
B
R

IC
S

D
S

-98-2
S

.B
.Lassen:

R
elationalR

easoning
aboutF

unctions
and

N
ondeterm

inism

BRICS
Basic Research in Computer Science

Relational Reasoning about
Functions and Nondeterminism

Søren Bøgh Lassen

BRICS Dissertation Series DS-98-2

ISSN 1396-7002 December 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/98/2/

Relational Reasoning about
Functions and Nondeterminism

Søren Bøgh Lassen

Ph.D. Dissertation

Department of Computer Science
University of Aarhus

Denmark

Relational Reasoning about
Functions and Nondeterminism

Dissertation
presented to the Faculty of Science

of the University of Aarhus
in partial fulfillment of the requirements for the

Ph.D. degree

by
Søren Bøgh Lassen
December 7, 1998

Abstract

This dissertation explores a uniform, relational proof style for operational arguments about
program equivalences. It improves and facilitates many previously given proofs, and it is used
to establish new proof rules for reasoning about term contexts, recursion, and nondeterminism
in higher-order programming languages.

Part I develops an algebra of relations on terms and exploits these relations in operational
arguments about contextual equivalence for a typed deterministic functional language. Novel
proofs of the basic laws, sequentiality and continuity properties, induction rules, and the
CIU Theorem are presented together with new relational proof rules akin to Sangiorgi’s
“bisimulation up to context” for process calculi.

Part II extends the results from the first part to nondeterministic functional programs.
May and must operational semantics and contextual equivalences are defined and their prop-
erties are explored by means of relational techniques. For must contextual equivalence, the
failure of ordinary syntactic ω-continuity in the presence of countable nondeterminism is ad-
dressed by a novel transfinite syntactic continuity principle. The relational techniques are also
applied to the study of lower and upper applicative simulation relations, yielding new results
about their properties in the presence of countable and fair nondeterminism, and about their
relationship with the contextual equivalences.

v

Acknowledgments

I thank Peter Mosses for advice and support. I am also grateful to many others for discussions
and valuable inputs to my work. In Aarhus, these included Olivier Danvy, Glynn Winskel,
Jaap van Oosten, Torben Braüner, Peter Ørbæk, and Ian Stark. Special thanks go to Andrew
Gordon and Andrew Pitts for inviting me to Cambridge and for their inputs and guidance
throughout the work that led to this dissertation. I also wish to thank Dave Sands, Luke
Ong, Paritosh Pandya, Carolyn Talcott, and Dave Schmidt, whom I communicated with and
met on various occasions around the world. Dave Sands and Carolyn Talcott also provided
valuable feedback as my Ph.D. examiners. During the last phase of the work on Part II of
the dissertation, I benefitted immensely from extended discussions with Corin Pitcher and
Andrew Moran. I wish them luck with their dissertations.

Last, but not least, I wish to thank my wife and children, Sharmila, Paul and Philip, for their
incredible patience and support. We are grateful to Laju and Nitin for their help.

I was supported by grants from Aarhus University Research Foundation and the Danish
Natural Science Research Council.

vi

Preface

The work reported in this dissertation took place at BRICS, Department of Computer Sci-
ence, University of Aarhus, and during two visits to the Computer Laboratory, University of
Cambridge. It was carried out under the supervision of Dr. Peter Mosses.

Parts of the dissertation are based on results that appear in other forms in two publications
(Lassen 1997; Lassen 1998) and in joint work with Corin Pitcher from Oxford University
(Lassen and Pitcher 1998).

My interest in the problems of semantic equivalence for higher-order languages with un-
bounded nondeterminism arose while investigating the theory of action semantics (Mosses
1992). It resulted in an operational treatment of a functional and declarative, nondetermin-
istic fragment of action notation, the specification language of action semantics, in Lassen
(1997) (which supersedes the earlier work in Lassen 1994, 1995). The work included a gen-
eralisation of a precongruence proof for applicative similarity in Ong (1992) to deal with
unbounded nondeterminism. This generalisation was found independently by Corin Pitcher
and appears together with some new results in a joint paper (Lassen and Pitcher 1998). The
results about applicative simulation for bounded and unbounded nondeterminism in Lassen
(1997) are expanded and reworked for a typed functional language in Part II of the disserta-
tion.

The relational approach in the dissertation was first developed in Lassen (1998) but is here
transfered to typed and nondeterministic settings and is applied to the study of contextual
equivalence rather than applicative bisimulation. Several original results from Lassen (1998)
about applicative bisimulation up to context and about improvement are not included here.

In joint work with Dr. Andrew Gordon, now at Microsoft Research in Cambridge, and
Paul Hankin from University of Cambridge, I have been applying the relational techniques
from this dissertation in investigations of operational equivalence for Abadi and Cardelli’s
imperative object calculi (Abadi and Cardelli 1996). Results for the simple untyped version
of the calculus are reported in Gordon, Hankin and Lassen (1997a, 1997b).

After the dissertation was originally submitted in February 1998, I have further developed
the material about improvement theory for ambiguous choice from Chapter 8 in cooperation
with Andrew Moran. Preliminary results are included in his dissertation (Moran 1998).
Moran’s dissertation on ambiguous choice as well as the forthcoming dissertation work on
nondeterminism by Corin Pitcher, Oxford University, and Russ Harmer, Imperial College,
London, did not appear in time to be discussed in the present dissertation.

Prerequisites

The reader is assumed to be familiar with functional programming languages, operational
semantics, and the basic principles of inductive definitions and proofs by induction. These
subjects are covered in textbooks on programming language semantics, e.g., Winskel (1993).
In §6.7, a passing familiarity with transfinite induction and ordinals is assumed; see, e.g.,
Phillips (1992) or Rogers (1967).

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Overview . 4

I Determinism 7

2 A Deterministic Functional Language 9
2.1 Syntax . 9
2.2 Operational semantics . 11
2.3 Types . 15
2.4 Contexts . 18

3 Relations 21
3.1 Binary relations . 22
3.2 Open and closed relations . 22
3.3 Matching values . 23
3.4 Substitution . 24
3.5 Compatible refinement . 26
3.6 Compatibility . 27
3.7 Contextual equivalence . 29
3.8 Compatibility and substitutivity . 31
3.9 Relations of higher arity . 33
3.10 Structural reduction . 34
3.11 Future work . 35

4 Relational Reasoning 37
4.1 Contextual approximation and equivalence . 38
4.2 Simulation . 38
4.3 Kleene approximation and equivalence . 39
4.4 Sequentiality . 43
4.5 Unwinding and syntactic continuity . 46
4.6 Compatible simulations . 50
4.7 The CIU Theorem . 52
4.8 Similarity . 54

ix

x CONTENTS

II Nondeterminism 57

5 A Nondeterministic Functional Language 59
5.1 Syntax . 59
5.2 Operational semantics . 60
5.3 Types . 64
5.4 Relations . 64

6 Contexts 65
6.1 Contextual approximation and equivalence . 65
6.2 Lower and upper simulation . 68
6.3 Lower relational reasoning . 68
6.4 May equational theory . 71
6.5 Upper relational reasoning . 73
6.6 Must equational theory . 77
6.7 Transfinite unwinding and syntactic ωCK1 -continuity 79
6.8 Sequentiality . 85
6.9 Related work . 87

7 Simulation 89
7.1 Lower similarity . 89
7.2 Upper similarity . 90
7.3 Other simulation and bisimulation relations 91
7.4 Syntactic continuity . 92
7.5 Open problems . 94
7.6 Related work . 94

8 Fairness 95
8.1 Syntax and operational semantics . 95
8.2 Generalising the sequential theory . 96
8.3 Refinement . 99
8.4 Improvement . 103
8.5 Future work . 112

A Encoding ordinal-bounded fixed point operators 113

Bibliography 117

Symbol Index 125

Chapter 1

Introduction

This dissertation develops techniques for formal reasoning about higher-order programming
languages and applies these techniques to reason about program equivalences and nondeter-
minism. The results extend and generalise existing syntactic techniques for deriving properties
of higher-order programs from their operational semantics; and new results about program
equivalences are obtained both for deterministic programs and for various forms of nondeter-
minism, including bounded and countable nondeterminism as well as fairness.

This chapter provides an introduction to the research on operational method for higher-
order languages, and an outline of the remainder of this dissertation.

1.1 Background

Syntactic and operational methods are today widely used in work on semantics of program-
ming languages. The attraction of this approach is the flexibility and the low mathematical
overhead that it imposes. Syntax and operational semantics consist of inductively defined
entities and the principal mathematical tool needed for their analysis is that of induction. In
many cases, the main task is to master the syntactic complexity that one encounters. Since
syntax is application specific, it is difficult to obtain general results and techniques that can
be transferred from one application to the next. One recurrent concept, however, is that of
relations between terms. They link syntax and operational semantics, and many semantic
problems can be expressed in the language of term relations, in particular, notions of seman-
tic equivalence and approximation between terms. Moreover, relations enjoy some general
theory that is useful across many different applications. One of the results in this work is the
formulation of a useful theory of term relations suited for syntactic reasoning about higher-
order programming languages. The underlying relational theory is based on simple induction
on syntax and inductively defined relations, yet it provides a non-trivial toolkit of notation
and theory for mastering the syntactic complexity in expressing and reasoning about program
properties based on operational semantics.

Operational equivalence

The program properties that are considered here are mainly in the form of semantic equiv-
alences and orderings between programs. In contextual equivalence we have, at least for
deterministic programming languages, a standard and generally accepted syntactic definition

1

2 CHAPTER 1. INTRODUCTION

of operational equivalence based on suitable observations of the operational behaviour of pro-
grams. Denotational semantics has provided operationally adequate models for reasoning
about operational equivalence, but the underlying domain theory incurs a certain mathemat-
ical overhead, in particular, if we need recursively defined domains, models of (unbounded)
nondeterminism or fairness, or fully abstract (“good-fit”) models for features such as sequen-
tiality and local state (see Fiore et al. 1996).

Progress on these aspects of domain theory has been complemented by a large body of work
on operationally-based reasoning about operational equivalence. For higher-order languages,
two approaches have been particularly influential. One is that of Ian Mason and Carolyn
Talcott, surveyed in Talcott (1998). It is based on a so-called CIU Theorem, or Generalised
Context Lemma, which gives a tractable characterisation of contextual equivalence. The CIU
characterisation is valid and useful for reasoning about higher-order functions, even in the
presence of mutable state (Mason and Talcott 1991), objects (Gordon, Hankin, and Lassen
1997a), control operators (Talcott 1998; Bierman 1998), and nondeterminism (Lassen 1997).
Another approach is the operational theory of applicative bisimulation, first developed to
model lazy and call-by-value calculi (Abramsky 1990; Howe 1989; Egidi et al. 1992; Perez
1991; Ong 1992) and later adapted to call-by-name theories (Gordon 1995a) and to state-less
object calculi (Gordon and Rees 1996; Gordon 1998). For deterministic languages without
side-effects, applicative bisimulation generally matches contextual equivalence, a property
called operational extensionality (Bloom 1990), yielding a slightly stronger characterisation
than the CIU Theorem. Forms of applicative bisimulation have also been used to model state
(Ritter and Pitts 1995) and nondeterminism (Ong 1993; Lassen 1997), but in these cases it is
more fine-grained than contextual equivalence—except if one adopts a continuation-passing
style as in Wand and Sullivan (1997).

The characterisations of contextual equivalence provided by the CIU Theorem and oper-
ational extensionality offer the following benefits when reasoning about equivalences. Firstly,
they permit simple soundness proofs of the reductions performed by the operational seman-
tics. Secondly, they assert certain extensionality properties which are very useful, e.g., when
reasoning about terms with free variables. Finally, applicative bisimulation provides a co-
induction principle for reasoning about the infinite data structures found in higher-order
languages. But neither the CIU Theorem nor operational extensionality are particularly
helpful for proving general results about recursion, e.g., the validity of the fundamental in-
duction rules for recursion such as recursion induction, syntactic continuity (ω induction),
and syntactic minimal invariance (syntactic projections).

Contexts and relations

In general, when reasoning syntactically about recursion, we need to consider term contexts.
They also arise in arguments about contextual equivalence (as the name suggests). For
instance, the CIU Theorem and operational extensionality are proved by showing that appro-
priate equivalence relations are congruences, i.e., closed under contexts. Intuitively, a context
is a term containing holes that may be filled by other terms. This is an evocative idea, but
for formal arguments contexts are difficult to work with, both technically and notationally.

In his seminal operationally-based congruence proof for applicative bisimilarity, Howe
(1989, 1996) uses a relational method to conduct a complex syntactic argument. Instead of
considering contexts, the proof involves the construction of a “congruence candidate” relation,
closed under contexts, which is shown to coincide with applicative bisimilarity by induction

1.1. BACKGROUND 3

on computations and co-induction. The relational approach results in a rigorous and precise
proof, both technically and notationally. Moreover, the proof applies to many different typed
and untyped higher-order languages and operational orderings; see, e.g., (Sands 1991; Ong
1992; Ferreira et al. 1996; Lassen 1997; Gordon 1998; Lassen 1996). Pitts (1995) extended
Howe’s congruence proof for applicative bisimilarity to also establish an “up to context”
proof rule (Sangiorgi 1994) for applicative bisimulation. This work was generalised in Lassen
(1998) by the introduction of an algebra of (untyped) term relations for constructing suitable
context closed relations for a wide range of applications, including proofs of general induction
principles for reasoning about recursion and bisimulation up to context proof rules, both for
applicative bisimulation and for a variant of Sands’ improvement theory (Sands 1998b). Parts
of the results in Lassen (1998) are reworked below for typed terms and contextual equivalence
in Chapters 3 and 4.

Nondeterminism

The second part of the dissertation focuses on reasoning principles for nondeterministic pro-
grams. There are several motivations for incorporating nondeterminism in semantic theories
of programming languages. One is that there are aspects of program behaviour, e.g., in the
communication pattern of concurrent systems, that are best modelled as nondeterministic.
Nondeterminism is also relevant for reasoning abstractly about under-specified systems where
some freedom of choice is left to the implementation. The research that led to the results
presented here began in the context of action semantics (Mosses 1992) which features both
unbounded nondeterminism and fairness.

A number of challenges for semantic modelling arise when nondeterminism is introduced
into a programming language. Some of the fundamental reasoning principles from deter-
ministic settings are invalid for nondeterminism. In programming languages with unbounded
nondeterminism the ω-continuity properties required by conventional domain theory fail. Apt
and Plotkin (1986) showed that this is inevitable, and it complicates the partial-order models
that are used for reasoning about recursion as least fixed points. In the presence of fairness,
things are even worse: recursion cannot be modelled by least fixed points because there are
operators that are not monotone with respect to the semantic orderings. Only a few results
have been obtained about fairness in higher-order languages; see Moran (1994) and Agha,
Mason, Smith, and Talcott (1997).

Moreover, nondeterminism makes it more difficult to fix a notion of semantic equiva-
lence. Different applications lead to conflicting requirements, suggesting that the semantic
theory should accommodate a family of semantic equivalences. A multitude of behavioural
equivalences have been proposed in the literature. There are many co-inductively defined
bisimulation equivalences (Park 1981; Milner 1989) and they are attractive because they per-
mit proofs by co-induction, but in the presence of nondeterminism it can be argued that they
are finer-grained than is warranted by reasonable notions of observation. In contrast, testing
equivalences (DeNicola and Hennessy 1984) are defined in terms of observations, more in the
style of contextual equivalence.

In operationally-based theories for nondeterministic higher-order languages, the choice
between bisimulation and testing equivalences is reflected in the choice between whether to
generalise applicative bisimulation or contextual equivalence to the nondeterministic case.

Howe (1989, 1996), Ong (1992), and Moran (1994) have used forms of applicative bisim-
ulation to model nondeterministic and concurrent extensions of higher-order languages. In

4 CHAPTER 1. INTRODUCTION

Chapter 7 the continuity properties of two forms of applicative simulation preorders are in-
vestigated and Ong’s results are extended to countable nondeterminism. This work is also
reported in Lassen (1997) and Lassen and Pitcher (1998).

Contextual equivalences have been considered in (Hennessy and Ashcroft 1980; Astesiano
and Costa 1980; Astesiano and Costa 1984; Sieber 1993; Dezani-Ciancaglini, de’Liguoro,
and Piperno 1996; de’Liguoro and Piperno 1995) but mainly as a reference for judging full
abstraction properties of domain-theoretic models. Sieber (1993) has demonstrated some fun-
damental full abstraction problems in such models. None of these works consider unbounded
nondeterminism or fairness. These features are addressed in the few operationally-based
studies of nondeterministic contextual equivalence for higher-order languages in the litera-
ture: Moran (1994), Agha, Mason, Smith, and Talcott (1997), and Lassen (1997); but they
are all of a preliminary nature. In Chapters 6 and 8 the theory of contextual equivalences for
bounded and countable nondeterminism and a form of fairness is developed in greater depth.

Applications

The relational approach, developed in this dissertation, is applied here to reason about sequen-
tiality, termination, equivalence, and continuity properties of higher-order, nondeterministic
programs. But the underlying relational techniques should apply to many other formalisms
and problems than those that are explored here.

A particularly interesting and challenging problem—for which the operational theory in
this dissertation is intended—is to develop the theory of action semantics for reasoning about
programs. Action semantics (Mosses 1992, 1996) is a structured framework for semantic
description of realistic programming languages. A useful semantic theory for the specification
language action notation would provide the tools for reasoning about the many programming
languages with action semantic descriptions. Some results for a functional, declarative, and
nondeterministic fragment of action notation are reported in Lassen (1997), but much remains
to be done. The theory should at least be extended to the imperative facet of action notation
to be of practical use for realistic action semantic descriptions. Research on the semantic
foundations of action notation suggests some changes in the design of the notation that
will facilitate the theoretical development and strengthen the resulting semantic theory. The
work by Wansbrough and Hamer (1997) on combining action semantics and modular monadic
semantics is a recent a valuable contribution to our understanding of the semantic structure
of action notation. It should be important for further research in this area.

1.2 Overview

Part I introduces an algebra of relations on terms and uses it in operational reasoning about
deterministic functional programs.

First, for the sake of concreteness, Chapter 2 fixes the syntax, types and operational
semantics of a deterministic functional language for which the relational theory will be devel-
oped. The operational semantics is call-by-value and is given both as a big-step evaluation
relation and a small-step transition relation. The presentation of the two is combined via
a notion of primitive reductions—this factorisation simplifies the relational proofs about the
operational semantics in later chapters. Chapter 2 also defines notions of term contexts.

In Chapter 3 the algebra of term relations is developed. Several useful relational con-
structions to be used in the sequel are introduced, including Howe’s congruence candidate

1.2. OVERVIEW 5

relation. The relational theory is based on simple inductive definitions and proofs by in-
duction on derivations, avoiding unwieldy notions of syntactic occurrences and explicit term
contexts.

Relations are used in Chapter 4 for developing the theory of contextual equivalence for the
deterministic language. Novel proofs of the basic laws, induction rules, continuity properties,
and the CIU Theorem are presented together with proof rules for simulation up to context.
Finally, operational extensionality is proved by Howe’s method.

Part II extends the results from Chapter 4 to different nondeterministic extensions of the
functional language in Chapter 2.

Chapter 5 defines the syntax and operational semantics of erratic choice and countable
choice combinators. The evaluation semantics comes in two flavours: a may evaluation rela-
tion which specifies possible outcomes and a must relation which relates a program with its
set of outcomes if and only if all the program’s computation paths terminate.

In Chapter 6 the may and must modalities give rise to two different nondeterministic
generalisations of contextual equivalence. Most of the deterministic theory is shown to carry
over in appropriately modified form. The failure of ω-continuity in the presence of countable
nondeterminism turns up for the must modality only and is addressed by a novel transfinite
syntactic continuity principle.

Chapter 7 investigates lower and upper similarity preorders, the natural nondeterministic
generalisations of applicative similarity. They turn out to differ subtly from the corresponding
contextual approximation preorders associated with the contextual equivalences for nondeter-
minism. However, they are shown to be pre-congruences, by suitable adaptations of Howe’s
method, and are thus sound approximations to the contextual approximation preorders.

In the last chapter of the dissertation, Chapter 8, parts of the theory for nondeterminism
is extended to ambiguous choice and thus a form of fairness. Much of the theory in the
preceding chapters breaks down in the presence of ambiguous choice, including the CIU
Theorem, operational extensionality, and induction and continuity principles. Nonetheless,
Chapter 8 successfully establishes several useful results, in particular, a soundness property for
the reductions of the operational semantics. Moreover, an improvement simulation preorder is
introduced, shown to be a pre-congruence, and, hence, included in contextual approximation.
This result provides us with co-induction proof rules.

A symbol index is provided on page 125.

6 CHAPTER 1. INTRODUCTION

Part I

Determinism

7

Chapter 2

A Deterministic Functional
Language

For the sake of concreteness, the relational theory of the dissertation will be developed for
a specific typed functional language. This chapter introduces the sequential language, es-
sentially Plotkin’s FPC (Plotkin 1985) or a monomorphically typed fragment of Standard
ML (Milner, Tofte, and Harper 1990), which is the subject of study in the first part of the
dissertation. In the second part, various nondeterministic extensions to the language are
studied.

The syntax and the type system of the language are fairly standard. For convenience,
a “reduced” syntax is chosen where expressions are restricted to values in certain syntactic
positions, but the reduced syntax is easily inter-translatable with the usual unrestricted syntax
of FPC. The types include function spaces, products, and recursive sum types.

The operational semantics is call-by-value and is given both as a big-step evaluation
relation and a small-step transition relation. The presentation of the two is combined via a
primitive reduction relation which forms the core of both semantic relations.

The chapter ends with definitions of term contexts, that is, extensions of the syntax
with “holes”, which are useful for comparison with the relational approach in the subsequent
chapters.

2.1 Syntax

The syntax of expressions and values is defined by the grammar in Table 2.1. We operate with
a reduced syntax where occurrences of expressions in many syntactic positions are restricted
to be values. Values are a syntactic subcategory of expressions and include functions, tuples

(Exp) a, b ::= u | let x= a in b | u v

| case u of 〈x1, . . . , xn〉. a
| case u of inj1 x1. a1 [] . . . [] injn xn. an

(Val) u, v ::= x | λx. a | 〈u1, . . . , un〉 | inji u

Table 2.1: Syntax

9

10 CHAPTER 2. A DETERMINISTIC FUNCTIONAL LANGUAGE

of values and injections of values into sums. We let x, y, z, f, g, h range over an infinite
set of variables. As the language is call-by-value, variables range over values. Therefore
variables are themselves syntactically categorised as values. There is a primitive let construct
which is the only means of sequencing expressions. The reduced syntax is important for the
simplicity and uniformity of our operational arguments later on, but otherwise the restriction
is immaterial: it is easy to map the richer syntax of FPC or Standard ML into reduced
form by explicitly sequencing subexpressions in let bindings. Our presentation of the syntax
is inspired by Moggi’s computational λ-calculus (Moggi 1989) and the distinction between
values and computations in his monadic meta-language (Moggi 1991); see Sabry and Wadler
(1996).

The scope of λ, let, and case extends as far to the right as possible, e.g., the term λx. x v

parses as λx. (x v).
In let x=b in a and λx. a, x is bound in a. In case u of inj1 x1. a1 [] . . . [] injn xn. an, xi is

bound in ai, for i ∈ 1..n. In general, in phrases of the form x. a, x is bound in a. Expressions
are identified up to α-renaming of bound variables.

We use the notation ~a, ~u, ~x, . . . for finite lists of expressions, values, variables, etc. In
the case of variables, the variables x1 . . . xn in ~x are always assumed to be pairwise distinct.

Exp~x and Val~x are the sets of expressions and values, respectively, with free variables
contained in ~x. Exp0 and Val0 are the sets of closed expressions and values, i.e., those with
no free variables. Notice that Val~x ⊆ Exp~x and Val0 ⊆ Exp0.

Let a[u/x] denote the result of capture-free substitution of the value u for all free oc-
currences of the variable x in a, and let a[~u/~x] be the result of simultaneous, capture-free
substitution of values ~u = u1 . . . un for variables ~x = x1 . . . xn in a. If ~x are not free in ~u

then a[~u/~x] = a[u1/x1] . . . [un/xn]. (See Stoughton (1988) for a precise definition of simultaneous
substitution.)

2.1.1 Examples

When no confusion arises, we shall sometimes write expressions in value positions as abbre-
viation for the appropriate let-construction, e.g., for any non-value a,

case a of 〈~x〉. b def
= let x= a in case x of 〈~x〉. b

a v
def
= let x= a in x v

where x does not occur free in b and v. In accordance with the latter abbreviation we let
function application associate to the left, u v1 v2 = (u v1) v2.

Sequential composition can be encoded using let,

(a ; b)
def
= let x= a in b

where x is not free in b.

2.2. OPERATIONAL SEMANTICS 11

Here is a list of some other useful abbreviations that we shall use.

true
def
= inj1〈 〉

false
def
= inj2〈 〉

0
def
= inj1〈 〉

succ u
def
= inj2 u

nil
def
= inj1〈 〉

cons〈u, v〉 def
= inj2〈u, v〉

(true, 0, and nil are identical but they will be given different types in §2.3.)
Function bodies and the branches of case expressions for sums are of the form x. a. We

shall use the abbreviation 〈x1, . . . , xn〉. a for x. (case x of 〈x1, . . . , xn〉. a) when x is not
free in a. Then we can construct a conditional expression as

if a then b1 else b2
def
= case a of inj1〈 〉. b1 [] inj2〈 〉. b2

and we can express uncurried functions concisely, e.g., λ〈x, y〉. 〈y, x〉 swaps the components
of a pair. We can write case-splits on natural numbers and lists as follows,

case u of 0. a [] succ(x). b

case u of nil. a [] cons〈x, y〉. b
For unary sums we write inj in place of inj1 and we use the abbreviation

λinj x. a
def
= λx′. case x′ of inj x. a

Unary sums become important in §2.3 when we want to type recursive functions because sum
types are recursive. For example, if we write a diverging expression Ω as

Ω
def
= (λinj f. f (inj f)) (inj λinj f. f (inj f))

it will be well typed. Similarly, the following call-by-value version of Curry’s fixed point
combinator will be well typed in §2.3.

Y
def
= λg. fix[g]

where

fix[u]
def
= (λinj y. u (λx. y (inj y)x)) (inj λinj y. u (λx. y (inj y)x))

2.2 Operational semantics

In this section we give a joint presentation of two conventional forms of operational semantics,
a big-step evaluation semantics and a small-step transition semantics. First, a so-called primi-
tive reduction relation formalises the beta-reductions for all non-value expression constructors
other than let. This primitive reduction relation forms the core of both the evaluation re-
lation and the transition relation. Each of these can be defined by just three rules, given
the primitive reduction relation. This will be an advantage throughout the dissertation as it
simplifies case analyses of derivations of evaluations and transitions.

12 CHAPTER 2. A DETERMINISTIC FUNCTIONAL LANGUAGE

(Redex apply) (λx. a) v → a[v/x]

(Redex case ×) case 〈~u〉 of 〈~x〉. a→ a[~u/~x]

(Redex case +) case inji u of inj1 x1. a1 [] . . . [] injn xn. an → ai[u/xi], if i ∈ 1..n

Table 2.2: Primitive reduction relation

(Eval value) v v

(Eval redex)
b v

a v
if a→ b

(Eval let)
a u b[u/x] v

let x= a in b v

Table 2.3: Evaluation relation

(Trans redex) a� b, if a→ b

(Trans let beta) let x= u in b� b[u/x]

(Trans let left)
a� a′

let x= a in b� let x= a′ in b

Table 2.4: Transition relation

2.2. OPERATIONAL SEMANTICS 13

2.2.1 Primitive reduction

The primitive reduction relation, →, relates closed expressions as defined by the rules in
Table 2.2. It is deterministic:

Lemma 2.2.2 If a→ b and a→ b′ then b = b′.

Proof By inspection of the primitive reduction rules. 2

Actually, the primitive reduction relation is a fully fledged transition relation for expres-
sions without occurrences of let. (This sublanguage is not entirely uninteresting as it is the
image of a CPS transformation of the full language; however, we shall not pursue this topic.)
For instance, Ω is defined without use of let, so all its transitions are primitive reductions.
Indeed, there is an infinite sequence of reductions starting from Ω as one would expect:

Ω → case (inj λinj f. f (inj f)) of inj f. f (inj f) → Ω → · · ·

The motivation for introducing the primitive reduction relation is twofold. Firstly, it
saves some duplication in the definitions of the evaluation and transition relations below.
Secondly, the defining rules are structural : reduction is determined by the outermost syntactic
structure of expressions in a regular way; this regularity is captured in the next chapter, §3.10,
in a relational formulation which simplifies many relational proofs in the remainder of the
dissertation. We discuss these points in more depth in §2.2.8 after the definitions of the
evaluation and transition relations.

2.2.3 Evaluation

The first form of operational semantics is an evaluation relation between closed expressions
and values, a v; we say that a evaluates to v and that v is the outcome of a. The evaluation
relation is defined inductively as the least relation closed under the three rules in Table 2.3.
The definition is quite concise because all other expression constructs than let are processed
by the primitive reduction relation.

Evaluation is deterministic:

Proposition 2.2.4 If a v and a v′ then v = v′.

Proof By induction on the derivation of a v, using Lemma 2.2.2. 2

An expression a terminates if a v for some v. Otherwise a diverges. For instance, any
derivation of an evaluation Ω v must be of the following form derived from (Eval redex)
and the sequence of primitive reductions from Ω mentioned at the end of §2.2.1.

...

Ω v

case (inj λinj f. f (inj f)) of inj f. f (inj f) v

Ω v

Because of the recurrence of Ω v as a premise in the derivation, there cannot be any finite
derivation tree for Ω v. Therefore Ω diverges.

14 CHAPTER 2. A DETERMINISTIC FUNCTIONAL LANGUAGE

2.2.5 Transitions

The rules in Table 2.4 define a transition relation, �, between closed expressions. The rule
(Trans redex) includes the primitive reduction relation, →, in the transition relation; (Trans
let beta) is a beta reduction rule for let; and (Trans let left) specifies the reduction strategy.

A transition sequence is a sequence of closed expressions, a0a1 . . . , such that a0 � a1 �
. . . . A terminating transition sequence is a finite transition sequence that ends with a value.

There is the following relationship between evaluation and terminating transition se-
quences (�∗ denotes the reflexive transitive closure of �).

Proposition 2.2.6 a u if and only if a�∗ u.

Consequently, Proposition 2.2.4 asserts that terminal values of terminating transition se-
quences are unique.

The transition relation is deterministic:

Proposition 2.2.7 If a� b and a� b′ then b = b′.

Proof By induction on the derivation of a� b, using Lemma 2.2.2. 2

As an example of transitions let us look at the operational behaviour of Y and fix.

Y u� fix[u]�2 u (λx. fix[u]x)

λx. fix[u]x is a fixed point of u to the extent that

(λx. fix[u]x) v�3 u (λx. fix[u]x) v

so that

(λx. fix[u]x) v�∗ v′ iff u (λx. fix[u]x) v�∗ v′

for all values v and v′.

2.2.8 Discussion

We mentioned above that the definition of primitive reductions is structural in the sense that
reduction is determined by the outermost syntactic structure of expressions. The definitions of
the evaluation relation and the transition relation are not structural: the evaluation relation
may reduce redexes everywhere in a term and the transition relation may rewrite a redex
which occurs arbitrarily deep within an evaluation context. It is possible to define a structural
transition relation by adopting the β and associativity reduction rules for let from Moggi’s
computational λ-calculus (Moggi 1989),

(Redex let beta) let x= u in b→ b[u/x]

(Redex let assoc) let x= (let x′= a′ in a) in b→ let x′ = a′ in (let x= a in b)

However, there is a subtle way in which these two reduction rules are “less structural” than
primitive reductions: the primitive reductions are all determined by the outermost syntactic

2.3. TYPES 15

non-value constructor and, in some cases, by the value constructors of immediate value sub-
terms; they are all “uniform” with respect to all proper subterms which do not occur in value
positions on the left hand side. It is a bit tricky to make this notion of uniformity precise in an
explicit way but we shall formalise it in terms of relations in the next chapter, §3.10. For now,
we just remark how the (Redex let beta) and (Redex let assoc) reduction rules are not uniform
in the left expression subterm: the form of the left subexpression—value or let—determines
the outcome and, moreover, (Redex let assoc) takes apart the left subexpression.

The bottom line is that the strong structural property of primitive reductions allows us to
establish a precise and general result about primitive reductions in §3.10 which is very useful
throughout in the relational reasoning in later chapters.

2.3 Types

The type system for the language is monomorphic and includes function spaces, product
types and recursive sum types. It differs from FPC only in that sums and recursive types
are fused into one type construct for recursive sums as in Standard ML—the difference is
insignificant but our choice is convenient because it allows us to use the same expression
syntax for introduction and elimination of sums and recursive types.

The syntax for types is given by the grammar (where n ≥ 0):

(Type) t ::= t1 ⇀ t2 | t1 × . . .× tn | µχ. t1 + . . .+ tn | χ

χ ranges over a set of type variables. In µχ. t1 + . . .+ tn, χ is bound in t1, . . . , tn. A type
is closed if it has no free type variables. Type0 is the set of closed types. We write t[t

′
/χ] for

the substitution of t′ for the free occurrences of χ in t.
Let unit and void denote the empty product type and empty sum type, respectively,

unit
def
= t1 × . . .× tn, when n = 0

void
def
= µχ. t1 + . . .+ tn, when n = 0

The notation for unary product types is ambiguous, but we shall never explicitly use unary
product types, so a type t should never be read as the unary product type with component
type t—we might exclude unary product types altogether as in Standard ML.

A type environment Γ is of the form ~x : ~t and associates each variable xi in ~x with the
corresponding type ti in~t. We write ~x :~t ` a : t to mean that a ∈ Exp~x has the closed type
t in the type environment ~x :~t. We write just a : t if ∅ ` a : t where ∅ denotes the empty
type environment. The rules for type assignment are given in Table 2.5. One can check that
~x :~t ` a : t implies a ∈ Exp~x by induction on the derivation of ~x :~t ` a : t.

Typings are not unique, e.g., for the identity function we have that λx. x : t⇀ t for every
closed type t.

Proposition 2.3.1 Type assignment is closed under

1. weakening, Γ ` a : t and Γ ⊆ Γ′ imply Γ′ ` a : t, where Γ ⊆ Γ′ means that all variable
bindings xi : ti in Γ occur in Γ′, in any order; and

2. value substitution, Γ, x : t ` a : t′ and Γ ` u : t imply Γ ` a[u/x] : t′.

16 CHAPTER 2. A DETERMINISTIC FUNCTIONAL LANGUAGE

(Type var) Γ, x : t,Γ′ ` x : t

(Type let)
Γ ` a1 : t1 Γ, x : t1 ` a2 : t2

Γ ` let x= a1 in a2 : t2

(Type fun)
Γ, x : t1 ` a : t2

Γ ` λx. a : t1 ⇀ t2

(Type apply)
Γ ` u : t1 ⇀ t2 Γ ` v : t1

Γ ` u v : t2

(Type product)
Γ ` u1 : t1 . . . Γ ` un : tn

Γ ` 〈u1, . . . , un〉 : t1 × . . .× tn

(Type case ×)
Γ ` u : t1 × . . .× tn Γ, x1 : t1, . . . , xn : tn ` a : t

Γ ` case u of 〈x1, . . . , xn〉. a : t

(Type sum)
Γ ` u : ti[t/χ]

Γ ` inji u : t
if t = µχ. t1 + . . .+ tn and i ∈ 1..n

(Type case +)
Γ ` u : t Γ, x1 : t1[t/χ] ` a1 : t′ . . . Γ, xn : tn[t/χ] ` an : t′

Γ ` case u of inj1 x1. a1 [] . . . [] injn xn. an : t′

if t = µχ. t1 + . . . + tn and n ≥ 1

Table 2.5: Type system

2.3. TYPES 17

2.3.2 Examples

Some useful type abbreviations are:

bool
def
= µχ.unit + unit

nat
def
= µχ.unit + χ

t list
def
= µχ.unit + (t× χ)

It is easy to check that the derived notation in §2.1 for Boolean constants, conditional ex-
pressions, natural numbers, and lists enjoys the expected typing properties.

Recall the combinators Ω and Y from §2.1.

Ω
def
= (λinj f. f (inj f)) (inj λinj f. f (inj f))

Y
def
= λg. fix[g]

fix[u]
def
= (λinj y. u (λx. y (inj y)x)) (inj λinj y. u (λx. y (inj y)x))

The diverging expression Ω can be assigned any type t, and g : t ⇀ t ` fix[g] : t and
Y : (t⇀ t)⇀ t hold for every function type t. For illustration, let us work out the derivation
of the type judgment Ω : unit. We show the derivation tree for λinj f. f (inj f) : µ⇀ unit,

where µ
def
= µχ. χ⇀ unit, from which the reader is invited to derive that Ω : unit.

f : µ⇀ unit ` f : µ⇀ unit

f : µ⇀ unit ` f : µ⇀ unit

f : µ⇀ unit ` inj f : µ

f : µ⇀ unit ` f (inj f) : unit

f ′ : µ ` case f ′ of inj f. f (inj f) : unit

λinj f. f (inj f) : µ⇀ unit

If we consider the simpler combinators

Ω′
def
= (λf. f f) (λf. f f)

Y′
def
= λg. (λy. g (λx. y y x)) (λy. g (λx. y y x))

they cannot be assigned any types because in the self applications f f and y y the operator
and the operand must have the same type which makes it impossible to instantiate the typing
rule (Type apply) for application.

2.3.3 Soundness

The type system satisfies type preservation (subject reduction) and type soundness (well
typed programs don’t go wrong) properties with respect to the evaluation and transition
relations from §2.2. We outline the proofs because they illustrate the advantage of specifying
the two semantic relations in terms of the primitive reduction relation: the common parts of
the two proofs can be formulated as the following type preservation lemma for the primitive
reduction relation.

Lemma 2.3.4 If a : t and a→ b then b : t.

18 CHAPTER 2. A DETERMINISTIC FUNCTIONAL LANGUAGE

Proof By inspection of the primitive reduction rules, Table 2.2, using Proposition 2.3.1. 2

Proposition 2.3.5 If a : t and a v then v : t.

Proof By induction on the derivation of a v, using Lemma 2.3.4 and Proposition 2.3.1.
2

Proposition 2.3.6 If a : t and a� b then b : t.

Proof By induction on the derivation of a� v, using Lemma 2.3.4 and Proposition 2.3.1.
2

The transition relation also satisfies a type soundness property. This can be established
via the following property of the primitive reduction relation.

Lemma 2.3.7 If a : t, either a is a value or a is a let expression or a→ b for some b.

