
B
R

IC
S

D
S

-96-3
L.A

rge:
E

fficientE
xternal-M

em
ory

D
ata

S
tructures

and
A

pplications

BRICS
Basic Research in Computer Science

Efficient External-Memory
Data Structures and Applications

Lars Arge

BRICS Dissertation Series DS-96-3

ISSN 1396-7002 August 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Dissertation Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Efficient External-Memory Data Structures
and Applications

Lars Arge

Ph.D. Dissertation

Department of Computer Science
University of Aarhus

Denmark

Efficient External-Memory Data Structures
and Applications

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfillment of the Requirements for the

Ph.D. Degree

by
Lars Arge

February 1996

Abstract

In this thesis we study the Input/Output (I/O) complexity of large-scale problems arising
e.g. in the areas of database systems, geographic information systems, VLSI design systems
and computer graphics, and design I/O-efficient algorithms for them.

A general theme in our work is to design I/O-efficient algorithms through the design
of I/O-efficient data structures. One of our philosophies is to try to isolate all the I/O
specific parts of an algorithm in the data structures, that is, to try to design I/O algorithms
from internal memory algorithms by exchanging the data structures used in internal memory
with their external memory counterparts. The results in the thesis include a technique for
transforming an internal memory tree data structure into an external data structure which
can be used in a batched dynamic setting, that is, a setting where we for example do not
require that the result of a search operation is returned immediately. Using this technique
we develop batched dynamic external versions of the (one-dimensional) range-tree and the
segment-tree and we develop an external priority queue. Following our general philosophy
we show how these structures can be used in standard internal memory sorting algorithms
and algorithms for problems involving geometric objects. The latter has applications to VLSI
design. Using the priority queue we improve upon known I/O algorithms for fundamental
graph problems, and develop new efficient algorithms for the graph-related problem of ordered
binary-decision diagram manipulation. Ordered binary-decision diagrams are the state-of-
the-art data structure for boolean function manipulation and they are extensively used in
large-scale applications like logic circuit verification.

Combining our batched dynamic segment tree with the novel technique of external-
memory fractional cascading we develop I/O-efficient algorithms for a large number of ge-
ometric problems involving line segments in the plane, with applications to geographic infor-
mations systems. Such systems frequently handle huge amounts of spatial data and thus they
require good use of external-memory techniques.

We also manage to use the ideas in the batched dynamic segment tree to develop “on-line”
external data structures for a special case of two-dimensional range searching with applications
to databases and constraint logic programming. We develop an on-line external version of
the segment tree, which improves upon the previously best known such structure, and an
optimal on-line external version of the interval tree. The last result settles an important open
problem in databases and I/O algorithms. In order to develop these structure we use a novel
balancing technique for search trees which can be regarded as weight-balancing of B-trees.

Finally, we develop a technique for transforming internal memory lower bounds to lower
bounds in the I/O model, and we prove that our new ordered binary-decision diagram ma-
nipulation algorithms are asymptotically optimal among a class of algorithms that include all
know manipulation algorithms.

v

To my parents
For their love, encouragement and support

vii

Acknowledgments

A single conversation with a wise man is better than ten years of study
Chinese Proverb

The other day a colleague reminded me that I would soon have been studying for ten years
at University of Aarhus. At first the thought was pretty frightful, but then I remembered all
the wise and friendly women and men I had met during these years—they all deserve thanks.

My advisor Erik Meineche Schmidt deserves special thanks. His enthusiastic teaching style
made me interested in doing research. He believed in my research capabilities even though I
didn’t spend all my time as an undergraduate reading books and studying for exams, and at
the times when I didn’t believe in myself he convinced me that it was perfectly normal. He
pointed me in the right direction and then he entrusted me the freedom that made my study
such an enjoyable and interesting time. Also, I have had a lot of fun with him drinking beer
and discussing politics. In that respect I see a lot of myself in Erik.

Very special thanks go to Peter Bro Miltersen. He has taught me a lot about how to do
research and many times he has helped me in formulating my results in a correct and precise
way. Even though we have only known each other for half of the ten years, we have had
at least ten years worth of fun together. I was especially happy when he married my friend
through many years, Nina Bargisen. Now I get to play with their lovely daughter Emma—she
is a lot of fun! It also seems that I will finally co-author a paper with him, something I’m
very enthusiastic about. Thanks to the whole family.

Thanks also go to my friends and co-authors Mikael (Knud) Knudsen and Kirsten Larsen
for making the writing of my first paper such a great experience. Also my friend and “personal
programmer” Christian Lynbech deserves a lot of thanks. I would never have been able to
write this thesis without his fantastic knowledge about LaTeX and Emacs and his willingness
to tell me about the hacks at short notice. Finishing this thesis I hope to spend a lot more
time making him loose in badminton and listening to Danish pop-music with him.

At the department a lot of other friends and colleagues contributed to all these fun years.
In the algorithm group I’m very grateful to Sven Skyum for teaching me computational ge-
ometry and for listening to my problems, and to Dany Breslauer, Gerth S. Brodal, Devdatt
Dubhashi, Gudmund S. Frandsen and Thore Husfeldt for lots of inspiring discussions. Out-
side the group thanks especially go to Ole Caprani, Allan Cheng, Bettina B. Clausen, Nils
Klarlund, Mogens Nielsen, Michael I. Schwartzbach and Peter Ørbæk. Also the always help-
ful secretaries Susanne Brøndberg, Janne Damgaard, Marianne Iversen, Karen Møller, and
Charlotte Nielsen deserve lots of thanks, and so does the rest of the support staff.

One thing that have made the ten years especially joyful is all the undergrads I have been
teaching computer science over the years. Not only did they help in “keeping me young”, but
it was also a lot of fun. I don’t think I would have survived without them. I won’t try to

viii

write all their names here, as I’m afraid to forget half of them. Thanks all of you!
However, one of them—Liv Hornekær—deserves very special thanks. I don’t know if

I would have been able to complete the work in this thesis if she hadn’t been there. I’m
especially happy that she joined me while I was at Duke University, and for the time we have
spent on hiking and camping at exotic places around the world. Many hugs to her!

I would also like to thank all my other friends for helping me keep life in perspective
by constantly reminding me that life is more than external-memory algorithms. All my
roommates over the years have been indispensable in that regard, and Lone V. Andersen,
Morten Brun, Claus Lund Jensen, Bettina Nøhr, Mette Terp, and Dorte Markussen have
been especially persistent. Martha Vogdrup and all her various roommates also deserve
special credit in that regard. Martha is always ready for a quick party and I hope we will
have a lot of those in the years to come. I’m also very grateful for my years in the Student
Council (Studenterr̊adet) which matured me a lot, and thus these years are a major reason
why I managed successfully to finish this thesis.

During my Ph.D. study I was fortunate to visit Jeffrey S. Vitter at Duke University for
eight months. The stay at Duke meant everything to me! Not only was it incredibly inspiring
to be around other researchers interested in external-memory algorithms, but in general the
inspiring atmosphere at Duke made me work hard and have fun while doing so. Working with
Jeff taught me a lot and we obtained a lot of nice results. I learned a lot from the change
in environment both scientifically and personally, and I would like to thank Jeff and Duke
University for giving me the opportunity to do so. During my stay at Duke I made a lot
of other friends who made my stay interesting and fun. I would especially like to thank P.
Krishnan, for being such a great officemate, Pankaj Agarwal, Rakesh Barve, Cathie Caimano,
Eddie and Jeannie Grove, T. M. Murali, and Darren Vengroff. The eight months passed way
too quickly!

I would also like to thank my thesis evaluation committee—Joan Boyar, Mogens Nielsen,
and Roberto Tamassia—for their nice comments and suggestions.

Also my brother Thomas and my sister Maria deserve thanks. However, I’m by far most
grateful to my parents for their love, encouragement and support, which gave me all the
opportunities.

Lars Arge
Århus, February/August 1996

The work in this thesis was financially supported by University of Aarhus, Aarhus University Research
Foundation, the ESPRIT II Basic Research Actions Program of the EC under contract No. 7141
(project ALCOM II), the Danish Research Academy and BRICS (Acronym for Basic Research in
Computer Science, a Center of the Danish National Research Foundation).

ix

Contents

Abstract v

Acknowledgments viii

1 Introduction 1
1.1 The Parallel Disk Model . 2
1.2 Outline of the Thesis . 4

I Survey of Important I/O Results 5

2 Fundamental Problems and Paradigms 7
2.1 Basic Paradigms for Designing I/O-efficient Algorithms 8

2.1.1 Merge Sort . 8
2.1.2 Distribution Sort . 9
2.1.3 Buffer Tree Sort . 9

2.2 Lower Bounds and Complexity of Fundamental Problems 11
2.2.1 Transforming Lower Bounds . 12

2.3 Bibliographic Notes and Summary of our Contributions 13

3 Computational Geometry Problems 15
3.1 The Orthogonal Line Segment Intersection Problem 16

3.1.1 Distribution Sweeping . 16
3.1.2 Rangesearch Operation on the Buffer tree 18

3.2 Problems on General Line Segments in the Plane 18
3.2.1 The Endpoint Dominance Problem . 19
3.2.2 The External Segment Tree . 20
3.2.3 External-Memory Fractional Cascading 22
3.2.4 Algorithms obtained using the Endpoint Dominance Problem 24

3.3 External-Memory On-line Range Searching 25
3.3.1 External-Memory Interval Management 26

3.4 Bibliographic Notes and Summery of our Contributions 30

x

4 Graph Problems 33
4.1 Basic Issues in External Graph Algorithm . 34
4.2 External List Ranking and PRAM Simulation 35

4.2.1 External List Ranking . 36
4.2.2 PRAM Simulation . 37

4.3 I/O Complexity of OBDD Manipulation . 37
4.3.1 The Reduce Operation . 39

4.4 Bibliographic Notes and Summary of our Contributions 42

5 Conclusions 43
5.1 Concluding Remarks on our Contributions . 43

II Papers 45

6 The Buffer Tree:
A New Technique for Optimal I/O-Algorithms 47

7 External-Memory Algorithms for Processing Line Segments
in Geographic Information Systems 71

8 Optimal Dynamic Interval Management in External Memory 95

9 The I/O-Complexity of Ordered Binary-Decision Diagram
Manipulation 121

10 A General Lower Bound on the I/O-Complexity of
Comparison-based Algorithms 147

Bibliography 161

xi

Chapter 1

Introduction

The difference in speed between modern CPU and disk technologies is analogous to the
difference in speed in sharpening a pencil by using a sharpener on one’s desk or by taking an

airplane to the other side of the world and using a sharpener on someone else’s desk
D. Cormer1

Traditionally when designing computer programs people have focused on the minimization
of the internal computation time and ignored the time spent on Input/Output (I/O). Theo-
retically one of the most commonly used machine models when designing algorithms is the
Random Access Machine (RAM) (see e.g. [6, 125]). One main feature of the RAM model is
that its memory consists of an (infinite) array, and that any entry in the array can be accessed
at the same (constant) cost. Also in practice most programmers conceptually write programs
on a machine model like the RAM. In an UNIX environment for example the programmer
thinks of the machine as consisting of a processor and a huge (“infinite”) memory where
the contents of each memory cell can be accessed at the same cost (Figure 1.1). The task
of moving data in and out of the limited main memory is then entrusted to the operating
system. However, in practice there is a huge difference in access time of fast internal memory
and slower external memory such as disks. While typical access time of main memory is
measured in nano seconds, a typical access time of a disk is on the order of milli seconds [45].
So roughly speaking there is a factor of a million in difference in the access time of internal
and external memory, and therefore the assumption that every memory cell can be accessed
at the same cost is questionable, to say the least!

In many modern large-scale applications the communication between internal and external
memory, and not the internal computation time, is actually the bottleneck in the computa-
tion. Examples of large-scale applications can e.g. be found in database systems [79, 110],
spatial databases and geographic information systems (GIS) [52, 70, 84, 114, 124], VLSI ver-
ification [17], constraint logic programming [78, 79], computer graphics and virtual reality
systems [60, 114], computational biology [135], physics and geophysics [47, 129] and in mete-
orology [47]. The amount of data manipulated in such applications is too large to fit in main
memory and must reside on disk, hence the I/O communication can become a very severe
bottleneck. A good example is NASA’s EOS project GIS system [52], which is expected to
manipulate petabytes (thousands of terabytes, or millions of gigabytes) of data!

The effect of the I/O bottleneck is getting more pronounced as internal computation gets
faster, and especially as parallel computing gains popularity [107]. Currently, technological

1Cited in [34]

1

P M DMP

D

Figure 1.1: A RAM-like machine model. Figure 1.2: A more realistic model.

advances are increasing CPU speeds at an annual rate of 40–60% while disk transfer rates are
only increasing by 7–10% annually [113]. Internal memory sizes are also increasing, but not
nearly fast enough to meet the needs of important large-scale applications.

Modern operating systems try to minimize the effect of the I/O bottleneck by using sophis-
ticated paging and prefetching strategies in order to assure that data is present in internal
memory when it is accessed. However, these strategies are general purpose in nature and
therefore they cannot take full advantage of the properties of a specific problem. Instead we
could hope to design more efficient algorithms by explicitly considering the I/O communica-
tion when designing algorithms for specific problems. This could e.g. be done by designing
algorithms for a model where the memory system consists of a main memory of limited size
and a number of external memory devices (Figure 1.2), and where the memory access time
depends on the type of memory accessed. Algorithms designed for such a model are often
called external-memory (or I/O) algorithms.

In this thesis we study the I/O complexity of problems from several of the above mentioned
areas and design efficient external-memory algorithms for them.

1.1 The Parallel Disk Model

Accurately modeling memory and disk systems is a complex task [113]. The primary feature
of disks that we want to model is their extremely long access time relative to that of internal
memory. In order to amortize the access time over a large amount of data, typical disks read
or write large blocks of contiguous data at once. Therefore we use a theoretical model defined
in [5] with the following parameters:

N = number of elements in the problem instance;
M = number of elements that can fit into internal memory;
B = number of elements per disk block;

where M < N and 1 ≤ B ≤M/2.
In order to study the performance of external-memory algorithms, we use the standard

notion of I/O complexity [5]. We define an Input/Output (I/O) operation to be the process of
simultaneously reading or writing a block of B contiguous data elements to or from the disk.
As I/O communication is our primary concern, we define the I/O complexity of an algorithm
simply to be the number of I/Os it performs. Thus the I/O complexity of reading all of the
input data is equal to N/B. Internal computation is free in the model. Depending on the

2

CPU

C D

D

IC DC

P

M

B = 32 b
B = 246 b

B = 8 Kb

16 Kb
32 Mb

1 Mb

Figure 1.3: A “real” machine with typical memory and block sizes [45].

size of the data elements, typical values for workstations and file servers in production today
are on the order of M = 106 or 107 and B = 103. Large-scale problem instances can be in
the range N = 1010 to N = 1012.

An increasingly popular approach to further increase the throughput of the I/O system is
to use a number of disks in parallel [63, 65, 133]. Several authors have considered an extension
of the above model with a parameter D denoting the number of disks in the system [19, 98,
99, 100, 133]. In the parallel disk model [133] one can read or write one block from each of
the D disks simultaneously in one I/O. The number of disks D range up to 102 in current
disk arrays.

Our I/O model corresponds to the one shown in Figure 1.2, where we only count the
number of blocks of B elements moved across the dashed line. Of course the model is mainly
designed for theoretical considerations and is thus very simple in comparison with a real
system. For example one cannot always ignore internal computation time and one could
try to model more accurately the fact that (in single user systems at least) reading a block
from disk in most cases decreases the cost of reading the block succeeding it. Also today the
memory of a real machine is typically made up of not only two but several levels of memory
(e.g. on-chip data and instruction cache, secondary cache, main memory and disk) between
which data are moved in blocks (Figure 1.3). The memory in such a hierarchy gets larger
and slower the further away from the processor one gets, but as the access time of the disk is
extremely large compared to that of all the other memories in the hierarchy one can in most
practical situations restrict the attention to the two level case. Thus the parallel disk model
captures the most essential parameters of the I/O systems in use today, and theoretical results
in the model can help to gain valuable insight. This is supported by experimental results which
show that implementing algorithms designed for the model can lead to significant runtime
improvements in practice [40, 41, 126, 129].

Finally, it should be mentioned that several authors have considered extended theoretical
models that try to model the hierarchical nature of the memory of real machines [1, 2, 3, 4,
7, 77, 116, 131, 132, 134], but such models quickly become theoretically very complicated due
to the large number of parameters. Therefore only very basic problems like sorting have been
considered in these models.

3

1.2 Outline of the Thesis

The rest of this thesis consists of two parts. The first part contains a survey of important
results in the area of I/O algorithms and I/O complexity, with special emphasis on the authors
results. The second part contains the authors results in the form of five papers. These papers
are:

[Buffer] The Buffer Tree: A New Technique for Optimal I/O-Algorithms

[GIS] External-Memory Algorithms for Processing Line Segments in Geographic
Information Systems (co-authored with Vengroff and Vitter)

[Interval] Optimal Dynamic Interval Management in External Memory
(co-authored with Vitter)

[OBDD] The I/O-Complexity of Ordered Binary-Decision Diagram Manipulation

[LowB] A General Lower Bound on the I/O-Complexity of Comparison-based
Algorithms (co-authored with Knudsen and Larsen)

Extended abstract versions of the papers have appeared in [11, 15, 16, 12, 13]. In the
survey we refer to the papers as indicated above.

The survey part of the thesis is divided into four chapters. In Chapter 2 we discuss
basic paradigms for designing I/O-efficient algorithms and I/O complexity of fundamental
problems. This leads to a survey of external-memory results in computational geometry
(Chapter 3) and in graph algorithms (Chapter 4). Finally, Chapter 5 contains conclusions.

Throughout the first part we give a high level presentation of ideas and results without
giving too many details. The reader is referred to the papers for details. We shall restrict
the discussion to the one-disk model (D = 1). Many of the results can be modified to work
in the D-disk model, however, for at least one prominent example this is not true [GIS].

4

Part I

Survey of Important I/O Results

5

Chapter 2

Fundamental Problems and
Paradigms

640K ought to be enough for anybody
B. Gates1

In this chapter we first consider basic paradigms for designing I/O-efficient algorithms and
then address the question of lower bounds in the I/O model. Early work on I/O complexity
concentrated on sorting and sorting related problems. Initial theoretical work was done by
Floyd [59] and by Hong and Kung [72] who studied matrix transposition and fast Fourier
transformation in restricted I/O models. The general I/O model was introduced by Aggarwal
and Vitter [5] and the notion of parallel disks was introduced by Vitter and Shriver [133].
The latter papers also deal with fundamental problems such as permutation, sorting and
matrix transposition. The problem of implementing various classes of permutations has
been addressed in [47, 48, 50]. More recently researchers have moved on to more special-
ized problems in the computational geometry [11, 15, 34, 40, 67, 74, 79, 110, 121, 130, 137],
graph [12, 40, 42, 97] and string areas [44, 56, 57].

As already mentioned the number of I/O operations needed to read the entire input is
N/B and for convenience we call this quotient n. We use the term scanning to describe
the fundamental primitive of reading (or writing) all elements in a set stored contiguously
in external memory by reading (or writing) the blocks of the set in a sequential manner in
O(n) I/Os. Furthermore, we say that an algorithm uses a linear number of I/O operations
if it uses O(n) I/Os. Similarly, we introduce m = M/B which is the number of blocks that
fits in internal memory. Aggarwal and Vitter [5] showed that the number of I/O operations
needed to sort N elements is Ω(n logm n), which is then the external-memory equivalent of
the well-known Ω(N log2 N) internal-memory bound.2 Taking a closer look at the bound for
typical values of B and M reveals that because of the large base of the logarithm, logm n is
less than 3 or 4 for all realistic values of N and m. Thus in practice the important term is the
B-term in the denominator of the O(n logm n) = O(NB logm n) bound. As typical values of B
are measured in thousands, an improvement from an Ω(N) (which we will see is the worst
case I/O performance of many internal-memory algorithms) to the sorting bound O(n logm n)
can be really significant in practice.

1In 1981.
2We define logm n = max{1, logn/ logm}.

7

In Section 2.1 we describe the basic paradigms for designing efficient I/O algorithms.
Section 2.2 then contains a further discussion of the I/O complexity of fundamental problems
like sorting and permuting.

2.1 Basic Paradigms for Designing I/O-efficient Algorithms

Originally Aggarwal and Vitter [5] presented two basic “paradigms” for designing I/O-efficient
algorithms; the merging and the distribution paradigms. In Section 2.1.1 and 2.1.2 we demon-
strate the main idea in these paradigms by showing how to sort N elements in the optimal
number of I/Os. Another important paradigm is to construct I/O-efficient versions of com-
monly used data structures. This enables the transformation of efficient internal-memory
algorithms to efficient I/O-algorithms by exchanging the data structures used in the internal
algorithms with the external data structures. This approach has the extra benefit of isolating
the I/O-specific parts of an algorithm in the data structures. We call the paradigm the data
structuring paradigm and in Section 2.1.3 we illustrate it by way of the so called buffer tree
designed in [Buffer]. As demonstrated in Chapter 3 and 4, I/O-efficient data structures turn
out to be a very powerful tool in the development of efficient I/O algorithms.

2.1.1 Merge Sort

External merge sort is a generalization of internal merge sort. First N/M (= n/m) sorted
“runs” are formed by repeatedly filling up the internal memory, sorting the elements, and
writing them back to disk. This requires O(n) I/Os. Next m runs are continually merged
together into a longer sorted run, until we end up with one sorted run containing all the
elements—Figure 2.1. The crucial property is that we can merge m runs together in a linear
number of I/Os. To do so we simply load a block from each of the runs and collect and output
the B smallest elements. We continue this process until we have processed all elements in
all runs, loading a new block from a run every time a block becomes empty. Since there
are O(logm n/m) = O(logm n) levels in the merge process, and since we only use O(n) I/O
operations on each level, we obtain the optimal O(n logm n) algorithm.

One example of the use of the merging paradigm can be found in [LowB] where we develop
an optimal algorithm for the problem of removing duplicates from a multiset, an important
problem in e.g. relational database systems where the amount of data manipulated indeed
can get very large.

N
M

= n
m

runs

N items

n
m2 runs

n
m3 runs

1 = n
mi

runs

N items

√
m buckets

(
√
m)2 buckets

Size of bucket is M

Figure 2.1: Merge sort. Figure 2.2: Distribution sort.

8

2.1.2 Distribution Sort

External distribution sort is in a sense the reverse of merge sort and the external-memory
equivalent of quick sort. Like in merge sort the distribution sort algorithm consists of a
number of levels each using a linear number of I/Os. However, instead of repeatedly merging
m run together, we repeatedly distribute the elements in a “bucket” into m smaller “buckets”
of approximately equal size. All elements in the first of these smaller buckets are smaller than
all the elements in the second bucket and so on. The process continues until the elements
in a bucket fit in internal memory, in which case the bucket is sorted using an internal-
memory sorting algorithm. The sorted sequence is then obtained by appending the small
sorted buckets.

Like m-way merge, m-way distribution can also be performed in a linear number of I/Os,
by just keeping a block in internal memory for each of the buckets we are distributing el-
ements into. However, for “technical” reasons the distribution is only done

√
m-way—see

Figure 2.2. Otherwise one cannot produce the partition elements needed to distribute the
elements in a bucket in a linear number of I/Os [5]. Actually the partition elements are
produced using a rather complicated algorithm based on the linear time internal-memory
selection algorithm [29]. However, even with the smaller distribution factor the distribu-
tion sort algorithm still runs in the asymptotically optimal O(n log√m n) = O(n logm n) I/O
operations.

The distribution sort paradigm is definitely the most powerful of the two paradigms. As a
first application we can mention the optimal algorithm developed in [LowB] for the problem
of finding the mode—the most frequently occurring element—of a multiset.

Both the distribution sort and merge sort algorithms demonstrate two of the most fun-
damental and useful features of the I/O-model, which is used repeatedly when designing I/O
algorithms. First the fact that we can do m-way merging or distribution in a linear number
of I/O operations, and secondly that we can solve a complicated problem in a linear number
of I/Os if it fits in internal memory. In the two algorithms the sorting of a memory load is
an example of the last feature, which is also connected with what is normally referred to as
“locality of reference”—one should try to work on data in chunks of the block (or internal
memory) size, and do as much work as possible on data once it is loaded into internal memory.

2.1.3 Buffer Tree Sort

We can sort N elements in internal memory in O(N log2N) time using what one could call
tree sort or priority queue sort , using a search tree or a priority queue in the obvious way. The
standard search tree structure for external memory is the B-tree [21, 51, 82]. On this structure
insert, delete, deletemin and search operations can be performed in O(logB n) I/Os. Thus
using this structure in the standard algorithms results in O(N logB n) I/O sorting algorithms.
This result is non optimal as the logarithm is base B rather than m, but more importantly it
is a factor of B away from optimal because of the N rather than n in front of the logarithm.
As mentioned above this factor can be very significant in practice. The inefficiency is a
consequence of the fact that the B-tree is designed to be used in an “on-line” setting, where
queries should be answered immediately and within a good worst-case number of I/Os, and
thus updates and queries are handled on an individual basis. This way one is not able to take
full advantage of the large internal memory. Actually, using a decision tree like argument
as in [79], one can easily show that the search bound is indeed optimal in such an “on-

9

line” setting. This fact seems to have been the main reason for many researchers [5, 42, 67]
to develop I/O algorithms, and special techniques for designing I/O algorithms, instead of
trying to develop and use external data structures.

However in “off-line” environments where we are only interested in the overall I/O use
of a series of operations on the involved data structures, and where we are willing to relax
the demands on the search operations, we could hope to develop data structures on which
a series of N operations could be performed in O(n logm n) I/Os in total. This is precisely
what is done in [Buffer]. Below we sketch the basic tree structure developed using what is
called the buffer tree technique. The structure can be used in the normal tree sort algorithm,
and we also sketch how the structure can be used to develop an I/O-efficient external priority
queue. In later sections we will discuss extensions and applications of these structures as well
as other structures developed using the general technique.

Basically the buffer tree is a tree structure with fan-out Θ(m) built on top of n leaves, each
containing B of the elements stored in the structure. Thus the tree has height O(logm n)—
refer to Figure 2.3. A buffer of size Θ(m) blocks is assigned to each internal node and
operations on the structure are done in a “lazy” manner. On insertion of an element we
do not right away search all the way down the tree to find the place among the leaves to
insert the element. Instead, we wait until we have collected a block of insertions, and then
we insert this block in the buffer of the root (which is stored on disk). When a buffer “runs
full” its element are “pushed” one level down to buffers on the next level. We call this a
buffer-emptying process and it is basically performed as a distribution step, i.e. by loading
the elements into internal memory, sorting them, and writing them back to the appropriate
buffers on the next level. If the buffer of any of the nodes on the next level becomes full the
buffer-emptying process is applied recursively. The main point is now that we can perform
the buffer-emptying process in O(m) I/Os, because the elements in a buffer fit in memory
and because the fan-out of the structure is Θ(m). The latter means that at most O(m) I/Os
is used on distributing non-full blocks. As Θ(m) blocks are pushed one level down the tree in
a buffer-emptying process, every block is touched at most a constant number of times on each
of the O(logm n) levels of the tree. Thus it is easy to show, using an amortization argument,
that a series of N insertions can be done in O(n logm n) I/Os. This corresponds to performing
one insertion in O(logm n

B) I/Os amortized. Deletions can be handled using similar ideas. We
also need to consider rebalancing of the tree, that is, what to do when an insert or delete
reaches a leaf. In [Buffer] we show that by using an (a, b)-tree [73] as the basic tree structure,
rebalancing can also be handled in the mentioned I/O bound.

In order to use the structure in a sorting algorithm we need an operation that reports all

O(logm n)

B

Θ(m) blocks

Θ(m)

Figure 2.3: Buffer tree.

10

the elements in the tree in sorted order. To do so we first empty all buffers in the tree. As
the number of internal nodes is O(n/m) this can easily be done in O(n) I/Os. After this all
the elements are in the leaves and can be reported in sorted order using a simple scan.

Using the buffer idea we have obtained a structure with the operations needed to sort
N elements optimally with precisely the same tree sort algorithm as can be used in internal
memory. This means that we have reached our goal of hiding the I/O-specific parts of the
algorithm in the data structure. In [Buffer] we show how to use the buffer tree structure to
develop an external-memory priority queue. Normally, we can use a search-tree structure to
implement a priority queue because we know that the smallest element in a search-tree is in the
leftmost leaf. The same strategy can be used to implement an external priority queue based
on the buffer tree. However, in the buffer tree we cannot be sure that the smallest element
is in the leftmost leaf, since there can be smaller elements in the buffers of the nodes on the
leftmost path. There is, however, a simple strategy for performing a deletemin operation
in the desired amortized I/O bound. When we want to perform a deletemin operation, we
simply do a buffer-emptying process on all nodes on the path from the root to the leftmost
leaf. This requires O(m · logm n) I/Os. Now we can be sure not only that the leftmost leaf
consists of the B smallest elements, but also that the Θ(m · B) = Θ(M) smallest elements
in the tree are in the Θ(m) leftmost leaves. Thus we can delete these elements and keep
them in internal memory. In this way we can answer the next Θ(M) deletemin operations
without performing any I/Os. Of course we then have to check insertions against the minimal
elements in internal memory, but that can also be done without doing any I/Os. Thus our
deletemin operation uses O(logm n

B) I/Os amortized. Apart the ability to sort optimally with
yet another well-known algorithm, the external priority queue will come in handy later on,
especially in Chapter 4 where we discuss external-memory graph algorithms.

2.2 Lower Bounds and Complexity of Fundamental Problems

As already mentioned Aggarwal and Vitter [5] proved that the number of I/O operations
needed to sort N elements is Ω(n logm n). Furthermore, they showed that the number of I/Os
needed to rearrange N elements according to a given permutation is Ω(min{N, n logm n}).
For simplicity one normally writes sort(N) and perm(N) for n logm n and min{N, n logm n},
respectively, suppressing m (and thus B) and only mentioning the main parameter N .

The basic idea in the proof of the perm(N) permutation lower bound is to count how
many permutations can be generated with a given number of I/O operations and compare
this number to N ! As permutation is a special case of sorting the lower bound obtained this
way also applies to sorting. As already discussed logm n is very small in practice, which means
that the sorting term in the permutation bound will be smaller thanN in all realistic cases. In
this case perm(N) = sort(N) and the problem of permutation is as hard as the more general
problem of sorting. Thus the dominant component of sorting in this case is the routing of the
elements, and not the determination of their order. For extremely small values of M and B
the permutation bound becomes N , and the optimal permutation algorithm is equivalent to
moving the elements one at a time using one I/O on each element. However, assuming the
comparison model in internal memory and using an adversary argument, Aggarwal and Vitter
proved that the Ω(n logm n) lower bound still holds for sorting in this case. Thus for small
values of M and B the specific knowledge of what goes where makes the problem of permuting
easier than sorting. That one in most cases needs to sort to perform a given permutation

11

is one of the important features that distinguishes the I/O model from an internal memory
model. As we will discuss in Chapter 4 this becomes very prominent when considering graph
problems.

2.2.1 Transforming Lower Bounds

In [LowB] we assume the comparison model in internal memory for all values of M and B.
This allows us to design a general method for transforming an I/O algorithm into an internal-
memory algorithm, such that the number of comparisons used to solve a given problem
instance is bounded by some function of the number of I/Os used to solve the same problem
instance. Using this general construction internal-memory comparison lower bounds can be
transformed into I/O lower bounds. More precisely we prove that given an I/O algorithm that
solves a given problem using I/O(x) I/Os on the input instance x, there exists an ordinary
internal-memory comparison algorithm that uses no more than n logB+I/O(x) ·Tmerge(M −
B,B) comparisons on x. Tmerge(s, t) denotes the number of comparisons needed to merge two
sorted lists of size s and t.

The main idea in the proof is the following. We define what we call an I/O-tree to be an
ordinary decision-tree extended with I/O-nodes. We define the tree in such a way that removal
of the I/O-nodes results in an ordinary comparison tree solving the same problem. The proof
then corresponds to constructing an algorithm that transforms a given I/O-tree to another
I/O-tree, such that the number of comparisons on every path from the root to a leaf is bounded
by a function of the number of I/O-nodes on the corresponding path in the original I/O-tree.
The main idea in the transformation is to establish the total order of the elements in internal
memory after every I/O-operation. Thus we modify the original I/O-tree by replacing the
comparisons between I/O-nodes with a tree that performs all comparisons needed to obtain a
total ordering of the elements in internal memory. We apply this transformation inductively
from the topmost “comparison-subtree” and downwards. The main property we use to obtain
the total order after each I/O is that we already know the total order of the M−B elements in
main memory which are unaffected by the I/O. Thus we can obtain the total order by sorting
the B new elements and merging them into the old elements. The construction results in a new
I/O-tree which is equivalent to the old one. Furthermore, the number of comparison-nodes
on a path in the new tree is bounded by the number of I/O-nodes on the path multiplied with
the number of comparisons required to do the merge. Removing the I/O-nodes now results
in a comparison-tree with the desired relation to the original I/O-tree.

Using the transformation technique we immediately obtain an alternative proof of the
sorting I/O lower bound in the comparison I/O model as well as lower bounds on a number
of set problems. We also obtain lower bounds on the duplicate removal and mode multiset
problems mentioned previously, which show that the algorithms developed in [LowB] using
the merge and distribution paradigms are asymptotically optimal.

12

2.3 Bibliographic Notes and Summary of our Contributions

The merge and distribution paradigms were introduced by Aggarwal and Vitter [5]. In [Buffer] we
introduce the data structuring paradigm. We develop the buffer tree and the external priority queue
and show how they can be used in the standard internal-memory algorithms for sorting. This follows
our general philosophy of trying to “hide” the I/O-specific part of an algorithm in the data structures.
The obtained sorting algorithms are optimal and are also the first algorithms that do not require all
elements to be present by the start of the algorithms.

Aggarwal and Vitter [5] proved Ω(n logm n) and Ω(min{N, n logm n}) I/O lower bounds on the
problems of sorting and permuting, respectively. In the sorting bound they assumed the comparison
model in internal memory when B and M are extremely small. In [LowB] we assume the comparison
model for all values of B and M and prove a general connection between the comparison complexity
and the I/O complexity of a problem. We use this connection to obtain lower bounds on sorting as
well as on a number of other set problems. We also prove lower bounds on two multisets problems.
We use the distribution and merge paradigms to develop non-trivial algorithms for these problems in
order to show that the lower bounds are tight.

13

Chapter 3

Computational Geometry Problems

Where there is matter, there is geometry
J. Kepler

In Chapter 1 we gave examples of large-scale applications almost all of which involve ma-
nipulation of geometric data. In this section we consider external-memory algorithms for
computational geometry problems, and in order to do so we define two additional parame-
ters:

K = number of queries in the problem instance;
T = number of elements in the problem solution.

In analogy with the definition of n and m we define k = K/B and t = T/B to be respectively
the number of query blocks and number of solution element blocks.

In internal memory one can prove what might be called sorting lower bounds O(N log2 N+
T) on a large number of important computational geometry problems. The corresponding
bound O(n logm n + t) can be obtained for the external versions of the problems either by
redoing standard proofs [14, 67], or by using the conversion result in [LowB] as discussed in
Section 2.2.1. Note however that the latter is only interesting for problems that can be solved
using comparisons only.

Computational geometry problems in external memory were first considered by Goodrich
et al. [67], who developed a number of techniques for designing I/O-efficient algorithms for
such problems. They used their techniques to develop I/O algorithms for a large number
of important problems. In internal memory the plane-sweep paradigm is a very powerful
technique for designing computational geometry algorithms, and in [67] an external-memory
version of this technique called distribution sweeping is developed. As the name suggests
the technique relies on the distribution paradigm. In [67] distribution sweeping is used to
design optimal algorithms for a large number of problems including orthogonal line segment
intersection, all nearest neighbors, pairwise rectangle intersection and batched range queries.
In [Buffer] we show how the data structuring paradigm can also be use on computational
geometry problems. We show how data structures based on the buffer tree can be used in the
standard internal-memory plane-sweep algorithm for a number of the mentioned problems,
namely orthogonal line segment intersection, pairwise rectangle intersection and batched range
queries. In [67] two techniques called batched construction of persistent B-trees and batched
filtering are also discussed, and external-memory algorithms for convex-hull construction in

15

two and three dimensions are developed using the distribution paradigm. Some external com-
putational geometry results are also reported in [62, 137]. In [GIS] we design efficient I/O
algorithms for a large number of problems involving line segments in the plane by combining
the ideas of distribution sweeping, batched filtering, buffer trees and a new technique, which
can be regarded as an external-memory version of fractional cascading . Most of these prob-
lems have important applications in GIS systems, which provide a rich source of large-scale
problems.

A number of researchers have considered the design of worst-case efficient external-memory
“on-line” data structures, mainly for the range searching problem. While B-trees [21, 51, 82]
efficiently support range searching in one dimension they are inefficient in higher dimensions.
In [27, 74, 79, 110, 121, 130] data structures for (special cases of) two and three dimensional
range searching are developed. In [Interval] we develop an optimal on-line data structure
for the equally important problem of dynamic interval management. This problem is a spe-
cial case of two-dimensional range searching with applications in database systems. Range
searching is also considered in [104, 119, 120] where the problem of maintaining range trees
in external memory is considered. However, the model used in this work is different from
ours. In [34] an external on-line version of the topology tree is developed and this structure is
used to obtain structures for a number of dynamic problems, including approximate nearest
neighbor searching and closest pair maintenance.

We divide our discussion of computational geometry results in three main parts; in Sec-
tion 3.1 we discuss distribution sweeping and external plane-sweeping using buffer tree struc-
tures through the solutions to the orthogonal line segment intersection problem. In Section 3.2
we move on to the more complex line segment problems from [GIS]. Finally, we in Section 3.3
survey results on “on-line” range searching in the I/O model, including the results in [Interval].

3.1 The Orthogonal Line Segment Intersection Problem
The orthogonal line segment intersection problem is that of reporting all intersecting orthog-
onal pairs in a set of N orthogonal line segment in the plane. The problem is important in
computer graphics and VLSI design systems. In internal memory a simple optimal solution
to the problem based on the plane-sweep paradigm works as follows (refer to Figure 3.1). A
sweep with a horizontal line is made from top to bottom, and when the top endpoint of a
vertical segment is reached the segment is inserted in a balanced search tree ordered according
to x coordinate. The segment is removed again when its bottom endpoint is reached. When
a horizontal segment is reached a range query is made on the search tree in order to report
all the vertical segments intersecting the segment. As inserts and deletes can be performed
in O(log2N) time and range querying in O(log2 N + T ′) time, where T ′ is the number of
reported segments, we obtain the optimal O(N log2N + T) solution. As discussed in Sec-
tion 2.1.3 a simple natural external-memory modification of the plane-sweep algorithm would
be to use a B-tree as the tree data structure, but this would lead to an O(N logB n + t) I/O
solution, and we are looking for an O(n logm n+ t) I/O solution. In the next two sections we
discuss I/O-optimal solutions to the problem using the distribution sweeping and buffer tree
techniques.

3.1.1 Distribution Sweeping

Distribution sweeping [67] is a powerful technique obtained by combining the distribution
and the plane-sweep paradigms. Let us briefly sketch how it works in general. To solve

16

Figure 3.1: Solution to the orthogonal
line segment intersection problem using
plane-sweep.

Figure 3.2: Solution to the orthogonal
line segment intersection problem using
distribution sweeping.

a given problem we divide the plane into m vertical slabs, each of which contains Θ(n/m)
input objects, for example points or line segment endpoints. We then perform a vertical
top to bottom sweep over all the slabs in order to locate components of the solution that
involve interaction between objects in different slabs or objects (such as line segments) that
completely span one or more slabs. The choice of m slabs ensures that one block of data
from each slab fits in main memory. To find components of the solution involving interaction
between objects residing in the same slab, the problem is then solved recursively in each slab.
The recursion stops after O(logm n/m) = O(logm n) levels when the subproblems are small
enough to fit in internal memory. In order to get an O(n logm n) algorithm we need to be
able to perform one sweep in O(n) I/Os.

Using the general technique to solve the orthogonal line segment intersection problem
results in the following algorithm (refer to Figure 3.2): We divide the plane into m slabs
and sweep from top to bottom. When a top endpoint of a vertical segment is encountered,
we insert the segment in an active list (a stack where we keep the last block in internal
memory) associated with the slab containing the segment. When a horizontal segment is
encountered we scan through all the active lists associated with the slabs it completely spans.
During this scan we know that every vertical segment in a list is either intersected by the
horizontal segment, or will not be intersected by any of the following horizontal segments
and can therefore be removed from the list. The process finds all intersections except those
between vertical segments and horizontal segments (or portions of horizontal segments) that
do not completely span vertical slabs (the solid part of the horizontal segments in Figure 3.2).
These are found after distributing the segments to the slabs, when the problem is solved
recursively for each slab. A horizontal segment may be distributed to two slabs, namely the
slabs containing its endpoints, but it will at most be represented twice on each level of the
recursion. It is easy to realize that if T ′ is the number of intersections reported, one sweep
can be performed in O(n + t′) I/Os—every vertical segment is only touched twice where an
intersection is not discovered, namely when it is distributed to an ative list and when it is
removed again. Also blocks can be used efficiently because of the distribution factor of m.
Thus by the general discussion of distribution sweeping we report all intersections in the
optimal O(n logm n+ t) I/O operations.

In addition to the large number of problems solved in [67] using distribution sweeping,
Chiang in [40, 41] performed a number of experiments in order to analyze the practical effi-
ciency of the above algorithm. It turned out that when the test instances got just moderately

17

large the algorithm significantly outperformed various internal-memory algorithms as well as
the B-tree version of the plane-sweep algorithm.

3.1.2 Rangesearch Operation on the Buffer tree

In [Buffer] we extend the basic buffer tree with a rangesearch operation, and thus we have the
operations needed to solve the orthogonal line segment intersection problem with the plane-
sweep solution described previously. Basically a rangesearch operation on the buffer tree is
done in the same way as insertions and deletions. When we want to perform a rangesearch we
create a special element which is pushed down the tree in a lazy way during buffer-emptying
processes, just as all other elements. However, we now have to modify the buffer-emptying
process. The basic idea in the modification is the following. When we meet a rangesearch
element in a buffer-emptying process, instructing us to report elements in the tree between
x1 and x2, we first determine whether x1 and x2 are contained in the same subtree among the
subtrees rooted at the children of the node in question. If this is the case we just insert the
rangesearch element in the corresponding buffer. Otherwise we “split” the element in two—
one for x1 and one for x2—and report the elements in those subtrees where all elements are
contained in the interval [x1, x2]. The splitting only occurs once and after that the rangesearch
element is treated like inserts and deletes in buffer-emptying processes, except that we report
the elements in the sub-trees for which all elements are contained in the interval. In [Buffer] we
show how we can report all elements in a subtree (now containing other rangesearch elements)
in a linear number of I/Os. Using the normal amortization argument it then follows that a
rangesearch operation requires O(logm n

B + t′) I/Os amortized. Here t′ · B is the number of
elements reported by the operation.

Note that the above procedure means that the rangesearch operation gets batched in the
sense that we do not obtain the result of query immediately. Actually parts of the result
will be reported at different times as the element is pushed down the tree. However, this
suffices in the plane-sweep algorithm in question, since the updates performed on the data
structure do not depend on the results of the queries. This is the crucial property that has to
be fulfilled in order to used the buffer tree structure. Actually, in the plane-sweep algorithm
the entire sequence of updates and queries on the data structure is known in advance, and
the only requirement on the queries is that they must all eventually be answered. In general
such problems are known as batched dynamic problems [55].

To summerize, the buffer tree, extended with a rangesearch operation, can be used in
the normal internal-memory plane-sweep algorithm for the orthogonal segment intersection
problem, and doing so we obtain an optimal O(n logm n+ t) I/O solution to the problem.

3.2 Problems on General Line Segments in the Plane

Having discussed how the distribution paradigm (in form of distribution sweeping) and the
data structuring paradigm (using the buffer tree) can be used to solve the relatively simple
problem of orthogonal line segment intersection, we now turn to more complicated problems
involving general line segments in the plane.

As mentioned previously GIS systems are a rich source of important problems that require
good use of external-memory techniques. As most GIS systems at some level store data as
layers of maps, and as one map typically is stored as a collection of line segments, important
GIS operations involve such line segments in the plane. As an illustration, the computation of

18

new scenes or maps from existing information—also called map overlaying—is an important
GIS operation. Some existing software packages are completely based on this operation [9,
10, 106, 124]. Given two thematic maps, that is, maps with e.g. indications of lakes, roads,
or pollution levels, the problem is to compute a new map in which the thematic attributes
of each location is a function of the thematic attributes of the corresponding locations in the
two input maps. For example, the input maps could be a map of land utilization (farmland,
forest, residential, lake), and a map of pollution levels. The map overlay operation could
then be used to produce a new map of agricultural land where the degree of pollution is
above a certain level. One of the main problems in map overlaying is “line-breaking”, which
can be abstracted as the red-blue line segment intersection problem, that is, the problem of
computing intersections between segments in two internally non-intersecting sets.

In [GIS] we develop I/O-efficient algorithms for a large number of geometric problems
involving line segments in the plane, with applications to GIS systems. In particular we
address region decomposition problems such as trapezoid decomposition and triangulation,
and line segment intersection problems such as the red-blue segment intersection problem.
However, in order to do so we have to develop new techniques since distribution sweeping and
buffer trees are inadequate for solving this type of problems. In Section 3.2.1 through 3.2.4
we sketch the problems encountered and the solutions derived in [GIS].

3.2.1 The Endpoint Dominance Problem

In this section we consider the endpoint dominance problem (EPD) defined in [GIS] as follows:
Given N non-intersecting line segments in the plane, find the segment directly above each
endpoint of each segment. Even though EPD seems as a rather simple problem, it is a powerful
tool for solving other important problems. In [GIS] we show that if EPD can be solved in
O(sort(N)) I/Os then the trapezoid decomposition of N non-intersecting segments, as well
as a triangulation of a simple polygon with N vertices, can also be computed in O(sort(N))
I/Os.

We also show that EPD can be used to sort non-intersecting segments in the plane. A
segment AB in the plane is above another segment CD if we can intersect both AB and CD
with the same vertical line l, such that the intersection between l and AB is above the
intersection between l and CD. Two segments are incomparable if they cannot be intersected
with the same vertical line. The problem of sorting N non-intersecting segments is to extend
the partial order defined in this way to a total order. As we shall discuss later this problem
is important in the solution of line segment intersection problems. Figure 3.3 demonstrates

⇐⇒

b

a

a above b

a

a

a

a

ya > yb

ya

yb

b

b

b

b

Figure 3.3: Comparing segments. Two
segments can be related in four different
ways.

Figure 3.4: Algorithm for the segment
sorting problem.

19

that if two segments are comparable then it is sufficient to consider vertical lines through
the four endpoints to obtain their relation. Thus to sort N segments we add two “extreme”
segments as indicated in Figure 3.4, and use EPD twice to find for each endpoint the segments
immediately above and below it. Using this information we create a planar s, t-graph where
nodes correspond to segments and where the relations between the segments define the edges.
Then the sorted order is obtained by topologically sorting this graph in O(sort(N)) I/Os using
an algorithm developed in [42]. Again this means that if EPD can be solved in O(sort(N))
I/Os then we can sort N segments in the same number of I/Os.

In internal memory EPD can be solved optimally with a simple plane-sweep algorithm.
We sweep the plane from left to right with a vertical line, inserting a segment in a search tree
when its left endpoint is reached and removing it again when the right endpoint is reached.
For every endpoint we encounter, we also perform a search in the tree to identify the segment
immediately above the point. One might think that it is equally easy to solve EPD in external
memory using distribution sweeping or buffer trees. Unfortunately, this is not the case.

One important property of the plane-sweep algorithm is that only segments that actually
cross the sweep-line are stored in the search tree at any given time during the sweep. This
means that all segments in the tree are comparable and that we easily can compute their
order. However, if we try to store the segments in a buffer tree during the sweep, is can also
contain “old” segments which do not cross the sweep-line. This means that we can end up in
a situation where we try to compare two incomparable segments. In general the buffer tree
only works if we know a total order on the elements inserted in it, or if we can compare all
pair of elements. Thus we cannot directly use the buffer tree in the plane-sweep algorithm.
We could try to compute a total order on the segments before solving EPD, but as discussed
above, the solution to EPD is one of the major steps towards finding such an order so this
seems infeasible. We have not been able to design another algorithm for solving EPD using
the buffer tree.

For similar reasons using distribution sweeping seems infeasible as well. Recall from
Section 3.1.1 that in distribution sweeping we need to perform one sweep in a linear number
of I/Os to obtain an efficient solution. Normally this is accomplished by sorting the objects
by y coordinate in a preprocessing phase. This e.g. allows one to sweep over the objects in
y order without sorting on each level of recursion, because as the objects are distributed to
recursive subproblems their y ordering is retained. In the orthogonal line segment intersection
case we presorted the segments by endpoint in order to sweep across them in endpoint y order.
In order to use distribution sweeping to solve EPD it seems that we need to sort the segments
and not the endpoints in a preprocessing step.

It should be mentioned that if we try to solve the other problems discussed in [GIS] with
distribution sweeping or the buffer tree, we encounter problems similar to the ones described
above.

3.2.2 The External Segment Tree

As attempts to solve EPD optimally using the buffer tree or distribution sweeping fail we are
led to other approaches. The solution derived in [GIS] is based on an external version of the
segment tree developed in [Buffer]. In this section we describe this structure.

