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Abstract

This thesis contains three main parts. The first part presents contributions in the field of
verification of finite state concurrent systems, the second part presents contributions in the field
of behavioural reasoning about concurrent systems based on the notions of behavioural preorders
and behavioural equivalences, and, finally, the third part presents contributions in the field of set
constraints.

Concurrent computational systems are any computational systems that consist of autonomous
processes, each performing some tasks while possibly communicating with one-another. Con-
current systems are widely used in real-life; airline-booking systems, communication protocols,
operating systems for computers, just to name a few. The study of concurrent systems deals with
formal ways of reasoning about such systems; one aspect is the development of mathematical
models of concurrency, another is formal methods for verification of systems described as such
mathematical models. Part of the research community has focussed on the semantical study
of concurrency; numerous models, such as Synchronisation Trees, Labelled Transition Systems,
Petri nets, and Event Structures, have been proposed, investigated, and compared, all trying to
capture, at some level of abstraction, the notion of concurrency or concurrent behaviour. Another
part has focussed on developing verification methods for some of these models. Algorithms have
been based on a firm understanding of the models and ways of formally expressing or specifying
a desired “correct” behaviour.

Model-checking algorithms rely on temporal logics, such at PLTL (Propositional Linear Tem-
poral Logic) and CTL (Computational Tree Logic), or on automata as a specification language,
while other algorithms rely on establishing behavioural relations between specifications and im-
plementations. Behavioural equivalences, such as bisimulations, have played a major role in the
process-algebra community, who are well-known for their modular approach to implementation
and verification, based on congruence properties of behavioural equivalences.

At the same time, computational complexity issues have played an important role; both
from the practical point view—developing fast algorithms—and from the theoretical point of
view—e.g., “is it feasible to choose a more expressive logic for the verification task ?”.

The intense study of both temporal logics and behavioural equivalences the last 15 years is
directly related to the study of concurrent systems.

In the first part, we start by studying the computational complexity of several standard
verification problems for 1-safe Petri nets and some of its subclasses. We prove that reachability,
liveness, and deadlock problems are all PSPACE-complete for 1-safe nets. We complete the
picture by proving, among other things, that deadlock is NP-complete for free-choice nets and
for 1-safe free-choice nets and that for arbitrary Petri nets, deadlock is equivalent to reachability
and liveness. Our results provide the first systematic study of the computational complexity of
these problems for 1-safe nets.

We then investigate the computational complexity of a more general verification problem,
model-checking, when an instance of the problem consist of a formula and a description of a
system whose state space is at most exponentially larger than the description. Based on Turing
machines, we define compact systems as a general formalisation of such system descriptions.
Examples of such compact systems are K-bounded Petri nets and synchronised automata. We



present polynomial space upper bounds for the model-checking problem over compact systems
and the logics CTL and L(X, U, S). For many instances of compact systems, the above model-
checking problems have PSPACE-hard lower bounds. Our general upper bounds provide the
matching upper bounds.

We continue by considering the problem of performing model-checking relative to a partial
order semantics of concurrent systems, in which not all possible sequences of actions are consid-
ered relevant. By taking progress fairness assumptions into account one obtains a more realistic
view of the behaviour of the systems. We present P-CTL, a CTL-like logic, which is interpreted
over a partial order semantics for labelled 1-safe nets. It turns out that Mazurkiewicz trace the-
ory provides a natural partial order semantics, in which the progress fairness assumptions can be
formalised. We provide the first, to the best of our knowledge, set of sound and complete tableau
rules for a CTL-like logic interpreted under progress fairness assumptions. Furthermore, we also
present a state labelling based model-checking algorithm for P-CTL, extensions of P-CTL with
modal operators expressing concurrent or conflicting behaviour, and computational complexity
and undecidability results.

After these investigations in the field of verification of finite state concurrent systems, we
turn to behavioural equivalences over models of (concurrent) computation.

In the second part, we start by investigating Joyal, Nielsen, and Winskel’s proposal of spans
of open maps as an abstract category-theoretic way of adjoining a bisimulation equivalence, P-
bisimilarity, to a category of models of computation M. We show that a representative selection
of well-known bisimulations and behavioural equivalences such as, e.g., trace equivalence, weak
bisimulation, Hennessy’s testing equivalence, Milner and Sangiorgi’s barbed bisimulation, and
Larsen and Skou’s probabilistic bisimulation, can be captured in the setting of spans of open
maps. Hence, Joyal, Nielsen, and Winskel’s proposed notion of open maps seems successful. We
also examine some “true concurrency” equivalences, in the context of the theory of open maps,
and discuss decidability issues.

An issue left open by Joyal, Nielsen, and Winskel’s work on open maps was the congruence
properties of behavioural equivalences. We address the following fundamental question: given a
category of models of computation M and a category of observations P, are there any conditions
under which algebraic constructs viewed as functors preserve P-bisimilarity? We define the notion
of functors being P-factorisable and show how this ensures that P-bisimilarity is a congruence
with respect to such functors. Guided by the definition of P-factorisability we show how it is
possible to parametrise proofs of functors being P-factorisable with respect to the category of
observations P, i.e., with respect to a behavioural equivalence.

In the last part we then, almost, leave the field of concurrency to investigate set constraints.
Set constraints are inclusion relations between expressions denoting sets of ground terms

over a ranked alphabet. They are the main ingredient in set-based program analysis. They are
typically derived from the syntax of a program and solutions to them can yield useful information
for, e.g., type inference, implementations, and optimisations.

We provide a complete Gentzen-style axiomatisation for sequents Φ ` Ψ, where Φ and Ψ are
finite sets of set constraints, based on the axioms of termset algebra. Sequents of the restricted
form Φ ` ⊥ correspond to positive set constraints, and those of the more general form Φ ` Ψ
correspond to systems of mixed positive and negative set constraints. We show that the deductive
system is complete for the restricted sequents Φ ` ⊥ over standard models, incomplete for general
sequents Φ ` Ψ over standard models, but complete for general sequents over set-theoretic termset
algebras.



In a brief section, we sketch how Milner’s protocol can be verified for the absence of deadlocks
using Kozen’s clp(sc), a constraint logic programming language over set constraints.

We then continue by investigating Kozen’s rational spaces. Rational spaces are topological
spaces obtained as spaces of runs of topological Σ-hypergraphs. They were introduced by Kozen
who showed how the topological structure of the spaces of solutions to systems of set constraints
can be given in terms of rational spaces. We give a Myhill-Nerode-like characterisation of rational
points, which in turn is used to re-derive results about the rational points of finitary rational
spaces. We show that the rational points in finitary rational spaces in some sense exactly capture
the topological structure of the space. We define and investigate congruences on Σ-hypergraphs,
and finally we determine the computational complexity of some decision problems related to
rational spaces.
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Cha p t er 1

Introduction

1.1 Structure

This thesis contains three main parts, each presenting results of my research during my
graduate study. The chapters are presented in somewhat chronological order, reflecting
how my interests broadened over time. Part I and II present work on reasoning about
concurrent systems, which was mostly done during my stay in Aarhus. Part III presents
my latest work, done while visiting Cornell University.

1.2 Contents of Part I

Part I presents contributions in the field of verification of finite state concurrent systems.

1.2.1 On Model-Checking

Formal verification of concurrent systems is based on the choice of a “suitable” formal
semantical description of the systems and techniques for proving that these descriptions
have certain properties. By “suitable” we mean that at some desired level of abstraction
the formal semantical description captures (in fact defines) what we understand by the
behaviour of the concurrent systems.

A predominant verification technique is known as model-checking. The approach is
as follows. The systems one considers either explicitly or implicitly specify state spaces
which are (labelled) graphs. Viewing these graphs as so-called Kripke structures (or just
structures), one can interpret temporal logic formulas over them. Hence, temporal logics
can be viewed as specification languages [Pnu77]. For a nice introduction, see [Eme90].
The problem of verifying if a system s satisfies a property encoded in a formula ϕ then
reduces to the task of checking if the formula is satisfied in the system’s state space
regarded as a Kripke structure. The encoded properties often express that a system has
some desirable behaviour, i.e., it behaves “correctly” in some respect. Model-checking
algorithms perform this task automatically for finite state concurrent systems. The

1
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approaches are rather different and based on, e.g, tableaux methods [Lar88, SW89], state
labelling methods and graph algorithms [SC85, CES86, Mil89, CPS89], automata theory
[VW86, Kup95], partial order semantics [Val90, WG93], BDDs [BCM+92], and “partial
model-checking” (gradual elimination of a system while simultaneously transforming the
specification formula) [And95]. Infinite state systems can also be model-checked, see
[Bra91, BS92]. However, the procedure is no longer fully automatic.

1.2.2 Petri Nets

Petri nets are discrete models of concurrent systems and were introduced by C.A. Petri
[Pet62]. They lend themselves easily to the modelling of concurrent systems and are
widely used, partly due to their ability to model “true concurrency”, and partly due to
their nice graphical representation, which invites one to play the “token game”.

A Petri net consists of a static part—a finite directed bipartite graph whose two
disjoint node sets, P and T , are called the places and the transitions—commonly referred
to as the topology of the Petri net, and a dynamic part—a function M : P −→ IN

mapping each place to a natural number, called a marking—which represents the current
distributed state of the Petri net. Below is an example of a so-called 1-safe net. It has
four places, p1, . . . , p4, illustrated as circles, and three transitions, t1, . . . , t3, illustrated
as boxes. The initial marking is illustrated by the black “tokens”, indicating that only
p1 and p2 are “marked”; they have one token each.

�


��

�


��
u u

�


��

�


��
- - - -

?

6

p1 t1 p2 t2 p3 t3 p4

Figure 1.1: Example Petri net.

The marking of a Petri net can be changed when a transition “fires”. For a transition
to be able to fire at a given marking, all its input places—which are determined by the
directed edges going into the transition—must be “marked”. The effect of the transition
firing is that a new marking is reached, by removing from the current marking one token
from each input place and adding one token to each output place. In the above 1-safe net
t1 and t2 may fire at the illustrated marking. If t1 fires, the marking remains unchanged,
while if t2 fires, p2 becomes unmarked and p3 gets one token. A consecutive sequence of
firing transitions is referred to as a firing sequence and may be viewed as a computation
of the Petri net. The notation M

σ−→ M ′ denotes that from marking M it is possible
to sequentially fire the transitions in σ and reach the marking M ′. So, a computation of
the Petri net changes the current marking according to its topology. The behaviour of
a net is therefore entirely captured by its reachability graph, which is the graph whose
nodes are the markings of the net and whose labelled edges represent firing of transitions
leading from one marking to another. In general, such a structure is often referred to
as the state space of a system. The state space of the example net is illustrated below.
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The initial marking is �, and we have just used · to illustrate the other two reachable
markings.

�
B CE D t1G F��

//
t2

·
B CE D t1G F�� //

t3
·
B CE D t1G F��

Figure 1.2: State space of the example net.

Finiteness of the state space can be guaranteed by, e.g., structural properties such as
conservativeness (every transition “consumes” as many token as it “produces”, i.e., the
number of tokens remains constant) or by choosing a subclass such as K-bounded nets
(at most K tokens are allowed on a place).

Petri nets are one of the oldest and most studied formalisms for the investigation
of concurrency. Reasoning about the behaviour of a Petri net is typically done by
establishing that its state space has certain properties [Rei85]. In the case where we are
given a finite state space of a net, there exist algorithms solving—naively or optimally—
most of the problems the Petri net community has considered.1 Even if we are given
an arbitrary Petri net, whose state space might be infinite, it is still possible to decide
interesting properties about it. E.g., by computing the coverability tree one can decide
if the Petri net is bounded (its state space is finite) [KM69]. Also, for a given Petri
net N and a marking M , it is decidable if M is reachable from the initial marking
[May81, Kos82, May84].2

The computational complexity of many Petri net problems have been investigated
and are well-understood. In their classical paper [JLL77] Jones, Landweber, and Lien
studied the complexity of several fundamental problems for Place/Transition nets (called
in [JLL77] just Petri nets). Some years later, Howell, Rosier, and others studied the
complexity of numerous problems for conflict-free nets, a subclass of Place/Transition
nets [HR88, HR89]. For an survey, see [Jan86, EN94].

1-safe Nets

In the 1980’s, process algebras were introduced as an alternative approach to the study of
concurrency; they are more compositional and of higher level. The relationship between
Petri Nets and process algebras has been thoroughly studied; in particular, many different
Petri net semantics of process algebras have been described, see for instance [BDH92,
DNM88, Gol88, Old91]. Also, a lot of effort has been devoted to giving nets an algebraic
structure by embedding them in the framework of category theory, see among others
[Win87, MM90]. Although part of this work has been done for Place/Transition nets
[Gol88, MM90], it has been observed that the nets in which a place can contain at most

1As an example of open problems, consider the “true concurrency” behavioural equivalences over
1-safe nets in Chap. 5.

2This result is probably the most celebrated in the history of Petri nets.
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one token, henceforth called 1-safe nets, have many interesting properties. Places of
1-safe nets no longer model counters but logical conditions; a token in a place means
that the corresponding condition holds. This makes 1-safe nets rather different from
Place/Transition nets, even though both have similar representations; for instance, finite
Place/Transition nets can have infinite state spaces, but finite 1-safe nets cannot.

The advantages of 1-safe nets are numerous, and they have become a significant
model. Several semantics can be smoothly defined for 1-safe nets [BF88, NRT90], but
are however difficult to extend to Place/Transition nets. Nielsen, Rozenberg and Thi-
agarajan [Thi87, NRT90] have shown that a model of 1-safe nets, called Elementary
Net Systems, has strong categorical connections with many other models of concurrency,
such as event structures (another good reference is [WN95]). Finally, 1-safe nets are
closer to classical language theory, and can be interpreted as a synchronisation of finite
automata.

These properties have motivated the design of verification methods particularly suited
for 1-safe nets. Several different proposals have recently been presented in the literature
[Val90, God90, McM92, Esp93, WG93]. In order to evaluate them, and as a guide for
future research, it is necessary to know the complexity of verification problems for 1-safe
nets.

In Chap. 2, we present complexity results concerning the computational complexity
of determining whether or not 1-safe nets have certain properties. To be more specific,
we investigate the reachability, liveness, and deadlock properties. In fact, we classify
these properties with respect to several classes of Place/Transition nets, one of them
being 1-safe nets. Since the problems are given in terms of a 1-safe net, obvious decision
procedures for these properties can be obtained by first computing the state space of
the net, and subsequently applying the algorithms which require a state space as input.
However, from a computational complexity point of view, this approach is not optimal,
since it implies an exponential blow up. One main conclusion of our work is that for most
natural properties of 1-safe nets, the computational complexity of establishing whether
or not a net has the desired property is PSPACE-complete.

Our results have enabled us to complete Table 1.1, providing the first systematic
study for 1-safe nets.

The contents of Chap. 2 is based on joint work with Javier Esparza and Jens Palsberg,
and has been published in the proceedings of FST&TCS 13 [CEP93] and in the journal
Theoretical Computer Science [CEP95].

1.2.3 Compact Systems

We continue by investigating the more general problem of model-checking branching
time and linear time temporal logics over a class of finite state concurrent systems.
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Petri net class Reachability Liveness Deadlock

Arbitrary decidable decidable decidable
EXPSPACE-hard EXPSPACE-hard EXPSPACE-hard

1-safe PSPACE-complete PSPACE-complete PSPACE-complete
Acyclic NP-complete linear time linear time
1-safe acyclic NP-complete constant time constant time
Conflict-free NP-complete polynomial time polynomial time
1-safe conflict-free polynomial time polynomial time polynomial time
Free-choice decidable NP-complete NP-complete

EXPSPACE-hard
1-safe free-choice PSPACE-complete polynomial time NP-complete

Table 1.1: Summary of complexity results for Petri nets.

Temporal logics and verification.

When talking about a logic, we are implicitly talking about several components; the
logical formulas (usually given by some grammar), a model (a set of possible “worlds”
or states, which assign values to basic formulas, such as atomic propositions), and a way
to interpret a given formula in a given world (the interpretation tells us whether or not
the formula is to be considered “true” or “false” in the given world).

For temporal logics we also have several components: the grammar of the formulas
include temporal operators, e.g., the future operator �, and the model we consider are
Kripke structures. A Kripke structure is a graph whose nodes may be considered as
worlds in the above sense. An edge from a world w1 to a world w2 can be thought of as
meaning that w2 is a possible (immediate) successor of or future world for w1.

In a classical paper [Pnu77], Pnueli argued that temporal logic could be useful for
the specification and verification of non-terminating programs, such as reactive systems,
concurrent programs, operating systems, etc. Temporal logic formulas give us the capa-
bility to express temporal properties such as “formula F holds sometime in the future
of the current world”, commonly written as the formula �F . In our case, the notion
of time is discrete and represented as edges in a Kripke structure. Also, there are two
predominant views of how time elapses. Linear time temporal logics consider time as
“linear”, i.e., at any point in time there is only one possible future; a linear time tempo-
ral logic formula is interpreted over a sequence of worlds (a computation path through
a Kripke structure). Branching time temporal logics, on the other hand, see time as
“branching”, i.e., at any point in time there may be several possible futures; a branching
time temporal logic formula is interpreted at a world/state of a Kripke structure and the
branching structure beginning at that world.

Examples of well-known temporal logics are L(X, U, S) (linear time) and CTL (branch-
ing time). Temporal logics can be classified in many ways. Here we have mainly talked
about the view of (discrete) time [Lam80, EH86]. For a more elaborate classification,
see [Eme90].
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Recall that the finite state systems one wishes to reason about either explicitly or
implicitly specify state spaces, typically as (labelled) graphs. Viewing these graphs as
Kripke structures, one can use temporal logic formulas to express properties of the state
spaces. The problem of deciding if a system s satisfies a property expresses by (encoded
in) a formula ϕ—the model-checking problem for s and ϕ—then reduces to the problem
of checking if the formula is satisfied in the systems state space regarded as a Kripke
structure. Hence, temporal logics can be seen as specification languages.

The computational complexity of the model-checking problem for both linear and
branching time propositional temporal logics has been investigated by many researches.
Among the well-known are Sistla and Clarke [SC85] and by Clarke, Emerson, and Sistla
[CES86]. Both papers consider (propositional) Kripke structures as models for the logics
and the complexity results are stated in terms of the sizes of the Kripke structures and the
length of the formulas. The paper [CES86] shows that the model-checking problem for
the computational tree logic CTL can be solved in polynomial time, while [SC85] shows,
among other things, that the model-checking problem is NP-complete for the linear time
temporal logic L(F ) and PSPACE-complete for L(X, U, S). Recent work shows that
complexity bounds from [CES86] can be preserved even if one considers CTL2, a strictly
more expressive branching time temporal logic than CTL [BG94].

There exist other well-known classes of systems over which such logics can interpreted.
K-bounded Petri nets and synchronised automata are examples of such classes of systems.
Common to these systems is that they can be viewed as compact representations of
Kripke structures; they can specify exponentially large Kripke structures. Verification
techniques for these and related systems have been presented in, e.g., [VW86, Lar88,
SW89, Val90, WG93, ES92, Esp93, BCM+92, And95]. The work in [Lar88, SW89]
focusses on algorithms (tableau systems) for solving the model-checking problem, while
the work in [Val90, WG93, ES92, Esp93, BCM+92, And95] is mainly motivated by the
“state space explosion” problem and how to overcome it taking time and, especially,
space consumption into account. Notions such as “stubborn sets”, “persistent sets”,
“net unfoldings”, and “Binary Decision Diagrams” have been proposed to obtain efficient
model-checkers in practice.

Compact systems and model-checking.

It turns out that the model-checking problems over models like, e.g., synchronised au-
tomata and 1-safe Petri nets are very similar. In Chap. 3, we show that such systems
can be seen as instances of a general notion we introduce as compact systems. Our def-
inition of compact systems is based on Turing machines. Intuitively, compact systems
are descriptions of systems whose state spaces are (at most) exponentially larger than
the descriptions themselves. The idea is that a class of compact systems is determined
by a nondeterministic polynonimal space bounded Turing machine, which interprets its
input-strings (input-systems) as system descriptions. The Turing machine has a special
“signal” state, which it enters whenever it has computed a state of the input-system.
From the Turing machine’s computations on the input-system it is then possible to de-
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rive a Kripke structure. E.g., the class of K-bounded Petri nets can be determined by
a Turing machine which given an input s, checks if s encodes a K-bounded Petri net
(in some predetermined format), if so, stores the current marking of the net and tries
nondeterministically to simulate a firing transition from the current marking. Whenever
a new marking is computed it enters its signal state.

Determining the computational complexity of model-checking is done relative the size
of the problem instance. Not surprisingly, the computational complexity of, e.g., model-
checking CTL over 1-safe nets is lower—in terms of the size of the problem instance—
when the problem instance consists of a formula and the reachability graph of a 1-safe
net than when it consists of a formula and the usual description (places, transition, etc.)
of a 1-safe net—the reason being that a 1-safe net can encode an exponentially large
reachability graph.

Since the finite state concurrent systems being model-checked in practice can very
often be viewed as compact systems, it is necessary and, probably more relevant, to eval-
uate the computational complexity in terms of the size of these “compact” descriptions.

In Chap. 3, we provide general upper bounds, which are valid for any class of com-
pact systems. More specifically, we show that the model-checking problems for the logics
L(X, U, S) and CTL and any class of compact systems lie in PSPACE, hereby contribut-
ing to the general picture of the computational complexity of model-checking. Our results
are summarised in Table 1.2 and have appeared as a technical report [Che95a].3

Logic Problem Instance Complexity

CTL R-structure (Kripke) P
and a formula

L(F ) R-structure NP-complete
and a formula

L(X, U, S) R-structure PSPACE-complete
and a formula

CTL Compact system
L(F ) and a formula PSPACE

L(X, U, S)

Table 1.2: Complexity in terms of Kripke structures and compact systems.

One use of our results is easily obtainable PSPACE upper bounds. Moreover, for
many of the classes of models investigated in the literature the model-checking problems
for the temporal logics we consider are PSPACE-hard. By showing how the systems being
model-checked can be viewed as compact systems 4 our results provide the matching

3The author has become aware that his results on linear time temporal logic indirectly appear in
[VW86]. Also, similar results for CTL and CLT∗ have recently been obtained using alternating tree
automata [BVW94, Kup95]. We have chosen to present our results, partly because we will use them in
Chap. 4 and partly because our proofs are quite different.

4I.e., show that it is possible to transform the description of the system—in the problem instance used
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upper bounds—the intended use of our results.5 We consider K-bounded Petri nets as
an example of how our results can be applied.

1.2.4 Fair Progress

We continue by investigating the notion of fair progress in the setting of labelled 1-safe
nets.

Consider the process agent fix (X = a.X)|(τ.b.0). Its transition graph is given in
Figure 1.3. The initial state is i, and s1 and s2 are the only other reachable states.

i
B CE D aG F��

//
τ

s1

B CE D aG F��
//

b
s2

B CE D aG F��
Figure 1.3: Transition system for the process agent fix (X = a.X)|(τ.b.0).

Consider the process agent (fix(X = a.X + τ.(fix(Y = a.Y + b.(fix(Z = a.Z )))))). It’s
transition graph can also be depicted as Figure 1.3. However, looking at the agents one
would expect that there should be a difference with respect to the degree of concurrency
the two agents exhibited. This example shows that from a model theoretic point of view,
concurrency is modelled as nondeterministic interleaving. This makes it difficult, and
sometimes impossible, to express or reason about certain natural properties of concurrent
systems.

Partial order semantics and P-CTL.

Let us consider yet another example, this time a labelled 1-safe net.

�


��

�


��
u u

�


��

�


��
- - - -

?

6

p1 t1 :a p2 t2 :τ p3 t3 :b p4

Figure 1.4: Labelled version of the net in Figure 1.1.

The process agent fix (X = a.X)|(τ.b.0) can be represented by this net. The concurrency
is obviously visible in this graphical representation and hinted to by the definition of

to obtain the lower bound—into the representation as a compact system, using at most a polynomial
amount of space. This is a very mild condition.

5Although we prove the PSPACE upper bounds by giving algorithms, the algorithms are not intended
to be implemented. It is however interesting to notice that several algorithms which are implemented
have worst case exponential running times and exponential space consumptions, in terms of s and ϕ

[Lar88, SW89, WG93]. In [Kup95], alternating tree automata provide a PSPACE procedure for CTL∗

model-checking of concurrent programs (synchronisation of automata).



1.2. Contents of Part I 9

the effect of firing a transition. We would expect that in any computation of the net,
transitions from the left and the right “subnets” would occur if both the subnets were
assumed to progress in a fair way.

Guided by this observation, let us define a so-called independence relation I ⊆ T ×T

over the transitions of the net. The intention is that this relation should capture whether
or not two transitions may occur concurrently. We tentatively derive it from the explicit
representation of possible concurrency between transitions of the nets—disjointness of
neighbourhoods. Hence, t1 would be independent of t2 and t3, written (t1, t2) ∈ I and
(t1, t3) ∈ I , while t2 and t3 would be dependent, written (t2, t3), 6∈ I .

If we take a closer look at the structure of the net’s state space, we discover that if
we have M

σ1−→ M1
t−→ M2

t′−→ M3
σ2−→ M4, where (t, t′) ∈ I and σ1, σ2 are themselves

firing sequences, then there must necessarily exist a marking M ′
2 such that M

σ1−→ M1
t′−→

M ′
2

t−→ M3
σ2−→ M4. This is best illustrated by the “independence diamond” below.

M2

""
t′
EEE

EE

M //σ1
M1

!!t′
DDD
DD

<<
t yyyyy

I M3 //σ2
M4

M ′
2

==

t

zzzzz

Exploiting I we may consider the two sequences σ1tt
′σ2 and σ1t

′tσ2 equivalent, since
they only differ with respect to permutation of adjacent independent transitions. Hence,
the relation I induces an equivalence relation on firing sequences 6, whose equivalence
classes are commonly referred to as (Mazurkiewicz) traces [Mar77]. Moreover, a natural
partial order can be defined over the traces [Maz86]. This partial order represents a more
concrete view of the computations of concurrent systems in which events are ordered par-
tially, rather than linearly, reflecting both their causal dependencies and independencies.
Such a partially ordered structure is often referred to as a partial order semantics of a
concurrent system.

Below in Figure 1.5, we have “unfolded” the state space of the net from Figure 1.4.
The chosen labelling indicate how the unfolded structure—which, by the way, is isomor-
phic to the aforementioned partial order structure over the traces of the net—is obtained.
Intuitively, the only progress fair computations are the firing sequences that eventually
reach the “lower path”—t2 and t3, which are independent of t1, must eventually occur.
In Chap. 4, we show how a generalisation of Mazurkiewicz’s traces to infinite sequences
captures this observation formally.

The foundation of traces was presented by Mazurkiewicz in [Mar77, Maz86]. His idea
was to equip an alphabet Σ with a symmetric irreflexive independence relation, which
induced an equivalence relation over the monoid Σ∗ of finite string over Σ. In [Maz86],
Mazurkiewicz applied his theory to Petri net as sketched in the above example, where the
set of transitions corresponded to an alphabet and I corresponded to an independence
relation over the alphabet.

6as well as the monoid T∗
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t2:τ

//t1:a ·

��

t2:τ

//t1:a ·

��

t2:τ

//t1:a · · ·

·

��

t3:b

//t1:a ·

��

t3:b

//t1:a ·

��

t3:b

//t1:a · · ·

· //
t1:a

· //
t1:a

· //
t1:a

· · ·

Figure 1.5: Unfolded state space.

Petri’s introduction of nets focussed on the explicit representation of concurrency in
the topology of a net and in the firing rule. Mazurkiewicz’s work [Maz86] focussed on
the model theoretic view that concurrency should be represented explicitly by impos-
ing more structure on the underlying semantical model, the state space. The study of
partial order semantics/“true concurrency” has developed numerous new models, e.g.,
concurrent and asynchronous transition system [Shi85, Bed88, Sta89, Old91] and event
structures [Win80, NPW81, Win86]. For an overview of the relation between many of
the existing models, see [WN95]. Common to these models is that they represent con-
currency explicitly by either an independence relation (asynchronous transition system)
or a conflict relation (event structures). Also, Mukund and Nielsen [MN92] have shown
how it is possible to obtain elementary labelled asynchronous transition systems from
process agents, like the above, by introducing locations in the structural operational
semantics rules for CCS.

In the context of model-checking, partial order semantics have several advantages.
The so-called “state space explosion” problem has motivated researches to use partial
order semantics. It has been observed that an exhaustive state space exploration can
often be avoided; e.g., if a sequence (element) of a trace leads to a deadlocked state,
then all sequences in that trace must necessarily lead to that deadlock. Hence, it is
sufficient only to explore one sequence in that trace. This can lead to significantly
improved running times and space consumptions as observed, among others, by Valmari
[Val88, Val90] and by Godefroid and Wolper [God90, GW91, WG93, GW94]. Another
motivation to investigate partial order semantics has been the possibility to interpret
temporal logics over traces taking causality and concurrency into account, see, e.g.,
[PP90, Pen93, Thi94, APP95, PK95].

Model-checking P-CTL.

In Chap. 4, we investigate the notion of fair progress for labelled 1-safe nets, motivated
by the above example. Our main objective is to explore the use of the extra structure of
independence in the context of specification logics. Based on an independence relation
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on transitions (given by disjointness of neighbourhoods) and a generalisation of traces,
which takes infinite firing sequences into account, we define a partial order semantics for
the labelled 1-safe nets. This semantics captures—in a formal sense—the notion of fair
progress among independent event; we can then formally define which firing sequences
are progress fair. We then introduce and study a CTL-like branching time temporal
logic, P-CTL, which contains one important feature: the model-theoretic incorporation
of progress. P-CTL-formulas are interpreted relative to the progress fair computations,
rather than all computations, as is the case for the standard interpretation of CTL.

As an example, the formula Ev(<b>tt)—to be read as“eventually a b-labelled tran-
sition/action is enabled”—is true of the process agent example under the assumption
of progress (our interpretation), but not without (standard CTL interpretation). Our
interpretation is conservative in the sense that P-CTL interpreted over standard la-
belled transition systems coincides with the standard CTL interpretation. In process
algebraic terms, our notion of fair progress—progress of independent events—intuitively
corresponds to a progress fair “parallel operator”.

When handling progress fairness in the setting of partial order semantics, we are
able to avoid the obstacle of encoding certain fairness assumptions in the logic or into
the model-checking algorithm [MP92, CES86], and treat progress fairness assumptions
uniformly by using Mazurkiewicz trace-theory.

In the standard setting of Kripke structures, model-checking of CTL-like logics has
been described in [CES86] using a state based algorithm and in [Lar88, SW89] using
tableaux rules.

We give both a tableau based method and a state labelled base method for model-
checking P-CTL. These methods are both based on state space exploration. However,
they differ in the way the exploration is performed. Tableau based methods are usually
referred to as “local model-checking”; the way one establishes that a state satisfies a
given formula is from the given state to explore the state space according the tableau
rules. These rules typically infer the properties of a state in terms of the properties of
its neighbouring states. State labelling methods, on the other hand, explore the entire
state space, labelling the states in a bottom-up fashion with the subformulas (of a given
formula) they satisfy.

Our methods are conservative extensions of the existing standard methods in the
sense that our methods are equivalent if the systems we consider may not exhibit con-
current behaviour. Based on the results from the previous two chapters, we determine
the computational complexity of model-checking our new logic. Our results show that
there is now significant penalty, when going from CTL to P-CTL.

Although we choose a partial order semantics for the nets, the syntax of our logic
does not allow us to express concurrent behaviour explicitly. We therefore also investi-
gate extensions of our logic with modal operators expressing concurrent or conflicting
behaviour. It turns out that variations of the satisfiability problem, i.e., the problem
of deciding whether or not there exists a model in which a given formula is satisfiable,
becomes undecidable.
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The contents of Chap. 4 been published in the proceedings of AMAST’95 [Che95b]
as an extended abstract of the technical report [Che95c].

1.3 Contents of Part II

Part II presents contributions in the field of behavioural reasoning about concurrent
systems based on the notions of behavioural preorders and behavioural equivalences.

1.3.1 Behavioural Equivalences

Assume we are given some relation R between models of the concurrent systems we wish
to reason about. R could for example be a relation between (rooted) labelled transition
systems. Let us further assume that s1 and s2 are two system descriptions and that
〈s1〉 and 〈s2〉 are labelled transition systems given by some semantical mapping 〈 〉. R

then induces a relation on the system descriptions defined by s1 ≺R s2 if and only if
〈s1〉R〈s2〉. Assume it is known that 〈s1〉 possesses some (behavioural) property P and
that the relation R “preserves” P in the sense that if t1 and t2 are two transition systems
such that t1 R t2 and t1 possesses the property P, then t2 must also possess the property P.
By establishing s1 ≺R s2 one then implicitly establishes that 〈s2〉 possesses the property
P.

A well-know example of this setting is Milner’s CCS (Calculus of Communication
Systems) [Mil80, Mil89]. In this case, the concurrent systems are described as process
agents, terms of a process algebra. A semantical mapping assigning a transition graph
to each process agent is induced by a set of inference rules, commonly referred to as
CCS’s structural operational semantics (SOS), in which the behaviour of a composite
process term is given by the behaviour of its components.7 The nodes of the graphs
are process terms and the labelled edges are generated by the inference rules. The
transition graph of a term t can be viewed as a labelled transition system rooted at t.
Milner investigates several behavioural relations of which strong bisimulation, denoted
∼, and weak bisimulation, denoted ≈, are the most well-known; both are equivalence
relations. We only sketch the intuition behind strong bisimulation. Two nodes n1 and
n2 of any transition graphs are strongly bisimilar if they can continuously simulate each
others transitions in the following sense: (1) n2 can simulate n1, i.e., if n1 has a labelled
transition leading to a state n′

1, then n2 must have a similarly labelled transition leading
to a state n′

2, such that n′
1 and n′

2 are also strongly bisimilar, and (2) n1 can simulate
n2. Weak bisimulation is—as the name suggests—a coarser, i.e., less distinguishing,
relation, because the individual transitions are no longer required to be simulated by
corresponding individual transitions, but may, e.g., be simulated by several additional
so-called “invisible transitions”.

7The inference rules are defined in the structure of the process terms, and allows one to derived, step
by step, the operational behaviour of a term.
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Behavioural equivalences and verification.

In [Mil89], Milner shows that it is possible to reason about the behaviour of process agents
using behavioural equivalences. In fact, his approach corresponds to the one sketched in
the above paragraph: assume a given process agent s is viewed as an implementation of
some system. Reasoning about s’s behaviour can then be done by first choosing another
process agent sP which possesses a desired property P . This process agent can be viewed
as a specification of (part of) the desired behaviour of s. Since sP might only express
some, but not all, desired behaviours of s, one typically modifies s slightly by “ignoring”
certain actions. E.g., one might only be interested in whether or not a subset of s’s
possible actions occur in some fixed sequence or pattern. Hence, one has to abstract
away from s’s other actions—typically by making them “invisible”—before one tries to
establish that sP ≈ s.8

It turns out that there exist serval temporal/modal logics which characterise these
bisimulations. E.g., two process agents are strongly bisimilar if and only if they—
or rather the corresponding nodes in their transition graphs—satisfy the same set of
Hennessy-Milner logic formulas [Mil89]. If we assume that the behavioural equivalence
R is characterised by the logic L, then the task of establishing whether or not sP is
behaviourly related to the modified version of s corresponds to checking whether or not
their state spaces satisfy the same set of formulas. A related issue is discussed in [Pnu85],
where the notion of a logic L being expressive for a process language Proc (equiped with
a notion of behavioural equivalence) is defined. Intuitively, for such a logic, there ex-
ists a characterisitc formula L(p) for every process p, which essentially characterises the
process’ behavioural equivalence class.

1.3.2 Open Maps and Abstract Behavioural Equivalences

Since bisimulation’s exposure in [Mil80, Par81], the research community has invented
and investigated an impressive number of bisimulation-like behavioural equivalences, e.g.,
[GG89, vG90, LS91, MS92], confirming that the notion of bisimulation is an important
general concept. However, much of this work is very concrete in the sense that, typically,
a specific class of models is chosen with respect to which a bisimulation-like relation is
investigated.

The amount of research done in the area of process algebras and fields related to the
semantics of concurrent systems has lead some researches to look for a unifying theory,
e.g., Control Structures [MMP95], Linear Logic and the Geometry of Interaction [Gir87a,
Gir87b, AJ92], and Joyal, Nielsen, and Winskel’s Presheaves [JNW93]. As a response to
some of the numerous models for concurrency proposed in the literature, Winskel and
Nielsen have used category theory as an attempt to understand the relationship between
models like event structures, Petri nets, trace languages, and asynchronous transition

8Using ∼ for R is typically too strong a requirement. The reason is that sP is usually relatively simple
compared to s. Hence, when s is modified before trying to establish its behavioural relationship to sP ,
several actions from s will be made “invisible” and actions from sP may only be meaningfully simulated
by several—possibly invisible—actions from the modified version of s.
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systems [WN95]. They show, among other things, how most common process algebraic
operators can be presented as category-theoretic concepts, e.g., universal constructions
such as product and co-product, and present the relationship between different categories
of models such as Petri nets, event structures, and transition systems with independence,
by exhibiting adjunctions between these categories.

However, a similar category-theoretic way of adjoining abstract behavioural equiv-
alences to a category of models had been missing until Joyal, Nielsen, and Winskel
proposed the notion of spans of open maps [JNW93] as an abstract definition of the no-
tion of bisimulation. Joyal, Nielsen, and Winskel showed how the theory of open maps
can capture Milner’s strong bisimulation and how it can be applied to identify a new
bisimulation, strong history-preserving bisimulation, on models with independence like
event structures and Petri nets.

Let us sketch their idea. A category of models of computations M is chosen, then a
subcategory of observations P is chosen relative to which open maps are defined. Two
models are P-bisimilar if there exists a span of open maps between them.

If X and Y are two models in the category M, and m : X −→ Y is a morphism
between them, then we can think of m as a map that specifies how to observe the
behaviour of X in Y . For m to be open, we intuitively require that Y ’s behaviour can
be simulated by X ’s. The idea is perhaps best explained by a small example.

Consider M as the category of labelled transition systems. The objects are of the
form (S, i, Act, −→), where S is the set of states, i ∈ S is the initial state, and −→⊆
S×Act×S is the transition relation. A morphism f : T1 −→ T2 is a map σf between the
set of states of the objects, such that T1’s initial state is mapped to T2’s, i.e., σf (i1) = i2,
and transitions from T1 are preserved, i.e., if s

a−→ s′ is a transition in T1, then σf (s) a−→
σf (s′) must exist a transition in T2. Notice how T1 in a very direct way is simulated by
T2: if state s in T1 is mapped to state v in T2, and s

a−→ s′, then we know that there
must be an a-labelled transition from v leading to a state v′, such that σf(s′) = v′. The
reader might already be able to see some resemblance to the definition of Milner’s strong
bisimulation. Intuitively, we need to show that if v = σf (s) and v

a−→ v′′, then there
must exist an a-labelled transition from s leading to a state s′′, such that σf (s′′) = v′′.

Now suppose we choose P as the subcategory in M induced by the objects of the
form

i
a1−→ s1

a2−→ · · · an−→ sn ,

where all states are distinct. Let us refer to such objects as words. Consider the dia-
gram below. To the left, we have two words (observations), and to the right we have
two labelled transition systems (models). The morphisms f , p, q, and m are uniquely
determined in this case, hence we refrain from giving their formal definition.
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We have used solid arrows to indicate labelled transitions within the objects, and dashed
arrows to indicate morphisms between objects. The diagram has the property that it is
commuting, i.e., if we compose the morphisms p and m, denoted m ◦ p, and compose the
morphisms f and q, denoted q ◦ f , then m ◦ p = q ◦ f . Let us denote the objects in the
diagram as (morphisms are now solid arrows)

O1

��

f

//p
T1

��

m

O2 //
q T2

(1.1)

Let us for the moment ignore the two b-labelled transitions from s in T1. Since m maps
s to v, we know that transitions from s can be matched by transitions from v. How
could we conclude the converse? Assume we require that for commuting diagrams as the
above, there has to exist a morphism h : O2 −→ T1 such that the diagram

O1

��

f

//p
T1

��

m

O2

>>

h

}}}}}}}}}}}
//

q T2

(1.2)

commutes, i.e., p = h ◦ f and q = m ◦ h. The equation p = h ◦ f ensures that h maps s′
1

to s. The existence of h guarantees that there must exist a b-labelled transition s
b−→ r

in T1, for some r, since h maps s′
1 to s and s′

1 has an out-going b-labelled transition. The
equation q = m◦h then guarantees that this transition in T1 is mapped to the transition
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v
b−→ v′ in T2, i.e., the transition σm(s) b−→ v′ in T2 can be simulated by a transition

s
b−→ r in T1, such that σm(r) = v′. (Notice that q maps s′

1 to v, and that the b-labelled
transition s′

1
b−→ s′

2 in O2 is mapped, via q, to the transition v
b−→ v′ in T2.)

The morphism m is said to be P-open if when quantifying over all possible commuting
diagrams of the form (1.1), one can always find a mediating morphism such that the
corresponding diagram of the form (1.2) commutes.

In general, two models X and Y in M are said to be P-bisimilar if there exists a
span of open maps between them, as illustrated below.

Z

~~
m1

} } }
} }

  
m2
@@@
@@

X Y

In our example, P-bisimilarity corresponds to Milner’s strong bisimulation [JNW93].
In Chap. 5, we show, as a measure of the applicability of open maps as an abstract

definition of bisimulation, that it is possible to capture not only Milner’s strong bisim-
ulation but a representative selection of well-known bisimulations. We are also able to
capture general, non-bisimulation-like behavioural equivalences such as (pomset) trace
equivalence. Furthermore, the theory of open maps focusses on different parameters such
as M and P . We discuss how this view point helps identifying new or different aspects
and problems related to models for concurrency.

Our results indicate that Joyal, Nielsen, and Winskel’s proposed theory of open maps
is reasonably general.9

Large parts of the contents of Chap. 5 are based on joint work Mogens Nielsen and
has been published in the proceedings of FST&TCS 15 [NC95], as well as appeared as a
technical report [CN95].

1.3.3 Congruence Properties of Behavioural Equivalences.

Another aspect of behavioural equivalences which has received attention is the issue of
substitutivity, or congruence properties. The notion of substitutivity is perhaps best
explained by an example. Let us consider Milner’s strong bisimulation. Recall that
process agents are terms in a process algebra. This algebra has operators such as |,
parallel composition, and +, nondeterministic choice. Let t denote any process agent
and assume we know that agents t1 and t2 are strongly bisimilar. One can prove that
t | t1 and t | t2 must then also be strongly bisimilar. In fact, we can show that if t1 ∼ t2
and t′1 ∼ t′2, then t1 | t′1 ∼ t2 | t′2. This shows that strong bisimulation is a congruence
10 with respect to—or preserved by, to put it otherwise—CCS’s parallel composition. It

9There are equivalences we haven’t been able to capture, such as branching bisimulation [vG90] and
history preserving bisimulation [GG89]. In Sect. 5.4 we discuss history preserving bisimulation.

10In general, an equivalence relation R is a congruence with respect to an n-ary operator Op( . , . . . , . )
of the algebra, if it is the case that whenever a1 Ra′

1, . . ., an R a′
n, then Op(a1, . . . , an) R Op(a′

1, . . . , a′
n).
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turns out, as shown by Milner in [Mil89], that strong bisimulation is a congruence with
respect to all the operators of CCS.

The relevance and importance of congruence properties in the context of verification
based on behavioural equivalences, as sketched above, is exemplified by observations as
following. If a behavioural equivalence is a congruence with respect to some set of op-
erators, then two behaviourally equivalent systems build up using these operators will
remain to be so under substitutions of subcomponents (or subsystems), if the subcom-
ponents which are substituted for each-other are behaviourally equivalent. For example,
if a systems has been verified along the lines sketched above, one can freely re-implement
or replace a subcomponent t1 as, say, t2, as long as they are behaviourally equivalent.

Returning to Winskel and Nielsen’s presentation of process algebraic operators in
terms of category-theoretic concepts such as products and co-products [WN95], a nat-
ural question to ask—and which we address in Chap. 6—is whether or not it is also
possible to capture the following important aspect of process algebraic operators and
bisimulation equivalences: when is P-bisimilarity a congruence with respect to some of
these operators?

P-factorisability.

Based on the view that endofunctors on M may be seen as abstract operators we define
a natural and general notion of a functor being P-factorisable. We then show that a
P-factorisable functor must preserve P-bisimilarity. We observe an apparent similarity
with the idea behind Milner’s proofs that CCS operators preserve strong bisimulation.
Below we give a example, illustrating the intuition behind P-factorisability.

Consider M and P from the example in the previous section and transition systems
below, which we denote—left to right—T1, . . . , T5.
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T1 is strongly bisimilar (P-bisimilar)—in the sense of Milner [Mil89]—to T2. In fact,
there is an obvious open map k from T1 to T2. Considering T3 to be fixed, we can define
a functor |T3 : M −→ M, where | acts as a CCS-like parallel composition. T4 = T1|T3

and T5 = T2|T3 serve as an informal illustration of |T3, when applied to T1 and T2,
respectively.

Recall that P-bisimilarity is based on open maps, which again are based on obser-
vations from P . E.g., we can observe O, the behaviour � α−→ · γ−→ ·, in T4 and—via
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k|T3 : T4 −→ T5—in T5. Some of these transitions in T4 are due to transitions “from”
T1, here only the α-transition.

In much the same way as Milner [Mil89] shows that P ∼ P ′ implies P | Q ∼ P ′ | Q,

we would like to conclude that if k : T1 −→ T2 is open, then so is T1|T3
k|T3−→ T2|T3.11

Using k, we conclude that the α-transition in O must also be observable in T2. In fact,
we have a commuting diagram as in (6.1) with X = T4, Y = T5, O1 = O2 = O, m = k|T3,
and f = 1O (the identity morphism), and by the above we have extracted a second
commuting diagram of the form (6.1) with X = T1, Y = T2, O1 = O2 = O′ = � α−→ ·,
and m = k.

In fact, the way we have “factored” O in to O′ is consistent with |T3 in the following
sense: there exists a commuting diagram of the form

O

��

""DD
DDD
D

// O′|T3

zzu u u
u u u

��

T1|T3

��

O

""DD
DDD
D

// O′|T3

zzu u u
u u u

T2|T3

In Chap. 6, we formalise this as P-factorisability, and, as a consequence, we will be able
to conclude that k|T3 is an open map.

Winskel and Cattani are developing presheaves over categories of observations as
models for concurrency [CW96]. For presheaves there are general results on open maps,
including the axioms for open maps of Joyal and Moerdijk [JM94], which make light
work of showing the bisimulation of presheaves is a congruence for CCS-like languages. A
condition superficially like P-factorisability is important in transferring such congruence
properties from presheaves to other models like transition systems and event structures.

Meta-theorems.

Common to much work on behavioural equivalences being congruences is that one chooses
a specific (a) process term language, (b) class of models, and (c) behavioural equivalence.
One then shows that specific operators—such as “parallel composition” and “nondeter-
ministic choice”—preserve the proposed behavioural equivalence. Well-known examples
are [Hen88, Mil89]. The behaviour of their process algebras is given by a structural op-
erational semantics (SOS) [Plo81], in which the behaviour of a composite process term
is given by the behaviour of its components.

11In fact, just as Milner uses a bisimulation P ∼ P ′ to exhibit a bisimulation P | Q ∼ P ′ | Q, we will
“factor” the observation � α−→ · γ−→ · into transitions from T3 and from T1 and T2, respectively. This
will guide us to the mediating morphism required in (6.2).
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In general, the term languages resemble each other, usually CCS-like, and hence the
results differ from each other primarily with respect to the proposed equivalences. Based
on this observation, one might look for general results.

One approach could be not to look at specific operators, but try to reason about a
general set of operators. In [BIM88], Bloom, Istrail, and Meyer study a meta-theory for
process algebras which are defined by SOS rule systems. They identify a rule format
which ensures that any process language in so-called GSOS format has strong bisim-
ulation as a congruence. It is worth noticing that they fix the notion of behavioural
equivalence, strong bisimulation, and obtain general results by allowing the operators in
the language to vary.

Based on the notion of P-factorisability, we choose an approach “orthogonal” to
that of [BIM88]. The presentation of P-factorisability focusses, especially, on certain
closure properties of the category P . Based on this observation, we show how one can
parametrise the proofs of functors being P-factorisable with respect to the choice of
the observation category P , i.e., the choice of a behavioural equivalence. Intuitively,
we fix the operators, but allow the behavioural equivalence to vary. Then we identify
conditions on P which ensure that the varying equivalences are congruences with respect
to the operators. Hence, our results can be seen as “orthogonal” to that of Bloom, Istrail,
and Meyer, in that we can parametrise with respect to the behavioural equivalences, as
opposed to operators, [BIM88].

Inspired by our work on weak bisimulation in Chap. 5 we propose a category which
could be subject to investigations similar to the above. This category generalises the
category of labelled transition systems by splitting the labelling set into two disjoint
set—visible and invisible labels.

Large parts of the contents of Chap. 6 are based on joint work Mogens Nielsen and
will appear in the proceedings of CAAP’96, and have appeared as a technical report
[CN96].

1.4 Contents of Part III

Part III presents contributions in the field of set constraints.

1.4.1 Set Constraints

Set constraints are inclusions of the form X ⊆ Y between set expressions (X and Y )
denoting sets of (ground) terms of a free algebra over a finitely ranked alphabet. E.g., 0
denote the empty set, 1 the set of all terms, c(X, Y ) denote the set of terms of the form
c(tX , tY ), where tX and tY are terms in the sets denoted be X and Y , respectively.

Set constraints have been used in program analysis for functional programming lan-
guages, imperative programming languages, and logic programming languages They are
typically derived from the syntax of a program and solutions to them can yield use-
ful information for, e.g., type inference, implementations, and optimisations. Conse-
quently, much work has been devoted to (implementing) program analysis based on set
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constraints [Rey69, JM79, Mis84, MR85, YO88, HJ90b, AM91a, AM91b, HJ92, Hei92,
AW93, AWL94, Hei94, AL94]. Also, set constraints have recently been used to define a
constraint logic programming language over sets of ground terms that generalises ordi-
nary logic programming over an Herbrand domain [Koz94].

From the theoretical side, there has also been much work in understanding the
complexity of the satisfiability problem for different classes of set constraints [HJ90a,
GTT93a, AW92, GTT93b, Ste94, AKVW93, AKW95, BGW93, CP94a, CP94b].

1.4.2 A Gentzen-style Axiomatisation for Set Constraints

An axiomatisation of the main properties of set constraints was proposed in [Koz93].
General models of these axioms are called termset algebras. In [Koz93], a representation
theorem was proved showing that every termset algebra is isomorphic to a set-theoretic
termset algebra. These models include the standard models in which set expressions
are interpreted as sets of ground terms, as well as nonstandard models in which set
expressions are interpreted as sets of states of term automata [KPS92].

In Chap. 7 we continue the theoretical investigation of set constraints. We propose a
Gentzen-style axiomatisation involving sequents of the form Φ ` Ψ, where Φ and Ψ are
finite sets of set constraints. The intended interpretation of the sequent Φ ` Ψ is that if
all the constraints in Φ hold of some model, then at least one of the constraints Ψ holds
in that model.

This axiomatisation can be thought of as a deductive system for refuting unsatisfiable
systems of mixed positive and negative constraints. Deriving the sequent Φ ` Ψ is
tantamount to refuting the mixed system Φ ∪ {s 6= t | s = t ∈ Ψ}. Systems of the
restricted form Φ ` ⊥ correspond to systems of positive set constraints alone.

For this deductive system, we prove

(i) completeness over standard models for satisfiability of positive set constraints alone
(if Φ is unsatisfiable, then Φ is refutable, i.e., Φ ` ⊥ is derivable);

(ii) incompleteness over standard models for satisfiability of mixed positive and nega-
tive constraints (i.e., not all valid sequents Φ ` Ψ are derivable);

(iii) completeness over nonstandard models (all set-theoretic termset algebras) for sat-
isfiability of mixed positive and negative constraints (i.e., all valid sequents Φ ` Ψ
are derivable) .

Our axiomatisation is based on the close connection between set constraints and
hypergraphs [AKW95]. Hypergraphs are a generalisation of finite automata, where the
usual binary edges are replaced by (hyperedge) relations of arbitrary arity. For systems
consisting of positive constraints only, it is possible to construct a hypergraph, whose
set of runs (mappings of ground terms to states of the hypergraph, consistent with
the hyperedge relation) corresponds to the constraint system’s set of solutions. When
negative constraints are involved, the situation becomes technically more challenging
[CP94b, GTT93b, AKW95, Ste94].
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Although several interesting results involving the decidability and complexity of
set constraints extended with negative constraints (X 6⊆ Y ) have appeared [CP94b,
GTT93b, AKW95, Ste94], the distinction between the two cases is still far from clear
from a deductive standpoint.

Our results shed light on the distinction between exclusively positive and mixed
positive and negative constraints.

We also give an example of how verification of finite state concurrent systems can be
performed using set constraints. More specifically, we show how Milner’s protocol can
be verified for the absence of deadlocks by encoding it in clp(sc), a logic programming
language over set constraints introduced by Kozen [Koz94].

The contents of Chap. 7 on the axiomatisation is joint work with Dexter Kozen and
has been published in the proceedings of ICALP ’96 [CK96] as weel as a technical report
[CK95].

1.4.3 Rational Spaces

Set constraints exhibit a rich mathematical structure and are closely related to type
theory, automata theory, first-order monadic logic, Boolean algebras with operators,
and modal logic [JT51, JT52, GTT93a, BGW93, GTT93b, AKW95, KPS93, KPS94,
CP94a, Koz93, Koz95]

It has been noticed that many results in the literature on set constraints have a
topological flavour. Recently in [Koz95], Kozen defines rational spaces as a family of
topological spaces with a regular structure, develops the basic theory, and shows how
many results in the literature could be re-derived by general topological principles. By
endowing a hypergraph with a topology on its set of states, D, and requiring that certain
sets of hyperedges are closed in the derived product topology, the set of runs over the
hypergraph can be given a topology, yielding a rational space. A category of rational
spaces is obtained by defining morphisms as rational maps; these are continuous maps
preserving the rational structure. Certain singleton rational subspaces are defined as
rational points and shown to play an important role.

Kozen also presents a connection to set constraints by giving a complete characteri-
sation of the sets of solutions to systems of set constraints in terms of rational spaces. He
gives a one-to-one correspondence, up to logical equivalence on one side and so-called ra-
tional equivalence preserving X on the other, between (finite) systems of set constraints
over variables X and certain (finitary) subspaces of a certain rational space. The given
correspondence preserves the partial order of logical entailment between systems of set
constraints over X and so-called X-preserving rational embeddings (injective rational
maps) between the corresponding subspaces.

These results strongly suggest that further study of rational spaces is needed. In
Chapter 8, we continue the preliminary investigations of rational spaces.

We give a Myhill-Nerode-like characterisation of rational points and, based on this
characterisation, we give a simple and direct proof that the rational points of a finitary
rational space are dense [Koz95]. As noted in [Koz95], we conclude that any non-empty
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finitary rational space has a rational point. This translates to finite systems of (positive)
set constraints as follows: if a systems of (positive) set constraints has a solution, then
it has a regular solution. We show that the rational points in finitary rational spaces in
some sense exactly capture the topological structure of the space. We also investigate
congruences in Σ-hypergraphs and their interplay with the Myhill-Nerode characterisa-
tion. Congruences in rational spaces are strongly related to the notion of bisimulation
[Mil89] in models of concurrency and a similar notion has appeared in [Koz94] in the con-
text of efficient constraint solving. Finally, we determine the computational complexity
of some decision problems related to rational embeddings.

The contents of Chap. 8 is joint work with Dexter Kozen.
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Petri net class Reachability Liveness Deadlock

Arbitrary decidable decidable decidable
EXPSPACE-hard EXPSPACE-hard EXPSPACE-hard

1-safe PSPACE-complete PSPACE-complete PSPACE-complete
Acyclic NP-complete linear time linear time
1-safe acyclic NP-complete constant time constant time
Conflict-free NP-complete polynomial time polynomial time
1-safe conflict-free polynomial time polynomial time polynomial time
Free-choice decidable NP-complete NP-complete

EXPSPACE-hard
1-safe free-choice PSPACE-complete polynomial time NP-complete

Table 2.1: Summary of complexity results for Petri nets.

2.1 Introduction

In the following sections, we study the maybe three most important verification prob-
lems for Petri nets: reachability, liveness, and existence of deadlocks. We determine
their complexity for 1-safe nets, and for three important subclasses: acyclic, conflict-free
and free-choice nets. In all cases, we compare the results with the complexity of the
corresponding problems for Place/Transition nets.

The presentation is a mixture of survey and new results. Our new results have
enabled us to complete Table 2.1. Throughout, we attribute previously known results to
their authors.

Two interesting subclasses of Petri nets are not covered by Table 2.1, namely S-
and T-systems [BT87]. For those, reachability, liveness, and deadlock are known to be
polynomial in the Place/Transition case [BT87, CHEP71, GL73], hence also in the 1-safe
case. Related work concerning not the complexity of particular verification problems but
the complexity of deciding different equivalence notions can be found in [JM93].

Our results are organised as follows. Section 2.2 contains basic definitions. In Section
2.3 we show that the deadlock problem is recursively equivalent to the liveness and
reachability problems. Section 2.4 shows that the three problems are PSPACE-complete
in the 1-safe case. In section 2.5, the different classes of Petri nets mentioned above are
considered. Finally, in Section 2.6 other problems are studied.

Remark. We have defined 1-safe nets as a subclass of Place/Transition nets. Other
versions of 1-safe nets can be found in the literature, namely the Condition/Event systems
[Rei85] and the Elementary Net Systems [Thi87]. This multiplicity of definitions is maybe
annoying but harmless: the differences among them are small, and of rather technical
nature (see [BC92] for a discussion). In particular, our results are independent of the
definition used.
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2.2 Definitions

We recall in this section some basic concepts about Place/Transition nets and 1-safe
nets, and define the reachability, liveness and deadlock problems.

