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Abstract

This dissertation deals with the problem of writing formal semantic descrip-
tions of programming languages, that can easily be extended and partly reused
in other descriptions. Constructive Action Semantics is a new version of the
original Action Semantics framework that solves the problem by requiring that
a description consists of independent modules describing single language con-
structs. We present a formalism and various tools for writing and using con-
structive action semantic descriptions of programming languages.

In part I we present formalisms for describing programming languages.
The Action Semantics framework was developed by Mosses and Watt and is
a framework for describing the semantics of real programming languages. The
ASF+SDF formalism can among other things be used to describe the concrete
syntax of a programming language and a mapping to abstract syntax, as we
illustrate in a description of a subset of the Standard ML language. We also
introduce a novel formalism, ASDF, for writing action semantic descriptions of
single language constructs.

Part II of the dissertation is about tools that supports writing constructive
action semantic descriptions and generating compilers from them. The Action
Environment is an interactive development environment for writing action se-
mantic descriptions using ASF+SDF and ASDF. A type checker available in the
environment can be used to check the semantic functions in the ASDF modules.
Actions can be evaluated using an action interpreter we have developed, and
this is useful when prototyping a language description. Finally we present an
action compiler that can be used in compiler generation. The action compiler
consists of a type inference algorithm and a code generator.
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Chapter 1

Introduction

Computer language design is just like a stroll in the park.
Jurassic Park, that is.
— Larry Wall

Formal descriptions are essential for giving precise definitions of programming
languages. A language description must describe both the syntax and the se-
mantics of a language to be complete. For describing the syntax, BNF grammars
are popular both in academia and industry, for instance, Sun and Microsoft doc-
ument the syntax of Java and C# using BNF grammars. Unfortunately the use
of semantics seems to be limited in practical software development, and is widely
regarded as only of academic interest [64]. We believe that formal descriptions
of syntax have become popular because one formalism, BNF grammars, has
become a dominating standard, whereas many semantic formalisms exist and
are in use. Furthermore BNF grammars are easy to understand, whereas many
semantic frameworks require deep mathematical insight, and use incomprehen-
sible notation. Finally there is a broad selection of tools [14, 42,78, 81] that
generate parsers based on different classes of BNF grammars.

Tools that employ semantic descriptions for generating language analysers
and compiler back-ends also exist [23,25, 36,49, 54,79, 94], (see [48,86] for an
overview), but most of them seem to be academic projects that have never
found any use in the real world.

Action Semantics (AS) [45,56-59,65,67,68,70,89] is a framework for describ-
ing the semantics of real programming languages. It uses a notation (Action
Notation) that resembles English which makes it easy to read, and previous
work has shown that it can be used in semantics-based compiler generation.

This dissertation presents a set of tools that support the process of writing
an action semantic description of a programming language, checking the valid-
ity of the description, testing the description, and automatically generating a
compiler from the description. Our work is a step towards a widespread use of
semantics and semantics-based compiler generation.

Writing the description of a language is supported by a novel formalism,
ASDF, for writing constructive action semantic descriptions. Constructive Ac-
tion Semantics is a new version of the original AS framework that supports
the independent definition and use of named modules describing individual
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language features'. A module describing a single language feature should be

reusable by import in many descriptions. This is possible by keeping the
modules describing different features independent and by using a language-
independent abstract syntax in the modules. We have developed a set of mod-
ules in connection with a description of the Core of Standard ML. The set of
modules is referred to as Basic Abstract Syntar (BAS), and the idea is that
they should be general enough to be reused in other language descriptions.
New constructs can be defined in ASDF and used together with the existing
BAS constructs when describing a language.

In connection with the ASDF formalism we present the Action Environment,
an environment for working with language descriptions written in ASDF and
ASF+SDF [14].

Checking the validity of a language description can be done using a semantic
function type checker, which lets us check that the output of a semantic function
is an action that has certain features, like being free of side effects, infallible,
etc. For testing a language description, an action interpreter is provided which
can be used to evaluate the result of mapping a program to an action using
the semantic functions. Both the type checker and the action interpreter are
connected to the Action Environment.

1.1 Action Semantics-based compiler generation

Action Semantics-based compiler generation has been an area of research for
almost 15 years. The Actress system was one of the first systems [23, 73].
With the Cantor system [76] Palsberg showed how to generate provably correct
compilers. Orbak developed the OASIS system [94] which produced highly
efficient compilers. Bondorf and Palsberg [6] showed how partial evaluation
can be used to generate a compiler based on an action interpreter. The Genesis
system [46], developed by Lee, improved the techniques used in the Actress
system.

Our compiler generator uses the Action Environment to generate the front
end of a compiler as illustrated in Fig. Input for the compiler generator is
shown as circles, existing tools as rectangles, generated tools as rectangles with
round corners, and input and intermediate representations in the compiler as
ellipses. The input for the compiler generator consists of SDF, used to describe
the syntax of the language, ASF, used to describe a mapping from the syntax
of the language to BAS, and ASDF, used to describe the syntax and AS of
the BAS constructs. From the input the Action Environment can generate a
front end consisting of a parser, a translator from concrete syntax to BAS, and
an action generator that maps BAS to actions. The back-end of the compiler
is an action compiler based on our action type inference algorithm and our
code generator. The action compiler also uses the ASDF input when doing
type inference and code generation. The structure of our compiler generator is
similar to the one used in previous work [23,46,94].

!See Section 1 in [41] for an elaborate explanation of constructive semantic frameworks.
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Figure 1.1: AS-based compiler generation

1.2 Organisation

The contents of this dissertation is both material published in journals and at
workshops and material that have not been published before. The contents of
the following papers is used in the dissertation:

[12] M. G. J. van den Brand, J. Iversen, and P. D. Mosses. An action envi-
ronment. Research Series BRICS RS-04-36, BRICS, Dept. of Computer
Science, Univ. of Aarhus, 2004. Extended version of [13], submitted to a
special issue of Science of Computer Programming for LDTA’04 papers.

[38] J. Iversen. Type inference for the new action notation. In Mosses [65],
pages 78-98.

[39] J. Iversen. Type checking semantic functions in ASDF. Research Series
BRICS RS-04-35, BRICS, Dept. of Computer Science, Univ. of Aarhus,
2004. http://www.brics.dk/RS/04/35/.

[41] J. Iversen and P. D. Mosses. Constructive action semantics for Core ML.
IEE Proceedings-Software special issue on Language Definitions and Tool
Generation, 2005, to appear.

[40] J. Iversen. An action compiler targeting Standard ML. In J. Boyland
and G. Hedin, editors, Proceedings of the 5th Workshop on Language
Descriptions, Tools and Applications, LDTA’05, Electronic Notes in The-
oretical Computer Science. Elsevier, 2005, to appear. Also available at
http://www.daimi.au.dk/~jive/papers/1dta2005.pdf.

Part T of the dissertation describes the formalisms used for expressing the
input given to the tools presented in Part II. In Chapter [2| we give an informal
but thorough description of AS and the syntax and semantics of Action Nota-
tion. Together with ASF+SDF, AS is one of the prerequisites for understanding
the rest of the dissertation. ASF+SDF is explained in Chapter [3| where we also
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describe the advantages and disadvantages of ASF4+SDF and evaluate its use-
fulness as implementation language for the algorithms presented in the rest of
the dissertation. The development of the ASDF formalism was driven by the
inconvenience in using ASF+SDF for writing Action Semantic Descriptions of
single language constructs. ASDF is motivated and described in Chapter [4]

To conclude Part I of the dissertation, we give a large example that illus-
trates how AS, ASF+SDF, and ASDF can be used to describe a real program-
ming language. The Core ML example in Chapter [5| is taken from [41].

Part II presents the tools we have developed. The Action Environment is
presented in Chapter [6] (based on [12]). Chapter [7] presents the action types
that can be used to describe the runtime behaviour of an action, along with an
algorithm for checking that an action conforms to an action type. Chapter [7]is
based on [39]. The action interpreter is described in Chapter

An important component of an AS-based compiler generator is the action
compiler. Our action compiler consists of the type inference algorithm described
in Chapter [9] (a revised version of [38]) and the code generator described in
Chapter (10| (based on [40]).

Chapter [11| concludes and outlines directions for future work.
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Formalisms






Chapter 2

Action Semantics

The superior man is modest in his speech, but exceeds in his actions.
— Confucius

Action Semantics (AS) is a framework for describing the semantics! of real pro-
gramming languages. The inherent modularity makes it easy to maintain and
extend descriptions. AS is a hybrid of Denotational Semantics and Operational
Semantics. As in a conventional denotational description, inductively defined
semantic functions map programs (and declarations, expressions, statements,
etc.) compositionally to their denotations which model their behaviour. The
difference is that here denotations are actions and expressed in Action Notation
(AN) [29,45,56,66]; a notation resembling English but still strictly formal. AN
has a kernel which is defined operationally; the rest of AN is abbreviations for
other actions and can be reduced to kernel notation. Actions are constructed
from yielders, action constants, and action combinators, where yielders consist
of data and data operations. Yielders are not part of the kernel.

AN has changed several times since Mosses [53] started experimenting with
combinators as auxiliary notation in Denotational Semantics. The version used
in this paper is the one presented in Definitive Semantics [66]. We shall some-
times refer to this version as AN-2 to explicitly state that it is the new version.
AN-2 has evolved over the last five years. The main differences between the
older versions and the version proposed in 2000 [45] is that actions no longer
produce both data and bindings, and the kernel has been reduced in size.

The performance of an action might be seen as an evaluation of a function
from data and bindings to data, with side effects like changing storage and
sending messages. Action combinators correspond to different ways of combin-
ing functions to obtain different kinds of control and data flow in the evalu-
ation. The evaluation can terminate in three different ways: Normally (the
performance of the enclosing action continues normally), abruptly (the enclos-
ing action is skipped until the exception is handled), or failing (corresponding
to abandoning the current alternative of a choice and trying alternative ac-
tions). AN has actions to represent evaluation of expressions (Section [2.3)), dec-
larations (Section , manipulation of storage (Section , and abstractions

1AS is mostly used to describe a language’s dynamic semantics, but has also been used to
describe a language’s static semantics [35]
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(Section . It is also possible to describe the special features of concurrent
languages using AN, but we are not going to deal with these actions in this dis-
sertation, and they are therefore not presented in this chapter. Yielders can be
used to inspect memory locations, compute data and bindings, and to lookup
bound tokens. As with actions, the performance of a yielder can be seen as
an evaluation of a function from data and bindings to data, but without side
effects.

In this dissertation we shall use the variables A to range over actions, Y to
range over yielders, D to range over data, and DO to range over data opera-
tions. The phrases “the given data” and “the given bindings” (or “the current
bindings”) are used to refer to the data input and the bindings input for an
action, respectively.

2.1 Action semantic descriptions

An action semantic description (ASD) of a programming language must de-
scribe the abstract syntax of the language, the semantic functions mapping
language constructs to actions, and data, data operators, types, etc., occurring
in the semantic functions.

The semantic equation that defines the semantic function’s behaviour on a
specific language construct might contain applications of semantic functions to
subparts of the language construct; semantic functions are defined recursively.
Here is an example of a semantic equation that defines the semantic function
evaluate on the expression ‘E1 + E2’:

evaluate(E1 + E2) = evaluate EI and evaluate E2 then give +

When applying a semantic function to a program (or a language construct),
the result should be an action with the same dynamic semantics as the pro-
gram (or the language construct). The resulting action should describe the
operational behaviour of the program.

Among the types being described by the user there should be a description
of the two types Bindable and Storable. The data that can be bound to tokens
in bindings should have the type Bindable, and the data that can be stored in
memory cells should have the type Storable.

2.2 Data and data operations

The data used and produced by actions is the union of the data defined by the
user and the data described by the grammar in Fig. Data is a sequence of
Datum. We shall use tuple notation when describing data in actions, and the
empty sequence of datum is represented by the symbol (). The non-terminals
used to describe Datum expand to integer numbers, the boolean values true
and false, tokens, memory locations (or memory cells), finite mappings from
tokens to datum (also called bindings), and finally actions (more about actions
as data in Section . We shall assume that Token contains the identifiers



2.2. Data and data operations 9

used in the programming language examples given in the dissertation together
with positive integers.

Data i= Datum”
Datum = Integer | Boolean | Token | Cell | Bindings | Action

Figure 2.1: Data defined in AN

Floating point numbers, strings, and other data common in programming
languages are not part of AN, but, as mentioned earlier, the data used in AN
can be defined by the user.

The built-in data operations in AN are presented in Fig. The first line
includes the equality operator which compares data and results in a boolean.
The boolean negation operator ‘not’ has the expected semantics. The type
projector ‘the 7’ is a partial operator that on data of type 7 behaves like the
identity function. The selector operation # n selects the n’th element from a
sequence of datum. If n is -1 the result is all elements except the first.

DataOp = | not | the Type | # Natural | # -1 |  (basic)

+-1*/1<|>| (arithmetic)
binding | bound | overriding | disj-union |  (bindings)
(

ActionComb actions as data)

Figure 2.2: Data operators defined in AN

The next line in Fig. contains the normal integer arithmetic operators.
Line three contains operators for creating a singleton binding map (binding :
Token x Bindable — Bindings), looking up a binding (bound : Bindings X
Token —? Bindable)?, computing bindings from two others where the second
set of bindings has precedence over the first if the same token is bound in both
sets (overriding : Bindings x Bindings — Bindings), and, finally, an operator
for computing the disjoint union of two maps of bindings (disj-union : Bindings
X Bindings —? Bindings).

The last line of operators contains the non-terminal ActionComb which
expands to all the action combinators presented in the following sections. Given
one or two actions as data (depending on whether it is a prefix or an infix action
combinator), the action combinator computes a new action.

Later in this chapter we shall refer to the infix data operators (=, the
arithmetic operators, and the infix action combinators) by the non-terminal
InfixrDataOp and the prefix data operators (the rest of the operators) by Pre-
fixDataOp.

2The special arrow ‘—?’ indicates that an operator is partial
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2.3 Flow of data and control

Basic language constructs like expressions and sequential, conditional, and it-
erative statements can be described using the actions presented in this section.
Exclusively using the grammars in Fig. and to construct actions results
in actions that normally compute a value and do not have side effects (describing
statements using only these actions is therefore not very interesting).

Action = copy | result Data | choose-nat | give DataOp |
Action then Action | Action and Action |
Action and-then Action | indivisibly Action |
throw | check DataOp |
Action catch Action | Action and-catch Action |
fail | Action else Action |
unfold | unfolding Action

Figure 2.3: Flow of data and control kernel AN

2.3.1 Normal control flow

Let us start by looking at the actions that describe normal control flow:

copy is essentially the identity function; it gives the data it is given as input
and ignores the bindings. It is often used in connection with and (explained
later) to add extra data to the sequence of data given to the whole action.

result D ignores the given data and bindings and gives the data D. It is used
to describe constants, like numbers, identifiers, etc., in languages.

choose-nat produces a random non-negative integer.

give DO applies the data operator DO to the given data and ignores the bind-
ings. If DO gives a result, the action terminates normally with the result, and
otherwise it terminates abruptly with no data. Application of built-in data
operators, like addition, in languages is usually described using give DO.

The four preceding actions were all atomic actions; now let us take a look
at some ways to combine actions:

A; then A, is the normal function composition of A; and As. If applying A;
to the given data and bindings terminates normally, the result is given to As
together with the given bindings, and the result of the whole action is the result
of evaluating As. If Ay does not terminate normally, As is not evaluated, and
the result of the whole action is the result of evaluating A;. then is the most
used action combinator.

A; and Aj is an interleaving evaluation of the two subactions, both applied to
the given data and bindings. If both subactions terminate normally, the whole
action terminates normally with the concatenation of the data given by the two
subactions. Otherwise the subaction that first terminates abruptly or failing
determines the result of the whole action. This action combinator can be used
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to describe the evaluation of the two subexpressions in applications of infix data
operators when the order of evaluating the subexpressions is indifferent.
There are two actions directly related to ‘A; and As’:

A; and-then Aj is the sequential version of ‘A; and Ay’. A; is always evaluated
before As, but except from this their behaviour is identical.

indivisibly A prohibits interleaving of A. The action A is evaluated with the
data and bindings given to the whole action, but if ‘indivisibly A’ occurs as a
subaction of an action constructed by the and combinator, the evaluation of
A cannot be interleaved with the evaluation of other subactions. This allows
the description of atomic events which is important when describing concurrent
languages.

We now have enough notation established to give a meaningful example:

(result x and copy) then give binding

Assume that the action is given a bindable datum d. The two subactions ‘result
x’ (which gives the token x) and copy (resulting in the datum d given to the whole
action) is evaluated interleaved. The action combinator and concatenates the
two results, and the combinator then ensures that ‘give binding’ is given (x, d),
and the final result is the singleton binding map {x — d}.

2.3.2 Abrupt control flow

Many languages have constructs to describe abrupt flow of control, e.g., raise
and handle in Standard ML [51]. The following actions can be used to describe
abrupt control flow:

throw terminates abruptly with the data given to it, ignoring bindings. It is
used to describe raising exceptions and often used in connection with either
catch or and-catch. The action throw is the abruptly terminating version of

copy.

check DO applies the data operator DO to the given data, and if the result is
true, the action terminates normally with the given data as result. Otherwise
it terminates abruptly with no data. When describing conditional or guarded
expressions or statements, this action is used.

Ap catch A, first applies Ay to the given data and bindings. If it terminates
abruptly, the “exception” is “caught”, and the resulting data together with
the given bindings is given to Ay, which determines the result of the whole
action. Otherwise the result of evaluating A; is the result of evaluating the
whole action. Notice the similarity in behaviour with the combinator then; the
only difference is that the left subaction should terminate abruptly instead of
normally to trigger the evaluation of the right subaction.

A7 and-catch Ay can be related to A; and-then A; as catch to then. The
explanation of and-catch is identical to the explanation of and-then (or and
without interleaving) with “normally” replaced by “abruptly”.

The action
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(check the boolean) catch (result false then raise)

checks whether the input is the boolean value true. If it is, the action terminates
normally with the result true. If it is not, it raises an exception with no data,
the exception is caught, and a new exception is raised with the boolean value
false.

2.3.3 Alternative control flow

Besides terminating normally and abruptly actions may also fail. This is used
to describe a choice between alternatives; if the first fails, try the next.

fail simply ignores input and fails.

Aj else A; evaluates A1 with the given data and bindings, and if it fails, As is
evaluated with the same data and bindings. The result of evaluating the whole
action is either the result of evaluating A; if it does not fail, or the result of
evaluating As. Examples of language constructs that can be described using
failing actions are alternatives as seen in C’s case statement [43] or Standard
MIL’s matches.

One might argue that we do not need both actions that can terminate
abruptly and actions that can fail. Using special tokens to indicate special
kinds of abrupt termination we might be able to describe the same behaviour.
Practical experience has shown that it is convenient with two kinds of abrupt
control flow. As an example take a description of conditional expressions:

evaluate cond(E1,E2, E3) =
evaluate EI1 then
((maybe check the boolean)
then evaluate E2
else evaluate E3)

where evaluate is the semantic function mapping expressions to actions, and
El, E2, and E3 are variables ranging over expressions. If the expressions can
throw exceptions (like in Standard ML), the else in the last line must not catch
the exception because the exception should escape the whole expression. The
else combinator should instead catch the failure caused by ‘maybe check the
boolean’. Here it is convenient with two ways of describing exceptional control
flow. Failing termination can be described in terms of abrupt termination as
illustrated in Fig. (where FAIL and EXCEP are special tokens). But since
the complexity of the expansion of the else combinator would make it difficult
for a tool to infer the intention of the kernel action, else is still part of the AN
kernel.

2.3.4 Iterative control flow

To describe iterative control flow, like while statements in Java, AN has two
actions:

unfolding A evaluates the action A with the given data and bindings.
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fail = raise FAIL

Aj else Ay = (A; catch (result EXCEP and check (not(it = FAIL))))
and-catch As)
then (((check not(#1 = EXCEP))) and-catch raise #-1)

Figure 2.4: fail and else as abbreviations

unfold evaluates the action A in the smallest enclosing ‘unfolding A’ (unfold is
a subaction in A) with the data and bindings given to unfold. Together these
two actions can describe iteration because evaluation of the action A is iterated
as long as the contained unfold is evaluated.

One might regard ‘unfolding A’ as a way of declaring a recursive function
with body A, and unfold as an application of the recursive function to the given
data and bindings.

2.3.5 Abbreviations

To make ASDs easier to read and write, AN contains a number of abbreviations
for kernel actions. Those related to flow of data and control are listed in Fig.

Action = give Yielder | check Yielder | Action Yielder |
skip | maybe Action

Yielder = Data | DataOp | (Yielder, ..., Yielder) |
PrefizrDataOp Yielder | Yielder InfiztDataOp Yielder

Figure 2.5: Flow of data and control AN

Yielders are used to compute data without causing any side-effects. All
data and data operators are included in yielders together with the data that
can be computed by applying data operations to yielders and forming tuples of
yielders. Tuples of yielders evaluate to sequences of data composed of the data
resulting from each sub-yielder.

