
B
R

IC
S

D
S

-98-1
O

.I.H
ougaard:

T
he

C
LP

(O
IH

)
Language

BRICS
Basic Research in Computer Science

The CLP(OIH) Language

Ole Ildsgaard Hougaard

BRICS Dissertation Series DS-98-1

ISSN 1396-7002 February 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/98/1/

The CLP(OIH) Language

Ole Ildsgaard Hougaard

Ph.D. Dissertation

Department of Computer Science
University of Aarhus

Denmark

The CLP(OIH) Language

Dissertation
presented to the Faculty of Science

of the University of Aarhus
in partial fulfillment of the requirements for the

Ph.D. degree

by
Ole Ildsgaard Hougaard

February 1998

Thesis

Many type inference problems are different instances of the same constraint sat-
isfaction problem. That is, there is a class of constraints so that these type
inference problems can be reduced to the problem of finding a solution to a set of
constraints. Furthermore, there is an efficient constraint solving algorithm which
can find this solution in polynomial time.

We have shown this by defining the appropriate constraint domain, devising
an efficient constraint satisfaction algorithm, and designing a constraint logic
programming language over the constraint domain. We have implemented an
interpreter for the language and have thus produced a tool which is well-suited
for type inference problems of different kinds.

Among the problems that can be reduced to our constraint domain are the fol-
lowing:

• The simply typed λ-calculus.

• The λ-calculus with subtyping.

• Arbadi and Cardelli’s Object calculus.

• Effect systems for control flow analysis.

• Turbo Pascal.

With the added power of the constraint logic programming language, certain type
systems with no known efficient algorithm can also be implemented — e.g. the
object calculus with selftype.

The programming language thus provides a very easy way of implementing a vast
array of different type inference problems.

Acknowledgements

I thank my advisor Michael I. Schwartzbach for his comments and ideas which
helped me in writing this thesis.

I am grateful to Hosein Askari for his cooperation in our work on Turbo Pascal
when doing our Master’s thesis. Without that work this dissertation would never
have been.

I also thank Gudmund Frandsen and Peter Bro Miltersen for useful suggestions
for some of the algorithmical problems in this work.

This work has been supported financially by a scholarship from the Faculty of
Science at Aarhus University and in part by the BRICS PhD School. I want to
acknowledge the support of the people at the Department of Computer Science
at the University of Aarhus.

I have made some of my work at the Department of Computer Science, University
of Washington, Seattle. I extend my thanks to Alan Borning and the people at
UW for their hospitality.

Contents

1 Introduction 1

1.1 Type Inference for Turbo Pascal 2

1.2 Notation and Preliminaries . 6

2 Constraints and Constraint Programming 13

2.1 Introduction . 13

2.2 Constraint Domains . 14

2.3 Constraints in Programming . 16

3 Constraint Logic Programming 21

3.1 Logic Programming and CLP . 21

3.2 The CLP(X) Scheme . 25

3.3 Interpretation of CLP . 28

3.4 Constraint Logic Programming Languages 31

4 Constraint Domains for Type Inference 41

4.1 Constraints over Finite and Regular Terms 41

4.2 The Constraint Satisfaction Problem 46

4.3 Infinite Alphabets . 50

4.4 Conditional Constraints . 54

4.5 User-defined Constraints . 57

4.6 Stability of user-defined constraints 59

4.7 The OIH Constraint Domain . 62

5 Stack persistent data structures 65

5.1 partial, full and stack persistence 65

5.2 Stack persistence on a RAM . 67

6 The Constraint Solver 73

6.1 Unification on regular terms . 73

6.2 Arc Consistency . 80

6.3 Infinite Alphabets and Consistency 87

6.4 Computing the Conditionals . 91

6.5 Graph algorithms . 94

6.6 The Constraint Satisfaction Algorithm 95

6.7 Deciding Applicability and Stability 102

7 The CLP(OIH) Language 105

7.1 User-defined Domains . 105

7.2 CLP and the semantics of ellipsis 107

7.3 Interpreting CLP∞ Programs . 110

7.4 Using CLP(OIH) . 118

8 Applications of CLP(OIH) 125

8.1 Type Inference in CLP(OIH) . 125

8.2 Type Inference with Overloading 129

8.3 Type Inference with Subtyping 134

8.4 Control Flow Analysis . 144

Conclusion 151

Bibliography 153

A Implementation of the Applications 159

A.1 The Lambda Calculus . 159

A.2 Turbo Pascal . 162

A.3 Reynolds Style Subtyping . 176

A.4 The Object Calculus . 180

A.5 Control Flow Analysis . 184

Chapter 1

Introduction

The first part of this chapter (until Section 1.2.1) is adapted from [32].

The subject of type inference has been widely studied. For almost any type
system ever suggested there have been speculations on the feasibility of inferring
the types for a program. For many of these type systems, type inference turn
out to be infeasible or even impossible, but some allow polynomial-time type
inference algorithms.

Many similarities exist between these algorithms and it seems reasonable to ask
the question. What do these algorithms have in common? This dissertation is
dedicated to that particular question.

The answer to the question will be that there is a general constraint satisfaction
algorithm for a class of constraints which covers a number of these type inference
problems. We use this constraint satisfaction algorithm to implement an inter-
preter for a constraint logic programming language. This language will then be
used to implement these type inference algorithms.

The remainder of this chapter is dedicated to introducing the notion of type
inference and some mathematical accessories. The remainder of the dissertation
is organised as follows.

• Chapters 2 and 3 deals with constraints in general and constraint logic
programming languages in particular. We give the basic definitions and
some examples of their use.

• Chapter 4 motivates and defines the class of constraints which is used here
for type inference — the constraint domain OIH.

• Chapters 5 and 6 deals with algorithmical problems that arise when im-
plementing the interpreter. Chapter 5 deals with a general problem for

2 Chapter 1. Introduction

interpreting constraint logic programming languages — the problem of back-
tracking. Chapter 6 deals the constraint satisfaction algorithm for our class
of constraints.

• Chapter 7 deals with the special features of the CLP(OIH) language. It
includes a section on running the interpreter.

• Chapter 7 shows the implementation of several type inference algorithms
in CLP(OIH).

1.1 Type Inference for Turbo Pascal

This section is adapted from [32].

1.1.1 Introduction

What is the task of type inference? This is a well-defined problem for any lan-
guage that supports type annotations and type checking. Normally, the pro-
grammer provides type annotations for all variables and the type checker then
proceeds to verify that all the type constraints are respected. Type inference is
the more difficult task of accepting a program in which the type annotations are
only partial or even absent and then deciding if there exists a choice of type an-
notations with which the program would be accepted by the normal type checker.
Generally, the annotated program should be presented as well.

Note that with type inference we do not fall back to untyped programs, which of
course are subject to all sorts of damaging type errors. Rather, our programs are
implicitly typed, as valid types must certainly exist even if they are not supplied
by the programmer. The ambition behind type inference is to obtain all the
safety benefits of typed programs while avoiding the problems with verbose and
cumbersome annotations.

It can certainly be argued that there are further benefits to having programs be
explicitly typed. After all, when the programmer states his intentions up front,
then certain logical errors may be caught by the element of redundancy that
separates type checking from type inference.

This aspect is clearly realized by proponents of type inference who offer several
arguments in reply. First of all, comparing the inferred types to those that were
intended provides a similar degree of redundancy. Secondly, type inference may
discover that parts of your program are more general than you had originally
realized, thus widening its applicability. And finally, if parameter types are only
given implicitly, then a procedure may be given more than one type in different

1.1 Type Inference for Turbo Pascal 3

contexts—thus allowing polymorphism. All these benefits are major selling points
for functional languages, and their potential applicability to imperative languages
should be given serious consideration.

A language such as Pascal already performs a modicum of type inference. Only
the types of variables must be given explicitly, and from this information the
types of all expressions are inferred. For example, if x is declared to be of type
Real , then the type of the expression x+1 is inferred as follows: the value of x
is of type Real ; there is a version of + with type Real × Integer → Real ; the
constant 1 has type Integer ; thus we can conclude that x+1 has type Real. This
sort of inference is perhaps too trivial to gain much notice, but it is there and
forms a basis for using implicit types in larger parts of programs.

In the following we show how to generalise the techniques for type inference from
unification to constraint solving.

1.1.2 Techniques for Type Inference

In functional languages as ML, type inference may be done by recursively going
through the parse tree and assigning a type to each node. The type of a parse
tree node can be derived from the types of the subexpressions. For example when
we want to find the type of the expression (e1e2), we first find the types of e1 and
e2; let us call these τ1 and τ2 respectively. We know that the type of e1 must be a
function type, taking something of the type of e2 as its argument. We can write
this as the equation τ1 = τ2 → α, where α is a type variable corresponding to the
return type of e1 that can be instantiated with any type. In order to solve the
equation we apply unification to the two sides of the equation. Unification finds a
most general instantiation of type variables, so that the two types become equal.
The type of (e1e2) is simply the instantiation that the unification algorithm finds
for α. This technique was used by Milner for type inference of ML in [47].

The above technique allowed type variables to stand for any type. By using
type variables in this manner we can represent the set of all possible types for
a parse tree node (see [15]). Thus the success of this approach relies on said
representation and the fact that we could compute the representation of the
solutions to the constraint τ1 = τ2 → α.

In the general case we cannot expect to find a proper representation and com-
pute the solutions to the constraints within this representation. A more general
technique is that of generating and solving a set of constraints for the specific
program. In this case we will not try to derive the type from those of the subex-
pressions. Instead we generate type variables representing the (yet unknown)
types of all parse tree nodes and further generate the appropriate constraints
relating these type variables. In the case of the expression (e1e2) we generate

4 Chapter 1. Introduction

the constraint [[e1]] = [[e2]] → [[(e1e2)]], where we use [[e]] to stand for the type
variable representing the type of expression e. Now we have reduced the problem
of type inference to that of finding a solution to a set of constraints. In the case
of ML we can again solve the constraints by a single application of the unification
algorithm. Wand [74] has used this technique for type inference of the simply
typed λ-calculus (ML without polymorphic let).

In Turbo Pascal we use this constraint technique. In ML we could limit ourselves to
generating constraints of the form [[e]] = [[e ′]]→ [[e ′′]], but Turbo Pascal has much
more complex typing rules and we need a substantially richer class of constraints.

Consider the simple assignment, x := e. The typing rules of Turbo Pascal de-
mands that the type of e is assignment compatible to the type of x, that is,
[[x]] := [[e]] is the generated constraint, where we use := to denote the assignment
compatibility relation. Similarly, we generate constraints of the form [[e]] Tc [[e ′]]
when the types of e and e′ should be type compatible; Op([[e]], [[e ′]], [[e ′′]]) when
the type of e′′ should be the result type of a binary operation between e and e′;
and [[e]] Io [[e ′]] when e ′ should be writable to a file which has the type of e.

For example, we generate the constraint Op([[e]], [[e ′]], [[e+e ′]]) for the expression
e+e′ and the constraint [[f]] Io [[e]] for the statement write(f, e).

The expression e-e′ does not apply to strings as opposed to e+e′. Hence the
constraint Op([[e]], [[e ′]], [[e-e ′]]) is too liberal. We restrict it by imposing further
constraints on the types of e, e′ and e-e′, namely [[e]], [[e′]], [[e-e ′]] ∈ M−, where
M− is the set of types on which ‘-’ can operate.

As a further example of the use of constraints of the form [[e]] ∈M we can regard
a for-statement. Among the constraints generated for the statement:

for x := e to e′ do S

we have [[e]], [[e ′]] ∈ O, where O is the set of ordinal types.

In connection with structured types we get the constraints Recα([[e]], [[e ′]]) requir-
ing that [[e]] is a record with a field α that has type [[e ′]], and [[e]] = T ([[e1]], . . . , [[en]]),
where T is a type constructor. For example, we get the constraint Recα([[x]], [[x .α]])
for the expression x.α and [[x]] = ∧[[x∧]] for the expression x∧.

Finally, we have the simple constraint [[e]] = [[e ′]] in connection with variable
parameters, where the actual type must equal the formal type, and expressions
like -e, where we have the constraint [[-e]] = [[e]].

All in all, we have the following kinds of constraints:

• [[e]] ∈M, where M is from a fixed finite set of sets of types.

• [[e]] = T ([[e1]], . . . , [[en]]), where T is a type constructor.

1.1 Type Inference for Turbo Pascal 5

• Recα([[e]], [[e
′]])

• [[e]] = [[e ′]]

• [[e]] Tc [[e ′]], [[e]] := [[e ′]], Op([[e]], [[e ′]], [[e ′′]]), and [[e]] Io [[e ′]]

As an example, consider the following function for computing the factorial of a
number.

Function fac(n);
begin

if n=0 then
fac := 1

else
fac := n*fac(n-1)

end

We generate the following set of constraints for the function:

[[1]] ∈ I
[[0]] ∈ I
[[n=0]] = Boolean
[[n]] Tc [[0]]
[[n]], [[0]] ∈M=

[[fac]] := [[1]]
[[fac]] := [[n*fac(n-1)]]
Op([[n]], [[fac(n-1)]], [[n*fac(n-1)]])
[[n]], [[fac(n-1)]], [[n*fac(n-1)]] ∈M∗
[[fac(n-1)]] = [[fac]]
[[n]] := [[fac(n-1)]]
Op([[n]], [[1]], [[n-1]])
[[n]], [[1]], [[n-1]] ∈M−

where I (O is the set of integer types. The following is one of several solutions
to the set of constraints.

[[n]] = Real
[[0]] = Integer

[[n=0]] = Boolean
[[fac]] = Real

[[1]] = Integer
[[n*fac(n-1)]] = Real

[[fac(n-1)]] = Real
[[n-1]] = Real

Note, that the result may not be what we expected. In general, a type inference
algorithm should infer as general types as possible.

6 Chapter 1. Introduction

Since all the type rules of Turbo Pascal can be expressed in this manner, we have
reduced the problem of type inference to that of finding a solution to a set of
certain kinds of constraints. We now have to exhibit an algorithm that solves
such a set of constraints. Such an algorithm is presented in [32]. In Chapter 6
we shall look at a more general algorithm which is based on an improved version
of this algorithm.

1.2 Notation and Preliminaries

In this section we introduce the notation and basic concepts which are used
throughout the thesis. Section 1.2.1 deals with general mathematical terms and
Section 1.2.2 deals with two important concepts for this work — terms and term
automata.

1.2.1 Sets, Functions, and Relations

We use the standard notation of set theory. That is, we write x ∈ S whenever x
belongs to the set S, ∅ for the empty set, S ′ ⊆ S when S ′ is a subset of S, and
S ′ (S when S ′ is a true subset of S.

Some of the sets we use are the following.

• R — the set of real numbers.

• Q — the set of rational numbers.

• Z — the set of integer numbers.

• N or ω — the set of non-negative integers. We use N when we use the non-
negative integers for arithmetic and ω when we use them for enumeration.

We define the subrange m..n as the set

m..n = {i ∈ Z|m ≤ i ≤ n}

The power set of a set is the set of subsets of that set.

P(S) = {S ′|S ′ ⊆ S}

If Σ is a set of symbols we write Σ∗ for the set of finite strings of symbols from
Σ. Similarly, Σ+ is the set of non-empty, finite strings over Σ, Σω is the set of
infinite strings over Σ, and Σ∞ is the set of all strings over Σ. We write ε for the
empty string and αβ for the concatenation of the strings α and β. If β = αα′ we
say that α is a prefix of β.

1.2 Notation and Preliminaries 7

We write a function, f , from A to B as f : A → B. The function is partial
if it is undefined for some of the elements of A. If f is a partial function we
write dom(f) for the set of elements of A for which f is defined. Similarly, we
write codom(f) for the set {f(x)|x ∈ dom(f)}. Note, that any partial function
f : A→ B is also a total function f : dom(f)→ codom(f). We write x 7→ e for
the function f defined by f(x) = e (e.g. x 7→ x2 is the function which squares its
input). If f is a function, f [x← v] is the function defined as

f [x← v](x′) =

{
v if x′ = x
f(x′) otherwise

A partial ordering is a binary relation which is reflexive, transitive, and anti-
symmetric. That is, 6⊆ A2 is a partial ordering, iff the following hold

• ∀x ∈ A : x 6 x (reflexivity)

• ∀x, y, z ∈ A : x 6 y ∧ y 6 z ⇒ x 6 z (transitivity)

• ∀x, y ∈ A : x 6 y ∧ y 6 x⇒ x = y (antisymmetry)

We use 6, v, and � for partial orderings.

Let 6 be a partial ordering. If z 6 x and z 6 y and for all other z′ such that
z′ 6 x and z′ 6 y we have z′ 6 z we say that z is the greatest lower bound (or
glb) of z and write z = x ∧ y. Similarly, z is the least upper bound (or lub) of x
and y if x 6 z and y 6 z and x 6 z′ ∧ y 6 z′ ⇒ z 6 z′. In this case we write
z = x ∨ y. Dependent on the symbol used for the ordering, we use ∧, u, and
f to stand for greatest lower bounds and ∨, t, and g to stand for least upper
bounds.

Let 6 be an ordering over A. We say that (A,6) form a lattice, iff all pairs
of elements from A has a greatest lower bound and a least upper bound. We
say that (A,6) form a lower (upper) semi-lattice, iff all pairs of elements has a
greatest lower bound (least upper bound).

The definition of greatest lower bounds and least upper bounds extend readily to
arbitrary sets of elements. We write

∧
S and

∨
S for the greatest lower bound

and least lower bound of S ⊆ A, respectively. If all subsets of A has a greatest
lower bound and a least upper bound we say that (A,6) form a complete lattice.
We define complete lower and upper semi-lattices similarly.

1.2.2 Finite and Infinite Terms

Type expressions play an important role in this work. Type expressions are
expressions like (α→ β)→ β. In this type expression we have that → takes two

8 Chapter 1. Introduction

arguments, where α and β takes no arguments. We say that the rank of → is 2,
and the ranks of α and β are 0.

In general, a ranked alphabet is a set Σ =
⋃∞
k=0 Σk, where the Σk are mutually

disjoint. Thus, we have that if σ ∈ Σ there is a unique k such that σ ∈ Σk. We
call this k the rank of σ and write it as rank(σ).

Let Σ =
⋃∞
k=0 Σk be a ranked alphabet. A finite or infinite Σ-term is of the

form t = σ(t1, t2, . . . , tk), where σ ∈ Σk and t1, . . . , tk are Σ-terms. If t is as
above we call σ the root label of t and write t/i for ti where 1 ≤ i ≤ n. We
shall write t/i1i2 . . . in for t/i1/i2/ . . . /in and refer to i1i2 . . . in as the address of
t/i1/i2/ . . . /in in t. We write ε for the empty address and set t/ε = t. An address,
α, is valid in t if t/α denotes a subterm as above. If α is a valid address in t we
denote by t(α) the root label of t/α.

We can view the term as a function from the set of valid addresses to Σ as in the
following definition due to Courcelle [14].

Definition 1.2.1 Let Σ be a ranked alphabet. A Σ-term is a partial function
t : ω∗ → Σ whose domain is nonempty, prefix-closed, and respects rank in the
sense that if α ∈ dom(t) then

{i ∈ ω|αi ∈ dom(t)} = 1..rank(t(α))

We shall write TΣ for the set of Σ-terms.

A finite or infinite Σ-term is regular iff it has only finitely many different sub-
terms. We shall denote the set of regular Σ-terms as RegΣ and the set of finite
Σ-terms as FinΣ. Formally, RegΣ = {t ∈ TΣ| |{t/α|α ∈ dom(t)}| < ∞} and
FinΣ = {t ∈ TΣ| |dom(t)| <∞}.

A path in a Σ-term t is a set of addresses p ⊆ dom(t), such that

• p is prefix-closed.

• For every α, α′ ∈ p, either α is a prefix of α′ or vise versa. That is, the
prefix ordering is total on p.

If p is finite it is of the form [α], where [α] = {α′|α′ is a prefix of α}. An infinite
path is of the form {ε, i1, i1i2, i1i2i3, . . .}. We extend the notation above and write
the infinite path as [α∞] where α∞ = i1i2i3

Now, let us give a formal meaning to the expression σ(t1, . . . , tk). For each σ ∈ Σk

we can define a function σTΣ : TΣ
k → TΣ as follows

σTΣ(t1, . . . , tk)(α) =

{
σ if α = ε

ti(α
′) if α = iα′

1.2 Notation and Preliminaries 9

We shall omit the TΣ and write σ(t1, . . . , trank(σ)) for σTΣ(t1, . . . , trank(σ)), when
no ambiguity can arise. It follows from the definition that σTΣ on regular terms
gives a regular term, and that σTΣ on finite terms gives finite terms. Hence we
have also σTΣ : RegΣ

k → RegΣ and σTΣ : FinΣ
k → FinΣ.

There are two important classes of representations of Σ-terms: sets of term equa-
tions and term automata.

Definition 1.2.2 Let Σ =
⋃∞
k=0 Σk be a ranked alphabet, and let V be a recur-

sively enumerable set of variables. The term expressions over Σ is the smallest
set such that

• Any variable v ∈ V is a term expression.

• If σ ∈ Σk and for all i, ti is a term expression, then σ(t1, . . . , tk) is a term
expression.

We write ExprΣ for the set of term expressions over Σ.

A term equation is an expression of the form t = t′ where t and t′ are term
expression. A Solution to t = t′ is a function, ϕ : V → TΣ, such that ϕΣ(t) =
ϕΣ(t′), where ϕΣ is inductively defined by

• ϕΣ(v) = ϕ(v)

• ϕΣ(σ(t1, . . . , tn)) = σTΣ(ϕΣ(t1), . . . , ϕΣ(tn))

A solution to a set of term equation is a function, which is a solution to all the
equations in the set.

A set of term equations is cyclic, iff there are variables v1, . . . , vn and term equa-
tions

t1 = t′1, t2 = t′2, . . . , tn = t′n

such that n > 0, v1 is contained in t1 and t′n, and for each i ∈ 1..n − 1, vi is
contained in t′i and ti+1. Furthermore, for all the equations, ti = t′i, either the
equation itself or t′i = ti is in the set of equations. The cyclic sets of equations
include

x = f(y)

g(x) = y

and

f(x) = f(f(x))

whereas the following set of equations is acyclic:

x = g(y, z)

10 Chapter 1. Introduction

f(y) = f(z)

z = c

The equivalence between terms and equations is stated in the following proposi-
tion.

Proposition 1.2.1 (Courcelle [13]) Let Σ be a ranked alphabet, and V a re-
cursively enumerable set of variables. We have the following:

1. t ∈ TΣ, iff there is a variable v ∈ V and a set of term equations, such that
for all solutions, ϕ, we have that ϕ(v) = t.

2. t ∈ RegΣ, iff there is a variable v ∈ V and a finite set of term equations,
such that for all solutions, ϕ, we have that ϕ(v) = t.

3. t ∈ FinΣ, iff there is a variable v ∈ V and a finite, acyclic set of term
equations, such that for all solutions, ϕ, we have that ϕ(v) = t.

The other representation of terms is by term automata. Term automata are
defined in [38] as the following.

Definition 1.2.3 Let Σ =
⋃∞
k=0 Σk be a ranked alphabet. A Σ-term automaton

is a quintuple M = (Q,Σ, q0, l, δ), where:

• Q is a non-empty set of states.

• q0 ∈ Q is the initial state.

• l : Q→ Σ is a labelling function.

• The transition function, δ : Q× ω → Q, is a partial function such that for
all q ∈ Q,

{i ∈ ω|(q, i) ∈ dom(δ)} = 1..rank(l(q))

We shall write AΣ for the set of Σ-term automata.

We say that an automaton is finite if Q is finite. Given an automaton as above
we define δ∗ to be the function δ∗(q, i1i2 . . . in) = δ(. . . δ(δ(q0, i1), i2), . . . , in) and
δ∗(q, ε) = q. A state q is reachable, if there is an address, α, such that δ∗(q0, α) =
q. An address, α, is accepted by the automaton, iff δ∗(q0, α) is well-defined. An
automaton is cyclic if for some reachable q ∈ Q and α ∈ ω∗ \ {ε}, we have that
δ∗(q, α) = q.

Lemma 1.2.2 The set of addresses accepted by a term automaton is non-empty
and prefix-closed.

1.2 Notation and Preliminaries 11

Proof: Let M = (Q,Σ, q0, l, δ) be a Σ-term automaton. By definition δ∗(q0, ε)
is defined, so the set of accepted addresses is non-empty. Now let α = i1 . . . in
where n > 0 and let α′ be a non-trivial prefix of α. That is, α′ = i1 . . . im for
some m, such that 0 < m < n. Assume that δ∗(q0, α) is defined. By definition,

δ∗(q0, α) = δ(. . . δ(. . . δ(δ(q0, i1), i2), . . . , im), . . . , in)

Since this is defined, δ(. . . δ(δ(q0, i1), i2), . . . , im) = δ∗(q0, α
′) must be as well. 2

Lemma 1.2.2 allows us to make the following definition.

Definition 1.2.4 Let M = (Q,Σ, q0, l, δ) be a term automaton. The term tM ∈
TΣ is the function with domain dom(tM) = {α|M accepts α} defined such that
tM(α) = l(δ∗(q0, α)).

And thus we arrive at the following proposition.

Proposition 1.2.3 Let Σ be a ranked alphabet. We have the following

1. t ∈ TΣ iff there is an M ∈ AΣ, such that t = tM .

2. t ∈ RegΣ iff there is a finite M ∈ AΣ, such that t = tM .

3. t ∈ FinΣ iff there is a finite, acyclic M ∈ AΣ, such that t = tM .

Proof:

1. We need to prove that all terms are of the form tM .

Given a Σ-term, t, we construct a term automaton, M = (Q,Σ, q0, l, δ) the
following way: Q = {t/α|α ∈ dom(t)}, q0 = t, for each t′ ∈ Q, l(t′) = t′(ε),
and the transition function, δ, is defined as δ(t′, i) = t′/i.

It follows by straightforward induction that δ∗(q0, α) = t/α, and thus that
the set of addresses accepted by M is exactly dom(t). Furthermore, we
have that

tM(α) = l(δ∗(q0, α)) = l(t/α) = t/α(ε) = t(α)

We conclude that t = tM .

2. Proven in [41].

3. We show that if M = (Q,Σ, q0, l, δ) is finite, then tM is infinite iff M is
cyclic.

Assume that M is cyclic, that is that δ∗(q, α) = q for some α and reachable
state q. Since q is reachable there is an α′ such that q = δ∗(q0, α

′). By
straightforward induction we have that M accepts the addresses α′αn for
all n ≥ 0. Hence the domain of tM is infinite.

12 Chapter 1. Introduction

If tM is infinite it contains an infinite path, [α∞]. Look at the set of states
S = {δ∗(q0, α)|α ∈ [α∞]} Since S ⊆ Q and Q is finite, S is finite. Hence,
for some α, α′ ∈ [α∞] we have that δ(q0, α) = δ(q0, α

′). Assume without
loss of generality that α is a prefix of α′ (from the definition of a path).
Then α′ = αβ for some address β. Let q = δ∗(q0, α). Then q is reachable
and δ∗(q, β) = q.

2

Chapter 2

Constraints and Constraint
Programming

A constraint describes that a certain relationship should hold. A constraint may
express that the distance between two points should be invariant, that the input
of a electronic gate should be 1, or that two expressions should have the same
type.

Constraints have been used as a tool to solve many different problems. In each
application the domain of the constraints depends on the problem that are being
solved. The domains used are as different as the set of real numbers, R [35], an
arbitrary finite domain [50, 25], finite terms [74], sets of strings [52], and regular
terms [65].

2.1 Introduction

Constraints arise all around us. There are constraints implicit in the laws of
physics. We know also of economical constraints, time constraints, and many
other kinds of constraints. A constraint may be an equation, it may be an
inequality, or it may be some abstract relation over some abstract domain.

Let us turn to the world of physics. Assume that we have a rigid rod of length
l, and assume that we have fixed one end of the rod at a non-movable point,
(x0, y0, z0). The other end of the rod moves freely in three-dimensional space.
The position of this end can be described by the coordinates x, y, and z. Now, the
distance between the two ends of the rod is

√
(x− x0)2 + (y − y0)2 + (z − z0)2,

and hence the movement of the rod is constrained by the equation

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 = l2

14 Chapter 2. Constraints and Constraint Programming

Suppose that we replace the rod with a ball on a string. Again, we fix the one end
(the one opposite the ball) at (x0, y0, z0). If the centre of the ball has coordinates
(x, y, z) we have that the movement of the ball is constrained by the inequality

(x− x0)
2 + (y − y0)

2 + (z − z0)
2 ≤ l2

So far, we have dealt with variables which range over the real numbers, but
the domain of the constraints can be anything. Consider the problem of giving
correct change. Suppose we have three kinds of coins, which has values 1, 5 and
10, respectively. Now, the problem of paying the amount of 37 can be expressed
as the constraint

n1 + 5n5 + 10n10 = 37

This constraint should be solved over the domain of integer numbers. For example
we have that n10 = 3, n5 = 1, and n1 = 2 is a solution, but we should not consider
n10 = 3.7 and n5 = n1 = 0 one. Instead of adding further constraint to the effect
that n1, n5, and n10 are integers it is simpler to say that we use the integers as
our constraint domain.

There is in principle no limits to what could be considered constraint domains.
For example, we can view systems of differential equations as sets of constraints
over the domain of functions, or we can view the rules of chess as a set of con-
straints over the domain of chess positions. In the next section we shall look at
the general structure of constraint domains.

2.2 Constraint Domains

Let us look at the elements comprising a constraint. As an example of a constraint
consider the equation A + B = C. There are three elements of this constraint:
The variables A, B, and C; the function +; and the relation =.

We need to give meaning to these elements before we can make sense of the above
constraint. One such meaning could be that the universe is R, that is A, B, and
C take on real numbers; + : R2 → R is addition; and =⊆ R2 is the relation that
is true, iff the left-hand side and the right-hand side are the same number.

Formally, the elements of a constraint is a triple, (V,Φ,Γ), where

• V is a recursively enumerable set of variables.

• Φ =
⋃∞
i=0 Φi is a ranked alphabet, where for each f ∈ Φ we have f ∈

Φrank(f). We call Φ a function alphabet.

• Γ =
⋃∞
i=0 Γi is a ranked alphabet as above. We call Γ a relation alphabet.

2.2 Constraint Domains 15

We can define the expression over a set of variables, V, and a function alphabet,
Φ, inductively as follows:

• v is an expression over V and Φ if v ∈ V.

• f(e1, . . . , ek) is an expression over V and Φ, if f ∈ Φk and e1, . . . , ek are
expressions over V and Φ.

With this we can see what the form of the constraints are.

Definition 2.2.1 Given a set of variables, V, a function alphabet, Φ, and a
relation alphabet, Γ, a constraint over V, Φ, and Γ is on the form R(e1, . . . , en)
where R ∈ Γn and e1, . . . , en are expressions over V and Φ.

We shall write Γ[V,Φ] for the set of constraints over V, Φ, and Γ.

The following defines the meaning of functions and relations in a universe.

Definition 2.2.2 Let U be a universe.

1. Let Φ be a function alphabet. An interpretation of Φ is a mapping
J : Φ→

⋃∞
i=0(U i → U) such that J (f) : U rank(f) → U .

2. Let Γ be a relation alphabet. An interpretation of Γ is a mapping
I : Γ→

⋃∞
i=0P(U i) such that I(R) ⊆ U rank(R).

We now have the elements necessary to define a constraint domain.

Definition 2.2.3 A constraint domain is a quintuple D = (U ,Γ,Φ, I,J), where

• U is a universe.

• Γ is a relation alphabet.

• Φ is a function alphabet.

• I is an interpretation of Γ.

• J is an interpretation of Φ.

Let V be a recursively enumerable set of variables. The set of constraints over D
and V is the set D[V] = Γ[V,Φ].

That is, a constraint domain is a first-order structure, and the constraints are
atomic formulae over the structure.

For any constraint domain, D, as above we shall write D = (UD,ΓD,ΦD, ID,J D).

The evaluation of an expression in an assignment, ϕ : V → U , is inductively
defined as:

16 Chapter 2. Constraints and Constraint Programming

• J (v)(ϕ) = ϕ(v) if v ∈ V.

• J (f(e1, . . . , ek))(ϕ) = (J (f))(J (e1)(ϕ), . . . ,J (ek)(ϕ)).

The most important aspect of constraints is that of finding a solution to the
constraint. That is, an assignment of values to the variables such that the rela-
tionship holds.

Definition 2.2.4 Let D = (U ,Γ,Φ, I,J) be a constraint domain, V a set of
variables, and R(e1, . . . , ed) ∈ D[V]. An assignment, ϕ : V → U , satisfies
R(e1, . . . , ed), iff (J (e1)(ϕ), . . . ,J (ed)(ϕ)) ∈ I(R). We write ϕ |=(I,J) C when
ϕ satisfies C.

If the context is clear we shall omit the (I,J) and write ϕ |= C. Similarly, we
shall write ϕ |=I C if it is clear what the interpretation of the function symbols
is.

This extends to sets of constraints as below.

Definition 2.2.5 Let D be a constraint domain, V a recursively enumerable set
of variables, and C ⊆ D[V]. An assignment, ϕ : V → U , is a solution to C, iff ϕ
satisfies all constraints in C. We write this as ϕ |=(I,J) C.

We say that C is satisfiable whenever a solution to C exists.

Definition 2.2.6 Let C ⊆ D[V] be a set of constraints. The solution-space of C
is the set

L(C) = {ϕ : V → UD|ϕ |=(ID ,JD) C}

2.3 Constraints in Programming

The definition in the previous section viewed constraint sets and solutions as
something static. A constraint set is something given and an assignment is either
a solution or it is not. For programming purposes this is not always practical.
Here we often have that constraint sets evolve dynamically, and the question then
arises how to find a new solution to the new constraint set.

In some views of constraints (e.g. [20, 61, 62]) constraints are viewed mostly as a
description of how to obtain a new solution from an old one. That is, both the
constraint set as well as the solution are dynamic.

2.3.1 General Techniques

In general, we can distinguish between two schools of thought:

2.3 Constraints in Programming 17

1. The denotational view. The denotational view is the one shown in Sec-
tion 2.2. Here a set of constraints, C, denotes a solution-space, L(C). As
seen above the solution-space is something static, it depends on nothing
but the actual constraint set C.

2. The operational view. Here a set of constraints denotes a set of methods
for transforming one solution into another. Often it is not a question of
whether a solution satisfies the constraint set or not, it is more a question
of how badly it fails to satisfy it (see [61, 62]). In this view the solution
depends not only on the constraint set but also on the history of constraint
sets and solutions. This means that we can introduce things like read-only
constraints where we can demand that the introduction of the constraint
should leave certain variables unchanged.

One of the areas where constraints have been used in many applications is the
area of user interface design [62, 46]. In this area it is costumary to use the
operational view on constraints. There are several reasons for this. Among the
most important is that it is not an option just to output “Unsatisfiable” when
we are unable to find a solution. The user interface most work at any time, and
we simply have to find a sufficiently good solution to the problem. This is dealt
with by Borning et al. [7] by introducing a hierarchy between the constraints so
we can define which of the constraints are most important.

One way of programming with constraints is to use the constraint set as a data
structure, where we can add (and possibly remove) constraints and extract so-
lutions and use the results in our ordinary programming languages which uses
constraints in no other way. A special case of this is when our problems can be
reduced to a constraint satisfaction problem. That is, when we can generate of-
fline a set of constraints so that the set of constraints is satisfiable iff our original
problem has a solution. In this special case the constraint programming aspect
is all but gone.

A more ambitious project is to integrate the constraints into the programming
languages so that the variables in the programming language and the variables
of the constraints become the same variables. One language which does this is
Kaleidoscope’90 [20], which integrates imperative programming with constraint
programming. As a consequence temporal aspects are introduced into the con-
straint set, and hence we have to use the operational view of constraints. If we
try to look at the constraint set with a denotational frame of mind we put our-
selves in a situation where the present can influence the past (since we do not
have read-only constraints).

Another successful integration is that of constraint programming and logic pro-
gramming — called constraint logic programming. Since logic programming al-
ready takes a denotational view of the world, it is no surprise that constraint logic

18 Chapter 2. Constraints and Constraint Programming

programming languages use the denotational view on constraints (an exception is
the hierarchical constraint logic programming language of Borning et al. [8]). We
shall look more closely at constraint logic programming languages in Chapter 3
and indeed in the remainder of this dissertation.

2.3.2 Type Inference

For more than a decade there has been widespread use of constraint programming
for type inference (e.g. [74]). The basic idea is that given an expression e, we
can write the typing rules for e down as a set of constraints for the type of e,
which we write as the variable [[e]]. Similarly, each subexpression e′ gives rise to
a variable [[e′]] and a number of constraints over this variable.

As an example let us look at the λ-calculus. In the λ-calculus we have the
expression (e e′). This expression is an application of the function e on the
argument e′. It follows then that e should have some function type, that e′ has
a type matching the argument type of e, and that the result of the function
application should be a value which has the return type of e. We combine these
insights into the constraint

[[e]] = [[e′]]→ [[(e e′)]]

In 1978, Milner [47] devised the first type inference algorithm for the λ-calculus
with polymorphic let. This algorithm was not constraint based. Instead, Milner
computed a principal type scheme (see [15]) for each subexpression. The principal
type scheme represented all types the expression could possibly take. From the
principal type scheme of the subexpressions it is possible to compute the principal
type scheme of the full expressions.

From the point of view of constraint programming we can say that the principal
type scheme is a representation of the solution-space of the constraints. Clearly,
it is language-dependent whether it is possible to represent the solution-space
compactly. Hence, in the general case we have to keep the entire constraint set
for the subexpressions. In this way we reduce the type inference problem to a
problem of solving a constraint set.

Almost all constraint based type inference algorithms (e.g. [74, 32, 65, 52, 57])
works by a reduction like the one described above. Indeed, this method is con-
sidered standard to the degree that in [53], Palsberg generates constraints of the
form

if U = selftype then W 6W ′ else W ′′ 6 U

to be able to make the reduction to a set of constraints, rather than dynamically
interact with the constraint set to choose between the constraints W 6 W ′ and
W ′′ 6 U .

2.3 Constraints in Programming 19

Similarly, Palsberg and Schwartzbach [56] generates constraints on the form

A1 ∈ [[e1]], . . . , An ∈ [[en]]⇒ C

where C is a constraint set. This example shows why it is not always right to
reduce typeability to satisfiability of a constraint set, since the algorithm has
a running time of O(2n

2
). Together with Oxhøj, the authors provides a better

algorithm in [51]. This algorithm gives up on the idea of a reduction and instead
generates constraints dynamically based on the constraint set generated thus
far. The result is a dramatic decrease in complexity — the new algorithm has a
polynomial running time.

Even though there are examples of type inference algorithms which does not
work by reduction to satisfiability of a constraint set, so far there has not been
attempts to implement type inference algorithms in a language which integrates
constraints into a programming language. Chapter 8 is devoted to this subject.

Chapter 3

Constraint Logic Programming

The constraint logic programming paradigm has been the focus of much research
since its introduction by Jaffar and Lassez in 1987 (see e.g. [8, 17, 23, 33, 40]).
The paradigm extends Prolog and other programming languages with constraints
so that it gives the opportunity to write a constraint program in a declarative
fashion. In this chapter we look at the syntax and semantics of constraint logic
programming and look at some important examples of constraint logic program-
ming languages.

3.1 Logic Programming and CLP

The family of constraint logic programming languages is a generalisation of ordi-
nary logic programming languages. The purpose of constraint logic programming
languages is to extend the pure logic of languages like Prolog with a more useful
domain such as the real numbers or the integers.

3.1.1 Logic Programming in Prolog

Logic programming languages such as Prolog [29] are developed as an attempt to
make programming languages, which are closer to normal human understanding
than the imperative programming languages such as Pascal. They allow the
programmer to deal with the logical description of the program rather than the
intrinsic details of program control.

The logical description used in logic programming languages are first-order for-
mulae of the form

∀x1.∀x2. . . .∀xl.Q1(t
1
1, . . . , t

1
m1

) ∧ . . . ∧Qn(t
n
1 , . . . , t

n
mn)⇒ P (u1, . . . , uk)

22 Chapter 3. Constraint Logic Programming

In Prolog notation this becomes

P(u1, . . . , uk) :- Q1(t
1
1, . . . , t

1
m1

), . . . , Qn(t
n
1 , . . . , t

n
mn

).

or, if n = 0,

P(u1, . . . , uk).

A formula written in one of these ways is called a rule and the latter of the
rules is called a fact. These rules can be understood as the axioms describing
the problem. Understood in this way a Prolog program defines a set of atomic
first-order formulae, namely the set of formulae that are the logical consequences
of the set of rules in the program.

From a programming point of view the interesting aspect of such a program
is the question of answer generation. That is, given a clause containing some
indeterminate variables are there any values for the variables such that the clause
becomes a consequence of the program?

Let us look at a simple example. (This and the following examples are from [63]):

likes(Eve, apples).
likes(Eve,wine).
likes(Adam, x) :- likes(x,wine).

In first-order logic the last rule reads

∀x.likes(x,wine)⇒ likes(Adam, x)

That is, Adam likes anybody who likes wine. Obviously, a logical consequence is
that Adam likes Eve, but we could also use the program for answer generation.
We could ask the question “is there anyone that Adam likes?”, or in Prolog terms

?- likes(Adam, x)

And the result is that yes, for x = Eve, Adam does in fact like x. This works
both ways so we can also start with the goal

?- likes(x,Eve)

That is, “is there anyone that likes Eve?”, and the result is of course that for
x = Adam we have that x likes Eve.

As a more realistic example (for programming purposes) let us consider the fol-
lowing rules dealing with the concatenation of lists:

concat(nil, y, y).
concat(cons(e, x), y, cons(e, z)) :- concat(x, y, z).

3.1 Logic Programming and CLP 23

The predicate concat(x, y, z) is true, iff z is the concatenation of x and y. (In
Prolog there is several pieces of syntactical sugar dealing with lists but these are
beyond the scope of this work.)

Answer generation can be used to compute the concatenation of two lists as in
the goal

?- concat(cons(a, cons(b, nil)), cons(c, nil), z)

We obtain the result z = cons(a, cons(b, cons(c, nil)). Alternatively, we could
extract the “rest” of the list given a certain prefix as in the goal

?- concat(cons(a, cons(b, nil)), y, cons(a, cons(b, cons(c, nil)))).

This goal succeeds with the result y = cons(c, nil). Of course, this only works if
the first argument is a prefix of the third argument. That is, the goal

?- concat(cons(a, nil), y, nil)

fails. A goal fails if no instantiation of the variables will make the goal a con-
sequence of the program. Note that a predicate which defines a function also
defines the inverse of that function.

The notions of success and failure in Prolog programs corresponds to some extend
to the notions of true and false in ordinary programming languages (see [42]). By
this analogy we can use the predicate concat to define new predicates

prefix(x, z) :- concat(x, y, z).
suffix(y, z) :- concat(x, y, z).

