
B
R

IC
S

D
S

-98-3
K

.S
unesen:

R
easoning

aboutR
eactive

S
ystem

s

BRICS
Basic Research in Computer Science

Reasoning about Reactive Systems

Kim Sunesen

BRICS Dissertation Series DS-98-3

ISSN 1396-7002 December 1998

Copyright c© 1998, Kim Sunesen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/98/3/

Reasoning about Reactive Systems

Kim Sunesen

Ph.D. Dissertation

Department of Computer Science
University of Aarhus

Denmark

Reasoning about Reactive Systems

Dissertation
presented to the Faculty of Science

of the University of Aarhus
in partial fulfillment of the requirements for the

Ph.D. degree

by
Kim Sunesen

Abstract

The main concern of this thesis is the formal reasoning about reactive systems, that is, sys-
tems that repeatedly act and react in interaction with their environment without necessarily
terminating. When describing such systems the focus is not on what is computed but rather
on the interaction capabilities over time. Moreover, reactive systems are usually highly con-
current, typically spatially distributed, and often non-deterministic. Such systems include
telecommunication protocols, telephone switches, air-traffic controllers, circuits, and many
more. The goal of formal reasoning is to achieve system with provably correct behaviour.
The task of formal reasoning is to specify systems and properties of systems as mathematical
objects and to supply methodologies and techniques supporting formal proofs of properties
of systems. Numerous semantic formalisms such as synchronisation trees, event structures,
transition systems, temporal logics, Petri nets, and process algebras, to mention a few, have
been proposed for the specification of reactive systems. In particular, formalisms vary in
the sort of reasoning methodologies they support and encourage. Some methods have little
practical pertinence, others have more. Some methods are decidable, others are not. Hence,
numerous methods for reasoning about systems have been proposed; ranging from manual
methods for the analysis of the most simple isolated aspects of systems to automatic methods
for the synthesis of complex systems from succinct logical specifications.

In this thesis we first consider the automated verification of safety properties of finite
systems. We propose a practical framework for integrating the behavioural reasoning about
distributed reactive systems with model-checking methods. We devise a small self-contained
theory of distributed reactive systems including standard concepts like implementation, ab-
straction, and proof methods for compositional reasoning. The proof methods are based on
trace abstractions that relate the behaviours of the program with the specification. Our main
goal is to show that the methods are useful in practice. Hence, the use of the proof methods
must be supported by a decision procedure which will answer questions about the system,
such as “Does trace abstraction R show that program P implements S?” and “Do the trace
abstractions between the subsystems combine to a trace abstraction between the compound
systems?” Therefore, we show that trace abstractions and the proof methods can be ex-
pressed in a decidable Monadic Second-Order Logic (M2L) on words. Trace abstractions
offer an alternative to refinement mappings when working with behavioural specifications,
and we show that trace abstraction can aid in encompassing combinatorial blow-ups and in
performing non-trivial decompositional reasoning. To demonstrate the practical pertinence
of the approach, we give a self-contained, introductory account of the method applied to an
RPC-memory specification problem proposed by Broy and Lamport. The purely behavioural
descriptions which we formulate from the informal specifications are written in the high-level
symbolic language Fido, a syntactic extension of M2L. Our solution involves Fido-formulas
more than 10 pages long. They are translated into M2L-formulas of length more than 100

v

vi

pages which are decided automatically within minutes. Hence, our work shows that com-
plex behaviours of reactive systems can be formulated and reasoned about without explicit
state-based programming, and moreover that within Fido, temporal properties can be stated
succinctly while enjoying automated analysis and verification.

Next, we consider the theoretical borderline of decidability of behavioural equivalences for
infinite-state systems. We provide a systematic study of the decidability of non-interleaving
linear-time behavioural equivalences for infinite-state systems defined by CCS and TCSP style
process description languages. We compare standard language equivalence with two gener-
alisations based on the predominant approaches for capturing non-interleaving behaviour:
pomsets representing global causal dependency, and locality representing spatial distribution
of events. Beginning with the process calculus Basic Parallel Processes (BPP) obtained as
a minimal concurrent extension of finite processes, we systematically investigate extensions
towards full CCS and TCSP. The highlights are as follows. For BPP, the two notions of
non-interleaving equivalences coincide, and we show that they are decidable, contrasting a
result by Hirshfeld that standard interleaving language equivalence is undecidable. Also, for
finite-state systems non-interleaving equivalences are in general computationally at least as
hard as interleaving equivalences, whereas the result shows that when moving to infinite-state
systems, this situation can change dramatically. We examine subclasses obtained by adding
different means for communication, and discover a significant difference between the two non-
interleaving equivalences. We show that for a non-trivial class of processes between BPP and
TCSP not only are the two equivalences different, but one (location) is decidable whereas the
other (pomset) is not. Hence, the result shows that whether a non-interleaving equivalence
is based on global causal dependency between events or whether it is based on spatial distri-
bution of events can have an impact on decidability. It is well-known that TCSP is Turing
powerful even without the renaming and hiding combinators. We show that if either renaming
or hiding is added to the already mentioned class of processes between BPP and TCSP, then
location equivalence becomes undecidable. Furthermore, we investigate τ -forgetting versions
of the two non-interleaving equivalences, and show that for BPP they are decidable. These
results are to the best of our knowledge the first examples of natural τ -forgetting behavioural
equivalences which are decidable for the full class of BPP processes.

Finally, we address the issue of synthesising distributed systems – modelled as elementary
net systems – from purely sequential behaviours represented by synchronisation trees. Based
on the notion of regions, Ehrenfeucht and Rozenberg have characterised the transition systems
that correspond to the behaviour of elementary net systems. Building upon their results, we
characterise the synchronisation trees that correspond to the behaviour of active elementary
net systems, that is, those in which each condition can always cease to hold. Moreover, we
show how for a fixed finite alphabet the identified class of synchronisation trees can be defined
in a monadic second order logic over infinite trees. Hence, our work provides a theoretical
foundation for smoothly combining techniques for the synthesis of nets from transition systems
with the synthesis of synchronisation trees from logical specifications. In particular, we discuss
how this leads to an automata theoretic approach to the synthesis of elementary net system
which combines with standard automata based decision procedures. In working out our main
results, we show a number of fundamental relationships between regions, zig-zag morphisms
and bisimulation which might also be of independent interest.

Acknowledgements

First and foremost I would like to thank my supervisor Mogens Nielsen whose enthusiasm,
energy and professional expertise has always been an invaluable source of inspiration and
insights.

Many thanks are due to my other co–authors Javier Esparza and Nils Klarlund. In
particular, I thank Nils Klarlund for persistently trying to teach me the delicate art of precise
and concise writing.

I would also like to thank the members of my evaluation committee; Henrik Reif Andersen,
Erik Meineche Schmidt, and Walter Vogler.

I am grateful to Wilfried Brauer and Javier Esparza for inviting me to join their group at
the Technical University in Munich for half a year, and I thank the entire theory group for
their hospitality.

Over the years I have shared offices with several inspiring and knowledgeable people who
have been a rich source of insights into all sorts of things ranging from chess over subtleties of
the Danish language to the wonders of LATEX– thank you – Torben Braüner, Søren B. Lassen,
Søren M. Riis, Jens Palsberg, Igor Walukiewicz, Paola Quaglia, Frank Wallner, and others.

Finally, I would like to thank the staff academic, secretarial and technical as well as the
students for making DAIMI a smoothly running, versatile, and inspiration packed place.

vii

Contents

Structure 1

I Introduction 3

1 Reactive Systems 5
1.1 Formal reasoning . 5
1.2 Aspects of modelling . 7
1.3 Three formalisms . 10

1.3.1 Transition Systems . 10
1.3.2 Petri Nets . 12
1.3.3 Process Algebra . 14

1.4 And many others . 15

2 Automata-Theoretic Methods 17

3 Summary 21
3.1 Verification based on trace abstractions . 21
3.2 Decidability of behavioural equivalences on infinite-state systems 25
3.3 Synthesis of nets from logical specifications 28

II Papers 31

4 Automated Logical Verification Based on Trace Abstractions 33
4.1 Introduction . 36

4.1.1 Relations to previous work . 36
4.1.2 Overview . 37

4.2 Traces and abstractions . 37
4.2.1 Systems, universes and normalisation 38
4.2.2 Composition . 38
4.2.3 Implementation . 39
4.2.4 Relational trace abstractions . 39

4.3 Monadic second-order logic on strings . 41
4.4 The finite state case . 41

4.4.1 A uniform logical framework . 43
4.4.2 Automated proofs . 44

ix

x CONTENTS

4.5 A specification problem . 45
4.6 Conclusions . 47
4.7 Proofs . 47

4.7.1 Proof of Theorem 5 . 47
4.7.2 Proof of Theorem 6 . 47
4.7.3 Proof of Corollary 8 . 48
4.7.4 Proof of Proposition 11 . 48
4.7.5 Proof of Theorem 13 . 49

5 A Case Study in Verification Based on Trace Abstractions 51
5.1 Introduction . 54
5.2 Monadic second-order logic on strings . 56

5.2.1 Fido . 58
5.2.2 Automated translation and validity checking 60

5.3 Systems . 61
5.3.1 Composition . 62
5.3.2 Implementation . 64

5.4 Relational trace abstractions . 64
5.4.1 Decomposition . 66

5.5 The RPC-memory specification problem . 66
5.5.1 The procedure interface . 67

5.6 A memory component . 67
5.7 Implementing the memory . 72

5.7.1 The RPC component . 73
5.7.2 The implementation . 76

5.8 Verifying the implementation . 79

6 Behavioural Equivalence for Infinite Systems – Partially Decidable! 83
6.1 Introduction . 86
6.2 A TCSP-style language . 87
6.3 Language, pomset, and location equivalence 89
6.4 BPP . 90

6.4.1 Normal form . 91
6.4.2 Finite tree automata . 94

6.5 Extending towards full TCSP . 95
6.5.1 BPPH and TCSP . 96
6.5.2 BPPS . 97
6.5.3 Synchronous automata on tuples of finite trees 98

6.6 Extending towards full CCS . 103
6.6.1 BPPM . 103
6.6.2 CCS . 104

6.7 Conclusions . 105
6.8 Proofs . 106

6.8.1 Proof of Proposition 38 . 106
6.8.2 Proof of Theorem 41 . 108
6.8.3 Proof of Proposition 49 . 109
6.8.4 Proof of Proposition 52 . 110

CONTENTS xi

6.8.5 Proof of Proposition 55 . 112
6.8.6 Proof of Proposition 57 . 115
6.8.7 Proof of Theorem 61 . 116

7 Further Results on Partial Order Equivalences on Infinite Systems 119
7.1 Introduction . 122
7.2 TCSP/CCS-style languages . 124

7.2.1 BPP, BPPτ , BPPM , and BPPτ
M . 125

7.2.2 BPPS . 128
7.3 Language, pomset, and location equivalence 128
7.4 Renaming and hiding . 130
7.5 Weak language, pomset, and location equivalence 136
7.6 BPPτ . 137
7.7 BPPM . 143

7.7.1 Weak location equivalence . 143
7.7.2 Weak pomset equivalence . 150

7.8 BPPτ
M . 152

7.8.1 Location equivalence . 152
7.8.2 Pomset equivalence . 154

7.9 Conclusions . 161

8 Synthesis of Nets from Logical Specifications 163
8.1 Introduction . 166
8.2 Synthesis of nets from transition systems . 167

8.2.1 Elementary net systems . 167
8.2.2 Elementary transition systems . 168
8.2.3 Synthesis . 170

8.3 Problems of the synthesis of nets from transition systems 170
8.4 Synthesis of active nets from synchronisation trees 173

8.4.1 Active EN-systems . 173
8.4.2 Active elementary synchronisation trees 173
8.4.3 Synthesis . 175

8.5 Logical Definability of Synchronisation Trees 176
8.6 Conclusions . 177
8.7 Proofs . 178

8.7.1 Proof of Proposition 157 . 178
8.7.2 Proof of Theorem 158 . 180

Bibliography 185

A The RPC-Memory Specification Problem 199
A.1 The Procedure Interface . 201
A.2 A Memory Component . 201
A.3 Implementing the Memory . 202

A.3.1 The RPC Component . 202
A.3.2 The Implementation . 203

A.4 Implementing the RPC Component . 203

xii CONTENTS

A.4.1 A Lossy RPC . 203
A.4.2 The RPC Implementation . 204

List of Figures

1.1 A transition system example. 11
1.2 Differently diverging transition systems . 11
1.3 A Petri net example. 12
1.4 Petri nets with respectively independent and conflicting events 13
1.5 An example of a CSP–style process X. 14
1.6 Reducing concurrency to interleaving . 15

5.1 The Fido and Mona tools. 61

6.1 The Petri net associated with the SATT of Example 50. 101

7.1 Distinct strong pomsets whose weak versions match. 138

8.1 A net system and a transition system . 168
8.2 A solution to the mutex problem. 171
8.3 A transition system T and its unfolding U(T). 174

xiii

List of Tables

3.1 Comparative overview of results on linear-time equivalences. 26
3.2 Comparative view of the role of renaming and hiding. 27
3.3 Comparative view of results on weak linear-time equivalences. 27

6.1 Transition rules for BPPH . 89
6.2 Transition rules for CCS communication and restriction. 103

7.1 Transition rules for TCSP/CCS. 126
7.2 Transition rule for TCSP communication. 126
7.3 Transition rule for TCSP/CCS renaming. 126
7.4 Transition rules for TCSP hiding. 126
7.5 Transition rule for CCS communication. 126
7.6 Transition rule for CCS restriction. 127

xv

Structure

This thesis falls in two parts. Part I, covering the first three chapters, serves as a gentle
introduction to the formal reasoning about reactive systems and as a summary of Part II.
Chapter 1, provides an introduction to reactive systems and formal reasoning. Chapter 2,
introduces the automata theoretic approach to automated reasoning. Chapter 3, contains
summaries of our work and related work on the analysis and synthesis of reactive systems as
presented in Part II.

Part II contains the following papers:

Chapter 4 Automated Logical Verification based on Trace Abstractions
with N. Klarlund and M. Nielsen,
slightly revised full version of the paper appearing in Proceedings of the Fifteenth
ACM Symposium on Principles of Distributed Computing (PODC),
pages 101-110, ACM, 1996, [94].

Chapter 5 A Case Study in Verification based on Trace Abstractions
with N. Klarlund and M. Nielsen,
slightly revised full version of the paper appearing in Formal Systems
Specification – The RPC-Memory Specification Case Study,
Lecture Notes in Computer Science, 1169:341–373, 1996, [95].

Chapter 6 Behavioral Equivalence for Infinite Systems — Partially Decidable!
with M. Nielsen,
slightly revised full version of the paper appearing in Proceedings of the 17th
International Conference on Application and Theory of Petri Nets 1996
Lecture Notes in Computer Science, 1091:460–479, 1996, [156].

Chapter 7 Further Results on Partial Order Equivalences on Infinite Systems
appearing in BRICS Report Series RS-98-6, 1998, [154].

Chapter 8 Synthesis of Nets from Logical Specifications
with J. Esparza,
Manuscript, 1998, [59].

In the following, when citing these five papers we refer to both the respective number in
the bibliography and the respective chapter, for instance, the paper of Chapter 4 is cited as
[94,§4].

1

Part I

Introduction

3

Chapter 1

Reactive Systems

The primary subject of this thesis is the formal reasoning about reactive systems. The term
reactive systems, coined by Pnueli in [139], denotes a broad class of systems with the char-
acteristic that they are not meant to terminate, but rather to repeatedly act and react in
interaction with their environment. When describing such systems the focus is not just on
what is computed but equally important on how it is computed, in terms of interaction capa-
bilities over time. Moreover, reactive systems are usually highly concurrent, possibly spatially
distributed and often behave non-deterministically. Such systems include telecommunication
protocols, telephone switches, air-traffic controllers, circuits and many more.

The purpose of this chapter is to informally introduce some of the central aspects of
formal reasoning about reactive systems with special emphasis on the topics of this thesis.
In Section 1.1, we layout the general setting of formal reasoning and mention the central
approaches of decomposition and stepwise refinement. We discuss a number of central aspects
of the modelling of reactive systems in Section 1.2. We end the chapter with an informal
presentation in Section 1.3 of a three examples of formalisms: transition systems, Petri nets,
and process algebras.

1.1 Formal reasoning

The goal of formal reasoning is to achieve provably correct reliable behaving systems. Hence,
the task of formal reasoning is to model systems and properties of systems as mathematical
objects and to supply methodology and techniques which allow and help to establish formal
proofs of properties of systems. Hence when dealing with formal methods one must also deal
with specification, that is, the formal modelling of systems and their properties.

A formal specification of a system is based on a semantical formalism that at an adequate
level of abstraction models, in fact defines, what we understand by the behaviour of the system.
There are three predominant ways of assigning formal semantics to description languages:
operational, denotational, and axiomatic semantics. In the first case, the behaviour of a
system is described by its computations. In the second case, a system is mapped into unique
object in a domain of meanings. In the third case, systems are seen as predicate transformers
transforming pre-assertions to post-assertions usually formulated in some logic.

Given a formal model SYS of a system and a specification SPEC of a correct reliable be-
haviour, the next step is to formalise what it means for the system SYS to behave according
to the correct reliable behaviour SPEC. One often talk of the system SYS meeting its specifi-

5

6 Chapter 1. Reactive Systems

cation SPEC. Formally, this is expressed by a mathematical relation |= relating systems and
specifications. Hence, reasoning boils down to establishing whether the system SYS meets,
|=, the specification SPEC, that is, whether

SYS |= SPEC.

There is a proliferate multitude of suggestions on exactly how to formalise systems and spec-
ifications as well as the meet relation. We discuss some of the issues involved in the next
section. Here, we mention, at a general level, four common instantiations: validity, satisfi-
ability, refinement and equivalence. The perhaps most known case is that of logical validity
where SYS and SPEC are formulas in some logic, and |= is logical implication. In the case
of satisfiability, SYS could be some Kripke structure (transition system), SPEC a formula in
some logic interpreted over Kripke structures and |= logical satisfiability. Refinement appear
for instance when SYS and SPEC are given by (finite) automata, and |= is language contain-
ment (⊆). Often in a process algebraic setting, both SYS and SPEC are algebraic process
expressions, and |= is some sort of behavioural equivalence.

Methodologies for reasoning divides into two approaches: analysis and synthesis. In the
first case, a system is analysed by checking whether it meets its specification or more modestly
whether it has certain good or bad properties. The analysis approach is also known as veri-
fication. The instances mentioned above all give rise to analysis problems: validity checking,
satisfiability checking (aka. model-checking), refinement checking, and equivalence checking.

In the second case, a specification is used to synthesise a system which meets the specifica-
tion by construction. Again, the instances mentioned above all give rise to synthesis problems.
Often, synthesis problems are considerably more complex than their analysis counterparts be-
cause of the unknown parameter but also because we are usually not interested in any solution
but in solutions with additional properties. Typical, examples of such additional properties
are to require that the solution is a finite system or that the solution is a (non-trivially)
distributed system.

We end the section with a brief look at two key techniques for reasoning. Faced with
the problem of establishing that SYS |= SPEC one obvious strategy is to try to decompose
the problem into smaller problems. In particular for a system SYS1 ‖ SYS2 consisting of
subsystems SYS1 and SYS2 running in parallel, one would look for a decomposition rule like

SYS1 ‖ SYS2 |= SPEC1 ‖ SPEC2

SYS1 |= SPEC1 SYS2 |= SPEC2

saying that to show that the compound system SYS1 ‖ SYS2 meets the compound specifica-
tion SPEC1 ‖ SPEC2 it suffices to show that for the components: SYS1 meets SPEC1 and
SYS2 meets SPEC2. Many formalisms for dealing with concurrent systems naturally support
such compositional reasoning. It has however been observed that many of these rules have
little pertinence in practical use due to the fact that components often intercommunicate
in non-trivial ways and thereby mutually restrict the possible behaviour of the individual
components with the consequence that in the setting above SYS1 may fail to meet SPEC1

even though it meets SPEC1 in the context of SYS2. This has lead to the study of more
complicated decomposition techniques (often known as modular reasoning) based on adding
additional information on the interdependencies between individual components and their
environments.

Another main strategy is stepwise refinement. Beginning with a high-level specification
SPEC0, the idea is to proceed in a top-down fashion exhibiting less and less high-level (aka.

1.2. Aspects of modelling 7

as more and more refined) specifications SPECi finally reaching the system SPECn such that
in each step the (i+ 1)th specification meets the ith SPEC(i+1) |= SPECi

SPECn |= |= SPEC1 |= SPEC0.

In order to support the approach the same formalism should be adequate for describing
systems/specifications at many different levels of abstraction from the highest to the lowest
and moreover the (transitive) meets relation should be able to relate such systems described
at different levels of abstractions. Often, systems described at different levels of abstraction
are not immediately comparable since they may involve distinct events or variables – typically,
lower level descriptions have more details in terms of more events or variables. The standard
way of dealing with the problem is to single out certain events or variables as the observables
of the system, and then abstract away from non-observables when comparing systems.

1.2 Aspects of modelling

A complete survey of the approaches to and formalisms for modelling, specifying and reason-
ing about reactive systems would be a tremendous endeavour and out of scope. Instead, in
this chapter we discuss a number of well-known and acknowledged dichotomies which con-
stitute a useful (though incomplete) taxonomy. In particular, in a field with a growth rate
as concurrency theory it can be difficult to keep track of the real progress. The chosen di-
chotomies hence importantly contain some of the key ideas and concepts which have emerged
over the years and settled as cornerstones of the field. The choices made in each case have
an impact on the properties captured, the succinctness of representation, decidability and
computational as well as mathematical complexity.
Terminating versus non-terminating A system which given an input is supposed to com-
pute and then halt producing an output is often adequately modelled by abstracting away from
the computation itself and viewing the system as an input-output function. This important
and powerful abstraction underpins the Church-Turing Thesis which at the heart of com-
putability theory. On the contrary, when modelling a reactive system the (non-termination)
computation itself is the main concern. As we shall discuss in the following, this shift of focus
makes a difference.
Sequential versus Concurrent A reactive system is inherently a concurrent system running
concurrently with its environment. But, also internally reactive systems in general exhibits
a high degree of concurrency. In fact, though sequentiality may be a good abstraction most
systems in hardware as well as in software are highly concurrent. Moreover, modelling with
concurrency tend to improve both design and efficiency. However, understanding concur-
rent systems involving intricate communication easily becomes quite subtle and complex.
In particular, the major ubiquitous problem is the so-called state-explosion problem coined
by Clarke and Grumberg in [36] stemming from the exponential conciseness of concurrent
systems over sequential systems or in other words stemming from the possibly exponential
growth in the number of reachable global states in a system with the number of concurrent
components. Hence, a few sequential systems easily composes to a concurrent system with a
huge number of reachable states.
Interleaving versus non-interleaving One common view on concurrency known as in-
terleaving, crudely speaking, explains concurrency by ignoring it (!) in the sense that the

8 Chapter 1. Reactive Systems

behaviour of a concurrent system is given in terms of its purely sequential computations ob-
tained by the non-deterministic merging or interleaving of the sequential computations of the
concurrent components forming the system. Interleaving provides an intuitive and simple
semantics for concurrent systems in reducing concurrency to non-determinism and in making
the interference between the computations of the concurrent components explicit. Notable
examples are transition systems, Hoare traces ([75]), synchronisation trees (Milner [121]), and
acceptance trees (Hennessy [68]).

The interleaving approach is widely applicable and often perfectly adequate. So why
use so-called non-interleaving semantics (aka. true-concurrency)? At least four motivations
have been pointed out. First, certain properties are unnecessarily difficult and awkward to
express in terms of interleaving. A canonical example is serialisability, see e.g. Peled and
Pnueli [133]. Moreover, the subtle interplay between concurrency and non-determinism in
the interleaving view obscures the distinction between fairness assumptions concerning (local)
progress of independent components and assumptions concerning for instance fair arbitration
in connection with conflicting access to shared resources, a distinction elegantly expressed in
a non-interleaving approach, see e.g. Kindler and Walter [93].

Second, reasoning can be significantly simpler (and computationally cheaper) when it
suffices to consider one representative of all the interleaving computations corresponding to
the same concurrent computation. In particular, reducing a concurrent system to a sequential
system by interleaving leads directly to the state-explosion problem discussed above.

Third, attempting to synthesis concurrent systems from formalisms based on interleaving
may not make much sense. Since if concurrency is not reflected in the resulting model, it may
or may not correspond to some concurrent system, and if so it remains to construct such a
system.

Another important motivation for studying non-interleaving semantics is the theory of
action refinement, see e.g. Aceto [5] and the references therein.
Causal versus spatial dependency It has been observed that the causal dependencies
of event occurrences in a concurrent system induce a partial ordering on the event occur-
rences, see e.g. Lamport [103] and Pratt [141]. Hence, it has been argued that concurrent
computations should be modelled by partial orders reflecting the intrinsic causal dependen-
cies of events. Prominent examples are Mazurkiewicz traces [117] pomsets (Pratt [141]), net
unfolding (Nielsen et al. [128]), event structures (Winskel [173]), and branching processes
Engelfriet [54].

Others have argued that concurrent computations should reflect the spatial distribution
of the event occurrences, for instance, events which are causally dependent may well exhibit
different locality in the sense that they are performed by distinct components distributed in
space, see e.g. Castellani and Hennessy [29] and Boudol et al. [21, 22]. One example is in
client-server applications where implementations may for instance differ on whether spawned
processes run at the local or the remote site, see e.g. Riely and Hennessy [145].
Determinism versus non-determinism Systems with deterministic behaviours are easier
to reason about. However, non-determinism arise naturally in the study of reactive concur-
rent system and plays at least a threefold role. First, non-determinism is used to explain
concurrency in interleaving semantics. Second in order to compare systems at different levels
of abstractions, it is common to abstract from or hide internal behaviour and in general such
abstractions techniques may lead to non-deterministic systems. Finally, non-determinism is
used to avoid over-specification, that is, to not force decisions which are irrelevant for the
property specified.

1.2. Aspects of modelling 9

Linear-time and branching-time Consider the following view on the behaviour of a system:
at any given point a system has the possibility of taking at most one of a number of actions
(possibly none). In the linear-time view the model of computation reflects only the actions
taken and abstracts away from the choices made. Prime examples, Hoare traces, Mazurkiewicz
traces, and pomsets. In the branching-time view the model of computation reflects all the
possible choices. Some of the most well-known examples are synchronisation trees, acceptance
trees, event structures, net unfolding, and branching processes.

As temporal logics and behavioural equivalences may be based on either views on compu-
tations the distinction has lead to distinguish between linear-time logics like the propositional
linear temporal logic PLTL (Pnueli [138]) and branching-time logics like the computation tree
logic CTL (Clarke and Emerson [38]) and its extension CTL∗ (”Emerson and Halpern [50]),
as well as linear-time and branching-time equivalences most prominently exemplified by re-
spectively, trace equivalence (Hoare [75]) and bisimulation (Park [132] and Milner [122]).

In [140], Pnueli gave a broad discussion on the trade-offs involved. Discussions on the
usefulness and comparative expressiveness of linear-time and branching-time logics are found
in e.g. Lamport [107] and Emerson and Halpern [50].

In the interleaving case, linear-time may be modelled using linear structures whereas
branching-time involves tree-like structures. When moving to the non-interleaving case things
becomes more complicated, typically involving Mazurkiewicz traces and event structures,
respectively.

Whereas branching-time usually involves a more complex mathematical machinery than
linear-time, informally speaking often linear-time is computationally harder than branching-
time.
Safety versus liveness properties In [106], Lamport suggested an informal division of
properties into two types: safety properties ensuring that “nothing bad happens” and liveness
properties ensuring that “something good eventually happens”. Examples of the former are
absence of deadlock and mutual exclusion and examples of the latter are absence of starvation
and reachability. In [7], Alpern and Schneider gave a formal definition of the classification
and an automata-theoretic characterisation. Moreover, they showed that any property, in
a precise sense, can be represented as the conjunction of a safety and a liveness property.
Now, several definitions and characterisations exist based on automata, topology and syntax
which all essentially coincide with respect to safety properties whereas liveness is a more
delicate matter, see Kindler [92] for a brief historical account. The original motivation for
the classification was the difference in proof techniques applicable for establishing properties
of either types. Often, safety properties may be established using invariance proofs whereas
liveness properties may not and usually calls for some sort of well-foundedness argument. In
this sense, the division is a tight parallel to the traditional division into partial correctness and
termination applied when reasoning about input-output programs. Only liveness properties
may be much more sophisticated than termination. In particular, most liveness properties in
practice only hold when some other liveness properties are assumed. Such assumed liveness
properties, usually called fairness or progress properties, come in many variants, see e.g.
Francez [62].

The works mentioned so far in this paragraph all build on models of computations which do
not reflect concurrency. But, work has been done on extending the results to true-concurrency
models of computations, for a recent reference see Baier and Kwiatkowska [102].
Finite versus infinite state In practice, any system is a member of some proper subclass
of systems. The systems with finite state spaces constitute an important subclass for which

10 Chapter 1. Reactive Systems

problems tend to be decidable. For such subclasses the next obvious question is which sub-
classes allow feasible or tractable solutions for which problems. For systems with infinite state
spaces in general interesting problems are undecidable. However, there are many subclasses
of systems with infinite state spaces where decidability is retained.

In the Petri net community there is a long and rich tradition for studying subclasses with
both finite and infinite state spaces, for a survey on decidability and complexity results, see
Esparza and Nielsen [57]. In the late eighties, Baeten et al. [12] showed that bisimulation was
decidable for normed BPA (Basic Process Algebra aka. context-free processes) a subclass of
ACP and up through the nineties, the analysis of infinite-state systems has established itself
as an important active and prosperous subject, see Christensen and Hüttel [33], Burkart
and Esparza [28], and Hirshfeld and Moller [73] for surveys. Prominent recent results not
covered in the surveys are the decidability of bisimulation for one-counter processes shown by
Jancar [84] and the decidability of language equivalence for deterministic push down automata
shown by Sénizergues [149].
And many others The dichotomies mentioned above by no means constitute an exhaustive
list and many others could be included, e.g. timed and untimed, event versus state based
operational versus denotational semantics, strong versus weak equivalences, discrete versus
continuous, and synchronous versus asynchronous communication/

1.3 Three formalisms

In this section, we introduce informally three formalisms for describing reactive systems which
are central to the field as well as to our work: transition systems, Petri nets, and process
algebras. For each of the system models, we discuss informally some the various suggestion
for adequate models of computations made in the literature.

A common characteristics of these models is that they are all parameterised by an unin-
terpreted set of actions (or transitions) which constitute the atomic actions of the system. We
hence restrict our selves to systems where actions can adequately be seen as discrete actions
which have no duration in time.

1.3.1 Transition Systems

The most used model of reactive systems is, arguably, transition systems. According to
Pnueli and Manna (p. 100) [112] the first to use transition systems to explain the semantics
of concurrent systems was Keller in [88]. Transition systems come in various shapes depending
on their use. In this section, we only present some core concepts but transition systems pop
up frequently in the following where more detailed references are give. A monograph devoted
to finite transition systems is Arnold [9]. An example of a transition system is given in Figure
1.1. A transition system is essentially a directed graph with a designated node. The nodes are
the states of the system, the edges represent the (state-)transitions and the designated node
is the initial state, drawn as �. Furthermore, transition systems often have labels on states
(aka. Moore machines), labels on transitions (aka. Mealy machines) or both. Accordingly,
one talks of event-based and state-based models. When modelling the one or the other may
be more natural. In the examples only transitions are labelled. A reactive behaviour of a
transition system is given by a path starting from the initial state viewed as a (finite or
infinite) sequence of transitions (and/or states). For instance consider the transition system

1.3. Three formalisms 11

�
a1

����
��

��
�

a2 ��?
??

??
??

•
b1

����
��

��
�

a2 ��?
??

??
??

•
a1

����
��

��
�

b2 ��?
??

??
??

•
c1

����
��

��
�

a2 ��?
??

??
??

•
b1

����
��

��
�

b2 ��?
??

??
??

•
a1

����
��

��
�

c2 ��?
??

??
??

•

@G
??

FE

d1

�������������������������������

��??

a2 ��?
??

??
??

•
c1

����
��

��
�

•

c2 ��?
??

??
??

•
a1

����
��

��
�

CD
��

FE

d2

???????????????????????????????

����

•

VVVVVVVVVVVVVVVVVVVVVVVVV •

hhhhhhhhhhhhhhhhhhhhhhhhh

@A

GF

d2

//

BC

ED

d1

oo

Figure 1.1: A transition system example.

in Figure 1.1, one behaviour is the finite sequence of transitions:

a1, b1, a2, c1, d1, b2, c2, a1, d2, a2 (1.1)

This view of behaviour is much inspired by automata theory only now sequences or strings are
not recognised but rather arise as a sequence of interactions. It has been observed that viewing
computations as such sequences of transitions ignores the choices or branching involved in
the computation. For instance, the transition systems in Figure 1.2 can both perform the

�
a

��

�
a

����
��

��
�

a

��?
??

??
??

•
b

����
��

��
�

c

��?
??

??
??

•

b
��

•
c

��
• • • •

Figure 1.2: Differently diverging transition systems

sequence a, b but the choices made differ: the system on the right initially chooses to do
the a action leading to a state only capable of doing a b action whereas the system on the
left initially has no choice but to do an a action and in the resulting state makes the choice
of doing the b action. To give a full account of the choices involved it has been suggested
to consider the unfolding of all possible branches of the transition system into a possibly
infinite tree1 (aka. synchronisation trees due to Milner [121], see also Winskel [170]). Other
suggestions in between exist, for instance in [75] Hoare uses failures, i.e. pairs consisting of

1nodes represent states and transitions stand for action occurrences

12 Chapter 1. Reactive Systems

b1

��

b2

��?>=<89:;

??������� ?>=<89:;

��

•?>=<89:; key

__???????

??������� ?>=<89:;

��

?>=<89:;

__???????

a1

OO

c1

��

c2

��

a2

OO

•?>=<89:;

OO

?>=<89:;

��

?>=<89:;

��

•?>=<89:;

OO

d1

__???????

JJ�����������������������
d2

TT***********************

??�������

Figure 1.3: A Petri net example.

a finite sequence of actions and the set of actions which the resulting state is not capable of
doing. For instance, the pair (a, {a, c}) is a failure of the right system in Figure 1.2 since by
doing an a action it can reach a state in which it cannot do a nor c. Such a failure is not
possible in the left system.

1.3.2 Petri Nets

In his dissertation [135] Petri introduced an extension of the standard finite automata models
with communication which lead to a class of models of concurrent systems now known as
Petri nets. A bibliographic count by Plünnecke and Reisig in [137] lists more than four
thousand entries on Petri nets. Modern introductions are Reisig [143] and Peterson [134].
Also, Murata [127] is a much appreciated tutorial. Figure 1.3 shows an example of a Petri
net. The static structure of the model is a directed bipartite graph constituted of conditions,
drawn as circles, and events, drawn as boxes. By marking the conditions with tokens, drawn
as black dots, the dynamics of the model arises by the floating of the tokens according to the
rules of the token game defined by the statics: an event fires by taking a token from each of
its input conditions, indicated by incoming arrows, and putting a token on each of its output
conditions, indicated by outgoing arrows. When modelling systems the guiding intuition is
that the events represent the actions of the system, the conditions represent local resources
and tokens represent availability of local resources. For instance the example of Figure 1.3
models two sequential processes competing for the exclusive use of the resource key. An
important motivation behind the development of Petri nets was to model explicitly the basic
notions of sequencing, conflict, and independence of events. In the example of Figure 1.3,
all of these concepts are (graphically) illustrated, crudely speaking, sequencing arises when
an output condition of an event is the input condition of another event as for instance, a1

and b1, backward (forward) conflict arises when events share input (output) conditions as for
instance b1 and b2 (as for instance d1 and d2), and independence arises when events share no
conditions, as for instance a1 and a2. This presentation suggests a purely static capture of the

1.3. Three formalisms 13

concepts. However in general, the concepts are more adequately defined relative to a marking
for instance, a property of the net is that in no marking reachable from the initial both d1 and
d2 are enabled, hence in terms of the dynamics of the net, they may just as well be considered
independent. The interplay between these concepts may be subtle. An important phenomena
known as confusion arises when independence and conflict overlap, for instance, firing a1 in
the initial marking yields a marking in which a2 and b1 may fire independently. However,
firing a2 first yields a marking in which b1 and b2 are conflicting whereas firing b1 first yields
a marking without any conflicts, thus, the order of firing of independent events may matter.

A common way to explain and analyse what goes on as the tokens are consumed and
produced while playing the token game is to compute all the markings reachable from the
initial marking. From the reachable markings, we get a transition system by putting an e
labelled arrow from a marking M to another M ′ whenever firing the e event is possible in
M and yields M ′. This procedure is often called state space enumeration. For the Petri net
in Figure 1.3 the corresponding transition system is shown in Figure 1.1. Hence, one way of
understanding the dynamics of Petri nets is in terms of their underlying transition systems
which means that the already discussed notions of behaviour for transition systems such as
state/event-sequences and synchronisation trees now immediately carry over to Petri nets. In

•?>=<89:;

��

•?>=<89:;

��

•?>=<89:;

��

•?>=<89:;

��?
??

??
??

����
��

��
�

•?>=<89:;

��
a

��

b

��

a

��

??�������

b

��

__???????

?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:;

Figure 1.4: Petri nets with respectively independent and conflicting events

this interpretation concurrency or independence of events a and b means that either first a
occurs and then b or vice versa, that is, concurrency is interpreted as the non-deterministic
interleaving of the event occurrences. In particular, the Petri nets of Figure 1.4 have iso-
morphic transition systems, sets of firing sequences and synchronisation trees. Hence, these
views neglect the concurrency or independence presented in the net. In order to remedy this
a number of more intensional models of behaviours reflecting independency have been sug-
gested. Prime examples are Mazurkiewicz traces [117], non-sequential processes, see Best and
Fernãndez [19], and Pratt pomsets [141]. An example of a pomset of the net in Figure 1.3 is

a1 b1 c1 d1

@@
@@

@@
@

a1

a2 b2 c2 d2 a2

(1.2)

The pomset corresponds to the computation in (1.1) above. All these models ignore choice.
As models incorporating both choice and independence net unfolding and event structures of
Nielsen et al. [128] (see also Winskel [173]), and branching processes of Engelfriet [54] have
been suggested.

14 Chapter 1. Reactive Systems

1.3.3 Process Algebra

A popular family of languages for describing concurrent reactive systems is the family of
process algebras or process calculi most notably represented by the languages CCS (Calculus
of Communicating Systems) of Milner [121, 122], CSP (Communicating Sequential Systems)
of Hoare [75] and ACP (Algebra of Communicating Processes) of Bergstra and Klop [16].
Also, Hennessy [68] is a good introduction. A process algebra is a language consisting of a
number of combinators for building processes from subprocesses together with some facility for
spawning (generating) subprocesses. Usually, the simplest process is inaction 0 – the process
that cannot perform any actions. Other examples, recasting the basic concepts of sequencing,
conflict and independence, are prefixing a.P denoting the process that can perform an a-
action and become P , sequential composition P ;Q denoting the process that behaves as P
and then as Q, (non-deterministic) choice P + Q denoting the process that can evolve to
either P or Q, and parallel composition P ‖ Q denoting the process with the subprocesses
P and Q running concurrently and possible communicating. The initial insight of Milner
was that such combinators exhibit or should exhibit algebraic properties. An example of
a process X is given in Figure 1.5. It has become standard to give semantics to process

X
def= P1 ‖{b1,d1} (S ‖{b2,d2} P2),

P1
def= a1.b1.c1.d1.P1,

P2
def= a2.b2.c2.d2.P2,

S
def= b1.d1.S + b2.d2.S

Figure 1.5: An example of a CSP–style process X.

algebras using structural operational semantics (SOS) introduced by Plotkin [136] as a way
to derive the operational or stepwise behaviour of processes guided by the structure of the
syntax by means of structural rules. This approach associates a labelled transition system
with a process. The states are formed by the processes (modulo some syntactic congruence)
and the transitions labelled with actions relate processes to the subprocesses they may evolve
to in performing the actions. Examples can be found in Milner [122], Olderog and Hoare [131],
Hennessy [68], and Baeten and Weijland [13] to mention a few. With such transition system
semantics, the process of Figure 1.5 is associated with the transition system of Figure 1.1. At
the transition system level the different computation models discussed for transition systems
transfer to processes: traces and failures as in Hoare [75], and synchronisation trees as in
Milner [121]. An example of a computation of the process in Figure 1.5 is

X
a1−→ b1.c1.d1.P1 ‖{b1,d1} (S ‖{b2,d2} P2)
b1−→ c1.d1.P1 ‖{b1,d1} (d1.S ‖{b2,d2} P2)
a2−→ c1.d1.P1 ‖{b1,d1} (d1.S ‖{b2,d2} b2.c2.d2.P2)
c1−→ . . .

(1.3)

As with Petri nets these models of computation ignores the concurrency. As a simple exam-
ple consider the processes a.0 ‖ b.0 and a.b.0 + b.a.0, as shown in Figure 1.6 the associated
transition systems are isomorphic. As for Petri nets a number of models of computations

1.4. And many others 15

a.0 ‖ b.0
a

{{vvvvvvvvv
b

##HHHHH
HHHH a.b.0 + b.a.0

a

yyssssssssss
b

%%KKKKKKKKKK

b.0

b ##HHHHHHHHH a.0

a
{{vvvvvv

vvv
b.0

b
%%KKKKKKKKKKKK a.0

a
yyssssssssssss

0 ‖ 0 0

Figure 1.6: Reducing concurrency to interleaving

reflecting concurrency have been suggested. One approach studied intensively is to seman-
tically associate with each process term a Petri net, for instance the process a.0 ‖ b.0 could
be associated with the left Petri net of Figure 1.4. For examples see Olderog [130] and the
references therein. Such semantics at least in principle furnishes the way for applying the
models of behaviour associated with Petri nets. Alternatively, Winskel shows in [169] how
to give an event structure semantics for CCS without going through a Petri net semantics.
Another approach is to augment the operational semantics with some extra intensional in-
formation allowing to observe causal dependencies or spatial distribution, see e.g. Aceto [6],
Boudol et al. [21, 22], Darondeau and Degano [41], Kiehn [90] and Mukund and Nielsen [126]
to mention a few.

1.4 And many others

Whereas transition systems give complete information for interleaving semantics they do
not in their basic form account for independency. This observation has led to the study of
generalisations with additional structure as represented by asynchronous transition systems
of Bednarczyk [15] and Shields [150], and transition system with independence of Winskel
and Nielsen [172]. In both cases, the additional structure is used to specify which transitions
are independent. Other ways of retaining information on concurrency is to use distributed
alphabets as in Thiagarajan [159], to allow multiset of actions as in step-transition systems see
e.g. [125] or to introduce parallel composition as known from for instance process algebra at
the transition system level as in the communicating automata used by Wolper and Godefroid
[174]. Closely related to transition systems are the I/O-automata of Lynch and Tuttle [108]
here transition systems are augmented with extra structure partitioning actions into input or
output and into internal or external, and parallel composition and hiding is supported. The
wide applicability of I/O-automata is demonstrated in Lynch [110].

Petri nets have a nice and intuitive graphical representation but they lack algebraic struc-
ture. A problem addressed by Winskel in [171] and by Meseguer and Montanari [120]. As
mentioned, a huge amount of work has been done on Petri nets much of this work has been
concerned with subclasses and super classes of Petri nets. Later, we investigate some of the
subclasses closer. Here, we only mention some of the most general variations on Petri nets
aka. high-level nets viz. coloured Petri nets of Jensen [87] and algebraic nets, see Ehrig and
Reisig [46] for a recent survey.

The processes of the examples above only include the core combinators and features and
a number of extensions exist dealing with value passing and data-domains, e.g. LOTOS, see

16 Chapter 1. Reactive Systems

Bolognesi and Brinksma [20], dynamic communication topologies achieved by creating and
passing around channel names e.g. the π-calculus, see Milner et al. [123], and higher-order
process calculi allowing process to be passed around, see e.g. Sangiorgi [148]. A growing trend
is to add time (discrete, dense or real) explicitly to the models and, crudely speaking, any of
the formalism mentioned above have timed versions. Also, so-called Hybrid systems used for
modelling embedded systems have recently become a hot subject. In such systems states are
given by a finite number of discrete as well as continuous variables, see e.g. Henzinger [70]

In a seminal paper, Pnueli [138] introduced tense temporal logic as an appropriate formal-
ism for specifying and proving properties of reactive systems. Since then a plethora of (tense)
temporal logics have been suggested. Among the most popular are propositional linear tem-
poral logic PLTL, see [138], computation tree logic CTL [38] and its extension CTL∗ [50], good
standard introductory texts are Emerson [48] and Manna and Pnueli [112]. Other approaches
are interval temporal logics and fix-point logics as exemplified by respectively the Interval
temporal logic ITL of Halpern et al. [66] and the propositional µ-calculus of Kozen [99] re-
spectively, for more references see Emerson [48]. The logics cited above are all interpreted over
structures which do not reflect concurrency. Examples of (so-called non-interleaving) logics
interpreted over structures reflecting independence are the Interleaving Set Temporal Logic
ISTL∗, see Peled and Pnueli [133], and Trace based Propositional Temporal logic of Linear
Time TrPTL, see Thiagarajan [159]. See also the chapter of Penczek and Kuiper in [43].

Whereas logics are usually preferred for property oriented specification they may very well
be used for quite operational specification, see e.g. Abadi et al. [3] and Kesten et al. [89].

Chapter 2

Automata-Theoretic Methods

Most decision procedures for reasoning about reactive systems are built on ad hoc approaches
suitable for the specific problems at hand. However, a considerable amount of work and
success has come from applying so-called automata-theoretic methods which have been used
to show decidability, determine computational complexity and provide efficient decision pro-
cedures. In particular, most of our results reported in this thesis fall within the automata-
theoretic framework. In Chapter 4 and 5, we apply monadic second order logic on finite words
and perform validity checking by translating formula into automata. In Chapter 6, checking
non-interleaving equivalences are reduced to checking emptiness of two sorts of finite tree
automata on finite trees. In Chapter 8, we exploit the connection between monadic second
order logic and automata on infinite trees to refine the synthesis of finite models from logical
specifications.

Automata theory is a well-establised area within the field of computer science and math-
ematics with strong connections to formal language theory. In this chapter, we shall only be
able to discuss breifly one aspect namely the use of automata theory in designing algorithms
for deciding verification and synthesis problems as they arise in the formal reasoning about
reactive systems. As the approach has gained in popularity it has become wider and less
well-defined. But, in general it denotes every method based on the following idea: given a
problem stated in some formalism reduce it to an automata problem. In fact, more often
than not to the emptiness problem for some sort of automata. This simple idea has proved
very powerful in a wide area of applications for the reasoning about reactive systems.

Automata come in many shapes, but are most often used to specify sets of finite or
infinite words, or tress. A nice class of automata is effectively closed under intersection,
complement (Boolean operations) and projections, and moreover has a decidable emptiness
problem allowing the effective construction of witnesses. For both (in)finite words and trees
such nice classes exist. For introductions to finite automata on finite words, see Hopcroft and
Ullman [77] and Straubing [153], on finite trees, see Gecseq and Steinby [63] and Engelfriet [53]
and on infinite words and trees, see Thomas [160, 163].

Moreover, such a class of automata offers a uniform approach to equivalence, containment,
satisfiability, model checking and synthesis. All problems reduce to the emptiness problem.
Language containment and equivalence Arguably, the most obvious use of automata
theory in verification arises when the set of possible computations of a system may be ef-
fectively represented as the language of an automata. Then, comparing systems P and S
amounts to, first, constructing finite automata AP and AS such that the languages accepted

17

18 Chapter 2. Automata-Theoretic Methods

by AP , L(AP), and by AS , L(AS), are exactly the set of computations of respectively P and
S and, second, to check whether L(AP)∩L(AS) is empty (where AS denotes the complement
of AS). Though, the approach is conceptually straightforward it often suffers from a high
computational complexity essentially due to the combination of non-determinism and com-
plementation. This has lead to a number of attempts to refine the approach some of which
we discuss in Chapter 4 and 5.
Satisfiability Much of the motivation for the early work on automata on infinite objects
came from the work on decidable fragments of arithmetic logic, cf. Thomas [163]. With the
increased acknowledgement of tense temporal and modal logics in modern computer science
a resurge into automata on infinite objects began showing fundamental translations from
temporal logic to automata and providing improvements in all aspects of the theory of au-
tomata on infinite objects. We refrain from giving a historical account and restrict ourselves
to explaining the basic approach, many surveys exist e.g. Emerson [48, 47] and Vardi [167].

To check satisfiability for a formula φ, first, effectively construct an automata Aφ such
that L(Aφ) is non-empty if and only if φ is satisfiable and, second, check whether L(Aφ)
is empty. The approach has been used to obtain essentially optimal decision procedures
effectively producing finite models for a number of monadic second order logics and temporal
logics like e.g. LTL, CTL, CTL∗ and the µ-calculus, see Thomas [160, 163] and Emerson [47]
for references.
Model checking Similarly, to check whether the model M satisfies the formula φ, first as
above effectively construct automata AM and A¬φ such that L(AM) ∩ L(A¬φ) is non-empty
if and only if M satisfies φ and, second, check for non-emptiness. Also, for model checking
essentially optimal procedures are known for a number of logics, e.g.: LTL, CTL, CTL∗

and the µ-calculus, see Vardi and Wolper [166] and Bernholtz et al. [18]. Besides giving a
uniform framework, the approach has the appealing property of seperating out the logical
part consisting of translating formulas into automata from the combinatorial part handled by
automata theory.
Synthesis A problem closely related to satisfiability checking is that of synthesising a model,
that is, for a formula φ, if it is satisfiable, to effectively synthesise (construct) a model satisfying
φ. For a nice class of automata as discussed above, the approach to synthesis is exactly
that of satisfiability because the emptiness problem admits decision procedures effectively
constructing a widness in case of non-emptiness. Moreover, the approach immediately implies
a finite or regular (finitely representable) model property and in many cases also a small model
property can be shown.
More general structures As discussed in the previous chapter, the non-interleaving view on
computations often involve more general structures than words and trees such as traces, partial
orders and event structures, etc. This together with the fundamental theoretical interest in
generalising the known theory has lead people to study the formal language, automata and log-
ical theory of Mazurkiewicz traces, partial orders, events structures, grids, tree-decomposable
graphs and graphs, some recent references are Thomas [161, 162]. Whereas the theories of
Mazurkiewicz traces is already well developed, see e.g. [43], the quest continues for finding
larger subclasses of graphs with nice logical and automata characterisations, and for which,
hopefully, some interesting questions are decidable. Yet another important direction is to
extent structures with time to furnish the way for lifting the automata theoretic aproach to
timed formalisms, see e.g. the timed (Büchi) automata of Alur and Dill [8].

The first applications of automata to the reasoning about reactive systems emerged from
the observation that programs with finite state spaces may be seen as finite automata. The

19

approach is however much wider applicable. We mention just one illustrative example. In [61],
Esparza showed how to decide the model-checking problem for the linear-time µ-calculus on
Petri nets by translating formulas into automata on infinte strings and then checking for
emptiness the Petri net obtained by a product construction between the finite automata and
the Petri net. This example also shows that automata do not need to be nice in the above
sense in to be useful. For instance, Petri nets viewed as string acceptors are not closed under
complement.

Chapter 3

Summary

The purpose of this chapter is to summaries the contents of the papers in Part II. The papers
fall naturally in three groups concerned with: the verification of finite distributed systems,
the decidability of partial ordered behavioural equivalences on infinite state systems, and the
synthesis of distributed systems.

3.1 Verification based on trace abstractions

In this section we summarise and relate our work concerned with the specification and verifi-
cation of distributed reactive systems as presented in Chapter 4 and Chapter 5. We consider
safety properties of finite systems defined by a linear-time interleaved semantics in terms of
sets of Hoare traces (traces – in the following).

We address the problem of deciding whether a program P implements a specification
S. Let the behaviours of the systems P and S be defined by the sets of traces LP and
LS , respectively. A “verifier” trying to establish that P implements S, cannot just directly
compare LP and LS . In fact, these sets are usually incomparable, since they involve events
of different systems. As is the custom, we call the events of interest the observable events.
These events are common to both systems. The observable behaviours Obs(LP) of LP are
the traces of LP with all non-observable events projected away. That P implements S means
that Obs(LP) ⊆ Obs(LS).

One goal of the automata-theoretic approach to verification is to establish Obs(LP) ⊆
Obs(LS) by computing the product of the automata describing Obs(LP) and Obs(LS). Specif-
ically, let AP be an automaton accepting Obs(LP) and let AS be an automaton representing
the complement of Obs(LS). Then Obs(LP) ⊆ Obs(LS) holds if and only if the product of
AP and AS is empty. Unfortunately, the projection of traces can entail a significant blow-up
in the size of AS as a function of the size of the automaton representing LS . The reason is
that the automaton AS usually can be calculated only through a subset construction.

The use of state abstraction mappings or homomorphisms, see [109] for a survey, can
reduce such state space blow-ups. But the disadvantage of state mappings is that they tend
to be specified at a very detailed level: each global state of P is mapped to a global state
of S. Moreover, when systems are specified by behavioural or temporal constraints, it is
necessary first to find state-representations. In this process, important information can be
lost or misconstrued.

21

22 Chapter 3. Summary

A summary of our approach

In Chapter 4, we device a small self-contained theory of distributed reactive systems including
standard concepts like partition of events in observable and internal, composition, implemen-
tation, abstraction, and decomposition principles. Moreover, we formulate trace abstractions
and their proof methods as an alternative to the use of refinement mappings for the veri-
fication of distributed systems. Trace abstractions are relations on traces relating traces of
programs P to traces with the same observable behaviour of specifications S in such a way
that there exists a trace abstraction from P to S if and only if P implements S. An important
property of trace abstractions is that they also relate internal behaviour. We stipulate that
trace abstractions are compatible, if, intuitively, they agree on the way they relate internal
behaviour. Then, trace abstractions supports non-trivial decompositional reasoning by re-
ducing the reasoning about compound systems to reasoning about trace abstractions between
subsystems. Hence, for compound (comparable) systems ‖Pi and ‖Si we get that if for each
i, Ri is a trace abstraction from Pi to Si and additionally the trace abstractions Ri are com-
patible then ‖Pi implements ‖Si. The decomposition can be non-trivial in the sense that
non-trivial interdependencies of subsystems due to communication on internal events can be
captured by restricting the trace abstractions between the subsystems.

A main goal is to show that the method is useful in practice. Thus, the proof methods
must be supported by a decision procedure that answers questions about systems, such as
“Does trace abstraction R show that program P implements specification S?” and “Are the
trace abstractions R1 and R2 compatible?” Therefore it is important that our framework
is tied closely to M2L: traces, trace abstractions, the property of implementation, and the
compatibility requirement are all expressible in this logic—and thus all amenable, in theory at
least, to automatic analysis, since M2L is decidable and moreover supported by the efficient
decision procedure of the Mona tool, see Henriksen et al. [69].

With tool support, the resulting trace based approach offers some advantages to conven-
tional state based methods. For example, we show how trace abstractions, which relate a
trace of P to a corresponding trace of S, can be formulated loosely in a way that reflects only
the intuition that the verifier has about the relation between P and S — and that does not
require a detailed, technical understanding of how every state of P relates to a state of S.
The remaining information is then calculated automata-theoretically by means of the subset
construction. To check that R is a trace abstraction from P to S, we would check a formula
like:

∀α.α ∈ LP ⇒ ∃β.R(α, β) ∧ β ∈ LS

which is directly expressible in M2L for any trace abstraction that can be formulated in M2L.
When feeding such a formula to the Mona tool, the existential quantification (guessing β)
introduces non-determinism and hence can lead to an exponential blow-up. A main point of
trace abstractions is that even every loose trace abstractions can reduce the non-determinism
arising in the calculation. In particular, a functional trace abstraction relating each α to
exactly one β would essentially eliminate the blow-up.

An overview of our solution to the RPC-memory specification problem

In Chapter 5, we seek to demonstrate the practical pertinence of the approach of Chapter 4.
We give a self-contained, introductory account of the method applied to the RPC-memory

3.1. Verification based on trace abstractions 23

specification problem proposed by Broy and Lamport in connection with the 1994 Dagstuhl
Seminar on Specification and Refinement of Reactive Systems [24] (also included in Appendix
A). The problem involves the specification of a memory and its distributed implementation
based on an RPC-protocol as well as the verification of the correctness of the implementation
with respect to the specification. The purely behavioural descriptions that we formulate from
the informal specifications are written in the high-level symbolic language Fido – a syntactic
extension of M2L – designed for expressing regular properties about recursive data structures,
see Klarlund and Schwartzbach [97].

