
B
R

IC
S

D
S

-99-1
G

.L.C
attani:

P
resheafM

odels
forC

oncurrency

BRICS
Basic Research in Computer Science

Presheaf Models for Concurrency
(Unrevised)

Gian Luca Cattani

BRICS Dissertation Series DS-99-1

ISSN 1396-7002 April 1999

Copyright c© 1999, Gian Luca Cattani.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/99/1/

Presheaf Models for Concurrency

Gian Luca Cattani

Ph.D. Dissertation

Department of Computer Science
University of Aarhus

Denmark

Presheaf Models for Concurrency

Dissertation
presented to the Faculty of Science

of the University of Aarhus
in partial fulfillment of the requirements for the

Ph.D. degree

by
Gian Luca Cattani
October 5, 2000

To my parents,
Dora and Gian Carlo

Abstract

In this dissertation we investigate presheaf models for concurrent computation. Our
aim is to provide a systematic treatment of bisimulation for a wide range of concur-
rent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the
work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that
presheaf categories could provide abstract models for concurrency with a built-in notion
of bisimulation.

We show how presheaf categories, in which traditional models of concurrency are
embedded, can be used to deduce congruence properties of bisimulation for the tradi-
tional models. A key result is given here; it is shown that the homomorphisms between
presheaf categories, i.e., colimit preserving functors, preserve open map bisimulation.

We follow up by observing that presheaf categories and colimit preserving func-
tors organise in what can be considered as a category of non-deterministic domains.
Presheaf models can be obtained as solutions to recursive domain equations. We in-
vestigate properties of models given for a range of concurrent process calculi, including
CCS, CCS with value-passing, π-calculus and a form of CCS with linear process pass-
ing. Open map bisimilarity is shown to be a congruence for each calculus. These are
consequences of general mathematical results like the preservation of open map bisim-
ulation by colimit preserving functors. In all but the case of the higher order calculus,
open map bisimulation is proved to coincide with traditional notions of bisimulation for
the process terms. In the case of higher order processes, we obtain a finer equivalence
than the one one would normally expect, but this helps reveal interesting aspects of the
relationship between the presheaf and the operational semantics. For a fragment of the
language, corresponding to a form of λ-calculus, open map bisimulation coincides with
applicative bisimulation.

In developing a suitable general theory of domains, we extend results and notions,
such as the limit-colimit coincidence theorem of Smyth and Plotkin, from the order-
enriched case to a “fully” 2-categorical situation. Moreover we provide a domain theo-
retical analysis of (open map) bisimulation in presheaf categories. We present, in fact,
induction and coinduction principles for recursive domains as in the works of Pitts
and of Hermida and Jacobs and use them to derive a coinduction property based on
bisimulation.

vii

Acknowledgements

Personal debts can never be adequately acknowledged.

I am especially grateful to my supervisor Glynn Winskel. Not only has he taught
me how to do research, but he also transmitted his enthusiasm for it. It has always been
a pleasure and a source of learning to discuss ideas with him and this thesis owes much
to his stimulating guidance. While leaving me the freedom of choosing the problems I
wished to work on, he has always been very involved in what I was doing to the point
that this thesis can, in fact, be regarded as the result of four years of joint work. I shall
also heartily thank him for his friendship.

Pino Rosolini gave unstinting support in more ways than one. He guided my first
steps as a researcher when I was working on my ‘tesi di laurea’. Later, when I decided
to go on with postgraduate studies, he put me in contact and warmly suggested that
I should study with Glynn. Ever since then he discreetly followed my progresses as a
PhD student while always being available whenever I needed his help or advice.

Thanks are due to Vladimiro Sassone, Ian Stark and Marcelo Fiore. They all showed
me friendship and stimulated my research. Marcelo in particular has been very influen-
tial in the development of an important part of this thesis, Chapter 6.

Many other people have influenced my work, taught me things or given advice in
the last four years. It is hard to list everyone, but at least I wish to mention Mogens
Nielsen, John Power, Jaap van Oosten, Alex Simpson, Anders Kock, Carsten Butz and
Prakash Panangaden.

My PhD studies had been funded by BRICS and the BRICS PhD School. I wish to
thank the BRICS management for having given me the chance of studying in Aarhus
and more generally I wish to thank all the BRICS and DAIMI people who have created
a perfect environment for foreign students like me.

Finally, my greatest thanks go to my wife Alida, for her love and dedication over the
last ten years, and to my parents Dora and Gian Carlo, to whom this thesis is dedicated,
for all their love and support throughout my life.

ix

Contents

Introduction 1
Background . 1

Operational semantics . 2
Denotational semantics . 4
Models for concurrency . 4
Open map bisimulation . 6

Presheaf models . 8
Synopsis . 11

1 Categorical Background 15
1.1 Notation . 15
1.2 Presheaf categories . 16
1.3 Kan extensions . 20
1.4 Fibrations . 21

1.4.1 The Grothendieck construction 23
1.5 Pseudo concepts . 27
1.6 Some references . 28

2 Open Map Bisimulation 29
2.1 Traditional models . 29
2.2 Bisimulation from open maps . 31

2.2.1 Presheaves as models . 34

3 Presheaf Models for CCS-like languages 37
3.1 A general process language and its categorical models 38

3.1.1 Denotational semantics of Proc 39
3.2 Presheaf models for Proc . 40

3.2.1 The Grothendieck construction in presheaf models 42
3.3 Semantic constructions in Groth(P(−)) 45
3.4 Concrete models revisited . 54
3.5 Refinement for event structures . 56

xi

xii CONTENTS

4 Profunctors 61
4.1 Left Kan extensions via coend formulae 61
4.2 The bicategory Prof and the 2-category Cocont 65

4.2.1 A set theoretic analogy . 67
4.2.2 A domain theoretic analogy . 68

4.3 The structure of Prof . 70
4.3.1 Lifting . 72

4.4 Connected colimits . 73
4.5 A type theory of domains for concurrency 75

4.5.1 An alternative exponential . 77
4.6 Open map bisimulation in Prof . 78

5 Two Examples 85
5.1 CCS . 85

5.1.1 The term language . 85
5.1.2 An equation for (synchronisation) trees 86
5.1.3 Decomposition of presheaves . 87
5.1.4 A transition relation for presheaves 91
5.1.5 Denotational semantics . 91
5.1.6 Remarks . 99

5.2 CCS with value passing . 99
5.2.1 The term language . 100
5.2.2 A map between models . 102

6 A Theory of Recursive Domains 105
6.1 Local-characterisation theorem . 105
6.2 Coherence . 121
6.3 Pseudo algebraic compactness . 123
6.4 Recursive types . 130

6.4.1 The two examples revisited . 131
6.5 Relational structures . 132
6.6 Coinduction and bisimulation . 135

6.6.1 Covariant functors . 135
6.6.2 Mixed-variance functors . 137

6.7 Open map bisimulation from coinduction properties 139
6.7.1 Extensional relations . 139
6.7.2 Intensional relations . 147

7 Presheaf Models for the π-Calculus 151
7.1 The π-calculus . 151
7.2 Indexing Prof . 153

7.2.1 Creation of new names . 158
7.2.2 A tensor of presheaves . 159

7.3 The equation . 160

CONTENTS xiii

7.3.1 A decomposition result . 164
7.3.2 Transition relations for presheaves and indexed late bisimilarity

for P . 167
7.4 Constructions . 171

7.4.1 Restriction . 171
7.4.2 Parallel composition . 175
7.4.3 Replication . 177

7.5 The interpretation . 179
7.6 Late vs. early . 185
7.7 Other π-calculi . 189

8 Higher Order Processes 191
8.1 The 2-category Conn . 191
8.2 An equation for higher order processes 193
8.3 An higher order process language . 195

8.3.1 Operational semantics . 195
8.4 Presheaf semantics . 197

8.4.1 Transition relations for presheaves 197
8.4.2 Constructions . 198
8.4.3 Denotational semantics . 206
8.4.4 A soundness result . 208
8.4.5 Toward a characterisation of open map bisimulation 211
8.4.6 Applicative bisimulation recovered 215

8.5 Some remarks . 217

9 Conclusion 219
9.1 Summary . 219
9.2 Further research . 220

9.2.1 Higher dimensional transition systems (hdts) 220
9.2.2 Higher order process languages 221
9.2.3 A metalanguage for process constructors 221
9.2.4 Weak bisimulation and hiding . 221
9.2.5 Action calculi . 223
9.2.6 Beyond presheaves . 223

A Basic Definitions of Enriched Category Theory 225
A.1 Enriched categories . 225
A.2 2-Categories . 227
A.3 Bicategories . 231

B Some proofs for Chapter 6 233
B.1 Theorem 6.4.1 . 233

xiv CONTENTS

C Two proofs for Chapter 7 241
C.1 Lemma 7.5.2 [Substitution Lemma] . 241
C.2 Theorem 7.5.4 . 243

Bibliography 247

Introduction

This thesis aims to provide a systematic treatment of bisimulation for a wide range
of concurrent process languages. We shall investigate so-called presheaf categories, as
models for concurrency with a built-in notion of bisimulation, for the purpose of giving
denotational semantics to concurrent process languages. This work is an offspring of the
work on models for concurrency (see [141]) and on open map bisimulation [64].
In [141], the operations involved in the semantics of process languages across a range of
different models were unified as instances of the same categorical constructions. In [64]
an abstract notion of bisimulation, parametrised by a notion of observation shape or
computation path, was introduced to accompany the models.

As we shall see, also in presheaf models the semantics to process languages can be
given uniformly and this allows us to prove, independently from the specific models cho-
sen for every particular language, some key properties of bisimilarity, such as congruence
properties.

To better understand the significance and possible impact of such an effort towards
unification, in this introduction, we recall briefly what kind of computational issues we
are addressing, what are the main approaches to the semantics of concurrent process
languages and what kind of problems one expects to face when following them. We shall
then motivate the ‘bisimulation from open maps’ approach and show how this naturally
leads to consider presheaf categories as models for concurrency. We will then highlight
our main results together with a brief summary of the content of this thesis.

Background

The theory of concurrency aims to model and analyse the behaviour of systems made
of many agents, simultaneously active and able to communicate with each other. The
difficulties one encounters can be summarised in two major points: Firstly, the presence
of different threads of control may lead to subtle, nondeterministic, and often unantici-
pated interactions among the various components of a system; second many concurrent
systems, e.g., operating systems or distributed databases, have a behaviour that can
be described as ‘reactive’ in the sense that they are designed to engage in a possibly
endless series of interactions with the environment.

It becomes impossible to set up a semantic theory for these systems based on the
input-output paradigm typical of sequential computations. In fact, unlike sequential

1

2 INTRODUCTION

computation, for concurrent computation there seems to be no general agreement of
what its models should be. A different notion of behaviour, no longer based on the
functional paradigm is needed. There are several reasons for this. Because concurrent
systems are often designed to be non-terminating and continuously interacting with
the environment their semantics should be based on their stimulus/response patterns,
varying over time. These patterns rest often on recognising the existence of certain
atomic elements of behaviour associated to the level of abstraction the description of
the system. Central to the various approaches is the need for a satisfactory notion of
behavioural equivalence between systems to replace the usual extensional equality of
functions. Many equivalences are based on bisimulation [96, 80] which is roughly a
relation between systems, matching the patterns of actions of one by those of the other.

But, how does one give semantics to concurrent processes languages and how does
one find the appropriate bisimulation relation? There are, at least, two major ap-
proaches.

Operational semantics

A common way to give semantics of programming languages is in terms of transition
relations which specify, for a term of the language at a certain state, which computa-
tion steps it can make. Such operational semantics is often given in a syntax-directed
way [102].

Consider, as an example, the simple process language described by the following
syntax:

P :: = Nil | a.P | a.P | (P | P) | (P + P) ,

where a ∈ L, with L a set of labels that stands for names of communication channels.
A process term P can denote:

• A deadlocked process, Nil.

• A process, a.P , which can perform an input action along a channel a before
becoming the process P .

• A process, a.P , which can perform an output action along a channel a before
becoming the process P .

• The parallel composition of two processes, P1 | P2.

• A process P1 + P2 which, depending on the environment, may behave like P1 or
P2.

In order to be able to denote infinite (i.e., non-terminating) processes, we could have
added the possibility of recursive definitions of process terms. For simplicity we leave
this out here. The operational semantics of the language can be given by the following

INTRODUCTION 3

set of rules:

a.P
a−→ P a.P

a−→ P

P
α−→ P ′

P | Q α−→ P ′ | Q
Q

α−→ Q′

P | Q α−→ P | Q′

P
α−→ P ′

P +Q
α−→ P ′

Q
α−→ Q′

P +Q
α−→ Q′

P
a−→ P ′ Q

a−→ Q′

P | Q τ−→ P ′ | Q′
P

a−→ P ′ Q
a−→ Q′

P | Q τ−→ P ′ | Q′

where α ∈ L ∪ {a | a ∈ L} ∪ {τ}. Note that we have introduced a “new” action
symbol, ‘τ ’, to mark the communication along channels of processes emitting outputs
with processes willing to receive inputs.

A symmetric relation, R, between process terms is defined to be a bisimulation if it
satisfies the following property:

If P RQ and P α−→ P ′ then there exists a process term Q′ such that Q α−→ Q′

and P ′RQ′, where α ∈ {τ} ∪ L ∪ {a | a ∈ L}.

Two process terms will be said to be bisimilar if there exists a bisimulation which relates
them.

Having defined bisimilarity, the next step usually taken is that of proving that it is
a congruence with respect to the operators of the language.

This is the pattern usually followed. Unfortunately, things are not always so smooth,
since process terms can be much more complicated that the ones proposed in the example
above. They can, for instance, feature the possibility of passing channel names or other
form of values, or even process terms. Sometimes new computational paradigms, other
than simple input and output, might be built in to the language, e.g., the “firewalls”
in Cardelli and Gordon’s Ambient Calculus [20]. All this can considerably increase
the complexity of the operational semantics and consequently of bisimulation. In turn,
this makes it very hard to prove the basic facts one wants for bisimilarity, such as its
congruence properties. In fact one often starts with a definition of operational semantics
and bisimulation, aiming at the congruence result, but is always ready to tune them to
each other in order to be able to prove it. Much of the problem here, relies on the fact
that many of the choices, for both the operational semantics and the bisimilarity, are
taken in an ad hoc fashion.

Another drawback of semantics based on syntactic models arises when one tries to
relate and formally compare different models. The comparison has to go via syntactic
translations which are often very difficult to find, justify and understand.

4 INTRODUCTION

Denotational semantics

A denotational semantics for concurrent languages can often be obtained by enhancing
the usual domain theoretic tools, used for the semantics of sequential programming lan-
guages [137, 104, 121], with constructions able to capture non-deterministic behaviour.
These are often given as powerdomain constructions and provide for any suitable domain
D, a new domain P(D) whose elements are roughly subsets of D (see [101, 104, 3]). If
a sequential program denoted a function

f : D −→ D ,

for some suitable domain D (of states for instance), a non-deterministic counterpart
would denote a function

f : D −→ P(D) .

For the small process language of the previous section, a suitable domain could be given
by solving the following recursive domain equation [3]:

D = P(D⊥ +
∑
a∈L

D⊥ +
∑
a∈L

D⊥) ,

where D⊥ is the construction which adds a bottom element to a domain and
∑

i∈I Di

is the sum of domains.
Term constructors and constants such as a.−, (− | −), Nil, . . . will denote endo-

functions of suitable arity on the domain D. Terms in the language are equated if they
denote the same element of the domain. But there is no guarantee that this relation
will in fact coincide with bisimilarity. On the contrary there are reasons to believe
that in general this will not be the case. Recursively defined terms which have equal
denotations at each finite stage in their least fixed point definitions, will also have equal
denotations. But it is known that the coinductive definition of bisimilarity does not in
general close at ω in this way. By restricting the degree of branching allowed, one can
sometime overcome this deficiency [51, 3, 126, 32, 50].

A possible way to systematise the definition of bisimulation and overcome the limi-
tations of traditional domain theory came out of work on models for concurrency.

Models for concurrency

Many different kinds of models for concurrent/distributed computation have been stud-
ied. Work such as [141, 119, 135, 136] has concentrated on understanding their structure
and mutual relationships. The natural tools for carrying out this task were provided
by category theory [76]. The idea was to turn classes of models into categories by
adding suitable notions of morphisms between models to account for the possibility of
a model simulating the behaviour of another. There were two main outcomes to this
approach. First, semantics given to process languages across different categories of mod-
els were “unified” in the sense that it was shown that the operations denoted by the
term constructors had often the same categorical status. Hence a “general” language

INTRODUCTION 5

for so-called CCS-like process calculi was devised, together with specifications of the
minimal required properties of a category to be considered a category of models for the
language. By means of this it became possible to give semantics uniformly to a num-
ber of different process calculi such as CCS [82], CSP [55], SCCS [81] and ACP [6].
Second, there was the possibility of formally relating categories of models by means
of adjunctions or coreflections (adjoint pairs whose left adjoint is a full embedding) of
one category onto another. This accounted for the informal understanding that certain
models were more or less expressive or abstract than others [119]. We can exemplify
this using two well-known classes of models, transitions systems and synchronisation
trees. A transition system, T , over a set of action, Act, is a triple

(S, i, tran)

where

• S is a set of states.
• i ∈ S is a distinguished initial state.
• tran ⊆ S ×Act × S is a transition relation.

Triples (s, a, s′) in tran are usually written s
a−→ s′. The idea is that the action are

the observable parts of the computation steps of a system, that starting at i can evolve
according to the transition rules. If a transition s

a−→ s′ is a step of computation,
then a morphism must tell us how to simulate it in a different system. A function
f : S1 → S2 is a transition system morphism, f : T1 → T2, where T1 = (S1, i1, tran1)
and T2 = (S2, i2, tran2) are two transition systems if

1. f(i1) = i2 and
2. s a−→ s′ ∈ tran1 implies f(s) a−→ f(s′) ∈ tran2.

The resulting category we write as T SAct.
Transition systems may loop, i.e., there might be sequences of transitions

s
a1−→ s1

a2−→ s2
a3−→ s3 −→ · · · an−→ sn = s ,

or some state can be reached with different computations,

s1
b

!!C
CC

CC
CC

C

s

c

BB
BB

BB
BB

a
>>||||||||

s′

s2 .
d

=={{{{{{{{

Transition systems can then be unfolded by unwinding the loops and duplicating states
that are reachable in different ways. This unfolding operation results in a labelled tree.
Labelled trees (or synchronisation trees as they are often called and as we will always

6 INTRODUCTION

call them) are special transition systems whose transition graph is a tree. Since any
synchronisation tree is a transition system there is an embedding

e : ST Act ↪→ T SAct

of the category ST Act of synchronisation trees over Act in the category of transition
systems over Act. The unfolding operation results in a right adjoint U to e that moreover
is also a left inverse to e, i.e., the unfolding of a tree returns the tree itself. It is
these kinds of formally precise relationship that one is seeking with the hope of being
able to use them to deduce general properties of models as well as uniformity in the
compositional semantics of languages across different models. This theoretical work can
also have an impact on practical issues. For example, an unfolding result, analogous to
the one sketched here, for Petri Nets and Event Structures studied in [93] was used for
the purpose of model checking algorithms for Petri Nets [79].

This analysis accounted for the structure of process terms. What about their be-
havioural equivalences? Is there a way of representing bisimilarity abstractly in the
models? A proposed answer came by adopting the notion of open map, originally de-
veloped by Joyal and Moerdijk for topos theoretic purposes [62, 63], in the context of
models for concurrency.

Open map bisimulation

Morphisms in a category of models are understood as kinds of functional simulations. It
is natural to ask oneself whether it is possible to distinguish among all such functional
simulations those that in fact are bisimulations. Let’s do this with an example. Consider
two transition systems over the same set of labels, Act, T1 = (S1, i1, tran1) and T2 =
(S2, i2, tran2). Let f : T1 → T2 be a morphism from the first one to the second one. In
other words, as we said, let f : S1 → S2 be a function between the two sets of states
such that f(i1) = i2 and such that if s a−→ s′ ∈ tran1, then f(s) a−→ f(s′) ∈ tran2.

The morphism f is said to be a zig-zag morphism [12] if it further satisfies the
following property, for every reachable state s ∈ S and every label a ∈ Act:

f(s) a−→ t′ ∈ tran2 =⇒ ∃ t ∈ S s
a−→ t ∈ tran1 ∧ f(t) = t′ .

In other words, f not only preserves but also reflects reachable transitions. It takes a
moments reflection to see that if f is a zig-zag morphism, then its graph is a bisimulation
between the two transition systems.

Suppose we are given a sequence of transitions in T ,

σ = i
ao−→ so

a1−→ s1
a2−→ . . .

an−→ s .

If f : T → T ′ is a morphism as above, it induces a ‘simulating’ sequence in T ′:

σ′ = i′
ao−→ f(so)

a1−→′
f(s1)

a2−→′
. . .

an−→′
f(s) .

INTRODUCTION 7

If f is zig-zag, then, if τ ′ is the extension of σ′ with an extra transition f(s) a−→′
t′, one

has that also σ can be extended to a sequence

τ = i
ao−→ so

a1−→ s1
a2−→ . . .

an−→ s
a−→ t

and moreover t can be chosen such that f(t) = t′.
Abstracting away, finite sequences of transitions can be thought of computation

shapes which one can observe of a system, and a morphism

p : σ → T ,

from one such computation shape to a transition system as a computation of shape σ
observed in T . This motivates the following definition.

Let M be a category and let P be a subcategory ofM:

P ↪→M .

A morphism f : M1 →M2 inM is a P-open map if it satisfies the following
path-lifting property: For every commuting square

P
p

//

m

��

M1

f

��

Q q
//M2

with m : P → Q a morphism in P, there exists a morphism

r : Q −→M1 ,

splitting the square in two commutative triangles:

P
p

//

m

��

M1

f

��

Q q
//

r

77

M2 .

The definition can be understood intuitively as follows. Recall that f : M1 →M2 gives
a way for M2 to simulate the behaviour of M1. If P is a computation shape, p : P →M1

describes a computation of shape P in M1. Via f , this is simulated in M2 with fp. On
the other hand we have Q that extends P (via m : P → Q) and q : Q → M2 is a
computation of shape Q in M2 that extends pf , since the square commutes (qm = fp).
What the condition tells us is that if f is P-open, then we should be able to match the
extension m already at the level of M1 (the reason why the upper triangle commutes)
and this should be consistent with the computation q and the simulation f (the reason
why the lower triangle commutes).

8 INTRODUCTION

The name “open map” is inherited from the work of Joyal and Moerdijk [62]. There
they define axiomatically classes of open maps in toposes [77]. As we shall see in the
next section, a main example of such a class (Example 1.1 in their paper) can be given
in terms of the path-lifting property of the definition above.

Open maps account for functional bisimulation, but since one wants to express all
possible bisimulations, one defines two models M1 and M2 to be P-open map bisimilar
if they are connected by a span of P-open maps, f and g:

M3

f

}}{{
{{

{{
{{ g

""E
EE

EE
EE

E

M1 M2 .

For several well studied categories of models, like those of transition systems, syn-
chronisation trees and event structures the choice of the corresponding path categories
is natural and as it was shown in [64], the notion of bisimulation one gets coincides with
already existing ones. For instance, in our example with transition systems, M would
be T SAct and P its full subcategory of finite transition systems whose transition graph
has only one branch which is non-looping, i.e., P is equivalent to Act∗ the partial order
of finite words over Act regarded as a category.

So for categories of models we have a notion of bisimulation parameterised by the
choice of a suitable category of computation-path shapes, a path category as we shall
call it in this thesis. There is much freedom in the choice of the path category, P,
which, in principle, bears no particular relationship with the category M other than
being one of its subcategories. As extreme examples, by choosing P to be the empty
category one obtains that any two objects ofM are bisimilar, while by choosing it to be
M itself, only isomorphic objects will be related. For some concrete examples, such as
transition systems, certain path categories immediately suggest themselves as “natural”
choices (see [64]) but, in general we cannot expect this to always happen. Moreover, this
problem is related to that of proving abstractly properties of bisimilarity, notably that
it is a congruence with respect to the term constructors of the language. To prove such
results, it seems that a more disciplined way of providing models out of path categories
is needed.

Presheaf models

There is an important class of categories which are equipped with a canonical choice
of path category. These are the so-called presheaf categories. Given a (small) cate-
gory C, the category of presheaves over C, Ĉ, is the category of contravariant functors
F : Cop → Set (where Set is the category of sets and functions) and natural trans-
formations. Presheaves are a central concept in category theory and especially topos
theory [59, 77]. What is crucial for us is that the category Ĉ is also a concrete rep-
resentation of the free colimit completion of C. That is, Ĉ extends C and any colimit

INTRODUCTION 9

preserving functor from Ĉ to any category with colimits is uniquely (up to isomor-
phism) determined by its action on C. This means that for any cocomplete category1

E , and functor F : C→ E , there exists a unique (up to a natural isomorphism) functor
F! : Ĉ→ E that preserves colimits and makes the triangle

C
yC //

F
&&MMMMMMMMMMMMM Ĉ

F!

��

E

commute, where yC is the well known Yoneda embedding [76]. We shall use this property
repeatedly throughout the thesis. The “inclusion” of C into Ĉ, provided by the Yoneda
embedding functor, from the open maps point view equips Ĉ with a canonical choice of
path category.

This was an important example (Example 1.1) of a class of open maps in the sense
of [62]. There they declared a map f : X → Y in Ĉ to be open if for every arrow
m : C → D in C the associated naturality square

X(D)
X(m)

//

fD
��

X(C)

fC
��

Y (D)
Y (m)

// Y (C)

was a quasi-pullback. As we shall recall in Chapter 2, this condition, via the Yoneda
lemma, is easily seen to be equivalent to the path-lifting property of the definition of
the previous section.

As observed in [64] presheaf categories over the appropriate path categories, fully
and faithfully embed (and sometimes are equivalent to) traditional categories of models
and the embeddings preserve and sometimes reflect open map bisimulation. That pa-
per suggested that one should look into presheaves as “abstract” categorical models of
concurrent computation with a built-in notion of bisimulation.

There are also intuitive reasons for considering presheaf categories as models for
concurrency. If the objects of a small category P are to be thought as finite determinis-
tic computations, how does one generate non-deterministic, possibly infinite processes
out of them? One wants to add the possibility of choosing between different possible
computations (i.e., one adds coproducts to the category) and joining computations to-
gether when they are supposed to agree for a while before a choice (a branching) is
taken (and this corresponds to adding coequalisers). Altogether then one is adding, by
a known result of category theory [76], colimits of the size of the added coproducts (the
non deterministic choices) and if these are unbounded, one is adding all colimits.

Given the possibility of embedding traditional models in presheaf categories, one
hope was to be able to use the rich categorical structure of presheaves to prove properties

1I.e., with colimits of all small diagrams.

10 INTRODUCTION

of open map bisimulation that could then be transferred to the traditional models. It
was later realised [138] that the category (more correctly speaking the 2-category) of
presheaf categories and colimit preserving functors possesses features that that lead
to it being considered as a category of non-deterministic domains, where elements are
replaced by presheaves and the usual information order is replaced by more detailed
natural transformations between presheaves. A way of building presheaf models for
concurrent process calculi along domain theoretical lines was viable. The idea is that
presheaf models for concurrent process calculi can be obtained by solving appropriate
domain equations for the path category. For instance one can use a lifting construction
P⊥, meaning that a strict new initial object, ⊥, was added to P, to represent the
requirement the a certain action, represented by ⊥ is to be observed before any further
observation in P can be made. The connection with prefixing is evident and, for instance,
the process language above is modelled by synchronisation trees over the set

Act def= {τ} ∪ L ∪ {a | a ∈ L}

and they are the presheaf model, P̂, where P is a solution to

P = P⊥ +
∑
a∈L

P⊥ +
∑
a∈L

P⊥ =
∑
a∈Act

P⊥ .

The solution to this equation, in fact is provided by the partial order, Act+, of non-
empty finite words of Act regarded as a category and there is an equivalence of cate-
gories:

ST Act ' Âct+ .

Open map bisimulation in this case corresponds to Park-Milner bisimulation.
For these intuitions to make precise sense one needs to develop a suitably general

theory of domains. The axiomatic approach [105, 30, 35] to the theory of domains paves
the way. There one defines axiomatically classes of categories that can be thought of
as categories of domains (generally order-enriched ones) and that by the axioms are
guaranteed to provide uniform solution to recursive domain equations [125, 30]. From
this perspective presheaf categories can be thought of as categories of non-deterministic
domains and the operation of forming the presheaf category as analogous to a power-
domain construction.

This thesis builds on the above hopes and intuitions about presheaves. We analyse
properties of presheaf categories and colimit preserving functors. We prove that open
map bisimulation is preserved by these kinds of functors; this leads to abstract congru-
ence results of bisimilarity for the semantics of CCS-like process languages. Further,
we develop a general theory of domains appropriate to our needs and test our method
against non-trivial examples of process languages, ranging from CCS, to the π-calculus,
to a process passing calculus. We use the theory developed to study open map bisim-
ulation from a domain theoretical perspective and provide the first, to our knowledge,
domain theoretic characterisation of bisimulation for arbitrary trees. In this thesis we

INTRODUCTION 11

aim to reconcile the semantics of concurrency with domain theory. Our models possess
an abstract bisimulation and come automatically equipped with congruence properties.

Synopsis

The first two chapters provide some background material. Chapter 1, assuming some
basic knowledge of category theory [76], say up to the level of adjunctions and limits,
introduces the key categorical concepts that will be used in this thesis. Appendix A
is a companion to this chapter and provides some basic definitions of enriched category
theory.

Chapter 2 essentially summarises the definitions and results of [64], where the
notion of open map bisimulation is introduced. The definition of some well-known cat-
egories of models for concurrency, including transition systems, synchronisation trees
and event structures are also recalled.

The original contributions of this thesis start at Chapter 3. There we refine the
axiomatisation of categorical models for Proc, a general CCS-like language, as given
implicitly in [141], with extra logical assumptions. We then define presheaf models for
Proc and show that they satisfy the axiomatisation. The main highlight of the chapter
is Proposition 3.2.5 (though a proof of it is postponed to the following chapter) which
asserts that the colimit preserving functors between presheaf categories preserve open
maps. For this reason it is possible to prove for presheaf models that open map bisim-
ulation is a congruence with respect to the interpretation of the operators of Proc.
We use this result to (re)prove that strong history preserving bisimulation [41, 113]
for event structures is a congruence. Further we show that a refinement functor on the
particular presheaf model that extends event structures obtained as a colimit preserving
functor coincides on event structures with a refinement proposed in [41] and again this
entails that such a strong history preserving bisimulation is preserved by this refinement.

The results of this chapter were announced in a joint paper with Glynn Winskel [26]
that appeared in the proceedings of CSL ’96.

Chapter 4 is devoted to the study of the bicategory Prof of profunctors or equiv-
alently the 2-category Cocont of presheaf categories, colimit preserving functors and
natural transformations. Here we make explicit the categorical folklore about Prof
failing to be a compact closed category just because it fails to be a category [66]. It
is known that compact closed categories can provide (degenerate) models of classical
linear logic [38, 39]. An exponentiation (pseudo) functor is provided for this purpose.
In particular the way the exponential is built suggests analogies between presheaves
and powerdomains [101] and hence between Prof and categories of non-deterministic
domains [51]. The technically simple but very important notion of lifting of a category is
introduced and this allows us to represent in Prof connected colimit preserving functors
between presheaf categories. This is the largest class of (non trivial) functors between
presheaf categories that we have proved to preserve open map bisimulation. Moreover

12 INTRODUCTION

this class seems to include all the functors needed in modelling linear process calculi.
To summarise the investigation on the structure of Prof we define a linear type theory
extended with lifting that we interpret in it. This will be further extended in Chapter 6
with recursive types. Finally we prove in full detail that the horizontal composition of
(epimorphic) open 2-cells is (epimorphic) open. This entails immediately as corollaries
that both colimit preserving functors and connected colimit preserving functors preserve
open map bisimulation as announced earlier.

Chapter 5 gives the reader a break from categorical issues and provides two exam-
ples of how we use Prof as a category of domains to deduce presheaf models of process
calculi. We first rework the usual synchronisation tree semantics of CCS in this new
setting. Recall that as we said before the category of synchronisation trees over a fixed
set of labels, Act, is in fact equivalent to a presheaf category, more precisely to the cat-
egory of presheaves over Act+, the partial order (regarded as a category) of finite and
non-empty words over Act, with the prefix ordering. The second example we borrow
from [138] and so provide a presheaf model for a form of CCS with value passing, with
both late and early semantics.

In Chapter 6 we generalise classical results on the solution of recursive domain
equation from the order enriched case [125] to a more general class of 2-categories. The
generalisation proceeds in three directions:

1. We consider adjoint pairs rather than embedding-projection pairs. This follows
established categorical folklore [58, 49, 129, 124].

2. We move up from order enriched categories to 2-categories whose hom categories
have colimits of ω-chains.

3. We consider pseudo limits (elsewhere called bilimits [127]) instead of enriched ones.

The pay off for this effort is a general theory of domains that specialises in the order
enriched case to the usual one.
A “pseudo” version of the Basic Lemma [125] is considered and it allows the construc-
tion of solutions to recursive domain equations as colimits of the “standard” chain of
iterations. Having an axiomatic treatment in mind [105, 30, 35] a pseudo version of
Freyd’s notions of algebraic completeness and compactness [35] is also developed and
building on the thesis work of Fiore [30] a class of 2-categories that are axiomatically
provable to be pseudo algebraically compact is devised. Not surprisingly, Cocont be-
longs to such class. This allows us to extend the type theory of Chapter 4 with recursive
types and so formalising our intuition about Cocont being a category of domains.
Further we use these results to provide a domain theoretical understanding of open map
bisimulation by means of relational structures [94, 100] and induction/coinduction prin-
ciples for recursively defined domains as in [99, 31]. In particular we define the notion of
intensional relation in Cocont and give a domain theoretical characterisation of strong
bisimulation for arbitrary trees.

The results presented in this chapter are part of a joint paper with Marcelo Fiore

INTRODUCTION 13

and Glynn Winskel [21] that appeared in the proceedings of LICS ’98.

Chapter 7 tackles the task of providing presheaf models for name-passing calculi.
Our example is the π-calculus [87, 88]. The bicategory Prof is indexed with a category
of name sets, I, as in [126, 32, 50]. A model for the late π-calculus is given and it is
proved that for processes with free names within a certain set s, open map bisimilarity
at the fibre over s coincide with late bisimulation, while open map bisimilarity for each
substitution of the free names coincide with the largest congruence included in late
bisimilarity. A model for the π-calculus with early bisimulation is sketched along with
an arrow in ProfI that maps the late interpretation onto the early one.

This chapter is based on a joint paper with Ian Stark and Glynn Winskel [25] that
appeared in the proceedings of CTCS ’97.

Chapter 8 shows the state of our knowledge as far as the modelling of higher or-
der process calculi [130, 116, 118] with presheaves is concerned and is part of ongoing
research. A denotational model for a linear higher order process language over a fixed
set of channels is deducible from the work of the previous chapters. It comes equipped
with a notion of bisimulation and a proof that bisimulation is a congruence with respect
to the term constructors. The difficulty is in reading off an operational understand-
ing of the bisimulation. Elements of presheaves, i.e., elements of the sets X(P), for
X : Pop → Set a presheaf, play an essential role in characterising the bisimulation for
higher order processes, e.g., abstractions. Bisimulation between abstractions is charac-
terised not only by its pointwise behaviour, i.e., by the fact that bisimilar inputs are
mapped to bisimilar outputs, but requires also a uniformity constraint with respect to
the input. It is here that it seems essential to trace in a presheaf when two elements
are related instances of the same observation, for different inputs. Although we lack a
proof, elements correspond to derivation trees in the operational semantics. Hence to
characterise bisimulation operationally one is led to decorate the transition arrows with
expressions that account for the derivation tree that allowed the transition. Unfortu-
nately we do not yet see how to read off the functorial action of presheaf denotations
from a notation for derivations. Still we prove results like a Substitution Lemma as-
serting that substitution in the language amounts to application in the model and a
stability-like property [13] of open terms which helps simplify the characterisation of
open map bisimulation. A sub-calculus of the higher order calculus corresponds to a
λ-calculus and, in absence of non-determinism the above distinctions on derivation trees
become vacuous. In this case open map bisimulation corresponds to applicative bisim-
ulation [1].

Chapter 9 concludes this thesis and gives pointers to related and possible future
work.

14 INTRODUCTION

Chapter 1

Categorical Background

We review in this chapter some concepts of category theory that we will need in the
sequel and that are either not covered in [76] or are so important in our development
that needs to be recalled explicitly anyway. This also in order to fix some notation for
the subsequent development. We will deal in this chapter (in quite a scattered manner)
with presheaf categories, Kan extensions and fibrations. Bicategories and 2-categories
shall play an important role as well, starting from Chapter 4. A proper introduction
to these notions would make the size of this introductory chapter growing too much.
For the knowledgeable reader we shall say a few things concerning the terminology
that we have decided to adopt here and instead refer to the literature for most of the
definitions and concepts. As a primer guide we have reported the most basic definitions
in Appendix A.

1.1 Notation

We shall write C,D,E, . . . or P,Q,R, . . . to indicate small categories, i.e., categories for
which the collection of arrows is a set. Instead we shall write B, C,D, E ,K . . . for larger
categories. In particular we will consider in this thesis mainly locally small categories.
By this we mean categories, C, whose collection of objects, |C |, is a class and for which,
given any two objects, c, c′ ∈|C |, the corresponding hom-collection, C(c, c′) is a set. We
shall write Set for the (locally small) category of sets and functions and Cat for the
(locally small) category of small categories and functors. If C and D are two categories,
we write CAT(C,D) for the category of functors between C and D (we shall write Cat
instead of CAT, if C and D are known to be small) and natural transformations between
such functors. Generally we shall also write CAT for the category of (locally small)
categories and functors.

If F,G : C → D are two functors, a natural transformation α from F to G will be
indicated in general with the dotted arrow notation α : F .−→ G. When considering
categories of functors and natural transformations, e.g., CAT(Cop,Set), the dot will
disappear. When natural transformations will play the role of 2-cells in a 2-category
they will be indicated with the double arrow notation, α : F =⇒ G.

15

16 CHAPTER 1. CATEGORICAL BACKGROUND

An important category for us will be Set∗ the category of sets and partial maps.
Arrows of Set∗ will normally be indicated with the notation, f : X ⇀ Y . To avoid
confusion the product of sets, say X and Y , as objects of Set∗ will be indicated as
(X ×∗ Y).

When 2-categories and bicategories will be used we shall employ the same nota-
tion for both a 2-category and its underlying category of objects and 1-cells, e.g., Cat
will stand for both the 2-category of small categories functors and natural transforma-
tions and for the category of small categories and functors. The context should always
disambiguate the possible confusion.

1.2 Presheaf categories

Presheaves are the central notion around which this thesis is built.

Definition 1.2.1 (Presheaf categories) If C is a small category, define the (locally
small) category of presheaves over C, Ĉ, to be the category of contravariant endofunctors
from C to Set and natural transformations. That is, objects of Ĉ are functors, X :
Cop → Set while arrows f : X → Y are natural transformations between such functors.
If C has initial object, we say that a presheaf, X, is rooted if X(0) is a singleton set, for
any initial object 0 of C. We write C for the full subcategory of Ĉ of rooted presheaves.

Observe that the category of rooted presheaves is equivalent to the category of
presheaves over the full subcategory of C consisting of all but the initial objects.

Presheaf categories are important in category theory for at least two reasons. On the
one hand they provide examples of Grothendieck toposes (for trivial topologies); even
better, every Grothendieck topos is a reflective subcategory of a presheaf category [77].
On the other hand, the presheaf constructions yields an explicit description of the free
completion of a small category under all small colimits. We will be mainly concerned
with this second way of looking at presheaf categories, even if we will occasionally refer
to topos theoretic concepts and terminology.

Definition/Proposition 1.2.2 (Yoneda embedding) If C is a small category, then
define the Yoneda embedding of C to be the following functor:

C
yC−→ Ĉ

c C(−, c)
f ↓ 7→ ↓ f ◦ −
c′ C(−, c′) .

Presheaves isomorphic to yC(c) for some c ∈|C | are called representables.
The Yoneda embedding is a full and faithful functor.

Proposition 1.2.3 (Yoneda lemma) Let C be a small category. Let X be a presheaf
over C. Let c ∈|C |. Then there exists a bijection

X(c)
bc,X∼= Ĉ(yC(c),X)

1.2. PRESHEAF CATEGORIES 17

natural in c and X. Hence the functor X is naturally isomorphic to the functor
Ĉ(yC(−),X).

Because of the Yoneda lemma we can always identify the elements x ∈ X(c) of a presheaf
X at c, with the corresponding natural transformation x : yC(c)

.−→ X. We can now
state the property asserting that Ĉ is the free colimit completion of C.

Proposition 1.2.4 Let C be a small category. Let E be a cocomplete category (i.e., a
category with all small colimits) and let F : C→ E be a functor. Then Ĉ is cocomplete
and there exists a unique (up to a natural isomorphism) colimit preserving functor F! :
Ĉ→ E such that F = F!yC:

C
yC //

F

@@
@@

@@
@@ Ĉ

∃!F!

��

E .

Proposition 1.2.4 is one of the most important results of category theory. The reader
might look at [65] for a proof of it.

Notation:

• We shall indicate with the empty set symbol, ∅, the initial presheaf in any presheaf
category, i.e., the presheaf that maps every object to the empty set.

• If F : Ĉ→ D̂ is a colimit preserving functor, we say that F is cocontinuous [65, 98].
We write Cocont(C,D) for the category of cocontinuous functors between Ĉ and
D̂ and natural transformations.

The freeness property described above yields the following proposition.

Proposition 1.2.5 The category CAT(C, D̂) is equivalent to Cocont(C,D) for any
two small categories C and D.

Presheaf categories are not just cocomplete categories but they also provide examples
of Grothendieck toposes [77].

Proposition 1.2.6 If C is a small category, the category Ĉ is a Grothendieck topos,
that is, Ĉ is cartesian closed, complete and cocomplete and it has a sub-object classifier.

As far as we are concerned in this thesis the main properties of Ĉ that we shall need
are associated with its (co)completeness.

Going back to the freeness property, a calculation (see for instance [77], pages 40–44
where things are presented in an inverse order to here) shows that the functor F! of
Proposition 1.2.4 has a right adjoint F ∗ given by restricting the hom sets of E to range
over the images of objects of C under F , i.e., for every E ∈| E |, F ∗(E) = E(F (−), E).
In Chapter 3 we will make an extensive use of instances of the functor F ∗ above that
therefore deserve special terminology.

Definition 1.2.7 (Canonical functors) Let M be any locally small category. Let
F : C→M, with C small. Define the canonical functor from M to Ĉ according to F ,

18 CHAPTER 1. CATEGORICAL BACKGROUND

cF :M→ Ĉ to be:
M cF−→ Ĉ
M M(F (−),M)
f ↓ 7→ ↓ f ◦ −
M ′ M(F (−),M ′) .

If F is an embedding C ↪→M, we write cM for cF .

Recall that a functor F : C → D is dense if every object, D, of D is a ‘canonical’ colimit
of objects of C according to F , i.e.,

D ∼= colim(F/D → C F−→ D) .1

Proposition 1.2.8 In the situation of Definition 1.2.7, cF is full and faithful if and
only if F is dense.

Often in this case the functor F will just be an inclusion of categories and we will
talk of the canonical embedding, cM.

The functor cF is known to preserve all limits that exist inM; on the contrary cF does
not, in general, preserves colimits inM. Still colimits of certain diagrams are preserved
as the following proposition that we shall need in Section 3.5 shows.

Proposition 1.2.9 Let M be a locally small category, P be a small category and let
F : P →M be a functor. Let ∆ : D →M be another functor from a small category D
satisfying the following property of “density with respect to F”: If (M, δD : ∆(D)→M)
is a colimiting cone for ∆, then for any P ∈| P | and p : F (P) → M , there exists a
D ∈|D | and d : F (p)→ ∆(d) such that:

• p = δDd.
• For any other factorisation

F (P)
p

//

d′ $$J
JJJJJJJJ M

∆(D′) ,
δD′

;;wwwwwwwww

there exists m : D → D′ such that

∆(m)d = d′ and δD′∆(m) = δD .

Then cF (M) ∼= colim cF∆.

Remark: Proposition 1.2.9 above can be made into an “if and only if” statement if
we replace the condition on m by saying that any two factorisations are connected by a
chain of spans

D = D0
m1←− D1

m2−→ D2 ← · · · mn−→ Dn = D′

1More details about density and this proposition can be found in [76], pages 241–243.

1.2. PRESHEAF CATEGORIES 19

in D with pi : F (Pi)→ ∆(Di) such that:

δDi−1mi = δDi (for i odd)
δDimi = δDi−1 (for i even)
mipi = pi−1 (for i odd)

miPi−1 = pi (for i even) .

In the case of a functor F : C → D between small categories, one does not only
have an extension F! : Ĉ → D̂ of the functor yDF with a right adjoint F ∗, but a
right adjoint to F ∗ as well. Because of property of left adjoints, this imply that F ∗

preserves colimits and hence can be seen as the extension of cF . Such a triple of adjoint
functors, F! a F ∗ a F∗ between presheaf categories is an example of what is called
an essential geometric morphism in the topos theoretic jargon. A natural question
is whether any essential geometric morphism between presheaf categories arises from
some functor between the underlying base categories. The answer is yes, modulo Morita
equivalence.

Definition 1.2.10 (Morita equivalence) Two small categories are said to be Morita
equivalent if they give rise to equivalent presheaf categories.

Morita equivalent small categories have equivalent Cauchy completions as well.

Definition 1.2.11 (Cauchy complete categories) A category C is said to be Cauchy
complete if every idempotent arrow splits, i.e., if for every e : c → c in C such that
ee = e, there exists p : c→ c′ and i : c′ → c in C such that

e = pi and pi = 1c .

When this is the case one says that c′ is a retract of c.

Example 1.2.12

1. Set is Cauchy complete.
2. Any presheaf category is Cauchy complete.
3. Concerning small categories, it is easy to see that every partial order category is

Cauchy complete. Another example is given by the category PomL of pomsets
over a set of labels L (cf. Chapter 2).

Proposition 1.2.13 Every small category, C, can be completed to a Cauchy complete
one, Cc, that is still small.

Proof: We simply indicate where the Cauchy completion of a category C has to be
found.

Given a small category C, consider the full subcategory of Ĉ of retracts of repre-
sentables. This is the Cauchy completion of C. 2

As we said small categories with equivalent Cauchy completion are Morita equivalent.

Proposition 1.2.14 Every small category C is Morita equivalent to its Cauchy com-
pletion.

20 CHAPTER 1. CATEGORICAL BACKGROUND

We can now go back to our original problem of characterising essential geometric mor-
phisms between presheaf categories.

Proposition 1.2.15 Let C and D be two categories. There is an equivalence of cate-
gories between Cat(Cc,Dc) and EGeom(Ĉ, D̂) where the latter has essential geometric
morphisms as objects and natural transformations between the leftmost adjoints as ar-
rows.

We shall employ this proposition in Chapter 4 and 6. We conclude this section by
recalling the category of elements of a presheaf construction which accounts also for the
density of the Yoneda embedding.

Definition 1.2.16 (Category of elements) Let C be a small category. Let X ∈|Ĉ |.
Define the category of elements of X, El(X) to consists of:

• Objects: Pairs 〈c, x〉 ∈|C | ×X(c)
• Arrows: f : 〈c, x〉 → 〈c′x′〉 is an arrow of El(X) if f : c → c′ is an arrow of C

and X(f)(x′) = x.

There is an obvious projection functor π : El(X) → C that takes any pair to its first
component and it is the identity on arrows.

Observe that after the Yoneda lemma, the category of elements of X is equivalent to
the category yC/X of objects the arrows x : yC(c) → X of Ĉ and arrows, f : x → x′,
arrows f : c→ c′ of C such that x = x′yC(f) (cf. Proposition 1.2.8).

Proposition 1.2.17 (Density of Yoneda) Let C be a small category. Let X ∈| Ĉ |,
then X is naturally isomorphic to

colim (El(X) π−→ C
yC−→ Ĉ) .

1.3 Kan extensions

The situation described in Proposition 1.2.4 about a functor F! : Ĉ → E extending
another one F : C → E along a third yC is an instance of the more general notion of
(left) Kan extension. We will make use of Kan extensions at several places (though
mainly when dealing with presheaf categories) so we give here a brief introduction to
the notion.

Definition 1.3.1 (Kan Extensions) If C G←− A F−→ B is a span of functors, one
says that a pair (H,α) is a left Kan extension of G along F if

• H : B → C is a functor
• α : G .−→ HF is a natural transformation satisfying the following universal prop-

erty:
for every other pair (K,β) with β : G .−→ KF there exists a unique γ : H .−→ K
such that β = γF · α.

By the usual abuse of language we will often address the functor H as the left Kan
extension of G along F and write LanF (G) to indicate it.

1.4. FIBRATIONS 21

Note that the triangle

A F //

G
&&MMMMMMMMMMMMM B

LanF (G)
��

C
need not commute, not even up to natural isomorphism. Still, this happens in many
cases of interest.

Proposition 1.3.2 If F is full and faithful and (LanF (G), α) exists then α is a natural
isomorphism.

If C is cocomplete and A is small, then LanF (G) always exists for any F and G and
can be computed “pointwise” (see [17], Vol. 1). On objects it is given by the following
colimit

LanF (G)(b) = colim (El(B(F (−), b)) π−→ A G−→ C) .

We will return to this in Chapter 4.

Example 1.3.3 In the previous section we saw that any functor F from a small cat-
egory C to a cocomplete category E could be extended to a colimit preserving functor,
G : Ĉ → E. The functor G is the left Kan extension of F along the Yoneda embedding
yC.

If F : C→ D, then F! = LanyC(yDF) and F ∗ = LanyD(cF) = LanyD(F
∗yD).

Left Kan extensions compose:

Proposition 1.3.4 If (H,α) is the left Kan extension of G along F for C G←− A F−→ B
and (K,β) is the left Kan extension of H along F ′, for C H←− B F ′

−→ D, then (K,βF ·α)
is the left Kan extension of G along F ′F :

LanF ′F (G) = LanF ′(LanF (G)) .

For sake of completeness we must mention the existence of the dual notion of right Kan
extension, whose definition is like Definition 1.3.1 where the directions of all natural
transformations involved are reversed. We will not deal particularly with right Kan
extensions in this thesis.

1.4 Fibrations

Indexing structures play a fundamental role in the categorical analysis of models for
concurrency [141, 136]. In the context of categorical models for CCS-like languages
we will consider presheaf categories indexed by a category of labelling sets. There is
a tight correspondence between indexed categories and fibrations, the former represent
the class of fibrations for which a definite (coherent) choice of a cleavage has been made.
We introduce therefore in this section the basic terminology of fibred category theory
together with pointers to the related notion of elementary existential doctrine [71] of
which the presheaf models of Chapter 3 will be an example.

22 CHAPTER 1. CATEGORICAL BACKGROUND

Definition 1.4.1 (Cartesian arrows) Let π : E → B be a functor. An arrow in E,
f : e′ → e is cartesian (with respect to π) if for every other arrow g : e′′ → e such that
π(g) = βα with β = π(f), there exists a unique h : e′′ → e′ with g = fh and π(h) = α:

e′′

∃!h
((

g

))
e′

f
// e

π(e′′) α // π(e′)
β

// π(e) .

Definition 1.4.2 (Fibrations) A functor π : E → B is a fibration if for every β : b′ →
b in B and e ∈|E | such that π(e) = b, there exists a cartesian arrow, f , of codomain e
such that π(f) = β. The arrow f is called a cartesian lifting of e with respect to β.

Definition 1.4.3 If π : E → B is a functor, an arrow f : e′ → e of E is said to be
vertical if π(f) = 1e, and is said to be horizontal, otherwise.

Definition 1.4.4 If π : E → B is a functor and b an object of B. Define the fibre over
b (with respect to π) to be the subcategory Eb of E of those objects e and arrows f such
that π(e) = b and π(f) = idb.

Example 1.4.5 For any presheaf X in a presheaf category Ĉ, the projection functor
El(X) π−→ C is a fibration. In fact is a so-called discrete fibration, since for any object
c ∈|C | the fibre over c is a discrete category, i.e., a category whose only arrows are the
identity ones.

If π is a fibration then a choice of cartesian arrows induces cartesian lifting functors
between the fibres:

Proposition 1.4.6 (Cartesian lifting functors) Let π : E → B a fibration. Let
β : b′ → b be an arrow in B. For every object e ∈| Eb | let β∗e : β∗(e) → e be a chosen
cartesian lifting of e with respect to β. This choice induces the following cartesian lifting
functors β∗ : Eb → Eb′:
• On objects e 7→ β∗(e) as chosen above
• On arrows (f : e→ e) 7→ β∗(f) that is defined to be the unique arrow such that

the following square commutes:

β∗(e)
β∗
e //

β∗(f)
��

e

f

��
β∗(e)

β∗
e

// e.

A choice of cartesian arrows for a fibration is called a cleavage and a fibration with a
chosen cleavage is called a cloven fibration. If the choice of the cleavage is functorial,

1.4. FIBRATIONS 23

i.e., (1b)∗e = 1e and for b′′ α−→ b′
β−→ b, (βα)∗e = α∗

β∗
e
, then the fibration is said to be

split.
We will make extensive use of the dual notion of cofibration:

Definition 1.4.7 (Cofibrations and Bifibrations) A functor π : E → B is a cofi-
bration if the dual functor πop : Eop → Bop is a fibration. A functor that is both a
fibration and a cofibration is called a bifibration.

Dually one talks of cocartesian arrows, cocartesian liftings and cocartesian lifting func-
tors.

1.4.1 The Grothendieck construction

Cloven fibrations are equivalent to indexed categories.2 In fact any indexed category
gives rise (via a construction due to Grothendieck [48]) to a cloven fibration and vice
versa any cloven fibration induces an indexed category.

Definition 1.4.8 (Indexed categories) Let B be any category. A B-indexed category
in CAT is given by a pseudo-functor F : Bop → CAT, that is F associates to each
object of b, a category F (b), to any arrow β : b′ → b a functor β∗ : F (b) → F (b′) with
natural isomorphisms, ϕb : 1F (b)

'−→ (1b)∗ and ϕ(α,β) : α∗β∗
'−→ (βα)∗ for any b ∈|B |

and for any two arrows b′′ α−→ b′
β−→ b of B satisfying the coherence conditions given

by commutativity of the following diagrams:

α∗(1b)∗

ϕα,1b
''PPPPPPPPPPPPP α∗α∗ϕboo

(ϕb)α∗ //

1α∗
��

(1b′)∗α∗

ϕ1
b′ ,α

vvnnnnnnnnnnnnn

α∗

α∗β∗γ∗
(ϕα,β)γ∗

//

α∗ϕβ,γ
��

(βα)∗γ∗

ϕβα,γ

��

α∗(γβ)∗ ϕα,γβ
// (γβα)∗ ,

with γ being another arrow of B, γ : b→ b′′′. 3

Definition/Proposition 1.4.9 (Grothendieck construction) Given a B-indexed cat-
egory F : Bop → CAT, define the following category Groth(F):

• Objects: Pairs 〈c, b〉, with c ∈|F (b) | and b ∈|B |.
• Arrows: A pair 〈f, β〉 is an arrow from 〈c′, b′〉 to 〈c, b〉 if β : b′ → b is an arrow

in B and f : c′ → F (β)(c) is an arrow in F (b′). If 〈f, α〉 : 〈c′′, b′′〉 → 〈c′, b′〉
2See for example [52] for a precise account of this statement.
3Later in this chapter, we will summarise some basic notions of 2-category theory. This will include

a general definition of pseudo-functor between 2-categories.

24 CHAPTER 1. CATEGORICAL BACKGROUND

and 〈g, β〉 : 〈c′, b′〉 → 〈c, b〉 then their composite is the pair 〈h, βα〉 where h is the
following arrow

c
f−→ F (α)c′

F (α)g−→ F (α)F (β)c′′
ϕα,β−→ F (βα)c′′ .

The coherence conditions of Definition 1.4.8 ensure associativity of composition.

The obvious projection π : Groth(F) → B that projects any pair onto its the second
component is a fibration. A cartesian lifting for 〈c, b〉 with respect to β : b′ → b is given
by the pair 〈1F (β)c, β〉.

The category of elements construction of Definition 1.2.16 is an example of application
of the Grothendieck construction (cf. Example 1.4.5).

Our main example of a bifibration will be given by a Lawvere’s elementary existential
doctrine [71] whose categories of attributes will be presheaf categories. We will naturally
consider the following two conditions on top of our fibrations.

Definition 1.4.10 Let P : Bop → CAT be a pseudo-functor. If β : b′ → b is an arrow
in B, we write β∗ for P(β). Suppose that for any β, β∗ has a left adjoint β!.

• Beck-Chevalley Condition: Say that P satisfy the Beck-Chevalley condition if
for every pullback square in B

b′′′��

α
��

β
// b′��
α

��

b′′
β

// b

with α monic, the following square commutes up to a natural isomorphism:

P(b′′′)

α!

��

P(b′)
β
∗

oo

α!

��

P(b′′) P(b) .
β∗

oo

• Fröbenius Reciprocity Law: Suppose now that for every b ∈| B |, P(b) has
binary products. Say that P satisfies the Fröbenius Reciprocity Law if for every β :
b′ → b and c ∈|P(b) | the following square commutes up to a natural isomorphism:

b′

β

��

P(b′)

β!

��

P(b′)
β∗(c)×−

oo

β!

��

b P(b) P(b) .c×−
oo

We end up this section by listing a few facts about fibrations and indexed categories
that we shall use later.

1.4. FIBRATIONS 25

Proposition 1.4.11 Let P : Bop → CAT be a pseudo-functor satisfying the Beck-
Chevalley condition, then for any monic arrow β : b′ � b,

β∗β!
∼= 1P(b′) .

If P satisfies also the Fröbenius reciprocity law, then for any monic arrow β : b′ � b,
the functor β! preserves products.

Proof: For the first statement, observe that if β is a mono, then the following diagram
is a pullback

b′
1 //

1
��

b′

β

��

b′
β

// b .

Because of the Beck-Chevalley condition, β∗β!
∼= 1!1∗, but both 1! and 1∗ are naturally

isomorphic to 1Pb′ , hence β∗β!
∼= 1Pb′ . For the second one, let c′, d′ be two objects of

P(b′), then

β!(c′ × d′) ∼= β!(β∗β!c
′ × d′) (from the property above)

∼= β!c
′ × β!d

′ (by Fröbenius reciprocity law)
2

We can use the result above to prove Proposition 1.4.13 below that will be used in
Chapter 3 to prove the congruence of bisimulation with respect to product. We first
need a lemma.

Lemma 1.4.12 Let P : Bop → CAT be a pseudo-functor, satisfying both the Beck-
Chevalley condition and the Fröbenius Reciprocity law. Let the following square be a
pullback of monomorphisms is B:

a //
β

//
��

α

��

b��
γ

��

c //
δ

// d .

If X and Y are two objects of P(d) such that δ!δ∗X ∼= X and γ!γ
∗Y ∼= Y , then

X × Y ∼= δ!α!α
∗δ∗(X × Y) .

Proof:
X × Y ∼= δ!δ

∗X × Y (by hypothesis)
∼= δ!(δ∗X × δ∗Y) (by Fröbenius)
∼= δ!δ

∗X × δ!δ∗Y (by Proposition 1.4.11)
∼= X × δ!δ∗Y (by hypothesis)
∼= X × δ!δ∗γ!γ

∗Y (by hypothesis)
∼= X × δ!α!β

∗γ∗Y (by Beck-Chevalley)
∼= X × δ!α!α

∗δ∗Y (since δα ∼= γβ)
∼= δ!α!(α∗δ∗X × α∗δ∗Y (by Fröbenius)
∼= δ!α!α

∗δ∗(X × Y) (since α∗ and δ∗ are right adjoints).

26 CHAPTER 1. CATEGORICAL BACKGROUND

2

Proposition 1.4.13 Let P : Bop → CAT be a pseudo-functor, satisfying both the
Beck-Chevalley condition and the Fröbenius Reciprocity law. If a diagram

a c
πb //

πaoo b

d
OO

i

OO

f
l

oo
r

//
OO

k

OO

e
OO

j

OO

is a limiting cone in B, then for any object X ∈| P(d) | and Y ∈| P(e) |, there is an
isomorphism in P(c),

k!(l∗X × r∗Y) ∼= π∗ai!X × π∗b j!Y .

Proof: Observe first of all that the limit of the diagram

a c
πb //

πaoo b

d
OO

i

OO

e
OO

j

OO

is obtained by taking three pullbacks, i.e., the limiting cone can be constructed as
follows,

a c
πb //

πaoo b

·
GG

δ

GG�������������

πd
xxqqqqqqqqqqqqq ·

WW

γ

WW0000000000000

πe
&&MMMMMMMMMMMMM

d
OO

i

OO

e
OO

j

OO

f
VV

α

VV..............
HH

β

HH��������������

where all the quadrilaterals in the diagram above are pullbacks. Without loss of gener-
ality we can then assume l = πdα, r = πlβ and k = δα = βγ. We deduce the following
natural isomorphism:

δ!δ
∗π∗ai! ∼= δ!δ

∗δ!π
∗
d (by Beck-Chevalley)

∼= δ!π
∗
d (by Proposition 1.4.11)

∼= π∗ai! (by Beck-Chevalley).

1.5. PSEUDO CONCEPTS 27

Similarly one deduces that γ!γ
∗π∗b j!

∼= π∗b j!. Hence,

π∗ai!X × π∗b j!Y ∼= δ!α!α
∗δ∗(π∗ai!X × π∗b j!Y) (by Lemma 1.4.12)

∼= k!(α∗δ∗π∗ai!X × α∗δ∗π∗b j!Y)
∼= k!(α∗δ∗δ!π

∗
dX × α∗α!β

∗π∗eY) (by Beck-Chevalley)
∼= k!(α∗π∗dX × β∗π∗eY) (by Proposition 1.4.11)
∼= k!(l∗X × r∗Y) .

2

Proposition 1.4.14 Let π : E → B be a fibration (cofibration). Let ∆ be a class of
diagram shapes (i.e., a class of categories). Suppose that for every object b of B, the
fibre Eb has limits (colimits) of diagrams of shape δ for every δ ∈ ∆ and suppose that
B has limits (colimits) of diagrams of shape δ for every δ ∈ ∆ too. Then E has limits
(colimits) of diagrams of shape δ for every δ ∈ ∆.

Proof: We simply give the description of how to build a limiting cone in E for a
diagram of shape δ ∈ ∆. Let then F : δ → E be a functor. Consider πF : δ → B. By
assumption there exists a limiting cone for πF . Let b = limπF and for any d ∈|δ |, let
βd : πF (d) → b be the corresponding edge of the cone. Let (β∗d : β∗d(F (d)) → F (d))d∈|δ|
be a family of cartesian arrows. This family induces a functor, β∗(−)F : δ → Eb. By
assumption there exists a limiting cone to such functor. Let (e, fd : e→ β∗dF (d)) be such
a cone, then by post-composing with the corresponding cartesian arrows one obtains a
limiting cone (e, β∗dfd : e→ F (d)) in E . 2

1.5 Pseudo concepts

As we mentioned at the beginning of this chapter, 2-categories and bicategories will
play sometimes a role in this thesis, especially in Chapter 4 and 6. The space of this
chapter is too small for any reasonably full introduction to the concepts that we shall
need so we avoid any attempt altogether. Relevant bibliographic references are supplied
in Section 1.6 below. A rather small set of definitions is reported in Appendix A and
is meant essentially to fix some notation and terminology that we shall use throughout
the thesis. Roughly a 2-category is a category, K, in which the collection of arrows,
K(A,B), between any two objects, A and B organises as a category as well, whose
arrows are called 2-cells. Typical examples are locally ordered categories like Rel, the
category of sets and relations, where the relations between two sets are ordered by the
inclusion order, or Cpo, the category of cpo’s and continuous functions that are ordered
with the pointwise ordering. A non locally ordered paradigmatic example is given by
Cat, the 2-category of small categories, functors and natural transformations.

The presence of this extra structure allows one to reproduce in a general 2-category,
essentially all categorical concepts, e.g., adjoint pairs, equivalences, In particular,
now, between objects one can have two “different” notion of equality (as it is between
categories), there is the usual isomorphism but, using the 2-cells, one can also consider

28 CHAPTER 1. CATEGORICAL BACKGROUND

the less strict notion of equivalence. Similarly limits can now be taken “up to isomor-
phism” or “up to equivalence” and for categorical properties the latter seems to be
the right notion. We shall then be interested in what we call pseudo limits and dually
pseudo colimits. As an illustrative example of this change of perspective, we give here
explicitly the definition of pseudo-initial object.

Definition 1.5.1 (Pseudo-initial object) An object 0 of a 2-category K is pseudo-
initial if for every object k, K(0, k) is equivalent to the category 1 with only one object
and one morphism. In other words 0 is initial if for every object k, there exists an
arrow 0k : 0 → k and for every pair of arrows f, g : 0 → k there exists a unique 2-cell,
α : f =⇒ g.

Pseudo-limits, just like ordinary limits can be given a definition in terms of representabil-
ity of objects [56] where now the “functors” do not range over Set but over CAT. We
shall avoid such presentation and, just like above, always spell out in elementary terms
the conditions for a (suitably enriched) cone to be a pseudo limiting one.

For the knowledgeable reader we notice here a small clash of terminology between
our use of the pseudo prefix and what one finds often in the literature. Beside pseudo
functors, we shall talk of pseudo natural transformations, pseudo limits and colimits
where elsewhere, notably [127], these are called, strong transformations and bilimits or
bicategorical limits and colimits, while the prefix pseudo is used for some stricter notion.

1.6 Some references

Everything we said about presheaf categories and Kan extensions can be found in [76,
17, 77]. Any other notion of category theory that we have not introduced here but that
we shall make occasional use of in the remainder of this thesis can be found in [76].
Despite the large number of paper involving fibrations there is, to our knowledge, no
text-book available. A valuable introduction is given by Paul Taylor’s notes of a course
by Peter Johnstone [61]. A few recent PhD theses [57, 52, 97] contains reasonable
introductions that expand what we said here. For a discussion on the relevance of fibred
category theory to category theory and mathematics one can look at [11]. The Fröbenius
Reciprocity law and Beck-Chevalley condition are introduced, for instance, in [71, 77].
One has to note that sometimes Beck-Chevalley is given with respect to all pullback
diagrams in the base categories and some other times (as for us) only with respect to
pullbacks of monomorphisms. Kelly’s book [65] provides an excellent introduction to
enriched categories, while Kelly and Street paper [67] and Gray’s monography [47] deal
with many 2-, pseudo- and bi-categorical concepts. Bicategories were introduced by
Bénabou [9]. Street’s paper [127] contains definitions and results about pseudo-limits
(bilimits in that paper’s jargon) in bicategories. Borceux’s monography [17] covers some
material about enriched concepts as well.

Chapter 2

Open Map Bisimulation

In this chapter we will mainly summarise the definitions and results of [64] where the
notion of open map bisimulation was defined. We refer to that paper and to the relevant
part of the introduction to this thesis for a more detailed discussion about the rationale
behind this abstract notion of bisimulation. We will also use this chapter to recall the
definitions of some basic categories of models for concurrency that have been extensively
studied over the past years [141, 119]. These will include, categories of labelled transition
systems, synchronisation trees and event structures.

2.1 Traditional models

A transition system is a structure

(S, i, L, tran)

where

• S is a set of states with initial state i,
• L is a set of labels,
• tran ⊆ S×L×S is the transition relation. Usually, a transition (s, a, s′) is written

as s a−→ s′.

Let
T0 = (S0, i0, L0, tran0) and T1 = (S1, i1, L1, tran1)

be transition systems. A morphism f : T0 → T1 is a pair f = (σ, λ) where

• σ : S0 → S1, such that σ(i0) = i1, and
• λ : L0 ⇀ L1, a partial function, which together satisfy

(s, a, s′) ∈ tran0 & λ(a) defined
⇒ (σ(s), λ(a), σ(s′)) ∈ tran1, and

(s, a, s′) ∈ tran0 & λ(a) undefined⇒ σ(s) = σ(s′).

29

30 CHAPTER 2. OPEN MAP BISIMULATION

A synchronisation tree is a transition system whose transition graph has the form of a
tree with root the initial state.

Definition 2.1.1 (The Categories T S and ST) Define T S to be the category of ob-
jects transition systems and arrows transition systems morphisms. The composition of
arrows is defined componentwise.

Define ST to be the full subcategory of T S of Synchronisation Trees.

Transition systems and synchronisation trees are often called “interleaving models”
because they represent parallel/concurrent composition by nondeterministically inter-
leaving the actions of processes. In contrast, event structures represent a class of “inde-
pendence models” (among them Petri nets) in which concurrency is represented directly
as a form of causal independence. Define a (labelled) event structure to be a structure
(E,≤, Con, l) consisting of a set E, of events which are partially ordered by ≤, the
causal dependency relation, a consistency relation Con consisting of finite subsets of
events, and a labelling function l : E → L, which satisfy

{e′ | e′ ≤ e} is finite,
{e} ∈ Con,
Y ⊆ X ∈ Con⇒ Y ∈ Con,
X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con,

for all events e, e′ and their subsets X,Y .
Two events e, e′ ∈ E are said to be concurrent (causally independent) iff

(e 6≤ e′ & e′ 6≤ e & {e, e′} ∈ Con).

A set, x, of events in E is said to be a configuration if it is

downwards-closed: ∀e, e′. e′ ≤ e ∈ x⇒ e′ ∈ x, and
consistent: ∀X. X finite & X ⊆ x⇒ X ∈ Con.

A morphism of event structures consists of

(η, λ) : E → E′,

where E = (E,≤, Con, l), E′ = (E′,≤′, Con′, l′) are event structures,
η : E ⇀ E′ is a partial function on events, λ : L ⇀ L′ is a partial function on labelling
sets such that

(i) l′ ◦ η = λ ◦ l,
(ii) If x is a configuration of E, then ηx is a configuration of E′ and if for e1, e2 ∈ x

their images are both defined with η(e1) = η(e2), then e1 = e2.