Proof By inspection of the derivation of a : t. 2

The type soundness property is that well typed programs don’t go wrong, that is, a well
typed program can always do a transition unless it is already a value:

Proposition 2.3.8 If a : t, either a is a value or a� b for some b.

Proof By induction on the derivation of a : t, using Lemma 2.3.7. 2

2.4 Contexts

This chapter closes with extensions of the syntax and types for expressions to term contexts.
Intuitively, a context is a term containing holes that may be filled by other terms. Contexts
will play an important role in formulating and proving the results in the next chapters.
Although we shall generally avoid working with explicit representations of contexts, we now
give a formal definition of contexts.

2.4.1 Evaluation contexts

A simple form of contexts are evaluation contexts (Felleisen and Friedman 1987). An evalu-
ation context, E, is a closed expression with a hole, •, at redex position.

(EvCtx) E ::= • | let x= E in b, b ∈ Expx

We write E[[a]] for the expression obtained by filling in a closed expression a for the occurrence
of • in E.

The definition of evaluation contexts embodies the call-by-value evaluation strategy of the
language: a let expression, let x= a in b, first evaluates a. This is reflected by the facts that
evaluation factors through evaluation contexts,

E[[a]] v iff ∃u. a u & E[[u]] v (2.1)

and transitions are closed under evaluation contexts, in the sense that

a� b implies E[[a]]� E[[b]] (2.2)

for all evaluation contexts E.
Evaluation contexts are particularly simple examples of contexts because they are closed

and the holes do not occur under variable binders.

2.4. CONTEXTS 19

2.4.2 Abstractions and variable capturing contexts

We now proceed to consider variable capturing contexts. In order to give a well behaved
definition of these, we introduce some notation which will also serve as the basis of our
formalisation of relations between expressions in Chapter 3.

We first introduce a new meta-syntactic category of abstractions. (They are meta-syntax
because they do not occur in the ordinary syntax of the language.) A term of the form (~x)a
is an abstraction of a ∈ Exp~x; the (~x) prefix is a binder and ~x is subject to α-renaming.
Correspondingly, we introduce abstraction types of the form (~t)t. An abstraction (~x)a has
abstraction type (~t)t, written (~x)a : (~t)t, if ~x :~t ` a : t.

(AbstrType) θ ::= (~t)t

(Abstr) φ ::= (~x)a

We already saw an example of an abstraction,

fix = (g) (λinj y. g (λx. y (inj y)x)) (inj λinj y. g (λx. y (inj y)x))

and fix : (t⇀ t) t for all function types t.
We identify every closed expression a and type t with the 0-ary abstraction ()a and the

0-ary abstraction type ()t.
A variable capturing context C is an expression with occurrences of pseudo-expressions

ξ[~x] where ξ is an abstraction variable, ξ : (~t)t; the pseudo-expression ξ[~x] plays the role of
an expression of type t and with free variables ~x : ~t. Let φ range over abstractions and θ

range over abstraction types. If C has occurrences of abstraction variables ~ξ : ~θ and we have

abstractions ~φ : ~θ, then C[[~φ/~ξ]] denotes the expression obtained by filling φi[~x] in for every
pseudo-expression ξi[~x] in C.

The hole • from §2.4.1 is a distinguished 0-ary abstraction variable; we reserve the notation
C[[a]] as abbreviation for C[[a/•]] whenever C is a context with • as the only abstraction variable.

2.4.3 Substituting contexts

A more general class of contexts, which we call substituting contexts, is obtained if we al-
low pseudo-expressions of the form ξ[~U] where, recursively, U1 . . . Un are substituting value
contexts (substituting contexts with a value constructor as outermost syntactic constructor).

(SubstCtx) A ::= ξ[~U] | U | let x=A in A′ | U U ′

| case U of 〈x1, . . . , xn〉. A
| case U of inj1 x1. A1 [] . . . [] injn xn. An

(SubstValCtx) U ::= x | λx.A | 〈U1, . . . , Un〉 | inji U

When an abstraction (~x)a is filled in for an abstraction variable ξ in a substituting context
A, written, A[[(~x)a/ξ]], every occurrence of pseudo-expressions of the form ξ[~U] in A is replaced

by a[~U [[(~x)a/ξ]]/~x]. So a substituting context A may substitute arbitrary values for the free
variables ~x of a when (~x)a is filled in for an abstraction variable ξ in A, and these values may
again have occurrences of ξ which are also filled by (~x)a. This is more general than variable
capturing contexts C which only bind or rename the variables ~x when (~x)a is filled in for ξ
in C.

20 CHAPTER 2. A DETERMINISTIC FUNCTIONAL LANGUAGE

Occasionally, typing judgments of the form ~ξ : ~θ,Γ ` A : t will be used to mean that A
would have type t in the type environment Γ were every ξi in A an abstraction of abstraction

type θi; so Γ ` A[[~φ/~ξ]] : t holds whenever ~φ : ~θ.
The definition of substituting contexts reflects the call-by-value nature of the language

in the way that the arguments ~U of pseudo-expressions ξ[~U] are constrained to produce val-
ues upon instantiation of their abstraction variables. Otherwise substituting contexts and
abstraction variables correspond to ‘meta-terms’ and ‘meta-variables’ in Klop, van Oostrom,
and van Raamsdonk (1993) or ‘extended expressions’ and ‘function variables’ in Pitts (1994b);
see also Martin-Löf’s theory of arities (Nordström, Petersson, and Smith 1990), the higher-
order syntax of Pfenning and Elliott (1988), and Talcott’s binding structures (Talcott 1993;
Agha, Mason, Smith, and Talcott 1997; Mason 1996). Pitts (1994b) advocates a form of
substituting contexts as a generalised notion of contexts in place of conventional variable
capturing contexts because the latter cannot be identified up to α-renaming of bound vari-
ables. However, the elaborate definition in §2.4.2 of variable capturing contexts and hole
filling in terms of abstraction variables and abstractions does not suffer from this deficiency.
Nevertheless, the notion of substituting contexts, in some form or another, turns up in many
syntactic operational arguments when one wants to trace the structure of composite terms
across β-reductions that perform syntactic substitutions; see, e.g., Klop, van Oostrom, and
van Raamsdonk (1993), Talcott (1998), and Sands (1998a). In the relational reasoning of
Chapters 4, 6 and 8 this phenomenon appears frequently, albeit implicitly in terms of “sub-
stituting context closure” of relations. In general, the relational theory in the remainder of the
dissertation eschews explicit term contexts by operating with more convenient relational rep-
resentations. But it is instructive to compare the latter with the notions of variable capturing
contexts and substituting contexts as we go along.

Chapter 3

Relations

This chapter introduces our notation for relations on terms and defines various operations
on relations. Compatible refinement and various forms of context closure are of particular
importance. Their precise definitions are key to the relational proofs in later sections. The
relations and relational operators that we introduce satisfy a rich collection of useful properties
connected to term substitution, variable capturing contexts, and substituting contexts. These
elements are specific to variable-binding terms and take us beyond the classical calculus of
relations of de Morgan and Pierce (cf. Tarski 1941; Pratt 1992), and the term relations
considered in most of the literature about algebraic specifications (Wirsing 1990) and term
rewriting (Klop 1992). Rather, our relational algebra builds on the syntactic methods of
Howe (1996), Sangiorgi (1994), Gordon (1994, 1995a), and Pitts (1995) for reasoning about
bisimulation in process calculi and functional calculi.

Relations and terms are quite simple entities and an effort will be made to develop the
theory with mathematical rigour but without difficult proofs. Everything is based on simple
inductive definitions and proofs by induction. The proof steps are kept simple by avoiding
unwieldy notions of syntactic occurrences and explicit term contexts. This should make the
proof steps simpler and it appears to encourage a high degree of mathematical rigour and
attention to detail, whereas arguments about explicit contexts more often relies on (sometimes
deceptive) intuitions. In many cases we argue algebraically in a “point-free” fashion, e.g., we
do induction by checking that a relation is a pre-fixed point of a monotone operator by means
of algebraic laws of the relational operators, instead of “pointwise” proofs where the terms
being related are made explicit and inductions are on the derivation of relationships between
terms. Our choice between the two is motivated by the fact that the point-free style is a good
benchmark for the pragmatic “completeness” of the relational algebra.

For the sake of concreteness, the theory given below is developed for terms of the particular
functional language from the preceding chapter, and the treatment of values and substitutions
are tailored to the call-by-value nature of the language. It is relatively straightforward to see
how the operations extend to other language constructs and general term substitutions. We
discuss these and other extensions of the framework at the end of the chapter. Most of the
theory is developed for binary relations but at the end of the chapter §3.9 outlines extensions
to relations of higher arity.

The exposition introduces a certain amount of relational concepts and notation, and the
reader may find the symbol index on page 125 helpful for keeping track of them all. It is not
easy to come up with lucid, concise, and consistent terminology and notation. Several new

21

22 CHAPTER 3. RELATIONS

relational operations are introduced but for existing notions an attempt has been made to
adhere to existing notation in the literature on operationally-based term relations, e.g., Howe
(1996), Gordon (1995c) and Pitts (1997a). However, one finds many conflicting notations for
all the relational constants and operators, in particular, none of our notation coincides with
that used in the mathematical literature on the calculus of binary relations (see Pratt 1992).

3.1 Binary relations

A binary relation R is a set of pairs, R ⊆ D × D′, where D and D′ are the domain and
the co-domain of R, respectively. We use infix notation, q R q′, to mean (q, q′) ∈ R. The

reciprocal relation of R, written Rop, is defined by q Rop q′
def⇔ q′ R q. Relation composition

is written by juxtaposition, q RS q′ def⇔ ∃q′′. q R q′′ ∧ q′′ S q′.
Suppose R has identical domain and co-domain. Then R is reflexive if q R q for all q in

the domain. We let Rn denote the n-fold composition of R with itself, R+ def
=
⋃
n≥1Rn is

its transitive closure, and R∗ def
=
⋃
n≥0Rn is its reflexive transitive closure. R is transitive

if RR ⊆ R or, equivalently, if R+ ⊆ R. We call R symmetric if q R q′ whenever q′ R q.
The symmetrisation of any relation R is the largest symmetric relation contained in R, i.e.,
R ∩Rop (we choose not to call it “symmetric closure” because the latter terminology might
be taken to mean the smallest symmetric relation which contains R, i.e., R∪Rop).

3.2 Open and closed relations

Let Rel|(~t)t be the universal relation on abstractions of type (~t)t,

Rel|(~t)t =
{(

(~x)a, (~x)a′
)
| ~x :~t ` a : t and ~x :~t ` a′ : t

}
Rel is the abstraction-type indexed family of all these:

Rel = {Rel|(~t)t}(~t)t∈AbstrType

The usual operations on sets and relations extend pointwise to abstraction-type indexed
families of relations, e.g., X ⊆ Rel if X is an abstraction type indexed family of relations and
X|(~t)t ⊆ Rel|(~t)t for every abstraction type (~t)t. Let ∅ denote the family of empty relations

and Id the family of identity relations. We write ~x : ~t ` a X a′ : t or (~x)a X (~x)a′ : (~t)t
whenever ((~x)a, (~x)a′) ∈ X|(~t)t. When (~x)a and (~x)a′ are 0-ary (i.e., they are just the closed

expressions a and a′) we write a X a′ : t.
An open relation is any R ⊆ Rel which is closed under weakening (cf. Proposition 2.3.1):

Γ ` a R a′ : t and Γ ⊆ Γ′ imply Γ′ ` a R a′ : t (3.1)

For instance, Rel, ∅ and Id are open relations. Let REL ⊆ P(Rel) be the set of all open
relations, ranged over by R,S. We call open relations R ∈ REL reflexive if Id ⊆ R.

A closed relation R is an open relation which satisfies that

Γ ` a R a′ : t iff ` a R a′ : t

for all Γ, a, a′, and t. Hence, closed relations only relate closed expressions. ∅ is a closed
relation. Let REL0 ⊆ P(Rel) be the set of all closed relations, ranged over by R,S.

3.3. MATCHING VALUES 23

(Match var) Γ, x : t,Γ′ ` x R x : t

(Match fun)
Γ, x : t1 ` a R a′ : t2

Γ ` λx. a R λx. a′ : t1 ⇀ t2

(Match product)
Γ ` u1 R u′1 : t1 . . . Γ ` un R u′n : tn

Γ ` 〈u1, . . . , un〉 R 〈u′1, . . . , u′n〉 : t1 × . . .× tn

(Match sum)
Γ ` u R u′ : ti[t/χ]

Γ ` inji u R inji u
′ : t

if t = µχ. t1 + . . .+ tn and i ∈ 1..n

Table 3.1: Matching values

REL and REL0 are each closed under relation composition, intersections and unions and
both form complete lattices ordered by subset inclusion.

Because of the type preservation results from §2.3.3 we shall, whenever it is convenient,
tacitly regard the operational relations from §2.2 as the closed relations given by

Γ ` a→ b : t, if a : t and a→ b

Γ ` a v : t, if a : t and a v

Γ ` a� b : t, if a : t and a� b

It is easy to see that these closed relations are closed under weakening. All the operations on
open and closed relations that are presented in the sequel preserve closure under weakening,
as can easily be checked.

We define a projection (·)0 : REL → REL0 that maps any open relation R ∈ REL into
the closed relation R0 ∈ REL0 given by

Γ ` a S0 a
′ : t iff a S a′ : t (3.2)

It satisfies R0 ⊆ R and S0 = S, for all R ∈ REL and S ∈ REL0, as expected.

3.3 Matching values

Open relations are relations between expressions. In some cases we are interested in relations
on values only. Since values are special cases of expressions, every open relation R immediately
induces a relation on values by restriction. Nonetheless, we shall use another construction
instead, akin to Gordon’s ‘matching values’ (Gordon 1995b), which turns out to be more
convenient. For every open relation R, let R ∈ REL relate ‘matching’ values built from
identical value constructors and with function bodies pairwise related by R. This is defined
inductively by the rules in Table 3.1.

The matching values operator is monotone and preserves reflexivity, transitivity, and
symmetry. In fact, it commutes with relation composition and reciprocation:

R S = RS (3.3)

R
op

= Rop (3.4)

24 CHAPTER 3. RELATIONS

Let t be a ground type if it is built from products and recursive sums only, e.g., unit, nat
and nat list are ground types. For arbitrary open relations R and ground types t, R|t is the
identity relation on values of type t,

Γ ` v R v′ : t iff v = v′, if Γ ` v : t and Γ ` v′ : t (3.5)

This follows by induction on the derivation of Γ ` v : t.
To motivate the definition of matching values, a few words about the use of relations in

later chapters are appropriate. The relations R that we shall be working with are, generally,
semantic preorders or equivalences of some kind which satisfy that (closed) values are related
if and only if they have the same observable outermost value constructors and the subterms
underneath are again related, i.e., R is the same as R on (closed) values. It is often convenient
to anticipate this and refer to R, where this structure is made explicit, rather than to R itself.
For instance, we do this in the definition of relation substitution below.

3.4 Substitution

For open relations R and S, the relation substitution of S into R, written R[S], is an open
relation between expressions obtained by simultaneous substitution of S related values into
R related expressions,

Γ, ~x :~t ` a R a′ : t Γ ` ~u S ~u′ :~t
Γ ` a[~u/~x] R[S] a′[~u

′
/~x] : t

where Γ ` ~u S ~u′ : ~t is shorthand for Γ ` ui S u′i : ti, for all i = 1 . . . n, if ~u : ~t, ~u′ : ~t, and
~t = t1 . . . tn for some n ≥ 0.

Relation substitution is associative; we have that R ⊆ R[S], for arbitrary R,S ∈ REL;
and R = R[S], whenever R ∈ REL0.

We call R ∈ REL substitutive if R[R] ⊆ R (i.e., R[R] = R because the reverse inclusion
holds for arbitrary R), and R is closed under substitutions if R[Id] ⊆ R (i.e., R[Id] = R). Any
substitutive and reflexive open relation is closed under substitutions. Each of these properties
is preserved by relation composition.

The following lemma addresses the behaviour of substitution with respect to relation
composition and matching values.

Lemma 3.4.1 For all R,R′, S, S′ ∈ REL,

(1) (RR′)[S S′] ⊆ (R[S])(R′[S′]),

(2) R[S] ⊆ R[S] ∪ S

(3) R[R] = R, if R is substitutive

Proof (1) Suppose Γ ` a[~u/~x] (RR′)[S S′] a′[~u
′
/~x] : t because Γ ` a RR′ a′ : t and Γ `

~u S S′ ~u′ : t. They must be derived from Γ ` a R a′′ R′ a′ : t and Γ ` ~u S ~u′′ S′ ~u′ : t, for
some a′′ and ~u′′. Hence Γ ` a[~u/~x] R[S] a′′[~u

′′
/~x] : t and Γ ` a′′[~u′′/~x] R′[S′] a′[~u

′
/~x] : t, and we

conclude that Γ ` a[~u/~x] (R[S])(R′[S′]) a′[~u
′
/~x] : t, as required.

(2) follows if

Γ, ~x :~t ` v R v′ : t & Γ ` ~u S ~u′ :~t ⇒ Γ ` v[~u/~x] R[S] ∪ S v′[~u′/~x] : t

3.4. SUBSTITUTION 25

which we prove by induction on the derivation of Γ, ~x : ~t ` v R v′ : t from the rules in
Table 3.1. We show one case for illustration, and we pick (Match fun) in order to illustrate
the role of weakening. So, in this case v = λx. a, v′ = λx. a′ and t = t′ ⇀ t′′ such that
Γ, ~x : ~t, x : t′ ` a R a′ : t′′. Both R and S are closed under weakening, as they are open
relations. Therefore Γ, x : t′, ~x : ~t ` a R a′ : t′′ and Γ, x : t′ ` ~u S ~u′ : ~t. Hence Γ, x : t′ `
a[~u/~x] R[S] a′[~u

′
/~x] : t′′. By monotonicity, (Match fun), and substitution under λ, we conclude

that Γ ` (λx. a)[~u/~x] R[S] ∪ S (λx. a′)[~u
′
/~x] : t, as required.

(3) is immediate from (2) and the definition of substitutivity. 2

Given any relation R ∈ REL, its open extension, R◦ ∈ REL, is given by

∀~u :~t. a[~u/~x] R a′[~u/~x] : t

~x :~t ` a R◦ a′ : t
For example, Rel is the open extension of Rel0 and the open identity relation Id is the open
extension of Id0.

Open extension is monotone, closed under substitutions, and satisfies that

R ⊆ S◦ iff R[Id]0 ⊆ S (3.6)

These properties together with Lemma 3.4.1(1) imply that

R◦ S◦ ⊆ (RS)◦ (3.7)

The reverse inclusion does not hold in general.
Open extension on closed relations preserves and reflects transitivity as well as symmetry,

and R◦ is reflexive if and only if Id0 ⊆ R (i.e., if R is reflexive relative to Rel0).
Let us also introduce a binary operation S � R, on open relations S and R. (It will only

be used in the calculations with relation substitution in the remainder of this chapter; the
reader may want to skip its definition on first reading.) It is defined as the greatest open
relation S � R such that (S � R)[S] ⊆ R. That is, Γ ` a (S �R) a′ : t holds if and only if
Γ0 ` a[~u/~x] (S �R) a′[~u

′
/~x] : t holds whenever Γ = Γ0, ~x :~t and Γ0 ` ~u S ~u′ :~t.

We notice that S � R ⊆ R. A relation R is substitutive iff R ⊆ R � R (i.e., R = R � R),
and R is closed under substitutions iff R ⊆ Id �R (i.e., R = Id �R).

The operation S�R is anti-monotone in its first argument, S, and monotone in its second,
R.

The following adjunction with relation substitution is very useful in calculations.

R[S] ⊆ R′ iff R ⊆ S �R′ (3.8)

The “only if” implication is immediate because S � R′ is defined as the greatest R such
that R[S] ⊆ R′. For the reverse implication, supposing R ⊆ S � R′ then, by monotonicity,
R[S] ⊆ (S �R′)[S] and the result follows because (S �R′)[S] ⊆ R′, by the definitions.

In passing we note that, as a general property of adjunctions, (3.8) is equivalent to the
conjunction of

R ⊆ (S �R[S]) (3.9)

and

(S � R)[S] ⊆ R (3.10)

26 CHAPTER 3. RELATIONS

(Comp value)
Γ ` u R u′ : t

Γ ` u R̂ u′ : t

(Comp let)
Γ ` a1 R a′1 : t1 Γ, x : t1 ` a2 R a′2 : t2

Γ ` let x= a1 in a2 R̂ let x= a′1 in a′2 : t2

(Comp apply)
Γ ` u R u′ : t1 ⇀ t2 Γ ` v R v′ : t1

Γ ` u v R̂ u′ v′ : t2

(Comp case ×)
Γ ` u R u : t1 × . . .× tn Γ, x1 : t1, . . . , xn : tn ` a R a′ : t

Γ ` case u of 〈x1, . . . , xn〉. a R̂ case u′ of 〈x1, . . . , xn〉. a′ : t

(Comp case +)
Γ ` u R u′ : t Γ, x1 : t1[t/χ] ` a1 R a′1 : t′ . . . Γ, xn : tn[t/χ] ` an R a′n : t′

Γ `

 case u of inj1 x1. a1

[] . . .
[] injn xn. an

 R̂

 case u′ of inj1 x1. a
′
1

[] . . .
[] injn xn. a

′
n

 : t′

if t = µχ. t1 + . . .+ tn and n ≥ 1

Table 3.2: Compatible refinement

(see e.g. Crole 1994).
By easy calculations, using the adjunction (3.8), the following properties follows from the

corresponding properties of relation substitution in Lemma 3.4.1.

Lemma 3.4.2 For all R,R′, S, S′ ∈ REL,

(1) (S �R)(S′ �R′) ⊆ (S S′) � (RR′)

(2) S � R ⊆ S �R ∪ S

(3) R = R �R, if R is substitutive

3.5 Compatible refinement

For every open relation R, its compatible refinement R̂ ∈ REL (Gordon 1994) relates ex-
pressions with identical outermost syntactic constructor and immediate subterms pairwise
related by R. Table 3.2 makes this definition precise for our language; it is obtained quite
mechanically from the type system in Table 2.5 and the distinction between values and gen-
eral expressions in the syntax, Table 2.1. (The distinction between expressions and values
and the use of matching values is similar to the treatment of actions and yielders in action
notation in Lassen (1997).)

The restriction of compatible refinement to values coincides with matching values, i.e.,
R ⊆ R̂ and whenever R ∈ REL, Γ ` u : t and Γ ` u′ : t,

Γ ` u R̂ u′ : t iff Γ ` u R u′ : t (3.11)

3.6. COMPATIBILITY 27

Moreover, due to the reduced syntax, compatible refinement only relates values to values
and non-values to non-values:

Lemma 3.5.1 If R ∈ REL and Γ ` a R̂ a′ : t then a is a value if and only if a′ is a value.

The properties of compatible refinement are very similar to those of matching values.
Compatible refinement is monotone and preserves reflexivity, transitivity, and symmetry. It
commutes with relation composition and reciprocation:

R̂Ŝ = R̂S (3.12)

R̂
op

= R̂op (3.13)

The following lemma is the analogue of (2)–(3) in Lemmas 3.4.1 and 3.4.2. The proof is
analogous as well and is omitted.

Lemma 3.5.2 For all R,S ∈ REL,

(1) R̂[S] ⊆ ̂R[S] ∪ S

(2) Ŝ � R ⊆ S � R̂ ∪ S

(3) R̂[R] = R̂ = R � R̂, if R is substitutive

3.6 Compatibility

An open relation R is compatible if R̂ ⊆ R. Compatibility can also be expressed in terms of
contexts: a relation R is compatible if whenever φi and φ′i are abstractions related by R|θi ,
for i = 1 . . . n, so are C[[~φ/~ξ]] and C[[~φ

′
/~ξ]], for all contexts C with abstraction variables ~ξ : ~θ.

But compatible refinement provides a tractable, indirect notation for contexts that is easier
to work with. We will use it extensively for constructing and reasoning about relations and
contexts.

If a compatible relation is transitive, hence a preorder, we call it a pre-congruence. If it is
also symmetric, i.e., it is a compatible equivalence relation, we call it a congruence.

Notice that the definition of compatibility says that the compatible relations are the pre-
fixed points of compatible refinement. It is easy to see that the open identity relation, Id ,
is compatible and one can show, by induction on typings, that it is the least pre-fixed point
of compatible refinement, that is, every compatible relation is reflexive. This is called the
binary induction principle in Jacobs and Rutten (1997). We also observe that compatibility
is closed under compatible refinement.

Lemma 3.6.1 Compatibility is preserved by relation composition and transitive closure.

Proof First we observe that compatibility is preserved by relation composition: if R and
S are compatible, so is their composition, RS, because

R̂ S = R̂ Ŝ ⊆ RS.

Next, suppose R is compatible and Γ ` a R̂+ a′ : t. If this is derived by (Comp var) or
(Comp unit), a = a′ and we conclude that Γ ` a R+ a′ : t because R is compatible and thus R

28 CHAPTER 3. RELATIONS

and R+ are reflexive. Otherwise each immediate subterm ai of a is related to a corresponding
subterm a′i of a′, Γ,Γi ` ai R+ a′i : ti, for some Γi and ti. This means that there exists mi ≥ 1
such that Γ,Γi ` ai Rmi a′i : ti, where Rmi is the mi-fold composition of R with itself. Let
m be the greatest of these mi, for all pairs of subterms. Since R is compatible it is also
reflexive. Hence Γ,Γi ` a′i Rm−mi a′i : ti and then Γ,Γi ` ai Rm a′i : ti, for all corresponding

subterms ai and a′i. Hence Γ ` a R̂m a′, by definition of compatible refinement, and then
Γ ` a Rm a′ : t because compatibility is preserved by relation composition. So Γ ` a R+ a′ : t
and we conclude that R+ is compatible. 2

The universal open relation, Rel, is the largest compatible relation: it contains every open
relation, in particular, it contains R̂el and thus it is compatible. Compatibility is closed under
arbitrary intersections; the empty intersection is Rel. Therefore compatible relations form a
complete lattice, ordered by subset inclusion. The least compatible relation is Id . The least
upper bound is not just set union, because compatibility is not closed under unions; rather,
it is the intersection of all compatible upper bounds.

There is an associated closure operator, called context closure. For any open relation
R ∈ REL, its context closure, RC ∈ REL, relates expressions with matching outermost variable
capturing context C and subterms ~φ and ~φ′ related by R

Γ ` C[[~φ/~ξ]] RC C[[~φ
′
/~ξ]] : t whenever ~ξ : ~θ,Γ ` C : t and ~φ R ~φ′ : ~θ

In other words, RC is the closure of R under variable capturing contexts.
Context closure can be defined inductively by means of compatible refinement as the

smallest open relation closed under the rules:

(Ctx R)
Γ ` a R a′ : t

Γ ` a RC a′ : t

(Ctx Comp)
Γ ` a R̂C a′ : t

Γ ` a RC a′ : t

Context closure is monotone and idempotent, (RC)C = RC. By definition, RC is the
least compatible relation that contains R, so context closure could more accurately be called
‘compatible closure’ (as in Barendregt 1984). An open relation R is compatible if and only if
R = RC.

Closure under substitutions is preserved by context closure but substitutivity is not, in
general.

In several cases, we will encounter relations of the form Id [R]. It is useful to note that
Id [R] is included in the context closure of R. More precisely and more generally,

Id [RC] ⊆ R̂C (3.14)

To see this, use the adjunction (3.8) to rewrite (3.14) to Id ⊆ RC�R̂C. This follows if RC�R̂C

is compatible which can be deduced as follows.

̂
RC � R̂C ⊆ RC �

̂̂
RC ∪RC by Lemma 3.5.2(1)

⊆ RC �
̂̂

RC ∪RC since R̂C ⊆ RC

3.7. CONTEXTUAL EQUIVALENCE 29

3.7 Contextual equivalence

The relations that we shall study in the remainder are mainly semantic preorders and equiv-
alences between expressions. The most important of these is contextual equivalence (Morris
1968; Plotkin 1975). It is a standard and generally accepted syntactic definition of semantic
equivalence based on suitable observations of the operational behaviour of programs. Conven-
tionally, two expressions are defined to be contextually equivalent if they exhibit comparable
operational behaviour in all program contexts (a suitable class of closed variable capturing
contexts). One can then prove that this definition yields the largest compatible relation (and
congruence) between expressions with comparable operational behaviour. This characterisa-
tion is really the motivation for contextual equivalence and it is key to many of the relational
proofs about contextual equivalence in the sequel. In keeping with our attempts to avoid
dealing explicitly with term contexts, here we will even define contextual equivalence as the
largest compatible relation between expressions with comparable operational behaviour. This
shifts the proof obligation from proving properties based on a definition phrased in terms of
variable capturing contexts to proving the existence of a largest relation with the desired
properties. This is accomplished by means of the following lemma.

Lemma 3.7.1 Suppose P is a predicate on open relations, P ⊆ REL. If Id ∈ P and P is closed
under non-empty unions and relation composition, there exists a largest compatible relation
S in P. The relation S is transitive. It is also symmetric if P is closed under reciprocation,
i.e., if Rop ∈ P whenever R ∈ P.

Proof Suppose that P satisfies the conditions of the lemma. Let S be the union of all
compatible relations in P,

S
def
=

⋃
{R | R̂ ⊆ R ∈ P}.

Since Id is compatible and Id ∈ P, this is a non-empty union, hence S ∈ P.
By definition, S is larger than any compatible relation in P. We are going to show that

S is itself compatible, i.e., Ŝ ⊆ S. So suppose that Γ ` a Ŝ a′ : t. If this is derived by (Comp
var) or (Comp unit), a = a′ and Γ ` a S a′ : t holds because Id ⊆ S. Otherwise, a and
a′ have n ≥ 1 subterms a1 . . . an and a′1 . . . a

′
n, pairwise related by S, Γ,Γi ` ai S a′i : ti for

i ∈ 1..n. By the definition of S we see that for each i ∈ 1..n there is a compatible Ri in P
with Γ,Γi ` ai Ri a′i : ti. Now let R denote their composition,

R
def
= R1 · · ·Rn.

We note that R is compatible and in P because compatibility and P are closed under compo-
sition. Compatibility implies reflexivity, so R1 . . . Rn are all reflexive and, for each i ∈ 1..n,
we get that Γ,Γi ` ai R a′i : ti by the calculation:

Γ,Γi ` ai R1 · · · Ri−1 ai Ri a
′
i Ri+1 · · · Rn a′i : ti

Hence Γ ` a R̂ a′ : t. But R̂ ⊆ R ⊆ S, since R is compatible and in P, and thus Γ ` a S a′ : t,
as required.

We conclude that S is the largest compatible relation in P.
The composition S S is also compatible and in P, because these properties are closed under

relation composition, therefore S S ⊆ S, i.e., S is transitive and thus it is a pre-congruence.

30 CHAPTER 3. RELATIONS

If P is also closed under reciprocation, R ∈ P⇒ Rop ∈ P, then S is a congruence because
compatibility is closed under reciprocation, so Sop is compatible and in P and thus Sop ⊆ S,
i.e., S is symmetric. 2

The properties P that we shall be working with are various forms of “adequacy”. In
general, a relation is adequate with respect to some basic observation on expressions if it only
relates expressions that are observationally identical. Our basic observation is going to be
termination of closed expressions of type unit. So we say that an open relation R is adequate
if, for all a, a′ : unit,

a R a′ : unit implies a 〈 〉 ⇔ a′ 〈 〉 (3.15)

Let ADEQ denote the set of all adequate open relations,

ADEQ = {R ∈ REL | ∀a, a′. a R a′ : unit⇒ (a 〈 〉 ⇔ a′ 〈 〉)}

It satisfies the conditions of Lemma 3.7.1 and it is closed under reciprocation. We define con-
textual equivalence, ∼= ∈ REL, to be the largest compatible and adequate relation. According
to the lemma, such a relation exists and it is a congruence.

Contextual equivalence is sometimes called “observational congruence” (Meyer 1988).
Here, we effectively define contextual equivalence to be the largest congruence which respects
“observation” of termination of closed expressions of type unit.

Our definition is equivalent to the more conventional definitions in terms of variable cap-
turing contexts:

Proposition 3.7.2 Whenever ~x :~t ` a : t and ~x :~t ` a′ : t,

~x :~t ` a ∼= a′ : t iff ∀ξ, C. ξ : (~t)t ` C : unit ⇒ (C[[(~x)a/ξ]] 〈 〉 ⇔ C[[(~x)a′/ξ]] 〈 〉)

Proof If ~x : ~t ` a ∼= a′ : t and ξ : (~t)t ` C : unit then C[[(~x)a/ξ]] ∼= C[[(~x)a′/ξ]] : unit, by
compatibility. Since ∼= is adequate we get that C[[(~x)a/ξ]] 〈 〉 iff C[[(~x)a′/ξ]] 〈 〉.

Conversely, supposing a and a′ satisfy the right hand side, let R be the “singleton” open
relation between them (i.e., the smallest open relation such that ~x :~t ` a R a′ : t). We observe
that the fact that a and a′ satisfy the right hand side is equivalent to that RC is adequate.
As RC is also compatible, it is included in contextual equivalence. By (Ctx Comp) it follows
that ~x :~t ` a ∼= a′ : t, as required. 2

Contextual equivalence was introduced in this form by Morris (1968) for untyped λ-
calculus. He called it “extensional equivalence”. His notion of observation was reducibility
to αβη-normal form for arbitrary open terms. Our observation of termination of closed
expressions according to an operational semantics is closer to the definition in Plotkin (1975).

The alternative definition of contextual equivalence here, as the greatest compatible and
adequate relation, offers two advantages. One is that it can be formulated without any
reference to explicit contexts. The other is that it yields a co-induction-like proof rule for
contextual equivalence:

R̂ ⊆ R R ∈ ADEQ

R ⊆ ∼=
(3.16)

3.8. COMPATIBILITY AND SUBSTITUTIVITY 31

The arguments for transitivity and symmetry at the end of the proof of Lemma 3.7.1 were
examples of this co-induction-like reasoning.

We get that R ⊆ ∼= if and only if RC ∈ ADEQ. In particular, Γ ` a ∼= a′ : t if and only if
the singleton open relation R, which relates a and a′ at type t,

Γ′ ` a R a′ : t, whenever Γ ⊆ Γ′

and is empty otherwise, satisfies RC ∈ ADEQ. Indeed, this could be taken as the definition
of contextual equivalence as in Gordon (1998) and Gordon, Hankin, and Lassen (1997b).

3.8 Compatibility and substitutivity

Now, let us look at compatible relations which are also substitutive. Everything that we
said about the class of compatible relations can also be said about relations that are both
compatible and substitutive. The conjunct property of compatibility and substitutivity is
preserved by arbitrary intersections, by relation composition, by transitive closure, and by
compatible refinement. The latter holds because compatibility is preserved by compatible
refinement and because of Lemma 3.5.2.

The compatible and substitutive relations form a complete lattice with Rel as top element
and Id as bottom element. The associated closure operation, substitutive context closure,
RSC ∈ REL, is the closure of R ∈ REL under substituting contexts,

Γ ` A[[~φ/~ξ]] RSC A[[~φ
′
/~ξ]] : t whenever ~ξ : ~θ,Γ ` A : t and ~φ R ~φ′ : ~θ

It has a succinct inductive definition:

(SC Subst)
Γ ` a R[RSC] a′ : t

Γ ` a RSC a′ : t

(SC Comp)
Γ ` a R̂SC a′ : t

Γ ` a RSC a′ : t

In other words, RSC is the least solution to the recursive equation:

RSC = R[RSC] ∪ R̂SC (3.17)

Substitutive context closure is monotone and idempotent, and RSC is compatible and
substitutive. Compatibility is direct from (SC Comp). Substitutivity is equivalent to that
RSC ⊆ RSC�RSC. We prove the latter by induction as follows. Since RSC is the least solution
to (3.17), the result follows by induction if we can show that RSC � RSC is a pre-fixed point
(of the implicit monotone operator):

R[RSC �RSC] ∪ ̂RSC �RSC ⊆ RSC �RSC

It follows from the calculations:

R[RSC �RSC] ⊆ RSC �R[RSC �RSC][RSC] by (3.9)
⊆ RSC �R[(RSC �RSC)[RSC]] associativity of substitution
⊆ RSC �R[RSC] (3.10)
⊆ RSC �RSC (SC Subst)

̂RSC �RSC ⊆ RSC � R̂SC Lemma 3.5.2(2)
⊆ RSC �RSC (SC Comp)

32 CHAPTER 3. RELATIONS

An open relation R is compatible and substitutive if and only if R = RSC. Since RSC is
compatible and substitutive, it is also reflexive and closed under substitutions.

Clearly RC ⊆ RSC, for every open relation R. Furthermore, RC = RSC if and only if
R[RC] ⊆ RC. In other words RC is substitutive if and only if R[RC] ⊆ RC. In particular, if
R ∈ REL0, RC is substitutive because R[S] = R for arbitrary S ∈ REL.

An analogue of Lemma 3.7.1 holds for the space of compatible and substitutive relations.
It tells us that there exists a largest compatible and substitutive adequate relation. This
corresponds to the way Pitts defines observational congruence in some of his expositions
(1994a, 1998). We shall see in Chapter 4 that contextual equivalence is substitutive, so it is
the same relation as one would obtain in this fashion.

Let us mention a useful property of substitutive context closure.

Lemma 3.8.1 If R ∈ REL is a preorder and is closed under substitutions, then RSC ⊆ R̂SCR

and, symmetrically, RSC ⊆ R R̂SC.

Proof We are going to show that RSC ⊆ R̂SCR[Id]∗ for arbitrary open relations R. Then
the first inclusion of the lemma follows because R[Id]∗ ⊆ R whenever R is closed under
substitutions and is reflexive and transitive. The second inclusion follows symmetrically.

Since RSC = R[RSC]∪ R̂SC we must show that R[RSC] and R̂SC are included in R̂SCR[Id]∗.
For R[RSC] this follows by calculation,

R[RSC] ⊆ Id [RSC]R[Id] by Lemma 3.4.1(1)

⊆ R̂SCR[Id] by (3.14)

⊆ R̂SCR[Id]∗

Secondly, R̂SC ⊆ R̂SC R[Id]∗ is immediate because R[Id]∗ is reflexive. 2

A commonly used construction of compatible and substitutive relations is that of Howe’s
pre-congruence candidate relation (Howe 1996), called compatible extension by Gordon (1998).
For any closed relation R, its compatible extension R• is the smallest open relation closed
under the rule

(Cand Def)
Γ ` a R̂• a′′ : t Γ ` a′′ R◦ a′ : t

Γ ` a R• a′ : t
That is, R• is the least solution to the recursive equation:

R• = R̂•R◦ (3.18)

Furthermore, it is the least solution to the inequality:

R̂•R◦ ⊆ R• (3.19)

The following lemma lists some properties of compatible extension.