The segment tree [23, 108] is a well-known dynamic data structure used to store a set of
segments in one dimension, such that given a query point all segments containing the point
can be found efficiently. Such queries are normally called stabbing queries. In internal memory

20

σ0 σ1 σ2 σ3 σ4

√
m/4 slabs σi

· · · · · ·

· · ·· · ·· · ·· · ·· · ·

√
m/4 nodes

m/4 nodes

2N/M leaves

...

· · ·

A

· · ·

B

C

FE

D

· · ·O(logm n)

Figure 3.5: An external-memory segment tree based on a buffer tree over a set of N segments,
three of which, AB, CD, and EF , are shown.

a segment tree consists of a binary base tree which stores the endpoints of the segments, and
a given segment is stored in the secondary structures of up to two nodes on each level of the
tree. More precisely a segment is stored in all nodes v where it contains the interval consisting
of all endpoints below v, but not the interval associated with parent(v). A stabbing query
can be answered efficiently on such a structure, simply by searching down the tree for the
query value and reporting all the segments stored in each node encountered.

When we want to “externalize” the segment tree and obtain a structure with height
O(logm n), we need to increase the fan-out of the nodes in the base tree. This creates a
number of problems when we want to store segments space-efficiently in secondary structures
such that queries can be answered efficiently. The idea behind our approach is therefore to
make the nodes have fan-out Θ(

√
m) instead of the normal Θ(m). This smaller branching

factor at most doubles the height of the tree, but it allows us to efficiently store segments in
a number of secondary structures of each node. As we shall see in Section 3.3 ([Interval]) this
simple idea turns out to be very powerful in general when designing external data structures
from normal data structures that use secondary structures.

An external-memory segment tree based on the approach in [Buffer] is shown in Figure 3.5.
The tree has branching factor

√
m/4, and is perfectly balanced over the endpoints of the

segments it represents. Each leaf represents M/2 consecutive endpoints. The first level of
the tree partitions the data into

√
m/4 intervals σi—for illustrative reasons we call them

slabs—separated by dotted lines in Figure 3.5. Multislabs are defined as contiguous ranges of
slabs, such as for example [σ1, σ4]. There are m/8−

√
m/4 multislabs. The key point is that

the number of multislabs is a quadratic function of the branching factor. Thus by choosing
the branching factor to be Θ(

√
m) rather than Θ(m) we have room in internal memory

for a constant number of blocks for each of the Θ(m) multislabs. Segments such as CD in
Figure 3.5 that spans at least one slab completely are called long segments. A copy of each
long segment is stored in the largest multislab it spans. Thus, CD is stored in [σ1, σ3]. All
segments that are not long are called short segments. They are not stored in any multislab,
but are passed down to lower levels of the tree where they may span recursively defined slabs
and be stored. AB and EF are examples of short segments. The portions of long segments
that do not completely span slabs are treated as small segments. There are at most two such
synthetically generated short segments for each long segment, hence total space utilization is

21

O(n logm n) blocks. To answer a stabbing query we simply proceed down a path in the tree
searching for the query value, and in each node encountered we report all the long segments
associated with each of the multislabs that span the query value.

Because of the size of the nodes and auxiliary multislab data, the external segment tree
is inefficient for answering single queries. However, using the buffer technique it can be
used in a batched dynamic environments. In [Buffer] we show how to add buffers to the
structure and perform a buffer-emptying process in O(m + t′) I/Os, such that in a batched
dynamic environment inserting (and deleting) N segments in the tree and performing K
queries requires O((n+k) logm n+ t) I/Os in total. Using the normal internal-memory plane-
sweep algorithm this leads to an optimal algorithm for the pairwise rectangle intersection
problem. The problem, which was also solved optimally in [67] using distribution sweeping,
is very important in e.g. VLSI design rule checking [26].

3.2.3 External-Memory Fractional Cascading

It is possible to come close to solving EPD by first constructing an external-memory segment
tree over the projections of the segments onto the x-axis and then performing stabbing queries
at the x coordinates of the endpoints of the segments. However, what we want is the single
segment directly above each query point in the y dimension, as opposed to all segments it
stabs. This segment could be found if we were able to compute the segment directly above a
query point among the segments stored in a given node of the external segment tree. We call
such a segment a dominating segment. Then we could examine each node on the path from
the root to the leaf containing a query, and in each such node find the dominating segment
and compare it to the segment found to be closest to the query so far. When the leaf is
reached we would then know the “global” dominating segment.

However, there are a number of problems that have to be dealt with in order to find the
dominating segment of a query among the segments stored in a node. The main problems
are that the dominating segment could be stored in a number of multislab lists, namely in
all lists containing segments that contain the query, and that a lot of segments can be stored
in a multislab list. Both of these facts seem to suggest that we need lots of I/Os to find the
dominating segment. However, as we are looking for an O(n logm n) solution and as the tree
has O(logm n) levels, we are only allowed to use a linear number of I/Os to find the positions
of all the N query points among the segments stored in one level of the tree. This gives us
less than one I/O per query point per node!

Fortunately, we are in [GIS] able to modify the external segment tree and the query
algorithm to overcome these difficulties. As a first modification we strengthen the definition
of the external segment tree and require that the segments in the multislab lists are sorted
(according to the definition discussed in Section 3.2.1). We call the modified structure an
extended external segment tree. Note that all pairs of segments in the same multislab list
can be compared just by comparing the order of their endpoints on one of the boundaries,
and that a multislab list thus can be sorted using a standard sorting algorithm. In [GIS]
it is shown how to build an extended external segment tree on N non-intersecting segments
in O(sort(N)) I/Os. The construction is basically done using distribution sweeping. An
important consequence of the modification of the structure is that we now can sort all the
segments stored in a node efficiently using the merging paradigm.

The sorting of the multislab lists makes it easier to search for the dominating segment in
a given multislab list but it may still require a lot of I/Os. We also need to be able to look

22

for the dominating segment in many of the multislabs lists. We overcome these problems
using batched filtering [67] and a new technique similar to what in internal memory is called
fractional cascading [20, 38, 39, 123]. The idea in batched filtering is to process all the queries
at the same time and level by level, such that the dominating segments in nodes on one level
of the structure are found for all the queries, before continuing to consider nodes on the next
level. In internal memory the idea in fractional cascading is that instead of e.g. searching
for the same element individually in S sorted lists containing N elements each, each of the
lists are in a preprocessing step augmented with sample elements from the other lists in
a controlled way, and with “bridges” between different occurrences of the same element in
different lists. These bridges obviate the need for full searches in each of the lists. To perform
a search one only searches in one of the lists and uses the bridges to find the correct position
in the other lists. This results in a O(log2 N + S) time algorithm instead of an O(S log2N)
time algorithm.

In the implementation of what could be called external fractional cascading, we do not
explicitly build bridges but we still use the idea of augmenting some lists with elements from
other lists in order to avoid searching in all of the lists. The construction is rather technical,
but the general idea is the following. First we use a preprocessing step (like in fractional
cascading) to sample a set of segments from each slab in each node and augment the multislab
lists of the corresponding child with these segments. The set of sample segments for a slab
consists of every (2

√
m/4)th segment that spans it in the sorted sequence of segments. The

sampling is done in O(sort(N)) I/Os using the distribution paradigm. Having preprocessed
the structure we filter the N queries through it. In order to do so in the optimal number of
I/Os the filtering is done in a rather untraditional way—from the leaves towards the root.
First the query points are sorted and distributed to the leaves to which they belong. Then for
each leaf we find the dominating segment among the segments stored in the leaf for all query
points assigned to the leaf. This can be done efficiently using an internal memory algorithm,
because all the segments stored in a leaf fit in internal memory. This is also the reason for
the untraditional search direction—we cannot in the same way efficiently find the dominating
segments among the segments stored in the root of the tree, because more than a memory
load of segments can be stored there. Finally, the queries in each node are sorted according
to dominating segment, and we end up in a situation as indicated in Figure 3.6b). Next we
go through O(logm n) filtering steps, one for each level of the tree. Each filtering step begins
with a set of queries at a given level, partitioned by the nodes on that level and ordered
within the nodes by the order of the dominating segments on that level. This corresponds
to the output of the leaf processing. The step should produce a similar configuration on the

a) b) c)

��

��
��
��
��
��

����
��
��
��
��

��
��
��
��
�
�
�
�

��
��
��
��

��
2
√
m/4

Figure 3.6: Filtering queries through the
structure. An arrow in a list indicate that
it is sorted.

Figure 3.7: All queries between sampled
segments (indicated by fat lines) must ap-
pear together in the list of queries for the
slab.

23

next level up the tree. For one node this is indicated in Figure 3.6c). To perform the step
on a node we “merge” the sorted list of queries associated with its children and the segments
in the multislab list. The key property that allows us to I/O-efficiently find the dominating
segments among the segments stored in the node, and to sort the queries accordingly, is that
the list of queries associated with a child of the node cannot be too unsorted relative to their
dominating segment in the node. As indicated in Figure 3.7 this is a result of the preprocessing
phase—we are sure that all queries between two sampled segments appear together in the list
of queries. This allows us to process all queries between two sampled segments efficiently and
use the distribution paradigm to distribute them to one of 2

√
m/4 lists—one for each of the

segments between the sampled segments. The key property is that we are able to do this for
all the slabs simultaneously using at most 2

√
m/4 ·

√
m/4 = m/2 blocks of internal memory.

In [GIS] it is shown that we can do a filtering step in O(n) I/Os, and thus we solve EPD
in O(n logm n) I/O operations. Note the similarity with fractional cascading where we search
in one list and then use the bridges to avoid searching in the other list. We find dominating
segments (efficiently) in the leaves and sort the queries accordingly only this ones, and then
the sampled and augmented segments obliviates the need for search in the other lists.

3.2.4 Algorithms obtained using the Endpoint Dominance Problem

The O(sort(N)) solution to EPD has several almost immediate consequences as discussed in
[GIS]. As already mentioned it leads to an O(sort(N)) algorithm for segment sorting. Similarly
it leads to an algorithm for trapezoid decomposition of a set of segments [92, 108] with the
same I/O bound, as the core of this problem precisely is to find for each segment endpoint the
segment immediately above it. The ability to compute a trapezoid decomposition of a simple
polygon also leads to an O(sort(N)) polygon triangulation algorithm using a slightly modified
version of an internal-memory algorithm [61]. Furthermore, if one takes a closer look at the
algorithm for EPD one realizes that it works in general with K query points, that are not
necessarily endpoints of the segments. Therefore the result also leads to an O((n+k) logm n)
I/O solution to the batched planar point location problem.

But maybe the most important results obtained from the solution to EPD are the results
on reporting line segment intersections. As already mentioned, the red-blue line segment
intersection problem is of special interest because it is an abstraction of the important map-
overlay problem in GIS Systems. Using the ability to sort non-intersecting segments we solve
the problem in O(n logm n + t) I/O operations [GIS]. The solution is based on distribution
sweeping with the new idea of a branching factor of Θ(

√
m) instead of Θ(m), and the segment

sorting algorithm is used twice in a preprocessing step to sort two sets consisting of the
segments of one color and the endpoints of segments of the other color. The general segment
intersection problem however cannot be solved using this method. The reason is that we
cannot sort intersecting segments. Nevertheless it is shown in [GIS] how external segment
trees can be used to establish enough order on the segments to make distribution sweeping
possible. The general idea in the algorithm is to build an extended external segment tree on
all the segments, and during this process to eliminate on the fly any inconsistencies that arise
because of intersecting segments. This is done using a number of the external priority queue
developed in [Buffer], and it leads to a solution for the general problem that integrates all
the elements of the red-blue algorithm into one algorithm; extended external segment trees,
distribution sweeping, distribution, merging and external priority queues. The algorithm use
O((n+ t) logm n) I/O operations.

24

3.3 External-Memory On-line Range Searching

We now turn our attention to external data structures for range searching where we want the
answer to a query right away. Even though “the rules of the game” is a lot different when
designing such on-line data structures compared to the off-line ones we have considered so
far, it turns out that we can use our previous ideas to design efficient structures also under
this constraint.

As discussed in Section 2.1.3, the B-tree [21, 51, 82] is the standard external-memory
search tree data structure on which insert, delete and search operations can be performed in
O(logB n) I/Os. It is also easy to perform a rangesearch operation on a B-tree in O(logB n+
t) I/O operations, and as mentioned in Section 2.1.3 this is optimal when one wants an
answer to a query right away. But while the B-tree efficiently supports external dynamic
one-dimensional range searching, it is inefficient for handling more general problems like
two-dimensional or higher-dimensional range searching. The problem of two-dimensional
range searching both in main and external memory has been the subject of much research,
and many elegant data structures like the range tree [24], the priority search tree [89], the
segment tree [23], and the interval tree [53, 54] have been proposed for internal-memory two-
dimensional range searching and its special cases. These structures are not efficient when
mapped to external memory. However, the practical need for I/O support has led to the
development of a large number of external data structures, which have good average-case
behavior for common problems but fail to be efficient in the worst case sense [68, 69, 86, 95,
103, 111, 114, 115, 117].

Recently some progress has been made on the construction of external two-dimensional
range searching structures with good worst-case performance. In Figure 3.8 the different
special cases of general two-dimensional range searching are shown. As discussed in [79] it is
easy to realize that the problem of answering stabbing queries on a set of interval (segments)
reduces to the simplest of these queries called diagonal corner queries; If an interval [x, y]
is viewed as the point (x, y) in the plane, a stabbing query with q reduces to a diagonal
corner query with corner (q, q) on the line x = y—refer to Figure 3.8. In [Interval] we develop
an optimal external-memory data structure for this problem. The structure uses optimal
O(n) space, and updates, insertions and deletions of points (intervals), can be performed in
O(logB n) I/Os while diagonal corner queries (or stabbing queries) require O(logB n+t) I/Os.
We discuss the structure in Section 3.3.1.

In [110] a technique called path caching for transforming an efficient internal memory
data structure into an I/O efficient one is developed. Using this technique on the priority
search tree [89] results in a structure that can be used to answer general two-sided two-
dimensional queries, which are slightly more general than diagonal corner queries—refer again

��
��
��
��

��
��
��
��

��

�
�
�
���
��
��
��
��
��
��
��

��

����

�
�
�
� ��

��
��
��
��

����

����

����

�
�
�
�

����

��
��
��
����
��
��
��

��
��
��
��

��

�
�
�
���
��
��
��
��
��
��
��
��
��
��
��

����

��

�
�
�
� ��

��
��
��
��

����

��

�� ����

���� ����

��
��
��
��

��
��
��
��

��

�
�
�
���
��
��
��
��
��
��
��
��
��
��
��

����

��

�
�
�
� ��

��
��
��
��

����

����

����

������

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

��

��
��
��
��

�
�
�
�

��
��
��
����

3-sided query2-sided querydiagonal corner query general 2-dimensional query

Figure 3.8: Different types of two-dimensional queries.

25

to Figure 3.8. This structure answers queries in the optimal O(logB n+ t) I/Os and supports
updates in amortized O(logB n) I/Os, but uses slightly non-linear space O(n log2 log2B).

In internal memory the priority search tree actually answers slightly more general queries
than two-sided queries, namely three-sided two-dimensional queries (Figure 3.8), in opti-
mal query and update time using linear space. A number of attempts have been made to
externalize this structure [27, 74, 110]. The structure in [74] uses linear space but answers
queries in O(log2N + t) I/Os. The structure in [27] also uses linear space but answers queries
in O(logB n + T) I/Os. In both papers a number of non-optimal dynamic versions of the
structures are also developed. The structure in [110] was developed using path caching and
answers queries in the optimal number of I/Os O(logB n + t) but uses slightly non-linear
O(n log2B log2 log2B) space. This structure supports updates in O(logB n(log2B)2) I/Os
amortized. In [121] another attempt is made on designing a structure for answering three
sided queries and a dynamic data structure called the p-range tree is developed. The struc-
ture uses linear space, answers queries in O(logB n+ t+ IL∗(B)) I/Os and supports updates
in O(logB n + (logB n)2/B) I/Os amortized. The symbol IL∗(·) denotes the iterated log∗

function, that is, the number of times one must apply log∗ to get below 2. The p-range tree
can be extended to answer general two-dimensional queries (or four-sided queries—refer
to Figure 3.8) in the same number of I/Os using O (n log2 N/(log2 logB n)) blocks of space.
Dynamic versions of the structure, as well as tradeoffs between I/O and space use, are also
discussed in [121].

Very recently static structures for the various forms of three-dimensional range search-
ing which all answer queries in O((log2 log2 logB n) logB n+ t) I/Os are developed in [130].

3.3.1 External-Memory Interval Management

In [79] the dynamic interval management problem is considered. This problem is crucial for
indexing constraints in constraint databases and in temporal databases [78, 79, 109]. Dynamic
interval management is the problem of dynamically maintaining a set of intervals, such that
all intersections between the intervals and a query interval can be reported. As discussed
in [79] the key component of external dynamic interval management is to support stabbing
queries, which is the same as answering diagonal corner queries.

In [Interval] we develop an optimal external-memory data structure for the stabbing query
(or diagonal corner query) problem. The structure is an external-memory version of the
interval tree [53, 54] and it uses ideas similar to the ones in Section 3.2.2. As mentioned the
structure uses optimal O(n) space and updates can be performed in O(logB n) I/Os while
stabbing queries require O(logB n+ t) I/Os. This leads to an optimal solution to the interval
management problem. Unlike other external range search structures the update I/O bounds
for the data structure are worst-case. The worst-case bounds are obtained using a balancing
technique for balanced trees which can be regarded as weight-balancing of B-trees. The tree
can be used to remove amortization from other external-memory as well as internal-memory
data structures.

In the next section we sketch the main idea in the external interval tree in the case where
the segments stored in the structure all have endpoints in a fixed set of points (of size O(N)).
In Section 3.3.1.2 we then discuss how the weight-balanced B-tree is used to remove the
fixed-endpoint-set assumption.

26

3.3.1.1 External-Memory Interval Tree

In internal memory an interval tree (as a segment tree) consists of a binary tree that stores
the endpoints of the segments, and where the segments are stored in secondary structures of
the internal nodes of the tree [53]. As in the segment tree an interval is associated with each
node, consisting of all the endpoints below the node, but unlike in a segment tree a segment is
only stored in the secondary structures of one node. More precisely a segment is stored in the
root r if it contains the “boundary” between the two intervals associated with the children
of r. If it does not contain this boundary it is recursively stored in the subtree rooted in the
child on the same side of the boundary as the segment. The set of segments stored in r is
stored in two structures: a search tree sorted according to left endpoint of the segments and
one sorted according to right endpoint. To preform a stabbing query with x one only needs
to report segments in r that contain x and recurse. If x is contained in the interval of the
left child this is done by traversing the segments stored in the tree sorted according to left
endpoint, from the segments with smallest left endpoint towards the ones with largest left
endpoint, until one meets a segment that does not contain x. All segments after this segment
in the sorted order will not contain x.

In order to “externalize” the interval tree we use the ideas from Section 3.2.2 ([Buffer] and
[GIS]). As base tree we use a tree with fan-out

√
B. As previously the interval associated with

a node v is divided into
√
B slabs (intervals) defined by the children of v, which again results

in O(B) multislabs. In analogy with internal memory, a segment is stored in the secondary
structures of the highest node where it crosses one or more of the slab boundaries. Each
internal node v contains O(B) secondary structures; O(B) multislab lists implemented as
B-trees and two B-trees for each of the

√
B slab-boundaries. The two B-trees for a boundary

bi is called the right and left slab list, respectively. The left slab list for bi contains segments
with left endpoint between bi and bi−1 and it is sorted according to left endpoint. Similarly,
the right slab list contains segments with right endpoint between bi and bi+1 and it is sorted
according to right endpoint.

A segment is stored in two or three structures—two slab lists and possibly a multislab list.
As an example, segment s in Figure 3.9 will be stored in the left slab list of b2, in the right
slab list of b4, and in the multislab list corresponding to these two slab boundaries. Note the
similarity between the slab lists and the sorted lists of segments in the nodes of an internal-
memory interval tree. As in the internal case s is stored in two sorted lists—one for each of
the endpoints of s. This represents the part of s to the left of the leftmost boundary contained
in s, and the part to the right of the rightmost boundary contained in s (the parts that are
stored recursively in a segment tree). Unlike the internal case, we also need to store/represent
the part of s between the two extreme boundaries. This is done using the multislab lists.

v

v1 v2 v3 v4 v5

Xv

Xv2 Xv3 Xv4 Xv5

s

Xv1

b1 b2 b3 b4 b5 b6 bi+1xbi

Figure 3.9: A node in the base tree. Figure 3.10: Reporting segments.

27

In order to obtain optimal bounds we need one more structure. This structure is called
the underflow structure and contains segments from multislab lists containing o(B) segments.
Thus we only explicitly store a multislab list if it contains Ω(B) segments. The underflow
structure always contains less than B2 segments and is implemented using a structure called
a corner structure [79]. This structure allows insertion and deletion of segments in a constant
number of I/Os, and it can be used to answer stabbing queries in O(t + 1) I/Os (when the
number of segments stored is O(B2)).

The linear space bound basically follows from the fact that each segment is only stored in
a constant number of secondary structures. Note however, that if we did not store segments
belonging to a multislab having o(B) segments in the underflow structure, we could have
Ω(B) sparsely utilized blocks in each node, which would result in a non-linear space bound.

To perform a stabbing query with x we search down the structure for the leaf containing x,
and in each internal node we report the relevant segment. Let v be one such node and assume
that x falls between slab boundary bi and slab boundary bi+1—refer to Figure 3.10. To report
the relevant segments we first report the segments in all multislab lists that contain segments
crossing bi and bi+1, and perform a stabbing query with x on the underflow structure and
report the result. Then in analogy with the internal memory case we report segments from
bi’s right slab list from the largest towards the smallest (according to right endpoint) until
we meet a segment that does not contain x, and segments from bi+1’s left slab list from the
smallest towards the largest. It is easy to realize that this process will indeed report all the
relevant segments. The query algorithm uses an optimal number of I/O operations because
in each of the O(logB n) nodes on the search path we only use O(1) I/Os that are not “paid
for” by reportings (blocks read that contain Θ(B) output segments). The underflow structure
is again crucial because it means that all blocks loaded in order to report segments in the
relevant multislab lists contain Θ(B) segments.

It is equally easy to do an update. We search down the base tree using O(logB n) I/Os
until we find the first node where the segment in question crosses one or more slab boundaries.
Then we update the two relevant slab lists and the relevant multislab list (if any) in O(logB n)
I/Os each. Of course we also have to take care of moving segments between the underflow
structure and the multislab lists in some cases, but as shown in [Interval] this can also be
handled efficiently.

3.3.1.2 Weight-balanced B-trees

In the previous section we assumed that the segments stored in the external interval tree
have endpoints in a fixed set. Put another way we ignored rebalancing of the base tree. If
we want to remove this assumption we will have to use a dynamic search tree as base tree.
To perform an update we would then first insert or delete the new endpoints from the base
tree and perform the necessary rebalancing, and then insert the segment as described. To
preserve the O(logB n) update bound we have to be able to perform the rebalancing in the
same number of I/Os.

There are many possible choices for a dynamic base tree — height-balanced, degree-
balanced, weight-balanced, and so on. The different choices of dynamic tree lead to different
balancing methods, but normally (and also in this case) when search trees are augmented with
secondary structures it turns out that a rebalancing operation requires work proportional to
the number of elements in the subtree rooted at the node being rebalanced—this is normally
called the weight of the node. In internal memory a natural choice of dynamic base tree is

28

the BB[α]-tree [96], because in this structure a node with weight w can only be involved in
a rebalancing operation for every Ω(w) updates that access (go through) the node [30, 90].
This leads to an O(1) amortized bound on performing a rebalancing operation and thus to an
O(logB n) amortized rebalance bound. Unfortunately BB[α]-trees are not very suitable for
implementation in external memory. The natural candidate however, the B-tree, does not have
the property that a node of weight w can only be involved in a rebalance operation for every
Ω(w) updates that access the node. In [Interval] a variant of B-trees, called weight-balanced
B-trees, that possesses this property is developed. Basically a weight-balanced B-tree is a
B-tree with some extra constraints, namely constraints on the weight of a node as a function
of the level it is on in the tree. In a normal B-tree, nodes can have subtrees of very varying
weight. Actually the ratio between the largest subtree weight possible and the smallest is
exponential in the height of the tree the node is root in. In the weight-balanced B-tree this
ratio is a small constant factor.

The development of the weight-balanced B-tree leads to optimal amortized I/O bounds on
the external interval tree. However, in [Interval] we show how we can spread the rebalancing
work on a node over a number of updates in an easy way, and thus remove the amortization
from the bounds. Actually, it turns out that the weight-balanced B-tree can be used as
a simple alternative to existing complicated ways of removing amortization from internal-
memory data structures. For example it can be used in the structure described in [136] for
adding range restriction capabilities to dynamic data structures, and by fixing B to a constant
in the external interval tree one obtains an internal-memory interval tree with worst-case
update bounds. Even though it is not reported in the literature it seems possible to use the
techniques in [136] to remove the amortization from the internal-memory interval tree, but
our method seems much simpler.

The main property of the weight-balance B-tree that allows relatively easy removal of
amortization, is that rebalancing is done by splitting of nodes instead of rotations as in the
BB[α]-tree case. Intuitively splitting a node v into v′ and v′′ only affects the secondary
structures of v, and for example not the secondary structures of parent(v) because the set
of endpoints below this node is not affected by the split. This allows one to continue to use
the “old” secondary structures of v after the split, and lazily build the structure of v′ and v′′

over the updates that pass them before one of them needs to be split again. If rebalancing
is done using rotations, several nodes are affected by a rebalance operation, and it is not so
obvious how to continue to answer queries correctly while building the necessary structures
lazily. Also, it is necessary to prevent other rebalancing operations (rotations) involving any
of these node (not only the node that was initially out of balance) to take place before the
rebuilding is complete.

29

3.4 Bibliographic Notes and Summery of our Contributions

Goodrich et al. [67] designed efficient external-memory algorithms for a large number of important
problems, mainly using the distribution sweeping technique and the distribution paradigm. In [Buffer]
we use the buffer tree technique to develop buffered versions of one-dimensional range trees and of
segment trees. Using the data structuring paradigm, the standard plane-sweep algorithms then lead to
optimal algorithms for the orthogonal line segment intersection problem, the batched range searching
problem and the rectangle intersecting problem. Apart from the fact that the normal internal-memory
solutions are used, the power of these solutions is that all I/O specific parts are hidden in the data
structures. Furthermore, we believe that our algorithms are of practical interest due to small constants
in the asymptotic bounds.

In [GIS] we then develop I/O-efficient algorithms for a number of problems involving (general)
line segments in the plane. These algorithms have important applications in GIS systems where huge
amounts of data are frequently handled. We introduce the endpoint dominance problem and design
an I/O-efficient algorithm for it by combining several of the known techniques, especially the segment
tree from [Buffer], with a new technique which can be regarded as a version of fractional cascading for
external memory. The solution leads to an algorithm for the batched planar point location problem. A
solution to this problem is also given in [67] but it only works when the planar subdivision is monotone
whereas our solution works for general subdivisions. The endpoint dominance algorithm also leads to
new I/O-efficient algorithms for trapezoid decomposition, triangulation of simple polygons, segment
sorting, and red-blue and general line segment intersection. It remains open if one can solve the general
line segment intersection problem in O(n logm n+ t) I/Os (it should however be noted that in internal
memory a simple O((N + T) log2N) time plane-sweep solution [25] was also known long before the
complicated optimal algorithm [37]). It also remains open if one can triangulate a simple polygon in
a linear number of I/Os, e.g. if the vertices of the polygon are given in the sorted order they appear
around the perimeter.

In [Interval] we develop external on-line data structures for the stabbing query problem. As dis-
cussed in [79] an optimal structure for this problem leads to an optimal solution to the interval man-
agement problem. The segment tree structure solves the stabbing query problem in internal-memory
and some attempts have been made to externalizing this structure in an on-line setting [28, 110]. They
all use O(n log2 n) blocks of external memory and the best of them [110] is static and answers queries in
the optimal O(logB n+t) I/Os. In [Interval] we use our ideas from [Buffer] (Section 3.2.2) to develop an
on-line version of the segment tree with the improved space bound O(n logB n) blocks. Furthermore,
our structure is dynamic with worst-case optimal update and query bounds (the result is not discussed
in the survey). However, our segment tree structure still uses more than linear space. In [79] a data
structure for the stabbing query problem using optimal O(n) blocks of external memory is developed.
The structure, called the metablock tree, answers queries in the optimal number of I/Os but is fairly
involved and supports only insertions (not deletions) in non-optimal O(logB N + (logBN)2/B) I/Os
amortized. In [Interval] we developed an optimal external version of the interval tree. This structure

Space (blocks) Query I/O bound Update I/O bound
Priority search tree [74] O(n) O(log2N + t)
XP-tree [27] O(n) O(logB n+ T)
Metablock tree [79] O(n) O(logB n+ t) O(logB n+ (logB n)2/B)

amortized (inserts only)
P-range tree [121] O(n) O(logB n+ t+ IL∗(B)) O(logB n+ (logB n)2/B)

amortized
Path Caching [110] O(n log2 log2 B) O(logB n+ t) O(logB n) amortized
Interval tree [Interval] O(n) O(logB n+ t) O(logB n)

Figure 3.11: Comparison of space efficient data structure for interval management.

30

improves on the metablock tree and settles an important open problem in databases and I/O algo-
rithms. In Figure 3.11 our result is compared with previous space-efficient structures for the interval
management problem. The structures in [Interval] use a novel balancing technique for search trees
which can be regarded as weight-balancing of B-trees. This structure can be used to remove amorti-
zation from external as well as internal-memory data structures. Actually, the structures in [Interval]
are the first external structures for any 2-dimensional range searching problem with worst-case update
bounds. Fixing B to a constant in the structures result in worst-case efficient internal-memory seg-
ment and interval trees. The structures in [Interval] also work without assumptions on the size of the
internal memory, whereas all the results on dynamic data structures cited in Section 3.3 assume that
m = O(B), that is, that the internal memory is capable of holding O(B2) elements. Finally, it should
be mentioned that [79] also discusses a method for extending the metablock tree to answer three-sided
queries. The resulting structure still uses linear space but it is static. It is capable of answering queries
in O(logB n + log2B + t) I/Os.

31

Chapter 4

Graph Problems

Graph-theoretic problems arise in many large-scale computations. In this section we con-
sider external-memory algorithms for graph problems, and for that purpose we introduce the
following additional parameters:

V = number of vertices in the input graph;
E = number of edges in the input graph.

We assume that E ≥ V and note that N = V + E.
Until recently only work on selected graph problems in restricted external-memory models

has been done. In [122] transitive closure computations are considered in a model where the
set of vertices fits in main memory. Related work is done in [75, 76]. In [97] work on
graph traversal in external memory is done, which primarily addresses the problem of storing
graphs and not the problem of performing computations on them. Related work on storing
trees is done in [66, 71]. In [58] memory management problems for maintaining connectivity
information and paths on graphs are studied, and in [85] linear relaxation problems are
studied.

Recently, Chiang et al. [40, 42] considered graph problems in the general I/O model. They
developed efficient algorithms for a large number of important graph problems, including
Euler-tour computation, expression-tree evaluation, least common ancestors, connected and
biconnected components, minimum spanning forest and topological sorting of planar s, t-
graphs. Some of these algorithms are improved in [Buffer]. In [OBDD] we analyze the
I/O complexity of Ordered Binary-Decision Diagram (OBDD) manipulation. OBDDs are
graph-based data structures and represents the state-of-the-art structure for boolean function
manipulation. We analyze existing algorithms in an I/O-environment, prove I/O lower bounds
on the fundamental OBDD-manipulation algorithms, and develop new efficient algorithms.
Some I/O graph algorithms are also reported in [83].

In internal memory any permutation of N elements can be produced in O(N) time, and
on an N processor PRAM it can be done in constant time. In any case the work is O(N).
However, as discussed previously it is in general not possible to perform arbitrary permuta-
tions in a linear number of I/Os, and this is one of the important features that distinguish the
I/O-model from the other models. The difference becomes especially prominent when consid-
ering graph problems, as one can prove Ω(perm(N)) lower bounds on several graph problems
that can be solved in linear time in internal memory. As O(perm(N)) = O(sort(N)) for all
realistic values of B and M as discussed in Section 2.2, the lower bound means that sort-

33

ing can normally be used as a subroutine in designing graph algorithms, something which is
generally not possible in internal memory. It also means that O(sort(N)) I/O algorithms are
optimal for all practical purposes.

In [42] Ω(perm(N)) is proved to be a lower bound on a large number of important graph
problems. Also in [40, 42] a large number of O(sort(N)) I/O algorithms are developed. These
algorithms are mainly developed using PRAM simulation and an O(sort(N)) solution to the
list ranking problem. We sketch the main ideas in these two results in Section 4.2, but before
doing so we in Section 4.1 try to illustrate the difference in hardness of graph problems in
internal and external memory. This is done by considering the I/O performance of the very
simple internal-memory algorithm for the list ranking problem, and by discussing the “circuit
evaluation” problem. We also discuss a very useful technique for traversing a graph using a
priority queue. Finally, we in Section 4.3 survey the results obtained in [OBDD].

4.1 Basic Issues in External Graph Algorithm

Consider the list ranking problem defined as follows. We are given an N -vertex linked list
stored as an (unsorted) sequence of vertices, each with a pointer to the successor vertex in
the list (Figure 4.1). Our goal is to determine the rank of each vertex, that is, the number
of links to the end of the list. In the PRAM world list ranking is a very fundamental graph
problem which extracts the essence in many other problems, and it is used as an important
subroutine in many parallel algorithms [8]. As mentioned this turns out also to be the case
in external memory [40, 42].

In internal memory the list ranking problem is easily solved in O(N) time. We simply
traverse the list by following the pointers, and rank the vertices N −1, N−2 and so on in the
order we meet them. In external memory, however, this algorithm performs terribly. Imagine
that we run the algorithm on a machine where the internal memory is capable of holding
two blocks (m = 2) when the list is blocked as indicated in Figure 4.2. Assume furthermore
that we use a least recently used (LRU) paging strategy. First we load block 1 and give A
rank N − 1. Then we follow the pointer to E, that is, we load block 3 and rank E. Then we
follow the pointer to D, loading block 2 while removing block 1 from internal memory. Until
now we have done an I/O every time we follow a pointer. Now we follow the pointer to B,
which means that we have to load block 1 again. To do so we have to remove block 3 from
internal memory. This process continues and it is easy to realize that we do an I/O every
time we follow a pointer. This means that the algorithm uses O(N) I/Os as opposed to the
linear external-memory bound O(n) = O(N/B) I/Os. As mentioned in the introduction the
difference between these two bounds can be very significant in practice as B typically is on
the order of thousands.

In general the above type of behavior is characteristic for internal-memory graph algo-
rithms when analyzed in an I/O-environment. The lesson is that one should be very careful

A B C D E G HF A B C D E G HF

Figure 4.1: List ranking problem. Figure 4.2: List ranking in external
memory (B = 2).

34

f4

f2 f3f1

f6

f8

f5

f7

< M/2

Figure 4.3: The circuit evaluation problem.

about following pointers and in graph algorithms be especially careful to ensure a high degree
of locality in the access to data (what is normally referred to as locality of reference). Still
the host of algorithms for graph problems, both in theory and practice, make extensive use
of pointers, and it seems that in several practical applications the size of the internal memory
has indeed been the limiting factor for the size of the problem instances one has been able to
solve. Before we discuss the external solution to the list ranking problem, consider the related
problem of “circuit evaluation” defined as follows [42]: Given a bounded fan-in boolean cir-
cuit whose description is stored in external memory, the problem is to evaluate the function
computed by the network. It is assumed that the representation of the circuit is topologically
sorted, that is, the labels of the vertices come from a total order <, and for every edge (v, w)
we have v < w. Refer to Figure 4.3. Nothing is assumed about the functions in the vertices
except that they take at most M/2 inputs. In [42] a solution to the problem is called a time-
forward processing, which is motivated by thinking of vertex v as being evaluated at “time”
v. The main issue in such an evaluation is to ensure that when one evaluates a particular
vertex one has the values of its inputs in internal memory.

As in the list ranking case it is easy to realize that evaluating the circuit using the obvious
linear time internal-memory algorithms, which traverse the circuit in topological order and
at every vertex visit the immediate predecessor vertices, results in an O(N) I/O bound in the
worst case. However, using an external priority queue we can give a rather obvious algorithm
for solving the problem in O(sort(N)) I/Os [Buffer]. When we evaluate a vertex v we simply
send the result “forward in time” to the appropriate vertices by inserting it in the priority
queue with priority w for all edges (v, w). We can then obtain the inputs to the next vertex
in the topological order just by performing a number of deletemin operations on the queue.
The O(n logm n) I/O bound follows immediately from the I/O bound on the priority queue
operations proved in [Buffer]. As we will discuss in Section 4.2 and 4.3 this idea of traversing
a graph using an external priority queue turns out to be a powerful tool when designing
external-memory graph algorithms.

4.2 External List Ranking and PRAM Simulation
In [40, 42] a large number of efficient external-memory graph algorithms are designed from
PRAM algorithms using PRAM simulation and an O(sort(N)) I/O algorithm for external list
ranking. In [42] it is proved that list ranking requires O(perm(N)) I/Os in external memory,
and O(sort(N)) I/O algorithms for the problem are discussed in [40, 42, 83] and in [Buffer].
Thus the problem is solved optimally for all realistic values of B and M . In the following
two subsection we sketch the ideas in the list-ranking results and the main idea in PRAM
simulation.

35

4.2.1 External List Ranking

In order to develop an O(sort(N)) algorithm for list ranking Chiang et al. [40, 42] use a
framework from PRAM algorithms for the problem [8, 46]. The general idea is recursive;
First one produces an independent set of Θ(N) vertices, that is, a set of vertices none of
which are successors of each other. Then O(1) sorts and scans are used to bridge out the
vertices in the set, that is, for a vertex v in the set one lets the predecessor of v point directly
to the successor of v. This can be done because the vertices are independent, that is, because
the predecessor and the successor of v are not in the set. Now the resulting chain is ranked
recursively, and O(1) sorts and scans are used to reintegrate the removed vertices in the final
solution. Details can be found in [8, 40, 42, 46]. If the independent set can be found in
O(sort(N)) I/Os the whole algorithm also uses O(sort(N)) I/Os, because O(sort(N) I/Os is
used to bridge out the independent set and because the algorithm is only called recursively
on a constant fraction of the vertices.

In [42] a number of methods for computing the independent set in O(sort(N)) I/O are
sketched. One of them uses time-forward processing as discussed in Section 4.1 (on a slightly
modified version of the circuit evaluation problem) to find a 3-coloring of the list, and the
independent set is then chosen to be the vertices colored by the most popular color. The 3-
coloring algorithm works as follows: First the edges in the list ranking problem are separated
into forward edges {(a, b)|a < b} and backward edges {(a, b)|a > b}. Each of these sets is a
set of chains. The vertices in the first set are then colored with 0 and 1; First the start vertex
of each chain is identified and colored 0, and then time-forward processing is used to color the
rest of the vertices in each chain in alternating colors. This can be done in O(sort(N)) I/Os
using the algorithm in [Buffer]. After that the second set is colored in a similar way with 2
and 1, starting each chain with 2. Now if a vertex is given two different colors (because it
ends one chain and starts another) it is colored 0 unless the two colors are 2 and 1, in which
case it is colored 2. The result is a 3-coloring of the N vertices produced in O(sort(N)) I/Os.

The above 3-coloring leads to an O(sort(N)) I/O algorithm for list ranking. In [42] a
Ω(perm(N)) I/O lower bound is proved on the problem, and the algorithm is thus optimal
for all realistic values of B and M . In [5] it was shown that if an algorithm is capable of
performing N ! permutations then at least one of them requires Ω(perm(N)) I/Os. In [42]
it is shown that even if an algorithm is only capable of performing (N !)αN c (0 < α ≤ 1, c
arbitrary) permutations the lower bound still applies. This is used to prove a lower bound on
the proximate neighbors problem defined as follows: Given N elements in external memory,
each with a key k ≤ N/2, such that for each possible value of k, exactly two elements have
key-value k. The problem is then to permute the elements such that elements with identical
key-value are in the same block. It is shown in [42] that an algorithm solving the proximate
neighbors problem is capable of performing

√
N !/N 1/4 permutation, and therefore it must

use Ω(perm(N)) I/Os in the worst case. Finally, the Ω(perm(N)) I/O lower bound for list
ranking is obtained by reduction from a slightly modified version of the proximate neighbors
problem [42, 128].

Finally, it should be mentioned that Kumar [83] recently has shown how to use a priority
queue to solve the list ranking problem in a more direct way, and that Vengroff [127] has
performed experiments which show that the external list ranking algorithms indeed performs
substantially better than the internal-memory algorithm on large random instances of the
problem.

36

4.2.2 PRAM Simulation

As the name suggests the general idea in PRAM simulation is to design an external-memory
algorithm by simulating an existing PRAM algorithm. The underlying intuition is that the
I/O and PRAM models are related in the sense that they both support independent com-
putation on local data. The main idea in PRAM simulation is to simulate a single step of
a N processor O(N) space PRAM algorithm in O(sort(N)) I/Os. Then the simulation of
the whole PRAM algorithm can also be performed in O(sort(N)) I/Os, provided that the
PRAM algorithm possesses the “geometrically decreasing size” property, that is, that after a
constant number of steps the number of active processors is decreased by a constant factor.
The O(sort(N)) I/O bound then follows from the fact that only the active processors need
to be simulated. Fortunately, many PRAM algorithms have this property and can therefore
be simulated effectively.

In a single step of a PRAM algorithm each of the N processors reads O(1) memory
locations, performs some computation, and writes to O(1) memory locations. The main
problem in simulation such a step is to ensure that when the computation of one processor
is simulated the content of the corresponding memory locations are in internal memory. To
ensure this one first sorts a copy of the content of the memory based on the indices of the
processors for which a given memory location will be operand. Then the computation can be
performed by scanning through the sorted list, performing the computation for each of the
processors, and writing the result to disk. Finally, the results can be sorted back according
to the indices the processors would write them to. As only O(1) sorts and scans are done in
such a process, the simulation only uses O(sort(N)) I/Os as required.

A large number of O(sort(N)) I/O graph algorithms are developed in [40, 42] using the
PRAM technique and the external list ranking algorithm. These includes algorithms for ex-
pression tree evaluation, centroid decomposition, least common ancestor, minimum spanning
tree verification, connected components, minimum spanning forest, biconnected components,
ear decomposition, and a number of problems on planar s, t-graphs.

4.3 I/O Complexity of OBDD Manipulation

Many problems in digital-systems design and verification, mathematical logic, concurrent
system design and artificial intelligence can be expressed and solved in terms of boolean func-
tions [33]. The efficiency of such solutions depends on the data structures used to represent
the boolean functions and on the algorithms used to manipulate these data structures. Or-
dered Binary-Decision Diagrams (OBDDs) [32, 33] are the state-of-the-art data structure for
boolean function manipulation and they have been successfully used to solve problems from
all of the above mentioned areas. There exist implementations of OBDD software packages
for a number of sequential and parallel machines [17, 31, 101, 102]. Even though there exist
very different sized OBDD representations of the same boolean function, OBDDs in real ap-
plications tend to be very large. In [17] for example OBDDs of Gigabyte size are manipulated
in order to verify logic circuit designs, and researchers in this area would like to be able to
manipulate OBDDs orders of magnitude larger.

An OBDD is a branching program with some extra constraints. A branching program is a
directed acyclic graph with one root, whose leaves (sinks) are labeled with boolean constants.
The non-leaves are labeled with boolean variables and have two outgoing edges labeled 0
and 1, respectively. If a vertex has label xi we say that it has index i. If f is the function

37

1

2

3 3

0

0 0

1

1

(x1 ∧ x2) ∨ x3
0 1

0

1 1

1

2

3

0 1

0

0

1

1

1

(x1 ∧ x2) ∨ x3

0

Figure 4.4: Example of OBDD. Figure 4.5: Reduced OBDD.

represented by the branching program, an evaluation of f(a1, . . . , an) starts at the root and
follows for a vertex labeled xi the outgoing edge with label ai. The label of the sink reached
in this way equals f(a1, . . . , an). An OBDD is a branching program for which an ordering of
the variables in the vertices is fixed. For simplicity one normally assumes that this ordering
is the natural one, x1, . . . , xn. If a vertex with label xj is a successor of a vertex with label
xi, the condition j > i has to be fulfilled. An example of an OBDD is shown in Figure 4.4.
An OBDD representing a boolean function of n variables can be of size 2n, and different
variable orderings can lead to representations of different size. There exist several algorithms
(using heuristics) for choosing a variable-ordering that minimizes the OBDD-representation
of a given function [88, 112].

In [32] Bryant proved that for a given variable ordering and a given boolean function there
is exactly one OBDD—called the reduced OBDD —of minimal size. The OBDD in Figure 4.5
is the reduced version of the OBDD in Figure 4.4. As the reduced OBDD is canonical it is
trivial to decide if two reduced OBDDs represent the same function or if a given reduced OBDD
represents a satisfiable function. Bryant designed two fundamental operations on OBDDs—
the reduce and the apply operation. The reduce operation computes the reduced version of a
given OBDD, and the apply operation takes the OBDD representations of two functions and
computes the representation of the function formed by combining them with a given binary
logical operator. These two operations are (almost) all one needs in algorithms manipulation
boolean function. Bryants algorithm for reducing an OBDD G with |G| vertices requires
O(|G| log |G|) time. Later algorithms running in O(|G|) time have been developed [33, 118].
Bryant also gave an O(|G1|·|G2|) time algorithm for using the apply operation on two OBDDs
of size |G1| and |G2|. Later several authors have given alternative apply algorithms running
in the same time bound [17, 101, 102].

One example of an application of OBDDs is given in Figure 4.6, where we wish to verify
that the shown circuit fulfills its specification, that is, that it computes the desired function

��
��
��
��

x1

x2

x3

x4

OR

AND

AND

1

41

0

0

0

1

1

1

0

OR

2

3 3

10

0 1

Figure 4.6: Verifying that a circuit computes the function (x3 ∧ x4) ∨ (x1 ∧ x3) ∨ (x3 ∧ x2).

38

(x3 ∧ x4) ∨ (x1 ∧ x3) ∨ (x3 ∧ x2). We can do so by building a reduced OBDD for the circuit
and one for the specification. If these two OBDDs are equal we have verified the circuit. The
OBDDs can easily be build in an incremental way using the apply operation, and it turns
out that the circuit in Figure 4.6 indeed computes the given function (building the OBDDs
for the circuit and the function both result in the OBDD given in Figure 4.6). This general
method is used to verify even very large VLSI layouts, and it is not unusual to manipulated
OBDDs of up to Gigabyte size in such applications [17]. Researchers in the area would like
to be able to manipulate orders of magnitude larger OBDDs, but the limit on the size of the
problem instances one has been able to solve in practice has generally been determined by
the ability to find representations that fit in internal memory.

In [OBDD] we analyze the I/O performance of known OBDD-manipulation algorithms
and develop new I/O-efficient algorithms. We show that in analogy with other internal-
memory graph algorithms all existing reduce and apply algorithms have a poor worst-case
performance, that is, they use Ω(|G|) and Ω(|G1| · |G2|) I/Os, respectively. We develop
new algorithms which use O(sort(N)) and O(sort(|G1| · |G2|)) I/Os, respectively. Finally,
we show that for a special class of algorithms, which include all existing reduce algorithms,
Ω(perm(|G|)) is a lower bound on the number of I/Os needed to reduce an OBDD of size |G|.
Below we sketch the ideas behind these results for the reduce operation.

4.3.1 The Reduce Operation

In [32] Bryant proved that iterated use of the following two reduction rules on a OBDD with
at most one 0-sink and one 1-sink yields the reduced OBDD: 1) If the two outgoing edges
of vertex v lead to the same vertex w, then eliminate vertex v by letting all edges leading
to v lead directly to w. 2) If two vertices v and w labeled with the same variable have the
same 1-successor and the same 0-successor, then merge v and w into one vertex. For example,
using rule two on one of the vertices in Figure 4.4 with index three yields the reduced OBDD
in Figure 4.5.

All the reduction algorithms reported in the literature [17, 32, 33, 101, 102] basically work
in the same way. They process the vertices level by level from the sinks to the root, and
assign a (new) unique integer label to each unique sub-OBDD root. Processing a level, under
the assumption that all lower levels have already been processed, is done by looking at the
new labels of the children of the vertices on the level in question, checking if the reduction
rules can be used, and assigning new labels to the vertices.

It is fairly easy to realize that all the existing reduce algorithms perform poorly in an I/O
environment, that is, that they all use O(|G|) I/Os in the worst case. The main reason is
analogous to the reason why the internal-memory algorithms for the list-ranking and circuit
evaluation problems perform poorly. The problem is the requirement to visit the children
during the processing of a level of vertices. As there is no “nice” pattern in the way the
children are visited (mainly because a vertex can have large fan-in), the algorithms can in the
worst case be forced to do an I/O every time a child is visited. This is very similar to the
problem encountered in time-forward processing. In [OBDD] we show that similar problems
arise when performing the apply operation. Actually, we show that the poor performance can
occur even if we assume that the OBDDs are initially blocked in some natural way, e.g. in a
depth-first, breadth-first or levelwise manner. When we e.g. say that an OBDD is levelwise
blocked, we mean that any given disk block only contains vertices from one level of the OBDD.

