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Abstract

Reasoning about algorithms stands out as an essential challenge of computer science.
Much work has been put into the development of formal methods, within recent years
focusing especially on concurrent algorithms. The Temporal Logic of Actions (TLA)
is one of the formal frameworks that has been the result of such research. In TLA a
system and its properties may be specified as logical formulas, allowing the application
of reasoning without any intermediate translation. Being a linear-time temporal logic, it
easily expresses liveness as well as safety properties.

TLP, the TLA Prover, is a system developed by the author for doing mechanical rea-
soning in TLA. TLP is a complex system that combines different reasoning techniques
to be able to handle verification of real systems. It uses the Larch Prover as its main
verification back-end, but as well makes it possible to utilize results provided by other
back-ends, such as an automatic linear-time temporal logic checker for finite-state sys-
tems. Specifications to be verified within the TLP system are written in a dedicated
language, an extension of pure TLA. The language as well contains syntactical constructs
for representing natural deduction proofs, and a separate language for defining methods
to be applied during verification. With the TLP translators and interactive front-end, it
is possible to write specifications and incrementally develop mechanically verifiable proofs
in a fashion that has not been seen before.
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Dansk sammenfatning
(résumé in Danish)

Én af de største udfordringer indenfor det datalogiske forskningomr̊ade er, hvordan man
kan gøre det praktisk muligt at ræsonnere om algoritmer – at vise at et program udført
i de rigtige omgivelser opfører sig korrekt. Meget arbejde er blevet lagt i udviklingen af
formelle metoder til at danne grundlag for s̊adanne ræsonnementer, og i de senere år har
arbejdet specielt været koncentreret omkring parallelle systemer; systemer best̊aende af
flere, parallelt udførte og interagerende programmer. Det sidste skyldes dels, at komplek-
siteten af s̊adanne systemer hurtigt bliver langt mere omfattende end den af sekventielle
systemer, og dels, at de fleste systemer vi i dag omgiver os med og gerne skulle kunne
stole p̊a er baserede p̊a parallelt kørende processer.

Det store problem ved at ræsonnere omkring parallelle systemer er, at selv for små
systemer vokser kompleksiteten i ræsonnementerne hurtigt ud over, hvad det er muligt
at behandle med manuelle midler. For at kunne arbejde med virkelige og avancerede
computer-systemer er det klart at man er nødt til at tage mekaniske – computer-baserede
– midler i brug. Selv med mekaniske hjælpemidler er det imidlertid svært at n̊a særligt
langt. Forsøg p̊a at lade computere udføre automatiske, udtømmende analyser af paral-
lelle systemer mislykkes ofte p̊a grund af kompleksitetens eksplosions-artede vækst ved
forstørrelsen af det analyserede system. Computer-assisteret bevisførelse skulle i teorien
kunne hjælpe p̊a nogle af de mere svære eksempler gennem en bedre opdeling af prob-
lemerne, men udviklingen har endnu ikke givet os et værktøj, der kan gøre ikke-trivielle
ræsonnementer praktisk mulige.

Den s̊akaldte temporale aktions-logik, TLA, er én af de formelle grundflader for ræ-
sonnering om komplekse systemer, der er blevet udviklet under de senere år. Med hjælp
af TLA er det muligt at beskrive et system og de egenskaber, man ønsker det skal op-
fylde, ved hjælp af ganske simple logiske udtryk. Dermed er det muligt at ræsonnere om
systemet og dets egenskaber p̊a en meget direkte måde. Denne afhandling beskriver i
et enkelt bidrag til omr̊adet, hvordan et værktøj til at assistere i ræsonnering omkring
systemer beskrevet i TLA kan konstrueres. Afhandlingen g̊ar især tæt p̊a den arkitek-
toniske side af dette værktøj med en beskrivelse af, hvordan det er muligt at gøre mekanisk
assisteret bevisførelse praktisk anvendelig.

Som sin hoved-konklusion viser afhandlingen, at vi kan konstruere værktøjer, der
muliggør udtømmende, verificerbare ræsonnementer om ikke-trivielle systemer. I det
præsenterede værktøj, TLP, er problemer relaterede til de meget forskelligartede sider af
ethvert ræsonnement blevet løst ved at integrere flere forskellige metoder og til gengæld
forsyne værktøjet med en ensartet, interaktiv overflade (front-end).

TLP’s styrke vises i afhandlingen ved tre eksempler, der er blevet valgt s̊aledes, at
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de tilsammen bedst muligt beskriver de forskellige aspekter ved bevisførelsen. Det første
er et simpelt, traditionelt ‘forfinelses’-bevis – et bevis af hvordan man korrekt kan g̊a
fra en overordnet system-beskrivelse til en mere detaljeret implementation – og giver en
god indføring i de to grundlæggende ræsonnements-typer, der benyttes i den temporale
logik, sikkerheds- og livligheds-ræsonnementer. Det andet behandler korrektheden af
en distribueret algoritme til beregning af det kortest udspændende træ i en graf, og
repræsenterer et mere komplekst, ikke-endeligt system, hvor livligheds-beviset kræver
brug af induktive argumenter. Det tredje er endelig et mere realistisk eksempel, beviset
af korrektheden af et k · 2m-bits multiplikations-kredsløb. TLP blev her brugt sammen
med et automatisk værktøj, en s̊akaldt model-checker, og assisterede i at finde kritiske
fejl i de indledende specifikationer.
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1

Introduction

Reasoning about algorithms stands out as an essential challenge of computer science.
There is a clear need for being able to prove that a program executed in a certain en-
vironment performs correctly. Much work has been put into the development of formal
methods for handling such reasoning, within recent years focusing especially on concurrent
algorithms. TLA, the Temporal Logic of Actions [20], is one of the formal frameworks
that has been the result of such research. In TLA, a system and its properties may be
specified as logical formulas, allowing application of reasoning without any intermediate
translation.

The main problem with formal reasoning about concurrent systems, is that even for
small systems the amount of reasoning to be performed is unmanageable without the
help of mechanical tools. Even with mechanical tools, we are faced with great problems.
Methods for automated reasoning keep getting better, but are still oppressed by the
state-space explosion problem encountered as larger systems are examined. Mechanically
assisted theorem proving could be the solution to some problems, but is feasible only if
more advanced methods for dealing with proofs are constructed; proofs of any non-trivial
facts about concurrent systems tend to get out of hand very quickly.

This thesis describes a contribution to the area of mechanically assisted theorem prov-
ing. It describes a tool for reasoning about systems specified within TLA, focusing es-
pecially on the engineering aspects of creating such a tool, making mechanical reasoning
practical for the systems designer.

Reasoning in the Temporal Logic of Actions

TLA is a linear-time temporal logic [19]. This means that it easily expresses liveness
(eventuality) as well as safety (invariance) properties. Systems and their properties may be
described by logical formulas, making the expression of conjectures very straightforward.
The TLA formula Π⇒ Φ asserts that the system represented by Π satisfies the property,
or implements the system, represented by Φ. As any formal logic, TLA allows completely
rigorous reasoning, so it is clear that proofs can be checked mechanically.

To perform reasoning about a TLA conjecture, it is necessary to represent the logical
system in a machine comprehensible form. For TLA, this has been done in a number
of different ways. Joakim von Wright and Thomas L̊angbacka [34, 35], and Ching-Tsun
Chou [7, 8] have in individual attempts implemented the semantics of TLA as theories in
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the HOL theorem prover [15, 16], a system that guarantees soundness of any proofs based
on the defined semantics. Peter Grønning, Leslie Lamport, and the author went in another
direction when we chose to represent TLA by a set of axioms and proof rules, basing our
implementation on the logically capable verification system known as the Larch Prover
(LP) [13, 14]. Sara Kalvala has later [17] taken a third approach in an embedding of TLA
in the Isabelle Theorem Prover [28, 29] in which the temporal operators are defined in
terms of their semantics (similar to the HOL implementations), but where their use is
governed by an axiomatic proof system.

One of the advantages of the LP implementation is that it quickly lets you perform
small-sized proofs of invariant properties using the automated rewriting mechanisms of
LP, and not having to spend time at the level of semantics. The use of the simple
encoding of TLA in LP however suffers from the same problems as any encoding: pure
technical aspects start to become distracting as soon as specifications and proofs start to
grow, making reasoning unmanageable. This is even more the case when you begin to
find profitable ways of enriching the encoding or, as we did, start to work with different
encodings for temporal and pure predicate based reasoning. Furthermore, the LP system
itself is not very helpful when it comes to proof management; its simple scripting system
breaks very easily when specifications change and proofs should be change accordingly.

A possible solution to the mentioned problems is to create a dedicated system, letting
specifications be written directly in the logic, rather than any specific encoding, while
letting proofs be written in a more structured, manageable fashion. Fortunately, it is not
necessary to build a new system from scratch, as LP (or any other verification system)
may still serve as a reasoning platform. What that we need is a front-end that can take
care of the TLA specific aspects, replacing conjectures and proofs by suitable encodings.
The construction and analysis of such a system has been the main aim of the author’s
work through the last years, as described here.

The design and implementation of an interactive com-
puter system

The system described in this thesis has been named the TLA Prover, TLP. TLP is a
complex system that tries to combine different reasoning techniques to provide a tool
able to handle verification of realistic systems. It uses the Larch Prover as its main
verification back-end, but makes it possible to use different encodings of the logic, as
well as other back-ends, whenever this seems profitable. Currently, we refer to two main
areas of reasoning using the Larch Prover with two different encodings. Action reasoning
is reasoning involving only constants, predicates, and actions. This is handled mainly
by the term rewriting capabilities of LP, supplied with axioms and rules for boolean
reasoning and extended with declarations and definitions of certain operators used in the
TLP language. Temporal reasoning is reasoning that as well involves temporal operators.
This is handled in a different setup, where we are able to represent temporal axioms
and rules, and among these instances of the TLA proof rules. Temporal reasoning on
finite-state systems and not involving any of the TLA rules, is furthermore supported by
an implementation by David Long of decision procedures for linear-time temporal logic
(LTL), based on Boolean Decision Diagrams. The LTL checker verifies the appropriate
lemmas automatically, where the Larch Prover would need an explicit proof in terms of



temporal logic reasoning.
Specifications and properties to be verified within the TLP system are written in a

dedicated language. The TLP language is an extension of pure TLA, based on the usual
TLA syntax extended with constructs for expressing tuples, conditionals, and sets. As
a more exceptional feature, the TLP language also contains syntactical constructs for
representing natural deduction proofs with conjectures written in TLA, and a separate
language for defining methods to be applied in the verification of proofs.

The TLP translator parses any file containing declarations, specifications, and proofs
written in the TLP language. In addition to ordinary syntax checking, it is able to deter-
mine the wellformedness of any TLA expressions, performing sort checking to ascertain
that e.g. the prime operator is only applied to predicates and state functions. The transla-
tor generates output for each individual encoding and back-end being used, thus ensuring
that the different encodings correspond to the same specification. It uses information
from sort checking together with user-supplied guidance to produce conjectures and ver-
ification directions, splitting up proofs to let each separate part be handled by the most
favorable encoding and back-end.

With the TLP interactive front-end it is possible to write specifications and incre-
mentally develop mechanically verifiable proofs of properties in a bottom-up or top-down
fashion. The front-end links the separate back-ends, hiding technical details of the encod-
ings, and ensures that each part of the proofs is verified correctly. Being built on top of
the customizable text-editor GNU Emacs, it provides syntax directed features for editing
of TLP scripts along with a fully interactive graphical interface to the translator and the
verification back-ends.

TLP in a wider context

In the area of computer-assisted formal reasoning it is common to speak about theorem
proving as opposed to proof checking. As stated by Peter Lindsay in a survey article [26],
the term theorem provers generally refer to highly automated systems, such as resolution
provers and the Boyer-Moore prover [5, 6]. As well model checkers should be added to
this category. As proof checkers we usually refer to language-based systems that support
some kind of computer-assisted development of proofs. Modern reasoning tools such as
HOL [15, 16], Isabelle [28, 29], and as well LP, contain elements of both categories, in that
they let the user create verifiable proofs based on a logical foundation, aided by theorem
proving techniques such as decision procedures, resolution, and term rewriting.

TLP is not a new theorem prover, nor a proof checker. It does not intend to provide
new methods for automatic theorem proving nor a new foundation for proof checking.
Instead it tries to combine some of the existing techniques with a tool for managing the
development of specifications and proofs – dedicated especially to the Temporal Logic of
Actions. It provides a complete reasoning environment , in which proofs may be developed
incrementally with the aid of different theorem provers, and with different encodings of
the logic. Although dedicated for another reasoning area, TLP in many ways resembles
NuPRL, a combined reasoning environment and theorem prover for constructive type
theory [11]. TLP and NuPRL both provide a user interface which intends to make the tool
available “at the workstation”. A proof is a syntactic entity of the system’s language, with
an evident tree structure. From the user interface it is possible to edit and simultaneously



verify proofs, navigating quite freely between the different parts. This is an important
feature, which is not always recognized. Writing a proof is most often a process of trial
and error, and the number of changes and refinements that have to be done before the
proof is finally verified can get very large. TLP, like NuPRL, assists the user by controlling
the proof structure, letting him concentrate on the distinct parts while always providing
him with information about the context.

TLP distinguishes itself by being based on existing verification tools; back-ends that it
may apply for different verification purposes. We have chosen to use the Larch Prover as
our main back-end. This has shown to have some advantages, in that the term rewriting
mechanisms of this tool provides some very quick and smooth simplification of equations.
The notion of deduction rules is adequate for representing the proof rules of TLA, and by
splitting action and temporal reasoning we get a very efficient reasoning engine. The down
side has been that the handling of some constructs, especially quantification, has been
very difficult, where a tool such as HOL clearly would have provided a better platform.
Still, the interesting aspect of TLP is not so much the choice of back-ends, as the way
it combines the use of them, and presents the results to the user. With additional work,
the TLP system might be able to use HOL or Isabelle as major back-ends, or even to
combine these with the current LP system. Although we may not be able to solve all
problems by adding new back-ends, certain problems, like the encoding and reasoning
about Enabled -predicates, could clearly be solved this way.

When providing a formal framework to enable reasoning about a system inside a
theorem prover or proof checker, there are different approaches to how the system is
embedded in the tool’s logic. It is here common to speak of deep embeddings versus
shallow encodings as explained among others by Boulton [4].

A deep embedding is one in which the syntax of the embedded system is represented
by terms in the tool’s logic, where semantic functions are added to assign meaning to the
terms. A shallow embedding is one in which just the semantic operators are defined in the
tool’s logic, while a user-interface serves to translate the syntax of the embedded system
into semantic structures.

Deep encodings are in some way the most simple and pure. The language and its
semantics is handled completely by the embedding logic, which ensures correctness of
any proof. Deep encodings also make it possible to quantify over syntactic structures,
something that could make the encoding of TLA’s Enabled predicates trivial (a task which
is still unsolved in the TLP system). A deep encoding of a complex system is however not
very easy to obtain, as the complete mapping between the syntax and semantics of the
language has to be expressed in the logic. And the embedding logic may not always be
very well suited for modeling the embedded language. In some of our initial experiments
with embedding TLA in LP, we thus found the built-in type system to be insufficient for
representing the different TLA sorts. Had a deep encoding been a major issue, we might
have been better off using a system such as HOL with an encoding like the ones presented
by von Wright and L̊angbacka and by Chou (see chapter 4).

With a shallow encoding, the interface handles the mapping between syntactic specifi-
cations and their semantics. This simplifies the work that has to be done to get a working
system. It also makes the resulting system less secure, in that the mapping is removed
from the logical system.

In the TLP system we have chosen to use a shallow encoding. As mentioned earlier,



we found that one general encoding of TLA in the logic of a proof checker was very hard
to find, which would still make reasoning feasible at all levels. Using a translator made
the interface language much simpler, and yet more flexible – new syntactic constructs
could be added without changing the logical basis. Much more important however, the
finding that we might profit from using more than one encoding of the same specification
made a shallow encoding the only possible choice.

You might say that TLP uses an even shallower encoding than what we usually refer
to by the term. In TLP, some of the reasoning itself has been moved from the logical
framework to the interface. The system has been built so that the translator may chose to
generate conjectures for certain facts in one specific encoding, while asserting the validness
of these conjectures in another. This is the way it links the results from the different
back-ends. It obviously constitutes yet another security risk, as the translator easily could
introduce circular arguments or any kind of contradicting statements if developed without
care. But the gained flexibility is also what makes TLP unique: it may combine techniques
as different as natural deduction, term rewriting, resolution, and model checking in the
verification of a single proof, something that no other tool is able to do by itself.

Some notes

The original work on finding suitable ways of mechanizing reasoning in TLA, on which the
design of the TLP system has been based, was done in cooperation with Peter Grønning
and Leslie Lamport. Many of the basic ideas with respect to the logical framework and the
Larch Prover encodings are due to this joint work, of which the author contributed with a
substantial part. With Peter Grønning, the author performed the initial experiments with
different encodings, writing some of the first mechanically verified TLA proofs, which lead
to the decision of using different encodings for temporal reasoning and action reasoning.
The author wrote the first versions of the translator for handling the different encodings,
and in the process designed the first version of the TLP language with separate declaration
and definition constructs. The idea of extending this language to be able to express proofs
was due to joint discussions, while the design was created by the author, inspired by the
formalized language by Leslie Lamport for writing hand proofs and ideas provided by
Peter Grønning through his experimenting with the system. The way of handling case
and contradiction proofs was thus invented by the author, as well as the basic idea of
having typed methods, applicable on the same level as subproofs, etc. The basic idea and
the design of the TLP front-end are due to the author alone, as well as many of the internal
proof techniques that was developed concurrently with it (as e.g. the automatically applied
quantification functions and pre-order verification). The implementation of the TLP
system, including the translator, the make-system, and the front-end, has been written
by the author, as most of examples of the use of TLP including the three main examples
presented in this thesis. The encoding for, and use of the LTL checker provided by David
Long, is as well due to the author.

The TLP system itself has grown to become slightly more than a first prototype
through the later years. The translator source which currently contains generators for
three different encodings, consists of just under 10,000 lines of Standard ML, lex, and
yacc code. The front-end, which relies heavily on the high-level functionality of built-in



Emacs constructs, is almost 5,000 lines of Emacs Lisp. And along with the system itself,
there is a growing number of practical examples on the use of TLP, of which are also
examples written by Peter Grønning and Stephan Merz. It is possible to obtain a version
of the TLP system running on Digital DECstations and Sun SPARCs together with the
examples by following the instructions in appendix E.

Although the thesis is meant partly to be serving as a guide and manual to the TLP
system, the description of TLP herein is not complete. There are lots of details that the
author would have liked to comment on and describe. The current state of TLP makes
this rather hard, however: it is a complicated tool which is still very much on a prototype
level; many things should improve, and much may change. Using the system does mean
that the user has to be interested in learning about problems and shortcomings partly by
himself and in putting some hard work into understanding how the tools work to solve
his problems. The description in this thesis thus mostly gives an overview, listing as
comprehensively as possible the features and ideas.

Organization of the thesis

Before turning to the formal discussion of mechanical reasoning, we have devoted chapter 2
to an introduction to the practical use of TLP, a guided tour that will take you through the
steps of writing a TLA specification and verifying a simple proof of some of its properties.

The rest of the thesis has been split into three parts. Part I describes some of the
logical issues of reasoning in TLA and discusses the problems involved in providing a
system for mechanical verification. In chapter 3 we give a brief introduction to TLA, its
syntax and semantics, with some simple examples. Chapter 4 continues with a discussion
of how TLA may be encoded for handling by a mechanical verification tool, as well as
giving a brief introduction to the Larch Prover. Chapter 5 finally describes the problems
and proposed solutions concerning the design of a human-computer interface.

Part II contains an outline of the TLP system. Chapter 6 gives a full description of
the TLP language with examples, while chapter 7 gives a more brief description of the
translator, how it works and may be used. Finally, chapter 8 presents the interactive
front-end, describing its multiple features at different levels.

Part III concludes with three detailed examples on the use of TLP. The examples have
been chosen so that they together form an extensive illustration of the different aspects of
TLP reasoning. The first describes a traditional refinement proof, based on a simple ex-
ample from Lamport’s TLA report [20], which nicely illustrates some trivial safety proofs
as well as a more complicated liveness analysis in connection with the refinement of the
separate actions. The second, concerned with the correctness of a distributed spanning-
tree algorithm, presents a more complicated, non-finite state example with quantified
formulas. This example contains a non-trivial liveness proof, which constitutes one of the
more interesting studies of the use of TLP, including the application of the TLA Lattice
rule, based on well-founded induction. The third example finally represents a more re-
alistic example of refinement in a real-world perspective, the verification of a k · 2m-bit
multiplier circuit constructed by recursive composition. TLP was here used together with
a model-checker, and assisted in finding critical bugs in the original specifications.

The three parts are followed by conclusions and pointers to future work in chapter 12.



g

Acknowledgments

The work presented in this thesis is to a very high degree due to initiatives, ideas, and
personal help from Leslie Lamport. I would like to thank him for his encouragement and
deep involvement in the work, the many good discussions we’ve had, and for our friendship
through the years. Likewise I would like to thank Peter Grønning for his participation
and contributions; many details of the TLP system should be attributed to him, where
this is not always explicitly stated in the text.

As sponsors for my work, I would like to thank Digital Equipment Corporation’s
Systems Research Center and Bob Taylor for a very nice year in Palo Alto, and Digital’s
External Research Projects for donating hardware, without which my extended work
would not have been possible.

Lots of people have been helpful and willing to discuss the problems I have had. From
the Systems Research Center I would like to thank especially Mart́ın Abadi, Jim Saxe
and Jim Horning. John Guttag and Steve Garland contributed extensively to our work
by providing the LP theorem prover, but were also very helpful whenever we met, and
were even willing to change their tool to suit our needs.

After returning to the Computer Science Department in Århus I have had profitable
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A guided tour of TLP

We begin by a simple example showing what the TLP system is all about. We will
illustrate how you may write a specification of a simple system, supposed to be correct
with respect to a single safety property, an invariant that we want to prove. We give a
proof, and have it verified within the TLP system, giving an overview of the system and
some of the most important concepts.

2.1 A simple example

The example we are going to look at is a small parallel system. We assume two processes
P0 and P1 who may perform a number of non-critical operations, but once in a while need
to perform an operation in a critical region of the system, in which each must exclude
access by the other – writing a shared memory cell, for instance. Mutual exclusion is
assured with the help of a flag critical that for each process tells whether it is in the
critical region. Each process examines the value of the other process’ flag before entering
the region. The operation of examining the flag and setting the process’ own flag is
considered atomic (implemented by some kernel procedure).

P0 :

α : ¬critical [P1 ]?→ critical [P0 ] := true

?

critical region

?

β : critical [P0 ] := false

� �

��
?

Figure 2.1: Process P0 of our simple example.

We are going to describe this system on a very general level, in which we ignore the
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non-critical operations and represent only the actions where a process enters or leaves the
critical region. Figure 2.1 contains a diagram illustrating one of the processes.

2.2 The TLA specification

In figure 2.2 on the next page we present the TLA representation of the system, as it may
be specified as a script in the TLP system.

The script begins with two directives, giving it a name and indicating that it depends
on basic definitions given in the frame-files. Then follows declarations of the variables
critical and pc.

critical is the flag described above that tells whether a process is in the critical region.
Rather than using two variables critical0 and critical1 we use a parameterized declaration
taking a process identifier; this saves us some work as the processes are identical. The
other parameterized variable, pc, represents the program counter of each process.

We then declare some values used in the example, P0 and P1 being the names of the
two processes used as parameters to the variables, and alpha and beta indicating the two
possible values of the program counters.

The operator other takes a process identity and returns the identity of the other
process. It is declared in TLP as a unary operator and defined by two LP rewrite rules.

We are then ready to make the essential definitions that let us specify the algorithm
itself. The state function v is simply a tuple containing all the variables used in the
specification.

Init is a predicate specifying the initial conditions of the two processes; for each process
p, critical(p) is false and the program counter equals alpha. (A list bulleted with /\’s
denotes the conjunction of the items.)

N is the disjunction of actions that may be performed, which are for each process either
Na or Nb. Na is the action where a process enters the critical region, indicated by the
fact that the program counter pc when the action is performed has the value alpha, and
after it has finished, the value beta (the latter value is referred to through the ’ (prime)
operator as pc(p)’). Na has as a pre-condition that critical of the other process must be
false (it won’t be performed unless this is the case), and sets critical of the process itself
to true. As we are dealing with logics and not giving an operational description of the
algorithm, we explicitly state that neither critical nor the program counter of the other
process are changed. Nb is the action where a process simply leaves the region again,
which means that the program counter changes back to alpha, and critical of the process
is set back to false.

With these definitions, the formula Pi representing the two processes may be given. It
states that the predicate Init is initially satisfied and that each step thereafter (indicated
by the [] (always) operator) is either an N step or a step in which none of the variables
v of the system are changed.

2.3 Reasoning about the system

We are interested in showing that the given system assures mutual exclusion of the two
processes inside the critical region. What we want to show is thus that Pi implies that
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Name MutualExclusion

%-Use frame

Variables
critical(p) : Bool
pc(p) : Val

Values
P0, P1
alpha, beta

Operators
other : Val -> Val

Act
Do "assert other(P0) -> P1"
Do "assert other(P1) -> P0"

End

Statefunctions
vp(p) == (critical(p), pc(p))
v == (vp(P0), vp(P1))

Predicates
Initp(p) == /\ ~critical(p)

/\ pc(p) = alpha
Init == Initp(P0) /\ Initp(P1)

Actions
Na(p) == /\ pc(p) = alpha /\ pc(p)’ = beta

/\ ~critical(other(p))
/\ critical(p)’
/\ Unchanged(critical(other(p)), pc(other(p)))

Nb(p) == /\ pc(p) = beta /\ pc(p)’ = alpha
/\ ~critical(p)’
/\ Unchanged(critical(other(p)), pc(other(p)))

Np(p) == Na(p) \/ Nb(p)
N == Np(P0) \/ Np(P1)

Temporal
Pi == Init /\ [][N]_v

Figure 2.2: The TLP specification of the system.
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at most one of the program counters at any time is equal to beta. In TLP we can define
the predicate MutExcl for mutual exclusion as

Predicates
MutExcl == ~(pc(P0) = beta /\ pc(P1) = beta)

and then show the theorem Pi => []MutExcl .
The experienced will quickly see that it is not possible to show MutExcl directly as

an invariant of the actions of Pi . To show []MutExcl we need first to show a stronger
invariant, Inv , including the statement that for each process p either critical(p) is true
or the program counter pc(p) is equal to alpha. This may thus be defined as

Predicates
Invp(p) == critical(p) \/ pc(p) = alpha

Inv == /\ Invp(P0) /\ Invp(P1)
/\ MutExcl

Now we are ready to begin the proof. A proof session in TLP is started by the user
writing a proof outline, which is just a proof in a low level of detail. The initial outline
of the proof of Pi => []MutExcl might look like

Theorem MutExcl
Pi => []MutExcl

Proof

<1>1 Pi => []Inv
Qed

Qed

The part between Proof and the last Qed is the proof of the theorem; any substep of
the proof is opened by a label <level>item and closed by the matching Qed.

Before starting the verification session we might as well fill in some more steps that
we know will be needed. To show Pi => []Inv we have to use the basic TLA induction
rule INV1:

I /\ [N]_f => I’

I /\ [][N]_f => []I

This states that if we can prove the fact that the predicate I is maintained by the action
[N]_f , then we may deduce that I is always valid, given that it is initially valid and
we always perform [N]_f steps. To show Pi => []Inv we should thus first show that
Inv is initially satisfied, i.e. by showing Init => Inv , then show that [N]_v maintains it,
Inv /\ [N]_v => Inv’, and finally apply the INV1 rule to get Inv /\ [][N]_f => []Inv .
We insert this in the proof so that step <1>1 now looks as
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<1>1 Pi => []Inv

<2>1 Assume Init Prove Inv
Qed

<2>2 Assume Inv, [N]_v Prove Inv’
Qed

<2>3 Inv /\ [][N]_v => []Inv
INV1 with pred_I <- Inv, act_N <- N, sf_f <- v
Qed

Qed

In the steps <2>1 and <2>2 we have used a new notation, writing e.g. Assume Init
Prove Inv instead of Init => Inv . The conjecture that we prove is really the same, but
by the Assume-construct we indicate that we want it proved in a natural deduction style,
by assuming that Init is true for a given state of the system and showing that Inv then
must be satisfied as well.

We would usually write the definitions of the theorem and the proof in a separate file.
Like in the case of the specification we begin by some directives

Name Invariant

%-Use def
%-Include ../../base/methods

giving all local definitions the name ‘Invariant’, declaring that they depend on definitions
in the specification file (def.tlp), and finally expressing that we may use verification
methods defined in our basic methods file.

2.4 Starting the verification session

The interactive front-end to TLP is built on top of the real-time display editor GNU
Emacs [32]. This is convenient, as Emacs also lets you do all the editing of specifications
and proofs in a standardized way, whether in the middle of a verification session or not.
You start the verification session by switching to the Emacs buffer containing the proof
and typing ‘control-C control-C a return’ (see chapter 8 for an extensive description of the
front-end commands). Emacs then splits the current frame into three windows, a large
window showing the proof, and two smaller windows displaying what is done by TLP
(labeled “*TLP Make*”) and the output of the verification back-end (“*Larch Prover*”
or “*LTL Checker*”) respectively. In the “*TLP Make*” window you will now see that the
specification file and the proof file are translated, and the output then executed through
the Larch Prover (LP). After a minute or so, execution is stopped, with “Verification
problem: step could not be verified” displayed in the Emacs echo area. The Emacs frame
will then look like in figure 2.3 on the next page.

The line containing the Qed of step <2>1 has been highlighted to indicate the point
where the problem appeared, the so-called verification point . A Qed indicates that the
current goal should have been proved by the verification back-end, which has not been
possible. The Make buffer has disappeared, instead allowing the “TLP proof correction
buffer” to take its place. This is where we will now do all our work on the proof, writing
additional steps and instructions and editing the original ones.
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Figure 2.3: The Emacs frame at the first interaction point.
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To find out what to do next we might first try to find out what the status of the proof
is. Typing ‘control-C control-C space’ opens a “*Completions*” buffer in the bottom
window, as shown in figure 2.4, containing some different command options. Typing

Figure 2.4: The command completion buffer while verifying.

‘h return’ or simply clicking the mouse on top of “display hypotheses” makes the
completions buffer disappear, returning to the LP buffer in which you will now see the
currently assumed hypotheses of the proof. There is only one hypothesis, namely Init ,
indicated by an LP rewrite rule

Rewrite rules:
Theorem_MutExcl_1_1ImpliesHyp.1: Init -> true

You may similarly have the goal displayed, which will tell you that this is just Inv , as
expected. Now, to be able to deduce Init from Inv , it is clear that we need to know what
the definitions of these are; rewriting the predicates with their definitions should make
the proof trivial. However, no definitions are used in a TLP proof until explicitly asked
for by the user. What we are going to do is therefore to tell TLP to expand Init and
Inv by their definitions in the hypotheses and the goal respectively. We use the so-called
verification method ‘Expand’ that is defined in the basic methods file that come as part of
the TLP system, and edit the proof correction buffer so that it now looks as in figure 2.5.

Then we ask TLP to execute the correction and continue verification by typing ‘control-
C control-C return’. The new code is then automatically inserted and indented at the right
point in the proof, and the translated output executed through LP. After a few seconds,
however, execution is stopped again as the step still cannot be verified. We may again have
the goal and hypotheses displayed (actually, the goal is already displayed in the LP buffer),
which will now tell us that the goal has been rewritten to Invp(P0) & Invp(P1) & MutExcl
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Figure 2.5: The first two methods inserted into the proof correction buffer.

and that the hypotheses are Initp(P0)and Initp(P1). Obviously, by using the definitions
of Init and Inv , we only got the first level of the definitions expanded.

We might continue by inserting another pair of ‘Expand’s in the correction buffer and
re-executing. But as we want the proof to be as nice looking and concise as possible,
we could also edit the previous two commands, to let them do all the work. We ask
TLP to let us edit the whole proof step instead of just inserting text at the verification
point by the ‘widen scope’ command (as usual, type ‘control-C control-C’ followed by
‘w return’). After calling this command, you will see that step <2>1 has been inserted
into the correction buffer, and that the highlighted verification region that you are now
working on has been expanded to cover the complete step in the proof buffer. You should
then edit this so that the ‘Expand’ commands will also expand Initp, Invp, and MutExcl .
The Emacs frame will then look as in figure 2.6.

2.4.1 The action step

With this correction, LP successfully verifies the step and goes on to <2>2, where it stops
again. This time we want to prove Inv’ from the hypotheses Inv and (v = v’) | N . The
second hypothesis is a disjunction, when expanded containing five disjuncts altogether.
To use it, we must split the proof into cases, representing each of the disjuncts. We begin
by widening the proof scope so that we now work on the complete step. We insert a
few lines between the label and the Qed, and position the cursor in between. There we
may now type ‘control-C control-D space’, to which Emacs will let us choose a special
syntactic construct to insert into the correction buffer, as displayed in figure 2.7. Selecting
a ‘casestep’ we get

<3>1 Case
Qed

inserted at the point of the cursor. After the Case, we add the formula Na(P0), being the
first disjunct. Repeating the process we add case steps for Nb(P0), Na(P1), Nb(P1),
and Unchanged(v). At the end of the proof we insert the built-in method call By-
Cases, which makes LP apply the right tactic for case proofs, and make sure that N and
Np are expanded by their definitions in the hypotheses.

We are a bit clever this time, and insert

Activate Inv, Invp, MutExcl
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Figure 2.6: The Emacs frame after editing step <2>1.
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Figure 2.7: The dmacro completion buffer.

in the beginning of the step, so that these definitions automatically will be used in the
proof. The only thing missing is then to let each case step make use of the definition of
its disjunct; we may either activate these definitions as well or insert expand-commands
in each step (as shown in figure 2.8 on page 20). Activating the definitions gives a more
concise proof, but also slows down verification. The general rule in TLP is to keep
definitions passive as much as possible, as this also makes it easier to understand what is
going on.

2.4.2 The temporal steps

After executing the new parts, the action step is verified, and TLP moves on to work on
the temporal parts of the proof. (You will notice that the mode-specification below the
proof buffer changes to “TLP:temp-verifying”.)

When writing the proof outline, we already stated that step <2>3 should be proved by
application of the INV1 rule (with proper instantiations), and this does indeed go through
without problems. Instead, TLP stops at the Qed of step <1>1, Pi => []Inv . It is easy
to see that this step should be deduced from steps <2>1 and <2>3, expanding Pi to get
the two hypotheses Init and [][N]_v . To make this deduction, we need to insert three
lines, so that the proof now looks as

<1>1 Pi => []Inv
...

By-Implication
Expand Pi in Hyp
UseTempFact Step1, Step3
Qed
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The effects of the three method applications are as follows:

By-Implication – like By-Cases, tells TLP to do the proof by showing that []Inv
is satisfied by a given behaviour if Pi is;

Expand Pi in Hyp – expands Pi by its definition; and

UseTempFact Step1 Step3 – a standard method that lets TLP make a deduction
based on the two mentioned steps.

With these additions, step <1>1 is proved, and the top-level step is the only one
missing. This just uses the fact of step <1>1, Pi => []Inv , to conclude the weaker result,
Pi => []MutExcl , by expanding Inv and applying the temporal rule AndBox , which states
that the ‘Box’ operator distributes over conjunctions.

TLP finally moves on to the last mode of verification, “ltl-checking”, which applies
decision procedures to automatically prove certain steps of pure propositional and linear
time temporal logic. As the proof does not contain any steps to be proved this way, TLP
quickly finishes verification and concludes with the message “Complete verification
ended” in Emacs’ echo area. The finished proof is shown in figure 2.8.
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Theorem MutExcl
Pi => []MutExcl

Proof

<1>1 Pi => []Inv

<2>1 Assume Init Prove Inv
Expand Init, Initp in Hyp
Expand Inv, Invp, MutExcl in Goal
Qed

<2>2 Assume Inv, [N]_v Prove Inv’
Activate Inv, Invp, MutExcl

<3>1 Case Na(P0)
Expand Na in Hyp
Qed

<3>2 Case Nb(P0)
Expand Nb in Hyp
Qed

<3>3 Case Na(P1)
Expand Na in Hyp
Qed

<3>4 Case Nb(P1)
Expand Nb in Hyp
Qed

<3>5 Case Unchanged(v)
Expand v, vp in Hyp
Qed

By-Cases
Expand N, Np in Hyp
Qed

<2>3 Inv /\ [][N]_v => []Inv
INV1 with pred_I <- Inv, act_N <- N, sf_f <- v
Qed

By-Implication
Expand Pi in Hyp
UseTempFact Step1, Step3
Qed

By-Implication
UseTempFact Step1
Expand Inv in Step1
Activate AndBox
Qed

Figure 2.8: The complete proof of the invariant.
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The Temporal Logic of Actions

This chapter contains a brief introduction to the Temporal Logic of Actions, the formalism
invented by Leslie Lamport which forms the basis for the work presented in this thesis.
The chapter is to a large degree based on Lamport’s TLA Report [20], in which you will
find a wider-ranging exposition of the formalism.

TLA is a logic for specifying and reasoning about concurrent systems. It consists of
ordinary predicate logic, extended with two classes of variables called rigid variables and
flexible variables, and the two operators ′ (prime) and 2. Rigid variables are parameters of
our specifications, and are also sometimes referred to as constants. Flexible variables are
the ‘program’ variables of our specifications; we often refer to these simply as variables.
The prime operator is our next state operator, used for specifying actions (transitions)
and 2 is the usual ‘always’ operator for specifying temporal properties.

3.1 The logic of actions

We assume a set Val of values, denoting data items. The semantics of TLA is based on
the concept of a state, which is an assignment of values to (flexible) variables. We write
[[F ]] to denote the semantic meaning of the syntactic object F . The meaning of a variable
x is said to be a mapping from states to values, so that for a state s, we let s[[x]] denote
the value s(x) of x in s.

A state function is an ordinary expression built from variables and values, such as
x + y − 1. The meaning [[f ]] of a state function f is again a mapping from states to
values. s[[f ]] is defined as the value of f where we for all free variables x substitute s[[x]].
[[x + y − 1]] thus denotes the mapping from a state s to the value s[[x]] + s[[y]]− 1 (for
brevity we don’t bother to differentiate between the syntactic symbols +, −, and 1, and
the semantic values they represent, and write both the same way).

A predicate is a boolean-valued state function, such as x = y + 1. The meaning [[P ]]
of a predicate P is thus a mapping from states to the values true and false. We say that
s satisfies P iff (if and only if) s[[P ]] equals true.

An action is a boolean-valued expression containing primed and unprimed variables,
such as x′ = x+ y. An action denotes a relation between states, representing a transition
from ‘old’ states to ‘new’. By s[[A]]t we denote the value of [[A]] applied to the pair of
states 〈s, t〉. This is defined to be the value of A where we substitute s[[x]] for all unprimed
appearances of the free variable x, and t[[x]] for all primed. Intuitively, x represents the
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value of x in the old state s and x′ the value of x in the new state t. We say that 〈s, t〉
satisfies A, iff s[[A]]t equals true. The transition from s to t is then called an A step. An
action A is valid , denoted |= A iff all steps are A steps, i.e. iff all pairs 〈s, t〉 of states
satisfies A.

As a predicate can be viewed as an action containing no primed variables, we may
extend the interpretation of a predicate P to be a mapping from pairs of states, s[[P ]]t
being equal to s[[P ]].

We allow that state functions be primed, and define the primed state function f ′ to
equal f in which any free variable x is replaced by its primed counterpart x′.

Unchanged f is defined as the action f = f ′, the stuttering step in which f does not
change. By [A]f we denote the actionA∨Unchanged f , the action that is either an A step
or a stuttering step (with respect to f). The dual form 〈A〉f denotes A∧¬(Unchanged f),
an A step that necessarily changes f .

Enabled A is defined for any action A to be the predicate that is true for all states s
such that there exists a state t for which 〈s, t〉 satisfies A.

3.2 The temporal logic

A temporal formula is an expression built from elementary formulas, the boolean op-
erators ∧ and ¬ and the unary operator 2 (read always). In what we call the Raw
logic, elementary formulas are just actions, while in the refined version of the logic we
are more restrictive, demanding that elementary formulas are either predicates or of the
form 2[A]f . Writing specifications in this refined logic makes them invariant under stut-
tering [20, page 39] which is helpful when showing the correctness of refinements. TLP
allows reasoning in Raw TLA.

The semantics of the temporal logic is based on behaviours, which are infinite sequences
of states. A temporal formula is interpreted as a predicate over behaviours, i.e. [[F ]] is a
mapping from behaviours to true and false. We give a structural definition of the meaning
of F for the behaviour σ, denoted σ[[F ]]. σ[[F ∧ G]] equals true iff σ[[F ]] and σ[[G]] both
equal true. σ[[¬F ]] equals true iff σ[[F ]] does not. σ[[2F ]] equals true iff for all tails σi of
σ, σi[[F ]] equals true. A tail of the behaviour σ being the infinite sequence 〈〈s0, s1, s2, . . .〉〉,
is a behaviour 〈〈si, si+1, si+2, . . .〉〉 for any i. Finally, the meaning σ[[A]] of an action A is
the value s0[[A]]s1 where s0 and s1 are the initial two states of σ.

If σ[[F ]] equals true, we say that σ satisfies F and write σ |= F . The temporal formula
F is said to be valid , written |= F iff all behaviours satisfy F .

For convenience, we extend the temporal logic with the boolean operators ∨, ⇒, and
⇔, defined as usual. The unary operator 3 (read eventually) is defined so that 3F equals
¬2¬F . F ; G (F leads to G) is furthermore defined to equal 2(F ⇒ 3G).

For reasoning about liveness, we add notations for fairness. Weak fairness of the
action 〈A〉f means that 〈A〉f steps are eventually taken as long as they remain possi-
ble, i.e. as long as 〈A〉f remains enabled. Formally, WFf (A) is defined as 23〈A〉f ∨
23¬Enabled 〈A〉f . Strong fairness of the action 〈A〉f means that 〈A〉f steps are per-
formed eventually, if the action is enabled infinitely often; formally SFf (A) is 23〈A〉f ∨
32¬Enabled 〈A〉f .

The full logic described by Lamport extends the logic described above with quantifi-
cation over both rigid and flexible variables. The logic without quantification is called



Syntax
〈formula〉 ∆= 〈predicate〉 | 2[〈action〉]〈state function〉 | ¬〈formula〉

| 〈formula〉 ∧ 〈formula〉 | ∃ 〈rigid variable〉 : 〈formula〉
| 2 〈formula〉

〈action〉 ∆= boolean-valued expression containing constants,
variables, and primed variables

〈predicate〉 ∆= boolean-valued 〈state function〉 | Enabled 〈action〉
〈state function〉 ∆= expression containing constants and variables

Semantics
s[[f ]] ∆= f(∀ ‘v ’ : s[[v]]/v) σ[[F ∧G]] ∆= σ[[F ]]∧ σ[[G]]
s[[A]]t ∆= A(∀ ‘v ’ : s[[v]]/v, t[[v]]/v′) σ[[¬F ]] ∆= ¬σ[[F ]]

σ[[∃ c : F ]] ∆= ∃c ∈ Val : σ[[F ]]
|= A ∆= ∀s, t ∈ St :|= s[[A]]t |= F

∆= ∀σ ∈ St∞ :|= σ[[F ]]

s[[Enabled A]] ∆= ∃t ∈ St : s[[A]]t
〈〈s0, s1, . . .〉〉[[2F ]] ∆= ∀n ∈ Nat : 〈〈sn, sn+1, . . .〉〉[[F ]]
〈〈s0, s1, . . .〉〉[[A]] ∆= s0[[A]]s1

Additional notation
f ′

∆= f(∀ ‘v ’ : v′/v) 3F
∆= ¬2¬F

[A]f
∆= A ∨ (f ′ = f) F ; G

∆= 2(F ⇒ 3G)
〈A〉f ∆= A ∧ (f ′ 6= f) WFf (A) ∆= 23〈A〉f ∨23¬Enabled 〈A〉f
Unchanged f

∆= f ′ = f SFf (A) ∆= 23〈A〉f ∨32¬Enabled 〈A〉f

where f is a 〈state function〉 s, s0, s1, . . . are states
c is a 〈rigid variable〉 σ is a behaviour
A is an 〈action〉 (∀ ‘v ’ : . . . /v, . . . /v′) denotes substitution
F , G are 〈formula〉s for all variables v

Figure 3.1: Simple TLA extended with quantification over rigid variables.

