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Abstract

The two pillars of trust analysis and dependence algebra form the foundation of this thesis.
Trust analysis is a static analysis of the run-time trustworthiness of data. Dependence algebra
is a rich abstract model of data dependences in programming languages, applicable to several
kinds of analyses.

We have developed trust analyses for imperative languages with pointers as well as for
higher order functional languages, utilizing both abstract interpretation, constraint generation
and type inference.

The mathematical theory of dependence algebra has been developed and investigated.
Two applications of dependence algebra have been given: a practical implementation of a
trust analysis for the C programming language, and a soft type inference system for action
semantic specifications. Soundness results for the two analyses have been established.
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Chapter 1

Introduction

Static program analysis serves many purposes. Data flow analyses in optimizing compilers
enable code optimizations, type inference algorithms help programmers find bugs at compile
time, and security flow analyses enable certification of secure software. The program analyses
presented in this thesis can be grouped under two main themes: trust analysis, and dependence
analysis.

Trust analysis tracks the data flow in a program with the aim of ensuring that appropriate
validation checks are made on all data paths leading to “dangerous” operations, such as
entering data into a private database, deleting files, etc.

Dependence analysis is a more general framework that can be applied to different concrete
analysis tasks. The data flow in a program is modeled as channels with certain properties
determining which kinds of data can pass through the channels1.

The following parts of the introduction give a more elaborate introduction to the two
kinds of analysis and frame them in a historical context by discussing important previous
work in the area.

1.1 Trust Analysis

Computers are increasingly being used to handle important transactions across the Internet.
Legal documents and money orders are sent across the same network as is used to transfer
e-mail and non-business related information. Thus separating these two kinds of information
is becoming more and more of an issue. This problem is usually attacked using encryption
and digital signatures for the important information flows between computers. But what if
there, somewhere inside a program, is a data path between the reading of a message from
the network and a dangerous operation depending on that message, such that the signature
of the message is not checked on that path?

1The notion of dependence analysis as used in this thesis should not be confused with the notion of depen-
dence of attribute sets in relational database theory.

1



2 CHAPTER 1. INTRODUCTION

Internet DatabaseComputer program

An example of an application where it is important to perform validity checks is in an
HTTP (Hypertext Transfer Protocol [BLFF96, FGM+97]) server. Most such servers allow
separate programs (so-called CGI scripts, for Common Gateway Interface) to be started on
the server machine in response to requests from clients. The usual convention is that the
web browser requests an URL of the form “http://www.company.com/cgi-bin/program” to
start program. A CGI script can in principle be any program, so it is important that the
server process checks that the requested program is one of the few programs allowed to be
executed in this manner. In a complicated server program there are many data paths from
the reception of an URL to the command to be executed. It is important that the checks for
allowed programs are done on all these data paths. Trust analysis has been developed with
the goal that a compiler will be able to provide the programmer with a guarantee that checks
are present on all data paths between the reception of untrusted input and the execution of
commands where only trustworthy (checked, validated) information should be present.

Another example of where a trust analysis would be useful is in a part of the Gopher
(an earlier and simpler distributed information service than the world-wide web [AML+93])
server, where through one of the provided gateways to other services one could contrive a
special request to the server and thereby get arbitrary commands executed on the server
machine, including starting a remote terminal window on that machine and thus thwarting
all security measures. This security bug was later fixed by the developers when they were
made aware of the problem. We believe that the use of a trust-analysis could have helped
prevent this problem in the first place.

A third example of where trust analysis could be useful is in a web browser that must
forbid the retrieval of certain URLs, for example to prevent children from viewing on-line
pornography. Since there are many ways in a typical browser program to enter an URL,
(the command line, configuration files, dialog boxes, . . .) it’s important that the checks for
forbidden URLs are made on all the paths from reading user input to getting the URL from
a server.

Since we want our analysis to be generally applicable, we do not consider the very specific
tests that have to be done on input data in various situations, such as checking digital signa-
tures or verifying pathnames against a known pattern. Devising these tests is still up to the
careful program designer. Instead our analysis offers a “trust” construct that is meant to
be applied to data after they have passed the specific validity checks, the analysis will then
propagate this knowledge around the program. At points of the program where something
dangerous is about to happen, such as starting another program or starting a transaction
against a database, the programmer can write a “check” construct to ensure that the argu-
ments can indeed be trusted, which means that they only depend on data that have actually
passed the validity checks.
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As an example of a run-time version of trust-checking, the programming language Perl
[WS91] has a switch that turns on so-called taint-checks at run-time that will abort the
program with an error message if tainted input data are being used in “dangerous” functions
such as unlink. There’s also as construct to convert tainted data to un-tainted form so
that dangerous functions can be used on it. Our trust analysis is inspired by this feature of
Perl, but our analysis is entirely static, so we can avoid run-time errors and overhead due to
taint-checks.

A static check inevitably loses some flexibility as compared to run-time checking, but in
the case of trust checks, it’s not very useful to get a run-time trust violation, as such an
error would typically occur too late in the data path for corrective action to be possible.
So not much useful flexibility is lost. The goal of trust analysis is to make all promotions
from untrusted data to trusted data take place in a controlled fashion, and appear explicit in
the program. Also, the analysis should be able to provide a compile-time guarantee that all
trustworthiness checks are met. The goal of the static analysis is not to improve run-time
performance.

We distinguish two kinds of data: trusted data and untrusted data. Trusted data will typ-
ically arise from program constants, company databases, trustworthy persons, cryptographi-
cally verified input from a known partner etc. All other pieces of data, such as data obtained
via an insecure network connection or from world writable files is regarded as untrusted.

The figure below is an abstract picture of the data-dependences in a typical function.
We see that the result of the function depends on both the function’s arguments and its
environment as symbolized by the paths entering the function through the sides of the box.
Suppose the result of that function is stored in a company database or used in a transaction
transferring money between accounts. We clearly want to be able to trust the output of that
function, regardless of how the result of the function is derived from the arguments and the
environment of the function. In order to make the result trustworthy the programmer has
inserted certain checks in the function, symbolized by the small circles. However, in this case
there are still paths in the function such that untrustworthy information may leak through
if the function is called with untrustworthy arguments. A trust analysis can warn about the
existence of such unchecked paths.

Trust analysis has much in common with security flow analysis in the sense of Denning
[Den82]. Security flow analysis tracks data dependences ensuring that secret data can never
directly or indirectly be put in insecure places. The main difference between trust analysis
and security analysis is the introduction of the trust construct in trust analysis that explic-
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itly makes a piece of data appear trustworthy to the analysis (presumably after appropriate
checks). In security analysis this would correspond to a hypothetical declassify construct
making secret data suddenly appear non-secret. In security analysis such a construct would
make no sense, and none of the security analyses have considered it, whereas the trust con-
struct makes very good sense in the trust analysis setting. Likewise, the check construct of
trust analysis would correspond to a check for unclassified data.

As in much of computer science, the early work on data security dates back to the be-
ginning of the seventies. The basic model for security in computer systems goes back to the
work by Bell and LaPadula at MITRE [BL73, BL76]. Later the seminal work by Denning and
Denning in the mid-seventies [Den76, DD77, Den82] initiated the idea of applying program
analysis to the computer security problem. The analyses of Denning are basically applica-
tions of abstract interpretation [CC77] to the problem of security flow analysis of Pascal-like
programs, that is, a first-order imperative programming language with procedures and struc-
tured control flow. The semantic soundness of the analysis was not proved formally. Later
Andrews and Reitman [AR79, AR80] gave an axiomatic re-formulation of the analysis for
Concurrent Pascal, also without a formal proof of soundness.

In the beginning of the eighties the formal soundness of security analysis algorithms be-
came more of an issue. There are roughly two ways to reason formally about security in
programs. One is based on a so-called instrumented semantics, where the semantics asso-
ciates a security classification (a tag) with every value in the program. The quest is then
to make the analysis find a safe compile-time approximation of these run-time tags. The
other method is based on the notion of non-interference by Goguen and Meseguer [GM82].
Here the programs themselves are associated with security classifications computed by the
compile time analysis. A program is non-interfering if it affects no variables classified at lower
security levels than the program itself, and uses no variables classified as more secure than
the program itself. More concretely: a program classified secret cannot affect the value of a
variable classified public, and cannot use the value of a variable classified top-secret. Using
non-interference as the soundness condition avoids the need for an (artificial) instrumented
semantics, at the cost of a possibly more complex proof. Note that non-interference is not
well-suited as a soundness criterion for trust analysis, as a perfectly well-formed program that
manipulates untrustworthy data may use the trust construct to legally affect trustworthy
data.

Mizuno and Schmidt [Miz89, MS92] presented a security flow analysis based on abstract
interpretation together with a soundness proof relative to an instrumented denotational se-
mantics, for a first order modular imperative language. Banâtre, Bryce and Le Metayer
[BBM94] derived a security flow analysis from an axiomatic semantics for a first order imper-
ative language.

The paper [Ørb95] (Chapter 2 of this thesis) introduced the notion of trust analysis, and
gave two methods for trust analysis of a first order imperative language: one based on abstract
interpretation, and one based on constraint solving. Both methods were proved sound with
respect to an instrumented operational semantics.

The paper [PØ95a] (Chapter 3 in this thesis) presented a trust analysis for an extended
λ-calculus in the form of an annotated type system.
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1.1.1 Why Trust Analysis isn’t...

• Binding-time analysis: If trust analysis was equivalent to binding-time analysis[PS92,
HM94] then one would equate trusted with static and distrusted with dynamic, and
without using any of our special constructs this analogy goes a long way. However,
the trust construct would correspond to an unrestricted “down-lift” operation able to
convert arbitrary dynamic data to static data, something that is clearly unsound in
a binding-time analysis. Our distrust construct would correspond nicely to the lift
operation, but again the check construct has no counterpart in ordinary binding-time
analysis. It has, however, been remarked that a check construct would be useful in a
binding-time analysis, as a means to test whether the BTA finds the intended binding-
time for a particular expression.

• Dynamic typing: Dynamic typing also known as tagging/untagging analysis [AM91,
Hen92, WC94] aims to remove type tags as much as possible in a dynamically typed
language. One might be tempted to view, say, distrust as a tagging operation and
trust as the corresponding untagging operation. However, this does not explain how
check should be interpreted and it doesn’t match with our application type rule, in
that applying a tagged function to an argument does not necessarily result in a tagged
result.

One idea is that trust analysis might be used as a kind of soft typing extension to
languages like C or C++ which are almost strongly typed, but contain loopholes such
as unrestricted type-casts. The idea is to essentially have two copies of every C type,
a trusted variant and an untrusted variant, such that the compiler could guarantee
no type errors for variables having a trusted type, whereas the compiler could insert
run-time checks for values of untrusted types. However, it turns out that this kind of
analysis is not equivalent to trust analysis, as illustrated by the following C example:

if ((int) p)
x = 5;

else
x = 7;

Since type-casting is supposed to correspond to distrust and the two assignments to
x are dependent on the condition; following [Ørb95] x would have to be treated as
untrusted after the if-statement. This is not what we want for this kind of analysis,
because in both cases x would clearly contain an integer. This illustrates that trust
analysis does not serve the purpose of this analysis.

1.2 Dependence Analysis

A central notion in program analysis is that of data dependence. The information that the
value of a variable depends on the value of another variable is used in many places: in binding-
time analysis [PS92], in program slicing [Wei84], in security analysis [Den82], in strictness and
neededness analysis [HY86, Nie87] etc.

Usually, dependences are thought of as boolean: a variable either depends on another
variable or it doesn’t. The dependence analysis developed in this thesis takes a more nuanced
view. For example, from the assignment:
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x := y DIV 5

we will extract more information than merely the dependence of x upon y. From the pres-
ence of the integer division operator we can also infer that the variables x and y must hold
integers at this point in the program (assuming a particular type system), and thus that the
dependence between the two variables is of an integer kind.

We view dependences as existing between slots (usually program variables holding values),
and thereby disconnected from the program text. Other notions of dependence emphasize the
dependence of program statements upon variables and other program statements. In a sense,
the view taken here is akin to polymorphic type systems, where the presence of a type variable
in both the argument and result positions of a function type (e.g. as (α, β) → α) encodes a
dependence between the input and output of functions of that type without referring to the
particular implementation of functions of that type.

It may be useful to think of dependences as channels between value slots. The statement:

x := y + z

gives rise to “number” channels from y and z to x, as pictured below:

x

y

z

Notice that channels, not slots, are associated with types in this approach. Slots are
allowed to hold values of different types at different points in time. Concatenating two
channels yields a new channel between the end points, and two parallel channels between
the same end points can be added to yield a new channel with the combined capacity, as
illustrated below:

z

x z

x

yx

z

z
a+b

x

and

b

a b

ab

a

A third combination of channels exists to handle the case of conditional execution. The
join a t b of two parallel channels models that values flow either along channel a or along
channel b, but not along both at once.

a

zx

b

or

a t b
zx

Considering channels between single value slots quickly becomes uninteresting, so to model
programs with more than one variable, we consider vectors of slots. As the j ’th output slot
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may depend on the i ’th input slot, we organize the dependences between vector elements in a
dependence matrix. Sequential composition of programs is modeled by matrix multiplication.

In order to model dependence on constants, and handle value consumers (procedures that
only consume values, such as print) we introduce two special slots: a source and a sink,
together with augmented rules for composition. This gives rise to the notion of dependence
quadruples, and an algebra of such quadruples.

A more in-depth introduction to dependence algebra can be found in Section 1.3.3, and in
Chapter 4 which also relates dependence algebra-based analysis to classical frameworks such
as abstract interpretation and type inference.

One of the virtues of dependence algebra-based analysis is that, by emphasizing the con-
nections between slots manifest in the program, the analysis can be program-point sensitive.
In type systems the underlying idea is to associate a type to each slot, such that a given slot
is associated with a fixed (possibly polymorphic) type throughout the program. In the case
of a polymorphic type no information about the particular type of a slot (variable) at a given
point in the program is available. In contrast to this, a dependence-based analysis may allow
a slot to hold different types of values at different points in the program without sacrificing
detailed knowledge of the type of value in the slot at those points. This is exemplified by the
trust analysis for C developed in Chapter 5, where the same variable is allowed to hold both
trusted and untrusted values at different points in the program.

The work that probably comes closest to the notion of dependence analysis developed in
the present thesis is the paper by Bergeretti and Carré [BC85] on information flow relations.
In their paper they extract three relations from a program S: a relation µS between program
expressions and variables, such that eµSv whenever e may be used in obtaining the value of
v on exit from S; a relation λS between variables and program expressions, such that vλSe
whenever the value of v may be used in the evaluation of e; and finally a relation ρS on
program variables, such that vρSv

′ whenever the value of v′ on exit from S depends on the
value of v on entry to S. Our notion of dependence is most closely related to their ρS relation.

However, Bergeretti and Carré explicitly consider relations between variables, represented
as boolean matrices. The dependence matrices developed in Chapter 4 generalize the boolean
algebra of relations to the richer dependence algebras. Also, our analysis gives results in-
dependent of program syntax, as we have no direct relation between variables and concrete
program expressions or program points.

1.3 Overview of the Thesis

The following sections give an informal summary of the individual chapters of the thesis.
Chapters 2 and 3 are almost verbatim copies of published papers, and the notation used in
those chapters therefore differs slightly from the notation used elsewhere in the thesis.

1.3.1 Simple Trust Analysis

Chapter 2 describes a trust analysis for a simple, strongly typed, while language without
procedures, but including pointers. Two methods for trust analysis are given: the first based
on abstract interpretation, and the second based on constraint generation. The analysis based
on abstract interpretation is more precise than the constraint based analysis, but requires
whole programs to be analyzed at once. The constraint based analysis allows for separate
generation of constraints for individual program fragments, and is thereby more modular. It is
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also shown to have a lower time complexity than the analysis based on abstract interpretation.
Both analyses deal explicitly with pointers and aliasing problems.

The abstract interpretation analysis is proved sound with respect to an instrumented
semantics by fairly standard means, whereas the constraint based analysis is related via
a safety result to the abstract interpretation, and thereby indirectly to the instrumented
semantics. This also provides a direct comparison of the two methods of analysis.

1.3.2 Higher-Order Trust Analysis

Chapter 3 describes a trust analysis for a higher order functional language in terms of an
annotated type system building on the simply typed λ-calculus.

First an extension of the λ-calculus with the constructs trust, distrust, and check is pre-
sented in the form of a reduction system. The reduction system is proved Church-Rosser. A
denotational semantics for the calculus is also given and related to the reduction system by
a semantic soundness theorem.

The trust analysis is formulated in terms of an annotated type system, which is shown
to have the subject reduction property with respect to the reduction rules. The type system
is related to the standard simply-typed λ-calculus, and two simulation results are obtained.
Via the simulation results strong normalization for well-typed terms of the extended calculus
is proved. Finally, a cubic time type inference algorithm building on constraint generation
is presented and proved sound and complete with respect to the type system. The notion of
trust analysis for λ-calculus is compared to other analyses such as binding-time analysis and
dynamic typing.

1.3.3 Dependence Algebra

Chapter 4 develops the theory of abstract dependence algebra. First the technical notions
of slots and dependence are motivated and fixed. The axioms for a dependence algebra
(written DAlg) are given and motivated, then the computation of fixed points of functions
over dependence algebras is discussed, as the dependence algebra ordering may in general
lack a least element. The lack of a bottom element invalidates the usual iterative method of
finding fixed points, but a simple solution to the problem is provided.

Vectors and matrices over dependence algebras are then introduced, and the set of n× n
matrices over a DAlg is shown to again form a dependence algebra. Then the notion of
dependence quadruples (quads), akin to affine maps, is introduced, operations of composition,
sum and join on quads are defined, and some algebraic laws of the operations on quads are
shown.

Next, the important notion of the image of a vector through a quad is defined, and an
important relation between image and quad composition is shown. The dual notion of pre-
image is also defined. The chapter then goes on to define concatenation of vectors, matrices
and quads, and relate this operation to the image and composition operations. In some
analyses, the quads used may grow very large, so a method for constructing small approximate
representations of large quads is described.

The concept of abstracting a program into a single quad is powerful enough for the trust
analysis of C programs in Chapter 5, but it is not enough for the analysis of action semantics in
Chapter 6. We therefore consider sets of quads, and operations on these sets. The operations
of composition, concatenation, sum and join are extended in a natural way to sets of quads.
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The quad sets needed in Chapter 6 will in general be infinite, so we need finite approxima-
tions of such sets to implement analyses based on the framework. Such a finite approximation
is also developed in Chapter 4 in the form of grids. Operations of composition, concatena-
tion, sum and join are defined on these grids and shown to be sound approximations of the
corresponding operations on sets of quads.

The last sections of Chapter 4 describe the construction of a particular non-trivial DAlg-
structure from a distributive lattice, and define the notion of a reverse image of a vector
through a quad. An important relation between quad composition and the reverse image is
shown. Finally, connections to abstract interpretation and type inference are discussed.

1.3.4 Trust Analysis of C Programs

Chapter 5 describes a practical implementation of a trust analysis for the C programming
language. The implementation is based on the dependence algebra theory developed in Chap-
ter 4, and thus the two pillars of the thesis are combined.

The chapter first outlines the structure of the implementation. Pragmatic issues of pars-
ing and type checking C code are briefly discussed, and a few syntactic extensions for the
specification of trust information for external functions are described.

After a program is parsed into a syntax tree, it is compiled into a non-standard control flow
graph (CFG) representation. The compiler incorporates a peephole optimizer to improve the
efficiency of the ensuing analysis. A formal abstract semantics of the CFG language is given
in terms of a transition system, describing a stack machine. An analysis of implementation
dependent evaluation order is described briefly.

The notion of control dependence captures the influence of a conditional on the following
code. In a structured representation the control influence of a conditional is trivially confined
to the syntactic branches of the conditional, but in an unstructured representation such as
a control flow graph with arbitrary gotos it takes more work to find the extent of a control
influence. An algorithm for decorating a CFG with transitive control dependences is given
and proved correct with respect to the standard notion of control dependence.

Next, the trust analysis on the level of the CFG representation is given in terms of a
transition system, and proven sound with respect to the operational semantics of the CFG
language. The soundness proof is factored into soundness properties for single statements,
for sequences, and for the inter-procedural aspect involving calls and returns. The analysis is
also shown to be separable, that is, individual functions can be analyzed separately.

Finally, some remarks on the actual implementation are given, and timing measurements
on a few small, but realistic, codes are given, indicating the practical usefulness of the imple-
mentation. A discussion of the applicability of the analysis to existing programs concludes.

1.3.5 Soft Type Inference for Action Semantics

Chapter 6 builds on the theory of dependence quads to present a soft type inference system
for action semantics specifications.

The action semantics formalism invented by Mosses [Mos92] consists of an algebraic frame-
work for specifying data and a dynamically typed language called action notation used to
specify the dynamic semantics of programming languages. Section 6.2 gives a short introduc-
tion to the specification formalism.
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The “soft” in soft type inference means that the type system is forgiving: no set of semantic
equations is deemed type incorrect, the type inference just tries to infer as much information
from the equations as possible.

The inferred type information is intended to help the writer of the semantics avoid simple
errors by providing information about the semantic equations before they are applied to a
particular program.

The analysis computes a set of dependence quads for each semantic function in a speci-
fication, and type information about the actions generated from a semantic function can be
gleaned from this set of quads.

A subset of action notation incorporating the basic and functional facets including higher
order functions is defined, and a natural, big step operational semantics for the subset is
given.

Subsequently, a simplification algorithm for action semantic equations is defined. The
algorithm removes the unfolding and unfold constructs, and names all abstractions, in order
to explicitly label all kinds of recursion.

The simplified semantic equations are then transformed into an intermediate representa-
tion language with much fewer constructs than the syntax of action notation.

Finally, the set of equations expressed in the intermediate language is analyzed. The
analysis combines the computation of (finite approximations of) sets of quads with a control
flow analysis akin to the 0-CFA analysis of Shivers [Shi88, Shi91] to approximate the higher-
order control flow. A formal specification of the analysis algorithm in terms of an inference
system is given.

The analysis algorithm is then proved sound with respect to the operational semantics.
The soundness theorem also describes how to extract type information from the sets of de-
pendence quads computed by the analysis.

Finally, Chapter 7 concludes and summarizes the results presented in the present thesis.

1.4 Acknowledgments

Chapter 2 is based on the paper [Ørb95] that appears in the proceedings of the TAP-
SOFT/FASE’95 conference. Chapter 3 is joint work with Jens Palsberg. An extended abstract
of the chapter appears in the conference proceedings of SAS’95 [PØ95a], and a full version of
the paper is to appear in Journal of Functional Programming.



Chapter 2

Can you Trust your Data?

2.1 Introduction

This chapter discusses a static program analysis that can be used to check that the validity
of data is only promoted to higher levels of trust in a conscious and controlled fashion.

It is important to stress that the purpose of the analyses is not to improve run-time
performance, but to give warnings to the programmer whenever untrustworthy data are being
unduly trusted.

In the rest of the chapter we try to motivate the need for a trust analysis. We give
an instrumented semantics for a simple first order language with pointers, in effect keeping
track of the trustworthiness of data at run-time. Then an abstract interpretation is pre-
sented, approximating the analysis statically. Finally, in order to gain separate analysis of
separate program modules as well as better time complexity, a constraint based analysis is
presented. The constraint based analysis is proved to be a safe approximation of the abstract
interpretation.

2.2 Motivation

Many computer systems handle information of various levels of trustworthiness. Whereas the
contents of the company database can usually be trusted, the input gathered via a modem, or
from a part-time secretary may not be trusted as much, and data validation and authentication
routines must ensure the validity of data before it is promoted to a higher level of trust and
entered into the database.

That there is a need for some method to control the propagation of trust in real-life
computer programs is witnessed for example by the security hole recently found in the Unix
sendmail program [CER94]. Sendmail is the mail forwarding program running on the ma-
jority of Unix machines on the Internet. The security hole allowed one to give the program a
certain devious input (in an e-mail message) that would result in having arbitrary commands
executed on the machine with superuser privileges. Had an analysis like the one described
in this chapter been run on the sendmail sources it is likely that such a breach in security
could have been noticed in advance. See below.

As an example of the kind of analysis envisioned, Perl [WS91] implements “taint” checks
at run-time to help ensure that untrustworthy values are not put in places (such as a process’
user-id) where only trusted data should go. This “tainting” is very closely related to the

11
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instrumented semantics given below.

We aim at finding a static program analysis, i.e. an analysis run only once when a
program is compiled, such that the programmer is warned if and when data is promoted from
untrustworthy to trustworthy in an uncontrolled fashion. Clearly there will be a need to
promote data from untrusted to trusted, but with the envisioned analysis we can guarantee
that the promotion takes place in an explicit and conscious way.

In [Den76, DD77] Denning and Denning present a flow analysis for what they call “secure
information flow”. Their analysis in a sense attacks the dual of the problem attacked in this
chapter. Their aim is to prevent privileged information from leaking out of a trusted computer
system, whereas “trust analysis” aims at preventing untrustworthy information from entering
into a trusted computer system.

2.2.1 The Sendmail example

Inside the sendmail C code there is a routine, deliver(), that delivers an e-mail message to
an address:

void deliver(MSG m, ADR a, ...) {

...

setuid(a.uid);

...

}

For some addresses, the uid field makes no sense and is uninitialized. In current sources,
the ADR structure contains a bit that should be set just when the uid field is valid, and
this bit is tested in several places at run-time before the uid field is used. The security
hole existed because the programmer had forgotten to insert enough of these checks and
consequently, under certain circumstances one was able to circumvent the checks and gain
superuser privileges.

With a trust analysis, a reasonable choice is to make the setuid() system-call accept only
trusted values, as it sets the user-id of the current process. This forces a.uid to be a trusted
value for compilation of deliver() to succeed. One would then have just one place, namely
in a validation procedure, where the value of an address’ uid field is promoted to trusted.

ADR validate_address(ADR a) {

ADR a1;

... some validation, fill in appropriate parts of a1.

... we may now trust the contents of a.uid.

a1.uid = trust(a.uid);

return a1;

}

The trust analyzer will now be able to ensure the programmer that only trusted values
are passed to setuid(). And all the run-time checks on the validity bit are no longer needed
as the trust checks are wholly static.
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2.3 The While language

Since a large part of security conscious programs today are written in C, a stripped down
imperative C-like language with pointers is explored. The abstract syntax for the language is
defined by the following BNF:

I ::= variable names

P ::= deref P | I
E ::= P | E +E | ... | const | addr I | trust E | distrust E

S ::= while E do S | S;S | P := E

Informally, I denotes identifiers, P denotes pointer expressions, E denotes arithmetic and
boolean expressions and S denotes statements. Initially the language included first order
procedures, but due to lack of space and since they can be added on in a straightforward way
they have been left out. How to do this is briefly discussed in Section 2.8.

We assume programs are strongly typed (i.e. like in Pascal), but leave out type declarations
such as int or bool as the only thing that matters for our purpose is whether a variable contains
a pointer or a scalar (non-pointer) value.

Deref dereferences pointers. If-statements can be emulated by while loops. This saves a
syntactic construct.

Notation: The following conventions are used for meta-syntactic variables: i ranges over
identifiers I; e, e1 and e2 range over expressions E; p ranges over pointer expressions P and
s, s1 and s2 range over statements S.

2.4 Standard Semantics

The standard semantics for the language is given in a sugared direct style. In order to conserve
space we give only the dynamic semantics for statements.

Below are the definitions of the semantic domains. Addr is the set of possible addresses
in memory. The set of possible program values, Val, includes at least integers, booleans and
addresses.

Environments (Env) map identifiers to addresses, and memories (Mem) map addresses to
values. Note that environments are assumed to be injective.

The semantic function E gives meaning to side-effect free expressions and S gives meaning
to statements. Notation: We use ] for disjoint set union.

Addr ⊆ IN

Val ⊇ Int ] Bool ]Addr

Env = I → Addr

Mem = Addr → Val

E : E → Env → Mem → Val

S : S → Env → Mem → Mem

addr : P → Env → Mem → Addr
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M ∈ Mem

A ∈ Env

E i A M = M(A(i))

E [[addr i]] A M = A(i)

E [[deref p]] A M = M(E p A M)

E [[e1 + e2]] A M = (E e1 A M) + (E e2 A M)

E [[trust e]] A M = E e A M

E [[distrust e]] A M = E e A M

E const A M = const

By strong typing we can assume that trust is applied to scalar values only. This will
be important for the constraint generation analysis. Notation: The memory M [v/a] is as M
except that the address a is mapped to the value v, and similarly for environments.

addr i A M = A(i)

addr [[deref p]] A M = M(addr p A M)

S [[while e do s]] A M = let b = E e A M in

if b then S [[while e do s]] A (S s A M)

else M

S [[p := e]] A M = M [E e A M/(addr p A M)]

S [[s1; s2]] A M = S s2 A (S s1 A M)

2.5 Instrumented Semantics

In order to keep track the trustworthiness of values at run-time, we give an instrumented
semantics that associate each value with a flag telling whether the value can be trusted or
not. This is to be taken as the definition of the desired analysis.

Tr = {⊥,>}
ValI = Val × Tr

MemI = Addr → ValI

EI : E → Env → MemI → ValI

SI : S → Env → MemI → Tr → MemI

addrI : P → Env → MemI → Addr

MI ∈ MemI

We equip the set Tr with a total ordering (≤) such that ⊥ ≤ > in order to make it
a lattice. The least upper bound operation on this lattice will be denoted by ∨, which will
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also be used to denote the lub of environments by point-wise extension. The idea is that
⊥ corresponds to trusted data, and > corresponds to untrusted data. Notation: 〈·, ·〉 forms
Cartesian products and πn is the n’th projection. t ranges over Tr and v over Val.

EI i A MI = MI(A(i))

EI [[addr i]] A MI = 〈A(i), ⊥〉
EI [[deref p]] A MI = let 〈v, t〉 = EI p A MI in

〈π1(MI(v)), t ∨ π2(MI(v))〉
EI [[e1 + e2]] A MI = (EI e1 A MI)+̂(EI e2 A MI)

EI [[trust e]] A MI = 〈π1(EI e A MI), ⊥〉
EI [[distrust e]] A MI = 〈π1(EI e A MI), >〉

EI const A MI = 〈const , ⊥〉
〈v1, t1〉+̂〈v2, t2〉 = 〈v1 + v2, t1 ∨ t2〉

The last parameter to SI is used in connection with while loops, the reason being that if
the condition in the loop cannot be trusted, then all variables assigned in the loop can no
longer be trusted as they may depend on the number of iterations taken. This is also known
as implicit information flow in the various security flow analyses.

addrI i A MI = A(i)

addrI [[deref p]] A MI = π1(MI(addrI p A MI))

SI [[while e do s]] A MI t = let 〈v, t′〉 = EI e A MI in

if v then

SI [[while e do s]] A (SI s A MI (t ∨ t′)) t
else MI

SI [[p := e]] A MI t = let 〈v, t′〉 = EI e A MI in

MI [〈v, t ∨ t′〉/(addrI p A MI)]

SI [[s1; s2]] A MI t = SI s2 A (SI s1 A MI t) t

If we define the relation ∼= between real and instrumented memories as

M ∼= MI ⇐⇒ dom(M) = dom(MI) and MI(x) = 〈M(x), t〉, for some t,

we can state the relationship between the standard semantics and the instrumented semantics
as follows:

Proposition 2.1 (Faithfulness) The instrumented semantics faithfully executes the pro-
gram according to the standard semantics. Formally, if M ∼= MI then:

S s A M = M ′ ⇒ ∃M ′I : SI s A MI = M ′I

and
SI s A MI = M ′I ⇒ ∃M ′ : S s A M = M ′,

and in both cases M ′ ∼= M ′I .
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Proof. Each way is proved by induction in the number of applications of the semantic function.
The semantics emulate each other step by step. 2

2.6 Abstract Interpretation

The instrumented semantics has the drawback that it propagates the trust of variables only
at run-time. Below is presented an abstract interpretation [CC77] of the language computing
an approximation to the trust tags and not the actual values.

Since the actual values are not known during the abstract interpretation neither are the
addresses, hence environments and memories are collapsed into abstract environments map-
ping identifiers directly to “trust signatures”. Notation: 2I denotes the set of subsets of
I.

ValA = Tr ∪ 2I

EnvA = I → ValA

EA : E → EnvA → ValA

SA : S → EnvA → Tr → EnvA

addrA : P → EnvA → 2I

asg : ValA → EnvA → ValA → EnvA

MA ∈ MemI

v ∈ ValA

AA ∈ EnvA

We extend the total ordering on Tr to a partial ordering on ValA such that

∀v ∈ ValA : ⊥ ≤ v ≤ > and a, b ∈ 2I ⇒ (a ≤ b ⇐⇒ a ⊆ b).
This makes ValA a complete lattice, and for any finite collection of programs, finite as well.
∨ is used for least upper bound on this lattice as well. The ordering is extended pointwise to
abstract environments.

The idea is that ⊥ corresponds to trusted scalars. A set of identifiers corresponds to a
trusted pointer that may point to any of the variables mentioned in the set. > corresponds
to untrusted values of any kind. Letting abstract environments map identifiers to sets of
identifiers, instead of keeping both information about the pointer and the data pointed to in
the abstract environment, is done to handle pointer aliasing. Notation: For brevity, define
AA(>) = >, and for a ⊆ I let AA(a) =

∨
i∈aAA(i).

EA i AA = AA(i)

EA [[addr i]] AA = {i}
EA [[deref p]] AA =

∨
AA(EA p AA)

EA [[e1 + e2]] AA = (EA e1 AA) ∨ (EA e2 AA)

EA [[trust e]] AA = ⊥
EA [[distrust e]] AA = >

EA const AA = ⊥
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The auxiliary asg function monotonically assigns a new trust value to a set of identifiers
in an abstract environment. addrA p AA yields the set of variables that might be assigned to
when p is the left hand side of an assignment. Notation: dom(M) denotes the domain of
the map M .

asg t AA > = {(i 7→ >) | i ∈ dom(AA)}
asg t AA s = {(i 7→ AA(i) ∨ t) | i ∈ s}

∪{(i 7→ AA(i)) | i ∈ dom(AA) \ s}
addrA i AA = {i}

addrA [[deref p]] AA =
∨
AA(addrA p AA)

SA [[while e do s]] AA t = let A′A = SA s AA (t ∨ EA e AA)

in if A′A ≤ AA then AA else SA [[while e do s]] A′A t

SA [[p := e]] AA t = asg (EA e AA ∨ t) AA (addrA p AA)

SA [[s1; s2]] AA t = SA s2 (SA s1 AA t) t

To relate the instrumented and abstract semantics an ordering between instrumented and
abstract values is defined relative to an environment:

A ` 〈v, t〉 v a

if and only if a = ⊥ ⇒ t = ⊥ and a ⊆ I ⇒ (t = ⊥ and v ∈ A(a)).
Informally, the first implication means that if the abstract semantics says that a value is

a trustworthy scalar then indeed it is marked trusted in the instrumented semantics. The
second implication means that if the abstract semantics thinks a value is a pointer to one of
the variables in a set a then by the instrumented semantics the value is indeed trustworthy
and is a pointer to one of the variables in the set a.

The relation is extended to relate combined instrumented memories and environments
with abstract environments like this:

MI ◦A v AA

if and only if dom(MI ◦ A) = dom(AA) and A ` (MI ◦ A)(i) v AA(i) for all variables i ∈
dom(AA)

We relate the abstract interpretation to the instrumented semantics in the following way:

Proposition 2.2 (Safety) If a statement is executed in an environment A and a memory
MI by the instrumented semantics, and the abstract environment AA is a safe approximation
of A and MI then the result of the abstract interpretation is a safe approximation of the
memory resulting from the instrumented semantics. Formally: If

SI s A MI t = M ′, MI ◦A v AA, SA s AA tA = A′ and t ≤ tA

then M ′ ◦A v A′.
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Proof. See Section 2.10.
The abstract interpretation terminates. It is clear that EA terminates as it is defined

inductively in the (finite) structure of expressions, and no fixpoints are computed. The only
possibility for SA to diverge would be in the while case where a fixpoint is computed, but by
Lemma 2.9 the fixpoint is computed of a monotone function over a lattice of finite height,
hence the fixpoint can be found in finite time by iteration.

If we let n denote the number of distinct variables used in a program, let l denote the
number of statements and expressions, and let m denote the greatest depth of while-loop
nests in the program, the number of least upper bound operations on ValA executed by the
abstract interpretation will be in O((n + l)2m). In the worst case, the least upper bound
operation on ValA can be computed in O(n) time. This sounds worse than it really is. For
ordinary programs m will be a small constant, and the complexity of analyzing a while-loop
is at most O(n2

b) times the complexity of analyzing the loop body. Here nb is the number of
pointer variables occurring in the body of the loop.

If procedures are added to the language, fixpoints need to be computed for each procedure
call, hence the time complexity will be even worse in that case.

Apart from the time complexity, the main drawback of the abstract interpretation analysis
is that it needs the world to be closed; that is, the analysis cannot be run for each program
module separately. In the next section a separable constraint based analysis is presented.

2.7 Constraint Generation

- Or else, what follows?
- Bloody constraint!...

William Shakespeare: Henry V, Act II, Scene 4.

The constraint generator is going to associate three constraint variables to each program
variable. A solution to the generated set of constraints will assign an appropriate trust value
for the program variable to one of these constraint variables.

The constraint analysis constructs constraints from any sequence of statements. This is
more general than simply allowing for separate analysis of individual functions, since any
sequence of statements can be (partly) analyzed out of context. This might for example be
useful with an advanced module system like the Beta fragment system [KLMM93].

For the purpose of this chapter, a program consists of a top fragment that includes zero or
more fragments which may again include smaller fragments and so on. The inclusion ordering
of the fragments form a directed acyclic graph (DAG), as a single fragment may be included
more than once, but we disallow circular dependences.

Fragments are supposed to be analyzed in a bottom-up fashion, first analyzing the leaf
fragments that include no other fragments, then analyzing fragments that include only leaf
fragments and so on. In effect, the fragments are treated in reverse topological order.

The domains used in the definition of the constraint generation analysis are defined below:

V ::= I |∇I | ∆I
δ, η : V → V

N : P → V
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Ct = (V ∪ Tr)× V
C = 2Ct

ES : E → C × V
SS : S → C × 2V

G ∈ V

V is the set of constraint variables. For an identifier i, ∆i, and ∇i are simply constraint
variables. The intuition is that whereas i will hold the trustworthiness of the value of the
program variable i, ∆i will hold the trust of all the values reachable by dereferencing i any
number of times. Constraint variables ∇i are used to hold the trust of addr terms.

G is a special constraint variable corresponding to the global trustworthiness of a memory.
That is, if a value is assigned to the target of an untrusted pointer then that value could end
up anywhere, and the trustworthiness of the entire memory is corrupted.

The pair 〈s, t〉 ∈ Ct codes the constraint s ≤ t. For readability we write {s ≤ t} for such
a constraint and {s = t} as an abbreviation for {s ≤ t, t ≤ s}. The generated constraints
will be of the form {variable or constant ≤ variable} over the two element lattice {⊥,>},
hence they can be solved by simple constraint propagation in linear time. The existence of a
solution is guaranteed since assigning > to all constraint variables will satisfy the generated
constraints.

We assume that any set of constraints include the constraints {∇i ≤ i ≤ ∆i} for all
identifiers i.

The function δ on V “dereferences” constraint variables:

δ ∇i = i

δ i = ∆i

δ ∆i = ∆i

One may think of δ as a syntactic closure operator as x ≤ δx, and δx = δδx. The function
η “safely” takes the address of a constraint variable. The inequality x ≤ ηδx can be seen to
hold by inspection.

η ∇i = ∇i
η i = ∇i

η ∆i = ∆i

The map N generates constraint variables from pointer expressions P :

N i = i

N [[deref p]] = δN(p)

ES generates constraints for expressions together with the variable corresponding to the
given expression. In each case n denotes a freshly created constraint variable.
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ES i = 〈∅, i〉
ES [[addr i]] = 〈∅,∇i〉
ES[[deref p]] = let 〈c, v〉 = ES p

in 〈c, δv〉
ES [[e1 + e2]] = let 〈c1, v1〉 = ES e1

〈c2, v2〉 = ES e2

in 〈c1 ∪ c2 ∪ {v1 ≤ n, v2 ≤ n}, n〉
ES [[trust e]] = 〈∅, n〉

ES [[distrust e]] = 〈{> ≤ n}, n〉
ES const = 〈∅, n〉

SS generates constraints for statements. The second part of the result is the set of con-
straint variables corresponding to variables assigned to within the statement. This is used
to generate additional constraints for while-loops such that variables assigned to in the loop
body are trusted only if the condition of the loop is.

SS [[while e do s]] = let 〈ce, v〉 = ES e
〈cs, a〉 = SS s

in 〈cs ∪ ce ∪ {v ≤ x | x ∈ a}, a〉
SS [[p := e]] = let 〈ce, v〉 = ES e

in 〈ce ∪ {v ≤ N(p), δN(p) = δv, ηN(p) ≤ G}, {N(p)}〉
SS [[s1; s2]] = let 〈c1, a1〉 = SS s1

〈c2, a2〉 = SS s2

in 〈c1 ∪ c2, a1 ∪ a2〉

A solution to the generated constraints (called a model) is a map m giving values to the
constraint variables such that the constraints c are fulfilled, this is written m |= c. Formally:
m |= c if and only if

∀〈s, t〉 ∈ c : m(s) ≤ m(t).

It is clear that if m |= c1 ∪ c2 then m |= c1 and m |= c2.
We will consider only a subset of all possible models for a set of constraints, namely

so-called coherent models. A model m is coherent if it satisfies

m(a) ≤ m(b) ⇒ m(δa) ≤ m(δb).

It is clear that the model that assigns > to all variables is a coherent model, hence the
existence of a coherent model is assured.

Coherent models and abstract environments can be related to each other in the following
way: We write AA v m if and only if

AA(i) = > ⇒ m(i) = >
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and

a ∈ AA(i) ⇒ m(∆i) = m(a),

or, alternatively m(G) = >.