The main idea in the new reduce algorithm given in [OBDD] is very similar to the time-

39

forward processing algorithm in [Buffer]; When a vertex is given a new label we “inform” all
its immediate predecessors about it in a “lazy” way using a priority queue. Thus the algorithm
basically works like the previously know algorithms, except that every time a vertex v is given
a new label, an element is inserted in an external priority queue for each of the immediate
predecessors of v. The elements in the priority queue are ordered according to level and
number of the “receiving” vertex. Thus when one on a higher level wants to know the new
labels of children of vertices on the level, one can simply perform deletemin operations on the
queue until all elements on the level in question have been obtained. This way the potentially
expensive “pointer chasing” is avoided. That the algorithm overall uses O(sort(|G|)) I/Os
again basically follows from the I/O-bounds on the priority queue operations.

The Ω(perm(N)) I/O lower bound on the reduce operation is proved using techniques
similar to the ones used in [42]. We define a variant of the proximate neighbors problem
discussed earlier called the split proximate neighbors problem (SPN). In this problem we are
as previously givenN elements with a key each, such that precisely two elements have the same
key. Furthermore, we require that the keys of the first N/2 elements (and consequently also
the last N/2) are distinct, and that the keys of the first N/2 elements are sorted. Following
the proof of the lower bound on the proximate neighbors problem, we can prove that an
algorithm for the SPN problem must be capable of performing (N !)1/3 permutations and
thus we obtain an O(perm(N)) lower bound.

The general idea in the reduce lower bound proof is then a reduction of SPN to the reduce
problem. However, unlike SPN where all elements are present somewhere in internal or
external memory throughout the life of an algorithm for the problem, vertices may disappear
and new ones may be created during a reduce operation. In the extreme case all vertices of an
input OBDD are removed by a reduce algorithm and replaced by one (sink) vertex. Therefore
we need to restrict our attention to a specific class of reduction algorithms in order to prove
the lower bound. Intuitively the class we consider consists of all algorithms that work by
assigning new labels to vertices and then check if the reduction rules can be used on a vertex
by loading its two children to obtain their new labels (the class is defined precisely in [OBDD]
using a pebble game). All known reduction algorithms belong to the class. Restricting the
attention to this special class of algorithms the reduction now works as sketched on Figure 4.7,
where it is shown how the elements in an SPN instance are encoded in the lowest levels of an
OBDD. The marked vertices are the vertices containing elements from the instance, and the
vertices to the left of the vertical dotted line contain the first half of the elements. Vertices
containing elements with the same key are connected with an edge. Since we only consider
algorithms from the special class, we know that at some point during the reduce algorithm

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

Figure 4.7: Sketch of how a SPN problem is reduced to the problem of reducing an OBDD.

40

the two vertices containing an SPN element with the same key will have to be in internal
memory at the same time. Therefore, we can construct an algorithm for SPN from a reduce
algorithm, and thus obtain a O(perm(N)) I/O lower bound on the latter.

41

4.4 Bibliographic Notes and Summary of our Contributions

Chiang et al. [42] proved lower bounds and used PRAM simulation and a list ranking algorithm to
design efficient algorithms for a large number of graph problems. Some of the results are given in
more detail in [40]. They gave several O(sort(N)) I/O list ranking algorithms based on the framework
used to design parallel algorithms for the problem. The difference between these algorithms is the way
the independent set is produced. They gave a simple randomized algorithm based on an approach
used in [8] and two deterministic algorithms that work by producing a 3-coloring of the list. Their
deterministic algorithms only work under some (unrestrictive in practice) restriction on the block and
memory size. The first deterministic algorithm only works if B = O(N/ log(t)N) for some fixed t > 0.
Here log(t)N is the iterated logarithm. Put another way, B should not be too large. The second
algorithm relies on time-forward processing and the algorithm they develop for this problem using the
distribution paradigm only works if

√
m/2 log(m/2) ≥ 2 log(2n/m), that is, m = M/B should not

be to small. By developing the priority queue in [Buffer] and obtaining the alternative time-forward
processing algorithm we remove these restrictions. All the algorithms developed in [40, 42] mentioned
in Section 4.2.2 rely on the algorithm for the list ranking problem. Thus by designing a list ranking
(time-forward processing) algorithm without assumptions on the size of B and M we also remove the
assumptions from all of these algorithms. Finally, Chiang in [40] also describes how to use the priority
queue to obtain algorithms for e.g. expression tree evaluation directly without using PRAM simulation
or list ranking. Recently, Kumar has also developed some I/O graph algorithms using external data
structures [83].

Bryant introduced OBDDs and developed algorithms which traverse the OBDDs in a depth-first
way [32, 33]. Later algorithms working in a breadth-first manner were developed [101]. In [17] and [102]
it was realized that the depth-first or breadth-first traversals are one main reason why the traditional
algorithms do not perform well when the OBDDs are too large to fit in internal memory, and new
levelwise algorithms were developed. The general idea in these algorithms is to store the OBDDs
in a level-blocked manner, and then try to access the vertices in a level-by-level pattern. Previous
algorithms did not explicitly block the OBDDs. In [17, 102] speed-ups of several hundreds compared to
the “traditional” algorithms are reported using this idea. Recently, speedups obtained by considering
blocking issues between levels of internal memory have been reported in [80]. In [OBDD] we show
that all the known reduce and apply algorithms in the worst case use O(|G|) and O(|G1| · |G2|) I/Os,
respectively, even the algorithms specifically designed with I/O in mind. One natural question to
ask is of course why experiments with these algorithms then show so huge speedups compared to
the traditional algorithms. The answer is partly that the traditional depth-first and breadth-first
algorithms behave so poorly with respect to I/O that just considering I/O-issues, and actually try
to block the OBDDs and access them in a “sequential” way, leads to large speedups. However, we
believe that one major reason for the experimental success in [17, 102] is that the OBDDs in the
experiments roughly are of the size of the internal memory of the machines used. This means that one
level of the OBDDs fits in internal memory, which again explains the good performance because the
worst case behavior occurs when one level of the OBDD does not fit in internal memory. In [OBDD]
an O(perm(|G|)) I/O lower bound on the reduce operation is proved under the assumption that the
reduce algorithm belongs to a special class of algorithms. The class is defined using a graph pebble
game. We believe that in order to state precisely in which model of computation the lower bounds
proved in [42] hold one needs to consider a similar game. The O(perm(|G|)) lower bound applies even
if we know that the OBDD is blocked in a breadth-first, depth-first manner or level blocked (like in
the algorithms in [17, 102]) manner. It also applies if the OBDD is what we call minimal-pair blocked,
which is the intuitively best blocking strategy for the class of algorithms considered, namely a blocking
that minimizes the number of pairs of vertices connected with an edge which are not in the same block.
We believe that the O(sort(|G|)) I/O reduce and O(sort(|G1| · |G2|)) I/O apply algorithms developed
in [OBDD] are of practical interest due to relatively small constants in the asymptotic bounds.

42

Chapter 5

Conclusions

Beware of bugs in the above code; I have only proved it correct, not tried it
D. Knuth

Designing algorithms with good I/O performance is crucial in a number of areas where the
I/O-bottleneck is becoming increasingly important. In the preceeding chapters we have sur-
veyed important results in the area of I/O algorithms. However, while a number of basic
techniques for designing efficient external-memory algorithms now exist, and while there ex-
ist efficient external algorithms for a number of basic and important computational geometry
and graph problems, there are still a lot of open questions. The young field of I/O-efficient
computation is to a large extent still wide open. Even though the experimental results re-
ported so far are encouraging, a major future goal is to investigate the practical merits of the
developed I/O algorithms.

5.1 Concluding Remarks on our Contributions

The work in this thesis has demonstrated that it can be very fruitful to take a data structure approach
to the design of I/O algorithms. We have developed a number of efficient external data structures
and shown how they can be used to develop alternative, new and improved I/O algorithms. We have
shown how external data structures can be used as an alternative to normal internal data structures
in plane-sweep algorithms and thus directly obtained efficient algorithms for a number of problems
involving geometric objects. These algorithms are alternatives to other algorithms developed using
special I/O design techniques. Exemplified by external fractional cascading, we have shown how
the data structure approach can be a catalyzer for the development of new algorithms through the
development of external-memory versions of known internal-memory techniques. Finally, in the case
of external graph algorithms we have seen how the development of external data structures almost
immediately can lead to improvements of previously known algorithms.

43

Part II

Papers

45

Chapter 6

The Buffer Tree:
A New Technique for
Optimal I/O-Algorithms

47

The Buffer Tree:
A New Technique for Optimal I/O-Algorithms∗

Lars Arge†

BRICS‡
Department of Computer Science

University of Aarhus
Aarhus, Denmark

August, 1996

Abstract

In this paper we develop a technique for transforming an internal-memory tree data
structure into an external-memory structure. We show how the technique can be used
to develop a search tree like structure, a priority queue, a (one-dimensional) range tree
and a segment tree, and give examples of how these structures can be used to develop
efficient I/O algorithms. All our algorithms are either extremely simple or straightforward
generalizations of known internal-memory algorithms—given the developed external data
structures. We believe that algorithms relying on the developed structure will be of
practical interest due to relatively small constants in the asymptotic bounds.

1 Introduction

In the last few years, more and more attention has been given to Input/Output (I/O) com-
plexity of existing algorithms and to the development of new I/O-efficient algorithms. This is
due to the fact that communication between fast internal memory and slower external mem-
ory is the bottleneck in many large-scale computations. The significance of this bottleneck
is increasing as internal computation gets faster, and especially as parallel computing gains
popularity [107]. Currently, technological advances are increasing CPU speed at an annual
rate of 40-60% while disk transfer rates are only increasing by 7-10% annually [113].

A lot of work has already been done on designing external memory versions of known
internal-memory data structures (e.g. [16, 67, 74, 79, 82, 110, 119, 121, 130]), but practically
all of these data structures are designed to be used in on-line settings, where queries should be
∗This paper is a revised and extended version of BRICS report 94-16. An extended abstract version was

presented at the Fourth Workshop on Algorithms and Data Structures (WADS’95)
†This work was partially supported by the ESPRIT II Basic Research Actions Program of the EC under

contract No. 7141 (project ALCOM II) and by Aarhus University Research Foundation. Part of the work was
done while a Visiting Scholar at Duke University. Email: large@daimi.aau.dk
‡Acronym for Basic Research in Computer Science, a Center of the Danish National Research Foundation.

49

answered immediately and within a good worst case number of I/Os. This effectively means
that using these structures to solve off-line problems yields non-optimal algorithms because
they are not able to take full advantage of the large internal memory. Therefore a number of
researchers have developed techniques and algorithms for solving large-scale off-line problems
without using external memory data structures [5, 42, 67].

In this paper we develop external data structures that take advantage of the large main
memory. This is done by only requiring good amortized performance of the operations on the
structures, and by allowing search operations to be batched. The data structures developed
can then be used in simple and I/O-efficient algorithms for computational geometry and graph
problems. As pointed out in [42] and [67] problems from these two areas arise in many large-
scale computations in e.g. object-oriented, deductive and spatial databases, VLSI design
and simulation programs, geographic informations systems, constraint logic programming,
statistics, virtual reality systems, and computer graphics.

1.1 I/O Model and Previous Results

We will be working in an I/O model introduced by Aggarwal and Vitter [5]. The model has
the following parameters:

N = # of elements in the problem instance;
M = # of elements that can fit into main memory;
B = # of elements per block,

where M < N and 1 ≤ B ≤ M/2. The model captures the essential parameters of many of
the I/O-systems in use today, and depending on the size of the data elements, typical values
for workstations and file servers are on the order of M = 106 or 107 and B = 103. Large-scale
problem instances can be in the range N = 1010 to N = 1012.

An I/O operation in the model is a swap of B elements from internal memory with B
consecutive elements from external memory. The measure of performance we consider is the
number of such I/Os needed to solve a given problem. Internal computation is for free. As
we shall see shortly the quotients N/B (the number of blocks in the problem) and M/B (the
number of blocks that fit into internal memory) play an important role in the study of I/O-
complexity. Therefore, we will use n as shorthand for N/B and m for M/B. Furthermore, we
say that an algorithm uses a linear number of I/O operations if it uses at most O(n) I/Os to
solve a problem of size N . In [133] the I/O model is extended with a parameter D. Here the
external memory is partitioned into D distinct disk drives, and if no two blocks come from
the same disk, D blocks can be transferred per I/O. The number D of disks range up to 102

in current disk arrays.
Early work on I/O algorithms concentrated on algorithms for sorting and permutation-

related problems in the single disk model [5], as well as in the extended version of the I/O-
model [98, 99, 131, 133]. External sorting requires Θ(n logm n) I/Os,1 which is the external
memory equivalent of the well-known Θ(N logN) time bound for sorting in internal mem-
ory. Note that this means that O(logm n

B) is the I/O bound corresponding to the O(log2N)
bound on the operations on many internal-memory data structures. More recently external-
memory researchers have designed algorithms for a number of problems in different areas.

1We define for convenience logm n = max{1, (logn)/(logm)}.

50

Most notably I/O-efficient algorithms have been developed for a large number of computa-
tional geometry [15, 67] and graph problems [42]. In [13] a general connection between the
comparison-complexity and the I/O-complexity of a given problem is shown in the “com-
parison I/O model” where comparison of elements is the only allowed operation in internal
memory.

1.2 Our Results

In this paper we develop a technique for transforming an internal-memory tree data structure
into an external memory data structure. We use our technique to develop a number of
external memory data structures, which in turn can be used to develop optimal algorithms
for problems from the different areas previously considered with respect to I/O-complexity.
All these algorithms are either extremely simple or straightforward generalizations of known
internal-memory algorithms—given the developed external data structures. This is in contrast
to the I/O-algorithms developed so far, as they are all very I/O-specific. Using our technique
we on the other hand manage to isolate all the I/O-specific parts of the algorithms in the data
structures, which is nice from a software engineering point of view. Ultimately, one would like
to give the task of transforming an ordinary internal-memory algorithm into a good external
memory one to the compiler. We believe that our technique and the developed structures will
be useful in the development of algorithms for other problems in the mentioned areas as well
as in other areas. Examples of this can be found in [12, 15, 40]. More specifically, the results
in this paper are the following:

Sorting: We develop a simple dynamic tree structure (The Buffer Tree) with operations
insert, delete and write. We prove amortized I/O bounds of O(logm n

B) on the first two oper-
ations and O(n) on the last. Using the structure we can sort N elements with the standard
tree-sort algorithm in the optimal number of I/Os. This algorithm is then an alternative to
the sorting algorithms developed so far. The algorithm is the first I/O-algorithm that does
not need all the elements to be present by the start of the algorithm.

Graph Problems: We extend the buffer tree with a deletemin operation in order to
obtain an external-memory priority queue. We prove an O(logm n

B) amortized bound on the
number of I/Os used by this operation. Using the structure it is straightforward to develop an
extremely simple algorithm for “circuit-like” computations as defined in [42]. This algorithm
is then an alternative to the “time-forward processing technique” developed in the same
paper. The time-forward processing technique only works for large values of m, while our
algorithm works for all m. In [42] the time-forward processing technique is used to develop
an efficient I/O algorithm for external-memory list-ranking, which in turn is used to develop
efficient algorithms for a large number of graph-problems.2 All these algorithms thus inherit
the constraint on m and our new algorithm removes it from all of them. Finally, the structure
can of course also be used to sort optimally.

Computational Geometry Problems: We also extend the buffer tree with a batched
rangesearch operation in order to obtain an external (one-dimensional) range tree structure.
We prove an O(logm n

B +r) amortized bound on the number of I/Os used by the operation. Here
r is the number of blocks reported. Furthermore, we use our technique to develop an external
version of the segment tree with operations insert/delete and batched search with the same

2Expression tree evaluation, centroid decomposition, least common ancestor, minimum spanning tree ver-
ification, connected components, minimum spanning forest, biconnected components, ear decomposition, and
a number of problems on planar st-graphs.

51

I/O bounds as the corresponding operations on the range tree structure. The two structures
enable us to solve the orthogonal line segment intersection, the batched range searching, and
the pairwise rectangle intersection problems in the optimal number of I/O operations. We
can solve these problems with exactly the same plane-sweep algorithms as are used in internal
memory. As mentioned, large-scale computational geometry problems arise in many areas.
The three intersection reporting problems mentioned especially arise in VLSI design and are
certainly large-scale in such applications. The pairwise rectangle intersection problem is of
special interest, as it is used in VLSI design rule checking [26]. Optimal algorithms for the
three problems are also developed in [67], but as noted earlier these algorithms are very
I/O-specific, while we manage to “hide” all the I/O-specific parts in the data structures and
use the known internal-memory algorithms. A note should also be made on the fact that
the search operations are batched. Batched here means that we will not immediately get the
result of a search operation. Furthermore, parts of the result will be reported at different
times when other operations are performed. This suffices in the plan-sweep algorithms we
are considering, as the sequence of operations done on the data structure in these algorithms
does not depend on the results of the queries in the sequence. In general, problems where
the whole sequence of operations on a data structure is known in advance, and where there is
no requirement on the order in which the queries should be answered, are known as batched
dynamic problems [55].

As mentioned some work has already been done on designing external versions of known
internal dynamic data structures, but practically all of it has been done in the I/O model
where the size of the internal memory equals the block size. The motivation for working in
this model has partly been that the goal was to develop structures for an on-line setting, where
answers to queries should be reported immediately and within a good worst-case number of
I/Os. This means that if we used these structures to solve the problems we consider in this
paper, we would not be able to take full advantage of the large main memory. Consider
for example the well-known B-tree [21, 51, 82]. On such a tree one can do an insert or
delete operation in O(logB n) I/Os and a rangesearch operation in O(logB n+ r) I/Os. This
means that using a B-tree as sweep-structure in the standard plane-sweep algorithm for the
orthogonal line segment intersection problem results in an algorithm using O(N logB n + r)
I/Os. But an optimal solution for this problem only requires O(n logm n + r) I/Os [13, 67].
For typical systems B is less than m so logB n is larger than logm n, but more important,
the B-tree solution will be slower than the optimal solution by a factor of B. As B typically
is on the order of thousands this factor is crucial in practice. The main problem with the
B-tree in this context is precisely that it is designed to have a good worst-case on-line search
performance. In order to take advantage of the large internal memory, we on the other hand
use the fact that we only are interested in the overall I/O use of the algorithm for an off-line
problem—that is, in a good amortized performance of the involved operations—and sometime
even satisfied with batched search operations.

As mentioned we believe that one of the main contributions of this paper is the develop-
ment of external-memory data structures that allow us to use the normal internal-memory
algorithms and “hide” the I/O-specific parts in the data structures. Furthermore, we be-
lieve that our structures will be of practical interest due to relatively small constants in the
asymptotic bounds. We hope in the future to be able to implement some of the structures
in the transparent parallel I/O environment (TPIE) developed by Vengroff [126]. Results of
experiments on the practical performance of several algorithms developed for the I/O model

52

are reported in [40, 41, 129].
The main organization of the rest of this paper is the following: In the next section we

sketch our general technique. In section 3 we then develop the basic buffer tree structure which
can be use to sort optimally, and in section 4 and 5 we extend this structure with a deletemin
and batched rangesearch operation, respectively. The external version of the segment tree
is developed in section 6. Using techniques from [99] all the developed structures can be
modified to work in the D-disk model—that is, the I/O bounds can be divided by D. We
discuss such an extension in Section 7. Finally, conclusions are given in Section 8.

2 A Sketch of the Technique

In this section we sketch the main ideas in our transformation technique. When we want to
transform an internal-memory tree data structure into an external version of the structure, we
start by grouping the (binary) nodes in the structure into super-nodes with fan-out Θ(m)—
that is, fan-out equal to the number of blocks that fits into internal memory. We furthermore
group the leaves together into blocks obtaining an O(logm n) “super-node height”. To each
of the super-nodes we then assign a “buffer” of size Θ(m) blocks. No buffers are assigned to
the leaves. As the number of super-nodes on the level just above the leaves is O(n/m), this
means that the total number of buffers in the structure is O(n/m).

Operations on the structure—updates as well as queries—are then done in a “lazy” man-
ner. If we for example are working on a search tree structure and want to insert an element
among the leaves, we do not right away search all the way down the tree to find the place
among the leaves to insert the element. Instead, we wait until we have collected a block of
insertions (or other operations), and then we insert this block in the buffer of the root. When
a buffer “runs full” the elements in the buffer are “pushed” one level down to buffers on the
next level. We call this a buffer-emptying process. Deletions or other and perhaps more com-
plicated updates, as well as queries, are basically done in the same way as insertions. This
means that we can have several insertions and deletions of the same element in the tree, and
we therefore time stamp the elements when we insert them in the top buffer. It also means
that the queries get batched in the sense that the result of a query may be generated (and
reported) lazily by several buffer-emptying processes.

The main requirement needed to show the I/O bounds mentioned in the introduction
is that we should be able to empty a buffer in O(m + r′) I/O operations. Here r′ is the
number of blocks reported by query operations in the emptied buffer. If this is the case,
we can do an amortization argument by associating a number of credits to each block
of elements in the tree. More precisely, each block in the buffer of node x must hold
O(the height of the tree rooted at x) credits. As we only do a buffer-emptying process when
the buffer runs full, that is, when it contains Θ(m) blocks, and as we can charge the r′-term to
the queries that cause the reports, the blocks in the buffer can pay for the emptying-process as
they all get pushed one level down. On insertion in the root buffer we then have to give each
update element O(logm n

B) credits and each query element O(logm n
B + r) credits, and this gives

us the desired bounds. Of course we also need to consider e.g. rebalancing of the transformed
structure. We will return to this, as well as the details in other operations, in later sections.
Another way of looking at the above amortization argument is that we touch each block a
constant number of times on each level of the structure. Thus the argument still holds if we
can empty a buffer in a linear number of I/Os in the number of elements in the buffer. In later

53

sections we will use this fact several times when we show how to empty a buffer containing x
blocks, where x is bigger than m, in O(m+x) = O(x) I/Os. Note also that the amortization
argument works as long as the fan-out of the super-nodes is Θ(mc) for 0 < c ≤ 1, as the
super-node height remains O(logm n) even with this smaller fan-out. We will use this fact in
the development of the external segment tree.

3 The Buffer Tree

In this section we will develop the basic structure—which we call the buffer tree—and only
consider the operations needed in order to use the structure in a simple sorting algorithm.
In later sections we then extend this basic structure in order to obtain an external priority
queue and an external (one-dimensional) range tree.

���
���
���
���O(logm n)

B

m blocks

1
4m . . .m

Figure 1: The buffer tree.

The buffer tree is an (a, b)-tree [73] with a = m/4 and b = m, extended with a buffer
in each node. In such a tree all nodes except for the root have fan-out between m/4 and
m, and thus the height of the tree is O(logm n). The buffer tree is pictured in Figure 1.
As discussed in section 2 we do the following when we want to do an update on the buffer
tree: We construct a new element consisting of the element to be inserted or deleted, a time
stamp, and an indication of whether the element is to be inserted or deleted. When we have
collected B such elements in internal memory, we insert the block in the buffer of the root.
If the buffer of the root still contains less than m/2 blocks we stop. Otherwise, we empty
the buffer. The buffer-emptying process is described in Figure 2 and 5. We define internal
nodes to be all nodes which do not have leaves as children, and the basic part of the process
which is used on these nodes (corresponding to the discussion in the last section) is given in
Figure 2. Note that the buffer-emptying process is only done recursively on internal nodes.

• Load the partitioning (or routing) elements of the node into internal memory.
• Repeatedly load (at most) m/2 blocks of the buffer into internal memory and do the following:

1. Sort the elements from the buffer in internal memory. If two equal elements—an insertion and
a deletion—“meet” during this process, and if the time stamps “fit”, then the two elements
annihilates.

2. Partition the elements according to the partitioning elements and output them to the appropriate
buffers one level down (maintaining the invariant that at most one block in a buffer is non-full).

• If the buffer of any of the children now contains more than 1
2m blocks, and if the children are internal

nodes, then recursively apply the emptying-process on these nodes.

Figure 2: The buffer-emptying process on internal nodes.

54

Rebalancing after inserting an element below v:

DO v has b+ 1 children ->
IF v is the root ->
let x be a new node and make v its only child

ELSE
let x be the parent of v

FI
Let v′ be a new node
Let v′ be a new child of x immediately after v
Split v:
Take the rightmost d(b+ 1)/2e children
away from v and make them children of v′.

Let v=x
OD

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
������
������
������

������
������
������
������

x

v v′v

x

Figure 3: Insert in (a, b) tree.

Rebalancing after deleting an element below v:

DO v has a− 1 children AND
v′ has less than a+ t + 1 children ->

Fuse v and v′:
Make all children of v′ children of v

Let v=x
Let v′ be a brother of x
IF x does not have a brother (x is the root)

AND x only has one child ->
Delete x
STOP

FI
Let x be the parent of v.

OD
(* either v has more than a children and we
are finished, or we can finish by sharing *)
IF v has a− 1 children ->
Share:
Take s children away from v′ and
make them children of v.

FI

���
���
���
���

���
���
���
���

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

v

xx

v v′

x

v v′

x

v v′

Figure 4: Delete from (a, b)-tree (s = d((b/2− a) + 1)/2e and t = (b/2− a) + s− 1).

Only after finishing all buffer-emptying processes on internal nodes, we empty the buffers of
the leaf nodes as we call the nodes which are not internal. That the buffer-emptying process
on an internal node can be done in a linear number of I/Os as required is easily realized: The
elements are loaded and written ones, and at most O(m) I/Os are used on writing non-filled
blocks every time we load m/2 blocks. Note that the cost of emptying a buffer containing
o(m) blocks remains O(m), as we distribute the elements to Θ(m) children.

The emptying of a leaf buffer is a bit more complicated as we also need to consider
rebalancing of the structure when we empty such a buffer. The algorithm is given in Figure 5.
Basically the rebalancing is done precisely as on normal (a, b)-trees [73]. After finding the
position of a new element among the elements in the leaves of an (a, b)-tree, the rebalancing

55

• As long as there is a leaf node v with a full buffer (size greater than m/2 blocks) do the following (x is
the number of leaves of v):

1. Sort the elements in the buffer of v with an optimal I/O sorting algorithm and remove “matching”
insert/delete elements.

2. Merge the sorted list with the sorted list of elements in the leaves of v while removing “matching”
insert/delete elements.

3. If the number of blocks of elements in the resulting list is smaller than x do the following:

(a) Place the elements in sorted order in the leaves of v.
(b) Add “dummy-blocks” until v has x leaves and update the partition elements in v.

4. If the number of blocks of elements in the resulting list is bigger than x do the following:

(a) Place the x smallest blocks in the leaves of v and update the partition elements of v accord-
ingly.

(b) Repeatedly insert one block of the rest of the elements and rebalance.

• Repeatedly delete one dummy block and rebalance—while performing a buffer-emptying process on the
relevant nodes involved in a rebalance operation (v′ of Figure 4) before the operation is done (if v′ is a
leaf node its buffer is emptied as described above).
If the delete (or rather the buffer-emptying processes done as a result of it) results in any leaf buffer
becoming full, these buffers are emptied as described above before the next dummy block is deleted.

Figure 5: Emptying the buffers of the leaf nodes.

is done by a series of “splits” of node in the structure. We give the algorithm in Figure 3.
Similarly, after deleting an element in a leaf the rebalancing is accomplished by a series of
node “fusions” possibly ending with a node “sharing”. The algorithm is given in Figure 4. In
the buffer tree case we need to modify the delete rebalancing algorithm slightly because of the
buffers. The modification consists of doing a buffer-emptying process before every rebalance
operation. More precisely, we do a buffer-emptying process on v′ in Figure 4 when it is
involved in a fuse or share rebalancing operation. This way we can do the actual rebalancing
operation as normally, without having to worry about elements in the buffers. This is due to
the fact that our buffer-emptying process on internal nodes maintains the invariant that if the
buffer of a leaf node runs full then all nodes on the path to the root have empty buffers. Thus
when we start rebalancing the structure (insert and delete the relevant blocks) after emptying
all the leaf buffers (Figure 5), all nodes playing the role of v in split, fuse or share rebalance
operations already have empty buffers. Also if the emptying of the buffer of v′ results in a leaf
buffer running full, the invariant will be fulfilled because all nodes on the path from v′s parent
x to the root have empty buffers. Note that the reason for not doing buffer-emptying processes
on leaf nodes recursively, is to prevent different rebalancing operations from interfering with
each other. This is also the reason for the special way of handling deletes with dummy blocks;
while deletion of a block may result in several buffer-emptying processes, this is not the case
for insertions as no buffer-emptying process are necessary in this rebalancing algorithm.

We can now prove our main theorem.

Theorem 1 The total cost of an arbitrary sequence of N intermixed insert and delete oper-
ation on an initially empty buffer tree is O(n logm n) I/O operations, that is, the amortized
cost of an operation is O(logm n

B) I/Os.

56

Proof : As discussed in Section 2 the total cost of all the buffer-emptying processes on internal
nodes with full buffers is bounded by O(n logm n) I/Os. This follows from the fact that one
such process uses a linear number of I/Os in the number of blocks pushed one level down.

During the rebalancing operations we empty a number of non-full buffers usingO(m) I/Os,
namely one for each rebalancing operation following a deletion of a block. Furthermore, it is
easy to realize that the administrative work in a rebalancing operation—updating partitioning
elements and so on—can be performed in O(m) I/Os. In [73] it is shown that the number of
rebalancing operations in a sequence of K updates on an initially empty (a, b)-tree is bounded
by O(K/(b/2− a)) if b > 2a. As we are inserting blocks in the (m/4, m)-tree underlying the
buffer tree this means that the total number of rebalance operations in a sequence of N
updates on the buffer tree is bounded by O(n/m). Thus the total cost of the rebalancing is
O(n).

The only I/Os we have not counted so far are the ones used on emptying leaf buffers. The
number of I/Os used on a buffer-emptying process on a leaf node is dominated by the sorting
of the elements (Figure 5, step 1). As any given element will only once be involved in such a
sorting the total number of I/Os used to empty leaf buffers is bounded by O(n logm n). This
proves the lemma. 2

In order to use the transformed structure in a simple sorting algorithm, we need a
empty/write operation that empties all the buffers and then reports the elements in the
leaves in sorted order. The emptying of all buffers can easily be done just by performing a
buffer-emptying process on all nodes in the tree—from the top. As emptying one buffer costs
O(m) I/Os amortized, and as the total number of buffers in the tree is O(n/m), we have the
following:

Theorem 2 The amortized I/O cost of emptying all buffers of a buffer tree after performing
N updates on it, and reporting all the remaining elements in sorted order, is O(n).

Corollary 1 N elements can be sorted in O(n logm n) I/O operations using the buffer tree.

As mentioned the above result is optimal and our sorting algorithm is the first that does
not require all the elements to be present by the start of the algorithm. In Section 7 we
discuss how to avoid the sorting algorithm used in the buffer-emptying algorithm.

Before continuing to design more operations on the buffer tree a note should be made
on the balancing strategy used. We could have used a simpler balancing strategy than the
one presented in this section. Instead of balancing the tree bottom-up we can balance it in a
top-down style. We can make such a strategy work, if we “tune” our constants (fan-out and
buffer-size) in such a way that the maximal number of elements in the buffers of a subtree is
guaranteed to be less that half the number of elements in the leaves of the subtree. If this is
the case we can do the rebalancing of a node when we empty its buffer. More precisely, we
can do a split, a fuse or a sharing in connection with the buffer-emptying process on a node,
in order to guarantee that there is room in the node to allow all its children to fuse or split.
In this way we can make sure that rebalancing will never propagate. Unfortunately, we have
not been able to make this simpler strategy work when rangesearch operations (as discussed
in Section 5) are allowed.

57

4 An External Priority Queue

Normally, we can use a search tree structure to implement a priority queue because we know
that the smallest element in a search tree is in the leftmost leaf. The same strategy can be
used to implement an external priority queue based on the buffer tree. There are a couple of
problems though, because using the buffer tree we cannot be sure that the smallest element
is in the leftmost leaf, as there can be smaller elements in the buffers of the nodes on the
leftmost path. However, there is a simple strategy for performing a deletemin operation in the
desired amortized I/O bound. When we want to perform a deletemin operation we simply do
a buffer-emptying process on all nodes on the path from the root to the leftmost leaf. To do so
we use O(m · logm n) I/Os amortized. After doing so we can be sure not only that the leftmost
leaf consists of the B smallest elements, but also that (at least) the 1

4m ·B smallest elements
in the tree are in the children (leaves) of the leftmost leaf. If we delete these elements and
keep them in internal memory, we can answer the next 1

4m ·B deletemin operations without
doing any I/Os. Of course we then also have to check insertions and deletions against the
minimal elements in internal memory. This can be done in a straightforward way without
doing extra I/Os, and a simple amortization argument gives us the following:

Theorem 3 The total cost of an arbitrary sequence of N insert, delete and deletemin oper-
ations on an initially empty buffer tree is O(n logm n) I/O operations, that is, the amortized
cost of an operation is O(logm n

B) I/Os.

Note that in the above result we use m/4 blocks of internal memory to hold the minimal
elements. In some applications (e.g. in [15]) we would like to use less internal memory for
the external priority queue structure. Actually, we can make our priority queue work with as
little as 1

4m
1/c (0 < c ≤ 1) blocks of internal memory, by decreasing the fan-out and the size

of the buffers to Θ(m1/c) as discussed in Section 2.

4.1 Application: Time-Forward Processing

As mentioned in the introduction a technique for evaluating circuits (or “circuit-like” com-
putations) in external memory is developed in [42]. This technique is called time-forward
processing. The problem is the following: We are given a bounded fan-in boolean circuit,
whose description is stored in external memory, and want to evaluate the function computed
by the network. It is assumed that the representation of the circuit is topologically sorted,
that is, the labels of the nodes come from a total order <, and for every edge (v, w) we
have v < w. Nothing is assumed about the functions in the nodes, except that they take at
most M/2 inputs. Thinking of vertex v as being evaluated at “time” v motivates calling an
evaluation of a circuit a time-forward processing. The main issue in such an evaluation is to
ensure that when one evaluates a particular vertex one has the values of its inputs in internal
memory.

In [42] an external-memory algorithm using O(n logm n) I/Os is developed (here N is
the number of nodes plus the number of edges). The algorithm uses a number of known as
well as new I/O-algorithm design techniques and is not particularly simple. Furthermore,
the algorithm only works for large values of m, more precisely it works if

√
m/2 log(M/2) ≥

2 log(2N/M). For typical machines this constraint will be fulfilled. Using our external priority
queue however, it is obvious how to develop a simple alternative algorithm—without the

58

constraint on the value of m. When we evaluate a node v we simply send the result forward
in time to the appropriate nodes, by inserting a copy of the result in the priority queue
with priority w for all edges (v, w). We can then obtain the inputs to the next node in the
topological order just by performing a number of deletemin operations on the queue. The
O(n logm n) I/O-bound follows immediately from Theorem 3.

In [42] a randomized and two deterministic algorithms for external-memory list ranking
are developed. One of these algorithms uses time-forward processing and therefore inherits
the constraint that m should not be too small. The other has a constraint on B not being to
large (which in turn also results in a constraint on m not being to small). As mentioned, the
list ranking algorithm is in turn used to develop efficient external algorithms for a number of
problems. This means that by developing an alternative time-forward processing algorithm
without the constraint on m, we have also removed the constraint from the algorithm for list
ranking, as well as from a large number of other external-memory graph algorithms.

5 An External (one-dimensional) Range Tree Structure

In this section we extend the basic buffer tree with a rangesearch operation in order to obtain
an external (one-dimensional) range tree structure.

Normally, one performs a rangesearch with x1 and x2 on a search tree by searching down
the tree for the positions of x1 and x2 among the elements in the leaves, and then one reports
all the elements between x1 and x2. However, the result can also be generated while searching
down the tree, by reporting the elements in the relevant subtrees on the way down. This is
the strategy we use on the buffer tree. The general idea in our rangesearch operation is the
following: We start almost as when we do an insertion or a deletion. We make a new element
containing the interval [x1, x2] and a time stamp, and insert it in the tree. We then have
to modify our buffer-emptying process in order to deal with the new rangesearch elements.
The basic idea is that when we meet a rangesearch element in a buffer-empty process, we
first determine whether x1 and x2 are contained in the same subtree among the subtrees
rooted at the children of the node in question. If this is the case we just insert the element
in the corresponding buffer. Otherwise we “split” the element in two—one for x1 and one for
x2—and report the elements in the subtrees for which all elements in them are contained in
the interval [x1, x2]. The splitting only occurs once and after that the rangesearch elements
are pushed downwards in the buffer-emptying processes like insert and delete elements, while
elements in the subtrees for which all the elements are in the interval are reported. As
discussed in the introduction and Section 2 this means that the rangesearch operation gets
batched.

In order to make the above strategy work efficiently we need to overcome several compli-
cations. One major complication is the algorithm for reporting all elements in a subtree. For
several reasons we cannot just use the simple algorithm presented in Section 3, and empty
the buffers of the subtree by doing a buffer-emptying process on all nodes and then report
the elements in the leaves. The major reason is that the buffers of the tree may contain other
rangesearch elements, and that we should also report the elements contained in the intervals
of these queries. Also in order to obtain the desired I/O bound on the rangesearch operation,
we should be able to report the elements in a tree in O(na) I/Os, where na is the actual
number of blocks in the tree, that is, the number of blocks used by elements which are not
deleted by delete elements in the buffers of the tree. This number could be a low as zero.

59

However, if nd is the number of blocks deleted by delete elements in the tree, we have that
n = na + nd. This means that if we can empty all the buffers in the tree—and remove all
the delete elements—in O(n) I/Os, we can charge the nd part to the delete elements, adding
O(1

B) to the amortized number of I/Os used by a delete operation (or put another way; we
in total use O(n) I/Os extra to remove all the delete elements).

In Subsection 5.1 we design an algorithm for emptying all the buffers of a (sub-) buffer
tree in a linear number of I/Os. Our algorithm reports all relevant “hits” between rangesearch
and normal elements in the tree. In Subsection 5.2 we then show precisely how to modify
the buffer-emptying process on the buffer tree in order to obtain the efficient rangesearch
operation.

5.1 Emptying all Buffers of an External Range Tree

In order to design the algorithm for emptying all buffers we need to restrict the operations on
the structure. In the following we assume that we only try to delete elements from a buffer
tree which were previously inserted in the tree. The assumption is natural (at least) in a
batched dynamic environment. Having made this assumption we obtain the following useful
properties: If d, i and s are matching delete, insert and rangesearch elements (that is, “i = d”
and “i is contained in s”), and if we know that their time order is d, s, i (and that no other
elements—especially not rangesearch elements—are between s and i in the time order), then
we can report that i is in s and remove i and d. If we know that the time order is s, i (knowing
that no element—especially not d—is between s and i in the time order), we can report that
i is in s and interchange their time order. Similarly, if we know that the time order is d, s, we
can again report that d is in s (because we know that there is an i matching d “on the other
side of s”) and interchange their time order.

We define a set of (insert, delete and rangesearch) elements to be in time order represen-
tation if the time order is such that all the delete elements are “older” than (were inserted
before) all the rangesearch elements, which in turn are older than all the insert elements, and
if the three groups of elements are internally sorted (according to x and not time order—
according to x1 as far as the rangesearch elements are concerned). Using the above properties
about interchanging the time order, we can now prove two important lemmas.

Lemma 1 A set of less than M elements in a buffer can be made into time order represen-
tation, while the relevant r · B matching rangesearch elements and elements are reported, in
O(m+ r) I/Os.

Proof : The algorithm simply loads the elements into internal memory and use the special
assumption on the delete elements to interchange the time order and report the relevant
elements as discussed above. Then it sorts the three groups of elements individually and
writes them back to the buffer in time order representation. 2

Lemma 2 Let two sets S1 and S2 in time order representation be a subset of a set S such that
all elements in S2 are older than all elements in S1, and such that each of the other elements
in S is either younger or older than all elements in S1 and S2. S1 and S2 can be “merged” into
one set in time order representation, while the relevant r ·B matching rangesearch elements
and elements are reported, in O((|S1|+ |S2|)/B + r) I/Os.

60

When we in the following write that we report “hits”, we actually accumulate elements to be reported
in internal memory and report/write them as soon as we have accumulated a block.

1. Interchange the time order of d1 and i2 by “merging” them while removing delete/insert matches.

2. Interchange the time order of d1 and s2 by “merging” them while reporting “hits” in the following
way:
During the merge a third list of “active” rangesearch elements from s2 is kept—except for the B
most recently added elements—on disk.
When a rangesearch element from s2 has the smallest x (that is, x1) value, it is insert in the list.
When a delete element from d1 has the smallest x-value, the list is scanned and it is reported
that the element is in the interval of all rangesearch elements that have not yet “expired”—that
is, elements whose x2 value is less than the value of the element from d2. At the same time all
rangesearch elements that have expired are removed from the list.

3. Interchange the time order of s1 and i2 by “merging” them and reporting “hits” like in the previous
step.

4. Merge i1 with i2, s1 with s2 and d1 with d2.

��
��
��
��

s2

d2

s1

i2

i1

s1

d1

i2

d1

s2

i1

d2

d1

s2

d2

s1

i2

s

d

i1
i

time

i1

s1

d1

i2

s2

d2

S1

S2

Step 3Step 2Step 1 Step 4

Figure 6: Merging sets in time order representation.

Proof : The algorithm for merging the two sets is given in Figure 6. In step one we push the
delete elements d1 in S1 down in the time order by “merging” them with the insert elements
i2 in S2, and in step two we push them further down by “merging” them with the rangesearch
elements s2 in S2. That we in both cases can do so without missing any rangesearch-element
“hits” follows from the time order on the elements and the assumption on the delete elements
as discussed above. Then in step three the time order of s1 and i2 is interchanged, such
that the relevant lists can be merged in step four. That step one and four are done in a
linear number of I/Os is obvious, while a simple amortization argument shows that step two
and three are also done in a linear number of I/Os, plus the number of I/Os used to report
“hits”. 2

After proving the two lemmas we are now almost ready to present the algorithm for
emptying the buffers of all nodes in a subtree. The algorithm will use that all elements in the
buffers of nodes on a given level of the structure are always in correct time order compared
to all relevant elements on higher levels. By relevant we mean that an element in the buffer
of node v was inserted in the tree before all elements in buffers of the nodes on the path from
v to the root of the tree. This means that we can assume that all elements on one level were
inserted before all elements on higher levels.
Lemma 3 All buffers of a (sub-) range tree with n leaves, where all buffers contain less than
M elements, can be emptied and all the elements collected into time order representation
in O(n + r) I/Os. Here r · B is the number of matching element and rangesearch elements
reported.

61

1. Make three lists for each level of the tree, consisting of the elements on the level in question in time
order representation:
For a given level all buffers are made into time order representation using Lemma 1, and then the
resulting lists are appended after each other to obtain the total time order representation.

2. Repeatedly and from the top level, merge the time order representation of one level with the time order
representation of the next level using Lemma 2.

After step one After step two

Figure 7: Emptying all buffers and collecting the elements in time order representation.

Proof : The empty algorithm is given in Figure 7. The correctness of the algorithm follows
from Lemma 1 and Lemma 2 and the above discussion. It follows from Lemma 1 that step
one creates the time order representation of the elements on each of the levels in a number
of I/Os equal to O(m) times the number of nodes in the tree, plus the number of I/Os used
to report hits. That the total number of I/Os used is O(n + r) then follows from the fact
that the number of nodes in a tree with n leaves is O(n/m). That one merge in step two
takes a linear number of I/Os in the number of elements in the lists, plus the I/Os used to
report hits, follows form Lemma 2. That the total number of I/Os used is O(n + r) then
follows from the fact that every level of the tree contains more nodes than all levels above it
put together. Thus the number of I/Os used to merge the time order representation of level
j with the time order representation of all the elements above level j is bounded by O(m)
times the number of nodes on level j. The bound then again follows from the fact that the
total number of nodes in the tree is O(n/m). 2

5.2 Buffer-emptying Process on External Range Tree

Having introduced the time order representation and discussed how to empty the buffers of a
subtree, we are now ready to describe the buffer-emptying process used on the external range
tree. The process is given in Figure 8 and it relies on an important property, namely that
when we start emptying a buffer the elements in it can be divided into two categories—what
we call “old” and “new” elements. The new elements are those which were inserted in the
buffer by the buffer-emptying process that just took place on the parent node, and which
triggered the need for a buffer-emptying process on the current node. The old elements are
the rest of the elements. We know that the number of old elements is less than M and that
they were all inserted before the new elements. As we will maintain the invariant that we
distribute elements from one buffer to the buffers one level down in time order representation,
this means that we can construct the time order representation of all the elements in a buffer
as described in the first two steps of the algorithm in Figure 8.

Now if we are working on a leaf node we can report the relevant “hits” between rangesearch
element and normal element, just by merging the time order representation of the elements

62

• Load the less than M old elements in the buffer and make them into time order representation using
Lemma 1.

• Merge the the old elements in time order representation with the new elements in time order represen-
tation using Lemma 2.

• If we are working on a leaf node:

1. Merge (a copy of) the time order representation with the time order representation consisting of
the elements in the children (leaves) using Lemma 2.

2. Remove the rangesearch elements from the buffer.

• If we are working on an internal node:

1. Scan the delete elements and distribute them to the buffers of the relevant children.

2. Scan the rangesearch elements and compute which of the subtrees below the current node should
have their elements reported.

3. For every of the relevant subtrees do the following:

(a) Remove and store the delete elements distributed to the buffer of the root of the subtree in
step one above.

(b) Empty the buffers of the subtree using Lemma 3.
(c) Merge the resulting time order representation with the time order representation consisting

of the delete elements stored in (a) using Lemma 2.
(d) Scan the insert and delete elements of the resulting time order representation and distribute

a copy of the elements to the relevant leaf buffers.
(e) Merge the time order representation with the time order representation consisting of the

elements in the leaves of the subtree using Lemma 2.
(f) Remove the rangesearch elements.
(g) Report the resulting elements as being “hit” by the relevant search elements in the buffer.

4. Scan the rangesearch elements again and distribute them to the buffers of the relevant children.

5. Scan the insert elements and distribute them to the buffers of the relevant children. Elements for
the subtrees which were emptied are distributed to the leaf buffer of these trees.

6. If the buffer of any of the children now contains more than m/2 elements then recursively apply
the buffer-emptying process on these nodes.

• When all buffers of the relevant internal nodes are emptied (and the buffers of all relevant leaf nodes
have had their rangesearch elements removed) then empty all leaf buffers involved in the above process
(and rebalance the tree) using the algorithm given in Figure 5 (Section 3).

Figure 8: Range tree buffer-emptying process.

in the buffer with the time order representation consisting of the elements in the leaves below
the node. Then we can remove the rangesearch elements and we are ready to empty the leaf
buffer (and rebalance) with the algorithm used on the basic buffer tree.

If we are working on an internal node v things are a bit more complicated. After computing
which subtrees we need to empty, we basically do the following for each such tree: We empty
the buffers of the subtree using Lemma 3 (step 3, b). We can use Lemma 3 as we know that
all buffers of the subtree are non-full, because the buffer-emptying process is done recursively
top-down. As discussed the emptying also reports the relevant “hits” between elements and
rangesearch elements in the buffers of the subtree. Then we remove the elements which are
deleted by delete elements in the buffer of v (step 3, c). Together with the relevant insert
elements from the buffer of v, the resulting set of elements should be inserted in or deleted
from the tree. This is done by inserting them in the relevant leaf buffers (step 3, d and step

63

5), which are then emptied at the very end of the algorithm. Finally, we merge the time order
representation of the elements from the buffers of the subtree with the elements in the leaves
of the structure (step 3, e). Thus we at the same time report the relevant “hits” between
elements in the leaves and rangesearch elements from the buffers, and obtain a total list of
(undeleted) elements in the subtree. These elements can then be reported as being “hit” by
the relevant rangesearch elements from the buffer of v (step 3, g).

After having written/reported the relevant subtrees we can distribute the remaining el-
ements in the buffer of v to buffers one level down—remembering to maintain the invariant
that the elements are distributed in time order representation—and then recursively empty
the buffers of the relevant children. When the process terminates we empty the buffers of all
leaf nodes involved in the process. As these leaf nodes now do not contain any rangesearch
elements, this can be done with the algorithm used on the basic buffer tree in Section 3.

Theorem 4 The total cost of an arbitrary sequence of N intermixed insert, delete and range-
search operations performed on an initially empty range tree is O(n logm n+r) I/O operations.
Here r ·B is the number of reported elements.

Proof : The correctness of the algorithm follows from the above discussion. It is relatively easy
to realize (using Lemma 1, 2 and 3) that one buffer-emptying process uses a linear number of
I/Os in the number of elements in the emptied buffer and the number of elements in the leaves
of the emptied subtrees, plus the number of I/Os used to report “hits” between elements and
rangesearch elements. The only I/Os we can not account for using the standard argument
presented in Section 2 are the ones used on emptying the subtrees. However, as discussed in
the beginning of the section, this cost can be divided between the elements reported and the
elements deleted, such that the deleted elements pay for their own deletion. The key point is
that once the elements in the buffers of the internal nodes of a subtree is removed and inserted
in the leaf buffers by the described process, they will only be touched again when they are
inserted in or deleted from the tree by the rebalancing algorithm. This is due to the fact
mentioned in Section 3 that when a buffer is emptied all buffers on the path to the root are
empty, and the fact that we empty all relevant leaf buffers at the end of our buffer-emptying
algorithm. 2

5.3 Application: Orthogonal Line Segment Intersection Reporting

The problem of orthogonal line segment intersection reporting is defined as follows: We are
given N line segments parallel to the axes and should report all intersections of orthogonal
segments. The optimal plane-sweep algorithm (see e.g. [108]) makes a vertical sweep with a
horizontal line, inserting the x coordinate of a vertical segments in a search tree when its top
endpoint is reached, and deleting it again when its bottom endpoint is reached. When the
sweep-line reaches a horizontal segment, a rangesearch operation with the two endpoints of
the segment is performed on the tree in order to report intersections. In internal memory this
algorithm will run in the optimal O(N log2N +R) time.