2.2.1 Place/Transition Nets

Definition 1 A Place/Transition net, or a net, is a four-tuple N = (P, T, F, M0) such
that

1. P and T are disjoint sets; their elements are called places and transitions, respec-
tively.

2. F ⊆ (P × T ) ∪ (T × P ); F is called the flow relation.

3. M0: P → IN ; M0 is called the initial marking of N ; in general, a mapping M : P →
IN is called a marking of N .

2

Given a ∈ P ∪T , the preset of a, denoted by •a, is defined as {a′ | a′Fa}; the postset
of a, denoted by a•, is defined as {a′ | aFa′}.

Sometimes, we denote that a transition t has preset I and postset O in the following
way:

t : I → O

Remark. For technical reasons we only consider nets in which every node has a nonempty
preset or a nonempty postset.

We will let + denote union of multisets.
Let N = (P, T, F, M0) be a net. A transition t ∈ T is enabled at a marking

M of N if M(p) > 0 for every place p in the preset of t. Given a transition t, we
define a relation t−→ between markings as follows: M

t−→ M ′ if t is enabled at M

and M ′(s) = M(s) + F (t, s) − F (s, t), where F (x, y) is 1 if (x, y) ∈ F and 0 otherwise.
The transition t is said to occur (or fire) at M . If M0

t1−→ M1
t2−→ · · · tn−→ Mn for

some markings M0, M1, . . .Mn, then the sequence σ = t1 . . . tn is called an occurrence
sequence. Mn is the marking reached by σ, and this is denoted M0

σ−→ Mn. A marking M

is reachable if it is the marking reached by some occurrence sequence. Given a marking
M of N , the set of reachable markings of the net (P, T, F, M) (i.e., the net obtained
replacing the initial marking M0 by M) is denoted by [M〉.

Notice that the empty sequence is an occurrence sequence and that it reaches the
initial marking M0.

A net N is unary if at every reachable marking at most one transition is enabled. N

is 1-conservative if for every transition t, |•t| = |t•|.
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2.2.2 1-safe Nets

Definition 2 A marking M of a net N is 1-safe if for every place p of the net M(p) ≤ 1.
We identify a 1-safe marking M with the set of places p such that M(p) = 1. A net N

is 1-safe if all its reachable markings are 1-safe. 2

Next, we define our three main problems.

2.2.3 Reachability, Liveness, and Deadlock Problems

Definition 3 The reachability problem for a net N is the problem of deciding for a given
marking M of N if it is reachable.

A net N is live if for every transition t of N and every reachable marking M , some
marking of [M〉 enables t. The liveness problem for a net is the problem of deciding if it
is live.

A marking of a net is a deadlock if it enables no transitions. The deadlock problem
for a net is the problem of deciding if any of its reachable markings is a deadlock. 2

2.3 Complexity of Place/Transition Nets

For Place/Transition nets, it is known that the liveness and reachability problems are
recursively equivalent [Hac74], and that they are both decidable and EXPSPACE-hard
[Lip76]. In this section we complete the picture by showing that the deadlock problem
is recursively equivalent to them, and thus decidable and EXPSPACE-hard.

Theorem 4 Reachability is polynomial-time reducible to deadlock.

Proof. Given N = (P, T, F, M0), and a marking M of N , we construct a net N ′ =
(P ′, T ′, F ′, M ′

0), as follows. Let V be the set of places marked in M . The places and
transitions of N ′ are:

P ′ = P ∪ {pt | t ∈ T} ∪ {bq, cq | q ∈ V }
T ′ = {tc | t ∈ T} ∪ {tp | p ∈ P} ∪ {terminate} ∪ {subq, loopq | q ∈ V }

The flow relation of N ′ is given by:

For each t ∈ T : tc : •t + pt → t• + pt

For each p ∈ P : tp : p → p

terminate :
∑

t∈T pt → ∑
q∈V bq

For each q ∈ V : loopq : cq → cq

For each q ∈ V : subq : cq + q + bq → bq

Finally,
M ′

0 = M0 +
∑
q∈V

αqcq +
∑
t∈T

pt
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Figure 2.1: Reducing reachability to deadlock.

where
M =

∑
q∈V

αqq, αq > 0

The construction of N ′ is illustrated in Figure 2.1.
Claim: M is reachable in N if and only if N ′ has a deadlock. To see this, first notice

that terminate can occur at most once, that this disables all the tc transitions, and that
as long as it has not occurred, no marking can be dead: terminate can occur.

Suppose now that M is reachable in N . Having reached M in N ′ firing only tc
transitions, fire the terminate transition and use the subq transitions to remove, for
each q ∈ V , αq tokens from q. This yields a dead marking.

Suppose then that M is not reachable in N . Before terminate has fired, there is no
deadlock. When terminate has fired, no transition in N can fire. There are two cases.
Suppose first that M is the empty marking. Since M is not reachable in N , there are still
tokens in N . Thus, at least one tp transition will remain enabled. Suppose then that M

is a non-empty marking. If there are no tokens in N , then at least one loopq transition
will remain enabled. If there are still tokens in N , then at least one tp transition will
remain enabled.

Theorem 5 Deadlock is polynomial-time reducible to liveness.

Proof. Given N = (P, T, F, M0), we construct a net N ′ = (P ′, T ′, F ′, M ′
0), as follows.

The places and transitions of N ′ are:

P ′ = P ∪ {ok}
T ′ = {tc, t

′ | t ∈ T} ∪ {live}
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The flow relation of N ′ is given by:

For each t ∈ T : tc : •t → t•

For each t ∈ T : t′ : •t → ok

live : ok → P ′

Finally, M ′
0 = M0.

Claim 6 N has no reachable dead marking if and only if N ′ is live.

To see this, suppose first that N can reach a dead marking Md. Clearly, also N ′ can
reach Md without firing any t′ transitions, and since the t′ transitions in N ′ have the
same presets as the transitions in N , Md is dead in M ′. Thus, N ′ is not live.

Suppose then that N has no reachable dead marking. Then the initial marking is
not dead, so fire one of the t′ transitions. This places a token on the ok place, and there
the token remains. Thus from now on, the live transition is enabled, and because the
live transition places tokens on all places in N ′, N ′ is live.

Corollary 7 The deadlock, liveness and reachability problems are recursively equivalent.
Thus, the deadlock problem is decidable and EXPSPACE-hard.

Proof. For the equivalence of the problems, combine Theorem 4 and 5 with Hack’s
reduction from liveness to reachability [Hac74]. For the complexity of the deadlock
problem, use the equivalence with reachability and obtain the decidability from Mayr
[May84] and the EXPSPACE-hardness from Lipton [Lip76].

The technique of the proofs is similar to those of, e.g., Chapter 5 in [Pet81].
The same result holds for Place/Transition nets with arc weights. To see this, just

observe that our constructions can still be applied and that Hack considers nets with arc
weights [Hac74].

2.4 Complexity of 1-safe Nets

In this section we prove that the reachability, liveness, and deadlock problems for 1-safe
nets are PSPACE-complete.

Given a Place/Transition net, it is PSPACE-complete to decide if the net is 1-safe
[JLL77, Corollary 3.4]. However, it is many times possible to guarantee 1-safeness be
construction. Consider for instance the important case where the nets are constructed
as a synchronisation of finites automata, or the class of Well-Terminating Nets [Jat93].

First we consider the liveness problem.

Theorem 8 The liveness problem for 1-safe nets is PSPACE-complete.



2.4. Complexity of 1-safe Nets 31

Proof. To prove that the liveness problem is in PSPACE, we can use essentially the
technique of Jones, Landweber, and Lien [JLL77, Theorem 3.9]. They proved that the
liveness problem for 1-conservative (not necessarily 1-safe) nets is in PSPACE.

To prove completeness, we show that the problem (DETERMINISTIC) LINEAR
BOUNDED AUTOMATON ACCEPTANCE (which is PSPACE-complete [GJ79]) is
polynomial-time reducible to the liveness problem. A linear bounded automaton is a
Turing machine which only visits the cells of the tape containing the input. The input is
bounded by a left and a right marker, say # and $, and the head can visit no cell to the
left of # and no cell to the right of $ (see [HU79] for a formal definition). The problem
is defined as follows:

Given: a deterministic linearly bounded automaton M0 and an input x for M0,

To decide: if M0 accepts x.

First, we construct in polynomial time a deterministic linearly bounded automaton
M, satisfying the following two properties:

(1) M accepts x iff M0 accepts x, and

(2) M has a unique accepting configuration.

M simulates M0, but, before accepting, M erases the tape, moves the head to the
leftmost cell, and then enters its unique final state (a new state not present in M0). In
this way, M satisfies (2).

Let M = (K, Σ, Γ, δ, q1, q2, #, $), where K is the set of states, Σ the alphabet, Γ ⊇
Σ ∪ {#, $} is the set of tape symbols, δ is the transition relation, q1 the initial state, q2

the final state, and # and $ are the boundary symbols. Moreover, let K = {q1, . . . , qm},
Γ = {a1, . . . , ap}, n = the size of #x$, and β = K × Γ × {C, R, L} × K × Γ (i.e., the
transition relation is a subset of β).

We construct a 1-safe net N = (P, T, F, M0) as follows:

• P = {Ai,j | 1 ≤ i ≤ n, 1 ≤ j ≤ p}
∪ {Qi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪ {B, C}

P contains a place Ai,j for every tape cell i and every tape symbol aj; a token
in Ai,j means that the symbol on tape cell i is aj. It also contains a place Qi,j

for every tape cell i and every state qj; a token in Qi,j means that the automaton
scans the cell i in state qj. Given a configuration c of the automata M, c can be
encoded as a subset of P in the following way:

– if the automaton is in state qj scanning the i-th tape cell, then Qi,j belongs
to the set,

– if the tape cell i contains the symbol aj, then Ai,j belongs to the set, and

– no other place belongs to the set.
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Denote the set of places associated to the configuration c by M(c). Notice that
M(c) can also be interpreted as a 1-safe marking of N .

B and C play the role of a switch, as follows. If there is a token on B, then the net
simulates M; if there is a token on C, then the net behaves nondeterministically
in such a way that any marking corresponding to a configuration of the linear
automaton can be reached.

• T contains the following transitions for every element of β:

– If (qs, at, R, qr, al) ∈ δ (move right), then T includes for every cell 1 ≤ i < n

a transition

Qi,s + Ai,t → Qi+1,r + Ai,l

(where we use + instead of set union to use the notation of [JLL77]; notice
that no transition is needed for the n-th cell). Similarly for left moves and no
motion. The transitions corresponding to an element of β \ δ have C in their
preset, and can therefore only occur if C is marked.

– If (qs, at, R, qr, al) ∈ β \ δ, then T includes for every cell 1 ≤ i < n a transition

C + Qi,s + Ai,t → Qi+1,r + Ai,l + C

Similarly for left moves and no motion.

– T contains the following two transitions tB→C , tC→B , where ci is the initial
configuration of M, and cf its unique accepting configuration.

tB→C : B + M(cf) → C + M(cf)

If the net reaches the marking corresponding to the accepting configuration cf , then
the transition tB→C can occur and the net starts behaving nondeterministically in
such a way that for any configuration c, the marking C + M(c) is reachable.

tC→B : C + M(ci) → B + M(ci)

The net can return to simulating M if, while behaving nondeterministically, it
reaches the marking corresponding to the initial configuration.

• The initial marking M0 is the one corresponding to the initial configuration, plus
one token on the place B i.e., M0 = B + M(ci)

If M does not accept x, then N never reaches the marking B +M(cf), corresponding to
the accepting configuration cf . This implies that the transition tB→C can never occur,
and therefore N is not live.

If M accepts x, then the net reaches the accepting configuration cf . So the transition
tB→C can occur, and N starts behaving nondeterministically. Now, for every possible
configuration c, the net can reach C + M(c). Hence every transition, but tB→C, can
become enabled at some reachable marking containing C. In particular, the marking
M(ci)+C can be reached too; this marking enables tC→B . Therefore, the net can return
to simulating M, and everything starts anew, in particular tB→C can occur again.
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We now consider the reachability problem. It is again possible to use a reduction
from linear bounded automaton acceptance. we prefer to give another reduction from
quantified boolean formulas. This reduction has some interest in itself in that it is easier
to modify as will be clear from Sect. 2.6, and moreover shows that the problem is still
PSPACE-complete even if restricted to unary 1-safe nets.

First we prove the following useful lemma.

Lemma 9 Given a 1-safe net N and a 1-safe marking M , checking whether M is reach-
able in N is in PSPACE.

Proof. Store M0 as the current marking. Set up an m-bit counter initialised to
0, where m = |P |. Repeatedly do the following. Check if the current marking equals
M . If so, M is reachable. If not, check if the counter’s value equals 2m. If so, M is
not reachable, since any occurrence sequence longer than 2m must have loops which do
not contribute to exploring the state space. If not, the counter’s value is less than 2m.
If the current marking is a deadlock, then M is not reachable. Otherwise, choose an
enabled transition, fire it, store the new marking as the current marking, and increment
the counter.

The above algorithm uses 2|P | bits, and is thus in PSPACE.

Theorem 10 The reachability problem for both 1-safe nets and unary 1-safe nets is
PSPACE-complete.

Proof. By Lemma 9, the reachability problem is in PSPACE.
To prove PSPACE-hardness, we show that QUANTIFIED BOOLEAN FORMULAS

(which is PSPACE-complete [GJ79]) is polynomial-time reducible to the reachability
problem. The problem is defined as follows:

Given: A well-formed quantified Boolean formula

F = (Q1x1)(Q2x2) · · · (Qnxn)E

where E is a Boolean expression involving the variables x1, x2, . . . , xn and each Qi

is either “∃” or “∀”.

To decide: is F true?

If we are given a quantified boolean formula F , then we construct a unary 1-safe net
N and a marking M of N such that M is reachable if and only if F is true.

Before constructing the net and the marking, we rewrite F , in polynomial time, into
an equivalent closed formula G generated by the grammar:

P ::= x | ¬P | P ∧ P | ∃x.P ,

and such that all bound variables in G are distinct. Notice that G needs not be a
quantified boolean formula: the quantifiers in G need not occur at the outermost level.
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The construction of the net for G is illustrated in Figure 2.6–2.5. Intuitively, the
idea is to try all possible assignments of bound variables. The construction is essentially
compositional. The only complication is the interpretation of variables.

The net for G contains the places:

{P in, P T , P F | P is an occurrence of a subformula of G} ∪
{x is T , x is F | x is bound in G}

For readability, when in the following we name places and transitions, we write not P

for ¬P , we write P and Q for P ∧ Q, and we write Ex.P for ∃x.P .
The initial marking is {G in}.
The net for G contains the following transitions for each occurrence of a subformula

of G:

Occurrence Transitions
x read x is T : x in + x is T → x T + x is T

read x is F : x in + x is F → x F + x is F

¬P call P : not P in → P in

not P is F : P T → not P F

not P is T : P F → not P T

P ∧ Q call P : P and Q in → P in

P T and Q ? : P T → Q in

P F and Q ? : P F → P and Q F

P T and Q T : Q T → P and Q T

P T and Q F : Q F → P and Q F

∃x.P call P with x T : Ex.P in → P in + x is T

call P with x F : x is T + P F → x is F + P in

x T P T : x is T + P T → Ex.P T

x F P T : x is F + P T → Ex.P T

Ex.P is F : x is F + P F → Ex.P F

To avoid name clashes we could let the name of an occurrence of a subformula of G

contain its position in the syntax tree for G. We omit these details, for readability.
Intuitively, when P in (“the in-place for P”) becomes marked, then the checking of

the truth of P begins. When either P T (“true”) or P F (“false”) becomes marked,
this checking is completed. Let us consider in turn the construction for each of the
productions of the above grammar.

First, consider a variable x, see Figure 2.2. The places x is T (“x is true”) and
x is F (“x is false”) are not part of the net for x but are included to indicate that they
will be added when treating the quantification that binds x. Note that all occurrences of
the same variable x share these two places. The two transitions implements the reading
of the current value of x.

Second, consider a negation ¬P , see Figure 2.3. The transition call P transfers the
“control” to the subnet for P . The two other transitions implement the negation.
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x T x F

x is T x is F

read x is T read x is F

x in

Figure 2.2: Reduction from quantified boolean formulas, variable.

P in P T P F

not P is F not P is Tcall P

not P in not P T not P F

Figure 2.3: Reduction from quantified boolean formulas, negation.

P TP in P F

call P

Q in Q T Q F

P and Q in P and Q T P and Q F

P T and Q ? P F and Q ?

P T and Q T P T and Q F

Figure 2.4: Reduction from quantified boolean formulas, conjunction.
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P T P FP in

x is F

call P with x T

x is T

Ex.P in Ex.P T Ex.P F

x F P T

x T P T Ex.P is F

call P with x F

Figure 2.5: Reduction from quantified boolean formulas, existential quantifier.

Third, consider a conjunction P ∧ Q, see Figure 2.4. The transition call P transfers
the “control” to the subnet for P . The four other transitions implement the conjunction.

Fourth, consider an existential quantification ∃x.P , see Figure 2.5. The places x is T

(“x is true”) and x is F (“x is false”) are the ones we mentioned above. The transition
call P with x T assigns true to x and transfers the “control” to the subnet for P . In
case P was not true, the transition call P with x F assigns false to x and transfers again
the “control” to the subnet for P .

If a formula P is open, then we can obtain an extended net for P as follows. For
every free variable x in P we extend the net with two places x is T and x is F and mark
exactly one of them. This marking may be thought of as assigning a value to x.

The following fact expresses a relation between each formula P and the extended net
for P . The proof is by straightforward induction on the structure of P .

Fact 11 Let P be a formula generated from the above grammar and consider the extended
net for P . In the following we discount the marking of the places for free variables; the
marking of these are invariant. From the marking {in P}, eventually either {P T} or
{P F} will be reached. The former is reached if and only if P is true under the given
assignment of its free variables, and the latter if not.

Using this observation it is easy to see that the marking {G T} is reachable in the
net for G if and only if G is true.

Clearly, the net for G is 1-safe. Notice that for each reachable marking at most one
transition is enabled.
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G in G T G F

Figure 2.6: Reduction from quantified boolean formulas.

Theorem 12 The deadlock problem for 1-safe nets is PSPACE-complete.

Proof. To show that the deadlock problem is in PSPACE, given a 1-safe net N

guess a marking M of N , and check in linear, and by Lemma 9, check in PSPACE if M

is reachable.
To prove completeness, we reduce the problem QUANTIFIED BOOLEAN FORMU-

LAS to the deadlock problem. Extend the net in the proof of Theorem 10 with the
transition

G F → G F

Clearly, the new net has a deadlock if and only if F is true.

The deadlock and reachability problems turn out to be PSPACE-complete even for
1-conservative unary 1-safe nets. This follows directly from the constructions in the
proof of Theorem 10 and the following “conservativeness” observation.

First, we define the notion of reachability graph. The reachability graph of a net N

is the edge-labelled graph whose vertices are the reachable markings of N ; if M
t−→ M ′

for a reachable marking M , then there is an edge from M to M ′ labelled with t.

Fact 13 There is a linear time algorithm which converts a 1-safe net N into a 1-
conservative 1-safe net N ′ with the following property: there exists a simple function
f from the markings of N to the markings of N ′ such that (1) M is reachable in N

iff f(M) is reachable in N ′; (2) the initial marking of N is mapped by f to the initial
marking of N ′; and (3) M is a deadlock of N iff f(M) is a deadlock of N ′. Hence the
construction ‘preserves’ reachability and the existence of deadlocks.

For N = (P, T, F, M0), the net N ′ is constructed by adding for every place p of P a
new place p called the complement of p. Then, for every arc (p, t) of F \ F−1, a new arc
(t, p) is added; similarly, for every arc (t, p) of F \F−1, a new arc (p, t) is added. Finally
M ′

0 is defined by M ′
0(p) = M0(p) for every place p of N , and M ′

0(p) = 1−M0(p) for each
complement place. The construction is very similar to the one of [Rei85], and therefore
we omit the proof of the result; the only difference is the special treatment of the case
in which two arcs (p, t) and (t, p) exist.

2.5 Subclasses

In this section we study the complexity of the three chosen problems for three subclasses
of nets which have been often studied in the literature. Most results are already known;
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we have collected them and filled some gaps. The nets of these subclasses satisfy some
structural condition that rules out some basic kind of behaviours. In our first case, the
acyclic nets, recursive or iterative behaviours are forbidden. The conflict-free nets do
not allow nondeterministic behaviours (actually, this depends slightly on the notion of
nondeterminism used). Finally, free-choice nets restrict the interplay between nondeter-
minism and synchronisations. In particular, in 1-safe free-choice net the phenomenon
known as confusion [Thi87] is ruled out.

2.5.1 Acyclic nets

Definition 14 A net N = (P, T, F, M0) is said to be acyclic if F+ (the transitive closure
of F ) is irreflexive. 2

The reachability problem remains intractable for acyclic 1-safe nets, although the
problem is no longer PSPACE-complete (assuming NP 6= PSPACE).

Theorem 15 The reachability problem for acyclic 1-safe nets is NP-complete.

Proof. The problem is in NP because in an occurrence sequence of a 1-safe acyclic
net each transition occurs at most once. So we can guess an occurrence sequence in
linear time and check in polynomial time if it leads to the given marking.

For the completeness part, see the paper by Stewart [Ste92]. The result is proved by
means of a reduction from the HAMILTONIAN CIRCUIT problem.

Since all 1-safe acyclic nets contain deadlocks, the liveness and deadlock problems
are trivial.

We can compare these results with the ones corresponding to the general case.

Theorem 16 The reachability problem for acyclic Place/Transition nets is NP-complete.

Proof. The problem can be polynomial-time reduced to INTEGER LINEAR PRO-
GRAMMING, because in an acyclic net N with initial marking M0, a marking M is
reachable iff the system of equations corresponding to the state equation M = M0+C ·X ,
where C is the incidence matrix of N , has an integer vector solution X (for the defini-
tions of incidence matrix and state equation, see, for instance, [Mur89]). Since INTEGER
LINEAR PROGRAMMING is in NP [HU79], so is our problem.

The completeness follows trivially from the completeness of the problem for the 1-safe
case.

It is easy to see that an acyclic net has no deadlocks if and only if some of its
transitions has empty preset; therefore the deadlock problem can easily be solved in
linear time. Similarly, an acyclic net is live if and only if every place has some input
transition; so the liveness problem is also linear. So, as we can see, there are no essential
differences between the general and the 1-safe case.
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2.5.2 Conflict-free nets

Conflict-free nets are a subclass in which conflicts are structurally ruled out (actually,
this depends slightly on the notion of conflict used). Their complexity has been deeply
studied in several papers; in particular, the complexity of our three problems.

Definition 17 A net N = (P, T, F, M0) is conflict-free if for every place p, if |p•| > 1,
then p• ⊆ •p. 2

It is shown by Howell and Rosier in [HR88, HR89] that the reachability, liveness, and
deadlock problems for 1-safe conflict-free nets are solvable in polynomial time. They
also show that, for Place/Transition nets, the deadlock and liveness problems are still
polynomial, whereas the reachability problem becomes NP-complete [HR88, HR89].

2.5.3 Free-Choice nets

Free-choice nets are a well studied class, commonly acknowledged to be about the largest
class having a nice theory.

Definition 18 A net N = (P, T, F, M0) is free-choice if for any pair (p, t) ∈ F ∩ (P ×T )
it is the case that p• = {t} or •t = {p}. 2

In a free-choice net, if some transitions share an input place p, then p is their unique
input place. It follows that if any of them is enabled, then all of them are enabled.
Therefore, it is always possible to freely choose which of them occurs.

The reachability problem is still PSPACE-complete for 1-safe free-choice nets. The
reason is that for a 1-safe net N and a marking M , we can construct a 1-safe free-choice
net N ′ containing all the places of N (and possibly more), such that M is reachable in
N if and only if it is reachable in N ′. N ′ is the so called ‘released form’ of N . Intuitively,
every arc (p, t) such that |p•| > 1 and |•t| > 1 is removed and replaced by new arcs
(p, t′), (t′, p′), (p′, t), where p′ and t′ are a new place and a new transition. The interested
reader can find a formal definition in [JLL77, Hac76]. Figure 2.7 shows a non-free-choice
net (on the left), and its released form (on the right).

Perhaps surprisingly, the liveness problem is polynomial for this class.

Theorem 19 The liveness problem for free-choice 1-safe nets is solvable in polynomial
time.

Proof. See the paper by Esparza and Silva [ES92], and the paper by Desel [Des92].

We now show that the deadlock problem for 1-safe free-choice nets is NP-complete.
Membership in NP is non-trivial, and requires to introduce some concepts and results of
net theory.
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p2p1
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Figure 2.7: A net and its released form.

Let N be a net and Q a set of places of N . For a marking M of N , M(Q) denotes the
total number of tokens that M puts in the places of Q (formally, M(Q) =

∑
p∈Q M(p).

The set Q is said to be marked at M if M(Q) > 0, and unmarked at M if M(Q) = 0.
A subset Q of places of N is a siphon if •Q ⊆ Q•, and a trap if Q• ⊆ •Q.
We use some well known lemmata about siphons and traps. They can all be found

in [Hac72] or—a more accessible reference—in [BD90].

Lemma 20 Let N be a net, and M a marking of N .

(1) If Q is a siphon of N unmarked at M , then Q remains unmarked at all markings
reachable from M .

(2) If Q is a trap of N marked at M , then Q remains marked at all markings reachable
from M .

Proof. Follows easily from the definitions of siphon, trap, and the occurrence rule.

Lemma 21 Let M be a deadlock of a net N . Then, the set of places of N unmarked at
M is a siphon of N .

Proof. Let Q be the set of places of N unmarked at M . It suffices to observe that,
since M is a deadlock, every transition has some place in its preset which is unmarked
at M . So Q• contains all the transitions of N and, since •Q is a subset of them, Q is a
siphon.
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Lemma 22 Let N be a free-choice net with initial marking M0. Let Q be a siphon of N

which contains no trap marked at M0. Then, there exists a reachable marking M such
that Q is unmarked at it.

Proof. See [Hac72, BD90]. This result is part of the proof of Commoner’s theorem.

Using these lemmata, we can now characterise when a free-choice net has a deadlock.

Lemma 23 Let N be a free-choice net. N has a deadlock iff there exists a siphon Q of
N such that:

(1) for every transition t of N , Q contains some place of •t, and

(2) Q contains no trap marked at the initial marking.

Proof. (⇒): Let M be a deadlock of N . Define Q as the set of places of N unmarked
at M . By Lemma 21, Q is a siphon. Since no transition of N is enabled at M , we have
that, for every transition t, Q contains some place of •t.

To prove (2), assume that Q contains a trap marked at the initial marking. Then,
since marked traps remain marked by Lemma 20, this trap is marked at M . So Q is
marked at M too, which contradicts the definition of Q.

(⇐): By Lemma 22, there exists a reachable marking M such that M(Q) = 0. Since
Q contains some place of the preset of each transition, no transition is enabled at M . So
M is a deadlock.

Theorem 24 The deadlock problem for 1-safe free-choice nets is NP-complete.

Proof. To solve the problem in nondeterministic polynomial time, we use Lemma 23.
Guess for each transition t of the net a place of •t. Check in polynomial time if the guessed
set of places is a siphon; then, check in polynomial time that it contains no trap marked
at the initial marking using Starke’s algorithm to find the maximal trap contained in a
given siphon [Sta90] (see [DE91] for a reference in English).

We prove completeness by reducing the satisfiability problem of propositional formu-
las in conjunctive normal form (CON-SAT) to the deadlock problem.

An instance ϕ of CON-SAT is a conjunction of clauses C1, . . . , Cm over variables
x1, . . . , xn. A clause is a disjunction of literals. A literal li is either a variable xi or its
negation xi.

Given an instance ϕ of CON-SAT, we construct a free-choice net N in polynomial
time and show that that it has a deadlock iff ϕ is satisfiable. The construction is very
similar to the one used in [JLL77] to prove the NP-completeness of liveness in general
free-choice nets. We describe the set P of places and the set T of transitions of N ,
together with their presets and postsets. The set P contains the following elements:

(a) for every 1 ≤ i ≤ n, places Ai, xi, xi,
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(b) for each clause Cj and every literal li appearing in Cj, a place (li, Cj), and

(c) for each clause Cj , a place Fj.

The transitions in T are defined as follows:

(1) for each literal li, Ai → li,

(2) for each literal li, li →
∑

li∈Cj

(li, Cj),

(3) for each clause Cj ,
∑

li∈Cj

(li, Cj) → Fj, and

(4) for each clause Cj , Fj → Fj.

The marking M0 is the set {Ai | 1 ≤ i ≤ n}.
An occurrence sequence of N is a truth sequence if:

• for every variable xi, it contains one of the two transitions Ai → xi, Ai → xi, and

• it only enables transitions of type (3), if any.

A truth sequence σ is associated to the assignment f : {x1, . . . , xn} → {true, false} given
by f(xi) = true iff the transition Ai → xi occurs in σ.

The following fact follows easily from the construction of N :

Fact 25 The marking reached by a truth sequence enables a type (3) transition iff the
corresponding clause Cj is false under f .

Assume ϕ is satisfiable. Then, there exists an assignment f which makes all clauses
true. By the fact above, any truth sequence associated to f leads to a deadlock.

Now, assume that M is a deadlock of N . It follows from the construction that M

only marks places of the form (li, Cj), and that any occurrence sequence that leads to M

is a truth sequence. By the fact above, no clause is false under the assignment associated
to σ. So ϕ is satisfiable.

There are differences between the 1-safe and the Place/Transition free-choice nets.
Using the releasing technique it is easy to show that the reachability problem for free-
choice nets is as hard as the reachability problem for arbitrary Place/Transition nets,
and therefore EXPSPACE-hard. The liveness problem was shown to be NP-complete in
[JLL77]. Finally, our proof of membership in NP for the deadlock problem did not rely
on 1-safeness; therefore, the deadlock problem is also NP-complete for Place/Transition
free-choice nets.
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2.6 Other Problems

There exist other problems concerning Petri nets which have received attention in the
literature.

Definition 26 The containment problem for two nets with the same set of places is
the problem of deciding whether all reachable markings of the first are reachable in the
second. 2

Definition 27 Given two 1-safe markings M , M ′ of a net, M is covered by M ′ if M ⊆
M ′. The coverability problem for a given net N and a marking M of N is the problem
of deciding whether some reachable marking of N covers M . 2

Definition 28 A net N is said to be persistent [LR75] if for every reachable marking

M , if two different transitions t, t′ are enabled at M then M
t−→ M ′ t′−→ M ′′ for some

markings M ′, M ′′. The persistency problem for a net is the problem of deciding whether
the net is persistent. Notice that unary nets are persistent. 2

Definition 29 Let N = (P, T, F, M0) be a net. For any subset T0 of T let hT0 be
the “erasing” homomorphism from T ∗ to T ∗

0 which erases elements from T \ T0. For
a transition t ∈ T \ T0 we say that T0 controls t by an occurrence sequence γ in T ∗

0

if for every occurrence sequence σ from M0, if hT0(σ) = γ then t is not enabled at the
marking M reached by the occurrence of σ. Crudely speaking, once γ has occurred, even
interleaved with transitions of T \ T0, t cannot occur until some transition of T0 occurs.
T0 is said to control t if T0 can control t by at least one sequence γ. The controllability
problem [JLL77] for a net is the problem of deciding whether T0 controls t given N , T0,
and t as above. 2

For arbitrary Petri nets, the containment problem is undecidable [Hac76], whereas
the coverability, persistency, and controllability problems are EXPSPACE-hard. It is
shown by Howell and Rosier in [HR88, HR89] that the coverability problem for 1-safe
conflict-free nets is solvable in polynomial time.

We study the first three of these problems in the 1-safe case.

Theorem 30 The containment, coverability and persistency problems for 1-safe nets
are PSPACE-complete.

Proof. We show that each of the three problems is in PSPACE. First, consider
the containment problem. Given two nets, guess a marking, and by Lemma 9, check in
PSPACE that the marking is reachable in the first net and unreachable in the second
net. This shows that the containment problem is in PSPACE, since co-NPSPACE equals
PSPACE (by Savitch’s theorem and because space complexity classes are closed under
complementation).
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Second, consider the coverability problem. Given a 1-safe net N and a marking M

of N , guess a marking M ′ ⊇ M and, by Lemma 9, check in PSPACE that the marking
M ′ is reachable.

Third, consider the persistency problem. Proceed as above, this time guessing a
marking M of N that enables two different transitions t and t′. If M is reachable, then
check in linear space that t′ cannot occur after the occurrence of t.

To prove that each of the three problems is PSPACE-hard, we use the same con-
struction as in the proof of PSPACE-hardness of reachability. For each of the following
arguments, suppose we are given a quantified boolean formula F . To begin with, trans-
form it into an equivalent formula G as was done for Theorem 10.

First, consider the containment problem. Construct both the same 1-safe net N as
in the proof of Theorem 10 and the following net N ′. The net N ′ is obtained from
N by removing all transitions, and taking {G T} as initial marking. For convenience
we construct a net whose places have empty presets and postsets (isolated nodes), see
remark at the beginning of Section 2.2. The PSPACE-hardness can be shown for nets
satisfying the assumptions of no isolated nodes. Clearly, the set of reachable markings
of N ′ is {G T}, and therefore it is contained in the set of reachable markings of N if and
only if F is true.

Second, consider the coverability problem. Clearly, there is a reachable marking in
N that covers {G T} if and only if F is true.

Third, consider the persistency problem. Extend the net in the proof of Theorem 10
with two new places {V, W} and the transitions

G F → V

G F → W

Clearly, the new net is persistent if and only if F is true.

The proof of the result that controllability is EXPSPACE-complete [JLL77, Theorem
4.1] was in fact given for 1-conservative free-choice nets, and also works when restricted
to 1-safe nets. This is the only one of the problems we consider for which the complexity
does not decrease for 1-safe nets.

Using the techniques from the proofs of Theorem 10 and 30 one can proceed to prove
that numerous other problems for 1-safe nets are PSPACE-complete: “is there an infinite
occurrence sequence?”, “can a certain transition ever occur?”, “is a certain transition
live?”, etc. The interested reader will find no problem in carrying out the corresponding
proofs.

2.7 Summary

In this chapter we showed that all problems remain intractable, although, as could be
expected, their complexity decreases in comparison with Place/Transition nets. The
usual observation is that problems are EXPSPACE-hard for Place/Transition nets and
PSPACE-complete in the 1-safe case.
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Also, most problems remain intractable even for unary 1-safe nets, which are sequen-
tial and deterministic. So it is not possible to relate intractability to nondeterminism or
concurrency.

However, some problems become tractable when restricted to subclasses of 1-safe
nets defined using structural constraints, i.e., constraints on the flow relation.

The most interesting direction for further research is probably the study of the com-
plexity of a problem when a certain desirable property is known to hold, for instance
liveness. The result of [DE93b] can be seen as a first step in this direction: it is shown
that for live and 1-safe free-choice nets the reachability problem is in NP, by proving
that every reachable marking can be reached by an occurrence sequence of polynomial
length. Also, the problem is solvable in polynomial time if the net is live, bounded, cyclic,
and free-choice [DE93a]. So far nothing is known about the complexity of deciding if a
marking is reachable when the Petri net is known to be live.
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Logic Problem Instance Complexity

CTL R-structure (Kripke) P
and a formula

L(F ) R-structure NP-complete
and a formula

L(X, U, S) R-structure PSPACE-complete
and a formula

CTL Compact system
L(F ) and a formula PSPACE

L(X, U, S)

Table 3.1: Complexity in terms of Kripke structures and compact systems.

3.1 Introduction

In the following sections we choose a rather general setting both in terms of the systems
considered and the problems to be solved. Namely, we formalise the notion of compact
systems and investigate the computational complexity of the model-checking problem
in terms of the size of a compact system s and the length of the formula ϕ. We show
that for any class of compact systems the model-checking problems for the well-known
temporal logics CTL, L(F ), and L(X, U, S) are in PSPACE. We have summarised this
in Table 3.1.

As an example of the intended use of our results we consider K-bounded Petri nets.
From the previous chapter we easily conclude that the model-checking problems for CTL,
L(F ), and L(X, U, S) are PSPACE-hard. Having obtained the lower bounds it is now
sufficient only to show how K-bounded Petri nets can be viewed as a class of compact
systems, i.e, show that it is possible to transform the description of the K-bounded Petri
net—in the problem instance used to obtain the lower bound—into the representation
as a compact system, using at most a polynomial amount of space. Our results then
allow us to conclude that the problems are PSPACE-complete. In terms of the size
of the state spaces of the K-bounded Petri nets (and the length of the formulas) the
computational complexities are polynomial time [CES86], NP-complete, and PSPACE-
complete [SC85], respectively. In terms of the size of the K-bounded Petri nets the
algorithms in [SC85, CES86] for CTL and L(F ) would both require exponential space
since they require the full state space to be explicitly represented.

Since the model-checking problem for temporal logics containing the F (future) op-
erator is usually PSPACE-hard for most nontrivial classes of compact systems, such as
K-bounded Petri nets, our results provide matching upper bounds.

In general, one cannot obtain similar PSPACE-hardness results for all classes of
compact systems; we allow classes of trivial systems as classes of compact systems. R-
structures represent state spaces in a direct and non-compact manner. Also, for a class
of models, lower bounds are obtained by reducing a known hard problem to that class,
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whereas upper bounds can be obtained by reducing from that class (to a class of, e.g.,
compact systems).

The results are organised as follows. In Sect. 3.2 we give the necessary definitions.
This includes compact systems, the logics and their interpretations, and the model-
checking problems. Then, in Sect. 3.3 we give the upper bounds on the model-checking
problems. In Sect. 3.4 we apply our results to K-bounded Petri nets and in Sect. 3.5 we
summarise and give suggestions for future work.

3.2 Definitions

Intuitively, the systems we consider all have the property that we can associate (Kripke)
structures to them which correspond to their state spaces. Moreover, the size of the
associated structure is at most exponential in the size of the description of the system.
For example, K-bounded Petri nets have this property; a net with n places has at most
(K + 1)n reachable states. We refer to these systems as compact systems. We continue
by formalising compact systems, defining the logics B(X, U) (CTL) and L(X, U, S) and
their interpretations, and finally the model-checking problems.

3.2.1 Compact Systems

Intuitively, a class of compact systems consists of string encodings of systems and a
polynomial space bounded nondeterministic Turing machine which given an encoding of
a system will “simulate” it. The state space of the Turing machine will then be used
to define the state space of the input string (the compact system). Below we present
K-bounded Petri nets as a class of compact systems. For the ease of the presentation we
assume that the reader is familiar with Turing machines and basic complexity theory,
see [HU79] for an introduction.

Definition 31 A class of compact systems, (C, MC), is a set C = {s1, s2, . . .} of strings
referred to as systems, over some alphabet Σ, together with a polynomial space bounded
nondeterministic Turing machine MC which has a distinguished “signal” state q? such
that

• for any s ∈ C, MC has a unique configuration 1 cs, such that any computation on
s reaches cs and cs is the first configuration along the computation whose machine
state is q?. Intuitively, cs is the initial state of the system s.

• for any string s 6∈ C, MC can never enter the state q? for any computation on input
s. Hence, MC implicitly specifies {s1, s2, . . .}.

2

In the following we assume a fixed class of compact systems (C, MC).
1A configuration of MC consists of the contents of the tape, a machine state, and a position on the

tape.
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Fact 32 Since MC is polynomial space bounded on inputs of length n, say by the polyno-
mial q′(n), MC has on any input s at most exponentially many reachable configurations
whose machine state is q?; there exists a B > 0 and a polynomial q(n), independent of
s, such that given s there are at most Bq(|s|) possible configurations.

Call the configurations whose machine state is q? signal configurations, and let
SigMC(s) = {c | c is a reachable signal configuration of MC on input s}. We can now
define the state space associated to s ∈ C.

Definition 33 For s ∈ C, let (Vs, Es, is) be the rooted graph whose nodes Vs are
SigMC(s), the signal configurations of MC on input s, whose edges are pairs of nodes
(c, c′) such that (c, c′) ∈ Es if and only if MC can reach c′ from c without entering any
other signal configurations, and whose initial/root node is is the unique configuration
cs. 2

Remark. We refer to (Vs, Es, is) as the state space of the system s, whenever s ∈ C. Also,
the nodes are referred to as states of s and will be ranged over by v, w, . . .. Notice that any
system s has at most Bq(|s|) states. Whenever (Vs, Es, is) is understood from the context,
we use the notation v0 −→ v1 −→ · · · −→ vn instead of (v0, v1), (v1, v2), . . . , (vn−1, vn) ∈
Es. For a state v of s, we use the notation v 6→ to indicate that there exists no state
v′ ∈ Vs such that v −→ v′.

A run (initial run) of the system s is any sequence v0 −→ v1 −→ · · · that is either
infinite or ends in a state vn such that vn 6→ (and v0 = is). The length of a finite run
v0 −→ · · · −→ vn is n. We use Greek letters σ, γ, . . . to denote runs of the system s.

Example. As an example, let us see how K-bounded Petri nets can be viewed as a class
of compact systems.

Let K ∈ IN . A K-bounded Petri net, or just a K-bounded net, is a tuple N =
(P, T, F, Minit)K such that

• P and T are finite disjoint nonempty sets; their elements are called places and
transitions, respectively.

• F ⊆ (P × T ) ∪ (T × P ); F is called the flow relation.

• Minit: P → {0, 1, 2 . . . , K} ⊆ IN ; Minit is called the initial marking of N ; in general,
a mapping M : P → {0, 1, 2 . . . , K} ⊆ IN is called a marking of N . We shall use
the notation p ∈ M if M(p) > 0.

Next, we define the behaviour of K-bounded nets. The definitions are similar to that of
Place/Transition nets, see Definition 1, except that places may only contain at most K

tokens.

• A transition t ∈ T is enabled at a marking M of N if M(p) > 0 for every place p

in •t = {p | (p, t) ∈ F}, the preset of t, and M(p) < K for every place p in t•\•t,
where t• = {p | (t, p) ∈ F}, the postset of t. Henceforth, we shall assume that there
are no isolated elements, i.e., (∀p ∈ P. •p• 6= ∅) and (∀t ∈ T. •t• 6= ∅).
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• Given a transition t, we define a relation t−→ between markings as follows: M
t−→

M ′ if t is enabled at M and M ′(s) = M(s) + F (t, s) − F (s, t), where F (x, y) is 1
if (x, y) ∈ F and 0 otherwise. The transition t is said to occur (or fire) at M . A
marking M is a deadlock, denoted M 6→, if it enables no transitions.

• If M0
t1−→ M1

t2−→ · · · tn−→ Mn for some markings M0, M1, . . .Mn, then the sequence
σ = t1 . . . tn is called an occurrence sequence from M0. Mn is the marking reached
by σ, and this is denoted M0

σ−→ Mn. In general, we use the notation σ for a finite
or infinite sequence of transitions and use the notation M0

σ−→ to indicate that all
finite prefixes of σ are occurrence sequences from M0.

• An occurrence sequence σ from a marking M0 is maximal if it is either infinite or
it is finite and reaches a deadlock.

• A marking M is reachable from M0 if it is the marking reached by some occurrence
sequence from M0. [M0〉 will denote the set of markings reachable from M0. [Minit〉
is the set of reachable markings of N .

• The reachability graph of N is the edge-labelled graph, (VN , EN), whose vertices
are the reachable markings of N ; if M

t−→ M ′ for a reachable marking M , then
there is an edge from M to M ′ labelled t. Notice that N has at most (K + 1)|P |

markings.

The encoding of a K-bounded net can be done along the lines of, e.g., Chapter 8.3
in [HU79]. We choose the following encoding: The string sN encodes (in binary) the
number of places, the number of transitions, the pairs in F , and the initial marking.

The machine MC will do the following: First, it checks that the input string encodes
a K-bounded net. Assume that the net N described by the input has n places. Since
N is assumed to have no isolated elements, the length of the input is at least n (due to
the encoding of F ). Hence, MC may then use ndlog Ke tape squares to store a marking
(notice K is fixed for the class of K-bounded nets). It starts by storing the initial marking
of the net. It then enters its signal state to signal that the configuration is a marking of
the net. Then, it leaves the signal state, guesses a transition, and checks if it is enabled.
If it is, MC “fires” it by updating the stored marking accordingly. Having done that MC
enters the signal state, signaling that it has computed a new marking of the net. Then
it continues as before; leaving the signal state, guessing a new transition to fire etc. If
the guessed transition is not enabled, MC just halts. Notice that if sN is the encoding
of the K-bounded net N , then the state space of sN is isomorphic to the reachability
graph of N such that isN

corresponds to the initial marking of N . Hence, K-bounded
nets can be specified as a class of compact systems.

Henceforth, we assume a fixed class of compact systems (C, MC) and continue by
giving the syntax of the temporal logics we are considering.



52 Chapter 3. Compact Systems

3.2.2 Temporal Logics

Let A be a set of atomic propositions. We assume it to be fixed in the following. We
consider the temporal logics L(X, U, S) and B(X, U), both described in detail in [Eme90].

The formulas of the logic L(X, U, S) over A are defined inductively:

• t, f , or any p ∈ A.

• ¬ϕ1, ϕ1 ∧ ϕ2, X(ϕ1), ϕ1Uϕ2, and ϕ1Sϕ2 are formulas, where ϕ1 and ϕ2 are
formulas.

L(X, U, S) is a linear time temporal logic, whose formulas are interpreted over runs of a
systems s.

In order to interpret the formulas of L(X, U, S) over the runs of a system s we need
a valuation ηs : A × SigMC(s) −→ 2 which tells us if an atomic proposition holds at
a state. Furthermore, we require that the valuation ηs is computable by a polynomial
space bounded deterministic Turing machine which we denote Tηs. We assume the atomic
propositions to be encoded as strings.

Given s, a run σ = v0 −→ v1 −→ · · · of s, a natural number 0 ≤ i ≤ |σ|, and ηs.
Relative to ηs we interpret the formulas of L(X, U, S) at (σ, i) as follows:

• (σ, i) |= t and (σ, i) 6|= f .

• (σ, i) |= p iff ηs(p, vi) = 1.

• (σ, i) |= ¬ϕ iff (σ, i) 6|= ϕ.

• (σ, i) |= ϕ1 ∧ ϕ2 iff (σ, i) |= ϕ1 and (σ, i) |= ϕ2.

• (σ, i) |= X(ϕ) iff i < |σ| and (σ, i + 1) |= ϕ.

• (σ, i) |= ϕ1Uϕ2 iff there exists a natural number i ≤ j ≤ |σ| such that (σ, j) |= ϕ2

and for all i ≤ k < j, (σ, k) |= ϕ1.

• (σ, i) |= ϕ1Sϕ2 iff there exists a 0 ≤ j ≤ i such that (σ, j) |= ϕ2 and for all
j < k ≤ i, (σ, k) |= ϕ1.

The interpretation of the logic should be clear, except perhaps for ϕ1Uϕ2 and ϕ1Sϕ2.
Intuitively the former expresses that ϕ2 holds somewhere in the future and that ϕ1 holds
“until” then; the latter expresses that somewhere in the past ϕ2 holds and “since” then,
ϕ1 holds. Remember that the “past” and “future” is relative to σ.

Next, we consider a well-known branching time temporal logic. The formulas of the
logic B(X, U) over A (also known as CTL [CES86]) are also defined inductively:

• t, f , or any p ∈ A.

• ¬ϕ1, ϕ1 ∧ ϕ2, EX(ϕ1), AX(ϕ1), E(ϕ1Uϕ2), or A(ϕ1Uϕ2) are formulas, where ϕ1

and ϕ2 are formulas.
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B(X, U) is a branching time logic whose formulas are interpreted at state of a system s.
Given a system s, a state v of s, and a valuation ηs. Then, the formulas of B(X, U) are

interpreted relative to ηs as follows:

• v |= t and v 6|= f .

• v |= p iff ηs(p, v) = 1.

• v |= ¬ϕ iff v 6|= ϕ.

• v |= ϕ1 ∧ ϕ2 iff v |= ϕ1 and v |= ϕ2.

• v |= EX(ϕ) iff there exists v −→ v′ such that v′ |= ϕ.

• v |= AX(ϕ) iff for all v −→ v′, v′ |= ϕ.

• v |= E(ϕ1Uϕ2) iff there exists v −→ v1 −→ · · · −→ vn such that vn |= ϕ2 and for
all 0 ≤ j < n, vj |= ϕ1, where v0 = v.

• v |= A(ϕ1Uϕ2) iff for all v −→ v1 −→ · · · there exists an n such that vn |= ϕ2 and
for all 0 ≤ j < n, vj |= ϕ1, where v0 = v.

The interpretation of the temporal formulas shows the branching nature of B(X, U). At
a state several possible successor states or paths have to be taken into account. The
intuition behind the interpretation of the “until” formulas corresponds well to that of
L(X, U, S) except that we quantify existentially or universally over paths from the state
v.

3.2.3 Model-Checking Problems

Definition 34 An instance of the model-checking problem for L(X, U, S) is a tuple
(s, Tηs, ϕ), where s ∈ C, ηs is a valuation, and ϕ is a L(X, U, S) formula. The model-
checking problem for (s, Tηs, ϕ) is to decide whether or not there exists an initial run σ

of the system s such that (σ, 0) |= ϕ. 2

Remark. Notice that this definition is not the standard definition, which required
(σ, 0) |= ϕ of all initial runs σ of the system. However, this definition is equivalent to
ours, since the logic L(X, U, S) contains negation.

Definition 35 An instance of the model-checking problem for B(X, U) is a tuple
(s, Tηs, ϕ), where s ∈ C, ηs is a valuation, and ϕ is a B(X, U) formula. The model-
checking problem for (s, Tηs, ϕ) is to decide whether or not is |= ϕ. 2

Remark. Notice that the valuation is usually implicitly assumed part of the prob-
lem instances to the model-checking problem [SC85] or assume to be easily computable
[CES86]. We could also have defined a valuation to be relative to (C, MC) and A. This
wouldn’t lead to any significant changes of the results.
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Example. Interpreting the atomic propositions A as places of K-bounded nets gives us a
valuation η for all nets. η maps a pair consisting of an atomic proposition a and a place
p to 1 if and only if the encoding of a equals the encoding of p. We therefore only need
one Tη for the class of K-bounded nets. Having one for each N would also be possible.

3.3 PSPACE Upper Bounds

In this section we provide PSPACE upper bounds for the model-checking problems de-
fined in Definition 34 and Definition 35.

3.3.1 Linear Time

The result of this section is based on the idea behind the decision procedure for the
logic L(X, U, S) given in [SC85]. There, Sistla and Clarke also reduce the problem of
determining truth in an R-structure (model-checking problem over Kripke structures) to
the satisfiability problem (PSPACE-complete) by encoding an R-structure into a formula.
Since a compact system may have exponentially many states, encoding the state space
(Kripke structure) of a system in a formula would yield an exponentially long formula.

Instead, one could try to encode the system itself in the logic. This is easily done for
systems like 1-safe Petri nets. However, when considering other models like K-bounded
Petri nets, this encoding quickly becomes more troublesome. One of the reasons why
we have chosen the setting of (C, MC) is that describing a class of systems as a class of
compact systems is often more straightforward than exhibiting such encodings.

Our solution is based on the following observation. If (σ, 0) |= ϕ for an initial run σ,
then there exists another initial run σ′ which ends in a loop or in a dead state v′ 6→,

σ′ σ′q - q �

� �

? q - q

such that (σ′, 0) |= ϕ. Moreover, we can find bounds on the lengths of the paths.

Definition 36 Given a system s, a run σ = v0 −→ v1 −→ · · · of s, a formula ϕ of
L(X, U, S), and a valuation ηs. Then, Sub(σ, i, ϕ) is the set of subformulas ϕ′ of ϕ such
that (σ, i) |= ϕ′. 2

Lemma 37 Given a system s, a run σ = v0 −→ v1 −→ · · · of s, a formula ϕ of
L(X, U, S), and a valuation ηs. If i < j ≤ |σ|, Sub(σ, i, ϕ) = Sub(σ, j, ϕ), and vi = vj ,
then

∀0 ≤ l ≤ i. Sub(σ, l, ϕ) = Sub(σ′, l, ϕ)

∀j ≤ l ≤ |σ|. Sub(σ, l, ϕ) = Sub(σ′, l − (j − i), ϕ) .

where all indices range over natural numbers and σ′ = v′
0 −→ v′

1 −→ · · · = v0 −→ · · · −→
vi −→ vj+1 −→ vj+2 −→ · · ·.
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Proof. Induction in ϕ.

Given a run σ = v0 −→ v1 −→ · · · of a system s, two indices i and j, and a formula
ϕ of L(X, U, S). ϕ is said to be fulfilled between i and j if and only if i < j and there
exists a k, i ≤ k < j, such that (σ, k) |= ϕ.

The next lemma states that from a run σ which has two identical states satisfying
the same subformulas of ϕ and in between which all “until” formulas are fulfilled, one
can obtain a new run σ′, consisting of a prefix and a period which is a loop, such that it
essentially satisfies the same subformulas of ϕ as σ.

Lemma 38 Given a system s, an infinite run σ = v0 −→ v1 −→ · · · of s, a formula ϕ

of L(X, U, S), an index i, and a natural number p > 0 (the period) such that vi = vi+p,
Sub(σ, i, ϕ) = Sub(σ, i+p, ϕ), and for every formula ϕ1Uϕ2 in Sub(σ, i, ϕ), ϕ2 is fulfilled
between i and i + p. Let σ′ = v′

0 −→ v′
1 −→ · · · be the run v0 −→ . . . −→ vi −→ · · · −→

vi+p−1 −→ vi −→ · · · −→ vi+p−1 −→ vi −→ · · ·, i.e., the period vi −→ · · · −→ vi+p is
repeated infinitely often. Then,

∀0 ≤ l ≤ i + p. Sub(σ, l, ϕ) = Sub(σ′, l, ϕ)

∀i ≤ l. Sub(σ′, l, ϕ) = Sub(σ′, (l + p), ϕ) .

Proof. Induction in ϕ, case based analysis.

We continue with the theorem which our upper bound result is based upon. It is a
variant of “Ultimately Periodic Model Theorem” [SC85].

Theorem 39 Given a system s, ηs a valuation, σ a run of s, and ϕ a formula of
L(X, U, S) such that (σ, 0) |= ϕ, then

1) if |σ| < ∞, then there exists a run γ of s such that |γ| ≤ Bq(|s|)2|ϕ| and (γ, 0) |= ϕ.

2) if |σ| = ∞, then there exists a run γ = w0 −→ w1 −→ · · · and indices 0 ≤ i ≤
Bq(|s|)2|ϕ|, 0 < p ≤ |ϕ|Bq(|s|)2|ϕ| such that wl = wl+p for l ≥ i and (γ, 0) |= ϕ.

where B and q(n) were described in Sect. 3.2.1.

Proof. We only consider the case where σ is infinite. The other case can be handled
similarly. So, assume (σ, 0) |= ϕ. Since s has at most Bq(|s|) states and ϕ has at most
2|ϕ| subformulas there must exist indices i < j such that

i) vi = vj, Sub(σ, i, ϕ) = Sub(σ, j, ϕ), and for all ϕ1Uϕ2 ∈ Sub(σ, i, ϕ), ϕ2 is fulfilled
between i and j.

Now applying Lemma 37 repeatedly to the initial part of σ we obtain a new run σ′ and
indices i′ < j ′ such that
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ii) (σ′, 0) |= ϕ, v′
i′ = v′

j′ , Sub(σ, i, ϕ) = Sub(σ′, i′, ϕ) = Sub(σ′, j ′, ϕ), i′ ≤ Bq(|s|)2|ϕ|,
and for all ϕ1Uϕ2 ∈ Sub(σ′, i′, ϕ), ϕ2 is fulfilled between i′ and j ′.

Also, repeatedly applying Lemma 37 between v′
i′ and v′

j′ we can assume that (j ′ − i′) ≤
|ϕ|Bq(|s|)2|ϕ|; if at any time during the application of Lemma 37 the current value of
(j ′ − i′) is larger than |ϕ|Bq(|s|)2|ϕ|, there must exist more than |ϕ| identical states v′

l

among v′
i′+1, . . . , v

′
j′ satisfying the same set Sub(σ′, l, ϕ) of formulas. Since ϕ has less

then |ϕ| subformulas of the form ϕ1Uϕ2, we can remove a loop between two of these
states and still have all such ϕ2’s fulfilled between i′ and (the new value of) j ′ (in the
resulting new run). We therefore conclude that there exists a run σ′′ of s and indices
i′′ < j ′′ such that

iii) (σ′′, 0) |= ϕ, v′′
i′′ = v′′

j′′ , Sub(σ′′, i′′, ϕ) = Sub(σ′′, j ′′, ϕ), i′′ ≤ Bq(|s|)2|ϕ|, (j ′′ − i′′) ≤
|ϕ|Bq(|s|)2|ϕ|, and for all ϕ1Uϕ2 ∈ Sub(σ′′, i′′, ϕ), ϕ2 is fulfilled between i′′ and j ′′.

Using Lemma 38 we conclude that the run γ = v′′
0 −→ · · · −→ v′′

i′′ −→ · · · −→ v′′
j′′ −→

v′′
i′′+1 −→ · · · −→ v′′

j′′ −→ · · · of s has the property (γ, 0) |= ϕ.

Theorem 40 Fix any class of compact systems (C, MC) and set of atomic propositions
A. Then, the model-checking problem for L(X, U, S) is in PSPACE.

Proof. We describe an algorithm in a Pascal like programming language which
given any instance (s, Tηs, ϕ) of the model-checking problem for L(X,U,S) solves it using
only an amount of space polynomial in the sum |s| + |Tηs| + |ϕ|. Let n denote this
sum. Henceforth, whenever we write polynomial, we implicitly mean polynomial in n.
The algorithm can be encoded as a nondeterministic polynomial space bounded Turing
machine.

Notice that given possible configurations v and v′ of MC run on input s, there are
polynomial space bounded nondeterministic Turing machines which decide properties
such as whether or not (1) v ∈ Vs, (2) v −→ v′ given v ∈ Vs, or (3) v 6→. Moreover, we
can also compute is given s using only a polynomial amount of space. For example, let
us consider the case where given v ∈ Vs and a possible configuration v′ we have to decide
if v −→ v′. Notice that v′ is reachable from v if and only if it can be reached from v

in at most Bq(|s|) computation steps of MC (simulated on input s). A nondeterministic
Turing machine will simulate MC from v. It guesses a number k1 ≤ Bq(|s|). Then, storing
at most two configurations of MC, it guesses, one step at the time, a computation of
MC of length k1. For each step it decrements k1 and checks if MC can go from the
old configuration to the new (guessed) configuration. Also, it checks that none of these
intermediate configurations of MC are signal configurations. Finally, if it reaches k1 = 0
it check that the guessed configuration equals v′ and is a signal configuration. It should
be clear that this machine uses at most a polynomial amount of space. Now applying
the technique from [HU79] Theorem 12.10, we obtain a deterministic polynomial space
bounded Turing machine, since we can compute an exponential bound for the maximal
number of configurations of the nondeterministic machine.
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Hence, in the algorithm we shall refer freely to the states of s and use the notation
v −→ v′. Whenever a property is checked and is found not to hold, the algorithms fails.
Let Sub(ϕ) be the set of subformulas of ϕ, let S range over subsets of Sub(ϕ), and let
Un(ϕ) be the set {ϕ2 | ϕ1Uϕ2 ∈ Sub(ϕ)}.

