
BRICS
Basic Research in Computer Science

Exact Algorithms for Variants of
Satisfiability and Colouring Problems

Bjarke Skjernaa

BRICS Dissertation Series DS-04-5

ISSN 1396-7002 November 2004

B
R

IC
S

D
S

-04-5
B

.S
kjernaa:

E
xactA

lgorithm
s

for
V

ariants
ofS

atisfiability
and

C
olouring

P
roblem

s

Copyright c© 2004, Bjarke Skjernaa.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/04/5/

Exact Algorithms for Variants of
Satisfiability and Colouring Problems

Bjarke Skjernaa

PhD Dissertation

Department of Computer Science
University of Aarhus

Denmark

Exact Algorithms for Variants of
Satisfiability and Colouring Problems

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Bjarke Skjernaa

6th September 2004

Abstract

This dissertation studies exact algorithms for various hard problems and give
an overview of not only results but also the techniques used.

In the first part we focus on Satisfiability and several variants of Satisfi-
ability. We present some historical techniques and results. Our main focus
in the first part is on a particular variant of Satisfiability, Exact Satisfiability.
Exact Satisfiability is the variant of Satisfiability where a clause is satisfied if it
contains exactly one true literal. We present an algorithm solving Exact Satis-
fiability in time O(20.2325n), and an algorithm solving Exact 3-Satisfiability, the
variant of Exact Satisfiability where each clause contains at most three literals,
in time O(20.1379n). In these algorithms we use a new concept of k-sparse formu-
las, and we present a new technique called splitting loosely connected formulas,
although we do not use the technique in the algorithms.

We present a new program which generates algorithms and corresponding
upper bound proofs for variants of Satisfiability, and in particular Exact Sat-
isfiability. The program uses several new techniques which we describe and
compare to the techniques used in three other programs generating algorithms
and upper bound proofs.

In the second part we focus on another class of NP-complete problems,
colouring problems. We present several algorithms for 3-Colouring, and discuss
k-Colouring in general. We also look at the problem of determining the chro-
matic number of a graph, which is the minimum number, k, such that the graph
is k-colourable. We present a technique using maximal bipartite subgraphs to
solve k-Colouring, and prove two bounds on the maximum possible number
of maximal bipartite subgraphs of a graph with n vertices: a lower bound of
Ω(1.5926n) and an upper bound of O(1.8612n). We also present a recent im-
provement of the upper bound by Byskov and Eppstein, and show a number of
applications of this in colouring problems.

In the last part of this dissertation we look at a class of problems unrelated
to the above, Graph Distinguishability problems. DISTk is the problem of
determining if a graph can be coloured with k colours, such that no non-trivial
automorphism of the graph preserves the colouring. We present some results
on determining the distinguishing number of a graph, which is the minimum
k, such that the graph is in DISTk. We finish by proving a new result which
shows that DISTk can be reduced to DISTl for various values of k and l.

v

Acknowledgements

First, I would like to thank my supervisors, Peter Bro Miltersen and Sven
Skyum, for the guidance and assistance they have provided during the last four
years.

A special thanks goes to all the people at the University of Aarhus, and
especially the secretaries and my co-authors, Bolette Ammitzbøll Madsen and
Jesper Makholm Byskov. It has really been a pleasure working with you.

I would also like to thank all the people I met while staying at the Max
Planch Institut für Informatik in Saarbrücken, Germany, and in particular the
secretaries for helping and making my stay very easy, and my office mate,
Sylvain Pion, for helping me, when I needed it.

I am not sure I would have made it this far without my family and all my
friends, so I would also like to thank my parents and my sisters, everybody
in Frokostklubben (The Lunch Club), the people on the fourth floor of Skej-
byg̊ardkollegiet, and everyone in Århus Klatreklub (Aarhus Climbing Club).
Thanks for all the time we have spent together, and I hope we will continue to
spend a lot of time together.

Finally, I would like to thank all the people who have proofread my papers,
and in particular Bolette for proofreading this dissertation.

Bjarke Skjernaa,
Århus, 6th September 2004.

vii

Contents

Abstract v

Acknowledgements vii

I Overview 1

1 Introduction 3

2 Satisfiability 5
2.1 Introduction . 5
2.2 Branching algorithms . 6

2.2.1 Analysing branching algorithms 6
2.3 Algorithms for Satisfiability . 8

2.3.1 k-SAT . 8
2.3.2 SAT in general . 11

2.4 Variants of Satisfiability . 12
2.4.1 Relative hardness . 14

3 Exact Satisfiability 17
3.1 Introduction . 17
3.2 Algorithms for Exact Satisfiability 18
3.3 Problems related to XSAT . 23
3.4 Loosely connected formulas . 24

4 Automated Generation of Algorithms 27

5 Colouring 31
5.1 Introduction . 31

5.1.1 Constraint Satisfaction Problem 32
5.2 Algorithms for Colouring . 32

5.2.1 Chromatic number . 33
5.2.2 3-Colouring . 35
5.2.3 Colouring in general . 36

5.3 Using maximal bipartite subgraphs 37

6 Graph Distinguishability 41

ix

II Papers 45

7 Algorithms for Exact Satisfiability 47
7.1 Introduction . 47
7.2 Preliminaries . 48

7.2.1 Definitions . 48
7.2.2 Branching . 49
7.2.3 Branching vectors . 49

7.3 The algorithms . 50
7.3.1 Reductions . 50
7.3.2 The algorithm for XSAT 53
7.3.3 The algorithm for X3SAT 59

7.4 Conclusion . 73

8 Automated Generation of Branching Algorithms 75
8.1 Introduction . 75

8.1.1 Definitions . 76
8.1.2 Branching vectors . 76

8.2 Algorithm . 77
8.2.1 class of formulas . 77
8.2.2 The overall structure . 78

8.3 Deciding the branching value . 79
8.3.1 Reducing . 80
8.3.2 Finding branching vectors 82

8.4 Strategy for Split . 84
8.5 Results . 85
8.6 Limitations and future work . 86

9 Maximal Bipartite Subgraphs of a Graph 87
9.1 Introduction . 87
9.2 Lower bound . 87
9.3 Upper bound . 88
9.4 Colouring . 90
9.5 Conclusion . 91

10 Graph Distinguishability Problems 93
10.1 Introduction . 93
10.2 Notation . 95
10.3 Unique colourings . 95
10.4 Reductions . 97
10.5 Constructing graphs . 104
10.6 Concrete reductions . 106
10.7 Conclusion and open problems 108

Bibliography 109

x

Part I

Overview

1

Chapter 1

Introduction

The interest in algorithms for NP-complete problems have increased during the
last five to ten years. The speed of computers has made it possible to solve
interesting instances, but the impact of increase in the speed of computers is
not very large. An algorithm running in time O(2n) will only be able to handle
inputs of size one greater every time the speed of computers doubles. On the
other hand, if one creates an algorithm for the same problem which only uses
time O(2n/10), it will be able to handle instances which are ten times greater. So
although the increase in the speed of computers does matter, better algorithms
play a big role in solving real instances.

In this dissertation I will present exact algorithms for Satisfiability, vari-
ants thereof and for colouring problems. I will also present a result about the
distinguishing number of a graph.

The dissertation consists of two parts. In Part I, I present a survey of results
and techniques related to my results, and a brief overview of my own results.
The second part consists of the papers I have authored or co-authored during
my PhD studies.

In Chapter 2 I look at SAT and k-SAT, and present some algorithms for
solving SAT and k-SAT. I end the chapter by looking at several variants of
Satisfiability. In Chapter 3 I consider a specific variant of Satisfiability, Ex-
act Satisfiability, and give an overview of previous results and techniques, and
present my new result. In Chapter 4 I present prior work in the area of au-
tomatic generation of algorithms and upper bound proofs and sumarises the
differences between the prior work and my new program, which have mainly
been used for generation algorithms for Exact Satisfiability.

Finally I present in Chapter 6 an overview of results related to the distin-
guishing number of a graph. I present my result which shows some reductions
between different distinguishablity problems.

In Part II I present the following papers:

Chapter 7 New Algorithms for Exact Satisfiability [10]
This paper is co-authored by Jesper M. Byskov and Bolette A. Madsen,
and is to appear in Theoretical Computer Science.

Chapter 8 Automated Generation of Branching Algorithms with Upper Bound

3

4 Chapter 1. Introduction

Proofs for Variants of SAT [52]
This paper is single authored and is not yet published.

Chapter 9 On the Number of Maximal Bipartite Subgraphs of a Graph [11]
This paper is co-authored by Jesper M. Byskov and Bolette A. Madsen,
and is to appear in Journal of Graph Theory.

Chapter 10 Reductions among Graph Distinguishability Problems [54]
This paper is single authored and is not yet published.

Chapter 2

Satisfiability

2.1 Introduction

In this chapter we will look at Satisfiability, which is probably the most well
studied NP-complete problem.

Satisfiability (SAT)

Input: A boolean formula F (x1, . . . , xn) in conjunctive
normal form (CNF).

Output: Does there exist an assignment to the variables
x1, . . . , xn, such that the formula evaluates to
true:

∃a1, . . . , an : F (a1, . . . , an).

It was the first problem proven to be NP-complete, and this was done by
Stephen A. Cook in 1971:

Theorem 2.1 (Stephen A. Cook [12], Theorem 1) If a set, S, of strings
is accepted by some nondeterministic Turing machine within polynomial time,
then S is P-reducible to {DNF tautologies}.
Note, that Cook does not distinguish between a problem and the complement
of the problem, and thus the theorem is normally rephrased just as

Theorem 2.2 (Cook’s Theorem) SAT is NP-complete.

Most algorithms do not consider the full Satisfiability problem, but consider
instead the restricted problem of k-Satisfiability.

k-Satisfiability (k-SAT)

Input: A boolean formula F (x1, . . . , xn) in conjunctive
normal form. Each clause contains at most k
literals.

Output: Does there exist an assignment to the variables
x1, . . . , xn, such that the formula evaluates to
true:

∃a1, . . . , an : F (a1, . . . , an).

5

6 Chapter 2. Satisfiability

It is easy to reduce SAT to 3-SAT, but on the other hand 2-SAT is easily
shown to be in P.

We will first present a bit of notation and then some algorithms for solving
SAT and 3SAT. When talking about formulas it is important to distinguish
between a variable and a literal. When we talk about a variable, x, it is all
occurrences of x, both negated and unnegated, while when we speak about a
literal, x, we only consider x and not x̄, which is another literal. A clause
of the formula is called a k-clause if it contains exactly k literals. If σ is a,
possible partial, assignment to the variables of F , then we denote by F [σ] the
formula F where every variable defined by σ is replaced by the corresponding
value. For SAT and 3SAT we will let a reduced formula be a formula that is
either just a constant or does not contain any constants at all. A formula in
CNF can be translated into an equivalent reduced formula by removing every
clause containing the constant true, and removing the constant false from every
clause. If the formula after this translation contains an empty clause, the entire
formula is replaced by false, and if it does not contain any clauses at all, it is
replaced by true.

As is common in papers on exact algorithms, we will throughout this dis-
sertation use O(f) to denote a function that is of the same order as f , ignoring
polynomial factors. Note that when used on exponential functions this only
differs from the normal definition if exact numbers are used, as we with the
normal definition have: O(p(n) · cαn) ⊆ O(c(α+ε)n).

2.2 Branching algorithms

Many of the algorithms which we will present in this dissertation is branching
algorithms, also known as Davis-Putnam-type algorithms [16, 17]. Branching
algorithms solves a problem by branching into several smaller problems, in such
a way that the solution to the original problem can be computed in polynomial
time, given the solutions to the smaller problems. The algorithm recursively
solves each of the smaller problems, and combines the solution to get a solution
for the original problem. If an instance can be solved in polynomial time, e.g.
if it is smaller than a fixed threshold, it is solved without branching. In this
way the problems forms a tree, where the root is the original problem and the
leaves are the problems which was solved directly. For a problem instance P
we denote the tree with P as the root, T (P). The running time of a branching
algorithm for a given problem instance P is within a polynomial factor of the
number of leaves in T (P).

2.2.1 Analysing branching algorithms

Let µ(P) be a measure of the size of the problem instance P . If the problem
instances are formulas, we generally use one of three different measures of the
size: the number of variables, the number of clauses and the number of literals,
but other measures could be used. Unless otherwise specified we use the number
of variables.

2.2. Branching algorithms 7

The results in this section origins from a manuscript by Kullmann and
Luckhardt [33]. If the algorithm when finding the solution for P constructs the
problems P1, P2, . . . , Pk, we let ti = µ(P)− µ(Pi) for i ∈ [k], where [k] denotes
the set {1, 2, . . . , k}. We call t = (t1, t2, . . . , tk) the branching vector of this
branch, and associate a characteristic polynomial with this branching vector

χ(t)(x) = 1−
k∑

i=1

x−ti . (2.1)

The characteristic polynomial is strictly increasing and has thus exactly one
positive root, which we call the branching value of t and denote by τ(t). By αt

we denote log τ(t). As each internal node in T (P) has an associated branching
vector, we can define

τ(T (P)) =

1 if T (P) only has one node,
max

t in T (P)
τ(t) otherwise. (2.2)

With this definition we can make an upper bound on the number of leaves
in T (P)

Theorem 2.3 (Kullmann and Luckhardt [33], Theorem 1) Let α be the
largest of the αts for t in T (P). We then have

number of leaves in T (P) ≤ τ(T (P))µ(P) = 2α·µ(P). (2.3)

Proof. The proof is by induction in the size of the tree. If T (P) only has one
node the bound is trivial. Assume the bound is true for P1, . . . , Pk. We get

number of leaves in T (P) ≤
k∑

i=1

τ(T (Pi))µ(Pi) =
k∑

i=1

τ(T (Pi))µ(P)−ti

≤
k∑

i=1

τ(T (P))µ(P)−ti = τ(T (P))µ(P) ·
k∑

i=1

τ(T (P))−ti

= τ(T (P))µ(P) · (1− χ(t1, . . . , tk)(τ(T (P)))) ≤ τ(T (P))µ(P). (2.4)

The last inequality follows from the fact that χ(t1, . . . , tk) is increasing and
τ(T (P)) ≥ τ(t1, . . . , tk). The equality in (2.3) follows directly from the defini-
tion of τ(T (P)) and α. 2

Thus, to determine an upper bound on the running time of a branching
algorithm one proves an upper bound on the branching value for every possible
branch the algorithm can make. The worst branching value gives an upper
bound on the overall running time.

We will use some simple properties of τ(t), which all follows directly from
the definitions of χ(t) and τ(t)

Lemma 2.1 (Kullmann and Luckhardt [33], part of Lemma 5.1)
τ(t) has the following properties:

8 Chapter 2. Satisfiability

1. Permutations of the entries in t do not affect τ(t),

2. τ(t) is strictly decreasing in each component (when t has more than one
entry),

3. τ(t1, . . . , tk) < τ(t1, . . . , tk, tk+1) for tk+1 > 0.

2.3 Algorithms for Satisfiability

SAT is trivially solvable in time O(2n) by testing whether any of the 2n as-
signments to x1, . . . , xn makes the expression evaluate to true. Unfortunately,
no algorithm obtaining a better time complexity stated as a function of the
number of variables is known.

2.3.1 k-SAT

In the case of k-SAT, it is easy to make a slight improvement to the trivial bound
by noting that looking at a particular clause only 2k − 1 of the 2k possible
assignments to its variables are feasible (assuming the clause has k literals).
Thus resulting in an O((2k − 1)n/k) algorithm.

To improve this Monien and Speckenmeyer, in one of the first and most
simple algorithms for k-SAT, noted that instead of making 2k − 1 recursive
calls with k variables fewer in each, one can do with k recursive calls with
respectively 1, 2, . . . , k variables fewer:
Boolean SolveMonien(F):

if F is empty then
return true

end if
if F contains the empty clause then

return false
end if
Let c = (l1 ∨ l2 ∨ · · · ∨ li) be an arbitrary clause of F
for j = 1, . . . , i do

if SolveMonien(reduce(F [l1 = false, . . . , lj−1 = false, lj = true])) then
return true

end if
end for
return false

where reduce(·) reduces the expression as described on page 6. It is easy to
see that F is satisfiable if and only if at least one of these sub-formulas are
satisfiable. The algorithm has a branching vector of (1,2,. . . ,k). Denote by βk

the corresponding branching value. The algorithm shows that k-SAT can be
solved in O(βn

k), which for k = 3 is O(1.8393n). Monien and Speckenmeyer
also present a trick which improves this such that k-SAT is solved in O(βn

k−1).
The observation is that in each step, it is possible either to eliminate at least
one variable without branching (if a variable only occurs either negated or
unnegated) or ensure that in the next step there is a clause with only k − 1
literals. Eliminating one variable followed by branching on a k-clause is better

2.3. Algorithms for Satisfiability 9

than branching on a (k − 1)-clause, and thus is the second case worst, and we
get the claimed complexity. For 3-, 4-, and 5-SAT the result is O(1.6181n),
O(1.8393n) and O(1.9276n).

