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Abstract

The primitives of Oblivious Transfer (OT) and Bit Commitment (BC) are fun-
damental in the cryptographic protocol design. OT is a complete primitive for
secure two-party computation, while zero-knowledge proofs are based on BC.
In this work, the implementations of OT and BC with unconditional security
for both parties are considered. The security of these protocols does not depend
on unproven intractability assumptions. Instead, we assume that the players
are connected by noisy channels. This is a very natural assumption since noise
is inherently present in the real communication channels.

We present and prove secure a protocol for OT based on a Discrete Memory-
less Channel (DMC) with probability transition matrix of a general form. The
protocol is secure for any non-trivial DMC. Some generalisations to this proto-
col for the particular case of Binary Symmetric Channel (BSC) are presented
and their asymptotic behaviour is analysed.

The security of OT and BC based on BSC is also analysed in the non-
asymptotic case. We derive relations for the failure probabilities depending on
the number of channel uses establishing trade-offs between their communication
complexity on the one hand and the security on the other hand.

We consider a modification to the Universally Composable (UC) framework
for the case of unconditional two-party protocols. We argue that this modifi-
cation is valid hereby preparing a ground for our results concerning OT based
on Unfair Noisy Channels (UNC).

In contrast to the noise models mentioned above, a corrupted party is given
a partial control over the randomness introduced by UNC. We introduce a
generic “compiler” which transforms any protocol implementing OT from a
passive version of UNC and secure against passive cheating into a protocol that
uses UNC for communications and builds an OT secure against active cheating.
We exploit this result and a new technique for transforming between the weaker
versions of OT in order to obtain new possibility results for OT based on UNC.
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Chapter 1

Introduction

For centuries since the invention of writing, cryptography was an art of exchang-
ing messages privately between two or more parties who shared a common secret
piece of information. The seminal work of Shannon [Sha49] turned cryptogra-
phy into science but still the cryptographic systems (or ciphers) were used to
encrypt and decrypt information based on a secret key shared by the parties.

The revolutionary idea of Diffie and Hellman [DH76] was to separate keys for
encryption and decryption so that anyone can encrypt messages based on public
information but only the designated receiver can decrypt them. This work gave
an additional impulse to research in the area of cryptographic protocols where
not a protection from the third party but a mutual privacy of the data used by
the parties was concerned. We give an intuitive definition of a protocol as a “way
for a number of parties to blend some secret information revealing part of it
to the participants while keeping part of it secret“ [Cré90]. The protocols were
designed to perform the vast variety of tasks from secret-key exchange [DH76]
and zero-knowledge proofs [GMR85] to electronic voting [CF85] and digital cash
systems [CFN88], their participants from being just the parties had turned into
the players.

At some point later, the results of more general nature were obtained.
Yao [Yao82] presented a protocol for general problem of two-party computa-
tion for the two players who want to calculate a function on their inputs still
keeping them private. Goldreich, Micali and Wigderson [GMW87] presented
a way to obtain a secure multi-party protocol from its abstract specification.
These works as well as the related results on multi-party computation by Chaum
and Damg̊ard with van de Graaf [CDG87] and with Crépeau [CCD88] pointed
at the fact that there exist elementary protocols (also called primitives) which
are essential for achieving more advanced ones, in particular, multi-party com-
putation.

Those primitives of Oblivious Transfer (OT) and Bit Commitment (BC)
appeared to be fundamental in cryptographic protocol design. An OT is a
means to transmit data such that the sender is guaranteed that the data will
be partially lost during the transmission, but he does not know what exactly
the receiver gets. A BC scheme is a tool for transmitting an evidence about
a piece of information without revealing the information itself. In our work,
we focus on the case of two-party protocols where two players, a sender and

1



2 Chapter 1. Introduction

a receiver can be unambiguously identified, moreover the players are mutually
distrusting, so the dishonest (also called cheating or corrupted) party plays a
role of an adversary. We shall study OT and BC which are unconditionally
secure for both sender and receiver and which are based on noisy channels.

1.1 Unconditional Security

There are essentially three “flavours” of security considered in cryptography,
reflecting the computational power of the adversary and the probability that
the security fails:

• Computational security: Security against an adversary which is assumed
to be computationally bounded, in the sense that he can be modelled by
a probabilistic polynomial time (PPT) Turing machine.

• Perfect security: Security against a computationally unbounded adver-
sary, and no failure probability is allowed.

• Unconditional (or information-theoretic) security: Security against a com-
putationally unbounded adversary which can compute everything that is
uniquely defined from his point of view and a negligibly small failure
probability is allowed.

The term “unconditional” is due to historical reasons meaning independency
of computational power of the adversary. Nevertheless, after removing the as-
sumption that adversary’s computational ability is bounded, one has to make
another assumption on players’ capabilities and/or communications, otherwise
it is well-known to be impossible to construct any primitive with unconditional
security for both parties based on noiseless (or error-free) communication be-
tween them. Informally speaking, this assumption ensures that even a compu-
tationally unbounded cheater cannot recover some data involved in the player’s
interaction, so that information-theoretic methods can be used in the security
proofs.

Our motivation in the study of unconditional cryptographic protocols comes
from the fact that these protocols provide an information protection which is
indeed secure “once forever”, in spite of the growing power of modern comput-
ing systems, possible break-throughs in the complexity theory or technological
achievements such as quantum computers. At the same time, the unconditional
model rather than the perfect security model allows us to accommodate such an
assumption as noisy communication between the parties since security failures
are always possible in this case. On the other hand, once the properties of noise
are (at least partially) known to the players, it may be possible to make sure
that the failures almost never happen on average.

In this work, we focus on unconditional two-party primitives based on noisy
communication between the parties. The noise is inherently present in any
physical communication channel and, as a matter of fact, it is usually given
“for free”. Therefore, the study of the primitives based on noisy channels is



1.2. Oblivious Transfer 3

a problem which arises naturally and, at the same time, it is attractive from
both theoretical and practical points of view. For the theory, it has always been
important to figure out the weakest possible assumption which is sufficient to
achieve those primitives and, consequently, secure multi-party computation.
From the constructive side, despite of the fact that the general techniques
are rarely used in practice, one can exploit the methods studied here when
implementing practical protocols where one usually exchanges generality for
efficiency.

1.2 Oblivious Transfer

The Oblivious Transfer primitive was independently introduced by Wiesner
approximately in 1970 [Wie83] and by Rabin in 1981 [Rab81]. It was shown
by Goldreich, Micali and Wigderson [GMW86] in the computational model and
Kilian [Kil88] in the abstract model that OT suffices to perform secure two-
party computations, presented by Yao in 1982 [Yao82], where the two players
want to compute a function on their inputs in such a way that the inputs remain
private and a correctness of the result is guaranteed.

One-out-of-two Oblivious Transfer1 originates with [Wie83] being unpub-
lished since approximately 1970. The construction was based on quantum me-
chanics principles and appeared under the label of “multiplexing”. According
to this primitive, a sender A with two bits b0 and b1 as input can interact with
a receiver B with his input bit c also called the selection bit. A should learn
nothing new from the protocol, whereas B should learn the choice bit bc and
nothing more, i.e., no information on the secret bit b1−c is to be revealed.

Formally speaking, the ideal protocol implementing OT must satisfy the
following properties:

• Security for A: If A is honest, then B gets no information on the secret
bit b1−c.

• Security for B: If B is honest then he receives bc while A gets no infor-
mation on c.

Similarly, in a Rabin Oblivious Transfer [Rab81], A sends a bit to B such
that it is either received with some probability or completely lost otherwise. A
does not find out which of the events took place, while B knows for sure whether
he got the bit or did not. In communication theory, the Rabin OT is known as
an erasure channel. Independently from [Wie83] but inspired by [Rab81], OT
was introduced in [EGL83] with an application to contract signing protocols.
These two flavours of OT tured out to be equivalent as shown in [Cré87].

The importance of OT is that it suffices to achieve secure two-party com-
putations [GMW87] in a computational model as well as in an abstract (in
particular, unconditional) model [Kil88,Cré89].

1In our work, we shall focus on this flavour of Oblivious Transfer. We refer to it throughout
as just Oblivious Transfer.
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In fact, the results of Kilian and also Beimel, Malkin and Micali [Kil91,
BMM99,Kil00] show that any primitive computing a non-trivial2 probabilistic
function on the parties’ inputs suffices to achieve multi-party computations.
However, in unconditional model, it only holds for the case of passive adver-
saries.

A variety of implementations for an unconditional OT has been known
since 1980-ies and the new ones has appeared in the recent years [CK88,Cré97,
CCM98, DKS99, Riv99, NP00] proving the OT still to be a topical problem of
high theoretical interest.

OT protocol based on Binary Symmetric Channel was first introduced by
Crépeau and Kilian in [CK88] and later improved in [Cré97, KM01, SW02].
The reduction of OT to Unfair Noisy Channel was introduced in the work of
Damg̊ard, Kilian and Salvail [DKS99] with revised and extended possibility
results given in [DFMS04].

1.3 Bit Commitment

The BC schemes was introduced by Chaum, Damg̊ard and van de Graaf in
[CDG87] as one of the building blocks for multi-party computation. Bit com-
mitment scheme is a pair of protocols Commit and Open executed by two
parties, a sender (or committer) A, and a receiver B. First, A and B execute
Commit that results in B holding an evidence of A’s input value b. Ideally, the
receiver should learn no information about b from this. Later, A and B may
execute Open after which B outputs “accept b”, or “reject”. Note that in prin-
ciple, the opening phase may never happen. Formally, the ideal commitment
scheme must satisfy the following properties:

• Hiding: If the sender A is honest, then committing to b reveals no infor-
mation about b to B.

• Binding: If the receiver B is honest, then he always accepts with some
value which is exactly the same that the honest A wants to commit to.
Furthermore, A cannot open the commitment such that B accepts a dif-
ferent value.3

Commitment schemes are essential in the construction of a number of cryp-
tographic protocols. General zero-knowledge proofs and arguments of [GMW86]
and [BCC88] as well as multi-party computations of [CDG87] and [GMW87]
are based on commitment schemes.

In the computational model, it is possible to build the bit commitment
schemes which are unconditionally binding and computationally hiding (see,
e.g., [Nao87]). At the same time, in [CDG87], there also shown schemes which
are unconditionally hiding and computationally binding. Nevertheless, it is
impossible to construct a commitment which is both unconditionally binding

2See [BMM99] for the definition of non-triviality.
3Basically, this property means that Alice cannot change her mind about the committed

data.
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and hiding, and based on noiseless communications without any additional as-
sumption. The intuitive reason is the so-called symmetry condition (see Sub-
section 2.9.1) on what participants know about each other’s data. Since both
parties possess the entire transcript of the conversations that has taken place
between them, in a two-party case, the player A can determine exactly what B
knows about A’s data, and the same holds for B.

One of the methods to break the symmetry condition was presented in [CK88]
and later developed in [Cré97]. The idea was to construct the primitive based
on noisy channels. The work [CK88] presented the reduction of Oblivious
Transfer to Binary Symmetric Channel (BSC), while OT implies BC according
to [Blu81]. In [Cré97], there was introduced a bit commitment protocol which
was based directly on BSC. Finally, the bit commitment scheme based on a
weaker (and more realistic) assumption of Unfair Noisy Channel was presented
in [DKS99].

1.4 Noisy Communication Models

The protocols on which we focus in our work take place in a model with two
players A and B connected by a noisy channel and an error-free channel in
addition. The noise is considered to be a valuable resource since the security
relies on the randomness provided by the channel. The noiseless communication
is assumed to be given “for free”.4

The Binary Symmetric Channel (BSC) is a well-studied (and the simplest)
communication channel model: in this channel, every transmitted bit (inde-
pendently of its value) is flipped with probability δ such that 0 ≤ δ ≤ 1/2,
otherwise the bit is delivered with no error. The value δ is called the error
rate (or probability) of the BSC. A BSC is called memoryless if every sent bit
gets flipped independently on the other ones. We consider only the memoryless
channels in this work. The obvious advantage of the BSC model is its simplicity
however, this model is not a realistic formalisation of the process which takes
place in the real communication channel. It is possible in principle that a dis-
honest player gains some control over the channel aiming to change the error
rate. It can be done by transmitting the artificial noisy signal or enhancing the
receiving equipment, for instance. An important observation is that it may be
hard to hide the fact that the channel is noisier than it is prescribed. However,
one can always hide the fact that one has made it less noisy by deliberately
distorting the messages before/after transmission/reception.

The latter observations stipulate a necessity to introduce a new noise model
capturing the possible cheating described above. We shall do that using so
called unfair noisy channels (UNC) introduced in [DKS99]. In this model –
which builds on the standard BSC – the error rate is guaranteed to fall into
interval [γ, δ], while for each separate transmission the channel is in fact a BSC.
The “unfairness” is due to the fact that the exact error probability is not known
to the honest player but it may be set within the range of [γ, δ] by the cheating
player.

4See the discussion in Subsection 2.9.2.
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An adversarial behaviour can be passive (or semi-honest) and active. The
latter means deviating from the protocol in any way: ignoring steps of the
protocol, sending unprescribed data and so on. The passively cheating player
is an “honest-but-curious” one. He follows the protocol, but tries to collect as
much information about all the data sent and received as he can, and uses them
to compute the other player’s private data.

For example, in UNC scenario, the actively cheating party may set the
error rate for every transmission to any value from the interval [γ, δ] he wishes.
Whereas the passive adversary cannot affect the channel directly, he only can
receive some additional information about the data transmitted, such that from
his point of view the error rate reduces to some value in [γ, δ]. We call this
scenario a Passive Unfair Noisy Channel (PassiveUNC). Despite of the fact
that the two scenarios look quite similar, there is however a crucial difference –
in PassiveUNC, the corrupt player does not influence the actual error rate and
the advantage exists only from his point of view.

1.5 Secure Protocol Composition

We consider reductions to be special protocols that use calls to one or more
primitives in order to produce another protocols. When considering the security
of reductions, it is quite important to show that several secure protocols which
are combined or composed produce the new one which is in turn secure as well.

There have been invented a number of cryptographical tools whose task
was to argue the security of the composed protocols which are build upon the
other primitives (see, e.g., [Cré90, Bea91, MR91, PW00, Can01]). In our work,
we make use of the universally composable framework of Canetti [Can01]. In
this framework, players in a protocol can be given access to one or more ideal
functionalities. Such a functionality can be thought of as a trusted party T with
whom every player can communicate privately. There is a number of commands
specified that T will execute. Every player can send a command to T , and T
will faithfully carry out the command according to its specification, and may
send results back to (some of) the players. Many cryptographic constructions –
including ours – actually aim at building a protocol for the players only (without
a trusted party) that does “the same thing” as some ideal functionality T , even
if an adversary can corrupt either of the players and make them behave as
he likes. The framework provides a precise definition of what it means that a
protocol π in this way securely implements T . If this definition is satisfied, then
any protocol that is secure when using T is also secure if T is replaced by π.
In its full generality, the definition is robust against adaptive adversaries and
concurrent composition of protocols.

All our protocols are in the two-player case with information-theoretic se-
curity. Here, the standard approach in previous research to security proofs has
been to assume that either A or B is cheating, then prove some relevant secu-
rity properties, and finally to prove that if both parties are honest, then the
protocol “works correctly”.5 We express this in the UC framework by assuming

5In fact, this is the way we argue security of the constructions in Chapters 3 and 4. This
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an infinitely powerful static (i.e., non-adaptive) adversary who from the start
has corrupted no one, or either A or B.

Another consequence of being in the two-player case, is that we do not think
of our protocols as subroutines in a multi-player protocol, nor are we worried
about external observers, only about what a corrupted A or B might do or
learn. We therefore assume that unless the adversary corrupts a player, he gets
no information about the communication between A and B.

To prove that a protocol π satisfies the UC definition, one has to construct,
for every adversary Adv attacking the protocol in question, an ideal model
adversary, or simulator S, which gets to attack an ideal scenario where only
the players and T are present. The goal of S is to achieve “the same” as Adv
could have achieved by an attack on the real protocol. In the framework, this is
formalised by assuming an environment machine Z which can communicate in
a real-life attack with Adv and the honest players, and in the ideal model with S
and the honest players. The protocol is said to be secure if for every adversary
Adv there exists a simulator S, such that Z cannot distinguish whether it is in
the real-life or the ideal model.

In proofs of this type of security, S usually works by running internally a
copy of the adversary Adv, and passing interaction back and forth between
Z and Adv with no change. If S can simulate with an indistinguishable dis-
tribution both the view of Adv attacking π and simultaneously make the in-
put/output behaviour of the honest players be as in the real attack, then Z will
not be able to tell any difference. We are in the unconditional model, so we
demand a statistical indistinguishability for the aforementioned distributions.
We also modify the UC model as given in [Can01] by allowing our adversaries
and simulators infinite computing power – but we stress that honest players
can execute our protocols efficiently. The noisy channels we study in this thesis
can very conveniently be modelled as ideal functionalities, and reductions that
build one type of channel from another can be proved secure in this framework.

1.6 Contributions of this Thesis

Our work which is based on [KM00,KM01,CMW04,DFMS04] is concerned with
and contributes to the theory of unconditional secure primitives.

In Chapter 3, we present a protocol for Oblivious Transfer based on a Dis-
crete Memoryless Channel with probability transition matrix of a general form.
This result was previously published in [CMW04]. The complete characterisa-
tion of DMC with respect to OT is introduced since the presented construction
is secure for any non-trivial DMC. The protocol builds on a famous result of
Crépeau [Cré97] for OT based on a Binary Symmetric Channel, a particular
case of DMC. We stress that our result gives a solution to the open question
posed in [Cré97]: realising OT from any non-trivial BSC but in a more general

is justified by the fact that those protocols are essentially constructed directly from the noisy
channel. In Chapter 6 on the contrary, our protocols build on a number of primitives.
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way6. Moreover, the presented construction has an efficiency advantage7 – we
reduce the required number of channel uses from cubic to, roughly, quadratic
order in log(1/pf ), where pf > 0 is an upper bound on all the failure probabil-
ities.

Some straight forward generalisations to the protocol for the case of BSC
are presented and their asymptotic behaviour is analysed. Specifically, we con-
sider the use of multiple repetition codes instead of a two-repetition code and
conclude that the better efficiency can be obtained in the former case.

We conclude Chapter 3 with examining some special cases of DMC and
discuss the corresponding simplifications which can be made to our protocol.

We stress that in Chapter 3, only the security in asymptotic case is consid-
ered, i.e., we allow the number of channel uses N to be large enough so that
the failure probabilities become exponentially small in N . However, it is the
performance in non-asymptotic case which is of practical importance. Hence in
Chapter 4, we consider the security of Oblivious Transfer and Bit Commitment
based on BSC [Cré97] in the non-asymptotic case. We derive relations for their
failure probabilities depending on the number of channel uses and the lengths
of error-correction codes involved which allows us to establish the trade-offs
between the communication complexity on the one hand and the security on
the other hand. This material was in part presented in [KM00,KM01]. In par-
ticular, we show that if one demands the failure probabilities for OT to be of
order 10−6, one needs to use the BCH error-correcting codes of length 65535
and the overall complexity of the protocol will be about 300 gigabytes. At
the same time, Bit Commitment has significantly better performance for the
same demands on failure probabilities with the BCH codes of length 16383 and
overall complexity of a few kilobytes.

The protocols analysed in Chapters 3 and 4 were considered as stand-alone,
their security was proven by arguing that they satisfy some particular prop-
erties. However, the modular approach is widely used in the protocol design
where a protocol realises a particular task or a functionality for more advanced
ones. Here, the notion of a secure composition for the protocols comes in handy.
In Chapter 5, we consider the modification of Canetti’s Universally Composable
(UC) framework for the two-party unconditional model. We briefly argue that
this extension is valid hereby preparing a ground for the results concerning OT
based on Unfair Noisy Channels. We stress that our argument is somewhat
informal, however it is one of the first attempts to adapt the UC framework for
the case of unconditionally secure primitives. The preliminary ideas of this kind
appeared in [Can00] for the case of secure function evaluation and in [BM04]
for the quantum setting. At the same time, we do not use the full generality of
the original framework restricting ourselves to the case of static adversaries.

The noise models considered in the previous chapters were somewhat restric-
tive since we always assumed that the players know the distribution of the noise
precisely. On the contrary, in a more realistic model of Unfair Noisy Channels

6For the case of BSC, the solution was previously given in [KM01] and independently
in [SW02].

7Originally, the idea comes from [SW02].
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introduced in [DKS99], the adversary is given a partial control over the random-
ness introduced by the channel. The main question investigated in Chapter 6 is
to what extent one can allow the adversary to control the channel such that OT
still can be implemented. This material was published in [DFMS04]. A rather
surprising result is that a passive adversary is almost as powerful as an adap-
tive one when constructing OT based on a UNC. This is shown by introducing
a generic “compiler” which transforms any protocol implementing OT from a
PassiveUNC and secure against passive cheating into a protocol that uses UNC
for communications and builds an OT secure against active cheating. Here the
results of the previous chapter come in handy, since we argue the new result
in terms of the UC framework. This construction also fixes a flaw in the proof
of [DKS99] which was incomplete otherwise. Finally, we exploit this compiler
and a new technique for transforming between the weaker versions of OT, in
order to prove a stronger possibility result then the one claimed in [DKS99].
In other words, there is now a much larger range of (γ, δ)-values for which one
can implement OT based on a (γ, δ)-UNC. For instance, we can show that se-
cure OT follows from a (γ, δ)-UNC with any value of δ between 0 and 1/2,
provided that γ is close enough to δ. This gives us the class of probabilistic
primitives (UNC) which are complete for two-party secure computation in the
sense of [Kil00].





Chapter 2

Preliminaries

This chapter contains some selected inequalities and theorems from probability
theory, information theory, coding theory and cryptography. The material pre-
sented here is not self-contained and only aims at providing the theoretical back-
ground for the results presented in the next chapters. Comprehensive informa-
tion on these topics can be found in the books by Feller [Fel68], Blahut [Bla87],
Cover and Thomas [CT91], and MacWilliams and Sloan [MS77].

The logarithms denoted “log” are binary, the ones denoted “ln” are natural.
The exponentiation function is exp(x) ≡ ex. The cardinality of a set X is
denoted by |X |.

2.1 Discrete Probability Theory

A discrete probability space consists of a finite or a countably infinite set Ω, the
sample space together with a probability distribution P . The elements of the
sample space Ω are called elementary events. Each elementary event can be
viewed as a possible outcome of an experiment. We assume the reader to be
familiar with basic properties of a probability distribution. Next, we introduce
some known concepts and fix the notation.

Two events A and B are called independent if

P [A ∩ B] = P [A]P [B]

The conditional probability P [A|B] of an event A given that an event B
occurs is defined as

P [A|B] =
P [A ∩ B]
P [B]

,

where P [B] > 0.
A discrete random variable X is a mapping from the sample space Ω to an

alphabet X . X assigns a value x ∈ X to each elementary event in Ω. The
probability distribution of X is the function

PX(x) = P [X = x].

The conditional probability distribution of a random variable X given an
event A is defined as

PX|A(x) = P [X = x|A].

11
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The joint probability distribution of the random variables X and Y (with
alphabet X × Y) which are defined on the same sample space is denoted by
PXY (x, y).

When conditioning on another random variable Y with the same sample
space as X, the conditional probability distribution of X given that Y takes a
value y is

PX|Y=y(x) =
PXY (x, y)
PY (y)

,

where PY (y) > 0.
Two random variables are called independent, if for all x ∈ X and y ∈ Y

PXY (x, y) = PX(x)PY (y).

The expected value of a discrete random variable X over X is

E(X) =
∑
x∈X

xPX(x).

The collision probability of X is defined as the probability that X takes on
the same value twice in two independent experiments:

Pc(X) =
∑
x∈X

PX(x)2.

The Bernoulli trials are defined as repeated independent trials if there are
only two possible outcomes for each trial and their probabilities remain the
same throughout the trials.

Let X1, . . . ,Xn be Bernoulli trials such that, for 1 ≤ i ≤ n, P [Xi = 1] = p

and P [Xi = 0] = 1 − p and X =
n∑
i=1

Xi; then X is said to have the binomial

distribution.
More generally, let X1, . . . ,Xn be independent trials and, for 1 ≤ i ≤ n,

P [Xi = 1] = pi and P [Xi = 0] = 1 − pi. Such trials are referred to as Poisson
trials.

We introduce the so-called Chernoff bounds on the tail of the distribution

of the sum X =
n∑
i=1

Xi where Xi are Poisson trials, the bounds also apply to

the special case where Xi are Bernoulli trials. The following two inequalities
are proved in [MR95]:

Let X1, . . . ,Xn be Poisson trials as defined above. Then, for X =
n∑
i=1

Xi,

µ = E(X) =
n∑
i=1

pi, and any δ > 0,

P [X > (1 + δ)µ] <
(

exp(δ)
(1 + δ)(1+δ)

)µ
, (2.1)

P [X < (1− δ)µ] < exp
(−µδ2/2) . (2.2)

The following more general result implied by Lemma 2.2.4 from [Rom90]
will come in handy since it will allow us to estimate the tails on both sides.
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Lemma 2.1 Let X1, . . . ,Xn and µ be as defined above, then

P

[ |X − µ|
n

> ν

]
≤ 2 exp

(−nν2/2
)
.

Note that for the case of Bernoulli trials (i.e., when p1 = p2 = . . . = pn),
this reduces to the well-known Bernstein’s law of large numbers.

2.2 Information Theory

The (Shannon) entropy of a random variable X with probability distribution
PX and alphabet X is defined as

H(X) = −
∑
x∈X

PX(x) log PX(x)

with the convention that 0 log 0 = 0, which is justified by the following fact:
lim
p→0

p log 1
p = 0. The conditional entropy of X conditioned on a random variable

Y is defined as follows:

H(X|Y ) =
∑
y∈Y

PY (y)H(X|Y = y),

where H(X|Y = y) denotes the entropy computed from the conditional proba-
bility distribution PX|Y=y.

The entropy H(X) of a random variable X is a measure of its average
uncertainty. It is the minimum number of bits required on the average to
describe the value x of the random variable X. Similarly, H(X|Y ) is the average
number of bits required to describe X when Y is already known.

The probability distribution of a binary random variable is completely char-
acterised by the parameter p = PX(0). The binary entropy function is defined
as the entropy of such X, i.e.,

h(p) = −p log p− (1− p) log(1− p).

The Rényi entropy of order two (we shall refer to it as “Rényi entropy”
throughout) of X [Rén61,Rén70] is defined as

R(X) = − log Pc(X),

where Pc(X) is the collision probability.
Analogously to the Shannon entropy, the conditional Rényi entropy is

R(X|Y ) =
∑
y∈Y

PY (y)R(X|Y = y).

If X is a binary random variable, then:

R(X) = − log
(
p2 + (1− p)2

)
.
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The rigorous study of Rényi entropy, its relation to the other information
measures and their applications to cryptography can be found in [Cac97].

The mutual information of the variables X and Y is defined as

I(X;Y ) =
∑
x∈X

∑
y∈Y

PXY (x, y) log
PXY (x, y)
PX(x)PY (y)

.

It is easy to verify that

I(X;Y ) = H(X) −H(X|Y ) = H(Y )−H(Y |X).

In other words, I(X;Y ) can be thought of as the reduction of the uncertainty
of X when Y is learned or the reduction of the uncertainty of Y when X is
learned. It also follows that

I(X;Y ) = I(Y ;X).