Definition 2.1.2 (The Category of Event Structures) Define ES to be the cate-
gory of objects event structures and arrows event structures morphisms. The composi-
tion of arrows is defined componentwise.

2.2. BISIMULATION FROM OPEN MAPS 31

The definition of morphism on event structures is given rather abruptly—see [141] for
motivation. The categories T S,ST and ES are related by coreflections: the inclusion
functor ST ↪→ T S has a right adjoint unfolding transition systems to trees; the functor
ST → ES identifying a synchronisation tree with an event structure has a right adjoint
serialising an event structure to a synchronisation tree.

Inspired by the analysis of [141] we will axiomatise, in Chapter 3, the notion of a
categorical model for a general CCS-like language. The role played by adjunctions in
relating the semantics given in different categories of models will become apparent at
that point.

As we saw in the definitions above, every morphism between any two objects of the
defined categories consists of two components, the second being a partial (relabelling)
function. It is immediately clear the existence of forgetful functors

pM :M→ Set∗ ,

for M ∈ {ST , ES ,T S} and Set∗ the category of sets and partial functions.

Proposition 2.1.3 (Implicit in [141]) The functors pT S : T S → Set∗ and pST :
ST → Set∗ are bifibrations. The functor pES : ES → Set∗ is a cofibration but there
exist cartesian liftings of all monomorphisms.

As described in [141] and as we will see later in Chapter 3, considering the categories of
models as fibred over Set∗ is a crucial step for an abstract description of the operations
associated to relabelling and restriction in the semantics of CCS-like languages.

2.2 Bisimulation from open maps

We now move to describing the characterisation of bisimulation relations via open maps.
We need to have in our model an idea of computation paths. For instance a (computa-
tion) path of a transition system with labelling set L is reasonably taken to be a finite
sequence of transitions that the transition system can perform. It takes the shape of a
string of labels in L.

Definition 2.2.1 (Finite strings as a partial order category) Let L be a set. De-
fine L∗ to be the partial order category of objects the finite strings over L with the order
relation given by saying that a string s is below another string s′ if s is an initial pre-
fix of s′. It is convenient to identify strings L∗ with the equivalent subcategory of ST
consisting of those special synchronisation trees consisting of a finite single branch.

To take account of the added independence structure of event structures, the shape of
their computation paths is taken to be a finite pomset [111].

Definition 2.2.2 (Labelled pomsets) Let L be a set. The category PomL is taken to
be the subcategory of ESL, for a labelling set L, consisting of those finite event structures
in which all subsets of events are in the consistency relation. In other words the objects
P of PomL are triples P = (P,≤, l) where P is a finite set, ≤ is a partial order on P
and l : P → L is a function. A morphism f : P → Q in PomL is given by a injective

32 CHAPTER 2. OPEN MAP BISIMULATION

function that preserve the labelling and send downward closed sets of P to downward
closed sets of Q.

We can obtain a general definition of bisimulation from open maps, which roughly
speaking are morphisms with the property that any extension of a computation path in
the range can be matched by an extension in its domain.

Definition 2.2.3 (P-open maps) Assume a category of models M and a choice of
path category, a subcategory P ↪→M consisting of path objects together with morphisms
expressing how they can be extended. Let f : M →M ′ be an arrow in M. We say that
f is a P-open map if, whenever, for m : P → Q a morphism in P, a “square”

P

m
��

p
//M

f

��

Q
q

//M ′

in M commutes, i.e. q ◦m = f ◦ p, meaning the path f ◦ p in M ′ can be extended via
m to a path q in M ′, then there is a (not necessarily unique) morphism p′ such that in
the diagram

P

m
��

p
//M

f

��

Q

p′
>>}}}}}}}} q
//M ′

the two “triangles” commute, i.e. p′ ◦m = p and f ◦ p′ = q, meaning the path p can be
extended via m to a path p′ in M which matches q.

Two objects M1,M2 of M are said to be P-bisimilar iff there is a span of P-open
morphisms f1, f2: M

f1

}}{{
{{

{{
{{ f2

""E
EE

EE
EE

E

M1 M2 .

The following is an immediate consequence of the definition.

Proposition 2.2.4 Given any category M and a subcategory P; every isomorphism of
M is P-open. Hence any two isomorphic objects of M are P-open bisimilar.

In the case of traditional models we obtain known equivalences. In ST L, L∗-bisimulation
coincides with Park and Milner’s strong bisimulation; for event structures ESL, PomL

bisimulation coincides with strong history-preserving bisimulation due to Bednarczyk
refining ideas of van Glabbeek and Goltz, Rabinovitch and Traktenbrot [8, 41, 113].

Theorem 2.2.5 (Theorem 2 and Theorem 10(i) of [64])

• Two transition systems (and so synchronisation trees) over the labelling set L are
L∗-bisimilar iff they are strongly bisimilar in the sense of [82]

• Two event structures with labelling sets L are PomL-open bisimilar if and only if
they are strong history-preserving bisimilar (as defined in [64], Section 3).

2.2. BISIMULATION FROM OPEN MAPS 33

Observe that the given definition of open map bisimulation does not necessarily induce
that ‘being open map bisimilar’ is an equivalence relation. This is because we did not
make any assumption on the category of modelsM. In particular any category, in order
to support composition of relations, is normally required to have, at least, pullbacks. In
fact given a category M with pullbacks it is possible to define the bicategory of spans
(generalised relations) in M, Spn(M) to consists of:

• Objects: The same objects of M,

• Arrows: Spans of arrows ofM, i.e., an arrow from M1 to M2 is given by a span
M1

f←−M g−→M2.

• 2-Cells: Given a span M1
f1←−M f2−→M2 and a span M1

g1←− N g2−→M2, a 2-cell
from the first one to the second one is given by an arrow inM, h : M → N such
that hgi = fi, for i = 1, 2.

Both the composition of arrows and the horizontal composition of 2-cells rely on pull-
backs to exist in order to be defined. Spans of open maps represent particular relations
between the models, viz. bisimulation relations. In the case that they can be composed
i.e., ifM has pullbacks then being open map bisimilar is an equivalence relation on the
objects of the category M.

Proposition 2.2.6 (Proposition 3 of [64]) Pullbacks of P-open morphisms are P-
open. If f : M → N is a P-open map and

M ×N O
g

//

f
��

M

f

��

O g
// N

is a pullback square, then f is P-open too.

IfM has products, the product of P-open morphisms is P-open.

Proposition 2.2.7 (Joyal-Moerdijk) Suppose M has products. Let f1 : M1 → N1

and f2 : M2 → N2 be P-open maps. Then f1 × f2 : M1 ×M2 → N1 ×N2 is P-open.

Proof: Suppose that the following square, with m : P → Q in P, commutes:

P
p

//

m

��

M1 ×M2

f1×f2
��

Q q
// N1 ×N2 .

We need to find an r : Q → M1 × M2 such that rm = p and (f1 × f2)r = q. By
universality of the product, any r : Q→M1×M2 is uniquely determined by two arrows

34 CHAPTER 2. OPEN MAP BISIMULATION

r1 : Q→M1 and r2 : Q→M2. Consider the commutative diagrams:

P
p

//

m

��

M1 ×M2

f1×f2
��

πM1 //M1

f1
��

Q q
// N1 ×N2 πN1

// N1

P
p

//

m

��

M1 ×M2

f1×f2
��

πM2 //M2

f2
��

Q q
// N1 ×N2 πN2

// N2 .

By P-openness of f and g there exist r1 : Q → M1 and r2 : Q → M2 such that (for
i = 1, 2),

rim = πMip and firi = πNiq .

Let r = 〈r1, r2〉, then

rm = 〈r1, r2〉m
= 〈r1m, r2m〉
= 〈πM1p, πM2p〉
= 〈πM1 , πM2〉p
= p

(f1 × f2)r = 〈f1πM1, f2πM2〉r
= 〈f1πM1r, f2πM2r〉
= 〈f1r1, f2r2〉
= 〈πN1q, πN2q〉
= q

where all the steps above are justified by the properties of the ri’s or by the universal
property of products. 2

2.2.1 Presheaves as models

The notion of open map was originally developed to be applied in a (pre)topos [62, 63].
A key example there was given by the following:

Definition 2.2.8 Let C be a small category. Let X,Y be presheaves over C and let
f : X → Y be an arrow in Ĉ (viz. a natural transformation between X and Y). Say
that f is open if every naturality square is a quasi pullback in Set. This means that f
is open if for every arrow in C, m : c→ c′, the square

X(c′)
X(m)

//

fc′
��

X(c)

fc
��

Y (c′)
Y (m)

// Y (c)

2.2. BISIMULATION FROM OPEN MAPS 35

of functions is a quasi pullback, i.e., for every x ∈ X(c), y′ ∈ Y (c′) such that fc(x) =
Y (m)(y′), there exists an x′ ∈ X(c′) such that

X(m)(x′) = x and fc′(x′) = y′ .

It is not difficult to see that, via the Yoneda lemma, the condition of Definition 2.2.8 is
equivalent to a path lifting property:

Proposition 2.2.9 Let C be a small category. An arrow f : X → Y in Ĉ is open if
and only if , whenever m : c→ c′ is an arrow in C, g : y(c)→ X and h : y(c′)→ Y are
arrows in Ĉ and the square

y(c)
g

//

y(m)
��

X

f

��

y(c′)
h

// Y

commutes, there exists an arrow k : y(c′)→ X, such that

ky(m) = g and fk = y(h).

Given a category M and a small subcategory of path objects P it is possible to com-
pare the two notions of open maps using the ‘canonical’ functor cM : M → P̂ (cf.
Definition 1.2.7).

Proposition 2.2.10 (Proposition 12 in [64]) Let P be a small dense full subcate-
gory ofM. A morphism f : M →M ′ inM is P-open if and only if cM (f) :M[−,M]→
M[−,M ′] is open (in the sense of Definition 2.2.8).

When bisimulation in M and P̂ has to be related more care is needed. In fact in P̂ the
unique arrow ∅ → X from the initial presheaf to any presheaf is always open. A natural
way to remove this anomaly is to require in the definition of open map bisimulation an
extra surjectivity condition.

Definition 2.2.11 (Open map bisimulation for presheaves) Let P be a category.
Say that two presheaves X,Y over P are P-open bisimilar if they are connected by a
span of epimorphic P-open maps.

Since in presheaf categories epimorphisms are natural transformations that are pointwise
surjective, in the reminder we shall often use the word “surjective” as a synonym of
epimorphic. If P has an initial object and P+ is the full subcategory of P to which all
initial objects have been removed, then we have already said that the category of rooted
presheaves over P is equivalent to P̂+. In particular P-open maps in P correspond to
surjective P+-open maps in P̂+.

As one can immediately see, the full subcategory of rooted presheaves of L̂∗ is
equivalent to the category ST L that in turn is isomorphic to the presheaf category L̂+,
where the objects of L+ are the non-empty finite strings of elements of L. While the
canonical functor from ESL to P̂omL always yields a rooted presheaf, not all rooted

36 CHAPTER 2. OPEN MAP BISIMULATION

presheaves in P̂omL are obtained in this way. Full subcategories of rooted presheaves
play an important role in our approach. Bisimulation in the subcategories of rooted
presheaves coincides with bisimulation in the categories of concrete models:

Proposition 2.2.12 (Joyal-Nielsen-Winskel)

(i) Two synchronisation trees, over labelling set L, are L∗-bisimilar (i.e. strong bisim-
ilar) iff their corresponding presheaves, under the canonical embedding, are related
by a span of open maps in the full subcategory of rooted presheaves of L̂∗.

(ii) Two event structures, over labelling set L, are PomL-bisimilar (i.e. strong history-
preserving bisimilar) iff their corresponding presheaves, under the canonical em-
bedding, are related by a span of open maps in the full subcategory of rooted
presheaves of P̂omL.

We have now established the link between categories of models and categories of
presheaves over appropriate path categories. We can now look for general constructions
that preserve openness and hence bisimulation and that can be used to model process
constructions. Left Kan extensions and their right adjoints will be among those.

Before concluding this chapter we just add a simple property, with straightforward
verification, of the canonical embeddings cST L and cESL that we shall need in the next
chapter.

Proposition 2.2.13 If the canonical embeddings, cST L and cESL are defined onto the
categories of rooted presheaves, L∗ and PomL, then they preserve coproducts and initial
objects.

Chapter 3

Presheaf Models for CCS-like
languages

Prompted by results like Proposition 2.2.12, in this chapter we take up the suggestion
of [64] of considering presheaf models for concurrent computation. There are, already
at this preliminary stage, several reasons for doing this.

One reason is that, once one passes the barrier of unfamiliarity, presheaves are an in-
tuitively appealing model of nondeterministic computation. Starting with a category of
path objects (or observations) in which morphisms stand for an extension of one path by
another, nondeterministic computations are represented essentially by gluing together
computation paths in a manner reminiscent of the way a powerdomain is built from a
domain as a completion of its finite elements. More accurately, as we saw in Chapter 1
forming presheaves is equivalent to adjoining all colimits to a category, which corre-
sponds to more than just adding directed colimits—the reason why nondeterministic
branching is also introduced.

As was argued in [64] presheaf models are promising generalisations of existing mod-
els; in fact on the one hand well-known models like synchronisation trees and labelled
event structures embed fully and faithfully into appropriate presheaf categories, and, on
the other hand, for general reasons, presheaves support operations such as those com-
ing from Kan extensions (cf. Section 1.3). One particular Kan extension, resulting in a
functor between presheaves over pomsets, was advanced in [64] as a good candidate for
an operation of refinement of the kind proposed for event structures. In Section 3.5 it is
shown that this Kan extension acts, when restricted to presheaves associated with event
structures, in the same way as the refinement operation in [41]. More generally, working
at this level of abstraction yields the possibility of achieving general congruence results
like Proposition 3.2.5, that are used to show that a broad class of operations, obtained
as left Kan extensions, automatically preserve open maps. It is interesting then to spe-
cialise to concrete cases and transfer this congruence properties to traditional models
like synchronisation trees and event structures. In particular, for instance, we specialise
to show that the refinement, obtained as a Kan extension, preserves open maps and so
bisimulation.

37

38 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

3.1 A general process language and its categorical models

In this section we introduce the process language Proc of [141] as a template for so-called
CCS-like languages. The distinctive feature of Proc is that the parallel composition
operator is removed in favour of a more general product out of which different definitions
of parallel compositions can be constructed with the help of restriction and relabelling
operations. As noted in [141], if the terms of Proc are to be interpreted in categories
of labelled structures (transition systems, event structures, . . .) then it is convenient
to regard such categories as fibred over the labelling system, namely over the category
Set∗ of sets and partial maps. By doing this, in fact, it is easy to recover the universal
content of the operators associated with restriction, relabelling and (to a certain extent)
prefixing in terms of (co)cartesian liftings. Assume then a universe of labels (the class
of elements of some set), define the terms t of Proc by the following grammar:

t ::= Nil | at | t0 ⊕ t1 | t0 × t1 | t�Λ | t{Ξ} | x | rec x.t
where a is a label, Λ is a set of labels, Ξ is a total function from labels to labels and x a
variable drawn from some distinguished infinite set that we indicate as V ars. In [141] an
analysis of the categorical status of the operations involved in the semantics of Proc was
conducted. Inspired by it, we propose an axiomatisation of the structure required for a
category to give a model of the language. In particular we emphasise the role of partial
relabelling functions as substitution operators and therefore we impose upon them the
Fröbenius reciprocity law and the Beck-Chevalley condition that were introduced in
Chapter 1

Definition 3.1.1 (Models for Proc) A categorical model for Proc is given by a
functor π :M→ Set∗ such that:

• M has binary products (×).
• For every set L, the fibre ML has initial object (0L), binary coproducts (+L) and

colimits of ω-chains.
• For every inclusion i : L ↪→ M of sets, there exists a cartesian lifting functor
i∗ :MM →ML.

• For every total function f : L → M , there exists a cocartesian lifting functor
f! :ML →MM .

• For every set L and label a ∈ L, there exists a prefixing endofunctor

prea,L :ML →ML

which preserves ω-colimits as well as existing cocartesian lifting functors for partial
maps f : L ⇀ M , that are defined on a, i.e., if f is a partial map from L to M such
that f(a) is defined and such that f! exists, then the following square commutes,
up to natural isomorphism:

ML

prea,L
//

f!
��

ML

f!
��

MM pref(a),M
//MM .

3.1. A GENERAL PROCESS LANGUAGE AND ITS CATEGORICAL MODELS 39

• Whenever applicable, i.e., whenever the required (co)cartesian arrows exist, the
Fröbenius reciprocity law and Beck-Chevalley condition of Definition 1.4.10 hold.

In [141] a few models were considered ranging from ‘interleaving’ ones, like transition
systems and synchronisation trees, to ‘non-interleaving’ ones, like event structures, Petri
nets or transition systems with independence. Here we recall briefly, how the structure
required in the definition above is used to give semantics to terms of Proc .

We first deduce some properties of models. In fact a model for Proc , as described
in Definition 3.1.1, is not a cofibration, still it has enough cocartesian liftings to deduce
the following corollary (of the proof) of Proposition 1.4.14:

Corollary 3.1.2 If π : M → Set∗ is a model for Proc , then M has initial object,
binary coproducts and colimits of ω-chains.

3.1.1 Denotational semantics of Proc

Before actually giving the semantics of Proc terms for a categorical model M, we
introduce the operation ⊕ that will be used to model the non-deterministic sum. As
we shall see this contrasts with the categorical sum in the choice that it operates with
respect to the labelling sets (taking their union and not their disjoint sum).

Definition 3.1.3 Let π : M → Set∗ be a model for Proc . If M ∈| ML | and
N ∈|ML′ |, define M ⊕N ∈|ML∪L′ | to be

M ⊕N = iL,!(M) +L∪L′ iL′,!(N) .

As one immediately sees, for any two sets L,L′, this construction induces a functor
(−⊕−) :ML×ML′ →ML∪L′ . Still, because of the choice of taking the union and not
the disjoint set of labelling sets, these do not lift to a functor M×M →M, because
it does not have a well defined action on arrows. In fact for any two arrows of M,
f : M →M ′ and g : N → N ′ it is not possible to define what f ⊕g must be. Still this is
possible when π(f) and π(g) agree on their action on the elements of π(M)∩π(N). This
is in particular true for the arrows in the fibres since in that case, π(f) and π(g) are the
identity functions. More generally one can define a bifunctor ⊕ : Min ×Min → Min

where Min is the subcategory of M of those arrows, f , such that π(f) is an inclusion
of sets.

Let π :M→ Set∗ be a model as in Definition 3.1.1. We describe the denotational
semantics of Proc inductively on the structure of the terms, assuming an environment
function ρ : V ars→|M|:

Nil: [[Nil]]ρ = 0∅ an initial object ofM
Variables: [[x]]ρ = ρ(x)

Sum: [[t1 ⊕ t2]]ρ = [[t1]]ρ ⊕ [[t2]]ρ
Product: [[t1 × t2]]ρ = [[t1]]ρ × [[t2]]ρ
Restriction: Let Λ be a set. [[t1�Λ]]ρ = i∗([[t1]]ρ), where i : Λ ∩ L ↪→ L and L = π([[t1]]ρ)

40 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

Relabelling: Let Ξ : L → M be total. [[t1[Ξ]]]ρ = Ξ′
N,!([[t1]]ρ), where N = π([[t1]]ρ) and

Ξ′
N is the truncation to its image of the function,

ΞN : L ∩N −→ M ∪N

x 7→
{

Ξ(x) if x ∈ L
x otherwise

Prefixing: Let a be a label, then [[at]]ρ = prea,L∪{a}(i!([[t]]ρ)), where π([[t]]ρ) = L and
i : L ↪→ L ∪ {a}.
Recursion: Let t be any term, and let x be a variable (possibly free in t). Given any
environment ρ the term t and the variable x determine an endofunctor

txρ : Min → Min

M 7→ [[t]]ρ[M/x] .

From txρ , the following ω-chain is derivable:

T : ω → M
0 7→ [[t]]

ρ[[[Nil]]
ρ
/x]

n 7→ [[t]]ρ[Tn−1/x] for n > 0

Define [[recx.t]]ρ = colim T . Since all the constructions involved in the denotation of a
term t are ω-colimits preserving functors, then colim T is a fixed point for txρ .

In giving the interpretation of the terms of Proc as objects of M we had not been
constrained by the Fröbenius reciprocity law and the Beck-Chevalley condition. So,
where does their use lie? As we shall see in the next section it is when equipping our
models with a notion of bisimulation that it will matter that we have these conditions
around: they constrain the action that the cartesian arrows have on the objects of M.

3.2 Presheaf models for Proc

As we saw in the previous section, the denotation of a term of Proc is given mainly by
means of universal constructions: (co)products, (co)cartesian liftings and fixed points.1

Since we have an abstract definition of bisimulation in mind (see the previous chapter)
it is natural to look for abstract proofs of the expected congruence properties of the
term constructors with respect to the bisimulation relation. Given the generality of the
data required for both the model and the bisimulation (the latter requiring an ‘arbi-
trary’ choice of categories of path objects), the task looks quite impossible to achieve.
This might not be the case, on the contrary, if one manages to link the path category
parametrisation over which bisimulation is defined with the description of the model
M. We have already seen that whenever we choose as a path category for bisimulation
a (small) dense subcategory (P) of M, we can regard M itself as a full subcategory

1Prefixing with its ad hoc requirements forms an exception to this general treatment.

3.2. PRESHEAF MODELS FOR PROC 41

of P̂ (cf. Proposition 1.2.8). We also saw that open maps and therefore bisimulation
is always preserved in moving from M to P̂; in examples of interest bisimulation is
reflected, too (cf. Proposition 2.2.12). This motivated the idea that the study of open
map bisimulation in presheaf categories could help deriving properties, like the congru-
ence property of bisimulation, in an abstract setting that might be instantiated later to
specific cases of interest. This, indeed, turned out to be the case and a special role in
this has been played by Proposition 3.2.5 below, that states preservation of open maps
and hence bisimulation along colimit preserving functors between presheaf categories.
Let’s proceed in good order though. We start by describing what we need to build a
presheaf model for Proc .

Definition 3.2.1 (Pre-presheaf Models for Proc) A pre-presheaf model for Proc
consists of a functor P(−) from Set∗ to Cat, the category of small categories, which sends
λ : L ⇀ M to λ : PL → PM such that:

• For each set L, the category PL has an initial object; the functors λ, for λ : L ⇀ M ,
preserve initial objects.

• For each set L and element a ∈ L, there is an explicitly given prefixing functor
prea,L : PL → PL satisfying commutativity of the following diagram

PL
prea,L

//

λ
��

PL

λ
��

PL′ preλ(a),L′
// PL′

for any λ : L ⇀ L′ that is defined on a.

A process with labelling set L is to denote a rooted presheaf over PL.
With the Grothendieck construction of Section 1.4.1 in mind, one sees that a pre-

presheaf model defines a split cofibration in Set∗. We shall return to this in Section 3.4
when dealing with the example provided by pomsets and event structures.

Example 3.2.2 Our two examples here will be given by the presheaf models that “cover”
synchronisation trees and event structures. Namely:

1. Define (−)∗ : Set∗ → Cat be the functor that associates to each set L the partial
ordered set (regarded as a category) L∗ of finite (possibly empty) strings of elements
of L and to each partial map λ : L ⇀ M the monotone map (i.e., the functor) that
pointwise relabel every string over L to a string over M according to λ, sending
every letter on which λ is undefined to the empty string (ε). The prefixing functors
are defined by usual prefixing of strings, i.e., prea,L(σ) = aσ.

2. Define Pom(−) : Set∗ → Cat to be functor that associates to each set L the
category of pomsets labelled in L. If λ : L ⇀ M , then λ : PomL → PomM is the
following functor:

• On objects: Given a pomset P = (P,≤, l) in |PomL|, λ(P) = (P ′,≤′, l′)
with P ′ = {e ∈ P | λ(l(e)) is defined}, ≤′=≤ ∩(P ′ × P ′), l′(e) = λ(l(e)).

42 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

• On arrows: If f : P → Q is an arrow in PomL, λ(f) is simply the restric-
tion of f to P ′ and Q′

The prefixing functors are again the obvious ones, i.e., the prefixing prea,L(P) of
a pomset P is obtained by adding a new event, labelled ‘a′, which is placed below
all the events of P in the causal order relation.

Recall that from every functor F : C → D between small categories one can derive
a triple of adjoint functors F! a F ∗ a F∗:

Ĉ

F!
$$

F∗

:: D̂.F ∗
oo

Hence from the data defining a presheaf model we can derive a bifibration using the
Grothendieck construction.

3.2.1 The Grothendieck construction in presheaf models

Given a presheaf model P(−), we can glue together all the fibres, consisting of categories
of rooted presheaves over PL, to form a fibration over Set∗ which we call Groth(P(−)):

Objects: pairs 〈X,L〉 with L ∈ |Set∗| and X a rooted presheaf over PL,

Arrows: pairs 〈f, λ〉 : 〈X,L〉 → 〈Y,M〉 with λ : L ⇀ M and f : X → λ
∗(Y).

The composition of arrows is 〈g, µ〉 ◦ 〈f, λ〉 = 〈λ∗(g) ◦ f, µ ◦ λ〉. Clearly the projec-
tion 〈X,L〉 7→ L is the object part of a functor π : Groth(P(−)) → Set∗. Intuitively,
the Grothendieck construction glues the various fibres together; it adds arrows between
presheaves (possibly over different fibres), to allow for the possibility of a partial rela-
belling of actions.

For λ : L ⇀ M the adjunction λ! a λ
∗ between presheaf categories P̂L and P̂M

cuts down to an adjunction between the fibres of rooted presheaves. The adjunctions
ensure that the Grothendieck fibration is in fact a bifibration [57]; the cocartesian
lifting of λ with respect to X is (ηX , λ) : X → λ!(X) where ηX : X → λ

∗
λ!(X)

is the component of the unit of the adjunction at X. Since the fibres are presheaf
categories they satisfy all the colimit completions required in Definition 3.1.1. Moreover
by applying Proposition 1.4.14 we can deduce that Groth(P(−)) has binary products.

Even if the functor P(−) induces a split cofibration, whose fibres are the categories
PL, for L a set, when extended to Groth(P(−)) this property is lost. On the other hand,
since the λ∗’s are defined by composition, Groth(P(−)) is a split fibration.

Definition 3.2.3 (Presheaf Models for Proc) A presheaf model for Proc , con-
sists of a functor P(−) as in Definition 3.2.1 satisfying the extra condition that the
induced bifibration Groth(P(−)) satisfies both the Fröbenius reciprocity law and the Beck-
Chevalley condition.

3.2. PRESHEAF MODELS FOR PROC 43

Remark: Observe that following the statement of Proposition 2.2.12, we consider here
rooted presheaves (assuming the base category has initial objects). This restriction
might look slightly odd from the categorical point of view. We decided on it, since
it will help us, at this early stage of the development of presheaf models, to give a
smooth treatment of prefixing with an immediate proof that it preserves open map
bisimulation. Later, when we will start describing the base categories using recursive
domain equations, we will give a more detailed account of prefixing using a notion of
lifting, and therefore we will remove the ‘anomaly’ of the restriction to rooted presheaves.
Note once again that from a categorical point of view, the choice of rooted presheaves
does not reduce the generality of our approach since, as we already said a few times,
the category of rooted presheaves over a category with initial object is equivalent to the
category of presheaves over the same base category to which all the initial objects has
been removed.

It is immediately seen that given a presheaf models for Proc , P(−), Groth(P(−)) with
the obvious projection functor forms a categorical model for Proc in the sense of Defi-
nition 3.1.1. It is easy now to equip our model with a notion of bisimulation. We first
bring the two objects over a common fibre and then see whether they are open map
bisimilar there.

Definition 3.2.4 (Open map bisimulation in Groth(P(−))) Let 〈X,L〉 and 〈Y,M〉
be two objects in Groth(P(−)). We say that they are (open map) bisimilar if iL,!(〈X,L〉)
and iM,!(〈Y,M〉) are related by a span of (surjective) PL∪M -open maps, where iL and

iM are the set inclusions L
iL
↪→ L ∪M iM←↩ M .

Notation: In the reminder of this chapter, we shall write 〈X,L〉 ∼ 〈Y,M〉 to mean
that they are open map bisimilar, and X ∼L Y to say that both X and Y are in | P̂L |
and that they are PL-open bisimilar. Hence we have that

〈X,L〉 ∼ 〈Y,M〉 if and only if iL,!(X) ∼L∪M iM,!(Y) .

From the above definition we immediately see that moving objects across different fibres
along cocartesian liftings preserves bisimulation. But can we deduce more, i.e., can we
deduce that bisimulation is a congruence with respect to the operations of the denota-
tional semantics of processes? The answer is yes and it relies mainly on the following
result (Corollary 4 in [26]).

Proposition 3.2.5 (Colimit preserving functors preserve open maps) If C and
D are two small categories and F : Ĉ → D̂ is a colimit-preserving functor, then F pre-
serves open maps:

If α : X .−→ Y is a C-open map, then F (α) : F (X) .−→ F (Y) is a D-open
map.

Proof: The proof is postponed to Chapter 4 where the proposition reappears as Corol-
lary 4.6.6 of the more general Theorem 4.6.5. 2

44 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

In any category, an epimorphism e : c � d gives rise to a pushout square

c e //

e

��

d

1
��

d
1

// d .

Hence any colimit preserving functor preserves epimorphisms. This implies the following
Corollary.

Corollary 3.2.6 Let C and D be two small categories. Let F : Ĉ → D̂ be a colimit-
preserving functor. If X and Y are two C-open bisimilar presheaves, then F (X) and
F (Y) are D-open bisimilar.

Using the Proposition and Corollary above we can deduce that for any 〈X,L〉 in
Groth(P(−)), there exists a least subset L′ of L with inclusion function i : L′ ↪→ L,
such that, 〈i∗X,L′〉 ∼ 〈X,L〉.

Proposition 3.2.7 Let 〈X,L〉 ∈|Groth(P−) |. Let M
i
↪→ L

j←↩ N be two inclusions,
such that 〈i∗X,M〉 ∼ 〈X,L〉 ∼ 〈j∗X,N〉, then if

M ∩N � � l //
� _

k
��

M� _

i
��

N
� �

j
// L

is the obvious pullback square of inclusions,

〈l∗i∗X,M ∩N〉 ∼ 〈X,L〉 .

Proof: We need to show that i!l!l
∗
i
∗
X ∼L X. By assumption i!i

∗
X ∼L X, hence by

Corollary 3.2.6, j∗i!i
∗
X ∼N j

∗
X. By the Beck-Chevalley condition, j∗i!i

∗
X ∼= k!l

∗
i
∗
X,

hence by composing with j!, j!k!l
∗
i
∗
X ∼L j!j

∗
X ∼L X. Since the square of inclusions

is a commutative one, we know that j!k!
∼= i!l!, hence i!l!l

∗
i
∗
X ∼L X. 2

Corollary 3.2.8 For any 〈X,L〉 ∈|Groth(P−) |, there exists a least subset L′ of L such
that 〈i∗X,L′〉 ∼ 〈X,L〉, where i : L′ ↪→ L is the inclusion function.

Proof: Just take L′ to be equal to the intersection of all M ⊆ L, such that 〈i∗MX,M〉 ∼
〈X,L〉, where iM : M ↪→ L is the inclusion function. 2

Definition 3.2.9 For any 〈X,L〉 ∈|Groth(P−) |, say that X reduces to M , if M is a
subset of L, and 〈X,L〉 ∼ 〈i∗X,M〉. Is L′ is the least subset of L for which X can be
reduced to, say that X is essentially on L′. If the least subset L′ is L itself, say that X
is reduced.

The notion of “reduction” captures the idea that the presheaf X is essentially described
by path objects of PL′ even if one is regarding it as an object of P̂L.

The above results yields the following characterisations of bisimilarity inGroth(P(−)).

3.3. SEMANTIC CONSTRUCTIONS IN GROTH(P(−)) 45

Proposition 3.2.10 Two objects 〈X,L〉, 〈Y,M〉 ∈| Groth(P−) | are bisimilar iff they

both reduce to L ∩M and i∗X ∼L∩M j
∗
Y , for L

i←↩ L ∩M j
↪→M .

Corollary 3.2.11 Two objects 〈X,L〉, 〈Y,M〉 ∈|Groth(P−) | are bisimilar iff they are

essentially on the same set N with L
i←↩ N

j
↪→M and i∗X ∼N j

∗
Y .

As we shall see all the operations involved in the semantics of Proc preserve bisimula-
tion.

Before going into the semantics of Proc in presheaf models we recall the following
instantiation of Proposition 1.4.11 to Groth(P(−)).

Proposition 3.2.12 Let P(−) : Set∗ → Cat be a presheaf model for Proc . Let
i : L � M be a monomorphism in Set∗, i.e., an injective (total) function. Then
the following facts hold:

• i∗i! ∼= idPL .

• i! preserves products in the fibres, i.e., for every two rooted presheaves X,Y ∈|PL |,

i!(X ×L Y) ∼= i!(X) ×M i!(Y) .

3.3 Semantic constructions in Groth(P(−))

We analyse now the constructions used in Groth(P(−)) to give the semantics of Proc
according to Section 3.1.1 and show that they preserve open map bisimulation.

Products: As we have already said the category Groth(P(−)) has products. They
can be constructed (cf. Proposition 1.4.14) using the products in the fibres as follows.2

Given 〈X,L〉, 〈Y,M〉 ∈ |Groth(P(−))|. Define

〈X,L〉 × 〈Y,M〉 = 〈πL∗(X)× πM ∗(Y), L×∗ M〉

where L πL↼ L×∗ M
πM⇀ M are the projections of the product in Set∗.

Proposition 3.3.1 If 〈X,L〉 is open map map bisimilar to 〈X ′, L′〉 and 〈Y,M〉 is open
map bisimilar to 〈Y ′,M ′〉 then the product 〈X,L〉× 〈Y,M〉 is open map bisimilar to the
product 〈X ′, L′〉 × 〈Y ′,M ′〉.

Proof: Let N = L×∗ M and N ′ = L′ ×∗ M ′. Consider the diagram

L� _

iL
��

N� _

iN
��

πM //
πLoo M� _

iM
��

L ∪ L′ N ∪N ′αoo
β

//M ∪M ′

L′?�

i′L

OO

N ′?�

iN′

OO

πM′
//

πL′
oo M ′ ,

?�

iM′

OO

2We tend to use (Set∗ is an exception) the same symbol “×” to indicate the product of two objects in
a category. This is irrespective of the fact that some time, as here, products taken in different categories
appear in the same expression. We hope that the reader can disambiguate from the context.

46 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

with α and β the obvious projecting partial functions. Observe that since the set N∪N ′

is included in (L∪L′)×∗ (M ∪M ′), then both the upper diagram and the lower one are
limiting cones of vertex N and N ′, respectively. Hence by Proposition 1.4.13 we have
the following two isomorphisms in PN∪N ′ :

iN,!(π∗LX × π∗MY) ∼= α∗iL,!X × β
∗
iM,!Y

iN ′,!(π∗L′X ′ × π∗M ′Y ′) ∼= α∗iL′,!X
′ × β∗iM ′,!Y

′ .

This means that what we have to prove is that assuming iL,!X ∼L∪L′ iL′,!X
′ and

iM,!Y ∼M∪M ′ iM ′,!Y
′ we have that

α∗iL,!X × β
∗
iM,!Y ∼N∪N ′ α∗iL′,!X

′ × β∗iM ′,!Y
′ .

In fact, by Corollary 3.2.6, we deduce that α∗iL,!X ∼N∪N ′ α∗iL′,!X
′ and β∗iM,!Y ∼N∪N ′

β
∗
iM ′,!Y

′. Hence, by Proposition 2.2.7 combined with the fact that the product of
surjective natural transformations is surjective,

α∗iL,!X × β
∗
iM,!Y ∼N∪N ′ α∗iL′,!X

′ × β∗iM ′,!Y
′ .

2

Sum: Let 〈X,L〉, 〈Y,M〉 ∈ |Groth(P(−))|. Define

〈X,L〉 ⊕ 〈Y,M〉 = 〈iL!(X) + iM !(Y), L ∪M〉

where L iL→ L ∪M iM←M are the obvious set inclusions.

Proposition 3.3.2 The functor ⊕ preserves open map bisimulation; if 〈X,L〉 is open
map bisimilar to 〈X ′, L′〉 and 〈Y,M〉 is open map bisimilar to 〈Y ′,M ′〉 then 〈X,L〉 ⊕
〈Y,M〉 is open map bisimilar to 〈X ′, L′〉 ⊕ 〈Y ′,M ′〉

Proof: Let N = L ∪M , N ′ = L′ ∪M ′, L′′ = L ∪ L′ and N ′′ = N ∪N ′. Consider the
following diagram of inclusions:

L� _

iL
��

� � jL // N� _

iN
��

M� _

iM
��

? _
jMoo

L′′ � � jL′′
// N ′′ M ′′? _

jM′′
oo

L′?�

i′L

OO

� �

jL′
// N ′?�

iN′

OO

M ′ .? _

jM′
oo

?�

iM′

OO

By assumption iL,!X ∼L′′ iL′,!X
′ and iM,!X ∼M ′′ iM ′,!X

′, hence

iN,!(jL,!X + jM,!Y) ∼= iN,!jL,!X + iN,!jM,!Y

3.3. SEMANTIC CONSTRUCTIONS IN GROTH(P(−)) 47

∼= jL′′,!iL,!X + jM ′′,!iM,!Y

∼N ′′ jL′′,!iL′,!X
′ + jM ′′,!iM ′,!Y

′

∼= iN ′,!jL′,!X
′ + iN ′,!jM ′,!Y

′

∼= iN ′,!(jL′,!X
′ + jM ′,!Y

′) .

2

Remark: This sum construction is not the coproduct because of the choice of labelling
set for the sum. It can be shown that, if [iL, iM] : L + M → L ∪M is the mediating
map from the coproduct of sets, then

〈X,L〉 ⊕ 〈Y,M〉 ∼= [iL, iM]!(〈X,L〉 + 〈Y,M〉).

Restriction: Let Λ be a set and let 〈X,L〉 ∈ |Groth(P(−))|. Then consider the inclusion
map i : Λ ∩ L ↪→ L and define the restriction of X to Λ ∩ L to be

〈X,L〉�Λ = 〈i∗(X),Λ ∩ L〉 .

Proposition 3.3.3 The functor (−)�Λ preserves open map bisimulation; if 〈X,L〉 is
open map bisimilar to 〈X ′, L′〉 then 〈X,L〉�Λ is open map bisimilar to 〈X ′, L′〉�Λ
Proof: Consider the diagram of inclusions

Λ ∩ L � � k //
� _

jL
��

L� _

iL
��

Λ ∩ (L ∪ L′) � � l // L ∪ L′

Λ ∩ L′ � � m //
?�

jL′

OO

L′ .
?�

iL′

OO

Both squares are readily seen to be pullbacks, hence by Beck-Chevalley, jL,!k
∗ ∼= l

∗
iL,!

and jL′,!m
∗ ∼= l

∗
iL′,!. Assuming, iL,!X ∼L∪L′ iL′,!X

′, we can deduce

jL,!k
∗
X ∼= l

∗
iL,!X

∼Λ∩(L∪L′) l
∗
iL′,!X

′

∼= jL′,!m
∗X ′ .

2

Relabelling: Let Ξ : N → M be total. Take 〈X,L〉 as usual, define ΞL : L → M ∪ L
with

ΞL(x) =
{

Ξ(x) if x ∈ L
x otherwise

Consider the truncation Ξ′
L of ΞL to its image set, i.e. ΞL : L → ΞLL. Define the

relabelling to be
〈X,L〉[Ξ] = 〈ΞL!(X),ΞLL〉 .

Relabelling preserves bisimulation:

48 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

Proposition 3.3.4 If 〈X,L〉 is open map bisimilar to 〈X ′, L′〉 then 〈X,L〉[Ξ] is open
map bisimilar to 〈X ′, L′〉[Ξ]

Proof: Take the commuting diagram

L
ΞL //

� _

iL
��

ΞLL� _
jL
��

L ∪ L′ ΞL∪L′
// ΞL∪L′(L ∪ L′)

L′ ΞL′
//

?�

iL′

OO

L′ .
?�

jL′

OO

Knowing that iL,!X ∼L∪L′ iL′,!X
′, we obtain

jL,!ΞL,!X ∼= ΞL∪L′,!iL,!X

∼ΞL∪L′L∪L′ ΞL∪L′,!iL′,!X
′

∼= jL′,!ΞL′,!X
′ .

2

Prefixing: Suppose we have a label set L and an element a ∈ L. By taking a left Kan
extension we extend the prefixing functors to prea,L,! : P̂L → P̂L∪{a}.

Proposition 3.3.5 Let a ∈ L ∩ L′. If 〈X,L〉 is open map bisimilar to 〈X ′, L′〉 then
prea,L,!(〈X,L〉) is open map bisimilar to prea,L′,!(〈X ′, L′〉)

Proof: By definition the following diagram commutes

PL
prea,L

//

iL
��

PL

iL
��

PL∪L′
prea,L∪L′

// PL∪L′

PL′
prea,L′

//

iL′

OO

PL′ .

iL′

OO

Hence

iL,!prea,L,!X ∼= prea,L∪L′,!iL,!X

∼L∪L′ prea,L∪L′,!iL′,!X
′

∼= iL′,!prea,L′,!X
′ .

2

3.3. SEMANTIC CONSTRUCTIONS IN GROTH(P(−)) 49

Recursion: Letting F : Groth(P(−))→ Groth(P(−)) be a functor, define rec(F) to be
the colimit colim ωF where

ωF : ω → Groth(P(−))
n 7→ Fn(〈0, ∅〉).

Here 0 is the unique, up to isomorphism, rooted presheaf over P∅. Any Fn(〈0, ∅〉)
consists of a pair 〈Xn, Ln〉 with Xn ∈ |PLn |, and we can express the colimit as a pair
〈X,L〉, where L is the colimit in Set∗ of the Ln and X is the colimit in PL of all the
cocartesian liftings of the Xn, along the edges of the cocone in : Ln → L.

As we already noticed the operations in Groth(P(−)) associated with the term
constructors are all functors but for (− ⊕ −), that nevertheless becomes functorial
if one restricts to Groth(P(−))in, the subcategory of Groth(P(−)) with the same ob-
ject but with morphisms given by pairs 〈f, i〉 where i is an inclusion of sets. Having
F : Groth(P(−))in → Groth(P(−))in, we can define rec(F) as above. Actually we shall
have now that L = ∪nLn and every in : Ln → L will actually be an inclusion of sets.

All our constructions are continuous with respect to ω-chains and restrict to work in
Groth(P(−))in, hence rec(F) determines a fixed point if F is deduced from a denotation
of a term t as in Section 3.1.1. So the construction above yields a denotation for a
recursively defined process in terms of an ω-colimit of presheaves over a common path
category. We would like to deduce the bisimulation of recursive processes rec x.t,
rec y.u from bisimulation between the open terms t and u. Such open terms give
rise to endofunctors on Groth(P(−))in that includes in Groth(P(−)). Thus, we start by
extending the notion of open map, and therefore bisimulation, to functors. Following
Definition 3.2.4 and 3.2.9, we start by saying what we mean when asserting that an
arrow 〈f, i〉 in Groth(P(−))in (and hence in Groth(P(−))) is open.

Definition 3.3.6 An arrow 〈f, i〉 : 〈X,L〉 → 〈Y,M〉 in Groth(P(−))in is open if the
transpose f ′ : i!X → Y of f , with respect to the adjunction i! a i

∗, is PM -open.

Proposition 3.3.7 If 〈f, i〉 : 〈X,L〉 → 〈Y,M〉 is open in the sense of Definition 3.3.6
above, then f is PL-open and Y reduces to L.

Proof: By the adjunction f = i
∗(f ′)ηX , where ηX is the unit of the adjunction i! a i

∗.
But we know that ηX is an isomorphism, since i is a monomorphism (cf. Proposi-
tion 3.2.12), hence f is the composite of two open maps and therefore is open. So we
have that X ∼L i

∗
Y , hence i!X ∼M i!i

∗
Y . Therefore Y ∼M i!X ∼M i!i

∗
Y . 2

An obvious question is whether the Proposition 3.3.7 above can be made into an “if
and only if” statement. This is indeed an intuitive expectation, but to our knowledge is
not generally true. One has to put some extra assumption on the presheaf model. For
instance using Lemma 6(ii) of [64] one can get the following:

Proposition 3.3.8 Let P(−) : Set∗ → Cat be a presheaf model such that for any
injective total function (i.e., any monomorphism of Set∗), i : L→ M and for any two
objects P ∈|PL | and Q ∈|PM |,

PM [Q, iP] 6= ∅ only if Q ∼= iP ′ for some P ′ ∈|PL | .

50 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

Then, for any Y ∈| P̂M | that is essentially on L, the counit, εY , of the adjunction i! a i
∗

is PM -open.

It is immediately seen now that the proposition above induces the converse of Propo-
sition 3.3.7, since f ′ = εY i!f . It is worth noticing that both the presheaf models of
Example 3.2.2 satisfy the condition required by Proposition 3.3.8.

Back to recursion:

Definition 3.3.9 Let F,G : C → Groth(P(−))in be two functors. Let α : F .−→ G be a
natural transformation. Say that α is open if for every c ∈|C |, αc is open according to
Definition 3.3.6.

We consider two endofunctors F,G on Groth(P(−))in bisimilar if there is another
endofunctor R and a span of surjective open natural transformations α : R .→ F and
β : R .→ G relating them.

Proposition 3.3.10 Let C be a category with initial object 0. Every natural transfor-
mation α : R .−→ F , with R,F : C → C endofunctors induces a natural transformation
ωα : ωR

.−→ ωF where ωR (ωF) are defined inductively by:

• ωR(0) = 0 (ωF (0) = 0)

• ωR(n+ 1) = R(ωR(n)) (ωF (n+ 1) = F (ωF (n))

• ωR(0 ≤ 1) = 0R0 (ωF (0 ≤ 1) = 0F0)

• ωR(n+ 1 ≤ n+ 2) = R(ωR(n ≤ n+ 1) (ωF (n+ 1 ≤ n+ 2) = F (ωF (n ≤ n+ 1))

Proof: Define inductively

• (ωα)0
def= id0

• (ωα)n+1
def= αFn0R((ωα)n) = F ((ωα)n)αRn0 where the second equality holds by

naturality of α.

To check that ωα is a natural transformation, we need to show that the following square
commutes for any n ≥ 0:

Rn0
ωR(n≤n+1)

//

(ωα)n
��

Rn+10

(ωα)n+1

��

Fn0
ωF (n≤n+1)

// Fn+10 .

3.3. SEMANTIC CONSTRUCTIONS IN GROTH(P(−)) 51

The proof goes, obviously, by induction. The base case follows immediately by initiality
of 0. Assume then n > 0.

(ωα)n+1ωR(n ≤ n+ 1) = (ωα)n+1R(ωR(n− 1 ≤ n))
(by definition of ωR)

= αFn0R((ωα)n)R(ωR(n− 1 ≤ n))
(by definition of ωα)

= αFn0R((ωα)nωR(n− 1 ≤ n))
(by functoriality of R)

= αFn0R(ωF (n− 1 ≤ n)(ωα)n−1)
(by inductive hypothesis)

= αFn0R(ωF (n− 1 ≤ n))R((ωα)n−1)
(by functoriality of R)

= F (ωF (n− 1 ≤ n))αFn−10R((ωα)n−1)
(by naturality of α)

= ωF (n ≤ n+ 1)(ωα)n
(by definition)

2

The above proposition, when instantiated to Groth(P(−))in proves the first part of the
following statement. The second part is immediately verified by looking at the definition
of ωα.

Proposition 3.3.11 Let F,R be endofunctors of Groth(P(−))in and let α : R .→ X
be a natural transformation. Then there is a natural transformation ωα : ωR

.→ ωF .
Moreover if α is open and X preserve open morphisms, then ωα is open.

Open maps are preserved in passing to the colimit, in particular:

Proposition 3.3.12 Let F,R : ω → P̂ be functors and α : R .→ F a natural trans-
formation such that for every n, αn is a (surjective) P-open map. Then the map
colim α : colim R → colim F , uniquely determined by the universal property of col-
imits, is a (surjective) P-open map.

Proof: Let the following be a commutative square with P and Q objects of P:

P
p

//

m
��

colim R

colim α
��

Q q
// colim F .

(3.1)

Since colim R and colim F are colimits of ω-chains there exists a number n and arrows

pn : P → R(n) and qn : Q→ F (n)

52 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

such that the following diagram commutes:

P
pn

//

m

��

p

''

R(n)

αn
��

Rn,∞
// colim R

colim α
��

Q qn
//

q

77
F (n)

Fn,∞
// colim F ,

where Rn,∞ and Fn,∞ are edges of the corresponding colimiting cones. By assumption,
αn is P-open, hence there exists rn : Q → R(n) splitting the leftmost square in two
commutative triangles. Then

r
def= Rn,∞rn

is an arrow from Q to colim R that splits the Diagram (3.1) in two commutative trian-
gles.

If every αn is an epimorphic natural transformation, then obviously, since colimits
in presheaf categories are calculated pointwise, colim α is epimorphic as well. 2

Since the calculation of colimits of ω-chains in Groth(P(−))in is reduced to calculating
them in the colimiting fibre, the above proposition yields the following:

Proposition 3.3.13 Let ωF , ωR : ω → Groth(P(−))in and ωα : ωR
.→ ωF , be as in

Proposition 3.3.11, with ωα open, then the (adjoint transpose of the) arrow

colim ωα : colim ωR → colim ωF ,

uniquely determined by the universal property of the colimit, is an open map in the fibre
over the colimiting labelling set.

Proof: We have already remarked that colimits of ω-chains

· · · → 〈Xn, Ln〉 → 〈Xn+1, Ln+1〉 → · · · ,

in Groth(P(−))in are obtained by taking first the union

L = ∪n∈ωLn

of the all the labelling sets in the chain and then calculating the colimit of the chain
induced in the fibre over L, by cocartesian liftings of all the Xn. We now make this
explanation more precise, in order to show that the functor part of colim α arises from
a situation satisfying the hypothesis of Proposition 3.3.12. We need some notation first.
Let’s write 〈Rn, Ln〉 for ωR(n), 〈Fn,Mn〉 for ωF (n). For every n, let 〈rn, in〉 and 〈fn, jn〉
be ωR(n ≤ n + 1) and ωF (n ≤ n + 1), where, for simplicity we already assume that
rn : (in)!Rn → Rn+1 and fn : (jn)!Fn → Fn+1, rather than taking their transposes. For

3.3. SEMANTIC CONSTRUCTIONS IN GROTH(P(−)) 53

every n, let 〈αn, kn〉 be (ωα)n, where again we take αn : (kn)!Rn → Fn. Naturality of
ωα means that the following square commutes (where the indicated isomorphisms are
uniquely determined by the universal property of left Kan extensions):

(jnkn)!Rn = (kn+1in)!Rn
' //

∼=
��

(kn+1)!(in)!Rn
(kn+1)!rn // (kn+1)!Rn+1

αn+1

��

(jn)!(kn)!Rn

(jn)!αn
��

(jn)!Fn fn
// Fn+1 .

Now, writing for every n
in,∞ : Ln → L = ∪n∈ωLn ,

and 〈R∞, L〉 for colim ωR, we have that R∞ can be calculated as the colimit of the
following chain in P̂L:

· · · // (in,∞)!Rn
' // (in+1,∞)!(in)!Rn

(in+1,∞)!rn // (in+1,∞)!Rn+1
// · · · .

Similarly one calculates colim F , moreover from the commutativity of the above diagram
it follows that for every n, the following diagram commutes too (where k : L ↪→ M is
the inclusion function):

k!(in;1)
!
Rn

//
'

��

�=

k!(in+1;1)
!
(in)!Rn

//

k!(in+1;1)
!
rn

k!(in+1;1)
!
Rn+1

��

�=

(jn;1kn)! = (kin;1)
!
Rn

��

�=

(jn+1;1kn+1)! = (kin+1;1)
!
Rn+1

��

�=

(jn;1)
!
(kn)!Rn

��

(jn;1)
!
�n

(jn+1;1)
!
(kn+1)!Rn+1

��

(jn+1;1)
!
�n+1

(jn;1)
!
Fn

//
'

(jn+1;1)
!
(jn)!Fn

//

(jn+1;1)
!
fn

(jn+1;1)!
Fn+1 :

Hence α∞ : k!R∞ → F∞ is the unique mediating morphism between two colimiting
cones connected by a natural transformation that is pointwise an open map, since every
vertical arrow in the diagram above is either an isomorphism (hence an open map)
or the transformation along a colimit preserving functor of an open map (hence an
open map because of Proposition 3.2.5). Therefore we fall within the hypothesis of
Proposition 3.3.12 and so α∞ is PM -open. 2

Consequently, if two endofunctors F,G ranging over Groth(P(−))in are bisimilar and
preserve open maps, then the colimits rec(F), rec(G) are bisimilar. A term with a free

54 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

variable, built-up from the constructions of this section, will determine an endofunctor
on Groth(P(−))in which preserves open maps by this section propositions. It follows
that if two open terms t and u are bisimilar, i.e. induce bisimilar functors, then the
recursive definitions rec x.t and rec y.u are bisimilar.

3.4 Concrete models revisited

We wrote that a motivation for moving up to abstract models was the hope of being
able to deduce general congruence properties, in the abstract setting, and then transfer
them back to the concrete cases.

We have already mentioned the full embeddings

ST L ↪→ L∗

ESL ↪→ PomL

The first one is actually an equivalence of categories, while the second one is a strict in-
clusion (for instance the terminal presheaf cannot be represented as an event structure)
that not only preserves but reflects bisimulation (see Proposition 2.2.12). We consider
the presheaf models Groth((−)∗) and Groth(Pom(−)) of Example 3.2.2. We can now
transfer the results from the presheaf models to the concrete models of synchronisa-
tion trees and event structures by noting that the canonical embeddings between fibres
ST L → L̂∗ and ESL → P̂omL extend to full and faithful embeddings from ST and
ES to the corresponding presheaf models. In particular we again have that the embed-
ding ST ↪→ Groth((−)∗) is an equivalence. We illustrate then the situation with event
structures.

We have already recalled in Proposition 2.1.3 that the functor pES : ES → Set∗ is a
cofibration. We provide now a choice of a cleavage that makes it into a split cofibration,
that is one for which the associated pseudo-functor (cf. Section 1.4.1) is functorial on
the nose and not just up to isomorphism.

Let E = (E,≤, Con, l : E → L) be an event structure and let α : L ⇀ L′ be a
partial function. define α!(E) = (E′,≤′, Con′, l′ : E′ → L′) as follows:

• E′ = {e ∈ E | α(l(e)) is defined}
• ≤′=≤ ∩(E′ × E′)
• Con′ = {x ∈ Con | x ⊆ E′}
• l′(e′) = α(l(e′)), for every e′ ∈ E′.

It is straightforward to verify that α!(E) is an event structure and that the pair 〈1′, α〉,
with 1′ : E ⇀ E′ acting as the identity and defined only on those events of E that
belongs to E′ as well, is an event structure morphism.

The following two propositions have straightforward verifications.

Proposition 3.4.1 Given an event structure E = (E,≤, Con, l : E → L) and a partial
function α : L ⇀ L′, the event structures morphism 〈1′, α〉 is a cocartesian arrow.

3.4. CONCRETE MODELS REVISITED 55

We shall write α!,E for 〈1′, α〉. There is an induced cocartesian lifting functor α! : ESL →
ESL′ . Observe that if we restrict the construction above to pomsets we capture exactly
the functor α : PomL → PomL′ of Example 3.2.2.

The following is easily verifiable:

Proposition 3.4.2 Given an event structure E = (E,≤, Con, l : E → L) and a partial
function α : L ⇀ L′ then the following holds:

1. If α = 1L, then α!,E is the identity morphism 〈1E , 1L〉 : E → E.
2. If β : L′ → L′′ is another partial function, then β!,α!(E)α!,E = (βα)!,E.

Corollary 3.4.3 There exists a functor (−)! : Set∗ → Cat, that induces the cofibration
pES : ES → Set∗ by means of the Grothendieck construction.

Notation: If 〈f, α〉 : E → E is an even structure morphism, write fα for the unique
function such that 〈f, α〉 = 〈fα, 1′L〉α!,E , that is fα is the restriction of f to the elements
of α!(E) that, by the way, is equal to the set {e ∈ E | f(e) is defined}. Call fα the
transpose of f .

With this notation in mind, define c : ES → Groth(Pom(−)) to be

• On objects: c(E,≤, Con, l : E → L) = 〈cL(E), L〉
• On arrows: If 〈f, α〉 : E → E′ with α : L ⇀ L′, then c(〈f, α〉) = 〈c(f), α〉 where

c(f) : cL(E) = ESL[−, E]→ ESL′ [α(−), E′] = α∗(cL′(E′))

is defined by composition and transposition (recall that on pomsets, α! is another
name for α), i.e., c(f)P (p) = (fp)α.

This defines a functor because from Proposition 3.4.2 one has that (1Ep)1L = p and
(g(fp)α)β = (gfp)βα and from these equalities one deduces that c〈1E , 1L〉 = 〈1E , 1L〉
and c(〈g, β〉〈f, α〉) = c(〈gf, βα〉). Moreover, again form Proposition 3.4.2, one sees that
for any arrow 〈f, 1L〉 : E → E′, (fp)1L = fp, hence c acts as cL when restricted to ESL.

Proposition 3.4.4 The functor c : ES → Groth(Pom−) is a dense full embedding.

Proof: Straightforward from the fact that c extends the cL’s that were dense full
embeddings and the fact that via cocartesian liftings, every arrow between objects of
Groth(Pom−) in different fibres is uniquely determined by an arrow in a fibre. 2

It is a known fact [144] that every dense full embedding preserves limits. Moreover a
direct calculation would show that c respects relabelling (i.e., cocartesian liftings) and
cartesian liftings of inclusions.

Proposition 3.4.5 Let α : L ⇀ M be a partial function, then there is a natural iso-
morphism

cMα!
∼= α!cL .

Let λ : L ↪→M be an inclusion map, then

cLλ
∗ ∼= λ

∗
cM ,

56 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

where λ∗ is the right adjoint of λ! defined on objects as follows:

λ∗(E,≤, Con, l) = (E′,≤′, Con′, l′) ,

where E′ = {e ∈ E|∀e′ ≤ e∃a ∈ Lλ(a) = l(e′)}, ≤′=≤ ∩E′ × E′, Con′ = {x ∈ Con |
x ⊆ E′} and l′(e) = a, where a is the unique element of L, such that λ(a) = l(e).

We have already noticed that cL preserves coproducts (Proposition 2.2.13). After Propo-
sition 1.4.14 we know that coproducts in a cofibred category are built using coproducts
in the fibres and cocartesian liftings, hence c preserves coproducts. Summarising:

Proposition 3.4.6 The embedding c : ES → Groth(Pom−) preserves all limits that
exists in ES, coproducts, cocartesian liftings and cartesian liftings of inclusion.

A denotational semantics of Proc in ES was given in [141] and corresponds to the one
described abstractly in Section 3.1.1. Proposition 3.4.6 above ensure that (after the
embedding with c) the semantics in ES correspond to the one in Groth(Pom−), hence
the following:

Theorem 3.4.7 Let ES[[·]] and Groth(Pom−)[[·]] stands for corresponding semantics
of Proc . Let ρ : V ars→|ES | be an environment function, then

c(ES [[t]]ρ) ∼= Groth(Pom−)[[t]]c◦ρ .

By Proposition 2.2.12(ii), open maps and bisimulation coincide, via the canonical em-
beddings, in ESL and the fibre over L in Groth(Pom(−)). Hence we can transfer the
congruence property deduced for the presheaf semantics to deduce, in particular, that
strong history-preserving bisimulation is a congruence for the language Proc.

Theorem 3.4.8 Strong history preserving bisimulation for event structure is a congru-
ence for the semantics of the language Proc .

3.5 Refinement for event structures

As a further example of an application of Corollary 3.2.6 we give here a proof of the
fact that a refinement operator for event structures proposed in [41] preserves strong
history preserving bisimulation (shpb for short).

Definition 3.5.1 (cf. [41], Section 2) A refinement function

r : L→|PomM | −{0M}

is a map that takes any element of a ∈ L to a non empty pomset r(a) over M .

Definition 3.5.2 (A refinement functor) A refinement function as in the definition
above induces a refinement functor

R : PomL → PomM

acting as follows:

3.5. REFINEMENT FOR EVENT STRUCTURES 57

• On objects: If P = (P,≤P , λP , L) is a pomset over L, then define R(P) =
(R(P),≤R(P), λR(P),M) with:

– R(P) = {(x, x′)|x ∈ P ∧ x′ ∈ r(λP (x))}
– (x, x′) ≤R(P) (y, y′) if either x ≤P y and x 6= y or x = y and x′ ≤r(λP (x)) y

′

– λR(P)(x, x′) = λr(λP (x))(x′).

• On arrows: If f : P → Q in PomL, define R(f)(x, x′) = (f(x), x′).

One can actually see r inducing a refinement functor, say RES, on event structures as
well. If (E,≤, Con, l) is an event structure over L, RES(E) is defined on E, ≤ and l as
for pomsets, while X ∈ ConRES(E) iff {x ∈ E | ∃x′ .(x, x′) ∈ X} ∈ Con.

As remarked in [64], the functor R!, obtained as a left Kan extension, is a good candidate
for the extension of this refinement to presheaves including those corresponding to event
structures. But does the functor R! act like the operation of refinement RES on event
structures? More precisely, if we let cL : ESL ⇀ P̂omL and cM : ESM ⇀ P̂omM

denote the canonical embeddings, do we have that the following square commutes (up
to a natural isomorphism)?

ESL
cL //

RES

��

P̂omL

R!

��

ESM cM
// P̂omM

The answer is yes and we embark now on proving it.

Lemma 3.5.3 Let E be an event structure in ESL, let Q be a pomset over M and let
RES : ESL → ESM be a refinement functor. Then for any q : Q→ RES(E) there exists
a pomset Pq ∈|PomL | and a morphism p : P → E such that

• There exists a morphism pq : Q→ RES(P) = R(P) such that q = RES(p)pq.
• For any other factorisation

Q
q

//

p′q ##F
FFFFFFFF RES(E)

RES(P ′)
RES (p′)

99ssssssssss

there exists a unique mediating morphism of pomsets, m : P → P ′, such that

p′q = RES(m)pq and p′m = p .

Proof: Define P = {e ∈ E|∃(e, f) ∈ R(E)∃y ∈ Qq(y) = (e, f)}, with the order relation
induced by Q, i.e., e ≤P e′ if either e = e′ or there exist y ≤Q y′ with q(y) = (e, f) and
q(y′) = (e′, f ′). The verification of the properties is straightforward. 2

58 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

Proposition 3.5.4 Let iL : PomL → ESL and iM : PomM → ESM be the inclusion
functors, then

RES ∼= LaniL(iM ◦R).

Proof: Recall that PomL is dense in ESL, i.e., for every E ∈|ESL |,

E ∼= colim iL/E → PomL
iL−→ ESL.

Using the Lemma 3.5.3 above it is not difficult to verify that

RES(E) ∼= colim iL/E → PomL
R−→ PomM

iM−→ ESM . (3.2)

From this we can deduce that RES ∼= LaniL(iM ◦ R). In fact RES ◦ iL = iM ◦ R and
moreover if F : ESL → ESM is a functor and α : F ◦ iL .−→ R ◦ im is a natural
transformation, there exists a unique β : RES .−→ F such that

βiL = α. (3.3)

To show it observe first of all that if β is a natural transformation satisfying (3.3), then
for any E ∈|ESL | and f : P → E,

βE ◦RES(f) = F (f) ◦ αP . (3.4)

In fact
βE ◦RES(f) = F (f) ◦ βiL(P) (by naturality of β)

= F (f) ◦ αP (by equality (3.3)).

But since, for any E ∈| ESL |, (3.2) holds, there exists a unique βE : RES(E) → F (E)
satisfying βE ◦RES(f) = F (f)◦αP . Commutativity of the naturality squares follows as
well from the universal property of colimits. We need to prove that for any g : E → E′

in ESL, the following diagram commutes:

RES(E)
βE //

RES(g)
��

F (E)

F (g)

��

RES(E′)
βE′

// F (E′)

It is enough to show that for any f : P → E, F (g)◦βE ◦RES(f) = βE′ ◦RES(g)◦RES(f).
This follows from the following calculation:

F (g) ◦ βE ◦RES(f) = F (g) ◦ F (f) ◦ αP (by the equality (3.4)
= F (gf) ◦ αP (by functoriality of F)
= βE′ ◦RES(gf) (by equality (3.4))
= βE′ ◦RES(g) ◦RES(f) (by functoriality of RES)

2

3.5. REFINEMENT FOR EVENT STRUCTURES 59

We then have a functor R : PomL → PomM that can be extended as follows:

PomL
iL //

R
%%J

JJJJJJJJJ ESL
cL //

RES=LaniL (iMR)

��

P̂omL

LanyPomL
(yPomM

R)=R!

��

PomM

iM $$I
III

III
III

ESM cM
// P̂omM .

We want to show that the square on the right commutes up to a natural isomorphism.
We show first of all that

cMR
ES ∼= LaniL(cM iMR) = LaniL(yPomM

R) .

From this in fact it will follow that (using that left Kan extensions compose, cf. Sec-
tion 1.3),

LanyPomL
(yPomM

R) ∼= LancL(LaniL(yPomM
R)

∼= LancL(cMRES) .

Hence, since cL is full and faithful

LanyPomL
(yPomM

R)cL ∼= LancL(cMRES)cL ∼= cMR
ES .

To prove that cMRES ∼= LaniL(cM iMR), we apply Proposition 1.2.9.

Proposition 3.5.5 There is a natural isomorphism

cMR
ES ∼= LaniL(cM iMR) .

Proof: The proof is an immediate consequence of Proposition 1.2.9 and of Lemma 3.5.3.
In fact, as we saw in the proof of Proposition 3.5.4, LaniL(iMR) can be expressed as
the colimit (3.2) and Lemma 3.5.3 ensures that the condition of Proposition 1.2.9 are
met. 2

Now we can use again Corollary 3.2.6 to deduce that R! preserves open map bisimulation.

Proposition 3.5.6 For any refinement function r : L →|PomM |, the associated re-
finement functor R! : P̂omL → P̂omM preserves open map bisimulation;

If X and Y are two PomL-open bisimilar presheaves, then R!(X) and R!(Y)
are PomM -open bisimilar.

As a consequence, using Proposition 2.2.12, we have the following:

Corollary 3.5.7 For any refinement function r : L →|PomM |, the associated refine-
ment functor RES : ESL → ESM preserves strong history preserving bisimulation;

60 CHAPTER 3. PRESHEAF MODELS FOR CCS-LIKE LANGUAGES

If E and E′ are two strong history preserving bisimilar event structures in
ESL , then RES(E) and RES(E′) are strong history preserving bisimilar.

Proof:

E shpb E′ =⇒ cL(E) PomL-open bisimilar to cL(E′)
=⇒ R!cL(E) PomM -open bisimilar to R!cL(E′)
⇐⇒ cMR

ES(E) PomM -open bisimilar to cMRES(E′)
⇐⇒ RES(E) shpb RES(E′) .

2

Chapter 4

Profunctors

As we have seen presheaf categories provide an abstract setting for proving congruence
results that can be transferred to traditional models. Here we study a way to organise
presheaf categories into a (bi)category themselves and how its maps respect bisimulation.
The result can be viewed as a form of domain theory in which traditional domains as
partial orders are replaced by domains as presheaf categories. More details of this new
domain theory will be presented in Chapter 6, here we introduce the basic bicategory
that shall serve as our category of domains, analyse its structure and prove important
congruence results with respect to the bisimulation relation.

4.1 Left Kan extensions via coend formulae

We start by recalling from [76] the notion of coend that leads to a useful way of cal-
culating left Kan extensions [76, 65, 56]. Coends are special kinds of colimits defined
by universal wedges in place of universal cocones. The notion of a wedge is in turn
connected to that of dinatural transformation.

Definition 4.1.1 (Dinatural transformations [76], page 214) Let

F,G : Cop × C → D

be two functors. A dinatural transformation α : F ..−→ G from F to G consists of a
family of arrows (αc : F (c, c) → G(c, c))c∈|C|, such that for every arrow of C, f : c → c′

the following hexagonal diagram commutes:

F (c, c)
αc // G(c, c)

G(1c,f)

((RRRRRRRRRRRRR

F (c′, c)

F (f,1c)
66mmmmmmmmmmmmm

F (1c′ ,f) ((QQQQQQQQQQQQQ
G(c, c′)

F (c′, c′) αc′
// G(c′, c′)

G(f,1c′)

66lllllllllllll
.

61

62 CHAPTER 4. PROFUNCTORS

Notation: Any object d of D, gives rise to a constant functor, d : Cop×C → D, always
returning d on objects and 1d on arrows.

Definition 4.1.2 (Wedges) Let F : Cop × C → D be a functor and let d be an object
of D. A wedge from F to d is a dinatural transformation α : F ..−→ d. In other words
such a wedge consists of components αc : F (c, c) → d, such that for any f : c → c′ the
following square commutes:

F (c′, c)
F (1c′ ,f)

//

F (f,1c)
��

F (c′, c′)

αc′
��

F (c, c) αc
// d .

Definition 4.1.3 (Coends) A coend of a functor F : Cop × C → D is a universal
wedge of F , i.e., it consists of a pair (d, ω) where d ∈|D | and ω is a wedge from F to
d such that, given any other wedge α : F ..−→ d′, there exists a unique arrow h : d→ d′

such that for every c ∈| C |, αc = hωc. As usual with colimits (and limits), by abuse of
language the object d itself will be often call the coend of F and written with the integral
notation:

d =
∫ c

F (c, c) = Coend of F .

More generally one can reduce the existence (and calculation) of colimits to the existence
(and calculation) of coends.

Proposition 4.1.4 ([76]) Let C be any category, then C has all small colimits if and
only if has all small coends.

In particular the colimit of a functor F : D → C, can be calculated as the coend∫ d
Fπ2(d, d), where π2 : Dop×D→ D is the obvious projection functor. This means that

we are then allowed to write the colimit of a functor F as a coend, without explicitly
mentioning the first (dummy) variable, i.e., we can (and we shall often do so in the
sequel) write ∫ d

F (d)

for colim F . The following two results from [76, 56] show some formal advantages of
the integral notation.