First, we consider the case where the answer to (s, Tηs, ϕ) is Yes, due to the existence
of an infinite initial run satisfying ϕ.

Algorithm 1a

01: Guess 0 ≤ n1 ≤ Bq(|s|)2|ϕ|

02: Guess Scurrent ⊆ Sub(ϕ)
03: Let vcurrent = is
04: Check boolean consistency of Scurrent and vcurrent, i.e., that
05: (∀p ∈ Sub(ϕ). s ∈ Scurrent ⇔ ηs(p, vcurrent))
06: (∀ϕ1 ∧ ϕ2 ∈ Sub(ϕ). ϕ1 ∧ ϕ2 ∈ Scurrent ⇔ ϕ1 ∈ Scurrent and ϕ2 ∈ Scurrent)
07: (∀¬ϕ′ ∈ Sub(ϕ). ¬ϕ′ ∈ Scurrent ⇔ ϕ′ 6∈ Scurrent)
08: Check that ϕ ∈ Scurrent

09: Check that (∀ϕ1Sϕ2 ∈ Sub(ϕ). ϕ2 ∈ Scurrent)
10: Let count := 0
11: While count < n1 do
12: Guess a configuration vnext and check that vcurrent −→ vnext

13: Guess Snext ⊆ Sub(ϕ)
14: Check boolean consistency of Snext and vnext

15: Check that
16: (∀Xϕ′ ∈ Sub(ϕ). Xϕ′ ∈ Scurrent ⇔ ϕ′ ∈ Snext)
17: (∀ϕ1Sϕ2 ∈ Sub(ϕ). ϕ1Sϕ2 ∈ Snext ⇔

(ϕ2 ∈ Snext ∨ (ϕ1 ∈ Snext ∧ ϕ1Sϕ2 ∈ Scurrent)))
18: (∀ϕ1Uϕ2 ∈ Sub(ϕ). ϕ1Uϕ2 ∈ Scurrent ⇔

(ϕ2 ∈ Scurrent ∨ (ϕ1 ∈ Scurrent ∧ ϕ1Uϕ2 ∈ Snext)))
19: Let count := count + 1
20: Let vcurrent = vnext

21: Let Scurrent := Snext

22: Endwhile
23: Let vloop := vcurrent

24: Let Sloop := Scurrent

25: Guess 0 ≤ n1 ≤ |ϕ|Bq(|s|)2|ϕ|

26: Let count := 0
27: Let SU := ∅
28: While count < n1 do
29: (∗ Lines 29 to 38 are a copy of lines 12 to 21 ∗)
39: Let SU := SU ∪ (Scurrent ∩ Un(ϕ))
40: Endwhile
41: Check that vcurrent = vloop
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42: Check that Scurrent = Sloop

43: Check that (∀ϕ1Uϕ2 ∈ Sloop. ϕ2 ∈ SU)
44: Answer Yes

For the case where the satisfying initial run is finite the following algorithm is derived:

Algorithm 1b

01: (∗ Lines 02 to 23 are a copy of lines 01 to 22 of Algorithm 1a ∗)
24: Check that vcurrent 6→
25: Check that (∀ϕ1Uϕ2 ∈ Scurrent. ϕ2 ∈ Scurrent)
26: Answer Yes

Our final algorithm chooses nondeterministically between Algorithm 1a and Al-

gorithm 1b. The correctness of the algorithm is straightforward to establish; if the
algorithm answers Yes, examine the the values of Scurrent, SU , and the guessed run of
s. Let σ′ = v′

1 −→ v′
2 −→ . . . denote the (induced) guessed run. Then, by induction in

ϕ′ ∈ Sub(ϕ) show that (σ′, j) |= ϕ′ ⇔ ϕ′ ∈ Scurrent for any j and Scurrent corresponding
to v′

j . Conclude that this run indeed shows that the answer to (s, Tηs, ϕ) is Yes ; con-
versely, if the answer to (s, Tηs, ϕ) is Yes, then by Theorem 39 there exists a run of the
algorithm which answers Yes.

It should be clear from the assumptions about MC, Tηs, and the above comments
about deciding properties about the nodes and edges of (Vs, Es) using only a polynomial
amount of space, that this algorithm can be implemented by a nondeterministic poly-
nomial space bounded Turing machine. By Savitch’s Theorem (NPSPACE = PSPACE)
we conclude that the model-checking problem for L(X, U, S) is in PSPACE.

3.3.2 Branching Time

In this section we describe an algorithm which solves the model-checking problem for
B(X, U) using only a polynomial amount of space.

Our solution use Turing machines and results about the complexity of constructing
and transforming such machines.

The idea behind our construction is to construct a C-tape Turing machine M, for
some constant C. Denote these tapes by T1, . . . , TC. Given a problem instance as input,
M will, in polynomial time, construct a (description of a) deterministic polynomial space
bounded machine Mϕ′ for each occurrence of a subformula 2 ϕ′ of ϕ. Let us call these
machines subformula machines.

The subformula machines have the extra ability that they may call certain subfor-
mula machines as subroutines. A machine Mϕ′ will call as subroutines the subformula
machines corresponding to the immediate subformulas of ϕ′; e.g., Mϕ1Uϕ2 will call Mϕ1

2For convenience we shall use the same notation for both subformulas of and occurrences of subfor-
mulas of ϕ.
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Figure 3.1: Formula (p ∧ q)U(¬q) and the corresponding subformula machines.
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Figure 3.2: Tl simulates 3 tapes: Tϕ1, Tϕ2, and Tϕ3.

and Mϕ2 as subroutines. These calls may be considered as single computation steps from
the calling machines point of view much in the same way as Turing machines use ora-
cles. M will simulate all of the subformula machines and their subroutine calls. Notice
that M will need a stack of depth at most |ϕ| to simulate the subroutine call sequence.
Figure 3.1 illustrates this, where the arrows indicate which machines may be used as
subroutines.

The subformula machines will be constructed in an bottom up fashion, i.e., when
constructing Mϕ′ , all subformula machines corresponding to the proper subformulas of
ϕ′ have been constructed. The subformula machines will be stored on one of M’s tape
using only a polynomial amount of tape. Each of these machines will compute the
function fϕ′ : Vs −→ {0,1}, defined by fϕ′(v) =1 if and only if v |= ϕ′. Since there are at
most |ϕ| subformula occurrences in ϕ, say m, one of M’s C tapes, say Tl, will be used to
simulate tapes for each of the subformula machines; assuming we have the m machines
enumerated, the jth machine tape will consist of all of Tl’s cells whose index i equals
j modulo m. Figure 3.2 illustrates this for the case where there are three subformula
occurrences. The jth cell on a simulated tape is indicated by superscript j.

Having constructed all the machines Mϕ′ , M then proceeds by giving Mϕ the input
is and starts simulating Mϕ.

Theorem 41 Fix any class of compact systems (C, MC) and set of atomic propositions
A. Then, the model-checking problem for B(X, U) is in PSPACE.

Proof. Given (s, Tηs, ϕ). Let n denote the size of this problem instance. The machine
M (informally described above) is defined as follows:

• M stores its input (s, ηs, ϕ) on tape T1.

• It then enumerates all subformulas occurrences of ϕ and remembers how many
there are. This is done on T2.
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Remark. Having found the number of subformula occurrences M will use T3 to
simulate one tape Tϕ′ for each subformula occurrence ϕ′ as indicated in Figure 3.2.

• M now proceeds to construct the deterministic subformula machines as follows,
starting with the smallest subformula occurrences. For a subformula occurrence
ϕ′:

– If ϕ′ is an atomic proposition p, then Mϕ′ is the machine which given v uses
Tηs to compute ηs(p, v).

– If ϕ′ is of the form ¬ϕ′′, then Mϕ′ is the machine which given v calls Mϕ′′ as
subroutine with v as parameter and returns the negated value obtained from
Mϕ′′ .

– If ϕ′ is of the form ϕ1 ∧ ϕ2, then Mϕ′ is the machine which given v first calls
Mϕ1 and then Mϕ2, remembering the values returned. It then returns 1 if
and only if both values were 1.

– If ϕ′ is of the form EX(ϕ′′), then M first constructs a nondeterministic ma-
chine Mn

ϕ′ which does the following:

Given v it guesses v′, a possible configuration of s. Then it checks that
v −→ v′. Finally it calls Mϕ′′ with parameter v′. If the returned value is 1 it
returns 1, else it returns 0.

Then, M constructs a deterministic version of this machine 3 using, e.g.,
a construction similar to the one sketched in [HU79] Theorem 12.10. This
can be done since a (fully space constructible) polynomial bound on the space
consumption of the nondeterministic machine can be computed. This machine
will systematically examine all successor states of v and check if ϕ′′ holds at
one of these states; in fact, this deterministic verion can be constructed such
that if Mn

ϕ′ halts on one of these states as input, then 1 is returned; if no, 0
is returned. This is the machine Mϕ′ .

In the rest of the proof we shall implicitly be using this type of deterministic
constructions to obtain machines which always returns 1 or 0.

– If ϕ′ is of the form AX(ϕ′′), then M first constructs a nondeterministic ma-
chine which does the following:

Given v it guesses v′, a possible configuration of s. Then it check that v −→ v′.
Finally it calls Mϕ′′ with parameter v′. If the returned value is 0 it returns
0, else it returns 1.

Then, M constructs a deterministic version of this machine. This is the
machine Mϕ′ .

3or actually, a slightly modified version of Mn
ϕ′ which halts when Mn

ϕ′ would have returned 1 and
loops when Mn

ϕ′ would have ouput 0
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– If ϕ′ is of the form E(ϕ1Uϕ2), then M first constructs a nondeterministic
machine which does the following, given v:

Guess a number 0 ≤ k ≤ Bq(|s|)

Let vcurrent := v

While k > 0 do
Call Mϕ1 to check that vcurrent |= ϕ1

Guess v′, a possible state of s

Check that vcurrent −→ v′

Let vcurrent := v′

Decrement k by 1
Endwhile
Call Mϕ2 to check that vcurrent |= ϕ2

If the machine reaches the last test and it is successful, the machine returns
1, else it returns 0.

Then, M constructs a deterministic version of this machine that returns 1 if
some run of the nondeterministic machine returns 1, and 0 else. This is the
machine Mϕ′ .

– If ϕ′ is of the form A(ϕ1Uϕ2), then M first constructs a nondeterministic
machine which does the following, given v:

It nondeterministically chooses to execute one of the following (nondetermin-
istic) programs:
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a) Guess a number 0 ≤ k ≤ Bq(|s|)

Let vcurrent := v

While k > 0 do
Call Mϕ1 to check that vcurrent |= ϕ1

Call Mϕ2 to check that vcurrent 6|= ϕ2

Guess v′, a possible state of s

Check that vcurrent −→ v′

Let vcurrent := v′

Decrement k by 1
Endwhile
Check that either

vcurrent 6→ and
vcurrent |= ϕ1 (by calling Mϕ1) and
vcurrent 6|= ϕ2 (by calling Mϕ2)

or
vcurrent 6|= ϕ1 and
vcurrent 6|= ϕ2

If the machine reaches the last test and it was successful,
the machine returns 0, else it returns 1.

b) Guess a number 0 ≤ k ≤ 2Bq(|s|)

Guess a possible configuration vloop

Let b := 0
Let vcurrent := v

While k > 0 do
If vcurrent = vloop then let b := 1
Call Mϕ1 to check that vcurrent |= ϕ1

Call Mϕ2 to check that vcurrent 6|= ϕ2

Guess v′, a possible state of s

Check that vcurrent −→ v′

Let vcurrent := v′

Decrement k by 1
Endwhile
Check that vcurrent = vloop and that b = 1

If the machine reaches the last test and it was successful,
the machine returns 0, else it returns 1.

Then, M constructs a deterministic version of this machine that returns 0
if some run of the nondeterministic machine returns 0, else 1. This is the
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machine Mϕ′ .

Remark. Notice that all nondeterministic machines above always answer either
1 or 0, as do their deterministic versions. The algorithm for constructing the
subformula machines is based on the observation that 1) v |= E(ϕ1Uϕ2) if and
only if there exists a path v0 −→ v1 −→ · · · −→ vk starting at v such that
(∀0 ≤ i < k. vi |= ϕ1) and vk |= ϕ2, and 0 ≤ k ≤ Bq(|s|); and 2) v 6|= A(ϕ1Uϕ2)
if and only if 2a) there exists a path v0 −→ v1 −→ · · · −→ vk starting at v such
that (∀0 ≤ i < k. vi |= ϕ1 ∧ ¬ϕ2), 0 ≤ k ≤ Bq(|s|), and either (vk |= ¬ϕ1 ∧ ¬ϕ2) or
(vk 6→ ∧ vk |= ϕ1 ∧ ¬ϕ2); or 2b) there exists paths of the form v0 −→ · · · −→ vk1

and v′
0 −→ · · · −→ v′

k2
such that v0 = v, vk1 = v′

0 = v′
k2

, 0 ≤ k1, k2 ≤ Bq(|s|), and
(∀0 ≤ j ≤ k1. vj |= ϕ1 ∧ ¬ϕ2) ∧ (∀0 ≤ j ≤ k2. v

′
j |= ϕ1 ∧ ¬ϕ2).

By an induction argument one can show that the machine Mϕ′ indeed computes
fϕ′ .

• Having constructed all subformula machines, M starts simulating a call of Mϕ with
argument v. This simulation will use at most polynomial space and the answer
returned by Mϕ is 1 if and only if is |= ϕ. So, M solves the model-checking
problem.

It remains to argue for the complexity of M. Any states of s can be stored in
polynomial space. MC and Tηs are polynomial bounded space machines which can
be simulated by M in polynomial space. Properties about (Vs, Es) can be decided
in polynomial space, see the proof of Theorem 40. The subformula machines can be
constructed in polynomial time and each of them use at most polynomial space. When
simulating the subformula machines, M only needs a stack of depth at most |ϕ|, where
for each waiting subroutine call, M only needs a polynomial amount of space. We
therefore conclude that M solves the model-checking problem for B(X, U) using only
polynomial space.

3.4 Example of an Application

In this section we continue by showing how our results can be applied to K-bounded
nets.

Definition 42 An instance of the model-checking problem for K-bounded nets and L(F )
(L(X, U, S), B(X, U) ) is a tuple (N, ϕ), where N is a K-bounded net and ϕ is a L(F )
(L(X, U, S), B(X, U) ) formula. The model-checking problem for (N, ϕ) (ϕ ∈ L(F )) is
to decide whether or not there exists a maximal occurrence sequence σ from Minit such
that σ |= ϕ. The model-checking problem for (N, ϕ) (ϕ ∈ L(X, U, S) or ϕ ∈ B(X, U) ) is
to decide whether or not Minit |= ϕ. 2
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Remark. Without loss of generality we have assumed that the set of atomic propositions
is the set of places of K-bounded nets. An atomic proposition p will hold at a marking
M if and only if p ∈ M . Also, we have used the symbol |= for the obvious analogs of the
satisfiability relations given i Sect. 3.2.2.

Theorem 43 The model-checking problems for K-bounded nets and the logics L(F ),
L(X, U, S), and B(X, U) are PSPACE-hard.

Proof. Sketch: The PSPACE-hardness of the problem follows from the fact that
the logics can express the reachability of a marking M in a 1-safe net [CEP93] (A 1-safe
net has the property that it is K-bounded for any K ≥ 1). This can be done using
an obvious formula linear in the size of P : ϕ ≡ F ((

∧
p∈M p) ∧ (

∧
p 6∈M ¬p)). Actually,

along the lines in [CEP93] one can prove that for a given 1-safe net N and a place p

of N , the problem of deciding whether or not there exists a reachable marking M such
that p ∈ M (M(p) = 1) is PSPACE-complete. Since this is expressed by the formula
F (p), model-checking any reasonable propositional branching time temporal logic must
be PSPACE-hard.

Corollary 44 The model-checking problems for K-bounded nets and the logics L(F ),
L(X, U, S), and B(X, U) are PSPACE-complete.

Proof. Sketch: Notice that the size of an instance (N, ϕ) is proportional to the
size of the instance (sN , Tη, ϕ) and that the satisfiability relations |= for K-bounded
nets correspond to those for K-bounded nets as a class of compact systems given in
Sect. 3.2.2. Since L(F ) is a fragment of L(X, U, S) (F (ϕ) is short for t Uϕ), Theorem 40
and Theorem 41 give us the matching PSPACE upper bounds.

3.5 Summary

We have provided algorithms which give us an upper bound on the computational com-
plexity of the model-checking problem for a well-known class of temporal logics inter-
preted over any class of compact systems, i.e., any class of descriptions of systems satis-
fying certain conditions which limit the “succinctness” of the description; the system’s
associated state graphs can be at most be exponentially larger than the descriptions
themselves. Our results gave an upper bound for both L(X, U, S) and CTL. 4

As an application of our results, we showed in Sect. 3.4 that the model-checking
problems for L(F), L(X, U, S), and B(X, U) over K-bounded nets are PSPACE-complete.

Also, the presented approach is applicable if, e.g., compact systems are defined such
that MC is exponential space bounded, i.e., the systems s describe a double exponentially
large state space. One would then get EXPSPACE upper bounds.

4In [BVW94, Kup95], a treatment of CTL∗ in the setting of concurrent programs has been presented,
exhibiting a PSPACE upper bound.
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4.1 Introduction

In the following we study the problem of model-checking a CTL-like logic, P-CTL, over
models which incorporate a notion of fair progress. More specifically, we choose labelled
1-safe nets and incorporate a notion of fair progress using Mazurkiewicz trace-theory.
In this framework, the maximal traces of a labelled 1-safe net capture exactly the fair
progress of independent events. This model theoretic incorporation of progress is not
reflected in the syntax of our logic P-CTL. In fact, P-CTL has almost the same syntax as
CTL. The crucial difference is that we restrict the set of paths over which path quantified
formulas are interpreted.

We give a set of sound and complete tableaux rules and a state labelling based
model-checking algorithm. Both are a conservative extension of the work in [Lar88] and
[CES86], respectively, in the sense that if we restrict attention to their choice of models,
(labelled) transition systems, our rules and algorithm are equivalent.

In Sect. 4.2, we provide the necessary definitions. In Sect. 4.3, we present the logic
and its interpretation. Section 4.4 contains a motivating example followed by the tableau
rules and the definition of tableaux. In Sect. 4.4.3, we present the main result, soundness
and completeness of the proposed tableau rules, and state the complexity of our model-
checking problem. Finally, Sect. 4.7 contains the summary and suggestions for future
work.

Remark. We define labelled 1-safe nets directly, instead of as a subclass of Place/ Transi-
tion nets. The firing rule is slightly different from that in Definition 1. As mention in
the ending remark of Sect. 2.1, there are several definitions of 1-safe nets and, again, our
results are independent of the definition used.

4.2 Definitions

4.2.1 Traces

In this section we recall some basic definitions. We start by defining concurrent alphabets,
the fundamental structure in Mazurkiewicz trace theory [Maz86].

Definition 45 Concurrent alphabet and traces

• A concurrent alphabet (A, I) consists of a finite set A (the alphabet) and a sym-
metric and irreflexive relation I ⊆ A × A—the independence relation.

In the following, assume a fixed concurrent alphabet (A, I).

• Define A∞ = A∗ ∪ Aω, i.e., A∞ is the set of all finite and infinite sequences of
elements from A. Define concatenation ◦ of elements u ∈ A∗ and v ∈ A∞ as:

u ◦ v =

{
u if |u| = ω

uv else

For notational convenience we will write uv instead of u ◦ v.
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• Let ≤pref be the usual prefix ordering on sequences and π(a,b) the projection on
{a, b}∞. Define a preorder � on A∞ which requires the relative order of elements
a and b which are in conflict, i.e., (a, b) 6∈ I , to be the same when ignoring other
elements of the sequences. Formally:

u � v if and only if (∀(a, b) 6∈ I. π(a,b)(u) ≤pref π(a,b)(v))

• Define an equivalence relation ≡ on A∞ by u ≡ v if and only if u � v and v � u.
The elements of A∞/ ≡ are called traces. The equivalence class of u—the trace
containing u—is denoted [u].

• Fact: ≡ is a congruence with respect to ◦.

• For [u], [v] ∈ A∞/≡ define [u] � [v] if and only if u � v. It can be shown that �
is a partial order over traces. We write [u] ≺ [v] if and only if u � v and u 6≡ v.

• Fact: for u, v ∈ A∗:

– [u] � [v] if and only if (∃u′ ∈ A∗. [uu′] = [v])

– u ≡ v if and only if u ≡M v, where ≡M is the well known equivalence on finite
sequences presented in [Maz86] to define finite traces.

2

Example. Consider the concurrent alphabet (A, I), where A = {a, b, c} and I =
{(a, b)(b, a)}. Then, abc ≡ bac, abc 6≡ acb, (abbac)ω ≡ (aabbc)ω, and (abbac)ω 6≡ (abcba)ω.

Remark. We have chosen to present traces using projections π(a,b) because finite as well
as infinite traces are handled in a uniform way. Similar definitions can be found in, e.g.,
[Kwi89].

4.2.2 Labelled 1-safe Nets

We continue by defining labelled 1-safe nets, the labelled version of 1-safe nets.

Definition 46 1-safe nets

A 1-safe net, or just a net, is a structure N = (P, T, F, M0) such that

• P and T are finite nonempty disjoint sets; their elements are called places and
transitions, respectively.

• F ⊆ (P × T ) ∪ (T × P ); F is called the flow relation.

• M0 ⊆ P ; M0 is called the initial marking of N ; in general, a set M ⊆ P is called
a marking or a state of N .
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Given a ∈ P ∪ T , the preset of a, denoted •a, is defined as {a′ | a′Fa}; the postset
of a, denoted a•, is defined as {a′ | aFa′}. The union of •a and a• is denoted •a•. The
irreflexive symmetric independence relation I over T is defined by t1It2 if and only if
•t•1 ∩ •t•2 = ∅. Two transitions t1 and t2 are said to be independent if t1It2 and in conflict
otherwise. Notice that (T, I) is a concurrent alphabet. For D ⊆ T and t ∈ T we define
tID = DIt = {t′ ∈ D | t′It }. 2

Next, we give the definition of firing sequences.

Definition 47 Firing sequences

Let N = (P, T, F, M0) be a net.

• A transition t ∈ T is enabled at a marking M of N if •t ⊆ M and t•∩(M − •t) = ∅.
Denote the set of transitions enabled at a marking M by next(M).

• Given a transition t, define a relation t−→ between markings as follows: M
t−→ M ′

if and only if t is enabled at M and M ′ = (M − •t) ∪ t•. The transition t is
said to occur (or fire) at M . If M0

t1−→ M1
t2−→ · · · tn−→ Mn for some markings

M1, M2, . . .Mn, then the sequence σ = t1 . . . tn is called an occurrence sequence.
Mn is the marking reached by σ, and this is denoted M0

σ−→ Mn. A marking M is
reachable if it is the marking reached by some occurrence sequence. M 6−→ denotes
that there are no enabled transitions at M , i.e., next(M) = ∅, in which case it is
said to be dead or be a deadlock.

• Given a marking M of N , the set of reachable markings of (P, T, F, M)—the net
obtained replacing the initial marking M0 by M—is denoted by [M〉.

• A labelled 1-safe net N = (P, T, F, M0, l) is a 1-safe net extended with a labelling
function l : T → Act mapping each transition to an action in some labelling set
Act.

2

The behaviour of a net is captured by its reachability graph.

Definition 48 Reachability graph

The reachability graph of a net N is the edge-labelled graph (V, E)N, whose set of
vertices (or states), V , is [M0〉. The labelled edges are induced by the firing relations

t−→, and hence conveniently denoted M
t−→ M ′. 2

4.2.3 Partial Order Semantics

In the following, we assume a fixed labelled 1-safe net N and consider its reachability
graph (V, E)N. We use the symbols p, q, . . . to denote states in (V, E)N. If nothing else
is mentioned, it is implicitly assumed that (T, I) is used to generate the congruence ≡.
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Definition 49 Paths

• Define a path from p0 ∈ V as a sequence, finite or infinite, of transitions t1, t2, . . . ,

for which there exists states p1, p2, . . ., such that p0
t1−→ p1

t2−→ p2 · · ·. Notice
that the firing rules of the net ensure the uniqueness of the pi’s, if they exist. We
therefore refer to p0

t1−→ p1
t2−→ p2 · · · as a path from p0 (also denoted p0

σ−→),
where σ = t1t2 · · ·. Define path(p0) ⊆ T∞ to be all paths from p0.

• Define comp(p) as the maximal elements of path(p)/ ≡ with respect to �. For
σ ∈ [σ′] ∈ comp(p) we refer to p

σ−→ as a computation from p.

2

Notice path(p) is limit closed, i.e., if σ1γ1, σ1σ2γ2, σ1σ2σ3γ3, . . . ∈ path(p), where all
σis are finite, then σ1σ2 · · · ∈ path(p).

Example. In the process agent example from Figure 1.3 in Chap. 2, τ is cc-enabled
along i

a∞
−→, when we use a, b, and τ to refer to the corresponding transitions. Also,

τba∞ is a computation from i, while a∞ is not.

Due to the firing rules of nets, the congruence ≡ respects the property of being a
path.

Lemma 50 Given a net N = (P, T, F, M0), and a state p of (V, E)N. Then,

(∀σ ∈ path(p). (∀σ′ ∈ [σ]. p
σ′

−→)) .

Proof sketch. If σ is finite, the result easily follows from the commutativity of
consecutive independent transitions. If σ is infinite, notice that by interchanging a finite
number of consecutive independent transitions of σ we conclude that any finite prefix of
σ′ is an element of path(p). Since path(p) is limit closed, we conclude σ′ ∈ path(p).

Hence, path(p) can be partitioned into elements of T∞/≡. Moreover, if σ is finite,

then p
σ−→ q implies (∀σ′ ∈ [σ]. p

σ′
−→ q).

Definition 51 Continuously Concurrently Enabled Transitions

Given σ ∈ path(p0), |σ| = ω, σ = t1t2 · · ·. A transition t is said to be continuously
concurrently enabled (cc-enabled) along p0

t1−→ p1
t2−→ p2 · · · if and only if t is enabled

at some pi, i ≥ 0, and independent of the remaining transitions of σ from that state.
Formally: (∃ n ∈ IN. (∀j ≥ n. pj

t−→ ∧ tItj+1)). Notice that the irreflexivity of I

implies that n, t 6= tj , j ≥ n. Whenever p0 is clear from the context, t is said to be
cc-enabled along σ. 2

The next two lemmas state properties of traces.
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Lemma 52 Given a concurrent alphabet (A, I). For σ, σ′ ∈ A∞ we have that

σ � σ′ ⇔ (∀σ1 ∈ preffin(σ). (∃σ′
1 ∈ preffin(σ′).σ1 � σ′

1)) .

Proof.
The “if” direction is proved by an easy contradiction argument. For the “only if”

direction, first choose a finite prefix σ′
1 of σ′ such that its Parikh vector (for each a ∈ A

this vector provides the number of occurrences of a’s in σ′
1) is greater than or equal to

that of σ1. Assuming σ1 = a1 · · ·an and σ′
1 = b1 · · ·bm find the first occurrence of a1, say

bj1 , in σ′
1. Then for any 1 ≤ j < j1 it must be the case that bjIbj1, since we have σ � σ′.

Hence, b1 · · ·bm ≡ bj1b1 · · ·bj1−1bj1+1 · · · bm. Continuing this procedure for a2, . . . , an we
eventually get that σ′

1 ≡ σ1γ for some γ ∈ A∗. But then clearly σ1 � σ′
1.

Lemma 53 Given a net N = (P, T, F, M0), a state p of (V, E)N, σ ∈ path(p) such that
|σ| = ω, and t ∈ T that is cc-enabled along σ. Then, for any σ′ ∈ [σ], t is cc-enabled
along σ′), i.e., ≡ respects cc-enabledness.

Proof. Clearly, by definition there exists a finite σ1 ∈ path(p), a p′ ∈ S, and a
σ2 ∈ path(p′) such that p

σ−→= p
σ1−→ p′ σ2−→ and t is enabled at p′ and independent of

all transitions in σ2. Choose any σ′ ∈ [σ]. Since σ � σ′, if follows from Lemma 52 that
there exists a finite prefix of σ′, say σ′

1, such that σ1 � σ′
1. Using the technique from

the proof of Lemma 52 we see that there exists a γ ∈ Tω, such that σ1γ ≡ σ′
1 and all

transitions in γ are independent of t. We conclude that t must be enabled at p′′, where

p
σ′

1−→ p′′, since p
σ1γ−→ p′′. Choosing σ′

2 such that σ′ = σ′
1σ

′
2 we also conclude that all

transitions in σ′
2 are independent of t, since all transitions in σ′

2 occur in σ2. Hence, t is
cc-enabled along σ′.

Hence, based on Lemma 53 we may safely write t ∈ T is cc-enabled along [σ], meaning
t is cc-enabled along σ ∈ path(p).

Next, we identify maximal traces as maximal elements in a partial order. The follow-
ing lemma explains why we focus on these traces. They can be thought of representing
executions of a concurrent system which are fair with respect to progress of indepen-
dent processes. In [MOP89] the term “concurrency fairness” is used for such behaviours.
Compared to other notions of “fairness” in the context of concurrent systems “progress
fairness” is a weak assumption, see [MP92] for a comparison to other notions of fairness.

Lemma 54 Given a net N = (P, T, F, M0) and a state p of (V, E)N. For [σ] ∈ comp(p)
such that |σ| = ω we have

(∃ [σ′] ∈ comp(p).[σ] ≺ [σ′]) ⇔ (∃ t ∈ T. t is cc-enabled along σ) .

Proof. The “if” direction is easy, and hence omitted. For the “only if” direction
first observe the following: since [σ] ≺ [σ′], there must exist a t ∈ T such that π(t,t)(σ) <

π(t,t)(σ′). Clearly, |π(t,t)(σ)| = n < ω for some n ∈ IN . Let σ = σ1σ2, where #t(σ1) =
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n, #t(σ2) = 0, |σ1| < ω, and #t(σ) is the number of t’s in σ. By Lemma 52 we know
that there exists a finite prefix σ3 of σ′ such that [σ1] � [σ3]. Furthermore, there must
exists a suffix of σ such that all transitions of it are independent of t. To see this, assume
that there were infinitely many indexes ij ∈ IN for 0 ≤ j such that (tij , t) 6∈ I , where
σ = t1t2 · · ·. Since (∀j ∈ IN. π(t,tij )(σ) <pref π(t,tij )(σ′)), all tij ’s must occur before the
(n + 1)’th t in π(t,tij )(σ′). But this clearly means that there must be infinitely many
transitions between the n’th and (n + 1)’th t in σ′, which is impossible.

Next, we show that there must exist a transition t′ which is cc-enabled along σ. First,
choose the first occurrence of a t′ ∈ T along σ′ such that #t′(σ) < #t′(σ′). Next, split
σ into σ1 (finite) and σ2 such that σ = σ1σ2 and all transitions in σ2 are independent of
t′. Then, choose σ′

1 as the shortest prefix of σ′ such that #t′(σ′
1) ≥ #t′(σ1) + 1 and the

Parikh vector of σ′
1 is greater than that of σ1. By an argument similar to that above,

one can rearrange σ′
1 by continuously interchanging adjacent independent transitions and

obtain σ′
1 ≡ σ1γ ∈ path(p). Now #t′(γ) > 0. Let γ = t′1 · · · t′r t′ t′′1 · · · t′′s , where r, s ≥ 0

and all t′i’s are different from t′. Now assume that (∃1 ≤ j ≤ r. (t′j, t
′) 6∈ I). Choose

the first such j. Then, π(t′j ,t′)(σ′
1) >pref π(t′j,t

′)(σ1) and since the relative occurrence of
t′ and t′j ’s in σ′

1 and σ1γ are the same, a t′j must occur before the (#t′(σ1) + 1)’th t′

in σ′. But #t′j
(σ) = #t′j

(σ′) by choice of t′. Then, there must exist a t′j in σ2 and this
contradicts the assumption that all transitions in σ2 were independent of t′. By using the
properties of (V, E)N and I (e.g., permutation of consecutive independent transitions: if

M
t−→ M ′ t′−→ M ′′ and tIt′, then there exists an M ′′′ such that M

t′−→ M ′′′ t−→ M ′′),1

we conclude that t′ must be enabled at p′ where p
σ1−→ p′. Hence, t′ is cc-enabled along

σ.

4.3 The Logic P-CTL and its Interpretation

In this section, we assume a fixed labelled 1-safe net N = (P, T, F, M0, l). We introduce
the logic P-CTL, whose syntax is

A ::= tt | ¬A | A1 ∧ A2 | ©α A | A1 U∃ A2 | A1 U∀ A2 ,

where α ∈ Act and tt is an abbreviation for true. In Hennessy-Milner logic [Mil89],
<a>A expresses the fact that one can perform an action a from a state and, in doing
so, reach another state at which A holds. Similarly, the ©αA expresses that a transition
labelled α can be fired reaching a state where A holds. The “until” operators U∃ and U∀
will only quantify over computations rather than paths.
The logic is interpreted over the reachability graph (V, E)N of N as follows, where p ∈ V ,
α ∈ Act, and we have written |= instead of |=N .

• p |= tt

1To be more precise, we use the axioms of the corresponding labelled asynchronous transition system,
which intuitively is (V, E)N augmented with I [WN94].
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• p |= ¬A if and only if p 6|= A

• p |= A1 ∧ A2 if and only if p |= A1 and p |= A2

• p |= ©αA if and only if (∃t ∈ T, q ∈ V. l(t) = α ∧ p
t−→ q ∧ q |= A)

• p |= A1 U∃ A2 if and only if (∃ [σ] ∈ comp(p), p
σ−→= p0

t1−→ p1
t2−→ p2 · · · .

(∃ 0 ≤ n ≤ |σ|. (pn |= A2) ∧ (∀0 ≤ i < n. pi |= A1)))

• p |= A1 U∀ A2 if and only if (∀[σ′] ∈ comp(p). (∀ σ ∈ [σ′], p
σ−→= p

t1−→ p1
t2−→

p2 · · · .
(∃ 0 ≤ n ≤ |σ|. (pn |= A2) ∧ (∀0 ≤ i < n. pi |= A1))))

Furthermore, we define ff ≡ ¬tt, <α > A ≡ ©αA, [α]A ≡ ¬ <α >¬A, F(A) ≡ tt U∃ A,
G(A) ≡ ¬F(¬A), Ev(A) ≡ tt U∀ A, and Al(A) ≡ ¬Ev(¬A). The intended meaning of
Ev(A) is that eventually/inevitably A will hold along any computation, while Al(A)
means that along some computation A always holds. Notice that the path quantified
formulas are no longer necessarily interpreted over a limit closed set of paths, as is the
case with the standard interpretation of CTL.

Example. In the process agent example from Figure 1.3 we have i |= Ev(<b>tt).

Having given the necessary definitions, we end this section by defining the model-
checking problem.

Definition 55 Given a labelled 1-safe net N = (P, T, F, M0, l) and a formula A. The
model-checking problem of N and A is the problem of deciding whether or not M0 |= A.

2

4.4 A Tableau Method for Model-Checking

In this section we present a local model-checker based on a tableau system for model-
checking formulas from our logic.

Local model-checking based on tableau systems has been presented in, e.g., [Lar88,
SW89]. As opposed to a global model-checker—as the on presented in [CES86]—which
checks if all states of the system satisfies a formula, a local model-checker only checks if a
specific state satisfies a given formula. For local model-checkers based on tableau systems
this is done by only visiting (other) states if the tableau rules require it. Hence, the local
model-checker may well be able to show that a state satisfies a formula without visiting
all states of the system. For systems such as 1-safe nets a local model-checker may thus
postpone the generation of the entire reachability graph and only generate the parts the
tableau rules require. Since the size of the reachability graph can be exponentially bigger
than the size of the net, a local model-checker sometimes has an advantage over a global
model-checker, since it might avoid the “state space explosion problem”.
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We begin by considering an example to give some intuition about the problems we
are faced with when looking for a tableau system. Since our interpretation of the logical
operators in P-CTL coincides with the usual interpretation when the independence
relation is empty, we would also like the tableau system to be a conservative extension of
those presented in [Lar88, SW89]. The main difficulty is how to generalise the unfolding
of formulas in P-CTL which correspond to minimal fixed-point assertions.

4.4.1 Unfolding Minimal Fixed-Point Assertions

Below we consider a very simple reachability graph g1, which is generated by the 1-safe
net N1 in Figure 4.1.

p1 //
t3:α3

��

t5:α5
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p3 //
t3:α3

p4

E DG F t1:α1��

��

t7:γ

p5

G F E Dt2:α2 ��

��

t8:γ

p6oo
t4:α4

p7 p8

The ti’s are the transitions, the Greek letters the labels, and p0 the initial marking.
The independence relation is the smallest such containing (t1, t5), (t3, t5), (t2, t6), and
(t4, t6). Clearly, p0 |=N1 ¬Ev(<γ > tt) since [(t1t3t2t4)ω]∈ comp(p0) and no state along
the computation (t1t3t2t4)ω satisfies <γ > tt. However, if we drop the transitions t2,
t4, t6, and t8 and call this reduced net N2, we do indeed have p0 |=N2 Ev(<γ > tt),
since every computation from p0 must eventually reach p4 — t5 cannot be continuously
ignored while repeatedly firing t1 and t3 since they are both independent of t5.

Let us consider what a tableau (proof tree) for p0 |=g2 Ev(<γ >tt) might look like:

p0 ` Ev(<γ>tt)

p1 ` Ev(<γ>tt)

p0 ` Ev(<γ>tt) p3 ` Ev(<γ>tt)

p4 ` Ev(<γ>tt)

p4 `<γ >tt

p7 ` tt

p4 ` Ev(<γ>tt)

p4 `<γ >tt

p7 ` tt

The above tree is constructed according to some intuitive tableau rules. Although
informal, the example provides the first important observation. The leftmost branch
begins and ends with the sequent p0 ` Ev(<γ > tt). In the µ-calculus Ev(<γ > tt) is
expressed by the formula µX. <γ > tt ∨ ([Act]X ∧ <Act > tt). Hence, based on the
tableau methods from [Lar88, SW89] one might expect that the above tree should be
discarded as a tableau since the unfolding of the minimal fixed-point assertion reaches
itself. However, in the current framework we interpret the logic over maximal traces and
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t1 : α1 t3 : α3 t5 : α5 t2 : α2t6 : α6

t8 : γ

t4 : α4

t7 : γ

Figure 4.1: The net N1.
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the detected loop, (p0
t1−→ p1

t3−→ p0)ω, is not a computation from p0 since the transition
t5 is cc-enabled. This example suggests that in certain cases we might allow the unfolding
of a minimal fixed-point assertion to reach itself. These cases should certainly include the
existence of a transition that is cc-enabled along the loop represented by such a branch.
Our solution to this problem is to annotate the logic used in the tableau rules. The idea
is to keep track of the transitions which are cc-enabled and update this information as
one unfolds the reachability graph via the tableau rules. So in our case t5 would be “kept
track of” along the p0 −→ p1 −→ p0 branch.

Let us consider a second example. This time we use g1. Again, we construct in an
intuitive and informal manner a tableau rooted in the sequent p0 ` Ev(<γ >tt):

p0 ` Ev(<γ>tt)

Two subtrees as above p5 ` Ev(<γ>tt)

p5 `<γ>tt

p8 ` tt

p2 ` Ev(<γ>tt)

p6 ` Ev(<γ>tt)

p5 ` Ev(<γ>tt)

p5 `<γ>tt

p8 ` tt

p0 ` Ev(<γ>tt)

Again, the interesting parts are the branches that unfold a minimal fixed-point as-
sertion into itself. There are two such branches, the leftmost and the rightmost. How-
ever, along both of these there are transitions which are cc-enabled — t5 for the left
branch and t6 for the right branch. According to the previous remarks these branches
shouldn’t discard the tree from being a tableau. But we do wish to discard the tree
as a tableau since p0 |=g1 ¬Ev(<γ > tt). The problem is that by composing the two
loops (p0

t1−→ p1
t3−→ p0) and (p0

t2−→ p2
t4−→ p0) we can obtain an infinite computation

(p0
t1−→ p1

t3−→ p0
t2−→ p2

t4−→ p0)ω along which no state satisfies <γ > tt. This fact
should discard the tree from being a tableau.

One solution to the problem of detecting such ”combined” loops is to continue to
unfold the minimal fixed-point assertions p0 ` Ev(<γ >tt). If we unfold the fixed point
assertion once more in the above example, still updating and propagating the information
kept in the annotation, we will obtain a leaf with the information that we have found
a looping path along which no transition is cc-enabled. This will discard the tree from
being a tableau.

It turns out that the remaining problem is to find some general bound on the number
of times we allow the unfolding of a minimal fixed-point assertion. The bound we use is
at most |T |, the number of transitions in the labelled 1-safe net. In the next section we
provide the necessary definitions.

4.4.2 Tableau Rules

In this section we consider a fixed labelled 1-safe net N and its reachability graph (V, E)N.
We want to perform local model-checking by unfolding parts of the reachability graph

into a tree structure. The tableau rules are supposed to guide this unfolding by imposing
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constraints which restrict the size and shape of the tree structure. The main difficulty
is handling the U∀ operator.

Consider a state q such that q 6|= A1 U∀ A2. Then either there exists (i) a compu-
tation σ such that A1 ∧ ¬A2 holds at all states along q

σ−→ until either a deadlock is
reached or a state such that ¬A1 ∧ ¬A2 holds reached, or (ii) an infinite computation
σ such that A1 ∧ ¬A2 holds at all states along q

σ−→, referred to as an invalidating
computation. Since the formulas are interpreted at states and the state space is finite,
case (ii) reduces (simply by removing a finite number of loops from σ) to the existence of
an infinite computation σ1σ2 from q, where σ1 is finite and all states along q

σ1−→ occur
only once along q

σ1−→ p
σ2−→ while all states along p

σ2−→ occur infinitely often. Notice,
A1 ∧ ¬A2 still holds at all states, as will be the case for the following computations.
Using Lemma 54 it is possible to obtain from σ2 an infinite path σ3 from p of the form
(γp,p1γp1loopγp1,p · · ·γp,pk

γpkloopγpk,p)ω, where all γ’s are finite and made up from subse-
quences of σ2 and 1 ≤ k ≤ |T |. The indices are intended to illustrate the structure of
the loops as follows.

q //σ1 p //
γp,pi

pi

E DG F γpi,p
�� E DB C γpiloop@ AOO

Also, since σ2 was a computation from p, the γ’s can be chosen such that for any t ∈
next(p) one of the γpiloop’s will contain a transition in conflict with t. Hence, σ3 is a
computation from p. We refer to the illustrated loops γp,piγpiloopγpi,p as critical loops.
To conclude, σ1σ3 is an invalidating computation from q along which all states satisfy
A1 ∧ ¬A2.

In the example from Sect. 4.4.1, if we chose p0 as p, then p0
t1−→ t3−→ p0 and p0

t2−→ t4−→
p0 would constitute critical loops. Actually, the sizes of the γ’s can be bound since the
state space is finite. The important observation is that together with |T | we obtain a
bound on the length and number of γ’s we have to consider. The bounds will be encoded
in the annotated logic.

The Annotated Logic.

The syntax of the annotated logic which is used in the tableau rules differs only from the
previous in that the U∃ and U∀ operators are replaced by labelled counterparts. The U∃
operator is replaced by UC

∃ , where C ⊆ V . The intuition is that C keeps track of which
states have been visited and prevents unnecessary unfolding. For the U∀ operator we
use a more elaborate annotation, UC

∀ , U
(p,n,T ′)
∀ , U

(p,n,T ′,V ′,→)
∀ , and U

(p,n,T ′,V ′,←)
∀ , where

p ∈ V , T ′ ⊆ T , V ′ ⊆ V , and 0 ≤ n ≤ |T |. V ′ plays a role similar to C, n bounds
the number of critical loops the tableau rules allow to explore, and T ′ keeps track of
which transitions have been concurrently enabled but ignored so far along a path. The
emptiness of T ′ will indicate that an invalidating computation has been found.

Let Ann be the obvious homomorphism which annotates a formula A (generated by
the grammar in Sect. 4.3) by transforming every U∃ and U∀ into U∅

∃ and U∅
∀ , respectively.
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An annotated formula B is said to be clean if there exists a formula A such that B equals
Ann(A).

The Tableau Rules.

The tableau rules will consist of rules for sequents of the form p ` B. The rules can be
read from top to bottom as: “the top sequent (or conclusion) holds (B holds at p) if the
bottom sequents (or antecedents) and side conditions hold”. B, B1, and B2 are assumed
to be clean annotated formulas.

1) p ` B1 ∧ B2

p ` B1 p ` B2

2) p ` ©αB

q ` B

- t ∈ T, q ∈ V, p
t−→ q,

- l(t) = α.

3) p ` B1 UC
∃ B2

p ` B2

- p 6∈ C.

4) p ` B1 UC
∃ B2

p ` B1 q ` B1 U
C∪{p}
∃ B2

- p 6∈ C, t ∈ T, q ∈ V, p
t→ q.

5) p ` B1 UC
∀ B2

p ` B2

- p 6∈ C.

6) p ` B1 UC
∀ B2

p ` B1 q1 ` B1 U
C∪{p}
∀ B2 · · · qm ` B1 U

C∪{p}
∀ B2

- next(p) =
{t1, . . . , tm},

0 < m ∈ IN,p 6∈ C,

- (∀1 ≤ i ≤ m. p
ti→

qi).

7) p ` B1 UC
∀ B2

p ` B1 U
(p,|next(p)|,next(p))
∀ B2

- p ∈ C.

8) p ` B1 U
(p,n,T ′)
∀ B2

p ` B1 U
(p,n−1,T ′ ,∅,→)
∀ B2

- 0 < n ∈ IN,T ′ 6= ∅.

9) q ` B1 U
(p,n,T ′ ,V ′,→)
∀ B2

q ` B1 qi ` B1 U
(p,n,tiIT ′,V ′∪{q},→)
∀ B2

- q 6∈ V ′, next(q) =
{t1, . . . , tm},

0 < m ∈ IN,

- (∀1 ≤ i ≤ m. q
ti→ qi),

10) q ` B1 U
(p,n,T ′,V ′,→)
∀ B2

q ` B2

- q 6∈ V ′.

11) q ` B1 U
(p,n,T ′,V ′,→)
∀ B2

q ` B1 U
(p,n,T ′,∅,←)
∀ B2

- q ∈ V ′.

12) q ` B1 U
(p,n,T ′ ,V ′,←)
∀ B2

q ` B1 qi ` B1 U
(p,n,tiIT ′,V ′∪{q},←)
∀ B2

- q 6∈ V ′, next(q) =
{t1, . . . , tm},

0 < m ∈ IN, q 6= p,

- (∀1 ≤ i ≤ m. q
ti→ qi).
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13) q ` B1 U
(p,n,T ′,V ′,←)
∀ B2

q ` B2

- q 6∈ V ′.

14) p ` B1 U
(p,n,T ′ ,V ′,←)
∀ B2

p ` B1 U
(p,n,T ′ )
∀ B2

Figure 4.2: The tableau rules.

Rule 1 to 4 need no further explanation. Referring to the notation from Sect. 4.4.2,
Rule 5 and 6 are intended to detect σ1, Rule 7 is intended to detect the “switch” to σ3,
Rule 8 to 10 are intended to detect γp,piγpiloop, Rule 11 it intended to detect the “switch”
to γpi,p, and Rule 12 to 14 is intended to detect γpi,p.

The next step is to define derivation trees which are build up according to the tableau
rules.

The Derivation Trees and Tableaux.

In this section we define the tableaux. This is done by first defining a larger class of
trees, derivation trees, which are generated according to the tableau rules. The next
step is to restrict the class of derivation trees, using the annotation of the formulas, to
a subclass of derivation trees which will be defined to be the tableaux.

Derivation trees are defined inductively in the usual manner, except perhaps for case
of negated formulas. That is, if T1, . . . , Tn are derivation trees with roots matching
the antecedents of a rule and the side conditions are fulfilled, then one obtains a new
derivation tree by “pasting the derivation trees together” according to the rule. The root
of the new derivation tree is labelled by the conclusion of the rule. A tree consisting of
a single node labelled with one of the following sequents is a derivation tree.

• p ` tt

• p ` ¬B

• p ` B1 U
(p,n,T ′)
∀ B2, where n = 0 or T ′ = ∅

• q ` B1 U
(p,n,T ′,V ′,←)
∀ B2, where q ∈ V ′

By applying the rules we can obtain new derivation trees, for example:

• If T1 is a derivation tree with root p ` B1, T2 is a derivation tree with root
q ` B1 U

C∪{p}
∃ B2, where p 6∈ C, and there exists a t ∈ T such that p

t−→ q,
then p ` B1 UC

∃ B2

T1 T2

is a derivation tree with root p ` B1 UC
∃ B2.

• If T is a derivation tree with root p ` B2 and p 6∈ C, then p ` B1 UC
∀ B2

T
is a

derivation tree with root p ` B1 UC
∀ B2.



4.4. A Tableau Method for Model-Checking 79

Nothing else is a derivation tree.
We continue by defining the tableaux. In this step we get rid of derivation trees as

for example p ` ¬tt. Sequents of the form q ` B1 U
(q,n,∅)
∀ B2, where n ∈ IN and q ∈ V ,

are called terminal sequents. A tableau is a derivation tree T with root p ` Ann(A)
such that either

• A = tt or

• A = ¬A′ and there exists no tableau with root p ` Ann(A′) or

• A is not of the above form and

1. every proper subtree T ′ of T whose root is labelled with a clean formula is
itself a tableau and

2. T has no leaves labelled with terminal sequents.

A sequent p ` B is proved by exhibiting a tableau with root p ` B.

4.4.3 Soundness and Completeness

Having given the necessary definitions we are now ready to state the main result.

Theorem 56 Given a finite labelled net N = (P, T, F, M0, l). Then for any state p of
(V, E)N (p ∈ V ) and any formula A we have:

p |= A if and only if there exists a tableau with root p ` Ann(A)

Proof. The proof proceeds by structural induction in A, showing soundness and
completeness simultaneously. The main difficulty is the U∀ operator. For the soundness
part, our observations from Sect. 4.4.2 provide the basis for a proof by contradiction. For
the completeness part, using the induction hypothesis one can give a direct construction
of a tableau. Intuitively, if p |= A1 U∀ A2, then a tableau will be constructed (top-down
from p) by always proving q ` Ann(A2) if q |= A2 for any reached state q. Else, if
q 6|= A2, then one proves q ` Ann(A1), starts unfolding the graph from q, and continues
by trying to prove Ann(A1 U∀ A2) at the states that are reached.

tt Clearly, we always have p |= tt and the tableau p ` tt.

¬ We have p |= ¬A if and only if p 6|= A if and only if (induction hypothesis) there
exists no tableau with root p ` Ann(A) if and only if p ` ¬Ann(A) is a tableau.

∧ We have p |= A1 ∧ A2 if and only if p |= A1 and p |= A2 if and only if (induction
hypothesis) there exists tableaux T1 with root p ` Ann(A1) and T2 with root
p ` Ann(A2) if and only if there exists a tableau with root p ` Ann(A1 ∧ A2),
because Ann(A1 ∧ A2) = Ann(A1) ∧ Ann(A2).
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©α We have p |= ©αA if and only if (∃t ∈ T, q ∈ V. p
t−→ q ∧ q |= A ∧ l(t) = α)

if and only if (induction hypothesis) there exists a tableau T and (∃t ∈ T, q ∈
V. p

t−→ q ∧ l(t) = α ∧ T has root q ` Ann(A)) if and only if there exists a
tableau T with root p ` Ann(©αA), since Ann(©αA) = ©αAnn(A).

U∃ We have p |= A1 U∃ A2 if and only if (∃ p1, p2, . . . , pn ∈ V, t1, t2, . . . , tn ∈ T, n ≥ 0.

p = p0
t1−→ p1

t2−→ p2 · · · tn−→ pn ∧ pn |= A2 ∧ (∀0 ≤ i < n. pi |= A1) ∧ (∀0 ≤
i < j ≤ n. pi 6= pj)) if and only if (induction hypothesis) there exists tableaux
T0, . . . , Tn−1 with roots p0 ` Ann(A1) , . . . , pn−1 ` Ann(A1) and Tn with root
pn ` Ann(A2) and transitions t1, . . . , tn such that p = p0

t1−→ p1
t2−→ p2 · · · tn−→ pn

is loop free if and only if there exists a tableau with root p ` Ann(A1) U∅
∃ Ann(A2),

because Ann(A1 U∃ A2) = Ann(A1) U∅
∃ Ann(A2).

U∀ We show the bi-implication by showing the left and right implications separately.

“only if” direction (completeness):

We show how to obtain a derivation tree with root p ` Ann(A1 U∀ A2). This will
be done by providing an algorithm which will be shown to terminate and produce
the desired tree. We then argue that it is a tableau.

The tree will be constructed from the root and expanded downwards. Only so-
called “active” leaves of the current tree will be expanded. We try to keep the tree
as small as possible by first trying to prove that B2 holds at a state. Only if this
isn’t possible do we expand the tree.

During the presentation of the algorithm several claims will be stated. All of them
will be shown to be valid in the succeeding paragraph. For convenience, we will
write B1 for Ann(A1) and B2 for Ann(A2). So Ann(A1 U∀ A2) = B1 U∅

∀B2. The
algorithm consists of the following steps:

1. Start by creating the root which is labelled by p ` B1 U∅
∀B2. Mark this node

as active.

2. If possible choose an active node N , labelled by a sequence of one of the
following forms:

i) q ` B1 UC
∀ B2

ii) q ` B1 U
(q,n,T ′)
∀ B2

iii) q ` B1 U
(p,n,T ′,S′,↔)
∀ B2

where ↔ stands for either ← or →. Else terminate.

3. If q |= A2, then by induction we have the existence of a tableau T ′ with root
q ` B2. Deactivate N and paste T ′ below N using rule 5, 10, or 13. None
of the added nodes are active. Note that q |= A2 excludes ii) because of the
way the current tree has been expanded.
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4. Else if q |= ¬A2, then necessarily (Claim 1) q |= A1. By induction there exists
a tableau T ′ with root q ` B1.

∗ If N is of the form i), and q 6∈ C, then (Claim 2) next(q) 6= ∅ and
apply rule 6, using T ′. Deactivate N and activate the new leaves labelled
qi ` B1 U

C∪{q}
∀ B2 that were added by application of rule 6.

∗ If N is of the form i) and q ∈ C, then deactivate N and, using rule
7, add a node below N labelled q ` B1 U

(q,|T |,next(q))
∀ B2. Using rule

8, because (Claim 3) next(q) 6= ∅, add yet another node below labelled
q ` B1 U

(q,|T |−1,next(q),∅,→)
∀ B2 which is activated.

∗ If N is of the form ii), then (Claim 4) T ′ 6= ∅. If n = 0, then deactivate
N . Else if n > 0, then deactivate N and apply rule 8, adding a node
below N labelled q ` B1 U

(q,n−1,T ′,∅,→)
∀ . Activate this node.

∗ If N is of the form iii) (→) and q 6∈ S ′, then (Claim 5) next(q) 6= ∅ and
we deactivate N . By induction we have the existence of the tableau T ′

with root labelled q ` B1. Using rule 9 add this tree below N and add
nodes labelled qi ` B1 U

(p,n,tiIT ′,S′∪{q},→)
∀ B2. Only the last nodes are

activated.

∗ If N is of the form iii) (→) and q ∈ S ′, then deactivate N and using rule
11 add a node below N labelled q ` B1 U

(p,n,T ′,∅,←)
∀ B2. Activate this

node.

∗ If N is of the form iii) (←), q 6∈ S ′, and q 6= p, then deactivate N . Because
(Claim 6) next(q) 6= ∅, we can use rule 12 and the induction hypothesis
to add a tableau T ′ with root labelled q ` B1. Also, add nodes labelled
qi ` B1 U

(p,n,tiIT ′,S′∪{q},←)
∀ B2. Only these last nodes will be activated.

∗ If N is of the form iii) (←) and q ∈ S ′ and q 6= p, then deactivate N .

∗ If N is of the form iii) (←) and q = p, then apply rule 14. Deactivate N

and activate the added node labelled q ` B1 U
(q,n,T ′)
∀ B2

5. Goto 2.

We now observe the following:

– The above “algorithm” terminates: One only expands active nodes and since
(V, E)N is finite expansion cannot continue indefinitely because of the anno-
tation of the formulas.

– All claims stated in the algorithm are valid: since the strategy used to compute
the tree is to first try to prove that A2 holds at a state, and if not, then expand
the tree, we conclude that:

∗ Claim 1 is valid: If q |= ¬A2 and q |= ¬A1, then because of the way
the tree is expanded we could exhibit a finite path from p along which
A1 ∧ ¬A2 holds until ¬A1 ∧ ¬A2 holds. But since any finite path can
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be extended to a computation (K is assumed to be finite) we obtain a
contradiction with the assumption p |= A1 U∀ A2.

∗ Claim 2 is valid: If next(q) = ∅, then we would have found a finite path
starting at p and ending in q, a deadlock. This would be a computation
from p to q along which no state satisfied A2. Again, this would contradict
p |= A1 U∀ A2.

∗ Claim 3 is valid: Since q ∈ C we conclude next(q) 6= ∅.

∗ Claim 4 is valid: If T ′ = ∅, then because T ′ keeps track of which transi-
tions have been concurrently enabled along the loop starting and ending
at q (along the branch from the root of the tree to the current node), we
would have detected one or more loops (see figure)

p //σpq
q //

σqq′ q′
E DG F σq′q

�� E DB C σq′−loop@ AOO
along which A2 never holds, and by repeating these loops we could exhibit
an infinite computation along which A2 never holds. This contradicts
p |= A1 U∀ A2.