The first predicate reads “x is a prefix of z, if z is the concatenation of x and y
for some y”. So variables that appear on the right-hand side only is existentially
quantified. This corresponds to the logical equivalence

∀x : F ⇒ G ≡ (∃x : F)⇒ G

if x does not appear freely in G.

As a perhaps more interesting example of how a predicate defines the inverse as
well as the original function, let us look at the sum predicate:

sum(zero, y, zero).
sum(s(x), y, s(z)) :- sum(x, y, z)

where zero is 0 and s is the successor function. These rules defines in one predicate
addition as well as subtraction. For example the goal

?- sum(s(s(zero)), s(s(zero)), z)

gives the result z = s(s(s(s(zero)))). And the goal

24 Chapter 3. Constraint Logic Programming

?- sum(s(s(zero)), y, s(s(s(zero))))

gives y = s(zero). These results correspond to 2+2 = 4 and 3−2 = 1, respectively.

3.1.2 From Prolog to CLP(X)

It is important that the results from the previous section correspond to 4 and 1,
they do not equal 4 and 1. The reason is that Prolog looks for formulae that are
logical consequences of the program. That is, they should be true in every model
of the program, so that whatever meaning we give to the predicate sum and the
function symbols s and zero — as long as it renders the rules valid — the results
of the answer generation will be valid.

For this reason Prolog always makes the most general substitution of values for the
variables, hence the results of computations will always be some finite term (like
s(zero)) and computation in Prolog is in fact restricted to the Herbrand Universe.

The family of constraint logic programming languages [33] was created in order to
introduce other universes than the Herbrand Universe into the logic programming
languages. The way these universes are introduced are by means of constraint
domains as defined in section 2.2.

For example let us look at the constraint domain, Z. The universe of Z is
the set of integers, the relations include ≤ and =, and the functions include +.
The constraint logic programming language thus obtained is called CLP(Z). In
CLP(Z) we can define the sum predicate above as

sum(x, y, z) :- x+ y = z.

Clearly, a much more satisfying definition. Furthermore, the universe of discourse
is the “right” one so that we can use the numbers as we are used to for example
in the goals

?- sum(2, 2, z)
?- sum(2, y, 3)

which yield the results z = 4 and y = 1, respectively.

A further advantage of using CLP(X) is that X could be a constraint domain
which is not easily encoded in the Herbrand Universe — for instance the real
numbers, R. CLP(R) [35] is the most publicised and most widely used of the
family of constraint logic programming languages. Here we will look at a single
example (taken from [33]). The language is described further in section 3.4.1.

The example we shall look at is that of complex multiplication. We define a
predicate zmul, such that zmul(r1, t1, r2, t2, r3, t3) iff r3+i·t3 = (r1+i·t1)·(r2+i·t2).

3.2 The CLP(X) Scheme 25

zmul(r1, t1, r2, t2, r3, t3) :- r3 = r1 · r2 − t1 · t2, t3 = r1 · t2 + r2 · t1.

This predicate can be used in multiplication as well as division of complex num-
bers. The goal

?- zmul(1, 2, 3, 4, r3, t3)

yields the result r3 = −5, t3 = 10.

Sometimes the goal does not yield a definite answer: The goal

?- zmul(1, 2, r2, t2, r3, t3)

succeeds with the constraint set i2 = 0.2 · i3 − 0.4 · r3, r2 = 0.4 · i3 + 0.2 · r3.

In general, if the computation of a CLP(X) program succeeds, the result is a
satisfiable constraint set. How to obtain a useful solution from this set is quite
domain-dependent [34]. As we shall see, in this work we obtain the smallest
solution to the constraint set.

3.2 The CLP(X) Scheme

Joxan Jaffar and Jean-Louis Lassez introduced the CLP(X) scheme in [33]. The
‘X’ in CLP(X) stands for a constraint domain. In the notation introduced in
section 2.2 the scheme would be called CLP(D). We will adopt the latter notation
throughout this section.

3.2.1 Preliminaries

In this subsection we will describe the syntax of the CLP(D) language. This
language is a well-defined language only if D is a solution-compact constraint
domain containing the constraint =. Solution-compactness is defined in [33] as
the following requirements:

1. Every element of UD is uniquely definable by a finite or infinite set of
constraints. That is, for each x ∈ UD there is a set of constraints C ⊆ D[V]
and a variable v ∈ V, such that for all solutions, ϕ, of C we have that
ϕ(v) = x. The elements of UD that are definable by an infinite set of
constraints only are called the limit elements of D.

2. Every assignment not satisfying some constraint, C ∈ D[V], satisfies an-
other constraint, C ′ ∈ D[V], such that {C,C ′} is unsatisfiable.

That D contains = can be written formally as:

= ∈ ΓD2 and ID(=) = {(x, x)|x ∈ UD}

26 Chapter 3. Constraint Logic Programming

The syntax of CLP(D) is much like the syntax of Prolog described above. Let
Π =

⋃∞
i=0 Πi be a ranked alphabet of relation symbols such that Π ∩ ΓD = ∅,

and let V be a recursively enumerable set of variables. An atomic formula is a
formula of the form P (e1, . . . , ek), where P ∈ Πk and for all i, ei is an expression
over V and ΦD. A rule is one of the following:

P(u1, . . . , uk).
P(u1, . . . , uk) :- B1, . . . , Bn, C1, . . . , Cn′.

where P ∈ Πk, the ui are expressions over V and ΦD, the Bi are atomic formulae,
and the Ci are constraints from D[V]. In the latter rule we can have n = 0 or
n′ = 0, but not both. P(u1, . . . , uk) is called the conclusion of the rule, and the
Bi and Ci are called the antecedents. A program is a (usually finite) set of rules.

A goal is a non-empty set of atomic formulae and constraints. We write a goal
as the following:

?- B1, . . . , Bn, C1, . . . , Cn′.

where the Bi and Ci are as above.

3.2.2 Declarative Semantics

Given a constraint domain, D, and a relation alphabet, Π, we consider first-order
structures,M, with carrier UD, the function symbols f ∈ ΦD with interpretation
J D(f), and the relation symbols R ∈ ΓD and P ∈ Π, the former with interpreta-
tion ID(R) the latter with some interpretation specified by a set Mbase ⊆ Dbase,
where Dbase is the set

Dbase = {P (d1, . . . , dk)|P ∈ Πk ∧ ∀i ∈ 1..k : di ∈ UD}

We shall say that M is a model of the program π, iff M satisfies all the rules
in π considered as universally quantified first-order formulae. We write this as
M |= π.

3.2.3 Fixpoint semantics

The fixpoint semantics is described by using the function Tπ defined as

Tπ(S) = {d ∈ Dbase|∃A :- B, C ∈ π, ϕ : V → UD.ϕ(A) = d ∧ ϕ |= C ∧ ϕ(B) ⊆ S}

The function maps a set of statements, S, to the set of statements that can be
proven from S using one of the implications in the program π. The following
theorem is a consequence of this.

3.2 The CLP(X) Scheme 27

Theorem 1 (Jaffar & Lassez [33]) Let π be a CLP(D) program and letM be
a model of π. We have that M is the least model of π (w.r.t set inclusion), iff
Mbase is the least fixed point of Tπ.

This theorem establishes the equivalence of the declarative and fixpoint seman-
tics.

3.2.4 Operational Semantics

The operational semantics of a CLP(D) program is actually a (non-deterministic)
proof search for the goal. The semantics start with a goal and uses T−1

π until
reaching the empty set. A bit more information is needed throughout. What we
need is a goal containing constraints as well as atomic formulae. We write a goal
like (B; C) where B is a set of formulae and C is a set of constraints. The goal
({B1, . . . , Bn}; {C1, . . . , Cn′}) corresponds to

?- B1, . . . , Bn, C1, . . . , Cn′

For convenience we shall write x,M as shorthand for {x} ∪M .

Consider a goal (P (s1, . . . , sk),B; C), where P ∈ Πk and s1, . . . , sk are expressions.
And assume that there is a rule,

P (t1, . . . , tk) : − B′, C′.

which is a fresh instantiation of a rule in π. That is the rule above is α-equivalent
with some rule from π, and the variables in the rule does not occur anywhere in
the goal. We have that

(P (s1, . . . , sk),B; C) Bπ (B ∪ B′; C ∪ C′ ∪ {si = ti|i ∈ 1..n})

if the constraint set C ∪ C′ ∪ {si = ti|i ∈ 1..n} is satisfiable. We shall omit the π
and write G B G′ whenever the context is clear.

Let B∗π be the reflexive, transitive closure of Bπ. We say that the goal (B; C)
succeeds, iff there is a satisfiable constraint set, C′, such that

(B; C) B∗π (∅; C′)

If the goal does not succeed we say that it fails, and if all derivation sequences
are finite we say that it fails finitely.

The following theorem establishes the equivalence between the operational and
declarative semantics (and hence also between the operational and fixpoint se-
mantics).

28 Chapter 3. Constraint Logic Programming

Theorem 2 (Kozen [40]) Let π be a program and let M be the least model of
π. For a set of atomic formulae, B, and sets of satisfiable constraint sets, C and
C′, we have that

(B; C) B∗π (∅; C′)⇔M |= C′ ⇒ B ∧ C

3.3 Interpretation of CLP

The operational semantics of section 3.2.4 describes how an interpreter should
work, but it leaves open two algorithmical problems: constraint solving and proof
search. In this section we look at these issues.

3.3.1 Constraint Solvers

It is clear from the operational semantics that the algorithmical problem of main-
taining a set of constraints becomes very important in CLP. The set of constraints
should be maintained in such a way that we can perform the step involved in
G B G′.

A constraint solver is an algorithm for finding solutions to sets of constraints.
Given a constraint set, C, the constraint solver must decide whether C is satis-
fiable. If C is satisfiable it should be possible to extract a satisfying assignment
from the answer provided by the constraint solver.

In order to be well-suited for the interpretation the constraint solver should satisfy
the following requirements:

• It should be incremental. That is, it should be able to efficiently solve the
set C ∪ C′ when it have already solved C.

• It should be complete. That is, it should be able to solve any set of con-
straints.

As we shall see, the latter of these requirements is not always met.

3.3.2 Proof Search

The operational semantics from section 3.2.4 constitutes a non-deterministic al-
gorithm for interpreting CLP(D). The problem in this section is to find a deter-
ministic version of this algorithm.

To see that there is in fact non-determinism involved consider the following
CLP(Z) program, π1:

3.3 Interpretation of CLP 29

�
�

�
�

��

Q
Q
Q
Q
QQ

(P(x), ∅)

(Q(y), {2 · x = y}) (Q(y), {2 · y = x})

(∅, {y = 5, 2 · y = x})

Figure 3.1: The computation tree for the goal (P(x), ∅) in π1.

P(x) :- 2 · x = y, Q(y).
P(x) :- 2 · y = x, Q(y).
Q(5).

Starting with the goal (P(x); ∅) and choosing the first of the rules we obtain the
new goal (Q(y); {2 · x = y}). The only rule we can conceivably choose at this
point is the third one, but the constraint set {5 = y, 2 · x = y} is unsatisfiable in
Z since 2 - 5. We can see that we have chosen the wrong rule. The second rule
leads to (Q(y); {2 · y = x}) which again leads to (∅; {y = 5, 2 · y = x}). The latter
constraint set is clearly satisfiable.

Barring the option of psychic computer programs, the only possibility is to search
for a successful computation. There are two ways of doing this: breadth-first
search and depth-first search. These correspond to a breadth-first search and a
depth-first search of the computation tree shown in figure 3.1. That is, breadth-
first search proceeds by first looking at all computations of length 1, then all
computations of length 2, then length 3, and so on. Depth-first search tries to
follow a single computation as far as possible until it reaches either a goal of
the form (∅; C) in which case it is done, or a goal from which there is no possible
transitions in which case it will have to backtrack to the last place where a decision
was made and undo that decision.

The problem with breadth-first search is its lack of efficiency. A full binary tree
of depth n has as many as 2n − 1 nodes. So, while the breadth-first search
will have to search through an exponential number of nodes in order to find the
right leaf, depth-first search may find the right leaf in n steps. Of course, in
general the likelihood of finding the right leaf in the first attempt is very low
(2−(n−1)) but in connection with a CLP program it could be very high in practice
— especially if the programmer is aware of the search strategy and designs the
program accordingly. Furthermore, we have the possibility that several of the
leaves are successful.

30 Chapter 3. Constraint Logic Programming

��������

HHHHHHHH

(P(x), ∅)

(Q(y′), {2 · x = y, 2 · y = y′})

...

(Q(y), {2 · x = y})

(∅, {y = 5, 2 · y = x})

(Q(y), {2 · y = x})

Figure 3.2: The computation tree for the goal (P(x), ∅) in π2.

It seems thus that the balance swings in the direction of depth-first search, but
there is a grave problem with this. The depth-first search may traverse a longer
path than actually necessary because of poor choices. This can be illustrated
quite dramatically by making a small change to π1 obtaining the program π2:

P(x) :- 2 · x = y, P(y).
P(x) :- 2 · y = x, Q(y).
Q(5).

The computation tree for the goal (P(x), ∅) can be seen in figure 3.2. Note that
the tree contains the infinite path

(P(x), ∅) Bπ2 (P(y), {x = 2 · y})
Bπ2 (P(y′), {x = 2 · y, y = 2 · y′})
Bπ2 (P(y′′), {x = 2 · y, y = 2 · y′, y′ = 2 · y′′})
Bπ2 · · ·

All the constraint sets are satisfiable in Z so there is no way for the depth-
first strategy to avoid diverging down this infinite path, while the breadth-first
strategy finds the successful computation quite rapidly.

Note that there are programs and goals where both kinds of searches diverge —
for instance the program consisting of only the first rule from π2. In fact, in
general the question of whether there is a successful computation for a certain
goal is undecidable [63]. The real difference is that breadth-first search will find a
successful computation whenever such a computation exists, whereas depth-first
search may diverge.

The choice between depth-first and breadth-first search is thus not clear. Depth-
first search gives efficiency and breadth-first search gives completeness. From a

3.4 Constraint Logic Programming Languages 31

pragmatic point of view we must say that the overhead involved in using breadth-
first search renders the programming language impossible to use in practice, and
as a consequence most implementations of CLP languages as well as the Prolog
family uses the depth-first search strategy.

In Prolog non-logical operators are introduced to give the programmer better
control over the search process. This has the drawback of compromising the spirit
of logic programming and constraint logic programming, where the programmer
is supposed to deal with the logical description of the programming only and let
the interpreter deal with the control.

In conclusion, the choice of search strategy for (constraint) logic programming
languages is not clear, but the most promising strategy in practice is depth-first
search.

3.4 Constraint Logic Programming Languages

There have been several instances of the general CLP(X)-scheme. We shall take
a look at some of the most important and most relevant in connection with this
work.

3.4.1 CLP(R)

The CLP(R) [35] is the first and best known constraint logic programming lan-
guage that was designed to be an instance of the CLP(X) scheme. The computa-
tion domain of CLP(R) is the set of real numbers, and it is for this feature it has
attracted much attention. There are many applications for the domain of real
numbers and CLP(R) is well suited for many difficult problems, such as linear
programming, circuit analysis, economic theories, and more.

Formally, the domain R is

(R, {=,≤, <, 6=,≥, >}, {+,−, ·, /} ∪Q, IR,J R)

where

IR(=) = {(a, a)|a ∈ R}
IR(≤) = {(a, b) ∈ R2|a ≤ b}
IR(<) = {(a, b) ∈ R2|a < b}
IR(6=) = R2 \ IR(=)

IR(≥) = R2 \ IR(<)

IR(>) = R2 \ IR(≤)

32 Chapter 3. Constraint Logic Programming

J R(+)(a, b) = a+ b

J R(−)(a, b) = a− b
J R(·)(a, b) = ab

JR(/)(a, b) =
a

b
J R(q) = q

where q ∈ Q. We can see that the domain contains the relation = as required.
To see that R is solution-compact we must consider the two requirements.

1. To see that the real numbers are uniquely definable we start by observing
that any element q ∈ Q is the only solution to the constraint v = q. Now,
consider a number, r ∈ R\Q. All such numbers can be written as the limit
of an infinite sequence of rational numbers, so let

r = lim
n→∞

qn

where qn ∈ Q for all n. Then r is the only solution for v in the constraint
set

{−ε < v − q < ε|ε ∈ Q, ε > 0, q ∈ {qi|i ∈ N0}, |r − q| < ε}
The limit elements of R are the transcendental numbers [33].

2. The second requirement follows directly from the fact that the negation of
every relation is also in the relation set.

The description above is of a pure CLP(R) language. The actual language con-
tains uninterpreted functors as well (as in Prolog). That is, it is possible to
combine symbolic computation with computation in the domain of reals as in the
following example.

zmul(c(r1, t1), c(r2, t2), c(r3, t3)) :- r3 = r1 ·r2−t1 ·t2, t3 = r1 ·t2+r2 ·t1.

This is simply a reformulation of the complex multiplication example but here
we have coded a complex number as c(r, t). In this version we can write

?- zmul(c(1, 2), c(3, 4), z)

and get the result z = c(−5, 10).

The full language still belongs to the CLP(X) scheme but we shall not be con-
cerned with the details in this work.

The CLP(R) language uses the Simplex method to solve the arithmetical con-
straints. This introduces a peculiarity because the Simplex method is not com-
plete: it can only solve linear constraints — that is, constraints that do not
contain products of two (or more) variables. As a result CLP(R) has two con-
straint stores: one for the linear constraints and one for the non-linear constraints.

3.4 Constraint Logic Programming Languages 33

The constraints in the linear store are solved immediately but the constraints in
the non-linear store are delayed until information from the linear store can make
them linear. Sometimes, CLP(R) is unable to linearise all constraints and is thus
unable to tell whether the goal succeeds.

As an example of this we can look at the goal

?- zmul(c(r1, 2), c(r2, 4),−5, 10), r2 < 3

This results in the constraint set

{r1 = −.5 · r2 + 2.5, 3 = r1 · r2, r2 < 3}

and the answer that this constraint set may be satisfiable (it is, with r1 = 1.5 and
r2 = 2). The non-linear constraint, 3 = r1 · r2, makes it impossible for CLP(R)
to tell whether or not the constraint set is satisfiable.

3.4.2 CHIP

The constraint logic programming language CHIP (Constraint Handling In Prolog)
[17] contains three kinds of domains: Finite domains, The Boolean domain, and
the domain of rational numbers.

Finite domains. For any finite universe, Σ, the finite constraint domain is

FΣ = (Σ, {=, 6=} ∪ {elementn|, n ≥ 1} ∪ {alldistinctn|n ≥ 1} ∪ . . .},Σ, IF ,J F)

where the interpretation IF is

IF(=) = {(σ, σ)|σ ∈ Σ}
IF(6=) = Σ2 \ IF (=)

IF(elementn) = {(i, σ1, . . . , σn, σ)|1 ≤ i ≤ n, σi = σ}
IF (alldistinctn) = {(σ1, . . . , σn)|∀i, j ∈ 1..n : i 6= j ⇒ σi 6= σj}

The interpretation J F is the identity function. The expressions

elementn(i, σ1, . . . , σn, σ) and alldistinctn(σ1, . . . , σn)

are written in CHIP as

element(i, [σ1, . . . , σn], σ) and alldistinct([σ1, . . . , σn])

respectively.

34 Chapter 3. Constraint Logic Programming

On top of the predefined constraints CHIP also allows user-defined constraints
(the ‘. . . ’ in the definition above). Any relation can be defined by the user to
be a constraint. Hence the actual relation alphabet is in fact

⋃∞
i=1P(Σi), and we

can view the relations elementn and alldistinctn as syntactical sugar.

If Σ ⊆ Z, the predefined relations also include <, >, ≤, and ≥.

The Boolean domain. The Boolean domain is the domain of boolean arith-
metic,

B = ({ff , tt}, {⇔,<}, {&, not, 0}, IB,J B)
where IB and J B are

IB(⇔) = {(ff ,ff), (tt , tt)}
IB(<) = {(ff , tt), (tt ,ff)}

J B(&)(a, b) =

{
tt if a = b = tt
ff otherwise

J B(not)(a) =

{
tt if a = ff
ff otherwise

J B(0) = ff

The usual function symbols are derived:

1 ≡ not(0)

a!b ≡ not(not(a)¬(b))

a#b ≡ (a¬(b))!(not(a)&b)

a nand b ≡ not(a&b)

a nor b ≡ not(a!b)

The domain of rational numbers. The domain of rational numbers, Q, is
like R except that the universe consists of rational numbers only. In CHIP there
is another restriction: all constraints should be linear. The latter requirement is
a deviation from the CLP(D) scheme, but it makes sense from a pragmatic point
of view since there is no known algorithm for dealing with non-linear constraints.
As a result of the linearity there is a complete constraint solver for CHIP.

Extensions to CHIP The CHIP language is extended with a number of non-
CLP relations and operations. Among the former we have higher-order relations
for minimising and maximising functions, among the latter we have several op-
erations dealing with the evaluation order of constraints.

3.4 Constraint Logic Programming Languages 35

These extensions are included to improve efficiency and practical applicability,
and indeed CHIP has many practical applications in areas such as operations
research and circuit design (see [17]).

3.4.3 The Prolog Family

The constraint logic programming languages were designed as an extension of
Prolog. Thus, Prolog is also an instance of the CLP(D) scheme. The constraint
domain of Prolog is the Herbrand Universe defined as

HΣ = (FinΣ, {=},Σ, IH,J H)

where

IH(=) = {(a, a)|a ∈ FinΣ}
J H(σ) = σTΣ

Since any finite term is definable as a finite set of acyclic constraints, HΣ has no
limit elements, and is thus solution-compact [33].

The constraint solving algorithm used in Prolog is an incremental version of
Robinson’s unification algorithm [60].

Prolog can only work with finite trees, hence the cyclic constraint x = f(x) has
no solution. That is, the goal (P (x), ∅) fails (finitely) for the program

P (x) :- Q(x, f(x)).
Q(y, y).

Colmerauer [10, 11] introduced the Prolog II programming language designed to
overcome shortcomings of this sort in Prolog. The Prolog II language can work
with infinite trees and is thus able to find a successful computation in the case
above.

The domain of Prolog II is the Infinitary Herbrand Universe,

IHΣ = (TΣ, {=, 6=},Σ, I IH,J IH)

The interpretations are

I IH(=) = {(a, a)|a ∈ TΣ}
I IH(6=) = T2

Σ \ I IH(=)

J IH(σ) = σTΣ

Note that although Prolog II can sometimes succeed when Prolog fails finitely, it
cannot succeed when Prolog fails infinitely as in the following program

36 Chapter 3. Constraint Logic Programming

P (f(x)) :- P (x).

We might expect this to yield the solution x = f(x), but in fact it diverges (in
accord with the semantics of section 3.2.4) along the infinite computation

(P (x), ∅) B (P (x′), {x = f(x′)}) B (P (x′′), {x = f(x′), x′ = f(x′′)}) B · · ·

This corresponds to the fact that the fixpoint semantics defines the smallest
fixpoint of Tπ.

IHΣ is quite easily seen to be solution-compact:

1. Every term is the unique solution of some set of equations. Since the terms
definable by a finite set of equations is exactly the regular terms, we see
that the limit elements of IHΣ are the irregular terms.

2. Since the relation alphabet includes = as well 6=, the negation of every
constraint is also a constraint.

Prolog II uses unification of regular terms [58] in the constraint solver. This is
complete since it can find the solution for any finite set of =-constraints. For
6=-constraints it is sufficient to check whether the solution found by unification
violates any of these constraints [10]. See section 6.1 for a detailed treatment of
the unification algorithm for regular terms.

Prolog III [12] is an extension to Prolog II with rational numbers, the Boolean
domain, and the string domain,

Str = (U∗, {::,=}, {.} ∪ {〈·, . . . , ·︸ ︷︷ ︸
n

〉|n ≥ 0}, IStr,J Str)

where the interpretations are

IStr(=) = {(a, a)|a ∈ U∗}
IStr(::) = {(〈a1, . . . , an〉, n)|ai ∈ U∗, n ≥ 0}

J Str(.)(〈a1, . . . , an〉, 〈b1, . . . , bm〉) = 〈a1, . . . , an, b1, . . . , bm〉
J Str(〈·, . . . , ·〉)(a1, . . . , an) = 〈a1, . . . , an〉

As an example of using the domain of strings let us look at the following example
from [12]:

P (z) :- 〈1, 2, 3〉.z = z.〈2, 3, 1〉.

The goal (P (z), ∅) succeeds with the constraint 〈1, 2, 3〉.z = z.〈2, 3, 1〉 which has
an infinite number of solutions. Prolog III delays evaluation of such constraints

3.4 Constraint Logic Programming Languages 37

until the length of the constraint is known. The goal (P (z), {z :: 10}) succeeds
with the definite answer

z = 〈1, 2, 3, 1, 2, 3, 1, 2, 3, 1〉

For the full treatment of Prolog III we refer the reader to [12].

3.4.4 CLP(SC)

The CLP(SC) language was introduced by Dexter Kozen in [40, 39]. Its domain is
the domain of set constraints. Set constraints are set inclusions over the universe
of sets of terms. Such a set constraint could be of the form

x ⊆ f(y)

The above constraint means that all terms in x are of the form f(t), where t ∈ y.
The sets that can be defined in this way are the regular sets — the sets of terms
that can be described by a finite tree automaton. A set, S1 ⊆ UH, is regular, iff
it can be described by a finite set of set equations like this:

S1 = e1

S2 = e2
...

Sm = em

(3.1)

where ei is of the form
⋃n
j=1 σj(y

j
1, . . . , y

j
kj

) where σj is a function symbol of rank

kj and yjl ∈ {S1, . . . , Sm}. If the ranked alphabet containing the allowed function
symbols is Σ, we write RSΣ for the universe of regular sets definable this way.

Given a ranked alphabet, Σ =
⋃∞
k=0 Σk, we can define the domain of set con-

straints as
SCΣ = (RSΣ, {⊆, 6⊆}, {∪,¬, 0} ∪ Σ, ISC,JSC)

where the interpretations are

ISC(⊆) = {(S, S ′) ∈ RS2
Σ|∀t ∈ S : t ∈ S ′}

ISC(6⊆) = RS2
Σ \ ISC(⊆)

J SC(∪)(S, S ′) = {t ∈ UH|t ∈ S ∨ t ∈ S ′}
J SC(¬)(S) = {t ∈ UH|t 6∈ S}
J SC(0) = ∅

J SC(σ)(S1, . . . , Sk) = {σTΣ(t1, . . . , tk)|t1 ∈ S1, . . . , tk ∈ Sk}

38 Chapter 3. Constraint Logic Programming

where σ ∈ Σk. A constraint using the relation ⊆ is called a positive set constraint
and a constraint using 6⊆ is called a negative set constraint. Sometimes, only the
positive set constraints are allowed.

We define the usual functions and relations on sets as follows

S ∩ S ′ .
= ¬(¬S ∪ ¬S ′)

S \ S ′ .
= S ∩ ¬S ′

S ⊕ S ′ .
= S \ S ′ ∪ S ′ \ S

1
.
= ¬0

S = S ′
.
= S ⊕ S ′ ⊆ 0

S 6= S ′
.
= S ⊕ S ′ 6⊆ 0

Let us turn to the solution-compactness of SCΣ.

1. The unique definability follows directly from the fact that every regular set
can be defined by a finite set of equations of the form (3.1). Note that there
is no limit elements of SCΣ.

2. Assume that C is a constraint and ϕ is an assignment not satisfying C. If
negative constraints are allowed we can let C ′ be the negation of C. If only
positive constraints are allowed we exploit the fact that ϕ can be uniquely
defined by a set of constraints of the form (3.1). The constraint C ′ is then

m⋃
i=1

Si ⊕ ei ⊆ 0

which is simply another way of writing (3.1).

The satisfiability problem of set constraints is decidable [3, 24] but complete for
non-deterministic exponential time [2]. For some alphabets, though, the problems
is easier and a particular CLP(SC)-program may have a feasible running time.
Kozen [39] uses an incremental version of the algorithm in [3] as a constraint
solver for SC. This constraint solver is complete.

CLP(SC) extends ordinary logic programming with sets of terms. The terms of
Prolog can be encoded in CLP(SC) as singleton sets. If t is a Σ-term then for
any assignment, ϕ, we have that J SC(t)(ϕ) = {t}. The membership relation is
thus encoded as set inclusion. This can be used to make a Prolog-like program
where the non-determinism shows up as non-singleton sets rather than multiple
solutions.

The main uses for set constraints are in program analysis and type inference
[4, 26, 27, 48]. The CLP(SC) language thus provides a way of implementing

3.4 Constraint Logic Programming Languages 39

these forms of program analysis simply by writing the specification directly in
the program. An example is given in [39] of the monadic approximation of the
collecting semantics of a simple programming language (see [26] for a thorough
treatment of this). For example we have that the monadic approximation to the
collecting semantics of ‘=’ is

Ψ̂[x = y] =

{
Ψ̂[x← Ψ̂(x) ∩ Ψ̂(y), y ← Ψ̂(x) ∩ Ψ̂(y)] if Ψ̂(x) ∩ Ψ̂(y) 6= ∅
x 7→ ∅ otherwise

In CLP(SC) this becomes

test(s1, . . . , sn, “xi = xj”, . . . , si ∩ sj , . . . , si ∩ sj, . . .) :- si ∩ sj 6= ∅.
test(s1, . . . , sn, “i = sj”, 0, . . . , 0) :- si ∩ sj = ∅.

where “xi = xj” is some suitable encoding of the expression. Here the function

Ψ̂ is encoded by a finite sequence of sets — one for each variable. This has the
problem that there is a new program for each n. We shall look closer into this
subject in Chapter 7.

Chapter 4

Constraint Domains for Type
Inference

In this chapter we will design a constraint domain which is suited for type infer-
ence. We have two important considerations when defining this domain.

1. It should be general.

2. It should be efficient.

The first of the considerations means that we are looking for a constraint domain
that is suited for as many type inference problems as possible. The other of the
considerations say that there should nevertheless be an efficient constraint solver
for the domain.

Clearly, the two goals are conflicting. For goal number 1, we would like to be able
to use the domain for every type inference problem whatsoever. But many type
inference problems are very hard: they may be NP -complete [54], DEXPTIME-
complete [45, 37], or even undecidable [28, 36].

We will define a constraint domain which is efficient (as we shall see in Chapter 6)
and sufficiently general to be of use in many kinds of type inference (as we shall
see in Chapter 8). This constraint domain is the Ordered Infinitary Herbrand
Universe, OIH.

4.1 Constraints over Finite and Regular Terms

In the majority of type systems, the types are defined as a set of terms following
a particular grammar. According to the type system the terms may be either

42 Chapter 4. Constraint Domains for Type Inference

finite or regular. In this section we explore these type systems and look at a way
to have user-defined relations over types of this form.

4.1.1 Type Systems and Constraints

The type expressions used in a programming language are usually finite or regular
terms over some ranked alphabet. As an example we could look at the ML
types [47, 15]. The ML types are the terms generated by the following grammar:

τ ::= Bool|Int|Real|τ → τ |α|β|γ| . . .

The set of ML types is FinΣML , where ΣML
0 = {Bool, Int,Real} ∪ VML and ΣML

2 =
{→}, and for all other k, ΣML

k = ∅. VML is a (usually finite) set of type variables.
We use α, α′, β, etc. to range over type variables.

The constraints in ML are term equations over ΣML and VML, and unifiability
constraints. Two terms, τ1 and τ2, are unifiable, iff there is a function ϕ : VML →
FinΣML , such that ϕΣML(τ1) = ϕΣML(τ2). We write τ1 ≈ τ2, iff τ1 and τ2 are unifiable.

Unifiability constraints are not the same as term equations: The constraint set
{v ≈ Int, v ≈ Real} is satisfiable (with e.g. φ(v) = α), but the constraint set
{v = Int, v = Real} is not. Note that we have introduced two levels of solution
here: the one from the definition of solution (Definition 2.2.5), and the one from
the definition of unifiability.

The difference between the two kinds of constraints is exploited in defining poly-
morphism in ML. If a function, f , is defined to be polymorphic then the expres-
sion (fx) result in the constraint [[f]] ≈ [[x]]→ [[(fx)]], otherwise the constraint is
[[f]] = [[x]]→ [[(fx)]], as in the simply typed λ-calculus (see Section 8.1).

Our next example is a subtyping system from [59]. The types in [59] are defined
by

τ ::= Int|Bool|Prod(a1 : τ, . . . , an : τ)|Sum(a1 : τ, . . . , an : τ)|List(τ)|τ → τ

(Here we have omitted the somewhat peculiar unnamed products and sums.) In
the constructs Prod(a1 : τ, . . . , an : τ) and Sum(a1 : τ, . . . , an : τ) it is required
that the ai are different. These constructs correspond to an infinite number of
labels in the alphabet. This will be the subject of Section 4.3.

The typing rules for the language with subtyping uses the subtyping order, 6st,
defined as the smallest reflexive and transitive relation, such that

(1) τ1 → τ2 6st τ
′
1 → τ ′2, if τ ′1 6st τ1 and τ2 6st τ

′
2.

(2) Prod(a1 : τ1, . . . , an : τn) 6st Prod(a1 : τ ′1, . . . , an : τ ′n), if ∀i ∈ 1..n : τi 6st τ
′
i .

4.1 Constraints over Finite and Regular Terms 43

(3) Prod(a1 : τ1, . . . , an : τn) 6st Prod(a′1 : τ ′1, . . . , a
′
n : τ ′m), if

{ai|i ∈ 1..n} ⊇ {a′i|i ∈ 1..m} ∧ ∀i ∈ 1..n, j ∈ 1..m : ai = a′j ⇒ τi = τ ′j

(4) Sum(a1 : τ1, . . . , an : τn) 6st Sum(a1 : τ ′1, . . . , an : τ ′n), if ∀i ∈ 1..n : τi 6st τ
′
i .

(5) Sum(a1 : τ1, . . . , an : τn) 6st Sum(a′1 : τ ′1, . . . , a
′
n : τ ′m), if

{ai|i ∈ 1..n} ⊆ {a′i|i ∈ 1..m} ∧ ∀i ∈ 1..n, j ∈ 1..m : ai = a′j ⇒ τi = τ ′j

(6) List(τ) 6st List(τ ′), if τ 6st τ
′.

This is the same ordering that is used in [9]. There are two kinds of rules above.
The rules (1), (2), (4), and (6) are of the first kind. These are the congruence
rules or inductive rules. They say that the labels in the alphabet preserve the
relation between the types (an exception to this is the contravariance rule (1)
which has the order reversed in the first argument). The rules (3) and (5) are
of the second kind. These rules are the root label rules. Where the congruence
rules have the same root label at either side, the root label rules relates types
with different root labels.

In addition to the rules above we also have the implicit rules

(7) Int 6st Int

(8) Bool 6st Bool

We shall treat these rules as root label rules since they are defined over the rule
labels only.

A more involved example is that of Turbo Pascal [31, 32]. In Turbo Pascal there
are many different types and relations. Let us look at one of the central relations,
assignment compatibility. For simplicity, we shall look at the relation restricted
to the alphabet ΣTP = {Integer,Real, Set, ∧}. The relation Ac is the relation
defined such that Ac(τ, τ ′), iff one of the following holds

(1) τ = Integer and τ ′ = Integer

(2) τ = Real and τ ′ = Integer

(3) τ = Real and τ ′ = Real

(4) τ = Set(τ1), τ
′ = Set(τ ′1), and Tc(τ1, τ

′
1).

(5) τ = τ ′ = ∧(τ ′′)

where Tc is the type compatibility relation. Note that rule (4) above is not truly a
congruence rule because it does not refer to the assignment compatibility relation.
We will however treat rule (4) as a congruence rule since it is structurally similar

44 Chapter 4. Constraint Domains for Type Inference

to the true congruence rules. We shall see that (5) is a congruence rule as well
in this sense.

Our goal is to define a constraint domain, which allows constraints to be defined
by such rules but still allows an efficient constraint solver.

4.1.2 Defining Relations

In this section we explore the possibilities for a uniform notation for defining
relations by congruence and root label rules. The goal is to be able to write down
for example the definition of 6st as the greatest relation satisfying the following
description.

τ 6st τ
′ ↔

(Int, Int);
(Bool,Bool);
(→,→) if τ ′/1 6st τ/1 and τ/2 6st τ

′/2;

(Prod[a1, . . . , an],Prod[b1, . . . , bn])
if {ai} ⊇ {bj} and ∀i, j : ai = bj ⇒ τ/i 6st τ

′/j;

(Sum[a1, . . . , an], Sum[b1, . . . , bn])
if {ai} ⊆ {bj} and ∀i, j : ai = bj ⇒ τ/i 6st τ

′/j;

(List, List) if τ/1 6st τ
′/1.

In the example above we have introduced conditional constraints in e.g. the case
(→,→). The meaning of this is the straightforward one that types with root
labels→ are related only if their subterms are related in the right way. We know
the constraints make sense because → has rank 2, and so the expressions τ/1
and τ/2 are well-defined whenever τ(ε) =→. We cannot allow expressions of
the form τ/α where |α| > 1 since it cannot be known whether the expression is
well-defined. It is however meaningful to write τ/ε (or just τ) since this is always
well-defined.

Note how we have made the field names a part of the root label. This means
that the alphabet is infinite. It also means that the expression {ai} ⊆ {bj} is a
part of the root label rule rather than the congruence rule. The order of the field
names is significant only when we refer to the subterms. It is needed to assure
that we get the right i and j in the expressions of the form ∀i, j : ai = bj ⇒
It is convenient to treat the labels as being on the form Prod[{a1, . . . , an}], so we
introduce a special notation for the expressions above to retain the access to the
right subterms. We rewrite the rule as the following.

τ 6st τ
′ ↔

(Int, Int);

4.1 Constraints over Finite and Regular Terms 45

(Bool,Bool);
(→,→) if τ ′/1 6st τ/1, τ/2 6st τ

′/2 ;
(Prod[α],Prod[β]) if β ⊆ α, ∀l ∈ α&β : τ/l 6st τ

′/l;
(Sum[α], Sum[β]) if α ⊆ β, ∀l ∈ α&β : τ/l 6st τ

′/l;
(List, List) if τ/1 6st τ

′/1.

This is the final form of the definition.

In the definition above we had that the relation was recursively defined. This is
not the case for assignment compatibility which is defined as

Ac(τ, τ ′) ↔
(Integer, Integer);
(Real, Integer);
(Real,Real);
(Set, Set) if Tc(τ/1, τ ′/1);
(∧, ∧) if τ/1 = τ ′/1.

Where Tc is previously user-defined. The = relation will not be user-defined,
however, because it will not comply with the restrictions we will later put on the
user-defined relations to allow for an efficient constraint solver (the definition of
stability in Section 4.6). Instead = is a special pre-defined relation and will be
dealt with as a special case throughout.

The non-recursive relations are in general easier to handle than the recursive
ones, so we distinguish these two kinds of constraints.

Let us recapitulate the elements that appear in a user-defined constraint.

The root label rules. In the finite case these rules can be any relation over
finite universes. We look at the properties of such relations in Section 4.2.

Root label rules over infinite alphabets. Section 4.3 is devoted to the study
of these. We define the general root label rules as relations of the form RQ

where R is any relation over a finite universe and Q defines the inequalities
of the form α ⊆ β.

Another problem considered in this section is how to retain the information
about which subterms correspond to which field names now that we no
longer have the ordering explicitly. This is dealt with by the introduction
of relabeling functions.

The conditional constraints. These are defined in Section 4.4. The bulk of
the section is about defining the semantics of constraints of the form ∀j ∈
α&β : . . .

Section 4.5 is concerned with combining these elements and provide recursive and
non-recursive user-defined constraints.

46 Chapter 4. Constraint Domains for Type Inference

These constraints are quite general, but they suffer an efficiency problem. We
first encounter this problem in connection with the root label rules. We show
in Section 4.2.2 that the constraint satisfaction problem for these constraints is
NP -complete. We solve this problem by introducing an ordering such that we
can solve the constraints efficiently under certain conditions known as stability.

Section 4.6 shows how we can extend the requirements to the general user-defined
relations. More precisely, we define the notions of monotonicity and strictness for
side conditions. These are necessary and sufficient conditions for the efficiency of
the constraint solver in Chapter 6.

The ordering that is necessary for stability well play an important role in the
definition of infinite alphabets (in Section 4.3).

4.2 The Constraint Satisfaction Problem

The constraint satisfaction problem is the problem of finding a satisfying assign-
ment to a set of general constraints over a finite universe. That the constraints
are general means that any relation over the finite universe can be used. For this
reason the constraint satisfaction problem has many applications. Unfortunately,
it also means that it has very poor complexity properties.

4.2.1 CSP and User-defined Constraints

The constraint satisfaction problem is a constraint domain that arises when we
allow user-defined constraints. Let us look at the root label rule part of the
definition of Ac in the previous section. That is the definition without the side
conditions. 1

Ac ′(τ, τ ′) ↔
(Integer, Integer);
(Real, Integer);
(Real,Real);
(Set, Set);
(∧, ∧).

This no longer defines assignment compatibility, but it serves to illustrate a user-
defined relation on root labels. The relation defined is a binary relation over ΣTP,
that is it is a subset of ΣTP × ΣTP, namely the set

Ac ′ = {(Integer, Integer), (Real, Integer), (Real,Real), (Set, Set), (∧, ∧)}
1In this special case τ and τ ′ are redundant.

4.2 The Constraint Satisfaction Problem 47

This leads to a general definition of the constraint domain, CSP.

Definition 4.2.1 Let Σ be a finite set of values. The constraint satisfaction
problem domain over Σ is the constraint domain

CSPΣ = (Σ,
∞⋃
k=0

P(Σk), ∅, R 7→ R, f 7→ f)

That is, the CSP domain has all possible relations, but no function symbols or
constants. The reason for this is that every constraint including functions or
constants can be rewritten with a constraint of the form R(v1, . . . , vk) as long as
we have all possible relations in the relation alphabet.

Often in the literature (e.g. [22, 50]) only unary and binary constraints are
considered. That is, all constraints are of the form R(v) orR(v, v′) (where v 6= v′).
In this case the former constraints are called node constraints and the latter arc
constraints.

4.2.2 The Time Complexity of CSP

The constraint satisfaction problem for Σ is the satisfiability problem for the
domain CSPΣ. If the constraints are restricted to unary and binary relations
we shall refer to the problem as the binary constraint satisfaction problem for
Σ. Both problems are well-known to be NP -complete as the following theorem
shows.

Theorem 3 Let Σ be a finite set of values.

1. The constraint satisfaction problem for Σ is NP-complete if |Σ| > 1.

2. The binary constraint satisfaction problem for Σ is NP-complete if |Σ| > 2.

Proof: It is easy to test whether a given assignment satisfies a set of constraints.
Hence both problems are in NP. It remains to be seen that they are NP -hard. We
show this by reduction from the NP -complete problems 3-SAT and 3-colouring,
respectively.