In Table 2.1 we have summarised most results for k-SAT (an entry with
value c indicates an algorithm running in time O(cn)), and we will describe
some of the newest improvements. Except from a few of the entries, the table is
taken from a paper by Schöning [48], where the precise references can be found.

3-SAT 4-SAT 5-SAT Type Reference
1.849 - - det. P. Pudlák, 1998
1.782 1.835 1.867 det. R. Paturi, P. Pudlák, F. Zane, 1997
1.619 1.840 1.928 det. B. Monien, E. Speckenmeyer, 1985 [37]
1.588 1.682 1.742 prob. R. Paturi, P. Pudlák, F. Zane, 1997
1.579 - - det. I. Schiermeyer, 1993
1.505 - - det. O. Kullmann, 1999 [31]
1.5 1.6 1.667 prob. U. Schöning, 1999
1.447 1.496 1.569 prob. Paturi, Pudlák, Saks, Zane, 1998
1.362 1.476 - prob. Paturi, Pudlák, Saks, Zane, 1998
1.334 1.5 1.6 prob. U. Schöning, 1999 [51]
1.481 1.6 1.667 det. Dantsin et al., 2000 [15]a

1.331 - - prob. Schuler, Schöning, Watanabe, 2001 [50]
1.331 - - prob. Hofmeister et al., 2002 [29]
1.329 - - prob. S. Baumer and R. Schuler, 2004 [4]

aThe result for 4- and 5-SAT was found independently by several people [14].

Table 2.1: History of k-SAT.

The algorithm presented by Schöning [51] is a Monte Carlo algorithm with
one-sided error, which means that the upper bound on the running time is cor-
rect, but there may be a little probability of either false negative answers or false
positive answers (but not both). In this case, the algorithm may possibly give
false negative answers: given a formula, there is a little probability that the algo-
rithm will claim that the formula is not satisfiable, even though it is. The proba-
bility of error can be made negligible by adjusting a parameter of the algorithm.
The algorithm is extremely simple to describe:
Boolean SolveProb(F):

repeat f(n) times
Guess an initial assignment uniformly at random.
repeat 3n times

if the formula is accepted by the actual assignment then
return true

end if
Choose an arbitrary clause that is not satisfied. Pick uniformly at ran-
dom one of the variables of the clause. Switch the value of the variable.

end repeat
end repeat
return false

10 Chapter 2. Satisfiability

The error probability (and the running time) depends on the choice of f(n).
If the probability of succeeding in one iteration of the outer loop is denoted
p(n), choosing f(n) = 1

p(n) will make the error probability less than e−1. This
probability can be made arbitrary small by repeating the algorithm (choosing
f(n) = s

p(n) , results in an error probability of at most e−s). The running time
of the algorithm is O(f(n)), so to determine the running time it will suffice to
determine p(n). Using Markov chains and the Ballot Theorem [24], it can be
shown that p(n) ≥ (1

2 (1+ 1
k−1))n. The crucial observation is that the probability

that the Hamming distance to a particular solution (if one exists) decreases in
a step is at least 1

k .
The conclusion is that the algorithm solves k-SAT in O((1

2 (1 + 1
k−1))−n) =

O((2(1 − 1
k))n), which for 3-SAT, 4-SAT and 5-SAT is O((4

3)n), O((3
2)n) and

O((8
5)n). The algorithm has by several people independently been derandomised

by using covering codes [14]. Although the derandomisation increases the run-
ning time to O((2(1 − 1

k+1))n), it is the best known deterministic result for
k-SAT, for k > 3.

The algorithm of Schöning was slightly improved for 3-SAT in 2001 by
Schuler, Schöning and Watanabe [50] to O(1.3303n). Their algorithm is a hybrid
of the probabilistic algorithm of Schöning and a new deterministic algorithm.
Given a set of clauses, F , the algorithm finds an arbitrary maximal independent
subset of the 3-clauses C ⊆ F (no variable appears in more than one clause of
C, and every 3-clause in F \ C shares a variable with at least one clause in
C). If every variable of C is assigned a value, the reduced formula is a 2-
SAT instance, which can be solved in polynomial time. Thus the following
deterministic algorithm will decide Satisfiability:
Boolean SolveSchuler(F):

for every assignment, σ, to the variables of C, that satisfy all clauses of C do
if F [σ] is satisfiable then

return true
end if

end for
return false
The number of truth assignments to the variables of C that satisfy all clauses

of C is exactly 7|C|, and can easily be generated with only a small overhead.
The size of C can be n

3 , which gives the time bound O(7
n
3) ≈ O(1.9129n).

This is almost as bad as the trivial solution, so how can this algorithm be of
any use? The key here is that the “bad” instances are the instances in which
|C| is large compared to n. Those “bad” instances are instead solved by a
probabilistic algorithm almost identical to the one by Schöning. The difference
is that instead of choosing the initial assignments uniformly at random, the
assignments depend on C. For a clause c in C the assignment to its three
variables is done as follows

• With probability 1
7 make all three literals of c true.

• With probability 2
7 make exactly two of the three literals true (select two

uniformly random).

2.3. Algorithms for Satisfiability 11

• With probability 4
7 make only one of the literals true (a uniformly dis-

tributed random one).

The variables not occurring in C are just assigned a uniformly distributed
random value. It can be shown that the time for running the above algorithm
is O((4

3)n−3|C|(7
3)|C|). As 7

3 < (4
3)3, this is worst when |C| is small. When

|C| ≈ 0.146652n both algorithms run in time O(1.3303n). So the algorithm finds
a C and if |C| > 0.146652n the randomised algorithm is used, and otherwise the
deterministic is used. This results in a worst case complexity of O(1.3303n).
Together with Hofmeister [29] they later improved this algorithm to O(1.3302n).
The currently best known algorithm for 3-SAT is by Baumer and Schuler [4]
and it is also an improvement of the above algorithm; it obtains O(1.3290n).

The best deterministic algorithm for 3-SAT is an algorithm from 2000 by
Dantsin et al. [15] which runs in time O(1.481n). It is an improvement of the
derandomised version of the algorithm by Schöning.

2.3.2 SAT in general

As mentioned in the beginning there is no known algorithm solving general for-
mulas in time o(2n). So for general formulas it is more interesting to measure
algorithms by a different parameter. The parameters normally used for mea-
suring the running time of an algorithm is the length of the formula, l, and the
number of clauses, m. We will only mention the best known result, which is
by Hirsch [27]. He presents both an algorithm running in time O(20.30897m) ≈
O(1.23881m) and one running in time O(20.10299l) ≈ O(1.07399l). Although the
algorithms are not very complicated, we would, in order to describe them in
details, have to introduce a lot of new concepts, so we will not do this. An im-
portant part of the correctness of the algorithms is the black and white principle:
let F be a formula in CNF, and PF (l) be a property of a literal satisfying that
not both a variable and its negation satisfy the property (i.e. PF (l)⇒ ¬PF (l̄)).
An example of such a property is “l occurs exactly twice, and l̄ occurs at least
three times in F”. At least one of the statements

• There is a clause, C, in F that contains a literal satisfying PF and the
negation of any literal from C does not satisfy PF .

• F is satisfiable if and only if it has a satisfying assignment assigning false
to all literals satisfying PF .

holds. This ensures that it is either possible to reduce the formula at no sig-
nificant cost, the formula contains no literal satisfying the property, or there
exist a clause of a special form. Both algorithms are branching algorithms.
The reductions are not the same, because the measurements of size are not the
same. The branching step for the first algorithm (the one expressing the run-
ning time as a function of the number of clauses) either finds a variable which
will give a branching vector (two branches) better than τ(6, 7, 6, 7) ≈ 1.23881
or a pair of variables which will give a branching vector (four branches) bet-
ter than τ(6, 7, 6, 7). Because of the properties of the reduction, one of those

12 Chapter 2. Satisfiability

cases is always possible, giving the claimed running time. The second algo-
rithm just uses the first one if all clauses have at least 3 literals (which implies
m ≤ 1

3 l). Otherwise, there exists a variable which when branching on that
variable will give a branching vector better than τ(5, 17) ≈ 1.07361. The case
where the first algorithm is called is the worst, resulting in a time complexity
of O(τ(6, 7, 6, 7)

1
3
l) ≈ O(1.0740l).

2.4 Variants of Satisfiability

In this chapter we will look at different variants of Satisfiability, and especially
3-Satisfiability, in order to determine the complexity of the variants, and how
hard they are compared to each other.

There are two main results concerning the complexity of SAT and variants
of SAT. The first is Cook’s Theorem from 1971 and the second is from 1978 by
Thomas J. Schaefer [45]. Schaefer considers the variants of Satisfiability which
can be described by a, possibly infinite, set of relations, each of which have some
number of free variables, such that each instance is the conjunction of clauses,
where each clause is one of the relations with specific variables. To take an
example, 3SAT can be described by the four relations R0(x, y, z) ≡ x ∨ y ∨ z,
R1(x, y, z) ≡ x̄ ∨ y ∨ z, R2(x, y, z) ≡ x̄ ∨ ȳ ∨ z and R3(x, y, z) ≡ x̄ ∨ ȳ ∨ z̄.
Schaefer classifies all variants of this kind as either NP-complete or in P.

Theorem 2.4 (Schaefer [45], Dichotomy Theorem for Satisfiability)
Let S be a finite set of logical relations. If S satisfies any of the conditions
(a)-(f) below, then SAT(S) is polynomial-time decidable. Otherwise, SAT(S) is
NP-complete.

(a) Every relation in S is satisfied when all variables are false.

(b) Every relation in S is satisfied when all variables are true.

(c) Every relation in S is definable by a CNF formula in which each conjunc-
tion has at most one negated variable.

(d) Every relation in S is definable by a CNF formula in which each conjunc-
tion has at most one unnegated variable.

(e) Every relation in S is definable by a CNF formula having at most 2 literals
in each conjunction.

(f) Every relation in S is the set of solutions of a system of linear equations
over the two-element field {0,1} (corresponding to true and false).

SAT(S) is the variant of SAT defined by the relations in S. If a relation
satisfies any of the conditions it is normally very easy to prove this, but it
is not always straightforward to prove that a relation does not satisfy any
of the conditions. Fortunately Schaefer also describes alternate methods for
determining whether (a)-(f) holds for a given variant of SAT, and these methods

2.4. Variants of Satisfiability 13

makes proving that a relation does not satisfy the condition very easy. We will
here present the methods without proof.

In the following we will let R denote a relation and V (R) denote the variables
occurring in R. For an assignment σ we write σ ∈ R if the assignment satisfies
the relation, and for two (partial) assignments σ and σ′, we let σ[σ′] be as σ
except where σ′ is defined, where it is like σ′.

It is trivial to determine whether a relation satisfies (a) or (b). R satisfies
(c) if and only if for all subsets V of the variables of R, the following holds true

(∀v ∈ V (R) \ V ∃σ ∈ R : σ(V) = {false} ∧ σ(v) = true)⇒
[V 7→ false, V (R) \ V 7→ true] ∈ R, (2.5)

i.e. if there exists a satisfying assignment with all variables in V set to false and
such a partial assignment do not force any other variable to be false, then it is
a satisfying assignment to assign the variables in V false and all other variables
true.

By swapping true and false in the above one can determine if a relation
satisfies (d). In order to determine whether R satisfies (e), we introduce the
notion of a change set of an assignment. For an assignment σ ∈ R, V ⊆ V (R)
is a change set of σ if σ[∀v ∈ V : v 7→ ¬σ(v)] ∈ R, i.e. if the assignment is
still a valid assignment if the values of all the variables in V are changed. R
satisfies (e) if and only if for any valid assignment the set of change sets of the
assignment is closed under intersection,

∀σ ∈ R,∀V1, V2 ∈ ChangeSet(σ) : V1 ∩ V2 ∈ ChangeSet(σ). (2.6)

Finally, R satisfies (f) exactly if the set of valid assignments are closed under
the operation of taking exclusive or between three elements, i.e.

∀σ1, σ2, σ3 ∈ R, [∀v ∈ V (R) : v 7→ σ1(v)⊕ σ2(v)⊕ σ3(v)] ∈ R. (2.7)

In this paper we will, unless otherwise specified, only consider the variants
of SAT which Schaefer considers, i.e. we will not work with maximisation
problems, or problems where the number of occurrences of literals are restricted.
With this restriction we have in Table 2.2 listed all the variants of 3SAT for
which the order of the literals in the clause do not influence whether a clause
is satisfied.

The complexities of all the problems in Table 2.2 can be proved by using
the Dichotomy Theorem, and we will only prove it for one of the problems,
X3SAT, which is the topic of the next chapter. For X3SAT there are four
relations, which as for 3SAT only differs in the number of negated variables,
and we only need to look at one in order to prove the NP-completeness of
X3SAT: R(x, y, z) ≡ (x ∨ y ∨ z) ∧ (x̄ ∨ ȳ) ∧ (x̄ ∨ z̄) ∧ (ȳ ∨ z̄). (a) and (b)
are not satisfied, and when V is chosen to be the empty set, (2.5) is not true
(and neither is it with true and false swapped) so (c) and (d) are not satisfied
either. For the assignment [x 7→ true; y, z 7→ false] the only change sets are
{x,y} and {x,z} and the set of change sets is thus not closed under intersection,
which shows that (e) is not satisfied. Finally note that there are three different

14 Chapter 2. Satisfiability

Is a clause satisfied
by . . . true literals? Name Complexity

0 1 2 3
no no no no FALSE P
yes no no no ALLFALSE* P
no yes no no XSAT (Exact) NPC
no no yes yes STRONG SAT P/NPC
yes no yes no EVEN SAT* P
yes no no yes AESAT* (All Equal) P
no yes yes no NAESAT (Not All Equal) NPC
no yes yes yes SAT NPC
yes no yes yes NXSAT* (Not Exact) NPC
yes yes yes yes TRUE P

Problems marked with * are problems for which we have not been able to find
a name used elsewhere. Note that by negating all literals a clause with 0 true
literals becomes a clause with 3 true literals and vice versa and a clause with 1
true literal becomes a clause with 2 true literals and vice versa. All problems
thus have a corresponding negated problem which have the same complexity
(in some cases, e.g. NAESAT, a problem is equal to its own negated problem).
We have only included either a problem or its negation. As all the problems in
the table can be generalised to clauses with more than three literals, we have
stated the general problem. Note that the generalisation of Strong SAT which
we consider is where all clauses must have at least two literals true, and this
is decidable in polynomial time when the clauses are restricted to contain at
most three literals, but is NP-complete if the clauses are allowed to contain four
literals.

Table 2.2: Variants of 3SAT

valid assignments, but if we take the exclusive or between them it is not a valid
assignment, so (f) does not hold either, and by the Dichotomy Theorem we thus
have that X3SAT is NP-complete. Note that we in fact have proved that even
restricted to only using unnegated variables X3SAT is NP-complete. Also note
that this is by no means the easiest way to prove that X3SAT is NP-complete.

2.4.1 Relative hardness

Not all NP-complete problems are equally difficult. Let P1 and P2 be two NP-
complete problems, and let µ1 and µ2 be functions measuring the size of P1

instances respectively P2 instances. Assume we have a reduction R, from P1 to
P2, such that there exists two constants, k1 and k2, and for all instances I of
P1 we have

µ2(R(I)) ≤ k1 · µ1(I) + k2. (2.8)

We then have that if there exists an O(2α·µ2(I2)) algorithm for P2 then there
exists a O(2k1·α·µ1(I1)) algorithm for P1.

In this section we will compare the hardness of the NP-complete variants of
SAT, which we presented in the previous section. First we look at the problems

2.4. Variants of Satisfiability 15

measured by the number of variables, as this is the most well studied measure.
If we only look at 3SAT variants, it is easy to reduce any variant to 3SAT

without increasing the number of variables. This is due to the fact that each
3SAT clause only “prohibits” one of the eight assignments to the variables. We
can thus conclude, that 3SAT is the hardest and will always have the worst time
complexity of these. Furthermore X3SAT can be reduced to NAE3SAT without
increasing the number of variables, and it can thus be considered easier than
NAE3SAT. I have not been able to find any other reductions between variants
of 3SAT, which do not increase the number of variables linearly in the number
of clauses, so they do not satisfy (2.8).