Simple TLA. The logic we use when reasoning in TLP does not yet contain quantification
over flexible variables, positioning it between the two.

The syntax and semantics of Simple TLA extended with quantification over rigid vari-
ables and with some of the extended notation described above is summarized in figure 3.1,
as specified by Lamport [20].

3.3 Proof rules

The TLA proof rules are listed in figure 3.2. Rules STL1–STL6, the Lattice Rule and
the basic rules TLA1 and TLA2 constitutean independent axiom system for reasoning
about the Simple Logic, which is easily shown to be sound with respect to the semantics.
Lamport furthermore claims [20, page 20] that this system is complete relative to the
ability to prove all valid action formulas (the logic of which can be translated into pure
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The Rules of Simple Temporal Logic
STL1. F provable by

propositional logic
F

STL4. F ⇒ G

2F ⇒ 2G

STL2. ` 2F ⇒ F STL5. ` 2(F ∧G) ≡ (2F ) ∧ (2G)
STL3. ` 22F ≡ 2F STL6. ` (32F ) ∧ (32G) ≡ 32(F ∧ G)

LATTICE. � well-founded partial order on nonempty set S
F ∧ (c ∈ S) ⇒ (Hc ; (G ∨ ∃d ∈ S : (c � d) ∧Hd))

F ⇒ ((∃c ∈ S : Hc) ; G)

Rules of Quantification
F 1. ` F (e/c)⇒ ∃ c : F F 2. F ⇒ G

c does not occur free in G
(∃ c : F ) ⇒ G

The Basic Rules of TLA
TLA1. ` 2P ≡ P ∧2[P ⇒ P ′]P TLA2. P ∧ [A]f ⇒ Q ∧ [B]g

2P ∧ 2[A]f ⇒ 2Q ∧2[B]g

Additional Rules
INV1. I ∧ [N ]f ⇒ I ′

I ∧2[N ]f ⇒ 2I

INV2. ` 2I ⇒ (2[N ]f ≡ 2[N ∧ I ∧ I ′]f)

WF1.
P ∧ [N ]f ⇒ (P ′ ∨Q′)
P ∧ 〈N ∧A〉f ⇒ Q′

P ⇒ Enabled 〈A〉f
2[N ]f ∧WFf(A) ⇒ (P ; Q)

WF2.
〈N ∧ B〉f ⇒ 〈M〉g
P ∧ P ′ ∧ 〈N ∧A〉f ⇒ B
P ∧ Enabled 〈M〉g ⇒ Enabled 〈A〉f
2[N ∧ ¬B]f ∧WFf (A) ∧2F ⇒ 32P

2[N ]f ∧WFf (A) ∧ 2F ⇒ WFg(M)

SF1.
P ∧ [N ]f ⇒ (P ′ ∨Q′)
P ∧ 〈N ∧A〉f ⇒ Q′

2P ∧ 2[N ]f ∧2F ⇒ 3Enabled 〈A〉f
2[N ]f ∧ SFf(A) ∧2F ⇒ (P ; Q)

SF2.
〈N ∧ B〉f ⇒ 〈M〉g
P ∧ P ′ ∧ 〈N ∧A〉f ⇒ B
P ∧ Enabled 〈M〉g ⇒ Enabled 〈A〉f
2[N ∧ ¬B]f ∧ SFf (A) ∧ 2F ⇒ 32P

2[N ]f ∧ SFf (A) ∧2F ⇒ SFg(M)

where F , G, Hc are TLA formulas P , Q, I are predicates
A, B, N , M are actions f , g are state functions

Figure 3.2: The axioms and proof rules of Simple TLA without refinement mappings and
extended with quantification over rigid variables.



p

var natural x, y = 0 ;
do 〈 true → x := x+ 1 〉

〈 true → y := y + 1 〉 od

Figure 3.3: Program 1 of the Increment Example

InitΦ
∆= (x = 0) ∧ (y = 0)

M1
∆= (x′ = x+ 1) ∧ (y′ = y) M2

∆= (y′ = y + 1) ∧ (x′ = x)
M ∆= M1 ∨M2

Φ ∆= InitΦ ∧ 2[M](x, y) ∧ WF(x, y)(M1) ∧ WF(x, y)(M2)

Figure 3.4: A TLA representation of Program 1

first order predicate logic).

3.4 An example: Increment

The main example that we will be using for describing the TLP system is the Increment
Example that Lamport uses in the TLA report, and which is also quite suitable for
illustrating the use of TLA in general. We give a brief introduction here; for a full
description see the TLA Report.

Program 1 is a simple program that when executed keeps incrementing the two only
variables x and y, initially set to 0, nondeterministicly choosing which one to increment.
The program is shown in figure 3.3 as specified in some conventional programming lan-
guage.

The formula Φ shown in figure 3.4 is a TLA representation of Program 1. InitΦ

is the predicate asserting that x and y are both set to 0, representing the initial state
of the program execution. The actions M1 and M2 represents the two possible steps of
incrementing either x or y, leaving the other variable unchanged. M, being the disjunction
of the two, is thus the action that nondeterministically increments one of the variables. Φ is
a logical formula that represents correct executions of Program 1. The formula is satisfied
by behaviours such that InitΦ is satisfied by the first state and any subsequent pair of
states either satisfies M or leaves the variables unchanged (representing no progress in
the program execution). The weak fairness part asserts that only behaviours are accepted
in which infinitely many incrementations of x and y are performed, representing the fact
that the execution never stops.1

A property of Program 1 that may be shown with this TLA representation is for
instance the invariance of the predicate T stating that x and y are both natural numbers;

1A precise representation of Program 1 should only demand that infinitely many incrementations of
either x or y are performed; we use the more strict specification as it is the one discussed in the TLA
report.
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in TLA 2((x ∈ Nat) ∧ (y ∈ Nat)). The theorem that Φ satisfies this property is just
Φ ⇒ T , and is easily proved from the lemmas InitΦ ⇒ T and T ∧ [M](x,y) ⇒ T ′ by
application of the INV1 rule, as explained in the TLA report.

Program 2 is a refinement of Program 1 introducing two processes that take care of
the incrementation of the variables. A semaphore ensures that only one of the processes
can at any point increment its variable. This is shown in a conventional language notation
in figure 3.5.

Representing Program 2 in TLA requires the addition of a semaphore variable sem as
well as two ‘program counters’ pc1 and pc2 indicating at any time where the two processes
are in their execution of the loops. As values that the program counters may take we
use “a”, “b”, and “g”, indicating that the control is at α, β, or γ, respectively. We use
strong fairness to specify an assumption that the ‘cobegin’ construct is fair in the sense
that each process will eventually execute its α action (and continue with β and γ) if it is
repeatedly (not necessarily continuously) enabled. The full TLA specification is shown in
figure 3.6.2

We are interested in showing that Program 2 is really a refinement of Program 1, i.e.
that any behaviour satisfying Program 2 would also satisfy Program 1. The theorem we
thus want to show is in TLA simply Ψ⇒ Φ. The proof is based on the three lemmas

InitΨ ⇒Init Φ

2[N ]w⇒2[M](x, y)
Ψ ⇒WF(x, y)M1 ∧WF(x, y)M2

The first lemma states that the initial condition of Ψ implies the initial condition of Φ,
and the second that each step N that Ψ may take simulates an M step or a stuttering
step of Φ. These two lemmas are rather trivial, while the last one, stating that Ψ is
satisfied only by behaviours which simulate a (weakly) fair execution of M1 and M2 is
the hard part involving both of the strong fairness rules. To show fairness we first have to
prove an invariant implying mutual exclusion between the two processes. The invariant,
IΨ, is defined as

∨ (sem = 1) ∧ (pc1 = pc2 = “a”)
∨ (sem = 0) ∧ ∨ (pc1 = “a”) ∧ (pc2 ∈ {“b”, “g”})

∨ (pc2 = “a”) ∧ (pc1 ∈ {“b”, “g”})

The proofs are described informally in the TLA Report. Later we will see how they
can be done within TLP, the mechanical verification system described in this thesis.

2We adopt the convention that a list bulleted with ∧’s denotes the conjunction of the items, and we
use indentation to eliminate parentheses – a style that Lamport advocates [21], and that has also been
adopted in the TLP language.
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var integer x, y = 0 ;
semaphore sem = 1 ;

cobegin loop α1: 〈 P (sem) 〉 ;
β1: 〈 x := x+ 1 〉 ;
γ1: 〈 V (sem) 〉 endloop

loop α2: 〈 P (sem) 〉 ;
β2: 〈 y := y + 1 〉 ;
γ2: 〈 V (sem) 〉 endloop

coend

Figure 3.5: Program 2 of the Increment Example

InitΨ
∆= ∧ (pc1 = “a”) ∧ (pc2 = “a”)
∧ (x = 0) ∧ (y = 0)
∧ sem = 1

α1
∆= ∧ (pc1 = “a”) ∧ (0 < sem)
∧ pc′1 = “b”
∧ sem ′ = sem − 1
∧ Unchanged (x, y, pc2)

α2
∆= ∧ (pc2 = “a”) ∧ (0 < sem)
∧ pc′2 = “b”
∧ sem ′ = sem − 1
∧ Unchanged (x, y, pc1)

β1
∆= ∧ pc1 = “b”
∧ pc′1 = “g”
∧ x′ = x+ 1
∧ Unchanged (x, y, pc2)

β2
∆= ∧ pc2 = “b”
∧ pc′2 = “g”
∧ y′ = y + 1
∧ Unchanged (x, y, pc1)

γ1
∆= ∧ pc1 = “g”
∧ pc′1 = “a”
∧ sem ′ = sem + 1
∧ Unchanged (x, y, pc2)

γ2
∆= ∧ pc′2 = “a”
∧ pc2 = “g”
∧ sem ′ = sem + 1
∧ Unchanged (x, y, pc1)

N1
∆= α1 ∨ β1 ∨ γ1 N2

∆= α2 ∨ β2 ∨ γ2

N ∆= N1 ∨N2

w
∆= (x, y, sem, pc1, pc2)

Ψ ∆= InitΨ ∧ 2[N ]w ∧ SFwN1 ∧ SFwN2

Figure 3.6: A TLA representation of Program 2
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Logic engineering

When we began the project of mechanical verification of TLA specifications, we had to
make a choice on which tool to use as our major proof engine. We decided to initially
try LP, the Larch Prover, developed by John Guttag and Steve Garland at MIT [13, 14].
Speaking for this were a number of reasons:

• LP contains an efficient and well supported rewriting system, with which it seemed
to be possible to get much of the reasoning done automatically. Besides the rewrite
rules, it is also possible to specify deduction rules, which makes it possible to add
the axioms and rules of TLA directly to the prover.

• LP has built-in support for the natural deduction style proofs that we have been
doing as hand proofs when working with TLA.

• Unlike in HOL [15, 16] and Isabelle [28, 29], it is in LP possible to add proof rules
together with theories freely (the rules do not have to be proved from a semantics),
making the outcome less reliable, but the process towards a useful system less painful
– we get efficiency and flexibility at the cost of security.

• LP is referred to, by its creators, as a ‘proof debugger’ rather than just a ‘proof
checker’. It is well suited for interactive work on proofs, helping in the design.
It also supports regressive testing of proofs whenever specifications are changed,
facilitating the maintaining of proofs.

• At the time when we started the project, we had direct contact to the developers of
LP at Digital Systems Research Center through Jim Saxe and Jim Horning, both
working on the Larch project, with the consequence that we could get good help,
and have impact on how the prover itself developed.

The last reason might have been the one that influenced us the most, while the others, in
retrospect, certainly were very important, in that we were able to do real reasoning about
examples such as the Spanning-Tree in just a few weeks, without first having to spend
time on things like specifying the semantics and proving the soundness of the proof rules
of TLA. We just had to find a reasonable encoding of the logic and specify the proof
rules.

On the other hand, LP misses several features that could have been helpful:
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• It does not contain a meta-language in which to specify the meaning of certain
computable functions (e.g. Enabled could be computed internally in HOL).

• It misses features corresponding to the tacticals of HOL and Isabelle, making it
possible to try different proof strategies whenever problems appear, or the heuristics
for formulating additional proof goals of the Boyer-Moore prover [5, 6]. Features
such as these can make proof scripts more general, automating some of the reasoning.

• Its support of quantification and set theory is minimal.

• It does not contain libraries with support for reasoning about data types, which is
the case for HOL and Isabelle.

• It does not guarantee soundness, as mentioned above. The cost of being able to add
rules freely has to be paid by rigorous, manual reasoning about the encodings and
specifications of proof rules, to ensure soundness and consistency.

As the aim of the project from the beginning was the pragmatic one to investigate the
feasibility of doing mechanical reasoning about TLA specifications, rather than to build a
provably consistent system, we attached more importance to the efficiency of LP and its
support of interactive reasoning and regression testing, than the guaranteed consistency
of HOL. As we started thinking about the implementation of a translator and a front-
end, creating the TLP system, the meta-language and tactical issues seemed to be less
important. And again in retrospect we see that it will be possible to add back-ends to the
TLP system that supply better handling of the reasoning about data types. In any case,
although we started out using the Larch Prover, we at no point felt that this prevented
switching to some other proof engine later in the project.

4.1 The Larch Prover

The following is a brief introduction to the Larch Prover, LP, based in part on the LP
guide [14].

LP is a theorem prover for a subset of multisorted first-order logic. A term of the logic
is either a variable or an operator applied to a sequence of terms known as arguments.
Variables are assigned a sort and operators a signature which consist of a domain (a list
of sorts) and a range (a single sort), syntactically connected by the symbol →.

There is one built-in sort Bool representing the set of booleans. Built-in operators
include the boolean constants true and false, the boolean operators not, &, |, ⇒, ⇔ (for
negation, conjunction, disjunction, implication and equivalence), the overloaded equality
operator =, and the overloaded conditional if . If i and j are variables of sort Val , 1 is
an operator with signature → Val , and × is an operator with signature Val ,Val → Val ,
then e.g. i× 1 and true ⇒ i× j = j × i are terms of sort Val and Bool respectively.

The basis for proofs is a logical system of declared operators, equations, rewrite rules,
induction rules, and deduction rules. Equations are pairs of terms connected by either
of the logical symbols == or →, the latter indicating a suggested orientation when the
equation is ordered into a rewrite rule. Rewrite rules are ordered equations, sets of which
constitute rewriting systems . Induction rules are rules connected to operator theories,
which are not described here; see the LP guide for an explanation. Deduction rules,



finally, consist of two lists of equations, the hypotheses and the conclusions , syntactically
expressed as when h1, . . . , hm yield c1, . . . , cn.

Proofs rely on built-in tactics introducing different mechanisms for forward and back-
ward inference. The forward inference methods are:

Normalization: LP uses rewrite rules to manually or automatically rewrite equations,
rewrite rules and deduction rules of its logical system to normal forms. Informally,
a rewriting using the rule l→ r can take place whenever l matches (by unification)
any subterm of an equation or rule, with any variables substituted by new terms,
rewriting the subterm to r with the same substitutions.

Application of deduction rules: Likewise, LP uses deduction rules to manually or au-
tomatically deduce new equations from the equations and rewrite rules of its logical
system. An application of the deduction rule when h1, . . . , hm yield c1, . . . , cn can
be performed whenever h1 to hm with the same variable substitutions matches equa-
tions or rewrite rules of the current logical system, creating the new equations c1 to
cn with the used substitutions.

Instantiation: Explicit instantiation of variables in equations, rewrite rules, and deduc-
tion rules creates new instances of equations and rules that may be normalized or
applied to other equations and rules.

Critical-pair equations and completion: LP can compute critical-pair equations of
groups of rewrite rules. See the LP guide [14] for an explanation of this featue.

Among the backward inference methods are:

Proofs by normalization: LP also uses rewrite rules to rewrite conjectures. Whenever
a conjecture is normalized to true (or more precise, to an identity), the proof has
succeeded and the original conjecture is said to be a theorem.

Proofs by cases: When instructed to do a proof by a list of different cases, LP divides
the proof into a number of subgoals corresponding to the cases and the fact that
these are extensive. As we note when implementing the similar inference method in
TLP, this is really the backward inference resemblance of the disjunction elimination
rule of natural deduction (see e.g. Prawitz [30]).

Proofs by contradiction: When instructed to do a proof by contradiction, LP attempts
to prove an inconsistency (i.e. to prove false) from assuming the negation of the
conjecture. This again resembles the forward inference that could be done with a
rule of natural deduction, the false rule.

Proofs by implication: In a proof by implication LP attempts to prove a conjecture
of the form A ⇒ B by assuming A and proving B. This resembles the implication
introduction rule of natural deduction.

Other backward inferences work on conditionals and conjunctions, and deduction and
induction rules.

The mechanism of performing forward inferences automatically is based on two prop-
erties that are connected individually to each rule and equation of the logical system,
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called activity and immunity respectively. When a rule is active, it will automatically
rewrite or be applied to any equation or rule that it matches, and which is not immune.
LP thus maintains an invariant, that all currently active rules have been applied as far as
possible to all currently nonimmune equations or rules. Manual use of forward inferences
is indifferent to these properties, and is done whenever requested by using the standard
tactics normalize, apply , etc.

Automatic application of backward inference methods is possible through a user-
definable parameter that always specifies a list of methods to use whenever applicable.
It is common to let normalization be applied automatically while the other backward
inference methods are applied only manually.

A major feature of LP is its ability to automatically order equations into rewrite
rules, based on different algorithms and registering hints on the declared operators. The
commonly used methods for having equations ordered ensure that no infinite rewriting
sequences can occur (but, by consequence, are not always able to order all equations of
the logical system).

Reasoning in LP can be done either in an interactive session or by executing a script .
Sorts, variables and operators are declared by the declare command. Axioms and proof
rules are specified by equations and rules, using assert. A proof is initiated by the prove
command followed by an equation (or rule) to be proved, the conjecture of the proof.
LP always maintains the invariant mentioned above, namely that all active facts have
been applied to all nonimmune, and if so instructed, tries to order all existing equations
into rewrite rules. When starting a proof, the currently specified backward inference
methods are tried on the conjecture. When this has been done, if the conjecture has not
been proved, LP waits for instructions on which backward and forward methods to use
for resuming the proof. At any point, it is possible to get the elements of the current
logical system and the status of the proof displayed in different ways, using the display
command.

When using proof scripts, it is possible to insert into the script special symbols that
indicate what is supposed to happen after certain instructions. Whenever LP meets a
line beginning with the symbol [ ] it expects the current top-most conjecture (there may
be several levels) to be proved. If this is not so, LP will stop running the script and
complain. Likewise, the symbol 〈 〉 on the beginning of a line instructs LP to expect one
or more subgoals to have been created by some backward inference method. Extensive
use of these symbols facilitates maintaining of proofs whenever specifications of the logical
system change, as it is possible to detect where the problems arise. This is a feature that
is central for the TLP system, as we will later show.

A feature that as well will be used extensively in the TLP system is the ability to save
images of any logical system (and any unfinished proofs), called freezing. When reasoning
depends on an earlier frozen system, this system can be thawed and reasoning resumed
as from the point where the earlier system was frozen.

4.2 Formalizing TLA for a theorem prover

It is not a trivial to task to find a proper encoding of the TLA logic for use in a theorem
prover, and there probably isn’t any such thing as the right formalism. In this section
we will first present some different formalizations as done by others, before turning to a
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description and discussion of the one we have chosen to use.

4.2.1 The technique of von Wright and L̊angbacka

Joakim von Wright and Thomas L̊angbacka (W&L) in 1991 and 1992 described a formal-
ization of TLA for reasoning with the HOL theorem prover [34, 35]. Their implementation
differ from the general idea in TLA in that variables have types, this being dictated to
some extent by the HOL system. Otherwise it is a very straightforward implementation
of the semantics as specified by Lamport. States are represented as tuples of values, each
representing a variable of the specification that we want to reason about, with a last
element representing “the rest of the universe”. Predicates and actions are formalized
as lambda expressions taking one and two states respectively and returning a boolean.
To be able to specify proof rules containing predicates and actions, W&L define boolean
connectives for each sort, pand , pnot , aand , anot , and so forth, which are lifted to the
ordinary boolean operators of HOL (e.g. p pand q is lifted to λs. p s ∧ q s where s rep-
resents a state). Likewise, they define validity functions pvalid and avalid , e.g. pvalid p
being defined as ∀s. p s.

To reason about temporal logic, a behaviour is represented as a function from the
natural numbers to states. Temporal formulas can then be represented as lambda expres-
sions taking a behaviour and returning a boolean. The box operator is defined so that
box f t equals ∀i. f(λn. t(i + n)). As for predicates and actions, W&L define boolean
connectives tand and tnot and a validity function tvalid . It is essential to be able to lift,
or coerce, predicates and actions into temporal formulas, for which four functions, liftpa,
liftpa′, liftpt , and liftat are defined. E.g. liftpt p t is defined as p (t 0). liftpa′ actually
implements the prime operator for predicates, as it lifts a predicate into its primed version
as an action.

With this formalism, Program 1 of the Increment Example may be specified in HOL
as

`def InitPhi = λ (x, y, z). (x = 0) ∧ (y = 0)
`def M1 = λ (x, y, z) (x′, y′, z′). (x′ = x+ 1) ∧ (y′ = y)
`def M2 = λ (x, y, z) (x′, y′, z′). (y′ = y + 1) ∧ (x′ = x)
`def M = (M1 aor M2)
`def v = λ (x, y, z). (x, y)
`def Phi = (liftpt InitPhi) tand

(box (liftat (square M v))) tand
(WF M1 v) tand (WF M2 v)

and the INV1 rule as

` avalid (((liftpa I) aand (square N f)) aimp (liftpa ′ I))⇒
tvalid (((liftpt I) tand (box (square N f))) timp (box (liftpt I)))

The TLA rules all have to be proved from the semantics (or from already proved
rules), to be used in HOL. The security achieved by this is one of the features that are
emphasized by the HOL creators. Once the rules are proved, one can use them to reason
about algorithms, e.g. showing that Program 2 of the Increment Example implements
Program 1. W&L had done part of this proof when presenting their paper.

W&L admit that their way of representing rules may look ugly with its use of different
connectives and lifting functions (remember that the WF2 rule, for instance, is consider-
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ably more complicated than the INV1 rule shown above). They also state, however, that
this may be seen as an advantage, in that no confusion arises when the same term is used
both as a predicate and as a temporal formula. We will see later a quite different way to
deal with these problems in the TLP system.

It is worth noting that W&L in one of their conclusions state that “[the] formalisation
does not permit meta-level reasoning about the TLA logic. It is possible to formalise TLA
in HOL in a way which would permit such reasoning, but such a formalisation would be
much more difficult to use in practice.” [35].

4.2.2 The technique of Chou

Ching-Tsun Chou has in two papers in 1993 [7, 8] presented a similar formalization of TLA
in HOL. Chou represents states and behaviours in the same way as W&L, uses lifting to go
from connectives of predicates, actions, and temporal properties to the logic of HOL, and
uses projections from state pairs to states, and from behaviours to state pairs or states,
combined with an inverse image operator , to implement coercions, so that predicates,
for instance, may be interpreted as temporal formulas. A difference is that W&L use
curried lambda expressions for representing actions, which Chou does not. This may not
seem very important, but making actions uncurried gives the formalism a homogeneity,
in that predicates, actions, and temporal properties all can be represented by the same
general predicate type ∗ → bool (where ∗ is a type variable). This, in turn, gives a uniform
treatment of the logical connectives at the different levels, and Chou consequently only
has to declare one set of connectives with corresponding lifting functions.

Chou also himself accentuates [8] that W&L use a Hilbert style calculus (similar to
the one used by Lamport in the TLA Report) to express the validity of single predicates,
i.e. expressing the validity of a predicate as

|= P = ∀s. P (s)

while Chou himself uses a sequent formulation, expressing validity with respect to as-
sumptions, i.e.

[P1, P2, . . . , Pn] |= Q = ∀s. P1(s) ∧ P2(s) ∧ . . . ∧ Pn(s)⇒ Q(s)

According to Chou, the latter formalization permits a more straightforward lifting to the
HOL tactics, thus saving unnecessary work.

4.2.3 The initial technique of Lamport

The first attempt that Leslie Lamport made in 1990 on mechanizing the reasoning in TLA
using the Larch Prover is somewhat different from the formalisms of W&L and of Chou.
Lamport, in accordance with his views in TLA, makes variables type-free, declaring them
all to be of the general sort Any . Rigid variables are represented by LP variables, while
flexible variables are represented by LP operators. Believing the sort system of LP to
be insufficient for his purposes, Lamport in fact uses the single sort Any for everything
not being a boolean or a function producing a boolean, and instead implements his own
functions for checking whether an expression is a constant, predicate, an action, and so
forth. This is only possible in LP as it is possible to declare new constants and variables
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and assert that they are constants and variables. Something similar may well have been
achieved by using separate sorts for the different expressions, but the use of only one
general sort has advantages, e.g. by permitting the use of only a single set of connectives
(∧, ==, ¬, etc.) for constants, predicates, actions, and temporal properties. In Lamport’s
formalization, these are lifted into LP’s boolean operators only when used on constants, i.e.
after the expressions have been applied to a state (state pair or behaviour, respectively).
Lamport also does not make any concrete representation of states, but simply lets these
be unspecified variables of sort Any .

Application of a predicate to a state is done by the application operator ‘.’ of sort
Any ,Any → Any , so that the semantic value s[[P ]] of the predicate P in state s is written
as

P . s

Application is defined to distribute over the the connectives, by rewrite rules:

(u ∧ v) . s → (u . s) ∧ (v . s)
(u == v) . s → (u . s) == (v . s)
¬(u) . s → ¬(u . s)

Lamport, like W&L, uses currying for representing the semantic value of an action, so
that s[[A]]t is represented as

A . s . t

(‘.’ associates to the left). He furthermore extends this scheme to include temporal prop-
erties, in that a behaviour is represented by its first two states and ‘the rest’, so that σ[[F ]]
can be represented as

F . s . t . r

where s is the first state of σ, t the second, and r the behaviour containing the rest.
We now define two functions of sort Any → Bool , IsConstant and IsBool , that tell

whether a given expression is a general or boolean constant respectively. IsConstant and
IsBool are defined structurally in a straightforward way, by rules such as

TypeCheck.6:

IsBool(u == v) → IsConstant(u) & IsConstant (v)

‘&’ being LP’s logical and . The bottoms of the definitions are constants and variables
declared and asserted to be so by the user writing a specification (i.e. by asserting the fact
IsConstant(a) for a constant a and IsConstant(x . s) for a variable x), and the non-lifted
boolean constant vtrue.

From IsBool we can compute functions IsPredicate, IsAction, and IsTemporal of sort
Any → Bool , that tell us if an expression is of the respective sort. As LP does not support
general quantification1, we provide deduction rules for reasoning about these functions,
rather than give definitions. For IsPredicate we thus have the rule

1The forthcoming version of LP will probably contain quantification, but the versions we have been
using do not.
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ProveTLADecls.1:

when (forall s) IsBool(u . s)
yield IsPredicate(u)

and the reverse

UseTLADecls.1:
when IsPredicate(u)
yield IsBool(u . s)

(in the latter case, s is a free variable, while in the former it is explicitly bound by the
universal quantifier that is allowed in LP for use in deduction rules only).

Lifting is implemented by the function MakeBool that of course again is of sort Any →
Bool . MakeBool is defined by rules such as

MakeBool.6:

MakeBool(u ∧ v) → MakeBool(u) & MakeBool(v)

where it is worth noting that there appear no states or behaviours. As stated above, the
lifting function works on all levels, as u and v can be instantiated with e.g. P . s as well
as F . s . t . r.

This finally lets us express the functions representing validity for the different sorts.
These are called PValid , AValid , and TValid , and are all expressed by deduction rules,
so for example the TValid function by the two rules

ProveValid.3:

when (forall s, t, r) IsTemporal(u) & MakeBool(u . s . t . r)
yield TValid (u)

and

UseValid.3:

when TValid (u)
yield IsTemporal(u) & MakeBool(u . s . t . r)

A strong feature of Lamport’s formalization is that no coercions are needed. Any
constant boolean expression may be used as a predicate, any predicate as an action, and
so forth, as we may just disregard the application to a state whenever we have reached a
constant expression, using the rule

ApplyDecls:
when IsConstant(u)
yield (u . s)→ u



What may not seem so nice is that the representation of behaviours does not permit
the semantics of the box operator to be specified. Instead, Lamport has to assert the rules
of simple temporal logic and of TLA, so that we can reason about temporal properties.
As these rules, according to Lamport, constitute a relatively complete proof system, the
strength and flexibility of the formalization should be the same. The security of the
two HOL implementations, where all rules have to be proved from the semantics, is not
achieved, but if we don’t allow asserting any new rules other than the basic ones of our
formalization, then this security hole can be considered a static assumption, that we only
have to deal with once.

Program 1 of the Increment Example may be specified in Lamport’s formalism as

assert IsConstant(x . s)
assert IsConstant(y . s)
assert InitPhi == (x == 0) ∧ (y == 0)
assert M1 == (Prime(x) == x+ 1) ∧ (Prime(y) == y)
assert M2 == (Prime(y) == y + 1) ∧ (Prime(x) == x)
assert M == M1 ∨M2
assert v == (x ∗ y)
assert Phi == InitPhi ∧ BoxAct(M, v) ∧WF (v,M1) ∧WF (v,M2)

and the INV1 rule as

assert
when AValid ((I ∧ (N ∨Unchanged (f))) =⇒ Prime(I))
yield TValid((I ∧ BoxAct(N , f)) =⇒ Box (I))

4.3 Our formalization

This section describes the basic techniques for encoding TLA in LP, that were developed
in cooperation with Peter Grønning and Leslie Lamport during 1991. In our joint work,
Grønning and the author experimented with different methods of encoding TLA, so that
the managing of large proofs would become feasible. The results of our first attempts
were discomforting, in that it took us several weeks to finish some logically simple proofs
of refinement of a very small example. The work in getting rules applied in the right
way and lifting statements about actions into temporal formulas seemed to take much
more time than the real work of writing the proof. During discussions with Lamport,
the idea came up to use different encodings for different kinds of reasoning, and creating
some sort of front-end for doing the tedious work that didn’t really seem to be part of the
theorem proving. Constituting one of the main differences from the initial technique of
Lamport and the HOL encodings described earlier, this was an idea that Grønning and the
author found appealing. In the following experiments we found that the special-purpose
encodings made our proofs much simpler. The first prototype translator that the author
wrote for combining the reasoning of the different environments, and so that we wouldn’t
have to manually write different encodings of the same specification, made the reasoning
process itself more manageable, while adding the flexibility of a high-level language.
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4.3.1 Basic techniques

The encoding of TLA for the Larch Prover that we used initially was based on the de-
scribed technique of Lamport. This has advantages of reflecting TLA correctly, and being
homogeneous and easy to use; you don’t have to deal with different levels of connectives
and lifting functions when reasoning. Still, experiments showed that much time in proofs
were spent on things that were not really related to the theorems themselves.

As an example, a very simple proof in LP based on our initial encoding is shown in
figure 4.1. We prove validity of the theorem Init0 =⇒ T0 . The predicates Init0 and T0

set name Theorem tc 1

prove PValid (Init0 =⇒ T0 )
prove IsPredicate(Init0 =⇒ T0 )

instantiate
u by Init0 =⇒ T0
in ProveTLADecls.1
..

prove IsBool((Init0 =⇒ T0 ) . s)
make inactive ProveTLADecls
make active TypeCheck UseTLADecls
[ ] conjecture

[ ] conjecture
prove MakeBool((Init0 =⇒ T0 ) . s)

make active MakeBool Apply ApplyDecls
make active Init0 T0
resume by ⇒
〈〉 1 subgoal for proof of ⇒

[ ] ⇒ subgoal
[ ] conjecture

instantiate
u by Init0 =⇒ T0
in ProveValid .1
..

[ ] conjecture

Figure 4.1: A simple proof in our initial encoding.

are defined elsewhere; Init0 is just pc == a and T0 the disjunction pc == a ∨ pc == b.
The real reasoning appears in the lines

make active Init0 T0
resume by ⇒

where we, basically, ask that the goal be rewritten using the definitions of Init0 and T0 ,
and proved by implication introduction (see section 4.3.2.) The rest of the proof is used
to show that the goal is a predicate by applying it to a state and showing the result to
be a boolean, and making sure that the right lifting and validity functions get applied.



Not only is the proof longer than what one would think necessary, considering the logical
implications of showing Init0 ⇒ T0 , it also involves a considerable amount of work to be
done inside LP, that takes up a lot of time during verification.

Furthermore, the example illustrates that the parts of the proofs dealing with other
things than the real reasoning are severely distracting; it is very difficult to get an idea of
what is being proved, and how the proof works. This problem gets worse as the complexity
of proofs gets bigger.

Part of the solution to this problem is based on the observation that not all reasoning
has to be done inside LP. It is a trivial task to analyze a TLA expression syntactically,
determining whether it is e.g. a well-formed predicate. If we can thus do the sort-checking
part elsewhere, determining IsPredicate(Init0 =⇒ T0 ), we might just assert its validity
in LP, whereby we would only have to show the more essential part, MakeBool((Init0 =⇒
T0 ) . s), that has to do with the validity of the theorem.2

The proof may be made simpler yet, however. When reasoning about the validity
of a predicate or action, we always go through the same steps: assuming a universally
quantified state or state pair to which we apply the formula, lifting the boolean operators,
and finally instantiating the ProveValid rule. These steps may all be removed from the
LP session.

Our improvement is based on the fact that there are two different kinds of reason-
ing involved in a TLA proof. Action reasoning is reasoning not involving any temporal
operators, such as the reasoning done in any invariance proof, showing that the initial
conditions satisfy the invariant and that the possible actions maintain it. Temporal rea-
soning may involve temporal operators, exemplified by the application of the invariance
rule and the following reasoning to conclude that the specification implies that the in-
variant is always true. When doing a fairness proof, using the WF2 rule, the first three
steps obviously contain solely action reasoning, while the fourth, its goal being a temporal
formula, and the conclusion are the only steps involving temporal reasoning. Generally,
it is clearly the case that action reasoning constitutes the longest and most difficult parts
of a proof. It therefore makes sense to give this some special attention, possibly using a
separate encoding. In designing the TLP system, we found the resulting simplification of
action reasoning to be worth the inconvenience of having two different encodings.

The idea is to represent actions and predicates in the action reasoning encoding in a
context where they are already applied to a (free) state pair, say (s, t). But instead of
writing x . s and x . t for the variable x and the primed x′, we might as well just use x
and x′ as constant names referring to the values x . s and x . t. Thus we get rid of the
state notation altogether. We don’t need to lift the boolean operators, as we are already
dealing with boolean values, and can thus use LP’s boolean operators directly. The prime
operator may no longer be represented as an operator in LP, as its meaning in the new
encoding is purely syntactical. Instead, we have to compute the value of each primed
predicate or state function in our encoding, so that each predicate or state function will
be represented with two definitions, one for the unprimed version and one for the primed.

With an encoding like this, the proof of Init0 ⇒ T0 is getting closer to what we are
used to in manual reasoning, as shown in figure 4.2. Note that the ⇒ symbol in this

2This is possible in LP as we can freely assert any facts we need, making it easy to combine LP with
other tools. In HOL or Isabelle something similar should also be possible, writing a sort-checking function
in the metalanguage as part of the semantic definition.



g g g

proof represents ordinary LP implication (in ASCII written =>), while =⇒ in figure 4.1
represents the unlifted implication operator of TLA (in ASCII ==>).

set name Theorem tc 1

prove Init0 ⇒ T0
make active Init0 T0
resume by ⇒
〈〉 1 subgoal for proof of ⇒

[ ] ⇒ subgoal
[ ] conjecture

Figure 4.2: The same proof in an action reasoning encoding.

Clearly, the described encoding doesn’t allow temporal reasoning. For temporal rea-
soning we still need an encoding in which behaviours have a representation, and the prime
is a semantic operator. As we don’t have to do any pure action reasoning inside the tem-
poral environment, however, we no longer need to represent single states, and only have
to deal with a single validity function, namely that of temporal formulas.

The problem of having two different encodings is solved by using a preprocessing
tool, a translator that from a specification written in a general language generates en-
codings for both environments. The translator also may perform the tasks described
above: sort-checking the specifications and proofs, and for the action reasoning environ-
ment computing the primed versions of predicates and state functions. Finally, being able
to sort-check formulas, it is also able to split up proofs in parts to be verified in the action
environment and parts to be verified in the temporal environment. That means that we
may provide proofs that contain steps that should be proved by action reasoning, and
steps to be proved by temporal reasoning; the translator will then produce proof scripts
for the action parts in the action reasoning encoding, while asserting the validity of the
goals of these steps together with proof scripts for the temporal steps, all in the temporal
reasoning encoding.

With the translator we are also able to write the specifications and proofs in a language
using a higher level of abstraction, hiding the technicalities of LP and concentrating on the
logic. The language that we use for this is described in chapter 5. The following sections
contain a more extensive description of the encodings and the basis for our reasoning.

4.3.2 Action reasoning

The encoding for action reasoning is straightforward. We represent rigid variables by LP
variables and flexible variables by constants (LP operators), using two distinct constants
for representing the unprimed and primed version of each variable. Variables can be of
the general type Val or of the built-in boolean type Bool . States are not represented, but
flexible variables represent their value in a universally quantified state. Unprimed and
primed versions of state functions and predicates are computed and encoded separately.
The boolean connectives are represented directly by the ones of LP. Tuples are represented
as ordered pairs, using the pairing operator ∗.



The non-temporal definitions of Program 1 of the Increment Example may be specified
and encoded for action reasoning in LP as

assert InitPhi == (x = 0) & (y = 0)
assert InitPhi ′ == (x′ = 0) & (y′ = 0)
assert M1 == (x′ = x+ 1) & (y′ = y)
assert M2 == (y′ = y + 1) & (x′ = x)
assert M == M1 | M2
assert v == (x ∗ y)
assert v′ == (x′ ∗ y′)

where =, &, and | are the ordinary LP operators for equality, conjunction and disjunction.
The expression stating that a formula is valid is represented by the formula itself.

Proving validity of a formula is thus just proving the formula as a conjecture in LP, us-
ing the built-in natural deduction techniques described in section 4.1. This corresponds
directly to performing a natural deduction proof using the traditional Gentzen-style in-
ference rules shown in figure 4.3. LP, however, performs all the inferences based on the
rules ∧I , ∧E, ∨I , and ⇒E by (automatic) normalization using built-in rewrite rules,
while ∨E, ⇒I , and False are implemented by the backward inference methods ‘proof by
cases’, ‘proof by implication’, and ‘proof by contradiction’ respectively. The normaliza-
tion technique serves to simplify proofs a lot. In the simple proof shown in figure 4.2 on
page 42, we thus just have to explicitly apply the implication introduction rule (⇒I), by
saying ‘resume by⇒’, while the application of the disjunction introduction rule (∨I) to
show pc = a | pc = b from pc = a is implicit.

Much of the work we do in the action reasoning environment tends to be reasoning
about datatypes. Part of this is trivial exercises such as proving that x′ is not equal to x
when x is a natural number and x′ equals x + 1. Within the action reasoning encoding
this is just applying rules such as

x ∈ Nat
x 6= x+ 1

to the assumptions (here x ∈ Nat and x′ = x + 1). Indeed, it would be possible to use
general libraries (not specific to TLA nor our encodings) describing different datatypes as
the basis of this kind of reasoning in TLP.

4.3.3 Temporal reasoning

Also in the temporal encoding we represent rigid variables by LP variables and flexible
variables by LP constants. Variables always have the type Any . The boolean connectives
and the equality operator of TLA are represented by operators (∧, ==, ¬, etc.) of sort
Any ,Any → Any or Any → Any . The prime and box operators are just operators of
sort Any → Any . We don’t represent single states, as we are only interested in temporal
aspects; we may thus regard all formulas as temporal, using an implicit coercion on
predicates and actions. We use the sort Behaviour to represent behaviours and by σ |= F
denote the fact that the formula F is satisfied by the behaviour σ. Program 1 of the
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∧I :
A B

A ∧ B

∧E :
A ∧B
A

A ∧B
B

∨I :
A

A ∨B
A

A ∨B

∨E :
A ∨B

(A)
C

(B)
C

C

⇒I :

(A)
B

A⇒ B

⇒E :
A A⇒ B

B

False :

(¬A)
false
A

Figure 4.3: Inference rules of Gentzen-style natural deduction (without quantification).

Increment Example is encoded for temporal reasoning as

assert InitPhi == (x == 0) ∧ (y == 0)
assert M1 == (Prime(x) == x+ 1) ∧ (Prime(y) == y)
assert M2 == (Prime(y) == y + 1) ∧ (Prime(x) == x)
assert M == M1 ∨M2
assert v == (x ∗ y)
assert Phi == InitPhi ∧ Box (BAct(M, v)) ∧WF (v,M1) ∧WF (v,M2)

and the INV1 rule as

assert
when (forall σ) σ |= ((I ∧ BAct (N , f)) =⇒ Prime(I))
yield σ |= ((I ∧ Box (BAct(N , f))) =⇒ Box (I))

where we may use rewrite rules for rewriting BAct (N , f) to N ∨ Unchanged (f) and
Unchanged (f) to f == Prime(f).

The validity of formula F may now be represented by ∀σ. σ |= F , or in LP as just σ |=
F , universal quantification over the free variable σ being implicit. We don’t specify any



semantics of operators such as Prime and Box , but assert proof rules for reasoning about
them. When reasoning about temporal properties, we seldom have to use much ordinary
predicate logic or to apply the definitions of BAct and Unchanged , as all reasoning about
actions can be done in the action encoding. Only when we want to combine different
temporal lemmas do we need to lift the operators such as ∧ and ==, for which we use
rules such as

σ |= F ∧ G → (σ |= F ) & (σ |= G)

These normalization rules are in fact always ‘active’, so that expressions appear in their
lifted form whenever we need to reason about them.

Applying a TLA rule is usually done by instantiating the variables of the premises
so that they match the lemmas that the rule should be applied to. The premises of the
instantiated rule are then automatically reduced to identities, producing the instantiated
consequence as a new equation.

4.3.4 Quantification, functions, and sets

To make our encoding powerful enough for reasoning about more interesting examples,
we need a representation of quantification over rigid variables. Quantification over flexible
variables has not been considered in our work so far.

The versions of LP that we have been working with (releases 2.2–2.4) do not support
quantification. That means that we cannot translate quantification over rigid variables
directly, as would otherwise be possible in the action reasoning environment. Fortunately
it is trivial, although less practical, to encode quantification separately and allow reasoning
by inference rules.