Lemma 3.8.2 For every R ∈ REL0,

(1) R• is substitutive

(2) if R◦ is reflexive, then R• is compatible and R◦ ⊆ R•

3.9. RELATIONS OF HIGHER ARITY 33

(3) if R◦ is transitive, then R•R◦ ⊆ R•

(4) if R◦ is reflexive and symmetric, then R•∗ is symmetric

Proof (1) R• is substitutive if R• ⊆ R• �R•. Recalling that R• is the least solution to
(3.19), we get the required result if R• � R• is another solution to (3.19). We see this by
calculating

R̂• �R•R◦ ⊆ (R• � R̂•)R◦ by Lemma 3.5.2(2)

= (R• � R̂•)(Id �R◦) R◦ is closed under substitutions

⊆ (R• Id) � (R̂•R◦) Lemma 3.4.2(1)
= R• �R• (3.18)

(2) Suppose R◦ is reflexive. Then R̂• ⊆ R̂•R◦. Hence R̂• ⊆ R• by (3.18) which means

that R• is compatible. Hence R̂• is compatible too and therefore R̂• is reflexive. We obtain

that R◦ ⊆ R̂•R◦ and conclude R◦ ⊆ R• by (3.18).

(3) Suppose R◦ is transitive. Then R̂•R◦R◦ ⊆ R̂•R◦ and hence R•R◦ ⊆ R• by (3.18).
(4) Suppose R◦ is reflexive and symmetric. We get that R•∗ is symmetric if R• ⊆ R•∗op.

This follows by the definiton of R• if R•∗op is a solution to (3.19), which we calculate as
follows.

̂(R•)∗opR◦ = (̂R•)∗
op
R◦op by (3.13) and symmetry

⊆ (R•)∗opR•op from (2) above and Lemma 3.6.1
= (R•)op∗R•op

= (R•)op∗

= (R•)∗op

2

3.9 Relations of higher arity

So far, we have only considered binary relations. Indeed, we shall mostly use binary relations
but it is worthwhile investigating how the theory generalises to relations of arbitrary countable
arity.

For any countable ordinal α, let Rel(α) be the universal abstraction-type indexed α-ary
relation on abstractions, i.e.,

Rel(α)|(~t)t =
{

((~xι)aι)ι<α | ~xι :~t ` aι : t for all ι < α
}

Let R ⊆ Rel(α) be an α-ary open relation if it is closed under weakening, analogously to
(3.1), and let REL(α) ⊆ P(Rel(α)) be the set of α-ary open relations. Of course, Rel(2) = Rel

and REL(2) = REL.
The bulk of the relational theory presented in the preceding sections carry over unchanged

to relations of arbitrary arity (including the notions of reflexivity, closed relations, projection,
matching values, relation substitution, substitutivity, closure under substitutions, open ex-
tension, compatible refinement, compatibility, context closure, substitutive context closure).

Exceptions are reciprocation and relation composition (and derived notions: symmetry,
symmetrisation, transitivity, transitive closure, compatible extension). They do not generalise

34 CHAPTER 3. RELATIONS

to arbitrary arity in an obvious way. Note also that the proof of Lemma 3.7.1 makes essential
use of transitivity—it is not clear which properties that the predicate P should possess, in
general, to ensure that there is a largest compatible relation S in P.

Relations of higher arities will be used in arguments about sequentiality in §4.4 and §6.8.

3.10 Structural reduction

There is a useful link between compatible refinement and the operational semantics from
Chapter 2, via the primitive reduction relation, →.

Lemma 3.10.1 Suppose R ∈ REL is substitutive. Whenever a R̂ a′ : t and a → b, there
exists b′ such that a′ → b′ and b R b′ : t.

Proof For any arbitrary open relation R we prove that

a R̂ a′ : t & a→ b ⇒ ∃b′. a′ → b′ & b R[R] b′ : t (3.20)

by case analysis of the derivation of a→ b by the rules in Table 2.2. We show only one case
for illustration.

Case (Redex apply) a→ b because a = (λx. a0) v and b = a0[v/x] for some function λx. a0

and value v. Since a R̂ a′ : t we have that a′ = (λx. a′0) v′ with x : t′ ` a0 R a′0 : t and
v R v′ : t′. Let b′ = a′0[v

′
/x] then a′ → b′, by (Redex apply), and b R[R] b′ : t, by (Comp

apply) and (Match fun).

The remaining cases are similar.
From (3.20) the result follows if R is substitutive. 2

It is not difficult to see that the proof generalises to relations of arbitrary arity:

Lemma 3.10.2 Suppose R ∈ REL(α) is substitutive. Whenever (aι)ι<α ∈ R̂|t and aι0 → bι0 ,
for some ι0 < α, there exists (bι)ι<α ∈ R|t such that aι → bι, for all ι < α.

The lemmas assert that primitive reduction is determined by the outermost syntactic
structure of expressions (in accordance with the definition of compatible refinement) and
primitive reduction operates “uniformly” on the immediate subexpressions under this out-
ermost syntactic structure. In other words, the lemmas formalise the intuitions from §2.2.1
about the “structural” nature of the primitive reduction relation. The ramifications of this
property and its relational formalisation will become apparent in the next chapter in the
proofs by induction on derivations of evaluations or transitions where the (Eval redex) and
(Trans redex) cases can, in most cases, be resolved uniformly be reference to Lemma 3.10.1
or 3.10.2.

The structural property of reductions characterised by Lemmas 3.10.1 and 3.10.2 is very
strong and depends rather heavily on the exact syntax. For instance, suppose we add projec-
tions, proji u, into the syntax, equipped with the following rules for compatible refinement
and reduction.

(Comp proj)
Γ ` u R u′ : t1 × . . .× tn
Γ ` proji u R̂ proji u

′ : ti
if 1 ≤ i ≤ n

(Redex proj) proji 〈u1, . . . , un〉 → ui, if 1 ≤ i ≤ n

3.11. FUTURE WORK 35

Then we would have to add to the lemmas the requirement that R contains its matching
values, R ⊆ R. More generally, if we require that R is compatible and substitutive in the
two lemmas, they appear to be robust with respect to most language extensions. The extra
requirement that R must be compatible should not impair the use of the lemmas significantly.

3.11 Future work

The relational algebra given here suffices for the development in the remainder of the disser-
tation of operationally-based relational reasoning techniques for the functional language from
Chapter 2 and its nondeterministic extensions in Part II. Nonetheless, it would be interesting
to further develop the relational theory in this chapter in its own right.

First of all, one might generalise the presentation of the theory to general higher-order syn-
tax (see §2.4.3) rather than just the terms of our particular functional language. This would
involve a clarification of the underlying principles of matching values, substitutions, compat-
ible refinement, and the structural property of simple reductions reflected by Lemma 3.10.1.
Perhaps the most productive approach would be to develop a paradigmatic relational theory
for Moggi’s monadic meta-language (Moggi 1991) thus encompassing both call-by-value and
call-by-name variables and reductions.

Another task is to complete the relational algebra with further operations that would
support algebraic manipulations and calculations with relations. For instance, there are
several operators in the calculus of relations (see Pratt 1992) that we have omitted but
which can be handy for defining or reasoning about relations. (The relational apparatus of
the Squiggol school (see Bird and de Moor 1997) does not seem directly relevant for our
purposes—it is mainly concerned with relations between program inputs and outputs, an
issue which is largely orthogonal to our study of relations between programs.)

Recent work by Pitts and others (Pitts 1997b; Birkedal and Harper 1997; Pitts 1998) em-
ploys the versatile notion of logical relations (surveyed in Mitchell 1990, 1996) to reason about
operational semantics and operationally-based equivalence relations. The central notions of
matching values and substitutivity in our development are reminiscent of the qualities of log-
ical relations, and it would be interesting to see if our relational algebra can contribute to
the research on syntactic logical relations. Sometimes logical relations relate terms of related
type, e.g., when used as implementation relations involving some sort of data refinement, as
in Birkedal and Harper (1997). This is more general than the term relations presented in
this chapter which only relate identically typed terms, and it suggests a generalisation of our
framework that might be worth pursuing.

As mentioned at the beginning of the chapter, efforts have been made to achieve math-
ematical rigour and simplicity in the development of the theory. The theory is also quite
versatile, as the applications in the remainder of the dissertation will show, so it could be
both feasible and useful to put the theory into an automated theorem prover to verify that the
goals of mathematical rigour and simplicity have been achieved and to provide tool support
for relational reasoning.

36 CHAPTER 3. RELATIONS

Chapter 4

Relational Reasoning

In this chapter the relational algebra from Chapter 3 is used to develop the theory of contex-
tual equivalence for the deterministic language from Chapter 2. Novel proofs of the basic laws,
sequentiality and continuity properties, induction rules, and the CIU Theorem are presented
together with proof rules for simulation up to context. Finally, operational extensionality is
proved by Howe’s method.

The phrase “relational reasoning” refers broadly to syntactic arguments that make use of
the relational algebra from the previous chapter in an essential way. More specifically, opera-
tional properties can often be proved relationally by constructing a “suitable” relation which
is shown to be “preserved by evaluation” by induction on derivations of evaluations—being
”suitable” will normally include substitutivity in order to obtain “preservation by evaluation”
which will be some form of simulation property.

The theory of contextual equivalence is basically developed in three stages, and it is
established which properties can be shown at each stage of sophistication.

First, in §4.3, it is shown that the open extension of Kleene equivalence is contained
in contextual equivalence; this basically means that the evaluation relation is contained in
contextual equivalence and that two open expressions are contextually equivalent if all their
closed instances can be shown to be contextually equivalent by means of Kleene equivalence.
This result allows us to verify basic βv-equivalences and reason about open terms, it en-
tails that contextual equivalence is substitutive, and it entails accurate characterisations of
contextual equivalence on closed expressions.

Secondly, in §4.6–4.7, new simulation rules for contextual equivalence are introduced.
They are akin to “bisimulation up to context” proof rules for process calculi (Sangiorgi 1994)
and applicative bisimulation (Pitts 1995; Sands 1998b; Lassen 1998). They enable us to
establish a recursion induction principle and to prove that contextual equivalence is closed
under open extension. The latter validates ηv-equivalence and entails the CIU Theorem.

Thirdly, in §4.8, Howe’s method is used to prove an Operational Extensionality Theorem
which is a stronger result than the CIU Theorem.

In fact, it would have been less laborious to start with the Operational Extensional-
ity Theorem and therefrom derive the results of the previous stages. But the unorthodox
presentation of the theory of deterministic contextual equivalence here clarifies how strong
assumptions each of the key properties of contextual equivalence makes about the language.
This is relevant because the CIU Theorem and operational extensionality do not hold in var-
ious ”impure” language extensions. In particular, operational extensionality does not extend

37

38 CHAPTER 4. RELATIONAL REASONING

to any of the nondeterministic extensions in Part II. In the presence of fairness in Chapter 8,
even the CIU Theorem fails.

4.1 Contextual approximation and equivalence

Let us recall the definitions of adequacy and contextual equivalence from §3.7.
The set of all adequate open relations is

ADEQ = {R ∈ REL | ∀a, a′. a R a′ : unit⇒ (a 〈 〉 ⇔ a′ 〈 〉)}

Contextual equivalence, ∼= ∈ REL, is the largest compatible and adequate relation. It
is well defined by reference to Lemma 3.7.1 and it is symmetric because adequacy is closed
under inversion, Rop ∈ ADEQ whenever R ∈ ADEQ.

In many cases it is useful to operate with a contextual approximation preorder whose
symmetrisation is the contextual equivalence relation. We first define the associated notion
of pre-adequacy as the set of open relations

PREADEQ = {R ∈ REL | ∀a, a′. a R a′ : unit⇒ (a 〈 〉 ⇒ a′ 〈 〉)}

The identity relation is pre-adequate, Id ∈ PREADEQ, and pre-adequacy is closed under
non-empty unions and relation composition. Let contextual approximation, @∼ ∈ REL, be the
the largest compatible and pre-adequate relation. Again, this exists according to Lemma 3.7.1.

Our definitions of contextual approximation and equivalence are equivalent to the more
conventional definitions in terms of variable capturing contexts: whenever ~x : ~t ` a : t and
~x :~t ` a′ : t,

~x :~t ` a @∼ a
′ : t iff

∀ξ, C. ξ : (~t)t ` C : unit ⇒ (C[[(~x)a/ξ]] 〈 〉 ⇒ C[[(~x)a′/ξ]] 〈 〉) (4.1)

~x :~t ` a ∼= a′ : t iff

∀ξ, C. ξ : (~t)t ` C : unit ⇒ (C[[(~x)a/ξ]] 〈 〉 ⇔ C[[(~x)a′/ξ]] 〈 〉) (4.2)

See Proposition 3.7.2.

4.2 Simulation

Most relational arguments about operational semantics are of the form that one term simulates
the operational behaviour of another. In order to formulate such operational simulations, we
introduce a simulation operator, 〈 · 〉 that maps any open relation R into the closed relation
〈R〉 given by:

a 〈R〉 a′ : t def⇔ ∀u. a u ⇒ ∃u′. a′ u′ & u R u′ : t (4.3)

for all a, a′ : t. The simulation operator is monotone.
We call R ∈ REL0 a (closed) simulation if it is a post-fixed point of 〈 · ◦〉, i.e., R ⊆ 〈R◦〉,

and S ∈ REL is an open simulation if it is a post-fixed point of 〈 · 〉◦.
Every simulation is pre-adequate.

4.3. KLEENE APPROXIMATION AND EQUIVALENCE 39

Suppose R is a simulation, R ⊆ 〈R◦〉. To see the role of matching values and open
extension in the definition of 〈R◦〉, it is instructive to expand the definition at function types
t1 ⇀ t2,

a 〈R◦〉 a′ : t1 ⇀ t2 iff

∀(x)b. a λx. b ⇒ ∃(x)b′. a′ λx. b′ & ∀u : t1. b[u/x] R b′[u/x] : t2

hence, related functions at type t1⇀t2 are related by R on all closed values u of the argument
type t1. At ground types t, we observe that

a 〈R◦〉 a′ : t iff ∀u. a u ⇒ a′ u

because R◦ is the identity relation on values at ground types, cf. (3.5). At compound types,
e.g., (t1 ⇀ t2) list, we have

a 〈R◦〉 a′ : (t1 ⇀ t2) list iff

∀n ≥ 0. ∀(x1)b1, . . . , (xn)bn. a cons 〈λx1. b1, . . . cons 〈λxn. bn,nil〉 . . . 〉 ⇒
∃(x1)b′1, . . . , (xn)b′n. a cons 〈λx1. b

′
1, . . . cons 〈λxn. b′n,nil〉 . . . 〉 &

∀u : t1. b1[u/x] R b′1[u/x] : t2 & . . . & bn[u/x] R b′n[u/x] : t2

hence, related lists have the same length and their elements are pairwise related.

4.3 Kleene approximation and equivalence

We will now show a number of basic results about contextual equivalence which we derive from
a simple-minded equivalence relation, called Kleene equivalence; it is included in contextual
equivalence by a straightforward relational proof. The proofs make no reference to the CIU
Theorem and operational extensionality.

Let Kleene approximation, �, and equivalence, �, be the closed relations defined by

a � a′ : t def⇔ ∀u. a u ⇒ a′ u

a � a′ : t def⇔ ∀u. a u ⇔ a′ u

for all a, a′ : t. Notice that � = 〈Id〉 and that � is the symmetrisation of �.
As a paradigmatic example of “relational reasoning” let us prove that the open extension

of Kleene approximation is included in contextual approximation.

Proposition 4.3.1 �◦ ⊆ @∼.

Proof We are going to show that �◦SC is an open simulation. Then �◦SC is pre-adequate
and, as it is compatible, it is included in contextual approximation, the largest compatible
and pre-adequate relation, and the result follows because �◦ ⊆ �◦SC.

By (3.6), �◦SC is an open simulation, �◦SC ⊆ 〈�◦SC〉◦, if and only if

�◦SC[Id]0 ⊆ 〈�◦SC〉

Furthermore, since �◦SC is closed under substitutions, �◦SC[Id] = (�◦SC), we have that

�◦SC[Id]0 = (�◦SC)0

40 CHAPTER 4. RELATIONAL REASONING

So, expanding the definition of the simulation operator (4.3), we find that we must show that

a �◦SC a′ : t & a v ⇒ ∃v′. a′ v′ & v �◦SC v′ : t

The proof is by induction on the derivation of a v.

First observe that, by Lemma 3.8.1, there exists a′′ : t such that a �̂◦SC a′′ : t and
a′′ �◦ a′ : t. Since a′′ and a′ are closed, the latter holds if and only if a′′ � a′ : t. By the
definition of Kleene approximation, it suffices to show that there exists v′ such that a′′ v′

and v �◦SC v′ : t. Then a′ v′ too, as required.
We proceed by analysis of the derivation of a v.

Case (Eval value) a v because a = v.

Since a �̂◦SC a′′ : t, we get that a′′ is a value and a �◦SC a′′ : t from Lemma 3.5.1 and
(3.11). So let v′ = a′′.

Case (Eval redex) a v because a→ b and b v.

From a �̂◦SC a′′ : t and Lemma 3.10.1, we get that a′′ → b′ with b �◦SC b′ : t. By the

induction hypothesis, b′ v′ for some v′ such that v �◦SC v′ : t. By (Eval redex),
a′′ v′ too.

Case (Eval let) a v because a = let x= a1 in b2, a1 u, and b2[u/x] v.

Since a �̂◦SC a′′ : t, the latter must be of the form a′′ = let x = a′1 in b′2 where
a1 �◦SC a′1 : t′ and x : t′ ` b2 �◦SC b′2 : t. By the induction hypothesis, a′1 u′ with

u �◦SC u′ : t′. Since �◦SC is substitutive, b2[u/x] �◦SC b′2[u
′
/x] : t, so, by the induction

hypothesis, b′2[u
′
/x] v′ for some v′ such that v �◦SC v′ : t. Finally, a′′ v′, by (Eval

let). 2

Since Kleene equivalence and contextual equivalence are both symmetrisations of the
corresponding approximation preorders, it follows that �◦ ⊆ ∼= as well.

The following example shows how contextual equivalence reflects that the language is
deterministic and history-insensitive (outcomes are reproducible).

Example 4.3.2 Let u, u′ : ((unit⇀ bool)⇀ bool) be the functions

u = λf. if f 〈 〉 then true else true

u′ = λf. if f 〈 〉 then f 〈 〉 else true

Let us show that they are contextually equivalent. By compatibility, this holds if

f : unit⇀ bool ` if f 〈 〉 then true else true ∼= if f 〈 〉 then f 〈 〉 else true : bool

By Proposition 4.3.1, it suffices to show that

if v 〈 〉 then true else true v′ ⇔ if v 〈 〉 then v 〈 〉 else true v′

for all functions v : (unit⇀ bool) and Boolean values v′. This follows from the observations
that (1) each evaluates to true if and only if v 〈 〉 evaluates to any Boolean value, true or
false; and (2) neither evaluates to false, in the latter case because the evaluation of v 〈 〉 is
deterministic, Proposition 2.2.4. 2

4.3. KLEENE APPROXIMATION AND EQUIVALENCE 41

Proposition 4.3.1 is quite a useful result about contextual approximation and equivalence.
It leads to easy proofs of many commonly used equational and inequational laws, e.g., that
any diverging expression is a syntactic bottom element in the contextual approximation order,

Γ ` a @∼ a
′ : t, if ¬∃v. a v, Γ ` a : t and Γ ` a′ : t (4.4)

and that the evaluation and transition relations and their open extensions are sound with
respect to contextual equivalence:

 ◦ ⊆ ∼= (4.5)

�◦ ⊆ ∼= (4.6)

In particular, βv-equivalence is valid for contextual equivalence,

Γ ` (λx. a) v ∼= a[v/x] : t, if Γ, x : t′ ` a : t and Γ ` v : t′ (4.7)

with the important consequence that contextual approximation and equivalence are substi-
tutive:

Proposition 4.3.3 Contextual approximation and equivalence are substitutive.

Proof Suppose Γ, ~x :~t ` a @∼ a′ : t and Γ ` ~u @∼ ~u′ :~t. We must show that

Γ ` a[~u/~x] @∼ a
′[~u
′
/~x] : t (4.8)

By weakening, Γ, x1, . . . , xi−1 ` ui @∼ u′i : ti, for i ∈ 1..n, and by compatibility,

Γ ` (λx1. . . . (λxn. a)un . . .)u1 @∼ (λx1. . . . (λxn. a
′)u′n . . .)u

′
1 : t

Now (4.8) follows by βv-equivalence and transitivity.
Substitutivity of contextual equivalence follows easily. 2

Contextual approximation satisfies a “canonical freeness” property (Gordon 1994), here
formulated in terms of matching values:

Proposition 4.3.4 u @∼ u′ : t if and only if u @∼ u′ : t.

Proof By compatibility, u @∼ u′ : t implies u @∼ u′ : t. We prove the converse by induction
on the typing derivation of u : t.

Case (Type fun) t = t1⇀ t2, u = λx. a, and x : t1 ` a : t2. Then u′ must also be a function
u′ = λx. a′ with x : t1 ` a′ : t2. Now x : t1 ` a @∼ a′ : t2 follows by the calculation:

x : t1 ` a �◦ let y = u in y x
@∼ let y = u′ in y x by compatibility
�◦ a′ : t2

because �◦ ⊆ @∼, by Proposition 4.3.1, and @∼ is transitive. Hence u @∼ u′ : t, by (Match
fun).

42 CHAPTER 4. RELATIONAL REASONING

Case (Type product) t = t1 × . . .× tn, u = 〈u1, . . . , un〉, and u1 : t1, . . . , un : tn. Then u′

must also be of the form u′ = 〈u′1, . . . , u′n〉 with u′1 : t1, . . . , u′n : tn. For each i ∈ 1..n,

ui � let y = u in case y of 〈x1, . . . , xn〉. xi
@∼ let y = u′ in case y of 〈x1, . . . , xn〉. xi
� u′i : ti

We deduce that ui @∼ u′i : ti and then, by the induction hypothesis, ui @∼ u′i : ti. Hence

we obtain that u @∼ u′ : t, by (Match product).

Case (Type sum) t = µχ. t1 + . . . + tn, u = inji v, i ∈ 1..n, and v : ti[t/χ]. Then

v � let y = u in case y of inj1 x1.Ω [] . . . [] inji xi. xi [] . . . [] injn xn.Ω
@∼ let y = u′ in case y of inj1 x1.Ω [] . . . [] inji xi. xi [] . . . [] injn xn.Ω : ti[t/χ]

Since @∼ is pre-adequate, the latter terminates, so u′ must be of the form u′ = inji v
′ with

v′ : tj [t/χ]. We see that v � @∼ � v′ : ti[t/χ] and thus v @∼ v′ : ti[t/χ]. By the induction

hypothesis, this implies v @∼ v′ : ti[t/χ]. Hence u @∼ u′ : t, by (Match sum). 2

The proposition does not hold for open values. For instance, x : unit ` x @∼ 〈 〉 : unit but

not x : unit ` x @∼ 〈 〉 : unit.
Proposition 4.3.4 characterises contextual approximation between closed values. We can

also characterise contextual approximation and equivalence between closed non-values in var-
ious ways. For instance, the equivalence class of Ω is the set of all diverging expressions,

a ∼= Ω : t iff ¬∃v. a v, if a : t (4.9)

This property of ∼= is called “complete adequacy” in Meyer (1988).
Suppose we define the outcome of a well typed closed expression a to be its value if

evaluation terminates (recall that evaluation is deterministic) and Ω if it diverges. Then
complete adequacy (4.9) and the soundness of evaluation (4.5) assert that a is contextually
equivalent to its outcome. Gordon (1994) calls this “Strachey’s property”:

either a ∼= Ω : t or ∃u. a ∼= u : t, if a : t (4.10)

Two useful characterisations of closed contextual approximation can be derived from syn-
tactic bottom (4.4) and the soundness of evaluation (4.5).

Proposition 4.3.5 If a, a′ : t then (i), (ii) and (iii) are equivalent,

(i) a @∼ a′ : t

(ii) ∀u. a u ⇒ ∃u′. a′ u′ & u @∼ u′ : t

(iii) ∀E. • : t ` E : unit ⇒ (E[[a]] 〈 〉 ⇒ E[[a′]] 〈 〉)

Proof That (i) implies (iii) is immediate from (4.1).
Next, suppose (iii) holds and let us prove (ii). If a u then (a; 〈 〉) terminates, so, by

assumption, (a′; 〈 〉) terminates as well. Hence there is a value u′ such that a′ u′. Now, let
C be any closed unit context of type • : t ` C : unit and suppose that C[[u]] terminates. Then

4.4. SEQUENTIALITY 43

E[[a]] terminates, where E = let x = • in C[[x]]. By assumption, E[[a′]] terminates because
E is an evaluation context. As evaluation is deterministic and factors through evaluation
contexts (2.1), this means that C[[u′]] terminates. As C was chosen arbitrarily, (4.1) tells us
that u @∼ u′ : t.

Finally, to see that (ii) implies (i), suppose a and a′ satisfies (ii). If a diverges, (i) holds by
syntactic bottom (4.4). Otherwise, a u for some u and then we know that a′ u′ for some
u′ such that u @∼ u′ : t. By the soundness of evaluation (4.5), we get that a ∼= u @∼ u′ ∼= a′ : t.
We conclude (i) by transitivity. 2

Propositions 4.3.4 and 4.3.5 imply that @∼0
= 〈@∼〉. Furthermore, @∼ ⊆ (@∼0

)◦ because @∼
is closed under substitutions, by reflexivity and substitutivity. Therefore contextual approxi-
mation is an open simulation,

@∼ ⊆ 〈@∼〉
◦

(4.11)

It follows that �◦ is an exact characterisation of contextual approximation for ground
types (i.e., types built from products and recursive sums only).

Lemma 4.3.6 Γ ` a @∼ a′ : t if and only if Γ ` a �◦ a′ : t, whenever t is a ground type.

Proof The backward implication holds for arbitrary types t by Proposition 4.3.1. If t is
a ground type, @∼|t is the identity relation on values of type t, by (3.5), and therefore 〈@∼〉
coincides with Kleene approximation at type t (i.e., 〈@∼〉|t = �|t). Now the forward implication
of the lemma follows because @∼ is an open simulation, (4.11). 2

Of course, the same holds for contextual equivalence and Kleene equivalence in place of
contextual approximation and Kleene approximation, respectively.

4.4 Sequentiality

For some purposes it is useful to operate with relations of arity greater than two, as introduced
in §3.9. In this section we illustrate how this approach can be used to prove program equiv-
alences that depend on the sequential nature of the language. The examples are originally
due to Dana Scott and Pierre-Louis Curien and were rephrased for call-by-value by Riecke
and Sandholm (1997). Our proofs are adapted from those in Sieber (1992) and Riecke and
Sandholm (1997), based on logical relations. The purpose of recasting the proofs syntacti-
cally here is to give another illustration of how our relational framework makes it possible to
manage complex syntactic arguments, technically and notationally. The reader is encouraged
to compare our proof of the first example with that of Plotkin (1977), elaborated in Mitchell
(1996), which is phrased in terms of explicit contexts. A further motivation for the material
in this section is that it will be important for assessing and comparing different operational
equivalence relations in the nondeterministic setting of Part II.

The first example shows that there is no parallel convergence tester function, of type
(unit ⇀ unit) × (unit ⇀ unit) ⇀ unit, which terminates if either of its function arguments
does and diverges if they both diverge. This is the simplest parallel function one can think
of for our language and it plays the same role as the parallel or function for PCF (Plotkin
1977). It is well known that the non-definability of such parallel functions is reflected by
contextual equivalence and, moreover, that relations of higher arity are useful for reasoning
about sequentiality (Sieber 1992; O’Hearn and Riecke 1995; Riecke and Sandholm 1997).

44 CHAPTER 4. RELATIONAL REASONING

Example 4.4.1 Let u, u′ : ((unit⇀unit)× (unit⇀unit)⇀unit)⇀unit be the two functions

u = λf. (f 〈I,U〉; f 〈U, I〉)
u′ = λf. f 〈U,U〉

where I = λx. x and U = λx.Ω. They are contextually equivalent,

u ∼= u′ : ((unit⇀ unit)× (unit⇀ unit)⇀ unit)⇀ unit

It is easy to see that u′ approximates u, by Proposition 4.3.1 and compatibility of contex-
tual approximation.

The other direction, that u approximates u′, also holds by Proposition 4.3.1 and compat-
ibility if, for all functions v : ((unit⇀ unit)× (unit⇀ unit)⇀ unit),

(v 〈I,U〉; v 〈U, I〉) 〈 〉 ⇒ v 〈U,U〉 〈 〉

This is equivalent to

v 〈I,U〉 〈 〉 & v 〈U, I〉 〈 〉 ⇒ v 〈U,U〉 〈 〉 (4.12)

Intuitively, v cannot apply any of the two function components of its input tuple—that would
force one of v 〈I,U〉 and v 〈U, I〉 to diverge—therefore v must terminate on any input. We
can make this argument precise by means of the ternary relation SC, where S is the closed
ternary relation defined by

S|(~t)t
def
= {(〈 〉,Ω,Ω), (Ω, 〈 〉,Ω) | t = unit}

for every abstraction type (~t)t (i.e., S is a two-point closed relation, relating 〈 〉,Ω,Ω and
relating Ω, 〈 〉,Ω at type unit, and is empty at all types other than unit). As S is closed, SC

is substitutive. We are going to prove that

(a1, a2, a
′) ∈ SC|t & a1 u1 & a2 u2 ⇒

∃u′. a′ u′ & (u1, u2, u
′) ∈ SC|t

(4.13)

which implies (4.12) because (v 〈I,U〉, v 〈U, I〉, v 〈U,U〉) ∈ SC|unit and (〈 〉, 〈 〉, 〈 〉) ∈ SC|unit.
The proof of (4.13) is by induction on the derivation of a1 u1 and by analysis of the

derivation of (a1, a2, a
′) ∈ SC|t.

If the latter is derived by (Ctx S), then a1 = 〈 〉 and a2 = U or a1 = U and a2 = 〈 〉; in
any case, one of a1 u1 and a2 u2 is false, so (4.13) holds vacuously.

Otherwise, (a1, a2, a
′) ∈ ŜC|t and the argument proceeds by analysis of the derivation of

a1 u1. The argument for each case is similar to that in the proof of Proposition 4.3.1 but
with some extra bookkeeping for the extra component in the relation.

Case (Eval value) We use the obvious generalisation of Lemma 3.5.1 to relations of arbi-
trary arity.

Case (Eval redex) An easy application of Lemma 3.10.2 and the induction hypothesis.

4.4. SEQUENTIALITY 45

Case (Eval let) a1 u1 because a1 is of the form a1 = let x = a10 in b10 and a10 v1

and b10[v1/x] u1 for some value v1.

Since (a1, a2, a
′) ∈ ŜC|t, we have that a2 and a′ are of the form a2 = let x= a20 in b20

and a′ = let x= a′0 in b′0 with (a10, a20, a
′
0) ∈ SC|t′ and ((x)b10, (x)b20, (x)b′0) ∈ SC|(t′)t.

Then a2 u2 must be derived by (Eval let) from a20 v2 and b20[v2/x] u2 for some
value v2.

We can now apply the induction hypothesis and get that a′0 v′ for some v′ such that

(v1, v2, v
′) ∈ SC|t′ .

By substitutivity, (b10[v1/x], b20[v2/x], b′0[v
′
/x]) ∈ SC|t. Finally, another application of the

induction hypothesis gives us that b′0[v
′
/x] u′ with (u1, u2, u

′) ∈ SC|t, and by (Eval
let) we get that a′ u′, as required. 2

Example 4.4.2 Let t0 = (unit⇀ bool) and let a1, a2, a3, a4 be the expressions defined by

a1 = if h2 〈 〉 then 〈 〉 else if h1 〈 〉 then 〈 〉 else Ω

a2 = if h1 〈 〉 then Ω else 〈 〉
a3 = if h2 〈 〉 then Ω else 〈 〉
a4 = Ω

and for each i ∈ 1..4, let gi : (t0 × t0)⇀ unit denote the function gi = λ〈h1, h2〉. ai.
We will prove the contextual equivalence:

f : (t0 × t0 ⇀ unit)⇀ unit ` (f g1; f g2; f g3) ∼= f g4 : unit (4.14)

By Lemma 4.3.6 and inspection of evaluations we see that this holds if and only if, for all
functions u : (t0 × t0 ⇀ unit)⇀ unit,

(u g1 〈 〉 & u g2 〈 〉 & u g3 〈 〉) ⇔ u g4 〈 〉 (4.15)

The right-to-left implication follows easily from the theory of Kleene approximation and
contextual approximation in §4.3. In the other direction, the intuition is that g1, g2, and g3

are constructed so that for any argument v : t0 × t0 at least one of g1 v, g2 v, and g3 v will
diverge. Hence, if u terminates on all of g1, g2 and g3, it must be because it never applies its
argument and it terminates on any input. To prove this, we define R as the smallest 4-ary
open relation such that

h1 : t0, h2 : t0 ` (a1, a2, a3) R a4 : unit

The grouping of the first three components into a tuple is just for notational convenience; the
notation means that

((h1, h2)a1, (h1, h2)a2, (h1, h2)a3, (h1, h2)a4) ∈ R|(t0,t0)unit

We also define binary relations R12 and R13, each obtained from R by projections onto two
of the four components; they are the smallest open relations such that

h1 : t0, h2 : t0 ` a1 R12 a2 : unit

h1 : t0, h2 : t0 ` a1 R13 a3 : unit

46 CHAPTER 4. RELATIONAL REASONING

We prove that their substitutive context closures satisfy that

(b1, b2, b3) RSC b4 : t & b1 u1 ⇒ (4.16)

(i) ∀u2. b2 u2 ⇒ u1 R12
SC u2 : t

& (ii) ∀u3. b3 u3 ⇒ u1 R13
SC u3 : t

& (iii) ∀u2, u3. b2 u2 & b3 u3 ⇒
∃u4. b4 u4 & (u1, u2, u3) RSC u4 : t

The proof is by induction on the derivation of b1 u1. First we consider the derivation of
(b1, b2, b3) RSC b4 : t.

Case (SC Subst) Then b1 = a1[v11/h1, v12/h2], . . . , b4 = a4[v41/h1, v42/h2], where

(v1i, v2i, v3i) RSC v4i : t0 for i = 1, 2. The evaluation b1 u1 must go either via
v12 〈 〉 true, or via v12 〈 〉 false and v11 〈 〉 true.

(i) If b2 u2 then v21 〈 〉 false. By compatibility, (v11 〈 〉, v21 〈 〉, v31 〈 〉) RSC v41 〈 〉 : t,
so by part (i) of the induction hypothesis we conclude that the evaluation of b1 cannot
go via v11 〈 〉 true.

(ii) By a similar argument we see that the evaluation of b1 cannot go via v12 〈 〉 true.

(iii) Because of the contradictory conclusions from parts (i) and (ii), it is evident that
not all of b1, b2 and b3 can terminate. Therefore (iii) holds vacuously.

Case (SC Comp) The argument for this case is by analysis of the derivation of b1 u1

and proceeds analogously to the previous example. We omit the details.

This concludes the proof of (4.16).
Since (u g1, u g2, u g3) RSC u g4 : unit, we conclude from (4.16)(iii) that u g4 terminates if

all three of u g1, u g2 and u g3 terminate, as required to establish (4.15) and (4.14). 2

The proofs by induction on evaluations in the two examples are tedious, of course. It
might be possible to obtain the examples as instances of a general syntactic proof rule for
reasoning about sequentiality. The proof rule could combine Sieber’s sequentiality relations
with a notion of simulation up to context for relations of arbitrary arity.

4.5 Unwinding and syntactic continuity

In this section, we give a relational proof of the Unwinding Theorem and we derive a syntactic
continuity property of contextual approximation. Similar results appear already in the work of
Morris (1968) and Wadsworth (1971). One motivation for repeating them here is to provide
yet another illustration of how our relational framework assists us in managing complex
syntactic arguments. Another reason for going over these proofs here is to prepare the ground
for our investigations into continuity properties in nondeterministic settings in Part II.

The Unwinding Theorem says that an expression with occurrences of the Y combinator
terminates if and only if it terminates with some finite unwinding of Y in place of Y. Let
Y(n) denote the n’th unwinding of Y,

Y(n) def
= λg. fix(n)[g]

4.5. UNWINDING AND SYNTACTIC CONTINUITY 47

where fix(n) is defined by induction on n < ω as

fix(0)[u]
def
= Ω

fix(n+1)[u]
def
= u (λx. fix(n)[u]x)

Theorem 4.5.1 (Unwinding) Suppose y : (t⇀t)⇀t ` a : t′ and t is a function type. Then

a[Y/y] terminates if and only if a[Y
(n)
/y] terminates for some n < ω.

There is an equational variant of the theorem, called rational openness (Braüner 1996),

Γ ` a[Y/y] ∼= Ω : t′ iff ∀n < ω. Γ ` a[Y
(n)
/y] ∼= Ω : t′

It is equivalent to the Unwinding Theorem because, by (4.9), a closed expression terminates
if and only if it is not contextually equivalent to Ω.

We split the proof of the theorem into two lemmas. The first lemma establishes the
‘if’ direction of the theorem which, in effect, asserts that Y is an upper bound of its finite
unwindings.

Lemma 4.5.2 Y is a @∼-upper bound of its finite unwindings
{
Y(i) | i < ω

}
.

Proof Suppose Γ ` u : t⇀ t and t is a function type. Then Γ ` fix(0)[u] @∼ fix[u] : t, by

(4.4). Moreover, if Γ ` fix(i)[u] @∼ fix[u] : t, then

Γ ` fix(i+1)[u] = u (λx. fix(i)[u]x)
@∼ u (λx. fix[u]x) by assumption and compatibility
∼= fix[u] : t by (4.6), twice

By induction we see that fix[u] is an upper bound of {fix(i)[u] | i < ω} and, by compatibility,
Y is an upper bound of {Y(i) | i < ω}. 2

The other half of the Unwinding Theorem is more challenging. For each n < ω, we are
going to construct a relation W (n) which satisfies

a[Y/y] W (n) a[Y
(n)
/y] : t′ (4.17)

whenever y : (t⇀ t)⇀ t ` a : t′ and t is a function type.
In the course of the proof of the next lemma, this family of relations must be preserved

by evaluation in an appropriate sense. To this end we generalise W (n) to relate expressions
with matching occurrences of fix and fix(m), where m ≥ n. We will also need that W (n) is
substitutive. So we take W (n) to be the substitutive context closure,

W (n) def
=

⋃
i≥n

R(i)

SC

where each R(i) is given by

fix R(i) fix(i) : (t⇀ t) t

48 CHAPTER 4. RELATIONAL REASONING

for all function types t. Note that Y R(n) Y(n) : (t⇀ t)⇀ t.