All of STRONG SAT, NAESAT, SAT and NXSAT can be reduced to each
other with only a constant additive overhead in the number of variables, and
they thus have the same time complexity. XSAT can also be reduced to any
of these with only a constant additive overhead, but I have not been able to
reduce any of the other problems to XSAT without increasing the number of
variables by at least two times the number of literals in the formula: in XSAT
each clause prohibits many assignments, while in the other variants each clause
only prohibits a few assignments. When we translate a clause to XSAT clauses,
none of the variables from the original clause can occur together in the new
clauses, and we thus need to introduce a lot of extra variables.

In Table 2.3 is listed the minimum value of k1 for which I have found a
reduction between various variants of 3SAT, when we measure the size by either
the number of clauses or literals. The numbers coincide, except when reducing

PPPPPPPPPFrom
To

X3SAT NAE3SAT NX3SAT 3SAT

X3SAT – 4 5 4/3
NAE3SAT 8 – 4 2
NX3SAT 11 6 – 3
3SAT 4 2 2 –

Table 2.3: k1 when the measure is the number of clauses/literals

from X3SAT to 3SAT, where a three clause becomes one three clauses and
three two clauses. The greatest blowup is when reducing to X3SAT, which
could indicate that X3SAT is the variant which is easiest to solve. The same
results for the general problems are stated in Table 2.4. Question marks denote
that we have not been able to find a reduction which satisfied (2.8). In most of
these cases the reductions we found increased the size according to the measure
by a factor depending on l, the number of literals. Note that there are only three
different kinds of reductions with only a constant blowup; NAESAT and SAT
can be reduced to any other variant, except XSAT when the measure is clauses,
and when measured by the number of literals all variants can be reduced to
XSAT. An interesting fact which can be retrieved from the table is that with
respect to the number of clauses SAT is easier than all other variants, except
XSAT. Also, we can conclude that in most cases XSAT behaves differently from
the other variants.

PPPPPPPPPFrom
To

XSAT NAESAT NXSAT Strong SAT SAT

XSAT – ? ? ? ?
NAESAT ?/8 – 2/8

3 2/8
3 2

NXSAT ?/44
3 ? – ? ?

Strong SAT ?/6 ? ? – ?
SAT ?/4 1/3

2 1/3
2 1/3

2 –

Table 2.4: k1 when the measure is the number of clauses/literals

Chapter 3

Exact Satisfiability

3.1 Introduction

In the last chapter we briefly introduced Exact Satisfiability

Exact Satisfiability (XSAT)

Input: A boolean formula F (x1, . . . , xn) in conjunctive
normal form (CNF).

Output: Does there exist an assignment to the variables
x1, . . . , xn, such that each clause contains ex-
actly one true literal?

In this chapter we will go into a detailed study of this problem. The variant
of XSAT where each clause contains at most k literals is denoted XkSAT.

As shown in the previous chapter, XSAT is NP-complete even when re-
stricted to clauses containing at most three literals and all variables occurring
only unnegated [45]. X2SAT is trivially solvable in polynomial time and here
we prove that XSAT with all variables occurring at most twice can also be
solved in polynomial time. The original proof is by Monien, Speckenmeyer
and Vornberger [39],1 but the proof we present here is by Porschen, Randerath
and Speckenmeyer [42]. We reduce the problem to Perfect Matching. First
we remove all variables which occur both negated and unnegated by resolution:
(x,C) and (x̄, C ′) are replaced by the single clause (C,C ′). We can then assume
that the formula contains no negated variables. If the instance does not contain
any unique variables, we can just make the graph where each vertex corresponds
to a clause, and for every variable we connect the two vertices corresponding
to the clauses containing the variable (thus two vertices are connected if the
corresponding clauses share a variable):

V = {vC |C ∈ F}, (3.1)
E = {ev|v ∈ V (F), ev = (vC1 , vC2), v ∈ C1 ∩ C2}. (3.2)

1They state that a generalised version of XSAT with variables occurring at most twice,
called MAX({≤, =,≥}, ·, 2), reduces to Perfect Matching. The proof is in the technical re-
port [38].

17

18 Chapter 3. Exact Satisfiability

This graph has a perfect matching exactly if the formula can be exactly satisfied:
If we have a perfect matching we can for each selected edge set the corresponding
variable to true. We assign all other variables the value false. This is a satisfying
assignment, as each clause has exactly one variable set to true. On the other
hand, if we have a satisfying assignment, and we take all the edges corresponding
to the true variables, we get a perfect matching.

If the instance has unique variables the graph we construct is a bit more
complicated. It consists of two copies of the graph just described, and for each
unique variable, we connect the two copies of the vertex corresponding to the
clause containing the unique variable. See Fig. 3.1 for an example. Once again

4 4’

2’

3’

1

3

2

1’

a

b

c

d

e

f

h

c

b

d

g

f

a

Figure 3.1: Example of reduction from XSAT, where each variable occurs at
most twice, to Perfect Matching. The formula reduced is (a, b, c), (a, d, e),
(c, f, g), (b, d, f, h).

there exists a perfect matching exactly if the formula is satisfiable: If we have
a perfect matching then consider the selected edges in one of the copies and
the selected edges between the two copies and set the variables corresponding
to these edges to true, and the other variables to false. This gives a satisfying
assignment. If we on the other hand have a satisfying assignment we can select
all edges corresponding to the true variables (for each unique variable there is
one corresponding edge and for the others there are two), and this is a perfect
matching.

3.2 Algorithms for Exact Satisfiability

The first to present a nontrivial algorithm for XSAT was Schroeppel and Shamir
[49], who in 1981 solved a class of problems, of which XSAT and Knapsack are
the most prominent. Their algorithm uses O(2n/2) time and it uses O(2n/4)
space. In the following we will describe this algorithm. Given a formula F with
m clauses, we define for every partial assignment, σ, to the variables of F an
m-tuple, T (σ), such that the ith entry in T (σ) is the number of true literals in
the ith clause of F . Note that if σ1 and σ2 are two disjoint partial assignments,
then T (σ1∪σ2) = T (σ1)+T (σ2). In order to describe the algorithm we will start
by describing an algorithm using O(2n/2) time and space. The set of variables
is divided into two sets, V1 and V2, of equal size. For each of these sets T (σ) is
calculated for every assignment to the variables of the set. This result in two
sets of m-tuples, T1 and T2. The formula can be satisfied if and only if there
exists two tuples t1 ∈ T1 and t2 ∈ T2, such that t1 + t2 = (1, 1, . . . , 1). By using

3.2. Algorithms for Exact Satisfiability 19

the lexicographic order on the tuples, we sort T1 in increasing order and T2 in
decreasing order. By noting that if t < t1 + t2 and t1 < t3, then t < t3 + t2,
and similar if t > t1 + t2 and t1 > t3, then t > t3 + t2, it is straightforward to
prove that XSATsolve1, presented in Alg. 3.1, is correct. The time used by

/∗ T1 is sorted in ascending order ∗/
/∗ T2 is sorted in descending order ∗/
Tuple t1 = T1.f irst(), t2 = T2.f irst()
while t1 6= NULL ∧ t2 6= NULL do

if t1 + t2 = (1, 1, . . . , 1) then
return true /∗ F is satisfiable ∗/

else if t1 + t2 < (1, 1, . . . , 1) then
t1 = T1.next(t1)

else
t2 = T2.next(t2)

end if
end while
return false /∗ F is not satisfiable ∗/

Algorithm 3.1. XSATsolve1

the algorithm is bounded by generating and sorting the two lists, both of which
take time O(2n/2), and the space used is also O(2n/2). In order to decrease the
space usage, note that we do not actually need to store T1 and T2, but only need
to access the elements in sorted order. Here we present a method for generating
T1 in sorted order, using only O(2n/4) space. T2 can be handled similar. Split
V1 into two sets, V11 and V12, of equal size, and calculate T11 and T12 in the
same way as T1 and T2. Note that T1 = {t11 + t12|t11 ∈ T11, t12 ∈ T12}. Instead
of generating T1 we make a priority queue with all pairs (t11, t12), but we do not
insert all elements at once. By using that if t11 < t′11, then t11 + t12 < t′11 + t12,
we note that if t11, t

′
11 ∈ T11 and t11 < t′11, then there is no need to add

(t′11, t12) to the priority queue before (t11, t12) has been removed from the queue.
Thus if T11 is sorted in ascending order, then initially we add (T11.f irst(), t12)
for every t12 ∈ T12, and when (t11, t12) is removed from the queue we add
(T11.next(t11), t12) to the queue. In this way we only use O(2n/4) space for
both of the lists and the priority queue. This algorithms is a proof of the fact
that it is important to not just forget old algorithms, even though much better
algorithms exists: recently Williams [56] used the ideas from this algorithm in
the first algorithms solving MAX-2-SAT and MAX-CUT in o(2n)

Also in 1981, Monien, Speckenmeyer and Vornberger [39] gave a polynomial
space algorithm solving XSAT in time O(20.2441n), corresponding to a branching
vector of (11, 1). This was done with a pure branching algorithm. As the cases
analysis are seven pages we will not describe it in this paper. In Chapter 7 we
present the following result, which is the first, and so far the only, improvement
of the result of Monien et al. for the general problem.

Theorem 3.1 (Theorem 7.1) XSAT can be solved in time O(20.2325n), cor-

20 Chapter 3. Exact Satisfiability

responding to a branching vector of (8, 2).

Note that several authors [13,18] have missed the result by Monien, Speck-
enmeyer and Vornberger and have thus presented algorithms for XSAT which
they claim are improvements over the previous best known. Our result is ob-
tained by making a more detailed case analysis, and by adding a new concept
of k-sparse formulas. A formula is k-sparse if the number of variables occurring
at least three times is at most n/k. To decide if a k-sparse formula is satisfiable,
we can enumerate all possible truth assignments to these at most n/k variables;
for each assignment, all variables in the remaining part of the formula occur at
most twice, so we can decide in polynomial time, if it is satisfiable. The run-
ning time of this algorithm is O(2n/k). To obtain our result for XSAT we use
this with k = 5. It should be mentioned that Dahllöf, Jonnson and Beigel [13]
independently have used the same technique, with k = 9/2, to get an inferior
algorithm for XSAT

For X3SAT the general result of Monien et al. was not improved until 1999,
when Drori and Peleg [18] presented an algorithm running in time O(20.2072n),
corresponding to a branching vector of (7, 4). In 2002 Hirsch and Kulikov [28]
and Porschen, Randerath and Speckenmeyer [42] independently of each other
found an algorithm running in time O(20.1626n), corresponding to a branching
vector of (9, 4). In 2004 Dahllöf, Jonnson and Beigel [13] presented an algorithm
which they claimed was running in time O(20.1532n) (corresponding to (10, 4)),
but as there is an error in the proof, the result is not valid. We will not describe
the details of any of these algorithms, as they are all branching algorithms with
increasingly complicated analyses. In Chapter 7 we present a new algorithm
and prove the following theorem

Theorem 3.2 (Theorem 7.1) X3SAT can be solved in time O(20.1379n), cor-
responding to a branching vector of (12, 4).

Our result is also obtained by adding quite a few new reductions and con-
sidering the cases in more detail, but does also use the concept of k-sparse, with
k = 15/2.

In Table 3.1 all results for XSAT and X3SAT are summarised.

Paper XSAT X3SAT
Schroeppel and Shamir, 1981 [49] 2n/2

Monien, Speckenmeyer and Vornberger, 1981 [39] 20.2441n

Drori and Peleg, 1999 [18] 20.3212n 20.2072n

Hirsch and Kulikov, 2002 [28] 20.1626n

Porschen, Randerath and Speckenmeyer, 2002 [42] 20.1626n

Dahllöf, Jonnson and Beigel, 2004 [13] 20.2519n

Byskov, Madsen and Skjernaa, 2004 [10] (Chapter 3) 20.2325 20.1379n

Table 3.1: Results for XSAT and X3SAT.

Recently several variants of XSAT have been considered. Dahllöf, Jonnson
and Beigel [13] considered the counting problems #XSAT and #X3SAT, which

3.2. Algorithms for Exact Satisfiability 21

are the problems of determining not just whether a formula can be exactly
satisfied, but the number of assignments which exactly satisfies a formula. For
#XSAT they present an algorithm running in time O(4n/7) ≈ O(20.2858n), and
for #X3SAT they obtain a running time of O(2n/5).

Another variant is to use other measures of the size than the number of
variables, e.g. the number of literals or the number of clauses. For X3SAT
there is no difference in measuring the number of literals and the number of
clauses, as any formula with a clause with fewer than three literals can be
reduced, and we can thus assume that every clause have size exactly three. It
is very simple to get a branching vector of (5, 3) with respect to clauses: if any
clause contains more than one unique variable we can reduce the formula, and if
two clauses share more than one variable we can also reduce the formula (these
reduction can be found in Chapter 7). If every variable in the formula occurs
at most twice, we can solve the problem in polynomial time. Otherwise we
branch on a variable x occurring at least thrice. If x occurs both negated and
unnegated another non-unique variable will get a value in both branches, and
thus at least four clauses will be removed in each branch, giving a branching
vector of (4, 4) which is better than (5, 3). If x only occurs positive or negative,
we only remove the three clauses containing x in one branch, but in the other
branch all variables occurring with x would get a value, and they must occur
in at least two other clauses, which are then also removed (if they only occur
in one other clause, these four clauses do not share any variables with the rest
of the formula, and the formula can thus be reduced). This gives a branching
vector of at least (5, 3), corresponding to O(20.2557m), where m is the number
of clauses. In Chapter 4 we present an automatically generated upper bound
of O(20.2123m) corresponding to a branching vector of (7, 3).

For XSAT there is a big difference between the measures. If we measures
the number of literals, it is trivial to prove a branching vector of (12, 3), and it
is not hard to obtain a worst case branching vector of (19, 3) by just branching
on a variable occurring at least thrice. We will not show this, but it can be
shown by an analysis similar to the one above, just with a few more cases.

On the other hand there does not exist any trivial bound on solving XSAT
with respect to the number of clauses. Madsen [35] has shown an upper bound
of O(m!): for a permutation of the clauses, cπ(1), cπ(2), . . . , cπ(m), where π ∈ Πm,
we say that variable xi occurs in an interval from j to j′, with j ≤ j′, if the
clauses which contain xi are exactly cπ(j), cπ(j+1), . . . , cπ(j′). We denote this by
xi � π[j, j′]. If the formula is satisfiable, let T be a subset of the variables
such that the formula is satisfied by setting the variables in T to true and all
other variables to false. We can permute the clauses such that any variable in
T occurs in an interval. Note that the intervals must be disjoint and cover all
clauses. On the other hand if for some permutation of the clauses there is a
subset of the variables which all occur in intervals, and the intervals are disjoint
and cover all clauses the formula is satisfiable by setting the variables in the
subset to true. For any permutation of the clauses we can in polynomial time
decide if there is such a subset of the variables, e.g. by checking if there exists

22 Chapter 3. Exact Satisfiability

a path from s to t in the following graph:

V ={s, t} ∪ {vx|x ∈ V ar}
E ={(s, vx)|∃j′ : x � π[1, j′]}∪
{(vx1 , vx2)|∃j, j′, j′′ : x1 � π[j, j′] ∧ x2 � π[j′ + 1, j′′]}∪
{(vx, t)|∃j : x � π[j,m]}

It is thus possible to decide if a formula is satisfiable by trying all permutations
of the clauses, which gives a running time of O(m!).

Here we present a new algorithm which improves this to O(2m) at the cost of
also using O(2m) space. First we show that every formula can be transformed to
a formula where all variables only occur positive without increasing the number
of clauses. If a variable x only occurs negative, we replace all occurrences of x̄
with x, which does not change whether the formula is satisfiable. If a variable
x occurs in two clauses (x,C) and (x̄, C ′), we can remove the variable from
the formula by replacing every occurrence of x with C ′ and every occurrence
of x̄ by C. If we have a satisfying assignment to the original formula, we have
that x is true if and only if C ′ contains exactly one true literal. We do thus
not change whether a clause is satisfied by replacing x with C ′, and similar
for x̄ and C. On the other hand if we have a satisfying assignment to the
new formula, exactly one literal in either C or C ′ is true (as there is a clause
(C,C ′)). By setting x to true if and only if a literal in C ′ is true, we see that
the original formula is also satisfiable. This reduction does not increase the
number of clauses, and it does in fact decrease the number by at least one, as
(x,C) and (x̄, C ′) becomes identical after the replacement. On a side note, the
number of variables is also decreases by one. This reduction is due to Monien,
Speckenmeyer and Vornberger [39].