1. By assumption Σ has at least 2 distinct values. Call these values tt and ff ,
respectively. We define the relations B = {tt ,ff } andD = B3\{(ff ,ff ,ff)}.
Now, given a formula from 3-SAT we generate for each propositional vari-
able, two variables [[A]] and [[¬A]] and the constraints B([[A]]), B([[¬A]]),
and [[A]] 6= [[¬A]]. For each conjunct L1 ∨ L2 ∨ L3 we make the constraint
D([[L1]], [[L2]], [[L3]]). It is clear that the size of the constraint set is polyno-
mial (in fact, linear) in the size of the formula.

48 Chapter 4. Constraint Domains for Type Inference

Now, let ϕ be a solution to the constraint set. We have that ϕ̃ defined as
ϕ̃(A) = ϕ([[A]]) satisfies the formula. Conversely, let ϕ̃ be an assignment
satisfying the formula, then ϕ defined as ϕ([[A]]) = ϕ̃(A) and ϕ([[¬A]]) =
¬ϕ̃(A) is a solution to the constraint set.

2. We have three distinct values, red , green, and blue in Σ. We define the rela-
tion C = {red , green, blue}. Now, assume that G = (V,E) is an undirected
graph. For each node v ∈ V we make the variable [[v]] and the constraint
C([[v]]); and for each edge (v, v′) ∈ E we make the constraint [[v]] 6= [[v′]].
Again we have a constraint set of linear size.

We define ϕ̃(v) = ϕ([[v]]). Then ϕ is a solution to the constraint set, iff ϕ̃
is a valid colouring of the graph.

2

If |Σ| = 1 both constraint satisfaction problems are of course trivial. If |Σ| = 2
the binary constraint satisfaction problem is equivalent to 2-SAT which is known
to be solvable in linear time [19].

The bad complexity of the constraint satisfaction problems has given rise to many
suggestions on how to resolve that situation. A common method is to look for
an algorithm which has an exponential worst-case running time, but is fast on
many practical problems [25, 68].

Another approach is that of Freuder [21] who looks at the binary constraint
satisfaction problem. He looks on the structure of the constraint set and define the
property strong consistency such that backtracking is not needed, if the constraint
set is strongly consistent. The problem then becomes how to make the constraint
set strongly consistent.

Following Freuder, Detcher and Pearl [16] devises an efficient backtracking-free
algorithm. Basically, we can look at a constraint set as a graph which has as
nodes the variables in the set, and has an edge between two nodes iff the set
contains a constraint over the variables. If this constraint graph is a tree, no
backtracking is needed if we have arc consistency. As we shall see in Section 6.2,
we can make a constraint set arc consistent in linear time (linear in the sum of
the sizes of the relations that is).

The approach we shall be taking here also avoids backtracking, but is does so
by restricting the relation alphabet rather than the structure of the graph. We
look at a certain partial ordering on the values and look only at relation which
is stable with respect to this ordering as defined in the following.

Definition 4.2.2 Let Σ be a finite set of values and let v be a partial ordering
such that (Σ,v) forms a lower semi-lattice. We say that a relation R ⊆ Σk is

4.2 The Constraint Satisfaction Problem 49

v-stable, iff it is closed under u. That is, for every σ1, . . . , σk, σ
′
1, . . . , σ

′
k ∈ Σ

such that R(σ1, . . . , σk) and R(σ′1, . . . , σ
′
k) we have that R(σ1 u σ′1, . . . , σk u σ′k).

Note that since Σ is finite, all non-empty subsets of Σ has a greatest lower bound
(by induction on the size of the subset), and hence all satisfiable constraint sets
have a v-least solution. We say that a constraint satisfaction problem is a stable
constraint satisfaction problem if all the relations are stable.

We show in Section 6.2 that a constraint satisfaction problem where all the con-
straints are stable is solvable in linear time. The idea is that the ordering should
guide our search for a proof and the stability of the constraints ensures that back-
tracking is unnecessary. For now, let us note that the reductions in the proof of
Theorem 3 can no longer work because the 6= relations are unstable with respect
to all orderings. To see this assume that σ 6= σ′. Then we have σ′ 6= σ, but due
to the definition of u it is never the case that σ u σ′ 6= σ′ u σ.

By contrast to the above, the Ac ′ relation defined in the beginning of this section
is stable with respect to the ordering

Integer v Real v Set v ∧

But this is not the only ordering the relation is stable with respect to. It is also
stable with respect to the ordering

• Real v Integer

• Real v Set

• Real v ∧

The choice of ordering makes no difference regarding the definition of the Ac-
relation. The only difference is in the choice of a solution among the many
possible ones.

Another example of stable constraint sets are Horn clauses. A Horn clause is an
expression of the form

∨n
i=1 Li, where all the Li is either Ai or ¬Ai, and at most

one of the Li is Ai. A Horn Clause can be written in one of the following forms.

• A

• A1 ∧ · · · ∧An ⇒ A

• ¬(A1 ∧ · · · ∧An)

It is easy to check that each of these can be written as a ⇒-stable relation (⇒
is easily seen to be a complete lattice and hence a lower semi-lattice). We have
then that any Horn formula can be written as a ⇒-stable satisfaction problem,
where a Horn formula is an expression of the form

∧m
j=1Cj where the Cj are

50 Chapter 4. Constraint Domains for Type Inference

Horn clauses. In fact, the Horn formulae was the motivation for the definition of
stability.

4.3 Infinite Alphabets

Type constructors such as Prod and Sum are not like the normal root labels.
They introduce field names into the type expression and they do not have a fixed
arity. In order to put these expressions into the normal scheme for making terms
we introduce an infinite number of type constructors

{Prod[α]|α is a set of field names}

where rank(Prod[α]) = |α|. So the term Prod(a1 : τ1, . . . , ak : τk) is written
as Prod[{a1, . . . , ak}](τ1, . . . , τk) instead. This introduces the problem of which
ai belongs to which τj. Instead we will write Prod[a1, . . . , ak](τ1, . . . , τk). This
notation will be formalised at the end of this section.

4.3.1 Ordered Infinite Alphabets

All labels in the infinite alphabet induced by Prod are of the form Prod[α]. We
call Prod the generic label and α the extension of the label. Using this we can
define an infinite alphabet as generated by a finite set of generic and non-generic
labels and their extensions. This provides some structure to the infinite alphabets
which will turn out to be useful when designing the constraint solver in Chapter 6.

Definition 4.3.1 Let Σ be a finite ranked alphabet, E a partial function such
that dom(E) ⊆ Σ and for each σ ∈ dom(E), E(σ) is a recursively enumerable set
of extensions equipped with a size function, | · |σ. The infinite alphabet generated
by Σ, and E is the set

ΣE = Σ \ dom(E) ∪
⋃
σ∈dom(E){σ[e]|e ∈ E(σ)}

where the rank of σ[e] is rank(σ) + |e|σ.

We call the labels from dom(E) the generic labels of Σ. It is clear that for a finite
alphabet Σ we have that Σ = ΣE , where dom(E) = ∅.

We also define an ordering over this alphabet given orderings over Σ and e.

Definition 4.3.2 Let Σ and E be as above. Furthermore let v be a lower semi-
lattice on Σ and �σ a lattice on E(σ) such that all non-empty subsets have greatest
lower bounds. The ordering generated by v and � is the least ordering, 6, over
the infinite alphabet generated by Σ and E , such that

4.3 Infinite Alphabets 51

• σ 6 σ′, if σ v σ′.

• σ 6 σ′[⊥E(σ′)], if σ v σ′.

• σ[⊥E(σ)] 6 σ′, if σ v σ′.

• σ[⊥E(σ)] 6 σ′[⊥E(σ′)], if σ v σ′.

• σ[e] 6 σ[e′], if e �σ e′.

If 6 is as above we shall write 6 = v�.

The ⊥E(σ) in the definition above is the least element of E(σ). We call an element
of the form σ[⊥E(σ)] a ground instance of σ, and write a ground instance of σ as
σ[]. It follows from the definition that all non-empty subsets of ΣE has a greatest
lower bound in ΣE .

The motivating example for this was the alphabet for subtyping from [59]. This
can be written as Σst = ΣE where

Σ = {Int,Bool,Prod, Sum, List,→}
E(Prod) = E(Sum) = P({a|a is a field name})

The orderings �Prod and �Sum are both the set inclusion ordering.

Definition 4.3.2 says that only ground instances of different generic labels are
comparable. We can illustrate this as in Figure 4.1, where Σ = {σ1, σ2, σ3, σ4, σ5},
dom(E) = {σ2, σ4, σ5}, and v is the smallest ordering such that

• σ1 v σ2

• σ1 v σ3

• σ1 v σ4

• σ4 v σ5

The cones marked ‘E(σi)’ in the figure are the infinite subalphabets generated by
the generic labels.

4.3.2 Constraints over Infinite Alphabets

Let us now turn to relations over infinite alphabets. Clearly, this is more difficult
than the finite alphabets. The problem is that there are uncountably many
relations over infinite alphabets, and hence we have a problem with representing
them in a computer.

52 Chapter 4. Constraint Domains for Type Inference

u

u

u u

u

Q
Q

Q
Q

Q
Q

Q
QQ

�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

E(σ2) E(σ4)

E(σ5)

σ2
σ3

σ1

σ4

σ5

Figure 4.1: The lower semi-lattice generated by v and �.

We will first consider how to represent subsets of infinite alphabets finitely. The
set P(ΣE) is uncountably infinite so we must decide which sets we want to rep-
resent. Two kinds of sets come immediately to mind: Singleton sets and cone
sets. A singleton set is a set of the form {e} and a cone set is a set of the form
{e ∈ E(σ)|e > e′}.

We want to find relations which preserve the kinds of sets described above —
that is, if S is representable and R is such a relation, the set {e′|∃e ∈ S : R(e, e′)}
should also be representable and vice versa. An obvious (and necessary) choice
is =. Another relation that preserves representability is �. These two relations
are sufficient for our purpose, and since the constraint sets {v = v′} and {v �
v′, v′ � v} are equivalent we can concentrate our efforts on the � relation.

Definition 4.3.3 Let R ⊆ Σn and let Q be a function

Q : R→ P(({i �σ j|i, j ∈ 1..n, σ ∈ dom(E)}))

such that if i �σ j ∈ Q(σ1, . . . , σn) then σi = σj = σ. We define the relation
RQ ⊆ ΣE

n as

RQ(σ1, . . . , σn), iff there are σ′1, . . . , σ
′
n and e1, . . . , en such that the

following hold

• σi =

{
σ′i[ei] if σ′i ∈ dom(E)
σ′i otherwise

• R(σ′1, . . . , σ
′
n)

4.3 Infinite Alphabets 53

• ϕ |= Q(σ1, . . . , σn), where ϕ is defined by ϕ(i) = ei.

We say that a relation over ΣE is finitely definable, iff it is of the form RQ for
some R and Q as above.

If we write down the part of the definition of 6st that has to do with the root
labels only we get the following relation.

Rst(τ, τ ′)↔
(Int, Int);
(Bool,Bool);
(→,→);
(Prod[α],Prod[β]) if β ⊆ α;
(Sum[α], Sum[β]) if α ⊆ β;
(List, List).

In the notation of Definition 4.3.3, we have that Rst = RQ where

R = {(Int, Int), (Bool,Bool), (→,→),
(Prod,Prod), (Sum, Sum), (List, List)}

Q(Prod,Prod) = {2 �Prod 1}
Q(Sum, Sum) = {1 �Sum 2}

4.3.3 Relabeling Functions

Let us return to the definition of the ordering 6st. From the root label rule (3)
we get that Prod(a : τ) 6st Prod(a : τ, b : τ ′) but Prod(b : τ) 66st Prod(a : τ, b : τ ′)
(if we assume that τ 66st τ

′). If we rewrite this with the notation from this
section we get Prod[a](τ) 6st Prod[a, b](τ, τ ′) and Prod[b](τ) 66st Prod[a, b](τ, τ ′).
That is, we have three labels σa, σb, σab , such that σa 6 σab and σb 6 σab , but
σa(τ) 6st σab(τ, τ

′) and σb(τ) 66st σab(τ, τ
′). This is at odds with the goal of

writing the rules so that the root labels are the significant factor.

The problem above is that τ is compared to different subtrees. In the definition
of 6 we lose this information — we cannot see that σa and σb are related to σab
in different ways. We can retain this information by defining relabeling functions,
that shows which subtrees are supposed to be compared. The relabeling function
from σa to σab is defined by ρσa6σab(1) = 1, and the one from σb to σab by
ρσb6σab(1) = 2. That is, in the first case the first (and only) subtree of σa(τ)
corresponds to the first subtree of σab(τa, τb), in the second case the first subtree
of σb(τ) corresponds to the second subtree of σab(τa, τb).

Definition 4.3.4 Let Σ be a (finite or infinite) ranked alphabet, and 6 be a lower
semi-lattice over Σ. A relabeling function is a partial function ρ : Σ2 → (ω → ω),
such that

54 Chapter 4. Constraint Domains for Type Inference

1. dom(ρ) = {(σ, σ′) ∈ Σ2|σ 6 σ′}

2. ρ(σ, σ′) is a total injective function ρ(σ, σ′) : 1..rank(σ)→ 1..rank(σ′)

3. (Reflexivity) ρ(σ, σ) = i 7→ i

4. (Transitivity) If σ 6 σ′ and σ′ 6 σ′′, ρ(σ, σ′′) = ρ(σ′, σ′′) ◦ ρ(σ, σ′)

We write ρσ6σ′ for the function ρ(σ, σ′).

If the alphabet is an infinite alphabet of the form ΣE and Σ and each Eσ are
equipped with relabeling functions there is a unique relabeling function that
extends these functions while keeping with the transitivity requirement from the
definition above. Note that due to the totality and injectivity of ρσ≤σ′ we must
have that rank(σ) ≤ rank(σ′). Hence there can be a relabeling function only if
rank is monotone.

We assume that some relabeling function, ρ, is defined over E(Prod), such that
ρ{a}⊆{a,b}(1) 6= ρ{b}⊆{a,b}(1). Hence ρ defines an ordering between the elements in
the set {a, b}. With this we can define our notation Prod[a1, . . . , an]. Let α be
a set of field names, n = |α|, and let ai be the (unique) element of α for which
ρ{ai}⊆α(1) = i. Then we write Prod[a1, . . . , an] for Prod[{a1, . . . , an}].

4.4 Conditional Constraints

The conditional constraints are the side conditions that are not on the form
α ⊆ β. The definition of the conditional constraints will be in three steps.

1. The definition of the expressions τ/1 and τ ′/2 as the pseudovariables 〈1/1〉
and 〈2/2〉.

2. The definition of conditional constraints as constraints over pseudo-variables.

3. The definition of expressions of the form ∀j ∈ α&β : . . . as quantified
constraints. The definition of this is divided into the syntax and semantics
of the expressions.

Let us now turn to the formal definition of the constraints. The first step is to
define the pseudovariables.

Definition 4.4.1 Let n ≥ 1 be an integer and let k = (k1, . . . , kn) be a sequence
of non-negative integers. A pseudovariable of rank n and k is an expression of
the form 〈i/α〉 where 1 ≤ i ≤ n and α ∈ {ε} ∪ 1..ki.

We write Ψn
k for the set of pseudovariables of rank n and k and Ψ for the set of

all pseudovariables.

4.4 Conditional Constraints 55

Now, a conditional constraint can be defined as a constraint over the pseudovari-
ables. That is, if the constraint alphabet is Γ the set of conditional constraints is
Γ[Ψn

k , ∅], where n is the rank of the relation being defined and k is the sequence
of ranks of the root labels. This is formalised in the following definition.

Definition 4.4.2 Let Σ be a ranked alphabet, Γ a relation alphabet, and
R ⊆ Σn a relation. A function χ : R → P(Γ[Ψ, ∅]) is a condition function,
iff for each tuple (σ1, . . . , σn) ∈ R, we have that χ(σ1, . . . , σn) ⊆ Γ[Ψn

k , ∅], where
k = (rank(σ1), . . . , rank(σn)).

With this definition we have for instance that

χ(→,→) = {〈2/1〉 6 〈1/1〉, 〈1/2〉 6 〈2/2〉}

in the definition of 6st.

Let us turn to the definition of the conditional constraint ∀l ∈ α&β : τ/l 6st τ
′/l.

The α and β refers to the subtrees of the first and the second term respectively,
and we shall write them as [1] and [2]. In this notation the expression becomes
∀l ∈ [1]&[2] : 〈1/l〉 6st 〈2/l〉. We call expressions of this form quantified con-
straints.

Definition 4.4.3 A quantified constraint is an expression of the form

∀l1 ∈ [p1
1]& · · ·&[p1

m1
], l2 ∈ [p2

1]& · · ·&[p2
m2

], . . . , ln ∈ [pn1]& · · ·&[pnmn] : C

where pij, mi and n are positive integers, li 6∈ ω ∪ {ε} are subtree variables, and
C is a conditional constraint over pseudovariables of the form 〈i/ε〉, 〈i/j〉, or
〈pij/li〉.

What we want to do is to define the semantics of quantified constraint as a
condition function. Such a condition function has the form χ : RQ → P(Γ[Ψ, ∅]),
since the quantified constraints are meaningful only when dealing with infinite
alphabets. For the quantified constraint ∀l ∈ [1]&[2] : 〈1/l〉 6st 〈2/l〉 we saw that
the corresponding condition function is

χ(Prod[α],Prod[β]) = {〈1/ρα∩β≤α(l)〉 6st 〈2/ρα∩β≤β(l)〉|l ∈ 1..|α ∩ β|}

This is what we need to generalise to all quantified constraints. The semantics
of the quantified constraints is defined in the following.

Definition 4.4.4 Let QC be the quantified constraint

∀l1 ∈ [p1
1]& · · ·&[p1

m1
], l2 ∈ [p2

1]& · · ·&[p2
m2

], . . . , ln ∈ [pn1]& · · ·&[pnmn] : C

56 Chapter 4. Constraint Domains for Type Inference

and σ = (σ1, . . . , σk) ∈ ΣE
k a tuple such that there exist a generic label σ′ and

extensions ei so that for all pij we have that σpij = σ′[epij]. A conditional constraint

C ′ is defined by QC and σ, iff there is a substitution

sub : {〈i/lj〉|i ∈ 1..k, j ∈ 1..n} → {〈i/j〉|i ∈ 1..k, j ∈ 1..n}

such that C ′ = Csub and the following holds:

Let ηj = epj1
fσ′ . . . fσ′ epimi , and ẽji = epji

, then for all j there is a

k ∈ 1..|ηj|, such that for all i, sub(〈i/lj〉) = 〈i/ρηj�σ′ ẽji (k)〉.

We write Def(QC , σ) for the set of constraints defined by QC and σ.

Let us return to the example

QC = ∀l ∈ [1]&[2] : 〈1/l〉 6st 〈2/l〉

Let σ = (Prod[a, b],Prod[b, c]). Then by the definition σ′ = Prod, e1 = {a, b}, and
e2 = {b, c}. The conditional constraint 〈1/2〉 6st 〈2/1〉 is definable by QC and
σ.

To see this let sub be defined as sub(〈1/l〉) = 〈1/2〉 and sub(〈2/l〉) = 〈2/1〉. We
have that η1 = {a, b}∩{b, c} = {b}. Let k = 1. Then k ∈ 1..|η1| and the following
hold as requested:

• sub(〈1/l〉) = 〈1/ρ{b}⊆{a,b}(k)〉

• sub(〈2/l〉) = 〈2/ρ{b}⊆{b,c}(k)〉

Since |η1| = 1, we have k = 1 as the only possible choice for k. So the above is
the only conditional constraint defined by QC and σ. Hence we have

Def(QC , σ) = {〈1/2〉 6st 〈2/1〉}

By similar reasoning we have

Def(QC , (Prod[a, b, c],Prod[a, c, d])) = {〈1/1〉 6st 〈2/1〉, 〈1/3〉 6st 〈2/2〉}

and so on.

In Definition 4.4.4 above Def(QC , (Prod[α], Sum[β])) is not well-defined because
there is no appropriate σ′. We will make sure that this cannot possibly happen
by saying that a quantified constraint

∀l1 ∈ [p1
1]& · · ·&[p1

m1
], l2 ∈ [p2

1]& · · ·&[p2
m2

], . . . , ln ∈ [pn1]& · · ·&[pnmn] : C

is well-defined with respect to a tuple (σ1, . . . , σk) ∈ Σk, iff all the σpij are equal.

Now, an extended condition function is a condition function where χ(σ) contains
both conditional constraints and quantified constraints which are well-defined
with respect to σ. This leads to the following definition.

4.5 User-defined Constraints 57

Definition 4.4.5 Let RQ ⊆ ΣE
n be a finitely definable relation and χ an extended

condition function with domain R. The condition function χQ : RQ → P(Γ[Ψ, ∅])
is defined by the following. Let σ = (σ1, . . . , σn) and let σ′i and ei be such that
σi = σ′i[ei], if σ′i ∈ dom(E) and σi = σ′i, otherwise. Then we have that

χQ(σ) = (χ(σ′) ∩ Γ[Ψ, ∅]) ∪
⋃

QC∈χ(σ′)\Γ[Ψ,∅] Def(QC , σ)

If χQ is like above we say that χQ is uniform.

4.5 User-defined Constraints

Now we have that the user-defined constraints are the ones that can be written as
a relation of the form RQ over the root labels plus some conditional constraints
defined by a condition function of the form χQ.

Definition 4.5.1 Let Σ be a ranked alphabet. The alphabet of user-definable
relations is the smallest set of relations, ΓΣ, such that

• 〈〈RQ, χQ〉〉 ∈ ΓΣ with rank n, if RQ ⊆ Σn is finitely definable and

χQ : RQ → P((ΓΣ ∪ {=})[Ψ, ∅])

is a uniform condition function, where rank(=) = 2.

• νX.〈〈RQ, χQ〉〉 ∈ ΓΣ with rank n, if RQ ⊆ Σn is finitely definable and

χQ : R→ P((ΓΣ ∪ {X,=})[Ψ, ∅])

is a uniform condition function, where rank(=) = 2 and rank(X) = n.

The two kinds of constraints defined here are the simple user-defined constraint
and the recursive user-defined constraint. They are possibly conditional on pre-
viously defined constraints or equality constraints. That the constraints will have
to be defined previously is ensured by the requirement that the constraint alpha-
bet is the smallest possible such set. The ‘ν’ in the definition of the recursive
constraints suggests that they are defined as the greatest fixpoint of a function.
And indeed this is the case as the following definition shows.

Definition 4.5.2 Let Σ be a ranked alphabet. The interpretation

IΣ : ΓΣ ∪ {=} →
∞⋃
n=0

P(TΣ
n)

is defined inductively as follows.

58 Chapter 4. Constraint Domains for Type Inference

• IΣ(=) = {(t, t)|t ∈ TΣ}

• IΣ(〈〈RQ, χQ〉〉) = {t ∈ TΣ
n|RQ(t(ε)), ϕt |=IΣ χQ(t(ε)}, where ϕt is the as-

signment defined as ϕt(〈i/α〉) = ti/α and t(ε) = (t1(ε), . . . , tn(ε)).

• IΣ(νX.〈〈RQ, χQ〉〉) is the largest relation S ⊆ TΣ
n such that S(t1, . . . , tn),

iff the following hold.

– RQ(t1(ε), . . . , tn(ε))

– ϕt |=IΣ[X←S] χQ((t1(ε), . . . , tn(ε)) where ϕt is the assignment defined
as ϕt(〈i/α〉) = ti/α.

We say that the conditional constraints from χQ(t1(ε), . . . , tn(ε)) are forced.

As an example let Ac ′ be defined as in Section 4.2 and let χAc be defined as

χAc(σ, σ
′) =


{Tc(〈1/1〉, 〈2/1〉)} if σ = σ′ = Set
{〈1/1〉 = 〈2/1〉} if σ = σ′ = ∧

∅ otherwise

Then IΣTP
(〈〈Ac′, χAc〉〉) is the relation Ac.

Similarly, we can define 6st using the relation Rst = RQ defined in Section 4.3
and the function χst = χQ where

χ(σ, σ′) =


{X(〈2/1〉, 〈1/1〉), X(〈2/1〉, 〈2/2〉)} if σ = σ′ =→
{∀j ∈ [1]&[2] : X(〈1/j〉, 〈2/j〉)} if σ = σ′ = Prod
{∀j ∈ [1]&[2] : X(〈1/j〉, 〈2/j〉)} if σ = σ′ = Sum
{X(〈1/1〉, 〈2/1〉)} if σ = σ′ = List
∅ otherwise

We have that 6st is IΣst
(νX.〈〈Rst, χst〉〉) restricted to FinΣst . Actually, the relation

6st is not definable with these constraints. Only the extension to regular trees
is definable. The way to remedy this situation when we have only = (e.g. in
[60]) is to analyse the structure of the constraint set and use the knowledge from
Proposition 1.2.1 to determine in advance whether the constraint set has finite
solutions. Here we can use the same technique to restrict our set of solutions to
finite solutions. Hence we shall also allow the special case where the types are
finite.

In contrast to the above relations the unifiability relation, ≈, is not definable in
any form. The reason for this is its non-local properties. For example, we have
that α ≈ Int and α ≈ Real, but α→ α 6≈ Int→ Real.

In the next section we shall see that assignment compatibility is stable, whereas
6st is not.

4.6 Stability of user-defined constraints 59

4.6 Stability of user-defined constraints

The stability requirement on the constraint satisfaction problem assures that
we can choose the least possible solution and thus avoid backtracking (see Sec-
tion 6.1). The idea is that by choosing the smallest solution we cannot do too
much — it is always possible to choose a greater solution if need be. Extended
to the whole of ΓΣ this requirement says that the conditionals should be sta-
ble under the choice of a greater solution. That is, we will force no conditional
constraints which we will later regret. Additionally, we will need to know that
there is an end to the forcing of constraints. That is, we need to be sure that the
recursive constraints do not lead to infinite solutions (which is reserved for the
equality constraints). In conclusion we have that the condition function should
comply with the following two requirements:

1. The condition function must be monotone.

2. The condition function must be strict.

The main point of this section is to define the concepts of monotone and strict
with respect to condition functions and use these to define stability, which is then
used to define the OIH constraint domain.

As a starting point we need to look at the orderings that apply in the definition
of stability. The monotonicity of condition functions was needed to ensure that
no choice will be regretted. For the same reason we demand that the rank and
| · | functions are monotone (in the usual sense). I addition to this the ordering
should comply with the definitions in Section 4.3. Hence the following definition.

Definition 4.6.1 Let Σ = Σ′E be a ranked alphabet, equipped with a partial or-
dering 6 = v�. The ordering (Σ,6) is applicable, iff the following hold:

• (Σ′,v) forms a lower semi-lattice and (E(σ),�σ) form lattices, where that
all non-empty subsets of E(σ) have greatest lower bounds.

• rank and the | · |σ functions are all monotone.

• rank(
∧

Σ′) = 0 and for each σ ∈ dom(E): |⊥E(σ)| = 0.

In addition to this there is a requirement for the relabeling functions over the
extensions of the alphabets. That is, the relabeling functions on the form ρe�σe′.
The requirements ensures that the &s in the quantified constraints actually rep-
resents ∩. The definition follows.

Definition 4.6.2 Let (E(σ),�σ) be a lattice. We say that ρ : (E(σ))2 → (ω → ω)
is a smooth relabeling function, iff for each e, e′ ∈ E(σ) we have that

codom(ρefe′�ege′) = codom(ρe�ege′) ∩ codom(ρe′�ege′)

60 Chapter 4. Constraint Domains for Type Inference

Since codom(ρefe′�ege′) ⊆ codom(ρe�ege′)∩ codom(ρe′�ege′) follows directly from
the transitivity rule of Definition 4.3.4, all the requirement says is that the rank
should not increase too quickly.

Let us now turn to the requirements for the conditional constraints. The first
requirement was that conditional constraints for the smaller solutions are more
general than the ones for greater solutions. In order to compare conditional
constraints we will have to consider the relabelings. We introduce the following
notation: Let σ = (σ1, . . . , σn) and σ′ = (σ′1, . . . , σ

′
n), and assume that σ 6

σ′. We write ρσ6 σ′ for the tuple (ρσ16σ′1 , . . . , ρσn6σ′n). If ρ = (ρ1, . . . , ρn) is a
tuple of relabeling functions, and C ∈ Γ[Ψn

k] we write ρ(C) for the conditional
constraint C[〈i/j〉 ← 〈i/ρi(j)〉], provided the ρi(j) are well-defined. If C is a set
of conditional constraints, then

ρ(C) = {C|∃C ′ ∈ C : ρ(C ′) = C}

With this in mind we can write the following definition.

Definition 4.6.3 Let Σ be a ranked alphabet equipped with a lower semi-lattice,
6, and a smooth relabeling function ρ. We say that a condition function χ :
Σn → P(Γ[Ψ, ∅]) is monotone, iff

∀σ, σ′ ∈ dom(χ) : σ 6 σ′ ⇒ ρσ6 σ′(χ(σ)) ⊆ χ(σ′)

If χ is monotone, no conditions from smaller solutions can violate conditions from
greater solutions.

The termination requirements says that there are limits on how we can force the
conditional constraints. More precisely, it says that if we fix a number of variables
in the constraint R(v1, . . . , vn) and let the rest be completely free we cannot force
a conditional constraint (unless we fix all the variables).

Definition 4.6.4 Let Σ be a ranked alphabet equipped with a lower semi-lattice,
6, and let R ⊆ Σn be a relation. We say that a condition function χ : R→ Γ[Ψ, ∅]
is strict, iff

∀S (1..n, σ:S → Σ : χ(
∧

(R ∩ (
∏

i∈S{σ(i)} ×
∏

i6∈S Σ))) = ∅

In the definition above the expression
∏

i∈S{σ(i)} ×
∏

i6∈S Σ should be read such
that we rearrange the tuples so that the ith value gets to the ith place.

This is all the requirements we need to define the stability of a relation from ΓΣ.

Definition 4.6.5 Let (Σ,6) equipped with the smooth relabeling function ρ be
applicable, and let Σ = Σ′E and 6 = v�. The 6-stable relations from ΓΣ are
defined recursively as follows.

4.6 Stability of user-defined constraints 61

• 〈〈RQ, χQ〉〉 is 6-stable, iff R is v-stable, for every σ ∈ RQ the relations in
χQ(σ) — apart from = — are 6-stable, and Q and χQ are monotone.

• νX.〈〈RQ, χQ〉〉 is 6-stable, iff R is v-stable, for every σ ∈ R the relations
in χQ(σ) — apart from = and X — are 6-stable, Q is monotone and χQ
is monotone and strict.

We shall say about a relation R ⊆ RegΣ
n that it is 6-stable, iff there is a 6-stable

relation symbol R′ ∈ ΓΣ such that R = IΣ(R′).

Let us return to the examples that motivated these definitions — the relations
Ac and 6st. In Section 4.5, we saw the following.

6st = IΣst

(νX.〈〈Rst, χst〉〉) Ac = IΣTP

(〈〈Ac′, χAc〉〉)

The question is whether these relations are stable.

Let us first look at the relation Ac. With respect to the ordering

Integer 6 Real 6 Set 6 ∧

it is unstable since χAc(Set, Set) * χAc(
∧, ∧). Instead we can use the ordering

• Real 6 Integer

• Real 6 Set

• Real 6 ∧

Now, the monotonicity is restored and the other requirements hold as well.

The situation is a bit more problematic for 6st. It is not stable for any ordering
if the field sets are ordered by set inclusion. The problem is with the strictness
of χst. To see this observe the label Prod[a]. The set Rst ∩ ({Prod[a]} × Σst) is
{(Prod[a],Prod[α])|a ∈ α}. The least member of this set is (Prod[a],Prod[a]) and

χst(Prod[a],Prod[a]) = {X(〈1/1〉, 〈1/2〉)} 6= ∅

There is no obvious way to remedy this situation, but in Section 8.3.1 we shall
look at an extended type system which allow stable constraints.

Another relation with the same problem is =. The definition of = would be
νX.〈〈R, χ〉〉, where

R = {(σ, σ)|σ ∈ Σ}
χ(σ, σ) = {X(〈1/i〉, 〈2/i〉)|i ∈ 1..rank(σ)}

Since R ∩ ({σ} ×Σ) = {(σ, σ)} and χ(σ, σ) 6= ∅ if rank(σ) > 0, χ is not strict —
regardless of the ordering — and = is thus never a stable relation.

62 Chapter 4. Constraint Domains for Type Inference

4.7 The OIH Constraint Domain

Now let us define the constraint domains. The relations they define are simply
the stable subset of the user-defined relations plus =.

Definition 4.7.1 Let (Σ,6) be applicable. The ordered constraint alphabet over
(Σ,6) is

ΓΣ
6 = {R ∈ ΓΣ|R is 6-stable} ∪ {=}

Now we can define the ordered finitary and infinitary Herbrand domains.

Definition 4.7.2 Let (Σ,6) be applicable and equipped with a smooth relabeling
function.

1. The Ordered Infinitary Herbrand Universe over (Σ,6) is the constraint
domain

OIH(Σ,6) = (RegΣ,Γ
Σ
6,Σ, IΣ,J OIH)

where J OIH(σ) = σTΣ

2. The Ordered Herbrand Universe over (Σ,6) is the constraint domain

OH(Σ,6) = (FinΣ,Γ
Σ
6,Σ, IΣ

Fin,J OH)

where

• IΣ
Fin(R) = IΣ(R) ∩ FinΣ

n where R ∈ ΓOH
n .

• J OH(σ) = σTΣ

Since the domains are ordered universes we would expect it to have an ordering.
This ordering is defined below.

Definition 4.7.3 Let (Σ,6) be applicable. The monotone extension of 6, 6Σ,
is defined as the largest relation such that σ(t1, . . . , tn) 6Σ σ′(t′1, . . . , t

′
m), iff one

of the following hold

• σ < σ′

• σ = σ′ and for each i ∈ 1..rank(σ), we have that ti 6Σ t
′
i.

There is an alternative definition of 6Σ.

Lemma 4.7.1 Let (Σ,6) be applicable. We have that

∀t, t′ ∈ RegΣ : t 6Σ t
′ ⇔ dom(t) ⊆ dom(t′) ∧ ∀α ∈ dom(t) : t(α) 6 t′(α)

4.7 The OIH Constraint Domain 63

Proof: Follows from Definition 4.7.3. 2

We can use this to show that 6Σ has the following property.

Proposition 4.7.2 (RegΣ,6Σ) and (FinΣ,6Σ) form lower semi-lattices.

Proof: Let t, t′ ∈ RegΣ. We define t′′ ∈ RegΣ by

dom(t′′) = {i1i2 . . . in ∈ dom(t) ∩ dom(t′)|
∀j ∈ 1..n− 1 : ij ≤ rank(t(i1i2 . . . ij−1) ∧ t′(i1i2 . . . ij−1))}

t′′(α) = t(α) ∧ t′(α)

That t′′ is regular follows from the regularity of t and t′, and that t′′ is the greatest
lower bound of t and t′ follows from Lemma 4.7.1.

It is clear that t′′ is finite whenever t and t′ are finite, so the proof above extends
to (FinΣ,6Σ) as well. 2

It doesn’t follow from the above that (RegΣ,6Σ) and (FinΣ,6Σ) form complete
lower semi-lattices. Hence, we cannot use the result to prove that all satisfiable
constraint sets has a least solution. Instead we give a constraint solver for the
domains in Chapter 6. This will constitute a constructive proof of the following
theorem.

Theorem 4 Any satisfiable set of OIH(Σ,6)-constraints has a 6Σ-least solution.

Proof: See Chapter 6. 2

It is important for this work that the OIH-domain is sound for constraint logic
programming purposes. The first step in proving this is the following lemma.

Lemma 4.7.3 Let {e1 = e′1, . . . , en = e′n} be a finite set of term equations over
Σ and V. There is a constraint C ∈ ΓΣ

6[V,Σ], such that ϕ |= C iff ϕ is a solution
to {e1 = e′1, . . . , en = e′n}.

Proof: Let the relation 〈〈R, χ〉〉 ∈ ΓΣ
6 be defined by the following.

R = {(σ1, . . . , σn, σ
′
1, . . . , σ

′
n) ∈ Σ2n|∀i ∈ 1..n : σi = σ′i}

χ(σ1, . . . , σn, σ
′
1, . . . , σ

′
n) = {〈i/ε〉 = 〈i+ n/ε〉|i ∈ 1..n}

The constraint we are looking for is 〈〈R, χ〉〉(e1, . . . , en, e
′
1, . . . , e

′
n). 2

This leads to the main theorem of this chapter.

Theorem 5 If (Σ,6) is applicable, OIH(Σ,6) and OH(Σ,6) are solution-compact.

64 Chapter 4. Constraint Domains for Type Inference

Proof: It follows from Proposition 1.2.1 that every element in RegΣ as well as
FinΣ is uniquely definable by a finite set of term equations.

Now, assume that ϕ 6|= C. From Proposition 1.2.1 we have a finite set of term
equations, E = {e1 = e′1, . . . , en = e′n}, such that ϕ is the only solution to
E. From Lemma 4.7.3 we get a constraint C ′, so that ϕ is the only satisfying
assignment to C ′. Hence ϕ |= C and {C,C ′} is unsatisfiable. 2

In fact, the solution-compactness requirement is one of the reasons that the uni-
verse of OIH is RegΣ rather than TΣ, since in the latter case the needs would
arise for non-uniform relations if the domain should remain solution-compact.
The restriction has no practical consequences, since no irregular term is finitely
definable.

Chapter 5

Stack persistent data structures

The need for backtracking puts an algorithmical challenge to the construction of
the data structure. It is no longer sufficient to have an incremental algorithm
because of the need to remove constraints from the constraint set. In this chapter
we will show how to solve this problem by using stack persistence.

Having defined stack persistence in this chapter, it suffices to find an incremental
constraint solver in Chapter 6.

5.1 partial, full and stack persistence

A persistent data structure provides access to the older versions of the data
structure. Usually, two types of persistence are considered:

Partial persistence. A partially persistent data structure only allows retrieval
of values from older versions of the data structure. That is, it is possible to
read the past but not to alter the past.

Full persistence. In a fully persistent data structure it is allowed not only to
read the past but also to create an alternative history. That is, it is possible
to go back in time and pursue a different course of events. A fully persistent
data structure provides access to all the created histories.

More precisely, let us assume that an ephemeral (ie. non-persistent) data struc-
ture, D, has two operations: query(D, x) and update(D, x). The partially persis-
tent version of this data structure will have the following operations:

– queryPP (DPP , x, v): Give the result of the call query(Dv, x) where Dv is
version number v of the data structure.

66 Chapter 5. Stack persistent data structures

– updatePP (DPP , x): Let D be the current version of the data structure, and
assume D is version number v. Make a new version, D′, which is like D
and has version number v + 1 and call update(D′, x). Make D′ current.

The fully persistent version has these operations:

– queryFP (DFP , x, v): Give the result of the call query(Dv, x) where Dv is
version number v of the data structure.

– updateFP (DFP , x, v): Make a new version D′ which is like Dv and call
update(D′, x). The version number of D′ is the smallest unused version
number.

Partial persistence is not sufficient for backtracking since it does not allow for
alternative actions. On the other hand, full persistence does too much when it
provides access to all the histories. There is no need to access a history that leads
to failure.

Let us instead introduce a third possibility, stack persistence, which is perfectly
suited for backtracking:

Stack persistence. In a stack persistent data structure it is allowed to restore
the data structure to an older version. That is, we can access the past by
returning to it. The part of the history that lies ahead of the new current
time is lost.

Given the ephemeral data structure described above the stack persistent version
provides these three operations:

– querySP (x): Give the result of the call query(D, x) where D is the current
version.

– updateSP (x): Make a new version, D′, which is like the current version and
call update(D′, x). Make D′ current. If D has version number v, D′ has
version number v + 1.

– backtrackSP : Assume that version number v is current. Discard it and make
version v − 1 current.

Note that stack persistence is not a generalisation of partial persistence. There
is no way to access older versions without destroying the current version and
intermediate versions.

Obviously, we can use full persistence to implement stack persistence. The dis-
tinction between full and stack persistence only becomes important because of
an efficient way of implementing stack persistence on a RAM.

5.2 Stack persistence on a RAM 67

5.2 Stack persistence on a RAM

In the following we shall assume that we are given an ephemeral data structure
of size n, and that we want to make t operations on the persistent version of the
data structure. For simplicity we shall assume n ≤ t — that is, all cells are being
used.

In [18] it is shown how to obtain partially and fully persistent versions of a linked
data structure. Both versions uses O(t) space. They run in time O(t) if each node
in the data structure has a constant, bounded in-degree — O(t log t) otherwise.

On a RAM partial persistency can be obtained with the use of van Emde Boas
trees [44]. The running time thus obtained is O(t log log t) and the space usage
is O(t).

We will show how to obtain stack persistence on a RAM in time and space
O(t). We do this by first considering a RAM as an ephemeral data structure and
showing how a stack persistent version can be obtained. Later, we will show how
to make a general data structure stack persistent in an efficient way.

A RAM of size n is a data structure with two operations:

– queryRAM(i): If i ∈ 1..n this returns the current value of cell number i.

– updateRAM(i, x). If i ∈ 1..n this sets the current value of cell number i to x.

We implement the stack persistent RAM by keeping all values from the different
versions in stacks. A stack has the following three operations:

– push(S, x): Puts x on top of S.

– pop(S): Removes the top element of S.

– top(S): The top element of S.

Basically, what we want to do is to store for each cell a stack of the values it
has taken together with the numbers of the versions in which it first took those
values. Then all the backtrack operation needs to do is to count down the version
number by 1. For efficiency reasons we use lazy removal. That is, we postpone
the removal of obsolete values from the stack until we call query or update.

This tactic introduces a problem. Consider the following calls to the stack per-
sistent data structure:

update(1,0)
update(1,3)
backtrack
update(2,2)

68 Chapter 5. Stack persistent data structures

Now what should the value of lookup(1) be? Clearly, it should be 0. But —
assuming that the first update was in version number 1 — the current version
number is 2, and the call to update(1,3) also took place in version number 2. The
naive solution would thus return the value 3 as lookup(1).

What the above example shows is that we can have different versions with the
same version number. In order to remedy this situation we give each version a
time-stamp as well as a number. Thus the versions in the example above would
be (1,1), (2,2), and (2,3), respectively.

We now have a data structure with three arrays of stacks:

– content [1..n]: The values of the cells.

– version[1..n]: The version numbers of the values.

– timestamp[1..n]: The time-stamp of the values.

In addition we have an array, latest [1..t] which contains for each version number
the time stamp of the latest version with that number, and integers current and
time containing the current version number and time, respectively.

The implementation of the three stack persistent operations of the data structure
is as follows.

updateRAM,SP(i, x):
while top(version[i]) > current ∨

top(timestamp[i]) 6= latest [top(version[i])] do
pop(content [i]);
pop(version[i]);
pop(timestamp[i]);

end;
current := current + 1;
time := time + 1;
latest [current] := time ;
push(version[i], current);
push(timestamp[i], time);
push(content [i], x);

lookupRAM,SP(i):
while top(version[i]) > current ∨

top(timestamp[i]) 6= latest [top(version[i])] do
pop(content [i]);
pop(version[i]);
pop(timestamp[i]);

end;
return top(content [i]);

5.2 Stack persistence on a RAM 69

backup(k):
current := current − k;

Note the change in backup where it is allowed to backup k steps at a time. That
is, we go from version number v to version number v − k rather than just v − 1.
All the intermediate versions are discarded.