Fano’s inequality [Fan61] relates the probability of an error in guessing the
random variable X to its conditional entropy H(X|Y ) where Y is a random
variable correlated with X. Let X̂ be an estimate of X. We define the proba-
bility of error in guessing as pe = P [X̂ 6= X], then

H(pe) + pe log(|X | − 1) ≥ H(X|Y ).

Let X be a random variable describing a uniformly distributed l-bit string b
which is not known to an observer. Let Y be a random variable describing the
result of some random experiment involving b. Then it is easy to verify that
Fano’s inequality transforms in this case into the following:

l + (1− pc) log
1− pc
2l − 1

+ pc log pc ≤ I(X;Y ), (2.3)

where pc = 1− pe is a probability for the observer to guess b correctly given Y .

2.3 Channel Capacity

Discrete channel is a system consisting of an input alphabet X and output
alphabet Y and a probability transition matrix PY |X that expresses the prob-
ability of observing the output symbol y ∈ Y given that the symbol x ∈ X
has been sent. X and Y are the random variables which describe respectively,
input and output of the channel. The channel is said to be memoryless if the
probability distribution on the output depends only on the input at that time
and is conditionally independent of previous channel inputs or outputs. We
refer to discrete memoryless channel as DMC.

We define the channel capacity of a DMC as

C = max
P (x)

I(X;Y ),

where the maximum is taken over all possible input distributions P (x).
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Binary Symmetric Channel (BSC) has binary input and output alphabets
X = Y = {0, 1} and

PY |X =
(

1− δ δ
δ 1− δ

)
,

i.e., it flips every transmitted bit with fixed error probability or rate δ, no matter
what the value of the bit is. We denote this channel as δ-BSC. It is easy to
show that the capacity of this channel is

Cp = 1− h(p).

Cascading two BSC’s with error rates µ and γ, respectively results in another
BSC with error rate µ(1− γ) + γ(1− µ). We denote

µ(1− γ) + γ(1− µ)
def
= µ� γ. (2.4)

It is easy to verify that the operator “�” is commutative, associative and sat-
isfies that if |µ− µ′| < δ, then |µ� γ − µ′ � γ| < δ for all γ.

An interesting non-binary channel is the erasure channel which has a binary
input alphabet X and an output alphabet Y = {0, 1,∆}. Here, the bits are
either received without errors with probability p, or completely lost otherwise,
in which case the channel outputs ”∆”. The erasure channel has the following
transition matrix:

PY |X =
(
p 0 1− p
0 p 1− p

)
.

Finally, if the channel has some finite input alphabet X = {x1, . . . , x|X |}
and finite output alphabet Y = {y1, . . . , y|Y|}, then

PY |X =


PY |X=x1

(y1) PY |X=x1
(y2) . . . PY |X=x1

(y|Y|)
PY |X=x2

(y1) PY |X=x2
(y2) . . . PY |X=x2

(y|Y|)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PY |X=x|X|(y1) PY |X=x|X|(y2) . . . PY |X=x|X|(y|Y|)

 .

In general, there is no closed form solution for the capacity. Some methods
for calculating it are discussed, e.g., in [CT91]. In our work, we always assume
that the capacity of the channel in question is known.

2.4 Coding Theory

A binary error-correcting code C with codeword length or size n, dimension k
and minimal distance d is a subset of cardinality 2k of {0, 1}n, the codewords,
such that for any two elements v,w ∈ C, dH(v,w) ≥ d holds, where “dH”
denotes the Hamming distance between two bit strings, i.e., the number of
positions where they differ. Of particular importance is the special case of
linear codes, where the subset of codewords is in fact a k-dimensional linear
subspace of {0, 1}n. In this case, the code is called a [n, k, d]-code and can be
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represented by a k × n matrix G, the generating matrix, or, alternatively, by
the n× r parity-check matrix H, where r = n− k is a number of check bits in
the code. We define a Hamming weight of a word v, wH(v) as a number of ones
in it.

For our purposes, we need asymptotically good codes which are the codes that
achieve a constant rate R = k/n and relative distance d/n for arbitrary large n.
The well-known fact ( [MS77], Ch. 17, Prob. 31) is that (informally speaking)
a randomly chosen generating matrix provides us with an asymptotically good
code with high probability as long as the rate of the code is less than the channel
capacity. Formally, the following theorem is true:

Theorem 2.1 There exists a constant ρ > 1 such that a random binary matrix
G of size Rn×n defines a binary linear code with minimal distance at least εn
except with probability not greater than ρ(R−Cε)n, for values R < Cε.

However, we cannot use the random codes when efficiently decodable asymp-
totically good codes are needed since the decoding procedure for the random
linear codes is not known to be efficient in general case. For this purpose,
we make use of a special class of linear codes, so-called concatenated codes
introduced by Forney [For66], these codes are both asymptotically good and
efficiently decodable.

Theorem 2.2 For any ϕ > 0 there exists ρ > 1 such that for all R < 1− h(ϕ)
and sufficiently large N there exists a linear code with the length N and number
of check bits at most (1 − R)N , failing to correct ϕN uniformly distributed
errors only with probability at most ρ(R−1+h(ϕ))N .

We sketch the construction of concatenated codes [For66]. A straight for-
ward Las Vegas construction algorithm combines a power-of-two (N = 2n) size
[N, (1 − α)N,αN − 1] Extended Reed-Solomon (outer) code over the field F2n

to a rather good (inner) code of size n selected at random among all linear
codes [n, κn, δn] of appropriate dimension κn. The resulting concatenated code
has parameters [Nn, (1−α)κNn,αδNn] and is able to efficiently correct up to
nearly δNn errors on average if they are uniformly distributed (because only
very few errors will be uncorrected by the inner code). The error correction pro-
cedure uses a brute-force search for the nearest codeword on the inner code and
the Berlekamp-Massey algorithm for the outer Extended Reed-Solomon code.
Both of these algorithms run in polynomial-time with respect to the global code
size Nn.

In some cases, the information transmitted will not be a codeword but only
a syndrome syn(r) = HT r, while the noisy versions of the information bits are
already known to the receiver. From this syndrome, the decoding algorithm
allows for recovering r ∈ {0, 1}n, given its noisy version r′ = r ⊕ e, where e is
an error vector. In details, the sender is to announce the syndrome of r, HT r,
so that the receiver can calculate HT r′ ⊕HT r = HT e (by linearity) and then,
using the decoding algorithm, the coset leader ê. Clearly, ê = e, if the code
is capable to correct errors in the noisy channel, so the receiver recovers r as
r′ ⊕ ê = r ⊕ e⊕ e = r.
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2.5 Universal Hashing and Privacy Amplification

In information-theoretical cryptography, hash functions are often used for dis-
tribution uniformising or, more specifically, concentrating a corrupt player’s
uncertainty as a part of privacy amplification technique.1 In this context, of
particular importance are universal hash functions introduced by Carter and
Wegman [CW79,WC81].

Definition 2.1 A 2-universal class of hash functions is a set G of functions
X → Y such that for all distinct x0, x1 ∈ X , there are at most |G|/|Y| functions
g ∈ G such that g(x0) = g(x1).

The 2-universal hash functions will be further referred to as universal hash
functions.

Privacy amplification was first proposed in the context of quantum key
agreement for the special case of deterministic side information [BBR86] and
later in general [BBCM95]. On the other hand, the effect of additional side in-
formation, in our case the syndrome the receiver learns, was studied in [BBCS92,
BCJL93].

The basic idea is that if one knows some (linear) fraction of a bit-string,
this knowledge can be reduced drastically once this string is hashed. In other
words, if the hash function is applied to the string, then one knows much less
than the linear fraction of the output in fact, only exponential fraction of it.

This works even if the partial information is a noisy version of the bit-string,
transmitted over some channel. In some scenarios, an additional side informa-
tion (such as parity check, for example) is available to the player allowing him
to recover some (possible all) errors. Then, roughly speaking, the number of
bits by which the resulting almost secret string will be shorter corresponds to
the length of this side information.

Theorem 2.3 [BBCM95,BBCS92,BCJL93] Let V be a uniformly distributed
n-bit string and let W be generated by independently sending each bit of V over
a ϕ-BSC. Let, furthermore, syn : {0, 1}n → {0, 1}r be a linear function and
G be a random variable corresponding to the random choice, according to the
uniform distribution, of a function from a universal class of hash functions2

{0, 1}n → {0, 1}l. Then,

I(G(V );G,W, syn(V )) ≤ 2−(R(W |V=v)−l−r)/ ln 2,

for all sufficiently large n.

The following fact is proved in [BBCM95] for the setting described above:
informally speaking, if we conceptually give away to the observer the Hamming
distance between W and the particular value v, then for all sufficiently large n,
R(W |V = v) will be lower bounded by roughly nh(ϕ) almost always.

1For the other classical result using hash functions see, e.g. [HILL91].
2For instance, G can be a random linear function mapping n bits to l bits.
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Lemma 2.2 [BBCM95] Consider the auxiliary variable U = dH(W,v) and let
any fixed γ > 0 and δ > 0 be so that h(ϕ − δ) > h(ϕ) − γ/3, then

R(W |U = u, V = v) > (h(ϕ) − γ/2)n

for all sufficiently large n, except with probability exponentially small in n.

2.6 Statistical Indistinguishability

A distribution ensemble X = {X(k, z)}k∈N,z∈{0,1}∗ is an infinite set of proba-
bility distributions, where a distribution X(k, z) is associated with each k ∈ N
and z ∈ {0, 1}∗. We shall consider the ensembles which describe outputs where
the parameter z represents input, and the parameter k is taken to be the secu-
rity parameter. Let X = {X(k, z)}k∈N,z∈{0,1}∗ and Y = {Y (k, z)}k∈N,z∈{0,1}∗
be two ensembles of distributions over {0, 1}∗. The notion of statistical indis-
tinguishability of X and Y essentially expresses the fact that one can replace
X and Y by one another, for k large enough, with respect to an observer who
may have an unbounded computational power, but a limited number of sample
points. Formally:

Definition 2.2 The distribution ensembles X and Y are statistically indistin-
guishable (or statistically close), denoted by X ' Y , if for any c > 0 there
exists k0 ∈ N such that for all k > k0 and for all z:∑

u∈{0,1}∗

∣∣P [X(k, z) = u]− P [Y (k, z) = u]
∣∣ < k−c.

2.7 Zero-Knowledge Proofs

The general zero-knowledge (ZK) proofs introduced by Goldwasser, Micali and
Rackoff in [GMR85] served the purpose of proving the possession of some data
in a particular form (for instance, the Hamiltonian cycle of a graph) without
disclosing any additional information on this data.

Definition 2.3 An interactive proof system (P, V ) for language L is zero-
knowledge if for every verifier V ∗, there is a simulator MV ∗ such that for x ∈ L
and any auxiliary input z, the distribution of conversations output by MV ∗ on
input x, z is statistically close to the distribution of conversations produced by
(P, V ∗) on input x and z (given to V ∗).

This is the definition of so-called statistical zero-knowledge where the prover
P and the verifier V are unlimited in computing power that is indeed the case in
our unconditional setting. Roughly speaking, the definition says that if V knew
that the statement was true then he would be able to generate a convincing
proof himself with a distribution very close to the one which the real prover
would produce.

It follows from the work of Ben-Or et al. [BGGHKMR88] that given a bit
commitment scheme, one can always construct a new one, where one can prove
in zero-knowledge that committed bits satisfy a given Boolean formula.
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2.8 On Some Security Properties

The following security properties which are important in general case turn out
to be irrelevant with respect to the two-party primitives of Oblivious Transfer
and Bit Commitment considered in this work:

• Fairness: A corrupted player should receive his output if and only if the
honest player also receive his output.

Note that in both OT and BC primitives the output is defined only for
one of the players. In other words, these primitives are designed for trans-
ferring rather than exchanging information. Hence, we do not consider
this property in our work.

• Guaranteed Output Delivery: A corrupted player should not be able to
prevent honest player from receiving their output.

In two-party case, the corrupt player may refuse to continue interaction
at any point thus violating this property and there may be no way to
prevent it. Thus, we do not require our protocol to have this property.
Instead, we shall require that the output is correct once the protocol is
completed successfully. Furthermore, in our protocols, the private inputs
of the honest players remain private even if the corrupt player aborts the
protocol at any step.

2.9 On Communication Models

2.9.1 Symmetry Condition

The well-known fact is that no two-party primitive with unconditional security
for both parties is possible based on noiseless communication (with no addi-
tional assumption) even if each party can make his own random coin flips and
only security against passive adversary is required. The reason is the so-called
symmetry condition on what the participants know about each other’s data.
Both parties possess the entire transcript of the conversations that took place
between them. Thus, in a two-party protocol, A can determine exactly what B
knows about A’s inputs, and the same holds for B.

In particular, for the case of Bit Commitment, an informal argument pro-
ceeds as follows: Suppose that we have an unconditionally binding and hiding
bit commitment. Now, if A commits to, e.g., value “0”, then she must be able
to open it as both “0” and “1”, otherwise B (whose computational power as-
sumed infinite) could figure out that the committed value is not “1”, violating
unconditional hiding. But then, it means that A is able to change her mind,
violating unconditional binding.

The argument for Oblivious Transfer involves an unconditionally secure re-
duction of BC to OT [Kil88]. If an unconditionally secure OT based on noiseless
channel was possible then so would be BC, a contradiction.
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2.9.2 Availability of Noiseless Channel

In our work, we consider the noisy channel to be an important and expensive
resource since unconditional security relies on the randomness provided by the
channel. Therefore, we assume for the sake of simplicity that a bi-directional
noiseless channel is available to both parties “for free”. Whenever we refer to a
communication complexity of a protocol, we mean the number of noisy channel
uses made by the players.

At the same time, if the error-free channel is unavailable to the players then
the well-known error-correction techniques can be used in order to cope with
noise and provide error-free communication. In this case, a substantial increase
in communication complexity may take place.

We fix some terminology to be used in this thesis. We shall refer to the
use of a noisy channel by saying that the player sends some data while using a
noiseless channel, the player announces the data.

2.9.3 One-Directional Noisy Channel

Note that as matter of fact, Binary Symmetric Channel is symmetrical with
respect to the players as well: if a δ-BSC is only available from A to B, then the
following protocol allows to provide a δ-BSC in the reverse direction. Suppose
B has an input bit b.

Protocol 2.1 δ-ReversedBSC(b)

1. A picks r ∈R {0, 1} and sends it to B who receives r′.

2. B announces b′ = b⊕ r′ to A.

3. A outputs b′ ⊕ r.

It is easy to see that the same protocol works for a general DMC and
(γ, δ)-UNC. This allows us to assume without loss of generality that the players
are always connected by bi-directional noisy channels.



Chapter 3

Standard Assumption: Discrete

Memoryless Channel

3.1 Introduction

The material of this chapter concerns a protocol for Oblivious Transfer based
on Discrete Memoryless Channel. In our protocol, we shall use the same ideas
as the ones presented by Crépeau in [Cré97] for implementing OT based on
BSC. Essentially, we adapt their construction for the case of a DMC with a
probability transition matrix of the general form. Some DMC’s turn out to be
“useless” or trivial with respect to obtaining OT from them. We define this
notion of triviality and then focus on the case of non-trivial DMC’s, since the
famous impossibility result discussed in Section 2.9.1 immediately carries over
to the trivial channels. We shall show that on the other hand, any non-trivial
DMC does allow for realising OT. Non-triviality is, therefore, a necessary and
sufficient condition for a possibility of unconditional OT based on DMC.

We first give the formal security definition for OT. Then, we discuss the
triviality condition, introduce the construction and argue that it satisfies the
claimed properties. Finally, some interesting special cases are considered.

This chapter is based on [CMW04,KM01].

3.2 Preliminaries

3.2.1 Some Notation

In this chapter, we refer to a value which is exponentially small in some security
parameter n as to negligible in n. Whenever we refer to an event which occurs
with small or high probability in n, we mean that the event occurs, respectively,
with probability negligible or except with probability negligible in n.

3.2.2 Communication Model

We assume that a sender A and receiver B are connected by a DMC with the
probability transition matrix PY |X as well as a noiseless channel. Both A and
B can make their local random coin flips.

21
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3.2.3 Security Definition

In Section 1.2, an abstract definition of OT was given. We shall establish
here explicitly what properties we achieve in the given construction where, we
remind, the sender A transfers two bits b0 and b1 to the receiver B who gets
only one of them, bc, according to his selection bit c, while A learns nothing.

We note that the definition below builds on the standard one in order to
capture an essential feature of some protocols (in particular, of our protocol)
– the absence of the so called input awareness property. Input awareness de-
mands that the players always behave consistently with some legal input values.
Informally speaking, they must not be able to input a value which is unknown
to them. We denote such the input as “?”. We stress that the absence of this
property does not constitute a flaw of the protocol, since there are standard
methods which allow to gain the input awareness. See Subsection 3.5.1 for the
discussion.

We define a function f : {V iewQ} → {(x1, . . . , xN ), ?}, where Q ∈ {A,B} is
a player, V iewQ is an encoding of Q’s view of the protocol1 and (x1, . . . , xN ), a
set of Q’s inputs. Intuitively, the function is to tell whether the player behaves
consistently with some inputs (x1, . . . , xN ) or does not. If f outputs “?”, we
are not going to put any requirements on the output distribution – this is the
way to state security properties without input awareness. We stress that the
function f is used for the analysis only, the players are not to be aware of it.

Formally, we require the following properties:

• Completeness: if A and B are both honest, then they accept the protocol
with high probability.

• Security for A: If A is honest, then f(V iewA) = (b0, b1) and with high
probability, the distribution of at least one of the secrets b0, b1 is statisti-
cally close to uniform2 (we shall call it almost uniform) over all possible
V iewB . Furthermore, if f(V iewB) = c, then it is the distribution of
b1−c which is almost uniform3. Formally: If f(V iewB) = c then for all
v ∈ V iewB except with negligible probability:∣∣P [b1−c = 0|V iewB = v]− P [b1−c = 1|V iewB = v]

∣∣ is negligible.
If f(V iewB) =? then there exists i ∈ {0, 1} such that for all v ∈ V iewB
except with negligible probability:∣∣P [bi = 0|V iewB = v]− P [bi = 1|V iewB = v]

∣∣ is negligible.

• Security for B: If B is honest, then:
P [(f(V iewA) = (b0, b1)) and (B accepts) and (B’s output 6= bc)] is negli-
gible, and Dc=0(V iewA) ' Dc=1(V iewA) where Dc={0,1}(·) is the distri-
bution over all possible A’s views given B’s selection bit c.

1It is defined as the input, all messages sent and received, and random coins used.
2We assume that b0, b1 are drawn uniformly by A.
3This slight complication in our requirements comes from the observation that the corrupt

B may cheat passively and hence, he must loose the secret bit b1−c according to the original
OT definition. At the same time, when B behaves inconsistently, we want him to lose at least
one of A’s inputs, such that A’s privacy will still be in place.
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3.2.4 Binary-Symmetric Erasure Channel

Binary-Symmetric Erasure Channel (denoted (ϕ, ε)-BSEC) is yet another model
of noisy communication – a generalisation combining BSC and erasure channel
– which we are going to use in this chapter. It is a binary-input and ternary-
output channel where an input symbol is erased with probability ε and each
non-erased symbol has an error-rate ϕ. These two probabilities are the same
for both input values.

3.2.5 Alternative Representation

An alternative representation of the DMC PY |X is a set of points of R|Y|−1

such that each point represents an input symbol. The coordinates of the point
are the probabilities for this input to be received as the corresponding output
symbol. Formally, for any i = 1, . . . , |X | − 1 :

xi =
(
PY |X=xi

(y1), PY |X=xi
(y2), . . . , PY |X=xi

(y|Y|−1)
) ∈ R|Y|−1.

Note that for every xi ∈ X :
∑
y∈Y

PY |X=xi
(y) = 1.

3.3 Trivial Versus Non-Trivial Discrete Memoryless

Channels

We first define a redundant input symbol of the DMC as a symbol whose output
distribution can be expressed as a convex linear combination of the output dis-
tributions of the other inputs. Throughout this chapter, we refer to the output
distribution of an input symbol x as PY |X=x instead of the formal “PY |X=x(y)
for all y ∈ Y”.

Definition 3.1 Let PY |X be a DMC. We call an input symbol x ∈ X redundant
if its output distribution PY |X=x can be written as follows:

PY |X=x =
∑

x′∈X\{x}
µx′PY |X=x′

with µx′ ∈ [0, 1],
∑
x′
µx′ = 1.

Lemma 3.1 If Protocol 3.3 is (asymptotically) secure against an active ad-
versary who uses only non-redundant input symbols then the reduction is also
secure against an active adversary who uses all possible input symbols.

Proof. (Sketch) In Protocol 3.3, it is only the sender A who uses the DMC
for communication. The sender is instructed to use only the non-redundant
symbols, so if A is honest and B is dishonest then the proof trivially follows.

Suppose now that A is corrupt and B is honest. In the asymptotic case, any
possible output distribution which is generated using all input symbols can also
be generated using only non-redundant symbols according to Definition 3.1.
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Therefore, if there exists a strategy for A to violate the security of the protocol
using some symbols including redundant ones (and so a certain output distribu-
tion corresponding to this strategy), then clearly there exists a strategy which
achieves the same goal (and simulates the same output distribution) using only
non-redundant inputs. The claim now follows. 2

Yet another representation of a DMC comes in handy in order to make the
intuitive definition of its triviality. Let us represent the DMC as a bipartite
graph where the vertices of one set are inputs x and the vertices of the other
one are outputs y. The vertices x and y are adjacent whenever PY |X=x(y) > 0.
We call a DMC trivial, if one can partition the corresponding graph into the
graphs which represent the channels each with capacity zero or one. In other
words, if for every output symbol, one either can learn the input for sure or has
no information on the output at all.

Definition 3.2 We call a channel PY |X trivial if there exist, after removal of
all redundant input symbols, partitions X = X1 ∪ · · · ∪ XN , Y = Y1 ∪ · · · ∪ YN ,
and channels PYi|Xi

, where the ranges of Xi and Yi are Xi and Yi, respectively,
such that

PY |X=x(y) =
{
PYi|Xi=x(y) if x ∈ Xi, y ∈ Yi, i = j

0 if x ∈ Xi, y ∈ Yj, i 6= j

holds and such that the capacities of these channels ∀i : C(PYi|Xi
) ∈ {0, 1}.

Clearly, this is another way of saying that the players are connected by
either an error-free channel (capacity 1 per bit) or disconnected completely
(capacity 0), so that the impossibility result discussed in Subsection 2.9.1 follows
immediately.

We are going to show next that the non-triviality of the channel implies its
certain properties, namely the existence of two particular input symbols x1, x2

which, loosely speaking, cannot be simulated by any combination of the other
inputs. As we show later, the consequence is that the sender A can be forced
to use only those two symbols, since her failure to do so would be detected by
the receiver B. As a matter of fact, this restriction is not going to work for the
symbols which can be expressed as a linear combination of x1, x2. However,
those ones are redundant and hence, they can be safely ignored.

Theorem 3.1 Let PY |X be a non-trivial channel. Then there exist x1, x2 ∈ X
with the following properties:

1. PY |X=x1
6= PY |X=x2

.

2. There exists y ∈ Y such that PY |X=x1
(y) > 0 and PY |X=x2

(y) > 0.

3. Let, for λ, µi ∈ [0, 1],

λPY |X=x1
+ (1− λ)PY |X=x2

=
∑
i

µiPY |X=xi
.

Then µi > 0 implies that PY |X=xi
= τPY |X=x1

+ (1− τ)PY |X=x2
holds for

some τ ∈ [0, 1].
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Proof. By the non-triviality of the channel, there exist two non-redundant input
symbols x1 and x′2 and y ∈ Y such that PY |X=x1

6= PY |X=x′2, PY |X=x1
(y) > 0,

and PY |X=x′2(y) > 0 hold.
Recall the alternative representation of PY |X given in Subsection 3.2.5. In

the following, we will consider the convex hull of the set of all inputs

{x|x ∈ X} ⊆ R|Y|−1. (3.1)

We call x0 a spanning point of the convex hull if the convex hull of {x, |x ∈
X \ {x0}} is strictly smaller than the one of (3.1).

Since the spanning points of the hull correspond to non-redundant inputs,
we can conclude that there exist two spanning points x1 and x′2 of the convex
hull such that there exists y ∈ Y with PY |X=x1

(y) > 0 and PY |X=x′2(y) > 0.
Let vx be the unit vector parallel to the vector in R|Y|−1 which connects x1

with some x in X . In a similar way as for the points, we define convex linear
combinations and non-redundancy for these vectors. We say that the vector is
non-redundant if it cannot be expressed as a convex linear combination of the
other vectors. Let A = {x ∈ X|vx is a non-redundant vector}. In the following
discussion, whenever we refer to linear combinations, we mean the convex ones.

The set of spanning points (to which x1 belongs), can be thought of as the set
of vertices of the polytope in R|Y|−1. Then, intuitively, A is the set of vertices
“adjacent” to x1. They are adjacent in the sense that the lines (in R|Y|−1)
connecting x1 with any x ∈ A do not go “through” the polytope. Observe that
all the linear combinations of x1 and some x2 ∈ A belong to the line in R|Y|−1

connecting x1 with x2. Then, it is enough to argue that PY |X=x2
(y) > 0.

Assume that for all x ∈ A, we have PY |X=x(y) = 0. Then the same is true
also for all distributions in the convex hull of these points. On the other hand,
the line connecting x1 with x′2 has a non-empty intersection with this convex
hull by definition of A. Since every distribution in this intersection is a linear
combination of PY |X=x1

and PY |X=x′2 – both non-zero in y – there exists a point
x2 in A with PY |X=x2

(y) > 0.
By construction, x1 and x2 have now the following properties. First, they

satisfy PY |X=x1
> 0 and PY |X=x2

> 0. Second, any linear combination of x1

and x2 cannot be represented as a linear combination involving points x not
lying on the line connecting x1 with x2. This observation concludes the proof.
2

3.4 Protocol

Our protocol is an adaptation of the protocol of [Cré97] for the general case
where, at the same time, we reduce the required number of channel uses from
cubic to, roughly, quadratic order in log(1/pf ) where pf > 0 is an upper bound
on all the failure probabilities. We develop the protocol in three steps. In
Subsection 3.4.1, the original DMC is used to obtain a binary-symmetric erasure
channel with error; in Subsection 3.4.2, this is transformed into a passively
secure form of OT (which is vulnerable to active attacks by the sender A);
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in Subsection 3.4.3, we introduce the final protocol avoiding these attacks by
statistical analysis on the receiver’s side.

3.4.1 Implementing Binary-Symmetric Erasure Channel

From a non-trivial channel PY |X , we first construct a BSEC. We encode the bits
to be transmitted over the DMC as pairs of two fixed distinct input symbols
x1, x2 ∈ X chosen according to Theorem 3.1. We proceed as follows: “0” is
encoded as x1x2 and “1” as x2x1. When this is repeated many times, B gets
the bits with different error rates which depend on the actual output symbols
received. We will have B make a decision on 0 or 1 only when he receives certain
specific pairs; otherwise, he will decide on erasure ∆. More precisely, B will
accept only the pairs which give him the best estimate of what has been sent;
we shall call those the most informative pairs. In general, there might even be
output symbols y which allow for deciding with certainty whether x1 or x2 has
been sent. Note, however, that the choice of x1 and x2 guarantees that there
exist pairs which are not conclusive with certainty. The crucial point is that
there are at least two different levels of conclusiveness, and it is the difference
between the two that will be used in the protocol. In the following, we shall
call the most informative pairs the good pairs for short and denote them as y1y2

and y2y1, respectively.
In the following protocol, the sender A has an input bit r. Let x1, x2 be the

input symbols chosen according to Theorem 3.1. A is assumed to be passively
cheating, if she is corrupt.