We have chosen to represent quantified formulas in a variable-free fashion by intro-
ducing the two operators ∀ and ∃ (in LP written as for all and exists), that take a
boolean-valued function as an argument. We thus encode the existentially quantified
TLA formula

∃ c : x = c ∧ x′ = c + 1

as just
∃(f)

with the added definition

assert f(c) == x = c & x′ = c + 1

For flexibility, we add an encoding for bounded quantification, so that for instance the
formula

∀ c ∈ S : c ≤ x

may be encoded as
∀(S, g)

with the definition
assert g(c) == c ≤ x

Reasoning about quantified formulas is based on the traditional Gentzen-style intro-
duction and elimination rules, with one set of rules for each of the four quantification
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∀I :
f(x)
∀(f)

x ∈ S ⇒ f(x)
∀(S, f)

∀E :
∀(f)
f(x)

∀(S, f) x ∈ S
f(x )

∃I :
f(x)
∃(f)

f(x) x ∈ S
∃(S, f)

∃E :
∃(f) f(x)⇒ B

B

∃(S, f) (x ∈ S ∧ f(x))⇒ B

B

In the rules ∀I and ∃E, x should be a free variable that can not appear
in B, f , or in any assumption on which f(x) depends (in LP indicated
by writing (forall x)), while in ∀E and ∃I , x is a variable that may be
instantiated by any value.

Figure 4.4: Inference rules for reasoning about quantification.

types, unbounded and bounded existential, and unbounded and bounded universal quan-
tification. The rules that we need for reasoning in the action reasoning encoding are shown
in figure 4.4. As none of these rules are built-in as inference methods in LP, we have to
add them as ordinary deduction rules, which are applied (or instantiated) manually at
each step. As an example of a proof using these rules (as well as some of the other natural
deduction rules), we take the one given by Prawitz [30], showing

((∀x : ∃y : P (x, y)) ∧ (∀x : ∀y : P (x, y)⇒ P (y, x)))⇒ (∀x : ∃y : P (x, y) ∧ P (y, x))

Figure 4.5 illustrates the deduction that is done in this proof. The LP encoding of the proof
follows the structure almost exactly by applying a rule to one or two sub-conjectures for
each horizontal line in the diagram, the exceptions being the implication and conjunction
eliminations which are handled by automatic normalization, and the two implication
introductions which are done using the ‘proof by implication’ method. In figure 6.7 on
page 77 we show how the proof may be written in the higher-level TLP language.

The rules that we need for the temporal reasoning encoding are similar, although
referring to the validity with respect to a behaviour, so that e.g. the introduction rule for
unbounded universal quantification becomes

σ |= f(x)
σ |= ∀(f)

Fortunately, experience tells us that it is seldom (if at all) necessary to perform reasoning
about quantified expressions in the temporal encoding.

We represent functions (i.e. array values) by lambda expressions, and chose the same
variable-free encoding as used for quantified expressions. This means that the function

f(c) = c + 1



(∀(p11))
∃(p12(a))

∀E

(P (a, b))
(P (a, b))

(∀(p21))
∀(p22(a))

∀E

P (a, b)⇒ P (b, a)
∀E

P (b, a)
⇒E

P (a, b) & P (a, b)
∧ E

∃(p32(a))
∃I

P (a, b)⇒ ∃(p32(a))
⇒I

∃(p32(a))
∃E

∀(p31)
∀I

(∀(p11) ∧ ∀(p21))⇒ ∀(p31)
⇒I

Definitions:
p11(x) == ∃(p12(x))
p12(x)(y) == P (x, y)
p21(x) == ∀(p22(x))
p22(x)(y) == P (x, y)⇒ P (y, x)
p31(x) == ∃(p32(x))
p32(x, y) == P (x, y) & P (y, x)

Figure 4.5: Proving ∀x : ∃y : P (x, y) ∧ P (y, x) from the assumptions ∀x : ∃y : P (x, y) and
∀x : ∀y : P (x, y) ⇒ P (y, x) by natural deduction in the action encoding (example from
Prawitz: Natural deduction [30])

with domain Nat is represented by

λ c ∈ Nat : c + 1

and encoded in the action reasoning environment in LP as

λ(Nat, f)

with the definition
assert f(c) == c + 1

For reasoning about lambda expressions we have constructed a set of rules ad hoc which
can be seen in appendix B.1.2.

We also provide support for some set comprehensive constructs that may be practical
in TLA specifications, the ‘setof ’ construct

{c ∈ S | P (c)}

describing the subset of S for which the logical predicate P holds, and the ‘setexp’ con-
struct

{F (c) | c ∈ S}
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describing the range of the function F on the set S. The first is encoded as

setof (S, f)

with the definition
assert f(c) == P (c)

and the second as
setexp(S, g)

with the definition
assert g(c) == F (c)

Appendix B.1.3 contains introduction and elimination rules for these two set combinators.
Generally it should be mentioned that the rules for reasoning about sets and functions are
not complete. A theory for sets can freely be added to the LP system, and is unrelated
to the work of encoding TLA.

4.3.5 Enabled

TLA for any action A defines Enabled A to be the predicate that is true for a state s
if and only if it is possible to take an A-step starting in that state. This means that
there should exist a state t, so that s[[A]]t is true. Neither of the encodings we have
chosen for efficient reasoning about actions and temporal properties in LP allow a simple
definition of Enabled in the way that it can be done in e.g. the HOL encoding of Wright
and L̊angbacka [35]. This is clearly a drawback of our encodings. On the other hand, there
are several ways in which Enabled predicates could be handled. With the introduction of
a translator we may choose to compute Enabled when translating a specification. E.g. for
reasoning about Enabled M1 in the encoding of Program 1 of the Increment Example,
we would produce the additional definitions

assert E M1(c, d) == (c = x+ 1) & (d = y)
assert Enabled M1 == ∃(e M1)
assert e M1(c) == ∃(e1 M1(c))
assert e1 M1(c)(d) == E M1(c, d)

and then translate Enabled M1 in the specifications and proofs to Enabled M1. The
results from such computations unfortunately tend to be rather complicated expressions
compared with the predicates that we may manually come up with; e.g. in the case above,
Enabled M1 may be simplified to true.

Another solution would be to produce the Enabled predicates manually, achieving the
wanted simplicity, and proving the correctness of the predicates within an encoding that
allows a direct representation.

In the current TLP system we have chosen the second solution, although we have not
yet been concentrating on finding a practical way to reason about the Enabled predicates.

4.3.6 Refinement mappings

Refinement mappings were introduced by Abadi and Lamport as a powerful tool when
reasoning about refinements [1]. A refinement mapping is a mapping from the variables



of a specification to state functions referring to variables of a refined specification. Re-
finement mappings may be represented directly as functions in our temporal reasoning
encoding, but the same is not possible in the action reasoning encoding. On the other
hand, it is trivial to represent them there by additional definitions generated by the trans-
lator. E.g. when encoding the refinement mapping of the cached memory example of the
TLA report [20, page 47], we would write the definition of the mapping as

assert Bar memory == if(cache(m) = bottom,main(m), cache(m))

and for each definition in the containing specifications produce an additional ‘barred’ ver-
sion, where all appearances of memory on the right-hand side of the ‘==’ are replaced by
the state function Bar memory , and all appearances of other state functions, predicates,
etc., are replaced by their ‘barred’ version.

4.3.7 Lattice proofs

When reasoning about liveness we often perform an inductive argument on a well-founded
set. In TLA this can be done by application of the Lattice rule (see figure 3.2 on page 26).
The encoding of the Lattice rule in the temporal reasoning environment is straightforward.
It would indeed be possible to include a theory for reasoning about well-foundedness in
LP, but we have found that this is outside the scope of our work so far. The Lattice rule
that is used in TLP (shown in appendix B.2.3) therefore just includes the premise

Wellfounded (S, s)

stating that s is a well-founded ordering on the set S. With the translator it would be
possible to perform the verification of this premise with the verification tool and encoding
that seem most fit. In the examples where we have been using the Lattice rule, however,
well-foundedness of the used set and ordering is left as an assumption. An example of this
can be seen in the liveness proof of the Spanning-Tree Example, presented in section 10.3.

For reasoning about finite lattices, we use a set of rules referred to as the Grønning
lattice rules (appendix B.2.4), based on an idea by Peter Grønning. These rules are easily
shown to form a complete system for reasoning about finite lattices, meaning that from
any finite lattice
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where a set of edges from a node N to a set of nodes M1, . . . ,Mn below it represents the
formula N ; (M1 ∨ . . .∨Mn), and where A is an upper bound and B a lower bound, we
are able to deduce A ; B. The Grønning lattice rules are used e.g. in the fairness proof
of the Increment Example, presented in section 9.5.
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4.3.8 Automatic verification of finite-state systems

The encodings described so far together form a basis for sound and complete reasoning
about finite-state as well as infinite-state systems in TLA, with the exceptions mentioned
in sections 4.3.5 and 4.3.7. Restricting our view to finite-state systems, there has been
much recent research in the development of powerful model-checking algorithms for au-
tomatic verification, among others by Clarke et al. [10, 9]. It seems reasonable that we
should not insist on creating large proofs for systems that can be verified automatically,
and that a system for mechanical reasoning would benefit from integration with tools for
automatical verification.

One such tool is an implementation by David Long of decision procedures for linear-
time temporal logic (LTL) based on so-called binary decision diagrams. These allow direct
verification of formulas in a subset of the Computation Tree Logic, CTL∗, described by
Clarke et al. [10].

It is straightforward to encode a subset of TLA in this logic, in which formulas are
constructed from true, false, boolean variables, ∧, ¬, and 2 (as well as derived operators
such as ∨ and 3). The validity of any such formula may be checked by an extensive
search for counter examples – behaviours not satisfying the formula.

With the translation scheme described earlier, it is possible to let substeps of proofs
suitable for such verification be checked automatically by Long’s LTL-checker. The con-
jectures of these steps may then be asserted as valid in both the LP action encoding (if
the formulas considered do not contain temporal operators) and the temporal encoding
of the proof.

A simple example of the use of the LTL checker appears in the Multiplier refinement
proof, where three previous results are combined with the help of a lemma that can easily
be checked (A and B are rigid variables):

∧ 2(¬(¬A ∧B))
∧ (¬A ∧ ¬B) ; (A ∧ ¬B)
∧ 2((A ∧ ¬B)⇒ 2(A ∧ ¬B))
⇒32A

Even in such simple an example, a proof based on deduction would be complicated and
time-consuming.

The LTL-checker used in the current TLP system is only able to check rather simple
formulas, but other tools can easily be built in when they become available.
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Interface engineering

In the previous chapter we discussed how TLA may be encoded in different ways so that
different kinds of reasoning may be performed efficiently. Using such encodings as the basic
specification language would not be practical for the systems designer, as distracting the
attention from the logic of the specification towards subtleties of the language and the
underlying verification tool. When using more than one encoding, this problem becomes
even more evident, and we are furthermore presented with the possibility of human errors
causing inconsistency between the different encodings.

The solution is to provide a general language on a level above the encodings. Prefer-
ably, this language should be transparent with respect to features of the tools and encod-
ings, thus letting you write specifications in pure TLA (or some superset thereof, such as
TLA+ [23]) without knowing or having to consider any such details. Such a solution is as
well mentioned by Wright & L̊angbacka in the conclusion of one of their articles on the
encoding of TLA in HOL [35].

As we want to reason about the specifications, the language should also permit ex-
pression of conjectures and of reasoning strategies. As we know, conjectures in TLA are
just TLA formulas, which can already be expressed. Reasoning strategies may be simple
instructions on how to verify a conjecture, or they may be more complicated structures
showing how a detailed proof can be carried out. The level of detail depends on the
verification tool that is used; when using automatic reasoning tools such as decision
procedures for temporal logic or arithmetic, nothing more than the conjectures need be
specified, whereas when proving a system by natural deduction we may need to represent
each individual step.

The possibility of expressing proofs to be verified opens up yet another problem. While
it is possible to write simple, correct proofs, that may be verified in the first try, producing
more complicated proofs will always be a matter of incremental development and inter-
action with the verification tool. Using the interactive capabilities of a verification tool
such as LP or HOL is possible, but this again dims the logic on behalf of technical aspects
of the tool, hampering the development of the proof. A better solution is to provide a
front-end that takes care of the interaction between the proof designer and the tools that
are used. The front-end should provide a uniform surface, again focusing on transparency ,
meaning that the designer should be able to work on the logical aspects of the proof he
is designing, ideally knowing nothing about the verification back-end in use.

In the next sections we discuss the design of an interface for mechanical reasoning in
TLA: the high-level language and the interactive front-end. Detailed descriptions of the
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language and front-end used in TLP are given in part II.

5.1 The language

The high-level language should make it possible to express TLA specifications and rea-
soning strategies. We would like the language to be transparent in the sense that the
specific encodings and technical aspects of the tools used for reasoning should not disturb
the presentation. Specifications should be written in TLA, or some superset thereof, with
a potential of expressing e.g. sets and functions by higher-level constructs and with some
overlaying structures such as the modules of TLA+ [23].

The language we have constructed for writing specifications in the TLP system is close
to being transparent in the above sense. We allow expressions to be written in pure TLA,
and extend this with constructs for expressing declarations and definitions, both being
parameterizable. We are bound to using the ASCII character set, so a TLA operator
such as 2 has to be written as [], but this is not a major problem. Other than that,
the most significant exception from true transparency is the representation of quantified
formulas and set expressions, where we need to manually specify the name of the so called
quantifier function that is used in the encoding for the Larch Prover (see section 4.3.4).
When reasoning about quantified formulas, we need to be able to refer to this function,
so automatic generation of the names is not desirable.

In figure 6.3 on page 70 we show the specification of Program 1 of the Increment
Example, which closely corresponds to the original TLA specification in figure 3.3 on
page 27. The only significant difference is the use of headers indicating whether a defined
expression is a state function, an action, etc., and the directives giving the specification
a name and expressing its dependency on declarations given elsewhere. For structuring
purposes, we also use an additional definition, v, for the state function (x, y).

5.1.1 Proofs

The design of a language for expressing proofs is more subtle. It is clear that for a proof to
be mechanically checkable, it needs to be presented in a structural and precise fashion, the
level of detail varying with the power of the verification back-end. Fortunately, presenting
proofs in a structural manner may be preferable not only for processing by mechanical
tools; it can also help the designer avoiding mistakes and errors, while making the proofs
easier to read and understand. Work that we put into the design of a structured language
for TLP was in fact used by Lamport in his note on how to write manual proofs [22].

As a basis for our structural proofs, we found the natural deduction style to be well
suited. Natural deduction provides a flexible way of treating inferences from assumptions
in a way that we are used to. We prove A ⇒ B by assuming A and deducing B –
discharging the assumption when the conjecture has been proved. The structure is simple;
a natural deduction proof is essentially just an application of one of the deduction rules
(figure 4.3) applied to a number of subproofs, that each may depend on the assumptions
indicated by the rule.

Although providing a good basis, natural deduction in its simplicity is however not
good enough for making reasoning manageable in practice. We should not need to ex-
plicitly state that A is proved from A ∧B by application of the ∧ elimination rule, when



a step like this could be handled automatically by a verification back-end such as LP.
We have thus made our style a refinement of ordinary natural deduction. Having chosen
LP as our primary back-end, it is not a coincidence that the explicit deductions that we
are left with closely corresponds to LP’s backward inference methods. These represent
the deduction rules for ∨ elimination, ⇒ introduction, and the rule False. In a logical
perspective, the other rules can be assumed to be applied automatically whenever needed.

We simplify things a bit more by generalizing the first two of the remaining rules.
A case proof is a generalization of the ∨ elimination rule, where we deduce B from
A1∨ . . .∨An and the subproofs deducing B from each of the Ai. Likewise, an implication
proof is a generalization of the ⇒ introduction rule, deducing A1 ⇒ (A2 ⇒ . . . (An ⇒
B) . . .) by assuming each of the Ai and proving B.

A deduction is denoted by a proof step, which begins with a conjecture, and ends with
the keyword Qed. In between the conjecture and the Qed are the subproofs represented
by substeps with the same structure. In the cases where simple boolean logic is all that is
needed to finish a proof step or where we need to apply special rules for reasoning about
data types etc., we may indicate how to do this by applying typed, parameterized macros,
which we refer to as methods (see section 6.9).

The kind of the conjecture sometimes indicates what kind of a deduction is to be done.
The conjecture Assume A1, . . . , An Prove B is logically equivalent to A1 ⇒ (A2 ⇒
. . . (An ⇒ B) . . .), but is to be proved by⇒ introduction. The conjecture Case A1, . . . ,
An is likewise to be proved as an implication A1 ⇒ (A2 ⇒ . . . (An ⇒ C) . . .), where C is
the current goal, i.e. the conjecture of the proof of which this is a subproof. Case proofs
are indicated by the method application By-Cases, which implicitly takes the contained
Case-steps to be the premises of the ∨ elimination rule.

The main advantage of the general proof language is not the natural deduction style;
this is already present in LP and other verification tools. But with the specially adapted
TLP language we get transparency with respect to the conjectures and other formulas
that we need specify – these may all be written in pure TLA – and uniformity with respect
to the different back-ends that we choose to use. The language is structured in a sense
that is well known from programming languages; it visualizes the proof steps rather than
merely a sequence of instructions. The static structure furthermore makes it easy to refer
to different parts of proofs without the explicit naming directives used in pure LP; proof
steps and hypotheses are referenced by a simple naming scheme, relative to the position
in the proof.

A detailed description of the TLP language of proofs with examples is given in sec-
tion 6.8.

5.2 The translator

With a high-level language for expressing specifications and proofs, we need a translator
for generating the encodings that can be interpreted by the verification back-ends. Such
a tool is easy to construct, in that it is basically just a parser for the high-level language
combined with an array of code generators, one for each back-end and encoding.

As mentioned in chapter 4, we may however also let the translator take care of some of
the simpler tasks connected to verification. Such tasks are the checking of wellformedness
and of sort correctness of the used expressions. Checking wellformedness is a task that is



g g

already handled by the parser, while sort correctness may be handled by a sort checker
built into the translator. This checks whether a defined action can really be interpreted
as a mapping from two states to a boolean and so on. It may also check whether proofs of
temporal formulas are erroneously used as substeps of action proofs and complain if so is
the case. The most important aspect of sort checking is probably that the translator with
sort information is able to split proofs into different parts that it knows to be checkable
by either action or temporal reasoning. Automating the splitting process ensures that the
combined result of action and temporal reasoning is sound, when both kinds have been
verified separately.

5.3 The interactive front-end

The high-level language makes us able to write well-structured specifications and proofs.
With a translator, we may check the wellformedness of both, and generate encodings for
use with various verification tools. With an appropriate setup of the verification tools
containing a representation of the TLA logic, we are finally able to verify the proofs, or,
while in the phase of development, detect the erroneous and non-verifiable parts. We thus
have a working system for specifying and reasoning about systems in TLA.

While the use of a general high-level language, with the possibility of different encod-
ings and a variable number of back-ends, is an advancement from the stage where we
were reasoning directly in the formalism of a single proof-checker, it clearly increases the
complexity of the reasoning process. It is harder to work interactively on a proof, getting
useful information back from the proof-checker while trying different strategies. In the
setup we have described, whenever the proof checker stumbles on a verification problem,
we have to re-edit and re-translate the structured proof, generating a modified encoding
for the proof checker. We may have to manually instruct the proof checker to undo some
unsuccessful steps, before executing the correct part of the new code, or in the worst case
to redo the verification of the complete proof from the start. Getting information from the
proof checker is only possible by sending it internal commands in its own input language,
and manually interpreting the information it is able to present using its specific encoding
of the logic.

All the work we have to do when encountering verification problems again makes the
proof development diverge from the essence of the logic – it gets harder to understand the
proof itself when having to deal with technical aspects of the verification system. Ideally,
we should be able to work on proofs in a structural manner, dealing with the problems
of each single step without bothering about the rest of the proof. When encountering a
problem, it should be possible to go on by giving a few additional instructions or changing
the step that could not be verified, with no knowledge about how the verification session
is to be resumed.

Luckily, the problem of the added complexity can be solved, as we may provide the
simple interface that we would like by building a front-end. This front-end should be
the single, uniform interface between the user, the translator, and the verification tools
with their different setups. To start a verification session, the user should only have to
execute a single command, while the front-end should take care of the translation of the
files that are needed, start the relevant verification back-ends and feed them their input.
When a verification problem occurs, this should be presented to the user by an indication



of the step that caused the problem, allowing the user to change it, or merely to add
instructions. The user should also be able to get information from the back-ends that
helps in finding the right verification strategy, and to go backwards in the proof when a
strategy has shown to be unsuccessful. After the required changes have been performed,
the user again should have to execute a single command only, to resume verification from
the point where it was stopped. The front-end should then take care of any required
re-translation, feeding the right part of the generated code to the back-end. In some cases
it may redo the complete proof session if this is needed; the important thing is that the
user always sees it as if the session was continued from the point where it stopped.

The front-end that is used in the TLP system has been built on top of the real-time
display editor Emacs [32], which besides allowing ordinary and syntax oriented editing of
text, provides an extension language in which advanced and specialized features may be
programmed. Using a customizable editor like Emacs as our front-end is advantageous, in
that it offers the same specialized environment for editing TLP specifications and proofs
when in the middle of a verification session, as is available at other times. The TLP front-
end built on top of Emacs uses different windows for displaying the source files, messages
from the front-end about the status of verification sessions including syntax errors and
verification problems, and output from the verification back-ends. It does not yet provide
interpretation of the output from back-ends, which can only be given in the format of the
used encoding.

Figure 5.1 gives a schematic overview of the complete TLP system, showing how the
front-end glues the different parts together. The front-end interacts with the user at one
end, and at the other with the file-system containing the source files that the user wants
to work on (consisting of TLP and LP code), the translator that translates the source files
to input for the different back-ends, and with each of the back-ends. When instructed to
do so by the user, it may perform translation and verification sessions, by running the
translator and verification back-ends, feeding them input from either the source files or
the generated code and setup files, provided as part of the system. The current system
uses two back-ends based on the Larch Prover for action and temporal reasoning, and one
based on BDDT for automatic checking of linear-time temporal logic. The front-end is
described in detail in chapter 8.
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The language

The TLP language is a dialect of TLA extended with certain declarations and directives
for parsing and verification purposes, and a language for writing structured proofs. By a
TLP script we refer to any file of text written in the TLP language. A TLP script may
contain an arbitrary number, in any order, of

directives, specifying e.g. which other files the script depends on;

specifications, consisting of declarations of constants and variables, and definitions of
state functions, predicates, actions, temporal formulas, etc.; and

proofs, being structured constructs that specify how lemmas and theorems may be
proved, to be verified in the TLP system.

The contents may furthermore be grouped under common headers, which are used for
naming, and thus enabling reference to certain facts contained in the related specifications
and proofs.

In this chapter we go through the different parts of the TLP language. Section 6.1
describes the idea of types and sorts in TLP. Section 6.2 goes on to describe well-formed
TLP expressions, specifying their interpretation and syntax. Then follows descriptions of
the more structurally important constructs of the language, the headers and directives,
declarations, and different kinds of definitions in sections 6.3–6.7. In section 6.8 we
describe the fundamental idea and interpretation of proofs in TLP, and finally in section
6.9 we introduce the concept and syntax of verification methods, how they are defined
and used.

6.1 Types and sorts

6.1.1 The type system

TLA is an untyped logic. Variables have no type, and states are just mappings from
variable names to the set Val of all values. In his initial papers on TLA, Lamport regarded
the set containing the booleans true and false, Bool, as a subset of Val. Lately [24], this
has changed to a view in which Val and Bool are distinct sets, which is also the current
view in TLP.

59
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As a feature of TLP, variables can also take boolean values. For this purpose we
introduce two types, Val and Bool which correspond to the sets Val and Bool. Variables
and constants are declared to be of type Val or Bool, and take their values exclusively
from the corresponding set. User-declared operators are declared as taking one or more
operands of type either Val or Bool, and producing a Val or Bool, so that e.g. arithmetic
addition would be declared as Val, Val -> Val.

6.1.2 The sort system

As in TLA we let a state be a mapping from variable names to values. As we in TLP also
allow boolean variables, values here means the union of the sets Val and Bool and thus
define the set of states, St, as the set of mapping from variables names to Val ∪ Bool.

Elements of the set St×St are classified as transitions , and infinite sequences of states,
elements of the set St∞, as behaviours.

When reasoning in TLP we assign to all well-formed expressions a sort indicating our
interpretation of the expression as an element of Val or Bool, or as a mapping from states,
transitions, or behaviours to one of these two sets. The interpretation as an element of
Val is designated the sort Constant, while expressions interpreted as elements of Bool
are of sort Boolean. The rest of the sorts are named consistently with TLA as State-
function, Predicate, Action, and Temporal (formula), and furthermore the implied
sorts, Transitionfunction, and Sequencefunction. The corresponding interpretations
are shown in table 6.1.

Sort Interpretation
Constant Val
Boolean Bool
Statefunction St → Val
Predicate St → Bool
Transitionfunction St × St → Val
Action St × St → Bool
Sequencefunction St∞ → Val
Temporal St∞ → Bool

Table 6.1: The sorts of TLP.

Any non boolean-valued constant expression (i.e. of sort Constant) can also be in-
terpreted as a state function, interpreting it as the constant function from St to Val.
Similarly, any state function can be interpreted as a transition function, and any transi-
tion function as a sequence function. We say that the sorts are ordered transitively, so
that Constant is the least element in the ordering and Sequencefunction the great-
est. Likewise for boolean expressions, predicates, actions, and temporal formulas. The
ordering is thus as shown in figure 6.1.
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Boolean Constant

Predicate Statefunction

Action Transitionfunction

Temporal Sequencefunction

Figure 6.1: Ordering of the TLP sorts.

6.2 Expressions

The basic expressions in TLP are constructed from user-declared variables, constants,
and operators, the built-in constants True and False, and the operators = (equality),
~= (inequality), in (set inclusion), /\ (conjunction), \/ (disjunction), ~ (negation), =>
(implication), and <=> (boolean equivalence). Examples are

x + 1 - y
y >> z /\ a => ~b
z in S \/ True

The built-in operators are ordered with respect to precedence as

=> <=>
\/
/\
= ~=
in

with in binding tightest. All user-declared operators bind tighter than the built-in opera-
tors. The expressions above is thus interpreted as their explicitly parenthesized analogues

(x + 1) - y
((y >> z) /\ a) => ~b

z in (S \/ True)

For a basic expression to be well-formed , all the contained operators should be applied
to the correct number of operands ranging over the right set of values, Val or Bool. A
well-formed expression is boolean-valued , if its range is Bool. The first two expressions
above are well-formed, if + and - are declared as Val, Val -> Val and >> as Val, Val
-> Bool, the second is furthermore boolean-valued. The third cannot be well-formed, as
in has type Val, Val -> Bool.

On top of the basic expressions, TLP contains several complex constructs, namely
tuples , conditionals, sets, functions, and quantified expressions . We will return to these
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in the end of this section, but first we will describe the different kinds of expressions that
we talk about relating to the different sorts of TLP, and introduce the TLA prime and
always operators, and some syntactic sugar.

In the following we will use the meta-variables listed below – sometimes with additional
subscripts as in v0, v1:

U , V , W: any well-formed expressions

B: any boolean-valued expression.

f : a state function or predicate

A: an action

F , G : temporal formulas

c: a rigid variable

6.2.1 Constant expressions

Constant expressions are well-formed expressions containing no variables. Their interpre-
tations are as values of the sets Val and Bool. We say that a boolean valued expression
has sort Boolean, and a non boolean-valued expressions sort Constant.

6.2.2 State functions and predicates

State functions and predicates are well-formed expression built from constants, operators,
and variables. In TLP, a state function is always non boolean-valued, meaning that its
interpretation is as a mapping from St to Val. Likewise, a predicate is boolean-valued
and is interpreted as a mapping from St to Bool. We say that state functions have sort
Statefunction, and predicates sort Predicate.

The first example on the preceding page is a state function interpreted as the mapping
that assigns to a state s the value (s[[x]] + 1)− s[[y]], where s[[x]] denotes the value of x in
s, and + and − are the semantical interpretations of + and -. The second example is a
predicate, while the third, being non well-formed, is neither.

Any constant expression is also a state function or predicate, as it can be interpreted
as a (constant) function from St to either Val or Bool.

6.2.3 Transition functions and actions

Transition functions and actions are well-formed expressions built from constants, vari-
ables, and primed variables. They map pairs of states to Val and Bool respectively, by
mapping unprimed variables to their values in the first state and primed variables to their
values in the second. An example of a transition function is x’, and an example of an
action is (x’ = x + 1 /\ y’ = y). We say that transition functions and actions have sorts
Transitionfunction and Action.

As in TLA, we allow any state function and predicate to be primed. A primed ex-
pression is equivalent to the expression with all variables replaced by their primed coun-
terparts.
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Unchanged(f ) is semantically equivalent to the action f ’ ~= f . [A]_f is the
action equivalent to A \/ Unchanged(f ), and <A>_f the action equivalent to A /\
(~Unchanged(f )).1

Enabled<A>_f is the enabled predicate of the action <A>_f which is the predicate
that maps a state s to True, if and only if there exists a state t so that <A>_f evaluates
to True on 〈s, t〉. There is currently no way to compute enabled predicates in TLP. Until
this has been implemented, we allow enabled predicates to be defined , as described in
section 6.7, page 72.

State functions and predicates can also be considered as transition functions and ac-
tions respectively, by interpreting them as functions from St×St, depending only on their
first parameter.

6.2.4 Temporal expressions

Temporal expressions are built from transition functions and actions (and thus also from
constant expressions, state functions, and predicates) and the temporal operator [] (al-
ways). A boolean-valued temporal expression such as []F is known as a temporal formula
(with sort Temporal), and is interpreted as a mapping from behaviours, St∞, to Bool.
The mapping described by the formula []F is the function mapping an infinite sequence
of states s0, s1, . . . to True if and only if the formula F holds for each tail of the sequence,
i.e. for any i the behaviour si, si+1, . . .. An action holds for a behaviour if and only if it
holds for the pair described by the first two states, and a predicate thus holds for the
behaviour if it holds for its first state.

<>F is equivalent to ~[]~F , and F ~> G to [](F => <>G). The fairness expres-
sion WF(f , A) is equivalent to []<><A>_f \/ []<>~Enabled<A>_f and SF(f , A) to
[]<><A>_f \/ <>[]~Enabled<A>_f .

6.2.5 Tuples

A tuple in TLP is an ordered list of boolean and non-boolean expressions. It is written as
in standard TLA, enclosed in parentheses and with its elements separated by commas. (If
the tuple itself is directly enclosed within the parentheses of some other construct, such
as Unchanged(. . . ), the parentheses can be left out.) Equality of tuples is defined as
the element-wise equality, as usual. A tuple of elements of sort Constant and Boolean
has sort constant, a tuple of elements of sort Statefunction and Predicate, sort State-
function, and so forth. Tuples are used throughout all the examples in part III.

6.2.6 Conditionals

A conditional is an expression of the form If B then U else V . It is interpreted as the
expression equal to the value of U whenever B equals true, and the value of V whenever

1In TLA, these constructs are regarded as syntactic sugar , defined to equal the respective actions. In
TLP, they may be handled differently by different back-ends (although always preserving the semantical
equivalence), so they cannot be regarded purely as definitions. E.g. when doing temporal reasoning,
using the notation [A]_f is not equivalent to writing A \/ Unchanged(f), as a proof depending on
the actions would differ on the application of a rewrite rule (the rule BAct , to be precise).
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B equals false. If B has sort Boolean and U and V sort Constant (or Boolean, respec-
tively) then If B then U else V has sort Constant (Boolean, respectively). Likewise
for Predicate and Statefunction, etc.

If x = 0 then pc1 else pc2 is thus the state function that produces the value of pc1
for all states in which the variable x has the value 0 and the value of pc2 in all other,
while If sem = 1 then pc1’ = b else Unchanged(pc1) is the action that sets pc1 to
the value b whenever sem is 1 and keeps it unchanged otherwise. A real example where
a conditional expression is used as a state function can be seen in the specification of the
spanning-tree algorithm on page 133.

6.2.7 Quantification

TLP supports universal and existential quantification over rigid variables. Quantification
over flexible variables, used for e.g. hiding variables in a specification, is not supported.

A universally quantified formula is written either as

Forall c in U : B [* m *]

or just

Forall c : B [* m *]

and similarly for existential quantification, using the keyword Exists. We call the first
form bounded quantification, and the other unbounded . The rigid variable c need not be
declared. The meta-variable m inside the special brackets [* . . . *] stands for the name
of the quantifier function which should be an identifier that is not used elsewhere as a
quantifier function. The quantifier function is a function that is automatically defined
from the quantified formula when we translate it into the language of the Larch Prover in
the current TLP system. If the boolean-valued expression B contains free rigid variables
(i.e. variables different from c and not bound by quantification inside B), then these
should be appended as parameters to the quantifier function (this could be automated
in later releases). See section 4.3.4 on page 45 describing how quantification is encoded
for an explanation to why the function is needed. An example of bounded, existential
quantification is shown in the specification of the spanning-tree algorithm, page 133.

When a quantified expression has been used once, there is a useful hack for referring
to the same expression elsewhere, by writing just

Forall(U, m)

or

Forall(m)

where m is the (possibly parameterized) quantifier function name of the original expres-
sion. This is useful, as one may not otherwise use the same quantifier name twice, and
showing with the Larch Prover that the same two quantified expressions are equivalent
would otherwise be unnecessarily cumbersome. This is used in e.g. some of the Spanning-
Tree proofs; see for example the lemma ‘DoneOneDoneAll’ on page 150 (step <2>1).
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6.2.8 Sets and functions

TLP also has a number of built-in constructs for expressing sets and functions. The
construct

{V | c in U [* m *]}

denotes the set of elements V so that there exists a c in the set U . Likewise, the construct

{c in U : B [* m *]}

denotes the set of elements c in the set U so that B is true. In both cases, m should be a
fresh function identifier which is to be used just like the quantifier function name described
in section 6.2.7 above, and should thus be parameterized when V (B, respectively) contains
free rigid variables. TLP does not enforce the requirement that U be a non-boolean valued
expression, although it will make little sense if it is not.

An example of the use of the first set construct, together with bounded existential
quantification and function application (see below), is the definition of ‘NotDoneSet’ from
the correctness proof of the Spanning-Tree Example (page 149). Note that the rigid
variable x is free inside the quantified expression, and thus supplied as a parameter to the
quantifier function pnotdone.

NotDoneSet == {x in Nat :
Exists p in Node : x = dDone[p] /\ dDone[p] << d[p]

[* pnotdone(x) *]
[* notdoneset *]}

in may also be used as an infix operator for specifying set inclusion, as in

U in V

For expressing functions (or arrays) we use lambda notation, and let

Lambda c in U : V [* m *]

denote the function with domain U mapping an element c to the expression V . Again, m
should be a fresh function identifier as explained above.

Lambda i in interval(0, n): square(n) [* sqarray *]

would thus be the function mapping the subset of the natural numbers from 0 to n to their
square, with the right definitions of the operators. Another example may be seen, again,
in the specification of the Spanning-Tree algorithm. You may use Array as a synonym
for Lambda.

The expression

U[V]

denotes the application of the function U to the expression V , which may alternatively be
written as U @ V . The expression

[U -> V]
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expresses the set of functions from U to V . It is common to declare the operator Dom
for returning the domain of a function. In the LP files containing rules for reasoning
about functions and sets, this operator is given a meaning by deduction and rewrite rules,
although it is not built-in as a predefined operator in the current TLP system.2

When specifying actions, we often want to update a variable whose value is a function
(array). For this purpose we have two constructs. The first,

U[V := W]

denotes the function with the same domain as the function denoted by U , which maps
the value of V to the value of W (if the value of V is in the domain of the function U),
and is equal to U on all other values. The second construct,

U[V :inW]

is the adaption of the first to sets; it denotes the set of functions with domain U , which
map the value of V to any value in the set W (if V is in the domain of U), and all other
values to the one of U . Both constructs appear in the specification of the Spanning-Tree
algorithm (page 133).

6.2.9 Indentation sensitive expressions

As used in TLA, we introduce a concept of indentation sensitive expressions in TLP. This
makes long formulas easier to read and write, as the structure becomes evident without
the need of parentheses. A list of expressions separated by newlines and ‘bulleted’ by
/\ or \/, all indented to the same level, is interpreted as the conjunction respectively
disjunction of the expressions. Thus, the expression

/\ U1

/\ \/ U2

\/ /\ U3

/\ U4

/\ U5

is equivalent to

U1 /\ (U2 \/ (U3 /\ U4)) /\ U5

The implication (U1 \/ U2 \/U3) => (U4 /\ U5) may be written as

\/ U1

\/ U2

\/ U3

=> /\ U4

/\ U5

and a boolean equivalence, using <=>, likewise. For further explanation on this notation,
see Lamport’s note on how to write long formulas [21]. The parser that is used in the
current release of TLP only allows indentation sensitive expressions on the outermost
level of expressions, which means that they among other places can’t be used inside
quantification. This is unfortunate, but will not be solved until a new parser is written.

2Generally, we prefer to keep the amount of built-in constructs as low as possible, to gain flexibility.
The intention is that operators such as Dom should be included in special ‘packages’ that can be used
in different examples.



6.3 Headers and directives

We now go back to some of the more distinct constructs of TLP. Headers and directives are
constructs that are used by the translator and the front- and back-ends when translating
and verifying.

6.3.1 Name

The Name construct is semantically insignificant. It is used as a header to specify a group
of definitions and proofs that belong together. It is furthermore transfered to the relevant
code generators, so that it can be used for naming groups of definitions. This is used e.g.
for naming the ‘quantifier functions’ used to specify quantified formulas in LP (described
in section 6.2.7). This will become obsolete when a module system is introduced in a
future version.

6.3.2 Use and Bottom

The Use directive is used to specify a transitively closed dependency relation between
the containing file and a set of other files. Specifying

%-Use file1 file2 . . . filen
anywhere in a file means that formulas used in definitions and proofs in the file may
depend on definitions, theorems, and lemmas in one or more of the files file1 to filen, and
all the files that these refer to, etc. This means that information from any of these files will
be used when analyzing and verifying the well-formedness of predicates, actions, temporal
formulas etc. The code generators may or may not take advantage of this information;
the two currently supplied LP code generators do while the LTL generator does not (see
chapter 7 for information on how the code generators use the dependency specification).
The dependency relation is also used when redoing the verification of proofs from inside
the front-end; whenever any files that the current file depend on have been modified, the
front-end assures that these are re-translated and verified as well as the current file. This
is described thoroughly in section 8.4.1.

The Bottom directive, which is written simply as

%-Bottom

is a technicality that may direct the verification back-end to change its ordinary strategy
to save space to the cost of execution-time. For an explanation, see section 8.4.1.

A TLP file should only contain one Use directive. Supplying more than one Bottom
directive has no effect.

6.3.3 Include

The directive

%-Include file1 file2 . . .filen
simply includes the contents of file1 to filen, in that order and at the position of the
directive, whenever the file is parsed. This is especially convenient and mostly used for
including files declaring methods (see section 6.9, page 78), as it makes it possible to add
and change methods while in the middle of a verification session.
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6.4 Declarations

TLP contains only a few pre-declared constants and operators, as presented in section 6.2
above: the constants True and False, and the operators =, ~=, in, /\, \/, ~, =>, and <=>,
as well as the special action and temporal operators.

All other constants, operators, and variables need to be declared, to be used within
TLP expressions.3 A set of declarations begin with the header Constants, Values,
Operators, Rigid Variables, or Variables, specifying the kind of identifiers to be
declared. Following the header should be a number of lines, each containing a list of
identifiers and possibly ended by a type signature. Below we describe the different kinds
of declarations.

6.4.1 Constants

Constants are not defined to have any particular value or property; if we want to make
assertions about certain constants, these should be added either by a theory that we load
into the back-end (as e.g. the rules we add for reasoning about arithmetic in the Increment
Example – see chapter 9) or by explicit assumptions in the theorems we prove.

Constants, just like variables, can have type Val or Bool. The declaration

Constants
P, Q : Val
Flag : Bool

has the obvious interpretation. Boolean constants are rarely used, but are allowed mostly
for consistency.

Constants can be parameterized, so that you may create different instances of them,
and of whole system specifications. This is explained in section 6.6, page 70.

6.4.2 Values

Values in TLP are just constants, although their declaration differs semantically from that
of ordinary constants. As value constants are meant to be used for representing different
values of declared data types, a declaration of a set of values (specified as a sequence of
identifiers separated by commas), implicitly states that the values are distinct. Thus, the
declaration

Values
0, 1, 2
Nat

declares 0, 1, 2, and Nat as constants (which from then on can be used freely in formulas)
and let the code generators produce assertions that 0, 1, and 2 are mutually different.
The value constants are, of course, always of type Val. Values may be parameterized in
the same way as ordinary constants, although the use of this seem to be more uncommon.

3An exception is the bound rigid variables used in quantified expressions and set and lambda expres-
sions, which do not have to be declared.



6.4.3 Operators

Constant operators can be defined much like ordinary constants. Operators take one or
more parameters of type Val or Bool and produce a Val or Bool. Like in LP, operators
that consist of only special characters, or that are prefixed by a ‘backslash’ (‘\’), are
conveniently defined to be infix, so that

Operators
+, - : Val, Val -> Val
Positive : Val -> Bool

will let you write e.g. “x+y” and “Positive(x)”. As with constants, the declaration in the
TLP script is only made so that the TLP translator will be able to syntactically check
the well-formedness of expressions containing the operators; the semantic definition of the
operators should be added as theories known to the back-end.

6.4.4 Rigid variables

What we define as rigid variables are again, logically, just constants. However, while we
allow users to assert statements about constants as declared above, to e.g. say that 1 is
greater than 0, the rigid variables are real mathematical ‘unknowns’. The declaration

Rigid Variables
n : Val

would thus in LP be translated into a declaration of n as an LP variable, while the
constant P and the value Nat above would become LP operators. Rigid variables can be
of type Val or Bool.

6.4.5 Variables

Flexible variables, or program variables, are declared as just variables. Like rigid variables,
they can have type Val or type Bool. Like constants, they can be parameterized, see
section 6.6 on the next page.

An example of a complete declarations part, the one of the Increment Example, is
shown in figure 6.2.

6.5 Definitions

Definitions in TLP are written in a straightforward way. A set of definitions begins with
the header Statefunctions, Predicates, Transitionfunctions, Actions, or Tempo-
ral, which declare the identifiers to be defined to be of the given sort. The definitions
should all be sort-correct, which means that e.g. definitions as Actions should all be
functions from St×St to Bool. This means that it is quite all right, although of dubious
use, to define e.g. a predicate as being an action – as any predicate is also a function from
St×St to Bool.

The order of the definitions under a common header is insignificant. This is so that
definitions can be written in a straightforward way just as you would like them. It also



g g

Name Declarations
%-Use frame
Values

0, 1, 2
Nat

Operators
+, - : Val, Val -> Val
<< : Val, Val -> Bool

Variables
x, y : Val

Figure 6.2: Initial declarations for the Increment Example.

makes it possible to write circular definitions, which are not detected by the current
system; this should of course be avoided.

The specifications of Program 1 and Program 2 of the Increment Example (figure 6.3
and figure 6.4) illustrate the common use of definitions.

Name Def0
%-Use declarations
Predicate

InitPhi == (x = 0) /\ (y = 0)
Actions

M1 == (x’ = x + 1) /\ (y’ = y)
M2 == (y’ = y + 1) /\ (x’ = x)
M == M1 \/ M2

Statefunction
v == (x, y)

Temporal
Phi == InitPhi /\ [][M ]_v /\ WF(v, M1) /\ WF(v, M2)

Figure 6.3: The specification Φ of Program 1 of the Increment Example.