We see that (4.17) holds because a[Y/y] Id [R(n)] a[Y
(n)
/y] : t′, and because W (n) includes

R(n) and is reflexive and substitutive.
We observe that the W (n) relations form a decreasing sequence,

W (n) ⊆W (n′) iff n′ ≤ n (4.18)

Lemma 4.5.3 Whenever a : t and a u, there exists n < ω such that for all m < ω,

∀a′ : t. a W (m+n) a′ : t ⇒ ∃u′. a′ u′ & u W (m) u′ : t

Proof By induction on the derivation of a u.

Cases (Eval value) and (Eval let)

a cannot be a fix expression, so whenever a W (m+n) a′ : t, this must be derived from

a Ŵ (m+n) a′ : t. The arguments are similar to those in the proof of Proposition 4.3.1,
but extended with appropriate bookkeeping for calculating n. We omit the details.

Case (Eval redex) a u because b u for some b such that a→ b.

We split the argument in two cases according to the form of a.

Case a = fix[v] for some v : t⇀ t. Then

b = case (inj λinj y. v (λx. y (inj y)x)) of inj y. v (λx. y (inj y)x)

and b u via (Eval redex) and b→ v (λx. a x) u.

By the induction hypothesis for v (λx. a x) u, there is an n0 such that

∀m < ω. ∀b′′ : t. v (λx. a x) W (m+n0) b′′ : t ⇒ ∃u′. b′′ u′ & u W (m) u′ : t (4.19)

Let n = n0 + 1. Suppose a W (m+n) a′ : t, i.e., either

a R(i)[W (m+n)] a′ : t (4.20)

for some i ≥ m+ n, or

a Ŵ (m+n) a′ : t (4.21)

In the first case a′ = fix(i)[v′] with v W (m+n) v′ : t⇀ t. Note that i ≥ m + n ≥ 1, so

a′ = v′ (λx. fix(i−1)[v′]x). Since v W (m+n0) v′ : t⇀ t, by (4.18), and i− 1 ≥ m+ n0, we
get that v (λx. a x) W (m+n0) a′ : t. By (4.19), the desired conclusion follows.

In the second case, an inspection of the derivation of (4.21) reveals that a′ = fix[v′]

with v W (m+n) v′ : t⇀ t. We see that a′ u′ whenever v′ (λx. a′ x) u′, by two
applications of (Eval redex). Moreover, v (λx. a x) W (m+n0) v′ (λx. a′ x) : t. By (4.18)
and (4.19), the desired conclusion follows.

Case a is not of the form fix[v] for any v. By the induction hypothesis for b u there

exists n < ω such that, for all m < ω, b W (m+n) b′ : t implies b′ u′ with u W (m) u′ : t.
Supposing that a W (m+n) a′ : t for some m < ω and a′ : t, since a is not of the form

fix[v], a W (m+n) a′ : t must be derived from a Ŵ (m+n) a′ : t by (SC Comp). Now the
result follows easily by Lemma 3.10.1. 2

4.5. UNWINDING AND SYNTACTIC CONTINUITY 49

Proof of Theorem 4.5.1 If a[Y/y] terminates, according to Lemma 4.5.3 there exists an

n < ω such that whenever a[Y/y] W (n) a′ : t′ then a′ terminates too. In particular, a[Y
(n)
/y]

terminates because of (4.17). The reverse implication follows from Lemma 4.5.2. 2

An important consequence of the Unwinding Theorem is a so-called syntactic continuity
property of contextual approximation (Pitts 1997a). We should first remark that the con-
textual approximation ordering is not ω-complete, i.e., there are ω-chains of expressions A
in the contextual approximation ordering such that A does not have an upper bound. At
function types, this is the case where the least upper bound in a domain-theoretic semantics
is not a computable function. Moreover, there are operators in the language, e.g., function
application, which are not continuous with respect to the ω-chains that do have least upper
bounds: there are ω-chains {vi | i < ω} with a least upper bound v but such that u v is not
the least upper bound of {(u vi) | i < ω}; see Mason, Smith, and Talcott (1996).

Syntactic continuity is a more restricted form of ω-completeness and continuity principle
enjoyed by contextual approximation and the language operators. It asserts both that Y is
the least upper bound of its finite unwindings and that these least upper bounds are preserved
by all language constructs, i.e., by substitution into arbitrary contexts.

Proposition 4.5.4 (Syntactic continuity) If y : (t⇀ t) ⇀ t ` a : t′ and t is a function

type, a[Y/y] @∼ a′ : t′ if and only if ∀n < ω. a[Y
(n)
/y] @∼ a′ : t′.

Proof The forward implication is immediate from Lemma 4.5.2.
The argument for the reverse implication is straightforward in terms of explicit contexts,

by reference to the Unwinding Theorem and (4.1).1 Nevertheless, let us give a relational proof
without reference to explicit contexts. This proof is closer to the argument that is needed to
prove syntactic continuity for applicative simulation preorders, as we shall see in Chapter 7.

We must show that a[Y/y] @∼ a′ : t′ under the assumption that a[Y
(n)
/y] @∼ a′ : t′ for all

n < ω. To this end we construct the open relation

T
def
=

⋂
n<ω

(W (n)@∼)

Observe that a[Y/y] T a′ : t′ if ∀n < ω. a[Y
(n)
/y] @∼ a′ : t′. We will show that T is compatible

and pre-adequate, then T ⊆ @∼ and the result follows.

Each W (n) is compatible, and so is @∼. Since compatibility is closed under relation com-
position and arbitrary intersections, T is compatible.

Now let us prove that T is pre-adequate. Suppose b T b′ : unit. If b 〈 〉 then we know
from Lemma 4.5.3 that there exists an n < ω such that whenever b W (n) b′′ : unit then
b′′ 〈 〉. By the construction of T , we have that b W (n) b′′ @∼ b′ : unit for some b′′. But now
we know that b′′ 〈 〉 and, by pre-adequacy of @∼, we get that b′ 〈 〉 too, as required. 2

By means of syntactic continuity we can prove a recursion induction principle for the Y
combinator (also known as “Park induction”).

Proposition 4.5.5 (Recursion induction)
u v′ @∼ v′ : t1 ⇀ t2

Y u @∼ v′ : t1 ⇀ t2

1Although here it is a bit awkward to relate the formulation of the Unwinding Theorem in terms of vari-
able substitution to contexts because we haven’t provided the means to go from filling contexts to variable
substitution, i.e., we lack a converse to (3.14).

50 CHAPTER 4. RELATIONAL REASONING

Proof Assume that the premise holds. By syntactic continuity it suffices to prove the
conclusion for all finite unwindings Y(0),Y(1), . . . in place of Y,

Y(n) u @∼ v
′ : t1 ⇀ t2, for all n < ω

We argue by induction on n. The base case, Y(0) u @∼ v′ : t1 ⇀ t2, is immediate by Kleene

approximation because Y(0) u diverges. The induction step follows by calculation:

Y(n+1) u ∼= u (λx.Y(n) ux) βv
@∼ u (λx. v′ x) by the induction hypothesis
∼= u v′ βv
@∼ v′ : t1 ⇀ t2 by assumption

(the last βv-equivalence holds because v′ must be of the form λx. b). 2

4.6 Compatible simulations

This section introduces new simulation rules for contextual equivalence, akin to “bisimulation
up to context” proof rules for process calculi (Sangiorgi 1994) and applicative bisimulation
(Pitts 1995; Sands 1998b; Lassen 1998). They enable us to establish a recursion induction
principle and, in the next section, to derive the CIU Theorem.

The results about sequentiality, unwinding, and syntactic continuity with respect to con-
textual approximation in the preceding sections were proved by variations of the basic proof
principle for contextual approximation used in the proof of Proposition 4.3.1, that is, by (1)
constructing a compatible and substitutive relation, (2) showing it to be preserved by evalua-
tion in an appropriate sense (using substitutivity), and (3) concluding that it is pre-adequate
and, hence (by compatibility), included in contextual approximation. Although alleviated by
the lemmas about primitive reduction from §3.10, the proofs of preservation by evaluation
involve tedious inductions on derivations of evaluations. In many cases, when preservation of
evaluation can be expressed in terms of the simulation operator, the proofs are instances of
the following lemma.

Suppose R is a compatible and substitutive relation, then the lemma says that R is
included in contextual approximation if

R0 ⊆ (〈R〉 ∪ R̂)@∼
This inclusion combines two common situations:

(1) R is of the form S ∪ R̂ and S0 ⊆ 〈R〉, or

(2) R0 ⊆ R̂S holds for some S such that S ⊆ @∼ is derivable by the results from §4.3.

For illustration, let us sketch how Proposition 4.3.1, �◦ ⊆ @∼, can be derived by two
successive applications of the lemma. First, consider �C. It is compatible and also substitutive

because � is closed. Since �C = � ∪ �̂C and � = 〈Id〉 ⊆ 〈�C〉 (because �C is reflexive and
〈 · 〉 is monotone), we have situation (1) with R = �C and S = �, so according to the lemma
contextual approximation includes �C and thus also �. Secondly, we can use this fact to
prove that contextual approximation includes �◦SC and thus also �◦: as in the proof of

Proposition 4.3.1, we use Lemma 3.8.1 to get that (�◦SC)0 ⊆ �̂◦SC∪�, i.e., we have situation
(2) by taking R = �◦SC and S = �, and the lemma yields the desired conclusion.

4.6. COMPATIBLE SIMULATIONS 51

Lemma 4.6.1
R0 ⊆ (〈R〉 ∪ R̂)@∼

R ⊆ @∼
if R ∈ REL is compatible and substitutive.

Proof Assume that the premise holds. We are going to prove that R0 ⊆ 〈R〉@∼ holds if
R ∈ REL is substitutive. It implies that R is pre-adequate. Hence, if R is also compatible, it
is included in operational approximation, R ⊆ @∼.

So, assuming that R ∈ REL is substitutive, we show that

a R a′ : t & a v ⇒ ∃v′ : t. v R v′ : t & v′ @∼ a
′ : t (4.22)

by induction on the derivation of a v. By the premise of the lemma, a R a′ : t implies that
there is an a′′ : t such that a′′ @∼ a′ : t and either a 〈R〉 a′′ : t or a R̂ a′′ : t.

If a 〈R〉 a′′ : t, then a v implies that a′′ v′ for some v′ : t such that v R v′ : t. Hence
v′ ∼= a′′ : t, and we conclude that v′ @∼ a′ : t, by transitivity.

If a R̂ a′′ : t, we proceed by analysis of the derivation of a v.

Case (Eval value) a v because a = v.

Since a R̂ a′′ : t, we get that a′′ is a value and a R a′′ : t, from Lemma 3.5.1 and (3.11).
So let v′ = a′′.

Case (Eval redex) a v because a→ b and b v.

From a R̂ a′′ : t and Lemma 3.10.1, we get that a′′ → b′ with b R b′ : t. By the induction
hypothesis, v R v′ : t and v′ @∼ b′ : t, for some v′ : t. The primitive reduction relation
is included in contextual equivalence, by (Trans redex) and (4.6), so b′ ∼= a′′ : t, and we
obtain that v′ @∼ a′ : t, by transitivity.

Case (Eval let) a v because a = let x= a1 in b2, a1 u, and b2[u/x] v.

Since a R̂ a′′ : t, a′′ must be of the form a′′ = let x = a′1 in b′2 where a1 R a′1 : t′ and
x : t′ ` b2 R b′2 : t. By the induction hypothesis, there exists u′ : t′ such that u R u′ : t′

and u′ @∼ a′1 : t′. By substitutivity, b2[u/x] R b′2[u
′
/x] : t. So, by the induction hypothesis,

there is a v′ : t such that v R v′ : t and v′ @∼ b′2[u
′
/x] : t. Finally, we calculate

b′2[u
′
/x] @∼ let x= u′ in b′2 by (Trans let beta) and (4.6)

@∼ let x= a′1 in b′2 because @∼ is compatible
= a′′

Hence v′ @∼ a′ : t, by transitivity. 2

We derive the following “simulation up to context and contextual approximation” proof
rule,

S ⊆ 〈SC〉 @∼
S ⊆ @∼

(4.23)

if we let R = SC in Lemma 4.6.1.

52 CHAPTER 4. RELATIONAL REASONING

Example 4.6.2 The rule (4.23) yields an alternative proof of recursion induction, Proposi-
tion 4.5.5, for fixed points of “total” functionals of the form λf. v. (Recursion in call-by-value
languages is commonly of this restricted form.)

(λf. v) v′ @∼ v′ : t1 ⇀ t2

Y (λf. v) @∼ v′ : t1 ⇀ t2

Assume that the premise holds. It suffices to prove that fix[λf. v] @∼ v′ : t1 ⇀ t2 because
Y (λf. v) is βv-equivalent to fix[λf. v].

We construct the singleton closed relation S given by

fix[λf. v] S v′ : t1 ⇀ t2

We need to prove that S ⊆ @∼. We calculate

fix[λf. v] v[λx. fix[λf. v]x/f]

SC v[λx. v
′ x/f] by (3.14) and (3.11)

∼= (λf. v) (λx. v′ x) βv
∼= (λf. v) v′ βv
@∼ v′ : t1 ⇀ t2 by assumption

(the last βv-equivalence holds because v′ must be of the form λx. b). The calculation shows
that S ⊆ 〈SC〉@∼. By (4.23), S ⊆ @∼ and hence fix[λf. v] @∼ v′ : t1 ⇀ t2, as required. 2

The inability to establish the full recursion induction rule from Proposition 4.5.5 in the
previous example indicates a limitation suffered by proof rules based on evaluation semantics.
They force us to reason about computations in terms of entire evaluations while, in some
cases, we only know the first steps of the computation and need to draw conclusions from
those only. An alternative is to base the proof rules on the transition semantics. This is
indeed a very expressive formalism and many of the ideas presented here were first developed
in terms of transitions. Nevertheless, in order to simplify presentation, proof rules based on
transitions are not included in the present exposition. However, let us mention without proof
just one rule which seems difficult to mimic with evaluation semantics:

S ⊆�∗ ŜC@∼
S ⊆ @∼

It generalises (4.23) because a little calculation shows that (〈SC〉@∼) ⊆ (�∗ ŜC@∼). With
this transition-based proof rule in place of (4.23), it is straightforward to amend the argument
in the previous example to validate full recursion induction in the form of Proposition 4.5.5.

4.7 The CIU Theorem

We end this chapter by proving some well-known extensionality properties of contextual
approximation and equivalence, the CIU theorem and an operational extensionality theorem.

Lemma 4.7.1 Contextual approximation is closed under open extension, (@∼0
)◦ ⊆ @∼.

4.7. THE CIU THEOREM 53

Proof By definition of open extension, (@∼0
)◦ is closed under substitutions. Therefore

(@∼0
)◦

SC ⊆ ̂
(@∼0

)◦
SC

(@∼0
)◦, by Lemma 3.8.1, and hence (@∼0

)◦
SC ⊆ @∼, by Lemma 4.6.1. The

result follows because (@∼0
)◦ ⊆ (@∼0

)◦
SC

. 2

In fact, we have an equality, (@∼0
)◦ = @∼, because contextual approximation is closed under

substitutions, being substitutive and reflexive. Consequently, the reverse inclusion of (4.11)
holds, that is, contextual approximation is a fixed point of 〈 · ◦〉,

@∼ = 〈@∼〉
◦

(4.24)

But at this stage we are not able to prove that it is the largest fixed point. This we postpone
till §4.8.

Example 4.7.2 We can now prove that ηv-equivalence is valid for contextual equivalence,

~x :~t ` v ∼= λy. v y : t⇀ t′, if ~x :~t ` v : t⇀ t′

By the previous proposition it suffices to prove every closed instance of the law, that is, for
arbitrary closed values ~u :~t substituted for ~x. Then v[~u/~x] = λy. b, for some b of type y : t `
b : t′, and (λy. v y)[~u/~x] = λy. (v[~u/~x]) y = λy. (λy. b) y. We get that y : t1 ` b ∼= (λy. b) y : t2,
by βv-equivalence, and the result follows by compatibility. 2

Proposition 4.3.5 and Lemma 4.7.1 yield a CIU Theorem for contextual approximation.
The acronym stands for Closed Instantiations (two expressions are related if all their closed
instantiations are) of Uses (termination is observed only in evaluation contexts rather than
arbitrary variable capturing contexts). We will call a relation R closed under evaluation
contexts if

Γ ` a R a′ : t implies Γ ` E[[a]] R E[[a′]] : t′

whenever E is an evaluation context and • : t ` E : t′.

Theorem 4.7.3 (CIU) Contextual approximation is the largest pre-adequate open relation
which is closed under evaluation contexts and substitutions.

Proof Contextual approximation is pre-adequate and closed under evaluation context by
definition. It is closed under substitutions because it is reflexive and substitutive.

Let R be any other pre-adequate open relation which is closed under evaluation contexts
and substitutions. It is easy to see that all closed a and a′, related by a R a′ : t, satisfy
Proposition 4.3.5(iii) and hence that a @∼ a′ : t. That is, R0 ⊆ @∼0

. The result follows by
calculation:

R ⊆ (R0)◦ because R is closed under substitutions
⊆ (@∼0

)◦ open extension is monotone

⊆ @∼ Lemma 4.7.1 2

Let us rephrase the theorem to see that it is equivalent to the formulation by Mason
and Talcott (1991). We define a CIU context, E , to be any one-holed closed unit context,
ξ : (~t)t ` E : unit, of the form E[[ξ[~u]]], that is, E substitutes closed values ~u for the hole’s

54 CHAPTER 4. RELATIONAL REASONING

parameters and places it in an evaluation context E of type unit. The CIU Theorem asserts
that, whenever ~x :~t ` a : t and ~x :~t ` a′ : t,

~x :~t ` a @∼ a′ : t iff

∀ CIU contexts E . ξ : (~t)t ` E : unit ⇒ (E [[(~x)a/ξ]] 〈 〉 ⇒ E [[(~x)a′/ξ]] 〈 〉) (4.25)

This is a more tractable characterisation than (4.1). For example, Propositions 4.3.1 and
4.3.5 and Lemma 4.7.1 all follow from (4.25).

4.8 Similarity

In this section we define an applicative similarity preorder, prove that it is a pre-congruence
by Howe’s method, and derive an operational extensionality property of contextual approx-
imation. Finally, the interrelationship with the CIU Theorem is discussed. Howe’s proof
is well-known but we include it because it is one of the main sources of inspiration for the
relational approach in this dissertation. Moreover, we will extend the proof to various forms
of nondeterminism in Chapters 7 and 8, and it may be instructive first to see the proof here
in a deterministic setting.

Let similarity, . ∈ REL0, be defined co-inductively as the greatest fixed point of 〈 · ◦〉.

. def
= νR. 〈R◦〉

The compound operator 〈 · ◦〉 is a monotone function on the complete lattice of closed relations,
so a greatest fixed point exists and it is also the greatest post-fixed point. This means that
similarity is the greatest simulation.

A simple co-inductive argument shows that open similarity, .◦, is the greatest fixed point
of 〈 · 〉◦, that is, .◦ = νR. 〈R〉◦. Therefore open similarity is the greatest open simulation.
For instance, open similarity includes contextual approximation because the latter is an open
simulation, (4.11). The reverse inclusion holds if open similarity is compatible, because we
know that it is pre-adequate as it is itself an open simulation. Let us prove that open similarity
is a pre-congruence, by means of Howe’s method (Howe 1996).

The main lemma says that the compatible extension of the reflexive transitive closure of
any simulation is itself a simulation.

Lemma 4.8.1 If R ⊆ 〈R◦〉 then R∗• ⊆ 〈R∗•〉◦.

Proof The proof resembles that of Proposition 4.3.1.
Assume that R is a simulation, R ⊆ 〈R◦〉. Since R∗• is closed under substitutions it

suffices to show that

a R∗• a′ : t & a v ⇒ ∃v′ : t. a′ v′ & v R∗• v′ : t

The proof is by induction on the derivation of a v.
First observe that, by the definition of compatible extension, there exists a′′ : t such that

a R̂∗• a′′ : t and a′′ R∗ a′ : t. It suffices to show that

∃v′′ : t. a′′ v′′ & v R∗• v′′ : t (4.26)

4.8. SIMILARITY 55

because, given such a v′′, then a′ v′ for some v′ : t such that v′′ R◦
∗
v′ : t, by repeated use

of the assumption thatR is a simulation, and hence v R∗• v′ : t, by (3.3) and Lemma 3.8.2(3).
The proof of (4.26) proceeds by analysis of the derivation of a v. All the cases are

identical to those in the proof of Proposition 4.3.1 (but with R∗• in place of �◦SC and v′′ in
place of v′). 2

From this lemma we derive that open similarity is a pre-congruence.

Proposition 4.8.2 .◦ is a pre-congruence.

Proof Since . is a simulation, Lemma 4.8.1 entails that .∗• is an open simulation and is
thus included in .◦. The reverse inclusion holds by the definition of compatible extension,
so we get that .◦ is compatible since .∗• is. Finally, the calculation .◦∗ = .∗◦ ⊆ .∗• ⊆ .◦
shows that .◦ is reflexive and transitive. 2

Theorem 4.8.3 (Operational extensionality) Contextual approximation coincides with
open similarity, i.e., it is the greatest fixed point of 〈 · 〉◦.

This is a stronger characterisation than the CIU Theorem, (4.25). The CIU Theorem
does not seem to be of any assistance for proving the operational extensionality theorem (es-
sentially, it is no easier to show that similarity is closed under evaluation contexts than to
show that open similarity is closed under arbitrary contexts).2 Conversely, the CIU Theorem
was derived from Proposition 4.3.5 and Lemma 4.7.1 which, in turn, can be derived from
the operational extensionality theorem as follows. First, from the operational extensionality
theorem we easily derive syntactic bottom (4.4) and the soundness of evaluation (4.5) which
were used to prove Proposition 4.3.5. Second, the operational extensionality theorem implies
that closed contextual approximation coincides with closed similarity, hence the open exten-
sion of closed contextual approximation coincides with open similarity which, again by the
operational extensionality theorem, coincides with contextual equivalence, so in particular
Lemma 4.7.1 holds.

Essentially, the CIU Theorem says that contextual approximation is a fixed point of the
simulation operator 〈 · 〉◦, (4.24), whereas the operational extensionality theorem says that it
is the greatest fixed point. The latter leads to a co-induction principle for reasoning about
infinite behaviour of higher-order functions, as illustrated in the next example.

Example 4.8.4 Let a and a′ be the recursive functions

a = Y λf. λy. inj f

a′ = Y λf. λy. inj λz. inj f

of type a, a′ : t⇀ t′ for any closed type t and t′
def
= µχ. t⇀ χ. When applied, each func-

tion returns a recursive function with the same behaviour as itself. They are contextually
equivalent,

a ∼= a′ : t⇀ t′ (4.27)

2The proof that the CIU Theorem implies the operational extensionality theorem in Mason, Smith, and
Talcott (1996, Lemma 3.8) is incorrect. (Scott Smith, personal communication, June 1997.)

56 CHAPTER 4. RELATIONAL REASONING

By the operational extensionality theorem we can prove this by exhibiting simulations that
relate a to a′ and a′ to a. Let R be the smallest open relation such that

a R a′ : t⇀ t′

x : t ` inj λx. fix[λf. λy. inj f]x R inj λz. inj λx. fix[λf. λy. inj λz. inj f]x : t′

x : t ` fix[λf. λy. inj f]x R inj λx. fix[λf. λy. inj λz. inj f]x : t′

x : t ` fix[λf. λy. inj f]x R fix[λf. λy. inj λz. inj f]x : t′

It is straightforward to check that R and Rop are open simulations. So, by co-induction, R
is included in contextual equivalence. Since a and a′ are related by R, we conclude that they
are contextually equivalent, (4.27). 2

The CIU theorem does not seem to be of any use for proving (4.27), so this example
illustrates how the CIU Theorem is weaker than operational extensionality. However, (4.27)
can be proved by other proof rules developed in §4.5 and §4.6. First, observe that (4.27) is
an instance of a more general law about recursive functions:

Y λf. v ∼= Y λf. v[v/f] : t1 ⇀ t2, if f : t1 ⇀ t2 ` v : t1 ⇀ t2 (4.28)

One direction, that Y λf. v contextually approximates Yλf. v[v/f], is easily proved by recur-
sion induction and the other direction by syntactic continuity. The law can also be established
by the simulation up to context rule (4.23). Interestingly, operational extensionality does not
seem applicable for proving (4.28). So, although operational extensionality subsumes the CIU
Theorem and is useful for reasoning about infinite behaviour of higher-order functions, it is
no replacement for the induction principles and simulation up to context principles developed
in §4.5 and §4.6 which, in general, seem to be better suited for reasoning about recursion.

Part II

Nondeterminism

57

Chapter 5

A Nondeterministic Functional
Language

In the remainder of the dissertation, the relational techniques and results about determinis-
tic operational equivalences in Chapter 4 are extended to different kinds of nondeterminism.
First, in Chapters 6 and 7, the finitely branching and countable branching sequential nonde-
terminism arising from erratic choice and countable choice combinators is considered.

This chapter defines the syntax and operational semantics of erratic and countable choice.
The evaluation semantics comes in two flavours: a may evaluation relation which specifies
possible outcomes and a must relation which relates a program with its set of outcomes if
and only if all the program’s computation paths terminate.

The interrelationships between the may and the must operational semantics and the de-
terministic operational semantics from Chapter 2 will be made precise, and the properties of
the deterministic operational semantics with respect to typing and relations are generalised
to the nondeterministic counterparts. All the results are straightforward to establish and the
proofs are omitted.

5.1 Syntax

We shall consider two nondeterministic extensions of our functional language. One is erratic
choice, a1 or a2, between two expressions. The other is countable choice, ?, of an arbitrary
natural number (in the unary representation of numbers from §2.1.1).

a, b ::= . . .

| a1 or a2

| ?

The two constructs introduce bounded (finitely branching) and unbounded (countably
branching) nondeterminism, respectively. The latter is more general, of course; erratic choice,
a1 or a2, can be encoded using countable choice as

let x= ? in case x of 0. a1 or succx. a2 (5.1)

where x is not free in a1 and a2.

59

60 CHAPTER 5. A NONDETERMINISTIC FUNCTIONAL LANGUAGE

The most faithful encoding of countable choice, ?, using erratic choice is

(Y λf. λ〈 〉.0 or (let y = f 〈 〉 in succ y)) 〈 〉 (5.2)

but it differs from ? with respect to termination behaviour: the encoding admits an infinite
transition sequence (by always choosing the right hand side of or). This difference is significant
for one of the semantic equivalences which we will look at.

5.2 Operational semantics

The operational semantics comes in two flavours, a may modality, 3, and a must modality,
2.

The may modality is the most obvious extension of the deterministic operational seman-
tics. Whereas the deterministic primitive reduction, evaluation and transition relations, →,
 , and�, are partial functions, their nondeterministic may counterparts, written →3, 3,
and�3, are proper relations that relate some expressions to multiple expressions and values.
They are given in Tables 5.1–5.3.

The first rule (Redex3 !) defines the may primitive reduction relation →3 as a superset of
the deterministic primitive reduction relation →. The only differences from the deterministic
relations are the other rules, (Redex3 or) and (Redex3 choose), for may primitive reduction
of erratic and countable choice. The definitions of the may evaluation and transition relations,

3 and �3, are the same as those of the deterministic relations, and �, but with may

primitive reduction →3 in place of deterministic primitive reduction →.
The may evaluation and transition relations are related like the deterministic ones (Propo-

sition 2.2.6),

a 3 u iff a�∗3 u (5.3)

We say that a closed expression a may terminate if there exists u such that a 3 u.
Otherwise a must diverge.

The operational relations of the must modality relate expressions to sets of expressions
and values. The must primitive reduction, evaluation and transition relations, written →2,

2, and �2, are given in Tables 5.4–5.6; A and B range over sets of closed expressions; U

and V range over sets of closed values.
The must primitive reduction and transition relations, →2 and�2, relate expressions to

the sets of successor expressions determined by the corresponding may relations,

a→2 B iff ∅ 6= B = {b | a→3 b} (5.4)

a�2 B iff ∅ 6= B = {b | a�3 b} (5.5)

So the must relations are deterministic,

a→2 B and a→2 B
′ imply B = B′ (5.6)

a�
2 B and a�2 B

′ imply B = B′ (5.7)

In other words, they are partial functions.
So far, the must relations are just a convenient reformulation of the corresponding may

relations. But the must evaluation relation, 2, defined inductively by the rules in Table 5.5,

5.2. OPERATIONAL SEMANTICS 61

(Redex3 !) a→3 b, if a→ b

(Redex3 or) a1 or a2 →3 ai, if i = 1, 2

(Redex3 choose) ?→3 piq, if i < ω

Table 5.1: May primitive reduction relation

(Eval3 value) v 3 v

(Eval3 redex)
b 3 v

a 3 v
if a→3 b

(Eval3 let)
a 3 u b[u/x] 3 v

let x= a in b 3 v

Table 5.2: May evaluation relation

(Trans3 redex) a�3 b, if a→3 b

(Trans3 let beta) let x= u in b�3 b[u/x]

(Trans3 let left)
a�3 a

′

let x= a in b�3 let x= a′ in b

Table 5.3: May transition relation

62 CHAPTER 5. A NONDETERMINISTIC FUNCTIONAL LANGUAGE

(Redex2 !) a→2 {b}, if a→ b

(Redex2 or) a1 or a2 →2 {a1, a2}

(Redex2 choose) ?→2 {piq | i < ω}

Table 5.4: Must primitive reduction relation

(Eval2 value) v 2 {v}

(Eval2 redex)
∀b ∈ B. b 2 Vb
a 2

⋃
b∈B Vb

if a→2 B

(Eval2 let)
a 2 U ∀u ∈ U. b[u/x] 2 Vu

let x= a in b 2

⋃
u∈U Vu

Table 5.5: Must evaluation relation

(Trans2 redex) a�2 B, if a→2 B

(Trans2 let beta) let x= u in b�2 {b[u/x]}

(Trans2 let left)
a�2 A

let x= a in b�2 {let x= a′ in b | a′ ∈ A}

Table 5.6: Must transition relation

5.2. OPERATIONAL SEMANTICS 63

is complementary to the may evaluation relation, 3. The two cannot be derived from each
other. The meaning of a 2 U is that a must terminate (every 3-transition sequence from
a terminates) and U is the set of values that a may evaluate to. We have that

a
2
U implies ∅ 6= U = {u | a

3
u} (5.8)

The reverse implication is false because a may evaluate to a non-empty set of values U even
though it may diverge, in which case the must evaluation relation is undefined on a.

So the must evaluation relation is deterministic in the sense that there is at most one set
U of outcomes that a must evaluate to,

a
2
U and a

2
U ′ imply U = U ′ (5.9)

We say that a closed expression a must terminate if there exists a set U such that a 2 U .
Otherwise a may diverge. From (5.8) we get that if a must terminate then it may terminate.

Corresponding to (5.3) we have that the must evaluation relation is the smallest relation
closed under (Eval2 value) and the following generalisation of (Eval2 redex)

∀b ∈ B. b
2 Vb

a 2

⋃
b∈B Vb

if a�2 B (5.10)

Determinism and bounded nondeterminism

For expressions a : t without occurrences of the two nondeterministic constructs, we observe
that

a→3 b iff a→ b (5.11)

a 3 u iff a u (5.12)

a�
3 b iff a� b (5.13)

for all b and u. In particular, we see that the may relations are deterministic for such a, and

a→2 B iff a→ b & B = {b} (5.14)

a
2 U iff a u & U = {u} (5.15)

a�
2 B iff a� b & B = {b} (5.16)

for all b and u and sets B and U .
If a : t does not contain any occurrences of countable choice, but possibly contains occur-

rences of erratic choice, then a has only a finite set of outcomes in any of the must relations
(i.e., the sets B and U above are finite rather than just singletons). For the primitive reduction
relation and the transition relation this is immediate by inspection of the reduction and tran-
sition rules. For the evaluation relation, we see that any derivation tree is finitely branching
and hence the tree is finite, by König’s lemma. But a can have an infinite number of outcomes
in the may evaluation relation, i.e., the set {u | a

3 u} can be infinite, as in (5.2), for exam-
ple. In that case, a may diverge, according to (5.8). In other words, both erratic choice and
countable choice generate unbounded nondeterminism. An accurate way of describing the
difference between them is that countable choice exhibits unbounded nondeterminism arising
in finite time whereas erratic choice can only exhibit unbounded nondeterminism arising in
infinite time; cf. Kumar and Pandya (1993).

64 CHAPTER 5. A NONDETERMINISTIC FUNCTIONAL LANGUAGE

5.3 Types

The typing rules for erratic choice and countable choice are:

(Type or)
Γ ` a1 : t Γ ` a2 : t

Γ ` a1 or a2 : t

(Type choose) Γ ` ? : nat

The type system’s weakening and value substitution properties from §2.3, Proposition 2.3.1,
are preserved.

The nondeterministic operational semantics satisfy type preservation and soundness prop-
erties corresponding to those of the deterministic operational semantics from Chapter 2.
Firstly, for the may operational relations, Lemmas 2.3.4 and 2.3.7 are easily extended to the
primitive may reduction relation, by inspection of reductions and type derivations. Then
Propositions 2.3.5, 2.3.6 and 2.3.8 carry over to the may evaluation and transition relations;
the proofs from §2.3.3 need no modifications other than the replacement of the may op-
erational relations for the deterministic ones. Finally, the results for the may operational
relations together with (5.4), (5.5) and (5.8) give us the appropriate type preservation and
soundness properties for the must operational relations.

5.4 Relations

The definition of compatible refinement, Table 3.2, is extended by two extra rules to cover
the new syntactic constructs.

(Comp or)
Γ ` a1 R a′1 : t Γ ` a2 R a′2 : t

Γ ` a1 or a2 R̂ a′1 or a′2 : t

(Comp choose) Γ ` ? R̂ ? : t

Lemma 3.10.1 holds for the may primitive reduction relation and for relations which are
both reflexive and substitutive. Reflexivity is needed for the case (Redex3 choose).

Lemma 5.4.1 Suppose R ∈ REL is reflexive and substitutive. Whenever a R̂ a′ : t and
a→3 b there exists b′ : t such that a′ →3 b

′ and b R b′ : t.

The lemma generalises to relations of arbitrary arity as in Lemma 3.10.2.
An analogous lemma holds for must primitive reduction. First notice that the set B is

countable whenever a→2 B, so we can always write B in the form {bi | i < ω}. For instance,
if a→ b then a→2 {bi | i < ω} with bi = b for all i < ω.

Lemma 5.4.2 Suppose R ∈ REL is reflexive and substitutive. Whenever a R̂ a′ : t and
a→2 {bi | i < ω} there exists b′0, b

′
1, · · · : t such that a′ →2 {b′i | i < ω} and bi R b′i : t for all

i < ω.

Lemma 5.4.2 entails Lemma 5.4.1 because of the correspondence (5.4) between the may
and must primitive reduction relations.

Chapter 6

Contexts

The may and must modalities of the nondeterministic operational semantics from the previous
chapter give rise to two different nondeterministic generalisations of contextual approxima-
tion and equivalence. This chapter shows interrelationship between the different contextual
relations, and generalises results from the deterministic case in Chapter 4 to the may and
must contextual relations. Most of the deterministic theory is shown to carry over in ap-
propriately modified form. Each form of contextual approximation enjoys a CIU Theorem,
a recursion induction principle, and simulation up to context proof rules. Furthermore, syn-
tactic continuity is valid for may contextual approximation and, in the absence of countable
choice, it is valid for must contextual approximation as well. In the presence of countable
nondeterminism, syntactic ω-continuity is invalid for must contextual approximation, as one
would expect. This is addressed here by a novel transfinite syntactic continuity principle.
Finally, the chapter gives results about the interplay between sequentiality and bounded and
countable nondeterminism, relative to must contextual equivalence.

6.1 Contextual approximation and equivalence

Given the may and the must extensions of the deterministic operational semantics, there are
two natural formulations of adequacy for nondeterminism. We say that an open relation R

is may-adequate if, for all a, a′ : unit,

a R a′ : unit implies a 3 〈 〉 ⇔ a′ 3 〈 〉 (6.1)

We say that an open relation R is must-adequate if, for all a, a′ : unit,

a R a′ : unit implies a 2 {〈 〉} ⇔ a′ 2 {〈 〉} (6.2)

Let ADEQ3 and ADEQ2 denote the sets of all may- and must-adequate open relations,

ADEQ3 = {R ∈ REL | ∀a, a′ : unit. a R a′ : unit⇒ (a 3 〈 〉 ⇔ a′ 3 〈 〉)}
ADEQ2 = {R ∈ REL | ∀a, a′ : unit. a R a′ : unit⇒ (a 2 {〈 〉} ⇔ a′ 2 {〈 〉})}

We also define corresponding notions of pre-adequacy, may-pre-adequacy PREADEQ3

and must-pre-adequacy PREADEQ3,

PREADEQ3 = {R ∈ REL | ∀a, a′ : unit. a R a′ : unit⇒ (a 3 〈 〉 ⇒ a′ 3 〈 〉)}
PREADEQ2 = {R ∈ REL | ∀a, a′ : unit. a R a′ : unit⇒ (a 2 {〈 〉} ⇒ a′ 2 {〈 〉})}

65

66 CHAPTER 6. CONTEXTS

The two forms of pre-adequacy and adequacy satisfy the conditions of Lemma 3.7.1.
Therefore we may define corresponding contextual approximation and equivalence relations
as follows. We define may contextual approximation, @∼3, to be the largest compatible and
may-pre-adequate open relation. The symmetrisation, may contextual equivalence, ∼=3, is
the largest compatible and may-adequate open relation. Analogously, let must contextual
approximation, @∼2, be the largest compatible and must-pre-adequate open relation, and let
must contextual equivalence, ∼=2, be the symmetrisation; it is also the largest compatible and
must-adequate open relation.