Clearly each stack will be no larger than the total number of calls to update on
the corresponding cell. So the total number of stack heights is never more than
3t and hence the total space used is at most 4t + o(t). To show that the total
number of stack operations is O(t) we use the potential function technique of
Tarjan [72].

Let Φ =
∑n

i=1 3 ∗ |content(i)|. The number of stack operations in a call to
updateRAM,SP is 3k+3 where k is the number of obsolete values on the stack. The
change in the potential function is 3−3k and thus the amortised number of stack
operations is 6. Similarly, we get that the amortised number of stack operations
in a call to lookupRAM,SP is 1. It is clear that the number of stack operations
dominate the total running time, and so we get the following proposition.

Proposition 5.2.1 The amortised complexity of the procedures updateRAM,SP ,
lookupRAM,SP , and backtrack is O(1).

While the amortised time is asymptotically optimal, it may still be the case
that the on-line time can be quite high. It is a special problem that the above
implementation makes a new version for each call to the update function. If
we are to use the persistent RAM data structure in the implementation of a
more complicated data structure we would want a better control of the version
numbers. Hence the following version:

updateRAM,SP(i, x):
while top(version[i]) > current ∨

top(timestamp[i]) 6= latest [top(version[i])] do
pop(content [i]);
pop(version[i]);
pop(timestamp[i]);

end;
if top(version[i]) = current ∧ top(timestamp[i]) = latest [top(version[i])] then

top(version[i]) := current ;
top(timestamp[i]) := time;
top(content [i]) := x ;

else
push(version[i], current);
push(timestamp[i], time);

70 Chapter 5. Stack persistent data structures

push(content [i], x);
endif

lookupRAM,SP(i):
while top(version[i]) > current ∨

top(timestamp[i]) 6= latest [top(version[i])] do
pop(content [i]);
pop(version[i]);
pop(timestamp[i]);

end;
return top(content [i]);

backup(k):
current := current − k;

advance:
current := current + 1;
time := time + 1;
latest [current] := time ;

In the version above the version number is no longer automatically incremented
with each update. Instead we have introduced a new procedure, advance, which
makes a new version with the version number current + 1 and makes the new
version current.

Let us now turn to the general problem: Given an ephemeral data structure, how
do we make a stack persistent version of this data structure? Assuming that the
data structure implements the operations update and query the implementation
is as follows:

updateSP(D, x):
Call advance;
Call update(D, x) where all calls to updateRAM(i, v) are replaced with

updateRAM,SP(i, v) and all calls to lookupRAM(i) are replaced
with calls to lookupRAM,SP(i).

querySP (D, x):
Call query(D, x) where all calls to updateRAM(i, v) are replaced with

updateRAM,SP(i, v) and all calls to lookupRAM(i) are replaced
with calls to lookupRAM,SP(i).

backtrackSP(k):
Call backtrack(k).

5.2 Stack persistence on a RAM 71

The efficiency of the stack persistent RAM lends itself to the effieciency of the
general stack persistent data structure, so from proposistion 5.2.1 we get are main
result of this section.

Theorem 6 Given an ephemeral data structure running in time t per operation
and using space n on a RAM, there is a stack persistent version of this data
structure running in amortised time O(t) per update and lookup operation and
worst-case time O(1) per backtrack operation using space 4t+ o(t).

There are two things to note here.

1. The algorithm turns the worst-case time of the data structure into an amor-
tised time. It is not known how to construct a stack persistent data struc-
ture with efficient worst-case time.

2. If the ephemeral data structure has a good amortised running time we are
unable to exploit that fact. We cannot know whether one of the expensive
operations are repeated many times.

This means that where the Union-Find algorithm of Hopcroft and Ullman [30] (see
Section 6.1) has a worst-case running time of O(logn) and an amortised running
time of O(α(n)), the stack persistent version of the Union-Find algorithm has an
amortised running time of O(logn) which is worse than the original algorithm.

Westbrook and Tarjan [76] have devised several algorithms for stack persistence
union-find where each of the operations update, lookup, and backtrack(1) has
amortised complexity O(logn/ log log n). Apostolico et al. [5] have improved
this result by devising an algorithm where update and lookup has worst-case
complexity O(logn/ log logn) and backtrack(k) has worst-case complexity O(1).

Chapter 6

The Constraint Solver

In the OIH constraint domain we had three kinds of relations (see Section 4.7):

• =

• 〈〈RQ, χ〉〉

• νX.〈〈RQ, χ〉〉

The constraint solver must deal with the different components of this constraint
domain. In this chapter we show how to deal with each of the components
separately and then how to combine them into one constraint solver for the entire
domain. The chapter is organised in seven sections. The first four are dealing
with the individual components:

Section 6.1: Dealing with =.

Section 6.2: Dealing with R.

Section 6.3: Dealing with Q.

Section 6.4: Dealing with χ.

Section 6.5 provides two algorithms to be used as subroutines to other algorithms,
Section 6.6 is about the combination of the elements into the full algorithm, and
Section 6.7 deals with the satisfiability of the requirements of Chapter 4.

6.1 Unification on regular terms

Dealing with = on terms is a much researched and well-understood problem
[60, 58]. The algorithm for solving equality constraints (i.e. term equations) is the
unification algorithm. A unification of two expressions e and e′ is an assignment,

74 Chapter 6. The Constraint Solver

ϕ : V → ExprΣ, such that ϕ |= e = e′. If all other unifications, ϕ′, can be written
on the form ϕ′′ ◦ ϕ then ϕ is the most general unifier (or m.g.u.) of e and e′.

The unification described above is on finite terms because we require that ϕ :
V → ExprΣ. For this case Robinson [60] has an algorithm running in linear time.
A more general form of unification would allow infinite solutions. That is, the
assignment could be of the form ϕ : V → Expr∞Σ (from Proposition 1.2.1(2) we
know that the most general solution gives regular trees). In this case Paterson
and Wegman [58] give several algorithms. One of these (Algorithm A) gives a
solution (if one exists) in pseudo-linear time. (They also give an algorithm in
linear time, but this algorithm is harder to make incremental).

The running time of an algorithm is pseudo-linear if it is O(nα(n)) where α(n) is
the inverse to the Ackerman function. The α(n) comes from the use of Hopcroft
and Ullman’s union-find algorithm [30] which is shown to have amortised com-
plexity O(α(n)) in [73].

The union-find algorithm is an incremental algorithm maintaining a set of equiva-
lence classes of the universe 1..n. The algorithm provides the following operations.

– Init(n): Create the equivalence classes {{1}, {2}, . . . , {n}}.

– Union(n, n′): Let S and S ′ is the equivalence classes containing n and n′,
respectively. Remove S and S ′ and insert S ∪ S ′ in their place.

– Find(n): Return the canonical element of the equivalence class containing
n.

The algorithm provides no control over which elements should be the canonical
elements of the equivalence classes, it only assures that they exists so that we
can ask whether two numbers n and n′ are equivalent by asking if Find(n) equals
Find(n′).

We will give an incremental version of Paterson and Wegman’s algorithm here.
Constructing the incremental version from the off-line version is quite straightfor-
ward. The Paterson and Wegman algorithm maintains a set of automaton nodes
which are unified but whose sons may not be. In the incremental version all we
need to do is to insert the nodes of the new equation into this set and proceed
with the body of the original algorithm.

For the extension of our algorithm with the algorithms for the other elements,
we shall represent the solution by means of a special kind of term automaton —
the base automaton.

Definition 6.1.1 Let Σ be a ranked alphabet, V a set of variables, and assume
that (Σ,6) forms a lower semi-lattice where rank(

∧
Σ) = 0. A base automaton

over (Σ,6) is a quadruple M = (Q,P(Σ), L,∆) where

6.1 Unification on regular terms 75

��
��

��
��

��
��

?

PPPPPq

- {f}

{g}

Σ

1

2

{x}

{v, y}
1

{z}

��
��

��
��

��
��

?

PPPPPq

-

?

{f}

{g}

1

2

{x}

{v, y}
1

{z}{f}

(a) (b)

Figure 6.1: Two base automata.

• Q ⊆ P(V) is a finite set of equivalence classes — the states.

• L : Q→ P(Σ) is the labelling function such that for all q ∈ Q, L(q) 6= ∅.

• ∆ : Q × ω → Q is the transition function — a partial function such that
for each q ∈ Q,

{i ∈ ω|(q, i) ∈ dom(∆)} = 1..rank(
∧
L(q))

If rank(
∧

Σ) > 0 we can introduce a new label, Ω, where rank(Ω) = 0, and Ω is
smaller than any label from Σ.

The idea is that we introduce the base automaton as a way of representing the
set of solutions to a set of equations. As an example consider the equation set

x = f(y)

y = g(x, z)

y = v

The base automaton representing the set of solutions to the above equation is
the automaton in Figure 6.1(a).

In the base automaton we can find all the solutions for x by looking at the
automaton with initial state {x}. That L({z}) = Σ corresponds to the fact that
the equation set has no constraint on what z should be. We can look at another
automaton which also represents a set of solutions to the equation set — the
base automaton in Figure 6.1(b). The set of solutions that this base automaton
represents is the singleton set with the unique solution for which z = f(f(f(. . .))).

We have then that the automaton in Figure 6.1(a) is more general than the one
in Figure 6.1(b). When a base automaton, M , is more general than another, M ′,
we shall write M b M ′. Let us move towards the formal definition of b. Since

76 Chapter 6. The Constraint Solver

the rank of a set of labels is the rank of their greatest lower bound, we need to
consider how ranks change when we move up in the ordering. For this we need
to look at the relabeling function.

Let v ∈
⋃
Q. We write Qv for the unique equivalence class such that v ∈ Qv

and Qv ∈ Q. If q ∈ Q we write dqe for the canonical element of q. Now we can
define a relabeling function over addresses as follows. Let M = (Q,P(Σ), L,∆)
and M ′ = (Q′,P(Σ), L′,∆′) be base automata, and let v ∈ (

⋃
Q) ∩ (

⋃
Q′). We

define the relabeling function ρvM,M ′ : ω
∗ → ω∗ inductively as follows:

• ρvM,M ′(ε) = ε

• Assume that ρvM,M ′(α), ∆(Qv, α), and ∆′(Q′v, ρ
v
M,M ′(α)) are all defined.

Let σ =
∧
L(∆(Qv, α)) and σ′ =

∧
L′(∆′(Q′v, ρ

v
M,M ′(α))). If σ 6 σ′ and

i ∈ 1..rank(σ) we define ρvM,M ′(αi) = ρvM,M ′(α)ρσ6σ′(i).

Basically, ρvM,M ′ is the inductive extension of ρ to addresses, but we need to take
care so that the definition always makes sense.

Definition 6.1.2 Let M = (Q,P(Σ), L,∆) and M ′ = (Q′,P(Σ), L′,∆′) be base
automata. We say that M ′ specialises M (or equivalently that M generalises M ′)
and write M bM ′ iff the following hold.

1.
⋃
Q =

⋃
Q′

2. For all q ∈ Q there is a q′ ∈ Q′ such that q ⊆ q′.

3. For all v ∈
⋃
Q we have that if α ∈ ω∗ is accepted by (Q,P(Σ), Qv, L,∆)

then ρvM,M ′(α) is defined, ρvM,M ′(α) is accepted by (Q′,P(Σ), Q′v, L
′,∆′), and

L′(∆′(Q′v, ρ
v
M,M ′(α))) ⊆ L(∆(Qv, α)).

The second requirement in the definition says that if M ′ specialises M then the
variables that are equivalent in M should also be equivalent in M ′, so that the
equations remain valid in all specialisations. This means that if M is the base
automaton in Figure 6.2(a) and M ′ is the base automaton in Figure 6.2(b) then
M b M ′ but M ′ 6b M . We say that M ′ is obtained from M by the unification
of y and z.

The automaton in Figure 6.1(b) is special because it corresponded to a unique
solution. We say that the base automaton M = (Q,P(Σ), L,∆) is definite if for
all q ∈ Q, we have that there is a σ ∈ Σ so that L(q) = {σ}. If M is definite we
define for each v ∈

⋃
Q the automaton Mv defined as

Mv = (Q,Σ, Qv, l,∆)

where l(q) = σ if L(q) = {σ}. In this way a definite automaton defines a solution
SM(v) = tMv . Now we can define the solution space of a general base automaton,

6.1 Unification on regular terms 77

��
��

��
��

��
��
�

�
�=

Z
Z
Z~

{g}

Σ Σ

1 2

{x}

{z}{y}

��
��

��
��

.................

.................R

.................

.................	

{g}

1 2

{x}

Σ {y, z}

(a) (b)

Figure 6.2: Unifying two variables.

M , as
L(M) = {SM ′ : V → RegΣ|M ′ is definite ∧M b M ′}

The central step in the algorithm is that of the unification of two states. For
the automaton in Figure 6.2(a) this was quite easy, but in general we have to
do slightly more work. The unification algorithm maintains a base automaton,
M = (Q,P(Σ), L,∆), and uses a set of (equality) constraints, C. The algorithm
is shown in Figure 6.3.

The NewVariable procedure constructs a new state {v} where v is a new variable
and L({v}) = Σ. It then returns v.

Since the UnifyVar procedure may introduce a new variable, it may extend the
domain of the solutions. Hence, the solution spaces of the base automaton before
and after the call to UnifyVar(v, v′) could be incomparable. In order to be better
able to reason about these solution spaces we shall identify two assignments
that are equal when restricted to a given set of original variables. With this
understanding we get the following lemma.

Lemma 6.1.1 The set L(M)∩L(C) is invariant for the while-loop in UnifyVar.

Proof: Follows by straightforward induction. 2

Corollary 6.1.2 Let M be the base automaton before the call to UnifyVar(v, v′)
and M ′ be the base automaton after the call. Then we have

L(M ′) = {ϕ ∈ L(M)|ϕ(v) = ϕ(v′)}

Now we can use the UnifyVar procedure for solving equality constraints. First we
need to deal with the expressions. Let e be an expression andM = (Q,P(Σ), L,∆)
a base automaton, and assume that we have a variable ve′ for every subexpression
e′ of e, such that ve′ = v if e′ = v and ve′ is a new variable if e′ is on the form
σ(e′′1, . . . , e

′′
k). We define the base automaton of M and e, base(M, e) recursively

as follows.

78 Chapter 6. The Constraint Solver

Procedure UnifyVar(v, v′);
C := {v = v′};
while C 6= ∅ do

Let v1 =v2 ∈ C;
C := C \ {v1 = v2};
if Qv1 6= Qv2 then

if L[Qv1] ∩ L[Qv2] = ∅ then
Output “Unsatisfiable” and halt.

else
Q := Q \ {Qv1 , Qv2} ∪ {Qv1 ∪Qv2};
L[Qv1 ∪Qv2] := L[Qv1] ∩ L[Qv2];
σ1, σ2, σ12 :=

∧
L[Qv1],

∧
L[Qv2],

∧
L[Qv1 ∪Qv2];

for i ∈ 1..rank(σ12) do
if i ∈ codom(ρσ16σ12) ∩ codom(ρσ26σ12) then

∆[Qv1 ∪Qv2 , i] := ∆[Qv1 , ρσ16σ12
−1(i)];

C := C ∪ {d∆[Qv1 , ρσ16σ12
−1(i)]e = d∆[Qv2 , ρσ26σ12

−1(i)]e}
elseif i ∈ codom(ρσ16σ12) then

∆[Qv1 ∪Qv2 , i] := ∆[Qv1 , ρσ16σ12
−1(i)]

elseif i ∈ codom(ρσ26σ12) then
∆[Qv1 ∪Qv2 , i] := ∆[Qv2 , ρσ26σ12

−1(i)]
else

∆[Qv1 ∪Qv2 , i] := {NewVariable}
end

end
end

end
end

end UnifyVar

Figure 6.3: The UnifyVar procedure.

• base(M, v) = M

• Let e = σ(e′1, . . . , e
′
k) and for each j, base(M, e′j) = (Qj,P(Σ), Lj ,∆j).

Then we have that base(M, e) = ({{ve}} ∪
⋃k
j=1Qj,P(Σ), L′,∆′), where

L′(q) =

{
Lj(q) if q ∈ Qj

{σ} if q = {ve}

∆′(q, i) =

{
∆j(q, i) if q ∈ Qj

q′ if q = {ve} ∧ vei ∈ q′

The Unify procedure for solving equality constraints consists simply of two calls
to base and a single call to UnifyVar:

6.1 Unification on regular terms 79

Procedure Unify(e, e′)
M := base(base(M, e), e′);
UnifyVar(ve, ve′)

end Unify

That this is correct is follows from corollary 6.1.2. Hence we have the following.

Proposition 6.1.3 Let M be the base automaton before the call to Unify(e, e′)
and M ′ be the base automaton after the call. Then we have

L(M ′) = L(M) ∩ L(e = e′)

It follows that if we can initialise the base automaton correctly, we can solve a
set of equality constraints. This initialisation is quite straightforward. Let L0 be
defined as L0({v}) = Σ and ∆0 be everywhere undefined. Then the initialisation
procedure is as follows.

Procedure InitM
M := ({{v}|v ∈ V},P(Σ), L0,∆0)

end InitM

Now we can formulate the correctness of unification.

Proposition 6.1.4 Let C = {e1 = e′1, . . . , em = e′m} be a set of term equations,
and the M be the base automaton obtained by the calls

InitM ; Unify(e1, e
′
1); . . . ; Unify(em, e

′
m)

Then L(M) = L(C).

Proof: Follows by induction from Proposition 6.1.3. 2

For the analysis of the procedure we note that we cannot unify two variables more
that |V| times since the size of the state set decreases every time. Each time we
unite two variables we use time to unite the states, calculate the intersection,
and update ∆. If we use the Union-Find structure to implement the states
and bit vectors to implement the labels, we get an amortised running time of
O(α(n) + s+ r) where n = |V|, s = |Σ|, and r is the rank of the new label.

Since there is a variable for each subterm of the expressions in our equality con-
straints, we have that the size of V will be the sum of the sizes of the expressions.
So let n be the sum of the sizes of all the expressions in the equality constraints,
s = |Σ|, and r the highest rank that any label will get. Then we have the
following.

80 Chapter 6. The Constraint Solver

Proposition 6.1.5 The total running time of the calls

InitM ; Unify(e1, e
′
1); . . . ; Unify(em, e

′
m)

is O(n · (α(n) + s + r)).

In the case where all constraints are on the form e = e′, all the labels in the base
automaton are either a singleton set or Σ. We can use this fact to get a more
efficient implementation of the intersection of the label. Furthermore, we can see
that all labels stem from the input, and hence we can get a bound on the rank of
the labels in terms on n. In this case then we can get a running time of O(nα(n))
which is what Paterson and Wegman does in [58].

In the general case where the constraints could be any constraints from ΓOIH we
cannot assume that the sets have this form, though, and we are stuck with the
running time of Proposition 6.1.5 above.

We can use the base automaton to extract the information we want. For instance
we could define a variable vq for every q ∈ Q such that L(q) = Σ. Then let the
automaton Mmgu = (Q,P(Σ ∪ V), Lmgu,∆) be defined by

Lmgu(q) =

{
{vq} if L(q) = Σ
L(q) otherwise

Then L(Mmgu) has only one element — the most general unifier of the set of
equations.

As an example, which is more relevant for this work, we can define Mmin =
(Q,P(Σ), Lmin,∆) by Lmin(q) = {

∧
L(q)}. Then the only element of L(Mmin) is

the 6Σ-least solution to the set of equations.

6.2 Arc Consistency

The arc consistency problem is the problem of finding a conservative approxima-
tion to the set of solutions to a constraint satisfaction problem (see Section 4.2)
by assigning to each variable the set of values it can assume. The problem is
finding an approximation that is (arc) consistent. That is, no value should be
present which cannot appear in a tuple where all other values are present. The
approximation for a variable v is called the domain of v and is written D(v), the
function D : V → P(Σ) is called the domain assignment.

As an example of arc consistency, let Σ = {a, b} and consider the constraint
R(v, v′), where R = {(a, a), (b, a), (b, b)}. Now, assume that for some reason we
know that v cannot take the value b, so we have D(v) = {a}. This situation is

6.2 Arc Consistency 81

a

b

�
�

�
��

a

b

a

b.............
........

.............
........

.............
........a

b
........

.............
........

.............
........a

b b

a

(a) (b) (c)

Figure 6.4: An example of arc consistency.

illustrated in Figure 6.4(a), where the column on the left is D(v), the column on
the right is D(v′), the boxed values are the ones belonging to the domains, and
the lines illustrates the relation R.

We can see that two of the pairs in R will not be relevant since they assume
that v is b, which we know it cannot be. These pairs are the dashed lines in
Figure 6.4(b). Now, that we know that only the solid line represent a possible
solution we have that since b in D(v′) is adjacent to no solid line from R, we can
remove it from D(v′) without losing any possible solutions. This is the situation
in Figure 6.4(c).

We say that a ∈ D(v) is the support for a ∈ D(v′) and that b ∈ D(v′) is
unsupported. A domain is consistent if there are no unsupported values. For
simplicity, we assume that the constraint set is permutation-closed in the formal
definition of consistency. We say that a set of constraints, C, is permutation-
closed, iff for each constraint R(v1, . . . , vn) ∈ C and each permutation π : 1..n→
1..n we have that Rπ(vπ(1), . . . , vπ(n)) ∈ C.

Definition 6.2.1 Let Σ be a finite set of values, D : V → P(Σ) a domain
assignment, and C a permutation-closed set of constraints over CSPΣ. We say
that D is consistent with respect to C, iff

∀v ∈ V, R(v, v1, . . . , vn) ∈ C, d ∈ D(v) : R ∩ ({d} ×
n∏
i=1

D(vi)) 6= ∅

If C is not permutation-closed it is consistent iff its closure under permutation is
consistent. In the definition above the set R∩ ({d}×

∏n
i=1 D(vi)) corresponds to

the solid lines which are adjacent to d.

In the binary case we say that the domain assignment is node consistent if it is
consistent with respect to the node constraint, and arc consistent if it is consistent
with respect to the arc constraints. It is easy to see that a domain assignment is
node consistent iff for all v ∈ V and R(v) ∈ C we have D(v) ⊆ R, and that it is
arc consistent iff for each v ∈ V and R(v, v′) ∈ C we have that for each d ∈ D(v)
there is a d′ ∈ D(v′) such that R(v, v′). This is the definition of node and arc
consistency usually given in the literature (e.g. in [50, 22]).

82 Chapter 6. The Constraint Solver

It follows directly from Definition 6.2.1 that the domain assignment D(v) = ∅ is
consistent with respect to any set of constraints. This is of course a far cry from
being conservative, so we will look for the proper consistent assignment. We need
then to look at some of the properties of consistency.

Lemma 6.2.1 Let Σ be a finite set of values and C a permutation-closed set of
constraints over CSPΣ. We have the following.

1. Let ϕ : V → Σ and define D : V → P(Σ) as D(v) = {ϕ(v)}. Then D is
consistent with respect to C, iff ϕ is a solution to C.

2. Let D : V → P(Σ) and D′ : V → P(Σ) be consistent with respect to C.
Then D′′ : V → P(Σ) defined as D′′(v) = D(v) ∪ D′(v) is consistent with
respect to C.

Proof: Both properties follow directly from Definition 6.2.1. 2

Corollary 6.2.2 Let Σ be a finite set of values and C a permutation-closed set
of constraints over CSPΣ. There is a maximal, consistent domain assignment
with respect to C.

Proof: Define D : V → P(Σ) as

D(v) =
⋃
{D′(v)|D′ is consistent}

It follows from Lemma 6.2.1(2) that D is consistent, and from the definition of
D it follows that it is greater than all other consistent domain assignments. 2

This maximal, consistent domain assignment is the conservative approximation
we are looking for. The conservativity is shown below.

Proposition 6.2.3 Let Σ be a finite set of values, C a permutation-closed set of
constraints over CSPΣ, and D the maximal, consistent domain assignment with
respect to C. We have the following:

∀ϕ : V → Σ. ϕ |= C ⇒ ∀v ∈ V : ϕ(v) ∈ D(v)

Proof: Assume to the contrary that ϕ |= C but ϕ(v) 6∈ D(v). By Lemma 6.2.1
we have that D′ defined as D′(u) = D(u) ∪ {ϕ(u)} is consistent. But then we
have a consistent domain assignment D′ such that D(v) (D′(v) in contradiction
with the maximality of D. 2

Mohr and Henderson[50] has devised an efficient algorithm for computing the
maximal arc and node consistent domain assignment for a binary constraint sat-
isfaction problem. Frigioni, Machetti-Spaccemela, and Nanni [22] has an incre-
mental version of that algorithm. The running time of both algorithms is O(s2m),

6.2 Arc Consistency 83

where s = |Σ| and m = |C|. If we assume that the relations are represented as
bit matrices then s2m is exactly the size of the input. The algorithms are thus
optimal.

We will show a generalisation of the latter of these algorithms to the general case.
The algorithms in [50, 22] assumes that the constraint set is permutation-closed.
Since the rank of the relations is at most 2, this only gives a computational
overhead of a factor of 2. In our case however the rank of the relations can be
arbitrarily high. Assume that the rank of the relations is n. Then computing
the permutation closure of the constraint set gives a computational overhead of
a factor of n! which is clearly unreasonable. Instead, we implement the relations
in such a way that all the permuted relations are implicitly represented.

The algorithm uses the following data structures:

• The domain assignment, D[v], implemented by an array of bit vectors.

• The support sets, Support [C, v, d], implemented as a bit vector and an array
of pointers to tuples. The support set Support [R(v1, . . . , vn), v, d], where
v = vi, is the set R ∩ (

∏i−1
j=1D[vj]× {d} ×

∏n
j=i+1D[vj]).

• The adjacency sets, E[v], implemented as an array of linked lists. For each
variable v, E[v] is the set {(R(v1, . . . , vn), i) ∈ C × ω|v = vi}.

• The relations, R, implemented as an array (or linked list) of tuples, which
are implemented as an array of values.

• The prune queue, P , implemented by standard methods. The prune queue
is a queue of pairs, (v, d), where we have removed d from D[v] during the
pruning process. We have access to P through the procedures RemoveFirst
and InsertQueue.

The index in E[v] defines which of the permutations of R is adjacent to v. This
is sufficient for the algorithm.

The important step in the procedure is that of pruning (“implicit deletion” in
[22]). Pruning is the repetition of the procedure illustrated in Figure 6.4 until no
unsupported values exist. The procedure Prune can be seen in Figure 6.5.

In [22] the increment step is taken by removing pairs from the relation between
two variables and calling Prune to restore arc consistency. Initially, the constraint
Σ2(v, v′) is present for all v, v′ ∈ V, and the insertion of a constraint, R(v, v′), is
done by removing the pairs in D[v]×D[v′]\R. Here, we will have no constraints
initially, but we will insert the relations when they appear and then simulate the
removal of the pairs

∏n
i=1D[vi] \R. The procedure Insert is shown in Figure 6.6.

84 Chapter 6. The Constraint Solver

Procedure Prune;
while P 6= ∅ do

(v, d) := RemoveFirst(P);
for (R(v1, . . . , vn), i) ∈ E[v] do

for (d1, . . . , dn) ∈ Support [R(v), v, d], j ∈ 1..n \ {i} do
Support [R(v), vj, dj] := Support [R(v), vj , dj] \ {(d1, . . . , dn)};
if Support [R(v), vj, dj] = ∅ ∧ dj ∈ D[vj] then

D[vj] := D[vj] \ {dj};
InsertQueue(P, d, vj)

end
end

end
end

end Prune

Figure 6.5: The Prune procedure.

Procedure Insert(R(v1, . . . , vn))
for i ∈ 1..n do

E[vi] := E[vi] ∪ {(R(v1, . . . , vn), i)};
for d ∈ D[vi] do Support [R, vi, d] := ∅ end

end;
for (d1, . . . , dn) ∈ R ∩ (

∏n
i=1D[vi]), i ∈ 1..n do

Support [R, vi, di] := Support [R, vi, di] ∪ {(d1, . . . , dn)}
end;
for i ∈ 1..n, d ∈ D[vi] do

if Support [R, vi, d] = ∅ then
D[vi] := D[vi] \ {d};
InsertQueue(P, vi, d)

end
end;
Prune

end Insert

Figure 6.6: The Insert procedure.

6.2 Arc Consistency 85

The initialisation of the data structures is quite straightforward:

Procedure InitD
for v ∈ V do

D[v] := Σ;
E[v] := ∅

end
P := ∅

end InitD

The correctness of the procedure follows from the following fact about arc con-
sistency.

Lemma 6.2.4 Let Σ be a finite set of values and C a permutation-closed set of
constraints over CSPΣ. Define the function FC : (V → P(Σ))→ (V → P(Σ)) as

FC(D)(v) =
⋂
R(v,v1,...,vn)∈C{d ∈ D(v)|({d} ×

∏n
i=1 D(vi)) ∩R 6= ∅}

Then FC(D) = D, iff D is consistent with respect to C.

Proof: Follows directly from Definition 6.2.1. 2

It follows that the maximal, consistent domain assignment with respect to C is
the largest fixpoint of FC.

Proposition 6.2.5 Let C = {C1, . . . , Cm} ⊆ CSPΣ[V]. The domain assignment
obtained by calling

Init; Insert(C1); . . . ; Insert(Cm)

is the maximal, consistent domain assignment with respect to C.

Proof: Since the call to Prune is a fixpoint iteration for the largest fixpoint of
FC the proposition follows by straightforward induction in m. 2

The complexity of the general algorithm is optimal as shown in the following.
For simplicity we assume that |Σ| ≤ |R| for the relations in the constraint set.
Hardly a controversial assumption given that |R| can be as high as |Σ|rank(R).

Proposition 6.2.6 The amortised complexity of the incremental consistency al-
gorithm is O(|V|) for a call to Init and O(n· |R|) for a call to Insert(R(v1, . . . , vn)).

Proof: We will analyse the complexity by the potential function method of
Tarjan [72]. Let the potential function Φ be defined as

Φ = c ·
∑

R(v1,...,vn)∈C

n · |R ∩
n∏
i=1

D[vi]|

86 Chapter 6. The Constraint Solver

Where c > 0 is some constant. The complexity of Init follows directly from this
since Φ = 0 after the call to Init.

Let us look at a call to Insert(R(v1, . . . , vn)). The running time of the call without
the call to Prune is at most O(n · (|Σ| + |R|)) ≤ O(n · |R|) (by assumption). It
is clear that Φ cannot increase by more than n · |R| what remains to be shown is
that the time of the call to Prune has an amortised running time of O(1).

Let us look at a single run through the outer while-loop. The loop begins with
finding a pair (v, d) on the queue. That the pair is in fact on the queue means
that d has been removed from D[v] during this call to Insert. The removal of D[v]
has brought a decrease in Φ. The size of this decrease is

∆Φ = c ·
∑

(R(v1,...,vn),i)∈E[v]

n · |R ∩ (

i−1∏
j=1

D[vj]× {d} ×
n∏

j=i+1

D[vj])|

= c ·
∑

(C,i)∈E[v]

n · |Support [C, v, d]|

The time for the inner for-loop is O(n · |Support [C, v, d]|) and hence the time of a
single run through the while-loop is O(

∑
(C,i)∈E[v] n · |Support [C, v, d]|). It follows

that we can choose c such that ∆Φ is greater than the running time of Prune.
The proposition follows. 2

If we cannot assume that |Σ| ≤ |R| we would have to write the running time of
Insert(R(v1, . . . , vn)) as O(n · (|R| + |Σ|)). This would be necessary in e.g. the
degenerate case where all the relations are singleton sets.

Note that in the binary case we have n ≤ 2 and |R| ≤ |Σ|2. So for binary CSP
the running time of the algorithm reduces to amortised O(|Σ|2) for each insert
— the same as in [22].

Now we have the results necessary to make good on our promise from Section 4.2
to show that the stable constraint satisfaction problem is solvable in linear time.
First we need to know the following about the relation between consistency and
lower semi-lattices.

Lemma 6.2.7 Let (Σ,6) be a lower semi-lattice, C a set of constraints over
CSPΣ, and D a consistent domain assignment with respect to C. Assume that
R(v1, . . . , vn) ∈ C. If for all i ∈ 1..n we have D(vi) 6= ∅, then we have the
following.

• R ∩ (
∏n

i=1D(vi)) 6= ∅

•
∧

(R ∩ (
∏n

i=1D(vi))) =
∧

(
∏n

i=1 D(vi))

Proof: Follows directly from Definition 6.2.1 and the definition of
∧

. 2

6.3 Infinite Alphabets and Consistency 87

This leads to the central proposition about stability and consistency.

Proposition 6.2.8 Let (Σ,6) be a lower semi-lattice, C a set of 6-stable con-
straints over CSPΣ, and D the maximal, consistent domain assignment with re-
spect to C. Then we have:

1. If there is a variable v ∈ V such that D(v) = ∅ then C is unsatisfiable.

2. If D(v) is non-empty for all variables v ∈ V then the assignment ϕ : V → Σ
defined as ϕ(v) =

∧
D(v) is the 6-least solution to C.

Proof:

1. Follows from Proposition 6.2.3.

2. Let R(v1, . . . , vn) ∈ C be arbitrary. From Lemma 6.2.7 we have that R ∩
(
∏n

i=1D(vi)) 6= ∅, and hence by the stability of R,
∧

(R∩(
∏n

i=1 D(vi))) ∈ R.
Using Lemma 6.2.7 again we get that (ϕ(v1), . . . , ϕ(vn)) =

∧
(
∏n

i=1D(vi)) =∧
(R∩(

∏n
i=1D(vi))). Hence we have that R(ϕ(v1), . . . , ϕ(vn)) as requested.

The minimality of ϕ follows from the definition of ϕ and Proposition 6.2.3.

2

This leads to the main theorem of this section.

Theorem 7 There is an optimal, incremental algorithm for the stable constraint
satisfaction problem.

Proof: Follows from Propositions 6.2.5, 6.2.6, and 6.2.8. 2

It follows that there is a linear algorithm for the satisfiability of Horn formulae.
This well-known fact is proven in e.g. [63], where an algorithm is given which
finds the ⇒-least solution just as we do here.

6.3 Infinite Alphabets and Consistency

If the alphabet is of the form ΣE we need to be able to deal with relations on
the form RQ. The way to deal with them is to apply the definitions of stability
(Definition 4.2.2) and consistency (Definition 6.2.1) to infinite alphabets as well
and compute consistent, infinite domain assignments. As we saw in the definition
of RQ in Section 4.3 we only need to deal with cone sets and singleton sets of
extensions.

Now, let us write ê for the cone set {e′ ∈ Eσ|e′ �σ e}, and σ[E] = {σ[e]|e ∈ E} if
E ⊆ Eσ, and let R = {(σ, σ) ∈ Σ} and let Q(σ, σ) = {1 �σ 2} if σ ∈ dom(E) and

88 Chapter 6. The Constraint Solver

Q(σ, σ) = ∅ otherwise. If D(v) = σ[ê] and D(v′) = σ[ê′] we have that D is arc
consistent with respect to the constraint RQ(v, v′), iff e �σ e′.

The above example serves to illustrate that when the constraint satisfaction prob-
lem is resolved with respect to the finite part of the alphabet the problem reduces
to a problem of solving �σ constraints over the extensions. In fact, this is possible
in general as we shall see in the following.

We operate with two domain assignments: D : V → P(Σ) and DE : V →
P(
⋃
σ∈dom(E) E(σ)). The domain assignment D is the normal domain assignment

from the consistency algorithm and DE is the extension domain assignment which
assigns the extensions to the variables. If S ⊆ Σ and S ′ ⊆

⋃
σ∈dom(E) E(σ) we

define the set of extended labels from S and S ′ as

S[S ′] = (S \ dom(E)) ∪
⋃

σ∈dom(E)

{σ[e]|e ∈ S ′ ∩ E(σ)}

Then the actual domain of v is D(v)[DE(v)].

The extension domain DE(v) can take on three different kinds of values.

1. A singleton set DE(v) = {e}.

2. A cone set DE(v) = ê.

3. An unlimited set DE(v) =
⋃
σ∈dom(E) E(σ). We denote this set by the special

symbol >.

By using > we avoid the need to have sets of the form ⊥̂σ1 ∪ . . . ∪ ⊥̂σn , since

{σ1, . . . , σn}[⊥̂σ1 ∪ . . . ∪ ⊥̂σn] = {σ1, . . . , σn}[>].

The algorithm proceeds by performing arc consistency on the finite parts of the
alphabet and relations only and considering a sufficient number of inequality
constraints. The inequality constraints we need to consider are the inequality
constraints from Q(

∧
(R∪

∏
iD(vi))). Due to the monotonicity of Q any solution

will have to satisfy these constraints.

Since we have that the constraints in Q(σ1, . . . , σn) are of the form i �σ j, where
σ = σi = σj , we can be assured that once there is a constraint of the form
v �σ v′ we have that D(v) = D(v′) = {σ}. Hence we have for each σ ∈ dom(E) a
constraint set where the constraints are of the form v �σ v′. All these inequality
subsystems are disjoint (i.e. no variable appears in more than one constraint set),
so we can solve each of them separately without any consideration about the
others.

Let D be the maximal, consistent domain assignment for the finite subproblem,
and DE the extension domain assignment which is the maximal, (arc) consistent
domain assignment when restricted to each inequality subsystem and hasDE(v) =

6.3 Infinite Alphabets and Consistency 89

Procedure Insert⊆(i, j)
for k ∈ DE [i] \DE [j] do

S := {j};
DE [j] := DE [j] ∪ {k};
while S 6= ∅ do

v := Pop(s);
for w ∈ E[v] do

if k 6∈ DE [w] then
DE [w] := DE [w] ∪ {k};
Push(S,w)

end
end

end
end;
E[i] := E[i] ∪ {j}

end Insert⊆

Figure 6.7: The Insert⊆ procedure.

> for all variables not in any inequality subsystems. We have that the assignment
ϕ defined as

ϕ(v) =

{
(
∧
D(v))[fDE(v)] if

∧
D(v) ∈ dom(E)∧

D(v) otherwise

is the least solution to the constraint set. This follows directly from Proposi-
tion 6.2.8 and the monotonicity of Q.

The remaining problem is that of solving the arc consistency problem over the
domains E(σ). The best way to do it is domain-specific. We will show an efficient
algorithm for sets of field names. Then we will show how this can in principle
be generalised to work for arbitrary domains. Only in the latter case there is no
guarantee that this will be an efficient way of doing it.

The algorithm is inspired by the incremental transitive closure algorithm of La
Poutré and van Leeuwen [43]. To see what a transitive closure has to do with
set inclusion constraints consider the following reduction. Let G = (V,E) be
a directed graph. Now we construct a constraint set in the following way: For
each node v ∈ V we have a variable, [[v]]. For each node we have the reflexivity
constraint {v} ⊆ [[v]], and for each edge (v, v′) ∈ E we have the closure constraint
[[v]] ⊇ [[v′]]. Then the least solution to the constraint system assigns to each
variable [[v]] the set of nodes that are reachable from v.

La Poutré and van Leeuwen’s transitive closure algorithm works in the following
way. When inserting an edge from i to j, then for each k such that i is reachable

90 Chapter 6. The Constraint Solver

from k we proceed by depth-first search through all the nodes k′ reachable from
j which was not reachable from k before the insertion of (i, j). For each such
pair (k, k′) we update the transitive closure so that k′ is reachable from k. Our
algorithm is based on the dual of La Poutré and van Leeuwen’s algorithm. That
is, the algorithm which for every node reachable from j but not from i goes
through the predecessors of i by reverse depth-first search and makes the same
updates as before. This means that we make the search in the direction of the
⊆-constraints.

The algorithm is described by the procedure Insert⊆ in Figure 6.7. It maintains
a least solution, DE , to a set of set inclusion constraints under the insertion of
a constraint i ⊆ j. In order to do this it maintains the adjacency list E[v] =
{w|v⊆w ∈ C}. The algorithm uses the adjacency list to do a depth-first search
for edges (i, j) (that is, constraints i ⊆ j) where k ∈ DE [i] but k 6∈ DE [j] it then
pushes k along the edge (i, j) so that k ∈ DE [j] afterwards.

It is a shortcoming of the insert procedure that it can deal with constraints of
the form i ⊆ j only. If all constraints are of this form the smallest solution will
be DE [v] = ∅. We add constraints of the form α ⊆ j by making a new variable
i with DE [i] = α and E[i] = ∅. We mark i and call Insert⊆(i, j), where we have
made the change that if we try to change the value of DE [v] where v is marked,
we stop and output “Unsatisfiable”.

We can see that no value can be pushed along the same edge twice. So if n is
the number of different values occurring in the sets and we implement the sets
by bitvectors, then the total running time of m calls to the Insert⊆ procedure is
O(mn) — the same complexity as in [43]. In other words the Insert⊆ procedure
has an amortised running time of O(n).

In the general case where we do not know what the lattice is, we cannot just push
single elements along the edges — we have to push the whole extension along the
edges. Instead of the expression DE [v]∪{k} we must use the expression DE [v]ge,
where e is the extension pushed along the edge to v. This leads us to the general
algorithm shown as the procedure Insert� in Figure 6.8.

The analysis from Insert⊆ above breaks down on two accounts:

1. There is no bound on the number of times we can perform the operation
DE [v] := DE [v]gDE [w].

2. There is no way of knowing what the running time of computing g is.

Still, there is something we can say. Since we perform a depth-first search we can
know that we make no more than O(m) computations of g.

We thus arrive at our main result.

6.4 Computing the Conditionals 91

Procedure Insert�(i, j)
if DE [i] 6� DE [j] then

S := {j};
DE [j] := DE [j]gDE [i];
while S 6= ∅ do

v := Pop(s);
for w ∈ E[v] do

if DE [i] 6� DE [w] then
DE [w] := DE [w]gDE [i];
Push(S,w)

end
end

end
end;
E[i] := E[i] ∪ {j}

end Insert�

Figure 6.8: The Insert� procedure.

Theorem 8

1. There is an incremental constraint solver for the set inclusion problem on
finite sets running in amortised time O(n) for each insert operation, where
n is the number of different elements in the set.

2. There is an incremental constraint solver for the � problem running in
worst-case time O(m · T [[g]]), where m is the number of constraints and
T [[g]] is the time for computing g.

If we use the second of these results we get that there is an incremental solver
for the set inclusion problem on finite sets running in worst-case O(m · T [[∪]]) =
O(mn) time. This is also the worst-case time of Insert⊆. The only difference is
that it has a better amortised running time.

6.4 Computing the Conditionals

The strategy from the previous section was to consider only the � constraints
that arose in connection with the smallest current solution. The same strategy
applies to the conditionals as well. It works for the same reasons as in the previous
section: The conditions function is monotone. This means that if the constraints
that are forced in the smallest solution constitutes an unsatisfiable set, so does
every set of forced constraints.

92 Chapter 6. The Constraint Solver

..........
..........
.....