Theorem 4.1.5 (Parametricity) If F : Cop × C × D → C is a functor such that for
every d ∈|D |,

∫ c
F (c, c, d) exists. Then, for a choice of coends, the mapping

d 7−→
∫ c

F (c, c, d) ,

extends uniquely to a functor ∫ c

F (c, c,−) : D→ C .

4.1. LEFT KAN EXTENSIONS VIA COEND FORMULAE 63

In line with the notation of the Theorem above, we shall write∫ c

F (c, c, f) :
∫ c

F (c, c, d) →
∫ c

F (c, c, d′)

for the action of the functor above on the arrows f : d→ d′ of D.

Theorem 4.1.6 (Fubini) If F : Cop × C×Dop × D→ C is a functor, then∫ c∫ d

F (c, c, d, d) ∼=
∫ c,d

F (c, c, d, d) ∼=
∫ d∫ c

F (c, c, d, d),

to be understood as meaning that if one of the three coends exists then so do the other
two and they are isomorphic.

Since the calculation of colimits can be reduced to the calculation of coends, we can
in particular give a description of (pointwise) left Kan extensions in terms of coends
(Exercise 4, p. 239 of [76]). We begin with a simple observation.

Proposition 4.1.7 The category of functors F : P → Q̂ and natural transformations
between them, CAT(P, Q̂), is isomorphic to the category of functors F : P×Qop → Set,
and natural transformations between them, CAT(P×Qop,Set).

Given a functor F : P→ Q̂, we will talk of the exponential transpose F of F to indicate
the functor F : P × Qop → Set that corresponds to F in the isomorphism above.
Similarly for a functor G : P × Qop → Set, we write G for the corresponding functor
from P to Q̂.

Definition 4.1.8 Let A be a set and X be a presheaf over a category P. Define the
copower A .X to be the presheaf P 7→ A×X(P), with obvious morphism action.

Put in a different way the copower A .X is isomorphic to
∑

a∈AX and to the product
A′ × X where A′ is the presheaf that is constantly A on objects and identities on
arrows. Suppose then, that we have a functor F : P→ Q̂. Note that using the copower
construction we obtain from X and F the following functor:

Pop × P
X .F // Q̂ ,

that is defined on objects as

(X .F)(P,P ′) def= X(P) . F (P ′)

and on arrows as

((X .F)(fop, g))Q(x, y) def= (X(f)x, F (g)Q(y)) .

Given this, one has the following natural isomorphism:

LanyP(F)(X) ∼=
∫ P

X(P) . F (P) .

64 CHAPTER 4. PROFUNCTORS

This means that for every Q object of Q, one has

LanyP(F)(X)(Q) ∼=
∫ P

X(P) × F (P)(Q) , (4.1)

with the action on morphisms, q : Q→ Q′, written as

LanyP(F)(q) =
∫ P

X(P) × F (P)(q) .

Finally, given α : F .−→ F ′, one has

LanyP(α)Q =
∫ P

X(P)× α〈P,Q〉.

Since the left Kan extension of a functor along itself always exists and is equal to the
identity, we can restate the density of the Yoneda embedding (see Proposition 1.2.17)
in terms of the following density formula:

X ∼=
∫ P

X(P) . yP(P) .

Following what we said here about coends and in Section 1.3 the coend description
of Kan extension is a sound one for any cocomplete category V. The extra feature that
Set has (for instance when computing the colimit at a “point” Q as in equation (4.1)) is
that we can compute such coends, being colimits, as appropriate equivalence relations.1

This is exactly what we are going to describe now:∫ P

X(P) × F (P,Q) ∼=
∐
P∈|P|

X(P) × F (P,Q)/ ∼

where ∼ is the equivalence relation generated by

(P, x, f) ∼ (P ′, x′, f ′) if there exists an arrow p : P → P ′ in P such that
x = X(p)(x′) and f ′ = F (p, 1Q)(f).

This means that two such triples, say (P, x, f) and (P ′, x′, f ′) are related, if and only if
there exists a chain of morphisms of P,

P = A0 A2
. An = P ′

A1
h0

ddJJJJJJJ
h1

==||||
A3

h2

aaBBBB

>>||||||
. . .

``BBBBBBB

>>|||||||
An−1

ccGGGGGG
hn−1

88qqqqqqq

and elements ai ∈ X(Ai), bi ∈ F (Ai, Q) such that

• (P, x, f) = (A0, a0, b0) and (P ′, x′, f ′) = (An, an, bn)
• for k odd, ak = X(hk)(ak+1) and bk+1 = F (hk, 1Q)(bk)
• for k even, ak+1 = X(hk)(ak) and bk = F (hk, 1Q)(bk+1).

1See [76] or [17], for a description of how to compute limits and colimits in Set.

4.2. THE BICATEGORY PROF AND THE 2-CATEGORY COCONT 65

4.2 The bicategory Prof and the 2-category Cocont

We introduce now the 2-category of presheaf categories, colimit preserving functors and
natural transformations. In fact we shall give three equivalent presentations of it; the
first two will actually define it as a bicategory rather than a 2-category. The reason
for doing so is that the bicategorical presentation gives a greater emphasis to the base
categories and, as we shall see later, we will be very concerned with operations that are
best presented on the base categories.

Definition 4.2.1 (Prof) Define the bicategory Prof of profunctors as follows

• objects: small categories, P,Q,R...

• arrows: F : P + //Q, functors F : P×Qop → Set (these are the profunctors [72])
• 2-cells: α : F ⇒ G, natural transformations between such functors.

The vertical composition of 2-cells is the usual (vertical) composition of natural trans-
formations. Horizontal composition of both arrows and 2-cells is described in term of

coends formulae. Given two arrows P +
F //Q +

G //R, define the following functor,

P×Qop ×Q× Rop F×G−→ Set× Set ×−→ Set

that at each 4-tuple of objects P,Q,Q′, R associates the set F (P,Q)×G(Q′, R), with the
obvious actions on morphisms derived from those of F and G. Then, one defines the
composition of F and G as arrows of Prof as

F ;G(P,R) =
∫ Q

F (P,Q) ×G(Q,R)

and for any f : P → P ′ and g : R′ → R, define

F ;G(f, g) =
∫ Q

F (f,Q)×G(Q, g) .

So:

∫ Q
F (P,Q) ×G(Q,R)

∫Q F (f,Q)×G(Q,g)
//
∫ Q

F (P ′, Q)×G(Q,R′)

Concerning 2-cells, suppose we have the following situation

P
|
F

$$

|
F ′

::

�� ��
�� α Q

|
G

$$

|
G′

::

�� ��
�� β R .

Then define

(α;β)〈P,R〉 =
∫ Q

α〈P,Q〉 × β〈Q,R〉 .

66 CHAPTER 4. PROFUNCTORS

Concerning the identities, these are just the hom-functors. Given any small category P
define

1P : P× Pop → Set (p, p′) 7→ P(p′, p)

Following the Proposition 4.1.7, it is immediately seen that the exponential transpose of
1P is the Yoneda embedding yP. The associativity morphisms and left and right identities
are derived from the universal property that defines coends.

Remark: In giving the definition of Prof , we exploited the fact that any small category
can be regarded as a Set-category in the terminology of enriched category theory [65].
This implies that much of what we say could be rephrased in term of generic V-categories
for V a cocomplete category.

Profunctors subsume presheaf categories as the following proposition states.

Proposition 4.2.2 Any presheaf category, P̂, is equivalent to the category Prof(1,P)
of profunctors from the one object and one arrow category to the category P.

Proposition 4.1.7, together with Proposition 1.2.4 can be used to give a different, but
equivalent, definition of Prof that uses left Kan extensions to define the composition
of arrows. More precisely, we could have described Prof as the following bicategory:

• objects: small categories, P,Q,R...

• arrows: F : P + //Q, functors F : P→ Q̂

• 2-cells: natural transformations between such functors

The composition of arrows P +
F //Q +

G //R is defined, using a choice for left Kan extensions,
as (G ◦ F) = LanyQ(G) ◦ F , where the second composition is the usual composition of
functors. Using the description of Kan extensions via coends, this implies that for any
P ∈ |P| and R ∈ |R|,

(G ◦ F)(P)(R) ∼=
∫ Q

G(Q,R)× F (P,Q)

and this ensures us that this definition is equivalent to the previous one.
The above description helps in understanding the tight relationship that arrows in

Prof holds with respect to colimit preserving functors between presheaf categories. We
can make this formal, by considering the following 2-category Cocont.

Definition 4.2.3 Define Cocont as follows:

• objects: small categories, P,Q,R, . . .

• arrows: colimit preserving functors between the corresponding presheaf categories,
i.e., F is an arrow from P to Q, if it is a colimit preserving functor F : P̂→ Q̂.

• 2-cells: natural transformations between such functors

Since any 2-category is a particular bicategory, it makes sense to look for bicategorical
functors (cf. [9] or [17]) that relate Prof to Cocont. Following the terminology of [9]:

4.2. THE BICATEGORY PROF AND THE 2-CATEGORY COCONT 67

Proposition 4.2.4 There exists a pair of strictly unitary morphisms

Prof
Σ //

Cocont
Ξ

oo ,

such that for any two small categories P,Q, Σ(P,Q) and Ξ(P,Q) are equivalences of cate-
gories, pseudo inverses to each other.

In other words Prof and Cocont can be regarded as ‘equivalent’ bicategories, that
moreover have the same class of objects and such that the equivalences Σ and Ξ send
identity arrows to identity arrows.

4.2.1 A set theoretic analogy

It is often said that a profunctor2 is to a functor what a relation is to a mapping. That
is, profunctors are to be regarded as generalised relations, when we moved up a level
from sets to categories. This short section uses Proposition 1.2.15 to illustrate a result
that backs up the above claim and that we shall use in Chapter 6. Recall that a relation
between two sets X,Y , is given by a function R : X × Y → 2, where 2 is the two
elements set. A relation R is actually a function from X to Y if it satisfies the following
two conditions:

Totality ∆X ⊆ R◦R
Functionality RR◦ ⊆ ∆Y ,

where the ∆’s are the diagonal relations, i.e., the identity functions. In other (categori-
cal) words, regarding Rel as an order-enriched category and so a bicategory, a relation
is a function if it has a right adjoint. We state now a known result of category theory
that shows how profunctors with right adjoints correspond (up to the notion of Cauchy
completion) to functors between the underlying base categories.

Theorem 4.2.5 Let F : P ⊥
+ ##

+
cc

Q : G be adjoint profunctors3 and let Q be a Cauchy com-

plete category. Then there exists a functor H : P→ Q such that F (−,+) = Q(+,H(−))
and G(+,−) = Q(H(−),+).

Proof:[Sketch] As we said, profunctors correspond to colimit preserving functors and
therefore adjoint pairs of profunctors correspond to adjoint pairs of colimit preserving
functors. Any colimit preserving functor between presheaf categories has a right ad-
joint (cf. Section 1.2), hence adjoint pairs of colimit preserving functors correspond to
essential geometric morphisms that in turn correspond (Proposition 1.2.15) to functors
between the base categories. 2

If Q was not Cauchy complete, then the statement would have to be modified to require
the functor H to be defined from P to the Cauchy completion Qc of Q.

2Some people use the word distributor or bimodule [10, 72].
3Adjoint pairs in bicategories are defined in analogy with the 2-categorical case, but for some extra

care needed to take account of the coherence isomorphisms [47].

68 CHAPTER 4. PROFUNCTORS

In terms of Kan extensions, the theorem above is saying that LanyP(F) ∼= H! and
LanyQ(D) ∼= H∗. As we shall see later, just like Rel, also Prof (or better Cocont as far
as our definitions will be concerned) is compact closed [35, 36], though in a bicategorical
sense.

4.2.2 A domain theoretic analogy

We discuss now the intuition that the presheaf construction is analogue to a powerdo-
main [101] one. As remarked in [138] and [25], in fact, Prof can be described as the
bicategory of free algebras for a pseudo-monad over the categorical analogue of the cat-
egory of ω-algebraic cpo’s. If presheaf categories are analogues of powerdomains, then
Prof can be regarded as a bicategory of non-deterministic domains [51]. But let’s not
proceed too hastily.

Definition 4.2.6 (Completion by filtered colimits) Let P be a small category. We
write P̃ for its free filtered colimit completion; that is, P̃ has colimits of filtered di-
agrams [78, 5] and any filtered colimit preserving functor F : P̃ → C, where C is a
category with filtered colimits, is uniquely (up to a natural isomorphism) determined by
its restriction to P.

The categorical analogue of ω-algebraic cpo’s is then defined to be the 2-category of
such freely generated categories with filtered colimits.

Definition 4.2.7 (ω−Acc) Define ω−Acc to be the following 2-category:

• objects: small categories, P,Q,R, . . .

• arrows: filtered colimit preserving functors between the respective filtered colimit
completions i.e., F is an arrow from P to Q, if it is a filtered colimit preserving
functor F : P̃→ Q̃.

• 2-cells: natural transformations between such functors.

We shall write Filt(P̃, Q̃) for ω−Acc(P,Q).

Since we are dealing with freely generated categories, we have the following equivalence:

Proposition 4.2.8 The functor category CAT(P, Q̃) is equivalent to Filt(P̃, Q̃).

This means that we could have given, just like with profunctors an equivalent bicategor-
ical presentation of ω−Acc that have functors P → Q̃ as arrows and uses the freeness
property to perform composition of arrows.

For more on the notion of κ-accessible category (for κ any regular cardinal) one
can consult [78]. We want to describe now an endo pseudo-functor on ω−Acc that is
based on the free completion of a (small) category under finite colimits. Having linear
logic [38] in mind, we shall denote it by the exclamation mark symbol (!). We need a
preliminary result that can be deduced from results in Chapter VI of [60] (in particular
from the Theorem on page 232):

Proposition 4.2.9 If P is a small category, writing !P for the free finite colimit com-
pletion of C, one has that there is an equivalence of categories

P̂ ' !̃P .

4.2. THE BICATEGORY PROF AND THE 2-CATEGORY COCONT 69

Definition 4.2.10 Define ! : ω−Acc→ ω−Acc to be the following pseudo-functor

• on objects: !P returns a (small) description of the free finite colimit completion
of P.

• on arrows: If F : P̃→ Q̃ is a filtered-colimit preserving functor, define

!F : !̃P→ !̃Q

using the equivalences of Proposition 4.2.9 as follows

!̃P
∼ // P̂

LanyP
(ciQF iP)

// Q̂
∼ // !̃Q ,

where iP : P→ P̃ and iQ : Q→ Q̃ are the obvious inclusion functors.
• On 2-cells: The action on 2-cells is uniquely determined by the universal property

of left Kan extensions.

The pseudo-functor ! can be equipped with multiplication, unit and corresponding co-
herence modifications in order to form a pseudo-monad [110] or a doctrine in the termi-
nology of [127]. Using Proposition 4.2.9, we can prove the following result that allows
us to represent filtered colimit preserving functors between presheaf categories as pro-
functors.

Proposition 4.2.11 For any two small category P and Q there is an equivalence of
categories

Prof (!P,Q) ' Filt(P̂, Q̂) .

Proof:

Prof (!P,Q) ∼= CAT(!P, Q̂)

' CAT(!P, !̃Q)

' Filt(!̃P, !̃Q)
' Filt(P̂, Q̂)

2

The above proposition suggest that Prof can be regarded as the category of free alge-
bras, that is the Kleisli category, for !.4 In fact we have the following adjoint situation

ω−Acc
L

⊥
,,
Prof

R

mm

where L is the identity on objects and send every arrow F : P̃→ Q̃, to

P ↪→ P̃
F→ Q̃ ↪→ Q̂

4Of course to make this statement precise we should consider the notion of Kleisli category for a
pseudo-monad.

70 CHAPTER 4. PROFUNCTORS

(since the filtered colimit completion of Q includes into Q̂, by freeness [60]). The action
on 2-cells is given by composition with the two inclusions. On the other side, RP = !P
and one uses the equivalence of Proposition 4.2.11 to map Prof(P,Q) to Filt(!P, !Q),
by first including (using the freeness of the ! construction) Prof (P,Q) into Prof(!P,Q).

If we now look at the monad from the “Prof point of view”, then we obtain a
comonad on Prof , that we indicate as well with the bang symbol, !. In Section 4.3,
we will use this comonad to show that Prof can be regarded as a (bicategorical) Seely
model [122] of classical linear logic [38].

4.3 The structure of Prof

In this section we show that Prof has enough structure to be considered what could
be called a compact closed bicategory.5 To do so, we first need to define explicitly some
pseudo-limits.6

Definition 4.3.1 (Pseudo-products and -coproducts) In a bicategory B, a pseudo-
product of two objects b, c, is given by an object d and an equivalence of categories

B(e, b)× B(e, c) ' B(e, d)

pseudo-natural in e; more explicitly a pseudo-product is given by a span of arrows

b
π1←− d π2−→ c

such that

1. For any other span, b
f←− e

g−→ c, there exists an h : e → d and isomorphic
2-cells, Φ : π1h

∼⇒ f and Γ : π2h
∼⇒ g.

2. For any two arrows h, k : e → d and 2-cells, σi : πih ⇒ πik, for i = 1, 2, there
exists a unique σ : h⇒ k, such that σi = πiσ.

If the equivalences are isomorphisms, we shall say that that product is strict.
Dually one can define pseudo-coproducts

We have already seen, as an illustrative example the definition of pseudo-initial object
(Definition 1.5.1). A dual definition would give a pseudo-terminal one.

Definition 4.3.2 (Pseudo-zero object) In a bicategory B a pseudo-zero object is an
object that is both pseudo-initial and -terminal.

Proposition 4.3.3 Prof has strict pseudo products (&) and coproducts (⊕) and they
coincide on objects.

5As for instance is remarked in [66].
6We recall, once more that what for us is a pseudo-limit is often called in other contexts, e.g., [127],

a bicategorical limit or, shortly, a bilimit.

4.3. THE STRUCTURE OF PROF 71

Proof: Let P and Q be two small categories, define

P&Q
def= P + Q

def= P⊕Q ,

where P + Q is the usual disjoint union of small categories with inclusions inP and inQ.
Further define πP : P&Q + //P by πP(inP(P), P ′) = P(P ′, P) and πP(inQ(d), P ′) = ∅ and
symmetrically πQ. While iP : P + //P ⊕ Q is defined as the transpose of yP+QinP, i.e.,
iP(P, inP(P ′)) = P(P ′, P) and iP(P, inQ(d)) = ∅. 2

In connection with the above proposition, it is worth stating the following that accounts
for strictness of product and coproduct.

Proposition 4.3.4 If P and Q are two small categories, then P̂ + Q is isomorphic to
P̂× Q̂.

Proposition 4.3.5 Prof has a (strict) pseudo-zero object

Proof: Just take the initial category, 0, with no objects and no arrows. 2

It is also immediately seen that the zero object is the unit for the product/coproduct
bifunctor. Other pseudo-functors are definable and they make Prof into what might
be called a *-autonomous bicategory [7].

Definition 4.3.6 If B is a bicategory, we write Bop for the opposite bicategory which
reverses the direction of the 1-cells but not that of the 2-cells.

Definition 4.3.7 We define a tensor and a dualiser in Prof .

• Tensor: Define ⊗ : Prof ×Prof → Prof as follows:

– On objects: P⊗Q
def= P×Q, the product of categories

– On arrows: If F : P + //P′ and G : Q + //Q′,

F ⊗G : P×Q× P′op ×Q′op → Set
(P,Q,P ′, Q′) 7→ F (P,P ′)×G(Q,Q′)

– On 2-cells: if α : F ⇒ F ′ and β : G⇒ G′, then

α⊗ β(P,Q,P ′,Q′) = α(P,P ′) × β(Q,Q′) .

The terminal category 1 is neutral element for ⊗.
• Dualizer: Define (−)∗ : Prof → Profop as follows

– On objects: P∗ = Pop

– On arrows: Given F : P + //Q, define F ∗ : Q∗ + //P∗ as F ∗(Q,P) = F (P,Q).

– On 2-cells: If α : F ⇒ F ′, then α∗ : F ∗ ⇒ F
′∗, with α∗

〈Q,P 〉 = α〈P,Q〉.

Combining tensor and dualiser, yields a “linear function space”.

72 CHAPTER 4. PROFUNCTORS

Definition 4.3.8 Define the pseudo functor (: Prof op ×Prof → Prof as

(= ⊗ ◦ ((−)∗ × 1) ,

i.e., for every two categories P and Q, P (Q = Pop ×Q.

Proposition 4.3.9 For any three categories, P,Q,R,

Prof(P⊗Q,R) ∼= Prof(P,Q (R) .

Proof: The following chain of natural isomorphisms holds trivially:

Prof (P⊗Q,R) def= CAT(P×Q× Rop,Set)
∼= CAT(P, Q̂op × R)
def= CAT(P, Q̂∗ ⊗ R)
∼= CAT(P× (Q∗ ⊗ R)op,Set)
def= Prof(P,Q∗ ⊗ R)
def= Prof(P,Q (R)

2

We can summarise the above by saying that Prof is a compact closed bicategory. From
a linear logic point of view, this also implies that &and ⊗ coincide and hence the
degeneracy of the model, adding to the degeneracy that & and ⊕ coincide too. It is
worth remarking that the correspondence Prof(P⊗Q,R) ∼= Prof(P,Q∗⊗R) does lead
to an adjunction:

Proposition 4.3.10 For any small category P, the pseudo functor P⊗− is left adjoint
to P (−.

Proof: What we lack are unit and counit for the adjunction, but these are immediately
defined (for any Q) as follows:

ηQ : Q× (P ((P⊗Q))op → Set
(Q,P, P ′, Q′) 7→ P(P ′, P)×Q(Q′, Q)

εQ : (P⊗ (P (Q))×Qop → Set
(P,P ′, Q,Q′) 7→ P(P ′, P)×Q(Q′, Q)

2

4.3.1 Lifting

In this paragraph we draw the attention to another endofunctor of Prof that will play a
crucial role in the following chapters and that, as we shall see in the next section allows
us to represent connected colimit preserving functors between presheaf categories as
profunctors.

4.4. CONNECTED COLIMITS 73

Definition 4.3.11 (Lifting) Define (−)⊥ : Prof → Prof to be the following pseudo
functor:

• On object: P⊥ is the category P to which it has been added a new strict initial
object, often referred to as ⊥. The objects of P⊥ other than ⊥ are often written
bP c for P an object of P.

• On arrows: If F : P + //Q, F⊥ is defined by:

F⊥(x, y) =

F (P,Q) if x = bP c and y = bQc
{∗} if y = ⊥Q
∅ otherwise

• On 2-cells: A 2-cell α : F ⇒ G is extended to cover the new cases with identity
functions.

Observe that in Cat, the operation P⊥ corresponds to the free completion of P with the
colimit of the empty diagram.

4.4 Connected colimits

In Section 4.2.2 it was shown how to represent filtered colimit preserving functors be-
tween presheaf categories in Prof using an exponential, !, that if regarded as a 2-functor
in Cat amounts to the free finite colimit completion 2-monad. We now concentrate on
another class of colimits that will be important for us. These are the colimits of con-
nected diagrams [95]. Using the lifting functor, i.e., the free empty colimit completion,
that freely adds to a category an initial object, we can similarly describe connected
colimit preserving functors between presheaf categories as arrows in Prof .

Notation: Let P be a small category, write l : P → P⊥, for the inclusion functor,
P 7→ bP c.
We know from Chapter 1, that such a functor induces a triple of adjoints

l! a l∗ a l∗ : P̂→ P̂⊥ .

The functor l∗yP⊥ , is the universal functor from P⊥ to P̂ that exists by freeness and
that sends every non bottom object to the corresponding representable and the bottom
one to the empty presheaf. In the sequel, we shall often write jP for l∗yP⊥ . The functor
l∗ takes any presheaf X over P and returns a rooted presheaf bXc over P⊥, such that
bXc(bP c) = X(P). In fact, if we restrict, l∗ to range over rooted presheaves, the pair
l∗ : P⊥ � P̂ : l∗ defines the equivalence we have been talking about in previous chapters.
In particular note that l∗l∗yP⊥ ∼= yP⊥ since any representable is a rooted presheaf.

Back to connected colimit preserving functors, we have:

Proposition 4.4.1 The functor l∗ : P̂→ P̂⊥ preserves connected colimits.

Proposition 4.4.2 A connected colimit preserving functor G : P̂ → Q̂ is uniquely (up
to natural isomorphism) determined by its action on the representables of P̂ and on the
initial presheaf ∅.

74 CHAPTER 4. PROFUNCTORS

Proof: Let X be any presheaf in P̂. We know that X is a colimit of representables

X ∼= colim El(X)
yPπ−→ P̂ .

Consider the connected diagram (yPπ)⊥ : (El(X))⊥ → P̂ that extends yPπ by sending
⊥ to ∅. Clearly X ∼= colim (yPπ)⊥, hence

GX ∼= Gcolim (yPπ)⊥ ∼= colim G(yPπ)⊥ .

Therefore to know the action of G on X we need to know

G(yPπ)⊥(x, P) = G(yP(P)), for any (x, P) ∈ El(X) and

G(yPπ)⊥(⊥) = G∅ .
2

Proposition 4.4.3 There exists an equivalence of categories

Prof (P⊥,Q) ' Conn(P̂, Q̂) ,

for any two small categories P and Q, where Conn(P̂, Q̂) is the category of connected
colimit preserving functors and natural transformations.

Proof: Actually we shall prove the existence of an equivalence

ϕ : Cocont(P̂⊥, Q̂) ∼−→ Conn(P̂, Q̂) .

For any F ∈|Cocont(P̂⊥, Q̂) |, define ϕ(F) = Fl∗. If α : F ⇒ F ′, define ϕ(α) = αl∗ .
If G ∈|Conn(P̂, Q̂) |, define ψ(G) = LanyP⊥ (Gl∗yP⊥), while if β : G ⇒ G′, ψ(β) is

determined by the universal property of left Kan extensions.
From Proposition 4.4.1, it immediately follows that if F is colimit preserving, then

Fl∗ is connected colimit preserving. While ψ(G) is colimit preserving by definition.
Hence ϕ and ψ are well defined. Moreover is not difficult to see that ϕ is full and
faithful using that presheaves, X, over P⊥ are expressible as sums of rooted presheaf
and that the objects of Cocont(P̂⊥, Q̂) preserves colimits and hence sums. In fact
X ∼=

∑
x∈X(⊥)bX|xc, where X|x is the presheaf over P defined by

X|x(P) = {y ∈ X(P)|x = X(⊥ ≤ P)y} .

And therefore one has that a natural transformation α : F ⇒ F ′ is uniquely determined
by its action on rooted presheaves.

Now,

ψϕ(F) = LanyP⊥ (ϕ(F)l∗yP⊥)
= LanyP⊥ (Fl∗l∗yP⊥)
∼= LanyP⊥ (FyP⊥)
∼= F ,

4.5. A TYPE THEORY OF DOMAINS FOR CONCURRENCY 75

while

ϕψ(G) = ψ(G)l∗
= LanyP⊥ (Gl∗yP⊥)l∗ .

Observe that,

LanyP⊥ (Gl∗yP⊥)l∗(yP(P)) = Gl∗yP⊥(bP c) = GyP(P)
LanyP⊥ (Gl∗yP⊥)l∗(∅) = Gl∗yP⊥(⊥) = G∅ .

Hence, because of Proposition 4.4.2, ϕψ(G) ∼= G. So ϕ is full and faithful and essentially
surjective on objects and so an equivalence. 2

Connected colimit preserving functors will play an important role in the semantics of
process calculi. Proposition 4.4.3 and Proposition 4.4.4 below will be used in Section 4.6
to prove that connected colimit preserving functors preserve surjective open maps.

Proposition 4.4.4 The functor l∗ : P̂→ P̂⊥ preserve surjective open maps.

Proof: Let f : X → Y be surjective open, to ensure that bfc : bXc → bY c is surjective
open, it is enough to check that the “new” naturality squares

bXc(bP c) = X(P) //

bfcbPc=fP
��

{∗} = bXc(⊥)

��

bY c(bP c) = X(P) // {∗} = bXc(⊥)

are quasi-pullbacks, but this amounts to claiming surjectivity of f that is granted by
hypothesis. 2

4.5 A type theory of domains for concurrency

We can put together all the informations of the previous section to give interpretation
in Prof to the types of a simple grammar. This will be the basis for the description of
the presheaf models of Chapter 5, 7 and 8. In Chapter 6 in fact we will prove a theorem
of limit-colimit coincidence that will enable us to extend the grammar with recursive
types and therefore allow the recursive definition of path categories for presheaf models.
The grammar is the following:

t ::= 0 | 1 | t⊕ t′ | t⊗ t′ | t∗ | !t | ϑ |
∑

i∈I ti | t⊥ | t (t′ .

These types are that of compact closed categories extended with type variables (ϑ),
arbitrary sums (

∑
), a lifting operator ((−)⊥). For a list of distinct type variables Θ,

we write Θ ` t to indicate that t is a well-formed type with free type variables amongst
those in Θ. Type judgements Θ ` t are interpreted as pseudo functors

[[Θ ` t]] : (Prof op ×Prof)|Θ| −→ Prof .

The interpretation is given in terms of the constructors of Section 4.3 inductively as
follows:

76 CHAPTER 4. PROFUNCTORS

• [[Θ ` 0]]:
(Prof op ×Prof)|Θ| → I 0−→ Prof ,

where I is the terminal bicategory and 0 is the functor that picks the initial
category 0.

• [[Θ ` 1]]:
(Prof op ×Prof)|Θ| → I 1−→ Prof ,

where 1 is the functor that picks the terminal category 1.
• [[Θ ` t⊕ t′]]:

(Prof op ×Prof)|Θ| 〈[[Θ`t]],[[Θ`t′]]〉
// Prof ×Prof

⊕
// Prof

• [[Θ ` t⊗ t′]]:

(Prof op ×Prof)|Θ| 〈[[Θ`t]],[[Θ`t′]]〉
// Prof ×Prof

⊗
// Prof

• [[Θ ` t∗]]:

(Prof op ×Prof)|Θ| (((−)∗×((−)∗)op)σ)|Θ|
// (Prof op ×Prof)|Θ| [[Θ`t]]

// Prof ,

where σ : Prof op × Prof → Prof × Profop is the symmetry functor which on
objects acts as follows: σ(P,Q) = (Q,P).

• [[Θ ` !t]]:

(Prof op ×Prof)|Θ| [[Θ`t]]
// Prof

! // Prof

• [[Θ ` ϑ]]:
(Prof op ×Prof)|Θ| πϑ−→ Prof op ×Prof π2−→ Prof ,

where the π’s are the obvious projection functors.
• [[Θ `

∑
i∈I ti]]:

(Prof op ×Prof)|Θ| 〈[[Θ`ti]]〉i∈I
//
∏
i∈I Prof

∑
i∈I

// Prof

where we write
∑

i∈I , for the extended sum functor.
• [[Θ ` t⊥]]:

(Prof op ×Prof)|Θ| [[Θ`t]]
// Prof

(−)⊥
// Prof

• [[Θ ` t (t′]] def= [[Θ ` t∗ ⊗ t′]], that is:

(Prof op ×Prof)|Θ| 〈[[Θ`t∗]],[[Θ`t′]]〉
// Prof ×Prof

⊗
// Prof

4.5. A TYPE THEORY OF DOMAINS FOR CONCURRENCY 77

4.5.1 An alternative exponential

As we saw in previous sections an ‘exponential’ operator (!) naturally presented itself
as a candidate comonad to obtain a cartesian closed structure in the bicategory of free
coalgebras out of the symmetric monoidal closed of Prof , the key fact being that !
satisfies the Seely [122] condition:

!(P&Q) ∼= !P⊗ !Q.

An attractive feature of this operator is that it arises from domain theoretical consider-
ations and it gives a way of describing in Cocont (the 2-category equivalent to Prof)
the notion of filtered colimit preserving functor between presheaf categories, using the
equivalence

ω−Acc(!P, !Q] ∼= Filt(P̂, Q̂) ∼= Cocont(!P,Q).

Its disadvantage is that, being, on objects, the free finite colimit completion, gives always
rise to complicated categories that might be quite difficult to handle when, for instance,
operational characterisation of the bisimulation induced by open maps is considered.
Therefore it makes sense to keep our eyes open to the possibility of taking other choices
for the exponential, choices sufficient for special purposes and perhaps easier to work
with. An example is induced by the free finite coproduct completion construction.

Definition 4.5.1 (Finite families) If P is a small category, let Famf (P) be the fol-
lowing (small) category of finite families of objects of P:

• Objects: Finite families (Pi)i∈I of objects of P.
• Arrows: A pair 〈(αi)i∈I , f〉 is an arrow from (Pi)i∈I to (Qj)j∈J , if f : I → J is

a function and for every i ∈ I, αi : Pi → Qf(i) is an arrow in P.

Proposition 4.5.2 The construction Famf induces, just like ! and (−)⊥ a 2-monad
on the 2-category Cat. In particular on objects, Famf (P) is the free completion of P
with finite coproducts.

The 2-monad Famf induces a pseudo-comonad [110] on Prof whose underlying pseudo
endofunctor is given by the following definition:

Definition 4.5.3 Define a pseudo functor famf : Prof → Prof as follows:

• On objects: famf (P) = Famf (P)
• On arrows: If F : P + //Q, then

famf (F)((Pi)i∈I , (Qj)j∈J) =
∏
j∈J

∐
i∈I

F (Pi, Qj) .

• On 2-cells: The pointwise extension according to the definition on arrows.

It is not difficult to see that the above pseudo functor satisfies the Seely condition too,
namely, for any two small categories, P and Q,

Famf (P&Q) ∼= Famf (P)⊗ FamF (Q) .

78 CHAPTER 4. PROFUNCTORS

There are tie-ups between the Famf construction and the categorical powerdomain [73,
1] (the latter being the dual to the category yielded by Famf) but we have not yet
explored how deep these connections are.

4.6 Open map bisimulation in Prof

Building on the fact that Prof (P,Q) = ̂Pop ×Q, for any two small categories, P,Q,
we now give a definition of open 2-cells in Prof , based on that of open map and show
that the horizontal composition of open 2-cells gives an open 2-cell. This will imply as
a corollary that colimit preserving functors between presheaf categories, preserve open
maps (recall Proposition 3.2.5).

Definition 4.6.1 Let α : F ⇒ F ′, be a 2-cell between two profunctors F,F ′ : P + //Q.
Define α to be open, if it is open as an arrow of ̂Pop ×Q

Let’s unpack this definition, to see what it really means. Since α is regarded as a natural
transformation between two presheaves, being open amounts, for it, to satisfy the quasi-
pullback condition of Definition 2.2.8. Suppose, that 〈fop, g〉 : 〈P,Q〉 → 〈P ′, Q′〉 is an
arrow in Pop ×Q, then the following square must be a quasi-pullback in Set:

F (P ′, Q′)
F (fop,g)

//

α〈P ′,Q′〉
��

F (P,Q)

α〈P,Q〉
��

F ′(P ′, Q′)
F ′(fop,g)

// F ′(P,Q) .

(4.2)

If we instantiate one of the two arguments f or g to be the identity arrow, on P and Q,
respectively, this immediately implies that the corresponding natural transformations,

αP : F (P,−) .→ F ′(P,−)
αQ : F (−, Q) .→ F ′(−, Q)

are Q-open and Pop-open, respectively. Actually, the converse holds, too.

Proposition 4.6.2 Let α : F .→ F ′ be a natural transformation between two presheaves
F,F ′ ∈ ̂Pop ×Q, then α is Pop × Q-open if and only if for any object P of P and Q
of Q, the corresponding natural transformations αP and αQ are Q-open and Pop-open,
respectively.

Proof: The discussion above, proves the “only if” part. For the converse, note that the
diagram (4.2) above, via the functoriality of F can be rewritten as the following:

F (P ′, Q′)
F (fop,1Q′)

//

α〈P ′,Q′〉
��

F (P,Q′)

α〈P,Q′〉
��

F (1P ,g)
// F (P,Q)

α〈P,Q〉
��

F ′(P ′, Q′)
F ′(fop,1Q′)

// F ′(P,Q′)
F ′(1P ,g)

// F ′(P,Q) .

4.6. OPEN MAP BISIMULATION IN PROF 79

Now, it is immediately seen that such gluing of quasi-pullback squares is a quasi-pullback
square, too. 2

The following observations, though having trivial proofs, are worth mentioning.

Proposition 4.6.3 Let α : F ⇒ F ′ be an open 2-cell in Prof , then α∗ : F ∗ ⇒ F
′∗ is

open, as well.

Proposition 4.6.4 If we regard a presheaf category P̂ as the hom-category Prof(1,P)
as in Proposition 4.2.2, then a natural transformation between two presheaves is open
if and only if it is open as a two cell between the corresponding profunctors.

Our aim is that of proving that the horizontal composition of 2-cells preserves open
maps.7

Theorem 4.6.5 If

P
|
F

$$

|
F ′

::

�� ��
�� α Q

|
G

$$

|
G′

::

�� ��
�� β R

are two consecutive open 2-cells of Prof , then their composition βα is an open 2-cell,
too.

Proof: We need to prove that for each two pairs of objects 〈P,R〉 and 〈P ′, R′〉 and
arrows f : P → P ′, g : R′ → R of P and R, the following square is a quasi-pullback:

∫ Q
F (P,Q)×G(Q,R)

∫Q F (f,Q)×G(Q,g)
//

∫Q α〈P,Q〉×β〈Q,R〉
��

∫ Q
F (P ′, Q)×G(Q,R′)

∫Q α〈P ′,Q〉×β〈Q,R′〉
��∫ Q

F ′(P,Q)×G′(Q,R) ∫Q F ′(f,Q)×G′(Q,g)
//
∫ Q

F ′(P ′, Q)×G′(Q,R′) .

Recall that for each pair 〈P,R〉,∫ Q

F (P,Q)×G(Q,R) ∼= (
∐
Q∈Q

F (P,Q)×G(Q,R))/ ∼

where the equivalence relation ∼ is generated by

(Q,x,G(q, 1R)y′)) ∼ (Q′, F (1P , q)x, y′)

where x ∈ F (P,Q), y′ ∈ G(Q′, R) and q : Q′ → Q is an arrow in Q.
Suppose now that the equivalence classes

[Q1, x1, y1] ∈
∫ Q

F (P ′, Q)×G(Q,R′) and [Q2, x2, y2] ∈
∫ Q

F ′(P,Q)×G′(Q,R)

7Of course since open maps compose, it should be already clear that the vertical composition of two
open 2-cells is an open 2-cell.

80 CHAPTER 4. PROFUNCTORS

are such that

(
∫ Q

α〈P ′,Q〉 × β〈Q,R′〉)[Q1, x1, y1] = [Q1, α〈P ′,Q1〉(x1), β〈Q1,R′〉(y1)]

= [Q2, F
′(f, 1Q2)(x2), G′(1Q2 , g)(y2)]

= (
∫ Q

F ′(f, 1Q)×G′(1Q, g))[Q2, x2, y2]

By the definition of the equivalence relation, this means that there exists a chain of
morphisms in Q:

Q1 = A0 A2
. An = Q2

A1
h0

eeLLLLLLL
h1 ==||||

A3
h2

aaBBBB
==|||||

. . .

aaBBBBBB

==||||||
An−1

ccGGGGGG
hn−1

77ppppppp

and elements ai ∈ F ′(P ′, Ai), bi ∈ G′(Ai, R′) such that

• (Q1, α〈P ′,Q1〉(x1), β〈Q1,R′〉(y1)) = (A0, a0, b0)
• (Q2, F

′(f, 1Q2)(x2), G′(1Q2 , g)(y2)) = (An, an, bn)
• for k odd, ak = F ′(1P ′ , hk)(ak+1) and bk+1 = G′(hk, 1R′)(bk)
• for k even, ak+1 = F ′(1P ′ , hk)(ak) and bk = G′(hk, 1R′)(bk+1)

Our first step is to show the existence of elements a′i ∈ F (P ′, Ai) and b′i ∈ G(Ai, R′)
satisfying the following four conditions:

1. a′0 = x1 and b′0 = y1

2. α〈P ′,Ak〉(a
′
k) = ak and β〈Ak ,R′〉(b′k) = bk

3. for k odd, a′k = F (1P ′ , hk)(a′k+1) and b′k+1 = G(hk, 1R′)(b′k)

4. for k even, a′k+1 = F (1P ′ , hk)(a′k) and b′k = G(hk, 1R′)(b′k+1).

In other words we want to lift the chain of elements, that connects (A0, a0, b0) to
(An, an, bn), to a chain that connects (Q1, x1, y1) to something, whose image under α
and β is (An, an, bn).

We do this by induction, showing first how to deal with h0 to obtain (a′1, b
′
1)

8 and
afterwards how to obtain (a′k+1, b

′
k+1) from (a′k, b

′
k).

Let’s consider then h0 : A1 → Q1. Following condition 4 we define

a′1 = F (1P ′ , h0)(x1) .

It immediately follows that

α〈P ′,Ak〉(a
′
1) = α〈P ′,Ak〉(F (1P ′ , h0)(x1))

= F ′(1P ′ , h0)(α〈P ′,Q1〉(x1))
= F ′(1P ′ , h0)(a0)

8Recall that a′
0 and b′0 are already decided to be x1 and y1, respectively, because of condition 1.

4.6. OPEN MAP BISIMULATION IN PROF 81

= a1 .

Therefore condition 2 is satisfied by a′1. To find b′1 consider the square, with a choice
of elements as on the right hand side:

G(A1, R
′)

G(h0,1R′)
//

β〈A1,R
′〉
��

G(Q1, R
′)

β〈Q1,R
′〉

��

y1_

��

G′(A1, R
′)

G′(h0,1R′)
// G′(Q1, R

′) b1
� // b0 = β〈Q1,R′〉(y1)

therefore, since β is open, there exists b′1 ∈ G(A1, R
′) such that

b′0
def= y1 = G(h0, 1R′)(b′1) and b1 = β〈A1,R′〉(b

′
1).

This tells us that b′1 satisfies conditions 2 and 4 too.
Suppose now 0 ≤ k〈n−1 odd and such that there exist (b′k, a

′
k) satisfying condition 2.

Define b′k+1 = G(hk, 1R′)(b′k). Then

β〈Ak+1,R′〉(b
′
k+1) = β〈Ak+1,R′〉(G(hk, 1R′)(b′k))

= G′(hk, 1R′)(β〈Ak ,R′〉(b
′
k))

= G′(hk, 1R′)(bk)
= bk+1

To find a suitable a′k+1, consider the square, with corresponding elements as below:

F (P ′, Ak+1)
F (1P ′ ,hk)

//

α〈P ′,Ak+1〉
��

F (P ′, Ak)

α〈P ′,Ak〉
��

a′k_

��

F ′(P ′, Ak+1)
F ′(1P ′ ,hk,)

// F ′(P ′, Ak) ak+1
� // ak = α〈P ′,Ak〉(a

′
k)

since α is open, there exists a′k+1 ∈ F (P ′, Ak+1) such that

α〈P ′,Ak+1〉(a
′
k+1) = ak+1 and a′k = F (1P ′ , hk)(a′k+1)

i.e., a′k+1 satisfies both conditions 2 and 3.
The case k even is treated in exactly the same way by substituting in the argument

F for G, α for β and vice versa (it is actually the general instance of the argument used
in the base case k = 0).

We are now almost finished with the proof of the theorem. We simply need to apply
openness of α and β once more. Consider the following diagram (we concentrate on α
first)

82 CHAPTER 4. PROFUNCTORS

F (P,Q2)
F (f,1Q2

)
//

α〈P,Q2〉
��

F (P ′, Q2)

α〈P ′,Q2〉
��

a′n_

��

F ′(P,Q2)
F ′(f,1Q2

)
// F ′(P ′, Q2) x2

� // F ′(f, 1Q2)(x2) = an

Since α is open, there exists x3 ∈ F (P,Q2) such that

α〈P,Q2〉(x3) = x2 and F (f, 1Q2)(x3) = a′n

In complete analogy, considering

G(Q2, R)
G(1Q2

,g)
//

β〈Q2,R〉
��

G(Q2, R
′)

β〈Q2,R
′〉

��

b′n_

��

G′(Q2, R)
G′(1Q2

,g)
// G′(Q2, R

′) y2
� // G′(1Q2 , g)(y2) = bn

by openness of β, we can conclude the existence of y3 ∈ G(Q2, R) such that

β〈Q2,R〉(y3) = y2 and G(1Q2 , g)(y3) = b′n .

Finally, we consider the equivalence class

[Q2, x3, y3] ∈
∫ Q

F (P,Q)×G(Q,R)

and using the above results immediately verify that

(
∫ Q

α〈P,Q〉 × β〈Q,R〉)[Q2, x3, y3] = [Q2, α〈P,Q2〉(x3), β〈Q2,R〉(y3)]

= [Q2, x2, y2]

and that

(
∫ Q

F (f, 1Q)×G(1Q, g))[Q2, x3, y3] = [Q2, F (f, 1Q2)(x3), G(1Q2 , g)(y3)]

= [Q2, a
′
n, b

′
n]

= [Q1, a
′
0, b

′
0]

= [Q1, x1, y1] .

2

By instantiating to particular situations, whiskering on the right or left, we can
immediately deduce interesting corollaries to the theorem. Notably, Corollary 4.6.6
(already seen in this thesis as Proposition 3.2.5) below was a key result in [26] and
Theorem 4.6.5 seems to be its natural generalisation.

4.6. OPEN MAP BISIMULATION IN PROF 83

Corollary 4.6.6 Colimit preserving functors between presheaf categories preserve open
maps

Proof: Let F! : P̂→ Q̂ be a colimit preserving functor and let α : X ⇒ Y be a natural
transformation between two presheaves over P. Via Proposition 4.2.4 and Proposi-
tion 4.2.2 we can redraw this situation in Prof as follows:

1
|
X

$$

|
Y

::

�� ��
�� α P +

F // Q.

We know that F!(X) is the same as the composite FX in Prof and the same goes for
Y . Moreover, by Theorem 4.6.5 the composition Fα is open and, if we regard it as
a natural transformation between presheaves, Fα = F!(α). But now Proposition 4.6.4
concludes the proof. 2

Corollary 4.6.7 Let α : F ⇒ F ′ be an open 2-cell between F,F ′ : P + //Q. Recall
that α, via the Proposition 4.2.4, can be seen as a natural transformation between the
corresponding two colimit preserving functors, F! and F ′

! . Then α is open if and only if
for each X ∈ P̂, αX is a Q-open map and for each Y ∈ Q̂op, α∗

Y is a Pop-open map.

Proof: The ‘if’ part is trivial given Proposition 4.6.2. The ‘only if’ follows via an
argument analogous to that of Corollary 4.6.6 above, applied to the following pictures.

1 +
X // P

|
F

$$

|
F ′

::

�� ��
�� α Q 1 +

Y // Qop
|
F ∗

((

|
F

′∗

66

�� ��
��α∗ Pop .

2

We can use Corollary 4.6.6 to deduce the preservation of surjective open maps also along
connected colimit preserving functors.

Theorem 4.6.8 Let G : P̂ → Q̂ be a connected colimit preserving functor. Then G
preserves surjective open maps.

Proof: From Proposition 4.4.3, we know that G ∼= Fl∗ for l∗ : P̂→ P̂⊥ and F : P̂⊥ → Q̂
a colimit preserving functor. Now, from Proposition 4.4.4 we know that l∗ preserves
surjective open maps, hence Fl∗ preserves surjective open maps too. 2

84 CHAPTER 4. PROFUNCTORS

Chapter 5

Two Examples

In the next chapter we will develop a theory of domains in 2-categories that generalise
the order enriched categories case [125] and that deals with pseudo-functors (and pseudo-
limits) rather than strict ones. Cocont (or equivalently Prof) will naturally fall in the
list of examples. As motivating examples we present two process languages to which
one gives presheaf models by deriving suitable base (path) categories as solutions to
recursive domain equations. The fact that the solutions we present are indeed least
fixed points will be justified intuitively. The results of the next chapter will make this
in precise terms.

5.1 CCS

Here we show how to obtain synchronisation trees as presheaf models and we sketch
the semantics of CCS terms using arrows in Prof . Following Corollary 4.6.6 and
Proposition 4.6.8 this will entail that strong bisimulation [82] is a congruence with
respect to the term constructors of the language. This analysis shall also serve as a
reason to introduce some of our “standard” techniques for reasoning about presheaf
models and open map bisimulation. These are represented by decomposition results
(see Proposition 5.1.10) and transition relations for presheaves (see Section 5.1.4).

5.1.1 The term language

We briefly recall the main definitions of process terms with their transition semantics.
The reader unfamiliar with process algebra and CCS in particular is advised to look
in [82] for more detailed explanations. Assume then a set Ch of channels not including
as an element the special symbol τ . Elements of Ch will be indicated with the letters
a, b, c, Let Ch = {a | a ∈ Ch} be the set of “cochannels”. Define the set of labels
L = Ch ∪ Ch ∪ {τ}. Elements of L will be denoted by Greek letters α, β, γ, The
process terms are defined by the following grammar:

t ::= Nil | α.t | t1 | t2 |
∑

i∈I ti | t[f] | t/Λ | x | rec x.t ,

85

86 CHAPTER 5. TWO EXAMPLES

where x is a variable drawn from some distinguished set Vars, I is a non empty indexing
set, Nil stands for the deadlocked process, f : Ch → Ch is a relabelling function and
Λ ⊆ Ch is a set of “restricted” channels. Alternatively, we could have avoided to
explicitly consider the Nil process and extend the sums with the possibility of having
an empty indexing set. As usual, in recursive expressions like rec x.t, the variable x
becomes bound and this is the only binder we have in the language. Following this, the
set of free variables in a process term and the class of closed process terms are defined
by structural induction. The transition semantics is defined on closed processes:

α.t
α−→ t

tj
α−→ t′j∑

i∈I ti
α−→ t′j

(j ∈ I)

t
α−→ t′

t | u α−→ t′ | u
t

l−→ t′ u
l−→ u′

t | u τ−→ t′ | u′
u

α−→ u′

t | u α−→ t | u′

t
α−→ t′

t/Λ α−→ t′/Λ
(α,α 6∈ Ch) t

α−→ t′

t[f]
f ′α−→ t′[f]

t[rec x.t/x] α−→ t′

rec x.t α−→ t′
,

where l ∈ Ch ∪Ch with the convention that doing (−) twice is the same as not doing it
at all and where f ′ is the extension of f to Ch ∪Ch ∪ {τ} by putting f ′(a) = f(a) and
f ′τ = τ .

5.1.2 An equation for (synchronisation) trees

As it is clear from the operational semantics of the language, what can be observed
of the behaviour of a process is a sequence of actions of the “type” L. These can be
classified in three different classes: Input actions, Output actions and Silent or internal
ones. By convention the input actions are represented by the elements a of Ch (make
an input along channel a), the output by elements a of Ch while the internal ones are
represented by the silent action τ . A path category is then defined to be:

P
def= P⊥ +

∑
a∈Ch

P⊥ +
∑
a∈Ch

P⊥ =
∑
α∈L

P⊥ .

As we shall see in more detail in the next chapter, to find a solution of this kind of
equation in Prof is the same as finding one in Poset (the locally ordered category of
partial ordered sets and monotone functions) and then regard it as a category in the
usual way. This simplifies considerably the description of the solution.

Briefly, as expected, P can be described as the category L+ of finite non empty
strings of letters in L with morphisms given by the prefix order relation. As we have
already written previously synchronisation trees and presheaves over L+ correspond to
each other:

Proposition 5.1.1 The category ST L of synchronisation trees over L is equivalent to
L̂+.

5.1. CCS 87

Proof: We describe how to derive a tree from a presheaf and vice versa. To verify that
this induces an equivalence of categories is matter of routine verification.

Given a tree (i.e., a special transition system) T = (S, i, tran, L), define the presheaf
over L+, XT , inductively as follows:

XT (α) = {s ∈ S | ∃i α−→ s}
XT (Pα) = {s ∈ S | ∃s′ ∈ X(P) s′ α−→ s}

Since any state is reached by a unique transition, the map

XT (P ≤ Pα) : s 7→ s′

is well defined.
Vice versa, given a presheaf X over L+, define T = (S, i, tran, L) to be given by

S
def= {i}] {(P, x) | x ∈ X(P)}

with (i α−→ (α, x)), for any x ∈ X(α) and ((P, x) α−→ (Pα, x′)), if X(P ≤ Pα)x′ = x.
2

It is well known [82] that CCS terms can be given a semantics in terms of synchro-
nisation trees. In Chapter 3, we also gave an abstract description of the categorical
operations involved in the semantics (that was shown then to be compositional) by
placing ST L within the larger category ST . Still we had, for the axiomatic approach,
to assume as given the prefixing operator. Here we resolve that problem by employing
the lifting operation for the denotations of prefixing. We also describe a parallel compo-
sition functor between trees by left Kan extensions. To do so we need some preliminary
analysis that we will carry out in the next two sections and that (as we shall see in other
chapters) is part of our standard pattern for deducing properties of presheaf models.

5.1.3 Decomposition of presheaves

Recall that
L+ = P = P⊥ +

∑
a∈Ch

P⊥ +
∑
a∈Ch

P⊥ .

We write Inτ , Ina and Ina for the injection (pro)functors P⊥ + //P̂ in the appropriate
components, e.g.,

Inτ (bP c) = yP(τP) and Inτ (⊥) = yP(τ) .

In the reminder of this section, we shall always write P for L+ and P for a (generic)
object of P.

Proposition 5.1.2 For any presheaf X ∈| P̂ |,

Inα!X(P) ∼=

∑

x∈X(⊥)X(bP ′c) if P = αP ′

X(⊥) if P = α
∅ otherwise

88 CHAPTER 5. TWO EXAMPLES

Proof: We know that Inα!X(P) is given by the following coend formula

Inα!X(P) ∼=
∫ Q

X(Q)× Inα(Q)(P) .

If P = α, then, by definition Inα(Q)(P) is a singleton and the coend reduces to
∫ Q

X(Q),
that since P⊥ has an initial object is the same as X(⊥). If P = αP ′, then again
by looking at the definition, Inα(Q)(P) = yP⊥(Q)(bP ′c), hence the coend becomes∫ Q

X(Q)× yP⊥(Q)(bP ′c) that, by Yoneda, is exactly X(bP ′c). Finally, if P is anything
else, then Inα(Q)(P) = ∅ and so the coends induces a diagram of empty sets, whose
colimit is obviously the empty set as well. 2

Given a synchronisation tree, any given finite run of it, uniquely identifies a subtree of
the original tree, namely the subtree rooted at the final state of the run. This fact is
nicely expressible in presheaf terms by the following definition.

Definition 5.1.3 If X is a presheaf over P and x ∈ X(P), we write X|x for the presheaf
over P “rooted at x” defined by

X|x(Q) = X(P ≤ PQ)−1({x}) ,

where PQ stands for the concatenation of the string Q to the string P (recall that P is
the category of finite non empty strings over L ordered by prefix ordering).

In terms of trees, of course, X|x is nothing else than the subtree of X rooted at x.
Things are not quite so smooth when one is dealing with base categories other than P.
Still a similar notion of a “subcomponent rooted at an element” of a presheaf can be
given in terms of slice categories [37].

Definition 5.1.4 Let C be a small category and let C be an object of C. Define the
slice category C/C to be the category of objects the arrows f : C → C ′ of domain C and
morphisms h : f → g the arrows of C, h : C ′ → C ′′ such that g = hf .

It is immediately seen that C/C has initial object, given for instance by 1C . In fact
it has as many initial objects as there are isomorphisms in C of domain C. We write
(C/C)+ for the full subcategory of C/C consisting of non-initial objects.

Definition 5.1.5 Let C be a small category and let x ∈ X(C) for X a presheaf over
C. Define the resumption of X at x to be the presheaf X|x over (C/C)+ defined by

X|x(f) = X(f)−1({x}) .

From the point of view of open map bisimulation we have an interesting preservation
property.

Definition 5.1.6 Let C be a small category, let X,Y be presheaves over C and let
α : X → Y be a map in Ĉ, i.e., a natural transformation. If x ∈ X(C), for C ∈|C | and
y = αC(x), define

α|x : X|x → Y|y

5.1. CCS 89

to be the restriction of α to the two resumption presheaves, i.e., for every f : C → D in
C,

(α|x)f : X|x(f) = X(f)−1({x}) −→ Y (f)−1({y}) = Y|y(f)

maps every x′ ∈ X(f)−1({x}) ⊆ X(D) to αD(x′).

Theorem 5.1.7 Let C be a small category. Let X,Y be presheaves over C and let
α : X → Y be a C-open map. If x ∈ X(C), for C ∈|C | and y = αC(x), then α|x is a
surjective (C/C)+-open map.

Proof: Let f : C → D and g : C → E be two objects of (C/C)+ and let h : D → E an
arrow from f to g, i.e., an arrow in C such that g = fh. To show that α|x is open we
need to show that the following square is a quasi pullback in Set:

X|x(g) = X(g)−1({x}) Xx(h)
//

(α|x)g
��

X|x(f) = X(f)−1({x})

(α|x)f
��

Y|y(g) = Y (g)−1({y})
Yy(h)

// Y|y(f) = Y (f)−1({y}) .

Suppose that x′ ∈ X(f)−1({x}) and y′ ∈ Y (f)−1({y}) are such that

(α|x)f (x
′) = Y|y(h)(y

′) .

By definition this means that αD(x′) = Y (h)(y′). Since α is C open, the following
square is a quasi pullback,

X(E)
X(h)

//

αE
��

X(D)

αD
��

Y (E)
Y (h)

// Y (D) .

Hence there exists x′′ ∈ X(E) such that αE(x′′) = y′ and X(h)x′′ = x′. To conclude we
shall only show that x′′ ∈ X|x(g) ⊆ X(E), but

X(g)(x′′) = X(hf)(x′′) = X(f)X(h)(x′′) = X(f)x′ = x ,

i.e., x′′ ∈ X(g)−1({x}) def= X|x(g). The fact that α|x is surjective too is again a conse-
quence of openness of α. In fact let f : C → D be an object in (C/C)+, we need to
show that (α|x)f is a surjective function. Let y′ ∈ Y|y(f) ⊆ Y (D). Since α is open the
following is a quasi pullback:

X(D)
X(f)

//

αD
��

X(C)

αC
��

Y (D)
Y (f)

// Y (C) .

90 CHAPTER 5. TWO EXAMPLES

Moreover, by assumption, Y (f)(y′) = y = αC(x) holds and therefore there exists x′ ∈
X(D) such that αD(x′) = y′ and X(f)(x′) = x, that is x′ ∈ X|x(f) and (α|x)f (x′) = y′.
2

Remark: In fact, for X in | Ĉ | and x ∈ X(C) we could have considered presheaves
rooted at x over C/C. Then the restriction of α to α|x would have preserved openness,
and since open with respect to rooted presheaves is equivalent to surjective open when
the initial objects have been removed (cf. Chapter 2) we have a different way of seeing
why in the theorem above, an open map becomes surjective when restricted.

What is so special about our particular P is that it satisfies the following “closure
property” with respect to the slice category construction.

Proposition 5.1.8 For any P ∈|P |, there is an isomorphism of categories between P
and (P/P)+.

So in the case of P, Definition 5.1.5 reduces to Definition 5.1.3. We shall make use of
the more general case in Chapter 8. Another special case is given by categories with a
strict initial object, with respect to resumptions after an initial step has been taken:

Proposition 5.1.9 Let C be a small category. There is an isomorphism of categories
between C and (⊥/C⊥)+.

So we shall write for any presheaf X over P⊥ and x ∈ X(⊥), X|x for the presheaf over
P defined by

X|x(P) = X(⊥ ≤ bP c)−1({x}) .
Proposition 5.1.10 (Decomposition of Trees) Any presheaf X over P is isomor-
phic to the presheaf

X ′ =
∑

i∈X(τ)

Inτ !bX|ic+
∑
a∈Ch

∑
j∈X(a)

Ina!bX|jc+
∑
a∈Ch

∑
k∈X(a)

Ina!bX|kc (5.1)

Proof: By induction on the structure of path objects, i.e., on the length of the strings,
one proves that for every P ∈|P |, there is a bijection X(P) ∼= X ′(P).

• Base case: length(P) = 1, hence P = α, for an α ∈ L:

X ′(α) def=
∑

x∈X(α)

Inα!bX|xc(α) ∼=
∑

x∈X(α)

{x} ∼= X(α) .

• Inductive Step: length(P) = n+ 1, hence P = αP ′:

X ′(αP ′) def=
∑

x∈X(α)

Inα!bX|xc(αP ′)

∼=
∑

x∈X(α)

X|x(P
′)

=
∑

x∈X(α)

X(α ≤ P)−1({x})

∼= X(P) .

5.1. CCS 91

That these bijections are natural in P is trivial verification. 2

A way of looking at the decomposition or presheaves above is to think of it in terms of
the “expansion law” [82] for process terms of CCS.

5.1.4 A transition relation for presheaves

Given the decomposition result it is natural to define a transition relation for presheaves.
This can be done in two different ways, by decorating the transition arrow with the
observed action only or with the observed action and the corresponding element of the
presheaf, too. As it turns out, for CCS it does not really matter which one one chooses,
in contrast to the situation we shall encounter in Chapter 8 - there one makes essential
use of this more “intensional” information to characterise operationally the bisimulation
from open maps.

Definition 5.1.11 (Transitions for Presheaves over L+) Let X and Y be presheaves
over P. We write

X P→
x
Y,

if x ∈ X(P) and Y = X|x. We write

X
P−→ Y,

to mean that there exists x ∈ X(P) such that X P→
x
Y .

We shall be concerned exclusively with transitions of the form X
α−→ Y , for α ∈ L but

since it does not require any extra effort, we prefer to give the definition more generally
for all possible paths (these kinds of “long steps” transitions will play a big role in
Chapter 8). Proposition 2.2.12 can now be read, for the part concerning synchronisation
trees, as follows:

Proposition 5.1.12 Two presheaves over L+ are L+-open map bisimilar if and only
if the corresponding transitions systems are strongly bisimilar in the usual Park-Milner
sense.

Proof:[Hint] The proof relies on recognising the fact that the equivalence ST L ' L̂+

takes a synchronisation tree to a presheaf that has the same transition system of the
tree itself. 2

5.1.5 Denotational semantics

In Chapter 3 we reviewed a general way of giving a denotational semantics to CCS
processes that mainly relied on the following three facts:

1. The category L̂+ is included in a larger (fibred) category over all possible sets of
labels and partial relabelling.

2. A distinguished “prefix” functor is available.
3. Parallel composition is expressed by combining product (in the larger category)

with relabelling and restriction.

92 CHAPTER 5. TWO EXAMPLES

Here we take advantage of the domain equation that defines P = L+ in order to give a
description directly in P̂ of the operations involved in the semantics. In particular we
reduce prefixing to lifting and parallel composition to a combination of liftings and left
Kan extensions.

Prefixing: Let α ∈ L, define α. : P̂→ P̂ to be the functor

P̂
l∗−→ P̂⊥

Inα!−→ P̂ ,

i.e., for any presheaf X ∈| P̂ | and any path object P ,

(α.X)(P) = Inα!(bXc)(P) =

X(P ′) if P = α.P ′

{∗} if P = α
∅ otherwise .

Since l∗ preserves connected colimits, α. preserves connected colimits too and therefore
it preserves surjective open maps and open map bisimulation (see Proposition 4.6.8).

Observe moreover that the decomposition of presheaves of Proposition 5.1.10 can
now be written as:

X ∼=
∑

i∈X(τ)

τ.(X|i) +
∑
a∈Ch

∑
j∈X(a)

a.(X|j) +
∑
a∈Ch

∑
k∈X(a)

a.(X|k) .

Parallel composition The parallel composition functor (−|−) : P̂× P̂→ P̂ is defined
as follows:

(−|−) = (−||−)! ◦ w∗
P⊥,P⊥ ◦ (l∗ × l∗) ,

where

• The functor w∗
P⊥,P⊥ : P̂⊥ × P̂⊥ → ̂P⊥ × P⊥ is the right adjoint to the left Kan

extension of
wP⊥,P⊥ : P⊥ × P⊥ + //P⊥&P⊥

defined as the pairing of the “projections”

P⊥ × P⊥
πi−→ P⊥

yP⊥−→ P̂⊥ .

Its action is given by w∗
P⊥,P⊥(X,Y)(P,Q) = X(P) × Y (Q).1

• The functor (−|⊥−) : P⊥ × P⊥ → P̂ is the symmetric functor defined inductively
by

⊥||⊥ = ∅
bP c||⊥ = yP(P)

bαc||bβc =
{

yP(αβ) + yP(βα) if β 6= α and α 6= β
yP(αβ) + yP(βα) + yP(τ) otherwise

1We shall use the functor w∗ again in Chapters 7 and 8. We shall say a little more about it in
Chapter 7.

5.1. CCS 93

bαc||bβQc =
{

yP(αβQ) + β.(α||bQc) if β 6= α and α 6= β
yP(αβQ) + β.(α||bQc) + τ.yP(Q) otherwise

bαP c||bβQc =

α.(bP c||bβQc) + β.(bαP c||bQc) if β 6= α and α 6= β
α.(bP c||bβQc) + β.(bαP c||bQc)
+τ.(bP c||bQc) otherwise

Lemma 5.1.13 Let X,Y be two presheaves over P. Let α, β ∈ {τ} ∪ Ch ∪ Ch be two
labels then the following holds:

• If α and β are not complementary, i.e., β 6= α or vice versa, then

α.X|β.Y ∼= α.(X|β.Y) + β.(α.X|Y) .

• If α and β are complementary, then

α.X|β.Y ∼= α.(X|β.Y) + β.(α.X|Y) + τ.(X|Y) .

Proof: The following chain of isomorphisms prove the first case.

α.X|β.Y =
∫ r,sbα.Xc(r) × bβ.Y c(s) . (r||s)

(by definition)
∼=

∫ r′,s′bXc(r′)× bY c(s′) . (bInαr′c||bInβs′c)
(*)

=
∫ r′,s′bXc(r′)× bY c(s′) . (α.(r′||bInβs′c) + β.(bInαr′c||s′))

(by definition)
∼=

∫ r′,s′bXc(r′)× bY c(s′) . (α.(r′||bInβs′c))
+

∫ r′,s′bXc(r′)× bY c(s′) . (β.(bInαr′c||s′))
(since sums distribute over coends)

∼= α.
∫ r′,s′bXc(r′)× bY c(s′) . (r′||bInβs′c)

+β.
∫ r′,s′bXc(r′)× bY c(s′) . (bInαr′c||s′)

(since α. and β. preserve connected colimits)
∼= α.

∫ r,sbXc(r) × bβ.Y c(s) . (r||bsc)
+β.

∫ r,sbα.Xc(r) × bY c(s) . (r||s)
(no extra non-empty contribution is given)

= α.(X|β.Y) + β.(α.X|Y)
(by definition).

The passage marked (∗) is justified for the following reasons. First of all, in the coend
above it, when r (or s) is different from ⊥ or Inα(r′) (⊥ or Inα(s′)) then there is no
contribution to the colimit since bα.Xc(r)×bβ.Y c(s) = ∅. Moreover, since bα.Xc(bαc)×
bβ.Y c(bβc) is a singleton, we have that for any four lifted paths, r, r′, s, s′ the following
is part of the diagram induced by the coend

bαc||bβc

wwnnnnnnnnnnnn

((PPPPPPPPPPPP

bInαrc||bInβsc bInαr′c||bInβs′c ,

94 CHAPTER 5. TWO EXAMPLES

and since we have the embeddings

⊥||bβc ↪→ bαc||bβc ←↩ bαc||⊥ ,

the contribution of the (unique) pairs bαc||⊥ and ⊥||bβc is subsumed by the contribution
of bαc||bβc.

The proof of the second case is just the same with the exception that, by definition,
if α and β are complementary,

bInαr′c||bInβs′c = α.(r′||bInβs′c) + β.(bInαr′c||s′) + τ.(r′||s′) .

2

The above lemma together with the decomposition result on presheaves and the distri-
bution property of sums with respect to coends immediately entail the following.

Proposition 5.1.14 Let X,Y ∈| P̂ | with decompositions

X ∼=
∑

i∈X(τ)

τ.(X|i) +
∑
a∈Ch

∑
j∈X(a)

a.(X|j) +
∑
a∈Ch

∑
k∈X(a)

a.(X|k)

Y ∼=
∑
l∈Y (τ)

τ.(Y|l) +
∑
a∈Ch

∑
m∈Y (a)

a.(Y|m) +
∑
a∈Ch

∑
n∈Y (a)

a.(Y|n)

then X|Y is isomorphic to∑
i∈X(τ)

τ.(X|i | Y) +
∑
a∈Ch

∑
j∈X(a)

a.(X|j | Y) +
∑
a∈Ch

∑
k∈X(a)

a.(X|k | Y)

+
∑
l∈Y (τ)

τ.(X | Y|l) +
∑
a∈Ch

∑
m∈Y (a)

a.(X | Y|m) +
∑
a∈Ch

∑
n∈Y (a)

a.(X | Y|n)

+
∑
a∈Ch

∑
j∈X(a)

∑
n∈Y (a)

τ.(X|j | Y|n) +
∑
a∈Ch

∑
m∈Y (a)

∑
k∈X(a)

τ.(X|k | Y|m) .

Restriction Let Λ ⊆ Ch be a set of channels, define

(−/Λ) : P→ P̂

inductively as follows:

• α/Λ =
{

yP(α) if α 6∈ Λ ∪ Λ
∅ otherwise

• (αP)/Λ =
{
α.(P/Λ) if α 6∈ Λ ∪ Λ
∅ otherwise

Referring back to the treatment of restriction in Chapter 3, it is easy to see that

(−/Λ)! ∼= i!((−�Λ)) ,

where i : (L/Λ) ↪→ L is the inclusion map. We shall use the following characterisation
of the left Kan extension of the restriction operator.

5.1. CCS 95

Proposition 5.1.15 Let X ∈| P̂ | with decompositions

X ∼=
∑

i∈X(τ)

τ.(X|i) +
∑
a∈Ch

∑
j∈X(a)

a.(X|j) +
∑
a∈Ch

∑
k∈X(a)

a.(X|k)

and let Λ be a set of channels, then

(X/Λ!) ∼=
∑

i∈X(τ)

τ.(X|i/Λ!) +
∑

a∈Ch/Λ

∑
j∈X(a)

a.(X|j/Λ!) +
∑

a∈Ch/Λ

∑
k∈X(a)

a.(X|k/Λ!) .