In performing the verifications, we have to limited ourselves to finite domains. The result-
ing program has approximately a hundred thousand states and the specification approximately
a thousand states. The systems – modelled as deterministic automata – allow thousands of
different events.

The verifications makes crucial use of trace abstractions in encompassing combinatorial
blow-ups and in performing non-trivial decompositional reasoning. In particular, we demon-
strate how information about internal behaviour obtained through counter-examples can sug-
gest useful restrictions of trace abstractions.

Our solution involves Fido formulas which span more than 10 pages and which are trans-
lated into more than 100 pages of M2L formulas which are decided automatically by the Mona
tool within minutes. Hence, our work shows that complex behaviours of reactive systems can
be formulated and reasoned about without explicit state-based programming while enjoying
automated analysis and verification requiring little human intervention.

Related work

The systems we define are closely related to those described by Hoare in [75], where an al-
phabet Σ and a set of traces over Σ is associated with every process. We use a composition
operator, similar to Hoare’s parallel operator (‖ [75]) forcing systems to synchronise on events
or actions shared by both alphabets. State mappings — one of the most advocated methods
for proving refinement, see e.g. Lynch and Tuttle [108], Lamport [104, 105] and Kesten et
al. [89] and for a survey Lynch and Vaandrager [109]—were introduced as a way to avoid
behavioural reasoning, often regarded as being too complex. The theory of state mappings
is by now well-understood, but not simple, with the completeness results in Abadi and Lam-
port [1], Klarlund and Schneider [96] and Sistla [151]. In the finite state case, an important
difference between the state mapping approach and ours is: in the traditional approaches,
the mapping is to be exactly specified state by state, whereas in our approach the relation
between behaviours may be specified partially leaving the rest to our verification tool.

The Concurrency Workbench [39] is an example of a tool offering automatic verification
of the existence of certain kinds of state-mappings between finite-state systems.

The TLA formalism by Lamport [105] and the temporal logic of Manna and Pnueli [112,
89] provide uniform frameworks for specifying systems and state mappings, and for complex
reasoning about systems. Both logics subsumes predicate logic and hence defy automatic
verification in general. However, work has been done on providing mechanical support in
terms of proof checkers and theorem provers, see Engberg et al. [51], Engberg [52] and
Manna et al. [111].

In [35], Clarke, Browne, and Kurshan applied model checking techniques to the language
containment problem (L(M1) ⊆ L(M2)), where M1 and M2 are ω-automata. They reduce
the containment problem to a model-checking problem by forming a product of the automata

24 Chapter 3. Summary

and checking whether the product is a model for a certain CTL∗ formula. The method
is applicable to any common kind of ω-automata. Thus it deals with liveness and fairness
properties unlike our method, which only deals with logic over finite prefixes. However, the
method in [35] suffers from the restriction that M2 be deterministic.

Kurshan, see [100], has devised an automata-theoretic framework for modelling and ver-
ifying synchronous transition systems. His use of homomorphisms allow complex properties
to be reduced to ones that can be verified by means of model-checking.

Kurshan’s methods were extended in Kurshan et al. [101] to the asynchronous input/output
automata of Lynch and Tuttle [108]. There, Kurshan et al. give an account of interleaving
composition in terms of conventional, synchronous automata. Our treatment of concurrency
is similar in its use of stuttering for modelling asynchrony except that we do not consider
fairness (which is a property of infinite sequences). A principal difference is that our proposal
is based on comparing sequences of events, whereas the method of [101] is essentially state-
based or event-based (based on relations between individual states or event occurrences). For
finite-state systems, the COSPAN [67] tool based on the automata-theoretic framework of
Kurshan [100] implements a procedure for deciding language containment for ω-automata.

Decomposition is a key verification methodology. In particular, almost all the solutions of
the RPC-memory specification problem in [25] use some sort of decomposition. In [2], Lam-
port and Abadi gave a proof rule for compositional reasoning in an assumption/guarantee
framework. A non-trivial decomposition of a closed system is achieved by splitting it into a
number of open systems with assumptions reflecting their dependencies. In our rule, depen-
dencies are reflected in the choice of trace abstractions between components and a requirement
on the relationship between the trace abstractions.

A number of methods have been suggested for improving state-base exploration tech-
niques. Three common approaches are implicit representations, reduced representations and
local (on the fly) checking. One use of implicit representations is the so-called symbolic model
checking of Burch et al. [27] where transition systems are represented as boolean functions
compactly implemented using Ordered Binary Decision Diagrams OBDDs as developed by
Bryant [26] and implemented in the SMV tool as part of the Thesis of McMillan [119]. The
Mona implementation of a decision procedure for M2L uses OBDDs to handle large alphabets,
see Henriksen et al. [69].

A quite different use of implicit representations was the idea of McMillan [119] to represent
the state space of a finite Petri net by a finite prefix of its net unfolding. Net unfolding is
due to Nielsen et al. [128] but McMillan showed how to compute a finite prefix containing all
reachable states (implicitly) and how to use it to check safety properties like deadlock and
coverability. Later the algorithm for computing finite prefixes was improved by Esparza et
al. [58] to ensure at most a linearly blow-up in the size of the state space of the net. In [60],
Esparza extended the method to handle the model checking of a temporal logic also capable
of expressing liveness properties. The PEP tool, see Grahlmann and Best [65], supports an
implementation of the approach. The net unfolding method is an example of a so-called
partial-order method. Another example is the use of reduced representations of state spaces.
Usually, state exploration techniques rely on computing every possible interleaving of concur-
rent transitions. The basic observation is that when checking properties such as absence of
deadlock it is sufficient to use one interleaving instead of all. A reduced state space then has
at least one representative of each possible interleaving. Many different suggestions exist on
just how to compute the reduced state spaces varying with respect to the models and prop-
erties they support. A recent comprehensive account covering several methods is Godefroid

3.2. Decidability of behavioural equivalences on infinite-state systems 25

[64]. An example of a tool supporting this approach is the SPIN tool, see Holzmann [76].
In [152], Stirling and Walker suggested the local model checking approach where model

checking is performed with respect to a designated state. The advantage of the approach
is that only the part of the state space necessary to establish or refute the “local” model-
hood needs to be investigated (built). Inspired by this approach, a number of similar lazy
approaches known as on the fly techniques building state-spaces by need have been suggested.
An example of combing the on the fly idea with partial order methods is Peled [40].

The Mona tool implements a decision procedure of M2L on finite strings and trees based on
a translation into finite automata. Another “automata” tool which allows to work with other
representations than the logical is AMoRE (Automata, Monoids, and Regular Expressions),
see Matz et al. [114], which offers a library of automata theoretic algorithms handling regular
finite word languages such as conversion of regular expression into finite automata, determin-
isation and minimisation of automata etc.. Recent implementations of automata theoretic
algorithms for dealing with regular ω-word languages are collected in the omega-package, for
a brief overview see Vöge et al. [168].

The Mona and Fido tools are essentially general purpose tools and have been used for quite
different tasks including verification of parameterised hardware, see Basin and Klarlund [14],
verification of pointer programs, see Jensen et al. [86] and synthesis of safety controllers for
interactive web services, see Sandholm and Schwartzbach [147].

3.2 Decidability of behavioural equivalences on infinite-state
systems

In this section, we summarise and relate our work on the decidability of behavioural equiva-
lences for infinite-state systems as presented in Chapter 6. and Chapter 7.

Our work is concerned with decidability issues for behavioural equivalences of concurrent
systems, notably linear-time non-interleaving equivalences capturing global causal dependency
and spatial distribution of events.

All known behavioural equivalences are decidable for finite-state systems, but undecidable
for most general formalisms generating infinite-state systems, including process calculi, like
CCS and TCSP, and labelled Petri nets. To study systems in between, various infinite-state
process algebras have been suggested, see Christensen and Hüttle [33], and Hirshfeld and
Moller [73] for surveys. One of the most interesting suggestions is the subclass of Basic
Parallel Processes, BPP, introduced by Christensen [31]. BPPs are recursive expressions
constructed from inaction, action, variables, and the standard operators prefixing, choice and
parallel compositions. By removing the parallel operator one obtains a calculus with exactly
the same expressive power as finite automata. Hence, BPPs can be seen as arising from a
minimal concurrent extension of finite automata and therefore a natural starting point for
exploring infinite-state systems. Another reason for studying BPP is its close connection to
communication-free nets, a natural subclass of labelled Petri nets, see Christensen [31] and
Hirshfeld [72].

Summary of our results

We compare standard language equivalence for process description languages with two gen-
eralisations based on traditional approaches to deal with non-interleaving behaviour. The

26 Chapter 3. Summary

first, pomset equivalence, is based on representing global causal dependency, and the second,
location equivalence, on representing spatial distribution of events.

In Chapter 6, we first study the equivalences on Basic Parallel Processes, BPP. For this
simple process language our two notions of non-interleaving equivalences coincide, and fur-
thermore they are decidable, contrasting the result of Hirshfeld [72] that language equivalence
is undecidable. This result is inspired by a recent result of Esparza and Kiehn [56] showing
the same phenomenon in the setting of model checking.

We follow up investigating to which extent the result extends to larger subsets of CCS and
TCSP. We discover here a significant difference between our two non-interleaving equivalences.
We identify a subclass BPPS of TCSP of processes defined by a static setup X1 ‖Σ . . . ‖Σ Xl of
BPP processes Xi synchronising on actions in Σ, and show that for this non-trivial subclass
of processes between BPP and TCSP not only are the two equivalences different, but one
(location) is decidable whereas the other (pomset) is not. We also show that there is a
difference between the power of the parallel combinators of CCS and TCSP. Adding the
parallel operator of Milner’s CCS to BPP, BPPM , we keep the decidability of both location
and pomset equivalence, whereas by adding the parallel combinators of Hoare’s TCSP, BPPH ,
both become undecidable.

The decidability results are based on the theory of finite tree automata and a new kind of
synchronous automata working on tuples of finite trees. For this latter model, we show closure
under Boolean operations and show decidability of the emptiness problem. The undecidability
results are shown by encodings of counter machines.

Our results are summarised in Table 3.1 below where yes indicates decidability and no
undecidability. The results of the first column are all direct consequences of Hirshfeld’s result
on BPP [72]. The second and third show our results.

Language equiv. Pomset equiv. Location equiv.
BPP no yes yes
BPPS no no yes
BPPH no no no
BPPM no yes yes
TCSP& CCS no no no

Table 3.1: Comparative overview of results on linear-time equivalences.

In Chapter 7, we follow up by investigating the role of renaming and hiding with respect to
decidability. First, we look at BPP extended with the TCSP renaming and hiding combi-
nators [23], and show by a reduction to the same problem for BPP that both pomset and
location equivalences remain decidable. Second, we turn to BPPS . It follows from the un-
decidability for BPPS that pomset equivalence for BPPS extended with renaming or hiding
combinators is undecidable. We show that also location equivalence becomes undecidable
when adding any of the combinators. The proof is by a reduction to the halting problem for
two-counter machines. Our results are summarised in Table 3.2 below where yes indicates
decidability and no undecidability. The results of the first column are all direct consequences
of Hirshfeld’s result on BPP [72]. The second and third show our results.

Furthermore, we turn to the weak case and show that for BPP with τ prefixing BPPτ ,
both weak pomset and weak location equivalence are decidable. This points out a current

3.2. Decidability of behavioural equivalences on infinite-state systems 27

Language equiv. Pomset equiv. Location equiv.
BPP no yes yes
BPP + renaming/hiding no yes yes
BPPS no no yes
BPPS + renaming/hiding no no no

Table 3.2: Comparative view of the role of renaming and hiding.

contrast to the results in the interleaving world where there are currently no positive results on
deciding weak equivalences for the full class of BPPτ . In fact, one major open problem is the
decidability of weak bisimulation on BPPτ , see Esparza [55] and Jancar [80]. In [91], Kiehn
and Hennessy showed the decidability of a number of non-interleaving weak bisimulations for
the class of so–called h-convergent BPPτ

M processes which are processes which cannot evolve
into a divergent process. Also, positive results are known for the asymmetric problem of
deciding weak equivalences between a finite-state system and an infinite-state system such as
BPPτ , see Mayr [116] and Jancar et al. [82]. As a natural next step, we look at the class
of processes BPPτ

M obtained by semantically extending BPPτ with the CCS-communication
rule of Milner [122]. We show that for BPPM , weak location equivalence is undecidable. The
positive result is shown by a reduction to the same problem for BPP and the negative result
is shown by a reduction to the halting problem for two-counter machines.

Our results are summarised in Table 3.2 below where yes indicates decidability, indicates
no undecidability and ? means that the problem is open. The results of the first column
are all direct consequences of Hirshfeld’s result on BPP [72]. The second and third show our
results.

Weak
Language equiv. Pomset equiv. Location equiv.

BPP no yes yes
BPPτ no yes yes
BPPM no ? no
BPPτ

M no ? no
CCS no no no

Table 3.3: Comparative view of results on weak linear-time equivalences.

Related Work

For a short survey of decidability and complexity results about the model checking of infinite-
state systems, see Burkart and Esparza [28]. For surveys on results on equivalence checking
for infinite-state systems see Christensen and Hüttle [33] and more recently Hirshfeld and
Moller [73].

BPPs were first suggested by Christensen et al. in [34, 32] and accompanied by a positive
result showing that (strong) bisimulation is decidable on BPP, see also Christensen in [31].
The result on the full class was shown using a tableaux system equating pairs of processes if

28 Chapter 3. Summary

and only if they are bisimilar. The effectiveness of the procedure is based on showing that
for each pair there is only finitely many tableaux and moreover, every tableau is finite. The
time complexity of the procedure is not known to be bounded by any primitive recursive
function. In [74], Hirshfeld et al. gave a polynomial time decision procedure for normed BPP
– the subclass of BPP processes for which any reachable process can reach inaction. Later,
Hirshfeld showed that in contrast language (trace) equivalence is undecidable [72] for BPP.
The picture has since been completed by a result showing that in the branching-time/linear-
time spectrum of van Glabbeek [164] only bisimulation is decidable, see Hüttel [78]. The
result of Hirshfeld was shown using a non-trivial adoption of the elegant weak simulation of
counter machines used by Jancar to show undecidability of bisimulation for Petri nets [79].

Various generalisations of behavioural equivalences to deal with non-interleaving behaviour
have been studied, see for instance [165]. The operational semantics from which our equiv-
alences are derived is based on an enrichment of the standard semantics of CCS, see Mil-
ner [122], and TCSP, see Olderog and Hoare [131], decorating each transition with some extra
information allowing an observer to observe the location of the action involved. The location
information we use to decorate transitions is derived directly from the concrete syntax tree of
the process involved. We have chosen here to follow the technical static setup from Mukund
and Nielsen [126], but could equally easy have presented an operational semantics in the dy-
namic style of Boudol et al. [21]. A number of non-interleaving bisimulation equivalences have
been shown decidable on BPP: causal bisimulation, location equivalence, ST-bisimulation, see
Kiehn and Hennessy [91], and distributed bisimulation, see Christensen [31]. These results
were all shown using adaptations of the tableau approach applied in Christensen et al. [32].
In our work, we concentrate on non-interleaving generalisations of language equivalence.

For the weak case, as mentioned above, one major open problem is the decidability of
weak bisimulation on BPPτ , and the positive decidability results of [91, 116, 82]. on weak
equivalences do not consider the full class of BPPτ processes. A number of negative results
are known for interleaving equivalence on infinite-state system. Many follow from the unde-
cidability of the corresponding strong equivalences. Other results can be found in Jancar [80]
Jancar and Esparza [81] and Jancar et al. [82].

3.3 Synthesis of nets from logical specifications

In this section we summarise and relate our work on the synthesis of distributed systems as
presented in Chapter 8.

We address the problem of synthesising a distributed system – modelled as a Petri net –
from a logical specification of its behaviour possibly including requirements about causality
and independence of events. Our work is inspired by the following approaches:

• the synthesis of transitions systems from temporal logic specifications, and

• the synthesis of distributed systems from transition systems using the theory of regions.

The synthesis of transition systems from temporal logic specifications exploits the decidability
of the satisfiability problem of temporal and modal logics like LTL, CTL, CTL∗, and the
µ-calculus, and the existent powerful tableaux and automata techniques which effectively
construct a model for a given formula, see Emerson [48] for a survey.

The theory of regions due to Ehrenfeucht and Rozenberg [45] is in a certain sense a
complementary approach to the synthesis from temporal logic specifications. Here the starting

3.3. Synthesis of nets from logical specifications 29

point is a transition system. The theory characterises the transition systems that admit
distributed implementations (modelled as elementary net systems), and provides algorithms
to derive them.

Both approaches are not quite satisfactory. In the first approach the produced models are
presented (essentially) in terms of labelled transition systems with no additional structure,
and hence there is no way of ensuring any concurrent structure or spatial distribution. The
main problem of the second approach is the need of a completely determined transition system
as starting point, an often unrealistic requirement.

By combining the approaches, the application of the synthesis algorithms given by the
theory of regions to the transition systems derived from logical specifications allows the au-
tomatic derivation of satisfactory distributed solutions, but only when the transition system
happens to be distributable and corresponds to the intended concurrency.

What is needed is a specification logic capable of expressing concurrency, and with a
decision procedure that only produces distributable transition systems.

A summary of our work

We consider the problem of synthesising elementary net systems from synchronisation trees
where for our purposes synchronisation trees are simply tree shaped transition systems.

The synchronisation tree associated with an elementary net system arises naturally as the
branching tree unfolding of the case graph.

Our main contribution is a characterisation of the synchronisation trees generated by
active elementary net systems, those in which every condition can always cease to hold.
(Since activity is a desired property in most applications, this can be seen as a positive or as
a negative feature.) The characterisation is based on active regions – a strengthening of the
notion of regions.

Moreover, we show that the identified class of synchronisation trees is definable in the
second-order theory of n-successor SnS, see e.g [160], and show a finite model property
stating that if the synchronisation tree of an active elementary net system satisfies an SnS
formula φ then there is a finite active elementary net system such that its synchronisation
tree satisfies φ.

The definability in SnS immediately establishes a link with tree automata. So a conse-
quence of our work is the possibility to augment standard automata based procedures for the
satisfiability of temporal logics, see e.g. [166, 48] to procedures for the synthesis of (active)
elementary net systems: In order to synthesise a distributed system satisfying some temporal
property φ, we can construct two automata, one accepting the active elementary synchro-
nisation trees, and the other accepting the synchronisation trees satisfying φ; then, we can
construct the intersection of the two automata, and check for emptiness.

Moreover, interleaving logics can be used to express independence of events when inter-
preted over transition systems of elementary net systems. For instance in these systems, the
CTL-formula EF (EXaEXbtrue ∧EXbtrue) is true if and only if the events a and b can occur
independently of each other, and the CTL-formula EF (EXaAXbfalse ∧ EXbtrue) expresses
that the events a and b are in conflict. Hence, with standard interleaving temporal and modal
logics, one can specify not only standard safety and liveness properties, but also properties
about the concurrent behaviour of a system and about its spatial distribution (using the
notion of independence of events).

30 Chapter 3. Summary

The main tool in establishing our results are zig-zag morphism and we show a number of
fundamental relationships between regions, zig-zag morphisms and bisimulation which might
also be of independent interest. In particular, we show that active regions are preserved under
zig-zag transition morphism.

Related work

Net theory is one well-established theory of distributed systems within which elementary
net systems constitute a basic model with a particularly well-developed theory, see Rozen-
berg [146] and Thiagarajan [158].

The theory of regions was introduced by Ehrenfeucht and Rozenberg in a seminal pa-
per [45] where regions were use to give a characterisation of the transition systems which
correspond to elementary net systems, and to device a construction of net systems. In [129],
Nielsen et al. showed that this representation theorem lifted to the functorial level. In [45],
it was also shown that the net systems synthesised are canonical in the sense that they are
saturated, that is, no condition can be added to the net system without either altering the
behaviour or leaving the class of elementary net systems. In [17], Bernardinello showed that
the synthesis algorithm of [45] also works using only the set of minimal (with respect to set
inclusion) regions. This approach focuses on reducing the number of conditions in the con-
structed net system. Focusing on reducing the size of the reachable cases in the constructed
net system, Desel and Reisig [42] showed how to generate net systems from small regions.
In general, Hiraishi [71] showed that the problem of deciding whether a transitions system
satisfies either of the two key axioms of elementarity – regional separation and regional en-
abling – is NP-complete. Later, Badouel et al. [11] showed that also the synthesis problem
for elementary net systems is NP-complete.

The results of [45, 129] were generalised to larger classes of nets by Mukund in [125] and by
Winskel and Nielsen in [172]. Contrasting the NP-completeness for elementary net systems,
Badouel et al. deviced a polynomial time algorithm for the synthesis of bounded nets in [10].

The lack of concurrent structure in labelled transition systems have lead Emerson and
Clarke [49], and Manna and Wolper [113] to extent the model construction of the existent
tableaux techniques with some post-processing deriving concurrent models. Since distribution
aspects like concurrency and independency of events cannot be specified in the logics used,
solutions can be obtained that satisfy the logical specification, but do not exhibit the intended
concurrency.

An alternative approach to the synthesis of distributed systems from logical specifications
is to apply temporal or modal logics interpreted over models reflecting concurrency such
as traces, event structures, and asynchronous transition systems. The main problem with
this approach is that more involved mathematics must be applied hence leaving the powerful
machinery of automata on infinite tress inadequate, and moreover that the extended expressive
power seems hard to control, hence for instance natural non-interleaving extensions of LTL
and CTL are not even decidable, see the chapter of Penczek and Kuiper in [43].

Part II

Papers

31

Chapter 4

Automated Logical Verification
Based on Trace Abstractions

Contents

4.1 Introduction . 36
4.1.1 Relations to previous work . 36
4.1.2 Overview . 37

4.2 Traces and abstractions . 37
4.2.1 Systems, universes and normalisation 38
4.2.2 Composition . 38
4.2.3 Implementation . 39
4.2.4 Relational trace abstractions . 39

4.3 Monadic second-order logic on strings . 41
4.4 The finite state case . 42

4.4.1 A uniform logical framework . 43
4.4.2 Automated proofs . 45

4.5 A specification problem . 45
4.6 Conclusions . 47
4.7 Proofs . 47

4.7.1 Proof of Theorem 5 . 47
4.7.2 Proof of Theorem 6 . 47
4.7.3 Proof of Corollary 8 . 48
4.7.4 Proof of Proposition 11 . 49
4.7.5 Proof of Theorem 13 . 49

33

Automated Logical Verification
Based on Trace Abstractions

Nils Klarlund1 Mogens Nielsen Kim Sunesen

BRICS2

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C.

{klarlund,mnielsen,ksunesen}@dbrics.dk

Abstract We propose a new and practical framework for integrating the
behavioural reasoning about distributed systems with model-checking meth-
ods.

Our proof methods are based on trace abstractions, which relate the be-
haviours of the program and the specification. We show that for finite-state
systems such symbolic abstractions can be specified conveniently in Monadic
Second-Order Logic (M2L). Model-checking is then made possible by the
reduction of non-determinism implied by the trace abstraction.

Our method has been applied to a recent verification problem by Broy and
Lamport. We have transcribed their behavioural description of a distributed
program into temporal logic and verified it against another distributed sys-
tem without constructing the global program state space. The reasoning is
expressed entirely within M2L and is carried out by a decision procedure.
Thus M2L is a practical vehicle for handling complex temporal logic specifi-
cations, where formulas decided by a push of a button are as long as 10-15
pages.

1Author’s current address: AT&T Bell Laboratories, Room 2C-410, 600 Mountain Ave., Murray Hill, NJ
07974; E-mail: klarlund@research.att.com.

2Basic Research in Computer Science, Centre of the Danish National Research Foundation.

35

36 Chapter 4. Automated Logical Verification Based on Trace Abstractions

4.1 Introduction

This paper is concerned with the specification and verification of distributed systems. Often,
the relationship between a program and a specification is expressed in terms of a state-based
refinement mapping, see [109] for a survey. Thus, when systems are specified by behavioural
or temporal constraints, it is necessary first to find state-representations. In this process,
important information may be lost or misconstrued.

In this paper, we exhibit a logic of traces (i.e. finite computation sequences) which allows
compositional reasoning directly about behaviours. We formulate trace abstractions and
their proof rules as an alternative to the use of refinement mappings for the verification of
distributed systems.

Our main goal is to show that our method is useful in practice for complicated examples.
Thus, use of our logic and proof rules must be supported by a decision procedure which will
give answers to logical questions about the systems, such as “Does trace abstraction R show
that program P implements S?”

To this end, we formulate a sound and complete verification method based on trace ab-
stractions. We show that our method for finite-state systems can be formulated in a very
succinct formalism: the Monadic Second-order Logic (M2L).

We address the important problem of relating a distributed program to a non-deterministic
specification which also is a distributed system. Non-determinism arises when systems have
alphabets which are partitioned into observable and internal actions. Abstracting away in-
ternal actions generally introduces non-determinism.

Our contribution is to show an alternative to usual techniques, which tend to involve rather
involved concepts such as prophecy variables or mappings to sets of sets of states. These can
be replaced by behavioural predicates which need only to partially link the program and the
specification. The remaining information is then calculated automata-theoretically by means
of the subset construction.

We formulate a compositional rule to avoid the explicit construction of the global program
space.

Using the Mona implementation of M2L, we have verified a recent verification problem
by Broy and Lamport by transcribing several pages of informally stated temporal properties.
The formulas resulting are decided in minutes despite their size (105 characters). A detailed
treatment of this problem can be found in [95,§5].

4.1.1 Relations to previous work

The systems we define are closely related to those described by Hoare in [75], where an
alphabet Σ and a set of traces over Σ is associated with every process. We use a composition
operator, similar to Hoare’s parallel operator (‖ [75]) forcing systems to synchronise on events
or actions shared by both alphabets.

We do not know of any earlier work using relations directly on traces. In fact, the use of
state mappings — one of the most advocated methods for proving refinement, see e.g. [108,
104, 105, 89] and for a survey [109] — were introduced as a way to avoid behavioural reasoning,
often regarded as being too complex. The theory of state mappings is by now well-understood,
but not simple, with the completeness results in [1, 96, 151]. In the finite state case, an
important difference between the state mapping approach and ours is that in the traditional
approaches, the mapping is to be exactly specified state by state whereas in our approach

4.2. Traces and abstractions 37

the relation between behaviours may be specified partially leaving the rest to our verification
tool. In [2], Lamport and Abadi gave a proof rule for proving correctness of implementation of
compound systems based on an assumption/guarantee method. A closed compound system is
split into a number of open systems by factoring out dependencies as assumptions. Our rule
is very different in that dependencies are reflected in a requirement about the relationship
between trace abstractions for components.

The TLA formalism by Lamport [105] and the temporal logic of Manna and Pnueli [89]
offer unified frameworks for specifying systems and state mappings, and for proving the
correctness of implementation. Both logics are undecidable, but work has been done on
establishing mechanical support, see [51, 111].

Clarke, Browne, and Kurshan [35] have applied model checking techniques to the language
containment problem (L(M1) ⊆ L(M2)), where M1 and M2 are ω-automata. They reduce
the containment problem to a model-checking problem by forming a product of the automata
and checking whether the product is a model for a certain CTL∗ formula. The method is
applicable to any common kind of ω-automata. Thus it deals with liveness properties unlike
our method, which only deals with logic over finite prefixes. However, the method in [35]
suffers from the restriction that M2 be deterministic.

Kurshan, see [100], has devised an automata-theoretic framework for modelling and ver-
ifying synchronous transition systems. His use of homomorphisms allow complex properties
to be reduced to ones that can be verified by means of model-checking.

Kurshan’s methods were extended in [101] to the asynchronous input/output automata
of [108]. There, Kurshan et al. give an account of interleaving composition in terms of
conventional, synchronous automata. Our treatment of concurrency is similar in its use
of stuttering for modelling asynchrony except that we do not consider fairness (which is
a property of infinite sequences). A principal difference is that our proposal is based on
comparing sequences of events, whereas the method of [101] is essentially state-based or
event-based.

Binary Decision Diagrams (BDDs) are usually used in verification to compactify represen-
tations of state-spaces, see e.g. [37]. The Mona implementation [69] of a decision procedure
for M2L uses BDDs to handle large alphabets.

4.1.2 Overview

In Section 4.2, we discuss our formal framework, which is based on an interleaving semantics
of processes that work in a global space of events. M2L is explained in Section 4.3. We show
in Section 4.4 that with some additional concepts, it is possible to formulate the verification
method of Section 4.2 in M2L. In Section 4.5, we explain the role of trace abstractions in our
solution of the Broy and Lamport verification problem.

4.2 Traces and abstractions

We regard systems in a fairly standard way: they are devices which produce sequences of
events which are either observable or internal. Systems exist in a universe. They can be
composed and compared. Trace abstractions relate a program to a specification. These
abstractions form a sound and complete verification method, and a simple decomposition
rule is easy to formulate.

38 Chapter 4. Automated Logical Verification Based on Trace Abstractions

4.2.1 Systems, universes and normalisation

A system A determines an alphabet ΣA of events, which is partitioned into observable events
ΣObs

A and internal events ΣInt
A . A behaviour of A is a finite sequence over ΣA. The system

A also determines a prefix-closed language LA of behaviours called traces of A. We write
A = (LA,ΣObs

A ,ΣInt
A). The projection π from a set Σ∗ to a set Σ′∗ (Σ′ ⊆ Σ) is the unique

string homomorphism from Σ∗ to Σ′∗ given by π(a) = a, if a is in Σ′, and π(a) = ε otherwise,
where ε is the empty string. The observable behaviours of a system A, Obs(A), are the
projections on ΣObs

A of the traces of A, that is Obs(A) = {π(α) | α ∈ LA}, where π is the
projection from Σ∗A onto (ΣObs

A)∗.
A system A is thought of as existing in a universe which contains the systems with which it

is composed and compared. The events possible in this universe constitute a global alphabet
U , which contains ΣA and all other alphabets of interest. Moreover, U is assumed to contain
the distinguished event τ , which is not in the alphabet of any system. The set NΣ(A) of
normalised traces over an alphabet Σ ⊇ ΣA is the set h−1(LA), where h is the projection
from Σ∗ onto Σ∗A. Normalisation plays an essential rôle when composing systems and when
proving correctness of implementation of systems with internal events.

4.2.2 Composition

We say that systems A and B are composable if they do not disagree on the partition of events,
that is, if no internal event of A is an observable event of B and vice versa, or symbolically,
if ΣInt

A ∩ΣObs
B = ∅ and ΣInt

B ∩ΣObs
A = ∅. Given composable systems A and B, we define their

composition A ‖ B = (LA‖B ,ΣObs
A‖B ,Σ

Int
A‖B), where

• the set of observable events is the union of the sets of observable events of the compo-
nents, that is, ΣObs

A‖B = ΣObs
A ∪ ΣObs

B ,

• the set of internal events is the union of the sets of internal events of the components,
that is, ΣInt

A‖B = ΣInt
A ∪ ΣInt

B , and

• the set of traces is the intersection of the sets of normalised traces with respect to the
alphabet ΣA‖B , i.e. LA‖B = NΣA‖B (A) ∩NΣA‖B (B).

(Note that the restriction above for composability ensures that A ‖ B has also disjoint ob-
servable and internal events.)

A trace of A ‖ B is the interleaving of a trace of A with a trace of B in which common
events are synchronised. The projection of a trace of A ‖ B onto the alphabet of any of
the components is a trace of the component. Composition is commutative, idempotent, and
associative, and extends straightforwardly to any number n of composable systems Ai. We
write A1 ‖ . . . ‖ An or just ‖Ai.

Example 1 To make the concepts clearer, we show how to present the well-known scheduler
[122] of Milner in terms of our systems. The distributed scheduler is based on passing a token
consecutively between a number of computing agents. We consider a three-agent version of the
scheduler. The ith agent Si performs observable events ai and bi to indicate the beginning
and the end of computing, respectively, and it synchronises with its neighbour agents by
interacting on the internal events ci and ci	1, where i is 0, 1, or 2, and 	 is subtraction
modulo 3.

4.2. Traces and abstractions 39

For a regular expression r, we denote by LPre(r) the regular language obtained by taking
the prefix-closure of the language associated with r. Thus the agents may be described by:

S0 = (LPre((a0c0(b0c2 + c2b0))∗), {a0, b0}, {c0, c2}),
S1 = (LPre(c0(a1c1(b1c0 + c0b1))∗), {a1, b1}, {c0, c1}),
S2 = (LPre(c1(a2c2(b2c1 + c1b2))∗), {a2, b2}, {c1, c2})

The scheduler is defined in terms of the compound system:

S = S0 ‖ S1 ‖ S2

where the set of observable events then consists of the ai’s and bi’s. 2

4.2.3 Implementation

We say that systems A and B are comparable if they have the same set of observable events
ΣObs, that is, ΣObs = ΣObs

A = ΣObs
B . In the following, A and B denote comparable systems

and π denotes the projection from U∗ onto (ΣObs)∗.

Definition 2 A implements B if and only if Obs(A) ⊆ Obs(B). 2

Example 3 Another way of defining a scheduler is to use a central agent C. The ith agent
still performs observable events ai and bi but now synchronises with the agent C by interacting
on the internal event di. The agents are given by the systems

C = (LPre((d0d0d1d1d2d2)∗), ∅, {d0, d1, d2}),
Pi = (LPre((diaidibi)∗), {ai, bi}, {di}), i = 0, 1, 2

and the scheduler is defined by the compound system:

P = P0 ‖ P1 ‖ P2 ‖ C

where the observable events are the ai’s and bi’s and internal events are the di’s.
The systems S and P may be seen as existing in the universe U = {ai, bi, ci, di, τ | i =

0, 1, 2} and are clearly comparable. The reader may convince himself that P implements S,
but in general this is not an easy task. 2

4.2.4 Relational trace abstractions

A trace abstraction is a relation on traces preserving observable behaviours.

Definition 4 A trace abstraction R from A to B is a relation on U∗ × U∗ such that

1. If αRβ then π(α) = π(β)

2. NU (A) ⊆ dom R

3. rng R ⊆ NU (B) 2

The first condition states that any pair of related traces must agree on observable events.
The second and third condition require that any normalised trace of A should be related to
some normalised trace of B, and only to normalised traces of B.

40 Chapter 4. Automated Logical Verification Based on Trace Abstractions

The use of trace abstractions forms a sound and complete method in the sense that there
exists a trace abstraction from A to B if and only if A implements B.

Theorem 5 There exists a trace abstraction from A to B if and only if A implements B. 2

We would like to prove that a compound system ‖Ai implements another compound
system ‖Bi by exhibiting trace abstractions Ri from Ai to Bi. A simple extra condition is
needed for this to work:

Theorem 6 Let Ai and Bi be pairwise comparable systems forming the compound systems
‖Ai and ‖Bi and let ΣObs = ΣObs

i . If

Ri is a trace abstraction from Ai to Bi (4.1)⋂
i dom Ri ⊆ dom

⋂
iRi (4.2)

(4.3)

then

‖Ai implements ‖Bi 2

Intuitively, the extra condition (4.2), which we call the compatibility requirement , ensures
that the choices defined by the trace abstractions can be made to agree on internal events.

Due to the possibility of non-trivial interference on internal events among the compo-
nent systems, the first premise alone of the composition rule is not sufficient to ensure the
conclusion. Consider e.g. the following systems

A1 = ({a}∗, {a}, ∅), B1 = ({ac}∗{ε, a}, {a}, {c})
A2 = ({b}∗, {b}, ∅), B2 = ({bc}∗{ε, b}, {b}, {c})

Obs(Ai) ⊆ Obs(Bi), but Obs(A1 ‖ A2) 6⊆ Obs(B1 ‖ B2), since aa ∈ Obs(A1 ‖ A2), but
aa 6∈ Obs(B1 ‖ B2).

The next example illustrates that even when significant internal interaction exists among
the components, the decomposition theorem may be applied.

Example 7 Consider the schedulers from before. For each i = 0, 1, 2, let χi be the string
homomorphism from U∗ to U∗ mapping every string α into a string identical to α except that
every occurrence of ci is erased and every even occurrence of di is replaced by ci. Formally,
χi(ε) = ε and for α ∈ U∗ and u ∈ U ,

χi(αu) =




χi(α)ci if u = di and
the number of dis in α is odd

χi(α) if u = ci
χi(α)u otherwise

Let χ = χ0◦χ1◦χ2. It is not hard to check that the relationsRi = {(α,χ(α)) | χ(α) ∈ NU (Si)}
are trace abstractions from Pi ‖ C to Si, respectively. (Requirements 1. and 3. are satisfied
by definition. To see that 2. holds, we consider some α ∈ NU (Pi ‖ C) and argue that
χ(α) ∈ NU (Si).) Also, it is not hard to see that

⋂
i dom Ri ⊆ dom

⋂
iRi. (For each α there

is exactly one χ(α).) Hence by Theorem 6, it follows that (P0 ‖ C) ‖ (P1 ‖ C) ‖ (P2 ‖ C)
implements S and therefore that P implements S. 2

An almost trivial observation is:

4.3. Monadic second-order logic on strings 41

Corollary 8 If additionally the components of the specification are non-interfering on in-
ternal events, that is, ΣInt

Bi
∩ ΣInt

Bj
= ∅, for every i 6= j, then Ai implements Bi implies ‖Ai

implements ‖Bi. 2

4.3 Monadic second-order logic on strings

The logical language we use is the monadic second-order logic (M2L) on strings, where a
closed formula is interpreted relative to a natural number n (the length). First-order variables
p, q, . . . range over the set {0, . . . , n − 1} (the set of positions), and second-order variables
P,Q, . . . , P1, P2, . . . range over subsets of {0, . . . , n − 1}. Atomic formulas are of the form
p = q, p = q+1, p < q and q ∈ P . Formulas are constructed in the standard way from atomic
formulas by means of the Boolean connectives ¬,∧,∨,⇒ and ⇔, and first and second-order
quantifiers ∀ and ∃. We adopt the standard notation of writing φ(P1, . . . , Pk, p1, . . . , pl) to
denote an open formula φ whose free variables are among P1, . . . , Pk, p1, . . . , pl. Let 0 and
$ be the M2L definable constants denoting the positions 0 and n − 1, respectively. The
expressive power of M2L is illustrated by the formula

∃P.0 ∈ P ∧ (∀p.p < $⇒ (p ∈ P ⇔ p+ 1 6∈ P))

which defines the set of even numbers. A second-order variable P can be seen as denoting a
string of bits b0 . . . bn−1 such that bi = 1 if and only if i ∈ P . This leads to a natural way
of associating a language L(φ) over Σ = IBm of satisfying interpretations to an open formula
φ(P1, . . . , Pm) having only second-order variables occurring free (IB denotes the set {0, 1}).
As an example, consider the formula φ ≡ ∀p.p ∈ P1 ⇔ p 6∈ P2. Then L(φ) is a language over
the alphabet Σ = IB2, where each (b1, b2) ∈ IB2 denotes the membership status of the current
position relative to P1 and P2. For example, writing the tuples as columns, we have

P1: 11010
P2: 00101

∈ L(φ) and P1: 11010
P2: 01000

6∈ L(φ)

Any language defined by a M2L formula is regular and conversely any regular language can be
defined by a M2L formula. Given a formula φ, a minimal finite automaton accepting L(φ) can
effectively be constructed using the standard operations of complementation, product, subset
construction, and projection. In particular, the existential quantifier becomes associated with
a subset construction—and a potential exponential blow-up in the number of states. The
construction of automata constitutes a decision procedure for M2L, since φ is a tautology if
and only if L(φ) is the set of all strings. In case φ is not a tautology, a witness in terms of a
minimal interpretation falsifying φ can be derived from the minimum deterministic automaton
recognising L(φ). We use the tool Mona [69], which implements the decision procedure and
the counter-example facility.

4.4 The finite state case

We now restrict attention to systems with regular trace languages. We show for a large
class of finite-state systems that trace abstractions definable by regular languages constitute
a complete method for proving the implementation property.

42 Chapter 4. Automated Logical Verification Based on Trace Abstractions

Given strings α = α0 . . . αn ∈ Σ∗1 and β = β0 . . . βn ∈ Σ∗2, we write α∧β for the string
(α0, β0) . . . (αn, βn) ∈ (Σ1×Σ2)∗. Every language LR over a product alphabet Σ1 ×Σ2 has a
canonical embedding as a relation RL ⊆ Σ∗1 × Σ∗2 on strings of equal length given by α∧β ∈
LR

def⇔αRLβ. Hence in the following we shall use the two representations interchangeably.
Accordingly, we say that a trace abstraction is regular if it is the embedding of a regular
language over U × U .

Not all trace abstractions between finite-state systems are regular, since there may be an
unbounded number of internal events between pairs of corresponding observable events. The
next definition is an essential step towards the identification of regular trace abstractions.

Definition 9 Given a subset Σ′ of Σ we say that strings α, β ∈ Σ∗ are Σ′–synchronised if
they are of equal length and if whenever the ith position in α contains a letter in Σ′ then the
ith position in β contains the same letter, and vice versa. 2

Definition 10 Let R̂ be the language over U × U given by α∧β ∈ R̂ if and only if

β ∈ NU (B) and α, β are ΣObs-synchronised

2

Since NU (B) is a regular language (by assumption of this Section), so is R̂. The next propo-
sition gives a sufficient condition for R̂ and any regular subset of R̂ to be a trace abstraction.
We return to the significance of the last part when dealing with automated proofs.

Proposition 11 If NU(A) ⊆ dom R̂ then R̂ is a regular trace abstraction from A to B.
Moreover in general, for any regular language C ⊆ (U × U)∗, if NU (A) ⊆ dom R̂ ∩ C, then
R̂ ∩ C is a regular trace abstraction from A to B. 2

It is not hard to see that if R̂ is a regular trace abstraction, then it is the largest such
relating ΣObs-synchronised traces. In this case we denote R̂ the canonical trace abstraction.

Non-regularity of trace abstractions occurs if for example there are arbitrarily many non-
observable events between any two observable events. However, it may also happen that a
behaviour of the program may have too few internal events between two observable events
in the sense that any behaviour of the specification with the same observable behaviour may
require more internal events. We next give a precise definition of this phenomenon. Let πA

and πB be the projections from Σ∗A and Σ∗B , respectively, onto (ΣObs)∗.

Definition 12 A trace α ∈ LA is internally finer than a trace β ∈ LB if πA(α) = πB(β),
and for all e, e′ ∈ ΣObs, u ∈ (ΣInt

A)∗, v ∈ (ΣInt
B)∗, α1, α2 ∈ Σ∗A and β1, β2 ∈ Σ∗B, such that

πA(α1) = πB(β1)

α = α1eue
′α2 ∧ β = β1eve

′β2

∨
α = ue′α2 ∧ β = ve′β2


⇒ |u| ≥ |v|

A system A is internally finer than a system B if for any trace α of A such that πA(α) ∈
Obs(B), there exists a trace β of B such that α is internally finer than β. 2

Consider the scheduler example. System P is internally finer than S, whereas the converse

4.4. The finite state case 43

is not true. We restate the soundness and completeness result from the general case for a
constrained class of systems and regular trace abstractions.

Theorem 13 Assume that A is internally finer than B. There exists a canonical trace ab-
straction from A to B if and only if A implements B. 2

The restriction on programs to be internally finer than their specifications can be overcomed
simply by adding more internal behaviour to the program. More precisely, given systems
A and B there always exists a system A′ such that A and A′ have the same observable
behaviours, that is, Obs(A) = Obs(A′), and such that A′ is internally finer than B. E.g. using
S′0 = (LPre((d0a0d0c0(b0c2 + c2b0))∗), {a0, b0}, {c0, c2, d0}) instead of S0 and with similar
changes using S′1 and S′2 for S1 and S2, respectively, we have that S′ = S′0 ‖ S′1 ‖ S′2 is
internally finer than P and that Obs(S) = Obs(S′).

4.4.1 A uniform logical framework

In the finite setting, reasoning about systems can conveniently be expressed in M2L. Let
U = IBm be the universe, where m is a natural number. Any behaviour α over U can be
viewed as an interpretation of a sequence of second-order variables Uα

1 , . . . , U
α
m. So behaviours

over, say, 1024 different events may be coded using just 10 variables.
We use for each event σ = (b1, . . . , bm) ∈ U and α the notation α(t) = σ for the M2L

predicate

(
∧

bi=1

t ∈ Uα
i) ∧ (

∧
bi=0

t 6∈ Uα
i),

which states that the behaviour denoted by α has a σ event in the position denoted by t. A
system A = (LA,ΣObs

A ,ΣInt
A) is represented by a triple

A = (φA, φ
Obs
A , φInt

A)

of formulas defining the normalised traces of the system, φA(α), the observable events,
φObs

A (α, t), and the internal events, φInt
A (α, t). That is, NU (A) = L(φA) and φObs

A (α, t) and
φInt

A (α, t) are predicates that are true if and only if the position denoted by t in the behaviour
denoted by α is an element of ΣObs

A and ΣInt
A , respectively. Given composable systems A and

B, composition is represented by

A ‖ B = (φA ∧ φB , φ
Obs
A ∨ φObs

B , φInt
A ∨ φInt

B).

We have that L(φA∧φB) = L(φA)∩L(φB) = NU (A ‖ B) and that φObs
A ∨φObs

B and φInt
A ∨φInt

B

defines the union of the observable and the internal events, respectively. Let now behaviour
β be represented by Uβ

1 , . . . , U
β
m. The property that behaviours α and β in U∗ are ΣObs-

synchronised is expressed by predicate φObs
A,B(α, β) defined by

∀t : (φObs
A (α, t) ∨ φObs

B (β, t))⇒ α(t) = β(t).

The canonical trace abstraction R̂ of Definition 10 is defined by

R̂A,B(α, β)
def≡ φB(β) ∧ φObs

A,B(α, β).

44 Chapter 4. Automated Logical Verification Based on Trace Abstractions

By Proposition 11 and Theorem 13, the implementation property is implied by NU (A) ⊆
dom R̂ and hence by the validity of

φA(α) ⇒ ∃β : R̂A,B(α, β), (4.4)

where ∃β is defined as ∃Uβ
1 . · · · ∃U

β
m. Let Ri(α, β)

def≡ R̂Ai,Bi(α, β) ∧ ψi(α, β). The premises
of the decomposition rule of Theorem 6 are expressed by∧

i

(φAi(α) ⇒ ∃β : Ri(α, β)) (4.5)

∧
i

∃βi : Ri(α, βi) ⇒ ∃β :
∧
i

Ri(α, β). (4.6)

To express the premise of Corollary 8 simply replace equation (4.6) above by∧
i6=j

∀t : φInt
Bi

(α, t)⇒ ¬φInt
Bj

(α, t).

Also, properties like composability and comparability can be expressed. The former by

∀t : (φInt
A (α, t)⇒ ¬φObs

B (α, t)) ∧
(φInt

B (α, t)⇒ ¬φObs
A (α, t))

and the latter by

∀t : φObs
A (α, t)⇔ φObs

B (α, t).

In general, M2L is a very flexible logical language making it easy to write tense time and
interval temporal logic operators in a straightforward manner. As examples, consider the
past operator φBefore

σ,µ (α) defined by

∀t1 : α(t1) = µ⇒ ∃t0 : t0 < t1 ∧ α(t0) = σ,

and the interval operator φBetween
σ (α, t1, t2)

∃t. t1 < t < t2 ∧ α(t) = σ.

4.4.2 Automated proofs

Formulas (4.4), (4.5), and (4.6) are potentially very difficult, since they involve quantification
over behaviours, that is, over m second-order variables. Each quantification can lead to an
exponential blow-up. But if A has much internal behaviour, then it seems reasonable to use
a more clever trace abstraction guided by A’s internal events. In fact, it must be suspected
that it is inappropriate that the definition of R̂ does not involve A at all.

The canonical trace abstraction can be constrained by adding more precise information
about the connection between the internal behaviour of system A and B. This may reduce
the blow-up—or even avoid it in the case a functional regular trace abstraction is formulated.

We next turn to a substantial verification problem to illustrate our technique.

4.5. A specification problem 45

4.5 A specification problem

In this section, we consider the problem proposed by Broy and Lamport in [24]. The first
part of [24] calls for a specification of a reactive system consisting of a number of sequential
processes issuing blocking read and write calls to a memory server. The memory server
maintains its memory by performing special atomic reads and writes whenever requested to
do so by read and write calls. Depending on the success of atomic reads and writes, return
events contain the answers to read and write calls. The memory must be able to handle
several calls (from different processes) concurrently.

The second part of [24] calls for an implementation based on a remote procedure call pro-
tocol. The protocol involves a local and a remote party. Calls received locally are forwarded
to the remote site, where they are executed. The resulting return events are propagated back
to the local site. Altogether, we deal here with four levels of calls and returns.

The goal of [24] is now to verify that every observable trace of the implementation (where
atomic read and writes and the remote events are abstracted away) is an observable trace of
the specification.

The full informal description [24] includes many technical complications concerning the
parameters passed and different kinds of erroneous behaviours. A detailed presentation of
our solution can be found in [95,§5].

In performing the verifications, we have limited ourselves to finite domains. We have
chosen to have two locations, two kinds of values, two kinds of flags, and two process identities
(in addition to the memory process). The resulting program has approximately a hundred
thousand states and the specification approximately a thousand states. The systems allow
thousands of different events. The systems are modelled as deterministic automata. The full
specification amounts to 10-15 pages of M2L formulas (written in a macro language).

The aspect which we are interested in here is the use of trace abstractions. Without
going into any further details, we assume that the M2L formulas φP1 ∧ φP2 and φS1 ∧ φS2

define the implementation and the specification, respectively, of our solution. The universe
U consists of τ and a number of parameterised events: rd, wrt, rtn, atmrd, atmwrt, rpcCall,
and rpcRtn denoting reads, writes, returns, atomic reads, atomic writes, rpc calls, and rpc
returns, respectively. For example, rd : [?, obs, 1] is a read event, where the first parameter is
unspecified, the second is obs, which stands for an observable event, and the last parameter
1 denotes the process id. A similar notation is used for other events.

The Mona tool is currently not able to handle automata of the size corresponding to the
distributed program just discussed. Hence we prove the correctness of the implementation by
using our composition rule. The obvious idea is to try whether

φPi(α)⇒ φSi(α)

holds (for i = 1 or i = 2; the formulas are symmetric). The Mona tool, however, quickly
determines that this formula is not valid. There is a counter-example of length 12:

rd:[obs], rpcCall, rd, atmrd, rtn, rpcRtn,
rpcCall, rd, atmrd, rtn, rpcRtn, rtn:[obs],

where we have left out most of the parameters. The counter-example arises because the
specification system requires exactly one atomic read in every successful read call, whereas
the implementation is allowed to retry on failure.

46 Chapter 4. Automated Logical Verification Based on Trace Abstractions

Fortunately, we can let Mona establish

φPi(α) ⇒ ∃β : R̂i(α, β), (4.7)

where R̂i(α, β)
def≡ φObs

Pi,Si
(α, β) ∧ φSi(α, β) is the canonical trace abstraction. Thus, φPi

implements φSi .
To avoid explicitly modelling the whole system at the implementation level, we use the

proof rule for compound systems. The compatibility premise of Theorem 6 becomes:

∧
i

∃βi : R̂i(α, βi) ⇒ ∃β :
∧
i

R̂i(α, β). (4.8)

However, the existential quantification on the right hand side of the implication leads to a
state explosion which cannot be handled by the Mona tool.

Instead, we can exploit the information which the counter-example provided to formulate
a more precise trace abstraction. So we have defined predicates that in more detail describe
how internal events at one level relate to internal events at the other level. For example,
we may add our intuition that between any successful read and its corresponding return
at the implementation level only the last atomic read is mapped to an atomic read on the
specification level. This formula, which we denote by ψi, looks like:

∀t1, t2 : (t1 < t2 ∧
α(t1) = rd : [?, obs, i] ∧
α(t2) = rtn : [?, ?,normal, obs, i] ∧
¬φBetween

rd:[?,obs,i]
(α, t1, t2) ∧

¬φBetween
wrt:[?,?,obs,i]

(α, t1, t2))
⇒

(∃t : t1 < t < t2 ∧
α(t) = β(t) = atmrd : [?, ?, ?, i] ∧
¬φBetween

atmrd:[?,?,?,i](α, t, t2) ∧
¬φBetween

atmrd:[?,?,?,i](β, t1, t) ∧
¬φBetween

atmrd:[?,?,?,i](β, t, t2)).

We define the new trace abstractions Ri(α, β) to be equal to R̂i conjoined with the ψi and
two other similar predicates (one stating that any event on the program level—but an atomic
read—is matched by the same event on the specification level; the other stating that an atomic
read event on the program level is matched by either an atomic read event or a τ event on the
specification level). With Ri, the Mona tool proves formulas (4.7) and (4.8) within minutes.

The compatibility property (4.8) is stated in a single M2L formula of size 105 with approx-
imately 32 visible variables at the level of deepest nesting (corresponding to an alphabet size
of 232). During its processing automata with millions of BDD nodes are created. The proof
required user intervention in the form of an explicit (but natural) ordering of BDD variables.
Also, we have supplied a little information about evaluation order in the form of parentheses.

4.6. Conclusions 47

4.6 Conclusions

We have offered a practical alternative to the use of refinement mappings. We have indicated
how the user contribution of information about behavioural similarities directly can be used
to reduce the computational work involved in guessing internal events when two distributed
systems are compared.

Our method is entirely formulated within M2L: state machines, temporal properties, finite
domains, and verification rules all take on the syntax of the Mona system.

Our experiments show that very complex temporal logic formulas on finite segments of
time can be decided in practice—quite in contrast to the situation for temporal logic on the
natural numbers.

4.7 Proofs

4.7.1 Proof of Theorem 5

Proof. Only if:
Assume that R is a trace abstraction from A to B.
Let η ∈ Obs(A). Then there exists a trace α ∈ LA ⊆ NU (A) such that η = π(α). By 2.) and
3.) of Definition 4 there exists a β ∈ NU (B) such that αRβ and hence by 1.) of Definition 4
such that π(α) = π(β). Hence η = π(α) = π(β) ∈ Obs(B).
If:
Assume Obs(A) ⊆ Obs(B). Define R = {(α, β) | β ∈ NU (B) ∧ π(α) = π(β)} ⊆ U∗ × U∗.
We prove that R is a trace abstraction from A to B. Clearly, 1) and 3) of Definition 4 are
satisfied. To see that 2) is satisfied let α ∈ NU(A). Then π(α) ∈ Obs(A) ⊆ Obs(B) by
assumption. Hence there exists a β ∈ LB ⊆ NU(B) such that π(α) = π(β). Thus αRβ and
therefore α ∈ domR. 2

4.7.2 Proof of Theorem 6

Proof. The key is that the Ri’s are trace abstractions on U∗ × U∗. Assume (1) and (2).
By Theorem 5, it is sufficient to show that

⋂
iRi is a trace abstraction from ‖Ai to ‖Bi on

U∗ × U∗.
We show that

⋂
iRi satisfies 1.)-3.) of Definition 4.

1.) Obvious since each of the component trace abstractions Ri preserve the observable
events of the composed system (ΣObs = ΣObs

i).

2.) NU (‖Ai) =
⋂

iNU (Ai) ⊆
⋂

i dom Ri ⊆ dom
⋂

iRi.
The first inclusion follows from assumption (1) and Definition 4(2). The second inclusion
from assumption (2).

3.) rng
⋂

iRi ⊆
⋂

i rng Ri ⊆
⋂

iNU (Bi) = NU(‖Bi).
The second inclusion follows from assumption (1) and Definition 4(3).

2

48 Chapter 4. Automated Logical Verification Based on Trace Abstractions

4.7.3 Proof of Corollary 8

Proof. Assume that ΣInt
Bi
∩ ΣInt

Bj
= ∅ for every i 6= j and that Ai implements Bi. Let

ΣObs
i = ΣObs

Ai
= ΣObs

Bi
, ΣObs = ΣObs

‖Ai
= ΣObs

‖Bi
, and let π, πi and hi be the projections from U∗

to (ΣObs)∗, (ΣObs
i)∗ and (ΣBi)

∗, respectively. By Theorem 5, there exist trace abstractions
from Ai to Bi. LetRi be the largest such, that is, Ri = {(α, β) | β ∈ NU (Bi)∧ πi(α) = πi(β)}.