The approximation relations are both pre-congruences (compatible preorders) and the
equivalence relations are congruences. As in the deterministic case, our definitions are equiv-
alent to the more conventional definitions in terms of contexts: whenever ~x : ~t ` a : t and
~x :~t ` a′ : t,

~x :~t ` a @∼3 a
′ : t iff

∀ξ, C. ξ : (~t)t ` C : unit ⇒ (C[[(~x)a/ξ]] 3 〈 〉 ⇒ C[[(~x)a′/ξ]] 3 〈 〉) (6.3)

~x :~t ` a ∼=3 a′ : t iff

∀ξ, C. ξ : (~t)t ` C : unit ⇒ (C[[(~x)a/ξ]] 3 〈 〉 ⇔ C[[(~x)a′/ξ]] 3 〈 〉) (6.4)

~x :~t ` a @∼2 a
′ : t iff

∀ξ, C. ξ : (~t)t ` C : unit ⇒ (C[[(~x)a/ξ]] 2 {〈 〉} ⇒ C[[(~x)a′/ξ]] 2 {〈 〉}) (6.5)

~x :~t ` a ∼=2 a′ : t iff

∀ξ, C. ξ : (~t)t ` C : unit ⇒ (C[[(~x)a/ξ]] 2 {〈 〉} ⇔ C[[(~x)a′/ξ]] 2 {〈 〉}) (6.6)

The may and must contextual approximation preorders and contextual equivalences are
natural extensions of contextual approximation and equivalence to nondeterministic lan-
guages. Similar definitions appear elsewhere, e.g., in the work of Jagadeesan and Panan-
gaden (1990) on Boudol’s γ-calculus (Boudol 1989) and in Moran (1994). The may and must
modalities appear in work on testing theories for processes (DeNicola and Hennessy 1984;
Hennessy 1988). We may regard may and must contextual approximation as testing pre-
orders in the following way. For every abstraction type (~t)t, let a (~t)t-test be a context C of
type ξ : (~t)t ` C : unit. Let us say that an abstraction (~x)a of type (~t)t may pass a (~t)t-test,
C, if C[[(~x)a/ξ]] 3 〈 〉; and (~x)a must pass C, if C[[(~x)a/ξ]] 2 {〈 〉}. Then two abstractions
(~x)a and (~x)a′ of type (~t)t are may contextually approximate, ~x : ~t ` a ∼=3 a′ : t, if and
only if (~x)a′ may pass all the (~t)t-tests that (~x)a may pass; and they are must contextually
approximate, ~x :~t ` a ∼=2 a′ : t, if and only if (~x)a′ must pass all the (~t)t-tests that (~x)a must
pass.

To provide some intuition about the two approximation relations, let us here mention a
few of their properties which will be established in the remainder of the chapter.

May contextual approximation is insensitive to divergence, and it orders nondeterministic
programs above less nondeterministic ones. These facts are expressed in the laws for erratic
choice: it is a least upper bound operator, and its unit is Ω which is a least element in the
may approximation preorder.

In the must approximation preorder, every program that may diverge is a least element
(so all divergent programs are equated by must contextual equivalence). Nondeterministic
programs are ordered below more deterministic ones, and erratic choice is a greatest lower
bound operator.

6.1. CONTEXTUAL APPROXIMATION AND EQUIVALENCE 67

The “nondeterministic” contextual relations (may and must contextual approximation
and equivalence) are all refinements of the corresponding “deterministic” contextual relations
(contextual approximation, @∼, and equivalence, ∼=) with regard to “deterministic” terms: for
all a and a′ without syntactic occurrences of or and ?,

Γ ` a @∼3 a
′ : t implies Γ ` a @∼ a

′ : t

Γ ` a @∼2 a
′ : t implies Γ ` a @∼ a

′ : t

and similarly for the contextual equivalence relations. This is immediate from the definitions
and the fact that the may and must evaluation relations coincide with the deterministic eval-
uation relation for deterministic terms, (5.12) and (5.15). Furthermore, the nondeterministic
contextual relations are strict refinements of the deterministic contextual relations: there
are (deterministic) contextually equivalent terms a and a′ that are distinguished by all the
nondeterministic contextual relations. For instance, recall u and u′ from Example 4.3.2,

u = λf. if f 〈 〉 then true else true

u′ = λf. if f 〈 〉 then f 〈 〉 else true

They are (deterministically) contextually equivalent, u ∼= u′ : (unit ⇀ bool) ⇀ bool, but
they are not may contextually equivalent: let v : (unit ⇀ bool) denote the function v =
λ〈 〉. true or false and define C = let f =• in if f v then Ω else 〈 〉, then C[[u′]] may termi-
nate whereas C[[u]] must diverge. Furthermore, u and u′ are not must contextually equivalent
either: letting C ′ = let f = • in if f v then 〈 〉 else Ω, then C[[u]] must terminate whereas
C[[u′]] may diverge.

May contextual equivalence is insensitive to the difference between finitely brancing non-
determinism, generated by the binary erratic choice combinator or, and countably branching
nondeterminism, generated by the countable choice primitive ?. In fact, we shall see in
§6.4 that a1 or a2 is may contextually equivalent to the encoding (5.1), and that ? is may
contextually equivalent to the encoding (5.2).

This is not the case for must contextual equivalence. Countable choice is not must con-
textual equivalent to (5.2) because

let x= ? in 〈 〉 2 {〈 〉}

whereas with (5.2) in place of ? the evaluation may diverge.
In fact, bounded nondeterminism and countable nondeterminism each introduce increas-

ingly discriminative contexts that can distinguish more expressions with respect to must
contextual equivalence. In our discussion of Example 4.3.2, above, we saw that bounded
nondeterminism alone makes must contextual equivalence more discriminative than deter-
ministic contextual equivalence. The next example shows how the introduction of countable
nondeterminism distinguishes even more expressions.1

Example 6.1.1 Let v and v′ denote the functions

v = λf. let x= f 〈 〉 in 〈 〉
v′ = λf.Y (λg. λy. let x= f 〈 〉 in if eq x y then g (succ y) else 〈 〉) 0

1The observation that countable nondeterminism adds further discriminative power is due to Corin Pitcher.
(Personal communication, October 1997).

68 CHAPTER 6. CONTEXTS

where eq : nat⇀ nat⇀ bool is an appropriate recursive function that tests for equality.
Without countable nondeterminism, the two functions are must contextually equivalent,

v ∼=2 v′ : (unit⇀ nat)⇀ unit

We can prove this by an analogue of Proposition 4.3.1, which we shall establish later in
Proposition 6.5.5. It tells us that the equivalence holds if

∀u : t. v u
2
{〈 〉} ⇔ v′ u

2
{〈 〉} (6.7)

Now, if v u 2 {〈 〉} then, according to (Eval2 let), u 〈 〉 2 V for some non-empty set of
natural numbers V . The set V is finite (because we exclude countable nondeterminism). Let
piq be the first natural number not in V . Then v′ u is guaranteed to terminate no later than
by the i’th iteration of the loop, i.e., v′ u

2
{〈 〉}. This establishes the forward implication.

The reverse is easy to see, regardless of the presence of countable nondeterminism.
But v is not contextually equivalent to v′ if we admit countable choice because then we

can take u = λ〈 〉.? in (6.7). We see that v u
2 {〈 〉} but not v′ u 2 {〈 〉} because u 〈 〉 may

always evaluate to the number that it is being tested against so that the loop keeps unfolding,
leading to divergence. 2

Our discussion of the relative discriminative power of the deterministic language and its
extensions with bounded and countable nondeterminism can be turned into formal arguments
about relative expressive power in accordance with Felleisen (1991); see also Mitchell (1993).
But we shall not pursue this issue here.

6.2 Lower and upper simulation

We define lower and upper simulation operators, 〈·〉
3

and 〈·〉
2

, that map any open relation
R into the closed relations 〈R〉

3
and 〈R〉

2
given by

a 〈R〉
3
a′ : t

def⇔ ∀u : t. a 3 u ⇒ ∃u′ : t. a′ 3 u
′ & u R u′ : t

a 〈R〉
2
a′ : t

def⇔ ∀U. a 2 U ⇒ ∃U ′. a′ 2 U
′ & ∀u′ ∈ U ′. ∃u ∈ U. u R u′ : t

We call R ∈ REL0 a (closed) lower simulation if it is a post-fixed point of 〈·◦〉
3

, i.e.,
R ⊆ 〈R◦〉

3
, and S ∈ REL is an open lower simulation if it is a post-fixed point of 〈·〉◦

3
.

Analogously, R ∈ REL0 is a (closed) upper simulation if it is a post-fixed point of 〈·◦〉
2

, and
S ∈ REL is an open upper simulation if it is a post-fixed point of 〈·〉◦

2
.

Note that every lower simulation is may-pre-adequate and every upper simulation is must-
pre-adequate.

6.3 Lower relational reasoning

In this section we generalise the first two stages of the theory for contextual equivalence from
Chapter 4 (i.e., §4.3 and §4.6–4.7) to may contextual equivalence. The presentation is a bit
more economical here because we start with the simulation up to context proof rules where
from all the other results follow, including the CIU Theorem.

6.3. LOWER RELATIONAL REASONING 69

Lemma 6.3.1
R0 ⊆ (〈R〉

3
∪ R̂)@∼3

R ⊆ @∼3
if R ∈ REL is compatible and substitutive.

Proof First we construct a closed relation ��
def
= �3 ∪ @∼

op
3

. We shall think of �� as a
generalised transition relation. Since @∼3 and �3 are closed under evaluation contexts—by
compatibility and (Trans3 let left), respectively—so is ��. Furthermore, @∼3 and �op

3 are
both may-pre-adequate and therefore �op

� is may-pre-adequate.
Under the assumption that the premise of the rule holds and that R is reflexive and

substitutive, we will prove that

a R a′ : t & a 3 v ⇒ ∃v′ : t. v R v′ : t & a′�∗� v′ : t (6.8)

Since�op
� is may-pre-adequate, (6.8) implies that R is may-pre-adequate, so if R is compat-

ible, it is included in may contextual approximation, R ⊆ @∼3, as required.
The proof of (6.8) is similar to that of (4.22) in the proof of Lemma 4.6.1. It proceeds by

induction on the derivation of a
3 v and exploits that, whenever a R a′ : t, the premise of

the lemma asserts that there exists an a′′ : t such that a′�� a′′ : t and either a 〈R〉
3
a′′ : t or

a R̂ a′′ : t. In the first case, the result follows easily from the definition of the lower simulation
operator and the fact that the may evaluation relation is included in �∗�, by (5.3). In the

second case, when a R̂ a′′ : t, the argument is straightforward by analysis of the derivation of
a

3 v. 2

From Lemma 6.3.1 we deduce a number of results.

Lemma 6.3.2 May contextual approximation is closed under open extension, (@∼30
)◦ ⊆ @∼3.

Proof As Lemma 4.7.1. 2

Corresponding to (4.23), we have a “lower simulation up to context and may contextual
approximation” proof rule,

S ⊆ 〈SC〉
3
@∼3

S ⊆ @∼3
(6.9)

Suppose we define lower Kleene approximation and equivalence as the closed relations
such that, for all t and a, a′ : t,

a �3 a′ : t def⇔ ∀u. a 3 u ⇒ a′ 3 u

a �3 a′ : t
def⇔ ∀u. a 3 u ⇔ a′ 3 u

that is, �3 = 〈Id〉
3

and �3 is the symmetrisation of �3. Then we get that

�3 ⊆ @∼3 (6.10)

from (6.9) by letting S = �3, because �3 = 〈Id〉
3

and (�3)C is reflexive.

Proposition 6.3.3 �◦3 ⊆ @∼3.

70 CHAPTER 6. CONTEXTS

Proof From (6.10) and Lemma 6.3.2. 2

By means of (6.10) we see that the reciprocals of the may evaluation and transition
relations are included in may contextual approximation,

 op
3 ⊆ @∼3 (6.11)

�op
3 ⊆ @∼3 (6.12)

They are not included in may contextual equivalence, in general. For instance, (U or I) 3 U
but not (U or I) @∼3 U : unit⇀ unit, because (U or I) 〈 〉 may terminate whereas U 〈 〉 must
diverge. However, deterministic evaluations and transitions are included in may contextual
equivalence, that is, if a : t then

a 2 {u} ⇒ a ∼=3 u : t (6.13)

a�
2
{b} ⇒ a ∼=3 b : t (6.14)

In particular, when we combine this with Lemma 6.3.2, we get that βv-equivalence is valid
for may contextual equivalence,

Γ ` (λx. a) v ∼=3 a[v/x] : t, if Γ, x : t′ ` a : t and Γ ` v : t′ (6.15)

As in Chapter 4, it follows that may contextual approximation is substitutive and satisfies
a canonical freeness property.

Proposition 6.3.4 May contextual approximation and equivalence are substitutive.

Proposition 6.3.5 u @∼3 u
′ : t if and only if u @∼3 u

′ : t.

From Lemma 6.3.1 and (6.11) we can derive two characterisations of closed may contextual
approximation, corresponding to those of Proposition 4.3.5.

Proposition 6.3.6 If a, a′ : t then (i), (ii) and (iii) are equivalent,

(i) a @∼3 a
′ : t

(ii) ∀u. a
3 u ⇒ u @∼3 a

′ : t

(iii) ∀E. • : t ` E : unit ⇒ (E[[a]] 3 〈 〉 ⇒ E[[a′]] 3 〈 〉)

Proof (i) implies (iii) by (6.3).
To see that (iii) implies (ii), suppose that a

3 u and let us prove that u @∼3 a
′ : t by

reference to (6.3). So let C be any closed context of type • : t ` C : unit. If C[[u]]
3 〈 〉 then

E[[a]]
3 〈 〉 as well, where E = (let x = • in C[[x]]). Now (iii) entails that E[[a′]] 3 〈 〉,

that is, there is u′ : t such that a′ 3 u
′ and C[[u′]] 3 〈 〉. By (6.11) and (6.3), u′ @∼3 a

′ : t
and C[[a′]] 3 〈 〉, as required to show that u @∼3 a

′ : t.
Finally, the implication (ii) ⇒ (i) follows by a slightly simpler argument than the proof

of the corresponding implication in Proposition 4.3.5. 2

6.4. MAY EQUATIONAL THEORY 71

The equivalence between (i) and (ii) means that a @∼3 a
′ : t if and only if a′ is an upper

bound of the set of outcomes of a. Hence every well typed closed expression is the least
upper bound of its set of outcomes, up to may contextual equivalence. We might call this a
generalisation of Strachey’s property (4.10) to nondeterminism.

The implication (ii) ⇒ (i) together with (6.11) and Lemma 6.3.2 implies that may con-
textual approximation is a pre-fixed point of 〈 · 〉◦

3
,

〈@∼3〉
◦
3
⊆ @∼3 (6.16)

The reverse inclusion is false. It would amount to saying that may contextual approxima-
tion is an open lower simulation, but the next chapter, §7.1, shows that the greatest open
lower simulation is strictly included in may contextual approximation. So may contextual
approximation is not a fixed point of 〈 · 〉◦

3
.

The equivalence between (i) and (iii) in Proposition 6.3.6 together with Lemma 6.3.2
gives us the following CIU Theorem.

Theorem 6.3.7 (CIU) May contextual approximation is the largest may-pre-adequate open
relation which is closed under evaluation contexts and substitutions.

That is, whenever ~x :~t ` a : t and ~x :~t ` a′ : t,

~x :~t ` a @∼3 a
′ : t iff ∀ CIU contexts E . ξ : (~t)t ` E : unit ⇒

(E [[(~x)a/ξ]] 3 〈 〉 ⇒ E [[(~x)a′/ξ]] 3 〈 〉)
(6.17)

6.4 May equational theory

In this section we present a small selection of equational and inequational laws for the may
contextual relations. Most are straightforwardly derived via lower Kleene approximation and
equivalence.

May contextual equivalence is closed under open extension and βv-equivalence, so ηv-
equivalence is valid by the same derivation as in Example 4.7.2.

Γ ` v ∼=3 λy. v y : t⇀ t′, if Γ ` v : t⇀ t′

By lower Kleene equivalence, we see that the inter-translation between erratic choice and
countable choice in (5.1) and (5.2) is correct up to may contextual equivalence:

a1 or a2
∼=3 let x= ? in case x of 0. a1 or succx. a2 : t, if a1, a2 : t (6.18)

? ∼=3 (Y λf. λ〈 〉.0 or (let y = f 〈 〉 in succ y)) 〈 〉 : nat (6.19)

By unfolding the fixed point we get another formulation of the correspondence between erratic
and countable choice:

? ∼=3 0 or (let y = ? in succ y) (6.20)

Erratic choice is idempotent, symmetric, and associative: whenever a, a1, a2, a3 : t,

Γ ` a or a ∼=3 a : t (6.21)

Γ ` a1 or a2
∼=3 a2 or a1 : t (6.22)

Γ ` a1 or (a2 or a3) ∼=3 (a1 or a2) or a3 : t (6.23)

72 CHAPTER 6. CONTEXTS

Furthermore, erratic choice is the least upper bound operator:

Γ ` a1 @∼3 (a1 or a2) : t (6.24)

Γ ` a2 @∼3 (a1 or a2) : t (6.25)

Γ ` a1 @∼3 a : t Γ ` a2 @∼3 a : t

Γ ` (a1 or a2) @∼3 a : t
(6.26)

Every expression that must diverge is a syntactic bottom element:

Γ ` a @∼3 a
′ : t, if ¬∃v. a 3 v, Γ ` a : t and Γ ` a′ : t (6.27)

The Y combinator is a least pre-fixed point combinator.

Proposition 6.4.1 (Recursion induction)
(λf. v)u @∼3 u : t1 ⇀ t2

Y (λf. v) @∼3 u : t1 ⇀ t2

The may evaluation relation and may contextual approximation satisfy the same unwind-
ing and syntactic continuity properties as their deterministic counterparts:

Theorem 6.4.2 (May Unwinding) Suppose y : (t⇀t)⇀ t ` a : t′ and t is a function type.

Then a[Y/y] may terminate if and only if a[Y
(n)
/y] may terminate for some n < ω.

Proposition 6.4.3 (Syntactic may continuity) If y : (t ⇀ t) ⇀ t ` a : t′ and t is a

function type, a[Y/y] @∼3 a
′ : t′ if and only if ∀n < ω. a[Y

(n)
/y] @∼3 a

′ : t′.

The proofs are exactly the same as for the deterministic case in §4.5.

Example 6.4.4 Let

a = λ〈 〉.?
a′ = let y = ? in λ〈 〉.min(?, y)

where min(?, y) is a suitable fixed point expression that computes the minimum of the out-
come of ? and y.

The two expressions a and a′ are may contextually equivalent, a ∼=3 a′ : unit⇀ nat.
One direction, a′ @∼3 a : unit ⇀ nat, is easy: whenever a′ 3 u′, the outcome is of the

form u′ = λ〈 〉.min(?, pnq); by lower Kleene approximation, min(?, pnq) @∼3 ? : nat holds for
all n < ω; hence a @∼3 a

′ : unit⇀ nat, by Proposition 6.3.6.
The difficult part is whether a @∼3 a

′ : unit⇀ nat. Intuitively, this holds because in any
context C such that C[[a]]

3 〈 〉, there is an upper bound n on the outputs of the function
a during the evaluation; therefore C[[a′]] 3 〈 〉 too by always choosing y in a′ to be greater
than n. We can prove this most easily by means of the syntactic continuity proof rule and
the fact that, according to (6.19), a ∼=3 Y u : unit⇀ nat, where u is the functional

u = λf. λ〈 〉.0 or (let y = f 〈 〉 in succ y)

From (6.27) we get that

Y(0) u @∼3 a
′ : unit⇀ nat

6.5. UPPER RELATIONAL REASONING 73

and we calculate, via lower Kleene equivalence and approximation,

Y(n+1) u ∼=3 λ〈 〉.min(?, pnq) @∼3 a
′ : unit⇀ nat, for all n < ω

By syntactic may continuity, Proposition 6.4.3, we obtain Y u @∼3 a
′ : unit⇀nat, as required

to show that a @∼3 a
′ : unit⇀ nat. 2

The example was used in Lassen (1997) to distinguish may contextual approximation from
an applicative simulation preorder, and it serves the same purpose in the next chapter, §7.1.
Variations of this example has been discovered and studied elsewhere in different contexts.
For instance, a similar example with streams, due to Boudol (1980), illustrated some problems
with certain choices of operational equivalence between nondeterministic recursive program
schemes. The programs in the example are equated in the continuous powerdomain model
considered by Winskel (1983), and he argued that the identification is perfectly natural from
an appropriate view of the operational semantics. That conclusion is corroborated here by
the fact that they are contextually equivalent (our proof in the preceding example carries
over to Boudol’s example). Abramsky (1983) discussed the same example, but argued that
such programs should be distinguished, and that a semantics like ours fails to give an exact
agreement with the operational semantics. But the semantics of finitely branching nondeter-
minism on non-discrete data domains, e.g., streams or function spaces, is discontinuous in
partial-order fixed-point models that makes such distinctions. Therefore he gave a category-
theoretic fixed-point semantics, using Lehmann’s categorical powerdomain construction (see
§6.9 below), which is continuous and makes the desired distinctions. However, as these dis-
tinctions are not warranted from the viewpoint of observational behaviour underlying the
definition of contextual equivalence, one may instead argue that Abramsky’s semantics is not
fully abstract.

6.5 Upper relational reasoning

In this section the theory of must contextual equivalence is developed along the same lines as
in §6.3. The main difference is that some extra definitions are needed to set up the proof of
the fundamental lemma:

Lemma 6.5.1
R0 ⊆ (〈R〉

2
∪ R̂) @∼2

R ⊆ @∼2
if R is compatible and substitutive.

In order to prove the lemma, we introduce a generalised must evaluation relation, �,
and a corresponding generalised upper simulation operator, 〈 · 〉�.

We define � inductively as the smallest type indexed family of relations between closed
expressions a and sets of closed values U such that � is closed under the rules in Table 6.1.

Modulo types, the last three rules are the defining rules of the must evaluation relation,
Table 5.5. By rule induction,

2 is included in �,

a 2 U implies a � U : t, if a : t (6.28)

Lemma 6.5.2 If a � U : t then a must terminate.

74 CHAPTER 6. CONTEXTS

(Eval� approx)
b � U : t

a � U : t
if b @∼2 a : t

(Eval� value) v � {v} : t, if v : t

(Eval� redex)
∀b ∈ B. b � Vb : t

a �
⋃
b∈B Vb : t

if a→2 B and a : t

(Eval� let)
a � U : t′ ∀u ∈ U. b[u/x] � Vu : t

let x= a in b �
⋃
u∈U Vu : t

if x : t′ ` b : t

Table 6.1: Generalised must evaluation relation

Proof The proof is by induction on the derivation of a � U : t. In order to carry out
the induction step for (Eval� let), it is necessary to strengthen the goal of the induction
hypothesis from that a must terminate to

∀t′. ∀ evaluation contexts E. • : t ` E : t′ & (∀u ∈ U. E[[u]]⇓2) ⇒ E[[a]]⇓2

where b⇓2
def⇔ ∃V. b 2 V . Then all cases run smoothly. (5.10) is used for the cases (Eval�

redex) and (Eval� let). 2

The generalised upper simulation operator maps any open relation R into a closed relation
〈R〉� given by

a 〈R〉� a′ : t
def⇔ ∀U. a 2 U ⇒ ∃U ′. a′ � U ′ : t & ∀u′ ∈ U ′. ∃u ∈ U. u R u′ : t

Clearly, 〈R〉
2
⊆ 〈R〉� and, moreover, 〈R〉�@∼2 ⊆ 〈R〉�, by (Eval� approx). From

Lemma 6.5.2, we get that 〈R〉� is must-pre-adequate.
Generalised upper simulation satisfies the following proof rule.

Lemma 6.5.3
R0 ⊆ 〈R〉� ∪ (R̂ @∼2)

R0 ⊆ 〈R〉�
if R is reflexive and substitutive.

Proof Assume that R is reflexive and substitutive and that the premise holds. We prove
the conclusion R0 ⊆ 〈R〉�, i.e.,

a R a′ : t & a 2 U ⇒ ∃U ′. a′ � U ′ : t & ∀u′ ∈ U ′. ∃u ∈ U. u R u′ : t

by induction on the derivation of a
2 U .

Since a R a′ : t, according to the premise either a 〈R〉� a′ : t or there is an a′′ : t such that

a R̂ a′′ : t and a′′ @∼2 a
′ : t.

If a 〈R〉� a′ : t, the result is immediate.

If a R̂ a′′ : t and a′′ @∼2 a
′ : t, we proceed by analysis of the derivation of a 2 U .

6.5. UPPER RELATIONAL REASONING 75

Case (Eval2 value)

a is a value

U = {a}

Since a R̂ a′′ : t Lemma 3.5.1 implies that a′′ is a value. Let U ′ = {a′′}, then a′′ � U ′,
by (Eval� value), and a′ � U ′, by (Eval� approx).

Case (Eval2 redex)

a→2 {bi | i < ω}
bi 2 Ui for all i < ω

U =
⋃
i<ω Ui

From a R̂ a′′ : t and Lemma 3.10.1 we get that a′′ →2 {b′i | i < ω} with bi R b′i : t for all
i < ω. By the induction hypothesis for each i < ω there exists U ′i such that b′i � U ′i
and

∀u′ ∈ U ′i . ∃u ∈ Ui. u R u′ : t

Let U ′ =
⋃
i<ω U

′
i , then

∀u′ ∈ U ′. ∃u ∈ U. u R u′ : t

Finally, by (Eval� redex) and (Eval� approx), we get that a′′ � U ′ and a′ � U ′, as
required.

Case (Eval2 let)

a = let x= a0 in b0

a0 2 V

b0[v/x] 2 Uv for all v ∈ V
U =

⋃
v∈V Uv

Since a R̂ a′′ : t, a′′ must be of the form a′′ = let x = a′0 in b′0 with a0 R a′0 : t′ and
x : t′ ` b0 R b′0 : t. By the induction hypothesis, a′0 2 V

′ for some V ′ such that for
every v′ ∈ V ′ there is v ∈ V with v R v′ : t′ and hence b0[v/x] R b′0[v

′
/x] : t. Another

application of the induction hypothesis yields that b′0[v
′
/x] 2 U

′
v′ such that

∀u′ ∈ U ′v′ . ∃u ∈ Uv. u R u′ : t

Letting U ′ =
⋃
v′∈V ′ U

′
v′ , we have that

∀u′ ∈ U ′. ∃u ∈ U. u R u′ : t

By (Eval� let) and (Eval� approx), we get that a′′ � U ′ and a′ � U ′, as required.
2

Lemma 6.5.1 now follows because 〈R〉
2
@∼2 ⊆ 〈R〉� and because R0 ⊆ 〈R〉� implies that

R is must-pre-adequate so that R ⊆ @∼2, if R is compatible.
From Lemma 6.5.1 the theory of must contextual approximation unfolds in much the same

way as for may contextual approximation in §6.3.

76 CHAPTER 6. CONTEXTS

Lemma 6.5.4 Must contextual approximation is closed under open extension, (@∼20
)◦ ⊆ @∼2.

We have an “upper simulation up to context and must contextual approximation” proof
rule,

S ⊆ 〈SC〉
2
@∼2

S ⊆ @∼2
(6.29)

which we can derive either from Lemma 6.5.1 or from a “generalised upper simulation up to
context” proof rule

S ⊆ 〈SC〉�
S ⊆ @∼2

(6.30)

which follows from Lemma 6.5.3.
We define upper Kleene approximation and equivalence as the closed relations such that,

for all t and a, a′ : t,

a �2 a′ : t
def⇔ ∀U. a 2 U ⇒ ∃U ′ ⊆ U. a′ 2 U

′

a �2 a′ : t def⇔ ∀U. a 2 U ⇔ a′ 2 U

That is, �2 = 〈Id〉
2

and �2 is the symmetrisation of �2.

Proposition 6.5.5 �◦2 ⊆ @∼2.

Proof From Lemma 6.5.4 and (6.29). See the proof of Proposition 6.3.3. 2

The may evaluation and transition relations are included in must contextual approxima-
tion,

3 ⊆ @∼2 (6.31)

�
3 ⊆ @∼2 (6.32)

Deterministic evaluations and transitions are included in must contextual equivalence, that
is, if a : t then

a
2 {u} ⇒ a ∼=2 u : t (6.33)

a�2 {b} ⇒ a ∼=2 b : t (6.34)

Lemma 6.5.4 and (6.34) imply that βv-equivalence is valid for must contextual equivalence,

Γ ` (λx. a) v ∼=2 a[v/x] : t, if Γ, x : t′ ` a : t and Γ ` v : t′ (6.35)

and entails that must contextual approximation is substitutive and satisfies a canonical free-
ness property.

Proposition 6.5.6 Must contextual approximation and equivalence are substitutive.

Proposition 6.5.7 u @∼2 u
′ : t if and only if u @∼2 u

′ : t.

6.6. MUST EQUATIONAL THEORY 77

From Lemma 6.5.3 and (6.31) we derive two characterisations of closed must contextual
approximation.

Proposition 6.5.8 If a, a′ : t then (i), (ii) and (iii) are equivalent,

(i) a @∼2 a
′ : t

(ii) (∃U. a 2 U) ⇒ ∃U ′. a′ 2 U
′ & ∀u′ ∈ U ′. a @∼2 u

′ : t

(iii) ∀E. • : t ` E : unit ⇒ (E[[a]] 2 {〈 〉} ⇒ E[[a′]] 2 {〈 〉})

Proof (i) implies (iii) because of (6.5).
(iii) implies (ii) because a must terminate if and only if (a; 〈 〉) 2 {〈 〉} and, according

to (iii), (a; 〈 〉) 2 {〈 〉} implies (a′; 〈 〉) 2 {〈 〉} which again holds if and only if a′ must
terminate. So a′ 2 U

′ for some set U ′. From (5.8) and (6.31) it follows that a′ @∼2 u
′ : t for

all u′ ∈ U ′. By transitivity, we conclude that (ii) holds.
It remains to show that (ii) implies (i). If a and a′ satisfy (ii) then a 〈Id〉� a′ : t. (Recall

that 〈Id〉
2

is upper Kleene approximation, so we might call 〈Id〉� “generalised upper Kleene
approximation”.) By a similar argument as in the proof of Proposition 6.5.5, but with (6.30)
in place of (6.29), we see that 〈Id〉� ⊆ @∼2 and hence that a @∼2 a

′ : t, as required. 2

The first characterisation tells us that a @∼2 a
′ : t if and only if a is a lower bound of the

set of outcomes of a′ (if we say that the set of outcomes contains Ω when a′ may diverge).
Hence every well typed closed expression is the greatest lower bound of its set of outcomes,
up to must contextual equivalence. This complements Proposition 6.3.6 as a generalisation
of Strachey’s property (4.10) to nondeterminism.

The implication (ii) ⇒ (i) together with (6.31) implies that must contextual approxima-
tion is a pre-fixed point of 〈 · 〉◦

2
,

〈@∼2〉
◦
2
⊆ @∼2 (6.36)

The reverse inclusion is false, analogously to the situation for may contextual approximation
in §6.3. This follows from the results in the next chapter, §7.2.

If we combine the last characterisation of closed must contextual approximation in Propo-
sition 6.5.8 with Lemma 6.5.4 we obtain the following CIU Theorem.

Theorem 6.5.9 (CIU) Must contextual approximation is the largest must-pre-adequate open
relation which is closed under evaluation contexts and substitutions.

That is, whenever ~x :~t ` a : t and ~x :~t ` a′ : t,

~x :~t ` a @∼2 a
′ : t iff ∀ CIU contexts E . ξ : (~t)t ` E : unit ⇒

(E [[(~x)a/ξ]] 2 {〈 〉} ⇒ E [[(~x)a′/ξ]] 2 {〈 〉})
(6.37)

6.6 Must equational theory

Most of the equational laws for may contextual approximation carry over to the must modality.
One exception is the equivalence between countable choice and the encoding (5.2),

? ∼=3 (Y λf. λ〈 〉.0 or (let y = f 〈 〉 in succ y)) 〈 〉 : nat

78 CHAPTER 6. CONTEXTS

The encoding may diverge, so it is strictly below ? with respect to must contextual approx-
imation. But the correspondence between erratic and countable choice in (6.20) is valid for
must contextual equivalence,

? ∼=2 0 or (let x= ? in succx)

Erratic choice is the greatest lower bound operator for must contextual approximation:

Γ ` (a1 or a2) @∼2 a1 : t (6.38)

Γ ` (a1 or a2) @∼2 a2 : t (6.39)

Γ ` a @∼2 a1 : t Γ ` a @∼2 a2 : t

Γ ` a @∼2 (a1 or a2) : t
(6.40)

Every expression that may diverge is a syntactic bottom element:

Γ ` a @∼2 a
′ : t, if ¬∃V. a 2 V, Γ ` a : t and Γ ` a′ : t (6.41)

From (6.29) we can derive a recursion induction rule for the Y combinator.

Proposition 6.6.1 (Recursion induction)
(λf. v)u @∼2 u : t1 ⇀ t2

Y (λf. v) @∼2 u : t1 ⇀ t2

When we generalise the unwinding and continuity properties of evaluation and contex-
tual approximation from §4.5 to must evaluation and must contextual approximation, it
makes a significant difference whether we restrict ourselves to bounded (finitely branching)
nondeterminism, generated by erratic choice, or we admit countable (countably branching)
nondeterminism, generated by countable choice. Let us postpone countable nondeterminism
to the next section, and first consider the case for bounded nondeterminism.

The next theorem holds for the finitely branching sublanguage without countable choice.

Theorem 6.6.2 (Must ω-Unwinding) Suppose y : (t⇀ t)⇀ t ` a : t′ and t is a function

type. Then a[Y/y] must terminate if and only if a[Y
(n)
/y] must terminate for some n < ω.

The proof is similar to those of the deterministic Unwinding Theorem 4.5.1 and the Must
ωCK1 -Unwinding Theorem 6.7.4, given below. It employs the following two lemmas. We omit
the proofs.

Lemma 6.6.3 Y is a @∼2-upper bound of its finite unwindings
{
Y(i) | i < ω

}
.

Lemma 6.6.4 a : t & a 2 U ⇒
∃n < ω. ∀m< ω. ∀a′ : t. a W (m+n) a′ : t ⇒

∃U ′. a′ 2 U
′ & ∀u′ ∈ U ′. ∃u ∈ U. u W (m) u′ : t

From the two lemmas we also obtain a syntactic continuity property of must contextual
approximation for the sublanguage without countable choice.

Proposition 6.6.5 (Syntactic must ω-continuity) If y : (t⇀ t) ⇀ t ` a : t′ and t is a

function type, a[Y/y] @∼2 a
′ : t′ if and only if ∀n < ω. a[Y

(n)
/y] @∼2 a

′ : t′.

The proof is the same as for Proposition 4.5.4.

6.7. TRANSFINITE UNWINDING AND SYNTACTIC ωCK1 -CONTINUITY 79

6.7 Transfinite unwinding and syntactic ωCK1 -continuity

The Must ω-Unwinding Theorem reflects that every derivation tree for must evaluation is
of finite height in the case of bounded nondeterminism. Formally, the closure ordinal of the
rules in Table 5.5 that define the must evaluation relation is ω, that is, the height of every
derivation tree is an ordinal less than ω. For infinitely branching nondeterminism, it is well-
known that the height of must evaluation trees may be transfinite. In this case the closure
ordinal of the must evaluation rules is ωCK1 which is the smallest non-recursive ordinal. This
is proved in Lassen and Pitcher (1998) for a variant of PCF with countable nondeterminism;
see also Apt and Plotkin (1986). In other words, for any recursive ordinal α < ωCK1 , there
are programs with must evaluation trees of height greater than or equal to α.

Example 6.7.1 Let

u = λf. λ〈x, y〉. if eq 0 x then (if eq 0 y then 〈 〉
else f 〈x,pred y〉)

else let y′ = ? in f 〈predx, y′〉

where eq : nat ⇀ nat ⇀ bool and pred : nat ⇀ nat are appropriate recursive functions for
comparing and decrementing natural numbers.

For any pair of closed values m,n : nat, the program Y u 〈m,n〉 will first count down n

to zero, then it will decrement m and choose an arbitrary natural number n1 for the second
component and start counting down n1, and so on. The program eventually stops when m

has been decremented to zero and the m’th arbitrarily chosen number has been counted down
to zero as well.

If m is non-zero, we cannot give a finite bound on the number of iterations of u, so in that
case a = y u 〈m,n〉 is a counterexample to the Must ω-Unwinding Theorem.

Since Y u 〈m,n〉 2 {〈 〉} for all 〈m,n〉 : nat× nat, we see that

Y u ∼=2 λz. 〈 〉 : nat× nat⇀ unit

But with any finite unwinding Y(i) in place of Y we get that

Y(i) u @∼2 λ〈x, y〉. (if eq 0 x then 〈 〉 else Ω) : nat× nat⇀ unit

because if the first argument is non-zero there is no finite upper bound on the number of
iterations of u. So, on such input, there may be more than i iterations of u and Y(i) u may
diverge. This gives us a counterexample to syntactic must ω-continuity, by taking a = y u

and a′ = λ〈x, y〉. (if eq 0 x then 〈 〉 else Ω). 2

It is possible to formulate an ωCK1 -unwinding property for must termination that holds
for countable nondeterminism. To this end we must first extend the syntax so that we can
express transfinite unwindings of the fixed point combinator.

In this section α, β and γ range over arbitrary recursive ordinals, and λ ranges over
recursive limit ordinals, α, β, γ, λ < ωCK1 . We introduce a family of “approximate” fixed
point expressions indexed by the recursive ordinals,

(Exp) a, b ::= . . .

| fix(α) u

80 CHAPTER 6. CONTEXTS

with the typing rule:

(Type fix)
Γ ` u : (t1 ⇀ t2)⇀ t1 ⇀ t2

Γ ` fix(α) u : t1 ⇀ t2

We call the new constructs ‘transfinite’.
We extend the must primitive reduction relation to the new transfinite syntax as follows.

(Redex2 fix zero) fix(0) u→2 {fix(0) u}

(Redex2 fix succ) fix(α+1) u→2 {u (λx. (fix(α) u)x)}

(Redex2 fix limit) fix(λ) u→2 {fix(α) u} if α < λ

This indirectly extends the must evaluation and transition relations via (Eval2 redex) and
(Trans2 redex). We observe that (Redex2 fix limit) introduces nondeterminacy in all three
must relations.

It does not seem possible to extend the may operational relations from Tables 5.1–5.3 to
the extended syntax. So the characterisations (5.4), (5.5), and (5.8) of the must operational
relations are lost.

Compatible refinement extends to the new syntax by the following rule.

(Comp fix)
Γ ` u R u′ : t

Γ ` fix(α) u R̂ fix(α) u′ : t

Each of the rules for primitive reduction, (Redex2 fix zero), (Redex2 fix succ), and
(Redex2 fix limit), violates Lemma 5.4.2. However, the lemma holds for compatible rela-
tions:

Lemma 6.7.2 Suppose R ∈ REL is compatible and substitutive. Whenever a R̂ a′ : t and
a →2 {bi | i < ω} there exist b′0, b

′
1, · · · : t such that a′ →2 {b′i | i < ω} and bi R b′i : t for all

i < ω.

The proof is straightforward and omitted.
The definitions of must contextual approximation and equivalence from §6.1 are still mean-

ingful in the extended language. But it is not clear whether the extension is conservative,
that is, whether the instances of must contextual approximation and equivalence that one
proves in the original language are true with respect to the definition of must contextual
approximation and equivalence for the extended language.