The proposition above is an immediate consequence of the following lemma.

Lemma 5.1.16 Let X be a presheaf over P and L ⊆ Ch a set of channel names, then
the following holds:

1. (τ.X)/Λ!
∼= τ.(X/Λ!)

2. (α.X)/Λ!
∼= α.(X/Λ!) if α 6∈ Λ ∪ Λ.

3. (α.X)/Λ!
∼= ∅ if α ∈ Λ ∪ Λ.

Proof: The proofs of all three items follow the same pattern. For the first case, recall
that τ.X = Inτ !bXc. If by convention we write j : P⊥ → P̂ for the functor such that
j(⊥) = ∅ and j(bP c) = yP(P), we have the following:

(τ.X)/Λ! =
∫ PbXc(P) . (Inτ (P))/Λ (by definition)

=
∫ PbXc(P) . τ.(j(P)/Λ!) (by definition)

∼= τ.(
∫ PbXc(P) . (j(P)/Λ!)) (since τ. preserves connected colimits)

∼= τ.(
∫ P

X(P) . P/Λ) (since j(⊥)/Λ! = ∅)
= τ.(X/Λ!) (by definition).

The proof of the second case is completely analogous, while in the third case all the
contribution to the colimit are empty presheaves, hence the colimit itself is empty. 2

Relabelling The interpretation is given exactly as in Chapter 3, since the function

f : Ch → Ch

is naturally extended to a function

f ′ : L→ L

by putting f ′(τ) = τ and f ′(a) = f(a). In the details, −[f] : P→ P̂ is defined inductively
as:

• α[f] = yP(f ′α)
• (αP)[f] = f ′(α).(yP(P [f])) .

We have the following characterisation, based on the decomposition of presheaves:

96 CHAPTER 5. TWO EXAMPLES

Proposition 5.1.17 Let X ∈| P̂ | with decompositions

X ∼=
∑

i∈X(τ)

τ.(X|i) +
∑
a∈Ch

∑
j∈X(a)

a.(X|j) +
∑
a∈Ch

∑
k∈X(a)

a.(X|k)

and let f : Ch → Ch be a relabelling function, then

X[f]! ∼=
∑

i∈X(τ)

τ.(X|i[f]!)
∑
a∈Ch

∑
j∈X(a)

f(a).(X|j [f]) +
∑
a∈Ch

∑
k∈X(a)

f(a).(X|k[f])

If t is a CCS term with free variables in FV (t), its interpretation will be given by a
functor

[[t]] :
∏

x∈FV (t)

P̂→ P̂ ,

defined compositionally as follows:

• [[Nil]] = ∅, the empty presheaf
• [[α.t]]: ∏

x∈FV (t) P̂
[[t]]

// P̂
α. // P̂

• [[t|t′]]: ∏
x∈FV (t)∪FV (t′) P̂

〈[[t]]πt,[[t′]]π′
t〉 // P̂× P̂

|
// P̂ ,

where the π’s are the obvious projection functors, e.g.,

πt :
∏

x∈FV (t)∪FV (t′)

P̂ −→
∏

x∈FV (t)

P̂

sends any tuple of presheaves indexed by the free variables of both t and t′ to the
tuple of those presheaves that corresponds to free variables of t only.

• [[t[f]]]: ∏
x∈FV (t) P̂

[[t]]
// P̂

−[f]!
// P̂

• [[t/Λ]]: ∏
x∈FV (t) P̂

[[t]]
// P̂

−/Λ!
// P̂

• [[x]]:

P̂
1
P̂−→ P̂

• [[rec y.t]]: Let
ty :

∏
x∈FV (t)/{y}

P̂× ω −→ P̂

be the functor

5.1. CCS 97

ty(~X, 0) = [[t]](~X, ∅)
ty(~X, n + 1) = [[t]](~X, ty(~X, n)) .

Define [[rec y.t]] =
∫ n
ty(~X, n) (cf. Theorem 4.1.5). Since all the functors denoted

by term constructors preserves colimits of ω-chain, the denotation of a recursively
defined process is a fixed point, i.e.,

[[rec y.t]] def=
∫ n

ty(~X, n) ∼= [[t]](~X, [[rec y.t]](~X)) . (5.2)

A categorical version of the usual Substitution Lemma holds:

Lemma 5.1.18 Let t be a process term with free variables in FV (t) and let ~x be a
vector of free variables of t. Let ~u be a vector of closed process term of matching length
with that of ~x, then the following two functors are naturally isomorphic:

[[t]](~[[u]]) ∼= [[t[~u/~x]]] .

Proof:[Sketch] Thanks to the compositional semantics the proof is an easy induction
on the structure of the term t. The case when t is a recursively defined process is dealt
with using the definition of [[rec y.t]] as the colimit of an ω-chain. 2

Observe in particular that if t is a term with only one free variable y, then

[[rec y.t]] ∼= [[t[rec y.t/y]]] .

In fact recursion is the reason for this non-standard formulation of the substitution
lemma, since to prove, say, that

[[rec y.t]] ~[[u]] ∼= [[rec y.t[~u/~x]]] ,

where ~x is now assumed to span over the whole of FV (rec y.t), one needs to show that
the following isomorphism holds:∫ n

ty(~[[u]], n) ∼=
∫ n

(t[~u/~x])y(n) .

And to have this, is not enough to know that at each n,

ty(~[[u]], n) ∼= (t[~u/~x])y(n) ,

but one needs also to know that these isomorphisms are natural with respect to the
relation ≤ on numbers.

We now show the agreement between the operational and denotational semantics
using the transition relation on presheaves.

Theorem 5.1.19 Let t be a closed CCS term. Then

1. t α−→ t′ implies ∃X [[t]] α−→ X and X ∼= [[t′]].

98 CHAPTER 5. TWO EXAMPLES

2. [[t]] α−→ X implies ∃ t′ t α−→ t′ and [[t′]] ∼= X.

Proof:

1. The proof goes by rule induction [137]. We exemplify it by looking at the most
interesting cases.

αt
α−→ t

:

[[αt]] = τ.[[t]] τ−→ [[t]], by definition of τ.

t
α−→ u

t/Λ α−→ u/Λ
(α,α 6∈ Λ) :

By inductive hypothesis, [[t]] α−→ X ∼= [[u]]. Using the characterisation of Proposi-
tion 5.1.15 we have that

([[t]]/Λ!) ∼=
∑

i∈[[t]](τ)

τ.([[t]]|i/Λ!)+
∑

a∈Ch/Λ

∑
j∈[[t]](a)

a.([[t]]|j/Λ!)+
∑

a∈Ch/Λ

∑
k∈[[t]](a)

a.([[t]]|k/Λ!) .

Consequently if α,α 6∈ Λ,

[[t/Λ]] = ([[t]]/Λ!)
α−→ X/Λ!

∼= ([[u]]/Λ!) = [[u/Λ]] .

t1
a−→ u1 t2

a−→ u2

t1|u1
τ−→ t2|u2

:

By inductive hypothesis one has that [[t1]]
a−→ X1

∼= [[u1]] and [[t2]]
a−→ X2

∼= [[u2]].
By definition there exist i ∈ [[t1]](a) and j ∈ [[t2]](a), such that

X1 = [[t1]]|i and X2 = [[t2]]|j .

Hence, by Proposition 5.1.14 there exists k ∈ [[t1]]|[[t2]](τ) such that

X1|X2
∼= ([[t1]]|[[t2]])|k .

Hence we have that

[[t1]]|[[t2]]
τ−→ ([[t1]]|[[t2]])|k ∼= X1|X2

∼= [[u1]]|[[u2]] = [[u1|u2]] .

t[rec x.t/x] α−→ u

rec x.t α−→ u
:

We know that the denotation of a recursively defined process is given by a fixed
point [[rec x.t]] ∼= [[t[rec x.t/x]]]. Therefore, using the inductive hypothesis,

[[rec x.t]] ∼= [[t[rec x.t/x]]] α−→ X ∼= [[u]] .

5.2. CCS WITH VALUE PASSING 99

2. Here the proof goes by structural induction on the structure of t and it is a
straightforward verification.

2

We know (Proposition 5.1.12) that two presheaves over L+ are open map bisimilar if
the associated transition systems are strongly bisimilar. Hence, combining with the
Theorem above we have the following corollary:

Corollary 5.1.20 Two closed CCS terms are strong bisimilar if and only if they denote
L+-open map bisimilar presheaves.

5.1.6 Remarks

We have treated this (easy) example in full detail even if it might seem a little artifi-
cial to call for rather heavy categorical machinery to discuss something that is very well
understood anyway. Our reason for doing so is that the pattern followed here sets a tem-
plate that we shall employ also later when dealing with more complicated situations (see
Chapter 7 and Chapter 8). This suggests, in particular, the possibility of considering a
metalanguage for recursively defined path categories and presheaves in connection with
(a fragment of) the type theory of Chapter 4 (that we shall extend with recursive types
in the next chapter). The hope is that, at least for the fragment excluding the exponen-
tial, it will be possible to induce from the definition of the path category automatically
decomposition results and transition relations for the corresponding presheaves and,
especially, an operational characterisation of open map bisimulation. Such a metalang-
uage has been recently considered in [140]. We will not expand on this line of research
here.

5.2 CCS with value passing

We briefly consider now another example drawn from [138]. We essentially take an ex-
tension of CCS obtained by allowing values to be sent along channels. A typical output
action, then, will be represented instead that with the symbol a with the expression av,
meaning that one is observing the output of the value v along the channel a. More com-
plicated is the situation with input actions. As we shall see in fact there are (at least)
two natural ways of thinking about input. This fact is reflected in the corresponding
notion of bisimulation and in our setting is captured by a modification in the input part
of the domain equation.

For illustrative purposes we slightly deviate from the presentation of the language
given in [138] by introducing the notion of abstraction [85, 118] beside that of process.
Still all the results we shall claim are easily derivable from those of [138] and we shall
skip all the proofs.

An advantage of having both models as objects of the same (bi)category is that it is
possible to formally relate them using the arrows of the category. We shall sketch this

100 CHAPTER 5. TWO EXAMPLES

in the last section.2

5.2.1 The term language

The terms of the language we shall consider are defined by the following grammar:

t ::= Nil | τ.t | ae.t | af | t1 | t2 |
∑

i∈I ti | X | recX.t
f ::= (x)t ,

where as before a ∈ Ch, while the e’s stands for expressions that we do not specify
any further other than saying that they might contain value variables x ∈ VVars and
that when evaluated they always return an element of a set of values V . The X’s are
process variables drawn from a set PVars disjoint from VVars. With respect to CCS we
have omitted here the relabelling and restriction operator that can be put back without
much difficulty. With respect to [138] we have adopted the “π-calculus notation” for
input and output instead of the ?, ! one (a(x) for a?x and ae for a!e). More relevant
changes come from the introduction of abstractions (f , like function), by the omission
of a matching operator ([e1 = e2]t) than can be put back without any problem. In his
paper [138] Winskel also restrict variables in a recursive expression to occur guarded
by prefixes. We adopt this restriction as well in order to be able to refer to it for the
results that we shall quote.

As announced we shall have two operational semantics that will differ in the input
clauses. The idea is that when a process, say a(x)t performs an input action this can
be done in two different ways. The process can simply communicate its will to receive
some input along the channel a,

a(x)t a−→ (x)t

and then becomes an abstraction, i.e., a function that waits for the input (say v) to
come and then proceed as t where v has been substituted for x:

t[v/x] α−→ t′

(x)t v 7→α−→ t′
.

Because of this delay between the input action a and the actual receiving of a value
v, this is usually denoted as the late semantics of input actions. Alternatively the two
things can occur at the same time and one has the early transition rule

a(x)t av−→ t[v/x]
.

2An observation of this kind was also made by Ian Stark in our joint work [25] as we shall report in
Section 7.6.

5.2. CCS WITH VALUE PASSING 101

The operational semantics of the language is then given by the following rules,

τ.t
τ−→ t ae.t

av−→ t

tj
α−→ t′j∑

i∈I ti
α−→ t′j

(j ∈ I)

t
α−→ t′

t | u α−→ t′ | u
u

α−→ u′

t | u α−→ t | u′
t[rec x.t/x] α−→ t′

rec x.t α−→ t′
,

where in the axiom for the output actions, e is taken to be closed and evaluating to v.
One also takes the rules

a(x)t av−→ t[v/x]

t
av−→ t′ u

av−→ u′

t | u τ−→ t′ | u′
t

av−→ t′ u
av−→ u′

t | u τ−→ t′ | u′

for the early semantics or the rules

a.f
a−→ f

t[v/x] α−→ u

(x)t v 7→α−→ u

t
av−→ t′ u

a−→ (x)u′

t | u τ−→ t′ | u′[v/x]
t

a−→ (x)t′ u
av−→ u′

t | u τ−→ t′[v/x] | u′

for the late semantics. In the case of the late semantics, expressions like (x)t|t′ that
can be derived by application of the rules has to be understood as standing for (x)(t|t′),
where every free occurrence of x in t′ has been renamed to avoid capturing.

When thinking of transitions derived within the early set of rules, we shall write a
subscript E to the transition arrows (→

E
). Analogously for the late transitions we

shall write (→
L
). Consistently with the two different operational semantics, one has

two different notions of bisimulation.

Definition 5.2.1 A symmetric relation R between closed process terms is an early
bisimulation if
tR t′ implies

t α→
E
u =⇒ ∃u′ . (t′ α→

E
u′ ∧ uRu′) ,

with α ∈ (Ch × V) ∪ (Ch × V) ∪ {τ}.
A symmetric relation R between closed process terms is an late bisimulation if

tR t′ implies
t α→

L
u =⇒ ∃u′ . (t′ α→

L
u′ ∧ uRu′) ,

with α ∈ (Ch × V) ∪ {τ} and

t a→
L
f = (x)u =⇒ ∃f ′ = (y)u′ . (t′ a→

L
f ′ ∧ ∀v ∈ V . f [v]Rf ′[v/y]),

with a ∈ Ch.

102 CHAPTER 5. TWO EXAMPLES

Remark: We could have made a more extended use of abstractions and equivalently
define a late bisimulation to consist of two (typed) relations Rt and Rf , with:

• Rt a symmetric binary relation between closed processes as above as far as the
first clause is concerned but with the second replaced by

t a→
L
f =⇒ ∃ f ′ . (t′ a→

L
f ′ ∧ fRff ′),

with a ∈ Ch.
• Rf a symmetric binary relation between closed abstractions such that fRfg im-

plies
f v 7→α→

L
t =⇒ ∃u . (g v 7→α→

L
u ∧ tRtu) ,

with α ∈ (Ch × V) ∪ {τ} and

f v 7→a→
L
f ′ =⇒ ∃ g′ . (g v 7→a→

L
g′ ∧ f ′Rfg′) ,

with a ∈ Ch.

We shall not give the denotational semantics of this language as we did for CCS in the
previous section and refer to [138] for details about it. We simply write down here the
necessary equations that reflects the early vs. late approach:

PE = PE⊥ +
∑

(a,v)∈Ch×V

PE⊥ +
∑

(a,v)∈Ch×V
PE⊥

PL = PL⊥ +
∑

(a,v)∈Ch×V

PL⊥ +
∑
a∈Ch

FL⊥

FL = (V (P) ,

where V is the set V regarded as a discrete category.
After a denotational semantics is given the main result will obviously be that early

bisimulation correspond to PE-open map bisimulation and late bisimulation correspond
to PL-open map bisimulation.

5.2.2 A map between models

We end up this section by sketching how one can derive an arrow PL + //PE in Prof
that maps the late denotation of terms onto the early one.

A functor PE → PL: The solutions to the equation defining PE and PL can be given
as partial orders inductively defined as follows:

PE: There are “roots”, τ., a!v. and a?v., corresponding to the silent action, output and
input components, for any a ∈ Ch and v ∈ V . Above these in the order relation
we inductively find the following, for any P ∈ PE and for any P ≤ P ′ in PE:

τ. ≤ τ.P a!v. ≤ a!v.P a?v. ≤ a?v.P
τ.P ≤ τ.P ′ a!v.P ≤ a!v.P ′ a?v.P ≤ a?v.P ′ .

5.2. CCS WITH VALUE PASSING 103

PL: There are “roots”, τ., a!v. and a?, corresponding to the silent action, output and
input components, for any a ∈ Ch and v ∈ V . Above these in the order relation
we inductively find the following, for any v ∈ V , P ∈ PL and for any P ≤ P ′ in
PL:

τ. ≤ τ.P a!v. ≤ a!v.P a? ≤ a?(v 7→ P)
τ.P ≤ τ.P ′ a!v.P ≤ a!v.P ′ a?(v 7→ P) ≤ a?(v 7→ P ′) .

It should be clear that the expressions of the form (v 7→ P) denotes the elements
of FL, that are ordered pointwise, i.e., P ≤ P ′ implies (v 7→ P) ≤ (v 7→ P ′).

It is then easy to define a functor (i.e., a monotone map) EL : PE → PL from early
paths to late ones, by defining

EL(τ.) = τ. EL(a!v.) = a!v EL(a?v.) = a?
EL(τ.P) = τ.EL(P) EL(a!v.P) = a!v.EL(P) EL(a?v.P) = a?(v 7→ P) .

The extension EL! of this functor will not map the early denotational semantics ([[·]]E)
onto the late one ([[·]]L), since for instance a process a?x will denote in P̂E the presheaf∑

v∈V yPE(a?v.); while in P̂L it will denote the presheaf yPL(a?), but

EL!([[a?x]]E) ∼=
∑
v∈V

yPL(a?) ∼=
∑
v∈V

[[a?x]]L 6∼= [[a?x]]L .

Still the right adjoint EL∗ to EL! will map the late semantics onto the early one. Since
we have not given a precise definition of the two semantics, it is impossible to give a
formal proof of this result here. In Chapter 7 we shall give a presheaf semantics for
the π-calculus for both the late and early variant and prove an analogous result in that
case. The argument we shall employ, in a simplified form, would work in this case as
well. As an illustrative example, we can anyway sketch the claim to be correct for the
case of the process a?x. In fact, for any P ∈|PE |,

EL∗[[a?x]]L(P) = [[a?x]]L(EL(P)) .

Hence, if P = a?v., EL∗[[a?x]]L(P) ∼= {∗}; in any other case EL∗[[a?x]]L(P) = ∅,
therefore

EL∗[[a?x]]L ∼=
∑
v∈V

yPE(a?v.) ∼= [[a?x]]E .

Since colimit preserving functors preserve bisimulation, one can use the denotational
semantics to deduce that terms that are late bisimilar are also early bisimilar. In fact,
if two closed process terms are late bisimilar then their denoted (late) presheaves are
PL-open map bisimilar. By composing with EL∗, using the result that EL∗[[·]]L ∼= [[·]]E ,
we deduce that their denoted (early) presheaves are PE-open map bisimilar and hence
the terms are early bisimilar, too.

104 CHAPTER 5. TWO EXAMPLES

Chapter 6

A Theory of Recursive Domains

In Chapter 4 we introduced a bicategory, Prof , that we think of as being a category of
domains with built-in notions of bisimulation (as given by open maps). In the previous
chapter we saw examples of presheaf models for concurrent process calculi whose base
categories had been provided by solving appropriate recursive domain equations.

In this chapter we give a generalisation of classical results [125, 120] about the so-
lution of recursive domain equations that, following the axiomatic approach of [30, 33,
105, 34], will justify our intuitive understanding. In fact, after Freyd [35, 36], we shall
consider the notion of algebraic compactness and use a “pseudo” version of the Basic
Lemma (see [125]) to deduce pseudo algebraic compactness for a class of 2-categories
that include Cocont which is the 2-categorical equivalent of Prof . We develop a do-
main theoretical approach to open map bisimulation using relational structures [94, 100]
and induction/coinduction principles for recursively defined domains and coinduction
properties based on bisimulation [99, 31].

For technical reasons (so as to have less coherence conditions to worry about) we
shall state our results as holding for 2-categories. Thus, we prefer in this chapter the
2-category Cocont over Prof (cf. Chapter 4) and consider the interpretation of the
type theory of Section 4.5 in Cocont.

We shall see in Section 6.2 some coherence results that allow further generalisations
to bicategories but we have chosen not to pursue this aim any further as far as this
thesis is concerned.

6.1 Local-characterisation theorem

In denotational semantics, domains are often specified using recursive equations. We
are interested in tools for solving such equations. The first was given by Scott [120]
with his inverse-limit construction in the category of countably based continuous lat-
tices and continuous functions. Smyth and Plotkin [125] building on previous work of
Wand [134] provided a categorical framework based on order-enriched categories and a
general version of Scott’s result applicable to a wider class of categories was given. This
is our starting point. We want to generalise Smyth and Plotkin’s results so as to cover

105

106 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

the cases of interest to us. We generalise in three directions:

1. First of all, following some categorical folklore, e.g., [129, 73], we move from em-
bedding projection pairs (viz. coreflections in general categorical terms) to adjoint
pairs. Hence we shall consider chains of adjoint pairs of arrows in 2-categories.
For the order-enriched case, this issue had already been addressed also in [124].

2. We move up a level from the order-enriched case and consider 2-categories whose
hom-categories have colimits of ω-chains.

3. As a consequence of the two points above, we shall consider pseudo-limits rather
than 2-limits.

We begin by giving some preliminary definitions, which also serve to fix some notation
and terminology.

Definition 6.1.1 Let K be a 2-category, write K∼= for the sub-2-category with the same
objects, same arrows but only isomorphic 2-cells.

Terminology: To improve readability we shall often write “pseudo cell” instead of
“isomorphic 2-cell”.

Definition 6.1.2 Let K be a 2-category. We define Kadj to be the 2-category of adjunc-
tions as follows. The objects of Kadj are those of K; whilst Kadj(A,B) is the category
whose objects are tuples (η, ε : f a g : B → A), where f a g is an adjunction in K with
unit η and counit ε, and 2-cells (η, ε : f a g) ⇒ (η′, ε′ : f ′ a g′) are given by pairs of
2-cells σ : f ⇒ f ′ : A→ B and τ : g ⇒ g′ : B → A in K, such that the diagrams

1A
η +3

η′ �%
CC

CC
CC

C

CC
CC

CC
C

gf

τσ

��
g′f ′

fg

ε

�%
CC

CC
CCC

CC
CC

CC
C

στ

��
f ′g′

ε′
+3 1B

commute.
The horizontal and vertical compositions of arrows and 2-cells are defined as follows:

Horizontal:

• If (η, ε : f a g : B → A) and (η′, ε′ : f ′ a g′ : C → B) are two arrows of Kadj,
their horizontal composition is given by the following tuple:

((gη′f) · η, (f ′εg′) · ε′ : f ′f a gg′ : C → A) .

• If (σ, τ) and (σ′, τ ′) are 2-cells between horizontally composable arrows, their hor-
izontal composition is given by

(σ′σ, τ ′τ) .

Vertical: If

(σ, τ) : (η, ε : f a g : B → A) =⇒ (η′, ε′ : f ′ a g′ : B → A)

6.1. LOCAL-CHARACTERISATION THEOREM 107

and
(σ′, τ ′) : (η′, ε′ : f ′ a g′ : B → A) =⇒ (η′′, ε′′ : f ′′ a g′′ : B → A)

are two 2-cells, then their vertical composition is given by

(σ′ · σ, τ ′ · τ) .

We write Kcor for the full sub-2-category of Kadj consisting of coreflections; i.e. tuples
(η, ε : f a g) where η is a pseudo cell.

We concentrate on pseudo-colimits of ω-chains.

Definition 6.1.3 (ω-Chains) Let K be a 2-category. An ω-chain in K is given by an
ω-indexed family of arrows 〈fn : An → An+1〉. For l ≥ n, we write fn,l : An → Al for

the inductively defined arrow fn,l+1
def= flfn,l, where fn,n

def= 1An . Dually an ωop-chain

is given by an indexed family of arrows 〈gn : An+1 → An〉 with gl+1,n
def= gl,ngl+1 and

gn,n
def= 1An .

Definition 6.1.4 (Pseudo-cones of ω-chains) A pseudo cone for an ω-chain

〈fn : An → An+1〉

is given by the following data:

• An object A.
• An ω-indexed family of arrows 〈ϕn : An → A〉.
• An ω-indexed family of pseudo cells 〈Φn : ϕn+1fn

∼=⇒ ϕn〉.
Dually a pseudo-cone for an ωop-chain 〈gn : An+1 → An〉 is given by:

• An object A.
• An ω-indexed family of arrows 〈γn : A→ An〉.
• An ω-indexed family of pseudo cells 〈Γn : gnγn+1

∼=⇒ γn〉.
Given a 2-category K we will be interested in pseudo-cones of ω-chains in Kadj. We
spell out in terms of data from K what a pseudo-cone of ω-chains in Kadj amounts to.

Definition 6.1.5 (Pseudo-cones of ω-chains in Kadj) A pseudo cone for an ω-chain

〈ηn, εn : fn a gn : An+1 −→ An〉

in Kadj consists of:

• An object A.
• An ω-indexed family 〈ιn, n : ϕn a γn : A→ An〉 of adjoint pairs.
• An ω-indexed family 〈Φn,Γn〉 of pseudo cells Φn : ϕn+1fn

∼=⇒ ϕn and Γn :
gnγn+1

∼=⇒ γn such that the squares

In :

1An
ηn +3

ιn

��

gnfn

gnιn+1fn
��

γnϕn gnγn+1ϕn+1fn
ΓnΦn

ks

(6.1)

108 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

Jn :

ϕnγn

n

��

Φ−1
n Γ−1

n +3 ϕn+1fngnγn+1

ϕn+1εnγn+1

��
1A ϕn+1γn+1n+1

ks

(6.2)

commute for all n.

It is important to observe that a pseudo cone for an ω-chain of adjunctions induces ω-
chains in K(An, An) and K(A,A) and cones obtained from the diagrams (6.1) and (6.2)
as follows:

• For every n, the chain

1An
ηn +3 gnfn

gnηn+1fn +3 · · ·
gl,nηlfn,l +3 gl+1,nfn,l+1

gl+1,nηl+1fn,l+1+3 · · ·

in K(An, An) with cone

1An +3

��
In

gnfn +3

��
gnIn+1fn

gn+2,nfn,n+2

��

+3

···

· · ·

γnϕn gnγn+1ϕn+1fnks gn+2,nγn+2ϕn+2fn,n+2ks · · ·ks

• In K(A,A),

ϕ0γ0
Φ−1

0 Γ−1
0 +3 ϕ1ε0γ1 +3 ϕ1γ1

Φ−1
1 Γ−1

1 +3 ϕ2ε1γ2 +3 ϕ2γ2 +3 · · ·

with cone
ϕ0γ0 +3

$,PPPPPPPPPPPPP

PPPPPPPPPPPPP
J0

+3 ϕ1γ1

��

J1

+3 +3 ϕ2γ2

rz nnnnnnnnnnnnn

nnnnnnnnnnnnn
+3

···

· · ·

1A

For the purpose of this chapter we shall call the above cones the canonical cones

〈gl,nfn,l〉l
.=⇒ γnϕn

and
〈ϕnγn〉 .=⇒ 1A ,

respectively.

We give now explicitly an elementary description of pseudo-colimits of ω-chains in
a 2-category.

Definition 6.1.6 (Pseudo-colimits of ω-chains) A pseudo cone

〈Φn : ϕn+1fn
∼=⇒ ϕn : An → A〉

for an ω-chain 〈fn : An → An+1〉 in a 2-category K is said to be a pseudo colimit if it
satisfies the following universal property:

6.1. LOCAL-CHARACTERISATION THEOREM 109

1. For every pseudo cone 〈Ψn : ψn+1fn
∼=⇒ ψn : An → X〉 there exists an arrow

u : A → X and an ω-indexed family of pseudo cells 〈µn : uϕn
∼=⇒ ψn〉 such that

the square

uϕn+1fn
µn+1fn+3

uΦn
��

Ψn+1fn

Ψn
��

uϕn µn
+3 ψn

commutes for every n.
2. For every pair of arrows u, v : A→ X and every ω-indexed family of 2-cells

〈ξn : uϕn ⇒ vϕn〉

satisfying

uϕn+1fn
ξn+1fn+3

uΦn
��

vϕn+1fn

vΦn
��

uϕn
ξn

+3 vϕn ,

there exists a unique 2-cell ξ : u⇒ v such that ξn = ξϕn.

We shall concentrate on 2-categories K, whose hom-categories, K(A,B) are categories
with colimits of ω-chains:

Definition 6.1.7 (ωCat) Define ωCat to be the (large) category of (locally small)
categories with colimits of ω-chains and ω-cocontinuous functors, that is functors which
preserve colimits of ω-chains.

Define ωCat0 to be the subcategory of ωCat consisting of those categories with an
initial object and initial object preserving functors.

Clearly ωCat (and ωCat0) are straightforward generalisations of the categories Cpo
(and Cppo⊥) of (pointed) cpos and (strict) continuous functions.

Example 6.1.8 Cocont is an ωCat0-category. In fact, for any two small categories,
C and D, Cocont(C,D) ' Ĉ× Dop is a cocomplete category. Moreover since the arrows
of Cocont are colimit preserving functors, the composition functor preserves colimits
of ω-chains as well as the initial presheaf.

The announced generalisation of [125, Theorem 2], obtained with Marcelo Fiore, can
now be stated as follows:

Theorem 6.1.9 (Local-characterisation) Let K be an ωCat-category. For an ω-
chain of adjunctions 〈ηn, εn : fn a gn : An+1 → An〉 and a pseudo cone

〈Φn : ϕn+1fn
∼=⇒ ϕn : An → A〉

for the ω-chain 〈fn : An → An+1〉, the following are equivalent:

110 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

1. 〈Φn : ϕn+1fn
∼=⇒ ϕn : An → A〉 is a pseudo colimit for 〈fn : An → An+1〉 in K.

2. 〈Φn : ϕn+1fn
∼=⇒ ϕn : An → A〉 is a pseudo colimit for 〈fn : An → An+1〉 in K∼=.

3. There is a pseudo cone of adjunctions

(Φn,Γn) : (ιn+1, n+1 : ϕn+1 a γn+1)(ηn, εn : fn a gn)
∼=⇒ (ιn, n : ϕn a γn)

such that the canonical cones 〈ϕnγn〉
.=⇒ idA and 〈gl,nfn,l〉l

.=⇒ γnϕn are colim-
iting.

Proof: We prove the chain of implications (1) ⇒ (2) ⇒ (3) ⇒ (1). Clearly the first
implication holds trivially since any pseudo colimit in K is a pseudo colimit in K∼=, too.
Therefore we concentrate on the remaining two.
[2 implies 3:] We start by looking for suitable definitions of the right adjoints, γn’s,
to the ϕn’s together with units ιn’s and coherence pseudo-cells Γn’s for all n, showing
that they satisfy the commutativity of diagram (6.1). Afterwards we define the n’s
showing the commutativity of diagram (6.2). Finally we verify the triangular identities
that show (ιn, n) to be unit and counit of an adjunction ϕn a γn. From now on, when
not quantified, let n be an arbitrary natural number. If m ≥ n, let the following be a
colimiting cone in the hom-category K(Am, An):

Gm,n :
gm,n

gm,nηm +3

ιm,nm $,QQQQQQQQQQQQQQ

QQQQQQQQQQQQQQ gm+1,nfm
gm+1,nηm+1fm+3

ιm,nm+1

��

gm+2,nfm,m+2 +3

ιm,nm+2qy jjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjj

···

· · ·

gm,n

(m ≥ n)4

By precomposing Gm+1,n with fm one obtains a colimiting cone for the above chain,
where the first element is removed, that is for

gm+1,nfm
gm+1,nηm+1fm+3 gm+2,nfm,m+2

gm+2,nηm+2fm,m+2+3 · · · .

Hence there exists a universal pseudo-cell, $f
m,n : gm,n

∼=⇒ gm+1,nfm, such that, for all
k ≥ m+ 1,

$f
m,n · ι

m,n
k = ιm+1,n

k fm . (6.3)

Similarly, if m ≥ n+ 1, by post composing Gm,n+1 with gn one derives the existence of
a universal pseudo-cell $g

m,n : gm,n
∼=⇒ gngm,n+1, such that

$g
m,n · ι

m,n
k = gnι

m,n+1
k (6.4)

for all k ≥ m. Define $m,n : gm,n
∼=⇒ gngm+1,n+1fm to be the universal pseudo-cell

such that, for all k ≥ m+ 1,

$m,n · ιm,nk = gnι
m+1,n+1
k fm . (6.5)

6.1. LOCAL-CHARACTERISATION THEOREM 111

It follows that

$m,n = ($g
m+1,nfm) ·$f

m,n (6.6)

= (gn$
f
m,n+1) ·$g

m,n . (6.7)

In particular, since ιn,nn = ιn,nn+1 · ηn, we have from (6.6), (6.3) and (6.4) that

$n,n · ιn,nn = (gnι
n+1,n+1
n+1 fn) · ηn . (6.8)

Consider now the cone for the ω-chain 〈fm : Am → Am+1〉m≥n of vertex An, arrows
〈gm,n〉m≥n and pseudo-cells 〈($f

m,n)−1〉m≥n. Using that the cone of Φ’s is a pseudo
colimit, there exists an arrow γn : A → An and pseudo-cells, $n

m : γnϕm
∼=⇒ gm,n for

all m ≥ n, such that

$n
m · (γnΦm) = ($f

m,n)
−1 · ($n

m+1fm) (6.9)

Define

ιn
def= ($n

n)−1 · ιn,nn : 1An ⇒ γnϕn . (6.10)

To deduce the existence of Γn : gnγn+1
∼=⇒ γn, we use again the fact that the Φ’s form

a pseudo colimit for the chain 〈fm : Am → Am+1〉m≥n+1. We describe, in fact a family
of pseudo-cells

Υn
m : gnγn+1ϕm

∼=⇒ γnϕm (m ≥ n+ 1)

such that for all m ≥ n+ 1,

Υn
m · (gnγn+1Φm) = (γnΦm) · (Υn

m+1fm) . (6.11)

Hence it will follow the existence of a unique Γn : gnγn+1
∼=⇒ γn such that Γnϕm = Υn

m,
for all m ≥ n + 1. To define the Υn

m’s, observe that the following diagram of pseudo
cells commutes, for every m ≥ n+ 1:

gnγn+1ϕm+1fm
gn$

n+1
m+1fm +3

gnγn+1Φm

��

gngm+1,n+1fm
($gm+1,n)−1fm

+3

gn($fm,n+1)−1

��

($m,n)−1

%-TTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTT
gm+1,nfm

($nm+1)−1fm +3

($fm,n)−1

��

γnϕm+1fm

γnΦm

��
gnγn+1ϕm

gn$
n+1
m

+3 gngm,n+1
($gm,n)−1

+3 gm,n
($nm)−1

+3 γnϕm

Commutativity of the leftmost and rightmost squares is provided by equation (6.9),
while the central one follows from equation (6.7). Define, Υn

m as the bottom 2-cell in
the above diagram, namely

Υn
m

def= ($n
m)−1 · ($g

m,n)
−1 · (gn$n+1

m) .

Satisfaction of condition (6.11) is then immediately read off from the diagram above.
We have to show now commutativity of diagram (6.1), i.e., that for every n,

ιn = (ΓnΦn) · (gnιn+1fn) · ηn .

112 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

Aiming at this, observe first of all the following:

ΓnΦn = (γnΦn) · (Γnϕn+1fn)
(by the interchange law)

= (γnΦn) · (Υn
n+1fn)

(by the property defining Γn)
= (γnΦn) · (($n

n+1)
−1fn) · (($g

n+1,n)
−1fn) · (gn$n+1

n+1fn)
(by definition of Υn

n+1)

= (γnΦn) · (γn(Φn)−1) · ($n
n)−1 · ($f

n,n)
−1 · (($g

n+1,n)
−1fn) · (gn$n+1

n+1fn)
(by equation (6.9))

= ($n
n)−1 · ($n,n)−1 · (gn$n+1

n+1fn) (6.12)
(by equation (6.6))

Hence

ιn = ($n
n)−1 · ιn,nn (by definition)

= ($n
n)−1 · ($n,n)−1 · (gnιn+1,n+1

n+1 fn) · ηn (by equation (6.8))
= ($n

n)−1 · ($n,n)−1 · (gn$n+1
n+1fn) · (gnιn+1fn) · ηn (by definition of ιn+1)

= (ΓnΦn) · (gnιn+1fn) · ηn (from the identity (6.12))

The fact that the cone

〈gm,nfn,m〉m≥n
. +3 γnϕn

is colimiting is now an immediate consequence of the fact that it is obtained from the
following pasting of diagrams:

1An
ηn +3

ιn,nn
��

gnfn
gnηn+1fn +3

gnι
n+1,n+1
n+1 fn

��

gn+2,nfn,n+2 +3

gn+2,nι
n+2.n+2
n+2 fn,n+2

��

· · ·

gn,n

($nn)−1

��

gngn+1,n+1fn
($n,n)−1

ks

gn($n+1
n+1)−1fn

��

gn+2,ngn+2,n+2fn,n+2
gn($n+1,n+1)−1fnks

gn+2,n($n+2,n+2)−1fn,n+2

��

· · ·ks

γnϕn gnγn+1ϕn+1fn
ΓnΦn

ks gn+2,nγn+2ϕn+2fn,n+2
gnΓn+1Φn+1fn
ks · · ·ks

where the upper one, because of equation (6.8), is the one that defines gn,n as a colimit,
while the lower one, which commutes by the identity (6.12), consists of pseudo cells.

We now look for the definition of suitable n’s. Using the family of Γn’s, we can
describe the canonical chain in the hom-category K(A,A) that gives rise to the ‘second’
canonical cone; namely,

〈 ϕnγn
(Φn)−1(Γn)−1

+3 ϕn+1fngnγn+1
ϕn+1εnγn+1 +3 ϕn+1γn+1 〉n .

6.1. LOCAL-CHARACTERISATION THEOREM 113

Let 〈αn : ϕnγn ⇒ a〉 be a colimiting cone for this chain. We aim to prove first of all that
a ∼= 1A. This will induce a colimiting cone 〈n : ϕnγn ⇒ 1A〉 which, by construction,
will make diagram (6.2) commute. Moreover, we will finally prove that we obtain
adjunctions

ιn, n : ϕn a γn .

The hint for proving a ∼= 1A comes from the following calculation, for k any natural
number:

(colim n∈ωϕnγn)ϕk ∼= colim n∈ωϕnγnϕk
∼= colim n≥kϕnγnϕk
∼= colim n≥kϕnγnϕnfk,n
∼= colim n≥kϕn(colim l≥ngl,nfn,l)fk,n
∼= colim n≥kcolim l≥nϕngl,nfn,lfk,n (6.13)
∼= colim n≥kϕngn,nfn,nfk,n (6.14)
∼= colim n≥kϕnfk,n
∼= colim n≥kϕk
∼= ϕk .

In fact we need to have a closer look at the matrix (6.13) and in particular at the
diagonal (6.14). In Figure 6.1 we have sketched the (infinite) matrix completed with the
colimit points. Using the interchange law and the fact that for every n, (εnfn) ·(fnηn) =
1fn it is not difficult to verify that

xl+1,nyl,n = yl+1,nxl,n for l ≥ n+ 1
xn+1,nyn,n = Φ−1

n fk,n
(ϕn+1γn+1Φk,n+1) · x∞,n = x′∞,n · (ϕnγnΦk,n) for n ≥ k + 1

(ϕk+1γk+1Φk) · x∞,k = x′∞,k .

Therefore we have that for any n ∈ ω the chain of isomorphisms (the diagonal of the
matrix):

ϕn
(Φn)−1

+3 ϕn+1fn
(Φn+1)−1fn +3 ϕn+2fn,n+2 +3 · · ·

has colimiting cones given by the (trivial cone of) inverses

ϕn
(Φn)−1

+3

1ϕn $,PPPPPPPPPPPPPP

PPPPPPPPPPPPPP ϕn+1fn
(Φn+1)−1fn +3

Φn
��

ϕn+2fn,n+2 +3

Φn·(Φn+1fn) ···qy kkkkkkkkkkkkkkk

kkkkkkkkkkkkkkk
· · ·

ϕn

114 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

ϕk+1γk+1ϕk
x′∞,k+1 +3 ϕk+2γk+2ϕk · · ·

ϕkγkϕk
x∞,k +3 ϕk+1γk+1ϕk+1fk

x∞,k+1+3

ϕk+1γk+1Φk

KS

ϕk+2γk+2ϕk+2fk,k+2

ϕk+2γk+2Φk,k+2

KS

· · ·

· · ·

· · ·

ϕkgk+2,kfk,k+2

yk+2,k

KS

xk+2,k +3 ϕk+1gk+1fk,k+2

yk+2,k+1

KS

xk+2,k+1 +3 ϕk+2fk,k+2

yk+2,k+2

KS

ϕkgkfk

yk+1,k

KS

xk+1,k +3 ϕk+1fk

yk+1,k+1

KS

Φ−1
k+1fk

19jjjjjjjjjjjjjjj

jjjjjjjjjjjjjjj

ϕk

yk,k

KS

Φ−1
k

19kkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkk

xl,n = ((ϕn+1εn) · (Φngn))gl,n+1fk,l for l ≥ n+ 1
yl,n = ϕngl+1,nηlfk,l for l ≥ n
x∞,n = ((ϕn+1εnγn+1) · (Φ−1

n Γ−1
n))(Φ−1

n fk,n)
x′∞,n = ((ϕn+1εnγn+1) · (Φ−1

n Γ−1
n))ϕk

Figure 6.1: A matrix of 2-cells

and by

ϕn
(Φn)−1

+3

ϕnιn

��

ϕn+1fn
(Φn+1)−1fn +3

ϕn+1((γn+1Φn)·(ιn+1fn))

��

ϕn+2fn,n+2 +3

��

· · ·

ϕnγnϕn
x′∞,n +3

αnϕn
&.TTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTT
ϕn+1γn+1ϕn

x′∞,n+1 +3

αn+1ϕn

��

ϕn+2γn+2ϕn +3

···
αn+2ϕn

px iiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiii · · ·

aϕn

(6.15)

obtained by going along the edges of the matrix of Figure 6.1. Hence there exists a
universal pseudo-cell µn : aϕn

∼=⇒ ϕn such that

µn · (αnϕn) · (ϕnιn) = 1ϕn . (6.16)

Namely µn is the inverse of (αnϕn)·(ϕnιn). To conclude the existence of an isomorphism
a ∼= 1A, we use again that the Φ′s form a pseudo-colimit for the chain 〈fn : An → An+1〉

6.1. LOCAL-CHARACTERISATION THEOREM 115

and show that the family of µn’s satisfy

µn · (aΦn) = Φn · (µn+1fn) . (6.17)

To deduce the above equality notice that it follows from diagram (6.15) that aϕn+1fn
is the colimit of the chain of pseudo-cells obtained by precomposing the chain

〈(Φm)−1fn+1,m : ϕmfn+1,m ⇒ ϕm+1fn+1,m+1〉m≥n+1

with fn. By universality of this colimit and using that it consists of isomorphisms, to
prove property (6.17) it is enough to establish that

µn · (aΦn) · (αn+1ϕn+1fn) · (ϕn+1ιn+1fn)
= Φn · (µn+1fn) · (αn+1ϕn+1fn) · (ϕn+1ιn+1fn) .

By the universal property defining µn+1 (see equation (6.16)) the right hand side equals
Φn. Let us then calculate the left hand side:

µn · (aΦn) · (αn+1ϕn+1fn) · (ϕn+1ιn+1fn)
= µn · (αn+1ϕn) · (ϕn+1γn+1Φn) · (ϕn+1ιn+1fn)

(by the interchange law)
= µn · (αnϕn) · (ϕnιn) · Φn

(see diagram (6.15))
= Φn (6.18)

(by equation (6.16))

Thus equation (6.17) holds and so there exists a unique : a ∼=⇒ 1A such that

ϕn = µn . (6.19)

Finally, define

n
def= · αn : ϕnγn ⇒ 1A . (6.20)

The following cone is colimiting, since is an isomorphism:

ϕ0γ0 +3

α0
$,QQQQQQQQQQQQQQ

QQQQQQQQQQQQQQ

0

�%
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
ϕ1γ1

α1

��
1

�

+3 ϕ2γ2

α2
rz mmmmmmmmmmmmmm

mmmmmmmmmmmmmm

2

y� {{
{{

{{
{{

{{
{{

{{
{{

{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
+3

···

· · ·

a

��

1A

Moreover, expanding the definition of n, and using the identities (6.19) and (6.16), we
obtain the first triangular identity; namely, (nϕn) · (ϕnιn) = 1ϕn .

116 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

It follows from the first triangular identity that the composite (γnn) · (ιnγn) is an
idempotent. Thus, to deduce the second triangular identity (namely, (γnn) · (ιnγn) =
1γn) we need only show that the composite (γnn) · (ιnγn) is an isomorphism. Again we
consider a chain of pseudo-cells. Take, the following colimiting cone:

γn
(Γn)−1

+3

1γn #+PPPPPPPPPPPPPP

PPPPPPPPPPPPPP γn+1fn
(Γn+1)−1fn +3

Γn
��

γn+2fn,n+2 +3

Γn·(Γn+1fn) ···qy kkkkkkkkkkkkkkk

kkkkkkkkkkkkkkk
· · ·

γn

Using again a matrix like in Figure 6.1 one can verify that the following cone

γn
(Γn)−1

+3

ιnγn

��

gnγn+1
gn(Γn+1)−1

+3

((Γnϕn+1)·(gnιn+1))γn+1

��

gn+2,nγn+2 +3

��

· · ·

γnϕnγn +3

γnn
%-TTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTT
γnϕn+1γn+1 +3

γnn+1

��

γnϕn+2γn+2 +3

···
γnn+2

px iiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiii · · ·

γn

(6.21)

is colimiting for the same diagram. Thus, there exists an automorphism on γn of which
(γnn) · (ιnγn) is the inverse.

[3 implies 1:] Recall that in order to prove that 〈Φn : ϕn+1fn
∼=⇒ ϕn : An → A〉 is

a pseudo colimit for 〈fn : An → An+1〉 we need to show that the properties 1 and 2 of
Definition 6.1.6 hold.

Proof of property 1: In order to find a suitable υ : A→ X consider the chain

〈 ψnγn
(Ψn)−1(Γn)−1

+3 ψn+1fngnγn+1
ψn+1εnγn+1 +3 ψn+1γn+1 〉n

and let 〈Υn : ψnγn ⇒ υ〉n be a colimiting cone for it. We need to describe now a family
of µk : υϕk ⇒ ψk such that for every k the following diagram commutes:

υϕk+1fk
µk+1fk +3

υΦk
��

ψk+1fk

Ψk
��

υϕk µk
+3 ψk .

Fix a natural number k, an observe, once again using a matrix like Figure 6.1 that the

6.1. LOCAL-CHARACTERISATION THEOREM 117

following diagram

ψk
(Ψk)

−1

+3

ψkιk
��

ψk+1fk
(Ψk+1)−1fk +3

ψk+1((γk+1Φk)·(ιk+1fk))

��

ψk+2fk,k+2

��

+3 · · ·

ψkγkϕk +3

Υkϕk %-SSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSS
ψk+1γk+1ϕk +3

Υk+1ϕk
��

ψk+2γk+2ϕk +3

···
Υk+2ϕkpx jjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjj
· · ·

uϕk

(6.22)

yields a colimiting cone for the chain 〈(Ψn)−1fk,n : ψnfk,n ⇒ ψn+1fk,n+1〉n≥k. But since
the above chain is made of pseudo cells, it admits also the (trivial) colimiting cone of
inverses:

ψk
(Ψk)

−1

+3

1ψk �'GG
GG

GG
GG

G

GG
GG

GG
GG

G ψk+1fk
(Ψk+1)−1fk+3

Ψk
��

ψk+2fk,k+2 +3

Ψk·(Ψk+1fk)t| qqqqqqqqqqq

qqqqqqqqqqq

···

· · ·

ψk

Define µk : υϕk ⇒ ψk to be the universal pseudo cell such that

µk · (Υkϕk) · (ψkιk) = 1ψk .

We are then left with showing that for all k ∈ ω,

µk · (υΦk) = Ψk · (µk+1fk) .

By the universal property of colimits, we know that two parallel arrows in the hom-
category K(A,X) with domain υϕk, are equal if they are equalised by all the edges of
the cone (6.22). Moreover since the diagram is a diagram of isomorphisms it is enough
to check the property for only one edge. Observe then that the following equality holds,
for all k:

(Ψk)−1 · µk · (Υkϕk) · (ψkιk) = (µk+1fk) · (υ(Φk)−1) · (Υkϕk) · (ψkιk) .

In fact from the universal property defining µk, the left hand side of the equality above
reduces immediately to (Ψk)−1. From the diagram (6.22), instead, we see that

(Υkϕk) · (ψkιk) = (Υk+1ϕk) · (ψk+1γk+1Φk) · (ψk+1ιk+1fk(Ψk)−1) ,

hence,

(Ψk)−1 = (µk+1fk) · (Υk+1ϕk+1fk) · (ψk+1ιk+1fk) · (Ψk)−1

= (µk+1fk) · (υ(Φk)−1) · (υΦk) · (Υk+1ϕk+1fk) · (ψk+1ιk+1fk) · (Ψk)−1

= (µk+1fk) · (υ(Φk)−1) · (Υk+1ϕk) · (ψk+1γk+1Φk) · (ψk+1ιk+1fk(Ψk)−1)
= (µk+1fk) · (υ(Φk)−1) · (Υkϕk) · (ψkιk) .

118 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

Therefore Ψ−1
k · µk = (µk+1fk) · (υΦ−1

k). Hence by composing with Ψk on the left and
with (υΦk) on the right of both the sides of the equations we get that µk · (υΦk) =
Ψk · (µk+1fk).
Proof of property 2: Suppose now that we are given two arrows u, v : A → X and a
family of 2-cells Υnn : uϕn ⇒ vϕn, as in condition 2 of Definition 6.1.6. We look for a
2-cell Υ : u⇒ v, such that Υn = Υϕn, for every n.

Recall that 1An = colim (ϕnγn), hence u = colim (uϕnγn) and v = colim (vϕnγn).
Because of the properties of the Υn’s, we can describe two colimiting cones and the
following map between them:

uϕnγn
Υnγn +3

��

un

}� ��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

...
vϕnγn

��

...

vn

�!
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

uϕn+1γn+1
Υn+1γn+1 +3

un+1

w� www
ww

www
ww

ww
www

ww
ww

www
ww

www
ww

ww
www

ww
ww ...

vϕn+1γn+1

vn+1

�'GGGGGGGGGGGGGGGGGG

GGGGGGGGGGGGGGGGGG
...

u
Υ

+3 v

where Υ : u⇒ v is the unique 2-cell such that

Υ · (un) = (vn) · (Υnγn) .

We claim that Υ satisfies the required property. In fact by whiskering, for any n, the
above equalities with ϕn, we obtain that

(Υϕn) · (unϕn) = (vnϕn) · (Υnγnϕn) . (6.23)

Now, since n is counit for the adjunction ϕn a γn with unit ιn, by precomposing both
sides of the equation with uϕnιn we obtain:

Υϕn = (Υϕn) · (unϕn) · (uϕnιn) (by a triangular identity)
= (vnϕn) · (Υnγnϕn) · (uϕnιn) (by the equation (6.23) above)
= (vnϕn) · (vϕnιn) ·Υn (by the interchange law)
= Υn (by a triangular identity)

Moreover Υ is uniquely determined by the property Υϕn = Υn. Indeed, for every n,

Υϕn = Υn implies Υϕnγn = Υnγn (6.24)

and so

Υ · (un) = (vn) · (Υϕnγn) (by the interchange law)
= (vn) · (Υnγn) (by the property (6.24) above).

But, by universality of colimits there exists a unique such Υ. 2

6.1. LOCAL-CHARACTERISATION THEOREM 119

In the case of a chain of coreflections, all the 2-cells in the canonical cones 〈gl,nfn,l〉l
.=⇒

γnϕn are pseudo-cells, hence the condition about these cones being colimiting becomes
vacuous and so we have the following simplified version of the theorem:

Corollary 6.1.10 (Local characterisation for coreflections) In an ωCat-category
K, for an ω-chain of coreflections 〈fn a gn : An+1 → An〉 and a pseudo cone

〈Φn : ϕn+1fn
∼=⇒ ϕn : An → A〉

for the ω-chain 〈fn : An → An+1〉, the following are equivalent:

1. 〈Φn : ϕn+1fn
∼=⇒ ϕn : An → A〉 is a pseudo colimit for 〈fn : An → An+1〉 in K.

2. 〈Φn : ϕn+1fn
∼=⇒ ϕn : An → A〉 is a pseudo colimit for 〈fn : An → An+1〉 in K∼=.

3. There is a pseudo cone of coreflections

(Φn,Γn) : (ϕn+1 a γn+1)(fn a gn) ∼=⇒ (ϕn a γn)

such that the canonical cone 〈ϕnγn〉 .=⇒ 1A is colimiting.

Proof: The only thing to check is that in this case the ιn’s of the previous proof are
pseudo-cells. Recall that by definition (see equation (6.10) in the previous proof),

ιn
def= ($n

n)−1 · ιn,nn : 1An ⇒ γnϕn ,

where $n
n is a pseudo cell, while ιn,nn is an edge for the colimiting cone

Gn,n :
gn,n

gn,nηn +3

ιn,nn $,PPPPPPPPPPPPPP

PPPPPPPPPPPPPP gn+1,nfn
gn+1,nηn+1fn +3

ιn,nn+1

��

gn+2,nfn,n+2 +3

ιn,nn+2qy kkkkkkkkkkkkkkkk

kkkkkkkkkkkkkkkk

···

· · ·

gm,n .

But in the case of a chain of coreflections the diagram consists of pseudo cells only,
hence the edges must be pseudo cells, too. 2

For those familiar with Smyth and Plotkin’s result, it should be clear that the condition
about the canonical cone 〈ϕnγn〉 .=⇒ idA being colimiting generalises the analogous
condition of [125, Theorem 2] asserting

∨
ϕnγn = 1A. Dual results to Theorem 6.1.9

and Corollary 6.1.10 with respect to the limit of the ωop-chain of gn’s obviously hold
too and provide the following corollary about limit/colimit coincidence.

Corollary 6.1.11 (Limit/Colimit coincidence) In an ωCat-category, the follow-
ing are equivalent for an ω-chain of coreflections (adjunctions)

〈ηn, εn : fn a gn : An+1 → An〉

and a pseudo cone of coreflections (adjunctions)

(Φn,Γn) : (ϕn+1 a γn+1)(fn a gn)
∼=⇒ (ϕn a γn) :

120 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

1. 〈Φn : ϕn+1fn
∼=⇒ ϕn : An → A〉 is a bicategorical colimit for 〈fn : An → An+1〉.

2. 〈Γn : gnγn+1
∼=⇒ γn : A→ An〉 is a bicategorical limit for 〈gn : An+1 → An〉.

Corollary 6.1.11 in itself seems to be part of the categorical folklore [128, 143]. It also
seems that the main reason why it holds (as an attempt to a direct proof would suggest)
is due to the fact that the diagrams we are considering (ω-chains) have colimits in the
enriching categories (objects of ωCat) and the functors induced by whiskering preserve
them. This fact was pointed out to us by Pino Rosolini.

Remark: An analysis of the statements and proofs of Theorem 6.1.9 and Corol-
lary 6.1.10 suggests possible generalisations from ω-chains to classes of filtered diagrams
satisfying certain closure properties. We do not expand on this possibility here.

We have already seen (cf. Proposition 1.2.15) that adjoint pairs in Cocont correspond
to functors in Cat, whence we can deduce a way of calculating pseudo-colimits of ω-
chains in Cocont.

Proposition 6.1.12 Let 〈ηn, εn : fn a gn : Ân+1 → Ân〉 be an ω-chain in Cocontadj.
Then the chain 〈fn : Ân → Ân+1〉 has a pseudo-colimit in Cocont.

Proof:[Sketch] It is a known fact that the full embeddings,

Cat[C,D] ↪→ Cocont[C,D] ,

given by F 7→ LanyC(yDF), for any two small categories C and D, extend to a pseudo
functor (locally a full embedding)

Cat ↪→ Cocont

that preserves pseudo colimits [143].
In Chapter 1 we proved (Proposition 1.2.15) an equivalence of categories

Cat[Cc,Dc] ' EGeom[C,D] ,

to which we can now add an equivalence

EGeom[C,D] ' Cocontadj[C,D] ,

since any colimit preserving functor between presheaf categories has a right adjoint
(cf. Section 1.2).

So given any chain of adjoint pairs 〈fn a gn : Ân+1 → Ân〉, consider the “associated”
chain of functors

〈hn : Ac
n → Ac

n+1〉 .

Let 〈A, kn : Ac
n → A〉 be a colimit in Cat of the chain of hn’s. Let ϕn : Ân → Â and

Φn : ϕn+1fn
∼=⇒ ϕn be the colimit preserving functors and natural transformations

induced by the equivalences Ân
∼−→ Âc

n (cf. Proposition 1.2.14) and by the pseudo-
functor Cat ↪→ Cocont. The families of ϕn’s and Φn’s forms a pseudo-colimit for the
chain 〈fn : Ân → Ân+1〉. 2

6.2. COHERENCE 121

In the reminder of this chapter a sub-2-category of Cocont will play a role with
respect to the analysis of open map bisimulation that we have in mind.

Definition 6.1.13 (CocontM) Define CocontM to be the sub-2-category of Cocont
with the same objects of Cocont, 2-cells given by monomorphic natural transforma-
tions and arrows colimit preserving functors that also preserve monomorphic natural
transformations.

The 2-category CocontM is an ωCat0 category.

Proposition 6.1.14 The same construction outlined in the proof of the proposition
above would produce a pseudo colimit in CocontM from a chain of arrows in Cocontadj

M .

6.2 Coherence

So far we have proved results concerning ωCat-categories. In order to make these
results directly applicable to Prof we should extend them to hold for bicategories with
the ωCat-property [9]. A way of doing this is by means of coherence results [106, 107,
109, 127, 42]. Roughly speaking these are results that state when an up-to-isomorphism
situation can be replaced with a strict one without losing any property of interest. The
category theory literature abounds with examples of such results. The first notable one
is Mac Lane’s coherence result for monoidal categories (see [76]).

To us the following will be of primary importance:

Theorem 6.2.1 (see [42]) Any bicategory is pseudo equivalent to a 2-category.

Definition 6.2.2 (ωCat-Bicategories) An ωCat-bicategory is a bicategory with the
ωCat-property, i.e., a bicategory, B, such that for any two objects A,B, the hom cate-
gory B(A,B) has colimits of ω-chains and the composition functors preserve them.

Similarly one defines ωCat0-bicategories.

Theorem 6.2.1 is the key result to prove the following:

Theorem 6.2.3 Any ωCat-bicategory (ωCat0-bicategory) is pseudo equivalent to an
ωCat-category (ωCat0-category).

Proof: We do the case for ωCat, the other one is analogous.
Let B be an ωCat-bicategory and let K be a pseudo equivalent 2-category (that

exists because of Theorem 6.2.1). We show that K is in fact an ωCat-category. Let
ϕ : B → K be a pseudo equivalence with ψ : K → B as a pseudo inverse. Since
any pseudo equivalence is locally an equivalence of categories, then for any two objects
A,B ∈|K|,

K(A,B) ' B(ψA,ψB)

that is K(A,B) is an object of ωCat since B has the ωCat property. We are only
left with showing that the composition functors in K are ωCat-functors. But this is

122 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

again trivial since, for any three objects A,B,C ∈| K |, we have the following natural
isomorphism

K(B,C)×K(A,B)
cKA,B,C

//

∼=ψB,C×ψA,C

��

K(A,C)

K(ϕψA,ϕψC)

'
OO

B(ψC,ψB) × B(ψA,ψB)
cBψA,ψB,ψC

// B(ψA,ψC)

ϕψA,ψC

OO

,

where cK and cB are the composition functors in K and B respectively. Hence, for
every A,B,C, the composition functor cKA,B,C is naturally isomorphic to a functor that
preserves colimits of ω-chains and so it preserves such colimits as well. 2

Observe that, in fact we have proved that a pseudo equivalence preserves the ωCat-
property (and the ωCat0-property as well), hence we have the following:

Example 6.2.4 Prof , being pseudo equivalent to Cocont, is an ωCat0-bicategory.

Moreover since pseudo (co)limits are preserved by pseudo equivalences, the above result
is telling us that the statements of Theorem 6.1.9, Corollary 6.1.10 and Corollary 6.1.11
can be generalised to ωCat-bicategories. Of course this would imply taking some extra
care especially in treating the notion of adjoint arrows in a bicategory [47].

In the next section we shall develop, after Freyd, the notion of pseudo algebraically
complete and compact 2-categories. The following results here will help simplifying
some of the proofs as well as pave the way to a possible further generalisation of the
concepts and results to include bicategories as well.

We thank John Power for pointing out to us the following theorem which is a con-
sequence of results in [15].

Theorem 6.2.5 For any 2-category K there is another 2-category Kq and a pseudo
equivalence q : K → Kq such that for every other 2-category L, composing with q induces
a pseudo equivalence of 2-categories

Ps[Kq,L] ' Hom[K,L] ,

where Ps[Kq,L] is the 2-category of 2-functors from Kq to L, pseudo natural transfor-
mations and modifications and Hom[K,L] the 2-category of pseudo functors from K to
L, pseudo natural transformations and modifications.

This means that for every pseudo functor between two 2-categories, K and L, there exists
an “equivalent” 2-functor between Kq and L. This fact will be useful in simplifying the
proof of Theorem 6.3.12.

6.3. PSEUDO ALGEBRAIC COMPACTNESS 123

Definition 6.2.6 (Pseudo ωCat-functors) A pseudo functor, F , between two ωCat-
categories, K,K′, regarded as 2-categories is a pseudo-ωCat-functor if for any two ob-
jects of K, A,B, the functor

FA,B : K(A,B)→ K′(FA,FB)

preserves colimits of ω-chains, i.e., if it is an arrow of ωCat.

Similarly it is a pseudo-ωCat0-functor if it also preserves initial objects.

The following two propositions are immediate consequences of the definitions (when
given at the abstraction level of [127]).

Proposition 6.2.7 If T : K → L is a pseudo equivalence of ωCat-categories (ωCat0-
categories) then T is a pseudo ωCat-functor (ωCat0-functor).

Proposition 6.2.8 If T, T ′ : K → L are two equivalent pseudo functors in Hom[K,L]
and T is a pseudo ωCat-functor (ωCat0-functor) then so is T ′, moreover if T preserves
pseudo colimits of ω-chains so does T ′.

6.3 Pseudo algebraic compactness

Algebraic compactness [35, 36] is a notion due to Freyd that axiomatises canonical fixed
points for (endo)functors of mixed variance. As common in the categorical analysis
of fixed point theorems the notion of least fixed point is replaced by the more robust
notion of initial prefixed point. In fact by a lemma due to Lambek [69], given any
category C and an endofunctor T : C → C, an initial algebra i : TC → C for T is
always an isomorphism. Dually the same hold for any final coalgebra f : C → TC.
This motivates the definition of algebraic completeness first and, as a refining step for
the treatment of mixed-variance functors, compactness after.

Definition 6.3.1 Let T : C → C be a functor. Define the category of T -algebras, T -alg
to consist of

Objects: Arrows of C, a : TC → C.
Arrows: An arrow g : C → D in C is an arrow between a : TC → C and b : TD → D
if the following square commutes:

TC
a //

Tg
��

C

g

��

TD
b

// D .

An initial algebra for T is an initial object in T−alg.

Dually one defines the category T−coalg of T -coalgebras and a final coalgebra is a ter-
minal object of T−coalg.

124 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

Lemma 6.3.2 (Lambek) Given a functor T : C → C, every initial algebra for T is an
isomorphism in C.

Definition 6.3.3 (Algebraic Completeness) A category C is algebraically complete
if every endofunctor T : C → C has an initial algebra. It is algebraically bicomplete if
every endofunctor has both an initial algebra and a final coalgebra.

As Freyd remarks [36], when giving this definition, the phrase “every endofunctor” has
to be understood in a 2-categorical sense, i.e., it refers to a chosen class of functors.
Fiore in his PhD thesis [30] tackles this remark by considering the enriched case and
defines V-algebraically complete and bicomplete categories. In the presentation of the
results and definitions we take the more relaxed view of Freyd and when concrete cases
will be presented we shall explicitly mention what class of functors we are referring to.

Since any final coalgebra f : B → TB for an endofunctor T is an isomorphism, if
T has an initial algebra i : TA → A there exists a unique arrow of C, h : A → B, such
that the following square commutes:

TA
i //

Th
��

A

h
��

TB
f−1

// B .

Following Freyd, we call this the canonical morphism from the algebra i to the coalgebra
f .

Definition 6.3.4 (Algebraic Compactness) A category C is algebraically compact
if it is algebraically bicomplete and every canonical morphism from an initial algebra to
a final coalgebra is an isomorphism.

As an immediate consequence of the definition we have the following:

Lemma 6.3.5 (Freyd) In an algebraically compact category, the inverse of an initial
algebra is a final coalgebra and vice versa.

If a category is algebraically compact, then mixed-variance functors have particularly
well-behaving fixed points satisfying a minimal invariance property (see [35, 36]). We
also have the following:

Theorem 6.3.6 (Freyd) Let C be an algebraically compact category. Let

T : Cop × C → C

be a functor. Then there exists an isomorphism i : T (A,A) → A in C satisfying the
following universal property: For every two objects, B,C ∈|C | and morphisms

f : T (B,C)→ C and g : B → T (C,B) ,

there exists a unique pair of morphisms

it(f, g) : A −→ C and coit(f, g) : B −→ A ,

6.3. PSEUDO ALGEBRAIC COMPACTNESS 125

such that the following squares commute,

T (A,A) i //

T (coit(f,g),it(f,g))
��

A

it(f,g)

��

T (B,C)
f

// C

B
g

//

coit(f,g)

��

T (C,B)

T (it(f,g),coit(f,g))
��

A
i−1

// T (A,A) .

We call such an i : T (A,A) → A a free dialgebra for T (more about properties of free
dialgebras can be found in [35, 36, 30, 100]).

We are interested in fixed points up to equivalence and not isomorphism, hence we
need the notion of pseudo initial algebras (cf. [15]), pseudo algebraic completeness and
compactness.

Definition 6.3.7 (Pseudo initial algebras) A pseudo initial algebra for a pseudo-
functor T on a 2-category K is an algebra a : TA→ A satisfying the following universal
property:

1. For every algebra x : TX → X there exists (it(x), ι) as in

TA
ι∼=

a //

T (it(x))
��

A

it(x)
��

TX x
// X .

2. For every

TA
µ∼=

a //

Tu
��

A

u

��

TX x
// X

TA
ν∼=

a //

Tv
��

A

v

��

TX x
// X

there exists a unique 2-cell ξ : u⇒ v such that

TA

µ∼=

a //

Tu
��

A

u

��

v

��

ξ⇒

TX x
// X

=

TA

ν∼=
Tξ⇒

a //

Tv
��

Tu
��

A

v

��

TX x
// X ,

that is
(ξa) · µ = ν · (xTξ) .

Observe that from the universal property it immediately follows that ξ is a pseudo cell.

Lemma 6.3.8 (Pseudo Lambek) If T : K → K is a pseudo functor, then any pseudo
initial algebra

a : TA→ A

for T is an equivalence, in the sense that there exists b : A→ TA such that

ba ∼= 1TA and ab ∼= 1A .

126 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

Proof: Consider the algebra Ta : TTA → TA. By the universal property of pseudo
initial algebras there exists (b, β) such that

TA

β∼=

a //

Tb
��

A

b
��

TTA
Ta

// TA .

Thus there is a unique 2-cell ξ : ab⇒ 1A such that:

TA

T (ab)
Tb,a∼=

%%

β∼=

a //

Tb
��

A

b
��

ξ⇒ 1A

~~

TTA

Ta
��

Ta
// TA

a

��

TA a
// A

=

TA

T (ab) Tξ⇒

!!

aTA∼=

a //

T1A

��

A

1A

��

TA a
// A .

Clearly the unique ξ as above is a pseudo-cell, hence ab ∼= 1A. To show that ba ∼= 1TA
observe that

ba ∼= TaTb ∼= T (ab) ∼= T (1A) ∼= 1TA ,

where the first isomorphism is given by β above. 2

Terminology: If a : A → B is an equivalence in a 2-category, we call any b : B → A
such that ba ∼= 1A and ab ∼= 1B a pseudo inverse to a.

It is immediately seen that any two pseudo inverses are isomorphic.

By a dual statement to the Pseudo Lambek Lemma, pseudo final coalgebras are
equivalences. If f : B → TB is a pseudo final coalgebra for T , for any g : TB → B be
pseudo inverse to f , if (it(g), ι) is as in

TA
ι∼=

a //

T (it(g))
��

A

it(g)
��

TB g
// B

we shall call it(g) : A → B a canonical arrow from the pseudo initial algebra a to the
pseudo final coalgebra f .

Definition 6.3.9 (Pseudo Algebraic Completeness and Compactness) Define a
2-category K to be pseudo algebraically complete if every pseudo endofunctor, T : K →
K has a pseudo initial algebra.

The 2-category K is pseudo algebraically bicomplete if every pseudo endofunctor has
both pseudo initial algebra and pseudo final coalgebra.

6.3. PSEUDO ALGEBRAIC COMPACTNESS 127

The 2-category K is pseudo algebraically compact if it is pseudo algebraically bicom-
plete and the canonical map from a pseudo initial algebra to a pseudo final coalgebra is
an equivalence.

We shall be interested in pseudo algebraic compactness with respect to pseudo ωCat-
functors.

The following generalisation of [125, Lemma 2] (Basic Lemma) to the “pseudo” case
is due to Marcelo Fiore. It provides a tool for finding pseudo initial algebras of pseudo
functors by iterating the application of the functor starting at some pseudo initial object.

Lemma 6.3.10 (Pseudo Basic Lemma) Let K be a 2-category with pseudo initial
object 0 and let T : K → K be a pseudo functor. For ⊥ : 0→ T0 consider the ω-chain

〈T n⊥ : T n0→ T n+10〉

and let Φn : ϕn+1fn
∼=⇒ ϕn : T n0→ A be a pseudo colimit for it.

