sweeping
the segments and endpoints in sorted order. As an illustration of this refer
to Figure 21. In the sweep we will meet the segments in order a, b, c, d, e,
whereas we would meet them in order a, b, d, c, e if we were sweeping in end-
point y order. In the latter case the important property would not hold as
segment b actually intersect segment c, even though it does not intersect d
which is encountered after b but before c.

38

4. External-Memory Computational Geometry Algorithms

Long segment

Short segment

a

b
c

d

e

Figure 20: Long and short segments (red seg-
ments dotted, blue segments dashed).

Figure 21: Why sweeping in
segment-order rater than y-
order is necessary.

In order to report intersections between long segments of different colors
the notion of multislab (as in Section 4.2) is used. First we scan through Tr
and distribute the long red segments to the O(m) multislabs. Next, we scan
through the blue set Tb, and for each long blue segment we report intersec-
tions with the relevant long red segments. This is the same as reporting
intersections with the appropriate red segments in each of the multislab lists.
As each of the multislabs lists are sorted, and as we also process the blue
segments in sorted order, it turns out that this can be done in a simple and
efficient way using a merging idea, where it again is crucial that the number
of multislab lists is O(m) (that the distribution factor is

√
m). Details in

the algorithm appear in [18], where it is also proved that the sweep can be
performed in O(n+ t′) I/Os as required.

To summarize, the red/blue line segment intersection problem can be
solved in the optimal O(n logm n+ t) I/Os. However, as the segment sorting
algorithm used in the solution is relatively complicated, its practical impor-
tance may be limited. It would be interesting to experimentally compare the
algorithms performance to that of other (internal-memory) algorithms for the
problem [27, 28, 29, 66, 74]. An experimental comparison of internal-memory
algorithms for the problem is already reported in [9].

4.4 Other External-Memory Computational Geome-
try Algorithms

In the previous sections we have discussed the basic techniques for designing
efficient external-memory computational geometry algorithms. We have il-
lustrated the powerful distribution sweeping technique using the orthogonal

39

External-Memory Algorithms with Applications in GIS

line segment intersection problem. We have also already mentioned that the
technique can be used to solve the batched range searching problem. In [51]
it is discussed how it can be used to develop optimal algorithms for a number
of other important problems, including for the problems of finding the pair-
wise intersection of N rectangles, finding all nearest neighbors for a set of N
points in the plane, computing the measure (area) of the union of N rectan-
gles in the plane, and for several geometric dominance problems. Several of
these problems have applications in GIS systems.

Goodrich et al. [51] also discussed external-memory algorithms for the
convex hull problem, that is, the problem of computing the smallest convex
polytope completely enclosing a set of N points in d-dimensional space. In
the two-dimensional case the internal-memory algorithm known as Graham’s
scan [52, 76] can be modified in a simple way to obtain an O(n logm n) I/O
external algorithm. They also discussed how to obtain an output-sensitive
algorithm based upon an external version of the marriage-before-conquest
technique [60]. The algorithm uses O(n logm t) I/Os. Finally, they developed
O(n logm n) algorithms for the three-dimensional case which is particularly
interesting because of the close relation to the two-dimensional versions of the
problems of computing the Voronoi diagram and the Delaunay triangulation
of a set of N points. Using the reduction described in [53] the 3-d convex
hull algorithm immediately gives algorithms for the two latter problems with
the same I/O performance.

The O(n logm n) solution to the EPD problem discussed in the last sec-
tion, which lead to the segment sorting and the red/blue line segment inter-
section algorithms, has several other almost immediate consequences [18]. If
one takes a closer look at the algorithm for EPD one realizes that it works
in general with K query points, which are not necessarily endpoints of the
segments. Therefore the result leads to an O((n + k) logm n) I/O solution
to the batched planar point location problem, that is, the problem in which
one are given a planar decomposition by N line segments and wants for each
of K query points to locate the region in which it lies. Similarly the EPD
algorithm leads to algorithms for a couple of region decomposition problems.
First it leads to an algorithm for trapezoid decomposition of a set of N seg-
ments [67, 76], as the core of this problem precisely is to find for each segment
endpoint the segment immediately above it. Using a slightly modified ver-
sion of an internal-memory algorithm [47], the ability to compute a trapezoid
decomposition of a simple polygon then leads to an O(n logm n) polygon tri-
angulation algorithm. Finally, using a complicated integration of all the ideas