We first prove that if Ri is a trace abstraction then also R′i given by Ri∩{(α, β) | π(α) =
π(β)} is a trace abstraction. Clearly, it is sufficient to show that for all α ∈ U∗ if there
exists a β ∈ NU (Bi) such that πi(α) = πi(β) then there exists a β′ ∈ NU (Bi) such that
π(α) = π(β′). To show this assume that α ∈ U∗ and β ∈ NU (Bi) such that πi(α) = πi(β).
Then hi(β) ∈ LBi ⊆ NU (Bi) and πi(hi(β)) = πi(α) = o1 . . . om, where oj ∈ ΣObs

i . Let
α1, . . . , αm+1 ∈ (U − ΣObs

i)∗ and β1, . . . , βm+1 ∈ (ΣInt
Bi

)∗ be such that

α = α1o1α2 . . . αmomαm+1,

hi(β) = β1o1β2 . . . βmomβm+1

then

β′ = π(α1)β1o1 . . . π(αm)βmomπ(αm+1)βm+1

is in NU (Bi), since hi(β′) = hi(β) as π(αi) ∈ (ΣObs − ΣObs
i)∗ and clearly π(α) = π(β′).

We next prove that
⋂

i dom R′i ⊆ dom
⋂

iR′i and hence the result follows from Theorem
6. Given α ∈

⋂
i dom R′i. Let

α = α1o1α2 . . . αmomαm+1

where oj ∈ ΣObs and αj ∈ (U − ΣObs)∗. Then there exist

β1 = β1
1o1 . . . β

1
momβ

1
m+1 ∈ NU(B1)

...
βn = βn

1 o1 . . . β
n
momβ

n
m+1 ∈ NU (Bn),

where βi
1, . . . , β

i
m+1 ∈ (ΣInt

Bi
)∗ such that αR′iβi. Hence

η = β1
1 . . . β

n
1 o1 . . . β

1
m . . . βn

momβ
1
m+1 . . . β

n
m+1

is in NU (‖Bi), since hi(η) = βi as ΣInt
Bi
∩ ΣInt

Bj
= ∅ for i 6= j, and thus α(

⋂
iR′i)η. 2

4.7.4 Proof of Proposition 11

Proof. Assume that NU(A) ⊆ dom R̂ then by Definition 10, R̂ is a trace abstraction, c.f.
Definition 4.

To see that R̂ is regular consider the following definition.

4.7. Proofs 49

Definition 14 Let DB and DU be the deterministic finite automata associated with the sets
of normalised traces of the finite system B and the universe U , respectively. Define from these
a non-deterministic automaton DU ⊗DB on the alphabet U×U as follows. The initial state is
the pair of initial states. A state is accepting iff it is a pair of accepting states. The transition

relation is given by the set {(s, s′) (a,b)→ (t, t′)|s a→ t∧s′ b→ t′∧((a 6∈ ΣObs∧b 6∈ ΣObs)∨a = b)}. 2

The product automaton lock steps the two automata forcing observable events to be
synchronised and guessing the right pair otherwise.

Let α = α1 . . . αn ∈ U∗ and β = β1 . . . βn ∈ U∗. Assume α∧β ∈ L(DU ⊗DB). Then there
exists an accepting run

(s0, t0)
(α1,β1)→ (s1, t1)

(α2,β2)→ . . .
(αn,βn)→ (sn, tn)

of DU ⊗ DB and it is now trivial to check that α and β are ΣObs-synchronised and that
β ∈ NU (B). Hence α∧β ∈ R̂. Conversely, assume that 1) α and β are ΣObs-synchronised, 2)
β ∈ NU (B). We show that α∧β ∈ L(DU ⊗DB). Since α ∈ U∗ there exists an accepting run

s0
α1→ s1

α2→ . . .
αn→ sn

of DU and likewise, since β ∈ NU (B) there exists an accepting run

t0
β1→ t1

β2→ . . .
βn→ tn

of DB. Due to 1.) and Definition 14 it follows that

(s0, t0)
(α1,β1)→ (s1, t1)

(α2,β2)→ . . .
(αn,βn)→ (sn, tn)

is an accepting run of DU ⊗DB accepting α∧β.

Finally, since C is regular the last result follows trivially. 2

4.7.5 Proof of Theorem 13

Proof. The only if direction is as in the proof of Theorem 5.
c.f. appendix 4.7.1.
We show the if direction.
Let π be the projection from U∗ onto (ΣObs)∗.
Assume that A implements B. Let R̂ be the language defined in Definition 10. According to
Proposition 11, we only need to prove that NU (A) ⊆ dom R̂. Let α ∈ NU (A). Then, since
A implements B, π(α) ∈ Obs(A) ⊆ Obs(B), and hence by assumption there exists a trace
β ∈ LB such that α′ = h(α) ∈ LA is internally finer that β, where h is the projection from
U∗ onto Σ∗A.
Let π(α′) = π(α) = π(β) = o1 . . . on and

α = α1o1α2 . . . αnonαn+1,
α′ = α′1o1α′2 . . . α′non,
β = β1o1β2 . . . βnon

50 Chapter 4. Automated Logical Verification Based on Trace Abstractions

where oj ∈ ΣObs, αj ∈ (U − ΣObs)∗, α′j ∈ (ΣInt
A)∗ and βj ∈ (ΣInt

B)∗. Note, that since LA and
LB are prefix-closed we can with out loss of generality assume that α′ and β end in observable
events. Since α′ is internally finer than β, it follows that |α′i| ≥ |βi| for every i = 1, . . . , n,
and since α′ is the projection of α onto Σ∗A, it follows that |αi| ≥ |α′i| for every i = 1, . . . , n.
Define

η = η1o1η2 . . . ηnonηn+1

where ηi = βiτ
|αi|−|βi| for i = 1, . . . , n and ηn+1 = τ |αn+1|. Hence we have the required η such

that αRη, since η and α are ΣObs–synchronised and η ∈ NU (B). 2

Chapter 5

A Case Study in Verification Based
on Trace Abstractions

Contents

5.1 Introduction . 54
5.2 Monadic second-order logic on strings . 56

5.2.1 Fido . 58
5.2.2 Automated translation and validity checking 60

5.3 Systems . 61
5.3.1 Composition . 62
5.3.2 Implementation . 64

5.4 Relational trace abstractions . 64
5.4.1 Decomposition . 66

5.5 The RPC-memory specification problem . 66
5.5.1 The procedure interface . 67

5.6 A memory component . 67
5.7 Implementing the memory . 72

5.7.1 The RPC component . 73
5.7.2 The implementation . 76

5.8 Verifying the implementation . 79

51

A Case Study in Verification
Based on Trace Abstractions

Nils Klarlund1 Mogens Nielsen Kim Sunesen

BRICS2

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C.

{klarlund,mnielsen,ksunesen}@dbrics.dk

Abstract In [94,§4], we proposed a framework for the automatic verification
of reactive systems. Our main tool is a decision procedure, Mona, for Monadic
Second-order Logic (M2L) on finite strings. Mona translates a formula in
M2L into a finite-state automaton. We show in [94,§4] how traces, i.e. finite
executions, and their abstractions can be described behaviourally. These
state-less descriptions can be formulated in terms of customised temporal
logic operators or idioms.

In the present paper, we give a self-contained, introductory account of our
method applied to the RPC-memory specification problem of the 1994 Dagstuhl
Seminar on Specification and Refinement of Reactive Systems. The purely
behavioural descriptions which we formulate from the informal specifications
are formulas which may span more than 10 pages. To securely write these for-
mulas, we introduce Fido [97] as a reactive system description language. Fido
is designed as a high-level symbolic language for expressing regular properties
about recursive data structures.

All of our descriptions have been verified automatically by Mona from M2L
formulas generated by Fido.

Our work shows that complex behaviours of reactive systems can be formu-
lated and reasoned about without explicit state-based programming. With
Fido, we can state temporal properties succinctly while enjoying automated
analysis and verification.

2Basic Research in Computer Science, Centre of the Danish National Research Foundation.

53

54 Chapter 5. A Case Study in Verification Based on Trace Abstractions

5.1 Introduction

In reactive systems, computations are regarded as sequences of events or states. Thus pro-
gramming and specification of such systems focus on capturing the sequences which are al-
lowed to occur. There are essentially two different ways of defining such sets of sequences.

In the state approach, the state space is defined by declarations of program variables, and
the state changes are defined by the program code.

In the behavioural approach, the allowed sequences are those that satisfy a set of temporal
constraints. Each constraint imposes restrictions on the order or on the values of events.

The state approach is used almost exclusively in practice. State based descriptions can be
effectively compiled into machine code. The state concept is intuitive, and it is the universally
accepted programming paradigm in industry.

The behavioural approach offers formal means of expressing temporal or behavioural pat-
terns that are part of our understanding of a reactive system. As such, descriptions in this
approach are orthogonal to the state approach—although the two essentially can express the
same class of phenomena.

In this paper, we pursue the purely behavioural approach to solve the RPC-memory
specification problem [24] posed by Manfred Broy and Leslie Lamport in connection with the
Dagstuhl Seminar on Specification and Refinement of Reactive Systems. The main part of the
problem is to verify that a distributed system P implements a distributed system S, that is,
that every behaviour of P is a behaviour of S. Both systems comprise a number of processes
whose behaviours are described by numerous informally stated temporal requirements like
“Each successful Read(l) operation performs a single atomic read to location l at some time
between the call and return.”

The behavioural approach which we follow is the one we formulated in [94,§4]. This
approach is based on expressing behaviours and their abstractions in a decidable logic. In the
present paper, we give an introductory and self-contained account of the method as applied
to the Dagstuhl problem.

We hope to achieve two goals with this paper:

• to show that the behavioural approach can be used for verifying complicated systems—
whose descriptions span many pages of dense, but readable, logic—using decision pro-
cedures that require little human intervention; and

• to introduce the Fido language as an attractive means of expressing finite-state behaviour
of reactive systems. (Fido is a programming language designed to express regular prop-
erties about recursive data structures [97].)

An overview of our approach

Our approach is based on the framework for automatic verification of distributed systems
which we described in [94,§4]. There, we show how traces, ie. finite computations, can be
characterized behaviourally. We use Monadic Second-order Logic (M2L) on finite strings as
the formal means of expressing constraints. This decidable logic expresses regular sets of finite
strings, that is, sets accepted by finite-state machines. Thus, when the number of processes
and other parameters of the verification problem is fixed, the set LP , of traces of P can be
expressed by finite-state machines synthesised from M2L descriptions of temporal constraints.
Similarly, a description of the set LS of traces of the specification can be synthesised.

5.1. Introduction 55

The verifier, who is trying to establish that P implements S, cannot just directly compare
LP and LS. In fact, these sets are usually incomparable, since they involve events of different
systems. As is the custom, we call the events of interest the observable events. These events
are common to both systems. The observable behaviours Obs(LP) of LP are the traces of LP

with all non-observable events projected away. That P implements S means that Obs(LP) ⊆
Obs(LS).

One goal of the automata-theoretic approach to verification is to establish Obs(LP) ⊆
Obs(LS) by computing the product of the automata describing Obs(LP) and Obs(LS). Specif-
ically, we let AP be an automaton accepting Obs(LP) and we let AS be an automaton rep-
resenting the complement of Obs(LS). Then Obs(LP) ⊆ Obs(LS) holds if and only if the
product of AP and AS is empty. Unfortunately, the projection of traces may entail a sig-
nificant blow-up in the size of AS as a function of the size of the automaton representing
LS . The reason is that the automaton AS usually can be calculated only through a subset
construction.

The use of state abstraction mappings or homomorphisms may reduce such state space
blow-ups. But the disadvantage to state mappings is that they tend to be specified at a very
detailed level: each global state of P is mapped to a global state of S.

In [94,§4], we formulate well-known verification concepts, like abstractions and decompo-
sition principles for processes in the M2L framework. The resulting trace based approach
offers some advantages to conventional state based methods.

For example, we show how trace abstractions, which relate a trace of P to a corresponding
trace of S, can be formulated loosely in a way that reflects only the intuition that the verifier
has about the relation between P and S—and that does not require a detailed, technical
understanding of how every state of P relates to a state of S. A main point of [94,§4] is
that even such loose trace abstractions may (in theory at least) reduce the non-determinism
arising in the calculation of AS .

The framework of [94,§4] is tied closely to M2L: traces, trace abstractions, the property of
implementation, and decomposition principles for processes are all expressible in this logic—
and thus all amenable, in theory at least, to automatic analysis, since M2L is decidable.

In the present paper, we have chosen the Fido language both to express our concrete model
of the Dagstuhl problem and to formulate our exposition of the framework of [94,§4]. Fido is
a notational extension of M2L that incorporates traditional concepts from programming lan-
guages, like recursive data types, functions, and strongly typed expressions. Fido is compiled
into M2L.

An overview of the Dagstuhl problem

The Specification Problem of the Dagstuhl Seminar on Specification and Refinement of Re-
active Systems is a four page document describing interacting components in distributed
memory systems [24]. Communication between components takes place by means of proce-
dures, which are modelled by call and return events. at the highest level, the specification
describes a system consisting of a memory component that provides read and write services to
a number of processes. These services are implemented by the memory component in terms
of basic i/o procedures. The relationships among service events, basic events, and failures are
described in behavioural terms.

Problem 1 in the Dagstuhl document calls for the comparison of this memory system with
a version, where a certain type of memory failure cannot occur.

56 Chapter 5. A Case Study in Verification Based on Trace Abstractions

Problem 2 calls for a formal specification of another layer added to the memory system in
form of an RPC (Remote Procedure Call) component that services read and write requests.

Problem 3 asks for a formal specification of the system as implemented using the RPC
layer and a proof that it implements the memory system of Problem 1.

In addressing the problems, we deal with safety properties of finite systems.
Problems 4 and 5 address certain kinds of failures that are described in a real-time frame-

work. Our model is discrete, and we have not attempted to solve this part.

Previous work

The TLA formalism by Lamport [105] and the temporal logic of Manna and Pnueli [112, 89]
provide uniform frameworks for specifying systems and state mappings, and for complex
reasoning about systems. Both logics subsumes predicate logic logic and hence defy automatic
verification in general. However, work has been done on providing mechanical support in
terms of proof checkers and theorem provers, see [51, 52, 111].

The use of state mappings have been widely advocated, see e.g. [108, 104, 105, 89] and
for a survey [109]. The involved theory of state mappings applicable to possibly infinite-state
systems was established in [1, 96, 151].

The Concurrency Workbench [39] offers automatic verification of the existence of certain
kinds of state-mappings between finite-state systems.

Decomposition is a key aspect of any verification methodology. In particular, almost all the
solutions of the RPC-memory specification problem [24] in [25] use some sort of decomposition.
In [2], Lamport and Abadi gave a proof rule for compositional reasoning in an assumption/
guarantee framework. A non-trivial decomposition of a closed system is achieved by splitting
it into a number of open systems with assumptions reflecting their dependencies. In our
rule, dependencies are reflected in the choice of trace abstractions between components and
a requirement on the relationship between the trace abstractions.

For finite-state systems, the COSPAN [67] tool based on the automata-theoretic framework
of Kurshan [100] implements a procedure for deciding language containment for ω-automata.

In [35], Clarke, Browne, and Kurshan shows how to reduce the language containment
problem for ω-automata to a model checking problem in the restricted case where the spec-
ification is deterministic. The SMV tool [119] implements a model checker for the temporal
logic CTL [48]. In COSPAN and SMV, systems are specified using typed C-like programming
languages.

In the rest of the paper

In Section 5.2, we first explain M2L and then introduce the Fido notation by an example.
Section 5.3 and 5.4 discuss our framework and show how all concepts can be expressed in
Fido. We present our solution to the RPC-memory specification problem [24] dealing with
the safety properties of the untimed part in sections 5.5 to 5.8.

5.2 Monadic second-order logic on strings

The logical notations we use are based on the monadic second-order logic on strings (M2L). A
closed M2L formula is interpreted relative to a natural number n (the length). Let [n] denote
the set {0, . . . , n− 1}. First-order variables range over the set [n] (the set of positions), and

5.2. Monadic second-order logic on strings 57

second-order variables range over subsets of [n]. We fix countably infinite sets of first and
second-order variables Var1 = {p, q, p1, p2, . . . } and Var2 = {P,P1, P2, . . . }, respectively. The
syntax of M2L formulas is defined by the abstract syntax:

t ::= p < q | p ∈ P
φ ::= t | ¬φ | φ ∨ φ | ∃p.φ | ∃P.φ

where p,q and P range over Var1 and Var2, respectively.
The standard semantics is defined as follows. An M2L formula φ with free variables is

interpreted relative to a natural number n and an interpretation (partial function) I mapping
first and second-order variables into elements and subsets of [n], respectively, such that I is
defined on the free variables of φ. As usual, I[a ← b] denotes the partial function that on c
yields b if a = c, and otherwise I(c). We define inductively the satisfaction relation |=I as
follows.

n |=I p < q
def⇐⇒ I(p) < I(q)

n |=I p ∈ P def⇐⇒ I(p) ∈ I(P)

n |=I ¬φ def⇐⇒ n 6|=I φ
n |=I φ ∨ ψ def⇐⇒ n |=I φ ∨ n |=I ψ

n |=I ∃p.φ def⇐⇒ ∃k ∈ [n].n |=I[p←k] φ

n |=I ∃P.φ def⇐⇒ ∃K ⊆ [n].n |=I[P←K] φ

As defined above M2L is rich enough to express the familiar atomic formulas such as
successor p = q + 1, as well as formulas constructed using the Boolean connectives such as
∧,⇒ and ⇔, and the universal first and second-order quantifier ∀, following standard logical
interpretations. Throughout this paper we freely use such M2L derived operators.

There is a standard way of associating a language over a finite alphabet with an M2L
formula. Let α = α0 . . . αn−1 be a string over the alphabet {0, 1}l. Then the length |α| of α
is n and (αj)i denotes the ith component of the l-tuple denoted by αj . An M2L formula φ
with free variables among the second-order variables P1, . . . , Pl defines the language:

L(φ) = {α ∈ ({0, 1}l)∗ | |α| |=Iα φ}

of strings over the alphabet {0, 1}l, where Iα maps Pi to the set {j ∈ [n] | (αj)i = 1}.
Any language defined in this way by an M2L formula is regular; conversely, any regular

language over {0, 1}l can be defined by an M2L formula. Moreover, given an M2L formula φ
a minimal finite automaton accepting L(φ) can effectively be constructed using the standard
operations of product, subset construction, projection, and minimisation. This leads to a
decision procedure for M2L, since φ is a tautology if and only if L(φ) is the set of all strings
over {0, 1}l. The approach extends to any finite alphabet. For example, letters of the alphabet
Σ = {a, b, c, d} are encoded by letters of the alphabet {0, 1}2 by enumeration: a, b, c and d
are encoded by (0, 0), (1, 0), (0, 1) and (1, 1), respectively. Thus, any language over Σ can be
represented as a language over {0, 1}2 and hence any regular language over Σ is the language
defined by some M2L formula with two free second-order variables P1 and P2. For example,
the formula φ:

∀p.p 6∈ P1 ∧ p 6∈ P2

58 Chapter 5. A Case Study in Verification Based on Trace Abstractions

defines the language {a}∗, that is, L(φ) = {(0, 0)}∗ . In particular since L(φ) is not the set of
all strings over {0, 1}2, φ is not a tautology and any string not in L(φ) yields a length and an
interpretation falsifying φ.

5.2.1 Fido

As suggested above, any regular language over any finite alphabet can be defined as the
language of an open M2L formula by a proper encoding of letters as bit patterns, that is,
by enumerating the alphabet. In our initial solution to the Dagstuhl problem, we did the
encoding “by hand”using only the Unix m4 macro processor to translate our specifications
into M2L; this is an approach we cannot recommend, since even minor syntactic errors are
difficult to find. The Fido notation helps us overcome these problems. Below, we explain the
Fido notation by examples introducing all needed concepts one by one.

Consider traces, i.e. finite strings, over an alphabet Event consisting of events Read and
Return with parameters that take on values in finite domains and the event τ . A Read may
carry one parameter over the domain {l0, l1, l2}, and a Return may carry two parameters, one
from the domain {v0, v1}, and one from the domain {normal, exception}. In Fido, the code:

type Loc = l0,l1,l2;
type Value = v0,v1;
type Flag = normal,exception;

declares the enumeration types Value, Flag, and Loc. They define the domains of constants
{l0, l1, l2}, {v0, v1}, and {normal, exception}, respectively. The type definitions:

type Read = Loc;
type Return = Value & Flag;

declare a new name Read for the type Loc and the record type Return, which defines the
domain of tuples {[v, f] | v ∈ Value ∧ f ∈ Flag}. The alphabet Event is the union of Read,
Return and {τ}:

type Event = Read | Return | τ ;

The union is a disjoint union by default, since the Fido type system requires the arguments to
define disjoint domains. The types presented so far all define finite domains. Fido also allows
the definition of recursive data types. For our purposes recursively defined types are of the
form:

type Trace = Event(next: Trace) | empty;

Thus, Trace declares the infinite set of values {e1e2 . . . enempty | ei ∈ Event}. In other words,
the type Trace is the set of all finite strings of parameterised events in Event with an empty
value added to the end. The details of coding the alphabet of events in second-order M2L
variables is left to the Fido compiler.

Fido provides (among others) four kinds of variables ranging over strings, positions, subsets
of positions and finite domains, respectively. The Fido code:

string γ: Trace;

declares a free variable γ holding an element (a string) of Trace. We often refer to γ just as
a string.

A first-order variable p may be declared to range over all positions in the string γ by the
Fido declaration:

5.2. Monadic second-order logic on strings 59

pos p: γ;

Similarly, a second-order variable P ranging over subsets of positions of the string can be
declared as:

set P: γ;

A variable event holding an element of the finite domain Event is declared by:

dom event: Event;

The Fido notation includes, besides M2L syntax for formulas, existential and universal quan-
tification over all the kinds of variables and more. We introduce additional syntax when
used. For example, we can specify as a formula that the event Read:[l0] from the domain
Event occurs in γ:

∃pos p :γ.(γ(p) = Read:[l0])

which is true if and only if there exists a position p in γ such that the pth element in γ is the
event Read:[l0].

If we want to refer to a Read event without regard to the value of its parameter, we write:

∃pos p :γ;dom l: Loc.(γ(p) = Read:[l?])

which is true if and only if there exists a position p in γ and an element l in Loc such that the
pth element in γ is the event Read:[l]. To make the above formula more succinct, we can use
the pattern matching syntax of Fido, where a “dont’t care” value is specified by a question
mark:

∃pos p :γ.(γ(p) = Read:[?])

The Fido compiler translates such question marks into explicit existential quantifications over
the proper finite domain.

A Fido macro is a named formula with type-annotated free variables. Below, we formulate
some useful temporal concepts in Fido that formalise high-level properties of intervals. In the
rest of the paper, we use strings to describe behaviours over time and therefore we refer to
positions in strings as time instants in traces.

To say that a particular event event of type Event occurred before a given time instant t
in trace α of type Trace, we write:

func Before(string α: Trace; pos t: α; dom event: Event): formula;
∃pos time: α.(time<t ∧ α(time)=event)

end;

To express that event occur sometime in the interval from t1 to t2 (both excluded), we write:

func Between(string α: Trace; pos t1,t2: α; dom event: Event): formula;
∃pos time: α.(t1 <time ∧ time<t2 ∧ α(time)=event)

end;

The property that in a trace γ a Return is always preceded by a Read is expressed as:

∀pos t: γ.(γ(t)=Return:[?,?] ⇒ Before(γ,t,Read:[?]));

We can also express that a Return event occurs exactly once in an interval:

60 Chapter 5. A Case Study in Verification Based on Trace Abstractions

func ExactlyOneReturnBetween(string α: Trace; pos t1,t2: α): formula;
∃pos time: α.(t1<time ∧ time<t2 ∧ α(time)=Return:[?,?] ∧

¬Between(α,t1,time,Return:[?,?]) ∧
¬Between(α,time,t2,Return:[?,?])

end;

That a Read event occurred at both end points of the interval, but not in the interval, is
expressed as:

func ConseqReads(string α: Trace; pos t1,t2: α): formula;
t1<t2 ∧ α(t1) =Read:[?] ∧ α(t2)=Read:[?] ∧
¬Between(α,t1,t2,Read:[?])

end;

Using the macros above it is easy to specify more complicated properties. For example, to
specify that a Read event is blocking, in the sense that any Return is issued in response to a
unique Read event and no two read events occurs consecutively without a return in between,
we write:

func ReadProcs(string α: Trace): formula;
∀pos t1: α.

α(t1)=Return:[?,?]
⇒
∃pos t0: α.(t0 <t1 ∧ α(t0)=Read:[?] ∧

¬Between(α,t0,t1, Return:[?,?])) ∧
∀pos time1,time2: α.

ConseqReads(α,time1,time2)
⇒
ExactlyOneReturnBetween(α,time1,time2)

end;

Finally in our Fido overview, we mention that strings may be quantified over as well. For
example, the formula:

∃string α: γ;pos t: γ. (γ(t)=α(t));

expresses that there is a string α of the same type and length as γ and some time instant t in
γ (and therefore also in α) such that the tth element of γ and α, respectively, are the same.

5.2.2 Automated translation and validity checking

Any well-typed Fido formula is translated by the Fido compiler [97] into an M2L formula.
Hence, the Fido compiler together with the Mona tool [69] provides automatic verification, in
terms of deciding whether or not a given Fido input translates into a valid M2L formula, see
Fig. 5.1. Furthermore, in the negative case, a witness in terms of a minimal interpretation
falsifying the translation of φ is provided, and translated back to Fido level from the (minimal
deterministic) automaton recognising L(φ).

We will not describe the efficient translation of the high-level syntax of Fido into M2L
formulas here. Instead, we emphasize that the translation is in principle straightforward: a
string over a finite domain D is encoded using as many second-order variables (bits) as neces-
sary to enumerate D ∪ {empty}, quantification over strings amounts to quantification over the
second-order variables encoding the alphabet, and existential (universal) quantification over
finite domains amounts to a finite disjunction (conjunction) over the elements of the domain.

5.3. Systems 61

Yes

Fido-formula // Fido
M2L-formula // Mona

99sssssssssssss

%%KKKKKKKKKKKKK

Variable ordering

99sssssssssssss
Counter-example

Figure 5.1: The Fido and Mona tools.

The Mona tool provides an efficient implementation of the underlying M2L decision pro-
cedure [69]. Since the implementation is based on BDD representations of automata, it,
importantly, allows formulas to be decorated with variable orderings.

5.3 Systems

We reason about computing systems through specifications of their behaviours in Fido, i.e.
viewed as traces over parameterised events specified in terms of Fido formulas.

A system A determines an alphabet ΣA of events, which is partitioned into observable
events ΣObs

A and internal events ΣInt
A . It is the observable events that matters when systems

are compared. A behaviour of A is a finite sequence over ΣA. The system A also determines
a prefix–closed language LA of behaviours called traces of A. We write A = (LA,ΣObs

A ,ΣInt
A).

The projection π from a set Σ∗ to a set Σ′∗ (Σ′ ⊆ Σ) is the unique string homomorphism from
Σ∗ to Σ′∗ given by π(a) = a, if a is in Σ′ and π(a) = ε otherwise, where ε is the empty string.
The observable behaviours of a system A, Obs(A), are the projections onto ΣObs

A of the traces
of A, that is Obs(A) = {π(α) | α ∈ LA}, where π is the projection from Σ∗A onto (ΣObs

A)∗.
A system A is thought of as existing in a universe of the systems with which it may be

composed and compared. Formally, the universe is a “global” alphabet U , which contains
ΣA and all other alphabets of interest. Moreover, U is assumed to contain the distinguished
event τ which is not in the alphabet of any system. The set NΣ(A) of normalised traces over
an alphabet Σ ⊇ ΣA is the set h−1(LA) = {α | h(α) ∈ LA}, where h is the projection from Σ∗

onto Σ∗A. Normalisation plays an essential rôle when composing systems and when proving
correctness of implementation of systems with internal events.

A systems can conveniently be expressed in Fido. Following the discussion in Section 5.2 a
finite domain U representing the universal alphabet U , and a data type, TraceU, representing
the traces over U are defined. A system A = (LA,ΣObs

A ,ΣInt
A) is then represented by a triple:

A = (NormA,ObsA,IntA)

of macros defining the normalised traces, NormA, of A over U, the observable events, ObsA,
and the internal events, IntA. That is, let γ be a string over TraceU then NormA(γ) is true if
and only if γ denotes a trace of NU (A) and let u be an element of U then ObsA(u) and IntA(u)

62 Chapter 5. A Case Study in Verification Based on Trace Abstractions

are true if and only if u denotes an element of ΣObs
A and ΣInt

A , respectively. When writing
specifications in Fido, we often confuse the name of a system with the name of the macro
defining its set of normalised traces.

Our first example of a system in Fido is the system ReadProcs living in the universe given
by Event from Section 5.2. The normalised traces of ReadProcs are defined by the macro
ReadProcs, the alphabet of observable events by:

func ObsReadProcs(dom v: Event; dom id: Ident): formula;
v=Read:[?] ∨ v=Return:[?,?]

end;

and the alphabet of internal events by:

func IntReadProcs(dom v: Event; dom id: Ident): formula;
false

end;

That is, ReadProcs has observable events Read:[?] and Return:[?,?], and no internal events:

ReadProcs = (ReadProcs,ObsReadProcs,IntReadProcs)

5.3.1 Composition

Our notion of composition of systems is that of CSP [75], adjusted to cope with observable and
internal events. We say that systems A and B are composable if they agree on the partition
of events, that is, if no internal event of A is an observable event of B and vice versa, or
symbolically, if ΣInt

A ∩ ΣObs
B = ∅ and ΣInt

B ∩ ΣObs
A = ∅. Given composable systems A and B,

we define their composition A ‖ B = (LA‖B ,ΣObs
A‖B ,Σ

Int
A‖B), where

• the set of observable events is the union of the sets of observable events of the compo-
nents, that is, ΣObs

A‖B = ΣObs
A ∪ ΣObs

B ,

• the set of internal events is the union of the sets of internal events of the components,
that is, ΣInt

A‖B = ΣInt
A ∪ ΣInt

B , and

• the set of traces is the intersection of the sets of normalised traces with respect to the
alphabet ΣA‖B , that is, LA‖B = NΣA‖B (A) ∩NΣA‖B (B).

As in CSP, a trace of A ‖ B is the interleaving of a trace of A with a trace of B in which
common events are synchronised. Composition is commutative, idempotent and associative,
and we adopt the standard notation, A1 ‖ . . . ‖ An or just ‖ Ai, for the composition of n
composable systems Ai.

In Fido, composability of A and B is expressed by:

∀pos t:γ. (IntA(γ(t)) ⇒ ¬ ObsB(γ(t))) ∧ (IntB(γ(t)) ⇒ ¬ ObsA(γ(t)))

and given composable systems A and B, composition is defined by:

A ‖ B = (NormA‖B, ObsA‖B, IntA‖B)

where the set of normalised traces are defined by conjunction:

func NormA‖B(string α: TraceU): formula;
NormA(α) ∧ NormB(α)

end;

5.3. Systems 63

and the alphabets by disjunction:

func ObsA‖B(dom v: U): formula;
ObsA(v) ∨ ObsB(v)

end;

func IntA‖B(dom v: U): formula;
IntA(v) ∨ IntB(v)

end;

To exemplify composition, we extend the universe Event with the events given by:

type Mem = Loc & Value & Flag;

Hence, the type Event is now:

type Event = Mem | Read | Return | τ ;

The macro:

func MemBetween(string α: Trace): formula;
∀ dom l: Loc;dom v: Value;pos t1,t2: α.

α(t1)=Read:[l?] ∧ α(t2)=Return:[v?,?]
⇒
∃pos t0: α. t1<t0 ∧ t0<t2 ∧ α(t0)=Mem:[l?,v?,?]

end;

is true on a trace if and only if there exists an atomic read event Mem:[l,v,?] between any
read event Read:[l] to location l and return event Return:[v,?] with value v. We define the
system MemBetween with observable events Read:[?] and Return:[?,?], and internal events
Mem:[?,?,?]:

MemBetween = (MemBetween,ObsMemBetween,IntMemBetween)

where

func ObsMemBetween(dom v: Event; dom id: Ident): formula;
v=Read:[?] ∨ v=Return:[?,?]

end;

and

func IntMemBetween(dom v: Event; dom id: Ident): formula;
Mem:[?,?,?]

end;

The systems ReadProcs and MemBetween are composable since they do not disagree on the
partition of their alphabets. We define their composition:

MReadProcs = ReadProcs ‖ MemBetween

Hence, MReadProcs has observable events Read:[?] and Return:[?,?], and internal events
Mem:[?,?,?], and the normalised traces of MReadProcs specify the behaviours of read pro-
cedure calls with atomic reads.

64 Chapter 5. A Case Study in Verification Based on Trace Abstractions

5.3.2 Implementation

We formalise the notion of implementation in terms of language inclusion, again adjusted
to cope with observable and internal events. We say that systems A and B are comparable
if they have the same set of observable events ΣObs, that is, ΣObs = ΣObs

A = ΣObs
B . In the

following A and B denote comparable systems with ΣObs
A = ΣObs

B = ΣObs.

Definition 15 Let A and B denote comparable systems. A implements B if and only if
Obs(A) ⊆ Obs(B)

In Fido, comparability between systems is easily expressible:

∀pos t:γ.ObsA(γ(t))⇔ObsB(γ(t)) (5.1)

Implementation is less obvious. One sound approach is to attempt a proof of NU (A) ⊆ NU (B),
which is easily expressible in Fido as the formula NormA(γ)⇒ NormB(γ). However, when the
systems A and B have different internal behaviours the approach does not work in general.

Consider our example systems from above, we define the system

RMReadProcs = (RMReadProcs,ObsRMReadProcs,IntRMReadProcs)

specifying reliable read procedures, that is, read procedures that never triggers exceptional
atomic reads, where ObsRMReadProcs and IntRMReadProcs are equivalent to ObsMReadProcs
and IntMReadProcs, respectively, and

func RMReadProcs(string α: Trace): formula;
MReadProcs(α) ∧ ¬∃pos t: α.α(t)=Mem:[?,?,exception]

end;

The systems RMReadProcs and MReadProcs are comparable as they have the same set of
observable events and the first implements the second since the implication:

RMReadProcs(γ) ⇒ MReadProcs(γ)

holds for all traces γ over Trace. The opposite implication does not hold, a simple coun-
terexample is the trace Read:[l0] Mem:[l0,v0,exception] Return:[v0,normal] empty. However, the
observable behaviours of the systems RMReadProcs and MReadProcs are clearly identical. In
the next section, we show how to prove the implementation property using Fido.

5.4 Relational trace abstractions

A trace abstraction is a relation on traces preserving observable behaviours. In the following
A and B denote comparable systems with ΣObs

A = ΣObs
B = ΣObs and π denotes the projection

of U∗ onto (ΣObs)∗.

Definition 16 [94,§4] A trace abstraction R from A to B is a relation on U∗×U∗ such that:

1. If αRβ then π(α) = π(β)

2. NU (A) ⊆ dom R

3. rng R ⊆ NU (B)

The first condition states that any pair of related traces must agree on observable events.
The second and third condition require that any normalised trace of A should be related to
some normalised trace of B, and only to normalised traces of B.

5.4. Relational trace abstractions 65

Theorem 17 [94,§4] There exists a trace abstraction from A to B if and only if A implements
B.

Hence, the search for a trace abstraction is a sound and complete technique for deciding
implementation. In the following, we incorporate the technique in the Fido framework.

Given strings α = α0 . . . αn ∈ Σ∗1 and β = β0 . . . βn ∈ Σ∗2, we write α∧β for the string
(α0, β0) . . . (αn, βn) ∈ (Σ1 × Σ2)∗. Every language LR over a product alphabet Σ1 × Σ2

has a canonical embedding as a relation RL ⊆ Σ∗1 × Σ∗2 on strings of equal length given by

α∧β ∈ LR def⇔αRLβ. We say that a trace abstraction is regular if it is the embedding of a
regular language over U × U .

Not all trace abstractions between finite-state systems are regular. However, to use Fido
we have to restrict ourselves to regular abstractions.

Definition 18 Given a subset Σ′ of Σ, we say that strings α, β ∈ Σ∗ are Σ′–synchronised if
they are of equal length and if whenever the ith position in α contains a letter in Σ′ then the
ith position in β contains the same letter, and vice versa.

The property of being ΣObs-synchronised is Fido expressible:

func Observe(string α: TraceU; string β: α): formula;
∀pos t: α.(ObsA(α(t)) ∨ ObsB(β(t)) ⇒ α(t)= β(t))

end;

Definition 19 Let R̂ be the language over U × U given by α∧β ∈ R̂ if and only if

β ∈ NU(B) and α, β are ΣObs-synchronised

Since NU (B) is a regular language, so is R̂, and furthermore it may be expressed in Fido by:

func R(string α: TraceU; string β: α): formula;
Observe(α, β) ∧ NormB(β)

end;

The next proposition gives a sufficient condition for R̂ and any regular subset of R̂ to be a
trace abstraction. We return to the significance of the last part when dealing with automated
proofs.

Proposition 20 [94,§4] If NU (A) ⊆ dom R̂ then R̂ is a regular trace abstraction from A to
B. Moreover in general, for any regular language C ⊆ (U × U)∗, if NU (A) ⊆ dom R̂ ∩ C, then
R̂ ∩ C is a regular trace abstraction from A to B.

Importantly, also prerequisites of this proposition may be expressed in Fido, and hence validity
checking:

NormA(γ) ⇒ ∃string β: γ.R(γ,β)

is a sound and fully automated (!) technique for deciding implementation.
To prove that the system MReadProcs implements RReadProcs we instantiate macro Ob-

serve and R properly, and then check that:

MReadProcs(γ) ⇒ ∃string β: γ.R(γ,β)

holds.

66 Chapter 5. A Case Study in Verification Based on Trace Abstractions

5.4.1 Decomposition

One thing is to have a sound proof technique, another is to have an efficient automated
implementation of it. It is well known that compositional reasoning is one important way
of obtaining efficiency, and one important aspect of trace abstractions is that they allow
compositional reasoning, in the following formal sense.

Theorem 21 [94,§4] Let Ai and Bi be pairwise comparable systems forming the compound
systems ‖Ai and ‖Bi and let (ΣObs = ΣObs

i). If

Ri is a trace abstraction from Ai to Bi. (5.2)

⋂
i dom Ri ⊆ dom

⋂
iRi (5.3)

then

‖Ai implements ‖Bi

We call the extra condition (5.3) the compatibility requirement. By allowing components of
compound systems to also interact on internal events, we allow systems to be non-trivially
decomposed. This is why the compatibility requirement (5.3) is needed, intuitively, it ensures
that the choices defined by the trace abstractions can be made to agree on shared internal
events. Formally, the intuition is expressed by the corollary:

Corollary 22 [94,§4] If additionally the components of the specification are non-interfering
on internal events, that is, ΣInt

Bi
∩ ΣInt

Bj
= ∅, for every i 6= j, then Ai implements Bi implies

‖Ai implements ‖Bi. 2

Again, the compatibility requirement is expressible in Fido:

∧
i=1,... ,n (∃string βi: γ.(Ri(γ,βi)))⇒ ∃string β: γ.(

∧
i=1,... ,n Ri(γ,β)) (5.4)

where Ri is a Fido macro taking as parameters two strings of type Trace and n is some fixed
natural number.

The use of Theorem 21 for compositional reasoning about non-trivial decompositions of
systems is illustrated in Section 5.8.

5.5 The RPC-memory specification problem

The rest the paper describes our solution to the RPC-memory specification problem proposed
by Broy and Lamport [24] considering the safety properties of the untimed part. In the hope of
improved readability and comparability we choose to copy into the text parts of the informal
description in small pieces printed in italic.

5.6. A memory component 67

5.5.1 The procedure interface

The problem [24] calls for the specification and verification of a series of components inter-
acting with each other using a procedure-calling interface. In our specification, components
are systems defined by Fido formulas. Systems interact by synchronising on common events
- internal as well as observable - there is no notion of sender and receiver on this level. A
procedure call consists of a call and the corresponding return. Both are indivisible (atomic)
events. There are two kinds of returns, normal and exceptional. A component may contain a
number of concurrent processes each carrying a unique identity. Any call or return triggered
by a process communicates its identity. This leads us to declare the parameter domains:

type Flag = normal,exception;
type Ident = id0,. . . ,idk;

of return flags and process identities for some fixed k, respectively.

5.6 A memory component

The first part of the problem [24] calls for a specification of a memory component. The
component should specify a memory that maintains the contents of a set MemLocs of locations
such that the contents of a location is an element of a set MemVals. We therefore introduce
the domains:

type MemLocs = l0, . . . ,ln;
type MemVals = initVal,v1, . . . ,vm;

of locations and of values for some fixed n and m, respectively. The reason for defining the
distinguished value initVal follows from: The memory behaves as if it maintains an array of
atomically read and written locations that initially all contain the value InitVal. Furthermore,
we accordingly define the following Mem events carrying five parameters.

type Mem = Operation & MemLocs & MemVals & Flag & Ident;

The first parameter defined by the domain:

type Operation = rd,wrt;

indicates whether the event denotes an atomic read or write operation. The second and third
carry the location to be and the value read or written, respectively. The fourth indicates the
success of the operation. We hence also allow atomic reads and writes to exhibit exceptional
behaviour. Finally, the fifth parameter carries a process identity (meant to indicate the
identity of the process that triggered the event).

The component has two procedure calls: reads and writes. The informal description [24]
notes that being an element of MemLocs or MemVals is a “semantic” restriction, and cannot
be imposed solely by syntactic restrictions on the types of arguments. As we aim for automatic
verification the number of states as well as events are crucial. Hence, we try to be particular in
not tacitly reducing any of these by faithfully modelling all possible erroneous events. Hence,
we introduce the domains:

type Tag = ok,error;
type Loc = MemLocs & Tag;
type Value = MemVals & Tag;

68 Chapter 5. A Case Study in Verification Based on Trace Abstractions

The idea is that procedure calls and returns pass arguments of type Loc and Value whose first
components denote semantically correct elements of respectively MemLocs and MemVals if
and only if the value of the corresponding Tag components are ok. In the informal description
[24], a read procedure is described as:

Name Read
Arguments loc : an element of MemLocs
Return Value an element of MemVals
Exception BadArg : argument loc is not an element of MemLocs.

MemFailure: the memory cannot be read.
Description Returns the value stored in address loc.

In our specification, a read procedure is called by issuing a Read event of the type:

type Read = Loc & Ident & Visible;

A Read event takes as first parameter an element of Loc that might not be a “semantically”
correct element of MemLocs. and as second parameter a process identity. The last parameter
is an element of the domain:

type Visible = internal,observable;

When verifying the implementation we need the parameter Visible to be able to change the
view of reads, writes and returns from observable to internal events.

The return of a read procedure in our specification is a Return event given by:

type Return = Value & Flag & RetErr & Ident & Visible;

The first parameter is the value returned. The second indicates whether the return is normal
or exceptional. In case, it is exceptional the third parameter is an element of the domain:

type RetErr = BadArg,MemFailure;

of possible errors returned by an exceptional return as described above.
Again, the fourth and fifth parameter are elements of the domains Ident and Visible with

the intended meaning as for Read events. Similarly, a write procedure is specified in terms of
Write events defined by:

type Write = Loc & Value & Ident & Visible;

and Return events. Hence, the universe for our systems is given by:

type Event = Mem | Read | Write | Return | τ ;

and traces (strings) over the universe by:

type Trace = Event(next: Trace) | empty;

We specify the memory component Spec by the compound system:

Spec = MemSpec(id0) ‖ . . . ‖ MemSpec(idk) ‖ InnerMem

constructed from systems MemSpec(id) that specify read and write procedures for fixed pro-
cess identities id and a system InnerMem that specifies the array maintained by the memory
component. Each of the systems MemSpec(id) are themselves compound systems:

MemSpec(id) = ReadSpec(id) ‖ WriteSpec(id)

5.6. A memory component 69

defined by composing the systems ReadSpec(id) and WriteSpec(id) specifying respectively read
and write procedures for fixed process identities id.

For a fixed process identity id in Ident, the system ReadSpec(id) with observable events
Read:[?,id,observable] and Return:[?,?,?,id,observable] and internal events Mem:[rd,?,?,?,id] spec-
ifies the allowed behaviours of read procedure calls involving the process with identity id. In
Fido notation, a logical and (∧) can alternatively be written as a semicolon (;). The normalised
traces of ReadSpec(id) are defined by the macro:

func ReadSpec(string α: Trace; dom id: Ident; dom vis: Visible): formula;
BlockingCalls(α,id,vis);
CheckSuccessfulRead(α,id,vis);
WellTypedRead(α,id,vis);
ReadBadArg(α,id,vis);
OnlyAtomReadsInReadCalls(α,id,vis)

end;

That is, γ is a normalised trace of ReadSpec(id) if and only if
ReadSpec(γ,id,observable) is true. In the following, we often implicitly specialise macros, e.g.
we write ReadSpec(id,observable) for the macro obtained from ReadSpec by instantiating the
parameters id and vis. The system ReadSpec(id) is then given by the triple:

(ReadSpec(id,observable),ObsReadSpec(id,observable),IntReadSpec(id))

where

func ObsReadSpec(dom v: Event; dom id: Ident; dom vis: Visible): formula;
v=Read:[?,id?,vis?] ∨ v=Return:[?,?,?,id?,vis?]

end;

and

func IntReadSpec(dom v: Event; dom id: Ident): formula;
v=Mem:[rd,?,?,?,id?]

end;

The macro ReadSpec is the conjunction of five clauses. The first clause BlockingCalls specifies
as required in [24] that procedure calls are blocking in the sense that a process stops after
issuing a call and waits for the corresponding return to occur. The last clause OnlyAtom-
ReadsInReadCalls specifies that an atomic read event occurs only during the handling of read
calls. This requirement is not described in [24]. Reading in between the lines however, it
seems clear that the specifier did not mean for atomic reads to happen without being part of
some read procedure call. Both clauses are straightforwardly defined in Fido using interval
temporal idioms similar to those explained in Section 5.2.1.

As we demonstrate below, the three mid clauses are defined as fairly direct transcriptions
of the text of [24] describing read procedure calls. But first, a convenient macro definition.
Following [24], an operation consists of a procedure call and the corresponding return. We
define the macro:

func Opr(string α: Trace; pos t1,t2: α;
dom call,return: Event; dom id: Ident; dom vis: Visible): formula;

t1<t2 ∧ α(t1)=call ∧ α(t2)=return;
¬Between(α,t1,t2,Read:[?,id?,vis?]);
¬Between(α,t1,t2,Write:[?,?,id?,vis?]);
¬Between(α,t1,t2,Return:[?,?,?,id?,vis?])

end;

70 Chapter 5. A Case Study in Verification Based on Trace Abstractions

which is true for a trace γ, time instants t1 and t2 in γ and events call and return if and only
if the events call and return occurred at t1 and t2, respectively, and none of the events Read,
Write and Return occurred between t1 and t2 (both excluded). An operation is successful if
and only if its return is normal (non-exceptional).

The lines (excluding the last one) quoted from [24] above describing a read procedure
are translated into the following macro quantifying over both location and value tags, flags,
return errors and time instants:

func WellTypedRead(string α: Trace; dom id: Ident; dom vis: Visible): formula;
∀dom vt,lt: Tag; dom retErr: RetErr; dom flg: Flag; pos t1,t2: α.

Opr(α,t1,t2, Read:[[?,lt?],id?,vis?],Return:[[?,vt?],flg?,retErr?,id?,vis?],id,vis)
⇒
(flg=normal;lt=ok;vt=ok)∨
(flg=exception;retErr=MemFailure) ∨
(flg=exception;¬lt=ok;retErr=BadArg)

end;

establishing the connection among the parameters received and those returned. Whenever
a read call and the corresponding return has occurred, then either the return was normal
and the value as well as the location passed were of the right types (respectively MemVals
and MemLocs) or the return was exceptional and the error returned was MemFailure or the
return was exceptional and the location passed was not of the right type (MemLocs) and the
returned error was BadArg.

Furthermore, it is stated in [24] that:

An operation that raises a BadArg exception has no effect on the memory.

We transcribe this into the macro:

func ReadBadArg(string α: Trace; dom id: Ident; dom vis: Visible): formula;
∀ pos t1,t2: α.

Opr(α,t1,t2,Read:[?,id?,vis?],Return:[?,exception,BadArg,id?,vis?],id,vis)
⇒
¬Between(α,t1,t2,Mem:[?,?,?,?,id?])

end;

specifying that between the call and the return of a read operation resulting in an excep-
tional return with return error BadArg no atomic read or write is performed. (Note that we
interpreted no effect on the memory as the absence of atomic reads and writes.)

Finally, a read procedure must satisfy that:

Each successful Read(l) operation performs a single atomic read to location l
at some time between the call and return.

Together with the line excluded above we get that the value returned should be the value read
in the atomic read. This relation between a successful read and the corresponding return is
captured by the macro:

func CheckSuccessfulRead(string α: Trace; dom id: Ident; dom vis: Visible): formula;
∀ dom v: MemVals; dom l: MemLocs; dom flg: RetErr; pos t1: α; pos t2: α.

(Opr(α,t1,t2, Read:[[l?,?],id?,vis?],Return:[[v?,ok],normal,?,id?,vis?],id,vis)
⇒
∃ pos time: α.

5.6. A memory component 71

(t1 <time ∧ time<t2 ∧ α(time)=Mem:[rd,l?,v?,normal,id?];
¬Between(α,t1,time,Mem:[rd,?,?,?,id?]);
¬Between(α,time,t2,Mem:[rd,?,?,?,id?])))

end;

requiring that if the return is normal (and thus the read successful) then exactly one atomic
read is performed between the call and the return on the requested location. Furthermore,
the value returned is the value read.

The systems WriteSpec(id) are defined similarly to the systems ReadSpec(id) though
slightly more complicated since write calls carries more parameters. The observable events
of WriteSpec(id) are Write:[?,id,observable] and Return:[?,?,?,id,observable], and the internal
events are Mem:[wrt,?,?,?,id].

The system InnerMem defines the behaviours allowed by the array maintained by the
memory component. The informal description [24] refers to but does not define an array. We
apply the informal description: whenever a successful atomic read to a location occurs the
value thus returned is the value last written by a successful atomic write on the location or
if no such atomic write has occurred its the initial value initVal. The normalised traces of
InnerMem are defined by the macro:

func InnerMem(string α: Trace): formula;
∀ dom v: MemVals; dom l: MemLocs; pos t: α.

α(t)=Mem:[rd,l?,v?,normal,?]
⇒
∃ pos t0: α.(t0 <t ∧ α(t0)=Mem:[wrt,l?,v?,normal,?] ∧

¬Between(α,t0,t,Mem:[wrt,l?,?,normal,?])) ∨
v=initVal ∧ ¬Before(α,t,Mem:[wrt,l?,?,normal,?])

end;

The system InnerMem has internal events Mem:[?,?,?,?,?] and no observable events and is
hence given by the triple:

InnerMem = (InnerMem,ObsInnerMem,IntInnerMem)

where ObsInnerMem is a macro yielding false on every v of Event and

func IntInnerMem(dom v: Event): formula;
v=Mem:[?,?,?,?,?]

end;

The informal description [24] also calls for the specification of a reliable memory component
which is a variant of the memory component in which no MemFailure exceptions can be raised.
We specify the reliable memory component by the compound system:

RSpec = RMemSpec(id0) ‖ . . . ‖ RMemSpec(idk) ‖ InnerMem

where

RMemSpec(id) = MemSpec(id) ‖ Reliable(id)

and Reliable(id) is the system with the same alphabets as MemSpec(id) and with normalised
traces given by the following macro specifying that no exceptional return with process identity
id raising MemFailure occurs.

72 Chapter 5. A Case Study in Verification Based on Trace Abstractions

func Reliable(string α: Trace; dom id: Ident; dom vis: Visible): formula;
¬ ∃pos t: α.(α(t)=Return:[?,exception,MemFailure,id?,vis?])

end;

That is, γ is a normalised trace of Reliable(id) if and only if Reliable(γ,id,observable) is true.
Below, when we say that we have proven a formula F(γ) by feeding it to our tool we mean

that we have fed a file consisting of all the type declaration for fixed k,m, n and the macro
definitions given above followed by:

string γ: Trace;
F(γ)

to our tool. In all executions we have k = m = n = 1, that is, we have two process identities,
two locations and two values. Note that the reason for restricting to two of each is not reflected
in the simple verification problems posed in problem 1 but rather by those of problem 3 below.

Problem 1

(a) Write a formal specification of the Memory component and of the Reliable Memory com-
ponent.

These are defined by Spec and RSpec, respectively.
(b) Either prove that a Reliable Memory component is a correct implementation of a Memory
component, or explain why it should not be.

We prove that:

RSpec(γ) ⇒ Spec(γ) (5.5)

is a tautology by feeding the formula to our tool.
(c) If your specification of the Memory component allows an implementation that does nothing
but raise MemFailure exceptions, explain why this is reasonable.

We first define the following macro stating that any return occurring is exceptional and
raises a MemFailure exception.

func NothingButMemFailure(string α: Trace): formula;
∀ dom retErr: RetErr; dom flg: Flag; pos t: α.

(α(t)=Return:[?,flg?,retErr?,id?,vis?] ⇒ flg=exception ∧ retErr=MemFailure)
end;

Then we prove that:

Spec(γ) ∧ NothingButMemFailure(γ) ⇒ Spec(γ) (5.6)

is a tautology by running our tool. This seems reasonable for two reasons. First, there is
nothing in the informal description specifying otherwise. Second, from a practical point of
view disallowing such an implementation would mean disallowing an implementation involving
an inner memory that could be physically destroyed or removed.

5.7 Implementing the memory

We now turn to the implementation of the memory component using an RPC component.

5.7. Implementing the memory 73

5.7.1 The RPC component

The problem [24] calls for a specification of an RPC component that interfaces with two
components, a sender at a local site and a receiver at a remote site. Its purpose is to forward
procedure calls from the local to the remote site, and to forward back the returns.

Parameters of the component are a set Procs of procedure names and a mapping ArgNum,
where ArgNum(p) is the number of arguments of each procedure p.

We thus declare the domains:

type Procs = ReadProc,WriteProc;
type NumArgs = n1,n2;

of procedure names Procs and of possible numbers of arguments NumArgs. As for elements of
MemLocs and MemVals, we adopt the convention that being an element of Proc is a “semantic”
restriction, and cannot be imposed solely by syntactic restrictions on the types of arguments.
Therefore we declare:

type TProc = Procs & Tag;

The idea is that a remote procedure call passes arguments of type TProc whose first component
denotes a semantically correct element of Procs if and only if the value of the Tag component
is ok. The mapping ArgNum is specified by the macro:

func ArgNum(dom n: NumArgs; dom proc: TProc): formula;
proc↓Procs=ReadProc ⇒ n=n1;
proc↓Procs=WriteProc ⇒ n=n2

end;

where we use the Fido notation ↓ to access a field in a record. That is, proc↓Procs denotes
the Procs field in the record denoted by proc.

In the informal description [24], a remote call procedure is described as:

Name RemoteCall
Arguments proc : name of a procedure

args : list of arguments
Return Value any value that can be returned by a call to proc
Exception RPCFailure : the call failed

BadCall: proc is not a valid name or args is not a
syntactically correct list of arguments for proc.
Raises any exception raised by a call to proc.

Description Calls procedure proc with arguments args.