Protocol 3.1 PY |X → BSEC(r)

1. A sends x1x2 if r = 0 and x2x1 if r = 1.

2. B outputs


0 if y1y2 is received,
1 if y2y1 is received,
∆ if any other pair is received.

Let Y ′ be the set of y with PY |X=x1
(y) > 0 or PY |X=x2

(y) > 0.

Lemma 3.2 A most informative pair (y1, y2) is the pair (y, ȳ) ∈ Y ′×Y ′, y 6= ȳ,
that achieves the following minimum:

ϕ = min
(y,ȳ)∈Y ′×Y ′

PY |X=x1
(ȳ)PY |X=x2

(y)
PY |X=x1

(ȳ)PY |X=x2
(y) + PY |X=x1

(y)PY |X=x2
(ȳ)

. (3.2)

Proof. It is easy to see that Equation 3.2 indeed captures the intuitive definition
of the most informative pair given above. A is passive, therefore she actually
uses the encoding described in Protocol 3.1. Then the probability for B to
accept a good pair is PY |X=x1

(ȳ)PY |X=x2
(y)+PY |X=x1

(y)PY |X=x2
(ȳ) while the

error rate for the good pairs is PY |X=x1
(ȳ)PY |X=x2

(y). Equation 3.2 describes
the minimal such probability for all pairs of output symbols. 2
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Remark 3.1 The assignment of the inputs x1, x2 to the outputs y1, y2 is
significant since it influences the error rate according to (3.2). We assume
w.l.o.g. that x1 is assigned to y1 and x2 to y2.

Corollary 3.1 The probability for B to accept a good pair in Protocol 3.1 is
the following:

pg = PY |X=x1
(y1)PY |X=x2

(y2) + PY |X=x2
(y1)PY |X=x1

(y2). (3.3)

Corollary 3.2 Note that (3.2) is symmetric with respect to x1 and x2. The re-
sulting channel looks, hence, like a (ϕ, 1−pg)-Binary-Symmetric Erasure Chan-
nel. It is not exactly BSEC because the symbol ∆ may contain some information
about the input, but we shall treat this channel as such for the simplicity sake
until more rigorous analysis in the next subsection.

Remark 3.2 In general, there may exist several possible pairs of output sym-
bols whose error rates are exactly ϕ. As B will later handle them according to
their error rates, these pairs are virtually indistinguishable for him. Therefore,
for the sake of simplicity, we shall later call all these pairs the good ones and
refer to all of them as y1y2 and y2y1.

Once we defined the symbols x1, x2, y1 and y2, we shall consider only a
partition PYi|Xi

(see Definition 3.2) to which these symbols belong. Obviously,
if the cheater uses the symbols from the other partitions, this will be detected
with certainty. In the rest of this chapter, we refer to PYi|Xi

as the DMC PY |X
connecting the players.

3.4.2 Passively Secure OT

The BSEC obtained above is not a Rabin OT: B might get some information
even when deciding on ∆, and there are bit errors. We now describe a protocol,
based on the obtained BSEC, for realizing OT under the assumption that A
can cheat only passively. The general idea is to use the reduction from Rabin
to One-out-of-two OT introduced in [Cré87].

In our passively secure OT protocol, A sends 2n random bits r1, r2, . . . , r2n
to B using BSEC. B should receive roughly 2pgn of them as good pairs and
2(1− pg)n as “bad” ones.

B then forms two sets I0 and I1, each of size n′ = n if pg > 1/2 and,
otherwise, of size n′ = (pg + β)n, 0 < β < pg. Through the index sets I0
and I1, B defines two bit-strings r′I0, r′I1 such that r′Ic – which corresponds to
his selection bit – contains only good pairs. Accordingly, we define p′g = pg if
pg > 1/2 and p′g = pg/(pg + β) otherwise.

Remember that ϕ is the error probability of the BSEC. The players now
agree on an error-correcting code, according to the discussion in Subsection 2.4,
which allows for correcting all errors in a set consisting only of good pairs. More
precisely, the errors are corrected by having A send the syndromes syn(rI0)
and syn(rI1). Using r′Ic and syn(rIc), B can recover rIc except with probability
negligible in n. On the other hand, this correction information is not sufficient
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to find out both words rIc and rI1−c with certainty, if the dimension of the code
is equal to n′

(
(1 − h(ϕ))(1 + p′g)/2 + (1 − h(ϕ′))(1 − p′g)/2

)
. Here, ϕ′ is the

error rate of a second most informative pair which is defined as the pair with
the second lowest a posteriori error probability from B’s viewpoint.

Finally, a privacy amplification function is used to extract one bit per string,
such that one of the two bits may be recovered, but not both. This function
is the scalar product (we denote it by ”�”) with a random bit string m of an
appropriate length.

Protocol 3.2 BSEC → ÔT(b0, b1)(c)

1. A picks 2n random bits ri, i = 1, . . . , 2n, and sends them to B as
BSEC(ri); B receives r′i.

2. B picks and announces to A two disjoint sets I0, I1, |I0| = |I1| = n′, such
that r′i 6= ∆ holds for all i ∈ Ic.

3. A and B agree on a parity-check matrix H of a concatenated code C with
parameters [n′, k = n′

(
(1 − h(ϕ))(1 + p′g)/2 + (1 − h(ϕ′))(1 − p′g)/2

)
, d]

correcting ψϕn′ errors, ψ > 1.

4. (a) A computes and sends s0 = syn(rI0) and s1 = syn(rI1),

(b) picks and sends a random n′-bit word m, and

(c) computes and sends b̂0 = b0 ⊕ (m� rI0) and b̂1 = b1 ⊕ (m� rI1).

5. (a) B recovers rIc using r′Ic , sc and the decoding algorithm of C and

(b) computes and outputs b̂c ⊕ (m� rIc).

The next lemma which comes in handy later follows from Lemma 2.1:

Lemma 3.3 The probability that more than ψϕn′ errors occur in rIc is negli-
gible in n for any ψ > 1 and n large enough.

Now, we argue the security of Protocol 3.2.

Proposition 3.1 Assuming that the sender A is passively cheating, Proto-
col 3.2 implements OT with failure probabilities negligible in n.

Proof. We argue the security for B first. The honest B must be able to receive
his choice bit bc except with probability negligible in n. It follows from the
choice of the code C that B can correct ψϕn′ errors with high probability in
the string rIc. Observe that if n′ = n and pg ≤ 1/2 than the above does not
hold, since B cannot completely fill the good set with good pairs4. Therefore,
the size of the index sets I0 and I1 must depend on pg. The choice of n′ provides
“scaling-down” of the index sets’ size for the case when pg ≤ 1/2 and the new
fraction of good bits p′g is always greater than 1/2. Now, Lemma 3.3 assures
that B indeed corrects the errors in rIc almost always. Taking into account

4In case of pg = 1/2, it does not happen with high probability.
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that A is assumed to be honest and hence f(V iewA) = (b0, b1) always holds,
we conclude that the honest B receives bc with high probability.

The fact that the passively cheating A cannot learn c follows from the sym-
metry of the BSEC from A’s point of view as noted in Corollary 3.2. The passive
A can only find out B’s selection bit by trying to tell the good set, rIc from
the bad one, rI1−c . Clearly, she cannot do it better than guessing randomly for
every input bit, no matter what B’s input c is. The security definition for B is
therefore satisfied.

A’s security fails, if the corrupt B gets some non-negligible information
about both bits bc and b1−c in other words, the corrupt B may not necessarily
try to obtain bc with certainty but attempt to gain at least some non-negligible
information on both b0 and b1. We show that if B is cheating actively using his
optimal strategy, then for at least one of the two bits his advantage in learning
it – compared to a random guess – is exponentially small in n.

Note that the code is chosen such that complete error correction is possible
only when B collects all the good pairs into one of the two sets. Suppose first
that pg > 1/2 holds so that p′g = pg. Then, there exists a constant fraction of
bad bits whose error rate is at least ϕ′ > ϕ, since ϕ′ is the error rate for the
second most informative pair. Next, we make two conservative assumptions for
the sake of simplicity of our proof. First, we suppose that the fraction of the
second most informative pairs is 1 − p′g that makes the situation only better
for the dishonest B. Second, we observe that all the adversarial strategies of
B is about distributing the output pairs over the two sets, so we define the set
with maximal number of the good pairs as the set corresponding to B’s choice
c and suppose that the dishonest B gets the bits bc for free. It does not violate
A’s security since the honest B is entitled to get bc anyway, but it makes our
argument easier. It is now clear that given the above assumptions, the best
strategy for the corrupt B, if he wants to learn as much as possible about both
bits, is to split the good bits evenly over the sets I0 and I1. Therefore, the
dishonest B is not able to put more than p′gn′ good bits in at least one of the
sets I0 and I1. The bits of this set do not contain more than n′

(
(1− h(ϕ))p′g +

(1− h(ϕ′))(1− p′g)
)

bits of Shannon information about the original string with
high probability. In fact, the entropy of the noisy versions of rI0 and rI1 is to
be described by the Rényi entropy, however it follows from Lemma 2.2 that in
our (asymptotic) scenario it is lower bounded by the Shannon entropy. Hence,
the mutual information between rI0, rI1 and their respective noisy versions can
be upper bounded using standard Shannon information. Therefore, at least
n′
(
h(ϕ)p′g+h(ϕ′)(1−p′g)

)
parity-check bits are needed in order to correct all the

errors in each set with high probability; however, syn(rI0), syn(rI1) each contain
at most n′

(
h(ϕ)(1+p′g)/2+h(ϕ′)(1−p′g)/2

)
bits only. Thus, at least one of the

two words rI0, rI1 will be undetermined by at least n′
(
h(ϕ′)− h(ϕ)

)
(1− p′g)/2

bits where the terms in brackets are positive and do not depend on n. Now,
Theorem 2.3 implies that after privacy amplification, B only has a negligible
amount of information about the corresponding bit. Then, it follows from
Fano’s inequality (2.3) that B’s advantage in guessing this bit will be negligible
as well. It is easy to verify that the case of pg ≤ 1/2 follows by the same
argument as above given the choices of n′ and p′g. 2
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Unfortunately, Protocol 3.2 is not secure against active cheating by A with
the objective of figuring out B’s selection bit c. For instance, A can send
incorrect pairs: x1x1 or x2x2 instead of x1x2 and x2x1, hereby increasing the
probability that they are received as bad pairs by B. Alternatively, A can use
any other input symbols but x1 and x2 (we shall call them the forbidden input
symbols) whose support intersects with those of x1 and x2. Finally, she can
send an incorrect syndrome at Step 4.

In the first and second active attacks, the incorrect pairs are more likely to
end up in the “bad” set, thus indicating to A which one of I0 and I1 is more
likely to be the “good” and the “bad” set, respectively, and hence what B’s
choice is. In the third attack, if A renders only one of the syndromes incorrect,
then B may abort the protocol or not, hereby disclosing which bit he is trying
to get.

3.4.3 The Complete OT Protocol

The main idea is now, as in [Cré97], to avoid A’s cheating by repeating Proto-
col 3.2 many times in such a way that A has to cheat in a substantial fraction
of all executions of BSEC (namely, in more than the square root of the total
number of executions) in order to gain useful information. This, however, can
be detected by B when he analyses his output statistically.

More precisely, Protocol 3.2 is repeated dn1+εe times, 0 < ε < 1; thus, we
apply BSEC 2dn2+εe times in total. In order to cheat, A will have to send at
least dn1+εe wrong pairs (i.e., she forms the pair incorrectly or uses forbidden
symbols) in these executions. This will, however, lead to a detectable bias in
the output distribution (with probability almost 1). If, on the other hand, A
uses less than dn1+εe incorrect pairs, she finds out nothing about c. Similarly,
if A sends wrong syndromes in Protocol 3.2 she will, each time, be detected
by B with probability 1/2. If she uses n1+ε such faulty syndromes it is, hence,
only with negligible probability that B will not detect her cheating.

Let nε =
[
n1+ε

]
, where [·] means rounding up to the next odd integer, and

n′ε = n · nε. The instances are combined by requesting

bl,0 ⊕ bl,1 = b0 ⊕ b1, 1 ≤ l ≤ nε. (3.4)

Let

b0,0 =
nε⊕
l=1

bl,0 and b0,1 =
nε⊕
l=1

bl,1 . (3.5)

Then it is easy to verify that for some cl ∈ {0, 1}, 1 ≤ l ≤ nε,

nε⊕
l=1

bl,cl = b0,z for z =
nε⊕
l=1

cl . (3.6)

Thus, in order to find out which of b0,0 or b0,1 B is trying to receive, A must
find out all the cl.

Let ψ > 1 be the one chosen in Protocol 3.2. We denote Protocol 3.2 where
A has inputs (bl,0, bl,1) and B has input cl by ÔT(bl,0, bl,1)(cl). An extra index
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l is added to each variable of the lth iteration of ÔT. Let us denote by ql,j ∈ Y
the jth output symbol (1 ≤ j ≤ 4n′ε) and by rl,i ∈ {0, 1} the ith output bit
(1 ≤ i ≤ 2n′ε) received by B in the lth iteration of ÔT.

Let δ be as follows:

δ = min
x∈X , y∈Y ,

µx:µx1=0∨µx2=0

∣∣∣∣∣PY |X=x1
(y) + PY |X=x2

(y)
2

−
∑
x

µxPY |X=x(y)

∣∣∣∣∣ ,
for some µx ∈ [0, 1],

∑
x
µx = 1. Let ŷ be the output symbol for which the above

minimum is achieved. Roughly speaking, δ is the best precision with which
the cheating sender can simulate “the middle point” between the distributions
PY |X=x1

and PY |X=x2
using the forbidden symbols.

Let κ be as follows:

κ = min
x∈{x1,x2}

∣∣pg − PY |X=x(y1)PY |X=x(y2)
∣∣ .

Protocol 3.3 ÔT → OT

1. A picks nε random bits b1,0, b2,0, . . . bnε,0 and sets bl,1 = b0 ⊕ b1 ⊕ bl,0 for
1 ≤ l ≤ nε.

2. B picks nε random bits c1, c2, . . . , cnε .

3. Repeat for l = 1, . . . , nε

(a) A runs ÔT(bl,0, bl,1)(cl) with B who gets b′l,

(b) if dH(rl,Il,cl
, r′l,Il,cl

) > ψϕn′ then B aborts.

4. if
∣∣#{(l, j)|ql,j = ŷ} − 2n′ε

(
PY |X=x1

(ŷ) + PY |X=x1
(ŷ)
)∣∣ > δnε/4,

then B aborts else if∣∣#{(l, i) | rl,i = y1y2 or rl,i = y2y1} − 2pgn′ε
∣∣ > κnε/4 , (3.7)

then B aborts else B computes and sends c′ = c⊕
(
nε⊕
l=1

cl

)
.

5. A computes and sends b̂0 = b0 ⊕
(
nε⊕
l=1

bl,c′

)
and b̂1 = b1 ⊕

(
nε⊕
l=1

bl,1−c′
)

to B.

6. B computes and outputs b̂c ⊕
(
nε⊕
l=1

b′l

)
.

Theorem 3.2 Protocol 3.3 implements OT with failure probabilities negligible
in n.

Before proving this theorem, let us introduce some other useful results. The
next Lemma follows from Theorem 1 of [CK88]:
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Lemma 3.4 Suppose that Protocol 3.2 is executed nε times with parameters
chosen according to Equations (3.4) and (3.5), and the corrupt A has got an
advantage in guessing an auxiliary selection bit ci (compared to a random guess-
ing) in each execution independently with probability p̂ < 1 constant in n. Then
in the resulting protocol OT(b0, b1)(c), A’s advantage in guessing c will be neg-
ligible in n.

The test of Step 3 is to decide whether the syndrome sent by A was valid: if
the decoded word is at Hamming distance larger than ψϕn′ from the received
one, then the syndrome was not correct. The following observation was made
by Damg̊ard: in fact, the cheating A may send a “slightly“ incorrect syndrome
but this does not give her any advantage because as long as B successfully
corrects the errors, the players appear to agree on a well-defined word which
looks completely random for B, exactly as required by the protocol.

More formally, let us denote rl,Il,cl
as r and r′l,Il,cl

as r′ = r⊕ e where e is an
error vector. Suppose that the cheating A announces a syndrome s̃ = syn(r̃)
which is a syndrome of some word r̃ 6= r that can be written as r̃ = r⊕ ẽ where
ẽ is a distortion introduced by A. According to the discussion in Section 2.4,
B calculates syn(r′) ⊕ syn(r̃) = syn(e ⊕ ẽ), uses the decoding algorithm to
obtain the coset leader ê and finally decodes r′′ = r′⊕ ê. Now, if wH(ẽ) is small
enough so that wH(e⊕ ẽ) ≤ ψϕn′ then the errors are corrected: ê = e⊕ ẽ, and
B accepts r′′ = r ⊕ e ⊕ e ⊕ ẽ = r ⊕ ẽ. It follows that the cheating A could
have just behaved honestly and sent r ⊕ ẽ instead of r because in this case,
her input and B’s output would still be well-defined and consistent with the
distributions prescribed in the protocol. One can use a standard simulation
argument to show that more formally. Concluding, if A adds a slight distortion
ẽ, she will most likely pass the test of Step 3 but this will be equivalent to the
honest behaviour. Hence, A must render the syndrome “completely incorrect”
in order to perform her attack successfully, and the test of Step 3 is designed
to prevent it. The argument above implies:

Lemma 3.5 Suppose that in Step 3(a) of Protocol 3.3, the corrupt A sends
to the honest B an incorrect syndrome syn(rl,Il,cl

⊕ ẽ) then either B accepts it
hereby agreeing on a string rl,Il,cl

⊕ ẽ with A, or B rejects it.

B reads the auxiliary inputs bl,0, bl,1 at random, therefore if A renders one of
the syndromes incorrect then she will fail the test of Step 3(a) with probability
1/2 in each iteration. Hence, A fails at least one of the nε tests except with
probability negligible in n.

We now argue that the tests of Step 4 achieve their goals. We use Lemma 2.1
which basically says that in n Poisson trials (where n is large enough), the
probability that the number of experiments where an event in question occur
is different from the expectation on some value νn is exponentially small in n
and ξ2. Observe that even if ν depends on n, the aforementioned probability
will still be exponentially small in n as long as ν is asymptotically smaller than
1/
√
n), or, equivalently νn is asymptotically bigger than

√
n.

In our setting, B shall count a number of good pairs and a number of
individual symbols received. The transition matrix of the DMC is known to
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B, so he can calculate expectations for the received pairs and symbols which
correspond to A’ honest behaviour. Note that in Protocol 3.3, the cheating A
must send nε wrong pairs or forbidden symbols in order to gain any bias in
guessing c. No matter her cheating strategy (i.e., what fraction of the wrong
pairs/forbidden symbols to send), she will send at least nε/2 wrong pairs or at
least nε/2 forbidden symbols. In any case, she sends a number of pairs/symbols
which is linear in nε and those pairs/symbols have the different distribution
compared to what B expects to see in the honest case. We use Lemma 2.1
observing that in our scenario, νn corresponds to nε. Note that nε = [n1+ε] >√
n′ε =

√
n · nε, therefore the dishonest A will be caught by the statistical tests

with high probability. It only remains to argue that the thresholds in the tests
of Step 4 are set correctly.

Let

zi,j =

{
0 if qi,j 6= ŷ

1 if qi,j = ŷ.

Lemma 3.6 There exists a constant ρ1 < 1 such that when A does not send
the forbidden symbols then

P

∣∣∣∣∣∣
nε∑
i=1

4n∑
j=1

zi,j − 2n′ε
(
PY |X=x1

(ŷ) + PY |X=x2
(ŷ)
)∣∣∣∣∣∣ > δnε/4

 < ρn1 (3.8)

holds, whereas, if she sends at least nε/2 forbidden symbols, then

P

∣∣∣∣∣∣
nε∑
i=1

4n∑
j=1

zi,j − 2n′ε
(
PY |X=x1

(ŷ) + PY |X=x2
(ŷ)
)∣∣∣∣∣∣ < δnε/4

 < ρn1 (3.9)

holds.

Proof. (Sketch). When A follows the protocol, we have

E

 nε∑
i=1

4n∑
j=1

zi,j

 = 4n′ε
PY |X=x1

(ŷ) + PY |X=x2
(ŷ)

2
, (3.10)

This means that B expects to see the “middle distribution” between PY |X=x1

and PY |X=x2
, in particular, for ŷ. Clearly, the best way for the cheating A (if

she uses the forbidden symbols at all) to pass the test is to simulate the output
distribution which is as close to the “middle distribution” as possible. However
the choice of δ makes sure that when A cheats with at least nε/2 forbidden
symbols, then:∣∣∣∣∣∣E

 nε∑
i=1

4n∑
j=1

zi,j

− 2n′ε
(
PY |X=x1

(ŷ) + PY |X=x2
(ŷ)
)∣∣∣∣∣∣ ≥ δnε/2

holds.
When setting the threshold δnε/4, Equation (3.8) follows immediately from

Lemma 2.1 and Equation (3.9) follows from the same lemma by taking into
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account (3.10) and observing that in this case the probability in (3.9) is in fact
the tail probability.

Hereby, we make sure that the honest A is accepted with high probability
while the cheater is rejected almost certainly. 2

Let

wi,j =

{
1 if r′i,j = y1y2 or r′i,j = y2y1,

0 otherwise.

Lemma 3.7 There exists a constant ρ2 < 1 such that when A does not send
incorrect pairs, then we have

P

∣∣∣∣∣∣
nε∑
i=1

2n∑
j=1

wi,j − 2pgn′ε

∣∣∣∣∣∣ > κnε/4

 < ρn2 ,

whereas, if A sends at least nε/2 incorrect pairs,

P

∣∣∣∣∣∣
nε∑
i=1

2n∑
j=1

wi,j − 2pgn′ε

∣∣∣∣∣∣ < κnε/4

 < ρn2 .

Proof. (Sketch). For the second test of Step 4 the idea is that the receiver
calculates the overall number of good pairs y1y2 and y2y1 on the output. If A
follows the protocol, then we have the following expectation for this number:

E

 nε∑
i=1

2n∑
j=1

wi,j

 = 2pgn′ε

where pg is, as above, the probability to receive a good pair given that x1x2 or
x1x2 was sent. At the same time, it A uses at least nε/2 incorrect pairs (i.e.,
x1x1 or x2x2) then by the choice of κ:∣∣∣∣∣∣E

 nε∑
i=1

2n∑
j=1

wi,j

− 2pgn′ε

∣∣∣∣∣∣ ≥ κnε/2.

Setting the threshold κnε/4 makes sure that the honest A is accepted with
high probability while the cheater is rejected almost certainly according to
Lemma 2.1. 2

Now, we are ready to give the proof of Theorem 3.2.
Proof. The completeness property follows since Lemmas 3.3, 3.6 and 3.7 guar-
antee that the honest A is accepted almost always in the tests of Steps 3 and
4, respectively.

B’s security for the case of passively cheating A is argued in Proposition 3.1.
Assume that A behaves consistently with some inputs (b0, b1) (note that we put
some requirements on B’s output for this case only5). Now, if A tries to cheat

5See the discussion in Section 3.5.1
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actively by sending wrong pairs or wrong syndromes, then Lemmas 3.6– and
3.5, respectively, make sure that she will be rejected with high probability.

It is only left to show that in Step 6, B indeed recovers bc with high proba-
bility given that he accepts all the tests.

b̂c ⊕
(

nε⊕
l=1

b′l

)
(3.11)

= bc ⊕
(

nε⊕
l=1

bl,c′⊕c

)
⊕
(

nε⊕
l=1

bl,cl

)
(3.12)

= bc ⊕
 nε⊕

l=1

b
l,

nεL

l=1

cl

⊕
(

nε⊕
l=1

bl,cl

)
(3.13)

= bc ⊕ b0,z ⊕ b0,z (3.14)
= bc (3.15)

Here, Equation (3.12) follows by expanding the expression for b̂c (see Step 5)
and the fact that b′l = bl,cl with high probability once the tests are accepted.
The choice of c′ in Step 4 implies (3.13) and then, (3.5), (3.6) imply (3.14).

Security for B follows from Proposition 3.1 for the case of passively cheating
A, the equations above make sure that B obtains the correct bit, while Lem-
mas 3.6 and Lemmas 3.7 extend B’s security for the case of actively cheating
A.

Security for A is shown in Proposition 3.1 for one execution of Protocol 3.2.
It is worth noting that the corrupt B may try to collect as much information as
possible on A’s inputs b0 and b1 trying to figure out the auxiliary inputs bl,0 and
bl,1 in each iteration. However, Protocol 3.2 is repeated only a number of times
polynomial in n and therefore, it is clear that the resulting B’s information on
at least one b0 and b1 will still be negligible in n.

This concludes the analysis of the protocol, and, hence, the proof of the
theorem. 2

3.4.4 String Oblivious Transfer

Note that string OT instead of bit OT could be obtained using hashing to a
bit-string (rather than a bit) as the privacy amplification function. However,
secret strings of large length l demand high communication complexity. Despite
of the fact [KM01] that in the asymptotic case, for any l which is fixed there
always exists n, so that OT based on any non-trivial BSC is secure, the generic
reductions from Bit to String OT – introduced in [BCR86] and later elaborated
in [BCS96,BC97,BCW03] – may be more efficient for some applications.

3.4.5 Special Case: Binary Symmetric Channel

We shall consider next various issues concerning asymptotic communication
complexity of the presented OT protocol for the special case when the DMC
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connecting the players is a δ-BSC.

Original Protocol

In this section, we consider the original OT protocol of [Cré97] with a modifi-
cation for transferring bit-strings instead of bits. We shall not recall the whole
construction but only describe the corresponding modifications in the protocols
of Section 3.4.

The first test of Step 4 is removed from Protocol 3.3. This can be safely done
since the test ensures that A can only send the two prescribed input symbols
that is obviously redundant in the binary case.

Consequently, we have X = Y = {0, 1} and w.l.o.g. we assume that x1 =
y1 = 0, x2 = y2 = 1 and PY |X=x1

(y2) = PY |X=x2
(y1) = δ. Then according

to (3.2):

ϕ =
δ2

δ2 + (1− δ)2
(3.16)

Note that B can always fill one of the subsets with good pairs since according
to (3.3)

pg = δ2 + (1− δ)2, (3.17)

that is bigger than 1/2 once 0 < δ < 1/2, therefore n′ = n. On the other hand,
it is clear that all the bad pairs are erasures from B’s point of view, i.e., they
contain no information about the corresponding input bit.

In Protocol 3.1, A will now encode her random input using the two-repetition
code. Note that the security proof of Subsections 3.4.1–3.4.3 is still valid in
this case, no matter how A encodes her random input bit x: x → (x, x) or
x→ (x, 1− x), both are kinds of the two-repetition code. However, the encod-
ing x→ (x, x) simplifies the presentation of this subsection.

Finally, in order to transmit the bit-strings b0, b1 of length l, A and B
agree on a random 2-universal hash function g: {0, 1}n → {0, 1}l, and then, in
Protocol 3.2, A encrypts her inputs as follows b̂i = bi⊕g(rIi) for i = {0, 1} where
“⊕” is a bitwise XOR. Consequently, Step 5 of Protocol 3.2 and Protocol 3.3
have to be changed in a corresponding way. It is easy to verify that the protocols
generate correct output in the case when A’s inputs are the bit-strings and the
operation “⊕” is bitwise XOR.