40

5. TPIE — A Transparent Parallel I/O Environment

in the red/blue line segment intersection algorithm with the external priority
queue discussed in Section 3.3 [11], one can obtain an O((n+ t) logm n) I/O
algorithm for the general line segment intersection problem, where one is just
given N segments in the plane and should report their pairwise intersections.

4.5 Summary

• Main paradigms for developing external computational geometry
algorithms:

– Distribution sweeping.

– Batched dynamic data structures (external buffered one-
dimensional range tree and segment tree).

– Batched filtering.

– External fractional cascading.

• Optimal algorithms developed for a large number of problems.

• In practice:

– Experiments with orthogonal line segment intersection al-
gorithms suggest that algorithms developed for the parallel
disk model perform well in practice.

– Much larger problems instances seem to be solvable with
I/O algorithms than with main memory algorithms.

5 TPIE — A Transparent Parallel I/O Envi-

ronment

In Section 4.1 we discussed the experiments with orthogonal line segment
intersection algorithms carried out by Chiang [31, 32]. As discussed these
experiments suggest that algorithms developed for the parallel disk model
perform well in practice, and that they can very well lead to the solution of
problem instances one would not be able to solve in practice with algorithms
developed for main memory. Unfortunately, existing systems tend not to

41

External-Memory Algorithms with Applications in GIS

adequately support the functionality required in order to implement algo-
rithms designed for the parallel disk model directly. Most operating systems
basically lets the programmer program a virtual machine with (practically)
unlimited main memory, and control I/O “behind the back” of the program-
mer. However, in order to implement algorithms developed for the parallel
disk model one needs to be able to explicitly control I/O, and thus it seems
that one has to try to bypass the operating system and write very low level
code in order to implement the algorithms we have discussed. Doing so would
be a very complicated task and would probably lead to very inflexible code,
which would not be portable across different platforms.

On the other hand we have seen how a large number of problems can
be solved using a relatively small number of paradigms, such as merging,
distribution (and distribution sweeping), and buffered external data struc-
tures. The Transparent Parallel I/O Environment (TPIE) proposed by Ven-
groff [88, 90, 93] tries to take advantage of this. While Chiang [31, 32] per-
formed experiments in order to compare the efficiency of algorithms designed
for internal and external memory and to validate the I/O-model, TPIE is de-
signed to assist programmers in the development of I/O-efficient (and easily
portable) programs. TPIE implements a set of high-level paradigms (access
methods) which lets the programmers specify the functional details of the
computation they wish to perform within a given paradigm, without explic-
itly having to worry about doing I/O or managing internal memory. The
paradigms supported by the current prototype of TPIE includes scanning,
distribution, merging, sorting, permuting, and matrix arithmetic [90, 93].

In order to allow programmers to abstract away I/O, TPIE uses a stream
approach. A computation is viewed as a continuous process in which a pro-
gram is fed streams of data from an outside source and leave trails (in form
of other streams of data) behind it. In this way programmers only need to
specify the functional details in the computation they wish to perform within
a given paradigm. TPIE then choreograph an appropriate sequence of I/Os
in order to keep the computation fed. To realize that the stream approach is
indeed natural, just consider a simple version of merge sort. Here a stream
of data is first read and divided into a number of (sorted) main memory
sized streams, which are then continually read m at a time and merged into
a longer stream. Having implemented basic stream handling routines, the
programmers only need to specify how to compare objects in order to sort a
given set of objects using the external merge sort paradigm—without having
to worry about I/O. Note that the programmers do not even need to worry

42

5. TPIE — A Transparent Parallel I/O Environment

if the streams are stored on a single disk or if a number of parallel disks are
used.