Three actions involving yielders are introduced in Fig. The actions
‘give Y’ and ‘check Y’ have a semantics similar to ‘give DO’ and ‘check DO’
respectively (actually the latter are special cases of the former): instead of
applying a data operator to the given data a yielder is applied to it (but yielders
can also use the current bindings as shown in Section . The action ‘A Y’
evaluates the yielder Y, and the result is used as input in the evaluation of the
action A.

skip ignores input and produces no data. It is used to end actions that are not
supposed to give any data, like actions describing statements.

maybe A is used to turn an action that terminates abruptly into an action
that fails. It can be used in connection with check DO and else to describe
conditional statements.
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The expansion to kernel AN is defined recursively in Fig. where expan-
sions of yielders are shown in the context of the ‘give Y’ action. We end this
section with an example illustrating the use of yielders:

give (true, 2 4 the integer)
then (maybe check (the integer#2 = 7) then skip
else choose-nat)

The first line results in the boolean value true and the sum of the given integer
and 2. This data is given to an action that checks if the integer equals 7 and
then terminates normally with no data. If the integer is not 7, maybe ensures
that the action fails, and the alternative action in the next line is performed.
The alternative action results in normal termination with a random integer as

result.
give D = result D
give (Y1,...,Y,) = giveY; and ... and give Y,,
give (DOY) = give Y then give DO
give (Y1 DOY;) = give (Y1,Y3) then give DO
check Y = copy and (give Y then check it then skip)
AY = give Y then A
skip = result ()
maybe A = A catch fail

Figure 2.6: Expansion to kernel AN

2.4 Scopes of bindings

Naming various parts of a program makes programming easier because it allows
computed values, statement sequences, type definitions, etc. to be reused. In
most languages the binding of an identifier to a value, a memory cell, a class, a
function, etc., is called a declaration. This section concerns the actions used to
describe declarations and the scopes of these.

Fig. displays the three kernel actions used to describe declarations.

Action = copy-bindings | Action scope Action | recursively Action

Figure 2.7: Scopes of bindings kernel AN

copy-bindings ignores the given data and gives the current bindings as data.
This is used together with the data operator bound introduced in Fig. to
look up the datum bound to a token.

Aj scope As first evaluates Ay, and if it terminates normally and gives bindings,
these are the current bindings when As is evaluated with the data given to the
whole action. If A; does not produce bindings, the whole action terminates
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abruptly with no data. If A; terminates abruptly or failing, this is the result
of the whole action. The combinator is used when describing a local scope of
bindings; the scope of the bindings computed in A; is As.

recursively A lets the bindings produced by A override the bindings given to the
whole action before evaluating A and thereby allows self-referential declarations
in A.

The abbreviations are listed in Fig. and the expansion to kernel notation
can be found in Fig.

Action = furthermore Action | Action before Action | bind

Yielder ::= bound-to Yielder | current-bindings

Figure 2.8: Scopes of bindings AN

furthermore A evaluates the action A with the given data and bindings, and if
it terminates normally and produces bindings, the result of the whole action is
the result of letting these bindings override the current bindings.

A before As first evaluates A; with the given data and bindings. The bindings
by produced by A; are combined with the given bindings by (the former overrides
the latter) to form the bindings b; /by given to Ay. The data produced by the
whole action is the bindings by, produced by Ai, overridden by the bindings
by (ba/b1), produced by As. The rather complicated semantics of this action is
reflected in the relatively large action it abbreviates. Notice that A, is given
(bo, b1) as input data; a more natural input would be the data given to the whole
action, but this would make the kernel action it abbreviates overly complicated,
and often As simply ignores its input. The action combinator before is used
to describe a sequence of declarations where a declaration is visible to all the
succeeding declarations.

bind expects a token and a bindable datum as input and produces the binding
of the token to the datum.

Two yielders are available when describing bindings: ‘bound-to Y’ looks
up the token which is the result of evaluating Y in the current bindings, and
current-bindings evaluates to the current bindings.

furthermore A = copy-bindings and A then give overriding
A, before A, = (copy-bindings and A; ) then
(give #2 and (give overriding scope A3))
then give overriding
bind = give binding
give bound-to Y copy-bindings and give Y then give bound
give current-bindings copy-bindings

4

Figure 2.9: Expansion to kernel AN

An example that uses bindings is
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furthermore bind (x, 5)
scope give (the integer bound-to the token x)

where the first line produces a singleton binding map consisting of the token x
bound to 5. This binding overrides the current bindings, and the result becomes
the current bindings in the evaluation of the next line, where the binding of the
token x is looked up.

To be able to give an Modular Structural Operational Semantic (MSOS)
definition of ‘recursively A’ Mosses has suggested (this is not yet documented
in a paper) to change the semantics so that ‘recursively A’ should be given a
sequence of tokens. The tokens should be the tokens bound in the bindings
given by A. The action ‘recursively A’ then binds the given tokens to a special
kind of cells called forwards and gives these bindings together with the current
bindings to A. Forwards are included in the set of bindable values and can be set
to refer to bindable values. The contents of a forward is initially undefined, it
can only be set once and it can never be destroyed. This change also influences
the behaviour of bind and ‘bound-to Y. If bind receives a token which is bound
to an undefined forward in the current bindings, it should set the forward to the
given bindable value and give the bindings that map the token to the forward.
In other cases, where the token is currently bound to a defined forward or
a normal bindable value, bind behaves normally. If Y yields a token that is
currently bound to a forward, ‘bound-to Y’ should yield the bindable value (if
any) to which the forward has been set, else ‘bound-to Y’ behaves as described
earlier.

In this dissertation we shall stick to the interpretations of ‘recursively A’,
bind, and ‘bound-to Y’ presented earlier in this section, but the examples and
tools can easily be changed to accommodate the new interpretation.

2.5 Effects on storage

So far we have only looked at actions that are purely functional; the actions
already presented do not have any side-effects. In this section we present actions
that can be used to manipulate storage.

In Fig. the kernel actions are listed.

Action = create | inspect | update

Figure 2.10: Effects on storage kernel AN

create allocates a fresh memory cell, initialises it with the storable datum given
to create, and returns the cell. Together with the action bind from the previous
section, create can be used to describe the declaration of variables in procedural
programming languages.

inspect returns the datum stored in the given memory cell. Describing the use
of variables in expressions typically involves inspect.
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update expects a memory cell and a storable datum. The contents of the
memory cell is replaced by the datum. This is used to describe assignment
statements in procedural languages.

There is only one abbreviation related to manipulation of storage, and that
is the yielder ‘stored-at Y’ shown in Fig. The yielder returns the datum
stored at the memory cell computed by Y. The expansion to kernel notation is

shown in Fig.

Yielder ::= stored-at Yielder

Figure 2.11: Effects on storage AN

give stored-at Y = give Y then inspect

Figure 2.12: Expansion to kernel AN
The action

result 5 then create
then update (the cell, (the integer stored-at the cell) 4 1)

allocates a new integer memory cell and initialises it with the integer 5. In the
second line the contents of the memory cell is incremented.

2.6 Actions as data

The inclusion of actions in data turns actions into higher-order functions; ac-
tions become first-class values. This is useful for describing language constructs
like functions and procedures.

Fig. shows the two actions available to handle actions as data.

Action = apply | close

Figure 2.13: Actions as data kernel AN

apply expects an action together with some data and evaluates the action with
the data as input. The result of evaluating the action is the result of evaluating
apply. This can be used to describe the application of a function or a procedure
in a program.

close forms a closure from the given action, i.e., it ensures that the current
bindings at the time where close is performed are available to the given action
when it is later evaluated. This action is used both in descriptions of languages
with static scope and languages with dynamic scope. When the scope is stat-
ically decidable, this action is applied when a function is declared to ensure
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that the free variables in the function is bound to the same values at evaluation
time as at definition time. In languages with dynamic scope close is used just
before a function is applied so that the current bindings at invocation time can
be used in the function.

Yielder ::= closure Yielder

Figure 2.14: Actions as data AN

In connection with evaluating actions and forming closures of them, we also
want to be able to produce actions as data. This does not require any new
AN because we already have actions for giving data (result D), and actions are
included in data. Since most languages have static scope, we often want to
form a closure from an action, and therefore a yielder for doing just that exists.
The yielder is shown in Fig. and, not surprisingly, the expansion to kernel
notation uses the close action (See Fig. [2.15).

give closure Y = give Y then close

Figure 2.15: Expansion to kernel AN

We can also form new actions at runtime by applying action combinators
as data operators to actions. In a previous version of AN-2 [45] this was used
to describe ‘closure Y’ (close was not part of the kernel) in the following way:

give closure Y = (copy-bindings then give result_) and give Y
then give _scope_

In the action

give closure(give (the integer + the integer bound-to the token x))
then apply(the action, 2)

the closure of an action, that adds the integer bound to the token x to the given
integer, is computed, and in the next line it is applied to the integer 2. The
final result depends on what x is bound to in the in the bindings given to the
whole action.

2.7 Parsing

To avoid ambiguous readings of an action without having to insert many brack-
ets, we shall use some precedence rules when parsing actions. Fig. shows
the part of the AN syntax that is problematic. The non-terminals InfizAction
and PrefizAction expand to the action combinators presented in the previous
sections.

Brackets around actions and yielders are legal ways of disambiguating an
action, but if they are not there, the following rules can be used:
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Action = Action InfixrAction Action | PrefitAction Action |
Action Yielder | give Yielder | check Yielder

Yielder = Yielder InfiztDataOp Yielder | PrefitDataOp Yielder |
bound-to Yielder | stored-at Yielder| closure Yielder

Figure 2.16: AN syntax

1. Prefix action constructors (PrefizAction), like indivisibly, maybe, etc., have
higher precedence than infix action constructors (InfixAction), like then,
scope, etc.

2. Prefix data operators, like not, the Type, etc., have higher precedence than
infix data operators, like +, >, etc.

3. All infix action constructors and infix data operators are left associative,
and have the same precedence.

4. The actions Action Yielder, give Yielder, and check Yielder have higher
precedence than PrefizAction Action.

We shall insist that the yielders occurring in ‘Action Yielder’, ‘give Yielder’,
and ‘check Yielder’ are atomic yielders. By atomic we mean data (with brackets
around if it is an action), a data operator, or a bracketed yielder.

2.8 Advantages and disadvantages of AS

AS has several advantages. Most prominent is the inherent extensibility. From
the AS website:

Action Semantics is a framework for the formal description of pro-
gramming languages. Its main advantage over other frameworks is
pragmatic: action-semantic descriptions (ASDs) scale up smoothly
to realistic programming languages. This is due to the inherent
extensibility and modifiability of ASDs, ensuring that extensions
and changes to the described language require only proportionate
changes in its description. (In Denotational or Operational Seman-
tics, adding an unforeseen construct to a language may require a
reformulation of the entire description.)

The claims about Denotational and Operational Semantics not being exten-
sible are only true for the classic versions. In [63] Mosses gives an overview of
modular semantic frameworks, among these is MSOS [60,61] and Monadic De-
notational Semantics [47,52]. Both of them are modular and extensible versions
of the classic frameworks.

3http://wuw.brics.dk/Projects/AS/AboutActionSemantics.html
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ASDs are modular and extensible as long as we do not want to add any
unusual constructs to the description. By unusual constructs we mean language
constructs that cannot easily be described in AS. We can describe the semantics
of all Turing complete languages since AN is Turing complete, but it is not
obvious how we can easily describe, for instance, a construct like call/cc found
in Scheme [1]. The standard example that demonstrates the extensibility of AS
is an expression language where we want to add exceptions. This can easily be
achieved without modifying the constructs already described since AN supports
exceptional behaviour, and in general AN supports most constructs found in
programming languages. The problem arises if we want to describe constructs
not supported by AN.

Comparing AS with MSOS, we see that MSOS is more resistant towards
unforeseen extensions of a language description. Adding new constructs to a
MSOS description can involve adding a new field to the labels in the description,
but this does not change the descriptions of the other constructs. One way of
viewing AS is that it is MSOS with a fixed set of labels (An MSOS description
of AN can be found in [62]). To solve the problem arising when we want to
add an unusual construct to a language description, we could extend AN with
a new action constant or action combinator by giving a MSOS definition of it
and extending the set of labels in the MSOS description of AN; that way we
would avoid breaking the modularity of the description. This of course assumes
the existence of an MSOS description of the unusual construct.

An advantage of AS over MSOS and other semantic frameworks is the read-
ability of AN. The intention of the English keywords in AN is that a semantic
description should be readable by programmers not familiar with formal meth-
ods, and the ASD would then work as documentation of a language. Regret-
tably, not all the keywords are suggestive enough, for instance fail, maybe and
else are related, but check and else (without the maybe) are not. Also key-
words like furthermore and before do not suggest that the behaviour is related
to bindings and what the behaviour is; but the context often helps.

The following example of MSOS rules describes a conditional expression:

E1 % EI
cond(E1, E2, E3) % cond(E1', E2, E3)

cond(true, E2, E3) — E2

cond(false, E2, E3) — E3

Comparing the rules with the action denoting the same expression in Sub-
section we notice both that the rules are more complex and that the
action is shorter. Another advantage is that previous work has shown that it is
possible to construct tools, like programming environments, interpreters, and
compiler generators, for working with AS. But when it comes to generating
efficient compilers other (non semantic) frameworks which require a lower level
description of a language would probably be more suitable, if we were willing
to sacrifice the readability and simplicity of AS.
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Compared to previous versions, the reduced size of the kernel in AN-2 is
both an advantage and a disadvantage. It is useful in tools because instead of
implementing, for instance, an action interpreter for a large notation we can
implement it for the kernel and then reduce an action to kernel notation before
using the interpreter. On the other hand it can be more difficult to infer the
intention of an action when it has been reduced to kernel notation, which is
an disadvantage in the tools that performs analysis of actions, for instance, the
action compiler.

Another drawback is the rather small community using AS. In general the
use of semantic frameworks for describing languages is not widespread, but
among computer scientist it is our impression that the denotational and SOS
frameworks are more common than AS. Hopefully AS will grow in popularity
as the tools supporting it mature.

2.9 Restricted AN used in the dissertation

We have limited the subset of AN used in this dissertation in various ways.
Most importantly we are not dealing with the actions for describing interactive
processes. Including all of AN would make this project too big a task for us
to handle, and since many languages do not include concurrency features, we
did not feel that we restricted the expressiveness of AN too much by removing
this part. In connection with inferring types and compiling actions we have
restricted ourselves further, but this will be explained in later sections.






Chapter 3

ASF-+SDF

Grammar is the logic of speech
— Richard C. Trench

The ASF+SDF formalism is actually two formalisms: SDF, the Syntax Defini-
tion Formalism which allows defining syntax using grammars in extended BNF
form, and ASF, the Algebraic Specification Formalism for defining rewrite rules
based on syntax defined in another formalism. ASF and SDF in combination
can be used to define the syntax of a language together with a rewrite semantics
based on the syntax. An ASF+SDF specification consists of a set of modules
where each module consists of both an SDF and an ASF file.

3.1 SDF

SDF [4,27,87] is developed at CWI! and allows arbitrary, cycle-free, context-free
grammars. Throughout this section we shall use the SDF modules Ezpressions
and containers/Table in Figs. and as examples.

3.1.1 Declaring syntax

An SDF specification consists of a set of modules where each module defines
parts of the syntax of the whole specification. A module can use syntactic sorts
(nonterminals) defined in other modules by importing these modules. This is
illustrated in line 2 in Fig. 3.1 where a module (basic/Integers) defining integers
is imported. Modules have hierarchical names reflecting the directories of the
file system where the modules reside. In the example in Fig. the module
Table is in the directory containers. The syntax defined by a module is the
union of the syntax defined in the module and all imported modules. Forming
the union of the syntax defined in different modules is possible because context-
free languages are closed under union.

Not only can SDF modules import declarations, they can also export dec-
larations, and this is indicated by the keyword exports. In the FEzxpressions
module lines 3 to 19 are exported. Declarations can also be local to a module

"http://www.cwi.nl
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(1) module Ezpressions

(2) imports basic/Integers

(3) exports

(4) context-free start-symbols Ezpression
(5)  sorts FExpression Identifier

(6) context-free syntax

(7 Identifier | Integer — FExpression
(8) "if" Expression "then" Ezpression

"else" FEaxpression — FEzxpression
(9) Expression "+" FExpression — FExpression {left}
(10) Ezpression "*" Expression — Expression {left}
(11) v(" {Expression ","}*x ")" — FExpression

(12)  context-free priorities

(13) Expression "*" FExpression — FExpression {left}
(14) >
(15) Expression "+" Expression — FExpression {left}

(16)  lexical syntax

an [a-zA-Z]+ — Identifier
(18)  context-free restrictions
(19) Identifier -/- [a-zA-Z]
(20) hiddens

(21)  wvariables "E"[0-9]7 — FEaxpression

Figure 3.1: SDF example

(1) module containers/Table [Key Valuel

(2) imports

(3) basic/Booleans

(4) containers/List [Key]

(5) containers/List [ Value]

(6) containers/List [<Key, Value>]

(7) exports
(8) context-free syntax
(9) List[[<Key, Value>]] -> Table[[Key, Valuell

Figure 3.2: SDF module example

which means that they are only used in the ASF module attached to the SDF
module, and this is indicated by the keyword hiddens (lines 20 to 21).

The syntactic sorts defined in a module should be listed after the keyword
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sorts as illustrated in line 5. Sorts can also be declared as start symbols which
means that they can be the top sort of a parsed term (this is shown in line 4).

In SDF both lexical (see lines 16 to 17) and context-free syntax (see lines
6 to 11) can be declared using productions®®. A production is essentially a
production rule with the little twist that instead of the usual ::= operator it
uses — with the order of the operands reversed (the sort being defined is on the
right-hand side). The left hand side of a production can contain literals (like
"+1) sorts (like Ezp), choice (like ‘Identifier | Integer’), and regular expressions
(like {Ezp "," }*, a comma separated sequence of Ezp’s*). SDF also provides
a built-in notation for tuples as illustrated in Fig. where the tuple ‘<Key,
Value>’ occurs several times.

For use in ASF rewrite rules SDF allows variables ranging over parse trees
of various kinds to be declared. In line 21 variables EO, E1, etc. are declared to
range over Expression.

The module containers/Table in Fig. taken from the ASF+SDF library
that comes with the ASF+SDF Meta-Environment (see Section illustrates
the more advanced features of the module system. The module has two pa-
rameters Key and Value (see line 1) which can be used as syntactic sorts in
the module. Modules importing this module should give values to the param-
eters. This is illustrated in lines 4 to 6 where the parameters are passed on in
the imports of the module containers/List. Syntactic sorts in a parameterised
module can also be parameterised as illustrated with the sort Table in line 9. A
Table with formal parameters Key and Value contains lists of Key and Value
pairs (lists are used to define tables). Parameterisation can be used to define
generic data types such as the tables defined in the module containers/Table
where something of sort ‘ Table [ [Integers, String]]’ can be used to store terms
of sort String using terms of sort Integers as keys.

3.1.2 Resolving ambiguities

Since no restrictions, as LL(k), LR(k), etc., are put on the class of grammars
used in SDF, the grammars can be ambiguous. To resolve ambiguities [19],
SDF lets the user define associativity after production rules (like {left} in
lines 9 and 10 in Fig. and priorities in the context-free priorities section
(lines 12 to 15). When dealing with lexical syntax, the longest match is often
preferred. This is ensured by context-free restrictions as shown in line 19
where it is defined that Identifier cannot be followed immediately by a character
in the character class [a-zA-Z].

2 Actually the only differences between the two ways of declaring syntax is that whitespace
is automatically allowed between the symbols on the left hand side of a contert-free syntax
function, and lexical constructor functions in ASF can only be used on lexical syntax

3In [14] the word function is used, but to avoid confusing it with semantic functions we
use the word production

4{SORT SEP}* is short for ‘((SORT SEP)* SORT)?’



26 Chapter 3. ASF+SDF

3.2 ASF

ASF [4,15,27] is a formalism for expressing rewrite rules. The rules are defined
using conditional equations as illustrated here:

[if-true] eval(FI1) == true
eval (if E1 then E2 else E3) = eval(E2)

[default-if-false] eval(if EI then E2 else E3) = eval(E3)

In the example we describe a function ewval that evaluates conditional expres-
sions. The first equation starts with a tag [if-truel] naming the equation. If
the tag starts with default (as the second equation), it means that the ASF
evaluator should try all non-default rules before trying this one. Above the line
we have a condition, so in the cases where eval(E1) can be rewritten to true
(possibly by applying other rewrite rules in the specification) we can rewrite
the conditional to eval(E2) (the evaluation of the expression in the left branch
of the conditional). Notice that the equations can contain variables (in this
case they are capitalised) ranging over syntax trees (in this case expressions).