∗ Claim 5 and Claim 6 are valid: As for Claim 2.

Assume the produced tree is not tableau. Then, using the induction hypothesis,
we conclude that the only reason why the tree is not a tableau is that it has leaves
labelled by terminal sequents. But then an argument similar to that used to show
the validity of Claim 4 gives us a contradiction with the assumption p |= A1 U∀ A2.

“if” direction (soundness):

We show that if there exists a tableau T with root p ` Ann(A1 U∀ A2), then
p |= A1 U∀ A2. So assume that p |= ¬(A1 U∀ A2), i.e., p |= ¬A2 and there exists a
σ ∈ [σ′] ∈ comp(p) such that one of the following cases hold:

– |σ| < ω, p = p0
t1−→ p1

t2−→ · · · tm−→ pm 6→, σ = t1 · · · tm, and

(∀n ≤ |σ|. (pn |= ¬A2) ∨ (∃0 ≤ i < n. pi |= ¬A1))

There are two cases.

∗ Assume (∃ 0 < i ≤ m. pi |= A2). Let i0 > 0 denote the least such index.
We know that there must exist an index 0 ≤ j < i0 such that pj |= ¬A1.
Let j0 denote the least such index. Clearly, the path t1 · · · tj0 can be
assumed to be loop free and traceable in T along nodes q, such that there
exists a tableau with root q ` B1 U∀ B2 (using the induction hypothesis
to obtain contradictions). But this gives a contradiction since T must
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then have a subtree which is a tableau labelled with root pj0 ` Ann(A1),
i.e., pj0 |= A1.

∗ No states along σ satisfies A2. If there is a state which satisfies ¬A1 along
the path, the argument above can be applied. Else, for any 0 ≤ i ≤ m

we have pi |= A1 ∧ ¬A2. But then there must exist a loop free path
from p to pm such that A1 ∧ (¬A2) is satisfied along it and this path
must be traceable in T . But this means there must exist a leaf labelled
pm ` Ann(A1) UC

∀ Ann(A2) such that pm 6∈ C, and since pm 6−→, T
cannot be a derivation tree.

– |σ| = ω, p = p0
t1−→ p1

t2−→ · · · , σ = t1t2 · · ·, and

(∀n ∈ IN. (pn |= ¬A2) ∨ (∃0 ≤ i < n. pi |= ¬A1))

As before, we extract two cases:

∗ (∃i ∈ IN. pi |= A2). Let i0 > 0 be the least such index. As before we have
a least index 0 ≤ j0 < i0 such that pj0 |= ¬A1. By repeating the above
argument, we obtain a contradiction.

∗ (∀n ∈ IN. pn |= ¬A2). If there is a state which satisfies ¬A1 along the
path, the above argument can be applied. Else, we can obtain a path

σ′ ∈ [σ′] ∈ comp(p) from σ such that p
σ′

−→= p′
0

t′1−→ p′
1

t′2−→ · · ·
t′m−1−→

p′
m−1

t′m−→ p
′′
k0

t
′′′
k0+1−→ p

′′
k0+1 · · ·, where p′

0, . . . , p
′
m−1 occur only once along σ′

while p
′′
k0

, . . . occur infinitely often along σ′. (We simply remove a finite
number of loops in σ, since (V, E)N is finite.) The common suffix ensures
that no transition is cc-enabled along σ′.
Since no transition is cc-enabled along σ′ there must exist finitely many
nonempty loops σloop1, . . . , σloopr starting and ending at p

′′
k0

, such that
no transition from next(p

′′
k0

) is cc-enabled along (σloop1 · · · σloopr)
ω, i.e.,

no enabled transition at pk0 is independent of all transitions taken in
the r loops. Notice that these loops might themselves contain loops.
Also, since |next(p

′′
k0

)| ≤ |T | we may assume that 1 ≤ r ≤ |T |. Let
next(p

′′
k0

) = {t
′′′
j1

, . . . , t
′′′
jr

}. We may also assume that σloopl
corresponds to

a loop along which some transition in conflict with t
′′′
jl

is taken.
From each loop σloopl

we can extract, by deleting inner loops, three paths
σ′

loopl
, σ

′′
loopl

, and σ
′′′
loopl

such that

· σ
′′
loopl

contains a transition in conflict with t
′′′
jl

· p
′′
k0

σ′
loopl−→ qk0

σ
′′
loopl−→ qk0

σ
′′′
loopl−→ p

′′
k0

, for some qk0

· p
′′
k0

σ′
loopl−→ qk0 and qk0

σ
′′′
loopl−→ p

′′
k0

are loop free

· qk0

σ
′′
loopl−→ qk0 is a simple loop

· all states along this new loop satisfy A1 ∧ ¬A2
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i ` tt U∅
∀ (<b>tt)

i ` tt i ` tt U
{i}
∀ (<b>tt)

i ` tt U
(i,2,{t1,t2})
∀ (<b>tt)

T1

s1 ` tt U
{i}
∀ (<b>tt)

s1 `<b>tt

s2 ` tt

where T1 is

i ` tt U
(i,1,{t1 ,t2},∅,→)
∀ (<b>tt)

i ` tt U
(i,1,{t2},{i},→)
∀ (<b>tt)

i ` tt U
(i,1,{t2},∅,←)
∀ (<b>tt)

i ` tt U
(i,1,{t2})
∀ (<b>tt)

T2

s1 ` tt U
(i,1,{t1},{i},→)
∀ (<b>tt)

s1 `<b>tt

s2 ` tt

i ` tt

where T2 is

i ` tt U
(i,0,{t2},∅,→)
∀ (<b>tt)

i ` tt i ` tt U
(i,0,{t2},{i},→)
∀ (<b>tt)

i ` tt U
(i,0,{t2},∅,←)
∀ (<b>tt)

i ` tt U
(i,0,{t2})
∀ (<b>tt)

s1 ` tt U
(i,0,∅,{i},→)
∀ (<b>tt)

s1 `<b>tt

s2 ` tt

Figure 4.3: Example of a tableau.

But then, using the induction hypothesis, a prefix of the following path
must be traceable in the tableau T :

p
t′1−→ · · · t′m−→ p

′′
k0

σ−→ p
′′
k0

σ′
loop1−→

σ
′′
loop1−→

σ
′′′
loop1−→ · · ·

σ′
loopr−→

σ
′′
loopr−→

σ
′′′
loopr−→ p

′′
k0

where σ is a nonempty simple loop obtained by deleting inner loops from
the loop σ′

loop1
σ

′′
loop1

σ
′′′
loop1

(rule 7 is going to be applied). The path must

also end in a leaf labelled p
′′
k0

` Ann(A1) U
(p

′′
k0

,n,∅)
∀ Ann(A2), because the

rules 9 and 12 keep track (in the annotation) of which transitions have
been concurrently enabled. In our case there are no such transitions, so
T cannot be a tableau and we obtain the desired contradiction.

As an example, we show that the process agent from Figure 1.3 will eventually be able
to fire a transition labelled by a b action (assume the transitions are t1, t2, and t3 and
are labelled a, τ , and b, respectively). By the previous theorem, to show i |= Ev(<b>tt)
it is sufficient to construct a tableau with root i ` tt U∅

∀ (<b>tt). Figure 4.3 show such
a tableau.

Notice that if we restrict ourselves to labelled 1-safe nets where the independence
relation is empty and translate A1 U∃ A2 into µX. A2 ∨ (A1 ∧ <Act>X) and A1 U∀ A2
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into µX. A2 ∨ (A1∧ <Act>tt∧ [Act]X) (actually applying this translation recursively on
the subformulas A1 and A2), our proof rules will work in essentially the same manner as
those presented in [Lar88, SW89].

Choosing an instance of the model-checking problem to be a pair (N, A) consisting
of a labelled 1-safe net and a formula A and defining its size to be the sum of the size of
the net and the length of the formula, we obtain the following complexity result.

Theorem 57 The model-checking problem is PSPACE-complete.

Proof sketch. The hardness result follows from easy modifications of the results
in Chap. 2, while the PSPACE upper bound follows from a modification of the proof
of Theorem 41 based on the observations in Sect. 4.4.2 (the bound on the number and
length of the γ’s).

4.5 Model-Checking by State Labelling

In this section we present a state labelling based algorithm that solves the model-checking
problem. The algorithm essentially works as the one presented for CTL in [CES86] except
for the U∀ operator.

Theorem 58 Given a net N and a formula A. Let (V, E)N denote the reachability
graph of N = (P, T, F, M0, l). The following state labelling based algorithm solves the
model-checking problem for N and A in time O(|A|(|V | + |E||T |)).

Proof. Given a formula A and a net N , the algorithm proceeds in stages as follows.
In the first stage all subformulas of length one are processed. In general, at stage i all
subformulas of length i are processed and at the end of stage i a state is labelled with a
subformula A′ of A (or its negation ¬A′) if and only if it is satisfied in that state. Hence,
after the |A|’th stage all states in V will have been labelled with either A or ¬A.

The data structures needed to perform the labelling are essentially those described
for the CTL model-checker in [CES86]. The only exception is the U∀ operator (U∃ can
be handled as the EU operator in CTL, since any finite prefix of a path can be extended
to a computation.). The U∀ operator is handled as follows:

Assume we want to label the states with the subformula A′ = A1 U∀ A2. All
states must already have been labelled with A1 or ¬A1, and A2 or ¬A2. Then, states
labelled with A2 are labelled with A′, and states labelled with ¬A1 and ¬A2 are labelled
with ¬A′. The remaining states must all be labelled with A1 and ¬A2. The next step
is to compute the maximal strongly connected components of (V, E) restricted to these
remaining states.

Let us denote the graph whose nodes are these maximal strongly connected compo-
nents by G′. G′ is a directed acyclic graph (DAG) whose nodes are sets of states of V .
As long as there is a terminal node n in G′, repeatedly do the following:
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1) If there is a state p ∈ n, a transition t ∈ T , and a state p′ ∈ V such that p
t−→ p′

and p′ is labelled with ¬A′, then label all states in n with ¬A′. Furthermore, for
all nodes m in G′, if n can be reached from m then label all states in m with ¬A′.
Remove all processed nodes from G′ and let G′ denote the new DAG.

2) Else, if there is a state p in n but no transition t and state p′ 6∈ n such that p
t−→ p′,

then label all states in n (and m’s above n, as described just above) with ¬A′ (there
must exist an invalidating computation in n from p). Update G′ as above.

3) Else, all states of n have successor states not in n. Moreover, these successor states
are all labelled by A′. Assume T = {t1, . . . , tk}.

– Initialise a boolean array B of length k such that all its entries are set to
False. Then, for each edge ti−→ between any two states in n, set all entries
B[j] such that ¬(tiItj) to True.

– If there is an entry B[l] which is False and tl is enabled at any state in n, then
label all states in n with A′. Remove n from G′ and let G′ denote the new
DAG.

– Else, label all states in n (and m’s, as described in the first case) with ¬A′

and update G′ as above.

It should be obvious that case 1) labels the states in n correctly. Case 2) is also
correct because we can exhibit a computation in n whose states are labelled with A1 and
¬A2. Case 3) is correct because of the following observation: there exists a computation
inside n if and only if there is no transition tl that is (i) independent of all transition
labelling edges between states in n, and (ii) enabled at (necessarily all) a state in n.

An analysis of the algorithm yields the time complexity O(|A|(|V |+ |E||T |)). Hence,
our algorithm is comparable to the one presented in [CES86].

4.6 Extensions of P-CTL and Undecidability Results

In this section we present different extensions of P-CTL with modal operators expressing
concurrent or conflicting behaviour. We prove that the satisfiability problem for some
of these logics is undecidable for finite as well as infinite labelled nets, if we impose an
“injectivety” constraint on their reachability graphs.

Remark. Infinite labelled nets are a generalisation of finite labelled nets, where the sets
P , T , and F may be at most countably infinite. Hence, for any state p in the reachability
graph of the nets we consider, comp(p) 6= ∅.

4.6.1 The New Modal Operators

Assume a fixed labelled net N = (P, T, F, M0, l) and let (V, E)N denote its reachability
graph and I the independence relation.
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First, we give the syntax of the new modal operators by extending the grammar from
Sect. 4.3 with the following rules, where αi ∈ Act and n > 0:

A ::= �� ((α1, A1), . . . , (αn, An)) | ]((α1, A1), . . . , (αn, An)) |
〈α1 · · ·αn〉A | 〉α1 · · ·αn〈A .

The interpretation is:

• p |=�� ((α1, A1), . . . , (αn, An)) if and only if
(∃ t1, . . . , tn ∈ T, q1, . . . , qn ∈ V.

(∀ 1 ≤ i ≤ n. p
ti−→ qi ∧ l(ti) = αi ∧ qi |= Ai)

∧ (∀ 1 ≤ i < j ≤ n. tiItj)) ,

• p |= ]((α1, A1), . . . , (αn, An)) if and only if
(∃ t1, . . . , tn ∈ T, q1, . . . , qn ∈ V.

(∀ 1 ≤ i ≤ n. p
ti−→ qi ∧ l(ti) = αi ∧ qi |= Ai) ∧

(∀ 1 ≤ i < j ≤ n. (ti, tj) 6∈ I)) ,

• p |= 〈α1 · · ·αn〉A if and only if
(∃ t1, . . . , tn ∈ T, q ∈ V.

(∀ 1 ≤ i ≤ n. l(ti) = αi) ∧ (∀ 1 ≤ i < j ≤ n. tiItj) ∧
p

t1···tn−→ q ∧ q |= A) , and

• p |=〉α1 · · ·αn〈A if and only if
(∃ t1, . . . , tn ∈ T, q ∈ V, p

t1···tn−→ q.

(∀ 1 ≤ i ≤ n. l(ti) = αi) ∧
(∀ 1 ≤ i < n. (ti, ti+1) 6∈ I) ∧ q |= A) .

The �� and 〈〉 operators specify concurrent behaviour.2 The difference between
them is that 〈〉 requires a property A to hold after the execution of a set of mutually
independent (labelled) transitions, while �� requires properties Ai to hold after the
execution of (labelled) transitions ti from a set of mutually independent transitions. In
a similar way, the ] and 〉〈 operators specify conflicting behaviour.

The ��, 〈〉, ], and 〉〈 operators might be replaced by others. We have chosen to
present them because they can distinguish the following situations. All the depicted
transition systems are reachability graphs of nets. Transitions that are independent are
indicated by an I in their “independence square”. The initial state is indicated by � and
states labelled by A or ¬A indicate that one has to extend the reachability graph in a
trivial manner such that a property A, e.g., <γ >tt, either holds or doesn’t, as indicated
by A or ¬A:

2The 〈〉 operator resembles the one proposed in [LPRT93].
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The above two reachability graphs cannot be distinguished by the 〈〉, 〉〈, or ] operator.
To see this, notice that all states having α and β labelled transitions satisfy the same
formulas, as is the case for states having exactly one α labelled transition and states
having no transitions. By induction it can then be shown that the two initial states
satisfy the same formulas (not containing the �� operator. The same reasoning applies
to the three following examples.
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The above two reachability graphs cannot be distinguished by the ��, 〉〈, or ] operator.
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The above two reachability graphs cannot be distinguished by the ��, 〈〉, or ] operator.
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The above two reachability graphs cannot be distinguished by the ��, 〈〉, or 〉〈 operator.

4.6.2 The Undecidability Results

We will concentrate on the extensions of P-CTL which contains the operators ��.
Actually, for any extension of P-CTL with any of the other three presented operators
the following undecidability results hold.

Definition 59 N is said to be injective if for all p ∈ V and t, t′ ∈ T it is the case that
p

t−→, p
t′−→, and l(t) = l(t′) implies t = t′. 2

Definition 60 The (finite) injective satisfiability problem is the problem of deciding,
given a formula A, whether there exists a (finite) injective labelled net N such that
M0 |= A. If this is the case, A will be said to be (finitely) injectively satisfiable. 2

The following problems are known to be undecidable [Ber66, Har85, LPRT93].

Definition 61 The colouring problem, CP . An instance of the problem is a quadruple
C = (C, R, U, c0), where C = {c0, . . . , ck} is a finite nonempty set of colours, and R, U :
C → P(C) − {∅} are the “right” and “up” adjacency functions. A solution to C is a
function Col : IN × IN → C such that:

• Col (0, 0) = c0

• (∀(i, j) ∈ IN × IN. Col (i, j + 1) ∈ U(Col (i, j)) ∧ Col (i + 1, j) ∈ R(Col (i, j)))

2

Definition 62 The finite colouring problem, FCP . An instance of the problem is a
quintuple CF = (C, R, U, c0, cf), where C = {c0, . . . , ck} is a finite nonempty set of
colours, cf ∈ C, and R, U : C → P(C) − {∅} are the “right” and “up” adjacency
functions. A solution to CF is a triple (Col , M, N ), where M, N ∈ IN , Col : {0, . . . , M}×
{0, . . . , N} → C is such that:

• Col (0, 0) = c0

• (∀0 ≤ i < M, 0 ≤ j ≤ N. Col (i + 1, j) ∈ R(Col (i, j)))
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• (∀0 ≤ i ≤ M, 0 ≤ j < N. Col (i, j + 1) ∈ U(Col (i, j)))

• Col (M, N ) = cf

2

For the logics containing the �� operator we have the following result.

Theorem 63 The set of injectively satisfiable formulas non-recursive.

Proof. We reduce the colouring problem to the injective satisfiability problem.
Given C = (C, R, U, c0), we construct a formula AC , a conjunct of five formulas given
below, that is injectively satisfiable if and only if C has a solution.

Assume that the labels α0, . . . , αk, up, and right are distinct symbols. The five con-
juncts are the following:

• A1 =<α0 >tt , Col (0, 0) = c0

• A2 = G(�� ((<right>, tt), (<up>, tt))) , coding of grid

• A3 = G(
∧k

i=0(<αi >tt ⇔ ∧
j 6=i[αj]ff)) , exactly one colour

• A4 = G(
∧k

i=0(<αi >tt ⇒ [right](
∨

cj∈R(ci) <αj >tt))) , right adjacency

• A5 = G(
∧k

i=0(<αi >tt ⇒ [up](
∨

cj∈U(ci) <αj >tt))) , up adjacency

We claim that AC =
∧5

i=1 Ai is injectively satisfiable if and only if C has a solution.
The “if” direction is easy and therefore omitted. The “only if” direction follows the lines
in [LPRT93] and makes essential use of injectivity of the solution to AC and the following
“diamond” and “commutativity” properties of the reachability graph of a labelled net
N :

• If p ∈ V , t, t′ ∈ T , p
t−→ q, p

t′−→ q′, and tIt′, then there exists q′′ ∈ V such that
q

t′−→ q′′ and q′ t−→ q′′.

• If p ∈ V , t, t′ ∈ T , p
t−→ q

t′−→ q′, and tIt′, then there exists q′′ ∈ V such that
p

t′−→ q′′ t−→ q′.

Theorem 64 The set of formulas that are finitely injectively satisfiable is non-recursive.

Proof. We reduce the finite colouring problem to the finite injective satisfiability
problem. Given CF = (C, R, U, c0, cf), we construct a formula ACF

, a conjunct of seven
formulas given below, that is finitely injectively satisfiable if and only if CF has a solution.

Again, assume that the labels α0, . . . , αk, UM, RM, up, and right are distinct symbols.
The seven conjuncts are the following:
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• A1 =<α0 >tt , Col (0, 0) = c0

• A2 = G((�� ((right, tt), (up, tt)) ∧ [RM ]ff ∧ [UM ]ff) ∨
(<up>tt ∧ <RM >tt ∧ [right]ff ∧ [UM ]ff) ∨
(<right>tt ∧ <UM >tt ∧ [up]ff ∧ [RM ]ff) ∨
(<cf >tt ∧ <RM >tt ∧ <UM >tt ∧ [right]ff ∧ [up]ff)) , grid structure

• A3 = G(
∧k

i=0(<αi >tt ⇔ ∧
j 6=i[αj]ff)) , exactly one colour

• A4 = G(
∧k

i=0(<αi >tt ⇒ [right](
∨

cj∈R(ci) <αj >tt))) , right adjacency

• A5 = G(
∧k

i=0(<αi >tt ⇒ [up](
∨

cj∈U(ci) <αj >tt))) , up adjacency

• A6 = EV (<αf >tt ∧ <RM >tt ∧ <UM >tt) , cf in upper right corner

• A7 = G(<RM >tt ⇒ [up] <RM >tt) ∧
G(<UM >tt ⇒ [right] <UM >tt) , consistent borders

We claim that ACF
=

∧7
i=1 Ai is injectively satisfiable if and only if CF has a solution.

The “if” direction is easy and therefore omitted. The “only if” direction is nontrivial
and follows from the next two lemmas. We use another proof technique than [LPRT93]
since they assume a fixed finite alphabet. We only assume finiteness about the set of
transitions T of the solution to ACF

.

Assume that we have fixed CF and a finite injective net N such that M0 |= ACF
,

where ACF
is defined in the proof of Theorem 64. We will use the notation p

α−→ p′ to
indicate that there is a transition t ∈ T such that p

t−→ p′ and l(t) = α. This shouldn’t
lead to any confusion since N is assumed injective.

Lemma 65 Assume N is a net such that M0 |= ACF
. If there exist p0, . . . , pn ∈ V and

t1, . . . , tn ∈ T such that p0
t1−→ . . .

tn−→ pn, p0 = M0, for all 1 ≤ j ≤ n either l(tj) = right
or l(tj) = up, and no state pj except pn has an enabled transition labelled αf , then CF

has a solution.

Proof. Let β0, . . . , βn denote the unique labels among {α0, . . . , αk} that by A3 must
label some enabled transition at p0, . . . , pn, respectively.

If β0 = αf , then n = 0 and β0 = α0, and obviously we have a solution. So assume
that we have n > 0. By A2 one of the following cases must hold.

• p0
right−→ p1 and p0

UM−→: By A2, A7, and our assumptions we conclude that p0
right−→

p1
right−→ . . .

right−→ pn and ∀0 ≤ i ≤ n. pi
UM−→. Since pn

αf−→ we easily obtain a solution
by A4 and A5.

• p0
up−→ p1 and p0

RM−→: Symmetric to the above case.
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• p0
right−→ and p0

up−→: Without loss of generality we can assume that l(t1) = right,

i.e., p0
right−→ p1. By injectivity and A2 there must exist p′, p′′ ∈ V such that

p0
up−→ p′ right−→ p′′ and p0

right−→ p1
up−→ p′′. Continuing this way as long as l(tj) = right

and exploiting injectivety we conclude there must exist p′, p′′, . . . , p(m+1) such that

p′ //right
p′′ //right · · · //right

p(m+1)

p0

OO
up

//right
p1

OO
up

//right · · · //right
pm

OO
up

If m = n, then we easily obtain a solution, since pn
αf−→ . So assume m < n.

Then l(tm+1) = up and by injectivety we conclude that p(m+1) = pm+1. Again,
if βm+1 = αf we are done by A4 and A5, so assume this isn’t the case. Then
m + 1 < n. We continue by showing how to expand the above 1 × (m + 1) grid to
a 2 × (m + 1) grid if l(tm+2) = up or to a 1 × (m + 2) grid if l(tm+2) = right.

– Assume that l(tm+2) = up. By A2, A7, and injectivety we conclude there must

exist a q(m) such that p(m) right−→ p(m+1) up−→ pm+2 and p(m) up−→ q(m) right−→ pm+2.
By repeating this we obtain:

q′ //right
q′′ //right · · · //right

q(m) //right
pm+2

p′

OO
up

//right
p′′

OO
up

//right · · · //right
p(m)

OO
up

//right
p(m+1)

OO

up

p0

OO
up

//right
p1

OO
up

//right · · · //right
pm−1

OO
up

//right
pm

OO
up

– Assume that l(tm+2) = right. By similar arguments we get:

p′ //right
p′′ //right · · · //right

p(m+1) //right
pm+2

p0

OO
up

//right
p1

OO
up

//right · · · //right
pm

OO
up

//right
p(m+2)

OO

up

This procedure can be continued for tm+3, . . . , tn giving us a grid from which
it is easy to obtain a solution to CF , by A1, A3, A4, and A5.

Next, we proof there exist a path of the form mentioned in Lemma 65 if M0 |= ACF
.

Lemma 66 If N is a net such that M0 |= ACF
, then there exist p0, . . . , pn ∈ V and

t1, . . . , tn ∈ T such that p0
t1−→ . . .

tn−→ pn, p0 = M0, for all 1 ≤ j ≤ n either l(tj) = right
or l(tj) = up, and no state pj except pn has an enabled transition labelled αf .
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p0 //γ1 pj1 //γ2

��t′

pj0

�� t
′

p0 //γ1 pj1

��t′

//γ2 pj0

�� t
′

p0 //γ1 pj1

��t′

//γ2 pj0

�� t
′

p′
j1

//γ2 p′
j0 p′

��t′′

//γ2
p′

�� t
′′

p′ //γ2
p′

p′′ //γ2

��t′′′

p′′

�� t
′′′

p(m) //γ2
p(m)

p′′′ //γ2
p′′′ p(m) //γ2

p(m)

Diagram 1 Diagram 2 Diagram 3

Figure 4.4: Looping diagrams.

Proof. Assume by contradiction that there doesn’t exist any path of the above form.
By A2 either M0

right−→ or M0
left−→ Without loss of generality we may assume M0

right−→. We
continue by a case analysis.

• Assume M0
UM−→: We know that M0 6 αf−→, and choosing p1 to be the unique state

such that M0 = p0
right−→ p1 we also conclude p1 6 αf−→. Now by A2, A6, A7, and our

assumptions it must be the case that p1
right−→ and p1

UM−→. Continuing this way
we exhibit an infinite path p0

right−→ p1
right−→ · · · such that pj 6 αf−→ and pj

UM−→ for all
states pj along the path. Since K is finite there must exist a least j0 such that

pj0 is visited twice along p0
right−→ · · · right−→ pj0 . Let 0 ≤ j1 < j0 be the index such

that pj1 = pj0 . This gives us an infinite path p0
γ1−→ pj1

γ2−→ pj0

γ2−→ pj0

γ2−→ · · ·,
where γ1 (γ2) is the sequence of right labelled transitions leading from p0 to pj1

(from pj1 to pj0). But by A6 the above path cannot be a computation from p0.
Hence there must exist a transition t′ that is cc-enabled along pj0

γ2−→ pj0

γ2−→ · · ·.
By the diamond and commutativity properties of (V, E)N we obtain Diagram 1 in
Figure 4.4, where p′

j1
= p′

j0
is a state in V .

Now by A2, γ2 being labelled by right, and A6, we conclude that there must exist a
transition t′′ which is cc-enabled along the loop obtained by repeating p′

j1

γ2−→ p′
j0

.
By repeating this argument we obtain (p′ = p′

j1
= p′

j0
) Diagram 2 in Figure 4.4.

Since N is finite, the set T is finite. All of the reached states have the property
that <cf >tt ∧ <RM>tt ∧ <UM>tt doesn’t hold, since <right>tt and A2 hold.
One can now repeat the above argument, observing that finiteness of V implies
that some p(m) must occur twice along the leftmost vertical path in Diagram 2.
From this observation we can construct Diagram 3 in Figure 4.4.

Again, we conclude there must exist a transition that is cc-enabled along the loop-
ing part of Diagram 3. This transition must be independent of all the transitions
on the looping parts between p(m) shown in Diagram 3, especially the transitions
labelled right. Also, all states along these loops have an enabled transition labelled
right.
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Let (V ′, E ′) denote the transition system obtained by restricting (V, E)N to the
states satisfying ¬(< cf > tt ∧ < RM > tt ∧ < UM > tt). It should now
be clear that one can produce an infinite computation from p0 which stays in
(V ′, E ′). One modifies the above infinite path by choosing transitions that are
cc-enabled following the above scheme. It is important to notice that because it is
always possible to insert loops containing transitions labelled right (the γ2 loops)
the states reached by “taking a cc-enabled transition” also contain a self loop
of transitions labelled right. Since (V, E)N is finite there are only a finite num-
ber of maximal strongly connected components in (V ′, E ′). Hence, by repeating
the above procedure one will only be able to proceed towards terminal maximal
strongly connected components. This eventually produces a computation along
which ¬(<cf >tt ∧ <RM>tt ∧ <UM>tt) holds, contradicting A6.

• Assume M0
up−→: A similar way of reasoning leads to the desired contradiction.

To sketch the argument: Choose consecutive right labelled transitions as far as
possible. If one produces an infinite path labelled right the argument is as above.
Else one must eventually reach a state with enabled transitions labelled up and
RM (else contradicting our main assumption by A2). From this state choose the
infinite path labelled up (else contradicting our main assumption by A2 and A7).
Apply the above argument in a symmetric way.

For the remaining operators we have the following corollary.

Lemma 67 For the logics containing at least one of the operators ], 〈〉, or 〉〈, Theo-
rem 63 and 64 remain true.

Proof sketch. Replace �� ((<right>, tt), (<up>, tt)) in A2 in the proof of Theo-
rem 63 and 64 by either

• (<right>tt ∧ <up>tt ∧ ¬]((right, tt), (up, tt))),

• (〈right up〉tt), or

• (<right><up>tt ∧ ¬〉right up〈tt)

depending on which operator is available.

4.7 Summary

Partial order semantics for concurrent systems have gained interest because interleav-
ing models of concurrency have failed to provide an acceptable interpretation of what
it means for events of a concurrent system to be independent. Much work has been
devoted to transfer obtained results and notions from the interleaving models to the
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“true concurrency” models [JNW93, JM93, WN94, LPRT93]. Trying to contribute to
the “transferring of results” we have provided proof rules for a CTL-like logic inter-
preted over maximal traces. The work which we have tried to transfer can be found in
[Lar88, SW89]. Our work supports automatic verification of distributed systems whose
liveness properties are only provable under the assumption of progress.

There is a trade off between the rules and the definition of tableaux. One can obtain
simple rules at the cost of a complicated definition of tableaux.3 At the cost of presenting
less simple rules we have kept the definition of tableaux simple.

In [Val90, WG93], it is shown that based on a partial order semantics deadlock
detection can sometimes be made efficient. Valmari has also applied stubborn sets to
reduce the state space search for performing model-checking of a linear temporal logic
not containing the “next” operator [KV92]. Future research could be to investigate to
which extend model-checking can benefit from this application of partial order semantics.

Another direction might be to consider how to handle a more expressive logic (perhaps
one containing a recursion operator) in a similar way, i.e., define the interpretation of
the formulas over maximal traces and proving soundness and completeness of some set
of proof rules.

The general satisfiability problem for our logic is still an open problem. Consider the
following example

q
@ AG Ft:α E D ��

//
t′:β

q′
B CE D t:αG F��

where t is independent of t′. Let a be an atomic proposition that holds at q and but not
at q′ (a can be simulated by having an a labelled enabled transition at all states where
a should hold). Then, the formula (¬Al(a)) ∧ (a ∧ Inv(a ⇒<α>a)) is satisfied at q.
But under the usual CTL-interpretation the formula (where <α> is read as the “next”
operator) is unsatisfiable (because the set of paths one quantifies over is limit closed).
The important observation is that our interpretation of Al does not quantify over the
path q

σ−→, where σ = t∞.
We also investigated extensions of the logic with modal operators expressing con-

current behaviour. It turns out that restricted versions of the satisfiability problem for
these logics is undecidable. Axiomatizations of these logics remain to be investigated.

3The set of simple rules we have identified requires a global side condition in the definition of tableaux.
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5.1 Introduction

In the next section we give a short stepwise introduction to open maps as presented
in [JNW93, JNW94]. Then, in the subsequent sections, we apply the theory of open
maps by instantiating the definitions with different models and notions of (simulation)
morphisms and characterise the obtained abstract notion of equivalence operationally. It
turns out that our choices of categories, which are guided by our intuitive understanding
of what it means for a system to simulate another, yield well known notions of equiva-
lence. More specifically Sect. 5.3.1 to Sect. 5.3.5 are devoted to trace equivalence, weak
bisimulation, testing equivalence, barbed bisimulation, and probabilistic bisimulation.
In each of these sections we follow the steps presented in the next section. In Sect. 5.4
we consider non-interleaving models and discuss some derived “true concurrency” be-
havioural equivalences and related decision problems. In Sect. 5.5 we summarise and
discuss future directions.

Along, we make several observations clear which are either rather implicit in [JNW93,
JNW94] or not mentioned at all.

5.2 Open Maps

In this section we briefly recall the basic definitions from [JNW93].
As presented there, the general setting requires several steps. First, a category which

represents a model of computation has to be identified. We denote this category M. A
morphism m : X −→ Y in M should intuitively be thought of as a simulation of X in
Y . Then, within M we choose a subcategory of “observation objects” and “observation
extension” morphisms between these objects. We denote this category of observations
by P . Given an observation (object) P in P and a model X in M. P is said to be an
observable behaviour of X if there exists a morphism p : P −→ X in M.

Next, we identify morphisms m : X −→ Y which have the property that whenever
an observable behaviour of X can be extended via f in Y then that extension can be
matched by an extension of the observable behaviour in X .

Definition 68 Open Maps
A morphism m : X −→ Y in M is said to be P-open if whenever f : O1 −→ O2 in P ,
p : O1 −→ X , q : O2 −→ Y in M, and the diagram

O1

��

f

//p
X

��

m

O2 //
q Y

(5.1)

commutes, i.e., m ◦ p = q ◦ f , there exists a morphism h : O2 −→ X in M such that the
two triangles in the diagram
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O1

