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Abstract

This thesis contains three main parts. The first part presents contributions in the field of
verification of finite state concurrent systems, the second part presents contributions in the field
of behavioural reasoning about concurrent systems based on the notions of behavioural preorders
and behavioural equivalences, and, finally, the third part presents contributions in the field of set
constraints.

Concurrent computational systems are any computational systems that consist of autonomous
processes, each performing some tasks while possibly communicating with one-another. Con-
current systems are widely used in real-life; airline-booking systems, communication protocols,
operating systems for computers, just to name a few. The study of concurrent systems deals with
formal ways of reasoning about such systems; one aspect is the development of mathematical
models of concurrency, another is formal methods for verification of systems described as such
mathematical models. Part of the research community has focussed on the semantical study
of concurrency; numerous models, such as Synchronisation Trees, Labelled Transition Systems,
Petri nets, and Event Structures, have been proposed, investigated, and compared, all trying to
capture, at some level of abstraction, the notion of concurrency or concurrent behaviour. Another
part has focussed on developing verification methods for some of these models. Algorithms have
been based on a firm understanding of the models and ways of formally expressing or specifying
a desired “correct” behaviour.

Model-checking algorithms rely on temporal logics, such at PLTL (Propositional Linear Tem-
poral Logic) and CTL (Computational Tree Logic), or on automata as a specification language,
while other algorithms rely on establishing behavioural relations between specifications and im-
plementations. Behavioural equivalences, such as bisimulations, have played a major role in the
process-algebra community, who are well-known for their modular approach to implementation
and verification, based on congruence properties of behavioural equivalences.

At the same time, computational complexity issues have played an important role; both
from the practical point view—developing fast algorithms—and from the theoretical point of
view—e.g., “is it feasible to choose a more expressive logic for the verification task 7”.

The intense study of both temporal logics and behavioural equivalences the last 15 years is
directly related to the study of concurrent systems.

In the first part, we start by studying the computational complexity of several standard
verification problems for 1-safe Petri nets and some of its subclasses. We prove that reachability,
liveness, and deadlock problems are all PSPACE-complete for 1-safe nets. We complete the
picture by proving, among other things, that deadlock is NP-complete for free-choice nets and
for 1-safe free-choice nets and that for arbitrary Petri nets, deadlock is equivalent to reachability
and liveness. Our results provide the first systematic study of the computational complexity of
these problems for 1-safe nets.

We then investigate the computational complexity of a more general verification problem,
model-checking, when an instance of the problem consist of a formula and a description of a
system whose state space is at most exponentially larger than the description. Based on Turing
machines, we define compact systems as a general formalisation of such system descriptions.

Examples of such compact systems are K-bounded Petri nets and synchronised automata. We



present polynomial space upper bounds for the model-checking problem over compact systems
and the logics CTL and L(X, U, S). For many instances of compact systems, the above model-
checking problems have PSPACE-hard lower bounds. Our general upper bounds provide the
matching upper bounds.

We continue by considering the problem of performing model-checking relative to a partial
order semantics of concurrent systems, in which not all possible sequences of actions are consid-
ered relevant. By taking progress fairness assumptions into account one obtains a more realistic
view of the behaviour of the systems. We present P-CTL, a CTL-like logic, which is interpreted
over a partial order semantics for labelled 1-safe nets. It turns out that Mazurkiewicz trace the-
ory provides a natural partial order semantics, in which the progress fairness assumptions can be
formalised. We provide the first, to the best of our knowledge, set of sound and complete tableau
rules for a CTL-like logic interpreted under progress fairness assumptions. Furthermore, we also
present a state labelling based model-checking algorithm for P-CTL, extensions of P-CTL with
modal operators expressing concurrent or conflicting behaviour, and computational complexity
and undecidability results.

After these investigations in the field of verification of finite state concurrent systems, we
turn to behavioural equivalences over models of (concurrent) computation.

In the second part, we start by investigating Joyal, Nielsen, and Winskel’s proposal of spans
of open maps as an abstract category-theoretic way of adjoining a bisimulation equivalence, P-
bisimilarity, to a category of models of computation M. We show that a representative selection
of well-known bisimulations and behavioural equivalences such as, e.g., trace equivalence, weak
bisimulation, Hennessy’s testing equivalence, Milner and Sangiorgi’s barbed bisimulation, and
Larsen and Skou’s probabilistic bisimulation, can be captured in the setting of spans of open
maps. Hence, Joyal, Nielsen, and Winskel’s proposed notion of open maps seems successful. We
also examine some “true concurrency” equivalences, in the context of the theory of open maps,
and discuss decidability issues.