The keyword when or the sign = can also be used to separate the condi-
tions from the conclusion in conditional equations. ASF has a tiny syntax; an
equation is just a tag, an equality, and a set of conditions where the left and
right hand side have the same syntactic sort defined in the SDF part of the
module. The conditions can be either matching (7' := T”), negative matching
(T 1:=T"), positive (T == T"), or negative (T' '=T"). Only the left hand sides
of the matching conditions may contain uninstantiated variables.

When reducing a term using the equations, the ASF evaluator starts by
searching for an equation among the non-default equations where the left hand
side matches the term to be reduced. If more than one equation matches,
the one with the most specific left hand side is chosen. Then the conditions
are evaluated using the variables already instantiated while instantiating more
variables. If all of the conditions succeed, the result is computed maybe using
variables. If a condition fails, the whole equation fails, and another equation is
tried.

3.3 The ASF+SDF Meta-Environment

The development of ASF+SDF specifications is supported by an interactive
integrated programming environment, the ASF+SDF Meta-Environment [14,
20]. This programming environment provides syntax directed editing facilities
for both the SDF and ASF parts of modules as well as for terms. It also
provides well-formedness checking of modules and visualisation of the import
graph and parse trees. A parser and a parse table generator using the SDF
part of the specification are essential parts of the environment together with an
ASF interpreter that allows terms to be rewritten. The environment offers all
kinds of refactoring operations at the specification level: renaming of modules,
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copying of modules, etc. Furthermore a library of predefined primitive types
and data structures, e.g., booleans, integers, strings, lists, sets, etc., is available.
The library contains also a growing collection of grammars of programming and
specification languages, e.g., Java, C, CASL, SDF itself, etc.

Recently an ASF debugger has been connected to the Environment which
allows the stack and source code to be inspected during a stepwise evaluation
of the rewrite rules.

The user interface of the ASF4+SDF Meta-Environment is shown in Fig. [3.3
Modules defining the concrete syntax of Pico (a toy language) have been opened.
In the left pane we see a tree-structured view of the modules, and the right pane
shows the graph of import relations of the modules.
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Figure 3.3: GUI of the ASF+SDF Meta-Environment.

3.4 Evaluation of ASF+SDF

We have used ASF+4+SDF as implementation language for most of the algo-
rithms presented in this document. The language was originally designed as
a language for describing the syntax of a language (using SDF) and various
transformations on the language (using ASF). ASF+SDF can also be used as a
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functional programming language, but as all languages it has both advantages
and disadvantages.

3.4.1 Advantages

The SDF language allows arbitrary cycle-free context-free grammars. Instead
of just giving an error message when a term is ambiguous it returns a forest of
parse trees, and ASF can then be used to resolve the ambiguities by removing
trees [16]. Furthermore it is also possible to parse a language with a context-
sensitive grammar using ASF+SDF. In Chapter [5| we give an example of this.

ASF+SDF provides a high integration between the two languages because
the terms used in the ASF equations are described in the SDF grammars.
Furthermore both prefix constructor notation and the concrete syntax can be
used in the ASF equations.

The conditional rewriting equations are easy to understand (see Section 2.18
in [14]) and essentially enough to express everything (ASF is Turing complete).
The simplicity of the language should make it easy to learn. Built-in traversal
functions [15] improve the expressiveness by letting the programmer ignore the
trivial cases when traversing a parse tree. The library provides various tools,
data types, and basic types and data operators that might be missing in ASF,
like integers, booleans, etc. The type safe rewriting prevents many programmer
bugs, especially when implementing translations between languages.

The built-in support for dividing a specification into parameterised modules
makes it easy to write reusable and maintainable programs in ASF+SDF.

Finally an advanced environment for developing ASF+SDF specifications is
available.

All in all ASF+SDF is a useful language for writing language translators
and analysers.

3.4.2 Disadvantages

Most of the disadvantages we have noticed when using ASF+SDF are in con-
nection with the ASF language.

One of the two main problems is the slow execution time of both the in-
terpreted and the compiled ASF. The compiled version of our type inference
algorithm (Chapter E[) has unacceptable running times on most large examples.
The main problem seems to be the that there are no built-in integers and ar-
rays. To improve the performance when rewriting a term, SDF provides the
memo attribute which can be added to the production that defines the syntax of
the term. Adding the memo attribute to a production tells the ASF interpreter
to remember the result of rewriting terms derived from the production.

The other main problem has been the poor support for debugging. A trace
of how the equations have been applied used to be the only help available for the
programmer. The latest version of the ASF+SDF Meta-Environment remedies
this problem by including an ASF debugger.

Related to debugging is the problem that has caused most bugs in our
programs. The arbitrary grammars allowed in SDF can sometime make it
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difficult to figure out how a term is parsed, and this can lead to unexpected
behaviour when the left hand side of an equation is not parsed as expected and
therefore does not match the term we expect it to rewrite.

The recent years has shown a lot of development in both the ASF and the
SDF language, but unfortunately the new versions are not always backwards
compatible, so old specifications need to be updated (a task the environment
gives tool support for).

Regarding the expressiveness of ASF, we think the language can be improved
by providing more control of which equations are tried. The negative conditions
and default equations is enough to express the algorithms we have encountered
in our work, but the it would save some superfluous negative conditions if
the language had more than one default level. Conditional expressions in
conditions could also alleviate the problem.

3.5 Alternatives

Considering the problems mentioned in the previous section it is worth investi-
gating other languages as alternative implementation languages. We think that
the biggest problems are related to the ASF language so it is natural to look at
formalisms combining another rewrite formalism with SDF. Recent versions of
ELAN [8,17] have used SDF for defining the signatures used in ELAN modules.
ELAN modules offer rewrite rules, as ASF does, but it also lets the user define
very advanced strategies for applying the rewrite rules. Comparisons between
compiled ELAN and ASF specifications [11] has shown that ASF is slightly
faster.

SDF supports interfaces to both Java and C so this could also have been a
solution. Previous work on AS related tools has used Standard ML and C++
as implementation languages.






Chapter 4

ASDF

Now the whole world had one language
— Genesis 11:1

ASDF is a language specification formalism designed to make it easier to write
ASDs of single language constructs.

4.1 Using ASF+SDF to describe single constructs

We have previously used plain ASF+SDF for writing ASDs, as described by
Doh and Mosses [29] and illustrated in Figs. and The two figures
show two modules needed to define abstractions in a small lambda notation
inspired language. An advantage of using ASF+SDF was that it allowed ASDs
to be prototyped using the Meta-Environment. Furthermore other tools, like
an action interpreter, action type checker, etc., could be connected to the Meta-
Environment. However, using ASF+SDF for writing small modules describing
single language constructs was not optimal, and this prompted the develop-
ment of ASDF. The main problems with using ASF+SDF were related to the
cumbersome notation:

e When using a syntactic sort, e.g., Term, in a production rule, the module
introducing the syntactic sort had to be explicitly imported (see Fig. .
Also modules describing AN had to be imported, since it was not part of
the SDF language.

e The declaration of meta-variables ranging over sorts is somewhat tedious

(see Fig. [4.1)).

e ASF+SDF requires many keywords and they can be misleading, e.g., the
signature of a semantic function is introduced by the words ‘context-free
syntax’.

ASDF solves these problems, making specifications easier both to read and
write.

The ASDF modules corresponding to the modules in Fig. and is
explained latter in this chapter (see Figs. and [4.9).
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module Term
exports

sorts Term

context-free syntax
"eval" Term — Action

variables
"T"[0-9]17 — Term
"TU[0-9]7?"x" — Termx*
HTII [0_9] ?I|+l| — Te,)am+

Figure 4.1: Module Term in SDF

module Term/Abstract
imports Term Data/Lambda Ide

exports
context-free syntax
"abstract" "(" Ide "," Term ")" — Term

Lambda — Val
equations

[1] eval abstract (I, T) =
give (lambda(closure(
furthermore bind(the token I, the val)
scope eval T)))

Figure 4.2: Module Term/Abstract in ASF+SDF

4.2 Definition of ASDF

In Figs. and the syntax of ASDF is defined using SDF.

Several syntactic sorts are not fully defined in the figure: Sort contains
names of syntactic sorts (words starting with a capital letter), Literal contains
quoted and unquoted literals (words starting with a small letter), Section con-
tains SDF sections, Symbol contains among others Sort and Literal, ActionType
contains types of actions, and Action contains actions.

A semantic description of a language consists of a collection of ASDF mod-
ules, together with a mapping from the concrete syntax used in the language
to the abstract syntax described in the modules. Fig. shows a small lambda
calculus language, and the Modules to can be used to describe the
constructs found in the language. The mapping from the concrete syntax of
lambda language to the abstract syntax is described in Fig. where 7" ranges
over Terms and 1™ over the mapping of a term.

An ASDF module (ASDF-Module) consists of a name (after the keyword
module) and a sequence of ASDF-Sections (usually there is at most three
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module asdf
imports  sdf an types
exports

context-free start-symbols ASDF-Module

context-free syntax
%% ASDF module

"module" ModuleName ImpSectionx ASDF-Section*
— ASDF-Module

"syntax" ASDF-Syntaz* | "requires" ASDF-Requires* |
"semantics" ASDF-Semantics*

— ASDF-Section

Figure 4.3: SDF definition of ASDF syntax (part 1)

sections). The syntax section defines the abstract syntax of the construct.
This is illustrated in Fig. with the abstraction term constructor abstract
which takes an identifier (/de) and a term (Term) as argument. When writing
production rules the separator ‘::=’ is used, instead of the ‘—’ found in SDF.

The requires section is used for introducing types, operators, and variables
used in the semantics section. This is illustrated in Fig. where the sort
Val is extended with the sort Lambda, such that actions can produce lambda
abstractions when evaluated. The same module illustrates declaration of con-
stants; in this case the constant error, a value used as exception when a term
cannot be applied. The syntax for declaring variables is illustrated in Fig.
where ‘T : Term’ declares the variable T to range over the syntactic sort Term.
When declaring the variable X to range over a sort S the variables Xn, X*, and
X+, where n is a non-negative integer, are automatically declared to range over
the sorts S, §*, and ST. The use of these variables is illustrated in Fig.

Fig. illustrates how types and operators are introduced. The declara-
tion ‘Lambda ::= lambda(act: Action & using val & giving val)’ results in the type
lambda and the data operators lambda and act becoming available in actions,
so that we can write actions such as ‘give the lambda’ and ‘give act(...)’. The
operator lambda is a data constructor, and act selects the action component
of such data. Notice also that every declaration of a data type, like Lambda,
causes lambda to be declared as a type for use in AN. As a convention the types
in AN use lower case start characters.

The semantic function, mapping the abstract syntax construct introduced in
the syntax section to an action, is defined, using an equation, in the semantics
section. In the equation, terms from AN and imported modules can be used.
For instance, in Fig. the semantic function contains action combinators
and constants, together with the type lambda, declared in the imported module
Data/Lambda. 1t is possible to define the function using more than one equation,
this is illustrated in Module on page The semantics section can also
contain the signature of a semantic function, as we see in Fig. It is required
that the signature of a function, used in a module, is defined in the same module
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%% Syntax section

Sort "::=" ASDF-Syntaz-Rhs — ASDF-Syntaz

Sort | Literal | Literal "(" {Symbol ","}* ")" |
ASDF-Syntaz-Rhs "|" ASDF-Syntax-Rhs  — ASDF-Syntaz-Rhs

%% Requires section

VarLexPrefix ":" Sort | Literal ":" Sort |

Sort "::=" ASDF-Requires-Rhs — ASDF-Requires
Sort |

Literal " (" {(Literal ":" (Sort | ActionType)) ","}x ")" |

ASDF-Requires-Rhs "|" ASDF-Requires-Rhs
— ASDF-Requires-Rhs

%% Semantics section

ASDF-Equation | ASDF-Signature — ASDF-Semantics
" UQLiteral? "1" Literal Constructor "=" Action

— ASDF-Equation
Literal ":" Sort "—" ActionType — ASDF-Signature
VarLexr | Literal | Literal " (" {VarLex ","}+ ")" |
Literal " (" VarLer* ")" — Constructor
(" Symbol ")" — Symbol
Literal Constructor — Action

lexical syntax

[A-Z]1+[0-9\? 1 *[\+\*]7 — VarLex
[A-Z]+ — VarLexPrefix

Figure 4.4: SDF definition of ASDF syntax (part 2)

Term == Ide | Term Term | X Ide . Term

Figure 4.5: Small lambda language

or an imported module. The notation used in a semantic equation (besides
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I —  ide ()
Ty —  apply(I7,T7)
AT — abstract(,T7)

Figure 4.6: Mapping lambda language to abstract syntax

module Calculus
imports
Term/Abstract

Term/Apply
Term/Ide

Figure 4.7: Module Calculus

module Term
requires

T : Term
semantics

eval : Term — Action & using () & giving val

Figure 4.8: Module Term

module Term/Abstract
syntax

Term := abstract(Ide, Term)
requires

Val ::= Lambda
semantics
[1] eval abstract(/, T) =

give (lambda(closure(

furthermore bind(/, the val)
scope eval T)))

Figure 4.9: Module Term/Abstract
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module Term/Apply
syntax

Term := apply(Term, Term)
requires

Val ::= Lambda

error : Val
semantics
[1] eval apply(T1, T2) =

eval T1 and eval T2 then

maybe apply (act(the lambda), the val)
else throw error

Figure 4.10: Module Term/Apply

module Term/Ide
syntax

Term := ide(/de)
semantics

[1] eval ide(/) = give the val bound-to /

Figure 4.11: Module Term/Ide

module Data/Lambda
requires

Lambda ::= lambda(act: Action & using val & giving val)

Figure 4.12: Module Data/Lambda

AN) is defined in the syntax and requires sections of the module and imported
modules. Therefore parsing a module must be done in two steps, where the
first step builds a parsetable based on the syntax and requires sections. More
about this in Chapter [6]

Syntactic sorts used in the syntax section result in implicit imports, so

for instance in Fig. the modules Term (Fig. and Ide (not shown) are

automatically imported.

Implicit imports are also generated from the sorts
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used in the requires section, with the difference that only syntactic sorts used
on the right hand side of the production results in imports, and the imported
modules always start with Data/, for instance Fig. imports Data/Lambda
(Fig. . The automatically imported modules, like Term or Data/Lambda,
may provide further sorts than those that caused their importation.

ASDF also allows explicit imports. This is mostly used in the top module
that imports all the modules used to describe a language (see Fig. . The
import-relation between the modules can be seen in Fig. where a module
A imports a module B if there is an arrow from A to B.

Calculus

Y

[ Term/Abstract } [ Term/Apply J

Term/Ide }

Data/Lambda

Figure 4.13: Import graph for Lambda language

ASDF only supports prefix constructor abstract syntax instead of concrete
syntax when describing language constructs. The advantage of using language
independent prefix constructors for abstract syntax is greater reusability. For
instance, a description of the if-then-else expression from Standard ML might
be reused for describing the ‘?:” expression in Java, since they have the same
compositional structure and intended interpretation even though their concrete
syntax differs.

4.3 Future work

The ASDF formalism is still at the experimental level and has only been tested
on the Core ML example. Parametrised modules as found in SDF might result
in greater reusability. Extending ASDF with support for user defined action
abbreviations can help simplify the semantic equations. This would require
extending the syntax used in the requires section so that the user can define the
syntax of a new action combinator. Also the syntax of the semantic equations
should be extended so that the expansion of the abbreviation can be defined.

Allowing conditional equations, as found in ASF, in the semantics section
would extend the expressiveness of ASDF. It is not clear whether it is needed
since the construct described in an ASDF module should map easily to an
action, and if conditional equations are needed, it might indicate that the con-
struct is too complex and should be split into more constructs to improve the
reusability of the constructs.



38

Chapter 4. ASDF



Chapter 5

Core ML example

A wisely chosen illustration is almost essential to fasten
the truth upon the ordinary mind, and no teacher can
afford to neglect this part of his preparation.

— Howard Crosby

This chapter presents a constructive action semantics of Core ML. Doh and
Mosses [29] introduced the main ideas of Constructive Action Semantics, and
proposed changing the modular structure of action semantic descriptions ac-
cordingly. They gave illustrations of descriptions of familiar individual con-
structs, and showed how some idealised programming languages could be com-
posed by importing the modules for the required constructs; here, we illustrate
the composition of a real language, Core ML. The modules that they gave were
written directly in ASF+SDF [4,27]; in contrast, we use ASDF.

In [29] abstract syntax was deliberately very close to concrete syntax, using
keywords and symbols from programs in the described language to distinguish
between abstract constructs. Here, we propose a neutral Basic Abstract Syntax,
BAS, and specify a mapping from concrete syntax to BAS, in the interests of
increased reusability when describing languages having significantly different
concrete syntax for the same abstract constructs.

The contents of this chapter is based on Constructive action semantics for
Core ML [41].

5.1 ML syntax

ML [51, 85] is a strict, functional, polymorphic programming language with
exception handling, immutable data types, updatable references, abstract data
types, and parametric modules.

In this section we will introduce examples of the concrete syntax of Core
ML (i.e., Standard ML excluding modules), to familiarise the reader with the
language. We will not be very strict with our description of the ML syntax, and
we leave out details which are either irrelevant or excessively cumbersome to
describe. Appendix [A] contains an SDF grammar of the whole Core ML syntax,
which is consistent with the grammar found in The Definition of Standard
ML [51]. In the next sections we will use the constructs introduced in this

39
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section as examples when giving a semantics for Core ML. Readers already
familiar with ML might prefer to take a quick look at Fig. to get an idea
of the subset of Core ML whose abstract syntax and semantics we will be
describing in the following two sections, and then skip to the next section.

Fig. is a grammar for the concrete syntax of the subset of Core ML we
will describe in this section. The nonterminal CON expands to constants like
integers or strings. Identifiers, consisting of either alphanumeric characters or
symbols like ‘:=’, ‘+’ etc., are derived from the nonterminal IDE.

EXP = CON |IDE | EXP EXP | EXP IDE EXP |
if EXP then EXP else EXP |
let DEC in EXP end | while EXP do EXP |

fn PAT => EXP | (EXP; ...; EXP) |

raise EXP | EXP handle PAT => EXP |

(EXP, ..., EXP) | (EXP) | [EXP, ..., EXP]
PAT = _| CON |IDE| (PAT, ..., PAT) |

[PAT, ..., PAT] | IDE PAT
DEC := val PAT = EXP | fun IDE PAT = EXP |

DEC ; DEC | local DEC in DEC end |

datatype IDE = IDE of TYP | ... | IDE of TYP |

exception IDE of TYP

TYP == IDE|TYP->TYP | TYP x TYP

Figure 5.1: ML Grammar

5.1.1 Expressions

ML does not have statements: expressions are used to describe the behaviour
that we would use statements to describe in an imperative language.

In ML the atoms in expressions are constants, e.g., integers and strings, and
identifiers bound to values. From these atoms new expressions can be formed,
for instance by applying functions to expressions, written as ‘FXP EXP’. As
opposed to languages like C or Pascal, function application in ML consists of
two expressions: the first expression evaluates to the function (this expression
does not have to be an identifier) and the other to the argument. Function
application can also be written in infix form, like ‘EXP IDE EXP’, where IDFE
is an identifier which has been declared infix, and bound to a binary function.

In ML ‘if EXP then EXP else EXP’ expresses a choice between two
alternatives based on a condition, but be aware of the difference from Java
(and similar languages) where the if-then-else construct is a choice between two
statements, which means that it does not evaluate to a value. These languages
use the ‘?:’ operation to describe a choice between two expressions.
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Most languages have a notion of scope of declarations. In C (and similar
languages) the curly brackets delimit a local scope, where the declarations given
in the beginning are valid till the closing bracket. The construct ‘let DEC in
EXP end’ is ML’s way of making declarations local to an expression.

Describing a repetition of a computation can be obtained using the ‘while
EXP do EXP’ expression. This construct is similar to the iteration statements
found in many imperative languages. It is of course important that the body
of the expression (the second EXP) has side-effects if the evaluation is ever to
terminate.

In ML, writing functions is not restricted to declarations: we can also write
anonymous functions, which are not bound to identifiers. These expressions
evaluate to a function value and are written ‘fn PAT => EXP’ (the syntactic
sort PAT is described in the next subsection).

As mentioned earlier, expressions replace statements when we compare ML
with many imperative languages. One important construct in imperative lan-
guages is a sequence of statements, and since ML has expressions with side
effects (based on built-in data types and data operations) it is not surpris-
ing that ML allows sequences of expressions, which are written ‘(EXP; ...;
EXP)'.

Exceptions are found in many languages, because they allow the program-
mer to describe a control flow that would otherwise be difficult to delineate.
ML has two constructs related to exceptions: ‘raise EXP’ throws an exception
(comparable to the ‘throw’ keyword in Java), and ‘EXP handle PAT => EXP’
catches exceptions raised in the first expression (comparable to the ‘catch’
keyword in Java).