6.6 Parameterized definitions and declarations

Constants, values, variables, and definitions can all be parameterized . This is essential
for convenient specification of non finite-state systems such as the one described in the
Spanning-Tree Example. Let us e.g. assume a set of nodes in a graph, for each pair of
neighbours (n,m) of which we want to be able to perform the parameterized action N(n,
m). The disjunction of the possible actions may then be defined as the action NAll , as
follows:



Name Def1
%-Use declarations
Variables

pc1, pc2, sem : Val
Values

a, b, g
Predicate

InitPsi == /\ (pc1 = a) /\ (pc2 = a)
/\ (x = 0) /\ (y = 0)
/\ sem = 1

Actions
alpha1 == /\ (pc1 = a) /\ (0 << sem)

/\ pc1’ = b
/\ sem’ = sem - 1
/\ Unchanged(x, y, pc2)

beta1 == /\ pc1 = b
/\ pc1’ = g
/\ x’ = x + 1
/\ Unchanged(y, sem, pc2)

gamma1 == /\ pc1 = g
/\ pc1’ = a
/\ sem’ = sem + 1
/\ Unchanged(x, y, pc2)

alpha2 == /\ (pc2 = a) /\ (0 << sem)
/\ pc2’ = b
/\ sem’ = sem - 1
/\ Unchanged(x, y, pc1)

beta2 == /\ pc2 = b
/\ pc2’ = g
/\ y’ = y + 1
/\ Unchanged(x, sem, pc1)

gamma2 == /\ pc2 = g
/\ pc2’ = a
/\ sem’ = sem + 1
/\ Unchanged(x, y, pc1)

N1 == alpha1 \/ beta1 \/ gamma1
N2 == alpha2 \/ beta2 \/ gamma2
N == N1 \/ N2

Statefunction
w == (x, y, pc1, pc2, sem)

Temporal
Psi == InitPsi /\ [][N]_w /\ SF(w, N1) /\ SF(w, N2)

Figure 6.4: The specification Ψ of Program 2 of the Increment Example.
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Actions
NAll == Exists n in Node:

Exists m in Nbrs(n):
N(n, m) [* n2 *] [* n1(n) *]

Parametrization can of course also be used for easy definition of multiple instances of a
specification. As an example, consider the specification

Variables
x(i) : Val

Predicates
Init(i) == x(i) = 0

Actions
M (i) == x(i)’ = x(i) + 1

Temporal
Counter(i) == Init(i) /\ [][M (i)]_x(i)

By introducing a set of values, A,B,C, . . ., this will now refer to a set of different coun-
ters, Counter (A),Counter(B),Counter(C), . . ., each incrementing a distinct variable. An
array (of variable length) of counters is specified by

Temporal
Counters(n) == Forall i in NatsLowerThan(n) :

Counter(i) [* counters(n)*]

6.7 Enabled and Bar

In addition to the ordinary definitions, it is possible to define enabled predicates and
refinement mappings .

The enabled predicate Enabled<A>_f for a given action A and state function f is a
computable formula, defined as the predicate that is true for any state s, such that there
exists a state t so that <A>_f is true on 〈s, t〉. There isn’t yet any way to either compute
or prove the correctness of enabled predicates in TLP, so we have been forced to add a
possibility to directly include assumptions about enabled predicates as definitions. We
would like to fill this hole in the safety of TLP as soon as possible; but until that is done
one should regard the definitions of enabled predicates as open assumptions, on which the
soundness of the proofs rely. In the Increment Example, we state the value of the enabled
predicates of the actions of the first program as:

Predicates
Enabled<M1>_v == x ~= x + 1
Enabled<M2>_v == y ~= y + 1
Enabled<M >_v == (x ~= x + 1) \/ (y ~= y + 1)



Predicates
Enabled<alpha1>_w == (pc1 = a) /\ (0 << sem)
Enabled<beta1>_w == (pc1 = b)
Enabled<gamma1>_w == (pc1 = g)
Enabled<alpha2>_w == (pc2 = a) /\ (0 << sem)
Enabled<beta2>_w == (pc2 = b)
Enabled<gamma2>_w == (pc2 = g)
Enabled<N1>_w == \/ Enabled<alpha1>_w

\/ Enabled<beta1>_w
\/ Enabled<gamma1>_w

Enabled<N2>_w == \/ Enabled<alpha2>_w
\/ Enabled<beta2>_w
\/ Enabled<gamma2>_w

Enabled<N>_w == Enabled<N1>_w \/ Enabled<N2>_w

One can refer to these definitions in proofs by the the name of the action prefixed by
‘Nab_’; e.g. the definition of Enabled<M >_v is referred to as ‘Nab_M’.

Refinement mappings of flexible variables are defined as state functions, using the
Bar operator. E.g. the refinement mapping of the cached memory example of the TLA
report [20, page 47] would be defined in TLP as

Statefunctions
Bar(memory(m)) == If cache(m) = ⊥ then main(m)

else cache(m)

When you reason with refinement mappings, TLP generates barred versions of all the
used expressions so that you can refer to e.g. the formula Bar(Psi) if you have specified
Psi as in the cached memory example.4 The definitions of the barred identifiers can be
referred to by the identifier prefixed by ‘Bar_’, in the case above thus as ‘Bar_Psi’.

6.8 Proofs

Proofs in TLP are written in a structural, natural deduction style, essentially as introduced
by Gentzen (see e.g. Prawitz [30] and Scott [31]).5 A proof in TLP consists of a head goal
denoted by the keyword Theorem or Lemma with a unique name for later reference, a
goal (see below) that is to be proved valid (with respect to the built-in axioms and rules
of TLP and to already proven facts as well as assumed facts asserted by the user). Finally
it contains a list of substeps and method applications (see section 6.9), starting with the
keyword Proof and ending with Qed. Each substep is denoted by a label <level>item
indicating its depth within the proof and its number within the containing step.6 Like the
head proof, it contains a list of substeps and method applications ended by Qed. The
general outline of a proof is thus as shown in figure 6.5.

4To use this in the current version of TLP, you have to explicitly tell the translator to generate barred
versions of expressions, as described in section 8.3.1.

5Readers familiar with the Larch Prover will also see a strong resemblance to the LP proof style, upon
which TLP is heavily based; TLP however uses a much more strict, structural language for the proofs.

6This label will be unique with respect to any reference inside the proof, and is usually much more
convenient than a traditional label, denoting the step by its path, as e.g. 1.3.2.2.5.
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Theorem theorem-name
head goal

Proof
· · ·
method application
· · ·

<1>1 subgoal 1
· · ·
method application
· · ·

<2>1 subgoal 1.1
· · ·

<3>1 subgoal 1.1.1
· · ·
Qed

· · ·
<3>k subgoal 1.1.k
· · ·
Qed

· · ·
Qed

· · ·
method application
· · ·

<2>l subgoal 1.l
· · ·
Qed

· · ·
method application
· · ·
Qed

· · ·
method application
· · ·

<1>2 subgoal 2
· · ·
Qed

· · ·
<1>m subgoal m
· · ·
Qed

· · ·
method application
· · ·
Qed

Figure 6.5: The general outline of a TLP proof.



The proof goals can be simple TLP formulas, which constitute a goal to be proved
with the currently known hypotheses, or they can be either implication goals of the form
Assume formula-list Prove formula or just Assume formula-list , or case goals of the
form Case formula. The latter special goal types are intended for making certain common
parts of the natural deduction proof more easily readable as well as significantly more
efficient.

An implication goal Assume A1, A2, . . . , An Prove B is used for proving the impli-
cation A1 ⇒ (A2 ⇒ . . . (An ⇒ B) . . .) by proving B̂ in a model where all of the Âi are
assumed to be true (where Âi and B̂ are the formulas Ai and B with all free occurrences
of rigid variables replaced with fresh constants, like in LP [14, page 43]). This resembles
multiple use of the implication introduction rule of a traditional Gentzen style inference
system, sometimes written as

⇒I :

(A)
B

A⇒ B

An implication goal being just Assume A1, A2, . . . , An, i.e. without the Prove clause,
refers to the implication A1 ⇒ (A2 ⇒ . . . (An ⇒ G) . . .) where G is the current goal, the
(possibly reduced) goal of the surrounding step.

The case goal Case C uses the same method for proving the implicationC ⇒ G, where
G is again the current goal. When a number of case steps with goals Case C1 . . .Case Cn
is succeeded by the built-in method application By-Cases (see section 6.9.2), the current
goal is proved by proving C1∨ . . .∨Cn, if n is greater than 1, and G under the assumption
that ∼ C1, if n = 1. This resembles multiple use of of the disjunction elimination rule of
a Gentzen style inference system:

∨E :
A ∨ B

(A)
C

(B)
C

C

As the head goal is the outermost goal, it doesn’t make sense to make it neither a
Prove-less implication goal nor a case goal; thus this is not allowed.

A typical, short proof of an invariant, the proof of the so called type correctness
theorem for Program 1 of the Increment Example, is shown in figure 6.6. This illustrates
the structure of a TLP proof nicely, and contains the three basic goal types. The reasoning
is explained in detail in chapter 9, which contains the complete Increment Example. An
example of a more deeply nested proof is the the one we used for explaining reasoning
with quantifiers in figure 4.5 on page 47. This is redone in the TLP language in figure 6.7.
You may notice how the outline made by the indentation of the proof resembles the shape
of the deduction tree, rotated 90 degrees clockwise.

6.8.1 Asserted goals

Writing ** in front of a goal, as in the substeps of <1>2 below
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Name TPhi

%-Use def0
%-Include methods

Predicates
TPhi == x in Nat /\ y in Nat

Theorem TPhi
Phi => []TPhi

Proof

<1>1 Assume InitPhi Prove TPhi
Expand InitPhi in Hyp
Expand TPhi in Goal
Qed

<1>2 Assume TPhi, [M ]_v Prove TPhi’

Activate TPhi

<2>1 Case M1
Expand M1 in Hyp
Instantiate NatRule2 with i_u <- x
Qed

<2>2 Case M2
Expand M2 in Hyp
Instantiate NatRule2 with i_u <- y
Qed

<2>3 Case Unchanged(v)
Expand v in Hyp
Qed

By-Cases
Expand M in Hyp
Qed

<1>3 TPhi /\ [][M ]_v => []TPhi
INV1 with pred_I <- TPhi, act_N <- M , sf_f <- v
Qed

By-Implication
Expand Phi in Hyp
UseTempFact Step1, Step3
Qed

Figure 6.6: The proof of Φ⇒ 2TΦ, of the Increment Example.



Name Prawitz

%-Use frame
%-Include methods, quantmethods

Rigid Variables
a, b : Val

Operators
P : Val, Val -> Bool

Predicates
Prawitz == /\ Forall x : Exists y : P(x, y)

[* praw12(x) *] [* praw11 *]
/\ Forall x : Forall y : P(x, y) => P(y, x)

[* praw22(x) *] [* praw21 *]
=> Forall x : Exists y : P(x, y) /\ P(y, x)

[* praw32(x) *] [* praw31 *]

Theorem Prawitz
Prawitz

Proof
<1>1 Assume Forall(praw11) /\ Forall(praw21) \

Prove Forall(praw31)

<2>1 Exists(praw32(a))

<3>1 Exists(praw12(a))
UseForall on praw11 with a
Qed

<3>2 Assume P(a, b) Prove Exists(praw32(a))

<4>1 P(b, a)

<5>1 Forall(praw22(a))
UseForall on praw21 with a
Qed

UseForall on praw22[a] with b
Qed

ProveExists on praw32[a] with b
Qed

UseExists on praw12[a]
Qed

ProveForall on praw31
Qed

Expand Prawitz in Goal
Qed

Figure 6.7: The TLP proof representing the deduction of figure 4.5.
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<1>2 Assume TPhi, [M ]_v Prove TPhi’

<2>1 ** Case M1
Qed

<2>2 ** Case M2
Qed

<2>3 ** Case Unchanged(v)
Qed

By-Cases
Expand M in Hyp
Qed

tells the back-end to accept the goal without verification. This can be used in incremental
proof development where one wants to check the outer goal before the subgoals,7 or
for efficiency, when one wants to avoid re-verification of a large proof that hasn’t been
changed. When a goal is ‘starred’, any methods and substeps in the proof of it are ignored
by the verification back-end.

6.9 Methods

Directions to the verification back-ends on how to verify a goal is given by application of
methods. TLP contains a few built-in methods; others can be defined by the user. The
user-defined methods are really just macros that produce pieces of text to be given to
the back-end, although with one important feature: it is possible to specify parameters
of different kind . The kind of a parameter may be interpreted by the TLP translator, so
that e.g. a TLA formula used as parameter is translated with respect to the encoding of
the back-end being used and the context where the application appears.

6.9.1 Method applications

A method application consists of a method name followed by a possibly empty sequence
of keywords and parameters. The name is the unique identifier of the method. Keywords
that follow have to match the keywords that are given in the definition; their purpose is
purely mnemonic. Parameters can be of the following kinds:

Name: An identifier containing letters, digits, and the special characters ‘_’ and ‘*’, or
alternatively a Goal, Step, Hyp, or ContraHyp parameter, as described below.

Name list: A list of name parameters, separated by commas.

TLA expression: A parenthesized TLA expression (see section 6.2).

Instantiation lists: Closely related to the instantiations used in LP, a comma-separated
list of pairs n <- t where n is an identifier and t a parenthesized TLA expression.

7The interactive front-end also supports a ‘post-order’ mode for doing this automatically, see sec-
tion 8.4.



Quoted string: A string inside double-quotes (" . . . ") containing any ASCII characters
other than ".

The parameters given should match the parameter specifications in the method definition
with respect to their kind, number, and position within the parameter list. Some of
the parameter kinds may however match more than one parameter specification, as will
become clear.

The Goal, Step, Hyp, and ContraHyp parameters refer to equations and conjec-
tures in the proof where they appear, with the following interpretations (n and m are
arbitrary integers and i the level of the step where the method parameter appears):

Goal: The current conjecture.

Step: All previous steps, lemmas, and theorems, in the scope of the method application.

Step<n>: All previous steps on level n (i.e. with a label beginning with <n>) in the
current scope.

Stepm: The step in the current scope with label <i>m.

Step<n>m: The step in the current scope with label <n>m.

Hyp: The implication or case hypotheses of the current step.

Hyp<n>: The implication or case hypotheses of level n in the current scope.

Hyp.m: Same as Hyp, but referring only to hypothesis number m.

Hyp<n>.m: Same as Hyp<n>, but referring only to hypothesis number m.

ContraHyp: The contradiction hypothesis of the current step.

ContraHyp<n>: The contradiction hypothesis of level n in the current scope.

6.9.2 Built-in methods

TLP currently supports three built-in tactical methods. The purpose of these is to direct
the verification back-end into using a special inference technique to complete the proof in
which they appear. As TLP use LP as its main back-end, it is not a coincidence that the
tactical methods are very similar to the main backward inference methods of LP:

By-Cases: This is the method described in section 6.8 above, which ends a case proof
(a proof using the disjunction elimination rule) by creating a new goal being the
disjunction of all the special cases used above it on the same proof level.

By-Implication: This ends a proof of a current goal being an implication A ⇒ B, in
the same way as if the goal Assume A Prove B was inserted explicitly (which is
really proving the goal by the implication introduction rule).
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By-Contradiction: This similarly creates the new goal False after assuming ∼ A, where
A is the current goal. This corresponds to the traditional Gentzen style rule False:

(¬A)
false
A

The other built-in methods are:

By-LTL: In spite of the resemblance of the tactical methods above, this is not really a
method, but rather a directive telling TLP to handle the current goal by automatic
LTL (linear-time temporal logic) checking. As the LTL checker does not need direc-
tions, By-LTL should always be the only method application in a proof step (other
applications will be ignored).

Do: This is the only primitive method for producing ordinary text input to the back-
end. Do takes an arbitrary number of parameters of arbitrary kind, and processes
these according to their kind. Parenthesized TLA expressions given as parameters
are thus translated according to the encoding of the used back-end, while name
parameters and quoted strings are copied directly to the back-end. Name lists and
instantiation lists may be treated in different ways with respect to the back-end; the
current LP translations generate space-separated name lists and LP instantiations
from instantiation lists.

6.9.3 User-defined methods

User-defined methods can be defined anywhere in a TLP file, and used anywhere below
the definition. It is very common, however, to put the definitions in a file of their own
(often called methods.tlp), to be included in the beginning of all files containing proofs
(i.e. by the directive %-Include methods), allowing you to use the same methods in all
proofs, and as an important extra benefit, to change and add definitions of methods while
working interactively on a proof.

A method definitions section begins with the header Methods and may contain any
number of method definitions. A definition begins with a method header and ends with the
keyword End. The header consists of a unique method identifier followed by a sequence
of keywords and parameter specifiers ended by the word is.

The method body , between the header and End, is simply a list of method applications,
differing from the ones used in proofs by that they may contain references to the method
parameters.

Below we show the definitions of two of the most common methods for reasoning
with LP, Expand and Instantiate, and a method, UseTempFact, that is often used in the
concluding steps of a temporal proof:



Methods

Expand #nl in #nl is
Do normalize #2 with #1

End

Instantiate #nl with #il is
Do instantiate #2 in #1

End

UseTempFact #nl is
Passify #1
Instantiate #1 with σ <- σc

End

The ‘in’ of the first definition, and the ‘with’ of the second are keywords, which serve
merely mnemonic purposes, making the applications more easily understandable. The
parameter specifiers indicate the kind of parameter expected at each position, and thus
how parameters should be handled in the translation. Options are:

#n: Name, i.e. the name of a definition, rule, equation, conjecture, or hypotheses. When
generating LP code, no translation is done on parameters that are ordinary method
identifiers (which may contain letters, digits, and the special characters ‘_’ and ‘*’),
while special Step, Hyp, ContraHyp, and Goal-parameters are translated accord-
ing to the context as described in section 6.9.1. For variable and constant names it
is more correct to use the #t specifier (see below), to ensure correct translation.

#nl: Name list, i.e. a list of names as above, separated by commas. Each name is handled
as a name parameter, while the list itself may be processed in different ways. In the
current LP translations, a space-separated list of the given parameters is generated.

#t: A TLA expression. The parameter should be a single alphanumeric identifier, or a
parenthesized compound expression. This is always translated according to the en-
coding in the current back-end. (This means that rigid variables may be instantiated
with constants when the application appears inside e.g. a case proof.)

#f: A so-called quantifier function name used in connection with quantified, lambda, and
set expressions (see section 6.2.7). This differs from an ordinary name in the way it
is translated; in LP function names are thus given a special prefix ‘f_’.

#fl: A quantifier function name list, separated by commas.

#il: An instantiation list. This is closely related to the instantiations used in LP; an
instantiation list is a comma-separated list of pairs n <- t where n is a name and
t a TLA expression, handled as described above (see #n and #t respectively). The
translations in LP contain the appropriate code to instantiate a rule or equation
accordingly.

E.g. Expand is defined to take two lists of names (of rules) and, in LP, normalize the
rules indicated by the second list with the ones of the first. (If the first list contains names
of definitions, this means ‘expanding’ identifiers in the rules of the second list by these



g g

definitions, thus the name.) In the definitions of Expand and Instantiate, the method
body is just a single Do-application.

Other examples can be found in the standard methods file supplied with the TLP
distribution in the “base” directory, also shown in appendix C.

6.9.4 Using methods outside proofs

Sometimes it’s useful to give directions directly to the back-end from within a TLP script.
In LP, we might e.g. be interested in making certain facts active, using a non-default
ordering, or even asserting facts that we haven’t been able to specify otherwise. This
is also done by methods. When you want to apply a method outside a proof, you need
to specify which back-end is to receive the generated output. Currently, you can direct
output to the Larch Prover only, by using the method-headers Act and Temp for action
and temporal reasoning respectively. Thus, to specify an alternative ordering of rules in
the temporal environment before doing a proof, you could write

Temp
Do "set ordering left-to-right"

End
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The translator

The TLP translator is the the tool that parses the TLP specifications and proofs, checks
syntax and sort correctness of constructs and expressions, and generates output for the
different verification back-ends. It can be run either from a shell or from the interactive
front-end (see chapter 8). When run from a shell, it is called as just ‘tlp’, taking as
parameters a number of options and a list of files to translate. The TLP files should all
have the extension ‘.tlp’, and the generated output will be written to files with the same
name as the input files, but with the ‘.tlp’ extension substituted by either ‘_act.lp’,
‘_temp.lp’, or ‘_ltl.t’ depending on which verification back-end the output is aimed
for.

The translation of a TLP file is done in a number of passes:

• The file is parsed, creating an abstract syntax tree representing the contents. Files
included by an Include directive (and files included transitively by those files, etc.)
are included as if they were part of the file, at the point of the directive. The
parser will try to recover from any syntax errors, as it produces information on the
standard output.

• The file contents, represented by the abstract syntax tree, are sort checked (see
section 7.2 below). To do the sort checking, we need to know the sorts of identifiers
declared in files that the current one depend on, i.e. any files mentioned in a Use
directive in the parsed file, or, transitively, in a Use directive in any of those, etc.
We call these files the ancestors of the current file. To obtain the sorts of identifiers
declared in the ancestor files, we parse each of them, and extract from the generated
abstract syntax trees, the declared sort information for all declared identifiers. We
do not do any sort checking on the ancestors. From the sort checking we generate
a table of sort information for all identifiers declared in the parsed file and any of
its ancestors. Information about errors is written to the standard output.

• If the file could be parsed and the sort checker didn’t detect any errors, code is
generated from the abstract syntax tree for each of the back-ends (or those specified
explicitly by options given on the command line). The sort information is used to
determine which declarations and definitions to generate code for. With the help of
the sort checker, using the sort information table, it is determined which parts of a
proof belong to action and temporal reasoning respectively, so that the right steps
are encoded for being verified by the respective back-ends.
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The translator is written in the New Jersey dialect of Standard ML [27, 3].

7.1 Parsing

The parsing is itself done in two passes. The lexer generator ML-Lex [2] and the parser
generator ML-Yacc [33] have been used for implementing the first pass. As part of the
TLP language, namely the indentation sensitive formulas described in section 6.2.9 on
page 66, is not context-free, the Yacc generated parser cannot do the complete analysis
itself. Thus we let the first pass generate an intermediate syntax tree, in which indentation
sensitive formulas are just indicated with their level of indentation. A second pass then
parses this information and generates the final syntax tree.

The Yacc generated parser is able to do some error correction on-the-fly, and produces
error information, indicating the position in the input file where the error appeared. The
second pass, however, does not produce information about where so-called ‘offside’ errors
appear, but just indicates the kind of error that was detected.

7.2 Sort checking

The translator checks that all parts of a TLP specification are sort correct, so that any
identifier declared to be of a given sort is defined to equal an expression of this sort or
any of the sorts below it in the sort ordering (see figure 6.1 on page 61). It also checks all
uses of parameterized variables and constants, as well as uses of user declared functions,
making sure the right number and kind of parameters are being applied.

7.3 Translator options

(+/-)a<directory>: A + indicates that the translator should generate output for use by
the LP back-end, for doing action reasoning. The translator will not generate any
code for definitions containing temporal expressions, and inside proofs it singles
out the steps that can be determined as dealing solely with action reasoning and
generates code for these alone. If a step contains the method By-LTL on outermost
level, the code generated will be an assertion that the goal of the step is valid,
otherwise it will be an attempted LP proof. The output will be written to the file
with the same name as the translated file, but with ‘_act.lp’ substituted for the
original ‘.tlp’ extension. If a directory is supplied, the file containing the action
code is placed there – the directory can be specified relatively to the current one.
+a is the default, so that without any options, action code will be generated in a
file in the current directory.

(+/-)t<directory>: Similarly, a + here indicates that code should be generated for the
LP back-end, for doing temporal reasoning, and written to a file with the extension
‘_temp.lp’, in directory if present. The translator generates code for all definitions,
declarations etc. All steps that have to do with action reasoning only, or which are
proved by the method By-LTL, are asserted in the output, while ordinary temporal
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steps are translated to proofs. -t is the default, so that no temporal code will be
generated unless you explicitly ask for it.

(+/-)l<directory>: Just as the two previous options, indicating whether to generate
code for the linear temporal logic checker. The only code that is generated relates
to the goals of steps (either temporal or action) that contain the By-LTL method
on their outermost level. Output goes to a file with extension ‘_ltl.t’, and the
default is -l.

(+/-)i: The i option indicates whether to automatically generate so-called quantifier rule
instantiations. This means to instantiate rules such as ProveForall and UseForall,
whenever a quantified expression (or set expression) is used. This can be helpful,
as it will eliminate the need of explicitly making instantiations by methods inside
proofs. It also can cause some problems relating mostly to efficiency in LP, and so
it is an approach that has mostly been abandoned. For small and simple proofs
it can still be used, if desired. Automatic instantiation applies only to the action
reasoning code, and the default is not to generate any instantiations.

(+/-)b: The b option indicates whether to generate barred versions of all definitions and
flexible variable declarations. This is needed when you have specified and want to
reason about a refinement mapping. The barred versions will be exactly the same
as the non-barred, but with the prefix ‘Bar’ added to all non-constant identifiers.
Barring applies only to the LP code environments, and the default is not to generate
barred versions.

(+/-)c: In the newer versions of TLP, case steps are proved as deduction rules in LP,
solving some problems with the old style, using ordinary implications (with proof
by implication). To make sure that old proofs will always work, it is still possible
to prove case steps as implications. This is done when you specify -c.

(+/-)r: LP sometimes has problems with finding acceptable orderings of new equations.
This can be improved by specifying so-called registering hints . These assist LP in
giving the identifiers different ‘heights’, by specifying pairwise relationships. If an
identifier f is higher in the ordering than g, then LP will try to order equations con-
taining f and g on either side into rewrite rules that replace the expression contain-
ing f to the expression containing g. The translator usually does this automatically
by assigning different levels to different kinds of identifiers. Sometimes, however,
adding registering hints can be a burden, making LP spend enormous amounts of
time on otherwise simple orderings. -r turns the generating of registering hints off
so that this can be avoided. The default is to generate the hints.

(+/-)p: The p option specifies whether, in LP, newly proved theorems and lemmas should
be made ‘passive’ and ‘immune’. +p is the default, as keeping as many facts as
possible from interfering with the reasoning you are doing is the recommended way
to work in TLP. When in a proof you need to use a lemma that you proved before,
you will know that you need it, and indicate this by instantiating it or making it
active at that point in the proof. Making all theorems and lemmas active (and non-
immune) can make some things go through with less instructions, but also often



makes the verification slower and harder to understand, and sometimes even breaks
your line of reasoning by rewriting things you didn’t want rewritten.

(+/-)o: This last option is only useful inside the TLP interactive front-end. +o specifies
that proofs should be verified depth-first, pre-order, meaning that you verify each
step from its substeps, before you verify the substeps, while the default, -o, specifies
that proofs should be verified depth-first, post-order, meaning that the substeps are
always verified first. Post-order is the way LP does things by ‘birth’, while pre-order
is accomplished by a more complicated translation, where the substeps of a proof are
first asserted, the outer step verified, after which the proved facts are deleted and
the whole thing redone, now, recursively, first verifying the substeps in pre-order.
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The interactive front-end

The TLP interactive front-end is the place where you will usually write and edit your
specifications, and incrementally develop and maintain your proofs. It is truly interac-
tive, meaning that you can interact with the TLP translator, correcting syntactical and
semantical errors, and with the verification back-ends, discovering in a step-by-step man-
ner what information needs to be conveyed to have your theorems successfully verified.

It is possible to use the TLP tools without the interactive front-end, by simply calling
the translator from a UNIX shell, and by feeding the generated output to e.g. LP, running
as a batch job – this was the only way to use TLP in its first release. The front-end however
makes things a lot easier, and when constructing large proofs is indispensable.

The TLP front-end is built on top of GNU Emacs, the “GNU incarnation of the
advanced, self-documenting, customizable, extensible real-time display editor Emacs” [32].
Emacs is first of all an editor that makes it possible to write and edit TLP specifications
and proofs, but furthermore is useful as an application platform on which it has been
possible to build an advanced interface to the TLP translator and the verification back-
ends. The TLP front-end is even more than this, as it also handles the linking of groups
of TLP files depending on each other, assisting you by re-translating and re-verifying the
necessary files in the right order, in all different verification modes, whenever any changes
have been done. It should be noted that you need to be acquainted with Emacs to be
able to use the features of the TLP interface fully. Some knowledge of the basic Emacs
concepts is therefore also required for understanding this chapter.

8.1 Getting started

The TLP front end is started simply by loading a TLP file into Emacs, or by opening a
new file with the extension ‘.tlp’.1 Emacs will switch to the major mode “tlp-mode”,
indicating this by saying something like “(TLP:act)” in the mode-line. You can now edit
your specifications and proofs as in any ordinary Emacs buffer, having at your disposal
a few extra features and commands for moving around, inserting common constructs,
indenting and filling sections of proofs, etc. (see the section on editing commands below).

1TLP should be properly installed, and Emacs set up so that it automatically switches to tlp-mode
whenever a TLP file is loaded – see appendix E for instructions on how to do this.

87



When you are ready to start reasoning with TLP, you just type ‘C-c C-c’2, executing
the function ‘tlp-command’ on the file visited in the active buffer, which we will refer
to as the master-file. Emacs will then ask you for a command to perform, indicated by
a unique letter. If you type a question mark or press the space-bar, Emacs will open a
‘completions’ buffer, telling you which commands are available, as shown in table 8.1.

Command Effect
a - verify all modes Starts verification of the master file succes-

sively going through all available verification
modes.

m - make test Just shows what would be done if you exe-
cuted a verification command.

p - toggle verification mode Switches to the next mode of verification (the
modes are action reasoning, temporal reason-
ing, and LTL checking).

q - quit Quits any ongoing verification.
r - relabel proofs Relabels the proofs in the current buffer.
t - translate current mode Translates the file, displaying any syntax and

sort errors.
v - verify current mode Starts verification in the current verification

mode.

Table 8.1: The main TLP commands

If you type a ‘v’ followed by ‘return’, a verification session translating and verifying
the specifications and proofs of the file you are visiting will be started. You will be asked
to correct syntax and sort errors, and eventually, to supply information to the back-
end, assisting it in successfully verifying your proofs. Whenever the back-end gets into
trouble, trying to verify a step, it will stop, supply you with information on the current
proof status, and let you do any changes you think necessary to make the step go through.

8.2 Editing TLP files

The primary objective of the Emacs TLP mode is to provide an environment for interactive
reasoning. The mode, however, also contains a number of commands and functions that
make editing TLP files an easier task. The major commands that are available are listed
in table 8.2; other commands can be found by typing ‘C-h b’ in a TLP buffer, listing
the mode-specific key bindings. First of all there are commands for indenting and ‘filling’
TLP specifications and proofs according to the TLP standards. Changing these standards
is possible through an array of variables declared in the file tlp-local.el under the
Indentation header. A few commands are available for moving around in proofs, which
is helpful when working on large proof steps. Most useful of them all is probably the

2‘C-c’ is standard Emacs nomenclature, meaning ‘control-c’, i.e. the action where you press ‘c’ holding
down the ‘control’-key.
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command invoked by typing ‘C-c C-d’ for inserting complete syntactical units, using the
dmacro package by Wayne Mesard, supplied as part of the TLP release.

Key event Effect
tab Indent the current line according to the standard TLP inden-

tation style.
M-C-q Indent the current step.
M-q Fill the current paragraph. Works properly for indented com-

ments, which is very helpful when writing ‘literate’ proofs, as
e.g. the TPhi proof of the Spanning-Tree Example supplied
with the TLP release.

M-a Move to the beginning of the current step. Will move to the
previous or encapsulating step, if at the beginning of this one.
The beginning is defined as the beginning of the line containing
the “Theorem” or label.

M-e Move to the end of the current step, or more precisely, to the
beginning of the first line after the current step. Will move to
the next substep of the current step if such exists. The end of
the current step is defined as the end of the line containing the
“Qed” of the current step.

M-C-h Mark the current step as the Emacs region, moving to the
beginning.

C-c C-d Insert a syntactical unit, using one of the TLP dmacros.

Table 8.2: Special TLP editing commands

8.2.1 Using the dmacro package

The dmacro package must be properly installed on your system for TLP to use it. See
appendix E for instructions on how to do this. When this has been done and you have
declared the tlp-dmacro variable in tlp-local.el with the initial value ‘t’, you will be
provided with a set of commands that inserts pieces of syntax with or without interaction.

Already when you enter a new, empty file, with the necessary ‘.tlp’ extension, you
will see an effect of using the dmacros, in that a header is inserted in your buffer, looking
something like

% Filename: phi.tlp
% Created: 5 September 1995

Name

%-Use
%-Include

with the cursor positioned right after the Name specifier. If you want to change the
default header, you can do so by making a private copy of tlp-dmacro.el and edit the
string defining the ‘tlphead’ macro.



When you are editing a TLP file, you insert syntactical units by typing ‘C-c C-d’
executing the TLP insert dmacro command. This will always ask you for a macro to
insert, by displaying “Dmacro: ” in the minibuffer. If you type a question mark or hit
the space bar, a completions buffer will be opened listing the available macros, currently
the ones shown in table 8.3. Typing one more question mark also shows a documentation

Macro Documentation
INV1.1 Insert an instantiation of the INV1 rule (without assumptions).
INV1.2 Insert an instantiation of the INV1 rule (with an action

assumption).
INV1.3 Insert an instantiation of the INV1 rule (with a predicate

assumption).
INV2 Insert an instantiation of the INV2 rule.
SF1 Insert an instantiation of the SF1 rule.
SF2 Insert an instantiation of the SF2 rule.
WF1 Insert an instantiation of the WF1 rule.
WF2 Insert an instantiation of the WF2 rule.
actcode Insert some LP-code for the action reasoning back-end.
action Declare an action.
aproof Start a proof.
assumpstep Insert a new Assume Prove step on the current level.
bcomment Insert a bracketed comment.
casestep Insert a new Case step on the current level.
elcomment Insert a comment at the end of the current line.
include Insert an Include directive.
lemma Propose a lemma.
method Declare a method.
predicate Declare a predicate.
starproof “Star” the current proof.
statefunction Declare a statefunction.
step Insert a new proof step on the current level.
tempcode Insert some LP-code for the temporal reasoning back-end.
temporal Declare a temporal expression.
theorem Propose a theorem.
tlphead Insert a TLP header.
transitionfunction Declare a transition function.
use Insert a Use directive.

Table 8.3: TLP dmacros

string, stating what each macro does. You should then type the first significant letters of
the macro you would like inserted, followed by a ‘return’.

Macros for inserting TLA rules are probably the most helpful, as you don’t have to
remember what names are used for the different variables, and as they insert a description
of the rule in a comment, displaying the derivation you are performing. The macros for
inserting substeps are also quite handy, as they always give the newly inserted step the
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correct label, when inserted in the right context. You can add new macros or change the
existing ones by editing your private copy of tlp-dmacro.el.

8.2.2 Relabeling files

The relabeling facility is meant for resetting the labels of all proof steps, whenever changes
have been done that make these incorrect. If you, for instance, move a step from one place
to another, or copy a substep of one proof to another, you just need to use the relabeling
command to get all the labels updated correctly. The most significant advantage of using
this function, besides saving you time by doing the trivial updating of the proof labels
themselves, is that it also remembers to change references to steps and hypotheses inside
method calls, so that proofs should continue to work. The way this works is by replacing
references such as Step<i>k and Hyp<i> by Step<j>l and Hyp<j>, if the reference before
the relabeling referred to a step with label <i>k which was changed to <j>l; similarly for
references such as Stepk and Step<i>.

Relabeling is done with the command ‘tlp-relabel’, which is invoked by typing ‘C-c
C-c r return’.

8.2.3 Highlighting TLP keywords

With the hilit19 package that is a part of Emacs 19 (the newest Emacs release) it is
possible to have files highlighted in different ways, based on the file syntax. By highlighting
is meant some sort of emphasizing of keywords and syntactical constructs, either by use of
different fonts or, on displays that support this, by different colours. The TLP front-end
comes with a setup for highlighting keywords such as Predicates, Actions, Proof, as
well as proof labels and comments. It can make proofs a lot easier to read and is therefore
recommended. Its use is automatic when the installation is done as requested.

8.3 Translating TLP files

The translation command does not do any verification, but can be used to check the syntax
and sort correctness of specifications and proofs. Executing the translation command
starts the TLP translator, which parses and sort checks the master file and generates
output for the current verification mode. Emacs first splits the frame into two separate
windows, with the master file displayed in one and the so-called ‘make’ buffer displayed in
the other. The TLP ‘make’ buffer is used for showing what actions are performed during
translation and verification, and also shows any information produced by the translator.

If the file in question contains any Use directives (as most do) the files quoted by
these, and files quoted recursively by directives in the used files, will be parsed as well.
This is something the translator does automatically for figuring out the sorts of declared
and defined identifiers, that are used in the master file. If there are Include directives,
the quoted files are included, and thus also parsed.

If syntax errors are found in one or more of the parsed files, Emacs will switch to the
file containing the first error, put the cursor at the place were the error seems to be, and,
if possible, highlight the lexeme that the translator didn’t like. It should also tell you



what the problem seems to be in Emacs’ minibuffer. You are then able to edit the file,
and when done you can go to the next error by pressing ‘M-n’3, and so forth.

The translator is not yet very good at locating syntax errors that appear to be caused
by wrongly indented formulas. When such errors are found, Emacs will instead switch to
the ‘make’ buffer, displaying the error message of the translator. This should hopefully
be enough for you to figure out what the problem is and to fix it.

If sort errors are detected, Emacs also switches to the ‘make’ buffer, the translator
giving a detailed description of what was wrong. A sort error will appear in any expression
that cannot be sort-checked correctly with respect to the sort it is declared to have, or
should have from the context. Undeclared variables, constants, or operators also lead to
sort errors, as the sort of the used identifier is not known to the sort checker.

8.3.1 Options to the translator

To change the verification mode, so that the translator will generate output for one of the
other modes (and back-ends) you should use the command ‘tlp-toggle-sort’, which can be
done inside TLP buffers by typing ‘C-c C-c p return’.

The other options to the translator are also reachable from inside the front-end: ‘tlp-
instantiating’ is the command for toggling the ‘-i’ option, which allows you to have quanti-
fier functions instantiated automatically; ‘tlp-barring’ toggles the ‘-b’ option, controlling
the generating of barred definitions (for refinement mappings); ‘tlp-registering’ toggles
the ‘-r’ option, controlling the generating of registering hints in LP; and ‘tlp-immunizing’
toggles the value of the ‘-p’ option, controlling whether to make new theorems immune
inside LP. The command ‘tlp-proof-order’ switches between ‘pre-order’ and ‘post-order’
verification, which is only interesting while doing interactive verification; this is described
in section 8.4.3. Commands like these are all invoked from an Emacs buffer by typing
‘M-x’ followed by the command name.

The translator options can also be set up to have different default values than the ones
used by the translator and the front-end. To do that you should edit the file tlp-local.el
as described in appendix E.4.

8.4 Verifying TLP files

Executing a verification command, either ‘verify current mode’ or ‘verify all modes’ starts
a TLP make session. At the same time, it makes all TLP buffers switch to verification
mode, which is signified on the mode-line, by the addition of ‘-verifying’ right after the
verification mode indicator.

When starting a make session, the front-end will detect if the master file or any of its
ancestors (files that it depends on, through the Use directive) have changed since their
latest verification, and act accordingly to this information. Successfully verifying the file
means that it and all the files it depends on are verifiable in their current state, meaning
that the files are all syntax and sort correct, and that all contained proofs are verifiable
with the given assumptions. Verifying in ‘current mode’ means verifying only parts of
the proofs, namely the parts that are to be verified in the verification mode specified

3‘M-n’ means ‘meta-n’, which is typed either by holding down the ‘meta’-key and pressing ‘n’ or by
pressing ‘escape’ and then ‘n’.
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by the variable tlp-verification-mode and shown on the Emacs mode-line. The existing
modes are ‘act’ for action reasoning with the Larch Prover, ‘temp’ for temporal reasoning
with the Larch Prover, and ‘ltl’ for linear temporal logic checking. Verifying ‘all modes’
means verifying in all existing modes, one by one, thus ensuring that everything has been
completely verified.

8.4.1 The make session

The way a make session is performed is not completely obvious. When we want to verify
a file, we first create a tree describing the dependencies of the file. Let D(m) be the
dependency tree of the file m and N(m) the set of nodes that appear in the dependency
tree D(m). Also, let T\{a1, . . . , an} be the tree T from which we have cut off all branches
to subtrees, the roots of which are in the set {a1, . . . , an} (if the root of T is itself in the
set, then T\{a1, . . . , an} is the empty tree).

If the file we want verified is called f , and its Use directive looks like

%-Use m a1 . . . an

then its dependency tree, D(f) is defined recursively as

f

D(m)

D(a1)\N(m)

D(a2)\(N(m) ∪N(a1))

D(an)\(N(m) ∪N(a1) ∪ . . . ∪N(an−1))

�
�
�
��

A
A
A
AA HH
HH

H

where we ignore any of the root’s n rightmost branches that point to empty subtrees. We
will refer to m as the mother node of f , and to a1, . . . , an as its aunts. Now, with this
dependency tree, we are able to describe what should be done to make the verification of
f up to date. First, we should verify m recursively. When this has been done, we should
look for a frozen image of f . If an image exists, and

• the image is newer than f itself;

• the image is newer than the image of the mother file, m, (which must now exist);
and

• the image is newer than all files of the aunt subtrees, the subtrees directly below f
with roots a1, . . . , an;

then we are finished, finding that the image file is up to date, and that no new verification
of f thus has to be done. If, on the other hand, any of the above conditions does not hold,
we should re-translate and verify the file, creating a new image. How this should be done
is different in the different verification modes. Thus, when using the LTL checker, we just
have to re-translate f and run the checker on the output (the LTL checkable parts of a
proof do not depend on formerly proved facts etc.). When using the Larch Prover, the
verification may depend on facts and assumptions from any of the files in the dependency



tree, however, so we need to verify these first. This is done by first loading the image of
the mother file and then executing the files of the aunt subtrees (that f depends on). The
files of the aunt subtrees are executed in the order we get by going through the subtrees
successively from left to right, visiting each subtree in a depth-first, post-order fashion.
Each file we encounter is re-translated and executed in the ongoing Larch Prover session.
Finally, we re-translate and execute f , making a frozen image when and if the execution
has been successfully completed.

If the file contains a

%-Bottom

directive, this means that none of the files in the Use directive should be interpreted as
the mother node – they are all aunts in the sense described above. This means that even
though there exists a fresh image of the the file that would otherwise be interpreted as
the mother file, the translation and verification of this file will always be redone. The
advantage, on the other hand, is that no images of the mother file or any files that it
depends on will be created in the process. As images created by the Larch Prover have
sizes in the order of megabytes, this may be desirable especially for avoiding creation of
images for the most basic files, the execution of which will in any case be very fast.

8.4.2 Verification interaction – building proofs

It is possible to write correct, verifiable proofs from scratch and have them verified as
‘batch’ jobs from inside the TLP front-end. If the proofs contain much more than a few
steps, it is a very difficult task, though. More common is to build the proofs step by
step in a top-down, bottom-up, or mixed style, interacting with the back-end to better
understand what is needed to make the verification go through.

The TLP front-end is built to provide an interactive environment, in which you are
able to do just this. A common way of building a proof is to begin with nothing more
than a proof outline, containing two or three substeps that you know will be needed.
You then start verification, by executing e.g. the ‘verify current mode’ command. After
making sure that all files that the master file depends on are verified and up to date, the
master file is translated and verification is begun, sending the output to the mode-specific
back-end. When the back-end reaches a step that it cannot verify successfully with the
information currently accessible, verification is stopped, and a message describing the
problem is printed in the Emacs minibuffer.

Emacs will then split the frame into three windows (sometimes just two, depending
on your default setup). The first one will contain the TLP file in which the problem
appeared. This is usually the master file itself, but could also be any of the files that it
depends on, given that these were changed since their last verification, or never verified at
all. We will refer to this file as the source file. The second window displays the so called
proof correction buffer and is the place where any changes and additions to the proof
should be done – when in verification mode, no direct changes to any of the files involved
are allowed. The third window, if present, displays the output from the back-end in use,
and will be used for interactive purposes when trying to get the proof completed – this is
where you will get information about what hypotheses have currently been assumed, etc.

The proof correction buffer may contain part of the proof where a verification problem
was encountered. Whether it does this depends on the verification mode and the kind of
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the problem.

Problems in ‘act’ and ‘temp’ mode:

There are a number of different error messages that you may see.