The algorithm solving XSAT in time and space O(2m) for formulas without
negations, is shown in Alg. 3.2. The main idea in the algorithm is to mark all
subsets of the clauses, which satisfies a certain property. A subset S should
be marked if and only if there exists an assignment such that all clauses in S
have exactly one true literal, and all other clauses only contains false literals.
We will show that XSATsolve does in fact mark exactly those clauses. First,
we use induction to show that only subsets satisfying the property are marked.
As all literals are unnegated, the empty set clearly satisfies the property. If
S is marked and x does not occur in S, then does S ∪ ClausesWith(x), where
ClausesWith(x) are the clauses containing x, also satisfy the property and it
is thus correct to mark it. On the other hand, if we assume there are subsets
which satisfy the property, but which the algorithm does not mark, we can let
S be a minimal, with respect to size, such subset. Now, S is not the empty
set, so any assignment which proves that it satisfy the property, must have at
least one variable, x, set to true. If we take such an assignment and change the
value of x to false, the new assignment still have at most one literal true in each
clause of the formula, and the set of clauses with one literal true is a subset of
S. As S was chosen minimal, this subset is marked, but then S would also have
been marked by the algorithm, which is a contradiction. We have now proved
that the algorithm correctly marks all subsets which satisfy the property, and

3.3. Problems related to XSAT 23

Boolean XSATsolve(Formula F):
Boolean satisfiable[SubsetsOf(F)] = {false, false, . . . }
satisfiable[∅] = true
for s = 0 upto m do

for all S ⊂ F, |S| = s do
if satisfiable[S] then

for all x ∈ V ar(F) do
if S ∩ ClausesWith(x) = ∅ then

satisfiable[S ∪ ClausesWith(x)] = true
end if

end for
end if

end for
end for
return satisfiable[F]

Algorithm 3.2. XSATsolve

F is thus satisfiable exactly if F is marked. We have thus proved

Theorem 3.3 XSAT can be solved in time O(2m) using space O(2m).

3.3 Problems related to XSAT

There are two problems which are very closely related to XSAT, Exact Hitting
Set

Exact Hitting Set

Input: A set S, and a set C of subsets of S: C ⊆ 2S .

Output: Does there exist a subset S′ of S such that S′

intersects every set in C in exactly one element:

∃S′ ⊆ S : ∀c ∈ C : |S′ ∩ c| = 1.

and Exact Cover

Exact Cover

Input: A set S, and a set C of subsets of S: C ⊆ 2S .

Output: Does there exist a subset C ′ of C such that the
union of the sets in C ′ is S and none of the sets
in C ′ intersects:

∃C ′ ⊆ C :
⋃

c∈C′
c = S ∧ ∀c, c′ ∈ C ′ : c ∩ c′ = ∅.

These two problems are dual to each other: if we have an instance (S,C) to
either of the problems, (C,∪s∈S{{c ∈ C|s ∈ c}}) has the same solution, when

24 Chapter 3. Exact Satisfiability

seen as an instance of the other problem. The second parameter is a subset for
each element of S, and the subset is the subsets of C which contain the element.

These problems are related to XSAT, as Exact Hitting Set is more or less
the same problem as XSAT, just with another representation of the input. If
we have a formula without negations, each clause is just a subset of the set of
variables, and seen in this way it is an instance of Exact Hitting Set, and vice
versa. As was shown in the previous section we can transform a formula with
negations to another formula without negations, without increasing the number
of variables or clauses, and we can thus conclude that measured by the number
of variables or clauses, XSAT is identical to Exact Hitting Set measured by the
size of S or C.

3.4 Loosely connected formulas

In this section I will present the concept of splitting k-loose formulas, which we
used in a preliminary version of the paper presented in Chapter 7, and which
we believe could be used in other algorithms. The technique can be used for
all variants of SAT described in Section 2.4, but does not work for variants like
e.g. MAXSAT.

If a formula is disconnected, i.e. it consists of two parts not sharing any
variables, we can check Satisfiability by checking it for the two parts indepen-
dently. Here we present a technique for doing something similar if the formula
is “almost disconnected”. We say that a formula F is k-loose, if it is possible
making the formula disconnected by removing all occurrences of at most k vari-
ables. In other words if there exists two subsets of the variables, V1 and V2, such
that for every clause, all the variables in the clause are in V1 or all the variables
in the clause are in V2, and |V1 ∩ V2| ≤ k. For a subset, V ′, of the variables in
F , we let F (V ′) denote the clauses of F , which only contains variables from V ′.
Let V1 and V2 satisfy the property above, and let V∩ = V1 ∩ V2. By checking
satisfiability of F (V1) for all possible truth assignments to V∩, we can construct
a “small” formula F ′, with variables from V∩, and possibly some new variables,
such that for every assignment, σ, to V∩, F (V1)[σ] is satisfiable if and only if
F ′[σ] is. Then F is satisfiable if and only if F (V2)∪F ′ is. We can thus solve F
by solving F (V1) 2k times and then solve F (V2) with some additional variables
and clauses.

For this splitting to be useful F ′ should be smaller than F (V1). For SAT it
is always possible to construct F ′ without using any additional variables. For
a variant of SAT, P, we will use νP(k) to denote the maximum number of extra
variables needed to encode any truth-table over k variables, and we thus have
|F ′| ≤ k + νP(k). There is no known easy way to calculate νP(k). Trivially
ν3SAT(0) = ν3SAT(1) = ν3SAT(2) = ν3SAT(3) = 0, and with the aid of a computer
we have determined that ν3SAT(4) = 2 and ν3SAT(5) = 3. For XSAT and X3SAT
we have determined that νXSAT(1) = νX3SAT(1) = 0, νXSAT(2) = νX3SAT(2) = 1
and νXSAT(3) = νX3SAT(3) = 6.

Theorem 3.4 Given a formula, F , it is polynomial time decidable whether,
for a positive constant k, F is k-loose with a “partitioning”, V1 and V2, satis-

3.4. Loosely connected formulas 25

fying |V1 ∩ V2| + νP(k) < |V1| ≤ |V2|. Furthermore, if F is k-loose with such a
partitioning, performing loose splitting is better than any branching.

Proof. A formula, F , is k-loose exactly if there exists V1 and V2 with F =
F (V1) ∪ F (V2) and |V1 ∩ V2| ≤ k. We want to find such V1 and V2 which
furthermore must satisfy |V1 ∩ V2|+ νP(k) < |V1| ≤ |V2|.

In order to find V1 and V2, we construct the graph which has the variables
as vertices and two vertices are connected if the two corresponding variables
occur in a clause together. We need to check if removing at most k vertices
can disconnect the graph into two parts with at least νP(k)+1 vertices in each.
The existence of such a set of vertices V∩ can be determined in polynomial time
by trying all possible subsets of size at most k, and V1 and V2 can easily be
constructed from the connected components of the graph (and V∩) such that
they both have size at least νP(k) + |V∩|+ 1.

Let V∩ = V1 ∩ V2. When performing loose splitting we make 2k recursive
calls on a problem containing the variables from V1 \ V∩ and one on a problem
containing the variables from V2 and possibly νP(k) additional variables.

Now |V2| = n− (|V1| − |V∩|) so the recursion for this branch is

T (n) = 2k · T (|V1| − |V∩|) + T (n− (|V1| − |V∩|) + νP(k)) + O(1).

Let N be some constant and suppose |V1|−|V∩| ≤ N ; then we have 2k recursive
calls on a formula of size at most N , which is a constant, so these can be solved
in constant time, and a single recursive call on a non-constant, but smaller
formula. This is clearly better than any exponential running time. Now, if
|V1| − |V∩| > N then also |V2| > N , and thus |V1| − |V∩| < n − N . We thus
branch on 2k subproblems that are at least N smaller and one that is N−νP(k)
smaller. By choosing N large enough we get that this is better than 2αn for
any α. 2

Chapter 4

Automated Generation of Algorithms

Automated generation of algorithms for NP-complete problems is a very new
topic in computer science. Until recently there existed no work in the area, but
in 2003 three groups independently published results within the area.

Jens Gramm, Jiong Guo, Falk Hüffner and Rolf Niedermeier [25] were the
first to present a framework for automatic generation of branching algorithms
for NP-hard problems. The class of problems they consider are graph modi-
fication problems. Graph modification problems are problems where a graph
and an integer, k, are given, and the problem is to determine if the graph can
be made to satisfy some local property, by performing at most k modifications,
where each modification can be adding or deleting an edge or deleting a vertex.
For a specific problem it is not necessarily all three kinds of modifications that
are allowed.

They present two approaches, where the first, and most simple, just enu-
merates all subgraphs of a certain fixed size which do not satisfy the local
property (i.e. subgraphs which have to be modified). For each subgraph they
calculate all branching vectors which can be obtained by doing one or more
branchings (i.e. they do not limit the level of branchings) on either performing
or not performing a specific modification. In each branch they use a fixed set
of problem specific reductions. Their second approach is a bit more like the
approach we present in Chapter 8. They start with a minimal subgraph not
satisfying the local property, and then expand the subgraph into more cases
(corresponding to splitting the set of graphs containing the subgraph into sev-
eral smaller sets). They repeat this until the subgraph has a certain fixed size,
which they then find all possible branching vectors for. When doing the ex-
pansion they use some problem specific assumptions such that a subgraph is
not expanded into all subgraphs of size one larger containing the original sub-
graph. The assumptions they use are assumptions which they can make on
the subgraph, as if the subgraph does not satisfy the assumption it is possible
to make a “good” branch. The assumptions can often be applied in different
ways when expanding a subgraph and by checking all the possible expansions
they can take the expansion that gives the best worst branching vector. As
the only previous paper on automated generation of algorithms they have, to
some extend, avoided duplicate cases by using dynamic programming and a test
of graph isomorphism. With this method they avoid solving exactly the same

27

28 Chapter 4. Automated Generation of Algorithms

subgraph more than once, but they do not avoid solving cases which are just
subcases of already handled cases. As the bottleneck in their program is finding
all possible branching vectors (they do avoid finding some by using property
(2) and (3) of Lemma 2.1), avoiding finding all branch vectors for subcases of
already solved cases, could help removing this bottleneck.

The approach taken by Nikolenko and Sirotkin [41] is very simple. They
want to prove an upper as a function of the number of clauses on solving SAT.
But contrary to the other papers presented here they do not try to compete
with the best known upper bound. Instead they try to prove an upper bound
for a very simple algorithm, namely an algorithm which only uses unique literal
elimination. Unique literal elimination is a reduction that states that if a vari-
able only occurs either unnegated or negated, then the formula can be reduced
by removing all clauses containing the variable. They prove a lower bound on
Ω(3n/3), corresponding to (3, 3, 3), and note that their program can thus assume
that all variables are either (1,1)- or (1,2)-occurrences, as it would otherwise
be possible to make a better branching. Their program then constructs an
algorithm solving it in O(3n/3), giving a tight bound.

The framework developed by Fedin and Kulikov [23] is the one that is most
similar to the framework we use in Chapter 8. They consider three different
problems, SAT, MAXSAT and (n, 3) MAXSAT (MAXSAT where each variable
occurs at most thrice), and they consider three measures of the size, the number
of variables, the number of clauses and the number of literals. They use a fixed
set of reductions and also restrict the number of cases by using assumptions on
which kind of (a, b)-occurrences can occur in the formula. An (a, b)-occurrence
is a variable which occurs a times unnegated and b times negated or vice versa.
We write a+ instead of a if it is at least a times. If they aim at proving a worst
case branching value of α and branching on an (a+, b+)-occurrence immedi-
ately gives a better branching value, they assume the input does not contain
any (a+, b+)-occurrences. In Chapter 8 we do not use such assumptions for
two reasons. One reason is that one goal of the project was to see if a com-
puter could prove new bounds without human aid, and another reason is that
we do not aim at a fixed bound and adding assumptions would put a bound
on how good bounds the program could prove. The bound with respect to the
number of clauses Fedin and Kulikov obtain for SAT are actually bounded by
their assumptions (they assume the formulas do not contain (2,4)-occurrences,
as branching on these results in a branching value of 1.2721, but with this as-
sumption all the cases they get have a branching value less than that). They do
not mention if they have tried to use fewer assumptions such that the program
had a chance of improving the bound.

In Chapter 8 we present a program generating algorithms and upper bound
proofs of their running time, primarily for XSAT and X3SAT, but also for SAT.
In Table 4.1 we present an overview over all the result obtained by the programs
presented in this chapter, and as in the previous table, an entry c indicates a
bound of O(cµ(P)). For the graph modification problems, the measure of size is
the number of allowed modifications. Our primary goal was to see if a computer
could prove bounds as good or better than humans without being taught a
lot of reductions and assumptions. Thus in contrast to the other approaches

29

Paper Problem
Previous best
known result

Result

Gramm et al. [25] Cluster Editing 2.27 1.92
Gramm et al. [25] Cluster Deletion 1.77 1.53
Gramm et al. [25] Cluster Vertex Deletion 2.27 1.26
Gramm et al. [25] Triangle Edge Deletion 2.27 2.47
Gramm et al. [25] Triangle Vertex Deletion 2.27 2.42
Gramm et al. [25] Cograph Vertex Deletion 3.30 3.30
Skjernaa X3SAT 1.1003 1.1058
Skjernaa X3SAT, respect to m (1.1939) 1.1586
Skjernaa XSAT 1.1749 1.1975
Skjernaa XSAT, respect to l (1.0842) 1.0978
Skjernaa SAT, respect to l 1.0740 1.0983
Fedin & Kulikov [23] SAT, respect to m 1.2389 1.2721
Fedin & Kulikov [23] SAT, respect to l 1.0740 1.0983a

Fedin & Kulikov [23] MAXSAT, respect to m 1.341 1.3723
Fedin & Kulikov [23] MAXSAT, respect to l 1.1058 1.1359
Fedin & Kulikov [23] (n, 3)-MAXSAT 1.1058 1.2852
Fedin & Kulikov [23] (n, 3)-MAXSAT, respect to m (1.341) 1.2366
Fedin & Kulikov [23] (n, 3)-MAXSAT, respect to l (1.1058) 1.0983

Nikolenko & Sirotkin [41] SAT, respect to m 1.2389 1.4423b

aIn [23] they only state 1.1011. The bound 1.0983 can be found at http://logic.pdmi.

ras.ru/~kulikov/autoproofs.html
bIt is not really fair to compare the result to other results, as the purpose of their program

was to obtain a bound on an algorithm only using pure literal elimination

Table 4.1: Results for automated generation of algorithms. Results in paren-
thesis are results where no previous results have been published, and the results
stated are either very simple to obtain or the result for a more general problem

presented here, we use no preprogrammed reductions and the only assumption
on the variable occurrences is that at least one variable must occur thrice, which
is not a restriction, but only a mean to ensure that the algorithm does not try
to solve instances where each variable occurs at most twice, as these can be
solved in polynomial time. Instead of using preprogrammed reductions we let
the program find reductions, by for each case trying all assignments, and note if
a variable is forced to be either true or false, or if a pair of variables are forced
to be either equal or different. It is also able to find reductions where a clause
can be removed without changing the set of valid assignments. We do not limit
the size of instances which we consider, and instead of trying to prove a specific
branching value, it always take the worst case in the case analysis and tries to
improve it. This is done by expanding the case into several subcases, creating
a tree structure of cases. We then use the tree structure to avoid symmetrical
cases and subcases of already solved cases. In Table 4.2 is a summary of the
properties of each of the programs presented.

Paper Problems F
lexible

reductions

F
lexible

size

F
lexible

branching
value

F
lexible

branching
type

W
ithout

assum
ptions

A
voids

sym
m

etrical
cases

[25] Graph modification problems % % X X % (X)
[23] SAT, MAXSAT, (n, 3)-MAXSAT % X % % % %
[41] SAT % X % % % %
[52] X3SAT, XSAT, 3SAT, SAT X X X % X X

Table 4.2: Comparison between programs for automatic generation of algo-
rithms

Chapter 5

Colouring

5.1 Introduction

In this chapter we consider another NP-complete problem, which has received
a lot of interest:

k-Colouring

Input: An undirected graph G = (V,E).

Output: Does there exist a colour assignment using k
colours, such that every pair of neighbours have
distinct colours:

∃c : V → [k] ∀(i, j) ∈ E : c(i) 6= c(j).