The set of expressible values in ML contains, among others, tuples and lists.
Expressions which evaluate to tuples look like ‘(EXP, ..., EXP)’, and the
syntax for lists is similar, but with square brackets instead of round brackets.
Notice that tuples of size one do not exist in ML: ‘(EXP)’ is just used for
grouping expressions.

ML contains more expressions than those just mentioned; they can all be

found in Appendix

5.1.2 Patterns

An important construct used in both ML expressions and ML declarations is
the pattern. A pattern describes a set of values by combining constants, data
constructors, and variable identifiers. When matched with a value a pattern
generates bindings of the identifiers in the pattern to parts of the value. We
might say that whereas expressions construct new values, patterns de-construct
them.

In ML the simplest pattern is the wild-card pattern ‘_’, which matches every-
thing. Built-in constants (e.g., integers or strings), user defined data constants
and variable identifiers can also be used as patterns.

Bigger patterns, like tuples of patterns ‘(PAT, ..., PAT)’ are also a part
of ML, and often used to write a tuple of identifiers as the parameters for a
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function. List patterns are similar, but use square brackets instead of normal
brackets.

ML allows users to define their own data types and data constructors, and
it includes corresponding patterns to match constructed data. Writing ‘IDFE
PAT’ matches data constructed by applying the constructor IDE to a value
which matches PAT.

Further details about the syntax of patterns are given in Appendix

5.1.3 Declarations

In ML, all expressible values can be bound to identifiers.

The construct ‘val PAT = EXP’ generates bindings of identifiers in the
pattern to values computed from the subexpressions of EXP; the case where
PAT is simply an identifier corresponds to a simple constant declaration in
other languages. It is not a variable declaration (like ‘int i;’ in C) because
the bindings cannot be updated. Furthermore, types are not mandatory in ML
value declarations, since the intended type can usually be inferred (from EXP
and the usage of the identifiers in the scope of the declaration).

Recursive functions can be declared by writing ‘fun IDE PAT = EXP’,
where PAT is a pattern describing the formal parameters used in the body
expression. In many other languages, the only way of defining parameters for
a function is a tuple of identifiers; ML is more general, allowing other kinds of
patterns as well (possibly nested).

ML allows sequences of declarations separated by ¢;’. In Subsection
we introduced declarations which had a scope local to an expression. In ML
one can also write declarations which are local to declarations: ‘local DEC
in DEC end’.

ML has datatype declarations, where a new type with different constructors
is introduced. It looks like this:

datatype IDEy = IDFE; of TYP,
[ ...
| IDE, of TYP,

where IDFE( is the name of the new datatype and IDFE, ..., IDE, are the
names of the data constructors. The types TYPq, ..., TYP, describe the
arguments of the data constructors; ‘of TYP;’ is omitted when IDFE; has no
arguments.

As mentioned in a previous subsection, ML contains expressions which can
raise and handle exceptions. Writing ‘exception IDE of TYP’ declares an
exception named IDFE with an argument of type TYP. The type is optional, so
that one can also define exceptions without arguments.

A full description of the syntax of the declarations in Core ML is available

in Appendix

5.1.4 Types

ML is a strongly typed language. The type system consists of basic types which
are just type names (for instance declared using the datatype construct from the
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previous subsection) and constructed types like function types ‘TYP -> TYP’
and tuple types ‘TYP * TYP’. See Appendix for the full specification of
the syntax of types in Core ML.

5.1.5 Parsing peculiarities

ML is not a context-free language regarding grouping of expressions, because the
user can declare identifiers to be infix operations. The string ‘x y 2z’ illustrates
the problem. It can be parsed in different ways depending on whether y has
been declared infix or not. If not, it is parsed as an application of x to y and
an application of this to z, where x must be bound to a function taking one
argument and giving a function which takes one argument. If on the other hand
y has been declared infix, it is parsed as an infix expression, and y must be bound
to a binary function. The problem of constructing the right parse tree can be
solved by always parsing ‘x y 2z’ initially as a double function application, and
subsequently traversing the parse tree, replacing double applications with infix
expressions, depending on the context.
Another problem related to identifiers is the values they are bound to. In

let

datatype boolean = TRUE | FALSE;
in

(fn TRUE => 1 | _ => 0) FALSE
end

the behaviour of the anonymous function depends on the fact that the identifier
‘TRUE’ is bound as a data constructor. This means that an identifier should
either be regarded as a constant or a normal identifier which can be bound to
a value when it occurs in a pattern. Distinguishing between these two kinds of
identifiers can either be done in the semantics of identifiers (see Subsection|[5.2.1))
or when constructing a BAS term (more about this in Section [5.2)). Using
semantics to distinguish is described in Module [4] on page [51] and Module [11] on
page Distinguishing when constructing the BAS term requires more BAS
constructs to represent different kinds of identifier use and an extra traversal of
the parse tree to determine the different uses (more about this in Section [9.7).

5.2 Reduction to Basic Abstract Syntax

This section gives examples of a mapping from ML constructs to Basic Abstract
Syntax (BAS). BAS is an evolving selection of basic constructs from different
programming languages, to include all the commonly occurring constructs, as
well as more specific ones. In the next section we will give an action semantics
of the BAS constructs, thus indirectly providing an action semantics for the
ML constructs. The mapping to BAS is described by recursive functions which
perform a traversal of the concrete syntax tree while building the BAS tree.
The mapping is described in Appendix
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The alternative to mapping ML constructs to BAS constructs is to map
ML constructs directly to actions. We claim that introducing BAS as an inter-
mediate level is beneficial, because the BAS constructs can be reused not only
within the description of ML, but also in descriptions of other languages.

We are here only concerned with the dynamic semantics of ML, and conse-
quently we will not describe a mapping of types to BAS: types are just ignored
when mapping the other ML constructs.

BAS is divided into a fixed set of syntactic sorts. Constructs describing
expressions belong to the sort Exp, common to them is that they evaluate to
values. Statements belong to Stm and these constructs does not produce any
data when evaluated. Matching values against parameters is described with
constructs from Par, which compute bindings. The syntactic sort Dec contains
declarations, which also compute bindings. BAS also contains constants Con
(included in both Exp and Par), and identifiers Ide.

In this section we shall use meta-variables ranging over the syntactic sorts
of ML introduced in Fig. The variables are C': CON, I : IDE, E : EXP,
D :DEC, T: TYP and P : PAT. We will use the convention that a variable
with a superscript T means the translation to BAS of the variable without the
superscript, so for instance ET = exp2bas(E), where exp2bas is the function
mapping constructs in FXP to constructs in Exp.

Fig. shows an example of how ML is mapped to BAS.

5.2.1 Expressions

The function ezp2bas is fully described in Appendix[B.1] In this section we shall
see some examples from this description. The examples are listed in Fig.

Constants are included in Exp, so the result of applying ezp2bas to a con-
stant is the same constant. Less trivial is the mapping of identifiers, since
identifiers might be bound to different sorts in different languages. In imper-
ative languages, identifiers can usually be bound to procedures and memory
cells, and this requires a combination of two different interpretations of the
BAS construct, val(I), representing identifier expressions, depending on what
the identifier is bound to. In ML, identifiers can be bound to values, which
include integers, strings, functions etc., but they can also be bound to data
constructors, in which case the behaviour is a bit different.

Function application ‘Ey Es’, where Fq evaluates to a function and Fs is
the argument given to this function, is mapped to app-seq(F;, E5 ), which
insists on left-to-right evaluation of the subexpressions. BAS also contains the
app construct, which allows interleaving the evaluation of the two subexpres-
sions, but the expressions in a function application are evaluated sequentially
in ML. The construct app-seq is also used to describe the infix version of func-
tion application ‘F; I Ey’, which becomes app-seq(val(I), tuple-seq(E| E. )).
Here we use the tuple-seq construct instead of the tuple construct for the same
reason that we choose the app-seq construct. For economy, BAS provides only
unary function application, using tuples to represent multiple arguments—this
is especially convenient for ML, but arguably appropriate for other languages
too.
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exp2bas (
let
exception Negative;
fun fac 0 = 1
| fac n =
if n > 0 then n * fac (n - 1)
else raise Negative
in
fac 5 handle Negative => 0
end

=

local(
accum(
bind-val(val-or-var(Negative), new-cons(exn))
rec(bind-val(var(fac),
app-seq(abs(var(f), abs(var(id0),
app-seq(val(f), val(id0)))),
alt-seq(
abs(0, 1)
abs(val-or-var(n),
cond(app-seq(val(>), tuple-seq(val(n) 0)),
app-seq(val(*),
tuple-seq(val(n) app-seq(val(fac),
app-seq(val(-), tuple-seq(val(n) 1))))),
throw(val(Negative)))
)
)
)

c,atch(app—seq(val(fac), 5), abs(val-or-var(Negative), 0))

Figure 5.2: Mapping ML to BAS

ML’s conditional expression ‘if F; then Fy else F3’ is mapped to
cond(EY, EJ, EJ ). Since E] is expected to evaluate to either true or false, the
mapping is trivial, whereas in languages where EI should evaluate to an integer
equal to zero or not, the mapping would have been a bit more complicated;
alternatively, we could use a variant of the cond construct where the condition
is always numerical.

The construct ‘let D in E end’ is mapped to local(D', ET), which is
overloaded because it can also combine two declarations, as we shall see in

Sect. £.2.3]

ML’s iterative expression, ‘while F; do FEs’, is mapped to seq(while(E],
stm(E5 )), null-val). The reason that it is not just mapped to while(E], E; ) is
that it is an expression in ML, therefore it must compute a value (in this case
null-val, corresponding to ML’s ¢()’), so we wrap it in a construct which follows
a statement by an expression. Furthermore, the usual while construct in BAS
expects a statement as its second argument, so we use the stm construct to get
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C - C

I —  val(I)

E, E, —  app-seq(E], Ey )

E\ I Ey —  app-seq(val(l), tuple-seq(E{ E, ))
if F; then F5 else F3 — cond(ElT, E; EBT)

let D in E end — local(DT, ET)

while F; do Ej —  seq(while(E], stm(E, )),null-val)
fn P => F — abs(PT,ET)

(Er; ... E,—1;E) —  seq(seq(stm(E; )..stm(E! ,)), E)
raise E —  throw(E")

E; handle P => E, — catch(E), abs(PT, E, ))

(B1, «.., Ep) —  tuple-seq(E| ... E]),n>2

(E) — ET

(B, ..., E,] —  app(list, tuple-seq(E;, ..., E}))

Figure 5.3: ML expressions to BAS mapping

a statement from an expression by discarding the value.!

The anonymous function ‘fn P => E’ is mapped to abs(P', ET), which
gives static scopes for free occurrences of identifiers.

BAS has various sequence constructs. In the mapping of ML expression se-
quences, two different sequence constructs are used: a sequence of any number
of statements, and a sequence consisting of a statement followed by an expres-
sion. ML’s sequence of expressions can be seen as a sequence of statements
followed by an expression, because the values computed in the first expressions
are thrown away and only their side effects are preserved. Thus we can map
the sequence ‘(E1; ...; En_1; Ep) toseq(seq(stm(E] ) ... stm(E] 1)), E).
Notice that seq is overloaded, and used in two different ways in this example.

Raising an exception is mapped to throw(ET ). Handling exceptions ‘E;
handle P => Ej’ is mapped to catch(E], abs(P', E, )), where we have used
abs to describe the function on the right-hand side, which will be applied to
the exception raised by Ef— .

The construct ‘(Fy, ..., E,)’ has a trivial mapping to tuple-seq(E; ...
EY), which implies left-to-right evaluation of subexpressions. ML does not
have tuples of size one: brackets around a single expression merely indicates
grouping, and can just be removed in the translation to BAS.

When mapping ML lists ‘[Fy, ..., E,]’ to BAS, we use the data oper-
ation list, which maps a tuple value to a list value with the same elements.
The result is app(list, tuple-seq(E{, ..., E,})). An alternative mapping would
be to use the fact that, according to The Definition of Standard ML, ‘[Fy,

., E,]1’ is a shorthand for ‘Ej::...::E,::nil’, where :: is the infix list
constructor. We have already seen how we translate infix function application,
so we could iterate that to get app-seq(val(::), tuple-seq(E{ app-seq(val(::), ...

1Tt is of course not possible to eliminate the while construct by syntactic unfolding, as the
unfolding process would never terminate.
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app-seq(val(::), tuple-seq(E,’ list()))...))). The empty list nil is represented by
the value list().

Expressions with side-effects can be written using the data constructor ‘ref’,
which computes an updatable reference to a value, and the infix operation
‘:=", which can be used to update references. Both of them are part of the
Initial Basis of ML [51, Appendix D]. It is also possible to give ASDs of these

operations, but we shall omit the details here.

5.2.2 Patterns

The function used for mapping ML patterns to BAS parameters is named
pat2bas. The complete definition of it can be found in Appendix In this
subsection we will only elaborate on the subset of the mapping displayed in

Fig.[p.4

- — anon

C — C

1 —  val-or-var(I)

(P, ..., P) — tuple(P| ... P])

Ir — app(val(I), PT)

[P, ..., P, — app(list, tuple(P' ... P]))

Figure 5.4: ML patterns to BAS mapping

The simplest pattern ‘_’ is mapped to anon. Since the meaning of ‘_’ is that
it matches all values, one might think that we could regard it as an identifier
which also matches all values; but this would generate a binding from ‘_’ to the
value, which is not the intention of this pattern.

In BAS, the sort of constants is a subsort of patterns, so a constant in the
concrete syntax is just mapped to the same constant. The identifier pattern
can either be a data constant bound to a value (like true or nil) or it can
be an identifier matching any value. This context-dependent interpretation is
represented by the construct val-or-var(I).

BAS also contains a tuple pattern tuple(P; ... P,), which matches tuple
values, by matching each component in the tuple value against the pattern at
the same position in the tuple pattern, and joining the computed bindings. The
BAS tuple pattern is the obvious target of the ML tuple pattern.

The ML pattern ‘I P’ is mapped to app(val(I), P ). The construct app(FE,
P) matches values that can be obtained by applying the function computed
by E to an argument that matches P. The expression val was explained in
Subsection [(.2.11

List patterns (Fig. are very similar to list expressions (Fig. when
mapped to BAS, since expressions construct values and patterns de-construct
them.

In ML, the order in which subpatterns constituting a pattern are matched
does not matter, and therefore none of the BAS constructs used in this subsec-
tion insist on sequential evaluation.
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5.2.3 Declarations

Appendix defines the function dec2bas, which maps declarations to BAS.
In this section we will give some illustrations of its definition. The illustrations
are listed in Fig.

val P = E —  bind-val(PT, ET)

fun [ P = FE —  rec(bind-val(var(I), abs(P", ET)))

Dy ; Dy — accum(D/, DQT)

local Dy in Dy end — local(D], DJ)

datatype I=I; of T simult-seq( bind-val(var(I, ), new-cons(1))
... —
| I, of T, bind-val(var(1,,), new-cons(I)))

exception I of T —  bind-val(var(I), new-cons(exn))

Figure 5.5: ML declarations to BAS mapping

The simple binding of a value to an identifier is a special case of the construct
‘val P = E’, where P ranges over patterns. This is mapped to bind-val(PT,
ET) with the semantics that E7 is evaluated and then matched against P to
create bindings.

Recursive functions in ML have the most complicated mapping to BAS
that we have encountered; this is especially visible in the mapping described in
Appendix The mapping of ‘fun I P = E’ can be found in Fig. and
it contains some of the BAS constructs introduced previously, but also the new
construct rec(D ), which ensures that the bindings given by D are recursive.

A sequence of declarations ‘D1 ; Dy’ is directly mapped to accum(DT, D2T ),
which accumulates declarations while allowing the declarations in Dy to over-
ride the declarations in Dy .

Local declarations ‘local D; in D2 end’ can also be translated directly
to a single BAS construct, namely local(D{, D, ). The semantics of local(Ds,
D5 ) is that first the declarations generated by D; together with the previous
declarations can be used in Dy, but the result is only the declarations generated
by DQ.

With respect to datatype declarations we are only interested in the data
constructors. The name of the constructor is bound to a fresh constructor
(new-cons(I)) using bind-val. The bindings are collected using simult-seq, which
reflects that the declarations are independent and an identifier is only bound
once in a datatype declaration.

Exception declaration is similar to datatype declaration in that we are only
interested in the name of the exception, which is bound to a fresh constructor
(new-cons(exn)). We do not see any reason to distinguish between exception
constructors and data constructors.
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5.3 Action Semantics for Basic Abstract Syntax

In this section we will describe the semantics of selected BAS constructs using
AS. The description is written in ASDF as presented in Chapter 4] with the
only difference that the keyword module has a number appended for easier
reference. The rest of the constructs used in the description of Core ML can
be found in Appendix [C] Fig. gives an example of a BAS construct and its
mapping to an action.

As we have seen in the previous section we can describe ML constructs using
BAS constructs in a relatively brief and precise way. This section will show that
we can also give semantics to the BAS constructs in an uncomplicated but still
formal way, by using AS. Giving an AS of every ML construct directly would
make the description much more complicated, because the BAS constructs allow
us to decompose the ML constructs into simpler constructs, which are then
described individually.

evaluate
local(

bind-val(val-or-var(x), 3),
cond(true, val(x), 5)

=

(furthermore
(give the val 3

en
(maybe check (val(the cons bound-to the token x) = the val)
then give (no-bindings))
else
(give (the cons bound-to the token x) then fail
and-catch bind(the token x, the val))))
scope
(give (the val true)
then
((maybe check the boolean)
then
((maybe give (val(the cons bound-to the token x)))
else
give (the val bound-to the token x)))
else
give (the val 5))

Figure 5.6: Mapping BAS to AS

To combine all the modules needed to describe Core ML, we have the module
CoreML.:

Module 1 CoreML

imports

Exp/Val
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Exp/Val-1d-Const
Exp/App-Seq
Exp/Tuple-Seq
Exp/Cond
Exp/Abs
Exp/Alt-Seq
Exp/Seq-Stm-Exp
Exp/Throw
Exp/Catch
Exp/Local
Exp/New-Cons

Stm/Exp
Stm/While

Par/Val
Par/Val-Or-Var
Par/Var
Par/Anon

Par/App
Par/Tuple
Par/Simult

Dec/Bind-Val
Dec/Simult-Seq
Dec/Rec
Dec/Local
Dec/Accum
Dec/Ignore

The module does not import all modules mentioned in the following sections
because some of them are implicitly imported from other modules.
5.3.1 Expressions

For every syntactic sort we have a module introducing a variable ranging over
this sort, the signature of the semantic function mapping the sort to an action
and other things which are common to all the modules defining the constructs
belonging to this syntactic sort. Below is shown the module for Exp.

Module 2 Exp
requires
E: Exp
semantics evaluate: Exp — Action & using data & giving val

The module defines the semantic function evaluate and variables starting with E
to range over expressions. The signature of evaluate expresses that the function
takes an Exp and returns an action that can be given all kinds of data and
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produces values. The information about what kind of action it returns is used
by the semantic function type checker presented in Chapter [} We could have
been more restrictive about the data given to the action by adding ‘using ()’ to
the signature (expressions does not refer to any given data), but then we would
have to insert ‘then skip’ before applications of evaluate in some of the semantic
equations for them to type check.

The simplest expressions are constant values. The following module de-
scribes values:

Module 3 Exp/Val
syntax Exp ::= Val
semantics evaluate V = give the val V

Values are a subsort of expressions and have a very simple mapping to AN.
The variable V ranging over values is declared in the module Val, which is
automatically imported because the syntactic sort Val is used in this module.
We use the action give the val V| which gives the value V as its result.

Notice that we use the same notation for injecting one sort into another,
regardless of whether the sorts concerned are for abstract syntax or data.

The following module defines the val(T) construct:

Module 4 Exp/Val-Id-Const
syntax  Exp ::= val( Token)
requires

Val ::= Cons

Bindable ::= Val

semantics evaluate val(T) =
maybe give (val(the cons bound-to the token T))
else give (the val bound-to the token T)

Data constructors belongs to the sort Cons. The data operation val is used to
construct a value from the data constructor. In the action the yielder ‘the cons
bound-to the token T’ is used, which looks up the data constructor bound to
T in the current bindings. In AN we use tokens instead of identifiers to bind
values, but we shall define Token to include Ide. It is the data operation ‘the
cons’, which ensures that T is bound to a data constructor. The action constant
give applies a yielder to the given data. If T was bound to something not of
sort cons the give action would terminate exceptionally, in which case maybe
and else make sure that an alternative is tried. The alternative is to try to give
the value bound to T, which might also terminate exceptionally, depending on
the context.