Remark 3.3 The second test of Step 4 can be sufficiently simplified observing
that in binary case there are output pairs of only two possible qualities: the
informative ones and the erasures “∆”. Therefore, the Equation (3.7) can be
replaced with

#{(l, i) | rl,i = y1y2 or rl,i = y2y1} < 2pgn′ε − (pg − 1/2)nε

as it follows from Theorem 4 of [Cré97]. We sketch the argument (which is

analogous to the ones in Lemmas 3.6, 3.7) here. Let wi,j =

{
1 if r′i,j 6= ∆
0 if r′i,j = ∆

.
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If A behaves honestly, then clearly we have E
(
nε∑
i=1

n∑
i=1

wi,j

)
= 2pgn′ε. At the

same time, if A sends at least nε wrong pairs, then we get

E

(
nε∑
i=1

n∑
i=1

wi,j

)
≤ pg(2n′ε − nε) + (1− pg)nε = 2pgn′ε − (2pg − 1)nε.

Then, by setting the threshold (2pg − 1)nε/2 = (pg − 1/2)nε, we ensure that
the honest A is accepted while the cheating A is rejected with high probability
according to Lemma 2.1.

Security Analysis

It was claimed in [Cré97] that the Passive OT Protocol 3.2 (and, consequently,
Protocol 3.3) could be proved secure for δ < 0.1982 while the security argument
for the noisier channel was left as an open question.

However, the very same protocol appears to build a secure OT for any δ,
0 < δ < 1/2, as it was realised in [KM01]. We shall sketch this argument
here because it also gives some insights in the complexity of Protocol 3.2 which
immediately carries over to the complete Protocol 3.3 since the complexity of the
latter polynomially bounded by that of the former. We shall see that there exist
certain values of the error rate δ which are optimal from the communication
complexity point of view.

Recall the security argument for Protocol 3.2. The best strategy for the
dishonest B is to split the accepted bits evenly over the two sets. The protocol
remains secure as long as the syndromes provided by the honest A do not
contain enough information for correcting all the errors in both sets. Now, we
are in the scenario of the privacy amplification theorem (Theorem 2.3) where
R(W |V = v) is B’s entropy of one set,6 l is the length of bit-strings b0, b1 and r
is the length of the syndromes. Since we want B’s information on at least one
of b0, b1 be negligible in n, we require:

R(W |V = v)− l − r > 0. (3.18)

The connection to the communication complexity of the protocol is the
following: the larger the right part of (3.18) is, the smaller code lengths n are
needed in order to provide the required (fixed) failure probabilities.

It only remains to express all the terms in (3.18) as functions of δ. Ac-
cording to Lemma 2.2, we substitute R(W |V = v) with corresponding Shannon
information since we are in asymptotic case. The important observation to
make here (which was missing in [Cré97]) is that only accepted bits contain
any information while erasures contain none. Thus, we write R(W |V = v) =
(1 − pg)n + pgh(ϕ)n. The number of check bits r can be taken to be nh(ϕ)
according to Theorem 2.2.

We take l = αn and we call α the rate of the protocol, the notion which
quite naturally arises here. A thorough analysis of the OT rate can be found
in [WN04].

6In fact, we do not have to specify which one, since we demand that at least one of the
bits must be lost by B.
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Plugging all the terms into (3.18) and dividing by n, we have

f(δ) = (1− pg) + pgh(ϕ) − α− h(ϕ)

= 2δ(1 − δ)
(

1− h

(
δ2

δ2 + (1− δ2)

))
− α. (3.19)

This function for the case of α = 0 is depicted on Figure 3.1. We stress that
since we consider the asymptotic case (i.e., n → ∞), α = 0 means that l is a
constant in n.

f (�)

�
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0.15

0.2

0.1 0.2 0.3 0.4 0.5

Figure 3.1: Exponent f(δ) for α = 0

Figure 3.1 shows that in asymptotic case, OT is always achievable from any
non-trivial δ-BSC, 0 < δ < 1/2, even if the strings of constant (in n) length
are transferred. On the hand, it is clear from (3.19) that whenever α > 0, i.e.,
l constitutes a fraction of n, the range of achievable error rates gets restricted
from both below and above. In the extreme case of α > 0.217, no secure String
OT can be constructed this way. We stress that α is the rate of Passive OT
Protocol 3.2 while the rate of the Complete Protocol 3.3 is clearly zero since
the complexity of the latter is O(n2+ε), ε > 0.

Protocol with Multiple Repetition Code

It is very natural to generalise Protocol 3.1 by having A encode her random
input using an a-repetition code. B accepts a received a-bit string if and only
if the number of zeroes or ones in this string is at least b, b < a.

This results in the following expression for the probability that B accepts a
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symbol:

p′g =
∑

i∈[0,a−b]∪[b,a]

(
a

i

)
δi(1− δ)a−i, (3.20)

while the error rate for the accepted symbols is

ϕ′ =
1
p′g

a∑
i=b

(
a

i

)
δi(1− δ)a−i. (3.21)

Now, we can perform an analysis which is analogous to the one in the
previous subsection. We take r = nh(ϕ′) as above. We have the following
expression for the average collision entropy of each symbol received by B: taking
the average is necessary since the entropy depends on the Hamming weight of
the received symbol:

R(W |V = v) =
1
2

a∑
i=0

(
a

i

)(
δi(1− δ)a−i + δa−i(1− δ)i

)
· h
(

δi(1− δ)a−i

δi(1− δ)a−i + δa−i(1− δ)i

)
. (3.22)

One can now substitute the expressions (3.20–3.22) into (3.18) and perform
the asymptotic analysis for the whole family of the OT protocols which are
modified for the use of (a, b)-repetition codes described above.

Example 3.1 Numerical calculations show that the function f(δ) of (3.19)
reaches the maximum value of 0.21 for δ = 0.2, so this error rate appears to
be optimal with respect to the communication complexity of the protocol using
two-repetition code. At the same time, the similar function for the scheme with
(a = 8, b = 6)-repetition reaches the maximum value of 0.285 for δ = 0.327.
This is a slightly better result (compared to the previous one) which is achieved
for the higher error rate.

The further generalisation for the use of general linear codes instead of
repetition codes was considered in [KM01]. This research is out of the scope of
this thesis.

3.5 Concluding Remarks

3.5.1 Input Awareness

As it was mentioned in Section 3.2.3, our protocols do not satisfy the input
awareness property, since for instance, in Protocol 3.2, the cheating B may
input “?” by splitting the good bits evenly over the two sets. Strictly speaking,
his selection bit c is undefined in this case. As for the cheating A, she may
misbehave in Protocol 3.3 by choosing the auxiliary inputs bl,0 and bl,1 for
l = 1, . . . , nε completely at random and otherwise behave honestly. It is easy to



40 Chapter 3. Standard Assumption: Discrete Memoryless Channel

see that it is impossible to define input bits b0 and b1 in this case. Consequently,
the security for B is not in place because one cannot argue that B receives bc
for c = {0, 1}.

The way to gain the input awareness property is to have the players commit
to their inputs and prove in zero-knowledge that they behaved correctly. This
construction was introduced in [Cré89] as Verifiable Oblivious Transfer .

3.5.2 Special Cases

Binary Channel

In the special case when the DMC is a binary channel, a simple modification
to the protocol of [Cré97, SW02] is enough in order to obtain secure OT from
such a channel. The idea is to have the sender A encode her random input as
a pair of different bits rather than using a repetition code, i.e., to encode “0”
as “01” and “1” as “10”, for instance.

In this case, it is clear that the output yy, y ∈ {0, 1} is an erasure from
the receiver’s point of view, while for A, the channel after encoding looks like
a BSC. Then exactly the same argument as in [Cré97,SW02] yields the secure
OT from any binary channel.

Error-free Symbols

Note that the probability ϕ might be equal to 0. It is the case when y1 or y2 are
not in the joint support of x1 and x2, i.e., PY |X=x1

(y2) = 0 or PY |X=x2
(y1) = 0,

respectively. This implies that receiving such symbols is equivalent to receiving
x1 or x2 in clear. In this case, the decoding algorithm in Protocol 3.1 has to be
modified in the following way:7

B outputs



0 if y1y1,2 or y1,2y2 is received
and

(
PY |X=x1

(y2) = 0 or PY |X=x2
(y1) = 0

)
1 if y1,2y1 or y2y1,2 is received

and
(
PY |X=x1

(y2) = 0 or PY |X=x2
(y1) = 0

)
∆ if any other pair is received.

Then the error correction in Protocol 3.2 is not needed. However, all the
checks of Step 4 in Protocol 3.3 have to be performed to prevent A’s active
cheating.

Rabin Oblivious Transfer

In the special case when there exists only one y ∈ Y such that PY |X=x1
(y) 6= 0

and PY |X=x2
(y) 6= 0, i.e., the only one y is in the joint support of x1 and x2, it

is easy to see that Protocol 3.2 implements a Rabin OT. Hence, the standard
technique of [Cré87] can be used to turn it into OT. Nevertheless, the test
introduced in Step 4 of Protocol 3.3 has still to be performed.

7Here, the expression “y1y1,2” denotes the case when the first received symbol in the pair
is y1 while the second one may be either y1 or y2 .
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3.5.3 Open Questions

Oblivious Transfer with Non-zero Rate

In [WNI03], a rate of unconditionally secure primitives is introduced and later in
[WN04], it is (quite naturally and somewhat analogously to [KM01]) defined as
the ratio of the secrets’ length to the number of channel uses. As we mentioned
above, the rate of our Protocol 3.3 is zero.

The open question (also posed in [WN04]) is to realise String OT (secure
against active cheating) with non-zero rate based on noisy channel.

Oblivious Transfer from More General Channels

Another objective is to realize OT from more general and practically important
channels, such as continuous alphabet channels or channels with memory.





Chapter 4

Binary Symmetric Channel: Practicality

Issues

4.1 Introduction

This chapter is focused on non-asymptotic analysis of OT and BC primitives
based on Binary Symmetric Channel introduced by Crépeau [Cré97]. These
primitives are proved to be secure in asymptotic case [Cré97, KM01, SW02],
i.e., when the number of the noisy channel’s uses is large enough. At the same
time, when given an implementation of BSC, it is important to find out what
this “large enough” means for some fixed values of the failure probabilities (i.e.,
the security requirements) – that is a purpose of non-asymptotic analysis.

We investigate here only the primitives based on Binary Symmetric Chan-
nel. We admit that this model is not entirely practical meaning that it quite
roughly describes the real communication channels. However, the material of
this chapter is to be seen as the first insight into non-asymptotic behaviour of
the unconditional primitives based in noisy channels with an attempt to estab-
lish the trade-offs between their communication complexity on the one hand
and their security on the other hand.

This chapter is based on [KM01,KM00].

4.2 Preliminaries

4.2.1 Communication Model

We assume that the sender A and the receiver B are connected by a Binary
Symmetric Channel with an error rate δ (0 < δ < 1/2) as well as a noiseless
channel.

4.2.2 On Error-Correcting Codes Used

In Chapter 3, we exploited concatenated codes due to their good asymptotic
performance. On the contrary, we are now going to deal with the codes of
a finite length. For the sake of simplicity of our analysis, we shall use BCH
codes. It is well-known that their asymptotic performance is not good (see,

43



44 Chapter 4. Binary Symmetric Channel: Practicality Issues

e.g. [MS77], Ch. 9. § 5), however for the lengths up to a few thousands, these
codes are among the best known ( [MS77], Ch. 9. § 4), hence they will suite
our needs.

Another advantage of using BCH codes is that it is easy to estimate the
minimal code distance d of some particular [n, k, d]-code. According to [PW72],
Theorem 9.2, for any positive integer m and t0 < n/2 there exists a binary BCH
code C of length n = 2m − 1 correcting t0 (or less) errors and containing no
more than mt0 check bits.

The next corollary follows taking into account that the following expressions
hold for the so called designed distance d0 [PW72]:

d0 = 2t0 − 1 (4.1)

and
d > d0. (4.2)

Corollary 4.1 For a BCH [n, k, d] code with n = 2m− 1 where m is a positive
integer, the number of check bits r can be estimated as follows

r ≤ m(d− 1)/2,

assuming d = d0.

4.3 Oblivious Transfer

For the simplicity sake, we will discuss in this section only the case of δ-BSC,
where 0 < δ < 1/2. However, according to the discussion of Subsection 3.5.2,
the results given here carry over straightforwardly for the case of any binary
channel.

We shall analyse the modified Protocol 3.3 as discussed in Subsection 3.4.5.
Whenever we refer to Protocol 3.3 in this chapter, we mean the modified one.

Recall that for the case of δ-BSC, the expressions for error rate of the good
pairs ϕ and the probability for B to receive a good pair pg are given in (3.16)
and (3.17), respectively.

4.3.1 Non-Asymptotic Analysis

We shall define failure probabilities for Protocol 3.3, then derive their depen-
dencies on the size n of the used BCH code C which in turn characterises a
communication complexity of the protocol. Finally, we give some numerical
calculation results.

The failure probabilities are defined as follows:

• Pc is the probability that completeness fails, i.e., the honest A is rejected
by the honest B.

• PA, A’s security failure probability that is the dishonest B’s advantage in
guessing the secret bit b1−c compared to a random guess.
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• P ′B , P ′′B , B’s security failure probabilities which are, respectively, the dis-
honest A’s probability to gain any non-zero advantage in guessing the
selection bit c compared to a random guess and the probability that B
obtains 1− bc, i.e., the incorrect choice bit.

Remark 4.1 On input awareness: We assume that A behaves consistently
with some input bits b0, b1 therefore the choice bit bc is well-defined for the
honest B. The dishonest B may input “?” by splitting good pairs over the
two sets, then his choice bit c is indeed undefined. However, we observe that B
might receive one of the inputs just by cheating passively. On the other hand,
he cannot do any worse than splitting the good pairs evenly over the two sets.
Then, we can conservatively assume that B gets one of the bits (the one which
he has most information about) for free. Hence, we can make our analysis for
the set which is filled with half of the good pairs. If the dishonest B has only
a negligible information about the corresponding A’s input (and we think of it
as b1−c), then we ensure that A’s security holds.

Let us consider Protocol 3.3 and first derive the relation for the completeness
failure probability. We denote nε by N .

Remark 4.2 In our analysis, we shall assume δ to be significantly smaller than
1/2. This is justified by the analysis of Subsection 3.4.5 where the optimal δ
is shown to be equal to 0.2. Recall that in the previous chapter, we used the
asymptotically good codes which correct errors close to the channel capacity.
On the contrary, the BCH codes which we use here have significantly worse
error-correction capability, therefore we expect the optimal δ to be less than
0.2. The assumption helps to simplify our analysis, but nevertheless, we give a
precise relation for each failure probability as well.

Note that the fact that δ is significantly smaller than 1/2 implies that ε
is significantly bigger than 1/2 (denoted ε >> 1/2). In the statement of the
following lemma, saying “n large enough”, we mean “large enough such that
the Chernoff bounds (2.1), (2.2) gives us a good estimate”. In our analysis,
we shall need n of about a few thousands, so the Chernoff bound will indeed
provide us with a good estimate.

Lemma 4.1 Completeness failure probability Pc can be expressed for large en-
ough n and ε >> 1/2 as follows:

Pc = max(Pc1, Pc2), where

Pc1 < exp
(
−N(pg − 1/2)2

4pgn

)
, and (4.3)

Pc2 < 1−
(

1− P̃c2

)N
, where (4.4)

P̃c2 <

(
exp(ξ)

(1 + ξ)(1+ξ)

)nϕ
, ξ =

⌊
d+ 1

2

⌋
1
nϕ

− 1.
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Proof. There are two possibilities for the honest A to be rejected by the honest
B: the second test of Step 4 and the test of Step 3, both in Protocol 3.3. We
shall estimate the honest A’s failure probability for both tests and choose Pc to
be the maximum of the two.

For the former test, the honest A fails it, if too few good bits were received
by B, namely less than 2pgnN−(pg−1/2)N good bits according to Remark 3.3.
We remind that N = nε and so Nn = n′ε. It easy to see that the probability of
A’s failure is upper bounded by the following sum:

Pc1 <

2pgnN−(pg−1/2)N∑
i=0

(
2nN
i

)
pig(1− pg)2nN−i,

which can be estimated using the Chernoff bound (2.2) yielding Equation (4.3).
Let us consider now the test of Step 3, Protocol 3.3. Clearly, the honest A

fails it whenever more than ψϕn errors occur during the transmission of the set
rIc in at least one iteration of the auxiliary Protocol 3.2, while the error rate
for each pair in rIc is ϕ. The probability that too many errors occur in rIc is
estimated as follows

P̃c2 <

n∑
i=ψϕn

(
n

i

)
ϕi(1− ϕ)n−i

for each execution of Protocol 3.2. The value ψϕn is the number of errors which
the code is capable to correct. Taking into account Equations (4.1) and (4.1),
we assume ψϕn =

⌊
d+1
2

⌋
where d is the minimal code distance of the chosen

code C. The Chernoff bound (2.1) implies the estimate (4.4) for P̃c2. Finally,
Equation (4.4) has to hold in all N (independent) executions of Protocol 3.2

hence Pc2 < 1−
(

1− P̃c2

)N
. 2

We consider next the failure probability for A. Let n and r be the length
and the number of check bits of the chosen code C, respectively.

Lemma 4.2 If B is cheating, then his bias PA in guessing b1−c (compared to
a random guess) is expressed as follows:

PA = P̃A − 1/2,

where P̃A is chosen according to

1 + (1− P̃A) log(1− P̃A) + P̃A log P̃A < N · Ir, (4.5)

where
Ir < (1− Pm)2−(R−r−1)/ ln 2 + Pm, (4.6)

where
R = n− γ

(
1 + log

(
ϕ2 + (1− ϕ)2

))
, (4.7)

Pm ≤
(

exp(ξ̃)

(1 + ξ̃)(1+ξ̃)

)2pgn

, where ξ̃ =
γ

pgn
− 1, (4.8)
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and γ satisfies

pgn << γ <
n− r − 1

1 + log (ϕ2 + (1− ϕ)2)
(4.9)

Proof. Let us first consider a single execution of Protocol 3.2. We perform our
analysis under a conservative assumption that the dishonest B uses the best
adversarial strategy which is, as shown in Subsection 3.4.2, the following: B
distributes the good bits evenly over the two sets r′Ic and r′I1−c

trying to get
as much information as possible about both bits bc and b1−c. According to
Remark 4.1, we think of b1−c as the input bit corresponding to the set which
the cheating B filled with a half of all received good pairs.

Fano’s inequality (2.3) allows us to estimate the probability that B decodes
b1−c correctly when given his Shannon’s information about b1−c. Hence, the left
part of (4.5) follows taking into account that b0 and b1 are the bits. We argue the
right part of (4.5) next. We denote by Ir the information about b1−c which the
cheating B learns from one instance of Protocol 3.2. The difficulty in estimating
this information is that Ir may vary from one execution of Protocol 3.2 to the
other depending on the number of good bits which B receives in each execution.
However, we can upper bound this information as in (4.6) by setting a certain
threshold γ on the number of good bits which B can place in each set r′Ic
and r′I1−c

. If this number is less than γ then we use the privacy amplification
theorem (Theorem 2.3) to estimate Ir otherwise, we assume that the cheating
B got too much information about b1−c and we conceptually give away this bit
to B. The rational behind this idea is that we expect a probability Pm that
the threshold γ is exceeded to be very small. We shall discuss the choice of
γ below. As for the exponent in (4.6), we note that in our scenario, R is B’s
Rényi entropy of r′I1−c

, so (4.7) follows by the definition of Rényi entropy, its
additivity and the following argument: Observe that only the good pairs carry
some information while the bad pairs, i.e., erasures clearly do not. Summarising,
we have n − γ bits of entropy contributed by erasures while each accepted bit
clearly contributes − log

(
ϕ2 + (1− ϕ)2

)
.

We argue (4.8) next. Observe that the probability Pm that the threshold γ
is exceeded is in fact a probability that B receives more than 2γ good bits in
one execution of Protocol 3.2. Pm can be expressed as follows:

Pm =
2n∑
i=2γ

(
2n
i

)
pig(1− pg)2n−i,

while estimating it using the Chernoff bound (2.1) gives us (4.8).
Note that we want to upper bound the total amount of information which

the dishonest B can collect about b1−c in Protocol 3.3. Consider the way A
forms the auxiliary inputs bl,0, bl,1 for 1 ≥ l ≥ nε in Step 1 of Protocol 3.3.
Without loss of generality, we can assume that the dishonest B always gets bl,0
and learns b0 for free1 while trying to guess bl,1. In this case, Ir is an upper
bound on the information which B obtains about bl,1, however B learns bl,0 and

1Recall that we took for granted from the beginning that the cheating B learns one of the
bits.
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eventually b0. Hence, as a matter of fact, Ir is his information on b1, i.e., b1−c.
It is clear now that B cannot learn more than N · Ir bits of information about
b1−c from N executions of Protocol 3.2, so the right part of (4.5) follows.

Finally, we argue the choice of γ as in (4.9). Clearly, we can estimate Ir
as in (4.6) only when the privacy amplification theorem holds, i.e., when the
exponent (4.6) is negative. This condition is expressed in the right part of (4.9).
On the other hand, a half of the average number of good bits received by B
(which is pgn) must be significantly smaller than γ such that the Chernoff
bound is applicable, this relation is denoted by “<<” in (4.9). This completes
the proof. 2

Lemma 4.3 The probability for the dishonest A to obtain any non-zero advan-
tage in guessing bc is

P ′B < exp
(−µξ′′2/2) , (4.10)

where µ = 2pgNn− (2pg − 1)N ′, ξ′′ = 2pgNn−(pg−1/2)N ′
E − 1,

and N ′ is the overall number of incorrect pairs sent by A.

Proof. There are two ways for the dishonest A to cheat in Protocol 3.3, assum-
ing that she behaves consistently with some inputs b0, b1. A can send wrong
syndromes in Step 3(a) but according to Lemma 3.5, if she is accepted then this
is equivalent to her honest behaviour, otherwise she is rejected and B’s security
holds. We conclude that we only need to analyse A’s attack with sending wrong
pairs – the second possible way for her to gain a bias about B’s selection bit.

As argued in the proof of Lemma 4.1, A is accepted by the honest B if he
gets at least 2pgNn− (pg − 1/2)N good bits. At the same time, if A sends N
wrong pairs then the expectation µ of the number of good bits in the output
will be different from the threshold above. More precisely, we have:

µ = pg(2Nn−N ′) + (1− pg)N ′ = 2pgNn− (2pg − 1)N ′.

And so, the Chernoff bound (2.2) gives us an estimate (4.10) for the probability
that the actively cheating A is not rejected. As a matter of fact, µ is going to
be significantly less than the threshold, because (as it was pointed out in the
beginning of Section 3.4.3) A must send at least N wrong pairs in Protocol 3.3
– at least one wrong pair in each iteration of Protocol 3.2 – in order to get any
non-zero advantage in guessing c.

2

Lemma 4.4 P ′′B = Pc2 for large enough n and ε >> 1/2.

Proof. Note that once A behaves consistently with some inputs b0, b1 (and in
our analysis, we do not impose any requirements otherwise), then the analysis of
Section 3.4 implies that it is impossible for the cheating A to have B output the
incorrect bit 1− bc unless B fails to correct all the errors in the good set rIc in
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each iteration of Protocol 3.2. The lemma follows observing that Equation (4.4)
gives an estimate for this probability. 2

Using Lemmas 4.1–4.4, the following numerical results have been obtained.

Example 4.1 Fix l = 1 (i.e., let b0,b1 be the bits) and the required failure
probabilities to be Pc = PA = P ′B = P ′′B = 10−6.

Then assuming a δ-BSC with a favourable error rate δ = 0.045, one has to
choose a code C of length n = 65535 with r = 4000, d = 501. Protocol 3.2
has to be iterated N = n1.513 ∼= 2 · 107 times that gives its communication
complexity of about 296 Gigabytes.

4.3.2 Concluding Remarks

The non-asymptotic analysis of OT based on BSC has shown that in order to
achieve the reasonable failure probabilities of 10−6, one needs to pay for it with
high communication complexity of some tens of Gigabytes.

We conclude that efficiency improvements are needed in order to make the
current implementation of OT based on BSC practical.

4.4 Bit Commitment

In this Section, we consider the protocol of [Cré97] for Bit Commitment with
modification for committing to an l-bit string b (instead of only one bit as in the
original protocol). We set the security requirements, briefly sketch the security
in the asymptotic case and then present a non-asymptotic analysis.

4.4.1 Security Definition

We require our protocol to satisfy the following properties:

• Completeness: if A and B are both honest, they accept the protocol with
high probability.

• Hiding: If A is honest then the commitment reveals to B nothing about b.
Formally, Db=z(V iewB) ' Db=z′(V iewB) for all z 6= z′, z, z′ ∈ {0, 1}l,
where Dz={0,1}l(·) is the distribution over all possible B’s views and A’s
inputs.

• Binding: If B is honest then he should always accept with some value b
which the honest A wishes to commit to. Furthermore, A is unable to
“change her mind” by opening another value. Formally:
P [A opens b when committed to b′] is negligible for all b 6= b′ such that
b ∈ {0, 1}l , b′ ∈ ( {0, 1}l ∪ {?} ).

Remark 4.3 Defining b′ this way, we demand a special kind of input awareness
property. The dishonest A may commit to an illegal input “?”, i.e., the value
that is undefined from her point of view, however she will not be able to open
it as any legal value in this case.
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4.4.2 Protocol

Initialisation phase: The parties agree on using a linear [n, k, d] code C with
k = (1−H(δ)+ξ)n, ξ > 0 and d ≥ βδn, where β is chosen such that 0 < β < 1,
h(δ) − ξ > h(βδ); and a hash function g : {0, 1}n → {0, 1}l randomly chosen
from a 2-universal class.

Protocol 4.1 Commit

1. Alice picks at random a code word c ∈ C and computes an l-bit string x
such that2

b = x⊕ g(c), (4.11)

2. A sends c over δ-BSC and announces x to B,

3. B stores x and c′, where c′ is the received noisy version of c.

Protocol 4.2 Open

1. A announces the code word c to B,

2. B computes b using (4.11) given x and c. B accepts b, if c ∈ C and
dH(c, c′) ≤ (δ + κ)n, κ < βδ(1/2 − δ)/2, otherwise he rejects.

4.4.3 Asymptotic Analysis: Sketch

The code C is chosen at random so that it satisfies the conditions given in the
initialisation phase with high probability according to Theorem 2.1.

Intuitively, the set of codewords of C is used as a “sparse” set and the
commitments are chosen from this set. The transmission through the δ-BSC
“shifts” the commitment c approximately to the distance of δn in the Hamming
sense. Then, c′ becomes an evidence for the commitment c.

Note that the conditions on the code C which are set in the initialisation
phase imply that the code is not capable to correct all the errors in c′ using
the decoding algorithm of C with high probability. Hence, the hiding property
is achieved since the computationally unbounded B may find the codewords
which are δn-close to c′ (in Hamming sense), but he is unable to tell them apart
because they are all equally likely from his point of view as the candidates for
being the actual c.

Formally, let C, C′ and X be the random variables describing c, c′ and x,
respectively, from B’s point of view. Let G be a random variable describing
the choice of g. Let 0 < ξ′ < ξ. Note that before committing takes place,
C ∈R C and X ∈R {0, 1}l uniformly for B. We apply Theorem 2.3 where
R(W |V = v) = (h(δ) − ξ′)n due to Lemma 2.2; and r = n − k = (h(δ) − ξ)n
obtaining the following:

Lemma 4.5 For all sufficiently large n:

I(C ⊕ g(X); syn(C) = (0, 0, . . . , 0), C′,X,G) ≤ 2−((ξ−ξ′)n−l)/ ln 2.
2In a particular case when b is a bit, the string x can be removed from (4.11).
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The lemma basically says that one can always choose the constants ξ and
ξ′ such that B will be left with negligible (in n) amount of information about
b, i.e., the scheme is indeed hiding.