As with k-SAT, k-Colouring is in P, for k ≤ 2, while it is NP-complete for
k ≥ 3. A yes-instance of k-Colouring is said to be k-colourable, and 2-colourable
graphs are also called bipartite. The subgraph induced by a subset of the
vertices S ⊆ V is denoted G[S] and if G′ is a subgraph, we let V (G′) denote the
vertices of G′ and call G[V \V (G′)] the remaining graph. A maximal k-colourable
subgraph of a graph is an induced k-colourable subgraph, contained in no other
induced k-colourable subgraph. If k = 1 or k = 2, we use the terminology
maximal independent set or maximal bipartite subgraph, respectively. As a
maximal independent set does not contain any edges we will represent it just
as a set of vertices.

Closely related to k-Colouring is the problem of determining the chromatic
number of a graph. The chromatic number of a graph G is the smallest k, such
that G is k-colourable.

Chromatic number problem

Input: An undirected graph G.

Output: The smallest k, such that G is k-colourable.

This problem, in its decision form, is also NP-complete. The chromatic
number of G is denoted χ(G).

31

32 Chapter 5. Colouring

5.1.1 Constraint Satisfaction Problem

Constraint Satisfaction Problem (or just CSP) is not as well known as SAT or
k-Colouring, but is in fact closely related to both, and we include it here as
many of the algorithms solving k-Colouring solves CSP-instances as a part of
the algorithm.

CSP is a bit more complicated to describe than the other problems presented
so far, so first we give an informal description of it. An (a, b)−CSP consists
of a set of “objects” and a set of constraints. Each object is to be assigned
one of a possible values, but the assignment will have to satisfy the constraints.
Each constraint consists of at most b object-value pairs, and in an assignment
satisfying such a constraint, at least one of the b objects is not assigned the
associated value.

(a, b)-Constraint Satisfaction Problem

Input: A pair (S,C) consisting of a set S of objects
and a set C of constraints. C ⊆ (S × [a])b.

Output: Does there exist a value assignment to the ob-
jects of S, such that the constraints of C are
satisfied:

∃f : S → [a] :
∀((s1, v1), . . . , (sb, vb)) ∈ C :

∃i ∈ [b] : f(si) 6= vi

The Constraint Satisfaction Problem is interesting because of its relation to
Satisfiability and k-Colouring:

• (2, k)-CSP is equivalent to k-SAT: S corresponds to the variables, and
each constraint corresponds to a k-clause.

• (k, 2)-CSP is a generalisation of k-Colouring: S corresponds to the set of
vertices, and each constraint is prohibiting a certain colour-combination
of two vertices (for k-Colouring each edge prohibits the k colour-combina-
tions where the two end vertices obtain the same colour).

(a, b)-CSP is NP-complete when a ≥ 2 and b ≥ 2, but not both are equal
to two, and in P otherwise. We will only present algorithms for solving CSP
which are connected to colouring.

5.2 Algorithms for Colouring

In this section we will give some of the history of exact algorithms for colouring.
Throughout this section G = (V,E) will be an undirected graph, n will denote
the number of vertices in the graph, and m the number of edges of the graph.

When looking at maximal k-colourable subgraphs it is often easier to look
at a specific k-colouring guaranteed to exist by the following lemma, which is
proved in Chapter 9:

5.2. Algorithms for Colouring 33

Lemma 5.1 (Lemma 9.1) Let M be a maximal k-colourable subgraph of a
graph, G = (V,E). Then the vertices of M can be split into colour classes
C1, C2, . . . , Ck of non-increasing sizes s.t. for all i, j with 0 ≤ i < j ≤ k,
G[Ci+1∪Ci+2∪· · ·∪Cj] is a maximal (j− i)-colourable subgraph of G[V \ (C1∪
C2 ∪ · · · ∪Ci)].

First it should be noted that the trivial algorithm for k-Colouring is running
in time O(kn), but it is easy to improve this to O((k−1)n) by assigning colours
to the vertices in a depth first order. Determining the chromatic number can,
with the same improvement, be done in time O((χ(G)−1)n), which in the worst
case is O((n− 1)n).

χ 3-col. 4-col. 5-col. Type Reference
2.4422 1.4422 2 - det. E. Lawler, 1976 [34]
- 1.4147 - - det. I. Schiermeyer, 1994 [46]
- 1.3977 1.5849 1.9376 det. I. Schiermeyer, 1996 [47]a

- 1.3446 - - det. Beigel and Eppstein, 1995 [5]
- 1.3553 1.8072 2.2590 prob. D. Eppstein, 2001 [19]
- 1.3289 - - det. D. Eppstein, 2001 [19]
2.4150 - - - det. D. Eppstein, 2001 [20]
2.4023 - 1.7504 2.1592 det. J. Byskov, 2002 [8]
- - - 2.1020 det. Byskov and Eppstein, 2004 [9]

aIn Chapter 9 we show that these particular results for 4- and 5-colouring are incorrect.

Table 5.1: History of colouring.

In Table 5.1 is a summary of most results in the field of colouring (as with
the previous tables, an entry with c, indicates an algorithm running in time
O(cn)). We will in the following sections present some of these results.

5.2.1 Chromatic number

Lawler [34] was the first to present a non-trivial algorithm for determining the
chromatic number. He did so in 1976, by presenting a very simple algorithm
which solved the problem in O((1 + 3

√
3)n). The algorithm uses dynamic pro-

gramming to calculate the chromatic number for all 2n subgraphs. Using the
fact (Lemma 5.1, with i = 0 and j = 1) that in a colouring, one of the colour
classes can be assumed to be a maximal independent set of the graph, we obtain
the recursive formula:

χ(G[V ′]) =

0 if V ′ = ∅
1 + min

S∈MIS(V ′)
{χ(G[V ′ \ S])} if V ′ 6= ∅

MIS(V ′) denotes the set of all maximal independent sets of the subgraph
induced by V ′. Thus to calculate χ(G[V ′]), given χ(G[V ′′]) for all subsets V ′′

of V ′, we just calculate the set MIS(V ′). The number of maximal independent
sets in a graph with n vertices is at most 3n/3 [40], and it can be generated with

34 Chapter 5. Colouring

only a small polynomial overhead per maximal independent set [55]. The time
used to calculate χ(V ′) for all subsets of V is thus:

n∑
r=0

(
n

r

)
3

r
3 = (1 + 3

√
3)n

Lawler also noticed that in addition to the algorithm for finding the chro-
matic number, the method can be used to find a 3-colouring of a graph if one
exists. By generating all maximal independent sets of a graph, and for each set
S check whether the graph G[V \ S] is 2-colourable, a running time of O(3n/3)
is obtained. Although not connected to the above algorithm, Lawler also men-
tions that 4-Colouring can be decided in O(2n), by forming all 2-partitions of
the vertices, and for each, check if both sets are bipartite.

The algorithm by Lawler for determining the chromatic number was not
improved until 2001, when Eppstein [20] presented an algorithm improving the
time bound to O((4

3 + 34/3

4)n). The algorithms compute the chromatic number
in a very similar way, but Eppstein made a slight modification to the algorithm
of Lawler, which at first does not improve the time complexity, but clears the
path towards improvements. Eppstein computes an estimate of the chromatic
number for every induced subgraph of the graph, but in contrast to Lawler, it
is only guaranteed to be correct for all maximal k-colourable subgraphs. They
both start with the small subgraphs, such that when they reach a subgraph G′,
the chromatic numbers of all induced subgraphs of G′ have been calculated or
estimated. But in contrast to Lawler, the chromatic number of G′ has already
been estimated when G′ is reached. This is done by maintaining a table with
upper bounds on the chromatic number for every induced subgraph of G. When
G[V ′] is reached, the upper bound on the chromatic number of G[V ′ ∪ S], for
every S, where S is a maximal independent set of G[V \ V ′], is set to the
minimum of the previous upper bound and χ(G[V ′]) + 1. This ensures that
when a maximal k-colourable subgraph is reached its chromatic number is equal
to the calculated upper bound. The time complexity of doing this is exactly
the same as the one Lawler obtains.

Now to improve the time complexity, Eppstein notes that when doing the
step for G[V ′] it is not necessary to consider all maximal independent subsets of
G[V \ V ′]; one can do with only considering the maximal independent subsets
of G[V \ V ′] of size at most |V ′|/χ(G[V ′]) (Lemma 5.1 states that if G[W] is
maximal k-colourable, then it has a maximal (k−1)-colourable subgraph G[W ′]
of size at least |W |(1 − 1

k), where G[W \W ′] is a maximal independent set of
G[V \W ′]). By precalculating the chromatic number for all the subgraphs with
chromatic number less than or equal to 3, it is only necessary to do anything
when reaching a subgraph with chromatic number greater than or equal to 3 (it
is only necessary to compute upper bounds which are at least 4). Thus when
doing the calculations for G[V ′], it is enough to consider maximal independent
subsets of size at most |V ′|/3. To make this improvement useful, Eppstein shows
that the number of maximal independent sets I ⊆ V of size at most k is at most
34k−n4n−3k, and they can be generated with only a polynomial overhead. The
time for precalculating the chromatic number for subgraphs with chromatic

5.2. Algorithms for Colouring 35

number at most 3 is dominated by the time for computing all the maximal
independent subsets which is (by the binomial formula)

∑
S⊆V

O
(
3

4|S|
3
−|V \S|4|V \S|−|S|

)
= O

(
n∑

i=0

(
n

i

)
3

7i
3
−n4n−2i

)

= O

((
4
3

+
3

4
3

4

)n)

It should be noted that the algorithm easily can be modified to also return
the colouring, with only a constant factor in overhead. The currently best
known algorithm for determining the chromatic number is by Byskov [8], and
we will look at this result in Section 5.3. There is no known algorithm using
only polynomial space and running in time O(αn) for a constant α.

5.2.2 3-Colouring

As mentioned above, Lawler showed in 1976 that 3-Colouring can be solved in
O(mn3n/3). The result from 1994 by Schiermeyer [46] is a complicated case
analysis, which we will not describe. In 1995, Beigel and Eppstein [5] pre-
sented an algorithm for 3-Colouring running in time O(1.3446n). The primary
ingredient of the algorithm is to solve a Constraint Satisfaction Problem.

Beigel and Eppstein do not consider the general CSP, but only (3,2)-CSP,
which they solve in O(1.3803n), where n is the number of objects. To obtain
this complexity, they observe that if an object can only be assigned two different
values, then it can be removed by a kind of resolution at the expense of some
additional constraints. The algorithm is based on a case analysis, branching
on different local configurations. The cases depend on how many constraints
an object-value pair is part of, and on chains of constraints. The worst case
being an object-value pair contained in (at least) three constraints, with three
different objects.

To solve a problem containing such a configuration (say (v, i) occurs in three
constraints with v1, v2 and v3), it suffices to solve two subproblems: Either v
is assigned i, or it is not. In the first case v1, v2 and v3 is restricted to two
values, and can be removed, resulting in a problem with four objects fewer. In
the second case we can remove v from the problem (as it has only two possible
values), and thus just have to solve a problem with one object fewer. This
results in a branching vector of (4,1), which gives O(1.3803n). We will not
describe how they use this to solve 3-Colouring in O(1.3446n), as the technique
is almost identical to the technique presented by Eppstein in 2001 [19] (Eppstein
improves it a little bit, but the main ingredients are the same).

The primary improvement by Eppstein is to improve the algorithm for solv-
ing (3,2)-CSP, from O(1.3803n) to O(1.3645n). Instead of solving (3,2)-CSP
directly, he solves (4,2)-CSP, by case-analysis. The case analysis is somewhat
similar to the case-analysis they did to solve (3,2)-CSP. It is not in itself very
interesting, so we will not go into any details about it. But the proof of the com-
plexity is very interesting, because he does not measure the size of a problem

36 Chapter 5. Colouring

in the straightforward way. If n3 is the number of objects that can have three
different values, and n4 is the number of objects that can have four different val-
ues, it would be natural to say that the size n of the problem is n3 +n4. On the
other hand, it can be noted that an object that can have four different values,
can be substituted by two objects, each of which can have three different values
(two of the possible values correspond to values of the original object, while the
last corresponds to “it is the other object that determines the value”). There-
fore n3 + 2n4 would also be a way to measure the size of the problem, taking
account of the fact that problems with many objects with four possible values,
is probably more difficult than problems with few. Eppstein mentions the lat-
ter as the natural way of measuring the size, but uses instead n3 + (2 − ε)n4.
Note that no matter which of these measures are used, the size of a (3,2)-CSP
instance is the same. Using this measure in the calculation of the workload, of
each case, the running time depends on ε. Eppstein then proves that choosing
ε such that τ(3 − ε, 4 − ε, 4 − ε) = τ(1 + ε, 4) results in the best bound, and
shows that this is the case when both values equal τ(4, 4, 5, 5) ≈ 1.36443, which
happens when ε ≈ 0.095543.

As mentioned, 3-Colouring is a special case of (3,2)-CSP, and by translating
a 3-Colouring instance directly to (3,2)-CSP, a running time of O(1.3645n) is
obtained. To improve this, Beigel and Eppstein note that for any subset S of
the vertices, 3-Colouring can be decided in O(3|S|1.3645n−|S∪N(S)|), where N(S)
is the set of neighbours of S. This is obtained by trying all possible colourings
for S, and translating the remaining problem to a (3,2)-CSP of size n−|S|. But
in the translated problem all vertices in N(S) have only two different possible
colours, and can thus be removed at no significant cost, resulting in a problem
of size n−|S∪N(S)|, which can then be solved by the above algorithm. Having
a small subset of the vertices, with a lot of neighbours will thus result in a low
running time.

In order to find such a set, the papers suggest to find a set, X, which is
maximal, such that no two vertices are neighbours, or have a neighbour in
common. Now every vertex in N(X) has a unique neighbour in X, and every
vertex in V \(X∪N(X)) has a neighbour in N(X) (by maximality of X). If every
vertex in V \ (X ∪N(X)) is associated to an arbitrary vertex in N(X), a forest
with the vertices of X as roots is formed. Choosing S to be X together with any
vertex of N(X), which in the forest has at least 3 children (3 associated vertices
from V \ (X ∪ N(X))), results in a good S. Both papers use this technique
to chose S but also use some additional case analyses to avoid certain tree-
“shapes” in the forest. We will not go into any details with this, just note that
this leads to an O(1.3289n) algorithm for 3-Colouring and this is the currently
best, known algorithm for 3-Colouring.

5.2.3 Colouring in general

Most effort in the field of colouring, has gone into solving 3-Colouring, but
there are some results for the general case. The algorithm for determining the
chromatic number, can of course be used for deciding k-Colouring, and it is in
fact the best known algorithm when k ≥ 7. In the paper by Eppstein mentioned

5.3. Using maximal bipartite subgraphs 37

above [19], he also shows that k-Colouring can be decided by a probabilistic
algorithm in time O((0.4518k)n). For each vertex, he randomly chooses 4 of
the possible colours, and then translates the problem into a (4,2)-CSP, which
he solves by the algorithm presented in the previous section. He repeats this
sufficiently many times to make the probability of failure small.

Another algorithm that works in the general case is by Byskov [8]. It is
an extension of the 3-Colouring algorithm Lawler [34] presented in 1976. As
mentioned previously, Eppstein [20] shows that the number of maximal inde-
pendent sets I ⊆ V of size at most k is at most 34k−n4n−3k. Byskov notes that
this result can be used to decide 4-Colouring in O(1.7504n): generate all maxi-
mal independent sets of the graph of size at least dn4 e, and use the 3-Colouring
algorithm from Eppstein [19] on the remaining graph. The bound of Eppstein
is used to bound the number of maximal independent sets of size exactly k.
The time complexity for the algorithm is dependent on the time complexity of
3-Colouring, and can more generally be stated as O(n · 4n/4 · T3(3n

4)), where
T3(·) is the time it takes to solve 3-Colouring.

The bound from Eppstein on the number of maximal independent sets of
size at most k is tight for n

4 ≤ k ≤ n
3 . Byskov strengthens it to be tight for

all k:

I≤k(n) =

bnk ck−(n mod k)(bnk c+ 1)n mod k if k ≤ n
3

3
n
3 if k > n

3 ∧ n ≡ 0 (mod 3)
4 · 3bn

3
c−1 if k > n

3 ∧ n ≡ 1 (mod 3)
2 · 3bn

3
c if k > n

3 ∧ n ≡ 2 (mod 3)

where I≤k(n) denotes the maximum possible number of maximal indepen-
dent sets of size at most k in graphs with n vertices. In addition, he shows
that the number of maximal independent sets of size exactly k is at most
bnk ck−(n mod k)(bnk c+1)n mod k, and this bound is also tight for any k. It should
be noted that the two bounds are equal when k ≤ n

3 . Using this result and the
same method as he used for 4-Colouring (using the 4-Colouring algorithm as
a black box instead of the 3-Colouring algorithm), he obtains an algorithm
for 5-Colouring, running in time O(2.1593n) using the 3-Colouring algorithm
by Eppstein (the 4-Colouring algorithm used as black box uses a 3-Colouring
algorithm as black box), or in general O(n·5n/5 ·T4(4n

5)) = O(n2 ·20n/5 ·T3(3n
5)).