Step could not be verified: The Larch Prover is not able to reduce the current goal
to true, using the active rewrite rules and deduction rules. The line in the source
buffer containing the Qed that LP wasn’t able to confirm, will be marked by either
a verification error arrow *>, or by a different background colour, if your system
supports this. The proof correction buffer will be left empty, for you to add new
method calls or substeps to the current one. To figure out how to go on, you can get
information about the current proof status, the (reduced) goal that should be proved,
the (reduced) hypotheses that have been assumed at the current point in the proof,
etc., by issuing display commands from any of the TLP buffers.4 These are invoked
by typing the usual ‘C-c C-c’, which will now give you a new list of possibilities,
as shown in table 8.4. The commands execute standard LP display commands and
output listings of rewrite and deduction rules that are currently known to LP. The
output is thus in the format of the LP encoding of TLP expressions, being different
for action and temporal reasoning. A translation back to TLP expressions together
with a system that could better select the right hypotheses etc. for display would
be preferable but has not yet been built.

Now to what you can do. If you find that the step should be verified by adding
one or more methods before the Qed, you should just write these in the proof
correction buffer. You can also add new substeps, or do both, just as you would
type the contents of a proof step in the major (non-verifying) mode.

If you on the other hand find that something has been done wrongly, that some
methods of the step should be deleted or changed, or if the goal itself is wrong,
you should ask TLP to widen the proof scope. This will tell LP to forget about
what it was you were currently trying to verify, and will let you edit the complete
step where the problem appeared – thus widening the area, or scope, in which you
are able to work. The proof correction buffer will reflect this by now containing the
complete step. The new scope will also be marked in the source buffer by moving the
verification error arrow to the beginning of the step, or by colouring the complete
step. The widening command ‘tlp-widen-correction’ is normally executed by typing
either ‘C-c C-c’ followed by a ‘w’ and return, or just ‘C-c C-w’ for short. Consecutive
widening commands will widen the scope level by level, letting you do changes to
the whole proof structure without having to restart verification.

When you are done with your changes, you resume the verification session, con-
tinuing from the beginning of the current proof scope, by the ‘execute-correction’
command, invoked by ‘C-c C-c x return’ or simply ‘C-c C-x’. This will ask you if
you want your changes committed, to which you would usually answer with a ‘y’ for
yes. The source buffer will then be updated with your changes, and the verification
session resumed. In the standard setup, the changes in the source buffer will also

4Right after the problem is detected, the goal that could not be properly verified will always be shown
in its reduced form in the Larch Prover buffer.



automatically be indented accordingly to the context, relabeled (see section 8.2.2),
and rehighlighted.

If you want to save some changes without resuming, you can do so by ‘tlp-commit-
correction’, typing ‘C-c C-c c return’. You have to do this e.g. when you want to
widen the proof scope and don’t want your changes to be lost.

If you don’t know how to solve the problem and just want to quit the verification
session, you should do so by typing ‘C-c C-c q return’ or just ‘C-c C-q’, executing
the command ‘tlp-quit-correction’.

Contradiction could not be verified: You have tried to do a proof by contradiction
(using the By-Contradiction method). The Larch Prover, however, is not able
to get a contradiction from the hypotheses. Your options are as in the case of an
ordinary step not being verified.

Cases could not be verified as exhaustive: You have attempted to prove a step by
considering a number of cases, finally applying the method By-Cases which implic-
itly uses the disjunction elimination rule of natural deduction. The Larch Prover,
however, is not able to show that the cases you have chosen are exhaustive, meaning
that the disjunction of all the case hypotheses reduces to true. Again you should
continue as in the case of an ordinary step not being verified.

Step has been verified – expecting a Qed: A step was verified at some point where
you did not expect it to be. The Larch Prover is not able to discard information that
it doesn’t need to get a step verified and will complain if there is any disagreement
about when a proof should be complete. You may have forgotten that some rule
is already active, or you may just have overlooked some trivial fact. When this
happens, the proof scope is automatically set to the part of the step that seemed to
be superfluous, the proof correction buffer thus displaying the steps and methods
that LP didn’t need. Often, you would just delete the contents, accepting what
TLP tells you, and resume the session by the execute correction command. As
usual, you can also investigate the current status of the proof and if needed, widen
the proof scope to do changes. If you choose not to do anything, you can just resume
verification as usual, and TLP will forget about the superfluous part this time. If
the rest of the proof gets verified, you still end up with a proof that is correct – but
re-verifying it will again complain about the extra instructions.

Don’t understand <text> or perhaps a missing %-Use directive: Some method
that you used generated input to LP that it didn’t understand. You may have
mistyped a named fact or, as the second error message proposes, tried referring to
a rule that has not been loaded (e.g. referring to a quantification rule, forgetting to
‘use’ quant_act.lp).

Problems in ‘ltl’ mode:

The formula is not valid: In LTL checking mode there is only one verification problem,
as long as the formula that is being checked is small enough to be handled by the
system, namely that a step is found that was not valid. When this happen, the
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proof scope is automatically widened to contain the erroneous step, so that this can
be changed and a new try made.

BDD node limit exceeded: This is an internal error message from the LTL checker.
The formula can not be successfully validated, as it involves too many states to be
handled by the system.

If you commit new syntax or sort errors while editing the proof correction buffer,
you will be notified of this as usual. You will be asked to fix the errors inside the proof
correction buffer, so that you don’t need to quit the verification session.

Command Effect
x - execute correction Commit the changes, or insert the additions,

as shown in the proof corrections buffer, and
resume verifying the buffer.

c - commit correction Just commit the changes or additions, so that
the TLP buffer is up to date.

w - widen scope Widen the proof scope one level, letting you
edit the complete proof step surrounding the
point where you are currently editing.

q - quit verification Discard the latest changes and quit the veri-
fication session.

h - display hypotheses Display the (possibly rewritten) hypotheses
of the currently attempted implication, case,
or contradiction proof, in the LP buffer.

p - display proof Display the proof status in the LP buffer.
g - display goal Display the current (possibly rewritten) goal

to be proved, in the LP buffer.
f - display facts Display all facts proved until know, together

with all hypotheses.
a - display all Display all facts currently known to the

Larch Prover.
d - display Query the user for some named fact or proof

rule to display.
l - execute LP-code Query the user for some LP code to execute,

without any interference, in the LP buffer.

Table 8.4: The TLP verification mode commands

8.4.3 Pre-order verification

Usually, when we verify a TLP file, the commands supplied to the verification back-end
are issued in such a way that the conjectures and sub-conjectures will be verified one after
the other in a straightforward fashion following the order in which they appear in the file.
This also means that we always try to verify sub-conjectures before the conjectures that
rely on them – a process that we usually refer to as bottom-up.



When working on proofs it is often more convenient to use a top-down style of develop-
ment, where we assume that sub-goals are provable as we are verifying the containing step,
and postpone the verification of the sub-goals till after the main step has been finished.

Fortunately it is possible in LP to assert the validity of formulas, so that we may
indeed use it to simulate a top-down proof style as described. We simply let the translator
generate output in which each sub-step is first asserted and the containing step carried out,
after which all facts are deleted and the substeps (and then, once again, the containing
step) verified. This verification process is clearly more complicated, with most steps
being verified twice. The important point, however, is that the user will see no extra
work being done, and will only have to worry about proving each step once. The front-
end will work exactly as usual; the only difference being that when a verification problem
occurs, not all steps above the point where the problem appeared will necessarily have
been successfully verified. On the other hand, all steps enclosing the problematic one will
have been successfully verified on the basis of the current one.

Viewing the proof as a tree, the usual, bottom-up style of verifying the proof corre-
sponds to a depth-first traversal in which the nodes (i.e. conjectures) are visited in a
post-order fashion. We thus call this post-order verification. Top-down style verification
similarly corresponds to a depth-first traversal where nodes are visited in pre-order, why
we refer to it as pre-order verification. It is possible to switch between pre- and post-order
verification with the ‘tlp-proof-order’ command.

It should be noted that pre-order verification is only useful when interactively devel-
oping a proof; when the proof has been finished, or if any problems appear, post-order
verification should be used as being the more efficient and reliable.



Part III
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The Increment Example

The Increment Example is the example known from Lamport’s TLA Report [20]. This
example was also described in chapter 3. Here we present the different TLP specifications,
the invariant proofs, and eventually the proof that Program 2 implements Program 1.
Going through all the details from the first invariance proofs of the initial specification to
the correctness of the its refinement, this example nicely illustrates the width of the TLP
system. It as well gives a reallistic picture of the relation between action and temporal
reasoning. Although most of the proofs are concerned with the final liveness theorem of
the refinement, little reasoning is done outside the action reasoning environment. This
serves to illustrate some of the strength we gain from splitting the TLA encodings.

The Increment Example relies on a set of LP rules for reasoning about natural numbers.
We don’t include those here, as we want to focus on the way we do reasoning within
TLA/TLP, while the arithmetic could be done in several ways. Whenever we use one of
the rules, we will however describe what it does. The natural numbers file is Use’d by
the frame file for action reasoning, which is also not included here.

9.1 The TLP specification of Program 1

We begin with the declarations of values, operators, and variables that we are going to
use in our specifications.

declarations.tlp:

Name Declarations

%-Use frame

Values
0, 1, 2
Nat

Operators
+, - : Val, Val -> Val
<< : Val, Val -> Bool

Variables
x, y : Val
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‘<<’ is here the ‘less than’ operator – we can’t use just ‘<’, as this is a reserved symbol in
TLP.

Then follows the specification of Program 1, which is defined under the name Def0.
The specification is straightforward, and identical to the one from the TLA Report, shown
in figure 3.3 on page 27.

def0.tlp:

Name Def0

%-Use declarations

Predicate
InitPhi == (x = 0) /\ (y = 0)

Actions
M1 == (x’ = x + 1) /\ (y’ = y)

M2 == (y’ = y + 1) /\ (x’ = x)

M == M1 \/ M2

Statefunction
v == (x, y)

Temporal
Phi == InitPhi /\ [][M ]_v /\ WF(v, M1) /\ WF(v, M2)

9.2 The safety proof of Program 1

The first part of the safety proof is the proof of the basic invariant that we sometimes
refer to as ‘type correctness’, TPhi , which says that x and y are in the set of the nat-
ural numbers. This is a standard example of an invariance proof, thus containing three
substeps: <1>1 showing that InitPhi implies the invariant, <1>2 showing that the actions
maintain it, and <1>3 concluding from <1>2 that the conjunction of the invariant and the
formula stating that we always execute those actions only implies that the invariant is
always satisfied. From <1>1 and <1>3 we conclude that Phi implies always TPhi .

Step <1>1 is verified by action reasoning, and is done in the usual natural deduction
style, by assuming that InitPhi is satisfied (by some arbitrary state) and showing that
TPhi must then be satisfied as well (by the same state). InitPhi is thus a hypothesis of
the current step, and TPhi the goal. The proof is done by expanding the definition of
InitPhi in the hypothesis, and that of TPhi in the goal. The goal then (in LP) becomes
in(x ,Nat) & in(y ,Nat) while the hypothesis becomes x = 0 & y = 0.1 LP automatically
transforms the hypothesis into two rewrite rules x → 0 and y → 0, whereby it rewrites
the goal to in(0,Nat) & in(0,Nat). The rule NatsBase2 asserts that 0 and 1 are both
natural numbers, and thus finally rewrites the goal to true.2

Step <1>2 is verified in the same way, by assuming TPhi and [M ]v and showing TPhi ′.
As the second hypothesis is a disjunction, M1 ∨M2 ∨ Unchanged v , we split the proof
into cases representing each disjunct. We expand all relevant definitions and, in the cases

1More precisely, the LP goal (hypothesis) is the mentioned goal (hypothesis) followed by ‘== true’;
we will consistently use the shorter form when describing LP terms.

2Again, what it really rewrites to is an identity, ‘true == true’.
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of M1 and M2 , perform the proof by the help of NatRule2, which states that whenever
i u is a natural, then so is i u + 1.

tc0.tlp:

Name TPhi

%-Use def0
%-Include methods

Predicate
TPhi == x in Nat /\ y in Nat

Theorem TPhi
Phi => []TPhi

Proof

<1>1 Assume InitPhi Prove TPhi
Expand InitPhi in Hyp
Expand TPhi in Goal
Qed

<1>2 Assume TPhi, [M ]_v Prove TPhi’

Activate TPhi

<2>1 Case M1
Expand M1 in Hyp
Instantiate NatRule2 with i_u <- x
Qed

<2>2 Case M2
Expand M2 in Hyp
Instantiate NatRule2 with i_u <- y
Qed

<2>3 Case Unchanged(v)
Expand v in Hyp
Qed

By-Cases
Expand M in Hyp
Qed

<1>3 TPhi /\ [][M ]_v => []TPhi
INV1 with pred_I <- TPhi, act_N <- M , sf_f <- v
Qed

By-Implication
Expand Phi in Hyp
UseTempFact Step1, Step3
Qed

Step <1>3 has to be verified within the temporal reasoning environment, and is done
so by simple application of the INV1 .1 rule, a version of the TLA INV1 rule that in LP
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looks as

assert
when (forall σ)

σ |= (pred I ∧ (BAct(act N , sf f) =⇒ Prime(pred I)))
yield σ |= ((pred I ∧ 2(BAct(act N , sf f))) =⇒ Box (pred I))

To improve readability, we will in the following present rules like this in the format used
in appendix B:

|= I =⇒ ([N ]f =⇒ I ′)

|= (I ∧ 2([N ]f )) =⇒ 2(I )

We apply the rule by using the method INV1, which instantiates the rule with TPhi for
I , M for N , and v for f .

We now in steps <1>1 and <1>3 have two lemmas stating the validity of the formulas
that InitPhi implies TPhi , and that TPhi and 2[M ]v implies 2TPhi . Validness is ex-
pressed in the temporal reasoning encoding by stating that any behaviour, indicated by
a free variable, satisfies the formulas. From these lemmas we are able to deduce the goal
by expanding the definition of Phi . There are many ways to do this part; we choose the
usual natural deduction style, by explicitly stating that the proof should be done ‘By-
Implication’. As this is temporal reasoning, this here means that we assume an arbitrary
behaviour by which Phi is satisfied, and show that this also satisfies 2TPhi . The method
UseTempFact instantiates the goals of <1>1 and <1>3 to get that these are also satisfied
by that significant behaviour. The rest is simple logic which is handled automatically by
LP. This concludes the first invariant proof.

9.3 The specification and safety proof of Program 2

We continue with the specification of Program 2, which again is a straightforward tran-
scription of the specification in the TLA Report which is also shown in figure 3.5 on
page 29. First we declare the two new program counter variables, pc1 and pc2 , and the
values they may take, a, b, and g (for steps alpha, beta , and gamma, respectively).

def1.tlp:

Name Def1

%-Use tc0

Variables
pc1, pc2, sem : Val

Values
a, b, g

Predicate
InitPsi == /\ (pc1 = a) /\ (pc2 = a)

/\ (x = 0) /\ (y = 0)
/\ sem = 1
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Actions
alpha1 == /\ (pc1 = a) /\ (0 << sem)

/\ pc1’ = b
/\ sem’ = sem - 1
/\ Unchanged(x, y, pc2)

beta1 == /\ pc1 = b
/\ pc1’ = g
/\ x’ = x + 1
/\ Unchanged(y, sem, pc2)

gamma1 == /\ pc1 = g
/\ pc1’ = a
/\ sem’ = sem + 1
/\ Unchanged(x, y, pc2)

alpha2 == /\ (pc2 = a) /\ (0 << sem)
/\ pc2’ = b
/\ sem’ = sem - 1
/\ Unchanged(x, y, pc1)

beta2 == /\ pc2 = b
/\ pc2’ = g
/\ y’ = y + 1
/\ Unchanged(x, sem, pc1)

gamma2 == /\ pc2 = g
/\ pc2’ = a
/\ sem’ = sem + 1
/\ Unchanged(x, y, pc1)

N1 == alpha1 \/ beta1 \/ gamma1

N2 == alpha2 \/ beta2 \/ gamma2

N == N1 \/ N2

Statefunction
w == (x, y, pc1, pc2, sem)

Temporal
Psi == InitPsi /\ [][N]_w /\ SF(w, N1) /\ SF(w, N2)

As in the case of Program 1 we prove a basic ‘type correctness’ invariant, which now
also states that sem is a natural, and that the two program counters have one of the
values a, b, or g . The structure of the proof is identical to that of TPhi, although with
four more cases in step <1>2 in accordance with the added actions of Program 2. We use
NatRule1 to show that sem−1 is a Nat whenever sem is, and NatRule2 similarly to show
that sem + 1 is a Nat whenever sem is.

tc1.tlp:

Name TPsi
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%-Use def1
%-Include methods

Predicates
TPsi == /\ x in Nat

/\ y in Nat
/\ sem in Nat
/\ pc1 = a \/ pc1 = b \/ pc1 = g
/\ pc2 = a \/ pc2 = b \/ pc2 = g

Theorem TPsi
Psi => []TPsi

Proof

<1>1 Assume InitPsi Prove TPsi
Expand InitPsi in Hyp
Expand TPsi in Goal
Qed

<1>2 Assume TPsi, [N]_w Prove TPsi’

Activate TPsi

<2>1 Case alpha1
Expand alpha1 in Hyp
Instantiate NatRule1 with i_u <- sem
Qed

<2>2 Case beta1
Expand beta1 in Hyp
Instantiate NatRule2 with i_u <- x
Qed

<2>3 Case gamma1
Expand gamma1 in Hyp
Instantiate NatRule2 with i_u <- sem
Qed

<2>4 Case alpha2
Expand alpha2 in Hyp
Instantiate NatRule1 with i_u <- sem
Qed

<2>5 Case beta2
Expand beta2 in Hyp
Instantiate NatRule2 with i_u <- y
Qed

<2>6 Case gamma2
Expand gamma2 in Hyp
Instantiate NatRule2 with i_u <- sem
Qed

<2>7 Case Unchanged(w)
Expand w in Hyp
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Qed

By-Cases
Expand N, N1, N2 in Hyp
Qed

<1>3 TPsi /\ [][N]_w => []TPsi
INV1 with pred_I <- TPsi, act_N <- N, sf_f <- w
Qed

By-Implication
Expand Psi in Hyp
UseTempFact Step1, Step3
Qed

The next proof shows that the invariant IPsi holds. This is the same invariant that
we refered to as IΨ on page 28. The proof once again is a traditional invariant proof,
only slightly more complicated than the two previous ones. In this proof we want to use
the invariance of TPsi as a fact helping in our reasoning. We know from Theorem TPsi
that Psi implies 2TPsi , so we should indeed be able to use IPsi as well as TPsi ′ as
assumptions in each of our action reasoning steps. In other words, from the lemmas

Psi ⇒ 2TPsi
InitPsi ⇒ IPsi
TPsi ⇒ (TPsi ′ ⇒ (IPsi ⇒ ([N ]w ⇒ IPsi ′)))

we should be able to derive the goal, that Psi implies 2IPsi . Among the different versions
of the TLA rules that are supplied with TLP, there is a special variant of the INV1 rule
that is helpful, INV1.3:

|= Assump =⇒ (Assump ′ =⇒ (I =⇒ ([N ]f =⇒ I ′)))

|= (2(Assump) ∧ I ∧2([N ]f )) =⇒ 2(I )

We let Assump be just TPsi and are then able to perform a traditional invariant
proof, where we add TPsi and TPsi ′ to the assumptions of step <1>2. In the final lines of
temporal reasoning we just have to add that we want to use the temporal fact, theorem
TPsi.

inv1.tlp:

Name IPsi

%-Use tc1
%-Include methods

Predicates
IPsi == \/ sem = 1 /\ pc1 = a /\ pc2 = a

\/ /\ sem = 0
/\ \/ pc1 = a /\ (pc2 = b \/ pc2 = g)

\/ pc2 = a /\ (pc1 = b \/ pc1 = g)

Theorem IPsi
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Psi => []IPsi

Proof
<1>1 Assume InitPsi Prove IPsi
Expand InitPsi in Hyp
Expand IPsi in Goal
Qed

<1>2 Assume TPsi, TPsi’, IPsi, [N]_w Prove IPsi’
Expand TPsi in Hyp<1>
Activate IPsi

<2>1 Case alpha1
Expand alpha1 in Hyp
Instantiate NatRule5 with i_u <- sem
Qed

<2>2 Case beta1
Expand beta1 in Hyp
Qed

<2>3 Case gamma1
Expand gamma1 in Hyp
Qed

<2>4 Case alpha2
Expand alpha2 in Hyp
Instantiate NatRule5 with i_u <- sem
Qed

<2>5 Case beta2
Expand beta2 in Hyp
Qed

<2>6 Case gamma2
Expand gamma2 in Hyp
Qed

<2>7 Case Unchanged(w)
Expand w in Hyp
Qed

By-Cases
Expand N, N1, N2 in Hyp
Qed

<1>3 []TPsi /\ IPsi /\ [][N]_w => []IPsi
INV1 with pred_I <- IPsi, act_N <- N, sf_f <- w, act_Assump <- TPsi
Qed

By-Implication
UseTempFact Theorem_TPsi
Expand Psi in Hyp
UseTempFact Step1, Step3
Qed
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9.4 The simulation proof

With the safety proof of Program 2 finished, we are ready to begin the refinement proof,
showing that Psi implies Phi . We are going to do this in two parts that we refer to as the
simulation part and the fairness part. These two parts correspond to two main lemmas:

(Simulation) Psi ⇒ InitPhi ∧2[M ]v
(Fairness) Psi ⇒WFv(M1 ) ∧WFv(M2 )

First, however, we know that to complete a fairness proof containing a non-trivial
fairness part, we need to be able to talk about when the different actions are enabled.
Currently, TLP cannot do this by itself (cf. section 4.3.5), so we have to specify the
enabled predicates manually. Wrongly specified enabled predicates would of course be a
possible source of error in the proofs, so we have to compute them carefully. Fortunately,
as is most often the case, the computation is straightforward, although the first three
predicates might be surprising. As Enabled 〈N〉f is defined to be the predicate that is
true iff we can perform an N action in which the state function f is changed , i.e. f 6= f ′,
Enabled 〈M1 〉v reduces to the equation (x, y) 6= (x′, y′), and as M1 implies that y is
unchanged, this means that x has to be different from x′. TLA is untyped, and we don’t
know from the action itself that x is a natural number, and thus can’t deduce that x must
be different from x+ 1, hence the result. Likewise for M2 and M .

simulation.tlp:

Name Simulation

%-Use inv1
%-Include methods

Predicates
Enabled<M1>_v == x ~= x + 1
Enabled<M2>_v == y ~= y + 1
Enabled<M >_v == (x ~= x + 1) \/ (y ~= y + 1)

Predicates
Enabled<alpha1>_w == (pc1 = a) /\ (0 << sem)
Enabled<beta1>_w == (pc1 = b)
Enabled<gamma1>_w == (pc1 = g)
Enabled<alpha2>_w == (pc2 = a) /\ (0 << sem)
Enabled<beta2>_w == (pc2 = b)
Enabled<gamma2>_w == (pc2 = g)
Enabled<N1>_w == \/ Enabled<alpha1>_w

\/ Enabled<beta1>_w
\/ Enabled<gamma1>_w

Enabled<N2>_w == \/ Enabled<alpha2>_w
\/ Enabled<beta2>_w
\/ Enabled<gamma2>_w

Enabled<N>_w == Enabled<N1>_w \/ Enabled<N2>_w



p

Now we continue with the simulation part. This itself consists of two lemmas,

(SimInit) InitPsi ⇒ InitPhi
(SimStep) [N ]w ⇒ [M ]v

which are both easily shown by action reasoning. SimInit is thus shown by simply ex-
panding the definitions of InitPhi and InitPsi , and SimStep similarly, where we just have
to take each sub-action into consideration.

Lemma SimInit
Assume InitPsi Prove InitPhi

Proof
Expand InitPhi in Goal
Expand InitPsi in Hyp
Qed

Lemma SimStep
Assume [N]_w Prove [M ]_v

Proof

<1>1 Case alpha1
Expand alpha1 in Hyp
Expand v in Goal
Qed

<1>2 Case beta1
Expand beta1 in Hyp
Expand M , M1 in Goal
Qed

<1>3 Case gamma1
Expand gamma1 in Hyp
Expand v in Goal
Qed

<1>4 Case alpha2
Expand alpha2 in Hyp
Expand v in Goal
Qed

<1>5 Case beta2
Expand beta2 in Hyp
Expand M , M2 in Goal
Qed

<1>6 Case gamma2
Expand gamma2 in Hyp
Expand v in Goal
Qed

<1>7 Case Unchanged(w)
Expand w in Hyp
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Expand v in Goal
Qed

By-Cases
Expand N, N1, N2 in Hyp
Qed

From these lemmas we get the Simulation lemma by some temporal reasoning. Using
lemma SimInit we get InitPhi , and from the rule ImplBox1:

|= F =⇒ G
|= 2(F ) =⇒ 2(G)

and lemma SimStep we get 2[M ]v.

Lemma Simulation
Psi => InitPhi /\ [][M ]_v

Proof
By-Implication
Expand Psi in Hyp
UseTempFact Lemma_SimInit
Instantiate ImplBox1 with temp_F <- ([N]_w),

temp_G <- ([M ]_v)
UseTempFact ImplBox1
Qed

9.5 The fairness proof

We now move on to the difficult part of the refinement proof, showing that Psi satisfies
the fairness constraints of Phi . We want to show two symmetric lemmas:

(FairnessM1) Psi ⇒ SFv(M1 )
(FairnessM2) Psi ⇒ SFv(M2 )

(As in the TLA report, we show strong fairness although weak fairness is all we need).
Here we will only show the proof of FairnessM1, the two proofs being symmetric copies.
For this we use the TLP variant of the SF2 rule:

|= Assump =⇒ (〈N ∧ B〉f =⇒ 〈M 〉g )
|= Assump =⇒ ((P ∧ P ′ ∧ 〈N ∧A〉f ) =⇒ B)
|= Assump =⇒ ((P ∧ Enabled (〈M 〉g )) =⇒ Enabled (〈A〉f ))
|= (2(Assump) ∧2([N ∧ ¬(B)]f ) ∧ SFf (A) ∧2(F )) =⇒ 3(2(P))
|= Phi =⇒ 2(Assump)
|= Phi =⇒ (2([N ]f ) ∧ SFf (A) ∧2(F ))

|= Phi =⇒ SFg (M )
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The instantiations that we will use are

Assump ← AStepAssump == TPsi ∧ TPsi ′ ∧ IPsi ∧ IPsi ′

N ← N
A ← N1
B ← beta1
f ← w
P ← pc1 = b
F ← SFw (N2 )
Phi ← Psi

M ← M1
g ← v

and to show FairnessM1 we thus first need to show the premises

(M1SF2i) AStepAssump ⇒ (〈N ∧ beta1 〉w ⇒ 〈M1 〉v )
(M1SF2ii) AStepAssump ⇒ (pc1 = b ∧ (pc1 = b)′ ∧ 〈N ∧ N1 〉w ⇒ beta1 )
(M1SF2iii) AStepAssump ⇒ (pc1 = b ∧ Enabled 〈M1 〉v ⇒ Enabled 〈N1 〉w )
(M1SF2iv) (2AStepAssump ∧2[N ∧ ¬beta1 ]w ∧ SFw(N1 ) ∧ 2SFw(N2 ))

⇒ 32(pc1 = b)
(M1SF2v) Psi ⇒ 2AStepAssump
(M1SF2vi) Psi ⇒ 2N w ∧ SFw (N1 )) ∧2SFw(N2 ))

These may be categorized as follows:

M1SF2i: action reasoning, a simple simulation step;

M1SF2ii: action reasoning, trivially deduced from the contradiction of pc1 = b, (pc1 =
b)′, and N1 ;

M1SF2iii: action reasoning, trivially deduced from pc1 = b and Enabled 〈N1 〉w;

M1SF2iv: temporal reasoning, the complicated step, following from multiple use of the
SF1 rule;

M1SF2v: temporal reasoning, follows from the theorems TPsi and IPsi; and

M1SF2vi: temporal reasoning, follows from the definitions, adding a 2 to SFw(N2 ).

We begin with the three action reasoning premises, which should not need any further
explanation.

fairness-m1.tlp:

Name FairnessM1

%-Use simulation
%-Include methods

Actions
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AStepAssump == TPsi /\ TPsi’ /\ IPsi /\ IPsi’

Lemma M1SF2i
Assume AStepAssump, <N /\ beta1>_w Prove <M1>_v

Proof
Expand TPsi, beta1, w in Hyp
Expand M1, v in Goal
Expand AStepAssump, TPsi in Hyp
IncrementNotEqual on x
Qed

Lemma M1SF2ii
Assume AStepAssump, pc1 = b /\ (pc1 = b)’ /\ <N /\ N1>_w Prove beta1

Proof
Expand N1, alpha1, beta1, gamma1 in Hyp
Qed

Lemma M1SF2iii
Assume AStepAssump, pc1 = b /\ Enabled<M1>_v Prove Enabled<N1>_w

Proof
Expand Nab* in Goal
Qed

Now to the fourth premise. We want to prove

(M1SF2iv) ∧ 2AStepAssump
∧ 2[N ∧ ¬beta1 ]w
∧ SFw (N1 )
∧ 2SFw(N2 )
⇒ 32(pc1 = b)

which can be shown from two lemmas:
(M1SF2iv1) ∧ 2AStepAssump

∧ 2[N ∧ ¬beta1 ]w
∧ SFw(N1 )
∧ 2SFw(N2 )
⇒ 3(pc1 = b)

(M1SF2iv2) ∧ 2AStepAssump
∧ 2[N ∧ ¬beta1 ]w
∧ SFw(N1 )
∧ 2SFw(N2 )
⇒ 2(pc1 = b ⇒ 2(pc1 = b))

The first lemma is proved from the temporal substep

∧ 2AStepAssump
∧ 2[N ∧ ¬beta1 ]w
∧ SFw (N1 )
∧ 2SFw(N2 )
⇒ (pc1 = a ∨ pc1 = b ∨ pc1 = g) ; pc1 = b
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which is itself done by the help of two lemmas:

(M1SF2iv1a) ∧ 2AStepAssump
∧ 2[N ∧ ¬beta1 ]w
∧ SFw(N1 )
∧ 2SFw(N2 )
⇒ pc1 = g ; pc1 = a

(M1SF2iv1b) ∧ 2AStepAssump
∧ 2[N ∧ ¬beta1 ]w
∧ SFw(N1 )
∧ 2SFw(N2 )
⇒ pc1 = a ; pc1 = b

These can both be done by the SF1 rule in the form

|= Assump =⇒ ((P ∧ [N ]f ) =⇒ (P ′ ∨Q ′))
|= Assump =⇒ ((P ∧ 〈N ∧ A〉f ) =⇒ Q ′)
|= (2(Assump) ∧2(P) ∧ 2([N ]f ) ∧2(F )) =⇒ 3(Enabled (〈A〉f ))

|= (2(Assump) ∧2([N ]f ) ∧ SFf (A) ∧ 2(F )) =⇒ (P ; Q)

(The first could in fact be done a little easier with the WF1 rule, since SFf (A)⇒WFf (A)
for all f and A.) In the first lemma we instantiate

Assump ← AStepAssump

P ← pc1 = g
Q ← pc1 = g
N ← N ∧ ¬beta1
f ← w
F ← SFw (N2 )
A ← N1

and we thus have to prove the premises:

(M1SF1ai) AStepAssump
⇒ pc1 = g ∧ [N ∧ ¬beta1 ]w
⇒ (pc1 = g)′ ∨ (pc1 = a)′

(M1SF1aii) AStepAssump
⇒ pc1 = g ∧ 〈N ∧ ¬beta1 ∧N1 〉w
⇒ (pc1 = a)′

(M1SF1aiii) ∧ 2AStepAssump
∧ 2(pc1 = g)
∧ 2[N ∧ ¬beta1 ]w
∧ 2SFw(N2 )
⇒ 3Enabled 〈N1 〉w
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We continue with the proofs of these three premises. It should be obvious that these
are very simple. The first is a trivial proof that follows from considering each of the
possible actions of [N ∧ ¬beta1 ]w . In the second we are only looking at the actions of
N1 , and from the fact that pc1 is equal to g we know that we are performing a gamma1
step. Showing 3Enabled 〈N1 〉w in the last step is trivial as pc1 = g directly satisfies
Enabled 〈N1 〉w , we only have to ‘remove a box and insert a diamond’.

Lemma M1SF1ai
Assume AStepAssump, pc1 = g /\ [N /\ ~beta1]_w Prove (pc1 = g)’ \/ (pc1 = a)’

Proof

<1>1 Case N /\ ~beta1

<2>1 Case alpha1
Expand alpha1 in Hyp
Qed

<2>2 Case gamma1
Expand gamma1 in Hyp
Qed

<2>3 Case alpha2
Expand alpha2 in Hyp
Qed

<2>4 Case beta2
Expand beta2 in Hyp
Qed

<2>5 Case gamma2
Expand gamma2 in Hyp
Qed

By-Cases
Expand N, N1, N2 in Hyp
Qed

<1>2 Case Unchanged(w)
Expand w in Hyp
Qed

By-Cases
Qed

Lemma M1SF1aii
Assume AStepAssump, pc1 = g /\ <N /\ ~beta1 /\ N1>_w Prove (pc1 = a)’

Proof
Expand N1, alpha1, gamma1 in Hyp
Qed

Lemma M1SF1aiii
/\ []AStepAssump
/\ [](pc1 = g)
/\ [][N /\ ~beta1]_w
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/\ []SF(w, N2)
=> <>Enabled<N1>_w

Proof

<1>1 Assume pc1 = g Prove Enabled<N1>_w
Expand Nab* in Goal
Qed

By-Implication
Apply BoxElim1 to Hyp
UseTempFact Step1 Apply DmdIntro1 to Step1
Qed

Now we are able to show the first of the two lemmas for proving the first lemma of
the fourth premise of the SF2 rule, by simply applying the SF1 rule.

Lemma M1SF2iv1a
/\ []AStepAssump
/\ [][N /\ ~beta1]_w
/\ SF(w, N1)
/\ []SF(w, N2)
=> pc1 = g ~> pc1 = a

Proof
SF1 with pred_P <- (pc1 = g),

pred_Q <- (pc1 = a),
act_N <- (N /\ ~beta1),
sf_f <- w,
temp_F <- (SF(w, N2)),
act_A <- N1,
act_Assump <- AStepAssump

Qed

We then prove the second lemma similarly, by using the SF1 rule with the instantia-
tions

Assump ← AStepAssump

P ← pc1 = a
Q ← pc1 = b
N ← N ∧ ¬beta1
f ← w
F ← SFw (N2 )
A ← N1
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by which we need to show the premises:

(M1SF1bi) AStepAssump
⇒ pc1 = a ∧ [N ∧ ¬beta1 ]w
⇒ (pc1 = a)′ ∨ (pc1 = b)′

(M1SF1bii) AStepAssump
⇒ pc1 = a ∧ 〈N ∧ ¬beta1 ∧N1 〉w
⇒ (pc1 = b)′

(M1SF1biii) ∧ 2AStepAssump
∧ 2(pc1 = a)
∧ 2[N ∧ ¬beta1 ]w
∧ 2SFw(N2 )
⇒ 3Enabled 〈N1 〉w

Of course, this time the proof is not as trivial as before, as we can’t as easily derive
3Enabled 〈N1 〉w from the fact that pc1 is equal to a – process 2 may have taken the
semaphore, whereby we have to wait for it to finish beta2 and beta3 before 〈N1 〉w is
again enabled. This is where we will need the strong fairness part SFw (N2 ). But first we
perform the proofs of the two first premises, which are just as simple as before.

Lemma M1SF1bi
Assume AStepAssump, pc1 = a /\ [N /\ ~beta1]_w Prove (pc1 = a)’ \/ (pc1 = b)’

Proof

<1>1 Case N /\ ~beta1

<2>1 Case alpha1
Expand alpha1 in Hyp
Qed

<2>2 Case gamma1
Expand gamma1 in Hyp
Qed

<2>3 Case alpha2
Expand alpha2 in Hyp
Qed

<2>4 Case beta2
Expand beta2 in Hyp
Qed

<2>5 Case gamma2
Expand gamma2 in Hyp
Qed

By-Cases
Expand N, N1, N2 in Hyp
Qed

<1>2 Case Unchanged(w)
Expand w in Hyp
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Qed

By-Cases
Qed

Lemma M1SF1bii
Assume AStepAssump, pc1 = a /\ <N /\ ~beta1 /\ N1>_w Prove (pc1 = b)’

Proof
Expand N1, alpha1, gamma1 in Hyp
Qed

Now the third premise. To prove this we need to show that we eventually get into a
state in which pc1 and pc2 are both equal to a. Using the invariant, and the assumption
that pc1 is equal to a, this means proving that pc2 will eventually change to a from any
of its two other values, namely b and g. I.e. we first want to show the two substeps

(<1>1): ∧ 2AStepAssump
∧ 2(pc1 = a)
∧ 2[N ∧ ¬beta1 ]w
∧ 2SFw (N2 )
⇒ (pc2 = b) ; (pc2 = g)

(<1>2): ∧ 2AStepAssump
∧ 2(pc1 = a)
∧ 2[N ∧ ¬beta1 ]w
∧ 2SFw (N2 )
⇒ (pc2 = g) ; (pc2 = a)

from which we get, by simple application of the Grønning lattice rules and using 2TPsi
(stating that pc2 is always either a, b, or g), the step

(<1>3): ∧ 2AStepAssump
∧ 2(pc1 = a)
∧ 2[N ∧ ¬beta1 ]w
∧ 2SFw (N2 )
⇒ 3(pc2 = a)

Then, from this step and a simple invariance,

(<1>4): ∧ 2AStepAssump
∧ 2(pc1 = a)
∧ 2[N ∧ ¬beta1 ]w
∧ 2SFw(N2 )
⇒ 2(pc2 = a ⇒ Enabled 〈N1 〉w )

we can deduce lemma M1SF1biii by simple temporal reasoning.
We proceed by presenting the proofs of steps <1>1 and <1>2 above. This again is two
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applications of the SF1 rule. In the first case, we use the instantiations

Assump ← AStepAssump

P ← pc2 = b
Q ← pc2 = g
N ← N ∧ ¬beta1
f ← w
F ← pc1 = a
A ← N2

and in the other, the instantiations

Assump ← AStepAssump

P ← pc2 = g
Q ← pc2 = a
N ← N ∧ ¬beta1
f ← w
F ← pc1 = a
A ← N2

(the instantiations of F are in fact redundant, and could as well be just true), so that we
now, finally, should prove the premises

(M1SF1ci) AStepAssump
⇒ pc2 = b ∧ [N ∧ ¬beta1 ]w
⇒ (pc2 = b)′ ∨ (pc2 = g)′

(M1SF1cii) AStepAssump
⇒ pc2 = b ∧ 〈N ∧ ¬beta1 ∧N1 〉w
⇒ (pc2 = g)′

(M1SF1ciii) ∧ 2AStepAssump
∧ 2(pc2 = b)
∧ 2[N ∧ ¬beta1 ]w
∧ 2(pc1 = a)
⇒ 3Enabled 〈N2 〉w
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and
(M1SF1di) AStepAssump

⇒ pc2 = g ∧ [N ∧ ¬beta1 ]w
⇒ (pc2 = g)′ ∨ (pc2 = a)′

(M1SF1dii) AStepAssump
⇒ pc2 = g ∧ 〈N ∧ ¬beta1 ∧N1 〉w
⇒ (pc2 = a)′

(M1SF1diii) ∧ 2AStepAssump
∧ 2(pc2 = g)
∧ 2[N ∧ ¬beta1 ]w
∧ 2(pc1 = a)
⇒ 3Enabled 〈N2 〉w

We continue with the proofs of these premises, all being straightforward.

Lemma M1SF1ci
Assume AStepAssump, pc2 = b /\ [N /\ ~beta1]_w \
Prove (pc2 = b)’ \/ (pc2 = g)’

Proof

<1>1 Case N /\ ~beta1

<2>1 Case alpha1
Expand alpha1 in Hyp
Qed

<2>2 Case gamma1
Expand gamma1 in Hyp
Qed

<2>3 Case alpha2
Expand alpha2 in Hyp
Qed

<2>4 Case beta2
Expand beta2 in Hyp
Qed

<2>5 Case gamma2
Expand gamma2 in Hyp
Qed

By-Cases
Expand N, N1, N2 in Hyp
Qed

<1>2 Case Unchanged(w)
Expand w in Hyp
Qed

By-Cases
Qed
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Lemma M1SF1cii
Assume AStepAssump, pc2 = b /\ <N /\ ~beta1 /\ N2>_w \
Prove (pc2 = g)’

Proof
Expand N2, alpha2, beta2, gamma2 in Hyp
Qed

Lemma M1SF1ciii
/\ []AStepAssump
/\ [](pc2 = b)
/\ [][N /\ ~beta1]_w
/\ [](pc1 = a)
=> <>Enabled<N2>_w

Proof

<1>1 Assume pc2 = b Prove Enabled<N2>_w
Expand Nab* in Goal
Qed

By-Implication
Apply BoxElim1 to Hyp
UseTempFact Step1
Apply DmdIntro1 to Step1
Qed

Lemma M1SF1di
Assume AStepAssump, pc2 = g /\ [N /\ ~beta1]_w \
Prove (pc2 = g)’ \/ (pc2 = a)’

Proof

<1>1 Case N /\ ~beta1

<2>1 Case alpha1
Expand alpha1 in Hyp
Qed

<2>2 Case gamma1
Expand gamma1 in Hyp
Qed

<2>3 Case alpha2
Expand alpha2 in Hyp
Qed

<2>4 Case beta2
Expand beta2 in Hyp
Qed

<2>5 Case gamma2
Expand gamma2 in Hyp
Qed

By-Cases
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Expand N, N1, N2 in Hyp
Qed

<1>2 Case Unchanged(w)
Expand w in Hyp
Qed

By-Cases
Qed

Lemma M1SF1dii
Assume AStepAssump, pc2 = g /\ <N /\ ~beta1 /\ N2>_w \
Prove (pc2 = a)’

Proof
Expand N2, alpha2, beta2, gamma2 in Hyp
Qed

Lemma M1SF1diii
/\ []AStepAssump
/\ [](pc2 = g)
/\ [][N /\ ~beta1]_w
/\ [](pc1 = a)
=> <>Enabled<N2>_w

Proof

<1>1 Assume pc2 = g Prove Enabled<N2>_w
Expand Nab* in Goal
Qed

By-Implication
Apply BoxElim1 to Hyp
UseTempFact Step1
Apply DmdIntro1 to Step1
Qed

We are finally able to continue with the proof of the third premise, which we began
on page 118.

The two first steps just need the SF1 rule to be instantiated, as we already have all
the premises. The third step requires some more advanced temporal reasoning than what
we have seen before. We first deduce that any value of pc2 should lead to a. This is done
with the so called Grønning lattice rules, displayed on page 193. The way it works is
shown in comments after the lines where it happens in the proof below – we refer to the
the three predicates pc2 = a, pc2 = b, and pc2 = g simply as A, B, and G. The fourth
step and the conclusion is just ordinary, simple temporal reasoning.