An issue left open by Joyal, Nielsen, and Winskel’s work on open maps was the congruence
properties of behavioural equivalences. We address the following fundamental question: given a
category of models of computation M and a category of observations P, are there any conditions
under which algebraic constructs viewed as functors preserve P-bisimilarity? We define the notion
of functors being P-factorisable and show how this ensures that PP-bisimilarity is a congruence
with respect to such functors. Guided by the definition of P-factorisability we show how it is
possible to parametrise proofs of functors being P-factorisable with respect to the category of
observations P, i.e., with respect to a behavioural equivalence.

In the last part we then, almost, leave the field of concurrency to investigate set constraints.

Set constraints are inclusion relations between expressions denoting sets of ground terms
over a ranked alphabet. They are the main ingredient in set-based program analysis. They are
typically derived from the syntax of a program and solutions to them can yield useful information
for, e.g., type inference, implementations, and optimisations.

We provide a complete Gentzen-style ariomatisation for sequents ® - U, where ® and ¥ are
finite sets of set constraints, based on the axioms of termset algebra. Sequents of the restricted
form ® + L correspond to positive set constraints, and those of the more general form & - ¥
correspond to systems of mixed positive and negative set constraints. We show that the deductive
system is complete for the restricted sequents ® - L over standard models, incomplete for general
sequents ® - ¥ over standard models, but complete for general sequents over set-theoretic termset
algebras.



In a brief section, we sketch how Milner’s protocol can be verified for the absence of deadlocks
using Kozen’s clp(sc), a constraint logic programming language over set constraints.

We then continue by investigating Kozen’s rational spaces. Rational spaces are topological
spaces obtained as spaces of runs of topological X-hypergraphs. They were introduced by Kozen
who showed how the topological structure of the spaces of solutions to systems of set constraints
can be given in terms of rational spaces. We give a Myhill-Nerode-like characterisation of rational
points, which in turn is used to re-derive results about the rational points of finitary rational
spaces. We show that the rational points in finitary rational spaces in some sense exactly capture
the topological structure of the space. We define and investigate congruences on X-hypergraphs,
and finally we determine the computational complexity of some decision problems related to

rational spaces.
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Chapter 1
Introduction

1.1 Structure

This thesis contains three main parts, each presenting results of my research during my
graduate study. The chapters are presented in somewhat chronological order, reflecting
how my interests broadened over time. Part I and II present work on reasoning about
concurrent systems, which was mostly done during my stay in Aarhus. Part III presents
my latest work, done while visiting Cornell University.

1.2 Contents of Part 1

Part I presents contributions in the field of verification of finite state concurrent systems.

1.2.1 On Model-Checking

Formal verification of concurrent systems is based on the choice of a “suitable” formal
semantical description of the systems and techniques for proving that these descriptions
have certain properties. By “suitable” we mean that at some desired level of abstraction
the formal semantical description captures (in fact defines) what we understand by the
behaviour of the concurrent systems.

A predominant verification technique is known as model-checking. The approach is
as follows. The systems one considers either explicitly or implicitly specify state spaces
which are (labelled) graphs. Viewing these graphs as so-called Kripke structures (or just
structures), one can interpret temporal logic formulas over them. Hence, temporal logics
can be viewed as specification languages [Pnu77]. For a nice introduction, see [Eme90).
The problem of verifying if a system s satisfies a property encoded in a formula ¢ then
reduces to the task of checking if the formula is satisfied in the system’s state space
regarded as a Kripke structure. The encoded properties often express that a system has
some desirable behaviour, i.e., it behaves “correctly” in some respect. Model-checking
algorithms perform this task automatically for finite state concurrent systems. The
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approaches are rather different and based on, e.g, tableaux methods [Lar88, SW89], state
labelling methods and graph algorithms [SC85, CES86, Mil89, CPS89], automata theory
[VW86, Kup95], partial order semantics [Val90, WG93], BDDs [BCM92], and “partial
model-checking” (gradual elimination of a system while simultaneously transforming the
specification formula) [And95]. Infinite state systems can also be model-checked, see
[Bra91, BS92]. However, the procedure is no longer fully automatic.

1.2.2 Petri Nets

Petri nets are discrete models of concurrent systems and were introduced by C.A. Petri
[Pet62]. They lend themselves easily to the modelling of concurrent systems and are
widely used, partly due to their ability to model “true concurrency”, and partly due to
their nice graphical representation, which invites one to play the “token game”.