The action becomes more complicated when we look at the app-seq construct
defined in this module:
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Module 5 Exp/App-Seq
syntax  Exp ::= app-seq(Exp, Exp)
requires
Val ::= Func | ConsData | Cons
func-no-apply : Val

semantics evaluate app-seq(EI, E2) =
evaluate EI and-then evaluate E2 then
((maybe give (consdata(token(the val#1), tag(the val#1), the val#2)))
else
((apply (action(the func#1), the val#2))
else (throw func-no-apply)))

In the requires section we make sure that functions, constructed data, data
constructors, and the special exception value func-no-apply are included in val-
ues. Informally, the action in the semantic function starts by evaluating EI1 and
then evaluates E2. The action combinator and-then concatenates the results of
evaluating the two subactions and the then combinator gives this result to the
next action. An application in ML can either apply a data constructor to a
value and result in a constructed value, or it can apply a function to a value
and result in a value. The two actions on each side of the first else combinator
describe the two different behaviours. The first action uses the built-in data
operator consdata to construct data, containing information from the two ex-
pressions. The reason consdata is built-in, and not just defined in the requires
section, is its connection with the invert data operator presented in Module
on page consdata constructs data with a data type constructor and invert
deconstructs the same data if it is given the right data type constructor. If the
first expression is not a data constructor the action fails, and the alternative is
tried. Again we see the use of the data operation ‘the 7’, where 7 is a type; in
this case the func is used to ensure that E1 evaluates to an element of Func, the
sort of data used to represent function abstractions. The data operation #n
selects the nth component of a sequence of data items. The operation action
is a selector on the datatype Func, selecting the action to be enacted when
applying a function. The action constant apply is given an action (as data) and
a value, and the given value is passed to the enaction of the given action. If
apply fails, the else action combinator ensures that the alternative action throw
func-no-apply is performed so that the whole action terminates exceptionally. If
the application does not fail, the result of the whole action is just the result of
the application.

The semantics of the conditional expression is that a boolean expression is
evaluated to decide which one of two expressions should be evaluated and give
the result of the whole expression. The definition looks as follows:

Module 6 Exp/Cond
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syntax  Exp ::= cond(Exp, Exp, Exp)
requires Val ::= Boolean

semantics evaluate cond(E1, E2, E3) =
evaluate EI then
maybe check the boolean
then evaluate E2
else evaluate E3

The first expression must evaluate to a boolean, so booleans should be included
in values; this is described in the requires section. The action constant check Y
evaluates the yielder Y with the given data, and if it evaluates to true the ac-
tion terminates normally; otherwise it terminates exceptionally, giving no data.
Combined with the maybe action combinator, which fails when the action it is
combined with terminates exceptionally, we get the effect of checking whether
El evaluates to true or false. Connected with the now familiar else action
combinator, the result is a choice between the evaluation of E2 and that of E3.

Declarations local to an expression are described using the local construct:

Module 7 Exp/Local
syntax  Exp ::= local(Dec, Exp)

semantics evaluate local(D, E) =
furthermore declare D scope evaluate E

Two new action combinators are introduced above. The prefix combinator
furthermore A performs the action A, which is supposed to compute bindings;
the result is the current bindings overridden by the computed bindings.? The
infix combinator Al scope A2 performs AI, which is supposed to compute
bindings, and these are the bindings current when performing A2.

Abstractions involve two facets of AN: actions as data, and scopes of bind-
ings.

Module 8 Exp/Abs
syntax  Exp ::= abs(Par, Exp)
requires Val ::= Func

semantics evaluate abs(P, E) =
give (func(closure(furthermore match P scope evaluate E)))

The abs construct uses functions so again they are required to be included
in values. When matching a parameter, bindings are generated and the action
combinator furthermore makes sure that they override the current bindings. The
resulting bindings become the current bindings when evaluating the expression

2The result of overriding bindings B; with bindings Bs is the union of B, and the bindings
occurring in By but not in Bs.
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because of the behaviour of the scope action combinator. This action is used as
data when a closure is computed and then the data constructor func is applied
to get a function before the result is given. We see that a function consists of
an action, which is the action being applied in the description of the app-seq
expression. The use of furthermore and scope here is similar to the way they
are used in the description of the local construct, which seems natural since the
bindings generated by the parameters have local scope.

We will skip the module defining the construct throw, because it does not
introduce any new AN, and instead we will take a look at another module
concerned with exceptions.

Module 9 Exp/Catch
syntax  Exp ::= catch(Exp, Exp)
requires Val ::= Func

semantics evaluate catch(El, E2) =
evaluate EI catch
(evaluate E2 and give the val
then apply (action(the func#1), the val#?2)
else throw the val)

The catch construct first evaluates the expression E1. If the evaluation termi-
nates exceptionally, the catch action combinator ensures that the data thrown
by EI is given to the function to which expression E2 evaluates. If the function
cannot be applied to the result, the result is thrown again.

5.3.2 Statements

Although ML does not contain statements as such, some of its constructs corre-
spond closely to familiar kinds of statements, and we can define their semantics
by mapping them to BAS statement constructs such as the while construct:

Module 10 Stm/While
syntax Stm ::= while(Exp, Stm)
requires Val ::= Boolean

semantics execute while(E, S) =
unfolding (evaluate E then
maybe check (not(the boolean))
then skip
else (execute S then unfold))

The iteration in the while construct is performed by the unfolding A and un-
fold actions. The action constant unfold performs the action A of the smallest
enclosing occurrence of unfolding A.
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5.3.3 Parameters

In ML patterns, an identifier can have two meanings: it can either be a data
constructor, which matches only the same constant value; or it can be an ordi-
nary identifier, which matches every value. The parameter construct val-or-var
catches both meanings, by simply trying each one of them.

Module 11 Par/Val-Or-Var

syntax Par ::= val-or-var( Token)
requires
Val ::= Cons

Bindable ::= Val

semantics match val-or-var(T) =
(maybe check (val(the cons bound-to the token T) = the val)
then give no-bindings)
else
(give (the cons bound-to the token T) then fail
and-catch bind(the token T, the val))

Data constructors belongs to the sort Cons, but we can get a value from data
constructors using the data selector val. The construct val-or-var(T) is mapped
to an action that first checks whether T is bound to a data constructor and
then compares the given value to the constructor. If they match, the result is
the empty set of bindings. If they do not match or T is not bound to a data
constructor, the alternative is to check if T is bound to a data constructor and
then fail, or bind T to the given value. Since a value is bound to a token in the
semantic equation, the requires section must declare values to be bindable.

The following module contains the definition of the parameter construct app
which matches constructed values.

Module 12 Par/App
syntax Par ::= app(Exp, Par)
requires
Val ::= Func | ConsData | Cons
semantics match app(E, P) =
give the val and
evaluate E then

maybe give (invert(the func#2, the val#1))
then match P
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The technique here is to use the data operation invert, which takes an invertible
function (such as a data constructor) and a value, and applies the inverse of the
function to the value. The result of this is then matched against the parameter.

5.3.4 Declarations

The simplest way of binding is matching a value against a parameter which
computes a set of bindings. This is described by the bind-val construct shown
below.

Module 13 Dec/Bind-Val
syntax Dec ::= bind-val(Par, Exp)
semantics declare bind-val(P, E) = evaluate E then match P

The construct is mapped to an action which first evaluates the expression and
then matches the parameter with the result.

More interesting is the construct simult-seq which describes simultaneous
sequential declarations.

Module 14 Dec/Simult-Seq
syntax Dec ::= simult-seq(Dec+)
semantics

declare simult-seq(D) = declare D

declare simult-seq(D D+) =
declare D and-then
declare simult-seq(D+) then
give disj-union

Two equations are used to define the semantics of the simult-seq construct.
If the sequence just consists of a single declaration, it just declares it, other-
wise it declares the first declaration in the sequence and then declares the rest
without using the bindings from the first declaration. Finally it computes the
disjoint union of the bindings resulting from the two recursive applications of
the semantic function.

The construct rec(D) allows recursive declarations where the bindings com-
puted from D can be used in the functions and procedures declared in D.

Module 15 Dec/Rec
syntax Dec ::= rec(Dec)
semantics declare rec(D) = recursively declare D

AN contains an action combinator that does exactly this, called recursively.
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When a sequence of declarations accumulates bindings while letting a dec-
laration redefine the previous declarations, one uses the accum construct shown
below.

Module 16 Dec/Accum
syntax Dec ::= accum(Dec+)
semantics

declare accum(D) = declare D

declare accum(D D+) = declare D before declare accum(D+)

The interesting part here is the action combinator before, which takes the bind-
ings computed by the action on the left-hand side and lets the right-hand side
action use them before it overrides them with the bindings computed by the
right-hand side action.

5.3.5 Data

Many of the modules presented in the previous sections implicitly import mod-
ules from the Data directory.
Some of the modules are empty like

Module 17 Data/Bindings

because bindings are already a part of AS and therefore a part of ASDF, but the
way ASDF implicitly import modules require that the modules exists. Others
like

Module 18 Data/Func
requires

Func ::= func(action: Action & using val & giving val)
| datacons(token: Token, tag: Cell)

describe data, types, data constructors, and data selectors used in the modules
importing them. This module describes two ways of constructing data of type
Func: Either the data constructor func is applied to an action (the type of the
action is explained in Chapter [7)), or the constructor datacons is applied to both
a Token and a memory cell. This describes that ML functions can either be
ordinary functions or data constructors.

5.4 Reusability

The foregoing sections have explained the overall organisation of a constructive
action semantics of Core ML, and illustrated the various parts of it. Let us now
assess the degree of reusability that we have obtained in the various parts of it.
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5.4.1 The syntax of Core ML

We have chosen to start from the syntax for Core ML given in The Defini-
tion [51, Appendix B], reformulated as a grammar in SDF as shown in Ap-
pendix [A]l Although The Definition interprets the grammar as abstract syntax
in connection with specifying the semantics of ML, the grammar is also used to
define the concrete syntax of ML, and involves not only (relative) priorities but
also rather more nonterminal symbols than one would expect in an abstract
syntax.

Starting from this grammar has both advantages and disadvantages. On
the positive side, we can give semantics directly to real program texts, parsed
exactly as they would be by (conforming) implementations of ML. The refor-
mulation in SDF was not entirely trivial, but a lot less effort than it would be
to develop an alternative grammar for ML from scratch. One drawback is that
the grammar is somewhat larger than a typical grammar for abstract syntax
would be; another is that the various parts of it cannot easily be reused in
descriptions of other languages.

It is also worth noting that complete descriptions of languages inherently in-
volve concrete syntax, but are seldom given in connection with formal semantic
descriptions.

5.4.2 Mapping from Core ML to BAS

The complete mapping is specified in Appendix [C] in ASF. Clearly, we need
at least one rule per Core ML construct, which almost entirely accounts for
the length of the specification. The individual rules are mostly very simple,
mapping an ML construct either directly to a BAS construct, or to a simple
combination of BAS constructs. We found the expansion of ‘fun’ declarations
given in The Definition [51, Appendix A] somewhat clumsy, so we use a simpler
translation, totally avoiding the need for creating ‘fresh’ variable identifiers.
The basic idea is illustrated in Fig.

fun I PH le = E1
| IPu...Pum = E,
=
val rec [ = curry,, (fn (P, ..., Pim) => E

| (Puiy ooy Pam) => Ep)

where

curryy, = fn f =>fn vy => ...=> fn v, => f(v1,...,0m)

Figure 5.7: Expansion of fun declarations

Although some of the rules look as if they could be reusable, it appears to
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be more trouble than it is worth to make a separate module for each Core ML
construct and the rule translating it to BAS.

It might be preferable to integrate the specification of the translation from
Core ML to BAS with that of the concrete syntax of Core ML, as can be done
using logic grammars in Prolog, and (less elegantly) in yacc grammars. The
simple translation from mixfix to prefix constructors available in SDF grammars

is clearly inadequate for our purposes, but we do not need the full generality
provided by ASF.

5.4.3 Action Semantics of BAS

The basis for our constructive action semantics of Core ML is the collection
of modules defining the action semantics of the individual BAS constructs.
Since each BAS construct has been designed to represent a single programming
feature, its action semantics is often significantly simpler than that of typical
Core ML constructs. Almost all the BAS constructs are highly reusable, and
not biased or specific to representation of Core ML constructs. In particular, we
are able to reuse constructs concerning statements in connection with describing
ML’s sequencing and while-expressions (by exploiting constructs for obtaining
statements from expressions and vice versa).

The main exception concerns nested parameters, used to represent ML’s
patterns: other languages will most likely involve tuples only of variable iden-
tifiers, rather than the tuples of arbitrary parameters provided here. However,
inspection of the module concerned indicates that little would be gained by
specialising it: the recursive call of the semantic function ‘match’ on a sub-
parameter, together with the separate definition of ‘match’ on a single identi-
fier, are just as simple (if not simpler) than combining them both in the same
equation.

One construct that has been added to BAS specifically in connection with
ML is the parameter ‘val-or-var(/)’. An occurrence of an identifier as a parameter
of a function abstraction is interpreted as a constant if the identifier is itself
a data constructor (such as ‘nil’), otherwise it is interpreted as a variable —
even if it is already bound as a variable to the value of a data constructor.
The (context-free) concrete syntax gives no hint about which interpretation is
intended, so we are forced to map the identifier to a construct which admits both
interpretations. We are not aware of other languages that would require use of
this BAS construct. The need to extend BAS with a construct to be used only
in connection with one language (or family of related languages) indicates that
the language concerned has an unusual feature; whether that feature represents
an unusually clever bit of language design, or an atypically poor one, is left
open.

It should be stressed that BAS is at an early stage of development, and
that the notation used for sorts and constructors may not become stable until
further major case studies have been completed (e.g., significant sublanguages
of C and Java, and the extension of the present case study to ML modules
and to Concurrent ML). However, our translation from Core ML to BAS does
not appear to be particularly sensitive to minor adjustments in the intended
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interpretation of BAS constructs. Changes to the spelling of symbols would of
course require global editing, but that can be automated. More work might be
required in connection with the introduction of subsorts or supersorts of the
existing sorts of constructs. For instance, a potential refinement of BAS would
be to take account of whether the execution of a construct might ‘fail’ or not
(where failure is always to lead to an alternative, and ultimately to an infallible
alternative). This would allow the description of the ‘alt-seq’ construct to be
simplified, but it might also require changes to some of the other rules in the
translation.

5.5 Related work

Watt [90] reported on a previous case study concerning the use of AS to describe
ML, covering both the static and dynamic semantics of Core ML, and the
dynamic semantics of ML modules. He also compared his description with The
Definition of Standard ML [51]. One of the contributions of our present case
study is to show how part of his description might look when refactored in the
constructive style.

We have not attempted to give a reformulation of Watt’s static semantics
of Core ML in our constructive style. This is partly because the use of AS
for specifying static semantics is unorthodox, and not well-known. In general,
we would expect to be able to use the same expansion to BAS for both the
static and the dynamic semantics, except that types have to be retained in the
former, which necessitates a few extra BAS constructs. Of course, the action
semantics of most BAS constructs is quite different for their static and dynamic
semantics; but their overall organisation is identical.

To extend our dynamic action semantics of Core ML to describe also the
semantics of ML modules would require augmenting BAS with constructs that
represent the visibility of bindings in signature and structure declarations, as
well as sharing relationships. This is left as an interesting topic for future work,
since our aim here is not to cover a full-scale language in full detail, but rather
to illustrate our basic approach on a sizable collection of realistic constructs.

In Fig. we have illustrated the parts of Watt’s description that describe
the semantics of the ‘if-then-else’ expression and compared it to the Ezp/Cond
BAS module. The main difference is the syntax part of the descriptions and
the overall structure of the descriptions. It is clear that Watt’s description does
not have the same degree of modularity as ours.

It is difficult to compare the size of Watt’s ML description [90] and our
description due to the structural differences. Watt’s description has a direct
mapping from ML syntax to AS, whereas ours contains both a mapping from
ML syntax to BAS and from BAS to AS. This increases the size of our descrip-
tion. On the other hand reusing the BAS constructs many times reduces the
size of our description.
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Grammar

Expression = . ..
| ““if"" Expression ‘‘then’’ Expression ‘‘else” Expression

Semantic functions

evaluate (“if"" EI : Expression ‘‘then” E2 : Expression "‘else’’ E3 : Expression) =
evaluate EI then
(' (check (the given value is the boolean of true)
then evaluate E2)
or
(check (the given value is the boolean of false)
then evaluate E3)

)

Semantic entities

value = ... | boolean | ...

Module 19 Exp/Cond
syntax  Exp ::= cond(Exp, Exp, Exp)
requires Val ::= Boolean

semantics evaluate cond(EI1, E2, E3) =
evaluate EI then
maybe check the boolean
then evaluate E2
else evaluate E3

Figure 5.8: Watt’s and our description of the conditional expression






Part 11

Tools

63






Chapter 6

The Action Environment

Give us the tools and we will finish the job.
— Sir Winston Churchill

The contents of this chapter is taken from An action environment [12], and
describes the Action Environment, an environment for working with the for-
malisms described in part I.

6.1 Features

The Action Environment supports working with ASF+SDF and ASDF simul-
taneously, with the restriction that ASF+SDF modules can import ASDF mod-
ules, but not the other way round. If there is a name conflict, i.e., an ASF+SDF
module and an ASDF module with the same name, it is solved by using the
module with the same type as the module importing the problematic module.
Being built on top of the ASF+SDF Meta-Environment, the Action Environ-
ment inherits most of its features (described in Section [3.3)).

A screen dump of the Action Environment can be seen in Fig. On the
surface the differences between the Meta-Environment and the Action Envi-
ronment seem negligible. Because a module in the module graph can be either
an ASDF or an ASF+4+SDF module, different pop-up menus will appear over
modules of different type. Not all features available for ASF+SDF are avail-
able for ASDF because they have not yet been implemented (e.g., changing
module name and imports). When editing an ASDF module one notices more
differences, since the syntax directed editor now uses an ASDF grammar for
parsing. Furthermore, the grammar defined in a module (and in the modules it
imports) is used when parsing the semantic equations in a module (remember
that the equations and the rest of the ASDF module is in the same file, and
not in two files as in ASF+SDF). This has two advantages: It gives a better
syntactic check of the semantic equations, and it allows the syntax directed
structure editor to display the right sorts for the tokens in the semantic equa-
tions. As in the Meta-Environment, it is possible to employ the given language
specification for parsing and rewriting terms over the language. Due to the way
we implemented the Action Environment, everything concerning terms works
as in the Meta-Environment.
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Figure 6.1: The Action Environment

The advantage of supporting both ASF+SDF and ASDF in the Action
Environment is that language descriptions in the environment can describe both
concrete syntax (using SDF), abstract syntax constructs and their semantics
(using ASDF), and a mapping from concrete syntax to abstract syntax (using
ASF). Using the Action Environment and a description of a language L, we
obtain a tool for mapping a program written in L to an action.

As in the ASF+SDF Meta-Environment, it is possible to save the parse ta-
bles generated by the environment for a specification and the parsed equations
collected from the ASF files. Saving parse table and equations to files allows
parsing and rewriting terms independently of the Action Environment. The
saved parse table and equations can be used to construct a front-end for a com-
piler. Combining this front-end with an action compiler we obtain a compiler
for the language described in the specification.

Different external tools have been integrated into the Action Environment.
A type checker for action semantic functions gives us a better check of the
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well-formedness of the ASDF modules and thereby the correctness of the ASD
of the language. An action interpreter allows us to interpret programs written
in the language we are describing. All in all, the Action Environment should
provide a particularly useful environment for developing semantic descriptions
and documenting the design of programming languages.

6.1.1 Tools

Both the ASDF type checker, described in Chapter[7] and the action interpreter,
described in Chapter [§], can be invoked from the Action Environment.

When type checking the semantic equations in a module, the user should
provide signatures for the semantic function they define and the semantic func-
tions they employ, and the type checker then checks that the semantic equations
conform to the signature of the function they define.

Type checking will either result in an error message indicating what might
be wrong in the action, or a message saying that the equations type checked
without problems. Because this is a soft type check, the purpose is not to
guarantee that the actions resulting from applying the semantic functions are
well formed. Instead the purpose is to warn the language describer against
possible problems in the specification.

An editor buffer containing an action, e.g., the result of applying a semantic
function to a program, can be interpreted using the action interpreter connected
to the environment. The result of interpreting an action is an indication of how
it terminated (normally, abruptly, or failing), the data it produced (if any),
and a structure describing the effects evaluating the action has had on storage.
The interpreter uses information from the module the action term was opened
over and the modules imported from this module. Information about subtype
relations, data constructors and selectors, and data constants is used.

6.2 Implementation

The Action Environment is built on top of the ASF+SDF Meta-Environment.
Discussing the implementation details of the Action Environment involves dis-
cussing the architecture of the Meta-Environment.

6.2.1 ASF4+SDF Meta-Environment architecture

The Meta-Environment has a layered architecture as displayed in Fig. In
this section we will discuss each of these layers in more detail. The first step to-
wards a layered design of the ASF+SDF Meta-Environment is discussed in [18].
That paper discusses how ASF can be replaced by another rewriting formalism.
This development has been taken a step further, resulting in the architecture
discussed here.
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SDF

Figure 6.2: The layered architecture of the ASF+SDF Meta-Environment

Kernel layer

The kernel of the Meta-Environment is completely language-independent. It
consists of the software coordination architecture, the ToolBus [5], which takes
care of all the communication between the components that make up the Meta-
Environment. The ToolBus allows a full separation of coordination and com-
putation: it is a programmable software bus where the coordination between
the components is formally described using a Process Algebra based formalism.
The computation is performed within the connected components, which can be
implemented in any programming language. The exchange of data between the
components is based on a representation format, ATerms [9], specially designed
for representing tree-like data structures. This formalism provides maximal
subterm sharing and efficient linearisation operations.