On the other hand, the scheme is also binding because, intuitively, A does
not know “where” c was shifted to by the BSC. She is able to find a codeword
which can be opened as some b̃ 6= b, but it is unlikely that this word will be
δn-close to c′ in the Hamming sense.

As a matter of fact, the dishonest A may send any word w ∈ {0, 1}n in order
to later claim it as some codeword which has been sent. We observe that no
matter which w the cheating A sends, for any codeword c̃ ∈ C (excluding may
be a certain c̄ which satisfies dH(c̄, w) < βδn/2)3, we have: dH(c̃, w) > βδn/2
since d ≥ βδn. Let w′ be the noisy version of w. Consider the random vari-
able dH(c̃, w′). It is easy to see that E (dH(c̃, w′)) ≥ δn + β(1/2 − δ)n, so by
Lemma (2.1), the probability Pr[dH(c̃, w′) < δn + βδ(1/2 − δ)n − κn] is ex-
ponentially small in n for all sufficiently small κ and all sufficiently large n.
We conclude that if the cheating A tries to announce any codeword but the
certain legal c which she has committed to (i.e., to change her mind) she will
be accepted only with small probability. This proves the following Lemma.

Lemma 4.6 Protocol 4.1 is binding for any κ < βδ(1/2 − δ)/2, i.e., the dis-
honest A fails to open any string b but the one she has committed to except with
probability negligible in n.

The completeness is argued taking into account that the honest A always
sends a codeword to B. Let us consider the random variable dH(c, c′). It is
clear that E (dH(c, c′)) = δn, then by Lemma (2.1), Pr [dH(c, c′) > (δ + κ)n] is
negligible in n for all sufficiently small κ and all sufficiently large n. Hence the
honest B accepts with high probability when A is honest, yielding:

Lemma 4.7 The completeness property fails only with probability negligible in
n when κ < βδ(1/2 − δ)/2.

4.4.4 Non-Asymptotic Analysis

In our non-asymptotic analysis, we shall use the BCH codes as discussed in
Section 4.2.2.

The failure probabilities are defined as follows:

• Pc is the probability of completeness failure, i.e., the probability that
honest A is rejected by honest B.

• PA is the probability that binding fails, that is when dishonest A success-
fully changes her mind when opening the string b.

• PB is dishonest B’s advantage (compared to a random guess) in guessing
b prior to the opening.

3Note that if there exists c̄ ∈ C, such that dH(c̄, w) < βδn/2 then we define A’s commitment
as c̄. Otherwise, when A sends the word w which is at least βδn/2-far in Hamming sense from
any codeword in C, A’s commitment is defined as “?” as discussed in Remark 4.3



52 Chapter 4. Binary Symmetric Channel: Practicality Issues

Lemma 4.8 Completeness failure probability Pc can be expressed as follows:

Pc =
n∑

i=dt+1

(
n

i

)
δi(1− δ)n−i, (4.12)

where dt is the threshold such that B rejects if dH(c, c′) > dt.

Proof. Follows by counting the probability that more than dt errors occur dur-
ing the transmission of c over the δ-BSC. 2

Let r be the number of check bits of the chosen code C.

Lemma 4.9 The dishonest B has a bias

PB = P̃B − 1/2l,

in guessing b (compared to a random guess) where P̃B is chosen according to

l + (1− P̃B) log
1− P̃B
2l − 1

+ P̃B log P̃B < Ib, (4.13)

where
Ib ≤ 2−(R−l−r)/ ln 2, (4.14)

R = −n log
(
δ2 + (1− δ)2

)
. (4.15)

Proof. We bound the probability P̃B (which is the probability for the dishonest
B to decode b correctly before the opening takes place) using Fano’s inequal-
ity (2.3) as in (4.13) where Ib is his Shannon’s information about b. The privacy
amplification theorem gives us a bound (4.14) for Ib, while Equation (4.15) fol-
lows by the definition of Rényi entropy and its additivity. 2

Lemma 4.10 The dishonest A succeeds in violating the binding condition with
the following probability:

PA = max
0≤s≤d/2

(P [opening c] + P [opening c̃])/2, where (4.16)

P [opening c] =
s∑
i=0

(
s

i

)
(1− δ)iδs−i

dt−i∑
j=0

(
n− s

j

)
δj(1− δ)n−s−j , (4.17)

P [opening c̃] =
d−s∑
i=0

(
d− s

i

)
(1− δ)iδd−s−i

dt−i∑
j=0

(
n− d+ s

j

)
δj(1− δ)n−d+s−j .

(4.18)

Proof. We recall first that the dishonest A may send to B not necessarily a
codeword c ∈ C but an arbitrary n-bit string w. B cannot immediately detect
this fraud since w will be corrupted by noise. Suppose that A sends the string w
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such that the nearest code word c ∈ C occurs at the Hamming distance s from
w, i.e. dH(c, w) = s. Then, the following holds for some other code word c̃:

dH(w, c̃) ≥ d− s.

It is now easy to verify that the probabilities that A opens the codeword c or c̃
and they are accepted by B can be expressed as (4.17) and (4.18), respectively.
In other words, these are the probabilities that sending a word which is s (or
d − s) far from c in the Hamming sense does not add too much distortion to
the noise introduced by the δ-BSC.

Now, (4.16) gives us the maximal probability for the cheating A to open
successfully either c or c̃ (c, c̃ ∈ C) while sending w (such that dH(w, c) = s,
dH(w, c̃) ≥ d− s) at the commitment stage. Clearly, this is the best that A can
achieve. The claim now follows. 2

The numerical calculations using Lemmas 4.8 – 4.10 give the following re-
sults.

Example 4.2 Fix l = 1, and the required failure probabilities Pc = 10−4,
PB = 10−4. Table 4.1 depicts the binding failure probability PA which is
computed for different code lengths n and the corresponding optimal error
rate δopt (the rate for which PA is minimal over all δ, 0 < δ < 1/2 and s,
0 ≤ s ≤ d/2).4

Table 4.1: Binding failure probabilities

n δopt PA
1023 0.213 0.738
2047 0.187 0.682
4095 0.179 0.268
8191 0.187 0.020
16383 0.169 4.4 · 10−5

The results of Example 4.2 show that the protocol provides relatively small
failure probabilities in non-asymptotic case for relatively short n resulting in
communication complexity of a few Kilobytes. For instance, the probability
that A successfully changes her mind PA = 4.4 · 10−5 for n = 16383, B decodes
a codeword before the opening with probability PB = 10−4 (which is close to a
random guessing) and completeness fails with probability Pc = 10−4.

The other non-asymptotic result is worth mentioning. We analyse the
protocol rate defined by α = l/n (the definition which is rigorously studied
in [WNI03]), that characterise a “capacity” of the commitment – its length l
given the code length n, such that the protocol remains secure.

4In fact, s = d/2 always gave the minimal PA.
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Example 4.3 Fix l = 20 and let the requirements be Pc = 10−4, PA = 5 ·10−5

and PB = 10−6. Then the numerical calculations according to Lemmas 4.8 –
4.10 show that it suffices to choose a BCH code with n = 16383, r = 8219 and
d = 1175.

This example shows that using hashing to the bit strings, one can obtain
commitments to a (short) bit string “almost for the same price” as a commit-
ment to a bit in terms of the security requirements.

4.4.5 Concluding Remarks

We conclude that the Bit Commitment protocol of [Cré97] can be made secure
for the price of reasonably low communication complexity: of order of Kilobytes.

One can use the privacy amplification technique to commit to bit strings
rather than one bit. In the bit-string case, there appears a trade-off between
the protocol rate and the security requirements. One can use the relations
presented in this section to optimise the parameters of the protocol given the
security requirements.



Chapter 5

Universal Composability in Unconditional

Model

5.1 Introduction

In this chapter, we introduce the universally composable (UC) framework of
Canetti [Can01] modified for the unconditional model. Some preliminary ideas
on secure protocol composition in this model appeared in [Can00]1 with ap-
plication to secure function evaluation. Another related work of Ben-Or and
Mayers [BM04] deals with UC in the quantum setting considering unconditional
security as well.

In our presentation, we restrict ourselves to the case of two-party primitives
based on noisy channels. This restriction helps to simplify the presentation and
to focus on the issues which are essential for our setting. We believe although we
do not prove it here formally, that the proposed modification is valid even with-
out the restriction to a particular type of primitives or communication model.
The material presented here is somewhat informal and not comprehensive since
its main purpose is to introduce a basic notation and tools used for the UC
security proofs in the next chapter. Nonetheless, we give a comparison to the
original framework when it is relevant and argue that the original techniques
and proofs are still valid under the changes we made.

We consider the protocols which take place in a model with two players
A, B connected by an error-free channel and also by a noisy channel with
some particular characteristic such as a UNC or a PassiveUNC. We assume a
bounded delay in a message delivery for all channels such that failure to send
a message can be detected. The noisy channels we study in this work can
very conveniently be modelled as ideal functionalities and we assume that the
players communicate using these functionalities but not an open network as in
the original framework. Another related issue is a consequence of being in the
two-party case: we do not think of our protocols as subroutines in a multi-
player protocol, nor are we concerned with external observers, only with what
a corrupted A or B might do or learn. We therefore assume that unless the
adversary corrupts a player, he gets no information about the communication

1Although in this work, the label of universal composability had not yet been coined.
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between A and B.
All our protocols are unconditionally secure for both players. The standard

approach to security proofs has been (as in the previous chapters) to assume
that either A or B is cheating, then prove some relevant security properties
and if both parties are honest then they will accept the protocol (completeness
property). We express it in the UC framework by assuming an infinitely pow-
erful static adversary who from the onset has corrupted no one, or either A or
B. The question whether our results extend to the case of adaptive adversaries
is left out of the scope of our work.

Since the results we prove are information-theoretical in nature, we shall
allow all the entities infinite computing power. At the same time, we stress
that honest players can execute our protocols efficiently, i.e., with a number
of subroutine invocations polynomial in the security parameter and the size of
the input. This ensures that the composition theorem holds in this model if we
demand a statistical simulation instead of a computationally indistinguishable
one as in the original framework.

This presentation follows the lines of the excellent overview of Lindell [Lin03].
We refer the reader to [Can01a,Can03] for the details on the UC framework.

5.2 Overview of the Framework

We first review the syntax of protocols in our communication model. We present
the real-life model of computation, the ideal process, and the general definition
of UC realising an ideal functionality. Next, we present the hybrid model and
composition theorem.

5.2.1 Protocol Syntax

Following [GMR85,Gol01], a protocol is represented as a system of probabilistic
interactive Turing machines (ITM’s), where each ITM represents the program
to be run within a different party. Specifically, the input and output tapes
model inputs and outputs that are received from and given to other programs
running on the same machine, and the communication tapes model messages
sent to and received from the network. Adversarial entities are also modelled
as ITM’s.

5.2.2 Basic Framework

Protocols that UC realise a given task (or, protocol problem) are defined in
three steps, as follows. First, the process of executing a protocol in the pres-
ence of an adversary and in a given computational environment is formalised.
This is called the real-life model. Next, an ideal process for carrying out the
task at hand is formalised. In the ideal process the parties do not communicate
with each other. Instead they have access to an “ideal functionality”, which is
essentially an incorruptible trusted party that is programmed to capture the
desired functionality of the given task. A protocol is said to UC realise an ideal
functionality if the process of running the protocol amounts to emulating the
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ideal process for that ideal functionality. We overview the model for proto-
col execution (called the real-life model), the ideal process, and the notion of
protocol emulation.

In the work [Can01], the players communicate over an asynchronous network
which models current realistic communication networks (such as the Internet).
But our case is different – we assume the players to be connected by both noisy
and error-free channel which are modelled by ideal functionalities. Furthermore,
we assume a bounded delay in message delivery for all channels such that failure
to send a message can be detected. We note that an issue of authentication
is not essential in the two-party case: upon receiving a message, a receiver
knows who sent it. Parties may be broken into (i.e., become corrupted)
throughout the computation, and once corrupted their behaviour is arbitrary
(or, malicious). We restrict ourselves to the case of static adversary who has
to decide on the onset of the protocol whether he will corrupt either one of the
players or none. In Subsection 5.2.7, we discuss a modification to the general
model for the case of passive (or semi-honest) adversary. Finally, we do not
impose any restrictions on the computational power of all the involved entities.

5.2.3 Protocol Execution in the Real-Life Model

We sketch the process of executing a given protocol π (run by the players A and
B) with some adversary Adv and an environment machine Z with input z. All
entities have a security parameter k ∈ N. The execution consists of a sequence
of activations, where in each activation a single participant (either Z, Adv, or
some Q ∈ {A,B}) is activated. The environment is activated first. In each
activation, it may read the contents of the output tapes of all the uncorrupted
parties2 and the adversary, and may write information on the input tape of one
of the parties or of the adversary. Once the activation of the environment is
complete (i.e., once the environment enters a special waiting state), the entity
whose input tape was written on is activated next.

The adversary may decide to corrupt a party on the onset of the protocol.
Upon corrupting a party, the adversary gains access to all the tapes of that
party and controls all the party’s future actions. In addition, whenever a party
is corrupted the environment is notified (say, via a message that is added to
the output tape of the adversary). Once the adversary is activated, it may read
its own tapes but not the outgoing communication tapes of the uncorrupted
parties. This models our assumption that the adversary does not intercept the
communication between the parties unless one of the latter is corrupted. Once
the activation of the adversary is complete, the environment is activated next.

Once a party is activated due to an input given by the environment, it
follows its code and possibly writes local outputs on its output tape. Once the
activation of the party is complete the environment is activated. The protocol
execution ends when the environment completes an activation without writing
on the input tape of any entity. The output of the protocol execution is the

2The environment is not given read access to the corrupted parties output tapes because
once a party is corrupted, it is no longer activated. Rather, the adversary sends messages in
its name. Therefore, the output tapes of corrupted parties are not relevant.
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output of the environment. We assume that this output consists of only a single
bit.

In summary, the order of activations is as follows. The environment Z is
always activated first. The environment then either activates the adversary
Adv or some party Q by writing on an input tape. If the adversary is activated,
it may return control to the environment, or it may activate some party Q by
delivery a message to Q. After Q is activated, control is always returned to Z.
We stress that at any point, only a single party is activated. Furthermore, Z and
Adv can only activate one other entity (thus only a single input is written by Z
per activation and likewise Adv can deliver only one message per activation).

Let REALπ,Adv,Z(k, z, r̄) denote the output of environment Z when interact-
ing with adversary Adv and parties running protocol π on security parameter k,
input z and random tapes r̄ = rZ , rAdv, r1, . . . , rn as described above (z and rZ
for Z, rAdv for Adv; ri for party Pi). Let REALπ,Adv,Z(k, z) denote the random
variable describing REALπ,Adv,Z(k, z, r̄) when r̄ is uniformly chosen.

5.2.4 Ideal Process

Security of protocols is defined via comparing the protocol execution in the
real-life model to an ideal process for carrying out (a single instance of) the
task at hand. A key ingredient in the ideal process is the ideal functionality
that captures the desired functionality, or the specification, of the task. The
ideal functionality is modelled as another ITM that interacts with the environ-
ment and the adversary via a process described below. More specifically, the
ideal process involves an ideal functionality F , an ideal process adversary (or
simulator) S, an environment Z with input z, and the dummy parties Ã, B̃.

As in the process of protocol execution in the real-life model, the environ-
ment is activated first. As there, in each activation it may read the contents of
the output tapes of both (dummy) parties and the adversary, and may write
information on the input tape of either one of the (dummy) parties or of the ad-
versary. Once the activation of the environment is completed the entity whose
input tape was written on is activated next.

The dummy parties are fixed and simple ITM’s: Whenever a dummy party is
activated with an input, it writes it on its outgoing communication tape for the
ideal functionality F . Furthermore, whenever a dummy party is activated due
to delivery of some message (from F ), it copies this message to its output. At
the conclusion of a dummy party’s activation, the environment Z is activated.
The communication by the dummy parties is with the ideal functionality F only.
The messages sent between the dummy parties and F are secret and cannot
be read by the adversary S. However, some information may be available to S
and we demand that the functionality definition should specify it explicitly. For
example, consider a commit message of the following format: (Commit, cID,
b), where “commit” states that the party is committing to a new value, cID
is the commitment identifier, b is the value being committed to. We call the
issuer of the message a committer and the other party a receiver. In principle,
the message must contain a so-called session ID as well, we leave it implicit so
far and discuss this issue below in Subsection 5.2.8. Hence, in our example, the
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functionality for Bit Commitment records cID, b and sends (Commit,cID) to
the receiver and the adversary.

When the ideal functionality F is activated, it reads the contents of its
incoming communication tape, and potentially sends messages to the parties
and to the adversary by writing these messages on its outgoing communication
tape. Once the activation of F is complete, the environment Z is activated
next.

When the adversary S is activated, it may read only its own input tape.
S cannot read the messages on the outgoing communication tape of F (unless
the recipient of the message is S itself or a corrupted party). Then, S may
write a message from itself on F ’s incoming communication tape.3 On the
onset of the protocol, the adversary S may corrupt a party. Upon corrupting
a party, both Z and F learn the identity of the corrupted party (say, a special
message is written on their respective incoming communication tapes).4 The
adversary controls the party’s actions from the time that the corruption takes
place. The adversary S may deliver a message to F on behalf of a corrupted
party Q by copying it from Q’s outgoing communication tape to Z’s incoming
communication tape.

If the adversary delivered a message to to the functionality F in an activa-
tion, then F is activated once the activation of S is complete. Otherwise the
environment Z is activated next.

As in the real-life model, the protocol execution ends when the environment
completes an activation without writing on the input tape of any entity. The
output of the protocol execution is the (one bit) output of Z.

In summary, the order of activations in the ideal model is as follows. As in
the real model, the environment Z is always activated first, and then activates
either the adversary S or some dummy party Pi by writing an input. If the
adversary S is activated, then it either activates a dummy party Pi or the
ideal functionality F by delivering the entity a message, or it returns control to
the environment. After the activation of a dummy party or the functionality,
the environment is always activated next. Let IDEALF,S,Z(k, z, r̄) denote the
output of environment Z after interacting in the ideal process with adversary S
and ideal functionality F , on security parameter k, input z, and random input
r̄ = rZ , rS , rF as described above (z and rZ for Z, rS for S; rF for F ). Let
IDEALF,S,Z(k, z) denote the random variable describing IDEALF,S,Z(k, z, r̄)
when r̄ is uniformly chosen.

3Many natural ideal functionalities indeed send messages to the adversary S (see, e.g., the
BC functionality of Section 6.2.2). On the other hand, having the adversary S send messages
to F is useful in order to reflect the (allowed) adversary’s influence on the protocol or primitive
that realises the functionality. For example, in Unfair Noisy Channel, the error rate may be
chosen by the adversary, so we allow him this capability by having him send a value of the
desired error rate to F . We stress that in our model, S is allowed to do that even if no player
is corrupt. This models the deviations of channel’s error rate which may happen in a realistic
communication scenario.

4Allowing F to know which parties are corrupted gives it considerable power. This power
provides greater freedom in formulating ideal functionalities for capturing the requirements
of given tasks. On the other hand, it also inherently limits the scope of general realisability
theorems.
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5.2.5 UC Realising an Ideal Functionality

We say that a protocol π UC realises an ideal functionality F if for any real-life
adversary Adv there exists an ideal process adversary S such that no environ-
ment Z, on any input, can tell with non-negligible probability whether it is
interacting with Adv and parties running π in the real-life process, or with S
and F in the ideal process. This means that, from the point of view of the
environment, running protocol π is just as good as interacting with an ideal
process for F . (In a way, Z serves as an interactive distinguisher between the
two processes.) We have:

Definition 5.1 Let n ∈ N. Let F be an ideal functionality and let π be a
two-party protocol. We say that π UC realizes F if for any adversary Adv there
exists an ideal-process adversary S such that for any environment Z,

{IDEALF,S,Z(k, z)}k∈N,z∈{0,1}∗ ' {REALF,S,Z(k, z)}k∈N,z∈{0,1}∗ (5.1)

We remind that ' here means statistical indistinguishability of the two
ensembles.

5.2.6 On Non-Blocking Adversaries

Note that in the two-party setting, the definition provides no guarantee that a
protocol will ever generate output or “return” to the calling protocol. Indeed,
nothing prevents the adversary from corrupting a player and then refusing to
continue the protocol. Instead, we concentrate on the security requirements in
the case that the protocol generates output.

A corollary of the above fact is that a protocol that “hangs”, never sends
any messages and never generates output, UC realizes any ideal functionality.
Thus, in order to obtain a meaningful feasibility result, we introduce the notion
of a non-blocking simulator. This property means that if the real-life adversary
does not corrupt any party then the simulator does not corrupt any party
either. In this case, a party may not necessarily receive output. However, this
only happens if either the functionality does not specify output for this party,
of if the real-life adversary actively interferes in the execution by corrupting a
party and refusing to continue interaction.

Note that demanding a simulator to be non-blocking is a way to state in the
UC framework the traditional completeness property for a two-party protocol:
if both players are honest, the protocol must complete successfully. In our
protocols, we ensure that the simulators are non-blocking.

5.2.7 On Passive Adversaries

Definition 5.1 gives the adversary complete control over corrupted parties (such
an adversary is called active). Specifically, the model states that from the
time of corruption the corrupted party is no longer activated, and instead the
adversary sends messages in the name of that party. In contrast, when a passive
adversary corrupts a party, the party continues to follow the prescribed protocol.
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Nevertheless, the adversary is given read access to the internal state of the
party at all times. Everything else remains the same as in the above-described
active model. We say that protocol π UC realizes functionality F for passive
adversaries, if for any passive real-life adversary Adv there exists an ideal-
process passive adversary S such that Equation 5.1 holds for any environment Z.

5.2.8 Composition Theorem

In order to state the composition theorem, and in particular in order to for-
malise the notion of a real-life protocol with access to multiple copies of an ideal
functionality, the hybrid model of computation with access to an ideal function-
ality F (or, in short, the F -hybrid model) is formulated. This model is identical
to the real-life model, with the following additions. On top of sending messages
to each other, the parties may send messages to and receive messages from an
unbounded number of copies of F . Each copy of F is identified via a unique
session identifier (sID); all messages addressed to this copy and all message
sent by this copy carry the corresponding sID. The session ID’s play a central
role in the hybrid model and the composition operation, in that they enable
the parties to distinguish different instances of a protocol. Indeed, differentiat-
ing protocol instances via session ID’s is a natural and common mechanism in
protocol design.

However, it turns out that among the functionalities which we shall in-
troduce in the next chapter, an explicit treatment of the session identifiers is
essential only in one of them (the functionality RandomChoice defined in Sub-
section 6.2.3). Therefore, we shall explicitly handle the session ID’s only in the
definition of the RandomChoice leaving this issue implicit for the rest of func-
tionalities. We assume that the session ID’s are handled there in the standard
way.

The communication between the parties and each one of the copies of F
mimics the ideal process. That is, when the message is delivered from a party
to a copy of F with a particular sID, that copy of F is the next entity to be
activated. (If no such copy of F exists then a new copy of F is created and
activated to receive the message.)

The hybrid model does not specify how the sID’s are generated, nor does
it specify how parties “agree” on the sID of a certain protocol copy that is to
be run by them. These tasks are left to the protocol in the hybrid model. This
convention simplifies formulating ideal functionalities, and designing protocols
that UC realise them, by freeing the functionality from the need to choose the
sID’s and guarantee their uniqueness. In addition, it seems to reflect common
practice of protocol design in existing networks.

Let HYBRIDF
π,Adv,Z(k, z) denote the random variable describing the out-

put of environment machine Z on input z, after interacting in the F -hybrid
model with protocol π and adversary Adv, analogously to the definition of
REALπ,Adv,Z(k, z). (We stress that here π is a hybrid of a real-life protocol
with ideal evaluation calls to F .)
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5.2.9 Replacing a Call to F with a Protocol Invocation

Let π be a protocol in the F -hybrid model, and let ρ be a protocol that UC
realizes F . The composed protocol πρ is constructed by modifying the code of
each ITM in π so that the first message sent to each copy of F is replaced with an
invocation of a new copy of ρ with fresh random input, with the same sID, and
with the contents of that message as input. Each subsequent message to that
copy of F is replaced with an activation of the corresponding copy of ρ, with the
contents of that message given to ρ as new input. Each output value generated
by a copy of ρ is treated as a message received from the corresponding copy
of F . (See [Can01] for more details on the operation of composed protocols,
where a party, i.e., an ITM, runs multiple protocol-instances concurrently.) If
protocol ρ is a protocol in the real-life model then so is πρ. If ρ is a protocol in
some G-hybrid model (i.e., ρ uses ideal evaluation calls to some functionality
G) then so is πρ.

5.2.10 Theorem Statement

In its general form, the composition theorem basically says that if ρ UC realizes
F in the G-hybrid model for some functionality G, then an execution of the
composed protocol πρ, running in the G-hybrid model, “emulates” an execution
of protocol π in the F -hybrid model. That is, for any adversary Adv in the G-
hybrid model there exists an adversary S in the F -hybrid model such that no
environment machine Z can tell with non-negligible probability whether it is
interacting with Adv and πρ in the G-hybrid model or it is interacting with S
and π in the F -hybrid model.

A corollary of the general theorem states that if π UC realises some func-
tionality I in the F -hybrid model, and ρ UC realises F in the G-hybrid model,
then πρ UC realises I in the G-hybrid model. (Here one has to define what it
means to UC realise functionality I in the F -hybrid model. This is done in the
natural way.) That is:

Theorem 5.1 ( [Can01] ) Let F,G, I be ideal functionalities. Let π be an n-
party protocol in the F -hybrid model, and let ρ be an n-party protocol that UC
realises F in the G-hybrid model. Then for any adversary Adv in the G-hybrid
model there exists an adversary S in the F -hybrid model such that for any
environment machine Z we have:{

HYBRIDG
πρ,Adv,Z(k, z)

}
k∈N,z∈{0,1}∗ '

{
HYBRIDF

π,S,Z(k, z)
}
k∈N,z∈{0,1}∗

In particular, if π UC realises functionality I in the F-hybrid model then πρ UC
realises I in the G-hybrid model.

Consider the case that G is the empty functionality, and so the G-hybrid
model is actually the real model. Then, Theorem 5.1 states that ρ remains
secure when run concurrently with any protocol π. In other words, ρ remains
secure under concurrent general composition (with arbitrary sets of parties).
We note that although π technically seems to be a “calling protocol”, it can
also represent arbitrary network activity. Thus, we obtain that ρ remains secure
when run concurrently in an arbitrary network.
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5.3 On the Proof of Composition Theorem

The main concern in our modification of the UC framework is to make sure
that the proof of the UC composition theorem still works in this case. We shall
give an intuition why this is true. Recall the proof of the composition theorem
(Section 5.4 of [Can01a]). Let F be an ideal functionality, π be a protocol in
the F -hybrid model and ρ be a protocol that securely realises F , let πρ be the
composed protocol. The aim is to construct an adversary H in the F -hybrid
model such that no Z will be able to tell whether it is interacting with πρ and
adversary Adv in the real-life model or with π and H in the F -hybrid model.
That is, for any Z, H should satisfy

REALπρ,Adv,Z ' HYBRIDF
π,H,Z . (5.2)

The security of ρ guarantees that there exists a simulator S, such that for any
environment Zρ:

REALρ,Adv,Zρ ' IDEALF,S,Z . (5.3)

The construction of H is given in [Can01a] and its validity is demonstrated,
based on validity of S, via a so-called hybrid argument. Let m = m(k), where
k is the security parameter, be an upper bound on the number of copies of ρ
that are invoked in this interaction. Informally, we let the F (l)-hybrid model
denote the model where the interaction with the first l copies of F works as
in the F -hybrid model, whereas the rest of the copies of F are replaced with
an invocation of ρ. In particular, an interaction of Z with H in the F (m)-
hybrid model is essentially identical to an interaction of Z with H in the F -
hybrid model. Similarly, an interaction of Z with H in the F (0)-hybrid model
is essentially identical to an interaction of Z with Adv in the real-life model.