An intuitive view of the above is that in order for a model to be a safe approximation
of an abstract environment, it must assign conservative trust-values to all variables, and if a
pointer p can point to a number of variables then the constraint variable ∆p must be equated
to the trust-values of all these variables.

The constraint generation analysis is related to the abstract interpretation by the following
safety statement:

Proposition 2.3 If

〈c, v〉 = SS s,
m |= c, and m is coherent

AA v m,

∀x ∈ v : t ≤ m(x),

A′A = SA s AA t

then A′A v m.

Proof. See Section 2.11.

The constraint generation analysis is strictly weaker than the abstract interpretation in
the sense that more variables are treated as untrusted, as is demonstrated by the following
example:

Program New constraint

p := addr j {∇j ≤ p, ∆p = j}
p := addr i {∇i ≤ p, ∆p = i}
i := distrust 8 {> ≤ i}
k := deref p {∆p ≤ k, ∆k = ∆p}

Remember that the following constraint is implicitly assumed: {p ≤ ∆p}. In the abstract
interpretation, only i will be marked untrusted at the end, whereas in the constraint analysis
the trust of i and j are linked by equality since p may point to both1.

Generating the constraints for a program of size n takes O(n2) time in the worst case
assuming that the addition of a single constraint can be done in constant time. The
constraints, being of such simple nature, may be solved by value propagation in linear time in
the number of constraints. All in all constraint generation and (partial) solving can be done
in quadratic time in the size of the program fragment.

1As remarked by one of the referees, it might be possible to detect some of these situations as p is dead after
the first assignment, so one might remove the constraints added in the first line from the final constraints and
thereby get a better solution. This effect might also be achieved by removing assignments to dead variables
before trust analysis.
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2.8 Extensions

By treating arrays as one logical variable, the analysis is able to handle arrays as well as scalar
data. This means that the analysis cannot know that some elements of an array are trusted
and some are not. Either all elements are trusted or none are. This tradeoff is necessary for
the abstract and constraint analyses since they are unable to compute actual offsets in the
array. This tradeoff in accuracy is the same as encountered in set-based analysis [Hei93].

Records or structs can be handled by treating each field of the record as a separate variable.

Extending the language with first order procedures is simple enough. The abstract inter-
pretation will simply model the procedure calls directly and compute fixed points in case of
recursion. The constraint generation will first compute constraints for the body of a proce-
dure and for each call add constraints matching formal and actual parameters. By copying
the constraints generated for the body we can achieve a polyvariant analysis such that a par-
ticular call of the procedure with an untrustworthy argument does not influence other calls
of that procedure.

A “check for trusted value” construct that will raise an error when an untrusted value
is given as parameter is easily added to the language, but makes the semantics larger and a
bit more complicated as it has to deal with abnormal termination. The relation between the
instrumented and abstract interpretation must state that if the instrumented semantics says
that a program will fail then the abstract interpretation will too. Extending the constraint
generation analysis with the “check” construct means that there will only be a model for the
generated constraints if all checks are met.

Extending the analysis to languages with higher order functions while still catering for
pointers and mutable data seems to be more complicated and is left for future research.

The concept of trust can be extended to multiple levels of trust, so that instead of a
binary lattice of trust values, a lattice with longer chains is used. For the instrumented
semantics and the constraint generation, this is a straightforward generalization. For the
abstract interpretation, the abstract domain is changed such that all “very trusted” pointers
are below the “lesser trusted” pointers all of which are below >.

2.9 Conclusion

We have argued that the analysis of the trustworthiness of data is a useful program analysis in
security conscious settings, and we have given two static analyses for this purpose, one based
on abstract interpretation, and another constraint-based analysis that facilitates separate
analysis of program modules at the cost of slightly less accuracy.

The analyses have been proved safe with respect to an instrumented semantics that has
served as the definition of the goal of the analysis.

The main contribution of this chapter is thought to be the introduction of the concept of
trust analysis, and the application of it to a language with pointers and mutable data

There are some similarities between binding-time analysis [HM94] and trust analysis in
this case, but there are also significant differences. Most notably, trust analysis provides the
trust construct that would correspond to an unrestricted down-lift in binding-time analysis.

Acknowledgments: The author wants to thank Jens Palsberg, Peter D. Mosses and Neil D.
Jones for reading earlier drafts of this chapter and giving useful comments. Also the anony-
mous referees provided useful feedback.
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2.10 Safety of Abstract Interpretation

Fact 2.4 If a ≤ b and b ∈ s ⊆ ValA then a ≤
∨
s.

Fact 2.5 If A ` v v a and a ≤ b then A ` v v b.

Lemma 2.6 If MI ◦A v AA then A ` EI e A MI v EA e AA.

Proof. By structural induction on e. We proceed with a case analysis:

• e = i: Show A ` MI(A(i)) v AA(i) which follows from the definition of v.

• e = [[addr i]]: Show A ` 〈A(i),⊥〉 v {i}, and clearly A(i) ∈ A({i}).

• e = [[deref p]]: Let 〈v, t〉 = EI p A MI and a = EA p AA, show:

A ` 〈π1(MI(v)), t ∨ π2(MI(v))〉 v
∨
AA(a).

By induction, A ` 〈v, t〉 v a. By strong typing we can assume that v is indeed a
pointer and that either a = > or a ⊆ I. In the first case the desired inequality holds
trivially. In the second case we know that v ∈ A(a), and also that t = ⊥. Assume that
v = A(a0), a0 ∈ a. As MI ◦A v AA, A `MI(v) v AA(a0), and using Fact 2.4 and Fact
2.5 we get the result.

• e = [[e1 + e2]]: By induction,

A ` (〈v1, t1〉 = EI e1 A MI) v EA e1 AA = a1,

A ` (〈v2, t2〉 = EI e2 A MI) v EA e2 AA = a2.

Show A ` 〈v1 + v2, t1 ∨ t2〉 v a1 ∨ a2. If one of {a1, a2} is >, the result is trivial. If
they are both ⊥, both t1 and t2 must be too.

• e = [[trust e′]]: Show A ` 〈EI e′ A MI , ⊥〉 v ⊥. This follows directly from the definition
of v.

• e = [[distrust e′]]: Trivial from the definitions.

• e = const : Show A ` 〈const ,⊥〉 v ⊥, which is trivial.

2

Lemma 2.7 If MI ◦A v AA then A ` 〈addrI p A MI , ⊥〉 v addrA p AA

Proof. By structural induction in p.

• p = i: Show A ` 〈A(i),⊥〉 v {i} which follows directly from the definition of v.

• p = [[deref p′]]: Show A ` 〈π1(MI(addrI p
′ A MI)),⊥〉 v

∨
AA(addrA p′ AA). By

induction: A ` 〈addrI p′ A MI , ⊥〉 v addrA p′ AA. If addrA p′ AA = > the
result is trivial. If addrA p′ AA = s ⊆ I then there is an identifier a0 ∈ s such that
A(a0) = addrI p′ A MI . Thus A ` MI(A(a0)) v AA(a0) by the assumption that
MI ◦A v AA, and via Fact 2.4 and 2.5 the result follows.
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2

Lemma 2.8 EA is monotone in its second argument:

AA ≤ A′A ⇒ EA e AA ≤ EA e A′A.

Proof. Trivial by structural induction in e. 2

Lemma 2.9 SA is monotone and increasing: If AA ≤ A′A and t ≤ t′ then

SA s AA t ≤ SA s A′A t′ and AA ≤ SA s AA t.

Proof. By induction in the number of applications of SA, using that asg is monotone in all
its arguments, that addrA is monotone, and that asg is increasing. 2

Proof of Proposition 2.2 (Safety). We want to prove the following: If

SI s A MI t = M ′, MI ◦A v AA, SA s AA tA = A′A and t ≤ tA
then M ′ ◦A v A′A.

The proof is by induction in the number of calls of SI . We proceed by a case analysis of
the syntax of s:

• s = [[while e do s′]]: By Lemma 2.6, monotonicity of EA and Fact 2.5 we know that
A ` EI e A MI v EA e AA.

If v is false (in the definition of SI) the result follows from Lemma 2.9.

Otherwise, let 〈v, t′〉 = EI e A MI , M
′′ = SI s′ A MI (t ∨ t′) and A′′A = SA s′ AA (tA ∨

EA e AA). By the above fact on e we can apply induction and get M ′′ ◦A v A′′A.

Now we have M ′ = SI [[while e do s′]] A M ′′ t and

A′A = SA [[while e do s′]] AA tA = SA [[while e do s′]] A′′A tA,

where the last equality holds in all cases as SA is increasing. By induction we get
M ′ ◦A v A′A.

• s = [[p := e]]: Let 〈v, t′〉 = EI e A MI , vA = EA e AA, a = addrI p A MI and
aA = addrA p AA. We need to show:

MI [〈v, t ∨ t′〉/a] ◦A v asg (vA ∨ tA) AA aA.

If aA = > then this follows directly from the definition of asg. Otherwise by Lemma
2.7 we have A ` 〈a,⊥〉 v aA, hence there exists an a0 ∈ aA such that A(a0) = a. It is
enough to ensure the inequality at a0 since this is the only point where the left hand
side is different from MI ◦A and asg is clearly monotone in the second argument so by
Fact 2.5 the inequality holds automatically everywhere else. Evaluating we get:

(asg (vA ∨ tA) AA aA)(a0) = (vA ∨ tA ∨AA(a0)).

and
(MI [〈v, t ∨ t′〉/a] ◦A)(a0) = 〈v, t ∨ t′〉.

By Lemma 2.6 we know that A ` 〈v, t′〉 v vA. All that remains to show is: A `
〈v, t ∨ t′〉 v vA ∨ tA ∨AA(a0) which follows from Fact 2.4.

• s = [[s1; s2]]: This case follows immediately by two applications of induction.
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2.11 Safety of Constraint Generation

Lemma 2.10 (Addresses) If m is a coherent model, m(G) = ⊥ and AA v m then these
two implications hold:

a ∈ addrA p AA ⊆ I ⇒ m(a) = m(N(p))

and
addrA p AA = > ⇒ > = m(ηN(p)) ≤ m(N(p)).

Proof. By structural induction in p.

• p = i: addrA i AA = {i} and m(i) = m(N(p)) = m(i).

• p = [[deref p′]]: Note that m(N(p′)) ≤ m(ηN(p)). First assume a ∈ addrA p AA =∨
AA(addrA p′ AA) ⊆ I. By induction, b ∈ addrA p′ AA ⇒ m(b) = m(N(p′)). Sincem

is coherent, m(δb) = m(δN(p′)) = m(N(p)). Also, as AA v m: m(δb) = m(∆b) = m(a).
Combining the equalities we get the desired result.

Secondly, suppose
∨
AA(addrA p′ AA) = >. Either addrA p′ AA = > in which

case induction yields > = m(N(p′)) ≤ m(δN(p′)) = m(N(p)), or there is some b0 ∈
addrA p′ AA such that AA(b0) = >. Since m is a safe approximation of AA this
means m(b0) = >. By induction m(b) = m(N(p′)) for all b ∈ addrA p′ AA so we get
> = m(b0) = m(N(p′)) ≤ m(N(p)) which is the required result.

2

Lemma 2.11 (Expressions) The constraints generated for expressions safely approximate
the abstract interpretation of expressions.

Suppose 〈c, v〉 = ES e, m is a coherent model of c, AA v m and a = EA e AA then the
following implications hold:

a = > ⇒ m(v) = >
and

a0 ∈ a ⊆ I ⇒ m(a0) = m(δv).

Proof. By structural induction in e.

• e = i: EA i AA = AA(i) and 〈c, v〉 = 〈∅, i〉 by definition. If AA(i) = > then m(i) =
m(v) = > as AA v m. If a0 ∈ AA(i) then m(∆i) = m(δi) = m(a0) by the same reason.

• e = [[addr i]]: 〈c, v〉 = 〈∅,∇i〉 and a = {i}. What is required to prove thus is m(a0) =
m(δv) = m(i) for a0 ∈ {i} which is clear.

• e = [[deref p]]: 〈c, vp〉 = ES p, v = δvp and a =
∨
AA(EA p AA).

If a = > then either EA p AA = > and by induction > = m(vp) ≤ m(δvp) = m(v), or
EA p AA ⊆ I in which case there is some a0 ∈ EA p AA such that AA(a0) = >. As
AA v m this means that m(a0) = >. By induction > = m(a0) = m(δvp) = m(v).

If a0 ∈ a ⊆ I then we must show m(a0) = m(δv). By induction m(a′0) = m(δvp) for all
a′0 ∈ EA p AA ⊆ I. a0 = AA(a′0) for some such a′0 thus since AA v m, m(∆a′0) = m(a0)
and since m is coherent:

m(a′0) = m(δvp) = m(v) ⇒ m(a0) = m(δa′0) = m(δv).
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• e = [[e1 + e2]]: Let 〈c1, v1〉 = ES e1 and 〈c2, v2〉 = ES e2. We have c = c1 ∪ c2 ∪ {v1 ≤
v, v2 ≤ v} and by induction the implications hold for the two subexpressions. Suppose
a = >: This means that EA ej AA = > for some j ∈ {1, 2} and by induction this means
that m(vj) = > and by definition of c we get m(v) = >.

By strong typing, the abstract value for the expression must be either > or ⊥ so this
concludes the case.

• e = [[trust e′]]: We have a = ⊥ so the implications hold vacuously.

• e = [[distrust e′]]: We have a = > and c = {> ≤ v} hence m(v) = > as required.

• e = const : We have a = ⊥ so the implications hold vacuously.

2

Proof of Proposition 2.3. We want to prove the following: If

〈c, v〉 = SS s, (2.1)

m |= c, and m is coherent (2.2)

AA v m, (2.3)

∀x ∈ v : t ≤ m(x), (2.4)

A′A = SA s AA t (2.5)

then A′A vm.

Proof. We proceed by induction in the number of calls to SA. If m(G) = > then the final
inequality holds regardless of A′A, so assume m(G) = ⊥. A case analysis follows:

• s = [[while e do s′]]: Let 〈ce, ve〉 = ES e and 〈cs, vs〉 = SS s′. By definition of c:
x ∈ vs ⇒ m(ve) ≤ m(x) and by Lemma 2.11 EA e AA = > ⇒ m(ve) = > thus
by (2.4) ∀x ∈ vs : t ∨ EA e AA ≤ m(x). We can now apply induction on s′ and get
A′A = SA s′ AA (t ∨ EA e AA) v m. If this is the same as AA we are done. Otherwise
we apply induction once more and get the result.

• s = [[p := e]]: If addrA p AA = > then by Lemma 2.10, > = m(ηN(p)) ≤ m(G) so in
that case A′A v m by definition of v.

Now suppose a0 ∈ a = addrA p AA ⊆ I. A′A differs from AA only on the set a by
definition of asg. Let 〈ce, ve〉 = ES e and ae = EA e AA.

If A′A(a0) = t ∨ AA(a0) ∨ ae = > we must show m(a0) = >. By (2.4) t ≤ m(N(p)) =
m(a0) where that last equality comes from Lemma 2.10. By (2.3) AA(a0) = > ⇒
m(a0) = >. By Lemma 2.11 ae = > ⇒ m(ve) = >, and by definition of c, m(ve) ≤
m(v) = m(N(p)) = m(a0), using Lemma 2.10 last. For A′A(a0) to be > at least one of
the parts of the above disjunction must be > (by definition of the ValA lattice) and by
the inequalities, m(a0) = > in all cases.

If A′A(a0) = t ∨ AA(a0) ∨ ae ⊆ I then we must show that a′ ∈ A′A(a0) ⇒ m(∆a0) =
m(a′). a′ cannot belong to t as t ∈ Tr . If a′ ∈ AA(a0) then (2.3) secures the result.
Otherwise, if a′ ∈ ae then by Lemma 2.11 m(a′) = m(δve) = m(δN(p)) where the last
equality stems from the definition of c. By Lemma 2.10 and coherence m(δN(p)) =
m(δa0) = m(∆a0).
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• s = [[s1; s2]]: Let A′′A = SA s1 AA t and 〈c1, v1〉 = SS s1. Now c1 ⊆ c and v1 ⊆
v by definition of SS , so by induction we get A′′A v m. With this and equivalent
considerations as above we can apply induction to A′′A and s2 and get A′A v m as
required.

2
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Chapter 3

Trust in the λ-calculus

You may be deceived if you trust too much,
but you will live in torment if you don’t trust enough.

Frank Crane

This chapter is joint work with Jens Palsberg.

3.1 Introduction

In the previous chapter the concept of trust analysis was introduced for a first order imper-
ative language using abstract interpretation and constraints. This chapter investigates trust
analysis as a type system for a pure functional language based on the λ-calculus.

The remainder of the chapter is structured as follows. First we give some intuitions about
the intended program analysis, the semantics of our example language, and the type system.
Then we present an extension of the λ-calculus together with an operational reduction calcu-
lus. The calculus is shown to have the Church-Rosser property. We also give a denotational
semantics for our language and relate it to the reduction rules. We define our static trust
analysis in terms of a type system. The type system is shown to have the Subject Reduc-
tion property with respect to the reduction rules of the semantics. We then relate our type
system to the classical Curry type system for λ-calculus and obtain two simulation theorems
relating reductions in our calculus to reductions in classical λ-calculus, and finally we prove
that well-typed terms are strongly normalizing. Then a type inference algorithm is presented
and proved correct with respect to the type system. Finally we discuss how to extend the
type system to handle recursion, modules and polymorphism, and we relate trust analysis to
other program analyses.

3.1.1 Intuitions and Motivation

The method we propose to help the programmer ensure that he inserts checks on all the
required data-paths in his program is here formulated in terms of an annotated type-system.
This type-system must be able to type both trusted data and untrusted data as both kinds of
data occur naturally in most programs, but still it must be able to distinguish between these
two kinds of data.

29
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As this chapter is concerned with a higher-order language, functions are data as well so
a function is itself either trusted or untrusted. Intuitively it should be clear that if we apply
an untrustworthy function then the result of that application is untrustworthy as well, since
the function itself may depend on untrustworthy information from the outside. This leads us
to our type rule for function application as shown in Figure 3.7.

Our type system starts from the simply typed λ-calculus and annotates each type con-
structor occurring in the program with a trustworthiness. A trustworthy boolean has the
annotated type Booltr, and an untrustworthy function sending trusted booleans to trusted
booleans has the annotated type (Booltr → Booltr)dis. Allowing untrustworthy functions to
return trusted values in this sense, allows us to avoid complicated well-formedness constraints
on types. Instead we let our application rule handle the problem.

Suppose f is a function that can accept an untrusted argument. This must mean that
f cannot use that argument in places where a trusted value is required unless it does some
checking beforehand on the argument. If we give f a trusted argument then these checks
should succeed which means that if a function can accept untrusted input then it can also
accept trusted input. This leads us to a type system with subtyping, such that an expression
of a trusted type can be typed as an untrusted type. The ordering between base-types as
determined by their trustworthiness is extended to higher types using the usual contra/co-
variant structural subtyping idea of Mitchell [Mit84], Fuh and Mishra [FM90], Cardelli [Car84]
and others.

The trust type system differs from many other type systems in that given a bare value (eg.
7) it is not possible to see by just examining the value whether it is trustworthy or not. This
is where our three extensions to the basic λ-calculus come in. They basically link the dynamic
semantics of the calculus to our type system, and they can be seen as a kind of annotations to
the program that the type inference algorithm will attempt to verify for consistency. The trust
E construct indicates to the type system that the result of E may now be trusted. Dually,
distrust E indicates that the result of E cannot be trusted, for example after a failing validity
check, and last but not least: the check E construct indicates to the analysis that the result of
E is required to be trustworthy. Well-written programs will only have a few syntactic places
where the three new constructs are used. The type system propagates the trust information
though the program, ensuring that for any instance of check E in a well-typed program the
expression E is statically known to be trustworthy.

3.1.2 An Example

Consider the following piece of code written in an SML like syntax for a network server
program:

read from network :: (Clientdis → (Reqdis, Sigtr))tr

verify signature :: (Sigtr → Booltr)tr

handle event :: (Reqtr → Unittr)tr

handle wrong signature :: ((Reqdis, Sigtr)→ Unittr)tr

fun get request client =
let (req, signature) = read from network(client) in

if verify signature(signature) then
handle event(trust req)
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E,F,G,H ::= x | λx.E | EE | trust E | distrust E | check E

Figure 3.1: The syntax of expressions

else
handle wrong signature(req, signature).

The server first reads a packet from the network client and if the signature of the packet
can be verified, then we can trust the request data and the event handler is called with the
request part of the packet. In case the signature cannot be verified an error handler is called
which may eventually display some error message on the client’s display.

The event handler could be called from many places in the program and to avoid by
accident calling it with a request that has not yet been verified, we use the trust type system
to require that the handler gets only trustworthy requests. The handler code may then look
something like:

fun handle event req =
let trusted req = check req
in ...

and it will therefore get the argument type Reqtr. Notice the small number of program
annotations of the form trust E and check E as opposed to the numerous trust annotations
on the types that are inferred by our inference algorithm.

3.2 Syntax and Semantics

This section presents the syntax and operational semantics of the trust language. We have
chosen to formalize our analysis in an extension of the traditional λ-calculus without any
predetermined reduction order, that is, we study a pure calculus to gain results that will
specialize equally well to call-by-value implementations as to call-by-need implementations.
The drawback of this is of course that some results require more work, for example we need
a lengthy proof of the Church-Rosser property of our calculus, something that would come
essentially for free had we chosen to study just one specific reduction strategy such as left-most
inner-most reduction for call-by-value. Figure 3.1 defines the syntax of our language.

Variables, λ-abstraction and application behave as usual. The trust E construct is used to
introduce trusted values in a program. Symmetrically, distrust indicates untrusted values. The
check construct will reduce only on trusted values, so evaluation may get stuck if an expression
check(distrust E) occurs at some point during evaluation. According to the previous section,
the three new constructs should be regarded as the interface between the dynamic semantics
of the program and the static analysis (the type system). But in order to prove the soundness
of the analysis we have to give some dynamic meaning to the new constructs. This is done
in terms of fairly obvious reduction rules for the constructs defining how they interact. One
can also see the new constructs as operating on tags associated with all values at run-time,
and this is the view taken in the denotational semantics given later.



32 CHAPTER 3. TRUST IN THE λ-CALCULUS

3.2.1 Reduction Rules

The reduction (or evaluation) rules for the language are given in Figure 3.2. Stating E → E′

means that there is a derivation of that reduction in the system.

There are three kinds of values around during reduction: trusted, distrusted and untagged.
Untagged lambdas are treated as trusted program constants in the (Lambda Contraction)
rules, since lambdas stem from the program text which the programmer is writing himself
and they may therefore be trusted. As discussed in Section 3.5 this may change in a larger
scale situation with modules.

In order to facilitate the proof of the Church-Rosser property of the system, the reduction
rules form a reflexive “one step” transition relation. This is inspired by the proof of Church-
Rosser for the ordinary λ-calculus by Tait and Martin-Löf in [Bar81, pp. 59–62].

The contraction rules exist to eliminate redundant uses of our new constructs in the
calculus. For example, trusting an expression twice is the same as trusting it once (the first
(Trust Contraction) rule) and checking the trustworthiness of an expression then explicitly
trusting it is the same as just checking the expression (Check Contraction). Checking an
explicitly trusted expression succeeds and yields a trusted expression. Note that there is
no rule contracting distrust(check E) since this would allow the removal of the check on the
trustworthiness of E. The reason this particular choice of reduction rules is that we want
check to act in a “call-by-value” fashion as discussed in the next section.

In the following we always consider equality of terms modulo α-renaming. Since we are
working with a reflexive reduction relation we have to be careful in our definition of what
is meant by a normal form. A significant reduction E → F is a reduction whose derivation
uses at least one of the contraction rules or a β-rule. A term E is said to be in normal form
when there are no significant reductions1 starting from E. There are proper and improper
normal forms. A normal form containing a sub-term of the form check(distrust E) is said to
be improper. All other normal forms are proper. We will write→∗ for the reflexive transitive
closure of the reduction relation →.

As an example of how to extend the language with usual programming constructs, we
show in Figure 3.3 how a reduction rule for program constants would look and the derived
rules we get for if-then-else with the usual coding of booleans in the λ-calculus. Notice
how the (Constant) rules are patterned after the (Lambda Contraction) rules, and how the
trustworthiness of the condition in an if-then-else construct affects the trustworthiness of the
result. It shows that our function application rule seamlessly handles what Denning in [Den76]
called indirect data dependences (implicit flow). In Section 3.5 we also show how to encode
a rec construct in the language.

3.2.2 The Nature of check

The contraction rules that we have in the case where check is the inner construction are given
by the (Check Contraction) rules:

E → check F

trust E → check F
check E → check F

1A reduction E → F may be significant even when E = F : Ω = (λx.xx)(λx.xx) → Ω is a significant
reduction.
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E → E (Reflex)

E → E′

λx.E → λx.E′

trust E → trust E′

distrust E → distrust E′

check E → check E′

(Sub)

E → trust E′

trust E → trust E′

distrust E → distrust E′

check E → trust E′

(Trust Contraction)

E → distrust E′

trust E → trust E′

distrust E → distrust E′

(Distrust Contraction)

E → check E′

trust E → check E′

check E → check E′

(Check Contraction)

E → λx.E′

trust E → λx.E′

check E → λx.E′

(Lambda Contraction)

E → E′ F → F ′

EF → E′F ′

(λx.E)F → E′[F ′/x]
(distrust (λx.E))F → distrust E′[F ′/x]

(Application)

Figure 3.2: The reduction rules.
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E → const

trust E → const
check E → const

(Constant)

T ≡ K ≡ λxy.x (True)
F ≡ λxy.y (False)

if E then F else G ≡ EFG (If)

E → E′ F → F ′

if T then E else F →∗ E′
if F then E else F →∗ F ′

if distrust T then E else F →∗ distrust E′

if distrust F then E else F →∗ distrust F ′

(If)

Figure 3.3: Example rules.

and most notably, there is no rule for contracting distrust(check E). There is at least one
other set of rules for this case that may come to mind, namely this set of rules:

E → check F

trust E → trust F
distrust E → distrust F

check E → check F

The intuition for the first of these alternative rules is that if we put trust around some
expression there is really no need to perform the check inside the trust construct since the
program is going to trust the resulting value anyway. The second rule is the symmetric case,
and is needed to make the resulting calculus Church-Rosser. The last rule also occurs in our
system. The calculus that results from this alternative set of rules makes fewer programs end
up in a stuck configuration, because it is now possible to place a stuck expression in a context
that will make it reducible, as in trust(check(distrust E)) which is stuck in our calculus, but
reduces to trust E under the alternative rules.

One way to think about this is to view our definition of check as “call-by-value” in that
it really needs to see the (possibly implicit) tag on its subexpression before it can be reduced
away, whereas with the alternative rules, check is “call-by-name” in that it can be reduced
away, depending on its context, without considering the trustworthiness of its argument. The
“call-by-value” nature of check is also reflected in the denotational semantics of check given
later. Note, however, that for the core λ-calculus we have the full β-rule. It’s only the new
construct, check, that behaves in a “call-by-value” or “call-by-name” fashion.

In our view the alternative rules are less intuitive to the programmer, in that if he writes
check somewhere in the program he probably wants it to check the trustworthiness of its
argument regardless of the surrounding context. But one can argue both ways: the “call-
by-name” version of check might be the most natural choice in a lazy implementation of
a functional language such as Haskell, whereas the “call-by-value” version might be most
suitable for a call-by-value language such as SML. Either way it’s easy to alter the proof of
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the Subject Reduction theorem (Theorem 3.11) for our type system to the alternative rules,
so our type system is sound for both sets of rules.

3.2.3 Church-Rosser

The Church-Rosser (confluence) theorem for a reduction system states that for any term, if
the term can reduce to two different terms there exists a successor term such that both of the
two reduced terms can further reduce to that common successor. A corollary of this is that
a normal form is unique if it exists.

Theorem 3.1 (Church-Rosser) For expressions E, F and G. If E →∗ F and E →∗ G
then there is an expression H such that F →∗ H and G→∗ H.

Proof. By the Diamond lemma below (Lemma 3.7) and Lemma 3.2.2 of [Bar81]. 2

Lemma 3.2 If E → F and E has a certain structure then some conditions on the structure
of F hold, as made explicit below.

• If E = trust E1 → F then F = α F1 where α ∈ {check, trust, λx.}.

• If E = check E1 → F then F = α F1 where α ∈ {check, trust, λx.}.

• If E = distrust E1 → F then F is of the form distrust F1.

• If E = λx.E1 → F then F is of the form λx.F1.

Proof. In each case by inspection of the reduction rules. 2

Lemma 3.3 (Trust/Check Identity) Let α ∈ {trust, check, λx.}.
If E → α E1 then check E → α E1 and trust E → α E1

Proof. By inspection of the reduction rules, especially the contraction rules. 2

Lemma 3.4 (Symmetry) Let α, β ∈ {trust, distrust}. If α E → α E′ then β E → β E′

Proof. By induction on the structure of the derivation of α E → α E′, verifying that in each
case there is also a corresponding rule for the opposite combination. 2

Lemma 3.5 (Pre-Substitution) If E → F then G[E/x]→ G[F/x].

Proof. By induction on the structure of G. This is essentially a consequence of the (Sub) rules
and the first (Application) rule. 2

Lemma 3.6 (Substitution) If E → F and G→ H then E[G/x]→ F [H/x].

Proof. By induction on the structure of the derivation of E → F . If F = E by the (Reflex)
axiom, we must show that E[G/x]→ E[H/x] given that G→ H. This is the Pre-Substitution
lemma (3.5).
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For all the rules except the (Application) case: Suppose that α, β, and γ are in the set
{check, trust, distrust, λx.} as appropriate, and β and γ may be empty as well. Assume the
rule

E1 → β F1

E = α E1 → γ F1 = F

is the last rule in the derivation of E → F . By the induction hypothesis we get

E1[G/x]→ (β F1)[H/x] = β(F1[H/x]).

Now E[G/x] = α E1[G/x] and F [H/x] = γ F1[H/x], and we may now deduce

E1[G/x]→ β F1[H/x]

α E1[G/x]→ γ F1[H/x]

as required. Of course, in the case of a lambda, if the bound variable is the one substituted
for, nothing happens during substitution, i.e.

E[G/x] = E → F = F [H/x]

as the only rule applicable to the case of α = λx. is the (Sub) rule.
The (Application) cases: If E = E1E2 → F1F2 = F , where E1 → F1 and E2 → F2

then the result follows directly from the induction hypothesis. Suppose the last rule in the
derivation of E → F was (x 6= y):

E1 → F1 E2 → F2

E = (λy.E1)E2 → F1[F2/y] = F

By the induction hypothesis E1[G/x] → F1[H/x] and similarly for E2. Also E[G/x] =
(λy.E1[G/x])(E2[G/x]) and

F [H/x] = (F1[F2/y])[H/x] = (F1[H/x])[F2[H/x]/y]

where the last equality depends on y not being free in H. This can be assured by α-renaming
H. We may now deduce:

E1[G/x]→ F1[H/x] E2[G/x]→ F2[H/x]

(λy.E1[G/x])(E2[G/x])→ (F1[H/x])[F2[H/x]/y]

Suppose the last rule in the derivation of E → F was:

E1 → F1 E2 → F2

E = (λx.E1)E2 → F1[F2/x] = F

By the induction hypothesis, E2[G/x]→ F2[H/x]. Also E[G/x] = (λx.E1)(E2[G/x]) and

F [H/x] = (F1[F2/x])[H/x] = F1[F2[H/x]/x].

Now
E1 → F1 E2[G/x]→ F2[H/x]

(λx.E1)(E2[G/x])→ F1[F2[H/x]/x]

as required. Two similar cases apply to the distrust λx.E case. 2
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Lemma 3.7 (Diamond) For expressions E, F and G. If E → F and E → G then there is
an expression H such that F → H and G→ H.

Proof. By induction on the derivation of E → F and E → G and by cases on how F and G

must look depending on E.

Depending on E there are a number of applicable rules. In all cases (Reflex) and (Sub)
are applicable.

1. E = λx.E1: none other.

2. E = trust E1:

(a) E → trust E′1 when E1 → trust E′1. (Trust Contraction)

(b) E → λx.E′1 when E1 → λx.E′1. (Lambda Contraction)

(c) E → check E′1 when E1 → check E′1. (Check Contraction)

(d) E → trust E′1 when E1 → distrust E′1. (Distrust Contraction)

3. E = distrust E1:

(a) E → distrust E′1 when E1 → trust E′1. (Trust Contraction)

(b) E → distrust E′1 when E1 → distrust E′1. (Distrust Contraction)

4. E = check E1:

(a) E → trust E′1 when E1 → trust E′1. (Trust Contraction)

(b) E → check E′1 when E1 → check E′1. (Check Contraction)

(c) E → λx.E′1 when E1 → λx.E′1. (Lambda Contraction)

5. E = (λx.E1)E2: E → E′1[E
′
2/x] when E1 → E′1 and E2 → E′2.

6. E = (distrust λx.E1)E2: E → distrust E′1[E
′
2/x] when E1 → E′1 and E2 → E′2.

If E → F or E → G by (Reflex) then there is no problem, one may just use the rule
applied in the other branch to get to the common successor. Case 1 is easy as well: there is
only one applicable rule except (Reflex) namely (Sub).

The tables below map pairs of “outgoing” reductions to proofs of the corresponding case.

Case 2 2a 2b 2c 2d (Sub)

2a B B C A
2b B C A
2c C A
2d D

Case 3 3a 3b (Sub)

3a G F
3b E
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Case 4 4a 4b 4c (Sub)

4a B B A
4b B A
4c A

For case 6 the argument is as follows: Here the last rules in the derivation of E → F and
E → G were:

E1 → F1 E2 → F2

E = (distrust λx.E1)E2 → distrust F1[F2/x] = F
(Application)

and
E1 → G1 E2 → G2

E = (distrust λx.E1)E2 → (distrust λx.G1)G2 = G
(Sub)

respectively. By the induction hypothesis there areH1 and H2 such that F1 → H1, G1 → H1

and F2 → H2, G2 → H2. So by the Substitution lemma (Lemma 3.6) (and (Sub)):

F = distrust F1[F2/x]→ distrust H1[H2/x] = H

and by (Application)

G = (distrust λx.G1)G2 → distrust H1[H2/x] = H.

Case 5 without distrust is similar.
In each of the cases below, the quest is to find an appropriate common successor H to F

and G.

Case A. Let α ∈ {trust, check} and β ∈ {trust, check, λx.}. The last rules of the derivation
of E → F and E → G were

E1 → β F1

E = α E1 → β F1 = F
(β Contraction)

E1 → G1

E = α E1 → α G1 = G
(Sub)

By the induction hypothesis there is an H1 such that G1 → H1 and β F1 → H1. By Lemma 3.2
and the restriction on β; H1 = γ H2 where γ ∈ {trust, check, λx.}. By the Trust/Check
Identity lemma (Lemma 3.3), G1 → γ H2 implies that α G1 → γ H2 = H1. So we can use
H = H1.

Case B. Let α, β, γ ∈ {trust, check, λx} as appropriate. The last rules used in the derivation
of E → F and E → G are:

E1 → β F1

E = α E1 → β F1 = F
(β Contraction)

E1 → γ G1

E = α E1 → γ G1 = G
(γ Contraction)

By the induction hypothesis there is an H1 such that β F1 → H1 and γ G1 → H1. We may
now use H1 as H.
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Case C. Let α ∈ {trust, check, λx.}. The two last rules used in the derivation of E → F

and E → G are:
E1 → α F1

E = trust E1 → α F1 = F
(α Contraction)

E1 → distrust G1

E = trust E1 → trust G1 = G
(Distrust Contraction)

By the induction hypothesis we know there exists H1 such that α F1 → H1. Here Lemma 3.2
says that H1 = β H2 where β ∈ {check, trust, λx.}. Also by the induction hypothesis we have
distrust G1 → H1. And here Lemma 3.2 says that H1 = distrust H2! This is a contradiction
so it cannot be the case that both E1 → α F1 and E1 → distrust G1.

Case D. The two last rules used in the derivation of E → F and E → G are:

E1 → distrust F1

E = trust E1 → trust F1 = F
(Distrust Contraction)

E1 → G1

E = trust E1 → trust G1 = G
(Sub)

By the induction hypothesis there is an H1 such that distrust F1 → H1 and G1 → H1. By
Lemma 3.2 H1 = distrust H2 so

G1 → distrust H2

trust G1 → trust H2
(Distrust Contraction)

By Symmetry (Lemma 3.4) distrust F1 → distrust H2 implies trust F1 → trust H2. So we can
use trust H2 as H.

Case E. The two last rules used in the derivation of E → F and E → G are:

E1 → distrust F1

E = distrust E1 → distrust F1 = F
(Distrust Contraction)

E1 → G1

E = distrust E1 → distrust G1 = G
(Sub)

By the induction hypothesis there is an H1 such that distrust F1 → H1 and G1 → H1.
By Lemma 3.2 H1 = distrust H2. By (Distrust Contraction) G1 → distrust H2 implies
distrust G1 → distrust H2 = H1. So we use H = H1 in this case.

Case F. The two last rules used in the derivation of E → F and E → G are:

E1 → trust F1

E = distrust F1 → distrust F1 = F
(Trust Contraction)

E1 → G1

E = distrust E1 → distrust G1 = G
(Sub)
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D = (((D → D)⊕ base)⊗ {tr, dis}⊥)⊕ {error}⊥.
Env = Var → D.

[[·]] ∈ E → Env → D

E,F ∈ E

x ∈ Var

ρ ∈ Env.

Figure 3.4: Domain equations.

By the induction hypothesis there is an H1 such that trust F1 → H1 and G1 → H1. By
Lemma 3.2 H1 = α H2 where α ∈ {trust, check, λx.}.

If α = trust then we have G1 → trust H2 and trust F1 → trust H2 and by Symmetry
distrust F1 → distrust H2. By (Trust Contraction) we also get distrust G1 → distrust H2, so
here we may use H = distrust H2.

If α = check or α = λx. then by (Sub) we get distrust G1 → distrust (α H2). Since
trust F1 → α H2 one sees by inspection of the rules that for each α there is just one possible
last rule for this reduction so we must have F1 → α H2. Now by (Sub) we get distrust F1 →
distrust (α H2). So here we may use H = distrust (α H2).

Case G. The two last rules used in the derivation of E → F and E → G are:

E1 → distrust F1

E = distrust E1 → distrust F1 = F
(Distrust Contraction)

E1 → trust G1

E = distrust E1 → distrust G1 = G
(Trust Contraction)

By the induction hypothesis there is an H1 such that distrust F1 → H1 and trust G1 → H1,
but by Lemma 3.2 this is a contradiction so this case cannot arise.

This concludes the proof of the Diamond lemma. 2

3.2.4 Denotational Semantics

In this section we give a denotational semantics for the calculus and prove it sound with respect
to the calculus. The denotational semantics has a purely expositional purpose. Some readers
may find the direct style denotational semantics easier to comprehend than the reduction
rules. However, as we saw in the section on the nature of check, the reduction rules are
easy to alter to get a different, but justifiable, semantics of check, whereas the denotational
semantics for the alternative set of rules would be substantially different, as we would have
to abandon the direct style and instead use a continuation based semantics.

In Figure 3.4 we define our semantic domains, using coalesced sums and smash products.
A value is either error (standing for a semantic error) or a pair consisting of the “real” value
(a function or a value of base-type from the base domain) and a trust tag, either tr or dis.
The domain {tr, dis}⊥ is the usual flat three-point domain where ⊥ is the bottom element
according to the v ordering. For the definition of application we define another ordering
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[[x]]ρ = ρ(x)

[[λx.E]]ρ = 〈(λd : D. case [[E]]ρ[x 7→ d] of
| error → error
| 〈v, t〉 → 〈v, t〉), tr〉

[[EF ]]ρ = case [[E]]ρ of
| error → error
| 〈v, t〉 → case v([[F ]]ρ) of

| error → error
| 〈v′, t′〉 → 〈v′, t t t′〉

[[trust E]]ρ = case [[E]]ρ of
| error → error
| 〈v, t〉 → 〈v, tr〉

[[distrust E]]ρ = case [[E]]ρ of
| error → error
| 〈v, t〉 → 〈v, dis〉

[[check E]]ρ = case [[E]]ρ of
| error → error
| 〈v, tr〉 → 〈v, tr〉
| 〈v, dis〉 → error.

Figure 3.5: Semantic equations.
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u, v,w ::= dis | tr
τ, σ ::= tu

s, t ::= base | τ → σ.

Figure 3.6: Syntax of trust-types

between tr and dis, namely: tr ≤ dis. We denote by t the least upper bound according to the
last ordering.

The semantic equations are given in Figure 3.5. We employ a pattern matching case
construct in the semantic description language.

Lemma 3.8 (Environment) For expressions E and F and environment ρ we have:

[[E[F/x]]]ρ = [[E]]ρ[x 7→ [[F ]]ρ].

Proof. By structural induction on E. 2

The connection between the operational calculus and the denotational semantics is the
following soundness theorem.

Theorem 3.9 (Semantic Soundness) The denotation of an expression is invariant under
reduction: If E → F then [[E]] = [[F ]].

Proof. By induction on the derivation of E → F, applying the equational theory of the
semantic description language and using Lemma 3.8 in the application case. 2

3.3 The Type System

Our annotated type system is based on Curry’s monomorphic type system for the λ-calculus,
also known as simply typed λ-calculus. Figure 3.6 shows the mutually recursive definition of
the syntax of our types. Recall from Section 3.1.1 that tr means that the value is trusted and
dis means that it is untrusted.

We write u, v or w (and primed and subscripted versions thereof) for trust annotations,
s and t for bare types without their outermost annotation, and σ or τ for annotated types.
The generic term “type” will be used both for bare types without their outermost annotation
and for annotated types.