We declare the domains:

type Args = Loc & Value;
type RpcErr = RPCFailure,BadCall | RetErr;

of argument lists and of possible exceptions raised by exceptional return errors, respectively.
(Note that we restrict ourselves to lists of length at most two) In our specification, a remote
procedure is called by issuing a RemoteCall event of the type:

type RemoteCall = TProc & NumArgs & Args & Ident;

74 Chapter 5. A Case Study in Verification Based on Trace Abstractions

A RemoteCall event takes as first parameter an element of TProc which may not be a “seman-
tically” correct element of Procs and as second parameter an element of NumArgs denoting the
length of the list from Args carried by the third parameter. The last parameter is a process
identity from Ident. The return of a remote procedure is an RpcReturn event given by the
declaration:

type RpcReturn = Value & Flag & RpcErr & Ident;

The first parameter is the value returned. The second indicates whether the return is normal
or exceptional. In case, it is exceptional the third parameter is an element of the domain
RetErr. The last parameter carries a process identity from Ident. Hence, the universe for our
systems is given by:

type Event = Mem | Read | Write | Return | RemoteCall | RpcReturn | τ ;

and traces (strings) over the universe by:

type Trace = Event(next: Trace) | empty;

We specify the RPC component RPC by the compound system:

RPC = RPC(id0) ‖ . . . ‖ RPC(idk)

defined by composing the systems RPC(id).
For a fixed process identity id in Ident, the system RPC(id) with no observable events and

internal events Mem:[?,?,?,?,id], Read:[?,id,internal], Write:[?,id,internal], Return:[?,?,?,id,internal],
RemoteCall:[?,?,?,id] and RpcReturn:[?,?,?,id] specifies the allowed behaviours of RPC proce-
dure calls involving the process with identity id. The normalised traces of RPC(id) are defined
by the macro:

func RPC(string α: Trace; dom id: Ident): formula;
RemoteCallAndReturnAlternates(α,id);
RPCBehaviour(α,id);
WellTypedRemoteCall(α,id);
OnlyInternsInRemoteCalls(α,id)

end;

That is, γ is a normalised trace of RPC(id) if and only if RPC(γ,id) is true. The system
RPC(id) is then given by the triple:

RPC(id) = (RPC(id),ObsRPC(id),IntRPC(id))

where ObsRPC(id) is a macro that yields false on every v of Event and

func IntRPC(dom v: Event; dom id: Ident): formula;
v=Mem:[rd,?,?,?,id?] ∨
v=Read:[?,id,internal] ∨ v=Write:[?,id,internal] ∨ v=Return:[?,?,?,id,internal] ∨
v=RemoteCall:[?,?,?,id] ∨ v=RpcReturn:[?,?,?,id] ∨

end;

The macro RPC is defined as the conjunction of four clauses each of which except for the
last one describes properties explicitly specified in [24]. The last clause OnlyInternsInRemote-
Calls specifies that any of the events Read:[?,id,internal],
Write:[?,id,internal] and Return:[?,?,?,id,internal] only occurs during the handling of RPC calls.
It seems clear that the specifier did not mean for read and write procedure calls on the remote

5.7. Implementing the memory 75

site to happen without being triggered by some remote procedure call. But, the requirement
is not made explicit in [24]. The first clause, RemoteCallAndReturnAlternates specifies as re-
quired in [24] that remote procedure calls are blocking in the sense that a process stops after
issuing a call and waits for the corresponding return to occur. Hence, there may be multiple
outstanding remote calls but not more than one triggered by the same process. Both clauses
are straightforwardly defined in Fido.

For convenience, we define the following macro specifying an RPC operation by associating
a RemoteCall with the corresponding RpcReturn.

func RpcOpr(string α: Trace; pos t1,t2: α;
dom call,return: Event; dom id: Ident): formula;

t1<t2 ∧ α(t1)=call ∧ α(t2)=return;
¬Between(α,t1,t2,RemoteCall:[?,?,?,id?]);
¬Between(α,t1,t2,RpcReturn:[?,?,?,id?])

end;

The second clause is a fairly direct transcription of the quoted lines above (excluding the last
line):

func WellTypedRemoteCall(string α: Trace; dom id: Ident): formula;
∀ dom proc: TProc; dom num: NumArgs;

dom flg: Flag; dom rpcErr: RpcErr; pos t1,t2: α.
RpcOpr(α,t1,t2,RemoteCall:[proc?,num?,?,id?],RpcReturn:[?,flg?,rpcErr?,id?],id)
⇒
flg=normal ⇒ proc↓Tag=ok;ArgNum(num,proc);
flg=exception;rpcErr=BadCall ⇔ ¬(proc↓Tag=ok;ArgNum(num,proc))

end;

stating the relationship between the parameters of a remote call and the corresponding re-
turn. The third clause specifies the properties described by:

A call of RemoteCall(proc,args) causes the RPC component to do one of the following:

• Raise a BadCall exception if args is not a list of ArgNum(proc) arguments.

• Issue one call to procedure proc with arguments args, wait for the corresponding return
(which the RPC component assumes will occur) and either (a) return the value (normal
or exceptional) returned by that call, or (b) raise the RPCFailure exception.

• Issue no procedure call, and raise the RPCFailure exception.

This description is translated into the macro:

func RPCBehaviour(string α: Trace; dom id: Ident): formula;
∀ dom proc: TProc; dom num: NumArgs; dom lst: Args; dom val: Value;

dom flg: Flag; dom rpcErr: RpcErr; pos t1,t2: α.
RpcOpr(α,t1,t2,RemoteCall:[proc?,num?,lst?,id?],RpcReturn:[val?,flg?,rpcErr?,id?],id)
⇒
ABadCall(α,t1,t2proc,num,flg,rpcErr) ∨
OneSuccessfulRpcCall(α,t1,t2,proc,lst,val,flg,rpcErr,id) ∨
OneUnSuccessfulRpcCall(α,t1,t2,proc,lst,val,flg,rpcErr,id) ∨
NoCallOfAnyProcedure(α,t1,t2,flg,rpcErr,id)

end;

76 Chapter 5. A Case Study in Verification Based on Trace Abstractions

where

func ABadCall(string α: Trace; pos t1,t2: α;dom proc: TProc;
dom num: NumArgs; dom flg: Flag; dom rpcErr: RpcErr): formula;

(¬proc↓ProcTag=Procs ∨ ¬ArgNum(num,proc)) ∧
rpcErr=BadCall ∧ flg=exception ∧
¬Between(α,t1,t2,Read:[?,id?,internal]) ∧
¬Between(α,t1,t2,Write:[?,?,id?,internal]) ∧
¬Between(α,t1,t2,Return:[?,?,?,id?,internal])

end;

func OneSuccessfulRpcCall(string α: Trace; pos t1: α; pos t2: α;
dom proc: TProc; dom lst: Args; dom val: Value;
dom flg: Flag; dom rpcErr: RpcErr; dom id: Ident): formula;

∃ dom retErr: RetErr.
ExactlyOneProcCallBetween(α,t1,t2,proc,lst↓Loc,lst↓Value,val,flg,retErr,id);
flg=exception ⇒ (retErr=BadArg ⇔ rpcErr=BadArg;

retErr=MemFailure ⇔ rpcErr=MemFailure)
end;

func OneUnSuccessfulRpcCall(string α: Trace; pos t1: α; pos t2: α;
dom proc: TProc; dom lst: Args; dom val: Value;
dom flg: Flag; dom rpcErr: RpcErr; dom id: Ident): formula;

flg=exception;rpcErr=RPCFailure;
∃ dom val1: Value; dom flg1: Flag; dom err: RetErr.

ExactlyOneProcCallBetween(α,t1,t2,proc,lst↓Loc,lst↓Value,val1,flg1,err,id);
end;

func NoCallOfAnyProcedure(string α: Trace; pos t1: α; pos t2: α;
dom flg: Flag; dom rpcErr: RpcErr; dom id: Ident): formula;

flg=exception ∧ rpcErr=RPCFailure ∧
¬Between(α,t1,t2,Read:[?,id?,internal]) ∧
¬Between(α,t1,t2,Write:[?,?,id?,internal]) ∧
¬Between(α,t1,t2,Return:[?,?,?,id?,internal])

end;

The macro ExactlyOneProcCallBetween specifies that exactly one call of procedure proc with
parameters l,v,flg and retErr occurred between t1 and t2, and no other internal procedure call
occurred. Note that macro ABadCall additionally to the description specifies that no internal
procedure call occurs.

Problem 2

Write a formal specification of the RPC component.
The RPC component is specified by the system RPC.

5.7.2 The implementation

A Memory component is implemented by combining an RPC component with a reliable
memory component. A read or write call is forwarded to the reliable memory by issuing the
appropriate call to the RPC component and the return from the RPC component is forwarded
back to the caller.

5.7. Implementing the memory 77

We specify the implementation of the memory component Impl by the compound system:

Impl = MemImpl(id0) ‖ . . . ‖ MemImpl(idk) ‖ InnerMem

defined by composing the systems MemImpl(id) specifying the allowed read and write proce-
dures for fixed process identities id. Each of the systems MemImpl(id) are themselves com-
pound systems:

MemImpl(id) = Clerk(id) ‖ RPC(id) ‖ IRMemSpec(id)

For a fixed process identity id in Ident, the system Clerk(id) with observable events:

Read:[?,id,observable], Write:[?,id,observable] and Return:[?,?,?,id,observable],

and internal events:

Mem:[?,?,?,?,id], Read:[?,id,internal], Write:[?,id,internal], Return:[?,?,?,id,internal],
RemoteCall:[?,?,?,id] and RpcReturn:[?,?,?,id]

specifies the allowed behaviours of read and write procedure calls involving the process with
identity id. That is, it specifies how a local procedure call is forwarded to a remote procedure
call and how the return of a remote procedure call is forwarded back as the return of the
procedure call. The normalised traces of Clerk(id) are defined by the macro:

func Clerk(string α: Trace; dom id: Ident): formula;
BlockingCalls(α,id,observable);
RPCReadStub(α,id);
RPCWriteStub(α,id);
RPCReturnStub(α,id);
RetryOnlyOnRPCFailure(α,id);
RpcOnlyInObsCall(α,id)

end;

That is, γ is a normalised trace of Clerk(id) if and only if Clerk(γ,id) is true. The system
Clerk(id) is then given by the triple:

Clerk(id) = (Clerk(id),ObsClerk(id),IntClerk(id))

where ObsClerk(id) and IntClerk(id) are the obvious macros.
The second, third, fourth and fifth clauses of Clerk(id) are fairly direct translations of the

informal description [24].

A Read or Write call is forwarded to the Reliable Memory by issuing
the appropriate call to the RPC component.

func RPCReadStub(string α: Trace; dom id: Ident): formula;
∀ dom l: Loc; pos t1,t2: α.

(Opr(α,t1,t2, Read:[l?,id?,observable],Return:[?,?,?,id?,observable],id,observable)
⇒
∃ pos tc,tr: α.
(t1<tc; tr<t2;
RpcOpr(α,tc,tr,RemoteCall:[[ReadProc,ok],n1,[l?,?],id?],RpcReturn:[?,?,?,id?],id)))

end;

78 Chapter 5. A Case Study in Verification Based on Trace Abstractions

The macro RPCWriteStub is similar.

If this call returns without raising an RPCFailure exception, the value returned is
returned to the caller. (An exceptional return causes an exception to be raised.)

func RPCReturnStub(string α: Trace; dom id: Ident): formula;
∀ dom val1: Value; dom flg: Flag; dom retErr: RetErr; pos t1: α.

α(t1)=Return:[val1?,flg?,retErr?,id?,observable]
⇒
∃ dom val2: Value; dom rpcErr: RpcErr; pos t0: α.

t0<t1; α(t0)=RpcReturn:[val2?,flg?,rpcErr?,id?];
¬Between(α,t0,t1,RpcReturn:[?,?,?,id?]);
flg=normal ⇒ val1=val2;
(flg=exception;rpcErr=RPCFailure) ⇒ (retErr=MemFailure;
(flg=exception;¬rpcErr=RPCFailure) ⇒ (retErr=BadArg ⇔ rpcErr=BadArg;

retErr=MemFailure ⇔ rpcErr=MemFailure)
end;

If the call raises an RPCFailure exception, then the implementation may either
reissue the call to the RPC component or raise a MemFailure exception.

func RetryOnlyOnRPCFailure(string α: Trace; dom id: Ident): formula;
∀ pos t1,t2: α.

t1<t2;
α(t1)=RemoteCall:[?,?,?,id?];
α(t2)=RemoteCall:[?,?,?,id?];
¬Between(α,t1,t2,Read:[?,id?,observable]) ∧
¬Between(α,t1,t2,Write:[?,?,id?,observable]) ∧
¬Between(α,t1,t2,Return:[?,?,?,id?,observable])

⇒
∃ pos t: α. t1<t;t<t2; α(t)=RpcReturn:[?,exception,RPCFailure,id?]

end;

The last clause, RpcOnlyInObsCall(α,id) specifies that a remote procedure call only occurs as
the forwarding of an observable procedure call.

The systems IRMemSpec(id) specify a reliable memory with no observable events and inter-
nal events Mem:[?,?,?,?,id], Read:[?,id,internal], Write:[?,id,internal] and Return:[?,?,?,id,internal]:

IRMemSpec(id) = IMemSpec(id) ‖ IReliable(id)

where IReliable(id) are the systems with the same alphabets as IMemSpec(id) and with nor-
malised traces given by Reliable(id,internal), and where IMemSpec(id) are defined by compo-
sition:

IMemSpec(id) = IReadSpec(id) ‖ IWriteSpec(id)

of the systems:

IReadSpec(id) = (ReadSpec(id,internal),ObsReadSpec(id,internal),IntReadSpec(id))

and the similarly defined systems IWriteSpec(id).

5.8. Verifying the implementation 79

Problem 3

Write a formal specification of the implementation, and prove that it correctly implements the
specification of the Memory component of Problem 1.

The implementation is specified by the system Impl. We devote the next section to proving
the correctness of the implementation.

5.8 Verifying the implementation

We want to verify that the system Impl is an implementation of the system Spec. First, we
check that the systems are comparable by running the proper instantiation of formula (5.1).

The obvious way to attempt verifying that the implementation is correct is to check if the
formula:

MemImpl(γ,id0) ⇒ MemSpec(γ,id0) (5.7)

holds. This is however not the case. Feeding it to the Mona tool results in the following
counterexample of length 13:

Read:[[l1,ok],id0,observable]
RemoteCall:[[ReadProc,ok],n1,[[l1,ok],?],id0]
Read:[[l1,ok],id0,internal]
Mem:[rd,l1,v1,normal,id0]
Return:[[v1,ok],normal,?,id0,internal]
RpcReturn:[[initVal,?],exception,RPCFailure,id0]
RemoteCall:[[ReadProc,ok],n1,[[l1,ok],?],id0]
Read:[[l1,ok],id0,internal]
Mem:[rd,l1,v1,normal,id0]
Return:[[v1,ok],normal,?,id0,internal]
RpcReturn:[[v1,ok],normal,?,id0]
Return:[[v1,ok],normal,?,id0,observable]
empty

where we have left out most of the typing information. The counterexample tells us that a
successful read operation of the implementation may contain two RPC procedure calls each
triggering an atomic read whereas such a read operation is not allowed by the specification.
Hence, the counterexample reflects that whereas the specification requires a successful read
to contain exactly one atomic read the implementation of the memory allows more than one.

An atomic read is however an internal event and fortunately, we can follow our method
explained in Section 5.4. To avoid explicitly building the compound system Impl(γ) of the
implementation, we apply the proof rule of Theorem 21. First, we check and see that the
systems MemImpl(γ,id) ‖ InnerMem(γ) and MemSpec(γ,id) ‖ InnerMem(γ) for id = id0,id1 are
comparable by running the proper instantiations of formula (5.1). Let Obs denote a macro
defining their common alphabet of observable events and note that the internal events are
defined by IntMemImpl(id) and IntMemSpec(id), respectively. Let

func Observe(string α: Trace; string β: α; dom id: Ident): formula;
∀pos t: α.(Obs(α(t),id) ∨ Obs(β(t),id)) ⇒ α(t)= β(t)

end;

and let

80 Chapter 5. A Case Study in Verification Based on Trace Abstractions

func R(string α: Trace; string β: α; dom id: Ident): formula;
Observe(α,β,id); MemSpec(β,id);InnerMem(β)

end;

We then prove that:

(MemImpl(γ,id);InnerMem(γ)) ⇒ ∃string β: γ.R(γ,β,id) (5.8)

is a tautology (for id = id0,id1; the formulas are symmetric) using our tool and conclude by
Proposition 20 and Theorem 17 that the system MemImpl(γ,id) ‖ InnerMem(γ) implements
MemSpec(γ,id) ‖ InnerMem(γ) for id = id0,id1.

As discussed in Section 5.4, the compatibility requirement of Theorem 21 amounts to
checking the formula (5.4). However, the Mona tool can not handle the state explosion
caused by the existential quantification on the right hand side of the implication. Intuitively,
the existential quantification guesses the internal behaviour of the trace β needed to match
the observable behaviour of the trace γ. We can however help guessing by constraining
further for each trace γ of the implementation the possible choices of matching traces β of
the specification. To do this we formulate more precise (smaller) trace abstractions based on
adding information of the relation between the internal behaviour on the implementation and
specification level.

In particular, we formalise the intuition we gained from the counterexample above that
between a successful read call and the corresponding return on the implementation level
exactly the last atomic read should be matched by an atomic read on the specification level.
This is formalised by the macro:

func Map1(string α: Trace; string β: α; dom id: Ident): formula;
∀pos t1,t2: α.

Opr(α,t1,t2,Read:[?,id?,observable],Return:[?,normal,?,id?,observable],id,observable)
⇒

∃pos t: α.
t1<t;t<t2;
α(t)=Mem:[rd,?,?,?,id?];
α(t)=β(t);
¬Between(β,t1,t,Mem:[rd,?,?,?,id?]);
¬Between(β,t,t2,Mem:[rd,?,?,?,id?]);
¬Between(α,t,t2,Mem:[rd,?,?,?,id?])

end;

Also, we define the macro Map2 specifying that an atomic read on the implementation level
is matched either by the same atomic read or by a τ on the specification level:

func Map2(string α: Trace; string β: α; dom id: Ident): formula;
∀pos t: α.α(t)=Mem:[rd,?,?,?,id?] ⇒ (α(t)=β(t) ∨ β(t)=τ)

end;

and the macro Map3 specifying that any internal event but an atomic read on the implemen-
tation level is matched by the same atomic read on the specification level and conversely, that
any internal event on the specification level is matched by the same event on the implemen-
tation level:

func Map3(string α: Trace; string β: α; dom id: Ident): formula;
∀pos t: α.

(IntMemImpl(α(t),id) ∧ ¬α(t)=Mem:[rd,?,?,?,id?]) ∨ IntMemSpec(β(t),id)

5.8. Verifying the implementation 81

⇒
α(t)=β(t)

end

We sum up the requirements in the macro:

func C(string α: Trace; string β: α): formula;
Map1(α,β,id0); Map2(α,β,id0); Map3(α,β,id0);
Map1(α,β,id1); Map2(α,β,id1); Map3(α,β,id1)

end;

We prove using our tool that:

MemImpl(γ,id0);InnerMem(γ) ⇒ ∃string β: γ.(C(γ,β))∧R(γ,β,id0)) (5.9)

is a tautology (for id = id0,id1; the formulas are symmetric) and conclude by Proposition 20
that C ∩ R(id) is a trace abstraction from the system MemImpl(γ,id) ‖ InnerMem(γ) to the
system MemSpec(γ,id) ‖ InnerMem(γ) for id = id0,id1. Finally, by running our tool we prove
that the formula:

∃string β0: γ.(C(γ,β0)∧R(γ,β0,id0))∧ ∃string β1: γ.(C(γ,β1)∧R(γ,β1,id1))
⇒
∃string β: γ. (C(γ,β)∧R(γ,β,id0)∧R(γ,β,id1))

(5.10)

is a tautology and hence verify the compatibility requirement of Theorem 21 and conclude
that Impl(γ) implements Spec(γ).

An alternative reaction to the failure of proving (5.7) is to claim to have found an error in
the informal description and change the description such that it allows the behaviour described
by the counterexample. In our formal specification, this would amount to simply change the
macro CheckSuccessfulRead to require that at least one atomic read occurs instead of exactly
one. Hence modified, we prove using our tool that the formula (5.7) is a tautology. Likewise,
we prove the symmetric formula with id0 replaced for id1 and conclude by propositional logic
that:

MemImpl(γ,id0);MemImpl(γ,id1);InnerMem(γ)
⇒

MemSpec(γ,id0);MemSpec(γ,id1);InnerMem(γ)
(5.11)

and therefore by definition that:

Impl(γ) ⇒ Spec(γ)

Note that when dealing with automatic verification, the difference between the two solutions
may be significant since opposed to the second the first involves the projecting out of internal
behaviour and hence a potential exponential blow-up in the size of the underlying automata.

The full solution is written in 11 pages of Fido code. All the formulas (5.5), (5.6), (5.7),
(5.8), (5.9) and (5.10) are decided within minutes. The largest Fido formulas specify M2L
formulas of size more than 105 characters. During processing the Mona tool handles formulas
with more than 32 free variables corresponding to deterministic automata with alphabets of
size 232. The proofs of (5.8), (5.9) and (5.10) required user intervention in terms of explicit
orderings of the BDD variables - merging the variables encoding the traces compared.

Chapter 6

Behavioural Equivalence for Infinite
Systems – Partially Decidable!

Contents

6.1 Introduction . 86
6.2 A TCSP-style language . 87
6.3 Language, pomset, and location equivalence 89
6.4 BPP . 90

6.4.1 Normal form . 91
6.4.2 Finite tree automata . 94

6.5 Extending towards full TCSP . 95
6.5.1 BPPH and TCSP . 96
6.5.2 BPPS . 97
6.5.3 Synchronous automata on tuples of finite trees 98

6.6 Extending towards full CCS . 103
6.6.1 BPPM . 103
6.6.2 CCS . 104

6.7 Conclusions . 105
6.8 Proofs . 106

6.8.1 Proof of Proposition 38 . 106
6.8.2 Proof of Theorem 41 . 108
6.8.3 Proof of Proposition 49 . 109
6.8.4 Proof of Proposition 52 . 110
6.8.5 Proof of Proposition 55 . 112
6.8.6 Proof of Proposition 57 . 115
6.8.7 Proof of Theorem 61 . 116

83

Behavioural Equivalence for Infinite Systems
- Partially Decidable!

Kim Sunesen Mogens Nielsen

BRICS1

Department of Computer Science
University of Aarhus

Ny Munkegade, DK-8000 Aarhus C.
{ksunesen,mnielsen}@brics.dk

Abstract For finite-state systems non-interleaving equivalences are com-
putationally at least as hard as interleaving equivalences. In this paper we
show that when moving to infinite-state systems, this situation may change
dramatically.

We compare standard language equivalence for process description languages
with two generalisations based on traditional approaches capturing non inter-
leaving behaviour, pomsets representing global causal dependency, and local-
ity representing spatial distribution of events.

We first study equivalences on Basic Parallel Processes, BPP, a process cal-
culus equivalent to communication free Petri nets. For this simple process
language our two notions of non-interleaving equivalences agree. More inter-
estingly, we show that they are decidable, contrasting a result of Hirshfeld
that standard interleaving language equivalence is undecidable. Our result
is inspired by a recent result of Esparza and Kiehn, showing the same phe-
nomenon in the setting of model checking.

We follow up investigating to which extent the result extends to larger subsets
of CCS and TCSP. We discover a significant difference between our non-
interleaving equivalences. We show that for a certain non-trivial subclass
of processes between BPP and TCSP, not only are the two equivalences
different, but one (locality) is decidable whereas the other (pomsets) is not.
The decidability result for locality is proved by a reduction to the reachability
problem for Petri nets.

1Basic Research in Computer Science, Centre of the Danish National Research Foundation.

85

86 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

6.1 Introduction

This paper is concerned with decidability issues for behavioural equivalences of concurrent
systems, notably linear-time equivalences focusing on causal dependency between and spatial
distribution of events. Our results may be seen as a contribution to the search for useful
verification problems which will be decidable/tractable when moving from the standard view
of interleaving to more intentional non-interleaving views of behaviour.

All known behavioural equivalences are decidable for finite-state systems, but undecidable
for most general formalisms generating infinite-state systems, including process calculi, like
CCS and TCSP, and labelled Petri nets. To study systems in between various infinite-state
process algebras have been suggested, see [33] for a survey. One of the most interesting
suggestions is Basic Parallel Processes, BPP, introduced by Christensen [31]. BPPs are re-
cursive expressions constructed from inaction, action, variables, and the standard operators
prefixing, choice and parallel compositions. By removing the parallel operator one obtains a
calculus with exactly the same expressive power as finite automata. BPPs can hence be seen
as arising from a minimal concurrent extension of finite automata and therefore a natural
starting point of exploring concurrent infinite-state systems. Another reason for studying
BPP is its close connection to communication-free nets, a natural subclass of labelled Petri
nets [31, 72]. It was hence shown in [31] that any BPP process can be effectively transformed
into an equivalent BPP process in full standard form while preserving bisimilarity. Moreover,
there is an obvious isomorphism between the transition system of a BPP process in full stan-
dard form and the labelled reachability graph of a communication-free net, for details see
[55]. Hence, BPP is formally equivalent to the class of communication-free Petri nets with
respect to any interleaving equivalence coarser than or equal to bisimilarity. BPPs were first
suggested in [31, 32] and accompanied by a positive result showing that (strong) bisimulation
is decidable on BPP. Later Hirshfeld showed that in contrast language (trace) equivalence is
undecidable [72] for BPP. The picture has since been completed by a result showing that in
the branching-time/linear-time spectrum of van Glabbeek [164] only bisimulation is decidable,
see [78]. For a survey on results for infinite-state systems see [33].

Also, various generalisations of behavioural equivalences to deal with non-interleaving be-
haviour have been studied, see for instance [165]. Basic ideas are to include in the notion of
equivalence some information of causal dependency between events, following the ideas from
the theory of Petri nets and Mazurkiewicz traces [143, 118] or to include some information
on the spatial distribution of events, following [21]. For finite-state systems non-interleaving
equivalences are computationally at least as hard as interleaving equivalences, see [85]. In this
paper we show that when moving to infinite-state systems, this situation may change dramat-
ically. For infinite-state systems a number of non-interleaving bisimulation equivalences have
been proven decidable on BPP, e.g. causal bisimulation, location equivalence, ST-bisimulation
and distributed bisimulation [91, 31]. In this paper we concentrate on non-interleaving gen-
eralisations of language equivalence.

More precisely, we compare standard language equivalence for process description lan-
guages with two generalisations based on traditional approaches to deal with non-interleaving
behaviour. The first, pomset equivalence, is based on pomsets representing global causal de-
pendency, [141], and the second, location equivalence, on locality [21] representing spatial
distribution of events.

We first study the equivalences on Basic Parallel Processes, BPP. For this simple process
language our two notions of non-interleaving equivalences agree, and furthermore they are de-

6.2. A TCSP-style language 87

cidable, contrasting the result of Hirshfeld [72] that language equivalence is undecidable. This
result is inspired by a recent result of Esparza and Kiehn [56] showing the same phenomenon
in the setting of model checking.

We follow up investigating to which extent the result extends to larger subsets of CCS and
TCSP. We discover here a significant difference between our two non-interleaving equivalences.
We show that for a certain non-trivial subclass of processes between BPP and TCSP, BPPS ,
not only are the two equivalences different, but one (locality) is decidable whereas the other
(pomset) is not. The decidability result for locality is proved by a reduction to the reachability
result for Petri nets.

Finally, we show that there is also a difference between the power of the parallel operators
of CCS and TCSP. Adding the parallel operator of Milner’s CCS to BPP, BPPM , we keep
the decidability of location and pomset equivalence, whereas by adding the parallel operator
of Hoare’s TCSP, BPPH , both become undecidable.

Our results are summarised in the following table where yes indicates decidability and no
undecidability. The results of the first column are all direct consequences of Hirshfeld’s result
on BPP [72]. The second and third show the results of this paper.

Language equiv. Pomset equiv. Location equiv.
BPP no yes yes
BPPS no no yes
BPPH no no no
BPPM no yes yes
TCSP& CCS no no no

The operational semantics from which our pomsets are derived is based on an enrichment
of the standard semantics of CCS [122] and TCSP [131] decorating each transition with
some extra information allowing an observer to observe the location of the action involved.
The location information we use to decorate transitions is derived directly from the concrete
syntax tree of the process involved. We have chosen here to follow the technical static setup
from [126], but could equally easy have presented an operational semantics in the dynamic
style of [21]. The decidability results are based on the theory of finite tree automata and a
new kind of synchronous automata working on tuples of finite trees. For this latter model we
show decidability of the emptiness problem using a reduction to the zero reachability problem
for Petri nets.

In Sections 6.2 and 6.3, we present the syntax and operational semantics of a TCSP-style
language, and define formally the equivalences to be studied. The next three sections are
used to establish our results for BPP, TCSP and CCS respectively. First, in Section 6.4 we
show that both non-interleaving equivalences are decidable for BPP processes. TCSP-style
subsets are considered in Section 6.5, where we show that all our equivalences are undecidable
on BPPH and that for BPPS location equivalence is decidable, whereas pomset equivalence
is not. In Section 6.6, we deal with the CCS-style subsets. We show that the result of Section
6.4 extend to BPPM , and no further.

6.2 A TCSP-style language

We start by defining the abstract syntax and semantics of a language, BPPH , including a
large subset of TCSP [75, 131] The definition is fairly standard. As usual, we fix a countably

88 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

infinite set of actions Act = {α, β, . . . }. Also, fix a countably infinite set of variables Var =
{X,Y,Z, . . . }. The set of process expressions Proc of BPPH is defined by the abstract syntax

E ::= 0 | X | σ.E | E + E | E ‖A E

where X is in Var, σ in Act, and A a subset of Act. All constructs are standard. 0 denotes
inaction, X a process variable, σ. prefixing, + non-deterministic choice, and ‖A TCSP parallel
composition of processes executing independently with forced synchronisation on actions in
the synchronisation set, A. For convenience, we shall write ‖ for ‖∅.

A process family is a family of recursive equations ∆ = {Xi
def= Ei | i = 1, 2 . . . , n}, where

Xi ∈ Var are distinct variables and Ei ∈ Proc are process expressions containing at most
variables in Var(∆) = {X1, . . . ,Xn}.

A process E is a process expression of Proc with a process family ∆ such that all variables
occurring in E, Var(E), are contained in Var(∆). We shall often assume the family of a
process to be defined implicitly. Dually, a process family denotes the process defined by
its leading variable, X1, if not mentioned explicitly. Let Act(E) denote the set of actions
occurring in process E and its associated family. A process expression E is guarded if each
variable in E occurs within some subexpression σ.F of E. A process family is guarded if for
each equation the right side is guarded. A process E with family ∆ is guarded if E and ∆
are guarded. Throughout the paper we shall only consider guarded processes and process
families.

We enrich the standard operational semantics of TCSP [131] by adding information to the
transitions allowing us to observe an action together with its location. More precisely, the
location of an action in a process P is the path from the root to the action in the concrete
syntax tree represented by a string over {0, 1} labelling left and right branches of ‖A-nodes
with 0 and 1, respectively, and all other branches with the empty string ε.

Let L = P({0, 1}∗), i.e. finite subsets of strings over {0, 1}∗, and let l range over elements
of L. We interpret prefixing a symbol to L as prefixing elementwise, i.e. 0l = {0s | s ∈ l}.
With this convention, any process determines a (Act × L)-labelled transition system with
states the set of process expressions reachable from the leading variable and transitions given
by the transitions rules of Table 6.1. The set of computations of a process, E, is defined now
as usual as sequences of transitions, decorated by action and locality information:

c : E = E0

σ1
−→
l1
E1 . . .

σn

−→
ln
En.

We let loc(c) denote the set of locations occurring in c, i.e. loc(c) =
⋃

1≤i≤n li.

6.3. Language, pomset, and location equivalence 89

σ.E
σ

−→
{ε}E (prefix)

E
σ

−→
l
E′

X
σ

−→
l
E′
, (X def= E) ∈ ∆ (unfold)

E
σ

−→
l
E′

E + F
σ

−→
l
E′

(suml)
F

σ
−→
l
F ′

E + F
σ

−→
l
F ′

(sumr)

E
σ

−→
l
E′

E‖AF
σ

−→
0l
E′‖AF

, σ 6∈ A (parl)
F

σ
−→
l
F ′

E‖AF
σ

−→
1l
E‖AF ′

,σ 6∈ A (parr)

E
σ

−→
l0
E′ F

σ
−→
l1
F ′

E‖AF
σ

−→
0l0∪1l1

E′‖AF ′
, σ ∈ A (com)

Table 6.1: Transition rules for BPPH .

Example 23 Consider the process

p1 = a.b.c.0 ‖{b} b.0.

The following is an example of an associated computation (representing the unique maximal
run)

p1

a
−→
{0}

b.c.0 ‖{b} b.0
b
−→
{0,1}

c.0 ‖{b} 0
c
−→
{0}

0 ‖{b} 0.

Consider alternatively the process

p2 = a.b.0 ‖{b} b.c.0

with computation

p2

a
−→
{0}

b.0 ‖{b} b.c.0
b
−→
{0,1}

0 ‖{b} c.0
c
−→
{1}

0 ‖{b} 0.

2

6.3 Language, pomset, and location equivalence

Let v be the prefix ordering on {0, 1}∗, extended to sets, i.e. for l, l′ ∈ L

l v l′ ⇐⇒ ∃s ∈ l, s′ ∈ l′. s v s′.

For a given computation

c : E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En,

90 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

we define the location dependency ordering over {1, 2, . . . , n} as follows:

i ≤c j ⇐⇒ livlj ∧ i ≤ j.

As usual, ≤∗c denotes the transitive closure of ≤c.

Definition 24 Behavioural Equivalences.
Processes E and E′ are said to be language equivalent, E ∼lan E

′, iff for every computation
of E

c : E
σ1
−→
l1
E1 . . .

σn

−→
ln
En

there exists a computation of E′

c′ : E′
σ1

−→
l′1
E′1 . . .

σn

−→
l′n
E′n

and vice versa.
E and E′ are said to be pomset equivalent, E ∼pom E′, iff the above condition for language
equivalence is satisfied, and c′ is further required to satisfy i ≤∗c j ⇐⇒ i ≤∗c′ j.
E and E′ are said to be location equivalent, E ∼loc E

′, iff the above condition for lan-
guage equivalence is satisfied, and c′ is further required to satisfy that there exists a relation
R ⊆ loc(c) × loc(c′) satisfying that for each 1 ≤ i ≤ n, R restricts to a bijection on li × l′i,
and for each i ≤ j, s0(R ∩ li × l′i)s′0 and s1(R∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1. 2

Notice that the condition in the definition of pomset equivalence requires identical global
causal relationship between the events of c and c′, whereas the condition in the definition
of location equivalence requires the same set of local causal relationships (up to renaming
of locations). Also, notice that our notion of pomset equivalence is consistent with formal
definitions from e.g. [85], and that location equivalence is a natural application of the concepts
from [21] to the setting of language equivalence.

Example 25 It follows immediate from the definition that for our process language consid-
ered so far, location equivalence is included in pomset equivalence, which in turn is included
in language equivalence. The standard example of processes a.0 ‖ b.0 and a.b.0 + b.a.0 shows
that the inclusion in language equivalence is strict. The different intuitions behind our two
non-interleaving equivalences may be illustrated by the two processes from Example 23. For-
mally, the reader may verify that p1 and p2 are pomset equivalent but not location equivalent.
Intuitively, both processes may perform actions a,b, and c in sequence, i.e. same set pomsets,
but in p1 one location is responsible for both a and c, whereas in p2 two different locations
are responsible for these actions. 2

6.4 BPP

In this section we investigate the calculus known as Basic Parallel Processes [31], BPP – a
syntactic subset of CCS and TCSP which can be seen as the largest common subset of these.
The abstract syntax of BPP expressions is

E ::= 0 | X | σ.E | E + E | E ‖ E

6.4. BPP 91

and the semantics is just as presented in the previous section. A BPP process is a process only
involving BPP expressions. Note that BPP is nothing but our previous language restricted
to parallel compositions without communication.

Theorem 26 For BPP, ∼loc = ∼pom ⊂ ∼lan.

Proof: From the fact that all observed locations are singletons it easily follows ∼loc and
∼pom coincide on BPP. The strict inclusion follows from Example 25. 2

Definition 27 A Σ-labelled net is a four-tuple (S, T, F, l) where S (the places) and T (the
transitions) are non-empty finite disjoint sets, F (the flow relation) is a subset of (S × T) ∪
(T × S) and l is a labelling function from T to Σ. A marking of a net is a multiset of places.
Finally, a Petri net is a pair (N,M0) where N is a labelled net and M0 is an (initial) mark-
ing. The preset and postset of a transition t ∈ T is the set •t = {s | (s, t) ∈ F} and the
set t• = {s | (t, s) ∈ F}, respectively. A Petri net is communication-free iff for every t ∈
T, | •t | = 1. 2

As mentioned in the introduction BPP is formally equivalent to the class of communication-
free Petri nets with respect to any interleaving equivalence coarser than or equal to bisimi-
larity. With the normal form result below it is straightforward to obtain a similar result for
location and pomset equivalence.

An important property of BPP is the fact that due to the lack of communication the
location/pomset ordering of computations have a particularly simple form.

Proposition 28 For any BPP process E, and any computation

c : E = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

the ordering ≤∗c is a tree ordering.

Proof: Every observed location is a singleton and hence every location has at most one
predecessor. 2

We use the rest of this section to prove that ∼loc and ∼pom are decidable on BPP processes.
The proof relies on the proposition above, and a reduction to the equivalence problem for
recognisable tree languages which is well-known to be decidable, see e.g. [53] or for a brief
treatment [160].

6.4.1 Normal form

We present a definition of normal form for BPP processes and a normal form result. The
normal form we use is based on the following structural congruence.

92 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

Definition 29 Let ≡ be the least congruence on BPP expressions with respect to all opera-
tors such that the following laws hold.

Abelian monoid laws for +:

E + F ≡ F + E

E + (F +G) ≡ (E + F) +G

E + 0 ≡ E

Abelian monoid laws for ‖:

E ‖ F ≡ F ‖ E
E ‖ (F ‖ G) ≡ (E ‖ F) ‖ G

E ‖ 0 ≡ E

Idempotence law for +:

E + E ≡ E

Linear-time laws:

(E + F) ‖ G ≡ (E ‖ G) + (F ‖ G)
σ.(E + F) ≡ σ.E + σ.F

2

Proposition 30 ≡ is sound in the sense that if E ≡ F then E ∼pom F .

Proof: Induction in the structure of the proof of E ≡ F . 2

As parallel composition is commutative and associative, it is convenient to represent a parallel
composition X0 ‖ . . . ‖ Xk by the multiset {|X0, . . . ,Xk|} or if the variables are distinct by
the set {X0, . . . ,Xk}. Inaction 0 is represented by the empty multiset (set). We denote by
Var⊗ the set of all finite multisets over Var and by P(M) the set of all subsets of M .

Definition 31 A BPP family ∆ = {Xi
def= Ei | i = 1, 2 . . . , n} is in quasi normal form if and

only if every expression Ei is of the form

Ei ≡
ni∑

j=1

σijαij

where σij ∈ Act and αij ∈ Var(∆)⊗. 2

From the soundness of ≡ it is fairly straightforward to prove the following quasi normal form
result.

6.4. BPP 93

Proposition 32 Let ∆ be a BPP family with leading variable X1. Then a BPP family in
quasi normal form ∆′ can be effectively constructed such that ∆′′ ∼pom ∆′, where ∆′′ is ∆
extended with a new leading variable X ′1 = s.X1, for some s ∈ Act and X ′1 6∈ Var(∆).

Proof: For convenience, we introduce the notation α[X/
∑

i βi] denoting the BPP expression
obtained from α by taking the sum over all possible replacements of each X by one of the
multisets βi, that is,

α[X/
∑

i

βi] =
{ ∑

i((α− {|X|}) ∪ βi)[X/
∑

i βi] if X ∈ α
α otherwise

where α, βi ∈ Var⊗ and X ∈ Var such that X 6∈ βi.
It is not hard to see that by introducing new variables we may effectively construct a new

BPP family, ∆′′′ from ∆′′ = {Yi
def= Ei | i = 1, 2 . . . , n} with leading equation Y1

def= s.Y2 such
that ∆′′ ∼pom ∆′′′ and such that every expression Ei is of the form

Ei ≡
mi∑
j=1

σijαij +
ni∑

j=1

βij

where σij ∈ Act, αij, βij ∈ Var(∆)⊗, and βij non-empty.
We bring ∆′′′ into quasi normal form by propagating any unguarded choice to the nearest

earlier guard (prefixing). Note that such a guard always exists due to guardedness and the
fact that the leading equation is of the form Y1

def= s.Y2. Assume without loss of generality
that every variable of ∆′′′ is reachable from Y1, and let ∆0 denote ∆′′′. For k = 1, . . . , n, we
define ∆k by induction. If

∆k−1 = {Yi
def= Ei | i = 1, 2 . . . , n}

then

∆k = {Yi
def= E′i | i = 1, 2 . . . , n},

where if Ek ≡
∑mi

j=1 σijαij then for each i = 1, . . . , n, E′i = Ei, otherwise for each i = 1, . . . , n
such that i 6= k,

E′i ≡ Ei +
mi∑
j=1

σijαij[Yk/

nk∑
l=1

βkl] +
ni∑

j=1

βij [Yk/

nk∑
l=1

βkl]

and

E′k ≡
mk∑
j=1

σkjαkj + (
mk∑
j=1

σkjαkj[Yk/

nk∑
l=1

βkl]).

Note that due to the guardedness, βij as well as βij[Yk/βkl] do not contain Yi.
It is an easy task to prove that for k = 0, . . . , n − 1, ∆k ∼pom ∆k+1 using the fact that

the right-hand side of the leading equation has no unguarded choice and that ∆0 through ∆n

are guarded. Since ∆n is in quasi normal form the result follows. 2

94 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

Definition 33 A BPP family ∆ = {Xi
def= Ei | i = 1, 2 . . . , n} is in normal form if and only

if every expression Ei is of the form

Ei ≡
ni∑

j=1

σijαij

where σij ∈ Act and αij ∈ P(Var(∆)). 2

BPP processes in normal form and communication-free nets are closely related. Hence, map-
ping variables to places and actions to action labelled transitions, induces an obvious isomor-
phism between the computations of a BPP process in normal form and the firing sequences
of a communication-free net, see [55] for details.

Proposition 34 Let ∆ be a BPP family with leading variable X1. Then a BPP family in
normal form ∆′ can be effectively constructed such that ∆′′ ∼pom ∆′, where ∆′′ is ∆ extended
with a new leading variable X ′1 = s.X1, for some s ∈ Act and X ′1 6∈ Var(∆).

Proof: Follows from Proposition 32 and a straightforward introduction of new variables and
appropriate renaming. 2

Note that for example the process (a.0 ‖ b.0) + c.0 cannot be brought on normal form while
preserving pomset equivalence whereas the process s.((a.0 ‖ b.0) + c.0) can. Hence, the point
of the slightly technical normal form result is that prefixing the leading equation of two BPP
processes by the same action respects and reflects pomset equivalence.

6.4.2 Finite tree automata

In this section we show how to effectively construct a finite tree automaton A∆ from a BPP
family ∆ in normal form in such a way that pomset equivalence reduces to equivalence of
recognisable tree languages.

Let Σ = Σ0 ∪ . . . ∪ Σn be a ranked finite alphabet. The set of all trees over Σ, TΣ is the
free term algebra over Σ, that is, TΣ, is the least set such that Σ0 ⊆ TΣ and such that if
a ∈ Σk and for i = 1, . . . , k, ti∈ TΣ, then a[t1, . . . , tk]∈ TΣ. For convenience, we use a and a[]
interchangeably to denote members of Σ0.

Definition 35 A non-deterministic top-down finite tree automaton, NTA, is a four-tuple
A = (Σ, Q, S, δ), where Σ is a ranked finite alphabet, Q a finite set of states, S ⊆ Q is a set
of initial states, and δ is a ranked family of labelled transition relations associating with each
k ≥ 0, a relation δk ⊆ Q× Σk ×Qk such that δk is non-empty for only finitely many k. 2

6.5. Extending towards full TCSP 95

Definition 36 Let A = (Σ, Q, S, δ) be a NTA and let t ∈ TΣ. A configuration of A, is a
multiset of pairs from Q×TΣ. Denote by confA the set of all configurations of A. For σ ∈ Σ,
let σ→⊆ confA× confA be the labelled transition relation between configurations defined by

{|(q, t)|} ∪ c σ→ {|(q1, t1), . . . , (qk, tk)|} ∪ c,

if and only if σ ∈ Σk, t = σ[t1, . . . , tk], (q, σ, q1, . . . , qk) ∈ δk and c ∈ confA. We write →
for the union over all σ ∈ Σ of σ→, and →∗ for the reflexive and transitive closure of →.
A (successful) run of A on input t is a derivation {|(q0, t)|}→∗∅, where q0 ∈ S. The tree
language, L(A), recognised by A consists of all trees t, for which there is a successful run of
A on t.

A transition relation δ is permutation closed if for all q, q1, . . . , qk ∈ Q, k ≥ 0, and
permutations π on {1, . . . , k}

(q, σ, q1, . . . , qk) ∈ δk ⇐⇒ (q, σ, qπ(1), . . . , qπ(k)) ∈ δk.

A NTA is permutation closed if its transition relation is permutation closed. 2

Construction 37 Given a BPP family ∆ in normal form with leading variable X1, de-
fine a permutation closed NTA A∆ = (Act(∆),Var(∆), {X1}, δ) such that for every (X def=∑n

i=1 σiαi) ∈ ∆, every index 1 ≤ j ≤ n and for every {Y1, . . . , Yk} ⊆ αj ,

(X,σj , Y1, . . . , Yk) ∈ δk

The ranking of the alphabet Act(∆) is induced by the definition of δ. 2

Proposition 38 Given BPP families ∆ and ∆′ in normal form and with leading variables
X and X ′, respectively. Then

X ∼pom X ′ ⇐⇒ L(A∆) = L(A∆′).

Proof: See Section 6.8.1. 2

Theorem 39 For BPP, ∼pom and ∼loc are decidable, whereas ∼lan is undecidable.

Proof: The undecidability result was proved in [72]. The decidability results follow from
Theorem 26, Proposition 34, Proposition 38 and the fact that the equivalence problem for
NTA recognisable tree languages is decidable, see e.g. [53, 63]. 2

6.5 Extending towards full TCSP

We now return to the TCSP subset, BPPH , defined in Section 6.2. In contrast to BPP,
BPPH allows communication. In this section we show that this extension right away leads to
undecidability of both ∼pom and ∼loc. In proving the undecidability, an interesting difference
in the complexity of the reductions used appears. To show that ∼pom is undecidable we

96 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

only need one static occurrence of the parallel operator with a non-empty synchronisation
set, whereas to show that ∼loc is undecidable we seem to need much more sophisticated
techniques. We end the section with a study of a non-trivial subset of BPPH , called static
BPPH or just BPPS , that makes the difference between ∼pom and ∼loc explicit: for BPPS ,
∼loc is decidable whereas ∼pom remains undecidable.

6.5.1 BPPH and TCSP

When allowing non-empty synchronisation sets ∼pom and ∼loc become different.

Theorem 40 For BPPH , ∼loc ⊂ ∼pom ⊂ ∼lan.

Proof: Follows from Definition 24 and Examples 23 and 25. 2

Theorem 41 For BPPH , ∼pom and ∼loc are undecidable.

Proof: It is well-known that BPPH is Turing powerful, see e.g. [31] where it is shown
how to simulate Minsky counter machines [124] in BPPH . Given the encoding of Minsky
counter machines there is a standard way of reducing the halting problem for Minsky counter
machines to an equivalence problem. Given a Minsky counter machine N first construct a
BPPH process EN that simulates N and then another process FN that is an exact copy of
EN except for FN having a distinguished action, say h, not in EN such that h is enabled if
and only if N halts. Hence, EN is equivalent to FN if and only if N does not halt, and the
undecidability of the equivalence follows. Hence, in particular pomset and location equiva-
lence are undecidable. See, Section 6.8.2 for more details. 2

For ∼pom the following stronger result shows that even for a very restricted subset of BPPH

pomset equivalence remains undecidable.

Proposition 42 Let E and F be BPP processes with identical alphabets Σ and let S be the
BPP process S def=

∑
a∈Σ a.S.

E ∼lan F ⇐⇒ E ‖Σ S ∼pom F ‖Σ S

Proof: The intuition is that the process S works as a sequentialiser. The proof essentially
consists of transforming computations of E into computations of E ‖Σ S and vice versa.

Assume that E ∼lan F . By a simple inductive argument in the length of the computations
E ‖Σ S, it is easily seen that any computation of E ‖Σ S has the form

cE : E ‖Σ S
σ1

−→
l1
E1 ‖Σ S . . .

σn

−→
ln
En ‖Σ S,

where E1, . . . , En are BPP expressions and each location has the form li = {0si, 1}. Since
1 ∈ li for each i = 1, . . . , n, it follows that for every i, j ∈ {1, . . . , n}, i ≤∗cE

j if and only if
i≤j. Clearly,

c′E : E
σ1
−→
{s1}

E1 . . .
σn

−→
{sn}

En.

6.5. Extending towards full TCSP 97

By the assumption E ∼lan F , it follows that there exist BPP expressions F1, . . . , Fn and
locations l′1, . . . , l′n such that

c′F : F
σ1

−→
l′1
F1 . . .

σn

−→
l′n
Fn

and thus such that

cF : F ‖Σ S
σ1

−→
l′′1
F1 ‖Σ S . . .

σn

−→
l′′n
Fn ‖Σ S,

where l′′i = 0l′i ∪ 1{ε}. Since for each i = 1, . . . , n, 1 ∈ l′′i , it follows that i ≤∗cF
j if and only

if i≤j and hence that i ≤∗cF
j ⇐⇒ i ≤∗cE

j, for every i, j ∈ {1, . . . , n}. By a symmetric
argument we conclude that E ‖Σ S ∼pom F ‖Σ S.
Conversely, assume that E ‖Σ S ∼pom F ‖Σ S. Consider any computation of E,

cE : E
σ1

−→
l1
E1 . . .

σn

−→
ln
En.

Then

c′E : E ‖Σ S
σ1

−→
l′1
E1 ‖Σ S . . .

σn

−→
l′n
En ‖Σ S

is a computation of E ‖Σ S with l′i = 0li ∪ 1{ε} for every i = 1, . . . , n. By assumption, there
exist locations l′′1 , . . . , l

′′
n and BPP expressions F1, . . . , Fn such that

c′F : F ‖Σ S
σ1

−→
l′′1
F1 ‖Σ S . . .

σn

−→
l′′n
Fn ‖Σ S

is a computation of F ‖Σ S where each location has the form l′′i = {0si, 1}. Hence

cF : F
σ1

−→
{s1}

F1 . . .
σn

−→
{sn}

Fn

is a computation of F . By a symmetric argument we conclude that E ∼lan F . 2

We do not know of any way to prove the undecidability for ∼loc without referring to the full
Turing power of BPPH .

6.5.2 BPPS

A natural restriction when dealing with non-interleaving behaviours is to allow only parallel
composition in a fixed static setup, see e.g. [6, 4]. This of course leads to finite-state systems.
We generalise the idea to possibly infinite-state systems.

Let BPPS be the syntactic subset of BPPH obtained by allowing only synchronisation,
i.e. the ‖A operator with A 6= ∅, at top level and restricting the synchronisation sets to be
the set of all actions possible in either of the components. A BPPS process can hence be seen
as a fixed set of BPP processes synchronising on every action. Formally, a BPPS expression
is given by the abstract syntax

E ::= X1 ‖Σ . . . ‖Σ Xl,

98 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

where Σ ⊆ Act. A BPPS family is a process family ∆ = {X def= X1 ‖Σ . . . ‖Σ Xl} ∪∆′ with
leading variable X such that the leading variable X does not occur on any right-side, the
variables X1, . . . ,Xl are contained in Var(∆′), the synchronisation set Σ is a superset of the
actions Act(∆′) in ∆′, and ∆′ is a BPP family in normal form. A BPPS process E is a BPPS

expression with a process family ∆′ such that {X0
def= E} ∪∆′ is a BPPS family with leading

variable X0. We call l the arity of ∆.

Theorem 43 For BPPS , ∼loc ⊂ ∼pom ⊂ ∼lan.

Proof: Follows from Definition 24, Example 23, and an easy adaptation of Example 25. 2

From Proposition 42 it follows that ∼pom is undecidable for BPPS processes. We use the
rest of this section to show that ∼loc is decidable. As for BPP, we use an automata-theoretic
approach. First, we introduce a class of automata for which we show that the equivalence
problem is decidable. Second, we show how to reduce the location equivalence problem to
the equivalence problem for these automata.

6.5.3 Synchronous automata on tuples of finite trees

The synchronous automata on tuples of finite trees (SATT s) we define below consists of a
tuple of non-deterministic top-down finite tree-automata and work on tuples of finite trees
such that each NTA works on its component of a tuple while synchronising with the others.
SATT s are closely related to communicating finite automata, see e.g. [174], and may be seen
as communicating finite tree-automata. Let T̂Σ = TΣ × . . .× TΣ denote the set of l-tuples of
finite trees over the alphabet Σ.

Definition 44 For i = 1, . . . , l let Ai = (Σ, Qi, Si, δi) be permutation closed NTAs. A syn-
chronous automaton on tuples of finite trees, SATT , is a pair A⊗ = ((A1, . . . ,Al), SA), where
SA ⊆ S1 × . . .× Sl. 2

Definition 45 Let A⊗ = ((A1, . . . ,Al), SA) be a SATT . A configuration of A⊗ is a tuple
in confA1

× . . . × confAl
. The set of configurations of A⊗ is denoted by confA⊗ . Let ⇒A⊆

confA⊗ × confA⊗ be the transition relation between configurations defined by

(c1, . . . , cl)⇒A(c′1, . . . , c
′
l)

if and only if for some σ ∈ Σ, ci
σ→ ci

′ for all i = 1, . . . , l. We denote by⇒∗A the reflexive and
transitive closure of ⇒A. A (successful) run of A⊗ on input (t1, . . . , tl) ∈ T̂Σ is a derivation
({|(q1, t1)|}, . . . , {|(ql, tl)|})⇒∗A (∅, . . . , ∅), where (q1, . . . , ql) ∈ SA. The tree-tuple language,
L(A⊗), recognised by A⊗ consists of all tree-tuples t̂, for which there is a run of A⊗ on t̂. 2

A tree-tuple is said to be well-synchronised if it belongs to the language of some SATT . Let
T̂⊗Σ denote the set of well-synchronised tree-tuples. Next, we show that the class of tree-tuple
languages over T̂⊗Σ recognised by SATT s is closed under Boolean operations. But first, a
property which is convenient for defining complement.

6.5. Extending towards full TCSP 99

Definition 46 A SATT A⊗ = ((A1, . . . ,Al), SA) is in standard form if for every t̂ =
(t1, . . . , tl) ∈ L(A⊗) there is exactly one tuple (q1, . . . , ql) ∈ S1 × . . .× Sl such that

({|(q1, t1)|}, . . . , {|(ql, tl)|})⇒∗A (∅, . . . , ∅).

2

Let AΣ be the NTA that recognises TΣ. Given NTAs A and B let A ∪ B, and Ā denote the
effectively constructible NTAs recognising the union of the languages recognised by A and B
and the complement of the language recognised by A, respectively, see [53, 63] for the detailed
constructions. In the following we also use the fact that due to the non-determinism any NTA
can be effectively transformed into a NTA with only one initial state recognising the same
language. Let A = (Σ, Q, S, δ) be a NTA, for any q ∈ S denote by Aq the NTA (Σ, Q, {q}, δ).

Proposition 47 Any SATT can effectively be transformed into a SATT in standard form
recognising the same language.

Proof: It is not hard to see that in general the set of initial state tuples of a SATT cannot
be reduced to a singleton.

Instead, we effectively transform an NTAA = (Σ, Q, S, δ) into a new NTA B = (Σ, Q′, S′, δ′)
such that

(i) the language accepted is the same, that is, L(A) = L(B),

(ii) the languages accepted by each of the invidual initial states of B are disjoint, that is,
the languages L(Bp) where p ∈ S′ are pairwise disjoint, and

(iii) the set of initial states S′ refines the set of initial states S, in the sense that there exists
a function fA : S → 2S′

such that for each q ∈ S, L(Aq) =
⋃

p∈fA(q) L(Bp).

Due to the effective Boolean closure of NTAs the construction of B is merely a a standard set
theoretic exercise in refining a set of sets into a partition of pairwise disjoint subsets.

With this construction on NTAs it is straightforward to effectively transform any SATT
into a SATT in standard form. Let A⊗ = ((A1, . . . ,Al), SA) be a SATT and for each Ai,
let Bi be the NTA and fAi the function given by the transformation above. Now, define the
SATT B⊗ = ((B1, . . . ,Bl), SB), where

SB = {(p1, . . . , pl) | ∃(q1, . . . , ql) ∈ SA ∧ pi ∈ fAi(qi), i = 1, . . . , l}.