A Petri net consists of a static part—a finite directed bipartite graph whose two
disjoint node sets, P and T, are called the places and the transitions—commonly referred
to as the topology of the Petri net, and a dynamic part—a function M : P — IN
mapping each place to a natural number, called a marking—which represents the current
distributed state of the Petri net. Below is an example of a so-called 1-safe net. It has
four places, p1,...,Dps, illustrated as circles, and three transitions, ¢, ..., t3, illustrated
as boxes. The initial marking is illustrated by the black “tokens”, indicating that only
p1 and po are “marked”; they have one token each.

¢ oo

Figure 1.1: Example Petri net.

The marking of a Petri net can be changed when a transition “fires”. For a transition
to be able to fire at a given marking, all its input places—which are determined by the
directed edges going into the transition—must be “marked”. The effect of the transition
firing is that a new marking is reached, by removing from the current marking one token
from each input place and adding one token to each output place. In the above 1-safe net
t1 and ts may fire at the illustrated marking. If ¢; fires, the marking remains unchanged,
while if 5 fires, po becomes unmarked and p3 gets one token. A consecutive sequence of
firing transitions is referred to as a firing sequence and may be viewed as a computation
of the Petri net. The notation M —— M’ denotes that from marking M it is possible
to sequentially fire the transitions in o and reach the marking M’. So, a computation of
the Petri net changes the current marking according to its topology. The behaviour of
a net is therefore entirely captured by its reachability graph, which is the graph whose
nodes are the markings of the net and whose labelled edges represent firing of transitions
leading from one marking to another. In general, such a structure is often referred to
as the state space of a system. The state space of the example net is illustrated below.
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The initial marking is ®, and we have just used - to illustrate the other two reachable
markings.

to t3

Figure 1.2: State space of the example net.

Finiteness of the state space can be guaranteed by, e.g., structural properties such as
conservativeness (every transition “consumes” as many token as it “produces”, i.e., the
number of tokens remains constant) or by choosing a subclass such as K-bounded nets
(at most K tokens are allowed on a place).

Petri nets are one of the oldest and most studied formalisms for the investigation
of concurrency. Reasoning about the behaviour of a Petri net is typically done by
establishing that its state space has certain properties [Rei85]. In the case where we are
given a finite state space of a net, there exist algorithms solving—naively or optimally—
most of the problems the Petri net community has considered.! Even if we are given
an arbitrary Petri net, whose state space might be infinite, it is still possible to decide
interesting properties about it. E.g., by computing the coverability tree one can decide
if the Petri net is bounded (its state space is finite) [KM69]. Also, for a given Petri
net N and a marking M, it is decidable if M is reachable from the initial marking
[May81, Kos82, May84].2

The computational complexity of many Petri net problems have been investigated
and are well-understood. In their classical paper [JLL77] Jones, Landweber, and Lien
studied the complexity of several fundamental problems for Place/Transition nets (called
in [JLL77] just Petri nets). Some years later, Howell, Rosier, and others studied the
complexity of numerous problems for conflict-free nets, a subclass of Place/Transition
nets [HR88, HR89]. For an survey, see [Jan86, EN94].

1-safe Nets

In the 1980’s, process algebras were introduced as an alternative approach to the study of
concurrency; they are more compositional and of higher level. The relationship between
Petri Nets and process algebras has been thoroughly studied; in particular, many different
Petri net semantics of process algebras have been described, see for instance [BDH92,
DNMB88, Gol88, O1d91]. Also, a lot of effort has been devoted to giving nets an algebraic
structure by embedding them in the framework of category theory, see among others
[Win87, MM90]. Although part of this work has been done for Place/Transition nets
[Gol88, MM90], it has been observed that the nets in which a place can contain at most

1As an example of open problems, consider the “true concurrency” behavioural equivalences over
1-safe nets in Chap. 5.
2This result is probably the most celebrated in the history of Petri nets.
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one token, henceforth called 1-safe nets, have many interesting properties. Places of
1-safe nets no longer model counters but logical conditions; a token in a place means
that the corresponding condition holds. This makes 1-safe nets rather different from
Place/Transition nets, even though both have similar representations; for instance, finite
Place/Transition nets can have infinite state spaces, but finite 1-safe nets cannot.

The advantages of 1-safe nets are numerous, and they have become a significant
model. Several semantics can be smoothly defined for 1-safe nets [BF88, NRT90], but
are however difficult to extend to Place/Transition nets. Nielsen, Rozenberg and Thi-
agarajan [Thi87, NRT90] have shown that a model of 1-safe nets, called Elementary
Net Systems, has strong categorical connections with many other models of concurrency,
such as event structures (another good reference is [WNO95]). Finally, 1-safe nets are
closer to classical language theory, and can be interpreted as a synchronisation of finite
automata.