Just as was the case in the denotational semantics, trust annotations are subject to a
partial ordering ≤, defined as the least partial ordering including the relation tr ≤ dis. This
ordering is extended to bare types and annotated types such that two bare base-types are
ordered only if they identical; for annotated types we have:

tu ≤ sv if and only if u ≤ v and t ≤ s,

and for bare arrow types we define:

τ → σ ≤ τ ′ → σ′ if and only if τ ′ ≤ τ and σ ≤ σ′,
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A ` x : τ if x ∈ dom(A) and A(x) = τ (Var)

A ` E : τ τ ≤ τ ′
A ` E : τ ′

(Sub)

A[x 7→ τ ] ` E1 : σ

A ` λx.E1 : (τ → σ)tr (Lambda)

A ` E1 : (τ → tu)w A ` E2 : τ

A ` E1E2 : tutw
(App)

A ` E1 : tu

A ` trust E1 : ttr
(Trust)

A ` E1 : tu

A ` distrust E1 : tdis (Distrust)

A ` E1 : ttr

A ` check E1 : ttr
(Check)

Figure 3.7: The type system.

so argument types are ordered contravariantly. This is inspired by the work on structural
subtyping by Mitchell [Mit84], Fuh and Mishra [FM90], Cardelli [Car84] and others.

As in the denotational semantics we denote by t the least upper bound operation on
the trust lattice according to the ≤ ordering. In Section 3.5 we discuss several extensions of
the type system to cope with recursion, modules, polymorphism and more general lattices of
annotations.

3.3.1 Rules

A type assumption A is a partial function which takes a program identifier to an annotated
type τ . Figure 3.7 shows the inference rules for the type system. A type judgment A ` E : τ
means that from the assumptions A we can deduce that the expression E has type τ .

The rule for variables and the subtyping rule should give no surprises. Since lambda
abstractions in the program are written by the programmer, we treat them as trusted in the
type system. This only means that the function is trusted, and does not indicate how its
argument and result are treated. In Section 3.5 we discuss how this can be extended to a
larger scale setting with multiple modules written by multiple programmers.

In the application rule, the annotated type of the actual argument is required to match
the annotated type of the formal argument. This includes the trustworthiness. The trust of
the result of the application is the least upper bound of the result-trust from the arrow type
and the trust of the function itself. The intuition is that if we cannot trust the function, we
cannot trust the result of applying it.

The three rules for trust, distrust and check show that they behave as the identity on
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distrust ◦ check : ttr → tdis

trust: tdis → ttr

check: ttr → ttr distrust: tdis → tdis

Figure 3.8: The relationship between arrow types

the underlying type. Trust makes any value trusted and distrust makes any value untrusted.
Check E has a type only if E is trusted. This means that we cannot type improper normal
forms and together with Subject Reduction (Theorem 3.11) this ensures the soundness of the
type system.

Figure 3.8 shows the ordering of arrow types and how the constructs trust, distrust and
check would fit into it.

3.3.2 Subject Reduction

An important part in proving the Subject Reduction theorem is that replacing an appropri-
ately typed term for a variable in an expression does not change the type of the expression.

Lemma 3.10 (Substitution) If A[x 7→ σ] ` E : τ and A ` F : σ then A ` E[F/x] : τ .

Proof. By induction on the derivation of A[x 7→ σ] ` E : τ . 2

The main result of this section is the Subject Reduction theorem. The theorem states
that types are invariant under reduction.

Theorem 3.11 (Subject Reduction) If A ` E : τ and E → F then A ` F : τ .

Proof. By induction on the structure of the derivation of E → F and by cases on the structure
of E. The (Reflex) case is trivial. In the (Sub) cases the result follows directly from
the induction hypothesis. The type rule (Sub) is applicable in all cases, so when reasoning
“backwards” (as in “when α E has type τ then E must have type σ”) we must take care to
handle the case where the (Sub) type rule was used in between.

For the contraction rules we show just two illustrative cases, the remaining cases are
extremely similar. Suppose the last rule used in the derivation of E → F was

E1 → trust F1

E = trust E1 → trust F1 = F
(Trust Contraction)

By assumption we have A ` trust E1 : tu so by the rules we must have A ` E1 : tu1
1 where

t1 ≤ t. By the induction hypothesis we now get A ` trust F1 : tu1
1 and again we must have

A ` F1 : tu2
2 where t2 ≤ t1. Now by the (Trust) rule of the type system we get A ` trust F1 : ttr2

and finally by (Sub) we get A ` trust F1 : tu as required.
Another case: Suppose the last rule used in the derivation of E → F was

E1 → distrust F1

E = distrust E1 → distrust F1 = F
(Distrust Contraction)
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A `C x : t if x ∈ dom(A) and A(x) = t

A[x 7→ s] `C E1 : t

A `C λx.E1 : s −→ t

A `C E1 : s −→ t A `C E2 : s

A `C E1E2 : t

Figure 3.9: The Curry type system.

By assumption we know A ` distrust E1 : tu and therefore u = dis, so by the rules we must
have A ` E1 : tu1

1 where t1 ≤ t. From the induction hypothesis we get A ` distrust F1 : tu1
1 . By

the (Distrust) rule we must have A ` F1 : tu2
2 where t2 ≤ t1 and u1 = dis. By the (Distrust)

rule we now get A ` distrust F1 : tdis
2 which via (Sub) yields the required result.

Regarding application: If E = E1E2 → F1F2 = F then the result follows by two ap-
plications of the induction hypothesis. If the last rule used in the derivation of E → F

was
E1 → F1 E2 → F2

E = (distrust(λx.E1))E2 → distrust F1[F2/x] = F
(Application)

then by assumption A ` (distrust(λx.E1))E2 : tu. By definition of the type rules this must
mean that A ` distrust(λx.E1) : (σ → sv)w and A ` E2 : σ where s ≤ t and v t w ≤ u.
Again, we must also have A ` λx.E1 : (σ1 → sv1

1 )w1 and it must be case that w = dis and
thus u = dis. Also s1 ≤ s, v1 ≤ v, and σ ≤ σ1. Once again by the type rules we must
have A[x 7→ σ2] ` E1 : sv2

2 where σ1 ≤ σ2, s2 ≤ s1 and v2 ≤ v1. By the (Sub) rule we get
A ` E2 : σ2.

We can now apply the induction hypothesis to get A[x 7→ σ2] ` F1 : sv2
2 and A ` F2 : σ2.

By the Substitution lemma (Lemma 3.10) we then get A ` F1[F2/x] : sv2
2 . By the (Distrust)

rule we get A ` distrust F1[F2/x] : sdis
2 and by (Sub) we get the desired result as s2 ≤ s1 ≤

s ≤ t.
The case without distrust is similar. 2

3.3.3 Comparison with the Curry System

Our type system may be viewed as a restriction of the classic Curry type system for λ-calculus.
This notion is formalized in the following. Define the erasure | · | of a term as:

|x| = x |λx.E| = λx.|E|
|E1E2| = |E1||E2| |trust E| = |E|
|distrust E| = |E| |check E| = |E|

and likewise the erasure of an annotated type as:

|baseu| = base |(σ → τ)w| = |σ| −→ |τ |.

The notion of erasure is extended pointwise to environments: |A|(x) = |t| if and only if
|A(x)| = t.

The Curry type rules for erased expressions are defined in Figure 3.9. Here type assump-
tions A map program identifiers to Curry types.

Lemma 3.12 (Erasure) If σ and τ are annotated types and σ ≤ τ then |σ| = |τ |.
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Proof. For base-types su ≤ tv implies s = t. For arrow types note that by definition of ≤,
σ and τ must have the same arrow structure. So the result follows by an induction on the
common structure of σ and τ . 2

Theorem 3.13 If A ` E : τ then |A| `C |E| : |τ |.

Proof. By induction on the derivation of A ` E : τ .

E = x: By assumption we have x ∈ dom(A) and τ = A(x). Thus x ∈ dom(|A|) and
|A|(x) = |τ |.

E = α E1: Here α ∈ {trust, distrust, check}. By the definition of erasure, |E| = |E1| and the
result follows from the induction hypothesis.

E = λx.E1: By assumption we must have A[x 7→ σ] ` E1 : σ′ where (σ → σ′)tr ≤ τ . By
the induction hypothesis |A|[x 7→ |σ|] `C |E1| : |σ′|. By the lambda rule in the Curry
system we get |A| `C λx.|E1| : |σ| −→ |σ′|. By definition of erasure and the Erasure
lemma we get the desired result.

E = E1E2: By assumption we must have A ` E1 : (σ → tu)w and A ` E2 : σ where tutw ≤ τ .
From the induction hypothesis we get |A| `C |E1| : |σ| −→ |tu| and |A| `C E2 : |σ|.
By the application rule in the Curry system we get |A| `C |E1E2| : |tu|. Finally by the
Erasure lemma we get the desired result.

2

The preceding theorem also implies that the erasure of a trust-typable program is trust-
typeable, but the reverse does not hold in general.

If there are no sub-terms of the form check E in a program and the erasure of the program
is Curry typable then the program is trust-typable and all the trusts may be chosen as dis.
This idea is formalized below. Define the decoration of a Curry type as

∆(base) = base
∆(s −→ t) = ∆sdis → ∆tdis

Extend decorations to Curry type assumptions: (∆A)(x) = 〈∆t, dis〉 whenever A(x) = t.
Clearly |∆ t| = t.

Theorem 3.14 If A `C |E| : t and E contains no sub-term of the form check E′ then
∆A ` E : ∆tdis.

Proof. By induction on the structure of E.

E = x: By assumption we have x ∈ dom(A) and A(x) = t, so x ∈ dom(∆A) and (∆A)(x) =
(∆tdis. By the (Var) rule we get ∆A ` x : ∆tdis.

E = λx.E1: By the assumptions and the Curry rules we must have
A[x 7→ s1] `C |E1| : t1 where s1 −→ t1 = t. By induction
∆(A[x 7→ s1]) ` E1 : ∆tdis

1 . By the (Lambda) and (Sub) rules of the trust system, we
get ∆A ` λx.E1 : (∆sdis

1 → ∆tdis
1 )dis as required.
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E → E (Reflex)
E → E′

λx.E → λx.E′
(Sub)

E → E′ F → F ′

EF → E′F ′

(λx.E)F → E′[F ′/x]

(Application)

Figure 3.10: Reductions in the ordinary λ-calculus.

E = E1E2: By the assumptions and the Curry rules we must have
A `C |E1| : s −→ t and A `C |E2| : s. By the induction hypothesis we get ∆A ` E1 :
(∆(s −→ t))dis and ∆A ` E2 : (∆s)dis. By the (App) rule we then get ∆A ` E1E2 :
(∆t)dis as required.

E = trust E1: Since |trust E1| = |E1| and A `C |E1| : t by the induction hypothesis one
gets ∆A ` E1 : (∆t)dis. Now we may apply the (Trust) and (Sub) rules to get ∆A `
trust E1 : (∆t)dis as wanted. The case for distrust is similar.

This exhausts the possible cases since E was assumed check-free. 2

3.3.4 Simulation

The aim of this section is to show that for well-typed terms one may erase all the trust,
distrust and check constructs and reduce expressions according to the ordinary λ-calculus as
displayed in Figure 3.10 (this is taken from Definition 3.2.3 in [Bar81].) We use the same
symbol for this reduction relation as for our own and it will be clear from the context which
reduction relation is meant. Note that the relation defined in Figure 3.10 is a sub-relation of
the reduction relation defined in Figure 3.2.

More formally the two following simulation theorems show that for well-typed terms,
reduction and erasure commute: | · |◦ →∗ = →∗ ◦| · |.

In terms of implementation this means that after type-checking, an interpreter may erase
all the constructs having to do with trust, and run the program without them, thus no
run-time performance penalty is paid.

Lemma 3.15 (Step) If E →∗ α F (α may be empty) and there is a reduction rule

E1 → α F1

β E1 → γ F1

then β E →∗ γ F .

Proof. By induction on the length of the sequence E →∗ α F . If E = α F then by (Reflex)
we have E → α F and we may apply the rule to get β E → γ F and since →⊆→∗ this is the
required result.

Otherwise the last step in the reduction sequence E →∗ α F must look like E′ → α F ,
where E →∗ E′ and E′ 6= α F . Now we apply the rule mentioned in the statement of the
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lemma:
E′ → α F

β E′ → γ F

By the induction hypothesis one gets (via the (Sub) rule and using β for γ): E →∗ E′ implies
β E →∗ β E′. By appending the two reductions we get β E →∗ γ F as we wanted. In effect
we get this derived rule:

E1 →∗ α F1

β E1 →∗ γ F1

Similarly, from

E → G F → H

EF → GH
we get

E →∗ G F →∗ H
EF →∗ GH

2

Some notation: We write E0 = CTD∗F to mean that E0 is produced by the following
grammar, where F is an ordinary term.

E0 ::= check E0 | trust E0 | distrust E0 | F

We also write distrust? E to mean either E or distrust E.

Lemma 3.16 (CTD) If E = CTD∗(λx.E1), A ` E : τ and E1 →∗ F1 then

E →∗ distrust? (λx.F1).

Proof. By induction on the length of the CTD sequence. Suppose that

CTD∗λx.E1 = (α (β . . . (λx.E1) . . .)).

In the base case (the empty sequence) E1 →∗ F1 implies (via Sub and Step) that λx.E1 →∗
λx.F1.

Otherwise, there are two cases depending on whether (β . . .) reduces to a lambda or a
distrusted lambda.

Suppose that (β . . .)→∗ λx.F1 by the induction hypothesis then via the Step lemma and
(Lambda Contraction):

α = trust: (trust (β . . .))→∗ λx.F1.

α = distrust: (distrust (β . . .))→∗ distrust λx.F1.

α = check: (check (β . . .))→∗ λx.F1.

Finally, suppose that (β . . .) →∗ distrust λx.F1 by the induction hypothesis then via the
Step lemma and (Distrust Contraction):

α = trust: (trust (β . . .))→∗ trust λx.F1 and via a (Lambda Contraction) step: trust λx.F1 →
λx.F1.

α = distrust: (distrust (β . . .))→∗ distrust λx.F1.



3.3. THE TYPE SYSTEM 49

α = check: As E is well-typed this case cannot occur since check(distrust E1) is untypable.

2

Theorem 3.17 (Simulation 1) If A ` E : τ and |E| → F then there is a term G such that
E →∗ G and |G| = F . Graphically:

E G

|E| F

| · |

→

→∗

| · |

Proof. By structural induction on E.

E = x: Here |E| = E and the only applicable rule is (Reflex), thus we get E = F = G.

E = α E1, where α ∈ {trust, distrust, check}. Here we have |E| = |E1|, A ` E1 : τ ′ and
|E| = |E1| → F . So by the induction hypothesis there is a G1 such that E1 →∗ G1 and
|G1| = F . By the Step lemma we can deduce:

E1 →∗ G1

E = α E1 →∗ α G1 = G
(Sub)

and the erasure of G is F as required.

E = λx.E1: By the assumptions we must have A[x 7→ σ] ` E1 : σ′. Also, |E| = λx.|E1| and
F = λx.F1. By the nature of the reduction rules, we must have |E1| → F1. By the
induction hypothesis we know there is a G1 such that E1 →∗ G1 and |G1| = F1. By the
(Sub) rule and the Step lemma we get

E1 →∗ G1

E = λx.E1 →∗ λx.G1 = G
(Sub)

and |G| = λx.|G1| = λx.F1 = F as required.

E = E1E2: By the assumptions E is well-typed thus E1 and E2 are well-typed. By definition
of the reduction rules we must have |E1| → F1 and |E2| → F2. By the induction
hypothesis we get G1 and G2 such that E1 →∗ G1, E2 →∗ G2, |G1| = F1 and |G2| = F2.

There are two cases depending on the form of |E|:

|E| = not a β-redex: Here F = F1F2 where |E1| → F1 and |E2| → F2 so by the reasoning
above |G1G2| = F and we are done.

|E| = (λx.H1)H2: If F = (λx.F ′1)F2 where H1 → F ′1 and H2 → F2 then also |E1| =
λx.H1 → λx.F ′1 = F1 by (Sub). By the above statements and the Step lemma we
get E →∗ G1G2 and |G1G2| = F .

Otherwise a β-reduction happens. Here H1 → F ′1, H2 → F2 and F = F ′1[F2/x].

Clearly, E1 must have form CTD∗(λx.Q1) where |Q1| = H1. By the induction
hypothesis there is a Q′1 such that Q1 →∗ Q′1 and |Q′1| = F ′1.
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By the CTD lemma E1 →∗ distrust? (λx.Q′1) and by the Subject Reduction theorem
(Theorem 3.11) we get that distrust? (λx.Q′1) is well-typed.

We may now reason as follows:

E1 →∗ distrust? (λx.Q′1) E2 →∗ G2

E1E2 →∗ (distrust? (λx.Q′1))G2

(Sub + Step)

and
Q′1 → Q′1 G2 → G2

(distrust? (λx.Q′1))G2 → distrust? Q′1[G2/x]
(Application)

since |Q′1| = F ′1 and |G2| = F2:

|distrust? Q′1[G2/x]| = |Q′1[G2/x]| = F ′1[F2/x] = F

as required.

This concludes the proof of the Simulation theorem. 2

Theorem 3.18 (Simulation 2) If E → F then |E| → |F |.

Proof. By induction on the derivation of E → F .

• If E → F by (Reflex) then |E| = |F | and the result holds trivially.

• If E → F by the (Sub) rule. The subterm(s) Ei of E then must reduce Ei → Fi and by
the induction hypothesis |Ei| → |Fi|. We may now apply the (Sub) rule to these erased
terms and get |E| → |F |.

• Let α, β, γ ∈ {trust, distrust, check}. If the last rule in the derivation of E → F was

E1 → α F1

E = β E1 → γ F1 = F
(α-Contraction)

then |E| = |E1| and |F | = |F1|. By the induction hypothesis we know |E1| → |F1| which
is the desired result.

• If the last rule used in the derivation of E → F was

E1 → λx.F1

E = α E1 → λx.F1 = F
(Lambda Contraction)

where α ∈ {trust, check} then by the induction hypothesis we get |E1| → λx.|F1| and
since |E| = |E1| and |F | = λx.|F1| this is the desired result.

• If the last rule used in the derivation of E → F was

E1 → F1 E2 → F2

E = (distrust λx.E1)E2 → distrust F1[F2/x] = F
(Application)

We have |E| = (λx.|E1|)|E2| and |F | = |F1|[|F2|/x]. By the induction hypothesis
|E1| → |F1| and |E2| → |F2|. We may now apply the (Application) rule to get the
desired result. The case for the trusted lambda is similar.

2
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3.3.5 Strong Normalization

In Curry typed λ-calculus all typable terms are strongly normalizing, i.e. they have no infinite
reduction paths. This result carries over to our language, essentially since our type system
admits fewer terms than the Curry system. On the other hand we have terms not occurring
in the standard λ-calculus and a lot more reduction rules so this requires a proof.

Theorem 3.19 (Strong Normalization) If A ` E : τ then there are no infinite reduction
paths starting from E.

Proof. By Theorem 3.13, A ` E : τ implies |A| `C |E| : |τ |. By the Strong Normalization
theorem for Curry typed λ-calculus (see for example [GTL89]) there are no infinite Curry
reduction paths starting from |E|, and there is a unique Curry normal form F such that
|E| →∗ F . We can now apply the first Simulation theorem (Theorem 3.17) to obtain a term
G such that E →∗ G and |G| = F .

As |G| = F is a normal form it has no β-redexes, but in G some other reductions may
be applicable. Because of the Church-Rosser theorem, only using contraction and Sub rules
will not block any possible other reduction that might be applicable, so let G →∗ G′ be
such a reduction sequence. In all the contraction rules the number of {check, trust, distrust}
constructs decreases by one. Writing →! for the significant part of the → relation we have
that in the sequence G →! G1 →! · · · →! G′ there are a finite number of steps (less than
the size of G). Thus we may take G′ such that in G′ no more of these non-β reductions are
applicable.

After reaching G′ can it be the case that the contractions revealed a β-redex in G′?
Suppose for a contradiction that this is the case. This means that G′ has a subterm of the
form (distrust? λx.G1)G2. So we have G′ → G′′ by reducing this redex. By Theorem 3.18
this means that F = |G′| →! |G′′|. But this contradicts the fact the F could be reduced no
further! So it cannot be the case that the final contractions reveal a β-redex, and thus G′ is
a normal form. 2

3.4 Type Inference

The type inference problem is:

Given an untyped program E possibly with trust, distrust, and check expressions
in it, is E typable? If so, annotate it.

From Theorem 3.13 we have that trust typing implies Curry typing. Our type inference
algorithm works by first checking if the program has a Curry type and then checking a
condition that only involves trust values.

3.4.1 Constraints

The type inference problem can be rephrased in terms of solving a system of constraints.

Definition 3.20 Given two disjoint denumerable sets of variables Vy and Vr, a T-system is
a pair (C,D) where:
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• C is a finite set of inequalities X ≤ X ′ between constraint expressions, where X and
X ′ are of the forms V or VW1

1 → VW2
2 , and where V1, V2 ∈ Vy and W1,W2 ∈ Vr.

• D is a finite set of constraint of the forms W ≤ W ′, W = tr, or W = dis, where
W,W ′ ∈ Vr.

A solution for a T-system is a pair of maps (δ, ϕ), where δ maps variables in Vy to types
without their outermost annotation, and where ϕ maps variables in Vr to trusts, such that
all constraints are satisfied. If ϕ satisfies all constraints in D, we say that D has solution ϕ.

2

Given a λ-term E, assume that E has been α-converted so that all bound variables are
distinct. Let Vy be the set consisting of:

• A variable [[F ]]y for each occurrence of a subterm F of E; and

• A variable xy for each λ-variable x occurring in E.

The notation [[F ]]y is ambiguous because there may be more than one occurrence of F in E.
However, it will always be clear from context which occurrence is meant. Intuitively, [[F ]]y
denotes the type of F after the use of subsumption. Moreover, xy denotes the type assigned
to the bound variable x.

Let Vr be the set consisting of:

• A variable [[F ]]r for each occurrence of a subterm F of E; and

• A variable xr for each λ-variable x occurring in E.

• A variable 〈GH〉r for each occurrence of an application GH in E.

As before, the notation [[F ]]r is ambiguous. Intuitively, [[F ]]r denotes the trust value of F after
the use of subsumption. Moreover, xr denotes the trust value assigned to the bound variable
x. Finally, 〈GH〉r denotes the trust value of GH before the use of subsumption.

From the λ-term E, we generate the T-system (C,D) where:

For each

occurrence in E
We have in C We have in D

x xy ≤ [[x]]y xr ≤ [[x]]r

λx.F xxry → [[F ]][[F ]]r
y ≤ [[λx.F ]]y

GH [[G]]y ≤ [[H]][[H]]r
y → [[GH ]]〈GH〉ry

[[G]]r ≤ [[GH ]]r
〈GH〉r ≤ [[GH ]]r

trust F [[F ]]y ≤ [[trust F ]]y

distrust F [[F ]]y ≤ [[distrust F ]]y [[distrust F ]]r = dis

check F [[F ]]y ≤ [[check F ]]y [[F ]]r = tr

Denote by T (E) the T-system of constraints generated from E in this fashion. The
solutions of T (E) correspond to the possible type annotations of E in a sense made precise
by Theorem 3.23.
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Let A be a trust-type environment. If δ is a function assigning types to variables in Vy
and ϕ a function assigning trusts to variables in Vr, we say that (δ, ϕ) extend A if for every
x in the domain of A, we have A(x) = δ(xy)

ϕ(xr).

As a shorthand in the following, we write (δ, ϕ) |= (C,D) to mean that (δ, ϕ) is a solution
to the constraints (C,D). Define also, for two functions δ and δ′ agreeing on dom(δ)∩dom(δ′),
δ+ δ′ as the unique function on dom(δ)∪dom(δ′) that agrees with the two functions on their
respective domains.

Lemma 3.21 (Soundness) If (δ, ϕ) |= T (E), and δ, ϕ extend A then A ` E : δ([[E]]y)
ϕ([[E]]r).

Proof. By induction on the structure of E. 2

Lemma 3.22 (Completeness) If A ` E : tu then there is a solution (δ, ϕ) |= T (E) with δ
and ϕ extending A, and δ([[E]]y) = t and ϕ([[E]]r) = u.

Proof. By induction on the derivation of A ` E : tu.

E = x: As A ` x : tu we must have x ∈ dom(A), A(x) = sv and s ≤ t, v ≤ u. In this case
T (E) = {xy ≤ [[x]]y, xr ≤ [[x]]r}. Put δ(xy) = s and ϕ(xr) = v so that (δ, ϕ) extends A.
Finally assign δ([[x]]y) = t and ϕ([[x]]r) = u to satisfy the constraints.

E = λx.F : By the type rules we must have A[x 7→ σ] ` F : sv where σ → sv ≤ t. By
the induction hypothesis we get (δ, ϕ) |= T (F ), δ([[F ]]y) = s, ϕ([[F ]]r) = v, and (δ, ϕ)
extends A[x 7→ σ]. Now assign δ′ = δ[[[λx.F ]]y 7→ t] and ϕ′ = ϕ[[[λx.F ]]r 7→ u]. Now
check that σ → sv ≤ t implies

δ′(xy)
ϕ′(xr) → δ′([[F ]]y)

ϕ′([[F ]]r) ≤ δ′([[λx.F ]]y)

as required. So we get (δ′, ϕ′) |= T (E).

E = GH: By the type rules we must have A ` G : (σ → sv)w, A ` H : σ where s ≤ t and
v t w ≤ u. By the induction hypothesis we get (δ, ϕ) |= T (G) and (δ′, ϕ′) |= T (H) and
both solutions extending A which means that they agree on their common domain (the
xy’s and the xr’s in dom(A)). The definition of T (E) says

T (E) = T (G) ∪ T (H) ∪ ({[[G]]y ≤ [[H]][[H]]r
y → [[GH ]]〈GH〉ry },

{[[G]]r ≤ [[GH ]]r, 〈GH〉r ≤ [[GH]]r}) .

Define δ′′ = δ + δ′[[[GH ]]y 7→ t] and ϕ′′ = ϕ + ϕ′[[[GH]]r 7→ u, 〈GH〉r 7→ v]. Now,
(δ′′, ϕ′′) |= T (E) because

δ([[G]]y) ≤ σ → tv = δ′([[H]]y)
ϕ′([[H]]r) → δ′′([[GH]]y)

ϕ′′(〈GH〉r)

ϕ([[G]]r) = w ≤ u = ϕ′′([[GH ]]r)

ϕ′′(〈GH〉r) = v ≤ u = ϕ′′([[GH ]]r) .

and clearly (δ′′, ϕ′′) extend A.
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E = check F : From the type rules we must have A ` F : str where s ≤ t. By the induction
hypothesis we get (δ, ϕ) |= T (F ), δ([[F ]]y) = s, and ϕ([[F ]]r) = tr. Now, T (E) =
T (F ) ∪ ({[[F ]]y ≤ [[check F ]]y}, {[[F ]]r = tr}). Put δ′ = δ[[[check F ]]y 7→ t] and ϕ′ =
ϕ[[[check F ]]r 7→ u].

Clearly, δ′, ϕ′ extend A, δ′([[F ]]y) ≤ δ′([[check F ]]y), and ϕ′([[F ]]r) = tr as required. The
cases for trust and distrust are very similar.

2

Theorem 3.23 The judgment A ` E : tu is derivable if and only if there exists a solution
(δ, ϕ) of T (E) with (δ, ϕ) extending A such that δ([[E]]y) = t and ϕ([[E]]r) = u. In particular,
if E is closed, then E is typable with type t and trust u if and only if there exists a solution
(δ, ϕ) of T (E) such that δ([[E]]y) = t and ϕ([[E]]r) = u.

Proof. Combine Lemma 3.21 and 3.22. 2

3.4.2 Algorithm

Definition 3.24 Given a T-system (C,D), define the deductive closure (C̄, D̄) to be the
smallest T-system such that:

• C ⊆ C̄.

• D ⊆ D̄.

• If V W1
1 → VW2

2 ≤ VW3
3 → V W4

4 is in C̄, then V3 ≤ V1 and V2 ≤ V4 are in C̄, and
W3 ≤W1 and W2 ≤W4 are in D̄.

• If X1 ≤ X2 and X2 ≤ X3 are in C̄, then X1 ≤ X3 is in C̄.

2

Lemma 3.25 (C,D) and (C̄, D̄) have the same solutions.

Proof. Since C ⊆ C̄ and D ⊆ D̄, any solution of (C̄, D̄) is also a solution of (C,D). The
converse can be proved by induction on the construction of (C̄, D̄). 2

If we remove all mentioning of trust and subtyping from the type rules in Figure 3.7 and
from the constraints defined earlier in this section, we obtain two equivalent formulations
of Curry typability [PS95]. Clearly, E is Curry typable if and only if |E| is Curry typable.
The constraint system (written out below) that expresses Curry typability will be denoted
Curry(E).

For each

occurrence in E
We have in Curry(E)

x xy = [[x]]y

λx.F [[λx.F ]]y = xy → [[F ]]y

GH [[G]]y = [[H]]y → [[GH]]y

trust F [[trust F ]]y = [[F ]]y

distrust F [[distrust F ]]y = [[F ]]y

check F [[check F ]]y = [[F ]]y
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To aid the definition of our type inference algorithm we define the following operations: If
s, t are bare trust types such that |s| = |t|, then define the operators t|s| and u|t| as follows.

s t|s| t =


base if s = t = base

(s1 u|s1| t1)u1uv1 → (s2 t|s2| t2)u2tv2 if s = su1
1 → su2

2

and t = tv1
1 → tv2

2

s u|s| t =


base if s = t = base

(s1 t|s1| t1)u1tv1 → (s2 u|s2| t2)u2uv2 if s = su1
1 → su2

2

and t = tv1
1 → tv2

2 .

If t1, . . . , tn are bare trust types, and s is a Curry type such that |ti| = s for all i ∈ 1..n, then
define

⊔s
i ti = t1 ts . . . ts tn. If t is a Curry type, define

small(base) = base big(base) = base
small(s→ t) = big(s)dis → small(t)tr big(s→ t) = small(s)tr → big(t)dis

If s is a bare trust type and t is a Curry type such that |s| = t, then s tt small(t) = s and
sut big(t) = s. In other words, small(t) is the least bare type with erasure t, and big(t) is the
greatest such.

For each constraint expression X define

L(C,X) = {V W1
1 → V W2

2 | VW1
1 → VW2

2 ≤ X is in C̄} .

Intuitively, L(C,X) is the set of syntactic lower bounds for X.

We also define the erasure of a constraint expression used in C, mapping trust-type con-
straint expressions to Curry constraint expressions:

|V | = V

|V W1
1 → VW2

2 | = V1 → V2

where V1, V2 ∈ Vy and W1,W2 ∈ Vr.

Lemma 3.26 If T (E) = (C,D), and ψ is a solution to Curry(E), and X1 ≤ X2 is a constraint
in C̄, then ψ(|X1|) = ψ(|X2|).

Proof. By induction on the construction of C̄. 2

Theorem 3.27 Suppose T (E) = (C,D). Then T (E) is solvable if and only if E is Curry
typable and D̄ is solvable.

Proof. Suppose first that T (E) is solvable. By Theorem 3.23, E is trust typable. It follows
from Theorem 3.13 and the remark above that E is Curry typable, and from Lemma 3.25
that D̄ is solvable.

For the reverse implication, suppose that Curry(E) has solution ψ and that D̄ has solution
ϕ. We define δ inductively in the Curry types of the constraint variables.



56 CHAPTER 3. TRUST IN THE λ-CALCULUS

δ(V ) = if ψ(|V |) = base then base

else let {V W1i
1i → VW2i

2i } = L(C,V ) ∪ {small(ψ(|V |))}
in
⊔
i
ψ(|V |)(δ(V1i)

ϕ(W1i) → δ(V2i)
ϕ(W2i))

To see that δ is well-defined, we need that the Curry types of the variables V1i and V2i

are of strictly less size than the Curry type of V . For (VW1i
1i → VW2i

2i ) ∈ L(C,V ), we get

by Lemma 3.26 that ψ(|V W1i
1i → VW2i

2i |) = ψ(|V |) = s → t for some s, t. This means that
ψ(|V1i|) = s and ψ(|V2i|) = t which are both of smaller size than s→ t, so δ is well-defined.

To see that (δ, ϕ) is a solution of T (E), consider an inequality X1 ≤ X2 in C. If ψ(|X1|) =
base, then by Lemma 3.26, ψ(|X2|) = base, δ(X1) = δ(X2) = base, thus δ(X1) ≤ δ(X2) as
required.

In case ψ(|X1|) = s → t, we have by Lemma 3.26 that ψ(|X2|) = s → t and since C̄ is
transitively closed we get L(C,X1) ⊆ L(C,X2) so δ(X1) ≤ δ(X2) as required. 2

Using the characterization of Theorem 3.27, we get a type inference algorithm:
Input: A λ-term E of size n.

1: Construct T (E) = (C,D) (in log space).
2: Close (C,D), yielding (C̄, D̄) (in O(n3) time, see for example [Pal95]).
3: Check if E is Curry typable (in O(n) time).
4: Check if D̄ is solvable (in O(n2) time).
5: If E is Curry typable and D̄ is solvable,

then output “typable”
else output “not typable”.

The entire algorithm requires O(n3) time. To construct an annotation of a typable pro-
gram, we can use the construction of the second half of the proof of Theorem 3.27.

3.5 Extensions

In this section we discuss several possible extensions of the type system.

Recursion. The type system can be extended to handle recursion by adding a rec rule.
In the (untyped) reduction system, the rec combinator can be coded with the classical Y
combinator: rec x.E ≡ Y(λx.E). The following reduction rule is a derived rule in the λ-
calculus and in our system, and correspondingly we would have a rec rule in the type system:

E →∗ F
YE →∗ F (YE)

A[x 7→ τ ] ` E1 : τ

A ` rec x.E1 : τ

Subject Reduction still holds, but Strong Normalization of course fails in this case. The
type inference algorithm can also be extended in a straightforward way to deal with the rec
construct.

Polymorphism. ML style let polymorphism can be achieved in the usual way by replacing
let bound variables with their definition. This is of course inefficient as each definition might
then be type-checked many times. The type system can be extended along the same ideas that
extend Curry types to Hindley-Milner types. An extension of our type inference algorithm
remains to be found.
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Finding a good type inference algorithm for a type-system with both structural subtyping
and polymorphism is a nontrivial task although the work by Aiken and Wimmers [AW93]
and by Eifrig, Smith and Trifonov [EST95] is promising.

A Trust-case Construction. One could imagine the usefulness of a trust-case construction
that would allow dynamic dispatch on the trustworthiness of a value. The reduction rules
added for such a construction could be:

E → trust E′

trust case E F G→ F (trust E′)

E → λx.E′

trust case E F G→ F (λx.E′)

E → distrust E′

trust case E F G→ G(distrust E′)

and the corresponding type-rule:

A ` E : tu A ` F : ttr → τ A ` G : tdis → τ

A ` trust case E F G : τ

Church-Rosser and the Subject Reduction theorem still holds with these extensions and
generating constraints for this construct is not hard either. However, this would only make
sense in the presence of a polymorphic trust type system. With monomorphic trust-types
all the trust-case choices would be statically determinable from the type system, so such a
construction would be of very limited use. And since we have not developed an inference
algorithm for a polymorphic trust type system, this has not been an issue.

Other Lattices. The values of trust-tags may be extended from the two point lattice used in
this paper to any finite lattice. Extending the lattice to a longer linear lattice accommodates
multiple levels of trust. Extensions to non-linear orderings may allow different properties
to be modeled at once: Take the four point lattice (P({path ok, signature ok}),⊆) with the
empty set denoting completely untrusted. This could be used in a web server that can both
verify digital signatures and do consistency checking on URL paths. In such a situation one
would extend check to a construct checking for reverse subset inclusion.

Modules. In a larger scale system with many program modules and many programmers,
it is useful to differentiate between functions located in different modules such that there
would be trusted and untrusted modules, where functions defined in untrusted modules would
not be trusted in any other module. This can be realized in our simple system by having
a preprocessor that wraps all lambdas in an untrusted module in the distrust construct.
Some external programming environment might also be used to ensure that only trustworthy
programmers get to write trusted modules.

One might also make another distinction among modules, akin to the difference between
safe and unsafe modules in Modula-3 [CDG+89], where only unsafe modules are allowed to
use arbitrary type casts and unlimited address arithmetic. In a trust analysis system, unsafe
modules would then correspond to modules where the trust construct is used, and just as in
Modula-3 one has to take extra care in the unsafe modules.
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3.6 Related Work

The original notion of trust analysis was presented in [Ørb95], Chapter 2 of this thesis, where
an abstract interpretation analysis and a constraint based analysis for an imperative, first
order language with pointers were given. This work extends trust analysis to the higher order
functional case and formalizes it in terms of an annotated type system.

In [Mit84] Mitchell developed the structural subtyping idea and our type system borrows
some of these ideas to handle automatic coercion from trusted data to untrusted data.

In an earlier version of the paper we used a different syntax for trust-types inspired
by the work on effect systems by for example Gifford and Jouvelot, writing for example

Bool
tr dis−→ Bool # tr for what is now written (Booltr → Booldis)tr. This turned out to be

misleading in that our type system does not involve accumulating representations of side
effects and input/output. We thank our referees for pointing this out and making us change
the syntax of types.

3.7 Summary

We have argued for the usefulness of so-called trust analysis to help programmers produce safer
and more trustworthy software. We have presented an extension of the λ-calculus together
with a reduction semantics as well as a sound denotational semantics. The reduction calculus
is proved Church-Rosser. We then gave a type system that enables the static inference of
the trustworthiness of values and the type system was proved to have the Subject Reduction
property with respect to the semantics of our language.

We have related our extension of the λ-calculus to the classical λ-calculus and obtained
two simulation theorems, as well as shown that well-typed terms in our calculus are strongly
normalizing.

Then a constraint based type inference algorithm was presented and proved correct with
respect to the type system.

Finally we have discussed certain possible extensions to our analysis and given several
examples of why it is different from already known analyses.

3.7.1 Acknowledgements

Part of this chapter was completed while both authors were visiting the Laboratory for Com-
puter Science at the Massachusetts Institute of Technology. We want to thank the anonymous
referees for many valuable comments and Philip Wadler for encouragement.



Chapter 4

Dependence Algebra

4.1 Introduction

The notion of data dependence is a central concept in program analysis. It is is used in opti-
mizing compilers to determine which statements can be re-ordered to speed up computation
[ASD86], it is used in binding-time analysis to determine whether an expression depends on
dynamic data. It is used in security flow analysis to make sure that secret data does not end
up in insecure places [Den76, Den82, BBM94]. Dependences are also important in program
slicing (a program slice being the relevant part of the program with respect to some variables)
[Wei84, Agr94, Tip95]. Data dependences are also of central importance in the work on value
dependence graphs [WCES94], which provided some inspiration for the work described here.

Most program analyses treat data dependences as boolean: a variable is either dependent
on another variable or it is not. That is, the dependences between variables form a relation.
This chapter extends the notion of dependence from two-valued to many-valued: a variable
can be more or less dependent on another variable.

We treat dependences as the primary objects, and introduce algebraic operations on de-
pendences. The following chapters exploit the theory developed here to give a trust analysis
for C code, and a soft type inference analysis for action semantics specifications, respectively.

The following sections attempt to make our notion of dependence precise, and develop an
algebra of dependences that is used to calculate dependences in a program from the program
text, often in a compositional manner.

4.1.1 Slots

A dependence is a connection between two things: a variable may depend on another vari-
able, an expression may depend on a set of variables, and a statement may depend on some
preceding statements, and so on. Before we can define our notion of dependence we must tie
down these things that our dependences exist between.

We will define dependences to exist between slots. A slot is a place that can hold a value,
for example a variable, a parameter position, an array element, or the location holding the re-
sult of a sub-expression. We distinguish between input- and output-slots. A program accepts
inputs in some slots and produces outputs in some possibly different slots. An arithmetic
expression, for example, has as its input slots the free variables of the expression, and a single
output slot for the result.

59
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Slots may be mutable in the case of an imperative language or immutable in the case of
pure functional languages. A mutable slot is a slot that occurs both as an input slot and as
an output slot. We will picture a set of slots as a column of circles, input slots on the left
and output slots on the right:

4.1.2 The Meaning of Dependence

Traditional program analyses treat data dependences as boolean: a slot is either dependent or
independent of another slot; there is only one kind of dependence. This does not contradict
that most analyses operate with the notion that a slot may (or may not) depend on a set of
other slots. A slot is either included in the set of other slots, or it is not.

We generalize this boolean notion of dependence in order to put more information into
the dependence and distinguish different kinds of dependences.

Dependences will be pictured as labeled edges between slots, with missing edges denoting
independence. In may be useful to think of each dependence edge as a channel that values
may flow along from one slot to another. The label on each edge denotes the “capacity” of
the channel.

c

a
db

Another analogy is to think of a dependence edge as a low pass filter as it is used in
electronics and signal processing:

low pass filter

The label on the edge determines the “cut off frequency” of the dependence.
The following defines the general concept of a dependence algebra. An element of the

carrier set of the algebra is a representation of a particular kind of dependence between two
slots. The algebra has three operations: join (t), sum (+), and sequential composition (·).
The join operation models combination of dependences along optional execution paths, such
as the branches of a conditional. Consider for example the program:

if P then
x := y + 2



4.1. INTRODUCTION 61

else
x := string-append(y, “foo”)

end if

where x depends on y both as a number and as a string.

We require the join operator to be commutative (the ordering of conditional branches
makes no difference), idempotent (all the necessary approximation is made in one step), and
associative (the order of approximation is not essential). These requirements make the join
operation behave like a real least upper bound in a join-semilattice. The semi-lattice ordering
is induced by the operator in the usual way: a t b = b ⇐⇒ a v b.

In some of the applications of this technical machinery there is no intuitive notion of a
least (bottom) element of the semi-lattice ordering, we do therefore not require the existence
of a least element in the semi-lattice. The lack of a bottom element allows the non-existence
of fixed points of monotone endo-functions on the structure. And even when a fixed point
exists, it may not be found by iteration from below, as there is no unique place to start. In
practice we can exploit the fixed point approximation technique described in Sect. 4.2.1. In
the cases where the semi-lattice is finite and has a least element it is easy to see that it is a
full lattice.