&

..........
..........
.....

&

..........
..........
.....

&

..........
..........
.....

&

..........
..........
.....

&

uu

6 6

α1 α2 α3 α4 α5

, : C∀ l1 ∈ l2 ∈

Figure 6.9: The &-network for ∀l1 ∈ α1 &α2 &α3, l2 ∈ α1 &α3 &α4 &α5 : C.

It is quite easy to compute the constraint corresponding to a conditional con-
straint. The problem is computing χQ that is to compute Def(QC , σ) for a
quantified constraint QC .

What we need to do is to compute the new constraints from Def(QC , σ). That
is, we assume that we have computed the constraints from Def(QC , σ′) for some
σ′ 6 σ, and want to compute the remaining constraints Def(QC , σ)\Def(QC , σ′).

Consider the quantified constraint

QC = ∀l1 ∈ α1 &α2 &α3, l2 ∈ α1 &α2 &α4 &α5 : C

This quantified constraint represents a set consisting of one conditional con-
straint for each element of 1..|α1 f α2 f α3| × 1..|α1 f α3 f α4 f α5|. Now, let
α′1 � α1, α

′
2 � α2, etc. and assume that we have computed the constraints for

the elements of 1..|α′1fα′2fα′3| × 1..|α′1fα′3fα′4fα′5|. Now which are the new
constraints we should compute? Clearly this depends on the relabeling function
ρ(α1fα2fα3)�(α′1fα′2fα3).

For simplicity we shall assume that there is an extension, >, such that for all
extensions, e, appearing in the solution, e � >. Now we define for each extension,
e, the set P(e) = {ρe�>(i)|i ∈ 1..|e|}. Now, the transitivity rule of Definition 4.3.4
assures that whenever e′ ≤ e′ we have that ρe′≤>(ρe≤e′(i)) = ρe≤>(i) so that we
can address the subterms by the numbers ρe≤>(1), . . . , ρe≤>(|e|) instead of 1,
. . . , |e|, and be assured that these numbers never change throughout the running
of the algorithm.

From the smoothness of ρ it follows that P(efe′) = P(e)∩P(e′). So the problem
of computing the conditional constraints reduces to the problem of computing

((
⋂
i∈{1,2,3} P(αi))× (

⋂
i∈{1,3,4,5} P(αi))) \ ((

⋂
i∈{1,2,3} P(α′i))× (

⋂
i∈{1,3,4,5} P(α′i)))

6.4 Computing the Conditionals 93

To compute this efficiently we build an &-network consisting of an &-gate for each
& in the quantified constraint. The &-network for QC is shown in Figure 6.9.

With this network in place we can compute the set above if we can perform two
operations:

1. Given P(α1) \ P(α′1), P(α2) \ P(α′2), P(α′1), and P(α′2) we must compute
(P(α1) ∩ P(α2)) \ (P(α′1) ∩ P(α′2)).

2. Given P(α1) \ P(α′1), . . . , P(αk) \ P(α′k) and P(α′k), . . . , P(α′k) we must

compute
∏k

i=1 P(αi) \
∏k

i=1 P(α′i).

This is made easier by the realisation that we only need to look at sets in certain
forms. In the Insert� procedure (Figure 6.8) all changes were of the form D[w]
:= D[w]gD[i]. We get from the smoothness of ρ that P(e g e′) = P(e) ∪ P(e′).
So we only have three cases for each input to the &-gates:

1. α1 = α′1 ∪ β, α2 = α′2 ∪ β

2. α1 = α′1 ∪ β, α2 = α′2 (or vice versa)

3. α1 = α′1, α2 = α′2

The last case is trivial. The first two cases are dealt with by using the following
identities:

1. (α′1 ∪ β) ∩ (α′2 ∪ β) \ (α′1 ∩ α′2) = (β \ α′1) ∪ (β \ α′2)

2. ((α′1 ∪ β) ∩ α′2) \ (α′1 ∩ α′2) = (β \ α′1) ∩ α′2

In this way we minimise the extra work needed to compute the new sets. In fact,
if we implement the α′i as bitvectors the computation time is linear in the size
of the input. (Keep in mind that the input to the &-gate is β \ α′1 and β \ α′2.)
That is, the time for performing the computation in a whole network is at most
|β| times the size of the network.

In a similar way we compute the product
∏k

i=1 P(αi)\
∏k

i=1 P(α′i). Define S ⊆ 1..k
such that i ∈ S ⇒ αi = α′i ∪ β and i 6∈ S ⇒ αi = α′i. The product is computed
using the following identity:

k∏
i=1

P(αi) \
k∏
i=1

P(α′i) =
⋃
i∈S

(
i−1∏
j=1

αj × (β \ α′i)×
k∏

j=i+1

αj

)

This can be computed in linear time in the size of
∏k

i=1 P(αi) \
∏k

i=1 P(α′i).

94 Chapter 6. The Constraint Solver

6.5 Graph algorithms

For use in the other algorithms we need two graph algorithms. One is for a
heuristic dealing with inequalities in Section 7.4, the other is for detecting when
the constraint set has no finite solutions.

6.5.1 Strongly Connected Components

Let G = (V,E) be a directed graph. Two nodes v, w ∈ V are strongly connected
G iff there is a path from v to w and a path from w to v in G. It is easy to
show that strong connectivity is an equivalence relation. The strongly connected
components of G are the equivalence classes of the strong connectivity relation.

The algorithmic problem for this section is the maintenance of strongly connected
components under the insertion of edges. We require the following operations.

insert(v, w) Insert the edge (v, w) into G. If the insertion creates a new connected
component return a list of the old connected components which comprise
the new connected component.

connected(v,w) Returns true iff v and w are strongly connected.

We expect the list of connected components to be represented as a list of canonical
elements from the connected components.

It is immediate that this algorithm is related to the transitive closure algorithm.
Let G∗ = (V,E∗) be the reflexive, transitive closure of G and let GT = (V,ET)
be the transposed of G, that is the graph with all the edges reversed. Then we
have the v and w is strongly connected iff (v, w) ∈ E∗ and (w, v) ∈ E∗. Since
(w, v) ∈ E∗ iff (v, w) ∈ (ET)∗, we have that strong connectivity is the relation
defined by E∗ ∩ (ET)∗. What we need to do then is to maintain the transitive
closure of G and GT together with a union-find data structure of the strongly
connected components.

The insert procedure proceeds by inserting the edge (v, w) into G and GT and
performing transitive closure algorithm for both graphs. Then for all nodes i and
j such that (i, j) has been inserted into E∗ or (ET)∗ and (i, j) ∈ E∗∩ (ET)∗ after
the insertion of (v, w) we do the following: If Find(i) 6= Find(j), we add Find(i)
and Find(j) to the set of canonical elements to be returned and call Union(i, j).

All this can be performed by two calls to the transitive closure algorithm plus a
number of calls to the union-find algorithm which is linear in the work done by
the transitive closure algorithm. We have then that the amortised complexity of
the strongly connected components algorithm is O(|V |) per insert and O(1) for

6.6 The Constraint Satisfaction Algorithm 95

each call to connected as for the transitive closure algorithm of La Poutré and
van Leeuwen [43].

6.5.2 Maintaining L-acyclic graphs

Let G = (V,E) be a directed labelled graph, where all edges are labelled with
either a label from a set L or with the empty string ε 6∈ L. Furthermore, we
assume that for all edges v

ε−→ w ∈ E there is also an edge w
ε−→ v ∈ E. Hence

we shall write the ε-edges as v
ε←→ w.

Now, let us define the transitive closure of a labelled graph as follows.

• For all v ∈ V , v
ε−→∗ v.

• If u
α−→∗ v and v

ε−→ w then u
α−→∗ w.

• If u
α−→∗ v and v

l−→ w then u
αl−→
∗
w.

It follows that if v
ε−→∗ w then w

ε−→∗ v. Hence we shall write v
ε←→∗ w.

An L-cycle in G is a path v
α−→ v where α 6= ε. The algorithmic task is that

of maintaining whether G has L-cycles under insertions of ε- and L-edges. Since
the property of being L-cyclic is monotone all we need to do is to recognise if the
insertion of an edge makes an otherwise L-acyclic graph L-cyclic. Let us consider
the possibilities:

• Insert v
l−→ w. If w

α−→∗ v for some α (possibly ε) before the insertion of
the edge, the graph is now L-cyclic. Otherwise it remains L-acyclic.

• Insert v
ε←→ w. If v

ε←→∗ w before the insertion of the edge, the graph
remains acyclic. Now, assume that it is not the case that v

ε←→∗ w. If
v

α−→∗ w or w
α−→∗ v, it must then be the case that α 6= ε and hence the

graph becomes L-cyclic. Otherwise it remain L-acyclic.

It follows from the above that all we need to do is to maintain the equivalence
relation

ε←→∗ and the transitive closure of G. Using the Union-Find algorithm
and La Poutré and van Leeuwens transitive closure algorithm (since the labels
turn out to be immaterial) we get an amortised running time of O(|V |) for each
insert.

6.6 The Constraint Satisfaction Algorithm

The constraint satisfaction algorithm is simply the combination of the elements
from the previous sections into a single algorithm. Let us first show how to

96 Chapter 6. The Constraint Solver

implement the algorithm without equality and then how to combine the imple-
mentation with equality.

In the design of the algorithm we take as a starting point the consistency algo-
rithm from Section 6.2. We reuse the data structures from the original algorithm.
The domain assignments, support sets, and prune queue are as above. The adja-
cency lists contains elements of the form (〈〈R, χ〉〉(v), i) instead of (R(v), i), and
the χ is implemented as a pointer for each tuple in R to an array of quantified
or conditional constraints.

In addition to the data structures from the consistency algorithm we also have
the base automaton from the unification algorithm. In the equality-free case we
have that each state in the automaton is a singleton, and we can maintain L

simply by letting L({v}) = D(v). The final thing we need is the constraint set,
C. This constraint set no longer holds only equality constraints, it can hold any
kind of constraint from ΓOIH.

It is quite straightforward to deal with a constraint of the form 〈〈R, χ〉〉(e1, . . . , en).
We start by computing the new base automaton base(base(. . . base(M, e1), . . .), en).
Then we let C be {〈〈R, χ〉〉(ve1, . . . , ven)} and proceed in the following way until
C = ∅:

1. Take a constraint 〈〈R, χ〉〉(v1, . . . , vn) ∈ C and remove it from C.

2. Insert 〈〈R, χ〉〉(v1, . . . , vn) in the adjacency lists and run the normal consis-
tency algorithm with respect to the R-part only.

3. For each relation 〈〈R′, χ′〉〉(v′1, . . . , v′m) for which at least one of the domains
D(v′i) has changed, compute χ′(

∧
D(v′1), . . . ,

∧
D(v′m)), and release the con-

straints in the following way. For each conditional constraint (that has not
been released previously) C replace the pseudo-variables of the form 〈i/α〉
with v′i/α defined by δ∗({v′i}, α) = {v′i/α}. Insert the resulting constraint
into C.

The above procedure does not describe relations of the form 〈〈RQ, χQ〉〉. To do
this we need to use the algorithms described in Sections 6.3 and 6.4. The al-
gorithm in Section 6.3 is Insert�. We use it by releasing the constraints from
Q(
∧
D(v′1), . . . ,

∧
D(v′m)) in exactly the same way as in step 3 above. The al-

gorithm described in Section 6.4 is used to compute the conditional constraints
which has not previously been released.

We deal with constraints νX.〈〈R, χ〉〉(e1, . . . , en) in much the same way as above,
but there are two differences:

• Instead of inserting νX.〈〈R, χ〉〉(v1, . . . , vn) into the adjacency lists we insert
〈〈R, χ[X ← νX.〈〈R, χ〉〉]〉〉. That is we unfold the definition once.

6.6 The Constraint Satisfaction Algorithm 97

C = {x = f(x)} C = {x1 = x} C = {x2 = x1} . . .

Æ
��
Æ
��
?

Σ

f {vf(x)}

{x}

Æ
��
Æ
��
Æ
��
?

?
Σ

f

f {vf(x)}

{x}

{x1}

Æ
��
Æ
��
Æ
��
Æ
��
?

?

?
Σ

f

f

f {vf(x)}

{x}

{x1}

{x2}

Figure 6.10: Successive approximations to x = f(x).

• To stop the potentially infinite releasing of constraints we keep for each
recursively defined constraint a search tree of the tuple of variables for
which it has previously been released. We never release the same recursively
defined constraint twice.

The size of the search trees are at most |V|n hence the time for accessing the
search trees is at most O(n · log(|V|)).

The process above shows how important it is that condition functions in recursive
definitions are strict. Since there is a finite number of ways a recursive constraint
can be released on existing variables, sooner or later it will be released in the
form νX.〈〈R, χ〉〉(v1, . . . , vn) where at least one vi is new. Assume for now that
this is the only remaining constraint. Since D(vi) = Σ we have that after the
pruning

∧
D(vi) becomes the least σ such that R(

∧
D(v1), . . . , σ, . . . ,

∧
D(vn)).

Hence we have that

χ(
∧

(
∏
j

D(vj))) = χ(
∧

(Σ×
∏
j 6=i
{
∧
D(vj)})) = ∅

by the strictness of χ and the procedure terminates. If there are more than one
constraint the matter is more complicated as we shall see.

Consider by contrast the unstable relation =. The instability stems from the
non-strictness of the condition function. This means that if we try to solve the
equation x = f(x) by the procedure described above we would continue to get
new conditional constraints over new variables and get an infinite succession of
approximations as shown in Figure 6.10.

This is the reason we need to unify the two states {vf(x)} and x. The result of this
is a state of the form {x, vf(x)}, and we have lost the property that all states are

98 Chapter 6. The Constraint Solver

�'

&�
Æ
��
Æ
��
Æ
��

Æ
��
@
@
@R

�
�
��

{v2}

{v3}

{v4}

R

R′

{v1}

�'
� %Æ
��
Æ
��
Æ
��

@
@
@R {v4}

R {v2, v3}

R′{v1}

(a) (b)

Figure 6.11: Unifying v2 and v3 with D = L. (a) Before unification. (b) After
unification.

singleton sets. The problem now is how to combine the data structures in these
circumstances. The idea from before that L({v}) = D(v) allowed us to identify
L and D. If we continue with this idea we arrive at an algorithm in which we
need to rearrange the adjacency sets every time we unify two states as shown in
Figure 6.11.

The figure illustrates how the automaton change under the unification of v2 and
v3. For the new node we must have L[{v2, v3}] = L[{v2}] ∩ L[{v3}] and its
adjacency set must contain all the constraints that used to be in the old adjacency
sets for {v2} and {v3}. Hence we need to move the relations from E[{v3}] to
E[{v2, v3}]. In the worst case we have that |E[{v3}]| is proportional to the number
of inserted constraints. Since this can be done once for each variable we may move
as many as Θ(|C| · |V|) relations.

There is a more efficient way of doing this. If we abandon the idea that L = D
we get two different kinds of functions, L : Q→ Σ and D : V → Σ. The relation
between them can be expressed as D(v) = L(Qv) and L(q) = D(dqe). It follows
that for each q ∈ Q we have that for all v, v′ ∈ q, D(v) = D(v′). In order to assure
this we introduce the diagonal constraint, ∆(v, v′). The relation ∆ is defined as
〈〈RQ, χ〉〉, where R = {(σ, σ)|σ ∈ Σ}, Q(σ, σ) = {1 �σ 2, 2 �σ 1} if σ ∈ dom(E)
and Q(σ, σ) = ∅ otherwise, and χ(σ, σ) = ∅. If D is arc consistent with respect
to ∆(v, v′) then D(v) = D(v′).

Using the diagonal constraint we can unify two variables much easier than above.
We unify the states as in the unification procedure described in Section 6.1, but
we keep the domain as it is. In order to rectify the domain we insert the constraint
∆(v2, v3) as illustrated in Figure 6.12. The circles in this figure are the domains,
the double circles illustrate the canonical elements of the states. We have drawn
the transitions as going between the canonical elements.

This method is more efficient than the first one. All the extra work we need to
do is to add one constraint for each call to Unify which change the automaton.
Since there can be at most |V|−1 calls to Unify which change the state there can

6.6 The Constraint Satisfaction Algorithm 99

Æ
����
��

v4

�'

&�
Æ
����
����
��

��
��Æ
��
Æ
��@

@
@R

�
�
��

v2

v3

R

R′

v1 Æ
����
��

v4

�'

&�
�
�Æ
��
Æ
��

��
��Æ

����
��

@
@
@R

R

R′

v1

v2

∆

v3

(a) (b)

Figure 6.12: Unifying v2 and v3 with D 6= L. (a) Before unification. (b) After
unification.

be at most |V| − 1 extra constraints.

The correctness of the procedure follows by a proof similar to the proof of the
correctness of Unify. All we need to do is note that the set of assignments which
satisfy all the constraints in the adjacency sets and C, and is in the solution-space
of the base automaton is invariant. Then the result follows like above.

Thus we have the following proposition.

Proposition 6.6.1 Let C be a set of constraints and let M = (Q,P(Σ), L,∆) be
the base automaton resulting from running the algorithm described above on C.
We have the following.

1. If L(q) = ∅ for some q ∈ Q then C is unsatisfiable.

2. Assume L(q) is non-empty for all q ∈ Q, and let Lmin : Q → Σ be defined
by Lmin(q) = {

∧
L(q)}. Then S(Q,P(Σ),Lmin,∆) is the 6Σ-least solution to C.

If the algorithm terminates in a state where all the L(q) are non-empty, we say
that the solver succeeds. If it terminates in any other state it fails.

The above proposition shows that if the algorithm terminates, it correctly solves
the problem for the constraint domain OIH. In order to solve the problem for OH
we must make some definitions.

For all variables v and w we say that v
ε←→ w if Qv = Qw, and for states q

and q′ we say that dqe i−→ dq′e if ∆(q, i) = q′. The base automaton is cyclic iff
the resulting graph is ω-cyclic (see Section 6.5.2). It follows that there is a finite
solution to the constraint set iff the graph is ω-acyclic.

We do not need to insert all the ε-edges in the definition above. It is enough that
the reflexive, transitive closure has the property described. We can accomplish
this by inserting an ε-edge in UnifyVar each time Qv1 6= Qv2 . In this way the total
running time of the ω-cycle algorithm is kept at O(|V|2).

100 Chapter 6. The Constraint Solver

Using this extension we have turned the OIH constraint solver into a constraint
solver for OH. All we need to do is to fail when a ω-cycle occurs, and proceed like
above if no such cycle occurs.

This leaves the question of the termination of the algorithm. As we saw above
the important moment arrives when we have only recursively defined constraints
left and we generate a new variable. In the case discussed above we assumed that
there was only one recursive constraint, but assume that we have several recursive
constraints in the queue. In that case we have to look at the result of applying
arc consistency to all the constraints, and in this case it is not enough that each
of the constraints are strict, they have to be strict when seen as a whole.

Now let C be a set of recursively defined constraints and assume that the con-
straints are over the same variables . That is, each constraint belonging to C is
of the form νX.〈〈Ri, χi〉〉(v1, . . . , vn), where 1 ≤ i ≤ m. When we look at arc con-
sistency we can see that arc consistency for the constraint set corresponds to arc
consistency for the single constraint (

⋂m
i=1 Ri)(v1, . . . , vn). Hence, the strictness

requirement must be extended to

∀i ∈ 1..m, ∀S (1..n, σ:S → Σ : χi(
∧

((
⋂m
j=1Rj) ∩ (

∏
j∈S{σ(j)} ×

∏
j 6∈S Σ))) = ∅

in order to ensure the termination of the algorithm. When a constraint set is like
the above we call it collectively strict.

It is easy to see that any constraint νX.〈〈R, χ〉〉(v1, . . . , vn) is equivalent to the
constraint νX.〈〈R×Σ, χ′〉〉(v1, . . . , vn, v), where χ′(σ1, . . . , σn, σ) = χ(σ1, . . . , σn).
Since we also have that our constraint domain is closed under permutation of
the variables, we have that any set of constraints can be brought on the form
described above. We say of an arbitrary set of recursively defined constraints
that it is collectively strict, iff it is collectively strict when brought on the form
above.

The idea of termination is to ensure that the constraint set is collectively strict.
The following definition shows a way of doing just that.

Definition 6.6.1 A set of recursively defined relations, Γ, is strictness-closed,
iff all sets of constraints from P(Γ[V, ∅]) are collectively strict.

Now, we can formulate the main theorem.

Theorem 9 Let (Σ,6) be applicable.

1. Let C ⊆ OIH(Σ,6)[V] be such that the set of recursively defined relations in
C is strictness-closed. Then the constraint solver for OIH succeeds if C is
satisfiable in OIH(Σ,6), and fails if C is unsatisfiable in OIH(Σ,6)

6.6 The Constraint Satisfaction Algorithm 101

2. Let C ⊆ OH(Σ,6)[V] be such that the set of recursively defined relations in
C is strictness-closed. Then the constraint solver for OH succeeds if C is
satisfiable in OH(Σ,6), and fails if C is unsatisfiable in OH(Σ,6)

The running time of the algorithm is very problem-dependent. The reason is that
certain relations may lead to the release of a very large number of constraints.
In order to get a bound on the running time we have to look at the total num-
ber of released constraints. So let C be the inserted constraints and C′ released
constraints. Let the size of a constraint be defined by the following.

• size(R(e1, . . . , en)) = size(R) +
∑n

i=1 size(ei)

• size(=) = 1

• size(〈〈RQ, χQ〉〉) = size(νX.〈〈RQ, χQ〉〉) =

rank(R) · |R|+
∑

σ∈R |Q(σ)|+
∑

σ∈R |χ(σ)|

• size(v) = 1

• size(σ(e1, . . . , ek)) = 1 +
∑k

i=1 size(ei)

Then we have the following.

Proposition 6.6.2 Let m be the total number of released �-constraints and n
the size of the greatest extension in the solution.

1. The total running time of the OIH constraint solver is

O(
∑

C∈C∪C′
size(C) +

∑
νX.〈〈R,χ〉〉∈C

rank(R) · log(|V|) +m · n)

2. The total running time of the OH constraint solver is

O(
∑

C∈C∪C′
size(C) +

∑
νX.〈〈R,χ〉〉∈C

rank(R) · log(|V|) +m · n+ |V|2)

In the above we have assumed that all the extension domains are sets.

It is usually the case that the time from the search tree operations are negligible.
Furthermore, it is often the case that the term is dominated by either the �-
constraints or the other constraints. So in many of the practical cases the time
reduces to one of the following:

1. O(
∑

C∈C∪C′ size(C))

2. O(m · n)

The precise analysis will have to be performed for each application.

102 Chapter 6. The Constraint Solver

6.7 Deciding Applicability and Stability

It makes no sense to define the constraint domain OIH(Σ,6) unless (Σ,6) is ap-
plicable. Similarly, many parts of the constraint satisfaction algorithm are quite
meaningless if the relations are unstable. Fortunately, these properties are decid-
able as we shall see.

Lemma 6.7.1 Let Σ be a finite set. Given a partial ordering, v over Σ it is
decidable whether v forms a lower semi-lattice.

Proof: Since Σ is finite we can make a topological sort of Σ. Assume that Σ
is sorted as σ1 < σ2 < · · · < σn. Then we can for each pair of values σi and σj
compute the set

S = {σk|σk v σi ∧ σk v σj}

Now, let k be the largest number such that σk ∈ S. Now it should be the case
for all σ ∈ S that σ v σk. This can be tested by simple enumeration. 2

The following is an important corollary.

Corollary 6.7.2 Let (Σ,v) be a finite lower semi-lattice. The greatest lower
bound is computable.

Proof: σk in the proof of Lemma 6.7.1 is the greatest lower bound of σi and σj .
2

In fact, the implementation of the algorithm uses a topological sort of Σ to
compute the greatest lower bound.

Lemma 6.7.3 Let (Σ,v) be a finite lower semi-lattice, and let rank be a function
rank : Σ→ ω. The following are decidable.

1. rank is monotone.

2. rank(
∧

Σ) = 0.

Proof:

1. Trivial by enumerating all possibilities.

2. Trivial using Corollary 6.7.2.

2

We now have the proposition we looked for.

6.7 Deciding Applicability and Stability 103

Proposition 6.7.4 Let Σ be a ranked alphabet, v an ordering over Σ, and E
a partial function with dom(E) ⊆ Σ. Furthermore, assume that each E(σ) is a
recursively enumerable set of extensions equipped with a complete lattice, �σ and
a monotone size function | · |σ, such that |⊥E(σ)| = 0. It is decidable whether the
ordering (ΣE ,v�) is applicable.

Proof: Follows from Definition 4.6.1 and Lemmas 6.7.1 and 6.7.3. 2

In the proposition above it was assumed that we had suitable sets of extensions.
One such set is the power set of a finite set equipped with the subset ordering
and a size function which is either |a|σ = 0 or |a|σ = |a|, where |a| is the number
of elements in a.

Lemma 6.7.5 Let (Σ,v) be a finite lower semi-lattice, and let R ⊆ Σn. It is
decidable whether R is stable with respect to v.

Proof: For each pair of tuples (σ1, . . . , σn) and (σ′1, . . . , σ
′
n) from R, we can

compute (σ1 ∧ σ′1, . . . , σn ∧ σ′n) using Corollary 6.7.2. Now, it is straightforward
to check whether this tuple is in R. 2

The following lemma follows directly from Definition 4.4.5.

Lemma 6.7.6 Let χ be an extended condition function. We have the following.

1. χQ is monotone if and only if χ is monotone.

2. χQ is strict if and only if χ is strict when restricted to unquantified con-
straints.

Lemma 6.7.7 Given a condition function it is decidable whether it is monotone.

Proof: Let the condition function be χQ. By lemma 6.7.6(1) it is sufficient to
check whether χ is monotone. But χ has finite domain and it is then easy to
check monotonicity by enumerating the possibilities. 2

Lemma 6.7.8 Given a condition function it is decidable whether it is strict.

Proof: Let the condition function be χQ : RQ → Γ[Ψ, ∅]. By Lemma 6.7.6(2) it
is sufficient to look at χ′ : R → Γ[Ψ, ∅] where χ′ is χ restricted to unquantified
constraints. That is, it is sufficient to decide whether

∀S (1..n, σ:S → Σ : χ(
∧

(R ∩ (
∏

i∈S{σ(i)} ×
∏

i6∈S Σ))) = ∅ (6.1)

Since there is a finite number of sets S (1..n and a finite number of functions
σ: S → Σ, we can enumerate these, and since

∧
is computable by Corollary 6.7.2

we can decide whether condition (6.1) is met. 2

104 Chapter 6. The Constraint Solver

Proposition 6.7.9 Given a relation of the form 〈〈RQ, χQ〉〉 or νX.〈〈RQ, χQ〉〉 it is
decidable whether the relation is stable.

Proof: Follows from Lemmas 6.7.5, 6.7.7, and 6.7.8. 2

Note that the above does not imply that it is decidable whether or not the
constraint satisfaction algorithm terminates. It is not known if it is decidable
whether a set of relations are strictness-closed.

Chapter 7

The CLP(OIH) Language

Theoretically, the CLP(OIH) language is defined by the general semantics of Sec-
tion 3.2, but some aspects are still unresolved. This chapter is about the actual
version of CLP(OIH). We discuss the precise definition of the domain, then we
proceed with a language question which arises from the introduction of generic
labels, and finally we present a manual for using the interpreter.

7.1 User-defined Domains

The first task in writing a program is defining the domain. The domain of course
is either OIH(Σ,6) or OH(Σ,6) for some suitable Σ and 6. Thus we need ways
to distinguish OIH from OH and to define a ranked alphabet and an ordering.
These tasks are handled by the keywords Finite, Labels, and Ordering. The
definition of the domain follows the following syntax.

D ::= Labels L Ordering O | Finite Labels L Ordering O
L ::= labeldefinition. | labeldefinition, L
O ::= inequality. | inequality, O

Each label definition is either on the form σ/k or σ[a]/s. In the first case σ is a
non-generic label of rank k in the second it is a generic label. The only extension
allowed is sets of strings (e.g. a set of field names) and the size function is either
|e|σ = 0 or |e|σ = |e| where |e| is the number of elements in the set. There are
thus two possibilities for the form of the expression s in σ[a]/s. If s ≡ |a|+ k we
have that |e|σ = |e|, but if s ≡ k we have that |e|σ = 0. In both cases σ has rank
k. We allow |a| as a shorthand for |a|+ 0.

The basic form of the orderings is σ < σ′. It is understood that v is the re-
flexive, transitive closure of the ordering thus defined. In this simple case all

106 Chapter 7. The CLP(OIH) Language

relabeling functions are simply the inclusion function ρσvσ′(i) = i. If another
relabeling function is required it can be explicitly defined by an ordering of the
form σ(vi1 , . . . , vik) < σ′(v1, . . . , vk′). The relabeling function thus defined is
ρσvσ′(ij) = j. The ordering of the extensions is set inclusion and the relabeling
function for the extensions is arbitrary.

As an example let us look at the definition of Σst with some ordering. We define
it as follows

Finite

Labels

int/0,

bool/0,

prod[a]/|a|,

sum[a]/|a|,

list/1,

arrow/2.

Ordering

bool < int,

int < prod,

int < sum,

int < list.

If we want to infer types for RegΣst rather than FinΣst we just remove the Finite

keyword from the beginning of the definition.

Given an alphabet as above we can write down terms in the usual way, e.g.
arrow(list(bool), int). Where generic labels are concerned there are four
ways of writing down terms depending on the rank and the size function.

1. If σ is defined as σ[a]/0, the terms are on the form σ[a1, . . . , an].

2. If σ is defined as σ[a]/k where k > 0, the terms are on the form
σ[a1, . . . , an](t1, . . . , tk).

3. If σ is defined as σ[a]/|a|, the terms are on the form σ[a1 : t1, . . . , an : tk].

4. If σ is defined as σ[a]/|a| + k where k > 0, the terms are on the form
σ[a1 : t1, . . . , an : tn](t

′
1, . . . , t

′
k).

In the terms above, the ai stand for strings and the ti and t′i stand for terms.

7.2 CLP and the semantics of ellipsis 107

7.2 CLP and the semantics of ellipsis

The introduction of generic labels in the alphabet raises the issue of infinite CLP
programs. What we need is a way to express a uniform behaviour of the program
for all instances of the generic label. In everyday language this is expressed by
the use of ellipsis. We shall use a similar approach here.

Consider the following type rule from [59]:

Γ ` e1 : ω1 . . . Γ ` en : ωn
Γ ` 〈i1 : e1, . . . , in : en〉 : prod(i1 : ω1, . . . , in : ωn)

In CLP (or Prolog) we might define a predicate Type(Γ, e, ω) standing for Γ ` e : ω.
The above rule would then be implemented as

Type(Γ, bracket[i1 : e1 , . . . , in : en], prod[i1 : ω1 , . . . , in : ωn]) :-

Type(Γ, e1 , ω1), . . . , Type(Γ, en , ωn).

The above is not a CLP rule in the usual sense. Only when the ellipsis are
concretised for a fixed n can the above be written as a rule. Furthermore, if we
understand the ij as part of the label these will have to be fixed as well before we
can write the above as a CLP rule. Since there are infinite possibilities for fixing
n and the ij the “pseudo-rule” above corresponds to an infinite set of rules.

The goal of this section is to define a syntax and semantics of ellipsis so that the
pseudo-rule above is expressible in CLP. The first step is to write this in a simpler
form where the indexes are absent:

Type(Γ, bracket[..i : e..], prod[..i : ω..]) :- Type(Γ, e, ω).

In the above expression the bound variables e and ω are related in the sense that
there is a one-to-one correspondence between the es and the ωs. This correspon-
dence is defined by their common context, the field variable i. The context thus
becomes important when interpreting the expression Type(Γ, e, ω) where e and ω
occur freely. The field variable ranges over all possible sets of field names. The
programming language obtained by introducing ..i : x.. is CLP∞.

For each set of field names the expression takes on a concrete form. For instance
we have that for the set of field names i = {a, b} the rule has the form:

Type(Γ, bracket[a : ea, b : eb], prod[a : ωa, b : ωb]) :-

Type(Γ, ea, ωa), Type(Γ, eb, ωb).

We note the following:

1. The bound occurrences of e and ω are replaced by the expressions
a : ea, b : eb and a : ωa, b : ωb, respectively.

108 Chapter 7. The CLP(OIH) Language

2. The free occurrences of e and ω are replaced with ea, eb, ωa, or ωb according
to their contexts.

3. The non-bound variable, Γ, remains as is in the instantiation.

To see how the context influences the interpretation of the antecedents, consider
the following rule.

P(f[..i : x..], f[..j : y..]) :- P(x , y).

Here x and y are unrelated (having different contexts) and it is no longer mean-
ingful to assign one predicate to each member of the field set. Instead there will
be a predicate for each combination of elements from the two field sets.

As an example let us consider the field set assignment which lets i = j = {a, b}.
The instantiation of the rule is

P(f[a : x a, b : x b], f[a : ya, b : yb]) :- P(x a, ya), P(x b, ya), P(x a, yb), P(x b, yb).

The bound occurrences are instantiated in the same way as above, but since x
and y have different contexts there is no relation between xa and ya. As a result
there is an antecedent for each element of {a, b} × {a, b}. We can say that the
context of the antecedent P(x , y) is the set {i, j}, the set of contexts of the bound
variables occurring freely in P(x , y).

In order to understand how instantiation works in general, consider the following
generic rule:

P(e1, . . . , ek) :- Q1(ε
1
1, . . . , ε

1
m1

), . . . , Qn(ε
n
1 , . . . , ε

n
mn

).

where the Qi are either predicates or constraints, and the ei and εji may contain
..i : x.. or ..i...For simplicity, we shall only consider the expressions of the
former kind, expression of the latter kind is similar.

Each variable, x, appearing as ..i : x.. is a bound variable, and the context of x
is κ(x) = {i}. No bound variable is allowed to appear in different contexts. That
is, the rule cannot contain ..i : x.. and ..j : x.. for i 6= j. Furthermore, no
bound variable may occur freely in the conclusion. The context of a non-bound
variable is ∅.

The context function κ is extended to expressions as the set of contexts of the
free variables. Formally we have:

• κ(..i : x..) = ∅

• κ(i : e) = κ(e)

• κ(f [e1, . . . , ek](t1, . . . , tn)) =
(⋃k

i=1 κ(ei)
)
∪
(⋃n

i=1 κ(ti)
)

• κ(Q(t1, . . . , tn)) =
⋃n
i=1 κ(ti)

7.2 CLP and the semantics of ellipsis 109

With this we can write the constraint on the conclusion as κ(P(e1, . . . , ek)) = ∅.

The other important concept in the instantiation is the actual field set assignment.
If Φ is a field set assignment and ϕ is a function from field variables to field names,
we write ϕ ∈ Φ, iff dom(ϕ) = dom(Φ) and ∀x ∈ dom(ϕ) : ϕ(x) ∈ Φ(x). We now
have the terminology to define the instantiation of the right-hand side by means
of the expansion of an antecedent.

Definition 7.2.1 Let Q(ε1, . . . , εn) be an antecedent containing free occurrences
of the bound variables x1, . . . , xl. The expansion of Q(ε1, . . . , εn) relative to a
context function, κ, and a field set assignment, Φ, is the set

E(Q(ε1, . . . , εn), κ,Φ)

= {Q(ε′1, . . . , ε′n)|∃ϕ ∈ Φ : ∀i ∈ 1..n : ε′i = εi[x1 ← x
ϕ(κ(x1))
1 , . . . , xl ← x

ϕ(κ(x1))
l]}

where the xaj are new variables.

The instantiated right-hand side thus consists of the union of the expansions of
the antecedents in the uninstantiated rule. And the only remaining task is that
of instantiating the bound occurrences of variables.

For this task we introduce the following notation: Let a = {a1, . . . , an} be a field
set. We write a : xa for the list a1 : xa1 , . . . , an : xan .

Definition 7.2.2 Let

P(e1, . . . , ek) :- Q1(ε
1
1, . . . , ε

1
m1

), . . . , Qn(ε
n
1 , . . . , ε

n
mn).

be a CLP rule containing the bound variables x1, . . . , xl, and κ the context function
defined by the rule. For an arbitrary field set assignment, Φ, let sub be the
substitution

[..κ(x1) : x1..← Φ(κ(x1)) : x
Φ(κ(x1))
1] . . . [..κ(xl) : xl..← Φ(κ(xl)) : x

Φ(κ(xl))
l]

The instantiation of the rule with respect to Φ is

P(e1, . . . , ek)sub :-

n⋃
i=0

E(Qi(ε
i
1, . . . , ε

i
mi

)sub, κ,Φ).

Let us turn again to the example

Type(Γ, bracket[..i : e..], prod[..i : ω..]) :- Type(Γ, e, ω).

with the field set assignment Φ(i) = {a, b}. There are only two functions, ϕa

and ϕb, such that ϕa, ϕb ∈ Φ. These functions are defined as ϕa(i) = a and
ϕb(i) = b. We have then that

E(Type(Γ, e, ω), κ,Φ) = {Type(Γ, ea, ωa), Type(Γ, eb, ωb)}

110 Chapter 7. The CLP(OIH) Language

The substitution from definition 7.2.2 becomes

[..i : e..← {a, b} : e{a,b}; ..i : ω..← {a, b} : ω{a,b}]

We thus have that the instantiation of the rule is

Type(Γ, bracket[a : ea, b : eb], prod[a : ωa, b : ωb]) :-

Type(Γ, ea, ωa), Type(Γ, eb, ωb).

as above.

Definition 7.2.3 Let R be a CLP∞-rule. The expansion of R, E(R), is the set
of all possible instantiations of R.

We have that E(R) is infinite, if and only if R contains expressions of the form
..i : e.. giving rise to an infinite number of field set assignments.

Definition 7.2.4 Let π be a CLP∞-program. The expansion of π is

E(π) =
⋃
R∈π

E(R)

Note that E is the identity when restricted to finite CLP.

7.3 Interpreting CLP∞ Programs

In the previous section we saw that for any program, π ∈ CLP∞ \ CLP, we have
that |E(π)| = ∞. Because of this it is impossible to interpret π by using a
CLP-interpreter on E(π). It is the goal of this section to devise a method for
interpreting CLP∞ programs.

Consider the example from the previous section:

Type(Γ, bracket[..i : e..], prod[..i : ω..]) :- Type(Γ, e, ω).

together with the goal (Type(Γ, bracket[a : ea, b : eb], t); ∅), where Γ is a type
environment, ea and eb are terms, and t is a variable. The rule to use here is
simply

Type(Γ, bracket[a : ea, b : eb], prod[a : ωa, b : ωb]) :-

Type(Γ, ea, ωa), Type(Γ, eb, ωb).

7.3 Interpreting CLP∞ Programs 111

The above example is easily resolved because the clause allowed only one possible
instantiation that could work. But consider instead the goal

(Type(Γ, e, t); {t = prod[a : ωa, b : ωb]})

where Γ is a type environment, and e and t are variables. Here we have to look
at the constraint set because the clause matches all possible instantiations of the
rule. Still, the constraint set allows only the instantiation given above.

Even more difficult is the goal (Type(Γ, e, t); {t ≥ prod[a : ωa, b : ωb]}), where
the constraint set allows an infinite number of instantiations. But here we nev-
ertheless is a unique least instantiation, where Φ ≤ Φ′ iff ∀ϕ ∈ Φ : ϕ ∈ Φ′. This
unique least instantiation is the one above.

To help us in finding such an instantiation we define the relation t ≤ t′ such that
σ(t1, . . . , tn) ≤ σ′(u1, . . . , um) if the following hold:

• σ v σ′

• ∀i ∈ 1..rank(σ) : ti = uρ(i), where ρ is the relabelings from σ to σ′.

As a special case we have that f[a1 : t1, . . . , an : tn] ≤ f[b1 : u1, . . . , bm : um] iff
{ai|i ∈ 1..n} ⊆ {bi|i ∈ 1..m} and ∀i ∈ 1..n, j ∈ 1..m : ai = bj ⇒ ti = uj.

While it is true that there is a unique least instantiation it is by no means certain
that the use of this least instantiation will lead to success. Consider the following
program:

P(f[..i..]) :- Q(f[..i..]).
Q(f[a]).

and the goal (P(x); ∅). The least rule allowed by the constraint set is

P(f[]) :- Q(f[]).

But this rule leads to failure. Obviously, the right rule is

P(f[a]) :- Q(f[a]).

The rule we are looking for is the least instantiation that leads to success.

In order to do this effectively we make the following assumptions about the con-
straint solver:

1. Actual field names are insignificant.

2. The constraint t ≤ t′ is among the ones accepted by the constraint solver.

3. There is a ≤-least solution to any satisfiable constraint set, and the con-
straint solver provides access to this solution.

112 Chapter 7. The CLP(OIH) Language

By the first assumption we mean that the constraint solver does not manipulate
field names (only sets of fixed field names). Formally, we can say that the relations
are invariant under substitution of field names. That is, for any relation, R, terms,
t1, . . . , tarity(R), and one-to-one substitutions of field names, sub, we have that
R(t1, . . . , tarity(R))⇔ R(t1sub, . . . , tarity(R)sub).

Since the constraint solver cannot manipulate field names, there cannot occur any
field names that are not present either in the program or in the original query.
Thus the class of field sets actually occurring during the run of the program is
a complete lattice of finite height. Hence, the possible instantiation also form a
complete lattice of finite height. We exploit this fact by using fixed point iteration
to look for an instantiation.

In the example above we can use the rule

P(f[]) :- Q(f[]).

as a first approximation to the correct instantiation. We get this approxima-
tion by observing that x = y = f[] is the least solution to the constraint set
{x = y, y ≥ f[]}. Here we use the new variable y to stand for the instantiation
of the term f[..i..]. By the same strategy we introduce a variable y′ to stand
for the instantiation of f[..i..] in Q(f[]). This may seem redundant but it is
actually necessary in more involved cases.

With the above we can see what the computation looks like. The new goal
becomes (Q(y′); {x = y, y ≥ f[], y′ ≥ f[]}). In this way the door is left open to
the possibility that the actual instantiation may be greater than the current one.

From the above goal we can use the second rule of the program to obtain

(∅, {x = y, y ≥ f[], y′ ≥ f[], y′ = f[a]})

This set of constraints is satisfiable and the least solution is x = y = f[] and
y′ = f[a] (here we see the necessity of using the constraint y′ ≥ f[] rather than
y′ = f[]). But this solution is inconsistent with the use of the rule

P(f[]) :- Q(f[]).

We can use the solution to find the next approximation to the rule. Since y′ is at
least f[a] we must have that Φ(i) is at least {a}. Thus, the next approximation
becomes

P(f[a]) :- Q(f[a]).

At this point we add the constraints y ≥ f[a] and y′ ≥ f[a]. Now we have made
the constraint set to comply with the new choice of instantiation, and since the
least solution, x = y = y′ = f[a] is consistent with this choice we have completed
our search for a computation.

7.3 Interpreting CLP∞ Programs 113

As a more involved example let us look at the program

P(f[..i..]) :- Q(g[..i : z..]), R(z).
Q(f[a : z]) :- R′(z).

where R(z) and R′(z) are constraints. As above we begin by using the smallest
possible rule:

P(f[]) :- Q(g[]).