Using precisely the same algorithm and our range tree data structure, and remembering
to empty the tree when we are done with the sweep, we immediately obtain the following
(using Theorem 4 and Lemma 3):

Corollary 2 Using our external range tree the orthogonal line segment intersection reporting
problem can be solved in O(n logm n+ r) I/Os.

64

As mentioned an algorithm for the problem is also developed in [67], but this algorithm is
very I/O specific whereas our algorithm ‘’hides” the I/O in the range tree. That the algorithm
is optimal in the comparison I/O model follows from the Ω(N log2N +R) comparison model
lower bound, and the general connection between comparison and I/O lower bounds proved
in [13].

6 An External Segment Tree

In this section we use our technique to develop an external memory version of the segment
tree. As mentioned this will enable us to solve the batched range searching and the pairwise
rectangle intersection problems in the optimal number of I/Os.

The segment tree [26, 108] is a well-known data structure used to maintain a dynamically
changing set of segments whose endpoints belongs to a fixed set, such that given a query point
all segments that contain the point can be found efficiently. Such queries are normally called
stabbing queries. The internal-memory segment tree consists of a static binary tree (the base
tree) over the sorted set of endpoints, and a given segment is stored in up to two nodes on
each level of the tree. More precisely an interval is associated with each node, consisting of all
endpoints below the node, and a segment is stored in all nodes where it contains this interval
but not the interval associated with the parent node. The segments stored in a node is just
stored in an unordered list. To answer a stabbing query with a point x, one just has to search
down the structure for the position of x among the leaves and report all segments stored in
nodes encountered in this search.

Because a segment can be stored in O(log2N) nodes the technique sketched in section 2,
where we just group the nodes in an internal version of the structure into super-nodes, does
not apply directly. The main reason for this is that we would then be forced to use many
I/Os to store a segment in these many lists. Instead, we need to change the definition of
the segment tree. Our external segment tree is sketched in Figure 9. The base structure is
a perfectly balanced tree with branching factor

√
m over the set of endpoints. We assume

without loss of generality that the endpoints of the segments are all distinct and that
√
m

divides n. A buffer and m/2 − √m/2 lists of segments are associated with each node. A
list (block) of segments is also associated with each leaf. A set of segments is stored in this
structure as follows: The first level of the tree (the root) partitions the data into

√
m slabs

σi, separated by dotted lines in Figure 9. The multislabs for the root are then defined as
contiguous ranges of slabs, such as for example [σ1, σ4]. There are m/2 − √m/2 multislabs
and the lists associated with a node are precisely a list for each of the multislabs. Segments

n leaves

σ3 σ4σ2σ1σ0

m nodes

EA B
C D

F

√
m nodes

Figure 9: An external segment tree based on a set of N segments, three of which, AB, EF
and EF , are shown.

65

such as CD that completely span one or more slabs are then called long segments, and a copy
of each long segment is stored in a list associated with the largest multislab it spans. Thus,
CD is stored in the list associated with the multislab [σ1, σ3]. All segments that are not long
are called short segments and are not stored in any multislab list. Instead, they are passed
down to lower levels of the tree where they may span recursively defined slabs and be stored.
AB and EF are examples of short segments. Additionally, the portions of long segments
that do not completely span slabs are treated as small segments. There are at most two such
synthetically generated short segments for each long segment. Segments passed down to a
leaf are just stored in one list. Note that we at most store one block of segments in each leaf.
A segment is thus stored in at most two list on each level of the base tree.

Given an external segment tree (with empty buffers) a stabbing query can in analogy
with the internal case be answered by searching down the tree for the query value, and at
every node encountered report all the long segments associated with each of the multislabs
that span the query value. However, answering queries on an individual basis is of course not
I/O-efficient. Instead we use the buffer approach as discussed in the next subsection.

6.1 Operations on the External Segment Tree

Usually, when we use a segment tree to solve e.g. the batched range searching problem, we use
the operations insert, delete and query. However, a delete operation is not really necessary,
as we in the plane-sweep algorithm always know at which “time” a segment should be deleted
when it is inserted in the tree. So in our implementation of the external segment tree we
will not support the delete operation. Instead, we require that a delete time is given when
a segment is inserted in the tree. Note that we already assume (like one normally does in
internal memory) that we know the set of x coordinates of the endpoints of segments to be
inserted in the tree. In general these assumptions mean that our structure can only be used
to solve batched dynamic problems as discussed in the introduction.

It is easy to realize how the base tree structure can be build in O(n) I/O operations
given the endpoints in sorted order. First we construct the leaves by scanning through the
sorted list, and then we repeatedly construct one more level of the tree by scanning through
the previous level of nodes (leaves). In constructing one level we use a number of I/Os
proportional to the number of nodes on the previous level, which means that we in total use
O(n) I/Os as this is the total number of nodes and leaves in the tree.

When we want to perform an insert or a query operation on the buffered segment tree
we do as sketched in Section 2. We make a new element with the segment or query point in
question, a time-stamp, and—if the element is an insert element—a delete time. When we
have collected a block of such elements, we insert them in the buffer of the root. If the buffer
of the root now contains more than m/2 elements we perform a buffer-emptying process on it.
The buffer-emptying process is presented in Figure 10, and we can now prove the following:

Theorem 5 Given a sequence of insertions of segments (with delete time) intermixed with
stabbing queries, such that the total number of operations is N , we can build an external-
memory segment tree on the segments and perform all the operation on it in O(n logm n+ r)
I/O operations.

Proof : In order to build the base tree we first use O(n logm n) I/Os to sort the endpoints of
the segments and then O(n) I/Os to build the tree as discussed above. Next, we perform all

66

On internal nodes:

• Repeatedly load m/2 blocks of elements into internal memory and do the following:

1. Store segments:
Collect all segments that should be stored in the node (long segments). Then for every multislab
list in turn insert the relevant long segment in the list (maintaining the invariant that at most one
block of a list is non full). At the same time replace every long segment with the small (synthetic)
segments which should be stored recursively.

2. Report stabbings:
For every multislab list in turn decide if the segments in the list are stabbed by any query point.
If so then scan through the list and report the relevant elements while removing segments which
have expired (segments for which all the relevant queries are inserted after their delete time).

3. Distribute the segments and the queries to the buffers of the nodes on the next level.

• If the buffer of any of the children now contains more than 1
2m blocks, the buffer-emptying process is

recursively applied on these nodes.

On leaf nodes:

• Do exactly the same as with the internal nodes, except that when distributing segments to a child/leaf
they are just inserted in a the segment block associated with the leaf.
As far as the queries are concerned, report stabbings with segments from the multislab lists as on
internal nodes (and the lists associated with the leaves) and remove the query elements.

Figure 10: The buffer-emptying process.

the operations. In order to prove that this can be done in O(n logm n + r) I/Os we should
argue that we can do a buffer-emptying process in a linear number of I/Os. The bound then
follows as previously.

First consider the buffer-emptying process on an internal node. Loading and distributing
the segments to buffers one level down can obviously be done in a linear number of I/Os. The
key to realizing that step one also uses O(m) I/Os on each memory load is that the number
of multislab lists is O(m). In analogy with the distribution of elements to buffers one level
down, this means that the number of I/Os we use on inserting non-full blocks in the multislab
lists is bounded by O(m). The number used on full blocks is also O(m), as this is the number
of segments and as every segment is at most stored in one list. The number of I/Os charged
to the buffer-emptying process in step two is also O(m), as this is the number of I/Os used
to load non-full multislab list blocks. The rest of the I/Os used to scan a multislab list can
either be charged to a stabbing reporting or to the deletion of an element. We can do so by
assuming that every segment holds O(1/B) credits to pay for its own deletion. This credit
can then be accounted for (deposited) when we insert a segment in a multislab list. Thus a
buffer-emptying process on an internal node can be performed in a linear number of I/Os as
required.

As far as leaf nodes are concerned almost precisely the same argument applies, and we have
thus proved that we can build the base tree and perform all the operations on the structure
in O(n logm n + r) I/Os, where r is the number of stabbings reported so far. However, in
order to report the remaining stabbings we need to empty all the buffers of the structure. We
do so as in Section 3 simply by performing buffer-emptying processes on all nodes level by
level starting at the root. As there are O(n/

√
m) nodes in the tree one might think that this

process would cost us O(n
√
m) I/Os, plus the number of I/Os used to report stabbings. The

problem seems to be that there is n/
√
m leaf nodes, each having O(m) multislab lists, and

that we when we empty the buffers of these nodes can be forced to use an I/O for each of the

67

multislab lists which are not paid for by reportings. However, the number of multislab lists
actually containing any segments must be bounded by O(n logm n), as that is the number
of I/Os performed so far. Thus it is easy to realize that O(n logm n + r) must be a bound
on the number of I/Os we have to pay in order to empty the buffers of all the leaf nodes.
Furthermore, as the number of internal nodes is O(n/m), the buffers of these nodes can all
be emptied in O(n) I/Os. This completes the proof of the lemma.

2

6.2 Applications of the External Segment Tree

Having developed an external segment tree we can obtain efficient external-memory algorithms
by using it in standard plane-sweep algorithms.

The batched range searching problem—given N points and N rectangles, report for each
rectangle all the points that lie inside it—can be solved with a plane-sweep algorithm in
almost the same way as the orthogonal line segment intersection problem. The optimal plane
sweep algorithm makes a vertical sweep with a horizontal line, inserting a segment (rectangle)
in the segment tree when the top segment of a rectangle is reached, and deleting it when the
bottom segment is reached. When a point is reached a stabbing query is performed with it.
Using our external segment tree in this algorithm yields the following:

Corollary 3 Using the external range tree the batched range searching problem can be solved
in O(n logm n+ r) I/O operations.

The problem of pairwise rectangle intersection is defined similar to the orthogonal line
segment intersection problem. GivenN rectangles in the plane (with sides parallel to the axes)
we should report all intersecting pairs. In [26] it is shown that if we—besides the orthogonal
line segment intersection problem—can solve the batched range searching problem in time
O(N log2 N+R), we will in total obtain a solution to the rectangle intersection problem with
the same (optimal) time bound. Thus we in external-memory obtain the following:

Corollary 4 Using our external data structures the pairwise rectangle intersection problem
can be solved in O(n logm n+ r) I/O operations.

That both algorithms are optimal in the comparison I/O model follows by the internal
memory comparison lower bound and the result in [13]. Like in the orthogonal line segment
intersection case, optimal algorithms for the two problems are also developed in [67].

7 Extending the Results to the D-disk Model

As mentioned in the introduction an approach to increase the throughput of I/O systems is
to use a number of disks in parallel. One method of using D disks in parallel is disk striping,
in which the heads of the disks are moving synchronously, so that in a single I/O operation
each disk read or writes a block in the same location as each of the others. In terms of
performance, disk striping has the effect of using a single large disk with block size B′ = DB.
Even though disk striping does not in theory achieve asymptotic optimality when D is very
large, it is often the method of choice in practice for using parallel disks [129].

The non optimality of disk striping can be demonstrated via the sorting bound. While
sorting N elements using disk striping and one of the the one-disk sorting algorithms requires

68

O(n/D logm/D n) I/Os the optimal bound is O(n/D logm n) I/Os [5]. Note that the optimal
bound results in a linear speedup in the number of disk. Nodine and Vitter [98] managed to
develop a theoretical optimal D-disk sorting algorithm based on merge sort, and later they
also developed an optimal algorithm based on distribution sort [99]. In the latter algorithm
it is assumed that 4DB ≤ M −M1/2+β for some 0 < β < 1/2, an assumption which clearly
is non-restrictive in practice. The algorithm works as normal distribution sort by repeatedly
distributing a set of N elements into

√
m sets of roughly equal size, such that all elements in

the first set is smaller than all elements in the second set, and so on. The distribution is done
in O(n/D) I/Os, and the main issue in the algorithm is to make sure that the elements in
one of the smaller sets can be read efficiently in parallel in the next phase of the algorithm,
that is, that they are distributed relatively evenly among the disks.

To obtain the results in this paper we basically only used three “paradigms”; distribution,
merging and sorting. We used distribution to distribute the elements in the buffer of a node
to the buffers of nodes on the next level, and to multislab lists in the segment tree case. We
used merging of two lists when emptying all buffers in a (sub-) buffer tree, and we sorted a
set of elements when emptying the leaf buffers of the buffer tree.3 While we of course can use
an optimal D-disk sorting algorithm instead of a one-disk algorithm, and while it is easy to
merge two lists in the optimal number of I/Os on parallel disks, we need to modify our use of
distribution to make it work with D disks. As mentioned Nodine and Vitter [99] developed
an optimal way of doing distribution, but only when the distribution is done O(

√
m)-wise.

As already mentioned we can make our buffer tree work with fan-out and buffer size Θ(
√
m)

instead of Θ(m), and thus we can use the algorithm from [99] to make our structure work in
the D-disk model. The external segment tree already has fan-out

√
m, but we still distribute

elements (segments) to Θ(m) multislab list. Thus to make our external segment tree work
on D disks we decrease the fan-out to m1/4, which does not change the asymptotic I/O
bounds of the operations, but decreases the number of multislab lists to

√
m. Thus we can

use the algorithm from [99] to do the distribution. To summerize our structures work in the
general D-disk model under the non-restrictive assumption that 4DB ≤ M −M1/2+β for
some 0 < β < 1/2.

8 Conclusion

In this paper we have developed a technique for transforming an internal-memory tree data
structure into an efficient external memory structure. Using this technique we have developed
an efficient external priority queue and batched dynamic versions of the (one-dimensional)
range tree and the segment tree. We have shown how these structures allow us to design
efficient external-memory algorithms from known internal algorithms in a straightforward way,
such that all the I/O specific parts of the algorithms are “hidden” in the data structures. This
is in great contrast to previously developed algorithms for the considered problems. We have
also used our priority queue to develop an extremely simple algorithm for “circuit evaluation”,
improving on the previously know algorithm.

Recently, several authors have used the structures developed in this paper or modified
versions of them to solve important external-memory problems. In [12] the priority queue is
used to develop new I/O efficient algorithms for ordered binary-decision diagram manipula-

3Note that we could actually do without the sorting by distributing elements in sorted order when emptying a
buffer in the buffer tree, precisely as we in the range tree structure distribute them in time order representation.

69

tion, and in [40] it is used in the development of several efficient external graph algorithm.
In [15] an extension of the segment tree is used to develop efficient new external algorithms
for a number of important problems involving line segments in the plane, and in [16] the main
idea behind the external segment tree (the notion of multislabs) is used to develop an optimal
“on-line” versions of the interval tree.

We believe that several of our structures will be efficient in practice due to small constants
in the asymptotic bounds. We hope in the future to be able to implement some of the
structures in the transparent parallel I/O environment (TPIE) developed by Vengroff [126].

Acknowledgments

I would like to thank all the people in the algorithms group at University of Aarhus for
valuable help and inspiration. Special thanks also go to Mikael Knudsen for the discussions
that lead to many of the results in this paper, to Sven Skyum for many computational
geometry discussions, and to Peter Bro Miltersen, Erik Meineche Schmidt and Darren Erik
Vengroff for help on the presentation of the results in this paper. Finally, I would like to
thank Jeff Vitter for allowing me to be a part of the inspiring atmosphere at Duke University.

70

Chapter 7

External-Memory Algorithms
for Processing Line Segments
in Geographic Information Systems

71

External-Memory Algorithms for Processing Line Segments
in Geographic Information Systems∗

Lars Arge† Darren Erik Vengroff‡ Jeffrey Scott Vitter§

BRICS¶ Dept. of Computer Science Dept. of Computer Science
Dept. of Computer Science Brown University Duke University

University of Aarhus Providence, RI 02912 Durham, NC 27708–0129
Aarhus, Denmark USA USA

January 1996

Abstract

In the design of algorithms for large-scale applications it is essential to consider the
problem of minimizing I/O communication. Geographical information systems (GIS) are
good examples of such large-scale applications as they frequently handle huge amounts
of spatial data. In this paper we develop efficient new external-memory algorithms for
a number of important problems involving line segments in the plane, including trape-
zoid decomposition, batched planar point location, triangulation, red-blue line segment
intersection reporting, and general line segment intersection reporting. In GIS systems,
the first three problems are useful for rendering and modeling, and the latter two are
frequently used for overlaying maps and extracting information from them.

1 Introduction

The Input/Output communication between fast internal memory and slower external storage
is the bottleneck in many large-scale applications. The significance of this bottleneck is
increasing as internal computation gets faster, and especially as parallel computing gains
popularity [107]. Currently, technological advances are increasing CPU speeds at an annual
rate of 40–60% while disk transfer rates are only increasing by 7–10% annually [113]. Internal
memory sizes are also increasing, but not nearly fast enough to meet the needs of important
∗An extended abstract version of this paper was presented at the Third Annual European Symposium on

Algorithms (ESA ’95).
†Supported in part by the ESPRIT II Basic Research Actions Program of the EC under contract No.

7141 (Project ALCOM II). This work was done while a Visiting Scholar at Duke University. Email:
large@daimi.aau.dk.
‡Supported in part by the U.S. Army Research Office under grant DAAH04–93–G–0076 and by the Na-

tional Science Foundation under grant DMR–9217290. This work was done while a Visiting Scholar at Duke
University. Email: dev@cs.brown.edu.
§Supported in part by the National Science Foundation under grant CCR–9007851 and by the U.S. Army

Research Office under grant DAAH04–93–G–0076. Email: jsv@cs.duke.edu.
¶Acronym for Basic Research in Computer Science, a Center of the Danish National Research Foundation.

73

large-scale applications, and thus it is essential to consider the problem of minimizing I/O
communication.

Geographical information systems (GIS) are a rich source of important problems that re-
quire good use of external-memory techniques. GIS systems are used for scientific applications
such as environmental impact, wildlife repopulation, epidemiology analysis, and earthquake
studies and for commercial applications such as market analysis, facility location, distribution
planning, and mineral exploration [70]. In support of these applications, GIS systems store,
manipulate, and search through enormous amounts of spatial data [52, 84, 114, 124]. NASA’s
EOS project GIS system [52], for example, is expected to manipulate petabytes (thousands
of terabytes, or millions of gigabytes) of data!

Typical subproblems that need to be solved in GIS systems include point location, tri-
angulating maps, generating contours from triangulated elevation data, and producing map
overlays, all of which require manipulation of line segments. As an illustration, the compu-
tation of new scenes or maps from existing information—also called map overlaying—is an
important GIS operation. Some existing software packages are completely based on this op-
eration [124]. Given two thematic maps (piecewise linear maps with, e.g., indications of lakes,
roads, pollution level), the problem is to compute a new map in which the thematic attributes
of each location is a function of the thematic attributes of the corresponding locations in the
two input maps. For example, the input maps could be a map of land utilization (farmland,
forest, residential, lake), and a map of pollution levels. The map overlay operation could then
be used to produce a new map of agricultural land where the degree of pollution is above a
certain level. One of the main problems in map overlaying is “line-breaking,” which can be
abstracted as the red-blue line segment intersection problem.

In this paper, we present efficient external-memory algorithms for large-scale geometric
problems involving collections of line segments in the plane, with applications to GIS systems.
In particular, we address region decomposition problems such as trapezoid decomposition and
triangulation, and line segment intersection problems such as the red-blue segment intersec-
tion problem and more general formulations.

1.1 The I/O Model of Computation

The primary feature of disks that we model is their extremely long access time relative to
that of solid state random-access memory. In order to amortize this access time over a large
amount of data, typical disks read or write large blocks of contiguous data at once. Our
problems are modeled by the following parameters:

N = # of items in the problem instance;
M = # of items that can fit into internal memory;
B = # of items per disk block,

where M < N and 1 ≤ B ≤ M/2. Depending on the size of the data items, typical values
for workstations and file servers in production today are on the order of M = 106 or 107 and
B = 103. Large-scale problem instances can be in the range N = 1010 to N = 1012.

In order to study the performance of external-memory algorithms, we use the standard
notion of I/O complexity [5, 133]. We define an input/output operation (or simply I/O for
short) to be the process of reading or writing a block of data to or from the disk. The
I/O complexity of an algorithm is simply the number of I/Os it performs. For example,

74

reading all of the input data requires N/B I/Os. We will use the term scanning to describe
the fundamental primitive of reading (or writing) all items in a set stored contiguously on
external storage by reading (or writing) the blocks of the set in a sequential manner.

For the problems we consider we define two additional parameters:

K = # of queries in the problem instance;
T = # of items in the problem solution.

Since each I/O can transmitB items simultaneously, it is convenient to introduce the following
notation:

n =
N

B
, k =

K

B
, t =

T

B
, m =

M

B
.

We will say that an algorithm uses a linear number of I/O operations if it uses at most O(n)
I/Os to solve a problem of size N .

An increasingly popular approach to further increase the throughput of I/O systems is
to use a number of disks in parallel. The number D of disks range up to 102 in current disk
arrays. One method of using D disks in parallel is disk striping [133], in which the heads of
the disks are moved synchronously, so that in a single I/O operation each disk reads or writes
a block in the same location as each of the others. In terms of performance, disk striping has
the effect of using a single large disk with block size B′ = DB. Even though disk striping does
not in theory achieve asymptotic optimality [133] when D is very large, it is often the method
of choice in practice for using parallel disks, especially when D is moderately sized [129].

1.2 Previous Results in I/O-Efficient Computation

Early work on I/O algorithms concentrated on algorithms for sorting and permutation re-
lated problems [5, 49, 98, 99, 133]. External sorting requires Θ(n logm n) I/Os,1 which is
the external-memory equivalent of the well-known Θ(N logN) time bound for sorting in in-
ternal memory. Work has also been done on matrix algebra and related problems arising
in scientific computation [5, 129, 133]. More recently, researchers have designed external-
memory algorithms for a number of problems in different areas, such as in computational
geometry [67] and graph theoretic computation [42]. In [13] a general connection between
the comparison-complexity and the I/O complexity of a given problem is shown, and in [11]
alternative solutions for some of the problems in [42] and [67] are derived by developing and
using dynamic external-memory data structures.

1.3 Our Results

In this paper, we combine and modify in novel ways several of the previously known techniques
for designing efficient algorithms for external memory. In particular we use the distribution
sweeping and batch filtering paradigms of [67] and the buffer tree data structure of [11].
In addition we also develop a powerful new technique that can be regarded as a practical
external-memory version of batched fractional cascading on an external-memory version of a
segment tree. This enables us to improve on existing external-memory algorithms as well as
to develop new algorithms and thus partially answer some open problems posed in [67].

In Section 2 we introduce the endpoint dominance problem, which is a subproblem of
trapezoid decomposition. We introduce an O(n logm n)-I/O algorithm to solve the endpoint

1We define for convenience logm n = max{1, (logn)/ logm}.

75

Problem I/O bound of Result using modified
new result internal memory algorithm

Endpoint dominance. O(n logm n) O(N logB n)
Trapezoid decomposition. O(n logm n) O(N logB n)
Batched planar point location. O((n+ k) logm n)
Triangulation. O(n logm n) Ω(N)
Segment sorting. O(n logm n) O(N logB n)
Red-blue line segment intersection. O(n logm n + t) O(N logB n+ t)
Line segment intersection. O((n+ t) logm n) Ω(N)

Figure 1: Summary of results.

dominance problem, and we use it to develop an algorithm with the same asymptotic I/O
complexity for trapezoid decomposition, planar point location, triangulation of simple polygons
and for the segment sorting problem. In Section 3 we give external-memory algorithms for
line segment intersection problems. First we show how our segment sorting algorithm can
be used to develop an O(n logm n + t)-I/O algorithm for red-blue line segment intersection,
and then we discuss an O((n+ t) logm n)-I/O algorithm for the general segment intersection
problem.

Our results are summarized in Table 1. For all but the batched planar point location
problem, no algorithms specifically designed for external memory were previously known.
The batched planar point location algorithm that was previously known [67] only works
when the planar subdivision is monotone, and the problems of triangulating a simple polygon
and reporting intersections between other than orthogonal line segments are stated as open
problems in [67].

For the sake of contrast, our results are also compared with modified internal-memory
algorithms for the same problems. In most cases, these modified algorithms are plane-sweep
algorithms modified to use B-tree-based dynamic data structures rather than binary tree-
based dynamic data structures, following the example of a class of algorithms studied exper-
imentally in [41]. Such modifications lead to algorithms using O(N logB n) I/Os. For two of
the algorithms the known optimal internal-memory algorithms [36, 37] are not plane-sweep
algorithms and can therefore not be modified in this manner. It is difficult to analyze pre-
cisely how those algorithms perform in an I/O environment; however it is easy to realize
that they use at least Ω(N) I/Os. The I/O bounds for algorithms based on B-trees have a
logarithm of base B in the denominator rather than a logarithm of base m. But the most
important difference between such algorithms and our results is the fact that the updates
to the dynamic data structures are handled on an individual basis, which leads to an extra
multiplicative factor of B in the I/O bound, which is very significant in practice.

As mentioned, the red-blue line segment intersection problem is of special interest because
it is an abstraction of the important map-overlay problem, which is the core of several vector-
based GISs [9, 10, 106]. Although a time-optimal internal-memory algorithm for the general
intersection problem exists [37], a number of simpler solutions have been presented for the
red-blue problem [35, 38, 87, 106]. Two of these algorithms [38, 106] are not plane-sweep
algorithms, but both sort segments of the same color in a preprocessing step with a plane-
sweep algorithm. The authors of [106] claim that their algorithm will perform well with
inadequate internal memory owing to the fact that data are mostly referenced sequentially.

76

A closer look at the main algorithm reveals that it can be modified to use O(n log2 n) I/Os
in the I/O model, which is only a factor of logm from optimal. Unfortunately, the modified
algorithm still needs O(N logB n) I/Os to sort the segments.

In this paper we focus our attention on the single disk model. As described in Section 1.1,
striping can be used to implement our algorithms on parallel disk systems with D > 1.
Additionally, techniques from [98] and [100] can be used to extend many of our results to
parallel disk systems. In the conference version of this paper we conjectured that all our
results could be improved by the optimal factor of D on parallel disk systems with D disks,
but it is still an open problem whether the required merges can be done efficiently enough to
allow this.

2 The Endpoint Dominance Problem

In this section we consider the endpoint dominance problem (EPD) defined as follows: Given
N non-intersecting line segments in the plane, find the segment directly above each endpoint
of each segment.

EPD is a powerful tool for solving other important problems as we will illustrate in
Section 2.1. As mentioned in the introduction a number of techniques for designing efficient
I/O-efficient algorithms have been developed in recent years, including distribution sweeping,
batch filtering [67] and buffer trees [11]. However, we do not seem to be able to efficiently solve
EPD using these techniques directly. Section 2.2 briefly review some of the techniques and
during that process we try to illustrate why they are inadequate for solving EPD. Fortunately,
as we will demonstrate in Section 2.3, we are able to combine the existing techniques with
several new ideas in order to develop an I/O-efficient algorithm for the problem, and thus for
a number of other important problems.

2.1 Using EPD to solve other Problems

In this section we with three lemmas illustrate how an I/O-efficient solution to EPD can be
used in the construction of I/O-efficient solutions to other problems.

Lemma 1 If EPD can be solved in O(n logm n) I/Os, then the trapezoid decomposition of N
non-intersecting segments can be computed in O(n logm n) I/Os.

Proof : We solve two instances of EPD, one to find the segments directly above each segment
endpoint and one (with all y coordinates negated) to find the segment directly below each
endpoint—see Figure 2 for an example of this on a simple polygon. We then compute the
locations of all O(N) vertical trapezoid edges. This is done by scanning the output of the
two EPD instances in O(n) I/Os. To explicitly construct the trapezoids, we sort all trapezoid
vertical segments by the IDs of the input segments they lie on, breaking ties by x coordinate.
This takes O(n logm n) I/Os. Finally, we scan this sorted list, in which we find the two
vertical edges of each trapezoid in adjacent positions. The total amount of I/O used is thus
O(n logm n). 2

Lemma 2 If EPD can be solved in O(n logm n) I/Os, then a simple polygon with N vertices
can be triangulated in O(n logm n) I/O operations.

77

Proof : After computing the trapezoid decomposition of a simple polygon, the polygon can
be triangulated in O(n) I/Os using a slightly modified version of an algorithm from [61].

2

⇐⇒

b

a

a above b

b

a

b

a

a

b

b

a

ya > yb

ya

yb

Figure 2: Using EPD to compute the
trapezoid decomposition of a simple poly-
gon.

Figure 3: Comparing segments. Two
segments can be related in four different
ways.

We define a segment AB in the plane to be above another segment CD if we can intersect
both AB and CD with the same vertical line l, such that the intersection between l and AB
is above the intersection between l and CD. Note that two segments are in comparable
if they cannot be intersected with the same vertical line. Figure 3 demonstrates that if two
segments are comparable then it is enough to consider vertical lines through the four endpoints
to obtain their relation. The problem of sorting N non-intersecting segments in the plane
is to extending the partial order defined in the above way to a total order. This problem
will become important in the solution to the red-blue line segment intersection problem in
Section 3.1.

Lemma 3 If EPD can be solved in O(n logm n) I/Os, then a total ordering of N non-
intersecting segments can be found in O(n logm n) I/Os.

Proof : We first solve EPD on the input segments augmented with the segment S∞ with end-
points (−∞,∞) and (∞,∞). The existence of S∞ ensures that all input segment endpoints
are dominated by some segment. We define an aboveness relation ↘ on elements of a non-
intersecting set of segments S such that AB ↘ CD if and only if either (C,AB) or (D,AB)
is in the solution to EPD on S. Here (A,BC) denotes that BC is the segment immediately
above A. Similarly, we solve EPD with negated y coordinates and a special segment S−∞ to
establish a belowness relation↗. As discussed sorting the segments corresponds to extending
the partial order defined by ↘ and ↗ to a total order.

In order to obtain a total order we define a directed graph G = (V, E) whose nodes consist
of the input segments and the two extra segments S∞ and S−∞. The edges correspond to
elements of the relations ↘ and ↗. For each pair of segments AB and CD, there is an edge
from AB to CD iff CD ↘ AB or AB ↗ CD. To sort the segments we simply have to
topologically sort G. As G is a planar s,t-graph of size O(N) this can be done in O(n logm n)
I/Os using an algorithm of [42]. 2

2.2 Buffer Trees and Distribution Sweeping

In internal memory EPD can be solved optimally with a simple plane-sweep algorithm; We
sweep the plane from left to right with a vertical line, inserting a segment in a search tree

78

when its left endpoint is reached and removing it again when the right endpoint is reached.
For every endpoint we encounter we also do a search in the tree to identify the segment
immediately above the point.

In [11] a number of external-memory data structures called buffer trees are developed
for use in plane-sweep algorithms. Buffer trees are data structures that can support the
processing of a batch of N updates and K queries on an initially empty dynamic data structure
of elements from a totally ordered set in O((n + k) logm n + t) I/Os. They can be used to
implement plane-sweep algorithms in which the entire sequence of updates and queries is
known in advance. The queries that such plane-sweep algorithms ask of their dynamic data
structures need not be answered in any particular order; the only requirement on the queries
is that they must all eventually be answered. Such problems are known as batch dynamic
problems [55]. The plane-sweep algorithm for EPD sketched above can be stated as a batched
dynamic problem. However, the requirement that the element stored in the buffer tree is taken
from a totally ordered set is not fulfilled in the algorithm, as we do not know any total order
of the segments. Actually, as demonstrated in Lemma 3, finding such an ordering is an
important application of EPD. Therefore, we cannot use the buffer tree as the tree structure
in the plane-sweep algorithm to get an I/O-efficient algorithm. For the other problems we
are considering in this paper, the known internal-memory plane-sweep solutions cannot be
stated as batched dynamic algorithms (since the updates depend on the queries) or else the
elements involved are not totally ordered.

In [67] a powerful external memory version of the plane-sweep paradigm called distribution
sweeping is introduced. Unfortunately, direct application of distribution sweeping appears
insufficient to solve EPD. In order to illustrate why distribution sweeping is inadequate for
the task at hand, let us briefly review how it works. We divide the plane into m vertical slabs,
each of which contains Θ(n/m) input objects, for example points or line segment endpoints.
We then sweep down vertically over all of the slabs to locate components of the solution
that involve interaction of objects in different slabs or objects (such as line segments) that
completely span one or more slabs. The choice of m slabs is to ensure that one block of data
from each slab fits in main memory. To find components of the solution involving interaction
between objects residing in the same slab, we recursively solve the problem in each slab.
The recursion stops after O(logm n/m) = O(logm n) levels when the subproblems are small
enough to fit in internal memory. In order to get an O(n logm n) algorithm one therefore need
to be able to do one sweep in O(n) I/Os. Normally this is accomplished by preprocessing the
objects by using an optimal algorithm to sort them by y-coordinate. This e.g. allows one to
avoid having to perform a sort before each recursive application of the technique, because as
the objects are distributed to recursive subproblems their y ordering is retained. The reason
that distribution sweeping fails for EPD is that there is no necessary relationship between
the y ordering of endpoints of segments and their endpoint dominance relationship. In order
to use distribution sweeping to get an optimal algorithm for EPD we instead need to sort the
segments in a preprocessing step which leaves us with the same problem we encountered in
trying to use buffer trees for EPD.

As know techniques fails to solve EPD optimally we are led instead to other approaches
as discussed in the next section.

79

2.3 External-Memory Segment Trees

The segment tree [23, 108] is a well-known dynamic data structure used to store a set of
segments in one dimension, such that given a query point all segments containing the point can
be found efficiently. Such queries are called stabbing queries. An external-memory segment
tree based on the approach in [11] is shown in Figure 4. The tree is perfectly balanced
over the endpoints of the segments it represents and has branching factor

√
m/4. Each leaf

represents M/2 consecutive segment endpoints. The first level of the tree partitions the data
into

√
m/4 intervals σi—for illustrative reasons we call them slabs—separated by dotted lines

on Figure 4. Multislabs are defined as contiguous ranges of slabs, such as for example [σ1, σ4].
There are m/8 −

√
m/4 multislabs. The key point is that the number of multislabs is a

quadratic function of the branching factor. The reason why we choose the branching factor
to be Θ(

√
m) rather than Θ(m) is so that we have room in internal memory for a constant

number of blocks for each of the Θ(m) multislabs. The smaller branching factor at most
about doubles the height of the tree.

Segments such as CD that completely span one or more slabs are called long segments.
A copy of each long segment is stored in the largest multislab it spans. Thus, CD is stored
in [σ1, σ3]. All segments that are not long are called short segments and are not stored in
any multislab. Instead, they are passed down to lower levels of the tree where they may span
recursively defined slabs and be stored. AB and EF are examples of short segments. The
portions of long segments that do not completely span slabs are treated as small segments.
There are at most two such synthetically generated short segments for each long segment and
total space utilization is thus O(n logm n) blocks.

To answer a stabbing query, we simply proceed down a path in the tree searching for the
query value. At each node we encounter, we report all the long segments associated with each
of the multislabs that span the query value.

Because of the size of the nodes and auxiliary multislab data, the buffer tree approach
is inefficient for answering single queries. In batch dynamic environments, however, it can
be used to develop optimal algorithms. In [11], techniques are developed for using external-
memory segment trees in a batch dynamic environment such that inserting N segments in
the tree and performing K queries requires O((n+ k) logm n + t) I/Os.

It is possible to come close to solving EPD by first constructing an external-memory

σ0 σ1 σ2 σ3 σ4

√
m/4 slabs σi

· · · · · ·

· · ·· · ·· · ·· · ·· · ·

√
m/4 nodes

m/4 nodes

2N/M leaves

...

· · ·

A

· · ·

B

C

FE

D

· · ·O(logm n)

Figure 4: An external-memory segment tree based on a buffer tree over a set of N segments,
three of which, AB, CD, and EF , are shown.

80

segment tree over the projections of the segments onto the x-axis and then performing stabbing
queries at the x coordinates of the endpoints of the segments. However, what we want is the
single segment directly above each query point in the y dimension, as opposed to all segments
it stabs. Fortunately, we are able to modify the external segment tree in order to efficiently
answer a batch of this type of queries. The modification requires two significant improvements
over existing techniques. First, as discussed in Section 2.3.1, we need to strengthen the
definition of the structure, and the tree construction techniques of [11] must be modified in
order to guarantee optimal performance when the structure is built. Second, as discussed
in Section 2.3.2 the batched query algorithm must be augmented using techniques similar to
fractional cascading [39].

2.3.1 Constructing Extended External Segment Trees

We will construct what we call an extended external segment tree using an approach based
on distribution sweeping. When we are building an external segment tree on non-intersecting
segments in the plane we can compare all segments in the same multislab just by comparing
the order of their endpoints on one of the boundaries. An extended external segment tree
is just an external segment tree as described in the last section built on non-intersecting
segments, where the segments in each of the multislabs are sorted. Before discussing how to
construct an extended external segment tree I/O-efficiently we will show a crucial property,
namely that the segments stored in the multislab lists of a node in such a structure can be
sorted efficiently. We will use this extensively in the rest of the paper. When we talk about
sorting segments in the multislab lists of a node we imagine that they are “cut” to the slab
boundaries, that is, that we have removed the part of the segments that are stored recursively
further down the structure. Note that this might result in another total order on the segments
than if we considered the whole segment.

Lemma 4 The set of N segment stored in the multislab lists of an internal node of an ex-
tended external segment tree can be sorted in O(n) I/O operations.

Proof : We claim that we can construct a sorted list of the segments by repeatedly looking at
the top segment in each of the multislabs, and selecting one of them to go to the sorted list.

To prove the claim, assume for the sake of contradiction that there exists a top segment s
in one of the multislab lists which is above the top segment in all the other multislab lists it
is comparable with, but which must be below a segment t in a total order. If this is the case
there exist a series of segment s1, s2 . . . , si such that t is above s1 which is above s2 and so on
ending with si being above s. But if si is above s then so is the top segment in the multislab
list containing si contradicting the fact that s is above the top segment in all multislab lists
it is comparable with.

As the number of multislab lists is O(m) there is room for a block from each of them
in internal memory. Thus the sorted list can be constructed in O(n) I/Os by performing a
standard external-memory merge of O(m) sorted lists into a single sorted list. 2

In order to construct an extended external segment tree on N segments, we first use an
optimal sorting algorithm to create a list of all the endpoints of the segments sorted by x-
coordinate. This list is used during the whole algorithm to find the medians we use to split the
interval associated with a given node into

√
m/4 vertical slabs. We now construct the O(m)

sorted multislab lists associated with the root in the following way: First we scan through

81

the segments and distribute the long segments to the appropriate multislab list. This can
be done in O(n) I/Os because we have enough internal memory to hold a block of segments
for each multislab list. Then we sort each of these lists individually with an optimal sorting
algorithm. Finally, we recursively construct an extended external segment tree for each of the
slabs. The process continues until the number of endpoints in the subproblems falls below
M/2.

Unfortunately, this simple algorithm requires O(n log2
m n) I/Os, because O(n logm n) I/Os

are used to sort the multislab lists on each level of the recursion. To avoid this problem, we
modify our algorithm to construct the multislab lists of a node not only from a list of segments
but also from two other sorted lists of segments. One sorted list consists of segments that
have one endpoint in the x range covered by the node under construction and one to the
left thereof. The other sorted list is similar but contains segments entering the range from
the right. Both lists are sorted by the y coordinate at which the segments enter the range
of the node being constructed. In the construction of the structure the two sorted lists will
contain segments which was already stored further up the tree. We begin to build a node
just as we did before, by scanning through the unsorted list of segments, distributing the long
segments to the appropriate multislab lists, and then sorting each multislab list. Next, we
scan through the two sorted lists and distribute the long segments to the appropriate multislab
lists. Segments will be taken from these lists in sorted order, and can thus be merged into
the previously sorted multislab lists at no additional asymptotic cost. This completes the
construction of the sorted multislab lists, and now we simply have to produce the input for
the algorithm at each of the

√
m/4 children of the current node. The

√
m/4 unsorted lists

are created by scanning through the list of segments as before, distributing the segments
with both endpoints in the same slab to the list associated with the slab in question. The
2
√
m/4 sorted lists of boundary crossing segments are constructed from the sorted multislab

lists generated at the current level; First we use a linear number of I/Os sort the segments
(Lemma 4) and then the 2

√
m/4 lists can be constructed by scanning through the sorted list

of segments, distributing the boundary crossing segments to the appropriate of 2
√
m/4 lists.

These lists will automatically be sorted.
In the above process all the distribution steps can be done in a linear number of I/Os,

because the number of lists we distribute into always is O(m), which means that we have
enough internal memory to hold a block of segments for each output list. Thus, each level
of recursion uses O(n) I/Os plus the number of I/Os used on sorting. The following lemma
then follows from the fact that each segment only ones is contained in a list that is sorted:

Lemma 5 An extended external segment tree on N non-intersecting segments in the plane
can be constructed in O(n logm n) I/O operations.

2.3.2 Filtering Queries Through an Extended External Segment Tree

Having constructed an extended external segment tree, we can now use it to find the segments
directly above each of a series of K query points. In solving EPD, we have K = 2N , and
the query points are the endpoints of the original segments. To find the segment directly
above a query point p, we examine each node on the path from the root of the tree to the
leaf containing p’s x coordinate. At each such node, we find the segment directly above p by
examining the sorted segment list associated with each multislab containing p. This segment
can then be compared to the segment that is closest to the query point p so far, based on

82

segments seen further up the tree, to see if it is the new globally closest segment. AllK queries
can be processed through the tree at once using a technique similar to batch filtering [67], in
which all queries are pushed through a given level of the tree before moving on to the next
level.

Unfortunately, the simple approach outlined in the preceding paragraph is not efficient.
There are two problems that have to be dealt with. First, we must be able to look for a
query point in many of the multislabs lists corresponding to a given node simultaneously.
Second, searching for the position of a point in the sorted list associated with a particular
multislab may require many I/Os, but as we are looking for an O(n logm n) solution we are
only allowed to use a linear number of I/Os to find the positions off all the query points. To
solve the first problem, we will take advantage of the internal memory that is available to
us. The second problem is solved with a notion similar to fractional cascading [38, 39]. The
idea behind fractional cascading on internal-memory segment trees [123] is that instead of
searching for the same element in a number of sorted lists of different nodes, we augment the
list at a node with sample elements from lists at the node’s children. We then build bridges
between the augmented list and corresponding elements in the augments lists of the node’s
children. These bridges obviate the need for full searches in the lists at the children. We take
a similar approach for our external-memory problem, except that we send sample elements
from parents to children. Furthermore, we do not use explicit bridges. Our approach uses
ideas similar to ones used in [18, 20].

As a first step towards a solution based on fractional cascading, we preprocess the extended
external segment tree in the following way (corresponding to “building bridges”): For each
internal node, starting with the root, we produce a set of sample segments. For each of the√
m/4 slabs (not multislabs) we produce a list of samples of the segments in the multislab

lists that span it. The sample list for a slab consists of every (2
√
m/4)th segment in the

sorted list of segments that spans it, and we “cut” the segments to the slab boundaries. All
the samples are produced by scanning through the sorted list of all segments in the node
produced as in Lemma 4, distributing the relevant segments to the relevant sample lists. This
can be done efficiently simply by maintaining

√
m/4 counters during the scan, counting how

many segments so far have been seen spanning a given slab. For every slab we then augment
the multislab lists of the corresponding child by merging the sampled list with the multislab
list of the child that contains segments spanning the whole x-interval. This merging happens
before we proceed to preprocessing the next level of the tree. At the lowest level of internal
nodes, the sampled segments are passed down to the leaves.

We now prove a crucial lemma about the I/O complexity of the preprocessing steps and
the space of the resulting data structure:

Lemma 6 The preprocessing described above uses O(n logm n) I/Os. After the preprocessing
there are still O(N) segments stored in the multi-lists on each level of the structure. Further-
more, each leaf contains less than M segments.

Proof : Before any samples are passed down the tree, we have at most 2N segments represented
at each level of the tree. Let Ni be the number of long segments, both original segments and
segments sent down from the previous level, among all the nodes at level i of the tree after the
preprocessing step. At the root, we have N0 ≤ 2N . We send at most Ni/(2

√
m/4) ·

√
m/4 =

Ni/2 segments down from level i to level i+ 1. Thus, Ni+1 ≤ 2N +Ni/2. By induction on i,
we can show that for all i, Ni =

(
4− (1/2)i−1)N = O(N). From Lemma 4 and the fact that

83

the number of multislab lists is O(m)—and thus that we can do a distribution or a merge
step in a single pass of the data—it follows that each segment on a given level is read and
written a constant number of times during the preprocessing phase. The number of I/Os used
at level i of the tree is thus O(ni), where ni = Ni/B. Since there are O(logm n) levels, we in
total use O(n logm n) I/Os.

Before preprocessing, the number of segments stored in a node is less than the number of
endpoints in the leaves below the node. To be precise, a leaf contains less than M/2 segments
and a node i levels up the tree from a leaf contains less than M/2 · (

√
m/4)i segments.

After preprocessing, the number of segments Nl in a leaf at level l in the tree must be
Nl ≤M/2 + Nl−1

2
√
m/4

, where Nl−1 is the maximal number of segments in a node at level l − 1;

this is because at most every (2
√
m/4)th of these segments are sent down to the leaf. Thus,

Nl ≤M/2 +
M/2 ·

√
m/4 +Nl−2/2

√
m/4

2
√
m/4

≤M/2 +M/4 +
Nl−2

(2
√
m/4)2

and so on, which means that Nl < M . 2

Having preprocessed the tree, we are now ready to filter the K query points through it.
We assume without loss of generality that K = O(N). If K = Ω(N) we break the queries
into K/N groups of K ′ = N queries and process each group individually. For EPD, we
have K = 2N , so this grouping is not necessary. But as we will see later, grouping reduces
the overall complexity of processing a batch of queries when K is very large. Since our
fractional cascading construction is done backwards (sampled segments sent downwards), we
filter queries from the leaves to the root rather than from the root to the leaves. To start
off, we sort the K query points by their x coordinates in O(k logm k) I/Os. We then scan the
sorted list of query points to determine which leaf a given query belongs to. This produces an
unsorted list of queries for each leaf as indicated on Figure 5a). Next we iterate through the
leaves, and for each leaf find all dominating segments of the queries assigned to the leaf that
are among the segments in the leaf. This is done by loading the entire set of segments stored
at that leaf (which fits in memory according to Lemma 6), and then use an internal-memory
algorithm to find the dominating segment for each query. As the total size of the data in all
the leaves is O(N), the total I/O complexity of the process is O(k + n). In order to prepare
for the general step of moving queries up the tree, we sort the queries that went into each
leaf based on the order of the segments that we found to be directly above them, ending up
in a situation as indicated in Figure 5b). This takes O(k logm k) I/Os.

a) b) c)

�
�
�
� �����
�
�
�

������
��
��
��

��������

����
2
√

m/4

Figure 5: Filtering queries through the
structure. An arrow in a list indicate
that it is sorted.

Figure 6: All queries between sampled
segments (indicated by fat lines) must
appear together in the list of queries for
the slab.

84

Each filtering step of the algorithm begins with a set of queries at a given level, partitioned
by the nodes at that level and ordered within the nodes by the order of the segments found
to be directly above them on the level. This is exactly what the output of the leaf processing
was. The filtering step should produce a similar configuration on the next level up the tree.
For one node this is indicated on Figure 5c). Remember that throughout the algorithm we
also keep track of the segment found to be closest to a given query point so far, such that
when the root is reached we have found the dominating segment off all query points.

To perform one filtering step on a node we merge the list of queries associated with its
children (slabs) and the node’s multislab lists. The key property that allows us to find the
dominating segments among the segments stored in the node in an I/O-efficient manner, and
sort the queries accordingly, is that the list of queries associated with a child of the node
cannot be to unsorted relative to their dominating segment in the node. This is indicated in
Figure 6.

In order to produce for each slab a list of the queries in the slab, sorted according to
dominating segment in the node, we again produce and scan through a sorted list of segments
in the multislab list of the node, just like when we generated the samples that were passed
down the tree in the the preprocessing phase. This time, however, instead of generating
samples to pass down the tree, we insert a given segment in a list for each slab it spans.
Thus if a segment completely spans four slabs it is inserted in four lists. If, during the scan,
we encounter a segment which was sampled in slab s in the sampling phase then we stop
the scan and process the queries in the list of queries for s between the sampled segment
just encountered and the last sampled segment. As previously discussed these queries appear
together in the sorted (according to dominating segment on the last level) list of queries
for s. When this is done we clear the list of segments spanning s and continue the scan.
The scan continues until all multislab segments have been processed. The crucial property
is now that during the scan we can hold all the relevant segments in main memory because
at no time during the scan do we store more than 2

√
m/4 segments for each slab, that is,

2
√
m/4 ·

√
m/4 = m/2 segments in total. Thus we can perform the scan, not counting the

I/Os used to process the queries, in a linear number of I/Os.
To process the queries in a slab between two sampled segments we maintain 2

√
m/4

output blocks, each of which corresponds to a segment between the two sampled segments.
The block for a segment is for queries with the segment as dominating segment among the
segments in the multislab list. As we read queries from the output of the child, we place them
in the appropriate output block for the slab. If these output blocks become full, we write
them back to disk. Once all queries between the two sampled segments have been processed,
we concatenate the outputs associated with each of the segments between the samples. This
results in a list of queries sorted according to dominating segment in the node, and this list
is appended to an output list for the slab. All of the above is done in a number of I/Os linear
in the number of queries processed.