Clearly, B⊗ is a SATT in standard form and L(B⊗) = L(A⊗). 2

100 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

Definition 48 Let A⊗ = ((A1, . . . ,Al), SA) and B⊗ = ((B1, . . . ,Bl), SB) be SATT s. Define

1. A⊗ ∪ B⊗ = ((A1 ∪ B1, . . . ,Al ∪ Bl), SA ∪ SB)

2. If A⊗ be in standard form then define

Ā⊗ = (
⋃

i∈{1,... ,l}
((Ci

1, . . . , Ci
l), S

i)) ∪ ((A1, . . . ,Al), S)

where Ci
j = (Σ, Qi

j , {pi
j}, δi

j) such that Ci
i = Āi and for j 6= i, Ci

j = AΣ, Si = {(pi
1, . . . , p

i
l)}

and S = S1 × . . . × Sl \ SA. 2

Clearly, A⊗∪B⊗ and Ā⊗ are SATT s. The following proposition states that they have in fact
the expected properties.

Proposition 49

1.) L(A⊗ ∪ B⊗) = L(A⊗) ∪ L(B⊗)

2.) L(Ā⊗) =T̂⊗Σ−L(A⊗)

Proof: See Section 6.8.3. 2

An important property is the decidability of the emptiness problem for SATT . We establish
this by a reduction to the zero reachability problem for Petri nets, as defined in Section 6.4,
which is decidable [115, 98]. The representation of finite tree automata as Petri nets was
studied in [142]. Here, we translate NTAs into communication-free nets and SATT s into
synchronised products of communication-free nets. As our Petri nets are not weighted we
use the easily shown fact that any NTA can be effectively transformed into another NTA
recognising the same language but with the property that its transition relation δ satisfies
that for all (q, σ, q1, . . . , qk) ∈ δk, if qi = qj then i = j. The construction below translates in
one swoop a SATT into a Petri net.

Before we give the general construction of Petri nets from SATT s, we consider an example.

Example 50 Given the SATT A⊗ = ((A1,A2), {(p1, q1)}) where
A1 = ({a, b, c}, {p1 , p2, p3}, {p1}, δ1), A2 = ({a, b, c}, {q1 , q2, q3}, {q1}, δ2),

δ1 = {(p1, a, p2, p3), (p1, a, p3, p2), (p2, c), (p3, b)} and
δ2 = {(q1, a, q2), (q2, b, q3), (q3, c)}

we construct the Petri net in Figure 6.1. 2

Let δ be a transition relation of some NTA. For notational ease, we let δσ =
⋃

0≤k{(q, σ, q1, . . . , qk) ∈
δk}, and for each η = (q, σ, q1, . . . , qk) ∈ δk, we let ◦η = {q}, and η◦ = {q1, . . . , qk}

6.5. Extending towards full TCSP 101

•?>=<89:; init

��
start

}}{{
{{

{{
{{

!!C
CC

CC
CC

C

?>=<89:; p1

�� ((QQQQQQQQQQQQQQQQQ ?>=<89:; q1

��vvmmmmmmmmmmmmmmmmm

a

�� !!C
CC

CC
CC

C

((QQQQQQQQQQQQQQQQQ a

}}{{
{{

{{
{{

��vvmmmmmmmmmmmmmmmmm

?>=<89:; p2

��+
++

++
++

++
++

++
++

++
++

++
++

?>=<89:; p3

!!C
CC

CC
CC

C
?>=<89:; q2

��
b

��?>=<89:; q3

}}{{
{{

{{
{{

c

Figure 6.1: The Petri net associated with the SATT of Example 50.

102 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

Construction 51 Given a SATT A⊗ = ((A1, . . . ,Al), SA) with Ai = (Σ, Qi, Si, δi) such
that the Qis are disjoint and an action start 6∈ Σ. Let i range over 1, . . . , l and let δ =

⋃
i δi.

Define the labelled Petri net PA = ((S, T, F, l),M0) with places S =
⋃
Qi∪{init}, transitions

T = {(σ, η1, . . . , ηl) | ηi ∈ δσ
i for σ ∈ Σ} ∪ SA,

flow relation F = F1 ∪ F2 ∪ F3 ∪ F4, where

F1 = {(q, t) | t = (σ, η1, . . . , ηl) ∈ T ∧ q ∈
⋃
i

◦ηi},

F2 = {(t, q) | t = (σ, η1, . . . , ηl) ∈ T ∧ q ∈
⋃
i

η◦i },

F3 = {(t, qi) | t = (q1, . . . , ql) ∈ SA}, and
F4 = {(init, t) | t ∈ SA},

labelling function l : T → (Σ ∪ {start}) given by l(t) = σ, if t = (σ, η1, . . . , ηl) and start
otherwise, and initial marking M0 = {|init|}. 2

Note that for each transition not in SA the cardinality of the preset is exactly l. Also, since
we are interested mainly in the following reduction the labelling of PA is irrelevant.

Proposition 52 L(A⊗) 6= ∅ iff the zero-marking is reachable in PA.

Proof: See, Section 6.8.4. 2

From the proposition above and the Boolean closure we get

Proposition 53 The emptiness and the equivalence problem for SATT is decidable.

Proof: The decidability of the emptiness problem follows immediately from Proposition
52 and the decidability of the zero reachability problem [115, 98]. The decidability of the
equivalence problem follows by the following standard reduction exploiting the closure under
Boolean operations

L(A⊗) ⊆ L(B⊗) ⇔ L(Ā⊗ ∪ B⊗) = ∅

2

Let Perml denote the set of all permutations on {1, . . . , l}.

Construction 54 Given a BPPS family ∆ with leading equation X = X1 ‖Σ . . . ‖Σ Xl

and corresponding BPP families ∆1, . . . ,∆l with leading variables X1, . . . ,Xl, respectively.
Define

A⊗∆ =
⋃

π∈Perml

((A∆π(1)
, . . . ,A∆π(l)

), SAπ),

where SAπ = Sπ(1) × . . .× Sπ(l) and Si the set of initial states of A∆i 2

The essential property of the construction is expressed by the following proposition.

6.6. Extending towards full CCS 103

E
σ

−→
l0
E′ F

σ̄
−→
l1
F ′

E ‖ F
τ

−→
0l0∪1l1

E′ ‖ F ′
(τ − com)

E
σ

−→
l
F

E\L
σ

−→
l
F\L

, σ, σ̄ 6∈ L (res)

Table 6.2: Transition rules for CCS communication and restriction.

Proposition 55 Let ∆ and ∆′ be BPPS families of the same arity, and with leading variables
X and Y, respectively. Then

X∼locY ⇐⇒ L(A⊗∆) = L(A⊗∆′).

Proof: See, Section 6.8.5. 2

Theorem 56 For BPPS , ∼loc is decidable whereas ∼pom is not.

Proof: From Proposition 42 it follows that ∼pom is undecidable for BPPS processes. Since
arity checking is syntactically easy to check, the result follows from Construction 54 and
Proposition 55 and 53. 2

6.6 Extending towards full CCS

In this section we study the extensions of BPP obtained by adding first CCS-synchronisation
and then CCS-restriction. To avoid confusion we begin by explaining the syntax and semantics
of both. Let Act and Var be as in Section 6.2 and let Act = {ᾱ, β̄, . . . } such that ¯ is a
bijection between Act and Act, mapping ¯̄α to α. Let Actτ = Act ∪ Act ∪ {τ} be the set of
actions, where τ is a distinguished action not in Act or Act. τ is known as the invisible action.
Any other action is visible. The set of CCS process expressions is defined by the abstract
syntax

E ::= 0 | X | σ.E | E + E | E ‖ E | E\L

where X is in Var, σ in Actτ and L a subset of Act. 0, X, σ., and + are as for BPP. ‖ is
CCS parallel composition of processes executing independently with the possibility of pairwise
CCS-synchronisation and \L is CCS-restriction. The semantics is given by the transition rules
of BPP together with the rules of Table 6.2.

6.6.1 BPPM

BPPM , is the subset of CCS obtained by adding the transition rule τ -com of Table 6.2 to BPP
and hence introducing CCS-synchronisation. Since there is no restriction operator in BPPM

104 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

communication cannot be forced. Whenever a communication occurs in a computation, also
the computation with the communicating actions occurring separately is possible. Conversely,
if there is a computation in which two complementing actions occur independently then the
same computation except from the two actions now communicating exists. The proof of the
following proposition relies on this observation.

Proposition 57 The BPPM processes E and F are pomset (location) equivalent if and only
if the BPP processes E and F are pomset (location) equivalent.

Proof: See Section 6.8.6. 2

From this proposition we immediately get the following results.

Theorem 58 For BPPM , ∼loc = ∼pom ⊂ ∼lan.

Proof: From Proposition 57 and Theorem 26. 2

Theorem 59 For BPPM , ∼pom and ∼loc are decidable whereas ∼lan is undecidable.

Proof: From Proposition 57 and Theorem 39. 2

Comparing this result with the earlier results on BPPH shows a clear difference between
adding CCS- and TCSP-communication to BPP. In the former case, ∼pom and ∼loc still
coincide and remain decidable whereas in the latter ∼loc is strictly finer than ∼pom and they
both become undecidable.

6.6.2 CCS

CCS is BPPM extended with the CCS-restriction operator. For CCS, ∼pom and ∼loc no longer
coincide.

Theorem 60 For CCS, ∼loc ⊂ ∼pom ⊂ ∼lan.

Proof: The inclusions follow from Definition 25. The strictness of the inclusions follow from
Example 25 and the following examples.

q1 = (a.b.c.0 ‖ b̄.0)\{b}, q2 = (a.b.0 ‖ b̄.c.0)\{b}

Clearly, q1 ∼pom q2 but q1 6∼loc q2. 2

Theorem 61 For CCS ∼pom and ∼loc are undecidable.

Proof: Due to the well-known Turing power of CCS, see e.g. [157], both ∼pom and ∼loc are
undecidable for CCS processes. The reduction is similar to the one used in Section 6.5.1, see
Section 6.8.7 for details. 2

6.7. Conclusions 105

6.7 Conclusions

We have presented results illuminating the delicate bounds between the decidable and the
undecidable in the setting of behavioural equivalences for infinite-state concurrent systems.
We would like to see our results as a contribution to the search for useful verification problems
which will be decidable/tractable when moving from the standard view of interleaving to more
intentional non-interleaving views of behaviour.

Our results raise many open questions to be addressed. We have investigated BPP and
extensions of BPP with different primitives for communications – as expected, we showed
that the restriction combinator of CCS has a significant influence on the decidability. Hence,
the question arises about the role played by renaming and hiding combinators à la TCSP.
We have concentrated on the question of decidability of certain equivalences for process cal-
culi. However, there are immediate links to other questions, like regularity of processes, see
[83] for a recent result showing that language equivalence between a general and a bounded
Petri net is decidable. Moreover, we have focused on various process calculi extensions of
BPP, and although these, of course, imply results for the corresponding Petri net exten-
sions of communication-free nets, it would be interesting to look for independent extensions
in terms of net subclasses with decidable non-interleaving equivalences. Also, many other
non-interleaving equivalences exist besides our chosen pomset and location equivalences, and
which deserve to be explored. In particular, we do not claim that our notion of location
equivalence is the only natural formalisation of local causality, other possibilities exist.

106 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

6.8 Proofs

6.8.1 Proof of Proposition 38

Proof: The only if direction follows from Lemma 63, 64, 65 and the fact that A∆ and A∆′

are permutation closed and hence that L(A∆) and L(A∆′) are closed under isomorphism.
The if direction follows from Lemma 64, 67, 63, and 66. 2

A tree isomorphism h from TΣ to TΣ is a label preserving and up to permutation order
preserving bijection, that is,

i) for σ ∈ Σ0, h(σ) = σ.

ii) for σ[t1, . . . , tk] ∈ Σk, h(σ[t1, . . . , tk]) = σ[h(tπ(1)), . . . , h(tπ(k))], where π is some per-
mutation on {1, . . . , k}.

Trees t, t′ ∈ TΣ are isomorphic, t ∼= t′, if and only if there exists a tree isomorphism h such
that h(t) = t′.

As a simple consequence of the permutation closure any language L ⊆ TΣ accepted by a
permutation closed NTA is closed under isomorphism, that is, L satisfies that for all t, t′ ∈ TΣ

if t ∼= t′ then t ∈ L⇔ t′ ∈ L.
In Proposition 28 we showed that the ordering ≤∗c associated with a computation c of a

BPP family is a tree ordering. Below we associate with each computation of a BPP family
in normal form a canonical tree, Tc, representing algebraicly the tree induced by ≤∗c on
{l1, . . . , ln}. Let <∗c denote the strict version of ≤∗c , that is, i <∗c j if and only if i ≤∗c j and
i 6= j. Let l∗c denote the covering relation of ≤∗c on {l1, . . . , ln}, that is, il∗cj if and only if
i ≤∗c j and for all k, ¬(i <∗c k <∗c j). Let � be the lexicographic ordering on {0, 1}∗ extended
to singleton sets over {0, 1}∗ in the obvious way.

Definition 62 Let ∆ be a BPP family in normal form with leading variable X, let

c : X = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

be a computation of X and let for each i ∈ {1, . . . , n}, succc(i) denote the set of successors
of i with respect to ≤∗c , that is, succc(i) = {j ∈ {1, . . . , n} | il∗cj}. We associate with each
action σi the recursively define tree

Tc(i) = σi[Tc(j1), . . . ,Tc(jk)],

where succc(i) = {j1, . . . , jk} and lj1 � . . . � ljk
. Finally, the canonical tree of c is the tree

Tc(1), or just Tc. 2

6.8. Proofs 107

Lemma 63 Let ∆ be a BPP family in normal form with leading variable X. For every run
of A∆ there is a computation of ∆ with locations forming an isomorphic tree, that is, if

{|(X, t)|} σ1→ c1
σ2→ c2 . . .

σn→ cn = ∅

is a run of A∆ then there exist BPP expressions E1, . . . , En ∈ Proc and locations l1, . . . , ln
such that

c : X = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

is a computation of ∆ and such that t ∼= Tc.

Proof: Induction in the length of runs. 2

Lemma 64 Let ∆ be a BPP family in normal form with leading variable X. For every
computation of ∆ there is a run of A∆ on some tree isomorphic to the tree induced by the
set of locations, that is, if

c : X = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

is a computation of ∆ then there exist a tree t ∈ TΣ and configurations c1, . . . , cn ∈ confA
such that

{|(X, t)|} σ1→ c1
σ2→ c2 . . .

σn→ cn = ∅

is a run of A∆ and such that t ∼= Tc.

Proof: Induction in the length of computations. 2

Lemma 65 Let ∆ and ∆′ be a BPP families in normal form with leading variables X and
Y, respectively. Let

c : X = E0

σ1
−→
l1
E1 . . .

σn

−→
ln
En

c′ : Y = F0

σ1

−→
l′1
F1 . . .

σn

−→
l′n
Fn

be computations. If for every i and j in {1, . . . , n}, i ≤∗c j ⇐⇒ i ≤∗c′ j then Tc ∼= Tc′

Proof: Follows easily from the definitions. 2

108 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

Lemma 66 Let ∆ and ∆′ be a BPP families in normal form with leading variables X and
Y, respectively. Let

c : X = E0

σ1
−→
l1
E1 . . .

σn

−→
ln
En

c′ : Y = F0

σ′
1−→

l′1
F1 . . .

σ′
n−→

l′n
Fn

be computations. If Tc ∼= Tc′ then there exists a computation

c′′ : Y = G0

σ1
−→
l′′1
G1 . . .

σn

−→
l′′n
Gn

such that for every i and j in {1, . . . , n}, i ≤∗c j ⇐⇒ i ≤∗c′′ j.

Proof: Induction in the length of computations. 2

Lemma 67 Let A and B be NTAs and let t ∈ L(A) and t ∈ L(B). If

{|(p, t)|} σ1→ c1
σ2→ c2 . . .

σn→ cn = ∅

is a run of A then there exists a run

{|(q, t)|} σ1→ c′1
σ2→ c′2 . . .

σn→ c′n = ∅

of B visiting the labels in the the “same order”.

Proof: Induction in the length of runs. 2

6.8.2 Proof of Theorem 41

Proof: The result is a simple consequence of Lemma 70 and Theorem 68 below.
A (Minsky) two-counter machine [124] consists of a finite program

l1 : com1
...

ln−1 : comn−1

ln : HALT

and two unbounded counters c0 and c1. The lis and the comis are called labels and commands,
respectively. Commands are of one of two different types: commands of type I are of the form
cj := cj +1;goto l (unconditional increment) and commands of type II are of the form if cj = 0
then goto l else cj := cj − 1;goto l′ (conditional decrement), where j is either 0 or 1, and l and
l′ are labels.

A two-counter machine M executes on a given input (contents of the counters (c0, c1))
(m0,m1) by first executing com1, and so forth. Stopping if and only if the HALT command
is reached. M halts on input (m0,m1) if it reaches label ln and hence the HALT command
in finitely many steps. Otherwise, M diverges.

6.8. Proofs 109

Theorem 68 [124]
It is undecidable whether a two-counter machine M halts on input (0, 0).

Following Christensen [31] we encode counters in BPPH as shown in Example 69 and obtain
a fairly standard reduction from the halting problem for two-counter machines to the pomset
and location equivalence problem for BPPH processes.

Example 69 Consider the BPPH family

∆ = {U def= z.U + i.(V ‖{z} U), V def= d.W,W
def= z.W}.

It is not hard to show that for any n ∈ IN the process V n ‖{z} U represents a counter with
value n in the obvious way; allowing communication on z if and only if the counter is zero; in-
crementing and decrementing the counter by communicating on i and d, respectively. Again,
allowing communication on d if and only if the counter is greater than zero. 2

Given a two-counter machine M the idea is to encode M by a BPPH process of the form

EM
def= (C0 ‖A0 X1) ‖A1 C1

where for j = 0, 1, Aj = {zj , ij , dj}, the process Cj encodes the counter cj in the obvious way
following Example 69 and the process variable X1 is the leading variable of the finite-state
process ∆M = {X1

def= E1, . . . ,Xn−1
def= En−1,Xn

def= 0} where for each k = 1, . . . , n− 1

Ek = ij .Xu, if comk is cj := cj + 1;goto lu
Ek = zj .Xu + dj .Xv, if comk is if cj = 0 then goto lu else cj := cj − 1;goto lv

that encodes the finite program of M . Now let

FM
def= (C0 ‖A0 X1) ‖A1 C1

be a BPPH process identical to EM except from letting Fn be h.0 where action h is different
from any action of EM .

It is now an easy exercise to show the following lemma.

Lemma 70 Given a two-counter machine M . Then

M does not halt on input (0, 0) ⇐⇒ EM ∼pom FM ⇐⇒ EM ∼loc FM .

6.8.3 Proof of Proposition 49

Proof: The proof of 1.) is straightforward. The proof of 2.) relies on the fact that
A⊗ is in standard form. Assume that t̂ = (t1, . . . , tl) ∈ L(Ā⊗). Clearly, t̂ ∈T̂⊗Σ and by
Definition 48, either there is some i ∈ {1, . . . , l} such that t̂ ∈ L(((Ci

1, . . . , Ci
l), S

i)), or t̂ ∈
L(((A1, . . . ,Al), S)). In the first case ti ∈ L(Āi) and hence t̂ 6∈ L(A⊗). In the second case
there is some tuple (q1, . . . , ql) ∈ S1× . . .×Sl \ SA such that ({|(q1, t1)|}, . . . , {|(ql, tl)|})⇒∗A
(∅, . . . , ∅). Since A⊗ is in standard form, t̂ 6∈ L(A⊗).

Conversely, assume that t̂ = (t1, . . . , tl) ∈ T̂⊗Σ and t̂ 6∈ L(A⊗). Either there is some
i ∈ {1, . . . , l} such that ti 6∈ L(Ai) and hence t̂ ∈ L(((Ci

1, . . . , Ci
l), S

i)), or for all i ∈ {1, . . . , l},

110 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

ti ∈ L(Ai) and hence there is some tuple (q1, . . . , ql) ∈ S1 × . . . × Sl such that for all
i = 1, . . . , l, ti ∈ L(Aqi

i). According to Lemma 72 (q1, . . . , ql) 6∈ SA and hence again by
Lemma 72, t̂ ∈ L(((A1, . . . ,Al), S)). 2

Lemma 71 Let A⊗ = ((A1, . . . ,Al), SA) be a SATT .

(c01, . . . , c
0
l)

σ1⇒A (c11, . . . , c
1
l)

σ2⇒A . . .
σn⇒A (cn1 , . . . , c

n
l) = (∅, . . . , ∅)

m

c0i
σ1→Ai c

1
i

σ2→Ai c
2
i . . .

σn→Ai c
n
i = ∅, i = 1, . . . , l.

Proof: Induction in the length of runs of SATT s and NTAs, respectively. 2

Lemma 72 Assume t̂ = (t1, . . . , tl) ∈ T̂⊗Σ .

t̂ ∈ L(A⊗) iff ∃(q1, . . . , ql) ∈ SA : ∀i : ti ∈ L(Aqi
i)

Proof: The only if direction follows as a simple consequence of Lemma 71. The if direction
is slightly more tedious and relies on the assumption that t̂ is well-synchronised. Since t̂ ∈
T̂⊗Σ , there is some SATT B⊗ = ((B1, . . . ,Bl), SB) and (p1, . . . , pl) ∈ SB such that

({|(p1, t1)|}, . . . , {|(pl, tl)|})
σ1⇒B (c11, . . . , c

1
l)

σ2⇒B . . .
σn⇒B (cn1 , . . . , c

n
l) = (∅, . . . , ∅).

By Lemma 71, there are runs

{|(pi, ti)|}
σ1→Bi c

1
i

σ2→Bi c
2
i . . .

σn→Bi c
n
i = ∅, i = 1, . . . , l.

Thus if there exists (q1, . . . , ql) ∈ SA such that for all i, ti ∈ L(Aqi
i) then by Lemma 67, there

are runs

{|(qi, ti)|}
σ1→Ai d

1
i

σ2→Ai d
2
i . . .

σn→Ai d
n
i = ∅, i = 1, . . . , l

and hence by Lemma 71,

({|(q1, t1)|}, . . . , {|(ql, tl)|})
σ1⇒A (d1

1, . . . , d
1
l)

σ2⇒A . . .
σn⇒A (dn

1 , . . . , d
n
l) = (∅, . . . , ∅)

Hence, t̂ ∈ L(A⊗). 2

6.8.4 Proof of Proposition 52

Proof: Follows from Lemmas 73 and 76 below. 2

Let c = (c1, . . . , c2) ∈ confA⊗ . In the following we write q ∈ c if there exists an i ∈
{1, . . . , l} and a t ∈ TΣ such that (q, t) ∈ ci and Mc for {|q | q ∈ c|}.

6.8. Proofs 111

Lemma 73

L(A⊗) 6= ∅ if the zero-marking is reachable in PA

Proof: Assume that the zero-marking is reachable in PA. Then there exists a firing sequence
of PA

M0[start〉M1[u1〉 . . .Mn[un〉Mn+1 = ∅

leading from the initial to the zero marking. Given such a firing sequence the algorithm below
gradually builds a tree tuple belonging to L(A⊗). The construction uses l-tuples of trees over
T̂Σ∪S The idea is to label the nodes of the ith component tree with letters from Σ and the
leaves with letters from Σ or states/places from Qi the latter indicating that the leaf is to be
replaced by some tree. Below we shall not explicitly distinguish between the SATT A⊗ with
alphabet Σ from the exact same SATT except from the alphabet being extended to Σ∪S as
they recognise the same language.

Let t̂ ∈ T̂Σ∪S and let for j = 1, . . . , l, tj denote the jth component of t̂. We denote
by t �x t

′ the non-standard tree concatenation consisting of replacing non-deterministically
exactly one leaf in t labelled x by the tree t′. Let for each i, σi = l(ui).

Algorithm 74
t̂ := (q1, . . . , ql), where start• = M1 = {|q1, . . . , ql|}

for i := 1 to n do
for j := 1 to l do

t′j := tj �q σi[q1, . . . , qk], where •ui ∩Qj = {q} and u•i ∩Qj = {q1, . . . , qk}
t̂ := (t′1, . . . , t′l)

2

Let idQ = {|(q, q) | q ∈ Q|} and FA = {(c1, . . . , cl) | ci finite subset of idQi}.
To see the correctness of the algorithm consider the following loop invariant I(m) :

∃c1, . . . , cm+1 ∈ conf⊗A :

c1 = ({|(q1, t1)|}, . . . , {|(ql, tl)|}) ∧ cm+1 ∈ FA ∧
Mj = Mcj for j = 1, . . . ,m+ 1∧

c1
σ1⇒A c2

σ2⇒A . . . cm−1
σm−1⇒A cm

σm⇒A cm+1

Clearly, I(0) holds before entering the loop. Moreover, for i = 0, . . . , n − 1, I(i) ⇒ I(i + 1)
and I(n)⇒ t̂ ∈ L(A⊗). Hence, given a firing sequence of PA we get by running the algorithm
a tree tuple in L(A⊗). 2

Lemma 75

c
σ⇒A c′ only if ∃u ∈ T : Mc[u〉Mc′ ∧ l(u) = σ

Proof: Let c = (c1, . . . , cl), c′ = (c′1, . . . , c′l) and let i range over {1, . . . , l} Assume that
c

σ⇒A c′. By Definition 45, ci
σ→ ci

′ for all i. Hence, for all i there exists (qi, σ[ti1, . . . , t
i
ki

]) ∈ ci

112 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

and ηi = (qi, σ, qi
1, . . . , q

i
ki

) ∈ δi such that ci−{|(qi, σ[ti1, . . . , t
i
ki

])|} = c′i−{|(qi
1, t

i
1), . . . , (q

i
ki
, tiki

)|}.
By Construction 51, there exists a transition u = (σ, η1, . . . , ηl) with preconditions •u =
{qi1 , . . . , qil} ∈ T and postconditions u• =

⋃
i{qi

1, . . . , q
i
ki
}. Hence Mc[u〉Mc′ . 2

Lemma 76

L(A⊗) 6= ∅ only if the zero-marking is reachable in PA

Proof: Assume that t̂ = (t1, . . . , tl) ∈ L(A⊗). Then by Definition 45, there exist configura-
tions c1, . . . , cn ∈ confA⊗ such that

({|(q1, t1)|}, . . . , {|(ql, tl)|})
σ1⇒A c2

σ2⇒A . . . cn−1
σn−1⇒A cn = (∅, . . . , ∅),

where (q1, . . . , ql) ∈ SA. Hence, by induction in n its straightforward using Construction 51
and Lemma 75 to show that there exist transitions u1, . . . , un−1 ∈ T such that

M0[start〉Mc1 [u1〉 . . .Mcn−1 [un−1〉Mcn = ∅.

2

6.8.5 Proof of Proposition 55

Proof: Follows from Lemmas 78 and 77 below. 2

For convenience, we assume that ‖Σ is left associative. For example, E1 ‖Σ E2 ‖Σ E3

should be read as ((E1 ‖Σ E2) ‖Σ E3).

Lemma 77 X∼locY =⇒ L(A⊗∆) = L(A⊗∆′).

Proof: Let X def= X1 ‖Σ . . . ‖Σ Xl and Y def= Y1 ‖Σ . . . ‖Σ Yl and let i range over 1, . . . , l.
Assume that X∼locY . Consider some t̂ = (t1, . . . , tl) ∈ L(A⊗∆). Then there exists a run

({|(X1, t1)|}, . . . , {|(Xl, tl)|})
σ1⇒A∆

(c11, . . . , c
1
l)

σ2⇒A∆
. . .

σn⇒A∆
(cn1 , . . . , c

n
l) = (∅, . . . , ∅)

of A⊗∆. By Lemma 71,

{|(Xi, ti)|}
σ1→ c1i

σ2→ c2i . . .
σn→ cni = ∅,

and by Lemma 63, there exist computations

ci : Xi = Ei
0

σ1

−→
ui
1

Ei
1 . . .

σn

−→
ui

n

Ei
n.

such that ti ∼= Tci . Hence, clearly there is a computation

c : X1 ‖Σ . . . ‖Σ Xl

σ1

−→
l1
E1

1 ‖Σ . . . ‖Σ El
1 . . .

σn

−→
ln
E1

n ‖Σ . . . ‖Σ El
n

and by the assumption there exists a computation

c′ : Y1 ‖Σ . . . ‖Σ Yl

σ1
−→
l′1
F 1

1 ‖Σ . . . ‖Σ F l
1 . . .

σn

−→
l′n
F 1

n ‖Σ . . . ‖Σ F l
n

6.8. Proofs 113

and a relation R ⊆ loc(c)× loc(c′) satisfying that for each 1 ≤ i ≤ n, R restricts to a bijection
on li × l′i, and for each i ≤ j, s0(R ∩ li × l′i)s′0 and s1(R ∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1.
Now by Lemma 80, there exists a permutation π and a computation

di : Yi = F i
0

σ1

−→
ui
1

F i
1 . . .

σn

−→
ui

n

F i
n.

such that Tci
∼= Tdπ(i)

. By Lemma 64, there are runs

{|(Yi, t
′
i)|}

σ1→ d1
σ2→ d2 . . .

σn→ dn = ∅

and such that t′i ∼= Tdi
. Thus ti ∼= t′π(i) and by Lemma 71, t̂′ = (t′1, . . . , t

′
l) ∈ L(A⊗∆′). It

follows from Lemma 79 that t̂ = (t1, . . . , tl) ∈ L(A⊗∆′). The result follows by a symmetric
argument. 2

Lemma 78 L(A⊗∆) = L(A⊗∆′) =⇒X∼locY .

Proof: Let X def= X1 ‖Σ . . . ‖Σ Xl and Y def= Y1 ‖Σ . . . ‖Σ Yl and let i range over 1, . . . , l.
Assume that L(A⊗∆) = L(A⊗∆′) and consider some computation of X

X1 ‖Σ . . . ‖Σ Xl

σ1

−→
l1
E1

1 ‖Σ . . . ‖Σ El
1 . . .

σn

−→
ln
E1

n ‖Σ . . . ‖Σ El
n.

Then clearly there exist computations

ci : Xi = Ei
0

σ1

−→
ui
1

Ei
1 . . .

σn

−→
ui

n

Ei
n.

By Lemma 64, there exist runs

{|(Xi, ti)|}
σ1→ c1i

σ2→ c2i . . .
σn→ cni = ∅

such that ti ∼= Tci . Hence by Lemma 71, there exists a run

({|(X1, t1)|}, . . . , {|(Xl, tl)|})
σ1⇒A∆

(c11, . . . , c
1
l)

σ2⇒A∆
. . .

σn⇒A∆
(cn1 , . . . , c

n
l) = (∅, . . . , ∅)

of A⊗∆. Thus t̂ = (t1, . . . , tl) ∈ L(A⊗∆) = L(A⊗∆′) and hence by Lemma 81, there exists a run

({|(Y1, t1)|}, . . . , {|(Yl, tl)|})
σ1⇒A∆′ (d1

1, . . . , d
1
l)

σ2⇒A∆′ . . .
σn⇒A∆′ (dn

1 , . . . , d
n
l) = (∅, . . . , ∅).

By Lemma 71, there exist runs

{|(Yi, ti)|}
σ1→ di

1
σ2→ di

2 . . .
σn→ di

n = ∅.

By Lemmas 63 and 66, there are computations

di : Yi = F i
0

σ1

−→
vi
1

F i
1 . . .

σn

−→
vi

n

F i
n

such that ti ∼= Tdi
and such that for all i, for each 1 ≤ h, k ≤ n, h ≤∗ci

k ⇐⇒ h ≤∗di
k. Hence,

there exists a computation

Y1 ‖Σ . . . ‖Σ Yl

σ1
−→
l′1
F 1

1 ‖Σ . . . ‖Σ F l
1 . . .

σn

−→
l′n
F 1

n ‖Σ . . . ‖Σ F l
n.

By Lemma 82 and a symmetric argument, we conclude that X∼locY . 2

114 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

Lemma 79 Let ∆ be a BPPS family in normal form, let t̂ = (t1, . . . , tl), t̂′ = (t′1, . . . , t′l) ∈ T̂Σ

and let i range over 1, . . . , l. If there exists a permutation π ∈ Perml such that for all i,
ti ∼= t′π(i) then t̂ ∈ L(A⊗∆) if and only if t̂′ ∈ L(A⊗∆).

Proof: Clear from Construction 54 and the fact that the NTAs of A⊗∆ are permutation
closed. 2

Lemma 80 Let ∆ and ∆′ be BPPS families in normal form of the same arity, and with
leading variables X def= X1 ‖Σ . . . ‖Σ Xl, and Y def= Y1 ‖Σ a . . . ‖Σ Yl, respectively. Let i range
over 1, . . . , l and let

c : X1 ‖Σ . . . ‖Σ Xl

σ1

−→
l1
E1

1 ‖Σ . . . ‖Σ El
1 . . .

σn

−→
ln
E1

n ‖Σ . . . ‖Σ El
n

be a computation of ∆ and let for all i,

ci : Xi = Ei
0

σ1

−→
ui
1

Ei
1 . . .

σn

−→
ui

n

Ei
n.

If there exists a computation of ∆′

d : Y1 ‖Σ . . . ‖Σ Yl

σ1
−→
l′1
F 1

1 ‖Σ . . . ‖Σ F l
1 . . .

σn

−→
l′n
F 1

n ‖Σ . . . ‖Σ F l
n

such that there exists a relation R ⊆ loc(c) × loc(d) satisfying that for each 1 ≤ i ≤ n, R
restricts to a bijection on li× l′i, and for each i ≤ j, s0(R∩ li× l′i)s′0 and s1(R∩ lj× l′j)s′1, s0 v
s1 ⇐⇒ s′0 v s′1. Then there exist a permutation π ∈ Perml and computations

di : Yi = F i
0

σ1

−→
vi
1

F i
1 . . .

σn

−→
vi

n

F i
n

such that for all i, for each 1 ≤ h ≤ k ≤ n, ui
h v ui

k ⇐⇒ v
π(i)
h v vπ(i)

k . Moreover, Tci
∼= Tdπ(i)

.

Proof: Induction in the length of computations. 2

Lemma 81 Let A⊗ and B⊗ be SATT s and let t̂ = (t1, . . . , tl) ∈ L(A⊗) ∩ L(B⊗). If

({|(p1, t1)|}, . . . , {|(pl, tl)|})
σ1⇒A (c11, . . . , c

1
l)

σ2⇒A . . .
σn⇒A (cn1 , . . . , c

n
l) = (∅, . . . , ∅)

is a run of A⊗ then there exists a run

({|(q1, t1)|}, . . . , {|(ql, tl)|})
σ1⇒B (d1

1, . . . , d
1
l)

σ2⇒B . . .
σn⇒B (dn

1 , . . . , d
n
l) = (∅, . . . , ∅)

of B⊗.

Proof: By Lemma 71 and Lemma 67. 2

6.8. Proofs 115

Lemma 82 Let ∆ and ∆′ be BPPS families in normal form of the same arity, and with
leading variables X def= X1 ‖Σ . . . ‖Σ Xl and Y

def= Y1 ‖Σ . . . ‖Σ Yl, respectively. Let i range
over 1, . . . , l. If

ci : Xi = Ei
0

σ1
−→
ui
1

Ei
1 . . .

σn

−→
ui

n

Ei
n,

di : Yi = F i
0

σ1
−→
vi
1

F i
1 . . .

σn

−→
vi

n

F i
n,

c : X1 ‖Σ . . . ‖Σ Xl

σ1
−→
l1
E1

1 ‖Σ . . . ‖Σ El
1 . . .

σn

−→
ln
E1

n ‖Σ . . . ‖Σ El
n,

d : Y1 ‖Σ . . . ‖Σ Yl

σ1

−→
l′1
F 1

1 ‖Σ . . . ‖Σ F l
1 . . .

σn

−→
l′n
F 1

n ‖Σ . . . ‖Σ F l
n

and for all i, for each 1 ≤ h, k ≤ n, h ≤∗ci
k ⇐⇒ h ≤∗di

k. Then there exists a relation
R ⊆ loc(c) × loc(d) satisfying that for each h ≤ k, s0(R ∩ lh × l′h)s′0 and s1(R ∩ lk × l′k)s′1,
s0 v s1 ⇐⇒ s′0 v s′1.

Proof: Let R be the relation induced by relating ui
j to vi

j . 2

6.8.6 Proof of Proposition 57

Proof: We give the proof for pomset equivalence. The proof for location equivalence is
similar. The only if direction is obvious as τ only occurs in connection with communication.
For the if direction, assume that E ∼pom F when E and F are considered as BPP processes.
We show by induction in the number of communications that for every computation

c : E = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

of E there exists a computation

d : F = F0

σ1
−→
l′1
F1 . . .

σn

−→
l′n
Fn

of F such that i ≤∗c j ⇐⇒ i ≤∗d j.
In the base case no communications (τ -actions) occur in c and hence the existence of d

follows from the assumption.
In the induction step assume that σm (1 ≤ m ≤ n) in c is τ . By Lemma 83,

c′ : E = E0

σ1
−→
l1
E1 . . .

σm−1
−→
lm−1

Em−1

µ
−→
u1

E′m
µ̄
−→
u2

Em

σm+1
−→
lm+1

Em+1 . . .
σn

−→
ln
En

is a computation of E such that u1 6v u2 and µ 6= τ . Then by induction, there exists a
computation

d′ : F = F0

σ1
−→
l′1
F1 . . .

σm−1
−→
l′m−1

Fm−1

µ
−→
v1

F ′m
µ̄
−→
v2

Fm

σm+1
−→
l′m+1

Fm+1 . . .
σn

−→
l′n
Fn

116 Chapter 6. Behavioural Equivalence for Infinite Systems – Partially Decidable!

such that i ≤∗c′ j ⇐⇒ i ≤∗d′ j. Since

u1 6v u2 =⇒ m 6≤∗c′ m+ 1 =⇒ m 6≤∗d′ m+ 1 =⇒ v1 6v v2,

it follows from Lemma 84, that

d : F = F0

σ1

−→
l′1
F1 . . .

σn

−→
l′n
Fn

is a computation of F, where l′m = v1 ∪ v2. Moreover, since for i ≤ m,

i ≤∗c m ⇐⇒ li v∗ lm = u1 ∪ u2 ⇐⇒
li v∗ u1 ∨ li v∗ u2 ⇐⇒ l′i v∗ v1 ∨ l′i v∗ v2 ⇐⇒
l′i v∗ l′m = v1 ∪ v2 ⇐⇒ i ≤∗d m,

and similarly for i ≥ m+1, it follows that i ≤∗c j ⇐⇒ i ≤∗d j. By induction and a symmetric
argument, we conclude that E ∼pom F when E and F are considered as BPPM processes. 2

It is an easy exercise to show the following lemmas.

Lemma 83 If E
τ

−→
l
G then there exist an expression F ∈ Proc, an action σ ∈ Act and loca-

tions l1 and l2 such that l = l1 ∪ l2, l1 6v l2 and E
σ

−→
l1
F

σ̄
−→
l2
G. 2

Lemma 84 If E
σ

−→
l1
F

σ̄
−→
l2
G and l1 6v l2 then E

τ
−→

l1∪l2
G . 2

6.8.7 Proof of Theorem 61

Proof: The result is a simple consequence of Lemma 85 below and Theorem 68.
Following Taubner [157] we encode counters:

∆ =




U
def= z.U + i.((V ‖ s.U)\{s}),

V
def= d.s̄.0 + i.((W ‖ t.V)\{t}),

W
def= d.t̄.0 + i.((V ‖ s.W)\{s})




It is not hard to show that the process U represents a counter in the obvious way; allowing
communication on z if only if the counter is zero; incrementing and decrementing the counter
by communicating on i and d, respectively.

Given a two-counter machine M the idea is to encode M by a CCS process of the form

E′M
def= (C0 ‖ X1 ‖ C1)\L

where L = {z0, z1, i0, i1, d0, d1}, for each j = 0, 1, the process Cj encodes the counter cj in the
obvious way as above and the process variable X1 is the leading variable of the finite-state
process ∆M defined as in Section 6.8.2. Now let

F ′M
def= (C0 ‖ X1 ‖ C1)\L

be a CCS process identical to E′M except from letting En be h.0 where action h is different
from any action of EM as in Section 6.8.2.

It is now an easy exercise to show the following lemma.

6.8. Proofs 117

Lemma 85 Given a two-counter machine M . Then

M does not halt on input (0, 0) ⇐⇒ E′M ∼pom F ′M ⇐⇒ E′M ∼loc F
′
M .

2

Chapter 7

Further Results on Partial Order
Equivalences on Infinite Systems

Contents

7.1 Introduction . 122
7.2 TCSP/CCS-style languages . 124

7.2.1 BPP, BPPτ , BPPM , and BPPτ
M . 125

7.2.2 BPPS . 128
7.3 Language, pomset, and location equivalence 128
7.4 Renaming and hiding . 130
7.5 Weak language, pomset, and location equivalence 136
7.6 BPPτ . 137
7.7 BPPM . 143

7.7.1 Weak location equivalence . 143
7.7.2 Weak pomset equivalence . 150

7.8 BPPτ
M . 152

7.8.1 Location equivalence . 152
7.8.2 Pomset equivalence . 154

7.9 Conclusions . 161

119

Further Results on Partial Order Equivalences
on Infinite Systems

Kim Sunesen

BRICS1

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C.

ksunesen@daimi.aau.dk

Abstract In [156,§6], we investigated decidability issues for standard lan-
guage equivalence for process description languages with two generalisations
based on traditional approaches for capturing non-interleaving behaviour:
pomset equivalence reflecting global causal dependency, and location equiva-
lence reflecting spatial distribution of events.

In this paper, we continue by investigating the role played by TCSP-style
renaming and hiding combinators with respect to decidability. One result
of [156,§6] was that in contrast to pomset equivalence, location equvialence
remained decidable for a class of processes consisting of finite sets of BPP
processes communicating in a TCSP manner. Here, we show that location
equivalence becomes undecidable when either renaming or hiding is added to
this class of processes.

Furthermore, we investigate the weak versions of location and pomset equiv-
alences. We show that for BPP with τ prefixing, both weak pomset and
weak location equivalence are decidable. Moreover, we show that weak lo-
cation equivalence is undecidable for BPP semantically extended with CCS
communication.

1Basic Research in Computer Science, Centre of the Danish National Research Foundation.

121

122 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

7.1 Introduction

In this paper, we investigate the decidability of non-interleaving linear-time behavioural equiv-
alences on infinite-state systems described by process algebraic languages such as CCS [122]
and TCSP [131].

Our results contribute to the ongoing and systematic investigation of decidability of prob-
lems about infinite-state systems. But, our results may also be seen as a contribution to the
search for elucidating the sometimes delicate computational trade-offs involved in moving from
the standard view of interleaving to more intentional non-interleaving views of behaviour.

Process algebraic languages, notably CCS [122], TCSP [131] and ACP [16], have proved a
rich source of infinite-state systems, and moreover, an appropriate framework for a systematic
study based on the choice of combinators. One of the most interesting suggestions is Basic
Parallel Processes, BPP, introduced in [31]. BPPs are recursive expressions constructed from
inaction, action, variables, and the standard operators prefixing, choice and parallel com-
positions. By removing the parallel operator one obtains a calculus with exactly the same
expressive power as finite automata. BPPs can hence be seen as arising from a minimal con-
current extension of finite automata and therefore a natural starting point when exploring
concurrent infinite-state systems.

The notion of behavioural equivalences is a cornerstone in the theory of process algebraic
languages. It is common to classify behavioural equivalences into branching-time and linear-
time equivalences depending on whether or not the branching structure of the behaviour
is taken into account or not. Another central distinction is made between strong and weak
equivalences. The distinction arises when actions are divided into visible and invisible actions.
Often, there is just one invisible or silent action denoted τ . In the strong case, the invisible τ
action is an action no different from the other actions whereas in the weak case equivalence
is based on abstracting away from the invisible actions only requiring equivalent behaviour
with respect to visible actions.

Many results about decidability are known for interleaving equivalences such as bisimu-
lation and language equivalences on infinite-state systems, see [33, 73] for surveys. Also, for
non-interleaving bisimulation equivalences results are known, see [30, 91].

In [156,§6], we compared standard language equivalence with two generalisations based
on traditional approaches capturing non-interleaving behaviour. The first known as pomset
equivalence was based on pomsets representing global causal dependency [141], and the second
known as location equivalence on locality [21] representing spatial distribution of events. The
two notions of non-interleaving equivalences were shown to be decidable on BPP contrast-
ing the result of Hirshfeld [72] that language equivalence is undecidable. Moreover, larger
subclasses of CCS and TCSP obtained by adding different means for communication were
studied. It was hence shown that when adding the parallel combinator of Milner’s CCS
to BPP, BPPM , we keep the decidability of both location and pomset equivalence whereas
when adding the parallel combinator of Hoare’s TCSP both become undecidable. Also, for a
non-trivial subclass of processes between BPP and TCSP, BPPS , consisting of finite sets of
communicating BPP processes, it was shown that location equivalence is decidable whereas
pomset equivalence is not.

The work presented in this paper continues by investigating the role of the renaming and
hiding combinators with respect to decidability, and by investigating the weak versions of
pomset and location equivalence.

First, we look at BPP extended with renaming and hiding combinators, and show by a

7.1. Introduction 123

reduction to the same problem for BPP that both pomset and location equivalence remain
decidable. Second, we turn to BPPS . It follows from the undecidability for BPPS that
pomset equivalence for BPPS extended with renaming or hiding combinators is undecidable.
Here, we show that adding any of the combinators makes a significant difference for location
equivalence which becomes undecidable. The result is shown by a reduction to the halting
problem for two-counter machines based on weak encodings of counter machines. Our results
are summarised in the table below where yes indicates decidability and no undecidability.
The results of the first column are all direct consequences of Hirshfeld’s result on BPP [72].
The second and third show our results:

Language equiv. Pomset equiv. Location equiv.
BPP no yes yes
BPP + renaming and/or hiding no yes yes
BPPS no no yes
BPPS + renaming and/or hiding no no no

Furthermore, we turn to the weak case. We consider three extensions: BPP with τ pre-
fixing BPPτ , BPP with CCS-communication BPPM , and BPP with both τ prefixing and
CCS-communication BPPτ

M . We show that for BPPτ , both weak pomset and weak location
equivalence are decidable. This points out a current contrast to the results in the interleaving
world where there are currently no positive results on deciding weak equivalences for the
full class of BPPτ . In fact, one major open problem is the decidability of weak bisimula-
tion on BPPτ , see [55, 80]. In [91], a number of non-interleaving weak bisimulations were
shown to be decidable for the class of so–called h-convergent BPPτ

M processes which are
processes that cannot evolve into a divergent process. Also, positive results are known for
the asymmetric problem of deciding weak equivalences between a finite-state system and an
infinite-state system such as BPPτ , see [116, 82]. As a natural next step, we look at the class
of processes BPPτ

M obtained by semantically extending BPPτ with the communication rule
of Milner [122]. We show that for BPPτ

M , (strong) location equivalence remains decidable
whereas weak location equivalence becomes undecidable. The positive result is shown by a re-
duction to the same problem for BPPτ and the negative result is shown by a reduction to the
halting problem for two-counter machines. For the problem of deciding pomset equivalence
on BPPτ

M , we give and effective characterisation for the strong case in terms of a containment
problem between finite tree automata and a family of finite tree automata. Our results are
summarised in the table below where yes indicates decidability, no indicates undecidability,
and ? means that the question is still open. The results of the first column are all direct
consequences of Hirshfeld’s result on BPP [72]. The second and third show our results:

Weak
Language equiv. Pomset equiv. Location equiv.

BPP no yes yes
BPPτ no yes yes
BPPM no ? no
BPPτ

M no ? no
CCS no no no

The rest of the paper is organised as follows. In Section 7.2, we define fairly standard TCSP
and CCS-style languages, and along the lines of [156,§6] we augment the standard transitional
semantics so that not only actions but also information of their locality is observed. Moreover,
we define the subclasses studied in the following sections. Language, pomset and location
equivalence as presented in [156,§6] are defined in Section 7.3. Section 7.4 is devoted to
the study of the renaming and hiding combinator. Weak versions of language, pomset and

124 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

location equivalence are defined in Section 7.5. In Section 7.6, 7.7 and 7.8, we investigate
BPPτ , BPPM , and BPPτ

M , respectively. We conclude with discussions on some loose ends
and suggestions for future work.

7.2 TCSP/CCS-style languages

We start by defining the abstract syntax and semantics of TCSP [75, 131] and CCS [122] –
style a languages. The definitions are fairly standard. As usual, we fix a countably infinite
set of actions Λ = {α, β, . . . }. Then, Λ = {ᾱ, β̄, . . . } is the set of complement actions
such that ¯ is a bijection between Λ and Λ, mapping ¯̄α to α. Let Act = Λ ∪ Λ and let
Actτ = Act ∪ {τ} be the set of actions, where τ is a distinguished action not in Act. τ is
known as the invisible action. Any other action is visible. Also, fix a countably infinite set
of variables Var = {X,Y,Z, . . . }. A renaming f is an endofunction on actions Actτ subject
to a few restrictions. First it should preserve and reflect τ , that is, f−1({τ}) = {τ}. Second
it should be finitary in the sense that the set {σ | f(σ) 6= σ} of actions not preserved by f
should be finite.

The set of process expressions of TCSP is defined by the abstract syntax

E ::= 0 | X | σ.E | E + E | E ‖A E | E[f] | E\\L

where X is in Var, σ in Actτ , A and L are subsets of Act and f is a renaming. All constructs
are standard. 0 denotes inaction, X a process variable, σ. prefixing, + non-deterministic
choice, ‖A TCSP parallel composition of processes executing independently with forced syn-
chronisation on actions in the synchronisation set, A, [f] renaming of actions according to
the renaming f , \\L hiding of the actions in L. For convenience, we shall write ‖ for ‖∅.

The set of CCS process expressions is defined by the abstract syntax

E ::= 0 | X | σ.E | E + E | E ‖ E | E\L | E[f]

where X is in Var, σ in Actτ , L a subset of Λ and f is renaming. 0, X, σ., +, and [f] are
as for TCSP. ‖ is CCS parallel composition of processes executing independently with the
possibility of pairwise CCS-synchronisation and \L is CCS-restriction. Note that we do not
put the usual requirement of preservation of complement [122] on the renaming (relabelling)
function because our results go through with or without.

A process family is a family of recursive equations ∆ = {Xi
def= Ei | i = 1, 2 . . . , n}, where

Xi ∈ Var are distinct variables and Ei are process expressions containing at most variables in
Var(∆) = {X1, . . . ,Xn}. A process E is a process expression of with a process family ∆ such
that all variables occurring in E, Var(E), are contained in Var(∆). We shall often assume
the family of a process to be defined implicitly. Dually, a process family denotes the process
defined by its leading variable X1, if not mentioned explicitly. Let Act(E) denote the set of
actions occurring in process E and its associated family. A process expression E is guarded
if each variable in E occurs within some subexpression σ.F of E. Following [122], we also
consider the more restricted kind of guarding where furthermore the “guard” cannot be a τ
action, that is, σ 6= τ , in this case we say that the process is Milner guarded. A process family
is (Milner) guarded if for each equation the right side is (Milner) guarded. A process E with
family ∆ is (Milner) guarded if E and ∆ are (Milner) guarded. Throughout the paper we
shall only consider guarded processes and process families.

7.2. TCSP/CCS-style languages 125

We enrich the standard operational semantics of TCSP [157] and CCS [122] by adding
information to the transitions allowing us to observe an action together with its location.
More precisely, the location of an action in a process P is the path from the root to the action
in the concrete syntax tree represented by a string over {0, 1} labelling left and right branches
of ‖A-nodes with 0 and 1, respectively, and all other branches with the empty string ε.

Let L = P({0, 1}∗), i.e. finite subsets of strings over {0, 1}∗, and let l range over elements
of L. We interpret prefixing a symbol to L as prefixing elementwise, i.e. 0l = {0s | s ∈ l}.
With this convention, any process determines a (Actτ × L)-labelled transition system with
states the set of process expressions reachable from the leading variable and transitions given
by the transitions rules of Table 7.1, 7.2, 7.3, and 7.4 for TCSP, and Table 7.1, 7.5, 7.6,
and 7.3 for CCS. The set of computations of a process, E, is as usual defined as sequences of
transitions, decorated by action and locality information:

c : E = E0

σ1
−→
l1
E1 . . .

σn

−→
ln
En

We let loc(c) denote the set of locations occurring in c, i.e. loc(c) =
⋃

1≤i≤n li.

Example 86 Consider the process

p1 = a.b.c.0 ‖{b} b.0.

The following is an example of an associated computation (representing the unique maximal
run)

p1

a
−→
{0}

b.c.0 ‖{b} b.0
b
−→
{0,1}

c.0 ‖{b} 0
c
−→
{0}

0 ‖{b} 0.

Consider alternatively the process

p2 = a.b.0 ‖{b} b.c.0

with computation

p2

a
−→
{0}

b.0 ‖{b} b.c.0
b
−→
{0,1}

0 ‖{b} c.0
c
−→
{1}

0 ‖{b} 0.

2

7.2.1 BPP, BPPτ , BPPM , and BPPτ
M

We shall investigate a number of syntactic as well as semantic subsets of TCSP and CCS.
The calculus known as Basic Parallel Processes [31] BPP is a syntactic subset of CCS and
TCSP which can be seen as the largest common subset of these (except for the renaming
combinator). The abstract syntax of BPP expressions is

E ::= 0 | X | σ.E | E + E | E ‖ E

where σ ∈ Act (note that τ prefixing is not allowed), and the semantics is given by the rules
in Table 7.1, in particular there is no rule for communication.

BPPτ , is the subset of CCS obtained by adding τ prefixing, that is, syntactically the
prefixing combinator σ. is extended to all σ ∈ Actτ the semantics is the same as for BPP

126 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

σ.E
σ

−→
{ε}E (prefix)

E
σ

−→
l
E′

X
σ

−→
l
E′
, (X def= E) ∈ ∆ (unfold)

E
σ

−→
l
E′

E + F
σ

−→
l
E′

(suml)
F

σ
−→
l
F ′

E + F
σ

−→
l
F ′

(sumr)

E
σ

−→
l
E′

E‖AF
σ

−→
0l
E′‖AF

, σ 6∈ A (parl)
F

σ
−→
l
F ′

E‖AF
σ

−→
1l
E‖AF ′

,σ 6∈ A (parr)

Table 7.1: Transition rules for TCSP/CCS.

E
σ

−→
l0
E′ F

σ
−→
l1
F ′

E‖AF
σ

−→
0l0∪1l1

E′‖AF ′
, σ ∈ A (com)

Table 7.2: Transition rule for TCSP communication.

E
σ

−→
l
F

E[f]
f(σ)
−→
l
F [f]

, (ren)

Table 7.3: Transition rule for TCSP/CCS renaming.

E
σ

−→
l
F

E\\L
σ

−→
l
F\\L

, σ 6∈ L (hid1)
E

σ
−→
l
F

E\\L
τ

−→
l
F\\L

, σ ∈ L (hid2)

Table 7.4: Transition rules for TCSP hiding.

E
σ

−→
l0
E′ F

σ̄
−→
l1
F ′

E ‖ F
τ

−→
0l0∪1l1

E′ ‖ F ′
(τ − com)

Table 7.5: Transition rule for CCS communication.

7.2. TCSP/CCS-style languages 127

E
σ

−→
l
F

E\L
σ

−→
l
F\L

, σ, σ̄ 6∈ L (res)

Table 7.6: Transition rule for CCS restriction.

BPPM , is the subset of CCS obtained by adding the transition rule τ -com of Table 7.5
to BPP and hence introducing CCS-synchronisation. Since there is no restriction operator in
BPPM communication cannot be forced. Whenever a communication occurs in a computa-
tion, also the computation with the communicating actions occurring separately is possible.
Conversely, if there is a computation in which two complementing actions occur independently
then the same computation except from the two actions now communicating exists.

BPPτ
M , is the subset of CCS obtained by adding both τ prefixing and the transition rule

τ -com of Table 7.5 to BPP.
In the following, we shall also consider the subsets of TCSP and CCS obtained by adding

the renaming and the hiding combinator to the syntax, and the rules of Table 7.3 and 7.4 to the
semantics of BPP, BPPτ , BPPMand BPPτ

M , we called these classes BPP, BPPτ , BPPMand
BPPτ

M with renaming and hiding, respectively.
We shall make convenient use of the following structural congruence.