Besides the ToolBus the kernel of the Meta-Environment consists of a parser,
text and structure editors, graphical user interface components, a term store to
store parse tables and parse trees, a component which takes care of the com-
munication with the file system, etc. Each of the components is fully language-
independent and will be instantiated via the next layer, which provides language
specific functionality. The kernel is fully prepared to deal with modular lan-
guages and specification formalisms.

SDF layer

The next layer instantiates the kernel Meta-Environment with SDF function-
ality. This is achieved by adding SDF-specific components to the kernel and
actions to activate, for instance, editors for SDF modules. Examples of SDF-
specific components are the SDF parse table, the import relation calculator,
and the parse table generator. The latter is needed because of the fact that
SDF is designed to describe syntax of programming languages, and in order
to use these language descriptions it is necessary to generate parse tables for
parsing programs. Furthermore, the term store has to be instantiated in such
a way that both the parse trees of SDF modules and their corresponding parse
tables can be stored.
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Hook Description

environment-name (Name) The main GUI window will display this name
extensions(Sig, Sem, Term) Declares the extensions of different file types
stdlib-path(Path) Sets the path to a standard library

top-sort (Sort) Declares the top non-terminal of a specification

Table 6.1: The Meta-Environment hooks: hooks that parameterise the GUI

ASF layer

This layer extends the SDF Meta-Environment with ASF functionality. Again
this is achieved by adding ASF-specific components and actions to activate, for
instance, editors for ASF modules. An example of an ASF-specific component
is a component which extends every SDF specification with the syntax rules to
parse the ASF equations; in this way the user defined syntax in the equations
is obtained. Using SDF in combination with ASF poses some restrictions on
the grammar rules one can write in SDF, e.g., the separator in a list may only
be a literal and not an arbitrary symbol. These restrictions are checked by an
ASF+SDF-syntax-checker. Finally, this layer provides an ASF checker to check
the well-formedness of the equations, and an ASF interpreter and compiler are
added to the SDF Meta-Environment. The term store has to be extended to
store ASF modules, corresponding parse tables, etc., as well.

Implementation

Fig. shows an abstraction of the kernel Meta-Environment with each of
the extensions described above. In this section we will briefly describe how we
achieve these extensions in a flexible way.

The messages that can be received by the kernel layer are known in advance,
simply because this part of the system is fixed. The reverse is not true: the
generic part can make no assumptions about the functionality provided by the
other layers.

We identify messages that are sent from the kernel of the Meta-Environment
to the extensions as so-called hooks. The SDF layer can and will introduce
new hooks for the next layers. KEach instance of the environment should at
least implement a receiver for each of these hooks. Implementing these hooks
involves writing small pieces of ToolBus specifications. Table shows a few
kernel hooks. They are all related to the GUI and editors. The dashed arrows
in the Fig. between the kernel layer and the ASF or SDF layer denote the
hooks and the service requests.

Adding a layer involves some implementation effort. First of all, the compo-
nents themselves have to be implemented. In a number of cases it is necessary
to write ToolBus scripts, but the kernel Meta-Environment also provides a
powerful button language, which can be used to connect new components and
functionality. The button language enables a flexible way of adding buttons
and icons to the GUI and adding buttons to the various types of editors.



70 Chapter 6. The Action Environment
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Figure 6.3: The layered implementation of the ASF+SDF Meta-Environment

6.2.2 The Action Environment

In the Action Environment the layered design of the Meta-Environment is ex-
tended with an extra layer, the ASDF layer, illustrated in Fig. Notice
that we do not replace any parts of the ASF+SDF Meta-Environment; we just
extend it with an extra layer on the top. In [18] it is described how an envi-
ronment for another rewriting formalism is implemented by replacing the ASF
layer with a layer for the new formalism. This approach is not possible for us
because the Action Environment should still support ASF+SDF modules. An-
other way of viewing the ASDF layer is as an ASDF interface to the ASF+SDF
Meta-Environment.

The ASDF layer consists of several components: an ASDF parser, tools
for retrieving the module name and imported modules from an ASDF module,
and two ASDF to ASF+SDF mappings. As with the other layers we also have
to extend the term store, in this case to hold ASDF modules. Based on the
grammar of the ASDF language, a parse table has been generated, which is
used in the ASDF parser. The tools for getting the module name and imported
modules from an ASDF module are implemented in ASF+SDF and are almost
trivial (this is the ASDF Support component in the illustration). Here we shall
focus on the generation of ASF+SDF, and how we have connected external
tools.

To measure the size of the ASDF layer we have counted the number of
ToolBus script lines to approximately 2300 lines compared to approximately
10000 lines in the ASF+SDF Meta-Environment. The tools in the ASDF layer
are implemented using approximately 7000 lines of ASF+SDF.

Mapping ASDF to ASF+SDF

The Action Environment contains two mappings of ASDF to ASF+SDF. The
result of one mapping is used for parsing and rewriting terms. By mapping
every ASDF module to an ASF+SDF module we get the same effect, with
respect to working with terms, as if we had opened the generated ASF+SDF
modules in the Meta-Environment, so editing of terms is independent of the
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ASDF 1External |
Support ' Tools

ASDF ASDF to
Parser ASF+SDF

Figure 6.4: The ASDF layer

ASDF layer. The result of the other mapping is used for the second parse of
the ASDF module itself (the parse that checks the semantic equations using
the notation introduced in the same module and modules imported from it).

We shall use some of the modules in Section as examples in this sec-
tion. The ASDF module’s name declaration together with its import section
(if any) can be copied verbatim into the ASF+SDF module as illustrated in
Fig. Together with the explicit imports from the ASDF module, the gen-
erated ASF+SDF also contains imports of modules describing AN (the module
AN) and layout characters (the module Layout). Implicit imports, as explained
in Section are translated to explicit imports, e.g., Module [5]on page [52] uses
the sorts Fzp and Func, and the SDF generated from this module imports the
modules Ezp and Data/Func (Fig. [6.7).

module SmallML
imports

Exp/Val
Exp/Val-1d-Const
Exp/App-Seq
Ezp/Tuple-Seq
Ezp/Cond

imports AN Layout

Figure 6.5: SDF generated from Module [I) on page

The rest of an ASDF module is translated into ASF equations and SDF' sec-
tions declaring start symbols, sorts, lexical and context-free syntax productions,
and variables. The sort declaring sections ensure that all sorts occurring on the
right hand side of the arrow in a syntactic function are declared. Examples of
this can be seen in Fig. [6.6] where the sorts Ezp, Type, and Action are declared.
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module Ezp

imports
AN  Layout Data/Val

exports
sorts Exp

variables
ngn [0_9)] * -> Exp
IIE" [0_9)] *"+|| _> Exp.'.
llEll [0_9)]*"*" _> E:Ep*

sorts Action

context-free syntax
evaluate Fxp -> Action

Figure 6.6: SDF generated from Module [2| on page

The sorts which are also declared to be context-free start symbols in
ASF+SDF can be used as the top sort in a parse tree for a term. All sorts
defined in the syntax section of an ASDF module are declared to be start-
symbols (see Fig. [6.7).

A production of the type ‘Sort ::= Symbols’ in the syntax and requires
sections is mapped into a context-free syntax section containing a function
‘Symbols — Sort’, as shown in Fig. The productions in requires sections
also result in declaration of types for use in AN, e.g., in Fig. the production
‘Val ::= Func | ConsData | Cons’ is translated to SDF that declares val, func,
consdata, and cons to be types for use in action notation.

Module [2] on page [50] declares variables with the prefix E, and this is trans-
lated to the variables section shown in Fig. Here regular expressions over
character-sets and strings are used to define variables ranging over Ezp, Exp*,
and Ezp+. The variables are used in the ASF generated from semantics sec-
tions, as shown in Fig. In the semantics section it is only the equations, and
not the signatures, that are translated to ASF. The signatures are translated
to a syntactic function as shown at the bottom of Fig.

The ASF+SDF is generated on demand (i.e., when we need to parse a term
or a module), and has to be regenerated for an ASDF module every time the
module changes. The mappings to ASF+SDF are implemented in ASF+SDF;
this was an obvious choice since an SDF grammar for ASF4+SDF already exists,
which made it easy to construct a type-safe translation.

Integration of external tools

Due to the configurability of the Meta-Environment, it is possible to attach
external tools, like an action type checker or interpreter. This is an easy task
using the button language, under the assumption that the tools just take the
contents of an editor as input, and return a text string as result.
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module Exp/App-Seq
imports

AN  Layout
Data/Func  Exp

exports
context-free start-symbols FEzp

sorts Fzp

context-free syntax
app-seq(Exp, Ezp) -> Exp

sorts Val Type

context-free syntax

Func -> Val
ConsData -> Val
Cons -> Val

lexical syntax

"val" -> Type
"func" -> Type
"consdata" -> Type
"cons" -> Type

lexical syntax
"func-no-apply" -> Val

Figure 6.7: SDF generated from Module [5| on page

equations

[1 evaluate app-seq (E1, E2) =
evaluate E1 and-then evaluate E2 then
((maybe give (consdata(token(the val#l),
tag(the val#l), the val#2)))
else
((apply (action(the func#1), the val#2))
else (throw func-no-apply)))

Figure 6.8: ASF generated from Module [5] on page

It becomes more complicated when the tool needs global information (like a
semantic function type checker, which needs all imported function signatures to
check a function definition), and in these cases we need to traverse the import
graph to collect the necessary information from each module.

Fig. shows the definition of the menu item that starts the ASDF type
checker written in button language. In the Meta-Environment anything the
user can click is referred to as a button, hence also a menu item. The first
line defines where the button should occur, and in this case it only occurs
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action([description(asdf-editor,
menu(["Actions", "Type check"]))],
[push-active-module,
prompt-for-file("Extra type constraints", "",".asdf"),
split-file-name,
type-check-asdf])

Figure 6.9: Definition of type checking menu item

in ASDF editors. The second line describe how it should occur, and in this
case it occurs as a menu item named “Type check” under the menu “Actions”.
The rest of the lines define the button’s behaviour, using a special stack-based
script language. The command push-active-module pushes the name of the
module in the editor on the stack, before the command prompt-for-file asks
the user for an ASDF file containing extra type information. Using the stack,
the name of the file is passed to the next command (split-file-name) which
splits the file name into directory, name, and extension. Finally the command
type-check-asdf calls the ToolBus interface to the type checker.

6.3 Related work

An enormous amount of work has been performed in the field of defining the
syntax and semantics of programming languages and systems supporting the
development of such language definitions. We refer to Heering and Klint [37]
for a fairly complete and up-to-date overview.

In the discussion of related work we will focus on environments which can
be used to describe single language constructs in a modular way, or to give
ASDs of languages.

The GEM-MEX system [3] allows description of languages using a collec-
tion of MONTAGES, a formalism based on Abstract State Machines. The idea
of describing single language constructs in separate modules is encouraged by
GEM-MEX, but due to the lacking modularity of the syntax formalism used
(the semantic descriptions of individual constructs are based on concrete syn-
tax, and the collected syntax has to be LALR(1)) a MONTAGE is not often
reusable in descriptions of different languages.

The ABACO system [72] is an AS tool for students and programming lan-
guage designers. The main components of ABACO are an algebraic specifica-
tion compiler, specification editors, action libraries, action editors, and a GUI.
Furthermore, it offers a help system, an action debugger and facilities to ex-
port specifications to readable output. The main component is the algebraic
specification compiler, which provides syntax checking of specifications and in-
terpretation. The ABACO system and the Action Environment have a strong
resemblance, but the Action Environment offers more flexibility in adding ex-
ternal components by means of openness of the underlying architecture.

The ASD toolset [26] supported the creation, editing, checking, and use
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of ASDs. This toolset had a very strong relation with an older version of
ASF+SDF, and its implementation has become obsolete.

6.4 Conclusion and future work

In this chapter we described the Action Environment, a new environment sup-
porting the use of ASDF and ASF+SDF, and explained how it is implemented
on top of the ASF+SDF Meta-Environment. The Action Environment has been
tested on the Core ML example presented in Chapter

Plans for future work on the Action Environment include:

e Testing the environment on more examples;

e Adding refactoring features for ASDF modules, such as renaming mod-
ules, adding and removing imports, deleting modules etc.;

e Validity check of ASDF modules should be improved: besides the syn-
tax check there should also be checks of whether the right-hand sides of
equations use variables not occurring in the left-hand side; and

e Adding functionality to merge two modules if they define the same con-
struct, as described in [29].






Chapter 7

Type checking semantic functions

To err is human, but to really foul things up requires a computer.
— Dan Rather

This chapter is about type checking semantic functions as they occur in the
ASDF formalism. The contents of this chapter is based on Type checking se-
mantic functions in ASDF [39].

7.1 Type checking

Type checking in connection with AS can be done at two levels: Either semantic
functions in an ASD are type checked to reveal mistakes made by the language
describer, or the actions resulting from applying the semantic functions to a
program are type checked to reveal errors in the program and to support code
generation (if a type has been inferred for all subactions). The topic of this
chapter is the former.

Type checking a semantic function is done one module at a time by type
checking the semantic equations in a module defining the semantic function’s
behaviour on a single construct. By type checking semantic equations we mean
checking that the equation conforms to the signature of the semantic function it
defines. This of course requires information about all the user defined semantic
functions, types, data, and data operators used in a semantic equation, and
it requires that information can be collected from the module containing the
equation and the modules it imports. If the action in a semantic equation
contains type errors or its type is not a subtype of the expected type (according
to the semantic function signature), we can report an error. We shall say that
an action has a type error if one of its subactions terminates abruptly because
it is given a type of data it did not expect. An example of an action containing
a type error is the action ‘result 5 then close’. This action is flawed because close
expects an action, but receives an integer. If execute has the signature ‘execute :
Stm — Action & using data & giving ()’, the semantic equation “execute new(E)
= evaluate E then create” will also result in a type error because the signature
does not allow that actions resulting from execute give memory cells.

Type checking of semantic equations is obstructed by the fact that the
action on the right hand side appears out of the context it will appear in when
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the semantic equation is used to map a complete program. A conservative type
checker would reject many semantic equations because of the lack of information
about the context. It is worth considering whether we can use quantified types
or principal typings [91] to solve the problem with the missing context. We could
use quantified types where we quantify over the tokens bound in the context,
or we could use principal typings to define type judgements that describe the
context, but the main problem is that type checking is done before token values
are known (they will not be known until the semantic functions are applied to
concrete programs), so we can never instantiate the quantified types or check
the type judgements. Therefore quantified types or principal typings would not
help us. We have chosen to develop a soft type checker that approves many
actions but still warns the user against the most obvious mistakes.

The purpose of the type checker is to type check semantic functions in
ASDF modules. Because of the modularity of ASDF descriptions we also want
the type checker to be modular as explained in Section [7.5

An implementation of the type checker, integrated into the Action Environ-
ment, has been used to type check the Core ML example.

7.2 Related work

Type checking (or type inference) of AN has been a research area since the
beginning of the 1990’s where Even and Schmidt [32] showed how to infer types
for actions using unification on record types. Their work has been further
developed by Brown [22], Lee [46], and Iversen [38]. Common to all these
systems is that the goal is to infer a type for a self-contained action for use in
code generation. This differs from what we will present in this chapter in that
we want to type check semantic functions where the embodied action describes a
small part of a full program, and the main goal is to give the language developer
useful feedback about his description and let him test assertions about semantic
functions.

Doh and Schmidt [30] describe a method for extracting typing laws from
semantic functions. This is not type checking of the semantic functions, but
a way to compute type rules for the described language from the semantic
functions.

In [95] Orbaek describes a soft type inference algorithm for semantic func-
tions. The algorithm is not dependent on the user giving any kind of type
annotations, like signatures, to the semantic functions; instead it infers a type
by looking at all the semantic equations in the language description. This dif-
fers from our approach because we want to type check the semantic equations
that describe a single language construct without looking at the whole language
description.

7.3 Type system

Our type system consists of a set of types 7 ordered by a subtype relation and
a set of type rules that can be used to derive a proof that an action has a certain
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type. We will present both in the following two sub-sections. Throughout the
rest of this chapter we will use 7 as a variable that ranges over types.

7.3.1 Types

We shall view types as sets of values. Our type system has three different kinds
of types: the built-in AN types, the action types, and the user defined types.
The built-in AN types are listed in Fig.

Type ::= data | datum | () | integer | boolean | token | bindable
bindings | storable | cell | ActionType | Type x ... x Type

Figure 7.1: AN built-in types

The type data contains all values, and all types are subtypes of data. All
values except tuples of data is included in the type datum. The type () does not
contain any values. Notice that action types (ActionType) are also included in
the built-in types; this is necessary because actions can be used as data in AN.
The product type is the type of tuples of data, and the symbol () denotes the
product type of length 0, the type of the empty tuple (like unit in Standard
ML).

ActionType ::= Action | using Type | giving Type | raising Type |
infallible | closed | terminates | uncreative |
ineffective | stable | ActionType & ActionType

Figure 7.2: Action types

Action types are listed in Fig. We use the symbol & to denote the
intersection of two action types. The type Action is the supertype of all action
types and says nothing about the action, except that it is an action. The three
types parameterised with a type, ‘using 7’, ‘giving 7’, and ‘raising 7’, are the
types for actions that can be given data of some type, actions that produce
data of some type when they terminate normally, or actions that produce data
of some type in case of abrupt termination, respectively.

An action type which does not contain ‘using 7’, ‘giving 7’, or ‘raising 7’
is equal to the same action type with ‘using ()’, ‘giving data’, or ‘raising data’
respectively added (this means that ‘Action = using () & giving data & raising
data’). This is also illustrated in the equivalence in Fig. This equivalence is
a consequence of ‘using 7’ being contravariant in its type argument and ‘giving
7’ and ‘raising 7’ being covariant, as shown in the subtype relations listed in
Fig. Throughout the rest of this chapter we shall use a as a variable to
range over all action types and « to range over atomic action types (all action
types listed in Fig. except ‘ActionType & ActionType’).

The type ‘using data’ contains only the actions which accept all types of
input. Many of the actions with this type ignore their input, like ‘result D’.
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The types ‘giving 0’ and ‘raising ()’ contain the actions that cannot terminate
normally or abruptly, respectively.

The names of the rest of the types should indicate what their intended
meaning is. To illustrate their use, the action type ‘giving token X bindings
& infallible & stable’ describes the actions which produce a pair consisting of
a token and bindings, and do not fail or inspect memory. The action type
‘using storable & closed & ineffective & uncreative’ describes actions which can
be given a storable, are closed with respect to bindings, do not update storage,
and do not allocate new memory locations.

Some of the action types are “negative” in the way that they describe be-
haviour an action may not have: it may not fail (infallible), it may not create
new memory cells (uncreative), it may not update memory (ineffective), or it
may not inspect memory cells (stable). The reason we have chosen “negative”
types in these cases is that it is difficult (often impossible) to determine if an
action fails or manipulates storage. It is difficult because we cannot with static
analysis determine which parts of an action are evaluated. On the other hand
we can eagsily point out a large set of actions that, for instance, do not cre-
ate memory cells (the actions that do not contain the action create). This also
means that if an action type does not contain, for instance, infallible, it describes
all actions that might fail or not fail.

Fig. presents an equivalence on action types. The five rules say that
the order of the atomic action types is not important, the action types ‘using
(), ‘giving data’, and ‘raising data’ can be introduced, and if there is a subtype
relation between two atomic action types the “highest” type can be removed
(this also means that if an atomic action type occurs twice in an action type
one of the occurrences can be removed). When a type operator or a type rule
mentions an action type, we shall assume that the equivalence has been applied
to the action type such that the type operator or the type rule can be applied.

& &y 1 &v& . &k y=En& o & &1 & &y,
o = using 0 &

o =giving data &

« = raising data & o

N&w& ... &vm=r& ... &y, when ~v <

Figure 7.3: Equivalence on action types

The readers familiar with the previous work on inferring types for actions
[22,32,38,46] might have noticed that our types cannot describe the bindings
used by an action. In previous work the bindings used by an action were also
inferred using record types. This allowed a stronger type inference because the
type of the output from yielders, like ‘bound-to the token x’, was more specific
than just bindable, and the type inference algorithm was able to check that the
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token was actually bound in the current bindings. Due to the fact that token
values are seldom known in a semantic function before the function is applied,
the type system cannot deal with bindings on a more detailed level than the
atomic type bindings. To illustrate this, a semantic function containing the
action ‘give the bindable bound-to I’ (where I is an ASDF variable ranging over
tokens) will always type check in our system because the value of I is not known
until the semantic function is applied, so we cannot check that the instantiation
of I is bound in the current bindings.