When we finish the above process, we merge the sorted output query lists of all the slabs
to produce the output of the current node in a linear number of I/Os.

As discussed above, once this process has reached the root, we have the correct answers
to all queries. The total I/O complexity of the algorithm is given by the following theorem.

Theorem 1 An extended external segment tree on N non-intersecting segments in the plane
can be constructed, and K query points can be filtered through the structure in order to find
the dominating segments for all these points, in O((n+ k) logm n) I/O operations.

85

Proof : According to Lemma 5 and Lemma 6 construction and preprocessing together require
O(n logm n) I/Os.

Assuming K ≤ N , sorting the K queries takes O(n logm n) I/Os. Filtering the queries up
one level in the tree takes O(n) I/Os for the outer scan and O(k) I/Os to process the queries.
This occurs through O(logm n) levels, giving an overall I/O complexity of O(n logm n).

When K > N , we can break the problem into K/N = k/n sets of N queries. Each set of
queries can be answered as shown above in O(n logm n) I/Os, giving a total I/O complexity
of O(k logm n). 2

Theorem 1 immediately gives us the following bound for EPD, for which K = 2N .

Corollary 1 The endpoint dominance problem can be solved in O(n logm n) I/O operations.

We then immediately get the following from Lemma 1, 2 and 3.

Corollary 2 The trapezoid decomposition and the total order of N non-intersecting seg-
ments in the plane, as well as the triangulation of a simple polygon, can all be computed
in O(n logm n) I/O operations.

It remains open whether a simple polygon can be triangulated in O(n) I/Os when the
input vertices are given by their order on the boundary of the polygon, which would match
the linear internal-memory bound [36].

As a final direct application of our algorithm for EPD we consider the multi-point planar
point location problem. This is the problem of reporting the location of K query points in a
planar subdivision defined by N line segments. In [67] an O((n + k) logm n)-I/O algorithm
for this problem is given for monotone subdivisions of the plane. Using Theorem 1 we can
immediately extended the result to arbitrary planar subdivisions.

Lemma 7 The multi-point planar point location problem can be solved in O((n+ k) logm n)
I/O operations.

3 Line Segment Intersection

In this section we design algorithms for line segment intersection reporting problems. In
Section 3.1 we develop an I/O-efficient algorithm for the red-blue line segment intersection
problem and in Section 3.2 we develop an algorithm for the general line segment intersection
problem.

3.1 Red-Blue Line Segment Intersection

Using our ability to sort segments as described in Section 2, we can now overcome the problems
in solving the red-blue line segment intersection problem with distribution sweeping. Given
input sets Sr of non-intersecting red segments and Sb of non-intersecting blue segments, we
construct two intermediate sets

Tr = Sr ∪
⋃

(p,q)∈Sb
{(p, p), (q, q)}

Tb = Sb ∪
⋃

(p,q)∈Sr
{(p, p), (q, q)}

86

Each new set is the union of the input segments of one color and the endpoints of the segments
of the other color (or rather zero length segments located at the endpoints). Both Tr and Tb
are of size O(|Sr| + |Sb|) = O(N). We sort both Tr and Tb using the algorithm from the
previous section, and from now on assume they are sorted. This preprocessing sort takes
O(n logm n) I/Os.

We now locate intersections between the red and blue segments with a variant of distri-
bution sweeping with a branching factor of

√
m. As discussed in Section 2.2, the structure

of distribution sweeping is that we divide the plane into
√
m slabs, not unlike the way the

plane was divided into slabs to build an external segments tree in Section 2.3. We define
long segments as those crossing one or more slabs and short segments as those completely
contained in a slab. Furthermore, we shorten the long segments by “cutting” them at the
right boundary of the slab that contain their left endpoint, and at the left boundary of the
slab containing their right endpoint. This may produce up to two new short segments for each
long segment, and below we show how to update Tr and Tb accordingly in O(n) I/Os. We also
show how to report all Ti intersections between the long segments of one color and the long
and short segments of the other color in O(n+ti) I/Os. Next, we use one scan to partition the
sets Tr and Tb into

√
m parts, one for each slab, and we recursively solve the problem on the

short segments contained in each slab to locate their intersections. Each original segment is
represented at most twice at each level of recursion, thus the total problem size at each level
of recursion remains O(N) segments. Recursion continues through O(logm n) levels until the
subproblems are of size O(M) and thus can be solved in internal memory. This gives us the
following result:

Theorem 2 The red-blue line segment intersection problem on N segments can be solved in
O(n logm n+ t) I/O operations.

Now, we simply have to fill in the details of how we process the segments on one level of
the recursion. First, we consider how to insert the new points and segments generated when
we cut a long segment at the slab boundaries into the sorted orders Tr and Tb. Consider a
cut of a long red segment s into three parts. Changing Tr accordingly is easy, as we just need
to insert the two new segments just before or after s in the total order. In order to insert all
new red endpoints generated by cutting long red segments (which all lie on a slab boundary)
in Tb, we first scan through Tr generating the points and distributing them to

√
m lists, one

for each boundary. The lists will automatically be sorted and therefore it is easy to merge
them into Tr in a simple merge step. Altogether we update Tr and Tb in a O(n) I/Os.

Next, we consider how intersections involving long segments are found. We divide the
algorithm into two parts; reporting intersections between long and short segments of different
colors and between long segments of different colors.

Because Tr and Tb are sorted, we can locate interactions between long and short segments
using the distribution-sweeping algorithm used to solve the orthogonal segment intersection
problem in [67]. We use the algorithm twice and treat long segments of one color as horizontal
segments and short segments of the other color as vertical segments. We sketch the algorithm
for long red and blue short segments (details can be found in [67]); We sweep from top to
bottom by scanning through the sorted list of red segments and blue endpoints Tr. When a
top endpoint of a small blue segment is encountered, we insert the segment in an active list
(a stack where we keep the last block in internal memory) associated with the slab containing
the segment. When a long red segment is encountered we then scan through all the active

87

r

b

a

b

p

Figure 7: Long blue segments (dashed
lines) can interact with multislab in
three ways.

Figure 8: Proof of Lemma 8. The
segment between a and b must inter-
sect b.

lists associated with the slabs it completely spans. During this scan we know that every small
blue segment in the list either is intersected by the red segment or will not be intersected by
any of the following red segments (because we process the segments in sorted order), and can
therefore be removed from the list. A simple amortization argument then shows that we use
O(n+ ti) I/Os to do this part of the algorithm.

Next we turn to the problem of reporting intersections between long segments of different
colors. We define a multislab as in Section 2.3.1 to be a slab defined by two of the

√
m

boundaries. In order to report the intersections we scan through Tr and distribute the long
red segments into the O(m) multislabs. Next, we scan through the blue set Tb, and for each
blue segment we report the intersections with the relevant long red segments. This is the same
as reporting intersections with the appropriate red segments in each of the multislab lists.
Now consider Figure 7. A long blue segments can “interact” with a multislab in three different
ways. It can have one endpoint in the multislab, it can cross the multislab completely, or it can
be totally contained in the multislab. First, let us concentrate on reporting intersections with
red segments in multislabs for which the blue segment intersects the left boundary. Consider
a blue segment b and a multislab m containing its right endpoint, and define yp to be the y
coordinate of a point p. We have the following:

Lemma 8 If a blue segment b intersects the left boundary of a multislab at point p then all
blue segments processed after b will intersect the same boundary at a point q below p. Let
r be the left endpoint of a red segment in the multislab list. If yr ≥ yp and b intersects the
red segment, then b intersects all red segments in the multislab list with left endpoints in the
y-range [yp, yr]. The case yr ≤ yp is symmetric.

Proof : The first part follows immediately from the fact that we process the segments in sorted
order. Figure 8 demonstrates that the second part holds. 2

Using this lemma we can now complete the design of the algorithm for our problem using
a merging scheme. As discussed above, we process the blue segment in Tb one at a time and
report intersections with red segments in multislabs list where the blue segment intersect the
left boundary. For each such multislab list we do the following: We scan forward from the
current position in the list until we find the first red segment sr whose left endpoint lies below
the intersection between the blue segment and the multislab boundary. Then we scan back-
ward or forward as necessary in the multislab list in order to report intersections. Lemma 8
shows that the algorithm reports all intersections because all intersected segments lies con-
secutively above or belove sr. Furthermore, it shows that we can use blocks efficiently such

88

that we in total only scan through each multislabs list once without reporting intersections.
Thus, our algorithm uses a total of O(n+ ti) I/Os.

This takes care of the cases where the blue segment completely spans a multislab or where
it has its right, and only the right, endpoint in the multislab. The case where the blue segment
only has its left endpoint in the multislab can be handled analogously. The remaining case
can be handled with the same algorithm, just by distributing the blue segments instead of the
red segments, and then processing one long red segment at a time. To summarize, we have
shown how to perform one step of the distribution sweeping algorithm in O(n+ ti) I/Os, and
thus proven Theorem 2.

3.2 General Line Segment Intersection

The general line segment intersection problem cannot be solved by distribution sweeping as in
the red-blue case, because the↗ and↘ (Lemma 3) relations for sets of intersecting segments
are not acyclic, and thus the preprocessing phase to sort the segments cannot be used to
establish an ordering for distribution sweeping. However, as we show below, extended external
segment trees can be used to establish enough order on the segments to make distribution
sweeping possible. The general idea in our algorithm is to build an extended external segment
tree on all the segments, and during this process to eliminate any inconsistencies that arise
because of intersecting segments on the fly . This leads to a solution for the general problem
that integrates all the elements of the red-blue algorithm into one algorithm. In this algorithm,
intersections are reported both during the construction of an extended external segment tree
and during the filtering of endpoints through the structure.

In order to develop the algorithm we need an external-memory priority queue [11]. Given
mp blocks of internal memory, N insert and delete-min operations can be performed on such
a structure in O(n logmp n) I/Os. If we chose mp to be mc for some constant c (0 < c < 1),
we can perform the N operations using O(n logm n) I/Os. In the construction of an extended
external segment tree for general line segment intersection, we use two priority queues for
each multislab. In order to have enough memory to do this, we reduce the fan-out of the
extended segment tree from

√
m/4 to (m/4)1/4. This does not change the asymptotic height

of the tree, but it means that each node will have less than
√
m/4 multislabs. We chose mp to

be
√
m. Thus, with two priority queues per multislab, each node of the external segment tree

still requires less than m/2 blocks of internal memory. Exactly what goes into the priority
queues and how they are used will become clear as we describe the algorithm.

3.2.1 Constructing the Extended External Segment Tree

In the construction of an extended external segment tree in Section 2.3.1 we used the fact
that the segments did not intersect in order to establish an ordering on them. The main idea
in our algorithm is a mechanism for breaking long segments into smaller pieces every time we
discover an intersection during construction of the multislab lists of a node. In doing so we
manage to construct an extended segment tree with no intersections between long segments
stored in the multislab lists of the same node.

In order to construct the extended external segment tree on the N (now possibly inter-
secting) segments, we as in Section 2.3.1 first in O(n logm n) I/Os create a sorted list of all
the endpoints of the segments. The list is sorted by x coordinate, and used during the whole
algorithm to find the medians we use to split the interval associated with a node into (m/4)1/4

89

s

t

s1 s2 s3 s4 s5 s6 s6

s

u

t

Figure 9: Breaking a segment. Figure 10: Proof of lemma 9.

vertical slabs. Recall that in Section 2.3.1 one node in the tree was constructed from three
lists, one sorted list of segments for each of the two extreme boundaries and one unsorted
list of segments. In order to create a node we start as in the non-intersecting case by scan-
ning through the unsorted list of segments, distributing the long segments to the appropriate
multislab lists. Next, we sort the multislab lists individually according to the left (or right)
segment endpoint. Finally, we scan through the two sorted lists and distribute the segments
from these lists. The corresponding multislab lists will automatically be sorted according to
the endpoint on one of the boundaries.

Now we want to remove inconsistencies by removing intersections between long segments
stored in the multislab lists. We start by removing intersections between segments stored in
the same list. To do so we initialize two external priority queues for each of the multislabs,
one for each boundary. Segments in these queues are sorted according to the order of the their
endpoint on the boundary in question, and the queues are structured such that a delete-min
operation returns the topmost segment. We process each of the multislab lists individually as
follows: We scan through the list and check if any two consecutive segments intersect. Every
time we detect an intersection we report it, remove one of the segment from the list, and
break it at the intersection point as indicated on Figure 9. This creates two new segments.
If either one of them are long we insert it in both the priority queues corresponding to the
appropriate multislab list. Any small segments that are created are inserted into a special
list of segments which is distributed to the children of the current node along with normal
small segments. The left part of s on Figure 9 between s1 and s3 is for example inserted in
the queues for multislab [s1, s3], and the part to the right of s3 is inserted in the special list.
It should be clear that after processing a multislab list in this way the remaining segments
are non-intersecting (because every consecutive pair of segments are non-intersecting), and
it will thus be consistently sorted. As we only scan through a multislab list ones the whole
process can be done in a linear number of I/Os in the number of segments processed, plus
the I/Os used to manipulate the priority queues.

Unfortunately, we still have inconsistencies in the node because segments in different
multislab lists can intersect each other. Furthermore, the newly produced long segments in
the priority queues can intersect each other as well as segments in the multislab lists. In order
to remove the remaining intersections we need the following lemma.

Lemma 9 If the minimal (top) segments of all the priority queues and the top segments of
all the multislab lists are all non-intersecting, then the top-most of them is not intersected by
any long segment in the queues or lists.

Proof : First, consider the top segment in the two priority queues corresponding to the two
boundaries of a single multislab. If these two segments do not intersect, then they must indeed

90

be the same segment. Furthermore, no other segment in these queues can intersect this top
segment. Now consider the top segment in the multislab list of the same multislab. As the two
segments are non-intersecting one of them must be completely above the other. This segment
is not intersected by any segment corresponding to the same multislab. Now consider this
top segment in all the multislabs. Pick one of the top-most of these non intersecting segments
and call it s. Now consider Figure 10. Assume that s is intersected by another segment t
in one of the queues or multislab lists. By this assumption t is not the top segment in its
multislab. Call the top segment in this multislab u. Because u does not intersect either t or
s, and as it is on top of t, it also has to be on top of s. This contradicts the assumption that
s is above all the top segments. 2

Our algorithm for finding and removing intersections now proceeds as follows. We re-
peatedly look at the top segment in each of the priority queues and multislab lists. If any of
these segments intersect, we report the intersection and break one of the segments as before.
If none of the top segments intersect we know from Lemma 9 that the topmost segment is
not intersected at all. This segment can then be removed and stored in a list that eventually
becomes the final multislab list for the slab in question. When we have processed all segments
in this way, we end up with O(m) sorted multislab list of non-intersecting segments. We have
enough internal memory to buffer a block from each of the lists involved in the process, so we
only need a number of I/Os linear in the number of segments processed (original and newly
produced ones), plus the number of I/Os used to manipulate the priority queues.

Finally, as in Section 2.3.1, we produce the input to the next level of recursion by dis-
tributing the relevant segments (remembering to include the newly produced small segments)
to the relevant children. As before, this is done in a number of I/Os linear in the number
of segments processed. We stop the recursion when the number of original endpoints in the
subproblems fall below M/4.

If the total number of intersections discovered in the construction process is T then the
number of new segments produced is O(T), and thus the number of segments stored on
each level of the structure is bounded by O(N + T). As in Section 2.3.1 we can argue
that each segment is only contained in one list being sorted and thus we use a total of
O((n + t) logm(n + t)) = O((n + t) logm n) I/Os to sort the segments. In constructing each
node we only use a linear number of I/Os, plus the number of I/Os used on priority queue
operations. Since the number of priority queue operations is O(T), the total number of of
I/Os we use to construct the whole structure is bounded by O((n+ t) logm n).

3.2.2 Filtering Queries Through the Structure

We have now constructed an extended external segment tree on the N segments, and in
the process of doing so we have reported some of the intersections between them. The
intersections that we still have to report must be between segments stored in different nodes.
In fact intersections involving segments stored in a node v can only be with segments stored
in nodes below v or in nodes on the path from v to the root. Therefore we will report all
intersections if, for all nodes v, we report intersections between segments stored at v and
segments stored in nodes below v. But in v segments stored in nodes below v must be similar
to the segments we called small in the red-blue line segment algorithm. Thus, if in each node v
we had a list of endpoints of segments stored in nodes below v, sorted according to the long
segment in v immediately on top of them, we could report the remaining intersections with

91

the algorithm that was used in Section 3.1.
In order to report the remaining intersections we therefore preprocess the structure and

filter the endpoints of the O(N + T) segments stored in the structure through the structure
as we did in section 2.3.2. At each node the filtering process constructs a list of endpoints
below the node sorted according to dominating segment among the segments stored in the
node. At each node we can then scan this list to collect the relevant endpoints and then
report intersections with the algorithm used in Section 3.1. For all nodes on one level of
the structure the cost is linear in the number of segments and endpoints processed, that is,
O(n+ t) I/Os, plus a term linear in the number of new intersections reported.

Recall that the preprocessing of the structure in Section 2.3.2 consisted of a sampling of
every (2

√
m/4)th segment of every slab in a node, which was then augmented to the segments

stored in the child corresponding to the slab. The process was done from the root towards the
leaves. We will do the same preprocessing here, except that because we decreased the fanout to
(m/4)1/4 we only sample every (2(m/4)1/4)th segment in a slab. However, as we are building
the structure on intersecting segments we should be careful not to introduce intersections
between segments stored in the multislab lists of a node when augmenting the lists with
sampled segments. Therefore we do the preprocessing while we are building the structure.
Thus, in the construction process described in the previous section, after constructing the
sorted multislab lists of a node, we sample every (2(m/4)1/4)th segment in each slab precisely
as in Section 2.3.2. We then send these segments down to the next level together with the
other “normal” segments that need to be recursively stored further down the tree. However,
we want to make sure that the sampled segments are not broken, but stored on the next
level of the structure. Otherwise we cannot I/O-efficiently filter the query points through the
structure, as the sampled segments are stored on the next level to make sure that the points
are not to unsorted relative to the segments stored in a node. Therefore we give the sampled
segments a special mark and make sure that we only break unmarked segments. We can do
so because two marked segments can never intersect, otherwise they would have been broken
on the previous level.

By the same argument used in Section 2.3.2 to prove Lemma 6 we can prove that the
augmentation of sampled segments does not asymptotically increase the number of segments
stored on each level of the structure. Also all the sampling and augmentation work can be
done in a linear number of I/Os on each level of the structure. This means that the number of
I/Os used to construct the structure is kept at O((n+t) logm n), even when the preprocessing
is done as an integrated part of it.

After the construction and preprocessing we are ready to filter the O(N + T) endpoints
through the O(logm n) levels of the structure. Recall by referring to Figure 5 that in order to
do the filtering we first sort the points by x coordinate and distribute them among the leaves.
Then for each leaf in turn we find the dominating segments of the points assigned to the leaf
and sort the points accordingly. Finally, the points are repeatedly filtered one level up until
they reach the root.

The sorting of the points by x coordinate can be done in O((n+ t) logm(n+ t)) = O((n+
t) logm n) I/Os. Also each of the filtering steps can be done in a linear number of I/Os by
the same argument as in Section 2.3.2 and the previous discussion. However, our structure
lacks one important feature which we used in Section 2.3.2 to find dominating segments in
the leaves. As in Section 2.3.2 we can argue that a leaf represents less than M/4 endpoints
of the original segments, but as new segments and thus endpoints are introduced during
the construction of the structure we cannot guarantee that the number of segments stored

92

in a leaf is less than M/2. Therefore, we cannot find the dominating segments by loading
all segments stored in a leaf into internal memory and using an internal memory algorithm.
Also, the segments stored in a leaf may intersect each other and we need to find and reports
such intersections. However, assuming that we can report such intersections and produce the
sorted list of endpoints for each leaf, the rest of the algorithm runs in O((n + t) logm n + t′)
I/Os, where T ′ is the number of intersections found during the filtering of the endpoints
through the structure. If T1 = T + T ′ is the total number of intersections reported then this
number is clearly O((n+ t1) logm n).

In order to overcome the problems with leaves containing more thanM segments we do the
following: We collect all the segments stored in such leaves. The number of collected segments
must be less than 2T1 (actually less than 2T), since the involved leaves contain more than
M segments but less than M/2 of the original N segments. The same holds for the number
of endpoints assigned to the leaves. We then recursively build an external extended segment
tree on these segments and filter the relevant endpoints through the structure in order to
report intersections between the segments and produce a list of the points sorted according
to dominating segment. If we do not count the I/Os used to process the leaves in this tree
this costs us O((t1 + t2) logm n) I/Os. Here T2 is the number of intersections reported. Now
we again need to collect the less than 2T2 segments in the leaves of the new tree containing
more than M segments and recursively solve the problem for those segments. The process
stops when all leaves contain less than M segments, and the total number of I/Os used on
all the structure is then O(n logm n + 2

∑
i ti logm n) = O((n + tt) logm n), where Tt is the

total number of intersections reported. This completes our algorithm for the general segment
intersection problem, giving us the following theorem:

Theorem 3 All T intersections between N line segments in the plane can be reported in
O((n+ t) logm n) I/O operations.

4 Conclusions

In this paper, we have presented efficient external-memory algorithms for large-scale geometric
problems involving collections of line segments in the plane, with applications to GIS systems.
We have obtained these algorithms by combining buffer trees and distribution sweeping with
a powerful new variant of fractional cascading designed for external memory.

The following two important problems, which are related to those we have discussed in
this paper, remain open:

• If given the vertices of a polygon in the order they appear around its perimeter, can we
triangulate the polygon in O(n) I/O operations?

• Can we solve the general line segment intersection reporting problem in the optimal
O(n logm n+ t) I/O operations?

93

Chapter 8

Optimal Dynamic Interval
Management in External Memory

95

Optimal Dynamic Interval Management in External Memory∗

Lars Arge† Jeffrey Scott Vitter‡
BRICS‡ Dept. of Computer Science

Dept. of Computer Science Duke University
University of Aarhus Durham, NC 27708–0129

Aarhus, Denmark USA

August 1996

Abstract

We present a space- and I/O-optimal external-memory data structure for answering
stabbing queries on a set of dynamically maintained intervals. Our data structure settles
an open problem in databases and I/O algorithms by providing the first optimal external-
memory solution to the dynamic interval management problem, which is a special case
of 2-dimensional range searching and a central problem for object-oriented and temporal
databases and for constraint logic programming. Our data structure is simultaneously
optimal in space and I/O, and it is the first optimal external data structure for a 2-
dimensional range searching problem that has worst-case as opposed to amortized update
bounds. Part of the data structure uses a novel balancing technique for efficient worst-case
manipulation of balanced trees, which is of independent interest.

1 Introduction

In recent years there has been much effort in developing efficient external-memory data struc-
tures for range searching, which is a fundamental primitive in several large-scale applications,
including spatial databases and geographic information systems (GIS) [52, 70, 84, 114, 124],
graphics [60], indexing in object-oriented and temporal databases [79, 109], and constraint
logic programming [78, 79]. Often the amount of data manipulated in such applications are
too large to fit in main memory and must reside on disk, and in such cases the Input/Output
(I/O) communication can become a bottleneck. NASA’s EOS project GIS system [52] is
an example of such an application, as it is expected to manipulate petabytes (thousands of
terabytes, or millions of gigabytes) of data! The effect of the I/O bottleneck is getting more
pronounced as internal computation gets faster, and especially as parallel computing gains
∗ An extended abstract version of this paper was presented at the 1996 IEEE Symposium on Foundations

of Computer Science (FOCS’96).
† Supported in part by the ESPRIT Long Term Research Programme of the EU under project number 20244

(ALCOM–IT). Part of this work was done while a Visiting Scholar at Duke University. Email: large@brics.dk.
‡ Supported in part by the National Science Foundation under grant CCR–9522047 and by the U.S. Army

Research Office under grant DAAH04–93–G–0076. Email: jsv@cs.duke.edu.
‡ Acronym for Basic Research in Computer Science, a Center of the Danish National Research Foundation.

97

popularity [107]. Currently, technological advances are increasing CPU speeds at an annual
rate of 40–60% while disk transfer rates are only increasing by 7–10% annually [113].

In this paper we consider the special case of external 2-dimensional range searching called
dynamic interval management, which is highlighted in [78, 79, 110, 121] as one of the impor-
tant special cases of external range searching because of its applications in object-oriented
databases and constraint logic programming. The problem of developing a space and I/O-
time optimal external data structure for the problem is mentioned in [110] as one of the major
theoretical open problems in the area, and in [79] it is even called “the most elegant open
question.” In this paper we develop such an optimal structure.

1.1 Memory model and previous results

We will be working in the standard model for external memory with one (logical) disk [82, 5].
We assume that each external-memory access transmits one page of B units of data, which
we count as one I/O. We measure the efficiency of an algorithm in terms of the number of
I/O operations it performs. Often one also makes the assumption that the main memory is
capable of holding O(B2) units, that is, O(B) blocks of data. Throughout most of this paper
we also make this assumption, but in section 4 we show how to do without it.

While B-trees and their variants [21, 51] have been an unqualified success in support-
ing external dynamic 1-dimensional range searching, they are inefficient at handling more
general problems like 2-dimensional or higher-dimensional range searching. The problem of
2-dimensional range searching in both main and external memory has been the subject of
much research. Many elegant data structures like the range tree [24], the priority search
tree [89], the segment tree [23], and the interval tree [53, 54] have been proposed for use
in main memory for 2-dimensional range searching and its special cases (see [43] for a de-
tailed survey). Most of these structures are not efficient when mapped to external memory.
However, the practical need for I/O support has led to the development of a large number
of external data structures that do not have good theoretical worst-case update and query
I/O bounds, but do have good average-case behavior for common problems. Such meth-
ods include the grid file [95], various quad-trees [114, 115], z-orders [103] and other space
filling curves, k-d-B-tress [111], hB-trees [86], cell-trees [68], and various R-trees [69, 117].
The worst-case performance of these data structures is much worse than the optimal bounds
achievable for dynamic external 1-dimensional range searching using B-trees (see [79] for a
complete reference on the field).

Recently some progress has been made on the construction of external 2-dimensional
range searching structures with provably good performance. In [79] the dynamic interval
management problem is considered, in which intervals can be inserted and deleted, and given
a query interval all current intervals that intersect the query interval must be reported.
This problem is crucial for indexing constraints in constraint databases and in temporal
databases [78, 79, 109]. A key component of external dynamic interval management is an-
swering stabbing queries. Given a set of intervals, to answer a stabbing query with a point q
one has to report all intervals that contain q. By regarding an interval [x, y] as the point (x, y)
in the plane, a stabbing query with q reduces to the special case of two-sided 2-dimensional
range searching called diagonal corner queries with corner (q, q) on the x = y line, as shown
in Figure 1. The metablock tree developed in [79] answers diagonal corner queries in optimal
O(logB N + T/B) I/Os using optimal O(N/B) blocks of external memory, where T denotes
the number of points reported. The structure is fairly involved and supports only insertions

98

��

�
�
�
�

��
��
��
��

��
��
��
����

�
�
�
�

����

�
�
�
�

����

����
�
�
�
�

�
�
�
�

�
�
�
�

��

���� ��

�
�
�
���

�
�
�
�

��
��
��
��

��
��
��
������

�
�
�
�

�
�
�
�

����

����

����
�
�
�
�

�
�
�
�

����

���� ��

�
�
�
�

�
�
�
�
��

�
�
�
�

��
��
��
��

��
��
��
������

�
�
�
�

�
�
�
�

����

����

����
�
�
�
�

�
�
�
�

�
�
�
�

��

������

�
�
�
���

�
�
�
�

�
�
�
�

��

��

����

��

��
��
��
��

�
�
�
���

��
��
��

3-sided query2-sided querydiagonal corner query general 2-dimensional query

Figure 1: Different types of 2-dimensional range queries.

(not deletions) in O(logB N + (logB N)2/B) I/Os amortized.
As mentioned a number of elegant internal-memory solutions exist for 2-dimensional range

searching. The priority search tree [89] for example can be used to answer slightly more general
queries than diagonal corner queries, namely 3-sided range queries (Figure 1), in optimal query
and update time using optimal space. A number of attempts have been made to externalize
this structure, including [27, 74, 110], but they are all non-optimal. The structure in [74]
uses optimal space but answers queries in O(log2 N + T/B) I/Os. The structure in [27] also
uses optimal space but answers queries in O(logB N + T) I/Os. In both papers a number of
non-optimal dynamic versions of the structures are also developed. In [110] a technique called
path caching for transforming an efficient internal-memory data structure into an I/O efficient
one is developed. Using this technique on the priority search tree results in a structure that
can be used to answer 2-sided queries, which are slightly more general than diagonal corner
queries, but slightly less general than 3-sided queries; see Figure 1. This structure answers
queries in the optimal O(logB N + T/B) I/Os and supports updates in amortized O(logB N)
I/Os, but uses slightly non-optimal O((N/B) log2 log2 B) space. Various other external data
structures for answering 3-sided queries are also developed in [79] and in [110]. In [121]
another attempt is made on designing a structure for answering 3-sided queries and a dynamic
structure called the p-range tree is developed. The structure uses linear space, answers queries
in O(logB N +T/B+ IL∗(B)) I/Os and supports updates in O(logBN + (logB N)2/B) I/Os
amortized. The symbol IL∗(·) denotes the iterated log∗ function, that is, the number of times
one must apply log∗ to get below 2. It should be mentioned that the p-range tree can be
extended to answer general 2-dimensional queries, and that very recently a static structure
for 3-dimensional queries has been developed in [130].

The segment tree [23] can also be used to solve the stabbing query problem, but even in
internal memory it uses more than linear space. Some attempts have been made to external-
izing this structure [28, 110] and they all use O((N/B) log2 N) blocks of external memory.
The best of them [110] is static and answers queries in the optimal O(logBN + T/B) I/Os.

1.2 Overview of our results

Our main results in this paper is an optimal external-memory data structure for the stabbing
query problem. As mentioned, this result leads to the first known optimal solution to the
interval management problem, and thus it settles an open problem highlighted in [79, 110,
121]. Our data structure uses O(N/B) blocks of external memory to maintain a set of N
intervals, such that insertions and deletions can be performed inO(logB N) I/Os and such that
stabbing queries can be answered in O(logB N+T/B) I/Os. In Figure 2 we compare our result

99

Space (blocks) Query I/O bound Update I/O bound
Priority search tree [74] O(N/B) O(log2 N + T/B)
XP-tree [27] O(N/B) O(logB N + T)
Metablock tree [79] O(N/B) O(logB N + T/B) O(logB N + (logB N)2/B)

amortized (inserts only)
P-range tree [121] O(N/B) O(logB N + T/B+ O(logB N + (logB N)2/B)

IL∗(B)) amortized
Path Caching [110] O((N/B) log2 log2B) O(logB N + T/B) O(logBN) amortized
Our Result O(N/B) O(logB N + T/B) O(logBN)

Figure 2: Comparison of our data structure for stabbing queries with previous data structures.

with previous solutions. Note that unlike previous non-optimal solutions to the problem,
the update I/O bounds for our data structure are worst-case. Previously no external data
structure with worst-case update bounds was known for any 2-dimensional range searching
problem. Also, as mentioned, our structure works without the assumption often made that
the internal memory is capable of holding O(B2) items.

Our solution to the stabbing query problem is an external-memory version of the interval
tree [53, 54]. In Section 2 we present the basic structure where the endpoints of the intervals
stored in the structure belong to a fixed set of points. In Section 3 we then remove the fixed
endpoint-set assumption. In internal memory the assumption is normally removed by using a
BB[α]-tree [96] as base search tree structure [90], and this leads to amortized update bounds.
But as BB[α]-trees are not very suitable for implementation in external memory, we develop
a special weight-balanced B-tree for use in our external interval tree structure. Like in internal
memory this results in amortized update bounds. In Section 4 we then show how to remove
the amortization from the structure and how to avoid making the assumption about the size
of the internal memory.

Our weight-balanced B-tree is of independent interest because we can use it in the design of
other efficient external data structures and use it to remove amortization from other external-
memory as well as internal-memory data structures. For example fixing B to a constant in
our result yields an internal-memory interval tree with worst-case update bounds. Our B-
tree structure can also be used as a (simpler) alternative to the rather complicated structure
developed in [136] in order to add range restriction capabilities to internal-memory dynamic
data structures. It seems possible to use the techniques in [136] to remove the amortization
from the update bound of the internal interval tree, but our method is much simpler.

Finally, in Section 5 we discuss how to use the ideas behind our external interval tree to
develop an external version of the segment tree with space bound O((N/B) logB N). This
improves upon previously known data structures [28, 110], which use O((N/B) log2N) blocks
of external memory. Our structure has worst-case optimal query and update I/O bounds,
whereas the other known structures are only query optimal in the static case. Fixing B to a
constant yields an internal-memory segment tree (without the fixed endpoint set assumption)
with worst case update bounds. Again we believe that our way of removing the amortization
is simpler than a possible complicated use of the techniques in [136].

100

2 External-memory interval tree with fixed endpoint set

In this section we present the basic structure where the endpoints of the intervals have to
belong to a fixed set. We also assume that the internal memory is capable of holding O(B)
blocks of data. As mentioned, we remove these assumptions in Sections 3 and 4.

2.1 Preliminaries

Our external-memory interval tree makes use of two kinds of secondary structures: the B-tree
and a “corner structure” [79].

B-trees [21, 51] or more generally (a, b)-trees [73] are search tree structures suitable for
external memory:

Lemma 1 A set of N elements can be stored in a B-tree structure using O(N/B) blocks of
external memory such that updates and queries can be performed in O(logB N) I/Os.

A B-tree on N sorted elements can be built in O(N/B) I/Os and the T smallest (largest)
elements can be reported in O(T/B + 1) I/Os

A “corner structure” [79] is a stabbing query data structure that is efficient when the
number of segments stored in it is O(B2).

Lemma 2 (Kanellakis, Ramaswamy, Vengroff, Vitter [79]) A set of k ≤ B2 segments
can be represented using O(k/B) blocks of external memory such that a stabbing query can be
answered in O(T/B + 1) I/O operations where T is the number of reported segments.

As discussed in [79] the corner structure can be made dynamic by maintaining a special
update block. Updates are inserted in this block and the structure is then rebuilt using O(B)
I/Os once B updates have been inserted. This leads to the following lemma:

Lemma 3 A set of k ≤ B2 segments can be represented using O(k/B) blocks of external
memory such that a stabbing query can be answered in O(T/B + 1) I/Os and an update can
be performed in O(1) I/Os amortized. The structure can be constructed in O(k/B) I/Os.

Note that the assumption on the size of the internal memory is (among other things)
used to assure that all the segments in the corner structure fit in internal memory during a
rebuilding process, that is, a rebuilding is simply done by loading the whole structure into
internal memory, rebuild it, and write it back to external memory. In Section 4.2 we show how
the update bounds can be made worst-case, and in that process we remove the assumption on
the size of the internal memory. In that section it will also become clearer why the structure
is called a “corner structure.”

2.2 The structure

An internal-memory interval tree consists of a binary tree over the endpoints of the segments
stored in the structure, with the segments stored in secondary structure in the internal nodes
of this tree [53]. We associate an interval Xv with every node v consisting of all the endpoints
below v. The interval Xr of the root r is thus divided into two by the intervals of its children,
and we store a segment in r if it contains the “boundary” between these two intervals. Intervals
on the left (right) side of the boundary are stored recursively in the left (right) subtree.

101

v

v1 v2 v3 v4 v5

Xv

Xv2 Xv3 Xv4 Xv5

s

Xv1

b1 b2 b3 b4 b5 b6 bi+1xbi

Figure 3: A node in the base tree Figure 4: Reporting segments

Segments in r are stored in two structures: a search tree sorted according to left endpoints
of the segments and one sorted according to right endpoints. To do a stabbing query with x
we report the segments in r that contain x and then recurse to the subtree corresponding
to x. If x is contained in the interval of r’s left child, we find the segments in r containing x
by traversing the segments in r sorted according to left endpoints, from the segments with
smallest left endpoints toward the ones with largest left endpoints, until we meet a segment
that does not contain x. All segments after this segment in the sorted order will not contain x.

When we want to externalize the interval tree structure and obtain a structure with height
O(logB N), we need to increase the fan-out of the nodes in the tree over the endpoints. This
creates a number of problems when we want to store segments in secondary structures such
that queries can be answered efficiently. The starting idea behind our successful externaliza-
tion of the structure, as compared with previous attempts [27, 110], is that the nodes in our
structure have fan-out

√
B instead of B, following ideas from [11, 15]. The implications of

this smaller fan-out are explained later in this section.
The external-memory interval tree on a set of intervals I with endpoints in a fixed set E

is defined in the following way (we assume without loss of generality that no two intervals
in I have the same endpoint, and that |E| = (

√
B)iB for some i ≥ 0): The base tree is

a perfectly balanced tree over the endpoints E that has branching factor
√
B. Each leaf

represents B consecutive points from E. As in the internal memory case we associate an
interval Xv with each internal node v consisting of all endpoints below v. The interval Xv is
further divided into the

√
B subintervals associated with the children of v; see Figure 3. For

illustrative purposes we call the subintervals slabs and the left (right) endpoint of such a slab
a slab boundary. Finally, we define a multislab to be a contiguous range of slabs, such as for
example Xv2Xv3 in Figure 3.

An internal node v now stores segments from I that cross one or more of the slab bound-
aries associated with v, but not any of the slab boundaries associated with v’s parent. A
leaf stores segments with both endpoints among the endpoints represented by the leaf. The
number of segments stored in a leaf is less than B/2 and they can therefore be stored in one
block. Each internal node v contains a number of secondary structures used to store the set
of segments Iv stored in the node:

• For each of the
√
B + 1 slab boundaries bi, 1 ≤ i ≤

√
B + 1,

– A right slab list containing segments from Iv with right endpoint between bi
and bi+1, sorted according to right endpoint.

– A left slab list containing segments from Iv with left endpoint between bi and bi−1,
sorted according to left endpoint.

102

– O(
√
B) multislab lists—one for each choice of a boundary to the right of bi. The

list for boundary bj (j > i) contains segments from Iv with left endpoint between
bi−1 and bi and right endpoint between bj and bj+1. The list is sorted according
to right endpoint of the segments.

• If the number of segments stored in a multislab list is less than Θ(B) we instead store
them in a special underflow structure together with the segments from other multislab
lists containing o(B) segments.

To be more precise, only if a multislab contains more than B segments we definitely
store the segments in the multislab list. If the number of segments is between B/2
and B then the segments are either stored in the multislab list or in the underflow
structure. Note that the underflow structure always contains less than B2 segments.

An important point is that there are about (
√
B)2/2 = B/2 multislab lists associated with

each internal node, since we used a fan-out of
√
B (instead of B), and thus we have room

in each internal node to store the pointers to its secondary data structures. The penalty for
using a fan-out of

√
B is only a factor of 2 in the height of the tree.

A segment is thus stored in two or three structures: two slab lists, and possibly in a
multislab list or in the underflow structure. As an example, segment s in Figure 3 will
be stored in the left slab list of b2, in the right slab list of b4, and in the multislab list
corresponding to these two slab boundaries. Note the similarity between the slab lists and
the sorted lists of segments in the nodes of an internal-memory segment tree. As in the
internal case s is stored in two sorted lists—one for each of its endpoints. This represents the
part of s to the left of the leftmost boundary contained in s, and the part to the right of the
rightmost boundary contained in s. Unlike in the internal case, in the external case we also
need to store/represent the part of s between the two extreme boundaries. This is done using
the multislab lists.

All lists in a node are implemented using the B-tree structure from Lemma 1, and the
underflow structure is implemented using the corner structure from Lemma 3. Finally, we
maintain information like size and place of each of the O(B) structures associated with a
node in O(1) “administration” blocks. The number of blocks used in a node that cannot be
accounted for by segments (blocks that are not at least half-filled with segments) is O(

√
B):

O(1) administration blocks, one block for each of the 2
√
B slab lists, and one for the underflow

structure. As each leaf contains B endpoints the tree has O(|E|/B
√
B) internal nodes, which

again means that we use a total of O(|E|/B) blocks to store the whole structure. Note that
if we did not store segments belonging to a multislab having o(B) segments in the underflow
structure, we could have Ω(B) sparsely utilized blocks in each node, which would result in a
non-optimal space bound.

2.2.1 Operations on the structure

In order to do a stabbing query with x on our external interval tree we search down the
structure for the leaf containing x. At each internal node we pass in this search we should
report the relevant segment among the segments stored in the node. Let v be one such node
and assume that x falls between slab boundary bi and slab boundary bi+1. We do the following
on v’s secondary structures:

103

• We load the O(1) administration blocks.

• We load and report the segments in all multislab lists that contain segments that cross
bi and bi+1.

• We do a stabbing query with x on the underflow structure and report the result.

• We report segments from bi’s right slab list from the largest toward the smallest (ac-
cording to right endpoint) until we meet a segment that does not contain x.

• We report segments from bi+1’s left slab list from the smallest toward the largest until
we meet a segment that does not contain x.

It is easy to realize that this process will indeed report all the relevant segments. All
segments stored in v that contain x are either stored in one of the relevant multislab lists,
in the underflow structure, or in the right slab list of bi or the left slab list of bi+1; refer to
Figure 4. Our algorithm correctly reports all the relevant segments in the right slab list of bi,
because if a segment in the right-to-left order of this list does not contain x then neither does
any other segment to the left of it. A similar argument holds for the left-to-right search in
the left slab list of bi+1. Again note the similarity with the internal interval tree.

The query algorithm uses an optimal number of I/O operations, as can be demonstrated as
follows: The search with x in the base structure uses O(log√BN) = O(logBN) I/Os. In each
node on the search path we only use O(1) I/Os that are not “paid for” by reportings (blocks
read that contain Θ(B) output segments): We use O(1) I/Os to load the administration
blocks, O(1) overhead to query the underflow structure, and O(1) overhead for each of the
two searches in the slab lists. The underflow structure is again crucial because it means that
all blocks loaded in order to report the segments in the relevant multislab lists contain Θ(B)
segments.

Lemma 4 There exists a data structure using O(N/B) blocks of external memory to store
segments with endpoints among a set E of size N , such that stabbing queries can be performed
in O(logB N + T/B) I/Os in the worst case.

In order to insert a new segment s into the structure we do the following: We search down
the base tree until we find the first node where s crosses one or more slab boundaries. Then
we load the O(1) administration blocks and insert s into the two relevant slab lists. If the
multislab list that we want to insert s into exists, we also insert s into that list. Otherwise the
other segments (if any) belonging to s’s multislab list are stored in the underflow structure
and we insert s in this structure. If that brings the number of segments belonging to the
same multislab as s up to B, we delete them from the underflow structure by rebuilding it
totally, and create a new multislab list with the B segments. Finally, we update and store
the administration blocks.

In order to delete a segment s we again search down the structure until we find the node
where s is stored. We then delete s from the two relevant slab lists. If s is stored in the
underflow structure (we can figure that out by checking if the multislab list for s exists) we
just delete it from the structure. Otherwise we delete s from the multislab list it is stored in.
If the number of segments in this list falls below B/2 by the deletion of s, we remove the list
and insert all the segments in the underflow structure. The latter is done by rebuilding the
underflow structure. Finally, we again update and store the administration blocks.

104

To analyze the I/O usage of an update, note that for both inserts and deletes we use
O(logB N) I/Os to search down the base tree, and then we in one node use O(logB N) I/Os
to update the secondary list structures. The manipulation of the underflow structure uses
O(1) I/Os amortized, except in the cases where the structure is rebuilt, where it uses O(B)
I/Os. In the latter case there must have been at least B/2 “inexpensive” updates involving
segments in the same multislab as s since the time of the last rebuilding; by “inexpensive”
we mean updates where no rebuilding is done. Hence the amortized I/O use remains O(1).
To summarize, we have shown the following:

Theorem 1 There exists a data structure using O(N/B) blocks of external memory to store
segments with endpoints among a set E of size N , such that stabbing queries can be performed
in O(logB N + T/B) I/Os worst-case and such that updates can be performed in O(logB N)
I/Os amortized.

3 General external-memory interval tree

In order to make our interval tree “dynamic” (that is, to remove the assumption that the
intervals have endpoints in a fixed set E) we will have to use a dynamic search tree as base
tree. There are many possible choices for such a tree: height-balanced, degree-balanced,
weight-balanced, and so on. The different choices of dynamic tree lead to different balancing
methods, but normally (and also in this case) when search trees are augmented with secondary
structures it turns out that a rebalancing operation requires work proportional to the number
of items in the subtree with the node being rebalanced as root. In internal memory a natural
choice of dynamic base tree is therefore the BB[α]-tree [96], because in this structure a node
with w items below it (with “weight” w) can only be involved in a rebalancing operation
for every Ω(w) updates that access (pass through) the node [30, 90]. This leads to an O(1)
amortized bound on performing a rebalancing operation. Unfortunately BB[α]-trees are not
suitable for implementation in external memory. The main problem is of course that BB[α]-
trees are binary and that there does not seem to be an easy way of grouping nodes together
in order to increase the fan-out while maintaining the other useful properties of BB[α]-trees.

B-trees on the contrary are very suitable for implementation in external memory, so they
are a natural choice as dynamic base structure. However, these trees do not have the property
that a node of weight w can only be involved in a rebalance operation for every Ω(w) updates
that access the node. Therefore we first develop an elegant variant of B-trees, which we call
weight-balanced B-trees, that possesses the needed property. A node in a normal B-tree can
have subtrees of widely varying weights. The ratio between the largest subtree weight and the
smallest one can be exponential in the height of the node. In our weight-balanced B-tree this
ratio is a small constant factor. Fortunately, as we shall see later, the rebalancing operations
on the weight-balanced B-tree (splits of nodes instead of rotations) allow us to spread the
rebalancing work over a number of updates in an easy way, and thus we can remove the
amortization from the update bounds.

3.1 Weight-balanced B-tree

In a normal B-tree [21, 51] all leaves have the same depth, and each internal node has at least a
and at most 2a− 1 children, where a is some constant. In weak B-trees or (a, b)-trees [73] a
wider range in the number of children is allowed. Here we define the weight-balanced B-tree

105

by imposing constraints on the weight of subtrees rather than on the number of children. The
other B-tree characteristics remain the same: The leaves are all on the same level (level 0),
and rebalancing is done by splitting and fusing internal nodes.

Definition 1 The weight w(vl) of a leaf vl is defined as the number of elements in it. The
weight of an internal node v is defined as w(v) =

∑
v=parent (c)w(c).

Lemma 5 The weight w(v) of an internal node v is equal to the number of elements below v.

Proof : Easy by induction. 2

Definition 2 We say that T is a weight-balanced B-tree with branching parameter a and
leaf parameter k, where a > 4 and k > 0, if the following conditions hold:

• All leaves of T have the same depth and weight between k and 2k− 1.

• An internal node on level l has weight less than 2alk.

• An internal node on level l except for the root has weight greater than 1
2a

lk.

• The root has more than one child.

These definitions yield the following lemma:

Lemma 6 All nodes in a weight-balanced B-tree with parameters a and k except for the root
have between a/4 and 4a children. The root has between two and 4a children.

Proof : The leaves actually fulfill the weight constraint on the internal node, since k > 1
2a

0k
and 2k − 1 < 2a0k. The minimal number of children an internal node on level l can have is
1
2a

lk/2al−1k = a/4, and the maximal number of children is 2alk/1
2a
l−1k = 4a. For the root

the upper bound follows from the same argument and the lower bound is by definition. 2

The following observation about weight-balanced trees assures that they are balanced:

Lemma 7 The height of a weight-balanced B-tree with parameters a and k on N elements is
O(loga(N/k)).

Proof : Follows directly from Definition 2 and Lemma 6. 2

In order to do an update on the weight-balanced B-tree we search down the tree to find
the leaf in which to do the update. Then we do the actual update, and we may then need
to rebalance the tree in order to make it satisfy Definition 2. For simplicity we only consider
inserts in this section. In the next section, where we will use the weight-balanced B-tree as
base tree in our external interval tree, we discuss how deletes can be handled using the global
rebuilding technique [105]. After finding the leaf w to insert a new elements into, we do the
following: We insert the element in the sorted order of elements in w. If w now contains
2k elements we spilt it into two leaves w and w′, each containing k elements, and insert a
reference to w′ in parent(w). After the insertion of the new element the nodes on the path
from w to the root of T can be out of balance; that is, the node vl on level l can have weight
2alk. In order to rebalance the tree we therefore split all such nodes starting with the nodes

106

on the lowest level and working toward the root. In the case of vl we want to split it into
two nodes v′l and v′′l of weight alk and insert a reference to the new node in parent(vl) (if
parent(vl) does not exists, that is, if we are splitting the root, we also create a new root with
two children). But a perfect split is not generally possible if we want to split between two
of vl’s children, such that v′l gets the first (leftmost) i children for some i and v′′l gets the
rest of the children. However, we can always find an i such that if we split at the ith child
the weights of both v′l and v′′l will be between alk − 2al−1k and alk + 2al−1k, since nodes on
level l have weight less than 2al−1k. As a > 4, the nodes v′l and v′′l now fulfill the constraints
of Definition 2; that is, their weights are between 1

2a
lk and 2alk. Note that if we strengthen

the assumption about a to be a > 8, we can even split the node at child i− 1 or i+ 1 instead
of at child i, and still fulfill the constraints after doing the split. We will use this property in
the next section.