Resulting in the goal (Q[y′], {x = y, y ≥ f[], y′ ≥ g[]}).

In the following step we get

(∅, {x = y, y ≥ f[], y′ ≥ g[], y′ = g[a : z′], R′(z′)})

Again, we have a conflict with the first choice of the rule and we have to choose
a larger one:

P(f[a]) :- Q(g[a : z]), R(z).

Unlike above, this introduces an extra constraint R(z′), since y′ = g[a : z′]. We
can assure this by introducing the extra constraints y ≥ f[a], y′ ≥ g[a : z], and
R(z). Note how the use of ≥ provides “access” to the subterms of y′ by the
requirement that equal field names should correspond to equal subterms.

Let us now turn to the generalisation of this technique for a program, π. The
first step is to define the transition described above. Let us call this transition
Bπ. The starting point is a goal, (P(u1, . . . , un),B; C), and a CLP∞-rule from π:

P(t1, . . . , tn) :- B,C.

where B is a set of clauses and C is a set of constraints. As usual, we assume
that the variables are properly renamed so that none of them occur in B or C.

For simplicity we shall assume that all generic labels appear in the form
f[..i : x..] and that the subterms of such a form are e1, e2, . . . , ek. We in-
troduce the new variables ye1, . . . , yek and define ψ and l as the functions that
for each variable, ye, gives the field set variable and generic label contained in e,
respectively. That is, for e = f[..i : x..] we have ψ(ye) = i and l(ye) = f.

We translate the rule by using the ye variables instead of the corresponding
CLP∞-terms. So, let t′i be the term ti with ye1, . . . , yek substituted for e1, . . . , ek,
respectively, and define B′ and C ′ in a similar manner.

The next step is to find the first approximation to the instantiation. First we
look at the constraint set C ∪ {t′i = ui|1 ≤ i ≤ n}. If it is satisfiable it has a least
solution, ϕmin . To a variable yf[..i:x..], ϕmin will assign a solution of the form
f[a1 : t1, . . . , al : tl]. We shall denote the set {a1, . . . , al} by α(yf[..i:x..]).

114 Chapter 7. The CLP(OIH) Language

Now, the first approximation is found by using the field set assignment
Φ(i) =

⋃
ψ(y)=i α(y). The approximation is found as the expansion of the rule

relative to κ and Φ, where κ is the context function of the original rule. So, if we
let B′′ =

⋃
b∈B′ E(b, κ,Φ) and C ′′ =

⋃
c∈C′ E(c, κ,Φ) we get that

(P(u1, . . . , un),B; C)Bπ(B ∪ B′′; C′)

where

C′ = C ∪ C ′′ ∪ {t′i = ui|i ∈ 1..n} ∪ {yei ≥ l(yei)[Φ(ψ(ye)) : xΦ(ψ(ye))]|i ∈ 1..k}

As with B we omit the π when no ambiguities can arise.

By repeating the process described above we eventually reach a stage where there
are no more unresolved clauses (unless the computation fails or diverges in the
usual CLP or Prolog fashion). The goal now has the form (∅, C). On the way
to this goal we have made several approximations as described by the field set
assignment Φ above. All these field set assignments have disjoint domains (since
we rename variables) so we can assume that we have accumulated them in a large
field set assignment. Let us call this assignment Φ. In a similar way let l and ψ
be the accumulated versions of the local ls and ψs.

We find our next approximation by looking at the least solution as in the single
step above and defining α in the same way. Now, let Φ′ be the field set assignment
defined by Φ′(i) =

⋃
ψ(y)=i α(y). If Φ′ = Φ we say that Φ is consistent with C. In

this case we are done, but if Φ(i) (Φ′(i) for some field set variable, i, we have
an inconsistency between the constraint set and our choice of approximation.

In order to resolve this inconsistency we add new constraints and clauses in the
following way. Assume that the variable i originated in the (properly renamed)
rule

P(t1, . . . , tn) :- B,C.

For each y such that ψ(y) = i we add the constraint y ≥ l(y)[Φ′(i) : xΦ′(i)].
Furthermore, we add the constraints E(C, κ,Φ′) \ E(C, κ,Φ) and the clauses
E(B, κ,Φ′) \ E(B, κ,Φ).

If B′ and C′ are the sets of clauses and constraint added by repeating the above
for every i such that Φ(i) (Φ′(i), we get the new goal (B′; C ∪ C′) and proceed
from there. This process is repeated until Φ = Φ′. If (B; C) is the initial goal and
the process ends in (∅; C′) we shall write (B; C) Iπ C′.
The process thus described constitutes a fixed point iteration in search of the
least fixed point, Φ. If such a fixed point exists, termination will be guaranteed
because the lattice has finite height. If no fixed point exists the process will
either fail due to unsatisfiability of the constraint set or it will diverge just as the
interpretation of any CLP-program might.

7.3 Interpreting CLP∞ Programs 115

To see that this process coincides with the usual operational semantics of the
expansion of a program, we add some more information to the relations B and
B. The extra information that we need is which rule was used to make the
transition. This is necessary since the semantics is non-deterministic and we
need to make sure that the two computations took equivalent paths.

Assume that (B; C) B (B′; C′) because of a rule R ∈ E(P), where P is a CLP∞-
program. Then we shall write (B; C) BR (B′; C′). If

(B; C) BR1 (B1; C1) BR2 · · · BRn (Bn; Cn)

we shall write (B; C) B∗(R1,...,Rn) (Bn; Cn).

For the similar extension of B we need the following definition: Let R and R′ be
rules. We say that R ≤ R′ if and only if R and R′ are instantiations of the same
rules with respect to the field assignments Φ and Φ′, respectively and Φ ≤ Φ′.

Now assume that (B; C)B(B′; C′) because of a rule R ∈ P and let Φ be the field
set assignment used in the approximation. If we write RΦ for the instantiation of
R with respect to Φ we shall write (B; C)B{R∈E(R)|R≥RΦ}(B′; C′). This corresponds
to the intuition that there is an infinite set of possible rules that could be used
instead of the approximation.

If (B; C)BM(B′; C′) there is a unique field set assignment used in the approxima-
tion. We call this field set assignment ΦM . For reasoning purposes we generalise
so that whenever Φ′ ⊇ Φ we have (B; C)B{R∈E(R)|R≥RΦ′ }(B′′; C′′), where we arrive
at B′′ and C′′ by the usual method but using Φ′ instead of Φ. If (B; C)BM(B′; C′)
and it is impossible to make any transition for a more general set of rules, we
say that M is minimal (actually M is the greatest possible set, but ΦM is the
least possible field set assignment — hence ‘minimal’). Note that the notion of
minimality is meaningful only in the context of a specific transition.

We define B ∗(M1,...,Mn) analogously with the definition of B∗(R1,...,Rn) above. For

sequences of sets we write (M1, . . . ,Mn) ⊆ (M ′1, . . . ,M
′
n), iff ∀i ∈ 1..n : Mi ⊆M ′i .

Similarly, we write (R1, . . . , Rn) ∈ (M1, . . . ,Mn), iff ∀i ∈ 1..n : Ri ∈ Mi. If
M = (M1, . . . ,Mn) we define ΦM as ΦM(i) = ΦMk

(i), iff i ∈ dom(ΦMk
). We say

that (M1, . . . ,Mn) is minimal if each Mi is minimal.

The following lemma follows from the definition of B ∗M .

Lemma 7.3.1

1. If (B; C)B ∗M(B′; C′) and (B; C)B ∗M(B′′; C′′) then B′ = B′′ and C′ = C′′.

2. If (B; C)B ∗M(B′; C′) then there is a minimal set of rules, M ′, a set of formu-
lae, B′′, and a constraint set, C′′, such that M ′ ⊇M and (B; C)B ∗M ′(B′′; C′′).

116 Chapter 7. The CLP(OIH) Language

3. If (B; C)B ∗M(B′; C′), (B; C)B ∗M ′(B′′; C′′) and M ⊇ M ′ then B′ ⊆ B′′ and
M |= C′′ → C′, where M is the least model of the program.

The approximation step (getting from (∅, C) to (B′, C ∪ C′)) above is depen-
dent on how the goal (∅, C) was reached — that is, it depended on the M in
(B, ∅)B∗M(∅, C). Again we generalise so that Φ′ can be any field set assignment
such that for all i and y, ψ(y) = i ⇒ α(y) ⊆ Φ′(i). Now we can write this
formally by the notation (∅; C) Φ′

M (B′; C ∪ C′).

The interpretation described in this section introduces a number of redundant
constraints in the constraint set. In the second of the examples we had the
constraint set

{x = y, y ≥ f[], y′ ≥ g[], y′ = g[a : z′], R′(z′), y ≥ f[a], y′ ≥ g[a : z], R(z)}

Here the constraints y ≥ f[] and y′ ≥ g[] are redundant because they are implied
by y ≥ f[a] and y′ ≥ g[a : z], respectively. We have also two different variables z
and z′ which are really the same subterms of y′. Thus, the following constraint
set is equivalent to the one above:

{x = y, y′ = g[a : z], y ≥ f[a], y′ ≥ g[a : z], R(z)}

For simplicity, we shall identify constraint sets that are equivalent in this way.

Using the identity above we get the following lemma.

Lemma 7.3.2 Let B be a set of atomic formulae, C and C′ satisfiable sets of
constraints, and assume that (B; C)B ∗M(∅; C′). Furthermore, assume that ΦM and

C′ are inconsistent and that (∅; C′) Φ
M (B′; C′ ∪ C′′). Then there is an M ′ ⊆ M ,

such that (B; C)B ∗M ′(B′; C′ ∪ C′′).

Proof idea: We obtain an M ′ that works by replacing {R ∈ E(R)|R ≥ RΦM}
with {R ∈ E(R)|R ≥ RΦ} everywhere in M . 2

The lemma expresses that the approximation step is sound. That is, the approx-
imation step yields a result that corresponds to an actual computation using B.
Hence the following corollary.

Corollary 7.3.3 Let B be a set of atomic formulae, and let C and C′ be constraint
sets. We have that (B; C) I C′, iff there is a minimal sequence of sets of rules,
M , such that (B; C)B ∗M(∅; C′).

Proof: From the definition of I by induction on the length of the derivation
using lemma 7.3.2 and lemma 7.3.1(2). 2

7.3 Interpreting CLP∞ Programs 117

Now that I is reduced to B, we must look at the relation between B and B.
They are not exactly the same since B leaves open the possibility of choosing
greater instantiations along the computation path, whereas B chooses a single
instantiation and demands that any solution should comply with this choice of
instantiation. For this reason the main lemma concerning the equivalence of B
and B deals with the solutions that could possibly come out of a goal.

Lemma 7.3.4 Let M = (M1, . . . ,Mn) and R = (R1, . . . , Rk). We have the
following:

1. If (B; C) B∗R (B′; C′), there is a constraint set, C′′, such that M |= C′ ⇒ C′′
and (B; C)B ∗M ′(B′; C′′), where

M ′ = ({R′|R′ ≥ R1}, . . . , {R′|R′ ≥ Rk})

2. If (B; C)B ∗M(B′; C′) and ϕ satisfies C′ then there is a constraint set, C′′, and
a sequence of rules, R′, such that ϕ satisfies C′′, (B; C) B∗R′ (B′; C′′), and
R′ ∈M .

Proof: Follows directly from the definitions of B∗R and B ∗M by induction in k
and n respectively. 2

From corollary 7.3.3 and lemma 7.3.4 we get the main theorem of this section. It
says that with respect to satisfying assignments the interpretation is sound and
complete.

Theorem 10 Let π be a CLP∞-program, and letM be the least model for E(π).
We have the following.

1. (Soundness) If (B; C) Iπ C′ and ϕ satisfies C′ then there is a constraint set,
C′′ such that (B; C) B∗E(π) (∅; C′′) and ϕ satisfies C′′.

2. (Completeness) If (B; C) B∗E(π) (∅; C′) then there is a constraint set, C′′ such

that (B; C) Iπ C′′ and M |= C′ ⇒ C′′.

Proof:

1. Follows directly from lemma 7.3.4(2) and corollary 7.3.3.

2. Assume that (B; C) B∗ (∅; C′). Then by definition there is an R such that
(B; C) B∗R (∅; C′). From lemma 7.3.4(1) we get an M and a C′′′ such that
M |= C′ ⇒ C′′′ and (B; C)B∗M(∅; C′′′). Lemma 7.3.1(2) gives us a min-
imal M ′, such that (B; C)B∗M ′(B′; C′′′), where M ′ ⊇ M , and thus (from
lemma 7.3.1(3))M |= C′′′ ⇒ C′′ and B′ ⊆ ∅. The latter gives us B′ = ∅, so
by using corollary 7.3.3 and the transitivity of ⇒ we are done.

118 Chapter 7. The CLP(OIH) Language

2

The remaining question is that of the efficiency of the interpretation described
above. No doubt a program can be written where Φ grows very slowly. The
interpretation of such a program could go through the process of finding a new
approximation very many times. In the worst case as many as

∑
i |Φ(i)|.

In practice, however, the number of runs will probably be quite small. Most of
the field names will come from the input and they will propagate quite rapidly
throughout the constraint set. The field sets in the input would also determine
a unique possible instantiation of many of the rules.

This would indeed be the case in the type inference example that motivated the
introduction of ellipsis into the CLP program. In this important special case
the first approximation will also be the only possible and the interpreter would
find the answer on the first attempt. The fixed point iteration strategy is thus
perfectly suited for the implementation of type inference.

7.4 Using CLP(OIH)

When the domain is in place there are two things which are needed for a CLP(OIH)
program: The user-defined constraints and the rules.

7.4.1 Defining the Relations

The user-defined constraints are as shown in Chapter 4. That is, they follow the
syntax defined by the category reldef below.

reldef ::= name(name, . . . , name) <-> tuplelist .

| rec name(name, . . . , name) <-> tuplelist .

tuplelist ::= tuple | tuple; tuplelist

tuple ::= (value, . . . , value)

| (value, . . . , value) if conditions

value ::= name | name[name]

conditions ::= condition | condition, conditions

condition ::= name <= name

| conditional constraint

| quantified constraint

quantified constraint ::= @quantifiers : conditional constraint

quantifiers ::= quantifier | quantifier, quantifiers

7.4 Using CLP(OIH) 119

quantifier ::= name in name & · · · & name

conditional constraint ::= pseudovar = pseudovar

| name(pseudovar , . . . , pseudovar)

pseudovar ::= name | name/number

Where the category number defines the positive numbers, and the category name
defines the set of strings consisting of letters, digits, underscore (), and prime
(′), which begins with a letter. That is, the string tau 1’ is a name.

The list of names in the heading of the reldef defines names for the arguments
so that we can write the pseudovariables as e.g. tau/1 rather than 〈1/1〉. The
pseudovariable 〈1/ε〉 is written as tau. Similarly, we can name the generic labels
by the construct name[name]. In this way we can write a <= b for 1 �σ 2 and
@l in a & b for ∀l ∈ [1]&[2].

The relation 6st is defined in CLP(OIH) as follows.

rec leq st(tau, tau’) <->

(int, int);

(bool, bool);

(prod[a], prod[b])

if b <= a, @i in a&b: leq st(tau/i, tau’/i);

(sum[a], sum[b])

if a <= b, @i in a&b: leq st(tau/i, tau’/i);

(list, list) if leq st(tau/1, tau’/1);

(arrow, arrow)

if leq st(tau’/1, tau/1), leq st(tau/2, tau’/2).

The keyword rec must be used whenever a relation on the form νX.〈〈R, χ〉〉 is
defined.

When we look at the definition of strictness-closed (Definition 6.6.1) we can see
that there is a special class of relations that are problematic — the recursively
defined inequalities. Due to the anti-symmetry of inequalities we have that the
constraint set {x 6 y, y 6 x} is equivalent with the single constraint x = y. Since
we assume that 6 is recursively defined, this corresponds to having a recursively
defined = constraint, which in turn leads to infinite successions of approximations
as in Figure 6.10. In fact, it is the case that if we look at the constraint set as a
directed graph where there is an edge from x to y, iff there is a constraint x 6 y

in the constraint set, we get that all variables which are strongly connected in
this graph should be equal.

We can exploit the fact about the strongly connected variables and make a heuris-
tic for dealing with the inequalities. If we maintain the graph described above,
we can use the strong connectivity algorithm of Section 6.5.1 to make sure that
all strongly connected components are unified in a single state.

120 Chapter 7. The CLP(OIH) Language

To recognise these cases we introduce the keyword ineq which semantically is
like rec, but in addition demands that strongly connected components should
be unified. Use of this keyword allows the algorithm to terminate in many cases
where it would not have terminated otherwise. Unfortunately, the inequalities
that are not strictness-closed, are still not strictness-closed even when we disal-
low the possibilities of cycles in the definition. It follows that ineq remains a
pragmatic tool rather than a strengthening of the expressibility of the domain.

7.4.2 The CLP(OIH) Programming Language

A CLP(OIH) program has the same syntax as any other CLP programming lan-
guage (see Section 3.2). The unique characteristics are those of the form of the
expressions and the constraints. An expression is one of the following

• A variable.

• One of the following term expressions

– σ(e1, . . . , ek)

– σ[a1, . . . , an]

– σ[a1, . . . , an](e1, . . . , ek)

– σ[a1 : e1, . . . , an : en]

– σ[a1 : e1, . . . , an : en](e
′
1, . . . , e

′
k)

where the ei and e′i are expressions.

• One of the following ellipsis expressions

– σ[..a..]

– σ[..a..](e1, . . . , ek)

– σ[..a : v..]

– σ[..a : v..](e1, . . . , ek)

where v is a variable and the ei are expressions.

We demand that κ(e) = ∅ if e is an ellipsis expression.

The constraints are even simpler. They are on the following forms.

• R(e1, . . . , en)

• e1 = e2

• e1 <= e2

7.4 Using CLP(OIH) 121

where R is (the name of) a user-defined relation and the ei are expressions. The
last constraint uses the relation <=. This is the relation≤ defined in Section 7.2. It
turns out that this relation is important enough to warrant making it a predefined
relation.

7.4.3 Using the CLP(OIH) Interpreter

The CLP(OIH) interpreter uses two files: the definitions file and the program
file. The definitions file contains the definitions of the domain as described in
Section 7.1 and the relation definitions. The program file contains the CLP rules.

The program can be started in three different ways:

clp: This is the basic way to start the program. The user will be prompted for
the definitions file and the program file.

clp <file>: If <file> does not contain a ‘.’ it is assumed that the definitions
and program files are <file>.def and<file>.clp, respectively. Otherwise
it is assumed that the definitions file is <file> and the user will be prompted
for the program file.

clp <file1> <file2>: In this case <file1> is the definitions file and <file2>

is the program file.

If the given files are not syntactically correct, the program terminates with an
error message. Another thing that will create an error is if the reflexive, transitive
closure of the user-defined ordering is not anti-symmetric. Ideally, the program
should also perform the tests from Section 6.7, but this has not been implemented.

If the files are correct the user is prompted for a goal. The prompt looks like

?-

A goal is entered a constraint or predicate at a time — one for each line. That is,
to enter the goal (Type(Γ, e, t); {t ≥ prod[a : ωa, b : ωb]}) we type the following

?- Type(Gamma, e, t)

?- prod[a: omega a, b: omega b]

?- #run

The command #run starts the interpreter on the goal. If the goal fails the program
will output

** No **

If it succeeds it will output

122 Chapter 7. The CLP(OIH) Language

** Yes **

Followed by a system of equations which defines the 6Σ-least solution. The
program will then prompt for the next goal.

If the goal is large it becomes tedious to type it in online. The command #read

takes a file as an argument and reads the goal from that file. For example if the
file foo.goal contains

Type(Gamma, e, t)

prod[a: omega a, b: omega b]

then we could have the dialogue

?- #read foo.goal

Type(Gamma, e, t)

prod[a: omega a, b: omega b]

?-

Note, that the program echoes the lines it reads from the goal file. The goal
file can itself contain lines of the form #read <file> in which case the program
recursively reads the goal from the file <file>.

The command #quit or #q end the session.

7.4.4 Troubleshooting

There are several ways in which we can get unexpected results. Here are some of
the most frequent.

The program gives a run-time error. This is always due to some of the re-
quirements not being met. Most fatal are the following.

• The ordering does not form a lower semi-lattice. This will invariably
result in a segmentation fault.

• The rank is not monotone.

• Some conclusion(s) contain(s) free occurrences of bound variables.

• Some ellipsis expression(s) contain(s) free occurrences of bound vari-
ables.

The program gives unexpected error messages. Provided the files are in
fact syntactically correct this should rarely happen. One possibility is that
the last line in one of the files does not end with an end-of-line (only an
end-of-file). Another is that a goal file contains empty lines or leading
whitespace on one of the lines.

7.4 Using CLP(OIH) 123

The program terminates with an unexpected result. Barring the obvious
possibility that our expectations are wrong and that the result is a perfectly
valid solution to the program we intended to write there are still a couple
of possibilities.

• There is a misspelled identifier in one of the rules, thus creating a free
variable. This will make the interpreter come up with solutions that
are in fact not solutions to the problem.

• There is a misspelled predicate name. If the predicate name is in the
conclusion of the rule, then this will effectively remove that rule from
the program. If the predicate name is in the antecedents then it will be
a predicate without a rule. That is, it will always fail. In the latter case
the interpreter will issue a warning. In both cases the interpretation
might fail when there is in fact solutions to the problem.

• The goal contains an unsatisfiable constraint set. If this is the case
the interpreter will issue a warning. The results are completely unpre-
dictable if the constraint set is unsatisfiable.

Chapter 8

Applications of CLP(OIH)

CLP(OIH) is a strict extension of PROLOG and PROLOG-II. As such it contains
all the application of these languages. In this chapter we concentrate on the
class of applications CLP(OIH) is designed for — type inference algorithms. We
open our discussion with a tutorial on implementing type inference algorithms in
CLP(OIH) using the simply typed λ-calculus as an example.

8.1 Type Inference in CLP(OIH)

In this section we describe the general techniques for implementing type inference
algorithms in CLP(OIH). We use the simply typed λ-calculus to demonstrate these
techniques (see [6] for more about the λ-calculus). The expressions in the simply
typed λ-calculus follow the syntax

e ::= n | x | λx. e | (e e′)

where n is an integer and x is a variable. The types are of the form

τ ::= i | τ → τ ′

The two kinds of types are integer and function types respectively. An expression
λx. e defines the function whose description is f(x) = e. Hence the type of λx. e
has a function type τ → τ ′ where τ is the type of x and τ ′ is the type of e given
that x has type τ .

For instance we have that λx. x has among others the type i → i and the type
(i → i) → (i → i). We write this as the type judgements ` λx. x : i → i and
` λx. x : (i → i) → (i → i), respectively. We arrive at the former of these
judgements by noting that if x has type i then x has type i. We write this as the
judgement x : i ` x : i.

126 Chapter 8. Applications of CLP(OIH)

The reasoning that leads us to the judgement ` λx. x : i → i is written in the
form of a type deduction:

x : i ` x : i
` λx. x : i→ i

The type system is defined by typing rules that define which deductions are valid.
The typing rules for the simply typed λ-calculus are the following.

Γ ` n : i Γ, x : τ ` x : τ

Γ, x : τ ` e : τ ′

Γ ` λx. e : τ → τ ′
Γ ` e : τ ′ → τ Γ ` e′ : τ ′

Γ ` (e e′) : τ

There is no mention above about what should be done in the case where the
same variable appears in different λ-expressions (e.g. λx. λx. x). For simplicity,
we shall assume that all variables are distinct.

As a more involved example we have the deduction of ` (λx. x)(λy. y) : i→ i:

x : i→ i ` x : i→ i

` λx. x : (i→ i)→ (i→ i)
y : i ` y : i
` λy. y : i→ i

` (λx. x)(λy. y) : i→ i

In the case of type inference we do not know the target type for the expression.
Neither do we know the types of the variables in advance. This necessitates the
use of constraints. While we cannot know what the type of λx. x is we can know
that if the type of x is τ the type of λx. x will be τ → τ . We write this as
the constraint [[λx. x]] = [[x]] → [[x]], where expressions of the form [[e]] are type
variables standing for the type of e.

For the simply typed λ-calculus we generate the following constraints:

• For each integer constant, n, the constraint [[n]] = i.

• For each variable, x, the constraint [[x]] = [[x]].

• For each λ-abstraction λx.e, the expression [[λx.e]] = [[x]]→ [[e]].

• For each function application (e e′) the constraint [[e]] = [[e′]]→ [[(e e′)]].

The redundant constraint [[x]] = [[x]] is added to ensure that we generate con-
straints for every subexpression.

The encoding of the types in CLP(OIH) is quite straightforward. There are two
labels, and the types are simply the set of all terms that can be generated by
these labels. We implement this in CLP(OIH) by the following lines.

int/0,

arrow/2

8.1 Type Inference in CLP(OIH) 127

But encoding the types is not enough. In order to generate the right constraints
the program must know of the syntax of the program. In addition to this we
have the type environment, Γ, from the expression Γ ` e : t.

The encoding of environments in CLP-languages usually poses a problem. In [39]
Kozen uses predicates of the form

ma(x1, . . . , xn, ”p”, y1, . . . , yn)

where the xi are the values of the program variables before the analysis, the yi
are the values after the analysis, and "p" is some encoding of the program. The
drawback of this is that there is a new predicate for each program, which is clearly
impractical.

Here, we exploit that we can use extensions. We introduce a label env defined in
the program as

env[dom]/|dom|

Using this label we can describe the environment mapping x to τx and y to τy as
env[x : τx, y : τy].

This encoding of environments dictates the encoding of variable references. The
variable reference x is encoded as var[x], where var is the label and [x] is the
extension. This has a curious consequence. Since we have no restriction on the
size of extensions and the only constraints we allow on extensions is ⊆, both
var[] and var[x,y,z] are valid expressions. We will assume, however, that
expressions of these forms do not occur.

Just as with variable references, variables as λ-abstractions are handled using
extensions, so the expression λx. e is encoded lambda[x](e). From a typing point
of view there is no difference between integer constants, so they are all handled
by the single label intconst. The label app handles function application and
hence the set of labels for the encoding of expressions is as follows.

intconst/0,

var[x]/0,

lambda[x]/1,

app/2

With the above extensions RegΣ no longer contains only types. This raises a two
questions.

1. What is the ordering between non-type labels?

2. What do we do with expressions such as lambda[x](arrow(env[], int))?

The answer to the first question is that we first order each kind of label with some
lower semi-lattice. In the case of the types we pick the one that the algorithm

128 Chapter 8. Applications of CLP(OIH)

dictates. For the other labels the ordering is arbitrary. For instance we could
have the following ordering between the expression labels.

intconst < var,

intconst < lambda,

intconst < app,

Then we add inequalities to the effect that the smallest type is also the smallest
label:

int < intconst,

int < env

The ordering thus obtained is the one used for the program.

In order to ensure that meaningless expressions do not occur, we define three con-
straints IsType(τ), IsEnvironment(Γ), and IsExpression(e). These constraints
ensure that their arguments are of the right kind. As an example the constraint
IsType is defined by

rec IsType(tau) ↔
(int);

(arrow) if IsType(tau/1), IsType(tau/2).

The implementation of the type inference algorithm consists of simply following
the type deduction rules. We define a predicate Type/3 such that for all environ-
ments Γ, expressions e, and types τ we have that Type(Γ, e, τ) ⇔ Γ ` e : τ . The
easiest case is that of integer constants.

Type(gamma, intconst, int).

In this case we do not explicitly generate a constraint. The constraint [[e]] = i is
implicitly present in the semantics of CLP(OIH). In the case of variable references
we need to access Γ.

Type(gamma, var[..x..], t) :-

env[..x:t’..] <= gamma, t = t’.

Note that it is necessary to write var[..x..] rather than just var[x] because
the latter is just a term containing no variables, so it would apply only to a
variable named x. It follows from the rule above that var[] has any type, and
that var[x,y,z] has a type only if all of x, y, and z have that type. The rule
for λ-abstractions is similar.

Type(gamma, lambda[..x..](e), t) :-

gamma <= gamma’, env[..x:t’..] <= gamma’,

Type(gamma’, e, t’’), t = arrow(t’, t’’).

8.2 Type Inference with Overloading 129

Note the use of two <=-constraints to model ∪. The rule for function application
is straightforward.

Type(gamma, app(e, e’), t) :-

Type(gamma, e, arrow(t’,t)), Type(gamma, e’, t’).

Again, the two constraints are implicit.

The rules above implement the type inference algorithm apart from the problem
that e.g. Type(env[x : intconst], var[x], intconst) succeeds. In order to disallow
this we define the predicate Typing/3 as follows.

Typing(gamma, e, t) :-

IsEnvironment(gamma), IsType(t), IsExpression(e),

Type(gamma, e, t).

The algorithm always finds the smallest Γ, such that Γ ` e : τ . Hence, it will
infer ` (λx. x)(λy. y) : i → i, but it will not give back the type of x or y. One
way to get these types is to change gamma <= gamma′ to gamma = gamma′ in the
rule for λ-abstraction. A way to do it without changing the program is to start
the program on the goal

?- Typing(gamma, e, t), env[x : tx, y : ty] <= gamma

This completes the implementation of the type inference algorithm. The complete
program can be found in Appendix A.1.1.

8.2 Type Inference with Overloading

A polymorphic function can take arguments of several different types. There is
in general two different kinds of polymorphism (see [9]):

1. Parametric polymorphism, where the same code is used to implement the
function for different argument types.

2. Ad-hoc polymorphism or overloading, where different code is used for dif-
ferent types.

As an example of parametric polymorphism we have concatenation of lists, where
only the structure of the list matters and the elements are moved around using
pointers. A typical example of overloaded functions is the + functions which can
add integers as well as reals.

In the context of type inference, overloading is different from parametric poly-
morphism because theoretically there is no restrictions on the types that an
overloaded function can have whereas the types of a polymorphic function can be

130 Chapter 8. Applications of CLP(OIH)

described as a type expression with free variables, e.g. list(α)→ list(α)→ list(α)
— the type of the concatenation function.

8.2.1 Overloading in the Lambda Calculus

Type inference in the presence of overload functions has been studied by several
authors (e.g. [67] and [75]). The difficulty immediately arises that the problem
is so general that type inference becomes impractical if not impossible.

Smith [67] examines an extension of the λ-calculus with overloading. He proves
that the general problem is undecidable. Instead he focuses on special cases
where the overloading is a sort of restricted parametric polymorphism, where the
variables can be restricted to types built of certain constructors. Consider the
overloaded equality, e = e′. The expression e = e′ is legal whenever e and e′ is
of the same type which contains no function types (since equality of functions is
undecidable). That is, = has the restricted polymorphic type

∀αint,real,bool,list.α→ α→ bool

This kind of restriction is easily modelled in CLP(OIH). The key is the relation
EqType defined as

rec EqType(tau) ↔
(real);

(int);

(bool);

(list) if EqType(tau/1).

A similar relation can be build for each Σ′ ⊆ Σ.

This restricted version of overloading lacks expressibility, though. It is not pos-
sible to express the type of an overloaded + function with the types

+ : int→ int→ int
+ : int→real→real
+ :real→ int→real
+ :real→real→real

In fact, the rules for + can only be expressed by a trinary constraint, but if we
allow the typing

+ : int→ int→ real

as well we can express the types as + : τ → τ ′ → τ ′′, iff there is a type
τ0 ∈ {int, real} such that τ 6 τ0, τ

′ 6 τ0, and τ0 6 τ ′′, where int < real.

8.2 Type Inference with Overloading 131

Using inequalities over the base types is known as coercion. Basically, in a type
system built on coercion we have that any expression of type int can be coerced
into being an expression of type Real. Wand and O’Keefe [75] have examined
type inference with coercion and have shown that it is in general NP -complete.
However, they prove that if the ordering forms a tree, the type inference can be
solved in polynomial time. In fact, this requirement is too strict. The only thing
that is needed for their proof to work is that any set with an upper bound has a
least upper bound.

This result should not surprise us, since all sets of types with an upper bound
have a least upper bound if and only if the ordering is a lower semi-lattice. And
since it follows from the definition of stability that any ordering, 6, is 6-stable,
our work may be viewed as a generalisation of the result in [75].

To demonstrate the above we show how to implement a type inference algorithm
for a lambda calculus with coercion. First, we look at how coercion extends to
function types:

τ1 → τ ′1 6 τ2 → τ ′2 ⇔ τ ′1 ≤ τ1 ∧ τ2 ≤ τ ′2

If we think of coercion as set inclusion the rule above becomes obvious.

Wand and O’Keefe uses the observation of Mitchell [49] that all comparable
types have the same structure. Hence the algorithm proceeds by first inferring
the structure of the types and then computing a set of constraints over the base
types only. We use a similar approach. The structure of a type can be written as

τs ::= basetype | τs → τs

For the purpose of our example, let us use the following types:

τ ::= PosInt | Int | PosReal | Real | τ → τ

with the obvious ordering. Then we can define a relation between the structure
of the types and the types themselves. If τs is the structure of the type τ we say
that τ is an instance of τs defined in CLP(OIH) as

rec Instance(tau, tau’) ↔
(basetype, pos int);

(basetype, int);

(basetype, pos real);

(basetype, real);

(arrow, arrow)

if Instance(tau/1, tau’/1), Instance(tau/2, tau’/2).

Now it is easy to define the predicate StructuralType/3 which infers the struc-
tural type in a way similar to the type inference in Section 8.1. Having a type

132 Chapter 8. Applications of CLP(OIH)

structure τs we produce the constraint Instance(τs, τ) so that τ gets the right
structure. This only works if τs is finite which we can assure by using the keyword
Finite.

Now that we have inferred the structure of the types of the program and all the
variables, we call the predicate Type/3 which infers the types in the same way as
in Section 8.3.1. Note that it is important that this is done in the right order. We
accomplish this by using the fact that the interpreter deals with the antecedents
in order from right to left. The result is the predicate Typing/3 defined as

Typing(gamma, e, t) :-

IsEnvironment(gamma), IsType(t), IsExpression(e),

Type(gamma, e, t),

Instance(t s, t), Instance gamma(gamma s, gamma),

StructuralEnvironment(gamma s), StructuralType(t s),

Type struct(gamma s, e, t s).

The whole program is found in Appendix A.1.2.

8.2.2 Turbo Pascal

Type inference for Turbo Pascal has been studied by Hougaard, Schwartzbach,
and Askari in [32] and Hougaard and Askari in [31]. The basic method is that of
generating constraints for the overloaded operators, ∗, +, etc.

The authors found that there is a single constraint which can be used in expressing
the typeability of most of the operators. This constraint uses the relation Op
which is defined such that Op(τ, τ ′, τ ′′), iff τ ′′ is the result type of an operation
with argument types τ and τ ′. In addition to this some of the operators have
limited scope so that the constraints for e.g. e ∗ e′ is Op([[e]], [[e′]], [[e ∗ e′]]) and
[[e]], [[e′]] ∈M∗ where M∗ is the set of types that ∗ can operate on.

Other important relations in Turbo Pascal are type compatibility, Tc, and assign-
ment compatibility, Ac. Basically, type compatibility tells us when the expres-
sion e = e′ is allowed, and assignment compatibility tells us when the assignment
e := e′ is allowed.

These three central relations are defined in CLP(OIH) by simply enumerating
the possibilities allowed in Turbo Pascal. For example the definition of Ac is as
follows.

Ac(t, t’) ↔
(boolean, boolean);

(integer, integer);

(real, integer);

8.2 Type Inference with Overloading 133

(real, real);

(char, char);

(pointer, pointer);

(pointer, pointer to);

(string, string);

(string, char);

(set, set) if Tc(t/1, t’/1);

(pointer to, pointer);

(pointer to, pointer to) if t = t’, Notfile(t/1);

(array, array) if t = t’, Notfile(t/2);

(record[a], record[b]) if t = t’, Notfile(t).

where Notfile(τ), iff τ contains no file types.

Note the ad-hoc character of the definition above. In most well-designed pro-
gramming languages the relation corresponding to assignment compability is a
partial ordering or at least a preorder. Assignment compability is neither. In
fact assignment compability is neither reflexive, transitive, symmetric, nor anti-
symmetric. Nevertheless, it is still stable with the proper ordering of the types.

The implementation of Turbo Pascal is interesting in several aspects:

• The sheer size of the problem. Turbo Pascal is a real life example and as such
it contains many details that need attending. Just the amount of syntax is
enough to make the program large — almost 700 lines of CLP(OIH) code.

• The ad-hoc features. Turbo Pascal contains many features that makes life
easier for the programmer but more difficult for the type inference algo-
rithm. For example the special type string can be used as an array type in
some contexts but is quite different in other contexts. This means that the
expression v[e] can have two different typings depending on whether v is a
string or an array. In CLP(OIH) we deal with this by having two rules for
v[e].

• The procedures and functions. Procedures and function are not just vari-
ables of a certain type as in the functional languages. They are seperate
entities and need their own environments.

• Name equivalence. In Turbo Pascal two types are not equal just because
they have the same structure — they need to have the same name. So if
two types are defined by the equations

τ = record[a : integer]

τ ′ = record[a : integer]

they are different, but if they are defined as

τ = record[a : integer]

134 Chapter 8. Applications of CLP(OIH)

τ ′ = τ

they are equal. In the implementation this is dealt with by making explicit
equality constraints whenever necessary. The union-find algorithm inherent
in the unification algorithm takes care of the necessary work so that the
resulting equations defines the proper name equivalence relation.

The full implementation of the type inference algorithm for Turbo Pascal is in
appendix A.2.

For the analysis of the algorithm we note that each constraint leads to a release
of a constant number of constraints only. Furthermore, for all practical programs
the size of the field sets are negligible. Hence, we arrive at a running time of
O(n logn). In practice, though, the running time is dominated by the interpreta-
tion of the CLP(OIH) program due to the large set of labels and number of rules
for all the syntax.

8.3 Type Inference with Subtyping

The subtype relation is introduced in type system to express that expressions of
one type can be used also as expressions of another type. The canonical example
is the product (or record) type. The expression e.l is valid whenever the type of
e is a product which contains the field label l. Furthermore, the construction e.l
is the only one that provides access to product values. What this means is that
if e′ is another expression with a product type with more fields that the type of
e, the program would still be valid with e′ replaced for e throughout. In other
words, it is sound to consider e′ to be of the same type as e. If e has type τ and
e′ has type τ ′ we say that τ ′ 6 τ .

The above leads us to the subsumption rule. This typing rule is common for all
type systems build on subtyping.

Γ ` e : τ ′

Γ ` e : τ
τ ′ 6 τ

The main difference between the type systems then is the choice of the subtype
relation.

8.3.1 Reynolds’ Style Subtyping

The subtype ordering used by Reynolds in [59] has already been defined in Sec-
tion 4.1. Let us recapitulate the main features:

8.3 Type Inference with Subtyping 135

• Smaller products give larger types.

• Larger sums give larger types.

• Prod, Sum, and List are monotone or covariant.

• → is monotone in the second argument but anti-monotone or contravariant
in the first argument.

The contravariance of → stems from the fact that if ` λx. e : τ → τ ′, then for all
σ 6 τ and σ′ > τ ′ we have ` λx. e : σ → σ′.

The combination of contravariance of → and covariance gives us the field update
problem. A field update is an expression of the form e[l := e′]. If the value of e
is a product type with a field label l the value of e[l := e′] is a product type with
the same fields as e but with the l field updated with the value of e′.

The problem is that we cannot give a reasonable type to the function f ≡
λx.x[l := x.l + 1]. The obvious type is Prod(l : int) → Prod(l : int), but if f
is applied to 〈l : 7, l′ : 0〉 we get

f : Prod(l : int)→ Prod(l : int) ` f 〈l : 7, l′ : 0〉 : Prod(l : int)

and we have lost information. If we try f : Prod(l, l′ : int) → Prod(l, l′ : int) we
cannot apply f to 〈l : 7〉.

This update problem has haunted type theory for more than a decade. Cardelli
and Wegner [9] has suggested that the type of f should be

∀α ≤ Prod(l : int) : α→ α

but this is unsound unless we give up on the covariance of Prod. Schwartzbach
[64] gives a type system for an imperative language without contravariant con-
structors, in which there is no update problem. In general, the problem remains
unsolved — especially for object-oriented languages which have implicit con-
travariance.

In Reynolds [59] there is no field update and hence no field update problem. Still,
the problem can arise in other contexts. We will not discuss these issues further
but instead look at the type inference problem.

The problem with the ordering is that it does not comply with the requirements
of Theorem 9. In fact, the relation 6st is itself non-strict since∧

((Σst × {→}) ∩Rst) = (→,→)

and χst(→,→) 6= ∅. This means that an attempt to solve the inequality
x 6st x→ x will result in an infinite series of approximations as in Figure 6.10.

136 Chapter 8. Applications of CLP(OIH)

We can improve on this situation by making an extension suggested by Reynolds
himself in [59]: introducing the universal type and the nonsense type. The uni-
versal type, univ, is a subtype of every type, which means that an expression of
the universal type can be used everywhere. The nonsense type, ns, is a supertype
of every type, which means that every expression has type ns.

With this extension the constraint x 6st x→ x has the finite solution x = univ. If
we make the ordering between the labels so that univ is the smallest, all constant
types are between univ and ns, and all other labels are greater that univ we get
that 6st is a stable, strict relation.

Unfortunately, this is insufficient to satisfy the termination requirement of The-
orem 9 because certain constraint sets may still be collectively non-strict, and
indeed they are. First, we note that the constraint set x 6st x→ x, x >st x→ x
can be dealt with by defining 6st explicitly as an inequality. The definition then
is as follows:

ineq leq(t, t’) ↔
(univ, univ);

(univ, int);

(univ, bool);

(univ, ns);

(univ, prod);

(univ, sum);

(univ, list);

(univ, arrow);

(int, int);

(int, ns);

(bool, bool);

(bool, ns);

(prod[a], prod[b])

if b <= a, ∀ i in a&b: leq(t/i, t’/i);

(prod, ns);

(sum[a], sum[b])

if a <= b, ∀ i in a&b: leq(t/i, t’/i);

(sum, ns);

(list, list) if leq(t/1, t’/1);

(list, ns);

(arrow, arrow) if leq(t’/1, t/1), leq(t/2, t’/2);

(arrow, ns);

(ns, ns).

This definition works in many practical cases but there are still problems as we
shall see at the end of this section.

8.3 Type Inference with Subtyping 137

For the implementation of type inference for type systems with subtyping we
must consider how to implement the subsumption rule. The first idea that comes
to mind is to implement it directly as the following.

Type(Gamma, e, t’) :- Type(Gamma, e, t), leq(t, t’).

This is not a very good idea, though, because we do not make any progress.
Since the expression is the same on both sides, the rule can be used an arbitrary
number of times and we cannot guarantee termination. A way of helping this
situation is to use the determinism in the implementation. If we place this rule
as the last one it will only be tried when all other avenues fail. This is however
not very helpful. If the program is not typeable the interpretation will still not
terminate, and even when the program is typeable this strategy will result in too
much backtracking.