��

f

//p
X

��

m

O2

>>

h

~~~~~~~~~~~
//

q Y

(5.2)

commute, i.e., p = h ◦ f and q = m ◦ h. When no confusion is possible, we refer to
P-open morphisms as open maps. 2

The abstract definition of bisimilarity is as follows.

Definition 69 P-bisimilarity
Two models X and Y in M are said to be P-bisimilar, written X ∼P Y , if there exists
a span of open maps from a common object Z:

Z

��

m

~ ~
~ ~
~ ~
~ ~
~ ~

��

m′

@@
@@
@@
@@
@@

X Y

(5.3)

2

Notice that if M has pullbacks, it can be shown that ∼P is an equivalence relation. The
important observation is that pullbacks of open maps are themselves open maps. For
more details, the reader is referred to [JNW93].

In the next sections, we proceed by following the above presented steps.
As a preliminary example of a category of models of computation M we present

labelled transition systems.

Definition 70 A labelled transition system over Act is a tuple

(S, i, Act, −→) , (5.4)

where S is a set of states with initial state i, Act is a set of actions ranged over by α, β, . . . ,
and −→⊆ S ×Act×S is the transition relation. For the sake of readability we introduce
the following notation. Whenever (s0, α1, s1), (s1, α2, s2), . . ., (sn−1, αn, sn) ∈−→ we
denote this as s0

α1−→ s1
α2−→ · · · αn−→ sn or s0

v−→ sn where v = α1α2 · · ·αn ∈ Act∗. Also,
we assume that all states s ∈ S are reachable from i, i.e., there exists a v ∈ Act∗ such
that i

v−→ s. 2

Let us briefly remind the reader about Park and Milner’s definition of strong bisim-
ulation.
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Definition 71 Let T1 = (S1, i1, Act, −→1) and T2 = (S2, i2, Act, −→2). A strong bisim-
ulation between T1 and T2 is a relation R ⊆ S1 × S2 such that

(i1, i2) ∈ R , (5.5)

((r, s) ∈ R ∧ r
α−→1 r′) ⇒ for some s′, (s α−→2 s′ ∧ (r′, s′) ∈ R) , (5.6)

((r, s) ∈ R ∧ s
α−→2 s′) ⇒ for some r′, (r α−→1 r′ ∧ (r′, s′) ∈ R) . (5.7)

T1 and T2 are said to be strongly bisimilar if there exists a strong bisimulation between
them. 2

Henceforth, whenever no confusion is possible we drop the indexing subscripts on the
transition relations and write −→ instead.

By defining morphisms between labelled transition systems we can obtain a category
of models of computation, LTS, labelled transition systems.

Definition 72 Let T1 = (S1, i1, Act, −→1) and T2 = (S2, i2, Act, −→2). A morphism
m : T1 −→ T2 is a function m : S1 −→ S2 such that

m(i1) = i2 , (5.8)

s
α−→1 s′ ⇒ m(s) α−→2 m(s′) . (5.9)

2

Composition of morphisms is defined as the usual composition of functions. The
intuition behind this specific choice of morphism is that an α labelled transition in T1

must be simulated by an α labelled transition in T2.
If, as done in [JNW93], one chooses P as the full subcategory of M whose objects

are finite synchronisation trees with at most one maximal branch, i.e., labelled transition
systems of the form

i
α1−→ s1

α2−→ · · · αn−→ sn , (5.10)

P-bisimilarity corresponds to Park and Milner’s strong bisimulation.

Theorem 73 Given two labelled transition systems T1 and T2. Then:

T1 and T2 are strongly bisimilar if and only if they are P-bisimilar.

This follows from the following characterisation of P-open maps [JNW93].

Lemma 74 A morphism m : T1 −→ T2 is P-open if and only if it satisfies the following
“zig-zag” property:

If m(r) α−→ s then there exists an r′ such that r
α−→ r′ and m(r′) = s.

In the following sections we shall “rediscover” well-known behavioural equivalences
by varying M and P . In the following, whenever we write, e.g., M, P , or P-bisimilarity
they refer to the specific choices of categories made in the section they appear.
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5.3 Behavioural Equivalences

In this section we show how various well-known, and quite different, behavioural equiv-
alences can be presented using the theory of open maps.

5.3.1 Trace Equivalence

In this section we show how trace equivalence between two labelled transition systems
can be captured by open maps. Trace equivalence is perhaps the first and simplest
equivalence between labelled transition systems that one can think of. The result is based
on the following important fact: Two labelled transition systems are trace equivalent if
and only if their underlying deterministic transition systems are bisimilar.

First, we present the category LTS1 of labelled transition systems, which will corre-
sponds to M. Then, we identify a subcategory, P , of observations. Finally, we show
that P-bisimilarity corresponds to trace equivalence.

The object of LTS1 are the labelled transition systems (lts) from Definition 70. The
following definition is needed in the definition of the morphisms in LTS1.

Definition 75 Given an lts T = (S, i, Act, −→). For nonempty sets X, Y ⊆ S, we
define X

α−→ Y if Y = {r′ ∈ S | ∃ r ∈ X. r
α−→ r′}. Notice that this transition relation is

deterministic. As before, the transition relation can be generalised to a relation X
v−→ Y ,

where v ∈ Act∗. Furthermore, we define RS(T ), the reachability set of T , to be the least
subset of 2S/{∅}, such that

{i} ∈ RS(T ) , (5.11)

X ∈ RS(T ) and X
α−→ Y implies Y ∈ RS(T ) . (5.12)

2

Next, we define morphisms between two ltss.

Definition 76 Given two ltss, Tj = (Sj, ij, Act, −→j), j = 1, 2. A morphism m between
T1 and T2 is a function m from RS(T1) to RS(T2), such that

m({i1}) = {i2} , (5.13)

X
α−→ Y implies m(X) α−→ m(Y ) . (5.14)

2

Composition of morphisms is defined as the usual composition of functions. This
defines the category LTS1.

The intuition behind this definition of (simulating) morphism is that one is only
interested in what action sequences an lts can perform. After performing a sequence
σ = α1 · · ·αn of actions from the initial state i one may in general end up in several
different states of T , i.e., a set X of states of T . These sets of states are exactly the
elements of RS(T ). Extending the sequence σ by performing another action α then
corresponds to performing an α transition from X .

Next step is to define P .
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Definition 77 Let P be the full subcategory of LTS1 whose objects are of the form

i
α1−→ r1

α2−→ · · · αn−→ rn , (5.15)

where all states are distinct. 2

Apart from showing that LTS1 has pullbacks, the construction in the following lemma
will be referred to in the main theorem of this section. Also, it follows at once from the
remarks in Sect. 5.2 that P-bisimilarity is an equivalence relation. We will also be able to
conclude this after proving the main theorem of this section; it states that P-bisimilarity
coincides with trace equivalence, which is know to be an equivalence relation. However,
in general one cannot expect that P-bisimilarity coincides with a known equivalence
relation. Lemmas as the following are sufficient for P-bisimilarity to be an equivalence
relation.

Lemma 78 LTS1 has pullbacks.

Proof. Given a diagram
T1

��
m1 <<
<<
<<
<<

T2

��
m2

� �
� �
� �
� �

T

Define an lts T ′ = (S ′, i′, Act, −→′) as follows. S ′ ⊆ RS(T1) × RS(T2) and −→′⊆
(RS(T1) × RS(T2)) × Act × (RS(T1) × RS(T2)) are the least sets such that

• i′ = ({i1}, {i2}) ∈ S ′

• If (X, Y ) ∈ S ′, X
α−→ X ′, Y

α−→ Y ′

then (X ′, Y ′) ∈ S ′ and ((X, Y ), α, (X ′, Y ′)) ∈−→′.

Notice that because the transition relations on the reachability sets are deterministic it is
the case that m1(X) = m2(Y ) for any (X, Y ) ∈ S ′ and RS(T ′) contains only singletons.
Let π1 : T ′ −→ T1 be defined as π1({(X, Y )}) = X . It can be shown that π1 is well
defined and is a morphism from T ′ to T1. We can define π2 : T ′ −→ T2 in a similar way.

Given an lts T ′′ and two morphisms f1 : T ′′ −→ T1 and f2 : T ′′ −→ T2 such that
m1 ◦ f1 = m2 ◦ f2. Define h : T ′′ −→ T ′ by h(Z) = (f1(Z), f2(Z)) for Z ∈ RS(T ′′).
From the definition of T ′ is should be easy to see that h is a morphism; the initial state
of T ′′ is mapped to that of T ′ and transitions are preserved. Furthermore we also have
f1 = π1 ◦ h and f2 = π2 ◦h. This is trivial, since there is at most one morphism between
any two objects in LTS1. Hence, h is also unique. This gives us the desired pullback.

The next lemma characterises the open maps in LTS1.

Lemma 79 A morphism m : T1 −→ T2 is P-open if and only if m : RS(T1) −→ RS(T2)
has the following ”zig-zag” property

If m(X) α−→ Y ′, then there exists an X ′ such that X
α−→ X ′ and m(X ′) = Y ′.
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Proof. Assume m is P-open and m(X) α−→ Y ′. Then it must be the case that
X0

α1−→ X1
α2−→ · · · αn−→ Xn for some X0, . . . , Xn ∈ RS(T1), where X0 = {i1} and

Xn = X . Also, we have Y0
α1−→ Y1

α2−→ · · · αn−→ Yn
α−→ Y ′, where Yj = m(Xj) for

0 ≤ j ≤ n. Let O1 be the observation

i
α1−→ s1

α2−→ · · · αn−→ sn ,

and O2 be the observation

i′
α1−→ s′

1
α2−→ · · · αn−→ s′

n
α−→ s′

n+1 .

Now let f denote the unique morphism from O1 to O2, p denote the morphism that
maps {i} to {i1} and {sj} to Xj for 1 ≤ j ≤ n, and q denote the morphism that maps
{i′} to {i2}, {s′

j} to Yj for 1 ≤ j ≤ n, and {s′
n+1} to Y ′. We then have m ◦ p = q ◦ f .

From our assumptions it then follows that there exists a morphism h : O2 −→ T1 such
that p = h ◦ f and q = m ◦ h. We now conclude h({s′

n}) = h(f({sn})) = p({sn}) =
X , h({s′

n}) α−→ h({s′
n+1}), and m(h({s′

n+1})) = q({s′
n+1}) = Y ′. Now choose X ′ as

h({s′
n+1}).

Conversely, assume m has the “zig-zag” property and we are given a commuting
diagram

O1

��

f

//p
X

��

m

O2 //
q Y

where O1 is an observations of the form

i
α1−→ s1

α2−→ · · · αn−→ sn ,

and O2 an observation of the form

i′
α1−→ s′

1
α2−→ · · · αm−→ s′

m ,

and n ≤ m. Notice f is uniquely determined (maps {sj} to {s′
j} for 1 ≤ j ≤ n). We will

show how to define a morphism h : O2 −→ T1 such that p = h ◦ f and q = m ◦ h. We
start by defining h({i′}) = {i1} and h({s′

j}) = p({sj}) for 1 ≤ j ≤ n. Notice that we
now already have p = h ◦ f for the partially defined h. Consequently, q = m ◦ h on {i′},
{s′

1}, . . . , {s′
n} because of the way f is defined and m ◦ p = q ◦ f . Now assume n < m.

Since m(p({sn})) = q(f({sn})) = q({s′
n})

αn+1−→ q({s′
n+1}) we know there must exist an X ′

such that p({sn})
αn+1−→ X ′ and m(X ′) = q({s′

n+1}). Now define h({s′
n+1}) = X ′. Then

m(h({s′
n+1})) = q({s′

n+1}). Continuing this way for the remaining {s′
n+2}, . . . , {s′

m} we
obtain the desired morphism.
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Definition 80 Given an lts T = (S, i, Act, −→). The traces/language of T , denoted
L(T ), is defined as

L(T ) = {v ∈ Act∗ | i v−→ r for some r ∈ S} . (5.16)

Two ltss, T1 and T2, are said to be trace equivalent if L(T1) = L(T2). 2

Theorem 81 Given two ltss T1 and T2. Then:

T1 and T2 are trace equivalent if and only if they are P-bisimilar.

Proof. The “if” direction follows from Lemma 79. For the “only if” direction, let
F1 be the functor from LTS1 to LTS which sends an object T to (RS(T ), {i}, Act, −→),
where −→ was defined in Definition 75, and an morphism m : T −→ T ′ to the obvious
morphism between F1(T ) and F1(T ′) defined by m : RS(T ) −→ RS(T ′). Let F2 be the
functor from LTS to LTS1 which maps an object to itself and a morphism m : T −→ T ′

to the morphism determined uniquely by the induced function m : RS(T ) −→ RS(T ′).
Since all observations of LTS1 are isomorphic to their image under F1 and there is at
most one morphism between any two objects in LTS1, we conclude, using Lemma 74,
that F2 preserves open maps. So assume that T1 and T2 are trace equivalent. We then
know that F1(T1) and F1(T2) are strong bisimilar. From Sect. 5.2 this implies that there
exists a span of open maps in LTS, m1 : T −→ F1(T1) and m2 : T −→ F1(T2). Also,
there clearly exist isomorphisms p1 : F2(F1(T1)) −→ T1 and p2 : F2(F1(T2)) −→ T2.
Since isomorphisms are always open maps we have the following span of open maps:

F2(T )

zz

F2(m1)

t t t
t t t
t t t
t t

$$

F2(m2)

JJJ
JJJ

JJJ
JJ

F2(F1(T1))

{{

p1

w w w
w w w
w w w
w w

F2(F1(T2))

##

p2

GGG
GGG

GGG
GG

T1 T2

We conclude that T1 and T2 are P-bisimilar. Observe that a construction similar to
the one used in Lemma 78 would also have provided a span of open maps.

Remark. Edmund Robinson has later observed that trace equivalence can also be
captured by choosing LTS as the category M, and P as the subcategory consisting
of objects of the form (5.10), and morphisms which are either identity morphisms or
morphisms whose domains are observations having only one state. P-open maps are
then characterised by

Lemma 82 A morphism m : T1 −→ T2 is P-open if and only if it has the following
”zig-zag” property for v ∈ Act∗

If i2
v−→ s, then there exists an r such that i1

v−→ r and m(r) = s.



5.3. Behavioural Equivalences 107

Intuitively, any observation in T2 can be “lifted” to T1. From this lemma the following
theorem easily follows.

Theorem 83 Given two ltss T1 and T2. Then:

T1 and T2 are trace equivalent if and only if they are P-bisimilar.

We have chosen to present trace equivalence using reachability sets, partly because
they will be used to present Hennessy’s testing equivalence.

Having identified trace equivalence we now continue by exploring other possibilities.
In the next section we try to take “invisible” or “silent” actions into account.

5.3.2 Weak Bisimulation

In this section we show that Milner’s weak bisimulation [Mil89] can be characterised
using the general setting of Sect. 5.2.

Weak bisimulation differs from strong bisimulation in at least two respects. First, a
special “invisible” action, usually denoted τ , is required to be a member of the set of
labels. Second, an α labelled transition in one labelled transition system is no longer
required to be simulated exactly by an α labelled transition in the other system. It may
be preceded and succeeded by several τ transition. We write r

t=⇒ r′ if t = α1 · · ·αn

and r
τ∗

−→ r1
α1−→ r′

1
τ∗

−→ · · · τ∗
−→ rn

αn−→ r′
n

τ∗
−→ r′ for some r1, . . . , r

′
n. Furthermore, a τ

transition needn’t be simulated by any transitions at all.
We start by defining a category LTS2, labelled transition systems, and a subcategory

of observations, P , in LTS2. Then, we show that P-bisimilarity corresponds to Milner’s
weak bisimulation.

The objects of LTS2 are the same as those from LTS. However, we assume that
the set of actions Act contains a special “invisible” action τ . Guided by our intuitive
understanding of how an action may be simulated, we define the morphisms between
two ltss as follows.

Definition 84 Given two ltss, Tj = (Sj, ij, Act, −→j), j = 1, 2. A morphism between
T1 and T2, m : T1 −→ T2, is a function m from S1 to S2, such that

m(i1) = i2 , (5.17)

r
α−→ r′ implies m(r) α̂=⇒ m(r′) . (5.18)

The function ̂ : Act∗ −→ Act∗ removes all τ ’s from its argument [Mil90]. 2

Composition of morphisms is defined as the usual composition of functions. This
defines the category LTS2. P , the category of observations, is defined as follows.
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Definition 85 Let P be the subcategory of LTS2 whose objects are of the form

i
α1−→ r1

α2−→ · · · αn−→ rn , (5.19)

where all the states are distinct. Moreover, there will be a morphism f from an obser-
vation

i
α1−→ r1

α2−→ · · · αn−→ rn (5.20)

to another observation

i′
α1−→ r′

1
α2−→ · · · αn−→ r′

n
αn+1−→ · · · αn+k−→ r′

n+k , (5.21)

if f(i) = i′, f(rj) = r′
j for 1 ≤ j ≤ n, and k ≥ 0.

2

Notice that morphisms between observations are required to simulate action in the
“strong” sense—e.g., no additional τ ’s may be added. In the summary, Sect. 5.5, we will
comment on this interesting choice. Allowing any morphism between two observations
will in fact make P-bisimilarity stronger than weak bisimulation; the reader should have
no major difficulties in going through the proofs. Lemma 87 will no longer be true,
neither will the “only if” in Theorem 89.

Having defined M as LTS2 and P we now show that LTS2 has pullbacks.

Lemma 86 The category LTS2 has pullbacks.

Proof. Given a diagram
T1

��
m1 <<
<<
<<
<<

T2

��
m2

� �
� �
� �
� �

T

Define T ′ = (S ′, i′, Act, −→′) as follows. S ′ ⊆ S1×S2 and −→′⊆ (S1×S2)×Act×(S1×S2)
are the least sets such that

• i′ = (i1, i2) ∈ S ′

• If (r, s) ∈ S ′, r
α̂=⇒ r′, s

α̂=⇒ s′, and m1(r′) = m2(s′) then (r′, s′) ∈ S ′ and
((r, s), α, (r′, s′)) ∈−→′.

Define π1 : T ′ −→ T1 and π2 : T ′ −→ T2 as π1((r, s)) = r and π2((r, s)) = s.
We now show that this defines a pullback. Clearly, π1 and π2 are morphisms. Assume

we have a commuting diagram

T ′′

��

f

//g
T2

��

m2

T1 //
m1

T
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Define h : S ′′ −→ S1 × S2 as h(v) = (f(v), g(v)) for v ∈ S ′′. It should be easy to see,
using the commutativity of the diagram and the definition of T ′, that h(v) ∈ S ′, since
v is reachable from i′′, and that v

α−→ v′ in T ′′ implies h(v) α−→ h(v′) in T ′. h is then
a well defined morphism from T ′′ to T ′. Also, f = π1 ◦ h and g = π2 ◦ h and moreover
these equations determine h uniquely. Hence, T ′, π1, and π2 constitute a pullback.

Next, we characterise the open maps.

Lemma 87 A morphism m : T1 −→ T2 is P-open if and only if it satisfies the following
“zig-zag” property:

If m(r) α−→ s then there exists an r′ such that r
α̂=⇒ r′ and m(r′) = s.

Proof. Assume m is open and i1
α1−→ r1

α2−→ · · · αn−→ rn = r. Let O1 be the
observation

i
α1−→ r′

1
α2−→ · · · αn−→ r′

n ,

O2 be the observation

i′
α1−→ r′′

1
α2−→ · · · αn−→ r′′

n
α−→ s′′ ,

and f the unique morphism from O1 to O2. Let p : O1 −→ T1 be the morphism which
sends r′

j to rj for 1 ≤ j ≤ n, and q : O2 −→ T2 the morphism that sends r′′
j to m(rj) for

1 ≤ j ≤ n and s′′ to s. Then m ◦ p = q ◦ f and since m is an open map there exists a
morphism h : O2 −→ T1 such that the two triangles in the diagram

O1

��

f

//p
T1

��

m

O2

>>

h

}}}}}}}}}}
//

q T2

commutes. Since h(r′′
n) α̂=⇒ h(s′′), h(r′′

n) = h(f(r′
n)) = p(r′

n) = rn, and s = q(s′′) =

m(h(s′′)), we conclude that h(r′′
n) = rn = r

α̂=⇒ h(s′′) and m(h(s′′)) = s. Hence, there

exists a r′ = h(s′′) such that r
α̂=⇒ r′ and m(r′) = s.

For the other direction, assume m has the “zig-zag” property and we are given a
commuting diagram of the form

O1

��

f

//p
T1

��

m

O2 //
q T2

where O1 is an observation of the form

i
α1−→ r1

α2−→ · · · αn−→ rn ,
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O2 is an observation of the form

i′
α1−→ r′

1
α2−→ · · · αn−→ r′

n
αn+1−→ · · · αn+k−→ r′

n+k ,

and f : O1 −→ O2 is the uniquely determined morphism which sends rj to r′
j for

1 ≤ j ≤ n.
We show that there exists a morphism h : O2 −→ T1 such that p = h ◦ f and

q = m ◦ h. Apart from defining h(r′
j) = p(rj) for 1 ≤ j ≤ n, and of course h(i′) = i1,

let us consider which value we should give h(r′
n+1). Assume q(r′

n)
α̂n+1=⇒ q(r′

n+1) because

q(r′
n)

β1−→ v1
β2−→ · · · βl−1−→ vl−1

βl−→ q(r′
n+1), where l ≥ 0 and α̂n+1 = ̂β1 · · ·βl. By

commutativity we have m(p(rn)) = q(r′
n) and by repeated use of the “zig-zag” property

we conclude that there exist states wj such that p(rn)
β̂1=⇒ w1

β̂2=⇒ · · · β̂l=⇒ wl, m(wj) = vj

for 1 ≤ j < l, and m(wl) = q(r′
n+1). Define h(r′

n+1) = wl. Then h(r′
n)

α̂n+1=⇒ h(r′
n+1) and

m(h(r′
n+1)) = m(wl) = q(r′

n+1). Continuing this process for the remaining r′
n+2, . . . , r

′
n+k

it is easy to see that we obtain a morphism h : O2 −→ T1 such that p = h◦f and q = m◦h.
Hence, m is an open map.

For the sake of completeness we give Milner’s definition of weak bisimulation [Mil89],
here adapted to the case where we consider initial states of ltss.

Definition 88 Given two ltss T1 and T2. A relation R ⊆ S1 × S2 is said to be a weak
bisimulation over T1 and T2 if

(i1, i2) ∈ R , (5.22)

((r, s) ∈ R ∧ r
α−→ r′) ⇒ for some s′, (s α̂=⇒ s′ ∧ (r′, s′) ∈ R) , (5.23)

((r, s) ∈ R ∧ s
α−→ s′) ⇒ for some r′, (r α̂=⇒ r′ ∧ (r′, s′) ∈ R) . (5.24)

T1 and T2 are said to be weakly bisimilar if there exists a weak bisimulation as defined
above. 2

We now show that P-bisimilarity coincides with weak bisimulation.

Theorem 89 Given two ltss T1 and T2. Then,

T1 and T2 are weakly bisimilar if and only if T1 and T2 are P-bisimilar.

Proof. Assume R is a weak bisimulation over T1 and T2. Define T ′ = (S ′, i′, Act,
−→′), where S ′ ⊆ S1 × S2, as follows. Let S ′ and −→′ be the least sets such that

• i′ = (i1, i2) ∈ S ′

• If (r, s) ∈ S ′, r
α̂=⇒ r′, s

α̂=⇒ s′, and (r′, s′) ∈ R,
then (r′, s′) ∈ S ′ and ((r, s), α, (r′, s′)) ∈−→′.
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Notice that S ′ ⊆ R. Now define p : T ′ −→ T1 as p((r, s)) = r and q : T ′ −→ T2 as
q((r, s)) = s. From the definitions and the above observation it should be easy to see
that p and q are open maps, i.e., T1 and T2 are P-bisimilar.

Assume T1 and T2 are P-bisimilar, i.e., there exist a span of open maps
T

��

m1

~ ~
~ ~
~ ~
~ ~
~ ~

��

m2

@@
@@
@@
@@
@@

T1 T2

It is enough to show that T and T1 are weakly bisimilar since weak bisimulation is an
equivalence relation. Define R to be the least relation in S × S1 such that

• (i, i1) ∈ R,

• If (r, s) ∈ R and r
α−→ r′ then (r′, m1(r′)) ∈ R, and

• If (r, s) ∈ R and s
α−→ s′ then (r′, s′) ∈ R where r′ is any state such that r

α̂=⇒ r′

and m1(r′) = s′. Such a state exists by Lemma 87.

Notice that (r, s) ∈ R implies m1(r) = s. Hence, in the last item s = m1(r)
α̂=⇒ m1(r′).

It is now easy to show that R is a weak bisimulation over T and T1.

Remark. It can be shown formally, that weak bisimulation cannot be captured as P-
bisimilarity for any choice of P in the category LTS from Sect. 5.2. It suffices to consider
the two (weakly bisimilar) transition systems

ı τ−→ · a−→ · and i′
a−→ ·

5.3.3 Testing Equivalence

In this section we modify the category from Sect. 5.3.1 (basically) only with respect to
the morphisms. We then choose a new subcategory P of observations. This time the
elements of P will reflect a special type of branching structure. Then we show that the
obtained P-bisimilarity coincides with Hennessy’s testing equivalence [Hen88]. Testing
equivalence is slightly stronger than trace equivalence, due to an extra requirement on
the set of possible actions, so-called acceptance sets, from states reached by performing
a sequence of actions/labels.

We continue by defining a new category LTS3 of transition systems. The objects are
those from LTS1 which are finitely branching, i.e., from every state only finitely many
actions can be taken. Before defining the morphisms we need some definitions, inspired
by [Hen88].

Definition 90 Let T = (S, i, Act, −→) be an lts. Let RS(T ) denote the reachability set
of T . For r ∈ S, X ∈ RS(T ), and s ∈ Act∗ let the successors of r and X , respectively,
be
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ST (r) = {α ∈ Act | ∃r′. r
α−→ r′} , (5.25)

ST (X) = {ST (r) | r ∈ X} , (5.26)

let the language of r be

L(r) = {s | ∃r′. r
s−→ r′} , (5.27)

and let the acceptance sets of r after s be

AT (r, s) = {ST (r′) | r s−→ r′} . (5.28)

Notice that if {i} s−→ X for s ∈ Act∗ then {ST (X)} = AT (i, s). ST (X) is the acceptance
set of X . 2

Let A and B denote acceptance sets. We write A ⊂⊂ B if for every A ∈ A there
exists some B ∈ B such that B ⊆ A.

Definition 91 Let T = (S, i, Act, −→) be an lts and r, r′ ∈ S. Then,

r <<MAY r′ if L(r) ⊆ L(r′) (5.29)

r <<MUST r′ if AT (r, s) ⊂⊂ AT (r′, s) for every s ∈ Act∗ (5.30)

r << r′ if both r <<MAY r′ and r <<MUST r′ (5.31)

2

The morphisms are now defined as follows.

Definition 92 Given two ltss, Tj = (Sj, ij, Act, −→j), j = 1, 2. A morphism m between
T1 and T2 is a function m from RS(T1) to RS(T2), such that

m({i1}) = {i2} , (5.32)

X
α−→ X ′ implies m(X) α−→ m(X ′) , (5.33)

m(X) = Y ⇒ ∀A′ ∈ ST2(Y ). ∃A ∈ ST1(X). A ⊆ A′ . (5.34)

2

Notice how the definition of morphisms intuitively simulates Hennessy’s <<MAY and
<<MUST pre-orders. Being guided by the definitions in [Hen88] and our results from
Sect. 5.3.1, (5.32) and (5.33) reflect that we want traces to be simulated, and (5.34)
reflects how acceptance sets are to be matched. Composition of morphisms is defined as
the usual composition of functions. This defines the category LTS3.

The subcategory P of observations will not consist of finite paths, but of trees con-
sisting of a “trunk” and “branches” of length one, except for the “top” of the tree, where
a more general branching structure is allowed.
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Definition 93 Let P be the full subcategory of LTS3 whose objects are of the form

·

i //α1,1

##
α1,m1 FFF

FFF
FFF

FFF
· //α2,1

##
α2,m2 FFF

FFF
FFF

FFF
· · //αn,1

##
αn,mn FFF

FFF
FFF

FFF
·

<<
β1,1

xxxxxxxxxxxx //
β1,k1

·

· · · //βmn,1

##
βmn,kmn GGG

GGG
GGG

GGG
·

·

where 0 ≤ m1, . . . , mn, k1, . . . , kmn and all states are distinct. 2

Intuitively, the “trunk” corresponds to the observations in Sect. 5.3.1, i.e., it will
ensure the existence of certain traces. The “top” of the the tree will ensure the existence
of acceptance sets. The branches along the trunk are merely there for technical reasons.
Think of a tree that has a trunk and only branches (of length one) at the top. Then allow
branches of length one (“acceptance sets”) to “grow” at any node. This will produce an
observation in P .

Lemma 94 The category LTS3 has pullbacks.

Proof. Assume we are given a diagram
T1

  
m1 AAA
AAA
AA

T2

~~
m2} }
} } }
} } }

T0

where Tj = (Sj, ij, Act, −→j), j = 0, 1, 2.
We start be defining an lts T = (S, i, Act, −→) as follows. S will consist of triples

whose first, second, and third components are elements from RS(T1), RS(T2), and sub-
sets of Act, respectively. S and −→ are defined to be the least set such that

• i = ({i1}, {i2}, ST1(i1) ∩ ST2(i2)) ∈ S

• If (X, Y, C) ∈ S, α ∈ C, X
α−→ X ′, and Y

α−→ Y ′ then (X ′, Y ′, C′) ∈ S for all
C′ ∈ M(X ′, Y ′), where M(X ′, Y ′) = {A′ ∩ (

⋃
ST2(Y

′)) | A′ ∈ ST1(X
′)} ∪ {B′ ∩

(
⋃

ST1(X
′)) | B′ ∈ ST2(Y

′)}. Furthermore, (X, Y, C) α−→ (X ′, Y ′, C′) for all C′ ∈
M(X ′, Y ′).

It should be easy to see that T is an lts. For later use we notice the following facts.

• For (X, Y, C) ∈ S it is the case that ST ((X, Y, C)) = C. This follows from the
definition of C.
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• It is the case that L(T ) = L(T1)∩L(T2). To see this note that L(T ) ⊆ L(T1)∩L(T2)
clearly holds. So choose any v ∈ L(T1) ∩ L(T2), where v = α1 · · ·αn, n ≥ 0.
Then there exists X0

α1−→ · · · αn−→ Xn in T1 and Y0
α1−→ · · · αn−→ Yn in T2, where

X0 = {i1} and Y0 = {i2}. Also, there must exists Aj ∈ ST1(Xj) such that αj+1 ∈
Aj for 0 ≤ j < n and clearly we have αj+1 ∈ ⋃

ST2(Yj) for 0 ≤ j < n. So
(X0, Y0, A0 ∩ ⋃

ST2(Y0))
α1−→ · · · αn−→ (Xn, Yn, An ∩ ⋃

ST2(Yn)). Hence, v ∈ L(T ).

• Given Z ∈ RS(T ). Then there exist an X ∈ RS(T1) and a Y ∈ RS(T2) such that
Z = {(X, Y, C) | C ∈ M(X, Y )}. This follows from that fact that the transitions
are deterministic on RS(T1) and RS(T2).

Let us define π1 : T −→ T1 as follows (π2 is defined in a similar fashion). Given
Z ∈ RS(T ) let π1(Z) = X , where X is the unique first component of the elements of Z.
We now show that π1 is a morphism.

• Clearly π1({i}) = {i1}.

• Assume Z
α→ Z ′, for Z, Z ′ ∈ RS(T ). Then by definition π1(Z) α→ π1(Z′).

• Assume A ∈ ST1(X), where X = π1(Z). Then, (X, Y, A ∩ ⋃
ST2(Y )) ∈ Z, where

π2(Z) = Y , by definition. Also, ST ((X, Y, A ∩ ⋃
ST2(Y )) = A ∩ ⋃

ST2(Y ) ⊆ A.
Hence, there exists an C ∈ ST (Z) such that C ⊆ A.

Having argued for that π1 and π2 are morphisms it trivially follows that m1◦π1 = m2◦π2.
Now assume that we are given a commuting square of the form

T ′′

~~

f1

| |
| | |
| | |

  

f2

BB
BBB

BBB

T1

  
m1 AA
AAA
AAA

T2

~~
m2} } }
} }
} } }

T0

We will show that there exists a morphism h : T ′′ −→ T . We then necessarily
have f1 = π1 ◦ f1 and f2 = π2 ◦ f2. Hence, we will have the desired pullback. Define
h : T ′′ −→ T by h(V ) = {(X, Y, C) | C ∈ M(X, Y )}, where X = f1(V ) and Y = f2(V ).

• Clearly h({i′′}) = i.

• If V
α−→ V ′ in T ′′ then f1(V ) α−→ f1(V ′) and f2(V ) α−→ f2(V ′), and hence, by

previous facts we conclude that h(V ) α−→ h(V ′).

• Assume C ∈ ST (Z), where Z = h(V ). By the previous facts we conclude that
(X, Y, C) ∈ Z, where f1(V ) = X and f2(V ) = Y . Without loss of generality we
may assume C is of the form A∩

⋃
ST2(Y ) for A ∈ ST1(X). Since f1 is a morphism

we know there exists a D ∈ ST ′′(V ) such that D ⊆ A. Also, D ⊆ ⋃
ST2(Y )

because f2 simulates the transitions from V by transitions from Y . Hence, D ⊆
A ∩ ⋃

ST2(Y ).
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This shows that h is a morphism and completes the proof of the lemma.

Having defined M and P we now characterise the open maps.

Lemma 95 A morphism m : T1 −→ T2 is P-open if and only if m : RS(T1) −→ RS(T2)
has the following ”zig-zag” property

If m(X) α−→ Y ′, then there exists an X ′ such that X
α−→ X ′ and m(X ′) = Y ′,

and ∀A ∈ ST1(X). ∃A′ ∈ ST2(m(X)). A′ ⊆ A .

Proof. Assume m is P-open.

• If m(X) α−→ Y ′ then there exists

X0
α1−→ X1

α2−→ · · · αn−→ Xn ,

with {i1} = X0 and X = Xn in T1. Let Yj = m(Xj) for 0 ≤ j ≤ n and Yn+1 =
Y ′. Let O1 denote the following observation. For the sake of completeness we
show the underlying deterministic transition system and right below the associated
acceptance sets.

i //α1

##
α1 GGG
GGG

GGG
GGG

s1 //α2

$$
α2 HHH
HHH

HHH
HH

//αn

##
αn GGG
GGG

GGG
GGG

sn

v1 v2 vn

{i} α1→ {s1, v1}
α2→ · · · αn−1→ {sn−1, vn−1} αn→ {sn, vn}

{{α1}} {∅, {α2}} · · · {∅, {αn}} {∅}
Let O2 denote the following observation.

i′ //α1

""
α1

EEE
EEE

EEE
EEE

s′
1

//α2

##
α2

FFF
FFF

FFF
FFF

//αn

""
αn DD

DD
DDD

DD
DDD s′

n
//α

$$
α HHH
HHH

HHH
HHH

sn+1

v′
1 v′

2 v′
n v′

n+1

{i′} α1→ {s′
1, v

′
1}

α2→ · · · αn→ {s′
n, v′

n} α→ {s′
n+1, v

′
n+1}

{{α1}} {∅, {α2}} · · · {∅, {α}} {∅}
It should be easy to see that there exists a unique morphism from O1 to O2.
Denote it f : O1 −→ O2. Also, defining p : O1 −→ T1 by p({i}) = {i1} and
p({sj, vj}) = Xj for 1 ≤ j ≤ n yields a morphism. Similarly, q : O2 −→ T2 de-
fined by q({i′}) = {i2} and q({s′

j, v
′
j}) for 1 ≤ j ≤ n + 1 is a morphism. Since

there is at most one morphism between any two objects in LTS3 we conclude
that m ◦ p = q ◦ f . Since m is P-open there exists a morphism h : O2 −→ T1

such that p = h ◦ f and q = m ◦ h. Now h({s′
n, v′

n}) = h(f({sn, vn})) =
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p({sn, vn}) = Xn and since {s′
n, v′

n} α−→ {s′
n+1, v

′
n+1} we conclude h({s′

n, v′
n}) α−→

h({s′
n+1, v

′
n+1}).Also, m(h({s′

n+1, v
′
n+1})) = q({s′

n+1, v
′
n+1}) = Yn+1. So we con-

clude that there exists an X ′ such that X
α−→ X ′ and m(X ′) = Y ′.

• Let A ∈ ST1(X). We have to show that there exists an A′ ∈ ST2(m(X)) such that
A′ ⊆ A. As before, assume

X0
α1−→ X1

α2−→ · · · αn−→ Xn ,

where {i1} = X0 and X = Xn in T1, and let Y0 = m(X0), . . ., Yn = m(Xn). Let
O1 denote the following observation.

i //α1

##
α1 GGG
GGG

GGG
GGG

s1 //α2

$$
α2 HHH
HHH

HHH
HH

//αn

##
αn GGG
GGG

GGG
GGG

sn

v1 v2 vn

Let O2 denote

i′ //α1

""
α1

EEE
EEE

EEE
EEE

s′
1

//α2

""
α2

FFF
FFF

FFF
FFF

//αn−1

##
αn−1 FFF

FFF
FFF

FFF s′
n−1

//αn

%%
αn JJJ
JJJ

JJJ
JJJ

T(n,1)

v′
1 v′

2 v′
n−1 T(n,k)

where k = | ST2(Y ) |, and if ST2(Y ) = {A1, . . . , Ak} then T(n,j) denotes a tree of
depth one, whose branches are labelled by Aj, for 1 ≤ j ≤ k. For completeness
have show the reachability sets and the associated acceptance sets.

{i′} α1−→ {s′
1, v

′
1} · · · {s′

n−1, v
′
n−1}

αn−→ {i(n,1), . . . , i(n,k)} . . . X ′
1

. . . X ′
k

{{α1}} {∅, {α2}} · · · {∅, {α}} ST2(Y ) ∅

For the sake of clarity we have used X ′
1, . . . , X

′
k to denote the remaining reachability

sets.

As before, it should be easy to see that there exists a unique morphism f :
O1 −→ O2. Define p : O1 −→ T1 as before. Finally, define q({i′}) = Y1,
q({s′

j, v
′
j}) = Yj for 1 ≤ j ≤ n − 1, q({i(n,1), . . . , i(n,k)}) = Yn, and since the

transitions from {i(n,1), . . . , i(n,k)} can all be matched by those of Yn (ST2(Y ) =
SO2({i(n,1), . . . , i(n,k)})) it is possible to extend q to a morphism q : O2 −→ T2.
Notice how the requirements on the acceptance sets are fulfilled. As noted before,
we then necessarily have m ◦ p = q ◦ f and therefore the existence of a morphism
h : O2 −→ T1 such that p = h ◦ f and q = m ◦ h. Now the first equation
tells us that h({i(n,1), . . . , i(n,k)}) = Xn. Since A ∈ ST1(Xn) there must exist an
A′ ∈ SO2({i(n,1), . . . , i(n,k)}) such that A′ ⊆ A. But since SO2({i(n,1), . . . , i(n,k)}) =
ST2(Yn) = ST2(m(X)), we are done.
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Assume m has the “zig-zag” property. Given a commuting diagram

O1

��

f

//p
T1

��

m

O2 //
q T2

Since m has the property that m(X) α−→ Y ′ implies there exists X
α−→ X ′ such that

m(X ′) = Y ′, transitions on the reachability sets are deterministic, and RS(O1) together
with the transitions has a tree structure, we can define h : O2 −→ T1 inductively as
follows.

• h({i′}) = {i1}

• If h(Y ) has been defined, Y
α−→ Y ′, and h has not been defined on Y ′ then

define h(Y ′) as follows. By induction we may assume q(Y ) = m(h(Y )) and we
know q(Y ) α−→ q(Y ′). Then there must exist a (necessarily unique) X ′ such that
h(Y ) α−→ X ′ and m(X ′) = q(Y ′). Define h(Y ′) = X ′. Notice also that for all
A′ ∈ ST1(h(Y ′)) there exists an A ∈ SO2(Y

′) such that A ⊆ A′. This follows from m

being P-open and q being a morphism; There must exist an A′′ ∈ ST2(m(h(Y ′))) =
ST2(q(Y

′)) such that A′′ ⊆ A′ and also an A ∈ SO2(Y
′) such that A ⊆ A′′.

Checking that h : O2 −→ T1 is a morphism is now routine work. The equations p = h◦f

and q = m ◦ h now follows trivially.

We continue by defining Hennessy’s testing equivalence.

Definition 96 Given two ltss, Tj = (Sj, ij, Act, −→j), j = 1, 2. i1 is said to be testing
equivalent to i2 if

L(T1) = L(T2) , (5.35)

and for any s ∈ L(T1)

∀A′ ∈ A(i2, s). ∃A ∈ A(i1, s). A ⊆ A′ , (5.36)

∀A ∈ A(i1, s). ∃A′ ∈ A(i2, s). A′ ⊆ A . (5.37)

2

The above definition follows from Definition 2.8.8 in [Hen88]. Using the notation
from [Hen88] the above definition can be rewritten to i1 <<MAY i2, i2 <<MAY i1,
i1 <<MUST i2, and i2 <<MUST i1.

With the given choice of M and P it turns out that testing equivalence corresponds
to P-bisimilarity.
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Theorem 97 Given two ltss T1 and T2. Then,

T1 and T2 are testing equivalent if and only if T1 and T2 are P-bisimilar.

Proof. Assume T1 and T2 are testing equivalent. Define T = (S, i, Act, −→), π1 and
π2 as in the proof of Lemma 94. By symmetry it is enough to show that π1 is P-open.

Let X = π1(Z) for Z ∈ RS(T ) and assume X
α−→ X ′. Assume X0

α1−→ X1
α2−→

· · · αn−→ Xn
α−→ X ′, where X0 = {i1} and Xn = X . Since L(T1) = L(T2) we know that

there exist Y0
α1−→ Y1

α2−→ · · · αn−→ Yn
α−→ Y ′ in T2, where Y0 = {i2}. Then necessarily

Z
α−→ Z ′, where Z ′ = {(X ′, Y ′, C) | C ∈ M(X ′, Y ′)} and π1(Z′) = X ′.
Let C ∈ ST (Z), where Z ∈ RS(T ). We conclude that (X, Y, C) ∈ Z, where Y =

π2(Z). There exists a v ∈ L(T ) such that {i1} v−→ X and {i2} v−→ Y . Without loss
of generality assume C is of the form A ∩ ⋃

ST2(Y ), where A ∈ ST1(X), Consider any
minimal (with respect to set inclusion) Amin ∈ ST1(X) such that Amin ⊆ A. Since
ST1(X) = A(i1, v) = A(i2, v) = ST2(Y ), we conclude Amin ∈ ST2(Y ) and hence, Amin ⊆⋃

ST2(U). Hence, Amin ⊆ C, i.e., there exists an A′ ∈ ST1(X) such that A′ ⊆ C.
Next, assume T1 and T2 are P-bisimilar, i.e., there exists a span of open maps

T

��

m1

~ ~
~ ~
~ ~
~ ~
~ ~

��

m2

@@
@@
@@
@@
@@

T1 T2

It is enough to show that T and T1 are testing equivalent. By Lemma 95 it follows
easily that L(T ) = L(T1). Given an s ∈ L(T ). Assume A ∈ A(i, s). We have to show
that there exists an A1 ∈ A(i1, s) such that A1 ⊆ A. Let X be the unique element in
RS(T ) such {i} s−→ X . Then A ∈ ST (X). Since m1 is an open map there exists an
A1 ∈ ST1(m(X)) such that A1 ⊆ A. Since A(i1, s) = ST1(m(X)) we are done.

Now assume A1 ∈ A(i1, s). We have to show that there exists an A ∈ A(i, s) such
that A ⊆ A1. Let X1 be the unique element from RS(T1) such that {i1} s−→ X1. Then
A1 ∈ ST1(X1). Since m1 is open there exists an X ∈ RS(T ) such that {i} s−→ X

and m1(X) = X1. By the definition of morphisms there exists an A ∈ ST (X) such
that A ⊆ A1. But since ST (X) = A(i, s) we are done. Hence, T1 and T2 are testing
equivalent.

5.3.4 Barbed Bisimulation

In this section we show how we can obtain Milner and Sangiorgi’s barbed bisimulation
[MS92].

Barbed bisimulation differs from strong bisimulation in three obvious ways. First,
as in the case of weak bisimulation, we distinguish between “visible” and “invisible”
actions. Second, only τ transitions are required to be (bi)simulated. And third, only the
existence of a “visible” transition has to be matched.

We start by defining the category of models LTS4, then the subcategory of obser-
vations P , and finally we characterise the P-open maps and prove that P-bisimilarity
coincides with barbed bisimulation.
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Let LTS4 be the category of labelled transition systems (lts) whose objects are those
from LTS. Again we assume that Act contains a special “invisible” action denoted τ .
Before defining the morphisms of LTS4 we need the following definition.

Definition 98 Given an lts T = (S, i, Act, −→). Rτ(T ), the set of τ -reachable states of
T , is defined to be the set {s ∈ S | i τ−→ · · · τ−→ s}. We use the notation s↓ if there exist
an α ∈ Act − {τ} and an s′ ∈ S such that s

α−→ s′.
2

Morphisms between two lts in LTS4 are defined as follows:

Definition 99 Given two ltss, T1 = (S1, i1, Act, −→1) and T2 = (S2, i2, Act, −→2). A
morphism m from T1 to T2 is a function m : Rτ(T1) −→ Rτ(T2) such that

m(i1) = i2 , (5.38)

r
τ−→ r′ implies m(r) τ−→ m(r′) , (5.39)

r↓ implies m(r)↓ . (5.40)

This definition reflects that we only want to simulate τ ’s and preserve the ↓ predicate.
This corresponds well to our intuitive understanding of barbed (bi)simulation. Composi-
tion of morphisms is defined as the composition of the functions between the underlying
τ -reachable states. 2

Next we define the category of observations.

Definition 100 Let P be the subcategory of LTS4 whose objects are of the form

i
τ−→ r1

τ−→ · · · τ−→ rn−1
α−→ rn , (5.41)

where α ∈ Act and all states are distinct. 2

Notice how the observations correspond to the τ -reachability of a state (rn, when α = τ)
and the ↓ predicate holding at it (rn−1, when α 6= τ).

Having defined M as LTS4 and P we show that LTS4 has pullbacks.

Lemma 101 The category LTS4 has pullbacks.

Proof. Given a diagram

T1

��
m1 <<
<<
<<
<<

T2

��
m2

� �
� �
� �
� �

T

Define S ′ ⊆ Rτ(T1) × Rτ(T2) and −→′ as the least sets such that
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• (i1, i2) ∈ S ′

• If (r, s) ∈ S ′, r
τ−→ r′, s

τ−→ s′, and m1(r′) = m2(s′)
then (r′, s′) ∈ S ′ and ((r, s), τ, (r′, s′)) ∈−→′.

Intuitively, S ′ is the τ -reachable states of the lts that will constitute the pullback. Now
choose any α ∈ Act − {τ} and define

• S ′′ = {(r′, s′)|∃(r, s) ∈ S ′. r
β−→ r′ ∧ s

γ−→ s′ ∧ β 6= τ ∧ γ 6= τ}

• −→′′= {((r, s), α, (r′, s′)) | (r, s) ∈ S ′ ∧ (r′, s′) ∈ S ′′ ∧
∃β 6= τ, γ 6= τ. r

β−→ r′ ∧ s
γ−→ s′}

S ′′ and −→′′ ensure that the ↓ predicate has the desired value at the states in S ′. Now
define T ′ = (S ′ ∪ S ′′, (i1, i2), −→′ ∪ −→′′, Act), π1 : T ′ −→ T1 as π1((r, s)) = r, and
π2 : T ′ −→ T2 as π2((r, s)) = s. It can be shown that T ′, π1, and π2 constitute a pullback
of the above diagram.

Next, we characterise the open maps.

Lemma 102 A morphism m : T1 −→ T2 is P-open if and only if it satisfies the following
“zig-zag” property:

If m(r) τ−→ s then there exists an r′ such that r
τ−→ r′ and m(r′) = s.

Also, m(r)↓ implies r↓.

Proof. Assume m is open, r ∈ Rτ(T1), and m(r) τ−→ s. We first prove the existence
of the above mentioned r′. Assuming i1

τ−→ r1
τ−→ · · · τ−→ rn = r, let O1 be the

observation
i

τ−→ s1
τ−→ · · · τ−→ sn ,

and O2 the observation
i′

τ−→ s′
1

τ−→ · · · τ−→ s′
n

τ−→ s′ .

Let f : O1 −→ O2 be the unique function from O1 to O2 which sends sj to s′
j, p : O1 −→

T1 the morphism which sends sj to rj for 1 ≤ j ≤ n, and q : O2 −→ T2 the morphism
which sends s′

j to m(rj), for 1 ≤ j ≤ n, and s′ to s. Then the diagram

O1

��

f

//p
T1

��

m

O2 //
q T2

commutes, and there exists a morphism h : O2 −→ T1 such that p = h◦ f and q = m ◦h.
Observe that h(s′

n) = h(f(sn)) = p(sn) = rn. Hence, r = rn = h(s′
n) τ−→ h(s′).

Also, m(h(s′)) = q(s′) = s. Now choose r′ = h(s′). Finally, assume m(r) ↓ because
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m(r) α−→ s for α 6= τ . Choosing O2 as i′
τ−→ s′

1
τ−→ · · · τ−→ s′

n
α−→ s′ and the other

components as before (adjusting the morphisms in the obvious way) we obtain another
commuting diagram and a morphism h′ : O2 −→ T1 such that the triangles commute.
So h′(s′

n) = h′(f(sn)) = p(sn) = rn = r and since s′
n ↓ we have r↓.

Assume m has the “zig-zag” property and the diagram

O1

��

f

//p
T1

��

m

O2 //
q T2

commutes. We proceed by a case analysis on the shape of the observations O1 and O2.

• Assume O1 is of the form i
τ−→ s1

τ−→ · · · τ−→ sn and O2 of the form i′
τ−→ s′

1
τ−→

· · · τ−→ s′
n

τ−→ · · · τ−→ s′
n+k , where k ≥ 0.

Define h(s′
j) = p(sj) for 1 ≤ j ≤ n. Next, we define h on s′

n+1. Since q(s′
n) =

q(f(sn)) = m(p(sn)), p(sn) ∈ Rτ(T1), and m(p(sn)) τ−→ q(s′
n+1) there exists a r′

such that p(sn) τ−→ r′ and m(r′) = q(s′
n+1). Define h(s′

n+1) = r′. Continuing this
way for the remaining state s′

n+2, . . . , s
′
n+k it can be shown that the produced h is

a morphism from O2 to T1 such that p = h ◦ f and q = m ◦ h.

• Assume O1 is of the form i
τ−→ s1

τ−→ · · · τ−→ sn−1
α−→ sn and O2 of the form

i′
τ−→ s′

1
τ−→ · · · τ−→ s′

m−1
β−→ s′

m, where α 6= τ and β 6= τ .

Since f is a morphism we conclude n = m and f(sj) = s′
j for 1 ≤ j ≤ n. It is then

easy to see that h(s′
j) = p(sj) for 1 ≤ j ≤ n defines a morphism from O2 to T1

such that p = h ◦ f and q = m ◦ h.

• Finally assume O1 is of the form i
τ−→ s1

τ−→ · · · τ−→ sn and O2 of the form
i′

τ−→ s′
1

τ−→ · · · τ−→ s′
m−1

α−→ s′
m, where α 6= τ .

As before, we conclude m > n. Using the same procedure as in case 1, only
this time observing that m(h(s′

m−1)) = q(s′
m−1) ↓ implies h(s′

m−1) ↓, we obtain a
morphism h : O2 −→ T1 such that the two triangles in the diagram commute.

We conclude that m is P-open.

We now give Milner and Sangiorgi’s definition of barbed bisimulation adapted to the
case where the labelled transition systems have initial states.

Definition 103 Given T1 and T2. A barbed bisimulation over T1 and T2 is a relation
R ⊆ Rτ(T1) × Rτ(T2) such that

(i1, i2) ∈ R , (5.42)

((r, s) ∈ R ∧ r
τ−→ r′) ⇒ for some s′ (s τ−→ s′ ∧ (r′, s′) ∈ R) , (5.43)
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((r, s) ∈ R ∧ s
τ−→ s′) ⇒ for some r′ (r τ−→ r′ ∧ (r′, s′) ∈ R) , (5.44)

(r, s) ∈ R ⇒ (r↓ ⇔ s↓) . (5.45)

T1 and T2 are said to be barbed bisimilar if there exists such an R. 2

And now to the theorem relating P-bisimilarity to barbed bisimilarity.

Theorem 104 Given two ltss, T1 and T2. Then:

T1 is barbed bisimilar to T2 if and only if T1 and T2 are P-bisimilar.

Proof. Assume R is a barbed bisimulation over T1 and T2 and γ ∈ Act − {τ}. Now
define

• S ′ = {(r, s) ∈ R | ∃(r1, s1), . . . , (rn−1, sn−1) ∈ R.

i1
τ−→ r1

τ−→ · · · τ−→ rn−1
τ−→ r ∧

i2
τ−→ s1

τ−→ · · · τ−→ sn−1
τ−→ s},

• −→′= {((r, s), τ, (r′, s′)) | (r, s), (r′, s′) ∈ S ′ ∧ r
τ−→ r′ ∧ s

τ−→ s′},

• S ′′ = {(r′, s′) ∈ S1 × S2 | ∃(r, s) ∈ S ′, α, β ∈ Act − {τ}.r
α−→ r′ ∧ s

β−→ s′},

• −→′′= {((r, s), γ, (r′, s′)) | (r, s) ∈ S ′ ∧ (r′, s′) ∈ S ′′ ∧
∃α, β ∈ Act − {τ}.r

α−→ r′ ∧ s
β−→ s′},

• T = (S ′ ∪ S ′′, (i1, i2), Act, −→′ ∪ −→′′),

• π1 : T −→ T1 by π1((r, s)) = r, and

• π2 : T −→ T2 by π1((r, s)) = s.

It can be shown that T is a lts and that π1 and π2 are morphisms. Without loss of
generality we show that π1 is open. Choose any (r, s) ∈ Rτ(T ).

• Assume π1((r, s)) = r
τ−→ r′. Since Rτ (T ) = S ′ ⊆ R and R was a barbed

bisimulation over T1 and T2, we know that there exists a s′ such that s
τ−→ s′ and

(r′, s′) ∈ R. But by definition of S ′ we conclude (r′, s′) ∈ S ′ and also (r, s) τ−→
(r′, s′) in T , where π1((r′, s′)) = r′.

• Assume that π1((r, s)) = r ↓, i.e., there exists an r′ such that r
α−→ r′ and α 6= τ .

Since (r, s) ∈ Rτ(T ) we know that r ↓⇒ s↓, i.e., there exists s′ such that s
β−→ s′

and β 6= τ . But then (r′, s′) ∈ S ′′ and ((r, s), γ, (r′, s′)) ∈−→′′, i.e., (r, s)↓.

Assume T1 and T2 are P-bisimilar. Then there must exist a span of open maps:
T

��

m1

~ ~
~ ~
~ ~
~ ~
~ ~

��

m2

@@
@@
@@
@@
@@

T1 T2
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It is sufficient to show that if m1 : T −→ T1 (m2 : T −→ T2) is open then T and T1 (T2)
are barbed bisimilar, since being barbed bisimilar is an equivalence relation. So define
R1 = {(r, m1(r)) | r ∈ Rτ(T )}. We claim that R1 is a barbed bisimulation over T and
T1, namely;

• (i, i1) ∈ R1,

• (r, s) ∈ R1 and r
τ−→ r′ implies s = m1(r)

τ−→ m1(r′) and (r′, m1(r′)) ∈ R1,

• if (r, s) = (r, m1(r)) ∈ R1 and m1(r)
τ−→ s′ then there exists an r′ such that

r
τ−→ r′ and m1(r′) = s′, since m1 is open, and (r′, s′) = (r′, m1(r′)) ∈ R1, and

• if (r, s) ∈ R1 and r ↓ then s = m1(r) ↓ since m1 is a morphism and if s↓ then r ↓
since m1(r) = s, r ∈ Rτ(T ), and m1 is open.

This concludes the proof.

5.3.5 Probabilistic Transition Systems

In this section we show that the probabilistic bisimulation of Larsen and Skou [LS91]
can be characterised using the general setting in Sect. 5.2. We will however apply the
theory in a slightly different way. Until now, we have tried to characterise P-bisimilarity
between objects of M, for the specific choices of P and M. In this section we will focus
on P-bisimilarity between objects of a subcategory of M. This application of the theory
of open maps still turns out “successful”.

Intuitively, Larsen and Skou’s probabilistic bisimulation differs from strong bisimu-
lation in at least two respects. First, to each labelled transition there is associated a
real number from the interval [0; 1] which is to be understood as the probability with
which the transition can be performed. Second, it is no longer single labelled transitions
between two states that have to be matched but a set of identically labelled transitions
into an equivalence class of probabilistic bisimilar states.

Based on [LS91] we start by defining a category PPTS, partial probabilistic transition
systems, corresponding to M, and a subcategory of observations, P , in PPTS. Then,
we show that P-bisimilarity in the full subcategory of probabilistic transition systems,
PTS, in PPTS, corresponds to Larsen and Skou’s probabilistic bisimulation. Contrary
to Larsen and Skou we do not assume lower limit on the probability of transitions.
Because we wish to allow arbitrary small probabilities and for technical reasons, we
consider IR∗, the field of hyper-real numbers, instead of IR, the field of real numbers.
IR∗ is the proper ordered extension of IR containing infinitesimals. An element ε ∈ IR∗

is infinitesimal if 0 < |ε| < r for all positive real numbers r. We reserve the symbol ε to
denote infinitesimals. For a thorough presentation the reader is referred to [Kei76].

Definition 105 A partial probabilistic transition system (ppts) is a tuple

T = (Pr, i, Act,Can, µ) , (5.46)
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where Pr is a set of processes (or states), i is the initial state, Act is the set of observable
actions that processes may perform, Can is an Act-indexed family of sets of processes,
and µ is a family of partial probability distributions indexed by states and actions. For
any action a ∈ Act and any process r ∈ Pr, r ∈ Cana indicates that the process r

can perform an a-action, in which case µr,a : Pr → [0; 1] ⊆ IR∗ is a function such that∑
r′ µr,a(r′) ≤ 1. 2

In general, we do not require the sum to be equal to 1; hence the name partial
probability distribution. If all µr,a are probability distributions, i.e., µr,a maps into the
real numbers and

∑
r′ µr,a(r′) = 1, we leave out the term partial and refer to T as

a probabilistic transition system (pts). µr,a(r′) = µ can intuitively be read as “r can
perform the action a and with probability µ become r′ ”.

Given a ppts T. We shall use the following notations:

r
a−→µ r′ whenever r ∈ Cana and µr,a(r′) = µ

r
a−→ r′ whenever r

a−→µ r′ for some µ > 0
r

a−→ whenever r ∈ Cana

r 6 a−→ whenever r 6∈ Cana

r
a−→µ S whenever S is any set of processes,

r ∈ Cana and µ =
∑

r′∈S µr,a(r′).

We assume the set Act to be fixed and that all processes in Pr are reachable from
the initial state via transitions having non-zero probabilities. Finally, two ppts will be
said to be distinct if their sets of processes are disjoint.

Next, we define morphisms between pptss.

Definition 106 A ppts-morphism between two pptss, Tj = (Prj, ij, Act, Canj, µj), j =
1, 2, is a function f between Pr1 and Pr2 such that

f(i1) = i2 , (5.47)

f(r) a−→ f(r′) whenever r
a−→ r′ , (5.48)

If r
a−→ r′ and f(r) a−→µ′ f(r′) then

∑
r

a
−→µr′′f(r′′)=f(r′)

µ ≤ µ′ . (5.49)

2

The intuition behind (5.49) is that all transitions from r in T1 which are simulated
by a transition from f(r) can occur with a probability which is no higher than the
probability of the simulating transition from f(r).

Let PPTS denote the category of partial probabilistic transition systems, whose
objects are ppts’s and morphisms are ppts-morphisms, with composition of morphisms
defined as the usual composition of functions. Let PTS denote the full subcategory of
PPTS whose objects are ptss.

In our model of computation, PPTS, we identify the following subcategory P of
observations.
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Definition 107 Let P be the full subcategory of PPTS whose objects are pptss of the
following form

i
a1−→ε1 r1

a2−→ε2 · · · an−→εn rn , (5.50)

for some natural number n, distinct states, and actions a1, . . . , an ∈ Act. Notice that all
the probabilities are infinitesimals. 2

Since we will choose only to observe behaviours in ptss, using only infinitesimals on
the transitions of the observations will intuitively enable us to observe whether or not a
transition can occur, rather than the specific probability with which is occurs.

This time, we postpone the investigation of the existence of pullbacks in PPTS.
Instead, we now try to characterise the P-open maps in PPTS between any two ptss.

Lemma 108 A morphism m : T1 −→ T2 between two ptss is P-open if and only if it is
“zig-zag” in the following sense:

If m(r) a−→ s then there exists an r′ such that r
a−→ r′ and m(r′) = s.

Proof. Assume m is P-open and m(r) a−→ s. Since r is reachable from i1 there
exists

i1 = r0
a1−→ r1

a2−→ · · · an−→ rn = r

in T1. Let O1 be any observation of the form

i
a1−→ε1 s1

a2−→ε2 · · · an−→εn sn ,

and O2 any observation of the form

i′
a1−→ε′

1
s′
1

a2−→ε′
2

· · · an−→ε′
n

s′
n

a−→ε′ s′ ,

where εj ≤ ε′
j for 1 ≤ j ≤ n. Let h denote the unique morphism between O1 and O2, f

denote the morphism from O1 to T1 which maps sj into rj for 1 ≤ j ≤ n, and g denote
the morphism from O2 to T2 which maps O2 into

i2 = m(r0)
a1−→ m(r1)

a2−→ · · · an−→ m(rn) = m(r) a−→ s .

It is easy to see, that the square

O1

��

h

//f
T1

��

m

O2 //
g T2

commutes. But since m is P-open there exists a morphism m′ : O2 −→ T1 such that
m′ ◦ h = f and m ◦ m′ = g. This implies the existence of an r′ such that r

a−→ r′ and
m(r′) = s.

Conversely, assume that m is “zig-zag”. Let O1 and O2 be any two observations and
f , g, and h any morphisms such that the square
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O1

��

h

//f
T1

��

m

O2 //
g T2

commutes. We now define a morphism m′ from O2 to T1 such that m′ ◦ h = f and
m ◦ m′ = g.

Assume O1 has the form

i
a1−→ε1 r1

a2−→ε2 · · · an−→εn rn ,

and O2 has the form

i′
a1−→ε′

1
r′
1

a2−→ε′
2

· · · an−→ε′
n

r′
n

an+1−→ε′
n+1

· · · an+k−→ε′
n+k

r′
n+k ,

where εj ≤ ε′
j for 1 ≤ j ≤ n. Apart from m′(i′) = i1, we must define m′(r′

j) = f(rj)

for 1 ≤ j ≤ n. Since g(r′
n) = m(f(rn))

an+1−→ g(r′
n+1) and m is “zig-zag”, there exists an

s such that f(rn)
an+1−→ s and m(f(s)) = g(r′

n+1). Define m′(rn+1) = s. Continuing this
process for the remaining r′

n+2, . . . , r
′
n+k we obtain the map m′ : O2 −→ T1. It is now

easy to show that m′ is indeed a morphism, since the transitions in the observations have
infinitesimal probabilities, and that the “triangles” in the diagram commute. Hence, m

must be P-open

Going through the proof the reader should be able to realize why only infinitesimal
probabilities are allowed on the observations from P . Allowing arbitrary probabilities
would imply that two ptss which are related by an open map m would be locally iso-
morphic in the following sense: if m(r) a−→µ s′, then there exists an r

a−→µ r′ such that
m(r′) = s′.

From the definition of the morphisms in PPTS one observes the following facts:

• If m : T1 −→ T2 and T1 is a pts, then T2 must also be a pts.

• PPTS does not have pullbacks, neither does PTS. Consider the following example
which illustrates three ptss.

i

��
1 a

i′

��

0.55
a

� �
� �
� �
� �

��0.45
a

>>
>>
>>
>> i′′

~~

0.5
a

~ ~
~ ~ ~
~ ~ ~

  0.5
a

AAA
AA
AAA

r s s′ s′′ s′′′

Let T , T1, and T2 denote the ptss from left to right. Clearly there are uniquely
determined morphisms from T1 to T and from T2 to T . Together, they form a
diagram which does not have a pullback.

However, for P-bisimilarity to be an equivalence relation (a transitive relation, to be
more precise) it is in general not necessary for the category M to have pullbacks. The
following weaker result suffices.
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Theorem 109 Given two P-open morphisms between ptss, m1 : T1 −→ T0 and m2 :
T2 −→ T0. There exists a pts T and P-open morphisms π1 and π2 such that

T

~~

π1

} }
} } }
} }
}

  

π2

AA
AA
AAA
A

T1

  
m1 AA
AAA
AAA

T2

~~
m2} } }
} } }
} }

T0

is a commuting square.

Proof. We define a pts, T = (Pr, i, Act,Can, µ), and two maps π1 : T −→ T1,
π2 : T −→ T2 with the desired properties.

• Define S = {m−1
1 (r) × m−1

2 (r) | r ∈ Pr0}.

• Let Pr ⊆ S and ;⊆ S × Act × [0; 1] × S be the least sets such that

– i = (i1, i2) ∈ Pr

– If (r, s) ∈ Pr, r
a−→µ1 r′, µ1 > 0, s

a−→µ2 s′, µ2 > 0, m1(r′) = m2(s′),
and µ′ = µ1µ2

µ , where µ > 0 is uniquely determined by m1(r) = m2(s)
a−→µ

m2(s′) = m1(r′), then ((r, s), a, µ′, (r′, s′))∈ ;, written (r, s) a
;µ′ (r′, s′) and

(r′, s′)∈ Pr.

• Now for (r, s) ∈ Pr, a ∈ Act define (r, s) ∈ Cana if (r, s) a
;µ (r′, s′) for some

(r′, s′) ∈ Pr. Also, define µ(r,s),a((r′, s′)) = µ′ > 0 if (r, s) a
;µ′ (r′, s′) and otherwise

0.

• Define π1 : T −→ T1 by π1((r, s)) = r and π2 : T −→ T2 by π2((r, s)) = s.

It can be shown that π1 and π2 are morphisms. Here we merely show that T is a pts.
Clearly, all states in Pr are reachable from the initial state. Since m1 and m2 form

a co-span of open maps between ptss we know, e.g., that if m1(r)
a−→µ v then

µ =
∑

r′m1(r′)=v

µr,a(r′) =
∑

r
a

−→µr′m1(r′)=v

µ .

Also, if (r, s) ∈ Cana then (r, s) a
;µ′ (r′, s′) for some µ′ > 0 and we have to show∑
(r′,s′)

µ(r,s),a((r
′s′)) = 1 .

It follows from the definition that r ∈ Cana and s ∈ Cana. We then have∑
(r′,s′)

µ(r,s),a((r
′s′))
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=
∑
I1

∑
I2

∑
I3

µ1µ2

µ

=
∑
I1

∑
I2

µ1

µ

∑
I3

µ2

=
∑
I1

∑
I2

µ1

µ
µ

=
∑
I1

∑
I2

µ1

=
∑
I1

µ

= 1 .

where the index sets are

I1 = {v | m1(r)
a−→µ v ∧ µ > 0} ,

I2 = {r′ | r a−→µ1 r′ ∧ m1(r′) = v} ,

and
I3 = {s′ | s a−→µ2 s′ ∧ m2(s′) = v} .

Noticing that the composition of two open maps is itself an open map [JNW93], we
obtain the following corollary.

Corollary 110 P-bisimilarity between ptss is an equivalence relation.

If, as done by Larsen and Skou in [LS91], we had assumed a lower limit γ on the
probability of transitions (minimal probability assumption) and only considered the field
of real numbers it would have been hard to obtain a result as the above, at least for us.
The problem is that “pullback like” constructions of T involves expressions of the type
µ1µ2

µ which may denote values smaller than γ.
Next, we recall the definition of probabilistic bisimulation from [LS91]. We have

adapted it to the case where the probabilistic transition systems have initial states.

Definition 111 Let Tj = (Prj, ij, Act, Canj, µj), where j = 1, 2, be two distinct ptss.
A probabilistic bisimulation between T1 and T2 is an equivalence ≡ on Pr = Pr1 ∪ Pr2

such that i1 ≡ i2 and whenever r ≡ s, then the following holds:

∀a ∈ Act. ∀S ∈ Pr/≡. r
a−→µ S ⇔ s

a−→µ S , (5.51)

where the notation r
a−→µ S was defined after Definition 105. 2

Now to the main result of this section.
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Theorem 112 Given two ptss, T1 and T2. Then :

T1 is probabilistic bisimilar to T2 if and only if T1 is P-bisimilar to T2.

Proof. Assume ≡ is a probabilistic bisimulation between T1 and T2. We define a pts
T = (Pr, i, Act, Can, µ) and two P-open morphisms, m1 : T −→ T1 and m2 : T −→ T2,
which constitute a span of open maps, showing that T1 and T2 are P-bisimilar.

• Let S = {(r, s) ∈ Pr1 × Pr2 | r ≡ s}.

• Let Pr ⊆ S and ;⊆ S × Act × [0; 1] × S be the least sets such that

– i = (i1, i2) ∈ Pr

– If (r, s) ∈ Pr, r
a−→µ1 r′, µ1 > 0, s

a−→µ2 s′, µ2 > 0, r′ ≡ s′, and µ′ = µ1µ2
µ ,

where µ > 0 is uniquely determined by r
a−→µ [r′] and [r′] is the equivalence

class of r′ under ≡, then (r′, s′) ∈ Pr and ((r, s), a, µ′, (r′, s′)) ∈ ;, written
(r, s) a

;µ′ (r′, s′).

• Now for (r, s) ∈ Pr, a ∈ Act define (r, s) ∈ Cana if (r, s) a
;µ (r′, s′) for some

(r′, s′) ∈ Pr. Also, define µ(r,s),a((r′, s′)) = µ′ > 0 if (r, s) a
;µ′ (r′, s′) and otherwise

0.

• Define m1 : T −→ T1 by m1((r, s)) = r and m2 : T −→ T2 by m2((r, s)) = s.

It can be shown that T is a pts, that m1 and m2 are open maps, and that together they
constitute the desired span of open maps.

Now assume there is a span of open maps:

T

��

m1

~ ~ ~
~ ~ ~
~ ~

��

m2

@@
@@@
@@@

T1 T2

Define the relation ∼ ⊆ Pr × Pr as

r ∼ r′ if and only if m1(r) = m1(r′) or m2(r) = m2(r′) ,

and let ≈=∼∗. Now define an equivalence relation ≡ on Pr1 ∪ Pr2 whose set of equiva-
lence classes are

{m1(S ′) ∪ m2(S ′) | S ′ ∈ Pr/≈} .

That ≡ is indeed an equivalence relation on Pr1 ∪ Pr2 follows from the definition of
≈ and that m1 and m2 are P-open morphisms, which implies that they are surjective
functions.

We now claim that ≡ is a probabilistic bisimulation between T1 and T2. This follows
from the following observations (without loss of generality stated for T1).

• i1 ≡ i2.
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• If s ∈ Pr1, a ∈ Act, and S is an equivalence class of ≡ then s
a−→µ S if and only

if s
a−→µ (S ∩ Pr1). Also, for any r ∈ m−1

1 (s), s
a−→µ S implies r

a−→µ S ′ for the
unique equivalence class S ′ = m−1

1 (S ∩ Pr1) ∈ Pr/≈, and r
a−→µ S ′ for S ′ ∈ Pr/≈

implies m1(r)
a−→µ m1(S ′).

• For r1 ≈ r2 in T and any S ′ ∈ Pr/≈ we have r1
a−→µ S ′ if and only if r2

a−→µ S ′.

5.4 Non-interleaving Models

We start by recalling a well-known model of “true concurrency”, event structures [Win80,
Win86], and the characterisation of the non-interleaving bisimulation from [JNW93] and
[NW95]. We then proceed to look for a non-interleaving generalisation of our character-
isation of trace equivalence.

Definition 113 A (labelled prime) event structure is a structure (E, ≤, #, l) consisting
of a set of events E,which are partially ordered by ≤, the causal dependency relation,
such that for e′ ∈ E

|{e′ | e′ ≤ e}| < ∞ , (5.52)

a binary, symmetric, irreflexive relation # ⊆ E × E, the conflict relation, such that for
e, e′ ∈ E

(e#e′ ∧ e′ ≤ e′′) ⇒ e#e′′ (5.53)

and a labelling function l : E −→ Act assigning an action-label from Act to each event
in E.

Two events e, e′ ∈ E are said to be concurrent, denoted e co e′, if and only if ¬(e ≤ e′),
¬(e′ ≤ e), and ¬(e#e′). 2

We will use the notation e < e′ whenever e ≤ e′ and e 6= e′.
The finiteness assumption restricts attention to discrete processes where an event oc-

currence depends only on finitely many previous occurrences. The axiom on the conflict
relation expresses that if two events causally depend on events in conflict then they too
are in conflict.

Guided by our interpretation we can formulate a notion of computation state of an
event structure (E, ≤, #, l). Taking a computation state of a process to be represented
by the set x of events which have occurred in the computation, we expect that

(e′ ∈ x ∧ e ≤ e′) ⇒ e ∈ x ,

which expresses that if an event has occurred, then all events on which it causally depends
have occurred too, and also that

∀e, e′ ∈ x.¬(e#e′) ,
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which expresses that no two events in conflict can occur together in the same computa-
tion.

Definition 114 Let (E, ≤, #, l) be an event structure. Define its configurations, D(E, ≤,

#, l), to consist of those finite subsets x ⊆ E such that

∀e, e′ ∈ x. ¬(e#e′) , conflict-free (5.54)

∀e, e′. e′ ≤ e ∈ x ⇒ e′ ∈ x , downwards-closed (5.55)

2

Notice that e ↓= {e′ ∈ E | e′ ≤ e} is a configuration for any e ∈ E.
Events manifest themselves as atomic jumps from one configuration to another, in a

way which allows one to regard event structures as transition systems with a notion of
concurrency. Notice that the event structures presented here are not just an arbitrary
choice from the world of so-called non-interleaving models.It is well known, see e.g.
[WN94], that these structures bear a strong relationship to many other models like net
systems [Thi87] and asynchronous transition systems [Shi85, Bed88].

Definition 115 Let (E, ≤, #, l) be an event structure. Let x, x′ be configurations. We
write x

e−→ x′ if and only if e /∈ x and x′ = x ∪ {e}. 2

Proposition 116 Two events e0, e1 of an event structure are concurrent if and only if
there exist configurations x, x0, x1, x

′ such that

x′

x0

>>e1 |||||
x1

`` e2
B B B B B

x

aa
e0

D D D D D
==

e1

zzzzz

Morphisms on event structures are defined as follows:

Definition 117 Let ES = (E, ≤, #, l) and ES ′ = (E ′, ≤′, #′, l′) be event structures
over the same action set Act. A morphism from ES to ES ′ consists of a total function
η : E −→ E ′ on events, which satisfies l′ ◦ η = l and

x ∈ D(ES ) ⇒ ηx ∈ D(ES ′) ∧ (5.56)

∀e0, e1 ∈ x. η(e0) = η(e1) ⇒ e0 = e1.

2

A morphism η : ES −→ ES ′ between event structures expresses how behaviour in
ES determines behaviour in ES ′. The function η expresses how the occurrence of events
in ES are simulated by events in ES ′.

We write E for the category of event structures; composition is the usual componen-
twise composition of functions.
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5.4.1 Strong History-preserving Bisimulation

Choosing M as E leaves open the choice of an observation category P . However, Pratt’s
pomsets are a natural “concurrent” counterpart of the sequential observations from
Sec. 5.2, as suggested in [JNW93]. Formally, we may identify pomsets with the full
subcategory, PO, of E whose objects consist of event structures, in which # is empty
(no conflict), i.e., structures of the form P = (E, ≤, ∅, l), representing individual non-
sequential “runs” of systems. Notice that we may “dually” identify Milners’s synchroni-
sation trees with event structures with empty concurrency relation.

It turns out that with this choice of pomsets PO-bisimilarity is a strengthening of
the equivalence history-preserving bisimulation, previously studied by Rabinovitch and
Trakhtenbrot [RT88], and van Glabeek and Goltz [GG89].

Definition 118 A history-preserving bisimulation between two labelled event structures
ES 1 and ES 2 over a common labelling set Act consists of a set H of triples (x1, f, x2)
where x1 is a configuration of ES 1, x2 a configuration of ES 2, and f ⊆ E1 × E2 is an
isomorphism (with domain x1 and co-domain x2) between them (regarded as pomsets),
such that (∅, ∅, ∅) ∈ H and, whenever (x1, f, x2) ∈ H

(i) if x1
e→ x′

1 in ES 1 then there exists an e′ such that x2
e′
→ x′

2 in ES 2 and l1(e) = l2(e′)
and (x′

1, f
′, x′

2) ∈ H with f ⊆ f ′, for some x′
2 and f ′.

(ii) if x2
e′
→ x′

2 in ES 2 then there exists an e such that x1
e→ x′

1 in ES 1 and l1(e) = l2(e′)
and (x′

1, f
′, x′

2) ∈ H with f ⊆ f ′, for some x′
1 and f ′

A history-preserving bisimulation H is strong when it further satisfies

(I) (x, f, y) ∈ H & x′ ⊆ x, for a configuration x′ of ES 1 implies (x′, f ′, y′) ∈ H , for
some f ′ ⊆ f and y′ ⊆ y.

(II) (x, f, y) ∈ H & y′ ⊆ y, for a configuration y′ of ES 2, implies (x′, f ′, y′) ∈ H , for
some f ′ ⊆ f and x′ ⊆ x.

2

In [JNW94, NW95] the following theorem was shown.

Theorem 119 PO-bisimilarity between labelled event structures coincides with strong
history-preserving bisimilarity.

One interesting observation is that the characterisation of strong history-preserving
bisimilarity is very robust with respect to the choice of observations.

Theorem 120 The characterisation of strong history-preserving bisimulation as P-bisi-
milarity also holds for a very restricted full subcategory of PO containing only objects
corresponding to sequential words, “sticks”, and “lollipops” like
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·
  

e′
BBB
B

· //e1 · //e2 · · · //en ·
>>e ||||

  e′ B
BBB
co ·

·
>>

e
||||

Proof. Follows from the proof of Theorem 119.

The above observation also suggests that history-preserving bisimulation might be
hard, or even impossible, to characterise in a similar intuitive way. In fact, we have the
following observation.

Theorem 121 Let M be any category whose objects are event structures and whose
morphisms η : ES −→ ES ′ simulates events from ES by events in ES ′ in the following
sense: η induces a simulation morphism in the sense of Definition 72 between the ltss
induced by Definition 114 and 115. Let P be any subcategory of M containing the
subcategory corresponding to P as defined in Definition 5.10, i.e., words closed under
prefix. Then, P-bisimilarity does not coincide with history-preserving bisimulation.

Proof. Assume by contradiction P-bisimilarity does coincide with history-preserving
bisimulation. Consider the two event structures ES 1 and ES 2 whose induced ltss are

{e1, e2} {e2}oo
e1:a

//
e3:c {e2, e3}

{e1}

��

e4:c

OO

e2:b

∅

OO

e2:b

oo e1:a //
e6:b

��

e5:a

{e6}

��

e5:a

{e1, e4} {e5} //e6:b {e5, e6}
and

{e′
1, e

′
2} {e′

2}oo
e′
1:a

//
e′
3:c

{e′
2, e

′
3}

{e′
1}

OO

e′
2:b

∅

OO

e′
2:b

oo
e′
1:a

//
e′
6:b

��

e′
5:a

{e′
6}

��

e′
5:a

{e′
4, e

′
5} {e′

5}oo
e′
4:c

//
e′
6:b

{e′
5, e

′
6}

respectively. For clarity, the transitions are labelled by events and their labels. For the
proof, we only require that the transitions are labelled by the labels of the events. Since
ES 1 and ES 2 are history-preserving bisimilar, there must exist, by our assumptions, a
span of open maps from a common event structure ES

ES

||

f

z z z
z z z
z z z
z

""

g

DDD
DDD

DDD
D

ES 1 ES 2
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Since ES is P-bisimilar to both ES 1 and ES 2, they must be history-preserving bisim-
ilar, by our assumptions. Hence, ES ’s induced lts must contain

{e, e′} {e′}oo
e:a

{e}

OO

e′:b

∅

OO

e′:b

oo e:a

By our assumptions and Theorem 73, the induced morphisms between the ltss must be
P-open in the sense of Lemma 74. However, it is easy to see that either the lts of ES 1

or ES 2 cannot be strongly bisimilar in the sense of Definition 71 to the lts of ES. Hence
ES cannot be history-preserving bisimilar with either ES 1 or ES 2, a contradiction.

This observation tells us, that if history-preserving bisimulation is to be captured as
P-bisimulation for some P and M, the setting will be somewhat different and probably
less intuitive than the setting which captures strong history-preserving bisimulation. We
could also interpret this observation as saying that history-preserving bisimulation is
perhaps a less natural choice for a true concurrency equivalence than strong history-
preserving bisimulation. For instance, a history-preserving bisimulation between ES 1

and ES 2 will match

∅ e1−→ {e1}

by

∅
e′
5−→ {e′

5}

and subsequently

{e1}
e2−→ {e1, e2}

by

{e′
5}

e′
6−→ {e′

5, e
′
6} .

However, the matching of e2 by e′
6 is dependent of the previous matching of e1 by e′

5,
although these events are independent of e2 and e′

6, respectively, since

∅ e2−→ {e2}

cannot be matched by

∅ e′
6−→ {e′

6} .

On the other hand, (I) and (II) in Definition 118 says that strong history-preserving
bisimulation does have the property that if two events e and e′ are matched, than this
matching is consistent irrespect of previous matchings between events independent of e

and e′, respectively.
Nielsen and Winskel have also defined the notion of a strong coherent history-preser-

ving bisimulation between two labelled event structures.
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Definition 122 A history-preserving bisimulation H between event structures ES 1 and
ES 2 over a common labelling set Act is said to be strongly coherent if it satisfies the
following property

(I) whenever (x, f, y) =
⋃

i∈I(xi, fi, yi) for some index set I , then (x, f, y) ∈ H if and
only if ∀i ∈ I. (xi, fi, yi) ∈ H .

2

Recall that the notation (x′, f ′, y′) implicitly means that x′ is a configuration of
ES 1, y′ is a configuration of ES2, and f ′ is an isomorphism between them (regarded as
pomsets).

It is easy to see that strong coherent history-preserving bisimilarity implies strong
history-preserving bisimilarity. However, the opposite is not the case:

Theorem 123 Strong coherent history-preserving bisimilarity is strictly finer
than strong history-preserving bisimilarity.

Proof. Consider the following two event structures, ES 1,
{e2, e6}

{e1, e2, e5} {e1, e2}oo
e5:c {e2}oo

e1:a

99

e6:d

ssssssssssssssssssss
//

e3:a {e2, e3} {e6}

OO

e2:b

{e1}

OO

e2:b

e4:b
��

∅oo
e1:a

88

e6:d

rrrrrrrrrrrrrrrrrrrrrrr

xx

e7:d

r r r
r r r
r r r
r r r
r r r
r r r
r r r
r r

OO

e2:b

//
e3:a

��

e4:b

{e3}

e2:b
OO

��

e4:b

{e7}

��

e4:b

{e1, e4} {e4}oo e1:a //e3:a

yy

e7:d

s s s
s s s
s s s
s s s
s s s
s s s
s s

{e3, e4} //e8:c {e3, e3, e8}

{e4, e7}
and ES 2
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{e′
2, e

′
6}

{e′
1, e

′
2, e

′
5} {e′

1, e
′
2}oo

e′
5:c

{e′
2}oo

e′
1:a

99

e′
6:d

sssssssssssssssssssss
//

e′
3:a

{e′
2, e

′
3} {e′

6}

OO

e′
2:b

��

e′
4:b

{e′
1}

OO

e′
2:b

��

e′
4:b

∅oo
e′
1:a

88

e′
6:d

qqqqqqqqqqqqqqqqqqqqqqq

OO

e′
2:b

//
e′
3:a

��

e′
4:b

{e′
3}

e′
2:b
OO

e′
4:b
��

{e′
4, e

′
6}

{e′
1, e

′
4} {e′

4}oo
e′
1:a

//
e′
3:a

99

e′
6:d

sssssssssssssssssssss
{e′

3, e
′
4} //

e′
8:c

{e′
3, e

′
3, e

′
p8}

We claim that ES 1 and ES 2 are strong history-preserving bisimilar but not strong
coherent history-preserving bisimilar. The former is easily established following Defini-
tion 118. To see the latter, observe that a strong coherent history-preserving bisimulation
H between ES1 and ES 2 must contain the triples

({e6}, {(e6, e
′
6)}, {e′

6})

({e2, e6}, {(e2, e
′
2), (e6, e

′
6)}, {e′

2, e
′
6})

({e2, e6}, {(e2, e
′
4), (e6, e

′
6)}, {e′

2, e
′
4})

and hence, by strongness, also

({e2}, {(e2, e
′
2)}, {e′

2})

({e2}, {(e2, e
′
4)}, {e′

4}) .

Since H must contain either

({e1}, {(e1, e
′
1)}, {e′

1}) or

({e1}, {(e1, e
′
3)}, {e′

3})

and is strongly coherent, we conclude that H contains either

({e1, e2}, {(e1, e
′
1), (e2, e

′
4)}, {e′

1, e
′
4}) or

({e1, e2}, {(e1, e
′
3), (e2, e

′
2)}, {e′

2, e
′
3}) .

However, {e1, e2}
e5:c−→ {e1, e2, e5} while neither {e′

1, e
′
4} nor {e′

2, e
′
3} has an enabled c-

labelled event.
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5.4.2 Pomset Equivalences

We continue by considering the concurrent counterpart of trace equivalence. We recast,
in the terminology of Pratt, the choice of observation extension defined formally in terms
of event structure morphisms on pomsets in Sec. 5.4.1. The following terminology is from
[Pra86].

Definition 124 Given a pomset P = (E, ≤, ∅, l), any (E, ≤′, ∅, l) for which ≤⊆≤′ is
called an augment of P . Any restriction of (E, ≤, ∅, l) to a downwards closed subset of
E is called a prefix of P . 2

On pomsets, a morphism η from P to P ′ amounts to “P being an augment of a prefix
of P ′”—a very generous notion of extension. An alternative would be the restricted no-
tion of extension corresponding to the one from the characterisation of trace equivalence
for transition systems.

Definition 125 Let PO1 denote the subcategory of PO whose morphisms are the iden-
tities and morphisms with the empty pomset as domain. 2

With this choice, we would expect to get some kind of equivalence in terms of
“pomset-languages” of event structures.

Definition 126 Let ES = (E, ≤, #, l) be an event structure. The pomset language of
ES , P(ES), is defined as the set of restrictions of ES to D(E). Following Pratt, αP(E)
denotes the augmentation closure of P(E). 2

And the PO1-bisimulation may now be characterised as follows.

Theorem 127 Two event structures ES and ES ′ are PO1-bisimilar if and only if
αP(ES ) = αP(ES ′).

Proof sketch. The proof is a direct analog of the proof of Theorem 83 based on a
lemma similar to Lemma 82.

5.4.3 Remarks on Decidability Issues

The theory of open maps has helped identifying new behavioural equivalences such as
strong (coherent) history-preserving bisimilarity. Associated to each behavioural equiv-
alence one may consider the decision problem: given two (finite descriptions of) systems
T1 and T2, are the P-bisimilar? In particular, Nielsen and Winskel [NW95] observe that
using the categorical relationships (adjunctions) between the category of (labelled) 1-safe
nets and event structures one may derive a notion of behavioural equivalence between
two finite 1-safe nets as follows: N1 and N2 are said to be strong (coherent) history-
preserving bisimilar if and only if the event structures associated with their unfoldings
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are strong (coherent) history-preserving bisimilar. To the best of the authors knowledge,
these problems are still open. 1

We continue by giving an alternative definition of strong coherent history-preserving
bisimulation which might shed some light on the “strongness condition”.

In the following we shall restrict attention to event structures E that do not exhibit
“auto-concurrency”, i.e., E has no configuration x and concurrent events e1 and e2 such
that x

e1−→, x
e2−→, and l(e1) = l(e2).

Lemma 128 Given two event structures ES 1 and ES 2 that do not exhibit auto-concur-
rency. Let x1 be a configuration of E1, x2 a configuration of E2, and f and f ′ isomor-
phisms between x1 and x2. Then f = f ′.

Proof. Assume f 6= f ′. Choose a least—with respect to subset inclusion—configura-
tion x′

1 ⊆ x1 such that f |x′
1

6= f ′|x′
1
. The notation g|c denotes the restriction of g to c.

Then, x′
1 6= ∅. Let e1 ∈ x′

1 be a maximal event, i.e., there exists no e′ ∈ x′
1 such that

e < e′. By minimality of x′
1 we conclude f(e1) 6= f ′(e1). Let e2 = f(e1) and e′

2 = f ′(e1).
Since f is an isomorphism between x1 and x2, f−1(e′

2) 6= e1. Let e′
1 = f−1(e′

2). By
our assumptions, e1 and e′

1 cannot be concurrent since they must be identically labelled.
Also, since e1 and e′

1 belong to x1 they cannot be in conflict. Hence there are two
possibilities:

• If e1 < e′
1, then e2 = f(e1) < f(e′

1) = e′
2 = f ′(e1) < f ′(e′

1). Let e′′
2 = f ′(e′

1) and
e′′
1 = f−1(e′′

2). Then, e1 < e′
1 < e′′

1 are events in x1. By repeating this argument we
obtain an infinite increasing chain e1 < e′

1 < e′′
1 < · · · of events in x1, as illustrated

below.
e2 < e′

2 < e′′
2 < · · ·

e1
_

OO

f

;

==
f ′

{{{{{{{{{{{
< e′

1

_

OO

f

;

==
f ′

{{{{{{{{{{{
< e′′

1

_

OO

f

:

<<
f ′

zzzzzzzzzzz
< · · ·

However, this contradicts the finiteness of x1. So we conclude ¬(e1 ≤ e′
1).

• If e1 > e′
1, we obtain—by a similar argument—an infinite decreasing chain e1 >

e′
1 > e′′

1 > · · · of events in x1. We conclude ¬(e1 ≥ e′
1).

Hence e1 and e′
1 must be concurrent (and identically labelled), which contradicts our

assumptions. We finally conclude f = f ′.

Definition 129 Given two event structures ES1 and ES2. Let R ⊆ E1 ×E2. ∼R is the
least set of triples (x1, f, x2), as defined in Definition 118, such that

(∅, ∅, ∅) ∈∼R (5.57)

( (x1, f, x2) ∈∼R ∧ (e1, e2) ∈ R ∧ x1
e1−→ x′

1 ∧ x2
e2−→ x′

2 ∧ (5.58)
1Notice that the complexity of history-preserving bisimulation for 1-safe nets was determined to be

DEXPTIME-complete by Jategaonkar [Jat93].
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f ∪ {(e1, e2)} is an isomorphism between x′
1 and x′

2 ) (5.59)

⇒ (x′
1, f ∪ {(e1, e2)}, x′

2) ∈∼R (5.60)

The relation ∼R is called a bisimulation if whenever

(x1, f, x2) ∈∼R ∧ x1
e1−→ x′

1 (5.61)

then there exists a e2 such that

(e1, e2) ∈ R ∧ (x′
1, f ∪ {(e1, e2)}, x′

2) ∈∼R (5.62)

and vice versa. 2

Assume H is a strong coherent history-preserving bisimulation between ES 1 and
ES 2. Let RH be the set

{(e1, e2) | ∃(x1, f, x2) ∈ H. e1 ∈ x1 ∧ e2 ∈ x2 ∧ f(e1) = e2} .

Lemma 130 If (x1, f, x2) ∈∼RH
, then (x1, f, x2) ∈ H.

Proof. The proof is by induction in |x1|. The base case |x1| = 0 is trivial. So
assume |x1| = n + 1. Then by definition there exist (x′

1, f
′, x′

2) ∈∼RH
and (e1, e2) ∈ RH

such that x′
1

e1−→ x1, x′
2

e2−→ x2, and f = f ′ ∪ {(e1, e2)}. Since (e1, e2) ∈ RH there
exists (x′′

1, g, x′′
2) ∈ H such that e1 ∈ x′′

1, e2 ∈ x′′
2, and g(e1) = e2. By strongness of H ,

(e1 ↓, g|e1↓, e2 ↓) ∈ H . Let c1 = e1 ↓ \{e1} and c2 = e2 ↓ \{e2}. Notice c1 ⊆ x′
1 and

c2 ⊆ x′
2. By induction (x′

1, f
′, x′

2) ∈ H and by strongness of H (c1, f
′|c1, f

′(c1)) ∈ H .
Since f is an isomorphism between x1 and x2, we conclude f ′(c1) = c2. Similarly, from
(x′′

1, g, x′′
2) ∈ H we conclude (c1, g|c1, c2) ∈ H . By Lemma 128, we have f ′|c1 = g|c1. Since

(x′
1, f

′, x′
2) ∈ H , (e1↓, g|e1↓, e2↓) ∈ H , and (x′

1 ∪ e1 ↓, f ′ ∪ g|e1↓, x
′
2 ∪ e2 ↓) = (x1, f, x2), we

conclude by coherence of H that (x1, f, x2) ∈ H .

Theorem 131 Given H, a strong coherent history-preserving bisimulation between ES 1

and ES 2. Then ∼RH
is a bisimulation.

Proof. Given (x1, f, x2) ∈∼RH
and assume x1

e1−→ x′
1. By Lemma 130 (x1, f, x2) ∈

H . Since H is a strong coherent history-preserving bisimulation there exists a e2 such
that x2

e2−→ x′
2 and (x′

1, f ∪ {(e1, e2)}, x′
2) ∈ H . But then (e1, e2) ∈ RH , and hence

(x′
1, f ∪ {(e1, e2)}, x′

2) ∈∼RH
. The case x2

e2−→ x′
2 is handled similarly.

Theorem 132 Given event structures ES 1 and ES 2. If R ⊆ E1 × E2 is such that ∼R

is a bisimulation, then ∼R is a strong coherent history-preserving bisimulation between
ES 1 and ES2.

Proof. We prove that all relevant conditions stated in Definition 118 and 122 hold.

• Clearly, (∅, ∅, ∅) ∈∼R.
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• Assume (x1, f, x2) ∈∼R and x1
e1−→ x′

1. Since ∼R is a bisimulation there exists a
e2 such that x2

e2−→ x′
2 and (x′

1, f ∪ {(e1, e2)}, x′
2) ∈∼R. The dual case x2

e2−→ x′
2

is handled similarly.

• Assume (x1, f, x2), (x′
1, f

′, x′
2), and (x1 ∪ x′

1, f ∪ f ′, x2 ∪ x′
2) all denote triples of

configurations and isomorphisms as defined in Definition 118. Since configurations
are finite, one can show that establishing the property in Definition 122 is equivalent
to showing that (x1, f, x2), (x′

1, f
′, x′

2) ∈∼R if and only if (x1 ∪ x′
1, f ∪ f ′, x2 ∪

x′
2) ∈∼H .

Assume (x1, f, x2), (x′
1, f

′, x′
2) ∈∼R. Since (x1 ∪ x′

1, f ∪ f ′, x2 ∪ x′
2) is a triple of

configurations related by the isomorphism f ∪f ′, we conclude that events in x1\x′
1

are concurrent with events in x′
1\x1. Since f ∪ f ′ is an isomorphism, the same

holds for x2\x′
2 and x′

2\x2. Let ej1 , ej2, . . . , ejm be an enumeration of the events in
x1\x′

1, such that
x1 ∩ x′

1
ej1−→ · · · ejm−→ x1 .

In fact, we also have

x2 ∩ x′
2

f(ej1)
−→ · · · f(ejm)−→ x2 ,

x′
1

ej1−→ · · · ejm−→ x1 ∪ x′
1 , and

x′
2

f(ej1)
−→ · · · f(ejm)−→ x2 ∪ x′

2 .

By definition of ∼R we know (eji , f(eji)) ∈ R, for 1 ≤ i ≤ m. So we conclude

(x′
1 ∪ {ej1}, f ′ ∪ {(ej1 , f(ej1))}, x′

2 ∪ {f(ej1)} ∈∼R

· · ·
(x′

1 ∪ {ej1 , . . . , ejm}, f ′ ∪ {(ej1, f(ej1)), . . . , (ejm, f(ejm))},

x′
2 ∪ {f(ej1), . . . , f(ejm)} ∈∼R .

Since the last triple is (x1∪x′
1, f ∪f ′, x2∪x′

2) we have shown the “only if” direction.

Conversely, assume (x1 ∪ x′
1, f ∪ f ′, x2 ∪ x′

2) ∈∼H . Then we know there exists an
enumeration e1, e2, . . . , em of all events in x1 ∪ x′

1 such that

∅ e1−→ · · · em−→ x1 ∪ x′
1 ,

∅ g(e1)−→ · · · g(em)−→ x2 ∪ x′
2 , and

({e1, . . . , ei}, {(e1, g(e1)), . . . , (ei, g(ei))}, {g(e1), . . . , g(ei)}) ,

where g = f ∪ f ′ and 1 ≤ i ≤ m. But since (ei, g(ei)) ∈ R, for 1 ≤ i ≤ m, and all
events in x1\x′

1 are independent of events x′
1\x1, we know
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∅
ej1−→ · · · ejn−→ x1 ,

where 1 ≤ j1 < · · · < jn ≤ m is the subsequence of indexes corresponding to the
events from x1. But then

({ej1}, {(ej1, g(ej1)}, {g(ej1)}) ∈∼R , hence

({ej1, ej2}, {(ej1, g(ej1), (ej2, g(ej2))}, {g(ej1), g(ej2)}) ∈∼R , hence

· · ·
({ej1, . . . , ejn}, {(ej1, g(ej1), . . . , (ejn, g(ejn)},

{g(ej1), . . . , g(ejn)}) ∈∼R .

Since the last triple is just (x1, f, x2) and the case (x′
1, f

′, x′
2) ∈∼R can be shown

analogously, we have shown the “if” direction.

We conclude ∼R is a strong coherent history-preserving bisimulation.

5.5 Summary

We have examined Joyal, Nielsen, and Winskel’s notion of P-bisimilarity as an abstract
category theoretic definition of bisimulation.

Guided by our intuitive understanding of what it means for a system X to be sim-
ulated by a system Y we defined different categories of models of computation. Our
choices of (sub)categories of observations were also guided by which behaviours ought to
be observable.

It turns out that we could identify well-know notions of behavioural equivalences.
We started by the most fundamental (or coarsest) namely, trace equivalence. Then, we
considered “invisible” actions and identified weak bisimulation, testing equivalence, and
barbed bisimulation. We showed how the theory of open maps could be relaxed and we
identified Larsen and Skou’s probabilistic bisimulation. For technical reasons we applied
the theory to a category in which the subcategory of observations was disjoint from
the subcategory of models we were interested in. Finally, we examined non-interleaving
models and behavioural equivalences.

Our results show that the theory of open maps does give meaningful equivalences
when applied to well know models of computation.

In fact, some of the behavioural equivalences we captured are not “bisimulation
like” in nature. So it seems that (spans of) open maps are more than a abstract way
of capturing bisimulations. If one would be interested in only capturing bisimulation-
like behavioural equivalences, one could try to define an abstract notion of “atomic
observations” together with some abstract notion of prefixing as a basis for (i.e., inducing)
the category of observations P .
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We also noticed that the equivalences we identified could be captured by several dif-
ferent choices of observations. E.g., from the proofs in Sect. 5.3.3 it is clear that we could
choose a smaller subcategory of observations; binary branching along the “trunks” of the
trees is sufficient. Theorem 120 also showed that strong history-preserving bisimulation
could be characterised using a simpler category of observations.

On the other hand, consider the characterisation of strong bisimulation from [JNW93]
(see also Sect. 5.2). Had P been chosen to be the subcategory induced by objects of the
form

sn,1

i //α1 s1 //α2 //αn−1 sn−1

55αn,1 jjjjjjjjjj

))αn,m TTTT
TTTT

TT

sn,m

where all states are distinct, then an P-open map m would have been characterised by
the usual “zig-zag” property

if m(r) α−→ s′, then there exists an r′ such that r
α−→ r′ and m(r′) = s′,

and the additional “local bijection” property

for any α ∈ Act, {r′ | r α−→ r′} is in bijective correspondence with

{s′ | m(r) α−→ s′} under m.

So apart from helping us identify “characterising observations” for behavioural equiv-
alences, the theory of open maps also allows us to test how “robust” an equivalence is
against different choices of observations.

The choice of simulating morphisms turned out to be important. In the category of
labelled transition systems LTS we didn’t expect to be able to capture weak bisimulation
just by changing the choice of observations. We defined new morphisms which intuitively
corresponded to a “weak simulation”.

The relationship exhibited in Theorem 131 and 132 shows that having a strong coher-
ent history-preserving bisimulation corresponds to having a matching of events from both
systems in such a way that this matching is consistent as discussed after Theorem 121.
From this observation, we have attempted to decide strong coherent history-preserving
bisimulation between labelled 1-safe nets using an approach based on Jategaonkar’s
“growth-site correspondences (gsc) [Jat93] and a matching table. More specifically, our
idea has been to show that nets N1 and N2 are strong coherent history-preserving bisim-
ilar if and only if there exists a certain type of finite automaton. Among other things,
we believe the automaton should be a generalisation of that used in [Jat93, Theorem
6.3.4]. The states (M, M ′, gsc, match) contain a marking M of N1, a marking M ′ of N2, a
growth-site correspondence gsc recording the how the latest occurrences of transitions in
N1 have been matched by latest occurrences of transitions in N2, and a matching match
corresponding to how future occurrences of transitions from N1 and N2 can or must
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be matched. This last component is inspired by Theorem 131 and 132. However, al-
though we believe this observation is an promising way to solve this decidability problem,
we haven’t been able to successfully apply this idea. Game theoretic characterisations
of bisimulations exist, both for interleaving models [Sti93] and non-interleaving models
[NC94]. It then seems that the decidability problem could be formulated as having a
finite game strategy, corresponding to the “regular” finite automata-like structure we
described above.

Another conjecture we have is that for the class of labelled 1-safe free choice nets
strong (coherent) history-preserving bisimulation coincides with history-preserving bisim-
ulation. In fact, all the 1-safe net examples we have been able to find which show that
strong (coherent) history-preserving bisimulation is strictly finer than history-preserving
bisimulation have not been free-choice.
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6.1 Introduction

Based on the view that endofunctors on M may be seen as abstract operators we define
a simple, natural, and general notion of a functor being P-factorisable. We then show
that a P-factorisable functor must preserve P-bisimilarity.

The presentation of P-factorisability focusses, especially, on certain closure properties
of the category P . Based on this observation, we show how one can parametrise the proofs
of functors being P-factorisable with respect to the choice of the observation category P ,
i.e., the choice of a behavioural equivalence. Intuitively, we fix the operators, but allow
the behavioural equivalence to vary. Then we identify conditions on P which ensure that
the varying equivalences are congruences with respect to the operators. Our results can
be seen as “orthogonal” to that of Bloom, Istrail, and Meyer, in that we can parametrise
with respect to the behavioural equivalences, as opposed to operators, [BIM88].

In the next section we generalise slightly Joyal, Nielsen, and Winskel’s theory of open
maps. In Sec. 6.3 we present our notion of P-factorisability. Then, in Sec. 6.4 we apply
our theory to a variant of Winskel and Nielsen’s labelled transition systems [WN95].
We consider the universal constructions from [WN95] and provide general “congruence”
results parametrised by the category of observations P . We then continue to examine
the trickier recursion operator in Sec. 6.5. Finally we summarise and give suggestions
for further research in Sec. 6.6.

6.2 Open Maps, Generalised

In this section we briefly recall the basic definitions from [JNW93]. We present a slightly
more general definition since it turns out more beneficial, more specifically for Theo-
rem 162 and the discussion in Sect. 6.4.8.

Let U denote a category, the universe. A morphism m : X −→ Y in U should
intuitively be thought of as a simulation of X in Y . Then, a subcategory of U which
represents a model of computation has to be identified. We denote this category M. Also,
within U , we choose a subcategory of “observation objects” and “observation extension”
morphisms between these objects. We denote this category of observations by P . If
nothing else is mentioned, we assume that U = M, corresponding to the definitions in
[JNW93].

Given an observation (object) O in P and a model X in M, then O is said to be an
observable behaviour of X if there exists a morphism p : O −→ X in M. We think of p

as representing a “run” of O in X . We shall use O, O′, . . . to denote observations and
T, T ′, X, Y, . . . to denote objects from M. A morphism O

q−→ O′ is implicitly assumed
to belong to P .

Next, we identify morphisms m : X −→ Y in M which have the property that
whenever an observable behaviour of X can be extended via f in Y then that extension
can be matched by an extension of the observable behaviour in X .
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Definition 133 Open Maps
A morphism m : X −→ Y in M is said to be P-open (or just an open map) if whenever
f : O1 −→ O2 in P , p : O1 −→ X , q : O2 −→ Y in M, and the diagram

O1

��

f

//p
X

��

m

O2 //
q Y

(6.1)

commutes, i.e., m ◦ p = q ◦ f , there exists a morphism h : O2 −→ X in M (a mediating
morphism) such that the two triangles in the diagram

O1

��

f

//p
X

��

m

O2

>>

h