The sum operator models combination of dependences along parallel execution paths. If y
depends on x through d1 along one thread of execution and through d2 along another thread of
execution then after the threads join, y depends on x through d1 +d2. Consider the following
example:

(y,z) := (x,x);
w := y * z;

First the parallel assignment assigns x’s value to both y and z, then w is assigned the
product of y and z. The dependence of w on x is computed as the sum of the dependences
via y and z.

We require the sum to be commutative and associative for the same reasons that the join
was required to have these properties. When a value flows along two parallel channels, it has
to be able to pass through each channel unharmed, it therefore makes no difference whether
there is one channel or two parallel channels of the same capacity. We shall thus require the
sum to be idempotent. The sum has a natural zero element encoding the non-existence of a
channel between two slots. For technical reasons we shall also require the sum to be monotone
with respect to the ordering induced by the join operation.

The multiplication operation (·) models sequential composition of computations, as in the
example:

x := y;
z := x

Here the sequential composition of the two assignments makes z depend on y via the
intermediate variable x. We require the multiplication to be associative, have a unit element
corresponding to a channel allowing anything to pass, and have the non-existence of a channel
as a zero element. As for the sum we require that the multiplication is monotone with respect
to the join-ordering. We shall also require that multiplication distributes over sums: adding
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two parallel channels and then appending a third channel with capacity c to the end of them
is the same as appending channels of capacity c to each of the two parallel channels.

The following definitions formalize the notion of an algebra of dependences between indi-
vidual slots. This is later used to build descriptions of dependences among several slots.

4.2 Basic Definitions

Definition 4.1 A dependence algebra (a DAlg-structure) (C,t,+, ·,0,1) is an algebra with
carrier set C, three binary operations (+,t, ·), and distinguished elements: 0,1 ∈ C; such
that the axioms below are satisfied. For a, b, c ∈ C:

• a t b = b t a (commutative).

• a t a = a (idempotent).

• (a t b) t c = a t (b t c) (associative).

These axioms determine the join semi-lattice ordering v.

• a+ b = b+ a (commutative).

• a+ a = a (idempotent).

• a+ (b+ c) = (a+ b) + c (associative).

• 0 + a = a (neutral element).

• a v b⇒ a+ c v b+ c (monotone).

The operator + is also monotone in its second argument by commutativity.
The third operator, ·, will be written as juxtaposition when no confusion can arise. It

satisfies the following axioms:

• (ab)c = a(bc) (associative).

• 1a = a1 = a (unit).

• 0a = a0 = 0 (annihilator).

• If a v b then ac v bc and ca v cb (monotone).

• a(b+ c) = ab+ ac and (a+ b)c = ac+ bc (distributive).

2

Note that the axioms for + can also be interpreted as specifying a least upper bound
operation on a semi-lattice with 0 as its bottom. We shall, however, not pursue this view
further.

The following well-known fact will be used several times in the following sections exploiting
the monotonicity of the + and · operations.
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Fact 4.2 The endo-function f on a join semi-lattice is monotone if and only if⊔
i

f(xi) v f(
⊔
i

xi).

Proof. If f is monotone and xi v
⊔
i xi we have f(xi) v f(

⊔
i xi), and since the right-hand

side is a common upper bound of all the f(xi), we get
⊔
i f(xi) v f(

⊔
i xi).

For the other direction: if x v y then x t y = y thus f(x t y) = f(y), and by assumption
f(x) t f(y) v f(x t y) = f(y), which is equivalent to f(x) v f(y). 2

By duality, we have that f is monotone on a meet semi-lattice iff f(
d
i xi) v

d
i f(xi).

Recall also (for example from [Grä78] or [Bir48]) that in a (semi-) lattice a is said to cover
b if b v a and there is no element x such that b @ x @ a. Furthermore, a is called an atom if
a covers the bottom element of a semi-lattice.

The following definition recalls the notion of a semi-ring [Eil74] (a ring except that the
additive operation is a monoid, not a group).

Definition 4.3 A semi-ring (C,+, ·,0,1) consists of a carrier set C, binary operations + and
·, and has two distinguished elements 0,1 ∈ C. The operations are subject to the following
axioms:

• The structure (C,+,0) forms a commutative monoid (+ is associative, commutative,
and has 0 as a neutral element).

• The structure (C, ·,1) forms a monoid.

• The zero element, 0, is an annihilator for the multiplicative operation: 0a = a0 = 0.

• Multiplication distributes over addition: a(b+ c) = ab+ ac and (a+ b)c = ac+ bc.

2

The sub-structure (C,+, ·,0,1) of a DAlg-structure (C,t,+, ·,0,1) immediately satisfies
the axioms of a semi-ring. We shall use this property when we define matrices and matrix
multiplication over dependence algebras. As dependence algebras are just semi-rings with an
associated (semi-lattice) ordering they could justifiably also be named ordered semi-rings.

Algebraic structures (groups, rings, semi-groups) with an associated ordering have been
studied for many years in mathematics. Fuchs [Fuc63] sums up most of the known results until
1960, and many papers on the topic have been published in the Semigroup Forum journal.
Most of the work has naturally centered around total orders and algebraic structures with
more structure than semi-rings. I have been able to find precious few results applicable to
the structures considered here.

4.2.1 Limits

The semi-lattice structure of a DAlg-structure does not necessarily have a least element.
The usual fixed point iteration theorem, that says that one can find the least fixed point of a
continuous function by iteratively applying the function starting from the bottom, does not
apply directly anymore.
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Still, while analyzing recursive programs and loops, we need to find a sound approximation
of a sequencem, f(m), f(f(m)), . . . wherem is an element of the semi-lattice structure, specific
to the particular analysis in question, and f is a monotone endo-function on the DAlg-
structure.

As m is not least in the ordering we cannot conclude that m v f(m), and we may
therefore not deduce that the sequence m, f(m), f(f(m)), . . . is non-decreasing. This foils the
fixed point iteration theorem as the sequence may not reach a single fixed point, but contain a
proper cycle. In the following we construct an alternative sequence from the above sequence,
show that it is non-decreasing and that it dominates that original sequence. With this we
can find an upper approximation of all the elements of the original sequence.

In the following let f be a monotone endo-function on the DAlg-structure D, and let m
be an element of D.

Let (xi) be the sequence defined by x0 = m, and xi+1 = f(xi). We define the sequence
(yi) by y0 = m, and yi+1 = f(yi) t yi.

It is clear that x0 v y0. If we assume that xi v yi then

xi+1 = f(xi) v f(yi) v f(yi) t yi = yi+1.

By this inductive argument every element of the sequence (yi) dominates the corresponding
element in the sequence (xi). The sequence (yi) is non-decreasing as:

yi+1 = f(yi) t yi w yi.

This implies that yn w xi for all i ≤ n. As (yi) is non-decreasing it reaches a fixed point on
a DAlg-structure satisfying the ascending chain condition in a finite number of steps, that
is, there is an n such that yn = f(yn) t yn, and by induction: for all i ≥ n: yn = yi. As (yi)
dominates (xi), and (yi) is non-decreasing we therefore get yn w xi for all i. So the limit of
the (yi) sequence is a safe approximation of all the elements of the (xi) sequence. Note that
the limit of the (yi) sequence coincides with the limit of (xi) in the case where m is least.

Join semi-lattices of finite height trivially satisfy the ascending chain condition, and our
program analyses shall consider only such semi-lattices in order to be implementable.

The construction of the (yi) sequence defines a way to compute a safe approximation in
the analysis of recursive calls. The construction of the (yi) sequence above is hardly new, and
appears at least implicit in [CC79a, CC79b].

4.2.2 Vectors

Most programs have multiple input/output slots. To model a slot depending on a set of
(other) slots we employ vectors of dependences and extend the three algebraic operations to
vectors of dependences. The assignment “z := x+ y + w” would give rise to the dependence
vector pictured below:

w

z

a

b

c

y

x



4.2. BASIC DEFINITIONS 65

We use vectors instead of mere sets of dependences because the position of the individual
dependences will be important later, when we define vector concatenation. It also simplifies
some of the machinery, enabling us to talk about matrix multiplication instead of “relational”
composition.

A dependence vector v = (a1, a2, . . . , an) models the dependence of an output slot on the
input slots numbered 1 to n, such that the output slot depends on slot number i through
dependence ai. Sums and least upper bounds of dependences are extended to vectors com-
ponentwise.

Definition 4.4 We write (a1, a2, . . . , an) for a vector of length n with elements ai of the
underlying DAlg-structure. The operations of sum and least upper bound are extended
componentwise to vectors:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn),

(a1, a2, . . . , an) t (b1, b2, . . . , bn) = (a1 t b1, a2 t b2, . . . , an t bn).

Multiplication of a vector by a scalar is defined as usual taking due care of the fact that the
multiplication need not be commutative.

a(b1, b2, . . . , bn) = (ab1, ab2, . . . , abn),

(a1, a2, . . . , an)b = (a1b, a2b, . . . , anb).

2

A vector of length m shall be called an m-vector in the following. We shall name vectors
by lower case letters v,w, x, y, z, . . .

As a DAlg-structure is a semi-ring we can define scalar products of vectors in the usual
way.

Definition 4.5 The scalar product of two vectors v and w, of equal length, is:

〈v,w〉 =
∑
i

viwi.

2

The fact below recalls that the scalar product is a tensor.

Fact 4.6 Scalar products over a DAlg-structure are bi-linear. Let x, y, and z be vectors of
length n and a be a scalar, then

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉,
〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉,
〈xa, y〉 = 〈x, ay〉,
〈ax, y〉 = a〈x, y〉,
〈x, ya〉 = 〈x, y〉a.

Proof. Simple calculation. 2
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4.2.3 Matrices

To model dependences between many input slots and many output slots we first consider
matrices of dependences.

Given a DAlg-structure D we can consider the set of m × n matrices with entries from
D. Let us call this set Mmn(D) in the following. Starting from the operations on D we can
define similar operations on Mmn(D). We shall write capital letters A,B,C, . . . for matrices.
If A is a matrix in Mmn(D) we write Aij for the entry in the i’th row and j’th column.

It is useful to think of a matrix as a bi-partite graph with input slots on the left and
output slots on the right. Edges between slots denote dependences, and absent edges denote
independence.

c

a

b

If we name the matrix pictured above A, and assuming the numbering of slots starts from
the top we have A11 = 0, A12 = a, and so on:

A =

 0 a 0 0
0 0 0 0
0 0 b c


Think of information as flowing along the edges of the graph from left to right, constrained

by the capacity of the edges as denoted by the algebra elements.

Definition 4.7 The operations t, and + on Mmn(D) are defined componentwise as follows.
Let A,B ∈Mmn(D), and i, j be row and column numbers respectively. Then we define:

(A tB)ij = Aij tBij,
(A+B)ij = Aij +Bij.

2

We define sequential composition as matrix multiplication.

Definition 4.8 Let A be an m×n matrix, and B be an n×k matrix. Then define for i ≤ m
and j ≤ k:

(AB)ij =
∑

1≤k≤n
AikBkj.

2

Matrix multiplication may be pictured graphically as in the figure below where the two
matrices on the left are composed to give the matrix on the right.
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In analyses using the dependence algebra framework developed here, we need to reason
about the computational complexity of the algorithms. In the following we assume that the
operations on the underlying DAlg-structure can be done in constant time to simplify the
complexity measures. With this assumption it is easy to see that the cost of performing sums
and joins of m× n matrices is in O(mn), and the cost of the above matrix multiplication is
in O(mkn). We cannot use Strassen’s algorithm for matrix multiplication as it requires the
underlying structure to be a ring, which is not the case in general with DAlg-structures.

Theorem 4.9 If D is a DAlg-structure then (Mmm(D),t,+, ·,0,1) is a DAlg-structure.

Proof. Define 0 ∈ Mmm(D) to be the everywhere 0 matrix, and define 1 ∈ Mmm(D) to
be the usual square matrix with 1 in the diagonal and 0 everywhere else. By the general
theorem that matrices over a semi-ring constitute a semi-ring we get that all the axioms for a
DAlg-structure concerning sum and product (except the monotonicity axioms) are fulfilled.

The axioms for t hold on Mmm(D) as t is defined componentwise. As the v ordering is
defined from t the monotonicity of sum and product follows from their monotonicity on the
underlying structure D. 2

The work on information flow relations by Bergeretti and Carré [BC85] used some of same
intuitions as employed here, however, only boolean matrices were considered to represent the
relations between inputs and outputs, so a more fine-grained analysis is possible with the
richer dependence algebras.

4.2.4 Quadruples

A dependence quadruple (called a quad for short) is a dependence matrix connecting input
slots to output slots together with a special input slot: src, acting as the universal producer
of constants, and a special output slot: sink, acting as a consumer. Quadruples will be named
Q,Qi, Q

′, . . . in the following.

Definition 4.10 An m× n quadruple Q = (s,A, t, u) consists of a row vector s of length n,
an m× n matrix A, a column vector t of length m, and a scalar u. 2

The vector s contains the dependences between the special slot src and the output slots,
whereas the vector t contains dependences between the input slots and the slot sink. Finally,
the scalar u holds the dependence between src and sink for completeness. Below is a picture
of the 2× 3 quad:

(s,A, t, u) = ((0,0, c),

(
a 0 0
0 0 0

)
, (b,0), d),
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src sinkd

c
b

a

Note that the size of a quad may be 0 in one or both of the dimensions. A quad with zero
input size has an empty matrix A, and an empty sink vector t, whereas the source vector s
is of the output length. Dually, if the output size is 0 then A and s are empty, and t has the
input length. Sums and least upper bounds of quads are defined componentwise.

Definition 4.11 Let Q = (s,A, t, u) and Q′ = (s′, A′, t′, u′) be m × n quadruples. We then
define the binary operations t, and + on them as:

(s,A, t, u) t (s′, A′, t′, u′) = (s t s′, A tA′, t t t′, u t u′),
(s,A, t, u) + (s′, A′, t′, u′) = (s+ s′, A+A′, t+ t′, u+ u′),

We also define the constant: 0 = (0,0,0,0). 2

The cost of computing the above sum and join of quads is in O((m + 1)(n + 1)), where
we add one to each dimension to take care of the case where m or n may be zero.

The definition of sequential composition/product of quads takes care that the dependences
relating the special slots src and sink are persistent, i.e., if sink already depends on x in the
quad Q then composing Q with another quad doesn’t change that. The same persistence
holds for the src slot.

Definition 4.12 Let Q = (s,A, t, u) be an m× n quad, and Q′ = (s′, A′, t′, u′) be an n× k
quad. The product QQ′ is an m× k quad defined as:

(s,A, t, u)(s′, A′, t′, u′) = (sA′ + s′, AA′, t+At′, st′ + u+ u′).

For square quads we define the unit quad as: 1 = (0,1,0,0). 2

The cost of computing the quad product is dominated by the embedded matrix multipli-
cation, and is thus in O((m+ 1)(k + 1)(n+ 1)).

We shall write Qmn(D) for the set of m×n quadruples over the DAlg-structure D. When
D is understood from the context we shall write just Qmn for this set.

Proposition 4.13 Quad multiplication is associative. Let Q0 = (s0, A0, t0, u0) ∈ Qmn, Q1 =
(s1, A1, t1, u1) ∈ Qnk, and Q2 = (s2, A2, t2, u2) ∈ Qkl. Then

(Q0Q1)Q2 = Q0(Q1Q2).

Proof. We compute:

(s0, A0, t0, u0)((s1, A1, t1, u1)(s2, A2, t2, u2))

= (s0, A0, t0, u0)(s1A2 + s2, A1A2, t1 +A1t2,

s1t2 + u1 + u2)
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= (s0A1A2 + s1A2 + s2, A0A1A2, t0 +A0(t1 +A1t2),

s0(t1 +A1t2) + u0 + s1t2 + u1 + u2)

= (s0A1A2 + s1A2 + s2, A0A1A2, t0 +A0t1 +A0A1t2,

s0t1 + s0A1t2 + u0 + s1t2 + u1 + u2)

= (s0A1 + s1, A0A1, t0 +A0t1, s0t1 + u0 + u1)(s2, A2, t2, u2)

= ((s0, A0, t0, u0)(s1, A1, t1, u1))(s2, A2, t2, u2).

2

Proposition 4.14 Quad multiplication distributes over addition. Let Q0 = (s0, A0, t0, u0) ∈
Qmn, Q1 = (s1, A1, t1, u1) ∈ Qnk, Q2 = (s2, A2, t2, u2) ∈ Qnk, and Q3 ∈ Qkl. Then

Q0(Q1 +Q2) = Q0Q1 +Q0Q2,

(Q1 +Q2)Q3 = Q1Q3 +Q2Q3.

Proof. Using idempotency of +, we prove only the first equation. The second equation follows
similarly.

(s0, A0, t0, u0)((s1, A1, t1, u1) + (s2, A2, t2, u2))

= (s0, A0, t0, u0)(s1 + s2, A1 +A2, t1 + t2, u1 + u2)

= (s0(A1 +A2) + s1 + s2, A0(A1 +A2), t0 +A0(t1 + t2),

s0(t1 + t2) + u0 + u1 + u2)

= (s0A1 + s0A2 + s1 + s2, A0A1 +A0A2, t0 +A0t1 +A0t2,

s0t1 + s0t2 + u0 + u1 + u2)

= (s0A1 + s1 + s0A2 + s2, A0A1 +A0A2, t0 +A0t1 + t0 +A0t2,

s0t1 + u0 + u1 + s0t2 + u0 + u2)

= (s0A1 + s1, A0A1, t0 +A0t1, s0t1 + u0 + u1)

+(s0A2 + s2, A0A2, t0 +A0t2, s0t2 + u0 + u2)

= (s0, A0, t0, u0)(s1, A1, t1, u1) + (s0, A0, t0, u0)(s2, A2, t2, u2).

2

If D is a DAlg-structure then (Qmm(D),t,+, ·,0,1) is almost a DAlg-structure. The
axioms for + and t are easily seen to be satisfied, as the two operations are defined compo-
nentwise. Multiplication is associative by Prop. 4.13, and distributive over + by Prop. 4.14.

Monotonicity of multiplication for quadruples follows from the monotonicity of sum and
product for matrices, vectors and scalars.

However, 0 is no annihilator:

0(s,A, t, u) = (s,0,0, u),

(s,A, t, u)0 = (0,0, t, u).

Note that an m×n quad Q = (s,A, t, u) can be represented by a (m+2)× (n+2) matrix
in the following way1:  A 0 t

s 1 u

0 0 1


1This was remarked by an anonymous referee.
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This matrix structure is stable under addition and the t operation, and matrix multiplication
corresponds to multiplication of quads.

4.3 Image

Given a vector of input slots it is useful to be able to “push it through” a quad obtaining a
vector of output slots. This is formalized as the image construction.

Definition 4.15 Let v be an m-vector over D and let Q = (s,A, t, u) be an m×n quad over
D. The image of v through Q is then defined as:

img(v,Q) = s+ vA.

2

It is clear from the monotonicity of + and matrix multiplication that img(v,Q) is monotone
in both v and Q.

The following theorem shows that one can push a vector through a series of quads one at a
time or compose the quads first and then push the vector through the composition. This will
prove to be one of the central properties used in the soundness proofs in Chapters 5 and 6.

Theorem 4.16 Let v be an m-vector, Q = (s,A, t, u) ∈ Qmn(D), and Q′ = (s′, A′, t′, u′) ∈
Qnk(D). Then

img(img(v,Q), Q′) = img(v,QQ′).

Proof.

img(img(v,Q), Q′) = img(s+ vA,Q′)

= s′ + (s+ vA)A′

= s′ + sA′ + vAA′.

img(v,QQ′) = img(v, (sA′ + s′, AA′, t+At′, st′ + u+ u′))

= sA′ + s′ + vAA′.

2

Theorem 4.17 Let v be an m-vector, Q = (s,A, t, u) ∈ Qmn(D), and Q′ = (s′, A′, t′, u′) ∈
Qmn(D). Then

img(v,Q+Q′) = img(v,Q) + img(v,Q′).

Proof.

img(v,Q+Q′) = img(v, (s+ s′, A+A′, t+ t′, u+ u′))

= s+ s′ + v(A+A′)

= img(v,Q) + img(v,Q′).

2

The rest of the material of this chapter will not be needed until Chapter 6.
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4.4 Pre-image

One of the more important features of the quad abstraction of a program is that a quad can
be applied “backwards” in contrast to the program function which can only be run in one
direction.

This section defines the notion of a pre-image of a vector v through a quad, i.e., the input
necessary to obtain v as an output image of the quad. The pre-image defined here does not
give very accurate information, and for certain underlying DAlg-structures it is possible to
define more accurate notions of a pre-image. An example of this is developed in Section 4.11.

Definition 4.18 Let Q = (s,A, t, u) ∈ Qmn, and let v be an n-vector. The pre-image of v
under Q is defined as:

pre(Q, v) = Av + t.

2

Just as for the image function, it is clear that pre is monotone in both its arguments.

Theorem 4.19 Let v be a k-vector, Q = (s,A, t, u) ∈ Qmn, and Q′ = (s′, A′, t′, u′) ∈ Qnk.
Then

pre(Q,pre(Q′, v)) = pre(QQ′, v).

Proof.

pre(Q,pre(Q′, v)) = pre(Q,A′v + t′)

= A(A′v + t′) + t

= AA′v +At′ + t.

and

pre(QQ′, v) = pre((sA′ + s′, AA′, t+At′, st′ + u+ u′), v)

= AA′v + t+At′.

2

Theorem 4.20 Let v a n-vector, Q = (s,A, t, u) ∈ Qmn, and Q′ = (s′, A′, t′, u′) ∈ Qmn.
Then

pre(Q+Q′, v) = pre(Q, v) + pre(Q′, v).

Proof.

pre(Q+Q′, v) = pre((s+ s′, A+A′, t+ t′, u+ u′), v)

= (A+A′)v + t+ t′

= pre(Q, v) + pre(Q′, v).

2

It may be useful to propagate information first in the forward direction and then backwards
through the same quad, computing pre(Q, img(v,Q)), and dually img(pre(Q, v), Q). The
values of these computations are in general not comparable under the v ordering.
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4.5 Concatenation

It is natural to concatenate vectors. This will prove very useful when we apply the theory to
soft typing for action semantics where vector (tuple) concatenation is heavily used.

From vector concatenation we derive notions of concatenation for matrices and quads that
will also prove useful in the action semantics application.

Definition 4.21 The concatenation of vectors v and w is written v++w and is defined as:

(a1, a2, . . . , an)++(b1, b2, . . . , bm) = (a1, a2, . . . , an, b1, b2, . . . , bm).

2

From the above definition we can derive a notion of concatenation for matrices. This
models the concatenation of the output slots of two matrices with the same input slots, as in
the figure below where the two matrices on the left are concatenated on the right.

c

d

d c

b

a
b

a

Definition 4.22 Let A be an m×n matrix and B an m×k matrix. Then the concatenation
A++B is an m× (n+ k) matrix with entries defined as:

(A++B)ij =

{
Aij if j ≤ n,
Bi(j−n) otherwise.

2

If we write Ai· for the i’th row vector in A we can define matrix concatenation in terms
of concatenation of row vectors:

(A++B)i· = Ai·++Bi·.

The cost of matrix concatenation is easily seen to be in O(m(n+ k)).
Concatenation is further extended to quads where special care must be taken to handle

the sink vectors.

Definition 4.23 Let (s,A, t, u) be an m×n quad, and (s′, A′, t′, u′) be an m×k quad. Then
their concatenation is defined as:

(s,A, t, u)++ (s′, A′, t′, u′) = (s++ s′, A++A′, t+ t′, u+ u′).

2
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As for matrix concatenation, quad concatenation is in O((m + 1)(n + k + 1)), where
we again add one to handle the case of “one-dimensional” quads. Matrix multiplication
distributes from the left over concatenation.

Proposition 4.24 Let A be an m×n matrix over D, B ∈Mnk(D), and C ∈Mnk′(D). Then

A(B++C) = AB++AC.

Proof.

(A(B++C))ij =
∑
r

Air(B++C)rj

=
∑
r

Air

{
Brj if j ≤ k
Cr(j−k) otherwise

=

{ ∑
r AirBrj if j ≤ k∑
r AirCr(j−k) otherwise

=

{
(AB)ij if j ≤ k
(AC)i(j−k) otherwise

= (AB++AC)ij .

2

To prove the corresponding theorem for quads we need the following little lemma.

Lemma 4.25 Let v, v′ be n-vectors, and w,w′ be m-vectors. Then

(v++w) + (v′++w′) = (v + v′)++ (w + w′).

Proof. The vectors v and v′ have the same length and the vectors w and w′ have the same
lengths. The + operation is defined componentwise. 2

Theorem 4.26 Let Q1 = (s1, A1, t1, u1) ∈ Qmn(D), Q2 = (s2, A2, t2, u2) ∈ Qnk(D), and
Q3 = (s3, A3, t3, u3) ∈ Qnk′(D). Then

Q1(Q2 ++Q3) = Q1Q2 ++Q1Q3.

Proof. Using the previous Lemma and idempotency of + we compute:

Q1(Q2 ++Q3) = Q1(s2 ++ s3, A2 ++A3, t2 + t3, u2 + u3)

= (s1(A2 ++A3) + (s2 ++ s3), A1(A2 ++A3),

t1 +A1(t2 + t3), s1(t2 + t3) + u1 + u2 + u3)

= ((s1A2 ++ s1A3) + (s2 ++ s3), A1A2 ++A1A3,

t1 +A1t2 +A1t3, s1t2 + s1t3 + u1 + u2 + u3)

= ((s1A2 + s2)++ (s1A3 + s3), A1A2 ++A1A3,

(t1 +A1t2) + (t1 +A1t3), s1t2 + u1 + u2 + s1t3 + u1 + u3)

= (s1A2 + s2, A1A2, t1 +A1t2, s1t2 + u1 + u2)

++(s1A3 + s3, A1A3, t1 +A1t3, s1t3 + u1 + u3)

= Q1Q2 ++Q1Q3.

2
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Concatenation is monotone with respect to the v ordering. This is obvious for vectors and
matrices as the ordering is defined componentwise. For quads we state it as a proposition.

Proposition 4.27 Let Q1, Q2 ∈ Qnm(D) and Q3 ∈ Qnk(D). Then

Q1 v Q2 ⇒ Q1 ++Q3 v Q2 ++Q3, and

Q3 ++Q1 v Q3 ++Q2.

Proof. By monotonicity of concatenation for matrices and vectors and monotonicity of + for
vectors and scalars. 2

Concatenation and image interacts in the following way.

Theorem 4.28 Let Q1 = (s1, A1, t1, u1) ∈ Qmn, Q2 = (s2, A2, t2, u2) ∈ Qmk, and let v be an
m-vector. Then

img(v,Q1 ++Q2) = img(v,Q1)++ img(v,Q2).

Proof. Using Prop. 4.24 and Lemma 4.25 we compute:

img(v,Q1 ++Q2) = v(A1 ++A2) + (s1 ++ s2)

= (vA1 ++ vA2) + (s1 ++ s2)

= (vA1 + s1)++(vA2 + s2)

= img(v,Q1)++ img(v,Q2).

2

4.6 Quad Languages

A single quad is meant to abstract an expression that uses an input vector of a certain length
and produces an output vector of a certain length. As such a single quad cannot model an
expression that may use input vectors of varying lengths and produce outputs of varying
lengths. The need to handle such functions is obvious, and the concatenation operation
necessitates it as well.

We first abstract such functions into sets of quads, each element of the set abstracting
the function for a particular input/output length. Later in this chapter we describe a method
for approximating such potentially infinite sets in a finite way. Since quads may be concate-
nated like strings we shall call a set of quads a quad language. We define composition and
concatenation of languages as follows:

Definition 4.29 Let L,L′ be quad languages. Then

LL′ = {QQ′ | ∃m,n, k : Q ∈ L ∩Qmn and Q′ ∈ L′ ∩Qnk},
L++L′ = {Q++Q′ | ∃m,n, k : Q ∈ L ∩Qmn and Q′ ∈ L′ ∩Qmk}.

The intersections with Qmn in the definition are to ensure that only quads of compatible sizes
are composed. 2
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Union of languages is just union of the languages as sets. We do not define notions of sum
and join of languages as such notions will not be necessary in the following. If necessary such
notions can be defined pointwise: L+ L′ = {Q+Q′ | Q ∈ L,Q′ ∈ L′}. The image of a set of
vectors through a quad language is defined in the natural way:

img(V,L) = {img(v,Q) | ∃n : v ∈ V,Q ∈ L ∩Q|v|n}.

It is natural to consider formal expressions over quad languages by introducing variables
x ranging over languages, and formal expressions according to the grammar:

E ::= x | EE | E++E | E ∪E | L,

where L denotes a constant quad language. Such formal expressions are interpreted over
quad languages by assigning a language to each variable and interpreting the three binary
operators in the obvious way. We may furthermore consider sets of formal equations of the
form {xi = Ei}, where i ∈ {1, . . . , n}. The desired solution to such a set of equations is the
least (with respect to set inclusion) assignment of quad languages to the variables xi such
that the equations are satisfied2. Such a set of recursive equations would naturally be called
a quad grammar by analogy with context free grammars for describing sets of strings.

Note that our grammars produce sets of quads, they are not related to two-dimensional
string languages and the matrix grammars of Abraham and others [Abr65, DP89].

For dependence analyses of structured programs (without arbitrary control flow) it is
natural to compositionally extract a quad grammar from the program syntax, whence the
analysis consists merely of solving the resulting set of recursive equations. The derivation
of a grammar from a program is inspired by the works of Reynolds [Rey69], and Jones and
Muchnick [JM81, Jon87] on grammar-based analysis.

The two applications of dependence analysis in this thesis (a trust analysis for C, and a
type inference for action semantics, developed in chapters 5 and 6) do not, however, exploit
this simple idea. The C language allows arbitrary control flow by the goto statement, and
our subset of action notation includes higher-order functions, requiring more advanced means
of analysis.

4.7 Approximating a Single Quad

For the soft type analysis for action notation we will be generating sets of quads for each
action construct to accommodate different input and output sizes.

We can approximate a single large quad by a smaller representation by collapsing rows
and columns beyond a certain fixed number K into the K’th row and column:

2This is well-defined as all the operations on quad languages (composition, concatenation, and union) are
monotone with respect to set inclusion.
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This is a very simple minded approach, certainly much simpler than for example the
approach by Deutsch in his thesis [Deu92] to finitely represent infinite relations between
regular languages. Unfortunately we cannot directly reuse his abstraction as he is abstracting
relations which lack both the ordering between slots (the reason for our use of vectors) and
the algebra of dependences between slots.

We first define how to approximate a long vector by a shorter vector.

Definition 4.30 Let (a1, a2, . . . , am) be a vector with m ≥ K and define

α0
K(a1, a2, . . . , am) = (a1, a2, . . . , aK−1,

⊔
K≤i≤m

ai).

For m < K we define α0
K(a1, . . . , am) = (a1, . . . , am). 2

Matrices are abstracted similarly.

Definition 4.31 Let A be an m × n matrix over D. For i ≤ m, i < K and j ≤ n, j < K

define the α0
K(A) to be the min(K,m) ×min(K,n) matrix defined by:

(α0
K(A))ij = Aij ,

(α0
K(A))Kj =

⊔
K≤k≤m

Akj when m ≥ K,

(α0
K(A))iK =

⊔
K≤k≤n

Aik when n ≥ K,

(α0
K(A))KK =

⊔
K≤k≤m

⊔
K≤l≤n

Akl when (m,n) ≥ (K,K).

2

The above definition uses the same K in both dimensions. It would be more general to
consider a different K for each dimension, but the added generality does not buy much, one
can just work with the larger of the two K’s in both dimensions. Applying α0

K to an m× n
matrix is in O(mn).

We can combine the two previous definitions to define abstraction of a single quad as:

Definition 4.32 Let Q = (s,A, t, u) ∈ Qmn(D). We define the abstraction of Q as:

α0
K(Q) = (α0

K(s), α0
K(A), α0

K(t), u).

2
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As for quad multiplication and concatenation we add one to the dimensions in the com-
plexity of α0

K on quads: O((m + 1)(n + 1)). It is not hard to see that all three instances of
the α0

K function are idempotent: α0
K(α0

K(Q)) = α0
K(Q). Also α0

K is monotone.

Proposition 4.33 The function α0
K distributes over t. Let Q,Q′ ∈ Qmn(D) then

α0
K(Q tQ′) = α0

K(Q) t α0
K(Q′).

Proof. Starting with the equivalent statement for vectors and using the idempotency of t.
2

The following lemma states that adding two matrices before abstraction is more precise
than first abstracting and then adding. The corresponding theorems hold for the addition of
vectors and quads, but we show it for matrices only.

Lemma 4.34 Let A,B ∈Mmn(D). Then

α0
K(A+B) v α0

K(A) + α0
K(B).

Proof. We show only one of the four cases. Assume n ≥ K:

α0
K(A+B)iK =

⊔
j≥K

(A+B)ij

=
⊔
j≥K

Aij +Bij

v
⊔
j≥K

Aij +
⊔
j≥K

Bij

= α0
K(A)iK + α0

K(B)iK .

2

Lemma 4.35 Let v,w be m-vectors with m ≥ K. Then

〈v,w〉 v 〈α0
K(v), α0

K(w)〉.

Proof. Using monotonicity and idempotency of + we compute:

〈α0
K(v), α0

K(w)〉 =
∑
k

α0
K(v)kα

0
K(w)k

=
∑
k<K

vkwk +
∑
k≥K

(
⊔
j≥K

vj)(
⊔
j≥K

wj)

w
∑
k<K

vkwk +
∑
k≥K

vkwk

= 〈v,w〉.

2

Proposition 4.36 Let A ∈Mmn(D) and B ∈Mnk(D). Then

α0
K(AB) v α0

K(A)α0
K(B).
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Proof. We show only the case where k > K and compute:

α0
K(AB)iK =

⊔
l≥K

(AB)il

=
⊔
l≥K

∑
j

AijBjl

v
∑
j

⊔
l≥K

AijBjl

=
∑
j<K

⊔
l≥K

AijBjl +
∑
j≥K

⊔
l≥K

AijBjl

v
∑
j<K

Aij(
⊔
l≥K

Bjl) +
∑
j≥K

(
⊔
h≥K

Aih)(
⊔

l≥K,h≥K
Blh)

=
∑
j

α0
K(A)ijα

0
K(B)jK

= (α0
K(A)α0

K(B))iK .

The other cases (ij, Kj, and KK) are similar. 2

The corresponding theorem holds for quads as well.

Theorem 4.37 Let Q = (s,A, t, u) ∈ Qmn(D) and Q′ = (s′, A′, t′, u′) ∈ Qnk(D). Then

α0
K(QQ′) v α0

K(Q)α0
K(Q′).

Proof. Using the previous theorems concerning the interaction of α0
K and sums and products

for vectors and matrices we can compute:

α0
K(QQ′) = α0

K((sA′ + s′, AA′, t+At′, st′ + u+ u′))

v (α0
K(s)α0

K(A′) + α0
K(s′), α0

K(A)α0
K(A′),

α0
K(t) + α0

K(A)α0
K(t′), st′ + u+ u′)

v (α0
K(s)α0

K(A′) + α0
K(s′), α0

K(A)α0
K(A′),

α0
K(t) + α0

K(A)α0
K(t′), α0

K(s)α0
K(t′) + u+ u′)

= α0
K(Q)α0

K(Q′).

2

Using Lemma 4.34 and Prop. 4.36 we get the following.

Corollary 4.38

α0
K(img(v,Q)) v img(α0

K(v), α0
K(Q)).

We now proceed to examine the interaction of α0
K with concatenation.

Proposition 4.39 Let v = (a1, . . . , am) and w = (am+1, . . . , am+n) be vectors over D. Then

α0
K(v++w) = α0

K(α0
K(v)++α0

K(w)).
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Proof. There are four cases: if both m < K and n < K then α0
K(v) = v and α0

K(w) = w by
definition and the result is immediate. The other cases depend on the idempotency of the t
operator. If m < K and n ≥ K we have:

α0
K(α0

K(v)++α0
K(w)) = α0

K(v++α0
K(w))

= α0
K(a1, . . . , am, am+1, . . . , am+K−1,

⊔
m+K≤i≤m+n

ai)

= (a1, . . . , am, . . . , aK−1,
⊔

K≤i≤m+n

ai)

= α0
K(a1, . . . , am, . . . , am+n)

= α0
K(v++w).

If m ≥ K and n ≥ K we have the following:

α0
K(α0

K(v)++α0
K(w))

= α0
K(a1, . . . , aK−1, (

⊔
K≤i≤m

ai), am+1, . . . , am+K−1,
⊔

m+K≤i≤m+n

ai)

= (a1, . . . , aK−1,
⊔

K≤i≤m+n

ai)

= α0
K(v++w).

The case with m ≥ K and n < K is similar. 2

The same result holds for concatenation of matrices, but first we need a lemma.

Lemma 4.40 Let A ∈Mmn(D) and B ∈Mmk(D). Then⊔
i≥K

(A++B)i· = (
⊔
i≥K

Ai·)++ (
⊔
i≥K

Bi·).

Proof. Using that t is defined componentwise for vectors we can compute:⊔
i≥K

(A++B)i· =
⊔
i≥K

Ai·++Bi·

= (
⊔
i≥K

Ai·)++ (
⊔
i≥K

Bi·).

2

Proposition 4.41 Let A ∈Mmn(D) and B ∈Mmk. Then

α0
K(A++B) = α0

K(α0
K(A)++α0

K(B)).

Proof. For i < K we have α0
K(Ai·) = α0

K(A)i· so we may use the theorem for vectors to get:
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α0
K((A++B)i·) = α0

K(Ai·++Bi·)

= α0
K(α0

K(Ai·)++α0
K(Bi·)).

For the remaining case (i ≥ K) we apply the preceding lemma and the fact:⊔
i≥K

α0
K(A)i· = α0

K(A)K· = α0
K(
⊔
i≥K

Ai·),

and compute:

α0
K(α0

K(A)++α0
K(B))K· = α0

K(
⊔
i≥K

(α0
K(A)++α0

K(B))i·)

= α0
K((

⊔
i≥K

α0
K(A)i·)++(

⊔
i≥K

α0
K(B)i·))

= α0
K(α0

K(
⊔
i≥K

Ai·)++α0
K(
⊔
i≥K

Bi·))

= α0
K((

⊔
i≥K

Ai·)++(
⊔
i≥K

Bi·))

= α0
K(
⊔
i≥K

(A++B)i·)

= α0
K(A++B)K· .

2

We also prove the corresponding theorem for quads. Note the inequality as opposed to
the equality in the preceding proposition.

Theorem 4.42 Let Q = (s,A, t, u) ∈ Qmn and Q′ = (s′, A′, t′, u′) ∈ Qmk. Then

α0
K(Q++Q′) v α0

K(α0
K(Q)++α0

K(Q′)).

Proof. We exploit that α0
K is the identity on vectors of length less than or equal to K.

α0
K(Q++Q′)

= α0
K(s++ s′, A++A′, t+ t′, u+ u′)

= (α0
K(s++ s′), α0

K(A++A′), α0
K(t+ t′), u+ u′)

v (α0
K(α0

K(s)++α0
K(s′)), α0

K(α0
K(A)++α0

K(A′)), α0
K(t) + α0

K(t′), u+ u′)

= (α0
K(α0

K(s)++α0
K(s′)), α0

K(α0
K(A)++α0

K(A′)), α0
K(α0

K(t) + α0
K(t′)), u + u′)

= α0
K(α0

K(s)++α0
K(s′), α0

K(A)++α0
K(A′), α0

K(t) + α0
K(t′), u+ u′)

= α0
K(α0

K(Q)++α0
K(Q′)).

2
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4.8 Abstracting Sets of Quads

We approximate a set of quads with a (K+1)×(K+1) matrix of quads, called a K-grid in the
following. We first adjoin a bottom element to the set of m×n quads over a DAlg-structure
D to be able to represent an empty set of quads of that size.

Definition 4.43 LetQmn(D) be the set of m×n quads over the DAlg-structureD, equipped
with the quad ordering v inherited from D. We define

Q⊥mn(D) = Qmn(D) ] {⊥},

and extend the ordering such that ⊥ v Q for any Q ∈ Q⊥mn(D). The “dimension” of ⊥ will
be implied by context. 2

Quad composition and concatenation are extended to be strict in ⊥: ⊥Q = Q⊥ = ⊥, and
⊥++Q = Q++⊥ = ⊥.

Definition 4.44 A K-grid is a (K + 1) × (K + 1) matrix of quads, such that for i, j ∈
{0, 1, . . . ,K}, whenever G is a K-grid then Gij ∈ Q⊥ij. 2

We will often omit the K when the constant is obvious from the context and merely talk
about grids. We extend the ordering of quads to grids in a componentwise manner. The
following picture illustrates a 2-grid:

0 1 2

2

1

0

Definition 4.45 For two K-grids G and G′ define

G v G′ ⇐⇒ ∀i, j ≤ K : Gij v G′ij .

2

As we defined the operations of sequential composition and concatenation of quad lan-
guages, we can now define corresponding operations on grids that mimic these operations. We
want sequential composition of grids to be a sound approximation of sequential composition
of languages, and similarly for concatenation.

Definition 4.46 Let G and G′ be K-grids. We define their sequential composition compo-
nentwise as:

(GG′)ij =
⊔

0≤k≤K
GikG

′
kj.

2
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Computing (GG′)ij requires at mostK least upper bounds andK multiplications of quads.
We may write the cost of computing (GG′)ij as:

K∑
k=0

((i+ 1)(j + 1) + (i+ 1)(k + 1)(j + 1)) =
K∑
k=0

(k + 2)(i + 1)(j + 1)

≤ (i+ 1)(j + 1)(K + 2)2,

thus the total cost of computing GG′ is:

(K + 2)2
K∑
i=0

K∑
j=0

(i+ 1)(j + 1) ≤ (K + 2)2(K + 1)2(K + 1)2,

and the complexity of grid multiplication is therefore in O(K6).
The concatenation of two elements (quads) of a grid may be too large to fit into a grid of

the same size, so a second application of the α0
K abstraction function may be necessary.