These properties have motivated the design of verification methods particularly suited
for 1-safe nets. Several different proposals have recently been presented in the literature
[Val90, God90, McM92, Esp93, WG93]. In order to evaluate them, and as a guide for
future research, it is necessary to know the complexity of verification problems for 1-safe
nets.

In Chap. 2, we present complexity results concerning the computational complexity
of determining whether or not 1-safe nets have certain properties. To be more specific,
we investigate the reachability, liveness, and deadlock properties. In fact, we classify
these properties with respect to several classes of Place/Transition nets, one of them
being 1-safe nets. Since the problems are given in terms of a 1-safe net, obvious decision
procedures for these properties can be obtained by first computing the state space of
the net, and subsequently applying the algorithms which require a state space as input.
However, from a computational complexity point of view, this approach is not optimal,
since it implies an exponential blow up. One main conclusion of our work is that for most
natural properties of 1-safe nets, the computational complexity of establishing whether
or not a net has the desired property is PSPACE-complete.

Our results have enabled us to complete Table 1.1, providing the first systematic
study for 1-safe nets.

The contents of Chap. 2 is based on joint work with Javier Esparza and Jens Palsberg,
and has been published in the proceedings of FST&TCS 13 [CEP93] and in the journal
Theoretical Computer Science [CEP95].

1.2.3 Compact Systems

We continue by investigating the more general problem of model-checking branching
time and linear time temporal logics over a class of finite state concurrent systems.
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| Petri net class | Reachability | Liveness | Deadlock |

Arbitrary decidable decidable decidable
EXPSPACE-hard | EXPSPACE-hard | EXPSPACE-hard

1-safe PSPACE-complete | PSPACE-complete | PSPACE-complete

Acyclic NP-complete linear time linear time

1-safe acyclic NP-complete constant time constant time

Conflict-free NP-complete polynomial time polynomial time

1-safe conflict-free | polynomial time polynomial time polynomial time

Free-choice decidable NP-complete NP-complete
EXPSPACE-hard

1-safe free-choice | PSPACE-complete | polynomial time NP-complete

Table 1.1: Summary of complexity results for Petri nets.

Temporal logics and verification.

When talking about a logic, we are implicitly talking about several components; the
logical formulas (usually given by some grammar), a model (a set of possible “worlds”
or states, which assign values to basic formulas, such as atomic propositions), and a way
to interpret a given formula in a given world (the interpretation tells us whether or not
the formula is to be considered “true” or “false” in the given world).

For temporal logics we also have several components: the grammar of the formulas
include temporal operators, e.g., the future operator ¢, and the model we consider are
Kripke structures. A Kripke structure is a graph whose nodes may be considered as
worlds in the above sense. An edge from a world wy to a world wy can be thought of as
meaning that wy is a possible (immediate) successor of or future world for wy.

In a classical paper [Pnu77], Pnueli argued that temporal logic could be useful for
the specification and verification of non-terminating programs, such as reactive systems,
concurrent programs, operating systems, etc. Temporal logic formulas give us the capa-
bility to express temporal properties such as “formula F' holds sometime in the future
of the current world”, commonly written as the formula ¢F. In our case, the notion
of time is discrete and represented as edges in a Kripke structure. Also, there are two
predominant views of how time elapses. Linear time temporal logics consider time as
“linear”, i.e., at any point in time there is only one possible future; a linear time tempo-
ral logic formula is interpreted over a sequence of worlds (a computation path through
a Kripke structure). Branching time temporal logics, on the other hand, see time as
“branching”, i.e., at any point in time there may be several possible futures; a branching
time temporal logic formula is interpreted at a world/state of a Kripke structure and the
branching structure beginning at that world.

Examples of well-known temporal logics are L(X, U, S) (linear time) and CTL (branch-
ing time). Temporal logics can be classified in many ways. Here we have mainly talked
about the view of (discrete) time [Lam80, EH86]. For a more elaborate classification,
see [Eme90].
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Recall that the finite state systems one wishes to reason about either explicitly or
implicitly specify state spaces, typically as (labelled) graphs. Viewing these graphs as
Kripke structures, one can use temporal logic formulas to express properties of the state
spaces. The problem of deciding if a system s satisfies a property expresses by (encoded
in) a formula ¢—the model-checking problem for s and p—then reduces to the problem
of checking if the formula is satisfied in the systems state space regarded as a Kripke
structure. Hence, temporal logics can be seen as specification languages.