If

Φ′
n = T (Φn)Tfn,ϕn+1 : T (ϕn+1)T (fn)

∼=⇒ T (ϕn+1fn)
∼=⇒ Tϕn : T n+10→ TA

is a pseudo colimit of the ω-chain 〈T n+1⊥ : T n+10→ T n+20〉 and a : TA→ A mediates
between the pseudo cones 〈Φ′

n〉 and 〈Φn+1〉, then a is a pseudo initial T -algebra.

We embark now on generalising part of the definitions and results of [30, Chapter 7].
In fact we identify a class of ωCat-categories for which pseudo algebraic compactness
will be guaranteed by the results above (cf. [30, Definition 7.3.11]).

Definition 6.3.11 A Kcat is an ωCat0-category with pseudo initial object and pseudo
colimits of ω-chains of coreflections.

To ensure pseudo algebraic compactness of Kcats we need some preliminary results.

Theorem 6.3.12 For K an ωCat-category, let

〈ηn, εn : fn a gn : An+1 −→ An〉

be an ω-chain in Kcor and let

〈Φn : ϕn+1fn
∼=⇒ ϕn : An → A〉

be a pseudo colimit for the chain of fn’s. If T : K → K is a pseudo ωCat-functor, then

〈T (Φn)Tfn,ϕn+1 : T (ϕn+1)T (fn)
∼=⇒ T (ϕn) : TAn → TA〉

is a pseudo colimit too.

Proof: Observe first of all that by means of the coherence results exposed in Section 6.2
we can reduce to assume T a 2-functor rather than a pseudo functor. In fact any pseudo
functor from K → K (by Theorem 6.2.5) will be equivalent in Hom[K,K] to a pseudo
functor obtained by precomposing a 2-functor from Kq to K with q : K → Kq. So if we
know that the theorem holds for the 2-functors, say, T ′, from Kq to K then it will also

128 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

hold for the pseudo functors of the form T ′q, since q is a pseudo equivalence and hence,
by Proposition 6.2.8 it will hold for all pseudo ωCat-endofunctors of K.

By the Local-Characterisation Theorem (Theorem 6.1.9), there exists a pseudo cone
of adjoints

(Φn,Γn) : (ιn+1, n+1 : ϕn+1 a γn+1)(ηn, εn : fn a gn) ∼=⇒ (ιn, n : ϕn a γn)

such that the canonical cones 〈ϕnγn〉
.=⇒ 1A and 〈gl,nfn,l〉l

.=⇒ γnϕn are colimiting.
Since 2-functors preserve adjoints, the following is also a pseudo cone of adjoints

(TΦn, TΓn) : (T ιn+1, T n+1 : Tϕn+1 a Tγn+1)(Tηn, T εn : Tfn a Tgn)
∼=⇒ (T ιn, T n : Tϕn a Tγn) .

Moreover since T is assumed to be an ωCat-functor, it preserves locally colimit of ω-
chains, thus the canonical cones 〈TϕnTγn〉 .=⇒ 1TA and 〈Tgl,nTfn,l〉l

.=⇒ TγnTϕn are
colimiting. Again by the Local Characterisation Theorem this implies that the pseudo
cone

〈T (Φn) : T (ϕn+1)T (fn)
∼=⇒ T (ϕn) : TAn → TA〉

is a pseudo colimit. 2

Proposition 6.3.13 For any Kcat K the pseudo initial object, 0, is also pseudo termi-
nal and for every object A of K, any pair of arrows

0
f

**
A

g

jj

forms a coreflection, f a g.

Proof: To see that 0 is pseudo terminal, observe first of all that for any object A of
K, K(A, 0) is non-empty since it has initial object. Moreover, any arrow g : A → 0
is initial in K(A, 0), since g = 10g and composition preserves initiality (10 is initial in
K(0, 0), just like any other arrow 0 → 0 since 0 is pseudo initial). In particular given
any two arrows g1, g2 : A → 0, by initiality of g1 there exists a unique 2-cell, g1 ⇒ g2,
i.e., K(A, 0) ' 1.

If f : 0 → A and g : A → A are two arrows then there exists (again by initiality)
unique η : 10 ⇒ gf and ε : fg ⇒ 1A that satisfy the triangular identities because of the
universal property of initial objects. Moreover η is an isomorphism just like any other
arrow in K(0, 0). 2

Kcats are closed under duals and products.

Proposition 6.3.14 If K and K′ are Kcats, then Kop and K ×K′ are Kcats.

Proof: The proof is straightforward for the product case. For the dualisation process,
observe that from Proposition 6.3.13 it immediately follows that Kop has a pseudo initial
object. Since 2-cells are not reversed, then Kop is ωCat0-enriched and any ω-chain of
coreflections

〈ηn, εn : fop
n a gop

n : An+1 −→ An〉

6.3. PSEUDO ALGEBRAIC COMPACTNESS 129

in Kop is derived from the chain of coreflections in K given by

〈ηn, εn : gn a fn : An+1 −→ An〉

and a pseudo limiting cone for this chain (provided by the limit/colimit coincidence)
will be a pseudo colimit for the chain of op-arrows. 2

Definition 6.3.15 (Pseudo ωCat-algebraic completeness and compactness) An
ωCat-category is said to be pseudo ωCat-algebraically complete if it is pseudo alge-
braically complete with respect to pseudo ωCat-functors.

An ωCat-category is said to be pseudo ωCat-algebraically compact if it is pseudo al-
gebraically compact with respect to pseudo ωCat-functors.

Theorem 6.3.16 Kcats are pseudo ωCat-algebraically compact.

Proof: Given a pseudo ωCat-functor, T : K → K, and a coreflection

0
⊥

++
T0

!

jj

that certainly exists because of the Proposition 6.3.13, with unit η and counit ε, consider
the chain of coreflections defined by

Objects: A0 = 0, An+1 = TAn

Arrows: f0 = ⊥, g0 = !, fn+1 = Tfn, gn+1 = Tgn with unit ηn+1 and counit εn+1

given by

ηn+1
def= T−1

fn,gn
· Tηn · TAn : 1TAn

∼=⇒ T1An ⇒ T (gnfn)
∼=⇒ TgnTfn

εn+1
def= T−1

An+1
· Tεn · Tgn,fn : TfnTgn

∼=⇒ T (fngn)⇒ T (1An+1)
∼=⇒ 1TAn+1 .

Since K is a Kcat the chain of coreflections has a pseudo colimit of vertex A in Kcor and
by Corollary 6.1.10 the cone of left adjoints is pseudo colimiting in K. By Theorem 6.3.12
this is preserved by application of T and by the Pseudo Basic Lemma, any mediating
equivalence TA→ A is a pseudo initial algebra for T . By the limit colimit coincidence,
a dual statement to the Pseudo Basic Lemma yields that any pseudo inverse to the
initial algebra is a pseudo final coalgebra and this is easily seen to be equivalent to
pseudo algebraic compactness. 2

Thus, every pseudo ωCat-functor T : Kop × K → K on a Kcat K has a free pseudo
dialgebra

T (A,A) ' A

130 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

characterised by the following universal property: for every x′ : X ′ → T (X,X ′) and
x : T (X ′,X)→ X, we have

X ′

∼=

x′ //

coit(x′,x)
��

T (X,X ′)

T (it(x′,x),coit(x′,x))
��

A
' // T (A,A)

T (A,A)

∼=

' //

T (coit(x′,x),it(x′,x))
��

A

it(x′,x)
��

T (X ′,X) x
// X

given uniquely up to canonical coherent isomorphism (as defined for pseudo initial al-
gebras).

Corollary 6.3.17 Cocont and CocontM are pseudo ωCat-algebraically compact.

Definition 6.3.9, 6.3.11 and 6.3.15 can be generalised to (ωCat-)bicategories. Sim-
ilarly using the pseudo equivalences (and the related preservation properties) of Sec-
tion 6.2 the Pseudo Lambek Lemma as well as the other theorems and propositions of
this section could be restated for bicategories. We shall not pursue this generalisation
effort in all details. For this reason we concentrate, in the remainder of this chapter, on
the interpretation of the type theory of Section 4.5 in Cocont (and CocontM as we
shall see) rather than Prof .

6.4 Recursive types

Using the results of the previous sections we can extend the type theory of Section 4.5
with recursive types

µϑ. t .

We begin with a parametrisation result (cf. [30, Theorem 7.1.12 and Definition 6.1.7]).

Theorem 6.4.1 Let K and L be two pseudo ωCat-algebraically complete (compact)
categories and T : K × L → L be a pseudo ωCat-functor. For any A ∈|K|, write

µTA

for the object part of a chosen pseudo-initial algebra for the endo pseudo functor, TA :
L → L, defined by freezing the first component to be, the object A, or 1A or 11A . Then
the mapping A→ µTA extends canonically to a pseudo-ωCat-functor, µT(−) : K → L.

Proof: The proof of this fact relies on some analysis of the properties of canonical
arrows from initial algebras to any other algebra (cf. [30, Chapter 7]). The details can
be found in Appendix B. 2

6.4. RECURSIVE TYPES 131

Finally we check that all the pseudo functors involved in giving the semantics of the type
theory of Section 4.5 are pseudo-ωCat-functors, but this is straightforward calculation.

Proposition 6.4.2 The pseudo functors, ⊗, +, (−)∗, !(−) and (−)⊥ are pseudo-ωCat-
functors.

Notation: If T : (Kop × K)n → L is a pseudo-functor. We write T̆ for the pseudo-
functor,

T̆ : (Kop ×K)n → Lop × L
defined (on objects) by T̆ (A,B) = (T (B,A), T (A,B)).

Clearly T = π2T̆ , where π2 : Lop×L → L is the projection on the second component.

Consider now a term µϑ. t in the type theory of Section 4.5 extended with recursive
types. We need to provide a definition for

[[Θ ` µϑ. t]] : (Cocontop ×Cocont)|Θ| → Cocont ,

where Θ is a set of variables including the free ones in µϑ. t.
Assume T : (Cocontop × Cocont) × (Cocontop × Cocont)|Θ| → Cocont to be

[[Θ + {ϑ} ` t]]. Define
[[Θ ` µϑ. t]] = π2(µ T̆(−)) ,

where µ T̆(−) is defined according to Theorem 6.4.1.

6.4.1 The two examples revisited

Back to the examples of Chapter 5 we understand now in terms of uniform fixed points
for endofunctors in Cocont, how to give solutions to our domain equations; that is

P = P⊥ +
∑
a∈Ch

P⊥ +
∑
a∈Ch

P⊥ stands for [[` µϑ. (ϑ⊥ +
∑
a∈Ch

ϑ⊥ +
∑
a∈Ch

ϑ⊥)]]

while
P = P⊥ +

∑
a∈Ch

(V (P)⊥ +
∑

(a,v)∈Ch×V

P⊥ stands for

[[` µϑ. (ϑ⊥ +
∑
a∈Ch

(
∑
v∈V

ϑ)⊥ +
∑

(a,v)∈Ch×V

ϑ⊥)]] .

There is still one point that we shall clarify, namely the reason why for the equations
above one can reduce to look for the solution in Poset the locally ordered category
of partial ordered sets and monotone functions (ordered pointwise). This is due to a
property of the embedding

e : Poset ↪→ Cat ,

that takes any poset and regards it as a category with at most one arrow between any
two objects (elements of the poset) and exactly one if the two elements are in the order
relation. In our jargon such a category is called a partial order category. The following
property is then particularly useful for our purposes.

132 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

Proposition 6.4.3 The category Poset has small sums and small filtered colimits and
the embedding e : Poset ↪→ Cat preserves them.

Hence,

Corollary 6.4.4 Let F : Cat → Cat be an endofunctor that preserves colimits of
ω-chains and such that for every partial order category, P , F (P) is a partial order
category. That is, there exists a functor F ′ : Poset → Poset such that the following
square commutes:

Poset
F ′

//

e

��

Poset

e

��

Cat
F

// Cat .

If i : F ′(P) '−→ P is an initial algebra for F ′, then e(i) is an initial algebra for F .

Proof: The only thing to note is that if F (F ′) preserves colimits of ω-chains, then an
initial algebra for F (F ′) is calculated by taking the colimit of the standard ω-chains
obtained by iterating F (F ′), starting with the empty category (poset) and this is a
filtered colimit. 2

Poset has other colimits as well (in fact it is a cocomplete category being locally finitely
presentable [5]) but they are not all preserved by the embedding into Cat as the following
counterexample that we learned from Peter Selinger shows.

Example 6.4.5 Consider the pair of parallel arrows 1
⊥ //

>
// 2 from the one element

poset to the two elements one ⊥ ≤ > that respectively pick the bottom and the top
element (as their name suggests). The coequaliser of such a pair is given by 1 itself,
while if we regard the partial orders as categories the coequaliser is given by the monoid
of natural numbers regarded as a one object category.

Clearly all the Cat-functors used to model the type theory (but for the exponential)
take partial order categories to partial order categories. Therefore when looking for
a solution to a domain equation not involving “!”, we can find it in Poset and then
transfer it to Cocont using the embeddings:

Poset ↪→ Cat ↪→ Prof ' Cocont (cf. Proposition 6.1.12).

6.5 Relational structures

In the next chapters we shall consider more examples of concurrent process calculi to
which we give a presheaf semantics. Before doing that, though, we want to use the
results of the previous sections to begin with the study of (open map) bisimulation from
a domain theoretical point of view in the style of [99, 53]. The idea is to equip ωCat0-
categories with relational structures [94]. Any given (admissible) relational structure

6.5. RELATIONAL STRUCTURES 133

R on a ωCat0-category K will induce, by the Grothendieck construction, an ωCat0-
category, {K | R}, whose objects will be pairs {A | R} consisting of an object of K
and a relation drawn from a partial order of admissible relations. An important result
here will be that is K is a Kcat then so is {K | R}. By focusing on two particular
relational structures over Cocont and CocontM we carry out a study of bisimulation.
In particular, using some extra “intensional” information provided by presheaf cate-
gories, we give a domain theoretic characterisation of bisimulation for arbitrary trees.
To do so, after having defined relational structures we carry out a study of induced
induction/coinduction principles [53, 99, 31, 100].

Definition 6.5.1 Define (CPPO⊥)∗ to be the category of possibly large posets P such
that P op is pointed (i.e., has a least element) and ω-complete (i.e., has least upper
bounds of ω-chains) and monotone functions f : P → Q such that fop : P op → Qop

is strict (i.e., least element preserving) and continuous (i.e., monotone and least upper
bound of ω-chains preserving).

Definition 6.5.2 (Relational Structures) A relational structure on a category C is
a functor R : Cop → (CPPO⊥)∗.

The order relation on a R(C), for C ∈|C |, will usually be denoted with the subset sym-
bol, ⊂.

If C is an object of C, the top element of R(C) will be written as >R(C).

An admissible relational structure R on an ωCat0-category K is a relational structure
on the ordinary category underlying K, such that

1. for a pair of morphisms f, g : A→ B, if f ∼= g then R(f) = R(g);
2. for a morphism f : A → B and an element S ∈ R(B), if f is initial in K(A,B)

then R(f)(S) = >R(A);
3. for an ω-chain 〈fn〉 in K(A,B) with colimit f : A→ B,

R ⊂ R(fn)(S), for all n, implies R ⊂ R(f)(S)

for all R ∈ R(A) and S ∈ R(B).

On a Cppo⊥-category any Pitts’ relational structure admitting inverse images and
intersections in which every relation is admissible (as defined in [100]) is an admissible
relational structure in our sense, but not vice versa as we do not require, in general,
R(f) to preserve greatest lower bounds.

Notation: If R is a relational structure on C and f : C → D is an arrow in C, with
R ∈ R(C) and S ∈ S(D) we write f : R ⊂ S for R ⊂ R(f)S.

An admissible relational structure on an ωCat0-category K induces a category of rela-
tions in K.

Definition 6.5.3 Let R be an admissible relational structure on an ωCat0-category
K. The ωCat0-category of relations {K | R} has: objects given by pairs {C |R} with

134 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

C ∈ | K | and R ∈ R(C); hom-categories {K | R}({A |R}, {B | S}) defined as the full
subcategory of K(A,B) consisting of all those f such that f : R ⊂ S; and identities and
compositions given as in K.

In fact, since partial orders can be regarded as categories, the above definition is another
example of the Grothendieck construction that we recalled in Section 1.4.1.

In [21] the following theorem is proved

Theorem 6.5.4 (Fiore) Let R be an admissible relational structure on an ωCat0-
category K. The forgetful functor

U : {K|R} → K

that projects each pair onto the first component is faithful, ωCat0-enriched, creates ([76])
pseudo initial objects and pseudo colimits of ω-chains of coreflections.

The above theorem allows us to deduce that if one has a relational structure on a Kcat
then the induced category of relations is a Kcat, too.

Corollary 6.5.5 For an admissible relational structure R on a Kcat K, the category of
relations {K|R} is a Kcat.

As we have already said we shall be concerned with certain specific relational structures
on Cocont and CocontM . These are defined below.

Definition 6.5.6 1. Admissible extensional relations on CocontM : Ext is defined
as follows.
For every small category C, Ext(C) is the complete meet semilattice of relations
R ⊆ |Ĉ 2 | such that

(a) X ′ ∼= X R Y ∼= Y ′ implies X ′ R Y ′;

(b) ∅ R ∅;
(c) for every pair of ω-chains of monomorphisms ~X and ~Y with colimits X and

Y respectively,

if ~Xn R ~Yn, for all n, then X R Y .

These relations are ordered by inclusion and the action of Ext on morphisms is
by inverse image, i.e.,

Ext(F)(S) = {(X,Y) ∈|Ĉ | × |Ĉ || (FX,FY) ∈ S} .

2. Admissible intensional relations on Cocont: Int is defined as follows.
For every small category C, Int(C) is the complete meet semilattice of intensional
relations R ⊆ |Ĉ ↙↘ | such that

(a) for every triple of isomorphisms W ∼= W ′, X ∼= X ′, and Y ∼= Y ′,

(X ← W → Y) ∈ R implies (X ′ ∼= X ←W
∼=←−W ′ ∼=−→W → Y ∼= Y ′) ∈ R ;

(b) (∅ ← ∅ → ∅) ∈ R;

6.6. COINDUCTION AND BISIMULATION 135

(c) for every span of natural transformations ~X
p⇐= ~W

q
=⇒ ~Y where ~X, ~W , and

~Y are ω-chains with colimits X, W , and Y respectively,

if (~Xn
pn←− ~Wn

qn−→ ~Yn) ∈ R, for all n, then (X W
colim p
oo

colim q
// Y) ∈ R.

These intensional relations are ordered by inclusion and the action of Int on mor-
phisms is by inverse image, i.e.,

Int(F)(S) = {X f←− Z g−→ Y ∈|Ĉ ↙↘ | | FX Ff←− FZ Fg−→ FY ∈ S} .

3. Every relational structure R on Cocont induces a relational structure R∗ on
Cocontop with

R∗(C) def= R(Cop) and R∗(F) def= R(F 0) , (6.25)

where, if F : Ĉ → D̂, F 0 : D̂op → Ĉop is defined by extending the corresponding
dualised profunctor (cf. Section 4.3 and Example 6.6.7).

6.6 Coinduction and bisimulation

We use Theorem 6.5.4 to derive induction and coinduction principles for recursively
defined domains [100, 53]. The coinduction principle will be used to prove a coinduction
property based on bisimulation, i.e., to show that the relational part of a free pseudo
algebra in a category of relations {K|R} is the maximal bisimulation.

With an eye on applications to Cocont (see Section 6.7) we consider separately the
case of covariant functors and of mixed-variance ones, the latter requiring the notion of
involutory category (cf.[30, Chapter 6]).

6.6.1 Covariant functors

Notation: Let R be an admissible relational structure on a Kcat K, and let T and T#

be pseudo ωCat-functors such that the diagram

{K|R}

U
��

T#
// {K|R}

U
��

K
T

// K

commutes, where U is the forgetful functor, we often write (T (A), TR(R)) in place of
T#({A |R}).

Similarly we shall often write (A,R) for {A |R}.

As a consequence of Theorem 6.5.4 we have the following:

136 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

Proposition 6.6.1 Let R be an admissible relational structure on a Kcat K. Consider
pseudo ωCat-functors T and T# such that the diagram

{K|R}

U
��

T#
// {K|R}

U
��

K
T

// K

commutes, where U denotes the forgetful ωCat0-functor. Then, for every free pseudo
T -algebra

fold : T (D) ' D : unfold

there exists (a necessarily unique) ∆ ∈ R(D) such that

fold : T#({D |∆}) ' {D |∆} : unfold

is a free pseudo T#-algebra.

Proof: From the results of the previous sections we know that D is equivalent to the
vertex of any pseudo colimit for the ω-chain

0→ T0→ T 20→ T 30→ · · · ,

where 0 is a pseudo initial object. Hence, because of Theorem 6.5.4 there exists ∆, such
that {D |∆} is the pseudo colimit of

(0,>R(0))→ (T0, TR(>R(0))→ (T 20, T 2
R(>R(0)))→ · · · .

Moreover, ∆ is unique as R(D) is a partial order set. 2

Proposition 6.6.2 (Induction/Coinduction principles) Under the hypothesis of
Proposition 6.6.1, the free pseudo algebra {D | ∆} enjoys induction and coinduction
principles as expressed by the following rules [100, 53]:

• For a : TA→ A and R ∈ R(A),

a : TR(R) ⊂ R
it(a) : ∆ ⊂ R

• For z : Z → TZ and R ∈ R(Z),

z : R ⊂ TR(R)
coit(z) : R ⊂ ∆

Proof: The rules above are an immediate consequence of the universal properties of
the free algebra

fold : T#({D |∆}) ' {D |∆} : unfold .

We look at the first rule only, the other case is analogous.

6.6. COINDUCTION AND BISIMULATION 137

Since fold : T#({D | ∆}) ∼−→ {D | ∆} is a pseudo initial algebra, for any other
algebra a : (T (A), TR(R)) → (A,R), there exists it(a) : (D,∆) → (A,R) and ι such
that

(TD,∆)
ι∼=

fold //

T (it(a))
��

(D,∆)

it(a)
��

(T (A), TR(R)) a
// (A,R) .

But a : T (A) → A is an algebra for (A,R) if and only if, by definition, a : TR(R) ⊂ R,
while it(a) : D → A is an arrow (D,∆)→ (A,R) if and only if it(a) : ∆ ⊂ R, hence the
rule is justified. 2

Definition 6.6.3 Let fold : T#({D | ∆}) ∼−→ {D | ∆} be a free algebra. Define a
relation R ∈ R(D) to be a T#-bisimulation if it satisfies the condition

unfold : R ⊂ TR(R) .

Proposition 6.6.4 Under the hypothesis of Proposition 6.6.1, ∆ is a T#-bisimulation.

But we can say more, in fact we can establish a coinduction property (cf. [99, 100, 31, 53])
that establishes ∆ to be the maximal bisimulation.

Proposition 6.6.5 Under the hypothesis of Proposition 6.6.1,

∆ =
∨
{R ∈ R(D) | R is a T#-bisimulation} .

Proof: By Proposition 6.6.4 ∆ is a T#-bisimulation. Moreover it satisfies the coinduc-
tion principle of Proposition 6.6.2

unfold : R ⊂ TR(R)
coit(unfold) : R ⊂ ∆ .

But coit(unfold) is isomorphic to 1D, hence R ⊂ D for any T#-bisimulation. 2

6.6.2 Mixed-variance functors

To treat mixed-variance functors we consider pseudo involutory 2-categories (viz. 2-
categories which are self dual via a pseudo involution —see [30]).

Definition 6.6.6 A pseudo involutory 2-category is given by a pair (K, O) with K a
2-category and O : Kop → K a pseudo functor such that O ◦Oop ∼= 1K.

Our main example is provided by Cocont.

Example 6.6.7 The 2-category Cocont is pseudo involutory with involution given by

Cocontop ∼−→ Prof op (−)∗−→ Prof ∼−→ Cocont .

138 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

Definition 6.6.8 Let (K, O) be a pseudo involutory Kcat. Every admissible relational
structure R on K induces by composition an admissible relational structure RO on Kop,
with RO(C) def= R(OC) and RO(f) def= R(Of) (cf. (6.25)).

Observe that the relational structure in point 3 of Definition 6.5.6 is obtained from the
construction above using the involution of Example 6.6.7.

Proposition 6.6.9 Let (K, O) be an involutory Kcat, and let R be an admissible rela-
tional structure on K. Consider pseudo ωCat-functors T : Kop ×K → K and T# such
that the diagram

{Kop |RO} × {K|R} T#
//

U ′×U
��

{Kop |RO} × {K|R}

U ′×U
��

Kop ×K
T̆

// Kop ×K

commutes, where U ′ and U denote forgetful ωCat0-functors. Then, for every free pseudo
T -dialgebra

fold : T (D,D) ' D : unfold

there exist (necessarily unique) ∆′ ∈ R(OD) and ∆ ∈ R(D) such that

(unfold, fold) : T#({D |∆′}, {D |∆}) ' ({D |∆′}, {D |∆}) : (fold,unfold)

is a free pseudo T#-algebra.

Proof:[Hint] The proof is as in Proposition 6.6.1 sinceRO×R is an admissible relational
structure on Kop ×K. 2

The induction and coinduction principles of Proposition 6.6.2 assume now a more general
form but are deducible as well as before directly form the universal property of free
pseudo dialgebras (cf. Theorem 6.3.6).

Proposition 6.6.10 In the situation of the above proposition, let

T#({A′ |R′}, {A |R}) = ({T (A,A′) |T ′
R(R′, R)}, {T (A′, A) |TR(R′, R)}) .

Then, ∆′ ∈ R(OD) and ∆ ∈ R(D) satisfy the following rules:

• For a′ : A′ → T (A,A′), a : T (A′, A)→ A, R′ ∈ R(OA′), R ∈ R(A),

O(a′) : T ′
R(R′, R) ⊂ R′ a : TR(R′, R) ⊂ R

O(coit(a′, a)) : ∆′ ⊂ R′ it(a′, a) : ∆ ⊂ R

• For z′ : T (Z,Z ′)→ Z ′, z : Z → T (Z ′, Z), R′ ∈ R(OZ ′), R ∈ R(Z),

O(z′) : R′ ⊂ T ′
R(R′, R) z : R ⊂ TR(R′, R)

O(it(z, z′)) : R′ ⊂ ∆′ coit(z, z′) : R ⊂ ∆

6.7. OPEN MAP BISIMULATION FROM COINDUCTION PROPERTIES 139

Bisimulations with respect to T# are now given by pairs of relations.

Definition 6.6.11 Define a T#-bisimulation to be a pair (R′, R) ∈ R(OD) × R(D)
such that

O(fold) : R′ ⊂ T ′
R(R′, R) and unfold : R ⊂ TR(R′, R) .

By its defining property the pair (∆′,∆) is immediately seen to be a T#-bisimulation
and because of the coinduction principle is the maximal one.

Proposition 6.6.12 Under the hypothesis of Proposition 6.6.9, the pair (∆′,∆) is a
T#-bisimulation and moreover it satisfies the following coinduction property:

(∆′,∆) =
∨
{(R′, R) | (R′, R) is a T#-bisimulation} .

6.7 Open map bisimulation from coinduction properties

We use the results of the previous two sections to study open map bisimulation in
presheaf categories. We consider the relational structures of Definition 6.5.6 that were
defined on CocontM and Cocont and lift the interpretation of (suitable restrictions
of) the type grammar of Section 4.5 first to {CocontM |Ext} and then to {Cocontop |
Int}∗ × {Cocont |Int}.

6.7.1 Extensional relations

Proposition 6.7.1 The pseudo functors, (V ⊗ −),
∑

i∈I , (−)⊥ restricts to CocontM
when V is a discrete category.

Proof: The only thing that is needed to check is that for any ω-colimit and monomor-
phism preserving functor, F : Ĉ→ D̂ and any indexed family (Fi : Ĉi → D̂i)i∈I of such
functors, 1

V̂
⊗ F ,

∑
i∈I Fi and F⊥ are monomorphism preserving.

1
V̂
⊗ F :

1
V̂
⊗ F : V̂⊗ C ∼=

∏
v∈|V| Ĉ

∏
v∈|V| F

//
∏
v∈|V| D̂

∼= V̂⊗ D

is defined by (cf. Chapter 4)

(1
V̂
⊗ F (〈Xv〉v∈|V|) = 〈F (Xv)〉v∈|V|

(1
V̂
⊗ F (〈αv〉v∈|V|) = 〈F (αv)〉v∈|V| ,

for 〈Xv〉v∈|V| ∈|
∏
v∈|V| Ĉ | and 〈αv〉v∈|V| a natural transformation. Hence (1

V̂
⊗F) preserves

monomorphic natural transformations if F does so.∑
i∈I Fi: The sum is defined componentwise and hence it trivially preserves monomor-

phisms.

140 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

F⊥:
F⊥ : Ĉ⊥ → Ĉ⊥

is defined by F⊥(X) ∼=
∑

x∈X(⊥)bF (X|x)c on objects. If α : X .−→ Y in Ĉ⊥ then α is
uniquely determined by α⊥ : X(⊥)→ Y (⊥) and a family (α|x : X|x

.−→ Y|α⊥(x))x∈X(⊥)

of natural transformations in Ĉ. In particular α is a monomorphism if and only if α⊥ is
an injective map and for every x ∈ X(⊥), α|x is a monomorphic natural transformation.
F⊥(α) is the natural transformation determined by α⊥ and (F (α|x))x∈X(⊥)∼=F⊥(X)(⊥).
Since F preserves monomorphisms, F⊥(α) is a monomorphism if α is a monomorphism.

2

We consider the following fragment of our main type structure

t ::= 0 | 1 |
∑

i∈I ti | V (t | ϑ | µϑ. t . (6.26)

Previously we provided the semantics to the types t in Prof . We know that this was
equivalent to giving it in Cocont and get mixed-variance pseudo functors

(Cocontop ×Cocont)|Θ| → Cocont . (6.27)

All the type constructors in the fragment above do not present any non-trivial situation
where the contravariant part play any significant role, In fact the only case where we
use contravariancy is in the denotation of V (t but since V is assumed to be a discrete
category

V (P
def= Vop × P = V× P ,

for any category P. Hence we can, for simplicity, discard the contravariant components
in (6.27) and assume the interpretation to range over pseudo ωCat-functors

[[Θ ` t]] : Cocont|Θ| → Cocont .

Following Proposition 6.7.1 above we can actually restrict to

[[Θ ` t]] : Cocont|Θ|
M → CocontM .

We wish to lift this interpretation to act on {CocontM |Ext}, i.e., we want to interpret
a type t with free variables in Θ as a pseudo functor

E [[Θ ` t]] : {CocontM |Ext}|Θ| → {CocontM |Ext} .

To do so it suffices to describe how the action of taking constants, sum lifting and
discrete function space extends from CocontM to {CocontM | Ext}. The inductive
types case being taken care by the results of Section 6.6.1, since {CocontM | Ext} is
pseudo ωCat-algebraically compact being a Kcat (Corollary 6.5.5 and Theorem 6.3.16).

Sums: Consider a presheaf X over
∑

i∈I Ai. Its projection (X)i, for i ∈ I, is the

6.7. OPEN MAP BISIMULATION FROM COINDUCTION PROPERTIES 141

presheaf obtained as the restriction of X to Ai. Define∑
i∈I{Ai |Ri}

def= {
∑

i∈I Ai |R}
where

X R Y
def⇐⇒ ∀i ∈ I. (X)i Ri (Y)i .

It is easy to check that this extension is well-defined and that

(∀i ∈ I. Fi : Ri ⊂ Si) ⇒
∑
i∈I

Fi :
∑
i∈I

Ri ⊂
∑
i∈I

Si .

Lifting: Consider a presheaf X over A⊥. We saw in Chapter 5 that it decomposes into

a sum

X ∼=
∑

x∈X(⊥)bX|xc (6.28)

where each presheaf X|x in Â is the component subtended from the element x, and
b−c is the functor that puts a root to a presheaf. In Section 5.1.4 we have also used a
transition relation for presheaves. Here, for X ′ ∈ Â, write

X ⊥→ X ′

when there is x ∈ X(⊥) such that X ′ = X|x.
The “obvious” way to extend lifting to relations is, given a relation R between

presheaves over A to define (R)0⊥ a relation between presheaves over A⊥ by taking:
X (R)0⊥ Y iff

∀X ′. X ⊥→ X ′ ⇒ ∃Y ′. Y ⊥→ Y ′ & X ′ R Y ′,

∀Y ′. Y ⊥→ Y ′ ⇒ ∃X ′. X ⊥→ X ′ & X ′ R Y ′ .

But, unfortunately, the relation (R)0⊥ may fail to satisfy the ω-admissibility require-
ment (c) in the definition of admissible extensional relations even though R lies in
Ext(A). We thus define X (R)⊥ Y iff there are ω-chains of monomorphisms ~X, ~Y with
colimits X and Y respectively for which ~Xn (R)0⊥ ~Yn for all n ∈ ω. Finally we define

({A |R})⊥
def= {A⊥ |(R)⊥} .

Suppose F : R ⊂ S in {CocontM | Ext}. Then from F being colimit, and so sum,
preserving, it follows that (F)⊥ : (R)⊥ ⊂ (S)⊥.

Proposition 6.7.2 If R is an admissible extensional relation on A, then R⊥ is an
admissible extensional relation on A⊥.

Proof: Clearly the only thing to check is the satisfaction of the ω-admissibility require-
ment.

Say that two presheaves X,Y over a category A are compatible, if for every arrow
f : A→ B in A, if x ∈ X(B) ∩ Y (B), then X(f)x = Y (f)x. On compatible presheaves
it is possible to define a union operation, X ∪ Y , that is the union of sets pointwise.

It is easy to see that R0
⊥ satisfies the following closure property with respect to the

union of compatible presheaves.

142 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

If X R0
⊥ Y and V R0

⊥ W , with X compatible to V and Y compatible with
W , then (X ∪ V) R0

⊥(Y ∪W).

Let’s suppose now that ~X, ~Y is a chain of monomorphisms in Â⊥, with colimits
X and Y , respectively, for which ~Xn (R)⊥ ~Yn for all n ∈ ω. Without loss of gener-
alities we can assume (since all the natural transformations involved are taken to be
monomorphisms) that the chains are given pointwise by inclusions. By definition of
(R)⊥, we have that each pair Xn (R)⊥ Yn in the chain is generated as the colimit of
a chain of monomorphisms (w.l.o.g. pointwise inclusions) of presheaves Xnm and Ynm
with Xnm (R)0⊥ Ynm, i.e., we have the following “matrix” of natural inclusions:

X00 (R)0⊥ Y00
// X01 (R)0⊥ Y01

// X02 (R)0⊥ Y02
// · · · · · · X0 (R)⊥ Y0

��

X10 (R)0⊥ Y10
// X11 (R)0⊥ Y11

// X12 (R)0⊥ Y12
// · · · · · · X1 (R)⊥ Y1

��

X20 (R)0⊥ Y20
// X21 (R)0⊥ Y21

// X22 (R)0⊥ Y22
// · · · · · · X2 (R)⊥ Y2

��· · · · · · · · · · · · · · ·

X?Y

We wish to deduce that
X R⊥ Y .

Since all the arrows are inclusions, all the presheaves are compatible. It can be easily
verified that X is the colimit of the chain of inclusions

(
⋃
k≤n

Xkk
.−→

⋃
k≤n+1

Xkk)n∈ω ,

and similarly for Y . By the closure property, quoted above, for every n,⋃
k≤n

Xkk (R)0⊥
⋃
k≤n

Ykk

and therefore by definition,
X (R)⊥ Y .

2

It is a known fact that bisimulation does not close at ω for arbitrary trees (as a well
known example reported below as Example 6.7.7 shows) and this fact is reflected here
by (R)0⊥ not satisfying the ω-admissibility requirement. Still by restricting to a suitable
class of presheaves (analogous to finitely branching trees) we can make (R)0⊥ coincide
with (R)⊥ as well as having open map bisimulation closing at ω.

6.7. OPEN MAP BISIMULATION FROM COINDUCTION PROPERTIES 143

Definition 6.7.3 (Locally-finite presheaves) A presheaf X over a small category C
is said to be locally finite if, for every object C of C, the set X(C) is finite.

Locally finite presheaves satisfy the following ω-admissibility property with respect to
open map bisimulation.

Lemma 6.7.4 Let C be a small category. Let ~X and ~Y be two ω-chains of monomor-
phisms in Ĉ with colimits X and Y respectively. For locally finite X and Y , if ~Xn and
~Yn are open-map bisimilar, for all n, then so are X and Y .

Proof: Without loss of generality one can assume all the monomorphic natural trans-
formations involved in the two chains to be pointwise inclusions of sets. Moreover any
span of surjective open maps generates another one that is definable as a sub presheaf
of the product of the related presheaves [63, page 68]. Thus from the hypothesis we can
assume that for every n ∈ ω there exists a sub presheaf of Xn × Yn, Zn, such that the
projections Xn ← Zn → Yn are surjective C-open maps. For every object C of C, define

Z(C) = {(x, y) ∈ X(C)× Y (C) | ∃∞n ∈ ω . (x, y) ∈ Zn(C)} .

It is immediately seen that this indeed defines a sub presheaf of X × Y . We check
now that the two projections onto X and Y are surjective open maps. We look at the
projection π : Z → X onto X. The other case is analogous. We need to check that for
every f : C ′ → C, the following square is a quasi-pullback:

Z(C)
πC //

Z(f)
��

X(C)

X(f)
��

Z(C ′) πC′
// X(C ′) .

Suppose x ∈ X(C) and (x′, y′) ∈ Z(C ′) are such that x′ = X(f)x. By assumption for
every n, the projection Zn → Xn is open, and by definition of Z, there exist infinitely
many n’s such that (x′, y′) ∈ Zn(C ′). For any such n there exists yn ∈ Yn(C) such
that (x, yn) ∈ Zn(C), but since Y (C) is finite (and includes all the Yn(C)’s), there must
exists a y that appears in infinitely many pairs, i.e., a y such that (x, y) ∈ Z(C).

Concerning surjectivity, let x ∈ X(C), then there exists a number n such that for
every m ≥ n, x ∈ Xm(C). Since. for every k ∈ ω, Zk(C) → Xk(C) is a surjective
map, for every m ≥ n, there exists ym such that (x, ym) ∈ Zm(C). But now since Y (C)
is finite (and includes all the Yk(C)’s), there must exists a y ∈ Y (C) that appears in
infinitely many pairs, i.e., (x, y) ∈ Z(C). 2

This result generalises to larger cardinals, in the sense that the statement is still
valid if, for any n ∈ ω, one replaces ω-chains with ωn+1-chains and assumes X and Y
to be locally of size ωn. We remark that the assumption that the ω-chains consist of
monomorphisms is crucial as the following example due to Glynn Winskel shows; hence
our restriction to CocontM when considering extensional relations.

144 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

Example 6.7.5 Let T be the presheaf over the partial order category ω (i.e., the tree)
defined by:

T (0) = {∗}, T (1) = {a, b}, T (2) = {c}, T (n) = ∅ for every n ≥ 3.

with T (1 ≤ 2)c = a and all the other actions on arrows (n ≤ m) uniquely determined
by the cardinality of the associated sets. Consider the following two chains

T
1T // T

1T // T
1T // · · ·

T
f

// T
f

// T
f

// · · ·

where f1(a) = f1(b) = a and fn = 1T (n)for any other n. Being identical, corresponding
presheaves in the two chains are bisimilar, but the colimit of the first one is T itself,
while the colimit of the second one is the string T (0) ∼= T (1) ∼= T (2) ∼= {∗} and T (n) = ∅
for n ≥ 2 that is clearly not bisimilar to T .

By a proof similar to that of Lemma 6.7.4, we can show that the two relations (R)0⊥
and (R)⊥ coincide on locally finite presheaves.

Lemma 6.7.6 Let X,Y be locally finite presheaves over A⊥. Suppose the ω-chains of
monomorphisms ~X, ~Y have colimits X and Y respectively. Then,

(∀n ∈ ω. ~Xn (R)0⊥ ~Yn)⇒ X (R)0⊥ Y .

Consequently,
X (R)0⊥ Y ⇔ X (R)⊥ Y .

Example 6.7.7 Consider the synchronisation tree recursively defined by T = a.T , i.e.,
the tree consisting of one single branch of infinite length and whose transitions are all
labelled a. For every n ∈ ω, define an to be the tree consisting of one single branch of
length n whose transitions are all labelled a. Define U =

∑
n∈ω a

n and V = T+
∑

n∈ω a
n.

For every k define Uk =
∑

n∈ω a
min(n,k) and Vk = ak +

∑
n∈ω a

min(n,k). Clearly U is the
colimit of the Uk’s and V is the colimit of the Vk’s. For every k, UK is bisimilar to VK ,
but U is not bisimilar to V since the latter has an infinitely long branch while all the
branches of U are finite.

Discrete function space: A presheaf X over V (A corresponds to a functor V→ Â,
and we write Xv for the presheaf in A resulting from the functor’s application to v ∈ V.
Define

(V ({A |R}) def= {(V (A) |(V (R)}
where

X (V (R) Y def⇐⇒ (∀v ∈ V. (Xv) R (Y v)) .

This extension is well-defined and such that

F : R ⊂ S ⇒ (V (F) : (V (R) ⊂ (V (S) .

6.7. OPEN MAP BISIMULATION FROM COINDUCTION PROPERTIES 145

Thus by structural induction any closed type t in the grammar (6.26) is associ-
ated with an extensional relation ≈Ext

t ∈ Ext([[t]]). Recursive types µϑ.t are interpreted
as parameterised free pseudo algebras in the Kcat {CocontM | Ext}; specialising the
pseudo-colimit construction of the Pseudo Basic Lemma (using Theorem 6.5.4).

The relation ≈Ext
t coincides with open-map bisimulation on locally finite presheaves.

Theorem 6.7.8 Let t be a closed type in the grammar (6.26). Let X,Y be locally finite
presheaves over [[t]]. Then, X ≈Ext

t Y iff X and Y are open-map bisimilar.

Proof: The proof proceeds by structural induction on t. Write OK{A | S} when
a relation {A | S} in {CocontM | Ext} satisfies the condition that on locally finite
presheaves X,Y over A

X S Y ⇔ X,Y are open-map bisimilar .

As the induction hypothesis, on type judgement ϑ1, · · · , ϑk ` t, we take

OK{A1 |S1} & · · ·& OK{Ak |Sk} =⇒ OK([[ϑ1, · · · , ϑk ` t]]{A1 |S1} · · · {Ak |Sk}) .

It can be checked that each of the constructions lifting, sum, and discrete function space
preserve the OK property on relations. This covers all cases of the induction but for
recursive types.

Consider the relation interpreting a recursively-defined type

[[Θ ` µϑ.t]]{A1 |S1} · · · {A|Θ| |S|Θ|}

in the environment where we assume

OK{A1 |S1} & · · ·& OK{A|Θ| |S|Θ|} .

The relation is a pseudo colimit {D |R} of the ω-chain {Dn |Rn} where

{D0 |R0} def= {0 |{(∅, ∅)}}

and
{Dn+1 |Rn+1} def= [[Θ, ϑ ` t]]{A1 |S1} · · · {A|Θ| |S|Θ|}{Dn |Rn} .

Using the structural induction hypothesis, an induction on n shows that OK{Dn |Rn}
at each stage n. Suppose X R Y . Projecting, we have γnX Rn γnY at each n. Each
γnX, γnY is also locally finite (γn being part of a coreflection in CocontM). Thus
γnX, γnY are open-map bisimilar over Dn. Injecting, we obtain ω-chains of monomor-
phisms 〈Xn〉, 〈Yn〉 in D̂ with pseudo colimits X and Y . But maps in CocontM preserve
open-map bisimilarity, so Xn and Yn are open-map bisimilar for each n. We now meet
the conditions of Lemma 6.7.4, from which we conclude that X and Y are open-map
bisimilar. 2

From the above and the results of Section 6.6.1 we obtain the following characteri-
sation.

146 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

Corollary 6.7.9 Let ϑ ` t be a type in the grammar (6.26), and let

E [[ϑ ` t]] : {CocontM |Ext} → {CocontM |Ext}

be its interpretation as above. Then, for presheaves X,Y over [[µϑ.t]], the following are
equivalent:

• X ≈Ext
µϑ.t Y .

• X and Y are E [[ϑ ` t]]-bisimilar as defined in Definition 6.6.3.

Thus, for locally finite X and Y , a further equivalent statement is:

• X and Y are open-map bisimilar.

The two examples once more

1. Let P = µϑ.T where Tϑ =
∑

a∈L(ϑ)⊥. As we saw (cf. Chapter 5 and Section 6.4.1)
synchronisation tress over L corresponds to presheaves over P and ≈Ext

P to an
ω-admissible version of Park and Milner’s strong bisimulation. It specialises to the
usual strong bisimulation on locally finite presheaves (i.e. finitely branching trees).
Further, by Corollary 6.7.9, a T#-bisimulation between locally finite presheaves
is a strong bisimulation. That is, for locally finite presheaves X,Y , whenever
X R Y ,

∀X ′. X a→ X ′ ⇒ ∃Y ′. Y a→ Y ′ & X ′ R Y ′,

∀Y ′. Y a→ Y ′ ⇒ ∃X ′. X a→ X ′ & X ′ R Y ′ .

2. Recall that a domain for value-passing with “late” semantics was obtained as
P = µϑ.T where now

Tϑ = ϑ⊥ +
∑

a∈Ch, v∈V ϑ⊥ +
∑

a∈Ch(V (ϑ)⊥

with sums over channels Ch and values V. In [138], Winskel restricted the class
of processes in the language by requiring recursive definitions to be guarded.
Hence any process was denoting a locally finite presheaf. By Corollary 6.7.9,
T#-bisimilarity between locally finite presheaves corresponds to open map bisim-
ilarity that it was shown in [138] to be a late bisimulation on presheaves, Since
all process terms denote locally finite presheaves over P, the relation ≈Ext

P holds
between denotations of closed terms iff they are late-bisimilar in the traditional
sense.

Remark: Our treatment thus coincides with that usually adopted in operational se-
mantics of process languages provided we restrict to “finitely branching” processes whose
denotations are locally finite presheaves. We expect that we could extend the treatment
to “countably branching” processes whose denotations are locally countable presheaves
if we generalise the results here from ω-colimits to ω1-colimits. This would follow the
pioneering work on countable nondeterminism described in [103]. Of course an even
greater degree of branching would require even larger cardinals.

6.7. OPEN MAP BISIMULATION FROM COINDUCTION PROPERTIES 147

In [22] we also began to explore the possibility of enlarging our class of models to include
colimit completions of a more restricted form, while retaining the same preservation
properties of colimit preserving functors with respect to (open map) bisimulation. These
restricted forms will in many cases directly provide classes of structures with a bounded
degree of branching.

6.7.2 Intensional relations

We take now a larger fragment of the grammar of Section 4.5. We consider in fact the
following extension of the grammar in (6.26):

t ::= ϑ |
∑

i∈I ti | t⊥ | µϑ.t | t⊗ t′ | t∗ (6.29)

obtained by adding tensors and duals, and give an interpretation of these types as
pseudo ωCat-functors

I[[Θ ` t]] : ({Cocontop |Int∗}×{Cocont |Int})|Θ| → {Cocontop |Int∗}×{Cocont |Int} .

To do so we use again the ˘(−) operator (cf. Sections 6.6.2 and 6.4) to obtain

˘[[Θ ` t]] : (Cocontop ×Cocont)|Θ| −→ Cocontop ×Cocont

from
[[Θ ` t]] : (Cocontop ×Cocont)|Θ| −→ Cocont .

In order to lift it to the category of relations, again, it suffices to show how sums, lifting,
tensor, and the dualizer extend to pseudo ωCat-functors.

Sums: For an I-indexed family of relations 〈Ri ∈ Int(Ai)〉 we define∑
i∈I

Ri ∈ Int(
∑
i∈I

Ai)

as follows: A span X ⇐ W ⇒ Y is in
∑

i∈I Ri iff, for every i ∈ I, the restriction

(X)i ⇐ (W)i ⇒ (Y)i

is in Ri.
The interpretation of

∑
i∈I ti is done using the pseudo ωCat-functor

({Cocontop |Int∗} × {Cocont |Int})|I| → {Cocontop |Int∗} × {Cocont |Int}

sending ({A′
i |R′

i}, {Ai |Ri}) to ({
∑

i∈I A′
i |

∑
i∈I R

′
i}, {

∑
i∈I Ai |

∑
i∈I Ri}).

Lifting: Consider presheaves W and X over A⊥ with decompositions

W ∼=
∑

w∈W (⊥)

bW|wc and X ∼=
∑

x∈X(⊥)

bX|xc ,

148 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

where the W|w’s and X|x’s are presheaves over A. If p : W ⇒ X is a natural transfor-
mation, we know that it is uniquely identified by p⊥ : W (⊥)→ X(⊥) and 〈p|w : W|w ⇒
X|p⊥(w)〉w∈W (⊥) in Â. Then, for R ∈ Int(A), we define (R)⊥ ∈ Int(A⊥) as follows. A
span

X
p⇐= W

q
=⇒ Y

is in (R)⊥ iff the span X(⊥)
p⊥←−W (⊥)

q⊥−→ Y (⊥) consists of surjections and, for every

w ∈W (⊥), the span X|p⊥(w)

p|w⇐= W|w
q|w
=⇒ Y|q⊥(w) is in R.

Moreover, for R ∈ Int(Aop), we define (R)> ∈ Int((A⊥)op) as follows. A span
X ⇐ W ⇒ Y is in (R)> iff, writing l for the canonical inclusion A ↪→ A⊥, the span
l∗(X)⇐ l∗(W)⇒ l∗(Y) is in R and if, for all A ∈ |A |, the naturality squares

X(⊥)

��

W (⊥)oo

��

X(A) W (A)oo

W (⊥)

��

// Y (⊥)

��

W (A) //W (A)

are quasi-pullbacks.
Finally, the interpretation of t⊥ uses the pseudo ωCat-endofunctor

{Cocontop |Int∗} × {Cocont |Int} → {Cocontop |Int∗} × {Cocont |Int}

sending ({A′ |R′}, {A |R}) to ({A′
⊥ |(R′)>}, {A⊥ |(R)⊥}).

Tensor: Let R ∈ Int(A) and S ∈ Int(B). A span X ⇐ W ⇒ Y in Â⊗ B is defined to

be in R⊗ S iff, for every A ∈ |A |,
X(A,−)⇐W (A,−)⇒ Y (A,−) is in S

and, for every B ∈ |B |,
X(−, B)⇐W (−, B)⇒ Y (−, B) is in R .

The interpretation of ⊗ is the pseudo ωCat-functor

({Cocontop |Int∗} × {Cocont |Int})2 → {Cocontop |Int∗} × {Cocont |Int}

sending ({A′ |R′}, {A |R}), ({B′ |S′}, {B |S}) to ({A′ ⊗ B′ |R′ ⊗ S′}, {A ⊗ B |R⊗ S}).
Dualizer: The interpretation of (−)∗ is the pseudo ωCat-endofunctor

{Cocontop |Int∗} × {Cocont |Int} → {Cocontop |Int∗} × {Cocont |Int}

sending ({A′ |R′}, {A |R}) to ({Aop |R}, {A′op |R′}).

Thus every closed type t in the grammar (6.29) is associated with intensional re-
lations ≈′ Int

t ∈ Int([[t]]op) and ≈Int
t ∈ Int([[t]]), which using a proof similar to that of

Theorem 6.7.8 can be shown to coincide with open-map bisimulation.

6.7. OPEN MAP BISIMULATION FROM COINDUCTION PROPERTIES 149

Theorem 6.7.10 Let t be a closed type in the grammar (6.29). Then,

≈′ Int
t = sOs[[t]]op and ≈Int

t = sOs[[t]]

where sOsC denotes the class of surjective open spans in Ĉ.

Corollary 6.7.11 Let ϑ ` t be a type in the grammar (6.29), and let

I[[ϑ ` t]] : {Cocontop |Int∗} × {Cocont |Int} → {Cocontop |Int∗} × {Cocont |Int}

be its interpretation as above. Then,

≈Int
µϑ.t = sOs[[µϑ.t]]

=
⋃
{R | (R′, R) is a I[[ϑ a t]]-bisimulation} .

Strong bisimulation revisited. Using intensional relations we can capture strong
bisimulation for arbitrary trees in our domain theoretic setting. In fact by taking the
equation for synchronisation trees, P = µϑ.

∑
a∈L(ϑ)⊥, we have that by Corollary 6.7.11,

two trees are connected by a span in ≈Int
P if and only if they are connected by a span of

surjective P-open maps, i.e., if and only if they are strong bisimilar. As far as we know,
this is the first domain-theoretic characterisation of strong bisimulation for arbitrary
trees.

150 CHAPTER 6. A THEORY OF RECURSIVE DOMAINS

Chapter 7

Presheaf Models for the
π-Calculus

In this chapter we go back to concrete examples and address the issue of giving presheaf
models for the π-calculus [87, 88]. In contrast with examples of process languages we
have seen so far (cf. Chapter 5), the π-calculus via the ability of communicating channel
names can express processes whose communication topology changes over time, while
computation evolves. In [126, 32, 50] where domain theoretic models, i.e., based on
partial orders, were given this characteristic has been tackled semantically by indexing
the category of domains with a category of “finite sets of channel names”, I. Here we
take a similar approach and index Prof with the same I. As a result process terms will
be interpreted by indexed families of presheaves. Open map bisimulation at a fibre will
correspond to bisimulation in the language, while open map bisimulation at each fibre
will correspond to the largest congruence included in bisimilarity.

We shall mainly deal with a model for the π-calculus with late bisimulation, but shall
also show how one gets one for the early-bisimulation, something the domain-theoretic
model [126, 32] does not seem to be able to capture, and how an arrow between models,
mapping the late interpretation into the early one arises in this context.

There exist different variants of the π-calculus and people often concentrate on frag-
ments of it [117, 18]. We shall consider the full calculus as presented in [87, 84]. This
means that all the possible fragments one might wish to consider can be modelled di-
rectly by our model, still in these cases it might be possible to describe simpler domain
equations that provide models which are tailored for the special fragment one is con-
sidering and that come together with an “embedding” which maps the restricted model
into the general one.

7.1 The π-calculus

The version of the π-calculus we use is entirely standard. We summarise it only very
briefly here: for discussion and further detail see the original papers [87, 84]. Processes

151

152 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

have the following syntax

P ::= xy.P | x(y).P | νxP | [x=y]P | 0 | P + P | P |P | !P

with x and y ranging over some infinite supply of names. Note that we include the
match operator [x=y]P , unguarded sum and unguarded replication !P . This selection
is fairly arbitrary: our model copes equally well with mismatch [x6=y]P and processes
defined by recursion, guarded or unguarded. Similarly, it makes no difference if we
restrict to one of the popular subsets, such as the asynchronous π-calculus [18].

To simplify presentation we identify processes up to a structural congruence, the
smallest congruence relation satisfying

[x = x]P ≡ P !P ≡ P | !P
x(y).P ≡ x(z).P [z/y] z /∈ fn(P)
νy P ≡ νz P [z/y] z /∈ fn(P)

P + 0 ≡ P P +Q ≡ Q+ P (P +Q) +R ≡ P + (Q+R)
P | 0 ≡ P P |Q ≡ Q |P (P |Q) |R ≡ P |(Q |R).

Here P [z/y] denotes capture-avoiding substitution — which may of course require in
turn the α-conversion of subexpressions. This equivalence is not as aggressive as the
structural congruence of, say, Definition 3.1 in [83], which allows name restriction νx(−)
to change its scope. Nevertheless it cuts down the operational rules we shall need, with
none at all for matching and replication. All this is to some degree a matter of taste: if
we treat process terms as concrete syntax, with no structural identification, the model
is still valid. Indeed “completeness” of the model then allows us to read off the fact
that α-conversion, commuting ‘+’ and so forth all respect bisimilarity (replacing, for
example, the proofs of Theorems 1 to 9 in [88, §3]).

The operational semantics of processes are given by transitions of four kinds: internal
or ‘silent’ action τ , input x(y), free output xy and bound output x(y). We denote a
general transition by α, and define its free and bound names thus:

fn(τ) = ∅ fn(xy) = {x, y} fn(x(y)) = fn(x(y)) = {x}
bn(τ) = ∅ bn(xy) = ∅ bn(x(y)) = bn(x(y)) = {y}.

The transitions that a process may perform are given inductively by the rules in Fig-
ure 7.1. This is a late semantics, in that input substitution happens in the (COM) rule
when communication actually occurs, rather than at (IN) (cf. Section 5.2). The chief
difference between these rules and Table 2 of [88] is that we let structural congruence
do some of the work. Thus there are no symmetric forms for the four right-hand rules,
and sometimes processes must be α-converted before they can interact. Of course the
possible transitions derived are exactly the same as with the original definitions.

Definition 7.1.1 A symmetric relation S between processes is a bisimulation if for
every (P,Q) ∈ S the following conditions hold.

• For α = τ, xy, x(y), if P α−→ P ′ then there exists Q′ such that Q α−→ Q′ and
(P ′, Q′) ∈ S.

7.2. INDEXING PROF 153

OUT xy.P
xy−→ P SUM

P
α−→ P ′

P +Q
α−→ P ′

IN x(y).P
x(y)−→ P PAR

P
α−→ P ′

P |Q α−→ P ′ |Q
bn(α) ∩ fn(Q)

= ∅

RES
P

α−→ P ′

νxP
α−→ νxP ′

x /∈ fn(α) COM
P

x(y)−→ P ′ Q
xz−→ Q′

P |Q τ−→ P ′[z/y] |Q′

OPEN
P

xy−→ P ′

νy P
x(y)−→ P ′

x 6= y CLOSE
P

x(y)−→ P ′ Q
x(y)−→ Q′

P |Q τ−→ νy(P ′ |Q′)

Figure 7.1: Transition rules for π-calculus processes

• If P
x(y)−→ P ′ then there exists Q′ such that Q

x(y)−→ Q′ and for any name z,
(P ′[z/y], Q′[z/y]) ∈ S.

Two processes P and Q are (strong, late) bisimilar, P ∼̇ Q if there is some bisimu-
lation relating them.

To check the second condition in the definition above it is only necessary that z
ranges over the free names of P and Q, and one fresh name. The bisimilarity relation is
strong, in that τ -actions must match, and late, in that input actions must match before
the transmitted value is known.

Bisimilarity is preserved by all process constructors except for input prefix x(y).P .
This is because bisimilarity assumes all names are distinct, while the substitution that
happens on input can cause names to become identified. The following definition then
identifies the largest congruence included in bisimilarity.

Definition 7.1.2 Define two processes P,Q to be equivalent P ∼ Q if they are bisimilar
under all possible name substitutions.

7.2 Indexing Prof

As a π-calculus process evolves, the ambient set of channel names, that is the set of
names publicly available might change. In fact names that were distinct at a certain
stage might get identified and new names can be created and then made public. To
take account of this fact we index Prof with a category of name sets.

Definition 7.2.1 Define I to be the (essentially small) category of finite sets and in-
jective functions.

Notation: If s is a finite set, we shall write s + 1 for the “generic” set obtained by
adding a new element to the set s. This new element will normally be indicated by ∗s,

154 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

omitting the subscript when it is not necessary.

Similarly if i : s→ s′ is an arrow in I, we write f+1 : s+1→ s′ +1 for the function
that acts like f on the element of s and that maps ∗s onto ∗s′ .

Finally, if i : s→ s′ is an arrow in I and y 6∈ Im i, we write the copair [i, y] for the
injective function s+ 1→ s′ acting like i on the elements of s and mapping ∗s onto y.

Definition 7.2.2 Define ProfI to be the bicategory of pseudo functors (from I to
Prof), pseudo natural transformations and modifications.

Recall that to give a pseudo functor F : I → Prof is to give an indexed family (F (s))s∈|I|
of small categories together with coherent families of profunctors

(F (i) : F (s) + //F (s′))i:s→s′ .

Remark: To shorten the presentation effort and building on the experience of the previ-
ous chapters, we shall intentionally gloss over many of the bicategorical, i.e., coherence,
details in this chapter. We shall often talk of functors, natural transformation and
commutative diagrams when instead, to be precise, we should talk of pseudo functors,
pseudo natural transformation and diagrams commuting up to isomorphism. Similarly
when giving most of the definitions we will not bother with an explicit checking that
the necessary coherence conditions are met, since these will always be enforced by the
universal property of left Kan extensions.

As usual with functor categories, much (but not all) of the structure of Prof extends
to ProfI , In particular, +, ×, ⊗, (−)∗ extend pointwise. Still this does not imply that
the symmetric monoidal closed structure of Prof lifts to ProfI . In fact this is an
open question for us since, for example, we do not know whether Prof is closed under
all small pseudo colimits (or equivalently pseudo limits), that is a sufficient condition
to imply that the closed structure lifts to ProfI too [65]. Anyway there exist linear
“function spaces” for special objects and a Yoneda-like lemma1 and this is all we need
to model the π-calculus.

Definition 7.2.3 Let Y : I → ProfI be the pseudo functor that takes s to I(s,−),
where I(s,−) is the pseudo functor that return to any s′ the set I(s, s′) regarded as a
discrete category. Both the action of Y and of I(s,−) on arrows is by composition.

Lemma 7.2.4 (Yoneda-like) Let A : I → Prof be a pseudo functor, then for every
finite set s,

Â(s) ' ProfI(Y s,A) .

Proof: Recall that ProfI(Y s,A) is the category of pseudo natural transformation from
Y s to A and modifications. This means that an object of ProfI(Y s,A) is given by a

1Cf. Yoneda lemma in the enriched setting [65].

7.2. INDEXING PROF 155

family of squares:

I(s, s′) +
αs′ //

+i◦−
��

αi∼=

A(s′)

+A(i)
��

I(s, s′′) +
αs′′

// A(s′) .

satisfying the usual coherence conditions [127]. Since I(s, s′) is a discrete category, αs′
is uniquely determined by a family (Xi)i∈I(s,s′) of presheaves of Â(s′). Moreover since
there is an isomorphism

I(s, s) +
αs //

+i◦−
��

αi∼=

A(s)

+A(i)
��

I(s, s′) +
αs′

// A(s′) ,

for any i : s→ s′, one has that
Xi
∼= A(i)(Y1s) ,

for (Yj) the family identified by αs. Hence, up to isomorphism α is uniquely determined
by αs(1s), i.e., by the choice of a presheaf over A(s). Similarly a modification, i.e., a
coherent family of natural transformations,

ϕs′ : αs′
.−→ βs′

is uniquely determined by (ϕs)1s . It is not difficult to verify that the functor mapping
any pseudo natural transformation α to αs(1s) and any modification ϕ to (ϕs)1s is an
equivalence of categories

ProfI(I(s,−),A) ' Â(s) .

2

Because of the Lemma 7.2.4, we always have (cf. [77]) a “candidate” for a function space
A (B given by

“ ̂(A (B)(s)” ∼= ProfI(I(s,−)⊗ A,B) ,

but this is only meaningful if we can exhibit it as an actual presheaf. Conveniently this
is the case for the kind of function space we shall need.

Definition 7.2.5 (The object of names) Define N : I → Prof to be the functor,

N(s) = s regarded as a discrete category
N(i) = ys′ i : s + //s′ ,

i.e., N is given by the chain of embeddings

I ↪→ Set ↪→ Cat ↪→ Prof .

156 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

It turns out that when N is involved, the expression N (A does indeed makes sense,
i.e.,

ProfI(I(s,−)⊗ N,A)

is expressible as a presheaf category.

Definition 7.2.6 For any pseudo functor A : I → Prof , define N (A, for x ∈ s,
i : s→ s′ in I, A ∈|A(s) | and A ∈|A(s+ 1) | by:

(N (A)(s) = s× A(s) + A(s+ 1)

((N (A)(i)(x,A))(x′ , A′) =
{

(A(i)A)(A′) if x′ = i(x)
∅ otherwise

((N (A)(i)(A))(x′, A′) =

(A([i, x′])A)(A′) if x′ ∈ s′ − Im i
(A(i+ 1)A)(A′) if x′ = ∗s′

∅ otherwise

where (x′, A′) ∈ s×A(s) + A(s+ 1) with the objects of A(s+ 1) in the sum represented
by pairs (∗s′ , A′).

Proposition 7.2.7 For any pseudo functor A : I → Prof , for any finite set s,

̂N (A(s) ' ProfI(I(s,−)⊗ N,A) .

Proof: Observe first of all that

̂N (A(s) = ̂s× A(s) + A(s+ 1) (7.1)
∼= ̂s× A(s)× ̂A(s+ 1)
∼= (

∏
x∈s

Â(s))× ̂A(s+ 1) .

This means that a presheaf over (N (A)(s) is given by a family of presheaves over A(s)
indexed by s plus a presheaf over A(s+ 1). Similarly an arrow between two presheaves
in (N (A)(s) is given by a family of natural transformations (αx)x∈s in Â(s) plus
a natural transformation β in ̂A(s+ 1). Let’s now look at how much information is
needed in order to identify an object, F , of ProfI(I(s,−) ⊗ N,A). By definition F is
given by a family of squares

I(s, s′)× s′ +
Fs′ //

+(i◦−)×i
��

Fi∼=

A(s′)

+A(i)
��

I(s, s′′)× s′′ +
Fs′′

// A(s′′) ,

satisfying the usual coherence conditions [127]. Hence for any i : s → s′ and y = i(x)
for a necessarily unique x,

Fs′(i, y) ∼= A(i)(Fs(1s, x)) ;

7.2. INDEXING PROF 157

while if y 6∈ Im i,
F (s′)(i, y) ∼= A([i, y])(Fs+1(e, ∗s)) ,

for e : s ↪→ s+ 1 the inclusion of s into s+ 1.
In other words, F (s′) is uniquely determined (up to isomorphism) by

F (s)(1s,−) : s + //A(s) and F (s+ 1)(e, ∗s) ∈| ̂A(s+ 1) | .

It is not difficult now to use these observations to provide an equivalence

(
∏
x∈s

Â(s))× ̂A(s+ 1) ' ProfI(I(s,−)⊗ N,A) .

2

Notation: Objects of (N (A)(s) can be seen, rather loosely, as elements of the graph
of a function. Thus we write an object in the s × A(s)-component of (7.1) as (x7→A)
for name x ∈ s and A ∈| A(s) |. An object in the A(s + 1)-component we write as
(∗7→A′) for A′ ∈|A(s + 1) |. In a similar spirit we can inject a presheaf X ∈ Â(s) into
the left x-component as (x7→X), and a presheaf Y ∈ ̂A(s+ 1) into the right component
as (∗7→Y).

Using the above notation, the action of (N (A)(i) can be written as

(x 7→ A) 7→ (i(x) 7→ A(i)(A)) , (7.2)

on the component s× A(s) and

(∗s 7→ A′) 7→
∑

y/∈Im(i)

(y 7→ A[i, y](A′)) + (∗s′ 7→ A(i+ 1)(A′)) . (7.3)

on the component A(s+ 1).

With this notation the action of (N (A)(i)! can be characterised as follows.

Lemma 7.2.8 Let i : s→ s′ be an injective function between finite sets. Let

X =
∑
x∈s

(x 7→ Xx) + (∗ 7→ X∗)

be a presheaf over (N (A)(s), then (N (A)(i)!(X) is isomorphic to∑
i(x)∈s′

(i(x) 7→ A(i)!(Xx) +
∑

w 6∈Im i

(w 7→ A([i, w])!(X∗)) + (∗ 7→ A(i+ 1)!(X∗)) .

Proof: The proof of the lemma is given by the following coend calculation:

(N (A)(i)!(X) =
∫ R

X(R) . (N (A)(i)(R)

∼=
∑
x∈s

(
∫ P

Xx(P) . (i(x) 7→ A(i)P))

158 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

+
∫ Q

X∗(Q) . (N (A)(i)(∗ 7→ Q)

(where we have considered all possible “shapes” that R can have)

∼=
∑
x∈s

i(x) 7→ (
∫ P

Xx(P) .A(i)(P))

+
∫ Q

X∗(Q) . (
∑

w 6∈Im i

(w 7→ A([i, w])(Q)) + (∗ 7→ A(i+ 1)(Q)))

∼=
∑
x∈s

(i(x) 7→ A(i)!(Xx))

+
∑

w 6∈Im i

(w 7→
∫ Q

X∗(Q) .A([i, w])(Q))

+(∗ 7→
∫ Q

X∗(Q) .A(i + 1)(Q))

∼=
∑
i(x)∈s′

(i(x) 7→ A(i)!(Xx)

+
∑

w 6∈Im i

(w 7→ A([i, w])!(X∗)) + (∗ 7→ A(i+ 1)!(X∗)) .

2

7.2.1 Creation of new names

To handle the creation of new names we shall use the following construction in ProfI

(cf. [32, 126]);
δ : ProfI −→ ProfI

is the functor that takes A to A(−+ 1), i.e.,

δA(s) = A(s+ 1)
δA(i) = A(i+ 1) .

The action on pseudo natural transformations and modifications is trivial since it simply
rearranges the indexing structure, e.g., for F : A→ B,

(δF)s = Fs+1

(δF)i = Fi+1 .

In [32] the analogous construction that they use is presented in terms of computational
monads [90], while Stark [126] insists on its “universality” and presents it as a form
of function space N → A arising from a Day-like [28] construction on the monoidal
structure of I given by the disjoint union of sets. Regarded in this way, the δ represents
functions that will only accept a new name as input.

7.2. INDEXING PROF 159

7.2.2 A tensor of presheaves

We analyse now in some detail the family of bifunctors

w∗
P,Q : P̂× Q̂ −→ P̂×Q ,

an instance of which we already met in Chapter 5 (Section 5.1.5). Its action is by
definition given by (omitting the sub indices P and Q)

w∗(X,Y)(P,Q) = X(P) × Y (Q)
w∗(f, g)P,Q = fP × gQ ,

and categorically, as an easy calculation shows, it can be seen as a right adjoint to the
colimit preserving functor obtained by Kan extending the profunctor

w = 〈πP, πQ〉 : P×Q + //P + Q ,

that is defined on objects by

w(P,Q) = yP+Q(iP(P)) + yP+Q(iQ(Q)) ,

where iP : P → P + Q ← Q : iQ are the inclusion functors; similarly one express the
action of w on morphisms.