In an ASDF module the user can provide type information. A production,
like ‘Bindable ::= Integer’ defines the type integer to be a subtype of bindable!.
A more advanced production, like ‘Func ::= func(action : using val & giving
val)’ (see Module on page , defines the data constructor func to be a
data operator which takes an action of type ‘using val & giving val & raising val’
and gives data of type func. The production also defines the data selector
action to be a data operator which takes a func and gives an action of the
before mentioned type. Finally ASDF modules can also contain signatures of
semantic functions, like ‘evaluate : Exp — Action & using data & giving val’ (see
Module [2| on page .

As mentioned before, the set of types 7 is ordered, and the ordering < is
defined in Fig.

7.3.2 Type rules

Type rules can be used to construct a proof that an action has a certain type,
and from type rules type inference rules can be constructed. For an algorithm
that checks that an action has a certain type, see Section [7.6

In Fig. we see examples of type rules for the actions used to describe
normal flow of data and control in programming languages. The rules are con-
ditional as illustrated in rule where the premises state the types of the two
subactions A; and As. In all type rules for action combinators the premises
will state what the types of the subactions are. Rule also has other con-
ditions which state that the type of the data produced by A; should not be ()
(recall that ‘giving ()’ means that the action does not terminate normally and
then the right subaction would never be executed, which we consider an error).
The condition ‘7{ < 79’ states that the type of data produced by A; should be
a subtype of the type of data that can be given to As. If the premises hold,
we can derive the type of ‘A then Ay’ using the types from the premises and
appropriate type operators to combine them. The U (N) operator computes the
union (intersection) of two types, and the U,. operator takes two action types
and returns the intersection of the atomic action types occurring in both the
action types. In other words ‘a; Uye ao’ is the lowest action type bigger than
a1 and ao, i.e., a union on action types rounded up to the nearest action type
(a least upper bound).

The rule for the action combinator and (rule introduces the type oper-
ator @ which concatenates two types into a product type. A formal definition

1The convention in ASDF is to use words starting with capital letters for naming syntactic
sorts whereas AN uses small letters in types
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T<T

TIST2 N T2a<T3 = 71 <73

D<r

7 <datum when TH#()AVR>2,T;. T#TI X ... X Ty
7 < data

a < Action

a<ym & ... &v, when Viel.n a<-;

& ... &y <y when Fiel.n. v vy

using 7p < using 2 when T <7

giving 7 < giving 79 when T < Ty

raising 7, < raising 7o when T < T

TIX oo X Ty <74 X...XT7) when Yiel.n. <t/

+ user defined relations in ASDF modules

Figure 7.4: Subtype relation

simple = infallible & closed & terminates & uncreative & ineffective & stable
(7.1)

Figure 7.5: Definition of simple

of all the type operators can be found in Fig.

The rules for give (rule and use the constant simple which is an
abbreviation for an action type. The expansion can be found in rule in
Fig. The type of give O depends on the signature of the data operator
O where the question mark indicates that it is a partial operator. The action
‘check O’ (rule also contains a data operator, but the rule does not depend
on whether the operator is partial since ‘check O’ can still terminate abruptly
when the data operator is not partial. The rule insists that the result type of
the operator is boolean.

Fach rule has an action type on the left hand side of the turnstile, and
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ay, b Aq :using 1y & giving 7 & raising 7] & oy
ay F As : using 7 & giving 7 & raising 75 & an
T < T # 0 (7.2)
ay F Aj then As : using 7y & giving 75 &
raising (77 U7y) & (1 Uge a2)
ay F Aq :using 7 & giving 7 & raising 7 & oy
ay, F As : using 7o & giving 7 & raising 75 & an (7.3)
ay F Ay and Ay using (11 N72) & giving (1] ©75) & :
raising (77 U73) & (a1 Uge a2)
ay F Aq :using 71 & giving 7 & raising 7 & oy
ay, F As :using 7o & giving 7 & raising 75 & an (7.4)
ay F Aj and-then Ay : using (11 N12) & giving (] & 75) & :
raising (77 U73) & (a1 Uge a2)
ay, = copy : using T & giving 7 & raising () & simple (7.5)
D:7 76
o, Fresult D : using data & giving 7 & raising ) & simple (7.6)
O:7-77 7
oy, F give O : using 7 & giving 77 & raising () & simple (7.7)
O:7—1 (7.8)
ay, Fgive O : using 7 & giving 77 & raising 0 & simple :
O : 7 — boolean (7.9)
ay, F check O : using 7 & giving 7 & raising () & simple ’
a,FA:«
an Findvisbly 4 (7.10)
o, | choose-nat : using data & giving integer & raising () & simple (7.11)
o FA:d
o, F unfolding A : o (7.12)
terminates ¢ a,
a,, F unfold : ay, (7.13)

Figure 7.6: Type rules for normal flow of data and control AN

most of the rules just propagate it to the premises. The action type is used in
connection with the two actions related to unfolding (rule and [7.13]). The
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Type concatenation

T1DTe = T1 XTo
beor = 0
T = 0

Action type combinator

(v & a1) Uge (7 & az) v & (a1 Uge a2)

(v & a1) Uge g = (a1 Uge ai2) when v ¢ as
YUae (Y& ) = v
Y Uge @ = Action when v ¢ «

Action type subtraction

(Y& a)\y = aly

(m&a)\v2 = 71 &(a\yz) when v #7
v\v = Action
M\ = m when v # Y2
Action type projections
has(v, ) = vy when v €«
T4 T Action when 7 ¢ a

Figure 7.7: Type operators

type of ‘unfolding A’ is the same as the type of A, and the type of unfold is
the same as the type of the enclosing unfolding action. When using the rule for
unfolding, the type of A must be guessed and then passed on to the premise
that derives the type for A. The rule for unfold just states that unfolds’s type
is the type left to the turnstile and that this type cannot contain terminates.

The rules in Fig. concern the actions used to describe exceptional and
alternative control flow (like raising exceptions and conditional expressions).
Comparing with Fig. We see that there are many similarities (compare throw
with copy, then with catch, and and with and-catch). The main difference is that
some actions terminate abruptly instead of normally.

Intersection between action types is very common in our type system, but
as illustrated in the rule for fail (rule[7.17), there is also a subtraction operator
\. The action fail does of course fail, and therefore we must remove the type
infallible from its type.

In rule we introduce the type operator has. The domain of has is an
atomic action type and an action type. The operator returns the first type if
the second action type contains the first, otherwise the result is Action. Using
this operator ensures that the type of the whole action contains infallible if the
right subaction cannot fail.

In Fig. the type rules for actions describing declarations are shown. The
atomic type bindings is used in all three rules to describe that an action produces
a mapping from token’s to data. As discussed in Subsection [7.3.1] action types
does not describe the bindings used by an action, but the type closed indicates
that an action does not use the current bindings.
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ay, = throw : using 7 & giving 0 & raising 7 & simple (7.14)

ay F Aj :using 7 & giving 7 & raising T & oy
ay, F As : using 7o & giving 74 & raising 75 & an
<71 T #0 (7.15)
ay, F Ay catch As : using 7 & giving (7{ UTs) &
raising 75 & (a1 Uge i2)

ay F Aq :using 71 & giving 7 & raising 7 & g
ay, F Asg : using 7o & giving 74 & raising 75 & an

ay, B Ay and-catch A : using (11 N 7o) & giving (11 UT4) & (7.16)
raising (17 @ 77) & (a1 Uge i)
ay, F fail : using data & giving 0 & raising @ & simple \ infallible (7.17)

ay F Aj :using 71 & giving 7 & raising 7 & g
ay, b Ay i using 5 & giving 75 & raising 74 & aw
infallible ¢ o (7.18)
oy, Aj else Ay @ using (11 N7) & giving (11 UTs) &
raising (77 U7y) & (a1 Uge a2) & has(infallible, ap)

Figure 7.8: Type rules for abrupt and alternative control flow AN

oy F A : giving bindings & o/

ay, | recursively A : giving bindings & o/ (7.19)
o, F copy-bindings : using data & giving bindings & (7.20)
raising () & simple \ closed '
o, F Ay :using 71 & giving bindings & raising 7] & oy
ay, F As : using 7o & giving 74 & raising 75 & as (7.21)

ay, F Aj scope Aj : using (11 N72) & giving 75, &
raising (77 U75) & (a1 Uge a2) & has(closed, oy )

Figure 7.9: Type rules for declarative AN

Actions can handle other actions as data; this necessitates the inclusion of
action types in the set of ordinary types so it becomes a higher-order type sys-
tem. In Fig. this is illustrated. The actions there expect an action as input
and either execute it with some arguments and return the result (rule ,
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T2 S T1
oy, Fapply : using ((using 71 & ') X 72) & o' \ terminates

(7.22)

ay, F close : using o & giving (o & closed) & raising () & simple (7.23)

Figure 7.10: Type rules for reflective AN

or they return a moderated action (rule[7.23). We cannot guarantee that the
action apply terminates because it might recur forever, and therefore terminates
must be removed from /. Notice also that the use of the variable o expresses
how the type of apply depends on the type of the action given to apply.

oy, | create : using storable & giving cell & raising () & simple \ uncreative (7.24)

oy, | update : using (cell x storable) & giving () & raising () & simple \ ineffective
(7.25)

ay, b inspect : using cell & giving storable & raising () & simple \ stable  (7.26)

Figure 7.11: Type rules for imperative AN

The three rules in Fig. shows the use of the action types uncreative,
ineffective, and stable. Besides defining the type of data used, produced, and
raised by the actions the rules also illustrate how the three action types are
closely connected to these three actions, i.e., the type of an action contains
uncreative, ineffective, or stable if, and only if, it does not contain the actions
create, update, or inspect, respectively.

The actions found in semantic functions can contain applications of other
semantic functions as subactions (as illustrated in Module [7| on page . The
type rule for these applications is shown in rule The rule states that if the
function f has a signature o — «, then the result of applying f to a construct
S of syntactic sort ¢ has type a.

The subsumption rule (rule in Fig. says that if an action A has a
type a and ¢ is a supertype of «, then A also has the type o’.

AN contains only few built-in data operators and expects the user to provide
the necessary definitions of data and data operators. We shall not spend many
lines on data notation here, but it is relevant to know about the built-in partial
data operator ‘the 77 which performs type projections. Given data of type 7 it
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ayFf:Y—a
S:% (7.27)
a,FfS:a

Figure 7.12: Type rule for semantic function

a,FA: «
a<do (7.28)
a,FA: o

Figure 7.13: Subsumption rule

returns the given data, otherwise it is undefined. In our type system we have to
settle with the type of data given to ‘the 77 not being disjoint with 7 because we
often cannot determine types that are specific enough. An example of this is the
action ‘inspect then give the integer’ where inspect produces a storable which is
not necessarily an integer (but an integer can be a storable). This liberal typing
of ‘the 7’ turns our type checker into a soft type checker, because we cannot
always guarantee that the action will not err when it tries to perform ‘the 7.

7.4 An example

To illustrate the use of the type system we will try to type check the ASDF
module Exp/Local (Module [7| on page . The module describes declarations
local to an expression. To maintain simplicity we have omitted ‘raising 7" and
the action before the turnstile from the rules in this example. Before type
checking can start, the type information defined by the user must be collected.
The type information relevant for the module Exp/Local can be found in the
modules Exp (Module [2 on page and Dec (Module 26] on page [180)).

It is also necessary to rewrite the action in the semantic equation to the
corresponding kernel action. This is necessary because we only have type rules
for kernel actions. The action

(furthermore (declare D)) scope (evaluate E)

corresponds to the kernel action

(1) ((copy-bindings and (declare D))
(2) then

(3) (give overriding))

(4) scope

(5) (evaluate E)

Starting from the top of the parse tree representing the kernel action we apply
rule the type rule for the action combinator scope. The rule requires a
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type for the two subactions, so we use rule to derive a type for the left
subaction (lines 1-3), and again we must infer a type for the two subactions
(lines 1 and 3). To infer a type for the action in line 1 we use rule [7.20

F copy-bindings : using data & giving bindings & simple \ closed (7.29)
and rule [Z.27]

F declare : Dec — using data & giving bindings
D : Dec (7.30)
t declare D : using data & giving bindings
(where we use the signature from Module on pageto satisfy the premises)
and finally rule (7.29| together with provide a proof for the premises).

F copy-bindings : using data & giving bindings & simple \ closed
- declare D : using data & giving bindings

F copy-bindings and (declare D) : (7.:31)
using data & giving (bindings, bindings)
The data operator overriding has signature
overriding : bindings x bindings — bindings (7.32)

and using rule [7.8 we get

overriding : bindings x bindings — bindings
I give overriding : (7.33)
using (bindings x bindings) & giving bindings & simple

Now combining 7.33] and rule [7.2] we get:

F Aj : using data & giving (bindings, bindings)
t give overriding : using (bindings, bindings) &
giving bindings & simple
bindings x bindings < bindings x bindings,
bindings x bindings # ()
F A; then (give overriding) : using data & giving bindings

(7.34)

(where A; is ‘copy-bindings and (declare D)’). The application of the semantic
function evaluate in line 5 can be typed using rule [7.27]

I evaluate : Exp — using data & giving val
E : Exp (7.35)
F evaluate E : using data & giving val

Finally we can use and rule to derive a type for the whole
action (lines 1-5).
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F Ai_3 : using data & giving bindings
F evaluate E : using data & giving val (7.36)
F Aj_3 scope (evaluate E) : using data & giving val

where Aj_3 is the part of the whole action that spans lines 1-3. We now have
a type for the action from the right-hand side of the semantic equation in the
module Exp/Local, and we can conclude the type check by checking that the
inferred type is a subtype of the action type in the signature for evaluate. Since
they are both ‘using data & giving val’, we conclude that the semantic equation
type checks.

7.5 Constructive type checking

A constructive ASD of a programming language written in ASDF is extensible
and reusable. This is advantageous because it allows incremental development
of descriptions, e.g., we can start by describing the core of a language and
then incrementally add more features to the language by adding more mod-
ules. Furthermore the modules can be reused by reference in other language
descriptions.

This section deals with the problem that we might want different signatures
for the same semantic function depending on which properties we want, for
instance, expressions to have in our description. The problem is complicated
further because we want the ASDF modules to preserve their reusability.

In a typical description of a language we have a module Exp containing all
the features common to expressions as illustrated in Module [2] on page This
module is then imported (automatically) from all modules describing expres-
sions. In Exp we put the signature of the semantic function evaluate which maps
expressions to actions. The signature requires that the action resulting from
applying evaluate to an expression can be given any data and normally produces
a value. If we for instance are describing a purely functional language, we might
want to check whether the modules we include have side-effects. Therefore we
would need signatures that include the types uncreative, ineffective, and stable.
Modules, like Exp, should be fixed so that they can be reused in language de-
scriptions, so changing the signature in Exp is not an option. Two solutions to
the problem can be envisaged:

1. Before every type check, the user gives a signature of the function which is
the target of the type checking, and the type checker infers the signatures
of the other semantic functions employed in the semantic function.

2. Before every type check, the user specifies a module that contains extra
type info for use in connection with type checking a particular module.

The advantage of the first suggestion is that it allows the user to see which
demands it makes on the employed semantic functions when he makes demands
on a semantic function. The disadvantage is that it is more difficult to imple-
ment because we have to do type inference instead of just type checking.
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The second suggestion is easier to implement. The extra module given to
the type checker contains more specialised versions of signatures, for instance,
one could have a module that can be used to check that a module is purely
functional. We have chosen this solution for our implementation.

When having more than one signature for the same semantic function that
only differ with respect to the output, our type checker merges the signatures
as illustrated here:

evaluate: Exp — oy
evaluate: Exp — o

is merged into
evaluate: Exp — a1 & ao

and the equivalence (Fig.[7.3) is used to simplify the action type ‘a; & as’.

7.6 Implementation

Type inference rules for copy, unfolding, and apply, involve type variables. This
means that implementing the type system is more complicated than a depth-
first traversal of the parse tree where the type rules are used to construct a
type. The problem with rule [7.5] and is that they involve guessing
types. Our implementation uses type inclusion constraints on type schemes
(types with type variables). The types 7 are extended with type variables 6.

To keep the implementation simple we shall use another representation of
action types. The action type presented in the previous sections is readable
and useful in semantic function signatures, but the following is better in an
implementation, because it does not need to be normalised and type inclusion
constraints with action types can more easily be simplified (see Fig. . We
shall use the type

/ / / / / /
at(r,r, 7,7, T T T T T

The action type constructor at has nine arguments, one for each atomic
action type, and is equivalent to the action type presented in the previous
sections. The first three arguments can contain arbitrary types, and represent
‘using 7', ‘giving 77, and ‘raising 7’. The last six arguments can contain empty,
data, or a type variable #. The arguments represent infallible, closed, terminates,
uncreative, ineffective, and stable in that order. This means that an action
type like ‘using integer & giving boolean & closed & terminates & ineffective’ is
represented by the type

at(integer, boolean, ), data, ), ), data, 0, data)

We use () to indicate that the atomic action type corresponding to an argu-
ment is present and data means that it is absent. The type variables are used
if the algorithm cannot determine whether an atomic action type is present or
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absent. The action type operator U,. produces an action type where each ar-
gument is the union of the types in the same argument in the two given action
types. The type operator \ sets the appropriate argument in an action type to
data.

The idea behind the algorithm is that it transforms a set of constraints
to a set of constraints in inductive form or an inconsistent set of constraints.
Inductive sets of constraints have solutions [2]. A constraint is inductive if it
has the form §; C 7 or 7 C 6;, and the set of variables on the top level in 7 is
included in {61,...,6;_1} (see Theorem 7.2 in [2]). Here we have assumed that
the type variables are numbered. The algorithm is:

1. Collect type information from the ASDF modules.
2. Traverse the parse tree of the action while generating constraints.

3. Repeat the following steps until all constraints in S are inductive and no
additional inductive constraints can be added:

e For any constraint that is not inductive, apply the lowest numbered
applicable rule in Fig. to simplify the set of constraints S.

e For any pair of inductive constraints ‘m; C §” and ‘0 C 75’ in S, add
the constraint ‘1 C ' to S.

e Stop if S is no longer consistent.

4. If we are not able to apply a type rule for each node in the parse tree,
or the final set of constraints is not consistent, the action does not type
check.

The constraints generated in point 2 are type inclusion constraints (C) and
come from the use of < in the type rules. Occurrences of the subtype relation
‘T1 < 79’ (see Rules and are translated into ‘r; C 7’.

Notice that ‘71 C 73’ is a constraint used in the implementation, and the
interpretation is that the constraint holds if ‘r; < 7’ with the right assignment
of types to the variables in 7 and 79. In the algorithm we are not going to find
an assignment of types to all variables such that all constraints hold; instead
we check whether an assignment exists.

The rules in Fig. can be applied to the set of constraints to simplify the
constraints. It is essential that the constraints on the left hand side of = hold
for a given substitution of types to type variables if, and only if, the constraints
on the right hand side do. The first rule removes the obvious constraint that
does not add any extra information. Rule 2 simplifies a constraint with to
product types of equal length by generating constraints comparing all of the
element types. The two next rules use well known results from set theory to
remove union and intersection of types that cannot be normalised. Notice that
we do not have equivalent rules for intersection or union on the other side of
the C. Such rules will not be used, as the reader can convince himself about
by looking at the type rules. Union (intersection) of types only occurs as the
type of output from (input to) actions, and the constraints are always generated
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1) Su{pcri=s

(2) SU{m X...x1T C7X...xT,} =
SU{n Crtu...u{m .}

(3) SU{nCmnnn}t=SU{n Cn,n Cs}
(4) SU{nUnCrn}t=SU{n Cr3,7m C 13}

(5) SU{m X...X7n®0C 7] x...xT,} =
SU{n C71,....Tm €70 S 7/ X ... X T} when m <n

(6) SU{0DTI X...X T, C7] X...XT,} =
SU{0CT X ... XT) sTt CT) it~ Tm S T} when m <n
(7) SU{m x...x1Cr{x...x7, ®O}=

SU{n Cr, . sTm €7 Tmg1 X ... X 7y C O} when m <n

8) SU{nmx..x7mCld7 x...x71)}=
SU{m X ... X Tnem €O, Tnems1 C 714y, T C 75} when m <n

(9) SuU{at(m,m2,...,79) C at(r], 75, ..., 1) =
SU{rf Cm, 2 C7...,79 C 74}

Figure 7.14: Constraint simplification

by requiring that the output of one action be a subtype of the input given to
another action (in rules and . Rules 5 to 8 simplify constraints where
application of the concatenation operator could not be normalised. In the last
rule action types are removed from the set of constraints. Notice the covariance
in the first argument of the action type which reflects the covariance in the
atomic action type ‘using 7’ expressed in the subtype relations.