Lemma M1SF1biii
/\ []AStepAssump
/\ [](pc1 = a)
/\ [][N /\ ~beta1]_w
/\ []SF(w, N2)
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=> <>Enabled<N1>_w
Proof

<1>1 /\ []AStepAssump
/\ [](pc1 = a)
/\ [][N /\ ~beta1]_w
/\ SF(w, N2)
=> (pc2 = b) ~> (pc2 = g)

SF1 with pred_P <- (pc2 = b),
pred_Q <- (pc2 = g),
act_N <- (N /\ ~beta1),
sf_f <- w,
temp_F <- (pc1 = a),
act_A <- N2,
act_Assump <- AStepAssump

Qed

<1>2 /\ []AStepAssump
/\ [](pc1 = a)
/\ [][N /\ ~beta1]_w
/\ SF(w, N2)
=> (pc2 = g) ~> (pc2 = a)

SF1 with pred_P <- (pc2 = g),
pred_Q <- (pc2 = a),
act_N <- (N /\ ~beta1),
sf_f <- w,
temp_F <- (pc1 = a),
act_A <- N2,
act_Assump <- AStepAssump

Qed

<1>3 /\ []AStepAssump
/\ [](pc1 = a)
/\ [][N /\ ~beta1]_w
/\ SF(w, N2)
=> <>(pc2 = a)

<2>1 /\ []AStepAssump
/\ [](pc1 = a)
/\ [][N /\ ~beta1]_w
/\ SF(w, N2)
=> (pc2 = a \/ pc2 = b \/ pc2 = g) ~> pc2 = a

By-Implication
UseTempFact Step<1>1, Step<1>2 % B ~> G, G ~> A
UseLatticeRules % B ~> A, G ~> A, A ~> A
LatticeDisjunctionIntr (pc2 = a) (pc2 = b) (pc2 = a) % (A \/ B) ~> A
LatticeDisjunctionIntr (pc2 = a \/ pc2 = b)

(pc2 = g) (pc2 = a) % (A \/ B \/ G) ~> A
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Qed

By-Implication
UseTempFact Step1 % ABG ~> A
Normalize Step1 with Leadsto % [](ABG => <>A)
Apply BoxElim1 to Step1 % ABG => <>A
Expand AStepAssump, TPsi in Hyp % []ABG
Apply BoxElim1 to Hyp % ABG -- and we get <>A
Qed

<1>4 /\ []AStepAssump
/\ [](pc1 = a)
/\ [][N /\ ~beta1]_w
/\ SF(w, N2)
=> [](pc2 = a => Enabled<N1>_w)

<2>1 Assume AStepAssump /\ pc1 = a, pc2 = a Prove Enabled<N1>_w
Expand AStepAssump, IPsi in Hyp
Expand Nab* in Goal
Qed

By-Implication

Instantiate ImplBox1 with temp_F <- (AStepAssump /\ pc1 = a),
temp_G <- (pc2 = a => Enabled<N1>_w)

Activate AndBox

UseTempFact ImplBox1
Qed

By-Implication
Apply BoxElim1 to Hyp % SF(w, N2)
UseTempFact Step3, Step4 % <>A, [](A => NabN1)
Apply ImplDmd2 to Step4 % [](<>A => <>NabN1)
Apply BoxElim1 to Step4 % <>A => <>NabN1
Qed

We thus have the third premise, and just have to apply the SF1 rule to get the second
lemma.

Lemma M1SF2iv1b
/\ []AStepAssump
/\ [][N /\ ~beta1]_w
/\ SF(w, N1)
/\ []SF(w, N2)
=> pc1 = a ~> pc1 = b

Proof
SF1 with pred_P <- (pc1 = a),

pred_Q <- (pc1 = b),
act_N <- (N /\ ~beta1),
sf_f <- w,
temp_F <- (SF(w, N2)),
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act_A <- N1,
act_Assump <- AStepAssump

Qed

Now let’s recall. We are back to the proof of the fourth premise of the SF2 rule; the
proof that was begun on page 113. The first lemma of this proof, M1SF2iv1, needed two
sub-lemmas to be shown, the two lemmas that we have just finished proving. Again we
apply some use of the Grønning lattice rules to reach the conclusion.

Lemma M1SF2iv1
/\ []AStepAssump
/\ [][N /\ ~beta1]_w
/\ SF(w, N1)
/\ []SF(w, N2)
=> <>(pc1 = b)

Proof

<1>1 /\ []AStepAssump
/\ [][N /\ ~beta1]_w
/\ SF(w, N1)
/\ []SF(w, N2)
=> (pc1 = a \/ pc1 = b \/ pc1 = g) ~> (pc1 = b)

By-Implication
UseTempFact Lemma_M1SF2iv1a, Lemma_M1SF2iv1b % G ~> A, A ~> B
UseLatticeRules % G ~> B, A ~> B, B ~> B
LatticeDisjunctionIntr (pc1 = a) (pc1 = b) (pc1 = b) % (A \/ B) ~> B
LatticeDisjunctionIntr (pc1 = a \/ pc1 = b)

(pc1 = g) (pc1 = b) % (A \/ B \/ G) ~> B
Qed

By-Implication
UseTempFact Step1 % ABG ~> B
Normalize Step1 with Leadsto % [](ABG => <>B)
Apply BoxElim1 to Step1 % ABG => <>B
Expand AStepAssump, TPsi in Hyp % []ABG
Apply BoxElim1 to Hyp % ABG -- and we get <>B
Qed

The second lemma of the fourth premise is essentially an easy invariant proof, which
can be done in a single action reasoning step – the value of pc1 never changes from b as
long as we don’t execute beta1 steps. To this we apply some simple temporal reasoning
to get the final ‘box’.

Lemma M1SF2iv2
/\ []AStepAssump
/\ [][N /\ ~beta1]_w
/\ SF(w, N1)
/\ []SF(w, N2)
=> [](pc1 = b => [](pc1 = b))
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Proof

<1>1 /\ []AStepAssump
/\ [][N /\ ~beta1]_w
/\ SF(w, N1)
/\ []SF(w, N2)
=> (pc1 = b => [](pc1 = b))

<2>1 Assume pc1 = b, [N /\ ~beta1]_w Prove (pc1 = b)’

<3>1 Case N /\ ~beta1

<4>1 Case alpha1
Expand alpha1 in Hyp
Qed

<4>2 Case gamma1
Expand gamma1 in Hyp
Qed

<4>3 Case alpha2
Expand alpha2 in Hyp
Qed

<4>4 Case beta2
Expand beta2 in Hyp
Qed

<4>5 Case gamma2
Expand gamma2 in Hyp
Qed

By-Cases
Expand N, N1, N2 in Hyp
Qed

<3>2 Case Unchanged(w)
Expand w in Hyp
Qed

By-Cases
Qed

<2>2 pc1 = b /\ [][N /\ ~beta1]_w => [](pc1 = b)
INV1 with pred_I <- (pc1 = b), act_N <- (N /\ ~beta1), sf_f <- w
Qed

By-Implication
UseTempFact Step2
Qed

Instantiate ImplBox1 with temp_F <- ([]AStepAssump /\ [][N /\ ~beta1]_w /\
SF(w, N1) /\ []SF(w, N2)),

temp_G <- (pc1 = b => [](pc1 = b))
Activate AndBox, BoxElim2, BoxSF
Qed
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That’s it – we now have all we need to prove the fourth premise of the SF2 rule.

Lemma M1SF2iv
/\ []AStepAssump
/\ [][N /\ ~beta1]_w
/\ SF(w, N1)
/\ []SF(w, N2)
=> <>[](pc1 = b)

Proof
By-Implication
UseTempFact Lemma_M1SF2iv1, Lemma_M1SF2iv2 % <>B, [](B => []B)
Apply ImplDmd2 to Lemma_M1SF2iv2 % [](<>B => <>[]B)
Apply BoxElim1 to Lemma_M1SF2iv2 % <>B => <>[]B
Qed

The fifth premise of the SF2 rule follows trivially from the theorems TPsi and IPsi,
and the sixth from the definition of Psi .

Lemma M1SF2v
Psi => []AStepAssump

Proof

<1>1 Psi => [](IPsi /\ IPsi’ /\ TPsi /\ TPsi’)
By-Implication
UseTempFact Theorem_IPsi, Theorem_TPsi
Apply BoxPrime to Theorem_IPsi, Theorem_TPsi
Activate AndBox
Qed

Expand AStepAssump in Goal
Qed

Lemma M1SF2vi
Psi => [][N]_w /\ SF(w, N1) /\ []SF(w, N2)

Proof
By-Implication
Expand Psi in Hyp
Normalize Goal with BoxSF
Qed

We thus have all the premises of the SF2 rule, and only need to instantiate this as
proposed, to get the first of the two symmetric fairness lemmas.

Lemma FairnessM1
Psi => SF(v, M1)

Proof
SF2 with act_N <- N,

act_A <- N1,
act_B <- beta1,
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sf_f <- w,
pred_P <- (pc1 = b),
temp_F <- SF(w, N2),
temp_Phi <- Psi,
act_M <- M1,
sf_g <- v,
act_Assump <- AStepAssump

Qed

9.6 The refinement proof

The proof of the second fairness lemma can be constructed from the first one by simply
exchanging 1’s and 2’s. After this has been done, very little remains to conclude with
the fairness part of the refinement proof, that Psi implies WFv(M1 ) and WFv(M2 ). As
the fairness lemmas we have shown are too strong, showing strong fairness where we
only need weak fairness, we use a temporal rule, SFImplWF (which is derivable from the
definitions of weak and strong fairness), and the fairness lemmas to produce a weaker
fairness corollary.

refinement.tlp:

Name Refinement

%-Use fairness-m2
%-Include methods

Lemma Fairness
Psi => WF(v, M1) /\ WF(v, M2)

Proof
By-Implication
UseTempFact Lemma_FairnessM1,

Lemma_FairnessM2 % SF(v, M1) /\ SF(v, M2)
Apply SFImplWF to Lemma_FairnessM1,

Lemma_FairnessM2 % WF(v, M1) /\ WF(v, M2)
Qed

Finally, we join the results and prove the refinement theorem.

Theorem Refinement
Psi => Phi

Proof
By-Implication
Expand Phi in Goal
UseTempFact Lemma_Simulation, Lemma_Fairness
Qed
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The Spanning-Tree Example

The Spanning-Tree Example is based on an early example by Leslie Lamport on how to
use TLA for reasoning about liveness and refinement. A first version using TLP appeared
at the Computer-Aided Verification workshop in 1992 [12]. The purpose of this example
is to show how TLP deals with a more complicated proof, and especially one in which
the final argument is one of induction, based on the lattice rule of TLA. This correctness
proof is probably the most complex in structure that the author has yet performed with
TLP. It took more than a week to create in its last form, in which a number of lemmas
where added as the structure of the proof grew deeper. With the aid of the TLP front-
end, however, it was always possible to concentrate on the difficult parts, assuming the
correctness of more trivial facts, so that the general outline of the proof never was lost in
the mind its creator. The proof is presented and explained in detail in the next sections,
and especially the induction part is worthy of a closer examination.

The basis of the example is a simple algorithm that, given a finite connected graph
and a root, constructs a spanning tree. For each node n, the algorithm computes the
distance d[n] from n to the root and, if n is not the root, its father f [n] in the spanning
tree.

When the algorithm is expressed formally, d and f are variables whose values are
functions with domain equal to the set of nodes. We will use the following notation. The
expression λx ∈ S : e(x) denotes a function f whose domain is S, such that f [x] equals
e(x) for all x in S. If f is a function, then f [s := v] is the function that is the same
as f except with f [s] = v. This is defined formally as follows, where dom f denotes the
domain of f , and ∆= means equals by definition.

f [s := v] ∆= λx ∈ dom f : if x = s then v else f [x]

(Thus, s /∈ dom f implies f [s := v] = f .) If f is a function and T a set, then f [s :∈ T ]
is the set of all functions f [s := v] with v ∈ T . Finally, [S → T ] denotes the set of all
functions f with domain S such that f [x] ∈ T for all x ∈ S.

We now describe the Spanning-Tree algorithm. Initially, d[n] equals 0 for the root
and equals ∞ for all other nodes. For each node n, there is a process that repeatedly
executes improvement steps that choose a neighbour m with d[m] + 1 < d[n], decrease
d[n], and set f [n] to m. The improvement step could simply decrease d[n] to d[m]+1, but
for reasons that are irrelevant to this discussion, we consider a more general algorithm in
which d[n] is set to a nondeterministically chosen number between its old value and d[m].
The algorithm terminates when no more improvement steps are possible.

129
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InitΠ
∆= ∧ d = λn ∈ Node : if n = Root then 0 else ∞
∧ f ∈ [Node → Node]

NΠ2(n,m) ∆= ∧ d[m] 6=∞
∧ d′ ∈ d[n :∈ [d[m] + 1, d[n])]
∧ f ′ = f [n := m]

NΠ
∆= ∃n ∈ Node : ∃m ∈ Nbrs(n) : NΠ2(n,m)

vΠ
∆= (d, f)

Π ∆= InitΠ ∧ 2[NΠ]vΠ ∧ WFvΠ(NΠ)

Figure 10.1: The Spanning-Tree algorithm.

The TLA formula Π describing this algorithm is defined in figure 10.1, where Node is
the set of nodes, Root is the root, Nbrs(n) is the set of neighbours of node n in the graph,
and [a, b) is the set of natural numbers c such that a ≤ c < b.

The initial condition is described by the predicate InitΠ. It asserts that d[n] has the
appropriate value (0 or ∞) and that f [n] is a node, for each n ∈ Node.

Action NΠ2(n,m) describes an improvement step, in which d[n] is decreased and f [n]
set equal to m. However, it does not assert that m is a neighbour of n. The action is
enabled only if d[m] + 1 < d[n]. (In this formula, d and f are flexible variables, while m
and n are rigid variables.)

Action NΠ is the disjunction of the actions NΠ2(n,m) for every node n and neighbour
m of n. It is the next-state relation of the algorithm, describing how the variables d and
f may change. We define vΠ to be the pair (d, f) of variables, and Π to be the canonical
formula describing the algorithm. The weak fairness condition WFvΠ(NΠ) asserts that NΠ

steps are eventually taken as long as they remain possible – that is, as long as the action
NΠ remains enabled. Concurrency is represented by the nondeterministic interleaving of
the different processes’ (atomic) improvement steps.

The correctness property to be proved is that, for every node n, the values of d[n]
and f [n] eventually become and remain correct. Letting Dist(n,m) denote the distance
in the graph between nodes n and m, the correctness of these values is expressed by the
predicate DoneΠ, defined to equal

∀n ∈ Node : ∧ d[n] = Dist(Root, n)
∧ 0 < d[n] <∞ ⇒ ∧ f [n] ∈ Nbrs(n)

∧ Dist(Root, f [n]) = Dist(Root, n)− 1

(If the graph is not connected, then for every node n not in the root’s connected compo-
nent, Done asserts only that d[n] = ∞.) The assertion that DoneΠ eventually becomes
and remains true is expressed by the TLA formula 32DoneΠ. Correctness of the algo-
rithm is expressed by the formula Π ⇒ 32DoneΠ, which asserts that 32DoneΠ holds
for every behaviour satisfying Π.
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10.1 The TLP specification

We now turn to the TLP specification. The basis is again a file containing declarations
of most of the variables and operators that we are going to need.

declarations.tlp:

%-Use frame

Name Declarations

Values
0, 1, infty
Nat, NatInf

Operators
+, - : Val, Val -> Val
<<, <<= : Val, Val -> Bool
min : Val -> Val
delete : Val, Val -> Val
insert : Val, Val -> Val
dom : Val -> Val
openInter : Val, Val -> Val
subSet : Val, Val -> Bool

Constants
Node : Val
Root : Val
NbrRel(n, m) : Bool
Nbrs(n) : Val
Dist(n, m) : Val

Rigid Variables
n, m, p, q, k, l : Val

The value infty stands for infinity, and NatInf is the set of natural numbers extended
with infty . <<= is the operator less than or equal to, defined on Nat as well as NatInf .
The operator min is assumed to be the operator that given a nonempty set of natural
numbers returns the minimum. delete and insert are operators for inserting and deleting
an element of a set. dom returns the domain of a function, subSet is the subset relation,
and openInter creates the open interval between two NatInf s, as used above.

The constant parameters of the example describe the graph under consideration. We
thus have the set of nodes Node, a Root node, and the set of edges described by a
neighbour relation NbrRel . The two functions Nbrs and Dist describe the neighbours of a
node and the shortest distance between any two nodes; these are derivable from the other
parameters.

Before going to the specification of the algorithm itself, we want to make some as-
sumptions about the parameters about which we are reasoning. In the file assump.tlp
we first of all give a set of rules for reasoning about arithmetic, which are all defined
directly in LP code. The only interesting rule should be the one giving a meaning to the
min operator:
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set name NatsMin
assert

when subSet(i_S, Nat),
in(i_u, i_S)

yield in(min(i_S), i_S) /\ (min(i_S) <<= i_u)
..

This states that whenever there is an element in the set i_S, then this must be no less
than the minimum, which is also in the set (given that the set is a subset of the natural
numbers). The minimum operator and this assumption about it is of course essential in
the proof of correctness that we are going to make. Note that we give no other definition
of min; the assumption is going to be all we know about it.

The rest of the file contain assumptions about the parameters describing the graph.
The division of these into Assumptions and Facts is insignificant; it is a remnant from
earlier versions in which what were described as facts were derived from more basic as-
sumptions.

assump.tlp:

Name Assump

%-Use declarations
... (LP rules for reasoning about arithmetic)

Predicates
Assump1 == /\ Root in Node

/\ Forall n in Node :
Forall m in Node :

NbrRel(n, m) = NbrRel(m, n) [* assump12(n) *]
[* assump11 *]

Assump2 == Forall n in Node :
Nbrs(n) = {m in Node : NbrRel(n, m) [* assump22(n) *]}
[* assump21 *]

Assump3 == Forall n in Node :
Forall m in Node :

Dist(n, m) in NatInf [* assump32(n) *]
[* assump31 *]

Fact1 == /\ Dist(Root, Root) = 0
/\ Forall n in delete(Root, Node) :

0 << Dist(Root, n) [* fact1 *]

Fact2 == Forall n in Node :
Forall m in Nbrs(n) :

Dist(Root, n) <<= (Dist(Root, m) + 1) [* fact22(n) *]
[* fact21 *]

Fact3 == Forall n in delete(Root, Node) :
(Dist(Root, n) << infty) =>

Exists m in Nbrs(n) :
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Dist(Root, n) = (Dist(Root, m) + 1) [* fact32(n) *]
[* fact31 *]

Assump == /\ Assump1
/\ Assump2
/\ Assump3
/\ Fact1
/\ Fact2
/\ Fact3

Act
Do "assert Assump"

End

Assump1 states that the root is indeed a node, and that the neighbour relation is sym-
metric. Assump2 defines the function Nbrs as the one returning the set of neighbours of
any node it is applied to. Assump3 states that the distance between any two nodes is
either a natural number or infinity. Fact1 further more states that the distance from the
root to itself is 0, and that the distance to any other node is strictly greater. Fact2 states
that the distance to any node is always at most the distance to any of its neighbours
plus one, and Fact3 that when a node is connected to the root, then there is at least one
neighbour so that the distance to the node is equal to the distance to the neighbour plus
one.

These assumptions together describe what we need to know to reason about the graph,
and to be able to speak about correctness of our computation of a spanning tree.

We are now ready to specify the algorithm:

pi.tlp:

Name Pi

%-Use declarations assump

Variables
d, f : Val

Statefunction
vPi == (d, f )

Predicate
InitPi == /\ d = Lambda n in Node :

If n = Root then 0 else infty [* dist *]
/\ f in [Node -> Node]

Actions
NPi2(n, m) == /\ d[m] ~= infty

/\ d’ in d[n :in openInter(d[m] + 1, d[n])]
/\ f ’ = f [n := m]

NPi1(n) == Exists m in Nbrs(n) :
NPi2(n, m) [* n2(n) *]

NPi == Exists n in Node :
NPi1(n) [* n1 *]
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Temporal
Pi == InitPi /\ [][NPi]_vPi /\ WF(vPi, NPi)

The TLP specification is almost identical to the one in figure 10.1, the only difference
being that we split the action definition in three, just to make reference to each part
easier.

10.2 The safety proof

As usual, the first step in reasoning about the algorithm will be to prove an invariant.
The appropriate invariant InvΠ for our algorithm is the following.

∧ d ∈ [Node → Nat ∪ {∞}]
∧ f ∈ [Node → Node]
∧ d[Root] = 0
∧ ∀n ∈ delete(Root,Node) : d[n] <∞ ⇒ ∧ Dist(Root, n) ≤ d[n]

∧ f [n] ∈ Nbrs(n)
∧ d[f [n]] < d[n]

We choose to do the proof in two parts, proving the invariance of the two first conjuncts
first, so that we can use this as a fact in the second part, where we prove invariance of the
rest. In TLP, we call the two first two conjuncts together TPi , and the other two IPi .

Before we begin the proof of the invariance of TPi , we will show a small predicate
lemma, ‘Neighbours’. This simply states that whenever m is the neighbour of the node
n, then m is also a node. This follows directly from assumption 2, but will be useful in
the proofs to come.

tpi.tlp:

Name TPi

%-Use pi
%-Include methods
%-Include quantmethods

Lemma Neighbours
Assume n in Node, m in Nbrs(n) Prove m in Node

Proof
Use Assump, Assump2
UseForall on assump21 with (n)
UseSetof set Node func assump22[n]
Qed

We then continue with the proof that Π implies always TPi , a traditional invariance
proof that differs from the ones of the Increment Example mostly by the complexity of
the specification. To show e.g. that d is in the function space from Node to NatInf , we
assume that n is a node and prove that d [n] is then in NatInf . In the initial case, we
furthermore know that d has domain Node, and in the action-step case that the domain
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is not changed. The rest is just application of the rules for reasoning about functions (see
page 188).

The use of the UseExists rule may need some explanation. When showing that TPi
and NPi implies TPi ′, we assume that the action NPi2 (n,m) is performed for some node
n and its neighbour m. The assumptions are made in the beginning of step <3>1 and step
<4>1. We conclude that the goal is valid on the assumption NPi by twice using UseExists,
the TLP rule for elimination of existential quantification, which looks like

∃(S, f)
(x ∈ S & f(x))⇒ B

B

Application of the rule is handled by the method UseExists, which takes one parameter,
the name of the quantifier function, which is the name given inside the [*. . .*] construct
after the first use of the quantified formula. In one of the cases this function takes a
parameter, which should then be correctly instantiated as shown at the end of step <3>1.

tpi.tlp:

Predicate
TPi == /\ d in [Node -> NatInf ]

/\ f in [Node -> Node]

Theorem TPi
Pi => []TPi

Proof

<1>1 Assume InitPi Prove TPi
Activate TPi
Expand InitPi in Hyp

<2>1 d in [Node -> NatInf ]

<3>1 Assume n in Node Prove d[n] in NatInf
ApplyLambda vbl n set Node

<4>1 Case n = Root
Qed

<4>2 Case n ~= Root
Qed

By-Cases
Qed

ProveFuncSpaceLambda func dist domain Node codomain NatInf
Qed

Qed

<1>2 Assume TPi, [NPi]_vPi Prove TPi’
Activate TPi

<2>1 Case NPi
Expand NPi in Hyp
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<3>1 Assume n in Node /\ NPi1(n)
Expand NPi1 in Hyp

<4>1 Assume m in Nbrs(n) /\ NPi2(n, m)
Expand NPi2 in Hyp

<5>1 m in Node
Instantiate Lemma_Neighbours with v_n_ <- (n), v_m_ <- (m)
Qed

<5>2 d’ in [Node -> NatInf ]
ProveFuncSpaceUpdateIn orig d domain Node codomain NatInf

<6>1 Assume k in openInter(d[m] + 1, d[n]) Prove k in NatInf
Instantiate UseFuncSpace with a_f <- d
Instantiate NatsAddSub with i_u <- (d[m]), i_v <- 1
Qed

Qed

<5>3 f ’ in [Node -> Node]
ProveFuncSpaceUpdateEq orig f domain Node codomain Node
Qed

Qed

UseExists on n2[n]
Qed

UseExists on n1
Qed

<2>2 Case Unchanged(vPi)
Expand vPi in Hyp
Qed

By-Cases
Qed

<1>3 TPi /\ [][NPi]_vPi => []TPi
INV1 with pred_I <-TPi, act_N <- NPi, sf_f <- vPi
Qed

By-Implication
Expand Pi in Hyp
UseTempFact Step1, Step3
Qed

We now turn to the proof of the remaining part of the invariant, which is more inter-
esting. We want to show that, at any point in the execution of Π, d [Root] is equal to 0,
and for all other nodes n, if d [n] is not infinity, then three statements are valid: d [n] is
greater than the correct, shortest distance from the root to n, f [n], the father node (so
far), is one of n’s neighbours, and d [f [n]], the computed distance to that node (so far) is
smaller than the one of n. Expressed in the TLP language, this looks as follows:

ipi.tlp:
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Name IPi

%-Use tpi
%-Include methods
%-Include quantmethods
%-Include factmethods

Predicate
IPi == /\ IPi1

/\ IPi2

IPi1 == d[Root] = 0
IPi2 == Forall n in delete(Root, Node) : IPi2x(n) [* ipi2 *]

IPi2x(n) == d[n] << infty
=> /\ IPi21(n)

/\ IPi22(n)
/\ IPi23(n)

IPi21(n) == Dist(Root, n) <<= d[n]
IPi22(n) == f [n] in Nbrs(n)
IPi23(n) == d[f [n]] << d[n]

Before we begin with this proof, some considerations: We saw in the TPi proof that
to do the non-stuttering part we needed a couple of rather trivial facts, just to use the
rules in the assumptions file. E.g. to show that d ′ was a Node → NatInf , we needed to
know that d[m] + 1 was a NatInf , and this could only be shown, using the UseFuncSpace
rule, if we knew that m was a node – which we had to deduce from the fact that m was
a neighbour of n, n being a node, etc.

In the following proofs, we will constantly be needing similar facts, mostly about
‘types’ of the different expressions. To make the reasoning as smooth as possible, we
therefore first of all prove a couple of lemmas, that produce many of these facts once and
for all.

The first lemma, ‘GeneralTypes’, assumes that we know that TPi is satisfied, and
that n and m is an arbitrary pair of neighbours. From these assumptions it concludes
with a conjunction of type facts about d , Dist , the root, and n and m. The proofs are
very simple and left uncommented.

Lemma GeneralTypes
Assume TPi, n in Node, m in Nbrs(n)
Prove /\ m in Node

/\ Root in Node
/\ d[n] in NatInf
/\ d[m] in NatInf
/\ d[Root] in NatInf
/\ dom(d) = Node
/\ dom(f ) = Node
/\ Dist(Root, n) in NatInf
/\ Dist(Root, m) in NatInf

Proof
Use Assump
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Activate TPi

<1>1 m in Node
Instantiate Lemma_Neighbours with v_n_ <- (n), v_m_ <- (m)
Qed

<1>2 Root in Node
Activate Assump1
Qed

<1>3 /\ d[n] in NatInf
/\ d[m] in NatInf
/\ d[Root] in NatInf

UseFuncSpace func d vbl n
UseFuncSpace func d vbl m
UseFuncSpace func d vbl Root
Qed

<1>4 /\ dom(d) = Node
/\ dom(f ) = Node

UseDom d
UseDom f
Qed

<1>5 Dist(Root, n) in NatInf
UseAssump3 from Root to n
Qed

<1>6 Dist(Root, m) in NatInf
UseAssump3 from Root to m
Qed

Qed

The next, ‘StepTypes’, provides three additional ‘type’ facts about d in the case where
we are executing the action NPi2 on n and m, and where we assume that IPi is satisfied.
The facts are based on TPi , IPi , and one of the rules about natural numbers. As a start,
we make use of the ‘GeneralTypes’ lemma, by instantiating it with our newly chosen n
and m.

Lemma StepTypes
Assume TPi, TPi’, IPi, n in Node, m in Nbrs(n), NPi2(n, m)
Prove /\ d[m] in Nat

/\ (d[m] + 1) in Nat
/\ d’[Root] in NatInf

Proof
Use Assump
Instantiate Lemma_GeneralTypes with v_n_ <- (n), v_m_ <- (m)
Activate TPi, IPi, NPi2

<1>1 d[m] in Nat
Qed

<1>2 (d[m] + 1) in Nat
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Instantiate NatsAddSub with i_u <- (d[m]), i_v <- 1
Qed

<1>3 d’[Root] in NatInf
UseFuncSpace func d’ vbl Root
Qed

Qed

Finally, ‘StepFacts’, provides an array of facts about the values of our variables in the
non-stuttering step case. These facts are again based on TPi and IPi , as well as rules
about natural numbers, functions, and sets. They are all quite trivial, but proving them
here once and for all will save a lot of work later. Some explanation of the proofs:

<1>2: We assume that n is the root and thus have that d′[Root] is in the open interval
from d[m]+1 to d[Root]. Activating IPi1 tells us that d[Root] = 0. UseOpenInterval
gets applied automatically as we know that d[m] + 1 is a natural number, and we
thus get the contradiction that d′[Root] is a Nat smaller than 0.

<1>3: We assume that n is the same as m, and from NPi2 get that d[n] + 1 ≤ d′[n]
and d′[n] < d[n]. From the NatsAddSubOne rule we get that d[n] is strictly smaller
than d′[n], and thus by transitivity (NatsLess) than itself. By non-reflexivity (also
NatsLess) this is a contradiction.

<1>4: We know that m is a node, and that d[m] is a Nat . But we have to take into
consideration that m might be the root, so that we get two different cases. The
easy case, m is the root: We use Fact1 to show that Dist(Root,Root) is 0, and
automatically get one of the Nats01 rules applied.

The harder case, m is not the root: We should use IPi21 on m. First we need to
know that m is in delete(Root,Node), which is done by the use of one of the Set
rules. Then we apply UseForall . Now, to use IPi21 on m, we just need to show
that d[m] is smaller than infinity. As we know that it’s in Nat , we just apply the
right rule.

<1>5: We know that Dist(Root,m) is a NatInf – the problem is to show that it’s not
infinity. But as we have proved that it’s less than or equal to d[m], we just have to
assume the opposite, and we will get a contradiction from the NatsInftyLess rule.

<1>7: We know that n 6= m, so this is just applying the UpdateIn and UpdateEq rules
on the new values of d and f .

Lemma StepFacts
Assume TPi, TPi’, IPi, n in Node, m in Nbrs(n), NPi2(n, m)
Prove /\ d’[n] in openInter(d[m] + 1, d[n])

/\ n ~= Root
/\ n ~= m
/\ Dist(Root, m) <<= d[m]
/\ Dist(Root, m) in Nat
/\ f ’[n] = m
/\ Unchanged(d[m])
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/\ Unchanged(f [m])
Proof
Use Assump
Instantiate Lemma_GeneralTypes,

Lemma_StepTypes with v_n_ <- (n), v_m_ <- (m)
Activate TPi, IPi, NPi2

<1>1 d’[n] in openInter(d[m] + 1, d[n])
UpdateIn vbl n updated d
Qed

<1>2 n ~= Root
By-Contradiction
Activate IPi1
Instantiate NatsLess with i_u <- (d’[Root]), i_v <- 0
Qed

<1>3 n ~= m
By-Contradiction
Instantiate NatsAddSubOne with i_u <- (d[n]), i_v <- (d’[n])
Instantiate NatsLess with i_u <- (d[n])
Qed

<1>4 Dist(Root, m) <<= d[m]

<2>1 Case m = Root
Activate Fact1
Qed

<2>2 Case m ~= Root
Activate IPi, IPi2, IPi2x, IPi21
Activate Set
UseForall on ipi2 with m
Instantiate NatsInftyLess with i_u <- (d[m])
Qed

By-Cases
Qed

<1>5 Dist(Root, m) in Nat

<2>1 Dist(Root, m) ~= infty
By-Contradiction
Instantiate NatsInftyLess with i_u <- (d[m])
Qed

Qed

<1>6 f ’[n] = m
UpdateEq vbl n updated f
Qed

<1>7 Unchanged(d[m]) /\ Unchanged(f [m])
UpdateIn vbl m updated d
UpdateEq vbl m updated f



y p

Qed

Qed

Now we are ready to do the IPi proof, which again is a traditional invariance proof.
TPi has been added to the assumptions as we have already proved 2TPi as a conse-
quence of Pi . The soundness of the assumption is established in the concluding temporal
reasoning, where we refer to theorem TPi.

In the step where we consider the initial state, as well as in the action step, we prove
IPi1 and IPi2 separately by first looking at the root and then at all other nodes. IPi2 is
proved by showing IPi2x(n) for an arbitrary node n to which we apply the ProveForall
rule.

In the initial step, the two proofs are both quite easy. We prove that d[Root] = 0 by
using the value of d defined within InitPi . We only need to explicitly tell LP to rewrite
the application of d to Root, for which it will need to know that the Root is a Node – a
fact that is part of Assump1 . The proof of IPi2x(n) is almost as easy, as d[n] is equal
to infinity, so that the implication is vacuously true. We prove this again by rewriting
the application of d to n. This time we use the axioms about set constructions to show
that n, being a member of delete(Root,Node), is also a member of Node. We use the
NatsInftyLess rule to show that infty is not less than itself.

The action step is much harder. In the non-stuttering case, we first select a pair of
neighbours, n and m, so that we reason about NPi2 (n,m). We instantiate the lemmas
that we created for the purpose, and then are ready to do the two proofs. In <5>1 we know
that n is not the root, and thus that d[Root] hasn’t changed and is therefore still equal
to 0 – we get that by applying UpdateIn (this works as we know from the lemmas that d
has domain Node and that Root is a Node). Then comes the hardest part in step <5>2.
For any node other than the root we have to show that if its distance after the action
is performed is different from infinity, then the three facts described above all hold. As
usual we begin by choosing a node (as n is already used as the node on which we perform
the action, we now use p as the selected, arbitrary node). Now we have to consider two
different situations, either p is the same node as n , or it isn’t. We will explain in detail
how these are done. First, p = n:

<8>1: We want to show that Dist(Root, p), the true minimal distance from the root to p,
is less than or equal to d′[p]. Now, p is the same as n, so d′[p] is in the open interval
from d[m] + 1 to d[p]. We know as a fact (Fact2 ) that Dist(Root, p) is less than or
equal to Dist(Root,m) + 1, and as IPi is assumed to be satisfied for d , we know
from a lemma that Dist(Root,m) is less than or equal to d[m]. Together, these facts
give us:

Dist(Root, p) ≤ Dist(Root,m) + 1 ≤ d[m] + 1 ≤ d′[p]

We show each of the three ≤’s in a step of its own, and use transitivity to derive the
goal. To do this, the only remaining thing we have to show is that Dist(Root,m)+1
is natural number.

<8>2: As the lemma ‘StepFacts’ tells us that f ′[n] is equal to m, p is the same as n, and
m is chosen as a neighbour of n, this is trivial.
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<8>3: We want to show that d′[f ′[p]] is smaller than d′[p]. This is just showing d′[m] <
d′[p], which is the same as d[m] < d′[p], all by our lemmas. But we know that
d[m] + 1 ≤ d[n], so this can be handled by one of our ‘Nats’ rules, NatsAddSubOne .

The case where p is not equal to n is not really as hard as the first one, but as we
don’t know as much about p from the lemmas, we have to begin with some local lemmas.
Steps <8>1–<8>3 here thus just produce some simple facts about p, d[p], and f [p]. Then
IPi21 ′ and IPi22 ′ follow quite easily, as we are able to use the facts of IPi (by applying
the USeForall rule). This time, showing that d′[f ′[p]] is smaller than d′[p] is the hard
part. Since we don’t know which node f [p] is, we can’t directly state that d of this is
unchanged (it isn’t necessarily). The interesting cases are whether f [p] is the node n,
that we perform the action on, or not. In the case with f [p] = n we already know from
IPi , that d[n] is smaller than d[p], and by NPi2 that d′[n] is smaller than d[n]. So this
is just the transitivity rule. In the case with f [p] 6= n we know from NPi2 that d[f [p]] is
unchanged, so that this becomes trivial.

Remains only the stuttering step. As one would imagine, this is trivial; we only
have to unfold definitions and use universal quantification elimination and subsequent
introduction to get IPi2 ′ from IPi2 . The rest of the proof is ordinary temporal reasoning,
much like in the TPi proof.

Theorem IPi
Pi => []IPi

Proof

<1>1 Assume TPi, InitPi Prove IPi
Activate IPi, TPi
Use Assump
Expand InitPi in Hyp

<2>1 IPi1
Expand IPi1 in Goal
ApplyLambda vbl Root set Node
NonImmunize Assump1
Qed

<2>2 IPi2
Expand IPi2 in Goal

<3>1 Assume n in delete(Root, Node) Prove IPi2x(n)
Expand IPi2x in Goal

<4>1 ~(d[n] << infty)
ApplyLambda vbl n set Node
Activate Set
Instantiate NatsInftyLess with i_u <- infty
Qed

Qed

ProveForall on ipi2
Qed

Qed



y p

<1>2 Assume TPi, TPi’, IPi, [NPi]_vPi Prove IPi’
Activate IPi, TPi
Use Assump

<2>1 Case NPi
Expand NPi in Hyp

<3>1 Assume n in Node /\ NPi1(n)
Expand NPi1 in Hyp

<4>1 Assume m in Nbrs(n) /\ NPi2(n, m)
Instantiate Lemma_GeneralTypes,

Lemma_StepTypes,
Lemma_StepFacts with v_n_ <- (n), v_m_ <- (m)

Expand NPi2 in Hyp

<5>1 IPi1’
Activate IPi1
UpdateIn vbl Root updated d
Qed

<5>2 IPi2’
Activate IPi2

<6>1 Assume p in delete(Root, Node) Prove IPi2x’(p)
Activate IPi2x’
By-Implication

<7>1 Case p = n

<8>1 IPi21’(p)
Activate IPi21’

<9>1 Dist(Root, p) <<= (Dist(Root, m) + 1)
UseFact2 node p neighbour m
Qed

<9>2 (Dist(Root, m) + 1) <<= (d[m] + 1)
Instantiate NatsAddSubOne.1 with i_u <- (Dist(Root, m)),

i_v <- (d[m])
Instantiate NatsAddSubOne.2 with i_u <- (Dist(Root, m)),

i_v <- (d[m] + 1)
Qed

<9>3 (d[m] + 1) <<= d’[p]
Qed

Instantiate NatsAddSub with i_u <- (Dist(Root, m)), i_v <- 1
Instantiate NatsLess with i_u <- (Dist(Root, p))
Qed

<8>2 IPi22’(p)
Activate IPi22’
Qed

<8>3 IPi23’(p)
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Activate IPi23’
Instantiate NatsAddSubOne with i_u <- (d[m]), i_v <- (d’[p])
Qed

Qed

<7>2 Case p ~= n

<8>1 p in Node
Activate Set
Qed

<8>2 d[p] in NatInf /\ f [p] in Node
UseFuncSpace func d vbl p
UseFuncSpace func f vbl p
Qed

<8>3 Unchanged(d[p]) /\ Unchanged(f [p])
UpdateIn vbl p updated d
UpdateEq vbl p updated f
Qed

UseForall on ipi2 with p

<8>4 IPi21’(p)
Activate IPi21’
Qed

<8>5 IPi22’(p)
Activate IPi22’
Qed

<8>6 IPi23’(p)
Activate IPi23’

<9>1 Case f [p] = n
Instantiate Natsless with i_u <- (d’[n])
Qed

<9>2 Case f [p] ~= n
UpdateIn vbl (f [p]) updated d
Qed

By-Cases
Qed

Qed

By-Cases
Qed

ProveForall on ipi2’
Qed

Qed

UseExists on n2[n]
Qed
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UseExists on n1
Qed

<2>2 Case Unchanged(vPi)
Expand vPi in Hyp

<3>1 IPi1’
Activate IPi1’
Qed

<3>2 IPi2’
Activate IPi2’

<4>1 Assume p in delete(Root, Node) Prove IPi2x’(p)
Activate IPi2x, IPi21, IPi22, IPi23
UseForall on ipi2 with p
Qed

ProveForall on ipi2’
Qed

Qed

By-Cases
Qed

<1>3 []TPi /\ IPi /\ [][NPi]_vPi => []IPi
INV1 with pred_I <-IPi, act_N <- NPi, sf_f <- vPi
Qed

By-Implication
UseTempFact Theorem_TPi
Expand Pi in Hyp
Instantiate BoxElim1 with temp_F <- TPi
UseTempFact Step1, Step3
Qed

We now want to go on with the proof of correctness, showing Π⇒ 32DoneΠ. As we
here want to reason about liveness properties, we have to compute the enabled predicates
of the actions used. As explained before, these are assumptions on which the proofs rely.
The enabled predicates in this case are easy to compute, and only the enabled predicate
for NΠ2(n,m) may cause some deeper thoughts. As Enabled 〈NΠ2(n,m)〉vΠ should only
be true if an NΠ2(n,m) step can be executed which changes vΠ, it may not be enough to
ensure the ‘precondition’. In this case, however, we see that any execution of the action
makes d change its value on n, so that the enabled predicate becomes what we intuitively
would think.

donepi.tlp:

Name DonePi

%-Use ipi
%-Include methods
%-Include quantmethods
%-Include factmethods
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Predicates
Enabled<NPi2(n, m)>_vPi == /\ d[m] ~= infty

/\ Exists x in Nat :
x in openInter(d[m] + 1, d[n])
[* inint(n, m) *]

Enabled<NPi1(n)>_vPi == Exists m in Nbrs(n) :
Enabled<NPi2(n, m)>_vPi
[* enabnpi1(n) *]

Enabled<NPi>_vPi == Exists n in Node :
Enabled<NPi1(n)>_vPi
[* enabnpi *]

We then continue with the definitions of InvΠ and DoneΠ in TLP.

Predicates
InvPi == TPi /\ IPi

DonePi == Forall n in Node : DonePi1(n) /\ DonePi2(n)
[* donepi *]

DonePi1(n) == d[n] = Dist(Root, n)
DonePi2(n) == /\ 0 << d[n]

/\ d[n] << infty
=> /\ f [n] in Nbrs(n)

/\ Dist(Root, f [n]) = Dist(Root, n) - 1

We still haven’t proved Π ⇒ 2InvΠ, so we will do that here. This is just a combination
of the two theorems TPi and IPi .

Lemma InvPi
Pi => []InvPi

Proof
By-Implication
UseTempFact Theorem_IPi, Theorem_TPi
Activate AndBox
Expand InvPi in Goal
Qed

We begin with the easiest part of the correctness theorem. This is the part that states
(informally) that if we eventually reach DoneΠ, then DoneΠ will always be true from
then on. This is a rather trivial proof, as it can easily be shown to be the case that no
non-stuttering action can be performed from a state in which DoneΠ is true, and thus
the variables never change. The proof can be done in a number of ways, but we here
choose to use the traditional invariant proof approach, by looking at the different cases
of non-stuttering and stuttering steps. (There is no ‘initial state’ step, as we prove the
invariance only from a state in which DoneΠ has become true.)

The non-stuttering case, which is the only interesting one, should of course lead to
a contradiction. This is accomplished in <4>1: We know from DonePi that d[m] =
Dist(Root,m) and that d[n] = Dist(Root, n). We know from Fact2 that Dist(Root, n) ≤
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Dist(Root,m) + 1. Finally, we know from NPi2 that d[m] + 1 ≤ d′[n] < d[n], so that d[n]
should be smaller than or equal to d′[n]. But this is a contradiction, and we are done with
the case.

At the end we do some temporal reasoning, applying some of the simple temporal
logic rules to derive the goal.