Definition 87 Let ≡ be the least congruence on BPPτ
M expressions with respect to all op-

erators such that the following laws hold.

Abelian monoid laws for +:

E + F ≡ F + E

E + (F +G) ≡ (E + F) +G

E + 0 ≡ E

Abelian monoid laws for ‖:

E ‖ F ≡ F ‖ E
E ‖ (F ‖ G) ≡ (E ‖ F) ‖ G

E ‖ 0 ≡ E

Idempotence law for +:

E + E ≡ E

Linear-time laws:

(E + F) ‖ G ≡ (E ‖ G) + (F ‖ G)
σ.(E + F) ≡ σ.E + σ.F

2

128 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

As parallel composition is commutative and associative, it is convenient to represent a parallel
composition X0 ‖ . . . ‖ Xk by the multiset {|X0, . . . ,Xk|}. Inaction 0 is represented by the
empty multiset. For a set Var, we denote by Var⊗ the set of all finite multisets over Var.

Definition 88 A BPPτ
M family ∆ = {Xi

def= Ei | i = 1, 2 . . . , n} is in (quasi) normal form if
and only if each expression Ei is of the form

Ei ≡
ni∑

j=1

σijαij

where σij ∈ Actτ and αij ∈ Var(∆)⊗. 2

For a BPPτ
M family ∆ = {Xi

def= Ei | i = 1, 2 . . . , n} in normal form the branching bound
is the maximal cardinality of the multisets appearing in the sums, that is, max{|αij | | i ∈
[n], j ∈ [ni]}. We sometimes write σα ∈ Ei to denote that there is a j ∈ [ni] such that
σ = σij and α = αij.

7.2.2 BPPS

A natural restriction when dealing with non-interleaving behaviours is to allow only parallel
composition in a fixed static setup, see e.g. [6, 4]. This of course leads to finite-state systems.
We generalise the idea to possibly infinite-state systems. Let BPPS be the syntactic subset
of TCSP obtained by allowing only synchronisation, i.e. the ‖A operator with A 6= ∅, at the
top level and restricting the synchronisation sets to be the set of all actions possible in either
of the components.

A BPPS process can hence be seen as a fixed set of BPP processes synchronising on every
action. Formally, a BPPS expression is given by the abstract syntax

E ::= X1 ‖Σ . . . ‖Σ Xl,

where Σ ⊇ Act. A BPPS family is a process family ∆ = {X def= X1 ‖Σ . . . ‖Σ Xl} ∪∆′ with
leading variable X such that the leading variable X does not occur on any right-side, the
variables X1, . . . ,Xl are contained in Var(∆′), the synchronisation set Σ is a superset of the
actions Act(∆′) in ∆′, and ∆′ is a BPP family in normal form. A BPPS process E is a BPPS

expression with a process family ∆′ such that {X0
def= E} ∪∆′ is a BPPS family with leading

variable X0. We call l the arity of ∆.
BPPS with renaming is all TCSP processes of the form ∆ = {X def= (X1 ‖Σ . . . ‖Σ

Xl)[f]} ∪∆′ such that {X def= X1 ‖Σ . . . ‖Σ Xl} ∪∆′ is a BPPS process and f is a renaming.
BPPS with hiding is all TCSP processes of the form ∆ = {X def= (X1 ‖Σ . . . ‖Σ Xl)\\L}∪∆′

such that {X def= X1 ‖Σ . . . ‖Σ Xl} ∪∆′ is a BPPS process.

7.3 Language, pomset, and location equivalence

Let v be the prefix ordering on {0, 1}∗, extended to sets, i.e. for l, l′ ∈ L

l v l′ ⇐⇒ ∃s ∈ l, s′ ∈ l′. s v s′.

7.3. Language, pomset, and location equivalence 129

As usual, we use [n] to denote the set {1, 2, . . . , n}. For a given computation

c : E0

σ1
−→
l1
E1 . . .

σn

−→
ln
En,

we define the location dependency ordering over [n] as follows:

i ≤c j ⇐⇒ livlj ∧ i ≤ j.

As usual, let ≤∗c denote the transitive closure of ≤c, let <∗c denote the strict version of ≤∗c ,
that is, i <∗c j iff i ≤∗c j and i 6= j, and let l∗c denote the covering relation i <∗c j, that is,
il∗cj iff i <∗c j and ∀k ∈ [n]. k <∗c j ⇒ k ≤∗c i.

Definition 89 Behavioural Equivalences.
Processes E and E′ are said to be language equivalent, E ∼lan E

′, iff for every computation
of E

c : E
σ1

−→
l1
E1 . . .

σn

−→
ln
En

there exists a computation of E′

c′ : E′
σ1

−→
l′1
E′1 . . .

σn

−→
l′n
E′n

and vice versa.
E and E′ are said to be pomset equivalent, E ∼pom E′, iff the above condition for language
equivalence is satisfied, and c′ is further required to satisfy i ≤∗c j ⇐⇒ i ≤∗c′ j.
E and E′ are said to be location equivalent, E ∼loc E

′, iff the above condition for language
equivalence is satisfied, and c′ is further required to satisfy that there exists a relation R ⊆
loc(c)× loc(c′) satisfying that for each 1 ≤ i ≤ n, R restricts to a bijection on li × l′i, and for
each i ≤ j, s0(R ∩ li × l′i)s′0 and s1(R ∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1.

In each case, we say that c′ is a match of c with respect to ∼lan, ∼pom and ∼loc, respec-
tively. 2

Notice that the condition in the definition of pomset equivalence requires identical global
causal relationship between the events of c and c′, whereas the condition in the definition
of location equivalence requires the same set of local causal relationships (up to renaming
of locations). Also, notice that our notion of pomset equivalence is consistent with formal
definitions from e.g. [85], and that location equivalence is a natural application of the concepts
from [21] to the setting of language equivalence.

Example 90 It follows immediate from the definition that for our process language consid-
ered so far, location equivalence is included in pomset equivalence, which in turn is included
in language equivalence. The standard example of processes a.0 ‖ b.0 and a.b.0 + b.a.0 shows
that the inclusion in language equivalence is strict. The different intuitions behind our two
non-interleaving equivalences may be illustrated by the two processes from Example 86. For-
mally, the reader may verify that p1 and p2 are pomset equivalent but not location equivalent.
Intuitively, both processes may perform actions a,b, and c in sequence, i.e. same set pomsets,
but in p1 one location is responsible for both a and c, whereas in p2 two different locations
are responsible for these actions. 2

130 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

7.4 Renaming and hiding

In this section, we investigate the role of renaming and hiding with respect to the decidability.
First we show that for BPP, the decidability of both pomset and location equivalence is
preserved when adding renaming and hiding. Second, we show that adding renaming or
hiding to BPPS makes location equivalence undecidable.

Theorem 91 For BPP with renaming and hiding, ∼loc = ∼pom ⊂∼lan.

Proof: That ∼pom and ∼lan coincide follows from the proof of Theorem 92 below. The
inclusion into ∼lan follows from the definition and the strictness follows from Example 90. 2

Theorem 92 For BPP with renaming and hiding, ∼loc and ∼pom are decidable.

Proof: It is not hard to check the following equalities:

(σ.E)[f] ∼pom f(σ).E[f],

(σ.E)\\L ∼pom σ.(E\\L), if σ 6∈ L,

(σ.E)\\L ∼pom τ.(E\\L), if σ ∈ L,

E[f]\\L ∼pom (E\\f−1(L))[f], and

(E\\L)[f] ∼pom (E[f ′])\\{µnew
E }, f ′(σ) =

{
µnew

E if σ ∈ L,
f(σ) otherwise

where µnew
E is a new action not present in the process E.

Because no communication is possible and because renaming is finitary, it is straightfor-
ward using such equalities to check that renaming and hiding combinators can be eliminated
by pushing them inwards while renaming and hiding actions in the prefixing combinator
explicitly such that the obtained process is an ordinary BPP process which is pomset and
location equivalent to the orignal process. 2

Theorem 93 For BPPS with renaming and hiding, ∼loc ⊂ ∼pom ⊂∼lan.

Proof: The inclusions follow by the definition, and the strictness from simple modifications
of Example 86 and 90. 2

We spend the rest of the section showing that location equivalence is undecidable for BPPS

with renaming or hiding. The proof is by a reduction from the halting problem for two-counter
machines. A (Minsky) two-counter machine [124] consists of a finite program

l1 : com1
...

ln−1 : comn−1

ln : HALT

7.4. Renaming and hiding 131

and unbounded counters c0 and c1. The lis and the comis are called labels and commands,
respectively. Commands are of one of two different types: commands of type I are of the
form cj := cj + 1;goto l (unconditional increment) and commands of type II are of the form
if cj = 0 then goto l else cj := cj − 1;goto l′ (conditional decrement), where j is either 0 or 1,
and l and l′ are labels.

A two-counter machine M executes on a given input (contents of the counters (c0, c1))
(m0,m1) by first executing com1, then com2, and so forth. Stopping if and only if the HALT
command is reached. M halts on input (m0,m1) if it reaches label ln and hence the HALT
command in finitely many steps. It is well-known that the halting problem for two-counter
machines is undecidable.

Theorem 94 [124] It is undecidable whether a two-counter machineM halts on input (0, 0).
2

Given a two-counter machine M the idea is to encode the state of M by a BPPS process of
the form

X ‖Σ (C0 ‖ dm0
0 ‖ C1 ‖ dm1

1)

where the variable X encodes the state of the finite-state program of M, m0 and m1 are
the values of the counters, and C0 and C1 controls in interaction with X the incrementing,
decrementing and zero-testing of the counters. We exhibit two different encodings which
are both weak in the sense that they allow computations which do not correspond to any
execution of the encoded machine. For convenience, we work with TCSP processes and not
BPPS with renaming for starters. Later, we transform the setting appropriately.

Definition 95 First weak encoding
Given a two-counter machineM let ∆M be the TCSP family with leading variable X0 given
by the following definitions where k ranges over 1, . . . , n − 1 and j ranges over 0, 1:

X0
def= X1 ‖A ((GC0 ‖ GC1) ‖B S),

where A = {ij , zj , dj | j = 0, 1} and B = {zj , dj | j = 0, 1}. If comk is cj := cj + 1;goto lp
then

Xk
def= ij .Xp,

and if comk is if cj = 0 then goto lp else cj := cj − 1; goto lq then

Xk
def= zj.Xp + dj.Xq,

Xn
def= h.0,

GCj
def= ij .(GCj ‖ Cj) + zj .GCj ,

Cj
def= dj .0,

S
def=

∑
j zj.S + dj .S.

2

132 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

LetM be a two-counter machineM and let ∆M be the TCSP family given by Definition 95.
It is clear from the definition that for any computation

c : X1

σ1

−→
l1
E1 . . .

σn

−→
ln
En

of ∆M and for each i ∈ [n] there is ki, ji,m
i
0 and mi

1 such that either

Ei ≡ Xki
‖A (GC0 ‖ Cm0

0 ‖ GC1 ‖ Cm1
1) ‖B S

or

Ei ≡ 0 ‖A (GC0 ‖ Cm0
0 ‖ GC1 ‖ Cm1

1) ‖B S

in the latter case Ei is called a halting state. The computation c is a halting computation if it
reaches a halting state. For each i ∈ [n] and j = 0, 1, let countj(Ei) = mj . The computations
of the encoding above always increment and decrement counters properly but they may take
the zero branch even though the corresponding counter is not zero.

Definition 96 Proper transitions and computations
Let

c : X1 = E0

σ1
−→
l1
E1 . . .

σn

−→
ln
En

be a computation of ∆M. For each i ∈ [n] and j = 0, 1, the ith transition of c is a proper
transition if and only if the zero-branch is only chosen on a zero-counter, that is, if σi = zj
then countj(Ei−1) = 0. The computation c is a proper computation if and only if for each
i ∈ [n] the ith transition is a proper transition. Dually, an improper transition (computation)
is a transition (computation) that is not proper. If c is an improper computation, the ith
transition is the first improper transition in c and σi = zj , c is said to cheat on counter j at
the ith transition, and furthermore, k is said to be the witness iff the kth transition in c is
the first transition to enable a dj still enabled in Ei. 2

The following lemma shows that the encoding is correct in the sense that the execution ofM
can be uniquely simulated by ∆M. It is however only weakly correct in the sense that there
may be computations of ∆M which do not correspond to executions of M.

Lemma 97 “Weak” correctness of simulation

• IfM halts on input (0, 0) then ∆M has a unique maximal proper computation reaching
a halting state.

• If M does not halt on input (0, 0) then all proper computations of ∆M are prefixes of
a single infinite proper computation which never reaches a halting state

Proof: Both properties are not hard to verify: each execution step of M is matched by a
unique transitions of ∆M. Matching for each j = 0, 1, a test for zero, an increment and a
decrement of the jth counter by zj , ij and dj , respectively. 2

7.4. Renaming and hiding 133

Definition 98 Second weak encoding
Given a two-counter machineM let ∆′M be the TCSP family with leading variable Y0 given
by the following definitions where k ranges over 1, . . . , n − 1 and j ranges over 0, 1:

Y0
def= Y1 ‖A (GD0 ‖ GD1) ‖B T,

where A = {ij , zj , dj | j = 0, 1} and B = {zj , z′j , dj , d
′
j | j = 0, 1}. If comk is cj := cj + 1;goto

lp then

Yk
def= ij .Yp,

and if comk is if cj = 0 then goto lp else cj := cj − 1;goto lq then

Yk
def= zj.Yp + dj .Yq + z′j .Y

H
p ,

Yn
def= 0

and

GDj
def= ij.(GDj ‖ Dj) + ij.(GD′j ‖ D′j) + zj .GDj ,

GD′j
def= ij.(GD′j ‖ Dj) + zj.GD

′
j + z′j .GD

′
j .

Dj
def= dj.0,

D′j
def= d′j.0,

T
def=

∑
j zj .T + dj .T + z′j .T

H

TH def=
∑

j zj .T
H + dj .T

H + d′j .T
H.

Furthermore, for each k over 1, . . . , n− 1 and each j over 0, 1. If comk is cj := cj + 1;goto lp
then

Y Hk
def= ij .Y

H
p

and if comk is if cj = 0 then goto lp else cj := cj − 1;goto lq then

Y Hk
def= zj .Y

H
p + dj .Y

H
q + d′j .Y

H
q ,

and

Y Hn
def= h.0.

2

Let f be the renaming function given by

f(σ) =




zj if σ = z′j
dj if σ = d′j
σ otherwise

134 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

We call a state of a computation of ∆′M containing a variable labeled by superscript H an
H-labeled state. The idea is that any proper computation of ∆M can and can only be matched
by a computation of ∆′M using only states which are not H-labeled. Whereas an improper
computation of ∆M can and can only be matched by a computation of ∆′M using only states
which are not H-labeled up to the first improper transition and from then on using only states
which are H-labeled.

Lemma 99 M does not halt on input (0, 0) ⇐⇒ X0 ∼loc Y0[f]

Proof: To see the only if direction, assume thatM does not halt. We show thatX0 .loc Y0[f]
and that Y0[f] .loc X0. The second case is easy. Let h be the variable-relabeling homomor-
phism on syntactic trees of Proc induced by letting h(Yk) = Xk, h(GDj) = h(GD′j) = GCj ,
h(Dj) = h(D′j) = Cj and h(T) = h(TH) = S. Then, it is routine to check that for each
computation

d : F0

σ1

−→
l1
F1 . . .

σn

−→
ln
Fn

of Y0[f],

c : h(F0)
σ1
−→
l1
h(F1) . . .

σn

−→
ln
h(Fn)

is a computation of X0.
To show the first case, it suffices by Lemma 97 to consider only every non-halting proper

computation and every improper computation of X0. We split the proof into two. Let

c : X1 = E0

σ1
−→
l1
E1 . . .

σn

−→
ln
En

be a proper and non-halting computation of X0, and let g be the variable-relabeling homomor-
phism on syntactic trees of Proc induced by letting g(Xk) = Yk, g(GCj) = GDj , g(Cj) = Dj

and g(S) = T . Again, it is routine to check that

d : g(F0)
σ1
−→
l1
g(F1) . . .

σn

−→
ln
g(Fn)

is a computation of Y0[f]. Next, let

c : X1 = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

be an improper computation of X0. Observe that it is straightforward to show by induction
in the length of the computation that for any computation

d : F0

σ1

−→
l′1
F1 . . .

σn

−→
l′n
Fn

of Y0[f] with matching transition labelling, also the counters match, that is, for each i ∈ [n]
and j = 0, 1, countj(Ei) = countj(Fi). Now, assume that c is improper because it cheats
on J at I with witness K. By the above the (proper) computation up to the Ith transition
can be matched by Y [f]. Clearly, this match may be assumed to generate CD′J ‖ D′J by the

7.4. Renaming and hiding 135

K transition, and hence the improper Ith transition of c may be match by a z′J transition.
Since a z′J transition leads to an H-labelled state it is easy to see that any continuation can
be matched.

Conversely to see the if direction, assume thatM does halt. We show that X0 6.loc Y0[f].
By Lemma 97, X0 has a unique maximal proper computation reaching a halting state. We
show that this computation cannot be matched by Y0[f]. Assume that there were a match.
It is easy to check that Y0[f] can only perform h in a H-labelled state and that the only way
to enter such a state is by jperforming a z′j which again can only be performed after a D′j has
been generated. Moreover, since also a d′j can only be performed in an H-labelled state, we
get that D′j must be present in the state performing the first z′j . Now, this is a contradiction
by the fact that f(z′j) = zj and the above observation on counters in matching computations.
2

Let

UL
def=

∑
σ∈L

σ.UL.

The follwing lemma makes it straightforward to make the reduction to BPPS processes with
renaming.

Lemma 100 Let L1 and L2 be the sets {h} and {i0, i1, h}, respectively, s an action in Act,

X ′0
def= s.X1 ‖Σ (s.(GC0 ‖ GC1 ‖ UL1) ‖Σ s.(S ‖ UL2)), and

Y ′0
def= s.Y1 ‖Σ (s.(GD0 ‖ GD1 ‖ UL1) ‖Σ s.(T ‖ UL2)).

Then,

X0 ∼loc Y0[f] ⇐⇒ X ′0 ∼loc Y
′
0 [f].

Proof: Straightforward because the computations are the same except from the involvement
of every component in every transition and because the new locations observed are exactly
the same in both processes. 2

Theorem 101 For BPPS with renaming, ∼loc and ∼pom are undecidable.

Proof: Immediate consequence of Lemma 100 and 99. 2

Lemma 102 Let L be the set of actions {dj , d
′
j , zj , z

′
j | j = 0, 1}.

M does not halt on input (0, 0) ⇐⇒ X0\\L ∼loc Y0\\L

Proof: The proof is a routine adaption of the Lemma 99. 2

136 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

Lemma 103 Let L, L1 and L2 be the sets {dj , d
′
j , zj , z

′
j | j = 0, 1}, {h} and {i0, i1, h},

respectively, and let

X ′0
def= s.X1 ‖Σ (s.(GC0 ‖ GC1 ‖ UL1) ‖Σ s.(S ‖ UL2)), and

Y ′0
def= s.Y1 ‖Σ (s.(GD0 ‖ GD1 ‖ UL1) ‖Σ s.(T ‖ UL2)).

Then,

X0\\L ∼loc Y0\\L ⇐⇒ X ′0\\L ∼loc Y
′
0\\L

Proof: Straightforward. 2

Theorem 104 For BPPS with hiding, ∼loc and ∼pom are undecidable.

Proof: Immediate consequence of Lemma 102 and 103. 2

7.5 Weak language, pomset, and location equivalence

All the undecidability results for the strong case extend immediately to the weak case. In the
following we show that for BPPτ the decidability results for pomset and location equivalence
extent to the weak case.

With each computation c we associate a partial function vc : N ↪→ N yielding on i the
index of the ith visible action in c if it exists and undefined otherwise, and the function ‖ c ‖
yielding the number of occurrences of visible actions in c.

Definition 105 Processes E and E′ are said to be weak language preordered, E /lan E
′, iff

for every computation of E

c : E
σ1
−→
l1
E1 . . .

σn

−→
ln
En

there exists a computation of E′

c′ : E′
σ′
1−→

l′1
E′1 . . .

σ′
m−→

l′m
E′m

such that there ‖ c ‖ = ‖ c′ ‖, for each i ∈ [‖ c ‖], σvc(i) = σ′
vc′ (i).

E and E′ are said to be weak pomset preordered, E /pom E′, iff c′ is further required to satisfy
that for each i, j ∈ [‖ c ‖], vc(i) ≤∗c vc(j) ⇐⇒ vc′(i) ≤∗c′ vc′(j).
E and E′ are said to be weak location preordered, E /loc E

′, iff c′ is further required to satisfy
that there exists a relationR ⊆ loc(c)×loc(c′) satisfying that for each 1 ≤ i ≤‖ c ‖, R restricts
to a bijection on lvc(i)× l′vc′ (i), and for each i, j ∈ [‖ c ‖] such that i ≤ j, s0(R∩ lvc(i)× l′vc′ (i))s

′
0

and s1(R ∩ lvc(j) × l′vc′ (j))s
′
1, s0 v s1 ⇐⇒ s′0 v s′1. In each case, we say that c′ is a match

of c with respect to ≈lan, ≈pom and ≈loc, respectively.

7.6. BPP
τ 137

Moreover, E and E′ are said to be weak language equivalent, E ≈lan E′, iff E /lan E′

and E′ /lan E. E and E′ are said to be weak pomset equivalent, E ≈pom E′, if and only if
E /pom E′ and E′ /pom E. E and E′ are said to be weak location equivalent, E ≈loc E

′, if
and only if E /loc E

′ and E′ /loc E. 2

We write E ε=⇒ E′, if E = E′, or if there exists a computation

E
τ
−→
l1
E1 . . .

τ
−→
ln
En = E′,

from E to E′ with only τ transition, E
σ

=⇒
l
E′, if there exists processes E1 and E2 such that

E
ε=⇒ E1

σ
−→

l
E2

ε=⇒ E′,

and E σ−→ ε=⇒ E′, if there exists a process E′′ such that

E
σ−→ E′′ ε=⇒ E′.

Example 106 Consider the process

p3 = (a.b.0 ‖ b̄.c.0)\{b}

The following is an example of an associated computation (representing the unique maximal
run)

c : p3

a
−→
{0}

(b.0 ‖ b̄.c.0)\{b}
τ
−→
{0,1}

(0 ‖ c.0)\{b}
c
−→
{1}

(0 ‖ 0)\{b}.

Consider alternatively the process
p4 = τ.a.τ.c.0

with computation

d : p4

τ
−→
{ε}

a.τ.c.0
a
−→
{ε}

τ.c.0
τ
−→
{ε}

c.0
c
−→
{ε}

0.

The computation d is a match of c with respect to ≈lan and ≈pom but not with respect to
≈loc. 2

7.6 BPPτ

In the strong case, τ is just another action no different than the others. Hence, all results of
decidablility on BPP transfers to BPPτ .

Theorem 107 For BPPτ , ≈loc = ≈pom ⊂≈lan.

Proof: That ≈pom and ≈loc coincide is an easy consequence of the definition because no
communication is possible. The inclusion into ≈lan follows immediate from the definition and
the strictness follows from Example 90. 2

138 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

τ

		
		

		
τ

kkkkkkkkkkkkkkkkkk

RRRRRRRRRRRRRRRR

a τ

τ

xxx
xxxxxx

GGGGGGGGG τ

{{{
{{

{{
{

CC
CC

CC
CC

b τ

��
��
��
�

τ

��
��
��
�

33
33

33
3 τ

��
��
��
�

33
33

33
3 a b

a τ

��
��
��
�

a b a b

b τ

a τ

b

Figure 7.1: Distinct strong pomsets whose weak versions match.

It is easy to see that a Milner guarded BPPτ family ∆ can effectively be transformed into a
guarded BPP family ∆′ by systematically getting rid of τ.E subexpressions by appropriate
substitutions of E in such a way that ∆ ≈pom ∆′ (∆ ≈loc ∆′).

For the general case, this elimination procedure cannot be applied due to the possibility
of τ cycles. Instead, we introduce a closure operation performing combined elimination and
bounded saturation of τs as explained below.

To appriciate the difference in the underlying “τ -structure” of computations which corre-
spond to matching computations with respect to ≈pom, consider the pomsets in Figure 7.1,
as pomsets they clearly do not match but as weak pomset they match. The pomset to the
left (right) is a pomset of ∆1 (∆2) in Example 108 below. In fact, ∆1 ≈pom ∆2 but clearly
∆1 6∼pom ∆2. Moreover, ∆1 and ∆2 can match any BPPτ computation over a and b with
respect to ≈pom.

Example 108

∆1 = { X1
def= τ.{X2,X3},

X2
def= a.{X1},

X3
def= τ.{X1,X4},

X4
def= b.{X1} }

∆2 = { Y1
def= τ.{Y1, Y1}+ τ.{Y2, Y3},

Y2
def= a.{Y1},

Y3
def= b.{Y1}}

2

In the following, we show how to reduce the decidability of /pom to the decidability of .pom.
The main observation used is that whereas a BPPτ family may allow computations of arbitrary
large branching degrees when restricting to visible transitions, the underlying dependency

7.6. BPP
τ 139

ordering is a tree of a branching degree uniformly bounded over all computations of the
family. Hence, if ∆ and ∆′ are BPPτ families then based on the branching bound B of ∆,
we seek to effectively compute a family SB(∆′) such that ∆ /pom ∆′ iff ∆ .pom SB(∆′).
Intuitively, SB(∆′) will do all computations whose underlying dependency ordering is a tree
with branching bounded by B and which can be match by a computation of ∆′ with respect
to ≈pom. The first step is to compute for each variable X a finite representation of the set of
all states reachable from X by doing any number of τ actions, that is, the set

{β | X ε=⇒ β}

and for each action σ ∈ Act(∆) ∪ {τ} a finite representation of the set of all states reachable
from X by doing a σ action and then doing any number of τ actions, that is,

{β | X σ−→ ε=⇒ β}.

For this purpose, it is convenient to assume that the families are of the following form.

Definition 109 A BPPτ family ∆ = {Xi
def= Ei | i = 1, 2 . . . , n} is in subset closed normal

form if and only if it is in normal form and furthermore for each expression

Ei ≡
ni∑

j=1

σijαij

the set Γσ = {αij | σij = σ} are subset closed, that is, for every α1, α2 ∈ Var(∆)⊗ such that
α1 ⊆ α2, if α2 ∈ Γσ then α1 ∈ Γσ. 2

As shown next, we can safely restrict ourselves to families in subset closed normal form in
the following.

Proposition 110 Let ∆ be a BPPτ family with leading variable X1. Then a BPPτ family
in subset closed normal form ∆′ can be effectively constructed such that ∆′′ ∼pom ∆′, where
∆′′ is ∆ extended with a new leading variable X ′1 = s.X1, for some s ∈ Act and X ′1 6∈ Var(∆).

Proof: Straightforward extension of the normal form result in [156,§6]. 2

Note that for example the process (a.0 ‖ b.0) + c.0 can not be brought on normal form while
preserving pomset equivalence whereas the process s.((a.0 ‖ b.0) + c.0) can. Hence, the point
of the slightly technical normal form result is that prefixing the leading equation of two BPP
processes by the same action respects and reflects pomset equivalence.

We base the computation of the set reachable states discussed above on a “weak” version
of the standard Karp-Miller tree, see e.g. [143, 144]. For this purpose, we need a bunch of
fairly standard definitions.

140 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

Definition 111 The set IN ∪ {ω} of the natural numbers IN extended with a special (limit)
symbol ω is denoted by INω. As usual, the operations + and −, and the relation ≤ over IN
are extended to INω by stipulating that for all n ∈ IN , ω + ω = ω + n = n + ω = ω and
n ≤ ω. The set of all n-tuples over IN (INω) is denoted INn (INn

ω), elements of IN (INn
ω) are

denoted m̄, and the components are for each i ∈ [n] denoted by m̄i. For each i ∈ [n], we
denote by ēi the ith unit n-tuple, that is, the n-tuple with 1 in the ith entry and 0 in all other
entries. For any k ∈ IN , the n-tuple with k in all entries is denoted by k̄. Operations and
relations on INω extend componentwise to INn

ω . The downwards closure of a subset M ⊆ INn
ω

is the set M̂ = {m̄ ∈ INn | ∃m̄′ ∈ M. m̄ ≤ m̄′}. Let α a finite multiset over a finite set
of variables {X1, . . . ,Xn}, then we denote by m̄(α) the n-tuple over IN defined by taking
the ith entry to be the number of copies of the variable Xi in α. For any BPPτ family ∆,
let |〉∆ ⊆ INn

ω × (Act(∆) ∪ {τ}) × INn
ω be the relation defined by for each m̄, m̄′ ∈ INn

ω and
σ ∈ Act(∆) ∪ {τ}, (m̄, σ, m̄′) ∈ |〉∆ iff there exists Xi ∈ Var(∆) and α ∈ Var(∆)⊗ such
that m̄ ≥ ēi, X

σ−→ α and (m̄ − ēi) + m̄(α) = m̄′. Often, we use the more convenient infix
notionation m̄|σ〉∆m̄′ instead of (m̄, σ, m̄′) ∈ |〉∆ and whenever ∆ is clear from the context
we drop the ∆ subscript. 2

Keeping in mind that BPPτ processes in normal form may be viewed as communication-free
nets, the weak Karp-Miller tree defined next are essentially the Karp-Miller trees on nets but
restricted to τ actions.

Definition 112 Let ∆ be a BPPτ family in normal form. The weak Karp-Miller tree associ-
ated with the process α ⊆ Var(∆)⊗ is a node labelled tree Tα in which each node is labelled
with an n-tuple over INω. The tree Tα is inductively defined as follows

(i) the root of Tα is labelled by m̄(α), and

whenever v is a node in Tα labelled m̄, then

(ii) if m̄ is also the label of an ancestor of v then v has no sons, and

(iii) otherwise, for each m̄′ ∈ INn
ω such that t = m̄|τ〉m̄′, v has a son vt with label m̄t where

(a) if there is an ancestor v′′ of v with label m̄′′ such that m̄′′ ≤ m̄′ then for each
i ∈ [n],

m̄t
i =

{
ω, if m̄′′i < m̄′i,
m̄′i, else

(b) otherwise, m̄t = m̄′.

For each σ ∈ Act(∆) ∪ {τ}, the σ-weak Karp-Miller tree associated with the process α ⊆
Var(∆)⊗ is a node labelled tree T σ

α in which each node is labelled with an n-tuple over INω

such that

(i) the root of T σ
α is labelled by m̄(α), and

(ii) for each β ⊆ Var(∆)⊗ such that α σ→ βt, the root has the weak Karp-Miller tree Tβt as
a subtree.

7.6. BPP
τ 141

The set of all labels in Tα and T σ
α is denoted by E(α) and Eσ(α), respectively. Moreover,

E(∆) =
⋃

X∈Var(∆)

E(X) ∪
⋃

σ∈Act(∆)∪{τ}
Eσ(X)

2

Lemma 113 Let ∆ be a BPPτ family in normal form. Then for any process α ⊆ Var(∆)⊗,
the weak Karp-Miller tree Tα is finite and effectively constructible, and moreover, for any
σ ∈ Act(∆) ∪ {τ}, the σ-weak Karp-Miller tree T σ

α is finite and effectively constructible. In
particular, the set E(α) of all labels in Tα, the set Eσ(α), of all labels in T σ

α , and the set E(∆)
are finite and effectively computable.

Proof: Standard Karp-Miller trees for vector addition systems and Petri nets are well-known
to be finite and effectively constructible, see e.g. [143, 144], and it is routine to transfer the
proof to (σ-) weak Karp-Miller trees. The rest follows easily. 2

Lemma 114 Let ∆ be a BPPτ family in subset closed normal form. Then,

Ê(X) = {m̄(β) | X ε=⇒ β}, and

Êσ(X) = {m̄(β) | X σ−→ ε=⇒ β}.

Proof: Straightforward from the construction of the (σ-) weak Karp-Miller tree and down-
wards closure ensure by the subset closedness. 2

Definition 115 Let BPPτ be a family ∆ = {Xi
def= Ei | i = 1, 2 . . . , n} in subset closed

normal form such that for each i ∈ [n], Ei ≡
∑ni

j=1 σijαij and let B ∈ N. Define the τ -
saturation of ∆ up-to branching bound B,

SB(∆) = {Yi
def= Fi | i ∈ [n]} ∪ {Zσ

m̄
def= Gσ

m̄ | m̄ ∈ E(∆) ∧ σ ∈ Act(∆) ∪ {τ}},
where for each m̄ ∈ E(∆), the set Cm̄ consists of all submultisets γ for which there exist
subsets m̄1, . . . , m̄k ∈ E(∆), α ⊆ Var(∆)⊗, such that

γ = {|Zτ
m̄1
, . . . , Zτ

m̄k
|} ∪ α ∧ |γ| ≤ B ∧

∑
1≤i≤k

m̄i + m̄(α) ≤ m̄,

and

Gσ
m̄ ≡

∑
β∈Cm̄

σ.β,

and for each i ∈ [n],

F ′i ≡
ni∑

j=1

∑
m̄∈Eσij (Xi)

Z
σij
m̄ +

∑
m̄∈E(Xi)

Zτ
m̄, and (7.1)

Fi ≡ F ′i +
∑

k∈[n], k 6=i, ēk∈E(Xi)

F ′k. (7.2)

2

142 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

Lemma 116 For any BPPτ family ∆ in subset closed normal form and any natural number
B

∆ ≈pom SB(∆), in fact, ∆ .pom SB(∆) and SB(∆) /pom ∆.

Proof: Straightforward from Definition 115. 2

Lemma 117 Let ∆1 and ∆2 be BPPτ families in subset closed normal form such that B is
the branching bound of ∆1. Then,

∆1 /pom ∆2 ⇐⇒ ∆1 .pom SB(∆2).

Proof: The if direction follows from Lemma 116, because

∆1 .pom SB(∆2) ≈pom ∆2.

To see the only if direction assume that ∆1 /pom ∆2. We show a slightly stronger result. For
any X ∈ Var(∆) and any computation

c : X
σ1

−→
l1
E1 . . .

σn

−→
ln
En

of ∆1, if there is a computation

d′ : Y
σ′
1−→

l′1
F1 . . .

σ′
m−→

l′m
Fm

such that d′ is a match of c with respect to ≈pom then there is a computation

d′′ : Y
σ1

−→
l′′1
F ′′1 . . .

σ′′
n−→

l′′n
F ′′n

such that d′′ is a match of c with respect to ∼pom. We proceed by induction in the length n
of the computation c, The base case (n = 1) is obvious. In the step (n > 1) there are three
cases σ1 = σ′1, σ1 = τ ∧ σ′1 6= τ , and σ1 6= τ ∧ σ′1 = τ each of which follows by induction and
use of, respectively, the first and second clause in the sum (7.1) and the second clause in the
sum (7.2) of Definition 115. 2

Theorem 118 For BPPτ , ≈pom and ≈loc are decidable.

Proof: The decidability of weak pomset equivalence follows from Lemma 117 and the de-
cidability of BPPτ in the strong case. The decidability of weak location equivalence follows
since by Theorem 107 ≈pom and ≈loc coincide on BPPτ . 2

7.7. BPPM 143

7.7 BPPM

We settled the strong case in [156,§6] by showing that pomset and location equivalence coni-
cide and remain decidable for BPPM . In the weak setting, ≈pom and ≈loc still conicide for
BPPτ but when moving to BPPM this changes. In fact, they become incomparable which
contrast the strong case where location equivalence is always finer then pomset. We have
borrowed the following example from Kiehn [90] to show this.

Example 119 For the BPPM processes

r1 = a.b.0 ‖ b̄.c.0 + a.c.0 and r2 = a.b.0 ‖ b̄.c.0,

we have that r1≈pomr2 and r1 6≈locr2, and for BPPM processes

s1 = a.b.0 ‖ b̄.c.0 + c.b.0 ‖ b̄.a.0 + a.0‖c.0 and s2 = a.b.0 ‖ b̄.c.0 + c.b.0 ‖ b̄.a.0,

we have that s1≈locs2 and s1 6≈poms2. 2

Theorem 120 For BPPM , ≈loc and ≈pom incomparable and both strictly finer than ≈lan.

Proof: Immediate from the definition and Example 119. 2

7.7.1 Weak location equivalence

In this section, we settle the weak case by showing that /loc and ≈loc are undecidable for
BPPM . Again, the proof is by a reduction from the halting problem for two-counter machines.
The encodings used are considerably weaker than those used for BPPS with renaming in the
sense that those encodings could only cheat on zero testing whereas these can additionally
cheat on decrement leaving only increment behaving properly.

Clearly, the decidability of /loc would imply decidability of ≈loc. The following lemma
observes that in fact /loc and ≈loc are equivalent with respect to decidability.

Lemma 121 Let E and F be BPPM processes.

E /loc F ⇔ E + F ≈loc F

Proof: Immediate from the definition. 2

We spend the rest of this section showing that /loc and hence ≈loc are undecidable for BPPM .
The proof is by a reduction from the Halting problem for Minsky two-counter machines to
the /loc problem using weak encodings of two-counter machines into BPPM processes.

Given a two-counter machine M the idea is to encode the state of M by a BPP process
of the form

X ‖ Cm0
0 ‖ Cm1

1

where the variable X encodes the state of the finite-state program ofM and m0 and m1 are
the values of the counters.

144 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

Definition 122 First weak encoding
Given a two-counter machineM let ∆M be the BPPM family with leading variable X1 given
by the following definitions where k ranges over 1, . . . , n − 1 and j ranges over 0, 1. If comk

is cj := cj + 1;goto lp then

Xk
def= ij .(Xp ‖ Cj),

and if comk is if cj = 0 then goto lp else cj := cj − 1;goto lq then

Xk
def= zj .Xp + gj .Pkj

and

Pkj
def= g′j .Xq,

Xn
def= h.0

and

Cj
def= dj .0

2

Let M be a two-counter machine M and let ∆M be the BPPτ
M family given by Definition

122. It is clear from the definition that for any computation

c : X1

σ1

−→
l1
E1 . . .

σn

−→
ln
En

of ∆M, for each i ∈ [n] there is k ∈ [n], j ∈ {0, 1}, and m0,m1 ∈ IN such that either

Ei ≡ Xk ‖ Cm0
0 ‖ Cm1

1 , Ei ≡ Pkj ‖ Cm0
0 ‖ Cm1

1 , or Ei ≡ Cm0
0 ‖ Cm1

1

in the latter case Ei is called a halting state. The computation c is a halting computation if it
reaches a halting state. For each i ∈ [n] and j = 0, 1, let countj(Ei) = mj. The computations
of the encoding above always increment counters properly but they may take the zero branch
eventhough the corresponding counter is not zero and they may decrement a non-zero counter
at any point.

7.7. BPPM 145

Definition 123 Proper transitions and computations
Let

c : X1 = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

be a computation of ∆M. For each i ∈ [n] and j = 0, 1, the ith transition of c is a proper
transition if and only if

1. (The zero-branch is only chosen on a zero-counter)
If σi = zj then countj(Ei−1) = 0.

2. (A decrement is performed: gjdjg
′
j)

(a) If σi = dj then i > 1 and σi−1 = gj , and
(b) if σi = g′j then i > 1 and σi−1 = dj .

The computation c is a proper computation if and only if for each i ∈ [n] the ith transition is
a proper transition. 2

Lemma 124 “Weak” correctness of simulation

• IfM halts on input (0, 0) then ∆M has a unique maximal proper computation reaching
for some m0,m1 ∈ N a halting state.

• If M does not halt on input (0, 0) then all proper computations of ∆M are prefixes of
a single infinite proper computation which never reaches a halting state

Proof: Both properties are not hard to verify: each execution step of M is matched
by a unique sequence of one or more transitions of ∆M. Matching for each j = 0, 1, a test
for zero, an increment and a decrement of the jth counter by zj , ij and gjdjg

′
j , respectively. 2

The second encoding is more complicated than the first. Its task is to match any computation
of ∆M except for a possible proper halting computation.

Definition 125 Second weak encoding
Given a two-counter machineM let ∆′M be the BPPM family with leading variable Y1 given
by the following definitions where k ranges over 1, . . . , n − 1 and j over 0, 1. If comk is
cj := cj + 1;goto lp then

Yk
def= ij .(Yp ‖ Dj)+

tj .t
′
j.Y
H
k + tj⊕1.t

′
j⊕1.Y

H
k (wrong decrement of a counter)

and if comk is if cj = 0 then goto lp else cj := cj − 1;goto lq then

Yk
def= zj.Yp + gj .Qkj+

sj.zj .Y
H
p + (choosing zero-branch on non-zero counter)

tj.t
′
j .Y
H
k + tj⊕1.t

′
j⊕1.Y

H
k , (wrong decrement of a counter)

Qkj
def= tj.t

′
j .Rkj+

g′j .Y
H
q + (leaving out decrement)

tj⊕1.t
′
j⊕1.Q

H
kj, (decrement of the wrong counter)

Rkj
def= g′j .Yq+

tj.t
′
j .R
H
kj + tj⊕1.t

′
j⊕1.Q

H
kj, (wrong decrement of a counter)

146 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

Yn
def= 0

and

Dj
def= t̄j .dj .t̄

′
j.0 + s̄j.Dj .

Furthermore, If comk is cj := cj + 1;goto lp then

Y Hk
def= ij .(Y Hp ‖ Dj) + tj.t

′
j .Y
H
k + tj⊕1.t

′
j⊕1.Y

H
k

and if comk is if cj = 0 then goto lp else cj := cj − 1;goto lq then

Y Hk
def= zj.Y

H
p + gj .Q

H
kj + sj.zj .Y

H
p + tj.t

′
j .Y
H
k + tj⊕1.t

′
j⊕1.Y

H
k ,

QHkj
def= tj.t

′
j .R
H
kj + g′j .Y

H
q + tj⊕1.t

′
j⊕1.Q

H
kj,

RHkj
def= g′j .Y

H
q + tj .t

′
j.R
H
kj + tj⊕1.t

′
j⊕1.Q

H
kj,

Y Hn
def= h.0

2

We call a state of a computation of ∆′M containing a variable labelled by superscript H an H-
labelled state. The idea is that any proper computation of ∆M can and can only be matched
by a computation of ∆′M using only states which are not H-labelled. Whereas an improper
computation of ∆M can and can only be matched by a computation of ∆′M using only states
which are not H-labelled up to the first improper transition and from then on using only
states which are H-labelled.

Also for the second encoding, it is clear from the definition that for any computation

d : Y1

σ1
−→
l1
F1 . . .

σn

−→
ln
Fn

of ∆′M, for each i ∈ [n] there is k ∈ [n], j ∈ {0, 1}, and m0,m1 ∈ IN such that Fi is of the
form

Fi ≡ Z ‖ Dm0
0 ‖ Dm1

1 , or Fi ≡ Dm0
0 ‖ Dm1

1

where Z is either Yk, Qkj, Rkj, Y Hk , QHkj, or RHkj. For each i ∈ [n] and j = 0, 1, let countj(Fi) =
mj and in the first case, let control(Fi) = Z. In fact, there is a close relationship between
the states of the encodings. The following definition gives a way of mapping states of ∆M to
states of ∆′M which will be useful in the next lemma.

7.7. BPPM 147

Definition 126 For each computation

c : X1 = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

of ∆M for each i ∈ [n], let f c
i be the variable-relabelling homomorphism on syntactic trees

of Proc induced by letting f c
i (Cj) = Dj , and whenever the computation from E0 to Ei is a

proper computation, f c
i (Xk) = Yk and

f c
i (Pkj) =

{
Rkj if i > 0 and σi = dj

Qkj otherwise

and whenever the computation from E0 to Ei is not a proper computation, f c
i (XHk) = Y Hk

and

f c
i (PHkj) =

{
RHkj if i > 0 and σi = dj

QHkj otherwise

2

Lemma 127 Any proper non-halting computation and any improper computation of ∆M
can be matched with respect to /loc by a computation of ∆′M, i.e. for each proper and
non-halting or improper (possibly halting) computation

c : X1

σ1
−→
l1
E1 . . .

σn

−→
ln
En

of ∆M there exists a computation

d : Y1

σ1

=⇒
l1
F1 . . .

σn

=⇒
ln
Fn

of ∆′M such that for each i ∈ [n], Fi = f c
i (Ei). Moreover, the case where c proper non-halting

computation the match d is unique.

Proof: Let f c
0(E0) = f c

0(X1) = Y1 = F0. Given a computation

c : X1 = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

of ∆M, we construct a unique computation

d : Y1 = F0

σ1

=⇒
l1
F1 . . .

σn

=⇒
ln
Fn

of ∆′M such that for each i ∈ {0, . . . , n}, Fi = f c
i (Ei). We show that for each i ∈ [n− 1] and

j = 0, 1,

Ei

σi+1
−→
li+1

Ei+1 implies Fi

σi+1
=⇒
li+1

Fi+1

from which the result follows by induction in the length n of c. Let j range over 0, 1. Given
i = 0, . . . , n− 1, we divide the proof into three cases:

148 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

1. The computation E0 to Ei is a proper non-halting computation and the (i+ 1)th tran-
sition is proper.

(a) for σi+1 = ij , zj , gj , g
′
j ,

Ei

σi+1
−→
li+1

Ei+1 is matched by Fi

σi+1
−→
li+1

Fi+1, and

(b) for σi+1 = dj ,

Ei

dj
−→
li+1

Ei+1 is matched by Fi

τ
−→
l′i+1

F ′i
dj
−→
li+1

F ′′i
τ

−→
l′i+1

Fi+1

where for some m0,m1 ∈ IN (mj > 0),

F ′i ≡ t′j .Rkij ‖ dj.t̄
′
j .0 ‖ D

mj−1
j ‖ Dmj⊕1

j⊕1 ,

F ′′i ≡ t′j .Rkij ‖ t̄′j.0 ‖ D
mj−1
j ‖ Dmj⊕1

j⊕1 ,

and l′i+1 = li+1 ∪ {l} where l is the location of control(Fi) in Fi (and in particular,
of Rkij in F ′i and F ′′i .)

2. The computation E0 to Ei is a proper non-halting computation and the (i+ 1)th tran-
sition is improper.

(a) (leaving out decrement)

Ei

g′j−→
li+1

Ei+1 is matched by Fi

g′j−→
li+1

Fi+1

(b) (choosing zero-branch on non-zero counter)

Ei

zj
−→
li+1

Ei+1 is matched by Fi

τ
−→
l′i+1

F ′i
zj
−→
li+1

Fi+1,

where for some label p and m0,m1 ∈ IN ,

F ′i ≡ zj .Y Hp ‖ Dm0
0 ‖ Dm1

1 ,

and l′i+1 = li+1 ∪ {l} where l is the location of some Cj in Ei (and in particular, of
some Dj in Fi.)

(c) (decrement of the wrong counter or wrong decrement of a counter)
For some label k and m0,m1 ∈ IN , let Ei ≡ Pkj ‖ Cm0

0 ‖ Cm1
1 , then note that

necessarily i > 0 and that the state of Fi dependent on whether or not σi = dj in
any case though

Ei

dj⊕1
−→
li+1

Ei+1 is matched by Fi

τ
−→
l′i+1

F ′i
dj⊕1
−→
li+1

F ′′i
τ

−→
l′i+1

Fi+1

where for some label k and m0,m1 ∈ IN ,

F ′i ≡ t′j⊕1.Q
H
kj⊕1 ‖ dj⊕1.t̄

′
j⊕1.0 ‖ D

mj

j ‖ Dmj⊕1−1
j⊕1 ,

F ′′i ≡ t′j⊕1.Q
H
kj⊕1 ‖ t̄′j⊕1.0 ‖ D

mj

j ‖ Dmj⊕1−1
j⊕1 ,

and l′i+1 = li+1 ∪ {l} where l is the location of Pkj in Ei (and in particular, of Qkj

in Fi.)

7.7. BPPM 149

(d) (wrong decrement of a counter)
For some label k and m0,m1 ∈ IN , let Ei ≡ Pkj ‖ Cm0

0 ‖ Cm1
1 , and let σi = dj

(note that necessarily i > 0)

Ei

dj
−→
li+1

Ei+1 is matched by Fi

τ
−→
l′i+1

F ′i
dj
−→
li+1

F ′′i
τ

−→
l′i+1

Fi+1

where for some label k and m0,m1 ∈ IN ,

F ′i ≡ t′j.R
H
kj ‖ dj .t̄

′
j .0 ‖ D

mj−1
j ‖ Dmj⊕1

j⊕1 ,

F ′′i ≡ t′j.R
H
kj ‖ t̄′j .0 ‖ D

mj−1
j ‖ Dmj⊕1

j⊕1 ,

and l′i+1 = li+1 ∪ {l} where l is the location of Pkj in Ei (and in particular, of Rkj

in Fi.)

(e) (wrong decrement of a counter)
For some label k and m0,m1 ∈ IN , Ei ≡ Xk ‖ Cm0

0 ‖ Cm1
1 ,

Ei

dj
−→
li+1

Ei+1 is matched by Fi

τ
−→
l′i+1

F ′i
dj
−→
li+1

F ′′i
τ

−→
l′i+1

Fi+1

where

F ′i ≡ t′j .Y
H
k ‖ dj .t̄

′
j.0 ‖ D

mj−1
0 ‖ Dmj

1 ,

F ′′i ≡ t′j .Y
H
k ‖ t̄′j.0 ‖ D

mj−1
0 ‖ Dmj

1 ,

and l′i+1 = li+1 ∪ {l} where l is the location of Xk in Ei (and in particular, of Yk

in Fi.)

3. The computation from E0 to Ei is an improper computation. In this case, it is easy to
see that once in an H-labelled state the matching is straightforward.

2

Lemma 128 ∆M /loc ∆′M if and only if M does not halt

Proof: Assume that M does not halt (0, 0). Then by Lemma 124, ∆M has no proper
halting computation. Hence, ∆M /loc ∆′M by Lemma 127.

Conversely, assume that M does halt on input (0, 0). Then by Lemma 124, there is a
unique proper halting computation of ∆M

c : X1

σ1

−→
l1
E1 . . .

σn

−→
ln
En

h
−→
ln+1

En+1.

The by Lemma 127, unique matching computation of

c′ : X1

σ1
−→
l1
E1 . . .

σn

−→
ln
En

of ∆′M is

d : Y1

σ1

=⇒
l1
F1 . . .

σn

=⇒
ln
Fn.

150 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

Since c is proper the final state of d is fn(En) = Fn ≡ Ym ‖ Dm0
0 ‖ Dm1

1 which does not enable
h. Hence by the uniqueness of the match, we conclude that

∆M 6/loc ∆′M.

2

Theorem 129 For BPPM , /loc and ≈loc are undecidable.

Proof: Immediate consequence of Lemma 128, Theorem 94 and Lemma 121. 2

The result is in fact slightly stronger since the first encoding is only a BPP process.

7.7.2 Weak pomset equivalence

Next, we turn to weak pomset equivalence for BPPM . We leave the decidability of unsettled.
Instead, we give two characterisations which might be helpful in settling the question.

Definition 130 Processes E and E′ are said to be weak tree-pomset preordered, E /tree
pom E′,

iff for every computation of E

c : E
σ1

−→
l1
E1 . . .

σn

−→
ln
En

without communication there exists a computation of E′

c′ : E′
σ′
1−→

l′1
E′1 . . .

σ′
m−→

l′m
E′m

(possibly with communication) such that ‖ c ‖ = ‖ c′ ‖, for each i ∈ [‖ c ‖], σvc(i) = σ′
vc′ (i)

and furthermore for each i, j ∈ [‖ c ‖], vc(i) ≤∗c vc(j) ⇐⇒ vc′(i) ≤∗c′ vc′(j). 2

Proposition 131 Let E and F be BPPM processes.

E /pom F if and only if E + F ≈pom F .

Proof: Straightforward. 2

Proposition 132 Let E and F be BPPM processes.

E /pom F if and only if E /tree
pom F .

Proof: The only if direction is obvious. To see the other direction, observe that a com-
putation with communication can be split into one without communication - a tree - which
can be matched by assumption, and clearly the match composes to a match for the original
computation with communication. Following this argument it is easy to do an induction proof
in the number of communications occuring in a computation.

7.7. BPPM 151

Assume that E /tree
pom F . We show by induction in the number of communications that

for every computation

c : E = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

of E there exists a computation

d : F = F0

σ1

−→
l′1
F1 . . .

σn

−→
l′n
Fn

of F such that d is a match of c with respect to ≈pom.
In the base case, no communications occur in c and hence the existence of d follows from

the assumption.
In the induction step, assume that σk = τ (1 ≤ k ≤ n). By Lemma 144,

c′ : E = E0

σ′
1−→

l1
E1 . . .

σ′
k−1−→

lk−1

Ek−1

µ
−→
u1

E′k
µ̄
−→
u2

Ek

σ′
k+1−→

lk+1

Ek+1 . . .
σ′

m−→
lm
Em

is a computation of E such that u1 6v u2 and µ 6= τ . Then by induction, there exists a
computation

d′ : F = F0

σ′
1−→

l′1
F1 . . .

σ′
k−1−→

l′k−1

Fk−1

µ
−→
v1

F ′k
µ̄
−→
v2

Fk

σ′
k+1−→

l′k+1

Fk+1 . . .
σ′

m−→
l′m
Fm

such that ‖ c′ ‖ = ‖ d′ ‖ and σvc′ (i) = σ′
vd′ (i) for i ∈ [‖ c′ ‖], and c′ furthermore satisfies

that vc′(i) ≤∗c′ vc′(j) ⇐⇒ vd′(i) ≤∗d′ vd′(j). Since u1 6v u2 and

u1 6v u2 =⇒ k 6≤∗c′ k + 1 =⇒ k 6≤∗d′ k + 1 =⇒ v1 6v v2,

it is not hard using Lemma 145 to verify that

d : F = F0

σ1
−→
l′1
F1 . . .

σn

−→
l′n
Fn

is a computation of F with l′m = v1 ∪ v2 and such that d is a match of c with respect to ≈pom.
By induction and a symmetric argument, we conclude that E /pom F . 2

Let ∆1 and ∆2 be BPPM processes, we can summarise the results of Proposition 131 and 132
as follows. The following problems are equivalent with respect to decidability:

(i) ∆1 ≈pom ∆2,

(ii) ∆1 /pom ∆2, and

(iii) ∆1 /tree
pom ∆2.

152 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

7.8 BPPτ
M

In this section, we are able to complete the picture for location equivalence.
The following example shows that with τ prefixing the characterization no longer holds

for pomset equivalence.

Example 133 Let

s1 = a.b.0 ‖ b̄.c.0 + a.τ.c.0 and s2 = a.b.0 ‖ b̄.c.0.

Then, s1 and s2 are pomset equivalent when communication is allowed, that is, as BPPτ
M

processes, and not when it is disallowed, that is, as BPPτ processes. Moreover as BPPτ
M

processes, s1 ∼pom s2 but s1 6∼loc s2. 2

Theorem 134 For BPPτ
M , ∼loc⊂∼pom⊂∼lan.

Proof: The inclusions follow by definition and the properness from Example 133 and 90. 2

7.8.1 Location equivalence

For location equivalence, the decidability proof of BPPM straightforwardly extends to the
case with τ prefixing, since τ -actions stemming from prefixing and those stemming from
communications cannot be confused.

Lemma 135 The BPPτ
M processes E and F are location equivalent if and only if the BPPτ

processes E and F are location equivalent.

Proof: For the only if direction, assume that E and F are location equivalent as BPPτ
M

processes. Let

c : E = E0

σ1
−→
l1
E1 . . .

σn

−→
ln
En

be a BPPτ computation of E, since any BPPτ computation is also a BPPτ
M computation

there exists a BPPτ computation

d : F = F0

σ1

−→
l′1
F1 . . .

σn

−→
l′n
Fn

of F such that there exists a relation R ⊆ loc(c)× loc(d) satisfying that for each 1 ≤ i ≤ n, R
restricts to a bijection on li× l′i, and for each i ≤ j, s0(R∩ li× l′i)s′0 and s1(R∩ lj× l′j)s′1, s0 v
s1 ⇐⇒ s′0 v s′1

Since R restricts to a bijection on li × l′i, li and l′i have the same cardinality. But, c is a
BPPτ computation and thus each li is a singleton and thus there cannot be communications
in d. Therefore, d is a BPPτ computation which matches c with respect to ∼loc.

For the if direction, assume that E ∼loc F when E and F are considered as BPPτ processes.
We show by induction in the number of communications that for every computation

c : E = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

7.8. BPP
τ
M 153

of E there exists a computation

d : F = F0

σ1

−→
l′1
F1 . . .