Because of the definition of weight the split of a node v does not change the weight of
parent(v). This means that the structures are relatively simple to implement, as each node
only need to know on which level it is and the weight of each of its children. This information
can easily be maintained during an insertion of a new element. The previous discussion and
Lemma 7 combine to prove the following:

Lemma 8 The number of rebalancing operations (splits) after an insertion of a new element
in a weight-balanced B-tree T with parameters a and k is bounded by O(loga(|T |/k)).

The following lemma now states the fact that will become crucial in our application.

Lemma 9 After a split of a node vl on level l into two nodes v′l and v′′l , at least alk/2 inserts
have to pass through v′l (or v′′l) to make it split again. After a new root r in a tree containing
N elements is created, at least 3N inserts have to be done before r splits again.

Proof : After a split of vl the weights of v′l and v′′l are less than alk+2al−1k < 3/2al, as a > 4.
Each node will split again when its weight reaches 2alk, which means that its weight (the
number of inserts passing through it) must increase by alk/2. When a root r is created on
level l it has weight 2al−1k = N . It will not split before it has weight 2alk > 2 · 4al−1k =
4N . 2

As mentioned in the introduction one example of how the weight-balanced B-tree can
be used as a simpler alternative to existing internal-memory data structures, is in adding
range restriction capabilities to dynamic data structures as described in [136]. We will not
go into details with the construction, but refer the interested reader to [136]. The essence
in the construction is to have a base search tree and then augment every internal node of
this tree with another dynamic data structure on the set of items in the leaves below the
node. The critical point in the construction is to choose a base tree structure such that one
does not have to do too much work on the reconstruction of the secondary structures during
rebalancing of the base tree. Using a BB[α]-tree as the base tree results in good amortized
update bounds as discussed, and in [136] it is shown how good worst-case bounds can be
obtained by a complicated redefinition of the BB[α]-tree and the operations on it. However,
using our weight-balanced B-tree with branching parameter a = 4 and leaf parameter k = 1
as base tree in the construction, it is easy to obtain good worst case bounds. The result
follows from the fact that rebalancing in our tree is done by splitting nodes and the fact
that Ω(w) updates have to pass through a node of weight w between updates which cause

107

rebalancing operations involving the node (Lemma 9). The large number of updates between
splits of a node immediately implies the good amortized bound, and using the global rebuilding
technique [105], where the rebuilding of the secondary structures is done lazily over the
next O(w) updates that access the node, results in the worst-case bound. The problem in
using the global rebuilding technique directly on the BB[α]-tree is that rebalancing on this
structure is done by rotations, which means that we can not simply continue to query and
update the “old” secondary structure while we are lazily building new ones. The ideas and
techniques used in our construction is very similar to the ones presented in the succeeding
sections of this paper and are therefore omitted.

In order to obtain an external-memory search tree structure suitable for use in our “dy-
namic” interval tree we choose 4a =

√
B and 2k = B and obtain a structure with properties

as described in the following theorem.

Theorem 2 There exists a search tree data structure that uses O(N/B) blocks of external
memory to store N elements. A search or an insertion can be performed in O(logB N) I/Os
in the worst case.

Each internal node v in the data structure, except for the root, has Θ(
√
B) children. If v is

at level l these children divide the Θ((
√
B)lB) elements below v into Θ(

√
B) sets. Rebalancing

is done by splitting nodes. When a node v is split, at least Θ((
√
B)lB) elements must have

been inserted below v since v was created or since the last time v was split. The number of
elements below the root is N . In order for a new root to be created, Θ(N) elements have to
be inserted into the data structure.

Proof : Each internal node can be represented using O(1) blocks. As the number of internal
nodes is smaller than the number of leaves, the space bound follows from the fact that each
leaf contains Θ(B) elements. A split can be performed in O(1) I/Os: We simply load the
O(1) blocks storing the node into internal memory, compute where to split the node, and
write the O(1) blocks defining the two new nodes with updated information back to external
memory. Finally, we update the information in the parent in O(1) I/Os. This means that
the insertion and search I/O bound follow directly from Lemmas 7 and 8.

The second part of the theorem follows directly from Definition 2 and Lemma 5, 6,
and 9. 2

3.2 Using the weight-balanced B-tree to dynamize our data structure

As discussed earlier we now make our external interval tree “dynamic” by replacing the static
base tree in Section 2 with the newly developed weight-balanced B-tree. To insert a segment
we first insert the two new endpoints in the base tree and perform the necessary rebalancing,
and then we insert the segment as described in Section 2. If we can do the rebalancing in
O(logB N) I/Os we end up with an insert operation with the same I/O bound. As rebalancing
is done by splitting nodes we need to consider how to split a node when it contains secondary
structures. As previously discussed the key property we will use is that a node of weight w
can only be involved in a rebalance operation for every Ω(w) update that accesses the node.
Our goal will therefore be to split a node in O(w) I/Os.

Figure 5 shows that when v is split into two new nodes, what really happens is that v’s
slabs split along a slab boundary b such that v′ gets slabs on one side of b and v′′ gets the
rest. Then b is inserted among parent(v)’s slab boundaries. Now consider Figure 6 to realize

108

v

b

b

v’ v”

v

bi

b

bi+1

Figure 5: Splitting a node Figure 6: Moving segments

that when we split v we need to move a number of segments, which fall into two categories:
segments stored in v that contain b and (some of the) segments stored in parent(v) that
contain b. The first set of segments need to be removed from v’s secondary structures and
inserted in the appropriate secondary structures of parent(v). The second set of segments
need to be moved from some of parent(v) structures to some other new ones. We also need
to split v’s underflow structure (and the administration blocks) to complete the split. Note
that the number of segments that need to be moved is bounded by the weight of v, since they
all have one endpoint in Xv.

First consider the segments in v. To remove segments containing b from the right slab
lists of v, and collect them sorted according to right endpoint, we do the following for every
right slab list of v: We scan through the list (leaves of the B-tree) and output each segment
to one of two lists, one containing the segments that should stay in v and one containing
the segments that should move. Then we destroy the slab list (B-tree) and build a new one
from the segments that should stay in the list. After collecting the segments to be moved
from each of the right slab lists in this way, we can produce the total list of segments to
be moved sorted according to right endpoint, simply by appending the lists after each other
starting with the list from the leftmost slab boundary. In a similar way we scan through the
left slab lists to remove the same set of segments and produce a list of them sorted according
to left endpoint. Call the two list produced in this way Lr and Ll. The segments in Lr
and Ll need to be inserted in the slab lists of b in parent(v), but as also some segments from
parent(v) might need to be inserted in these two lists, we postpone the insertion until we have
moved all the relevant segments in parent(v). According to Lemma 1 we can scan through
all the K elements in a slab list (B-tree) in sorted order, and build a new slab list on K
sorted elements, in O(K/B) I/Os; hence, we can perform the above process in O(|Xv|/B)
I/Os. We also need to delete the segments in Ll and Lr from the relevant multislab lists and
the underflow structure. Note that if just one segment needs to be removed from a multislab
list all segments in the list need to be removed. Therefore we simply remove all multislab
lists that contain b, again using O(|Xv|/B) I/Os. Finally, we split the underflow structure
and at the same time we delete the segments containing b from the structure. This is done
by loading it into internal memory and for each of the two new nodes build a new structure
on the relevant segments. If the structure contains k segments we by Lemma 3 use O(k/B)

109

I/Os to do this, so in total we use O(|Xv|/B) I/Os on the whole process.
Now consider Figure 6 again. The segments we need to consider in parent(v) all have one

of their endpoints in Xv. For simplicity we only consider segments with left endpoint in this
interval. Segments with right endpoint in the interval can be handled similarly. All segments
with left endpoint in Xv stored in parent(v) cross boundary bi+1. This means that we need
to consider each of these segments in one or two of

√
B + 1 lists, namely in the left slab list

of bi+1 and maybe in one of
√
B multislab lists. When we introduce the new boundary b,

some of the segments in bi+1’s left slab list need to be moved to the new left slab list for b.
Therefore we scan through the list and produce two new lists, one for bi+1 and one for the
new boundary b, just like when we processed a slab list in v. We merge the list for b with
Ll and build a B-tree on all the segments. As all segments touched in this process have an
endpoint in |Xv|, we use O(|Xv|/B) I/Os to perform it. Similarly some of the segments in
multislabs with bi+1 as left boundary need to be moved to new multislabs corresponding to
the new boundary. Note that some of them might be stored in the underflow structure and
that we do not need to move such segments. To move the relevant segments we scan through
each of the relevant multislab lists and split them in two as previously. The key property
is now that all segments stored in the

√
B lists in question have their left endpoint in Xv.

This means that the total size of the lists is O(|Xv|) and we can again complete the process
in O(|Xv|/B) I/Os. If any of the multislab lists contain less than B/2 segments after this
process, we destroy them and insert the segments in the underflow structure. This is again
done by rebuilding it totally using O(|Xv|/B) I/Os. Finally, to complete the split process we
update the administration blocks of both v and parent(v).

To summarize, we have shown how to split a node v in O(|Xv|/B) I/Os. If v is at
level l, |Xv| is Θ((

√
B)lB) according to Theorem 2, which means that we use O((

√
B)l) I/Os.

Also according to Theorem 2, O((
√
B)lB) is the number of inserts that must pass the node

between splits. Thus we only use O(1/B) I/Os amortized to split a node, which again, by
the discussion in the beginning of this section, leads to the following lemma:

Lemma 10 There exists a data structure that uses O(N/B) blocks of external memory to
store N segments, such that stabbing queries can be answered in O(logB N + T/B) I/Os and
such that a new segment can be inserted in O(logB N) I/Os amortized.

Now as mentioned in Section 3.1 we can also handle deletions by using the global rebuilding
technique [105]. When we want to delete a segment s, we delete it from the secondary
structures as described in Section 2 without deleting the endpoints of s from the base tree.
Instead we just mark the two endpoints in the leaves of the base tree as deleted. This does
not increase the number of I/Os needed to do a later update or query operation, but it does
not decrease it either. We can afford being lazy with respect to deletes, since the query
and update I/O bounds remain of the same order even if we do not do any rebalancing in
connection with deletes for up to, say, N/2 delete operations (Note that such a lazy approach
does not work for inserts). When we have performed too many deletes and the number of
undeleted endpoints becomes less than N/2, we simply rebuild the whole structure. It is
easy to realize that we can rebuild the structure in O(N logBN) I/Os, which leads to an
O(logB N) amortized delete I/O bound: First we scan through the leaves of the old base tree
and construct a sorted list of the undeleted endpoints. This list can then be used to construct
the leaves of the new base tree, and the rest of the tree can easily be build on top of these
leaves. All of this can be done in O(N/B) I/Os. Finally, we in N/4 ·O(logB N) I/Os insert

110

the N/4 segments stored in the old structure in the new data structure. This completes our
description of the external-memory interval tree:

Theorem 3 There exists an external interval tree that uses O(N/B) blocks of external mem-
ory to store N segments, such that stabbing queries can be answered in O(logB N + T/B)
I/Os worst case and such that updates can be performed in O(logB N) I/Os amortized.

4 Removing amortization

In this section we show how we can make the update bound of our structure worst-case
instead of amortized. First of all note that the amortization in Theorem 3 follows from
three amortized results: the amortized updates of the underflow structure (Lemma 3), the
amortization resulting from the splitting of nodes in the base tree, and the global rebuilding
(allowing deletions) used in the last section. The last use of amortization can be made
worst case using the standard global rebuilding technique. The general idea is the following
(see [105] for details): Instead of using O(N logB N) I/Os all at once to rebuild the entire
structure when the number of endpoints falls below N/2, we distribute the rebuilding over the
next 1/3 ·N/2 updates, that is, we still use and update the original structure and in parallel
we build the new structure three times as fast (we perform something like 3 logB N work on
the new structure at each update, keeping the update cost at O(logB N)). When the new
structure is completed we still need to perform the 1/3 ·N/2 updates that occurred after we
started the rebuilding. But again this can be done in parallel during the next 1/3 · (1/3 ·N/2)
operations. This continues until we finally reach a state where both trees store the same set
of segments (with at least (1− (1/3+1/9+ · · ·))N/2 ≥ 1/2 ·N/2 endpoints). Then we dismiss
the old structure and use the new one instead. Because we finish the rebuilding before the
structure contains N/4 endpoints we are always busy constructing at most one new structure.

This leaves us with the amortization introduced via the underflow structure and the
splitting of nodes in the base tree. In Section 4.2 we repeat the definition of the “corner
structure” [79] which was used as underflow structure, and show how to do updates on this
structure in O(1) I/Os in the worst case; that is, we show how to remove the amortization
from Lemma 3. This allows us to remove the amortization from the “static” version of
our interval tree summarized in Theorem 1. Recall that the amortization, apart from the
amortization introduced in Lemma 3, in the update bounds of this theorem was introduced
because of the rebuilding of the underflow structure—if an insertion resulted in the underflow
structure containing B segments belonging to the same multislab list, or if a deletion resulted
in the number of segments in a multislab list falling below B/2. To remove this amortization
we do the rebuilding in a lazy way over the next B/4 updates that involve the multislab
list in question. If the size of a multislab list falls to B/2 we start moving the segments to
the underflow structure. When a new segment s is to be inserted in the list, we insert s in
the underflow structure and move two of the B/2 segments from the multislab list to the
underflow structure. On deletion of a segment s belonging to the multislab, we delete s (from
the list or the underflow structure) and move two segments again. This way we are done
moving the segments after at most B/4 updates, which means that when we are done there
is between 1

4B and 3
4B segments belonging to the multislab in question stored in the node.

As they are now all stored in the underflow structure we are back in a situation fulfilling the
definition of an external interval tree. During the moving process we maintain the optimal
space and query bound, even though there during the process may be a multislab list with

111

very few segments in it (still occupying one block of memory). This is because there is Θ(B)
segments stored in the underflow structure that can “pay” for the memory-use and for the
I/O a query will use to report these few segments. Similarly, if the number of segments in
the underflow structure belonging to the same multislab reaches B, we create the multislab
list and move the B segments during the next B/4 updates involving the list. In Section 4.2
it will become clear how we can easily find and delete the relevant segments in the underflow
structure in this lazy way. The optimal space and query bounds follow as before.

Finally, we in Section 4.1 show how the splitting of a node can be done in O(1) I/Os in
the worst case instead of amortized, by showing how we can distribute the splitting, or rather
the movement of segments associated with a split, over the updates that pass through the
node before it splits again. Altogether this removes all the amortization and leads to our
main result.

Theorem 4 There exists an external interval tree that uses O(N/B) blocks of external mem-
ory to store N segments such that stabbing queries can be answered in O(logB N+T/B) I/Os
and such that updates can be performed in O(logB N) I/Os. All bounds are worst case.

4.1 Splitting nodes lazily

In this section we how to split a node in the external interval tree in O(1) I/Os in the worst
case. Recall by referring to Figure 6 that we move two “types” of segments when v splits
along b: Segments stored in v that contain b are moved to parent(v), and some of the segments
stored in parent(v) that contain b are moved internally in parent(v). In Section 3 we used the
fact stated in Theorem 2 that if we split a node on level l it has O((

√
B)lB) endpoints below

it (or segments stored in its secondary structures), and the same number of updates has to
pass through it before it splits again. We showed that we could move the relevant segments
in O((

√
B)l) I/Os which lead to the O(1), or rather O(1/B), amortized splitting bound. In

this section we show how we can move the necessary segments in a lazy way, such that when
a node is split we use a constant number of I/Os on splitting the node during (some of) the
next O((

√
B)lB) updates (not O((

√
B)l) as in Section 3) that access the node. In this way

the update cost is kept at O(logB N) I/Os in the worst case, and when a node splits we are
sure that we have finished the necessary movements triggered by the last split of the node.

Basically our algorithm works just like in the amortized case, except that we do the
movement lazily: When a node v needs to be split along a boundary b, we first insert b as a
partial slab boundary in parent(v) and let the new reference created in this way point to v,
that is, v plays the role of both v′ and v′′ on Figure 5. The boundary b remains partial in
parent(v) until we have finished the movement of segments. As we can only be working on
splitting a node along one boundary at a time, a partial slab boundary is always surrounded
by two real boundaries, or equivalently, at most every second boundary in a node can be
partial. As discussed in Section 3.1 this means that we can always split a node along a real
boundary without violating the constraints on the base weight-balanced B-tree. We only split
a node along a real boundary in order to keep different split processes from interfering with
each other (as we shall see later). After creating the partial boundary in parent(v) we then
like previously remove segments in v containing b by “splitting” each of the slab lists of v,
and create two sorted lists Ll and Lr with these segments. Below we show how to do this in a
lazy way using O(1) I/Os over the next O((

√
B)l) updates that access the node. We call this

the up phase. Basically, we use an idea similar to global rebuilding. We rebuild the relevant

112

structures while we still query and update the “old” structures as normally. During this phase
queries are done on parent(v) simply by ignoring the partial slab boundary b. When we after
O((
√
B)l) updates finish the up phase, we in O(1) I/Os split v into v′ and v′′ by switching

to the new structures and splitting the administration blocks. Next we move the segments in
parent(v) that contain b in a lazy way over the next O((

√
B)l) updates that access this node,

again basically by rebuilding the relevant structures while we still update the old structures
as normally. We call this the rearrange phase and describe it in detail below. If a query access
the node during the rearrange-phase, we need to use as slightly modified query algorithm to
report all the relevant segments. Consider Figure 6 again and a query x between bi and bi+1
in parent(v). To correctly report the segments stored in parent(v) we first ignore the partial
slab boundary b and query the node as previously. Then we in order to correctly report
segments among the segments we have removed from v and inserted in the slab list of b (Ll
and Lr) query the relevant of the two slab lists, that is, if x for example falls between bi and
b we query the left slab list of b (Ll). As we maximally do one such extra query on each
level of the base tree—using O(1) extra I/Os—our query I/O bound remains the optimal
O(logB N + T/B). Finally, when we after the O((

√
B)l) updates finish the rearrange phase,

we in O(1) I/Os switch to the new structures and make b a normal slab boundary.
As explained above a node v that splits first trigger an up phase on itself and then a

rearrange phase on parent(v). During these phases we will assume that only one such phase
is working on a node at a time. This means that when we want to perform one of the phases
on a node, we might need to wait for another phase to finish. Actually a number of phases
may be waiting, and we may need to wait until all of them finish. Recall that our goal is to
split v lazily in O((

√
B)lB) I/Os, because we are then finished doing the split before the next

split can occur. The up and rearrange phases only require O((
√
B)l) updates accessing the

node, so we can afford to wait for quite some time. Consider a node v that we want to split.
If a rearrange-phase is not currently in progress on v we just start our up-phase. Otherwise,
if a rearrange phase is in progress other such phases might be waiting and we will wait until
all of them have finished. Now the number of waiting phases is bounded by the number of
partial slab boundaries in v, which again is bounded by

√
B. This means that we maximally

will have to wait for
√
B · O((

√
B)l) updates. We are willing to do so because this number

is O((
√
B)lB). While we are waiting, or while we are performing the up phase, new partial

slab boundaries may be inserted in v because of a split of one of v’s children, and new slab
lists for such boundaries may be inserted when an up phase finishes. The latter will cause
the need for a new rearrange phase which will be performed after we finish our (waiting)
up phase. Note that inserting the new slab lists for a partial boundary b in the middle of
another up or rearrange phase does not create any problems, because segments inserted this
way cannot be involved in any such phase (because they all have both endpoints between bi
and bi+1 and because we do not split along partial boundaries). Also note that as the number
of waiting processes is O(

√
B), information about them can be stored in one block. After

finishing the up phase on v we might again need to wait for other phases to finish before we
can do a rearrange phase on parent(v). But again we must wait for at most

√
B rearrange

phases which takes O((
√
B)l) updates each, and for one up phase which takes O((

√
B)l+1)

updates. This means that we can finish the split in the allowed O((
√
B)lB) updates.

Before finally describing the up and rearrange phases we make a last modification of our
structure. During updates we keep a shadow structure of every secondary structure, which
is a precise copy of the original structure. We update a given of these shadow structures
precisely as the original structure it is a copy of, and query the original structures as normally.

113

The shadow structures do not change the update or query I/O bounds. Using the shadow
structures we can now do an up or rearrange phase in the following simple way using global
rebuilding: We start a phase on v by “freezing” the shadow structures of v, that is, we stop
doing updates on them and instead we just store the updates that arrive. Then we remove the
necessary segments from the shadow structures and rebuild it using O((

√
B)l) I/Os, just like

when we rebuild the original structures in Section 3 (except that we use the new algorithms
we will present in section 4.2 to manipulate the underflow structure). It is easy to realize
that we can spread the rebuilding over the next O((

√
B)l) update that access the node using

O(1) I/Os on each updates. There is one complication however, as some of the updates might
actually update the structures of v, which means that we also have to update the shadow
structure we are rebuilding. Therefore if an update arrives which needs to be performed on
the shadow structure, we instead of O(1) do O(logB N) work on the rebuilding. This does
not change the update I/O bound as we are already using O(logB N) I/Os to perform the
update on the original structures. Then we store the update and perform it lazily on the
rebuild structures (again using O(1) I/Os on each update that access the node) when we are
completely done with the rebuilding. After O((

√
B)l) I/Os we will be finished rebuilding our

shadow structures, and finished performing all the updates that arrived during the rebuilding.
We can also make a copy (a shadow) of the rebuild shadow structure in the same I/O bound.
This finishes the phase and then we in O(1) I/Os switch from the old to the new rebuild
structure (and its shadow) as described previously.

4.2 Removing amortization from the corner structure

In this section we will show how to make the update bound on the “corner structure” in
Lemma 3 [79] worst case. During this we will also remove the assumption about the internal
memory being capable of holding O(B) blocks.

c0

c1

c2

B points

�
�
�
�

����
c∗1

c∗j

a) b)

Figure 7: a) Vertical blocking. b) The set C∗ (the marked points). The dark lines represent
the boundaries of queries whose corners are points in C∗. One such query is shaded to
demonstrate how they look like.

Recall from the introduction that by regarding an interval [x, y] as the point (x, y) in
the plane, stabbing queries reduce to diagonal corner queries. This property is used in the
“corner structure” [79] which actually is a data structure that stores points in the plane above
the x = y line, such that diagonal corner queries can be answered efficiently. More precisely

114

c∗j

ci

Ωi ∆−1
i

∆+
i

∆−2
i

c0

c1

c2

ac2

a) b)

Figure 8: A) The sets Ωi, ∆−1
i and ∆+

i . c∗j is the last point that was added to C∗ and ci is
the point being considered for inclusion. B) Definition of aci .

the corner structure is defined as follows: Initially, the set S of k ≤ B2 points (segments) is
divided into k/B vertical oriented blocks as indicated in Figure 7a. Let C be the set of points
at which the right boundaries of the regions corresponding to these blocks intersect the y = x
line. Then a subset C∗ of these points is chosen and one or more blocks is used to explicitly
represent the answer to each query that happens to have a corner c ∈ C∗. This is illustrated
on Figure 7b. In order to decide which elements in C will become member of C∗, an iterative
process is used. The first element in C∗ is chosen to be at the intersection of the left boundary
of the rightmost block in the vertical oriented blocking. This point is called c∗1. To decide
which other elements of C should be elements of C∗, one proceed along the line x = y from
the upper right to the lower left, considering each element in C in turn. Let c∗j be the element
of C most recently added to C∗; initially this is c∗1. When considering ci ∈ C the sets Ωi, ∆−1

i ,
∆−2
i and ∆+

i are defined to be subsets of S as shown in Figure 8a. Let ∆−i = ∆−1
i ∪ ∆−2

i ,
and let S∗j = Ωi ∪∆−1

i be the answer to a query whose corner is c∗j . This was the last set of
points that was explicitly blocked. Let Si = Ωi ∪∆+

i be the answer to a query whose corner
is ci. ci is added to C∗ if and only if

|∆−i |+ |∆+
i | > |Si|.

After having constructed C∗ this way, the set of points S∗i answering a diagonal corner query
for each element c∗i ∈ C∗ is explicitly stored horizontally blocked.

It is shown in [79] that after having defined C and C∗ in the above way, and blocked the
points as discussed, the total number of blocks used to store all the sets S∗i is O(k/B). This is
then also a bound on the total number of blocks used by the structure. Then it is show how
a query can be answered in O(T/B+ 1) I/Os using the representation, arriving at Lemma 2.
We omit the details here and refer to [79]. Note however, that one key property is that the
size of C (and thus C∗) is less than B, which means that we can hold the set in one block.
This property makes it possible to find the point in C (and C∗) just above or below any query
point on the x = y line in O(1) I/Os.

As described in the introduction the assumption about the internal memory being capable
of holding O(B2) elements is in [79] used to make the structure dynamic with O(1) I/O
amortized update bounds (Lemma 3). This is done by maintaining a special update block

115

c∗j

ci

∆−2
i

aci+1

Bm

BtΩi

ci+1

∆+
i

∆−1
i

Bb

|∆−1
i+1| = |∆−1

i |+ |Bt|
|∆−2

i+1| = |∆−2
i |+ |Bm|+ |Bb|

|Ωi+1| = |Ωi| − |Bt|
|∆+

i+1| = |∆+
i | − |Bm|+ (ai+1 − |Bb|)

Figure 9: Computation of C∗

and then rebuild the structure completely once B updates have been inserted in this block.
The rebuilding is done in O(k/B) = O(B) I/Os simply by loading the whole structure into
internal memory, rebuild it, and write it back to external memory again. We will now show
how to remove the assumption on the size of the internal memory and make the update bounds
worst case. We do so by designing an algorithm for rebuilding the structure in O(k/B) I/Os,
without loading more than O(1) blocks into internal memory at any time. It then turns out
that this algorithm can be done incrementally over O(k/B) updates, which means that we
can use a variant of the global rebuilding technique to remove the amortization: We start a
rebuilding of the structure once the number of updates in the update block reaches B/2 and
do O(1) I/Os on the rebuilding on each of the succeeding updates. We make sure that we do
the rebuilding fast enough finish the rebuilding after B/2 updates, which means that we will
be finished, an can switch structures, before we need to begin the next rebuilding.

In order to design our new (incremental) rebuilding algorithm we need to change the
representation of the corner structure slightly. In addition to storing the points vertical
blocked and storing the answers to a query for each element in C∗, we also store the point
in two lists sorted according to x and y coordinate, respectively. This does not change the
asymptotic space bound. Our rebuilding algorithm now consists of three main steps. First
we compute and construct the new vertical blocking, that is, the set C. We then compute
the set C∗, and finally we construct the blocking needed for each of the points in C∗.

In order to compute the new vertical blocking we simply merge the list of points sorted
according to x coordinate with the (half) block of updates. This is easily done in O(k/B) I/Os
using O(1) blocks of internal memory. Then we can easily compute C by scanning through
the resulting sorted list, sampling the first point in each block. The vertical blocking can be
constructed simply by making a copy of the list.

To compute C∗ we start by merging the list of points sorted according to y coordinate
with the points in the update block. Then we use the resulting list to compute for each pair of
consecutive points ci and ci+1 in the sorted sequence of points in C the number of points in S
with y coordinate between the y coordinates of ci and ci+1. For the points ci and ci+1 we call
this number aci as indicated in Figure 8b. We then compute C∗ as previously by proceeding
along the x = y line from the top, and for each point ci ∈ C decide if it should be a member
of C∗ by checking if the equation |∆−i |+ |∆+

i | > |Si| is fulfilled. As the number of points in C
is dk/Be we can do this computation in O(k/B) I/Os if we in O(1) I/Os can decide to include
a given point or not. We show how to do this by showing how we given |Ωi|, |∆+

i |, |∆−1
i |

and |∆−2
i | can compute |Ωi+1|, |∆+

i+1|, |∆−1
i+1| and |∆−2

i+1| in O(1) I/Os. Consider Figure 9

116

and assume that we know |Ωi|, |∆+
i |, |∆−1

i | and |∆−2
i+1|, the points c∗j , ci and ci+1, and the

value of ai+1 (we can load c∗j , ci, ci+1 and ai+1 in O(1) I/Os, and the same is true for the
sizes of the sets if we stored them after the computation of them). We now compute the
sets Bt, Bm and Bb using one I/O, by loading the vertical block corresponding to ci and
distribute the points contained in this block in the three sets—using the y coordinate of ci
and c∗j . |Ωi+1|, |∆+

i+1|, |∆−1
i+1| and |∆−2

i+1| can now be computed without using further I/Os
by the formulas given on Figure 9. If is easy to realize that we with minor modifications can
use the same formulas if ci = c∗j , that is, if we just added ci to C∗.

Finally, we for each point c∗j ∈ C∗ need to horizontally block the set S∗j of points in the
answer to a query at c∗j . We again handle the points (this time the ones in S∗) from the top
one along the x = y line, and create the horizontal blockings using the list of points sorted
according to y coordinate. In order to produce the blocking of S∗j+1, assuming that we have
already produced the blocking of S∗j and that we know the position of the last point in S∗j (the
one with the smallest y coordinate) in the list of all the points sorted according to y coordinate,
we do the following (refer for example to Figure 7b): First we scan through the horizontal
blocking of S∗j and collect the points with x coordinate less than the x coordinate of c∗j .
These points (if any) will be the first points in the blocking of S∗j+1 and will automatically be
horizontally blocked. Next we continue the scan in the list of all points sorted according to y
coordinate from the position of the last point in S∗j (using the pointer), and collect the rest
of the points in C∗j+1. Because we process the involved points in y order we will end up with
the desired horizontal blocking. To produce S∗j+1 we use O(d|S∗j |/Be + d|S∗j+1|/Be) I/O’s,
which means that the total number of I/Os used is O(2

∑
j∈1..|S∗|d|S∗j /B|e). As previously

mentioned it is proved in [79] that this number is O(k/B).
This completes the description of the rebuilding algorithm. To realize that the algorithm

can be used in an incremental way, that is, that it can be performed in O(k/B) pieces of O(1)
I/Os each, just note that throughout the algorithm the current state of the algorithm can be
represented by a constant number of pointers and values. Thus we can perform one “step”
of the algorithm by loading the current state into internal memory using O(1) I/Os, perform
the step using O(1) I/Os again, and finally use O(1) I/Os to write the new state back to
external memory. The following lemma then follows from the discussion in the beginning of
this section.

Lemma 11 A set of k ≤ B2 segments can be represented using O(k/B) blocks of external
memory such that a stabbing query can be answered in O(T/B + 1) I/O operations and such
that updates can be performed in O(1) I/Os. The structure can be constructed in O(k/B)
I/Os. All bounds are worst case.

This ends our description of how we remove the amortization from our external interval
tree structure and proves Theorem 4.

5 External-memory segment tree

The ideas behind our external-memory interval tree can also be used to develop an external-
memory segment tree-like structure with optimal update and query I/O bounds and a better
space bound than all previous known such structures [28, 110]. In this section we sketch this
structure.

117

In internal memory a segment tree consists of a binary base tree over the endpoints of
segments stored in the tree, and a given segment is stored in the secondary structure of up to
two nodes on each level of this tree. More precisely a segment is stored in all nodes v where
the segment contains the interval Xv associated with v, but not the interval associated with
parent(v). Like our external interval tree our external segment tree has a weight-balanced
B-tree (Theorem 2) as base tree, and the segments are stored in O(B) secondary structures
of each internal node. Like in the interval tree case an internal node in the base tree defines
Θ(
√
B) slabs, which again defines Θ(B) multislabs. By analogy with the internal segment

tree, a segment s is stored in the secondary structures of a node v of the external segment
tree if it spans one of the slabs associated with v, but not one of the slabs associated with
parent(v) (or equivalently, not the whole interval associated with v). Note the difference
from the external interval tree, where we only store s in the highest node where s contains
a slab boundary. As in the interval tree case we store s in a multislab list corresponding to
the largest multislab it spans, but we do not store the “ends” of s in a slab list as we did
previously. Instead the ends will (because of the way we defined where to store s) be stored
“recursively” further down the tree. As an example consider segment s on Figure 3. This
segment will be stored in v because it spans one of v’s slabs, but not the whole interval of v.
Like in the external interval tree case it will be stored in the multislab consisting of Xv2 and
Xv3, but the parts of the segment in Xv1 and Xv4 will not be stored in two slab lists, but will
be passed down to v1 and v4 and stored recursively further down the tree.

Like previously we store segments from multislab lists containing o(B) segments in an
underflow structure. Furthermore, unlike in the interval tree case, we do not keep the multislab
lists sorted, that is, we do not implement the lists using B-trees. Instead we, again in analogy
with the internal case, maintain pointers between different copies of the same segments. More
precisely a segment in node v has pointers to “itself” in the first nodes above and below v
containing the segment. In order to be able to rebuild an underflow structure containing k
segments in O(k/B) I/Os, we furthermore keep a separate list of all segments stored in the
underflow structure together with it. The segments in this list, and not the copy of the
segments in the actual underflow structure, are the ones containing the pointers to other
copies of the segments. This allows us to move all k segments in the underflow structure
during a rebuilding without having to update k pointers using O(k) I/Os. In this way the
I/O-use of a rebuilding is kept at O(k/B). In analogy with the internal segment tree it is
easy to realize that a segment will at most be stored in two multislab lists on each level of
the base tree, which means that we use O((N/B) logB N) blocks to store N segments.

A query with x can be done in the optimal O(logB N + T/B) I/Os, simply by searching
down the tree for the leaf containing x, and in each node report the segments in the relevant
multislab lists and query the underflow structure.

To insert a new segment s in our external segment tree we first insert the endpoints of s
in the base tree, and then we do the actual insertion of s by searching down the base tree
for the two endpoints of s, inserting s in the relevant multislab lists. As our multislab lists
are unsorted, we can insert s in a multislab list in O(1) I/Os, just by appending it to the
list (insert it in the last block). It is also easy to maintain the pointers to the other copies
of s. We handle the cases involving the underflow structure like in the external interval tree,
except for the new list of all segments in the underflow structure mentioned earlier, which
is manipulated as was it a multislab list. The actual insertion of s can therefore be done
in O(logB N) I/Os, but in order to obtain the same total (amortized) update I/O bound,
we need to consider how to split a node on level l in O((

√
B)lB) I/Os. To do so consider

118

V

b blb1

s

Figure 10: Splitting a segment tree node.

Figure 10. Segments which need to be moved when v splits are all stored in v (and perhaps
also in parent(v)) and contain the split boundary b. They fall into two categories: segments
that contain b1 or bl and segments that do not. The last set of segments only need to be
moved within v. They need to be “cut in two” at b, that is, a given one of them needs to
be deleted from one multislab list and inserted into two new ones. Removing a segment s
from a multislab list in O(1) I/Os is easily done by loading the block containing s and the
last block in the list, delete s, and insert the last segment from the last block in the place
formerly occupied by s. Also inserting s in the two new multislab lists and the update of
the relevant pointers can easily be done in O(1) I/Os. The first set of segments need to be
moved inside v, as well as be inserted in the secondary structures of parent(v). Consider e.g
segment s in Figure 10. s needs to be removed from the multislab list corresponding to bl
and the boundary just to the left of b, and be inserted in the multislab list corresponding to
boundary b and the one to the left of it. This is done as before in O(1) I/Os. The part of s
between boundary b and bl needs to be moved to parent(v), but in order to figure out which
multislab list to insert it in we need to check if s is already stored somewhere in parent(v)—as
it is in the example. If this is the case we need to “glue” the two pieces together to a bigger
piece. The check is easily performed just by following the pointer in the copy of s stored in v
to the copies of s in the node above v. Note that if that copy is in parent(v) we also get its
position. Then it is (if needed) easy to remove s from the relevant multislab list in parent(v)
and insert it in the new relevant one in O(1) I/Os. Altogether we as desired only spend O(1)
I/Os on each of the O((

√
B)lB) segments stored in v.

To delete a segment s we, as in the external interval tree case, use global rebuilding to
remove the endpoints from the base tree structure. We use the pointer between segments
to do the actual deletion of the segment from the relevant lists. In order to find the first
(top) occurrence of a segment we maintain a separate B-tree with all the segments stored
in the segment tree sorted according to right endpoint. In this tree a segment has a pointer
to itself in the topmost node in the segment tree that stores the segment. This allows us to
remove s by locating s in the B-tree, remove it, and then follow pointers to all the O(logB N)
occurrences of s in the external segment tree.

Finally, it is relatively easy to realize that we, as in the interval tree case, can do the
splitting of a node lazily over O((

√
B)lB) updates that pass the node, arriving at the following

theorem:

119

Theorem 5 There exists an external-memory segment tree that uses O((N/B) logB N) blocks
of external memory to store N segments such that stabbing queries can be answered in
O(logB N + T/B) I/Os and such that updates can be performed in O(logB N) I/Os. All
bounds are worst case.

6 Conclusions and open problems

In this paper we have developed an I/O-optimal and disk space-optimal external memory
data structure for the dynamic interval management problem, thus settling an important
open problem in databases and I/O algorithms. Our data structure can be regarded as
an external-memory version of the interval tree. We have also used our ideas to get an
improved external version of the segment tree. Our data structures are the first external data
structures with worst-case (rather than merely amortized) optimal update I/O bounds for a
two- or higher-dimensional range searching problem. Our data structures work without need
for the internal memory to hold O(B2) items. We have developed what can be regarded as a
weight-balanced version of the well-known B-tree. This structure is of independent interest,
since it can be used to remove amortization from external as well as internal data structures.

Several challenging problems remain open in the area of external range searching, such
as, for example, how to develop optimal data structures for other variants of 2-dimensional
range searching, as well as for range searching problems in higher dimensions.

120

Chapter 9

The I/O-Complexity of Ordered
Binary-Decision Diagram
Manipulation

121

The I/O-Complexity of Ordered Binary-Decision
Diagram Manipulation∗

Lars Arge†

BRICS‡
Department of Computer Science

University of Aarhus
Aarhus, Denmark

August 1996

Abstract

Ordered Binary-Decision Diagrams (OBDD) are the state-of-the-art data structure for
boolean function manipulation and there exist several software packages for OBDD ma-
nipulation. OBDDs have been successfully used to solve problems in e.g. digital-systems
design, verification and testing, in mathematical logic, concurrent system design and in
artificial intelligence. The OBDDs used in many of these applications quickly get larger
than the avaliable main memory and it becomes essential to consider the problem of min-
imizing the Input/Output (I/O) communication. In this paper we analyze why existing
OBDD manipulation algorithms perform poorly in an I/O environment and develop new
I/O-efficient algorithms.

1 Introduction

Many problems in digital-systems design, verification and testing, mathematical logic, concur-
rent system design and artificial intelligence can be expressed and solved in terms of boolean
functions [33]. The efficiency of such solutions depends on the data structures used to repre-
sent the boolean functions, and on the algorithms used to manipulate these data structures.
Ordered Binary-Decision Diagrams (OBDDs) [32, 33] are the state-of-the-art data structure
for boolean function manipulation and they have been successfully used to solve problems
from all of the above mentioned areas. There exist implementations of OBDD software pack-
ages for a number of sequential and parallel machines [17, 31, 101, 102]. Even though there
exist very different sized OBDD representations of the same boolean function, OBDDs in
real applications tend to be very large. In [17] for example, OBDDs of Gigabyte size are
∗An extended abstract version of this paper was presented at the Sixth International Symposium on Algo-

rithms and Computation (ISAAC’95).
†This work was partially supported by the ESPRIT II Basic Research Actions Program of the EC under

contract No. 7141 (project ALCOM II). Part of the work was done while a Visiting Scholar at Duke University.
Email: large@daimi.aau.dk.
‡Acronym for Basic Research in Computer Science, a Center of the Danish National Research Foundation.

123

manipulated in order to verify logic circuit designs, and researchers in this area would like to
be able to manipulate OBDDs orders of magnitude larger. In such cases the Input/Output
(I/O) communication becomes the bottleneck in the computation.

Until recently most research, both theoretical and practical, has concentrated on finding
small OBDD representations of boolean functions appearing in specific problems [31, 33,
88, 112], or on finding alternative succinct representations while maintaining the efficient
manipulation algorithms [64]. The limit on the size of the problem instances one has been able
to solve in practice has generally been determined by the ability to find representations that
fit in internal memory of the machine used to solve the problem. The underlying argument
for concentrating on the problem of limiting the size of the OBDDs then seems to have been
that as soon as they get to large—larger than the available main memory—generating a large
number of page faults, resulting in dramatically increasing running times, is inevitable. Very
recently however, researchers have instead begun to consider I/O issues arising when the
OBDDs get larger than the available internal memory, and experimental results show that
very large runtime speedups can be achieved with algorithms that try to minimize the access
to external memory as much as possible [17, 102]. These speedups can be achieved because
of the extremely large access time of external storage medias, such as disks, compared to
the access time of internal memory. In the coming years we will be able to solve bigger and
bigger problems due to the development of machines with larger and faster internal memory
and due to increasing CPU speed. This will however just increase the significance of the
I/O bottleneck since the development of disk technology lacks behind developments in CPU
technology. At present, technological advances are increasing CPU speed at an annual rate
of 40-60% while disk transfer rates are only increasing by 7-10% annually [113].

In this paper we analyze why existing OBDD manipulation algorithms perform poorly in
an I/O environment and develop new I/O-efficient algorithms.

1.1 I/O Model and Previous Results

We will be working in the parallel disk model [5, 133] which models the I/O system of many
existing workstations. The model has the following parameters:

N = # of elements in the problem instance;
M = # of elements that can fit into main memory;
B = # of elements per disk block;
D = # of parallel disks,

where M < N and 1 ≤ DB ≤ M/2. Depending on the size of the data elements, typical
values for workstations and file servers in production today are on the order of M = 106 or
107 and B = 103. Values of D range up to 102 in current disk arrays.

An I/O operation (or I/O) in the model is the process of simultaneously reading or writing
D blocks of data, one block of B contiguous elements to or from each of the D disks. The I/O-
complexity of an algorithm is simply the number of I/Os it performs. Internal computation
is free, and we always assume that the N elements initially are stored in the first N/DB
blocks of each disk. Thus reading all the input data requires N/DB I/Os. We will use the
term scanning to describe the fundamental primitive of reading (or writing) all items in a
set stored contiguously in external memory by reading (or writing) the blocks of the set in a
sequential manner.

124

Early work on external-memory algorithms concentrated on sorting and permutation re-
lated problems [5, 47, 99, 100, 131, 133]. More recently researchers have designed external-
memory algorithms for a number of problems in different areas. Most notably I/O-efficient
algorithms have been developed for a large number of computational geometry [15, 67] and
graph problems [42]. Other related papers are [122] and [58] that address the problem of
computing the transitive closure of a graph under some restrictions on the size of the graph,
and propose a framework for studying memory management problems for maintaining con-
nectivity information and paths on graphs, respectively. Also worth noticing in this context
is [97] that addresses the problem of storing graphs in a paging environment, but not the
problem of performing computation on them, and [11] where a number of external (batched)
dynamic data structures are developed. Finally, it is demonstrated in [41, 129] that the re-
sults obtained in the mentioned papers are not only of theoretical but also of great practical
interest.

While N/DB is the number of I/Os needed to read all the input,1 Aggarwal and Vitter [5]
proved that Θ(N

DB logM/B
N
B) = Θ(sort(N))2 is the number of I/Os needed to sortN elements.

Furthermore, they proved that the number of I/Os needed to rearrange N elements according
to a given permutation is Θ(min{N/D, sort(N)}) = Θ(perm(N)).2 They also developed
algorithms with I/O bounds matching these lower bounds in the D = 1 model. Later the
results have been extended to the general model [99, 98, 131, 133]. In [42] it was shown that
the permutation lower bound also applies to a large number of fundamental graph problems.

Taking a closer look at the fundamental bounds for typical values of B and M reveals that
because of the large base of the logarithm, logM/B

N
B is less than 3 or 4 for all realistic values

of N,M and B. This means that the sorting bound in all realistic cases will be smaller than
N/D, such that perm(N) = sort(N). In practice the term in the bounds that really makes
the difference is the DB-term in the denominator of the sorting bound. As typical values of
DB are measured in thousands, going from a Ω(N) bound—as we shall see is the worst-case
I/O performance of many internal-memory algorithms—to the sorting bound, can be really
significant in practice.

1.2 OBDDs and Previous Results

An OBDD is a branching program with some extra constraints. A branching program is a
directed acyclic graph with one root, whose leaves (sinks) are labeled with boolean constants.
The non leaves are labeled with boolean variables and have two outgoing edges labeled 0 and
1, respectively. If a vertex is labeled with the variable xi we say that it has index i. If f is
the Boolean function represented by the branching program, an evaluation of f(a1, . . . , an)
starts at the root and follows for a vertex labeled xi the outgoing edge with label ai. The
label of the sink reached in this way equals f(a1, . . . , an). An OBDD is a branching program
for which an ordering of the variables in the vertices is fixed. For simplicity we assume that
this ordering is the natural one, x1, . . . , xn, that is, if a vertex with label xj is a successor of
a vertex with label xi, the condition j > i has to be fulfilled. Figure 1 shows two examples
of OBDDs. Note that an OBDD representing a boolean function of n variables can be of
size 2n, and that different variable orderings lead to representations of different size. There
exist several algorithms (using heuristics) for choosing a variable ordering that minimizes the
OBDD representation of a given function [88, 112].

1We refer to N/DB as the linear number of I/Os.
2For simplicity we write sort(N) and perm(N), suppressing M,B and D.

125

6

5

44

33

2 2

3

10

4

1

0 1

3

1

5

4

2 3

Figure 1: OBDD representations of the functions x1∧x2∨x3 and x1∧x4∨x2∧x5∨x3∧x6. The
left children are 0-successors and the right 1-successors. All edges are directed downwards.

In [32] Bryant proved that for a given variable ordering and a given boolean function
there is (up to isomorphism) exactly one OBDD—called the reduced OBDD—of minimal
size. Bryant also proved that iterated use of the following two reduction rules on an OBDD
with at most one 0-sink and one 1-sink yields the reduced OBDD: 1) If the two outgoing
edges of vertex v lead to the same vertex w, then eliminate vertex v by letting all edges
leading to v lead directly to w. 2) If two vertices v and w labeled with the same variable have
the same 1-successor and the same 0-successor, then merge v and w into one vertex. The
OBDDs in Figure 1 are both reduced. Bryant [32] gave an algorithm for reducing an OBDD
G with |G| vertices in O(|G| log |G|) time. Later algorithms running in O(|G|) time have been
developed [33, 118].

The most fundamental operations on OBDDs are the following:

• Given an OBDD representing f , compute if f can be satisfied.

• Given two OBDDs representing f1 and f2, compute if f1 = f2.

• Compute from OBDDs representing f1 and f2 an OBDD for f = f1 ⊗ f2, where ⊗ is
some boolean operator.

The first two operations can easily be performed on reduced OBDDs. From a compu-
tational point of view the fundamental operations are therefore the reduce operation and
the apply operation, as we shall call the operation which computes the reduced OBDD for
the function obtained by combining two other functions by a binary operator. In [32] an
O(|G1| · |G2|) time algorithm for using the apply operation on two OBDDs of size |G1| and
|G2| is developed. This algorithm relies on a depth first traversal algorithm. In [101] a breadth
first traversal algorithm with the same time bound is given.

Even though the I/O system (the size of the internal memory) seems to be the pri-
mary limitation on the size of the OBDD problems one is able to solve practically to-
day [17, 31, 32, 33, 102], it was only very recently that OBDD manipulation algorithms
especially designed to minimize I/O were developed. In [102] Ochi, Yasuoka and Yajima
realized that the traditional depth first and breadth first apply algorithms do not perform
well when the OBDDs are too large to fit in internal memory, and they developed alternative

126

algorithms working in a levelwise manner.3 These algorithms were obtained by adding extra
vertices to the representation (changing the OBDD definition) such that the index of suc-
cessive vertices on any path in an OBDD differs by exactly one. This makes the previously
developed breadth first algorithm [101] work in a levelwise manner. Implementing the algo-
rithms they obtained runtime speedups of several hundreds compared to an implementation
using depth first algorithms. Very recently Ashar and Cheong [17] showed how to develop
levelwise algorithms without introducing extra vertices, and conducted experiments which
showed that on large OBDDs their algorithms outperform all other known algorithms. As
the general idea (levelwise algorithms) are the same in [101] and [17], we will only consider
the latter paper here. Finally, it should be mentioned that Klarlund and Rauhe in [80] report
significant runtime improvements when working on OBDDs fitting in internal memory and
using algorithms taking advantage of the blocked transport of data between cache and main
memory.

In the algorithms in [17] no explicit I/O control is used. Instead the algorithms use a
virtual memory space and the I/O operations are done implicitly by the operation system.
However, explicit memory management is done in the sense that memory is allocated in
chunks/blocks that match the size of an I/O block, and a specific index is associated with
each such block. Only vertices with this index are then stored in such a block. This effectively
means that the OBDDs are stored in what we will call a level blocked manner. The general
idea in the manipulation algorithms is then to try to access these level blocked OBDDs in
such a way that the vertices are accessed in a pattern that is as levelwise as possible. On the
other hand we in this paper assume that we can explicitly manage the I/O. This could seem
to be difficult in practice and time consuming in terms of internal computation. However, as
Vengroff and Vitter show in [129]—using the transparent parallel I/O environment (TPIE)
developed by Vengroff [126]—the overhead required to manage I/O can be made very small.