TPIE is implemented in C++ as a set of template classes and functions
and a run-time library. The current implementation supports access to data
stored on one or more disks attached to a workstation. In the future, it is
the plan that TPIE will support multiprocessors and/or collections of work-
stations. TPIE is a modular system with three components; a block transfer
engine (BTE), a memory manager (MM) and an access method interface
(AMI). The BTE is responsible for moving blocks of data to and from disk,
that is, it is intended to bridge the gap between the I/O hardware and the
rest of the system. If the system consists of several processors, every pro-
cessor has its own BTE. The MM running on top of one or more BTEs is
responsible for managing main memory resources. All memory allocated by
application programs or other parts of TPIE is handled by the MM. Finally,
the AMI provides the high-level interface to the programmer and is the only
component with which most programmers will need to interact directly. As
mentioned the access methods supported by the AMI currently include scan-
ning, distribution, merging, sorting, permuting, and matrix arithmetic. The
interested reader is refereed to [88, 90, 93] for details. In [90] implementations
of algorithms such as convex hull and list ranking are also discussed. Finally,
it is discussed how to obtain the prototype version of TPIE. Currently, TPIE
does not support external buffered data structures but we hope in the future
to include such structures in the environment.

In [91] Vengroff and Vitter discuss applications of TPIE to problems
in scientific computing, and report some performance results of programs
written to solve certain benchmark problems. The TPIE paradigms used in
these experiments are scanning, sorting, and matrix arithmetic. The main
conclusions made are that TPIE is indeed practical and efficient, and that
algorithms for the theoretical parallel disk model perform well in practice.
Actually, Vengroff and Vitter show that using TPIE results in a small CPU
overhead compared to entirely main memory implementation, but allows
much larger data sets to be used. Also, for the implemented benchmarks,
the time spent on I/O range from being negligible to being of the same order
of magnitude as internal computation time, showing that using TPIE a large
degree of overlap between computation and I/O can be accomplished.

43

REFERENCES

6 Conclusions

As GIS systems frequently handle huge amounts of data it is getting in-
creasingly important to design algorithms with good I/O performance for
problems arising in such systems. Many important computational geometry
problems are abstractions of important GIS operations, and in recent years
a number of basic techniques for designing I/O-efficient algorithms for such
problems have been developed. In this note we have surveyed these tech-
niques and the algorithms developed using them. However, the young field
of I/O-efficient computation is to a large extend still wide open. Even though
the experimental results reported so far are encouraging, a major future goal
is to investigate the practical merits of the developed I/O algorithms.

Acknowledgments

I would like to thank Yi-Jen Chiang and Pavan Kumar Desikan for reading
earlier drafts of this note and Yi-Jen Chiang for providing Figure 12 and 13.

References

[1] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir. A model for
hierarchical memory. In Proc. ACM Symp. on Theory of Computation,
pages 305–314, 1987.

[2] A. Aggarwal and A. K. Chandra. Virtual memory algorithms. In Proc.
ACM Symp. on Theory of Computation, pages 173–185, 1988.

[3] A. Aggarwal, A. K. Chandra, and M. Snir. Hierarchical memory with
block transfer. In Proc. IEEE Symp. on Foundations of Comp. Sci.,
pages 204–216, 1987.

[4] A. Aggarwal and G. Plaxton. Optimal parallel sorting in multi-level
storage. Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 659–
668, 1994.

[5] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting
and related problems. Communications of the ACM, 31(9):1116–1127,
1988.

44

REFERENCES

[6] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

[7] B. Alpern, L. Carter, and E. Feig. Uniform memory hierarchies. In Proc.
IEEE Symp. on Foundations of Comp. Sci., pages 600–608, 1990.

[8] R. J. Anderson and G. L. Miller. A simple randomized parallel algorithm
for list-ranking. Information Processing Letters, 33:269–273, 1990.