Definition 4.47 Let G and G′ be K-grids. For i ≤ K and j < K define:

(G++G′)ij =
⊔
{Gin ++G′im | n+m = j},

and finally define:

(G++G′)iK =
⊔
{α0

K(Gin ++G′im) | n+m ≥ K}.

2

Computing (G++G′)ij for j < K requires at most K least upper bound- and quad-
concatenation operations, that is, the cost is dominated by 2K(i + 1)(j + 1). For j = K

the second half of the definition takes over and the computation needs on the order of K2

concatenations, applications of α0
K , and least upper bounds, thus the cost is dominated by

3K2(i+ 1)(m + n+ 1). The cost of concatenating two entire K-grids can be estimated as:

2K
K∑
i=0

K−1∑
j=0

(i+ 1)(j + 1) ≤ 2K(K + 1)2K2 ∈ O(K5),

for the j < K case, and for the remaining case:

3K2
K∑
i=0

(i+ 1)(2K + 1) ∈ O(K5).

So the upper bound on grid concatenation is in O(K5). Computing the l.u.b. of two K-grids
performs K2 least upper bounds of quads at most of size K ×K, thus the complexity of this
operation is in O(K4).

We can now define the abstraction of quad languages into grids.

Definition 4.48 Let L be a set of quads (a language) over a DAlg-structure D. Define for
i, j ≤ K:

αK(L)ij =
⊔
{α0

K(Q) | Q ∈ L and α0
K(Q) ∈ Qij(D)}.

2
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In effect, for i, j < K, αK(L)ij is the approximation of all the quads in the set L of size
i × j. The quad αK(L)iK approximates all the quads in the set with i rows and at least K
columns.

The following shorthand notation will prove useful in the forthcoming proofs, and gives a
more elegant formulation of αK .

Definition 4.49 Let L be a quad language. Define

Lmn = {Q ∈ L | α0
K(Q) ∈ Qmn(D)}.

That is, Lmn is the subset of quads in L whose abstraction is a m× n quad. Note that this
definition depends on the value of K. We leave out an explicit reference to K as its value will
be clear from context. 2

With the above definition, we can rephrase the definition of αK as:

αK(L)ij =
⊔

Q∈Lij

α0
K(Q).

It is not hard to see that αK is monotone with respect to subset inclusion: if L ⊆ L′ then
αK(L) v αK(L′). If we define γK as the pre-image of αK :

γK(G) =
⋃

αK(L)=G

L

we then get a pair of adjoined functions between sets of quads ordered by subset inclusion
and grids ordered by the v ordering:

αK(L) v G ⇐⇒ L ⊆ γK(G).

Now we are finally in a position to prove the soundness of our abstract operations, namely
the inequalities:

αK(LL′) v αK(L)αK(L′),

αK(L++L′) v αK(L)++αK(L′),

αK(L ∪ L′) v αK(L) t αK(L′).

We start out with the theorem for composition.

Theorem 4.50 For quad languages L and L′ we have the inequality:

αK(LL′) v αK(L)αK(L′).

Proof. For i, j ≤ K we compute, using monotonicity of quad composition and Theorem 4.37:

(αK(L)αK(L′))ij =
⊔

0≤k≤K
αK(L)ikαK(L′)kj

=
⊔

0≤k≤K
((
⊔

Q∈Lik

α0
K(Q))(

⊔
Q′∈L′kj

α0
K(Q′)))

w
⊔

0≤k≤K

⊔
Q∈Lik

⊔
Q′∈L′kj

α0
K(Q)α0

K(Q′)

w
⊔

0≤k≤K

⊔
Q∈Lik

⊔
Q′∈L′kj

α0
K(QQ′). (4.1)
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To prove the connection to αK(LL′) we first compute:

(LL′)ij = {Q′′ ∈ LL′ | α0
K(Q′′) ∈ Qij}

= {Q′′ ∈ {QQ′ | Q ∈ L ∩Qmn, Q′ ∈ L′ ∩Qnk} | α0
K(Q′′) ∈ Qij}

= {QQ′ | Q ∈ L ∩Qmn, Q′ ∈ L′ ∩Qnk, α0
K(QQ′) ∈ Qij}.

We can then simplify:

αK(LL′)ij =
⊔

Q′′∈(LL′)ij

α0
K(Q′′)

=
⊔

{QQ′ | Q∈L∩Qmn,Q′∈L′∩Qnk,α0
K(QQ′)∈Qij}

α0
K(QQ′). (4.2)

Now we just need to show that the triple l.u.b. (4.1) ranges over a larger set of quads than
the l.u.b. (4.2), that is: If Q ∈ L ∩Qmn, Q′ ∈ L′ ∩Qnk, and α0

K(QQ′) ∈ Qij then there is a
k′ ∈ {0, . . . ,K} such that Q ∈ Lik′ and Q′ ∈ L′k′j .

The consequent of that implication can also be phrased as: there is a k′ ∈ {0, . . . ,K} such
that Q ∈ L, α0

K(Q) ∈ Qik′ , Q′ ∈ L′, and α0
K(Q′) ∈ Qk′j. That the implication holds with

k′ = min(K,n) is then easily seen from the definition of α0
K . This completes the proof of the

desired inequality. 2

Theorem 4.51 For quad languages L and L′ we have the inequality:

αK(L++L′) v αK(L)++αK(L′).

Proof. There are two cases according to the definition of concatenation for grids. For j < K

we calculate, as in the previous proof, using monotonicity of concatenation and Theorem 4.42:

(αK(L)++αK(L′))ij =
⊔

n+k=j

((
⊔

Q∈Lin
α0
K(Q))++ (

⊔
Q′∈L′ik

α0
K(Q′)))

w
⊔

n+k=j

⊔
Q∈Lin

⊔
Q′∈L′ik

α0
K(Q)++α0

K(Q′)

=
⊔

n+k=j

⊔
Q∈Lin

⊔
Q′∈L′ik

α0
K(α0

K(Q)++α0
K(Q′))

w
⊔

n+k=j

⊔
Q∈Lin

⊔
Q′∈L′ik

α0
K(Q++Q′). (4.3)

As in the previous proof we compute (for any j):

(L++L′)ij = {Q′′ ∈ L++L′ | α0
K(Q′′) ∈ Qij}

= {Q′′ ∈ {Q++Q′ | Q ∈ L ∩Qmn, Q′ ∈ L′ ∩Qmk} | α0
K(Q′′) ∈ Qij}

= {Q++Q′ | Q ∈ L ∩Qmn, Q′ ∈ L′ ∩Qmk, α0
K(Q++Q′) ∈ Qij},

which allows us to simplify:
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αK(L++L′)ij

=
⊔

Q′′∈(L++L′)ij

α0
K(Q′′)

=
⊔

{Q++Q′ | Q∈L∩Qmn,Q′∈L′∩Qmk,α0
K(Q++Q′)∈Qij}

α0
K(Q++Q′). (4.4)

To show the required inequality for j < K we now just need to show the implication: If
Q ∈ L ∩ Qmn, Q′ ∈ L′ ∩ Qmk, and α0

K(Q++Q′) ∈ Qij then there exists n′ and k′ such that
n′ + k′ = j, Q ∈ Lin′ , and Q′ ∈ L′ik′ . As j < K we must have the equality n+ k = j (both
Q and Q′ has a small number of columns), so choosing n′ = n and k′ = k easily verifies the
implication. Thus the l.u.b. in (4.3) is over a larger set than the l.u.b. in (4.4).

For the case j = K we use Definition 4.47, monotonicity of concatenation, and Prop. 4.33
to compute:

(αK(L)++αK(L′))iK =
⊔

n+m≥K
α0
K(αK(L)in ++αK(L′)im)

=
⊔

n+m≥K
α0
K((

⊔
Q∈Lin

α0
K(Q))++ (

⊔
Q′∈L′im

α0
K(Q′)))

w
⊔

n+m≥K
α0
K(

⊔
Q∈Lin

⊔
Q′∈L′im

α0
K(Q)++α0

K(Q′))

=
⊔

n+m≥K

⊔
Q∈Lin

⊔
Q′∈L′im

α0
K(α0

K(Q)++α0
K(Q′))

w
⊔

n+m≥K

⊔
Q∈Lin

⊔
Q′∈L′im

α0
K(Q++Q′). (4.5)

Again we need to show that the l.u.b. in (4.5) ranges over a larger set than the l.u.b. in
(4.4). That is, if Q ∈ L ∩Qmn, Q′ ∈ L′ ∩Qmk, and α0

K(Q++Q′) ∈ QiK then there exists n′

and m′ such that n′ +m′ ≥ K, Q ∈ Lin′ , and Q′ ∈ L′im′ . As α0
K(Q++Q′) ∈ QiK there must

be n0 and k0 such that n0 + k0 ≥ K, Q ∈ L ∩Qmn0 , and Q′ ∈ L′ ∩Qmk0 . Take n′ = n0 and
m′ = k0 to verify the implication. 2

We have already seen that αK is a monotone function from quad languages ordered by
subset inclusion to grids with the v ordering. This implies the inequality: αK(L)tαK(L′) v
αK(L ∪ L′). The following theorem shows the reverse inequality, stating that αK is a join
homomorphism.

Theorem 4.52 Let L and L′ be quad languages. Then

αK(L ∪ L′) = αK(L) t αK(L′).

Proof. It is not hard to see that (L ∪ L′)ij = Lij ∪ L′ij. Using this fact we can compute:

(αK(L) t αK(L′))ij = αK(L)ij t αK(L′)ij
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= (
⊔

Q∈Lij

α0
K(Q)) t (

⊔
Q′∈L′ij

α0
K(Q′))

=
⊔

Q∈(L∪L′)ij

α0
K(Q)

= αK(L ∪ L′)ij .
2

If we define a vector-grid V by analogy with grids as a vector of vectors such that the i’th
entry Vi of the vector-grid is a vector of length i, then we can define the image of a vector-grid
through a grid as follows.

Definition 4.53 Let V be a K vector-grid and G be a K-grid then img(V,G) is a K vector-
grid with:

img(V,G)j =
⊔

0≤i≤K
img(Vi, Gij).

2

We may also extend the definition of αK to map sets of vectors to vector-grids in the
obvious manner.

By a computation similar to the proof of the corresponding theorem for quad composition,
using Corollary 4.38, we obtain the following:

Proposition 4.54 Let V be a set of vectors, and L a quad language. Then

αK(img(V,L)) v img(αK(V ), αK(L)).

A similar definition and proposition for pre-images can derived by analogous means, but
will not be needed in the following.

4.9 Soundness

This section formulates the general kind of soundness property that one would want for an
analysis based on the dependence algebra technology developed here.

Suppose p is a program mapping stores to stores: p : (S → V ) → (S → V ), where
S is a set of slots, and V is the set of values. Let α be some abstraction function that
abstracts values into properties of interest as in abstract interpretation. If the analysis derives
a dependence quad [[p]] from the program in some fashion, then the soundness of the analysis
can be formulated as the following property:

Property 4.55 Let s and s′ be stores. If p(s) = s′ then

α(s′) v img(α(s), [[p]]),

α(s) v pre([[p]], α(s′)).

The first inequation is just a reformulation of the usual soundness property in abstract
interpretation, whereas the second inequation is dual of this, corresponding to the fact that
quads can be “run” backwards, and thereby provide backwards information flow as well as
forward information flow.

More concrete formulations of soundness are given in the subsequent chapters where con-
crete analyses using the quad framework are presented.
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4.10 Constructing a DAlg-structure

This section describes several ways of constructing DAlg-structures from simpler structures,
in particular from distributive lattices. Recall that a distributive lattice (L,≤,∨,∧) is a lattice
where a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all elements a, b, c ∈ L.

The simplest DAlg-structure is the one-point set with all operations being trivial. Another
simple construction of a DAlg-structure from a distributive lattice (L,≤,∨,∧) is to use the
l.u.b. of the lattice as both + and t, and use the g.l.b. for sequential composition. It is not
hard to see that all the axioms of a DAlg-structure are fulfilled with this construction.

A more elaborate, but important, construction of a DAlg-structure from a distributive
lattice (L,≤,∨,∧) is the one developed in the rest of this section. It will be used in the soft
type inference for actions in Chapter 6. The same construction can be used to construct a
DAlg-structure for a strictness analysis.

The main idea of the construction is to distinguish between may- and must-dependences.
Consider the program:

a := b;
if condition then
x := y;

else
x := z;

end if

after executing this piece of code we know that xmay depend on either y or z, as the condition
is dynamic. In contrast we know that a must depend on b. This distinction is formalized in
the following.

We start from a distributive lattice (think of a sub-typing lattice) (L,≤,∨,∧). We take
two copies of this lattice, and overline the elements of one copy. The overlined elements corre-
spond to must-dependences and the non-overlined elements correspond to may-dependences.
We also add a new element, indep, for a “known” independence between two slots. We write ]
for disjoint set union.

Definition 4.56 Let L be the carrier set of a distributive lattice. Define

Lindep = L ] {a | a ∈ L} ] {indep}.

2

On the carrier set Lindep we define the three operations of l.u.b., sum, and product that
will make it into a DAlg-structure.

Adding two dependences represents the combination of parallel execution paths where
both paths are taken. Adding a must-dependence to a may-dependence represents such a
combination where the may-dependence path may not be taken. To ensure a sound represen-
tation, the result of the sum has to become a may-dependence. The sequential composition
of a may- and a must-dependence also has to become a may-dependence for similar reasons.
The join of two dependences is defined much as the sum, except for the treatment of inde-
pendence. Independence should be neutral with respect to sum, but as join corresponds to
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the combination of parallel execution paths where only one of the paths are taken, joining a
must-dependence with independence, should give a may-dependence, as the must-dependence
path might not be taken.

Definition 4.57 Let (L,≤,∨,∧) be a distributive lattice. Construct the set Lindep as above.
We define the three operations: +, sequential composition, and t as follows. For a, b ∈ L

define:

a+ b = a ∨ b a+ b = a ∨ b
a+ b = a ∨ b a+ b = a ∨ b

ab = a ∧ b ab = a ∧ b
ab = a ∧ b ab = a ∧ b.

For the indep case: for any x ∈ Lindep:

indep + x = x = x+ indep, and indep x = x indep = indep,

This makes indep into the zero, 0, of the structure. The unit, 1, of Lindep is the overlined
copy of the top of the original lattice, L. We define t to be commutative, and for all a, b ∈ L
satisfy:

indep t indep = indep a t b = a ∨ b
a t indep = a a t b = a ∨ b
a t indep = a a t b = a ∨ b.

2

The above construction makes the v ordering of Lindep into a join semi-lattice without a
bottom element. Also note that none of the new operations are l.u.b. or g.l.b. with respect to
the ≤ ordering.

In the following, as well as in the above definition, we use the convention that variables
ranging over Lindep are named x, y, z, . . ., whereas variables ranging over L are named a, b, c, . . .

The lack of a bottom element means that monotone endo-functions on the Lindep structure
do not necessarily have a least fixed point. This also means that we shall use the method
described in Section 4.2.1 to compute approximations of fixed points for this DAlg-structure.

The alternative of adding an artificial bottom element to the structure was also considered,
but extending the other operations to operate sensibly on the extra element proved to be
cumbersome. The lack of a proper semantic explanation of the artificial bottom also was a
reason for not adding such an element.

There are two minimal elements of the Lindep structure with respect to the v ordering: the
overlined copy of the bottom of the original lattice L, and the new element: indep. The indep
element corresponds to not running the code at all as that would leave the outputs independent
of the inputs. So starting iteration from indep does not make sense in a must/may analysis,
as there would be no must-dependences if we always had to take the possibility of not running
the function at all into consideration.

In the following we investigate the structure of the Lindep construction above and argue
that it satisfies the axioms of a DAlg-structure.
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The t operation is easily seen to be commutative and idempotent since ∨ is. By using
the associativity of ∨ and examining each of the 27 cases of x, y, and z being of the forms
a, a, and indep, one can verify that t is associative.

We next examine the ordering introduced the the t operator. It is reflexive and transitive
by the idempotency and associativity of t, respectively. Let a ∈ L then

indep t a = a ⇐⇒ indep v a,

that is, indep is below all bare elements of Lindep. However, it is not below overlined elements:

indep t a 6= a ⇐⇒ indep 6v a.

The v ordering is related to the ≤ ordering of the lattice L via the following: for a, b ∈ L:

a ≤ b ⇐⇒ a ∨ b = b ⇐⇒ a t b = b ⇐⇒ a v b,

and

a ≤ b ⇐⇒ a ∨ b = b ⇐⇒ a ∨ b = b ⇐⇒ a t b = b ⇐⇒ a v b.

The relation between overlined and non-overlined elements is determined by:

a v b ⇐⇒ b = a t b = a ∨ b ⇐⇒ a ≤ b.

As an example consider the two point lattice S = ({0, 1},≤,∨,∧) with 0 ≤ 1. The Hasse
diagram of the v ordering of S indep is pictured below:

1
0

1
0
indep

The commutativity of + follows from the commutativity of ∧, and idempotency of +
follows likewise. Associativity of + is proved as for t by examining each of the 27 cases
and using associativity of ∧. The neutral element for + (0) is indep. We formulate the
monotonicity of + as the following lemma.

Lemma 4.58 Let x, y, z ∈ Lindep. Then

x v y ⇒ x+ z v y + z.

Proof. Let a, b, c ∈ L. There are 4 cases, and for each case z may be of one of the forms
indep, c, or c. For z = indep the result is trivial because indep is neutral for +.

1. x = a v b = y : if z = c we have x+ z = a+ c = a ∨ c ≤ b ∨ c = b+ c = y + z. If z = c

we have x+ z = a+ c = a ∨ c ≤ b ∨ c = b+ c = y + z. In both cases we use the above
characterization of v to get the desired inequality.

2. x = indep v b = y : if z = c we have x+ z = indep + c = c ≤ b ∨ c = y + z. If z = c we
have x+ z = indep + c = c v c ≤ b ∨ c = y + z.

3. x = a v b = y : if z = c we have x + z = a + c = a ∨ c ≤ b ∨ c = y + z. If z = c then
x+ z = a+ c = a ∨ c v a ∨ c ≤ b ∨ c = z + y.
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4. x = a v b = y : if z = c we have x+ z = a+ c = a ∨ c ≤ b ∨ c = b+ c = y + z. If z = c

then x+ z = a+ c = a ∨ c v b ∨ c = b+ c = y + z.

2

The previous arguments have ensured that the DAlg axioms for t and + are satisfied.
Next we investigate the sequential composition operation. The unit 1 of the DAlg-structure
was defined as the overlined copy of the top of the underlying lattice, so it is not hard to
see that the (unit) axiom is satisfied. In the two point lattice example above, we get 1 = 1.
Likewise, the (annihilator) axiom is satisfied by construction: 0 = indep.

We formulate the distributivity of · over + as a lemma.

Lemma 4.59 Let x, y, z ∈ Lindep. Then

x(y + z) = xy + xz.

Proof. If x = indep both sides are indep. If y = indep then x(indep + z) = xz = indep + xz =
x · indep+xz, and likewise for z = indep. There are therefore 8 cases to consider: each of x, y, z
may be overlined or not. Using the distributivity of L, that: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) it
is trivial to verify each case. 2

It is not hard to see that the definition of · is commutative in this particular case, so
distributivity from the other side follows.

It now only remains to verify the monotonicity of the sequential composition. The proof
follows the same idea as the monotonicity of +.

Lemma 4.60 Let x, y, z ∈ Lindep. Then

x v y ⇒ xz v yz.

Proof. Let a, b, c ∈ L. There are 4 cases, and for each case z may be of one of the forms
indep, c, or c. For z = indep the result is trivial because indep is an annihilator for sequential
composition.

1. x = a v b = y : if z = c we have xz = ac = a ∧ c ≤ b ∧ c = bc = yz. If z = c we have
xz = ac = a∧ c ≤ b∧ c = bc = yz. In both cases we use the above characterization of v
to get the desired inequality.

2. x = indep v b = y : if z = c we have xz = indep ≤ b ∧ c = yz. If z = c we have
xz = indep ≤ b ∧ c = yz.

3. x = a v b = y : if z = c we have xz = ac = a ∧ c ≤ b ∧ c = yz. If z = c then
xz = ac = a ∧ c v a ∧ c ≤ b ∧ c = zy.

4. x = a v b = y : if z = c we have xz = ac = a ∧ c ≤ b ∧ c = bc = yz. If z = c then
xz = ac = a ∧ c v b ∧ c = bc = yz.

2

We summarize the preceding arguments into the following theorem.

Theorem 4.61 Let L be a distributive lattice. The algebraic structure Lindep constructed in
Definition 4.57 is a DAlg-structure.
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4.11 Reverse Images

In soft type inference we only want to require an input argument to be of a certain type if
we are sure it is needed to be of that type. If the argument needs to be an integer in only
one of the branches of a conditional we will not require it to be an integer.

The foundation for the must/may distinction among dependences was established in the
previous section, but the pre-image construction given earlier does not take advantage of this
distinction, as it treats all dependences equally.

This section defines the notion of a reverse image which discards information about may-
dependences, and computes more accurate information about necessary input types using the
must-dependences.

The soundness property that we want from an analysis built on these instruments is that:
if a program executes successfully then the reverse image of its output through the quad that
models the program is a safe approximation of the actual input that the program received
from the start.

Definition 4.62 Let L be a distributive lattice with top >, and let a ∈ L. Define the
function Ψ : Lindep → L as:

Ψ(indep) = >
Ψ(a) = >
Ψ(a) = a.

2

The intuition that one should have about the Ψ function is that it “forgets” may-dep-
endences and independence by converting them to top. This allows us to retain only the
must-dependences of a quad, which are then used to compute the reverse image of an output
vector.

To establish a number of inequalities we compute the following table: Let x, y ∈ Lindep,

and a, b ∈ L.

x y Ψ(x) Ψ(y) x t y x+ y xy Ψ(x t y) Ψ(x+ y) Ψ(xy)

indep indep > > indep indep indep > > >
a indep > > a a indep > > >
a indep a > a a indep > a >

indep b > > b b indep > > >
a b > > a ∨ b a ∨ b a ∧ b > > >
a b a > a ∨ b a ∨ b a ∧ b > > >

indep b > b b b indep > b >
a b > b a ∨ b a ∨ b a ∧ b > > >
a b a b a ∨ b a ∨ b a ∧ b a ∨ b a ∨ b a ∧ b

From the above table we can deduce the following inequalities relating algebraic operations
on the Lindep structure to the lattice structure of L via the Ψ function.

Proposition 4.63 Let x, y ∈ Lindep. Then

Ψ(x) ∧Ψ(y) ≤ Ψ(xy),

Ψ(x) ∧Ψ(y) ≤ Ψ(x+ y) ≤ Ψ(x) ∨Ψ(y).
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We can also see from the table that Ψ is a join homomorphism and thereby monotone.

Proposition 4.64 Let x, y ∈ Lindep. Then

Ψ(x t y) = Ψ(x) ∨Ψ(y).

We define the reverse image of a vector v over L through a matrix as follows. The input
required to get the output v must satisfy the conjunction of all the requirements on all the
must-paths from input to output. Alluding to the low-pass filter analogy, the input must be
of a sufficiently low frequency to pass through all the filters on the way from input to output.
We write

∏
1≤i≤n xi for the n-vector (x1, x2, . . . , xn).

Definition 4.65 Define the reverse image of an n-vector v over L through a matrix A ∈
Mmn(Lindep) as:

rev(A, v) =
∏
i

(
∧
k

Ψ(Aikvk)).

2

Consider the matrix pictured below, with three input slots and one output slot. The
output is connected to the second input slot via a may-dependence b, and to the third input
slot via a must dependence a. The output is independent of the first input slot.

b v
a

Suppose v is the type of the output, and we want the reverse image of v under the matrix.
With the above definition of rev() we get (>,>, v ∧ a) = rev(A, v).

For a quad over Lindep we define the reverse image as follows. Here the input must satisfy
the requirements of the matrix, as well as the requirements of the sink vector. We extend Ψ
componentwise to vectors over Lindep.

Definition 4.66 Let Q = (s,A, t, u) ∈ Qmn(Lindep), and let v an n-vector over L then define:

rev(Q, v) = rev(A, v) ∧Ψ(t).

2

Observe that the definition of rev consists entirely of monotone functions (overlining is
clearly monotone), so rev is monotone in both its arguments, stated formally below.

Proposition 4.67 Let Q,Q′ ∈ Qmn(Lindep), and let v, v′ be n-vectors over L. Then

Q v Q′ and v ≤ v′ ⇒ rev(Q, v) ≤ rev(Q′, v′).

The rev function is additive in its second argument.

Lemma 4.68 Let Q ∈ Qmn(Lindep), and let v,w be n-vectors over L. Then

rev(Q, v ∧ w) = rev(Q, v) ∧ rev(Q,w).
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Proof. By monotonicity we get the inequality:

rev(Q, v ∧ w) ≤ rev(Q, v) ∧ rev(Q,w).

The converse inequality follows by using idempotency and commutativity of the product in
this particular DAlg-structure plus Prop. 4.63: Let Q = (s,A, t, u), and compute:

rev(Q, v ∧w)i =
∧
k

Ψ(Aik(v ∧ w)k) ∧Ψ(ti)

=
∧
k

Ψ(Aikvkwk) ∧Ψ(ti)

=
∧
k

Ψ(AikAikvkwk) ∧Ψ(ti)

=
∧
k

Ψ(AikvkAikwk) ∧Ψ(ti)

≥
∧
k

Ψ(Aikvk) ∧Ψ(Aikwk) ∧Ψ(ti)

= rev(Q, v)i ∧ rev(Q,w)i .

2

We want to prove that taking the reverse image under the composition of two quads is
less precise than taking the reverse image under each quad separately. First we need some
intermediate results. The first lemma characterizes a part of the definition of rev.

Lemma 4.69 Let a, b ∈ L. Then:

Ψ(indep a) = >
Ψ(ba) = >
Ψ(ba) = b ∧ a.

Proof. Simple computation. 2

Lemma 4.70 Let x ∈ Lindep, and y ∈ L ∪ {indep}. Then

Ψ(x) ≤ Ψ(x+ y).

Proof. See the table on page 91. 2

The next lemma relates rev to matrix multiplication and Ψ.

Lemma 4.71 Let A ∈Mmn(Lindep), and let v be an n vector over Lindep. Then

rev(A,Ψ(v)) ≤ Ψ(Av).
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Proof. Let M = {k | Aik = bk}, that is, the set of column indices such that Aik is overlined.
Using first the definition of rev we compute:

rev(A,Ψ(v))i =
∧
k

Ψ(AikΨ(vk))

=
∧
m∈M

bm ∧Ψ(vm) (Lemma 4.69)

=
∧
m∈M

Ψ(bm) ∧Ψ(vm)

≤
∧
m∈M

Ψ(bmvm)

≤ Ψ(
∑
m∈M

Aimvm)

≤ Ψ(
∑
k

Aikvk) (Lemma 4.70)

= Ψ(Av)i

2

The following proposition shows the desired result for matrices over Lindep.

Proposition 4.72 Let A ∈ Mmn(Lindep), A
′ ∈ Mnl(Lindep), and let v be an l-vector over L.

Then
rev(A, rev(A′, v)) ≤ rev(AA′, v).

Proof. By definition we have:

rev(A, rev(A′, v)) =
∏
i

∧
j

Ψ(Aij
∧
k

Ψ(A′jkvk)).

and
rev(AA′, v) =

∏
i

∧
k

Ψ((
∑
j

AijA
′
jk)vk).

As the ≤ ordering is defined componentwise we need to show:

∧
j

Ψ(Aij
∧
k

Ψ(A′jkvk)) ≤
∧
k

Ψ((
∑
j

AijA
′
jk)vk) (4.6)

for any i. If the right hand side is > there is nothing to prove. So suppose∧
k

Ψ((
∑
j

AijA
′
jk)vk) < >.

Then there is a non-empty set V of k’s such that

(
∑
j

AijA
′
jk)vk = ak
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for some ak ∈ L. By the definition of sum and product in this particular kind of DAlg-
structure this in turn means that there are bk ∈ L such that for all i ≤ m, and k ∈ V :∑

j

AijA
′
jk = bk,

and consequently the existence of a non-empty set P of p’s such that cpk, dpk ∈ L andAip = cpk
and A′pk = dpk. If there was a j such that AijA

′
jk is neither overlined nor indep then by the

definition of + the sum couldn’t be overlined. With this we can now write:

bk =
∑
j

AijA
′
jk =

∑
p∈P

AipA
′
pk.

(
∑
p∈P

AipA
′
pk)vk = (

∨
p∈P

cpk ∧ dpk) ∧ vk,

and in turn:

Ψ((
∑
j

AijA
′
jk)vk) = (

∨
p∈P

cpk ∧ dpk) ∧ vk. (4.7)

For all k ∈ V and all p ∈ P we have: A′pkvk = dpk ∧ vk, and in turn:∧
q≤l

Ψ(A′pqvq) ≤ dpk ∧ vk,

as we take the greatest lower bound over a larger set. By monotonicity we then get for p ∈ P :

Aip
∧
q

Ψ(A′pqvq) v cpk(dpk ∧ vk)

this means that we get:

Ψ(Aip
∧
q

Ψ(A′pqvq)) ≤ cpk ∧ dpk ∧ vk

and ∧
j

Ψ(Aij
∧
q

Ψ(A′jqvq)) ≤
∧
p∈P

Ψ(Aip
∧
q

Ψ(A′pqvq)),

therefore: ∧
j

Ψ(Aij
∧
q

Ψ(A′jqvq)) ≤
∧
p∈P

cpk ∧ dpk ∧ vk. (4.8)

By comparing equations (4.7) and (4.8) and observing that:∧
p∈P

cpk ∧ dpk ∧ vk ≤
∨
p∈P

cpk ∧ dpk ∧ vk,

for all k ∈ V , we get (4.6) as desired. 2
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Exploiting the two previous statements we can now prove that taking the reverse image
under two quads separately is more precise than taking the reverse image under the composi-
tion of the two quads. Conversely, taking the reverse image of a vector under the composition
of two quads is a safe approximation of the reverse image under the two quads separately.
Like Theorem 4.16 on page 70 this will prove important in the soundness proof in Chapter 6.

Theorem 4.73 Let Q = (s,A, t, u) ∈ Qmn(Lindep), Q
′ = (s′, A′, t′, u′) ∈ Qnl(Lindep), and let

v be an l-vector over L. Then

rev(Q, rev(Q′, v)) ≤ rev(QQ′, v).

Proof. Using Lemma 4.68, Prop. 4.72 and Lemma 4.71 we compute:

rev(Q, rev(Q′, v)) = rev(A, rev(Q, v)) ∧Ψ(t)

= rev(A, rev(A′, v) ∧Ψ(t′)) ∧Ψ(t)

= rev(A, rev(A′, v)) ∧ rev(A,Ψ(t′)) ∧Ψ(t)

≤ rev(AA′, v) ∧Ψ(At′) ∧Ψ(t)

≤ rev(AA′, v) ∧Ψ(At′ + t)

= rev(QQ′, v).

2

The reason for calling the rev-function a more precise pre-image is embedded in the
following proposition.

Proposition 4.74 Let Q = (s,A, t, u) ∈ Qmn(Lindep), and let v be an n-vector over Lindep.
Then

rev(Q,Ψ(v)) ≤ Ψ(pre(Q, v)).

Proof.

rev(Q,Ψ(v)) = rev(A,Ψ(v)) ∧Ψ(t)

≤ Ψ(Av) ∧Ψ(t)

≤ Ψ(Av + t)

= Ψ(pre(Q, v)).

2

The next lemma follows directly from the definition of + and sequential composition
on Lindep.

Lemma 4.75 For a, b ∈ L the following inequalities hold:

a+ b = a ∨ b ≥ a ∧ b,
ab = a ∧ b.

The connection between rev and concatenation is given in the next theorem.
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Proposition 4.76 Let A ∈Mmn(Lindep), B ∈Mml(Lindep), and let v be an n-vector over L,
and w be an l-vector over L. Then

rev(A++B, v++w) = rev(A, v) ∧ rev(B,w).

Proof.

rev(A++B, v++w)i =
∧
k

Ψ((A++B)ik(v++w)k)

= (
∧
k≤n

Ψ(Aikvk)) ∧ (
∧

n<k≤n+l

Ψ(Bi(k−n)wk−n))

= rev(A, v)i ∧ rev(B,w)i .

2

Theorem 4.77 Let Q = (s,A, t, u) ∈ Qmn(Lindep), Q
′ = (s′, A′, t′, u′) ∈ Qml(Lindep), let v be

an n-vector over L, and let w be an l-vector over L. Then

rev(Q, v) ∧ rev(Q′, w) ≤ rev(Q++Q′, v++w).

Proof.

rev(Q++Q′, v++w) = rev((s++ s′, A++A′, t+ t′, u+ u′), v++w)

= rev(A++A′, v++w) ∧Ψ(t+ t′)

= rev(A, v) ∧ rev(A′, w) ∧Ψ(t+ t′)

≥ rev(A, v) ∧ rev(A′, w) ∧Ψ(t) ∧Ψ(t′)

= rev(Q, v) ∧ rev(Q′, w).

2

4.12 Discussion

As most other program analysis methods, the dependence algebra method can be placed in
the framework of abstraction interpretation [CC77, CC79b]. Leaving out many formal details,
that setup is as follows. Given a concrete semantics τ : P → (A→ A), where P is the set of
program terms, and A the semantic domain (integers, stores, predicates, . . .), one defines a
family A of subsets of A that characterizes the information of interest. From this family of
subsets one can derive a “concretization” function γ : L → A, where L is a complete lattice
representation of A. The function γ has an adjoined function α : 2A → L, the so-called
abstraction function. From the given concrete semantics and the choice of A, a best (most
accurate) approximate semantic (abstract interpretation) function t : P → (L → L) can be
derived as t(P )(a) = α(τ ′(P )(γ(a))). Here τ ′ : P → (2A → 2A) is the so-called accumulating
semantics, defined in the obvious way.

Apart from the extensional definition, little emphasis is placed on the nature of the approx-
imate semantic function t. The dependence quads developed here can be seen as concrete
representations of approximate semantic functions with more structure than merely being
functions. As an analogy note that the set of linear functions between multi-dimensional real
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vector spaces is included in the set of smooth functions between topological spaces. The linear
functions and the associated matrix calculus nevertheless deserves special study. The added
structure provides less flexibility than the totally general notion of a function, however, more
information may be extracted from the concrete representations.

If q : P → Qmn derives a dependence quad from a program term, its correspondence to
the approximate semantic function t : P → (L→ L) is: img(x, q(p)) ≈ t(p)(x). However, the
quad q(p) supports the notion of pre-image and, possibly, reverse-image, not supported by
the approximate semantic function t.

Even though the section on grids defined notions of an abstraction function αK and a
corresponding concretization function γK , those functions are not to be confused with the ab-
straction and concretization functions of an abstract interpretation analysis using dependence
grids as a tool. The abstraction functions of the Cousot framework map from the semantic
value domain into the abstract value domain, whereas the grid abstraction serves to provide
finite representations of already abstract functions. The two sets of functions serve similar
purposes but at different levels.

Many program analyses can be formulated in terms of type systems. A (monomorphic)
type system associates information about acceptable input and possible output with program
functions. Polymorphic type systems can also encode dependences between inputs and out-
puts, as in the function type (α, β, γ) → (α, γ), where the use of the same type variable on
both sides of the arrow signifies a connection between inputs and outputs. Types are usually
derived from program syntax in a compositional manner by means of type rules. In languages
without explicit type declarations, the type of a term cannot usually be computed directly
by means of the specified type rules. Instead a separate type inference algorithm must be
provided and shown correct with respect to the type rules.

The similarity between dependence algebra-based analysis and polymorphic type systems
is that both frameworks provide for the encoding of dependences between inputs and outputs.
But whereas this dependence is central in the approach developed here, it merely serves to
parameterize types of functions so that a function with a given type may be used in different
type contexts. Even a combination of polymorphism and sub-typing does not allow the simple
encoding of restricted dependences between inputs and outputs provided by the dependence-
based approach. On the other hand, type systems are better suited for the analysis of higher-
order programs than the dependence-based approach which is best suited for analysis of
first-order programs. A dependence algebra-based analysis can, however, be developed for a
higher-order language as shown in Chapter 6.

Dependence algebra-based analysis also bears some resemblance to projection-based anal-
ysis [WH87, Lau87]. In projection-based analysis, the goal is to transfer representations of
demands on the result of a function to representations of demands on the arguments of the
function. Suppose f is a program function of one argument, and consider the call to f in the
context “f(x) + 7”. Here the demands on the results of the function could be that the result
must be an integer. In projection-based analysis, a backwards map f# is associated to each
program function, translating demands on the result of f into demands on the arguments to
f. And in particular, this backwards map is represented as a projection (a continuous, non-
increasing, idempotent function on a partial order). As such, projections are closely related
to the backwards part of dependence algebra-based analysis: the pre-image and the inverse
image. However, dependence algebra integrates both forwards and backwards analysis, and
more technically: dependence algebra allows composition, whereas the composition of two
projections is not necessarily a projection.
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4.13 Summary

We have introduced the notion of a dependence algebra and given the axioms for such an
algebra. On top of this we defined matrices over such an algebra and extended the operations
of composition, join and sum to matrices such that the set ofm×mmatrices over a dependence
algebra forms a DAlg-structure as well.

Furthermore, the notion of dependence quads was built on top of the matrices, in order
to model constructs that work solely as data consumers or solely as data producers. The
algebra of quads was explored and equipped with sum, multiplication and join. The notion
of the image of a vector through a quad will prove to be important in the following chapters.

Then the operation of concatenation of matrices and quads was defined, with the goal of
modeling concatenation of data tuples in Chapter 6.

A sound finite approximation of infinite sets of quads was developed, and sound approxi-
mations of the operations on sets of quads were developed for these so-called grids.

In section 4.10 we defined a particular non-trivial construction of a DAlg-structure that
will be used in Chapter 6 to provide abstractions of the sub-sort lattice inherent in an action
semantic specification. On top of this construction we defined the notion of reverse image
of a vector through a quad, a notion that will be crucial in the analysis of action semantic
specifications.
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Chapter 5

Trust Analysis for C

5.1 Introduction

This chapter describes the combination of the theory of dependence quadruples with the
notion of trust analysis in the implementation of a trust analyzer for the C programming
language [KR88]. In so doing the chapter explores the practical implementability of both of
the two theoretical pillars of this thesis.

If trust analysis is to be useful in practice it must be implemented for a real life pro-
gramming language. Only then can it be tested, not on toy examples, but on real programs.
Also, it should be implemented for a language where there is a substantial body of existing
programs for which such an analysis could be useful.

The C programming language is a real-life, mature programming language, and as such
presents many practical problems from the program analysis point of view. For a program
analysis to be truly useful it must deal reasonably with most of these problems. The problems
include: a forgiving type system with type casts, unrestricted pointer arithmetic, pointers
to functions, a context sensitive grammar due to typedefs, global variables shared among
compilation units, functions with a variable number of arguments, arbitrary control flow
(i.e., goto), and implementation defined evaluation order of certain expressions. In order to
be useful in practice the analyzer also has to handle existing unannotated header files and
libraries where the source code is not available.

The implementation deals with all of these problems in a more or less satisfactory way.
Typecasts, typedefs, global variables, functions with a variable number of arguments, gotos,
and implementation defined evaluation order are all handled gracefully by the current imple-
mentation.

The simplest way to introduce the concept of trust into C would be to add explicit trust
types, so every variable would have to be declared either trusted or untrusted. The analyzer
presented here permits such declarations, but the programmer is allowed to omit most of
them. Instead the built-in functions trust and check are used at appropriate points in the
program to tell the analysis that some data may from now on be trusted (presumably after
appropriate validation), and that a variable must be trustworthy at a certain point. The
analysis will recognize these functions and infer trust information about variables from their
use. The benefit of this is that the programmer need not write as many declarations, and that
the same variable can hold both trusted and untrusted values at different points in its lifetime.
This may be regarded as a sort of flow-sensitivity with respect to trust. The function:

101
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int f(int a, int b) {

a = trust(b);

check(a);

a = distrust(b);

...

}

may be used in different places: sometimes with a trustworthy second argument, and some-
times with an untrustworthy second argument. Notice how a is used to hold both trusted
and untrusted data.

As a good points-to analysis has not been implemented, pointers and things that they
might point to have to be explicitly declared to be either trusted or untrusted. This restriction
is enforced by the analyzer to make sure that it is able to determine the trustworthiness of a
value obtained by a pointer dereference. The main reason for the lack of a points-to analysis
is the requirement that the analysis should be modular: the analysis should be able to analyze
individual source code files separately.

The present chapter first gives a short overview of the implementation, then describes the
phases of the analyzer in more detail starting with the syntactic aspects of C. The internal
representation of programs is described and given a formal semantics in terms of a stack
machine. The notion of control dependence is defined, and an algorithm for decorating control
flow graphs with control dependence information is given. Then the actual analysis working
on the internal representation is described in detail, and a soundness proof with respect to
the semantics of the internal representation is given. Finally a discussion and a comparison
with Chapter 2 concludes.

5.2 Overview of the Implementation

The trust analyzer for C consists of several phases each of which are discussed in the following
sections. This section provides an overview of the phases.

The trust analyzer is implemented as two programs: a front-end (tcc) written in Perl,
providing the necessary glue between the trust analyzer and the real C compiler. From the
users’ point of view tcc acts as a C compiler with all the features and command line options
of the underlying compiler as well as some extra options that are sent to the trust analyzer.
To use the trust analyzer on a set of C programs, all the user has to do is to change his C
compiler command in his Makefile from e.g. gcc to tcc.

The front-end is also responsible for sending the source file(s) through the C preprocessor
before submitting them for analysis one at a time.

The real trust analyzer, called tca, is implemented in around 7000 lines of C++ code,
and the phases of this program are:

• parsing, building a syntax tree, and type checking;

• compiling the syntax tree to the internal control flow graph (CFG) representation;

• computing the post-dominator tree for each function;

• decorating the control flow graph with control dependences;
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• topological sorting of the static call-graph;

• trust analyzing the internal representation.

There are three reasons for this phased approach: the analyzer does not have to deal with
all the problems at once; the analysis becomes faster as the hard parts can work on a tailored
representation instead of source code terms, and finally, the translation to a CFG enables a
uniform treatment of all kinds of unstructured local control flow.