σn

−→
l′n
Fn

of F such that there exists a relation R ⊆ loc(c)× loc(d) satisfying that for each 1 ≤ i ≤ n, R
restricts to a bijection on li× l′i, and for each i ≤ j, s0(R∩ li× l′i)s′0 and s1(R∩ lj× l′j)s′1, s0 v
s1 ⇐⇒ s′0 v s′1.

In the base case, no communications occur in c and hence the existence of d follows from
the assumption.

In the induction step, assume that σm = τ (m ∈ [n]) such that σn stems from a commu-
nication By Lemma 144,

c′ : E = E0

σ1

−→
l11
E1 . . .

σm−1

−→
l1m−1

Em−1

µ
−→
l1m
E′m

µ̄
−→
l1m+1

Em

σm+1

−→
l1m+2

Em+1 . . .
σn

−→
l1n+1

En

is a computation of E such that u1 6v u2, µ 6= τ and for each i ∈ [n+ 1],

l1i =




li if i < m
{u1} if i = m
{u2} if i = m+ 1
li−1 if i > m+ 1.

Then by induction, there exists a computation

d′ : F = F0

σ1

−→
l21
F1 . . .

σm−1

−→
l2m−1

Fm−1

µ
−→
l2m
F ′m

µ̄
−→
lm+1

Fm

σm+1

−→
l2m+2

Fm+1 . . .
σn

−→
l2n+1

Fn

of F such that there exists a relation R ⊆ loc(c′)× loc(d′) satisfying that for each i ∈ [n+ 1],
R restricts to a bijection on l1i × l2i , and for each i ≤ j, s0(R∩ l1i × l2i)s′0 and s1(R∩ l1j × l2j)s′1,
s0 v s1 ⇐⇒ s′0 v s′1.

By a cardinality argument, there exist v1 and v2 such that l2m = {v1} and l2m+1 = {v2}.
Since u1 6v u2, we hence get that v1 6v v2. By Lemma 145, it follows that

d : F = F0

σ1

−→
l′1
F1 . . .

σn

−→
l′n
Fn

is a computation of F , where for each i ∈ [n],

l′i =




l2i if i < m
{v1, v2} if i = m
l2i+1 if i ≥ m+ 1

Moreover, loc(c) = loc(c′), loc(d) = loc(d′) and for each i ∈ [n], R restricts to a bijection on
li × l′i, and for each i ≤ j, s0(R∩ li × l′i)s′0 and s1(R ∩ lj × l′j)s′1, s0 v s1 ⇐⇒ s′0 v s′1.

By induction and a symmetric argument, we conclude that E ∼loc F . 2

Theorem 136 For BPPτ
M , ∼loc is decidable whereas ≈loc is undecidable.

Proof: In the strong case, the results follows from Lemma 135 and the decidability of loca-
tion equivalence on BPP [156,§6]. The weak case is a straightforward consequence of Lemma
129. 2

154 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

7.8.2 Pomset equivalence

The positive decidability results in [156,§6] rely on reductions to problems about automata
on trees. In this section, we follow the same strategy in investigate the decidability of pomset
equivalence of BPPτ

M and give a characterisation in terms a containment problem between
finite tree automata and a family of finite tree automata. The characterisation does not
settle the question of decidability but we hope that the rephrasing might be a step towards
establishing decidability.

7.8.2.1 Finite Tree Automata

In [156,§6], we showed how to effectively construct a finite tree automaton A∆ from a BPP
family ∆ in normal form. Building on this result, we exhibit a similar construction for BPPτ

M

families. The construction is however more complex and involves tree languages which are
not recognisable.

Let Σ = Σ0 ∪ . . . ∪ Σn be a ranked finite alphabet. The set of all trees over Σ, TΣ is the
free term algebra over Σ, that is, TΣ, is the least set such that Σ0 ⊆ TΣ and such that if
a ∈ Σk and for i = 1, . . . , k, ti∈ TΣ, then a[t1, . . . , tk]∈ TΣ. For convenience, we use a and a[]
interchangeably to denote members of Σ0.

Definition 137 A non-deterministic top-down finite tree automaton, NTA, is a four-tuple
A = (Σ, Q, S, δ), where Σ is a ranked finite alphabet, Q a finite set of states, S ⊆ Q is a set
of initial states, and δ is a ranked family of labelled transition relations associating with each
k ≥ 0, a relation δk ⊆ Q× Σk ×Qk such that δk is non-empty for only finitely many k. 2

Definition 138 Let A = (Σ, Q, S, δ) be a NTA and let t ∈ TΣ. A configuration of A, is a
multiset of pairs from Q×TΣ. Denote by confA the set of all configurations of A. For σ ∈ Σ,
let σ→⊆ confA× confA be the labelled transition relation between configurations defined by

{|(q, t)|} ∪ c σ→ {|(q1, t1), . . . , (qk, tk)|} ∪ c,

if and only if σ ∈ Σk, t = σ[t1, . . . , tk], (q, σ, q1, . . . , qk) ∈ δk and c ∈ confA. We write →
for the union over all σ ∈ Σ of σ→, and →∗ for the reflexive and transitive closure of →.
A (successful) run of A on input t is a derivation {|(q0, t)|}→∗∅, where q0 ∈ S. The tree
language, L(A), recognised by A consists of all trees t, for which there is a successful run of
A on t. 2

Definition 139 Given a BPP family ∆ in normal form with leading variable X1, define the
NTA A∆ = (Act(∆),Var(∆), {X1}, δ) such that for every (X def=

∑n
i=1 σiαi) ∈ ∆, every index

1 ≤ j ≤ n and for every {|Y1, . . . , Yk|} ⊆ αj ,

(X,σj , Y1, . . . , Yk) ∈ δk.

The ranking of the alphabet Act(∆) is induced by the definition of δ. 2

In [156,§6], the following characterisation was shown.

7.8. BPP
τ
M 155

Proposition 140 [156,§6] Given BPP families ∆1 and ∆2 in normal form. Then

∆1 ∼pom ∆2 ⇐⇒ L(A∆1) = L(A∆2)

2

The proposition above does not hold for BPPM families as shown by Example 133.
Here, the first characterisation is given in terms of the obvious pomset preorder.

Definition 141 Let E and E′ be BPPτ
M processes. E .pom E′ iff for every computation of

E

c : E
σ1

−→
l1
E1 . . .

σn

−→
ln
En

there exists a computation of E′

c′ : E′
σ1
−→
l′1
E′1 . . .

σn

−→
l′n
E′n

such that i ≤∗c j ⇐⇒ i ≤∗c′ j. 2

Proposition 142 Let E and F be BPPτ
M processes.

E .pom F if and only if E + F ∼pom F .

Proof: Straightforward. 2

Definition 143 Let E and E′ be BPPτ
M processes. E .tree

pom E′ iff for every computation of
E

c : E
σ1

−→
l1
E1 . . .

σn

−→
ln
En

without communication there exists a computation of E′

c′ : E′
σ1

−→
l′1
E′1 . . .

σn

−→
l′n
E′n

(possibly with communication) such that i ≤∗c j ⇐⇒ i ≤∗c′ j. We say that E and E′ are
pomset tree equivalent, E ∼tree

pom E′, iff E .tree
pom E′ and E′ .tree

pom E. 2

It is an easy exercise to show the following lemmas.

Lemma 144 If E
τ

−→
l
G and τ stems from a communication then there exist an expression

F ∈ Proc, an action σ ∈ Act and locations l1 and l2 such that l = l1 ∪ l2, ¬(l1 v l2) and

E
σ

−→
l1
F

σ̄
−→
l2
G. 2

Lemma 145 If E
σ

−→
l1
F

σ̄
−→
l2
G and ¬(l1 v l2) then E

τ
−→

l1∪l2
G . 2

156 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

Proposition 146 Let E and F be BPPτ
M processes.

E .pom F if and only if E .tree
pom F .

Proof: The only if direction is obvious. To see the other direction, observe that a com-
putation with communication can be split into one without communication - a tree - which
can be matched by assumption, and clearly the match composes to a match for the original
computation with communication. Following this argument it is easy to do an induction proof
in the number of communications occurring in a computation.

Assume that E .tree
pom F . We show by induction in the number of communications that

for every computation

c : E = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

of E there exists a computation

d : F = F0

σ1

−→
l′1
F1 . . .

σn

−→
l′n
Fn

of F such that i ≤∗c j ⇐⇒ i ≤∗d j.
In the base case, no communications occur in c and hence the existence of d follows from

the assumption.
In the induction step, assume that σm = τ (m ∈ [n]) and σm stems from a communication.

By Lemma 144,

c′ : E = E0

σ1

−→
l1
E1 . . .

σm−1

−→
lm−1

Em−1

µ
−→
u1

E′m
µ̄
−→
u2

Em

σm+1

−→
lm+1

Em+1 . . .
σn

−→
ln
En

is a computation of E such that u1 6v u2 and µ 6= τ . Then by induction, there exists a
computation

d′ : F = F0

σ1

−→
l′1
F1 . . .

σm−1

−→
l′m−1

Fm−1

µ
−→
v1

F ′m
µ̄
−→
v2

Fm

σm+1

−→
l′m+1

Fm+1 . . .
σn

−→
l′n
Fn

such that i ≤∗c′ j ⇐⇒ i ≤∗d′ j. Since u1 6v u2 and

u1 6v u2 =⇒ m 6≤∗c′ m+ 1 =⇒ m 6≤∗d′ m+ 1 =⇒ v1 6v v2,

it follows from Lemma 145, that

d : F = F0

σ1
−→
l′1
F1 . . .

σn

−→
l′n
Fn

is a computation of F, where l′m = v1 ∪ v2. Moreover, it is not hard to check that i ≤∗c j ⇐⇒
i ≤∗d j. By induction and a symmetric argument, we conclude that E .pom F . 2

By Proposition 146, it suffices to match tree-ordered pomsets. Because tree-ordered pom-
sets are obviously only matched by tree-ordered pomsets, we next move to explicitly com-
pute the tree-ordered pomsets arising through communication and then to forget about com-
munication. The idea is to approximate a BPPτ

M family ∆ by a family of BPPτ families

7.8. BPP
τ
M 157

{∆τK | K ∈ IN} in such a way that any tree-ordered pomset of ∆ is also a pomset of ∆τK

for some K ∈ IN . The construction is based on augmenting variables with a memory used to
remember processes available for communication. The memory is decreased when communi-
cating and increased by non-deterministically picking up “brothers”. The main observation
is that when only tree-ordered pomsets are considered, the “brothers” are in fact the only
possible candidates for communications “later on”.

Example 147 Consider the BPPτ
M family

∆ = { X1
def= a.{X1,X2}+ a.{X2,X3},

X2
def= c̄.∅,

X3
def= c.{X4},

X4
def= b.{X3} }.

For each natural number K, define the BPPτ family

∆τK = { X1(m̄) def= a.∅+
a.

∑
{{X1(m̄′)} | 0̄ ≤ m̄′ − m̄ ≤ ē2}+

a.
∑
{{X2(m̄′)} | 0̄ ≤ m̄′ − m̄ ≤ ē1}+

a.
∑
{{X2(m̄′)} | 0̄ ≤ m̄′ − m̄ ≤ ē3}+

a.
∑
{{X3(m̄′)} | 0̄ ≤ m̄′ − m̄ ≤ ē2}+

a.
∑
{{X1(m̄1),X2(m̄2)} | m̄1 + m̄2 ≤ m̄}+

a.
∑
{{X2(m̄1),X3(m̄2)} | m̄1 + m̄2 ≤ m̄},

X2(m̄) def= c̄.∅+ τ.∅, if 0 ≤ m̄− ē3,
X2(m̄) def= c̄.∅, if not 0 ≤ m̄− ē3,
X3(m̄) def= c.∅ + c.{X4(m̄)}+

τ.∅+ τ.{X4(m̄− ē2)}, if 0 ≤ m̄− ē2,
X3(m̄) def= c.∅ + c.{X4(m̄)}, if not 0 ≤ m̄− ē2,
X4(m̄) def= b.∅+ b.{X3(m̄)} | 0̄ ≤ m̄ ≤ K̄}.

2

Note that the constructed families approximate ∆ from below in the sense that for each
K ∈ IN , ∆τK .pom ∆.

Next, we formally define the approximations but first a convenient technical definition.

Definition 148 Let ∆ = {Xi
def= Ei | i ∈ [n]} be a BPPτ

M family, Let m̄i range over Nn

For convenience, we denote by {|Xi1 , . . . ,Xik |}〈m̄1, . . . , m̄k〉 (i1 ≤ i2 ≤ . . . ≤ ik) the set
{|Xi1(m̄1), . . . ,Xik(m̄k)|}. For each m̄ ∈ Nn, and subset α of Var(∆), let

α〈〈m̄〉〉 =
∑
{β〈m̄1, . . . , m̄|β|〉 | β ⊆ α, 0̄ ≤

∑
i

m̄i − m̄ ≤ m̄(α− β)}.

2

158 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

Definition 149 Let ∆ = {Xi
def= Ei | i ∈ [n]} be a BPPτ

M family in normal form with
Ei ≡

∑ni
j=1 σijαij Define for each K ∈ N the K –approximations BPPτ family,

∆τK = {Xi(m̄) def= Fi(m̄) | i ∈ [n] ∧ 0̄ ≤ m̄ ≤ K̄},

with leading variable X1(0̄) where for each i ∈ [n] and m̄ ≤ K̄,

Fi(m̄) ≡
ni∑

j=1

σijαij〈〈m̄〉〉+
ni∑

j=1

∑
{τ(αij ∪ β)〈〈m̄ − ēk〉〉 | ēk ≤ m̄ ∧ σ̄ijγ ∈ Ek ∧ β ⊆ γ}.

2

The next lemma captures the use of approximation families in making communication dis-
pensable when checking for .tree

pom-containment.

Lemma 150 Let ∆ a BPPτ
M family in normal form with leading variable X1. Then

(i) for every computation

c : X1 = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

of ∆ such that ≤∗c is a tree ordering there exists a K ∈ N and a computation

c′ : X1(0̄) = E′0
σ1
−→
l′1
E′1 . . .

σn

−→
l′n
E′n

without communication of ∆τK such that i ≤∗c j ⇐⇒ i ≤∗c′ j.

(ii) for every K ∈ N and every computation

c : X1(0̄) = E0

σ1
−→
l1
E1 . . .

σn

−→
ln
En

of ∆τK without communication there exists a computation

c′ : X1 = E′0
σ1

−→
l′1
E′1 . . .

σn

−→
l′n
E′n

(possibly with communication) of ∆ such that i ≤∗c j ⇐⇒ i ≤∗c′ j.

Proof:

(i) Given a computation

c : X1 = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

of ∆ such that ≤∗c is a tree ordering. We proceed by induction in the number of
communications K occuring in c.

In the base case, no communications occur in c and it is easy to check that

c′ : X1(0̄) = E′0
σ1
−→
l′1
E′1 . . .

σn

−→
l′n
E′n

7.8. BPP
τ
M 159

is a computation of ∆τK such that i ≤∗c j ⇐⇒ i ≤∗c′ j, and E′i = η(Ei) where η is the
relabeling homomorphism induced by taking for each X ∈ Var(∆), η(X) = X(0̄).

In the induction step, K > 0, assume that σm = τ (m ∈ [n]) and that σm stems from a
communication. By Lemma 144, there is a computation

d : X1 = E0

σ1

−→
l1
E1 . . .

σm−1

−→
lm−1

Em−1

µ
−→
u1

E′m
µ̄
−→
u2

Em

σm+1

−→
lm+1

Em+1 . . .
σn

−→
ln
En

of ∆ such that u1 6v u2 and µ 6= τ . Then by induction, since ≤∗d is a tree ordering, there
exists a computation

d′ : X1(0̄) = F0

σ1

−→
l′1
F1 . . .

σm−1

−→
l′m−1

Fm−1

µ
−→
v1

F ′m
µ̄
−→
v2

Fm

σm+1

−→
l′m+1

Fm+1 . . .
σn

−→
l′n
Fn

of ∆τK such that i ≤∗d j ⇐⇒ i ≤∗d′ j.

Let k be the greatest common predecessor of m and m+ 1 with respect to ≤∗d. Such a
k exists since ∆ is in normal form and ≤∗d is a tree ordering.

The important observation is now that either m or m+1 is a son (immediate successor)
of k since otherwise there exist k1 and k2 such that k1 6≤∗d k2, k2 6≤∗d k1, k <∗d k1 <

∗
d m

and k <∗d k2 <
∗
d m+ 1 which contradicts the assumption that ≤∗c is a tree ordering.

Assume without loss of generality that m is a son of k. From this it is not hard to
verify that d′ can be modified so that the kth transition picks up the appropriate son
into memory sends it along the appriate path while performing the transitions as in d′,
and when reaching the mth transition performs the communication between µ and µ̄
reaching Fm modulo ≡. Also, it is clear that the obtained computation is a match of c
with respect to ∼pom.

(ii) Let ι be the homomorphism on induced by letting ι(Xi((m1, . . . ,mn))) = Xi ‖ Xm1
1 ‖

. . . ‖ Xmn
n . Given a K ∈ N and a computation

c : X1(0̄) = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

of ∆τK without communication it is not hard to verify that there exists a computation

c′ : X1 = E′0
σ1

−→
l′1
E′1 . . .

σn

−→
l′n
E′n

(possibly with communication) of ∆ such that for each i ∈ [n], E′i ≡ ι(Ei) and for each
i, j ∈ [n], i ≤∗c j ⇐⇒ i ≤∗c′ j.

2

160 Chapter 7. Further Results on Partial Order Equivalences on Infinite Systems

Lemma 151 Given BPPτ
M families ∆1 and ∆2 in normal form with leading variables X1

and Y1, respectively. Then ∆1 .tree
pom ∆2 if and only if for every computation

c : X1 = E0

σ1

−→
l1
E1 . . .

σn

−→
ln
En

of ∆1 without communication there exists a K ∈ N and a computation

c′ : Y1(0̄) = E′0
σ1

−→
l′1
E′1 . . .

σn

−→
l′n
E′n

without communication of ∆τK
2 such that i ≤∗c j ⇐⇒ i ≤∗c′ j.

Proof: Straightforward from Lemma 150. 2

Definition 152 For each BPPτ
M family ∆ define

Lτ
∆ =

⋃
K∈N
L(A∆τK)

2

As expected and illustrated by the following example the language accepted by a family of
approximation automata is not necessarily a recognisable set of trees.

Example 153 Consider the BPPτ
M family ∆ of Example 147. The language Lτ

∆ contains for
each M ∈ N the tree

a− a− · · · − a︸ ︷︷ ︸
M

− τ − b− τ − · · · − τ − b︸ ︷︷ ︸
2M

,

whereas for each M,N ∈ N such that M < N the tree

a− a− · · · − a︸ ︷︷ ︸
M

− τ − b− τ − · · · − τ − b︸ ︷︷ ︸
2N

is not contained in Lτ
∆. It follows from a standard pumping argument that the tree language

Lτ
∆ cannot be recognisable. 2

Lemma 154 Given BPPτ
M families ∆1 and ∆2 in normal form. Then

∆1 .tree
pom ∆2 ⇐⇒ L(A∆1) ⊆ Lτ

∆2

Proof: Follows from Lemma 151 and the lemmas of Appendix A of [155,§6]. 2

Let ∆1 and ∆2 be BPPτ
M processes, we can then summarise the consequences of Proposition

142 and 146, and Lemma 154 as follows. The following problems are equivalent with respect
to decidability:

(i) ∆1 ∼pom ∆2,

(ii) ∆1 .pom ∆2,

(iii) ∆1 .tree
pom ∆2, and

(iv) L(A∆1) ⊆ Lτ
∆2

.

7.9. Conclusions 161

7.9 Conclusions

Continuing the systematic study initiated in [156,§6], we have presented results illuminating
the sometimes delicate bounds between the decidable and the undecidable in the setting of
behavioural equivalences for infinite-state concurrent systems. In particular, we have shown
that renaming and hiding may make a difference with respect to decidability and given the
– to our best knowledge – first positive decidability result for a natural weak behavioural
equivalence on the full class of BPPτ processes.

Many other non-interleaving equivalences exist besides our chosen pomset and location
equivalences, and which deserve to be explored. For instance, the augmentation closure of
Pratt [141] is an obvious candidate. Also we would like to emphasise that we do not claim
that our notion of location equivalence is the only natural capture of spatial distribution,
other possibilities exist.

We showed that pomset and location equivalence are decidable on BPP (BPPτ) with re-
naming and hiding. The natual next step is to look at BPPM with renaming and hiding. We
know that both equivalences are decidable on BPPM . But, renaming seems to be consider-
ably more intricate in the presence of communication. In particular, pushing the renaming
combinator inwards does not work. For instance, consider the BPPM processes

p = (a.0 ‖ b̄.0)[f] and p′ = (a.0)[f] ‖ (b̄.0)[f]

with f(a) = b and the identity elsewhere, clearly p and p′ are not even language equivalent
because p′ can do a τ -action whereas p cannot. Similarly for the hiding combinator: consider
the BPPM processes

q = (a.b.0 ‖ ā.c.0)\\{a, ā} and q′ = (a.b.0)\\{a, ā} ‖ (ā.c.0)\\{a, ā}

clearly q and q′ are not even language equivalent because q can do a single τ -action and then
a b-action followed by a c-action whereas q′ need to do two τ -actions in order to do a b-action
followed by a c-transition.

The automata characterisation, we gave in Section 7.8.2 was phrased in terms of a family
of finite tree automata. The family which we are interested in of course has much more
structure, and we could equally well have phrased the characterisation in terms of finite tree
automata with weak counters, that is, counters that can only be partially tested for zero.
Such counter machines have been intensively studied over words in terms of Petri nets and
vector addition systems but we do not know of any generalisation to trees.

Chapter 8

Synthesis of Nets from Logical
Specifications

Contents

8.1 Introduction . 166
8.2 Synthesis of nets from transition systems . 167

8.2.1 Elementary net systems . 167
8.2.2 Elementary transition systems . 168
8.2.3 Synthesis . 170

8.3 Problems of the synthesis of nets from transition systems 170
8.4 Synthesis of active nets from synchronisation trees 173

8.4.1 Active EN-systems . 173
8.4.2 Active elementary synchronisation trees 173
8.4.3 Synthesis . 175

8.5 Logical Definability of Synchronisation Trees 176
8.6 Conclusions . 177
8.7 Proofs . 178

8.7.1 Proof of Proposition 157 . 178
8.7.2 Proof of Theorem 158 . 180

163

Synthesis of Nets from Logical Specifications

Javier Esparza

Institut für Informatik
Technische Universität München
Arcisstr. 21 D-80290 München

esparza@informatik.tu-muenchen.de

Kim Sunesen

BRICS1

Department of Computer Science
University of Aarhus

Ny Munkegade, DK-8000 Aarhus C
ksunesen@brics.dk

Abstract The synthesis of distributed systems from temporal logic speci-
fications may not yield the desired results because distributability and con-
currency aspects cannot be specified in the logic. Motivated by this lack of
expressiveness, we address the problem of synthesising distributed systems
– modelled as elementary net systems, a brand of Petri nets – from purely
sequential behaviours represented by synchronisation trees. Based on the
notion of a region, Ehrenfeucht and Rozenberg have characterised the tran-
sition systems that correspond to the behaviour of elementary net systems.
Building upon their results, we characterise the synchronisation trees that
correspond to the behaviour of active elementary net systems, those in which
each condition can always cease to hold. We show how to define this class of
synchronisation trees in monadic second order logic over infinite trees. We
discuss how this leads to a general automata theoretic approach to the syn-
thesis of elementary net systems from temporal and modal logics combinable
with standard automata based decision procedures. In working out our main
theorems we show a number of results about the relationship between re-
gions, zig-zag morphisms and bisimulation which may also be of independent
interest.

165

166 Chapter 8. Synthesis of Nets from Logical Specifications

8.1 Introduction

In this paper we address the problem of synthesising a distributed system – modelled as a
Petri net – from a logical specification of its behaviour possibly including requirements about
causality and independence of events. The paper is inspired by two strands of work:

• The synthesis of transitions systems from temporal logic specifications, followed by
more-or less ad hoc procedures to derive distribute implementations. This approach has
been studied for logics like CTL and LTL in [49, 113].

• The synthesis of distributed systems from transition systems using the theory of regions.
This approach was introduced by Ehrenfeucht and Rozenberg in a seminal paper [45].

The synthesis of distributed systems from temporal logic specifications exploits the de-
cidability of the satisfiability problem of temporal logics like CTL and LTL, and the existent
tableaux techniques that construct a model (automatically or interactively) for a given for-
mula. These logics have been used to specify distributed systems. For instance, in [49]
implementations of a mutual exclusion algorithm and a readers-and-writers problem are de-
rived from CTL specifications, and a second readers-and-writers specification is shown to be
unsatisfiable.

However, this approach often leads to unsatisfactory implementations. The reason is that
the tableaux techniques yield only a transition system, and not a distributed implementa-
tion; the latter has to be derived from the former using other techniques. In particular, the
transition system may not be distributable, and it may have to be modified “by hand”. Since
distribution aspects like concurrency and independency of events are (and cannot be) speci-
fied in the logic, solutions can be obtained that satisfy the CTL or LTL-specification, but do
not exhibit the intended concurrency.2

The theory of regions is in a certain sense a complementary approach to the synthesis
from temporal logic specifications. Here the starting point is a transition system. The theory
characterises the transition systems that admit distributed implementations (modelled as
elementary net systems, a particular brand of Petri nets), and provides algorithms to derive
them. The main problem of this approach is precisely the need of a completely determined
transition system as starting point, an unrealistic requirement.

The application of the synthesis algorithms given by the theory of regions to the transition
systems derived from CTL or LTL specifications allows the automatic derivation of satisfac-
tory distributed solutions, but only when the transition system happens to be distributable and
corresponds to the intended concurrency. If these conditions are not fulfilled, then the com-
bination of the two approaches does not bring any improvement. What is needed is a more
powerful specification logic in which distribution aspects can be expressed; in particular, we
wish to express the distributability property offered by the theory of regions, and properties
concerning the independence of events. The extended logic should have a decidable satisfia-
bility problem, and techniques for the construction of models. The problems of the existing
temporal logic approaches are so avoided, because the logical specification is now satisfiable
if and only if there exists a distributed solution with the specified concurrency.

In this paper we give a first step towards the definition of this extended logic. This
requires to modify the synthesis theory of Ehrenfeucht and Rozenberg. In our approach,
elementary net systems are generated not from transition systems, but from synchronisation

2A typical example is discussed in Section 8.3.

8.2. Synthesis of nets from transition systems 167

trees, tree shaped transition systems. We characterise the synchronisation trees generated
by active elementary net systems, the elementary net systems in which every condition can
always cease to hold. (Since activity is a desired property in most applications, this can be
seen as a positive or as a negative feature.) The use of trees instead of graphs allows us to
encode the characterisation in SnS, the monadic second order of n-ary trees, see e.g [160],
which immediately establishes a link with tree automata. So a consequence of our work is the
possibility to augment standard automata based procedures for the satisfiability of temporal
logics, see e.g. [166, 48] to procedures for the synthesis of (active) elementary net systems: We
obtain two automata, the first accepting the synchronisation trees satisfying some temporal
properties, and the second accepting the synchronisation trees generated by active elementary
net systems, construct their product, and check for emptiness.

The paper is organised as follows. Section 8.2 quickly reviews the synthesis theory of
Ehrenfeucht and Rozenberg. Section 8.3 explains the problems of this approach with the help
of an example. Section 8.4 introduces our alternative approach based on synchronisation trees;
this section should be compared with Section 8.2. Section 8.5 shows that the synchronisation
trees corresponding to elementary net systems can be expressed in a decidable logic. We
conclude with a discussion on the consequences of this approach. The proof of correctness of
our synthesis procedure is contained in Section 8.7.

8.2 Synthesis of nets from transition systems

In their seminal paper [45], Ehrenfeucht and Rozenberg gave a characterisation of the class
of transition systems (here called elementary transition systems following [129]) that arise
from elementary net systems and furthermore, showed how to synthesise for each elementary
transition system T an elementary net system N such that the case graph of N is isomorphic
to T . In this section we briefly recall the main ideas of [45], but using the notations of [129].

8.2.1 Elementary net systems

A net is a triple (B,E,F) where B (the conditions) and E (the events) are non-empty finite
disjoint sets, F (the flow relation) is a subset of (B × E) ∪ (E × B). For each x ∈ B ∪ E,
define

•x = {y | (y, x) ∈ F} the pre-set of x, and

x• = {y | (x, y) ∈ F} the post-set of x.

In case e ∈ E, we talk of the pre-conditions •e and the post-conditions of e•. A net (B,E,F)
is simple iff

∀x, y ∈ B ∪ E. •x = •y ∧ x• = y• ⇒ x = y.

A net (B,E,F) has no isolated elements iff dom(F) ∪ ran(F) = B ∪E. A net system, NS, is
a four-tuple (B,E,F, c0) where (B,E,F) is a net and c0 is the initial case. An elementary
net system, EN-system, is a net system (B,E,F, c0) where (B,E,F) is a simple net with no
isolated elements. Let N1 = (B1, E, F1, c1) and N2 = (B2, E, F2, c2) be EN-systems. A net
system isomorphism, ns-isomorphism, β : N1 → N2 is a bijection β : B1 → B2 on conditions
preserving the initial case, that is, β(c1) = c2, and for each e ∈ E the pre-conditions and

168 Chapter 8. Synthesis of Nets from Logical Specifications

post-conditions, that is, β(•e) = •e and β(e•) = e•. Net systems N1 and N2 are ns-isomorphic
iff there exists an ns-isomorphism from N1 to N2.

As shown in Figure 8.1(a), we present net systems pictorially by drawing conditions as
circles, events as boxes and elements of the flow relation as arrows. The conditions in the
initial case are marked with dots. The dynamics of EN-systems is explained in terms of the

•?>=<89:;b1

��

•?>=<89:;b2

��
��
��
��
��
��
��
��
��
��
��
�

��
a

��

b

��?>=<89:;b3

��

?>=<89:;b4

c

(a) A net system example.

�
a

����
��

��
�
s1

b

��?
??

??
??

•
c

����
��

��
�
s2

b

��?
??

??
??

•
a

����
��

��
�

s3

•s4 • s5

(b) A transition system example.

Figure 8.1:

firing of events. The states of a net system are called cases. A case is a set of conditions that
hold concurrently. The system can go from one case to another by firing an event. An event
can fire at a case iff all its pre-conditions and none of its post-conditions hold in the case.
When an event fires, all its pre-conditions cease to hold and all its post-conditions begin hold.
Formally, the firing relation | 〉 ∈ 2B × E × 2B is defined by

(c1, e, c2) ∈ | 〉 iff c1 − c2 = •e ∧ c2 − c1 = e•.

For convenience, we often use the infix form c1|e〉c2 to denote (c1, e, c2) ∈ | 〉. Moreover, we
extend the firing relation to finite sequence of events w ∈ E∗ by inductively letting (1) c|ε〉c
(where ε denotes the empty sequence), and (2) if c|w〉c′ and c′|e〉c′′ then c|we〉c′′. For the net
system in Figure 8.1(a) for instance, {b1, b2}|ac〉∅ and {b1, b4}|a〉{b3, b4}.

8.2.2 Elementary transition systems

A transition system T is a four-tuple (S, i, E,Trans) where S is the set of states, i is the initial
state, E is the set of events, and Trans ⊆ S × E × S is the set of transitions. A transition
system (S, i, E,Trans) is finite iff the sets S and E are finite. When (S, i, E,Trans) is clear
from the context, we often use s e−→ s′ instead of (s, e, s′) ∈ Trans. For every state s and
event e, we use s e−→ to denote that e is enabled in s, that is, there exists a state s′ such
that s e−→ s′. As usual, −→ denotes ∪e∈E

e−→, and −→+ and −→∗ denotes, respectively,
the transitive closure and the reflexive transitive closure of −→. For each s ∈ S, ↑ s denotes
the set of states reachable from s, that is, ↑ s = {s′ | s −→∗ s′}. In the following we restrict
ourselves to transition systems T = (S, i, E,Trans) satisfying the axioms:

A1 ∀(s, e, s′) ∈ Trans. s 6= s′ (no self-loops)

8.2. Synthesis of nets from transition systems 169

A2 ∀(s, e1, s1), (s, e2, s2) ∈ Trans. s1 = s2 ⇒ e1 = e2 (no multi-arcs)

A3 ∀e ∈ E.∃s, s′ ∈ S. (s, e, s′) ∈ Trans (event minimality)

A4 ↑ i = S. (reachability)

Axiom A1 and A2 forbid, respectively, self-loops and multiple arcs between a pair of states.
Axiom A3 and A4 require, respectively, that every event occurs and that every state is
reachable from the initial state. We associate to N = (B,E,F, c0) a transition system
CG(N) = (CN , EN , c0,−→N), called the case graph of N , defined as follows:

CN = {c ⊆ 2B | c0|w〉c}

−→N= {(c, e, c′) ∈ CN × E × CN | c|e〉c′}, and

EN = {e ∈ E | ∃c, c′ ∈ CN . (c, e, c′) ∈−→N}.

The set of cases of the net system in Figure 8.1(a) is {∅, {b1, b2}, {b2, b3}, {b1, b4}, {b3, b4}}
and the associated case graph is the transition system in Figure 8.1(b). The key to a char-
acterisation of the transition systems that are case graphs of EN-systems is the notion of
regions. Given a transition system T = (S, i, E,Trans), a set of states r ⊆ S is a region of T
iff for every (s1, e, s′1), (s2, e, s

′
2) ∈ Trans,

(s1 ∈ r ∧ s′1 6∈ r)⇔ (s2 ∈ r ∧ s′2 6∈ r), and

(s1 6∈ r ∧ s′1 ∈ r)⇔ (s2 6∈ r ∧ s′2 ∈ r).

Consider the transition system in Figure 8.1(b). Examples of regions are {s1, s2}, {s2, s5}
and {s1, s2, s3, s5}. The set r = {s1, s5} is not a region since occurrences of the a event both
“leave” and “enter” r, that is, we have s1

a−→ s2 with s1 ∈ r and s2 6∈ r while we also have
s3

a−→ s5 with s3 6∈ r and s5 ∈ r. Also, the set r′ = {s1, s2, s5} is not a region because
occurrences of the b event both “leave” and “ignore” r′, that is, we have s1

b−→ s3 with
s1 ∈ r′ and s3 6∈ r′ while we also have s2

b−→ s5 with s2 ∈ r′ and s5 ∈ r′.
The region ∅ and the region S are called trivial. RT denotes the set of all non-trivial

regions of T . For each s ∈ S, the set Rs denotes the set of non-trivial regions containing
s. For each event e ∈ E, the set of pre-regions pre◦T (e) is the set {r ∈ RT | ∃(s, e, s′) ∈
Trans. s ∈ r ∧ s′ 6∈ r}, and the set of post-regions post◦T (e) is the set {r ∈ RT | ∃(s, e, s′) ∈
Trans. s 6∈ r∧ s′ ∈ r}. Whenever T is clear from the context, we use ◦e for pre◦T (e), and e◦ for
post◦T (e). For the transition system in Figure 8.1(b), the pre-regions of the event c is the set
◦c = {{s1, s2}, {s2, s5}, {s1, s2, s3, s5}}.

We can now define the class of elementary transition systems. A transition system
(S, i, E,Trans) is elementary iff it satisfies (in addition to A1 – A4) the following axioms:

A5 ∀s, s′ ∈ S.Rs = Rs′ ⇒ s = s′ (separability), and

A6 ∀s ∈ S ∀e ∈ E. ◦e ⊆ Rs ⇒ ∃s′. (s, e, s′) ∈ Trans (enabling).

170 Chapter 8. Synthesis of Nets from Logical Specifications

8.2.3 Synthesis

The synthesis procedure of Ehrenfeucht and Rozenberg is appealingly simple. Given an
elementary transition system, its corresponding EN-system has one condition for each region
and one event for each event of the transition system. The pre- and post-conditions of an
event e are its pre-regions and post-regions. The initial case is the set of regions containing
the initial state. Formally, let T = (S, i, E,Trans) be an elementary transition system. The
saturated net version of T is the four-tuple SN (T) = (RT , E, F,Ri) where

F = {(r, e) | r ∈ ◦e} ∪ {(e, r) | r ∈ e◦} ⊆ (RT ×E) ∪ (E ×RT).

If T is finite, then SN (T) can be effectively constructed. SN (T) may contain redundant
conditions, i.e., conditions that can be removed without changing the case graph (up to
isomorphism). The problem of constructing nets with less or no redundant conditions has
been considered in [42, 17].

In order to show that T and SN (T) are “equivalent”, we have to formalise equivalence. We
use the strong notion of isomorphisms. A transition system morphism (morphism for short)
h : T0 → T1 between transition systems T0 = (S0, i0, E,Trans0) and T1 = (S1, i1, E,Trans1)
is a map h : S0 → S1 such that

h(i0) = i1, and

∀e ∈ E.∀s, s′ ∈ S0. (s, e, s′) ∈ Trans0 ⇒ (h(s), e, h(s′)) ∈ Trans1.

A morphism h is a ts-isomorphism iff there exists an (inverse) morphism g : T1 → T0 such
that h ◦ g = g ◦ h = id. Transition systems T0 and T1 are isomorphic iff there exists an
isomorphism h : T0 → T1.

The synthesis result of [45] can now be formulated as follows:

Theorem 155 (1) If N is an elementary net system, then its case graph is an elementary
transition system.

(2) If T is an elementary transition system then SN (T) is an elementary net system.

(3) If T is an elementary transition system, then T is isomorphic to the case graph of
SN (T). 2

8.3 Problems of the synthesis of nets from transition systems

The results of the previous section provide a procedure to decide if a given sequential system
(modelled as a transition system), can also be implemented as a distributed system, (modelled
as a net). When this is the case, the results show how to explicitly construct the distributed
system.

This approach faces a serious problem in practice: the synthesis procedure can only be
applied to a completely determined transition system. If the transition system turns out to
be non-elementary, then it is not possible to synthesise any net, and the procedure has to
start again. Let us illustrate this point by means of an example taken from [49].3

3Actually, [49] uses Kripke structures instead of transition systems as system model, but this is not relevant
for the present discussion.

8.3. Problems of the synthesis of nets from transition systems 171

We wish to synthesise a mutual exclusion algorithm for two processes. We choose

{req1, enter1, exit1, req2, enter2, exit2}

as set of events, with the usual intended meanings: request access to the critical section,
entering and exiting it. The algorithm should satisfy three properties: mutual exclusion,
deadlock freedom, and absence of starvation.

Following the approach of [49], we proceed in two steps:

1. We specify the first three properties in the temporal logic CTL (together with some
others excluding some non-intended solutions, see [49] for the details), and then making
use of a tableau technique for the satisfiability problem of the logic we generate a
transition system. We formalise the three properties mentioned above to give a flavour
of the specification:

• AGEXtrue (deadlock freedom);

• AG(AXexit1 false ∨AXexit2 false) (mutual exclusion);

• AGAXreq i
AFEXexititrue (absence of starvation for process i).

(A state s satisfies EXaφ if there exists a transition s a−→ s′ and s′ satisfies φ. A state
satisfies EXφ if some successor satisfies φ.)

2. Starting from the transition system we try to obtain a distributed solution.

In [49] a tableau technique is used to carry out the first step. It yields the transition system
of Figure 8.2. Unfortunately, it is not elementary: the states reached from the initial state by
the sequences req1 req2 and req2 req1 belong to exactly the same regions, which violates the
separability axiom (Axiom A5). So this transition system cannot be directly used in order
to obtain a distributed system. The solution of [49]4 is to modify the transition system in

�
req1

wwooooooooooooooo
req2

''OOOOOOOOOOOOOOO

•
enter1

����
��

��
� req2

��?
??

??
??

•
req1

����
��

��
� enter2

��?
??

??
??

•

@G
??

FE

exit1

�������������������������

��?
??

??
??

?

req2 ��?
??

??
??

•
enter1

����
��

��
�

•
enter2

��?
??

??
??

•

req1����
��

��
�

CD
��

FE

exit2

?????????????????????????

����
��

��
��

• AB

���������������������������

--\\\\\\\\

exit1 exit2 •AB

???????????????????????????

qqbbbbbbbb

Figure 8.2: A solution to the mutex problem.

172 Chapter 8. Synthesis of Nets from Logical Specifications

the following way: different occurrences of the same event are replaced by different events.
For instance, the three occurrences of req1 are replaced by three events req1, req ′1, req ′′1 , each
of them occurring only once; the other events are treated similarly. This procedure always
yields an elementary transition system. The specification is changed to reflect the intuitive
idea that req ′1 and req ′′1 are “replications” of req1.

However, in the EN-system obtained from this new transition system no two events can
occur independently of each other. “Independently” means here that the two events, say a
and b, are enabled, and that the sets (•a ∪ a•) and (•b ∪ b•) are disjoint. Apart from an
absolute lack of concurrency, this implies that in particular the events req1 and req2 are not
independent, which in many contexts is very undesirable: before a process requests access to
the critical section, it has to check if the other process wants to request access too.

The approach of [49] does not provide further help to decide if a distributable solution
exists in which req1 and req2 are independent. We propose the following solution: add to the
specification the requirements (1) the transition system has to be elementary, what we call
the elementarity property, and (2) events req1 and req2 must be independent. A first idea
would be to try to express these requirements using using CTL itself, but this is not possible.
Let T be the transition system of Figure 8.1(b). If state s5 is split into two states, we obtain
a tree T ′ bisimilar to T , and so T and T ′ satisfy exactly the same CTL-formulae. However,
T is elementary, but T ′ is not. The same argument shows that more powerful logics like the
modal mu-calculus cannot express elementarity either.5

An inspection of the axioms of elementary transition systems shows that they can be
expressed in the monadic second order (MSO) theory of finite graphs (since we have to
quantify on regions, which are sets of nodes). Unfortunately, this theory is undecidable6, and
so we cannot apply it directly in order to obtain a synthesis procedure.

At this point there are different possible ways to proceed. One of them is to try to prove
directly that the MSO theory of elementary transition systems is decidable. In this paper, we
investigate what we think is a simpler but elegant way: We characterise the synchronisation
trees corresponding to EN-systems. In our setup, synchronisation trees are essentially the
tree shaped transition systems. The synchronisation tree corresponding to an elementary net
system is the unfolding its case graph. We show that the synchronisation trees corresponding
to what we call active EN-systems can be expressed in the MSO theory of n-ary trees, SnS,
which is known to be decidable. Since temporal logics like CTL, LTL or the mu-calculus
can be embedded into SnS, we obtain a uniform logic formalism in which deadlock free-
dom, mutual exclusion, absence of starvation and elementarity can be expressed. Moreover,
interleaving logics can be used to express independence of events when interpreted over el-
ementary transition systems. In these systems, the formula EF (EXaEXbtrue ∧ EXbtrue)
is true if and only if the events a and b can occur independently of each other. Hence for
instance, the independence of req1 and req2 in the example above can be expressed. The
formula EF (EXaAXbfalse ∧ EXbtrue) expresses that the two events are in conflict. The
price to pay for this increase in expressing power is the restriction to the synthesis of active
elementary nets. The relevance of this restriction is discussed in the next section.

4Interpreted on transition systems instead of Kripke structures.
5Elementarity is the critical property: in an elementary transition system the independence of two events

a and b can be expressed by the CTL formula EF (EXaEXbtrue ∧ EXbtrue).
6In fact, even the first-order theory is undecidable by Trahtenbrot’s Theorem, see e.g. [44]

8.4. Synthesis of active nets from synchronisation trees 173

8.4 Synthesis of active nets from synchronisation trees

In this section we present our alternative to the synthesis from transition systems of Ehren-
feucht and Rozenberg. The section has the same structure as Section 8.2, so that the reader
can appreciate the similarities. For the same reason, we present the synthesis theorem without
the full proof which is contained in Section 8.7.

8.4.1 Active EN-systems

Loosely speaking, a net system is active if each condition can always cease to hold. Formally,
a condition b of a net system N is active iff for every reachable case c ∈ CN there exists a case
c′ such that c −→∗N c′ and b 6∈ c′, and a net system N is active iff all its conditions are active.
For the net system in Figure 8.1(a), conditions b1 and b2 are active while b3 and b4 are not
because they are both stuck in the case {b3, b4}. In our synthesis context activity is a mild
restriction, since it is usually implied by other properties of the specification. Take for instance
the mutex algorithm specified above. The EN-systems satisfying the specification must be
live in the net-theoretical sense of the word: each event must always have the possibility to
occur again (otherwise at least one of the two processes gets stuck). This immediately implies
activity. Notice also that an arbitrary net can be transformed into an active net by adding
some “dummy” events which take tokens from conditions and then put them back.

The reason for the restriction to active EN-systems is the following. In our synthesis
procedure, we shall generate from the logical specification a synchronisation tree that can be
folded into a finite elementary transition system (that is, the synchronisation tree is the tree
unfolding of the transition system); then, we shall use Theorem 155 to gain an EN-system. For
this procedure to be correct we have to guarantee that, loosely speaking, the synchronisation
tree and its folding have the same regions, or, more precisely, that the regions of the transition
system are exactly the foldings of the regions of the synchronisation tree. Unfortunately, this
property does not hold in general. Figure 8.3 shows an elementary transition system and
its tree unfolding. The set of states V = {v1, v2, v3, . . . } is a region, but its folding, the
set {s1, s2, s3, s4, s5}, is not. We shall see that the property holds for active regions, if the
elementary transition system corresponds to an active EN-system.

8.4.2 Active elementary synchronisation trees

As mentioned above, synchronisation trees are just tree-shaped transition systems. More
formally, a synchronisation tree is a transition system (S, i, E,Trans) that satisfies (in addition
to A1 – A4) the axioms:

B1 ∀s ∈ S.¬(s −→+ s), and

B2 ∀(s1, e1, s′1), (s2, e2, s′2) ∈ Trans. s′1 = s′2 ⇒ s1 = s2 ∧ e1 = e2.

Axiom B1 and Axiom B2 forbid cycles and backwards branching, respectively.
EN-systems are given a synchronisation tree semantics by unfolding the case graph.

The unfolding U(T) of a transition system T = (S, i, E,Trans) is the transition system
(S′, i′, E,Trans′) where S′ is the set of all finite (possibly empty) sequences of transitions
t1t2 · · · tjtj+1 · · · tn−1 such that t1 = (i, e1, s1) and for every 1 < j < n, tj = (sj−1, ej , sj),
the initial state i′ is the empty sequence, and Trans′ is the set of all triples (u, e, v) ∈

174 Chapter 8. Synthesis of Nets from Logical Specifications

S′ × E × S′ where u = u1u2 · · · uk and v is the sequence u1u2 · · · uk(s, e, s′) obtained by
appending an e transition to u. The folding mapping fT : S′ → S is defined by fT (i′) = i and
fT (t1t2 · · · tn−1(sn−1, en, sn)) = sn. The case tree of an elementary net system is defined as
the unfolding of its case graph.

Figure 8.3 shows an example of a transition system and its unfolding.

�
a
����
��
�

b

����
��
��
��
��
�

s1

c
��/

//
//

�
a
����
��
�

b

��

v1

c
��/

//
//

•
d

��

s2 •
d

��

s5 •
d
����
��
�

v2 •
d
��/

//
//
v4

•
e

��

s3 •
g

��

s6 •
e
����
��
�

u1 •
e

��

v3 •u2

g

��/
//

//

•
f

OO

s4 •
h

OO

•
f

����
��
�

•
f

��

v5 •
h
��/

//
//

•
e
����
��
�

• v6

e
��

•
g

��/
//

//

• • v7 •

Figure 8.3: A transition system T and its unfolding U(T).

We now introduce the notion of active regions, and based on it the class of active elemen-
tary synchronisation trees, which are going to be, the case trees of the active EN-systems.
Loosely speaking, a region is active if it is always possible to leave it. Formally, a region
r is active iff for every state s ∈ r, ↑ s 6⊆ r. ART denotes the set of all non-trivial active
regions of T , and ARs the set of non-trivial active regions containing s. The set of active
pre-regions pre�T (e) is the set pre◦T (e)∩ART and the set of active post-regions post�T (e) is the
set post◦T (e) ∩ART . Whenever T is clear from the context, we use �e for pre�T (e), and e� for
post�T (e). For transition systems T = (S, i, E,Trans) and T ′ = (S′, i′, E,Trans′) a mapH from
ART ′ to ART is an active-region isomorphism, ar-isomorphism, iff H is a bijection such that
H(ARi′) = ARi, and for each e ∈ E, H(pre�T ′(e)) = pre�T (e) and H(post�T ′(e)) = post �T (e).

A synchronisation tree (S, i, E,Trans) is active elementary iff it satisfies (in addition to
Axioms A1 – A4 and B1 – B2) the following axioms:

A7 ∀s ∈ S ∀e ∈ E. �e ⊆ ARs ∧ e� ∩ARs = ∅ ⇒ ∃s′. (s, e, s′) ∈ Trans (active-enabling).

A8 ¬(∃s1, s2, s3 ∈ S, e ∈ E. (s1, e, s2), (s2, e, s3) ∈ Trans) (non-consecutivity)

A9 ∀(s, e1, s1), (s, e2, s2) ∈ Trans. e1 = e2 ⇒ s1 = s2 (determinism)

A10 ∀(s, e1, s1), (s, e2, s2) ∈ Trans.ARs1 = ARs2 ⇒ s1 = s2 (separability of children).

8.4. Synthesis of active nets from synchronisation trees 175

Axiom A6 (the active counterpart of Axiom A7) requires that whenever all active pre-regions
and none of the post-regions of an event e contains a state s then e is enabled in s, Axiom
A8 forbids consecutive transitions with the same labelling, Axiom A9 enforces determinism,
and Axiom A10 requires that children have different sets of active regions.

We can now prove the result we announced at the beginning of the section: if a synchro-
nisation tree can be folded into a finite transition system, then the tree and its folding have
exactly the same active regions. We proceed in two steps:
(1) We observe that the tree and its folding are related by a zig-zag morphism where a mor-
phism h : T0 → T1 between transition systems T0 = (S0, i0, E,Trans0) and T1 = (S1, i1, E,Trans1)
is zig-zag iff whenever h(s0)

e−→ s′1 in T1 then there exists a state s′0 ∈ S0 such that s0
e−→ s′0

in T0 and h(s′0) = s′1.

Proposition 156 Let T be a transition system. Then, U(T) is a transition system and the
folding mapping fT is a zig-zag morphism. 2

(2) We prove (see Section 8.7) that transition systems related by zig-zag morphisms have, in
a precise sense, the same active regions.

Proposition 157 Let T and T ′ be transition systems and let the map h : T ′ → T be a
zig-zag morphism. Then, the mapping H : ART ′ → ART induced by h by taking for each
active region r ∈ ART ′ , H(r) = h(r), is an ar-isomorphism. 2

Since not every zig-zag morphism is a folding mapping, we have proved a more general result.
This added generality turns out to be necessary for our synthesis theorem, which we present
next.

8.4.3 Synthesis

The active saturated net version of a synchronisation tree ST is the four-tuple AN (ST) =
(ARST , E, F,ARi) where

F = {(r, e) | r ∈ �e} ∪ {(e, r) | r ∈ e�} ⊆ (ARST × E) ∪ (E ×ARST).

We have the following result, which should be compared with Theorem 155:

Theorem 158 (1) If N is an active elementary net system, then its case tree is an active
elementary synchronisation tree.

(2) If ST is an active elementary synchronisation tree, thenAN (ST) is an active elementary
net system.

(3) If ST is an active elementary synchronisation tree, then ST is isomorphic to the case
tree of AN (ST).

Proof sketch: The proof of (1) is a straightforward extension of the proof for the cor-
responding case of Theorem 155. The cases (2) and (3) are more involved and best shown
indirectly. Their proofs are based on finding a transition system T such that

176 Chapter 8. Synthesis of Nets from Logical Specifications

(a) AN (T) is an active elementary net system,

(b) ST is ts-isomorphic to the unfolding of T , and

(c) the unfolding of T is ts-isomorphic to the case tree of AN (T).

Let us see that if T exists satisfying (a) – (c), then (2) and (3) hold. By Proposition 156, fT

is a zig-zag morphism, and as a simple consequence of Proposition 157, we get that AN (ST)
and AN (T) are ns-isomorphic. Now, (2) follows from (a). For (3), observe that, by (a) and
(b), ST is ts-isomorphic to the case tree of AN (T). Since AN (ST) and AN (T) are ns-
isomorphic, the case tree of AN (T) is ts-isomorphic to the case tree of AN (ST). In Section
8.7, we show that T can be chosen as the bisimulation quotient of ST . 2

8.5 Logical Definability of Synchronisation Trees

In this section, we consider the monadic second-order logic MSO over synchronisation trees.
We show that the set of all active elementary synchronisation trees over a fixed set of events is
definable in MSO. Moreover, we get a finite model property saying that any non-empty MSO-
definable subset of the set of all active elementary synchronisation trees contains an active
elementary synchronisation tree ts-isomorphic to the case tree of an effectively constructible
finite active elementary net system.

In the following, let E be a fixed finite set of events and let E range over subsets of
E . The set of all synchronisation trees (S, i, E,Trans) over E , i.e. with E ⊆ E , is denoted
by Synch(E). The monadic second-order logic MSO over synchronisation trees over E has
first-order variables ranging over states, second-order variables ranging over sets of states,
atomic formulas succe(s, s′) (where e ∈ E) and s ∈ S, connectives ¬,∧,∨,→, and ↔, and
quantifiers ∀ and ∃ on both first-order and second-order variables. The atomic formulas
succe(s, s′) and s ∈ S are interpreted as expected, thus succe(s, s′) denotes the existence of
an e transition from state s to state s′ and s ∈ S denotes that the state s is an element
in the set of states S. The standard semantics is defined as follows. An MSO formula
φ with free variables is interpreted relative to a synchronisation tree T = (S, i, E,Trans)
and an interpretation (partial function) I mapping the free first and second-order variables
into elements and subsets of S, respectively. The satisfaction relation |=I is now defined
inductively in the standard way. The base cases are,

T |=I succe(s, s′)
def⇐⇒ (I(s), e,I(s′)) ∈ Trans

T |=I s ∈ S def⇐⇒ I(s) ∈ I(S).

The step follows the obvious way. A MSO sentence (closed formula) ϕ defines a set of
synchronisation trees L(ϕ) = {T ∈ Synch(E) | T |=∅ ϕ} consisting of all synchronisation
trees satisfying ϕ (where ∅ denotes the everywhere undefined partial function). A set of
synchronisation trees is MSO-definable iff it is defined by some MSO sentence.

Theorem 159 The set of all active elementary synchronisation trees over E is effectively
definable in MSO.

Proof: Because E is a fixed finite set of events, it is straightforward to first check that the
region and the active region property is expressible in MSO, and then to check that each of

8.6. Conclusions 177

the axioms A7, A8, A9 and A10 are also expressible in MSO. For example, let ARegion(R)
be a MSO formula expressing that R is an active region. To express Axiom A7 we first define
the abbreviations

R ∈ �e def⇐⇒ ∃s1, s′1. s1 ∈ R ∧ ¬(s′1 ∈ R) ∧ s1 e−→ s′1,

R ∈ e� def⇐⇒ ∃s1, s′1.¬(s1 ∈ R) ∧ s′1 ∈ R ∧ s1
e−→ s′1,

�e ⊆ ARs
def⇐⇒ (∀R.ARegion(R) ⇒ (R ∈ �e⇒ s ∈ R)), and

e� ∩ ARs = ∅ def⇐⇒ (∀R.ARegion(R) ⇒ ¬(R ∈ e� ∧ s ∈ R)).

Then, Axiom A7 is expressed by the formula∧
e ∈ E ∀s. �e ⊆ ARs ∧ e� ∩ ARs ⇒ (∃s′. s e−→ s′).

2

We can now establish a finite active elementary net system model property.

Theorem 160 Let φ be an MSO formula. If the case tree of some active elementary net
system satisfies φ, then there exists an effectively constructible finite active elementary net
system N such that the case tree of N satisfies φ.

Proof: It is straightforward and standard to encode MSO over synchronisation trees over E
into the monadic second-order theory of n successors SnS in such a way that the regular model
property of SnS (cf. e.g [160]) transfers, that is, in such a way that: if a formula φ is satisfiable,
then there exists a regular synchronisation tree which satisfies φ, i.e. a synchronisation tree
ts-isomorphic to the unfolding of a finite transition system, and moreover this finite transition
system is effectively constructible.