For many purposes, including proofs by transfinite induction over approximate fixed point
expressions, it is not important that the indexes range over recursive ordinals rather than,
e.g., countable ordinals. However, one consequence of the restriction to recursive ordinals is
that we can exploit the fact that these are expressible as λ-terms (Church and Kleene 1937)
to encode the transfinite fixed point expressions in various other extensions of the language,
e.g., using Boudol’s parallel combinator (Boudol 1994), or by means of control operators
and a global queue of continuations—the details of these two encodings can be found in

6.7. TRANSFINITE UNWINDING AND SYNTACTIC ωCK1 -CONTINUITY 81

Appendix A. Unfortunately, it does not seem possible to encode the transfinite fixed point
expressions within the language (without transformation into continuation and state passing
style or the like) which would be the easy way to show that the extension is conservative.

Of the results about must contextual approximation and equivalence from §6.5–6.6, (6.31),
(6.32) and the implication (iii) ⇒ (ii) in Propostion 6.5.8 depend on the correspondence
between the must operational relations and the may operational relations that holds only in
the absence of the transfinite language extension. (The equivalence between (i) and (iii) in
Propostion 6.5.8 remains valid; it can be proved by a suitable modification of Lemma 6.5.3.)
The rules (6.33) and (6.34) are valid in the extended language only for must evaluations and
must transitions that are deterministic.

All concrete instances of must contextual approximation and equivalence in the original
language that are proved by the techniques in §6.5–6.6 carry over to the extended language.

The next lemma interrelates the transfinite fixed point expressions; (3) asserts that fix(λ) u,
for a limit ordinal λ, is the least upper bound of the set of all fix(α) u at ordinals α < λ.

Lemma 6.7.3 Whenever t is a function type and u : t⇀ t,

(1) fix(0) u ∼=2 Ω : t

(2) fix(α+1) u ∼=2 u (λx. (fix(α) u)x) : t

(3) fix(λ) u @∼2 b : t ⇔ ∀α < λ. fix(α) u @∼2 b : t

Proof Straightforward, by reference to the CIU Theorem and the reduction rules for the
transfinite fixed point expressions. 2

Recall from §4.5 the definition of the finite unwindings of Y. We are going to use the
transfinite fixed point expressions to express transfinite unwindings of Y. For every α < ωCK1 ,

we let Y(α) def
= λg.fix(α) g. For finite ordinals we get from (1) and (2) in the previous lemma,

by induction, that this definition is must contextually equivalent to that in §4.5.
It is now possible to formulate transfinite versions of the Unwinding Theorem and syntactic

continuity.

Theorem 6.7.4 (Must ωCK1 -Unwinding) Suppose y : (t⇀t)⇀t ` a : t′ and t is a function

type. Then a[Y/y] must terminate if and only if a[Y
(α)
/y] must terminate for some α < ωCK1 .

The proof is similar to those of the unwinding theorems for the deterministic language,
Theorem 4.5.1, and the finitely branching sublanguage without countable choice, Theo-
rem 6.6.2. The proof of the “only if” direction, given below, omits the argument for why
the ordinal α that is constructed is recursive; an account of this fact can be found in Lassen
and Pitcher (1998) and Apt and Plotkin (1986).

For every α < ωCK1 , let W
(α)
? be the relation

W
(α)
?

def
=

⋃
γ≥α

R
(γ)
?

SC

.

where each R
(γ)
? is given by

g : t⇀ t ` fix[g] R
(β)
? fix(β) g : t

82 CHAPTER 6. CONTEXTS

for all function types t. In other words, W
(α)
? is the smallest substitutive and compatible

relation which satisfies

g : t⇀ t ` fix[g] W
(α)
? fix(β) g : t (6.42)

and hence

Y W
(α)
? Y(β) : (t⇀ t)⇀ t (6.43)

for all β ≥ α and all function types t. In particular, whenever y : (t⇀ t)⇀ t ` a : t′ and t is
a function type,

a[Y/y] W
(α)
? a[Y

(α)
/y] : t′ (6.44)

The W
(α)
? relations form a decreasing sequence,

W
(α)
? ⊆W (α′)

? iff α′ ≤ α (6.45)

The Must ωCK1 -Unwinding Theorem follows from (6.44) and the next two lemmas.

Lemma 6.7.5 Y is a @∼2-upper bound of its transfinite unwindings
{
Y(α) | α < ωCK1

}
.

Proof As the proof of Lemma 4.5.2. The induction step for limit ordinals is immediate
from Lemma 6.7.3(3). 2

Lemma 6.7.6 a : t & a 2 U ⇒
∃α < ωCK1 . ∀β < ωCK1 . ∀a′ : t. a W (β+α)

? a′ : t ⇒
∃U ′. a′ 2 U

′ & ∀u′ ∈ U ′. ∃u ∈ U. u W (β)
? u′ : t

Proof By induction on the derivation of a
2 U . (It is easy to see that the ordinal α that

is constructed in the course of the proof is countable, but the argument for why it is recursive
is omitted.)

Case (Eval2 value)

a is a value

U = {a}

Let α = 0. Suppose a W
(β)
? a′ : t for some β < ωCK1 and some a′ : t. Since a is a

value, a and a′ are not related by any R
(γ)
? , so it must be the case that a Ŵ

(β)
? a′ : t.

By Lemma 3.5.1, a′ is a value too. Hence a′ 2 {a′} and, by (3.11), a W
(β)
? a′ : t, as

required.

Case (Eval2 redex)

a→2 {bi | i < ω}
bi 2 Ui, for all i < ω

U =
⋃
i<ω Ui

We split the argument in two cases according to the form of a.

6.7. TRANSFINITE UNWINDING AND SYNTACTIC ωCK1 -CONTINUITY 83

Case a = fix[v] for some v : t⇀ t. Then a→2 {b0} where

b0 = case (inj λinj y. v (λx. y (inj y)x)) of inj y. v (λx. y (inj y)x)

and b0 2
U via (Eval2 redex), b0 →2 {b}, and b = v (λx. a x)

2
U .

By the induction hypothesis for b 2 U , there is an α0 such that

∀β < ωCK1 . ∀b′ : t. b W (β+α0)
? b′ : t ⇒

∃U ′. b′ 2 U
′ & ∀u′ ∈ U ′. ∃u ∈ U. u W (β)

? u′ : t
(6.46)

Let α = α0 + 1. Suppose a W
(β+α)
? a′ : t, i.e., either

a R
(γ)
? [W

(β+α)
?] a′ : t (6.47)

for some γ ≥ β + α, or

a Ŵ
(β+α)
? a′ : t (6.48)

In the first case a′ = fix(γ) v′ with v W
(β+α)
? v′ : t⇀ t. Note that γ ≥ β + α ≥ 1.

If γ is a successor ordinal, γ = γ′ + 1 for some γ′, let b′ = v′ (λx.fix(γ′) v′ x). Then

a′ →2 {b′} so that a′ 2 U
′ whenever b′ 2 U

′. Since v W
(β+α0)
? v′ : t⇀ t, by (6.45),

and γ′ ≥ β +α0, we get that b W
(β+α0)
? b′ : t. By (6.46), the desired conclusion follows.

If γ is a limit ordinal, γ ≥ β + α implies that γ > β + α because β + α is a successor
ordinal. Therefore a′ →2 {fix(β+α) v′}. The argument proceeds as above with β + α0

in place of γ′.

In the second case, an inspection of the derivation of (6.48) reveals that a′ = fix[v′] with

v W
(β+α)
? v′ : t⇀ t. Let b′ = v′ (λx. a′ x). We see that a′ 2 U

′ whenever b′ 2 U
′,

by two applications of (Eval2 redex). Moreover, b W
(β+α0)
? b′ : t. By (6.45) and (6.46),

the desired conclusion follows.

Case a is not of the form fix[v] for any v. Then we know that a W
(β)
? a′ : t if and only

if a Ŵ
(β)
? a′ : t, for all β < ωCK1 and all a′ : t. By the induction hypothesis, there is an

αi for each i < ω such that

∀β < ωCK1 . ∀b′i : t. bi W
(β+αi)
? b′i : t ⇒

∃U ′i . b′i 2 U
′
i & ∀u′ ∈ U ′i . ∃u ∈ Ui. u W

(β)
? u′ : t

(6.49)

Let α =
⋃
i<ω αi. Now suppose that a W

(β+α)
? a′ : t, for some β < ωCK1 and some a′ : t.

Then a Ŵ
(β)
? a′ : t and from Lemma 6.7.2 we obtain that a′ →2 {b′i | i < ω} for some

b′0, b
′
1, · · · : t such that bi W

(β+α)
? b′i : t for all i < ω. By (6.45) and (6.49), for each

i < ω there exists U ′i such that b′i 2 U ′i and ∀u′ ∈ U ′i . ∃u ∈ Ui. u W
(β)
? u′ : t. Let

U ′ =
⋃
i<ω U

′
i . Then a′ 2 U

′, by (Eval2 redex), and ∀u′ ∈ U ′. ∃u ∈ U. u W (β)
? u′ : t,

as required.

84 CHAPTER 6. CONTEXTS

Case (Eval2 let)

a = let x= a1 in b2

a1 : t′ and x : t′ ` b2 : t

a1 2 V

b2[v/x] 2 Uv, for all v ∈ V
U =

⋃
v∈V Uv

By the induction hypothesis, there is an α1 such that

∀β < ωCK1 . ∀a′1 : t′. a1 W
(β+α1)
? a′1 : t′ ⇒

∃V ′. a′1 2 V
′ & ∀v′ ∈ V ′. ∃v ∈ V. v W (β)

? v′ : t′
(6.50)

and for each v ∈ V there is a αv such that

∀β < ωCK1 . ∀b′ : t. b2[v/x] W
(β+αv)
? b′ : t ⇒

∃U ′b′ . b′ 2 U
′
b′ & ∀u′ ∈ U ′b′ . ∃u ∈ Uv. u W

(β)
? u′ : t

(6.51)

Let α2 =
⋃
v∈V αv and let α = α2 + α1. Now suppose that a W

(β+α)
? a′ : t, for some

β < ωCK1 and some a′ : t. Since a is not of the form fix[. . .], a and a′ are not related by

any R
(β′)
? , so it must be the case that a Ŵ

(β+α)
? a′ : t. Thus a′ = let x= a′1 in b′2 with

a1 W
(β+α)
? a′1 : t′ and x : t′ ` b2 W (β+α)

? b′2 : t. Now we use (6.50) to deduce that there

exists V ′ such that for every v′ ∈ V ′, there exists v ∈ V such that v W
(β+α2)
? v′ : t′.

By (6.45), b2[v/x] W
(β+αv)
? b′2[v

′
/x] : t′ because W

(β+αv)
? is substitutive. From (6.51) we

get a set U ′v′ such that b′2[v
′
/x] 2 U ′v′ and for all u′ ∈ U ′v′ , there exists u ∈ Uv with

u W
(β)
? u′ : t.

Finally, the desired conclusion follows with U ′ =
⋃
v′∈V ′ U

′
v′ . 2

Proof of the Must ωCK1 -Unwinding Theorem 6.7.4 Consider the two implications
separately.

If a[Y/y] must terminate, according to Lemma 6.7.6 there exists an α < ωCK1 such that

whenever a[Y/y] W
(α)
? a′ : t′ then a′ must terminate too. In particular, a[Y

(α)
/y] must termi-

nate because of (6.44).

Conversely, suppose a[Y
(α)
/y] must terminate. By the facts (6.44) and (6.45), we see

that a[Y/y] W
(0)
? a[Y

(α)
/y] : t′. We conclude that a[Y/y] must terminate because W

(0)
?

op
is

must-pre-adequate, by Lemma 6.7.5. 2

Proposition 6.7.7 (Syntactic must ωCK1 -continuity) If y : (t⇀ t)⇀ t ` a : t′ and t is a

function type, a[Y/y] @∼2 a
′ : t′ if and only if ∀α < ωCK1 . a[Y

(α)
/y] @∼2 a

′ : t′.

The proof is analogous to that of Proposition 4.5.4.
As an application of the syntactic ωCK1 -continuity rule for must contextual approxima-

tion, we extend the proof of recursion induction in Proposition 4.5.5 to must contextual
approximation.

6.8. SEQUENTIALITY 85

Proposition 6.7.8 (Recursion induction)
u v′ @∼2 v

′ : t1 ⇀ t2

Y u @∼2 v′ : t1 ⇀ t2

Proof Assume that the premise holds. By syntactic ωCK1 -continuity, it suffices to show
that Y(α) u .2 v′ : t1 ⇀ t2, for all α < ωCK1 . We prove this by transfinite induction on α. If
α = 0 or α is a successor ordinal, we argue as in the induction over natural numbers in the
proof of Proposition 4.5.5. If α is a recursive limit ordinal, the induction step is immediate
from Lemma 6.7.3(3). 2

The unresolved problem, mentioned earlier, of whether the transfinite fixed point operators
are a conservative extension of the language, is relevant if we want to use syntactic ωCK1 -
continuity for reasoning about must contextual approximation and equivalence in the original
language. For instance, the proof of recursion induction, given above, requires that the premise
holds for the must contextual approximation relation in the extended language. Clearly, it
would be nice if this coincides with the original must contextual approximation relation on
expressions from the original language because then the recursion induction proof rule can
immediately be used to reason about the latter.

6.8 Sequentiality

Recall the contextual equivalence between u and u′ from Example 4.4.1,

u = λf. (f 〈I,U〉; f 〈U, I〉)
u′ = λf. f 〈U,U〉

where I = λx. x and U = λx.Ω. It shows that the language is sequential by the non-existence
of a parallel convergence tester function.

This equivalence is not valid for may contextual equivalence: when applied to f
def
=

λ〈g, h〉. g 〈 〉 or h 〈 〉, one may terminate, u f
3 〈 〉, whereas the other, u′ f , must diverge. In

effect, we cannot observe the difference between the parallel convergence tester function and
the function that nondeterministically applies one or the other argument function.

But the equivalence holds for must contextual equivalence:

u ∼=2 u′ : ((unit⇀ unit)× (unit⇀ unit)⇀ unit)⇀ unit (6.52)

The proof from Example 4.4.1 generalises to the nondeterministic case if, instead of (4.13),
we prove

(a1, a2, a
′) ∈ RC|t & a1 2 U1 & a2 2 U2 ⇒

∃U ′. a′ 2 U
′ & ∀u′ ∈ U ′. ∃u1 ∈ U1, u2 ∈ U2. (u1, u2, u

′) ∈ RC|t

The proof is by induction on the derivation of a1 2 U1 and proceeds quite analogous to the
proof from Example 4.4.1.

The next example is a nondeterministic variant of this equivalence.

Example 6.8.1 Let t = unit⇀ unit and let a, a′ : t× t be the expressions

a = 〈I,U〉 or 〈U, I〉
a′ = 〈U,U〉

86 CHAPTER 6. CONTEXTS

They are must contextually equivalent, a ∼=2 a′ : t× t.
It is easy to calculate that a′ approximates a. First, a′ ∼=2 (a′ or a′) : t× t because or is

idempotent. Next, (a′ or a′) @∼2 a : t× t, because Ω @∼2 〈 〉 : unit, and by compatibility; and
then a′ @∼2 a : t× t, by transitivity.

The converse, a @∼2 a
′ : t × t, is more interesting. According to Proposition 6.5.8 it

suffices to show that E[[a]]
2
〈 〉 implies E[[a′]]

2
〈 〉 for all evaluation contexts E such that

• : t × t ` E : unit. From (Redex2 or), (Trans2 redex), and the fact that transitions are
closed under evaluation contexts, we get

E[[a]]�
2 {E[[〈I,U〉]], E[[〈U, I〉]]}

and then, by (5.10), we get that E[[a]]
2 〈 〉 if and only if both E[[〈I,U〉]] 2 〈 〉 and

E[[〈U, I〉]]
2 〈 〉. Let v : (t × t) ⇀ t be the function λx.E[[x]], and consider (6.52). Notice

that u v 2 {〈 〉}. Since must contextual equivalence is compatible and must adequate, we
get that u′ v 2 {〈 〉} too. This means that E[[a′]] 2 〈 〉, as we had to show. 2

The fact that Example 4.4.1 is valid for must contextual equivalence means that sequen-
tiality is observable for this modality. In fact, sequentiality is more observable in the presence
of countable nondeterminism. The next example shows that we can observe the absence of a
function ∃v : ((unit⇀ nat)⇀ bool)⇀ bool, with the functionality:

∃v v 2 {false} if v (λ〈 〉.Ω) 2 {false}
∃v v 2 {true} if ∃i < ω. v (λ〈 〉. piq) 2 {true}
∃v v may diverge otherwise

This is a call-by-value version of the existential quantifier function in Plotkin (1977). It is
computable, but it needs to apply its argument v to many inputs in parallel.

Example 6.8.2 Let

a = if g (λh. false)
then Ω
else let x= ? in if g (λh. test[x, h]) then 〈 〉 else Ω

where test[n, v] = let y = v 〈 〉 in if eqn y then true else Ω

Then a is must contextually equivalent to Ω,

g : ((unit⇀ nat)⇀ bool)⇀ bool ` a ∼=2 Ω : unit

To prove this, suppose u : ((unit⇀nat)⇀bool)⇀bool. Then we observe that a[u/g] 2 {〈 〉}
if and only if u (λh. false)

2 {false} and u (λh. test[piq, h]) 2 {true} for all i < ω. We
will now prove that no such u exists. Then we can conclude that a[u/g] may diverge for every
u and thus, by Proposition 6.5.5, that a and Ω are must contextually equivalent.

The desired result follows if, for every u : ((unit⇀ nat)⇀ bool)⇀ bool,

(∀i < ω. u (λh. test[piq, h]) 2 {true} ⇒ u (λh. false) 2 {true} (6.53)

We can prove this by an analogous relational argument to that in Example 6.8.1, this time
with a relation of arity ω + 1.

6.9. RELATED WORK 87

Let R be the smallest (ω + 1)-ary open relation such that

h : unit⇀ nat ` (test[piq, h])i<ω R false : bool

(As in Example 4.4.2, ~x :~t ` (ai)i<ω S aω : t is notation for (aι)ι<ω+1 ∈ S|(~t)t.)
Then

(ai)i<ω R
SC a : t & (∀i < ω. ai 2 Ui) ⇒

∃U. a
2
U & ∀u ∈ U. ∃u0 ∈ U0, u1 ∈ U1, . . . (ui)i<ω R

SC u : t
(6.54)

can be proved by induction on the derivation of a0 2
u0, as in Example 6.8.1.

Finally, we note that (6.54) implies (6.53), as required. 2

The example shows that the abovementioned function ∃v is not definable in our language
because (λg. a)∃v 2 {〈 〉} whereas (λg.Ω)∃v diverges.

6.9 Related work

The results in this chapter illustrate the versatility of our relational approach. The only other
extensive study of contextual equivalences from first principles in a nondeterministic context
is that of Agha, Mason, Smith, and Talcott (1997) for an actor language. They also find it
necessary to develop sophisticated syntactic methods, involving generalised forms of contexts
akin to our substituting contexts from §2.4.3, in order to deal with the syntactic complexity
of the task. The actor language has primitives for fair, asynchronous communication and
dynamic process creation and, thus, provides more challenges for the semantic models. Con-
sequently, the results about contextual equivalences that are obtained in the cited paper are
rather limited.

In programming languages with unbounded nondeterminism the ω-continuity properties
required by conventional domain theory fail. Apt and Plotkin (1986) showed that this is
inevitable, and it complicates the models needed for a denotational semantics; either one
turns to ω1-complete partial orders for modelling countable nondeterminism (Plotkin 1982;
Di Gianantonio, Honsell, and Plotkin 1995) or category-theoretic fixed-point semantics (see
below). Operational approaches are generally not based on continuity properties and are not
complicated by the presence of countable nondeterminism. Specifically, the CIU Theorem re-
mains valid and applicative similarity remains a congruence (Lassen 1997; Lassen and Pitcher
1998).

The transfinite Unwinding Theorem and syntactic continuity proof rule as well as the
associated transfinite syntax and its operational semantics in §6.7 appear to be new. I have
not been able to make useful connections between this work and similar notions of infinite
terms in the literature, e.g., in term rewriting (Kennaway, Klop, Sleep, and de Vries 1995)
or recursion theory (Schwichtenberg 1996), although the fixed point operators bounded by
well-orderings in Schwichtenberg and Wainer (1995) bear some resemblance to our transfinite
fixed point expressions.

An alternative approach to dealing with the discontinuity induced by unbounded nonde-
terminism is the category-theoretic fixed-point semantics of (Lehmann 1976). The approxi-
mation ordering between elements is expressed by morphisms between objects in a category,
rather than by a partial order on a set as in domain theory, and fixed points are obtained as
co-limits of ω-diagrams. By operating with a ‘more detailed’ notion of approximation than

88 CHAPTER 6. CONTEXTS

that of a partial order, it is possible to construct an ω-complete categorical powerdomain
which can be used to model unbounded nondeterminism. Abramsky (1983) and Panangaden
and Russell (1989) use this approach to give ω-continuous, least fixed-point semantics of sim-
ple languages with unbounded nondeterminism. But the catch is that the models are not
fully abstract. Panangaden and Russell show how their model collapses via a discontinuous
abstraction function to a fully abstract semantics. Apt and Plotkin (1986) showed that it is
impossible to have a fully abstract ω-continuous, least fixed-point semantics of unbounded
nondeterminism, so we cannot eschew discontinuity. However, it would be interesting to see
if ideas from Lehmann’s category-theoretic approach can be used in an operational setting.

Chapter 7

Simulation

In this chapter, we are going to investigate co-inductively defined simulation preorders and
equivalences that are related to the may and must contextual relations from the previous
chapter. One might expect this to be a straightforward exercise, given the theory that we
have developed for the contextual relations (Chapter 6), and given the well developed theory of
applicative similarity and its relationship with contextual approximation in the deterministic
case (Chapter 4). But it turns out that things are not so easy. The simulation preorders
that we introduce, lower and upper similarity, are contained in but not identical to the
corresponding contextual approximation preorders. Furthermore, lower similarity does not
enjoy the syntactic continuity property. In the countably nondeterministic case, it is not clear
whether upper similarity satisfies the syntactic ωCK1 -continuity property of must contextual
approximation.

Even so, the similarity preorders provide sound co-inductive reasoning principles which
can be used to reason about the contextual approximation preorders as well. The key results of
this chapter are that lower and upper similarity are pre-congruences and hence are contained
in may and must contextual approximation, respectively. Moreover, syntactic continuity is
shown to be valid for upper similarity in the case of bounded nondeterminism.

At the end of the chapter, some open problems are presented, followed by a discussion of
related work.

7.1 Lower similarity

Let lower similarity, .3 ∈ REL0, be defined co-inductively as the greatest fixed point of
〈 · ◦〉

3
.

.3 def
= νR. 〈R◦〉

3

Lower similarity is the greatest lower simulation and its open extension, .◦3, is the greatest
open lower simulation.

The open extension of lower similarity is a pre-congruence. The proof is virtually identical
to that of deterministic similarity from §4.8. The main lemma uses Lemma 5.4.1 in place of
Lemma 3.10.1.

Lemma 7.1.1 If R ⊆ 〈R◦〉
3

then R∗• ⊆ 〈R∗•〉◦
3

.

89

90 CHAPTER 7. SIMULATION

Proposition 7.1.2 .◦3 is a pre-congruence.

Lower similarity is may-pre-adequate, because it is a lower simulation. As it is also
compatible, it is included in may contextual approximation. The inclusion is strict. To
see this, recall from Example 6.4.4 that the following two expressions are may contextually
equivalent.

a = λ〈 〉.?
a′ = let y = ? in λ〈 〉.min(?, y)

But a 6.3 a′ : unit⇀ nat, because the latter evaluates to some bounded choice function
λ〈 〉.min(?, pnq), and ? is not lower similar to min(?, pnq), for any n. For instance, ? 3

pn+ 1q whereas min(?, pnq)
3
pmq only if m ≤ n, but pn+ 1q .◦

3
pmq only if m = n+ 1.

From Example 6.4.4 we can also derive that syntactic continuity is invalid for lower simi-
larity. Recall that a is may contextual equivalent to Y u, where

u = λf. λ〈 〉.0 or (let y = f 〈 〉 in succ y)

They are also lower similar, a .3 Y u : unit⇀ nat, and hence Y u is not lower similar to a′.
But, by inspection of the proof of Example 6.4.4, we see that all its finite unwindings are.

7.2 Upper similarity

Upper similarity, .2 ∈ REL0, is the greatest fixed point of 〈 · ◦〉
2

.

.2 def
= νR. 〈R◦〉

2

Upper similarity is the greatest upper simulation and its open extension, .◦2, is the greatest
open upper simulation.

We can prove that .◦
2 is a pre-congruence by Howe’s method. Firstly, the compatible

extension of the reflexive transitive closure of any upper simulation is itself an upper simula-
tion:

Lemma 7.2.1 If R ⊆ 〈R◦〉
2

then R∗• ⊆ 〈R∗•〉◦
2

.

Proof Analogous to the proof of Lemma 4.8.1. 2

From this lemma we derive that open upper similarity is a pre-congruence:

Proposition 7.2.2 .◦2 is a pre-congruence.

Proof Analogous to that of Proposition 4.8.2. 2

Upper similarity is an upper simulation, so it is must-pre-adequate, and the fact that it is
a pre-congruence implies that it is included in must contextual approximation. The inclusion
is strict. To see this, recall Example 6.8.1,

a = 〈I,U〉 or 〈U, I〉
a′ = 〈U,U〉

7.3. OTHER SIMULATION AND BISIMULATION RELATIONS 91

where I = λx. x and U = λx.Ω.
They are not upper similar, because a 2 {〈I,U〉, 〈U, I〉} and a′ 2 {〈U,U〉} but neither

of the following hold

〈I,U〉 .◦2 〈U,U〉 : (unit⇀ unit)× (unit⇀ unit)

〈U, I〉 .◦2 〈U,U〉 : (unit⇀ unit)× (unit⇀ unit)

since 〈 〉 6.2 Ω : unit.
In Example 6.8.1 we showed that a and a′ are must contextually equivalent. Hence must

contextual approximation is not included in upper similarity.

7.3 Other simulation and bisimulation relations

Suppose we define lower bisimilarity, ∼3 ∈ REL0, as the greatest fixed point of 〈 · ◦〉
3
∩

〈 · op◦〉op
3

.

∼3 def
= νR. 〈R◦〉

3
∩ 〈Rop◦〉op

3

Then we find that it is the greatest symmetric lower simulation but, contrary to the deter-
ministic case, it is strictly smaller than the symmetrisation of lower similarity, as illustrated
by the following example from Ong (1993).

(λx.Ω) or (λx. λy.Ω) R λx. (Ω or λy.Ω) : unit⇀ unit⇀ unit (7.1)

This holds if R is .3 or .op
3 but is false if R is ∼3 because the left hand side may evaluate

to λx.Ω and this cannot be matched by a lower bisimilar outcome of the right hand side.
Since lower bisimilarity is not the symmetrisation of lower similarity, the fact that lower

similarity is a pre-congruence does not entail that lower bisimilarity is a congruence. A
separate proof is needed.

Proposition 7.3.1 ∼◦
3 is a congruence.

Proof ∼3 is a simulation so ∼∗3• is a simulation, by Lemma 7.1.1. Since lower simulations
are closed under composition, (∼∗3•)∗ is a simulation too. By Lemma 3.8.2, (∼∗3•)∗ is sym-
metric. Hence it is included in ∼◦3. The reverse inclusion also follows from Lemma 3.8.2. We
conclude that ∼◦

3 is compatible, since ∼•3 is. Finally, the calculation

∼◦3∗ = ∼∗3◦ ⊆ (∼∗3•)∗ ⊆ ∼◦3

shows that ∼◦3 is reflexive and transitive. 2

Upper bisimilarity, ∼2 ∈ REL0, is the greatest fixed point of 〈 · ◦〉
2
∩ 〈 · op◦〉op

2
. From

the example (7.1), one can see that it is strictly smaller than the symmetrisation of upper
similarity.

By the same argument as in the proof of Proposition 7.3.1, it follows from Lemma 7.2.1
that upper bisimilarity a congruence:

Proposition 7.3.2 ∼◦2 is a congruence.

92 CHAPTER 7. SIMULATION

By different combinations of the lower and upper simulation operators, one can define
other notions of similarity and bisimilarity. The greatest fixed point of the disjunction of the
lower and upper simulation operators, 〈 · ◦〉

3
∩ 〈 · ◦〉

2
, is convex similarity ; and the greatest

symmetric fixed point is convex bisimilarity ; see Lassen and Pitcher (1998). Convex similar-
ity corresponds to the bisimulation preorder studied by Ong (1993) and convex bisimilarity
corresponds to the bisimulation equivalence considered by Howe (1996). By analogous argu-
ments to those in the proofs of Propositions 7.3.1 and 7.3.2, we can derive from Lemmas 7.1.1
and 7.2.1 that convex similarity and bisimilarity are compatible.

By definition, convex similarity is both a lower and an upper simulation. Hence it is
included in the lower and upper similarity preorders. But convex similarity is not just their
intersection because convex similarity is more discriminative with respect to the higher order
nondeterministic branching structure of functions. As we noted earlier, the example from
Ong (1993),

(λx.Ω) or (λx. λy.Ω) R λx. (Ω or λy.Ω) : unit⇀ unit⇀ unit

holds for lower and upper similarity in place of R but Ong shows that it fails for convex
similarity.

Then what about convex similarity versus the intersection of lower and upper bisimilarity?
They are again different. For instance, Ω is convex similar to 〈 〉 but these are neither lower
bisimilar nor upper bisimilar. Conversely, (Ω or λx. 〈 〉) and (Ω or (λx.Ω or 〈 〉)) are lower
and upper bisimilar but they are not convex similar.

Convex bisimilarity is included in the symmetrisation of convex similarity. The following
example shows that the inclusion is strict.

a = (λ〈 〉.Ω) or (λ〈 〉. 〈 〉)
a′ = a or (λ〈 〉.Ω or 〈 〉) (7.2)

a and a′ are mutually convex similar but not convex bisimilar. Convex bisimilarity is both
a lower and an upper bisimulation and hence included in the intersection of lower and up-
per bisimilarity. The counterexample for convex similarity above shows that this is a strict
inclusion.

Yet another similarity preorder, which we call refinement similarity and denote by .R ∈
REL0, is obtained as the greatest fixed point of 〈 · op◦〉op

3
∩ 〈 · ◦〉

2
. Refinement similarity is a

pre-congruence. This can be derived from Lemmas 7.1.1 and 7.2.1 and an additional argument
involving the transitive closure of compatible extension.1 We omit the details.

Refinement similarity is an upper simulation and its reciprocal is a lower simulation. Hence
refinement similarity is included in .op

3 ∩.2. The inclusion is strict; e.g., Ong’s example (7.1)
fails for refinement similarity.

7.4 Syntactic continuity

At the end of §7.1 we saw that the syntactic continuity property is invalid for lower similar-
ity. The situation is different for upper similarity in the case of bounded nondeterminism—
ordinary ω-continuity holds for the finitely branching sublanguage without countable choice.

1The proof is due to Corin Pitcher (Personal communication, September 1997). He also provided the
example (7.2).

7.4. SYNTACTIC CONTINUITY 93

Proposition 7.4.1 (Syntactic upper ω-continuity) If y : (t⇀ t) ⇀ t ` a : t′ and t is a

function type, a[Y/y] .2 a′ : t′ if and only if ∀n < ω. a[Y
(n)
/y] .2 a′ : t′.

Proof We employ the lemmas from the proof of the Must ω-Unwinding Theorem from §6.6
to give a co-inductive proof. The proof is similar to that for the deterministic case; see Lassen
(1998) and Pitts (1997a).

The forward implication follows from Lemma 6.6.3 (one can check that the lemma holds
for upper similarity as well as must contextual approximation).

The backward implication is more interesting. As in our proof of syntactic continuity for
contextual approximation, Proposition 4.5.4, we construct the relation

T
def
=

⋂
n<ω

(W (n) .◦
2

)

Observe that a[Y/y] T a′ : t′ if ∀n < ω. a[Y
(n)
/y] .2 a′ : t′. We show that T is an open upper

simulation, then T ⊆ .◦
2 and the result follows.

So suppose a T a′ : t and a 2 U . By Lemma 6.6.4, there exists an n < ω such that

∀m< ω. ∀b : t. a W (m+n) b : t ⇒
∃V. b 2 V & ∀v ∈ V. ∃u ∈ U. u W (m) v : t

(7.3)

By definition of T , for all m < ω, a W (m+n) bm : t, for some bm .2 a′ : t. From (7.3) we get
bm 2 Vm such that

∀vm ∈ Vm. ∃u ∈ U. u W (m) vm : t (7.4)

Since bm .2 a′ : t also a′ 2 U
′
m such that

∀u′ ∈ U ′m. ∃vm ∈ Vm. vm .◦2 u′ : t (7.5)

The must evaluation relation is deterministic. Therefore all U ′m are identical. Let U ′ denote
this set (i.e., U ′ = U ′0 = U ′1 = . . .) and fix any u′ ∈ U ′.

By (7.5) there is an ω-sequence of values, (vm)m<ω, such that, for all m < ω, vm ∈ Vm
and vm .◦2 u′ : t and, by (7.4), um W (m) vm : t, where (um)m<ω is an ω-sequence of values in
U .

But U is finite, by the assumption that nondeterminism is bounded. Therefore there is
some u ∈ U that occurs infinitely often in the sequence (um)m<ω. This ensures that the
ω-sequence (v′m)m<ω where

v′m =

{
vm if um = u

v′m+1 otherwise

is well defined. For every m < ω, v′m = vn for some n ≥ m such that u W (n) vn : t; hence

u W (m) v′m : t, by (4.18), and u W (m) .◦2 u′ : t, by (3.3). That is, we obtain that u T u′ : t.
Since u′ was chosen arbitrarily from U ′, we conclude that

∀u′ ∈ U ′. ∃u ∈ U. u T u′ : t

Hence T is an open upper simulation, as it is closed under substitutions. 2

94 CHAPTER 7. SIMULATION

7.5 Open problems

The negative results and the omissions in this chapter prompt several open questions.
First of all, the mismatch between the similarity preorders and the contextual approxi-

mation preorders could be investigated further. I conjecture that lower similarity and may
contextual approximation coincide on “finite elements”, i.e., expressions that are built without
the use of recursion and countable choice—they could be defined and studied operationally
along the lines of Mason, Smith, and Talcott (1996). In other words, lower similarity and
may contextual approximation differ only “at the limit”.

The situation is different for upper similarity and must contextual approximation. In the
spirit of Plotkin’s solution to the full abstraction problem for PCF (Plotkin 1977)—where he
added a parallel-or function to the language to obtain a complete match between equality in
a domain model and contextual equivalence—we may ask: will adding a parallel convergence
tester to the language make contextual approximation as discriminative as upper similarity?

Finally, it is an open problem whether a syntactic ωCK1 -continuity principle holds for upper
similarity. Syntactic continuity properties of convex similarity could also be investigated. This
is left for future work.

7.6 Related work

The definitions of lower and upper similarity appeared in the context of action semantics in
Lassen (1997). They were inspired by Ong’s convex similarity (Ong 1992; Ong 1993) and
Ulidowski’s copy+refusal testing for processes (Ulidowski 1992). Lower, upper, and convex
similarity correspond to the different constructions on preorders that are used to characterise
the lower, upper and convex powerdomains (see, e.g., Gunter and Scott 1990).

Howe (1989) describes a method for establishing the compatibility of (essentially) lower
similarity for a nondeterministic call-by-name language. He shows that lower similarity does
not coincide with may contextual approximation, but his example is specific for call-by-name
parameter passing and is unrelated to the mismatch that we discuss in §7.1. Moran (1994)
also proves that a lower similarity preorder is a pre-congruence for a lazy λ-calculus equipped
with an ambiguous choice combinator (which behaves like erratic choice with respect to lower
similarity). Our argument for the mismatch between lower similarity and may contextual
approximation carries over to his language.

Howe (1996) and Ong (1992) independently extended Howe’s method to prove compat-
ibility of convex bisimilarity and convex similarity, respectively, for λ-calculi with bounded
nondeterminism. An extension of Ong’s proof to countable nondeterminism was found inde-
pendently by Lassen and Pitcher (1998). In Lassen (1997) it was used to prove compatibility of
an upper similarity preorder for action notation. The present formulation of upper simulation,
in terms of an inductively defined must evaluation relation, and the resulting compatibility
proof for upper similarity, by induction on must evaluations, appear to be new.

Direct proofs of syntactic continuity for applicative similarity appear in Pitts (1997a) and
Lassen (1998), but our syntactic continuity result for upper similarity is the first such proof
in a nondeterministic context.

Chapter 8

Fairness

Up till now we have been looking at erratic choice and countable choice. Another form
of nondeterministic choice that has been studied for higher-order languages is McCarthy’s
ambiguous choice (McCarthy 1963). It introduces a notion of fairness. This chapter discusses
the difficulties of reasoning about ambiguous choice and extends some of the results from the
previous chapters to fairness.

In general, fairness is more difficult to model, by domain-theoretic or operational means,
than bounded and countable nondeterminism. This is apparent from existing work on the
semantics of ambiguous choice. Broy (1986) has given a non-standard fixed-point seman-
tics for a stream-processing language with ambiguous choice, using multiple fixed points over
multiple powerdomains with different notions of approximation. These ideas have also been
applied to derive fixed-point principles for a version of Dijkstra’s guarded command language
extended with ambiguous choice (Broy and Nelson 1994). Moran (1994) investigates con-
textual equivalences and applicative similarity for a call-by-name λ-calculus with ambiguous
choice. He highlights the difficulties of reasoning about must contextual equivalence, and
shows that convex similarity is not a pre-congruence.

In fact, no context lemma of any form is known for must contextual equivalence in the
presence of fairness. Divergence is not a least element with respect to must contextual ap-
proximation, recursive functions are not least fixed points, and basic reasoning principles such
as recursion induction, the Unwinding Theorem, and syntactic continuity fail. Despite these
obstacles, our relational techniques can be used to establish some basic results about must
contextual equivalence. The development includes a theory of improvement simulation and
a version of Sands’ improvement theorem (Sands 1998b). This is interesting as otherwise
conventional approaches for reasoning about recursion break down in the presence of fairness.
Nonetheless, important open problems about must contextual equivalence and applicative
bisimulation for fairness remain unsolved. These are summarised at the end of the chapter.

8.1 Syntax and operational semantics

We extend the syntax with a binary combinator amb for representing ambiguous choice.

a, b ::= . . .

| amb(a1, a2)

The typing rule is the same as for erratic choice.

95

96 CHAPTER 8. FAIRNESS

(Type amb)
Γ ` a1 : t Γ ` a2 : t

Γ ` amb(a1, a2) : t

The meaning of amb(a1, a2) is that it may evaluate to anything that a1 or a2 may evaluate
to. Furthermore, it must terminate if and only if one or both of a1 and a2 must terminate.