The right idea is to scatter a good number of 6st constraints wherever they can
be useful. Due to the reflexivity of 6st there is no problem in using too many
subsumption rules. On the other hand, having two subsumptions in a row is of no
use, since by the transitivity of 6st they can be replaced by a single one. Hence,
our strategy becomes one of inserting a subsumption at the end of every other
rule. Using this strategy the rule for variable references (identifiers in [59]) looks
as follows.

Type(Gamma, ident[..x..], t) :-

env[..x:t x..] <= Gamma, leq(t x, t).

In the same way the expression e.l (encoded as select[l](e)) is handled by the
following rule.

Type(Gamma, select[..l..](e), t) :-

Type(Gamma, e, prod[..l:t l..]), leq(t l, t).

Note that we must infer exactly the type Prod(l : tl) for e. This is always possible
because of the use of subsumption in the recursive call. The entire program can
be found in Appendix A.3.

Let us now return to the question of the termination of the algorithm. We
can immediately see that the termination condition is not fulfilled due the the
constraint set x 6st y 6st z. Fixing x and z as→-types forces y to be an→-type
as well, and this in turn forces new constraints violating the strictness criterion.
The same problem applies to the other constructors. For simplicity, we shall
use List in the following examples but the problems apply equally to the other
constructors.

The problem appears with the constraint set

{x = List(x), z = List(z), x 6st y 6st z}

138 Chapter 8. Applications of CLP(OIH)

The arc consistency will fix y as having the label List and hence it will create
a free variable which is a subterm of y. Let us call this variable y′. Now, the
forced constraints from the 6st constraints are x 6st y

′ 6st z since x and z are
their own subterms. This puts us in a situation that is isomorphic to the original
constraint set, and hence the algorithm will continue forever.

As a solution we could restrict our solution space to the finite types using the
keyword Finite. This, however, does not save us as the following constraint set
shows:

List(x) 6st x 6st y 6st List(y)

Again the forced constraints form a constraint set isomorphic to the original one,
but this time no explicit cycle is formed.

Experiments suggest that the algorithm terminates for most examples. There is,
however counterexamples to this. The algorithm does not terminate when run on
the expression (λx.xxx)(λy.y). We must conclude that Reynolds style subtyping
is beyond implementation in CLP(OIH). This is perhaps not that surprising. As
far as this author knows, there is no known algorithm for type inference with
Reynolds style subtyping.

Palsberg, Wand, and O’Keefe [57, 55] have studied the type inference problem
for a simpler type system which has only →, univ, and ns (which they call →,
⊥, and >, respectively). They find that the typeability problem is decidable
in polynomial time for regular as well as finite types, and that the result holds
even if base types are added to the system. It is still open, though, whether
it is possible to infer minimum-size types in the presence of base types. The
algorithm used for these systems are highly specialised, and it is no surprise that
these simplifications is insufficient to make the system fit in into CLP(OIH).

It is worth noting that it is decidable whether a constraint set is isomorphic to
another. Hence, it is possible to detect when these kinds of infinite loops occur,
and therefore possible to decide Reynolds style subtyping in the finite case. This
avenue does not look promising for practical purposes, though.

8.3.2 The Object Calculus

The object calculus (or ς-calculus) has been devised by Abadi and Cardelli in [1].
It serves as a tool for investigating aspects of object-oriented programming lan-
guages and type systems in a controlled environment. The key feature that will
interest us here is the use of the subsumption rule to implement subclassing.

The calculus implements three operations: Object definition, method send, and
method override. The syntax is as follows:

o ::= x | [l1 = ς(x1)o1, . . . , ln = ς(xn)on] | o.l | o.l⇐ ς(x)o′

8.3 Type Inference with Subtyping 139

In the definition above, x and the xi are variables, [l1 = ς(x1)o1, . . . , ln = ς(xn)on]
is an object definition with method names l1, . . . , ln and methods ς(x1)o1, . . . ,
ς(xn)on, o.l is a method send, and o.l ⇐ ς(x)o′ is a method override.

We shall write o = [li = ς(xi)oi
i∈1..n] for the object o = [l1 = ς(x1)o1, . . . , ln =

ς(xn)on]. If o is like above we have that the method send o.lj reduces to oj[xj ← o]
and the method override o.lj ⇐ ς(y)o′ reduces to

[l1 = ς(x1)o1, . . . , lj = ς(y)o′, . . . , ln = ς(xn)on]

It follows that o.l and o.l ⇐ ς(x)o′ yield errors if o does not implement a method
named l. One of the goals of typing rules is to catch these errors statically.

The type of an object [li = ς(xi)oi
i∈1..n] is [li : τi

i∈1..n] where τi is the type of
oi[xi ← o] — that is, the return type of the method. For example, we have that
the object [l = ς(x).x] has the infinite type τ defined by τ = [l : τ].

The set of all types is defined in CLP(OIH) by the label object defined by

object[l]/|l|

The typing rules are based on this key observation: Whenever o.l is legal and
o′ is like o but with added methods o′.l is legal as well. The same can be said
for method override. Hence, we have that [li : τ i∈1..n

i] 6oc [li : τ i∈1..m
i] if m ≤ n.

In order to escape the problem with updating (see section 8.3.1) there is no
congruence rule in the definition of 6oc; that is, object types are not covariant.

With this we can define Leq oc non-recursively in CLP(OIH) as follows:

Leq oc(t, t’) ↔
(object[l], object[m])

if m <= n, ∀ i ∈ l & m: t/i = t’/i.

Since this is clearly stable, it follows that the problem is in OIH. In fact, Leq oc

is the transposed of the built-in <=-relation restricted to object types. That is,
for all object types, τ and τ ′, we have that Leq oc(τ, τ ′), iff τ ′ <= τ .

In [52], Palsberg gives a reduction from a type inference problem to a constraint
satisfaction problem using 6oc-constraints. We can implement this reduction
directly in CLP(OIH).

The constraints for the expression o.l are given in [52] as [[o]] 6oc [l : 〈o.l〉] and
〈o.l〉 6oc [[o.l]], where [[e]] and 〈e〉 are type variables. In CLP(OIH) this becomes

Type(Γ, message[..l..](a), t) :-

Type(Γ, a, t a), object[..l:t’..] <= t a, t <= t’.

The object definition [l = ς(x)x] is encoded as object def[l:sigma[x](var[x])].
Hence we have two rules for the typing of object definitions:

140 Chapter 8. Applications of CLP(OIH)

Type(Γ, object def[..l:m..],t) :-

t <= t′, t’ = object[..l:t b..], Type(Γ, m, t’, t b).

Type(Γ, sigma[..x..](b), t x, t) :-

Type(Γ′, b, t), Γ <= Γ′, env[..x:t’..] <= Γ′, t’ = t x.

This corresponds to the constraints [li : [[oi]]
i∈1..n] 6oc [[[li = ς(xi)o

i∈1..n
i]]] and

xi = [li : [[oi]]
i∈1..n]. In the latter constraints, xi are type variables standing for

Γ(xi).

The full program can be seen in Appendix A.4.1. It is possible to extend the
type inference program to a language with added atomic types. An example of
this is in Appendix A.4.2.

Palsberg [52] gives an algorithm for the solution of systems of 6oc constraints.
The algorithm maintains a directed graph — an AC-graph. An AC-graph has
two kinds of nodes — N -nodes and S-nodes — and two kinds of edges — L-edges
and 6-edges. The L-edges are labelled with method names, and they can go from
N -nodes only.

The idea of the AC-graph is that the S-nodes represent type variables and the
N -nodes expressions of the form [li : τi

i∈1..n]. In the latter case there would be n
L-edges from the corresponding N -node. The ith edge would be labelled li and
go to the (S-)node representing τi. The 6-edges represent the 6oc constraints.

Given an AC-graph representing constraint system, Palsberg computes the clo-
sure of the graph under the following properties:

1. The graph consisting of the 6-edges is reflexive and transitive.

2. For all nodes u, v, v′, w, and w′, whenever there are edges u
6−→ v

l−→ w

and u
6−→ v′

l−→ w′ there should be edges w
6−→ w′ and w′

6−→ w.

If the resulting graph is well-formed the constraint set is satisfiable. An AC-graph

is well-formed, iff for all N -nodes u and v with u
6−→ v we have that if v has an

outgoing edge labelled l, so has u.

It is interesting to note the similarities and differences between Palsbergs algo-
rithm and the one given in this work (see Chapter 6). The L-edges of Palsberg
corresponds to the transitions of the base automaton; the 6-edges corresponds
to the constraints in E; the reflexivity, transitivity, and well-formedness of the
AC-graph corresponds to the consistency requirement; and the second closure
property corresponds to the releasing of forced constraints.

The main difference is that Palsberg distinguishes S-nodes from N -nodes. There
are two major consequences of this:

8.3 Type Inference with Subtyping 141

1. When Palsberg releases the forced constraints all he needs to do is to make
two edges between S-nodes. This will not result in any further releasing of
forced constraints, since S-nodes have no outgoing L-edges.

In contrast, our released constraints may be between nodes with outgo-
ing transitions. For this reason we release =-constraints rather than two
Leq oc-constraints. As a matter of fact, if we had defined Leq oc by

ineq Leq oc(t, t’) ↔
(object[l], object[m])

if m <= n,

∀ i ∈ l & m: Leq oc(t/i,t’/i),

∀ i ∈ l & m: Leq oc(t’/i,t/i).

the program might not terminate. The result is that less work is required
in Palsbergs algorithm than in the algorithm presented here.

2. Palsberg does not obtain the result explicitly. In our case we have for each
type variable the set of method names in the root of its type as well as direct
access to all the subtrees. This is not possible with the prohibition of out-
going L-edges. Instead, Palsberg outputs the result as a non-deterministic
term automaton. It is not clear how to efficiently obtain a deterministic
term automaton or a set of equations from a non-deterministic term au-
tomaton.

For the analysis of the algorithm, we must take a closer look at what is happening.
Assume that the constraint system has m constraints using p variables and k
distinct labels. There can be at most k transitions out of each variable, this gives
us at most pk new variables. We release at most mk =-constraints over these new
variables, and each of these =-constraints give rise to 2 �-constraints. There will
be transitions out of the new variables only if the released =-constraints result
in unification with original variables. Hence, there will not be generated any
variables beyond the pk new variables.

We now have the figures to plug into the formula of Proposition 6.6.2. The sum
of the sizes of the 6oc-constraints is m times the size of 6oc plus the sum of the
sizes of the expressions. The latter of these is O(p + k) and the size(6oc) = 5,
so the time contributed by the 6oc-constraints is O(m + p + k). Similarly, the
time contributed by the =-constraints is O(mk). The m+2mk � −constraints
contribute by a time of O(mk2). In all we have that the total time is

O(m+ p+ k +mk +mk2) = O(p+mk2)

Now, assume that we are given a program of size n. By inspection of the con-
straints we can see that there can be no more than 4 constraints and 2 type vari-
ables for each node in the syntax tree, and that all the labels in the constraint set

142 Chapter 8. Applications of CLP(OIH)

come from the program. Hence we have that p, m, and k are all O(n), and that
the total running time of the type inference program is O(n+ n · n2) = O(n3) —
the same as in [52].

We conclude that the algorithm presented here is to be preferred to the one in
[52] since it gives the types explicitly, yet has the same running time.

The lack of covariance of the 6oc-relation raises certain problems. Consider the
following object definitions:

o = [l = ς(x)x]

o′ = [l = ς(x)x, l′ = ς(y)y.l′]

Note that o′ is just o with an added method. We have that o has the type τo
defined by τo = [l : τo] and similarly that o′ has type τ ′o where τ ′o = [l : τ ′o, l

′ : τ ′o].
Unfortunately, τ ′o 66oc τo, so the natural types of these objects does not have the
proper relation.

In the above example we can find types for o and o′ that do in fact have the
proper ordering between them (as both have type []), but it becomes a problem
when o and o′ becomes parts of larger programs. Palsberg and Jim [54] gives the
following example of a program that should be typeable, but is not:

Point = [move = ς(x)x]

ColourPoint = [move = ς(y)y, setcolour = ς(z)z]

Circle = [centre = ς(d)Point]

ColourCircle = Circle.centre ⇐ ς(e)(ColourPoint .move.setcolour)

Main = ColourCircle.centre.move

The example is the core of a quite realistic program involving coloured and un-
coloured geometrical figures. The problem is like in the example above that the
natural types of Point and ColourPoint are unrelated, and that the body of
ColourCircle’s centre method makes it impossible to find a type for ColourPoint
which is a subtype of the type of Point.

The whole problem arises in the use of recursiveness to capture the type of self. A
more promising approach is to introduce an explicit selftype (similar to like Current
in Eiffel). With the explicit selftype the object o would be typed as [l : selftype]
and o′ as [l, l′ : selftype]. Now we have that [l, l′ : selftype] 6oc [l : selftype], so the
problem above has been overcome.

The type expression selftype always refers to the enclosing object type, so we
cannot allow type judgements of the form Γ ` e : selftype. This means that when
we have an expression e of type τ ≤oc [l : τ ′], the expression e.l will have type τ

8.3 Type Inference with Subtyping 143

if τ ′ = selftype (rather that having type selftype). Of course, if τ ′ 6= selftype, e.l
will have type τ ′. This can be expressed using the following notation:

τ ′{τ} =

{
τ if τ ′ = selftype
τ ′ otherwise

Using this notation we can write the type of e.l as τ ′{τ}.

From a type inference point of view the problem is that expressions of the form
τ ′{τ} enter the constraints. We can try to solve this problem by introducing a
constraint Alt(τ, τ ′, τ ′′) which is true, iff τ ′{τ} = τ ′′. The relation Alt is defined
as follows

Alt(tau, tau’, tau’’) ↔
(selftype, selftype, selftype);

(object[l], selftype, object[l’]) if tau = tau’’;

(selftype, object[l], object[l’]) if tau’ = tau’’;

(object[l], object[l’], object[l’’]) if tau’ = tau’’.

Unfortunately, this relation is unstable regardless of the ordering. If we use the
ordering selftype < object, we get the problem that

(object, selftype, object) ∧ (selftype, object, object)
= (selftype, selftype, object)

and the latter tuple is not in the relation. If we let object < selftype, we get
the problem that χ is non-monotone.

There is no use trying to find a way to express Alt using stable relations. Pals-
berg and Jim [54] has proven that the type inference problem for the object
calculus with selftype is NP -complete. Instead we implement Alt as a predicate
in CLP(OIH) as follows:

Alt(selftype, tau, tau).

Alt(tau’, tau, tau’) :- NotSelftype(tau’).

This of course results in a potentially exponential search for a successful compu-
tation (see Section 3.3). But since the problem is NP -complete this is the best
we can hope for unless P = NP .

With this addition to the program, we can type the ColourCircle example. The
full program is in Appendix A.4.3.

In [53] Palsberg gives a non-deterministic polynomial-time algorithm for solving
the type inference problem. The algorithm guesses which of the type variables,
v, in expressions of the form v{e} ends up as selftype and proceeds with the
ordinary algorithm (from [52]). This corresponds to guessing which of the lines
in the definition of Alt should be used.

144 Chapter 8. Applications of CLP(OIH)

8.4 Control Flow Analysis

In functional languages we do not have the same control flow information at
compile time as we have for imperative languages. As an example look at the
expression (adapted from [66])

(λf.λg.λx.if (x > 0)(fx)(gx))(λy.y)(λz.z)

How does the control flow look at the if -expression? As in any programming
language it is undecidable whether the control passes to f or g but unlike most
languages it is equally undecidable which functions (or λ expressions) f and g
represents — it will be decided at run-time only.

The control flow problem is the problem of finding at each of the call sites which
functions could be called at that call site. In the current example we have that
the set of functions f could be instantiated to is {(λy.y)}.

We can also talk of the effect of evaluation expressions. The effect of evaluating
an expression is the set of functions that are called during the evaluation of that
expression. Returning to the example, the effect of evaluating (fx) is {(λy.y)}
while the effect of evaluating the entire expression is {(λf. . . .), (λg. . . .)}. Note
that the effect does not contain (λy.y). This is because the function will not be
called before the expression is applied to an argument. We say that the expression
has a latent effect, and write this with the types as below.

` (λf.λg.λx.if (x > 0)(fx)(gx))(λy.y)(λz.z) : i
{(λy.y),(λz.z),(λx....)}−−−−−−−−−−−−→ i

For simplicity we name the λ-abstractions and omit the brackets, so that we can

write the type above as i
ny,nz,nx−→ i.

In her Ph.D.-dissertation [69], Yan-Mei Tang examined the use of effect systems
for control flow analysis. We shall see how these results are implemented in
CLP(OIH).

The basic elements of using effect systems are captured in the example language

e ::= x | (λn x. e) | letrecn f(x) = e | (e e′)l

Note that we have named the λ-abstractions as well as the letrec definitions.
In addition we have a label on each call site (function application) in order to
abstract the flow information.

The control flow information is a function from call sites to effects. For each call
site the function gives the set of (names of) λ-abstractions that are called in the
execution of the function call.

8.4 Control Flow Analysis 145

The problem is — as noted above — that finding the exact set of λ-abstraction
called is undecidable. Hence we must restrict ourselves to finding a set containing
at least every λ-expression called.

A trivial solution to the above is the set of all λ-abstractions in the program,
but this is clearly uninformative. The goal is to find as small a set as possible.
Yan-Mei Tang examines two strategies for obtaining this: subeffecting [70] and
subtyping [71].

8.4.1 Effect Systems using Subeffecting

The control flow analysis is derived by a static semantics of the language. The
static semantics is basically a type systems where types can contain latent effects
and effects are derived along with the types. The types are defined as below.

τ ::= i | τ c→ τ ′

where c is an effect — that is, a set of λ-abstraction names. Note that there
is a type i without a matching syntactical construct. We deal with integers by
predefined variables of type i.

The typing judgements are of the form Γ ` e : τ, c, where Γ is the usual type
environment, τ is a type (with latent effects), and c is an effect. For instance,
the typing rule for λ-abstractions is as follows.

Γ[x 7→ tx] ` e : t, c

Γ ` λn x. e : tx
{n}∪c−→ t, ∅

Note that the effect of the λ-abstraction is ∅. All effects from the body of the λ
as well as {n} itself are latent. The effects appear when we apply the abstraction
to something as the following rule shows.

Γ ` e : t′
c′′→ t, c Γ ` e′ : t′, c′

Γ ` (e e′)l : t, c ∪ c′ ∪ c′′

Now, consider the expression λnaa. a. If we assume that a is an integer we get
the type judgement a : i ` a : i, ∅. From the rule for λ-abstractions above we get
` λnaa. a : i

na→ i, ∅. Similarly, we get ` λnbb. b : i
nb→ i, ∅.

If we observe the rule for function above we can see that the type of the argument
must be the same for every application. Now, since the types of λnaa. a and λnbb. b
are different it follows that there is no type, τ , so that we have for some τa, τb,
ca, and cb that f : τ ` f(λnaa. a) : τa, ca and f : τ ` f(λnbb. b) : τb, cb.

146 Chapter 8. Applications of CLP(OIH)

This is a very unfortunate situation. It means that there are programs which
are typeable in the usual type system but cannot be analysed because they are
untypeable in the effect system. Tang [69] gives the following example:

((λnff. (+ (f(λnaa. a))la (f(λnbb. b))lb))(λngg. (g 1)lg))lf

Here we cannot find a suitable type for f .

This example shows that we have to allow some slack in our type judgement. The
simplest way to do this is to introduce the slack in the effects by the following
rule.

Γ ` t, c′
Γ ` t, c c′ ⊆ c

Using this rule we can infer a : i ` a : i, {nb} and hence ` λnaa. a : i
na,nb−→ i, ∅.

The same type can be inferred for λnbb. b. Now, the example is typeable with the

type (i
na,nb−→ i)

na,nb,ng−→ i for f . In fact, every program which is typeable in the
usual type system is now typeable in the effect system.

The implementation in CLP(OIH) is straightforward. We use two labels effect

and flow defined as

effect[c]/0,

flow[l]/|l|

We encode an effect c = {n1, . . . , nk} as the term effect[n1, . . . , nk], the flow is
a mapping from call sites to effects, encoded in the obvious fashion. To allow
latent effects the label for function types are defined as

arrow[c]/2

The names of the λ-abstractions and letrec-expressions and the labels of the call
sites are encoded using the following labels.

lambda[name]/2,

letrec[name]/3,

app[site]/2,

We encode λn x. e as lambda[n](var[x], e) and (e e′)l as app[l](e, e’).

The program defines a predicate Analyse/5, such that Analyse(Γ,e,t,eff,f)
iff Γ ` e : t, eff, and f records the flow information. The Analyse predicate
makes use of the predicate Type/5. As usual Type is the predicate that encodes
the type deduction system.

The implementation of Type differs little from the corresponding predicate in the
simply typed λ-calculus. See for example the rule for variables

8.4 Control Flow Analysis 147

Type(Gamma, var[..x..], t, eff, f) :-

env[..x:t’..] <= Gamma, t = t’, effect[] <= eff.

According to the typing rule for variables the effect is ∅. The inequality is there
to allow for possible subsequent subeffecting.

The rule for applications is similar:

Type(Gamma, app[..site..](e, e’), t, eff, f) :-

Type(Gamma, e, arrow[..c..](t’,t), eff’, f),

Type(Gamma, e’, t’, eff’’, f),

eff’ <= eff, eff’’ <= eff, effect[..c..] <= eff,

flow[..site: eff’’’..] <= f, eff’’’ = eff.

Note how we use three inequalities c ⊆ eff , eff ′ ⊆ eff , and eff ′′ ⊆ eff instead
of the single inequality c ∪ eff ′ ∪ eff ′′ ⊆ eff . They are clearly equivalent but the
latter is impossible to express in CLP(OIH) because of the use of ∪. This means
that the restrictive version without the use of subeffecting cannot be implemented
in CLP(OIH).

The algorithm given above is similar to the R algorithm of Yan-Mei Tang [69].
It can be seen in Appendix A.5.1.

8.4.2 Effect Systems using Subtyping

In the previous section we used subeffecting to be able to apply the same function
variable to both λnaa. a and λnbb. b. The result was that both were given the type

i
na,nb−→ i. This results in a loss of information because the actual latent effects are

smaller than the analysed effect.

Another way to go is to allow the application of the same function variable
to arguments of different types. We can achieve this by the use of subtyping.

Basically, a function type, τ
c→ τ ′, is a subtype of another, τ

c′→ τ ′, if it has a
smaller latent effect. That is, if c ⊆ c′. When we extend this definition with the
usual contravariant rule we have that 6es is the smallest relation such that:

• i 6es i

• τ1
c→ τ2 6es τ

′
1
c′→ τ ′2, iff c ⊆ c′, τ ′1 6es τ

′
1, and τ2 6es τ

′
2.

As usual the ordering is introduced into the system by the subsumption rule:

Γ ` t′, c
Γ ` t, c t′ 6es t

148 Chapter 8. Applications of CLP(OIH)

Using this rule we can infer

f : (i
na,nb−→ i)

na,nb,nc−→ i ` f : (i
na→ i)

na,nb,nc−→ i, ∅
f : (i

na,nb−→ i)
na,nb,nc−→ i ` f : (i

nb→ i)
na,nb,nc−→ i, ∅

And so we have that f is applicable to both λnaa. a and λnbb. b without having
to change the types of these expressions.

In CLP(OIH), the ordering is defined by the following.

ineq Subtype(t, t’) ↔
(int, int);

(arrow[c0], arrow[c1])

if c0 <= c1,

Subtype(t’/1, t/1),

Subtype(t/2, t’/2).

Unfortunately, this relation does not guarantee termination. Assume that Subtype
is νX.〈〈R, χ〉〉. Then we have that ∧(R∩({→}×Σ)) = (→,→), but χ(→,→) 6= ∅.
This means that an attempt to solve the inequality x 6es x

∅→ x would result in
an infinite loop.

In order to remedy this situation we use the observation of Tang [69, 71] that the
structure of the types is the same as for the classical types. Similarly to Tang’s
algorithm S and the algorithm from Section 8.2.1 we start by finding the classical
types of the program and then — if they are finite — proceed with the analysis.

In Tang [69, 71], a classical type is a type generated by the grammar

τc ::= i|τc → τ ′c

Here, we encode classical types as non-classical types with no constraints over
the latent effects. In this way we implement a predicate Classical type/3 such
that Classical type(Γ, e, t), iff Γ `c e : Erase(t), where `c is the classical type
judgement and Erase is a function that removes the latent effects from a type.

Now, it suffices to run the classical type inference program on the expression
(remembering the types in gamma), and — if the types are finite — call the
inference algorithm with subtyping.

Two things are important:

1. The types should be finite.

2. The call to Classical type/3 should occur before the call to Type/5.

The first goal is obtained by using the keyword Finite. How to obtain the second
is implementation dependent. Many implementations of Prolog and other CLP-
languages have constructs that allow you to determine the order in which the

8.4 Control Flow Analysis 149

predicates should be picked. In CLP(OIH) no such construct is implemented, but
we can use the knowledge that the predicates are read from right to left. Using
this knowledge the predicate Analyse/5 is implemented as

Analyse(Gamma, e, t, eff, f) :-

Type(Gamma, e, t, eff, f), Classical type(Gamma, e, t),

Environment(Gamma), IsType(t), IsEffect(eff), IsFlow(f).

The program can be seen in its entirety in Appendix A.5.2.

Conclusion

We have studied the constraints used in different type inference problems and
found that they belonged to a general constraint domain: The ordered infinitary
Herbrand universe or OIH. We have studied the complexity properties of this
universe and found that there was an important quality that the constraints
needed for allowing efficient solving — the quality of stability. When relations
are stable we know that we can maintain a conservative approximation to the
set of solutions and then find the minimal solution by local minimisation in the
conservative approximation.

We provided an efficient constraint solver for the OIH constraint domain and
showed that the constraints have polynomial solutions if they are stable. In
addition we found that different degrees of strictness came in to play in the
termination conditions for the constraint solver.

In order to design and implement the CLP(OIH) language we studied the issue
of backtracking and came up with the stack persistency algorithm, which works
on all programs that use a RAM for storage. In addition, we looked at a way
of formally defining the ellipsis that are so often used in typing rules and other
formalisms. We found that there was a definition which both expressed the way
ellipsis are used in these cases and fitted into the CLP scheme. We also devised
an interpreter for a CLP language with this extension.

We used this insight to implement an interpreter for CLP(OIH). We have thus
provided a programming language well-suited for type inference, which we demon-
strated by implementing a number of type inference problems in the language.

Our work left a number of open problems and things to consider.

• The stack persistency algorithm turned a worst-case complexity into an
amortised complexity. An interesting open problem is whether there is a
stack persistency algorithm with linear worst-case complexity.

• In the implementation of the type inference algorithm the syntax of the
languages entered into the constraint satisfaction problem. It will probably
be useful to redesign the language using a two-sorted algebra so that the

152 Conclusion

syntax and types are kept separate.

• In some of the applications the order of the rules became important. It
may be useful to include features which allow the programmer to control
the order of interpretation.

• In connection with Reynolds’ style subtyping we saw a problem for which we
could not guarantee termination. The example clearly showed that there are
varying degrees of non-termination from the completely non-strict recursive
relation to the strict (but not strictness-closed) inequalities over the finitary
domain. It would be interesting to pursue this difference in degrees further
and see whether there is an efficient way to implement Reynolds’ style
subtyping and several other similar problems.

Bibliography

[1] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Untyped
and first-order systems. In Proc. TACS’94, Theoretical Aspects of Computing
Software, pages 296–320. LNCS 789, Springer-Verlag, 1994.

[2] Alexander Aiken, Dexter Kozen, Moshe Vardi, and Ed Wimmers. The com-
plexity of set constraints. In Proc. 7th Int’l Workshop on Computer Science
Logic, pages 1–17. LNCS 832, Springer Verlag, 1993.

[3] Alexander Aiken, Dexter Kozen, and Ed Wimmers. Decidability of systems
of set constraints with negative constraints. Information and Computation,
122(1):30–44, October 1995.

[4] Alexander Aiken and Brian R. Murphy. Static type inference in a dynami-
cally typed language. In Proc. 18th Symp. Principles of Programming Lan-
guages, pages 279–290. ACM, 1991.

[5] Alberto Apostolica, Giuseppe F. Italiano, Giorgio Gambosi, and Maurizio
Talamo. The set union problem with unlimited backtracking. SIAM Journal
on Computing, 23(1):50–70, 1994.

[6] Henk Barendregt and Kees Hemerik. Types in lambda calculi and program-
ming languages. In Proc. ESOP’90, European Symposium on Programming,
pages 1–35. LNCS 432, Springer-Verlag, 1990.

[7] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint hier-
archies. Lisp and Symbolic Computation, 5(3):223–270, 1992.

[8] Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Con-
straint hierarchies and logic programming. In Proc. 6th Int’l Logic Program-
ming Conference, pages 149–164, June 1989.

[9] Luca Cardelli and Peter Wegner. On understanding types, data abstraction,
and polymorphism. Computing Surveys, 17(4):471–520, December 1985.

[10] Alain Colmerauer. Prolog and infinite trees. In K.L. Clark and S.-A.
Tärnlund, editors, Logic Programming, pages 231–251. Academic Press, New
York, New York, 1982.

154 BIBLIOGRAPHY

[11] Alain Colmerauer. PROLOG II — Reference Manual and Theoretical Model.
Université Aix-Marseille, 1982.

[12] Alain Colmerauer. An introduction to Prolog III. Communications of the
ACM, 33(7):69–91, July 1990.

[13] Bruno Courcelle. Infinite trees in normal form and recursive equations having
a unique solution. Mathematical Systems Theory, 13:131–180, 1979.

[14] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Com-
puter Science, 25(1):95–169, 1983.

[15] Luis Damas and Robin Milner. Principal type schemes for functional pro-
gramming. In 9th ACM conf. on Principels Of Programming Languages,
1982.

[16] R. Detcher and J. Pearl. Network based heuristics for constraint satisfaction
problems. Artificial Intelligence, 34, 1988.

[17] M. Dincbas et al. The constraint logic programming language CHIP. In 5th
Generation Computer Systems, volume 2, pages 693–702. Springer-Verlag,
November 1988.

[18] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.
Making data structures persistent. Journal of Computer and System Sci-
ences, 38:86–124, 1989.

[19] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and mul-
ticommodity flow problems. SIAM Journal of Computing, 5(4):691–703,
December 1976.

[20] Bjorn N. Freeman-Benson and Alan Borning. The design and implemen-
tation of kaleidoscope’90, a constraint imperative programming language.
In International Conference on Computer Languages, pages 174–180. IEEE,
1992.

[21] E. C. Freuder. A sufficient condition for backtrack-free search. Journal of
the ACM, 21(11), 1978.

[22] Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni. Dy-
namization of backtrack-free search for the constraint satisfaction problem.
In M. Bonucelli, P. Crescenzi, and R. Petreschi, editors, Algorithms and
Complexity, pages 136–151. LNCS 778, Springer-Verlag, February 1994.

[23] Früwirth et al. Constraint logic programming — an informal introduction.
ECRC 92-6i, ECRC, 1992.

BIBLIOGRAPHY 155

[24] Rémi Gilleron, Sophie Tison, and Marc Tommasi. Solving systems of set con-
straints with negated subset relationships. In Proc. 34th Symp. Foundations
of Coomput. Sci., pages 372–280. IEEE, 1993.

[25] Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelli-
gence Research, 1:25–46, 1993.

[26] Nevin Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon
University, 1993.

[27] Nevin Heintze and Joxan Jaffar. A finite presentation theorem for approx-
imating logic programs. In Proc. 17th Symp. Principles of Programming
Languages, pages 111–119. ACM, 1990.

[28] F. Henglein. Type inference with polymorphic recursion. ACM Transactions
on Programming Languages and Systems, 15(2):253–289, 1993.

[29] C. J. Hogger. Introduction to Logic Programming. Academic Press, London,
1984.

[30] J. Hopcroft and J. D. Ullman. Set-merging algorithms. SIAM Journal of
Computing, 2:294 – 303, 1973.

[31] Ole I. Hougaard and Hosein Askari. Implicit typing for turbo pascal. Master’s
thesis, Dep. of Computer Science, University of Aarhus, 1994. In Danish.

[32] Ole I. Hougaard, Michael I. Schwartzbach, and Hosein Askari. Type inference
for Turbo Pascal. Software — Concepts and Tools, 16:160–169, 1995.

[33] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. In Proc.
14th Principles of Prog. Lang. ACM, January 1987.

[34] Joxan Jaffar, Michael Maher, Peter Stuckey, and Roland Yap. Output in
CLP(R). In Proceedings of the 1992 Conference on Fifth Generation Com-
puter Systems, Tokyo, 1992.

[35] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap.
The CLP(R) language and system. ACM Transactions on Programming
Languages and Systems, 14(3):339–395, July 1992.

[36] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type recursion in the presence of
polymorphic recursion. ACM Transactions on Programming Languages and
Systems, 15(2):290–311, 1993.

[37] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability.
Journal of the ACM, 41:368–398, 1994.

[38] Dexter Kozen. Logical aspects of set constraints. TR 94-1421, Department
of Computer Science, Cornell University, Ithaca, New York, May 1994.

156 BIBLIOGRAPHY

[39] Dexter Kozen. Set constraints and logic programming. TR 94-1467, Com-
puter Science Department, Cornell University, November 1994.

[40] Dexter Kozen. Set constraints and logic programming (abstract). In Proc.
1st Conf. Constraint in Computational Logics, pages 302–303. LNCS 845,
Springer-Verlag, 1994.

[41] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient re-
cursive subtyping. In Proc. 20th Symp. Princip. Programming Lang., pages
419–428. ACM, January 1992.

[42] K. Kunen. Negation in logic programming. Journal of Logic Programming,
4(3):289–308, 1987.

[43] J. A. La Poutré and J. van Leeuwen. Maintenance of transitive closure
and transitive reduction of graphs. In Proc. Workshop on Graph-Theoretic
Concepts in Computer Science, pages 106–120. Lecture Notes in Computer
Science 314, Springer-Verlag, Berlin, 1988.

[44] H.-P. Lenhof and M. Smid. Using persistent data structures for adding range
restrictions to searching problems. Technical Report A 22/90, Fachbereich
Informatik, Universität des Saarlandes, Saarbrücken, 1990.

[45] Harry G. Mairson. Decidability of ML typing is complete for deterministic
exponential time. In Seventeenth Symposium on Principles of Programming
Languages, pages 382–401. ACM Press, January 1990.

[46] John Maloney. Using Constraints for User Interface Construction. PhD
thesis, University of Washington, 1991. Department of Computer Science,
Technical Report 91-08-12.

[47] Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17:348 – 375, 1978.

[48] Prateek Mishra. Towards a theory of types in Prolog. In Proc. 1st Symp.
Logic Programming, pages 289–298. IEEE, 1984.

[49] John C. Mitchell. Coercion and type inference. In 11th ACM Symp. on
Principles of Programming Languages, pages 175–184, 1984.

[50] Roger Mohr and Thomas C. Henderson. Arc and path consistency revisited.
Artificial Intelligence, 28:225–233, 1986.

[51] Nicholas Oxhøj, Jens Palsberg, and Michael I. Schwartzbach. Making Type
Inference Practical. In Proceedings of the ECOOP ’92 European Confer-
ence on Object-oriented Programming, pages 329–349. LNCS 615, Springer-
Verlag, 1992.

BIBLIOGRAPHY 157

[52] Jens Palsberg. Efficient inference of object types. In 9th Logic in Computer
Science, pages 186–195. IEEE Computer Society Press, July 1994.

[53] Jens Palsberg. Type inference with selftype. Technical Report RS-95-34,
BRICS, 1995.

[54] Jens Palsberg and Trevor Jim. Type inference with simple selftypes is NP-
complete. Nordic Journal of Computing, 4(3):259–286, 1997.

[55] Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow anal-
ysis. In Proc. POPL ’95, 22nd Symposium on Principles of Programming
Languages, pages 376–378, 1995.

[56] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference.
In 6th Annual Conference on Object-Oriented Programming Systems, Lan-
guages and Applications, pages 146–161. ACM SIGPLAN, 1991.

[57] Jens Palsberg, Mitchell Wand, and Patrick O’Keefe. Type inference with
non-structural subtyping. Formal Aspects of Computer Science, 9:49–67,
1997.

[58] M. S. Paterson and M. N. Wegman. Linear unification. Journal of Computer
and System Sciences, 16:158–167, 1978.

[59] John Reynolds. Three approaches to type structure. In Mathematical Foun-
dations of Software Development. LNCS 185, Springer Verlag, 1985.

[60] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12:23–41, 1965.

[61] Michael Sannella. The skyblue constraint solver and its applications. In
Workshop on Principles and Practice of Constraint Programming, pages
385–406. MIT Press, 1993.

[62] Michael Sannella, John Maloney, Bjorn N. Freeman-Benson, and Alan Born-
ing. Multi-way versus one-way constraints in user interfaces: Experience with
the DeltaBlue algorithm. Software — Practice and Experience, 23(5):529–
566, May 1993.

[63] Uwe Schöning. Logic for Computer Scientists. Birkhäuser, 1989.

[64] Michael I. Schwartzbach. Static correctness of hierarchical procedures. In
ICALP’90. LNCS 443, Springer-Verlag, 1990.

[65] Michael I. Schwartzbach. Type inference with inequalities. In Proceedings
of TAPSOFT’91. LNCS 493, Springer-Verlag, 1991.

[66] Olin Shivers. Control-flow analysis in Scheme. ACM SIGPLAN Notices,
23(7):164–174, 1988. Proceedings of the ACM SIGPLAN 1988 Conference
on Programming Language Design and Implementation.

158 BIBLIOGRAPHY

[67] G. S. Smith. Polymorphic type inference with overloading and subtyping. In
TAPSOFT ’93: Theory and Practice of Software Development, pages 671–
685. LNCS 668, Springer-Verlag, 1993.

[68] R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-
directed backtracking in a system for computer-aided circuit analysis. Arti-
ficial Intelligence, 9(2):171–215, 1977.

[69] Yan-Mei Tang. Systèmes d’Effet et Interprétation Abstraite pour l’Analyse
de Flot de Contrôle. Rapport a/258/cri, Ecole de Mines de Paris, 1994.

[70] Yan-Mei Tang and Pierre Jouvelot. Control-flow effects for closure analysis.
In Proceedings og the 2nd Workshop on Semantics Analysis, pages 313–321,
1992.

[71] Yan Mei Tang and Pierre Jouvelot. Effect systems with subtyping. In
Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 45–53, 1995.

[72] R. E. Tarjan. Amortized computational complexity. SIAM J. Algebraic
Discrete Methods, 6:306–318, 1985.

[73] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22:215 – 225, 1975.

[74] Mitchell Wand. A simple algorithm and proof for type inference. Funda-
mentae Informaticae, X:115 – 122, 1987.

[75] Mitchell Wand and Patrick M. O’Keefe. On the complexity of type infer-
ence with coercion. In Conf. on Functional Programming Languages and
Computer Architecture, pages 293–298, 1989.

[76] Jeffrey Westbrook and Robert E. Tarjan. Amortized analysis of algorithms
for set union with backtracking. SIAM Journal on Computing, 18(1):1–11,
1989.

Appendix A

Implementation of the
Applications

A.1 The Lambda Calculus

A.1.1 The Simply Typed Lambda Calculus

lambda.def:

Labels

int/0,

arrow/2,

intconst/0,

var[x]/0,

lambda[x]/1,

app/2,

env[e]/|e|.

Ordering

int < arrow,

intconst < var,

intconst < lambda,

intconst < app,

int < intconst,

int < env.

rec IsType(tau) <->

(int);

(arrow) if IsType(tau/1), IsType(tau/2).

IsEnvironment(gamma) <->

160 Chapter A. Implementation of the Applications

(env[dom]) if @ x in dom: IsType(gamma/x).

rec IsExpression(e) <->

(intconst);

(var[x]);

(lambda[x]) if IsExpression(e/1);

(app) if IsExpression(e/1), IsExpression(e/2).

lambda.clp:

Type(gamma, intconst, int).

Type(gamma, var[..x..], t) :- env[..x:t’..] <= gamma, t = t’.

Type(gamma, lambda[..x..](e), t) :-

gamma <= gamma’, env[..x:t’..] <= gamma’,

Type(gamma’, e, t’’), t = arrow(t’, t’’).

Type(gamma, app(e, e’), t) :-

Type(gamma, e, arrow(t’,t)), Type(gamma, e’, t’).

environment(env[..x:t..]) :- IsType(t).

Typing(gamma, e, t) :-

IsEnvironment(gamma), IsType(t), IsExpression(e),

Type(gamma, e, t).

A.1.2 The Overloaded Lambda Calculus

overload.def:

Finite

Labels

basetype/0,

pos_int/0,

int/0,

pos_real/0,

real/0,

arrow/2,

var[x]/0,

lambda[x]/1,

app/2,

env[e]/|e|.

Ordering

basetype < pos_int,

pos_int < int,

pos_int < pos_real,

int < real,

A.1 The Lambda Calculus 161

pos_real < real,

real < arrow,

var < lambda,

var < app,

int < var,

int < env.

rec IsType(tau) <->

(pos_int);

(int);

(pos_real);

(real);

(arrow) if IsType(tau/1), IsType(tau/2).

rec StructuralType(tau) <->

(basetype);

(arrow) if StructuralType(tau/1), StructuralType(tau/2).

IsEnvironment(gamma) <->

(env[dom]) if @ x in dom: IsType(gamma/x).

StructuralEnvironment(gamma) <->

(env[dom]) if @x in dom: StructuralType(gamma/x).

rec IsExpression(e) <->

(var[x]);

(lambda[x]) if IsExpression(e/1);

(app) if IsExpression(e/1), IsExpression(e/2).

ineq Leq(tau, tau’) <->

(pos_int, pos_int);

(pos_int, int);

(pos_int, pos_real);

(pos_int, real);

(int, int);

(int, real);

(pos_real, pos_real);

(pos_real, real);

(real, real);

(arrow, arrow) if Leq(tau’/1, tau/1), Leq(tau/2, tau’/2).

rec Instance(tau, tau’) <->

(basetype, pos_int);

(basetype, int);

(basetype, pos_real);

(basetype, real);

(arrow, arrow) if Instance(tau/1, tau’/1), Instance(tau/2, tau’/2).

Instance_gamma(gamma, gamma’) <->

(env[dom], env[dom’])

if dom <= dom’, dom’ <= dom,

162 Chapter A. Implementation of the Applications

@x in dom & dom’: Instance(gamma/x, gamma’/x).

overload.clp:

Type_struct(gamma, var[..x..], t) :- env[..x:t’..] <= gamma, t = t’.

Type_struct(gamma, lambda[..x..](e), t) :-

gamma <= gamma’, env[..x:t’..] <= gamma’,

Type_struct(gamma’, e, t’’), t = arrow(t’, t’’).

Type_struct(gamma, app(e, e’), t) :-

Type_struct(gamma, e, arrow(t’,t)), Type_struct(gamma, e’, t’).

Type(gamma, var[..x..], t) :- env[..x:t’..] <= gamma, leq(t’, t).