Now, assume that there exists an environment Z that distinguishes with
probability ε between an interaction with H in the F -hybrid model and an
interaction with Adv in the real-life model. Then there is an 0 ≤ l ≤ m such
that Z distinguishes between an interaction with H in the F (l)-hybrid model
and an interaction with H in the F (l−1)-hybrid model. We then construct an
environment Zρ, that interacts with parties running a single copy of ρ, and can
distinguish with probability ε/m between an interaction with Adv and parties
running ρ in the real-life model, and an interaction with S in the ideal process
for F . Clearly, this would violate Equation (5.3).

The important observation is that m(k) is polynomial in k since the ITM’s
are PPT in the original framework. Therefore, no matter how many copies of
ρ are run, their “total contribution” will not be enough for the environment
Zρ to distinguish successfully, so the proof by contradiction is possible. In our
case, the involved entities are unbounded in their computing power however,
we stress that our protocols are efficient, i.e., the honest players can complete
them in number of steps polynomial in the security parameter k. Hence, they
are not going to run more than polynomially many copies of ρ and exactly the
same argument as in [Can01] (but for statistical indistinguishability) will be
valid in our modification as well.





Chapter 6

Weakened Assumption: Unfair Noisy

Channel

6.1 Introduction

In this chapter, we consider an important issue in unconditional cryptographic
primitives – making the very assumption, i.e., the noise model more practical.
In the previous chapters, we assumed that the players knew the distribution
of the noise precisely and could not affect it, while such the influence is quite
possible in the real channels, for instance, in an open-air communication such
as radio-links.

Here, we elaborate on the methods and techniques introduced by Damg̊ard,
Kilian and Salvail in [DKS99] for implementing OT based on Unfair Noisy
Channels (UNC). In this model, the randomness introduced by UNC may be
partially controlled by the corrupted player.

We present a generic “compiler” which transforms any protocol implement-
ing OT from a passive version of UNC and secure against passive cheating into
a protocol that uses UNC for communication and builds an OT secure against
active cheating. We argue the new result in terms of the UC framework mod-
ified for the unconditional model as described in the previous chapter. Our
construction fixes a flaw in the proof of [DKS99] which was incomplete other-
wise. We exploit this result and a new technique for transforming between the
weaker versions of Oblivious Transfer, in order to prove a stronger positive OT
result then the one claimed in [DKS99].

The material of this chapter is based on [DFMS04].

6.2 Preliminaries

In this chapter, we refer to a value which decreases faster than any polynomial
fraction in the security parameter k as to negligible in k.

6.2.1 Communication Model

We assume that the players are connected by the unfair noisy channel (see
the definition below) and in addition, the error-free channel. For the sake of
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simplicity, we also assume that the adversary does not intercept the error-
free channel, i.e., he learns nothing about the players’ conversation unless he
corrupts either of them.

The assumption that a corrupted player has partial control over the ran-
domness introduced in the noisy channel implies that he can gain some side
information which in general may not be accessible to an honest party. As a
matter of fact, we always assume that it is only an adversary who can use this
side information. We shall call this extra information the unfair advantage.

We shall define the error-free and the unfair noisy channels as ideal func-
tionalities which the players will use for conversations. In order to model our
communication setting, we assume that whenever a player transmits any data
through the channel in the real world, he uses the corresponding functionality
to do so.

The functionality EFC for the error-free channel is defined in the following
way:

Functionality EFC

Send b: The issuer of this command is called a sender, the other party is a
receiver. On receipt of this command where b ∈ {0, 1}, the functionality
sends b to the receiver.

A (γ, δ)-Unfair Noisy Channel ((γ, δ)-UNC) is specified by the following
functionality:

Functionality (γ, δ)-UNC

Send b: The issuer of this command is called a sender, the other party is a
receiver. On receipt of this command where b ∈ {0, 1}, the functionality
records b and outputs a string “which error probability?” to the adver-
sary. It ignores all further commands until the adversary sends an Error
probability command.

Error probability ε: Receiving this command from the adversary, the func-
tionality checks whether γ ≤ ε ≤ δ. If not, the command is ignored.
Otherwise, it chooses a random bit b′, such that P [b′ = 1] = ε, and sends
b̂ = b⊕ b′ to the receiver.

What we want to model here is intuitively that a corrupted player may
influence the error rate or even block the channel. But if both players are honest,
transmissions will always go through, however, the error rate will fluctuate in
some arbitrary way in the given interval. We therefore assume throughout
about the adversary that if both players are honest, then the adversary will
always give a legal error probability back when receiving a request from the
UNC.

Remark 6.1 As mentioned, the adversary is allowed to set the error proba-
bility to any value in [γ..δ] for every transmission. However, if the adversary
corrupts a player, any attack he can do following, say, algorithm Alg can be
simulated perfectly by an adversary that sets the error rate to γ always, but
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adds artificial noise to any bit sent (or received) in case Alg wanted a larger
error rate. We may therefore assume that an active adversary who corrupts A
or B always sets the error rate of the UNC to γ.

A (γ, δ)-Passive Unfair Noisy Channel ((γ, δ)-PassiveUNC) models the sce-
nario where the adversary cannot physically influence the channel, so if the
players are honest then the channel is a BSC with error rate δ. However, a
corrupted player (which cheats passively) gets some unfair advantage which al-
lows him to reduce the error rate to γ from his point of view. For instance,
in a scenario with a radio-link between the players, it models the cheater who
obtains a more sensitive receiving equipment.

Functionality (γ, δ)-PassiveUNC

Send b: The issuer of this command is called a sender, the other party is a
receiver. On receipt of this command where b ∈ {0, 1}, the functionality
chooses random bits b′, b′′, such that P [b′ = 1] = γ and P [b′′ = 1] = ν,
where ν � γ = δ.1 The functionality sends b̂ = b⊕ b′ ⊕ b′′ to the receiver.
If the adversary has corrupted a player, it sends to the adversary a bit z,
where z = b⊕ b′′ if the sender is corrupted, and z = b⊕ b′ if the receiver
is corrupted.2

Remark 6.2 In the future discussions, if the noisy channel is a UNC, then we
assume the adversary to be active, i.e., he can decide the corrupted player’s
behaviour. If the channel is a PassiveUNC, the adversary is passive.

6.2.2 Functionalities for Basic Primitives

We start by describing the ideal functionalities for Oblivious Transfer and Bit
Commitment.

Functionality OT

Send b0, b1: The issuer of the Send command is called the sender, the other
party is the receiver. On receipt of this command where b0, b1 ∈ {0, 1}, the
functionality records b0, b1 and outputs “which bit?” to the receiver. It
ignores all further commands until the receiver sends a Choice command.

Choice c: Receiving this command from the receiver, the functionality sends
bc to the receiver if c ∈ {0, 1} and otherwise ignores the command.

Bit commitment can be modelled by an ideal functionality where one com-
mits by giving the bit to the trusted party, who will then later open it on request
from the committer.

1This ensures that P [b′ ⊕ b′′ = 1] = δ according to (2.4).
2Intuitively, given z, the noise rate goes down to γ from the adversary’s point of view.
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Functionality BC

Commit cID, b: The issuer of this command is called the committer, the other
player is the receiver. Receiving this command, where cID is a bit-string3

and b is a bit, do as follows: if no message containing cID has been
received yet, record the value of cID, b and send (Commit, cID) to the
receiver and the adversary Adv.

Open cID: If cID, b has been received earlier from the player issuing this
command, send b to the other player and Adv.

6.2.3 More Functionalities

We shall use bit commitments and zero-knowledge proofs in our protocols.
Those are modelled by an ideal functionality which is analogous to the func-
tionality BC described in the previous chapter, but furthermore, the trusted
party will confirm that the committed bits satisfy a given formula, if this is
indeed the case.

Functionality Commit-and-prove (CaP)

Commit cID, b: The issuer of this command is called the committer, the
other player is the receiver. Receiving this command, where cID is a bit-
string and b is a bit, do as follows: if no message containing cID has been
received yet, record the value of cID, b and send as output (Commit, cID)
to the receiver and the adversary.

Open cID: If cID, b has been received earlier from the player issuing this
command, send b to the receiver and the adversary.

Prove L,Φ: Receiving this command, where L is a list of bit strings and Φ is
a Boolean formula, check if L contains only strings that has been used
as identifiers for bits committed to by the issuer of the Prove command.
If so, find the corresponding bits and check whether they satisfy Φ. If
so, send (OK,L,Φ) otherwise, send (Fail, L,Φ) to the receiver and the
adversary.

As bit commitment scheme in our protocols, we shall use the UNC-based
construction from [DKS99], which works assuming δ < 2γ(1−γ) which we shall
assume throughout.4 This scheme is unconditionally secure for both players.
Furthermore, given any commitment scheme, one can always construct a new
one, where one can prove in zero-knowledge that committed bits satisfy a given
Boolean formula (see [BGGHKMR88]). It follows that in any protocol where
we assume access to the UNC functionality, we may assume also CaP without
loss of generality.

One more functionality which will come in handy is the ability to choose
random bits and numbers with a prescribed distribution:

3We shall later refer to it as an identifier for the bit committed to.
4Since otherwise, the (γ, δ)-UNC appears to be trivial that is argued in the next subsection.
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Functionality RandomChoice

Flip ν: Here, sID is a session ID and ν must be a probability. Once the func-
tionality has received this command from both players containing identical
values of sID, ν, it chooses a bit b at random such that P [b = 1] = ν and
sends b to both players.

Uniform sID, j: Here sID is a session ID and j must be a natural number.
Once the functionality has received this command from both players con-
taining identical values of sID, j, it chooses i uniformly from [0..j − 1]
and sends i to both players.

Using standard techniques, one can implement this functionality based on
the CaP, with a statistically good simulation. It should be noted that in our
two-player scenario, functionalities such as RandomChoice can only be realised if
the adversary is allowed to abort after seeing the output. But this is consistent
with the UC framework, where adversary and simulator are indeed allowed to
abort at any time.

In [DKS99], a general model for two-party primitives is proposed where
a corrupted player can gain more information than an honest one, this is
called Weak Generic Transfer (WGT). We shall not go into details about this
model, we only mention its important advantage: it accommodates the possi-
bility for either player to obtain extra information. In contrast, Brassard and
Crépeau [BC97], and Cachin [Cac98] consider the models where this weakness
is one-sided, i.e., only the receiver can gain some side information.

We introduce next a particular case of WGT, a faulty version of OT: Weak
Oblivious Transfer (WOT). This primitive comes in handy when attempting to
build OT from UNC.5 A (p, q, ε)-Weak Oblivious Transfer is defined in [DKS99]
as OT with the following faults: with probability at most p a cheating sender A
learns the selection bit c; with probability at most q a cheating receiver B learns
both bits b0, b1; an honest B gets the incorrect bit, i.e., 1− bc with probability
at most ε.

Some important reductions among these primitives and impossibility results
were studied in [DKS99]. We shall briefly sketch some of them below in order to
make this chapter self-containing. We stress that the aforementioned reductions
and models are of general interest, independently of particular implementation
but nevertheless in our work, we shall exploit them only as a tool allowing us
to achieve OT using UNC’s.

We first introduce the functionality for Weak Oblivious Transfer.

Functionality (p, q, ε)-WOT

Send b0, b1: The functionality’s action on this command is the same as in OT.

Choice c: If c 6∈ {0, 1} then the functionality ignores the command. Otherwise,
it chooses b̃c ∈ {0, 1} such that P [b̃c 6= bc] = ε and sends it to the receiver.
Additionally, if the sender is corrupted, then with probability p it sends

5Note that the Unfair Noisy Channels (being the “weak” versions of Binary Symmetric
Channel) are also a particular case of WGT.
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c to the sender, and if the receiver is corrupted, then with probability q
it sends b1−c to the receiver.

6.2.4 Impossibility Results

The notion of triviality for unfair noisy channels was introduced in [DKS99]. We
shall call an unfair noisy channel trivial (or simulatable), if no unconditionally
secure (for both parties) primitive can be build from it. Consequently, a natural
way of arguing triviality of some primitive is using the symmetry condition
discussed in Subsection 2.9.1. Clearly, the primitive is trivial, if it can be
reduced to another primitive where only a noiseless communication and a local
randomness are available to the parties. We shall assume from now on that
γ and δ are both less than 1/2 since otherwise no information transmission is
possible for honest players.

Lemma 6.1 [DKS99] (γ, δ)-PassiveUNC is trivial when δ ≥ 2γ(1 − γ).

Proof. First, we are going to “implement” (γ, δ)-PassiveUNC with δ = 2γ(1−γ)
using only error-free channel and local coin flips. Let the sender A has an input
bit b.

Protocol 6.1 SimPassiveUNC[γ](b)

1. A and B pick the bits bA and bB respectively, such that P [bA = 1] =
P [bB = 1] = γ.

2. A announces b′ = b ⊕ bA to B. B computes b∗ = b′ ⊕ bB , denoting b∗ as
the received bit, while no output is defined for A.

It is easy to show that the reduction SimPassiveUNC[γ](b) indeed imple-
ments the (γ, δ)-PassiveUNC. Since A can cheat only passively, she may save
b′ and this is a side information which allows her to reduce the error rate down
to γ because Pr[b′ 6= b∗] = γ. However, for the honest A, who ignores this side
information the error rate remains equal to P [b 6= b∗] = 2γ(1− γ) = γ � γ = δ.
The analogous reasoning is true for B.

Moreover, the same argument as above carries over for the case δ′ > 2γ(1−γ)
because one can instruct the parties to flip their bits with probabilities γ′ such
that δ′ = γ′ � γ′. 2

It is not known whether it is possible to construct a similar “implementa-
tion” of (γ, δ)-UNC, since active cheating is possible there and hence it seems to
be difficult to make sure that the players flip their bits with proper probabilities.
The way around this problem was suggested in [DKS99], the basic idea was to
observe that (γ, δ)-UNC is a strictly weaker assumption than (γ, δ)-PassiveUNC
and therefore if it is impossible to build a secure OT from (γ, δ)-PassiveUNC
for δ ≥ 2γ(1 − γ), it will be impossible based on (γ, δ)-UNC either.

Lemma 6.2 [DKS99] (γ, δ)-UNC is trivial when δ ≥ 2γ(1 − γ).
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Proof. Suppose that there exists a reduction from a primitive P to a (γ, δ)-UNC
where δ = 2γ(1− γ) which is secure against active attacks. Let us compare the
following two cases. In Case 1, the reduction is attacked by an adversary using
the following active cheating strategy for a player Q ∈ {A,B}: Q sets the error
rate to γ always, and then does the following: whenever Q is supposed to send
a bit, Q first flips it with probability γ and then actually sends it. Similarly,
whenever Q receives a bit from the channel, Q flips it with probability γ and
acts as if that was the bit actually received. In the other cases, Q follows the
algorithm specified by the reduction. Case 2: we execute the algorithm of P
substituting the (γ, δ)-UNC by a (γ, δ)-PassiveUNC, and the adversary executes
a passive attack.

It is easy to see that there is no difference between the cases from the
honest player’s point of view. Observe that in Case 1, the adversary following
the strategy for Q knows as much about every bit sent and received by his
opponent as a passive adversary knows in Case 2. Since by the assumption, the
reduction is secure in Case 1, it must be secure in Case 2, a contradiction.

The same argument is valid for δ > 2γ(1−γ) taking into account Lemma 6.1.
2

Throughout this chapter, we are going to assume a non-trivial (γ, δ)-UNC
(i.e., with δ < 2γ(1 − γ)) connecting the two players.

Lemma 6.3 [DKS99] (p, q, ε)-WOT is trivial when p+ q + 2ε ≥ 1.

Proof. We implement (p, q, ε)-WOT where 2ε = 1 − p − q using an error-free
channel. Let the sender A’s input be b0, b1 and the receiver B’s input be c.

Protocol 6.2 SimWOT[p, q, ε]((b0, b1), c)

1. With probability q, A announces b0, b1, B computes bc and the protocol
terminates; otherwise A announces “pass”.

2. If A passes, then with probability p/(1 − q), B sends c to A who replies
with bc; otherwise, B chooses bc at random.

Let us argue that this protocol indeed implements the (p, q, ε)-WOT. We
first assume p+ q+ 2ε = 1. Clearly, B learns both b0 and b1 with probability q.
A learns c with probability p/(1 − q) in Step 2, if she passed in Step 1 (this
happens independently with probability 1 − q) that results in probability p.
Finally, B receives an incorrect bc, if he guesses incorrectly in Step 2, the
probability that he has to guess at all is (1 − p(1 − q))(1 − q), so his error
probability is ε = (1− p− q)/2.

The argument above is for p + q + 2ε = 1. If p + q + 2ε > 1, choose
ε′ = (1 − p − q)/2 < ε; the impossibility result is true for (p, q, ε′)-WOT. Note
that a (p, q, ε′)-WOT primitive also meets the requirements of a (p, q, ε)-WOT
primitive since ε′ < ε. Therefore, if OT is reducible to (p, q, ε)-WOT, it must
also be reducible to (p, q, ε′)-WOT, a contradiction. 2
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6.3 Possibility Results in the Passive Case

We first assume the players to be passive and build OT from (γ, δ)-PassiveUNC.
The active cheating is dealt with in the next Section.

A straight forward idea would be to exploit a construction similar to the
one used in Chapter 3. However, it is easy to see that Protocol 3.2 fails to
provide security for B when the players use (γ, δ)-PassiveUNC for communi-
cation. A’s side information allows her to gain a non-negligible bias for some
non-negligible fraction of the sent bits when she tries to tell the good bits from
the bad ones. Hence, B’s privacy failure probability is always non-negligible
in this case. A new reduction (Protocol 6.3) was therefore designed for (γ, δ)-
PassiveUNC [DKS99]. Its output was not an original OT but its “imperfect”
version where the privacy of the parties could still be violated with some non-
negligible probabilities. The output of the reduction6 was modelled as a (p, q, ε)-
Weak Oblivious Transfer.

Protocol 6.3 WOTfromPassiveUNC((b0, b1),c)

1. A picks x, y ∈R {0, 1},
2. A sends (xx, yy) through (γ, δ)-PassiveUNC and B receives (x̃x̃′, ỹỹ′),

3. If B receives (x̃⊕ x̃′, ỹ ⊕ ỹ′) /∈ {(0, 1), (1, 0)} then they go to step 1.

4. B announces w such that

• w = 0 if ((x̃⊕ x̃′ = 0) ∧ (c = 0)) ∨ ((ỹ ⊕ ỹ′ = 0) ∧ (c = 1)),

• w = 1 if ((x̃⊕ x̃′ = 0) ∧ (c = 1)) ∨ ((ỹ ⊕ ỹ′ = 0) ∧ (c = 0)),

5. A announces

• (a, b) = (x⊕ b0, y ⊕ b1) if w = 0,

• (a, b) = (y ⊕ b0, x⊕ b1) if w = 1,

6. B computes

• b0 = a⊕ x̃ if c = 0 and w = 0,

• b0 = a⊕ ỹ if c = 0 and w = 1,

• b1 = b⊕ ỹ if c = 1 and w = 0,

• b1 = b⊕ x̃ if c = 1 and w = 1.

The intuition behind the reduction is the following: In Steps 1-3, A is
supposed to send two pairs of bits to B, until he receives an erasure and a
bit, so A is sure that one of the bits x, y is completely lost for B. If we had
a δ-BSC connecting the parties, we would obtain a (0,0,ε)-WOT, because A

6We shall refer to some protocols in this chapter as to “reductions” partly due to historical
reasons and partly because these are indeed protocols which produce another protocols (or
primitives) as their outputs. As a matter of fact, one can consider, for instance, Protocol 3.3
as the reduction of OT to Passive OT.
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would have no idea which of the pairs was erased. On the other hand, B “tells”
A which bit he wants to receive in Step 4 and A releases the bits in Step 5. If
the players follow the protocol, B only receives an incorrect bit when the errors
occur in both bits of the same pair in Step 2. This event contributes to the
error probability ε.

But in fact, the channel connecting the players is PassiveUNC where the
cheaters can actually obtain some side information about the data sent and
received though they cannot affect the error rate of the channel directly. One
way to model such the additional information is to assume that the corrupted
player makes an auxiliary measurement “in the middle of the channel”. For
example, the cheating receiver receives a bit twice: “in the middle” – as over
γ-BSC and then (the same bit) which passed “the rest of the cascade” (µ-BSC)
– as over δ-BSC, where δ = µ� γ.

The failure probabilities p and q characterise the side information obtained
by a corrupted player. We derive the dependencies p(γ, δ), q(γ, δ) and ε(δ) later
in Section 6.5 along with more advanced characterisation of side information
and extended possibility results compared to the ones introduced in [DKS99].

6.3.1 Some Reductions

The following three reductions will be used for decreasing the failure probabil-
ities of (p, q, ε)-WOT thereby obtaining original OT. The first is to reduce the
sender’s side information (decreasing p), the second is to cope with receiver’s
side information (decreasing q), while the third one is to reduce the error rate ε.
It turns out that each reduction improves the intended parameter but increases
the other two.

The reductions are assumed to be given as black-box protocol W implement-
ing (p, q, ε)-WOT and take a security parameter k as an input. The reduction
S-Red is taken from [CK88], R-Red is attributed to folklore in [DKS99] and
E-Red is (kind of) a repetition code properly applied to bc. In each reduction,
we let b0, b1 be the input of A, and c be the input of B.

Protocol 6.4 S-Red(kS)

1. W is executed kS times, with inputs (b0i, b1i), i = 1, . . . , kS for A and
ci, i = 1, . . . , kS for B, where the b0i are uniformly chosen, such that
b0 = ⊕kS

i=1b0i, b1i = b0i ⊕ b0 ⊕ b1 and the ci’s are uniformly chosen, such
that c = ⊕kS

i=1ci.

2. B computes his output bit as follows: bc = ⊕kS
i=1bci .

Protocol 6.5 R-Red(kR)

1. W is executed kR times, with inputs (b0i, b1i), i = 1, . . . , kR for A and ci,
i = 1, . . . , kR for B, where ci = c, b0 = ⊕kR

i=1b0i and b1 = ⊕kR
i=1b1i.

2. B computes his output bit as follows: bc = ⊕kR
i=1bci .
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Protocol 6.6 E-Red(kE)

1. A picks q0, q1 ∈R {0, 1} and B picks s ∈R {0, 1},
2. A sends (q0, q1) kE times through W to B and B selects the bit qs kE

times,

3. If B did not receive the same bits q′s all the kE times then A and B go to
Step 1.

4. B announces y = 0 if s = c and y = 1 otherwise.

5. A announces r0 and r1 such that by = r0 ⊕ q0, b1−y = r1 ⊕ q1, allowing B
to compute bc = rs ⊕ q′s.

Lemma 6.4 [DKS99] When given k and a (p, q, ε)-WOT W as input,

• S-Red(k) implements a
(
pk, 1− (1− q)k, ((2ε− 1)k + 1)/2

)
-WOT,

• R-Red(k) implements a
(
1− (1− p)k, qk, ((2ε− 1)k + 1)/2

)
-WOT,

• E-Red(k) implements a
(

1− (1− p)k, 1− (1− q)k, εk

εk+(1−ε)k

)
-WOT.

All the three reductions produce a WOT secure against active cheating if the
given WOT has this property.

Proof. It follows by inspection that the reductions allow the players to compute
the correct output.

Let us consider the parameters of the obtained WOT’s. In S-Red, the dis-
honest A learns c if and only if she learns all ci’s that happens with probability
pk. On the other hand, the dishonest B can learn both b0 and b1 if he gets just
one pair (b0i, b1i) and this happens with probability 1 − (1 − q)k. When one
XORs k bits each having error probability ε, the error rate of the resulting bit
is equal to ((2ε − 1)k + 1)/2 as argued in [Cré90], Proposition 4.6.

The case of R-Red is similar but with the chances of the sender and receiver
reversed. As for E-Red, note that a WOT with the same inputs is used k times.
Clearly, either dishonest A or dishonest B needs only one chance out of k to
learn the private input of the other player, therefore both parameters p and q
increase as in the above reductions. At the same time, the error rate improves
to εk/(εk + (1− ε)k) since an error must occur in all k bits qs given that all the
received bits q′s are the same.

The argument for the last claim is the following: in S-Red, security of W
means that none of the players can gain anything from inputting “?” to W.
And if indeed no “?” is input to any W instance, then B always behaves
consistently with some input c, namely the value c = ⊕ki=1ci. A can behave
inconsistently by choosing random values of her input bits but this will not give
her more information on c. The cases of R-Red and E-Red are similar. 2

The next step is to apply the reductions S-Red, R-Red and E-Red in order
to reduce OT to (p, q, ε)-WOT. The following lemma is proved in [DKS99].
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Lemma 6.5 There exists a sequence of reductions S-Red, R-Red and E-Red
that implements OT given any (p, q, ε)-WOT that satisfies p+ q + 2ε ≤ 0.45.

The proof proceeds along the following lines: the reductions S-Red, R-Red
and E-Red are combined and then the general expression for the parameters of
the resulting WOT is obtained. Then, it is possible to to find certain parameters
kS , kR, kE and security parameter k which is the overall number of WOT’s
invocations, such that the sum p + q + 2ε for each produced WOT decreases
monotonously and converges to 0 exponentially fast in k.

Recall that Protocol 6.3 produces a (p(γ, δ), q(γ, δ), ε(δ))-WOT W therefore,
by Lemma 6.5, we have OT secure against passive cheating for some range of
(γ, δ).

6.4 Protection Against Active Cheating

In this section, we consider a generic “compiler” which transforms any protocol
implementing OT from (γ, δ)-PassiveUNC and secure against passive cheating
into a protocol that uses (γ, δ)-UNC for communications and builds an OT
secure against active cheating.

The existence of such the compiler implies a rather surprising fact that a
passive adversary is essentially as powerful as an active one with respect to OT
based on Unfair Noisy Channels.

6.4.1 Committed PassiveUNC

We first define informally the notion of a committed UNC.7 This is a protocol
for the two players A and B using a (γ, δ)-UNC and an error free channel. We
shall assume that δ < 2γ(1 − γ), so that bit commitment can be done, based
on the UNC. Note that if the UNC can only send bits from A to B, we can
still simulate a UNC in the opposite direction using the error free channel as
sketched in Subsection 2.9.3, so that we can assume that both A and B can
commit to bits without loss of generality.

Intuitively, the purpose of a committed UNC is to act just like an ordinary
UNC, but such that players are committed to the bits they send/receive on the
UNC, at least except with some bounded probability.

We now define this concept more formally: a committed UNC protocol may
halt because A or B reject. Otherwise it outputs two commitments, one from
A containing a bit bA, and one from B containing a bit bB. Finally, the output
designates one of the transmissions that were made over the UNC from A to B.
Let sA respectively rB be the bit sent, respectively received in this transmission.