Fair nondeterminism is at least as general as countable nondeterminism: countable choice
is faithfully encoded with amb in place of or in (5.2),

(Yunit⇀nat λf. λ〈 〉.amb(0, let y = f 〈 〉 in succ y)) 〈 〉 (8.1)

It is rather tricky to extend the may and must transition relations and the must evaluation
relation to ambiguous choice. Following Moran (1994) one can add resource attributes to the
syntax, define the transition relations for the extended syntax, and then define the must
evaluation relation on basis of the must transition relation. However, we will just consider
the may evaluation relation,

3, and a must termination predicate, ⇓2, and these both
have simple inductive definitions; cf. Moran (1994). We define the may evaluation relation,
Table 8.1, and the must termination relation, Table 8.2, on basis of the may and must primitive
reduction relations from Chapter 5.

The operational semantics still enjoys the property that every a that must terminate may
terminate:

a⇓2 implies ∃v. a 3 v (8.2)

For expressions a without occurrences of ambiguous choice, the must termination predicate
a⇓
2 holds if and only if a must terminate in the sense of Chapter 5, that is, a 2 U for some

set U . For such expressions we also see that the may evaluation relation is the same as in
Chapter 5.

By inspection of the may and must primitive reduction relations one can see that ambigu-
ous choice and erratic choice have identical may evaluation behaviour, but that they differ
with respect to must termination. Erratic choice must terminate only if both of its branches
must terminate.

One can check that the encoding (8.1) and countable choice, ?, behave identically with
respect to may evaluation as well as must termination.

We extend the definition of compatible refinement with a rule for ambiguous choice, similar
to the rule for erratic choice (Comp or) in Chapter 5.

(Comp amb)
Γ ` a1 R a′1 : t Γ ` a2 R a′2 : t

Γ ` amb(a1, a2) R̂ amb(a′1, a
′
2) : t

We notice that Lemmas 5.4.1 and 5.4.2 remain valid in the presence of ambiguous choice.

8.2 Generalising the sequential theory

Since ambiguous choice and erratic choice behave identically with respect to may evaluation,
the theory of may contextual approximation and similarity for sequential nondeterminism

8.2. GENERALISING THE SEQUENTIAL THEORY 97

(Eval3 value) v 3 v

(Eval3 redex)
b 3 v

a 3 v
if a→3 v

(Eval3 let)
a 3

u b[u/x]
3
v

let x= a in b
3
v

(Eval3 amb left)
a1 3 v

amb(a1, a2) 3 v

(Eval3 amb right)
a2 3 v

amb(a1, a2) 3 v

Table 8.1: May evaluation relation

(Term2 value) v⇓2

(Term2 redex)
∀b ∈ B. b⇓2

a⇓2
if a→2 B

(Term2 let)
a⇓2 ∀u. a 3 u ⇒ b[u/x]⇓2

let x= a in b⇓2

(Term2 amb left)
a1⇓2

amb(a1, a2)⇓2

(Term2 amb right)
a2⇓2

amb(a1, a2)⇓2

Table 8.2: Must termination predicate

98 CHAPTER 8. FAIRNESS

from the preceding chapters is unaffected—all that is needed is to include cases for (Eval3
amb left) and (Eval3 amb right) in the proofs of Lemmas 6.3.1 and 7.1.1, and they are
essentially identical to the cases for erratic choice. In particular, the open extension of lower
Kleene equivalence is still included in may contextual equivalence. It is easy to see that
amb(a1, a2) is lower Kleene equivalent to (a1 or a2),

Γ ` amb(a1, a2) �◦
3

(a1 or a2) : t, if Γ ` ai : t for i = 1, 2

so ambiguous choice is equivalent to erratic choice up to may contextual equivalence.
It is more challenging to study must termination behaviour for fair nondeterminism. First

of all, since we do not have a must evaluation relation for fairness, we must reformulate the
definitions of must-(pre-)adequacy at the beginning of Chapter 2.4 in the obvious way, by
substituting a⇓2 and a′⇓2 for a 2 {〈 〉} and a′ 2 {〈 〉}.

As discussed in §6.1, the contextual approximations and equivalences are examples of
testing preorders and equivalences. Agha, Mason, Smith, and Talcott (1997) have shown that
must testing equivalence is included in may testing equivalence in the presence of fairness.
More precisely, the must testing preorder is included in the reciprocal may testing preorder.
In our case this means that must contextual approximation is included in the reciprocal may
contextual approximation in the presence of ambiguous choice. The proof of this result is
based on the fact that there is a context D,

D
def
= let f = amb(λ〈 〉. 〈 〉, let y = • in λ〈 〉.Ω) in f 〈 〉

of type • : unit ` D : unit, with the property that a
3 〈 〉 if and only if ¬(D[[a]]⇓2), for all

a : unit.

Proposition 8.2.1 @∼2 ⊆ @∼
op

3
.

Proof Since must contextual approximation is compatible it suffices to show that its re-
ciprocal is may-pre-adequate, then it is included in reciprocal may contextual approximation.
So suppose that a @∼2 a

′ : unit and that a′ 3 〈 〉. We must show that a 3 〈 〉. Firstly,
a′ 3 〈 〉 holds if and only if ¬(D[[a′]]⇓2). Since @∼2 is compatible, D[[a]] @∼2 D[[a′]] : unit.
Hence ¬(D[[a]]⇓

2) which means that a 3 〈 〉, as required. 2

The inclusion of must contextual approximation in may contextual approximation fails
in the absence of fairness, e.g., then Ω @∼2 (Ω or 〈 〉) : unit but not (Ω or 〈 〉) @∼3 Ω : unit,
(both are false in the presence of fairness). Hence we observe that the introduction of fairness
makes must contextual approximation and equivalence more discriminating.

For bounded and countable nondeterminism, Ω is a minimum element in the must contex-
tual approximation preorder, but in the presence of ambiguous choice it becomes a maximal
element, as we are going to show in Example 8.3.2 below. Consequently, some order-theoretic
properties of must contextual approximation from Chapter 6 are invalid for fairness, including
recursion induction. For instance, λ〈 〉. a is a fixed point for the functional λf. λ〈 〉. f 〈 〉,

(λf. λ〈 〉. f 〈 〉)λ〈 〉. a ∼=2 λ〈 〉. a : unit⇀ t

if a : t, but it is not necessarily the case that Y λf. λ〈 〉. f 〈 〉 @∼2 λ〈 〉. a : unit ⇀ t, e.g., if
a = 〈 〉 then D[[(Y λf. λ〈 〉. f 〈 〉) 〈 〉]]⇓2 and ¬(D[[(λ〈 〉. a) 〈 〉]]⇓2), because (Y λf. λ〈 〉. f 〈 〉) 〈 〉
must diverge and (λ〈 〉. a) 〈 〉 3 〈 〉.

8.3. REFINEMENT 99

Upper similarity from Chapter 7 can be defined for fairness by replacing the assertion
a 2 U in the definition of upper simulation in §6.2 by (a⇓2 & U = {u | a 3 u}); and
similarly for a′ 2 U

′. But upper similarity is not a pre-congruence nor is it included in must
contextual approximation in the presence of ambiguous choice. For instance, Ω .2 〈 〉 : unit
but this relationship is not preserved by the context D from above, D[[Ω]] 6.2 D[[〈 〉]] : unit,
nor is it contained in must contextual approximation, Ω 6@∼2 〈 〉 : unit, since D[[Ω]]⇓

2
and

¬(D[[〈 〉]]⇓
2

).

8.3 Refinement

The relationship between must and may contextual approximation in Proposition 8.2.1 sug-
gests that we should consider refinement similarity as a tool for reasoning about must con-
textual approximation. Let 〈 · 〉R be the refinement simulation operator that maps every open
relation R into the closed relation 〈R〉R given by

a 〈R〉R a′ : t
def⇔ (i) ∀u′ : t. a′ 3 u

′ ⇒ ∃u : t. a 3 u & u R u′ : t
&

(ii) a⇓
2 ⇒ a′⇓2

It is the appropriate reformulation of the operator 〈 · op◦〉op
3
∩〈 · ◦〉

2
in terms of may evaluation

and must termination.
We call post-fixed points of 〈 · ◦〉R refinement simulations. Refinement similarity is the

greatest refinement simulation. Notice that R is a refinement simulation if and only if Rop is
a lower simulation and R is must-pre-adequate. We see that refinement similarity is included
in reciprocal lower similarity (in accordance with Proposition 8.2.1). It is an open problem
whether refinement similarity is compatible, and whether it is included in must contextual
approximation, but every compatible refinement simulation is included in must contextual
approximation.

Let refinement Kleene approximation, �R, be the relation 〈Id〉R, that is,

a �R a
′ : t ⇔ (i) ∀u : t. a′ 3 u ⇒ a 3 u

&
(ii) a⇓2 ⇒ a′⇓2

for all a, a′ : t. Convex Kleene equivalence, �R, is the symmetrisation of �R. (The names
“refinement” and “convex” are chosen in accordance with the taxonomy from §7.3.)

Examples of convex Kleene equivalences are the correctness of the encoding of countable
choice,

? �R (Yunit⇀nat λf. λ〈 〉.amb(0, let y = f 〈 〉 in succ y)) 〈 〉 : t (8.3)

and βv-equivalence,

Γ ` (λx. a) v �◦R a[v/x] : t, if Γ, x : t′ ` a : t and Γ ` v : t′ (8.4)

Proposition 8.3.1 �◦R ⊆ @∼2.

100 CHAPTER 8. FAIRNESS

Proof We are going to show that �◦RSC is an open refinement simulation, i.e., (i) that
(�◦RSC)op is an open lower simulation and (ii) that �◦RSC is must-pre-adequate.

Part (i) follows by the same argument as in the proof of Proposition 4.3.1. We show

a′ �◦RSC a : t & a
3
v ⇒ ∃v′ : t. a′

3
v′ & v′ �◦RSC v : t

by induction on the derivation of a 3 v. By Lemma 3.8.1, there exists a′′ : t such that

a′′ �̂◦RSC a : t and a′ �R a
′′ : t. It suffices to show that there exists v′ : t such that a′′ v′

and v′ �◦RSC v : t; then a′ v′ too, by the definition of �R. We proceed by analysis of the
derivation of a v.

Let us just consider the case (Eval3 amb left) where a = amb(a1, a2) and a1 3
v. Since

a′′ �̂◦RSC a : t, there are a′1, a
′
2 : t such that a′′ = amb(a′1, a

′
2) and a′1 �̂◦RSC a1 : t. By the

induction hypothesis, a′1 3 v′ with v′ �◦RSC v : t, and by (Eval3 amb left), a′′ 3 v′, as
required.

The (Eval3 amb right) case is symmetrical. The remaining cases are exactly as in the proof
of Proposition 4.3.1, but with 3 in place of and Lemma 5.4.1 in place of Lemma 3.10.1.

Part (ii), that �◦RSC is must-pre-adequate,

a �◦RSC a′ : t & a⇓2 ⇒ a′⇓2 (8.5)

holds by induction on the derivation of a⇓
2. As in the proof of part (i) above, we first employ

Lemma 3.8.1, this time to get an a′′ : t such that a �̂◦RSC a′′ : t and a′′ �R a
′ : t. It suffices

to show that a′′⇓2; then a′⇓2 too, by the definition of �R. We proceed by analysis of the
derivation of a⇓2.

Case (Term2 value)

a is a value

From a �̂◦RSC a′′ : t and Lemma 3.5.1 follows that a′′ is also a value. Hence a′′⇓2 by
(Term2 value) too.

Case (Term2 redex)

a→2 B

b⇓
2, for all b ∈ B

The set B is countable so B = {bi}i<ω for some b0, b1, · · · : t. From a �̂◦RSC a′′ : t
and Lemma 5.4.2 we get another countable set B′ = {b′i}i<ω such that a′′ →2 B

′ and
bi �◦RSC b′i : t for all i < ω. For each i < ω we get that b′i⇓2 by the induction hypothesis.
We conclude a′′⇓2, by (Term2 redex).

Case (Term2 let)

a = let x= a0 in b0

a0⇓2
U = {u | a0 3 u}

b0[u/x]⇓2, for all u ∈ U

8.3. REFINEMENT 101

Then a �̂◦RSC a′′ : t implies that a′′ is of the form a′′ = let x=a′0 in b′0 with a0 �◦RSC a′0 : t′

and x : t′ ` b0 �◦RSC b′0 : t. By the induction hypothesis, we get that a′0⇓2. Let

U ′ = {u′ | a′0 3 u
′} and fix any u′ ∈ U ′. Since (�◦R

SC)op is a lower simulation, there is

u ∈ U with u �◦RSC u′ : t′. We obtain b0[u/x] �◦RSC b′0[u
′
/x] : t because �◦RSC is compatible

and substitutive. Again by the induction hypothesis, b′0[u
′
/x]⇓

2
. We conclude a′′⇓

2
, by

(Term2 let).

Case (Term2 amb left)

a = amb(a1, a2)

a1⇓2

As a �̂◦RSC a′′ : t, a′′ = amb(a′1, a
′
2) with a1 �◦RSC a′1 : t and a2 �◦RSC a′2 : t. By the

induction hypothesis, we get that a′1⇓2. Hence a′′⇓
2

, by (Term2 amb left).

Case (Term2 amb right) Symmetrical to the previous case. 2

Consequently, (8.3) asserts that the encoding (8.1) of countable choice is correct up to
must contextual equivalence.

Similarly, (8.4) entails that βv-equivalence is valid for must contextual equivalence. There-
fore must contextual approximation and equivalence are substitutive, by the same argument
as in §4.3.

Example 8.3.2 Ω is maximal with respect to both refinement Kleene approximation,

Γ ` Ω �◦R a : t implies Γ ` Ω �◦R a : t (8.6)

and must contextual approximation,

Γ ` Ω @∼2 a : t implies Γ ` Ω ∼=2 a : t (8.7)

Let us first prove (8.6). By definition of refinement Kleene approximation and open
extension, �◦R is closed under substitutions and its reciprocal is may-pre-adequate. Therefore,
since Ω neither may evaluate to anything nor must terminate, Γ ` Ω �◦R a : t if and only if
a[~u/~x] may not evaluate to anything for any substitution of closed values ~u :~t for ~x, supposing
Γ = ~x :~t. But if a[~u/~x] may not evaluate to anything, it must not terminate either, by (8.2).
From the definition of refinement Kleene approximation and open extension, it follows that
Γ ` a �◦R Ω : t. In conjunction with the antecedent of (8.6), this implies the conclusion of
(8.6), as required.

We deduce (8.7) by a similar argument: since @∼2 is also closed under substitutions, as
it is reflexive and substitutive, and its reciprocal is may-pre-adequate, by Proposition 8.2.1,
Γ ` Ω @∼2 a : t implies Γ ` a �◦R Ω : t by the same argument as above. Proposition 8.3.1
entails that Γ ` a @∼2 Ω : t, which in conjunction with the antecedent of (8.7) implies Γ `
Ω ∼=2 a : t, as required. 2

Example 8.3.3 Moran (1994) lists some algebraic properties of ambiguous choice: idempo-
tency, commutativity, associativity, and Ω is unit. They are all easily seen to hold for open

102 CHAPTER 8. FAIRNESS

convex Kleene equivalence:

Γ ` amb(a, a) �◦R a : t

Γ ` amb(a1, a2) �◦R amb(a2, a1) : t

Γ ` amb(a1,amb(a2, a3)) �◦R amb(amb(a1, a2), a3) : t

Γ ` amb(Ω, a) �◦R amb(a,Ω) �◦R a : t

whenever Γ ` a : t and Γ ` ai : t for i ∈ 1..3. Proposition 8.3.1 implies that the equations
hold for must contextual equivalence as well. 2

Example 8.3.4 The first three laws for ambiguous choice also hold for erratic choice,

Γ ` a or a �◦R a : t

Γ ` a1 or a2 �◦R a2 or a1 : t

Γ ` a1 or (a2 or a3) �◦R (a1 or a2) or a3 : t

Furthermore, erratic choice is the greatest lower bound operator,

Γ ` (a1 or a2) �◦R a1 : t

Γ ` (a1 or a2) �◦R a2 : t

Γ ` a �◦R a1 : t Γ ` a �◦R a2 : t

Γ ` a �◦R (a1 or a2) : t

By Proposition 8.3.1, these laws also hold for must contextual approximation and equiva-
lence. Erratic choice is also the greatest lower bound operator for must contextual approxima-
tion because the last rule, which says that any lower bound of a1 and a2 is below (a1 or a2),
extends easily to must contextual approximation by the calculation

Γ ` a @∼2 (a or a) @∼2 (a1 or a2) : t

where we use that erratic choice is idempotent, that must contextual approximation is com-
patible, and the assumption that Γ ` a @∼2 a1 : t and Γ ` a @∼2 a2 : t. 2

Example 8.3.5 Erratic choice must contextually approximates ambiguous choice, i.e.,

(a1 or a2) @∼2 amb(a1, a2) : t (8.8)

if a1, a2 : t. This is easily established by refinement Kleene approximation and Proposi-
tion 8.3.1. The reverse is false in general; e.g., amb(Ω, 〈 〉) must terminate whereas (Ω or 〈 〉)
may diverge. In fact, (a1 or a2) is must contextually equivalent to amb(a1, a2) if and only if
a1 and a2 have the same must termination behaviour,

(a1 or a2) ∼=2 amb(a1, a2) : t iff (a1⇓2 ⇔ a2⇓2) (8.9)

The forward implication is immediate because must contextual equivalence is must-adequate.
The converse follows by convex Kleene equivalence and Proposition 8.3.1. 2

Kleene equivalence is useful for practical equational reasoning based on evaluation of
expressions, but it does not provide the power of co-inductive methods for reasoning about
infinite behaviour of higher order functions. For want of more general results about refinement
simulation, we shall now develop “improvement” simulation proof tools for establishing must
contextual equivalences between expressions which must terminate at equal “cost”.

8.4. IMPROVEMENT 103

8.4 Improvement

Following Sands (1998b) we introduce a fine-grained “intensional” operational ordering that
takes computational cost into account, in our case the number of function applications in the
derivation of must termination. Improvement theory has independent interest as a formal
approach to the study of program efficiency but Sands has also demonstrated that it is a
powerful tool for reasoning about conventional semantic equivalences. Here we are interested
in the latter use of improvement. The motivation for our definition of improvement below is
that it gives us a co-inductively defined simulation preorder which is a pre-congruence in the
presence of fairness.

Let us first define a cost measure for must termination. We write a⇓α
2

to mean that a must
terminate and that the recursive ordinal α is the maximal number of function application
steps—i.e., (Term2 redex) nodes for function application—on any path in the derivation
tree for a⇓2. The height of every derivation tree for must termination is bounded by a
recursive ordinal—this follows from the same property of derivation trees for must evaluation
for countable nondeterminism, see §6.7, and the fact that ambiguous choice can be interpreted
by means of countable choice, see Moran (1994).

To formalise the definition of a⇓α2 we first split the must primitive reduction relation, →2,

into βv-reduction for function application,
√
→, and all other primitive reductions,

τ→2; see
Tables 8.3 and 8.4. They satisfy

a→2 B iff either a
τ→2 B or ∃b. a

√
→ b & {b} = B

Then we assign recursive ordinals to derivations of must termination by introducing a
family of must termination predicates, ⇓α2, for α < ωCK1 . They are defined inductively by the
rules in Table 8.5. The new family of must termination predicates satisfies

a⇓2 iff ∃α < ωCK1 . a⇓α2 (8.10)

The cost measure is closely linked with our particular inductive definition of must termi-
nation. A more sensible cost measure would be the maximal number of function applications
in any evaluation or in any terminating transition sequence. We refrain from this approach
because the details of the definition are more complicated. We shall see that our cost measure
serves the purpose of proving some must contextual equivalences, even if it is rather artificial.

Now we can define the appropriate improvement simulation operator, 〈 · 〉I, obtained from
the refinement simulation operator by restricting the cost of must termination. Any open
relation R is mapped into the closed relation 〈R〉I given by

a 〈R〉I a′ : t
def⇔ (i) ∀u′ : t. a′ 3 u

′ ⇒ ∃u : t. a 3 u & u R u′ : t
&

(ii) ∀α < ωCK1 . a⇓α2 ⇒ ∃α′ ≤ α. a′⇓α′2

Condition (i) says thatR is a lower simulation. We shall refer to condition (ii) as improvement-
adequacy. It implies must-pre-adequacy because of (8.10).

The compound operator 〈 · ◦〉I is monotone. We call any post-fixed point an improvement
simulation. Improvement similarity, �∼, is the greatest fixed point

�∼
def
= νR. 〈R◦〉I (8.11)

104 CHAPTER 8. FAIRNESS

(Redex
√

apply) (λx. a) v
√
→ a[v/x]

Table 8.3:
√

primitive reduction relation

(Redex2 τ case ×) case 〈~u〉 of 〈~x〉. a τ→2 {a[~u/~x]}

(Redex2 τ case +) case inji u of inj1 x1. a1 [] . . . [] injn xn. an
τ→2 {ai[u/xi]}, if i ∈ 1..n

(Redex2 τ or) a1 or a2
τ→2 {a1, a2}

(Redex2 τ choose) ?
τ→2 {piq | i < ω}

Table 8.4: Must τ primitive reduction relation

(Term0
2 value) v⇓0

2

(Termα+1
2 redex

√
)

b⇓α2
a⇓α+1
2

if a
√
→ b

(Termα
2 redex τ)

∀b ∈ B. b⇓αb2
a⇓α2

if a
τ→2 B and α =

⋃
b∈B αb

(Termα
2 let)

a⇓α′2 ∀u ∈ U. b[u/x]⇓αu2
let x= a in b⇓α2

if U = {u | a 3 u} and α = α′ ∪
⋃
u∈U

αu

(Termα
2 amb left)

a1⇓α2
amb(a1, a2)⇓α2

(Termα
2 amb right)

a2⇓α2
amb(a1, a2)⇓α2

Table 8.5: Indexed must termination predicate

8.4. IMPROVEMENT 105

Let cost equivalence, /.∼, be the symmetrisation of improvement similarity.
Improvement similarity is a preorder—it is reflexive because Id is an improvement simu-

lation and it is transitive because compositions of improvement simulations are improvement
simulations—and cost equivalence is an equivalence relation.

Every improvement simulation is a refinement simulation, so improvement similarity is
included in refinement similarity. As for refinement we have that the reciprocal of every im-
provement simulation is a lower simulation and that the reciprocal of improvement similarity
is included in lower similarity.

An example of improvement similarity is βv-reduction,

(λx. a) v �∼ a[v/x] : t, if x : t′ ` a : t and v : t′ (8.12)

Since �∼ is reflexive and is a fixed point of 〈 · ◦〉I, (8.12) follows from the observations that
a[v/x] �3 (λx. a) v : t and that a[v/x]⇓κ2 if and only if (λx. a) v⇓κ+1

2 . Because of the last
observation, the reverse of (8.12) is false when a[v/x] must terminate.

We are now going to prove that improvement similarity is a pre-congruence, by means
of Howe’s compatible extension. Let us first outline the new ideas before we embark on
the detailed proof. The main lemma asserts that if R is an improvement simulation then an
appropriate construction of a compatible relation, ((Rop)∗•)op, is an improvement simulation,
that is, (i) its reciprocal is a lower simulation and (ii) it is itself improvement-adequate. Part
(i) is direct from Lemma 7.1.1. Part (ii) is tricky because the construction by compatible
extension is turned upside-down, as it were, in order to meet the requirements of part (i).
(Recall that the definition of compatible extension is asymmetrical.) Therefore it is not
possible just to do induction on the must termination of the expressions on the left hand side
of the relation. Instead we take advantage of the fact thatR is improvement-adequate (i.e., an
improvement simulation) and not just must-pre-adequate (i.e., a refinement simulation): when
we go across the R component of compatible extension, the cost of must termination does
not increase. The trick is then to do the induction both (1) on the cost of must termination
and (2) on the derivation by compatible refinement, ordered lexicographically. By delaying
all substitutions between function applications, part (2) of the induction hypothesis takes
care of all cases but function application. Part (1) of the induction hypothesis applies to the
function application case because here must termination is always derived from premises of
strictly smaller cost.

To simplify the statement of the next lemma (and to emphasise the structural similarity
with the proofs in §4.8, §7.1, and §7.2), we define the notation:

R§
def
= ((Rop)•)op

R§ inherits nice properties of compatible extension, in particular, R§ is substitutive and, if
R is reflexive, R§ is compatible and includes R◦.

Lemma 8.4.1 If R ⊆ 〈R◦〉I then R∗§ ⊆ 〈R∗§〉◦I .

Proof Assume that R is an improvement simulation, R ⊆ 〈R◦〉I.
(i) Then Rop is a lower simulation and, by Lemma 7.1.1, (Rop)∗• is an open lower simu-

lation. The latter equals (R∗§)op.
(ii) By (3.6) and the definition of improvement simulation, it remains to show thatR∗§[Id]

is improvement-adequate or, equivalently, that R∗§[R∗§] is improvement-adequate, because

106 CHAPTER 8. FAIRNESS

R∗§ is reflexive and substitutive. That is, since R∗§ = ((R∗op)•)op, we must show that

~x : ~t ` a′ (R∗op)• a : t & ~u′ (R∗op)• ~u : ~t & a[~u/~x]⇓α2 ⇒ ∃α′ ≤ α. a′[~u′/~x]⇓α′2 (8.13)

We prove this by induction (1) on α (transfinite induction) and (2) on the derivation of
~x : ~t ` a′ (R∗op)• a : t, ordered lexicographically.

First observe that, by the definition of compatible extension, there exists an a′′ such that
~x : ~t ` a′ (R∗op)• a : t is derived from

~x : ~t ` a R∗◦ a′′ : t (8.14)

~x : ~t ` a′′ ̂(R∗op)• a′ : t (8.15)

Hence a[~u/~x] Rn a′′[~u/~x] : t for some n ≥ 0. By n applications of the assumption that R is an
improvement simulation, we get α′′ ≤ α such that a′′[~u/~x]⇓α′′2 .

We now proceed to show that there exists α′ ≤ α′′ such that a′[~u
′
/~x]⇓α′2 , by analysis of the

derivation of a′′[~u/~x]⇓α′′2 .

Case (Termα′′
2 value)

a′′ is a value

α′′ = 0

By (8.15) and Lemma 3.5.1, a′ is also a value. Hence a′⇓0
2 by (Term0

2 value) too.

Case (Termα′′
2 redex

√
)

a′′ = (λy. b) v

b[v/y][~u/~x]⇓α0
2

α′′ = α0 + 1

By (8.15), a′ = (λy. b′) v′ with ~x : ~t, y : t′ ` b′ (R∗op)• b : t and ~x : ~t ` v′ (R∗op)• v :
t′. By substitutivity, ~x : ~t ` b′[v

′
/y] (R∗op)• b[v/y] : t. By part (1) of the induction

hypothesis, we get α′0 ≤ α0 such that b′[v
′
/y][~u

′
/~x]⇓α

′
0
2 . Let α′ = α′0 + 1. Then α′ ≤ α′′

and a′[~u
′
/~x]⇓α′2 , by (Termα′

2 redex
√

).

Case (Termα′′
2 redex τ)

a′′[~u/~x]
τ→2 B

b⇓αb2 , for all b ∈ B
α′′ =

⋃
b∈B αb

We argue by cases on the derivation of a′′[~u/~x]
τ→2 B by the rules in Table 8.4.

Case (Redex2 τ case ×)

a′′ = case v of 〈~y〉. b
v[~u/~x] = 〈~v〉

B = {b[~u~v/~x~y]}
b[~u~v/~x~y]⇓α′′2

8.4. IMPROVEMENT 107

By (8.15), a′ = case v′ of 〈~y〉. b′ with ~x : ~t ` v′ (R∗op)• v : t′1 × . . . × t′n and

~x : ~t, ~y : ~t′ ` b′ (R∗op)• b : t. Then, by Lemma 3.4.1(3), v′[~u
′
/~x] (R∗op)• v[~u/~x] : t′1×

. . .× t′n. This must be derived by (Comp product) from Table 3.2 and we see that
v′[~u

′
/~x] = 〈~v′〉 with ~v′ (R∗op)• ~v : ~t′. So a′[~u

′
/~x]

τ→2 {b′[~u′~v′/~x~y]}, by (Redex2 τ case
×), and ~u′~v′ (R∗op)• ~u~v : ~t~t′; and then part (2) of the induction hypothesis asserts
that there exists α′ ≤ α′′ such that b′[~u

′~v′/~x~y]⇓α′
2

. We conclude that a′[~u
′
/~x]⇓α′

2
by

(Termα′
2

redex τ).

Case (Redex2 τ case +) Similar to the previous case.

Case (Redex2 τ or)

a′′ = a1 or a2

B = {a1[~u/~x], a2[~u/~x]}
a1[~u/~x]⇓α1

2

a2[~u/~x]⇓α2
2

α′′ = α1 ∪ α2

By (8.15), a′ = a′1 or a′2 with ~x : ~t ` a′1 (R∗op)• a1 : t and ~x : ~t ` a′2 (R∗op)• a2 : t.

Hence a′[~u
′
/~x]

τ→2 {a′1[~u
′
/~x], a′2[~u

′
/~x]}. By part (2) of the induction hypothesis, there

are α′1 ≤ α1 and α′1 ≤ α1 such that a′1[~u
′
/~x]⇓α

′
1
2 and a′2[~u

′
/~x]⇓α

′
2
2 . Let α′ = α′1 ∪ α′2.

Then α′ ≤ α′′ and a′[~u
′
/~x]⇓α′2 by (Termα′

2 redex τ).

Case (Redex2 τ choose)

a′′ = ?

B = {piq | i < ω}
α′′ = 0

By (8.15), a′ = ?. Hence a′[~u
′
/~x] = ? and a′[~u

′
/~x]⇓0

2 by (Redex2 τ choose) and
(Term0

2 redex τ).

Case (Termα′′
2 let)

a′′ = let y = a0 in b0

a0[~u/~x]⇓α0
2

V = {v | a0[~u/~x] 3 v}
b0[~uv/~xy]⇓αu2 , for all v ∈ V

α′′ = α0 ∪
⋃
v∈V

αv

By (8.15), a′ = let y = a′0 in b′0 with ~x : ~t ` a′0 (R∗op)• a0 : t′ and ~x : ~t, y : t′ `
b′0 (R∗op)• b0 : t. By part (2) of the induction hypothesis, we get α′0 ≤ α0 such that

a′0[~u
′
/~x]⇓α

′
0
2 . Let V ′ = {v′ | a′0[~u

′
/~x] 3 v

′} and fix any v′ ∈ V ′. Since (R∗op)• is a lower
simulation, there is v ∈ V with v′ (R∗op)• v : t′ and hence ~u′v′(R∗op)•~uv : ~t t′. Again by

part (2) of the induction hypothesis, there is an α′v′ ≤ αv such that b′0[~u
′v′/~xy]⇓α

′
v′
2 . Let

α′ = α′0 ∪
⋃
v′∈V ′

α′v′ . Then a′[~u
′
/~x]⇓α′2 , by (Termα′

2 let). Furthermore, since for all v′ ∈ V ′

108 CHAPTER 8. FAIRNESS

there exists some v ∈ V such that α′v′ ≤ αv, we see that
⋃
v′∈V ′

α′v′ ≤
⋃
v∈V

αv. As α′0 ≤ α0

too, we get that α′ ≤ α′′.

Case (Termα′′
2 amb left)

a′′ = amb(a1, a2)

a1[~u/~x]⇓α′′2
By (8.15), a′ = amb(a′1, a

′
2) with ~x : ~t ` a′1 (R∗op)• a1 : t and ~x : ~t ` a′2 (R∗op)• a2 : t.

By part (2) of the induction hypothesis, we get α′ ≤ α′′ such that a′1[~u
′
/~x]⇓α′

2
. Hence

a′[~u
′
/~x]⇓α′2 , by (Termα′

2 amb left).

Case (Termα′′
2

amb right) Symmetrical to the previous case.

We conclude that (8.13) holds, as required to show that R∗§[Id] is improvement-adequate
and thus that R∗§ is an improvement simulation. 2

From this lemma we derive that improvement similarity is a pre-congruence.

Proposition 8.4.2 �∼
◦

is a pre-congruence.

Proof Analogous to that of Proposition 4.8.2. 2

Improvement similarity is must-pre-adequate, so we can conclude that it is included in
must contextual approximation. As a consequence we also have that cost equivalence is
included in must contextual equivalence.

Improvement and cost equivalence enjoy a rich (in)equational theory. Examples 8.3.2,
8.3.3, and 8.3.4 all hold for improvement and cost equivalence in place of must contextual
approximation and equivalence. (But we should note that the facts that amb is idempotent
and that Ω is unit for amb, up to cost equivalence, are quite sensitive to the particular choice
of cost measure for must termination.)

Because improvement similarity and cost equivalence are co-inductively defined relations,
they support co-inductive arguments about infinite behaviour of higher order functions.

Example 8.4.3 For every type t, let

t stream
def
= µχ.unit⇀ t× χ

be the type of potentially infinite streams of values of type t. We define the abbreviations:

strm a
def
= inj λ〈 〉. a

case a of strm〈x, s〉. b def
= case a of inj h. case h 〈 〉 of 〈x, s〉. b

where h is not free in b. For instance, strm Ω is the empty stream that diverges when queried.
The following program shuffles streams by arbitrarily reordering elements.

shuffle = Y λf. λs. strm sbody [f, s]

where sbody [f, s] = case s of strm〈x′, s′〉.amb(〈x′, f s′〉,
case f s′ of strm〈x′′, s′′〉.

〈x′′, f (strm〈x′, s′′〉)〉)

8.4. IMPROVEMENT 109

The ambiguous choice chooses whether the first element of the output stream should be (1)
the same as the first element x′ of the input stream s, or (2) some other element x′′ found by
taking the first element of the remainder s′ of the input stream after shuffling it by a recursive
call. In each case, the remainder of the output stream is obtained by recursively shuffling all
the remaining elements from the input stream.

Let us prove that

shuffle v �∼ v : t stream, if v : (t stream) (8.16)

that is, (i) a possible outcome of shuffling a stream is the stream itself, and (ii) it is cheaper
not to shuffle.

Let shuffle ′
def
= λs. fix[λf. λs. strm sbody [f, s]] s. Then shuffle v�5 strm sbody [shuffle ′, v]

and it is easy to see that

shuffle v �∼ strm sbody [shuffle ′, v] : t stream

As any v : (t stream) is of the form strm a, for some a : t× (t stream), we see that it suffices
to show that the closed relation R, given by

Γ ` sbody [shuffle ′, strm a] R a : t× (t stream), if a : t× (t stream)

is included in �∼. We prove that the reflexive closure R ∪ Id0 is an improvement simulation;
then the desired inclusion follows by co-induction. The interesting case we need to check is,
for a : t× (t stream),

(i) ∀u, b. a 3 〈u, strm b〉 ⇒
sbody [shuffle ′, strm a] 3 〈u, strm sbody [shuffle ′, strm b]〉

&

(ii) ∀α < ωCK1 . sbody [shuffle ′, strm a]⇓α2 ⇒ ∃α′ < α. a⇓α′2
(i) holds because we can always choose the first branch of the ambiguous choice, and we note
that sbody [shuffle ′, strm b] R b : t× (t stream) so that we get

〈u, strm sbody [shuffle ′, strm b]〉 (R ∪ Id0)◦ 〈u, strm b〉 : t× (t stream)

(ii) holds because the evaluation of sbody [shuffle ′, strm a] begins by evaluating a. 2

It is convenient to represent cost units (function applications) syntactically as “ticks”,
√

,

√
a

def
= (λ〈 〉. a) 〈 〉

i.e.,
√

adds one function application step to an expression; we observe that

a 3 v iff
√
a 3 v (8.17)

a⇓κ2 iff
√
a⇓κ+1
2 (8.18)

For instance, βv-equivalence holds for cost equivalence modulo a tick,

(λx. a) v /.∼
√
a[v/x] : t, if v : t′ and x : t′ ` a : t

A ‘tick algebra’ of such laws can be used for equational reasoning about computation steps;
see Sands (1998b).

It is possible to enhance Lemma 8.4.1 along the lines in Lassen (1998) and Pitts (1995) to
establish the following proof rule for “improvement simulation up to improvement similarity
and context”. We omit the proof.

110 CHAPTER 8. FAIRNESS

Proposition 8.4.4
R ⊆ 〈�∼

◦
RC〉I

R ⊆ �∼

A significant attraction of improvement similarity is that it admits a proof rule for rea-
soning about recursion, the so-called improvement theorem, which is not valid for the usual,
more coarse-grained semantic preorders which abstract from computational cost. This seems
to be particularly important here because all the usual techniques for reasoning about recur-
sion break down in the presence of fairness. The improvement theorem is a sort of recursion
co-induction rule. Approximately, it asserts that Y (λf. v) is the greatest fixed point of the
functional λf. v with respect to improvement. However, Y (λf. v) is not quite a fixed point

of λf. v up to cost equivalence. Rather, Y (λf. v)
√
→ fix[λf. v] and fix[λf. v] is a fixed point of

λf. v, modulo a tick and an eta redex,

fix[λf. v] /.∼
√

(λf. v) (λx. fix[λf. v]x) : t1 ⇀ t2, if (λf. v) : (t1 ⇀ t2)⇀ t1 ⇀ t2 (8.19)

The improvement theorem asserts that fix[λf. v] is the greatest solution of (8.19), even with
�∼ in place of /.∼.

Proposition 8.4.5 (Improvement theorem)
a �∼
√

(λf. v) (λx. a x) : t1 ⇀ t2

a �∼ fix[λf. v] : t1 ⇀ t2

Proof Assume that a �∼
√

(λf. v) (λx. a x) : t1⇀ t2. Then observe that the right hand side
must terminate at cost 2,

√
(λf. v) (λx. a x)⇓2

2

and that it evaluates deterministically,

√
(λf. v) (λx. a x) 3 v[(λx. a x)/f]

By the assumption and the definition of improvement similarity, (i) a 3 u for some u such

that u �∼
◦
v[(λx. a x)/f] : t1 ⇀ t2; and (ii) if a⇓α2 then α ≥ 2.