1.3 Our Results

In this paper we analyze why the “traditional” OBDD manipulation algorithms perform
poorly when the OBDDs get large, by considering their I/O performance in the parallel disk
model. Furthermore we develop new I/O-efficient algorithms.

First we show that all existing reduce algorithms—including the algorithms developed
with I/O in mind [17]—in the worst case use Ω(|G|) I/Os to reduce an OBDD of size |G|. We
show that this is even the case if we assume that the OBDD is blocked in external memory
in some for the algorithm “natural” or favorable way by the start of the algorithm—depth
first, breadth first or level blocked.4 Then we show that for a special class of algorithms,
which includes all existing algorithms, Ω(perm(|G|)) is a lower bound on the number of I/Os
needed to reduce an OBDD of size |G|. We show that this is even the case if we assume one
of the blockings mentioned above, and even if we assume another intuitively good blocking.
Previous I/O lower bounds on graph problems all assume general blockings. Finally, we
develop an O(sort(|G|) I/O reduce algorithm. Thus our algorithm is asymptotically optimal
in all realistic I/O-systems, among algorithms from the special class we consider.

3When we refer to depth first, breadth first and levelwise algorithms we refer to the way the apply algorithm
traverse the OBDDs. By levelwise algorithm we mean an algorithm which processes vertices with the same
index together. All known reduce algorithms work in a levelwise manner.

4When we refer to a blocking as e.g. a depth first blocking, we refer to a blocking where the vertices are
assigned to blocks in the way they are met in a depth first traversal.

127

We then go on and analyze the existing apply algorithms in the parallel disk model. Again
we show that in the worst case all existing algorithms use Ω(|G1| · |G2|) I/Os, and that this
also holds for natural blockings of the involved OBDDs. We also develop an O(sort(|R|)) I/O
apply algorithm. Here |R| denotes the size of the resulting un-reduced OBDD. Our algorithm
is thus asymptotically optimal in all realistic I/O-systems assuming that we have to do a
reduction step after the use of the apply algorithm.

We believe that the developed algorithms could be of enormous practical value, as the
constants in the asymptotic I/O bounds are all small. As mentioned in [17] large runtime
improvements open up the possibility of creating OBDDs for verifying very large portions of
chips, something considered impossible until now.

The rest of the paper is organized with a section for each of the OBDD manipulation
algorithms. For simplicity we only consider the one disk model in these two sections. In
Section 4 we then discuss extension of our results to the general D-disk model. We end the
paper with a concluding section.

2 The Reduce Operation

Our discussion of the reduce operation is divided into three main parts. In Subsection 2.1 we
present the existing reduce algorithms in order to be able to analyze their I/O-behavior in
Subsection 2.2. For natural reason these two subsection will be rather discussing, and not very
mathematically strict as Subsection 2.3 where we prove a lower bound on the number of I/Os
needed to reduce a given OBDD. Finally, we in Subsection 2.4 present our new I/O-efficient
reduce algorithm.

In our discussions of reduce algorithms—and in the rest of this paper—we assume that
an OBDD is stored as a number of vertices and that the edges are stored implicitly in these.
We also assume that each vertex knows the indices (levels) of its two children. The same
assumptions are made in the existing algorithms. This means that the fundamental unit is
a vertex (e.g., an integer—we call it the id of the vertex) with an index, and an id and an
index (and maybe a pointer) for each of the two children. The vertices also contain a few
other fields used by the apply and reduce algorithms.

2.1 Reduce Algorithms

All reduce algorithms reported in the literature basically works in the same way. In order
to analyze their I/O behavior, we in this section sketch the basic algorithm and the different
variations of it.

The basic reduce algorithm closely follows an algorithm for testing whether two trees are
isomorphic [6]. The algorithm processes the vertices levelwise from the sinks up to the root,
and tries to use the two reduction rules discussed previously on each vertex. When the root
is reached the reduced OBDD has been obtained, as the reduction rules cannot be used on
any of the vertices in the OBDD. More precisely the algorithm assigns an integer label to
each vertex in the OBDD such that a unique label is assigned to each unique sub-OBDD:
First, two distinct labels are assigned to the sink vertices—one to the 1-sinks and one to the
0-sinks—and then the vertices are labeled level by level (index by index). Assuming that all
vertices with index greater than i have been processed, a vertex v with index i is assigned a
label equal to that of some other vertex that has already been relabeled, if and only if one of
two conditions is satisfied (one of the two reduction rules can be used). First, if the labels of

128

v’s children are equal the vertex is redundant and it is assigned a label equal to that of the
children (R1). Secondly, if there exists some already processed vertex w with index i whose
left and right children have the same labels as the left and right children of v, respectively,
then the sub-OBDDs rooted in v and w is isomorphic, and v is assigned the same label as w
(R2). When all vertices have been relabeled the OBDD consisting of precisely one vertex for
each unique label is the reduced OBDD corresponding to the original one.

The reduction algorithm comes in three variants (disregarding I/O issues for now), and
the main difference between them is the way they decide if reduction rule R2 can be used on a
given vertex. When processing vertices with index i Bryant’s original algorithm [32] sorts the
vertices according to the labels of their children such that vertices which should have assigned
the same label end up next to each other in the sorted sequence. The time complexity of the
algorithm is dominated by the time used to sort the vertices, such that the algorithm runs in
time O(|G| log |G|). Later, Bryant [33] gave an algorithm which instead of sorting the vertices
maintain a (hash) table with an entry for each unique vertex seen so far. When processing a
vertex a lookup is made in the table to see if an isomorphic vertex has already been labeled.
If not the vertex is given a new unique label and inserted in the table. The implementations
reported in [17, 31, 101, 102] all use this general idea. From a theoretical point of view the
table uses a lot of space, namely O(n · |G|2), but using “lazy initialization” [6] the running
time of the algorithm can be kept at O(|G|), as that is the number of entries in the table
which is actually used. Finally, the algorithm by Sieling and Wegener [118] also sorts the
vertices with a given index according to the labels of the children, but uses the bounded size
of the label domain to do so with two phases of the well-known bucket sort algorithm. First,
the vertices are partitioned according to the label of the 0-successor, and in a second bucket
sort phase the non-empty buckets are partitioned according to the 1-successor. Vertices that
end up in the same bucket is then assigned the same label. The algorithm runs in O(|G|)
time.

2.2 The I/O behavior of Reduce Algorithms

The basic reduce algorithm by Bryant [32] starts by doing a depth first traversal of the OBDD
in order to collect the vertices in lists according to their indices (levels). If one does not assume
anything about the way the vertices are blocked—which probably is most realistic, at least if
one works in a virtual memory environment and uses pointers to implement the OBDDs—an
adversary can force the algorithm to use Ω(|G|) I/Os just to do this traversal: If we call the
vertex visited as number i in a depth first traversal for vi, the adversary simply groups vertex
v1, vM+1, v2M+1, . . . , v(B−1)M+1 together into the first block, v2, vM+2, v2M+2, . . . , v(B−1)M+2
into the second block, and so on. This results in a page fault every time a new vertex is
visited. Even if one assumes that the OBDD is blocked in a breadth first manner, or even
in a level manner, it is fairly easy to realize that the depth first traversal algorithm causes
Ω(|G|) page faults in the worst case.

So let us assume that the OBDD is blocked in a depth first manner, such that the traversal
can be performed in O(|G|/B) I/Os. At first it seems that the algorithm still uses Ω(|G|)
I/Os, as it during the traversal outputs the vertices to n different lists (one for each index),
and as an adversary can force it never to output two consecutive vertices in the depth first
order to the same list. However, in practice this would not be to bad, as we typically have that
n� |G| and that n actually is smaller than M/B, which means that we can reserve a block
in internal memory for each of the n lists and only do an output when one of these blocks

129

4

321

65

8

7 9

Figure 2: I/O behavior of reduce algorithms (B = 2).

runs full. Then we only use O(|G|/B) I/Os to produce the lists. In general an algorithm
which scans through the OBDD and distribute the vertices to one of n lists will perform well
in practice. As we will discuss below this is precisely the idea used in the algorithm by Ashar
and Cheong [17].

So let us then assume that we have produced the index lists (and thus a level blocking of
the OBDD) in a acceptable number of I/Os, and analyze how the different variations of the
basic algorithm then perform. Recall that all the variations basically sort the vertices with a
given index according to the labels of their children. This means that when processing vertices
with a given index the children have to be “visited” in order to obtain their labels. Assuming
noting about the order in which this is done, it is not difficult to realize that an algorithm can
be forced to do an I/O every time it visits a child. Actually, this holds whatever blocking one
has—depth first, breadth first or level blocking—mainly because the vertices can have large
fan-in. As an example of this, consider the part of an OBDD in Figure 2. We assume that
the OBDD is level blocked and that B = 2 and M/B = 3, that is, that the main memory
can hold 3 blocks. Now consider the process of visiting the children of each vertex in block 1
through 3, assuming that a least recently used (LRU) like paging strategy is used. First we
load block 1 and start to visit the children of the leftmost vertex. To do so we load block 4
and then block 5. Then we continue to visit the children of the second vertex in block 1. To
do so we have to make room for block 7, so we flush block 4 from internal memory. Then we
can load block 7 and continue to load block 6, flushing block 5. This process continues, and
it is easy to realize that we do an I/O every time we visit a vertex. Similar examples can be
given for depth first and breadth first blockings.

The above problem is also realized in [17], and in order to avoid some of the randomness
in the memory access the algorithm presented there visits the children in level order. This
is accomplished by scanning through the vertices, distributing each of them to two of n lists
according to the index (level) of their children. As discussed above this can be done I/O-
efficient in practice. Then these lists are processed one at a time and the desired labels are
obtained. The algorithm follows the general philosophy mentioned earlier that as the vertices
are stored levelwise they should also be accessed levelwise. But still it is not hard to realize
that also this algorithm could be forced to do an I/O every time a child is accessed, because
there is no correlation between the order in which the children on a given level are visited
and the blocks they are stored in. For example using the strategy on the OBDD in Figure 2
still results in a page fault every time a child is visited. To summarize, all variations of the
basic algorithm use Ω(|G|) I/O in the worst case to obtain the labels of the children—even
the algorithm designed with I/O in mind. Furthermore, there seems to be no simple blocking
strategy that avoids this.

130

Finally, there is the actual sorting step. It is difficult to say how many I/Os the basic
algorithm uses on this task, as a number of different sorting algorithms could be used and
as some of them might actually perform reasonably in an I/O environment. It is however
easy to realize that the (hash) table approaches [17, 33] perform poorly on large OBDDs, as
there is no regular pattern in the access to the table. Also the bucket approach used in [118]
performs poorly because of the random pattern in which the (large number of) buckets are
accessed.

To summarize, all known algorithms use Ω(|G|) I/Os in the worst case to reduce an
OBDD of size |G|. As mentioned, this number could be very large compared to the linear or
the sorting I/O bounds. There are several reasons why the algorithm in [17] still performs
so relatively well in practice. We believe that the main reason is that the OBDDs used in
the experiments in [17], even though they are large, still are small enough to allow one level
of the OBDD to fit in internal memory. This, together with the intuitively correct levelwise
blocking and access to the table, results in the large runtime speedups compared to other
algorithms. A main reason is also to be found in the apply algorithm which we discuss in
Section 3.

2.3 I/O Lower Bound on the Reduce Operation

After analyzing the I/O performance of existing reduce algorithms, we will now prove a lower
bound on the number of I/Os we have to use in order to reduce an OBDD. As mentioned in
the introduction, Aggarwal and Vitter [5] proved a lower bound on the number of I/Os needed
to permute N elements. They used a counting argument where they counted the number of
permutations one can produce with a given number of I/Os and compared this to N ! We will
use the same kind of technique to prove a lower bound on the reduce operation. However,
while the current permutation is well defined throughout an algorithm for the permutation
problem, this is generally not the case in graph computations like the reduce operation. In
the permutation case one can regard the main and external memory as one big memory, and
it is then easy to define the current permutation as the N elements are all present somewhere
in this memory throughout the algorithm. On the contrary elements (vertices) may disappear
and new ones may be created during a reduce operation. In the extreme case all the vertices
of an input OBDD are removed by a reduce operation and replaced by one (sink) vertex.
In order to prove permutation-like bounds on graph problems, that is, bounds expressing
the fact that in the I/O-model it is in general hard to rearrange elements according to a
given permutation, we thus restrict our attention to a specific class of reduce algorithms.
Intuitively, the class consists of all algorithms that work by assigning labels to vertices, and
check if the reduction rules can be used on a vertex by checking the labels of its children. The
assumption is that the children of a vertex are loaded into internal memory (if they are not
there already) when their new label is checked. All known reduction algorithms belong to this
class and the one we develop in Section 2.4 does as well. In order to define the class precisely,
we in Section 2.3.1 define a pebble game played on a graph. We also discuss its relation to
I/O-complexity. Then we in Section 2.3.2 consider a specific graph and prove a lower bound
for playing the game on this graph. This result is then used to prove an I/O lower bound on
the reduce operation. We prove the lower bound for a number of specific blockings.

131

2.3.1 The (M,B)-Blocked Red-Blue Pebble Game

In [72] Hung and Kung defined a red-blue pebble game played on directed acyclic graphs in
order to define I/O-complexity. In their game there were no notion of blocks. Here we define
a game which is also played on directed graphs with red and blue pebbles, but otherwise is
rather different form the Hung and Kung game. Among other things our game takes blocks
into account.

An mentioned our (M,B)-blocked red-blue pebble game is played on a graph. During the
game the vertices of the graph hold a number of pebbles colored red or blue. The blue pebbles
contain an integer each, called the block index. Also the edges of the graph will be colored
blue or red. A configuration is a pebbled graph with colored edges. In the start configuration
all vertices contain precisely one blue pebble and all edges are blue. Furthermore, precisely
B pebbles have the block index 1, precisely B have block index 2, and so on up to V/B (we
assume without loss of generality that B divides the number of vertices V). Throughout the
game at most M −B pebbles may be red. A terminal configuration is one where all pebbles
are blue and all edges red. The rules of the game are the following:

Rule 1: (Input) Blue pebbles with the same block index may be colored red.

Rule 2: (Output) Up to B red pebbles may be colored blue and given the same block index,
while all other pebbles with that block index are removed from the game.

Rule 3: New red pebbles may be placed on any vertex with a red pebble.

Rule 4: The edge (vi, vj) may be colored red if both vertices vi and vj contain at least one
red pebble.

A transition in the game is an ordered pair of configurations, where the second one follows
from the first one by using one of the above rules. A calculation is a sequence of transitions of
which the first configuration is the start configuration. A calculation is complete if it ends with
the terminal configuration. We define the pebble I/O-complexity of a complete calculation to
be the number of transitions in the calculation defined by the use of rule one or two.

Playing the pebble game on a graph models an I/O algorithm with the graph as input,
and pebble I/O-complexity corresponds to I/O-complexity as defined in the introduction.
Blue pebbles reflect vertices stored on disk and red pebbles vertices stored in main memory.
In the start configuration the graph is stored in the first V/B blocks on disk. Rule one and
two then correspond to an input and output respectively, while rule three allows copying
of vertices in internal memory (and thus storing of the same vertex in different blocks on
disk). Finally, rule four—together with the definition of terminating configuration—defines
the class of algorithms we want to consider, namely algorithms where for every edge (vi, vj)
in the graph, the algorithm at some point in the computation holds both vertices vi and vj
in main memory at the same time.

Note that in the pebble game the external memory is divided into what is normally called
tracks , as we read and write blocks of elements to or from a block of external memory with
a unique block index. However, lower bounds proved in the pebble model also hold in the
model discussed in the introduction, as an I/O reading or writing a portion of two tracks can
be simulated with a constant number of I/Os respecting track boundaries.

132

2.3.2 Pebble I/O Lower Bound on the Reduce Operation

In [42] the following generalization of the permutation lower bound from [5] is proved:

Lemma 1 Let A be an algorithm capable of performing (N !)αN c different permutations on an
input of size N , where 0 < α ≤ 1 and c are constant. Then at least one of these permutations
requires Θ(perm(N)) I/Os.

Using this lemma an Ω(perm(N)) lower bound can be shown on the number of I/Os
needed to solve the proximate neighbors problem [42]. The proximate neighbors problem is
defined as follows: Initially, we have N elements in external memory, each with a key that is
a positive integer k ≤ N/2. Exactly two elements have each possible value of k. The problem
is to permute the elements such that, for every k, both elements with k are in the same
block. In [42] the proximate neighbors problem is used to prove lower bounds on a number
of important graph problems. We define a variant of the proximate neighbors problem called
the split proximate neighbors problem (SPN). This problem is defined similar to the proximate
neighbors problem, except that we require that the keys of the first N/2 elements in external
memory (and consequently also the last N/2 elements) are distinct. Furthermore, we require
that the keys of the first N/2 elements are sorted. Following the proof of the lower bound on
the proximate neighbors problem we can prove the following:

Lemma 2 Solving SPN requires Ω(perm(N)) I/Os in the worst case, that is, there exists an
instance of SPN requiring Ω(perm(N)) I/Os.

Proof : There are (N/2)! distinct split proximate neighbors problems. We define a block
permutation to be an assignment of elements to blocks. For each of the distinct problems
an algorithm will do some permutation in order to reach a block permutation that solves
it. We want to estimate how many distinct problems one block permutation can be solution
to. Consider the first block of a given block permutation. This block contains B/2 elements
from the first part of the split proximate neighbors problem and B/2 elements from the last
part. The elements have precisely B/2 different keys k1, k2, . . . , kB/2. Now let i1, i2, . . . , iB/2
be the indices of the elements from the last half of the problem, that is, the positions of the
elements in the input configuration. The block permutation in hand can only be a solution to
problems in which the keys k1, k2, . . . , kB/2 are distributed among the elements with indices
i1, i2, . . . , iB/2 in the start configuration. This can be done in (B/2)! different ways. This holds
for all the N/B blocks in the block permutation, and therefore ((B/2)!)N/B is an upper bound
on the number of distinct problems one block permutation can be a solution to. Thus we have
that (N/2)!

((B/2)!)N/B is a lower bound on the number of block permutations an algorithm solving

SPN must be able to perform. As (N/2)!
((B/2)!)N/B = Ω

(
(N !)1/3

((B/2)!)N/B

)
, and as we can rearrange the

elements within each block of a block permutation in an additional N/B I/Os, the algorithm
could produce (N !)1/3 permutations. The bound then follows from Lemma 1. 2

Using SPN we can now prove a lower bound on the number of pebble I/Os needed to
complete a specific pebble game. Lemma 2 tells us that there exists at least one SPN instance
X of size N which requires Ω(perm(N)) I/Os. We can now obtain an algorithm for X from
a pebble game by imagining that the elements in X are written on some of the pebbles in
a specific graph. Figure 3 shows how we imagine this encoding. The marked vertices are

133

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

Figure 3: Graph used to obtain SPN algorithm from pebble game (B = 8).

the ones containing elements from X , and the vertices to the left of the vertical dotted line
contain the first half of the elements. Vertices containing elements with the same key are
connected with an edge. In the start configuration the pebbles in the dotted boxes (blocks)
have the same block identifier.5 We can now prove the following:

Lemma 3 Completing the pebble game on the graph in Figure 3 takes at least Ω(perm(N))
pebble I/Os.

Proof : Any sequence of transitions S that completes the game can be used to construct an
I/O algorithm for the hard SPN instance X (or rather a sequence of I/Os that solve X).
The I/O algorithm first scans through X to produce a configuration where the first block
contains the first B/2 input elements, the next the next B/2 elements and so on. This is
done in O(N/B) I/Os. Then it simulates the pebble I/Os in S, that is, every time a rule one
transition is done in S involving vertices used in the encoding of X , the algorithm performs
a similar input, and every time a rule two transition involving vertices used in the encoding
is done it performs a similar output. Now every time an edge between vertices used in the
encoding is colored red in the game (using a rule four transition), two elements with the same
key in X are in main memory. When this happens the I/O algorithm puts the two elements
in a special block in main memory. We have such a spare block because the pebble game
was designed only to use M − B internal memory. The block is written back to disk by the
algorithm when it runs full. Thus when the pebble game is complete the I/O algorithm will
have produced a set of blocks on disk solving the SPN problem on instance X . However there
is one complication, as the pebble game allows copying of elements. We did not allow copying
of elements in the SPN lower bound proof, so the solution to X should consist of the original
elements on not of copies. But given the sequence of I/Os solving X produced above, we
can easily produce another sequence solving X which do not copy elements at all, simply by
removing all elements except for those constituting the final solution. As the number of I/Os
performed by the algorithm is bounded by O(N/B) +O(|S|) the lemma follows. 2

Having proved a lower bound on the number of pebble I/Os needed to complete a (M,B)-
blocked pebble game on the graph in Figure 3, we can now easily prove a lower bound on
the number of pebble I/Os needed by a reduce operation. First we build a complete tree on
top of the base blocks as we shall call the blocks in Figure 3. The tree is blocked as pictured
in Figure 4a), and we obtain a breadth first blocked OBDD containing O(N) vertices. In

5We assume without loss of generality that 2 and B divide N .

134

a) b)

Figure 4: a) One block of top blocking in the breadth first blocking lower bound (B = 8). b)
One of the “fill blocks” in proof of Lemma 6 and 7.

base blocks

Figure 5: Top-blocking in the depth first blocking lower bound.

a similar way we can obtain a depth first blocked OBDD of size O(N) by building the tree
pictured in Figure 5 on top of the base blocks. As Lemma 3 also holds for these extensions
of the graph in Figure 3, and as reducing such a graph completes the pebble game on the
graph, we get the following.

Lemma 4 Reducing a breadth first or depth first blocked OBDD with |G| vertices requires
Ω(perm |G|)) pebble I/Os in the worst case.

Recall that the OBDDs in [17] are level blocked. It is easy to repeat the above proof for a
level blocked OBDD and thus Lemma 4 also holds for such blockings. But proving these lower
bounds does not mean that we could not be lucky and be able to reduce an OBDD in less I/Os,
presuming that it is blocked in some other smart way.6 However, when we later consider the
apply operation it turns out that the blockings we have considered (depth, breadth and level)
are in fact the natural ones for the different algorithms for this operation. Intuitively however,
the best blocking strategy for the class of reduce algorithms we are considering, would be a
blocking that minimizes the number of pairs of vertices connected by an edge which are not
in the same block—what we will call a minimal-pair blocking. But as we will prove next,
a slightly modified version of the breadth first blocking we just considered is actually such
a minimal-pair blocking. Thus the lower bound also holds for minimal-pair blockings. The
modification consists of inserting a layer of the blocks in Figure 4b) between the base blocks
and the blocked tree on top of them. The blocks are inserted purely for “proof-technical”
reasons, and the effect of them is that every path of length less than B between a marked
vertex in the left half and a marked vertex in the right half of the base blocks must contain
one of the edges between marked vertices.

6We would then of course also have to worry about maintaining such a blocking between operations.

135

In order to prove that the blocking of the graph G in Figure 3 and 4 is indeed a minimal-
pair blocking, we first state the following lemma which follows directly from the fact that
every vertex in G has at least in-degree one.

Lemma 5 For all blockings of G every block must have at least one in edge.

Now intuitively the blocking in Figure 3 and 4 is a minimal-pair blocking because all
blocks, except for the base blocks, have one in edge, and because the vertices in the base
blocks cannot be blocked in a better way than they are, that is, they must result in at least
half as many edges between vertices in different blocks as there are marked vertices—we call
such edges pair breaking edges. We will formalize and prove this in the next series of lemmas.

Call the first N/2 marked vertices in Figure 3 for a-vertices, and the last N/2 marked
vertices for b-vertices. These vertices are the “special” vertices, because they have edges to
each other and to the multi fan-in sink vertices (we call the sink vertices c-vertices). We now
consider a block in an arbitrary blocking of G containing one or more of these special vertices.

Lemma 6 Let K be a block containing a1 a-vertices and their corresponding c-vertices and
a2 a-vertices without their corresponding c-vertices, together with b1 b-vertices with their c-
vertices and b2 b-vertices without their c-vertices, such that a1, a2, b1 and b2 are all ≤ B/2,
and such that at least one of the ai’s and one of the bi’s are non zero. K has at least
a1 + a2 + b1 + b2 + k pair breaking edges, where k is the number of a1, a2, b1, b2 that are non
zero.

Proof : First we assume without loss of generality that all a1 a-vertices are from the same base
block. This is the best case as far as pair breaking edges are concerned, because they are all
connected to the same c-vertex. Similarly, we assume that all b1 b-vertices are from the same
base block. Finally, we make the same assumption for the a2 a-vertices and the b2 b-vertices
without their corresponding c-vertices. Making these assumptions we are left with vertices
from at most four base blocks. If we can prove the lemma for this particular configuration it
also holds for all other configurations.

We divide the proof in cases according to the value of a1 and b1:

• a1 = 0

In this configuration every a-vertex accounts for at least two pair breaking edges—
namely the two edges to the c-vertices corresponding to the a2 a-vertices. But then it is
easy to realize that a and b vertices accounts for a2 +b1 +b2 pair breaking edges. One of
the edges of the a vertices accounts for a2 of them. For every b-vertex its corresponding
a-vertex is either not one of the a2 a-vertices, in which case the b-vertex itself accounts
for a pair-breaking edge, or it is one of the a-vertices, in which case the other of the
a-vertices pair breaking edges with a c vertex can be counted. Finally, because of the
“fill blocks” above the base blocks (Figure 4), we cannot connect the base blocks except
with edges between a and b vertices. This means that every base block must contribute
with one pair breaking edge not counting a-b edges. This gives the extra k pair breaking
edges.

• a1 ≥ 1,b1 ≥ 1

To hold a and b-vertices and the two c-vertices we use a1 + a2 + b1 + b2 + 2 of K’s
capacity of B vertices. The number of pair breaking edges in a block consisting of only

136

these vertices is a1 + 2(B/2− a1) + 3a2 + b1 + (B/2− b1) + 2b2 + |(a1 + a2)− (b1 + b2)|.
The first two terms correspond to the a1 a-vertices and the third term to the a2 a-
vertices—not counting edges between a and b vertices. Similarly, the next three terms
correspond to the b-vertices. The last term counts the minimal number of pair breaking
edges corresponding to edges between a and b vertices in the block (assuming that as
many as possible are “paired”).

Now we add vertices one by one in order to obtain the final block K. We add them
in such a way that when adding a new vertex, it has an edge to at least one vertex
already in the block (if such a vertex exists). Because we cannot connect the base
blocks except with a-b edges (again because of the “fill blocks”), one added vertex can
at most decrease the number of pair breaking edges by one. Assuming that every added
vertex decreases the number of pair breaking edges by one, we end up with a block with
a1 + 2(B/2− a1) + 3a2 + b1 + (B/2− b1) + 2b2 + |(a1 + a2)− (b1 + b2)| − (B− (a1 + a2 +
b1 + b2 + 2)) = 3a2 + 2b2 +B/2− a1 + |(a1 + a2)− (b1 + b2)|+ a1 + a2 + b1 + b2 + 2 pair
breaking edges. We want to prove that this number is at least a1 + a2 + b1 + b2 + k,
which is indeed the case if 3a2 + 2b2 +B/2− a1 + |(a1 + a2)− (b1 + b2)| ≥ k − 2. This
again trivially holds because a1 ≤ B/2 and because k is only greater than 2 if a2 and/or
b2 is non zero.

• a ≥ 1,b1 = 0

As b1 = 0, b2 must be non zero. Doing the same calculations as in the previous case we
find that the lemma holds if 3a2 + 2b2 − a1 + |a1 + a2 − b2| ≥ k − 1.

Now if a1 + a2 ≥ b2 we get that 4a2 + b2 should be grater than or equal to k− 1, which
is trivially fulfilled as k = 2 if a2 = 0 and 3 otherwise.

If a1 + a2 ≤ b2 we get that 2a2 + 3b2 − 2a1 should be greater than or equal to k − 1.
This is again trivially fulfilled (under the assumption a1 + a2 ≤ b2).

2

Now we want to remove the a1, a2, b1, b2 ≤ B/2 assumption from Lemma 6. In the proof
the assumption was used to easily be able to bound the number of pair breaking edges between
c-vertices in K and a and b-vertices outside the block. Note that if one of the variables is
greater than B/2 then the others must be less than B/2.

Lemma 7 Let K be a block containing a1 a-vertices and their corresponding c-vertices and
a2 a-vertices without their corresponding c-vertices, together with b1 b-vertices with their c-
vertices and b2 b-vertices without their c-vertices, such that at least one of the ai’s and one of
the bi’s are non zero. K has at least a1 + a2 + b1 + b2 + k pair breaking edges, where k is the
number of a1, a2, b1, b2 that are non zero.

Proof : As in the proof of Lemma 6 we assume that all (or as many as possible) a and b-
vertices of the same type are in the same base block. Taking a closer look at the proof of
Lemma 6 quickly reveals that the proof works even if a2 or b2 is greater than B/2. The proof
also works if a1 = 0, so we are left with the following two cases:

• b1 > B/2 (and 1 ≤ a < B/2)

The block consisting of only a and b-vertices and the corresponding c-vertices have at
least a1 + 2(B/2− a1) + 3a2 + b1 + (B/2− (b1−B/2)) + 2b2 + |(a1 + a2)− (b1 + b2)| =

137

3a2 + 2b2 + 2B − a1 + |(a1 + a2) − (b1 + b2)| pair-breaking edges. Assuming that the
rest (B − (a1 + a2 + b1 + b2 + 3)) of the vertices in the block all brings the number of
pair breaking edges down by one, the lemma follows from the fact that the following
inequality is trivially satisfied 3a2 + 2b2 +B − a1 + |(a1 + a2)− (b1 + b2)| ≥ k − 3.

• a1 > B/2

We divide the proof in two:

– b1 ≥ 1
The number of pair breaking edges “produced” by a and b-vertices is at least
a1 + 2(B/2 − (a1 − B/2)) + 3a2 + b1 + (B/2 − b1) + 2b2 + |(a1 + a2) − (b1 + b2)|
leading to the following inequality 3a2+2b2+3/2B−a1+|(a1+a2)−(b1+b2)| ≥ k−3.
This inequality is trivially satisfied as a1 < B.

– b1 = 0 (and b2 ≥ 1)
Using the same argument the satisfied inequality is 3a2 + 2b2 + B − a1 + |(a1 +
a2)− (b1 + b2)| ≥ k − 3.

2

We can now prove the main lemma:

Lemma 8 The breadth first blocking of G in Figure 3 and 4 is a minimal-pair blocking.

Proof : First note that Lemma 7 also holds (trivially) if a block only contains vertices of
one type. It then follows that every a and b-vertex must result in at least one pair breaking
edges. Furthermore, every c-vertex (or rather every base block) must result in at least one
additional pair breaking edge. Thus the blocking in Figure 3 obtains the minimal number of
pair breaking edges. From Lemma 5 we furthermore know that every other block must have
at least one in edge. The lemma then follows from the fact that the blocking in Figure 4 only
has one in edge. 2

Now we have proved that the intuitively best blocking for the reduction algorithm, as well
as all the intuitively best blockings for the apply algorithms, all result in a lower bound of
Ω(perm(N)) I/Os on the reduce operation. The results can be summarized as follows.

Theorem 1 Reducing an OBDD with |G| vertices—minimal-pair, level, depth first or breadth
first blocked—requires Ω(perm(|G|)) pebble I/Os in the worst case.

2.4 I/O-Efficient Reduce Algorithm

Recall that one of the main problems with existing reduce algorithms with respect to I/O is
that when they process a level of the OBDD they perform a lot of I/Os in order to get the
labels of the children of vertices on the level. Our solution to this problem is simple—when
a vertex is given a label we “inform” all its immediate predecessors about it in a “lazy”
way using an external priority queue developed in [11]. On this priority queue we can do a
sequence of N insert and deletemin operations in O(sort(N)) I/Os in total. After labeling a
vertex we thus insert an element in the queue for all predecessors of the vertex, and we order
the queue such that we on higher levels simply can perform deletemin operations to obtain
the required labels.

138

In order to describe our algorithm precisely we need some notation. We refer to a vertex
and its label with the same symbol (e.g. v). The index or level of a vertex is referred to as
id(v), and the 0-successor and 1-successor are referred to as low(v) and high(v), respectively.
In order to make our reduce algorithm I/O-efficient, we start the algorithm by creating two
sorted lists of the vertices in the OBDD we want to reduce. The first list (L1) contains the
vertices sorted according to index and secondary according to label—that is, according to
(id(v), v). Put another way, the list represents a level blocking of the OBDD. The second list
(L2) contains two copies of each vertex and it is sorted according to the index of their children
and secondarily according to the labels of their children. That is, we have two copies of vertex
v ordered according to (id(low(v)), low(v)) and (id(high(v)), high(v)), respectively. To create
L1—for any blocking of the OBDD—we just scan through the vertices in the OBDD, inserting
them in a priority queue ordered according to index and label, and then we repeatedly perform
deletemin operations to obtain L1. Thus we use O(sort(N)) I/Os to produce L1. L2 can be
produced in the same number of I/Os in a similar way.

We are now ready to describe our new reduce algorithm. Basically it works like all the
other algorithms. We process the vertices from the sinks up to the root and assign a unique
label to each unique sub-OBDD root. We start by assigning one label to all 0-sinks and
another to all 1-sinks. This is done just by scanning through L1 until all sinks have been
processed. During this process—and the rest of the algorithm—we output one copy of each
unique vertex to a result list. After labeling the sink vertices we insert an element in the
priority queue for each vertex that has a sink as one of its children. The elements contain the
label of the relevant child (sink), and the queue is ordered according to level and label of the
“receiving” vertex (the vertex having a sink as child). This is accomplished by merging the
list of sinks with the appropriate (first) elements in L2. Now assume that we have processed
all vertices above level i and want to process level i. In the priority queue we now have one
or two elements for each vertex that has a child on a lower level than i. In particular we
have two elements for every vertex on level i. Because the elements in the priority queue are
ordered according to (id(v), v), we can thus just do deletemin operations on the queue until
we have obtained the elements corresponding to vertices on level i. At the same time we
merge the elements with L1 in order to “transfer” the labels of the children to the relevant
vertices in L1. Then we proceed like Bryant [32]; we sort the vertices according to the labels
of the children (with an I/O optimal sorting algorithm [5, 133]), and use the reduction rules
to assign new labels. Then we sort the vertices back into their original order, merge the
resulting list with L2, and insert the appropriate elements (vertices with a child on level i) in
the priority queue—just like after assigning labels to the sinks. When we reach the root we
have obtained the reduced OBDD.

In order to analyze the I/O use of the algorithm, note that a linear number of operations
in the size of the OBDD is performed on the priority queue. Thus we in total use O(sort(|G|))
I/Os to manipulate the queue. The I/O use of the rest of the algorithm is dominated by the
sorting of the elements on each level, that is, by O(sort(|G|)) in total. We then have:

Theorem 2 An OBDD with |G| vertices can be reduced in O(sort(|G|)) I/Os.

3 The Apply Operation

We divide our discussion of the apply operation into subsections on existing algorithms, their
I/O-behavior, and on our new I/O-efficient algorithm.

139

3.1 Apply Algorithms

The basic idea in all the apply algorithms reported in the literature is to use the formula

f1 ⊗ f2 = xi · (f1|xi=0 ⊗ f2|xi=0) + xi · (f1|xi=1 ⊗ f2|xi=1)

to design a recursive algorithm. Here f |xi=b denotes the function obtained from f when the
argument xi is replaced by the boolean constant b. Using this formula Bryant’s algorithm [32]
works as follows: Consider two functions f1 and f2 represented by OBDDs with roots v1 and
v2. First, suppose both v1 and v2 are sinks. Then the resulting OBDD consists of a sink having
the boolean value value(v1)⊗ value(v2). Otherwise, suppose that at least one of the vertices
is not a sink vertex. If id(v1) = id(v2) = i the resulting OBDD consists of a root vertex with
index i, and with the root vertex in the OBDD obtained by applying the apply operation on
low(v1) and low(v2) as 0-child and with the root vertex in the OBDD obtained by applying
the apply operation on high(v1) and high(v2) as 1-child. Thus a vertex u with index i is
created and the algorithm is used recursively twice to obtain low(u) and high(u). Suppose
on the other hand (and without loss of generality) that id(v1) = i and id(v2) > i. Then the
function represented by the OBDD with root v2 is independent of xi (because of the fixed
variable ordering), that is, f2|xi=0 = f2|xi=1 = f2. Hence, a vertex u with index i is created,
and the algorithm is recursively applied on low(v1) and v2 to generate the OBDD whose root
becomes low(u), and on high(v1) and v2 to generate the OBDD whose root becomes high(u).
This is basically the algorithm except that in order to avoid generating the OBDD for a pair
of sub-OBDDs more than once—which would result in exponential (in n) running time—
dynamic programming is used: During the algorithm a table of size |G1| · |G2| is maintained.
The xy’th entry in this table contains the result (the label of the root vertex) of using the
algorithm on the vertex in the OBDD for f1 with label x and the vertex in the OBDD for f2
with label y, if it is already computed. Before applying the algorithm to a pair of vertices
it is checked whether the table already contains an entry for the vertices in question. If that
is the case the result already computed is just returned. Otherwise, the algorithm continues
as described above and adds the root vertex to the table. It is straightforward to realize that
Bryant’s algorithm runs in O(|G1| · |G2|) time (the size of the dynamic programming table).
Note that it is proved in [32] that there actually exist reduced OBDDs representing functions
f1 and f2 such that the size of f1 ⊗ f2 is Θ(|G1| · |G2|).

Due to the recursive structure Bryant’s algorithm works in a depth first manner on the
involved OBDDs. In [101] an algorithm algorithm working in a breadth first manner is de-
veloped in order to perform OBDD manipulation efficiently on a CRAY-type supercomputer.
This algorithm works like Bryant’s, except that recursive calls (vertices which need to have
their children computed—we call them requests) are inserted in a queue (the request queue)
and computed one at a time. This leads to a breadth first traversal of the involved OBDDs.
Also this algorithm uses dynamic programming and runs in O(|G1| · |G2|) time.

As previously discussed, I/O issues are then taken into account in [17] and an O(|G1|·|G2|)
time algorithm working in a levelwise manner is developed. As in the case of the reduce
algorithm it is assumed that the OBDDs are stored levelwise and the general idea is then
to work as levelwise as possible on them. Basically the algorithm works like the breadth
first algorithm, but with the request queue split up into n queues—one for each level of the
OBDDs. When a new request is generated it is placed in the queue assigned to the level of
the vertex corresponding to the request. The queues are then processed one at a time from
the queue corresponding to the top level and down. This way the OBDDs are traversed in a

140

levelwise manner. Also before a new request is inserted in a queue it is checked if a duplicate
request has already been inserted in the queue. This effectively means that the dynamic
programming table and the request queues are “merged” into one structure. Finally, much
like the way the reduce algorithm in [102] obtains the new labels of the children of a vertex
in level order, the requests on a given level are handled in sorted order according to the levels
of the requests issued as a consequence of them. As previously the motivation for this is that
it assures that lookups for duplicate requests are done in a levelwise manner.

In order to obtain a canonical OBDD all the presented algorithms run the reduce algorithm
after constructing a new OBDD with the apply operation. It should be noted that Bryant
in [33] has modified his depth first algorithm such that the reduction is performed as an
integrated part of the apply algorithm. The algorithm simply tries to use the reduction rules
after returning from the two recursive calls. While it is easy to check if R1 can be applied, a
table of the already generated vertices is used to check if R2 can be applied. The advantage of
this modified algorithm is that redundant vertices, which would be removed in the following
reduction step, is not created and thus space is saved. The algorithms not working in a depth
first manner [17, 101, 102] cannot perform the reduction as an integrated part of the apply
algorithm.

3.2 The I/O-Behavior of Apply Algorithms

Like we in Section 2.2 analyzed the existing reduce algorithms in the parallel disk model, we
will now analyze the different apply algorithms in the model. In the following |R| will be the
size of the un-reduced OBDD resulting from a use of the apply algorithm on two OBDDs
of size |G1| and |G2|, respectively. We first analyze why the depth first [32] and breadth
first [101] algorithms perform so poorly in an I/O-environment, and then we take a closer
look at the algorithms developed with I/O in mind.

As in the case of the reduce algorithm it is not difficult to realize that assuming nothing
about the blocking (which is probably the most realistic in practice) it is easy for an adversary
to force both the depth first and the breadth first algorithm to do an I/O every time a new
vertex in G1 or G2 is visited. This results in an overall use of Ω(|R|) I/Os, that is, O(|G1|·|G2|)
I/Os in the worst case. It is equally easy to realize that breadth first and level blockings are
just as bad for the depth first algorithm [32], and depth first and level blockings just as bad
for the breadth first algorithm [101]. So let us assume that the OBDDs are blocked in some
“good” way with respect to the used traversal scheme. Still the algorithms perform poorly
because of the lack of locality of reference in the lookups in the dynamic programming table.
To illustrate this we take a closer look at the depth first algorithm [32] assuming that the
OBDDs are depth first blocked. Again, if we do not assume anything about the blocking of
the dynamic programming table, it is easy to realize that in the worst case every access to the
table results in a page fault. If we were able to block the table as we like, the only obvious
way to block it would be in a depth first manner (Figure 6a): Assume that the algorithm
is working on vertex v1 in G1 and v2 in G2. The algorithm now makes one of the following
recursive calls: v1 and low(v2), low(v1) and v2, or low(v1) and low(v2). Before doing so it
makes a lookup in the dynamic programming table. Thus the table should be blocked as
indicated in Figure 6a) as we would like the corresponding part of the table to be in internal
memory. Note that with the blocking in Figure 6a) the algorithm would at least make a page
fault on every

√
B lookup operation. But actually it is much worse than that, which can

be illustrated with the example in Figure 6b). Here a depth first blocking of an OBDD is

141

a) b)

B B B

B B B

B BB

DFS G2

DFS G1

Figure 6: a) Dynamic programming table. b) I/O performance of algorithm in [17].

indicated. It is also indicated how the 0-children of the “right” vertices can be chosen in an
almost arbitrary way. This in particular means that an adversary can force the algorithm to
make a lookup page fault every time one of these vertices is visited. As the number of such
vertices is Θ(|G|) the algorithm could end up making a page fault for almost every of the |R|
vertices in the new OBDD.

After illustrating why the breadth first and depth first algorithms perform poorly, let us
shortly consider the algorithm especially designed with I/O in mind [17]. Recall that this
algorithm maintains a request queue for each level of the OBDDs, which also functions as the
dynamic programming table divided into levels, and that it processes one level of requests in
the order of the levels of the requests issued as a consequence of them. It is relatively easy to
realize that in the worst case a page fault is generated every time one of the request queues
is accessed as dynamic programming table. The reason is precisely the same as in the case of
the depth first algorithm, namely that there is no nice pattern in the access to the table—not
even in the access to one level of it. As previously, we therefore cannot block the queues
efficiently and we again get the Ω(|R|) worst-case I/O behavior. The natural question to ask
is of course why experiments then show that this approach can lead to the mentioned runtime
speedups. The answer is partly that the traditional depth first and breadth first algorithms
behave so poorly with respect to I/Os that just considering I/O issues, and actually try to
block the OBDDs and access them in a “sequential” way, leads to large runtime improvements.
Another important reason is the previously mentioned fact that in practical examples n is
much smaller than M/B, which means that a block from each of the n queues fits in internal
memory. However, we believe that one major reason for the experimental success in [17] is
that the OBDDs in the experiments roughly are of the size of the internal memory of the
machines used. This means that one level of the OBDDs actually fits in internal memory,
which again explains the good performance because the worst case behavior precisely occurs
when one level does not fit in internal memory.

3.3 I/O-Efficient Apply Algorithm

The main idea in our new apply algorithm is to do the computation levelwise as in [17], but
use a priority queue to control the recursion. Using a priority queue we do not need a queue
for each level as in [17]. Furthermore, we do not check for duplicates when new requests

142

are issued, but when they are about to be computed. Recall that the main problem with
the previous levelwise algorithm precisely is the random lookups in the queues/tables when
these checks are made. Instead of checking for duplicates when new requests are issued, we
just insert them in a priority queue and perform the checks when removing requests from the
queue. We do so simply by ordering the queue such that identical requests will be returned
by consecutive deletemin operations. This way we can in a simple way ignore requests that
have already been computed.

In order to make our algorithm work efficiently we need the vertices of each of the OBDDs
sorted according to level and secondary according to label. This representation can easily be
constructed in O(sort(|G1|) + sort(|G2|)) I/Os in the same way as we constructed the list
L1 in the reduce algorithm. For convenience we now use four priority queues to control the
recursion (instead of one). They all contain requests represented by a pair of vertices, one
from G1 and one from G2. The first queue V contains pairs (v, w) where id(v) < id(w), and
is ordered according to the level and label of v. Thus V contains requests which should be
processed at level id(v) and which can be processed without obtaining new information about
w. Similarly, the second queue W contains pairs where id(v) > id(w), ordered according to
(id(w), w). The last two priority queues EV and EW contain pairs where id(v) = id(w), and
are ordered according to (id(v), v) and (id(w), w), respectively.

We do the apply in a levelwise manner starting from the root vertices. We label the
vertices in the resulting OBDD R with pairs of labels from G1 and G2. The algorithm
starts by comparing the indices of the two root vertices v and w, and creates the root vertex
(v, w) of R with index equal to the lowest of the two indices. If id(v) < id(w) it then
makes two new vertices (low(v), w) and (high(v), w) with indices min(id(low(v)), id(w)) and
min(id(high(v)), id(w)), respectively, and “connects” (v, w) to these two vertices. Similarly,
if id(v) > id(w) it makes the vertices (v, low(w)) and (v, high(w)), and if id(v) = id(w) the
vertices (low(v), low(w)) and (high(v), high(w)). Now the algorithm makes two recursive
calls in order to construct the OBDDs rooted in the two newly created vertices. As the
recursion is controlled by the priority queues this is done by inserting the vertices/requests
in these queues. The level on which a given vertex/request (u1, u2) is to be processed is
determined by min(id(u1), id(u2)). Therefore (u1, u2) is inserted in V if id(u1) < id(u2) and
in W if id(u1) > id(u2). If id(u1) = id(u2) it is inserted both in EV and in EW .

Now assume that the algorithm has processed all levels up to level i−1. In order to process
level i we do the following: We do deletemin operations on V in order to obtain all requests
in this queue that need to be processed on level i. As discussed above we only process one
copy of duplicate requests. As all requests (u1, u2) in V have id(u1) < id(u2) all new requests
generated as a consequence of them are of the form (low(u1), u2) or (high(u1), u2). Thus we
do not need any new information about u2 to issue the new requests. During the process
of deleting the relevant requests from the queue we therefore simply “merge” the requests
with the representation of G1 in order to obtain the information needed. We process level
i requests in W in a similar way. Finally, we process level i requests in EV and EW . We
know that all vertices in these queues have id(u1) = id(u2) = i, which means that they will
create requests of the form (low(u1), low(u2)) and (high(u1), high(u2)). Therefore we need to
obtain new information from both G1 and G2. Thus we do deletemin operations on EV and
“merge” the result with the representation of G1, collecting the information we need from
this OBDD. During this process we also insert the resulting vertices in EW . Finally, we do
deletemin operations on EW and “merge” with G2 to obtain the information we need to issue
the relevant new requests.

143

When the above process terminates we will have produced R, and the analysis of the
I/O-complexity of the algorithm is easy: Each vertex/request is inserted in and deleted from
a priority queue a constant number of times. Thus we directly obtain the following from the
I/O bounds of the priority queue operations.

Theorem 3 The apply operation can be performed in O(sort(|R|)) I/O operations.

4 Extension of Results to D-disk Model

As promised we should make a few comments about our results in the D-disk model. As far
as the lower bound is concerned, we can of course just divide our bound in the one-disk model
by D and the obtained bound will then be a lower bound in the parallel disk model. It turns
out that this bound can actually be matched, that is, we can obtain a speedup proportional
to the number of disks.

To obtain the upper bounds in this paper we only used three basic “primitives”; scanning,
sorting and priority queues. Scanning through N elements can easily be done in O(N/DB)
I/Os in the parallel disk model and as already mentioned we can also sort optimally in the
model. Furthermore, it is proved in [11] that the priority queue can also take full advantage of
parallel disks. Both the sorting algorithms and the priority queue on parallel disks work under
the (non-restrictive in practice) assumption that 4DB ≤M −M1/2+β for some 0 < β < 1/2.
Thus with the same assumption all the results obtained in this paper holds in the parallel
disk model.

5 Conclusion and Open Problems

In this paper we have demonstrated how all the existing OBDD manipulation algorithms in
the worst case make on the order of the number of memory accesses page faults. This is the
reason why they perform poorly in an I/O environment. We have also developed new OBDD
manipulation algorithms and proved their optimality under some natural assumptions.

We believe that the developed algorithms are not only of theoretical but also of practical
interest—especially if we make a couple of modifications. If we represent the OBDDs in terms
of edges instead of vertices (where each edge “knows” the level of both source and sink) and
block them in the way they are used by the apply algorithm, it can be realized that our apply
algorithm automatically produce the blocking used by the (following) reduce algorithm. The
reduce algorithm can then again produce the blocking used by the (next) apply algorithm.
This can be done without extra I/O use, basically because the apply algorithm works in
a top-down manner while the reduce algorithm works in a bottom-up manner. With this
modification the algorithms are greatly simplified and we save the I/Os used to create the
special representations of the OBDDs used in the reduce and apply algorithms. Furthermore,
it is also easy to realize that we can do with only one priority queues in the apply algorithm. As
the constants in the I/O bounds on the priority queue operations are all small, the constants
in the bounds of the developed OBDD manipulation algorithms are also small. Also it is
demonstrated in [129] that the overhead required to explicitly manage I/O can be made very
small, and therefore we believe that our algorithms could lead to large runtime speedups on
existing workstations. We hope in the future to be able to implement the priority queue data

144

structure in the Transparent Parallel I/O Environment (TPIE) developed by Vengroff [126]
in order to verify this.