~~~~~~~~~~~
//

q Y

(6.2)

commute, i.e., p = h ◦ f and q = m ◦ h. When no confusion is possible, we refer to
P-open morphisms as open maps. 2

The abstract definition of bisimilarity is as follows.

Definition 134 P-bisimilarity
Two models X and Y in M are said to be P-bisimilar (in M), written X ∼P Y , if there
exists a span of open maps from a common object Z:

Z

~~

m

~ ~
~ ~
~ ~ ~
~

��

m′

@@@
@@
@@
@

X Y

(6.3)

2

Remark. Notice that if M has pullbacks, it can be shown that ∼P is an equivalence
relation. The important observation is that pullbacks of open maps are themselves open
maps. For more details, the reader is referred to [JNW93].

As a preliminary example of a category of models of computation M we present
labelled transition systems.

Definition 135 A labelled transition system over Act is a tuple

(S, i, Act, −→) , (6.4)
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where S is a set of states with initial state i, Act is a set of actions ranged over by α, β, . . . ,
and −→⊆ S ×Act×S is the transition relation. For the sake of readability we introduce
the following notation. Whenever (s0, α1, s1), (s1, α2, s2), . . ., (sn−1, αn, sn) ∈−→ we
denote this as s0

α1−→ s1
α2−→ · · · αn−→ sn or s0

v−→ sn, where v = α1α2 · · ·αn ∈ Act∗.
Also, we assume that all states s ∈ S are reachable from i, i.e., there exists a v ∈ Act∗

such that i
v−→ s. 2

Let us briefly remind the reader of Park and Milner’s definition of strong bisimulation
[Mil89].

Definition 136 Let T1 = (S1, i1, Act, −→1) and T2 = (S2, i2, Act, −→2). A strong
bisimulation between T1 and T2 is a relation R ⊆ S1 × S2 such that

(i1, i2) ∈ R , (6.5)

((r, s) ∈ R ∧ r
α−→1 r′) ⇒ for some s′, (s α−→2 s′ ∧ (r′, s′) ∈ R) , (6.6)

((r, s) ∈ R ∧ s
α−→2 s′) ⇒ for some r′, (r α−→1 r′ ∧ (r′, s′) ∈ R) . (6.7)

T1 and T2 are said to be strongly bisimilar if there exists a strong bisimulation between
them. 2

Henceforth, whenever no confusion is possible we drop the indexing subscripts on the
transition relations and write −→, instead.

By defining morphisms between labelled transition systems we can obtain a category
of models of computation, TSAct, labelled transition systems.

Definition 137 Let T1 = (S1, i1, Act, −→1) and T2 = (S2, i2, Act, −→2). A morphism
m : T1 −→ T2 is a function m : S1 −→ S2 such that

m(i1) = i2 , (6.8)

s
α−→1 s′ ⇒ m(s) α−→2 m(s′) . (6.9)

2

The intuition behind this specific choice of morphism is that an α-labelled transition in
T1 must be simulated by an α-labelled transition in T2. Composition of morphisms is
defined as the usual composition of functions.

By varying the choice of P we can obtain different behavioural equivalences, cor-
responding to P-bisimilarity. E.g., if, as done in [JNW93], we choose PM as the full
subcategory of TSAct whose objects are finite synchronisation trees with at most one
maximal branch, i.e., labelled transition systems of the form

i
α1−→ s1

α2−→ · · · αn−→ sn , (6.10)

where all states are distinct, we get:
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Theorem 138 [JNW93] PM -bisimilarity coincides with Park and Milner’s strong bisim-
ulation.

By slightly restricting our choice of observation extension so that PH is the subcate-
gory of TSAct whose objects (observations) are of the form (6.10), and whose morphisms
are the identity morphisms and morphisms whose domains are observations having only
one state (the empty word), we get:

Theorem 139 [NC95] PH -bisimilarity coincides with Hoare trace equivalence.

In Chap. 5 other behavioural equivalences were considered, e.g., weak bisimulation
and probabilistic bisimulation.

6.3 P-Factorisability

In this section we propose the notion of P-factorisability. We start by a motivating
example and continue with some category theoretical preliminaries, which notationally
eases the presentation of P-factorisability.

6.3.1 An Example

Consider M = TSAct and P = PM from Sec. 6.2 and the transition systems below,
which we denote—left to right—T1, . . . , T5. The initial states are depicted as �.

�

��
α

�

��
α

�

��
γ

�

��
α

//γ ·

��
α

//β ·

��
α

�

��
α

//γ ·

��
α

//β ·

��
α

·

��

β

~ ~ ~
~ ~ ~
~

��
β

·

��
β

·

��
β

·

��
β
~ ~ ~

~ ~ ~

//γ

��
β00
00
00
00
00
00

·

��
β
~ ~ ~

~ ~ ~

//β

��
β..
..
..
..
..
.

��
τ

��

τ
==
==
==
=

==
==
==
=

·

��
β
� � �

� � �

��
β..
..
..
..
..
. ·

��
β

//γ ·

��
β

//β

��
τ
===

===
·

��
β

· · · · · //
γ

· //
β

· · //
γ

· //
β

·

· //
γ

· //
β

·

T1 is strongly bisimilar (P-bisimilar) to T2. In fact, there is an obvious open map k from
T1 to T2. Considering T3 to be fixed, we can define a functor |T3 : M −→ M, where |
acts as a CCS-like parallel composition. T4 = T1|T3 and T5 = T2|T3 serve as an informal
illustration of |T3, when applied to T1 and T2, respectively. In much the same way as
Milner [Mil89] shows that P ∼ P ′ implies P | Q ∼ P ′ | Q, we would like to conclude that

if k : T1 −→ T2 is open, then so is T1|T3
k|T3−→ T2|T3. 1

Recall that P-bisimilarity is based on open maps, which again are based on obser-
vations from P . E.g., we can observe O, the behaviour � α−→ · γ−→ ·, in T4 and—via

1In fact, just as Milner uses a bisimulation P ∼ P ′ to exhibit a bisimulation P | Q ∼ P ′ | Q, we will
“factor” the observation � α−→ · γ−→ · into transitions from T3 and from T1 and T2, respectively. This
will guide us to the mediating morphism required in (6.2).
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k|T3 : T4 −→ T5—in T5. Some of these transitions in T4, here only the α transition, are
due to transitions “from” T1. Using k, we conclude that the α transition in O must also be
observable in T2. In fact, we have a commuting diagram as in (6.1) with X = T4, Y = T5,
O1 = O2 = O, m = k|T3, and f = 1O, and by the above we have extracted a second
commuting diagram of the form (6.1) with X = T1, Y = T2, O1 = O2 = O′ = � α−→ ·,
and m = k.

The way we have “factored” O into O′ is consistent with |T3 in the following sense:
there exists a commuting diagram of the form

O

��

""DD
DDD
D // O′|T3

zzu u u
u u u

��

T1|T3

��

O

""DD
DDD
D // O′|T3

zzu u u
u u u

T2|T3

In the next section, we formalise this by defining the notion of P-factorisability, and, as
a consequence, we will be able to conclude that k|T3 is an open map.

6.3.2 Categorical Preliminaries

Given a category C with objects C0 and morphisms (arrows) C1, let Ĉ be the category
whose objects are C1 and whose morphisms represent commuting diagrams, i.e., there is
a morphism (h1, h2) from f to g if

·

��
f

//h1 ·

��
g

· //
h2

·
(6.11)

is a commuting diagram in C. Composition of morphisms is defined component-wise.

For notational convenience we may “hat” objects and morphisms from Ĉ, e.g., X̂ and m̂.
When convenient, we will denote objects from Ĉ as morphisms from C, e.g., X̂ might be
denoted f .

Notice that a functor F : C −→ D induces a functor F̂ : Ĉ −→ D̂, which sends an
object X̂ to F (X̂) and a morphism m̂ = (m1, m2) to (F (m1), F (m2)).

6.3.3 Factorising Observations

Definition 140 P-factorisability
A functor F : M −→ M is said to be P-factorisable if whenever we have an object

Ô in P̂ , an object X̂ in M̂, and a morphism Ô
q̂−→ F̂ (X̂) in M̂, then there exist an

object Ô1 in P̂ and morphisms Ô
q̂?

−→ F̂ (Ô1) and Ô1
q̂#
−→ X̂ in M̂ such that the diagram
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Ô

  
q̂

BB
BB
BB
BB
BB
BB
BB

//q̂?

F̂ (Ô1)

��

F̂ (q̂#)

F̂ (X̂)

(6.12)

commutes in M̂. 2

Definition 141 A functor F : M −→ M is a P-operator if it is P-bisimilarity preserv-
ing, i.e., if A is P-bisimilar to B, then F (A) is P-bisimilar to F (B). 2

Theorem 142 Any P-factorisable functor F : M −→ M is a P-operator.

Proof. It is sufficient to show that F preserves open maps. Assume m : X −→ X ′

is an open map and we are given a commuting diagram

O

��

f

//q
F (X)

��

F (m)

O′ //
q′ F (X ′)

This diagram is a morphism Ô
q̂−→ F̂ (X̂) in M̂. By P-factorisability there exist Ô1 in P̂

and morphisms Ô
q̂?

−→ F̂ (Ô1) and Ô1
q̂#
−→ X̂ in M̂ such that (6.12) commutes. Denote

Ô as f : O −→ O′, q̂ as (q, q′), Ô1 as m1 : O1 −→ O′
1, q̂? as (q?, q′?), X̂ as m : X −→ X ′,

and q̂# as (q#, q′#). Since Ô1
q̂#
−→ X̂ represents a commuting diagram and m was open,

there exists a morphism p : O′
1 −→ X such that the diagram

O

��

f

//q?

F (O1)

��

F (m1)

//F (q#)
F (X)

��

F (m)

O′ //
q′? F (O′

1) //
F (q′#)

;;
F (p)

vvvvvvvvvvvv
F (X ′)

must commute (by (6.12)). But then

q = F (q#) ◦ q? , by (6.12)

= F (p) ◦ F (m1) ◦ q?

= (F (p) ◦ q′?) ◦ f ,
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and

q′ = F (q′#) ◦ q′? , by (6.12)

= F (m) ◦ (F (p) ◦ q′?) .

We conclude that F (m) is open. Hence if X
m←− Z

n−→ Y is a span of open maps,

F (X)
F (m)←− F (Z)

F (n)−→ F (Y ) is a span of open maps.

6.4 Application, an Example

As an example of the application of the theory we consider the category TS of labelled
transition systems 2 from [WN95]. As it is shown there, process-language constructs can
be interpreted as universal constructions in TS. In the following subsections, we show
how our theory can be applied to the functors associated to these universal constructions.
In Sect. 6.4.8 we only consider product, co-product, and restriction. In Sect. 6.5, we
examine a recursion operator.

6.4.1 The Category of Labelled Transition Systems

In this section we define the category TS inspired by [WN95].

Definition 143 The category TS has as objects (S, i, L, −→), labelled transition sys-
tems (lts) with labelling set L. We require that all states in S be reachable (from the
initial state i). 2

We shall use the abbreviation Tj for (Sj, ij, Lj, −→j). If clear from the context we
will omit the subscript j. Also, all the following constructions do produce ltss in TS, i.e.,
all states are reachable.

For technical reasons we assume the existence of a special element ∗ which is not
member of any labelling set. A partial function λ between two labelling sets L and L′

can then be represented as a total function from L∪{∗} to L′∪{∗} such that ∗ is mapped
to ∗. If a ∈ L is mapped to ∗, we interpret this as meaning that λ is undefined on a.
Overloading the symbol λ, we shall write this as λ : L ↪→ L′. Given T = (S, i, L, −→),
we define −→∗ to be the set −→ ∪{(s, ∗, s) | s ∈ S}. The transitions (s, ∗, s) are called
idle transitions.

Definition 144 A morphism m : T0 −→ T1 is a pair f = (σm, λm), where σm : S0 −→
S1 and λm : L0 ↪→ L1 are total functions such that

σm(i0) = i1 (6.13)

s
a−→0 s′ ⇒ σm(s)

λ(a)−→1∗ σm(s′) (6.14)

2

2This category is different from the one presented in Sec. 6.2; we use this category because it has
universal constructions such as, e.g., products and co-products.
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The intuition is that initial states are preserved and transitions in T0 are simulated in
T1, except when λm(a) = ∗, in which case they represent inaction in T1. Composition of
morphisms is defined component-wise. This defines the category TS. We suppress the
subscript m when no confusion is possible.

Let Set∗ denote the category whose objects are labelling sets L and whose morphisms
are partial functions λ : L −→ L′ between labelling sets.

6.4.2 More Categorical Preliminaries, Fibred Category Theory

Let p : TS −→ Set∗ be the function which sends an lts to its labelling set and a morphism
(σ, λ) : T0 −→ T1 to λ : L0 −→ L1. A fibre over L, p−1(L), is the subcategory of TS
whose objects have labelling set L and whose morphisms f map to 1L, the identity
function on L, under p.

We will use the following notions from fibred category theory.

Definition 145 A morphism f : T −→ T ′ in TS is said to be Cartesian with respect
to p : TS −→ Set∗ if for any morphism g : T ′′ −→ T ′ in TS such that p(g) = p(f) there
is a unique morphism h : T ′′ −→ T such that p(h) = 1p(T ) and f ◦ h = g.

T ′′

!!

g

CC
CC
CC
CC
CC
CC
C

h

���
�
�
�
�

TS

��

p T //
f

T ′

Set∗ p(T ) //
p(f)

p(T ′)

A Cartesian morphism f : T −→ T ′ in TS is said to be a Cartesian lifting of the

morphism p(f) in Set∗ with respect to T ′. 2

It can be shown now that p is a fibration, i.e.,

• any morphism λ : L −→ L′ in Set∗ has a Cartesian lifting with respect to any T ′

in TS such that p(T ′) = L′.

• any composition of Cartesian morphisms is itself Cartesian.

Dually, we define a morphism to be co-Cartesian.

Definition 146 A morphism f : T −→ T ′ in TS is said to be co-Cartesian with respect
to p : TS −→ Set∗ if for any morphism g : T −→ T ′′ in TS such that p(g) = p(f) there
is a unique morphism h : T ′ −→ T ′′ such that p(h) = 1p(T ′) and h ◦ f = g.
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T ′′

TS

��

p T

==

g

{{{{{{{{{{{{{{
//

f
T ′

h

OO�
�
�
�
�

Set∗ p(T ) //
p(f)

p(T ′)

A co-Cartesian morphism f : T −→ T ′ in TS is said to be a co-Cartesian lifting of the

morphism p(f) in Set∗ with respect to T ′. 2

Similarly, it can be shown that p is a co-fibration, i.e., pop : TS op −→ Setop
∗ is a fibration.

In the following, let U be TS, let F be the union of all fibres over all labelling sets,
and let M be the subcategory of F induced by all non-restarting ltss, i.e., there are
no transitions into the initial state. The reason for staying within fibres is that one
commonly insists on having labelled actions simulated by identically labelled actions.
Notice that TSAct from Sect. 6.2 can be viewed as the fibre p−1(Act). Morphisms in M
will always be of the form (σ, 1L), for some labelling set L. In particular, all commuting
diagrams of the form (6.1) in M will always belong to some fibre p−1(L). It can also be
shown that M has pullbacks, hence ∼P is an equivalence relation [JNW93]. The reason
we consider non-restarting ltss is technical. We will address this issue below.

We shall assume that the category P of observation is closed under renaming of states
and closed under variation of labelling sets, i.e., if (S, i, L,−→) is an observation and L′

is any labelling set such that (S, i, L′, −→) is an lts, then it is also an observation.
To emphasise the use of the theory in Sect. 6.3, we will use the notation M and P .

6.4.3 Product

In this section, we consider the product construction, which has strong relations to, e.g.,
CCS’s parallel composition operator, see [WN95] and Sect. 6.4.8. In [WN95], it is shown
how CCS’s parallel composition operator can be expressed using the product, renaming,
and relabelling operators we present below.

Definition 147 Let T0 × T1 denote (S, i, L, −→), where

• S = S0 × S1, with i = (i0, i1) and projections ρ0 : S −→ S0, ρ1 : S −→ S1 ,

• L = L0×∗L1 = (L0×{∗})∪({∗}×L1)∪(L0×L1), with projections π0 : L0×∗L1 ↪→
L0 and π1 : L0 ×∗ L1 ↪→ L1, and

• s
a−→∗ s′ ⇔ ρ0(s)

π0(a)−→ 0∗ ρ0(s′) ∧ ρ1(s)
π1(a)−→1∗ ρ1(s′) .

2
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Let Π0 = (ρ0, π0) : T0 × T1 −→ T0 and Π1 = (ρ1, π1) : T0 × T1 −→ T1. It can be shown
that this construction is a product of T0 and T1 in the category TS.

The product construction allows the two components T0 and T1 to proceed indepen-
dently of each as well as synchronising on any of their actions. This behaviour is far
to generous compared to CCS’s parallel composition. However, by restricting away all
action pairs from T0 × T1 that are not of the form (a, ∗), (∗, a), or (a, a), corresponding
to a move in the left component, right component, and a synchronisation on comple-
mentary actions, and relabelling (a, ∗), (∗, a), and (a, a) to a,a, and τ , respectively, we
obtain CCS’s parallel composition. Both restriction and relabelling can be handled in
our setting.

For a fixed lts T0 the above construction induces an obvious functor T0× : M −→ M.
We continue by applying our theory to prove a general result for this functor. First we
need a definition, which will help formalising the “factoring” of observations in a product
object.

Definition 148 Let T = (S, i, L, −→) and let λ : L ↪→ L′ represent a partial function
between labelling sets. Let ≡ be the least equivalence relation on S such that if s

a−→ s′

and λ(a) = ∗, then s ≡ s′. Let [s] denote the equivalence class of s under ≡. Define
[T ]λ = (S ′, i′, L′, −→ ′), where

• S ′ = {[s] | s ∈ S} and i′ = [i],

• [s] b−→ ′[s′] ⇔ ∃v ∈ [s], v′ ∈ [s′], a ∈ L. v
a−→ v′ ∧ λ(a) = b 6= ∗ .

Let η(T,λ) : T −→ [T ]λ be the pair (σ, λ), where σ(s) = [s]. 2

A simple argument shows that σ is well-defined. If s ≡ s′, then there exists a “back
and forth” path

·

��

l1

� �
� �
� �
� �
� �

��

l2

--
--
--
--
--

·

��

l3

� �
� �
� �
� �
� �

·

��

ln−2

--
--
--
--
--

·

��

ln−1

� �
� �
� �
� �
� �

��

ln

//
//
//
//
/

· · ·

s · · s′

where li = ∗ or λ(li) = ∗, for 1 ≤ i ≤ n. We conclude that σ(s) = σ(s′).

Proposition 149 The morphism η(T,λ) : T −→ [T ]λ is co-Cartesian with respect to p.

Proof. Assume f : T −→ T1 and p(f) = p(η(T,λ)). Define (σ′, 1L′) : [T ]λ −→ T1

by σ′([s]) = σf (s). By an argument similar to the above one can show that σ′ is well-
defined. To see that (σ′, 1L′) is a morphism first notice that σ′([i]) = σf (i) = i1. Next,

assume [s] b−→ ′[s′], i.e., ∃v ∈ [s], v′ ∈ [s′], a ∈ L. v
a−→ v′ ∧ λ(a) = b 6= ∗. Then

σf (v)
λ(a)−→1∗ σf (v′), i.e., σ′([s]) b−→1∗ σ′([s′]). It is easy to see that (σ′, 1L′) is the

uniquely determined morphism such that p((σ′, 1L′)) = 1p([T ]λ) and f = (σ′, 1L′) ◦ η(T,λ).
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Lemma 150 For a partial function λ : L ↪→ L′ between labelling sets, there is a functor
Fλ : p−1(L) −→ p−1(L′) which sends f = (σ, 1L) : T0 −→ T1 to Fλ(f) = (γ, 1L′) :
[T0]λ −→ [T1]λ defined by γ([s]) = [σ(s)].

Proof. The proof is routine, hence omitted.

We can now show the following theorem.

Theorem 151 Let T0 belong to M and L0 = p(T0). Let P be any subcategory of U
such that whenever we have O

f−→ O′ in P , where p(f) = 1L0×∗L for some L, then

Fπ1(O)
Fπ1 (f)
−→ Fπ1(O

′) also belongs to P . Then T0 × : M −→ M is a P-operator.

Proof. By Theorem 142 it is sufficient to show that T0 × is P-factorisable. So

assume T
m−→ T ′ belongs to M, p(T ) = L, and we are given Ô

q̂−→ T̂0×(T̂ ), i.e., a
commuting diagram in M

O

��

f

//q
T0 × T

��

T0×m

O′ //
q′ T0 × T ′

Since M is the union of fibres we have p(f) = p(q) = p(q′) = p(T0 × m) = 1L0×∗L

for some set L. Let π1 : L0 ×∗ L ↪→ L be the projection on the second component.

By our assumptions Fπ1(O)
Fπ1 (f)
−→ Fπ1(O

′) is in P . Let O1 = Fπ1(O), O′
1 = Fπ1(O

′),
q = (σq, 1L0×∗L), and q′ = (σq′ , 1L0×∗L). Define

q# = (σ, 1L) : O1 −→ T , where σ([s]) = ρ1(σq(s)), and

q′# = (σ′, 1L) : O′
1 −→ T ′ , where σ′([s′]) = ρ′

1(σq′(s′))

ρ1 and ρ′
1 are the projections mentioned in Definition 147. Notice, e.g., that for any

s1, s2 ∈ [s] in O1 we have ρ1(σq(s1)) = ρ1(σq(s2)). Next, define

q? = (γ, 1L0×∗L) : O −→ T0 × O1 , where γ(s) = (ρ0(σq(s)), [s]), and

q′? = (γ ′, 1L0×∗L) : O′ −→ T0 × O′
1 , where γ ′(s′) = (ρ′

0(σq′(s′)), [s′])

It can now be shown that both diagrams

O

��

f

//q?

T0 × O1

��

1T0×Fπ1 (f)

O1

��

Fπ1 (f)

//q#

T

��

m

O′ //
q′? T0 × O′

1 O′
1

//
q′# T ′

exist in M and commute, i.e., we have morphisms Ô
q̂?

−→ T̂0×(Ô1) and Ô1
q̂#
−→ T̂ in M̂.

It can also be shown that q = q# ◦ q? and q′ = q′# ◦ q′?. Hence we have a commuting
diagram of the form (6.12). Hence T0 × is P-factorisable.
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6.4.4 Co-Product

In this section, we consider the co-product construction, which has strong relations to,
e.g., CCS’s nondeterministic choice operator, see [WN95] and Sect. 6.4.8.

Definition 152 Let T0 + T1 denote (S, i, L, −→), where

• S = (S0 × {i1}) ∪ ({i0} × S1), with i = (i0, i1) and injections in0 : S0 −→ S,
in1 : S1 −→ S ,

• L = L0 ∪∗ L1 = (L0 × {∗}) ∪ ({∗} × L1), with injections j0 : L0 −→ L and
j1 : L1 −→ L, and

• s
a−→ s′ ⇔ ∃v

b−→0 v′. (in0(v), j0(b), in0(v′)) = (s, a, s′) or

∃v
b−→1 v′. (in1(v), j1(b), in1(v′)) = (s, a, s′)

2

Let I0 = (in0, j0) : T0 −→ T0 + T1 and I1 = (in1, j1) : T1 −→ T0 + T1. It can be shown
that this construction is a coproduct of T0 and T1 in the category TS.

As opposed to the product construction, the co-product construction resembles more
a process algebraic choice, “+”, operator. If we consider non-restarting ltss, co-product
can be shown to correspond to “+” in a formal sense [WN95].

Definition 153 Given T ′ = (S ′, i′, L′, −→ ′) and a partial function λ : L ↪→ L′. Let
T ′

↓λ = (S, i, L, −→), where

• S = {s ∈ S ′ | ∃a1, . . . , an ∈ L, s1, . . . , sn ∈ S ′.

i′
λ(a1)−→ ′s1

λ(a2)−→ ′ · · · λ(an)−→ ′sn ∧ sn = s}

• i = i′

• s
b−→ s′ ⇔ s

λ(b)−→ ′
∗s

′

Let η(T ′,λ) : T ′
↓λ −→ T ′ be the pair (in, λ), where in is the injection function. 2

Proposition 154 The morphism η(T ′,λ) : T ′
↓λ −→ T ′ is Cartesian with respect to p.

Lemma 155 For a partial function λ : L ↪→ L′ between labelling sets, there is a functor
F↓λ : p−1(L′) −→ p−1(L) which sends f = (σ, 1L′) : T0 −→ T1 to F↓λ = (γ, 1L) : T0↓λ −→
T1↓λ defined by γ(s) = σ(s).

Theorem 156 Let T0 belong to M and L0 = p(T0). Assume P is a subcategory of M
such that whenever we have O

f−→ O′ in P with p(f) = 1L0∪∗L for some L, F↓λ(O)
F↓λ(f)−→

F↓λ(O′) also belongs to P , where λ : L −→ L0 ∪∗ L is the injection function. Then
T0 + : M −→ M is a P-operator.
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Proof. It is sufficient to show that T0 + is P-factorisable. So assume T
m−→ T ′

belongs to M, p(T ) = L, and we are given Ô
q̂−→ T̂0+(T̂ ), i.e., a commuting diagram in

M
O

��

f

//q
T0 + T

��

1T0+m

O′ //
q′ T0 + T ′

Let p(f) = 1L0∪∗L. Let λ : L −→ L0 ∪∗ L be the injection function sending a ∈ L to

(∗, a) ∈ L0 ∪∗ L. By our assumptions F↓λ(O)
F↓λ(f)−→ F↓λ(O′) is in P . Let O1 = F↓λ(O),

O′
1 = F↓λ(O′), q = (σq, 1L0∪∗L), and q′ = (σq′ , 1L0∪∗L). Define

q# = (σ, 1L) : O1 −→ T , where σ(s) = t, where σq(s) = (r, t), and

q′# = (σ′, 1L) : O′
1 −→ T ′ , where σ′(s′) = t′, where σq′(s′) = (r′, t′)

Next, define

q? = (γ, 1L0∪∗L) : O −→ T0 + O1 , where γ(s) = (r, i1) if σq(s) = (r, i),
γ(s) = (i0, t) if σq(s) = (i0, t), and

q′? = (γ ′, 1L0∪∗L) : O′ −→ T0 + O′
1 , where γ ′(s′) = (r′, i′1) if σq′(s′) = (r′, i′),

γ ′(s′) = (i′0, s
′) if σq′(t′) = (i′0, t

′)

It can now be shown that both diagrams

O

��

f

//q?

T0 + O1

��

1T0+F↓λ(f)

O1

��

F↓λ(f)

//q#

T

��

m

O′ //
q′? T0 + O′

1 O′
1

//
q′# T ′

exist in M and commute, i.e., we have morphisms Ô
q̂?

−→ T̂0+(Ô1) and Ô1
q̂#
−→ T̂ in M̂.

It can also be shown that q = q# ◦ q? and q′ = q′# ◦ q′?. Hence we have a commuting
diagram of the form (6.12). Hence T0 + is P-factorisable.

6.4.5 Restriction

In this section, we consider relabelling.

Definition 157 Given T ′ = (S ′, i′, L′, −→′) and a labelling set L. Let F ↓L: M −→ M
denote the functor which sends T ′ to T = (S, i, L, −→), where

• S = {s ∈ S ′ | ∃a1, . . . , an ∈ L ∩ L′, s1, . . . , sn ∈ S ′.

i′
a1−→ ′s1

a2−→ ′ · · · an−→ ′sn ∧ sn = s}

• i = i′
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• s
a−→ s′ ⇔ s

a−→ ′s′, a ∈ L

and which maps a morphism m = (σ′
m, 1L′) : T ′

1 −→ T ′
2 to F ↓L (m) = (σm, 1L) : F ↓L

(T ′
1) −→ F ↓L (T ′

2), where σm(s) = σ′
m(s). 2

We have the following perhaps surprising result.

Theorem 158 For any choice of P the functor F ↓L is a P-operator.

Proof. We show that F ↓L is a P-operator. Assume T
m−→ T ′ and we have

O

��

f

//q
F ↓L(T )

��

F↓L(m)

O′ //
q′ F ↓L(T ′)

that commutes in M. Let p(T ) = L′. By our assumptions we must have a commuting

diagram

O1

��

m1

//q#

T

��

m

O′
1

//
q′# T ′

where O = (S, i, L, −→), O′ = (S ′, i′, L, −→), f = (σf , 1L), O1 = (S, i, L′, −→), O′
1 =

(S ′, i′, L′, −→ ′), m1 = (σf , 1L′), q = (σq, 1L), q′ = (σq′ , 1L), q# = (σq, 1L′), and q′# =
(σq′ , 1L′). Notice F ↓ L(O1) = O, F ↓ L(O

′
1) = O′, and F ↓ L(m1) = f . It can easily be

shown that we have a diagram in M̂ as required in (6.12) and that it commutes.

6.4.6 Relabelling

Relabelling, as presented in [WN95], is a bit tricky. We will need some auxiliary defini-
tions and we will have to consider (relabelling) functors between fibres.

Definition 159 Let T = (S, i, L, −→) be an lts and λ : L −→ L′ be a total function
between labelling sets. Define T{λ} to be the lts (S, i, L′, −→ ′), where

s
a−→ ′s′ ⇔ ∃ b. s

b−→ s′ ∧ λ(b) = a .

2

Proposition 160 If λ : L −→ L′ is a total function in Set∗, then T
f−→ T{λ}, where

f = (1S, λ) is co-Cartesian with respect to p.

Proof. The proof is routine, hence omitted.
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Any total function λ : L −→ L′ induces a functor F{λ} : p−1(L) −→ p−1(L′).
Notice that F{λ} is not an endofunctor on M. Instead, given λ : L −→ L′ we consider
λ′ : L ∪ L′ −→ L ∪ L′ defined by λ′(a) = λ(a) if a ∈ L and λ′(a) = a otherwise. Now
p−1(L) and p−1(L′) embed fully and faithfully in p−1(L ∪ L′). We will therefore only
consider total relabelling functions of the form λ : L −→ L.

Let p0 : TS −→ Set be the functor which sends T to S and (σ, λ) : T −→ T ′ to σ.

Definition 161 Let F−1{λ}(T ) denote the subcategory of p−1(L) whose objects are
ltss T ′ such that F{λ}(T ′) = T and whose morphisms f map to 1p0(T ) under p0; objects
in F−1{λ}(T ) have the same set of states as T .

An object T ′ in F−1{λ}(T ) is minimal if the only morphisms in F−1{λ}(T ) with
codomain T ′ is the identity morphism on T ′. 2

Remark. Notice that if T ′ is minimal in F−1{λ}(T ), then for any two transitions s
a−→ s′

and s
b−→ s′ in T ′ we have a 6= b implies λ(a) 6= λ(b).

Theorem 162 Given a total relabelling function λ : L −→ L. Choose M = p−1(L).

Let P be a subcategory of U . Assume that for all O
f−→ O′ in P , where f = (σf , 1L)

and F−1{λ}(O) and F−1{λ}(O′) are nonempty, (σf , 1L) : O1 −→ O′
1 belongs to P ,

whenever O1 and O′
1 are minimal elements in F−1{λ}(O) and F−1{λ}(O′), respectively,

and (σf , 1L) : O1 −→ O′
1 defines a morphism. Then F{λ} : M −→ M is a P-operator.

Proof. Choose M = p−1(L). We show that F{λ} : M −→ M is a P-operator,
where λ : L −→ L is a total relabelling function. Assume T

m−→ T ′ belongs to M and
we have

O

��

f

//q
F{λ}(T )

��

F{λ}(m)

O′ //
q′ F{λ}(T ′)

that commutes in M. Since O is simulated in F{λ}(T ) we know that F−1{λ}(O)

is nonempty. Similarly, F−1{λ}(O′) is nonempty. Since O is simulated in F{λ}(T )
and p(m) = 1L, there must exist a minimal O1 in F−1{λ}(O) and a minimal O′

1 in
F−1{λ}(O′) such that g = (σf , 1L) : O1 −→ O′

1 is a well-defined morphism in P and
such that

q# = (σq, 1L) : O1 −→ T , where q = (σq, 1L) : O −→ F{λ}(T ), and

q′# = (σq′ , 1L) : O′
1 −→ T ′ , where q′ = (σq′ , 1L) : O′ −→ F{λ}(T ′)

are well-defined morphisms in M.

Next, define

q? = (γ, 1L) : O −→ F{λ}(O1) , where γ(s) = s, and

q′? = (γ ′, 1L) : O′ −→ F{λ}(O′
1) , where γ ′(s′) = s′
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It can now be shown that both diagrams

O

��

f

//q?

F{λ}(O1)

��

F{λ}(g)

O1

��

g

//q#

T

��

m

O′ //
q′? F{λ}(O′

1) O′
1

//
q′# T ′

exist in M and commute, i.e., we have morphisms Ô
q̂?

−→ F̂{λ}(Ô1) and Ô1
q̂#
−→ T̂ in

M̂. It can also be shown that q = q# ◦ q? and q′ = q′# ◦ q′?. Hence we have a commuting
diagram of the form (6.12). Hence F{λ} is P-factorisable.

Notice that M = p−1(L) is no restriction in our case, since M “consists” of full
subcategories of fibres: it is easy to see that a P-open morphism in p−1(L) is also P-
open in M.

6.4.7 Prefix

Definition 163 Given T = (S, i, L, −→) and a label α. Let α.T = (S ′, i′, L∪{α}, −→ ′),
where

• S ′ = {{s} | s ∈ S} ∪ {∅}, i′ = ∅, and

• v
b−→ ′v′ ⇔ (v = ∅ ∧ b = α ∧ v′ = {i}) or (v = {s} ∧ v′ = {s′} ∧ s

b−→ s′) .

2

Any label α induces a functor α. : M −→ M which sends f = (σ, 1L) : T −→ T ′ to
(σ′, 1L∪{α}) : α.T −→ α.T ′, where σ′(∅) = ∅ and σ′({s}) = {σ(s)}.

Definition 164 Given T and a label α. Let α−1(T ) = (S ′, i′, L, →′), where

• S ′′ = {s ∈ S | ∃v ∈ L∗. i
α−→ v−→ s}\{s | i α−→ s} ,

• S ′ = {{s} | s ∈ S ′′} ∪ {{s | i α−→ s}} ,

• i = {s | i α−→ s} , and

• r
a−→ ′r′ ⇔ ∃s ∈ r, s′ ∈ r′. s

a−→ s′ .

2

Any label α induces a functor α−1 : U −→ U which sends f = (σ, 1L) : T −→ T ′ to
α−1(f) = (σ′, 1L) : T1 −→ T2, where T1 = α−1(T ), T2 = α−1(T ′), σ′(i1) = i2, and
σ′({s}) is the unique v ∈ S2 such that σ(s) ∈ v. Notice that α−1(T ) may not be
non-restarting even though T is.
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Theorem 165 Let P be a subcategory of U . Assume that whenever we have O
f−→ O′

in P , then α−1(O)
α−1(f)−→ α−1(O′) also belongs to P . Then α. is a P-operator.

Proof. We show that α. is a P-operator. Assume T
m−→ T ′ and we have

O

��

f

//q
α.T

��

α.m

O′ //
q′ α.T ′

that commutes in M. Notice that since T and T ′ are assumed to be non-restarting,

α−1(O) and α−1(O′) must also be non-restarting. Assume α ∈ L = p(T ). By our

assumptions α−1(O)
α−1(f)−→ α−1(O′) is in P . Let O1 = α−1(O) and O′

1 = α−1(O′).
Define

q# = (σ, 1L) : O1 −→ T , given by σ(i1) = i and σ({s}) = r,
where σq(s) = {r} and q = (σq, 1L) : O −→ α.T , and

q′# = (σ′, 1L) : O′
1 −→ T ′ , given by σ′(i′1) = i′ and σ′({s′}) = r′,

where σq′(s′) = {r′} and q′ = (σq′ , 1L) : O′ −→ α.T ′

Next, define

q? = (γ, 1L) : O −→ α.O1 , where γ(i) = ∅,
γ(s) = {i1} for s ∈ {s |, i α−→ s} in O, γ(s) = {{s}}, else, and

q′? = (γ ′, 1L) : O′ −→ α.O′
1 , where γ ′(i′) = ∅,

γ ′(s′) = {i′1} for s′ ∈ {s′ |, i′ α−→ s′} in O′, γ ′(s′) = {{s′}}, else.