[9] D. S. Andrews, J. Snoeyink, J. Boritz, T. Chan, G. Denham, J. Harrison,
and C. Zhu. Further comparisons of algorithms for geometric intersection
problems. In Proc. 6th Int’l. Symp. on Spatial Data Handling, 1994.

[10] ARC/INFO. Understanding GIS—the ARC/INFO method.
ARC/INFO, 1993. Rev. 6 for workstations.

[11] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. In
Proc. Workshop on Algorithms and Data Structures, LNCS 955, pages
334–345, 1995. A complete version appears as BRICS technical report
RS-96-28, University of Aarhus.

[12] L. Arge. The I/O-complexity of ordered binary-decision diagram ma-
nipulation. In Proc. Int. Symp. on Algorithms and Computation, LNCS
1004, pages 82–91, 1995. A complete version appears as BRICS technical
report RS-96-29, University of Aarhus.

[13] L. Arge. Unpublished results. 1995.

[14] L. Arge. Efficient External-Memory Data Structures and Applications.
PhD thesis, University of Aarhus, February/August 1996.

[15] L. Arge, P. Ferragina, R. Grossi, and J. Vitter. On sorting strings in
external memory. Manuscript.

[16] L. Arge, M. Knudsen, and K. Larsen. A general lower bound on the
I/O-complexity of comparison-based algorithms. In Proc. Workshop on
Algorithms and Data Structures, LNCS 709, pages 83–94, 1993.

[17] L. Arge and P. B. Miltersen. On the indivisibility assumption in the
theory of external-memory algorithms. In preparation.

45

REFERENCES

[18] L. Arge, D. E. Vengroff, and J. S. Vitter. External-memory algorithms
for processing line segments in geographic information systems. In Proc.
Annual European Symposium on Algorithms, LNCS 979, pages 295–310,
1995. A complete version (to appear in special issue of Algorithmica)
appears as BRICS technical report RS-96-12, University of Aarhus.

[19] L. Arge and J. S. Vitter. Optimal dynamic interval management in
external memory. In Proc. IEEE Symp. on Foundations of Comp. Sci.,
pages 560–569, 1996.

[20] R. D. Barve, E. F. Grove, and J. S. Vitter. Simple randomized mergesort
on parallel disks. In Proc. ACM Symp. on Parallel Algorithms and
Architectures, 1996.

[21] R. Bayer and E. McCreight. Organization and maintenance of large
ordered indizes. Acta Informatica, 1:173–189, 1972.

[22] J. L. Bentley. Algorithms for klee’s rectangle problems. Dept. of Com-
puter Science, Carnegie Mellon Univ., unpublished notes, 1977.

[23] J. L. Bentley and D. Wood. An optimal worst case algorithm for re-
porting intersections of rectangles. IEEE Transactions on Computers,
29:571–577, 1980.

[24] G. Blankenagel and R. Güting. XP-trees—External priority search
trees. Technical report, FernUniversität Hagen, Informatik-Bericht Nr.
92, 1990.

[25] M. Blum, R. W. Floyd, V. Pratt, R. L. Rievest, and R. E. Tarjan.
Time bounds for selection. Journal of Computer and System Sciences,
7:448–461, 1973.

[26] P. Callahan, M. T. Goodrich, and K. Ramaiyer. Topology B-trees and
their applications. In Proc. Workshop on Algorithms and Data Struc-
tures, LNCS 955, pages 381–392, 1995.

[27] T. M. Chan. A simple trapezoid sweep algorithm for reporting red/blue
segment intersections. In Proc. of 6th Canadian Conference on Compu-
tational Geometry, 1994.

46

REFERENCES

[28] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting
line segments in the plane. Journal of the ACM, 39:1–54, 1992.

[29] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Algorithms
for bichromatic line-segment problems and polyhedral terrains. Algo-
rithmica, 11:116–132, 1994.

[30] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring
technique. Algorithmica, 1:133–162, 1986.

[31] Y.-J. Chiang. Dynamic and I/O-Efficient Algorithms for Computational
Geometry and Graph Problems: Theoretical and Experimental Results.
PhD thesis, Brown University, August 1995.