A couple of questions remains open, namely if it is possible to prove an O(perm(N)) I/O
lower bound on the reduce operation assuming any blocking, and if it is possible to prove a
lower bound on the apply operation without assuming that a reduce step is done after the
apply.

Acknowledgments

I would especially like to thank Peter Bro Miltersen for comments on drafts of this paper
and for comments that lead to the definition of the blocked red-blue pebble game. I would
also like to thank Allan Cheng for introducing me to OBDDs and Darren Erik Vengroff for
inspiring discussions.

145

Chapter 10

A General Lower Bound
on the I/O-Complexity of
Comparison-based Algorithms

147

A General Lower Bound on the I/O-Complexity of
Comparison-based Algorithms∗

Lars Arge, Mikael Knudsen and Kirsten Larsen

Department of Computer Science
University of Aarhus
Aarhus, Denmark†

August 1992

Abstract

We show a general relationship between the number of comparisons and the number
of I/O-operations needed to solve a given problem. This relationship enables one to show
lower bounds on the number of I/O-operations needed to solve a problem whenever a
lower bound on the number of comparisons is known. We use the result to show lower
bounds on the I/O-complexity of a number of problems where known techniques only give
trivial bounds. Among these are the problems of removing duplicates from a multiset,
a problem of great importance in e.g. relational data-base systems, and the problem of
determining the mode — the most frequently occurring element — of a multiset. We
develop non-trivial algorithms for these problems in order to show that the lower bounds
are tight.

1 Introduction

In the studies of complexity of algorithms, most attention has been given to bounding the
number of primitive operations (for example comparisons) needed to solve a given problem.
However, when working with data materials so large that they will not fit into internal mem-
ory, the amount of time needed to transfer data between the internal memory and the external
storage (the number of I/O-operations) can easily dominate the overall execution time.

In this paper we work in a model introduced by Aggarwal and Vitter [5] where an I/O-
operation swaps B records between external storage and the internal memory, capable of
holding M records. An algorithm for this model is called an I/O-algorithm. Aggarwal and
Vitter [5] consider the I/O-complexity of a number of specific sorting-related problems, namely
sorting, fast Fourier transformation, permutation networks, permuting and matrix transpo-
sition. They give asymptotically matching upper and lower bounds for these problems. The
∗This paper is a slightly revised version of DAIMI PB-407. The paper was presented at the Third Workshop

on Algorithms and Data Structures (WADS’93).
†This work was partially supported by the ESPRIT II Basic Research Actions Program of the EC under

contract No. 7141 (project ALCOM II). Email communication to large@daimi.aau.dk.

149

lower bounds are based on routing arguments, and in general no restrictions are made on the
operations allowed in internal memory, except that records are considered to be atomic and
cannot be divided into smaller parts. Only when the internal memory is extremely small, the
comparison model is assumed.

In this paper we shall use the same model of computation, except that in general we will
limit the permitted operations in the internal memory to comparisons. The main result of this
paper is the following: Given an I/O-algorithm that solves an N -record problem PN using
I/O(x) I/O’s on the input x, there exists an ordinary comparison algorithm that uses no more
than N logB + I/O(x) · Tmerge(M −B,B) comparisons on input x. Tmerge(n,m) denotes the
number of comparisons needed to merge two sorted lists, of size n and m respectively. While
[5] shows lower bounds for a number of specific problems, our result enables one to show
lower bounds on the number of I/O-operations needed to solve a problem for any problem
where a lower bound on the number of comparisons needed is known. Among these is sorting
where we obtain the same lower bound as in [5]. We use the result to show lower bounds on
a number of problems not formerly considered with respect to I/O-complexity. Among these
are the problems of removing duplicates from a multiset, a problem of great importance in
e.g. relational data-base systems, and the problem of finding the most frequently occurring
element in a multiset. We develop non-trivial algorithms for these problems in order to show
that the lower bounds are tight.

The basic idea in the lower bound proofs in [5] is to count how many permutations can
be generated with a given number of I/O-operations and to compare this to the number of
permutations needed to solve a problem. This technique, however, is not generally applicable.
For example only trivial lower bounds can be shown on the problems we consider in this paper
using this technique. We use a different information theoretical approach, where we extend
normal comparison trees with I/O-nodes. The proof of the main result then corresponds
to giving an algorithm that transfers an I/O-tree that solves a given (I/O-) problem to a
normal comparison tree with a height bounded by a function of the number of I/O-nodes
in the original tree. An important property of the result is that it not only can be used to
show worst-case I/O lower bounds, but that e.g an average lower bound on the number of
comparisons needed also induces an average I/O lower bound.

In the next section, we formally define the model we will be working in. We also define
the I/O-tree on which the main result in section 3 is based. In section 4, we discuss the
generality of the I/O-tree model, and in section 5, we give optimal algorithms for two problems
concerning multisets, namely determining the mode and removing duplicates. Finally, some
open problems are discussed in section 6.

2 Definition of the model and the I/O-tree

We shall consider N -record problems, where in any start configuration the N records —
x1, x2, . . . , xN — reside in secondary storage. The number of records that can fit into internal
memory is denoted M and the number of records transferable between internal memory and
secondary storage in a single block is denoted B (1 ≤ B ≤M < N). The internal memory and
the secondary storage device together are viewed as an extended memory with at least M+N
locations. The firstM locations in the extended memory constitute the internal memory — we
denote these s[1], s[2], . . . , s[M] — and the rest of the extended memory constitute secondary
storage. The k’th track is defined as the B contiguous locations s[M + (k − 1)B + 1], s[M +

150

��
��

�
�
�
��

��
��

C
C
C
CC

[k, l1, l2, . . . , lB] xi : xj

I/O-node Comparison node

Figure 1: Node-types: An I/O-node swaps the B records s(l1), . . . , s(lB) with the B records in
the k’th track, as denoted by the I/O-vector [k, l1, l2, . . . , lB], where l1, l2, . . . , lB ∈ {1, . . .M}
and are pairwise different, and k ∈ {1, 2, . . .}. A comparison node compares xi with xj . xi
and xj must be in internal memory.

(k − 1)B + 2], . . . , s[M + kB] in extended memory, k = 1, 2, An I/O-operation is now an
exchange of B records between the internal memory and a track in secondary storage.

An I/O-tree is a tree with two types of nodes: comparison nodes and I/O-nodes. Com-
parison nodes compare two records xi and xj in the internal memory using < or ≤. i and
j refer to the initial positions of the records and not to storage locations. A comparison
node has two outgoing edges, corresponding to the two possible results of the comparison.
An I/O-node performs an I/O-operation, that is, it swaps B (possibly empty) records in the
internal memory with B (possibly empty) records from secondary storage. The B records
from secondary storage must constitute a track (see Figure 1).

To each I/O-node, we attach a predicate Q and two functions π and π′. The predicate
Q contains information about the relationship between the xi’s. We define the predicate
recursively: First we attach a predicate Pk to each edge from a comparison node k. If the
node made the comparison xi < xj the predicate xi < xj is attached to the left edge, and
xi ≥ xj to the right edge. Similarly with ≤. We now consider a path S where we number the
I/O-nodes s0, s1, s2, . . . starting in the root and ending in the leaf.
Qsi is then defined as follows: Qs0 = True

Qsi = Qsi−1 ∧ P1 ∧ P2 ∧ . . .∧ Pl
where P1, P2 . . .Pl are the predicates along the path from si−1 to si (see Figure 2).

The π’s contain information about where in the extended storage the original N records
— x1, x2, . . . , xN — are placed. More formally, we have: π : {1, 2, . . . , N} → {1, 2, . . .}, where
π(i) = j means that xi is in the jth cell in the extended memory. Note that π is one-to-one.
π′ is the result of performing an I/O-operation in a configuration described by π, i.e., a track,
consisting of B records, is swapped with B records from the internal memory (as denoted by
the (B + 1)-vector in Figure 1). More formally, π′ = π except for the following:

π’(π−1(l1)) = M + (k − 1)B + 1
π’(π−1(M + (k − 1)B + 1)) = l1
...
π’(π−1(lB)) = M + kB
π’(π−1(M + kB)) = lB

151

�� ������

����
����
����
����

��

@@

@@

��

........

@@

��

@@

Pl

P2

P1

Qsi = Qsi−1 ∧ P1 ∧ P2 ∧ . . .∧ Pl

Qsi−1

Figure 2: The predicate Qsi is defined recursively from the predicate Qsi−1 and the predicates
along the path between the two I/O-nodes.

π in an I/O-node is, of course, equal to π′ in its closest ancestor, i.e., πsi = π′si−1
.

Definition 1 An I/O-tree is a tree consisting of comparison and I/O-nodes. The root of the
tree is an I/O-node where πroot (i) = M+ i, i.e. corresponding to a configuration where there
are N records residing first in secondary storage and the internal memory is empty. The
leaves of the tree are I/O-nodes, again corresponding to a configuration where the N records
reside first in secondary storage (possibly permuted with respect to the start configuration) and
the internal memory is empty. This means that π′leaf (i) ∈ {M + 1,M + 2 . . .M +N} for all
i.

Definition 2 If T is an I/O-tree then pathT (x) denotes the path x follows in T . |pathT (x)|
is the number of nodes on this path.

We split the problems solvable by I/O-trees into two classes: decision problems and con-
struction problems. Decision problems are problems where we, given a predicate QP and a
vector x, want to decide whether or not x satisfies QP . Construction problems are problems
where we are given a predicate QP and a vector x, and want to make a permutation ρ, such
that ρ(x) satisfies QP .

Definition 3 An I/O-tree T solves a decision problem P , if the following holds for every leaf
l:

(∀x : Ql(x) ⇒ QP (x)) ∨
(∀x : Ql(x) ⇒ ¬QP (x))

An I/O-tree T solves a construction problem P , if the following holds for every leaf l:

∀x : Ql(x)⇒ QP (xπ′−1
l (M+1), xπ′−1

l (M+2), . . . , xπ′−1
l (M+N))

It is important to note that an I/O-tree reduces to an ordinary comparison tree solving
the same problem, if the I/O-nodes are removed. This is due to the fact that the comparison
nodes refer to records (numbered with respect to the initial configuration) and not to storage
locations.

152

f

f

ff
..

�
�
�
�
�� A

A
A
A
AA

 J

J
J
J
J
J
J
J
J
J
J
J
J
J
JJ

QilQi2Qi1

Qi

Figure 3: Comparison subtree

3 The Main Result

Theorem 1 Let PN be an N -record problem, T be an I/O-tree solving PN and let I/OT (x)
denote the number of I/O-nodes in pathT (x). There exists an ordinary comparison tree Tc
solving PN such that the following holds:

|pathTc(x)| ≤ N logB + I/OT (x) · Tmerge(M −B,B)

where Tmerge(n,m) denotes the number of comparisons needed to merge two sorted lists of
length n and m, respectively.

Proof : We will prove the theorem by constructing the comparison tree Tc, but first we want
to construct another I/O-tree T ′ that solves PN from the I/O-tree T .

We consider a comparison subtree of T — an inner comparison tree of T with an I/O-node
as the root and its immediately succeeding I/O-nodes as the leaves (see figure 3).

A characteristic of this tree is that, except from the I/O-nodes in the root and in the
leaves, it only contains comparison nodes that compare records in the internal memory, i.e.
comparisons of the form xi < xj (xi ≤ xj) where π(i), π(j) ∈ {1, ..,M}. In other words
Qi1, Qi2, . . . , Qil must be of the form Qi∧ (xi1 < xj1)∧ (xi2 ≤ xj2)∧ . . . where π(im), π(jm) ∈
{1, ..,M}. Moreover, one and only one of the predicates Qi1, Qi2, . . . , Qil is true for any x
that satisfies Qi.

We now build T ′ from T by inductively building comparison subtrees in T ′ from compar-
ison subtrees in T starting with the “uppermost” comparison subtree: The root of the new
comparison subtree is the same as the root of the original comparison subtree. The internal
comparison nodes are replaced with a tree that makes all the comparisons needed for a total
ordering of records in internal memory. Finally, the leaves are I/O-nodes selected among the
l I/O-nodes in the original subtree in the following way: If R is the predicate “generated”
on the path from the root of T ′ to a leaf in the new subtree, the I/O-node with the predicate
Qij such that R⇒ Qij is used. The choice of I/O-node is well-defined because the predicate
R implies exactly one of the Qij ’s. If any of the leaves in the original comparison subtree
are also roots of comparison subtrees, i.e., they are not the leaves of T , we repeat the pro-
cess for each of these subtrees. Note that any of them may appear several times in T ′. It

153

should be clear that when T ′ is constructed in this way, it solves PN . Furthermore, for all
x, pathT (x) and pathT ′(x) contain the same I/O-nodes. This means that if the height of the
comparison subtrees in T ′ is at most h, then the number of comparison nodes on pathT ′(x) is
at most h · I/OT (x). But then there exists an ordinary comparison tree Tc solving PN , such
that |pathTc(x)| ≤ h · I/O(x), namely the comparison tree obtained from T ′ by removing the
I/O-nodes.

It is obvious that our upper bound on |pathTc(x)| improves the smaller an h we can get.
This means that we want to build a comparison tree, that after an I/O-operation determines
the total order of the M records in internal memory with as small a height as possible. After
an I/O-operation we know the order of the M − B records that were not affected by the
I/O-operation — this is an implicit invariant in the construction of T ′. The problem is,
therefore, limited to placing the B “new” records within this ordering. If we, furthermore,
assume that we know the order of the B records, then we are left with the problem of merging
two ordered lists, this can be done using at most Tmerge(M −B,B) comparisons. We cannot
in general assume that the B records are ordered, but because the I/O-operations always are
performed on tracks and because we know the order of the records we write to a track, the
number of times we can read B records that are not ordered (and where we must use B logB
comparisons to sort them) cannot exceed N

B .
Finally, we get the desired result:
|pathTc(x)| ≤ N

BB logB + I/OT ′(x) · Tmerge(M −B,B)
⇓
|pathTc(x)| ≤ N logB + I/OT (x) · Tmerge(M −B,B)

2

Two lists of length n and m (where n > m) can be merged using binary merging [82] in
m + b n2t c − 1 + t ·m comparisons where t = blog n

mc. This means that Tmerge(M − B,B) ≤
B log(M−BB) + 3B which gives us the following corollary:

Corollary 1

|pathTc(x)| ≤ N logB + I/OT (x) ·
(
B log(

M −B
B

) + 3B
)

2

It should be clear that the corollary can be used to prove lower bounds on the number of
I/O-operations needed to solve a given problem. An example is sorting, where an N logN −
O(N) worst-case lower bound on the number of comparisons is known. In other words,
we know that for any comparison tree (algorithm) Tc that sorts N records there is an x
such that |pathTc(x)| ≥ N logN − O(N). From the corollary we get N logN − O(N) ≤
N logB + I/OT (x) ·

(
B log(M−BB) + 3B

)
, hence the worst-case number of I/O-operations

needed to sort N records is at least N log N
B
−O(N)

B log(M−B
B

)+3B
.

Note that no matter what kind of lower bound on the number of comparisons we are working
with - worst-case, average or others - the theorem applies, because it relates the number of
I/O’s and comparisons for each instance of the problem.

154

4 Extending the Model

The class of algorithms for which our result is valid comprises algorithms that can be simulated
by our I/O-trees. This means that the only operations permitted are binary comparisons and
transfers between secondary storage and internal memory. It should be obvious that a tree,
using ternary comparisons and swapping of records in internal memory, can be simulated
by a tree with the same I/O-height, that only uses binary comparisons and no swapping
(swapping only effects the π′s). Therefore, a lower bound in our model will also be a lower
bound in a model where swapping and ternary comparisons are permitted. Similarly, we can
permit algorithms that use integer variables, if their values are implied by the sequence of
comparisons made so far, and we can make branches according to the value of these variables.
This is because such manipulations cannot save any comparisons.

The differences between our model and the model presented in [5] are, apart from ours
being restricted to a comparison model, mainly three things. Firstly, Aggarwal and Vitter
only assume that a transfer involves B contiguous records in secondary storage, whereas we
assume that the B records constitute a track. Reading/writing across a track boundary,
however, can be simulated by a constant number of “standard” I/O’s. Hence, lower bounds
proved in our model still apply asymptotically. Secondly, their I/O’s differ from ours in the
sense that they permit copying of records, i.e. writing to secondary storage without deleting
them from internal memory. It can be seen that the construction in the proof of our theorem
still works, if we instead of one I/O-node have both an I-node and an O-node that reads
from, respectively writes to, a track. Therefore, our theorem still holds when record copying
is permitted. Finally, they model parallelism with a parameter P that represents the number
of blocks that can be transferred concurrently. It should be clear that we can get lower bounds
in the same model by dividing lower bounds proved in our model by P .

It is worth noting that this parallel model is not especially realistic. A more realistic
model was considered in [133] in which the secondary storage is partitioned into P distinct
disk drives. In each I/O-operation, each of the P disks can simultaneously transfer one block.
Thus, P blocks can be transferred per I/O, but only if no two blocks come from the same disk.
Of course lower bounds in the Aggarwal and Vitter model also apply in the more realistic
model. As using multiple disks is a very popular way of speeding up e.g. external sorting,
extensive research has recently been done in this area [99] [131].

5 Optimal Algorithms

Aggarwal and Vitter [5] show the following lower bound on the I/O-complexity of sorting:

Ω

(
N log N

B

B log M
B

)

They also give two algorithms based on mergesort and bucketsort that are asymptotically
optimal. As mentioned earlier our result provides the same lower bound.

An almost immediate consequence of the tight lower bound on sorting is a tight lower
bound on set equality, set inclusion and set disjointness, i.e., the problems of deciding whether
A = B, A ⊆ B or A ∩ B = ∅ given sets A and B. It can easily be shown (see e.g. [22]) that
a lower bound on the number of comparisons for each of these problems is N logN − O(N).

155

An optimal algorithm is, therefore, to sort the two sets independently, and then solving the
problem by “merging” them.

In the following, we will look at two slightly more difficult problems for which our theorem
gives asymptotically tight bounds.

5.1 Duplicate Removal

We wish to remove duplicates from a file in secondary storage — that is, make a set from a
multiset. Before removing the duplicates, N records reside at the beginning of the secondary
storage and the internal memory is empty. The goal is to have the constructed set residing
first in the secondary storage and the duplicates immediately after. Formally this corresponds
to the following predicate:

QP (y) = ∃k : (∀i, j 1 ≤ i, j ≤ k ∧ i 6= j : yi 6= yj) ∧
(∀i k < i ≤ N : ∃j 1 ≤ j ≤ k : yi = yj)

A lower bound on the number of comparisons needed to remove duplicates is N logN −∑k
i=1 Ni logNi −O(N), where Ni is the multiplicity of the ith record in the set. This can be

seen by observing that after the duplicate removal, the total order of the original N records is
known. Any two records in the constructed set must be known not to be equal, and because
we compare records using only < or ≤, we know the relationship between them. Any other
record (i.e. one of the duplicates) equals one in the set. As the total order is known, the
number of comparisons made must be at least the number needed to sort the initial multiset.
A lower bound on this has been shown [93] to be N logN −∑k

i=1Ni logNi −O(N).
Combining a trivial lower bound of N

B (we have to look at each record at least once) with
an application of our theorem to the above comparison lower bound, we obtain:

I/O(Duplicate−RemovalN) ∈ Ω

(
max

{
N log N

B −
∑k
i=1Ni logNi

B log M
B

,
N

B

})

We match this lower bound asymptotically with an algorithm that is a variant of merge
sort, where we “get rid of” duplicates as soon as we meet them. We use a block (of B records)
in internal memory to accumulate duplicates, transferring them to secondary storage as soon
as the block runs full.

The algorithm works like the standard merge sort algorithm. We start by making d N
M−B e

runs; we fill up the internal memory d N
M−B e times and sort the records, removing duplicates

as described above. We then repeatedly merge c runs into one longer run until we only have
one run, containing k records. c = bMB c−2 as we use one block for duplicates and one for the
“outgoing” run. It is obvious that there are less than logc(d N

M−B e) + 1 phases in this merge
sort, and that we in a single phase use no more than the number of records being merged
times 2

B I/O-operations.
We now consider records of type xi. In the first phase we read all the Ni records of this

type. In phase j there are less than dN/(M−B)e
cj−1 runs and we therefore have two cases:

dN/(M−B)e
cj−1 ≥ Ni: There are more runs than records of the type xi, this means that in the

worst case we have not removed any duplicates, and therefore all the Ni records contribute
to the I/O-complexity.

156

dN/(M−B)e
cj−1 < Ni: There are fewer runs than the original number of xi’s. There cannot be

more than one record of the type xi in each run and therefore the recordtype xi contributes
with no more than the number of runs to the I/O-complexity.

The solution to the equation dN/(M−B)e
cj−1 = Ni with respect to j gives the number of

phases where all Ni records might contribute to the I/O-complexity. The solution is j =
logc(

dN/(M−B)e
Ni

) + 1, and the number of times the recordtype xi contributes to the overall
I/O-complexity is no more than:

Ni

(
logc(

dN/(M − B)e
Ni

) + 1
)

+
logc(dN/(M−B)e)+1∑
j=logc(

dN/(M−B)e
Ni

)+2

dN/(M −B)e
cj

Adding together the contributions from each of the k records we get the overall I/O-
complexity:

I/O ≤ 2
B

N +
k∑
i=1

Ni (logc(
dN/(M − B)e

Ni
) + 1

)
+

logc(dN/(M−B)e)+1∑
j=logc(

dN/(M−B)e
Ni

)+2

dN/(M − B)e
cj

=
2
B

[
N +N logc(dN/(M −B)e) −

k∑
i=1

Ni logcNi +N+

k∑
i=1

dN/(M −B)e ·

logc(dN/(M−B)e)+1∑
j=0

(c−1)j −
logc(

dN/(M−B)e
Ni

)+1∑
j=0

(c−1)j

=
2
B

[
N +N logc(dN/(M −B)e) −

k∑
i=1

Ni logcNi +N +
N − k
c2 − c

]

= 2
N log(dN/(M − B)e) −

∑k
i=1 Ni logNi

B log(dMB e − 2)
+

4N
B

+
2(N − k)
B(c2 − c)

∈ O

(
max

{
N log N

B −
∑k
i=1 Ni logNi

B log M
B

,
N

B

})

5.2 Determining the Mode

We wish to determine the mode of a multiset, i.e. the most frequently occurring record. In
a start configuration, the N records reside at the beginning of the secondary storage. The
goal is to have an instance of the most frequently occurring record residing first in secondary
storage and all other records immediately after. Formally this corresponds to the following
predicate:

QP (y) = ∀j 1 ≤ j ≤ N : |{i | yi = y1, 1 ≤ i ≤ N}| ≥ |{i | yi = yj , 1 ≤ i ≤ N}|

Munro and Raman [93] showed that N log N
a −O(N) is a lower bound on the number of

ternary comparisons needed to determine the mode, where a denotes the frequency of the
mode. This must also be a lower bound on the number of binary comparisons, thus, our
theorem, again combined with a trivial lower bound of NB , gives the following lower bound on

157

the number of I/O-operations:

I/O(modeN) ∈ Ω

(
max

{
N log N

aB

B log M
B

,
N

B

})
The algorithm that matches this bound is inspired by the distribution sort algorithm

presented by Munro and Spira [94]. First, we divide the multiset into c disjoint segments of
roughly equal size (a segment is a sub-multiset which contains all elements within a given
range). We then look at each segment and determine which records (if any) have multiplicity
greater than the segment size divided by a constant l (we call this an l-majorant). If no
segments contained an l-majorant, the process is repeated on each of the segments. If, on
the other hand, there were any l-majorants, we check whether the one among these with the
greatest multiplicity has multiplicity greater than the size of the largest segment divided by l.
If it does, we have found the mode. If not, we continue the process on each of the segments
as described above.

We now argue that both the division into segments and the determination of l-majorants
can be done in a constant number of sequential runs through each segment.

To determine l-majorants we use an algorithm due to Misra and Gries [91]. First, l − 1
candidates are found in a sequential run through the segment in the following way: For each
record it is checked whether it is among the present l−1 candidates (initially each of the l−1
candidates are just “empty”). If it is, this candidates multiplicity is incremented by l − 1.
If not, all the candidates multiplicities are decremented by 1, unless any of the candidates
had multiplicity 0 (or was “empty”), in which case the record becomes a candidate with
multiplicity l−1 instead of one with multiplicity 0. When the run is completed, if there were
any l-majorants, they will be among the candidates with positive multiplicity. This is checked
in another sequential run, where the actual multiplicities of the candidates are determined.
Note that l must be less than M −B because the l candidates have to be in internal memory.

The division of a segment into c disjoint segments of roughly equal size is done by first
finding c pivot elements, and then distributing the records in the original segment into the
segments defined by the pivot elements in a sequential run. We use one block in internal
memory for the ingoing records, and c blocks, one for each segment, for the outgoing records
(this means c ≤ bMB c − 1). Aggarwal and Vitter [5] describe an algorithm to find

√
M
B pivot

elements in a set in O(NB) I/O’s. The algorithm satisfies the following: If d1, d2, . . . , d√M
B

denote the pivot elements and Ki denotes the elements in [di−1, di[then N

2
√

M
B

≤ |Ki| ≤ 3N
2
√

M
B

(?). We now wish to argue that a slightly modified version of the algorithm can be used to
find pivot elements in a multiset so that either |Ki| ≤ 3N√

M
B

or else all the records in Ki are

equal.
We start by using the algorithm by Aggarwal and Vitter. This algorithm depends almost ex-
clusively on the k-selection algorithm that finds the kth smallest element in a multiset in linear
time [29]. This means that if we implicitly assume an order of equal records, namely the order
in which we meet them, the resulting pivot elements define segments that satisfy (?). Some
of the pivot elements might be equal, and we therefore use some slightly different elements. If
di−1 6= di = di+1 = . . . = di+k 6= di+k+1, we use the elements di−1, di, succ(di+k) and di+k+1,
where succ(d) is the successor to d in the record order (in the case where succ(di+k) = di+k+1,
we only choose the three pivot elements di−1, di and succ(di+k)). The segments now either
consist of all equal records, or else they are no more than double the size of the segments

158

︸ ︷︷ ︸
equal

di−1 di di+1

Figure 4: “The worst case”: di−1 6= di 6= di+1 and [di−1, di[contains one element whereas
[di, di+1[is double the intended size.

we get, assuming that all records are distinct. This can be seen by looking at the “worst
case” which is when di−1 6= di 6= di+1 and all records in]di−1, di[are equal, and consequently
[di, di+1[and]di−1, di+1[contain the same elements (see Figure 4).

We have argued that the number of I/O-operations at each level is proportional to N/B,
and the analysis therefore reduces to bounding the number of levels. An upper bound on the
size of the largest segment on level j must be N

(1
3

√
M/B)j

. It follows that the algorithm can

run no longer than to a level j where N

(1
3

√
M/B)j

/l ≤ a. Solving this inequality with respect

to j, we find that no matter what value of l we choose in the range {B, . . . ,M − B}, we

get a bound on the number levels of O
(

log N
aB

log M
B

)
. This gives us the matching upper bound of

O

(
N log N

aB

B log M
B

)
.

6 Remarks and Open Problems

In the previous section we showed tight bounds on the problems of removing duplicates from
a multiset, and determining the mode of a multiset. As mentioned in the introduction,
previously known techniques [5] give only trivial lower bounds on these problems. On the
other hand our theorem is also limited in the sense that there are problems for which it is
useless. One example is the problem of permuting N records according to a given permutation
π. An interesting and important problem “lying between” duplicate removal and permuting
is multiset sorting. This problem is analyzed in [81], and lower bounds are given, both using
our theorem and a (reduction-) variant of the technique from [5]. The obtained lower bounds
are quite good, but we believe there is room for improvement.

Another interesting problem is to extend the model in which the lower bounds apply.
Especially it would be interesting to extend our theorem to an I/O version of algebraic
decision trees - thus allowing arithmetic. This would probably give interesting bounds on e.g.
a number of computational geometry problems.

Acknowledgments

The authors thank Gudmund S. Frandsen, Peter Bro Miltersen and Erik Meineche Schmidt
for valuable help and inspiration. Special thanks go to Peter Bro Miltersen and Erik Meineche
Schmidt for carefully reading drafts of this paper and providing constructive criticism.

159

160

Bibliography

[1] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir. A model for hierarchical memory.
In Proc. ACM Symp. on Theory of Computation, pages 305–314, 1987.

[2] A. Aggarwal and A. K. Chandra. Virtual memory algorithms. In Proc. ACM Symp. on
Theory of Computation, pages 173–185, 1988.

[3] A. Aggarwal, A. K. Chandra, and M. Snir. Hierarchical memory with block transfer.
In Proc. IEEE Symp. on Foundations of Comp. Sci., pages 204–216, 1987.

[4] A. Aggarwal and G. Plaxton. Optimal parallel sorting in multi-level storage. Proc.
ACM-SIAM Symp. on Discrete Algorithms, pages 659–668, 1994.

[5] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

[6] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

[7] B. Alpern, L. Carter, and E. Feig. Uniform memory hierarchies. In Proc. IEEE Symp.
on Foundations of Comp. Sci., pages 600–608, 1990.

[8] R. J. Anderson and G. L. Miller. A simple randomized parallel algorithm for list-ranking.
Information Processing Letters, 33:269–273, 1990.

[9] D. S. Andrews, J. Snoeyink, J. Boritz, T. Chan, G. Denham, J. Harrison, and C. Zhu.
Further comparisons of algorithms for geometric intersection problems. In Proc. 6th
Int’l. Symp. on Spatial Data Handling, 1994.

[10] ARC/INFO. Understanding GIS—the ARC/INFO method. ARC/INFO, 1993. Rev. 6
for workstations.

[11] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms. In Proc. Work-
shop on Algorithms and Data Structures, LNCS 955, pages 334–345, 1995.

[12] L. Arge. The I/O-complexity of ordered binary-decision diagram manipulation. In Proc.
Int. Symp. on Algorithms and Computation, LNCS 1004, pages 82–91, 1995.

[13] L. Arge, M. Knudsen, and K. Larsen. A general lower bound on the I/O-complexity of
comparison-based algorithms. In Proc. Workshop on Algorithms and Data Structures,
LNCS 709, pages 83–94, 1993.

161

[14] L. Arge and P. B. Miltersen. On the indivisibility assumption in the theory of external-
memory algorithms. In preparation.

[15] L. Arge, D. E. Vengroff, and J. S. Vitter. External-memory algorithms for processing
line segments in geographic information systems. In Proc. Annual European Symposium
on Algorithms, LNCS 979, pages 295–310, 1995. A full version is to appear in special
issue of Algorithmica.

[16] L. Arge and J. S. Vitter. Optimal dynamic interval management in external memory.
In Proc. IEEE Symp. on Foundations of Comp. Sci., 1996.

[17] P. Ashar and M. Cheong. Efficient breadth-first manipulation of binary decision dia-
grams. In Proc. IEEE International Conference on CAD, 1994.

[18] M. J. Atallah, R. Cole, and M. T. Goodrich. Cascading divide-and-conquer: A technique
for designing parallel algorithms. SIAM Journal of Computing, 18(3):499–532, 1989.

[19] R. D. Barve, E. F. Grove, and J. S. Vitter. Simple randomized mergesort on parallel
disks. In Proc. ACM Symp. on Parallel Algorithms and Architectures, 1996.

[20] H. Baumgarten, H. Jung, and K. Mehlhorn. Dynamic point location in general subdi-
visions. Journal of Algorithms, 17:342–380, 1994.

[21] R. Bayer and E. McCreight. Organization and maintenance of large ordered indizes.
Acta Informatica, 1:173–189, 1972.

[22] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. ACM Symp. on
Theory of Computation, pages 80–86, 1983.

[23] J. L. Bentley. Algorithms for klee’s rectangle problems. Dept. of Computer Science,
Carnegie Mellon Univ., unpublished notes, 1977.

[24] J. L. Bentley. Multidimensional divide and conquer. Communications of the ACM,
23(6):214–229, 1980.

[25] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric
intersections. IEEE Transactions on Computers, C-28(9):643–647, 1979.

[26] J. L. Bentley and D. Wood. An optimal worst case algorithm for reporting intersections
of rectangles. IEEE Transactions on Computers, 29:571–577, 1980.

[27] G. Blankenagel and R. Güting. XP-trees — External priority search trees. Technical
report, FernUniversität Hagen, Informatik-Bericht Nr. 92, 1990.

[28] G. Blankenagel and R. Güting. External segment trees. Algorithmica, 12:498–532, 1994.

[29] M. Blum, R. W. Floyd, V. Pratt, R. L. Rievest, and R. E. Tarjan. Time bounds for
selection. Journal of Computer and System Sciences, 7:448–461, 1973.

[30] N. Blum and K. Mehlhorn. On the average number of rebalancing operations in weight-
balanced trees. Theoretical Computer Science, 11:303–320, 1980.

162

[31] S. K. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD package.
In Proc. ACM/IEEE Design Automation Conference, 1990.

[32] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8), 1986.

[33] R. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3), 1992.

[34] P. Callahan, M. T. Goodrich, and K. Ramaiyer. Topology B-trees and their applications.
In Proc. Workshop on Algorithms and Data Structures, LNCS 955, pages 381–392, 1995.

[35] T. M. Chan. A simple trapezoid sweep algorithm for reporting red/blue segment inter-
sections. In Proc. of 6th Canadian Conference on Computational Geometry, 1994.

[36] B. Chazelle. Triangulating a simple polygon in linear time. In Proc. IEEE Symp. on
Foundations of Comp. Sci., 1990.

[37] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments
in the plane. Journal of the ACM, 39:1–54, 1992.

[38] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Algorithms for bichromatic
line-segment problems and polyhedral terrains. Algorithmica, 11:116–132, 1994.

[39] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique.
Algorithmica, 1:133–162, 1986.

[40] Y.-J. Chiang. Dynamic and I/O-Efficient Algorithms for Computational Geometry and
Graph Problems: Theoretical and Experimental Results. PhD thesis, Brown University,
August 1995.

[41] Y.-J. Chiang. Experiments on the practical I/O efficiency of geometric algorithms: Dis-
tribution sweep vs. plane sweep. In Proc. Workshop on Algorithms and Data Structures,
LNCS 955, pages 346–357, 1995.

[42] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.
Vitter. External-memory graph algorithms. In Proc. ACM-SIAM Symp. on Discrete
Algorithms, pages 139–149, 1995.

[43] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry. Pro-
ceedings of IEEE, Special Issue on Computational Geometry, 80(9):362–381, 1992.

[44] D. R. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In Proc.
ACM-SIAM Symp. on Discrete Algorithms, pages 383–391, 1996.

[45] A. Cockcroft. Sun Performance and Tuning. SPARC & Solaris. Sun Microsystems Inc.,
1995.

[46] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal list-
ranking. Information and Control, 70(1):32–53, 1986.

163

[47] T. H. Cormen. Virtual Memory for Data Parallel Computing. PhD thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
1992.

[48] T. H. Cormen. Fast permuting in disk arrays. Journal of Parallel and Distributed
Computing, 17(1-2):41–57, 1993.

[49] T. H. Cormen, T. Sundquist, and L. F. Wisniewski. Asymptotically tight bounds for
performing BMMC permutations on parallel disk systems. Technical Report PCS-TR94-
223, Dartmouth College Dept. of Computer Science, July 1994.

[50] T. H. Cormen and L. F. Wisniewski. Asymptotically tight bounds for performing
BMMC permutations on parallel disk systems. In Proc. ACM Symp. on Parallel Algo-
rithms and Architectures, pages 130–139, 1993.

[51] D. Cormer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, 1979.

[52] R. F. Cromp. An intellegent information fusion system for handling the archiving and
querying of terabyte-sized spatial databases. In S. R. Tate ed., Report on the Workshop
on Data and Image Compression Needs and Uses in the Scientific Community, CESDIS
Technical Report Series, TR–93–99, pages 75–84, 1993.

[53] H. Edelsbrunner. A new approach to rectangle intersections, part I. Int. J. Computer
Mathematics, 13:209–219, 1983.

[54] H. Edelsbrunner. A new approach to rectangle intersections, part II. Int. J. Computer
Mathematics, 13:221–229, 1983.

[55] H. Edelsbrunner and M. Overmars. Batched dynamic solutions to decomposable search-
ing problems. Journal of Algorithms, 6:515–542, 1985.

[56] P. Ferragina and R. Grossi. A fully-dynamic data structure for external substring search.
In Proc. ACM Symp. on Theory of Computation, pages 693–702, 1995.

[57] P. Ferragina and R. Grossi. Fast string searching in secondary storage: Theoretical
developments and experimental results. In Proc. ACM-SIAM Symp. on Discrete Algo-
rithms, pages 373–382, 1996.

[58] E. Feuerstein and A. Marchetti-Spaccamela. Memory paging for connectivity and path
problems in graphs. In Proc. Int. Symp. on Algorithms and Computation, 1993.

[59] R. W. Floyd. Permuting information in idealized two-level storage. In Complexity of
Computer Calculations, pages 105–109, 1972. R. Miller and J. Thatcher, Eds. Plenum,
New York.

[60] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles and
Practice. Addison-Wesley, 1990.

[61] A. Fournier and D. Y. Montuno. Triangulating simple polygons and equivalent prob-
lems. ACM Trans. on Graphics, 3(2):153–174, 1984.

164

[62] P. G. Franciosa and M. Talamo. Orders, implicit k-sets representation and fast halfplane
searching. In Proc. Workshop on Orders, Algorithms and Applications (ORDAL’94),
pages 117–127, 1994.

[63] G. R. Ganger, B. L. Worthington, R. Y. Hou, and Y. N. Patt. Disk arrays. high-
performance, high-reliability storage subsystems. IEEE Computer, 27(3):30–46, 1994.

[64] J. Gergov and C. Meinel. Frontiers of feasible and probabilistic feasible boolean manip-
ulation with branching programs. In Symposium on Theoretical Aspects of Computer
Science, LNCS 665, 1993.

[65] D. Gifford and A. Spector. The TWA reservation system. Communications of the ACM,
27:650–665, 1984.

[66] J. Gil and A. Itai. Packing trees. In Proc. Annual European Symposium on Algorithms,
LNCS 979, pages 113–127, 1995.

[67] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory compu-
tational geometry. In Proc. IEEE Symp. on Foundations of Comp. Sci., pages 714–723,
1993.

[68] O. Günther. The design of the cell tree: An object-oriented index structure for geometric
databases. In Proc. of the fifth Int. Conf. on Data Engineering, pages 598–605, 1989.

[69] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. ACM
Conf. on Management of Data, pages 47–57, 1985.

[70] L. M. Haas and W. F. Cody. Exploiting extensible dbms in integrated geographic
information systems. In Proc. of Advances in Spatial Databases, LNCS 525, 1991.

[71] A. Henrich, H.-W. Six, and P. Widmayer. Paging binary trees with external balancing.
In Proc. Graph-Theoretic Concepts in Computer Science, LNCS 411, pages 260–276,
1989.

[72] J. W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In Proc.
ACM Symp. on Theory of Computation, pages 326–333, 1981.

[73] S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.
Acta Informatica, 17:157–184, 1982.

[74] C. Icking, R. Klein, and T. Ottmann. Priority search trees in secondary memory. In
Proc. Graph-Theoretic Concepts in Computer Science, LNCS 314, pages 84–93, 1987.

[75] B. Jiang. Traversing graphs in a paging environment BFS or DFS? Information Pro-
cessing Letters, 37:143–147, 1991.

[76] B. Jiang. I/O and CPU-optimal recorgnition of strongly connected components. Infor-
mation Processing Letters, 45:111–115, 1993.

[77] B. H. H. Juurlink and H. A. G. Wijshoff. The parallel hierarchical memory model. In
Proc. Scandinavian Workshop on Algorithms Theory, LNCS 824, pages 240–251, 1993.

165

[78] P. C. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. In Proc. ACM
Symp. Principles of Database Systems, pages 299–313, 1990.

[79] P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. Indexing for data
models with constraints and classes. In Proc. ACM Symp. Principles of Database Sys-
tems, 1993. Invited to special issue of JCSS on Principles of Database Systems (to
appear). A complete version appears as technical report 90-31, Brown University.

[80] N. Klarlund and T. Rauhe. BDD algorithms and cache misses. Technical Report RS-
96-26, BRICS, University of Aarhus, 1996.

[81] M. Knudsen and K. Larsen. I/O-complexity of comparison and permutation problems.
Master’s thesis, Aarhus University, November 1992.

[82] D. Knuth. The Art of Computer Programming, Vol. 3 Sorting and Searching. Addison-
Wesley, 1973.

[83] V. Kumar and E. Schwabe. Improved algorithms and data structures for solving graph
problems in external memory. In Proc. IEEE Symp. on Parallel and Distributed Pro-
cessing, 1996.

[84] R. Laurini and A. D. Thompson. Fundamentals of Spatial Information Systems. A.P.I.C.
Series, Academic Press, New York, NY, 1992.

[85] C. E. Leiserson, S. Rao, and S. Toledo. Efficient out-of-core algorithms for linear relax-
ation using blocking covers. In Proc. IEEE Symp. on Foundations of Comp. Sci., pages
704–713, 1993.

[86] D. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing method with good
guaranteed performance. ACM Transactions on Database Systems, 15(4):625–658, 1990.

[87] H. G. Mairson and J. Stolfi. Reporting and counting intersections between two sets
of line segments. In R. Earnshaw (ed.), Theoretical Foundation of Computer Graphics
and CAD, NATO ASI Series, Vol. F40, pages 307–326, 1988.

[88] S. Malik, A. R. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic verifica-
tion using binary decision diagrams in a logic synthesis environment. In Proc. IEEE
International Conference on CAD, 1988.

[89] E. McCreight. Priority search trees. SIAM Journal of Computing, 14(2):257–276, 1985.

[90] K. Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Searching and
Computational Geometry. Springer-Verlag, EATCS Monographs on Theoretical Com-
puter Science, 1984.

[91] J. Misra and D. Gries. Finding repeated elements. Science of Computer Programming,
2:143–152, 1982.

[92] K. Mulmuley. Computational Geometry. An introduction through randomized algo-
rithms. Prentice-Hall, 1994.

[93] J. I. Munro and V. Raman. Sorting multisets and vectors in-place. In Proc. Workshop
on Algorithms and Data Structures, LNCS 519, pages 473–479, 1991.

166

[94] J. I. Munro and P. M. Spira. Sorting and searching in multisets. SIAM Journal of
Computing, 5(1):1–8, 1976.

[95] J. Nievergelt, H. Hinterberger, and K. Sevcik. The grid file: An adaptable, symmetric
multikey file structure. ACM Transactions on Database Systems, 9(1):257–276, 1984.

[96] J. Nievergelt and E. M. Reingold. Binary search tree of bounded balance. SIAM Journal
of Computing, 2(1), 1973.

[97] M. H. Nodine, M. T. Goodrich, and J. S. Vitter. Blocking for external graph searching.
Algorithmica, 16(2):181–214, 1996.

[98] M. H. Nodine and J. S. Vitter. Large-scale sorting in parallel memories. In Proc. ACM
Symp. on Parallel Algorithms and Architectures, pages 29–39, 1991.

[99] M. H. Nodine and J. S. Vitter. Deterministic distribution sort in shared and distributed
memory multiprocessors. In Proc. ACM Symp. on Parallel Algorithms and Architec-
tures, pages 120–129, 1993.

[100] M. H. Nodine and J. S. Vitter. Paradigms for optimal sorting with multiple disks. In
Proc. of the 26th Hawaii Int. Conf. on Systems Sciences, 1993.

[101] H. Ochi, N. Ishiura, and S. Yajima. Breadth-first manipulation of sbdd of boolean
functions for vector processing. In Proc. ACM/IEEE Design Automation Conference,
1991.

[102] H. Ochi, K. Yasuoka, and S. Yajima. Breadth-first manipulation of very large binary-
decision diagrams. In Proc. IEEE International Conference on CAD, 1993.

[103] J. Orenstein. Spatial query processing in an object-oriented database system. In Proc.
ACM Conf. on Management of Data, pages 326–336, 1986.

[104] M. Overmars, M. Smid, M. de Berg, and M. van Kreveld. Maintaining range trees in
secundary memory. Part I: Partitions. Acta Informatica, 27:423–452, 1990.

[105] M. H. Overmars. The Design of Dynamic Data Structures. Springer-Verlag, LNCS 156,
1983.

[106] L. Palazzi and J. Snoeyink. Counting and reporting red/blue segment intersections. In
Proc. Workshop on Algorithms and Data Structures, LNCS 709, pages 530–540, 1993.

[107] Y. N. Patt. The I/O subsystem — a candidate for improvement. Guest Editor’s Intro-
duction in IEEE Computer, 27(3):15–16, 1994.

[108] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, 1985.

[109] S. Ramaswamy and P. Kanellakis. OOBD indexing by class division. In A.P.I.C. Series,
Academic Press, New York, 1995.

[110] S. Ramaswamy and S. Subramanian. Path caching: A technique for optimal external
searching. In Proc. ACM Symp. Principles of Database Systems, 1994.

167

[111] J. Robinson. The K-D-B tree: A search structure for large multidimensional dynamic
indexes. In Proc. ACM Conf. on Management of Data, pages 10–18, 1984.

[112] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Proc.
IEEE International Conference on CAD, 1993.

[113] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer,
27(3):17–28, 1994.

[114] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Process-
ing, and GIS. Addison Wesley, MA, 1989.

[115] H. Samet. The Design and Analyses of Spatial Data Structures. Addison Wesley, MA,
1989.

[116] J. E. Savage. Space-time tradeoffs in memory hierarchies. Technical Report CS-93-08,
Brown University, 1993.

[117] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for multi-
dimensional objects. In Proc. IEEE International Conf. on Very Large Databases, 1987.

[118] D. Sieling and I. Wegener. Reduction of obdds in linear time. Information Processing
Letters, 48, 1993.

[119] M. Smid. Dynamic Data Structures on Multiple Storage Media. PhD thesis, University
of Amsterdam, 1989.

[120] M. Smid and M. Overmars. Maintaining range trees in secundary memory. Part II:
Lower bounds. Acta Informatica, 27:453–480, 1990.

[121] S. Subramanian and S. Ramaswamy. The p-range tree: A new data structure for range
searching in secondary memory. In Proc. ACM-SIAM Symp. on Discrete Algorithms,
pages 378–387, 1995.

[122] J. D. Ullman and M. Yannakakis. The input/output complexity of transitive closure.
Annals of Mathematics and Artificial Intellegence, 3:331–360, 1991.

[123] V. K. Vaishnavi and D. Wood. Rectilinear line segment intersection, layered segment
trees, and dynamization. Journal of Algorithms, 3:160–176, 1982.

[124] M. van Kreveld. Geographic information systems. Utrecht University, INF/DOC–95–01,
1995.

[125] J. van Leeuwen. Handbook of Theoretical Computer Science, Volume A: Algorithms and
Complexity. Elsevier, 1990.

[126] D. E. Vengroff. A transparent parallel I/O environment. In Proc. 1994 DAGS Sympo-
sium on Parallel Computation, 1994.

[127] D. E. Vengroff. Private communication, 1995.

[128] D. E. Vengroff. Private communication, 1996.

168

[129] D. E. Vengroff and J. S. Vitter. I/O-efficient scientific computation using TPIE. In
Proc. IEEE Symp. on Parallel and Distributed Computing, 1995. Appears also as Duke
University Dept. of Computer Science technical report CS-1995-18.

[130] D. E. Vengroff and J. S. Vitter. Efficient 3-d range searching in external memory. In
Proc. ACM Symp. on Theory of Computation, pages 192–201, 1996.

[131] J. S. Vitter. Efficient memory access in large-scale computation (invited paper). In
Symposium on Theoretical Aspects of Computer Science, LNCS 480, pages 26–41, 1991.

[132] J. S. Vitter and M. H. Nodine. Large-scale sorting in uniform memory hierarchies.
Journal of Parallel and Distributed Computing, 17:107–114, 1993.

[133] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, I: Two-level memo-
ries. Algorithmica, 12(2–3):110–147, 1994.

[134] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, II: Hierarchical
multilevel memories. Algorithmica, 12(2–3):148–169, 1994.

[135] J. D. Watson. The human genome projekt: Past, present, and future. Science, 248:44–
49, 1990.

[136] D. Willard and G. Lueker. Adding range restriction capability to dynamic data struc-
tures. Journal of the ACM, 32(3):597–617, 1985.

[137] B. Zhu. Further computational geometry in secondary memory. In Proc. Int. Symp. on
Algorithms and Computation, pages 514–522, 1994.

169

Recent Publications in the BRICS Dissertation Series

DS-96-3 Lars Arge.Efficient External-Memory Data Structures and
Applications. August 1996. Ph.D. thesis. xii+169 pp.

DS-96-2 Allan Cheng.Reasoning About Concurrent Computational
Systems. August 1996. Ph.D. thesis. xiv+229 pp.

DS-96-1 Urban Engberg. Reasoning in the Temporal Logic of Ac-
tions — The design and implementation of an interactive
computer system. August 1996. Ph.D. thesis. xvi+222 pp.