Let φ be an MSO formula. By Theorem 159, we can write a formula Ψ defining Synch(E).
Recall that by Theorem 158 the case tree of an active elementary net system is an active ele-
mentary synchronisation tree. Now assume that the case tree ST of some active elementary
net system satisfies φ. Because ST is an active elementary synchronisation tree by Theorem
158, it also satisfies φ ∧ Ψ. Then by the regular model property mentioned above, there is an
effectively constructible finite transition system T such that its unfolding U(T) satisfies φ ∧ Ψ,
and in particular, such that U(T) is an active elementary synchronisation tree satisfying φ
We show that AN (T) is an active elementary net system such that its case tree satisfies φ.
By Proposition 156, fT is a zig-zag morphism, and hence as a simple consequence of Propo-
sition 157, AN (T) and AN (U(T)) are ns-isomorphic. Now by Theorem 158 AN (U(T)) and
therefore AN (T) are active EN-systems. Moreover, the case tree of AN (T), the case tree
of AN (U(T)), and U(T) are ts-isomorphic, and hence the case tree of AN (T) satisfies φ.
Finally, because T is finite AN (T) is finitely constructible. 2

8.6 Conclusions

In this paper we have identified a problem of existing approaches to the synthesis of dis-
tributed systems from temporal logic specifications: they may fail to handle concurrency and

178 Chapter 8. Synthesis of Nets from Logical Specifications

distributability in a satisfactory way. We have proposed a solution to this problem which
makes use of the theory of regions initiated by Ehrenfeucht and Rozenberg. We have mod-
ified the theory in order to get from it a synthesis procedure from synchronisation trees.
Although this requires quite a bit of technical work, the final result (Theorem 158) is elegant,
and – more importantly – it shows that “distributability” (formalised as elementarity) can be
expressed in SnS, the monadic second order theory of n-ary trees.

Since temporal logics like CTL, LTL or the mu-calculus can also be embedded in SnS, it
follows that within SnS one can specify not only standard safety and liveness properties, but
also properties about the concurrent behaviour of a system and about its spatial distribution
(using the notion of independence of events). We see this result not as an invitation to
use SnS as specification logic (natural encodings of temporal logics into SnS usually are
hopelessly intractable), but as a first (but nontrivial!) step towards augmenting and extending
existing decision procedures. Because of the well-known connection between SnS and tree
automata, our results show that “distributability” is a regular property: It is possible to
construct a tree automaton accepting exactly the (active) elementary synchronisation trees.
This leads to an automata-based synthesis approach: In order to synthesise a distributed
system satisfying some temporal property φ, we can construct two automata, one accepting
the active elementary synchronisation trees, and the other accepting the synchronisation
trees satisfying φ; then, we can construct the intersection of the two automata, and check for
emptiness.

Our results suggest a number of directions for future work. The complexity of the
automata-based synthesis approach sketched in the previous paragraph has to be determined,
and a satisfactory specification logic is still to be found. As pointed out earlier, the definabil-
ity result concerns only synchronisation trees over a fixed finite set of events. Whereas this
does not impose any restriction in practice, it does invite to look for small model theorems
(in terms of events) for branching-time logics interpreted over synchronisation trees of active
EN-systems. Finally, the expressive power of logics like CTL when interpreted on elementary
transition systems should also be investigated; we have seen that independence of events, a
property concerning concurrency and distribution, can be easily expressed.

The results of [45] and [129] turned out to generalise to larger classes of nets, see e.g. [125,
172]. Whereas the notion of activity transfers immediately to the more general settings it is
not clear whether any interesting properties transfer. Positive results may have an important
impact on the applicability of the approach since the synthesis problem is NP-complete [11]
for elementary net systems whereas a polynomial time algorithm exists for bounded nets [10].

8.7 Proofs

We discharge the proof obligations we left open in Section 158. The section is split into two.
In the first half, we show two fundamental lemmas about the relationship between regions
and zig-zag morphisms which pave the way for the proof of Proposition 157. In the second,
we fill in the missing parts of the proof of Theorem 158.

8.7.1 Proof of Proposition 157

It is easy to see that a zig-zag morphism h : (S0, i0, E,Trans0)→ (S1, i1, E,Trans1) is surjec-
tive. By Axiom A4, every state s1 ∈ S1 is connected to the initial state by some path. The

8.7. Proofs 179

repeated application of the zig-zag property to this path, starting from the initial state, leads
to a state s0 satisfying h(s0) = s1.

We start with the following key observation:

Lemma 161 Let s, s′ be states of a transition system T = (S, i, E,Trans), and let h : T → T
be a zig-zag morphism such that h(s) = s′.

(1) For every region r, if s ∈ r and s′ 6∈ r, then ↑ s ⊆ r and ↑ s′ ∩ r = ∅.

(2) For every active region r, s ∈ r iff s′ ∈ r.

Proof: (1) Assume that s ∈ r and s′ 6∈ r. Since r is a region we have for every event e ∈ E
that whenever s e−→ s1 and s′ e−→ s′1 then necessarily s1 ∈ r and s′1 6∈ r. The result then
follows from the zig-zag property.
(2) For an active region r there can be no state s such that ↑ s ⊆ r. Apply now (1). 2

We have now:

Lemma 162 Let T = (S, i, E,Trans) and T ′ = (S′, i′, E,Trans′) be transition systems and
let h : T ′ → T be a zig-zag morphism. Then,

(1) for every (active) region r of T ′ and every s ∈ S′, s ∈ r iff h(s) ∈ h(r),

(2) if r is an active region of T ′ then h(r) is an active region of T , and

(3) r is a (active) region of T iff h−1(r) is a (active) region of T ′.

Proof: (1) Clearly, s ∈ r implies h(s) ∈ h(r). Conversely, assume the contrary. Then
there exists s 6∈ r such that h(s) ∈ h(r). Also by definition, there is some s′ ∈ r such that
h(s) = h(s′). Now by repeated use of the zig-zag property, we get that, ↑ s′ ⊆ r which
contradicts that r is active.
(2) Assume that r is an active region of T ′. By (1), ∀s ∈ S′. s ∈ r ⇔ h(s) ∈ h(r). It is
straightforward to show that h(r) is a region. To see that h(r) is active let s ∈ h(r). Then
there is some s′ ∈ r such that h(s′) = s. Since r is active there is some s′′ 6∈ r such that
s′ −→∗ s′′. Hence, h(s′′) 6∈ h(r) and by induction, s = h(s′) −→∗ h(s′′). Hence, h(r) is active.
(3) Similar to (1); use that, by definition, for every region r ∈ RT and every state s ∈ S,
s ∈ h−1(r) if and only if h(s) ∈ r. 2

Hence, zig-zag morphisms preserve active regions. But, they do not reflect (active) regions.
For instance consider the transition system T in Figure 8.3, the set of states h({u1, u2}) =
{s3, s6} is an active region, but the set {u1, u2} is not a region.

Proof of Proposition 157 Let T and T ′ = (S′, i′, E,Trans′) be transition systems and let
the map h : T ′ → T be a zig-zag morphism. We show that the mapping H from ART ′ to
ART induced by h by taking for each active region r ∈ ART ′ , H(r) = h(r), is a bijection on
active regions such that for each s′ ∈ S′ and r ∈ ART ′ ,

r ∈ ARs′ ⇐⇒ H(r) ∈ ARh(s′)

and such that for each e ∈ E,

H(pre�T ′(e)) = pre�T (e) and H(post�T ′(e)) = post �T (e).

180 Chapter 8. Synthesis of Nets from Logical Specifications

First note that by Lemma 162(2), H does in fact map active regions to active regions. By
Lemma 162(3), H is surjective and by Lemma 162(1), H is injective. By Lemma 162(1) and
(2), for each s′ ∈ S′ and r ∈ ART ′ ,

r ∈ ARs′ ⇐⇒ s′ ∈ r ⇐⇒ h(s′) ∈ h(r) ⇐⇒ H(r) ∈ ARh(s′).

Let e be an event in E. To see thatH(pre�T ′(e)) ⊇ pre�T (e), assume r ∈ pre�T (e). Then there are
s, s′ ∈ S such that s e−→ s′, s ∈ r and s′ 6∈ r. By surjectivity of zig-zag morphisms and by the
zig-zag property, there are v, v′ ∈ S′ such that h(v) = s and h(v′) = s′ and v

e−→ v′. Hence,
v ∈ h−1(r) and v′ 6∈ h−1(r). Since by Lemma 162(3) h−1(r) is a region, h−1(r) ∈ pre�T ′(e).
Thus, H(h−1(r)) = r ∈ H(pre�T ′(e)). Conversely, to see that H(pre�T ′(e)) ⊆ pre�T (e), assume
that h(r) ∈ H(pre�T ′(e)) and r ∈ pre�T ′(e). Then there are v, v′ ∈ S′ such that v e−→ v′, v ∈ r
and v′ 6∈ r. Since h is a morphism, h(v) e−→ h(v′). Moreover, h(v) ∈ h(r) and by Lemma
162(1), h(v′) 6∈ h(r). By Lemma 162(2), h(r) is a region and thus h(r) ∈ pre�T (e). By a
similar argument, it follows that H(post�T ′(e)) = post �T (e). 2

8.7.2 Proof of Theorem 158

Before we can proceed to prove Theorem 158, we need two preliminary sections with basic
results on bisimulations and bisimulation quotients, and their relation to zig-zag morphisms
and regions.

Bisimulations, zig-zag morphisms, and regions We recall the notion of bisimilarity of
transition systems. Given transition systems T = (S, i, E,Trans) and T ′ = (S′, i′, E,Trans′),
a relation R ⊆ S × S′ is a bisimulation iff whenever (s1, s2) ∈ R then for all e ∈ E,

(1) if s1
e−→ s′1 then for some s′2, s2

e−→ s′2 and (s′1, s′2) ∈ R, and

(2) if s2
e−→ s′2 then for some s′1, s1

e−→ s′1 and (s′1, s
′
2) ∈ R

States s1, s2 are bisimilar, denoted by s ∼ s′, iff some bisimulation R contains (s1, s2). T and
T ′ are bisimilar if their initial states are bisimilar.

Our first proposition states that transition systems related by zig-zag morphisms are
bisimilar.f The proof is straightforward.

Proposition 163 Let T0 = (S0, i0, E,Trans0) and T1 = (S1, i1, E,Trans1) be transition sys-
tems and let f : T0 → T1 be a zig-zag morphism. Then, the relation R = {(s, f(s)) ∈ S0×S1}
is a bisimulation and (i0, i1) ∈ R. In particular, T0 and T1 are bisimilar. 2

Our second result shows that in an active synchronisation tree two states that cannot be
separated by active regions must be bisimilar. We need first an easy property of active
regions:

Proposition 164 Let T = (S, i, E,Trans) be a transition system. For every s, s′ ∈ S and
e ∈ E, if s e−→ s′ then ARs−ARs′ = �e and ARs′ −ARs = e�. In particular, �e ⊆ ARs and
e� ∩ ARs = ∅ and ARs′ = (ARs − �e) ∪ e�.

Proof: Let s, s′ ∈ S and e ∈ E. Assume that s e−→ s′. Let r ∈ ARs − ARs′ . Then s ∈ r
and s′ 6∈ r. Now since r is an active region and s

e−→ s′, r ∈ �e. Hence, ARs − ARs′ ⊆ �e.

8.7. Proofs 181

Conversely, let r ∈ �e. Then there are s1, s′1 ∈ S such that s1
e−→ s′1, s1 ∈ r and s′1 6∈ r.

Since r is a region and s
e−→ s′, also s ∈ r and s′ 6∈ r, and hence since r is active and

clearly non-trivial, r ∈ ARs − ARs′ . Hence, �e ⊆ ARs −ARs′ . By a symmetric argument,
ARs′ −ARs = e�. The rest is now an immediate consequence. 2

Proposition 165 If ST = (S, i, E,Trans) is an active elementary synchronisation tree, then
for every s, s′ ∈ S we have ARs = ARs′ iff s ∼ s′.

Proof: (⇒): We show that {(s1, s2) ∈ S × S | ARs1 = ARs2} is a bisimulation relation.
Assume s, s′ ∈ S and ARs = ARs′ . We first show that for every event e ∈ E, s e−→ iff s′ e−→.
Assume s e−→. Then by Proposition 164 and by assumption, �e ⊆ ARs = ARs′ and hence
by Axiom A6, s′ e−→. Next, if s e−→ s1 and s′ e−→ s′1 then also ARs1 = ARs′1, since assume,
ad contradictio, that there exists a region r such that r ∈ ARs1 and r 6∈ ARs2, then by
definition s1 ∈ r and s2 6∈ r and hence by the regional axioms, s ∈ r and s′ 6∈ r contradicting
the assumption that ARs = ARs′ . The result now follows by a symmetric argument.
(⇐): By a slight modification of the proof of Lemma 161, we get that for all states s, s′ ∈ S
and every active region r ∈ ARST , if s ∼ s′ then s ∈ r iff s′ ∈ r. 2

Bisimulation quotient and zig-zag morphisms If in the definition of bisimulation we
take T = T ′, then ∼ becomes a relation between the states of one single transition system. It
is well known that ∼ is in this case an equivalence relation. We denote the equivalence class
of a state s by [s]∼, and the set of all equivalence classes by S/ ∼. The bisimulation quotient
B(T) of T is the four-tuple (S/ ∼, [i]∼, E,Trans∼) where for each s, s′ ∈ S and e ∈ E,

([s]∼, e, [s′]∼) ∈ Trans∼ ⇐⇒ (s, e, s′) ∈ Trans.

The quotient mapping qT : S → S/ ∼ is defined by for each s ∈ S, qT (s) = [s]∼. Quotient
mappings on active synchronisation trees are zig-zag morphisms.

Proposition 166 Let ST be a active synchronisation tree. B(ST) is a transition system and
the map qST is a zig-zag morphism.

Proof: Axiom A10 is needed to ensure that B(ST) satisfies Axiom A2. Assume that
([s], e1, [s1]), ([s], e2, [s2]) ∈ Trans∼ and that [s1] = [s2]. Then s1 ∼ s2 and thus by Proposi-
tion 165, ARs1 = ARs2 . Now by Axiom A10, s1 = s2 and thus by Axiom A2, e1 = e2. The
rest is straightforward. 2

Proof of (a) - (c) Let ST be an active elementary synchronisation tree. In the proof
sketch of Theorem 158, we showed that parts (2) and (3) follow if there exists a transition
system T such that

(a) AN (T) is an active elementary net system,

(b) ST is ts-isomorphic to the unfolding of T , and

(c) the unfolding of T is ts-isomorphic to the case tree of AN (T).

182 Chapter 8. Synthesis of Nets from Logical Specifications

Moreover, we promised to show that the bisimulation quotient of ST has this property. We
spend the rest of this section showing this. The proof is quite long. We start with some
results about the relationship between bisimulations and bisimulation quotients, and regions.

We start with a result situated “between” Theorem 155 and Theorem 158. A transition
system T = (S, i, E,Trans) is hyperactive elementary iff it satisfies (in addition to A1 – A4)
Axiom A7 (active enabling), and the following axiom:

A11 ∀s, s′ ∈ S.ARs = ARs′ ⇒ s = s′ (active-separability)

We can easily prove:

Lemma 167 (1) If N is an active elementary net system, then its case graph is a hyper-
active elementary transition system.

(2) If T is a hyperactive elementary transition system then AN (T) is an active elementary
net system.

(3) If T is a hyperactive elementary transition system, then T is ts-isomorphic to the case
graph of AN (T).

Proof: Using Proposition 164, it is routine to modify the proof of Theorem 155 in [129]. 2

Now we proceed to prove (a)–(c):

Proposition 168 [Statement (a)] AN (B(ST)) is an active elementary net system.

Proof: By Lemma 167, it suffices to show that B(ST) is a hyperactive elementary transition
system. By Proposition 166, B(ST) is a transition system and qST is a zig-zag morphism. We
need to show that B(ST) satisfies Axiom A7 and Axiom A11. First, by Proposition 157, for
each e ∈ E and s ∈ S, �e ⊆ ARs and e� ∩ARs = ∅ iff �e ⊆ ARfST (s) and e� ∩ARfST (s) = ∅.
Now since ST satisfies Axiom A7 and fST is zig-zag, it follows straightforwardly that B(ST)
satisfies Axiom A7. Second, B(ST) satisfies Axiom A11, since assume AR[s] = AR[s′] then
by Proposition 165, [s] ∼ [s′] and hence by definition, [s] = [s′]. 2

Proposition 169 [Statement (b)] ST is isomorphic to the unfolding of B(ST).

Proof: Let ST = (S, i, E,Trans) and B(ST) = (S/ ∼, [i]∼, E,Trans∼). Since ST is active, it
is deterministic (Axiom A9), we show that B(ST) is deterministic too. By Proposition 166, the
quotient mapping qST is a zig-zag morphism. Since qST is surjective and by the zig-zag prop-
erty assume without loss of generality that (qST (s), e, qST (s1)), (qST (s), e, qST (s2)) ∈ Trans∼
such that (s, e, s1), (s, e, s2) ∈ Trans. Then, by the determinism of ST , s1 = s2 and thus
qST (s1) = qST (s2). Now, if B(ST) is deterministic then clearly also the unfolding of B(ST)
is deterministic. Moreover, by Proposition 156 the folding mapping fB(ST) is a zig-zag mor-
phism, and hence by Proposition 163, we get that ST ∼ B(ST) and B(ST) ∼ U(B(ST)).
Hence by transitivity, ST and U(B(ST)) are bisimilar synchronisation trees and hence by
determinism they are ts-isomorphic. 2

8.7. Proofs 183

Proposition 170 [Statement (c)] The unfolding of B(ST) is ts-isomorphic to the case tree
of AN (B(ST)).

Proof: By Proposition 166, the mapping qST is a zig-zag morphism from ST to B(ST).
By Proposition 157, AN (ST) and AN (B(ST)) are ns-isomorphic. Now by Proposition 168,
AN (B(ST)) is a hyperactive elementary net system, and hence by Lemma 167, we get that
the case graph of AN (B(ST)) is ts-isomorphic B(ST). In particular, the unfolding of B(ST)
and the case tree of AN (B(ST)) are ts-isomorphic. 2

Bibliography

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Computer
Science, 82(2):253–284, 1991.

[2] M. Abadi and L. Lamport. Conjoining specifications. Technical Report Report 118,
Digital Equipment Corporation, Systems Research Center, 1993.

[3] M. Abadi, L. Lamport, and S. Merz. A TLA solution to the RPC-memory specification
problem. In Formal Systems Specification – The RPC-Memory Specification Case Study,
volume 1169, pages 21–66. Lecture Notes in Computer Science, Springer-Verlag, 1996.
Lecture Notes in Computer Science.

[4] S. Abramsky. Eliminating local non-determinism: Semantics for ccs. Technical Report
Report no. 290, Computer Systems Laboratory, Queen Mary College, 1981.

[5] L. Aceto. Action Refinement in Process Algebras. Cambridge University Press, Cam-
bridge, 1992.

[6] L. Aceto. A static view of localities. Formal Aspects of Computing, 6(2):202–222, 1994.

[7] B. Alpern and F.B. Schneider. Defining liveness. Information Processing Letters,
21:181–185, Oct. 1985.

[8] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, April 1994.

[9] A. Arnold. Finite Transition Systems. Prentice-Hall, 1994.

[10] E. Badouel, L. Bernardinello, and P. Darondeau. Polynomial algorithms for the syn-
thesis of bounded nets. In Proceedings of CAAP’95, volume 915 of Lecture Notes in
Computer Science, pages 364–378. Springer, 1995.

[11] E. Badouel, L. Bernardinello, and P. Darondeau. The synthesis problem for elementary
net systems is NP- complete. Theoretical Computer Science, 186(1-2):107–134, October
1997.

[12] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of bisimulation equivalence
for processes generating context-free languages. In A. J. Nijman J. W. de Bakker and
P. C. Treleaven, editors, Proceedings of the Conference on Parallel Architectures and
Languages Europe (PARLE). Volume II: Parallel Languages, volume 259 of LNCS, pages
94–111, Eindhoven, The Netherlands, June 1987. Springer.

185

186 BIBLIOGRAPHY

[13] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University Press,
Cambridge, 1990.

[14] D.A. Basin and N Klarlund. Hardware verification using monadic second-order logic.
In Computer Aided Verification, CAV ’95, pages 31–41. Springer-Verlag, 1995. Lecture
Notes in Computer Science, Vol. 939.

[15] M. Bednarczyk. Categories of asynchronous systems. PhD thesis, Computer Science,
University of Sussex, Brighton, 1987.

[16] J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Communication. In-
formation and Control, 60:109–137, 1984.

[17] L. Bernardinello. Synthesis of net systems. In Applications and Theory of Petri Nets,
pages 89–105. Springer-Verlag, 1993. Lecture Notes in Computer Science, Vol. 691.

[18] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. In Computer Aided Verification, Proc. 6th Int. Work-
shop, pages 142–155, Stanford, California, June 1994. Lecture Notes in Computer Sci-
ence, Springer-Verlag.

[19] E. Best and C. Fernandez. Non-sequential Processes, A Petri Net View. Number 13
in EATCS Monographs on Theoretical Computer Science. Springer, Berlin-Heidelberg-
New York, 1988.

[20] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS.
In P. H. J. van Eijk, C. A. Vissers, and M. Diaz, editors, The Formal Description
Technique LOTOS, pages 23–73. Elsevier Science Publishers North-Holland, 1989.

[21] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities. Theoretical
Computer Science, 114, 31–61, 114:31–61, 1993.

[22] Gérard Boudol, Ilaria Castellani, Matthew Hennessy, and Astrid Kiehn. A theory of
processes with localities. Formal Aspects of Computing, 6:165–200, 1994.

[23] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560–599, July 1984.

[24] M. Broy and L. Lamport. Specification problem, 1994. A case study for the Dagstuhl
Seminar 9439.

[25] M. Broy and L. Lamport. Formal Systems Specification – The RPC-Memory Specifi-
cation Case Study, volume 1169. Springer-Verlag, 1996. Lecture Notes in Computer
Science.

[26] R. E. Bryant. Graph-based algorithms for boolean function manipulation. In IEEE
Transactions on Computers, volume C-35(8), pages 677–691, 1986.

[27] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98:142–170, 1992.

[28] Burkart and Esparza. More infinite results. BEATCS: Bulletin of the European Asso-
ciation for Theoretical Computer Science, 62, 1997.

BIBLIOGRAPHY 187

[29] Ilaria Castellani and Matthew Hennessy. Distributed bisimulations. Journal of the
ACM, 36(4):887–911, October 1989.

[30] S. Christensen. Distributed bisimilarity is decidable for a class of infinite-state sys-
tems. In W.R. Cleaveland, editor, CONCUR 92, pages 148–161. Springer-Verlag, 1992.
Lecture Notes in Computer Science, Vol. 630.

[31] S. Christensen. Decidability and Decomposition in Process Algebras. PhD thesis, Uni-
versity of Edinburgh, 1993.

[32] S. Christensen, Y. Hirshfeld, and Moller F. Bisimulation is decidable for basic parallel
processes. In E. Best, editor, CONCUR 93, pages 143–157. Springer-Verlag, 1993.
Lecture Notes in Computer Science, Vol. 715.

[33] S. Christensen and H. Hüttel. Decidability issues for infinite-state processes - a survey.
EATCS Bulletin, 51:156–166, 1993.

[34] Søren Christensen, Yoram Hirshfeld, and Faron Moller. Decomposability, decidability
and axiomatisability for bisimulation equivalence on basic parallel processes. In Proceed-
ings, Eighth Annual IEEE Symposium on Logic in Computer Science, pages 386–396,
Montreal, Canada, 19–23 June 1993. IEEE Computer Society Press.

[35] E. M. Clarke, I.A. Browne, and R.P Kurshan. A unified approach for showing language
containment and equivalence between various types of ω-automata. In A. Arnold, editor,
CAAP, LNCS 431, pages 103–116, 1990.

[36] E. M. Clarke and O. Grumberg. Avoiding the state explosion problem in temporal logic
model checking algorithms. In Fred B. Schneider, editor, Proceedings of the 6th Annual
ACM Symposium on Principles of Distributed Computing, pages 294–303, Vancouver,
BC, Canada, August 1987. ACM Press.

[37] E. M. Clarke, O. Grumberg, and D. E. Long. Verification tools for finite-state concurrent
systems. In A Decade of Concurrency, pages 124–175. Springer-Verlag, 1993. Lecture
Notes in Computer Science, Vol. 803, Proceedings of the REX School/Symposium,
Noordwijkerhout, The Netherlands, June 1993.

[38] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons us-
ing Branching Time Temporal Logic. In D. Kozen, editor, Proceedings of the Workshop
on Logics of Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71,
Yorktown Heights, New York, May 1981. Springer-Verlag.

[39] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Concurrency Work-
bench: A semantics-based tool for the verification of concurrent systems. ACM Trans-
actions on Programming Languages and Systems, 15(1):36–72, jan 1993.

[40] D. Peled. Combining partial order reductions with on-the-fly model-checking. In David
L. Dill, editor, Proceedings of the sixth International Conference on Computer-Aided
Verification CAV, volume 818 of Lecture Notes in Computer Science, pages 377–390,
Standford, California, USA, June 1994. Springer-Verlag.

188 BIBLIOGRAPHY

[41] Ph. Darondeau and P. Degano. Causal trees: Interleaving + causality. In Proc. 18th
École de Printemps sur la Semantique de Parallelism, number 469 in LNCS, pages
239–255. Springer-Verlag, 1990.

[42] J. Desel and W. Reisig. The synthesis problem of Petri nets. Acta Informatica.,
33(4):297–315, 1996.

[43] Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

[44] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Perspectives in Math-
ematical Logic. Springer-Verlag, Berlin, 1995.

[45] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-structures. part I and II. Acta
Informatica, 27(4):315–368, 1990.

[46] Ehrig and Reisig. An algebraic view on petri nets. BEATCS: Bulletin of the European
Association for Theoretical Computer Science, 61, 1997.

[47] E. A. Emerson. Automated temporal reasoning about reactive systems. Lecture Notes
in Computer Science, 1043:41–101, 1996.

[48] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, volume B, chapter 16, pages 995–1072. MIT Press/Elsevier,
1990.

[49] E.A. Emerson and E.M. Clarke. Using branching time logic to synthesize synchonization
skeletons. Science of Computer Programming, 2:241–266, 1982.

[50] E.A. Emerson and J.Y. Halpern. “sometimes” and “not never” revisited: On branching
versus linear time temporal logic. Journal of the ACM, 33(1):151–178, January 1986.

[51] U. Engberg, Grønning P., and Lamport L. Mechanical verification of concurrent systems
with TLA. In Computer Aided Verification, CAV ’92. Springer-Verlag, 1993. Lecture
Notes in Computer Science, Vol. 663.

[52] Urban Engberg. Reasoning in Temporal Logic of Actions. PhD thesis, Aarhus University,
BRICS, 1996.

[53] J. Engelfriet. Tree automata and tree grammars. Technical Report DAIMI FN-10,
University of Aarhus, 1975.

[54] Joost Engelfriet. Branching processes of Petri nets. Acta Informatica, 28(6):575–591,
1991.

[55] J. Esparza. Petri nets, commutative context-free grammars and basic parallel processes.
In Proceedings of Fundamentals of Computation Theory, (FCT’95). Springer-Verlag,
Lecture notes vol. 965, 1995.

[56] J. Esparza and A. Kiehn. On the model checking problem for branching time logics and
basic parallel processes. In Pierre Wolper, editor, Computer Aided Verification (CAV)
95, pages 353–366. Springer-Verlag, 1995. Lecture Notes in Computer Science, Vol. 939.

BIBLIOGRAPHY 189

[57] J. Esparza and M. Nielsen. Decidability issues for Petri nets – A survey. BEATCS:
Bulletin of the European Association for Theoretical Computer Science, 52, 1994.

[58] J. Esparza, S. Römaer, and W. Vogler. An improvement of McMillan’s unfolding algo-
rithm. Lecture Notes in Computer Science, 1055:87–106, 1996.

[59] J. Esparza and K. Sunesen. Synthesis of nets from logical specifications. Manuscript,
1998.

[60] Javier Esparza. Model checking using net unfoldings. In Marie-Claude Gaudel and
Jean-Pierre Jouannaud, editors, TAPSOFT ’93: Theory and Practice of Software De-
velopment, 4th International Joint Conference CAAP/FASE, LNCS 668, pages 613–628,
Orsay, France, April 13–17, 1993. Springer-Verlag.

[61] Javier Esparza. Decidability of model checking for infinite-state concurrent systems.
Acta Informatica, 34(2):85–107, 1997.

[62] Nissim Francez. Fairness. Texts and Monographs in Computer Science. Springer-Verlag,
1986.

[63] F. Gecseq and M. Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.

[64] Patrice Godefroid. Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem, volume 1032 of Lecture Notes in Computer
Science. Springer-Verlag Inc., New York, NY, USA, 1996.

[65] B. Grahlmann and E. Best. PEP — more than a Petri net tool. In T. Margaria and
B. Steffen, editors, Tools and Algorithms for the Construction and Analysis of Systems.
Second International Workshop, TACAS ’96. Proceedings, volume 1055 of Lecture notes
in computer science. Springer Verlag, 1996.

[66] J. Y. Halpern, Z. Manna, and Moszkowski. A hardware semantics based on temporal
intervals. In Josep Diaz, editor, 10th International Colloquium on Automata, Languages
and Programming (ICALP 83), volume 154 of Lecture notes in computer science, pages
278–292, Barcelona, Spain, July 1983. Springer-Verlag.

[67] Z. Har’El and R.P. Kurshan. Software for analytical development of communications
protocols. Technical report, AT&T Technical Journal, 1990.

[68] Matthew Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge, Mass.,
1988.

[69] J.G. Henriksen, O.J.L. Jensen, M.E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe, and
A.B. Sandholm. Mona: Monadic second-order logic in practice. In U.H. Engberg, K.G.
Larsen, and A. Skou, editors, Proceedings of the Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, pages 58–73, 1995. BRICS Notes Series
NS-95-2.

[70] T.A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual
Symposium on Logic in Computer Science, pages 278–292. IEEE Computer Society
Press, 1996. Invited tutorial.

190 BIBLIOGRAPHY

[71] Kunihiko Hiraishi. Some complexity results on transition systems and elementary net
systems. Theoretical Computer Science, 135(2):361–376, 12 December 1994.

[72] Y Hirshfeld. Petri nets and the equivalence problem. In E. Börger, Y. Gurevich, and
K. Meinke, editors, Computer Science Logic: 7th Workshop, CSL ’93 Selected Papers,
pages 165–174. Springer-Verlag, 1994. Lecture Notes in Computer Science, Vol. 832.

[73] Y. Hirshfeld and F. Moller. Decidability results in automata and process theory. In
G. Birtwistle and F. Moller, editors, Proceedings of Logics for Concurrency: Automata
vs Structure. The VIII Banff Higher Order Workshop, Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1994. To appear.

[74] Yoram Hirshfeld, Mark Jerrum, and Faron Moller. A polynomial-time algorithm for
deciding bisimulation equivalence of normed Basic Parallel Processes. Mathematical
Structures in Computer Science, 6(3):251–259, June 1996.

[75] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[76] Gerard J. Holzmann. On-the-fly model checking tutorial. brics autumn school on ver-
ification. Notes Series NS-96-6, BRICS, Department of Computer Science, University
of Aarhus, October 1996. 31 pp.

[77] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, 1979.

[78] Hans Huttel. Undecidable equivalences for basic parallel processes. Lecture Notes in
Computer Science, 789:454–464, 1994.

[79] P. Jancar. Decidability questions for bisimilarity of petri nets and some related prob-
lems. In Patrice Enjalbert, Ernst W. Mayr, and Klaus W. Wagner, editors, Proceedings
of the Annual Symposium on the Theoretical Aspects of Computer Science (STACS ’94),
volume 775 of LNCS, pages 581–594, Berlin, Germany, February 1994. Springer.

[80] P. Jancar. High undecidability of weak bisimilarity for Petri nets. Lecture Notes in
Computer Science, 915:349–363, 1995.

[81] P. Jancar and J. Esparza. Deciding finiteness of Petri nets up to bisimulation. Lecture
Notes in Computer Science, 1099, 1996.

[82] P. Jancar, A. Kucera, and R. Mayr. Deciding bisimulation-like equivalences with
finite-state processes. Technical report, Institut für Informatik, Technische Universitt
München, 1998.

[83] P. Jancar and F. Moller. Checking regular properties of Petri nets. Lecture Notes in
Computer Science, 962:348–362, 1995.

[84] Petr Jancar. Bisimulation equivalence is decidable for one-counter processes. In Pier-
paolo Degano, Robert Gorrieri, and Alberto Marchetti-Spaccamela, editors, Automata,
Languages and Programming, 24th International Colloquium, volume 1256 of Lecture
Notes in Computer Science, pages 549–559, Bologna, Italy, 7–11 July 1997. Springer-
Verlag.

BIBLIOGRAPHY 191

[85] L. Jategaonkar and A. Meyer. Deciding true concurrency equivalences on finite safe
nets. In ICALP ’93, pages 519–531. Springer-Verlag, 1993. Lecture Notes in Computer
Science, Vol. 700.

[86] Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund, and Michael I. Schwartzbach.
Automatic verification of pointer programs using monadic second-order logic. In Pro-
ceedings of the ACM SIGPLAN’97 Conference on Programming Language Design and
Implementation (PLDI), pages 226–236, Las Vegas, Nevada, 15–18 June 1997.

[87] Kurt Jensen. Colored Petri Nets - Basic Concepts, Analysis Methods and Practical Use,
Vol. 1. EATCS Monographs on Theoretical Computer Science. Springer–Verlag, 1992.

[88] R. M. Keller. Formal verification of parallel programs. Communications of the ACM,
19(7):371–384, July 1976.

[89] Y. Kesten, Z. Manna, and A. Pnueli. Temporal verification and simulation and refine-
ment. In A Decade of Concurrency, pages 273–346. ACM, Springer-Verlag, 1993. Lec-
ture Notes in Computer Science, Vol. 803, Proceedings of the REX School/Symposium,
Noordwijkerhout, The Netherlands, June 1993.

[90] A. Kiehn. Comparing locality and causality based equivalences. Acta Informatica,
31:697–718, 1994.

[91] A. Kiehn and M. Hennessy. On the decidability of non-interleaving process equiv-
alences. In B. Jonsson and J. Parrow, editors, Concur ’94: Concurrency Theory 5th
International conference Proceedings. Springer-Verlag, 1994. Lecture Notes in Computer
Science, Vol.836.

[92] Kindler. Safety and liveness properties: A survey. BEATCS: Bulletin of the European
Association for Theoretical Computer Science, 53, 1994.

[93] E. Kindler and R. Walter. Mutex need fainess. Information Processing Letters, 1997.

[94] N. Klarlund, M. Nielsen, and K. Sunesen. Automated logical verification based on
trace abstractions. In Proc. Fifteenth ACM Symp. on Princ. of Distributed Computing
(PODC), pages 101–110. ACM, 1996.

[95] N. Klarlund, M. Nielsen, and K. Sunesen. A case study in verification based on trace
abstractions. In Formal Systems Specification – The RPC-Memory Specification Case
Study, volume 1169, pages 341–374. Lecture Notes in Computer Science, Springer-
Verlag, 1996.

[96] N. Klarlund and F.B. Schneider. Proving nondeterministically specified safety properties
using progress measures. Information and Computation, 107(1):151–170, 1993.

[97] N. Klarlund and M.I. Schwartzbach. Logical programming for regular trees. In prepa-
ration, 1996.

[98] S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary
version). In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Com-
puting, pages 267–281, San Francisco, California, 5–7 May 1982.

192 BIBLIOGRAPHY

[99] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27(3):333–354, December 1983.

[100] R. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton Univ.
Press, 1994.

[101] R. P. Kurshan, M. Merritt, A. Orda, and S. R. Sachs. Modelling asynchrony with a
synchronous model. In Computer Aided Verification, CAV ’95, LNCS, 1995. Lecture
Notes in Computer Science.

[102] Marta Kwiatkowska and Christel Baier. On topological hierarchies of temporal proper-
ties. In D.A. Peled, V.R. Pratt, and G.J. Holzmann, editors, Partial Order Methods in
Verification. American Mathematical Society, July 1996.

[103] L. Lamport. Time, clocks, and the ordering of events in a distributed system. In
Communications of the ACM, pages 558–565, July 1978.

[104] L. Lamport. Specifying concurrent program modules. ACM Transactions on Program-
ming Languages and Systems, 5(2):190–222, 1983.

[105] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Lan-
guages and Systems, 16(3):872–923, 1994.

[106] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions
on Software Engineering, 3(2):125–143, 1977.

[107] Leslie Lamport. “Sometime” is sometimes “Not never” — On the temporal logic of
programs. In Conference Record of the Seventh Annual ACM Symposium on Principles
of Programming Languages, pages 174–185, Las Vegas, Nevada, January 28–30, 1980.
ACM SIGACT-SIGPLAN.

[108] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. In
Proc. Sixth Symp. on the Principles of Distributed Computing, pages 137–151. ACM,
1987.

[109] Nancy Lynch and Frits Vaandrager. Forward and backward simulations: I. untimed
systems. Information and Computation, 121(2):214–233, September 1995.

[110] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann series in data management
systems. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 1996.

[111] Z. Manna and et al. STeP: The stanford temporal prover. In Theory and Practice of
Software Development (TAPSOFT). Springer-Verlag, 1995. Lecture Notes in Computer
Science, Vol. 915.

[112] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1991.

[113] Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic
specifications. ACM Transactions on Programming Languages and Systems, 6(1):68–93,
1984.

BIBLIOGRAPHY 193

[114] O. Matz, A. Miller, A. Potthoff, W. Thomas, and E. Valkema. Report on the program
AMoRE. Technical Report 9507, Inst. für Informatik u. Prakt. Mathematik, CAU Kiel,
1995.

[115] E.W. Mayr. Persistence of vector replacement systems is decidable. Acta Informatica,
15:309–318, 1981.

[116] R. Mayr. Weak bisimulation and model checking for basic parallel processes. In Pro-
ceedings of FSTTCS: Foundations of Software Technology and Theoretical Computer
Science, volume 1180. Lecture Notes in Computer Science, Springer–Verlag, 1996.

[117] A. Mazurkiewicz. Trace theory. In Advances in Petri Nets 1987, ed. Grzegorz Rozenberg,
LNCS 266; Petri Nets: Central Models and Their Properties, Advances in Petri Nets.
Springer Verlag, 1986.

[118] A. Mazurkiewicz. Basic notions of trace theory. In J. W. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors, Proceedings of the School/Workshop on Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, volume 354
of LNCS, pages 285–363, Berlin, May30 June–3 1989. Springer.

[119] K. L. McMillan. Symbolic Model Checking. PhD thesis, Carnegie Mellon University,
1993.

[120] José Meseguer and Ugo Montanari. Petri nets are monoids: A new algebraic founda-
tion for net theory. In Proceedings, Symposium on Logic in Computer Science. IEEE
Computer Society, 1988.

[121] R. Milner. A calculus on communicating systems. Lecture Notes in Computer Science,
92, 1980.

[122] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[123] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part I + II.
Information and Computation, 100(1):1–77, September 1992.

[124] M.L. Minsky. Computation - Finite and Infinite Machines. Prentice Hall, 1967.

[125] M. Mukund. Petri nets and step transition systems. IJFCS: International Journal of
Foundations of Computer Science, 3, 1992.

[126] M. Mukund and M Nielsen. CCS, locations and asynchronous transition systems. In
FST & TCS’92, pages 328–341. Springer-Verlag, LNCS 652, 1992.

[127] T. Murata. Petri nets: properties, analysis, and applications. Proceedings of the IEEE,
77(4):541–580, April 1989.

[128] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains, part
1. Theoretical Computer Science, 13:85–108, 1981.

[129] M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transition systems. The-
oretical Computer Science, 96:3–33, 1990.

194 BIBLIOGRAPHY

[130] E.-R. Olderog. Nets, Terms and Formulas: Three Views of Concurrent Processes and
Their Relationship. Cambridge Tracts in Theoretical Computer Science 23. Cambridge
University Press, 1991.

[131] E.R. Olderog and C.A.R. Hoare. Specification- oriented semantics for communicating
processes. Acta Informatica, 23:9–66, 1986.

[132] D. Park. Concurrency and automata on infinite sequences. In P. Deussen, editor, Proc.
5th GI conference, pages 167–183, 1981. In Lecture Notes in Computer Science 104.

[133] Doron Peled and Amir Pnueli. Proving partial order properties. Theoretical Computer
Science, 126(2):143–182, 25 April 1994. Fundamental Study.

[134] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, Englewood
Cliffs, 1 edition, 1981.

[135] C. A. Petri. Kommunikation mit Automaten. PhD thesis, Schriften des IIM Nr. 2,
Bonn, 1962.

[136] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Tech. Rep.
FN-19, DAIMI, Univ. of Aarhus, Denmark, September 1981.

[137] H. Plünnecke and W. Reisig. Bibliography of Petri nets 1990. In G. Rozenberg, editor,
Advances in Petri Nets 1991, volume 524 of LNCS, pages 317–572, Berlin, Germany,
1991. Springer-Verlag.

[138] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium
on the Foundations of Computer Science (FOCS-77), pages 46–57, Providence, Rhode
Island, October 31–November 2 1977. IEEE, IEEE Computer Society Press.

[139] A. Pnueli. Applications of temporal logic to the specification and verification of reactive
systems—a survey of current trends. In Current trends in Concurrency, pages 510–584.
LNCS 224, Springer-Verlag, 1986.

[140] Amir Pnueli. Linear and branching structures in the semantics and logics of reactive
systems. In Wilfried Brauer, editor, Automata, Languages and Programming, 12th
Colloquium, volume 194 of Lecture Notes in Computer Science, pages 15–32, Nafplion,
Greece, 15–19 July 1985. Springer-Verlag.

[141] V.R. Pratt. Modelling concurrency with partial orders. International Journal of Parallel
Programming, 15(1):33–71, 1986.

[142] W Reisig. A note on the representation of finite tree automata. Information Processing
Letters, 8(5):239–240, June 1979.

[143] W Reisig. Petri Nets - an Introduction. EATCS Monograph in Computer Science,
Springer, 1985.

[144] C. Reutenauer. Mathematics of Petri Nets. Masson and Prentice-Hall, 1990.

BIBLIOGRAPHY 195

[145] James Riely and Matthew Hennessy. Distributed processes and location failures (ex-
tended abstract). In Pierpaolo Degano, Robert Gorrieri, and Alberto Marchetti-
Spaccamela, editors, Automata, Languages and Programming, 24th International Col-
loquium, volume 1256 of Lecture Notes in Computer Science, pages 471–481, Bologna,
Italy, 7–11 July 1997. Springer-Verlag.

[146] Grzegorz Rozenberg. Behaviour of elementary net systems. In W. Brauer, editor, Petri
nets: central models and their properties; advances in Petri nets; proceedings of an
advanced course, Bad Honnef, 8.-19. Sept. 1986, Vol. 1, number 254 in Lecture Notes
in Computer Science, pages 60–94, Berlin-Heidelberg-New York, 1986. Springer.

[147] Anders B. Sandholm and Michael I. Schwartzbach. Distributed safety controllers for
web services. Research Series RS-97-47, BRICS, Department of Computer Science,
University of Aarhus, December 1997. 20 pp. To appear in ETAPS 98.

[148] Davide Sangiorgi. From π-calculus to higher-order π-calculus — and back. In Marie-
Claude Gaudel and Jean-Pierre Jouannaud, editors, TAPSOFT ’93: Theory and Prac-
tice of Software Development, 4th International Joint Conference CAAP/FASE, LNCS
668, pages 151–166, Orsay, France, April 13–17, 1993. Springer-Verlag.

[149] Géraud Sénizergues. The equivalence problem for deterministic pushdown automata is
decidable. In Pierpaolo Degano, Robert Gorrieri, and Alberto Marchetti-Spaccamela,
editors, Automata, Languages and Programming, 24th International Colloquium, vol-
ume 1256 of Lecture Notes in Computer Science, pages 671–681, Bologna, Italy, 7–
11 July 1997. Springer-Verlag.

[150] M. W. Shields. Concurrent machines. The Computer Journal, 28(5):449–465, November
1985.

[151] A.P. Sistla. On verifying that a concurrent program satisfies a nondeterministic speci-
fication. Information Processing Letters, 32(1):17–24, July 1989.

[152] C. Stirling and D. Walker. Local model checking in the modal mu-calculus. Theoretical
Computer Science, 89(1):161–177, October 1991.

[153] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser,
1994.

[154] K. Sunesen. Further results on partial order equivalences on infinite systems. BRICS
Report Series RS-98-6, Aarhus University, 1998.

[155] K. Sunesen and M. Nielsen. Behavioural equivalence for infinite systems – partially
decidable! BRICS Report Series RS-95-55, Aarhus University, 1995.

[156] K. Sunesen and M. Nielsen. Behavioural equivalence for infinite systems — partially
decidable! In In Proceedings of the 17th International Conference on Application and
Theory of Petri Nets, volume 1091 of Lecture Notes in Computer Science, pages 460–
479, 1996.

[157] D. Taubner. Finite Representations of CCS and CSP programs by Automata and Petri
Nets. Springer-Verlag, 1989. Lecture Notes in Computer Science, Vol. 369.

196 BIBLIOGRAPHY

[158] P. S. Thiagarajan. Elementary net systems. In W. Brauer, editor, Petri nets: central
models and their properties; advances in Petri nets; proceedings of an advanced course,
Bad Honnef, 8.-19. Sept. 1986, Vol. 1, number 254 in Lecture Notes in Computer
Science, pages 26–59, Berlin-Heidelberg-New York, 1986. Springer.

[159] P. S. Thiagarajan. A trace based extension of linear time temporal logic. In Proceedings,
Ninth Annual IEEE Symposium on Logic in Computer Science, pages 438–447, Paris,
France, 4–7 July 1994. IEEE Computer Society Press.

[160] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 133–191. MIT Press/Elsevier, 1990.

[161] W. Thomas. Elements of automata theory over partial orders. In D.A. Peled, V.R.
Pratt, and G.J. Holzmann, editors, Partial Order Methods in Verification. American
Mathematical Society, July 1996.

[162] W. Thomas. Automata theory on trees and partial orders. In Proc. 7th International
Joint Conference CAAP/FASE: Theory and Practice of Software Development (TAP-
SOFT’97), volume 1214 of Lecture Notes in Computer Science, pages 20–34, Lille,
France, 1997. Springer-Verlag, Berlin.

[163] W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg, editors,
Handbook of Formal Languages, volume 3, Beyond Words. Springer-Verlag, Berlin, 1997.

[164] R.J. van Glabbeek. Comparative concurrency semantics and refinement of actions. PhD
thesis, CWI Amsterdam, 1990.

[165] R.J. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and re-
finement of actions (extended abstract). In MFCS: Symposium on Mathematical Foun-
dations of Computer Science, 1989.

[166] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program veri-
fication. In Proceedings of the Conference on Logic in Computer Science, 1986.

[167] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for
Concurrency, volume 1043 of LNCS, pages 238–266, 1996.

[168] J. Vöge, O. Matz, S. Ulbrand, and N. Buhrke. The automata theory package omega.
To appear, Inst. für Informatik u. Prakt. Mathematik, CAU Kiel, 1997.

[169] G. Winskel. Event structure semantics for CCS and related languages. In M. Nielsen
and E. M. Schmidt, editors, Proceedings 9th ICALP, Aarhus, volume 140 of Lecture
Notes in Computer Science, pages 561–576. Springer-Verlag, 1982. See also DAIMI
Report PB-159, Computer Science Department, Aarhus University, 1983.

[170] G. Winskel. Synchronization trees. Theoretical Computer Science, 34(1–2):33–82,
November 1984.

[171] G. Winskel. Petri nets, morphisms and compositionality. In G. Rozenberg, editor,
Advances in Petri nets 1985, volume 222 of LNCS, pages 453–477. Springer, 1986.

BIBLIOGRAPHY 197

[172] G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky, D. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic and the Foundations of in Computer
Science, volume vol. IV. Oxford University Press, 1995.

[173] Glynn Winskel. Event structures. In W. Brauer, editor, Petri nets: central models
and their properties; advances in Petri nets; proceedings of an advanced course, Bad
Honnef, 8.-19. Sept. 1986, Vol. 2, number 255 in Lecture Notes in Computer Science,
Berlin-Heidelberg-New York, 1986. Springer.

[174] P. Wolper and P. Godefroid. Partial-order methods for temporal verification. In
Proc. CONCUR ’93, volume 715 of Lecture Notes in Computer Science, pages 233–
246, Hildesheim, August 1993. Springer-Verlag.

Appendix A

The RPC-Memory Specification
Problem

Contents

A.1 The Procedure Interface . 201
A.2 A Memory Component . 201
A.3 Implementing the Memory . 202

A.3.1 The RPC Component . 202
A.3.2 The Implementation . 203

A.4 Implementing the RPC Component . 203
A.4.1 A Lossy RPC . 203
A.4.2 The RPC Implementation . 204

199

The RPC-Memory Specification Problem
Problem Statement

Manfred Broy
Leslie Lamport

A.1 The Procedure Interface

The problem calls for the specification and verification of a series of components. Components
interact with one another using a procedure-calling interface. One component issues a call
to another, and the second component responds by issuing a return. A call is an indivisible
(atomic) action that communicates a procedure name and a list of arguments to the called
component. A return is an atomic action issued in response to a call. There are two kinds
of returns, normal and exceptional. A normal call returns a value (which could be a list).
An exceptional return also returns a value, usually indicating some error condition. An
exceptional return of a value e is called raising exception e. A return is issued only in response
to a call. There may be “syntactic” restrictions on the types of arguments and return values.

A component may contain multiple processes that can concurrently issue procedure calls.
More precisely, after one process issues a call, other processes can issue calls to the same
component before the component issues a return from the first call. A return action com-
municates to the calling component the identity of the process that issued the corresponding
call.

A.2 A Memory Component

The component to be specified is a memory that maintains the contents of a set MemLocs
of locations. The contents of a location is an element of a set MemVals. This component
has two procedures, described informally below. Note that being an element of MemLocs or
MemVals is a “semantic” restriction, and cannot be imposed solely by syntactic restrictions
on the types of arguments.

Name Read
Arguments loc : an element of MemLocs
Return Value an element of MemVals
Exceptions BadArg : argument loc is not an element of MemLocs.

MemFailure : the memory cannot be read.
Description Returns the value stored in address loc.

Name Write
Arguments loc : an element of MemLocs

val : an element of MemVals
Return Value some fixed value
Exceptions BadArg : argument loc is not an element of MemLocs, or

argument val is not an element of MemVals.
MemFailure : the write might not have succeeded.

Description Stores the value val in address loc.

201

202 Appendix A. The RPC-Memory Specification Problem

The memory must eventually issue a return for every Read and Write call.
Define an operation to consist of a procedure call and the corresponding return. The

operation is said to be successful iff it has a normal (nonexceptional) return. The memory
behaves as if it maintains an array of atomically read and written locations that initially all
contain the value InitVal, such that:

• An operation that raises a BadArg exception has no effect on the memory.

• Each successful Read(l) operation performs a single atomic read to location l at some
time between the call and return.

• Each successful Write(l, v) operation performs a sequence of one or more atomic writes
of value v to location l at some time between the call and return.

• Each unsuccessful Write(l, v) operation performs a sequence of zero or more atomic
writes of value v to location l at some time between the call and return.

A variant of the Memory Component is the Reliable Memory Component, in which no Mem-
Failure exceptions can be raised.

Problem 1 (a) Write a formal specification of the Memory component and of the Reliable
Memory component.

(b) Either prove that a Reliable Memory component is a correct implementation of a
Memory component, or explain why it should not be.

(c) If your specification of the Memory component allows an implementation that does
nothing but raise MemFailure exceptions, explain why this is reasonable.

A.3 Implementing the Memory

A.3.1 The RPC Component

The RPC component interfaces with two environment components, a sender and a receiver.
It relays procedure calls from the sender to the receiver, and relays the return values back to
the sender. Parameters of the component are a set Procs of procedure names and a mapping
ArgNum, where ArgNum(p) is the number of arguments of each procedure p. The RPC
component contains a single procedure:

Name RemoteCall
Arguments proc : name of a procedure

args : list of arguments
Return Value any value that can be returned by a call to proc
Exceptions RPCFailure : the call failed

BadCall : proc is not a valid name or args is not a
syntactically correct list of arguments for proc.

Raises any exception raised by a call to proc
Description Calls procedure proc with arguments args

A call of RemoteCall(proc, args) causes the RPC component to do one of the following:

• Raise a BadCall exception if args is not a list of ArgNum(proc) arguments.

A.4. Implementing the RPC Component 203

• Issue one call to procedure proc with arguments args, wait for the corresponding return
(which the RPC component assumes will occur) and either (a) return the value (normal
or exceptional) returned by that call, or (b) raise the RPCFailure exception.

• Issue no procedure call, and raise the RPCFailure exception.

The component accepts concurrent calls of RemoteCall from the sender, and can have multiple
outstanding calls to the receiver.

Problem 2 Write a formal specification of the RPC component.

A.3.2 The Implementation

A Memory component is implemented by combining an RPC component with a Reliable
Memory component as follows. A Read or Write call is forwarded to the Reliable Memory
by issuing the appropriate call to the RPC component. If this call returns without raising
an RPCFailure exception, the value returned is returned to the caller. (An exceptional return
causes an exception to be raised.) If the call raises an RPCFailure exception, then the imple-
mentation may either reissue the call to the RPC component or raise a MemFailure exception.
The RPC call can be retried arbitrarily many times because of RPCFailure exceptions, but a
return from the Read or Write call must eventually be issued.

Problem 3 Write a formal specification of the implementation, and prove that it correctly
implements the specification of the Memory component of Problem 1.

A.4 Implementing the RPC Component

A.4.1 A Lossy RPC

The Lossy RPC component is the same as the RPC component except for the following
differences, where δ is a parameter.

• The RPCFailure exception is never raised. Instead of raising this exception, the Remote-
Call procedure never returns.

• If a call to RemoteCall raises a BadCall exception, then that exception will be raised
within δ seconds of the call.

• If a RemoteCall(p, a) call results in a call of procedure p, then that call of p will occur
within δ seconds of the call of RemoteCall.

• If a RemoteCall(p, a) call returns other than by raising a BadCall exception, then that
return will occur within δ seconds of the return from the call to procedure p.

Problem 4 Write a formal specification of the Lossy RPC component.

204 Appendix A. The RPC-Memory Specification Problem

A.4.2 The RPC Implementation

The RPC component is implemented with a Lossy RPC component by passing the RemoteCall
call through to the Lossy RPC, passing the return back to the caller, and raising an exception
if the corresponding return has not been issued after 2δ + ε seconds.

Problem 5 (a) Write a formal specification of this implementation.
(b) Prove that, if every call to a procedure in Procs returns within ε seconds, then the

implementation satisfies the specification of the RPC component in Problem 2.

Recent BRICS Dissertation Series Publications

DS-98-3 Kim Sunesen. Reasoning about Reactive Systems. December
1998. PhD thesis. xvi+204 pp.

DS-98-2 Søren B. Lassen.Relational Reasoning about Functions and
Nondeterminism. December 1998. PhD thesis. x+126 pp.

DS-98-1 Ole I. Hougaard. The CLP(OIH) Language. February 1998.
PhD thesis. xii+187 pp.

DS-97-3 Thore Husfeldt. Dynamic Computation. December 1997. PhD
thesis. 90 pp.

DS-97-2 Peter Ørbæk.Trust and Dependence Analysis. July 1997. PhD
thesis. x+175 pp.

DS-97-1 Gerth Stølting Brodal. Worst Case Efficient Data Structures.
January 1997. PhD thesis. x+121 pp.

DS-96-4 Torben Bräuner. An Axiomatic Approach to Adequacy. Novem-
ber 1996. Ph.D. thesis. 168 pp.

DS-96-3 Lars Arge. Efficient External-Memory Data Structures and Ap-
plications. August 1996. Ph.D. thesis. xii+169 pp.

DS-96-2 Allan Cheng. Reasoning About Concurrent Computational Sys-
tems. August 1996. Ph.D. thesis. xiv+229 pp.

DS-96-1 Urban Engberg.Reasoning in the Temporal Logic of Actions —
The design and implementation of an interactive computer system.
August 1996. Ph.D. thesis. xvi+222 pp.