[32] Y.-J. Chiang. Experiments on the practical I/O efficiency of geometric
algorithms: Distribution sweep vs. plane sweep. In Proc. Workshop on
Algorithms and Data Structures, LNCS 955, pages 346–357, 1995.

[33] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff,
and J. S. Vitter. External-memory graph algorithms. In Proc. ACM-
SIAM Symp. on Discrete Algorithms, pages 139–149, 1995.

[34] D. R. Clark and J. I. Munro. Efficient suffix trees on secondary stor-
age. In Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 383–391,
1996.

[35] A. Cockcroft. Sun Performance and Tuning. SPARC & Solaris. Sun
Microsystems Inc., 1995.

[36] T. H. Cormen. Virtual Memory for Data Parallel Computing. PhD the-
sis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, 1992.

[37] T. H. Cormen. Fast permuting in disk arrays. Journal of Parallel and
Distributed Computing, 17(1-2):41–57, 1993.

[38] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. The MIT Press, Cambridge, Mass., 1990.

[39] T. H. Cormen and L. F. Wisniewski. Asymptotically tight bounds for
performing BMMC permutations on parallel disk systems. In Proc. ACM
Symp. on Parallel Algorithms and Architectures, pages 130–139, 1993.

47

REFERENCES

[40] D. Cormer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–
137, 1979.

[41] R. F. Cromp. An intellegent information fusion system for handling
the archiving and querying of terabyte-sized spatial databases. In S.
R. Tate ed., Report on the Workshop on Data and Image Compression
Needs and Uses in the Scientific Community, CESDIS Technical Report
Series, TR–93–99, pages 75–84, 1993.

[42] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Com-
putational Geometry. Springer Verlag, Berlin, 1997. (Book to appear).

[43] H. Edelsbrunner and M. Overmars. Batched dynamic solutions to de-
composable searching problems. Journal of Algorithms, 6:515–542, 1985.

[44] P. Ferragina and R. Grossi. A fully-dynamic data structure for external
substring search. In Proc. ACM Symp. on Theory of Computation, pages
693–702, 1995.

[45] P. Ferragina and R. Grossi. Fast string searching in secondary stor-
age: Theoretical developments and experimental results. In Proc. ACM-
SIAM Symp. on Discrete Algorithms, pages 373–382, 1996.

[46] R. W. Floyd. Permuting information in idealized two-level storage. In
Complexity of Computer Calculations, pages 105–109, 1972. R. Miller
and J. Thatcher, Eds. Plenum, New York.

[47] A. Fournier and D. Y. Montuno. Triangulating simple polygons and
equivalent problems. ACM Trans. on Graphics, 3(2):153–174, 1984.

[48] P. G. Franciosa and M. Talamo. Orders, implicit k-sets representation
and fast halfplane searching. In Proc. Workshop on Orders, Algorithms
and Applications (ORDAL’94), pages 117–127, 1994.

[49] G. R. Ganger, B. L. Worthington, R. Y. Hou, and Y. N. Patt. Disk ar-
rays. high-performance, high-reliability storage subsystems. IEEE Com-
puter, 27(3):30–46, 1994.

[50] D. Gifford and A. Spector. The TWA reservation system. Communica-
tions of the ACM, 27:650–665, 1984.

48

REFERENCES

[51] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-
memory computational geometry. In Proc. IEEE Symp. on Foundations
of Comp. Sci., pages 714–723, 1993.

[52] R. L. Graham. An efficient algorithm for determining the convex hull
of a finite planar set. Information Processing Letters, 1:132–133, 1972.

[53] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general
subdivisions and the computation of voronoi diagrams. ACM Trans. on
Graphics, 4:74–123, 1985.

[54] L. M. Haas and W. F. Cody. Exploiting extensible dbms in integrated ge-
ographic information systems. In Proc. of Advances in Spatial Databases,
LNCS 525, 1991.