We require that if A,B both follow the protocol, then both players accept
except with probability negligible in the security parameter k. Also, whenever
A is honest, we have that bA is uniformly random and bA = sA. Whenever B
is honest, we have rB = bB . When A is corrupted and B is honest, we let pA
be the probability of the event that B accepts and bA 6= sA. Similarly, when B

7This technique originates from [Cré89].
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is corrupted and A is honest, we let pB be the probability that A accepts and
rB 6= bB . In general, the error probabilities pA, pB will be functions of γ, δ and
the security parameter k.

The argument sketched in [DKS99] on constructing OT from UNC took
as point of departure a protocol that builds OT from a (γ, δ)-PassiveUNC for
certain values of (γ, δ) and is secure assuming that players cheat only passively.
It was then noted that one can replace the PassiveUNC with a UNC, still
assuming that only passive cheating occurs. The final idea was then to replace
the UNC with a committed UNC (although this notion was not formally defined
there) and have players prove in ZK that they were following the protocol. If the
error probabilities of the committed UNC could be made arbitrarily small with
increasing k, then this would result in an OT secure against active cheating for
essentially the same values of (γ, δ) that could be handled in the passive case.
But unfortunately, this is impossible:

Theorem 6.1 Any committed UNC as defined above, based on a (γ, δ)-UNC
must have pA, pB ≥ δ−γ

1−2γ .

Proof. Suppose, for instance, that A is cheating. Then A sets always the mini-
mal noise level for the UNC, but adds artificial noise to each transmission with
noise rate δ−γ

1−2γ such that the total error probability for each transmission is
δ−γ
1−2γ � γ = δ. On the resulting transmissions, he runs a copy A0 of the honest
algorithm for A. Clearly, B (who is honest) cannot distinguish this from an all
honest situation where the noise rate happens to be δ all the time, and so he
must accept with overwhelming probability. However, it now holds for every
transmission that the bit committed to and also sent by A0, differs from the
one A actually sent with probability δ−γ

1−2γ . The theorem follows. 2

Theorem 6.1 essentially says that we cannot force a player to commit to
the bit he physically sends on a UNC. To get around this problem, we take a
different point of view: we will create a new virtual channel from the UNC,
where a bit committed to by the sender is by definition the bit sent on the new
channel. Any difference between the committed bit and what is sent on the
original UNC is regarded as noise. With appropriate checking that a cheating
player does not introduce too much noise this way, it turns out that we obtain
something that behaves essentially like a PassiveUNC, even in presence of active
cheating. We model this by an ideal functionality called (γ, δ, q())-Committed
PassiveUNC (CPUNC). It combines a functionality similar to the PassiveUNC
with the Commit-and-Prove functionality. In particular, it allows to commit to
bits with or without sending them on the channel. But if they are sent, sender
and receiver will be committed to what they send/receive. With security pa-
rameter k, the error rate will be in the range δ±1/q(k), but will drop to γ given
the view of a cheating player. Note that a CPUNC is not a committed UNC,
and so Theorem 6.1 does not forbid the existence of a secure implementation.

Functionality (γ, δ, q())-CPUNC

Stop: On receiving this command from the adversary, the CPUNC stops work-
ing and ignores all further commands.
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Send cID, b: CPUNC comes with parameters 0 ≤ γ ≤ δ ≤ 1/2, a security
parameter value k and a polynomial q(). The issuer of the Send command
is called the sender, the other party is the receiver. The string cID must
not have been used before to identify a sent, received or committed bit,
else the command is ignored. On receipt of this command from A or
B, the functionality records cID, b and outputs a string “which error
probability?” to the adversary, it ignores all further commands until the
adversary sends an “Error probability” command.

Error probability κ′: Receiving this command from the adversary, the func-
tionality checks if |δ−κ′| ≤ 1/q(k). If not, the command is ignored. Other-
wise, the functionality chooses random bits b′, b′′, such that P [b′ = 1] = γ
and P [b′′ = 1] = ν, where ν�γ = κ′.8 The functionality sets b̂ = b⊕b′⊕b′′.
If the adversary has corrupted a player, it sends to the adversary a bit z,
where z = b⊕ b′′ if the sender is corrupted, and z = b⊕ b′ if the receiver
is corrupted. It records cID, b as if the sender had committed to b. It
then sends cID to both players, and ignores all further commands until
the receiver sends a ReceiptID command.

ReceiptID ˆcID: This command is ignored if ˆcID has been used to identify
any committed, sent or received bit earlier. If this is not the case, the
CPUNC records ˆcID, b̂ as if the receiver had committed to b̂, it sends ˆcID
to both players and b̂ to the receiver.

Commit cID, b: Receiving this command, where cID is a bit-string and b is
a bit, do as follows: if cID has not been used to identify a sent, received
or committed bit before, record the value of cID, b and send as output
(Commit, cID) to both players.

Open cID: if cID, b has been recorded as a commitment from the player is-
suing this command, send b to both players.

Prove L,Φ: Receiving this command, where L is a list of bit strings and Φ is
a Boolean formula, check if L contains only strings that has been used as
identifiers for bits committed to by the issuer of the Prove command. If
so, find the corresponding bits and check if they satisfy Φ. If so, sends
(OK,L,Φ) to both players. Else, send (Fail, L,Φ).

We now describe a protocol that securely realizes the functionality we just
described. We assume that the protocol has access to the UNC, CaP and Ran-
domChoice functionalities. The protocol is described by specifying how each of
the commands are implemented. The amount of work done in the protocol is
specified by a polynomial p(k), where k is the security parameter.

Protocol 6.7 CPUNC

Stop: This command has no direct implementation, the idea is that whenever
the adversary behaves such that the honest party detects cheating and
aborts, this is equivalent to sending a Stop command in the ideal scenario.

8This ensures that P [b′ ⊕ b′′ = 1] = κ′.
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Send b (Transmission Step): We describe how A will send a bit b to B.

1. A commits to b.
2. A chooses at random bits B̄ = b1, ..., bkp(k)3 , commits to each bit

and sends each bit to B over the UNC. B commits to every bit
B̂ = b̂1, ..., b̂kp(k)3 he receives.

3. Call RandomChoice kp(k)2 times to generate integers ji chosen uni-
formly in the range [1..kp(k)3], for i = 1, ..., kp(k)2.

4. All bits bji , b̂ji are opened. Let κ be the fraction of the kp(k)2 opened
positions where bji 6= b̂ji . A and B check that κ ≤ δ + 1/p(k). They
abort all interaction if this is not satisfied.

5. Call RandomChoice to generate an integer j uniformly chosen among
the indices of positions that were not opened in the previous step.
A sends b′ = b ⊕ bj using error free transmission and proves (using
CaP) that this value is correct.

6. Let µ be defined by κ� µ = δ+ 1/p(k). By a call to RandomChoice,
generate a bit c such that P [c = 1] = µ.

7. B defines the bit he receives as b̂ = b̂j ⊕ b′ ⊕ c. He commits to b̂ and
proves (using CaP) that the committed value is correct.

If B wants to send a bit to A, we implement this in the same way as
above, by interchanging the roles of A and B and of bj and b̂j .

Commit, Open, Prove: Each of these commands correspond directly to com-
mands that are already available in the Commit-and-Prove functionality
we assume we have access to. Therefore these commands are implemented
by directly calling the corresponding command with the same input in the
Commit-and-Prove. Note that inputs to the Prove or Open command may
include bits that were sent or received during a Send command, since
these are also committed to.

Before proving anything about this construction, we describe first the intu-
ition behind it: for bit-strings X,Y of equal length, let err(X,Y ) be the fraction
of positions where X disagrees with Y . Now, if both parties are honest, the
expected value of err(B̄, B̂) is at most δ, so allowing the estimate κ to be up
to δ + 1/p(k) implies that we reject with negligible probability, as we shall see.
Then assume that one player, say A, is corrupted, and let B̃ = b̃1, ..., b̃kp(k)3
be the bits actually sent by A on the UNC when a bit is transmitted. Let
ε = err(B̄, B̃). Since the UNC introduces errors with probability γ indepen-
dently of anything else, we expect that ε� γ ≈ err(B̄, B̂) ≈ κ, and hence that
ε� γ � µ ≈ κ� µ ≈ δ. Here, “≈” means equality up to a 1/poly() term.

We can now see that after doing the transmission step, A is actually in a
position approximately equivalent to having sent b on a (γ, δ)-PassiveUNC: we
have that the bit b sent is related to the bit b̂ received as b = b̂⊕(bj⊕ b̃j)⊕c⊕nj,
where nj is a noise bit chosen by the UNC, such that P [nj = 1] = γ. By the
choice of c, and random choice of j, we have

P [b 6= b̂] = P [(bj ⊕ b̃j)⊕ c⊕ nj = 1] ≈ ε� µ� γ ≈ κ� µ ≈ δ.
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But since the adversary knows (bj ⊕ b̃j) ⊕ c, the error rate from his point of
view is only what is introduced by the UNC, namely γ.

We recall that a simulator (in the UC framework) is non-blocking, if it stops
the CPUNC (by sending a stop command or refusing to give correct input when
asked for it) with only negligible probability.

Theorem 6.2 Protocol 6.7 securely realizes the (γ, δ, q())-CPUNC functionality
when given access to ideal (γ, δ)-UNC, CaP and RandomChoice functionalities,
and for any polynomial q(), provided we choose the polynomial p() measuring
the work done in the protocol as p(k) = 4q(k). Moreover, for the case where
both players are honest, the simulator is non-blocking.

Remark 6.3 We remind that the last claim in the theorem is a way to state
in the UC framework the traditional completeness property for a two-party
protocol: if both players are honest, the protocol completes successfully with
overwhelming probability.

Proof. We begin with some technical lemmas. Assume that A or B is cor-
rupted, let C̃ be the string actually sent or received by this player during a
transmission step, let C̄ be the string committed to by that player, and let Ĉ
be the string the honest players sends or receives (and commits to). We can now
describe the transmission step by the following equivalent random experiment:
the adversary Adv chooses C̄, C̃, and Ĉ is generated by sending C̃ through a
binary symmetric channel with error probability γ. Then kp(k)2 positions are
chosen uniformly at random, C̄, Ĉ are compared in these positions, and κ is the
fraction of disagreements found. Finally, we define µ by κ� µ = δ + 1/p(k).

We remind that a probability is called negligible in k if as a function of k, it
converges to 0 faster than any polynomial fraction. Now, Lemma 2.1 trivially
implies that κ is a good estimate of err(C̄, Ĉ):

Lemma 6.6 For any given C̄, Ĉ, P [|κ−err(C̄, Ĉ)| > 1/p(k)] is negligible in k.

Lemma 2.1 also implies:

Lemma 6.7 For any given C̄, C̃, let ε = err(C̄, C̃), and let N be the length of
C̄, C̃ (N = kp(k)3). Then P [|err(C̄, Ĉ)− ε� γ| > 1/p(k)] is negligible in k.

Proof. We substitute n = N in Lemma 2.1, where the i’th experiment consists
of flipping the i’th bit of C̃ with probability γ to get the i’th bit of Ĉ. The
event for each trial is that i’th bit of Ĉ turns out to be different from the i’th
bit of C̄. Then β = err(C̄, Ĉ), and the average of all the qi’s is easily seen to
be ε� γ. The lemma now follows immediately. 2

The two previous lemmas immediately imply:

Lemma 6.8 Except with negligible probability, any choice of Ĉ, C̃ will lead to a
value of κ (and hence µ) such that |κ− ε� γ| ≤ 2/p(k), and hence by definition
of µ, that |δ + 1/p(k) − ε� γ � µ| ≤ 2/p(k).
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Since the number of positions we sample and compare between C̄, Ĉ is much
smaller than N , removing these positions does not change the expected error
rates much. Concretely, let C̄uns be the unsampled part of C̄, and let C̃uns be
the corresponding positions from C̃. We get:

Lemma 6.9 Let ε′ = err(C̄uns, C̃uns). Then |ε− ε′| ≤ 1/(p(k)−1) for all large
enough k.

Proof. Before we sample, C̄ and C̃ disagree in εN positions. Sampling removes
s ≤ kp(k)2 positions, so the number of disagreements for the unsampled part
must be between εN and εN − s. It follows that

ε+
ε

N/s − 1
=

εN

N − s
≥ ε′ ≥ εN − s

N − s
= ε− 1− ε

N/s− 1

The lemma follows. 2

Since 1/(p(k) − 1) ≤ 2/p(k) for all large enough k, combining the previous
two lemmas immediately implies:

Lemma 6.10 Except with negligible probability, any choice of Ĉ, C̃ will lead to
a value of κ (and hence of µ) such that |δ − ε′ � γ � µ| ≤ 4/p(k).

The significance of this lemma is that, given the adversary’s view up to the
point where κ has just been determined, the probability that b = b̂ is exactly
ε′ � γ � µ, and this will be important later.

We also need some technical lemmas for the case where both parties are
honest:

Lemma 6.11 If no player is corrupted, the transmission step will abort with
only negligible probability.

Proof. Clearly, the probability that the transmission step is aborted is maximal
when the error rate of the UNC is always δ. In this case, the probability that
one opened position shows disagreement is δ and this happens independently
for each of the kp(k)2 sampled positions, so we have P [abort] ≤ P [|κ − δ| >
1/p(k)] ≤ 2 exp(−k/2). 2

Now, let α1, ..., αkp(k)3 be a sequence of error probabilities chosen by the
adversary for the UNC-transmissions in a transmission step as above, and con-
sider the experiment where we run the protocol for A and B using the αi’s
as error probabilities, until the point where κ and µ have been determined.
Let α be the probability that b̂ will be different from b, given the αi’s and the
communication between A and B at this point, i.e., α = µ� ᾱ, where ᾱ is the
average of αi’s corresponding to unsampled positions.

Lemma 6.12 Assume no player is corrupted. Starting from any (legal) se-
quence α1, ..., αkp(k)3 as above, we obtain a value of α such that |δ−α| ≤ 4/p(k),
except with negligible probability.
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Proof. Let e(α) =
∑

i αi/kp(k)3 be the average of all the αi’s. It follows im-
mediately from Lemma 2.1 that |κ − e(α)| ≤ 1/p(k) except with exponen-
tially small probability. Now, let ᾱ be the average of the αi’s taken only
over unsampled positions. Since most positions are unsampled, clearly ᾱ must
be close to e(α). A straight forward calculation shows that in fact we al-
ways have |ᾱ − e(α)| ≤ 2/(p(k) − 1). These two observations imply that
|κ− ᾱ| ≤ 3/(p(k)− 1) except with negligible probability, which in turns implies
that we also have |δ − α| = |κ � µ− ᾱ � µ| ≤ 3/(p(k) − 1), which is less than
4/p(k) for all large enough k. 2

We are finally ready to show that we have a good implementation of the
CPUNC functionality. To prove this, we need to construct a simulator S which
will on one side interact with the adversary Adv. Since Adv expects to attack
a scenario where the UNC, CaP and RandomChoice functionalities are available,
S will simulate these in the natural way, for instance if Adv sends a bit on
the UNC, S simply records this bit for later use. If the protocol calls for the
received bit to become known to A, S adds a noise bit chosen by itself and gives
the result to A. When RandomChoice is called, S just generates the output
itself. As for calls to Commit, Open and Prove, S will record the bits sent, and
then forward to the corresponding commands of the CPUNC. This is possible,
since on the other side, S gets to attack an ideal scenario where we have the
players A,B and the CPUNC. The goal is now to simulate Adv’s view of a real
attack, as well as the results obtained by the honest player(s). We will only
look at the cases where either A is corrupted or no one is corrupted. The case
where where B is corrupted is similar and easily derived from the first case.

For the first: since Adv corrupts A, S will of course corrupted A in the ideal
process. We then specify S by describing how it will react in each possible case
where it is activated:

Send Command issued by A: When a send command is issued by Adv (who
plays for A), the adversary must first commit to a bit b to send. S now
goes through the protocol with Adv until κ, µ have been determined. If
this leads to abort, S sends a Stop command to the CPUNC and halts.
Otherwise S sends a Send b command to the CPUNC (on behalf of A).
Then S looks at the unsampled bits from B̄ and B̂, and computes the
fraction ε′ of positions where they disagree. It sends an Error probability
κ′ command to the CPUNC, where κ′ = ε′ � γ � µ. It gets back a bit z.

S now chooses and sends to Adv the choices of j, c, to simulate the outputs
of RandomChoice at this point. Of these, j is chosen among the indices
of unsampled positions, either uniformly among indices where bj = b̃j, or
among those where bj 6= b̃j – we say that we choose bj ⊕ b̃j to be 0 or 1.
Also c is chosen as 0 or 1. We choose among the 4 possible combinations
as follows:

• If z⊕b = 0, we let bj⊕b̃j = 0, c = 0 with probability (1−ε′)(1−µ)/(1−
ε′�µ), and we let bj⊕ b̃j = 1, c = 1 with probability ε′µ/(1− ε′�µ).

• If z⊕ b = 1, we let bj⊕ b̃j = 1, c = 0 with probability ε′(1−µ)/ε′�µ,
and we let bj ⊕ b̃j = 0, c = 1 with probability (1− ε′)µ/ε′ � µ.
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After this, S simply lets Adv finish the protocol (publishing b′ = b ⊕ bj
and proving it relates in the right way to b and bj). If Adv does not do this
correctly, S will not deliver the output from the CPUNC to the receiver
and will send a Stop command to the CPUNC.

Send command issued by B: S will learn that this command was issued
when receiving a request for an error rate from the CPUNC. Having re-
ceived this, S goes through the first part of the protocol for sending a bit
with Adv, where Adv plays the role of the receiver. As above, this results
in an error rate κ′ being determined, where κ′ = ε′ � γ � µ, and where
ε′ is the error rate between the (unsampled) bits committed to by A and
the bits actually received.

S sends κ′ to CPUNC and gets a bit z from the CPUNC. Moreover, the
CPUNC sends a bit b̂ to the sender which is A, but since S corrupted A
in the ideal process, the bit goes to S.

S now determines values j, c in the same way as above (where b̂ replaces
b), and sets b′ = b̂ ⊕ b̂j. It now tells the adversary that B sent b′ and
RandomChoice output b, j. Finally, it lets Adv complete the protocol,
and sends a stop command to the CPUNC if this fails.

Commit, Open, Prove: Since these commands correspond to commands al-
ready available in the CaP, S can simulate any event relating to these
commands by simply relaying input from the Adv to the CPUNC and
output from the CPUNC back to Adv.

We now look at simulation in the second case, where no player is corrupted.
In this case, all the adversary can do, is to select error probabilities each time
a transmission takes place over the UNC (note that the argument that the
adversary may as well select error probability γ always only holds in case a
player is corrupted). What S does is therefore as follows:

Send Command issued by A: S learns that such a command has been is-
sued when it receives a request for an error probability from the CPUNC.
S then goes through the protocol with Adv which in this case just amounts
to asking Adv for kp(k)3 error probabilities α1, ..., αkp(k)3 (which should
all be between γ and δ).

Assuming Adv did this correctly, S selects an error probability α in the
“right” way, given the αi’s. Concretely, S simulates (honestly) both A’s
and B’s part of the protocol for sending a bit using the αi’s as error
probabilities for the UNC transmissions. This simulation goes on until κ
and µ have been determined. If κ > δ+ 1/p(k), S sends a Stop command
to the CPUNC and halts. Otherwise we compute an error probability
α = µ� ᾱ, where ᾱ is the average of the αi’s corresponding to unsampled
bit positions. The value α is sent the CPUNC.

Send Command issued by B: - is handled in exactly the same way as if A
issued the command.
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Commit, Open, Prove: Since these commands correspond to commands al-
ready available in the CaP, S can simulate any event relating to these
commands by simply relaying output from the CPUNC to Adv, typically
cID’s of bits committed to. However, there is no input from Adv to send
to the CPUNC when no one is corrupted.

We sketch a proof that this simulation is good. We first look at the case
where A is corrupted:

Send Command issued by A: We can first remark that the simulation of
A’s view is perfect until the point where κ, µ are determined. In particu-
lar, by Lemma 6.10 we have |δ−ε′�γ�µ| < 1/q(k), except with negligible
probability (recall that we let p(k) = 4q(k) in the claim), so we may as-
sume in the following that this holds. Therefore, the κ′ that S asks the
CPUNC to use will be close enough to δ for the CPUNC to accept this.
Note that if A fails to complete the protocol for the Send command, no
output is generated and no further interaction takes place. This happens
both in simulation and in real life. So we now argue, assuming that A
completes the protocol. Note first that, given Adv’s view, the probability
that b = b̂ is exactly ε′ � γ � µ in both simulation and in real life, so
the honest player receives a correctly distributed bit. Moreover, it follows
directly from the algorithm of CPUNC that P [z 6= b] = ε′ � µ. There-
fore elementary probability calculations show that j will be uniformly
distributed over the unsampled positions, and c will be independent, and
be 1 with probability µ. So this matches the distribution of the view of A
in real life. Furthermore, in real life, the correlation between A’s view and
the bit received by B is completely described by P [b̃j ⊕ b′ ⊕ c 6= b̂] = γ.
But this is also the case in the simulation: the algorithm of S ensures that
z ⊕ b = bj ⊕ b̃j ⊕ c, and A must prove that b = bj ⊕ b′. Combining these
two, we get z = b′⊕ b̃j⊕c, and by definition of the CPUNC, P [z 6= b̂] = γ.

Send command Issued by B: The argument for this case is easily derived
from the above case.

Commit,Open,Prove: The simulation of these events is trivially perfect,
since the CPUNC by definition behaves exactly like CaP on any of these
commands.

We finally show that the simulation is good in the case where both players
are honest:

Send Command issued by A: The simulation is clearly perfect, except for
the cases where the α sent by S is further away than 1/q(k) from δ.
In these cases, the real-life protocol may complete, whereas the CPUNC
would always block the transmission. However, by Lemma 6.12, this
only happens with negligible probability. Furthermore, the simulator only
blocks the CPUNC if the value of κ is too large or α is illegal. By Lem-
mas 6.11 and 6.12, this only happens with negligible probability, so the
simulator is non-blocking in this case.
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Send command Issued by B: The argument for this case is the same as for
the above case.

Commit,Open,Prove: The simulation of these events is trivially perfect,
since the CPUNC by definition behaves exactly like CaP on any of these
commands.

2

6.4.2 From Passive to Active Security

In this subsection, we sketch a proof of the following result:

Theorem 6.3 Let π be any protocol that securely realizes OT based on a (γ, δ)-
PassiveUNC assuming a passive adversary. Then there exists a protocol with
complexity polynomial in that of π that also securely realizes OT based on a
(γ, δ)-UNC, assuming an active adversary.

Proof. We assume we have a protocol π that implements Oblivious Transfer
given access to a (γ, δ)-PassiveUNC functionality, and that this protocol is
secure against a passive adversary.

We then note that the previous subsection showed how to implement the
CPUNC functionality based on the UNC. Therefore from π, we may construct
a protocol π̄ as follows: active cheating is prevented by first making players
commit to all inputs, and furthermore, the random coins of a player are decided
using a standard technique: the player in question commits to a random string
a, the other player sends a random string b in the clear and the random coins
to be used are a ⊕ b. Second, all transmissions over the PassiveUNC now
take place using the CPUNC, and each time something is sent, one uses the
CPUNC to prove that what was sent was computed according to π with the
given (committed) inputs, random coins and messages received earlier.

Note that a player trying to send an incorrect message will be caught with
certainty. Therefore, the views obtained by the players are always (a possibly
truncated version of) what would be obtained in presence of a passive adversary.

Our first goal will be to show that π̄ implements a (p, q, ε)-WOT as defined
in Subsection 6.2.3.

Lemma 6.13 π̄ as described above realizes (with statistically good simulation) a
(p, q, ε)-WOT with p = q = ε = 3/k, when π̄ is executed with security parameter
value k.

Proof. (Sketch) The above discussion implies that we only have to show the
lemma for a passive adversary: the only difference between a passive and an
active attack on π̄ is that the adversary may stop early in the active case, and
this can never be prevented in an active attack. Assuming a passive adversary,
the only difference between π̄ and π is that π̄ does not use a (γ, δ)-PassiveUNC
but a (γ, δ, f())-CPUNC where the adversary can make the error probability
fluctuate slightly around δ. This fluctuation is not negligible, namely it is of
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size 1/f(k). However, by Theorem 6.2, we can choose f() to be any polynomial
we like, so assuming π calls the PassiveUNC t(k) times, for some polynomial
t(), we choose f(k) = kt(k).

Consider the view of a (passively) corrupted sender in π, represented by
random variable V . Let advπ(k, v) be the advantage over 1/2 with which the
selection bit can be guessed given that V = v and the protocol was executed
with security parameter value k. Let advπ(k) =

∑
v P [V = v] · advπ(k, v) be

the expected value. Since π was assumed to be secure, advπ(k) is negligible
in k (this is equivalent to asserting that the mutual information between the
selection bit and V is negligible). Then define a particular possible value v of
V to be good if advπ(k, v) ≤ √advπ(k), and let E be the event that V takes a
bad value. Then clearly, E occurs with probability at most

√
advπ(k). We now

define t(k) + 1 hybrids that are in between π and π̄: namely in the i’th hybrid,
where i = 0, . . . , t(k), we run the normal protocol, but for communication, we
use a (γ, δ)-PassiveUNC for the first i calls to the communication channel, and
then the (γ, δ, q())-CPUNC for the rest. Then hybrid 0 is π̄ while hybrid t(k) is
π. When executing hybrid i, we define Ei to be the event that the information
contained in the sender’s view about the selection bit is larger than

√
advπ(k).

Let εi be the probability that Ei occurs. Of course εt(k) = P [E ] ≤ √advπ(k).
Also, the only difference between hybrid i and i + 1 is that in the i + 1’st
call to the communication channel, the results returned by the channel have
distributions with statistical difference at most 2/f(k) between them. It follows
that |εi − εi+1| ≤ 2/f(k), and hence ε0 ≤ εt(k) + 2t(k)/f(k) ≤√advπ(k) + 2/k.
The “OT”, that π̄ implements is therefore no worse than a protocol that with
probability, say 3/k reveals the selection bit to the sender, and otherwise leaks
a negligible amount of information. A similar argument holds for the view of a
corrupted receiver; also this type of argument shows that an honest receiver will
receive the correct bit, except with probability at most 3/k. Thus what we have
is statistically indistinguishable from a (p, q, ε)-WOT, with p = q = ε = 3/k. 2

We can then complete the argument for the theorem: taking into account
Lemma 6.5, OT can be implemented based on any (p, q, ε)-WOT, as long as
p+ q+ 2ε < 0.45. Moreover, it is easy to verify that by choosing k large enough
the reduction implements OT efficiently, i.e., it only makes a polynomial number
of calls to the underlying WOT. Therefore, by Lemma 6.13, we can replace the
WOT by π̄ and still obtain a secure OT (even though π̄ is only statistically
close to the required WOT). This implies the result we wanted. 2

6.5 Extended Possibility Results

In this section, we shall assume the result of Theorem 6.3 and focus on reducing
OT to (γ, δ)-PassiveUNC secure against passive adversaries.

The first observation leading towards the new possibility result is that WOT
does not precisely capture the imperfect OT produced by Protocol 6.3: In
WOT the corrupted sender/receiver gets the selection/secret bit (which he is
not supposed to see) with a certain probability, while in the imperfect OT
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obtained the corrupted sender/receiver only gets some information about that
bit with a certain probability: by inspection of Protocol 6.3, it is clear that the
corrupted player never gets the private input of the other party “for free”, i.e.,
with certainty.