Of course, the method can be extended to k-Colouring for any k > 3 (giving
O(nk−3(k!

3!)
n
k · T3(3n/k)), but for k = 6 much better algorithms for 3-Colouring

are required (O(1.1824n)) for the algorithm to be competitive to the general
algorithm [7] for determining the chromatic number. For k > 6 it will, no
matter how fast 3-Colouring can be decided, not be competitive to the chromatic
number algorithm.

5.3 Using maximal bipartite subgraphs

A possible way to improve these results is to find a bound on the number
of maximal bipartite subgraphs of a graph. Lemma 5.1 ensures that if G is k-

38 Chapter 5. Colouring

colourable, it has a k-colouring consisting of a maximal bipartite subgraph such
that the remaining graph is (k−2)-colourable. Thus a natural extension to the
algorithm by Byskov [8] would be to generate all maximal bipartite subgraphs
and check whether the remaining graphs are (k− 2)-colourable. The time com-
plexity of this algorithm is proportional to the time complexity of generating all
maximal bipartite subgraphs plus the number of maximal bipartite subgraphs
times the time complexity of checking (k − 2)-colourability of the remaining
graphs.

The time complexity of checking 4-colourability using the above algorithm
is proportional to the time complexity of generating all maximal bipartite sub-
graphs, since 2-colourability can be checked in polynomial time. The algorithm
by Byskov [8] for 5-Colouring is really just finding all maximal bipartite sub-
graphs of size at least 2

5n. But it also finds some non-maximal ones (the union of
two maximal independent sets is not necessarily a maximal bipartite subgraph:
In the 6-cycle, two opposite vertices form a maximal independent set, but their
union with a maximal independent set of the remaining graph does not form a
maximal bipartite subgraph), and finds some of them multiple times (k copies
of K2 have only one maximal bipartite subgraph, but it may be decomposed
into two maximal independent sets in 2k−1 different ways).

In Chapter 9, we show both a lower and upper bound on the maximum
possible number of maximal bipartite subgraphs in a graph. The lower bound
is shown by providing an infinite family of graphs with many maximal bipartite
subgraphs. The infinite family consists of disconnected copies of a single graph,
the k’th one having k copies. Our first lower bound used K5 to generate the
infinite family. The lower bound obtained by using this is

(5
2

)n/5
= 10n/5 ≈

1.5849n, which was also observed by Schiermeyer [47] in 1996. Schiermeyer
also states a matching upper bound, which we invalidate by using the graph in
Fig. 5.1.

Theorem 5.1 (Theorem 9.1) There exists an infinite family of graphs all
having 105n/10 ≈ 1.5926n maximal bipartite subgraphs of size exactly 2

5n.

Figure 5.1: The graph used in Theorem 5.1.

We also present an upper bound on the number of maximal bipartite sub-
graphs.

Theorem 5.2 (Theorem 9.2) Any graph contains at most n · 12n/4 ≈ n ·
1.8613n maximal bipartite subgraphs. Moreover, there is an algorithm that

5.3. Using maximal bipartite subgraphs 39

takes as input a graph and outputs all its maximal bipartite subgraphs in time
O(1.8613n).

This upper bound is not good enough to improve any of the results for
colouring, but recently Byskov and Epstein [9] presented an algorithm generat-
ing all maximal bipartite subgraphs in O(1.7724n). The algorithm is a branch-
ing algorithm with many cases so we will not describe it here. This improved
bound results in the currently best known algorithm for 5-Colouring [9]:

Theorem 5.3 (Byskov and Eppstein [9], Theorem 2)
5-colourability can be checked in O(2.1020n) using polynomial space.

Proof. Find all maximal bipartite subgraphs of the graph and for all of size at
least 2n/5 check 3-Colouring of the remaining graphs by using the 3-Colouring
algorithm of Beigel and Eppstein [5] running in time O(1.3289n). The total
running time is O(1.7724n · 1.32893n/5) ≈ O(2.1020n) 2

In order to use this technique to improve the result for 4-Colouring, an upper
bound of at most 1.75n is required, and an algorithm generating all maximal
bipartite subgraphs in this time should exist. It will suffice to show this upper
bound for the number of maximal bipartite subgraphs of size greater than 1

2n.
We do believe that the real upper bound is much closer to our lower bound

than the upper bound by Byskov and Eppstein. If our lower bound is also
an upper bound, it is possible to solve 5-Colouring in time O(10n/5 · T3(3

5n)),
which with the 3-Colouring algorithm by Eppstein is O(10n/5 · 1.32893n/5) ≈
O(1.8889n).

Byskov and Eppstein also uses the upper bound on the number of maximal
bipartite subgraphs to show the following:

Theorem 5.4 (Byskov and Eppstein [9], Theorem 3)
It is possible to find either all 3-colourable subgraphs or all maximal 3-colourable
subgraphs of a graph in time O(2.1809n) using O(2n) space.

The algorithm is to for each maximal independent set I find all maximal
bipartite subgraphs of G[V \I]. From this result they conclude that 6-Colouring
also can be solved in O(2.1809n) using O(2n) space, which is the first algorithm
for 6-Colouring faster than the general algorithm for chromatic number.

In 2002, Byskov [7] used a weaker version of Theorem 5.4 (based on Theorem
5.2) to give an algorithm for determining the chromatic number in O(2.4023n).
The main observation is that if we have a table with all maximal k-colourable
subgraphs marked, then we can build a table with all (k + 1)-colourable sub-
graphs marked in time O(2.4023n). This is done by for each maximal indepen-
dent set I finding all k-colourable subgraph U of G[V \I], and marking G[U ∪I]
as (k+1)-colourable. This marks all maximal (k+1)-colourable subgraphs, and
by doing a single traversal through the table all (k + 1)-colourable subgraphs
can be marked. All k-colourable subgraphs of G[V \ I] can be found in time
O(2|V \I|), by looking at the entries in the table corresponding to subgraphs of
G[V \ I], and we thus get a running time of

40 Chapter 5. Colouring

∑
I∈MIS(G)

2|V \I | ≤
n∑

k=1

|MIS=k(G)| · 2n−k (5.1)

where MIS=k is the set of all maximal independent sets of size k in G. This
sum can be shown to be O(80n/5) = O(2.4023n).

Chapter 6

Graph Distinguishability

A classical problem presented by Frank Rubin [43] goes:

A blind man keeps his keys on a circular ring. There are s distinct
handle shapes that he can tell apart by feel, and he can purchase
any key with any desired handle shape. Assume that all keys are
symmetrical so that a rotation of the key ring about an axis in its
plane is undetectable from examination of a single key. How many
keys can he keep on the ring and still be able to select the proper
key by feel?

In this chapter we will consider a generalised version of this problem called
Graph Distinguishability. A graph is said to be k-distinguishable if it is possible
to assign one of k different colours to each vertex of the graph in such a way
that no non-trivial automorphism preserves the colour of all vertices. The above
problem is the special case where k = s and the graphs are cycles.

Let G = (V,E) be a graph. The distinguishing number, D(G), is the smallest
number, k, for which G is k-distinguishable. If k is a positive integer, a k-
colouring of G is a function mapping V to [k]. Note that a colouring in this
chapter have no connection to the kind of colourings presented in the previous
chapter. A legal k-colouring, c, is a k-colouring which destroys all non-trivial
automorphisms:

∀φ ∈ Aut(G) \ {id(V)} : c 6= c ◦ φ. (6.1)

The set of legal k-colourings of a graph G will be denoted LCk(G).
Two legal k-colourings, c1 and c2, are called indistinguishable if there exists

a φ ∈ Aut(G) such that c1 = c2 ◦ φ.

DISTk

Input: A graph G = (V,E)

Output: Are there any legal k-colourings of G, i.e., is
LCk(G) 6= ∅?

DIST1 is also called RIGID. There has been considerable interest in the
computational complexity of the problem of deciding the distinguishing number

41

42 Chapter 6. Graph Distinguishability

of a graph. DIST0 is trivial as it only contains the empty graph and RIGID
is in coNP as a graph can be shown to be nonrigid by giving a nontrivial
automorphism on the graph. For k > 1, DISTk is not known to be in neither
NP nor coNP, but it is easy to see that DISTk is in ΣP

2 .
In 1996, Albertson and Collins [2] decided the distinguishing number for

certain classes of graphs. They study the relation between the automorphism
group of a graph and the distinguishing number of the graph, and prove the
following results:

• D(G) ≤ 1 + blog(|Aut(G)|)c,
• for any nontrivial finite group, Γ, there exists a graph, G, such that

Aut(G) ∼= Γ and D(G) = 2,

• if Aut(G) is nontrivial and either Abelian or Hamiltonian, then D(G) = 2,

• if Aut(G) is dihedral, then D(G) ≤ 3,

• if n 6= 3, 4, 5, 6, 10 and Aut(G) ∼= Dn, where Dn is the automorphism
group of the n-cycle, Dn

∼= Aut(Cn), then D(G) = 2, and

• if Aut(G) ∼= S4, then D(G) = 2 or D(G) = 4.

Two years later, in 1998, Russell and Sundaram [44] proved that DISTk

lies in ΣP
2 ∩ AM1 and as Boppana, H̊astad and Zachos [6] have proved that if

coNP ⊂ AM then the polynomial hierarchy collapses, they conclude that if it
is coNP-hard the polynomial hierarchy collapses.

Recently Arvind and Nikhil [3] proved that for planar graphs the distin-
guishing number can be determined in polynomial time. The proof of this
result consists of two parts. First they prove that DISTk can be determined
in linear time for trees, and thus the distinguishing number can be found in
polynomial time. The second, and most complicated part, reduces the prob-
lem of deciding the distinguishing number of a planar graph to the problem of
deciding the distinguishing number of a tree. Here we will sketch the first part.

In linear time we find the center of the tree; i.e. the vertex which minimises
the height of the tree when the vertex is chosen as root. There can be two
such vertices, but in that case we insert a vertex on the edge between the two
vertices. Then we have a unique center and the insertion does not change the
distinguishing number of the tree. We then choose the center as the root of
the tree, and use a result by Aho, Hopcroft and Ullman [1]: given a rooted
tree T as input, we can in linear time compute a canonical numbering of the
vertices of T by log n bit integers, such that two subtrees at the same level get
the same label if and only if they are isomorphic. With such a labelling it is
easy to make a recursive traversal of the tree and calculate the total number
of distinguishable legal k-colourings for every subtree: for a single vertex (each

1Note that Russell and Sundaram repeatedly state that the problem lies in AM ⊂ ΣP
2 ∩ΠP

2 .
This statement is somewhat misleading as it is a well known open problem if AM is in ΣP

2

(see, e.g., [26]). What they do show is that the problem is in AM and since it is clearly in ΣP
2 ,

it is in ΣP
2 ∩AM and as AM ⊂ ΠP

2 thus in ΣP
2 ∩ ΠP

2 .

43

leaf), the number of distinguishable legal k-colourings is trivially k. If v has∑r
i=1 mi children, {vij |1 ≤ j ≤ mi, 1 ≤ i ≤ r}, such that the subtrees rooted

at {vij |1 ≤ j ≤ mi} are all isomorphic and each can be legally k-coloured in li
distinguishable ways, then the subtree rooted at v can be legally k-coloured in
k ·∏r

i=1

(li
mi

)
distinguishable ways.

In Chapter 10 we present a result on how to reduce DISTl to DISTk for
various values of l and k:

Theorem 6.1 (Theorem 10.2) If there exists a graph H = (W,F) such that
H can be legally k-coloured in l distinguishable ways, then DISTl can be reduced
to DISTk:

DISTl ≺ DISTk.

The idea in the proof is simple: by replacing every vertex in a graph G with a
copy of H, we can check if G can be distinguished using l colours, by checking
if the new graph can be distinguished using k colours. By using this theorem
we also prove

Theorem 6.2 (Theorem 10.1) RIGID is not harder than any other DISTk,
k ≥ 1:

RIGID ≺ DISTk.

Finally, we present different ways for constructing graphs with certain l and
k values from smaller graphs, and show that DISTl can be reduced to DIST2

for l equal to 1, 2, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 27, 28, 30, 32, 36
and 40.

Part II

Papers

45

Chapter 7

Algorithms for Exact Satisfiability

This chapter contains the paper “New Algorithms for Exact Satisfiability” [10].
The paper is co-authored by Jesper M. Byskov and Bolette A. Madsen, and is
to appear in Theoretical Computer Science. Minor typographical changes have
been made compared to the original paper.

Abstract

The Exact Satisfiability problem is to determine if a CNF-formula has
a truth assignment satisfying exactly one literal in each clause; Exact 3-
Satisfiability is the version in which each clause contains at most three
literals. In this paper, we present algorithms for Exact Satisfiability and
Exact 3-Satisfiability running in time O(20.2325n) and O(20.1379n), respec-
tively. The previously best algorithms have running times O(20.2441n) for
Exact Satisfiability (Monien, Speckenmeyer and Vornberger (1981)) and
O(20.1532n) for Exact 3-Satisfiability (Dahllöf, Jonsson and Beigel (2004)).
We extend the case analyses of these papers and observe that a formula
not satisfying any of our cases has a small number of variables, for which
we can try all possible truth assignments and for each such assignment
solve the remaining part of the formula in polynomial time.

7.1 Introduction

The Exact Satisfiability (XSAT) problem is a variant of Satisfiability (SAT),
where the difference is that in XSAT a clause is satisfied if exactly one of its
literals is true. The Exact 3-Satisfiability (X3SAT) problem is the variant of
XSAT in which each clause contains at most three literals. X3SAT is also
called One-In-Three Satisfiability. XSAT is NP-complete even when restricted
to clauses containing at most three literals and all variables occurring only
unnegated [45]. XSAT with all variables occurring at most twice can be solved
in polynomial time [39].1

XSAT can easily be solved in time O(2n) (we will ignore polynomial factors
when stating running times, since these are all exponential) by enumerating
all possible truth assignments to the n variables. In 1981, Schroeppel and

1They state that a generalised version of XSAT with variables occurring at most twice,
called MAX({≤, =,≥}, ·, 2), reduces to Perfect Matching. The proof is in the technical re-
port [38].

47

48 Chapter 7. Algorithms for Exact Satisfiability

Shamir [49] were the first to give a faster algorithm. Their algorithm solves a
class of problems, of which XSAT and Knapsack are the most prominent, in
time O(2n/2) and space O(2n/4). The same year, Monien, Speckenmeyer and
Vornberger [39] gave an algorithm solving only XSAT, but in time O(20.2441n)2

and polynomial space. This is the previously best algorithm for XSAT.
X3SAT can of course be solved by an algorithm solving XSAT, but in recent

years faster algorithms for X3SAT have been designed. The first was by Drori
and Peleg [18] and runs in time O(20.2072n). This was improved by Kulikov [30]
and independently Porschen, Randerath and Speckenmeyer [42] in 2002 to ob-
tain a running time of O(20.1626n). The previously best algorithm is by Dahllöf,
Jonsson and Beigel [13] and runs in time O(20.1532n).

Except for the algorithm by Schroeppel and Shamir [49], all the algorithms
mentioned above are branch-and-reduce algorithms. A branch-and-reduce al-
gorithm branches by making recursive calls on smaller formulas, such that the
original formula is satisfiable if and only if at least one of the smaller formulas
is satisfiable. In each branch, the algorithm reduces the formula by replacing
it with another formula that is satisfiable if and only if the original formula is
and that contains fewer variables. Fast branch-and-reduce algorithms rely on
good decisions about what to branch on and good reduction rules.

In this paper, we present new branch-and-reduce algorithms for XSAT and
X3SAT running in time O(20.2325n) and O(20.1379n), respectively. We intro-
duce new reductions for both XSAT and X3SAT and improve the case analyses
by a more careful analysis of the worst cases, which for some cases involves
splitting them into more cases. Our main improvement, however, lies in our
handling of sparse formulas: if the number of variables occurring at least three
times in the formula is small, we can enumerate all possible truth assignments
to these variables. For each assignment, the remaining formula contains only
variables occurring at most twice, so we can decide in polynomial time, if it is
satisfiable [39].