Looked at from a sufficiently great distance the analysis can be seen as two transformations
of the source program: transformation into the internal CFG form, and transformation of the
CFG into a dependence quad representing the data flow of the program. The first transforma-
tion is mainly accomplished in phase two of the analyzer, whereas the second transformation
takes place in the final phase. The remaining phases exist to support these transformations.

We first show a few examples of the use of the implementation. The first example illus-
trates the analysis of conditionals.

Example 1 Running the analyzer with the -Tdeps flag makes it print out the dependences
between variables before and after execution of the procedure. The special distrust function
returns its argument in untrusted form. The printout shows that a is found untrusted as
expected, and that b (after foo) depends on b (before foo, in case a is false) and c (before
foo), and that b is untrusted after foo (because of the indirect dependence on a).

% ./tca -Tdeps

int a,b,c;

foo() {

a = distrust(1);

if (a) {

b = c;

}

}

^D

foo:

untrusted b: b, c

c: c

untrusted a:

�

Example 2 This example illustrates the inter-procedural nature of the analysis:

% ./tca -Tdeps

int

f(int x, int y, int z, int w)

{

if (x) return y; else return z;

}

int r;

void
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g(int a, int b)

{

int t;

t = f(a,b,b,t);

r = t;

return t;

}

^D

f:

r: r

y: y

x: x

w: w

z: z

returnvalue: y, x, z

g:

r: a, b

a: a

b: b

returnvalue: a, b

Here we see that the return value of f depends on x,y, and z, but not on w. This is used
in the analysis of g where the return value t is found to depend on a and b, but not on the
previous value of t. �

Example 3 In this example we show the effect of the check construct.

% ./tca -Tdeps

int y,c;

main(int x)

{

if (c)

check(x);

else

y = x;

}

^D

main:

c: c

y: c, y, x

trusted x: x

returnvalue: <out of scope>

The output of the analyzer should be interpreted as: c after main depends on c before
main, y after main depends on c, y, and x before main, and x after main depends on x before
main, and finally: x before main must be trustworthy (the printout format from the program
is rather confusing at this point). Also, there’s no return statement in the program, so the
return value is reported as “out of scope.” �
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5.3 Parsing and Type Checking

The first phase of the analyzer parses a source code file into a syntax tree. The syntax of C
requires the parser to have knowledge of types and variable scope, one cannot simply parse a
program into a syntax tree and handle the types afterwards. The reason for this awkwardness
is the typedef construct. The following program illustrates the problem:

int x;

foo() {

typedef int T;

T * x;

}

bar() {

int T;

T * x;

}

The line “T * x;” in foo() must be parsed as a declaration of the local pointer variable
x, whereas in bar(), the same line must be parsed as a multiplication expression. Notice also
that typedefs are scoped like variables: the definition of T in foo() is not visible in bar().

The solution to this problem is to define types as soon as each declaration is parsed, and
feed type and scope information back into the lexical analyzer. This way the parser sees
different tokens for typedef’ed names and variables.

Another minor problem with the syntax of C is that part of the type information in a
declaration is part of the variable declarator:

unsigned int x, *y, *z[];

This declares the three variables x, y, and z to be of type integer, pointer to integer,
and array of pointers to integers, respectively. Internally in a program analyzer one would
like a map from identifiers to types, so one has to parse the prefix type (unsigned int) and
while parsing the variable declarators “extend” this prefix type to the requisite type for each
variable.

There are two well-known C compilers available with source code: The GNU C compiler
GCC [Sta95], and the LCC compiler by Fraser and Hanson [FH91, FH95]. It was considered to
re-use the parser parts of either of these compilers in building the C analyzer, but eventually
no code from these compilers was re-used. The primary reason is that in both compilers the
parser is knitted closely together with the transformation to an internal representation. At
no point is an entire syntax tree generated. This makes it very hard to extract just the parser
parts and re-fit them for another internal representation.

Instead the parser for this project started from the free lex and yacc code available from
the comp.compilers archives. That parser was then extended to support full ANSI C, as
well as the syntax extensions particular to the trust analysis. The yacc code comes without
semantic action code so it was necessary to write a new type-checker to go with the parser.
The type checker is not as strict as it should be in a real C compiler. Type checks are only
made to a degree so that subsequent phases of the analyzer won’t fail. After analysis the
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program is submitted to a real C compiler which will tell the user about any further type
errors. The lexical analyzer is generated with the GNU flex tool, and the parser is generated
using the bison parser generator.

5.3.1 Syntax Extensions

We extend the syntax of C to allow the programmer to specify global trust constraints on
variables. We add the keywords trusted and untrusted as type qualifiers similar to the
keywords const and volatile. With these one may write declarations such as:

trusted int x;

untrusted int * trusted p;

This declares x as an integer that must always hold a trusted value, and p as a trusted
pointer to an untrusted integer.

We add three predefined functions: trust, distrust, and check each acting as the iden-
tity on values. Trust and distrust return their argument in trusted or untrusted form,
respectively. Check performs an analysis-time check that the argument is trustworthy, other-
wise an error message will be generated. They are used as in the following statements:

y = trust(x);

z = distrust(k);

w = check(a + b);

The first assignment informs the analysis that y is assigned the value of x and that it is
trustworthy. The second assignment assigns z the value of k and informs the analysis that z
cannot be trusted. The last assignment checks that the value of the addition of a and b is
trustworthy and assigns the result to w. The analysis infers that for a+b to be trustworthy
both a and b are required to hold trustworthy values at that point in the program.

All three functions are entirely analysis-time: they are removed from the program text by
the preprocessor before the program is submitted to the actual compiler.

Separate analysis of program modules, and analysis of programs that use library functions
with no available source code should be possible. We add some syntax allowing the program-
mer to annotate the prototype of a function with information about how the function acts
with respect to trust. This amounts to specifying summary information about the internal
dependences of the function.

The added prototype syntax is enough to be able to specify an arbitrary dependence quad
corresponding to the function. The BNF syntax of the additions is given below. We write
superscript ‘+’ for a sequence of one or more items, and superscript ‘?’ for optional items.

MatDeclarator ::= << MatDecl+ >>

MatDecl ::= Slot:SlotList?; | trusted Slot:SlotList?;

| untrusted Slot:SlotList?;

Slot ::= BareSlot | BareSlot trusted

| returnvalue | returnvalue trusted

BareSlot ::= Identifier | BareSlot.Identifier

SlotList ::= Slot | SlotList,Slot
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A slot is either a variable or a field in a structure. Writing “a: b,c;” means that the
value of the variable a after execution of the procedure depends on the values of the variables
b and c before execution of the procedure. Writing “trusted a: b,c;” in addition means
that the value of a is required to be trustworthy before execution of the procedure. Writing
“a: b trusted, c;” means that there is a trusted dependence between b and a in the
procedure. Writing “untrusted a: b,c;” means that a is untrusted after execution of the
procedure. This notation is quite confusing, but was easy to implement.

The following example prototype informs the analysis that the function f() needs the
global variable x to be trusted; and that its return value has the same trustworthiness as its
argument:

int f(int *p) << trusted x:; returnvalue: p; >>;

Notice that the returned C type of f() and the C type of the argument p need not be
the same, the dependence encoded by “returnvalue: p;” does not relate directly to the C
type.

5.4 The Internal Representation

As soon as the C program is parsed and type-checked, the resulting syntax tree is compiled
into the internal representation. The rich abstract syntax tree of the C program (there
are more than 60 different node types) is translated into a non-standard control flow graph
(CFG) with stack machine operations in the operation nodes. The control flow graph is non-
standard in that all nodes have fixed in-degree and out-degree. When control paths split as
in the branches of a conditional they split at a special fork node with two successors, and
when control paths meet (for example after a conditional) they meet at a special join node
with exactly two predecessors. This makes the control flow graph have more nodes than in
a standard CFG, but only by a small constant factor (standard CFG’s also have bounded
out-degree, and thus the number of edges |E| = O(|V |) where |V | is the number of vertices
in the graph). The advantage of this representation is that the algorithms become simpler
as one only has to care about paths that meet in the join nodes. A depth-first traversal, for
example, need only color the join nodes to avoid looping as every loop must contain a join
node.

There are 6 different node types in the control flow graph:

• StackOp: a stack machine operation. The various stack machine operations are de-
scribed separately below.

• Fork: a fork in the control flow graph. This is the only type of node in the CFG that has
two successors. The are two variants of fork nodes: one corresponding to a conditional
which pops a boolean off the evaluation stack, and an unconditional one corresponding
to gotos. We draw a fork node as triangle with the control flow entering at the top and
leaving through the two edges at the bottom.
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• Join: a node where two control flow paths meet. This is the only kind of node that has
two predecessors. A join node is drawn as a fork node up-side down with the control
paths entering at the top and exiting at the bottom:

• Call: a node corresponding to a procedure call. It holds information about the number
of parameters to pass, which procedure to call etc.

• Fundef: a node corresponding to a function definition. It holds information about the
number of local variables, number of parameters, etc.

• Skip: a no-operation node which is useful during the generation of the CFG.

There is also a seventh kind of CFG node which is used for gotos only during the generation
of the CFG, and which is replaced by a fork node in the process of fixing up gotos to labeled
statements. Join nodes are inserted at the target of the jump to keep the in-degree of all
nodes fixed.

5.5 The Stack Machine

The stack machine has the following operations.

• push: pushes the contents of a slot onto the stack.

• store: stores the top of the stack into a given slot. Leaves the stack unchanged.

• bin: a binary operation like + or −. These are not distinguished as they must all be
treated the same in the trust analysis. This operation takes the two topmost values off
the stack and pushes their composition.

• pop: takes the top off the stack.

• check: checks whether the top of the stack is trustworthy, and otherwise stops the
execution.

• trust: makes the top of the stack trustworthy.

• distrust: makes the top of the stack untrustworthy.

The store operation leaves the stack unchanged. This is to model the C feature that
assignments are expressions and return the assigned value. Pop operations are essentially
inserted at the so-called sequence points of the program, i.e., after expression statements, at
the comma in a comma expression, and after the initializer and continue expression in for

loops.

The following section more formally defines the semantics of the internal representation.
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5.6 Semantics of the Flow Graph

This section presents a formal abstract semantics of the control flow graph language. The
semantics is presented as a transition relation between configurations. For simplicity the
semantics given here covers only local control, it does not describe calls to other procedures.
The semantics for calls and returns is given later.

We must first introduce the trust-lattice Tr. It is the three point total order given as:
indep v tr v dis. The bottom point indep is used in the ensuing analysis to encode
independence, and will not be used in the operational semantics below. The point tr encodes
trustworthy values and dis encodes untrustworthy values.

A configuration is a triple (s,m, p) where s is a stack of trust values (trusted or untrusted),
m is a memory mapping locations to trust values, and p is the program point, i.e., the current
node in the CFG. Formally:

(s,m, p) ∈ Tr∗ × (Loc→ Tr)× Node.

We write t : s for the stack with t on the top and s being the rest of the stack. The empty
stack is written [].

For the purpose of presenting the semantics we represent the CFG via the following
functions. The function g maps program points to node types, and the function n maps a
node to its successor. For fork-nodes we define the additional function n2 which maps the
fork-node to its other successor. We write m[l 7→ t] for the memory which is like m except
with location l mapped to t. The t operation forms the least upper bound on the Tr lattice.

Definition 5.1 The one-step transition relation “7→” is defined by cases as:

(t : s,m, p) 7→ (s,m, n(p)) if g(p) = pop
(s,m, p) 7→ (m(l) : s,m, n(p)) if g(p) = push l

(t : s,m, p) 7→ (t : s,m[l 7→ t], n(p)) if g(p) = store l
(t : t′ : s,m, p) 7→ ((t t t′) : s,m, n(p)) if g(p) = bin

(t : s,m, p) 7→ (tr : s,m, n(p)) if g(p) = trust
(t : s,m, p) 7→ (dis : s,m, n(p)) if g(p) = distrust

(tr : s,m, p) 7→ (tr : s,m, n(p)) if g(p) = check
(t : s,m, p) 7→ (s,m, n(p)) if g(p) = fork
(t : s,m, p) 7→ (s,m, n2(p)) if g(p) = fork

(s,m, p) 7→ (s,m, n(p)) if g(p) = join

2

As usual we write 7→∗ for the reflexive transitive closure of the 7→ relation. Note the non-
determinism introduced by the two rules for fork-nodes. This is due to the abstract nature of
the semantics. The “real” values such as integers and booleans have already been abstracted
away leaving only the trust tags.

Fork operations pop a value off the top of the stack, namely the trustworthiness of the
condition in the corresponding if statement. Unconditional gotos are encoded by pushing a
dummy, trusted, value on the stack before forking.

A configuration is called stuck if it has no successor configurations. This can happen if
for example the stack runs empty before time or if an untrusted value is checked.

The next sections describe how the C program is compiled into the internal CFG repre-
sentation.
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5.7 Compiling to Internal Representation

This phase of the analyzer translates the syntax tree of the C program into the internal CFG
representation described in the previous sections.

Each function body is traversed in a depth-first manner, and a flow graph is constructed
by gluing parts of graphs corresponding to sub-expressions and statements together. After
the initial flow graph has been constructed, control flow edges corresponding to gotos are
added.

In the following some examples of the translation of typical program constructs are given.
First an example of the translation of a simple program to a flow graph is shown.

The trivial assignment program on the left is translated to the code sequence on the right.
The numbers on the right are node numbers.

int a,b;

void f()

{

a = b;

}

2: f() 0 { ; Fundef node

1: skip ; dummy place holder

3: push 4 0 ; push value of b

4: push 1 0 ; push trust of &a

5: trust 0 0

6: check 0 0 ; is &a trusted?

7: pop 0 0 ; pop result of the check

8: store 3 0 ; store b in a

9: pop 0 0 ; pop result of assignment

0: skip ; dummy place holder

}

Notice how the address stored into must always be checked to be trustworthy. Just as in
Chapter 2, storing into an untrustworthy address may render the entire memory untrustwor-
thy. We later show how a peephole optimizer may eliminate many of these trivial checks.

The conditional on the left is translated to the CFG on the right:

if (C) {

A;

} else {

B;

}

C

A B

The generic while-loop program is compiled into a cyclic graph as below:
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while (C) {

B;

}

C

B

The following example shows the graph generated from a program with a goto statement:

a = b;

goto L;

c = d;

L: e = f;

c = d

a = b

e = f

A goto statement is compiled into a fork node with one branch pointing to the target
statement and the other (never taken) branch pointing to the next statement, effectively
converting every goto into a conditional statement. The same approach is taken in [BH93,
CF94, Agr94] with application to program slicing. The technical reason for this is that we
must make sure that there is always a path from any node in the body of a function to the end-
node of that function. This is needed for the notion of a post-dominator to be well-defined.
Post-dominators are computed later to determine the “range of influence” of conditionals.

As in the preceding example this encoding of goto may lead to imprecision because the
graph includes control paths that do not occur in the real program. In the example, the
assignment c = d is dead, but the analysis does not exploit this fact. Some imprecision
is inevitable in a static program analysis, but more precision could be obtained here by
eliminating dead code before gotos are converted to fork nodes. Also, a goto to a node that
is already connected to the end node could be represented without a fork node.
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As a side effect of the handling of gotos, a structured if statement and its equivalent
goto-using counterpart are not translated into equivalent graphs. This was also observed by
Ball and Horwitz [BH93]. Consider the structured program

if (C) { A; } else { B; }

and its unstructured counterpart:

if (!(C)) goto L1;

A;

goto L2;

L1: B;

L2:

The graph of the structured variant was given above, whereas the graph of the unstruc-
tured variant looks like this:

!C

goto L1

A

if

goto L2

B

Note how the CFG generated from the unstructured code contains a path from A to
B whereas the structured program does not. This makes the analysis more precise on the
structured code than on the unstructured code.
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5.7.1 Peephole Optimization

Compiling the program to the internal control flow graph representation often yields trivial
sequences of code that may be traversed many times during the analysis. As each step in the
analysis is relatively expensive, it pays off to reduce the trivial instruction sequences before
the analysis. Consider again the following trivial program:

int a,b;

main() {

a = b;

}

In the previous section the long sequence of stack machine code generated from this
program was shown. We show it again below for ease of reference:

2: main() 0 ; the function header

1: skip ; initial body of function

3: push 3 0 ; push the value of b

4: push 1 0 ; push the constant TRUSTED: the address of a

5: trust 0 0

6: check 0 0 ; check the assigned address is trusted

7: pop 0 0 ; remove relics of address check from stack

8: store 4 0 ; store the value of b in a

9: pop 0 0 ; pop the value of b

0: skip ; final skip

In this case it doesn’t take much analysis to see that checking the trustworthiness of the
assigned address is trivial. Our peephole optimizer does a single pass over the code sequence:
eliminates most skip instructions, collapses the trust followed by the check, which then
yields a push immediately followed by a pop which can then be collapsed, and we end up with
the shorter sequence:

2: main() 0 ; the function header

1: skip

3: push 3 0 ; push the value of b

8: store 4 0 ; store the value of b in a

9: pop 0 0 ; pop the value of b

0: skip

The peephole optimizer is implemented as part of the code generation routines in the
translation to internal representation, thus with optimization switched on, the lengthy code
sequence is never generated in full, as the code sequence is optimized on the fly while being
emitted. This saves space and an extra pass over the CFG.

5.7.2 Undetermined Evaluation Order

Binary operators and assignment have undetermined evaluation order in C. This, together
with assignments and side-effecting procedure calls being expressions, means that the ordering
of side effects is sometimes undetermined as in the examples below:
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x = (y = trust(z)) + y;

arr[i = j] = i;

f(x, x = y);

x = g(y) + h(y);

In the first assignment the two sides of the + operator can be evaluated in any order,
so the trustworthiness of x may or may not depend on the trustworthiness of y before the
assignment. In the second assignment, i may be assigned both before and after the assignment
to the array. In the call to f(), the assignment to x may be done before or after the first
parameter is passed to f(), as evaluation order of function arguments is undetermined in C.

In the last line, the call to g() may define a global variable used by h(), and in this case
the result may depend on whether g() is called before h() or vice versa.

It is usually considered bad programming practice to write C programs that rely on a
certain evaluation order, as a particular ordering depends on the compiler used.

Expressions that may give different results depending on evaluation order also present
a problem for a program analyzer. Consider the analysis of the argument expressions in a
function call. When analyzing a particular argument, the analysis has to assume that any set
of the other arguments may or may not have been evaluated before this argument. A sound
way of coping with this is to analyze all possible permutations of the arguments and take the
least upper bound of the dependence quads for each argument. This is of course very time
consuming, as there are n! permutations of n arguments.

The trust analyzer therefore implements an analysis which finds expressions that depend
on evaluation order and signals an error if such an expression is found. This both helps
prevent bad programming practice and enables a more precise trust analysis.

The evaluation-order-dependence analysis works interleaved with the compilation to in-
ternal flow graph form. Each expression tree is traversed in a bottom-up fashion, computing
two sets of slots: a set of used slots in the (sub-) expression, and a set of defined slots in the
(sub-) expression.

For each binary operator with undetermined evaluation order, the analysis checks whether
the set of used slots in the left expression intersects with the set of defined slots in the right
expression, and vice versa. If one of these two intersections is non-empty it means that a slot
(variable) is used on one side of the binary operator and defined on the other side, which
means that the value of that slot may depend on the evaluation order of the binary operator.
Whenever such an evaluation-order dependence is found an error message is generated. The
used slots of the binary expression is the union of the used slots of the two sub-expressions,
and likewise for the set of defined slots. Pointers (and slots they may point to) have fixed
trustworthiness: this takes care of situations where the slots loaded from and stored into are
not known at analysis-time.

The evaluation order of the left and right hand sides of an assignment is also undetermined,
so an approach similar to the binary operators is used to find evaluation order dependences.
The used slots in an assignment is the union of the used slots in the two sub-expressions of
the assignment. The defined slots of the assignment is the union of the defined slots of the
two sub-expressions plus the slot(s) defined by the assignment. Multiple slots may be defined
at once in structure assignments.

For function calls we compute the sets of used and defined slots for each argument and
check that the slots used in one argument do not intersect any of the defined slots of the
other arguments. This procedure requires a quadratic number of set intersections, and since
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bit vectors are used to represent the sets, it is a cubic check for each function call. It sounds
pretty expensive, but it seems to work in practice, as most function calls have few arguments,
and usually involve few variables. Function calls with side-effecting arguments are actually
very rare in real-life programs. This means that for most calls, the sets of defined slots will
be empty, providing quick intersection checks.

The called function may also have side effects of its own. For each function the analysis
computes an approximation of the set of globals that are used and defined by the body of the
procedure, independent of the call-sites. For recursive functions fixed points for the used and
defined sets are computed.

Calls to external functions are assumed to be able to define and use all global variables.
Unfortunately this disallows expressions like “f(x) + g(y)” where both f() and g() are
external, as they might side-effect global variables in their own file-scope.

Example 4 Illustration of the evaluation order dependence analysis in action:

% ./tca

int x,y,z,i,j;

trusted int arr[34];

void f(int, int);

main() {

x = (y = trust(z)) + y;

arr[i = j] = i;

f(x, x = y);

}

^D

tca:<stdin>:5: evaluation order dependence in binary operator.

tca:<stdin>:6: evaluation order dependence in assignment.

tca:<stdin>:7: evaluation order dependence in call to ‘f’,

parameters 1 and 2.

tca: Errors detected, bailing out!

�

It is also possible to evade the problem entirely by assuming a fixed evaluation order, as
is done in the analyses in C-mix [And94].

5.8 Control Dependence and Decoration

An assignment made under untrusted control should make the assigned slot untrustworthy.
Consider the example

x = distrust(y);

if (x) {

z = w;

}

Because the condition in the if statement is untrustworthy we cannot trust whether the
assignment to z is made. Thus even though w may be trustworthy we shouldn’t be able to
trust the value of z after the assignment.
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Extending this notion to unstructured control flow is more complicated. In the above
example it is clear that no assignments made after the if-block are influenced by the untrusted
condition, they will be executed no matter what the value of x is. Now consider adding a
goto in the body of the if:

x = distrust(y);

if (x) {

z = w;

goto L;

}

a = b;

L: c = d;

It is clear that the assignment to a is made only when x is false, and it is thus under the
control of x, whereas the assignment to c is always executed.

Example 5 Listed below is the internal representation of the above program containing the
goto. Notice how the nodes between nodes 11 and 24 are marked control dependent on node
9.

3: push 10 0 ; x = distrust(y)

4: distrust 0 0

5: store 6 0

7: pop 0 0

8: push 6 0 ; if (x)

9: fork (11, 10) IPD = 24

11: 9 push 7 0 ; z = w

12: 9 store 4 0

14: 9 pop 0 0

15: 9 fgoto (10, 24) IPD = 24

10: 9 join

16: 9 push 3 0 ; a = b

17: 9 store 5 0

19: 9 pop 0 0

24: 9 join

20: push 8 0 ; c = d

21: store 9 0

23: pop 0 0

Notice also how nodes 16, 17, and 19 are not marked control dependent on node 15, the
goto node. This is an optimization as the “condition” in goto fork-nodes is always trusted
(the branch is unconditionally taken). �

In the following we introduce general tools that will enable detection of the extent of
control influences in the presence of unstructured control flow. We first need to introduce
some notation.

Definition 5.2 A path in a graph is a sequence of vertices. Paths are also considered as sets
of vertices, so if the vertex X belongs to the path P we write X ∈ P . We write P : [X → Y ]
to say that P is a directed path from X to Y including both X and Y . 2
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The concept of post-dominators [Pro59, LM69, All70, ASD86] has proved to be important
for determining (a safe approximation of) the extent of the control influence of a conditional.

Definition 5.3 Let (V,E) be a directed graph with a designated end-node N such that N
is reachable from all nodes in V. A node Y 6= X post-dominates a node X if all paths from
X to N pass through Y. In symbols we write:

pd(X,Y ) ⇐⇒ X 6= Y and ∀P : [X → N ] : Y ∈ P.

2

If a node post-dominates a fork node in the CFG then that node is clearly not control
dependent on the fork node, as it will be executed regardless of the branch taken by the fork
node.

As a matter of efficiency we don’t really need to compute the entire post-dominator relation
which is quadratic in the size of the graph, instead we compute immediate post-dominators.
An immediate post-dominator of a node is the post-dominator “closest” to that node.

Definition 5.4 Let S be the set of post-dominators of X. Each node in S is by definition on
all paths from X to the end-node so there is a unique node in S which is met first going from
X to N. This node is called the immediate post-dominator of X, and is written IPD(X). 2

Imagine drawing an edge between each node and its immediate post-dominator. This
creates an inverse tree rooted at the end-node. This tree is called the post-dominator tree.

The post-dominator tree of a control flow graph can be computed in linear time [Har85]
by a complicated tuning of the algorithm of Lengauer and Tarjan [LT79]. The algorithm used
in the implementation is the simpler O(n log n) algorithm from [LT79].

The use of post-dominators for determining the extent of control dependences has been
widely used. Ferrante et al. [FOW87] use it for computing the so-called program dependence
graph used in program slicing. Denning suggests it to handle unstructured control flow in
a security analysis [Den82], and Andersen [And94] uses it in the C-mix partial evaluator to
handle control dependences.

5.8.1 Decoration

Having computed the post-dominator tree for a function body we then decorate all the flow
graph nodes with a list of the fork nodes on which they are control dependent.

The definition of control dependence given by Ferrante et al. [FOW87] (also used in
[BH93, CF94, And94]) is the following.

Definition 5.5 [Ferrante et al.] Let G be a CFG. Let X and Y be nodes in G. Y is control
dependent on X iff:

1. there exists a directed path from X to Y in G with any node Z (except X and Y ) on
the path post-dominated by Y, and

2. X is not post-dominated by Y.

In symbols we write CDF(X,Y ) whenever Y is control dependent on X according to this
definition. 2
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The above notion of control dependence is intransitive. The body of a conditional state-
ment is control dependent only on the immediately enclosing conditional, not on any other
enclosing conditionals. In the program:

if (A) {

if (B) {

C;

}

}

the statement C is control dependent on the B conditional, it is not directly control depen-
dent on the A conditional. The inner conditional is, however, control dependent on the A

conditional.

The Ferrante-Ottenstein-Warren algorithm [FOW87] for computing control dependences
from a CFG and its post-dominator tree can roughly be described as consisting of the two
steps:

• Compute the set S of directed edges (A,B) in the CFG such that B is not a post-
dominator of A.

• For each edge (A,B) in S trace backwards in the post-dominator tree from B to A’s
parent, marking all nodes visited as control dependent on A.

The set S can be computed essentially for free during the construction of the post-
dominator tree. The total cost of their algorithm is O(n2) where n is the number of edges in
the CFG. Cytron, Ferrante and Rosen [CFR+89, CFR91] present a better algorithm based
on dominance frontiers, but with the same worst-case complexity.

However, as stated above, their algorithm computes intransitive control dependences, and
we need the transitive closure of these dependences. Instead of using the Ferrante-Ottenstein-
Warren algorithm augmented with a transitive closure, we use a more iterative algorithm that
improves sharing of the lists of control dependences.

We write CDF+(X,Y ) for the transitive closure of the above relation, formally:

CDF+(X,Y ) ⇐⇒ CDF(X,Y ) or ∃W : CDF+(X,W ) and CDF(W,Y ).

Several characterizations of transitive control dependence have been given in the literature.
Beck, Johnson and Pingali [BJP91] prove that two nodesX and Y are in the transitive control
dependence relation (i.e., CDF+(X,Y )) if and only if Y is between X and its immediate post-
dominator, where between-ness is defined as:

Definition 5.6 The node Y is between the nodeX and its immediate post-dominator IPD(X)
whenever there is a non-empty path from X to Y that does not include IPD(X). 2

In [Wei92] Weiss proves that CDF+(X,Y ) if and only ifX is relevant to Y, where a nodeX
is relevant to the node Y whenever there are non-empty paths P : [X → Y ] and Q : [X → N ]
such that P ∩Q = {X}. We will, however, not use this characterization here.
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5.8.2 Computing Control Dependences

We compute control dependences with respect to Definition 5.6. We traverse the CFG along
the control flow edges carrying along a set of fork nodes that we have met so far and whose
post-dominator we haven’t met. Whenever a post-dominator of a fork node in the set is
encountered, we remove the fork node from the set. To ensure termination each node is
decorated with the union of all the sets that were current when the node was reached.

A high-level, pseudo-code algorithm for decorating the CFG is given below. Let G = (V,E)
be the CFG and let S ∈ V be the start node. We assume all nodes Y are initially decorated
with the empty set, decor[Y ] = ∅.

decorate(Y, D) =
D′ := D − {X ∈ D | Y = IPD(X)}
if D′ 6⊆ decor[Y ] then

decor[Y ] := D′ ∪ decor[Y ]
if Y is a fork node then
D′′ := decor[Y ] ∪ {Y }

else
D′′ := D′

end if
for all successors Z of Y decorate(Z, D′′)

end if
end.

The decoration is initiated by the call decorate(S, {?}) where ? is a special node not in
the graph, just to get the algorithm started. The special node is subsequently disregarded.

Proposition 5.7 The decorate algorithm is correct, that is, after it terminates:

decor[Y ] = {X ∈ V | CDF+(X,Y )}.

It is not hard to see that the array decor grows monotonically with respect to set-inclusion,
and that each decor[Y ] cannot grow to more than |V |. So the algorithm terminates.

The following invariant holds at the start of each invocation of the procedure:

1. For all Y ∈ V we have:

decor[Y ] ⊆ {X ∈ V | X is a fork node, there is a path P from X to Y,
and IPD(X) 6∈ P},

and

2. for the parameters Y and D the following holds:

D = {X ∈ V | X is a fork node, there is a path P from X to Y,
and IPD(X) 6∈ P − {Y }}.

When the algorithm terminates we must have D′ ⊆ decor[Y ] in all the recursive calls. This
together with the invariant ensures that whenever Y is between X and IPD(X), X ∈ decor[Y ].
Beck, Johnson and Pingali’s result then ensures the correctness of the algorithm.
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As the set decor[Y ] must grow each time a node is visited, each node can be visited at
most n times where n is the number of nodes in the graph. The cost of visiting a node once
is in O(n), so the worst-case complexity of the computation is in O(n3). In practice the D
sets have much fewer than n elements. If the sets are implemented as simple linked lists, and
the CFG is generated from structured code (the common case), the operations on the sets
can be done in constant time, as fork-nodes and their immediate post-dominators are met in
a stack-like manner. In this case much of the decor lists can be shared among nodes as well.

In hindsight it may not have been a good idea to compute transitive control dependences
at all, but better to decorate each node with its immediate control dependences, and just
follow those links on demand in the ensuing analysis. However, this yields a more complex
lookup of control dependences in the expensive analysis.

5.9 The Static Call Graph

The next phase of the analysis does a topological sort of the static call graph of the program
module. This is done merely to speed up convergence of the iterative analysis in the next
phase.

If procedure P calls procedure Q then it is advantageous to analyze Q before P , as the
result of analyzing Q is needed during the analysis of P . When mutually recursive procedures
are encountered (strongly connected components in the static call graph) they are ordered
arbitrarily, and the iterative analysis in the next phase analyzes each procedure “on demand”
iterating until a fixed point is reached. Calls via function pointers are not treated in this
phase.

5.10 The Trust Analysis Proper

This section gives a formal description of the trust analysis that happens at the CFG level.
This was the part of the analyzer that proved the hardest to get right, which is why we give
a soundness theorem for the analysis in this section. The translation of a C program into
the CFG and stack machine is pretty standard, and therefore does not warrant a huge formal
treatment.

For each procedure the analysis computes a quad over the DAlg-structure (Tr,t,t,u,0,1)
with 0 = indep, and 1 = dis, built from the lattice Tr with the ordering v:

indep

tr

dis

The purpose of this phase of the analysis is twofold: to determine the data dependences of
the program, and to reject programs that the analysis cannot guarantee not to go wrong. Thus
there is a strong similarity to type inference. The purpose of type inference is to determine
a type for a program, and reject untypable programs. To quote the slogan from [WF94]:
“well-typed programs do not go wrong.”
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With reference to the semantics of the stack machine given in Sect. 5.6 we characterize
programs that go wrong as programs that end up in the following stuck configuration:

(dis : s,m, p) where g(p) = check.

It is not the above configuration that is wrong as such, but the fact that there is no
possible successor configuration. That is, the error does not happen until a transition from
the above configuration is attempted. We therefore add the new configuration WRONG to
the set of possible configurations, and extend the transition relation with the rule:

(dis : s,m, p) 7→WRONG if g(p) = check.

The exact class of programs that end up in such a configuration is of course undecidable,
and as in other program analyses we aim for a sound computable approximation of the
complement of this class. Also note that there are several other stuck configurations of the
stack machine, especially of the kind where the stack contains too few items for an operation.
We do not concern ourselves with these stuck configurations here, as they will not be present
in the code generated by the compilation of the original C program.

Having defined what is meant by a program going wrong we must then define what is
meant by “well-typed”, and make sure that the well-typed programs cannot go wrong.

To each reduction sequence in the original semantics the analysis computes a quadruple
(s,A, t, u) encoding the dependences between the memory of the start configuration and the
memory of the end configuration. A reduction sequence is called “well-typed” whenever the
u component is 0, that is, when there is no dependence between the inherently untrustworthy
src slot and the sink slot, which is required to be always trustworthy.

The t vector of the quad encodes demands on the input memory. Think of the sink slot as
a special slot that must always be trusted. If there is a 1-dependence between a memory slot
containing an untrusted value and sink it means that the memory doesn’t satisfy the demands
on the input, and all bets are off, that is, starting a well-typed program from a configuration
that doesn’t satisfy the demands of t may well go wrong.

One can look at each column of the matrix of a quad as encoding the set of locations that
the location corresponding to the column is dependent upon, except that both trusted and
untrusted dependences are handled by the quad representation.

5.10.1 The Analysis

Before we can state the formal definition of the analysis and its soundness we need some
definitions and notation.

Definition 5.8 For a vector v we write vt for its transpose. 2

Definition 5.9 Define the injection row-vector Jk as

Jk = (0, . . . ,0,1,0, . . . ,0),

where the sole 1 entry is in the k’th position. By abuse of notation we also write Jk for the
1×m quad (0, Jk ,0,0). 2
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Fact 5.10 Let m be a row-vector then extracting the k’th element from the vector can be done
by means of Jk:

mk = mJ tk.

Definition 5.11 Define the square matrix Ik as the identity matrix except that the (k, k)’th
entry is 0. 2

To keep track of the dependences on the stack during analysis we define a reduction system
between abstract configurations.

For the trust and distrust operations we need to modify the dependences on top of the
stack. This uses the two quads T and D defined below.

Definition 5.12 Define the 1× 1 quad T as:

T = (tr, tr,0,0),

and define the 1× 1 quad D as:

D = (dis, dis,0,0).

2

If we view a memory m as a row-vector of trust-values we can formulate an update by
matrix operations.

Lemma 5.13 Let m be a memory (row-)vector, l a location (i.e., an index in the memory
vector, we write m(l) for ml), and let x be a trust value. Then

m[l 7→ x] = mIl + xJl.

Proof. By definition of Il and Jl. 2

Lemma 5.14 Let m be a row-vector, l1, . . . , ln be distinct locations, and let x1, . . . , xn be
trust values. Then

m[l1 7→ x1, . . . , ln 7→ xn] = m
∏
i

Ili +
∑
i

xiJli .

Proof. As the locations are distinct we have

m[l1 7→ x1, . . . , ln 7→ xn] = m[l1 7→ x1][l2 7→ x2] . . . [ln 7→ xn].

By the previous lemma this is the same as:

(· · · ((mIl1 + x1Jl1)Il2 + x2Jl2) · · ·)Iln + xnJln .

By distributivity, and because all the li are distinct this is:

mIl1Il2 · · · Iln + x1Jl1 + x2Jl2 + · · ·+ xnJln .

2
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Definition 5.15 Let M be the number of variables. Let S be a stack of M × 1 quads, Q
a M ×M quad, and p a program point in the CFG. An abstract configuration is a triple
(S,Q, p). We write V : S for the stack with V on top and S being the rest of the stack. 2

Re-using notation from the concrete semantics of the stack machine, we can now define
the abstract reductions.

Definition 5.16 The abstract reduction relation is defined by the following rules. For brevity
we write Q for the M ×M quad (s,A, t, u), and V for the M × 1 quad (sV , AV , tV , uV ).

(S,Q, p) . ((sJ tl , AJ
t
l ,0,0) : S,Q, n(p)) if g(p) = push l

(V : S,Q, p) . (S,Q, n(p)) if g(p) = pop
(V : S,Q, p) . (V T : S,Q, n(p)) if g(p) = trust
(V : S,Q, p) . (V D : S,Q, n(p)) if g(p) = distrust
(V : S,Q, p) . (V : S, (s,A,AV + t, sV + u), n(p)) if g(p) = check

(V : V ′ : S,Q, p) . ((V t V ′) : S,Q, n(p)) if g(p) = bin

and for g(p) = store l we have:

(V : S,Q, p) . (V : S, (sIl + sV Jl, AIl +AV Jl, t, u), n(p)).

2

Note that each transition can be implemented in O(M) time.

5.10.2 Basic Soundness

For the soundness theorem we need to be able to state that an abstract stack faithfully models
a concrete stack with a concrete memory.

Definition 5.17 An abstract stack S models a concrete stack c and a memory m, written
S |= m, c iff:

1. |S| = |c|, i.e., the lengths of the stacks are equal, and

2. for each abstract stack element Si = (si, Ai, ti, ui), and concrete stack element ci we
have

ci v img(m,Si).

2

We can now formulate the basic soundness theorem for single reductions. Note that the
abstract reduction relation has not yet been defined for fork and join nodes. In words, the
soundness property says that: if the concrete machine takes a step and the abstract machine
takes the corresponding step (it is a simple observation that this is possible), and the start
memorym′ of the concrete machine is safely approximated by the quad Q relative to the initial
memory m, the concrete stack is safely modeled by the abstract stack, and that the resulting
quad Q′ is internally consistent (u′ v tr) and the initial memory satisfies the demands of
the resulting quad, then the resulting concrete memory m′′ is safely modeled by Q′, and the
resulting abstract stack safely models the resulting concrete stack.

In other words, Q corresponds to the change between m and m′, whereas Q′ corresponds
to the change between m and m′′. Likewise S models the stack c relative to m, whereas S′

models the stack c′ also relative to m.
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Theorem 5.18 (Basic Soundness) With the notation Q = (s,A, t, u), Si = (si, Ai, ti, ui)
for i = 1 . . . k, and Q′ = (s′, A′, t′, u′), the following implication holds. If

(c,m′, p) 7→ (c′,m′′, p′) (5.1)

(S,Q, p) . (S′, Q′, p′) (5.2)

m′ v img(m,Q) (5.3)

S |= m, c (5.4)

mt′ v tr (5.5)

u′ v tr (5.6)

then

m′′ v img(m,Q′) (5.7)

S′ |= m, c′. (5.8)

Proof. By cases on the value of g(p). In all cases we use the notation V = (sV , AV , tV , uV ).

• store l. We have

(V : S,Q, p) . (V : S, (sIl + sV Jl, AIl +AV Jl, t, u), n(p))

(x : s,m, p) 7→ (x : s,m[l 7→ x], n(p))

Using Lemma 5.13, (5.4), the definition of img(), (5.3), and the definition of ., in that
order we compute:

m′[l 7→ x] = m′Il + xJl

v m′Il + (mAV + sV )Jl

v (mA+ s)Il + (mAV + sV )Jl

= mAIl + sIl +mAV Jl + sV Jl

= m(AIl +AV Jl) + sIl + sV Jl

= mA′ + s′.

which proves (5.7). For (5.8) observe that both the concrete stack and the abstract
stack are unchanged, so it follows directly from (5.4).

• push l. Observe that here m′′ = m′, and Q′ = Q, so (5.7) is immediate from (5.3). For
(5.8) we just have to show that

m′(l) v mAJ tl + sJ tl ,

as the requirement on the size of the stacks is trivially fulfilled. By (5.3) we have

m′(l) = m′l
v (mA+ s)l

= mAJ tl + sJ tl .
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• check. For (5.7) we have m′′ = m′, and m′ v mA+s = mA′+s′ = img(m,Q′). Property
(5.8) is trivial as the stacks are unchanged.

• trust. We have m′′ = m′, and Q = Q′, so (5.7) clearly holds. For (5.8) we just need to
show that

tr v img(m,V T ),

but by definition of T we have img(m,V T ) = tr.

• distrust. Here (5.7) follows as for trust, and img(m,V D) = dis together with (5.4)
ensures (5.8).

• bin. Again we have m′′ = m′, and Q′ = Q so (5.7) holds. For (5.8) we must show

x t x′ v img(m,V t V ′).

Here we exploit that for this particular DAlg-structure l.u.b. is the same as +, so using
(5.4) we may compute

img(m,V + V ′) = m(AV +AV ′) + sV + sV ′

= img(m,V ) + img(m,V ′)

w x+ x′.

• pop. Here we also have Q = Q′ and m′ = m′′, so (5.7) and (5.8) follow directly from
(5.3) and (5.4).

2

We shall demonstrate that computations that go wrong are not found well-typed by the
analysis. Assume g(p) = check, and consider the transition:

(dis : c,m′, p) 7→WRONG,

and assume as in the soundness theorem that

(V : S,Q, p) . (V : S, (s,A,AV + t, sV + u), n(p)),

mt′ = mAV +mt v tr, and u′ = sV + u v tr. In particular this means that sV v tr. From
V : S |= m, (dis : c) we get dis v img(m,V ) = mAV + sV . So we must have mAV = dis, and
thus mt′ = dis, and m therefore doesn’t satisfy the demands of Q′ and the soundness theorem
doesn’t guarantee anything.