Moreover w∗ preserves colimits on each argument (though not on both arguments
at the same time).

Proposition 7.2.9 Let P and Q be two small categories, the functor

w∗ : P̂× Q̂ −→ P̂×Q

defined as above preserves colimits in each argument, i.e., if Y ∈| Q̂ |, the functor w∗
Y

defined by

P̂
(−,Y)−→ P̂× Q̂

w∗
−→ P̂×Q

preserves colimits in P̂, and similarly, for every X ∈| P̂ |, the functor w∗
X preserves

colimits in Q̂.

Proof: To prove it, it is enough to show that for every pair (P,Q) and X ∈| P̂ |,

w∗
Y (X)(P,Q) = X(P)× Y (Q) ∼= LanyP(w

∗
Y yP)(X)(P,Q) .

That is, since colimit preserving functors between presheaf categories correspond to left
Kan extension along their Yoneda embeddings, we want to show that w∗

Y is the left
Kan extension of its restriction to the representables. We express left Kan extensions
using the coend formula and use preservation of coends by product [56] and the Density
Formula of Section 4.1:

LanyP(w
∗
Y yP)(X)(P,Q) ∼=

∫ P ′

X(P ′)× yP(P)(P ′)× Y (Q)

160 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

∼= (
∫ P ′

X(P ′)× yP(P)(P ′))× Y (Q)

∼= X(P) × Y (Q) .

2

Since colimit preserving functors preserve open maps (Corollary 4.6.6), as a consequence
of the proposition above we have the following corollary:

Corollary 7.2.10 Let P and Q be two small categories, the functor

w∗ : P̂× Q̂ −→ P̂×Q

defined as above preserves (surjective) open maps, i.e., if f : X → Y and g : W → Z
are two (surjective) open maps in P̂ and Q̂ respectively, then w∗(f, g) is a (surjective)
P×Q-open map.

Observe moreover that the action of w∗ can be derived from the monoidal structure of
Prof . In fact we have that the following diagram commutes

P̂× Q̂
w∗

//

∼=

��

P̂×Q

Prof (1,P ×Q)

∼=
OO

Prof (1,P)×Prof(1,Q) ⊗
// Prof(1× 1,P ×Q) .

∼=

OO

Since w∗ can be realised in terms of the monoidal structure of Prof , it lifts pointwise
to ProfI .

Finally observe that w∗ arises as a left Kan extension as well.

Proposition 7.2.11 Let P and Q be two small categories, then

w∗
P,Q = LanwP,Q(yP×Q) .

7.3 The equation

We derive an indexed family of π-calculus path object P in ProfI by solving the fol-
lowing equations:

P = P⊥ + Out + In
Out = (N⊗ N⊗ P⊥) + (N⊗ (δP)⊥) (7.4)
In = N⊗ (N (P)⊥ (7.5)

Unfolding, the four components of P represent silent action, free output, bound output
and input respectively. We give the solution to this equation in three stages: first we

7.3. THE EQUATION 161

describe recursively at each set s the corresponding path category P(s); then we specify
inductively the profunctor arrow that connects P(s) to P(s′) for any injective function
i : s→ s′ and finally we describe, again inductively, the coherence isomorphisms.

From the descriptions of the constructors δ and (, we can think of the family P(−)
as being recursively described by

P(s) = P(s)⊥ + s× s× P(s)⊥ + s× P(s+ 1)⊥ + s× (s× P(s) + P(s+ 1))⊥ .

The category P(s) is thus a poset, in fact a forest of trees.

• There are four kinds of root: τ., x!y., x!∗. and x? for any x, y ∈ s.
• Above these in the order relation we find respectively: τ.p, x!y.p, x!∗.p′, x?(y 7→p)

and x?(∗7→p′), where the last two lie above x? and where p is an object of P(s)
while p′ is an object of P(s+ 1).

The arrows of P(s) are then given by the set of rules in Figure 7.2.

τ ≤s τ.p x!y ≤s x!y.p x!∗ ≤s x!∗.p′ x? ≤s x?(y 7→p) x? ≤s x?(∗7→p)

p ≤s q
τ.p ≤s τ.q

p ≤s q
x!y.p ≤s x!y.q

p′ ≤s+1 q
′

x!∗.p′ ≤s x!∗.q′

p ≤s q
x?(y 7→p) ≤s x?(y 7→q)

p′ ≤s+1 q
′

x?(∗7→p′) ≤s x?(∗7→q′)

Figure 7.2: The partial order P(s)

Prefixings To give an inductive (on the structure of the objects) definition of the
action of P(−) on morphisms we define first prefixing functors that extend that prefixing
notation we used in the definition of the objects of P(s).

Definition 7.3.1 Assume a fixed finite set s and suppose x, y ∈ s. As usual for us (cf.
Section 4.4), write l∗ : Ĉ→ Ĉ⊥ for the embedding that takes a presheaf X over C to the
rooted presheaf bXc over C⊥.

• For α one of τ or x!y, let Inα : P(s)⊥ ↪→ P(s) be the inclusion of P(s)⊥ in the
appropriate component. Define a prefixing functor

α.
def= Inα,!l∗ : P̂(s) −→ P̂(s) .

• Let Inx!∗ : P(s + 1)⊥ ↪→ P(s) be the inclusion of P(s + 1)⊥ in the appropriate
component. Define a prefixing functor

x!∗ def= Inx!∗,!l∗ : ̂P(s+ 1) −→ P̂(s) .

162 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

• Let Inx? : (s× P(s) + P(s+ 1))⊥ → P(s), be the inclusion functor sending

(y, p) 7→ x?(y 7→p) and p′ 7→ x?(∗7→p′) .

Define
x? def= Inx?,!l∗ : ̂(s× P(s) + P(s+ 1)) −→ P̂(s) .

Corollary 4.6.6, Proposition 4.4.1 and Proposition 4.6.8 are sufficient to deduce that all
these functors preserve surjective open maps.

Proposition 7.3.2 The prefixing functors of Definition 7.3.1 preserves surjective open
maps, hence open map bisimulation.

Moreover we also have the following elementary characterisation that shows that they
are indeed doing what is expected.

Proposition 7.3.3 • The functor

α. : P̂(s)→ P̂(s)

has action on objects described by,

α.X(p) ∼=

{?} if p = α.

X(p′) if p = α.p′

∅ otherwise.

• The functor
x! : ̂P(s+ 1)→ P̂(s)

has action on objects described by,

x!∗.Y (p) ∼=

{?} if p = x!∗
Y (p′) if p = x!∗.p′

∅ otherwise.

• The functor
x? : ̂(s× P(s) + P(s+ 1)) −→ P̂(s)

has action on objects described by,

x?〈F,X〉(p) =

{?} if p = x?
F (y)(p′) if p = x?(y 7→p′)
Y (p′) if p = x?(∗7→p′)
∅ otherwise,

where we represent presheaves over (s× P(s) + P(s+ 1)) as pairs 〈F, Y 〉 with F a
profunctor F : s + //P(s) and Y a presheaf Y ∈| ̂P(s+ 1) |.

7.3. THE EQUATION 163

Proof: We show the proof only for the first set of functors. The calculation for the
other cases proceed analogously. Recall that,

(α.X)(p) def= Inα,!l∗X(p) ∼=
∫ q

bXc(q) × (Inαq)(p) .

We can consider three cases:

1. If p = α then the chain of bijections above continues as

∼=
∫ qbXc(q) (since (Inαq)(α) ∼= {?})

∼= {?} (since bXc is rooted).

2. If p = α.p′ then the chain continues as

∼=
∫ qbXc(q) × yP(s)⊥(q)(bp′c) (since α.p′ = Inαbp′c)

∼= bXc(bp′c) (by the Density Formula)
= X(p′) (by full and faithfulness of l∗).

3. In any other case (Inαq)(p) = ∅ for every q ∈| P(s)⊥ | and so the coend is the
empty set as well.

2

Notation: In fact for presheaves X over s×P(s)+P(s+1) we shall often move, without
giving notice, back an forth between the representation as pairs 〈F, Y 〉 = 〈λx.Xx,X∗〉
with F : s→ P̂(s) and Y ∈| ̂P(s+ 1) | defined by

F (x)(p) def= X(x, p) def= Xx(p) and Y (p′) def= X(p′) def= X∗(p′) ,

and as sums ∑
x∈s

(x 7→ Xx) + (∗ 7→ X∗) .

We can use the prefixing functors above to give a description of the action of P(−)
on morphisms, i : s→ s′. We work by induction on the structure of the objects in P(s).
In the base cases minimal paths in P(s) go to the same in P(s′), regarded via Yoneda
as presheaves:

P(i)(τ.) = τ. P(i)(x!y.) = i(x)!i(y). P(i)(x!∗s.) = i(x)!∗s′ . P(i)(x?) = i(x)?

The inductive steps are:

P(i)(τ.p) = τ.P(i)(p) P(i)(x!y.p) = i(x)!i(y).P(i)(p)
P(i)(x!∗s.p′) = i(x)!∗s′ .P(i+ 1)(p′) P(i)(x?(y 7→ p)) = i(x)?(i(y) 7→ P(i)(p))

P(i)(x?(∗ 7→ p′)) = i(x)?((N + //P)(i)(∗ 7→ p′)) .

In the last of these we use the non-trivial action of (N + //P)(i) from (7.3) to ‘fill in’ input
behaviour on receiving names from (s′ \ Im(i)).

164 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

Concerning the coherence isomorphisms, it is clear form the definitions that

P(1s) = yP(s) .

If i : s→ s′ and j : s′ → s′′ the coherence isomorphism

Pi,j : P(ji) ∼=⇒ P(j)P(i)

is defined inductively as follows. On the base cases it is just equality, the inductive steps
are:

(Pi,j)τ.p = τ.((Pi,j)p) (Pi,j)x!y.p = ji(x)!ji(y).((Pi,j)p)
(Pi,j)x!∗s.p′ = ji(x)!∗s′′ .((Pj+1,i+1)p′) (Pi,j)x?(y 7→p) = ji(x)?(ji(y) 7→ (Pi,j)p)

(Pi,j)x?(∗7→p′) = ji(x)?(N + //P)i,j)p′ .

7.3.1 A decomposition result

As in Chapter 5 we wish to take advantage of decomposition results to define transition
relations for presheaves that we shall use to deduce, in the denotational semantics, that
late bisimulation for terms coincides with open map bisimulation of their denotation.

Proposition 7.3.4 For every set s the category P(s) is isomorphic to

P(s)⊥ +
∑
x,y∈s

P(s)⊥ +
∑
x∈s

P(s+ 1)⊥ +
∑
x∈s

(s× P(s) + P(s+ 1))⊥ .

Proof: The proof is a trivial consequence of the following (obvious) general fact. For
any category C and any set s, there is an isomorphism of categories∑

x∈s
C ∼= s× C ,

where in the expression s×C, the set s is identified with the discrete category of objects
the elements of s. 2

We have already seen (Chapter 5) that a presheaf X over a “lifted” category C⊥ can
be decomposed as

X ∼=
∑

x∈X(⊥)

bX|xc .

Moreover, via the isomorphism ∏
i∈I

Ĉi
∼=

∑̂
i∈I

Ci ,

for (Ci)i∈I a family of small categories indexed by a set I, one has that a presheaf
X over

∑̂
i∈I Ci can be written (omitting the obvious inclusion functor) as the sum∑

i∈I Xi, where each Xi is a presheaf over Ci. Combining these with Proposition 7.3.4
and recalling the characterisation of the prefixing functors (Proposition 7.3.3) we have
the following:

7.3. THE EQUATION 165

Theorem 7.3.5 (Decomposition of Presheaves) Let X ∈ P̂(s). Then X is iso-
morphic to∑

i∈X(τ.)

τ.Xi+
∑
x,y∈s

∑
j∈X(x!y.)

x!y.Xj+
∑
x∈s

∑
k∈X(x!∗.)

x!∗.Xk+
∑
x∈s

∑
l∈X(x?)

x?〈λy.Xy
l ,X

∗
l 〉 .

Since P is defined recursively and the objects of P(s) are described by simultane-
ous induction, one can derive an inductive description of the resumptions categories,
(p/P(s))+, associated to any path object (cf. Definition 5.1.5).

Proposition 7.3.6 Let s be a finite set, x, y ∈ s and p ∈| P(s) |; then the following
holds:

Base cases:

• If p = τ then (p/P(s))+ ∼= P(s).
• If p = x!y then (p/P(s))+ ∼= P(s).
• If p = x!∗ then (p/P(s))+ ∼= P(s+ 1).
• If p = x? then (p/P(s))+ ∼= (s × P(s) + P(s+ 1)).

Inductive steps:

• If p = τ.p′ then (p/P(s))+ ∼= (p′/P(s))+.
• If p = x!y.p′ then (p/P(s))+ ∼= (p′/P(s))+.
• If p = x!∗.p′ then (p/P(s))+ ∼= (p′/P(s+ 1))+.
• If p = x?(y 7→ p′) then (p/P(s))+ ∼= (p′/P(s))+.
• If p = x?(∗ 7→ p′) then (p/P(s))+ ∼= (p′/P(s + 1))+.

Thus given a presheafX over P(s) and an element x ∈ X(p), X|x is either a presheaf over
P(s+n), for some (unique) n ∈ ω, or a presheaf over (s+n)×P(s+n)+P(s+n+1). As in
the Decomposition Theorem, in the latter case we shall write (X|x)a for the component
of X|x associated with a ∈ s+ n and (X|x)∗ for the component at P(s+ n+ 1).

As a consequence of Theorem 5.1.7 we have the following preservation property for
resumptions with respect to the Decomposition Theorem.

Proposition 7.3.7 Let X,Y be two presheaves over P(s) with f : X → Y a surjective
open map between them. Then the following “restrictions” of f are surjective open:

f|i : X|i → Y|i′ where i ∈ X(τ.) and i′ = fτ.(i)

f|j : X|j → Y|j′ where j ∈ X(x!y.) and j′ = fx!y.(j)

f|k : X|k → Y|k′ where k ∈ X(x!∗.) and k′ = fx!∗.(k)

(f|l)
a : (X|l)

a → (Y|l′)
a where l ∈ X(x?), l′ = fx?(l) and a ∈ s

(f|l)
∗ : (X|l)

∗ → (Y|l′)
∗ where l ∈ X(x?) and l′ = fx?(l),

where (f|l)a and (f|l)∗ are the components of f|l according to the isomorphism

̂(s× P(s) + P(s+ 1)) ∼=
∏
a∈s

P̂(s)× ̂P(s+ 1) .

166 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

Using the Decomposition Theorem, we can also characterise the action of P(i)! on
presheaves.

Lemma 7.3.8 Let i : s→ s′ be an injective function between finite sets and X ∈|P(s) |.
Then the following hold:

1. If X ∼= τ.Y then P(i)!(X) ∼= τ.P(i)!(Y).
2. If X ∼= x!y.Y then P(i)!(X) ∼= i(x)!i(y).P(i)!(Y).
3. If X ∼= x!∗.Y then P(i)!(X) ∼= i(x)!∗.P(i + 1)!(Y).
4. If X ∼= x?〈λ y.Xy ,X∗〉 then P(i)!(X) ∼= i(x)?〈λw.Xw

,P(i + 1)!(X∗)〉, where for
every w ∈ s′, Xw = P(i)!(Xy) if w = i(y) and it is P([i, w])!(X∗) otherwise.

Proof:

1. P(i)!(X) =
∫ P

τ.Y (P) .P(i)(P) (by definition)
=

∫ P=InτQbY c(Q) . (τ.P(i)!(l∗Q)) (since all the other paths give
empty contribution)

∼=
∫ QbY c(Q) . (τ.P(i)!(l∗Q))

∼= τ.(
∫ QbY c(Q) .P(i)!(l∗Q) (since the colimit is connected and

τ. preserves connected colimits)
∼= τ.(P(i)!l∗bY c)
= τ.(P(i)!(Y))

2. A similar calculation to that above.
3. Idem.
4. P(i)!(X) =

∫ P
x?〈λ y.Xy,X∗〉(P) .P(i)(P)
(by definition)

=
∫ P=Inx?R〈λ y.Xy ,X∗〉(R) . i(x)?(N (P)(i)(R)

(since all the other paths give empty contribution)
=

∫ Rb〈λ y.Xy ,X∗〉c(R) . i(x)?(N (P)(i)!(l∗R)
∼= i(x)?

∫ Rb〈λ y.Xy ,X∗〉c(R) . (N (P)(i)!(l∗R)
(since the colimit is connected and i(x)?

preserves connected colimits)
∼= i(x)?(N (P)(i)!l∗b〈λ y.Xy ,X∗〉c
∼= i(x)?(N (P)(i)!〈λ y.Xy ,X∗〉
∼= i(x)?〈λw.Xw

,P(i+ 1)!(X∗)〉
(by Lemma 7.2.8).

2

As an immediate consequence since left Kan extensions preserve sums we have the
following:

Theorem 7.3.9 Let f : s→ s′ be an injective function between finite sets and let X be
a presheaf over P(s) with decomposition∑
i∈X(τ.)

τ.Xi +
∑
x,y∈s

∑
j∈X(x!y.)

x!y.Xj +
∑
x∈s

∑
k∈X(x!∗.)

x!∗.Xk +
∑
x∈s

∑
l∈X(x?)

x?〈λy.Xy
l ,X

∗
l 〉 ,

7.3. THE EQUATION 167

then P(f)!(X) is isomorphic to the following presheaf:∑
i∈X(τ.)

τ.P(f)!(Xi) +
∑
x,y∈s

∑
j∈X(x!y.)

f(x)!f(y).P(f)!(Xj)

+
∑
x∈s

∑
k∈X(x!∗.)

f(x)!∗.P(f + 1)!(Xk) +
∑
x∈s

∑
l∈X(x?)

f(x)?〈λw.Xw
l ,P(f + 1)(X∗

l)〉 ,

where Xw
l is defined as in Lemma 7.3.8 above.

7.3.2 Transition relations for presheaves and indexed late bisimilarity
for P

We can use the decomposition result to define indexed transition relations for presheaves
over the P(s)’s. As in Chapter 5 we could use the elements of the presheaves to induce
some extra information on our transition arrows. Still as with CCS, it turns out that
this is not necessary here.2

Definition 7.3.10 Given a presheaf X over P(s), we say that

• X τ−→ X ′ if it exists i ∈ X(τ) such that X ′ = X|i.

• X x!y−→ X ′ if it exists j ∈ X(x!y) such that X ′ = X|j.

• X x!∗−→ X ′ if it exists k ∈ X(x!∗) such that X ′ = X|k.

• X x?−→ 〈F,X ′〉 if it exists l ∈ X(x?) such that 〈F,X ′〉 = 〈λy.Xy
l ,X

∗
l 〉.

Given the transition relation, it is natural now to define late bisimulation relations for
presheaves.

Definition 7.3.11 A P-late bisimulation is a family (Rs)s∈I of symmetric binary rela-
tions on presheaves in P̂(s) such that for any finite name set s and any two presheaves
X,Y over P(s), if X Rs Y then

X
τ−→ X ′ ⇒ ∃Y ′. Y

τ−→ Y ′ & X ′ Rs Y
′

X
x!y−→ X ′ ⇒ ∃Y ′. Y

x!y−→ Y ′ & X ′ Rs Y
′

X
x!∗−→ X ′ ⇒ ∃Y ′. Y

x!∗−→ Y ′ & X ′ Rs+1 Y
′

X
x?−→ 〈F,X ′〉 ⇒ ∃〈G,Y ′〉. Y x?−→ 〈G,Y ′〉 & X ′ Rs+1 Y

′

& ∀y ∈ s. F (y) Rs G(y) .

We say that X,Y ∈ P̂(s) are P-late bisimilar iff X Rs Y for some P-late bisimulation
(Rs)s∈I .

Lemma 7.3.12 P-late bisimilarity is an equivalence relation.
2Chapter 8 will provide with a language where we conjecture that this extra information is vital in

order to characterise operationally open map bisimulation.

168 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

Using Proposition 7.3.7 we can show that this P-late bisimilarity corresponds exactly
to open map bisimilarity.

Lemma 7.3.13 Suppose X and Y are presheaves over P(s). Then:

(i) If f : X → Y is a surjective P(s)-open map then X and Y are P-late bisimilar.
(ii) If X Rs Y for some P-late bisimulation (Rs)s∈I then X and Y are related by a

span of surjective open maps.

Proof:

1. Define (Rs)s∈I as follows:
A Rs B iff there exists a surjective P(s)-open map from A to B or from B to A.
That this is a late bisimulation follows directly from Proposition 7.3.7, moreover
by assumption X Rs Y .

2. Suppose (Rs)s∈I is a P-late bisimulation, then we define for every pair of presheaves
A,B such that A Rs B for some s a sub-presheaf of their product ZA,B ↪→ A×B
such that the two projections on A and B are surjective P(s)-open maps.
The definition of the ZA,B’s is given inductively on the structure of the path
objects and goes as follows:

ZA,B(τ) = {(i, i′)|A|i Rs B|i′}
ZA,B(x!y) = {(j, j′)|A|j Rs B|j′}
ZA,B(x!∗) = {(k, k′)|A|k Rs+1 B|k′}
ZA,B(x?) = {(l, l′)|∀y .Ay|l Rs B

y
|l′ and A∗

|l Rs+1 B
∗
|l′}

ZA,B(τ.p) = {(a, b)|(a, b) ∈ ZA|i,B|i′ (p),
where (i, i′) = (A×B)(τ ≤ τ.p)(a, b)}

ZA,B(x!y.p) = {(a, b)|(a, b) ∈ ZA|j ,B|j′ (p),
where (j, j′) = (A×B)(x!y ≤ x!y.p)(a, b)}

ZA,B(x!∗.p) = {(a, b)|(a, b) ∈ ZA|k,B|k′ (p),
where (k, k′) = (A×B)(x!∗ ≤ x!∗.p)(a, b)}

ZA,B(x?(y 7→ p)) = {(a, b)|(a, b) ∈ ZA
y
|l,B

y

|l′ (p),
where (l, l′) = (A×B)(x? ≤ x?(y 7→ p))(a, b)}

ZA,B(x?(∗ 7→ p)) = {(a, b)|(a, b) ∈ ZA
∗
|l,B

∗
|l′ (p),

where (l, l′) = (A×B)(x? ≤ x?(∗ 7→ p))(a, b)}
We need to show first of all that ZA,B is a presheaf, i.e., that for every two paths, p, q,
such that p ≤ q and for every element (a, b) ∈ ZA,B(q), then

(A×B)(p ≤ q)(a, b) ∈ ZA,B(p) .

But this is a straightforward inductive proof on the rules that define the partial order
relation for path objects (Figure 7.2) as the following case example shows.

p′ ≤ q′
p = τ.p′ ≤ τ.q′ = q

:

7.3. THE EQUATION 169

If (a, b) ∈ ZA,B(q) then by definition (a, b) ∈ ZA|i,B|i′ (q′) for

(i, i′) = A×B(τ ≤ τ.q′)(a, b) .
Then by the inductive hypothesis the following holds

A|i ×B|i′(p
′ ≤ q′)(a, b) ∈ ZA|i,B|i′ (p′) ,

but by definition of A|i and B|i′ (Definition 5.1.5),

A|i ×B|i′(p
′ ≤ q′)(a, b) = A×B(p ≤ q)(a, b) .

Thus, A×B(p ≤ q)(a, b) ∈ ZA|i,B|i′ (p′) hence by definition of ZA,B,

A×B(p ≤ q)(a, b) ∈ ZA,B(p) .

Now we shall check that the projections A πA← ZA,B
πB→ B are surjective P(s)-open

maps. We begin with surjectivity and by symmetry concentrate only on one of the
two projections. The proof goes by induction on the structure of the path objects and
again we exemplify it considering only one case (the others being rather similar). Let
p = x?(y 7→ q) be a path object. We want to show that if a ∈ A(p), then there exists
a z = (a, b) ∈ ZA,B(p). By definition if a ∈ A(p) then there exists l ∈ A(x?) such that
a ∈ Ay|l. Since (Rs)s∈I is a late bisimulation, then there exists l′ ∈ B(x?) such that

Ay|l Rs B
y
|l′ . By inductive hypothesis, πAy|l : ZA

y
|l,B

y

|l′ → Ay|l is surjective, hence there

exists z = (a, b) ∈ ZA
y
|l,B

y

|l′ (q) and by definition this means that z ∈ ZA,B(x?(y 7→ q))
too.

The proof that the projection is P(s)-open is instead done by induction on the rules
defining the partial order relation between paths as the following case example shows.

p ≤ q
x!y.p ≤ x!y.q :

We want to deduce that the following square is a quasi pullback,

ZA,B(x!y.q) def=
∑

(j,j′)∈A×B(x!y) Z
A|j ,B|j′ (q)

(πA)x!y.q=
∑

(πA|j)q
//

ZA,B(x!y.p≤x!y.q)
��

∑
j∈A(x!y)A|j(q) = A(x!y.q)

A(x!y.p≤x!y.q)
��

ZA,B(x!y.p) def=
∑

(j,j′)∈A×B(x!y) Z
A|j ,B|j′ (p)

(πA)x!y.p=
∑

(πA|j)p
//
∑

j∈A(x!y)A|j(p) = A(x!y.p) .

But by inductive hypothesis each “summand” in the diagram above, that is each square
like the following,

ZA|j ,B|j′ (q)
(πA|j)q

//

Z
A|j,B|j′ (p≤q)

��

A|j(q)

A|j(p≤q)
��

ZA|j ,B|j′ (p)
(πA|j)p

// A|j(p) ,

170 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

is a quasi pullback, thus the first diagram is a quasi pullback too. 2

Combining Lemma 7.3.12 and 7.3.13 gives:

Theorem 7.3.14 Two presheaves X and Y over P(s) are P-late bisimilar if and only
if they are connected by a span of surjective open maps.

Moving to a larger set of free names does not affect P-late bisimilarity since colimit
preserving functors preserve (surjective) open maps (Corollary 4.6.6).

Proposition 7.3.15 (Weakening) If X,Y ∈ P̂(s) are P-late bisimilar then so are
P(i)!(X) and P(i)!(Y) for any injection i : s→ s′.

Moving to smaller name sets is a little more complicated. For any i : s→ s′ in I define
ei : P(s)→ P(s′) by induction as follows:

ei(τ) = τ ei(x!y) = i(x)!i(y)
ei(x!∗s) = i(x)!∗s′ ei(x?) = i(x)?

ei(τ.p) = τ.ei(p) ei(x!y.p) = i(x)!i(y).ei(p)
ei(x!∗s.p) = i(x)!∗s′ .ei+1(p) ei(x?(y 7→ p)) = i(x)?(i(y) 7→ ei(p))

ei(x?(∗s 7→ p′)) = i(x)?(∗s′ 7→ ei+1(p)) .

This differs from P(i) in having a much simpler action on input of unknowns x?(∗7→p′).
Even so e?i , which again by Corollary 4.6.6 preserves open maps, turns out to be a left
inverse to P(i)!.

Lemma 7.3.16 Let i : s→ s′ be an injective function between finite sets, then for any
presheaf X ∈|P(s) |,

e∗iP(i)!(X) ∼= X .

Proof: Observe first of all that e∗iP(i) = yP(s) as it is immediately proved by induction
on the structure of the paths. By the preservation property of left-adjoint functors
with respect to left Kan extensions [17] we then have the following chain of natural
isomorphisms:

e∗iP(i)! ∼= e∗iLanyP(s)(P(i))
∼= LanyP(s)(e

∗
iP(i))

∼= LanyP(s)(yP(s))
∼= 1

P̂(s)
.

2

This allows us to prove the following result.

Proposition 7.3.17 (Strengthening) For X,Y ∈ P̂(s) and i : s → s′ in I, if
P(i)!(X) and P(i)!(Y) are P-late bisimilar over P(s′) then so are X and Y over P(s).

7.4. CONSTRUCTIONS 171

Proof: By the lemma above X ∼= e∗iP(i)!X that is open map bisimilar to e∗iP(i)!Y
since e∗i being colimit preserving preserves open map bisimulation. Again by the lemma
above one has that e∗iP(i)!Y ∼= Y and hence X is open map bisimilar to Y . 2

These results suggest that we could have imposed similar uniformity constraints on the
family (Rs)s∈I in Definition 7.3.11: we conjecture that without loss of generality we can
require that R � (P & P) be a pointwise discrete cartesian subobject in ProfI .

7.4 Constructions

7.4.1 Restriction

We define here the operator that will be used to interpret name restriction in π-calculus
processes. It arises as a family of profunctor arrows indexed by finite sets s and their
elements:

νy∈s : P(s) −→ P(s− {y}) .

We define the νy∈s simultaneously for all s by induction on the structure of the paths.
So for each path in P(s), according to its structure:

νy∈s(τ.) = τ.

νy∈s(x!z.) =

x!z. if x, z 6= y

x!∗s−{y}. if x 6= y and z = y

∅ otherwise

νy∈s(x!∗s.) =

{
x!∗s−{y}. if x 6= y

∅ otherwise

νy∈s(x?) =

{
x? if x 6= y

∅ otherwise

νy∈s(τ.p) = τ.νy∈s(p)

νy∈s(x!z.p) =

x!z.νy∈s(p) if x, z 6= y

x!∗s−{y}.P(bs,y)(p) if x 6= y and z = y

∅ otherwise

νy∈s(x!∗s.p′) =

{
x!∗s−{y}.νy∈s+1(p′) if x 6= y

∅ otherwise

νy∈s(x?(z 7→ p)) =

x?(z 7→ νy∈s(p)) if x, z 6= y

x? if x 6= y = z

∅ otherwise

νy∈s(x?(∗s 7→ p′) =

{
x?(∗s−{y} 7→ νy∈s+1(p′)) if x 6= y

∅ otherwise

172 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

where bs,y : s → (s − {y}) ∪ {∗s−{y}} is the bijection that renames y to ∗s−{y}. Using
the Decomposition Theorem we can characterise the action of the restriction operator
on presheaves.

Lemma 7.4.1 Let s be a finite sets and let y ∈ s, then the following hold:

1. If X = α.Y ∈| P̂(s) | with α ∈ {τ} ∪ {x!z | x 6= y 6= z} ∪ {x!∗ | x 6= y} then

νy∈s,!X ∼= α.νy∈s,!Y .

2. If X = x!y.Y ∈| P̂(s) | with x 6= y then νy∈s,!X ∼= x!∗.P(bs,y)!Y .

3. If X = x?(z 7→ Y) ∈| P̂(s) | with x 6= y 6= z then νy∈s,!X ∼= x?(z 7→ νy∈s,!Y).

4. If X = x?(y 7→ Y) ∈| P̂(s) | with x 6= y then νy∈s,!X ∼= x?.

5. If X = x?(∗ 7→ Y) ∈| P̂(s) | with x 6= y then νy∈s,!X ∼= x?(z 7→ νy∈s+1,!Y).
6. If X = y!z.Y or X = y?(z 7→ Y) or X = y?(∗ 7→ Y), then νy∈s,!X = ∅.
7. If X = x?〈λ z.Y z, Y ∗〉, with x 6= y then νy∈s,!X ∼= x?〈λ z.νy∈s,!Y

z
, νy∈s+1,!Y

∗〉
where Y y = ∅ and Y z = Y z for z 6= y.

8. If X = y?〈λ z.Y z, Y ∗〉 then νy∈s,!X = ∅.

Proof:

1. νy∈s,!X ∼=
∫ p
X(p) . νy∈s(p)

=
∫ p(α.Y)(p) . νy∈s(p)

=
∫ p=Inαq(α.Y)(p) . νy∈s(p) (since the other paths give empty

contribution)
=

∫ qbY c(q) . (α.(νy∈s,!(l∗q)) (since Inαq = α.(l∗q))
∼= α.(

∫ qbY c(q) . νy∈s,!(l∗q) (since α. preserves connected colimits)
∼= α.(

∫ p
Y (p) . νy∈s(p)) (since q = ⊥ contributes with the

empty presheaf)
∼= α.(νy∈s,!Y) (by definition)

2. νy∈s,!X ∼=
∫ p
X(p) . νy∈s(p)

=
∫ p(x!y.Y)(p) . νy∈s(p)

=
∫ p=Inx!yq(x!y.Y)(p) . νy∈s(p) (since the other paths give empty

contribution)
=

∫ qbY c(q) . x!∗.P(bs,y)!(l∗q) (since Inx!yq = x!y.(l∗q))
∼= x!∗.(

∫ qbY c(q) .P(bs,y)!(l∗q) (since x!∗. preserves connected
colimits)

∼= x!∗.(P(bs,y)!l∗bY c)
= x!∗.(P(bs,y)!Y) (since l∗l∗ = 1P(s))

7.4. CONSTRUCTIONS 173

3. νy∈s,!X ∼=
∫ p
X(p) . νy∈s(p)

=
∫ p(x?(z 7→ Y))(p) . νy∈s(p)

=
∫ q(x?(z 7→ Y))(x?(z 7→ l∗q) . νy∈s(x?(z 7→ l∗q))

(since the other paths give empty contribution)
=

∫ qbY c(q) . (x?(z 7→ νy∈s)(l∗q)
(since Inx?(z 7→ bpc = x?(z 7→ p) and x?(z 7→ ∅ = x?)

∼= x?(
∫ qbY c(q) . (z 7→ νy∈s(l∗q))
(since x? preserves connected colimits)

∼= x?(z 7→ νy∈s,!l
∗bY c)

= x?(z 7→ νy∈s,!Y)
(since l∗l∗ = 1P(s))

4. Similar as above with the extra restriction that only the component p = x? of the
induced colimit gives a non-empty contribution.

5. Similar as above where simply, by definition, one moves from νy∈s to νy∈s+1.
6. Here clearly no component gives a non-empty contribution.
7. This is a consequence of the fact that 〈λ z.Y z, Y ∗〉 can be seen as a notation for

the presheaf over s× P(s) + P(s+ 1),
∑

z∈s(z 7→ Y z) + (∗ 7→ Y ∗).
8. Again it is immediately seen that every component of the induced colimit is the

empty presheaf.

2

Using the Lemma above and the Decomposition Theorem we can now characterise the
action of ν on a general presheaf as follows:

Theorem 7.4.2 Let X ∈| P̂(s) | have the following decomposition∑
i∈X(τ.)

τ.Xi+
∑
x,z∈s

∑
j∈X(x!z.)

x!z.Xj+
∑
x∈s

∑
k∈X(x!∗.)

x!∗.Xk+
∑
x∈s

∑
l∈X(x?)

x?〈λz.Xz
l ,X

∗
l 〉 .

then νy∈s,!X is isomorphic to the presheaf∑
i∈X(τ.)

τ.νy∈s,!Xi+
∑

x, z ∈ s
x 6= y 6= z

∑
j∈X(x!z.)

x!z.νy∈s,!Xj +
∑
x ∈ s
x 6= y

∑
j′∈X(x!y.)

x!∗.P(bs,y)!Xj′

+
∑
x ∈ s
x 6= y

∑
k∈X(x!∗.)

x!∗.νy∈s+1,!Xk +
∑
x ∈ s
x 6= y

∑
l∈X(x?)

x?〈λz.νy∈s,!X
z
l , νy∈s+1,!X

∗
l 〉 .

with Xy
l = ∅ and Xz

l = Xz
l in any other case.

Proof: The simple proof just uses the fact that sums preserve coends to reduce to the
cases that are handled by the Lemma 7.4.1. 2

174 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

Using the above results we can show that the family of ν’s satisfies the following natu-
rality property:

Theorem 7.4.3 For any injective function i : s → s′, the following square commutes
(up to a natural isomorphism):

P(s) +
νy∈s

//

+P(i)
��

P(s− {y})
+P(i′)
��

P(s′) +
νi(y)∈s′

// P(s′ − {i(y)})

where i′ : (s− {y})→ (s′ − {i(y)}) is the restriction of i.

Proof: We prove this fact by structural induction on the paths, p ∈|P(s) |.
Base Cases: If p ∈ {τ} ∪ {x!z | x 6= y 6= z} ∪ {x? | x 6= y}, then by definition

P(i′)(νy∈s(p)) = P(i)(p) = νi(y)∈s′(P(i)(p)) .

If p ∈ {x!∗s | x 6= y}, then by definition

P(i′)(νy∈s(x!∗s)) = i(x)!∗s′−{i(y)} = νi(y)∈s′(i(x)!∗s′) = νi(y)∈s′(P(i)(x!∗s)) .

Finally, in any other case both the composites return the empty presheaf.
Inductive Step: If p = τ.p′ then

P(i′)(νy∈sp) = P(i′)(τ.νy∈sp′) (by definition of ν)
= τ.P(i′)(νy∈sp′) (by definition of P)
= τ.νi(y)∈s′(P(i)p′) (by inductive hypothesis)
= νi(y)∈s′(P(i)τ.p′) (by definition of ν and P).

A similar argument proves the cases

p ∈ {x!z.p′ | x 6= y 6= z} ∪ {x!∗s | x 6= y} ∪ {x?(z 7→ p′) | x 6= y 6= z} .

If p ∈ {x?(∗s 7→ p′) | x 6= y} then

P(i′)(νy∈sp) = P(i′)!(x?(∗ 7→ νy∈s+1p
′))

= i(x)?(N (P)(i′)!(∗ 7→ νy∈s+1p
′)

(by definition of P(i′) and since i(x) = i′(x))
∼= i(x)?(

∑
z 6∈Imi′(z 7→ P([i′, z])!νy∈sp′) + (∗ 7→ P(i′ + 1)!νy∈sp′))
(by definition of N (P)

∼= i(x)?(
∑

z 6∈Imi′(z 7→ νi(y)∈s′,!P([i, z])p′) + (∗ 7→ νi(y)∈s′,!P(i+ 1)p′)
(by inductive hypothesis)

= i(x)?(
∑

z 6∈Imi′(z 7→ νi(y)∈s′,!P([i, z])p′) + (∗ 7→ νi(y)∈s′,!P(i+ 1)p′)
+(i(y) 7→ ∅)

(since we just added the empty presheaf)
∼= νi(y)∈s′,!(i(x)?〈λz . P([i, z])p′,P(i+ 1)p′〉)

(by point 7 of Lemma 7.4.1)
∼= νi(y)∈s′,!(i(x)?(N (P)(∗ 7→ p′))
= νi(y)∈s′,!P(i)(x?(∗ 7→ p′))

7.4. CONSTRUCTIONS 175

2

In particular we can observe that the family (ν∗∈s+1)s defines a pseudo natural trans-
formation ν : δ(P) .→ P. The important feature of the definition of ν is that it correctly
turns free output into bound output, as summarised in this result directly obtainable
from Lemma 7.4.1:

Lemma 7.4.4 Let X be a presheaf over P(s) and let x, y ∈ s. If X
x!y−→ X ′, then

νy∈s,!(X)
x!∗s−{y}−→ P(bs,y)!(X ′) .

Another thing which is worth observing is that if y, z are two different elements of a set
s, then

νz∈s−{y},! ◦ νy∈s ∼= νy∈s−{z},! ◦ νz∈s.

This suggests a definition of ν as a contravariant pseudo functor from I to Prof with
ν(s) = P(s) and ν(i) : P(s′) → P(s) the restriction, in any order, of the elements of
(s′ \ Im(i)).

7.4.2 Parallel composition

We turn now to parallel composition and as in Chapter 5 we break the definition of the
parallel composition functors

|s : P̂(s)× P̂(s)→ P̂(s)

into the components

P̂(s)× P̂(s)
l∗×l∗ // P̂(s)⊥ × P̂(s)⊥

w∗
// ̂P(s)⊥ × P(s)⊥

(||s)! // P̂(s) ,

where the last functor is colimit preserving. Hence from previous (general) results about
colimit and connected colimit preserving functors we shall be able to conclude that |s
preserves open map bisimulation.

Definition 7.4.5 For every finite set s, with elements indicated with the letters x, y, z,
define the symmetric profunctor

||s : P(s)⊥ × P(s)⊥ + //P(s)

by simultaneous induction, for all sets s, on the structure of the path objects represented
using the ‘In’ functors to reduce the number of different cases to be considered, as follows

176 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

(omitting the obvious Yoneda embeddings):

⊥||s⊥ = ∅
bpc||s⊥ = p

bInα(q)c||sbInα′(r)c = α.(bqc||sbInα′(r)c) + α′.(bInα(q)c||brc)

bInα(q)c||sbInx′!∗(r)c = α.(bqc||sbInx′!∗(r)c) + x′!∗.(bP(i)(Inα(q))c(||s+1)!brc)

bInτ (q)c||sbInx?(r)c = τ.(bqc||sbInx?(r)c
+x?〈λy . bInτ (q)c||sbr(y)c, bP(i)(Inτ (q))c(||s+1)!br(∗)c〉

bInx!y(q)c||sbInx′?(r)c =

x!y.(bqc||sbInx′?(r)c)
+x′?〈λz . bInx!y(q)c||sbr(z)c, bP(i)(Inx!y(q))c(||s+1)!br(∗)c〉

if x 6= x′

τ.(bqc||sbr(y)c) + x!y.(bqc||sbInx′?(r)c)
+x′?〈λz . bInx!y(q)c||sbr(z)c, bP(i)(Inx!y(q))c(||s+1)!br(∗)c〉

otherwise

bInx!∗(q)c||sbInx′?(r)c =

x!∗.(bqc(||s+1)!bP(i)(Inx′?(r)))c
+x′?〈λz . bInx!∗(q)c||sbr(z)c, bP(i)(Inx!∗(q))c(||s+1)!br(∗)c〉

if x 6= x′

τ.(ν∗∈s+1,!(bqc||s+1br(∗)c)) + x!∗.(bqc(||s+1)!bP(i)(Inx′?(r))c)
+x′?〈λz . bInx!∗(q)c||sbr(z)c, bP(i)(Inx!∗(q))c(||s+1)!br(∗)c〉

otherwise

bInx?(q)c||sbIny?(r)c = x?〈λz . bq(z)c||sbIny?(r)c, bq(∗)c(||s+1)!bP(i)(Iny?(r))c〉
+y?〈λz . bInx?(q)c||sbr(z)c, bP(i)(Inx?(q))c(||s+1)!br(∗)c〉

for α,α′ ∈ {τ}∪{x!y | x, y ∈ s} and i : s ↪→ s+1 the obvious inclusion. For Inx?(r), we
define, r(y) = ∅ when r = ⊥ or r = b(z 7→ p)c for z 6= y, while r(y) = p if r = b(y 7→ p)c
and similarly we define r(∗).
The action on morphisms, i.e., on the lesser or equal than relation, is inductively de-
termined as well in the obvious way.

Definition 7.4.6 (Parallel Composition) For every finite set s define the parallel
composition functor

|s
def= (||s)! ◦ wP(s)⊥,P(s)⊥ ◦ (l∗ × l∗) .

Using again the Decomposition Theorem, with proofs analogous to those of Chapter 5
for CCS (Lemma 5.1.13 and Proposition 5.1.14), we can characterise the parallel com-
position as follows.

Theorem 7.4.7 Let X and Y be two presheaves over P(s) with the respective decom-
positions indexed by i, j, k, l and i′, j′, k′, l′. Then X|sY , is isomorphic to the following

7.4. CONSTRUCTIONS 177

inductively defined presheaf:∑
i∈I

τ.(Xi|sY) +
∑
x,y∈s

∑
j∈Jx!y

x!y.(Xj |sY) +
∑
x∈s

∑
k∈Kx

x!∗s.(Xk|s+1P(i)!(Y))

+
∑
x∈s

∑
l∈Lx

x?〈λy.(Xy
l |sY),X∗

l |s+1P(i)!(Y)〉

+
∑
i′∈I′

τ.(X|sYi′) +
∑
x,y∈s

∑
j′∈J ′

x!y

x!y.(X|sYj′) +
∑
x∈s

∑
k′∈K′

x

x!∗s.(P(i)!(X)|s+1Yk′)

+
∑
x∈s

∑
l′∈L′

x

x?〈λy.(X|sY y
l′),P(i)!(X)|s+1Y

∗
l′ 〉

+
∑
x,y∈s

∑
j∈Jx!y

∑
l′∈L′

x

τ.(Xj |sY y
l′) +

∑
x∈s

∑
k∈Kx

∑
l′∈L′

x

τ.ν∗∈s+1,!(Xk|s+1Y
∗
l′)

+
∑
x,y∈s

∑
j′∈J ′

x!y

∑
l∈Lx

τ.(Xy
l |sYj′) +

∑
x∈s

∑
k′∈K′

x

∑
l∈Lx

τ.ν∗∈s+1,!(X∗
l |s+1Yk′) ,

where i : s→ s+ 1 is the obvious inclusion function.

As we have already announced since |s arises as the composite of open map preserving
functors, we have the following congruence property:

Theorem 7.4.8 Let X,Y,Z,W be presheaves over P(s). If maps f : X → Z and
g : Y →W are surjective open, then so is f |sg : X|sY → Z|sW .

Proof: By definition f |sg = (||s)!(w∗(l∗f×l∗g), but by Proposition 4.4.4, l∗f and l∗g are
surjective open; by Proposition 2.2.7, l∗f × l∗g is surjective open; by Corollary 7.2.10
w∗(l∗f × l∗g) is surjective open and finally by Corollary 4.6.6, (||s)!(w∗(l∗f × l∗g) is
surjective open. 2

Using the characterisation of Theorem 7.4.7 it is not difficult to see, in analogy with
what done for the restriction (cf. Theorem 7.4.3), that |s is pseudo natural in s, i.e., for
every i : s→ s′ the following square commutes up to a natural isomorphism:

P̂(s)× P̂(s)
|s

//

P(i)!×P(i)!
��

P̂(s)

P(i)!
��

P̂(s′)× P̂(s′) |s′
// P̂(s′) .

7.4.3 Replication

As we saw from the structural congruences of the π-calculus, given a process P , its
replicated version !P is characterised by putting

!P ≡ P | !P .

178 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

A different way of achieving the same effect would have been to introduce in the oper-
ational semantics ‘recursive’ rules like

P | !P α−→ Q

!P α−→ Q .

A natural way of giving the analogous presheaf operations

!s : P̂(s)→ P̂(s)

is by means of an initial fixed point construction. Recall in fact that

|s : P̂(s)× P̂(s)→ P̂(s)

preserves connected colimits in each argument separately. In particular then this holds
for colimits of ω-chains.

Definition 7.4.9 Let X be a presheaf over P(s). Define

|Xs : P̂(s)→ P̂(s)

as |Xs (Y) = X|sY and |Xs (f) = 1X |sf .
For what we said, the functor |Xs preserves colimits of ω-chains. Recall also that P̂(s)
is cocomplete, hence any ω-chain of presheaves in P̂(s) has a colimiting cone. So the
following definition is justified.

Definition 7.4.10 Let X be a presheaf, define

!X def= colim |X,ωs ,

where |X,ωs : ω → P̂(s) is defined by

• |X,ωs (0) = ∅, |X,ωs (n+ 1) = |Xs (|X,ωs n),
• |X,ωs (0 ≤ 1) = 0X , the unique arrow from the empty presheaf to X while for any
n〉0, |X,ωs (n ≤ n+ 1) is defined inductively as |Xs (|X,ωs (n− 1 ≤ n)).

Since |Xs preserves colimits of ω-chains, !X is a fixed point for |Xs , i.e.,

!X ∼= X|s!X .

As usual with colimits (cf. [56]) a choice of !X, for every presheaf X, induces uniquely
a functor, !s : P̂(s)→ P̂(s). Moreover since P(i)! preserves colimits, ! is natural in s.

Proposition 7.4.11 For every injective function i : s → s′, with s and s′ finite sets,
the following square commutes up to a natural isomorphism:

P̂(s)
!s //

P(i)!
��

P̂(s)

P(i)!
��

P̂(s′) !s′
// P̂(s′) .

7.5. THE INTERPRETATION 179

Proof:
P(i)!!s = P(i)!colim |−,ωs (by definition)

∼= colim P(i)!|−,ωs (since P(i)! preserves colimits)
∼= colim |P(i)!(−),ω

s (by naturality of |).
2

7.5 The interpretation

We now have all the ingredients for a compositional semantics of π-calculus terms as
(indexed) presheaves.

Following [126], we give the interpretation to process terms in two steps. First we
associate a process P with free names in s to a presheaf ([P])s ∈ |P̂(s)|. Then later, in
the full interpretation, we take account of all possible name substitutions by giving a
process P with free names s a denotation as a natural transformation:

[[P]] : N |s| .−→ P .

Definition 7.5.1 Let s be a set of names. For π-calculus processes whose free names
lie in s we inductively define:

([0])s = ∅ ([P +Q])s = ([P])s + ([Q])s ([[x = x]P])s = ([P])s
([xy.P])s = x!y.([P])s ([P |Q])s = ([P])s|s([Q])s ([[x = y]P])s = ∅ if (x 6= y)

([!P])s = !s(([P])s) ([νxP])s = νx∈s+{x}(([P])s+{x})

([x(y).P])s = x?〈F, Y 〉 where F (z) = ([P [z/y]])s for any z ∈ s,
and Y = ([P [∗s/y]])s+1.

The following “Substitution Lemma” is fundamental to being able to index the
interpretation of process terms with respect to all possible substitution of free names.

Lemma 7.5.2 (Substitution Lemma) Let i : s→ s′ be an injective function between
finite sets, with x = 〈x1, x2, . . . , x|s|〉 the names in s. Then for any process P with free
names in s,

P(i)!(([P])s) ∼= ([P [i(x)/x]])s′ .

Proof: See Appendix C. 2

The free names of a process may be bound differently in different contexts.

Definition 7.5.3 Let P be a process with |s| free names. We define the interpretation
[[P]] as the natural transformation [[P]] : N|s| .−→ P, defined as follows:

[[P]]s′ :

|s|−times︷ ︸︸ ︷
s′ × s′ · · · × s′ −→ P(s′)
〈a1, a2, . . . , a|s|〉 7−→ ([P [a/x]])s′

180 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

Thus the denotation of a process with free names s carries an environment N |s| as a pa-
rameter. The proof that this is indeed a natural transformation depends on Lemma 7.5.2
which establishes that the ([−])-interpretation respects name substitution. We can now
show our major result, that bisimulation between processes in the π-calculus coincides
with that obtained in the model via open maps.

The first two theorems establish a bisimulation between a process P with free names
in s and its denotation ([P])s.

Theorem 7.5.4 Let P be a process whose free names lie in s. Then

• P xy−→ Q implies ∃X with ([P])s
x!y−→ X and X ∼= ([Q])s

• P x(y)−→ Q implies ∃X with ([P])s
x!∗s−→ X and X ∼= ([Q[∗s/y]])s+1

• P x(y)−→ Q implies ([P])s
x?−→ 〈F, Y 〉 with F (z) ∼= ([Q[z/y]])s and Y ∼= ([Q[∗s/y]])s+1

• P τ−→ Q implies ∃X with ([P])s
τ−→ X and X ∼= ([Q])s.

Proof: See Appendix C. 2

The following lemma is crucial in establishing the “converse” of Theorem 7.5.4 (Theo-
rem 7.5.6, below).

Lemma 7.5.5 Let P be any process term with free names in s. Then the following four
facts hold:

1. If ([!P])s
x!y−→ X then there exists a process term Q such that P

xy−→ Q and X ∼=
([Q|!P])s.

2. If ([!P])s
x!∗s−→ X then there exist a process term Q and a fresh new name y such

that P
x(y)−→ Q and X ∼= ([Q[∗s/y]|!P])s+1.

3. If ([!P])s
x?−→ 〈F, Y 〉 then there exist a process term Q and a fresh new name y such

that P
x(y)−→ Q and for every z ∈ s, F (z) ∼= ([Q[z/y]|!P])s and Y ∼= ([Q[∗s/y]|!P])s+1.

4. If ([!P])s
τ−→ X then (at least) one of the following holds:

• There exists a process term Q such that P τ−→ Q and X ∼= ([Q|!P])s.

• There exist process terms Q and R and names x, y, z ∈ s such that

P
x(y)−→ Q and P

xz−→ R

and X ∼= ([Q[z/y]|R|!P])s.

• There exist process terms Q and R and a name x ∈ s such that

P
x(∗s)−→ Q and P

x(∗s)−→ R

and X ∼= ([ν∗s(Q|R)|!P])s.

7.5. THE INTERPRETATION 181

Proof: The proof is by induction on the structure of P . It uses obviously the fact that

([!P])s
def= !s(([P])s) ,

i.e., that the denotation of !P is obtained as the colimit of an ω-chain in a presheaf
category, where colimits are computed pointwise. We spell out the part of the proof that
concerns the τ move, as this is the most delicate bit since it might involve communication
of two copies of the process. Suppose then that ([!P])s

τ−→ X. Then by definition, there
exists x ∈ ([!P])s(τ) and hence there exists an n (that we can choose to be the least

such) and an x′ ∈ ([

n times︷ ︸︸ ︷
(P |P |P | . . . |P)])s(τ), that is sent to x in the colimiting diagram.

By definition this means that there exists an X ′ such that

n times︷ ︸︸ ︷
(P |P |P | . . . |P) τ−→ X ′

and that moreover X is the colimit of the chain

X ′ // X ′|s([P])s // (X ′|s([P])s)|s([P])s // ((X ′|s([P])s)|s([P])s)|s([P])s //

Because of the characterisation of parallel composition of Theorem 7.4.7 and since n is
chosen least, we have that (at least) one of the following cases must hold:

1. There exists a presheaf X ′′ such that

([P])s
τ−→ X ′′ and X ′ ∼= ([

n−1 times︷ ︸︸ ︷
(P |P |P | . . . |P)])s|sX ′′ .

2. There exist names x, z ∈ s, presheaf X ′′ and a pair 〈F, Y 〉 such that

([

n−1 times︷ ︸︸ ︷
(P |P |P | . . . |P)])s

x!z−→ X ′′ and ([P])s
x?−→ 〈F, Y 〉

and X ′ ∼= X ′′|sF (z).
3. There exist a name x ∈ s, presheaf X ′′ and a pair 〈F, Y 〉 such that

([

n−1 times︷ ︸︸ ︷
(P |P |P | . . . |P)])s

x!∗s−→ X ′′ and ([P])s
x?−→ 〈F, Y 〉

and X ′ ∼= X ′′|s+1Y .
4. The symmetric of the point 2 and 3 above.

In case of 1, then we obviously can also deduce, since parallel composition is symmetric
that

X ′ ∼= X ′′|s([
n−1 times︷ ︸︸ ︷

(P |P |P | . . . |P)])s .

182 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

In particular we then have the following chains of commutative diagrams (writing Pn

for the P in parallel with itself n times):

([Pn−1])s|sX ′′ //

��

(([Pn−1])s|sX ′′)|s([P])s //

��

((([Pn−1])s|sX ′′)|s([P])s)([P])s //

��

. . .

X ′′|s([Pn−1])s // X ′′|s([Pn])s // X ′′|s([Pn+1]) // . . . ,

where the vertical arrows are always isomorphisms obtained by application of the sym-
metry and associativity of |s. For what said above, the colimit of the upper chain is X,
while that of the lower chain is X ′′|s([!P])s, since |s preserves connected colimits on each
argument. Hence

X ∼= X ′′|s([!P])s .

We now have the inductive hypothesis saying that there exists a Q such that P τ−→ Q
and X ′′ ∼= ([Q])s, hence

X ∼= ([Q])s|s([!P])s = ([Q|!P])s .

In case 2, we know from the decomposition result of parallel composition that there
must exist an X ′′′ such that ([P])s

x!z−→ X ′′′ and

X ′′ ∼= (([P j1])s|sX ′′′)|s([P j2])s ,

with j1 + j2 = n− 2. Again because of symmetry and associativity of |s we can assume
that such a P is the first in the list, i.e., we have a chain of commutative diagrams
whose vertical arrows are isomorphisms:

(([P j1])s|sX ′′′)|s([P j2])s //

��

((([P j1])s|sX ′′′)|s([P j2])s)([P])s //

��

. . .

��

// . . .

��
X ′′′|s([Pn−2])s // X ′′′|s([Pn−1])s // X ′′′|s([Pn])s //

Then, parallel composing with F (z), we have

((([P j1])s|sX ′′′)|s([P j2])s)|sF (z) //

��

(((([P j1])s|sX ′′′)|s([P j2])s)([P])s)|sF (z) //

��

. . .

��(X ′′′|s([Pn−2])s)|sF (z) // (X ′′′|s([Pn−1])s)|sF (z) //

Now by definition, the colimit of the upper chain is X. Again by symmetry and associa-
tivity we also have the following chain of commutative diagrams whose vertical arrows
are isomorphisms:

(X ′′′|s([Pn−2])s)|sF (z) //

��

(X ′′′|s([Pn−1])s)|sF (z) //

��

(X ′′′|s([Pn]))F (z) //

��

. . .

(X ′′′|sF (z))|s([Pn−2])s // (X ′′′|sF (z))|s([Pn−1])s // (X ′′′|sF (z))|s([Pn])s //

7.5. THE INTERPRETATION 183

The upper chain of this diagram is the lower chain of the above one and the lower chain
has colimit given by (X ′′′|sF (z))|s([!P])s. Hence X ∼= (X ′′′|sF (z))|s([!P])s. By inductive

hypothesis, there exist Q and y such that P
x(y)−→ Q and ([Q[z/y]])s ∼= F (z) and there

exists R such that P xz−→ R and ([R])s ∼= X ′′′. Therefore

X ∼= (X ′′′|sF (z))|s([!P])s
∼= (([R])s|s([Q[z/y]])s)|s([!P])s
∼= (([Q[z/y]])s|s([R])s)|s([!P])s
∼= ([Q[z/y]|R|!P])s .

The other cases are treated similarly to this last one. 2

Theorem 7.5.6 Let P be a process whose free names lie in s. Then

• ([P])s
x!y−→ X implies ∃Q with P

xy−→ Q and ([Q])s ∼= X

• ([P])s
x!∗s−→ X implies ∃Q, y with P

x(y)−→ Q and ([Q[∗s/y]])s+1
∼= X

• ([P])s
x?−→ 〈F, Y 〉 implies ∃Q, y with P

x(y)−→ Q and ([Q[∗s/y]])s+1
∼= Y

and F (z) ∼= ([Q[z/y]])s
• ([P])s

τ−→ X implies ∃Q with P τ−→ Q and ([Q])s ∼= X.

Proof:[Sketch] The proof of this is by structural induction on the structure of the process
term P and it depends mainly on the characterisation Theorems 7.4.2 and 7.4.7. We
omit the details but for the treatment of replication that exemplify the most complicated
case, i.e., when ([!P])s

τ−→ X. In this case there are three possibilities as shown in
Lemma 7.5.5:

1. ([P])s
τ−→ X ′ with X ∼= X ′|s([!P])s. Then by inductive hypothesis P τ−→ R and

([R])S ∼= X ′. By the structural congruence !P ≡ P | !P , one has that !P τ−→ R | !P
and

([R | !P])S
def= ([R])s|s([!P])s ∼= X ′|s([!P])s ∼= X .

2. ([P])s
x?−→ 〈F, Y 〉 and ([P])s

x!y−→ X ′ for some x, y ∈ s and X ∼= (F (y)|sX ′)|s([!P])s.
By inductive hypothesis,

P
x(w)−→ Q, P

xy−→ R, ([Q[y/w]])s ∼= F (y) and ([R])s ∼= X ′ .

Again the structural congruence defining !P implies (by application of the rule
COM) that

!P τ−→ (Q[y/w]|R)|!P
and the above induces that

([Q[y/w]|R)|!P])s ∼= (F (y)|sX ′)|s([!P])s .

3. The last case deals with a bound output, and it is treated as the one right above
where one uses the rule CLOSE instead of COM.

184 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

2

Using these results we can relate the (late) bisimulation for processes with the late
bisimulation for presheaves.

Lemma 7.5.7 Let P and Q be two π-calculus processes with free names in s. Then
P is bisimilar to Q (Definition 7.1.1) if and only if ([P])s is late bisimilar to ([Q])s
(Definition 7.3.11).

Proof: If (Rs)s∈I is a late bisimulation such that ([P])sRs ([Q])s. Define S to be the
relation on closed process terms given by

AS B iff ∃ s ∃X,Y ∈ P̂(s) ([A])s ∼= X Rs Y ∼= ([B])s .

Theorem 7.5.4 and 7.5.6 now immediately implies that S is a bisimulation that moreover
includes the pair (P,Q) by definition.
Vice versa, if S is a bisimulation such that P S Q, define the family of Rs’s as follows:

ARsB iff ∃P ′, Q′ such that fn(P ′) ∪ fn(Q′) ⊆ s and P ′ S Q′ and A ∼= ([P ′])s
and B ∼= ([Q′])s.

Again from Theorem 7.5.4 and 7.5.6 one immediately deduces that (Rs)s∈I is a late
bisimulation and by definition one has that ([P])sRs ([Q])s. 2

Note that in the second part of the above proof we have actually obtained a family of
“large” relations in the sense that each Rs will not typically be a (small) set but a proper
class since for each pair of presheaves in the relation we also have all its isomorphic pairs.
This can be reduced by restricting to consider only the presheaves reachable from the
interpretation of P and Q, but this was an unnecessary complication for the purpose of
the proof above.

The Lemma 7.5.7 and the Theorem 7.3.14 induce the following correspondence be-
tween bisimulation in the π-calculus and open map bisimulation.

Theorem 7.5.8 Let P and Q be two π-calculus processes with free names in s. Then P
is late bisimilar to Q if and only if ([P])s and ([Q])s are connected by a span of surjective
open maps.

Suppose now that P is a π-calculus process with free names sP . Then for any larger set
of names s, an injection i : sP → s induces a natural transformation πsP ,i : N|s| .→ N|sP |

that projects |s|-tuples of names to |sP |-tuples. When i is simply an inclusion and no
confusion arises we write this as πsP . With the above notation the Substitution Lemma
induces the following:

Theorem 7.5.9 Let P and Q be two π-calculus processes with free names sP and sQ
respectively. Take sP,Q to be the union sP ∪ sQ. Then P is late equivalent (bisimulation
congruent) to Q if and only if for any finite set s and any |sP,Q|-tuple a of elements
of s, [[P]]sπ

sP
s (a) and [[Q]]sπ

sQ
s (a) are connected by a span of surjective open maps.

Note that it is sufficient here to take s to be exactly the free names sP,Q of the two
processes. We can also present this result using the 2-categorical setting of our model:

7.6. LATE VS. EARLY 185

Corollary 7.5.10 Let P and Q be two π-calculus processes with free names sP and sQ
respectively. Then P is late equivalent to Q if and only if [[P]] ◦ πsP and [[Q]] ◦ πsQ are
connected by a span of modifications whose components are surjective open maps.

7.6 Late vs. early

We have given the π-calculus here in its late version, where a process x(y).P carries
out input in two stages: it first synchronises with another process that is prepared to
send on channel x; then, later, the transmitted value is substituted for y in the body
of P . There is an alternative early semantics where these two steps happen together
and processes synchronise on (channel,value) pairs. The operational consequences of
this choice are discussed in [88, 89]. There is a corresponding early bisimulation ‘∼̇E ’
and early equivalence ‘∼E’, which are both strictly coarser than their late forms.

We can follow these late and early alternatives in our denotational semantics. In
presheaf models, synchronisation points are marked by lifting (−)⊥ in the equation for
the path category. An early version of (7.5) would be

InE = N⊗ (N (P⊥) . (7.6)

This means that instead of paths x?, x?(y 7→p) and x?(∗7→p′) we now have x?y, x?∗,
x?y.p and x?∗.p′. Still the action of InE on functions i : s → s′ will be driven by the
function space (, i.e.,

N⊗ (N (P⊥)(i)(x?∗.p′) =
∑
z 6∈Imi

i(x)?z.P([i, z])(p′) + i(x)?∗.P(i + 1)(p′) .

Solving this new equation in ProfI gives an object PE, but observe that, unlike before,
now, not all path objects will be denoted by process terms. In fact, for example, path
objects like x?y.p should be the denotation of a process term that can receive an input
uniquely along the channel x and only if the input is y. In the terminology of [89] x?y.p
wants to act as a process which is capable of performing only a free input action xy and
this is clearly not expressible in the language.

The definition of the restriction (Section 7.4.1) is easily adapted in the relevant
clauses by

νy∈s(x?z) =
{
x?z if x 6= y 6= z and z ∈ s+ 1
∅ otherwise

νy∈s(x?z.p) =

x?zνy∈sp if x 6= y 6= z 6= ∗ and z ∈ s+ 1
x?∗νy∈s+1p if x 6= y and z = ∗

∅ otherwise .

Slightly longer is the treatment of parallel composition (that includes more cases than
before).

186 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

Definition 7.6.1 For every finite set s, with elements indicated with the letters x, y, z,
define the symmetric profunctor

||Es : PE(s)⊥ × PE(s)⊥ + //PE(s)

by simultaneous induction, for all sets s, on the structure of the path objects as in
Figure 7.3 (omitting the obvious Yoneda embeddings).

As before the parallel composition for presheaves is obtained by precomposing with w∗

and l∗ × l∗.
Definition 7.6.2 (Parallel Composition) For every finite set s define the parallel
composition functor

|Es
def= (||Es)! ◦ wPE(s)⊥,PE(s)⊥ ◦ (l∗ × l∗) .

Replication is defined again using a least fixed point construction, iterating the par-
allel composition of a presheaf with itself. We do not go through all the details, the
interpretation and the results analogous to Theorem 7.5.4 and 7.5.6 for establishing the
correspondence of the early bisimulation with open map bisimulation in PE ; instead we
prefer to remark on the existence of an arrow in ProfI mapping the late interpretation
onto the early one (cf. Section 5.2).

Definition 7.6.3 For every finite set s, define the functor ks : PE(s)→ P(s) inductively
as follows:

ks(τ) = τ ks(x!y) = x!y ks(x!∗) = x!∗
ks(x?y) = x? ks(x?∗) = x?

ks(τ.p) = τ.ks(p) ks(x!y.p) = x!y.ks(p) ks(x!∗.p′) = x!∗.ks+1(p′)
ks(x?y.p) = x?(y 7→ ks(p)) ks(x?∗.p′) = x?(∗ 7→ ks+1p

′) .

Clearly this family of functors induce two pseudo natural transformations k! : PE
.→ P

and

k∗ : P
.→ PE (7.7)

that are pointwise described by, (ks)! and (ks)∗, respectively. Being arrows in ProfI ,
both the pseudo natural transformations preserves open map bisimulation pointwise,
moreover k∗ maps the late interpretation onto the early one.

Theorem 7.6.4 If we write ([·])E for the interpretation of π-calculus processes in PE,
then for any finite set s and any process term P with free names in s, the following
hold:

k∗s([P])s ∼= ([P])Es .

Proof:[Sketch] The proof is a straightforward induction on the structure of P once we
have shown that for any s the following three things hold:

7.6. LATE VS. EARLY 187

⊥||Es ⊥ = ∅
bpc||Es ⊥ = p

bInα(q)c||Es bInα′(r)c = α.(bqc||Es bInα′(r)c) + α′.(bInα(q)c||Ebrc)

bInα(q)c||Es bInx′!∗(r)c = α.(bqc||Es bInx′!∗(r)c) + x′!∗.(bPE(i)(Inα(q))c(||Es+1)!brc)

bInτ (q)c||Es bInx?y(r)c = τ.(bqc||Es bInx?y(r)c+ x?y.(bInτ (q)c||Es brc)

bInτ (q)c||Es bInx?∗(r)c = τ.(bqc||Es bInx?∗(r)c+ x?∗.(bPE(i)Inτ (q)c||Es+1brc)

bInx!y(q)c||Es bInx′?y′(r)c =

x!y.(bqc||Es bInx′?y′(r)c)
+x′?y′.(bInx!y(q)c||Es brc) if x 6= x′ or y 6= y′

τ.(bqc||Es brc)
+x!y.(bqc||Es bInx′?y′(r)c)
+x′?y′.(bInx!y(q)c||Es brc) otherwise

bInx!y(q)c||Es bInx′?∗(r)c = x!y.(bqc||Es bInx′?∗(r)c) + x′?∗.(bPE(i)Inx!y(q)c(||Es+1)!brc)

bInx!∗(q)c||Es bInx′?y′(r)c = x!∗.(bqc(||Es+1)!PE(i)bInx′?y′(r)c) + x′?y′.(bInx!∗(q)c||Es brc)

bInx!∗(q)c||Es bInx′?∗(r)c =

x!∗.(bqc(||Es+1)!bPE(i)(Inx′?∗(r)))c
+x′?∗.(bPE(i)Inx!∗(q)c||Es+1brc) if x 6= x′

τ.(ν∗∈s+1,!(bqc||Es+1brc))
+x!∗.(bqc(||Es+1)!bPE(i)(Inx′?∗(r))c)
+x′?∗.(bPE(i)(Inx!∗(q))c(||Es+1)!brc) otherwise

bInx?y(q)c||Es bInx′?y′(r)c = x?y.(bqc||Es bInx′?y′(r)c) + x′?y′.(bInx?yqc||Es brc)

bInx?y(q)c||Es bInx′?∗(r)c = x?y.(bqc||Es bInx′?∗(r)c) + x′?∗.(bPE(i)Inx?yqc(||Es+1)!brc)

bInx?∗(q)c||Es bInx′?∗(r)c = x?∗.(bqc(||Es+1)!bPE(i)Inx′?∗(r)c)
+x′?∗.(bPE(i)Inx?∗qc(||Es+1)!brc)

for α,α′ ∈ {τ} ∪ {x!y | x, y ∈ s}, i : s ↪→ s+ 1 the obvious inclusion.
The action on morphisms, i.e., on the lesser or equal than relation, is inductively deter-
mined as well in the obvious way.

Figure 7.3: ‘Early’ parallel composition

188 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

1. k∗sνy∈s+{y} ∼= νEy∈s+{y}k
∗
s+{y}

2. k∗s(||s)! ∼= (||Es)!(k∗⊥yP(s)⊥ × k∗⊥yP(s)⊥)!
3. k∗s !s ∼= !Es k

∗
s ,

where, naturally, the upper index E stands for the corresponding semantical construct
in PE . To prove (1), since all the functors are colimit preserving, it is enough to check it
for the representables and this is done by induction on the structure of the paths. The
base cases are all trivial but for p = x?, x 6= y that requires unwinding the definition of
k∗ in a non completely trivial case. In fact

k∗sνy∈s+{y}(x?) = k∗s(x?)