A set of constraints is inconsistent if it contains ‘ry C 75’ and ‘g £ 7', If
the constraints contains ‘ry ® 79 C 13° or ‘rp C 79 P 13 where at least two of the
T’s are type variables, the simplification rules cannot simplify the constraint
to a set of inductive constraints. To be on the safe side we will also consider
constraint sets containing these cases to be inconsistent.

Our algorithm is almost identical to the one found in [2], so we shall not
bother proving that the inductive set of constraints resulting from the sim-
plifications has a solution if, and only if, the original set of constraints has a
solution. The algorithm does not calculate a type for an action, but instead
it checks that a type exist. This is sufficient because we just want to know
whether an action in a semantic equation has a type and that this type is a
subtype of the action type found in the signature of the corresponding semantic
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function.

In the Action Environment the type checker is invoked over a module, and
the environment then collects type information from all imported modules be-
fore passing the semantic equations in the module together with the type in-
formation to the type checker. The result is either a message indicating that
type check went well or error messages specifying where problems have been
identified. The error messages can indicate where the type checker failed to
apply a type rule or which action caused the constraint that made the set of
constraints inconsistent. Another problem might be dead code which can occur
if the left hand side of an action combinator cannot terminate in a way that
allows the right hand side to be executed (for instance, if A; in ‘A; catch Ay’
never terminate abruptly, i.e., the type of A; contains ‘raising )°).

7.7 What can we prove?

It would be interesting to prove that the type checker can say something in-
teresting about an action. For a normal type checker, we would want to prove
that an action that type checks is well behaved. This is not possible because
our type checker is liberal enough to approve actions that are not well behaved.
By well behaved we mean that the action does not err because of a type error.
Instead we might consider proving that if an action does not type check, then
it is not well behaved, but again we run into problems. Those problems are
related to the constraints that we could not simplify, and therefore resulted in
an inconsistent set of constraints. The type checker rejects actions that are
type correct. It appears that it is difficult to prove anything interesting about
the type checker, although practical experience has shown that it is still useful.

7.8 Conclusion and future work

We have presented a type system for AS, which allows a soft type check of action
semantic functions. The system has been implemented as a type checker oper-
ating on ASDF modules and as such it provides a useful tool when describing
languages. The type checker supports the extensibility and reusability inherent
in ASDF by letting the user supply the relevant type information before a type
check.

Type checkers can almost always be improved to accept a bigger set of legal
programs; this also holds for our semantic function type checker. With respect
to the user-friendliness of the type checker, it is worth considering whether our
type system can become more transparent [24, page 7]; can the user predict
whether a semantic function will type check, and will he understand why it
does not.






Chapter 8

Interpreting actions

The actions of men are the best interpreters of their thoughts.
— John Locke

When describing a language, it is convenient to be able to interpret test pro-
grams written in the language. If a description defines a particular language
construct, running a test program that utilises the construct can reveal possible
flaws in the definition.

There already exist interpreters of AN. The Actress system included an in-
terpreter (Section 4.5 in [71]) that implemented a big step operational semantics
of the old version of AN. One of the disadvantages in using big step semantics is
that the description of interleaving becomes more complicated. In Actress they
solved this by limiting the subset of AN handled by the interpreter. The action
‘A and Ay’ (A; is evaluated interleaved with Ay) has the same behaviour as
‘Ay and-then Ay’ (where A; is evaluated before As), and the actions describing
interactive processes are not handled at all.

The interpreter in Abaco [49] is not well documented, but from testing it
we conclude that it is based on the old version of AN, and it has the same
limitations with respect to interleaving as Actress does.

Tijs van der Storm [83] used the ASF+SDF Meta-Environment to imple-
ment a set of action tools and among them also an interpreter based on the
MSOS of AN-2 [62]. Except for some minor syntactic details, the implementa-
tion closely imitates the MSOS rules. This means that he avoids the problems
with interleaving present in previous work, but it also results in a relatively slow
interpreter due to the small step style. We have not been able to test the inter-
preter to justify the claim of slowness, but in [83] van der Storm documents a
test where calculating the 20th Fibonacci number takes 300 seconds when using
his evaluator. Our interpreter uses 2.5 seconds for the same computation using
comparable hardware. The action that calculates Fibonacci numbers uses most
of the action combinators from AN.

We have also chosen to use ASF for implementing our interpreter, because
it makes the implementation fast to write, easy to read, and easy to interface
with the Action Environment. Contrary to van der Storm’s implementation
we have chosen to use a big step style, and like in the Actress system we do
not handle the and combinator properly. Instead our interpreter is faster. The

95



96 Chapter 8. Interpreting actions

interface to the Action Environment and the speed-up compared to van der
Storm’s interpreter is the main motivations for implementing another action
interpreter.

Our action interpreter is intended for use from within the Action Environ-
ment. When reducing a program term to an action over a module M in a
language specification, the action interpreter can be invoked and must be given
the action together with the data types, data constants, and data operators
defined in ASDF modules imported from M.

8.1 Representing state

The main part of the interpreter is a function ewval with the signature

eval : Action x Data x Bindings x Environment — Result * Environment

Given an action A, data D, bindings BS, and an environment F, eval evaluates
A with the data D and bindings BS as input. The environment F contains
a mapping from memory cells to data, the action A in the nearest enclosing
‘unfolding A’ (used when evaluating unfold), and information about subtype re-
lations, user defined data constants, and user defined data operations collected
from the ASDF modules in the language specification. The user defined in-
formation in the environment is fixed throughout the evaluation, but must be
carried around since ASF has no global variables. The rest of the environment
can change, and therefore the result of eval contains an updated environment
together with a Result indicating how the action terminated (if it terminated)
and with what data. A Result can be either ‘normal Data’, ‘abrupt Data’, or
failed.

We might consider splitting the environment up in the fixed and the change-
able part. Then ewval should only return the changeable part of the environment.
This might make the implementation of eval more efficient because the ASF
evaluator should handle smaller terms, but since ASF uses ATerms [9] with
maximal sub-term sharing the speed up is limited, and it would make the rules
more complicated.

8.2 Actions

In this section we will present some of the ASF equations defining the function
eval. The rest of the equations can be found in Appendix

In the rules we use variables D to range over datum and tuples of data (in
this chapter just called data), D* to range over comma separated sequences of
data, BS to range over bindings, F to range over environments, R to range
over results, A to range over actions, and DO to range over data operations.
Notice that in ASF < vy, v2 > denotes a pair.

The actions that describe flow of data and control are straight forward to
implement (see Fig. . Applied to the action copy (Equation , data D,

bindings B.S, and environment F the interpreter results in normal termination
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[copy] ewval(copy, D, BS, E) = <normal D, E> (8.1)

[result] ewval(result D1, D2, BS, E) = <normal D1, E> (8.2)

R := eval-dataop(DO, D, FE)
eval(give DO, D, BS, F) = <R, E>

[give]

<normal D2, E2> := eval(Al, D1, BS, E1),
[then] <R, E3> := eval(A2, D2, BS, E2) (8.4)
eval(A1 then A2, D1, BS, E1) = <R, E3>

<R, E2> := eval(Al, D1, BS, E1),
[default-then]  normal D2 := R (8.5)
eval(A1 then A2, D1, BS, E1) = <R, E2>

<normal D2, E2> := eval(Al, D1, BS, E1),
[and]  <normal D3, E3> = eval(A2, D1, BS, E2)
eval(A1 and A2, D1, BS, E1) = <normal D2+D3, E3>

(8.6)

funfolding] E2 := set-unfold-action(E1, A)
81" “eval(unfolding A, D, BS, E1) = eval(4, D, BS, E2)
(8.7)
A := get-unfold-action(FE)

[unfold|] eval(unfold, D, BS, E) = eval(4, D, BS, E) (8.8)
[throw]  ewal(throw, D, BS, E) = <abrupt D, E> (8.9)
[fail]  eval(fail, D, BS, E) = <failed, E> (8.10)

Figure 8.1: Definition of eval for flow of data and control AN

with the data D (normal D) and the unchanged environment E. Equation
describing the action ‘result D1’ is just as simple; it just returns the data D1
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[copy-bindings]  eval(copy-bindings, D, BS, E) = <normal BS, E>
(8.11)

frecursively] eval(recursively A, D, BS, E) =
Ve eval(furthermore bind(REC, A) scope A, D, BS, E)

(8.12)

normal D2 := eval-dataop(the storable, D1, F),
[update]  E2 := update-cell(C, D1, E1) (8.13)
eval(update, (C, D1), BS, E1) = <normal (), E2>

[default-update] eval(update, D, BS, E) = <abrupt (), E> (8.14)

[apply]  eval(apply, (4, D*), BS, E) = eval(4, (D*), {}, E) (8.15)

eval(close, A, BS, E) =
<normal (result BS scope
(furthermore apply (the action bound-to REC, ())
scope A)), E>

[close] (8.16)

Figure 8.2: Definition of eval for the rest of AN

instead of the given data D2.

Conditional equations are used when ewval needs to evaluate subparts of an
action or update the environment. This is illustrated in Equation where
eval applied to ‘give DO’ reduces to R, where R is the result of applying the
data operator DO to the given data D (we use the function eval-dataop to
interpret data operations). Here the result R might either indicate normal or
abrupt termination.

Another example of a conditional equation is Equation where the con-
ditions are used to evaluate the first subaction in the action ‘A; then Ay’. If it
terminates normally with data D2, the second subaction is evaluated with D2 as
input. The bindings are the same for the two subactions, but the environment
might have changed during evaluation of Al. If the first subaction does not
terminate normally, the alternative is defined in Equation The condition
‘normal D2 !:= R’ ensures that this equation is only used when the left subac-
tion does not terminate normally (the ASF evaluator will also try Equation [8.5]
if, for instance, the right subaction cannot be evaluated in Equation [8.4)).

In Equation the conditions are also used to evaluate the two subactions,
and the result is then combined in the final result using a concatenation op-
erator (‘+’) on data tuples. Alternatives defining eval’s behaviour on the and
combinator (see Equations and cover the cases where one of the two
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subactions does not terminate normally. Notice that the evaluation order of
the conditions in the ASF evaluator means that the left subaction is always
evaluated before the right which means that ‘A; and Ay’ is interpreted like ‘A;
and-then Ay’ (see Equation , as mentioned in the beginning of this chapter.

The two actions for describing iterative control flow, unfolding and unfold,
use the environment to hold the action that must be evaluated when unfold is
evaluated. In Equation the function set-unfold-action is used to save the
body of the unfolding in the environment before evaluating the body with the
updated environment. The function set-unfold-action, and all other auxiliary
environment access functions, are also defined in ASF, but not listed here since
there definitions are trivial. The saved action is looked up when evaluating the
unfold action (see Equation inside the body of an ‘unfolding A’ action.

The equations so far has dealt with normal flow of control. Equation [8.9]
defines eval on the action throw, and, as expected, it is similar to the equation
for copy (Equation , the only difference being the change of normal to
abrupt because throw terminates abruptly and not normally as copy does. The
action fail’s interpretation is defined in Equation [8.10] and it is also similar to
the equation for copy (here the result is fail instead of normal D). We have
put the equations describing catch, and-catch, and else in the appendix because
they are similar to the equations describing then and and.

A selection of the equations implementing the rest of Kernel AN is listed in
Fig.

Evaluating copy-bindings (Equation just results in normal BS (where
BS are the current bindings) and an unchanged environment. The equation for
scope (Equation is similar to the equation for then and is therefore not
displayed here.

The action for describing recursive declarations, ‘recursively A’ (see Equa-
tion , is evaluated by expanding it to an action that binds the special token
REC to the action A so that it can be used when the closure of a recursive action
is computed (see the interpretation of close in Equation [8.16]). This solution
is not fully satisfactory since it does not interpret actions like ‘recursively (...
recursively ...)” correctly. The problem is that the recursive bindings declared by
the outer recursively action is not available in the body of the inner recursively.
Unfortunately we have not been able to come up with a solution that interprets
recursively correctly without using some static analysis of the action. The new
semantics of recursively recently suggested by Mosses (see end of Section ,
can more easily be implemented correctly.

AN has three actions for manipulating storage and evaluating them involves
changing the representation of the storage in the environment, either by allocat-
ing a new memory cell or looking up or updating the value stored in a memory
cell. In Equation the function update-cell is used to store datum (D) in
a memory cell (C), and thereby simulating the behaviour of the update action.
The result is normal termination with no data and a changed environment. The
arguments for the eval function specifies that the action must be given a cell
and datum. The function eval-dataop and the data operator the storable is used
to check that the datum D is storable. An alternative equation is needed to
handle the cases where update is not given a cell and a storable datum. Equa-
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tion defines the alternative behaviour which results in abrupt termination
with no data.

For the two actions used to describe reflection, pattern matching is also
used to ensure that the right type of data is given to the actions. The action
apply must be given an action followed by a sequence of data as shown in
Equation [8.15] Because apply evaluates the given action with the given data as
input, eval applied to apply just rewrites to eval applied to the given action and
the given data together with empty bindings. In the interpretation of close eval
must construct a new action such that the given action is closed with respect to
the current bindings and the recursive bindings, and this is done by combining
the given action A with the action ‘result B.S’ (that just produces the bindings
BS) using the scope combinator. The action bound to the special token REC
is evaluated to compute the recursive bindings. The implementation of close
is not efficient because it increases the size of the given action considerably,
and every time the resulting action is evaluated the action bound to REC is
evaluated.

For both apply and close alternative equations similar to the one described
for update exists, they are also shown in the appendix.

8.3 Types, data, and data operators

The types, data, and data operators used in an action can be both the predefined
AN types, data, and data operators, as well as the user defined ones found in
the ASDF modules imported from the module the action is evaluated over. In
this section we shall use the variables described in the previous section together
with the variables N to range over integers, T K to range over tokens, TY
to range over types, CO* to range over comma separated sequences of data
constant and type pairs, and STY* to range over comma separated sequences
of pairs of types.

Data does not need to be evaluated and is just introduced using the action
‘result D’ as displayed in Equation [8:2]

When evaluating an action, the initial environment contains information
about the user defined types and subtype relations, and the types of data con-
stants, data constructors, and data selectors. This information is used by the
function eval-dataop with the following signature

eval-dataop : Action * Data * Environment — Result

Fig. 8.3] gives examples on how eval-dataop is defined.

The default behaviour for a data operation is to return the result ‘abrupt
()’ indicating that the data operation could not be applied to the given data
(the operation is partial). Equation defines this behaviour.

Equations to concern the built-in data operators. Notice the use
of ASF terms and variables to ensure that data has the right type, like the use
of N in Equation to ensure that the type projection operator is given an
integer.

The user defined data operations declared in ASDF declarations like
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[default-dataop|  eval-dataop(DO, D, E) = abrupt () (8.17)
[sharp-2]  eval-dataop(# 2, (D1, D2, D*), E) = normal D2 (8.18)
[the-integer]  eval-dataop(the integer, N, E') = normal N (8.19)

[more-than|  eval-dataop(>, (N1, N2), E) = normal N1 > N2  (8.20)

[binding]  eval-dataop(binding, (TK, D), E) = normal {TK : D}
(8.21)

datacon(TY1, TY?2) := lookup-dataop(DO, E)
[data-con]  normal D2 := eval(the TY2, D1, F)
eval-dataop(DO, D1, E) = normal data(TY1, DO, D1)
(8.22)

datasel(TY, DO2, DO3) := lookup-dataop(DO1, E)
[data-sel]  normal D2 := eval-dataop(DO3, D1, E)
eval-dataop(DO1, data(TY, DO2, D1), E) = normal D2

(8.23)
eval-dataop(the TY ,data(TY, DO, D), E) =
[the-type-1] normal data(TY, DO, D) (8.24)
[CO1*, <D, TY >, CO2%*] := get-constants(E)
[the-type-2] eval-dataop(the TY, D, E) = normal D (8.25)
[STY1*, <TY1, TY2>, STY2*| := get-subtypes(E)
[the-type-3]  normal D2 := eval-dataop(the TY2, D1, E)
eval-dataop(the TY1, D1, E) = normal D2
(8.26)

Figure 8.3: Definition of ewval-dataop

Func ::= datacons(token: Token, tag: Cell)

adds the following to the environment: ‘<datacons, datacon(func, (token, cell))>’,
‘<token, datasel(func, datacons, the token #1)>’, and ‘<tag, datasel(func, data-
cons, the cell #2)>’. In Equation the definition of a data operator DO from
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the environment is used in the evaluation of this data operator. The function
lookup-dataop looks up the definition in the environment. If DO is a data con-
structor, lookup-dataop returns ‘datacon(TY1, TY2) which means that DO is
a data constructor that will construct data of type TY1 when given data of
type TY2. In the interpreter constructed data is represented as ‘data(TY1,
DO, D1)’, where TY1 is the type of the data, DO is the data operator that
constructed it, and DI is the data contained in the constructed data. But
lookup-dataop can also return datasel(TY, DO2, DO3) which means that the
data operator is a data selector that should be given constructed data of type
TY , constructed with the data operator DO2, and the data operator DOS& will
then be applied to the data contained in the constructed data to select the right
part of the constructed data. This is described in Equation [8.23

Applying the type projector to constructed data is interpreted in Equa-
tion and applying it to data constants declared in ASDF (like ‘func-no-
apply : Val’ in Module 5| on page [62)) is interpreted in Equation Notice
the use of list variables (CO*). Using list variables means that an equation in
ASF can be tried several times with different instantiations of the list variables
until the equation succeeds or all combinations have been tried.

The subtype relations defined in ASDF modules (like ‘Val ::= Func’ in
Module |§| on page is also used by the type projection operator. Given data
D the operator ‘the TY1’ returns a result if D has type TY1, or if a subtype
TY2 of TY!1 exists, and ‘the TY2’ returns a result when applied to D. This is
expressed in Equation [8.26

8.4 Example

To illustrate how the rules are used by the ASF evaluator, we now give an
example on how the action ‘(result (copy) and result 5) then apply’ is interpreted.
We shall ignore the environment in this example because it does not change
through the simulation. The trace can be seen in Fig. [8.4

Since the root of the parse tree for the action contains the then combinator,
Equation[8.4]is the first one applied. The conditions require that eval is applied
to the left subaction ((result (copy) and result 5)). Here Equation which
describes the and combinator, is applied and again the conditions require that
the left subaction (result (copy)) is evaluated. Using Equation the result
is ‘normal copy’. Returning to Equation we see that the first condition is
satisfied, and that the variable D2 is bound to copy. Now the right subaction
(result 5) must be evaluated, and again Equation is used and the result is
‘normal 5’. Equation now gives the result ‘normal (copy, 5)’ which is re-
turned to Equation [8:4] Thereby the first condition in Equation [8.4]is satisfied,
and the variable D2 is bound to ‘(copy, 5)’ which is used in the evaluation of
the right subaction (apply). Equation is now used and here the variables
A and D* are bound to copy and 5, so it reduces to evaluating copy with 5 as
input data. This is handled by Equation [8.1| giving the result ‘normal 5’ which
is returned to Equation [8:4] and finally the result of evaluating the whole action
is ‘normal 5°.
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Try Equation

eval((result (copy) and result 5) then apply, (), {})
eval(result coﬁand result 5, (), {})

Try Equation m
eval(result (co 0,4}
Try Equation

normal copy

Success Equatlon 8
eval(result 5, {
Try Equatlon

normal 5
Success Equation

normal (copy, 5
Success Equation
eval(apply, (copy, 5), {})
Try Equation
eval(copy, 5,

Success Equation

eval(copy, 5,
Try Equation

normal 5
Success Equation
normal 5

Success Equation

Figure 8.4: Example of an interpretation of an action

8.5 Future work

The interpreter can be improved in several ways. Our primary goal was to
quickly implement an interpreter that could easily be interfaced with the Action
Environment. It was also important that it showed better performance than
the interpreter implemented by van der Storm. The Fibonacci example from
the beginning of the chapter shows that this goal has been achieved. If the
need for an even faster interpreter arises, we probably have to chose another
implementation language. Real improvement can be gained if we implement
Just-in-time compilation and other modern virtual machine techniques. But
since the purpose of the interpreter is to be able to evaluate small actions
generated in the Action Environment to test language specifications, we think
it is more important to focus on implementing debugging facilities or trace
mechanisms.






Chapter 9

Type inference for Action Notation

If we knew what it was we were doing,
1t would not be called research, would it?
— Albert Einstein

This chapter is a revised version of Type inference for the new action nota-
tion [38].

Inferring types for actions has shown to be very useful in AS-based com-
piler generation. It provides the user with information about the safety of ac-
tions (i.e., will type errors cause the action to err when executed) and enables
compiler generators to generate optimising compilers that performs transfor-
mations based on type annotations. There has already been put a lot of effort
into this area of research, but the appearance of a new version of AN (AN-2)
prompted us to improve on existing work. This chapter presents a type in-
ference algorithm that annotates AN-2 actions with types. We solve some of
the problems that have cropped up in connection with the simplification of the
AN kernel, and we infer types for a bigger subset of AN compared to previous
work [22,28,30-32,46,75,93].

According to the semantics of AN [62] all actions are lega