Note that contrary to the notion of soundness discussed in Chapter 4, the previous theo-
rem does not involve the pre-image function at all. The motivation for using the pre-image
inequality (m v pre(Q,m)) would be to infer demands on the start memory from the quad
and the end memory, but the algebra used here does not facilitate meaningful demands to be
propagated in this fashion.
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5.10.3 Sequences

Soundness of the analysis for sequences of reductions is a simple induction argument. We
write 7→∗ for the reflexive and transitive closure of the 7→ relation, and likewise for the .
relation. Before the actual soundness theorem we need a little lemma to show that demands
on input never decrease during execution.

Lemma 5.19 If (S, (s,A, t, u), p) .∗ (S′, (s′, A′, t′, u′), p′) then t v t′ and u v u′.

Proof. By inspection of the rules defining the . relation, and by induction on the length of
the reduction sequence, using that the v ordering is transitive. 2

Theorem 5.20 (Transitive Soundness) If

(c,m′, p) 7→∗ (c′′,m′′′, p′′) (5.9)

(S,Q, p) .∗ (S′′, Q′′, p′′) (5.10)

m′ v img(m,Q) (5.11)

S |= m, c (5.12)

mt′′ v tr (5.13)

u′′ v tr (5.14)

then

m′′′ v img(m,Q′′) (5.15)

S′′ |= m, c′′. (5.16)

where Q = (s,A, t, u), Si = (si, Ai, ti, ui) for i = 1 . . . k, and Q′′ = (s′′, A′′, t′′, u′′).

Proof. By induction on the reduction sequence. For the base case we have p = p′′, c = c′′,
m′ = m′′′, and Q = Q′′ so the theorem holds trivially.

Consider the reduction sequences (concrete and abstract):

(c,m′, p) 7→ (c′,m′′, p′) 7→∗ (c′′,m′′′, p′′),
(S,Q, p) . (S′, Q′, p′) .∗ (S′′, Q′′, p′′).

By Lemma 5.19 we have t′ v t′′ and u′ v u′′, and thus mt′ v mt′′ v tr, and u′ v u′′ v tr.
So the prerequisites for Theorem 5.18 are fulfilled, and we get

m′′ v img(m,Q′),

S′ |= m, c′.

We can now apply the induction hypothesis to obtain the desired result. 2

The following theorem allows separate analysis of code sequences, such as procedure bod-
ies. Intuitively the theorem says that a procedure body can be analyzed by the abstract
machine once starting from the identity quad and an empty stack. The quad Q1 resulting
from this analysis is saved. Whenever a call to the procedure is encountered the saved quad
is multiplied onto the current quad in the abstract machine and the result is a sound approx-
imation of the memory after the call. The actual theorem is a little more general in order to
facilitate the proof. A little notation: for an abstract stack S = V1 : V2 : . . . : Vn, and a quad
Q we write QS = QV1 : QV2 : . . . : QVn.
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Theorem 5.21 Let Q = (s,A, t, u), and Q1 = (s1, A1, t1, u1). If

(c,m′, p) 7→∗ (c′,m′′, p′) (5.17)

(S0, Id, p) .∗ (S1, Q1, p
′) (5.18)

S0 |= m′, c (5.19)

m′ v img(m,Q) (5.20)

m′t1 v tr (5.21)

u1 v tr (5.22)

then

m′′ v img(m,QQ1)

QS1 |= m, c′

Proof. We always have m′ v img(m′, Id), so by the previous soundness theorem we have:

m′′ v img(m′, Q1)

S1 |= m′, c′ .

By the definition of |= this means that |S1| = |c′|, for all i ≤ |S1| we have c′i v img(m′, V1i),
where S1 = V11 : V12 : . . . : V1|S1|. By (5.20) and Theorem 4.16 we then have:

m′′ v img(img(m,Q), Q1) = img(m,QQ1),

and likewise for the stack:

c′i v img(img(m,Q), V1i) = img(m,QV1i),

which shows the required result. 2

So far the soundness theorems have concerned only straight line code. We define the
behavior of the abstract machine on fork and join nodes in analogy with the concrete stack
machine:

(S,Q, p) . (S,Q, n(p)) if g(p) = fork
(S,Q, p) . (S,Q, n2(p)) if g(p) = fork
(S,Q, p) . (S,Q, n(p)) if g(p) = join

It is not hard to see that if there are two possible paths between program points p and
p′ in the CFG for the concrete machine, then the same paths can be taken by the abstract
machine. Also, if we form the join of the quads computed by the abstract machine for each
path we get a sound approximation of both of the concrete paths, that is, the analysis can
compute the “join over all paths” to get a sound approximation of the data flow for all possible
executions of the concrete machine. As the lattice of quads has finite height we can compute
least fixed points to approximate the data flow along looping paths.

Because of the non-deterministic nature of the concrete stack machine we cannot express
control dependences formally. As there are no actual values in the concrete machine, the fork
nodes act independently of the trust of the condition. The implementation of the analysis
handles control dependences by for each fork node remembering the top of the S stack (the
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condition), and for each store operation traversing the list of fork nodes that the store is control
dependent upon and adding the dependences of the saved conditions to the dependences of
the stored value.

More formally: Let F be a map from fork nodes to 1 × M vectors, remembering the
trustworthiness of the condition. Whenever a configuration of the form (V : S,Q,X) is
encountered by the abstract machine, where X is a fork node, the map F is updated to
F [X 7→ F (X) t V ]. Whenever a configuration of the form (V ′ : S′, Q′, Y ) is encountered,
where Y is a store node, the V ′ part of the stack is updated to V ′ t

⊔
{X | CDF+(X,Y )} F (X)

before execution of the store operation proceeds.

5.10.4 Calls and Returns

So far this section has only treated intra-procedural trust analysis; calls to other functions
have been ignored. We first need to extend the semantics of the concrete stack machine.
To this end we define an augmented transition system where configurations consist of the
ordinary concrete configurations together with a control stack C and a current CFG g:

((s,m, p), C, g).

We write 7→g to make the CFG g explicit in the 7→ relation. A program function f is
regarded as a pair (g′, (a1, . . . , an)) where g′ is the CFG of the function body, and a1, . . . , an
identifies the distinct slots used for the n arguments. We do not treat functions with a
variable number of argument here, even though the implementation handles such functions.
The notation “entry f” denotes the entry node of the CFG for f.

The control stack C is made up of triples (g, p, c) where g is the CFG of the calling
function, p is the successor of the call node in that CFG, and c is the saved evaluation stack
of the caller. The transition relation (⇒) for this system is defined by the following rules.

(c,m, p) 7→g (c′,m′, p′)

((c,m, p), C, g) ⇒ ((c′,m′, p′), C, g)

g(p) = call f, f = (g′, (a1, . . . , an)), c = c1 : . . . : cn : c′

((c,m, p), C, g) ⇒ (([],m[a1 7→ c1, . . . , an 7→ cn], entryf), (g, n(p), c′) : C, g′)

g(p) = return

((x : c,m, p), (g′, p′, c′) : C, g)⇒ ((c′,m[lR 7→ x], p′), C, g′)

Note that each call does not create new local variables for the called procedure. In effect
all locals are treated as static variables, that is, all calls to the same procedure are treated
equally regardless of parameter values: the analysis is monovariant.

Also notice that results are returned from functions by storing into a designated location
(lR) from which it can be pushed onto the stack. This means that the function call “x =

f(a,b)” is compiled into the sequence:

push b

push a

call f

push res
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store x

pop

Note that this does not rule out functions returning both trusted and untrusted values,
as the slot (lR) is not associated with an unchanging trustworthiness.

The abstract stack machine is augmented with a control stack component and a CFG
component in the same fashion as the concrete machine: An augmented abstract configuration
is written as ((S,Q, p), A, g) where (S,Q, p) is an (intra-procedural) configuration for the stack
machine, A is the control stack, and g identifies the current CFG. We also write .g for the
abstract transition relation for a specific CFG g. The control stack for the abstract machine
is constructed analogously to the control stack for the concrete machine. We write _ for
the augmented abstract transition relation. The rules for abstract calls and returns are as
follows:

(S,Q, p) .g (S′, Q′, p′)

((S,Q, p), A, g) _ ((S′, Q′, p′), A, g)

g(p) = call f, f = (g′, (a1, . . . , an)), S = V1 : . . . : Vn : S′

((S,Q, p), A, g) _ (([], Q
∏
i Iai +

∑
i ViJai , entry f), (g, n(p), S′) : A, g′)

g(p) = return

((V : S,Q, p), (g′, p′, S′) : A, g)_ ((S′, QIlR + V JlR , p
′), A, g′)

Before we can state the soundness theorem for the inter-procedural analysis, we first need
to define the notion of a safe model of a control stack.

Definition 5.22 LetC = (g1, p1, c1) : (g2, p2, c2) : . . . be a control stack, andA = (g′1, p
′
1, S1) :

(g′2, p
′
2, S2) : . . . be an abstract control stack. Let m be a memory. The abstract control stack

models the concrete control stack, written A 
 m,C, whenever:

1. |A| = |C|, and

2. gi = g′i, pi = p′i, and Si |= m, ci for all stack indices i.

2

We can now formulate the soundness theorem extended to handle calls and returns.

Theorem 5.23 Let Q = (s,AQ, t, u). If

((c,m′, p), C, g) ⇒ ((c′,m′′, p′), C ′, g′)

((S,Q, p), A, g) _ ((S′, Q′, p′), A′, g′)

A 
 m,C

S |= m, c

m′ v img(m,Q)

mt v tr

u v tr
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then

m′′ v img(m,Q′)

A′ 
 m,C

S′ |= m, c

Proof. By cases on the definition of ⇒. The first case follows directly from Theorem 5.18.
The call case follows from Lemma 5.14 as the locations a1, . . . , an are distinct; and the return
case follows from Lemma 5.13 2

To get a terminating analysis of recursive functions we employ Theorem 5.21, together
with taking the join over all paths, just as for intra-procedural loops.

Calls via function pointers are not currently treated. With a good “points to” analysis
one can analyze a call via a pointer as the l.u.b. of calls to all the functions that the pointer
might point to. This is analogous to control-flow analysis [Jon81b, Shi91].

The iterative implementation of the analysis is very close to the formalization given here.
The implementation simulates the transitions of the abstract reduction system, and iteratively
computes the Q component of the abstract configurations.

5.11 Practical Efficiency

The trust lattice can be embedded in the distributive lattice generated by two points as below
(a boolean algebra), and the embedded lattice is closed under the operations of t and u on
the four-point lattice:

indep (00)

(11)dis

tr(10) (01)

The four-point lattice above can be implemented as two bits, using bitwise and and bitwise
or for u and t, respectively. This means that we can represent a vector of 16 trust-values in
a single 32 bit machine word, and that we can perform 16 least upper bound and greatest
lower bound operations in one instruction. This provides both low memory consumption and
fast operations.

Sparse representations of the matrices involved in the trust analysis might be useful, as
the matrices typically are sparse. On the other hand, the number of variables used by a
procedure is usually very limited, so it might not pay off to use sparse representations. In
any case: for the present implementation, the sparse matrix representations were deemed
too complicated to implement for this purpose, and the lack of experience with dependence-
based trust analysis also rendered the choice of a particular sparse representation difficult.
However, the implementation of matrices chosen is suitably encapsulated in a class such that a
re-implementation of that class would suffice to make the analyzer use a sparse representation
of matrices.

The speed of the implementation is reasonably good; parsing and analyzing a particular
470 line C program takes 2 seconds on a SPARCServer 1000 running Solaris 2.5. This includes



5.12. DISCUSSION 131

running the compiler front-end written in Perl 5, the C pre-processor, and the trust analyzer.
Adding the real compilation phase to this increases the time to 3.5 seconds, so the analysis
is still rather costly compared to a “bare” compilation. If the analysis was integrated into a
compiler a good amount of overhead could be saved. With the current implementation, a full
compile pre-processes and parses the source code twice.

The speed of the analysis depends more on the number of variables used in the program
than on the size of the code, as the size of the quads is quadratic in the number of variables,
and quad multiplication is cubic in the number of variables. However, most programs use only
relatively few variables in each procedure, and few global variables. In the implementation,
the size of the quads used in the analysis of a procedure is bounded by the number of local
variables in that procedure plus the number of global variables: each procedure has its own
quad-size.

The table below exhibits a few data points about the performance of the analysis. The
program “851size2.c” is an artificially constructed program written to test the analyzer on
programs of differing size. The programs “su.c” and “newgrp.c” are implementations of
the corresponding Unix commands. The “Variables” column lists the maximal number of
variables visible at any point in the program.

File Lines Variables Time (secs.)

851size2.c 474 14 1.9

su.c 112 22 2.1

newgrp.c 95 18 1.5

5.12 Discussion

When starting to program the analyzer it was hoped that it would be feasible to use it on
existing large programs such as sendmail or login, however, it turned out that taking existing
code and subjecting it to trust analysis is a pretty involved process. Detailed knowledge is
needed about where untrusted input arrives, where appropriate checks are made, and where
the dangerous operations are located. Unless given good documentation or having written
the program by oneself this knowledge it hard to come by.

Also, a program designed without trust analysis in mind may be very hard to turn into
a program with check and trust operations that the analysis will accept. A similar phe-
nomenon exists when going from an untyped language to a typed language. A LISP program
may be entirely safe and may never see a run-time error, but subjecting it to ML-like type
inference may well fail.

In summary, to gain experience with the usefulness of trust analysis, new programs have
to be written with the trust analysis in mind, just as new programs are written for ML with
the ML type system in mind. This may also lead to the design of cleaner programs, as more
discipline is enforced.

Another shortcoming of the current analysis is the overly conservative treatment of point-
ers. Pointers are used excessively in C due to the lack of, for example, a proper string type,
but due to the lack of a good points-to analysis the current trust analysis insists that all
pointers and things that may be pointed to are explicitly typed either trusted or untrusted.
This may be viewed as no harder restriction than the existing type system for C, where all
variables have to be declared with a certain type. But it is less flexible than the treatment of
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simple variables, where the analysis is able to detect that the contents of a variable is trusted
in some parts of the program, and untrusted in other parts.

In comparison with the trust analysis of Chapter 2, based on abstract interpretation and
constraint solving, the analysis presented here builds on the dependence algebra technology.
One advantage is that the analysis of C is program point sensitive, a variable need not
have the same trustworthiness throughout its lifetime, as was the case in both analyses of
Chapter 2. This allows for a kind of first-order polymorphism. Another advantage of the
analysis presented here is that it directly deals with unstructured control flow. On the other
hand, the analyses of Chapter 2 incorporate a simple pointer analysis which is lacking here.

The trust analysis of this chapter can easily be extended from the lattice of two trust-
values to arbitrary trust lattices by the general theory of dependence quads developed in
Chapter 4.

The trust analysis described in this chapter is about approximating the trustworthiness
of variables and their run-time values. It is not aimed at guaranteeing the secure execution
of dangerous commands. Consider the example (by T. Mogensen):

validated = FALSE;

while (!validated) {

// read password and set validated to TRUE if OK.

}

// perform dangerous command

Suppose, because of some programming error, that validated may depend on some un-
trustworthy variables (and is therefore classified untrusted), and that the loop may therefore
terminate on false premises. Then the dangerous command will be executed on false premises
without any complaints from the analysis, as the dangerous command is not control dependent
on the untrustworthy variable validated.

A method to handle this problem is to regard the program counter as a variable as well.
The program counter starts out as trustworthy, pointing to the entry point of the program,
but is classified a untrustworthy as soon as it is changed under untrusted control. This
approach has also been used in the field of security flow analysis.

5.13 Summary

This chapter described the implementation of a trust analyzer for the C programming lan-
guage, utilizing the dependence quadruple technology developed in Chapter 4. As such it
presented a practical application of the dependence algebra theory to a concrete program
analysis problem, and it connected the subjects of dependence analysis and trust analysis,
the two main themes of the present thesis.

The theory of control dependence was utilized to handle unstructured control flow. A con-
servative evaluation order dependence analysis of C has also been developed and implemented
in order to help the other analyses.

We have given formal definitions of (an appropriately abstract) concrete semantics for the
stack machine language used internally in the analyzer, and of the analysis carried out, and
the soundness of the analysis is proved (Theorem 5.23). The separability of the analysis has
also been proved (Theorem 5.21).



Chapter 6

Soft Type Inference for
Action Semantic Equations

Action may not always bring happiness;
but there is no happiness without action.

B. Disraeli

6.1 Motivation

Developing a formal semantics for a programming language can be a formidable task. The
action semantics formalism [Mos92] strives to ease the development by providing intuitive and
readable constructions for many common features of programming languages. Still, making
sure that a semantics is consistent and works as expected, is difficult.

Type inference and checking is used in many programming languages to find simple errors
at an early stage. This chapter begins to develop a soft type inference scheme for a subset
of action notation. The type inference is intended to be run on the equations describing the
dynamic semantics of a language, that is, it is intended to be run before a particular program
has been submitted to the semantics for interpretation.

There are two things that make type inference at the level of action semantic equations
difficult. First, the absence of a particular program: only small holed fragments of actions
are present on the right hand sides of the equations. Second, the use of flat heterogeneous
tuples to pass data around among primitive actions. Consider for example the action:

give (1,2,true) and give (false,5)

The action combinator “and” concatenates the data tuples given by the two sub-actions, and
the combined action is said to give the tuple (1, 2, true, false, 5).

Individual components of tuples can be extracted by number and tuples can be con-
catenated. Furthermore, sort intersection checks can be performed on arbitrary tuples and
components. The following action shows the use of sort intersection for run-time typechecking:

A1 then give the given truth-value#4 .

133



134 CHAPTER 6. SOFT TYPE INFERENCE

The action combinator “then” corresponds to functional composition, taking the tuple given
by the first sub-action (A1) and handing it over to the second sub-action. The yielder “the
given truth-value#4” selects the fourth component of the given tuple and intersects it with
the sort truth-value. If the action A1 is instantiated to be the action of the previous example,
the combined action would then give the truth-value false. However, if the fourth component
of the tuple given by A1 does not intersect the sort truth-value (or the tuple does not have a
fourth component at all), the combined action is said to fail, that is, terminate abnormally.

The above operations make it necessary for a type system to keep track of the tuples at
a very fine-grained level. The dependence algebra technology of Chapter 4 was developed
primarily for this purpose.

Our type inference algorithm is “soft” in the sense that it is forgiving: no sets of equations
are forbidden as not being type correct. This means that the type system does not limit the
set of allowed actions, and that it may infer incomplete (overly conservative) information in
some cases.

The action combinators are polymorphic: the and combinator concatenates arbitrary tu-
ples. The sorts (types) used in action notation are ordered in a lattice and sub-sort checks
are specified in terms of sort intersection. These features call for a type system that is able
to handle both polymorphism and sub-typing together with the extra complication of tu-
ple concatenation. Type-inference for systems combining sub-typing with polymorphism and
higher-order languages has proven to be quite hard, and only recently some inroads have
been made [AW93, EST95, OL96]. We eschew this hard problem by integrating a control
flow analysis (along the lines of Shivers’s 0-CFA [Shi91]) into the analysis.

Parametric polymorphism allows recording of dependences between inputs and outputs.
In the polymorphic type: (α, β) → (β, α) we can see that the first argument to the function
ends up in the second position in the output, and vice versa. In our matrix-based setup this
is modeled by having edges in the dependence quad connecting the first input component to
the second output component and vice versa.

in

>

>
out

The type of a function doing sort intersection could look like: α→ (α ∧ S) showing that
the function accepts any argument, but applies a sort intersection with S to it. In our setup
this is modeled by the dependence algebra elements on the edges of our matrices, so for this
function there would be an edge between the input component and the output component
labeled with the representation of S, as pictured below:

out
S

in

If only forwards type information was desired, i.e., information about the output type of
actions under certain conditions, then a relatively simple abstract interpretation analysis akin
to the type analysis in [Ørb93, Ørb94a] would suffice. However, we also want information
about the demands that the action places on the input.

This kind of backwards type information can be obtained from the dependence quadruple
via the reverse image operation. One could imagine a more traditional backwards abstract
interpretation analysis to approximate demands on input, but due to the heavy use of tuples
and their flat concatenation, this would quickly loose precision compared to the quad-based
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approach.

Example 6 As an example of the flavor of the analysis consider the action:

give the given integer#2 and give the given character#1
then regive and give true .

The analysis would essentially compute the quad illustrated below for the above action. The
overlined types stem from the must/may construction of Section 4.10.

SRC bool

char

int

The above statement is not entirely correct. The analysis would associate a whole set
of quads of the above form with the action, the quads only differing in the length of the
input they accept. The output type of the action can be found using the image operation:
img(>, Q), and the input type can be found as rev(Q,>). �

6.1.1 Related Work

Action notation does not have records per se, but it has been suggested that one could re-use
some of the record typing machinery for a type system for action notation. Record typing
schemes for ML and related languages have been studied by Wand [Wan87, Wan88, Wan89],
Rémy [Rém89, Rém92] and others with the aim of typing object oriented languages. These
systems treat different kinds of record concatenation and extension. A record type is a finite
map from labels to types, such as {a:int, b:boolean}. Concatenating the records {a:int} and
{b:boolean} yields the record {a:int, b:boolean}. However, standard action notation does not
have records in the functional facet: it has flat tuples. We can encode the 1-tuple (int) as a
record: {1:int}. Using this idea together with tuple concatenation we get

{1 : int}++ {1 : boolean} = {1 : int, 2 : boolean}.

Note that the label of the boolean type changes, showing that tuple concatenation is not
record concatenation.

The label-selective λ-calculus by Garrigue and Äıt-Kaci [GAK94, AKG95] allows for
records with numerical labels and a variant of record concatenation that can be used to
model tuple concatenation. However, modeling the action combinator “and” in that calculus
would require a whole set of terms (a term for each input length), and type inference for that
calculus has not been investigated much.

Type inference for actions has previously been explored by Even and Schmidt [ES90b,
ES90a] in a categorical framework for an earlier version of action notation. There are two
main differences between their work and the work presented here: their version of action
notation does not use flat tuples to pass around data, instead data is packed in records with
labels for individual components. The use of flat tuples as is now used in action notation
presents different problems that cannot be handled by the record typing technology employed
by Even and Schmidt. The second difference between our system and theirs is that their type
system is “hard”, an action can be found type incorrect, and no approximate type is found.
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The ASTIS system of Jakobsen [Jak93] was a practical implementation and extension of
the techniques developed by Even and Schmidt. The Actress compiler generator by Brown,
Moura and Watt [BMW92, MW94] also applied an extended version of the type system by
Even and Schmidt.

6.2 Introduction to Action Semantics

The following introduction to action semantics is based on the introduction given in [Ørb94a].

Action semantics is a formalism for the description of the dynamic semantics of program-
ming languages, developed by Mosses and Watt [Mos92]. Based on an order-sorted algebraic
framework, an action semantic description of a programming language specifies a translation
from abstract terms of the source language to action notation.

Action notation is designed to allow comprehensible and accessible semantic descriptions of
programming languages; readability and modularity are emphasized over conciseness. Action
semantic descriptions scale up well, and considerable reuse of descriptions is possible among
related languages. An informal introduction to action notation, as well as the formal semantics
of the notation, can be found in [Mos92].

The semantics of action notation is itself defined by a structural operational semantics,
and actions reflect the gradual, stepwise, execution of programs. The performance of an
action can terminate in one of three ways: It may complete, indicating normal termination; it
may fail, to indicate the abortion of the current alternative; or it may escape, corresponding
to exceptional termination which may trapped. Finally, the performance of an action may
diverge, ie. end up in an infinite loop.

Actions may be classified according to which facet of action notation they belong. There
are five facets:

• the basic facet, dealing with control flow regardless of data.

• the functional facet, processing transient information, actions are given and give data.

• the declarative facet, dealing with bindings (scoped information), actions receive and
produce bindings.

• the imperative facet, dealing with loads and stores in memory (stable information),
actions may reserve and unreserve cells of the storage, and change the contents of the
cells.

• the communicative facet, processing permanent information, actions may send and re-
ceive messages communicated between processes.

In general, imperative and communicative actions actions are committing, which prevents
backtracking to alternative actions on failure. There are also hybrid actions that deal with
more than one facet. Below are some example action constructs:

• ‘complete’: the simplest action. Unconditionally completes, gives no data and produces
no bindings. Not committing.
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• ‘A1 and A2’: a basic action construct. Each sub-action is given the same data as the
combined action, and each receives the same bindings as the combined construct. The
data given by the two sub-actions is concatenated into a tuple to form the data given
by the combined action, (the construct is said to be functionally conducting). The
performance of the two sub-actions may be interleaved.

• ‘A1 or A2’: a basic action construct, represents non-deterministic choice between the
two sub-actions. Either A1 or A2 is performed. If A1 fails without committing A2 is
performed, and vice versa.

• ‘store Y1 in Y2’: an imperative action. Evaluates the yielder Y1 and stores the result in
the cell yielded by Y2. Commits and completes when Y1 evaluates to a storable and Y2

evaluates to a cell.

An action term consists of constructs from two syntactic categories, there are action
constructs like those described above, and there are yielders that we will describe below.
Yielders may be evaluated in one step to yield a value. Below are a few example yielders:

• ‘sum(Y1, Y2)’: evaluates the yielders Y1 and Y2 and forms the sum of the two numbers.

• ‘the given D#n’: picks out the n’th element of the tuple of data given to the containing
action. Yields the empty sort nothing unless the n’th item of the given data is of sort
D.

• ‘the D stored in Y ’: provided that Y yields a cell, it yields the intersection of the
contents of that cell and the sort D.

The data transfered between actions is collected into sorts, which are like sets of data
except that singular items of data are considered sorts of one element. The sorts form a
distributive lattice under the sort inclusion order (≤). Sort union is written as a vertical bar
(|), and sort intersection is written with the ampersand symbol (&). The empty sort nothing
denotes the bottom of the lattice.

As an example we give below an action semantics for a call-by-value λ-calculus with
constants.

6.2.1 Abstract Syntax

needs: Numbers/Integers(integer), Strings(string) .

grammar:

(1) Expr = [[ “lambda” Var “.” Expr ]] [[ Expr “(” Expr “)” ]]
[[ Expr “+” Expr ]] integer Var .

(2) Var = string .

6.2.2 Semantic Functions

includes: Abstract Syntax .

introduces: evaluate .
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• evaluate :: Expr → action .

(1) evaluate I :integer = give I .

(2) evaluate V :Var = give the datum bound to V .

(3) evaluate [[ “lambda” V :Var “.” E :Expr ]] =
give the closure abstraction of

furthermore bind V to the given datum#1
hence evaluate E .

(4) evaluate [[ E1:Expr “(” E2:Expr “)” ]] =
evaluate E1 and evaluate E2

then enact application the given abstraction#1 to the given datum#2 .

(5) evaluate [[ E1:Expr “+” E2:Expr ]] =
evaluate E1 and evaluate E2

then give the sum of them .

6.2.3 Semantic Entities

includes: Action Notation .

• datum = abstraction integer 2 .

• bindable = datum .

• token = string .

Note the different use of semantic brackets ([[·]]) in action notation and elsewhere. In action
notation the semantic brackets are defined as tree constructors, whereas they are ordinarily
associated with the semantic functions themselves.

6.3 A Subset of Action Notation

Here we give the syntax of the subset of action notation that we treat in this chapter. The
subset merely consists of the essential parts of the functional facet.

This particular subset of action notation is chosen to facilitate the investigation of the
problems with data passing among actions in the form of flat, heterogeneous tuples. Actions
from the declarative and imperative facets can easily be accommodated as consumers and
producers of transient data using the src and sink parts of the dependence quads of Chapter 4.
Moreover, the reason for not incorporating those facets in the subset considered here is that
bound tokens and locations in the store are most often not known until a particular source
program is given. As the analysis developed in this chapter works at the level of semantic
equations, such concrete tokens and locations are not present at the time of analysis. Another
simple way to accommodate imperative actions would be to consider all locations equal and
have one slot representing all locations in the store, however, this would also be excessively
imprecise.

As to the communicative facet, it is outside the scope of this chapter. If the communicating
agents can be distinguished at the level of the semantic equations they can be analyzed
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independently, but this might seldom be the case. In more complicated cases the control flow
analysis would have to be extended to handle communicative actions correctly.

In the following we define the abstract syntax of our subset of action notation. The
grammar is written in the ordinary BNF style instead of in the special action notation style.
The action notation style will be used only for examples of actions and action semantic
specifications, not at the meta-level.

Action ::= Primitive | Composite

Primitive ::= complete | fail | escape | unfold

Composite ::= Action and Action | Action or Action
| Action then Action | Action trap Actiongive Yielder | check Yielder
| unfolding Action | enact application Yielder to Yielder

Yielder ::= it | them | sum Yielder | the given Sort
| the given Sort # Natural | Yielder is Yielder
| abstraction of Action | Natural | Boolean
| (Yielder ,Yielder)

Natural ::= 1 | 2 | 3 | . . .
Boolean ::= true | false

Sort ::= integer | truth-value | abstraction | nothing | Sort “|” Sort
| Sort & Sort | (Sort ,Sort)

6.4 A Natural Semantics

This section defines a natural semantics for our subset of action notation. We have chosen to
give a natural (big step) operational semantics for our subset of action notation, both to make
the chapter self-contained, and to avoid the complexities of the full operational semantics of
action notation given in [Mos92]. Similar approaches have been used in papers by others on
action semantics, most notably by Palsberg in his thesis [Pal92]. The semantics given here is
basically a subset of the semantics of Palsberg’s thesis.

Simple values in the operational semantics are integers, booleans, and abstraction closures.
Heterogeneous tuples of simple values form the data values of interest.

We define the operational semantics as an evaluation relation between configurations and
results. A configuration (A,B, v) consists of an action term (A) to be evaluated, the body of
the innermost unfolding enclosing A (B), and a tuple of data given to the action (v). A result
(t, w) consists of a tag (t) signifying whether the action completed, failed, or escaped together
with a tuple of data (w) given by (or escaping from) the action. The evaluation relation is
written:

(A,B, v)→ (t, w).

The evaluation of yielders is specified in the same manner as the evaluation of actions. A
yielder configuration (Y,B, v) (where Y is the yielder, B is the innermost enclosing unfolding,
and v is the tuple of data given to the yielder) evaluates to a tuple w, written:

(Y,B, v)→ w.
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Abstractions may contain free unfolds that are lexically scoped. The yielder evalua-
tion must therefore keep track of the innermost enclosing unfolding just like the evalua-
tion of actions. This is a conservative extension of standard action notation proposed by
Lassen [Las95, Las97]. We write 〈A,B〉 for the abstraction with the body A and enclosing
unfolding B. Notice that the unfolding is packaged up together with the body in the creation
of the abstraction to ensure lexical scoping of unfoldings.

We first define a concrete interpretation of sort expressions. The function σ associates the
syntax of a sort with its denotation. The sort lattice used in the concrete semantics is the
distributive sort-inclusion lattice generated from the atoms: integer, boolean, abstraction,
and tuples of these sorts. The empty sort nothing denotes the bottom of the lattice. Tuples
are ordered componentwise, and tuples of different lengths are not related. Tuples with one
component are identified with singular data items.

σ[[integer]] = integer σ[[truth-value]] = boolean
σ[[abstraction]] = abstraction σ[[(S1, S2)]] = σ[[S1]] ++σ[[S2]]

σ[[S1 | S2]] = σ[[S1]] t σ[[S2]] σ[[S1 & S2]] = σ[[S1]] u σ[[S2]]
σ[[nothing]] = nothing

The sort integer contains all the integers, and the sort boolean contains the two individuals
true and false. The sort abstraction contains all closures. We write v for sort inclusion, and t
and u for least upper bound and greatest lower bound, respectively.

6.4.1 Evaluation of Actions

The evaluation relations are defined as sets of inference rules. A configuration evaluates to a
result only if it can be derived from these rules.

(complete, B, v)→ (completed, ()) (escape, B, v)→ (escaped, v)

(fail, B, v)→ (failed, ())

(B,B, v)→ (t, w)

(unfold, B, v)→ (t, w)

(A, unfolding A, v)→ (t, w)

(unfolding A,B, v)→ (t, w)
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(A1, B, v)→ (completed, w1) (A2, B, v)→ (completed, w2)

(A1 and A2, B, v)→ (completed, w1 ++w2)

(A1, B, v)→ (t, w1) t ∈ {escaped, failed}
(A1 and A2, B, v)→ (t, w1)

(A2, B, v)→ (t, w2) t ∈ {escaped, failed}
(A1 and A2, B, v)→ (t, w2)

(A1, B, v)→ (t, w1) t ∈ {completed, escaped}
(A1 or A2, B, v)→ (t, w1)

(A2, B, v)→ (t, w2) t ∈ {completed, escaped}
(A1 or A2, B, v)→ (t, w2)

(A1, B, v)→ (failed, w1) (A2, B, v)→ (failed, w2)

(A1 or A2, B, v)→ (failed, ())

(A1, B, v)→ (completed, w1) (A2, B,w1)→ (t, w2)

(A1 then A2, B, v)→ (t, w2)

(A1, B, v)→ (t, w1) t ∈ {escaped, failed}
(A1 then A2, B, v)→ (t, w1)

(A1, B, v)→ (t, w1) t ∈ {completed, failed}
(A1 trap A2, B, v)→ (t, w1)

(A1, B, v)→ (escaped, w1) (A2, B,w1)→ (t, w2)

(A1 trap A2, B, v)→ (t, w2)

(Y,B, v)→ w 6= nothing

(give Y,B, v)→ (completed, w)

(Y,B, v)→ nothing

(give Y,B, v)→ (failed, ())

(Y,B, v)→ true

(check Y,B, v)→ (completed, ())

(Y,B, v)→ w 6= true

(check Y,B, v)→ (failed, ())

(Y1, B, v)→ 〈A′, B′〉 (Y2, B, v)→ w2 (A′, B′, w2)→ (t, w3)

(enact application Y1 to Y2, B, v)→ (t, w3)

6.4.2 Evaluation of Yielders

The following rules specify the yielder evaluation relation. In addition to the rules below we
take the meta-rule that whenever no other rule applies to (Y,B, v), it evaluates to nothing.
Note that we for simplicity allow ‘is’ to compare arbitrary data.
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|v| = 1

(it, B, v)→ v

v v σ[[S]]

(the given S,B, v)→ v

(them, B, v)→ v

|v| ≥ n vn v σ[[S]]

(the given S # n,B, v)→ vn

|v| 6= 1

(it, B, v)→ nothing

(Y1, B, v)→ w (Y2, B, v)→ w

(Y1 is Y2, B, v)→ true

(b,B, v)→ b

(Y1, B, v)→ w1 (Y2, B, v)→ w2 w1 6= w2

(Y1 is Y2, B, v)→ false

(n,B, v)→ n

(Y1, B, v)→ w1 (Y2, B, v)→ w2

((Y1, Y2), B, v)→ w1 ++w2

(Y,B, v)→ w wi v integer

(sum Y,B, v)→
∑

i wi (abstraction of A,B, v)→ 〈A,B〉

Notice the checks for subsort inclusion in the two yielders: “the given” and “the given #”.
In full action semantics the subsort checks are defined via sort intersection instead of subsort
inclusion. We design our semantics with sort inclusion because we want to be able to obtain a
stronger soundness theorem than would otherwise be obtainable. With the current definition
we get an analysis that is able to say that the type of the actual output is less than the
type computed by the analysis, and similarly for the input. With the official action semantic
definitions a soundness theorem would only be able to state the weaker property that the
type of the output has a non-empty intersection with the type computed by the analysis.
This property is not sufficiently strong to support an inductive soundness proof. The basic
problem is that even if we know that:

s ∧ f(t′) 6= ⊥ and t′ ∧ g(t) 6= ⊥,

we cannot conclude that:

s ∧ f(g(t)) 6= ⊥.

In the common case where run-time data are not proper sorts, the two kinds of soundness
results coincide, because if a is an atom in a lattice (corresponding to a singleton sort) then
a ∧ b 6= ⊥ if and only if a ≤ b.

6.5 Simplification

The analysis of a set of semantic equations consists of three phases. First the equations are
simplified to eliminate unfold and unfolding, then they are transformed into a set of equations
in a simpler language, and finally the new set of equations is analyzed.

This section describes the simplification of action semantic equations. There are three
goals of the simplification phase:
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1. replace unfold nodes by applications of (new) semantic functions and thereby also elim-
inate the need for the unfolding construct. This essentially serves to give a name to each
unfolding.

2. associate a unique semantic function with the body of each syntactic abstraction in the
semantics. The names generated for abstractions in this manner are used in the control
flow part of the ensuing analysis.

3. add new semantic functions such that each semantic function has only one defining
equation.

As an example of the first simplification, consider the equation:

(1) foo[[“bar”]] = unfolding complete then unfold .

This is simplified into the equations (foo’ is a new function):

(1) foo[[“bar”]] = foo’[[“bar”]] .

(2) foo’[[“bar”]] = complete then foo’[[“bar”]] .

Notice that as a result of this simplification, the semantics becomes non-compositional,
and here foo[[“bar”]] expands to an infinite action instead of a finite one. The simplification
essentially replaces one finite representation of an infinite action (unfolding, unfold) with an-
other: the equational representation. The simplified equations are not intended to be used
for expanding a concrete program into its corresponding action, they merely serve as an
intermediate representation suitable for the ensuing analysis.

The second simplification is illustrated by the following equation, where baz is some se-
mantic function:

(1) foo[[“bar” X ]] = baz X then give abstraction of give 7 .

which is simplified into:

(1) foo[[“bar” X ]] = baz X then give abstraction of foo’[[“bar” X ]] .

(2) foo’[[“bar” X ]] = give 7 .

In effect the simplification ensures that the body of an abstraction is the application of
a unique semantic function, which can be used to identify the syntactic abstraction. This
corresponds to assigning labels to λ’s in control flow analysis of functional languages.

The final part of the simplification phase is illustrated by:

(1) foo[[“bar”]] = give 8 .

(2) foo[[“baz”]] = give 10 .

which is transformed into:

(1) foo E = foo’[[“bar”]] or foo”[[“baz”]] .
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(2) foo’[[“bar”]] = give 8 .

(3) foo”[[“baz”]] = give 10 .

where the function foo’ and foo” are new. In the absence of a concrete program the last set
of equations gives a sound approximation of the data flow in the actions generated by the
function foo of the original equations. This hinges on the fact that no data is transferred
when an action fails, as opposed to when it completes or escapes.

6.5.1 Simplification Algorithm

The simplification algorithm works in three phases. First additional equations for unfoldings
and abstractions are added, then a set of enclosing unfoldings for each occurrence of unfold is
computed, and finally each occurrence of unfold is replaced by the or of a set of non-terminals.

Let NT be the set of non-terminals, i.e., the set of applications of semantic functions, such
that the argument of the function is ignored. In other words: the applications foo[[“baz”]]
and foo[[“quux” X ]] denote the same non-terminal, whereas bar[[“baz”]] denotes a different
non-terminal. The non-terminals may be underlined, or non-underlined. Underlines are used
to distinguish non-terminals associated with unfoldings.

Phase one consists of applying the following rules to the right hand side of each equation.
Writing A→ (A′, E′) means that the action term A simplifies to the term A′ with the addition
of the extra equations E′. The first three rules are to be taken as meta-rules that show how the
relation is defined for all action- and yielder-constructs except for the special cases explicitly
mentioned in the rules below. For unfoldings and abstractions we generate fresh non-terminals,
this is what the notation “N fresh” means.

Primitive→ (Primitive, ∅) (6.1)

A1 → (A′1, E1)

Unary A1 → (Unary A′1, E1)
(6.2)

A1 → (A′1, E1) A2 → (A′2, E2)

A1 Binary A2 → (A′1 Binary A′2, E1 ∪E2)
(6.3)

A→ (A′, E′) N fresh

unfolding A→ (N,E′ ∪ {N = A′}) (6.4)

N → (N, ∅) (6.5)

A→ (A′, E′) N fresh

abstraction of A→ (abstraction of N,E′ ∪ {N = A′}) (6.6)

All the new equations map fresh non-terminals to action terms, so we can represent the
set of equations as a simple linked list, and thus the first phase runs in O(n) time where n
is the size of the original semantics. After all the original equations are processed, duplicate
definitions of the same non-terminal are transformed by adding new non-terminals and adding



6.6. THE DEPENDENCE ALGEBRA 145

an or action as described above. This can be done in O(n log(n)) time by first sorting the list
of equations with the left hand sides as keys.

In phase two we derive a directed graph from the set of equations produced in phase one.
For each non-terminal we have a node in the graph, and for each occurrence of unfold in the
semantics we also have a node. For each equation ‘N = A’ we add edges from the node
corresponding to N to the nodes corresponding to the non-terminals and unfolds in A. This
graph G can be constructed in O(n) time. From the graph G we form the opposite graph
Gop by reversing all the edges.

For each node U corresponding to an occurrence of unfold we do a depth-first traversal
(DFS) of Gop starting from U . During this traversal, whenever a node corresponding to a
non-underlined non-terminal is met, the DFS just continues; whenever a node corresponding
to an underlined non-terminal (stemming from an unfolding construct) is met, we add that
node to the set Unf(U), and the DFS does not continue beyond that node1. As the number
of edges in the graph Gop is in O(n) this takes at most O(n2) time. When the algorithm
finishes, Unf(U) contains the set of unfoldings possibly immediately enclosing the occurrence
of unfold corresponding to U .

Phase three replaces each occurrence of unfold in the semantics with the or of the non-
terminals in Unf(U). In total the simplification can be done in quadratic time.

In order to reason about the semantics of actions with embedded non-terminals, so that we
avoid expanding simplified equations to infinite actions, we extend the operational semantics
with the following cases for non-terminals in actions and yielders. Let

S : NT → Action ∪Yielder ∪NT

denote the (simplified) equations.

(S(N), B, v)→ (t, w)

(N,B, v)→ (t, w)

(S(N), B, v)→ w

(N,B, v)→ w

This semantics ignores arguments to semantic functions, as they are not present at the
time of analysis. If P is a program, f a semantic function, t ∈ {completed, escaped}, and
(f(P ), B, v) → (t, w) according to the original semantics then also (N,B, v) → (t, w) is
possible in the simplified equation system, where N is the non-terminal corresponding to f.