The computational complexity of the model-checking problem for both linear and
branching time propositional temporal logics has been investigated by many researches.
Among the well-known are Sistla and Clarke [SC85] and by Clarke, Emerson, and Sistla
[CES86]. Both papers consider (propositional) Kripke structures as models for the logics
and the complexity results are stated in terms of the sizes of the Kripke structures and the
length of the formulas. The paper [CES86] shows that the model-checking problem for
the computational tree logic CTL can be solved in polynomial time, while [SC85] shows,
among other things, that the model-checking problem is NP-complete for the linear time
temporal logic L(F') and PSPACE-complete for L(X,U,S). Recent work shows that
complexity bounds from [CES86] can be preserved even if one considers CTL?2, a strictly
more expressive branching time temporal logic than CTL [BG94].

There exist other well-known classes of systems over which such logics can interpreted.
K-bounded Petri nets and synchronised automata are examples of such classes of systems.
Common to these systems is that they can be viewed as compact representations of
Kripke structures; they can specify exponentially large Kripke structures. Verification
techniques for these and related systems have been presented in, e.g., [VW86, Lar88,
SW89, Val90, WG93, ES92, Esp93, BCM192, And95]. The work in [Lar88, SW&9]
focusses on algorithms (tableau systems) for solving the model-checking problem, while
the work in [Val90, WG93, ES92, Esp93, BCM 192, And95] is mainly motivated by the
“state space explosion” problem and how to overcome it taking time and, especially,
space consumption into account. Notions such as “stubborn sets”, “persistent sets”,
“net unfoldings”, and “Binary Decision Diagrams” have been proposed to obtain efficient
model-checkers in practice.

Compact systems and model-checking.

It turns out that the model-checking problems over models like, e.g., synchronised au-
tomata and 1-safe Petri nets are very similar. In Chap. 3, we show that such systems
can be seen as instances of a general notion we introduce as compact systems. Our def-
inition of compact systems is based on Turing machines. Intuitively, compact systems
are descriptions of systems whose state spaces are (at most) exponentially larger than
the descriptions themselves. The idea is that a class of compact systems is determined
by a nondeterministic polynonimal space bounded Turing machine, which interprets its
input-strings (input-systems) as system descriptions. The Turing machine has a special
“signal” state, which it enters whenever it has computed a state of the input-system.
From the Turing machine’s computations on the input-system it is then possible to de-



1.2. Contents of Part | 7

rive a Kripke structure. E.g., the class of K-bounded Petri nets can be determined by
a Turing machine which given an input s, checks if s encodes a K-bounded Petri net
(in some predetermined format), if so, stores the current marking of the net and tries
nondeterministically to simulate a firing transition from the current marking. Whenever
a new marking is computed it enters its signal state.

Determining the computational complexity of model-checking is done relative the size
of the problem instance. Not surprisingly, the computational complexity of, e.g., model-
checking CTL over 1-safe nets is lower—in terms of the size of the problem instance—
when the problem instance consists of a formula and the reachability graph of a 1-safe
net than when it consists of a formula and the usual description (places, transition, etc.)
of a 1-safe net—the reason being that a 1-safe net can encode an exponentially large
reachability graph.

Since the finite state concurrent systems being model-checked in practice can very
often be viewed as compact systems, it is necessary and, probably more relevant, to eval-
uate the computational complexity in terms of the size of these “compact” descriptions.

In Chap. 3, we provide general upper bounds, which are valid for any class of com-
pact systems. More specifically, we show that the model-checking problems for the logics
L(X,U,S)and CTL and any class of compact systems lie in PSPACE, hereby contribut-
ing to the general picture of the computational complexity of model-checking. Our results
are summarised in Table 1.2 and have appeared as a technical report [Che95a].3

‘ Logic ‘ Problem Instance ‘ Complexity ‘
CTL R-structure (Kripke) p
and a formula
L(F) R-structure NP-complete
and a formula
L(X,U,S) R-structure PSPACE-complete
and a formula
CTL Compact system
L(F) and a formula PSPACE
L(X,U,S)

Table 1.2: Complexity in terms of Kripke structures and compact systems.