It can now be shown that both diagrams

O

��

f

//q?

α.O1

��

α.g

O1

��

g

//q#

T

��

m

O′ //
q′? α.O′

1 O′
1

//
q′# T ′

exist in M and commute, i.e., we have morphisms Ô
q̂?

−→ α̂.(Ô1) and Ô1
q̂#
−→ T̂ in M̂.

It can also be shown that q = q# ◦ q? and q′ = q′# ◦ q′?. Hence we have a commuting
diagram of the form (6.12).

For the case where α 6∈ p(T ) the same reasoning can be used. First extend T and
T ′’s labelling sets to include α. The induced mα : T −→ T ′ in p−1(L ∪ {α}) will be
P-open if and only if m : T −→ T ′ is due to our assumptions about P . Now notice that
mα and m are identical under α. . We conclude that α. is P-factorisable.
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6.4.8 Putting it together

Let us consider Milner’s CCS-operators except recursion, which is handled in next sec-
tion. Under the common assumption that only guarded sum is considered, it is shown
in [WN95] how these CCS-operators can be expressed by the above constructions (func-
tors). For each operator we have obtained a theorem for the corresponding functor which
identifies conditions which guarantee that the functor is a P-operator. Or put differently,
for each functor we have meta-theorems providing conditions on P guaranteeing that ∼P
remains a congruence with respect to the functor (operator).

However, we would like to consider more than one functor at the time. Does there
exist choices of P , such that P satisfies the conditions of all our theorems (including
relabelling and prefixing) ?

Choosing P in M as the full subcategory induced by words (i.e., fibre-wise as done for
PM in Sec. 6.4.2), we can show that ∼P also corresponds to Milner’s strong bisimulation.
Moreover, it is easy to see that P satisfies all conditions of our theorems, i.e., ∼P
must be a congruence with respect to all the operators (functors). For example, let
us just consider the conditions from Theorem 151. They state that when viewing the
objects of P as finite strings, P in general has to be closed under the operation of
taking a subsequence, and possibly renaming the labels. Furthermore, as an immediate
consequence we conclude that ∼P is a congruence with respect to the aforementioned
CCS operators.

What about other choices of P? If—similarly to the choice of PH in PM in Sect. 6.2—
we choose P as the subcategory of the previous choice of P obtained by only keeping
identity morphisms and morphisms whose domains are observations having only one
state (the empty word), then ∼P corresponds to Hoare trace equivalence. This choice
of P also trivially satisfies all conditions required by the theorems. Hence, Hoare trace
equivalence is a congruence with respect to the presented constructions (and, again, the
aforementioned CCS operators).

Choosing P as, e.g., the subcategory induced by trees will also satisfy all conditions
required by the theorems. Hence ∼P , which is a strictly finer equivalence than Milner’s
strong bisimulation as hinted in Sect. 5.5, must also be a congruence with respect to the
presented constructions.

6.5 Recursion

For recursion there is no simple way of defining a functor on M representing Milner’s
recursion operator. The reason is that one needs some notion of process variables which
are to be bound by the recursion operator. Some kind of process term language is nec-
essary, as can be seen both in Milner’s work [Mil89] and Winskel and Nielsen’s [WN95].
However, without introducing a process algebraic term language it is possible to cap-
ture a recursion-like operator in a “faithful” way. The restriction is intuitively that free
process variable cannot occur under the scope of a parallel composition operator. Such
restrictions have been considered by Taubner [Tau89].
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First, identify a set of variables Var and extend the objects (S, i, L, −→) of M with
a partial function l from S to Var. Also, we now allow restarting ltss. 3 Furthermore,
whenever l is defined on a state s, there can be no out-going transitions from s and
morphisms are now required to respect the labelling function l.

We define FX : M −→ M, which intuitively “binds X”, on objects as follows. Given
T = (S, i, L, −→, l), then FX(T ) = (S ′, i′, −→ ′, L, l′), where

S ′ = {i}, i′ = i, −→ ′ = ∅, and l′ is totally undefined, when l(i) = X , (6.15)

S ′ = {s ∈ S | l(s) 6= X}, i′ = i, l′ equals l on S ′, when l(i) 6= X , where (6.16)

s
a−→ ′s′ if s

a−→ s′ ∧ l(s′) 6= X (6.17)

or

∃ s′′. s
a−→ s′′ ∧ l(s′′) = X ∧ s′ = i

Given a morphism f : T1 −→ T2. FX(f) : FX(T1) −→ FX(T2) is defined to map s ∈ S ′
1

to f(s) if l2(f(s)) 6= X , and i′2 otherwise.
Intuitively, FX simply redirects all transitions going into X-labelled states to the

initial state. For example:

i

��
α

σ−→ i′

��
α

� �
� �
� � @ A B C

α

E Doo 7−→ i@ A B C
α

E Doo FX (σ)−→ i′@ A B C
α

E Doo
X X FX binding X

FX has the following desirable property:

Lemma 166 For any X ∈ Var, FX is a functor.

Proof. The proof is routine, hence omitted.

As a special case, let us consider P as the subcategory of M corresponding to (6.10)
except that final states may now be labelled with variables from Var.

Theorem 167 For any X ∈ Var, FX is a P-operator.

3The only implication of this assumption is, that co-product will have to be handled in a way similar to
recursion. We could also have considered a recursion operator which “unfolded” the transition systems,
and hence stayed within the non-restarting ltss.
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Proof. The first observation is that (6.12) is not going to hold. This is due to the
fact that an observation of FX(T ) can correspond to many observations of T . However,
we can apply the theory from Definition 6.12 on each of these observations individually.
So assume T

m−→ T ′ belong to M and that

O

��

f

//q
FX(T )

��

FX(m)

O′ //
q′ FX(T ′)

is a commuting diagram in M. Let us denote f = (σf , 1L) and use a similar notation

for q, q′, and m. Let O be denoted as

s0
a1−→ s1

a2−→ · · · an−→ sn

and O′ as
s′
0

a1−→ s′
1

a2−→ · · · an−→ s′
n

an+1−→ · · · an+m−→ s′
n+m .

Let 1 ≤ j1 < · · · < jr ≤ n be all indexes such that the is no ajk
transition from σq(sjk−1)

to σq(sjk
) in T , where r ≥ 0. This means that for 1 ≤ k ≤ r there exists a transition

σq(sjk−1)
ajk−→ rk in T such that rk is labelled X .

Let j0 = 0 and let U1, . . . , Ur be observations in P , where for 1 ≤ k ≤ r, Uk is given
by

(jk−1, σq(sjk−1))
ajk−1−→ · · ·

ajk−1−→ (jk − 1, σq(sjk−1))
ajk−→ (jk, rk)

with final state labelled by X (labelling set L, and initial state (jk−1, σq(sjk−1))). We
refer to this procedure as splitting.

For 1 ≤ k ≤ r, let U ′
k be the observation

(jk−1, σf(σq(sjk−1)))
ajk−1−→ · · ·

ajk−1−→ (jk − 1, σf(σq(sjk−1))
ajk−→ (jk, σf(rk))

with labelling set L. Again, the final state is labelled by X . Notice that if r > 0, then
σq′(s′

jr
) = i′ in T ′.

If there exists no n < k ≤ n +m such that there is no ak transition from σ′
q(s′

k−1) to
σ′

q(s′
k) in T ′, then choose r′ = 0 and Ur+r′+1 as

(jr, σq(sjr))
ajr+1−→ · · · an−→ (n, σq(sn))

where all states are unlabelled, and U ′
r+r′+1 as

(jr, σq′(s′
jr

))
ajr+1−→ · · · an+m−→ (n + m, σq′(s′

n+m))

Else, split

s′
jr

ajr+1−→ · · · an+m−→ s′
n+m



166 Chapter 6. Open Maps and Congruences

obtaining indexes n ≤ jr+1 < · · · < jr+r′ ≤ n + m, where r′ > 0, and observations
U ′

jr+1
, . . . , U ′

jr+r′ with final states labelled with X . Let jr+r′+1 = n+m. Let Ur+1 be the
observation

(jr, σq(sjr))
ajr+1−→ · · · an−→ (n, σq(sn))

with all states unlabelled. For r+1 < k ≤ r + r′ +1 let Uk be the observation consisting
of a single unlabelled state (jk, i). Let U ′

r+r′+1 be the observation

(jr+r′ , σq′(s′
jr+r′ ))

ajr+r′ +1
−→ · · · an+m−→ (n + m, σq′(s′

n+m))

with all states unlabelled.
For 1 ≤ k ≤ r + r′ + 1 let Vk and V ′

k denote the unlabelled versions of Uk and U ′
k,

respectively.
Note that for 1 ≤ k ≤ r + r′ + 1 there exist

• a uniquely determined morphism fk : Vk −→ V ′
k,

• an obvious morphism qk : Vk −→ FX(T ), sending a state (p, s) to s,

• an obvious morphism q′
k : V ′

k −→ FX(T ′),

• a uniquely determined morphism mk : Uk −→ U ′
k,

• an obvious morphism q(k,#) : Uk −→ T , sending a state (p, s) to s,

• an obvious morphism q′
(k,#) : U ′

k −→ T ′,

• an obvious morphism q(k,?) : Vk −→ FX(Uk), sending a state (p, s) to s, and

• an obvious morphism q′
(k,?) : V ′

k −→ FX(U ′
k) .

Now for 1 ≤ k ≤ r + r′ + 1
Vk

��

fk

//qk
FX(T )

��

FX (m)

V ′
k

//
q′
k

FX(T ′)

commutes. Also, it can be shown that the two diagrams

Vk

��

fk

//
q(k,?)

FX(Uk)

��

FX(mk)

Uk

��

mk

//
q(k,#)

T

��

m

V ′
k

//
q′
(k,?)

FX(U ′
k) U ′

k
//

q′
(k,#)

T ′

commute. Denoting these diagrams as morphisms in M̂ we can show that the diagram
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V̂k

!!
q̂k DD

DD
DD
DD
DD
DD
DD

//q̂?

F̂X(Ûk)

��

F̂X( ̂q(k,#))

F̂X(T̂ )

commutes. From the proof of Theorem 142 it follows that there exists morphisms hk :
V ′

k −→ FX(T ), 1 ≤ k ≤ r + r′ + 1, such that qk = hk ◦ fk and q′
k = FX(m) ◦ hk. From

these morphisms one can then obtain a morphism h = (σh, 1L) : O′ −→ FX(T ) such
that q = h ◦ f and q′ = FX(m) ◦ h. To see this, let σh be the function that maps s′

j

to σhk
((j, s′

j)), when jk−1 < j ≤ jk, and to i, when j = 0. It can now be shown that h

indeed satisfies the claimed equalities.

6.6 Summary

We have examined Joyal, Nielsen, and Winskel’s notion of behavioural equivalence, P-
bisimilarity [JNW93], with respect to congruence properties. Inspired by [WN95], we
observed that endofunctors on M can be viewed as abstract operators. Staying within
the categorical setting, we then identified simple 4 and natural conditions, which ensure
that such endofunctors preserve open maps, i.e., that P-bisimilarity is a congruence
with respect to the functors. We formalised this as P-factorisability. The main varying
parameters were M, P , and the functors.

We then continued by giving a concrete application by fixing M. For a set of end-
ofunctors, we obtained meta-theorems stating conditions on P , which guaranteed that
P-bisimilarity would be a congruence with respect the functors.

As for future research, there are many possibilities. Returning to the discussion in the
introduction, one could try to merge the two “orthogonal” approaches we mentioned,
e.g., try to identify a way of presenting functors by SOS-like rule systems such that
one could state conditions about both the rule systems and P , which would guarantee
congruence of P-bisimilarity with respect to all functors, whose defining rule systems
obeyed a special format.

Another possibility is to continue to work as in Sect. 6.4—other functors may be
considered. However, as shown in Chap. 5, other choices of M make it possible to capture
other interesting behavioural equivalences: weak bisimulation or “true concurrency”
equivalences. One could look for similar meta-theorems for such choices of M.

In Sect. 6.4 we examined the category TS of labelled transitions systems. The mor-
phisms of this category simulated transitions in a strong sense, indicated by (6.9). An-
other behavioural equivalence one might wish to examine is weak bisimulation [Mil89].
Based on our characterisation of weak bisimulation in Sect. 5.3.2 and how the categor-
ical constructions such as products and co-products depended on composing or pairing

4We find it a virtue, that the definition of P-factorisability—just as the definition of open maps—
doesn’t require more than a modest knowledge of category theory.
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labels, we propose the following category, in which weak bisimulation could be handled.

Definition 168 A weak labelled transition systems is a tuple (S, i, Lo, Li, −→), where S

is the set of states with initial state i, Lo and Li are disjoint sets of labelled, referred to
as observable and invisible labels, respectively, and −→⊆ S ×L × S, where L = Lo ∪ Li,
is the transition relation. Moreover, we require that all states in S are reachable from
the initial state and that the transition systems are non-restarting. 2

As in Sect. 6.4.1, we assume the existence of a special element ∗ which is not member
of any labelling set. A partial function λ between two labelling sets L and L′ can then
be represented as a total function from L ∪ {∗} to L′ ∪ {∗} such that ∗ is mapped to
∗. If a ∈ L is mapped to ∗, we interpret this as meaning that λ is undefined on a.
Also, given T = (S, i, Lo, Li, −→), we define −→∗ to be the set −→ ∪{(s, ∗, s) | s ∈ S}.
The transitions (s, ∗, s) are called idle transitions. We write s

t=⇒ s′ if t = α1 · · ·αn ∈
(L∪{∗})∗ and s

v1−→∗ s1
α1−→∗ s′

1
v2−→∗ · · · vn−→∗ sn

αn−→∗ s′
n

vn+1−→∗ s′ for some s1, . . . , s
′
n ∈ S

and v1, . . . , vn+1 ∈ (Li ∪ {∗})∗.

Definition 169 A morphism is a pair (σ, λ) : T1 −→ T2, where σ is a total function
from S1 to S2, such that

σ(i1) = i2 (6.18)

and λ is a partial function from L1 to L2 such that

λ(Li
1) ⊆ Li

2 . (6.19)

Moreover, we require

s
a−→1 s′ ⇒ σ(s)

λ̂(a)
=⇒2 σ(s′) , (6.20)

wherê: (L2 ∪ {∗})∗ −→ (Lo
2)

∗ removes all invisible labels from its argument. 2

Defining composition of morphisms as the usual componentwise composition of func-
tions, one obtains the category WTS of weak labelled transition systems.

The category TS sits inside WTS. Intuitively, the objects from TS correspond to
objects from WTS with empty set of invisible labels. Also, weak bisimilarity between
two weak labelled transition systems T1 and T2 is defined as the obvious generalisation
of Definition 88. Not surprisingly, if one, as done in Sect. 6.4, chooses M as the union of
fibres and P analogously to Definition 85, P-bisimilarity corresponds to weak bisimilarity.

The category WTS has product and co-product constructions similar to those in
Sect. 6.4.3 and 6.4.4.

Definition 170 Let T0 × T1 denote (S, i, Lo, Li, −→), where



6.6. Summary 169

• S = S0 × S1, with i = (i0, i1) and projections ρ0 : S −→ S0, ρ1 : S −→ S1 ,

• Lo = Lo
0 × (L1 ∪ {∗}) ∪ (L0 ∪ {∗}) × Lo

1,
Li = Li

0×(Li
1∪{∗})∪(Li

0∪{∗})×Li
1, with projections π0 : L ↪→ L0 and π1 : L ↪→ L1,

and

• s
a−→∗ s′ ⇔ ρ0(s)

π0(a)−→ 0∗ ρ0(s′) ∧ ρ1(s)
π1(a)−→1∗ ρ1(s′) .

2

Let Π0 = (ρ0, π0) : T0 × T1 −→ T0 and Π1 = (ρ1, π1) : T0 × T1 −→ T1. It can be shown
that Π0 and Π1 are well-defined morphisms and that this construction is a product of
T0 and T1 in the category WTS. The proof is case-based and routine.

However, constructions similar to those from, e.g., Definition 148 don’t seem go
through. We are still able to show that, e.g., the operation T0 × : M −→ M is a
P-operator. The proof is a bit more elaborate than that of Theorem 151.

Definition 171 Let T0 + T1 denote (S, i, L, −→), where

• S = (S0 × {i1}) ∪ ({i0} × S1), with i = (i0, i1) and injections in0 : S0 −→ S,
in1 : S1 −→ S ,

• Lo = (Lo
0 × {∗}) ∪ ({∗} × Lo

1),
Li = (Li

0 × {∗}) ∪ ({∗} ∪ Li
1), with injections j0 : L0 −→ L and j1 : L1 −→ L, and

• s
a−→ s′ ⇔ ∃v

b−→0 v′. (in0(v), j0(b), in0(v′)) = (s, a, s′) or

∃v
b−→1 v′. (in1(v), j1(b), in1(v′)) = (s, a, s′)

2

Let I0 = (in0, j0) : T0 −→ T0 + T1 and I1 = (in1, j1) : T1 −→ T0 + T1. It can be shown
that this construction is a co-product of T0 and T1 in the category WTS.

In general, the operation T0 + : M −→ M is not a P-operator. If one tries to apply
the definition of P-factorisability, a case analysis leads us to the following (simplified)
counterexample.

Let us consider the (open) map

·

���
�
�

�
�
�

·oo b

���
�
�

�
�
�

�oo τ

���
�
�

�
�
�

· �oo
b

where b is visible and τ invisible. Let T0 be � a−→ ·, where a is visible. Taking the
operation T0 + with the above open maps produces
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·

���
�
�

�
�
�

·oo (∗,b)

���
�
�

�
�
�

�oo (∗,τ )

���
�
�

�
�
�

//(a,∗) ·

���
�
�

�
�
�

· �oo
(∗,b)

//
(a,∗)

·

Now consider the commuting diagram

(∗, τ )

(∗, τ )

(∗, b)

(∗, τ )

(a, ∗)
(a, ∗)

(∗, b)

(a, ∗)

The objects to the left and the morphism connecting them belong to P . 5 Since the

diagram is of the form (6.1) and commuting, it corresponds to a morphism Ô
q̂−→ T̂0+(X̂)

in M̂. Hence, we have to show that there exist an object Ô1 in P̂ and morphisms

Ô
q̂?

−→ F̂ (Ô1) and Ô1
q̂#
−→ X̂ in M̂ such that the diagram (6.12) commutes. Drawing

this diagram in calM, yields

O

��

f

$$
q
JJJ

JJJ
J //q∗

T0 + O1

ww q#o o o
o o o o

��

T0+gT0 + X

��
T0+m

O′

$$q′ II
III

I //q′∗
T0 + O′

1

xx q′#p p p p
p p p

T0 + X ′

5Objects with “mixed left and right” labels are used in connection with the product construction.
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where f : O −→ O′ and m : X −→ X ′ are given by the above diagram. Assume such
a commuting diagram exists. Since the upper “triangle” in the diagram commutes, O1

must necessarily be of the form

� α−→ · β1−→ · · · βn−→ · ,

where α is an invisible label, and n ≥ 0. Hence, O′
1 must also be of the form

� α−→ · β1−→ · · · βm−→ · ,

where m ≥ n. Since q′∗ is assumed to be a morphism and the above diagram lies in a

fibre, O′’s initial transition � (∗,τ )−→ · must be mapped to the idle transition at T0 + O′
1’s

initial state—O′’s transition · (a,∗)−→ · has to be mapped to the (a, ∗)-labelled transition in
T0 + O′

1 originating from T0. However, then

O

��

f

//q∗
T0 + O1

��

T0+g

O′ //q′∗
T0 + O′

1

cannot commute. Abstractly, we see that the conditions for P-factorisability implies,
that an initial invisible transition in T0 + X , which resolves the nondeterministic choice
’+’, must be matched by a similar resolving choice in T0 + X ′.
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7.1 Introduction

We propose a Gentzen-style axiomatisation involving sequents of the form Φ ` Ψ, where
Φ and Ψ are finite sets of set constraints. The intended interpretation of the sequent
Φ ` Ψ is that if all the constraints in Φ hold of some model, then at least one of the
constraints Ψ holds in that model.

This axiomatisation can be thought of as a deductive system for refuting unsatisfiable
systems of mixed positive and negative constraints. Deriving the sequent Φ ` Ψ is
tantamount to refuting the mixed system Φ ∪ {s 6= t | s = t ∈ Ψ}. Systems of the
restricted form Φ ` ⊥ correspond to systems of positive set constraints alone.

We also give an example of how verification of finite state concurrent systems can be
performed using set constraints. More specifically, we show how Milner’s protocol can
be verified for the absence of deadlocks by encoding it in clp(sc), a logic programming
language over set constraints introduced by Kozen [Koz94].

In Sect. 7.2.1–7.3, we briefly review the basic definitions and known results we will
need regarding set constraints, termset algebras, term automata, and normal forms. In
Sect. 7.4 we present our axiomatisation. Then, in Sect. 7.5 we summarise and discuss
future work.

7.2 Definitions

In this section we give the necessary definitions.

7.2.1 Set Expressions and Set Constraints

Let Σ be a finite ranked alphabet consisting of symbols f , each with an associated
arity. Symbols in Σ of arity 0, 1, 2, and n are called nullary, unary, binary, and n-ary,
respectively. Nullary elements are denoted by a, b, . . . and are called constants. The set
of elements of Σ of arity n is denoted Σn. In the sequel, the use of expressions of the
form f(t1, . . . , tn) carries the implicit assumption that f is of arity n.

The set of ground terms over Σ is denoted TΣ. It is the least set such that if
t1, . . . , tn ∈ TΣ and f ∈ Σn, then f(t1, . . . , tn) ∈ TΣ. If X = {x, y, . . .} is a set of
variables, then TΣ(X) denotes the set of terms over Σ and X , considering variables in
X as symbols of arity 0.

Let B = (∪, ∩, ∼, 0, 1) denote the usual signature of Boolean algebra. Let Σ+B
denote the signature consisting of the disjoint union of Σ and B. Boolean operators such
as − (set difference) and ⊕ (symmetric difference) are defined from these as usual. A set
expression over X is an element of TΣ+B(X). We use s, t, . . . to denote set expressions.
A typical set expression could be:

f(g(x ∪ y), ∼(g(a)∩ b))

where g, f are symbols of arity 1 and 2, respectively, a, b are constants, and x, y ∈ X .
A Boolean expression over X is an element of TB(X).
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A positive set constraint is a formal inclusion s ⊆ t, where s and t are set expressions.
For notational convenience we allow equational constraints s = t, although inclusions
and equations are interdefinable: s ⊆ t is equivalent to s ∪ t = t, and s = t to s ⊕ t ⊆ 0.
A negative set constraint is the negation of a positive set constraint: s 6⊆ t or s 6= t. We
use ϕ, ψ, . . . to denote set constraints and Φ, Ψ, . . . to denote finite sets of set constraints.

7.2.2 Axioms of Termset Algebra

In [Koz93], the following axiomatisation of the algebra of sets of ground terms was
introduced:

f(. . . , x ∪ y, . . .) = f(. . . , x, . . .) ∪ f(. . . , y, . . .) (7.1)

f(. . . , x − y, . . .) = f(. . . , x, . . .) − f(. . . , y, . . .) (7.2)⋃
f∈Σ

f(1, . . . , 1) = 1 (7.3)

f(1, . . . , 1) ∩ g(1, . . . , 1) = 0, f 6= g (7.4)

f(x1, . . . , xn) = 0 ⇒
n∨

i=1

(xi = 0) (7.5)

axioms of Boolean algebra (7.6)

The ellipses in (7.1) and (7.2) indicate that the explicitly given arguments occur in
corresponding places, and that the implicit arguments in corresponding places agree.
Models of the axioms are called termset algebras . The standard interpretation 2TΣ,
where the Boolean operators have their usual set-theoretic interpretations and elements
f ∈ Σn are interpreted as

f : (2TΣ)n → 2TΣ

f(A1, . . . , An) = {f(t1, . . . , tn) | ti ∈ Ai, 1 ≤ i ≤ n} ,

forms a model of these axioms.
Some immediate consequences of these axioms are

f(. . . , 0, . . .) = 0 (7.7)

f(. . . , ∼x, . . .) = f(. . . , 1, . . .) − f(. . . , x, . . .) (7.8)

f(. . . , x ⊕ y, . . .) = f(. . . , x, . . .) ⊕ f(. . . , y, . . .) (7.9)

f(. . . , x ∩ y, . . .) = f(. . . , x, . . .) ∩ f(. . . , y, . . .) (7.10)

x ⊆ y ⇒ f(. . . , x, . . .) ⊆ f(. . . , y, . . .) . (7.11)

Also, a generalised DeMorgan law can be derived:
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∼f(x1, . . . , xn) =
⋃
g 6=f

g(1, . . . , 1)

∪
n⋃

i=1

f(1, . . . , 1︸ ︷︷ ︸
i−1

, ∼xi, 1, . . . , 1︸ ︷︷ ︸
n−i

) (7.12)

The law intuitively says that a ground term not having head symbol f and ith subterm
satisfying xi either has head symbol different from f or has head symbol f but one of
its ith subterms does not satisfy xi. The law is useful for pushing occurrences of the
negation operator ∼ inward.

7.2.3 Term Automata and Models

Following Courcelle [Cou83], we define (Σ-)terms .

Definition 172 Let ω denote the set of natural numbers and let Σ be a finite ranked
alphabet. A (Σ-)term is a partial function t : ω∗ → Σ whose domain is nonempty,
prefix-closed, and respects arities in the sense that if t(γ) is defined then

{i | t(γi) is defined} = {1, 2, . . . , arity(t(γ))} .

If α is in the domain of t, the subterm of t rooted at α is the the term λβ.t(αβ). A term
is (in)finite if its domain is (in)finite, and is regular if it has only finitely many subterms.

2

Example. The finite term f(g(a), f(a, g(b))) is formally a partial map t with domain
{ε, 1, 2, 11, 21, 22, 221} such that t(ε) = t(2) = f , t(1) = t(22) = g, t(11) = t(21) = a,
and t(221) = b. The infinite term f(a, f(a, f(a, . . .))) is formally a map s whose domain
is the infinite set described by the regular expression 2∗ + 2∗1 such that s(α) = f for
α ∈ 2∗ and s(α) = a for α ∈ 2∗1. The infinite term s is regular since it has only two
subterms, namely s and a.

7.2.4 Term Automata

It is well known that an infinite regular term can be represented by a finite labelled graph
such that the infinite term is obtained by “unwinding” the graph (see [Cou83, Col82]).
We use the automata-theoretic formulation introduced in [KPS92] of this idea.

Definition 173 A term automaton over Σ is a tuple M = (Q, Σ, `, δ) where:

• Q is a set of states (not necessarily finite)

• Σ is a ranked alphabet

• ` : Q → Σ is a labelling
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• δ : Q × ω → Q is a partial function such that for all q ∈ Q,

{i | δ(q, i) is defined} = {1, 2, . . . , arity(`(q))} .

The function δ extends uniquely to a partial function δ̂ : Q × ω∗ → Q according to the
inductive definition

δ̂(q, ε) = q

δ̂(q, γi) = δ(δ̂(q, γ), i) ,

with the understanding that δ is strict (undefined if one of its arguments is undefined).
For each q ∈ Q, the partial function

tq = λγ.`(δ̂(q, γ))

is a Σ-term in the sense of Definition 172. Notice that tp may equal tq even though p 6= q.
Every term in the sense of Definition 172 is tq for some state q of some term automa-

ton. In fact, t = tt in the syntactic term automaton

IΣ = ({Σ-terms}, Σ, `, δ)

where `(t) = t(ε) and δ(t, i) = λγ.t(iγ), 1 ≤ i ≤ arity(`(t)). In this sense the notion of
term automaton (Definition 173) is a generalisation of the notion of term (Definition 172).

A term is regular if and only if it is tq for some state q of some finite term automaton
[KPS93, Lemma 8]. For example, if q is the state labelled f in the term automaton

a q
1�

f
q

2
�

� �

?

then tq is the infinite regular term s of Example 7.2.3.
A term automaton M is closed if for any f ∈ Σn and q1, . . . , qn ∈ Q there exists a

q ∈ Q such that

`(q) = f and δ(q, i) = qi , 1 ≤ i ≤ n . (7.13)

2

A model is a closed term automaton M. We refer to the states of M—rather then
their associated partial functions tq—as the terms of M, and use the notation t ∈ M to
indicate t ∈ Q. A term t′ of M is a subterm of t at depth k if there exists a γ ∈ ωk such
that δ̂(t, γ) = t′. A term t of M is (in)finite if tt is (in)finite, and said to be labelled by
t′ if tt = t′. The model is standard if the function q 7→ tq : Q → TΣ is a bijection. We
denote a standard model by TΣ.

Remark. For any term automaton M = (Q, Σ, `, δ) there is a closed term automaton
M′ = (Q′, Σ, `′, δ′) such that Q ⊆ Q′, `′ and δ′ coincide with ` and δ on states
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from Q, and Q′ is a minimal set of states—with respect to subset inclusion—with these
properties; M′ is said to be a minimal closure of M. M′ can be obtained as follows: Let
M0 = M and let Mi+1 be obtained from Mi by adding exactly one new term t to Qi

for every f ∈ Σn and t1, . . . , tn ∈ Qi for which (7.13) doesn’t hold. `i+1 is the extension
of `i that maps t to f and δi+1 is the extension of δi that maps (t, i) to ti, 1 ≤ i ≤ n.
Define M′ as the ω-limit of these term automata.

7.2.5 Term Automata and Set-Theoretic Termset Algebras

Let M be the term automaton (Q, Σ, `, δ). For f ∈ Σn, define the partial function
RM

f : Q → Qn and the set-theoretic function fM : (2Q)n → 2Q by

RM
f (q) =

{
(δ(q, 1), . . . , δ(q, n)) , if `(q) = f

undefined , otherwise.
(7.14)

fM(A1, . . . , An) = {q ∈ Q | `(q) = f and δ(q, i) ∈ Ai, 1 ≤ i ≤ n}
= (RM

f )−1(A1 × · · · × An) . (7.15)

Set expressions are interpreted over 2Q, the powerset of Q, which forms an algebra of
signature Σ+B, where the Boolean operators have their usual set-theoretic interpreta-
tions and elements f ∈ Σ are interpreted as fM. If M is closed, one can show that this
gives a termset algebra. Such an algebra, or a subalgebra of such an algebra, is called a
set-theoretic termset algebra.

Let M be a model. A set valuation over M is a map

σ : X → 2Q

assigning a subset of terms of M to each variable in X . We can extend any set valuation
σ uniquely to a (Σ+B)-homomorphism

σ : TΣ+B(X) → 2Q

by induction on the structure of set expressions in the usual way. A set valuation σ over
M satisfies the positive set constraint s ⊆ t if σ(s) ⊆ σ(t), and satisfies the negative set
constraint s 6⊆ t if σ(s) 6⊆ σ(t). We write σ |=M Φ if σ satisfies all set constraints in Φ;
Φ is said to be satisfiable in M and σ a solution to Φ. The set Φ is satisfiable if it is
satisfiable over some model. We write Φ |=M Ψ if σ |=M Φ implies σ |=M ψ for some
ψ ∈ Ψ. When no confusion is possible, we suppress the subscript M.

7.3 Systems in Normal Form and Solutions

Let X ′ ⊆ X . Positive (negative) literals from X ′ are expressions x (∼x) for x ∈ X ′. A
maximal conjunction of literals from X ′ is a conjunction of positive and negative literals
from X ′, where each variable in X ′ occurs exactly once.
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A triple (tB, Φ, ∆) is a system of set constraints in normal form (or just a system
in normal form) if there is a finite set X ′ ⊆ X such that (i) tB ∈ TB(X ′) is of the form
∪α∈Uα, for some set U of maximal conjunctions of literals from X ′, (ii) for each f ∈ Σn

and α1, . . . , αn ∈ U there is exactly one set constraint in Φ of the form f(α1, . . . , αn) ⊆⋃
α∈Ef(α1,...,αn)

α, where Ef(α1,...,αn) ⊆ U , and (iii) ∆ is a finite set of Boolean expressions
{⋃

α∈I1
α, . . . ,

⋃
α∈Im

α}, where Ik ⊆ U for 1 ≤ k ≤ m. The set U is referred to as the
set of atoms1 specified by tB.

The triple (tB , Φ, ∆) corresponds to the set of set constraints {tB = 1} ∪ Φ ∪
{⋃

α∈I1
α 6= 0, . . . ,

⋃
α∈Im

α 6= 0} and is said to be (un)satisfiable if the latter is. A
set valuation satisfies (tB , Φ, ∆) if it satisfies the corresponding set constraints. If ∆ is
empty, we denote the system in normal form by (tB , Φ) and call it a system of positive
set constraints in normal form (or just a positive system in normal form). Every system
of mixed positive and negative set constraints is equivalent to a system in normal form
[AKW95].

Each positive system in normal form (tB, Φ) has an associated hypergraph; the nodes
are the elements of U and the hyperedges are specified by the sets Ef(α1,...,αn). Let M
be a model. A run over M through the hypergraph is a function θ : Q → U such that

θ(t) ∈ Ef(θ(t1),...,θ(tn)) ,

where `(t) = f ∈ Σn and δ(t, i) = ti, for 1 ≤ i ≤ n. Each subset U ′ ⊆ U induces
a subhypergraph by restricting the nodes and hyperedges to U ′. The subhypergraph
induced by U ′ is closed if for each f ∈ Σn and α1, . . . , αn ∈ U ′ the set Ef(α1,...,αn) ∩ U ′ is
nonempty. It can be proved that (tB , Φ) is satisfiable over a standard model if and only
if there is a nonempty U ′ ⊆ U that induces a closed subhypergraph in the hypergraph
associated with (tB , Φ). Intuitively, from a run θ one can obtain a set valuation σθ over
a standard model satisfying (tB, Φ), and—vice versa—from a set valuation σ satisfying
(tB , Φ) one can obtain a run θσ over a standard model through the hypergraph associated
with (tB, Φ). For details see [AKVW93, Koz93, Koz95].

7.4 Completeness and Incompleteness

In this section we give a Gentzen-style axiomatisation for sequents Φ ` Ψ, based on the
axioms of termset algebra. The intended interpretation of the sequent Φ ` Ψ is that if all
the constraints in Φ hold of some model, then at least one of the constraints Ψ holds in
that model. We prove (i) completeness over standard models for satisfiability of positive
set constraints (if Φ is unsatisfiable, then Φ is refutable, i.e., Φ ` ⊥ is derivable), (ii)
incompleteness over standard models for satisfiability of mixed positive and negative set
constraints (i.e., not all true sequents Φ ` Ψ are derivable), and (iii) completeness over
nonstandard models.

Any set constraint can be represented as an inclusion s ⊆ t, or an equation u = 0,
or an equation v = 1. In the following, any set expression s occurring in a context

1The elements of U are the atoms of the free Boolean algebra on generators X ′ modulo tB.
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Φ ` Φ (ident)
Φ ` Ψ

Φ′, Φ ` Ψ, Ψ′ (weakening)

Φ, ∼ti ` Ψ, 1 ≤ i ≤ n

Φ, ∼f(t1, . . . , tn) ` Ψ
(f -intro `)

Φ, s, t ` Ψ
Φ, s ∩ t ` Ψ

(∩-intro `)
Φ, s ∩ t ` Ψ
Φ, s, t ` Ψ

(∩-elim `)

Φ, ϕ[t ← t′], t = t′ ` Ψ
Φ, ϕ, t = t′ ` Ψ

(substitution `)

Φ, t = t′ ` ψ[t ← t′], Ψ
Φ, t = t′ ` ψ, Ψ

(` substitution)

For x not in Φ, t:

Φ, x = t ` Ψ
Φ ` Ψ

(x-elim `)

For any instance s = t of the termset algebra axioms:

Φ, s ` Ψ
Φ, t ` Ψ

(termset `)
Φ ` Ψ, s

Φ ` Ψ, t
(` termset)

Figure 7.1: The axiomatisation

expecting a set constraint denotes the set constraint s = 1. An inclusion s ⊆ t can
then be represented as the term ∼ s ∪ t, denoting the set constraint ∼ s ∪ t = 1, and
an equation s = t as the term (∼ s ∪ t) ∩ (∼ t ∪ s). A set Φ denotes the conjunction or
disjunction of its elements, depending on whether it occurs on the left or right side of a
`, respectively. A comma denotes conjunction or disjunction, depending on whether it
occurs on the left or right side of a `, respectively. We use ⊥ for the empty disjunction
on the right side of `; ⊥ can be read as 0. The rules are shown in Fig. 7.1.
The sequents above and under a bar are referred to as the premises and conclusion of the
rule, respectively. ϕ[t ← t′] denotes the substitution of all occurrences of the expression
t in ϕ by the expression t′.

Derivation trees are inductively defined finite trees whose nodes are labelled with
sequents Φ ` Ψ. A single node labelled with any sequent Φ ` Ψ is a derivation tree, and
if there exist derivation trees T1, . . . , Tn whose roots are labelled with sequents matching
the premises of a rule, then the tree whose root is labelled with the conclusion of that
rule and has T1, . . . , Tn as immediate subtrees is itself a derivation tree. A sequent Φ ` Ψ
is derivable from a set S of sequents if and only if there is a derivation tree all of whose
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leaves are labelled by sequents in S and whose root is labelled Φ ` Ψ. If S only contains
sequents of the form ∆ ` ∆ or ∆, ∼c ` Γ (corresponding to the rules (ident) and (f -intro
`) for n = 0, respectively), then the derivation tree is called a tableau and Φ ` Ψ is said
to be derivable.

Example. As an example of how the rules are used, let us consider how Φ, ∼ t ` Ψ can
be derived from Φ, ∼f(. . . , t, . . .) ` Ψ, hence it is not necessary to postulate as an axiom
the corresponding rule

Φ, ∼f(. . . , t, . . .) ` Ψ
Φ, ∼t ` Ψ

(f -elim `)

Assume f(. . . , t, . . .) is f(t1, . . . , ti−1, t, ti, . . . , tn−1) and let x1, . . . , xn−1 be distinct new
variables not occurring in Φ, f(. . . , t, . . .), Ψ. A derivation (sketch) could be:

Φ, ∼f(. . . , t, . . .) ` Ψ
Φ, ∼t, ∼f(. . . , t, . . .), x1 = t1, . . . , xn−1 = tn−1 ` Ψ

Φ, ∼t, ∼f(x1, . . . , xi−1, 0, xi, . . . , xn−1), x1 = t1, . . . , xn−1 = tn−1 ` Ψ
Φ, ∼t, 1, x1 = t1, . . . , xn−1 = tn−1 ` Ψ

Φ, ∼t, 1 ` Ψ
Φ, ∼t ∩ 1 ` Ψ

Φ, ∼t ` Ψ

The rules applied—bottom-up—are (termset `), (∩-intro `), (x-elim `) (several times),
(termset `) ((7.7) applied to 1), (substitution `) (several times, ∼ t can be rewritten
into t = 0, substitute t for 0, then t1 for x1, etc.), and finally (weakening).

Lemma 174 All rules are sound.

Proof. The proof is straightforward. As an example, assume we are given a model
M. Let us consider the (f -intro `) rule. Assume we have a set valuation σ (over M)
which satisfies Φ, ∼ f(t1, . . . , tn) and that Φ, ∼ ti |= Ψ holds for 1 ≤ i ≤ n. Since
σ(f(t1, . . . , tn)) = ∅, we conclude by M being closed and the definition of set valuations
that σ(ti0) = ∅ for some 1 ≤ i0 ≤ n. But then σ satisfies Φ, ∼ti0, and by our assumptions
σ must also satisfy a set constraint in Ψ. Hence, Φ, ∼f(t1, . . . , tn) |= Ψ.

The following theorem shows that the deductive system is complete over standard
models for satisfiability of positive set constraints.

Theorem 175 If a finite set of positive set constraints Φ is unsatisfiable in any standard
model, then Φ ` ⊥ is derivable.

Proof. We construct a tableau whose root is labelled Φ ` ⊥ in two stages. In the first
stage we show how one can obtain an equivalent finite set of set constraints {tB = 1}∪Φ′

from Φ, such that (tB , Φ′) is a positive system in normal form. Simultaneously, we show
how to derive Φ ` ⊥ from tB , Φ′ ` ⊥. This is essentially a formalisation of the normal
form algorithm of [AKVW93] in terms of the sequent rules.
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Given Φ, replace all occurrences of a subexpression f(t1, . . . , tn) in a set constraint
in Φ by occurrences of a variable x and add the set constraints

x = f(y1, . . . , yn) (7.16)

yi = ti, 1 ≤ i ≤ n ,

where x, y1, . . . , yn are new variables. We refer to this as flattening . Repeat this until
all set constraints are purely Boolean or of the form (7.16). Let ∆ denote the obtained
completely flattened set of set constraints. Notice that ∆ is equivalent to Φ. Using
(x-elim `) and (substitution `) we can derive Φ ` ⊥ from ∆ ` ⊥.

Any set constraint of the form (7.16) in ∆ can be replaced by two inclusions

f(y1, . . . , yn) ⊆ x (7.17)

∼f(y1, . . . , yn) ⊆ ∼x. (7.18)

Applying the generalised DeMorgan law (7.12), the inclusion (7.18) is equivalent to

⋃
g 6=f
g∈Σ

g(1, . . . , 1) ∪
n⋃

i=1

f(1, . . . , 1︸ ︷︷ ︸
i−1

, ∼yi, 1, . . . , 1︸ ︷︷ ︸
n−i

) ⊆∼x

and can be replaced by the inclusions

g(1, . . . , 1) ⊆ ∼x g 6= f

f(1, . . . , 1︸ ︷︷ ︸
i−1

, ∼yi, 1, . . . , 1︸ ︷︷ ︸
n−i

) ⊆ ∼x 1 ≤ i ≤ n . (7.19)

Let ∆′ denote the current set of set constraints. Since x = f(y1, . . . , yn) may be rep-
resented as the term (∼ x ∪ f(y1, . . . , yn)) ∩ (∼ f(y1, . . . , yn) ∪ x) in the sequents, use
(∩-intro `) and (termset `) to obtain the inclusions (7.17) and (7.18). Use (termset `)
to replace ∼(∼f(y1, . . . , yn))∪ ∼x (corresponding to (7.18)) by

(
⋂
g 6=f
g∈Σ

∼g(1, . . . , 1)∪ ∼x) ∩ (
n⋂

i=1

∼f(1, . . . , 1︸ ︷︷ ︸
i−1

, ∼yi, 1, . . . , 1︸ ︷︷ ︸
n−i

)∪ ∼x) (7.20)

and use (∩-intro `) to split this term into terms

∼g(1, . . . , 1) ∪ ∼x g 6= f

∼f(1, . . . , 1︸ ︷︷ ︸
i−1

, ∼yi, 1, . . . , 1︸ ︷︷ ︸
n−i

) ∪ ∼x 1 ≤ i ≤ n ,

corresponding to the inclusions (7.19). This shows that ∆ ` ⊥ can be derived from
∆′ ` ⊥.
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Let X ′ denote the set of variables occurring in ∆′. At this point, ∆′ only contains
either purely Boolean set constraints or set constraints of the form

f(x1, . . . , xn) ⊆ x (7.21)

where x1, . . . , xn, x are either positive or negative literals from X ′ or the constant 1.
Collect all purely Boolean set constraints and rewrite them, using the laws of Boolean
algebra, into one equivalent Boolean set constraint

⋃
α∈U α = 1, where U is a set of

maximal conjunctions of literals from X ′. Let tB denote the left side of this set constraint.
The current set of set constraints is now of the form {tB = 1} ∪ ∆′′, where all set
constraints in ∆′′ are of the form (7.21). Using (∩-elim `) to collect all Boolean terms
into one Boolean term and (termset `) to replace it by tB, we derive ∆′ ` ⊥ from
tB , ∆′′ ` ⊥.

For x ∈ X ′, let U(x) and U(∼x) denote the set of atoms from U in which x occurs
positively and negatively, respectively. Also, let U(1) denote

⋃
α∈U α. Using the set

constraint tB = 1 we can replace each set constraint of the form (7.21) in {tB = 1}∪∆′′

by

f(
⋃

α∈U(x1)

α, . . . ,
⋃

α∈U(xn)

α) ⊆
⋃

α∈U(x)

α , (7.22)

which can be rewritten as separate inclusions

f(α1, . . . , αn) ⊆
⋃

α∈U(x)

α , αi ∈ U(xi), 1 ≤ i ≤ n . (7.23)

For any f ∈ Σn and α1, . . . , αn ∈ U , collect all inclusions of the form (7.23) and rewrite
them into one

f(α1, . . . , αn) ⊆
⋃

α∈Ef(α1,...,αn)

α , (7.24)

where Ef(α1,...,αn) is the intersection of all sets U(x) from the right sides of the collected
inclusions. The resulting set of set constraints {tB = 1} ∪ Φ′ is equivalent to Φ and
(tB , Φ′) is a positive system in normal form.

The rewriting of inclusion of the form (7.21) into inclusions of the form (7.23) can be
done using (termset `) to rewrite xi into xi ∩1, 1 ≤ i ≤ n, (substitution `) to substitute
tB for 1, and (termset `) and (∩-intro `) to obtain the separate inclusions. To obtain the
inclusions corresponding to (7.24), use (∩-elim `) to collect the appropriate inclusions
and (termset `) to rewrite them into (7.24). Hence we can derive tB , ∆′′ ` ⊥ from
tB , Φ′ ` ⊥. This completes the derivation of Φ ` ⊥ from tB , Φ′ ` ⊥.

For the second stage we construct a tableau with root tB , Φ′ ` ⊥, which together
with the derivation of Φ ` ⊥ from tB , Φ′ ` ⊥ completes the proof.
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Since (tB , Φ′) is a positive system in normal form and equivalent to Φ, there must
exist an inclusion in Φ′ of the form (7.24) with Ef(α′

1,...,α
′
n) = ∅, else the corresponding

hypergraph would be closed and Φ would be satisfiable in a standard model.
If there exists such an inclusion with n = 0, then we have found the desired tableau.

Otherwise, use (f -intro `) to derive tB , ∼ f(α′
1, . . . , α

′
n), Φ′′ ` ⊥ from tB , ∼ α′

i, Φ
′′ `

⊥, 1 ≤ i ≤ n, where ∼ f(α′
1, . . . , α

′
n), Φ′′ is Φ′. Each of these sequents represents the

discarding of one of the atoms in U . Consider any 1 ≤ i ≤ n and let Ui denote the
set U − {α′

i} and tBi denote the conjunction of all elements in Ui. Use (∩-elim `) and
(termset `) to derive the sequent tB, ∼α′

i, Φ
′′ ` ⊥ from the sequent tBi , Φ

′′ ` ⊥, which
itself can be derived from tBi , Φ

′′
i ` ⊥, where Φ′′

i contains all inclusions of the form (7.24)
in which α′

i does not occur on the left of the inclusion and α′
i has been removed from the

sets Ef(α1,...,αn); this can be done using (weakening), (substitution `), and (termset `).
Notice that (tBi , Φ′′

i ) is a positive system in normal form and is unsatisfiable because
(tB , Φ′) is unsatisfiable.

By repeatedly applying the above procedure to all tBi , Φ
′′
i ` ⊥ we conclude that there

must exist a tableau deriving tB , Φ′ ` ⊥ from sequents of the form Ψ′, ∼c ` ⊥.

Now suppose we are given a set of mixed positive and negative set constraints Φ =
{s1 = t1, . . . , sn = tn} ∪ {s′

1 6= t′1, . . . , s
′
m 6= t′m}. Observe that Φ is unsatisfiable if and

only if {s1 = t1, . . . , sn = tn} |= {s′
1 = t′1, . . . , s

′
m = t′m}. The following theorem shows

that the deductive system is incomplete over standard models for satisfiability of mixed
positive and negative set constraints.

Theorem 176 The axiomatisation is incomplete for systems of mixed positive and neg-
ative set constraints over standard models.

Proof. The sequent x = f(x) |= x = 0 certainly holds in all standard models.
However, x = f(x) ` x = 0 cannot be derived, since the rules are sound for nonstandard
models as well, and if infinite terms are allowed then x = f(x) |= x = 0 is no longer
valid: in any model containing an infinite term labelled f(f(f(. . .))), the set of terms
labelled f(f(f(. . .))) is a nontrivial solution to the set constraint x = f(x).

We continue by considering nonstandard models.

Lemma 177 A system of set constraints in normal form (tB, Φ, ∆), where ∆ =
{
⋃

α∈I1
α, . . . ,

⋃
α∈Im

α}, is satisfiable if and only if there exists a set U ′ ⊆ U such that

∀f ∈ Σn. ∀α1, . . . , αn ∈ U ′. Ef(α1,...,αn) ∩ U ′ 6= ∅ , (7.25)

∀α ∈ U ′. ∃f ∈ Σn. ∃α1, . . . , αn ∈ U ′. α ∈ Ef(α1,...,αn) , and (7.26)

∀1 ≤ k ≤ m. Ik ∩ U ′ 6= ∅ , (7.27)

where U are the atoms corresponding to tB .
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Proof. For the “only if” direction, assume (tB , Φ, ∆) is satisfiable and let σ : X →
2Q denote a satisfying set valuation over M. Then U ′ = {α ∈ U | σ(α) 6= ∅} satisfies
the properties (7.25)–(7.27). To see this, notice (i) that (7.25) follows from σ being a
satisfying set valuation, the definition of U ′, and axiom (7.5), (ii) that (7.26) follows from
σ(1) = σ(tB) = σ(

⋃
α∈U α) = σ(

⋃
α∈U ′ α) and axiom (7.3), and (iii) that (7.27) follows

from σ being a satisfying set valuation and the definition of U ′.
For the “if” direction, assume U ′ ⊆ U satisfies (7.25)–(7.27). Since U ′ induces a closed

subhypergraph in the hypergraph associated with (tB , Φ) there exist set valuations over
standard models—whose associated runs map terms into U ′—satisfying (tB , Φ). Let
U ′′ ⊆ U ′ be the set of atoms α for which there exists such a set valuation σ with
σ(α) 6= ∅. Let l = |U ′′|, and let σi : X → 2Qi be set valuations over standard models
Mi, 1 ≤ i ≤ l, satisfying (tB, Φ) such that U ′′ = {α ∈ U ′ | ∃1 ≤ i ≤ l. σi(α) 6= ∅}.
Moreover, we may assume that the states of the standard models M1, . . . , Ml are all
mutually disjoint. Note that there exists a model M whose set of terms (states) contains⋃l

i=1 Qi and is minimal with respect to subset-inclusion. Moreover, its functions ` and δ

restricted to Qi coincide with `i and δi; see the remark in Sect. 7.2.3. Let θi : Qi → U ′′,
1 ≤ i ≤ l, be the runs corresponding to the set valuations σi, i.e., for t ∈ Qi, θi(t) is the
unique α such that t ∈ σi(α). We define a run % : Q → U ′ over M, whose image is U ′,
as the limit of a chain of partial functions from Q to U ′. Let

%0(t) =

{
θi(t) , if t ∈ Qi, 1 ≤ i ≤ l,
undefined, otherwise.

Given %j, define %j+1 as follows. For t ∈ Q,

• if %j is defined on t, then %j+1(t) is defined as %j(t)

• else, if `(t) = f ∈ Σn and δ(t, i) = ti on which %j is defined, for 1 ≤ i ≤ n, then
pick any α ∈ Ef(%j(t1),...,%j(tn)) ∩ U ′ and define %j+1(t) = α

• otherwise, %j+1 is undefined on t.

Now define % as the limit of %0, %1, . . . It is easy to see that

%(t) ∈ Ef(%(t1),...,%(tn)) ∩ U ′ (7.28)

for any t ∈ Q, where `(t) = f ∈ Σn and δ(t, i) = ti, for 1 ≤ i ≤ n. Hence, % is a run in
the closed subhypergraph induced by U ′ and the corresponding set valuation ς% : X → Q

satisfies (tB, Φ).
If U ′′ = U ′ the set valuation satisfies (tB , Φ, ∆). So assume U ′′′ = U ′\U ′′ is

nonempty. Pick any αj1 ∈ U ′′′. We construct a finite tree structure Tj1 whose nodes are
labelled by symbols from Σ. The tree structure is expanded from the root and down
as long as certain conditions are met. Also, to each node of the tree we associate an
element from U ′. From Tj1 we obtain a new term tj1 which will be added to the terms
of M. The term tj1 will then be mapped to αj1 by an extension of ς%.
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By (7.26) there exist f ∈ Σn and α1, . . . , αn ∈ U ′ such that αj1 ∈ Ef(α1,...,αn). The
root of the tree structure is labelled by f and αj1 is the associated atom.

For all 1 ≤ i ≤ n such that ς%(αi) 6= ∅, pick a ti ∈ ς%(αi). Such a ti corresponds to
the ith child of the root. The atom associated with the node ti is %(ti). The nodes ti

are not expanded further and are referred to as M-nodes.
For all 1 ≤ i ≤ n such that ς%(αi) = ∅, add a new ith child n whose associated atom

is αi. If there is another node n′ on the path from n to the root whose associated atom
is αi, then label n by the symbol f ∈ Σ that labels n′. The node n is not be expanded
further; n is referred to as a repeat-node and n′ as its twin-node.

Repeat the above procedure for the leaves n which are neither M-nodes nor repeat-
nodes.

Since U ′ is finite, we obtain a finite tree structure Tj1, all of whose internal nodes
are labelled by symbols in Σ whose arities respect the branching structure. Moreover,
any path from the root either ends at an M-node or in a repeat-node. If there are any
repeat nodes, the tree structure corresponds to an infinite regular term.

From M we obtain a new term automaton M′
1 by adding new nodes to Q for all

nodes of Tj1 that are not M-nodes or repeat-nodes and by defining `′
1 and δ′

1 to be the
obvious extensions of ` and δ obtained by Tj1 , when repeat-nodes are identified with
their twin-nodes. Also, Tj1 permits % to be extended to a function %′

1 : Q′
1 → U ′ such

that the inclusion (7.28) is still valid if %′
1 is defined on the occurring terms. Notice that

this function is not a run since M′
1 is not a model.

Applying the same procedure for the remaining atoms in U ′′′ we obtain a sequence of
term automata M, M′

1, . . . , M′
p and a corresponding sequence of functions %, %′

1, . . . , %
′
p,

where p = |U ′′′|, each one extending the previous in the sequence as described above
(except for M and %).

Let M′′ be a minimal closure of M′
p. We define a run θM′′ : Q′′ → U ′ as the limit

of a chain of partial functions from Q′′ to U ′. Let η0 = %′
p and define ηi+1 from ηi as

follows. For t ∈ Q′′,

• if ηi is defined on t, then ηi+1(t) is defined as ηi(t)

• else, if `′′(t) = f ∈ Σn and δ′′(t, i) = ti on which ηi is defined, for 1 ≤ i ≤ n, then
pick any α ∈ Ef(ηi(t1),...,ηi(tn)) ∩ U ′ and define ηi+1(t) = α

• otherwise, ηi+1 is undefined on t.

Define θM′′ as the limit of η0, η1, . . . Since M′′ is the minimal closure of M′
p and %′

p is
defined on all of Q′

p, any t ∈ Q′′\Q′
p has the property that for some natural number k,

%′
p is defined on all subterms of t at depth k or more. This ensures that θM′′ is defined

everywhere on Q′′. It is easy to see that

θM′′(f(t)) ∈ Ef(θM′′(t1),...,θM′′(tn)) ∩ U ′ (7.29)

for any t ∈ Q′′, where `′′(t) = f ∈ Σn and δ′′(t, i) = ti, for 1 ≤ i ≤ n. Hence, θM′′

is a run through the hypergraph associated with (tB, Φ) and the set valuation σθM′′
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corresponding to θM′′ satisfies (tB , Φ, ∆), since the image of θM′′ is U ′ and (7.27)
holds.

The last theorem shows that our deductive system is complete for satisfiability of
mixed positive and negative set constraints.

Theorem 178 If a finite set of mixed positive and negative set constraints

{s1 = t1, . . . , sn = tn} ∪ {s′
1 6= t′1, . . . , s

′
m 6= t′m}

is unsatisfiable, then

s1 = t1, . . . , sn = tn ` s′
1 = t′1, . . . , s

′
m = t′m

is derivable.

Proof. Assume {s1 = t1, . . . , sn = tn} ∪ {s′
1 6= t′1, . . . , s

′
m 6= t′m} is not satisfiable in

any model. We show how to derive

s1 = t1, . . . , sn = tn ` s′
1 = t′1, . . . , s

′
m = t′m . (7.30)

Notice that by repeatedly using (` termset), ( x-elim `), and (` substitution) we can
derive (7.30) from

s1 = t1, . . . , sn = tn,

x1 = (s′
1∩ ∼t′1) ∪ (∼s′

1 ∩ t′1), . . . , xm = (s′
m∩ ∼t′m) ∪ (∼s′

m ∩ t′m) ` (7.31)

x1 = 0, . . . , xm = 0 ,

where x1, . . . , xm are new variables. Now apply the procedure from the proof of Theo-
rem 175 to derive (7.31) from

tB , Φ ` x1 = 0, . . . , xm = 0 , (7.32)

where (tB , Φ) is a positive system in normal form such that {tB = 1} ∪ Φ is equivalent
to s1 = t1, . . . , sn = tn, x1 = (s′

1∩ ∼t′1) ∪ (∼s′
1 ∩ t′1), . . . , xm = (s′

m∩ ∼t′m) ∪ (∼s′
m ∩ t′m).