[55] J. W. Hong and H. T. Kung. I/O complexity: The red-blue pebble
game. In Proc. ACM Symp. on Theory of Computation, pages 326–333,
1981.

[56] S. Huddleston and K. Mehlhorn. A new data structure for representing
sorted lists. Acta Informatica, 17:157–184, 1982.

[57] C. Icking, R. Klein, and T. Ottmann. Priority search trees in sec-
ondary memory. In Proc. Graph-Theoretic Concepts in Computer Sci-
ence, LNCS 314, pages 84–93, 1987.

[58] B. H. H. Juurlink and H. A. G. Wijshoff. The parallel hierarchical
memory model. In Proc. Scandinavian Workshop on Algorithms Theory,
LNCS 824, pages 240–251, 1993.

[59] P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. Index-
ing for data models with constraints and classes. In Proc. ACM Symp.
Principles of Database Systems, 1993. Invited to special issue of JCSS on
Principles of Database Systems (to appear). A complete version appears
as technical report 90-31, Brown University.

[60] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algo-
rithm? SIAM Journal of Computing, 15:287–299, 1986.

[61] M. Knudsen and K. Larsen. I/O-complexity of comparison and per-
mutation problems. Master’s thesis, University of Aarhus, November
1992.

49

REFERENCES

[62] M. Knudsen and K. Larsen. Simulating I/O-algorithms. Master student
project, University of Aarhus, August 1993.

[63] D. Knuth. The Art of Computer Programming, Vol. 3 Sorting and
Searching. Addison-Wesley, 1973.

[64] V. Kumar and E. Schwabe. Improved algorithms and data structures
for solving graph problems in external memory. In Proc. IEEE Symp.
on Parallel and Distributed Processing, 1996.

[65] R. Laurini and A. D. Thompson. Fundamentals of Spatial Information
Systems. A.P.I.C. Series, Academic Press, New York, NY, 1992.

[66] H. G. Mairson and J. Stolfi. Reporting and counting intersections be-
tween two sets of line segments. In R. Earnshaw (ed.), Theoretical Foun-
dation of Computer Graphics and CAD, NATO ASI Series, Vol. F40,
pages 307–326, 1988.

[67] K. Mulmuley. Computational Geometry. An introduction through ran-
domized algorithms. Prentice-Hall, 1994.

[68] J. Nievergelt and P. Widmayer. Spatial data structures: Concepts and
design choices. Lecture notes from CISM Advanced School on Algorith-
mic Foundations of Geographic Information Systems.

[69] M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for external
graph searching. Algorithmica, 16(2):181–214, 1996.

[70] M. H. Nodine and J. S. Vitter. Large-scale sorting in parallel memories.
In Proc. ACM Symp. on Parallel Algorithms and Architectures, pages
29–39, 1991.

[71] M. H. Nodine and J. S. Vitter. Deterministic distribution sort in shared
and distributed memory multiprocessors. In Proc. ACM Symp. on Par-
allel Algorithms and Architectures, pages 120–129, 1993.

[72] M. H. Nodine and J. S. Vitter. Paradigms for optimal sorting with mul-
tiple disks. In Proc. of the 26th Hawaii Int. Conf. on Systems Sciences,
1993.

50

REFERENCES

[73] M. Overmars, M. Smid, M. de Berg, and M. van Kreveld. Maintaining
range trees in secundary memory. Part I: Partitions. Acta Informatica,
27:423–452, 1990.

[74] L. Palazzi and J. Snoeyink. Counting and reporting red/blue segment
intersections. In Proc. Workshop on Algorithms and Data Structures,
LNCS 709, pages 530–540, 1993.

[75] Y. N. Patt. The I/O subsystem—a candidate for improvement. Guest
Editor’s Introduction in IEEE Computer, 27(3):15–16, 1994.

[76] F. P. Preparata and M. I. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, 1985.

[77] S. Ramaswamy and S. Subramanian. Path caching: A technique for
optimal external searching. In Proc. ACM Symp. Principles of Database
Systems, 1994.

[78] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling.
IEEE Computer, 27(3):17–28, 1994.