7.2 Preliminaries

7.2.1 Definitions

We are given a set of variables, which we will denote by the letters x, y, z, w
and u. A literal is either a variable x or the negation of a variable x̄; we use
x̃ to denote a literal that is either x or x̄. A clause is a collection of literals,
written as (x̃1, . . . , x̃l); we use the letter C to denote clauses. Sometimes, we
will think of a clause as a set of literals (actually a multiset, since a clause
can contain more than one of each literal); we use (x̃, C) to denote a clause
with x̃ and all the literals in C. A formula is a set of clauses usually written as
C1∧C2∧· · ·∧Cm; we use the letter F to denote formulas. In intermediate steps
of our algorithm we allow clauses to contain constants (true or false). The size
of a formula is the number of literals and constants contained in the formula.

2Note that the journal version [39] only states the time O(2n/4). The time complexity of
O(20.2441n) is proved in the technical report [38].

7.2. Preliminaries 49

XSAT is the problem of given a formula F with m clauses over n variables
to decide, if there exists an assignment to all the variables, such that exactly
one literal in each clause is true.

We let V (F) denote the variables occurring in F . An (a, b)-occurrence is a
variable occurring a times unnegated and b times negated or vice versa in F ; a
unique variable is a variable occurring only once. We will assume for simplicity,
that when we look at a variable the first occurrence is unnegated.

We let F [x � y] where y is either a constant or a literal denote F with x
replaced by y and x̄ replaced by ȳ; similarly, we let F [C � false] denote F with
all literals in C replaced by false and their negations by true.

In X3SAT, a cycle is a list of clauses (y1, z̃1, z2), (y2, z̃2, z3), . . . , (yk, z̃k, z1)
where neighbour clauses and the first and last clause share a variable and the
zis are different variables.

7.2.2 Branching

Our algorithms make recursive calls on formulas with fewer variables. If C is
a clause in the formula and C ′ (C then in a satisfying assignment for the
formula either all literals in C ′ are false or exactly one is true. We use three
different types of branches: branching on C ′, meaning that the recursive calls
are on C ′∧F (in this case the formula can be reduced immediately afterwards,
such that there will be fewer variables and clauses) and F [C ′

� false]; we will
denote the first branch “setting C ′ to true” and the second “setting C ′ to false”.
We can also branch on two variables x1, x2 meaning that the recursive calls are
on F [x1 � true], F [x2 � true] and F [x1, x2 � false]. Finally, we can branch on
x1; the two branches are then F [x1 � true] and F [x1 � false].

Sparse formulas

We call a formula k-sparse, if the number of variables occurring at least three
times is at most n/k. To decide if a k-sparse formula is satisfiable, we can
enumerate all possible truth assignments to these at most n/k variables; for
each assignment, all variables in the remaining part of the formula occur at
most twice, so we can decide in polynomial time, if it is satisfiable. The total
running time is O(2n/k). We use this for XSAT with k = 5 and for X3SAT with
k = 15/2.

7.2.3 Branching vectors

In each branch of the algorithm, we remove a certain number of variables using
the reductions; then we get a recursion for the running time of the form T (n) =
T (n− t1)+T (n− t2)+ · · ·+T (n− tk). We call t = (t1, t2, . . . , tk) the branching
vector of this branch. The solution to the recursion is T (n) = αn

t , where αt is
the positive root of 1− 1/xt1 − 1/xt2 − · · · − 1/xtk ; we call αt the value of t and
the value of a branching vector is decreasing as a function of the entries in the
vector. Proofs of these results can be found in a manuscript by Kullmann and
Luckhardt [32]. The logarithms of the values of all branching vectors occurring
in this paper are either stated in Table 7.1 or are smaller than one of them by

50 Chapter 7. Algorithms for Exact Satisfiability

Table 7.1: Branching vectors and the logarithms of their values (rounded up).
(a) XSAT

t log2(αt) t log2(αt)
(12, 1) 0.2302 (11, 11, 3) 0.2216
(8, 2) 0.2325 (10, 8, 4) 0.2325
(6, 3) 0.2315 (13, 7, 4) 0.2258
(5, 4) 0.2232

(b) X3SAT

t log2(αt)
(12, 4) 0.1379
(11, 5) 0.1317
(9, 6) 0.1353
(8, 7) 0.1336

monotonicity. The running time of the whole algorithm is O(2log2 α·n), where α
is the largest of the αts.

7.3 The algorithms

Both our algorithms have the following structure: first, the algorithm reduces
the formula using the reductions from Section 7.3.1. If the reduced formula
(we call a formula reduced, if none of the reductions from Section 7.3.1 are
applicable) contains no clauses it is satisfied and if it contains an empty clause
it cannot be satisfied. If the formula only contains variables that occur at most
twice in the formula, the algorithm decides in polynomial time if the formula is
satisfiable; otherwise, the algorithm branches depending on whether the formula
contains certain subformulas. In each branch, the algorithm is called recursively
on smaller formulas, which are obtained by trying all assignments to a few of
the variables in the original formulas. In some cases, the algorithm applies
some special reductions, which are not part of the reduction procedures, to the
smaller formulas before making the recursive call. The algorithm branches on
the first matching case, which means that when it is in one case, no part of
the formula matches any previous cases. The cases are described for XSAT
in Section 7.3.2 and for X3SAT in Section 7.3.3. For simplicity, we ignore
symmetries when this does not lead to confusion, so if we have two variables y1

and y2 or two clauses C1 and C2 that occur symmetrically and one of them has
a certain property, we will just assume it is either.

7.3.1 Reductions

In this section, we present the reductions that are used in our algorithms;
first, we present some common reductions used in both algorithms and then
specific ones for the two algorithms. The reduction procedure for XSAT uses
reductions (7.1) to (7.13) and the reduction procedure for X3SAT uses (7.1)
to (7.8) and (7.14) and (7.15). The reductions are applied repeatedly top-down
until no reduction applies. If any of the reductions either assign a variable
both true and false or a constant is assigned its opposite value, the reduction
procedures replace the whole formula with an empty clause.

When we branch, we call the algorithms recursively on smaller formulas. We
show how to apply specific reductions from the reduction procedure to remove

7.3. The algorithms 51

the stated number of variables. One can also show that applying the reductions
top-down leads to the same or better branching vectors.

Common reductions

The common reductions are standard reductions also used by, e.g., Kulikov [30].
Here F denotes the entire left hand side of the reduction.

(true,C) ∧ F ′ → F ′[C � false] (7.1)
(false, C) ∧ F ′ → C ∧ F ′ (7.2)

(x) ∧ F ′ → F ′[x � true] (7.3)
(x, y) ∧ F ′ → F ′[y � x̄] (7.4)

(x, x,C) ∧ F ′ → F [x � false] (7.5)
(x, x̄, C) ∧ F ′ → F ′[C � false] (7.6)

(x, y,C) ∧ (x, ȳ, C ′) ∧ F ′ → F [x � false] (7.7)
(x, y,C) ∧ (x̄, ȳ, C ′) ∧ F ′ → F [y � x̄] (7.8)

Reductions for XSAT

Reduction (7.9) removes any variable x that only occur unnegated and only in
clauses with a unique variable or with literal y and y is in no clauses without x.
This case can for instance be used if two unique variables occur in the same
clause, if a variable only occurs in clauses with unique variables or two variables
only occur in clauses with each other.

(x, y,C1) ∧ · · · ∧ (x, y,Ck) ∧ (x, u1, C
′
1) ∧ · · · ∧ (x, ul, C

′
l) ∧ F ′

x, y /∈ V (F ′), ui unique

→
F [x � false]

(7.9)

Reduction (7.9) is not used for X3SAT, as (7.14) or (7.15) can be used instead.
Reductions (7.10) and (7.11) are called resolution; resolution is a well-known

technique for removing variables occurring both unnegated and negated and can
also be used for solving SAT formulas. The idea is, that we can remove a variable
x occurring both unnegated and negated and make all possible combinations of
the clauses that contained x and the clauses that contained x̄. If x is an (a, b)-
occurrence, this will replace a + b clauses with ab clauses, so we only use it for
(a, 1)- and (2, 2)-occurrences, as this does not increase the number of clauses.

(x̄, C) ∧ (x,C1) ∧ · · · ∧ (x,Ck)
x /∈ V (F ′)

∧ F ′ →
(C,C1) ∧ · · · ∧ (C,Ck) ∧ F ′ (7.10)

(x̄, C1) ∧ (x̄, C2) ∧ (x,C ′
1) ∧ (x,C ′

2)
x /∈ V (F ′)

∧ F ′ →
(C1, C

′
1) ∧ (C1, C

′
2) ∧ (C2, C

′
1) ∧ (C2, C

′
2) ∧ F ′ (7.11)

Resolution is not used for X3SAT, as it creates clauses with more than three
variables.

52 Chapter 7. Algorithms for Exact Satisfiability

Reduction (7.12) removes clauses that have another clause as a subset, and
(7.13) reduces the formula if a clause shares all but one literal with another.

C ∧ C ′ ∧ F ′
C⊆C′ → C ∧ F ′[C ′ \ C � false] (7.12)

(x,C ′) ∧ (C,C ′) ∧ F ′ → (x,C ′) ∧ (x̄, C) ∧ F ′ (7.13)

Reductions (7.12) and (7.13) are not used for X3SAT as (7.14) handles the same
cases when the clauses have size three.

Lemma 7.1 In a reduced XSAT formula, for all pairs of clauses, each has at
least two variables that do not occur in the other.

Proof. All clauses contain at least three literals by (7.3) and (7.4), so we only
need to consider clauses having at least two variables in common. Common
variables must occur the same (unnegated or negated) by (7.7) and (7.8). No
clause is a subset of another by (7.12), and for any pair of clauses both have at
least two literals that do not occur in the other by (7.13), so the lemma is true.
2

Reductions for X3SAT

Reduction (7.14) is also a standard reduction, but we only use it for X3SAT.
Reduction (7.15) reduces formulas containing two variables that only occur
unnegated and only in clauses with a unique variable, except for one clause,
where one occurs unnegated and the other negated.

(x, y, z1) ∧ (x, y, z2) ∧ F ′ → (x, y, z1) ∧ F ′[z2 � z1] (7.14)
(x̄1, x2, y) ∧ F ′

x1 and x2 only occur unnegated and
in clauses with a unique variable in F ′

→ F [x2 � false] (7.15)

Lemma 7.2 A reduced X3SAT formula contains no constants or 1- or 2-
clauses, and no two clauses have more than one variable in common; also, no
clause has more than one unique variable and all (a, 0)- and (a, 1)-occurrences
that are not unique are in a clause with no unique variables.

Proof. That there are no constants, 1- or 2-clauses or clauses sharing more than
one variable follows directly from (7.1) to (7.4) and (7.7), (7.8) and (7.14). No
clause has more than one unique variable by (7.15) with x1 and x2 unique, and
all (a, 0)- and (a, 1)-occurrences that are not unique are in a clause with no
unique variables, by (7.15) with x1 or x2 unique. 2

Soundness and complexity

The following lemma states that the reductions are sound, that is, the reduced
formula is satisfiable if and only if the original formula is.

Lemma 7.3 Reductions (7.1) to (7.15) are sound.

7.3. The algorithms 53

Proof. To prove that (7.1) to (7.8) and (7.10) to (7.14) are sound we just note,
that exactly one literal from a clause must be true and exactly one of x and x̄
must be true.

In (7.9), x can be assumed to be false, as a satisfying assignment with x
true can be changed to a satisfying assignment with x false by making y and
the unique variables true instead. Similarly in (7.15), a satisfying assignment
with x2 true must have x1 true, and it can be changed by setting x1 and x2

false and all the unique variables occurring with them true. 2

The next lemma shows, that during the reduction procedures the size of the
formula is never larger than the maximum of the size of the original formula
and 2mn. We use this to show, that the reduction procedures run in polynomial
time in the size of the formula.

Lemma 7.4 When the reduction procedures run on a formula F with m clauses
and n variables the intermediate formulas are never larger than max(|F |, 2mn).

Proof. For X3SAT it is obvious that the size of the formula is never larger than
max(|F |, 3m).

For XSAT, none of the reductions increase the number of variables or clauses
in the formula. The reduction procedure first applies reductions (7.1) to (7.6),
which all decrease the size of the formula. After it has run, the formula contains
no constants and no variable occurs more than once in the same clause; thus,
the size of the formula is at most mn.

The only reductions which can make the formula larger are resolution ((7.10)
and (7.11)), but the number of literals in a clause after resolution is still bounded
by 2n and will be reduced to n before we perform resolution again; thus, after
the first applications of (7.1) to (7.6), the size of the formula is always bounded
by 2mn. 2

Lemma 7.5 The reduction procedures run in polynomial time in the size of the
formula.

Proof. For each reduction, the algorithm can in polynomial time in the size of
the formula check whether it is applicable and if so apply it.

Resolution ((7.10) and (7.11)) removes a variable from the formula, so they
can be applied at most n times, since no reduction add variables. All the other
reductions reduce the size of the formula (for (7.13) just note that C ′ has size
at least two by (7.4)). Since the size of the formula is at most max(|F |, 2mn),
the reduction procedures run in polynomial time in |F |. 2

7.3.2 The algorithm for XSAT

In this section, we present our algorithm for XSAT and show that it achieves a
branching vector of (8, 2) corresponding to a running time of O(20.2325n). The
previously best algorithm is by Monien et al. [39] and has worst case branching
vector (11, 1) corresponding to a running time of O(20.2441n).

54 Chapter 7. Algorithms for Exact Satisfiability

Variables occurring both unnegated and negated

If the formula F contains a variable occurring both unnegated and negated, it
must occur at least three times unnegated and twice negated or vice versa; oth-
erwise, it would have been removed by resolution ((7.10) or (7.11)). Let x be the
corresponding literal occurring at least three times unnegated and twice negated
as in the clauses in Fig. 7.1. The algorithm branches on x. By Lemma 7.1, C1

(x,C1) (x̄, C ′
1)

(x,C2) (x̄, C ′
2)

(x,C3)

x = true : C1 = C2 = C3 = false
x = false : C ′

1 = C ′
2 = false

Figure 7.1. Branching on at least a (3, 2)-occurrence x.

contains at least two variables not in C2, C2 contains at least two variables
not in C3 and C3 contains at least two variables not in C1 and since none of
these variables can be the same, the three clauses contain at least six different
variables in total. Similarly, C ′

1 and C ′
2 contain at least four different variables

in total; thus, branching on x yields a branching vector of at least (7, 5).

Two clauses having at least two variables in common

Suppose F contains two clauses having more than one variable in common as in
Fig. 7.2, with C1 and C2 not having any variables in common and |C| ≥ 2. By

(C,C1)
(C,C2)

C = true : C1 = C2 = false, this removes |C1|+ |C2|
variables plus one if |C| = 2 (by (7.4))

C = false : this removes |C| variables plus one
for each Ci with |Ci| = 2 (by (7.4))

Figure 7.2. Two clauses having at least two variables in common.

Lemma 7.1, also |C1|, |C2| ≥ 2. If the two clauses are not two 5-clauses having
exactly two variables in common, the algorithm branches on C as shown in the
figure. Since C, C1 and C2 all have size at least two, this removes at least four
variables when C is set to true and two when C is set to false. Now, if any of
the clauses are 2-clauses this removes one extra variable in one branch and if
they are at least 3-clauses we remove at least one more in the other branch. All
in all we get branching vectors of at least (5, 4), (6, 3) or (7, 2), but (7, 2) only
if we had two 5-clauses having two variables in common. Having excluded that
case, which we deal with later, we have (8, 2) as the worst case.

Variables occurring at least four times

If F contains a variable x occurring at least four times and either with at least
eleven different variables or in a 3-clause, the algorithm branches on x. If it
occurs with eleven different variables, this yields a branching vector of at least
(12, 1) and if x is in a 3-clause, we get a branching vector of at least (9, 2), since

7.3. The algorithms 55

x must occur with at least eight different variables: there are two variables in
the 3-clause, and these cannot be in the other clauses by Lemma 7.1. The three
remaining clauses contain at least six different variables other than x by the
same argument that C1, C2 and C3 in Fig. 7.1 contain at least six different
variables.