It is possible that where an action generated from the original semantics may fail, the
action generated from the simplified semantics may not, due to the replacement of multiple
definitions of the same semantic function with the or construct. This does not cause trouble
as the or construct is symmetric, and no data is passed from failing actions. An analysis of
the termination mode (completed, escaped or failed) of the actions generated by a semantic
function may be built along the lines of the termination analysis in [Ørb94a, Ørb93].

6.6 The Dependence Algebra

This section presents the dependence algebra used in the analysis. The construction of the
algebra starts from a distributive type lattice, an abstraction of the sub-sort lattice used by the

1The idea of this algorithm is due to Gerth Stølting Brodal.
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action semantics that one is interested in analyzing. From the type lattice a DAlg-structure
is then constructed via the must-may construction of Chapter 4.

To make the exposition more concrete we use the free distributive lattice generated from
the flat meet-semilattice with the atoms: int, bool, and absN , where the atom absN corre-
sponds to the abstraction identified by the non-terminal N in the simplified semantics.

The distributive lattice is constructed by first generating the smallest ring of sets (a family
of sets closed under union and intersection) containing the singleton sets: {int}, {bool}, and
{absN} for each N. This ring of sets is isomorphic to a distributive lattice (using the subset
ordering) via the Birkhoff-Stone theorem. This distributive lattice satisfies the requirements
of Theorem I.5.5 in [Grä78] proving the existence of the free distributive lattice generated
from the flat meet-semilattice. This construction can be generalized to any finite flat meet-
semilattice.

We write (L,≤,∨,∧) for the lattice generated in this way. Notice that the lattice does
not in itself contain tuples, they are handled by the quads built on top of L. We write ⊥ for
the bottom element of L, corresponding to the bottom of the concrete sort lattice: nothing.

From the lattice L we first construct the DAlg-structure (Lindep,t,+, ·,0,1) as in Sec-
tion 4.10. The unit, 1, of the constructed algebra Lindep is the overlined copy of the top of
the underlying type lattice. The zero, 0, of the algebra is indep: the special element added to
signify independence.

Define the function typeof which maps sorts to vectors of types of L. Sorts may contain
the empty tuple, so the vectors returned by typeof are indexed starting from 0. We first define
the function for individual values:

typeof(n) = (⊥, int,⊥, . . .) typeof(b) = (⊥, bool,⊥, . . .)
typeof(〈N,B〉) = (⊥,

∨
N absN ,⊥, . . .) typeof(nothing) = (⊥,⊥, . . .).

In effect, typeof() takes a sort and sorts its elements according to length. We define the set
of lengths of a sort s by the following: Let v be a value, and n a natural number then:

v v s and |v| = n⇒ n ∈ |s|.

For proper sorts we specify:

typeof(s)i =
∨

(s′vs | i=|s′|)
s′

typeof(s++ s′)i =
∨

(m+n=i,m∈|s|,n∈|s′|)
typeof(s)m ++ typeof(s′)n.

typeof(s t s′)i = typeof(s)i ∨ typeof(s′)i

typeof(s u s′)i = typeof(s)i ∧ typeof(s′)i .

It is not hard to see from the definition that typeof is monotone as stated below.

Proposition 6.1 The function typeof from sorts to type vectors is monotone in each compo-
nent: If s v s′ then

typeof(s)i ≤ typeof(s′)i .
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6.7 Translation

The set of simplified action semantic equations are translated into a set of equations over
a smaller language. This way yielders, as well as completing and escaping actions can be
handled in a unified way, and the specification of the analysis becomes simpler.

Expressions in the new intermediate language are formed according to the following gram-
mar:

E ::= N | T | EE | E++E | E ∪E | λN | E@E.

Expressions are non-terminals (applications of semantic functions, as before), terminals (T
for leaves in the action tree), composition, concatenation, and union of expressions. Further-
more, expressions can be abstractions of non-terminals (due to the previous simplification),
and function application.

The expressions of this language are to be interpreted over sets of dependence quadruples,
so the terminals are specified as such sets.

The translation consists of three functions that map simplified action terms to terms over
the new language. Xcompleted maps action terms to intermediate expressions that will model
the completing behavior of the action term. Xescaped works analogously but for escaping
behavior. XY maps yielder terms to the intermediate language.

Xcompleted[[N ]] = N

Xescaped[[N ]] = N

Xcompleted[[A1 and A2]] = Xcompleted[[A1]] ++Xcompleted[[A2]]

Xescaped[[A1 and A2]] = Xescaped[[A1]] ∪Xescaped[[A2]]

Xcompleted[[A1 then A2]] = Xcompleted[[A1]]Xcompleted[[A2]]

Xescaped[[A1 then A2]] = Xescaped[[A1]] ∪ (Xcompleted[[A1]]Xescaped[[A2]])

Xcompleted[[A1 or A2]] = Xcompleted[[A1]] ∪Xcompleted[[A2]]

Xescaped[[A1 or A2]] = Xescaped[[A1]] ∪Xescaped[[A2]]

Xcompleted[[A1 trap A2]] = (Xescaped[[A1]]Xcompleted[[A2]]) ∪Xcompleted[[A1]]

Xescaped[[A1 trap A2]] = Xescaped[[A1]]Xescaped[[A2]]

In the following we write set comprehensions for certain constant quad languages. To
avoid too many trivial details we employ a few conventions. Entries in matrices in quads are
assumed to be indep unless otherwise specified. Stating that a quad belongs to Qmn constrains
the size of quads in the set. We write () for empty vectors and empty matrices (where one of
the dimensions is 0). The identity quad is named Id.

Xcompleted[[complete]] = {((), (),0,0) ∈ Qn0 | n ≥ 0}
Xescaped[[complete]] = ∅
Xcompleted[[escape]] = ∅
Xescaped[[escape]] = {Id ∈ Qnn | n ≥ 0}
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Xcompleted[[fail]] = ∅
Xescaped[[fail]] = ∅

Xcompleted[[give Y ]] = XY[[Y ]]

Xescaped[[give Y ]] = ∅
Xcompleted[[check Y ]] = XY[[Y ]]{((), (), (bool),0) ∈ Q10}
Xescaped[[check Y ]] = ∅

Xcompleted[[enact application Y1 to Y2]] = XY[[Y1]]@XY[[Y2]]

Xescaped[[enact application Y1 to Y2]] = XY[[Y1]]@XY[[Y2]]

XY[[N ]] = N

XY[[it]] = {(0,1,0,0) ∈ Q11}
XY[[them]] = {Id ∈ Qnn | n ≥ 0}

XY[[sum Y1]] = XY[[Y1]]{((int), A,0,0) ∈ Qn1 | Ai1 = int, i ≤ n, n ≥ 0}
XY[[the given S]] = {(0, A,0,0) ∈ Qnn | n ∈ |σ[[S]]|,

Aii = (typeof(σ[[S]])n)i}
XY[[the given S#k]] = {(0, A,0,0) ∈ Qn1 | Ak1 = typeof(σ[[S]])1, n ≥ k}

XY[[(Y1, Y2)]] = XY[[Y1]] ++XY[[Y2]]

XY[[b]] = {((bool),0,0,0) ∈ Qn1 | n ≥ 0}
XY[[n]] = {((int),0,0,0) ∈ Qn1 | n ≥ 0}

XY[[Y1 is Y2]] = (XY[[Y1]] ++XY[[Y2]]){((bool),0,1,0) ∈ Qn1 | n ≥ 0}
XY[[abstraction of N ]] = λN

6.8 Examples

Example 7 Consider the following fragment of an action semantics:

eval i :integer = give integer-value of i .

eval[[E1 “+” E2]] =
eval E1 and eval E2 then

give sum (the given integer#1, the given integer#2) .

Via the Xcompleted translation this is translated to the following set of equations:

E =
⋃
n

{(int,0,0,0) ∈ Qn1}

E = (E++E) · (G1 ++G2) · S

where the first equation for E stems from the first definition for eval, and the second equation
from the second definition. G1 and G2 correspond to the two parts of the argument tuple to
sum, and S corresponds to the sum yielder. The sets G1, G2, and S are defined as follows
(see also the definition of Xcompleted):
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Gk =
⋃
n≥k
{(0, A,0,0) ∈ Qn1 | Ak1 = int}

S =
⋃
n≥0

{(int, A,0,0) ∈ Qn1 | Ai1 = int, i ≤ n}

The desired solution to the equations is the least set of quads E satisfying the equations.
We can compute this by iteration, starting from the empty set, yielding the solution:

E =
⋃
n

{(int,0,0,0) ∈ Qn1}.

The information embedded in this set of quads is that the semantic function eval yields
actions that always gives a single integer as output, and ignores the data given to it.

The above set of quads is of course infinite, and thus this direct approach doesn’t work in
practice. Instead the infinite sets are approximated by grids. �

The next example considers an action capable of giving tuples of more than one length.

Example 8 Consider the action:

unfolding
give the given integer#2

and
give the given truth-value#1

and
unfold

or
give the given abstraction#3.

The recurrence generated by the simplification and the Xcompleted translation for this action
has the form:

E = (E1 ++E2 ++E) ∪E3.

This is solved by iteration as above, starting with E = ∅. Suppose 5-grids are chosen to
represent the quad languages here. Let G be the grid representing the solution to the above
recurrence. The figure below illustrates the quad G35 of the solution.

5

1

2

3

1

2

3

4

For typographical reasons, we do not write the DAlg elements on the figure, but all edges
starting from input node 1 should be labeled with a bool may-dependence, and correspond-
ingly, all edges starting from input nodes 2 and 3 should be labeled with int and abstraction
may-dependences, respectively. �
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6.9 The Flow Analysis

The flow analysis is a combined control flow analysis and type inference, as the two are
interdependent. The goal of the analysis is to compute a set of quads corresponding to the
data flow of each semantic function (non-terminal). As we have to deal with higher order
functions, we use the control flow part of the analysis to approximate the sets of functions
that may be called at every application point.

The control flow part is inspired by the work on control flow analysis and closure analysis
for λ-calculi by Jones, Shivers and others [Jon81b, Jon81a, Shi88, Shi91]. The control flow
analysis for action semantics is made difficult by the more complicated data flow of action
notation. In λ-calculi it is easy to associate the use of a variable with its binding λ using
simple scope rules or an initial α-renaming of the program. In action notation individual data
items are not named, but flow as transient data, which needs to be traced through the action.

The simplification phase ensured that every syntactic abstraction is associated with a
unique non-terminal. This is now used to identify each abstraction, just as each syntactic λ
is labeled in traditional control flow analysis.

The analysis is formulated as a big step transition relation of the form:

(pt , qt , V,E) . (pt ′, qt ′, V ′, L),

where pt and pt ′ are parameter tables mapping non-terminals to sets of possible input vectors,
such that pt(N) is an approximation of the types of vectors that may be given to occurrences
of the non-terminal N . The tables qt and qt ′ are quad tables mapping non-terminals to sets
of quads. The quad language qt(N) is an approximation of the data flow through the action
term identified by the non-terminal N . V is an approximation of the types of vectors given
as input to the expression E and V ′ is the corresponding approximation of the output vectors
given as output by the expression. The language L is the set of quads modeling the data flow
through the expression. Formally:

pt , pt ′ : NT → 2Vec

qt , qt ′ : NT → 2Quad

V, V ′ ⊆ Vec

L ⊆ Quad

S : NT → Action ∪Yielder ∪NT

where Vec is the set of all type vectors, Quad is the set of all quadruples over our dependence
algebra, and S is the set of simplified semantic equations. The maps pt and qt are extended
to sets of non-terminals T as qt(T ) =

⋃
N∈T qt(N). And we write pt [T 7→ V ] for pt [N1 7→

V,N2 7→ V, . . .], where T = {N1,N2, . . .}.
A set of vectors is mapped to a set of labels of syntactic abstractions by the map nt:

2Vec → 2NT , as:
nt(V ) = {N ∈ NT | ∃v ∈ V : |v| = 1, absN v v}.

We extend maps with the following notation:

F [S1 7→ S2](x) = if x ∈ S1 then S2 else F (x).

The following ordering on functions with sets as co-domains is used to express monotonic-
ity of the analysis phase.
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Definition 6.2 Let f : A→ 2B and g : C → 2B be partial functions. Define the ordering:

f ⊆ g ⇐⇒ dom(f) ⊆ dom(g) and ∀x ∈ dom(f) : f(x) ⊆ g(x).

2

Let LT be the quad language associated with the terminal node T , as defined in the
definition of the translation functions. The rules defining the transition relation are defined
inductively on the structure of E. In reality there are two similar derivation systems, one for
t = completed, and one for t = escaped.

(pt , qt , V, T ) . (pt , qt , img(V,LT ), LT )

(pt [N 7→ pt(N) ∪ V ], qt , pt(N) ∪ V,Xt[[S(N)]]) . (pt ′, qt ′, V ′, L)

(pt , qt , V,N) . (pt ′, qt ′[N 7→ qt ′(N) ∪ L], V ′, L ∪ qt ′(N))

(pt , qt , V,E1) . (pt ′, qt ′, V ′, L′) (pt ′, qt ′, V ′, E2) . (pt ′′, qt ′′, V ′′, L′′)

(pt , qt , V,E1E2) . (pt ′′, qt ′′, V ′′, L′L′′)

(pt , qt , V,E1) . (pt ′, qt ′, V ′, L′) (pt ′, qt ′, V,E2) . (pt ′′, qt ′′, V ′′, L′′)

(pt , qt , V,E1 ++E2) . (pt ′′, qt ′′, V ′++V ′′, L′++L′′)

(pt , qt , V,E1) . (pt ′, qt ′, V ′, L′) (pt ′, qt ′, V,E2) . (pt ′′, qt ′′, V ′′, L′′)

(pt , qt , V,E1 ∪E2) . (pt ′′, qt ′′, V ′ ∪ V ′′, L′ ∪ L′′)

(pt , qt , pt(N),Xt[[S(N)]]) . (pt ′, qt ′, V ′, L′)

(pt , qt , V, λN) . (pt ′, qt ′[N 7→ qt ′(N) ∪ L′], {absN}, {(absN ,0,0,0)})

(pt , qt , V,E1) . (pt ′, qt ′, V ′, L′)
(pt ′, qt ′, V,E2) . (pt ′′, qt ′′, V ′′, L′′) T = nt(V ′)

(pt , qt , V,E1@E2) . (pt ′′[T 7→ V ′′ ∪ pt ′′(T )], qt ′′, img(V ′′, qt ′′(T )), L′′ · qt ′′(T ))

It is not hard to see that the parameter and quad tables grow monotonically during the
analysis, as stated in the lemma below.

Lemma 6.3 If (pt , qt , V,E) . (pt ′, qt ′, V ′, L) then

pt ⊆ pt ′ and qt ⊆ qt ′.

Inspecting the transition rules for the flow analysis it is not hard to see that the analysis
can be implemented by repeated traversals of the expression tree E, and maintaining pt and qt
as global variables, starting from the bottom of the grid ordering (p. 81). The only problem
from an implementation point of view is that the sets of quads and vectors may grow to
infinite size. This problem is handled by considering grids as defined in Chapter 4 instead of
sets, and the formalities of this are treated in Section 6.11.
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6.10 Soundness

The analysis computes a quad language corresponding to each semantic function. Soundness
of the analysis means that if we apply the semantic function f to a concrete source language
term t and obtain the action A = f(t), and if A executes to completion or escapes then
the data given to A must have satisfied the requirements embedded in the quad language L
computed by the analysis, and the data given by A fulfills the guarantees about output that
are also embedded in L.

In the following we abuse the notation a bit and write typeof(v) for typeof(v)|v| whenever
v is a single value. This abuse of notation is what makes the equation

typeof(w1 ++w2) = typeof(w1)++ typeof(w2)

hold, as there is no concatenation defined on the result of typeof() in general. Also note
that we do not make explicit the obvious injection from L to Lindep taking a to its bare
representation in Lindep.

Notice that the unfolding action carried around by the operational semantics is superfluous
for simplified actions, and thus not used in the soundness proof. Also recall the dual use of v
for subsort inclusion, and for ordering in the DAlg-structure. The symbol ≤ is used only for
the type lattice ordering.

Theorem 6.4 (Soundness) Let Y and A be a simplified yielder and action, respectively.
Let t ∈ {completed, escaped}, and let S be the semantic equations. If there exists an s ∈ V
such that typeof(v) v s, and either

(Y,B, v)→ w, and (pt , qt , V,XY[[Y ]]) . (pt , qt , V ′, L)

or
(A,B, v)→ (t, w), and (pt , qt , V,Xt[[A]]) . (pt , qt , V ′, L)

then there is a quad Q ∈ L ∩Q|v||w| such that

typeof(w) v img(typeof(v), Q), (6.7)

typeof(v) ≤ rev(Q, typeof(w)), (6.8)

∃s′ ∈ V ′ : typeof(w) v s′. (6.9)

We express the above three properties concisely by writing

L, V ′ |= v,Q,w.

Before proving the soundness theorem we first establish a few lemmas that will allow us
to reason at the level of sequents of the form L, V ′ |= v,Q,w.

Lemma 6.5 The following rule is admissible.

L1, V1 |= v,Q1, w1 L2, V2 |= v,Q2, w2

L1 ++L2, V1 ++V2 |= v,Q1 ++Q2, w1 ++w2
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Proof. Clearly Q1 ++Q2 ∈ L1 ++L2. For (6.7) we use Theorem 4.28 to compute:

img(typeof(v), Q1 ++Q2) = img(typeof(v), Q1)++ img(typeof(v), Q2)

w typeof(w1)++ typeof(w2).

For (6.8) we use Theorem 4.77 to compute:

typeof(v) ≤ rev(Q1, typeof(w1)) ∧ rev(Q2, typeof(w2))

≤ rev(Q1 ++Q2, typeof(w1 ++w2)).

For (6.9) we use the existence of s1 ∈ V1, and s2 ∈ V2 such that: typeof(w1) v s1 and
typeof(w2) v s2, to get:

typeof(w1 ++w2) = typeof(w1)++ typeof(w2)

v s1 ++ s2 ∈ V1 ++V2.

2

Lemma 6.6 The following rule is admissible.

L1, V1 |= v,Q1, w1 L2, V2 |= w1, Q2, w2

L1 · L2, V2 |= v,Q1Q2, w2

Proof. By definition we have Q1Q2 ∈ L1 · L2. For (6.7) we use Theorem 4.16 to compute:

img(typeof(v), Q1Q2) = img(img(typeof(v), Q1), Q2)

w img(typeof(w1), Q2)

w typeof(w2).

For (6.8) we use Theorem 4.73 to compute:

rev(Q1Q2, typeof(w2)) ≥ rev(Q1, rev(Q2, typeof(w2)))

≥ rev(Q1, typeof(w1))

≥ typeof(v).

Property (6.9) follows from the second premiss: there is a s2 ∈ V2 such that typeof(w2) v
s2. 2

Lemma 6.7 The following rule is admissible.

L1, V1 |= v,Q1, w1 L1 ⊆ L2 V1 ⊆ V2

L2, V2 |= v,Q1, w1

Proof. Trivial from the definitions. 2



154 CHAPTER 6. SOFT TYPE INFERENCE

Proof. (Soundness theorem.) Notice that the parameter table (pt) and quad table (qt) are the
same on both sides of the . relation, so that the analysis has reached a fixed point with respect
to these tables. Using Lemma 6.3, if the tables are the same on both sides in the consequent
of a rule, they are necessarily the same on both sides of the . symbol in the antecedents of
the rule.

The proof goes by induction in the derivation of (Y,B, v) → w, respectively (A,B, v) →
(t, w). During the proof we also ensure that the two following global properties hold by
induction in the derivation of the . relation:

1. All @-nodes in the derivation tree of the . relation have the form:

(pt , qt , V0, E1) . (pt , qt , V ′0 , L0) (pt , qt , V0, E2) . (pt , qt , V ′′0 , L
′
0)

(pt , qt , V0, E1@E2) . (pt , qt , img(V ′′0 , qt(nt(V ′0))), L′0 · qt(nt(V ′0)))

and ∀N ∈ nt(V ′0) : V ′′0 ⊆ pt(N).

2. All λN -nodes in the derivation tree of the . relation have the form:

(pt , qt , pt(N),Xt[[S(N)]]) . (pt , qt , V ′1 , L
′
1)

(pt , qt , V1, λN) . (pt , qt , {absN}, {(absN ,0,0,0)})

and L′1 ⊆ qt(N).

Both of these properties are easy consequences of the rules for the . relation. The proof
now proceeds by a case analysis on Y and A. We show only the most interesting and illus-
trative cases.

• Y = the given S#k: Here we have (Y,B, v) → vk, where vk v σ[[S]]. Let Q =
(0, A,0,0) ∈ Qn1, where n = |v|, and Ak1 = typeof(σ[[S]])1.

Using the definition of rev() and Lemma 4.69 we first compute for (6.8):

rev(Q, typeof(vk))i = rev(A, typeof(vk))i ∧Ψ(0)

= Ψ(Ai1typeof(vk)1)

=

{
> if i 6= k

typeof(σ[[S]])1 ∧ typeof(vk) if i = k

≥ typeof(v).

For the (6.7) we compute:

img(typeof(v), Q) = typeof(v)A

= typeof(vk) ∧ typeof(σ[[S]])1

= typeof(vk u σ[[S]])1

w typeof(vk).

By definition V ′ = img(V,LT ), and by assumption there is an s ∈ V such that
typeof(v) v s, so sk ∈ V ′, and clearly typeof(vk) v sk. This ensures (6.9).
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• Y = Y1 is Y2 : From the operational semantics we have (Y,B, v)→ w only if (Y1, B, v)→
w1, (Y2, B, v)→ w2, and typeof(w) = bool.

The translation yields:

XY[[Y1 is Y2]] = (XY[[Y1]] ++XY[[Y2]]){((bool),0,1,0) ∈ Qn1 | n ≥ 0}

By the induction hypothesis and the definition of the . relation we must have:

(pt , qt , V,XY[[Y1]]) . (pt , qt , V1, L1),

(pt , qt , V,XY[[Y2]]) . (pt , qt , V2, L2),

(pt , qt , V1 ++V2, {((bool),0,1,0) ∈ Qn1 | n ≥ 0}) . (pt , qt , V ′, L),

and that there are Q1 ∈ L1 and Q2 ∈ L2 such that:

L1, V1 |= v,Q1, w1 and L2, V2 |= v,Q2, w2.

By the definition of . we have:

L = (L1 ++L2){((bool),0,1,0) ∈ Qn1 | n ≥ 0},

and

V ′ = img(V1 ++V2, {((bool),0,1,0) ∈ Qn1 | n ≥ 0}). (6.10)

Let Q = ((bool),0,1,0) ∈ Qn1, where n = |w1|+ |w2|. Using Theorems 4.73 and 4.77,
and the induction hypothesis we compute:

rev((Q1 ++Q2)Q, bool) ≥ rev(Q1 ++Q2, rev(Q, bool))

= rev(Q1 ++Q2, rev(0, bool) ∧Ψ(1))

= rev(Q1 ++Q2,
∏
i≤n
>)

≥ rev(Q1,
∏
i≤|w1|

>) ∧ rev(Q2,
∏

j≤|w2|
>)

≥ rev(Q1, typeof(w1)) ∧ rev(Q2, typeof(w2))

≥ typeof(v).

For (6.7) we use Theorem 4.16:

img(typeof(v), (Q1 ++Q2)Q) = img(img(typeof(v), Q1 ++Q2), Q)

= img(typeof(v), Q1 ++Q2)0 + bool

= bool (6.11)

w typeof(w).

Together, equations (6.10) and (6.11) ensure property (6.9).
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• Y = (Y1, Y2) : From the operational semantics we have ((Y1, Y2), B, v) → w1 ++w2

whenever (Y1, B, v)→ w1, and (Y2, B, v)→ w2. As

XY[[(Y1, Y2)]] = XY[[Y1]] ++XY[[Y2]]

we have (from the definition of the rules for the . relation):

(pt , qt , V,XY[[Y1]]) . (pt , qt , V1, L1),
(pt , qt , V,XY[[Y2]]) . (pt , qt , V2, L2),

L = L1 ++L2, and V ′ = V1 ++V2.

By the induction hypothesis we get L1, V1 |= v,Q1, w1 and L2, V2 |= v,Q2, w2. Using
Lemma 6.5 we get L1 ++L2, V1 ++V2 |= v,Q1 ++Q2, w1 ++w2 which is the desired result.

• Y = b : From the operational semantics we have that (b,B, v) → w where typeof(w) =
bool regardless of v. Let Q = ((bool),0,0,0) ∈ Qn1 for n = |v|. We have

rev(Q, bool) = rev(0, v) ∧Ψ(0) =
∏
i≤n
>.

and

img(v,Q) = v0 + (bool) = (bool).

Property (6.9) holds by the definition of . for terminals.

• Y = abstraction of N : By the operational semantics we have (Y,B, v) → 〈N,B〉, and
we have V ′ = {absN}, so we have V ′ 3 s′ = absN = typeof(〈N,B〉) which shows
(6.9). Also absN = img(typeof(v), (absN ,0,0,0)) proving (6.7). For (6.8) we have
> = rev((absN ,0,0,0), typeof(w)). The definition of . ensures that the first global
property holds.

• Y = N : By the extended semantics we have (N,B, v)→ w because (S(N), B, v)→ w,
and we have (pt , qt , V,N).(pt , qt , V ′, L′′∪qt(N)) because (pt , qt , pt(N)∪V,XY[[S(N)]]).
(pt , qt , V ′, L′′). By the induction hypothesis we have L′′, V ′ |= v,Q,w. As L′′ ⊆ L the
desired result holds by Lemma 6.7.

For completing actions, t = completed:

• A = complete: Recall the definition of Xcompleted[[complete]]. By the convention that the
intersection of an empty family of sets is the largest set, we have rev(((), (),0,0), w) = >,
so property (6.8) is fulfilled. For (6.7) it is clear that the image of v through the quad
yields an empty tuple which ensures the inequality.

• A = fail : This primitive never completes so the case holds vacuously.

• A = escape : As the above case.

• A = A1 and A2: This follows as the case for yielders where Y = (Y1, Y2).

• A = A1 or A2: Immediate by induction.
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• A = A1 then A2: By induction and Lemma 6.6. See also the case for trap below.

• A = A1 trap A2: If (A1 trap A2, B
′, v)→ (completed, w) then we must have that either

(A1, B
′, v)→ (completed, w)

or

(A1, B
′, v)→ (escaped, w′) and (A2, B

′, w′)→ (completed, w).

The translation yields:

Xcompleted[[A1 trap A2]] = Xescaped[[A1]]Xcompleted[[A2]] ∪Xcompleted[[A1]],

thus

(pt , qt , V,Xcompleted[[A1 trap A2]]) . (pt , qt , V ′, L)

means that we must have all of the following by the definition of the analysis rules:

(pt , qt , V,Xescaped[[A1]]Xcompleted[[A2]]) . (pt , qt , V1, L1)
(pt , qt , V,Xcompleted[[A1]]) . (pt , qt , V2, L2)

(pt , qt , V,Xescaped[[A1]]) . (pt , qt , V3, L3)
(pt , qt , V3,Xcompleted[[A2]]) . (pt , qt , V4, L4),

and V ′ = V4 ∪ V2, and L = L2 ∪ (L3 · L4). There are now two cases:

1. The first action completes: By the induction hypothesis we get L2, V2 |= v,Q2, w.
As L2 ⊆ L and V2 ⊆ V ′ the desired results follows by Lemma 6.7.

2. The first action escapes: Here we get that L3, V3 |= v,Q3, w
′. As there exists an

s3 ∈ V3 such that typeof(w′) v s3 we can apply the induction hypothesis once
more to get that L4, V4 |= w′, Q4, w. Using Lemma 6.6 we then get L3 · L4, V4 |=
v,Q3Q4, w. And since L3 · L4 ⊆ L and V4 ⊆ V ′ we get the desired result via
Lemma 6.7.

• A = check Y : By the evaluation rules we must have (Y,B, v) → w′, with typeof(w′) =
bool. By the induction hypothesis we must have that (pt , qt , V,XY[[Y ]]) . (pt , qt , V1, L1)
and that there is a Q ∈ L1 such that L1, V1 |= v,Q,w′, where Q ∈ Qn1, with n = |v|.
For the image we have:

img(typeof(v), Q((), (), bool,0)) = ().

For the reverse image we have:

rev(Q((), (), bool,0), ()) ≥ rev(Q, rev(((), (), bool,0), ()))

= rev(Q, rev((), ()) ∧Ψ(bool))

= rev(Q, bool)

≥ typeof(v).

Property (6.9) follows as V ′ contains the empty tuple.
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• A = enact application Y1 to Y2 : The evaluation rule for this case looks as:

(Y1, B, v)→ 〈N,B′〉 (Y2, B, v)→ w2 (N,B′, w2)→ (t, w)

(enact application Y1 to Y2, B, v)→ (t, w)

and for the analysis we have:

(pt , qt , V,XY[[Y1]]) . (pt , qt , V1, L1)
(pt , qt , V,XY[[Y2]]) . (pt , qt , V2, L2) T = nt(V1)

(pt , qt , V,XY[[Y1]]@XY[[Y2]]) . (pt , qt , img(V2, qt(T )), L2 · qt(T ))

The first global property is ensured as V2 ⊆ pt(N) for all N ∈ nt(V1).

By the induction hypothesis we have L1, V1 |= v,Q1, w1, where w1 = 〈N,B′〉. In
particular we have absN = typeof(〈N,B′〉) v img(typeof(v), Q1), and that there is a
s1 ∈ V1 such that absN = typeof(w1) v s1. By the definition of the function nt this
means that N ∈ nt(V1), and therefore V2 ⊆ pt(N).

By a second application of the induction hypothesis we get L2, V2 |= v,Q2, w2, in par-
ticular there is a s2 ∈ V2 such that typeof(w2) v s2.

By the second global property we have that L′1 ⊆ qt(N) in

(pt , qt , pt(N),Xt[[S(N)]]) . (pt , qt , V ′1 , L
′
1)

(pt , qt , V1, λN) . (pt , qt , {absN}, {(absN ,0,0,0)})

By a third application of the induction hypothesis where we use:

(N,B′, w2)→ (t, w), (pt , qt , pt(N),Xt[[S(N)]]) . (pt , qt , V ′1 , L
′
1),

and the existence of s2 ∈ pt(N) such that typeof(w2) v s2, we get L′1, V
′

1 |= w2, Q
′, w.

To finish this case we then compute: for (6.7):

typeof(w) v img(typeof(w2), Q
′)

v img(img(typeof(v), Q2), Q
′)

= img(typeof(v), Q2Q
′),

and for (6.8):

typeof(v) ≤ rev(Q2, typeof(w2))

≤ rev(Q2, rev(Q′, typeof(w)))

≤ rev(Q2Q
′, typeof(w)).

For (6.9) we use that ∃s2 ∈ V2 : typeof(w2) v s2, and that Q′ ∈ qt(nt(V1)) which ensures
that

typeof(w) v img(typeof(w2), Q
′) v img(s2, Q

′) ∈ img(V2, qt(nt(V1))).
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For escaping actions, t = escaped:

• A = complete: This action never escapes.

• A = escape: This case is trivial from the definitions.

• A = A1 and A2: This combined action escapes when A1 or A2 escapes. The case then
follows by induction.

• A = A1 then A2: Similar to the completing case for trap.

• A = A1 trap A2: As for the completing case for then.

2

6.11 Finiteness

The above formulation of the type inference and the soundness theorem deals with quad lan-
guages that are in general infinite. In order to obtain an implementable algorithm we have to
approximate these large sets with finite approximative representations. This is accomplished
by using the abstraction of quad languages into grids developed in Section 4.8.

Instead of interpreting the flow analysis algorithm on page 151 as generating a language
of quads we interpret it as generating a grid. Set union becomes l.u.b. on grids, and con-
catenation and composition of languages becomes concatenation and composition of grids.
Correspondingly we use the v ordering on grids instead of subset inclusion.

The method of first formulating a program analysis using possibly infinite sets, followed
by an abstraction to finite conservative representations of those sets is closely related to the
method of abstract interpretation. In that method the analysis is first formulated by the
so-called accumulating semantics which is then related to the abstract interpretation via an
adjunction. Here we employ the adjunction between sets of quads and their representing
grids.

As the abstraction from quad languages to grids is conservative (as proved in Section 4.8)
we get that the grid generated by a non-terminal in the re-interpreted transition system
represents a superset of the quad language generated by the original transition system. Recall
the concretization function γK from Section 4.8 and extend it pointwise to maps. If we write
.′ for the re-interpreted transition relation this can be written as follows: Suppose

(pt1, qt1, V1, E) . (pt2, qt2, V2, L) and (pt ′1, qt
′
1, V

′
1 , E) .′ (pt ′2, qt

′
2, V

′
2 , G)

where pt ′1, pt
′
2, qt

′
1, qt

′
2 map to grids instead of sets of quads, and V ′1 , V

′
2 are grids as well. If

pt1 ⊆ γK(pt ′1), qt1 ⊆ γK(qt ′1), V1 ⊆ γK(V ′1)

then

pt2 ⊆ γK(pt ′2), qt2 ⊆ γK(qt ′2), V2 ⊆ γK(V ′2),

and L ⊆ γK(G).
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Theorem 6.8 (Soundness) Let Y be a simplified yielder, and A be a simplified action. Let
t ∈ {completed, escaped}, and let S be the semantic equations. If there exists an s ∈ γK(V )
such that typeof(v) v s, and either

(Y,B, v)→ w, and (pt , qt , V,XY[[Y ]]) .′ (pt , qt , V ′, G)

or
(A,B, v)→ (t, w), and (pt , qt , V,Xt[[A]]) .′ (pt , qt , V ′, G)

then there is a Q ∈ γK(G) such that

typeof(w) v img(typeof(v), Q), (6.12)

typeof(v) ≤ rev(Q, typeof(w)), (6.13)

∃s′ ∈ V ′ : typeof(w) v s′. (6.14)

Proof. By the previous soundness theorem and Theorems 4.50, 4.51, and 4.52. 2

As can be seen from the soundness theorems, a safe approximation of the input and output
types of an action can be found using the image and reverse image operations. If G is the
grid computed by the analysis for an action then the type of data given by the action can be
approximated as:

∨
Q∈γK(G) img(>, Q), and similarly for the input type:

∨
Q∈γK(G) rev(Q,>).

Let n be the number of non-terminals in the simplified semantics. Inspecting each rule
of the analysis on page 151, with the re-interpretation of languages as grids in mind, it is
easy to see that the worst case cost of the application of a single rule is O(nK4 +K6) in the
application (@) case. Computing qt ′′(T ) where T is a set of size at most n may be done in n
l.u.b. operations each costing O(K4).

Let h be the height of the type lattice. The height of the grid lattice is bounded by hK4,
as each quad entry in the grid has a height of at most hK2. There is a grid for each non-
terminal, so the height of the quad table is bounded by nhK4. Correspondingly, the height
of the parameter table (of vector-grids) is bounded by nhK2. In order to reach the least fixed
point with respect to the parameter- and quad-tables, the entire translated semantics needs
to be traversed at most nh(K4 + K2) times. Each traversal either finds a fixed point with
respect to (pt , qt) or finds a pair (pt ′, qt ′) at least one step higher in the lattice by Lemma 6.3.

Let m be the size of the translated semantics (number of syntactic nodes). From the above
considerations we get that the complexity of the analysis is in O(m(nK4 + K6)(nh(K4 +
K2))), that is O(mnhK10 + (mn2 +mnh)K8 +mn2K6). As n ≤ m we can simplify this to
O(m2hK10 +m3K8). In practice h and K are (small) constants, so overall the algorithm is
cubic in the size of the semantics.

The grid size K was included in the above computations to show how much the grid size
influences the cost of the analysis. Larger grids means more precise analysis, but at a non-
trivial cost. In practice, most action semantics descriptions use only short tuples of length
two or three, so grid sizes of three or four would typically suffice.

6.12 Summary

This chapter has presented a soft type inference system for action semantic equations based
on the dependence quad technology developed in Chapter 4. The analysis computes a grid
of quads corresponding to each semantic function from which information about data flow
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and types can be gleaned. The analysis has been proved sound with respect to a natural
operational semantics for action notation.
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Chapter 7

Conclusion

7.1 Contributions

This thesis has introduced two kinds of program analysis: trust analysis and dependence
algebra-based analysis. Chapter 2 introduced the concept of trust analysis, and gave two
analyses for a structured imperative programming language with pointers. One based on
abstract interpretation, and one based on constraint generation and solving. The two analyses
were proved sound and compared to each other.

Chapter 3 gave the first trust analysis for an extension of the simply-typed λ-calculus in
terms of an annotated type system. The extended calculus was proved Church-Rosser, and
a subject-reduction theorem showing the soundness of the type system with respect to the
calculus was shown. A cubic time type inference algorithm was given and shown sound and
complete with respect to the type system.

Chapter 4 introduced the theory of dependence algebra. Matrices and quadruples were
built on top of the basic dependence algebra, and various properties of the algebraic operations
were proved. The important notion of the image of a vector through a quad was defined as
well. The notion of quad languages was introduced, and an algebra of operations on quad
languages was developed. Grids were introduced as a finite representation of infinite quad
languages, and several theorems showing the soundness of the finite abstraction were given.
A particular non-trivial construction of a dependence algebra from a distributive lattice was
described, leading to the notion of a reverse image crucial for the computation of must/may
dependences. Finally the theory was related to other analysis technologies.

Chapters 5 and 6 exhibited two examples of applications of dependence algebra: trust
analysis of C and type inference for actions semantics. Chapter 5 described an implementation
of a trust analysis for the C programming language based on the dependence technology
developed in Chapter 4. Special care was taken to be able to handle unstructured control
flow in the program point sensitive analysis. The back end of the analysis was proved sound
with respect to an operational semantics of a stack machine.

Chapter 6 developed a cubic time soft type inference algorithm for action semantic equa-
tions, also based on the dependence algebra theory. Here all the machinery (grids, must/may
dependence, reverse images) of Chapter 4 came into play. The analysis was proved sound
with respect to a natural operational semantics for the functional (including higher-order
abstractions) facet of action notation.
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7.2 Suggestions for Future Research

There are many avenues open for further research in the areas of trust and dependence
analysis. There is of course always a need for more precise, fast, and flexible analyses. There
is, however, a more urgent need to gain experience in the practical use of trust analysis. As
was mentioned in the discussion in Chapter 5, programs written without trust analysis in mind
are often hard to change so that a trust analyzer may verify the safety of the program. This
problem may be attacked on two fronts: better, more flexible, analyses would be able to verify
more programs, and new programs written with the analysis in mind may be better suited for
analysis. Writing new programs with trust in mind may well result in better programs, just
as writing in a strongly typed language often results in better programs, due to the stronger
discipline enforced by the type system.

The particular implementation of the trust analysis for C would benefit immensely from
a good “points-to” analysis, but this is hard to combine with a modular analysis, analyzing
each source file separately.

The theory of dependence algebra should be applied to more problems, to tests its powers,
and the theory in itself could, as a result of the applications, be extended. One obvious
candidate application for dependence algebra is the problem of strictness analysis for higher-
order lazy functional languages.

The grid abstraction of sets of quads is pretty crude and better representations of such
sets should be sought.

The type inference for action semantics equations should be extended to a more useful
subset of action notation incorporating some part of data notation as well. The extended
analysis should also be implemented to test its strength on real examples.
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model

coherent, 20
monoid, 63
must-dependence, 87

n(), 109
n2(), 109
Natural, 139
non-terminal, 144
notation

2I , 16
αK(L), 82
α0
K(A), 76
α0
K(Q), 76
α0
K(v), 76

[], 109
P : [X → Y ], 116
a · v, 65
a · b, 62, 88
G ·G′, 81
L · L′, 74
A ·B, 66
Q ·Q′, 68
MI ◦A v AA, 17
v++w, 72
G++G′, 82
L++L′, 74
A++B, 72
Q++Q′, 72
∆, 46
δ, 18
δ(V ), 55
A ` 〈v, t〉 v a, 17
A `C E : t, 45
A ` E : τ , 43
η, 18
γK(G), 83
u, 62, 140
∧, 87
≤, 14, 87
∨, 87
t, 62, 65, 66, 68, 88, 109, 140
m |= c, 20
L, V ′ |= v,Q,w, 152
S |= m, c, 123

(δ, ϕ) |= (C,D), 53
⊕, 40
⊗, 40
(s,A, t, u), 67
πn, 15∏

, 92
〈A,B〉, 140
〈·, ·〉, 15
〈v,w〉, 65
〈GH〉r, 52
Ψ, 91
ρ, 40
[[·]], 40
[[E]]r, 52
[[E]]y, 52
σ[[]], 140
(s,m, p), 109
v, 61, 88, 109, 140
(A,B, v)→ (t, w), 139
(pt , qt , V,E) . (pt ′, qt ′, V ′, L), 150
(s,m, p) 7→ (s′,m′, p′), 109
(S,Q, p) . (S′, Q′, p′), 123
(Y,B, v)→ w, 139
f ⊆ g, 150
+, 62, 65, 66, 68, 88
t : s, 109
], 13
1, 62, 67
F [S1 7→ S2], 150
m[l 7→ t], 109
M [x/a], 14
vt, 121
0, 62, 67, 68

nothing, 140
NT, 144
nt(V ), 150

ordered semi-ring, 63
overlined element, 87

path, 116
post-dominator, 117

immediate, 117
pre, 71
pre-image, 71
Primitive, 139
pt, 150
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Qmn, 68
Qmn(D), 68
qt, 150
Quad, 150
quad, 67
quad languages, 74
quadruple, 67

rev, 92
reverse image, 92

S, 14
SA, 16
scalar product, 65
semantics

instrumented, 14
standard, 13

semi-ring, 63
ordered, 63

sequential composition, 62, 66
SI , 14, 15
sink, 67
slot, 59
small, 55
smash product, 40
Sort, 139
src, 67
SS , 18
standard semantics, 13
sum, 62

T-system, 51
T (E), 52
tensor, 65
Tr, 14
Tr, 109
tr, 42, 109
transpose, 121
typeof(v), 146, 152

Addr, 13
ValA, 16
ValI , 14
Var, 40
Vec, 150
Vr, 51
Vy, 51

While language, 13

Xcompleted[[]], 147
Xescaped[[]], 147
XY[[]], 147

Yielder, 139
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