=
∑
w∈s+1

x?w

=
∑
w∈s+1

νEy∈s+{y}x?w

= νEy∈s+{y},!(
∑
w∈s+1

x?w + x?y)

= νEy∈s+{y},!(k
∗
s+{y}(x?)) .

Similarly for the inductive step the only “interesting” case (even if it does not make use
of the inductive hypothesis) is given by x?(y 7→ p) that goes as follows:

k∗sνy∈s+{y}(x?(y 7→ p)) = k∗s(x?)

=
∑
w∈s+1

x?w

=
∑
w∈s+1

νEy∈s+{y}x?w

= νEy∈s+{y},!(
∑
w∈s+1

x?w + x?y.p))

= νEy∈s+{y},!(k
∗
s+{y}(x?(y 7→ p))) .

Also for point (2) is enough to check things on the representables and the inductive
proof is a tedious verification that all the definitions agrees. Finally point (3) follows
directly from point (2) since ! is always defined in term of the (replicated versions of)
diagonals an parallel composition. 2

We can even move the synchronisation point for output: clause (7.4) has a later
variant

OutL = N⊗ (N⊗ P)⊥ . (7.8)

It turns out that this makes no difference to process bisimilarity, but it does correspond
closely to the presentation style of [84]. There processes synchronise on channel names
alone, P x−→ C or P x−→ F , becoming concretions C (name-process pairs, N ⊗ P) and

7.7. OTHER π-CALCULI 189

abstractions F (name-to-process functions, N (P) respectively. Actual communication
is represented by the application of abstractions to concretions F • C .

We believe that the domain models of the π-calculus in [32, 126] do not cover the
early version, chiefly because rearrangements like equation (7.6) are harder to express.
There the domain equation for processes uses the Plotkin powerdomain to mark syn-
chronisation; while our equation for paths uses the much simpler lifting operation.

7.7 Other π-calculi

The development of our model has been purely denotational, with no operational ma-
nipulation of processes through expansion laws or the like. As a consequence, there are
no required operators in the language, and the model remains valid for any subset of the
π-calculus. Even so, particular sublanguages may fit simpler equations. For example,
the asynchronous π-calculus of [18] constrains output to the form xy.0, suggesting the
clause

OutA = N⊗ N (7.9)

to replace (7.4). The πI-calculus of [117] allows only bound output x(y).P , equivalent
to νy(xy.P) in the original π-calculus. Every communication now passes a fresh name,
and we would replace (7.5) and (7.4) with

InI = OutI = N⊗ δP . (7.10)

Moreover the morphism P(i) now arises from the category map ei introduced just before
Proposition 7.3.17, with the restrictions ν(i) from the end of Section 7.4.1 being e?i , the
left inverse, and now also right adjoint, to P(i)!. This gives some support to Sangiorgi’s
claim that the πI-calculus is a simpler, more symmetric version of the π-calculus.

These examples show the flexibility of our approach by drawing on the rich cate-
gorical structure of ProfI . As ever in category theory, this also leads us to look at
the maps between models: we hope to find further morphisms like (7.7), from ‘late’ to
‘early’, that might tie together the wide selection of customised π-calculi proposed in
recent years.

As we have already mentioned we do not have a general function space in ProfI .
Where it does exist we are no longer be constrained to passing just names or other
ground values. Process-passing systems like CHOCS [130] or even the full higher-order
π-calculus of [116] could then fit into our framework. The difficulties here lie not just
in writing plausible equations, but also in extracting their operational content to see if
the semantics and bisimilarities that arise fit any existing scheme as we shall see in the
next chapter.

190 CHAPTER 7. PRESHEAF MODELS FOR THE π-CALCULUS

Chapter 8

Higher Order Processes

In this chapter we begin the investigation of presheaf models for process passing lan-
guages. Our motivation is that of understanding operationally the bisimulation induced
on the language terms by open maps. Unfortunately we shall not quite reach our ob-
jective here, but we believe that the results that we are presenting are a first step
towards it. We shall concentrate on a CCS-like process calculus. By this we mean
that we assume the existence of a fixed set of channels and we discard the possibility
of communicating and creating new channels as in the π-calculus (cf. Chapter 7). This
restriction is imposed on us since, with our present knowledge, a treatment of higher
order and name passing at the same time would require considering function spaces in
the indexed category ProfI . But as we said in Chapter 7, we do not believe that for
all C : I → Prof there exists a functor C (− right adjoint to C⊗−.

Moreover, since the function space that we are using is of a “linear” kind, we further
constrain our process term with a linearity condition that ensures that if in a term there
are several occurrences of the same variable, at any particular time, only one of these
can be active.

The operational reading of this constraint, roughly speaking, is that when a process
is received as input, it can be run at most once.

The main difficulty with respect to the previous case studies (cf. Chapters 5 and 7),
lies in defining the operational semantics in a way that takes into account the elements
of the denoted presheaves. The reason for this is that the elements of presheaves seem
crucial in characterising operationally open map bisimulation for abstractions. In this
chapter we shall work towards an identification of the elements of the presheaf denota-
tion with the derivation trees according to the operational semantics.

8.1 The 2-category Conn

We begin the chapter with a brief introduction to the 2-category of presheaf categories
and connected colimit preserving functors to motivate our choice of function space (to
model abstractions) and tensor (to model concretions). This is based on the experience
accumulated in Chapters 5 and 7 which suggests that all the main operations used to

191

192 CHAPTER 8. HIGHER ORDER PROCESSES

model term constructors are connected colimit preserving (possibly on each argument
separately, in case of many sorted operations like parallel composition). Then if we wish
to represent higher order communication as a form of function application as we hinted
in Section 5.2 and 7.6 for the “ground values” case (cf. [84, 85, 118]), it is natural to look
in our setting at this 2-category and at its relation with our main category of domains,
Cocont.

Definition 8.1.1 (Conn) Define Conn to be the 2-category of:

Objects: Small categories, C,D,E
Arrows: Connected colimit preserving functors, F : Ĉ→ D̂.
2-cells: Natural transformations.

Recall that already in Chapter 4 we remarked on the equivalence of categories

Conn(C,D) ' Cocont(C⊥,D)

In fact Conn arises as the co-Kleisli 2-category for the 2-comonad on Cocont induced
by lifting (−)⊥.

Proposition 8.1.2 The 2-functor1

(−)⊥ : Cocont −→ Cocont

equipped with counit, ε, and comultiplication, δ, as defined below is a 2-comonad.

• The 2-natural transformation ε : (−)⊥ → 1Cocont is given, for any small category
C, by l∗C : Ĉ⊥ → Ĉ, where l : C→ C⊥ is the obvious inclusion

• The comultiplication δ : (−)⊥ → ((−)⊥)⊥ is given by π∗C where πC : (C⊥)⊥ → C⊥
is the projection functor that identifies the two bottom elements.

Proposition 8.1.3 Conn is pseudo equivalent to the co-Kleisli category2 for ((−)⊥, δ, ε).

Proof: The co-Kleisli category (coKl⊥) has the same objects of Cocont, arrows the
colimit preserving functors F : Ĉ⊥ → D̂ and 2-cells the natural transformations. But
now the equivalence

Conn(C,D) ' Cocont(C⊥,D)

immediately induces the pseudo equivalence

Conn ' coKl⊥

that we are seeking. 2

So we have an embedding of Cocont into Conn that locally induces a reflection

Cocont(C,D) 00⊥ Conn(C,D) .
pp

1While generally the functors like ⊗ or (−)∗ are pseudo, (−)⊥ can be easily made into a strict one.
2We drop the ‘2’ (and pseudo) terminology from now on.

8.2. AN EQUATION FOR HIGHER ORDER PROCESSES 193

The category Conn does not have all the completeness properties of Cocont in
particular is not algebraically complete (hence it is not algebraically compact, either).
Still it has the symmetric monoidal closed structure that we need for our ‘function
application’.

Proposition 8.1.4 Conn has (infinite) products, terminal objects and it is symmetric
monoidal closed.

Proof: Products and terminal objects are inherited from Cocont. For the monoidal
structure, define

(−⊗c −) def= ((−)⊥ ⊗ (−)⊥)+ ,

i.e., C⊗c D is the category C⊥ ×D⊥ to which the initial object has been removed.

The function space is given by

(−(c −) = (−)⊥ (− .

So on objects, C and D, C (c D = (C⊥)op × D.
Concerning the adjunction situation, observe that for any three small categories,

C,D,E, the following equivalences of categories hold:

Conn(C⊗c D,E) = Conn((C⊥ × D⊥)+,E)
' Cocont(((C⊥ × D⊥)+)⊥,E)
∼= Cocont(C⊥ × D⊥,E)
' Cocont(C⊥,D⊥ (E)
= Cocont(C⊥,D (c E)
' Conn(C,D (c E) .

2

We cannot in general solve recursive domain equations directly in Conn, we shall find
solutions in Cocont.

8.2 An equation for higher order processes

Our concern here is the semantics of a process language in which processes themselves
can be sent and received along a fixed set of channels Ch. We derive the category of
paths by solving the equation

P = P⊥ +
∑
a∈Ch

C⊥ +
∑
a∈Ch

F⊥ C = P⊗c P F = (P (c P) .

The three components of P represent paths beginning with a silent action, an output
on a channel, resuming as a concretion (C), and an input from a channel, resuming as

194 CHAPTER 8. HIGHER ORDER PROCESSES

an abstraction (F). Our choice of path for abstractions narrows us to a linear process-
passing language, one where the input process can be run at most once to yield a single
(computation) path; we shall see later how this affects the process language. The fact
that the input path is lifted (cf. definition of (c) implies that the process received as
input can be ignored and need not be run.

Many variations on these choices of path categories are possible of course: we might
instead have taken F to be (!P (P) which would allow the input process to be copied
and used arbitrarily; we might have exploited the fully higher-order nature of Conn to
give a rather abstract account of the concretions and abstractions and their interaction
along the lines of that proposed in [118].

As usual, since the ! is not involved, the solutions to the equations are partial orders
that we regard as categories. For convenience in future definitions by cases we first give
an explicit description of the objects of P⊥, C⊥ and F⊥ as the terms

p :: = ⊥ | τ.p | a!c | a?f
c :: = 〈p〉q
f :: = (p 7→ p′) | (− 7→ ⊥) where p′ 6= ⊥.

We shall write t for a general path of form p, c or f .
The morphisms are then the simple partial-order relations induced by the following

rules:
⊥ ≤p p (− 7→ ⊥) ≤f f

p ≤p q
τ.p ≤p τ.q

p ≤p p′ q ≤p q′
〈p〉q ≤c 〈p′〉q′

p′ ≤p p q ≤p q′
(p 7→ q) ≤f (p′ 7→ q′)

c ≤c c′
a!c ≤p a!c′

f ≤f f ′
a?f ≤f a?f ′

The categories P,C and F are then the subcategories of P⊥, C⊥ and F⊥ obtained by
removing the initial objects ⊥, 〈⊥〉⊥ and (− 7→ ⊥).

Within the set of all paths it is convenient for future use to distinguish the set of
atomic paths.

Definition 8.2.1 Define the atomic paths as those path objects that are non bottom
(i.e., neither ⊥, 〈⊥〉⊥ or (− 7→ ⊥)) and expressed by the following grammar:

αp :: = ⊥ | τ.⊥ | a!〈⊥〉⊥ | a?(− 7→ ⊥)
αc :: = 〈αp〉⊥ | 〈⊥〉αp
αf :: = (p 7→ αp) | (− 7→ ⊥)

We shall write α for a general atomic path of form αp, αc or αf .

Notation: From now on we shall write τ. for τ.⊥ and similarly, a! for a!〈⊥〉⊥ and a?
for a?(− 7→ ⊥).

When αp is any one of τ., a! or a?, we shall write αp.t for τ.t, a!t and a?t respectively,
provided t is appropriate.

8.3. AN HIGHER ORDER PROCESS LANGUAGE 195

8.3 An higher order process language

We build our process language around the path objects of P, C, F. Assume a set of
variables V ars over processes, whose elements will typically be written x, y, z, · · · . We
define the syntactic categories of processes (P), concretions (C) and abstractions (F):

P :: = Nil | τ.P | a!C | a?F |
∑

i∈I Pi | [p ≤ P ′]P | (P | P ′)
| rep(P) | F • P | x

C :: = 〈P 〉P ′

F :: = (x)P

We shall write T for a general term of the form P,C or F . Above, in the sum terms
we assume that I is any set, in tests we have made use of a coercion that identifies
process paths such as p with a closed process term and we have a replication rep(P).
Replication would have been subsumed by a general recursive definition of processes
allowing for example rec x.(P | x). Such recursive definitions, provided made consistent
with the linearity condition on terms below, pose no significant problems. As mentioned
a path p can be regarded as a special term p of matching type:

• ⊥ = Nil, τ.p = τ.p, a! = a!〈Nil〉Nil, a? = a?(x)Nil, 〈p〉p′ = 〈p〉p′,
• (p 7→ p′) = (x)[p≤x]p′, a!c = a!c, a?f = a?f .

Henceforth, we will write p for p, identifying a path with its corresponding term. As
usual we have for any term T the set of free variables in FV (T) and we think of terms
as being defined up to α-conversion. We impose the following linearity condition on
the multiple presence of free variables. It will ensure that at most one occurrence of a
variable can be active at any one time.

Definition 8.3.1 A term T is inductively defined to be linear if each of its proper sub
terms is linear and in the case where

• T is of the form U | V , 〈U〉V , [p ≤ U]V or U • V , then FV (U) ∩ FV (V) = ∅,
• T is of the form rep(P), then FV (P) = ∅.

A substitution such as P [Q1/x1, . . . , Qk/xk] is defined as usual, using α-conversion
to avoid the unwanted capture of free variables.

Proposition 8.3.2 Substitution respects linear terms in the sense that: if P,Q1, . . . , Qk
are linear terms with pairwise disjoint sets of free variables, then P [Q1/x1, . . . , Qk/xk]
is linear.

8.3.1 Operational semantics

We introduce now the basic operational semantics for the calculus. This is given in
Figure 8.1. For the purpose of the testing we consider the possibility of checking for
“path capabilities”, where the path can be arbitrary.

We could at the cost of a considerably more complicated syntax, with “mixed concre-
tions” like 〈F 〉P and worse like 〈〈F 〉P 〉F , have introduced path transitions associated
with all kinds of paths.

196 CHAPTER 8. HIGHER ORDER PROCESSES

Atomic transitions:

Prefixings

τ.P τ→ P a!C a!→ C a?F a?→ F

Sums and Tests
Pj

α→ T j ∈ I∑
i∈I Pi

α→ T

Q p→ P α→ T

[p ≤ Q]P α→ T

Parallel Composition

P a?→ F Q a!→ 〈R〉S
P | Q τ→ F ·R | S

Q a!→ 〈R〉S P a?→ F

Q | P τ→ S | F · R
P a?→ (x)P ′

P | Q a?→ (x)(P ′ | Q)
P a?→ (x)P ′

Q | P a?→ (x)(Q | P ′)
P a!→ 〈P ′〉P ′′

P | Q a!→ 〈P ′〉(P ′′ | Q)
P a!→ 〈P ′〉P ′′

Q | P a!→ 〈P ′〉(Q | P ′′)
P τ→ P ′

P | Q τ→ P ′ | Q
P τ→ P ′

Q | P τ→ Q | P ′

Replication and Application
P | rep(P) α→ T

rep(P) α→ T

P [Q/x] α→ T

(x)P •Q α→ T

Concretions and Abstractions
P α→ T

〈P 〉Q 〈α〉⊥→ T

P α→ T

〈Q〉P 〈⊥〉α→ T

F · p α→ T

F (p 7→α)→ T

Path capabilities:

P α→ U
P α→

P α→ T T t→
P α.t→

P p→ Q q→
〈P 〉Q 〈p〉q→

P p→
〈P 〉Q 〈p〉⊥→

Q q→
〈P 〉Q 〈⊥〉q→

F · p q→
F p 7→q→

The path t in a capability T t→ need not be simple because of the extra rule intro-
ducing non-simple concretion paths of the form 〈p〉q.

Figure 8.1: The basic operational semantics

8.4. PRESHEAF SEMANTICS 197

As one expects, the operational semantics respects linear terms:

Proposition 8.3.3 If T α→ U and T is linear, then so is U .

From now on we will always assume that terms are linear.

8.4 Presheaf semantics

The purpose of this section is to provide the terms of the language with a compositional
semantics in terms of presheaves and to prove various facts about it, notably a Substi-
tution Lemma (Lemma 8.4.14) relating application in the model with substitution in
the language, a “soundness” result (Theorem 8.4.16) for the presheaf semantics and a
stability-like (cf. [13]) property of the denotations of open terms. First steps toward
an operational characterisation of open map bisimulation are also made. They lead
to a characterisation of open map bisimulation, for a fragment of the process calculus
corresponding to a form of λ-calculus as applicative bisimulation [2].

8.4.1 Transition relations for presheaves

Closed terms of the language will denote presheaves over P. As we know (cf. Chapter 5)
presheaves, X, can be given a transition relation

X p→
d
Y if d ∈ X(p) and Y = X|d

taking from a presheaf over P to a presheaf over the resumption category (p/P)+.
In the operational semantics we allow in the case of concretions the possibility of

choosing which branch of the concretion we wish to observe. We also allow for testing
path capabilities of processes. This motivates the following “adjustment” of the above
definition of transition for presheaves.

Definition 8.4.1 For presheaves X,C,F over P,C,F respectively, define the following
transition relations:

• X α−→ Y if there exists d ∈ X(α) such that X α→
d
Y .

• C 〈α〉−−→ Y if C(−,⊥) α−→ Y .

• C 〈−〉α−→ Y if C(⊥,−) α−→ Y .
• F ⊥7→α→

d
Y if F (⊥,−) α→

d
Y .

• F p 7→α→
Y

if F (p,−) α−→ Y .

• X p−→ if X(p) 6= ∅.
• C c−→ if C(c) 6= ∅.
• F f−→ if F (f) 6= ∅.

Observations can be “concatenated”:

Proposition 8.4.2 For every presheaf X and Z over P and F over F the following
hold.

198 CHAPTER 8. HIGHER ORDER PROCESSES

1. If X τ−→ Y and Y
p−→ then X

τ.p−→.

2. If X a!−→ C and C c−→ then X
a!c−→.

3. If X a?−→ F and F
f−→ then X

a?f−→.

4. If F
p 7→α−→ Y and Y t−→ then F

p 7→α.t−→ .

8.4.2 Constructions

As preparation for the denotational semantics of processes we present the basic con-
structions that we shall need.

Prefixings: We are accustomed by now to defining prefixings by precomposing embed-
dings such as

Inτ ! : P̂⊥ ↪→ P̂

with the lifting operator l∗. We have, as before, the characterisations for

τ.
def= Inτ !l∗ a! def= (Ina!)!l∗ and a? def= (Ina?)!l∗ .

For every presheaf X over P,

τ.X : Pop → Set

p 7→

{?} if p = τ.
X(p′) if p = τ.p′

∅ otherwise

For every channel a, presheaf C over C and presheaf F over F,

a!C : Pop → Set a?F : Pop → Set

p 7→

{?} if p = a!
C(c) if p = a!c
∅ otherwise

p 7→

{?} if p = a?
F (f) if p = a?f
∅ otherwise

As usual, by definition, following Corollary 4.6.6 and Proposition 4.6.8, open map
bisimulation is preserved by the prefixings:

Theorem 8.4.3 The prefixing functors, τ., a! and a? preserve surjective open maps
and hence bisimulation.

Using the prefixing operators we can express a decomposition result for presheaves over
P.

Theorem 8.4.4 Let X be a presheaf over P, then X is isomorphic to∑
i∈I

τ.(X|i) +
∑
a∈Ch

∑
j∈X(a!)

a!(X|j) +
∑
a∈Ch

∑
k∈X(a?)

a?(X|k) .

8.4. PRESHEAF SEMANTICS 199

Concretions:
Concretions are modelled as presheaves over C = (P⊥ ⊗ P⊥)+.
Let X,Y ∈ P̂, Define 〈X〉Y as the result of the application to (X,Y) of the functor

P̂× P̂
l∗×l∗ // P̂⊥ × P̂⊥

w∗
P⊥,P⊥ // ̂P⊥ × P⊥

l∗ // C ,

i.e., for every pair 〈r〉s ∈|C |,

〈X〉Y (〈r〉s) = bXc(r) × bY c(s) .

Of course, from what we know well by now, it is clear that if X and W are P-open
bisimilar presheaves and the same is true for Y and Z, then 〈X〉Y is C-open bisimilar
to 〈W 〉Z.

Remark: The functor 〈−〉− derives from the tensor operator ⊗c. In fact it corresponds
to

⊗c : Conn(0,P)×Conn(0,P)→ Conn((0⊥ ⊗ 0⊥)+, (P⊥ ⊗ P⊥)+) = Conn(0,C) ,

via the isomorphism Conn(0,P) ∼= Prof (1,P) ∼= P̂, where 0 is the empty category (no
objects, no arrows), while 1 = 0⊥ is the terminal category (one object, one arrow).

Observations tested in either branches of concretions can be paired:

Proposition 8.4.5 For any two presheaves over P, X and Y the following hold:

1. If X
p−→ and Y

q−→ then 〈X〉Y 〈p〉q−→.

2. If X
p−→ then 〈X〉Y 〈p〉⊥−→.

3. If Y
p−→ then 〈X〉Y 〈⊥〉p−→.

Abstractions: Let H : P⊥ → P̂ be a functor. Define H̃ to be the presheaf over
(P⊥ (P) defined so that

H̃(p 7→ q) = (Hp)q

on a path in F; its action on morphisms is inherited in the obvious way from H. Similarly,
if G is a presheaf over (P⊥ (P), define G̃ to be the corresponding functor P⊥ → P̂.

Let h : F → G be a map in P̂ (Q. As we saw in Chapter 4 (Section 4.6) h is
(P (Q)-open if and only if,
(i) hp is Q-open, for every p ∈|P | and (ii) hq is Pop-open, for every q ∈|Q |.
The first condition is to be expected; it directly entails that bisimilar profunctors are
pointwise bisimilar. The second condition (ii) is peculiar at first sight. As we shall see
later, it is this condition that leads us to take a closer look at the elements of presheaves.
We shall think of elements as representing the derivation trees of the operational seman-
tics. Accordingly we think of elements of F̃ (p)q as derivations associated with F doing
a q-transition for input p. When such derivations are associated with minimum inputs
(see Theorem 8.4.20 below) the effect of (ii) is to ensure that derivations matched by a

200 CHAPTER 8. HIGHER ORDER PROCESSES

bisimulation are enabled at the same minimal inputs. Condition (ii) is also important in
extending (i) to hold for presheaves over P as input (cf. Corollary 4.6.7), i.e., condition
(i) and (ii) imply that for any presheaf X ∈| P̂ |, (F̃)!(X) is Q-open map bisimilar to
(G̃)!(X).

Parallel Composition: In order to define a parallel composition operator

| : P̂× P̂ −→ P̂

we begin by defining a colimit preserving functor

‖!: ̂P⊥ × P⊥ → P̂

out of which the functor | will be obtained as

P̂× P̂
l∗×l∗ // P̂⊥ × P̂⊥

w∗
P⊥,P⊥ // ̂P⊥ × P⊥

‖!
// P̂ .

In particular, being a composition of surjective open map preserving functors, | will
preserve open map bisimulation. To define a colimit preserving functor from ̂P⊥ × P⊥
to P̂ is enough to say what the functor does on the representables. So we define

‖: P⊥ × P⊥ −→ P̂

inductively on the structure of the paths in P. This calls for simultaneous inductive
definitions of a whole family of ‘parallel composition functors’,

P‖P: P⊥ × P⊥ → P̂
F‖C: F⊥ × C⊥ → P̂ C‖F: C⊥ × F⊥ → P̂
F‖P: F⊥ × P⊥ → F̂ P‖F: P⊥ × F⊥ → F̂
C‖P: C⊥ × P⊥ → Ĉ P‖C: P⊥ × C⊥ → Ĉ ,

to take account of all possible matching situation that can be encountered. In the sequel
we shall omit the upper indices when no confusion arises. For convenience we introduce
some notation.

Notation: In the sequel we shall use the following notation.

• If lP : P→ P⊥ is the obvious inclusion functor, write jP for the functor

LanlP(yP) : P⊥ → P̂ ,

i.e., the functor that sends every non bottom path object bpc to yP(p) and ⊥ to
the empty presheaf, ∅. Observe that jP is the restriction at P⊥ of (lP)∗ : P̂⊥ → P̂
which, in turn, is the value of the counit for the lifting comonad of Cocont at P
(cf. Proposition 8.1.2).

• Similarly for lC : C→ C⊥ and lF : F→ F⊥, write jC and jF for the corresponding
Kan extensions, LanlC(yC) and LanlF(yF).

8.4. PRESHEAF SEMANTICS 201

• When no confusion arises we shall often write j for the appropriate one of jP, jC

or jF.
• If X is a presheaf over and p an object of P, write p 7→ X for the presheaf over F

defined by

p 7→ X(q, r) =
{
X(r) if p ≤ q
∅ otherwise

For any of the functors above, define now

⊥ ‖ ⊥ = ∅ .

For p ∈ P, define
pP‖P ⊥ = ⊥ ‖ p = j(p) .

In any other case

a.t ‖ b.u =

a.(t ‖ b.u) + b.(a.t ‖ u) + τ.(t ‖ u) if (a = a? & b = a!) or

(a = a! & b = a?)
a.(t ‖ b.u) + b.(a.t ‖ u) otherwise.

For abstractions and concretions

(− 7→ ⊥)F‖C 〈s〉r = ⊥ ‖ r

(p 7→ q) ‖ 〈s〉r =
{
bqc ‖ r if p ≤ s
⊥ ‖ r otherwise,

〈s〉rC‖F (− 7→ ⊥) = r ‖ ⊥

〈s〉r ‖ (p 7→ q) =
{
r ‖ bqc if p ≤ s
r ‖ ⊥ otherwise.

For abstractions and paths, we use the notation (p 7→ X) that we introduced above.

(− 7→ ⊥)F‖P r = (− 7→ (⊥P‖P r))
((p 7→ q) ‖ r) = (p 7→ (bqc ‖ r))
rP‖F (− 7→ ⊥ = (− 7→ (rP‖P ⊥))
r ‖ (p 7→ q) = (p 7→ (r ‖ bqc))

Finally concretions and paths compose as follows

(〈s〉r)C‖P p = 〈j(s)〉(r ‖ p) and p ‖ (〈s〉r) = 〈j(s)〉(p ‖ r)

The action on morphisms (i.e., the partial order relation is defined inductively in a
similar way).

Definition 8.4.6 For A,B ∈ {P, C, F}, define A|B : Â× B̂→ D̂ as the composite

Â× B̂
l∗×l∗ // Â⊥ × B̂⊥

w∗
A⊥,B⊥// ̂A⊥ × B⊥

A‖B! // D̂ ,

where D ∈ {P, C, F} is uniquely determined by A and B according to the “typing” of
the parallel composition functors.

202 CHAPTER 8. HIGHER ORDER PROCESSES

Since A|B is the composite of open map bisimulation preserving functors we have the
following congruence property:

Theorem 8.4.7 For every A,B ∈ {P, C, F} if X is A-open bisimilar to W and Y is
B-open bisimilar to Z, then XA|BY is D-open map bisimilar to WA|BZ.

Observe now that the Yoneda embeddings yF⊥×P⊥ and yF⊥×C⊥ (and similarly their
symmetric counterpart) can be factorised as follows:

yF⊥×P⊥ = w∗
F⊥,P⊥ ◦ (lF∗ × lP∗) ◦ (jF × jP) (8.1)

yF⊥×C⊥ = w∗
F⊥,C⊥ ◦ (lF∗ × lC∗) ◦ (jF × jC) . (8.2)

Hence we have the following “characterisation” of ||’s that we shall need later.

Proposition 8.4.8 1. The functor F‖P is naturally isomorphic to F|P ◦ (jF × jP).
2. The functor ||F,C is naturally isomorphic to |F,C ◦ (jF × jC).
And similarly for the symmetric versions.

Using the same kind of proof for the analogous results in Chapter 5 (Lemma 5.1.13),
we can characterise inductively the action of A|B.
Lemma 8.4.9 If X,Y ∈| P̂ |, C ∈| Ĉ | and F ∈| F̂ | the the following hold (omitting the
upper indices):

1. τ.X|τ.Y ∼= τ.(X|τ.Y) + τ.(τ.X|Y).
2. τ.X|a?F ∼= τ.(X|a?F) + a?(τ.X|F).
3. τ.X|a!C ∼= τ.(X|a!C) + a!(τ.X|C).
4. If C = 〈Z1〉Z2 then X|C ∼= 〈Z1〉(X|Z2).

5. (̃F |X) is isomorphic to the functor ˜F (−)|X, i.e., the Currying of the functor

P⊥
F̃ // P̂

〈−,X〉
// P̂× P̂

|
// P̂ .

6. a?F |a!C ∼= a?(F |a!C) + a!(a?F |C) + τ.(F |C).
7. If C = 〈Z1〉Z2 then F |C ∼= F̃!(Z1)|Z2.

Analogous results hold for the symmetric operations.

Proof: In case 1, 2, 3 and 6 the proof goes exactly as in Lemma 5.1.13. The proof of
4 goes as follows:

X|C =
∫ p,q,rbXc(p) × bZ1c(q) × bZ2c(r) . (p ‖ (〈q〉r))

=
∫ p,q,rbXc(p) × bZ1c(q) × bZ2c(r) . (〈j(q)〉p ‖ r)

∼=
∫ qbZ1c(q) . (〈j(q)〉

∫ p,rbXc(p) × bZ2c(r) . (p ‖ r))
(by Fubini and since 〈−〉− preserves connected colimits in each argument)

∼=
∫ qbZ1c(q) . (〈j(q)〉(X|Z2))

∼= 〈
∫ qbZ1c(q) . j(q)〉(X|Z2)

(since 〈−〉− preserves connected colimits in each argument)
∼= 〈Z1〉(X|Z2) .

8.4. PRESHEAF SEMANTICS 203

Concerning 5 we have that

F |X def=
∫ f,q

bF c(f) × bXc(q) . f ‖ q .

Because of Proposition 8.4.8 and since coends in a presheaf category can be computed
pointwise we have that, for every p ∈|P⊥ | the following holds:

F̃ |X(p) = (F |X)(p,−) ∼=
∫ f,q

bF c(f)× bXc(q) . (j(f)(p)|j(q)) .

Now since | preserves connected colimits in each argument this is further transformable
to

(
∫ f

bF c(f) . j(f)(p))|(
∫ q

bXcq . j(q))

which by the density formula, applied twice, is just

F̃ (p)|X .

That the actions on morphisms agree as well is immediately obtained from a similar
calculation involving morphisms. Point 7 is proved similarly as follows:

F |C =
∫ f,p,qbF c(f)× bZ1c(p)× bZ2c(q) . f ‖ 〈p〉q

(by definition)
∼=

∫ f,p,qbF c(f)× bZ1c(p)× bZ2c(q) . j(f)|j(〈p〉q)
(by Proposition 8.4.8)

∼=
∫ f,p,qbF c(f)× bZ1c(p)× bZ2c(q) . j(f)(p)|j(q)

(by definition)
∼= (

∫ f,pbF c(f)× bZ1c(p) . j(f)(p))|(
∫ qbZ2c(q) . j(q))

(since | preserves connected colimits in each argument)
∼= F̃!(bZ1c)|Z2

(by definition of F̃! and from the density formula).

2

Using the above lemma one easily proves the following theorem, using the fact that
coends distribute over sums.

Theorem 8.4.10 Let X and Y be two presheaves over P with decompositions (cf. The-
orem 8.4.4)

X ∼=
∑

i∈X(τ)

τ.(X|i) +
∑
a∈Ch

∑
j∈X(a!)

a!(〈X|j,1〉X|j,2) +
∑
a∈Ch

∑
k∈X(a?)

a?(X|k)

and

Y ∼=
∑

i′∈Y (τ)

τ.(Y|i′) +
∑
a∈Ch

∑
j′∈Y (a!)

a!(〈Y|j′,1〉Y|j′,2) +
∑
a∈Ch

∑
k′∈Y (a?)

a?(Y|k′) .

204 CHAPTER 8. HIGHER ORDER PROCESSES

Then X | Y is isomorphic to∑
(i,∗)

τ.(Xi | Y) +
∑

(a!j,∗)
a!〈Xj,1〉(Xj,2 | Y) +

∑
(a?k,∗)

a?(Xk(−) | Y)

∑
(∗,i′)

τ.(X | Yi′) +
∑

(∗,a!j′)
a!〈Yj′,1〉(X | Yj′,2) +

∑
(∗,a!k′)

a?(X | Yk′(−))

+
∑

(a!j,a?k′)
τ.(Xj,2 | (Yk′ •Xj,1)) +

∑
(a?k,a!j′)

τ.((Xk • Yj′,1) | Yj′,2) .

If a path object t is observed in a parallel composition X|Y , i.e., if there exists
d ∈ (X|Y)(t), we can extract how much of X and Y had been used to produce the
observation d. We begin with two auxiliary results (Lemma 8.4.11 and Corollary 8.4.12)
which show that in the case of the parallel composition of two (lifted) path objects,
it is possible to describe precisely how much of each path was used in producing an
observation of a chosen shape.

Lemma 8.4.11 Let t, u be two lifted path terms, for which t ‖ u is defined. Let v be a
path and suppose that

z ∈ (t ‖ u)(v) .

Then there exists a unique pair (t′, u′) ≤ (t, u) and element z′ ∈ (t′ ‖ u′)(v) such that

1. for all v′ 6= v, if v ≤ v′, (t′ ‖ u′)(v′) = ∅, i.e., all of t′ and u′ was used to observe
v.

2. ((t′ ≤ t) ‖ (u′ ≤ u))v(z′) = z.

Proof: The proof is an easy, though tedious induction on the structure of v. 2

The fact that the triple (t′, u′, z′) is uniquely determined immediately entails the follow-
ing corollary:

Corollary 8.4.12 With the same hypothesis as in Lemma 8.4.11. If t′′, u′′ and z′′ are
such that

((t′′ ≤ t) ‖ (u′′ ≤ u))v(z′′) = z ,

then t′ ≤ t′′, u′ ≤ u′′ and

((t′ ≤ t′′) ‖ (u′ ≤ u′′))v(z′) = z′′ .

Recall (see Chapter 4) that a coend formula in Set, like∫ C

X(C)× F (C)(D) ,

for X : Cop → Set and F : C→ D̂ defines a set given by∐
c∈|C|

X(C)× F (C)(D)/ ∼ ,

8.4. PRESHEAF SEMANTICS 205

where ∼ is the equivalence relation generated by ∼◦ that is defined as

(x′, y′) ∈ X(C ′)× F (C ′)(D) ∼◦ (x, y) ∈ X(C)× F (C)(D)

if there exists f : C ′ → C in C such that

x′ = X(f)(x) and F (f)D(y′) = y .

Using this notation the following lemma is an immediate consequence of Lemma 8.4.11
and Corollary 8.4.12.

Lemma 8.4.13 Let X and Y be two presheaves for which | is defined3. Let t be any
path term of the appropriate type then for any r, s lifted paths and any triple

(x, y, z) ∈ bXc(r) × bY c(s)× (r ‖ s)(t)

there exist r′and s′ and a (necessarily unique) triple

(x′, y′, z′) ∈ bXc(r′)× bY c(s′)× (r′ ‖ s′)(t)

such that

1. (x′, y′, z′) ∼◦ (x, y, z).
2. For every r′′, s′′, x′′, y′′ and z′′ such that (x′′, y′′, z′′) ∼ (x, y, z), then r′ ≤ r′′,

s′ ≤ s′′ and (x′, y′, z′) ∼◦ (x′′, y′′, z′′).

Proof: Use the Lemma 8.4.11 to determine r′, s′ and z′. Define

x′ = bXc(r′ ≤ r)(x) and y′ = bY c(s′ ≤ s) .

Corollary 8.4.12 ensures that the second condition is met. 2

We shall use Lemma 8.4.13 later in proving a property of open terms (Theorem 8.4.20)
reminiscent of Berry’s stability condition on functions [13].

Replication: Following what we did in Chapter 7, we shall define the denotation of a
replicated process rep(P), [[rep(P)]] as the least fixed point of the functor

−|[[P]] : P̂→ P̂ ,

where [[P]] is the denotation of P . So, for every presheaf X over P define

−|X : P̂→ P̂ ,

to be the functor that sends objects Y to Y |X and morphisms f to f |1X . If 0X : ∅ → X
is the unique morphism form the initial presheaf to X, define !X to be a colimit for the
chain

X = ∅|X 0x|1X
// X|X (0x|1X)|1X

// (X|X)|X // · · · .

By parametricity (Theorem 4.1.5), this induces a unique functor

! : P̂→ P̂ .
3I.e., two presheaves over P or one over P and the other over C or

206 CHAPTER 8. HIGHER ORDER PROCESSES

8.4.3 Denotational semantics

Suppose P is a process term with free variables within x1, · · · , xn (possibly the empty
list). The denotation of P in this context is a functor

[[P [~x]]] : P⊥
n → P̂,

Similarly a concretion or abstraction term with free variables within x1, · · · , xn are
denoted by functors from P⊥

n to Ĉ or F̂ respectively. For conciseness and readability
we give the semantic definition only on objects. As usual the definition is by structural
induction on terms T :

[[Nil[~x]]]~p = ∅, the empty presheaf [[τ.P [~x]]]~p = τ.([[P [~x]]]~p)
[[a!C[~x]]]~p = a!([[C[~x]]]~p) [[a?F [~x]]]~p = a?([[F [~x]]]~p)
[[
∑

i∈I Pi[~x]]]~p =
∑

i∈I [[Pi[~x]]]~p [[[q ≤ Q]P [~x]]]~p = [[Q[~x]]]~p(q) . [[P [~x]]]~p
[[P | Q[~x]]]~p = [[P [~x]]]~p | [[Q[~x]]]~p [[rep(P)[~x]]]~p = rep([[P [~x]]]~p)

[[F • P [~x]]]~p = (˜[[F [~x]]]~p)!(b[[P [~x]]]~pc) [[xi[~x]]]~p = pi

[[〈P 〉Q[~x]]]~p = 〈[[P [~x]]]~p〉[[Q[~x]]]~p [[(y)P [~x]]]~p = ˜[[P [~x, y]]]~p

Above we have used S .X, where S is a set and X is a presheaf, to stand for the copower
of X, the sum of X with itself S times as in most of the coend formulas that we have
seen in this thesis; the copower could also be written as Σs∈SX.

We now observe the important fact that linear application amounts to substitution.
This rests on the property that terms being linear ensures that viewed denotationally
they preserve connected colimits in their free variables.

Lemma 8.4.14 (Substitution Lemma) Let T be a term of the language and P be
a process term. Let ~x be a set of variables including those free in P and suppose that
fv(T) ⊆ [~x, y]. Then

([[T [~x, y]]]~p)!(b[[P [~x]]]~pc) ∼= [[T [P/y][~x]]]~p .

Proof: The proof is by induction on the structure of T . For readability let’s assume

A = b[[P [~x]]]~pc .

The base case T = Nil is trivial, the other base case is T = z. Then we have two
possibilities either z = xi for some xi component of ~x or z = y. In the first case
[[T [~x, y]]]~p)! is the functor that constantly returns pi and [[T [P/y][~x]]]~p = [[xi[~x]]]~p = pi.
In the other case,

([[T [~x, y]]]~p)!A = ([[y[~x, y]]]~p)!A
=

∫ q
A(q) . j(q)

= l∗(
∫ q
A(q) . yP⊥(q) (since j = l∗yP⊥)

= l∗(A)
= [[P [~x]]]~p
= [[y[P/y][~x]]]~p .

The other possibilities are treated as follows:

8.4. PRESHEAF SEMANTICS 207

• If T = τ.Q:

([[T [~x, y]]]~p)!A =
∫ q
A(q) . (τ.([[Q[~x, y]]]~pr))

∼= τ.(
∫ q
A(q) . [[Q[~x, y]]]~p) (since τ. preserves

connected colimits)
∼= τ.(([[Q[~x, y]]]~p)!A)
∼= τ.([[Q[P/y][~x]]]~p) (by inductive hypothesis)
= [[τ.Q[P/y][~x]]]~p .

• If T = a!C or T = a?F one uses a similar argument as above, using the fact that
a! and a? preserves connected colimits.

• If T = 〈Q〉R with y free in Q and not in R:

([[T [~x, y]]]~p)!A =
∫ q
A(q) . 〈[[Q[~x, y]]]~pr〉[[R[~x]]]~p

∼= 〈
∫ q
A(q) . [[Q[~x, y]]]~pr〉[[R[~x]]]~p

(since 〈−〉− preserves connected colimits in each argument)
∼= 〈([[Q[~x, y]]]~p)!A〉[[R[~x]]]~p
∼= 〈[[Q[P/y][~x]]]~p〉[[R[~x]]]~p

(by inductive hypothesis)
= [[(〈Q〉R)[P/y][~x]]]~p .

The case when y is free in R and not in Q is treated similarly.
• If T = (z)Q:

([[T [~x, y]]]~p)!A =
∫ q
A(q) . ˜[[Q[~x, y, z]]]~pr

∼= ˜∫ q
A(q) . [[Q[~x, y, z]]]~pr (since Currying preserve colimits

being an equivalence)
∼= ˜[[Q[P/y][~x, z]]]~p (by inductive hypothesis)
∼= [[(z)Q[P/y][~x]]]~p .

• If T = F •Q and y is not free in Q:

([[T [~x, y]]]~p)!A =
∫ q
A(q) .

∫ rb[[Q[~x]]]~pcr . ˜[[F [~x, y]]]~pqr
∼=

∫ rb[[Q[~x]]]~pcr .
∫ q
A(q) . ˜[[F [~x, y]]]~pqr

(by Fubini and since copowers distribute over coends)
∼=

∫ rb[[Q[~x]]]~pcr . ˜[[F [P/y][~x]]]~pr
(by inductive hypothesis)

∼= [[(F •Q)[P/y][~x]]]~p .

The case when y is not free in F is treated similarly.
• If T = rep(P) then the property trivially holds, since P has no free variables (as

it was for Nil).

208 CHAPTER 8. HIGHER ORDER PROCESSES

• If T = [r ≤ Q]R and y is not a free variable of R then:

([[T [~x, y]]]~p)!A =
∫ q
A(q) . (([[Q[~x, y]]]~pq)(r) . [[R[~x]]]~p)

∼=
∫ q(A(q) × ([[Q[~x, y]]]~pq)(r)) . , [[R[~x]]]~p

(by definition of copower)
∼= [[Q[P/y][~x]]]~p)(r)) . [[R[~x]]]~p

(since coends are calculated pointwise)
= [[([r ≤ Q]R)[P/y][~x]]]~p .

If y is not a free variable of Q:

([[T [~x, y]]]~p)!A =
∫ q
A(q) . (([[Q[~x]]]~p)(r) . [[R[~x, y]]]~pq)

∼= ([[Q[~x]]]~p)(r) .
∫ q(A(q) . , [[R[~x, y]]]~pq

(since copowers distribute over coends)
∼= ([[Q[~x]]]~p)(r) . [[R[P/y][~x]]]

(by inductive hypothesis)
= [[([r ≤ Q]R)[P/y][~x]]]~p .

• If T = Q|R and y is not a free variable of R one uses, as for the 〈−〉− case, that
the functor (−|−) preserves connected colimits in each argument.

• If T =
∑

i∈I Pi then:

([[T [~x, y]]]~p)!A =
∫ q
A(q) .

∑
i∈I [[Pi[~x, y]]]~pq

∼=
∑

i∈I
∫ q
A(q) . [[Pi[~x, y]]]~pq (since sums preserve coends)

∼=
∑

i∈I [[Pi[P/y][~x]]]~p (by inductive hypothesis)
= [[

∑
i∈I Pi[P/y][~x]]]~p .

2

An immediate consequence of the Lemma 8.4.14 is the following characterisation of
the denotation of the linear application of the language.

Corollary 8.4.15 Let P,Q be process terms with free variable amongst ~x. Then,

[[(y)Q • P [~x]]]~p ∼= [[Q[P/y][~x]]]~p .

Proof: The proof is given by the following calculation:

[[(y)Q • P [~x]]]~p = ([[(y)Q[~x, y]]]~p)!(b[[P [~x]]]~pc) (by definition)
∼= [[Q[P/y][~x]]]~p (by Lemma 8.4.14) .

2

8.4.4 A soundness result

We now use the transition relations on presheaves to show the “soundness” of the
operational semantics with respect to the presheaf semantics.

8.4. PRESHEAF SEMANTICS 209

Theorem 8.4.16 Let T be any closed term of the language. For every path term t, if
T

t−→ then [[T]] t−→ and if t is atomic and T
t−→ U then there exists an X such that

[[T]] t−→ X with X ∼= [[U]].

Proof: The proof goes by induction on the rules.
Prefixings: If

T = α.U
α−→ U

then [[T]] = α.[[U]] α−→ [[U]].
Sums: If

Pj
α→ U j ∈ I

T =
∑

i∈I Pi
α→ U

then [[T]] =
∑

i∈I [[Pi]] and since by inductive hypothesis [[Pi]]
α−→ X ∼= [[U]] then

[[T]] α−→ X ′ ∼= X ∼= [[U]]

by definition.
Tests: If

Q p→ P α→ U

T = [p ≤ Q]P α→ U

then [[T]] = [[Q]](p) . [[P]]. By inductive hypothesis

[[P]] α−→ X ∼= [[U]]

and [[Q]](p) 6= ∅ since [[Q]]
p−→. Hence, by definition of copower there must exists an

X ′ ∼= X such that [[T]] α−→ X ′.
Parallel composition: If

P a?→ F Q a!→ 〈R〉S
T = P | Q τ→ F •R | S

then by inductive hypothesis P a?−→ A ∼= [[F]] and Q
a!−→ 〈X〉Y ∼= 〈[[R]]〉[[S]]. Because of

the characterisation result of Theorem 8.4.10, we know that

[[P |Q]] τ−→ X ∼= Ã!X|Y ∼= [̃[F]]!([[R]])|[[S]] = [[F •R]]|[[S]] = [[F •R|S]] .

If
P a?→ (x)P ′

T = P | Q a?→ (x)(P ′ | Q)

then by inductive hypothesis P a?−→ A ∼= [[(x)P ′]] and hence again by the characterisation
Theorem 8.4.10

([P |Q]) a?−→ X ∼= A|[[Q]] ∼= [[(x)P ′]]|[[Q]] ∼= [[(x)(P ′|Q)]] ,

210 CHAPTER 8. HIGHER ORDER PROCESSES

where the last passage is justified by point 5 of Lemma 8.4.9. The other cases concerning
parallel composition are treated in a similar way to the two above.
Replication: If

P | rep(P) α→ U

T = rep(P) α→ U

then by inductive hypothesis [[P |rep(P)]] α−→ X ∼= [[U]]. But, by construction

[[T]] ∼= [[P |rep(P)]]

hence there must exists an X ′ such that

[[T]] α−→ X ′ ∼= X .

Application: If
P [Q/x] α→ U

T = (x)P •Q α→ U

then by inductive hypothesis [[P [Q/x]]] α−→ X ∼= [[U]]. By Corollary 8.4.15, there must
exists an X ′ isomorphic to X such that [[(x)P •Q]] α−→ X ′.
Concretions: If

P α→ U

T = 〈P 〉Q 〈α〉−→ U

then by inductive hypothesis [[P]] α−→ X ∼= [[U]] and hence by Definition 8.4.1,

[[T]] = 〈[[P]]〉[[Q]]
〈α〉−−→ X .

Abstractions: If
F • p α→ U

T = F (p 7→α)→ U

then by inductive hypothesis [[F • p]] α−→ X ∼= [[U]]. Recall now that

[[F]](p 7→ α) = [[F • p]](α) ,

hence [[T]]
p 7→α−→ X.

Path Capabilities: If

P α→ U U t→
T = P α.t→

then by inductive hypothesis [[T]] = [[P]] α−→ X ∼= [[U]] and [[U]] t−→ and therefore,
X

t−→, too. By Proposition 8.4.2, then

[[T]] α.t−→ .

The other cases are trivial. 2

8.4. PRESHEAF SEMANTICS 211

The converse result, showing that

if [[T]] t−→, then T
t−→ and if t is atomic and [[T]] t−→ X, then there exists

U such that T t−→ U with [[U]] ∼= X

is not so easily obtainable. A plain induction on the structure of the terms will encounter
difficulties in treating the application (F • P) and parallel composition (P |Q) cases. A
more refined strategy is needed. This problem is related to the unproven conjecture (see
Section 8.4.5 below) stating the existence of bijections between elements of a presheaf,
denotation of a term T , and derivation trees in the operational semantics of T .

8.4.5 Toward a characterisation of open map bisimulation

We say two presheaves are open-map bisimilar iff they are related by a span of surjective
open maps. This induces a relation between closed terms; closed terms T and U are
related iff their denotations [[T]] and [[U]] are open-map bisimilar in either P̂, Ĉ or F̂,
depending on the type of T and U . It is this relation on terms we wish to characterise.
Because of the intertwined definition of P, C and F, an operational characterisation of
P-open map bisimilarity would necessary involve a characterisation of C- and F-open
map bisimilarity, too. It is the characterisation of the latter which poses most problems.
In fact using the decomposition results of Theorem 8.4.4 it is easy to prove the following:

Proposition 8.4.17 Let X and Y be two presheaves over P, then X is P-open bisimilar
to Y if and only if the following three conditions (and their symmetric counterpart) hold:

1. For every X ′, if X τ−→ X ′ then there exists Y ′ such that Y τ−→ Y ′ and X ′ is
P-open bisimilar to Y ′.

2. For every C, if X a!−→ C then there exists D such that Y a!−→ D and C is C-open
bisimilar to D.

3. For every F , if X a?−→ F then there exists G such that Y a?−→ G and F is F-open
bisimilar to G.

Before proving the proposition we introduce, for the purpose of this section, some ab-
breviations for open map bisimilarity.

Notation: In the reminder of this section we shall write X ∼P Y to mean that the
presheaf X is P-open bisimilar to the presheaf Y . Similarly we write C ∼C D to mean
that C is C-open bisimilar to D and F ∼F G to mean that F is F-open bisimilar to G.

Proof:[of Proposition 8.4.17]

“Only if”: We need to define a span of surjective open maps

X
f← Z

g→ Y .

For every i ∈ X(τ), define Yτ,i = {i′ ∈ Y (τ) | X|i ∼P Y|i′}. By assumption, Yτ,i is

never empty. For every i′ ∈ Yτ,i, let X|i
fτ,i,i

′
←− Zτ,i,i

′ gτ,i,i
′

−→ Y|i′ be a span of surjective
open maps that needs to exist by assumption. Similarly for a! and a? choose spans

212 CHAPTER 8. HIGHER ORDER PROCESSES

X|j
fa!,j,j

′
←− Za!,j,j

′ ga!,j,j
′

−→ Y|j′ and X|k
fa?,k,k

′
←− Za?,k,k

′ ga?,k,k
′

−→ Y|k′ for j′ ∈ Ya!,j and k′ ∈ Ya?,k
where Ya!,j and Ya?,k are defined similarly to Yτ,i. Define now the presheaf Z : Pop → Set
as follows on objects:

Z(τ) = {(i, i′) ∈ X(τ) × Y (τ)|i′ ∈ Yτ,i}
Z(a!) = {(j, j′) ∈ X(a!)× Y (a!)|j′ ∈ Ya!,j}
Z(a?) = {(k, k′) ∈ X(a?)× Y (a?)|k′ ∈ Ya?,k}
Z(τ.p) =

∑
i∈X(τ)

∑
i′∈Yτ,i

Zτ,i,i
′
(p)

Z(a!c) =
∑

j∈X(a!)

∑
j′∈Ya!,j

Za!,j,j
′
(c)

Z(a?f) =
∑

k∈X(a?)

∑
k′∈Ya?,k

Za?,k,k
′
(f) .

The action on morphisms is given by the action of the presheaves Zτ,i,i
′
, Za!,j,j

′
and

Za?,k,k
′
but for the cases

τ ≤ τ.p, a! ≤ a!c, and a? ≤ a?f

that are determined in the obvious way. The natural transformations f and g are
determined by projections on the first and second components on the base cases and
by the open maps f τ,i,i

′
, gτ,i,i

′
, . . . , in the other cases. Because of the assumptions it is

immediately deducible that f and g are both surjective and P-open.
“If”: This direction is trivial. One can compare it with Proposition 7.3.7.

2

We have already seen that for any two presheaves X and Y over a product category
A × B, if X is A × B-open bisimilar to Y then for every object A ∈ |A|, X(A,−) is
B-open bisimilar to Y (A,−) and for every object B ∈ |B|, X(−, B) is A-open bisimilar
to Y (−, B). The converse does not hold in general. It does so in the special case
represented by the denotations of concretions.

Proposition 8.4.18 Let X,Y,Z and W be presheaves over P, then 〈X〉Y is C-open
bisimilar to 〈Z〉W if and only if X is P-open bisimilar to Z and Y is P-open bisimilar
to W .

Proof: One direction we have already commented on; the other we can prove directly
or invoke what we already said in Section 8.4.2 where the functor 〈−〉− was defined and
shown to preserve open map bisimulation for general reasons. 2

For the denotation of concretions, C-open bisimilarity is then reduced to P-open bisim-
ilarity. For abstractions, i.e., presheaves over

F = P⊥ (P = (P⊥)op × P ,

8.4. PRESHEAF SEMANTICS 213

things do not work so simply. Clearly F ∼F G implies that F̃ (p) ∼P G̃(p), for every
p ∈| P |. Some uniformity constraints need to be imposed on a family of spans of
surjective P-open maps (F̃ (p)← Zp → G̃(p))p∈|P⊥| in order to be able to glue them into
a ‘single’ span of surjective F -open maps

F ← Z → G .

In order to match up these constraints we are, apparently unavoidably, led to consider
elements of the presheaves explicitly.

Proposition 8.4.19 Let F and G be two presheaves over F. A family of spans of
surjective P-open maps

(F̃ (p)
fp← Zp

gp→ G̃(p))p∈|P⊥|

induces a span of surjective F-open maps

F
f← Z

g→ G

if and only if for every p ≤ p′ in P⊥ we have

1. (q, x) ∼Zp (q, y) implies (q, F̃ (p ≤ p′)q(x)) ∼Zp′ (q, G̃(p ≤ p′)q(y)).
2. (q, F̃ (p ≤ p′)q(x)) ∼Zp′ (q, y′) implies that there exists y ∈ G̃(p)q such that

y′ = G̃(p ≤ p′)q(y) and (q, x) ∼Zp (q, y) .

3. (q, x′) ∼Zp′ (q, G̃(p ≤ p′)q(y)) implies that there exists x ∈ F̃ (p)q such that

x′ = F̃ (p ≤ p′)q(x) and (q, x) ∼Zp (q, y) .

Where (q, x) ∼Zp (q, y) is an abbreviation for “there exists z ∈ Z(p), such that (fp)q(z) =
x and (gp)q(z) = y”.

Proof:[Sketch] For simplicity, we can, without loss of generality assume that all the
Zp’s are in fact pointwise subsets of the products F̃ (p)× G̃(p), i.e., every z ∈ Zp(q) is in
fact a pair (x, y) ∈ F̃ (p)(q)× G̃(p)(q). Define then Z : Fop → Set as Z(p 7→ q) = Zp(q),
with

Z(p ≤ p′, q′ ≤ q)(x, y) = Z ′
p(q

′ ≤ q)(F̃ (p ≤ p′)q(x), G̃(p ≤ p′)q(y))
for any pair (x, y) ∈ Z(p, q). Condition 1 ensures that Z is well defined, while conditions
2 and 3 provide the quasi-pullback conditions for the projections to be F-open. 2

To characterise F-open bisimilarity for abstractions in the language, we should then
annotate the transitions of the operational semantics with expressions accounting for
the extra information required by the conditions 1, 2 and 3 in the proposition above. We
conjecture the existence of a tight correspondence between derivation trees associated
with a closed process term T and path t and elements of [[T]](t). We believe in fact,
though we lack a proof, that there are bijections

[[T]](t) ∼= {d | d is a derivation tree for T t−→} ,

214 CHAPTER 8. HIGHER ORDER PROCESSES

for every term T and path t. Our hope is to describe the functorial action of presheaves
and open map bisimulation via annotations to the operational semantics. Even without
this, there is already room for some improvement on the conditions 2 and 3 of Proposi-
tion 8.4.19 based on a condition satisfied by presheaves denoting terms of the language
which reminds of Berry’s stability condition for functions [13].

Theorem 8.4.20 Let T be a term with free variables ~x = x1, . . . , xn. If d ∈ ([[T [~x]]]~p)(q),
for ~p = p1, . . . , pn a vector of (lifted) paths, then there exists a pointwise smaller vector
~p0 ≤ ~p and element d0 ∈ ([[T [~x]]]~p0)(q) such that

1. d = ([[T [~x]]](~p0 ≤ ~p))q(d0)

2. ~p0 is the least vector satisfying 1, i.e., if ~p1 ≤ ~p and d1 ∈ ([[T [~x]]] ~p0)(q) is such
that d = ([[T [~x]]](~p1 ≤ ~p))q(d1) then ~p0 ≤ ~p1 and d1 = ([[T [~x]]](~p0 ≤ ~p1))q(d0).

Proof: The proof is by induction on the structure of the term T . It makes essential
use of the linearity constraint on terms. Most cases are trivial. We concentrate on the
two that require looking into the coend definition of the semantics operations.
Let T = P |Q and let ~y and ~z be the free variables of P and Q, respectively. By the
linearity constraint we know that fv(P)∩ fv(Q) = ∅. Let ~pP and ~pQ the corresponding
splitting of the vector ~p in the hypothesis. We then have:

[[T]]~p(q) =
∫ r,s

b[[P]] ~pP c(r)× b[[Q]] ~pQc(s)× (r ‖ s)(q) .

Since d ∈ [[T]]~p(q) there must exists r and s and a triple

(x, y, z) ∈ b[[P]] ~pP c(r)× b[[Q]] ~pQc(s)× (r ‖ s)(q)

such that d = [(x, y, z)]∼ (cf. Section 4.1). By Lemma 8.4.13 we know that within the
equivalence class [(x, y, z)]∼, we can minimise r and s. Let r′ and s′ be the result of
such minimisation, with (x′, y′, z′) the corresponding triple of elements. If r = ⊥, then
s 6= ⊥, since ⊥ ‖ ⊥ is the empty presheaf. So s = bpsc, for some path ps ∈|P |. Define
~(pP)0 = ~⊥, the constantly bottom vector and ~(pQ)0 the one obtained by applying the

inductive hypothesis to ([[Q]] ~pQ)(ps). Let y0 be the corresponding element such that
([[Q]](~(pQ)0 ≤ ~pQ))ps(y0) = y′ and define d0 = [(∗, y0, z′)]∼ in

([[P |Q]]~⊥, ~(pQ)0)(q) =
∫ r,s

b[[P]]~⊥c(r)× b[[Q]] ~(pQ)0c(s)× (r ‖ s)(q) .

If r′ 6= ⊥ and s′ = ⊥ just do the symmetric thing and if they are both non bottom,
minimise separately both ~pP and ~pQ.
The other “complicated” case is when T = (x)P •Q. In this case

([[T]]~p)(q) =
∫ r

b[[Q]] ~pQc(r)× ([[P]] ~pP , r)(q) ,

where again we have split the free variables of T in two disjoint sets. Now d ∈ [(x, y)]∼,
with (x, y) ∈ b[[Q]] ~pQc(r) × ([[P]] ~pP , r)(q) for some r. Let y′ ∈ [[P]](~(pP)0, r0)(q) be the

8.4. PRESHEAF SEMANTICS 215

minimal representative for y that we can find by the inductive hypothesis. If r0 = ⊥,
then define ~(pQ)0 = ~⊥, and take d0 = [(∗, y′)], otherwise apply the inductive hypothesis
again on ([[Q]] ~pQ)(pr0 ≤ pr))(x), for r0 = bpr0c and r = bprc, to obtain ~(pQ)0 ≤ ~pQ and

x′ ∈ ([[Q]] ~pQ)(pr0) = (b[[Q]]c ~pQ)(r0) .

define d0 = [(x′, y′)]∼. 2

Notation: In the situation of Theorem 8.4.20 we say that ~p0 is minimum for (q, d).

We can use Theorem 8.4.20 to simplify conditions 2 and 3 of Proposition 8.4.19 by
examining only minimum inputs.

Corollary 8.4.21 Let F and G be two presheaves over F. A family of spans of surjec-
tive P-open maps

(F̃ (p)
fp← Zp

gp→ G̃(p))p∈|P⊥|

induce a span of surjective F-open maps

F
f← Z

g→ G

if and only if

1. for every p ≤ p′ in P⊥ then (q, x) ∼Zp (q, y) implies

(q, F̃ (p ≤ p′)q(x)) ∼Zp′ (q, G̃(p ≤ p′)q(y)) .

2. for every path p, (q, x) ∼Zp (q, y′) and p minimum for (q, x) implies that p is
minimum for (q, y) and vice versa if p is minimum for (q, y) then it is minimum
for (q, x), too.

8.4.6 Applicative bisimulation recovered

The terms of the process language include as a fragment a form of λ-calculus, on which
bisimulation from open maps can be characterised more simply than for the full process
language. The characterisation is in terms of a relation of applicative bisimulation [2].

We restrict the syntactic categories to deterministic terms, linear terms with the
following syntax:

P :: = Nil | τ.P | a?F | [p ≤ P ′]P | F • P | x
F :: = (x)P

The operational semantics restricts to this fragment of the language. As presheaves,
these deterministic terms are subobjects of the terminal object.

Proposition 8.4.22 In a presheaf category Ĉ a terminal object 1C is given by the
presheaf that takes any object C of C to the singleton set {∗}.
A presheaf X over C is a subobject of 1C if at every object C of C, X(C) is either the
empty set or a singleton set. We write X ↪→ 1C to mean that X is a subobject of 1C.

216 CHAPTER 8. HIGHER ORDER PROCESSES

Proposition 8.4.23 Let T be any term in the restricted language with free variables in
~x. Then for every vector of matching length of closed terms possibly in the full language,
~P , if every Pi in ~P is such that [[Pi]] is a subobject of the terminal 1P, then [[T [~P/~x]]] is
a subobject of 1T.

Proof: The proof is by induction on the structure of T .

• If T = Nil, [[T [~P/~x]]] def= ∅ ↪→ 1P.
• If T = τ.Q, then by inductive hypothesis, [[Q[~P/~x]]] ↪→ 1P, then

[[T [~P/~x]]] = τ.[[Q[~P/~x]]] ↪→ 1P (cf. definition of τ.) .

• If T = a?F , then by inductive hypothesis [[F [~P~x]]] ↪→ 1F, then

[[T [~P/~x]]] = a?([[F [~P~x]]] ↪→ 1P

• If T = [p ≤ Q]R then by inductive hypothesis, [[Q[~P/~x]]](p) is either the empty set
or a singleton set. In the first case [[T [~P/~x]]] = ∅ ↪→ 1P. Otherwise, by inductive
hypothesis [[T [~P/~x]]] ∼= [[R[~P/~x]]] that is a subobject of 1P by inductive hypothesis.

• If T = (y)Q •R, then

[[T [~P/~x]]] ∼= [[Q[~P]]]!(b[[R[~P/~x]]]c) ∼= [[Q[~P/~x][R[~P/~x]/y]]] ,

where the last isomorphism depends on Corollary 8.4.15. But, [[Q[~P/~x][R[~P/~x]/y]]]
is known to be a subobject of 1P by inductive hypothesis.

• If T = y, [[T [~P/~x]]] = [[Py]] that satisfies the condition by assumption.
• If T = (y)Q, then for every q 7→ r object of F,

[[T [~P/~x]]](q 7→ r) ∼= [[Q[~P/~x][q/y]]](r) .

Representables are subobjects of the terminal because P, C and F are partial or-
ders, hence [[Q[~P/~x][q/y]]](r) is either the empty set or a singleton set by inductive
hypothesis.

2

For terms in this fragment, at each path object, there is only at most one possible way
of deriving a transition. Open map bisimulation between closed deterministic terms can
be characterised using relations of a familiar form between terms:

Theorem 8.4.24 Let T and U be closed terms in the restricted language. Their de-
notations as presheaves [[T]] and [[U]] are open-map bisimilar iff there are symmetric
relations RP between closed process terms and RF between closed abstractions, relating
the terms (i.e. so T RP U or T RF U), such that:

• Whenever P RP Q, P τ→ P ′ ⇒ ∃Q′. Q τ→ Q′ & P ′ RP Q′, and
P a?→ F ⇒ ∃G. Q a?→ G & F RF G .

• Whenever (x)Q RF (y)R, then Q[P/x] RP R[P/y], for all closed process terms P
in the restricted language.

8.5. SOME REMARKS 217

8.5 Some remarks

In this last chapter we have presented a presheaf model for a linear higher-order process
language. It comes automatically equipped with the result that open map bisimulation
is a congruence. We outlined the problems we have encountered so far in trying to give
a characterisation of open map bisimulation based on the operational semantics.We
still hope to obtain purely operational characterisation of open map bisimulation. We
presently lack informative examples and counterexamples to probe variations in the way
we think the characterisation can be set up. We expect and hope to obtain a fruitful
operational reading of a broad range of presheaf semantics in which the elements of
presheaf denotations correspond to derivations in an operational semantics.

218 CHAPTER 8. HIGHER ORDER PROCESSES

Chapter 9

Conclusion

9.1 Summary

Building mainly on the work of Winskel and Nielsen [141] on categorical models for
concurrency and Joyal, Nielsen and Winskel [64] on open map bisimulation in this thesis
we have studied presheaf categories as models for concurrency with a built-in notion of
bisimulation. Our research has developed in two directions. First we have refined the
axiomatisation of models implicit in [141] and proposed the notion of presheaf models
for CCS-like languages. One advantage of these models over the more traditional
ones is that, for general reasons, bisimulation from open maps is a congruence. This
was shown to be useful in proving similar congruence results in traditional models
using known embeddings of the latter in presheaf ones. Our example was a presheaf
model generalising event structures, so we could prove that strong history preserving
bisimulation for event structures is a congruence with respect to the general process
language Proc of [141]. Further, in a similar way, the refinement for event structures
proposed in [41] was shown to preserve strong history preserving bisimulation. Crucial
for proving all this was the result (Proposition 3.2.5) asserting that colimit preserving
functors between presheaf categories preserves open map bisimulation.

The second direction we took was that of considering the 2-category Cocont of
presheaf categories and colimit preserving functors as a category of non-deterministic
domains as suggested in [138]. This was done for the purpose of describing presheaf
categories, appropriate for modelling specific process languages, as initial solutions to
recursive domain equations. The connection with domain theory has been made formal
by developing, in the vein of axiomatic domain theory [30, 105, 35], suitably gener-
alised versions of the classical notions and results. Notably Theorem 6.1.9, leading to
a limit/colimit coincidence result, generalises Theorem 2 of [125]. The generalisation
requires moving from order enriched categories to 2-categories and, following some es-
tablished folklore, moving from embedding-projection pairs to the more general adjoint
pairs. On the same line as [30], we defined axiomatically a class of pseudo algebraically
compact [35] 2-categories, which included Cocont. Further, for the 2-categories in the
class, parametric properties of free algebras were proved. All this has been used not just

219

220 CHAPTER 9. CONCLUSION

to formalise our intuitions about Cocont but also to study open map bisimulation from
a domain theoretical point of view. We established induction and coinduction princi-
ples of recursively defined domains [100, 99, 31] and we used these to give a domain
theoretical characterisation of strong bisimulation for arbitrary trees. Proposition 3.2.5
mentioned above has been generalised to a proof that the horizontal composition of
open 2-cells in Cocont preserve open map bisimulation and used to show that also con-
nected colimit preserving functors between presheaf categories preserve it. All the func-
tors needed to model process constructors fell into this latter class; hence for presheaf
models we could immediately deduce the congruence property of bisimulation.
We tested our approach with several examples ranging from CCS [82], CCS with late
value passing (as was done in [138]), π-calculus [87, 88] to a form of CCS with “linear”
process passing. In the first three examples we have shown that our abstract notion
of bisimulation corresponded to the usual one on process terms. In the latter we have
exploited the monoidal closed structure of Cocont to provide a denotational semantics
to a higher order process language. Beside the congruence results, a highlight was a
Substitution Lemma (Lemma 8.4.14) proving that the application in the model corre-
sponded to substitution in the language. For a fragment of the language corresponding
to a form of λ-calculus, open map bisimulation was shown to coincide with applicative
bisimulation [2]. What we did not succeed in doing was giving an operational charac-
terisation of the bisimulation induced by open maps for the full language and this will
be a subject of future work (see below).

9.2 Further research

There are several lines for future research, extending the work presented here. We briefly
outline here some of the possibilities as well as some connections with related research.

9.2.1 Higher dimensional transition systems (hdts)

In a joint work with Vladimiro Sassone [23] we introduced a new category of models
for concurrency building on previous intuitions of Pratt [112] and van Glabbeek [40].
Open maps were used to give an abstract characterisation of the notion of bisimulation
that we had devised. The step further that we are making [24] is that of harnessing
the machinery presented in Chapter 3 of this thesis for the purpose of the semantics of
concurrent processes as hdts. In this way we expect to obtain automatically congruence
results for bisimulation. Hdts seem also appropriate for modelling so-called coordination
languages (LINDA-like) [19, 27].

More speculatively, we expect to obtain “geometric realisation functors” [76] that
should help clarifying the relationship between our approach and the closely related
work of Goubault and others on higher dimensional automata [44, 43, 45, 29].

9.2. FURTHER RESEARCH 221

9.2.2 Higher order process languages

As we saw in Chapter 8, the monoidal closed structure (or even the cartesian closed one
obtained by means of an exponential, !) of Prof can be used to describe a path cate-
gory suitable for higher order process languages. Avoiding the use of the exponential
we have designed a linear process language to test our model with. One of our hopes
was that of being able to operationally characterise the bisimulation relation induced
on terms by open maps. This requires the capability of expressing the structure of the
derivation trees in the operational semantics in a way that allows the reading off the
functorial aspects of presheaves (cf. Section 8.4.5). As we wrote we do not have a
definite answer to this problem yet, though there are some promising conjectures. It
is also worth noticing that the linearity constraint of our language is consistent with a
similar one in Cardelli and Gordon’s Calculus of Ambients [20] as noted by Winskel [139].