Theorem AlwaysDonePi
Pi => [](DonePi => []DonePi)

Proof

<1>1 Assume InvPi, InvPi’, DonePi, [NPi]_vPi Prove DonePi’
Activate InvPi, TPi, IPi, DonePi
Use Assump

<2>1 Case NPi
Expand NPi in Hyp

<3>1 Assume n in Node /\ NPi1(n)
Expand NPi1 in Hyp

<4>1 Assume m in Nbrs(n) /\ NPi2(n, m)
Instantiate Lemma_GeneralTypes,

Lemma_StepTypes,
Lemma_StepFacts with v_n_ <- (n), v_m_ <- (m)

Expand NPi2 in Hyp
Activate DonePi1

<5>1 d[m] = Dist(Root, m) /\ d[n] = Dist(Root, n)
UseForall on donepi with m
UseForall on donepi with n
Qed

<5>2 Dist(Root, n) <<= (Dist(Root, m) + 1)
UseFact2 node n neighbour m
Qed

<5>3 d[m] + 1 <<= d’[n] /\ d’[n] << d[n]
Qed

<5>4 d[n] <<= d’[n]
Instantiate NatsLess with i_u <- (d[n])
Qed

Instantiate NatsLess with i_u <- (d’[n])
Qed

UseExists on n2[n]
Qed

UseExists on n1
Qed

<2>2 Case Unchanged(vPi)
Expand vPi in Hyp

<3>1 Assume p in Node Prove DonePi1’(p) /\ DonePi2’(p)
Activate DonePi1, DonePi2
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UseForall on donepi with p
Qed

ProveForall on donepi’
Qed

By-Cases
Qed

<1>2 []InvPi /\ [][NPi]_vPi => (DonePi => []DonePi)
INV1 with pred_I <- DonePi,

act_N <- NPi,
sf_f <- vPi,
pred_Assump <- InvPi

By-Implication
By-Implication
UseTempFact INV1
Qed

<1>3 []InvPi /\ [][NPi]_vPi => [](DonePi => []DonePi)
Instantiate ImplBox1 with temp_F <- ([]InvPi /\ [][NPi]_vPi),

temp_G <- (DonePi => []DonePi)
Activate AndBox, BoxElim2
Qed

By-Implication
UseTempFact Step3, Lemma_InvPi
Expand Pi in Hyp
Qed

10.3 The liveness proof

The part of the correctness proof that states that we eventually reach DoneΠ is clearly
harder than any of the proofs we have done so far. We here have to use the TLA Lattice
rule (see figure 3.2, page 26), showing that executing Π means that we constantly move
downwards in a well-founded set, as long as we haven’t reached DoneΠ.

We will need first to define a suitable well-founded order. Currently, we don’t want
to reason about well-foundedness in TLP – although it is indeed possible inside LP – but
will just assume that the order defined is well-founded by asserting this as yet another
assumption. The set that we want to order is the set of functions from the set of nodes
to the natural numbers extended with infinity, and the order that we have chosen may be
described as follows. The function c is smaller than the function d iff there exists a node
n so that c[n] is strictly smaller than d[n], and for all other nodes m, c[m] is not greater
than d[m]. That this order is well-founded should be a trivial observation.

The specification of the order in TLP looks as follows, where Wforddef is the definition
that we assert as being valid. (The reason that we do this in such a cryptic way, is that
there are no ways of defining operators, or even constant expressions in TLP. This should
change in the future, but has been given rather low priority compared to the other parts
of the system.)
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Rigid Variables
cv, dv : Val

Operators
-< : Val, Val -> Bool

Predicates
Wforddef == cv -< dv =

Exists n in Node :
cv[n] << dv[n] /\
Forall m in delete(n, Node) :

cv[m] <<= dv[m] [* wforddef1(cv, dv, n) *]
[* wforddef2(cv, dv) *]

Act
Do "set name AssumeWforddef

set activity on
set immunity off
assert Wforddef "

NonImmunize Wforddef
Activate Wforddef

End

Temp
Do "set name Wforder

declare op Wforder : -> Any
assert Wforder @ int_c @ int_d -> int_d -< int_c
assert Wellfounded(funcspace(Node, NatInf ), Wforder)"

End

For the action reasoning environment, we simply make the definition active, while for
the temporal reasoning environment, in which we are going to apply the Lattice rule,
we assert that the order is well-founded. Again, the complicated procedures ought to be
changed into a more automated style in future versions of the TLP system.

Now we make some definitions that will be useful in the proof. dDone is the constant
function that d should be equal to, when we have reached DoneΠ. NotDoneSet is a state
function which we will need in our final lattice proof – see page 155. H is the ‘H ’ of
the Lattice rule; H(c) simply means that c is the distance function d , and that this is
still greater than the ‘done function’, dDone . Finally, LatPrem and LatCons are the
existentially quantified formulas that we will use in the premise and the consequence of
the Lattice rule; we make these definitions mostly to save us from writing the formulas
throughout the proof.

Statefunctions
dDone == Lambda n in Node : Dist(Root, n) [* ddone *]
NotDoneSet == {x in Nat :

Exists p in Node : x = dDone[p] /\ dDone[p] << d[p]
[* pnotdone(x) *]

[* notdoneset *]}
Predicates
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H(cv) == cv = d /\ dDone -< cv

LatPrem(cv) == Exists dv in [Node -> NatInf ] :
(dv -< cv) /\ H(dv) [* latprem(cv) *]

LatCons == Exists cv in [Node -> NatInf ] :
H(cv) [* latcons *]

Now, we are going to show that we constantly move downwards with respect to the
ordering we specified, as long as we haven’t reached DoneΠ. This means that we are
going to reason from an assumption that DoneΠ is not satisfied. If DoneΠ is not satisfied,
this means that there is some node n, for which either DonePi1 or DonePi2 is not
satisfied. This seems to produce a number of different cases, that we each time have to
take into account. Fortunately, it is not really so, as DonePi2 (n) is a consequence of our
assumptions, InvΠ and DonePi1 (n). If DoneΠ is not satisfied, we therefore know that
there is an n so that DonePi1 (n) is false, which is thus the only case we have to consider.

We could have shown a lemma that would let us use this fact throughout the final
proofs, but we chose another strategy, in which we simply replace DoneΠ by the simpler
formula DoneOne , which is the universal quantification over just DonePi1 . To show that
this is sufficient to prove eventually DoneΠ, we need a lemma. The only complicated part
here is the case <6>2, where we have to prove Dist(Root, n) − 1 = Dist(Root, f [n]) from
the assumption that d[n] is a number between 0 and infinity, n being a node different from
the root. This involves a lot of tedious arithmetic, but shouldn’t otherwise be difficult.

Predicates
DoneOne == Forall n in Node : DonePi1(n) [* done1 *]
DoneAll == DoneOne => DonePi

Lemma DoneOneDoneAll
Pi => []DoneAll

Proof

<1>1 Assume InvPi Prove DoneAll
Expand DoneAll, DoneOne in Goal

<2>1 Assume InvPi, Forall(Node, done1) Prove DonePi
Activate InvPi, TPi, IPi, DonePi, DonePi1, DonePi2
Use Assump

<3>1 Assume n in Node Prove DonePi1(n) /\ DonePi2(n)

<4>1 DonePi1(n)
UseForall on done1 with n
Qed

<4>2 DonePi2(n)

<5>1 Case 0 << d[n] /\ d[n] << infty

<6>1 Case n = Root
Use Fact1
Instantiate NatsLess with i_u <- 0, i_v <- (d[n])
Qed

<6>2 Case n ~= Root
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Activate Set, IPi2*
UseForall on ipi2 with n
Instantiate Lemma_GeneralTypes with v_n_ <- (n),

v_m_ <- (f [n])

<7>1 DonePi1(f [n])
UseForall on done1 with (f [n])
Qed

<7>2 Dist(Root, n) <<= (Dist(Root, f [n]) + 1)
UseFact2 node n neighbour (f [n])
Qed

<7>3 Dist(Root, f [n]) ~= infty
By-Contradiction
Instantiate NatsInftyLess with i_u <- (Dist(Root, n))
Qed

<7>4 Dist(Root, n) = (Dist(Root, f [n]) + 1)
By-Contradiction
Instantiate NatsAddSubOne.1 with i_u <- (Dist(Root, n)),

i_v <- (Dist(Root, f [n]))
Instantiate NatsAddSubOne.2 with i_u <- (Dist(Root, f [n])),

i_v <- (Dist(Root, n))
Instantiate NatsLess.3 with i_u <- (Dist(Root, f [n]) +1)
Instantiate NatsAddSub with i_u <- (Dist(Root, f [n])),

i_v <- 1
Qed

Instantiate NatsAddSubOne.3 with i_u <- (Dist(Root, n)),
i_v <- (Dist(Root, f [n]))

Instantiate NatsLess with i_u <- (Dist(Root, n))
Instantiate NatsLess with i_v <- (Dist(Root, n))
Qed

By-Cases
Qed

By-Cases
Qed

Qed

ProveForall on donepi
Qed

Qed

<1>2 []InvPi => []DoneAll
Instantiate ImplBox1 with temp_F <- InvPi, temp_G <- DoneAll
Qed

By-Implication
UseTempFact Lemma_InvPi, Step2
Qed
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The predicate H(c) states that c is equal to d and that d is greater than dDone. The
reason that d must be greater than dDone is that we are going to show that H(c) leads
to either DoneOne or LatPrem(c). To do this, we need to use the WF1 rule, which means
that H(c) has to imply that NΠ is enabled – which it wouldn’t be, if d was equal to
dDone. (Another way would of course be to show d = dDone ⇒ DoneOne , and then
to show H(c) ; DoneOne ∨ LatPrem(c) under the assumption d 6= dDone, where H(c)
would have to be just c = d, but this all winds up to be the same thing.)

The way we chose to do the proof, it is useful first to show the lemma ‘DoneOneOrH’,
which states that as long as DoneOne is not satisfied, H(d) must be. H(d), of course,
just states that d is greater than dDone.

In step <3>1 of this proof we use the rule UseNotForall (see page 188) to show that
¬DoneOne implies that here exists an n, such that ¬DonePi1 (n). This rule is a supple-
ment to the traditional introduction and elimination rules, and can easily be derived from
these.

Predicates
DoneOneOrH == ~DoneOne => H(d)

Lemma DoneOneOrH
Pi => []DoneOneOrH

Proof

<1>1 Assume InvPi Prove DoneOneOrH
Expand DoneOneOrH in Goal

<2>1 Assume InvPi, ~DoneOne Prove H(d)
Activate H, InvPi, TPi, IPi, DoneOne, DonePi1
Use Assump
Activate Fact1, Assump1

<3>1 Exists n in Node : ~DonePi1(n) [* notdone1 *]
UseNotForall on done1 and notdone1 set Node
Qed

<3>2 Assume p in Node /\ ~DonePi1(p)
Activate dDone, Fact1
ApplyLambda vbl p set Node
Activate IPi*, TPi

<4>1 dDone[p] << d[p]
UseForall on ipi2 with p
Activate Set

<5>1 p ~= Root
By-Contradiction
Qed

<5>2 Case d[p] = infty
UseAssump3 from Root to p
Instantiate NatsInftyLess with i_u <- (dDone[p])
Qed

<5>3 Case d[p] ~= infty
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UseFuncSpace func (d) vbl p
Instantiate NatsInftyLess with i_u <- (d[p])
Qed

By-Cases
Qed

<4>2 Forall(delete(p, Node), wforddef1(dDone, d, p))

<5>1 Assume q in delete(p, Node) Prove dDone[q] <<= d[q]
ApplyLambda vbl q set Node

<6>1 Case q ~= Root
Activate Set
UseForall on ipi2 with q

<7>1 Case d[q] = infty
UseAssump3 from Root to q
Instantiate NatsInftyLess with i_u <- (dDone[q])

<8>1 Case dDone[q] = infty
Qed

<8>2 Case dDone[q] ~= infty
Qed

By-Cases
Qed

<7>2 Case d[q] ~= infty
UseFuncSpace func (d) vbl q
Instantiate NatsInftyLess with i_u <- (d[q])
Qed

By-Cases
Qed

By-Cases
Qed

ProveForall on wforddef1[dDone, d, p]
Qed

ProveExists on wforddef2[dDone, d] with p
Qed

UseExists on notdone1
Qed

Qed

<1>2 []InvPi => []DoneOneOrH
Instantiate ImplBox1 with temp_F <- InvPi, temp_G <- DoneOneOrH
Qed

By-Implication
UseTempFact Lemma_InvPi, Step2
Qed
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We are now almost ready to begin the final lattice proof. A simple lemma will let us use
some of the important invariants that we have proved so far.

Predicates
EDoneAssump == InvPi /\ DoneOneOrH

Lemma EDoneAssump
Pi => []EDoneAssump

Proof
By-Implication
UseTempFact Lemma_InvPi, Lemma_DoneOneOrH
Activate AndBox
Expand EDoneAssump in Goal
Qed

The lattice proof follows on pages 156–163. It works as follows:

<1>1: First of all we show that initially we are either done (a possible situation, where
the root is not connected to any nodes) or there is a c so that H(c). This is clearly
a consequence of the ‘DoneOneOrH’ lemma.

<1>2: Then we use the Lattice rule to show that if such a c exists, then we will eventually
be done. The Lattice rule in TLP is exactly the one we know from the TLA report,
although technicalities and our encoding in LP make it look a bit different:

|= (F ∧ c ∈ S) =⇒ (H (c) ; (G ∨ ∃(S , f (c))))
f (c)(d) = (s(c)(d) ∧ H (d))
g(c) = H (c)
Wellfounded (S , s)

|= F =⇒ ∃(S , g) ; G

The instantiations that we will use are

F ← Π
G ← DoneOne
S ← [Node → NatInf ]
H ← H
f ← latprem
g ← latcons
s ← wforder

so that we may prove that Π implies ∃([Node → NatInf ],wforder) ; DoneOne from
the fact that Π and c ∈ [Node → NatInf ] implies H(c) ; (DoneOne ∨ ∃([Node →
NatInf ], latprem(c)).

<1>3: We finally conclude that Π implies that being initially in a state that satisfies either
DoneOne or H(c) for some c, means that we will eventually reach DoneOne . This
is simple reasoning by using step <1>2 and some of the Grønning lattice rules.
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The interesting reasoning is done in <1>2, where we prove the premise of the instantiated
lattice rule. If we knew that every step was an NΠ step, this wouldn’t be hard, as we can
easily show that NΠ takes us from a d to a strictly smaller d ′ (which is the essence of the
premise). But as we allow stuttering, we have to involve the WF1 rule, and show that not
only is NΠ the needed ‘downwards’ action, but it is also constantly enabled, as long as
we haven’t reached DoneOne . The latter is probably the hardest proof of this example,
and will need a thorough examination. But first let us see how the WF1 rule is used. It
looks as follows:

|= Assump =⇒ ((P ∧ [N ]f ) =⇒ (P ′ ∨ Q ′))
|= Assump =⇒ ((P ∧ 〈N ∧A〉f ) =⇒ Q ′)
|= Assump =⇒ (P =⇒ Enabled (〈A〉f ))

|= (2(Assump) ∧ 2([N ]f ) ∧WFf (A)) =⇒ (P ; Q)

We use the instantiations

Assump ← EDoneAssump ∧ EDoneAssump ′

N ← NΠ

f ← vΠ

A ← NΠ

P ← H(cv)
Q ← DoneOne ∨ LatPrem(cv)

where cv is the function that we have assumed to be an element of [Node → NatInf ].
<3>1 (under <1>2, page 157) is just a simple lemma, that we need in the following

steps. <3>2 is a substantial part of the proof, being essentially the proof where we neglect
the stuttering possibility, just showing that NΠ is an action that takes us ‘downwards’.
This is used in both of the two first premises of the WF1 rule. The proof is just showing
that d ′ is smaller than d and that H(d)′ is satisfied, when we execute NΠ. Finally, <3>3,
<3>4, and <3>5 are the three premises. <3>3 and <3>4 by now follow trivially from <3>2,
although with some simple reasoning about the stuttering case in <3>3.

<3>5 is the step that we want to spend some time on. Here we show that NΠ is
enabled, based on the single assumption that H(cv ) is satisfied – i.e. that d is greater
than dDone. NΠ is enabled, informally, whenever there is a pair of neighbours, so that
the computed distance of one differs from the distance of the other by more than one.
The problem lies in finding ‘the right pair’ of neighbours, for which we know that this is
the case.

Recall the state function NotDoneSet , that we defined on page 149. This is defined
as the set of natural numbers, each being the true distance from the root to some node,
to which we still haven’t found the shortest path. We know that, if d is greater than
dDone , then this set is not empty. If it’s not empty, then it has a minimal element (that’s
one of our assumption about subsets of the natural numbers, in this case). Now, if there
is a minimum, there must be at least one node, for which the distance is equal to this
minimum. Let’s call that node p. From the assumptions about the graph, we know
that as p’s distance from the root is not infinity, it has at least one neighbour, q , whose
distance is exactly one smaller. But as the distance of q is smaller than the minimum
of NotDoneSet , q can not be one of the nodes for which we still haven’t computed the
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correct distance, hence d[q] must be equal to Dist(Root, q). So, what we have is

d[q] + 1 = Dist(Root, q) + 1 = Dist(Root, p) < d[p]

and thus we know that NΠ2(p, q) is enabled. The steps are explained below:

<4>1 (of <3>5, page 158): We show that NotDoneSet is not empty (it contains an ele-
ment). This is not too hard, as there must be one p for which d[p] is smaller than
dDone[p], according to the definition of the ordering.

<4>2: We conclude that the minimum thus exists, and is smaller than any other element,
showing first that NotDoneSet is a subset of Nat and then using the NatsMin rule.

<4>3: We show that there is thus a node, whose distance equals the minimum.

<4>4: Assuming that p is this node, we show our goal, by:

<5>1: showing that if q is a node for which we haven’t computed the right distance, then
its distance must be greater than that of p;

<5>2-4: showing that p cannot be the root (we know the distance of the root from the
start), and that dDone[p] is a natural number;

<5>5: and finally, using the fact that there is thus a neighbour q so that Dist(Root, q)+1 =
Dist(Root, p), to show that NΠ2(p, q), and therefore also NΠ, are enabled. A number
of substeps are needed to derive all the facts we need about d and q , after which
the conclusion, in step <6>4 is trivial.

Theorem EventuallyDoneOne
Pi => <>DoneOne

Proof

<1>1 Pi => DoneOne \/ LatCons

<2>1 Assume EDoneAssump Prove DoneOne \/ LatCons

<3>1 Case ~DoneOne
Expand LatCons in Goal
Expand EDoneAssump in Hyp<2>

<4>1 H(d)
Expand DoneOneOrH in Hyp<2>
Qed

<4>2 d in [Node -> NatInf ]
Expand InvPi, TPi in Hyp<2>
Qed

ProveExists on latcons with d
Qed

By-Cases
Qed

By-Implication
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UseTempFact Lemma_EDoneAssump, Step1
Instantiate BoxElim1 with temp_F <- EDoneAssump
Qed

<1>2 Pi => (LatCons ~> DoneOne)

<2>1 (Pi /\ cv in [Node -> NatInf ]) =>
(H(cv) ~> (DoneOne \/ LatPrem(cv)))

<3>1 dDone = dDone’
Expand dDone in Goal
ProveLambda on ddone ddone’ Node
Qed

<3>2 Assume EDoneAssump /\ EDoneAssump’, H(cv) /\ NPi
Prove (DoneOne \/ LatPrem(cv))’

Expand EDoneAssump, InvPi, H, NPi in Hyp

<4>1 Assume n in Node /\ NPi1(n)
Expand NPi1 in Hyp

<5>1 Assume m in Nbrs(n) /\ NPi2(n, m)
Instantiate Lemma_GeneralTypes,

Lemma_StepTypes,
Lemma_StepFacts with v_n_ <- (n), v_m_ <- (m)

Expand NPi2 in Hyp

<6>1 Case ~DoneOne’
Expand LatPrem in Goal

<7>1 d’ -< d

<8>1 d’[n] << d[n]
Qed

<8>2 Forall(delete(n, Node), wforddef1(d’, d, n))

<9>1 Assume p in delete(n, Node) Prove d’[p] <<= d[p]
Activate Set
UpdateIn vbl p updated d
Qed

ProveForall on wforddef1[d’, d, n]
Qed

ProveExists on wforddef2[d’, d] with n
Qed

<7>2 H(d)’
Expand DoneOneOrH in Hyp<3>
Qed

<7>3 d’ in [Node -> NatInf ]
Expand TPi in Hyp<3>
Qed

ProveExists on latprem’[d] with d’
Qed
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By-Cases
Qed

UseExists on n2[n]
Qed

UseExists on n1
Qed

<3>3 Assume EDoneAssump /\ EDoneAssump’, H(cv) /\ [NPi]_vPi
Prove H(cv)’ \/ (DoneOne \/ LatPrem(cv))’

<4>1 Case Unchanged(vPi)
Expand vPi in Hyp
Activate Step<3>1
Activate H
Qed

<4>2 Case NPi
Instantiate Step<3>2 with v_cv_ <- (cv)
Qed

By-Cases
Qed

<3>4 Assume EDoneAssump /\ EDoneAssump’,
H(cv) /\ <NPi /\ NPi>_vPi

Prove (DoneOne \/ LatPrem(cv))’
Instantiate Step<3>2 with v_cv_ <- (cv)
Qed

<3>5 Assume EDoneAssump /\ EDoneAssump’, H(cv)
Prove Enabled<NPi>_vPi

Use Assump

<4>1 Exists k in Nat : k in NotDoneSet [* notempty *]

<5>1 dDone -< d
Expand H in Hyp<3>
Qed

<5>2 Assume p in Node /\ dDone[p] << d[p] /\
Forall(delete(p, Node), wforddef1(dDone, d, p))

Activate dDone
ApplyLambda vbl p set Node

<6>1 dDone[p] in Nat

<7>1 dDone[p] ~= infty
By-Contradiction
Expand EDoneAssump, InvPi, TPi in Hyp<3>
UseFuncSpace func d vbl p
Instantiate NatsInftyLess.2 with i_u <- (d[p])
Qed

Activate Assump1
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UseAssump3 from Root to p
Qed

<6>2 dDone[p] in NotDoneSet

<7>1 Exists(Node, pnotdone(dDone[p]))
ProveExists on pnotdone[dDone[p]] with p
Qed

ProveSetof elem (dDone[p]) set Nat func notdoneset
Expand NotDoneSet in Goal
Qed

ProveExists on notempty with (dDone[p])
Qed

UseExists on wforddef2[dDone, d]
Qed

<4>2 /\ min(NotDoneSet) in NotDoneSet
/\ Forall k in NotDoneSet : min(NotDoneSet) << k

[* minisleast *]

<5>1 subSet(NotDoneSet, Nat)

<6>1 Assume k in NotDoneSet Prove k in Nat
UseSetof set Nat func notdoneset
Expand NotDoneSet in Hyp
Qed

Instantiate ProveSubSet with a_S <- NotDoneSet, a_T <- Nat
Qed

<5>2 Assume k in Nat /\ k in NotDoneSet
NatsMin set NotDoneSet elem k

<6>1 Assume l in NotDoneSet Prove min(NotDoneSet) << l
NatsMin set NotDoneSet elem l
Qed

ProveForall on minisleast
Qed

UseExists on notempty
Qed

<4>3 Exists(Node, pnotdone(min(NotDoneSet)))
Activate NotDoneSet
UseSetof set Nat func notdoneset
Qed

<4>4 Assume p in Node /\ dDone[p] = min(NotDoneSet) /\
dDone[p] << d[p]

Use Assump
Expand EDoneAssump, InvPi in Hyp<3>
Activate dDone
ApplyLambda vbl p set Node
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<5>1 Forall q in Node :
dDone[q] << d[q] => dDone[p] <<= dDone[q]
[* pleast(p) *]

<6>1 Assume q in Node, dDone[q] << d[q]
Prove dDone[p] <<= dDone[q]

<7>1 dDone[q] in NotDoneSet
ApplyLambda vbl q set Node

<8>1 dDone[q] in Nat

<9>1 dDone[q] ~= infty
By-Contradiction
Expand TPi in Hyp<3>
UseFuncSpace func d vbl q
Instantiate NatsInftyLess.2 with i_u <- (d[q])
Qed

Activate Assump1
UseAssump3 from Root to q
Qed

<8>2 Exists(Node, pnotdone(dDone[q]))
ProveExists on pnotdone[dDone[q]] with q
Qed

ProveSetof elem (dDone[q]) set Nat func notdoneset
Expand NotDoneSet in Goal
Qed

UseForall on minisleast with (dDone[q])
Qed

ProveForall on pleast[p]
Qed

<5>2 p ~= Root
By-Contradiction
Expand IPi* in Hyp<3>
Activate Fact1
Instantiate NatsLess.3 with i_u <- 0
Qed

<5>3 dDone[p] in NatInf
Activate Assump1
UseAssump3 from Root to n
Qed

<5>4 dDone[p] ~= infty
By-Contradiction
Expand TPi in Hyp<3>
UseFuncSpace func d vbl p
Instantiate NatsInftyLess.2 with i_u <- (d[p])
Qed
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<5>5 Assume q in Nbrs(p) /\ Dist(Root, p) = Dist(Root, q) + 1
Instantiate Lemma_GeneralTypes with v_n_ <- (p), v_m_ <- (q)
ApplyLambda vbl q set Node
Activate Nab*

<6>1 dDone[q] ~= infty
By-Contradiction
Instantiate NatsInftyAdd with i_u <- 1
Qed

<6>2 dDone[q] << dDone[p]
Instantiate NatsAddSubOne with i_u <- (dDone[q]),

i_v <- (dDone[p])
Qed

<6>3 dDone[q] = d[q]

<7>1 ~(dDone[q] << d[q])
Instantiate NatsLess.3 with i_u <- (dDone[q]),

i_v <- (dDone[p])
UseForall on pleast[p] with q
Qed

<7>2 dDone[q] <<= d[q]
Expand InvPi in Hyp<3>
Activate Set, IPi*
UseForall on ipi2 with q

<8>1 Case d[q] = infty
Instantiate NatsInftyLess.1 with i_u <- (dDone[q])
Qed

<8>2 Case d[q] ~= infty

<9>1 Case q = Root
Activate Fact1
Qed

<9>2 Case q ~= Root
Instantiate NatsInftyLess.1 with i_u <- (d[q])
Qed

By-Cases
Qed

By-Cases
Qed

Qed

<6>4 p in Node /\ Enabled<NPi1(p)>_vPi

<7>1 q in Nbrs(p) /\ Enabled<NPi2(p, q)>_vPi

<8>1 /\ dDone[p] in Nat
/\ dDone[p] in openInter(d[q] + 1, d[p])

Instantiate ProveOpenInterval with i_u <- (dDone[p]),
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i_v <- (d[q] + 1),
i_w <- (d[p])

Qed

ProveExists on inint[p, q] with (dDone[p])
Qed

ProveExists on enabnpi1[p] with q
Qed

ProveExists on enabnpi with p
Qed

Activate Fact3, Set
UseForall on fact31 with p
Instantiate NatsInftyLess.1 with i_u <- (dDone[p])
UseExists on fact32[p]
Qed

UseExists on pnotdone[min(NotDoneSet)]
Qed

<3>6 []EDoneAssump /\ [][NPi]_vPi /\ WF(vPi, NPi) =>
(H(cv) ~> (DoneOne \/ LatPrem(cv)))

WF1 with pred_P <- (H(cv)),
pred_Q <- (DoneOne \/ LatPrem(cv)),
act_N <- Npi,
sf_f <- vPi,
act_A <- NPi,
act_Assump <- (EDoneAssump /\ EDoneAssump’)

By-Implication
Instantiate PrimeBox with pred_P <- EDoneAssump
UseTempFact WF1, PrimeBox
Qed

By-Implication
UseTempFact Lemma_EDoneAssump, Step6
Expand Pi in Hyp
Qed

Lattice with temp_F <- Pi,
temp_G <- DoneOne,
set_s <- ([Node -> NatInf ]),
temp_H <- H,
fnc_f <- f_latprem,
fnc_g <- f_latcons,
ord_s <- wforder

Expand LatPrem in Step1
Expand LatCons in Goal
Activate FunctionDefinitions*, wforder
Qed

<1>3 Pi => (DoneOne \/ LatCons) ~> DoneOne
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By-Implication % DoneOne \/ LatCons
UseTempFact Step<1>2 % LatCons ~> DoneOne
UseLatticeRules % DoneOne ~> DoneOne
LatticeDisjunctionIntr DoneOne LatCons DoneOne

% (DoneOne \/ LatCons) ~> DoneOne
Qed

By-Implication
UseTempFact Step1, Step3
Expand Leadsto in Step3
Apply BoxElim1 to Step3
Qed

10.4 The correctness proof

We are done with the liveness part of the correctness proof, and only have to combine
the results to prove the final correctness theorem, ‘DonePi’. The proof depends on the
lemma ‘DoneOneDoneAll’ (page 150) and the two theorems ‘AlwaysDonePi’ (page 147)
and ‘EventuallyDoneOne’ (page 156). The temporal reasoning needed to combine these
has been spelled out into four steps, which should make it easy to understand.

Theorem DonePi
Pi => <>[]DonePi

Proof

<1>1 Pi => [](DoneOne => DonePi)
By-Implication
UseTempFact Lemma_DoneOneDoneAll
Activate DoneAll
Qed

<1>2 Pi => [](<>DoneOne => <>DonePi)
By-Implication
UseTempFact Step<1>1
Apply ImplDmd2 to Step<1>1
Qed

<1>3 Pi => <>DonePi
By-Implication
UseTempFact Theorem_EventuallyDoneOne, Step<1>2
Apply BoxElim1 to Step<1>2
Qed

<1>4 Pi => (<>DonePi => <>[]DonePi)
By-Implication
UseTempFact Theorem_AlwaysDonePi
Apply ImplDmd2 to Theorem_AlwaysDonePi
Apply BoxElim1 to Theorem_AlwaysDonePi
Qed

By-Implication



p g p

UseTempFact Step3, Step4
Qed
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The Multiplier

The Multiplier example was created by Bob Kurshan and Leslie Lamport as part of an
effort showing how theorem proving can be combined with automatic model checking,
verifying systems that neither method would be capable of alone. The example and the
proofs that have been done were presented in the CAV paper “Verification of a Multiplier:
64 Bits and Beyond” [18]. It is included here to show how TLP may be used in a wider
context, reasoning about a realistic system. As the separate details of the proof do not
present much new compared to what we have shown in the two previous chapters, we will
here just give an overview what was done, with a note on what we learned from using
TLP.

We want to reason about a piece of hardware for multiplying two k · 2m-bit numbers.
The multiplier is constructed from k-bit multipliers by recursively applying a method
for implementing a 2N-bit multiplier with four N-bit multipliers. The k-bit multipliers
constitute complex algorithms that would be hard to verify by theorem proving. Using
a k no greater than 8, they may however be verified by model checking. Here we thus
only have to consider the verification of the combination of four N-bit multipliers to give
a 2N-bit multiplier, from which we will have verified a k · 2m-bit multiplier for any m.

As the two previous examples have already served to show how different kinds of
proofs may be done in TLP, we will not include this example in its entirety. Instead, we
will here just show how the multipliers may be specified in TLP, and explain the steps
of the proofs that have been performed. The complete text of the example, structured
and commented so that it should be suitable for investigation, may be found among the
examples contained in the TLP distribution.

11.1 The TLP specification

The specification of an N-bit multiplier may be written as below. a and x are the two
(constant) numbers being multiplied, and out is the variable that should contain the
resulting value when the multiplication has been finished. We use the constant NN for N ,
as LP does not differentiate between upper- and lower-case letters, and n is used elsewhere
as a variable. The execution of the multiplier is synchronized with its environment using
a two-phase handshaking protocol on the one-bit variables sig and ack . The environment
is free to change the inputs whenever sig = ack ; it complements sig when the output is
ready. The multiplier can change out when sig 6= ack ; it complements sig when ready.
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Initially, sig and ack are both 0 and the multiplier is ready to receive input.
MultiplyNN (a, x) simply denotes the 2 ∗ NN -bit vector obtained by multiplying a

and x, so that the action Finish delivers the right result in out . Multiply , BitVector ,
and all variables and constants are declared elsewhere, and the operators are given a
meaning through assumption predicates; we will not go into detail with those here. The
full multiplier is denoted by M and its environment by E.

Name Mult

%-Use frame multvars

Predicates
MInit == /\ out in BitVector(2 ∗ NN)

/\ ack = 0

EInit == /\ a in BitVector(NN) /\ x in BitVector(NN)
/\ sig = 0

Actions
Think == /\ sig ~= ack

/\ ack’ = ack
/\ out’ in BitVector(2 ∗ NN)

Finish == /\ sig ~= ack
/\ ack’ = 1 - ack
/\ out’ = Multiply(NN, a, x)

MNext == (Think \/ Finish)

ENext == /\ sig = ack
/\ sig’ = 0 \/ sig’ = 1
/\ a’ in BitVector(NN) /\ x’ in BitVector(NN)

Temporal
M == /\ MInit

/\ [][MNext]_(out, ack)
/\ WF((out, ack), Finish)

E == /\ EInit
/\ [][ENext]_(a, x, sig)

To make a 2N-bit multiplier, we make four copies of the N-bit multiplier: LL, LH ,
HL, and HH , modified so that they work on aL and xL, aL and xH , aH and xL, and aH
and xH respectively, with the interface variables modified to be ackLL, ackLH , ackHL, or
ackHH , and likewise for out (we need only one, general sig, however). aL, aH , xL, and
xH are defined as the lower and higher half of the 2N-bit vectors a and x, as follows:

Statefunctions
aH == Lambda i in LessThan(NN) : a[i + NN] [* aH *]
aL == Lambda i in LessThan(NN) : a[i] [* aL *]
xH == Lambda i in LessThan(NN) : x[i + NN] [* xH *]
xL == Lambda i in LessThan(NN) : x[i] [* xL *]

Note that we could have used a parameterized specification of the multiplier, so that we
could just refer to the multipliers as e.g. M(L,H), L, and H being constant values. This
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makes our work more structured, as we don’t have to repeat invariant and fairness proofs
(we would use general rigid variables instead of L and H), and is generally considered
the right way to do this.1 A parameterized version with some of the initial proofs is
supplied with the TLP distribution. The parameter mechanism however tend to make
the specifications and proofs somewhat harder to read, and may cause the Larch Prover
unnecessary efficiency problems, which is why we here have chosen to use four similar-
looking copies instead.

With these definitions we now know that we may compute the product of a and x
from aL, xL, aH and xH as

a · x = 22N · (aH · xH ) + 2N · ((aH · xL) + (aL · xH )) + (aL · xL)

The four parenthesized products in this expression are of course just the results from exe-
cuting the four N-bit multipliers, so assuming that we can handle the remaining additions
and shifting operations, we may specify the 2N-bit multiplier as below.

Name DblMult

%-Use frame bitvectors multvars ll lh hl hh dbl

Predicates
Adder1 == out in BitVector(4 * NN)
Adder2 == IVal(4 * NN, out) =

((((2 ^ (2 * NN)) * IVal(2 * NN, outHH)) +
((2 ^ NN) * (IVal(2 * NN, outLH ) + IVal(2 * NN, outHL))) +
IVal(2 * NN, outLL)) |

(2 ^ (4 * NN)))
AdderP == Adder1 /\ Adder2

Statefunctions
acks == (ack, ackLL, ackLH, ackHL, ackHH )
outs == (out, outLL, outLH , outHL, outHH)
axsig == (a, x, sig)
vars == (acks, outs, axsig)

Predicates
AckInit == ack = 0

AckGuard == /\ ackLL = sig
/\ ackLH = sig
/\ ackHL = sig
/\ ackHH = sig

Actions
AckNext == ack’ = If AckGuard then sig else (1 - sig)

Temporal
ExtAck == AckInit /\ [][AckNext]_acks /\ WF(acks, AckNext)

Adder == []AdderP

DM == LLM /\ LHM /\ HLM /\ HHM /\ Adder /\ ExtAck

DE == DblE

1Even better would be to use a module system as in TLA+.
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ExtAck is a temporal formula specifying a simple component that computes the ack
variable of the 2N-bit multiplier from its sig variable and each of the ack variables of the
internal multipliers.

The Adder2 predicate specifies the relation between the 2N-bit multiplier output out
and the outputs of the four internal multipliers, according to the expression above. For
simplicity, we assume that we have a combinational adder Adder (rather than a separate,
sequential component) that satisfies 2AdderP , maintaining this relation throughout the
execution of the multiplier.

The 2N-bit multiplier may now be specified by DM , with its environment DE being
just the 2N-bit instantiation DblE of the environment E of the Mult module.

11.2 The proofs

Kurshan and Lamport describe in their paper how to prove that the recursively defined
k · 2m-bit multiplier satisfies its high-level specification, using model checking as an in-
duction basis and theorem proving (through the Decomposition Theorem [18]) to show
the induction step. The hardest part of the induction step is of course to show that the
low-level specification of the 2N-bit multiplier (composed of the four high-level N-bit
multiplier specifications) implements the high-level 2N-bit multiplier specification. This
is in TLP to show the validity of the temporal formula

DE ∧DM ⇒ DblM

where DblM is the formula M of the 2N-bit instantiation of Mult. The proof of this
formula has been done in TLP, based on a set of assumptions on the used data types with
addition and multiplication. In addition to these assumptions, the proof uses a few derived
facts, that TLP does not yet seem strong enough to handle in a feasible manner. The
strongest of these not-proven facts asserts that when each of the N-bit multiplier outputs
equals the product of their inputs, and AdderP holds, then out equals the product of a
and x – in LP:

assert
when AdderP ,

outLL = Multiply(NN , aL, xL),
outLH = Multiply(NN , aL, xH ),
outHL = Multiply(NN , aH , xL),
outHH = Multiply(NN , aH , xH )

yield out = Multiply(2 · NN , a, x )

With a stronger engine for arithmetic reasoning it should be unnecessary to make such
assertions; for now we have to accept that these are assumptions on which the soundness
of the proof rely.

The proofs do not differ much in character from the ones shown in detail in chapters 9
and 10. Like the Increment Example, they consist of some invariant proofs, a simulation
proof, and a fairness proof. The number of invariants that have been proved for the
Multiplier is a bit bigger than that of the Increment proofs, but that taken into account,
the simulation proof is easily done in just about 100 lines.

The fairness proof is also quite similar in structure and complexity to the ones of the
Increment Example. It consists of a single application of the WF2 rule, of which only the
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fourth premise presents any difficulties. This is verified from four complicated lemmas,
identical modulo the referenced ‘L’s and ‘H’s. Each of these lemmas is proved in four
steps, of which the second is an application of the WF1 rule. The fourth step, combining
the first three to conclude the lemma, is the only one that we will take a closer look at
here, however. In the first three steps we have shown (with logical components renamed
and somewhat simplified for brevity):

2Assumptions ⇒ 2(¬(¬A ∧B))
2Assumptions ⇒ 2((¬A ∧ ¬B) ; (A ∧ ¬B))
2Assumptions ⇒ 2((A ∧ ¬B)⇒ 2(A ∧ ¬B))

From this we would like to arrive at the conclusion, 2Assumptions ⇒ 32A. This may
indeed be done by application of simple temporal reasoning. Experience tells us, however,
that it often produces great difficulties to do such a proof by manual application of
temporal rules. This is a clear case where we may take advantage of the LTL checker,
creating a simple lemma that may be checked in a matter of seconds. This lemma is
shown below exactly as it appears in the Multiplier fairness proof.

Rigid Variables
A, B : Bool

Lemma WF2ivLattice
/\ [](~(~A /\ B))
/\ (~A /\ ~B) ~> (A /\ ~B)
/\ []((A /\ ~B) => [](A /\ ~B))
=> <>[]A

Proof
By-LTL
Qed

An interesting point about the Multiplier Example is that doing the proofs with TLP
actually lead to the finding of critical bugs in the first version of the specifications. ExtAck
was originally defined as

ExtAck == [](ack = If AckGuard then sig else (1 - sig))

and the step ENext of E (and thus DblE ) was guarded by the assumption that ack and
out were unchanged. With this specification, DM ∧ DE allowed behaviours in which
both ack and out changed in a single step, while DblM in the first specification clearly
disallowed such behaviours. This problem wasn’t found until I started on the simulation
proof, where I at one point needed to show that sig was unchanged in a step where ack had
been changed – which I obviously couldn’t. After a closer look it proved to be impossible
to write a purely combinational specification for ExtAck , and so Kurshan and Lamport
changed the specifications to the current setting.
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Conclusions

Researchers have been working with the scientific aspects of verifying sequential and
concurrent algorithms for more than twenty years. When Leslie Lamport in the fall
of 1990 requested the author’s assistance in investigating the feasibility of mechanical
reasoning in the Temporal Logic of Actions, it was based on a view that most of the
problems that remain to be solved are in the realm of engineering, rather than science.
The basic principles of formal specification and verification have been known for many
years, but there is a growing need for computer-assisted tools that will make reasoning
about real systems practical.

With the aim of contributing to this area, Leslie Lamport, Peter Grønning, and the
author in 1991 began working on an encoding of TLA for the Larch Prover, a tool that
seemed to suit our purposes very well, providing us with an efficient automatic rewrit-
ing system and allowing a very straightforward implementation of TLA based on the
proof rules. With little work, we were able to produce mechanically verifiable proofs of
refinements, containing both safety and liveness reasoning.

In a short time we found that the encoding we had chosen covering the complete logic
was not especially well-suited when it came to reasoning about ordinary first-order logic.
Realizing that most of the reasoning performed in any of our proofs was indeed based
on first-order logic, this lead to the refinement and split-up of the original encoding into
two separate encodings, for taking care of what we referred to as action and temporal
reasoning respectively. This novel approach, based on a simple observation, made many
of our previous proofs shrink by a factor of three or more.

As our aim was to make reasoning practically available, the complexity of the machine
verifiable proofs that we had written was still a major problem. Not only were the proofs
necessarily more detailed than their respective hand proofs, but they also had to be
presented in a form specific to the two different Larch Prover encodings. We solved the
latter part of the problem by introducing a tool for automatically translating specifications
and proofs written in a high level language into their encodings. This made it possible for
us to write specifications in pure TLA, and to write human readable proofs that were much
closer to the hand proofs we were used to, and furthermore made it unnecessary to deal
with more than one instance of each, as the translator was capable of producing different
encodings of the same specifications and proofs, automatically splitting the proofs into
parts to be verified in the different encodings.

With the introduction of separate encodings, a high-level language, and a translator
for connecting the two, the content of the specifications and proofs had become simpler
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and more directly related to what they where describing. The process of verifying, and
not less significantly, developing proofs for evolving specifications, had not been made
any simpler, however. A major contribution making incremental proof-development man-
ageable was the author’s introduction of an interactive front-end. The front-end, built
on top of the customizable text-editor GNU Emacs, was made first of all to take care
of all communication between the user, the translator, and the verification back-end, the
Larch Prover. But with the front-end it was furthermore made possible for the user to de-
velop proofs interactively in a top-down or bottom-up fashion, dealing with each step at a
time, and adding steps and instructions whenever needed without having to worry about
technical issues regarding re-translation and verification of the specific proof sections and
dealing with the separate encodings.

With the improved convenience of handling different encodings and reasoning tech-
niques, achieved by the introduction of the front-end, it was a straightforward task to add
new back-ends for dealing with specific proof tasks. The author experimented in this area
by introducing an encoding supporting automated verification of simple temporal logic
tautologies by David Long’s linear temporal logic-checker.

12.1 The results

The thesis has as its main point shown that it can be made feasible to perform rigorous
reasoning about non-trivial systems and have the results mechanically verified. It has
been shown how it may be useful to experiment with shallow implementations, where full
safety of the system is sacrificed to gain flexibility. By depending on an integrated system
with much of its internal structure embedded in the interface, we were able to find ways to
reduce the complexity in the chain of reasoning. Although the safety of any proof verified
in TLP has to rely on a more vulnerable system, the practical achievements may make it
worth the cost.

It has been shown how the problem of dealing with the perplexity of encodings may
be solved by introducing a translator and an interactive front-end for dealing with the
technical details of verification. The importance of these tools should not be underesti-
mated; experiments doing e.g. the Increment Example of chapter 3.4 without the aid of
the tools (i.e. writing the encoded specifications and the low-level proofs manually and
performing some sort of manually directed bottom-up proof construction) have shown to
be a terrible and barely successful experience, in spite of its relative simplicity.

Most of all, the integration of different tools and proof techniques together with a
single language for specifications and proofs was shown as a big step towards practical
manageability of mechanical reasoning.