We prove that a �∼ fix[λf. v] : t1⇀t2 by means of Proposition 8.4.4. Let R be the singleton
relation

R : (t1 ⇀ t2) = {(a, fix[λf. v])}

By the observations about a and u above and the fact that fix[λf. v] evaluates deterministically,
fix[λf. v] 2 v[(λx. fix[λf. v]x)/f], it suffices to show that

u �∼
◦
RC v[(λx. fix[λf. v]x)/f] : t1 ⇀ t2

This holds because we have that u �∼
◦
v[(λx. a x)/f] : t1 ⇀ t2, from (i) above, and

v[(λx. a x)/f] RC v[(λx. fix[λf. v]x)/f] : t1 ⇀ t2

from (3.14) and (3.11).
We conclude that R ⊆ 〈�∼

◦
RC〉I and hence R ⊆ �∼. That is, a �∼ fix[λf. v] : t1 ⇀ t2, as

required. 2

8.4. IMPROVEMENT 111

We remark that the improvement theorem is false with /.∼ or �∼
op

in place of �∼. In other
words, fixed points are not unique with respect to cost equivalence. A counterexample for
both is when v = (λx.Ω or (f x)) and a = fix[λf. λx.Ω or 〈 〉], where we have that

a /.∼
√

(λf. v) (λx. a x) : unit⇀ unit

but neither a /.∼ fix[λf. v] : unit ⇀ unit nor fix[λf. v] �∼ a : unit ⇀ unit holds. The intuition
behind this counterexample is that, between expressions that may diverge, cost equivalence
is more or less mutual may similarity for which fixed points are not unique; in particular,
(λx.Ω or 〈 〉) and (λx.Ω) are not may similar but they are both fixed points of the functional
λf. v up to mutual may similarity.

The following corollary of the improvement theorem is closer to Sands’ formulation (1998b).

Corollary 8.4.6
(λf. u) (λx. fix[λf. u]x) �∼ (λf. v) (λx. fix[λf. u]x) : t1 ⇀ t2

fix[λf. u] �∼ fix[λf. v] : t1 ⇀ t2

Proof Since fix[λf. u] /.∼
√

(λf. u) (λx. fix[λf. u]x) : t1 ⇀ t2, the premise of the rule implies
that fix[λf. u] �∼

√
(λf. v) (λx. fix[λf. u]x) : t1 ⇀ t2 and the conclusion is immediate from

Proposition 8.4.5. 2

Example 8.4.7 Let us consider the shuffle program from Example 8.4.3 again,

shuffle = Y λf. λs. strm(case s of strm〈x′, s′〉.
amb(〈x′, f s′〉,

case f s′ of strm〈x′′, s′′〉.
〈x′′, f (strm〈x′, s′′〉)〉)

It looks uneconomical to use two consecutive recursive calls in the second branch of the
ambiguous choice. It would suffice to let the first of the two recursive calls move an arbitrary
element of the stream s′ to the front of the stream and let the second recursive call perform
the recursive shuffling of the remainder of the stream. This optimisation is incorporated in
the next program, pshuffle . The auxiliary function promote moves an arbitrary element of a
stream to the front.

pshuffle = Y λf. λs. strm(case s of strm〈x′, s′〉.
amb(〈x′, f s′〉,

case promote s′ of strm〈x′′, s′′〉.
〈x′′, f (strm〈x′, s′′〉)〉)

promote = Y λf. λs. strm(case s of strm〈x′, s′〉.
amb(〈x′, s′〉,

case f s′ of strm〈x′′, s′′〉.
〈x′′, strm〈x′, s′′〉〉))

Indeed, pshuffle is an improvement of shuffle in the improvement similarity ordering. This
is proved by two simple applications of (the corollary of) the improvement theorem. First,
we use (8.16) from Example 8.4.3 to deduce

shuffle �∼ promote : (t stream)⇀ (t stream)

112 CHAPTER 8. FAIRNESS

by Corollary 8.4.6. Given this, we deduce the result,

shuffle �∼ pshuffle : (t stream)⇀ (t stream) (8.20)

again by Corollary 8.4.6.
It is plausible that shuffle and pshuffle are must contextually equivalent. (8.20) implies

that shuffle must contextually approximates pshuffle , but there does not seem to be any easy
way of proving the reverse—pshuffle is not improvement similar to shuffle and we do not have
other co-inductive methods for proving results about must contextual approximation between
infinite data structures. 2

8.5 Future work

This chapter has presented promising but preliminary results about the theory of contextual
equivalence for ambiguous choice. Much remains to be done. In order to assess the usefulness
of the proof rules, they should be tested on more problems involving ambiguous choice. Since
βv-equivalence is valid, it should be possible to translate many problems about must contex-
tual approximation and equivalence into a form where they can be solved up to improvement
similarity, using the co-induction proof rules for improvement similarity.

The big open problem is whether convex bisimilarity (cf. §7.3) is a congruence in the
presence of ambiguous choice. In that case convex bisimilarity would be included in must
contextual equivalence, and we would get a good co-induction proof rule for establishing must
contextual equivalence. Several people have attacked this problem, but, so far, it has eluded
every attempt. A stronger result would be if refinement similarity is a pre-congruence and,
hence, included in must contextual approximation. It would provide a co-induction proof rule
for must contextual approximation. My preliminary investigations of the relationship between
must contextual approximation and refinement similarity suggest the conjecture that must
contextual approximation is included in refinement similarity. This does not directly lead to
useful reasoning principles but it might assist the search for a solution to the open problem
about the reverse inclusion.

An important property which we failed to establish for fair must contextual approximation
is closure under open extension, (@∼20

)◦ ⊆ @∼2. This would follow from the inclusions that we
left as open problems in the preceding paragraph.

Improvement similarity is one out of several improvement relations that one could consider
for our language. The ideas from our pre-congruence proof for improvement similarity seem
to extend to some other choices. This topic should be worth pursuing further.

In a wider perspective, hopefully the understanding about fairness gained through the
study of ambiguous choice can be employed in other settings with fairness constraints; for
instance, the actor model of asynchronously communicating processes (Agha, Mason, Smith,
and Talcott 1997), and the related communicative facet of action semantics (Mosses 1992).

Appendix A

Encoding ordinal-bounded fixed
point operators

This appendix demonstrates ways of encoding the ordinal-bounded fixed point expressions
from §6.7 in two different extensions of the language. The first extension is a parallel combina-
tor, proposed by Boudol (1994) for λ-calculus. The other is references and control operators
as found in Standard ML of New Jersey (Appel and MacQueen 1991).

The encodings are included as a curiosity and are presented without proofs. For readers
who are familiar with Boudol’s parallel operator or with control operators, the encodings may
clarify the computational behaviour of the transfinite language constructs from §6.7.

One would hope that the encodings could provide insights with regard to the open problem
in §6.7: are the transfinite fixed point constructs a conservative extension of the theory of
contextual approximation. The parallel combinator in itself is not a conservative extension
and neither are references or control operators. It is not clear whether this has implications
for the properties of the encoded constructs.

Let us first define a type ord for representing recursive ordinals:

ord
def
= µχ.unit + χ+ (nat⇀ χ)

Recall from §2.1.1 that 0
def
= inj1〈 〉 and succ u

def
= inj2 u. Further, we define

lim v
def
= inj3 v

Certain closed values of type ord represent ordinals: 0 represents 0; succ u represents
α + 1 if u represents α; lim v represents

⋃
i<ω αi, if v piq ui and ui represents αi for each

i < ω. Not all closed values of type ord encode any ordinal α, e.g., (lim λx.Ω) and the result
of Y (λf. λx. lim f) do not. The ordinals encoded by values of type ord are the recursive
ordinals (Church and Kleene 1937).

Parallelism

Boudol (1994) introduces a parallel combinator, ‖, into the λ-calculus. The meaning of a1 ‖a2

is that it splits the global computation in two parallel processes, and the global computation
must terminate if either of the two processes must terminate. But it is difficult to say what

113

114 APPENDIX A. ENCODING ORDINAL-BOUNDED FIXED POINT OPERATORS

the outcome is. So let us just specify the must termination behaviour of the language when
extended with the parallel combinator. Firstly, the must termination of the nondeterministic
language from Chapter 5 can be specified by the following two rules.

(Term2 value) v⇓
2

(Term2 redex)
∀b ∈ B. b⇓2

a⇓
2

if a�2 B

That is, the must termination predicate is the least predicate closed under (Term2 value) and
(Term2 trans).

We can specify the must termination behaviour of the parallel combinator by adding the
rule:

(Term2 par)
E[[ai]]⇓2

E[[a1 ‖ a2]]⇓2
if i = 1, 2

Now we are able to encode the transfinite fixed point expressions from §6.7. We define a
function Yord which maps every ordinal encoding into a fixed point combinator whose depth
of recursion is bounded by the encoded ordinal.

Yord = Y (λy. λz. case z of 0. λg.Ω
[] succ z′. λg. g (λx. y z′ g x)
[] limh. y (h0) ‖ y (limλz′. h (succ z′)))

Now Y(α) is encoded by Yordu where u is some closed value u : ord that encodes the
recursive ordinal α.

References and control operators

The code on pp. 115–116 runs under Standard ML of New Jersey1 and uses references and
control operators to implement ordinal-bounded fixed point combinators.

1See Appel and MacQueen (1991) and URL http://cm.bell-labs.com/cm/cs/what/smlnj

115

(* ORDINAL-BOUNDED FIXED POINT OPERATORS IN SML/NJ *)

(* Time-stamp: <98/08/21 16:50:13 sbl21> *)

(* URL http://www.cl.cam.ac.uk/users/sbl21/thesis/fix.sml *)

(* *)

(* by S. B. Lassen *)

(* University of Cambridge Computer Laboratory *)

(* email: Soeren.Lassen@cl.cam.ac.uk *)

(* home page: http://www.cl.cam.ac.uk/users/sbl21 *)

(* Uses SML/NJ’s callcc and throw operations *)

open SMLofNJ.Cont;

(* ord is the datatype of recursive ordinals *)

type nat = int

datatype ord = Zero | Succ of ord | Lim of nat->ord

fun nat2ord n = if n<=0 then Zero else Succ (nat2ord (n-1))

val omega0 = Lim nat2ord

(* The following operations illustrate the workings of ordinals but

are not used in the definitions below. *)

fun add a Zero = a

| add a (Succ b) = Succ (add a b)

| add a (Lim l) = Lim (fn n => add a (l n))

fun mult a Zero = Zero

| mult a (Succ b) = add (mult a b) a

| mult a (Lim l) = Lim (fn n => mult a (l n))

fun expon a Zero = Succ Zero

| expon a (Succ b) = mult (expon a b) a

| expon a (Lim l) = Lim (fn n => expon a (l n))

(* A queue of "composed continuations" is needed

for a breath-first traversal of an ordinal "tree".

"Composed continations" are represented by unit->unit functions;

they never return so the unit result type is chosen arbitrarily. *)

val queue = ref ([]:(unit->unit) list);

exception Bottom (* raised if taking first of the empty queue

(when recursion overruns a finite ordinal bound) *)

fun init q = q:=[]

fun insert q k = q:=(!q)@[k]

fun first q = case !q of [] => raise Bottom | k::ks => (q:=ks; k)

116 APPENDIX A. ENCODING ORDINAL-BOUNDED FIXED POINT OPERATORS

(* Yord produces ordinal-bounded fixed point operators.

Yord a f computes the a’th approximation to the least fixed point of

the functional f. *)

exception DeadCode (* never raised *)

(* Yord : ord -> ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b *)

fun Yord Zero f = (first queue (); (* never returns *)

raise DeadCode) (* unconstrained result type *)

| Yord (Succ a) f = f (fn x => Yord a f x)

| Yord (Lim l) f = callcc (fn k => let val a = Lim (fn n => l (n+1))

val k’ = fn () => throw k (Yord a f)

in insert queue k’;

Yord (l 0) f

end)

(* Examples *)

fun fac a = Yord a (fn fac => fn x => if x=0 then 1 else x*(fac (x-1)))

val example1 = (init queue; fac (nat2ord 5) 4); (* result 24 *)

val example2 = (init queue; fac omega0 5); (* result 120 *)

val example3 = (init queue; fac (nat2ord 5) 5); (* raises Bottom *)

Bibliography

Abadi, M. and L. Cardelli (1996). A Theory of Objects. Springer-Verlag.

Abramsky, S. (1983). On semantic foundations for applicative multiprogramming. In J. D́ıaz
(Ed.), Automata, Languages and Programming, 10th Colloquium, Barcelona, Volume
154 of Lecture Notes in Computer Science, pp. 1–14. Springer-Verlag.

Abramsky, S. (1990). The lazy lambda calculus. In D. Turner (Ed.), Research Topics in
Functional Programming, pp. 65–116. Addison-Wesley.

Agha, G. A., I. A. Mason, S. F. Smith, and C. L. Talcott (1997). A foundation for actor
computation. Journal of Functional Programming 7 (1), 1–72.

Appel, A. W. and D. B. MacQueen (1991). Standard ML of New Jersey. In J. Ma luszyński
and M. Wirsing (Eds.), Proc. 3rd Int. Symposium on Programming Language Imple-
mentation and Logic Programming, Passau, Germany, Volume 528 of Lecture Notes in
Computer Science, pp. 1–13. Springer-Verlag.

Apt, K. R. and G. D. Plotkin (1986). Countable nondeterminism and random assignment.
J.ACM 33 (4), 724–767.

Astesiano, E. and G. Costa (1980). Nondeterminism and fully abstract models.
RAIRO 14 (4), 323–347.

Astesiano, E. and G. Costa (1984). Distributive semantics for nondeterministic typed λ-
calculi. Theoretical Computer Science 32, 121–156.

Barendregt, H. P. (1984). The Lambda Calculus: Its Syntax and Semantics (revised ed.).
Number 103 in Studies in Logic and the Foundations of Mathematics. Amsterdam:
North-Holland.

Bierman, G. M. (1998). A computational interpretation of the lambda-mu calculus. In
L. Brim, J. Gruska, and J. Zlatuska (Eds.), Proc. 23rd Mathematical Foundations of
Computer Science, Brno, Czech Republic, Volume 1450, pp. 336–345. Springer-Verlag.

Bird, R. and O. de Moor (1997). Algebra of Programming. International Series in Computer
Science. Prentice-Hall.

Birkedal, L. and R. Harper (1997). Operational interpretations of recursive types in an
operational setting (summary). In M. Abadi and T. Ito (Eds.), Symposium on Theo-
retical Aspects of Computer Science, Sendai, Japan, Volume 1281 of Lecture Notes in
Computer Science. Springer-Verlag.

Bloom, B. (1990). Can LCF be topped? Flat lattice models of typed λ-calculus. Information
and Computation 87 (1/2), 263–300.

117

Boudol, G. (1980). Sémantique opérationelle et algébrique des programmes récursifs non-
déterministes. Thèse d’etat, Université de Paris 7.

Boudol, G. (1989). Towards a lambda-calculus for concurrent and communicating systems.
In J. D. F. Orejas (Ed.), Proceedings of the International Joint Conference on The-
ory and Practice of Software Development : Vol. 1, Volume 351 of Lecture Notes in
Computer Science, pp. 149–161. Springer-Verlag.

Boudol, G. (1994). Lambda-calculi for (strict) parallel functions. Information and Compu-
tation 108 (1), 51–127.

Braüner, T. (1996, November). An axiomatic approach to adequacy. Technical Report DS-
96-4, BRICS, Dept. of Computer Science, Univ. of Aarhus. Ph.D. thesis.

Broy, M. (1986). A theory for nondeterminism, parallelism, communication, and concur-
rency. Theoretical Computer Science 45, 1–61.

Broy, M. and G. Nelson (1994). Adding fair choice to Dijkstra’s calculus. ACM Transactions
on Programming Languages and Systems 16 (3), 924–938.

Church, A. and S. C. Kleene (1937). Formal definitions in the theory of ordinal numbers.
Fundamenta Mathematica 28, 11–21.

Crole, R. L. (1994). Categories for Types. Cambridge Mathematical Textbooks. Cambridge
University Press.

de’Liguoro, U. and A. Piperno (1995). Non deterministic extensions of untyped λ-calculus.
Information and Computation 122 (2), 149–177.

DeNicola, R. and M. Hennessy (1984). Testing equivalences for processes. Theoretical Com-
puter Science 34, 83–133.

Dezani-Ciancaglini, M., U. de’Liguoro, and A. Piperno (1996). Finite models for
conjunctive-disjunctive λ-calculi. Theoretical Computer Science 170 (1–2), 83–128.

Di Gianantonio, P., F. Honsell, and G. D. Plotkin (1995). Uncountable limits and the
lambda calculus. Nordic Journal of Computing 2 (2), 126–145. Extended version of a
paper presented at CONCUR ’94.

Egidi, L., F. Honsell, and S. Ronchi della Rocca (1992). Operational, denotational and
logical descriptions: a case study. Fundamenta Informaticae 16 (2), 149–169.

Felleisen, M. (1991). On the expressive power of programming languages. In Science of
Computer Programming, Volume 17, pp. 35–75. Preliminary version in ESOP ’90.

Felleisen, M. and D. P. Friedman (1987). Control operators, the SECD-machine, and the λ-
calculus. In M. Wirsing (Ed.), Formal Description of Programming Concepts III, Proc.
IFIP TC2 Working Conference, Gl. Avernæs, 1986. IFIP: North-Holland.

Ferreira, W., M. Hennessy, and A. Jeffrey (1996). A theory of weak bisimulation for core
CML. ACM SIGPLAN Notices 31 (6), 201–212. Proc. ACM SIGPLAN International
Conference on Functional Programming, Philadelphia.

Fiore, M. P., A. Jung, E. Moggi, P. O’Hearn, J. Riecke, G. Rosolini, and I. Stark (1996).
Domains and denotational semantics: History, accomplishments and open problems.
Bulletin of the EATCS 59, 227–256.

Gordon, A. D. (1994). Functional Programming and Input/Output. Cambridge University
Press.

118

Gordon, A. D. (1995a). Bisimilarity as a theory of functional programming. In Proc. 11th
Conference of Mathematical Foundations of Programming Semantics, Volume 1 of Elec-
tronic Notes in Theoretical Computer Science. Elsevier.

Gordon, A. D. (1995b, July). Bisimilarity as a theory of functional programming. Mini-
course. BRICS Notes Series NS-95-3, BRICS, Dept. of Computer Science, Univ. of
Aarhus. Errata at URL http://research.microsoft.com/˜adg/Publications/BRICS-NS-
95-3-errata.ps.gz.

Gordon, A. D. (1995c). A tutorial on co-induction and functional programming. In Proceed-
ings of the 1994 Glasgow Workshop on Functional Programming, Springer Workshops
in Computing, pp. 78–95.

Gordon, A. D. (1998). Operational equivalences for untyped and polymorphic object calculi.
See Gordon and Pitts (1998).

Gordon, A. D., P. Hankin, and S. B. Lassen (1997a). Compilation and equivalence of imper-
ative objects. In S. Ramesh and G. Sivakumar (Eds.), Proc. 17th FST&TCS Conference,
Kharagpur, India, December 1997, Volume 1346 of Lecture Notes in Computer Science,
pp. 74–87. Springer-Verlag. Extended version appears in (Gordon, Hankin, and Lassen
1997b).

Gordon, A. D., P. Hankin, and S. B. Lassen (1997b). Compilation and equivalence of
imperative objects. Technical Report RS-97-19, BRICS, Dept. of Computer Science,
Univ. of Aarhus. Extended version of paper in FST&TCS’97. Also appears as Technical
Report 429, University of Cambridge Computer Laboratory.

Gordon, A. D. and A. M. Pitts (Eds.) (1998). Higher Order Operational Techniques in
Semantics. Publications of the Newton Institute. Cambridge University Press.

Gordon, A. D. and G. D. Rees (1996). Bisimilarity for a first-order calculus of objects with
subtyping. In Proc. 23rd ACM Symposium on Principles of Programming Languages.

Gunter, C. A. and D. S. Scott (1990). Semantic domains. In J. van Leeuwen (Ed.), Handbook
of Theoretical Computer Science. Elsevier.

Hennessy, M. (1988). Algebraic Theory of Processes. MIT Press.

Hennessy, M. C. B. and E. A. Ashcroft (1980). A mathematical semantics for a nondeter-
ministic typed lambda-calculus. Theoretical Computer Science 11 (3), 227–245.

Howe, D. J. (1989). Equality in lazy computation systems. In Proc. 4th Annual IEEE
Symposium on Logic in Computer Science.

Howe, D. J. (1996). Proving congruence of bisimulation in functional programming lan-
guages. Information and Computation 124 (2), 103–112.

Jacobs, B. and J. Rutten (1997). A tutorial on (co)algebras and (co)induction. Bulletin of
the EATCS 62, 222–259.

Jagadeesan, R. and P. Panangaden (1990). A domain-theoretic model for a higher-order
process calculus. In M. S. Paterson (Ed.), Proceedings of the 17th International Col-
loquium on Automata, Languages and Programming, Volume 443 of Lecture Notes in
Computer Science, pp. 181–194. Springer-Verlag. Extended version as Technical Report
89-1058, Cornell University.

119

Kennaway, R., J. W. Klop, R. Sleep, and F.-J. de Vries (1995). Transfinite reductions in
orthogonal term rewriting systems. Information and Computation 119 (1), 18–38.

Klop, J. W. (1992). Term rewriting systems. In S. Abramsky et al. (Eds.), Handbook of
Logic in Computer Science, Volume 2. Oxford University Press.

Klop, J. W., V. van Oostrom, and F. van Raamsdonk (1993). Combinatory reduction
systems: introduction and survey. Theoretical Computer Science 121, 279–308.

Kumar, K. N. and P. K. Pandya (1993). Infinite parallelism without unbounded nondeter-
minism in CSP. Acta Informatica 31 (5), 467–487.

Lassen, S. B. (1994). Reasoning with actions. In U. H. Engberg, K. G. Larsen, and P. D.
Mosses (Eds.), Proc. 6th Nordic Workshop on Programming Theory, Aarhus, October
1994, Number NS-94-6 in BRICS Notes Series, Dept. of Computer Science, Univ. of
Aarhus, pp. 251–265. Superseded by (Lassen 1997).

Lassen, S. B. (1995, May). Basic Action Theory. Technical Report RS-95-25, BRICS, Dept.
of Computer Science, Univ. of Aarhus. Superseded by (Lassen 1997).

Lassen, S. B. (1996, May). A context lemma for the imperative object calculus. Available
from URL http://www.cl.cam.ac.uk/users/sbl21/docs/clioc.html.

Lassen, S. B. (1997). Action semantics reasoning about functional programs. Mathematical
Structures in Computer Science 7 (5), 557–589. Special issue dedicated to the Workshop
on Logic, Domains, and Programming Languages, Darmstadt, May 1995.

Lassen, S. B. (1998). Relational reasoning about contexts. See Gordon and Pitts (1998),
pp. 91–135.

Lassen, S. B. and C. S. Pitcher (1998). Similarity and bisimilarity for countable non-
determinism and higher-order functions (extended abstract). In A. Gordon, A. Pitts,
and C. Talcott (Eds.), Second Workshop on Higher-Order Operational Techniques in
Semantics (HOOTS II), Stanford University, December 1997, Volume 10 of Electronic
Notes in Theoretical Computer Science. Elsevier.

Lehmann, D. J. (1976). Categories for Fixpoint Semantics. Ph. D. thesis, University of
Warwick.

Mason, I. A. (1996). Parametric computation. School of Mathematical and
Computing Sciences, University of New England. Available from URL
http://cs.une.edu.au/˜iam/Data/publications.html.

Mason, I. A., S. F. Smith, and C. L. Talcott (1996). From operational semantics to domain
theory. Information and Computation 128 (1), 26–47.

Mason, I. A. and C. L. Talcott (1991). Equivalence in functional languages with effects.
Journal of Functional Programming 1 (3), 297–327.

McCarthy, J. (1963). A basis for a mathematical theory of computation. In P. Braffort
and D. Hirschberg (Eds.), Computer Programming and Formal Systems, pp. 33–70.
Amsterdam: North-Holland.

Meyer, A. R. (1988). Semantical paradigms: Notes for an invited lecture. In Proc. 3rd
Annual IEEE Symposium on Logic in Computer Science, pp. 236–253. With two ap-
pendices by S. S. Cosmadakis.

Milner, R. (1989). Communication and Concurrency. Prentice-Hall.

120

Milner, R., M. Tofte, and R. Harper (1990). The Definition of Standard ML. Cambridge,
Mass.: MIT Press.

Mitchell, J. C. (1990). Type systems for programming languages. See van Leeuwen (1990),
Chapter 8, pp. 365–458.

Mitchell, J. C. (1993, October). On abstraction and the expressive power of programming
languages. Science of Computer Programming 21 (2), 141–163.

Mitchell, J. C. (1996). Foundations for Programming Languages. Foundations of Comput-
ing. MIT Press.

Moggi, E. (1989). Computational lambda-calculus and monads. In Proc. 4th Annual IEEE
Symposium on Logic in Computer Science, pp. 14–23.

Moggi, E. (1991). Notions of computation and monads. Information and Computation 93,
55–92.

Moran, A. K. (1994, May). Natural semantics for non-determinism. Licentiate thesis, De-
partment of Computing Science, Chalmers University of Technology and University of
Gothenburg.

Moran, A. K. (1998, September). Call-by-name, Call-by-need, and McCarthy’s Amb. Ph.
D. thesis, Department of Computing Science, Chalmers University of Technology and
University of Gothenburg.

Morris, J. H. (1968, December). Lambda-Calculus Models of Programming Languages. Ph.
D. thesis, MIT.

Mosses, P. D. (1992). Action Semantics. Number 26 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press.

Mosses, P. D. (1996). Theory and practice of action semantics. In Proc. 21st Mathematical
Foundations of Computer Science, Cracow, Poland, Volume 1113 of Lecture Notes in
Computer Science, pp. 37–61. Springer-Verlag.

Nordström, B., K. Petersson, and J. M. Smith (1990). Programming in Martin-Löf’s Type
Theory, Volume 7 of The International Series of Monographs in Computer Science.
Clarendon Press, Oxford.

O’Hearn, P. W. and J. G. Riecke (1995). Kripke logical relations and PCF. Information
and Computation 120 (1), 107–116.

Ong, C.-H. L. (1992, August 7). Concurrent lambda calculus and a general pre-congruence
theorem for applicative bisimulation (preliminary version). Unpublished.

Ong, C.-H. L. (1993). Non-determinism in a functional setting. In Proc. 8th Annual IEEE
Symposium on Logic in Computer Science, Montreal.

Panangaden, P. and J. R. Russell (1989). A category-theoretic semantics for unbounded
indeterminacy. In Proc. 5th Conference on Mathematical Foundations of Programming
Semantics, New Orleans, Volume 442 of Lecture Notes in Computer Science, pp. 319–
332. Springer-Verlag.

Park, D. M. (1981). Concurrency and automata on infinite sequences. In P. Deussen (Ed.),
Conference on Theoretical Computer Science, Volume 104 of Lecture Notes in Computer
Science, pp. 167–183. Springer-Verlag.

121

Perez, R. P. (1991). An extensional partial combinatory algebra based on λ-terms. In
A. Tarlecki (Ed.), Proc. Mathematical Foundations of Computer Science, Volume 520
of Lecture Notes in Computer Science, pp. 387–396. Springer-Verlag.

Pfenning, F. and C. Elliott (1988). Higher-order abstract syntax. In PLDI’88, pp. 199–208.
ACM.

Phillips, I. C. C. (1992). Recursion theory. In S. Abramsky et al. (Eds.), Handbook of Logic
in Computer Science, Volume 1, pp. 79–187. Oxford University Press.

Pitts, A. M. (1994a, November). Inductive and co-inductive techniques in the semantics
of functional programs. Course held at BRICS, Dept. of Computer Science, Univ. of
Aarhus.

Pitts, A. M. (1994b, December). Some notes on inductive and co-inductive techniques in the
semantics of functional programs (draft version). BRICS Notes Series NS-94-5, BRICS,
Dept. of Computer Science, Univ. of Aarhus.

Pitts, A. M. (1995, March). An extension of Howe’s construction to yield simulation-up-
to-context results. Unpublished Manuscript.

Pitts, A. M. (1997a). Operationally-based theories of program equivalence. In P. Dybjer
and A. M. Pitts (Eds.), Semantics and Logics of Computation. Cambridge University
Press.

Pitts, A. M. (1997b). Reasoning about local variables with operationally-based logical re-
lations. In P. W. O’Hearn and R. D. Tennent (Eds.), Algol-Like Languages, Volume 2,
Chapter 17, pp. 173–193. Birkhauser. Reprinted from Proceedings Eleventh Annual
IEEE Symposium on Logic in Computer Science, 1996, pp 152–163.

Pitts, A. M. (1998). Parametric polymorphism and operational equivalence (preliminary
version). In A. Gordon, A. Pitts, and C. Talcott (Eds.), Second Workshop on Higher-
Order Operational Techniques in Semantics (HOOTS II), Stanford University, Decem-
ber 1997, Volume 10 of Electronic Notes in Theoretical Computer Science. Elsevier.

Plotkin, G. D. (1975). Call-by-name, call-by-value and the λ-calculus. Theoretical Computer
Science 1, 125–159.

Plotkin, G. D. (1977). LCF considered as a programming language. Theoretical Computer
Science 5, 223–255.

Plotkin, G. D. (1982). A powerdomain for countable non-determinism (extended abstract).
In M. Nielsen and E. M. Schmidt (Eds.), Automata, Languages and Programming, 9th
Int. Colloquium, Aarhus, Volume 140 of Lecture Notes in Computer Science, pp. 418–
428. Springer-Verlag.

Plotkin, G. D. (1985, July). Denotational semantics with partial functions. Unpublished
lecture notes, CSLI, Stanford University.

Pratt, V. R. (1992). Origins of the calculus of binary relations. In Proc. 7th Annual IEEE
Symposium on Logic in Computer Science, Santa Cruz, CA, pp. 248–254.

Riecke, J. G. and A. Sandholm (1997). A relational account of call-by-value sequentiality.
In Proc. 12th Annual IEEE Symposium on Logic in Computer Science, pp. 258–267.

Ritter, E. and A. M. Pitts (1995). A fully abstract translation between a λ-calculus with
reference types and Standard ML. In Proc. 2nd International Conference on Typed

122

Lambda Calculus and Applications, Edinburgh, Volume 902 of Lecture Notes in Com-
puter Science. Springer-Verlag.

Rogers, H. (1967). Theory of Recursive Functions and Effective Computability. New York:
McGraw-Hill.

Sabry, A. and P. Wadler (1996). A reflection on call-by-value. ACM SIGPLAN No-
tices 31 (6), 13–24. Proc. ACM SIGPLAN International Conference on Functional Pro-
gramming, Philadelphia. Extended version appears in ACM Transactions on Program-
ming Languages and Systems 19(6):916–941, 1997.

Sands, D. (1991). Operational theories of improvement in functional languages (extended
abstract). In Proceedings of the Fourth Glasgow Workshop on Functional Programming,
Workshops in Computing Series, pp. 298–311. Springer-Verlag.

Sands, D. (1998a). Computing with contexts: A simple approach. In A. Gordon, A. Pitts,
and C. Talcott (Eds.), Second Workshop on Higher-Order Operational Techniques in
Semantics (HOOTS II), Stanford University, December 1997, Volume 10 of Electronic
Notes in Theoretical Computer Science. Elsevier.

Sands, D. (1998b). Improvement theory and its applications. See Gordon and Pitts (1998).

Sangiorgi, D. (1994, August). On the bisimulation proof method. Technical Report LFCS-
94-299, University of Edinburgh.

Schwichtenberg, H. (1996). Finite notations for infinite terms. To appear: APAL, Recursion
Theory ’96 Volume.

Schwichtenberg, H. and S. S. Wainer (1995). Ordinal bounds for programs. In P. Clote and
J. Remmel (Eds.), Feasible Mathematics II, pp. 387–406. Boston: Birkhäuser.

Sieber, K. (1992). Reasoning about sequential functions via logical relations. In M. P. Four-
man, P. T. Johnstone, and A. M. Pitts (Eds.), Proc. LMS Symposium on Applications
of Categories in Computer Science, Durham 1991, Volume 177 of LMS Lecture Note
Series, pp. 258–269. Cambridge University Press.

Sieber, K. (1993). Call-by-value and nondeterminism. In M. Bezem and J. F. Groote (Eds.),
Proc. International Conference on Typed Lambda Calculus and Applications, Volume
664 of Lecture Notes in Computer Science, pp. 376–390. Springer-Verlag.

Stoughton, A. (1988). Substitution revisited. Theoretical Computer Science 59, 317–325.

Talcott, C. (1993). A theory of binding structures and applications to rewriting. Theoretical
Computer Science 112, 99–143.

Talcott, C. (1998). Reasoning about functions with effects. See Gordon and Pitts (1998),
pp. 347–390.

Tarski, A. (1941). On the calculus of relations. Journal of Symbolic Logic 6 (3), 73–89.

Ulidowski, I. (1992). Equivalences on observable processes. In Proc. 7th Annual IEEE Sym-
posium on Logic in Computer Science, Santa Cruz, CA, pp. 148–159.

van Leeuwen, J. (Ed.) (1990). Handbook of Theoretical Computer Science, Volume B: For-
mal Models and Semantics. MIT Press.

Wadsworth, C. P. (1971, September). Semantics and pragmatics of the lambda calculus.
Ph. D. thesis, Programming Research Group, Oxford University.

123

Wand, M. and G. T. Sullivan (1997). Denotational semantics using an operationally-based
term model. In Proc. 24th ACM Symposium on Principles of Programming Languages,
pp. 386–399.

Wansbrough, K. and J. Hamer (1997). A modular monadic action semantics. In The Con-
ference on Domain-Specific Languages, Proceedings, Santa Barbara, CA, pp. 157–170.

Winskel, G. (1983, December). Non-deterministic recursive program schemes and powerdo-
mains. Technical Report CMU-CS-83-169, Dept. of Computer Science, Carnegie-Mellon
University.

Winskel, G. (1993). The Formal Semantics of Programming Languages. Cambridge, Mass.:
MIT Press.

Wirsing, M. (1990). Algebraic specification. See van Leeuwen (1990), Chapter 13, pp. 675–
788.

124

Symbol Index

? . 59
∅ . 22
• 18, 19
� . 39
�3 . 69
�2 . 76
�R . 99
� . 39
�3 . 69
�2 . 76
�R . 99
∃v .86
∼3 . 91
∼2 . 91
/.∼ . 105
�∼ . 103
∼=.30, 38
∼=3 . 66
∼=2 . 66
@∼ . 38
@∼3 . 66
@∼2 . 66
. 54
.3 . 89
.2 . 90
.R . 92√
a 109

∅ . 15
(·)§ 105
(·)• 32
(·)∗ 22
(·)+ 22
(·)C28
(·)op 22
(·)SC31
(·)n 22
(·)◦ 25

(·)0 23
× . 15

+ . 15
· .23
⇀ .15

→ . 13
→3 61

→2 62
τ→2 103√
→ .103

〈 · 〉 . 38
〈 · 〉I 103

〈 · 〉
3

. 68
〈 · 〉

2
. 68

〈 · 〉� 74

〈 · 〉R99
� . 14

�3 61
�2 62
· � · 25

· [·] 24
·̂ .26

· |(~t)t 22
⇓2 . 96
⇓α
2 103

 . 13

3 61, 96

 2 62
 � 73

0 . 11

A 19, 60

a 9, 59, 79, 95
~a . 10
a v . 10

a : t 15

(a ; b) 10

A[[~φ/~ξ]] 19
a[u/x] 10
a[~u/~x] 10
ADEQ 30, 38

ADEQ3 65
ADEQ2 65
α 33, 79
amb(a1, a2) 95

B . 60

b 9, 59, 79, 95
β .79
βv 41, 70, 76
bool 17

C . 19

C[[a]] 19

C[[~φ/~ξ]]19
case a of
〈~x〉. b10

case u of
0. a [] succ(x). b 11

case u of
inj1 x1. a1 []
. . . [] injn xn. an 9

case u of
nil. a [] cons〈x, y〉. b . 11

case u of
〈x1, . . . , xn〉. a 9

χ .15
cons〈u, v〉 11

E . 18
E .53

E[[a]] 18
eq . 68

125

ηv 53, 71
Exp0 10

Exp~x 10

f . 10
false 11
fix 11, 19

fix(α) u 79
fix(n) 47

g . 10
Γ. .15

γ . 79
Γ ⊆ Γ′15
Γ ` a R a′ : t 22

Γ ` a : t 15

h . 10

I . 44
Id . 22

if a then b1 else b2 . . . 11
inj u 11
inji u 9
ι . 33

λ . 79
λinj x. a 11
λx. a 9

λ〈x1, . . . , xn〉. a 11
let x= a in b 9
list . 17

µχ. t1 + . . .+ tn 15

nat . 17

nil . 11

Ω . 11

ωCK1 79
a1 or a2 59

φ . 19

φ : θ19
PREADEQ 38
PREADEQ3 65
PREADEQ2 65

R . 22
R . 22
R§ 105

R• . 32
R∗ . 22
R+ .22
R . 23

R0 . 23
R[S] 24
R̂ . 26
RC . 28

R
(γ)
? 81

R(i) 47
Rn . 22
R◦ . 25

Rop 22
RSC 31
R|(~t)t 22
RS 22

REL 22
Rel 22
REL(α) 33

Rel(α) 33
REL0 22

S . 22
S . 22

S �R 25
succ u.11

T 49, 93
(~t)t 19
t1 ⇀ t2 15
t1 × . . .× tn 15
t[t
′
/χ] 15

θ . 19
true 11
Type0 15

U19, 60
U . 44
u . 9
〈u1, . . . , un〉9
~u . 10
u v . 9
unit 15

V . 60
v . 9
Val010
Val~x 10
void 15

W
(α)
? 81

W (n) 47

x . 10
~x . 10
(~x)a 19
((~xι)aι)ι<α 33
(~x)a : (~t)t 19
~x :~t 15
ξ . 19

Y . 11
y . 10
Y(n) 46

z . 10

126

Recent BRICS Dissertation Series Publications

DS-98-2 Søren B. Lassen.Relational Reasoning about Functions and
Nondeterminism. December 1998. PhD thesis. x+126 pp.

DS-98-1 Ole I. Hougaard. The CLP(OIH) Language. February 1998.
PhD thesis. xii+187 pp.

DS-97-3 Thore Husfeldt. Dynamic Computation. December 1997. PhD
thesis. 90 pp.

DS-97-2 Peter Ørbæk.Trust and Dependence Analysis. July 1997. PhD
thesis. x+175 pp.

DS-97-1 Gerth Stølting Brodal. Worst Case Efficient Data Structures.
January 1997. PhD thesis. x+121 pp.

DS-96-4 Torben Bräuner. An Axiomatic Approach to Adequacy. Novem-
ber 1996. Ph.D. thesis. 168 pp.

DS-96-3 Lars Arge. Efficient External-Memory Data Structures and Ap-
plications. August 1996. Ph.D. thesis. xii+169 pp.

DS-96-2 Allan Cheng. Reasoning About Concurrent Computational Sys-
tems. August 1996. Ph.D. thesis. xiv+229 pp.

DS-96-1 Urban Engberg.Reasoning in the Temporal Logic of Actions —
The design and implementation of an interactive computer system.
August 1996. Ph.D. thesis. xvi+222 pp.