[79] H. Samet. Applications of Spatial Data Structures: Computer Graphics,
Image Processing, and GIS. Addison Wesley, MA, 1989.

[80] J. E. Savage. Space-time tradeoffs in memory hierarchies. Technical
Report CS-93-08, Brown University, 1993.

[81] M. Smid. Dynamic Data Structures on Multiple Storage Media. PhD
thesis, University of Amsterdam, 1989.

[82] M. Smid and M. Overmars. Maintaining range trees in secundary mem-
ory. Part II: Lower bounds. Acta Informatica, 27:453–480, 1990.

[83] S. Subramanian and S. Ramaswamy. The p-range tree: A new data
structure for range searching in secondary memory. In Proc. ACM-SIAM
Symp. on Discrete Algorithms, pages 378–387, 1995.

[84] R. E. Tarjan. Amortized computational complexity. SIAM J. Alg. Disc.
Meth., 6(2):306–318, 1985.

51

REFERENCES

[85] V. K. Vaishnavi and D. Wood. Rectilinear line segment intersection,
layered segment trees, and dynamization. Journal of Algorithms, 3:160–
176, 1982.

[86] M. van Kreveld. Geographic information systems. Utrecht University,
INF/DOC–95–01, 1995.

[87] J. van Leeuwen. Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity. Elsevier, 1990.

[88] D. E. Vengroff. A transparent parallel I/O environment. In Proc. 1994
DAGS Symposium on Parallel Computation, 1994.

[89] D. E. Vengroff. Private communication, 1995.

[90] D. E. Vengroff. TPIE User Manual and Reference. Duke University,
1995. Available via WWW at http://www.cs.duke.edu/∼dev.

[91] D. E. Vengroff and J. S. Vitter. Supporting I/O-efficient scientific com-
putation in TPIE. In Proc. IEEE Symp. on Parallel and Distributed
Computing, 1995. Appears also as Duke University Dept. of Computer
Science technical report CS-1995-18.

[92] D. E. Vengroff and J. S. Vitter. Efficient 3-d range searching in external
memory. In Proc. ACM Symp. on Theory of Computation, pages 192–
201, 1996.

[93] D. E. Vengroff and J. S. Vitter. I/O-efficient computation: The TPIE
approach. In Proceedings of the Goddard Conference on Mass Storage
Systems and Technologies, NASA Conference Publication 3340, Volume
II, pages 553–570, College Park, MD, September 1996.

[94] J. S. Vitter. Efficient memory access in large-scale computation (invited
paper). In Symposium on Theoretical Aspects of Computer Science,
LNCS 480, pages 26–41, 1991.

[95] J. S. Vitter and M. H. Nodine. Large-scale sorting in uniform memory
hierarchies. Journal of Parallel and Distributed Computing, 17:107–114,
1993.

[96] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, I:
Two-level memories. Algorithmica, 12(2–3):110–147, 1994.

52

REFERENCES

[97] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, II:
Hierarchical multilevel memories. Algorithmica, 12(2–3):148–169, 1994.

[98] B. Zhu. Further computational geometry in secondary memory. In Proc.
Int. Symp. on Algorithms and Computation, pages 514–522, 1994.

53

Recent Publications in the BRICS Lecture Series

LS-96-1 Lars Arge. External-Memory Algorithms with Applica-
tions in Geographic Information Systems. September 1996.
iix+53 pp.

LS-95-5 Devdatt P. Dubhashi. Complexity of Logical Theories.
September 1995. x+46 pp.

LS-95-4 Dany Breslauer and Devdatt P. Dubhashi.Combinatorics
for Computer Scientists. August 1995. viii+184 pp.

LS-95-3 Michael I. Schwartzbach. Polymorphic Type Inference.
June 1995. viii+24 pp.

LS-95-2 Sven Skyum. Introduction to Parallel Algorithms. June
1995. viii+17 pp. Second Edition.

LS-95-1 Jaap van Oosten.Basic Category Theory. January 1995.
vi+75 pp.