One use of our results is easily obtainable PSPACE upper bounds. Moreover, for
many of the classes of models investigated in the literature the model-checking problems

for the temporal logics we consider are PSPACE-hard. By showing how the systems being

4

model-checked can be viewed as compact systems * our results provide the matching

3The author has become aware that his results on linear time temporal logic indirectly appear in
[VWS86]. Also, similar results for CTL and CLT* have recently been obtained using alternating tree
automata [BVW94, Kup95]. We have chosen to present our results, partly because we will use them in
Chap. 4 and partly because our proofs are quite different.

41.e., show that it is possible to transform the description of the system—in the problem instance used
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upper bounds—the intended use of our results.” We consider K-bounded Petri nets as
an example of how our results can be applied.

1.2.4 Fair Progress

We continue by investigating the notion of fair progress in the setting of labelled 1-safe
nets.

Consider the process agent fizx (X = a.X)|(7.b.0). Its transition graph is given in
Figure 1.3. The initial state is ¢, and s; and s2 are the only other reachable states.

Figure 1.3: Transition system for the process agent fiz (X = a.X)|(7.0.0).

Consider the process agent (fix(X = a.X +7.(fiz(Y = a.Y + b.(fix(Z = a.Z)))))). It’s
transition graph can also be depicted as Figure 1.3. However, looking at the agents one
would expect that there should be a difference with respect to the degree of concurrency
the two agents exhibited. This example shows that from a model theoretic point of view,
concurrency is modelled as nondeterministic interleaving. This makes it difficult, and
sometimes impossible, to express or reason about certain natural properties of concurrent

Systems.

Partial order semantics and P-CTL.

Let us consider yet another example, this time a labelled 1-safe net.

© = @{-0d-0
y41 ti:a P2 to:T  P3 t3:b D4

Figure 1.4: Labelled version of the net in Figure 1.1.

The process agent fiz (X = a.X)|(7.0.0) can be represented by this net. The concurrency
is obviously visible in this graphical representation and hinted to by the definition of

to obtain the lower bound—into the representation as a compact system, using at most a polynomial
amount of space. This is a very mild condition.

® Although we prove the PSPACE upper bounds by giving algorithms, the algorithms are not intended
to be implemented. It is however interesting to notice that several algorithms which are implemented
have worst case exponential running times and exponential space consumptions, in terms of s and ¢
[Lar88, SW89, WG93|. In [Kup95], alternating tree automata provide a PSPACE procedure for CTL*
model-checking of concurrent programs (synchronisation of automata).
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the effect of firing a transition. We would expect that in any computation of the net,
transitions from the left and the right “subnets” would occur if both the subnets were
assumed to progress in a fair way.

Guided by this observation, let us define a so-called independence relation I C T x T
over the transitions of the net. The intention is that this relation should capture whether
or not two transitions may occur concurrently. We tentatively derive it from the explicit
representation of possible concurrency between transitions of the nets—disjointness of
neighbourhoods. Hence, ¢; would be independent of ¢, and ¢z, written (t1,t2) € I and
(t1,t3) € I, while ty and t3 would be dependent, written (ta,t3), & I.

If we take a closer look at the structure of the net’s state space, we discover that if
we have M 2% M, LN Mo N M; 2% My, where (t,t') € I and o1, oy are themselves
firing sequences, then there must necessarily exist a marking M}, such that M 2L M, 2,
M, SN M 2% M,. This is best illustrated by the “independence diamond” below.

M,
t . t
M—2— M ] My —22— M,
4 t
M

Exploiting I we may consider the two sequences o1tt'cy and o1t'toy equivalent, since
they only differ with respect to permutation of adjacent independent transitions. Hence,
the relation I induces an equivalence relation on firing sequences ¢, whose equivalence
classes are commonly referred to as (Mazurkiewicz) traces [Mar77]. Moreover, a natural
partial order can be defined over the traces [Maz86]. This partial order represents a more
concrete view of the computations of concurrent systems in which events are ordered par-
tially, rather than linearly, reflecting both their causal dependencies and independencies.
Such a partially ordered structure is often referred to as a partial order semantics of a
concurrent system.

Below in Figure 1.5, we have “unfolded” the state space of the net from Figure 1.4.
The chosen labelling indicate how the unfolded structure—which, by the way, is isomor-
phic to the aforementioned partial order structure over the traces of the net—is obtained.
Intuitively, the only progress fair computations are the firing sequences that eventually
reach the “lower path”—ty and t3, which are independent of 1, must eventually occur.
In Chap. 4, we show how a generalisation of Mazurkiewicz’s traces to infinite sequences
captures this observation formally.