Let U denote the set of atoms specified by tB . Applying (` substitution) and (`
termset) we derive (7.32) from

tB , Φ `
⋃

α∈I1

α = 0, . . . ,
⋃

α∈Im

α = 0 , (7.33)

where Ij is U(xj), the set of atoms in U in which xj occurs positively. Notice that
(tB , Φ, {

⋃
α∈I1

α, . . . ,
⋃

α∈Im
α}) is a system in normal form. If the set constraints

corresponding to the left of ` in (7.33) are not satisfiable, we can derive

tB, Φ ` ⊥ , (7.34)
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using the technique from Theorem 175, and using (weakening) we can derive (7.33).
In fact, in the following, whenever the set constraints to the left of a ` in any sequent
considered are unsatisfiable, we conclude that the sequent is derivable. So assume (tB, Φ)
is satisfiable. Using (termset `), (∩-elim `), and (7.3) we derive (7.33) from

tB, Φ, 1 =
⋃
f∈Σ

α1,...,αn∈U

f(α1, . . . , αn) `
⋃

α∈I1

α = 0, . . . ,
⋃

α∈Im

α = 0 , (7.35)

which can be derived using (termset `), (∩-intro `), (∩-elim `), and (weakening) from

tB , Φ, 1 =
⋃
f∈Σ

α1,...,αn∈U

⋃
α∈Ef(α1,...,αn)

α `
⋃

α∈I1

α = 0, . . . ,
⋃

α∈Im

α = 0 , (7.36)

which again can be derived from

t′B , Φ′ `
⋃

α∈I1

α = 0, . . . ,
⋃

α∈Im

α = 0 , (7.37)

using (substitution `), (termset `), and (weakening), where U ′ ⊆ U is the set

⋃
f∈Σ

⋃
α1,...,αn∈U

⋃
α∈Ef(α1,...,αn)

α ,

t′B is the term
⋃

α∈U ′ α, Φ′ consists of all inclusions of the form

f(α1, . . . , αn) ⊆
⋃

α∈E′
f(α1,...,αn)

α ,

where f ∈ Σn, α1, . . . , αn ∈ U ′, and E ′
f(α1,...,αn) = Ef(α1,...,αn) ∩ U ′.

Using (` termset) and (` substitution) we can derive (7.37) from

t′B , Φ′ `
⋃

α∈I′
1

α = 0, . . . ,
⋃

α∈I′
m

α = 0 , (7.38)

where I ′
j = Ij ∩ U ′, 1 ≤ j ≤ m. Notice (t′B , Φ′, {

⋃
α∈I′

1
α, . . . ,

⋃
α∈I′

m
α}) is a system in

normal form and is satisfiable only if (tB, Φ, {⋃
α∈I1

α, . . . ,
⋃

α∈Im
α}) is.

If any Ij = ∅, 1 ≤ j ≤ m, (7.38) is easily seen to be derivable. So assume this
is not the case. By repeating the steps from (7.33) to (7.38) we eventually obtain a
sequent of the form (7.38), where some Ij = ∅ or all atoms α ∈ U ′ occur in some set
E ′

f(α1,...,αn). Now assume the latter is the case. Since (t′B, Φ′, {⋃
α∈I′

1
α, . . . ,

⋃
α∈I′

m
α})

is unsatisfiable, we conclude by Lemma 177 that there exist f ∈ Σ and α1, . . . , αn ∈ U ′

such that E ′
f(α1,...,αn) = ∅. So using (termset `) and (f -intro `) we derive (7.38) from

t′B, Φ′′, ∼αi `
⋃

α∈I′
1

α = 0, . . .
⋃

α∈I′
m

α = 0 , 1 ≤ i ≤ n , (7.39)
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where Φ′′ is Φ′ without the inclusion f(α1, . . . , αn) ⊆ ⋃
α∈E′

f(α1,...,αn)
α. The sequents

in (7.39) whose set constraints to the left of ` are unsatisfiable can be derived using
the technique from the proof of Theorem 175. The remaining sequents can be derived
by repeating steps similar to those used in phase two in the proof of Theorem 175 and
those used to derive (7.37) from (7.38) to eliminate the atom αi, and then repeating
steps similar to those used to derived (7.33) from (7.39). This procedure eventually
terminates, since atoms are being discarded in each iteration.

7.5 Summary

We have introduced and investigated a deductive system for deriving sequents Φ ` Ψ,
where Φ and Ψ are finite sets of set constraints. Using standard and nonstandard models
involving set-theoretic termset algebras as introduced in [Koz93], we have shown that
the deductive system is (i) complete for restricted sequents of the form Φ ` ⊥ over
standard models, (ii) incomplete for general sequents Φ ` Ψ over standard models, but
(iii) complete for general sequents over nonstandard models.

Having chosen term automata as the basis for our models, we naturally get models
that allow “multiple copies” of a term t, i.e., we may have tp = tq for different states
p and q of the term automaton. One natural and interesting question that remains
is whether the system is complete for general sequents over models that forbid such
“multiple copies” but allow infinite terms.

7.6 Remarks on model-checking and set constraints

In this section we sketch how model checking may in some cases be performed using the
logic programming language clp(sc) over set constraints [Koz94]. 2

To be more specific, we consider deadlock detection in Milner’s scheduler [Mil89], a
widely used benchmark example.

7.6.1 Milner’s Scheduler

We assume the reader is a bit familiar with CCS, hence, we will omit some details. The
transition graph of a single cycler is depicted below.

Intuitively, a cycler Ci is scheduling a process Pi, giving it permission to initiate a
task by ti (i will implicitly range over 1, . . . , n). The process Pi signals the completion
of the task using ti,c. The cyclers are synchronising via cp and cr (suitably renamed).
Only one cycler at the time is allowed to give its process permission to initiate its task.
We will call this “granting power”.

An n-scheduler is obtained by connecting the n cyclers in a ring. This is done using
parallel composition, renaming, and restriction.

2The language is currently being implemented in C++, hence we have not been able to run perfor-
mance tests.
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Figure 7.2: Transition graph of the cycler Ci.
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Figure 7.3: An n-scheduler.

The figure illustrates that cycler i synchronises its cp-action with the cr-action of cycler
(i + 1) mod n, meaning that cycler i can pass, using cp, cycler (i + 1) mod n granting
power.

These are the only synchronisations that are required and allowed among the cyclers.
Except for one, all of the n schedulers start in state s4, waiting to receive granting power.
The remaining scheduler starts in state s1, indicating that it has the granting power.

The deadlock detection problem is deciding whether or not this system can reach a
state from which no further actions can be performed.

7.6.2 clp(sc)

clp(sc) is a constraint logic programming language over set constraints [Koz94]. Here
we only describe its syntax and semantics informally. For more details, see [Koz94].

Assume Π = {p, q, r, . . .} is a finitely ranked alphabet of relation symbols not contain-
ing the symbols = or ⊆. An atomic formula is an expression of the form p(u1, . . . , un),
where p ∈ Πn and u1, . . . , un is an n-tuple of set expressions. A program clause is either

A.

a : −B1, . . . , Bn.

where A is an atomic formula and the Bi’s are either atomic formulas or positive set
constraints. A program π is a finite set of program clauses.
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A query is an expression of the form

? − B1, . . . , Bn.

where the Bi’s are either atomic formulas or positive set constraints. For example, given
the program consisting of

sng(a).

sng(f(x1, . . . , xn) : −sng(x1), . . . , sng(xn).

for all constants a ∈ Σ and function symbols f ∈ Σn>0, the query

? − sng(x).

will succeed if and only if x is a singleton set.

7.6.3 The Encoding

In this section we describe how a ring of n schedulers can be encoded in clp(sc). We
then give a query that corresponds to the existence of a deadlock in the system.

Our alphabet Σ will consist of {S1, . . . , S5, s1( ), . . . , s5( ), ti( ), ti,c( ), cp( ), cr( )},
where we have indicated their arity by specifying how many arguments they take.

The encoding of cycler Ci:

xi = S1 ∪ s1(ti(y)) ,

yi = S2 ∪ s2(cp(z)) ,

zi = S3 ∪ s3(ti,c(v)) ∪ s3(cr(w)) ,

vi = S4 ∪ s4(cr(x)) ,

wi = S5 ∪ s5(ti,c(x))

The intuition is that each variable x, . . . , w will contain all terms corresponding to fi-
nite paths from state s1, . . . , s5, respectively. For example, the term s2(cp(s3(cr(S5))))
corresponds to the path s2

cp−→ s3
cr−→ S5.

Next we define clauses that expressing that n terms may be interleaved up to the
required and allowed synchronisations of the cyclers.

sync(x1, . . . , xn) : − x1 ∪ · · · ∪ xn ⊆ S1 ∪ · · · ∪ S5.

sync(s1(t1(x1)), x2, . . . , xn) : − sync(x1, x2, . . . , xn).

sync(x1, s1(t2(x2)), . . . , xn) : − sync(x1, x2, . . . , xn).
...
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sync(x1, . . . , xn−1, s1(tn(xn))) : − sync(x1, x2, . . . , xn).

sync(s3(t1(x1)), x2, . . . , xn) : − sync(x1, x2, . . . , xn).

sync(x1, s3(t2(x2)), . . . , xn) : − sync(x1, x2, . . . , xn).
...

sync(x1, . . . , xn−1, s3(tn(xn))) : − sync(x1, x2, . . . , xn).

sync(s2(cp(x1)), s3(tr(x2)), x3, . . . , xn) : − sync(x1, x2, . . . , xn).

sync(x1, s2(cp(x2)), s3(tr(x3)), x4, . . . , xn) : − sync(x1, x2, . . . , xn).
...

sync(s3(tr(x1)), x2, . . . , xn−1, s2(cp(xn))) : − sync(x1, x2, . . . , xn).

sync(s2(cp(x1)), s4(cr(x2)), x3, . . . , xn) : − sync(x1, x2, . . . , xn).

sync(x1, s2(cp(x2)), s4(cr(x3)), x4, . . . , xn) : − sync(x1, x2, . . . , xn).
...

sync(s4(cr(x1)), x2, . . . , xn−1, s2(cp(xn))) : − sync(x1, x2, . . . , xn).

For example, for n = 2 the query

? − sync(s1(t1(s2(cp(S3)))), s4(cr(s1(t2(S2))))).

will succeed, while the query

? − sync(s4(cr(s1(ti(s2)))), s1(ti(s2(cp(s3))))).

will fail. In the first case, cycler 1 permits its process to initiate a task (ti), then by
synchronisation passes on the granting power (cp) to process two (cr), which can now
permit its process to initiate a task (ti).

The existence of a deadlock corresponds to the existence of execution paths, one for
each cycler, that can be interleaved under the required and allowed synchronisations such
that the scheduler reaches a state from which no action can be performed. The following
clauses capture the situation where two neighbouring cyclers have reached states from
which neither can perform further actions under the synchronisation requirements.

nocom(s1(ti(x1)), x2) : − nocom(x1, x2).
...

nocom(s5(ti(x1)), x2) : − nocom(x1, x2).
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nocom(x1, s1(ti(x2))) : − nocom(x1, x2).
...

nocom(x1, s5(ti(x2))) : − nocom(x1, x2).

nocom(s1, s4).

nocom(s4, s4).

7.6.4 Solving the Deadlock Detection Problem

With the above clauses and positive set constraints, the query:

?− << cycleri >>, V1 ⊆ y1, V2 ⊆ x2, . . . , Vn ⊆ xn, sng(V1), . . . , sng(Vn),

sync(V1, . . . , Vn), nocom(V1, V2), . . . , nocom(Vn−1, Vn), nocom(Vn, V1).

succeeds if and only if there is a reachable deadlock in the system. The notation <<

cycler >> denotes the set constraints encoding a cycler.
Whether or not this approach is feasible depends heavily on the implementation of

clp(sc) and probably on this specific encoding of Milner’s scheduler. It is known that
the computational complexity of the satisfiability problem is EXPTIME-complete, when
|Σ0| > 0, |Σ1| > 1, and |Σn>2| = 0. From Chap. 3, we conclude that an upper bound on
deadlock detection problems of the above sort can be expected to be PSPACE. It then
seems that the encoding into set constraints gives us an exponential penalty. However,
the constraint solving algorithm presented in [Koz94] uses the connection between set
constraints and hypergraphs [AKW95, AKVW93]; it involves repeated applications of
a common refinement step (forming the conjunction of constraints) followed by a min-
imisation step. It may turn out that Kozen’s proposed efficient unification algorithm,
yields acceptable running times for such verification problems. Other approaches based
on intermediate minimisation steps, which are faced with similar discouraging worst case
running times have turned out to perform quite well in practice [HJJ+95, And95].
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8.1 Introduction

It has been noticed that many results in the literature on set constraints have a topologi-
cal flavour. Recently in [Koz95], Kozen defined rational spaces as a family of topological
spaces with a regular structure, developed the basic theory, and showed how many results
in the literature could be re-derived by general topological principles. By endowing a
hypergraph with a topology on its set of states, D, and requiring that certain sets of hy-
peredges are closed in the derived product topology, the set of runs over the hypergraph
can be given a topology, yielding a rational space. A category of rational spaces was
obtained by defining morphisms as rational maps. These are continuous maps preserv-
ing the rational structure. Certain singleton rational subspaces were defined as rational
points and shown to play an important role.

We give a Myhill-Nerode-like characterisation of rational points and, based on this
characterisation, we give a simple and direct proof that the rational points of a finitary
rational space are dense [Koz95]. We show that the rational points in finitary ratio-
nal spaces in some sense exactly capture the topological structure of the space. We
investigate congruences in Σ-hypergraphs and their interplay with the Myhill-Nerode
characterisation. Congruences in rational spaces are strongly related to the notion of
bisimulation [Mil89] in models of concurrency.

We also determine the computational complexity of some decision problems related
to rational embeddings. In fact, these problems are related to systems of set constraints.
In [Koz95], Kozen gives a on-to-one correspondence, up to logical equivalence on one side
and so-called rational equivalence preserving X on the other, between (finite) systems
of set constraints over variables X and certain (finitary) subspaces of a certain rational
space. The given correspondence preserves the partial order of logical entailment be-
tween systems of set constraints over X and so-called X-preserving rational embeddings
between the corresponding subspaces

In Sect. 8.2 we review the basic definitions of Σ-hypergraphs of rational spaces. In
Sect. 8.3, we give our characterisation of rational points and related results. In Sect. 8.4,
we define congruences on Σ-hypergraphs and in Sect. 8.5 we present the complexity
results. Finally, in Sect. 8.6 we summarise and discuss future work.

8.2 Preliminary Definitions

Let Σ be a finite ranked alphabet consisting of symbols f , each with an associated arity
n. Symbols in Σ of arity 0, 1, 2, and n are called nullary, unary, binary, and n-ary,
respectively. Nullary elements are denoted by a, b, . . . and are called constants. The set
of elements of Σ of arity n is denoted Σn. In the sequel, the use of expressions of the
form f(t1, . . . , tn) carries the implicit assumption that f is of arity n.

The set of ground terms over Σ is denoted TΣ. It is the least set such that if
t1, . . . , tn ∈ TΣ and f ∈ Σn, then f(t1, . . . , tn) ∈ TΣ. If X = {x, y, . . .} is a set of
variables, then TΣ(X) denotes the set of terms over Σ and X , considering elements in X

as symbols of arity 0.
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To avoid trivial cases, we assume that Σ always contains at least one constant and
one symbol of arity greater than zero.

8.2.1 Hypergraphs

Let Σ be a fixed finite ranked alphabet.

Definition 179 A Σ-hypergraph is a pair D = (D, E), where D is a set of states and E

is an indexed family of hyperedge relations

Ef : Dn −→ 2D , n = arity(f) , (8.1)

one for every f ∈ Σ. 2

Hence, for constant a, Ea is a subset of D, and for unary g, Eg is a binary relation on D.
When no confusion is possible, we may omit Σ—e.g., we may refer to D as a hypergraph.

Definition 180 A hypergraph (D, E) is said to be entire if every Ef (d1, . . . , dn) is
nonempty, deterministic if every Ef(d1, . . . , dn) is a singleton, and unrestricted if every
Ef (d1, . . . , dn) is D. 2

Definition 181 A run of a hypergraph D = (D, E) is a map θ : TΣ −→ D such that
for all f(t1, . . . , tn) ∈ TΣ,

θ(f(t1, . . . , tn)) ∈ Ef(θ(t1), . . . , θ(tn)) . (8.2)

The set of runs of D is denoted R(D). 2

8.2.2 Rational Spaces

We recall the basic definition from [Koz95].

Definition 182 A topological Σ-hypergraph is a Σ-hypergraph D = (D, E), finite or
infinite, endowed with a topology on D whose hyperedges

{(d, d1, . . . , dn) | d ∈ Ef(d1, . . . , dn)} (8.3)

are closed in the product topology on Dn+1. 2

Definition 183 A space of runs over Σ is the space R(D) of runs of a topological Σ-
hypergraph D, where the topology on R(D) is inherited from the product topology on
DTΣ . The space R(D) is called finitary if D is finite. 2

The product topology on DTΣ is the smallest topology such that all projections πt :
DTΣ −→ D, mapping θ to θ(t), are continuous. Hence, it is generated by the subbasic
open sets

{θ | θ(t) ∈ x} , t ∈ TΣ , x open in D . (8.4)

Recall that open sets in DTΣ are then obtained as arbitrary unions of finite intersections
of subbasic open sets. The space R(D) of runs of D is a subspace of this space. The
topology is thus generated by subbasic open sets (8.4) restricted to R(D).
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Proposition 184 [Koz95]
If D is finite and discrete, then R(D) is a complete metric space (all Cauchy sequences

converge) under the metric

d(η, η′) = 2−depth(t) , (8.5)

where t is a term of minimal depth on which η and η′ differ, or 0 if no such term exists.

Definition 185 A rational space is a space of runs R(D) such that D is Hausdorff and
compact. 2

In [Koz95] it is proved that if D is Hausdorff and/or compact, then so is the space of
runs R(D). Hence, every rational space is Hausdorff and compact. Also, if a rational
space R(D) is finitary, then D must be discrete.

Definition 186 Let R(D) and R(E) be rational spaces over Σ. A rational map from
R(D) to R(E) is a function ĥ : θ 7→ h ◦ θ defined by a continuous map h : D −→ E such
that

h(ED
f (d1, . . . , dn)) ⊆ EE

f (h(d1), . . . , h(dn)) . (8.6)

A rational map ĥ : R(D) −→ R(E) is called a rational embedding if it is one-to-one,
and a refinement if it is bijective. 2

Notice that ĥ can be one-to-one or bijective even though h is not one-to-one.
If D = (D, E) and D′ = (D, E ′) are two hypergraphs over the same set of states D,

and if Ef(d1, . . . , dn) ⊆ E ′
f(d1, . . . , dn) for all f ∈ Σ and d1, . . . , dn ∈ D, then the identity

map on D induces an embedding R(D) −→ R(D′), and R(D) is called a narrowing of
R(D′).

If D = (D, E) is the induced subhypergraph of D′ = (D′, E ′) on some subset D ⊆ D′,
i.e., if Ef (d1, . . . , dn) = E ′

f(d1, . . . , dn) ∩ D for all f ∈ Σ and d1, . . . , dn ∈ D, then the
inclusion map D −→ D′ induces an embedding R(D) −→ R(D′), and R(D) is called an
induced subspace of R(D′).

Definition 187 A rational subspace of a rational space is any embedded image of
another rational space. In other words, a subspace R of a rational space R(E) is
a rational subspace if there exists a rational space R(D) and a rational embedding
ĥ : R(D) −→ R(E) such that R = ĥ(R(D)).

A rational subspace is entire if it is the image of a rational space defined on an entire
hypergraph. 2

Definition 188 A rational point of a rational space is a singleton rational subspace R
that is the embedded image of a finitary rational space R(D). 2

Without loss of generality we may assume that R(D) is a singleton in Defintion 188.
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8.3 Myhill-Nerode

In this section we give an alternative characterisation of rational points. Based on this
characterisation we give a simple and direct proof that the rational points are dense in
any finitary rational space. We then continue by showing that the rational points in
finitary rational spaces in some sense exactly capture the topological structure of the
spaces, namely, if a rational map ĥ : R(D) −→ R(D′) between finitary rational spaces
induces a bijection between their rational points, then the spaces are homeomorphic.

Definition 189 Let ∗ be a symbol not in Σ. A Σ-context is a term in TΣ({∗}) containing
exactly one occurrence of ∗. We denote a context by C[ ]. Given a ground term t ∈ TΣ

and a context C[ ] we let C[t] denote the ground term in TΣ obtained by replacing ∗ in
C[ ] by t. 2

Definition 190 Let D = (D, E) be a hypergraph, θ a run in R(D), and ≈⊆ D × D a
binary relation. The relation ≈θ ⊆ TΣ × TΣ is then defined by

t ≈θ t′ iff ∀C[ ]. θ(C[t]) ≈ θ(C[t′]) (8.7)

2

If ≈ is an equivalence relation, then so is ≈θ. In fact, ≈θ is a congruence with respect
to Σ, i.e., if t1 ≈θ t′1, . . . , tn ≈θ t′n, then f(t1, . . . , tn) ≈θ f(t′1, . . . , t

′
n).

The following theorem presents a Myhill-Nerode-like theorem for rational points.

Theorem 191 Let = denote the identity relation on states of D. A run θ ∈ R(D) is a
rational point if and only if =θ has finite index.

Proof. Assume θ is a rational point of R(D). Let ĥ : R(D′) −→ R(D) be a
witnessing rational embedding, defined by h : D′ −→ D. Let R(D′) = {η} and let D′′ be
the entire subhypergraph of D′ induced by η(TΣ). Then, with a slight abuse of notation,
we have η ∈ R(D′′). Since R(D′) is a singleton D′′ must be deterministic and R(D′′) a
singleton. Notice that h induces a rational embedding from R(D′′) to R(D), witnessing
that θ = ĥ(η) is a rational point. Hence, we may assume without loss of generality that
D′ is deterministic. It follows that t =η t′ if and only if η(t) = η(t′), and since D′ is
finite, =η must have finite index. Next, we conclude that =η refines =θ, because for any
context C[ ] and terms t =η t′

θ(C[t]) = ĥ(η)(C[t])

= h(η(C[t]))

= h(η(C[t′]))

= ĥ(η)(C[t′])

= θ(C[t′]) .
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But then =θ has finite index.
Conversely, assume that =θ has finite index. Let D′ be the hypergraph whose states

D′ are the equivalence classes of =θ and whose hyperedges are given by

Ef (d1, . . . , dn) = {[f(t1, . . . , tn)]=θ
| ∃ ti ∈ di, 1 ≤ i ≤ n} ,

where [t]=θ
denotes the equivalence class of t in =θ. We claim that D′ is deterministic.

• each Ef(d1, . . . , dn) is nonempty: pick t1, . . . , tn in d1, . . . , dn, respectively; then
[f(t1, . . . , tn)]=θ

∈ Ef(d1, . . . , dn).

• each Ef(d1, . . . , dn) contains at most one element: if d, d′ ∈ Ef(d1, . . . , dn) and d 6=
d′, then there exist t1, t

′
1 ∈ d1, . . . , tn, t′n ∈ dn such that d = [f(t1, . . . , tn)]=θ

and
d′ = [f(t′1, . . . , t

′
n)]=θ

. But the congruence properties of =θ imply f(t1, . . . , tn) =θ

f(t′1, . . . , t
′
n), contradicting d 6= d′.

It follows that R(D′) must be a singleton {η}. An inductive argument shows that η(t) =
[t]=θ

. Let D′ be endowed with the discrete topology. Since D′ is finite, D′ is Hausdorff
and compact. Define h : D′ −→ D by [t]=θ

7→ θ(t). The mapping is well-defined and
trivially continuous. For d ∈ Ef(d1, . . . , dn) assume d = [f(t1, . . . , tn)]=θ

, where t1 ∈
d1, . . . , tn ∈ dn. Then h(d) = θ(f(t1, . . . , tn)), h(d1) = θ(t1), . . . , h(dn) = θ(tn). Since
θ(f(t1, . . . , tn)) ∈ Ef(θ(t1), . . . , θ(tn)) by definition of θ we conclude h(Ef(d1, . . . , dn)) ⊆
Ef (h(d1), . . . , h(dn)), i.e., ĥ : R(D′) −→ R(D) is a rational embedding and ĥ(η) is a
rational point of R(D). Since θ(t) = h([t]=θ

) = ĥ(η)(t), θ is a rational point of R(D).

We can now give simple proofs of two results from [Koz95].

Theorem 192 The rational points of any finitary rational space R(D) are dense.

Proof. Recall that R(D) is a complete metric space under the metric (8.5). Let θ

be any point of R(D), D = (D, E). We wish to show that there exist rational points
arbitrarily close to θ.

Let D′ = (D′, E ′) be a deterministic narrowing of the induced subspace on D′ =
θ(TΣ). Then D′ is entire and deterministic. For f ∈ Σn and d1, . . . , dn ∈ D′, let
Hf (d1, . . . , dn) be the unique element of E ′

f(d1, . . . , dn).
For each k ≥ 0, define inductively

η(f(t1, . . . , tn)) =

{
θ(f(t1, . . . , tn)) , if depth(f(t1, . . . , tn)) ≤ k

Hf(η(t1), . . . , η(tn)) , otherwise.

Then η ∈ R(D), since if depth(f(t1, . . . , tn)) ≤ k, then

η(f(t1, . . . , tn)) = θ(f(t1, . . . , tn))

∈ Ef (θ(t1), . . . , θ(tn))

= Ef (η(t1), . . . , η(tn)) ,
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and if depth(f(t1, . . . , tn)) > k, then

η(f(t1, . . . , tn)) = Hf (η(t1), . . . , η(tn))

∈ E ′
f(η(t1), . . . , η(tn))

⊆ Ef(η(t1), . . . , η(tn)) .

The point η is of distance at most 2−k from θ, since it agrees with θ on all terms of
depth at most k.

Finally, we show that η is a rational point. If depth(s), depth(t) > k and η(s) = η(t),
then for all contexts C[ ], η(C[s]) = η(C[t]). This can be shown by induction on the
structure of C[ ]. Basis, C[ ] = ∗:

η(∗[s]) = η(s) = η(t) = η(∗[t]) ,

Induction step, C[ ] = f(t1, . . . , ti−1, C
′[ ], ti+1, . . . , tn):

η(C[s]) = η(f(t1, . . . , ti−1, C
′[s], ti+1, . . . , tn))

= Hf(η(t1), . . . , η(ti−1), η(C′[s]), η(ti+1), . . . , η(tn))

= Hf(η(t1), . . . , η(ti−1), η(C′[t]), η(ti+1), . . . , η(tn))

= η(f(t1, . . . , ti−1, C
′[t], ti+1, . . . , tn))

= η(C[t]) .

It follows from Theorem 191 that η is arational point, since there are only finitely
many terms of depth k or less, and these account for finitely many =η-classes; and
for terms t of depth greater than k, the above argument shows that the =η-class is
determined by η(t). Thus =η is of finite index.

Corollary 193 Every nonempty finitary rational space contains a rational point.

Next, we continue by showing how rational points of finitary rational spaces capture
the topology of the spaces.

8.3.1 Rational Points and The Topology

In this section we show that the rational points in finitary rational spaces in some sense
exactly capture the topological structure of the space.

Rational maps always preserve rational points. In fact, for finitary rational spaces
injectivitiy can be determined by looking at rational points only.

Lemma 194 Let ĥ : R(D) −→ R(D′) be a rational map between finitary rational spaces.
If γ, θ ∈ R(D) are distinct runs such that ĥ(γ) = ĥ(θ), then there exist distinct rational
points η1, η2 ∈ R(D) such that ĥ(η1) = ĥ(η2).
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Proof. Assume γ and θ are the above mentioned runs. Let

P = { (d1, d2) | there exist infinitely many t such that (γ(t), θ(t)) = (d1, d2) } .

Since D and D′ are finitary the set P is finite and hence there must exist natural numbers
0 < n and 0 < k such that

• ∃t0. depth(t0) < n ∧ γ(t0) 6= θ(t0)

• ∀t. depth(t) ≥ n ⇒ (γ(t), θ(t)) ∈ P

• ∀(d1, d2) ∈ P. ∃t. n ≤ depth(t) < n + k ∧ (γ(t), θ(t)) = (d1, d2)

For each (d1, d2) ∈ P there exists a term r(d1,d2) such that n ≤ depth(r(d1,d2)) < n+k and
(γ(r(d1,d2)), θ(r(d1,d2))) = (d1, d2). Let link : TΣ −→ TΣ be the partial function defined by

• if depth(t) < n + k, then link(t) = t

• if depth(t) = n + k, then link(t) = r(γ(t),θ(t))

• if depth(t) > n + k, then link(t) is undefined

Let η1 and η2 be partial functions from TΣ to D defined by

• if depth(t) ≤ n + k, then η1(t) = γ(t), else undefined

• if depth(t) ≤ n + k, then η2(t) = θ(t), else undefined

We will simultaneously extend the domain of definition of the functions link, η1, and η2

by defining them on terms of increasing depth, starting by depth n + k + 1. We will
maintain the invariant

1. link, η1, and η2 have same domain of definition, namely all terms up to a certain
depth

2. if t ∈ dom(η1), then

2.1. if depth(t) ≥ n, then (η1(t), η2(t)) ∈ P

2.2. depth(t) ≥ depth(link(t)) and if depth(t) ≥ n + k,
then link(t) = r(η1(t),η2(t))

2.3. if depth(f(t1, . . . , tn)) > n + k,
then ηi(f(t1, . . . , tn)) = ηi(f(link(t1), . . . , link(tn))), for i = 1, 2

2.4. (η1(t), η2(t)) = (η1(link(t)), η2(link(t)))

2.5. h(η1(t)) = h(η2(t))

3. if f(t1, . . . , tn) ∈ dom(η1),
then ηi(f(t1, . . . , tn)) ∈ Ef(ηi(t1), . . . , ηi(tn)), for i = 1, 2
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Assume link, η1, and η2 have been defined on exactly all terms of depth less than m >

n + k, and that the invariant holds. Pick a term t = f(t1, . . . , tn) of depth m. Let
t′1 = link(t1), . . . , t′n = link(tn), and t′ = f(t′1, . . . , t

′
n). Since depth(t) > n + k we

conclude n ≤ depth(t′) ≤ n + k, by 2.2. Then, (η1(t′), η2(t′)) = (γ(t′), θ(t′)) ∈ P , by the
definitions of η1, η2, and n. Let link(t) = r(γ(t′),θ(t′)) and (η1(t), η2(t)) = (γ(t′), θ(t′)).

Having defined link, η1, and η2 for all terms of depth m, claim that the invariant is
maintained. We need only consider terms t of depth m. Clearly, 1. holds. From the
above, 2.1., 2.2., and 2.3. follow easily. Next, observe that 2.4. follows from 2.1., 2.2.,
the fact that (η1(r), η2(r)) = (γ(r), θ(r)) for terms r with depth(r) < n + k, and that
(γ(r(d1,d2)), θ(r(d1,d2))) = (d1, d2). 2.5. follows from 2.1. and ĥ(γ) = ĥ(θ). To see that 3.
holds, let t = f(t1, . . . , tn) and t′ = f(t′1, . . . , t

′
n) as above. Then

η1(t) = η1(t′) ∈ Ef (η1(t′1), . . . , η1(t′n)) , (3. used on t′)

= Ef (η1(link(t1)), . . . , η1(link(tn)))

= Ef (η1(t1), . . . , η1(tn)) , (2.4. used on t1, . . . , tn)

A similar argument holds for η2(t). Let η1 and η2 denote the total functions obtained
by considering the limit to infinity of the above construction. By 3., η1, η2 ∈ R(D) and
by 2.5., ĥ(η1) = ĥ(η2). Also, η1 6= η2, since they differ on the term t0.

We conclude by showing that η1 and η2 are rational points. Let the height of a
context C[ ] ∈ TΣ({∗}) be the depth of the element ∗. By induction in the height of
the context C[ ], we show that if t and t′ are terms of depth n + k or greater, then
(η1(t), η2(t)) = (η1(t′), η2(t′)) implies (η1(C[t]), η2(C[t])) = (η1(C[t′]), η2(C[t′])).

For the context of height 0 there is nothing to prove, so assume C[ ] is a context of
height l > 0. Then there exist contexts C′[ ] and C′′[ ] of height 1 and l −1, respectively,
such that C[t] = C′[C′′[t]] and C[t′] = C′[C′′[t′]]. By induction (η1(C′′[t]), η2(C′′[t])) =
(η1(C′′[t′]), η2(C′′[t′])) and by 2.2. link(C′′[t]) = link(C′′[t′]). Without loss of generality,
let C′[ ] = g(t1, . . . , ti−1, ∗, ti+1, . . . , tm), where g ∈ Σm>0, 1 ≤ i ≤ m, and t1, . . . , ti−1,
ti+1, . . . , tm are arbitrary terms. Then, by 2.3.

η1(C[t]) = η1(g(t1, . . . , ti−1, C
′′[t], ti+1, . . . , tm))

= η1(g(link(t1), . . . , link(ti−1), link(C′′[t]), link(ti+1), . . . , link(tm)))

= η1(g(link(t1), . . . , link(ti−1), link(C′′[t′]), link(ti+1), . . . , link(tm)))

= η1(g(t1, . . . , ti−1, C
′′[t′], ti+1, . . . , tm))

= η1(C[t′])

Similarly, η2(C[t]) = η2(C[t′]). Hence, t =η1 t′ and t =η2 t′. Since there are only finitely
many terms of depth less than n + k and only finitely many elements in P , we conclude
that =η1 and =η2 have finite index. By Theorem 191, η1 and η2 are rational points.

The following theorem is the main result of this section.
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Theorem 195 Let ĥ : R(D) −→ R(D′) be a rational map between finitary rational
spaces. Assume ĥ is a bijection between the rational points of the spaces. Then ĥ is a
homeomorphism.

Proof. By Lemma 194 and the fact that ĥ(θ) is a rational point if θ is rational point,
we conclude that ĥ must be one-to-one.

Recall that any finitary rational space is a complete metric space under the metric

d(η, η′) = 2−depth(t) ,

where t is a term of minimal depth on which η and η′ differ, or 0 if no such term
exists. Let θ ∈ R(D′). By Theorem 192 there exist a sequence of rational points
θ1, θ2, . . . ∈ R(D′) converging to θ such that d(θ, θi) < 2−i, for i = 1, 2, . . .. Let {ηi} =
ĥ−1(θi), for i = 1, 2, . . .. Since D is finite, there must be infinitely many ηi’s that
agree on the finitely many terms of depth 1. Let ηi(1,1) , ηi(1,2) , . . . be such an infinite
subsequence of η1, η2, . . .. Let γ1 = ηi(1,1) . By a similar argument, there must be an
infinite subsequence ηi(2,1) , ηi(2,2), . . . of ηi(1,2) , ηi(1,3) , . . . that agree on all terms of depth
at most 2. Let γ2 = ηi(2,1) . Repeating this procedure we obtain the infinite subsequence
γ1, γ2, . . . of η1, η2, . . .. This sequence is a Cauchy sequence. Let γ denote the run this
sequence converges to. Notice γ1, γ2, . . . is mapped under ĥ to the infinite subsequence
θi(1,1) , θi(2,1) , . . . of θ1, θ2, . . ., which also converges to θ. Since ĥ is continuous γ must be
mapped to θ. We conclude that ĥ is onto.

Since any rational space is compact and Hausdorff and ĥ is bijective we conclude
that ĥ is a homeomorphism.

Remark. Notice that in general, if f : S1 −→ S2 is a continuous function between
compact, complete metric topological spaces, such that f is a bijection between a dense
subset of S1 and a dense subset of S2, then f may not even be a bijection, and hence,
S1 and S2 not homeomorphic. For example, consider the interval [0; 1] and the circle
C obtained by “gluing” the endpoints of [0; 1] together. Their topology is given by the
usual Euclidean metric. The obvious mapping f from [0; 1] to C defined by mapping
0 ≤ x < 1 to x in C and 1 to “0” in C is continuous. Moreover, the rational points
in [0; 1[ are dense in [0; 1] and their image under f is dense in C. The function f is a
bijection between these dense subsets, but not between [0; 1] and C.

Proposition 196 Let ĥ : R(D) −→ R(D′) be a rational map between finitary rational
spaces. If ĥ is not onto, then there exists a rational point θ ∈ R(D′) not in the image of
ĥ.

Proof. The proof is similar to that of Theorem 195.

8.4 Congruences

In this section we define congruences on hypergraphs. The definition has strong resem-
blance to Milner’s strong bisimulation. We then investigate the relationship to special
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rational maps, so-called full homomorphisms, and to the Myhill-Nerode characterisation
from the previous section.

Definition 197 Let D = (D, E) be a hypergraph. A D-bisimulation is a reflexive,
symmetric relation ≈⊆ D × D such that whenever d ≈ d′, then

∀ a ∈ Σ0. d ∈ Ea ⇔ d′ ∈ Ea (8.8)

∀ f ∈ Σn>0. ∀1 ≤ i ≤ n. ∀d1, . . . , di−1, di+1, . . . , dn.

∀ d′′ ∈ Ef(d1, . . . , di−1, d, di+1, . . . , dn). (8.9)

∃ d′′′ ∈ Ef(d1, . . . , di−1, d
′, di+1, . . . , dn). d′′ ≈ d′′′ .

A D-congruence is a D-bisimulation that is an equivalence relation. 2

The identity relation on D is a D-congruence and the largest D-congruence is given by

⋃
{ ≈ | ≈ is a D-congruence } .

Notice that if Σ only contains constant and unary symbols, then the constants can be
seen as state labels while the unary symbols can be seen as edge labels. Then the largest
D-congruence, ∼, has the following relation to Milner’s strong bisimulation [Mil89]: ∼
is the largest strong bisimulation with the additional property that d ∼ d′ if and only if
d and d′ are labelled identically (with respect to the constants). In general, if θ ∈ R(D),
a ∈ Σ0, d ∼ d′, and θ(a) = d, then there exists θ′ ∈ R(D) such that θ(a) = d′ and
θ(b) = θ′(b), for a 6= b ∈ Σ0.

Definition 198 Let D = (D, E) be a hypergraph and ≈ be a D-congruence. D/≈ is
the hypergraph (D/≈, E/≈) given by

D/≈ = {[d]≈ | d ∈ D} (8.10)

E/≈f ([d1]≈, . . . , [dn]≈) = {[d]≈ | d ∈ Ef(d1, . . . , dn)} . (8.11)

2

Notice that the hyperedge relations are well-defined because d1 ≈ d′
1, . . . , dn ≈ d′

n implies

{[d]≈ | d ∈ Ef (d1, . . . , dn)} = {[d]≈ | d ∈ Ef(d′
1, . . . , d

′
n)} .

If ∼ is the largest D-congruence and D′ is D/∼, then it can be shown that the only
D′-congruence is the identity relation.
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Definition 199 Given Σ-hypergraphs D and D′. A mapping h : D −→ D′ is a homo-
morphism from D if

∀a ∈ Σ0. h
−1(E ′

a) = Ea (8.12)

∀f ∈ Σf . ∀d1, . . . , dn ∈ D. h(Ef(d1, . . . , dn)) = E ′
f(h(d1), . . . , h(dn)) (8.13)

The homomorphism h is full, if h(D) = D′. Two full homomorphisms h1 : D −→ D1

and h2 : D −→ D2 are equivalent if D1 and D2 are isomorphic under some f : D1 −→ D2

such that h2 = f ◦ h1. 2

Proposition 200 Given D. The D-congruences are in one-to-one correspondence with
the full homomorphisms, up to equivalence, from D.

Proof. Given a D-congruence ≈. Define [ ]≈ : D −→ D/≈ as the mapping d 7→ [d]≈.
By Definition 197 and 198 it follows easily that [ ]≈ is a full homomorphism.

Conversely, given D′ and a homomorphism h : D −→ D′. For d, d′ ∈ D define
d ≈h d′ if h(d) = h(d′). We claim ≈h is a D-congruence. Clearly, ≈h is an equiv-
alence relation. Also, if d ∈ Ea for some a ∈ Σ0, then h(d) = h(d′) ∈ E ′

a. Hence,
by (8.12), d′ ∈ Ea. If f ∈ Σn>0, 1 ≤ i ≤ n, d1, . . . , di−1, di+1, . . . , dn ∈ D, and
d′′ ∈ Ef(d1, . . . , di−1, d, di+1, . . . , dn), then

h(d′′) ∈ h(Ef(d1, . . . , di−1, d, di+1, . . . , dn))

= E ′
f (h(d1), . . . , h(di−1), h(d), h(di+1), . . . , h(dn))

= E ′
f (h(d1), . . . , h(di−1), h(d′), h(di+1), . . . , h(dn))

= h(Ef(d1, . . . , di−1, d
′, di+1, . . . , dn)) .

So there must exist a d′′′ ∈ Ef (d1, . . . , di−1, d
′, di+1, . . . , dn) such that h(d′′) = h(d′′′),

i.e., d′′ ≈h d′′′. Hence, ≈h is a D-congruence.
The mapping that maps a D-congruence ≈ to the full homomorphism [ ] : D −→ D/≈

is clearly one-to-one. Conversely, given any full homomorphism h : D −→ D′, D/≈h is
isomorphic to D′ under the mapping [d]≈h

7→ h(d).

Given a run θ ∈ R(D/≈), inductively in t define ηθ such that ηθ(t) ∈ θ(t) as follows:
assume t = f(t1, . . . , tn) and that ηθ(t1), . . . , ηθ(tn) have been defined. Since θ is a
run, θ(t) ∈ E/ ≈f (θ(t1), . . . , θ(tn)). By the definition of D/ ≈, θ(t) = [d]≈, where
d ∈ Ef(d1, . . . , dn) and d1 ∈ θ(t1), . . . , dn ∈ θ(tn). Inductively we may assume that
ηθ(t1) ∈ θ(t1), . . . , ηθ(tn) ∈ θ(tn), so ηθ(t1) ≈ d1, . . . , ηθ(tn) ≈ dn. Since ≈ is a D-
congruence we conclude that there exists a d′ ∈ Ef(ηθ(t1), . . . , ηθ(tn)) such that d ≈ d′.
Define ηθ(t) = d′. Then ηθ(t) ∈ θ(t). It is easy to see that ηθ is indeed a run of D. We
refer to ηθ as a run extracted from θ. Notice that if ηθ is extracted from θ, then the
mapping t 7→ [ηθ(t)]≈ equals θ. Also,
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t ≈ηθ
t′ iff ∀C[ ]. ηθ(C[t]) ≈ ηθ(C[t′])

iff ∀C[ ]. θ(C[t]) = θ(C[t′]) , (ηθ(r) ∈ θ(r) for any r)

iff t =θ t′ ,

i.e., ≈ηθ
= =θ. Conversely, if η ∈ R(D), then the mapping θη : TΣ −→ D/≈ given by

t 7→ [η(t)]≈ is a run of R(D/≈).
The construction of ≈θ from Definition 190 induces an equivalence relation on R(D)

as follows. It will be notationally convenient to “overload” the symbol ≈.

Definition 201 Let D = (D, E) be a hypergraph and ≈⊆ D × D be a relation. For
runs η, θ ∈ R(D) define

η ≈ θ iff ≈η =≈θ . (8.14)

2

Theorem 202 Let D = (D, E) be a hypergraph. Let ∼ be a D-congruence. Then the
mapping from R(D/∼)/= to R(D)/∼ defined by [θ]= 7→ [ηθ]∼, where ηθ is a run extracted
from θ, is well-defined. Moreover, it is a bijection.

Proof. To see that the described mapping is well-defined assume that η, γ are two
runs extracted from θ1 and θ2, respectively, where θ1, θ2 ∈ [θ]= ∈ R(D/∼)/=. We
show that they are mapped to the same element of R(D)/∼, i.e., that [η]∼ = [γ]∼.
By definition this means ∼η =∼γ. We show t ∼η t′ if and only if t ∼γ t′. From the
definitions we get

t ∼η t′ iff t =θ1 t′

iff t =θ2 t′ , (θ1, θ2 ∈ [θ]=)

iff t ∼γ t′ .

We continue by showing that the mapping is one-to-one. Assume [θ1]=, [θ2]= ∈
R(D/∼)/= are distinct. Then, without loss of generality there are t, t′ such that t 6=θ1 t′

and t =θ2 t′. Then there exists a context C′[ ] such that θ1(C′[t]) 6= θ1(C′[t′]) while
θ2(C[t]) = θ2(C[t′]) for all contexts C[ ]. Let η and γ be runs extracted from θ1 and θ2

respectively. Recall that if ηθ is extracted from θ, then ηθ(t) is an element of θ(t) ∈ D/∼
for any term t. Then C′[t] 6∼η C′[t′] and C[t] ∼γ C[t′] for all contexts C[ ], i.e., [θ1]= and
[θ2]= are mapped to distinct elements in R(D)/∼.

We conclude by showing that the mapping is onto. Choose [η]∼ ∈ R(D)/∼. Define
θ : TΣ −→ D/ ∼ by θ(t) = [η(t)]∼. By an inductive argument one can show that
θ ∈ R(D/∼). Let γ be a run extracted from θ. Then for any term t, γ(t) ∈ θ(t), i.e.,
γ(t) ∼ η(t). So
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t ∼γ t′ iff ∀C[ ]. γ(C[t]) ∼ γ(C[t′])

iff ∀C[ ]. η(C[t]) ∼ η(C[t′])

iff t ∼η t′ ,

i.e., [γ]∼ = [η]∼, hence [θ]= is mapped to [η]∼.

Notice that taking the “quotient” on the spaces R(D/∼) and R(D) is necessary, as one
of the following examples shows, where a is a constant and g a unary symbol.

·

· //g aB C@ A
g

OO @ A B C
g

OO·oo g ·G F@ Ag B C OO aoo g

��
g

//g · E DB C g@ AOOOOg

D1 D2 ·

Let S 6↔ S ′ denote that there exists no bijection between the sets S and S ′. Then there
are D-congruences ∼ such that

R(D1) 6↔ R(D1/∼) R(D1) 6↔ R(D1/∼)/= R(D2/∼) 6↔ R(D2/∼)/=
R(D1) 6↔ R(D1)/∼ R(D2/∼) 6↔ R(D2)/∼
R(D2) 6↔ R(D2)/= R(D1/∼) 6↔ R(D1)/=

The following proposition shows that if a rational map is a refinement, then this
property is preserved by the quotient construction.

Proposition 203 Given a refinement ĥ : R(D) −→ R(D′). Let ∼⊆ D×D be defined by
d ∼ d′ if and only if h(d) = h(d′). Let ≈ be any D-congruence in ∼. Then g : D/≈−→ D′

defined by [d]≈ 7→ h(d) is well-defined and defines a refinement ĝ : R(D/≈) −→ R(D′).

Proof. Clearly, since ≈⊆∼, g is well-defined. Given f ∈ Σn and [d1]≈, . . ., [dn]≈ ∈
D/≈. Then

g(E/≈f ([d1]≈, . . . , [dn]≈)) = g({[d]≈ | d ∈ Ef(d1, . . . , dn)})

= h({d | d ∈ Ef(d1, . . . , dn)})

= h(Ef(d1, . . . , dn))

⊆ E ′
f(h(d1), . . . , h(dn))

= E ′
f(g([d1]≈), . . . , g([dn]≈)) .

Hence, g defines a rational map. Given θ ∈ R(D/≈). Let ηθ be a run extracted from θ.
Then ηθ(t) ∈ θ(t), so

ĝ(θ)(t) = g(θ(t)) = h(ηθ(t)) = ĥ(ηθ)(t) ,
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i.e., ĝ(θ) = ĥ(ηθ). Hence, ĝ must be one-to-one.
Pick θ′ ∈ R(D′). Then there exists a η ∈ R(D) such that ĥ(η) = θ′. The map

θ : TΣ −→ D/≈, defined by θ(t) = [η(t)]≈ is a run in R(D/≈), from which η can be
extracted. Hence, ĝ(θ) = ĥ(η) = θ′, and ĝ is onto.

8.5 Complexity of Rational Embeddings

In this section we consider decision problems related to rational embeddings between
finitary rational spaces.

Definition 204 Given D. The non-emptiness problem is the problem of deciding
whether or not R(D) 6= ∅. 2

Lemma 205 Given a finite D. The problem of deciding if R(D) 6= ∅ is NP-complete.

Proof. To show NP-hardness, we reduce the NP-complete 3-CNF satisfiability prob-
lem [HU79] to the accessibility problem. We assume the reader is familiar with 3-CNF
satisfiability.

Let F = F1 ∧ · · · ∧ Fm be an expression in 3-CNF, where each Fi, 1 ≤ i ≤ m, is a
clause of the form (αi1 ∨ αi2 ∨ αi3) and each αij , 1 ≤ j ≤ 3, is a literal, i.e., a negated or
non-negated boolean variable. Let Var be the set {x1, . . . , xk} of boolean variables that
occur in F . Let Var(αij) = `, where x` is the variable in Var that occurs in αij .

Define Σ = Σ0 ∪ Σ3, where

Σ0 = {a1, . . . , ak}
Σ3 = {f1, . . . , fm} .

Define a Σ-hypergraph D = (D, E) by

D = {tt1, ff1, . . . , ttk, ffk, ∗}
Ea`

= {tt`, ff`} , 1 ≤ ` ≤ k .

In order to define Efi , let us say that d ∈ D matches αij if d ∈ {tt`, ff`}, where ` =
Var(αij). Intuitively, d then corresponds to a truth assignment of αij by interpreting
d = tt` as x` being assigned the value true and d = ff` as x` being assigned the value
false. Assume d1, d2, and d3 match αi1 , αi2, and αi3, respectively, and the corresponding
truth assignments are consistent, i.e., if dj1, dj2 ∈ {tt`, ff`}, 1 ≤ j1, j2 ≤ 3, then dj1 = dj2.
Then d1, d2, and d3 are said to falsify Fi, if Fi evaluates to false under the corresponding
truth assignments. Now define

Efi(d1, d2, d3) =

{
∅ , if d1, d2, and d3 falsify Fi

{∗} , else

D can be build in time polynomial in the size of F and has the property that R(D) 6= ∅
if and only if F is satisfiable. An inductive argument shows that a satisfying truth
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assignment σ : Var −→ {true,false} uniquely determines a run θ : TΣ −→ D that maps
a` to tt` or ff` depending on whether σ(x`) is true or false, respectively. Also, from any
run θ of D, a satisfying truth assignment can be obtained by defining σ(x`) to be true
or false depending on whether θ(a`) is tt` or ff`, respectively.

To see that the problem of determining whether not R(D) 6= ∅ lies in NP, just observe
that a finite hypergraph D has a run if and only if it has an entire subhypergraph.

Definition 206 Given D and d ∈ D. d is said to be D-accessible if there exists a run
θ ∈ R(D) and a ground term t such that θ(t) = d. The accessibility problem is the
problem of deciding whether or not d is D-accessible. 2

Lemma 207 Given a finite D and a d ∈ D. The accessibility problem is NP-hard.

Proof. This follows from an easy modification of the proof of Lemma 205.

Lemma 208 Given a finite D and a d ∈ D. The accessibility problem lies in NP.

Proof. From [AKW95] it follows that the problem can be reduced in time polynomial
in the size of D to the Nonlinear Reachability Problem (NRP). Since the NRP is NP-
complete [Ste94] it follows that the accessibility problem is in NP.

Lemma 209 Given a rational map ĥ : R(D) −→ R(D′) between finitary rational spaces.
Then, ĥ is a rational embedding if and only if there exists no Σ-hypergraph D∗ = (D∗, E∗)
such that

(i) D∗ ⊆ D × D and ∀(d, d′) ∈ D∗. h(d) = h(d′)
(ii) (d, d′) ∈ E∗

f ((d1, d
′
1), . . . , (dn, d′

n)) ⇒
(d ∈ Ef(d1, . . . , dn) ∧ d′ ∈ Ef(d′

1, . . . , d
′
n))

(iii) ∃(d0, d
′
0) ∈ D∗. d0 6= d′

0 ∧ (d0, d
′
0) is D∗-accessible.

Proof. Assume ĥ is not a rational embedding. Choose η1, η2 ∈ R(D) such that
ĥ(η1) = ĥ(η2) and η1 6= η2. Let t0 be a ground term such that η1(t0) 6= η2(t0). Let

D∗ = {(η1(t), η2(t)) | t ∈ TΣ} .

For f ∈ Σn and (d1, d
′
1), . . . , (dn, d′

n) ∈ D∗, define

E∗
f((d1, d

′
1), . . . , (dn, d′

n)) = {(d, d′) | ∃f(t1, . . . , tn) ∈ TΣ.

(η1(t1), η2(t1)) = (d1, d
′
1), . . . ,

(η1(tn), η2(tn)) = (dn, d′
n) ∧

(η1(f(t1, . . . , tn)), η2(f(t1, . . . , tn))) = (d, d′)} .

Then (i) holds because ĥ(η1) = ĥ(η2) and (ii) because η1 and η2 are runs over D. Also,
(iii) holds because θ : TΣ −→ D∗ defined by θ(t) = (η1(t), η2(t)) is a run of D∗ and
θ(t0) = (d0, d

′
0), where d0 6= d′

0.
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Conversely, assume (i)–(iii) are true. Let θ be a run witnessing that (d0, d
′
0) is D∗-

accessible. Define η1 : TΣ −→ D and η2 : TΣ −→ D by η1(t) = d and η2(t) = d′, where
θ(t) = (d, d′). By (ii) η1 and η2 are runs of D, by (i) ĥ(η1) = ĥ(η2), and by (iii) η1 6= η2.
Hence, ĥ is not a rational embedding.

Based on the above lemmas we now obtain:

Theorem 210 Given a rational map ĥ : R(D) −→ R(D′) between finitary rational
spaces. The problem of deciding whether or not ĥ is a rational embedding is co-NP-
complete.

Proof. To show the hardness, we reduce the complement of the non-emptiness
problem to this problem. Given D′, let D denote the disjoint union of two copies of D′,
and let ĥ : D −→ D′ denote the function which maps a state in D to the state in D′ of
which it is a copy. ĥ is a rational embedding if and only if R(D) = ∅.

From Lemma 209 it follows that the problem lies in co-NP, because the problem of
determining the existence of a D∗ as defined in the proof of Lemma 209 can be shown
to be in NP using Lemma 208.

Corollary 211 Given a finitary rational space R(D). The problem of deciding whether
or not |R(D)| > 1 is NP-complete.

Proof. The mapping h : D −→ {∗} defines a rational map ĥ : R(D) −→ R(E),
where E is the entire Σ-hypergraph over {∗}, that is not a rational embedding if and
only if |R(D)| > 1.

Theorem 212 Given two finitary rational spaces R(D) and R(D′). The problem of
deciding whether or not there exists a rational embedding ĥ : R(D) −→ R(D′) is NP-
hard, co-NP-hard, and lies in ΣP

2 .

Proof. The co-NP-hardness result can be obtained by combining the techniques
from Theorem 210 and Corollary 211.

The NP-hardness result can be obtained by a reduction from the satisfiability problem
for 3-CNF. Given F , a 3-CNF, one constructs D and D′, such that R(D) is a singleton
and such that there exists a rational map ĥ : R(D) −→ R(D′) if and only if F is
satisfiable. The constructions resembles then one use in the proof of Lemma 205.

To see that the problems lies in ΣP
2 , observe that it can be formulated as

{s(D,D′) | ∃sh. ∀sD∗ , s(d0,d′
0), scomp(D∗,(d0,d′

0)).

(sh, sD∗, s(d0,d′
0), scomp(D∗,(d0,d′

0)), s(D,D′)) ∈ L} ,

where |sh| < p(|s(D,D′)|) and |sD∗s(d0,d′
0)scomp(D∗,(d0,d′

0))| < p(|s(D,D′)|) for some poly-
nomial p, and L ∈ P is the language of a deterministic polynomial time machine that
checks that if
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• s(D,D′) encodes two hypergraphs D and D′,

• sh encodes a mapping h : D −→ D′ satisfying (8.6),

• sD∗ encodes a hypergraph as described in the proof of Lemma 209, given D, D′,
and h, and

• s(d0,d′
0) encodes a pair (d0, d

′
0) belonging to D∗ such that d0 6= d′

0,

then scomp(D∗,(d0,d′
0)) does not encode an accepting computation on input (sD∗ , s(d0,d′

0))
of a (given) nondeterministic polynomial time Turing machine solving the accessibility
problem, given the encoding (sD∗ , s(d0,d′

0)).

8.6 Summary

We have continued the investigation of the rational spaces introduced in [Koz95]. We
have given a Myhill-Nerode-like characterisation of rational points and results that sug-
gests that rational points in an essential way captures the topological structure of finitary
rational spaces. In [Koz94], a congruence on Σ-hypergraphs akin to that investigated
here occur in the context of efficient constraint solving. We investigated the interplay
between congruences on Σ-hypergraphs and equivalence relations on the corresponding
rational spaces. Finally, we investigated complexity issues for rational maps.

As for future work, we have identified several interesting directions. One is the re-
maining complexity issues. The gap in Theorem 212 suggests itself immediately, likewise
decision problems concerning surjectivety of rational maps (between finitary rational
spaces). These problems are closely related to the problem of deciding if a given rational
map is a refinement, or whether or not two finitary rational spaces are rationally equiv-
alent. A first step could be to show that if two finitary rational spaces are rationally
equivalent because there exists a span of refinements from a common rational space, then
there must also exist span of refinements from a common finitary rational space (and
preferably a bound on its underlying hypergraph).

Also, since rational equivalence is defined as a span of refinements, one could try to
apply the theory of open maps on the category of rational spaces.
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Conclusion

Reasoning about concurrent computational systems is a challenging task. One of the
most successful approaches is model-checking. What makes it rather unique is that it is
based on a well-developed theory. Verification tools have been developed based on studies
of the expressive power of temporal logics and of the computational complexity of model-
checking these logics. Different semantics have turned out to be useful for deriving clever
algorithms and in providing us with a more accurate view of concurrency. However, the
general picture is still not complete. Our results complete parts of the picture, as well
as widening it; partial order semantics are becoming increasingly popular.

Moving to the field of semantical models of concurrency, in which “true concurrency”
models have flourished in the same period, recent work has employed category theory as
a common framework in which different models could be related and compared formally.
Concrete ideas and notions have been re-casted abstractly; P-bisimilarity, an abstract
notion of bisimulation, has been presented by Joyal, Nielsen, and Winskel. We have
examined its applicability and proposed a new notion of P-factorisability, as an abstract
way of capturing congruence properties of P-bisimilarity.

Set constraints have also recently received much attention because of their wide
applicability. Yet, many interesting results about them are now known. Especially on the
theoretical side, there has recently been fast progress in understanding the mathematical
structure and computational complexity of various classes of set constraints. We have
contributed with an axiomatisation of set constraints as well as with an investigation of
Kozen’s rational spaces.

As sketched in our summaries, there are still many interesting directions to go. Espe-
cially the two last parts present results in two rather new areas, whose general pictures
are currently only outlined.

215
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