Type(gamma, lambda[..x..](e), t) :-

gamma <= gamma’, env[..x:t’..] <= gamma’,

Type(gamma’, e, t’’), leq(arrow(t’, t’’), t).

Type(gamma, app(e, e’), t’’) :-

Type(gamma, e, arrow(t’,t)), Type(gamma, e’, t’), leq(t,t’’).

Typing(gamma, e, t) :-

IsEnvironment(gamma), IsType(t), IsExpression(e), Type(gamma, e, t),

Instance(t_s, t), Instance_gamma(gamma_s, gamma),

StructuralEnvironment(gamma_s), StructuralType(t_s),

Type_struct(gamma_s, e, t_s).

A.2 Turbo Pascal

tp.def:

Labels

boolean/0,

integer/0,

real/0,

char/0,

pointer/0,

string/0,

file/0,

text/0,

set/1,

pointer_to/1,

file_of/1,

array/2,

record[n]/|n|,

semicolon/2,

skip/0,

A.2 Turbo Pascal 163

if_then_else/3,

while/2,

repeat_until/2,

for/4,

case[name]/|name| + 1,

variant/2,

assign/2,

proc_call[P]/1,

eq/2,

neq/2,

geq/2,

leq/2,

grt/2,

lst/2,

in_set/2,

empty_set/0,

set_of[name]/|name|,

uni_plus/1,

uni_minus/1,

plus/2,

minus/2,

times/2,

divide/2,

div/2,

mod/2,

shl/2,

shr/2,

and_/2,

or/2,

xor/2,

not/1,

address/1,

func_call[F]/1,

true/0,

false/0,

intconst/0,

realconst/0,

charconst/0,

stringconst/0,

nil/0,

ident[x]/0,

dot[a]/1,

index/2,

point/1,

defs/3,

var_defs[x]/0,

proc_defs[p]/|p|,

164 Chapter A. Implementation of the Applications

func_defs[f]/|f|,

proc_def/2,

func_def/2,

args[param]/|param|,

var/0,

val/0,

var_t/1,

val_t/1,

program/2,

env[dom]/|dom|,

p_env[dom]/|dom|,

f_env[dom]/|dom|,

p_type[param]/|param|,

f_type[param]/|param|+1.

Ordering

boolean < program,

boolean < real,

real < integer,

real < string,

string < char,

boolean < pointer,

pointer < pointer_to,

boolean < text,

text < file_of,

file_of < file,

real < set,

boolean < array,

boolean < record,

program < semicolon,

semicolon < skip,

semicolon < if_then_else,

semicolon < while,

semicolon < repeat_until,

semicolon < for,

semicolon < case,

semicolon < variant,

semicolon < assign,

semicolon < proc_call,

program < eq,

eq < neq,

eq < geq,

eq < leq,

eq < grt,

eq < lst,

A.2 Turbo Pascal 165

eq < in_set,

eq < empty_set,

eq < set_of,

eq < uni_plus,

eq < uni_minus,

eq < plus,

eq < minus,

eq < times,

eq < divide,

eq < div,

eq < mod,

eq < shl,

eq < shr,

eq < and_,

eq < or,

eq < xor,

eq < not,

eq < address,

eq < func_call,

nil < true,

nil < false,

nil < intconst,

nil < realconst,

nil < charconst,

nil < stringconst,

program < nil,

program < ident,

ident < dot,

ident < index,

ident < point,

program < defs,

program < var_defs,

var_defs < proc_defs,

proc_defs < func_defs,

program < proc_def,

proc_def < func_def,

program < args,

program < val,

val < var,

program < val_t,

val_t < var_t,

program < env,

program < p_env,

program < f_env,

program < p_type,

program < f_type.

166 Chapter A. Implementation of the Applications

Ordinal(t) <->

(boolean);

(integer);

(char).

rec Notfile(t) <->

(boolean);

(integer);

(real);

(char);

(pointer);

(string);

(set) if Notfile(t/1);

(pointer_to) if Notfile(t/1);

(array) if Notfile(t/1), Notfile(t/2);

(record[a]) if @n in a: Notfile(t/n).

rec IsType(t) <->

(boolean);

(integer);

(real);

(char);

(pointer);

(string);

(file);

(text);

(set) if Ordinal(t/1), IsType(t/1);

(pointer_to) if IsType(t/1);

(file_of) if Notfile(t/1), IsType(t/1);

(array) if Ordinal(t/1), IsType(t/1), IsType(t/2);

(record[a]) if @n in a: IsType(t/n).

IsEnvironment(Gamma) <->

(env[dom]) if @x in dom: IsType(Gamma/x).

IsPar(p) <->

(val_t) if IsType(p/1);

(var_t) if IsType(p/1).

IsPtype(pt) <->

(p_type[param]) if @par in param: IsPar(pt/par).

IsFtype(ft) <->

(f_type[param]) if @par in param: IsPar(ft/par).

IsPenv(pe) <->

(p_env[dom]) if @p in dom: IsPtype(pe/p).

IsFenv(fe) <->

(f_env[dom]) if @f in dom: IsFtype(fe/f).

A.2 Turbo Pascal 167

Eq_type(t) <->

(boolean);

(integer);

(char);

(real);

(string);

(pointer);

(pointer_to);

(set).

Geq_type(t) <->

(boolean);

(integer);

(char);

(real);

(string);

(set).

Grt_type(t) <->

(boolean);

(integer);

(char);

(real);

(string).

Sign_type(t) <->

(integer);

(real).

Plus_type(t) <->

(integer);

(real);

(set);

(string);

(char).

Minus_type(t) <->

(integer);

(real);

(set).

And_type(t) <->

(boolean);

(integer).

Is_set(t) <->

(set).

Is_file(t) <->

(text);

(file);

168 Chapter A. Implementation of the Applications

(file_of).

Is_string(t) <->

(char);

(string).

Is_pointer(t) <->

(pointer);

(pointer_to).

Tc_ord(t, t’) <->

(boolean, boolean);

(integer, integer);

(char, char).

Tc(t, t’) <->

(boolean, boolean);

(integer, integer);

(integer, real);

(real, integer);

(real, real);

(char, char);

(char, string);

(string, char);

(string, string);

(pointer, pointer);

(pointer, pointer_to);

(pointer_to, pointer);

(pointer_to, pointer_to) if t = t’;

(set, set) if Tc_ord(t/1, t’/1);

(file_of, file_of) if t = t’;

(text, text);

(file, file);

(array, array) if t = t’;

(record[a], record[b]) if t = t’.

Ac(t, t’) <->

(boolean, boolean);

(integer, integer);

(real, integer);

(real, real);

(char, char);

(pointer, pointer);

(pointer, pointer_to);

(string, string);

(string, char);

(set, set) if Tc(t/1, t’/1);

(pointer_to, pointer);

(pointer_to, pointer_to) if t = t’, Notfile(t/1);

(array, array) if t = t’, Notfile(t/2);

(record[a], record[b]) if t = t’, Notfile(t).

A.2 Turbo Pascal 169

Op(t, t’, t’’) <->

(boolean, boolean, boolean);

(integer, integer, integer);

(real, integer, real);

(integer, real, real);

(real, real, real);

(char, char, string);

(char, string, string);

(string, char, string);

(string, string, string);

(set, set, set) if Tc(t/1, t’/1), Tc(t/1, t’’/1).

Io(t, t’) <->

(text, boolean);

(text, integer);

(text, real);

(text, char);

(text, string);

(file_of, boolean) if t/1 = t’;

(file_of, integer) if t/1 = t’;

(file_of, real) if t/1 = t’;

(file_of, char) if t/1 = t’;

(file_of, pointer) if t/1 = t’;

(file_of, string) if t/1 = t’;

(file_of, set) if t/1 = t’;

(file_of, pointer_to) if t/1 = t’, Notfile(t’);

(file_of, array) if t/1 = t’, Notfile(t’);

(file_of, record[a]) if t/1 = t’, Notfile(t’).

tp.clp:

IsProgram(program(definitions, body)) :-

IsDefs(definitions), IsStatement(body).

IsDefs(defs(var_defs[..x..], proc_defs[..p:p_d..], func_defs[..f:f_d..])) :-

IsPdef(p_d), IsFdef(f_d).

IsPdef(proc_def(a, body)) :- IsFormalParams(a), IsProgram(body).

IsFdef(func_def(a, body)) :- IsFormalParams(a), IsProgram(body).

IsFormalParams(args[..v:l..]) :- IsLabel(l).

IsLabel(var).

IsLabel(val).

IsStatement(assign(v, e)) :- IsVarExp(v), IsExp(e).

IsStatement(if_then_else(b, S1, S2)) :-

IsExp(b), IsStatement(S1), IsStatement(S2).

IsStatement(while(b, S)) :- IsExp(b), IsStatement(S).

IsStatement(repeat_until(S, b)) :- IsStatement(S), IsExp(b).

170 Chapter A. Implementation of the Applications

IsStatement(for(v, e1, e2, S)) :-

IsVarExp(v), IsExp(e1), IsExp(e2), IsStatement(S).

IsStatement(case[..name: c..](e)) :- IsVariant(c), IsExp(e).

IsStatement(proc_call[..P..](a)) :- IsActualParams(a).

IsStatement(semicolon(S1, S2)) :- IsStatement(S1), IsStatement(S2).

IsVariant(variant(c, S)) :- IsConstant(c), IsStatement(S).

IsConstant(true).

IsConstant(false).

IsConstant(intconst).

IsConstant(nil).

IsConstant(realconst).

IsConstant(charconst).

IsConstant(stringconst).

IsVarExp(ident[..x..]).

IsVarExp(dot[..a..](v)) :- IsVarExp(v).

IsVarExp(index(v, e)) :- IsVarExp(v), IsExp(e).

IsVarExp(point(func_call[..F..](a))) :- IsActualParams(a).

IsVarExp(point(v)) :- IsVarExp(v).

IsExp(eq(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(neq(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(geq(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(leq(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(grt(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(lst(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(in_set(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(empty_set).

IsExp(set_of[..label:e..]) :- IsExp(e).

IsExp(uni_plus(e)) :- IsExp(e).

IsExp(uni_minus(e)) :- IsExp(e).

IsExp(plus(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(minus(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(times(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(divide(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(div(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(mod(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(shl(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(shr(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(and_(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(or(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(xor(e,e’)) :- IsExp(e), IsExp(e’).

IsExp(not(e)) :- IsExp(e).

IsExp(address(e)) :- IsExp(e).

IsExp(func_call[..F..](a)) :- IsActualParams(a).

IsExp(e) :- IsVarExp(e).

IsExp(e) :- IsConstant(e).

IsActualParams(args[..v:e..]) :- IsParam(e).

A.2 Turbo Pascal 171

IsParam(var_t(e)) :- IsExp(e).

IsParam(val_t(e)) :- IsExp(e).

Typing(Gamma, Gamma_p, Gamma_f, p) :-

IsEnvironment(Gamma), IsPenv(Gamma_p), IsFenv(Gamma_f), IsProgram(p),

Type_program(Gamma, Gamma_p, Gamma_f, p).

Type_program(Gamma, Gamma_p, Gamma_f, program(definitions, body)) :-

Type_defs(Gamma, Gamma_p, Gamma_f, definitions),

Type_Statement(Gamma, Gamma_p, Gamma_f, body).

Type_defs(Gamma, Gamma_p, Gamma_f, defs(vd, pd, fd)) :-

Type_var_defs(Gamma, vd), Type_proc_defs(Gamma, Gamma_p, Gamma_f, pd),

Type_func_defs(Gamma, Gamma_p, Gamma_f, fd).

Type_var_defs(Gamma, var_defs[..x..]) :- env[..x:t..] <= Gamma.

Type_proc_defs(Gamma, Gamma_p, Gamma_f, proc_defs[..p: p_d..]) :-

p_env[..p:p_t..] <= Gamma_p,

Type_proc(Gamma, Gamma_p, Gamma_f, p_d, p_t).

Type_func_defs(Gamma, Gamma_p, Gamma_f, func_defs[..f: f_d..]) :-

f_env[..f:f_t..] <= Gamma_f, env[..f: r_t..] <= Gamma,

Type_func(Gamma, Gamma_p, Gamma_f, f_d, f_t, r_t).

Type_proc(Gamma, Gamma_p, Gamma_f, proc_def(a, body), p_t) :-

Type_formal_params_p(Gamma, Gamma_p, Gamma_f, a, p_t),

Type_program(Gamma, Gamma_p, Gamma_f, body).

Type_func(Gamma, Gamma_p, Gamma_f, func_def(a, body), f_t, r_t) :-

Type_formal_params_f(Gamma, Gamma_p, Gamma_f, a, f_t, r_t),

Type_program(Gamma, Gamma_p, Gamma_f, body).

Type_formal_params_p(Gamma, Gamma_p, Gamma_f, args[..v:l..], p_type[..v:e..]) :-

env[..v:t..] <= Gamma, Label_match(l, e, t).

Type_formal_params_f

(Gamma, Gamma_p, Gamma_f, args[..v:l..], f_type[..v:e..](r_t), r_t) :-

env[..v:t..] <= Gamma, Label_match(l, e, t).

Label_match(var, var_t(t), t).

Label_match(val, val_t(t), t).

Type_Statement(Gamma, Gamma_p, Gamma_f, skip).

Type_Statement(Gamma, Gamma_p, Gamma_f, semicolon(S, S’)) :-

Type_Statement(Gamma, Gamma_p, Gamma_f, S),

Type_Statement(Gamma, Gamma_p, Gamma_f, S’).

172 Chapter A. Implementation of the Applications

Type_Statement(Gamma, Gamma_p, Gamma_f, assign(v, e)) :-

Type_Var_Exp(Gamma, Gamma_f, v, t_v),

Type_Exp(Gamma, Gamma_f, e, t_e),

Ac(t_v, t_e).

Type_Statement(Gamma, Gamma_p, Gamma_f, if_then_else(b, S, S’)) :-

Type_Exp(Gamma, Gamma_f, b, boolean),

Type_Statement(Gamma, Gamma_p, Gamma_f, S),

Type_Statement(Gamma, Gamma_p, Gamma_f, S’).

Type_Statement(Gamma, Gamma_p, Gamma_f, while(b, S)) :-

Type_Exp(Gamma, Gamma_f, b, boolean),

Type_Statement(Gamma, Gamma_p, Gamma_f, S).

Type_Statement(Gamma, Gamma_p, Gamma_f, repeat_until(b, S)) :-

Type_Exp(Gamma, Gamma_f, b, boolean),

Type_Statement(Gamma, Gamma_p, Gamma_f, S).

Type_Statement(Gamma, Gamma_p, Gamma_f, for(v, e, e’, S)) :-

Type_Var_Exp(Gamma, Gamma_f, v, t_v),

Type_Exp(Gamma, Gamma_f, e, t_e),

Type_Exp(Gamma, Gamma_f, e’, t_e’),

Type_Statement(Gamma, Gamma_p, Gamma_f, S),

Ac(t_v, t_e),

Ac(t_v, t_e’),

Ordinal(t_v).

Type_Statement(Gamma, Gamma_p, Gamma_f, case[..name:c..](e)) :-

Type_Exp(Gamma, Gamma_f, e, t_e),

Type_Variant(Gamma, Gamma_p, Gamma_f, c, t_e),

Ordinal(t_e).

Type_Variant(Gamma, Gamma_p, Gamma_f, variant(c, S), t) :-

Type_Statement(Gamma, Gamma_p, Gamma_f, S),

Type_Exp(Gamma, Gamma_f, c, t_c),

Tc(t_c, t).

Type_Statement

(Gamma, Gamma_p, Gamma_f,

proc_call[read](args[f: val_t(e), v: var_t(e’)])) :-

Type_Exp(Gamma, Gamma_f, e, t), Type_exp(Gamma, Gamma_f, e’, t’),

Io(t, t’).

Type_Statement

(Gamma, Gamma_p, Gamma_f,

proc_call[write](args[f: val_t(e), v: var_t(e’)])) :-

Type_Exp(Gamma, Gamma_f, e, t),

Type_exp(Gamma, Gamma_f, e’, t’),

Io(t, t’).

Type_Statement(Gamma, Gamma_p, Gamma_f, proc_call[new](args[v:var_t(e)])) :-

A.2 Turbo Pascal 173

Type_Var_exp(Gamma, Gamma_f, e, t),

Is_Pointer(t).

Type_Statement(Gamma, Gamma_p, Gamma_f, proc_call[dispose](args[v:var_t(e)])) :-

Type_Var_exp(Gamma, Gamma_f, e, t),

Is_Pointer(t).

Type_Statement(Gamma, Gamma_p, Gamma_f, proc_call[..P..](a)) :-

p_env[..P:pt..] <= Gamma_p,

Type_Args_p(Gamma, Gamma_f, a, pt).

Type_Args_p(Gamma, Gamma_f, args[..v:e..], p_type[..v:t_v..]) :-

Type_Arg(Gamma, Gamma_f, e, t_v).

Type_Constant(nil, Pointer).

Type_Constant(true, boolean).

Type_Constant(false, boolean).

Type_Constant(intconst, integer).

Type_Constant(realconst, real).

Type_Constant(charconst, char).

Type_Constant(stringconst, string).

Type_Var_Exp(Gamma, Gamma_f, ident[..x..], t) :-

env[..x:t_x..] <= Gamma, t = t_x.

Type_Var_Exp(Gamma, Gamma_f, dot[..a..](v), t) :-

Type_Var_Exp(Gamma, Gamma_f, v, t_v),

record[..a:t_a..] <= t_v, t = t_a.

Type_Var_Exp(Gamma, Gamma_f, index(v, e), t) :-

Type_Var_Exp(Gamma, Gamma_f, v, array(t’, t)),

Type_Exp(Gamma, Gamma_f, e, t_e),

Ac(t’, t_e).

Type_Var_Exp(Gamma, Gamma_f, index(v, e), char) :-

Type_Var_Exp(Gamma, Gamma_f, v, string),

Type_Exp(Gamma, Gamma_f, e, integer).

Type_Var_Exp(Gamma, Gamma_f, point(func_call[..F..](a)), t) :-

Type_Exp(Gamma, Gamma_f, func_call[..F..](a), pointer_to(t)).

Type_Var_Exp(Gamma, Gamma_f, point(v), t) :-

Type_Var_Exp(Gamma, Gamma_f, v, pointer_to(t)).

Type_Exp(Gamma, Gamma_f, eq(e, e’), boolean) :-

Type_Exp(Gamma, Gamma_f, e, t_e),

Type_Exp(Gamma, Gamma_f, e’, t_e’),

Tc(t_e, t_e’),

Eq_Type(t_e), Eq_Type(t_e’).

Type_Exp(Gamma, Gamma_f, neq(e, e’), boolean) :-

174 Chapter A. Implementation of the Applications

Type_Exp(Gamma, Gamma_f, e, t_e),

Type_Exp(Gamma, Gamma_f, e’, t_e’),

Tc(t_e, t_e’),

Eq_Type(t_e), Eq_Type(t_e’).

Type_Exp(Gamma, Gamma_f, geq(e, e’), boolean) :-

Type_Exp(Gamma, Gamma_f, e, t_e),

Type_Exp(Gamma, Gamma_f, e’, t_e’),

Tc(t_e, t_e’),

Geq_Type(t_e), Geq_Type(t_e’).

Type_Exp(Gamma, Gamma_f, leq(e, e’), boolean) :-

Type_Exp(Gamma, Gamma_f, e, t_e),

Type_Exp(Gamma, Gamma_f, e’, t_e’),

Tc(t_e, t_e’),

Geq_Type(t_e), Geq_Type(t_e’).

Type_Exp(Gamma, Gamma_f, grt(e, e’), boolean) :-

Type_Exp(Gamma, Gamma_f, e, t_e),

Type_Exp(Gamma, Gamma_f, e’, t_e’),

Tc(t_e, t_e’),

Grt_Type(t_e), Grt_Type(t_e’).

Type_Exp(Gamma, Gamma_f, lst(e, e’), boolean) :-

Type_Exp(Gamma, Gamma_f, e, t_e),

Type_Exp(Gamma, Gamma_f, e’, t_e’),

Tc(t_e, t_e’),

Grt_Type(t_e), Grt_Type(t_e’).

Type_Exp(Gamma, Gamma_f, in_set(e, e’), boolean) :-

Type_Exp(Gamma, Gamma_f, e, t_e),

Type_Exp(Gamma, Gamma_f, e’, set(t’)),

Ordinal(t’),

Tc(t’, t_e).

Type_Exp(Gamma, Gamma_f, empty_set, set(t)).

Type_Exp(Gamma, Gamma_f, set_of[..label:e..], t) :-

IsEnvironment(env[..label:t_e..]),

Type_Exp(Gamma, Gamma_f, e, t_e),

Ordinal(t_e), Tc(t, set(t_e)).

Type_Exp(Gamma, Gamma_f, uni_plus(e), t) :-

Type_Exp(Gamma, Gamma_f, e, t), Sign_type(t).

Type_Exp(Gamma, Gamma_f, uni_minus(e), t) :-

Type_Exp(Gamma, Gamma_f, e, t), Sign_type(t).

Type_Exp(Gamma, Gamma_f, plus(e, e’), t) :-

Type_Exp(Gamma, Gamma_f, e, t_e), Type_Exp(Gamma, Gamma_f, e’, t_e’),

Op(t_e, t_e’, t),

A.2 Turbo Pascal 175

Plus_type(t_e), Plus_type(t_e’).

Type_Exp(Gamma, Gamma_f, minus(e, e’), t) :-

Type_Exp(Gamma, Gamma_f, e, t_e), Type_Exp(Gamma, Gamma_f, e’, t_e’),

Op(t_e, t_e’, t),

Minus_type(t_e), Minus_type(t_e’).

Type_Exp(Gamma, Gamma_f, times(e, e’), t) :-

Type_Exp(Gamma, Gamma_f, e, t_e), Type_Exp(Gamma, Gamma_f, e’, t_e’),

Op(t_e, t_e’, t),

Minus_type(t_e), Minus_type(t_e’).

Type_Exp(Gamma, Gamma_f, divide(e, e’), real) :-

Type_Exp(Gamma, Gamma_f, e, t_e), Type_Exp(Gamma, Gamma_f, e’, t_e’),

Sign_type(t_e), Sign_type(t_e’).

Type_Exp(Gamma, Gamma_f, div(e, e’), integer) :-

Type_Exp(Gamma, Gamma_f, e, integer),

Type_Exp(Gamma, Gamma_f, e’, integer).

Type_Exp(Gamma, Gamma_f, mod(e, e’), integer) :-

Type_Exp(Gamma, Gamma_f, e, integer),

Type_Exp(Gamma, Gamma_f, e’, integer).

Type_Exp(Gamma, Gamma_f, shl(e, e’), integer) :-

Type_Exp(Gamma, Gamma_f, e, integer),

Type_Exp(Gamma, Gamma_f, e’, integer).

Type_Exp(Gamma, Gamma_f, shr(e, e’), integer) :-

Type_Exp(Gamma, Gamma_f, e, integer),

Type_Exp(Gamma, Gamma_f, e’, integer).

Type_Exp(Gamma, Gamma_f, and_(e, e’), t) :-

Type_Exp(Gamma, Gamma_f, e, t_e), Type_Exp(Gamma, Gamma_f, e’, t_e’),

Op(t_e, t_e’, t),

And_type(t_e), And_type(t_e’).

Type_Exp(Gamma, Gamma_f, or(e, e’), t) :-

Type_Exp(Gamma, Gamma_f, e, t_e), Type_Exp(Gamma, Gamma_f, e’, t_e’),

Op(t_e, t_e’, t),

And_type(t_e), And_type(t_e’).

Type_Exp(Gamma, Gamma_f, xor(e, e’), t) :-

Type_Exp(Gamma, Gamma_f, e, t_e), Type_Exp(Gamma, Gamma_f, e’, t_e’),

Op(t_e, t_e’, t),

And_type(t_e), And_type(t_e’).

Type_Exp(Gamma, Gamma_f, not(e), t) :-

Type_Exp(Gamma, Gamma_f, e, t), And_type(t).

Type_Exp(Gamma, Gamma_f, address(v), Pointer) :-

176 Chapter A. Implementation of the Applications

Type_Var_Exp(Gamma, Gamma_f, v, t’).

Type_Exp(Gamma, Gamma_f, func_call[..F..](a), t) :-

f_env[..F:ft..] <= Gamma_f,

Type_Args_f(Gamma, Gamma_f, a, ft).

Type_Exp(Gamma, Gamma_f, v, t) :-

Type_Var_Exp(Gamma, Gamma_f, v, t), IsVarExp(v).

Type_Exp(Gamma, Gamma_f, c, t) :- Type_Constant(c, t), IsConstant(c).

Type_Args_f(Gamma, Gamma_f, args[..v:e..], f_type[..v:t_v..](t)) :-

Type_Arg(Gamma, Gamma_f, e, t_v).

Type_Arg(Gamma, Gamma_f, var_t(e), var_t(t)) :-

Type_Exp(Gamma, Gamma_f, e, t).

Type_Arg(Gamma, Gamma_f, val_t(e), val_t(t)) :-

Type_Exp(Gamma, Gamma_f, e, t’),

Ac(t, t’).

A.3 Reynolds Style Subtyping

reynolds.def:

Finite

Labels

univ/0,

int/0,

bool/0,

ns/0,

prod[a]/|a|,

sum[a]/|a|,

list/1,

arrow/2,

ident[x]/0,

intconst/0,

true/0,

false/0,

add/0,

equals/0,

lambda[x]/1,

app/2,

bracket[a]/|a|,

select[a]/1,

inject[a]/1,

choose[a]/|a|,

A.3 Reynolds Style Subtyping 177

nil/0,

cons/2,

lchoose/2,

cond/3,

fix/1,

env[dom]/|dom|.

Ordering

univ < int,

univ <bool,

univ < prod,

univ < sum,

int < ns,

bool < ns,

prod < ns,

sum < ns,

ns < list,

ns < arrow,

univ < ident,

univ < intconst,

univ < true,

univ < false,

univ < add,

univ < equals,

univ < lambda,

univ < app,

univ < bracket,

univ < select,

univ < inject,

univ < choose,

univ < nil,

univ < cons,

univ < lchoose,

univ < cond,

univ < fix,

univ < env.

rec IsType(t) <->

(univ);

(int);

(bool);

(ns);

(prod[a]) if @i in a: IsType(t/i);

(sum[a]) if @i in a: IsType(t/i);

(list) if IsType(t/1);

(arrow) if IsType(t/1), IsType(t/2).

ineq leq(t, t’) <->

(univ, univ);

(univ, int);

178 Chapter A. Implementation of the Applications

(univ, bool);

(univ, ns);

(univ, prod);

(univ, sum);

(univ, list);

(univ, arrow);

(int, int);

(int, ns);

(bool, bool);

(bool, ns);

(prod[a], prod[b]) if b <= a, @i in a&b: leq(t/i, t’/i);

(prod, ns);

(sum[a], sum[b]) if a <= b, @i in a&b: leq(t/i, t’/i);

(sum, ns);

(list, list) if leq(t/1, t’/1);

(list, ns);

(arrow, arrow) if leq(t’/1, t/1), leq(t/2, t’/2);

(arrow, ns);

(ns, ns).

rec IsExpr(e) <->

(ident);

(intconst);

(true);

(false);

(add);

(equals);

(lambda[x]) if IsExpr(e/1);

(app) if IsExpr(e/1), IsExpr(e/2);

(bracket[a]) if @i in a: IsExpr(e/i);

(select[a]) if IsExpr(e/1);

(inject[a]) if IsExpr(e/1);

(choose[a]) if @i in a: IsExpr(e/i);

(nil);

(cons) if IsExpr(e/1), IsExpr(e/2);

(lchoose) if IsExpr(e/1), IsExpr(e/2);

(cond) if IsExpr(e/1), IsExpr(e/2), IsExpr(e/3);

(fix) if IsExpr(e/1).

IsEnvironment(E) <->

(env[dom]) if @x in dom: IsType(E/x).

reynolds.clp:

Type(Gamma, ident[..x..], t) :- env[..x:t_x..] <= Gamma, leq(t_x, t).

Type(Gamma, intconst, t) :- leq(int,t).

Type(Gamma, true, t) :- leq(bool,t).

A.3 Reynolds Style Subtyping 179

Type(Gamma, false, t) :- leq(bool,t).

Type(Gamma, add, t) :- leq(arrow(int, arrow(int,int)), t).

Type(Gamma, equals, t) :- leq(arrow(int, arrow(int,bool)), t).

Type(Gamma, lambda[..x..](e), t) :-

Gamma = Gamma’, env[..x:t_x..] <= Gamma’,

Type(Gamma’, e, t_e), leq(arrow(t_x,t_e), t).

Type(Gamma, app(f, e), t) :-

Type(Gamma, f, arrow(t_e, t’)), Type(Gamma, e, t_e), leq(t’, t).

Type(Gamma, bracket[..a:e..], t) :-

Type(Gamma, e, t_e), leq(prod[..a:t_e..],t).

Type(Gamma, select[..l..](e), t) :-

Type(Gamma, e, prod[..l:t_l..]), leq(t_a,t).

Type(Gamma, inject[..a..](e), t) :-

Type(Gamma, e, t_e), sum[..a:t_e..] <= t’, leq(t’,t).

Type(Gamma, choose[..a:e..], t) :-

Type(Gamma, e, arrow(t_a, t’)), leq(arrow(sum[..a:t_a..], t’), t).

Type(Gamma, nil, t) :- leq(list(t’),t).

Type(Gamma, cons(e, e’), t) :-

Type(Gamma, e, t’), Type(Gamma, e’, list(t’)), leq(list(t’), t).

Type(Gamma, lchoose(e, e’), t) :-

Type(Gamma, e, t’’), Type(Gamma, e’, arrow(t’, arrow(list(t’), t’’))),

leq(arrow(list(t’), t’’), t).

Type(Gamma, cond(b, e, e’), t) :-

Type(Gamma, b, bool), Type(Gamma, e, t’), Type(Gamma, e’, t’),

leq(t’, t).

Type(Gamma, fix(f), t) :-

Type(Gamma, f, arrow(t’,t’)), leq(t’, t).

Typing(Gamma, e, t) :-

IsEnvironment(Gamma), IsExpr(e), IsType(t), Type(Gamma, e, t).

180 Chapter A. Implementation of the Applications

A.4 The Object Calculus

A.4.1 The Core Object Calculus

oc.def:

Labels

object[a]/|a|,

var[x]/0,

object_def[a]/|a|,

message[a]/1,

override[a]/|a|+1,

sigma[x]/1,

env[x]/|x|.

Ordering

object < var,

object < object_def,

object < message,

object < override,

object < sigma,

object < env.

rec IsType(t) <->

(object[a]) if @i in a: IsType(t/i).

Environment(e) <->

(env[d]) if @x in d: IsType(e/x).

oc.clp:

Program(var[..x..]).

Program(object_def[..l:m..]) :- Method(m).

Program(message[..l..](a)) :- Program(a).

Program(override[..l:m..](a)) :- Program(a), Method(m).

Method(sigma[..x..](a)) :- Program(a).

Type(Gamma, var[..x..], t) :- env[..x:t’..] <= Gamma, t <= t’.

Type(Gamma, object_def[..l:m..],t) :-

t <= t’, t’ = object[..l:t_b..], Type(Gamma, m, t’, t_b).

Type(Gamma, message[..l..](a), t) :-

Type(Gamma, a, t_a), object[..l:t’..] <= t_a, t <= t’.

Type(Gamma, override[..l:m..](a), t) :-

Type(Gamma, a, t_a), t <= t_a, Type(Gamma, m, t_a, t_b),

object[..l:t_b..] <= t_a.

A.4 The Object Calculus 181

Type(Gamma, sigma[..x..](b), t_x, t) :-

Type(Gamma’, b, t), Gamma <= Gamma’, env[..x:t’..] <= Gamma’,

t’ = t_x.

Typing(Gamma, e, t) :-

Environment(Gamma), Program(e), IsType(t), Type(Gamma, e, t).

A.4.2 The Object Calculus with Bool

ocplus.def:

Labels

bool/0,

object[a]/|a|,

false/0,

true/0,

var[x]/0,

object_def[a]/|a|,

message[a]/1,

override[a]/|a|+1,

sigma[x]/1,

env[x]/|x|.

Ordering

object < bool,

object < var,

object < false,

object < true,

object < object_def,

object < message,

object < override,

object < sigma,

object < env.

rec IsType(t) <->

(bool);

(object[a]) if @i in a: IsType(t/i).

Environment(e) <->

(env[d]) if @x in d: IsType(e/x).

ocplus.clp:

Program(false).

Program(true).

Program(var[..x..]).

182 Chapter A. Implementation of the Applications

Program(object_def[..l:m..]) :- Method(m).

Program(message[..l..](a)) :- Program(a).

Program(override[..l:m..](a)) :- Program(a), Method(m).

Method(sigma[..x..](a)) :- Program(a).

Type(Gamma, false, bool).

Type(Gamma, true, bool).

Type(Gamma, var[..x..], t) :- env[..x:t’..] <= Gamma, t <= t’.

Type(Gamma, object_def[..l:m..],t) :-

t <= t’, t’ = object[..l:t_b..], Type(Gamma, m, t’, t_b).

Type(Gamma, message[..l..](a), t) :-

Type(Gamma, a, t_a), object[..l:t’..] <= t_a, t <= t’.

Type(Gamma, override[..l:m..](a), t) :-

Type(Gamma, a, t_a), t <= t_a, Type(Gamma, m, t_a, t_b),

object[..l:t_b..] <= t_a.

Type(Gamma, sigma[..x..](b), t_x, t) :-

Type(Gamma’, b, t), Gamma <= Gamma’, env[..x:t’..] <= Gamma’,

t’ = t_x.

Typing(Gamma, e, t) :-

Environment(Gamma), Program(e), IsType(t), Type(Gamma, e, t).

A.4.3 The Object Calculus with Selftype

selftype.def:

Labels

selftype/0,

object[a]/|a|,

var[x]/0,

object_def[a]/|a|,

message[a]/1,

override[a]/|a|+1,

sigma[x]/1,

env[x]/|x|.

Ordering

object < selftype,

object < var,

object < object_def,

object < message,

object < override,

object < sigma,

object < env.

A.4 The Object Calculus 183

rec IsType(t) <->

(selftype);

(object[l]) if @i in l: IsType(t/i).

Environment(e) <->

(env[d]) if @x in d: IsType(e/x).

NotSelftype(t) <->

(object[l]).

selftype.clp:

Program(var[..x..]).

Program(object_def[..l:m..]) :- Method(m).

Program(message[..l..](a)) :- Program(a).

Program(override[..l:m..](a)) :- Program(a), Method(m).

Method(sigma[..x..](a)) :- Program(a).

Alt(selftype, A, A).

Alt(B, A, B) :- NotSelftype(B).

Type(Gamma, var[..x..], t) :- env[..x:t’..] <= Gamma, t <= t’.

Type(Gamma, object_def[..l:m..],t) :-

t <= t’, t’ = object[..l:t_b’..], Type(Gamma, m, t’, t_b),

Alt(t_b’, t’, t_b), Dummy(object[..l:t_b..]).

Type(Gamma, message[..l..](a), t) :-

Type(Gamma, a, t_a), object[..l:t’..] <= t_a, t <= t’’,

Alt(t’, t_a, t’’).

Type(Gamma, override[..l:m..](a), t) :-

Type(Gamma, a, t_a), t <= t_a, Type(Gamma, m, t_a, t_b),

object[..l:t_b..] <= t_a.

Type(Gamma, sigma[..x..](b), t_x, t) :-

Type(Gamma’, b, t), Gamma <= Gamma’, env[..x:t’..] <= Gamma’,

t’ = t_x.

Typing(Gamma, e, t) :-

Environment(Gamma), Program(e), IsType(t), Type(Gamma, e, t).

Dummy(x).

184 Chapter A. Implementation of the Applications

A.5 Control Flow Analysis

A.5.1 Effect Systems using Subeffecting

subeffect.def:

Labels

int/0,

arrow[c]/2,

env[dom]/|dom|,

intconst/0,

var[x]/0,

lambda[name]/2,

letrec[name]/3,

app[site]/2,

effect[c]/0,

flow[site]/|site|.

Ordering

int < arrow,

int < env,

int < intconst,

intconst < var,

intconst < lambda,

intconst < letrec,

intconst < app,

int < effect,

int < flow.

rec IsType(t) <->

(int);

(arrow[c]) if IsType(t/1), IsType(t/2).

Environment(e) <->

(env[dom]) if @x in dom: IsType(e/x).

Variable(v) <->

(var[x]).

rec Program(p) <->

(intconst);

(var[x]);

(lambda[name]) if Variable(p/1), Program(p/2);

(letrec[name]) if Variable(p/1), Variable(p/2), Program(p/3);

(app[site]) if Program(p/1), Program(p/2).

Subeffect(eff, eff’) <->

(effect[c], effect[c’]) if c <= c’.

A.5 Control Flow Analysis 185

IsEffect(eff) <->

(effect[c]).

IsFlow(fl) <->

(flow[f]).

subeffect.clp:

Type(Gamma, intconst, int, eff, f) :- effect[] <= eff.

Type(Gamma, var[..x..], t, eff, f) :-

env[..x:t’..] <= Gamma, t = t’, effect[] <= eff.

Type(Gamma, lambda[..name..](v, e), arrow[..c..](t, t’), eff, f) :-

v = var[..x..],

Gamma <= Gamma’, env[..x:t_x..] <= Gamma’, t = t_x,

Type(Gamma’, e, t’, eff, f),

eff <= effect[..c..],

effect[..name..] <= effect[..c..],

effect[] <= eff.

Type(Gamma, letrec[..name..](g, v, e), t, eff, f) :-

g = var[..f..],

Type(Gamma’, lambda[..name..](v, e), t, effect[], f),

Gamma <= Gamma’, env[..f: t_f..] <= Gamma’, t = t_f,

effect[] <= eff.

Type(Gamma, app[..site..](e, e’), t, eff, f) :-

Type(Gamma, e, arrow[..c..](t’,t), eff’, f),

Type(Gamma, e’, t’, eff’’, f),

eff’ <= eff, eff’’ <= eff, effect[..c..] <= eff,

flow[..site: eff’’’..] <= f, eff’’’ = eff.

Analyse(Gamma, e, t, eff, f) :-

Type(Gamma, e, t, eff, f),

Environment(Gamma), IsType(t), IsEffect(eff), IsFlow(f).

A.5.2 Effect Systems using Subtyping

subtype.def:

Finite

Labels

int/0,

arrow[a]/2,

env[dom]/|dom|,

intconst/0,

186 Chapter A. Implementation of the Applications

var[x]/0,

lambda[name]/2,

letrec[name]/3,

app[site]/2,

effect[a]/0,

flow[site]/|site|.

Ordering

int < arrow,

int < env,

int < intconst,

intconst < var,

intconst < lambda,

intconst < letrec,

intconst < app,

int < effect,

int < flow.

rec IsType(t) <->

(int);

(arrow[a]) if IsType(t/1), IsType(t/2).

Environment(e) <->

(env[dom]) if @x in dom: IsType(e/x).

Variable(v) <->

(var[x]).

rec Program(p) <->

(intconst);

(var[x]);

(lambda[name]) if Variable(p/1), Program(p/2);

(letrec[name]) if Variable(p/1), Variable(p/2), Program(p/3);

(app[site]) if Program(p/1), Program(p/2).

Subeffect(eff, eff’) <->

(effect[e], effect[e’]) if e <= e’.

ineq Subtype(t, t’) <->

(int, int);

(arrow[c0], arrow[c1])

if c0 <= c1, Subtype(t’/1, t/1), Subtype(t/2, t’/2).

IsEffect(e) <->

(effect[eff]).

IsFlow(f) <->

(flow[sites]) if @l in sites: IsEffect(f/l).

A.5 Control Flow Analysis 187

subtype.clp:

Type(Gamma, intconst, t, effect[], f) :- Subtype(int, t).

Type(Gamma, var[..x..], t, effect[], f) :-

env[..x:t’..] <= Gamma, Subtype(t’,t).

Type(Gamma, lambda[..name..](v, e), t’’, effect[], f) :-

Subtype(arrow[..c..](t, t’), t’’),

v = var[..x..],

Gamma <= Gamma’, env[..x:t_x..] <= Gamma’, t = t_x,

Type(Gamma’, e, t’, eff, f),

eff <= effect[..c..],

effect[..name..] <= effect[..c..].

Type(Gamma, letrec[..name..](g, v, e), t, effect[], f) :-

Subtype(t’, t),

g = var[..f..],

Type(Gamma’, lambda[..name..](v, e), t’, effect[], f),

Gamma <= Gamma’, env[..f: t_f..] <= Gamma’, t’ = t_f.

Type(Gamma, app[..site..](e, e’), t’’, eff, f) :-

Subtype(t, t’’),

Type(Gamma, e, arrow[..c..](t’,t), eff’, f),

Type(Gamma, e’, t’, eff’’, f),

eff’ <= eff, eff’’ <= eff, effect[..c..] <= eff,

flow[..site: eff’’’..] <= f, eff’’’ = eff.

Classical_type(Gamma, intconst, int).

Classical_type(Gamma, var[..x..], t) :- env[..x:t’..] <= Gamma, t = t’.

Classical_type(Gamma, lambda[..name..](v, e), arrow[..name’..](t,t’)) :-

v = var[..x..],

Gamma = Gamma’, env[..x:t_x..] <= Gamma’, t = t_x,

Classical_Type(Gamma’, e, t’).

Classical_type(Gamma, app[..site..](e, e’), t) :-

Classical_type(Gamma, e, arrow[..name..](t’,t)),

Classical_type(Gamma, e’, t’).

Analyse(Gamma, e, t, eff, f) :-

Type(Gamma, e, t, eff, f), Classical_type(Gamma, e, t),

Environment(Gamma), IsType(t), IsEffect(eff), IsFlow(f).

Recent BRICS Dissertation Series Publications

DS-98-1 Ole I. Hougaard. The CLP(OIH) Language. February 1998.
PhD thesis. xii+187 pp.

DS-97-3 Thore Husfeldt. Dynamic Computation. December 1997. PhD
thesis. 90 pp.

DS-97-2 Peter Ørbæk.Trust and Dependence Analysis. July 1997. PhD
thesis. x+175 pp.

DS-97-1 Gerth Stølting Brodal. Worst Case Efficient Data Structures.
January 1997. PhD thesis. x+121 pp.

DS-96-4 Torben Bräuner. An Axiomatic Approach to Adequacy. Novem-
ber 1996. Ph.D. thesis. 168 pp.

DS-96-3 Lars Arge. Efficient External-Memory Data Structures and Ap-
plications. August 1996. Ph.D. thesis. xii+169 pp.

DS-96-2 Allan Cheng. Reasoning About Concurrent Computational Sys-
tems. August 1996. Ph.D. thesis. xiv+229 pp.

DS-96-1 Urban Engberg.Reasoning in the Temporal Logic of Actions —
The design and implementation of an interactive computer system.
August 1996. Ph.D. thesis. xvi+222 pp.