The foundation of traces was presented by Mazurkiewicz in [Mar77, Maz86]. His idea
was to equip an alphabet ¥ with a symmetric irreflexive independence relation, which
induced an equivalence relation over the monoid ¥* of finite string over ¥. In [Maz86],
Magzurkiewicz applied his theory to Petri net as sketched in the above example, where the
set of transitions corresponded to an alphabet and I corresponded to an independence
relation over the alphabet.

Sas well as the monoid T
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t1:a ti1:a ti1:a
@ . .
to:T to:T to:T
t1:a t1:a t1:a
t3:b t3:b t3:b
t1:a ' ti1:a ' t1:a

Figure 1.5: Unfolded state space.

Petri’s introduction of nets focussed on the explicit representation of concurrency in
the topology of a net and in the firing rule. Mazurkiewicz’s work [Maz86] focussed on
the model theoretic view that concurrency should be represented explicitly by impos-
ing more structure on the underlying semantical model, the state space. The study of
partial order semantics/“true concurrency” has developed numerous new models, e.g.,
concurrent and asynchronous transition system [Shi85, Bed88, Sta89, O1d91]| and event
structures [Win80, NPW81, Win86]. For an overview of the relation between many of
the existing models, see [WN95]. Common to these models is that they represent con-
currency explicitly by either an independence relation (asynchronous transition system)
or a conflict relation (event structures). Also, Mukund and Nielsen [MN92] have shown
how it is possible to obtain elementary labelled asynchronous transition systems from
process agents, like the above, by introducing locations in the structural operational
semantics rules for CCS.

In the context of model-checking, partial order semantics have several advantages.
The so-called “state space explosion” problem has motivated researches to use partial
order semantics. It has been observed that an exhaustive state space exploration can
often be avoided; e.g., if a sequence (element) of a trace leads to a deadlocked state,
then all sequences in that trace must necessarily lead to that deadlock. Hence, it is
sufficient only to explore one sequence in that trace. This can lead to significantly
improved running times and space consumptions as observed, among others, by Valmari
[Val88, Val90] and by Godefroid and Wolper [God90, GW91, WG93, GW94]. Another
motivation to investigate partial order semantics has been the possibility to interpret
temporal logics over traces taking causality and concurrency into account, see, e.g.,
[PP90, Pen93, Thi94, APP95, PK95].

Model-checking P-CTL.

In Chap. 4, we investigate the notion of fair progress for labelled 1-safe nets, motivated
by the above example. Our main objective is to explore the use of the extra structure of
independence in the context of specification logics. Based on an independence relation
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on transitions (given by disjointness of neighbourhoods) and a generalisation of traces,
which takes infinite firing sequences into account, we define a partial order semantics for
the labelled 1-safe nets. This semantics captures—in a formal sense—the notion of fair
progress among independent event; we can then formally define which firing sequences
are progress fair. We then introduce and study a CTL-like branching time temporal
logic, P-CTL, which contains one important feature: the model-theoretic incorporation
of progress. P-CTL-formulas are interpreted relative to the progress fair computations,
rather than all computations, as is the case for the standard interpretation of CTL.

As an example, the formula Ev(<b >tt)—to be read as“eventually a b-labelled tran-
sition/action is enabled”—is true of the process agent example under the assumption
of progress (our interpretation), but not without (standard CTL interpretation). Our
interpretation is conservative in the sense that P-CTL interpreted over standard la-
belled transition systems coincides with the standard CTL interpretation. In process
algebraic terms, our notion of fair progress—progress of independent events—intuitively
corresponds to a progress fair “parallel operator”.

When handling progress fairness in the setting of partial order semantics, we are
able to avoid the obstacle of encoding certain fairness assumptions in the logic or into
the model-checking algorithm [MP92, CES86|, and treat progress fairness assumptions
uniformly by using Mazurkiewicz trace-theory.

In the standard setting of Kripke structures, model-checking of CTL-like logics has
been described in [CES86] using a state based algorithm and in [Lar88, SW89] using
tableaux rules.

We give both a tableau based method and a state labelled base method for model-
checking P-CTL. These methods are both based on state space exploration. However,
they differ in the way the exploration is performed. Tableau based methods are usually
referred to as “local model-checking”; the way one establishes that a state satisfies a
given formula is from the given state to explore the state space according the tableau
rules. These rules typically infer the properties of a state in terms of the properties of
its neighbouring states. State labelling methods, on the other hand, explore the entire
state space, labelling the states in a bottom-up fashion with the subformulas (of a given
formula) they satisfy.