As a consequence, the information leakage to the adversary is overestimated
in [DKS99], the fact already known to the authors. We introduce a new Gen-
eralised Weak Oblivious Transfer (GWOT) primitive which allows to model
imperfect OT’s which leak information about the parties’ private inputs in a
much more general way than WOT’s, without overestimating the information
leakage. In particular, it precisely captures the imperfect OT produced by
Protocol 6.3. Informally, in a GWOT the corrupted sender/receiver gets the
selection/secret bit over a BSC with some error probability which is chosen
according to some distribution (and announced to the corrupted party). For-
mally, consider parameters {si, αi}i and {ri, βi}i, where i = 1, . . . ,N , and ε
such that {si}i and {ri}i are probability distributions (over {1, . . . ,N}) and
0 ≤ αi, βi, ε ≤ 1/2 for i = 1, . . . ,N . A GWOT with respect to these parameters
is specified by a primitive of the following kind.

Definition 6.1 ({(si, αi)}Ni=1; {(ri, βi)}Ni=1; ε)-GWOT is an OT with the follow-
ing faults:

• A learns the selection bit c in the following way: the values I ∈ {1, . . . ,N}
and c̃ ∈ {0, 1} are drawn at random such that P [I = i] = si and
P [c̃ 6= c|I = i] = αi and then A learns I and c̃.

• B learns the secret bit b1−c in the following way: the values I ∈ {1, . . . ,N}
and b̃1−c ∈ {0, 1} are drawn at random such that P [I = i] = ri and
P [b̃1−c 6= b1−c|I = i] = βi and then B learns I and b1−c.

• with probability ε the honest receiver B gets 1 − bc instead of bc (i.e.,
incorrect value).

We will say that a corrupted sender gets c “sent through {(si, αi)}Ni=1” and
similarly a corrupted receiver gets b1−c “sent through {(ri, βi)}Ni=1”.

Note that there is some ambiguity in the primitive’s action in that it is not
required that b̃c is chosen independently of I and c̃, respectively of I and b̃1−c, as
long as the marginal distribution of b̃c is correct. Furthermore, a (p, q, ε)-WOT
coincides obviously with a

({(p, 0), (1−p, 1/2)}; {(q, 0), (1−q, 1/2)}; ε)-GWOT.
It will be convenient to introduce a GWOT of a very particular form, a Spe-

cial Generalised Weak Oblivious Transfer (SGWOT). Informally, in a SGWOT
the corrupted sender/receiver either gets no information on the selection/secret
bit or he receives it over a BSC with a certain (fixed) error probability. Formally,
for parameters s, α, r, β, ε with 0 ≤ s, r ≤ 1 and 0 ≤ α, β ≤ 1/2,(
(s, α), (r, β), ε

)
-SGWOT

def
=
({(s, 1/2), (1 − s, α)}; {(r, 1/2), (1 − r, β)}; ε)-GWOT.

Let us consider Protocol 6.3. As mentioned above, this construction actually
results in a GWOT (which is modelled by a WOT by giving away information
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to the adversary). As a matter of fact, as it can easily be seen, it results
in a SGWOT. The following lemma expresses the parameters of the resulting
SGWOT as a function of (γ, δ).

Let µ be such that δ = µ� γ. The proof of the lemma follows by straight-
forward case analysis of Protocol 6.3.

Lemma 6.14 When run with a (γ, δ)-PassiveUNC, Protocol 6.3 produces a
((s, α), (r, β), ε)-SGWOT with the following parameters:

s =
γ(1− γ)(γ2 + (1− γ)2)(µ4 + 6µ2(1− µ)2 + (1− µ)4)

δ(1 − δ)(δ2 + (1− δ)2)
,

α =
4γ2(1− γ)2

γ4 + 6γ2(1− γ2) + (1− γ4)
, (6.1)

r =
γ(1− γ)(µ2 + (1− µ)2)

δ(1 − δ)
, β =

γ2

γ2 + (1− γ)2
(6.2)

ε =
δ2

δ2 + (1− δ)2
. (6.3)

We have expressed the parameters of ((s, α), (r, β), ε)-SGWOT with that
of the underlying (γ, δ)-PassiveUNC. Now, we shall exploit the machinery of
[DKS99] in order to reduce OT to SGWOT.

In [DKS99], the ((s, α), (r, β), ε)-SGWOT obtained after invoking Reduc-
tion 6.3 was modelled by a (1−s, 1−r, ε)-WOT. I.e., in order to fit the imperfect
OT into the WOT framework, the error probabilities α and β were assumed
to be zero by giving the corrupted party some information for free. Clearly, a
tighter analysis should avoid this kind of strengthening of the corrupted party
for proof-technical conveniences. A straight forward approach would be to try
to show that for certain initial parameters, the sequence of GWOT’s produced
by applying the S-, R- and E-Red reductions to the initial SGWOT, converges
to an OT. Unfortunately, as the reduction of OT to WOT defined in [DKS99] is
executed, the shape of the GWOT’s becomes quickly very complex and difficult
to analyse. In order to avoid this problem, we give a generic way to replace a
(possibly very complex) GWOT by another (ideally simpler) one such that if the
new GWOT allows for OT then the initial GWOT also allows for OT; however,
in contrast to the strategy of [DKS99] of simply setting the error probabilities
to zero, we are trying to be much more tight.

Next definition introduces a partial ordering “�” among probability dis-
tributions over BSC’s, i.e., among sets of the form {(si, αi)}i or {(ri, βi)}i as
considered above, that will be shown (in Lemma 6.15) to capture the relative
difficulty to generate OT using the reduction considered in [DKS99]. Intuitively,
we say that S � S′ if S can be transformed into S′ by removing BSC’s in S and
replacing each of them by a Bernoulli distribution over two BSC’s such that
the average guessing probability for the bit sent through S is the same as when
sent through S′.

Definition 6.2 Let S = {(pi, εi)}Ni=1 and S′ be two probability distributions
over BSC’s. We say that S � S′ if there exists 1 ≤ ` ≤ N as well as 0 ≤ δ ≤ 1
and 0 ≤ ε− ≤ ε ≤ ε+ ≤ 1/2 such that
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1. S′ is of the form S′ = S \ {(p`, ε`)} ∪ {((1 − δ)p`, ε−), (δp`, ε+)} and

2. ε` = ε = (1− δ) · ε− + δ · ε+,

or if there exists a sequence S = S0, S1, . . . , Sk = S′ of probability distributions
over BSC’s such that Sκ−1 � Sκ in the above sense for κ = 1, . . . , k.

Note that in case εj = εk for some 1 ≤ j < k ≤ N , we identify S = {(pi, εi)}Ni=1

with S∗ = S \ {(pj , εj), (pk, εk)} ∪ {(pj + pk, εj)}. This is justified in that it is
immaterial in our context whether a bit is sent through S or through S∗.

The next lemma proved by Salvail and Fehr shows that the partial order-
ing S � S′ means that as long as reductions S-Red, R-Red, and E-Red are
concerned, S is easier to deal with than S′.

Lemma 6.15 If OT can be reduced to (S′;R′; ε)-GWOT by a sequence of reduc-
tions S-Red, R-Red, and E-Red, then OT can be reduced to any (S;R; ε)-GWOT
with S � S′ and R � R′.

Proof. In the following we show that S can be replaced by S′ and R can be
replaced by R′ to the advantage of the adversary for any sequence of the basic
reductions S-Red(l), R-Red(l), and E-Red(l). We write P = S, P ′ = S′ and
b = c for the selection bit c in case the sender is corrupted, and P = R, P ′ = R′

and b = b1−c for the secret bit b1−c in case the receiver is corrupted. P � P ′

implies that there exists a sequence of transformations P = P0, P1, . . . , Pk = P ′

where each Pκ is obtained from Pκ−1 as described in Definition 6.2. We show
that the (expected) guessing probability of the corrupted sender respectively
receiver for the bit b does not decrease when Pκ−1 is replaced by Pκ in the
description of the GWOT. In the following we fix 0 < κ ≤ k and assume
Pκ−1 = {(pi, εi)}Ni=1. Let 0 < ` ≤ N , 0 ≤ δ ≤ 1 and 0 ≤ ε− ≤ ε ≤ ε+ ≤ 1/2, be
defined as in Definition 6.2.

We fix some notation. Consider the transmission of l bits x1, . . . , xl which
encode b as specified later through Pκ−1. Formally, for j = 1, . . . , l, a channel
(index) Ij ∈ {1, . . . ,N} is independently chosen such that P [Ij = i] = pi and
a bit yj such that it differs from xj with probability εIj . Write I = [I1, . . . , Il]
and y = [y1, . . . , yl]. Finally, let I ′ = [I ′1, . . . , I

′
l ] and y′ = [y′1, . . . , y

′
l] be such

that I ′j = Ij and y′j = yj if Ij 6= ` and otherwise I ′j is chosen from {+,−}
such that P [I ′j = +] = δ and y′j ∈ {0, 1} such that it differs from xj with
probability εI′j . Hence, I ′ and y′ can be viewed as the outcome of sending
x1, . . . , xl through Pκ. Let guess be the probability of guessing (random) b
correctly given I and y (using an optimal guessing strategy), and similarly let
guess′ be the guessing probability for b given I ′ and y′. We will show that
guess ≥ guess′, i.e., replacing Pκ−1 by Pκ only helps in guessing b.

For simplicity, we assume that there exists exactly one j such that Ij = `. If
there is none then the claim definitely holds, and the case of several Ij ’s being
equal to ` can be reduced to the case of one using a straight forward hybrid
argument. Let j∗ be that special j. Write v for the collection of the Ij’s and yj’s
(or, equivalently, I ′j’s and y′j’s) with j 6= j∗, and write c for yj∗ as well as c′ for
(I ′j∗ , y

′
j∗). In the following we assume an arbitrary but fixed value for v (which
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has non-zero probability), and we show that guess ≥ guess′ for that v. This of
course implies that guess ≥ guess′ for v chosen according to its distribution.
Formally, in the following analysis, we consider the probability space obtained
by conditioning on the event that v takes on the considered value.

There are two distinct cases to analyse. The first case is when the bit b
was split into l parts (x1, . . . , xl) such that

⊕
j xj = b. This corresponds to

the situation where the adversary is the sender in S-Red(l) or the receiver in
R-Red(l). Consider the optimal guess for b ⊕ xj∗ =

⊕
j 6=j∗ xj. If this guess

is correct, then guess and guess′ are given by the guessing probabilities for
xj∗ given c respectively c′. If it is incorrect, then guess and guess′ are given
by the probabilities of guessing xj∗ wrongly given c respectively c′. In either
case, these probabilities coincide by the assumption on δ, ε, ε+ and ε− posed in
Definition 6.2, and hence guess = guess′.

The second case is when b is sent l times through Pκ−1 respectively Pκ, i.e.,
x1 = · · · = xl = b. This corresponds to the situation where the adversary is
the sender in R-Red(l) or the receiver in S-Red(l) or the adversary is either
the receiver or the sender in E-Red(l). Let ρb be the probability of observing v
given b (in the original unconditioned probability space), and write α = ρ1/ρ0.
Also, let G(c) denote the guessing probability for b depending on c. Then

G(0) = max
(

ρ0(1− ε)
ρ0(1− ε) + ρ1ε

,
ρ1ε

ρ0(1− ε) + ρ1ε

)
=

max(1− ε, αε)
(1− ε) + αε

and

G(1) = max
(

ρ0ε

ρ0ε+ ρ1(1− ε)
,

ρ1(1− ε)
ρ0(1− ε) + ρ1ε

)
=

max(ε, α(1 − ε))
ε+ α(1 − ε)

.

In both cases, the two terms in the max are the success probabilities when
guessing b to be 0 and 1, respectively. The probabilities that c = 0 and that
c = 1 are given by

P [c = 0] =
ρ0(1− ε) + ρ1ε

ρ0 + ρ1
=

(1− ε) + αε

1 + α
and

P [c = 1] =
ρ0ε+ ρ1(1− ε)

ρ0 + ρ1
=
ε+ α(1 − ε)

1 + α
.

Therefore,

guess =
(1− ε) + αε

1 + α
· max(1− ε, αε)

(1− ε) + αε
+
ε+ α(1− ε)

1 + α
· max(ε, α(1 − ε))

ε+ α(1− ε)

=
max(1− ε, αε)

1 + α
+

max(ε, α(1 − ε))
1 + α

Since this expression is invariant under replacing α by 1/α, we may assume
that 0 ≤ α ≤ 1, and hence

guess =
1

1 + α
· (αε+ max(ε, α(1 − ε))

)
.

Similarly, it holds that

guess′ =
δ

1 + α
·(αε++max(ε+, α(1−ε+))

)
+

1− δ

1 + α
·(αε−+max(ε−, α(1−ε−))

)
.
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Therefore,
guess′ =

=
1

1 + α
· (αε+ + δ ·max(ε+, α(1 − ε+)) + (1− δ) ·max(ε−, α(1 − ε−))

)
=

1
1 + α

· (αε+ + max(δε+, δα(1 − ε+)) + max((1 − δ)ε−, (1− δ)α(1 − ε−))
)

≥ 1
1 + α

· (αε+ + max(δε+ + (1− δ)ε−, δα(1 − ε+) + (1− δ)α(1 − ε−))
)

=
1

1 + α
· (αε+ max(ε, α(1 − ε))

)
= guess

This had to be shown. 2

In particular, Lemma 6.15 allows to improve the analysis of [DKS99]. As we
have seen in Lemma 6.14, the imperfect OT obtained from a PassiveUNC using
Reduction 6.3 produces a ((s, α), (r, β), ε))-SGWOT. Using Lemma 6.15, it is
straight forward to verify that we can replace this SGWOT by a (ps, qr, ε)-WOT
with ps = (1 − s)(1 − 2α) and qr = (1 − r)(1 − 2β). Indeed, for instance the
corrupted sender’s guessing probability for the selection bit is in the first case
s/2 + (1− s)(1−α) = 1− s/2−α+ sα and in the second case ps+ (1− ps)/2 =
1− s/2− α+ sα. Applying Lemma 6.5 to the transformed SGWOT results in
the following lemma.

Lemma 6.16 There exists a reduction of OT to ((s, α), (r, β), ε)-SGWOT with
ps + qr + 2ε ≤ 0.45 where ps = (1− s)(1− 2α) and qr = (1− r)(1− 2β).

Combining Lemmas 6.14 and 6.16 gives directly the following result:

Lemma 6.17 OT can be reduced to (γ, δ)-PassiveUNC if ps + qr + 2ε ≤ 0.45,
where ps = (1 − s)(1 − 2α), qr = (1 − r)(1 − 2β) and s, α, r, β, ε are defined
by equations (6.1)–(6.3).

Note that in Lemma 6.5, OT can only be achieved if p+ q+2ε ≤ 0.45 where
p = 1 − s and q = 1 − r. Hence, the possibility range of (γ, δ) values given in
Lemma 6.17 strictly contains the one obtained in [DKS99]. This can be seen
from Figure 6.1, where these possibility results are shown. We note that the
thin diagonal line γ = δ on Figure 6.1 depicts the Binary Symmetric Channel.
We are investigating the range below it, since this range represents the UNC’s
with γ < δ. The area below the curve δ = 2γ(1 − γ) (we shall call this curve
the simulation bound) is the range where no primitives are possible, since the
UNC’s are trivial there according to Lemmas 6.1 and 6.2. As mentioned above,
bit commitments are possible everywhere between the simulation bound and
the BSC line. Our goal is to get the possibility result for OT which is as close
as possible to the simulation bound.

Despite some improvement, Lemma 6.17 still shares the following restriction
with [DKS99]: OT is not known to be possible for δ > 0.35 even if γ is almost
equal to δ (i.e., the corresponding UNC is “almost fair”) since in that case
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ε > 0.45 and so the condition of Lemma 6.5 is not satisfied (see Figure 6.1).
This stands somewhat in contrast to the fact that OT can be achieved based on
any (non-trivial) BSC as it is shown in Chapter 3. Hence, one might expect that
OT can be achieved based on any (non-trivial) UNC as long as the unfairness
is small enough. The following lemma shows that this intution is indeed true.

Lemma 6.18 There exists a reduction of OT to any (γ, δ)-PassiveUNC that
satisfies 1 − (1 − ps)l + 1 − (1 − qr)l + 2 εl

εl+(1−ε)l ≤ 0.45 for some l ≥ 1, where
ps = (1− s)(1− 2α) and qr = (1− r)(1− 2β) with s, α, r, β, ε defined by (6.1)–
(6.3).

Remark 6.4 Clearly, for any 0 < δ < 1/2, for l large enough, and for γ close
enough to δ (where the closer δ is to 1/2, the closer γ has to be to δ), the
values ps and qr are small enough for the condition expressed in Lemma 6.18
to be satisfied. Hence, OT is possible based on (γ, δ)-PassiveUNC’s for any
0 < δ < 1/2 as long as γ is close enough to δ (see Figure 6.1). This further
improves on the results of [DKS99].

Proof. We implement a ((s, α), (r, β), ε)-SGWOT from the (γ, δ)-PassiveUNC
according to Lemma 6.14. Using Lemma 6.15, we convert it into a (ps, qr, ε)-
WOT and then apply the reduction E-Red(l). By Lemma 6.4, this results in a(

1− (1− ps)l, 1− (1− qr)l, εl

εl+(1−ε)l

)
-WOT. The claim now follows. 2

It can be shown by straight forward calculations that the new possibility
range includes UNC’s for which the techniques of [DKS99] results in the trivial
WOT’s, i.e., the ones that could not be used to implement OT (see Lemma 6.3).
In other words, our approach allows to implement and prove secure OT in a
range where it is provably impossible using the techniques of [DKS99]. The
following example illustrates this.

Example 6.1 Let γ0 = 0.39, δ0 = 0.4 be the parameters of a PassiveUNC. The
(p(γ0, δ0), q(γ0, δ0), ε(δ0)

)
-WOT obtained from a (γ0, δ0)-PassiveUNC the crude

way (by giving away all partial information to the adversary as in [DKS99])
achieves p(γ0, δ0) + q(γ0, δ0) + 2ε(δ0) ≈ 0.869. It can be shown that from this
WOT, any sequence of reductions S-, R- and E-Red generates a simulatable
WOT, i.e., OT is not reducible to the (p(γ0, δ0), q(γ0, δ0), ε(δ0))-WOT using S-,
R- and E-Red. At the same time, the (ps(γ0, δ0), qr(γ0, δ0), ε(δ0)-WOT (ob-
tained according Lemma 6.15) achieves ps(γ0, δ0) + qr(γ0, δ0) + 2ε(δ0) ≈ 0.671.
Moreover, E-Red(2) applied to this WOT generates a (p′, q′, ε′)-WOT with
p′ + q′ + 2ε′ ≈ 0.438, which we know from Lemma 6.17 implies OT.

There exists an even larger range than the one described in Lemma 6.18
for which a possibility result can be shown. This follows from the fact that the
approach of Lemma 6.18 still gives information for free to the adversary. Indeed,
the SGWOT obtained from a (γ, δ)-PassiveUNC is converted into a (ps, qr, ε)-
WOT before reductions S-Red, R-Red and E-Red are applied. We may benefit
from trying to preserve the SGWOT through the sequence of reductions.
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The problem is that the reductions do not preserve the SGWOT per se
but produce more complex GWOT’s with a quickly growing set of parameters.
An approach is to use Lemma 6.15 in order to immediately convert any re-
sulting GWOT (which is not a SGWOT) back into a SGWOT. Specifically, a
({(si, αi)}i; {(ri, βi)}i; ε)-GWOT can be replaced by a ((s, α), (r, β), ε)-SGWOT,
where α = min

i
αi and β = min

i
βi, and s and r are appropriately chosen such

that {(si, αi)}i � {(s, 1/2), (1 − s, α)} and {(ri, βi)}i � {(r, 1/2), (1 − r, β)}.
This indeed results in an increased possibility range.

Lemma 6.19 There exists a range of values (γ, δ) which do not satisfy the
conditions of Lemma 6.18 but where OT can still be implemented from such
(γ, δ)-PassiveUNC’s.

Proof. (sketch) By brute force analysis for any fixed value of δ0, 0 < δ0 <
1/2, we find the smallest value of γ0, such that a SGWOT based on (γ0, δ0)-
PassiveUNC can be reduced to a SGWOT with ps + qr + 2ε ≤ 0.45 using the
reductions S-Red, R-Red and E-Red, and replacing any GWOT by a SGWOT
as sketched above.

For example, let γ0 = 0.365, δ0 = 0.4. The value ps+qr+2ε of the SGWOT
resulting from (γ0, δ0)-PassiveUNC is equal to 0.793. It is easy to check that
the conditions of Lemma 6.18 are not satisfied with respect to this SGWOT.
Nonetheless, the sequence of reductions “EERSRESERRSESRERSESERRS”
(i.e., E-Red(2), then E-Red(2) again, then S-Red(2) and so on; and each re-
duction has parameter kS = kR = kE = 2) produces as output a SGWOT with
ps + qr + 2ε = 0.329 which implies OT according to Lemma 6.17. 2

Using brute-force analysis, it is possible to find numerically the range for
which the reduction considered in Lemma 6.19 produces OT. The new range is
depicted on Figure 6.1.

On the other hand, even the approach described above is limited in power.
The following example suggests that in order to get a possibility result closer
to the (γ, δ)-PassiveUNC simulation bound δ = 2γ(1 − γ) from [DKS99], one
has to find different reduction methods and/or analytical tools.

Example 6.2 Let γ0 = 0.33, δ0 = 0.4. For a SGWOT obtained from (γ0, δ0)-
PassiveUNC the following holds: ps(γ0, δ0) + qr(γ0, δ0) + 2ε(δ0) ≈ 0.949. It can
be shown by brute force analysis that whatever sequence of reductions S-, R-
and E-Reduce applied with whatever parameters, it always results at some point
a SGWOT with ps + qr + 2ε ≥ 1. In other words, given the original SGWOT,
the reductions always generate a primitive such that the WOT corresponding
to it (in the sense of Lemma 6.15) is trivial.

We stress that in contrast to a (p, q, ε)-WOT with p + q + 2ε ≥ 1, a SGWOT
with ps + qr + 2ε ≥ 1 is not known to be trivial; however, it seems to be a very
strong indication that OT cannot be based on such a SGWOT.
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Figure 6.1: Positive results on OT from (γ, δ)-PassiveUNC

6.6 Concluding Remarks

6.6.1 More Applications

In this work, we have shown how to transform any OT protocol secure against
passive adversaries given access to a PassiveUNC into one that is secure against
active adversaries given access to a standard UNC. This is possible since any
non-trivial UNC allows for bit commitment as it was shown in [DKS99]. Our
transformation is general enough to be applicable to a wider class of two-party
protocols. Applying it to a passively secure protocol π implementing task T
given access to a PassiveUNC produces an actively secure protocol π′ that
implements T given access to a UNC, however, π′ may fail with non-negligible
probability. When T is OT, this can be “cleaned up” using the techniques
described in this chapter, in general T can be any task where such “cleaning”
is possible.

6.6.2 Open Question

We show that our approach for constructing OT based on UNC has limits that
even a more tight analysis (compared to [DKS99]) cannot overcome. Thus, a
“grey” range (which is between the possibility result of Lemma 6.19 and the
simulation bound on Figure 6.1) is left where neither positive nor negative
results are known to apply. Closing this gap is the open problem suggested by
our work.





Bibliography

[Bea91] Beaver, D.: Secure Multi-party Protocols and Zero-Knowledge Proof
Systems Tolerating a Faulty Minority. In: J. of Cryptology, vol. 4, no. 2
(1991) 75–122

[BG89] Beaver, D., Goldwasser, S.: Multiparty Computation with Faulty
Majority. In: Advances in Cryptology–CRYPTO ’89. LNCS, vol. 435.
Springer-Verlag (1990) 589–590

[BMM99] Beimel, A., Malkin, T., Micali, S.: The All-or-Nothing Na-
ture of Two-Party Secure Computation. In: Advances in Cryptology–
CRYPTO ’99. LNCS, vol. 1666. Springer-Verlag (1999) 80–97

[BBCM95] Bennett, C.H., Brassard, G., Crépeau, C., and Maurer, U.M.: Gen-
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[BCW03] Brassard, G., Crépeau, C., and Wolf, S.: Oblivious transfers and
privacy amplification. In: J. of Cryptology, vol. 16, no. 4 (2003) 219–237

[Cac97] Cachin, C.: Entropy measures and unconditional security in cryptogra-
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Rényi, 13

environment machine, 57

Fano’s inequality, 14

hybrid model, 61

ideal functionality, 6, 58
ideal process, 56, 58
input symbol

forbidden, 30
redundant, 23

mutual information, 14

oblivious transfer (OT), 1, 3, 7, 8,
19, 44, 67

(p, q, ε)-weak, 72
generalised weak, 86

special, 86
one-out-of-two, 3
Rabin, 3, 40
string, 35
verifiable, 40
weak, 69
with non-zero rate, 41

pair
good, 26
incorrect, 30
most informative, 26

privacy amplification, 17

101



102 Index

probability transition matrix, 14

real-life model, 56, 57

simulation bound, 90
simulator, 58

non-blocking, 60, 79
statistical indistinguishability, 18

universal hash function, 17
universally composable (UC) frame-

work, 55

zero-knowledge proofs, 18, 68



Recent BRICS Dissertation Series Publications

DS-05-1 Kirill Morozov. On Cryptographic Primitives Based on Noisy
Channels. March 2005. PhD thesis. xii+102 pp.

DS-04-6 Paweł Sobocinski.Deriving Process Congruences from Reac-
tion Rules. December 2004. PhD thesis. xii+216 pp.

DS-04-5 Bjarke Skjernaa. Exact Algorithms for Variants of Satisfia-
bility and Colouring Problems. November 2004. PhD thesis.
x+112 pp.

DS-04-4 Jesper Makholm Byskov.Exact Algorithms for Graph Colour-
ing and Exact Satisfiability. November 2004. PhD thesis.

DS-04-3 Jens Groth. Honest Verifier Zero-knowledge Arguments Ap-
plied. October 2004. PhD thesis. x+112 pp.

DS-04-2 Alex Rune Berg. Rigidity of Frameworks and Connectivity of
Graphs. July 2004. PhD thesis. xii+173 pp.

DS-04-1 Bartosz Klin. An Abstract Coalgebraic Approach to Process
Equivalence for Well-Behaved Operational Semantics. May
2004. PhD thesis. x+152 pp.

DS-03-14 Daniele Varacca. Probability, Nondeterminism and Concur-
rency: Two Denotational Models for Probabilistic Computation.
November 2003. PhD thesis. xii+163 pp.

DS-03-13 Mikkel Nygaard. Domain Theory for Concurrency. November
2003. PhD thesis. xiii+161 pp.

DS-03-12 Paulo B. Oliva. Proof Mining in Subsystems of Analysis.
September 2003. PhD thesis. xii+198 pp.

DS-03-11 Maciej Koprowski.Cryptographic Protocols Based on Root Ex-
tracting. August 2003. PhD thesis. xii+138 pp.

DS-03-10 Serge Fehr. Secure Multi-Player Protocols: Fundamentals,
Generality, and Efficiency. August 2003. PhD thesis. xii+125 pp.

DS-03-9 Mads J. Jurik. Extensions to the Paillier Cryptosystem with Ap-
plications to Cryptological Protocols. August 2003. PhD thesis.
xii+117 pp.

DS-03-8 Jesper Buus Nielsen.On Protocol Security in the Cryptographic
Model. August 2003. PhD thesis. xiv+341 pp.
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