GNU Emacs was shown to be an excellent platform for the construction of the in-
teractive front-end. Besides being a very advanced text editor with possibility of syntax
directed editing on many levels, Emacs provides an extension language which makes it
easy to implement a front-end with very high functionality. Using Emacs as our front-end
is advantageous, in that it offers the same specialized environment for editing TLP spec-
ifications and proofs when in the middle of a verification session, as is available at other
times. The TLP front-end built on top of Emacs uses different windows for displaying the
source files, messages from the front-end about the status of verification sessions including
syntax errors and verification problems, and output from the verification back-ends. The



p p

possibility for the user to apply his own standard setup and private extensions, makes his
work with TLP as flexible as we could ever have made it in a dedicated front-end, built
from scratch.

The TLP system has shown its qualities mostly through practical use. Although
the number of case studies that the author knows of is not yet very large, the different
examples that have been tried give an idea of the wide range of problems in which TLP
could be successfully applied.

The Spanning-Tree Example described in chapter 10 thus serves to show how rea-
soning about the correctness, and most significantly, the liveness of a non-finite state
system may be handled by application of the TLA rule for well-founded induction. The
Multiplier example of chapter 11, fully described by Kurshan and Lamport [18], gives a
good presentation of how model checking and theorem proving may be combined in the
verification of realistic systems, something that Kurshan and Lamport as well as others
have been promoting as a future direction of research in the area of mechanical reasoning.

One of the most interesting examples of the use of TLP has been one by Stephan
Merz, described in the recent article by Lamport and Merz “Specifying and Verifying
Fault-Tolerant Systems”[25]. The article presents specifications for a well-known solution
to the Byzantine generals problem and delivers a rigorous, hierarchically structured proof,
of which most steps has been verified with TLP.

Peter Grønning has at the Danish Technical University been using TLP in the verifi-
cation of a coherent cache, an example that has yet to be published.

12.2 Open problems and future work

As was mentioned in the first parts of the thesis, there are still many fragments of the
TLP systems that are missing or which should be improved. One of the most important
ones that comes into mind is the ability to either verify or get automatically generated
enabled predicates. We may use TLP without this ability, as computing enabled predicates
manually seldom constitutes a very hard task. The main aim of TLP being the practical
availability of mechanical reasoning, we don’t see the resulting lack of safety to be a major
problem. The correctness of the enabled predicates will merely be assumptions on the
correctness of proofs depending on them.

It is clear that one of the big hurdles in any mechanical proof is concerned with
reasoning about data-types. It would be nice to have e.g. a set of arithmetical decision
procedures for solving some of the big problems we have had reasoning about seemingly
extremely simple arithmetical conjectures. With the integration capabilities and flexibility
of TLP, adding such a tool as a new back-end should be a simple exercise. In this
connection, it would also be very useful to add a tool for handling reasoning about the
well-foundedness of partial orders.

Refinement mappings have been handled in different ways through the development
of TLP. The current implementation lets you define refinement mappings on all variables,
but reasoning is made unnecessarily difficult especially when it comes to variables which
are not part of the mappings, as the translator currently is unaware of which variables it
should map, the solution being to use identity mappings for all other variables. A better
scheme has been designed but never implemented.

The front-end today works mostly in one direction: it applies a translator to the



high-level language specifications and proofs, and executes the encodings through the
back-ends, but does little parsing of the resulting output from the verification tool. A
full, two-way front-end should also be able to interpret the encoded parts of the output
from the back-end and translate the information about conjectures and hypotheses back
to the high-level language.

The front-end could also be improved with respect to editing features. The syntax
directed capabilities existing today present only few examples of what could be done; an
intelligent routine for generation of different kinds of proofs would for example be a future
possibility. A ‘folding’ mode for hiding parts of proofs that are outside the current scope
could be very useful, as well as a more flexible ‘make’ system, for doing various sorts of
batch verification.
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Appendix A

Syntax of the TLP language

A.1 Reserved words

Act
Action[s]
Array
Assume
Bar
Bool
Bottom
By-Cases
By-Implication
By-Contradiction
By-LTL
Case
Constant[s]
ContraHyp
Do
else
Enabled
End

Exists
False
Forall
Goal
Hyp
If
in
Include
is
Lemma
Lambda
Method[s]
Name
Operator[s]
Predicate[s]
Proof
Prove

Qed
Rigid
SF
Statefunction[s]
Step
Temp
Temporal
then
Theorem
Transitionfunction[s]
True
Unchanged
Use
Val
Value[s]
Variable[s]
WF

A.2 Reserved symbols

= ~= \/ /\ ~ => <=> ==
[] <> ~> ’ ( ) [ ]
< > { } , @ _ .
: | := :in -> <- % %-
** (* *) [* *] #[alphanum]

A.3 Grammar

In the following n∗nl means a possibly empty list of n’s, all ended by a newline; n+comma

means a nonempty list of n’s separated by ‘,’s; and n+spc means a nonempty list of n’s
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separated by blanks. {. . . |. . .} denotes alternatives and [. . . ] denotes optional parts.
Newlines in grammar-rules indicate where newlines are needed. Optional newlines

are allowed between definitions, proofs, etc., and inside formulas and lists after any infix
operator and the separators ‘,’ and ‘*’. A newline character can be put anywhere between
two grammatical objects, when escaped by a preceding backslash ‘\’.

Two sorts of comments are allowed, which are not described in the grammar below
(as they are not considered as grammatical objects):

• endline comments begin with a ‘%’ and end with a newline. They are regarded just
as newline characters and can appear in the same positions as these.

• parenthesized comments begin with a ‘(*’ and end with a ‘*)’, always containing a
balanced amount of these two symbols. They are regarded as space, and can appear
between any two grammatical objects.

tlp-script ::= item∗nl

item ::= name
| directive
| declaration
| definition
| proof
| methods-definition
| method-group

name ::= Name ident

directive ::= %- Use file-name+spc

| %- Bottom
| %- Include file-name+spc

declaration ::= Values
value-dec∗nl

| Constants
const-dec∗nl

| Operators
operator-dec∗nl

| Rigid Variables
rigvar-dec∗nl

| Variables
var-dec∗nl

const-dec ::= (ident [param])+comma : {Val | Bool}

value-dec ::= (ident [param])+comma

operator-dec ::= {ident | infix-ident}+comma : {Val | Bool}+comma -> {Val | Bool}



rigvar-dec ::= ident+comma : {Val | Bool}

var-dec ::= ident+comma : {Val | Bool}

definition ::= Statefunctions
def ∗nl

| Predicates
def ∗nl

| Transitionfunctions
def ∗nl

| Actions
def ∗nl

| Temporal
def ∗nl

def ::= def-name == indent-expr

proof ::= {Theorem | Lemma} ident
[**] goal

Proof
proof-item∗nl

Qed

goal ::= indent-expr
| Assume expr+comma Prove indent-expr

proof-item ::= method-group
| subproof
| method-use
| By-Cases
| By-Implication
| By-Contradiction
| By-LTL

subproof ::= label [**] subgoal
proof-item∗nl

Qed

subgoal ::= indent-expr
| Assume expr+comma [Prove indent-expr ]
| Case indent-expr

methods-definition ::= Methods
method-def ∗nl

method-def ::= ident method-defpar+spc is
method-defuse∗nl
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End

method-defuse ::= {Do | ident} method-defusepar+spc

method-group ::= {Act | Temp}
method-use∗nl

End

method-use ::= {Do | ident} method-usepar+spc

indent-expr ::= expr
| expr

=> indent-expr
| expr

<=> indent-expr
| expr

~> indent-expr
| pre-op-expr ∗nl

pre-op-expr ::= /\ {expr | pre-op-expr}
| \/ {expr | pre-op-expr}
| => {expr | pre-op-expr}
| <=> {expr | pre-op-expr}

expr ::= (expr+comma)
| expr /\ expr
| expr \/ expr
| ~expr
| expr => expr
| expr <=> expr
| [] expr
| <> expr
| expr ~>expr
|WF(expr, expr)
| SF(expr, expr)
| [expr]_expr
| <expr>_expr
| Unchanged(expr+comma)
| Enabled<ident [param]>_ident [param]
| Bar(expr+comma)
| expr = expr
| expr ~=expr
| expr in expr
| If expr then expr else expr
| Lambda ident in expr : expr [*ident [param]:{Val | Bool}*]
| [expr -> expr ]
| Forall ident [in expr ] : expr [*ident [param]*]



| Forall ([expr,] ident [param])
| Exists ident [in expr ] : expr [*ident [param]*]
| Exists ([expr,] ident [param])
| {ident in expr : expr [*ident [param]*]}
| {expr | ident in expr [*ident [param]*]}
| expr infix-ident expr
| expr @ expr
| expr [expr]
| expr [expr := expr ]
| expr [expr :in expr ]
| expr’
| ident [’][(expr+comma)]
| True
| False

param ::= (ident+comma)

ident ::= {A–Z | a–z | 0–9}+

infix-ident ::= {! | # | $ | & | * | + | . | / | < | > | = | @ | \ | ^ | | | ~ | -}+

| \ident

def-name ::= ident [param]
| Enabled<ident [param]>_ident [param]
| Bar(ident [param])

method-defpar ::= ident
| {#n | #nl | #t | #f | #fl | #il}

method-usepar ::= method-idpar+comma

| method-inst+comma

| (expr)
| "string"

method-idpar ::= method-ident [’][[expr+comma]]
method-ident ::= {A–Z | a–z | 0–9}{A–Z | a–z | 0–9 | _ | *}+[method-idlabel ]

method-idlabel ::= <{0–9}+>{0–9}∗[.{0–9}+[:{0–9}+]]

method-inst ::= method-ident <- (expr)
| method-ident <- method-idpar

string ::= {Any ASCII-character other than "}+

method-defusepar ::= method-xidpar+comma

| method-xinst+comma

| (expr)
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| "string"

method-xidpar ::= method-xident [’][[expr+comma]]
| #{0–9}+

method-xident ::= method-ident
| #{0–9}+

method-xinst ::= method-xident <- (expr)
| method-xident <- method-xidpar

file-name ::= {A–Z | a–z | 0–9 | _ | . | , | : | / | ~ | ! |
? | @ | # | $ | ^ | + | = | -}+

label ::= <{0–9}+>{0–9}+



Appendix B

Logical basis for reasoning with the
Larch Prover

In this appendix we present the rules that are used for reasoning in the proofs we
have shown. This is the rules that appear in the files quant act.lp, base temp.lp,
temporal temp.lp, and tla temp.lp, that are part of the TLP distribution.

To improve readability, the rules have been typeset using different fonts and mathe-
matical symbols where appropriate. The conversion from pure LP code is given below:

Deduction rules: A rule of the form when F1 . . . Fn yield G is written as

F1
...
Fn

G

If any of the variables in the premises F1 . . . Fn are universally quantified by the
LP construct (forall x), these are written in a sans serif font: x. In the temporal
rules we simply delete the behaviour variable σ in hypotheses where it is univer-
sally quantified, as well as in in the consequence G, if it is free (not bound by the
premises). The rule

when (forall σ)
σ |= F

yield σ |= G

is thus simply written as

|= F

|= G

TLA and LP boolean operators: The TLA boolean operators used in the temporal
environment are written as true, false, ¬, ∨, ∧, =⇒,⇐⇒, and ==, while the built-in
LP operators are written as true, false, not, |, & , ⇒, ⇔, and =.

Operators: Many of the prefix operators declared in LP have been replaced by mathe-
matical (sometimes infix or mixfix) symbols, with the following conventions:
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LP: typeset as:
for all ∀
exists ∃
lambda λ
f . x f(x)
f @x f(x)
in(x, S) x ∈ S
funcSpace(S, T ) [S → T ]
updateEq(f, n, e) F [n := e]
updateIn(f, n, e) F [n :∈ e]
subSet(S, T ) S ⊂ T
Box 2

Dmd 3

BAct(A, f) [A]f
DAct(A, f) 〈A〉f
WF (f, A) WFf (A)
SF (f, A) SFf (A)
Prime(P ) P ′

Variable names: All variable names used in the rules have a prefix such as ‘i ’ or ‘pred ’
that is used for preventing name clashes with the user defined operators and vari-
ables, and which in some cases as well specify what kind of expression the variable is
expected to be instantiated by. The prefixes would be distracting here and has thus
been removed. (When you use e.g. the TLA rules by executing one of the syntactic
macros inside Emacs, or use methods such as ProveForall you will automatically
get the correct prefixes.)
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B.1 Rules for action reasoning

B.1.1 Quantification

ProveForall (∀I):

f(x)
∀(f)

ProveForall (∀I):

x ∈ S ⇒ f(x)
∀(S, f)

UseForall (∀E):

∀(f)
f(x)

UseForall (∀E):

∀(S, f)
x ∈ S
f(x)

ProveExists (∃I):

f(x)
∃(f)

ProveExists (∃I):

f(x )
x ∈ S
∃(S, f)

UseExists (∃E):

∃(f)
f(x)⇒ B

B

UseExists (∃E):

∃(S, f)
(x ∈ S & f(x))⇒ B

B

ProveNotForall:

∃(S, g)
g(x) = not(f(x))

not(∀(S, f))
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UseNotForall:

not(∀(S, g))
g(x) = not(f(x))

∃(S, f)

ProveNotExists:

∀(S, g)
g(x) = not(f(x))

not(∃(S, f))

UseNotExists:

not(∃(S, g))
g(x) = not(f(x))

∀(S, f)

B.1.2 Functions

UseLambda:

λ(S, f) = λ(S, g)
x ∈ S
f(x ) = g(x )

ProveLambda:

x ∈ S ⇒ f(x) = g(x)
λ(S, f) = λ(S, g)

Apply:

x ∈ S
λ(S, f)(x ) → f(x)

UseFuncSpace:

f ∈ [S → T ]
x ∈ S
f(x ) ∈ T

ProveFuncSpace:

dom(f) = S
x ∈ S ⇒ f(x ) ∈ T

f ∈ [S → T ]

ProveFuncSpaceLambda:

x ∈ S ⇒ λ(S, f)(x) ∈ T
λ(S, f) ∈ [S → T ]
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ProveFuncSpaceUpdateEq:

f ∈ [S → T ]
n ∈ S
v ∈ T

f [n := v] ∈ [S → T ]

ProveFuncSpaceUpdateIn:

f ∈ [S → T ]
g ∈ f [n :∈ U ]
n ∈ S
x ∈ U ⇒ x ∈ T
g ∈ [S → T ]

UseDom:

dom(λ(S, f)) → S

UseDom:

f ∈ [S → T ]
dom(f) → S

UpdateEq:

n ∈ dom(f)
f [n := e](n) → e

UpdateEq:

n ∈ dom(f)
(m = n) == false

f [m := e](n) → f(n)

UpdateIn:

n ∈ dom(f)
g ∈ f [n :∈ S]
g(n) ∈ S

UpdateIn:

n ∈ dom(f)
g ∈ f [m :∈ S]
(n = m) == false
g(n) → f(n)
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B.1.3 Sets

UseSetof:

x ∈ setof (S, f)
x ∈ S & f(x )

ProveSetof:

f(x )
x ∈ S ⇒ x ∈ setof (S, f)

UseSetexp:

x ∈ setexp(S, f)
(y ∈ S & x = f(y))⇒ b

b

ProveSetexp:

x = f(y)
y ∈ S

x ∈ setexp(S, f)

UseSubSet:

S ⊂ T
x ∈ S
x ∈ T

ProveSubSet:

x ∈ S ⇒ x ∈ T
S ⊂ T

SetEq:

S ⊂ T
T ⊂ S

S = T
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B.2 Rules for temporal reasoning

B.2.1 Normalization, introduction, and elimination rules

Boolean operators

Active rules:
TrueNorm:

σ |= true

FalseNorm:

not(σ |= false)

OrNorm:

σ |= F ∨ G → (σ |= F ) | (σ |= G)

AndNorm:

σ |= F ∧ G → (σ |= F ) & (σ |= G)

ImplNorm:

σ |= F =⇒ G → (σ |= F )⇒ (σ |= G)

BiImplNorm:

σ |= F ⇐⇒ G → (σ |= F ) = (σ |= G)

Passive rules:
NegElim:

σ |= ¬(F )
not(σ |= F )

NegIntro:

not(σ |= F )
σ |= ¬(F )

Always

BoxIntro:

|= F
|= 2(F )

BoxElim1:

σ |= 2(F )
σ |= F
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BoxElim2:

σ |= 2(2(F )) → σ |= 2(F )

ImplBox1:

|= F =⇒ G
|= 2(F ) =⇒ 2(G)

ImplBox2:

σ |= 2(F =⇒ G)
σ |= 2(F ) =⇒ 2(G)

EqBox1:

|= F ⇐⇒ G
|= 2(F )⇐⇒ 2(G)

EqBox2:

σ |= 2(F ⇐⇒ G)
σ |= 2(F )⇐⇒ 2(G)

Eventually

DmdIntro1:
σ |= F

σ |= 3(F )

DmdIntro2:
σ |= F =⇒ G

σ |= F =⇒ 3(G)

ImplDmd1:

|= F =⇒ G
|= 3(F ) =⇒ 3(G)

ImplDmd2:

σ |= 2(F =⇒ G)
σ |= 2(3(F ) =⇒ 3(G))

ImplDmd3:

|= 2(F ) =⇒ (G =⇒ H )
|= 2(F ) =⇒ (3(G) =⇒ 3(H ))

EqDmd1:

|= F ⇐⇒ G
|= 3(F )⇐⇒ 3(G)

EqDmd2:

σ |= 2(F ⇐⇒ G)
σ |= 2(3(F )⇐⇒ 3(G))
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Leadsto

Leadsto:

F ; G → 2(F =⇒ 3(G))

B.2.2 Distributive laws

OrDmd:

3(F ∨G) → 3(F ) ∨3(G)

AndBox:

2(F ∧G) → 2(F ) ∧2(G)

AndDmdBox:

3(2(F )) ∧3(2(G)) → 3(2(F ∧G))

B.2.3 The Lattice rule

Lattice:

|= (F ∧ c ∈ S) =⇒ (H (c) ; (G ∨ ∃(S , f (c))))
f (c)(d) = (s(c)(d) ∧ H (d))
g(c) = H (c)
Wellfounded (S , s)

|= F =⇒ ∃(S , g) ; G

B.2.4 Grønning lattice rules

LatticeReflexivity:

σ |= A ; A

LatticeDisjunctionElim:

σ |= (A ∨ B) ; C
σ |= A ; C

LatticeDisjunctionIntr:

σ |= A ; C
σ |= B ; C

σ |= (A ∨ B) ; C

LatticeDiamond:

σ |= B ; D
σ |= A ; (B ∨ C )
σ |= C ; D

σ |= A ; D
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LatticeTriangle:

σ |= B ; D
σ |= A ; (B ∨D)

σ |= A ; D

LatticeTransitivity:

σ |= A ; B
σ |= B ; C
σ |= A ; C

B.2.5 Syntactic definitions

BAct:

[A]f → A ∨Unchanged (f )

DAct:

〈A〉f → A ∧ ¬(Unchanged (f ))

Unchanged:

Unchanged (f ) → f == f ′

WeakFairness:

WFf (A) → 2(3(〈A〉f )) ∨2(3(¬(Enabled (〈A〉f ))))

StrongFairness:

SFf (A) → 2(3(〈A〉f )) ∨3(2(¬(Enabled (〈A〉f ))))

B.2.6 TLA rules

Basic

TLA1:

σ |= 2(P)⇐⇒ (P ∧2([P =⇒ P ′]P )

TLA2:

|= (P ∧ [A]f ) =⇒ (Q ∧ [B ]g )

|= (2(P) ∧2([A]f )) =⇒ (2(Q) ∧ 2([B ]g))
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INV

INV1.1:

|= I =⇒ ([N ]f =⇒ I ′)

|= (I ∧2([N ]f )) =⇒ 2(I )

INV1.2:

|= Assump =⇒ (I =⇒ ([N ]f =⇒ I ′))

|= (2(Assump) ∧ I ∧2([N ]f )) =⇒ 2(I )

INV1.3:

|= Assump =⇒ (Assump ′ =⇒ (I =⇒ ([N ]f =⇒ I ′)))

|= (2(Assump) ∧ I ∧2([N ]f )) =⇒ 2(I )

INV2:

σ |= 2(I ) =⇒ (2([N ]f )⇐⇒ 2([N ∧ I ∧ I ′]f ))

WF

WF1:

|= Assump =⇒ ((P ∧ [N ]f ) =⇒ (P ′ ∨ Q ′))
|= Assump =⇒ ((P ∧ 〈N ∧A〉f ) =⇒ Q ′)
|= Assump =⇒ (P =⇒ Enabled (〈A〉f ))

|= (2(Assump) ∧ 2([N ]f ) ∧WFf (A)) =⇒ (P ; Q)

WF2:

|= Assump =⇒ (〈N ∧ B〉f =⇒ 〈M 〉g )
|= Assump =⇒ ((P ∧ P ′ ∧ 〈N ∧A〉f ) =⇒ B)
|= Assump =⇒ ((P ∧ Enabled (〈M 〉g )) =⇒ Enabled (〈A〉f ))
|= (2(Assump) ∧ 2([N ∧ ¬(B)]f ) ∧WFf (A) ∧ 2(F )) =⇒ 3(2(P ))
|= Phi =⇒ 2(Assump)
|= Phi =⇒ (2([N ]f ) ∧WFf (A) ∧2(F ))

|= Phi =⇒WFg (M )

SF

SF1:

|= Assump =⇒ ((P ∧ [N ]f ) =⇒ (P ′ ∨ Q ′))
|= Assump =⇒ ((P ∧ 〈N ∧ A〉f ) =⇒ Q ′)
|= (2(Assump) ∧2(P) ∧2([N ]f ) ∧2(F )) =⇒ 3(Enabled (〈A〉f ))

|= (2(Assump) ∧ 2([N ]f ) ∧ SFf (A) ∧2(F )) =⇒ (P ; Q)
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SF2:

|= Assump =⇒ (〈N ∧ B〉f =⇒ 〈M 〉g )
|= Assump =⇒ ((P ∧ P ′ ∧ 〈N ∧ A〉f ) =⇒ B)
|= Assump =⇒ ((P ∧ Enabled (〈M 〉g )) =⇒ Enabled (〈A〉f ))
|= (2(Assump) ∧2([N ∧ ¬(B)]f ) ∧ SFf (A) ∧2(F )) =⇒ 3(2(P ))
|= Phi =⇒ 2(Assump)
|= Phi =⇒ (2([N ]f ) ∧ SFf (A) ∧2(F ))

|= Phi =⇒ SFg (M )

Additional

BoxSF:

σ |= SFf (N )⇐⇒ 2(SFf (N ))

BoxWF:

σ |= WFf (N )⇐⇒ 2(WFf (N ))

SFImplWF:

σ |= SFf (N )

σ |= WFf (N )

PrimeBox:

σ |= 2(P ∧ P ′)⇐⇒ 2(P )

BoxPrime:

σ |= 2(P)
σ |= 2(P ∧ P ′)



Appendix C

Standard methods

Methods from base/methods.tlp and base/quantmethods.tlp for reasoning with the
Larch Prover.

C.1 General methods

Methods

Expand #nl in #nl is
Do normalize #2 with #1

End

Rewrite #nl with #nl is
Do normalize #1 with #2

End

Instantiate #nl with #il is
Do instantiate #2 in #1

End

Crit #nl with #nl is
Do "critical-pairs" #1 with #2

End

Apply #nl to #nl is
Do apply #1 to #2

End

Activate #nl is
Do make active #1

End

Passify #nl is
Do make passive #1

End

Immunize #nl is
Do make immune #1

End

NonImmunize #nl is
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Do make nonimmune #1
End

Use #nl is
NonImmunize #1
Activate #1

End

OrderedPair on #nl is
Do normalize #1 with OrderedPair

End

C.2 Methods for temporal reasoning
Methods

INV1 with #il is
Instantiate INV1 with #1

End

INV2 with #il is
Instantiate INV2 with #1

End

WF1 with #il is
Instantiate WF1 with #1

End

WF2 with #il is
Instantiate WF2 with #1

End

SF1 with #il is
Instantiate SF1 with #1

End

SF2 with #il is
Instantiate SF2 with #1

End

Lattice with #il is
Instantiate Lattice with #1

End

UseTempFact #nl is
Passify #1
Instantiate #1 with σ <- σc

End

LatticeDisjunctionIntr #t #t #t is
Instantiate LatticeDisjunctionIntr with A <- #1,

B <- #2,
C <- #3

End
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LatticeReflexivity #t is
Instantiate LatticeReflexivity with A <- #1

End

UseLatticeRules is
Activate LatticeReflexivity,

LatticeDisjunctionElim,
LatticeDiamond,
LatticeTriangle,
LatticeTransitivity

End

C.3 Methods for dealing with quantification, sets,
and functions

Methods

ProveForall on #f is
Instantiate ProveForall with f <- #1

End

UseForall on #f with #t is
Instantiate UseForall with f <- #1, x <- #2

End

ProveExists on #f with #t is
Instantiate ProveExists with f <- #1, x <- #2

End

UseExists on #f is
Instantiate UseExists with f <- #1

End

UseNotExistst on #f and #f set #t is
Instantiate UseNotExists with g <- #1, f <- #2, S <- #3

End

UseNotForall on #f and #f set #t is
Instantiate UseNotForall with g <- #1, f <- #2, S <- #3

End

ProveLambda on #f #f #t is
Instantiate ProveLambda with f <- #1, g <- #2, S <- #3

End

UseLambda on #f #f #t #t is
Instantiate UseLambda with f <- #1, g <- #2, x <- #3, S <- #4

End

ApplyLambda vbl #t set #t is
Instantiate Apply with x <- #1, S <- #2

End

ApplyLambdaFunc vbl #t set #t func #f is
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Instantiate Apply with x <- #1, S <- #2, f <- #3
End

UpdateIn vbl #t updated #t is
Instantiate UpdateIn with n <- #1, f <- #2

End

UpdateEq vbl #t updated #t is
Instantiate UpdateEq with n <- #1, f <- #2

End

UseDom #t is
Instantiate UseDom with f <- #1

End

UseFuncSpace func #t vbl #t is
Instantiate UseFuncSpace with f <- #1, x <- #2

End

ProveFuncSpace func #t domain #t codomain #t is
Instantiate ProveFuncSpace with f <- #1, S <- #2, T <- #3

End

ProveFuncSpaceLambda func #f domain #t codomain #t is
Instantiate ProveFuncSpaceLambda with S <- #2, f <- #1, T <- #3

End

ProveFuncSpaceUpdateIn orig #t domain #t codomain #t is
Instantiate ProveFuncSpaceUpdateIn with f <- #1, S <- #2, T <- #3

End

ProveFuncSpaceUpdateEq orig #t domain #t codomain #t is
Instantiate ProveFuncSpaceUpdateEq with f <- #1, S <- #2, T <- #3

End

UseSetof set #t func #f is
Instantiate UseSetof with S <- #1, f <- #2

End

ProveSetof elem #t set #t func #f is
Instantiate ProveSetof with f <- #3, x <- #1, S <- #2

End
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TLP-mode commands

tlp-mode () Major mode for editing TLP specifications.
tlp-mode runs the hook tlp-mode-hook without any
arguments.

tlp-make-tlp-frame () Create a frame for working with TLP.

tlp-set-tlp-colors () Set frame colours that goes well with the colours of a
hilit TLP-buffer.

tlp-clean-buffer () Remove the correction-overlay.
In Emacs-18, removes the TLP arrow marker.

tlp-reconfigure-windows
(&optional make)

Reset the window and buffer setup.
This is good if things should start to look a little
strange. MAKE optionally specifies to display the
make buffer instead of the edit buffer.

tlp-find-master () Go back to the TLP master file.
This selects the tlp-master-buffer, if it exists, in the
current window.

tlp-beginning-of-step () Move to the beginning of the current step.
Moves to the previous or encapsulating one if at the
beginning of this one. The beginning is defined as
the beginning of the line containing the “Theorem”
or label.

tlp-end-of-outer-step () Move to the beginning of the last line of the current
step.
As tlp-end-of-step, but takes you to the end of the
encapsulating step if such exists.

tlp-end-of-step () Move to the beginning of the first line after the current
step.
Moves to the next substep of the current step if such
exists. The end of the current step is defined as the
end of the line containing the “Qed” of the current
step.
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tlp-mark-step () Set the region to the current proof step.
This is defined as the region including the current Qed
construct and its corresponding label.

tlp-indent-line () Indent the current line as TLP code.
This is still a rather naive implementation, and not all
interesting cases are covered. Most notably, nothing
will be done about multi-line formulas.

tlp-step-indent () Re-indent the current proof step.
This is defined as the region including the current Qed
construct and its corresponding label.

tlp-fill-paragraph
(&optional justify)

Fill paragraph at or after point. Prefix arg means jus-
tify as well.
Like fill-paragraph, but handles TLP endline com-
ments. If any part of the current line is a comment,
fills the comment or the paragraph that point is in,
preserving the comment’s indentation.

tlp-insert-dmacro (name) Insert the dmacro NAME.
Just like insert-dmacro, but will highlight the inserted
text, if highlighting is turned on. It prompts for
NAME. When called from Lisp programs, NAME is a
string; if NAME is not a valid dmacro in the current
buffer, then NAME itself is inserted.

tlp-command () Query the user for a command to run.
Default is dependent on the current state of the veri-
fication system.

tlp-make-but-dont (file) Display in the *TLP make* window, what the verify
command will do.

tlp-translate () Translate the current buffer.
Works similar to tlp-verify, but only runs the transla-
tor on the current buffer.



tlp-verify (&optional no-
ask sorts)

Verify the proofs of the current buffer.

The proofs are verified with respect to the current
proof sort (can be changed with tlp-toggle-sort).
All this function really does is to set the make hooks
appropriately and then start make up in the back-
ground. The buffer should not be read-only. Be aware
that it will cause problems to restart verification dur-
ing verification – Emacs can only handle one session
at a time.
The functions used for callback is tlp-verify-done and
tlp-verify-error. Any previously set values of the make
hooks is saved and restored when verification com-
pletes.
Verification will make buffer read-only and will reset
the overlay arrow, tlp-faulty-file, tlp-source-buffer and
tlp-correction-region.
The optional argument NO-ASK is obsolete, the user
is never asked for confirmation.
Optional second argument SORTS is a list of the proof
sorts with respect to which the proof should be veri-
fied, instead of just the current.

tlp-verify-all (&optional
no-ask)

Extensively verify the proofs of the current buffer.

As tlp-verify, but checks the proof with respect to each
proof sort, one after one, in the order determined by
tlp-proof-sorts.

tlp-quit () Quit the current TLP session.

tlp-barring (&optional
value)

Generate barred definitions.
If VALUE is “+” or “−”, the generating of barred
versions of variables etc. is set accordingly. Otherwise
its value is toggled.

tlp-immunizing (&optional
value)

Automatically immunize theorems.
If VALUE is “+” or “−”, automatic immunizing and
passification of theorems is set accordingly. Otherwise
its value is toggled.

tlp-instantiating
(&optional value)

Do automatic instantiation of quantifier functions.
If VALUE is “+” or “−”, automatic instantiation of
quantification functions is set accordingly. Otherwise
its value is toggled.
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tlp-proof-order (&optional
value)

Change proof order.
If VALUE is “+”, verification will be done in pre-
order, if it is “−”, verification will be done in post-
order. In all other cases, or without argument, the
current proof-order is toggled.

tlp-registering (&optional
value)

Generate registering hints.
If VALUE is “+” or “−”, the generating of registering
hints is set accordingly. Otherwise its value is toggled.

tlp-toggle-mode
(&optional sort)

Toggle the current verification mode.

If SORT is any of the accepted proof sorts in the list
tlp-proof-sorts, the proof sort is changed accordingly.
Otherwise, and with no argument, the proof sort is
changed to the next sort (circularly) of that list.

tlp-commit-correction () Commit the correction.
This inserts the new lines from the edit buffer, or re-
places the failing step in the source buffer with the
corrected step from the edit buffer and marks this as
unmodified.

tlp-execute-correction () Continue verification of the TLP specification.
Verification is resumed with the corrected proof-step
as starting point. If the edit buffer contains uncom-
mitted changes, the user is prompted for committal.

tlp-find-next-error () Locate the next syntax error.
(Uses tlp-find-error-tlp or tlp-find-error depending on
whether you are in verification mode.)

tlp-widen-correction () Move the scope of the correction up one level.

I.e. include the enclosing proof-step. This will always
replace the current contents of the correction buffer,
meaning that any uncommitted changes will be lost.
An error is issued if on the top level.

tlp-widen-for-lp-syntax-
error ()

Move the scope of the correction up one level.

Used in the case of a step producing an unsuspected
LP error. The part of the step from tlp-lp-syntax-
error to (but not including) the Qed is put into the
proof correction buffer.



tlp-widen-for-missing-qed
()

Move the scope of the correction up one level.

Used in the case of a step having been verified before
the Qed (i.e. an LP missing []). The part of the step
from tlp-missing-qed to (but not including) the Qed
is put into the proof correction buffer.

tlp-quit-correction () Quit the current correction.
This kills the edit buffer, maintaining all committed
changes. The correction overlay (or synchronization
arrow) is not deleted, since the synchronization point
is still valid.

tlp-dis-all () Display all facts of the proofs done yet.

tlp-dis-facts () Display all current facts.
Displays all existing (TLP) theorems and lemmas as
well as all facts and hypotheses of the current proof.

tlp-dis-goal () Display the current goal.

tlp-dis-hyp () Display the current hypotheses.

tlp-dis-lemma () Display a lemma.

tlp-dis-proof () Display the current status of the proof.

tlp-dis-theorem () Display a theorem.

tlp-display () Display some facts.

tlp-lp-exe (coms) Execute the commands COMS in the LP buffer.

COMS is either a string or a list of strings to be
executed as LP commands. Each command must
be a string to be executed. Non-strings are silently
skipped.
LP is run asynchronously, making a call-back when-
ever the LP is ready for the next command. Com-
mands are buffered in the variable ‘tlp-lp-com-buffer’
and will be automatically removed, unless an error
occurs. In that case, or when then the buffer runs
empty, the value of ‘tlp-callback-function’ is called.
Please refer to ‘tlp-lp-filter’ for more information on
the callback mechanism.
Note that if there is a running LP session, this will
be used rather than starting a new. If you want to
ensure a clean session, use tlp-lp-kill or tlp-lp-start
with a non-nil argument, before calling tlp-lp-exe.
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tlp-ltl-exe (coms) Execute the commands COMS in the LTL buffer.

Just as tlp-lp-exe for the LTL back-end.

tlp-find-error () Locate a TLP error.

If tlp-faulty-file is non-nil, this function will find the
corresponding TLP file in a buffer (if it exists), and
try to locate the error.
If the error is a TLP error, subsequent calls to tlp-
find-error will move to the next error. When being on
the last error, the next call to tlp-find-error will not
move point, but the following call will move point to
the first error.
If the error was an LP error, the error message is re-
turned, if found. This is found in the ‘.lpscr’ file,
and is the rest of the line following the ‘%%ERROR:’
marker. The cursor is placed at the label of the cur-
rent step, which is found by executing a “display con-
jecture” in LP. Note: In the special case where the
error is due to an error in a ‘pure’ LP file, an LP file
written by the user, the position close to the error, as
specified by LP, will be marked, and no further ac-
tion will be done. To proceed, one will have to quit
verification.
If the error was an LTL error, the error message is
returned, as found in the LTL buffer and the cursor
is positioned at the right label in the proof.
The error is marked with an overlay arrow, unless tlp-
no-arrow is non-nil. Note that the arrow covers the
first two characters of the line. This function can be
put into tlp-make-error-hook to find errors when make
fails.

tlp-lp-correct-error () Interact with user in recovering from an LP verifica-
tion error.
Assumes that point is located at the end of the rele-
vant proof-step.

tlp-lp-kill () Kill the current LP session if any such exist.
The associated buffer is not changed.

tlp-ltl-correct-error () Interact with user in recovering from an LTL verifica-
tion error.
Assumes that point is located at the beginning of the
relevant proof-step.

tlp-ltl-kill () Kill the current LTL session if any such exist.
The associated buffer is not changed.



Appendix E

Installation

The pre-compiled versions of the TLP tools currently run on UNIX platforms of two kinds
only, namely Digital DECstations (MIPS) with Ultrix and Sun SPARCs with Solaris
(SunOS). The translator itself can be compiled for other architectures, and the front-end
will run without problems on all platforms that support GNU Emacs. To use TLP on
other systems than the two mentioned, you will however also have to compile a modified
version of the Larch Prover from MIT. Furthermore, the linear temporal logic checker
that is supported in the current system will only be available for the mentioned systems.

The TLP tools, setup files, and documentation, can all be obtained by FTP from

ftp.daimi.aau.dk (130.225.16.162)

from the directory

pub/tlp

Alternatively, the same archive may be reached from the TLP WWW page at:

http://www.daimi.aau.dk:/~urban/tlp/tlp.html

The files are all compressed by the GNU compression tool, gzip, which you will need to
uncompress them; gzip is available on many FTP servers around the world, usually at the
same place that you get GNU Emacs from.

The directory contains the following files, where you should substitute 〈release〉 by the
latest TLP release number:

tlp-〈release〉.tar.gz Archive containing code and setup-
files for the TLP system, documen-
tation, and a number of examples.

tlp-〈release〉.dec-ultrix.gz Compiled version of the TLP trans-
lator for DECstations running Ul-
trix.

tlp-〈release〉.sparc-solaris.gz The same for Sun SPARCs running
Solaris.

lp2.4xl.dec-ultrix.gz Compiled version of the Larch
Prover, slightly modified for inter-
active use in TLP, for DECstations.

207



pp

lp2.4xl.sparc-solaris.gz The same for SPARCs.

bddt.dec-ultrix.gz Compiled version of the LTL
checker, for DECstations.

bddt.sparc-solaris.gz Compiled version of the LTL
checker, for SPARCs.

translator-〈release〉.src.tar.gz The sources for the TLP transla-
tor, written in New Jersey Standard
ML.

In the following, substitute either dec-ultrix or sparc-solaris for 〈platform〉, depend-
ing on which platform you want to run the system on.

To get to use the TLP system, you should get the archive, tlp-〈release〉.tar.gz, and
one of each of the binaries for the translator, LP, and the LTL checker. You only need to
get the translator source if you think that you would like to do modifications or want to
compile the translator yourself on some other architecture.

E.1 The Larch Prover

To do verification, you will need to install the Larch Prover, version 2 on your system.
To get the interactive features of the front-end working properly (notably the widening of
proof scopes), you will need the modified version LP 2.4xl that has been made available
in the FTP directory.

Documentation for the Larch Prover can be obtained from

larch.lcs.mit.edu (18.26.0.95)

in the directory pub/Larch.
Note that if you have a non-modified version of LP 2, you will still be able to do

verification correctly – the mentioned modifications concerns only the interactive feature
described as widening of proof scope. The experimental versions LP 3.0 and 3.1 include
some syntactical changes, however, and will not work correctly.

E.2 The linear temporal logic checker

If you also want to be able to do automatic checking of linear temporal logic formulas,
you should get one of the ‘bddt’-files for your respective architecture. The LTL checker
can only be made available for DECstations and SPARCS.

E.3 Emacs

To run the interactive front-end, from which all reasoning is supposed to be done, you
will need a version of GNU Emacs. Any release later than 19.22 should work without
problems. TLP may also work with XEmacs (former Lucid Emacs) and Emacs 18 but
these are not currently being supported. The latest release of GNU Emacs should be
available from FTP servers all around the world.



E.4 How to install

When you have got the files you should do the following operations.

1. In a shell, run the command

gzip -cd tlp-〈release〉.tar.gz | (cd 〈dir〉; tar xvf -)

This will create a subdirectory tlp-〈release〉 in the existing directory 〈dir〉 contain-
ing the following items:

README Instructions for installation of TLP.

CHANGES List of recent changes.

COPYING The GNU General Public License, for all the
Emacs code.

base Directory containing different initialization and
setup files:

bool_act.lp Basic boolean reasoning.

base_act.lp Basic setup for action reasoning.

quant_act.lp Setup for reasoning about quantifiers.

base_temp.lp Basic setup for temporal reasoning.

temporal_temp.lp Basic temporal rules.

tla_temp.lp TLA rules.
methods.tlp Basic methods for reasoning with LP.

quantmethods.tlp Methods for reasoning about quantifiers.

bin Directory containing the executables:

tlp Shell script for running the translator.

emacs Directory containing the GNU Emacs lisp files:

tlp-mode.el The Emacs major mode.

tlp-19.el Special features for GNU Emacs 19.

tlp-dmacro.el Special features using the Dmacro package.

tlp-local.el Local initialization of mode-specific variables.

dm-c.el The Dmacro package for GNU Emacs 18 and 19,
by Wayne Mesard, version 2.1.

dm-compat.el

dmacro-bld.el

dmacro-sv.el

dmacro.el

examples Directory containing tlp examples.
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byzantine The Byzantine Generals, by Stephan Merz.

inc94 The Increment Example from the TLP report,
described in the thesis.

mult94 The Multiplier example, from the CAV-93 article
by Bob Kurshan and Leslie Lamport [18].

mult-par Part of the multiplier example, using parameter-
ized definitions.

prawitz An example illustrating how to reason with quan-
tification.

span94 Revised version of the Spanning-Tree Example
from the CAV-92 article by Engberg, Grønning,
and Lamport [12], with complete correctness
proof, as described in the thesis.

ltl Directory containing setup files for the LTL
checker.

bdd-foreign.t BDD library interface.

weekaux.t BDD library interface.

model.t BDD library interface.

boolean-fml.t Kripke structure routines.

fml.t LTL model checker.
plaisted.t Some benchmarks, used for testing.

build-ltl Source file for compiling the LTL checker.

test-ltl Source file for testing the LTL checker.

2. Do the following in a shell:

gzip -d *.〈platform〉.gz

and move the files to 〈dir〉/tlp-〈release〉/bin.

3. Edit the file emacs/tlp-local.el to fit your local preferences. This is the place
where all user options available to the front-end is declared and initialized. You will
probably need to change the path specifications indicating where your TLP binaries
have been put. A ‘feature’ section contains variables that determine which special
features should be used. If your Emacs or your work station does not support some
of these features, they will automatically be turned off; you should thus only turn
features off manually if you really don’t want them. The rest of the user options
contain variables that you might want to change when you have learned how to use
TLP, and want something to act differently. You don’t have to go through these
items at this point.

4. Copy all the the *.el files from the emacs directory to somewhere in the load-path
of your Emacs, or better: insert 〈dir〉/tlp-〈release〉/emacs in your load-path. You
might already have Dmacro on your system, in which case you don’t need to get
this.



5. Insert the following lines into your ~/.emacs file

;;; TLP

(setq auto-mode-alist (append
(list
’("\\.tlp$" . tlp-mode)
’("_act\\.lp$" . tlp-mode)
’("_temp\\.lp$" . tlp-mode)
’("_ltl\\.t$" . tlp-mode))
auto-mode-alist))

(autoload ’tlp-mode "tlp-mode"
"Major mode for editing and verifying TLP specifications"
’interactive)

6. Set the environment variable TLPHOME to 〈dir〉/tlp-〈release〉, i.e. in your ~/.login
file, put something like

setenv TLPHOME 〈dir〉/tlp-〈release〉

This needs to be done before you startup the Emacs session in which you do your
verification.

7. If you want to use the LTL checker, go to the ltl directory and run the command:

〈dir〉/tlp-〈release〉/bin/bddt.〈platform〉 < build-ltl

This should create compiled images for future use. You may also want to test the
system by saying:

〈dir〉/tlp-〈release〉/bin/bddt.〈platform〉 < test-ltl

8. If you haven’t done this already, you may uncompress and print out the thesis
“Reasoning in the Temporal Logic of Actions – the design and implementation of
an interactive computer system” describing the TLP system. The latest version can
be found in 〈dir〉/tlp-〈release〉/thesis. Device-independent (dvi) and PostScript
(ps) versions are available.
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