Our methods are conservative extensions of the existing standard methods in the
sense that our methods are equivalent if the systems we consider may not exhibit con-
current behaviour. Based on the results from the previous two chapters, we determine
the computational complexity of model-checking our new logic. Our results show that
there is now significant penalty, when going from CTL to P-CTL.

Although we choose a partial order semantics for the nets, the syntax of our logic
does not allow us to express concurrent behaviour explicitly. We therefore also investi-
gate extensions of our logic with modal operators expressing concurrent or conflicting
behaviour. It turns out that variations of the satisfiability problem, i.e., the problem
of deciding whether or not there exists a model in which a given formula is satisfiable,
becomes undecidable.
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The contents of Chap. 4 been published in the proceedings of AMAST’95 [Che95b)
as an extended abstract of the technical report [Che95c¢].

1.3 Contents of Part 11

Part II presents contributions in the field of behavioural reasoning about concurrent
systems based on the notions of behavioural preorders and behavioural equivalences.

1.3.1 Behavioural Equivalences

Assume we are given some relation R between models of the concurrent systems we wish
to reason about. R could for example be a relation between (rooted) labelled transition
systems. Let us further assume that s; and so are two system descriptions and that
(s1) and (s2) are labelled transition systems given by some semantical mapping (). R
then induces a relation on the system descriptions defined by s; <p so if and only if
(s1)R(s2). Assume it is known that (s;) possesses some (behavioural) property P and
that the relation R “preserves” P in the sense that if ¢; and ¢, are two transition systems
such that t; Rt and t; possesses the property P, then ¢2 must also possess the property P.
By establishing s1 <p s2 one then implicitly establishes that (s) possesses the property
P.

A well-know example of this setting is Milner’'s CCS (Calculus of Communication
Systems) [Mil80, Mil89]. In this case, the concurrent systems are described as process
agents, terms of a process algebra. A semantical mapping assigning a transition graph
to each process agent is induced by a set of inference rules, commonly referred to as
CCS’s structural operational semantics (SOS), in which the behaviour of a composite
process term is given by the behaviour of its components.” The nodes of the graphs
are process terms and the labelled edges are generated by the inference rules. The
transition graph of a term ¢ can be viewed as a labelled transition system rooted at t.
Milner investigates several behavioural relations of which strong bisimulation, denoted
~, and weak bisimulation, denoted =, are the most well-known; both are equivalence
relations. We only sketch the intuition behind strong bisimulation. Two nodes n; and
ng of any transition graphs are strongly bisimilar if they can continuously simulate each
others transitions in the following sense: (1) ny can simulate nq, i.e., if n; has a labelled
transition leading to a state n), then ny must have a similarly labelled transition leading
to a state nb, such that n} and n} are also strongly bisimilar, and (2) ny can simulate
ng. Weak bisimulation is—as the name suggests—a coarser, i.e., less distinguishing,
relation, because the individual transitions are no longer required to be simulated by
corresponding individual transitions, but may, e.g., be simulated by several additional
so-called “invisible transitions”.

"The inference rules are defined in the structure of the process terms, and allows one to derived, step
by step, the operational behaviour of a term.
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Behavioural equivalences and verification.

In [Mil89], Milner shows that it is possible to reason about the behaviour of process agents
using behavioural equivalences. In fact, his approach corresponds to the one sketched in
the above paragraph: assume a given process agent s is viewed as an implementation of
some system. Reasoning about s’s behaviour can then be done by first choosing another
process agent sp which possesses a desired property P. This process agent can be viewed
as a specification of (part of) the desired behaviour of s. Since sp might only express
some, but not all, desired behaviours of s, one typically modifies s slightly by “ignoring”
certain actions. E.g., one might only be interested in whether or not a subset of s’s
possible actions occur in some fixed sequence or pattern. Hence, one has to abstract
away from s’s other actions—typically by making them “invisible”’—before one tries to
establish that sp ~ s.8

It turns out that there exist serval temporal/modal logics which characterise these
bisimulations. E.g., two process agents are strongly bisimilar if and only if they—
or rather the corresponding nodes in their transition graphs—satisfy the same set of
Hennessy-Milner logic formulas [Mil89]. If we assume that the behavioural equivalence
R is characterised by the logic L, then the task of establishing whether or not sp is
behaviourly related to the modified version of s corresponds to checking whether or not
their state spaces satisfy the same set of formulas. A related issue is discussed in [Pnu85],
where the notion of a logic £ being expressive for a process language Proc (equiped with
a notion of behavioural equivalence) is defined. Intuitively, for such a logic, there ex-
ists a characterisitc formula £(p) for every process p, which essentially characterises the
process’ behavioural equival