Another interesting problem is that of using the monoidal closed structure of Prof
to combine higher order features with non-interleaving models. First steps have been
made by Hildebrandt, Panangaden and Winskel in [54] where a profunctor based model
of non-deterministic dataflow networks is developed.

Modelling higher order process calculi that include name passing features might
require a more “advanced” use of enriched categories [65]. We say more about it in
Section 9.2.6 below.

9.2.3 A metalanguage for process constructors

Recently Glynn Winskel [140] has begun developing a metalanguage for process con-
structors, e.g., parallel composition, analogous to those used in domain theory for contin-
uous functions (see [137]). Any functor described by the metalanguage will be connected
colimit preserving and hence open map bisimulation preserving. Since ω-chains are con-
nected colimits, any endofunctor described by the metalanguage will have a “least” fixed
point. With respect to the problem of characterising operationally open map bisimula-
tion for higher order processes, one hope is that the structure of the meta-language can
be used to provide a direct reading of the operational characterisation of the defined
functors. The metalanguage should be useful in proving once and for all characterisation
results like those of Proposition 5.1.14, Theorem 7.4.7 and Theorem 8.4.10, for parallel
composition which have a lot in common.

9.2.4 Weak bisimulation and hiding

In this thesis we concentrated on strong bisimulation. In the conclusions of [64], it is
suggested that weak bisimulation could be reduced to strong bisimulation via a monad,
in a way that imitates Milner’s approach [82] that we recall below. In [92] Nielsen and
Cheng have tackled the question for transition systems by allowing more morphisms
(the “weak” simulations) while keeping those of the path category (finite strings with

222 CHAPTER 9. CONCLUSION

the prefix ordering) fixed. Seeking a structured approach to this, Fiore (private com-
munication) has reduced it, in the presheaf setting, to consider “quotienting” functors,

q : P→ Q ,

and, using the category of elements construction, “quotient preserving” morphisms. A
monad (Wq, η, µ), depending on q, is definable on P̂ for general reasons. In the case
of transition systems, it is known from Milner [82] that it is possible to “reduce” weak
bisimulation to strong bisimulation. By this we mean that given two transition systems,
T1 and T2 on a set of labels, L ∪ {τ}, one can transform them into, say T ′

1 and T ′
2, in

such a way that T1 is weakly bisimilar to T2 if and only if T ′
1 is strongly bisimilar to

T ′
2. In fact this construction is functorial in the category of transition systems [142].

Composing with the embedding from synchronisation trees to transition systems and the
unfolding functor from transition systems to synchronisation trees yields an endofunctor
on synchronisation trees, that is in fact the underlying functor of a monad. It turns out
that this corresponds to the endofunctor

Wq : ̂(L ∪ {τ})+ → ̂(L ∪ {τ})+

for q : (L ∪ {τ})+ → L∗ the functor that removes all the occurrences of the letter τ
from any string. This extends to give a general treatment of weak bisimulation. We
are pursuing this line of research in collaboration with Fiore and Winskel. Points to be
addressed include:

• When obvious quotienting functors for categories of models exist, as above, we
should explore the induced notion of weak bisimulation. This is particularly in-
teresting when done for models for which there is no clear cut understanding of
what weak bisimulation should mean, e.g., event structures and timed transition
systems.

• Find abstract considerations to determine how to define quotienting functors, q,
when the models are defined as initial solution of recursively defined equations. For
instance, in all the examples treated in this thesis, path categories were obtained
as solution to equations that looked like the following

P = P⊥ + F (P) ,

where P⊥ stand for the possibility of observing an internal communication and
then proceeds while F (P) was, in general, a more complicated expression having
to do with situations involving inputs and outputs. If b : F (B) + //B is an initial
solution to the equation that does not allow observing silent actions, i.e., P = F (P),
then one can define an algebra

B⊥ + F (B) + //B

by copairing b with the profunctor that sends ⊥ to the initial presheaf and any
other object to the corresponding representable (we used to call this j in previous

9.2. FURTHER RESEARCH 223

chapters). If a : A⊥ + F (A) + //A is an initial solution for the bigger equation, by
initiality there exists a universal profunctor

q : A + //B

such that the following square of profunctors commute (up to natural isomorphism,
of course):

A⊥ + F (A) a //

q⊥+F (q)
��

A

q

��

B⊥ + F (B)
[j,b]

// B .

We believe that we can use this fact, to deduce suitable quotienting functors q.

9.2.5 Action calculi

We have presented a categorical formalism for the semantics of process calculi in order
to capture abstractly the notion of bisimulation. In action calculi [86] one instead looks
for the basic ingredients needed to define classes of communicating systems (actions)
that can be composed with each other. A reduction semantics is given for the actions.
In order to reason about the behaviour of different actions one seeks a way of extracting
transition systems out of the reduction semantics. Recently Sewell [123] has made
progresses in this direction by classifying reduction semantics in terms of their properties
as rewriting systems. We hope instead to be able to employ the open maps paradigm
by finding ways of deriving path categories out of action calculi and vice versa.

9.2.6 Beyond presheaves

Presheaf categories are obtained by freely completing small categories with all colimits
of small diagrams. This results (always but for one trivial case) in a non-small category.
Often in process languages one naturally constrains the size of the model since there is
often little reason to consider processes that cannot correspond to physical machines.
For these languages the presheaf construction is overgenerous. Recently we have inves-
tigated in a joint work with John Power and Glynn Winskel [22] more restricted forms
of completions that, while keeping the spirit and especially the possibility of abstract
congruence results of the presheaf approach, can be represented as endofunctor of Cat.
These constructions has been characterised axiomatically in terms of KZ-monads [68].
The categories of non-deterministic domains, analogous to Cocont are then the Kleisli
categories of the considered KZ-monads. Just like the Yoneda embedding with respect
to presheaves, the unit of the monads provide a full embedding of a category into its
“completion” and hence a canonical choice of path category. Open map bisimulation
is preserved by the arrows of the Kleisli, i.e., the algebra maps between the free alge-
bras of the monad. A recent observation, that needs to be fully checked, suggests the
possibility of characterising (bounded in size) event structures over a set of labels L as

224 CHAPTER 9. CONCLUSION

T (PomL) for one such KZ-monad, T .1 Moreover this same T , when applied to partial
order categories, like L+, returns exactly the (bounded in size) free completion of the
category under all colimits of the specified size. This would mean that by means of such
a 2-monad T both interleaving and non-interleaving models can be characterised by the
same kind of completion.

More speculatively we envisage the possibility of moving from Prof , (the bicategor-
ical equivalent of Cocont) to V-Prof , for suitably complete and cocomplete V’s [65].
For instance, we have noticed (see Chapter 7) that in our present setting it seems highly
unlikely that it will be possible to provide semantics to process languages that combine
higher order features with name passing, e.g., the Higher order π-calculus [116]. By
looking for a model in SetI-Prof rather than ProfI , we overcome the mathematical
difficulties due to the lack of general function spaces in ProfI . It is left to verify that
equations solved in SetI-Prof give meaningful solutions! Alternatively one might con-
sider enriching over categories of sets with probability distributions on their elements
to be able to cope with probabilistic/Markov processes [70, 16].

Following suggestions of Martin Hyland, we are also currently investigating the pos-
sibility of considering extensions of the category of name sets, I. This to allow the
possibility of having meaningful solutions for equations involving both higher-order and
name passing features already in CatI .

At the same speculative level we should also mention the possibility, suggested
in [64], of incorporating fairness constraints in the models by moving from presheaves
to sheaves.

Finally, it is not clear to us how our approach relates to the abstract understanding
of bisimulation provided by coalgebras [4, 114]. The hope is that the recent work and
ongoing research of Turi and Plotkin [131, 132] will help provide the missing links.

1Recall that PomL is the category of (finite) pomsets over L.

Appendix A

Basic Definitions of Enriched
Category Theory

A.1 Enriched categories

In this appendix we review some concepts from enriched category theory that we needed
from Chapter 4. In particular we will concentrate on 2-categories.

Definition A.1.1 (Monoidal categories) A monoidal category V is a 6-tuple

(V0,⊗, I, a, l, r)

where V0 is a category, ⊗ : V0 × V0 → V0 is a functor, I ∈ |V0| is an object, a, l and r
are families of natural isomorphisms, av,w,x : (v⊗w)⊗ x→ v⊗ (w⊗ x), lv : I ⊗ v → v,
rv : v ⊗ I → v subject to the coherence axioms:

((v ⊗ w)⊗ x)⊗ y
av⊗w,x,y

//

av,w,x⊗1

��

(v ⊗ w)⊗ (x⊗ y)
av,w,x⊗y

// v ⊗ (w ⊗ (x⊗ y))

(v ⊗ (w ⊗ x))⊗ y
av,w⊗x,y

// v ⊗ ((w ⊗ x)⊗ y)

1⊗aw,x,y

OO

(v ⊗ I)⊗ w
av,I,w

//

rv⊗1
''NNNNNNNNNNN

v ⊗ (I ⊗ w)

1⊗lw
wwppppppppppp

v ⊗ w .

A monoidal category is symmetric if in addition it has a family of natural isomor-
phisms:

σv,w : v ⊗ w '−→ w ⊗ v

such that σw,vσv,w = 1v⊗w and satisfying two coherence axioms with respect to associa-
tivity and identity (cf. [65], P. 29).

225

226 APPENDIX A. BASIC DEFINITIONS OF ENRICHED CATEGORY THEORY

It is plenty of examples of symmetric monoidal categories, since any category with finite
products is one. An interesting example of a symmetric monoidal structure not given
by the product, related to our thesis by the analogy of Section 4.2.1 is given by Rel,
where the cartesian product of sets does not correspond to the categorical product that
is given by the disjoint union.

Definition A.1.2 (V-categories) Let V = (V0,⊗, I, a, l, r) be a monoidal category. A
V-category, C consists of

• a class of objects |C|
• for any two objects C,D ∈ |C|, a hom-set object of V, C(C,D)
• for any object C ∈ |C| an arrow in V, jC : I → C(C,C)
• for any three objects C,D,E ∈ |C| a composition law, i.e., an arrow in V,

cC,D,E : C(D,E) ⊗ C(C,D)→ C(C,E)

subject to the coherence laws (omitting some indices) given by commutativity of the
following diagrams:

(C(E,F) ⊗ C(D,E)) ⊗ C(C,D) a //

cD,E,F⊗1

��

C(E,F) ⊗ (C(D,E) ⊗ C(C,D))

1⊗cC,D,E
��

C(D,F)⊗ C(C,D)

cC,D,F
**TTTTTTTTTTTTTTTT

C(E,F) ⊗ C(C,E)

cC,E,F
ttjjjjjjjjjjjjjjjj

C(C,F)

C(D,D)⊗ C(C,D)
cC,D,D

// C(C,D) C(C,D) ⊗ C(C,C)
cC,C,D

oo

I ⊗ C(C,D)

jD⊗1

OO

l

44jjjjjjjjjjjjjjjjj
C(C,D) ⊗ I .

r

jjTTTTTTTTTTTTTTTT
1⊗jC

OO

Example A.1.3 • Any locally small category is a Set-category where the monoidal
structure for Set is given by the cartesian product.

• Any cartesian closed category C enriches over itself by taking as hom-set objects
C(C,D) the exponential (DC). In particular Cat is a Cat-category.
• The category Rel of sets an relations is a Poset-category where Poset is the cate-

gory of partial ordered sets and monotone functions. Again the monoidal structure
is given by the product.

Definition A.1.4 (V-functors) Given two V-categories C and D a V-functor

F : C → D

is given by the following data:

• A function F : |C| → |D|

A.2. 2-CATEGORIES 227

• For any pair of objects C,D ∈ |C| an arrow in V, FC,D : C(C,D)→ D(FC,FD)

such that the following diagrams in V commute:

C(D,E)⊗ C(C,D)
cC,D,E

//

FD,E⊗FC,D
��

C(C,E)

FC,E
��

D(FD,FE)⊗D(FC,FD) cFC,FD,FE
// D(FC,FE)

C(C,C)

FC,C

��

I

jC
99sssssssssss

jFC %%KKKKKKKKKKK

D(FC,FC) .

Definition A.1.5 (V-natural transformations) If F,G : C → D are two V-functors
a V-natural transformation α : F .−→ G consists of a family of arrows indexed by the
objects of C

αC : I → D(FC,GC)

such that the following diagram commutes

I ⊗ C(C,D)
αD⊗FC,D

// D(FD,GD)⊗D(FC,FD)
cFC,FD,GD

**UUUUUUUUUUUUUUUU

C(C,D)

l−1
88ppppppppppp

r−1
&&NNNNNNNNNNN

D(FC,GD)

C(C,D)⊗ I
GC,D⊗αC

// D(GC,GD) ⊗D(FC,GC) .

cFC,GC,GD

44jjjjjjjjjjjjjjjj

A.2 2-Categories

A very special class of V-categories is given by Cat-categories, or, ignoring size problems
CAT-categories. These go under the name of 2-categories. To fix some terminology we
reformulate the definition of what a 2-category is, referring to the general definition of
V-categories for the coherence axioms.

Definition A.2.1 (2-Categories) A 2-category, K is given by

• a collection of objects, |K|,
• for any two objects K,L ∈ |K| a category K(K,L),
• for any object K ∈ |K| an identity arrow, 1K ∈ |K(K,K)|

228 APPENDIX A. BASIC DEFINITIONS OF ENRICHED CATEGORY THEORY

• for any three objects a composition law (a functor)

cK,L,M : K(L,M) ×K(K,L)→ K(K,M) ,

satisfying the instantiation of the coherence diagrams of Definition A.1.2.
The objects of K(K,L) are called arrows and indicated as f : K → L, while the

arrows of K(K,L) are called 2-cells and indicated with the double arrow notation,

α : f =⇒ g .

Given two 2-cells, K

f
&&

g
88

�� ��
�� α L and L

f ′
''

g′
77

�� ��
�� β M , we write βα for cK,L,M(β, α) and talk

of the horizontal composition of α and β. The composition of 2-cells as arrows of, say
K(K,L), is called vertical and will be written by interposing a · between the two 2-cells,

e.g., α′ ·α, for α′ : g ⇒ h. Given a 2-cell K
f

&&

g
88

�� ��
�� α L and an arrow f ′ : L→M we write

f ′α for 1f ′α; similarly if f ′′ : M → K. This operation is often called the whiskering of
α with f ′.

As a consequence of the definition of 2-category we have the following property.

Proposition A.2.2 (Interchange Law) Let K be a 2-category and let K

f
&&

g
88

�� ��
�� α L ,

K

g
&&

h

88

�� ��
�� β L , L

f ′
''

g′
77

�� ��
�� ϕ M and L

g′
''

h′
77

�� ��
�� ψ M be four 2-cells, then

(ψ · ϕ)(β · α) = (ψβ) · (ϕα) .

This means that if one writes a diagram like

K

f

��

�� ��

��
�

//g
DD

h

�� ��

��
�
L

f 0

��

�� ��

��
'

//g0

CC

h0

�� ��

��

M

it defines a 2-cell from f ′f to h′h in a unique way. A diagram like this one above is
called a pasting diagram. The interchange law is the basis for a more general coherence
result which asserts that any pasting diagram defines uniquely a 2-cell [67, 108].

Concerning applications of the notion of pasting we can give as an example the
definition of an adjoint pair in a 2-category. This will specialise in the case of Cat to
the usual notion of adjoint pair of functors.

A.2. 2-CATEGORIES 229

Definition A.2.3 (Adjoints in 2-categories) If K is a 2-category, a pair of arrows

K

f
))
L

g
ii is an adjoint pair, f a g, if there exist 2-cells

η : 1K =⇒ gf and ε : fg =⇒ 1L

such that the following equalities hold:

K

f @@
@@

@@
@

1
//

�� ��
��
�

K

f

@@
@@

@@
@

L

>>

g

~~~~~~~
//

1

�� ��
��
"

L

=

K
f

��f
**

����|�
1

L

K

  

f

@@
@@

@@
@

1
//

�� ��
��
�

K

L

>>

g
~~~~~~~

//

1

�� ��
��
"

L

>>

g

~~~~~~~
=

K

L

g
44

g

II

>>>>
�#
1

:

As we said 2-categories are special kind of enriched categories. The instantiation of
the definitions of V-functor and V-natural transformation yields the notion of 2-functor
and 2-natural transformation. Still among 2-categories other more general classes of
functors and natural transformations can be considered and the practice shows that
often this more general notions are the one that naturally appears. We have already
seen in Section 1.4.1 the notion of a pseudo-functor from a category B to CAT. We
now make this concept precise by defining pseudo-functors between 2-categories.

Definition A.2.4 (Pseudo-functors) Let K and L be two 2-categories. A pseudo-
functor F : K → L is given by

• a function F : |K| → |L|
• for any two objects K,L ∈ |K| a functor, FK,L : K(K,L) → L(FK,FL)
• for any object K ∈ |K| an isomorphic 2-cell, ϕK : 1F (K)

∼=⇒ FK,K(1K)
• for any triple of objects of K, K,L,M , a natural isomorphism

ϕK,L,M : cFK,FL,FM ◦ (FL,M × FK,L) .−→ FK,M ◦ cK,L,M

K(L,M) ×K(K,L)
cK,L,M

//

(FL,M×FK,L)

��

ϕK,L,M∼=

K(K,M)

FK,M
��

L(FL,FM)× L(FK,FL) cFK,FL,FM
// L(FK,FM) .

satisfying the coherence conditions given by commutativity of the following diagrams for
any triple of arrows of K

K
f−→ L

g−→M
h−→ N :



230 APPENDIX A. BASIC DEFINITIONS OF ENRICHED CATEGORY THEORY

F (f)F (1K)

ϕ1K,f $,RRRRRRRRRRRRRR

RRRRRRRRRRRRRR
Ff

F (f)ϕKks

1Ff
��

ϕLF (f) +3 F (1L)F (f)

ϕf,1Lrz llllllllllllll

llllllllllllll

F (f)

FhFgFf
ϕg,hFf +3

Fhϕf,g
��

F (hg)Ff

ϕf,hg

��
FhF (gf) ϕgf,h

+3 F (hgf) ,

where for sake of readability we wrote ϕf,g instead than (ϕK,L,M)f,g and similarly for
the other occurrences of ϕ. If instead of isomorphic 2-cells, ϕK , one has equality of
arrows and instead of the natural isomorphisms, ϕK,L,M one has commutativity of the
square

K(L,M) ×K(K,L)
cK,L,M

//

(FL,M×FK,L)

��

K(K,M)

FK,M
��

L(FL,FM)× L(FK,FL) cFK,FL,FM
// L(FK,FM) ,

F is said to be a 2-functor. In this case, the coherence conditions are trivially satisfied.

Indexed categories as defined in Definition 1.4.8 are examples of pseudo functors, since
any category, C, can be regarded as a 2-category whose hom-categories, C(A,B) are
discrete categories.

When considering 2-categories different notions of limits arise as generalisations of
the usual one (cf. [65] or the first section of [14] for a quick review). We will concentrate
on what we call (consistently with our terminology) pseudo-limits. Note that elsewhere
(e.g., [127]) these are called bilimits (where bi stands for bicategorical) and the prefix
pseudo is reserved for a stricter class of bilimits.

We shall actually be interested only in particular kinds of pseudo-limits of which we
shall give explicit definitions when needed. We have already given in Section 1.5 the
definition of pseudo-initial object as an illustrative example of the change of perspective
that occur in moving form categories to 2-categories. We repeat it here below:

Definition A.2.5 (Pseudo-initial object) An object 0 of a 2-category K is pseudo-
initial if for every object K, K(0,K) is equivalent to the category 1 with only one object
and one morphism. In other words 0 is pseudo-initial if for every object K, there exists
an arrow 0K : 0 → K and for every pair of arrows f, g : 0 → K there exists a unique
2-cell, α : f =⇒ g.

We have omitted the definition of pseudo-natural transformations (strong transforma-
tions in [127]) and modifications. They are needed in defining pseudo-limits in general
but we decided to give an explicit description of the data required in our particular
examples rather than giving the general definitions here.



A.3. BICATEGORIES 231

A.3 Bicategories

We conclude this appendix by recalling the existence of the notion of bicategory. Roughly
speaking a bicategory is a 2-category where the horizontal composition is associative
only up to isomorphism. This means that the diagrams of Definition A.1.2, when spe-
cialised to V = CAT will now commute only up to natural isomorphisms and that
these isomorphism satisfy some coherence conditions, too. We refer to [9] for the pre-
cise definition of what a bicategory is. The definition of pseudo-functors, pseudo-natural
transformations and modifications lifts from 2-categories to bicategories [127]. In this
setting, pseudo-functors are often called homomorphisms [9, 127], while pseudo-natural
transformations go under the name of strong transformations [127].

In our practice bicategories seem to arise more naturally than 2-categories. They
are often more difficult to work with because of the extra coherence conditions that one
has to carry along. Fortunately there are coherence results that permit us to “strictify”
a bicategory into a 2-category without losing its relevant properties [107, 106, 109].



232 APPENDIX A. BASIC DEFINITIONS OF ENRICHED CATEGORY THEORY



Appendix B

Some proofs for Chapter 6

B.1 Theorem 6.4.1

Let K and L be two pseudo ωCat-algebraically complete 2-categories and

T : K× L → L

be a pseudo-ωCat-functor. For any A ∈|K |, write µTA for the object part
of a chosen pseudo-initial algebra for the pseudo endofunctor, TA : L → L,
defined by freezing the first component to always be, the object A, or 1A or
11A . Then the mapping A → µTA extends canonically to a pseudo ωCat-
functor, µT(−) : K → L.

To prove the theorem we first need a couple of lemmas as well as a brief excursion into
the theory of lax algebra morphisms [15, 107] as was also done in [30, Chapter 7] to
prove a similar result for Cpo-categories.

Definition B.1.1 If T : K → K is a pseudo functor and f : TA→ A and g : TB → B
are two algebras for T , a lax morphism from f to g is given by a pair (h,H), with
h : A → B and H : hf ⇒ gTh. If H is a pseudo cell, we say that (h,H) is a pseudo
morphism.

Define Lax-T -alg to be the 2-category of T -algebras, lax morphisms and 2-cells given
by α : (h,H)⇒ (k,K) where α is a 2-cell of K, α : h⇒ k with

(gTα) ·H = K · (αf) .

Lemma B.1.2 Let K be an ωCat-category, T : K → K a pseudo ωCat-functor and
a : TA → A a pseudo initial algebra for T . Let x : TX → X be another algebra
and (it(x), ι(x)) : a → x be a pseudo morphism given by the universal property of
a : TA→ A. Then (it(x), ι(x)) is terminal in Lax-T -alg(a, x).

Proof: By the pseudo Lambek lemma we know that a is an equivalence, i.e., there
exists a, σ : 1A ∼= aa and τ : aa ∼= 1TA. Moreover σ and τ can be chosen as to be

233



234 APPENDIX B. SOME PROOFS FOR CHAPTER 6

unit and counit for the adjunction a a a [15]. Let (h,H) : a → x be a lax-T -algebra
morphism. Consider the chain in K(A,X) given by

h
(Ha)·(hσ) +3 x(Th)a

xT ((Ha)·(hσ))a +3 xT (x(Th)a)a +3 · · · . (B.1)

Formally the chain is inductively defined by

Objects: U0 = h, Un+1 = x(TUn)a
Arrows: f0 = (Ha) · (hσ), fn+1 = x(Tfn)a

Let (U,ϕn : Un ⇒ U) be a colimiting cone for the chain. First of all we show that

U ∼= it(x) .

Since a is pseudo initial, it is enough to show that there exists a pseudo cell

u : Ua ∼= xTU .

Consider the following calculation

Ua ∼= (colim n≥0fn)a
∼= (colim n≥0fn+1a)
∼= (colim n≥0xTfnaa) (by definition of fn+1)
∼= (colim n≥0xTfn) (since aa ∼= 1TA)
∼= x(colim n≥0Tfn)
∼= xT (U) .

This suggests that we can derive the isomorphism u by inspecting the universal 2-cells
between two different colimiting cones for the same ω-chain. Consider in fact the chain

x(TU0)aa
x(Tf0)aa +3 x(TU1)aa

x(Tf1)aa +3 x(TU2)aa +3 · · · , (B.2)

obtained in either of the following two ways:

1. By precomposing the chain B.1 with a and dropping the first item of it.
2. By applying T to the chain B.1 and postcomposing the resulting chain with x and

precomposing it with aa.

Thus, the chain B.2 above has colimiting cones given by

(Ua,ϕn+1a : x(TUn)aa = Un+1a⇒ Ua)

and by
(xTU, x(Tϕn)τ : x(TUn)aa⇒ xTU) .

Hence there exists a unique u : Ua ∼=⇒ xTU such that for every n ≥ 1,

u · (ϕna) = xTϕn−1τ . (B.3)



B.1. THEOREM 6.4.1 235

Notice that

u · (ϕ0a) = xT (ϕ0) ·H (B.4)

since

u · (ϕ0a) = u · (ϕ1a) · (f0a)
= x(Tϕ0)τ · (Haa) · (hσa) (by the property (B.3) for n = 1)
= xT (ϕ0) ·H · (haτ) · (hσa) (by the interchange law)
= xT (ϕ0) ·H (by a triangular identity).

By the universal property of pseudo initial algebras, there exists a unique (necessarily
pseudo) 2-cell, ϕ : U ⇒ it(x) such that

ι(x) · (ϕa) = (xTϕ) · u . (B.5)

Let ϕ : h⇒ it(x) be defined as
ϕ

def= ϕ · ϕ0 .

To conclude that ϕ : (h,H)⇒ (it(x), ι(x)) we need to show that

(xTϕ) ·H = ι(x) · (ϕa) (B.6)

(xTϕ) ·H = (xT (ϕ · ϕ0)) ·H (by definition of ϕ)
= (xTϕ) · (xTϕ0) ·H (since T is locally a functor)
= (xTϕ) · u · (ϕ0a) (by the equality (B.4))
= ι(x) · (ϕa) · (ϕ0a) (by the property (B.5))
= ι(x) · (ϕa) .

Finally we should show that ϕ is the unique 2-cell satisfying equation (B.6). Assume
then the existence of α : (h,H)⇒ (it(x), ι(x)) such that

(xTα) ·H = ι(x) · (αa) . (B.7)

We want to show that α = ϕ. Observe that α generates a cone (it(x), αn : Un ⇒ it(x))
inductively as follows:

α0
def= α , αn+1

def= (it(x)σ−1) · (ι(x)−1a) · (x(Tαn)a) .

In fact (proof by induction),

α1f0 = (it(x)σ−1) · (ι(x)−1a) · (x(Tα)a) · (Ha) · (hσ) (by definition)
= (it(x)σ−1) · (αaa) · (hσ) (by equation (B.7))
= α · (hσ−1) · (hσ) (by the interchange law)

= α
def= α0 ,

while for n ≥ 1,

αn+1fn = (it(x)σ−1) · (ι(x)−1a) · (xTαna) · (xTfn−1a) (by definition)
= (it(x)σ−1) · (ι(x)−1a) · (xTαn−1a) (by inductive hypothesis)
= αn (by definition) .



236 APPENDIX B. SOME PROOFS FOR CHAPTER 6

Since (it(x), ϕn
def= ϕ · ϕn : Un ⇒ it(x)) is a colimiting cone there exists a unique

α : it(x)⇒ it(x) such that for every n:

α · ϕn = αn . (B.8)

Our goal is to show that α is equal to 1it(x). In fact if this is the case, the following
chain of equalities holds

α = α0 = αϕ0 = ϕ0 = ϕ

and we are done. To show

α = 1it(x)

we shall use the universal property of pseudo initial algebras and prove that

ι(x) · (αa) = (xTα) · ι(x) . (B.9)

Since there exists a unique 2-cell satisfying the equation (B.9) above and 1it(x) does so,
this will imply that α is equal to 1it(x). We deduce that equation (B.9) holds using the
universal property of colimiting cones, namely we shall prove that for any n,

ι(x) · (αa) · (ϕna) = (xTα) · ι(x) · (ϕna) . (B.10)

In fact, since (it(x)a, ϕna : Una ⇒ it(x)a) is a colimiting cone, to prove that the
equation (B.10) above holds for every n, is the same as proving that (B.9) holds. The
proof is again by induction. We will use that

aτ = σ−1a , (B.11)

which follows from the triangular identity (aτ) · (σa) = 1a, since σ is invertible.

Base Case:

ι(x) · (αa) · (ϕ0a) = ι(x) · (αa) (by (B.8) and definition of α0)
= (xTα) ·H (by equation (B.7))
= (xTα) · (xTϕ0) ·H (by (B.8) and definition of α0)

= (xTα) · ι(x) · (ϕ0a) ( by equation (B.6) and since ϕ0
def= ϕ).



B.1. THEOREM 6.4.1 237

Inductive Step:

ι(x) · (αa) · (ϕn+1a) = ι(x) · (αn+1a)
(by definition)

= ι(x) · (it(x)σ−1a) · (ι(x)−1aa) · (xTαnaa)
(by definition)

= ι(x) · (it(x)aτ) · (ι(x)−1aa) · (xTαnaa)
(by the equality (B.11))

= ι(x) · ι(x)−1 · (xTαnτ)
(by the interchange law)

= xTαnτ
= xT (α · ϕ · ϕn)τ

(by (B.8) and definition of ϕn)
= (xTα) · (xTϕ) · (x(Tϕn)τ)

(by the interchange law)
= (xTα) · (xTϕ) · u · (ϕn+1a)

(by equation (B.3))
= (xTα) · ι(x) · (ϕa) · (ϕn+1a)

(by equation (B.5))
= (xTα) · ι(x) · (ϕn+1a)

(by definition).

2

Lemma B.1.3 Let T : K → K be a pseudo ωCat-functor. Let a : TA→ A be a pseudo
initial algebra for T . If X is any object of K, for every arrow x : TX → X, write
(it(x), ι(x)) for a chosen pseudo algebra morphism that exists since a is pseudo initial.
Then the mapping

|K(TX,X) | −→ |K(A,X) |
x 7−→ it(x) ,

extends canonically to a functor, say F , that preserves colimits of ω-chains.

Proof: Let α : x⇒ y be an arrow, i.e., a 2-cell, in K(TX,X). The pair

(it(x), (αT it(x)) · ι(x))

is a lax T -algebra morphism,

(it(x), (αT it(x)) · ι(x)) : a→ y .

By the Lemma B.1.2, (it(y), ι(y)) is terminal in Lax-T -alg(a, y), hence there exists a
unique 2-cell,

αT : it(x)⇒ it(y)

such that (yTαT ) · (αT it(x)) · ι(x)) = ι(y) · (αTa). Define F (α) = αT . With this
definition F is a functor, in fact:



238 APPENDIX B. SOME PROOFS FOR CHAPTER 6

•

((xT1it(x)) · (1xT it(x)) · ι(x)) = ι(x)
= ι(x) · (1it(x)a) ,

hence F (1x) = 1it(x).
• While if α : x⇒ y and β : y ⇒ z, with

(yTαT ) · (αT it(x)) · ι(x)) = ι(y) · (αT a) (B.12)
(zTβT ) · (βT it(y)) · ι(y)) = ι(z) · (βT a) , (B.13)

we have the following

(zT (βTαT )) · ((βα)T it(x)) · ι(x) = (zTβT ) · (zTαT ) · (βT it(x)) · (αT it(x)) · ι(x)
(since T is locally a functor)

= (zTβT ) · (βT it(y)) · (yTαT ) · (αT it(x)) · ι(x)
(by the interchange law)

= (zTβT ) · (βT it(y)) · ι(y) · (αTa)
(by (B.12))

= ι(z) · (βT a) · (αTa)
(by (B.13))

= ι(z) · ((βTαT )a) ,

hence F (βα) = F (β)F (α).

We are left with showing that F preserves colimiting cones of ω-chains. Suppose then
that a chain

x0
α0 +3 x1

α1 +3 x2
α2 +3 x3

α3 +3 . . .

in K(TX,X) has a colimiting cone given by (x, βn : xn ⇒ x). We want to show that
the cone

(it(x), βn,T : it(xn)⇒ it(x))

is colimiting for the chain

it(x0)
α0,T +3 it(x1)

α1,T +3 it(x2)
α2,T +3 it(x3)

α3,T +3 . . . .

Suppose (f, ϕn : it(xn) ⇒ f) is a colimiting cone for the chain above. We shall show
first of all that it(x) ∼= f . To start observe that for any n the following square commutes
by the defining property of αn,T :

it(xn)a
αn,T a +3

ι(xn)
��

it(xn+1)a

ι(xn+1)
��

xnT it(xn)
αnTαn,T

+3 xn+1T it(xn+1) .



B.1. THEOREM 6.4.1 239

Hence the chain given by

it(xn)a
αn,T a +3 it(xn+1)a

has colimiting cones given both by

(xTf, (βnT (ϕn)) · ι(xn) : it(xn)a⇒ xTf)

(since T preserves colimits of ω-chains) and by

(fa, ϕna : it(xn)a⇒ fa) .

Therefore there exists a pseudo cell ι(f) : fa ∼⇒ xTf such that

ι(f) · (ϕna) = (βnT (ϕn)) · ι(xn) . (B.14)

Moreover, since ι(f) is an isomorphism, by the universal property of pseudo initial
algebras there exists a unique (pseudo) cell ϕ : it(x)⇒ f , such that

ι(f) · (ϕa) = (xTϕ) · ι(x) . (B.15)

To conclude that the cone of βn,T ’s is colimiting is enough to show that for any n,

ϕ · βn,T = ϕn .

To prove that this equality holds we use Lemma B.1.2, i.e., we use the fact that (f, ι(f))
is terminal in Lax-T -alg(a, x). So we show that both ϕn and ϕ · βn,T are morphisms
in Lax-T -alg(a, x) from (it(xn), (βnT (it(xn))) · ι(xn)) to (f, ι(f)) hence they have to be
necessarily equal. Thus we have to show that the equalities

ι(f) · (ϕna) = (xTϕn) · (βnT (it(xn))) · ι(xn) (B.16)

and

ι(f) · ((ϕ · βn,T )a) = (xT (ϕ · βn,T )) · (βnT (it(xn))) · ι(xn) (B.17)

hold for any n. Concerning equation (B.16) we have the following chain of equalities:

ι(f) · (ϕna) = (βnT (ϕn)) · ι(xn) (by equation (B.14))
= (xTϕn) · (βnT (it(xn))) · ι(xn) (by the interchange law).

While for the equation (B.17) we have the following:

ι(f) · ((ϕ · βn,T )a) = ι(f) · (ϕa) · (βn,Ta)
= (xTϕ) · ι(x) · (βn,Ta)

(by equation (B.15))
= (xTϕ) · (xTβn,T ) · (βnT it(xn)) · ι(xn)

(by the property defining βn,T )
= (xT (ϕ · βn,T )) · (βnT it(xn)) · ι(xn) .

2



240 APPENDIX B. SOME PROOFS FOR CHAPTER 6

Proof:[of Theorem 6.4.1] The pseudo functor µT(−) : K → L is defined using the
properties of pseudo initial algebras. In fact, if a : A → B is an arrow in K, let
iA : TA(µTA)→ µTA and iB : TB(µTB)→ µTB be the chosen pseudo initial algebras.
Then

T (a, 1(µ TB)) : TA(µTB) = T (A,µTB) −→ T (B,µTB) = TB(µTB) .

Consider the algebra

TA(µTB)
T (a,1(µ TB))

// TB(µTB)
iB // µTB .

By the universal property there exists a pair (µTa, µ Tα) as in the following square:

TA(µTA)
iA //

∼=
µ Tα

TA(µTa)

��

µTA

µTa

��

TA(µTB)
iBT (a,1(µ TB))

// µTB .

Given a choice of the pair (µTa, µ Tα) (for every a : A → B), the action on 2-cells
is canonically determined by Lemma B.1.2 as in Lemma B.1.3. Moreover the coher-
ence isomorphisms are uniquely determined by the universal property of pseudo initial
algebras and Lemma B.1.3 ensures that the defined pseudo functor is ωCat. 2



Appendix C

Two proofs for Chapter 7

C.1 Lemma 7.5.2 [Substitution Lemma]

Let i : s → s′ be an injective function between finite sets, with x =
〈x1, x2, . . . , x|s|〉 the names in s. Then for any process P with free names in
s,

P(i)!(([P ])s) ∼= ([P [i(x)/x]])s′ .

Proof: By induction on the structure of P .

Base Case: P = 0, trivial

Inductive Step:

P = Q+R: P(i)!(([Q+R])s) = P(i)!(([Q])s + ([R])s)
(by definition of ([ · ])s)∼= P(i)!(([Q])s) + P(i)!(([R])s)
(since P(i)! is colimit preserving)

∼= ([Q[i(x)/x]])s′ + ([R[i(x)/x]])s′
(by inductive hypothesis)

∼= ([(Q+R)[i(x)/x]])s′
(by definition)

P = [y = y]Q: P(i)!(([[y = y]Q])s) = P(i)!(([Q])s)
(by definition of ([ · ])s)∼= ([Q[i(x)/x]])s′
(by inductive hypothesis)

∼= ([[iy = iy]Q[i(x)/x]])s′
(by definition of ([ · ])s′)

= ([([y = y]Q)[i(x)/x]])s′

241



242 APPENDIX C. TWO PROOFS FOR CHAPTER 7

P = xy.Q: P(i)!(([xy.Q])s) = P(i)!(x!y.([Q])s) (by definition of ([ · ])s)∼= i(x)!i(y).(P(i)!(([Q])s)) (by definition of P(i))
∼= i(x)!i(y).([Q[i(x)/x]])s′ (by inductive hypothesis)
∼= ([i(x)i(y).Q[i(x)/x]])s′ (by definition of ([ · ])s′)
= ([(xy.Q)[i(x)/x]])s′

P = Q |R: P(i)!(([Q |R])s) = P(i)!(([Q])s|s([R])s)
(by definition of ([ · ])s)∼= P(i)!(([Q])s)|s′P(i)!(([R])s)
(by naturality of |)

∼= ([Q[i(x)/x]])s′ |s′([R[i(x)/x]])s′
(by inductive hypothesis)

∼= ([(Q |R)[i(x)/x]])s′
(by definition)

P = [x = y]Q with x 6= y: Trivial

P = !Q: P(i)!(([!Q])s) = P(i)!(!s([Q])s) (by definition of ([ · ])s)∼= !s′(P(i)!([Q])s) (by naturality of !)
∼= !s′([Q[i(x)/x]])s′ (by inductive hypothesis)
∼= ([!Q[i(x)/x]])s′ (by definition)

P = νy Q: P(i)!(([ νyQ])s) = P(i)!(νy∈s+{y},!([Q])s+{y}) (by definition of ([ · ])s)
∼= νy∈s′+{y}(P(i+ y)!([Q])s+{y}) (by naturality of ν)
∼= νy∈s′+{y}([Q[i(x)/x]])s′ (by inductive hypothesis)
∼= ([ν y Q[i(x)/x]])s′ (by definition)



C.2. THEOREM 7.5.4 243

P = x(y).Q:

P(i)!(([x(y).Q])s) = P(i)!(x?〈λz . ([Q[z/y]])s, ([Q[∗/y]])s+1〉)
(by definition of ([ · ]))

∼= i(x)?(
∑

z∈s(i(z) 7→ P(i)!([Q[z/y]])s)
+

∑
w 6∈Imi(w 7→ P([i, w])!([Q[∗/y]])s+1)

+(∗ 7→ P(i+ 1)!([Q[∗/y]])s+1))
(by point (4) of Lemma 7.3.8)

∼= i(x)?(
∑

z∈s(i(z) 7→ ([Q[z/y][i(x)/x]])s′)
+

∑
w 6∈Imi(w 7→ ([Q[∗/y][[i, w](x, ∗)/(x, ∗)]])s′)

+(∗ 7→ ([Q[∗/y][(i + 1)(x, ∗)/(x, ∗)]])s′+1))
(by inductive hypothesis)

= i(x)?(
∑

i(z)∈s′(i(z) 7→ ([Q[i(x)/x][i(z)/y]])s′)
+

∑
w 6∈Imi(w 7→ ([Q[i(x)/x][w/y]])s′)

+(∗ 7→ ([Q[(i+ 1)(x)/x][∗/y]])s′+1))
= i(x)?(

∑
v∈s′(v 7→ ([Q[i(x)/x][v/y]])s′)

+(∗ 7→ ([Q[(i+ 1)(x)/x][∗/y]])s′+1))∼= i(x)?〈λv . ([Q[i(x)/x][v/y]])s′ , ([Q[(i+ 1)(x)/x][∗/y]])s′+1〉∼= ([i(x)(y).Q[i(x)/x]])s′
(by definition of ([ · ]))

= ([(x(y).Q)[i(x)/x]])s′
2

C.2 Theorem 7.5.4

Let P be a process whose free names lie in s. Then

1. P
xy−→ Q implies ∃X with ([P ])s

x!y−→ X and X ∼= ([Q])s

2. P
x(y)−→ Q implies ∃X with ([P ])s

x!∗s−→ X and X ∼= ([Q[∗s/y]])s+1

3. P
x(y)−→ Q implies ([P ])s

x?−→ 〈F, Y 〉 with F (z) ∼= ([Q[z/y]])s and Y ∼=
([Q[∗s/y]])s+1

4. P τ−→ Q implies ∃X with ([P ])s
τ−→ X and X ∼= ([Q])s.

Proof: The proof is a simple rule induction on the rules defining the operational se-
mantics of the π-calculus (Figure 7.1). We exemplify in all details only some of the
cases.

1. The only axiom allowing this kind of transition is the rule OUT according to which
P = xy.Q, hence by Definition 7.5.1 we have that ([P ])s = x!y.([Q])s

x!y−→ ([Q])s.

In case of application of the rule SUM, P = P1 + P2 and P1
xy−→ Q, hence by

inductive hypothesis ([P1])s
x!y−→ X ∼= ([Q])s and by definition

([P1 + P2])s = ([P1])s + ([P2])s
x!y−→ X ∼= ([Q])s .



244 APPENDIX C. TWO PROOFS FOR CHAPTER 7

In case of application of PAR, P = P1 |P2 and P1
xy−→ Q, hence by inductive

hypothesis ([P1])s
x!y−→ X ∼= ([Q])s, i.e., there exists a j ∈ ([P ])s(x!y) such that

X = (([P ])s)|j . By Definition 7.5.1, ([P1 |P2])s = ([P1])|s([P2])s and by the charac-
terisation of Theorem 7.4.7, j ∈ ([P1])s|s([P2])s and (([P1])s|s([P2])s)|j ∼= X|s([P2])s.
Hence

([P1 |P2])s
x!y−→ (([P1])s|s([P2])s)|j ∼= X|s([P2])s ∼= ([Q])s|s([P2])s = ([Q |P2])s .

In case of application of RES, P = νz P1, P1
xy−→ Q1 with z 6∈ {x, y} and Q =

νz Q1. By inductive hypothesis,

([P1])s+{z}
x!y−→ X ∼= ([Q1])s+{z} .

Again by the characterisation of νz∈s+{z} given by Theorem 7.4.2 one has that if
there exists a j ∈ ([P1])s(x!y) such that X = (([P1])s+{z})|j then

j ∈ νz∈s+{z}(([P1])s+{z})(x!y) = ([ νz P1])s(x!y)

too and (([ νz P1])s)|j ∼= νz∈s+{z}(X) ∼= νz∈s+{z}(([Q1])s+{z}) = ([ νz Q1])s.
2. Similar as above for the cases given by SUM, PAR and RES. In case of application

of the rule OPEN this means that P = νy P1 and P1
xy−→ Q. Hence by induc-

tive hypothesis, ([P1])s+{y}
x!y−→ X ∼= ([Q])s+{y}. Again by the characterisation of

Theorem 7.4.2 one has that

νy∈s+{y}(([P1])s+{y}
x!∗−→ P(bs,y)!X ∼= P(bs,y)!(([Q])s+{y}) .

But by the Substitution Lemma (Lemma 7.5.2)

P(bs,y)!(([Q])s+{y}) ∼= ([Q[∗/y]])s+1 .

3. Similar as above for the case SUM, PAR, RES. In case of application of the axiom
IN the property is immediately derived from the definition as it was for OUT.

4. Similar as above for SUM, PAR and RES. In case of application of the rule COM,

this means that P = P1 |P2, P1
x(y)−→ Q1, P2

xz−→ Q2 and Q = Q1[z/y] |Q2. By
inductive hypothesis we have that

([P1])s
x?−→ 〈F, Y 〉 ∼= 〈λ z. ([Q1[z/y]])s, ([Q1[∗/y]])s+1〉

([P2])s
x!z−→ X ∼= ([Q2])s .

By the characterisation of Theorem 7.4.7 we then have that

([P1 |P2])s ∼= ([P1])s|s([P2])s
τ−→W ∼= F (z)|sX ∼= ([Q1[z/y]])s|s([Q2])s .

In case of application of the CLOSE rule we have that P = P1 |P2, P1
x(y)−→ Q1,

P2
x(y)−→ Q2 and Q = νy(Q1 |Q2). By inductive hypothesis we have that

([P1])s
x?−→ 〈F, Y 〉 ∼= 〈λ z. ([Q1[z/y]])s, ([Q1[∗/y]])s+1〉

([P2])s
x!∗−→ X ∼= ([Q2[∗/y]])s+1 .



C.2. THEOREM 7.5.4 245

Hence by the Theorem 7.4.7 we then have that

([P1 |P2])s ∼= ([P1])s|s([P2])s
τ−→W ∼= ν∗∈s+1(Y |s+1X) .

To conclude, observe that the following chain of isomorphisms hold:

([ νy Q])s = νy∈s+{y}([Q])s+{y}
(by definition of ([ · ]))

∼= νy∈s+{y}(P(bs,y)!([Q[∗/y]])s+1)
(by the Substitution Lemma)

∼= ν∗∈s+1([Q[∗/y]])s+1

(by naturality of ν (Theorem 7.4.3))
∼= ν∗∈s+1(([Q1[∗/y]])s+1|s+1([Q2[∗/y]])s+1)∼= ν∗∈s+1(Y |s+1X) .

2





Bibliography

[1] Samson Abramsky. On semantic foundations for applicative multiprogramming.
In ICALP ’83, Tenth Colloquium on Automata, Languages and Programming,
volume 154 of Lecture Notes in Computer Science, pages 1–14. Springer-Verlag,
1983.

[2] Samson Abramsky. The lazy lambda calculus. In Research topics in Functional
Programming, pages 65–117. Addison Wesley, 1990.

[3] Samson Abramsky. A domain equation for bisimulation. Information and Com-
putation, 92(2):161–218, 1991.

[4] Peter Aczel and N. Mendler. A final coalgebra theorem. In D. H. Pitt et al.,
editor, Proceedings of CTCS ’89, International Conference on Category Theory
and Computer Science, volume 389 of Lecture Notes in Computer Science, pages
357–365, 1989.

[5] Jǐri Adámek and Jǐri Rosický. Locally Presentable and Accessible Categories,
volume 189 of London Mathematical Society Lecture Notes Series. Cambridge
University Press, 1994.

[6] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University
Press, 1990.

[7] Michael Barr. ∗-autonomous categories, volume 752 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 1979. With an appendix by Po Hsiang Chu.

[8] Marek Bednarczyk. Hereditary history preserving bisimulation or what is the
power of the future perfect in program logics. Technical report, Polish Academy
of Sciences, Gdansk, 1991.

[9] Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category
Seminar I, volume 47 of Lecture Notes in Mathematics, pages 1–77. Springer-
Verlag, 1967.

[10] Jean Bénabou. Les distributeurs. Rapport n◦ 33. Seminaires de Mathématiques
Pure, Institut de Mathématiques, Université Catholique de Louvain, 1973.

[11] Jean Bénabou. Fibered categories and the foundations of naive category theory.
The Journal of Symbolic Logic, 50(1):10–37, 1985.

[12] J. van Bentham. Correspondence theory. In M. Gabbay and Guenther, editors,
Handbook of Philosophical Logic, volume 2, pages 167–247. Reidel, 1984.

247



[13] Gérard Berry, Pierre-Louis Curien, and Jean-Jacques Lévy. Full abstraction for
sequential languages: the state of the art. In M. Nivat and J. Reynolds, editors,
Algebraic Semantics, pages 89–132. Cambridge University Press, 1985.

[14] G. J. Bird, Gregory M. Kelly, A. John Power, and Ross Street. Flexible limits for
2-categories. Journal of Pure and Applied Algebra, 61:1–27, 1989.

[15] R. Blackwell, Gregory M. Kelly, and A. John Power. Two-dimensional monad
theory. Journal of Pure and Applied Algebra, 59:1–41, 1989.

[16] Richard Blute, Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisim-
ulation for labelled Markov processes. In LICS ’97 [75], pages 149–158.

[17] Francis Borceux. Handbook of categorical algebra I, volume 50 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1994.

[18] Gérard Boudol. Asynchrony and the π-calculus. Technical Report 1702, INRIA,
Sophia Antipolis, 1992.

[19] Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. A process algebraic view
of Linda coordination primitives. Theoretical Computer Science, 192(2):167–199,
1998.

[20] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In M. Nivat, editor,
Proceedings of the First International Conference on Foundations of Software Sci-
ence and Computation Structures (FoSSaCS ’98), volume 1378 of Lecture Notes
in Computer Science, pages 140–155. Springer-Verlag, 1998.

[21] Gian Luca Cattani, Marcelo Fiore, and Glynn Winskel. A theory of recursive
domains with applications to concurrency. In LICS 98, Proceedings of the Thir-
teenth Annual IEEE Symposium on Logic in Computer Science, pages 214–225.
IEEE Computer Society Press, 1998.

[22] Gian Luca Cattani, A. John Power, and Glynn Winskel. A categorical axiomatics
for bisimulation. In Sangiorgi and de Simone [115], pages 581–596.

[23] Gian Luca Cattani and Vladimiro Sassone. Higher dimensional transition systems.
In LICS ’96 [74], pages 55–62.

[24] Gian Luca Cattani and Vladimiro Sassone. On higher dimensional transition
systems. Manuscript in preparation, 1998.

[25] Gian Luca Cattani, Ian Stark, and Glynn Winskel. Presheaf models for the π-
calculus. In Proceedings of the 7th International Conference on Category Theory
and Computer Science, CTCS ’97, number 1290 in Lecture Notes in Computer
Science, pages 106–126. Springer-Verlag, 1997.

[26] Gian Luca Cattani and Glynn Winskel. Presheaf models for concurrency. In van
Dalen and Bezem [133], pages 58–75.

[27] Paolo Ciancarini, Keld K. Jensen, and Daniel Yankelevich. On the operational
semantics of a coordination language. In Object-base Models and Languages for
Concurrent Systems, volume 924 of Lecture Notes in Computer Science, pages
77–106. Springer-Verlag, 1995.

248



[28] Brian J. Day. On closed categories of functors. In Reports of the Midwest Category
Seminar IV, number 137 in Lecture Notes in Mathematics, pages 1–38. Springer-
Verlag, 1970.

[29] Lisbeth Fajstrup, Eric Goubault, and Martin Raußen. Detecting deadlocks in
concurrent systems. In Sangiorgi and de Simone [115], pages 332–347.

[30] Marcelo P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Dis-
tinguished Dissertations in Computer Science. Cambridge University Press, 1996.

[31] Marcelo P. Fiore. A coinduction principle for recursive data types based on bisim-
ulation. Information and Computation, 127(2):186–198, 1996.

[32] Marcelo P. Fiore, Eugenio Moggi, and Davide Sangiorgi. A fully-abstract model
for the π-calculus (extended abstract). In LICS ’96 [74], pages 43–54.

[33] Marcelo P. Fiore and Gordon D. Plotkin. An extension of models of axiomatic
domain theory to models of synthetic domain theory. In van Dalen and Bezem
[133], pages 129–149.

[34] Marcelo P. Fiore, Gordon D. Plotkin, and A. John Power. Complete cuboidal sets
in axiomatic domain theory. In LICS ’97 [75], pages 268–279.

[35] Peter J. Freyd. Algebraically complete categories. In A. Carboni, M.C. Pedic-
chio, and G. Rosolini, editors, Category Theory, volume 1488 of Lecture Notes in
Mathematics, pages 131–156. Springer-Verlag, 1991.

[36] Peter J. Freyd. Remarks on algebraically compact categories. In M.P. Fourman,
P.T. Johnstone, and A.M. Pitts, editors, Applications of Categories in Computer
Science, volume 177 of London Mathematical Society Lecture Note Series, pages
95–106. Cambridge University Press, 1992.

[37] Peter J. Freyd and Andre Scedrov. Categories, allegories, volume 39 of North-
Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 1990.

[38] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):101, 1987.
[39] Jean-Yves Girard. Proofs and Types, volume 7 of Cambridge Tracts in Theoret-

ical Computer Science. Cambridge Univeristy Press, 1989. Translated and with
appendices by P. Taylor and Y. Lafont.

[40] Rob van Glabbeek. Bisimulation for higher dimensional automata. E-mail
message sent to the Concurrency mailing list on 7 July, 1991. Available at
http://theory.stanford.edu/people/rvg/hda.

[41] Rob van Glabbeek and Ursula Goltz. Equivalence notions for concurrent systems
and refinement of actions. In Mathematical Foundations of Computer Science
1989, number 379 in Lecture Notes in Computer Science, pages 237–248. Springer-
Verlag, 1989.

[42] R. Gordon, A. John Power, and Ross Street. Coherence for tricategories. Memoirs
of the American Mathematical Society, 117(558):vi+81, 1995.

[43] Eric Goubault. Domains of higher dimensional automata. In E. Best, editor,
Proceedings of CONCUR ’93, volume 715 of Lecture Notes in Computer Science,
pages 293–307. Springer-Verlag, 1993.

249



[44] Eric Goubault. The Geometry of Concurrency. PhD thesis, École Polytechnique,
1995.

[45] Eric Goubault and T. Jensen. Homology of higher dimensional automata. In
W. R. Cleaveland, editor, Proceedings of CONCUR ’92, volume 630 of Lecture
Notes in Computer Science, pages 254–268. Springer-Verlag, 1992.

[46] J. Gray and A. Scedrov, editors. Categories in computer science and logic, vol-
ume 92 of Contemporary Mathematics, Providence, RI, 1989. American Mathe-
matical Society.

[47] John W. Gray. Formal Category Theory: Adjointness for 2-Categories, volume
391 of Lecture Notes in Mathematics. Springer-Verlag, 1974.

[48] Alexandre Grothendieck. Revêtements étales et groupe fondamental, volume 224
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1971. Séminaire de
Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre
Grothendieck. Augmenté de deux exposés de M. Raynaud.

[49] Carl A. Gunter. Profinite Solutions for Recursive Domain Equations. PhD thesis,
University of Wisconsin at Madison, 1985.

[50] Matthew Hennessy. A fully abstract denotational semantics for the π-calculus.
Technical Report 96:04, School of Cognitive and Computing Sciences, University
of Sussex, 1996.

[51] Matthew Hennessy and Gordon D. Plotkin. Full abstraction for a simple parallel
programming language. In J. Bečvář, editor, Mathematical Foundations of Com-
puter Science (MFCS) 1979, volume 74 of Lecture Notes in Computer Science,
pages 108–120, Berlin, 1979. Springer-Verlag.

[52] Claudio Hermida. Fibrations Logical Predicates and Indeterminates. PhD thesis,
University of Edinburgh, 1993. Available as Technical Report DAIMI-PB 462,
Computer Science Department, University of Aarhus.

[53] Claudio Hermida and Bart Jacobs. Induction and coinduction via subset types
and quotient types. In P. Dybjer and R. Pollack, editors, Informal proceedings of
the Joint CLICS-TYPES Workshop on Categories and Type Theory, 1995.

[54] Thomas T. Hildebrandt, Prakash Panangaden, and Glynn Winskel. A relational
model of non-deterministic dataflow. In Sangiorgi and de Simone [115], pages
613–628.

[55] C. Anthony R. Hoare. Communicating Sequential Processes. Englewood Cliffs,
1985.

[56] Martin Hyland. Category theory. Notes taken by Cocky Hillhorst of Martin
Hyland’s course, 1995.

[57] Bart Jacobs. Categorical Type Theory. PhD thesis, University of Nijmegen, 1991.
[58] F. V. Jensen. Inductive inference in reflexive domains. Technical Report CSR 86-

1981, Department of Computer Science, University of Edinburgh, 1981.
[59] Peter T. Johnstone. Topos Theory, volume 10 of L.M.S. Mathematical Mono-

graphs. Academic Press, 1977.

250



[60] Peter T. Johnstone. Stone Spaces, volume 3 of Cambridge studies in advanced
mathematics. Cambridge University Press, 1982.

[61] Peter T. Johnstone. Fibered categories. Notes taken by Paul Taylor of Peter
Johnstone’s course, 1983.

[62] André Joyal and Ieke Moerdijk. A completeness theorem for open maps. Annals
of Pure and Applied Logic, 70(1):51–86, 1994.

[63] André Joyal and Ieke Moerdijk. Algebraic set theory, volume 220 of London Math-
ematical Society Lecture Note Series. Cambridge University Press, 1995.

[64] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.
Information and Computation, 127(2):164–185, 1996.

[65] Gregory M. Kelly. Basic Concepts of Enriched Category Theory, volume 64 of
London Mathematical Society Lecture Notes Series. Cambridge University Press,
1982.

[66] Gregory M. Kelly and M. L. Laplaza. Coherence for compact closed categories.
Journal of Pure and Applied Algebra, 19:193–213, 1980.

[67] Gregory M. Kelly and Ross Street. Review of the elements of 2-categories. In
Category Seminar Proceedings Sidney category Theory Seminar 1972/73, pages 75–
103. Springer-Verlag, 1974.

[68] Anders Kock. Monads for which structures are adjoints to units. Journal of Pure
and Applied Algebra, 104:41–59, 1995.

[69] Joachim Lambek. A fixpoint theorem for complete categories. Math. Zeitschr.,
103:151–161, 1968.

[70] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Infor-
mation and Computation, 94:1–28, 1991.

[71] F. William Lawvere. Equality in hyperdoctrines and comprehension schema as
an adjoint functor. In Applications of Categorical Algebra (Proc. Sympos. Pure
Math., Vol. XVII, New York, 1968), pages 1–14. Amer. Math. Soc., 1970.

[72] F. William Lawvere. Metric spaces, generalized logic and closed categories. Rend.
Sem. Mat. Fis. Milano, 43:135–166, 1973.

[73] Daniel J. Lehmann. Categories for fixpoint semantics. PhD thesis, University of
Warwick, 1976.

[74] LICS ’96, Proceedings of the Eleventh Annual IEEE Symposium on Logic in Com-
puter Science. IEEE Computer Society Press, 1996.

[75] LICS ’97, Proceedings of the Twelfth Annual IEEE Symposium on Logic in Com-
puter Science. IEEE Computer Society Press, 1997.

[76] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer-Verlag, 1971.

[77] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First
Introduction to Topos Theory. Springer-Verlag, 1992.

[78] Michael Makkai and Robert Paré. Accessible Categories: The Foundations of
Categorical Model Theory, volume 104 of Contemporary Mathematics. American
Mathematical Society, 1989.

251



[79] K. L. McMillan. A technique of state space search based on unfolding. Formal
Methods in System Design, 6(1):45–65, 1995.

[80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, 1982.

[81] Robin Milner. Calculi for synchrony and asynchrony. Theoretical Computer Sci-
ence, 25:267–310, 1983.

[82] Robin Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

[83] Robin Milner. Functions as processes. Mathematical Structures in Computer
Science, 20(2):119–141, 1992.

[84] Robin Milner. The polyadic π-calculus: a tutorial. In Logic and algebra of specifi-
cation (Marktoberdorf, 1991), volume 94 of NATO Adv. Sci. Inst. Ser. F Comput.
Systems Sci., pages 203–246. Springer-Verlag, Berlin, 1993.

[85] Robin Milner. The π-calculus. Lecture notes for a course, 1994.
[86] Robin Milner. Calculi for interaction. Acta Informatica, 33:707–737, 1996.
[87] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes.

I. Information and Computation, 100(1):1–40, 1992.
[88] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes.

II. Information and Computation, 100(1):41–77, 1992.
[89] Robin Milner, Joachim Parrow, and David Walker. Modal logics for mobile pro-

cesses. Theoretical Computer Science, 114(1):149–171, 1993.
[90] Eugenio Moggi. Notions of computations and monads. Information and Compu-

tation, 93(1):55–92, 1991.
[91] M. Nielsen and E. Schmidt, editors. ICALP ’82, Nineth Colloquium on Automata,

Languages and Programming, volume 140 of Lecture Notes in Computer Science.
Springer-Verlag, 1982.

[92] Mogens Nielsen and Allan Cheng. Observe behaviour categorically. In Proceedings
of FST&TCS 15, Fifteenth Conference on the Foundations of Software Technology
and Theoretical Computer Science, volume 1026 of Lecture Notes in Computer
Science, pages 263–278. Springer-Verlag, 1995.

[93] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event struc-
trues and domains, part I. Theoretical Computer Science, 13:85–108, 1981.

[94] Peter W. O’Hearn and R.D. Tennent. Relational parametricity and local vari-
ables. In Proceedings of the 20th ACM Symposium on Principles of Programming
Languages, pages 171–184. ACM, 1993.

[95] Robert Paré. Simply connected limits. Canadian Journal of Mathematics,
XLII(4):731–746, 1990.

[96] D. M. R. Park. Concurrency and automata on infinite sequences. In Theoretical
Computer Science, 5th GL-conference, volume 104 of Lecture Notes in Computer
Science. Springer-Verlag, 1981.

[97] Duško Pavlović. Predicates and Fibrations. PhD thesis, University of Utrecht,
1990.

252



[98] Andrew M. Pitts. On product and change of base for toposes. Cahiers de Topologie
et Géometrie Différentielle Catégoriques, XXVI(1):43–61, 1985.

[99] Andrew M. Pitts. A co-induction principle for recursively defined domains. The-
oretical Computer Science, 124:195–219, 1994.

[100] Andrew M. Pitts. Relational properties of domains. Information and Computa-
tion, 127(2):66–90, 1996.

[101] Gordon D. Plotkin. A powerdomain construction. SIAM Journal of Computation,
5(3):456–487, 1976.

[102] Gordon. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN 19, Department of Computer Science, University of Aarhus,
1981. Reprinted in 1991.

[103] Gordon D. Plotkin. A powerdomain for countable nondeterminism. In Nielsen
and Schmidt [91], pages 418–428.

[104] Gordon. D. Plotkin. Domains. Technical report, Department of Computer Science,
University of Edinburgh, 1983. Includes the “Pisa notes”.

[105] Gordon D. Plotkin. Algebraic completeness and compactness in an enriched set-
ting. Invited lecture given at the Workshop on Logic, Domains, and Programming
Languages. Darmstadt, 1995.

[106] A. John Power. Coherence for bicategories with finite bilimits. I. In Gray and
Scedrov [46], pages 341–347.

[107] A. John Power. A general coherence result. Journal of Pure and Applied Algebra,
57(2):165–173, 1989.

[108] A. John Power. A 2-categorical pasting theorem. Journal of Algebra, 129(2):439–
445, 1990.

[109] A. John Power. Why tricategories? Information and Computation, 120(2):251–
262, 1995.

[110] A. John Power. An elementary definition of pseudo-monads. Private communica-
tion, 1998.

[111] Vaughan Pratt. Modelling concurrency with partial orders. International Journal
of Parallel Processing, 15:33–71, 1986.

[112] Vaughan Pratt. Modelling concurrency with geometry. In Proceedings of the 18th
ACM Symposium on Principles of Programming Languages, pages 311–322. ACM
Press, 1991.

[113] A. Rabinovitch and B. Traktenbrot. Behaviour structures and nets. Fundamenta
Informatica, 11(4):357–404, 1988.

[114] Jan Rutten and Daniele Turi. Initial algebra and final coalgebra semantics for
concurrency. In J. de Bakker et al., editor, Proceedings of the REX workshop: A
decade of concurrency - Reflections and perspectives, volume 660 of Lecture Notes
in Computer Science, pages 530–582. Springer-Verlag, 1994.

[115] D. Sangiorgi and R. de Simone, editors. Proceedings of the 9th International
Conference on Concurrency Theory, CONCUR ’98, volume 1466 of Lecture Notes
in Computer Science. Springer-Verlag, 1998.

253



[116] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis, University of Edinburgh, 1992.

[117] Davide Sangiorgi. π-calculus, internal mobility, and agent-passing calculi. Tech-
nical Report 2539, INRIA, Sophia Antipolis, 1995.

[118] Davide Sangiorgi. Bisimulation for higher-order process calculi. Information and
Computation, 131(2):141–178, 1996.

[119] Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. Models for concurrency:
towards a classification. Theoretical Computer Science, 170(1-2):297–348, 1996.

[120] Dana S. Scott. Continuous lattices. In F.W. Lawvere, editor, Toposes, Algebraic
Geometry and Logic, volume 274 of Lecture Notes in Mathematics, pages 97–136.
Springer-Verlag, 1972.

[121] Dana S. Scott. Domains for denotational semantics. In Nielsen and Schmidt [91],
pages 577–613.

[122] R. A. G. Seely. Linear logic, *-autonomous categories and cofree algebras. In
Gray and Scedrov [46], pages 371–382.

[123] Peter Sewell. From rewrite rules to bisimulation congruences. In Sangiorgi and
de Simone [115], pages 269–284.

[124] Harold Simmons. The glueing construction and lax limits. Mathematical Struc-
tures in Computer Science, 4(4):393–431, 1994.

[125] M.B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recursive
domain equations. SIAM Journal of Computing, 11(4):761–783, 1982.

[126] Ian Stark. A fully abstract domain model for the π-calculus. In LICS ’96 [74],
pages 36–42.

[127] Ross Street. Fibrations in bicategories. Cahiers de Topologie et Géométrie
Différentielle Catégoriques, XXI(2):111–160, 1980.

[128] Ross Street. Cauchy characterization of enriched categories. Rend. Sem. Mat.
Fis. Milano, 51:217–233, 1981.

[129] Paul Taylor. The limit-colimit coincidence for categories. Manuscript, 1988.
[130] Bent Thomsen. Plain CHOCS: A second generation calculus for higher order

processes. Acta Informatica, 30(1):1–59, 1993.
[131] Daniele Turi. Functorial Operational Semantics and its denotational dual. PhD

thesis, The CWI, Amsterdam, 1996.
[132] Daniele Turi and Gordon Plotkin. Towards a mathematical operational semantics.

In LICS ’97 [75], pages 280–291.
[133] D. van Dalen and M. Bezem, editors. Computer Science Logic. 10th International

Workshop, CSL ’96, Annual Conference of the European Association for Com-
puter Science Logic. Selected Papers, volume 1258 of Lecture Notes in Computer
Science. Springer-Verlag, 1997.

[134] Mitchell Wand. Fixed-point constructions in order-enriched categories. Theoretical
Computer Science, 8:13–30, 1979.

[135] Glynn Winskel. Synchronisation trees. Theoretical Computer Science, 34:33–82,
1985.

254



[136] Glynn Winskel. A category of labelled petri nets and compositional proof sys-
tem. In LICS ’88, Proceedings, Third Annual Symposium on Logic in Computer
Science, pages 142–154. IEEE Computer Society Press, 1988.

[137] Glynn Winskel. The Formal Semantics of Programming Languages. Foundations
of Computing Series. The MIT Press, 1993.

[138] Glynn Winskel. A presheaf semantics of value-passing processes (extended ab-
stract). In U. Montanari and V. Sassone, editors, CONCUR’96, Proceedings of
the 9th International Conference on Concurrency Theory, volume 1119 of Lecture
Notes in Computer Science, pages 98–114. Springer-Verlag, 1996.

[139] Glynn Winskel. Ambients as presheaves. Manuscript, 1998.
[140] Glynn Winskel. A linear metalanguage for concurrency. In Proceedings of

AMAST ’98, Lecture Notes in Computer Science. Springer-Verlag, 1998. To ap-
pear.

[141] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Handbook of logic
in computer science, Vol. 4, Oxford Sci. Publ., pages 1–148. Oxford Univ. Press,
1995.

[142] Glynn Winskel and Mogens Nielsen. Models for concurrency. In A. M. Pitts and
P. Dybjer, editors, Semantics and Logics of Computation. Cambridge University
Press, 1997.

[143] R. J. Wood. Proarrows II. Cahiers de Topologie et Géométrie Différentielle
Catégoriques, XXVI(2):135–168, 1985.

[144] Oswald Wyler. Lecture notes on topoi and quasitopoi. World Scientific Publishing
Co. Inc., Teaneck, NJ, 1991.

255



Recent BRICS Dissertation Series Publications

DS-99-1 Gian Luca Cattani. Presheaf Models for Concurrency (Unre-
vised). April 1999. PhD thesis. xiv+255 pp.

DS-98-3 Kim Sunesen. Reasoning about Reactive Systems. December
1998. PhD thesis. xvi+204 pp.

DS-98-2 Søren B. Lassen.Relational Reasoning about Functions and
Nondeterminism. December 1998. PhD thesis. x+126 pp.

DS-98-1 Ole I. Hougaard. The CLP(OIH) Language. February 1998.
PhD thesis. xii+187 pp.

DS-97-3 Thore Husfeldt. Dynamic Computation. December 1997. PhD
thesis. 90 pp.

DS-97-2 Peter Ørbæk.Trust and Dependence Analysis. July 1997. PhD
thesis. x+175 pp.

DS-97-1 Gerth Stølting Brodal. Worst Case Efficient Data Structures.
January 1997. PhD thesis. x+121 pp.

DS-96-4 Torben Bräuner. An Axiomatic Approach to Adequacy. Novem-
ber 1996. Ph.D. thesis. 168 pp.

DS-96-3 Lars Arge. Efficient External-Memory Data Structures and Ap-
plications. August 1996. Ph.D. thesis. xii+169 pp.

DS-96-2 Allan Cheng. Reasoning About Concurrent Computational Sys-
tems. August 1996. Ph.D. thesis. xiv+229 pp.

DS-96-1 Urban Engberg.Reasoning in the Temporal Logic of Actions —
The design and implementation of an interactive computer system.
August 1996. Ph.D. thesis. xvi+222 pp.