If F contains a variable x occurring at least four times that does not satisfy
the previous case, we pick four of the clauses containing x. We want to count
the number of different variables other than x in these four clauses. Since none
of the clauses are 3-clauses by the previous case and only 5-clauses can share
more than one variable, any clause that is not a 5-clause contains at least three
variables not in the others. If there are any 5-clauses, the first one contains four
variables other than x, a possible second 5-clause can contain one from the first,
so it has at least three other variables, a third can contain one from each of the
others so it contains at least two other variables and a fourth contains at least
one. The only case with fewer than eleven variables is thus if all four clauses
are 5-clauses that pairwise have two variables in common as in Fig. 7.3. Then

(x, y1, y3, y5, z1)
(x, y1, y4, y6, z2)
(x, y2, y3, y6, z3)
(x, y2, y4, y5, z4)

(x, y1) = true : y3 = y4 = y5 = y6 = z1 = z2 = false,

y1 = x̄, z4
(7.13)
= z3

Figure 7.3. A (4, 0)-occurrence x with only ten variables.

the algorithm branches on (x, y1). When it is set to true, y1 is removed by (7.4)
and the six other variables in the first two clauses are set to false by (7.6). The
last two clauses reduce to (x, y2, z3) and (x, y2, z4), but then z3 = z4 by (7.13)
and (7.4). So we get a branching vector of at least (8, 2).

Lemma 7.6 If a reduced formula only contains (1, 0)-, (2, 0)- and (3, 0)-occur-
rences and it contains two variables x and y that occur in a clause together
and they both occur in a clause without the other, setting (x, y) to true removes
both x and y.

Proof. When the algorithm sets (x, y) to true then y = x̄ by (7.4) and this
makes x a (1, 1)-, (2, 1)- or (2, 2)-occurrence, which we remove by resolution
((7.10) or (7.11)). 2

Remark 7.1 If two variables that are not unique, occur together in a clause
that is not a 5-clause, we can use Lemma 7.6 on these two variables as they
cannot occur together in another clause. If we have a 4-clause (y1, y2, y3, y4)
and we set (y1, y2) to false, this is the same as setting (y3, y4) to true, so we
can use Lemma 7.6 on these two variables.

Two 5-clauses having exactly two variables in common

Suppose F contains two 5-clauses having two variables in common as the first
two clauses in Fig. 7.4(a). If both x1 and x2 occur in a clause without the

56 Chapter 7. Algorithms for Exact Satisfiability

(x1, x2, y1, y2, y3)
(x1, x2, y4, y5, y6)
(x1, y1, C

′)
(a) The third clause contains y1.

(x1, x2, y1, y2, y3)
(x1, x2, y4, y5, y6)
(x1, z1, z2, z3)

(b) The third clause contains no yi.

Figure 7.4. Two 5-clauses having two variables in common.

other, the algorithm branches on (x1, x2). Setting it to true removes all eight
variables in the two clauses by Lemma 7.6, so this yields a branching vector of
at least (8, 2).

By (7.9), at least one of x1 and x2 must occur in another clause, so assume
we have another clause with x1. Then x1 is a (3, 0)-occurrence. The third
clause with x1 can have at most one variable in common with each of the first
two clauses apart from x1 and if there is such a variable, the third clause must
be a 5-clause.

The third clause with x1 contains y1 as in Fig. 7.4(a). Now, C ′ contains
three variables, one of which can be y4, y5 or y6. If neither y2 nor y3 is unique,
the algorithm branches on (y2, y3). Setting it to true makes x1, x2 and y1 false.
Now, if y2 and y3 do not occur together in another clause, setting (y2, y3) to
true removes both y2 and y3 by Lemma 7.6 for a total of five variables. If y2

and y3 do occur in another clause together this clause must be a 5-clause that
does not contain x1, x2 and y1 so we remove at least three other variables and
y3 by (7.4) for at total of seven variables. Setting (y2, y3) to false removes y2

and y3, so we have the clauses in Fig. 7.5; then we apply the reductions shown
in the figure and remove x2 and y1. In total, we get a branching vector of at
least (5, 4).

(x1, x2, y1)
(x1, x2, y4, y5, y6)
(x1, y1, C

′)

2×(7.13)→
(x1, x2, y1)
(ȳ1, y4, y5, y6)
(x̄2, C

′)

2×(7.10)→ (x1, y4, y5, y6, C
′)

Figure 7.5. The clauses from Fig. 7.4(a) when y2 = y3 = false.

In the other case, one of y2 and y3 (say y3) is unique, but not y2 by (7.9).
Now, y1 occurs in no other clauses; otherwise, x1 and y1 are two variables
occurring twice together and both in a clause without the other, which is the
first case above. The algorithm branches on y2. Setting it to true removes
at least seven variables, since y2 occurs in another clause, which contains at
least two variables not in the first clause with y2 by Lemma 7.1. Setting y2 to
false leaves the three clauses in Fig. 7.6, where y3 is unique, and x1, x2 and
y1 only occur in these three clauses; then we reduce the formula by replacing
these three clauses by the two on the right: any truth assignment satisfying
the original formula with x1 true will satisfy the new formula if y1 and x2

are both changed to true and a satisfying assignment with x1 false will also
satisfy the new formula. On the other hand, a satisfying truth assignment to

7.3. The algorithms 57

(x1, x2, y1, y3)
(x1, x2, y4, y5, y6)
(x1, y1, C

′)

→
(x2, y4, y5, y6)
(y1, C

′)

Figure 7.6. Special reduction.

the new formula with both x2 and y1 true is a satisfying assignment to the
original formula if x1 is set to true and x2, y1 and y3 are set to false. All other
assignments satisfying the new formula can be changed to satisfy the original
one by setting x1 to false and choosing the value of y3 such that (x2, y1, y3)
is satisfied. By using this reduction, both x1 and y3 are removed, so we get a
branching vector of at least (7, 3).

The third clause with x1 contains none of the yis. If the third clause is
not a 4-clause, the algorithm branches on x1. If the third clause is a 3-clause,
this yields a branching vector of at least (10, 2) and if it is at least a 5-clause,
this yields a branching vector of at least (12, 1).

The remaining case is depicted in Fig. 7.4(b); none of the zis are unique
by (7.9), since the two other clauses with x1 contain x2, which is in no other
clauses. If one of z1, z2 and z3 occurs three times, say z1, the algorithm branches
on x1, z1. Setting x1 to true removes eleven variables and setting z1 to true
removes at least eight, since the first clause with z1 is a 4-clause, so it does not
share any variables other than z1 with the other two clauses with z1 and these
two clauses each contain at least two variables not in the other by Lemma 7.1.
Setting x1 and z1 to false removes all four variables in the third clause by
Remark 7.1. So we get a branching vector of at least (11, 8, 4).

In the last case, z1, z2 and z3 all occur exactly twice in F ; then the algorithm
branches on (x1, z1). All four variables in the third clause are removed in both
branches by Remark 7.1. Let the other clause containing z1 be (z1, C

′). If it is
a 3-clause, we remove an extra variable setting z1 to false. If C ′ contains one of
the yis, then setting (x1, z1) to true, we get a clause where this yi occurs twice
after resolution ((7.10)), and the yi is removed by (7.5). Both cases result in
a branching vector of at least (5, 4). Otherwise, (z1, C

′) is at least a 4-clause
containing none of the yis, but in that case when we set (x1, z1) to true and
apply (7.10), we get the clauses (C ′, x2, y1, y2, y3) and (C ′, x2, y4, y5, y6). These
two clauses contain at least seven variables each and have all but three of them
in common. We then further branch on (C ′, x2) and get a branching vector
of at least (6, 4) (see Fig. 7.2). In total, we get a branching vector of at least
(10, 8, 4) ((4, 4) followed by (6, 4) in one branch).

Variables occurring three times

When the algorithm reaches this point, every two clauses share at most one
variable and the only variables occurring more than twice in F are (3, 0)-
occurrences.

If F contains a variable occurring three times and not in three 4-clauses

58 Chapter 7. Algorithms for Exact Satisfiability

or two 4-clauses and a 5-clause, the algorithm branches on it. This yields a
branching vector of at least (7, 4), (8, 3), (9, 2) or (12, 1) depending on the
number of 3-clauses the variable is in.

A (3, 0)-occurrence in three 4-clauses. Suppose F contains a (3, 0)-occur-
rence x, which is in three 4-clauses as in Fig. 7.7(a). Not all the clauses can

(x, y1, y2, y3)
(x, y4, y5, y6)
(x, y7, y8, y9)

(a) A (3, 0)-occurrence
in three 4-clauses.

(x, y1, y2, y3) (y1, z1, z2, z3)
(x, y4, y5, y6) (y2, z4, z5, z6)
(x, y7, y8, y9) (y3, z7, z8, z9)

(b) The variables y1, y2 and y3 are
all (2, 0)-occurrences.

Figure 7.7. A (3, 0)-occurrence x in three 4-clauses.

contain a unique variable or F would have been reduced by (7.9), so assume
that the first clause contains no unique variables. If y1 occurs with at least four
other variables, we branch on x, y1. Setting x to true removes ten variables,
setting y1 to true removes at least eight and setting both to false removes four
by Remark 7.1. In total, we get a branching vector of at least (10, 8, 4).

We can assume now, that y1, y2 and y3 are all (2, 0)-occurrences and that
their other clauses are at most 4-clauses; otherwise, one of the yis would occur
with at least four other variables, since clauses share at most one variable,
but this is the previous case. If y1 is in a 3-clause, the algorithm branches on
(x, y1); in both branches all variables in the clause with x and y1 are removed
by Remark 7.1. Setting (x, y1) to false also removes one of the other variables
from the 3-clause by (7.4). This yields a branching vector of at least (5, 4).

If none of the previous cases apply, the other clauses containing y1, y2 and y3

must be the ones in Fig. 7.7(b), where some of the zis can be one of y4 to y9

and some of them can be the same variable. By (7.9), at most one zi from
each clause is unique. Suppose two zis from different clauses (say z1 and z4)
are unique; then branching on (y1, y2) will remove x, y1, y2 and y3 in both
branches by Remark 7.1 and setting (y1, y2) to true also makes z1 and z4 end
up in the same clause and one is removed by (7.9). This also yields a branching
vector of at least (5, 4).

We can assume now, that say z1, z2 and z3 are not unique and if any of them
are a yi, then z1 is y4. The algorithm branches on (y1, z1); in both branches y1,
z1, z2 and z3 are removed by Remark 7.1. If z1 was y4, setting (y1, z1) to true
makes y4 = ȳ1, so x is false by (7.7). This yields a branching vector of at least
(5, 4). If z1 is not y4, setting (y1, z1) to false reduces the first clause with x
to (x, y2, y3). The algorithm then branches on x, which yields a branching
vector of at least (9, 3), since when x is set to false, y2 and y3 are removed by
Remark 7.1. In total, this yields a branching vector of at least (13, 7, 4).

A (3, 0)-occurrence in two 4-clauses and a 5-clause. We have now re-
moved all (3, 0)-occurrences except those in two 4-clauses and one 5-clause.

7.3. The algorithms 59

If we have such a variable x and one of the 4-clauses contains another (3, 0)-
occurrence y1 we branch on x, y1. Setting one of the (3, 0)-occurrences to true
removes eleven variables and setting both to false removes three by (7.4), so
we get a branching vector of at least (11, 11, 3).

If we have a (3, 0)-occurrence x in two 4-clauses and a 5-clause and one of the
4-clauses (x, y1, y2, y3) contains only (2, 0)-occurrences, i.e. no unique variables,
other than x, we can branch as in the previous section with three 4-clauses: if
one of the yis, say y1, is in a 5-clause the algorithm branches on x, y1 and get
(11, 8, 4). If y1 is in a 3-clause we branch on (x, y1) and get (5, 4) as before.
Now, as in the previous section, we must have the clauses in Fig. 7.7(b), except
that the last clause with x contains one more variable. The only branch which
involves this 5-clause is the last, and there we just get (10, 3) instead of (9, 3)
when branching on x after having branched on (y1, z1) so we get a branching
vector of at least (14, 7, 4) in total.

Sparse formulas. The only remaining case with variables occurring more
than twice is a (3, 0)-occurrence in two 4-clauses and one 5-clause, where both
4-clauses contain a unique variable and the other variables in the 4-clauses
occur twice in F . Then F is 5-sparse, i.e., it contains at least four variables
occurring at most twice for each variable occurring three times: we only count
the variables in the 4-clauses. Each variable occurring three times occurs with
two unique variables and four (2, 0)-occurrences in the two 4-clauses. The (2, 0)-
occurrences might be in another clause with a variable occurring three times,
but if this clause is a 4-clause it can contain at most one (3, 0)-occurrence. Thus,
we have at least two (2, 0)-occurrences and two unique variables for each variable
occurring at least three times, so the formula is 5-sparse and the algorithm solves
the remaining formula in time O(2n/5), where n is the number of remaining
variables.

7.3.3 The algorithm for X3SAT

In this section, we give our algorithm for X3SAT and show that it achieves
a branching vector of (12, 4) corresponding to a running time of O(20.1379n).
The previously best algorithm is by Dahllöf, Jonsson and Beigel [13] and has
branching vector (10, 4) corresponding to a running time of O(20.1532n).

Extra reductions. For X3SAT we have some extra reductions which are
only needed to remove certain cycles. We do not use them in the reduction
procedure, but rather apply them, when they are needed.

We are concerned with cycles because, if we have k clauses and a variable
in each is set to false, we would normally remove another variable from each
of the remaining 2-clauses by (7.4), but if some of the clauses form a cycle on
the variables not set to false, we may remove one less variable. As an example,
F [z1 � z2, z2 � z3, . . . , zk−1 � zk, zk � z1] only removes k− 1 variables from F .

Reductions (7.19) and (7.23) do not remove any variables and we will also
refer to them as transformations. They are only used, when they allow us to
apply another reduction or get a previous case: this means that we call the

60 Chapter 7. Algorithms for Exact Satisfiability

algorithm recursively on the transformed formula; either a variable is removed
by the reduction procedure or the algorithm will branch on one of the previous
cases.

The first two reductions remove k-cycles with k or k−1 negations, the third
some special k-cycles.

(y1, z̄1, z2) ∧ (y2, z̄2, z3) ∧ · · · ∧ (yk, z̄k, z1) ∧ F ′ →
F [y1,y2, . . . , yk � false]

(7.16)

(y1, z1, z2) ∧ (y2, z̄2, z3) ∧ · · · ∧ (yk, z̄k, z1) ∧ F ′ → F [z1 � false] (7.17)
(ỹ1, z̃1, z2) ∧ (ỹ2, z̃2, z3) ∧ · · · ∧ (ỹk, z̃k, z1) ∧ F ′
each yi occurs unnegated in a clause with the literal x and
the parities of k and the number of negations are different

→ F [x � false] (7.18)

If there is a 3-cycle with one negation, we can use (7.19) to either add a
clause with the three variables not in the cycle or if all the four clauses are
there remove any one of them. If the 3-cycle has a unique variable in the clause
without the negated variable, we can remove this clause by (7.20). If u is not
unique, but also occurs in (ū, y2, y3), but in no other clauses, we can remove
that clause by (7.19) and still use (7.20).

(y1, z1, z2) ∧ (y2, z2, z3) ∧ (y3, z̄3, z1) ∧ F ′ ↔
(y1, z1, z2) ∧ (y2, z2, z3) ∧ (y3, z̄3, z1) ∧ (ȳ1, y2, y3) ∧ F ′ (7.19)

(u, z1, z2) ∧ (y2, z2, z3) ∧ (y3, z̄3, z1)
u unique

∧ F ′ →
(y2, z2, z3) ∧ (y3, z̄3, z1) ∧ F ′ (7.20)

If two 3-cycles without negations share two clauses, we can reduce the for-
mula by (7.21) or (7.22).

(y1, z1, z2) ∧ (y2, z2, z3) ∧ (y3, z3, z1) ∧ (y1, y2, z4) ∧ F ′ →
(z1, z2, z3) ∧ F ′[y1 � z3, y2 � z1, y3 � z2, z4 � z2]

(7.21)

(y, z1, z2) ∧ (y, z3, z4) ∧ (y, z5, z6) ∧ (z1, z3, z5) ∧ F ′ → F [y � false] (7.22)

If we have a 3-cycle with no negations and one of the variables is unique,
we can transform the formula by (7.23).

(y1, z1, z2) ∧ (y2, z2, z3) ∧ (u, z3, z1)
u unique

∧ F ′ →
(y1, z1, z2) ∧ (y2, z2, z3) ∧ (ȳ1, z3, u) ∧ F ′ (7.23)

If there is a 4-cycle with two negations and the negated variables occur
nowhere else, the formula can be reduced by (7.24) or (7.25) (w is a new vari-
able).

(y1, z1, z2) ∧ (y2, z̄2, z3) ∧ (y3, z3, z4) ∧ (y4,
z2,z4 /∈V (F ′)

z̄4, z1) ∧ F ′ →
(w, z1, z3) ∧ (w̄, y1, y2)∧(w̄, y3, y4) ∧ F ′ (7.24)

(y1, z1, z2) ∧ (y2, z2, z3) ∧ (y3, z̄3, z4) ∧ (y4,
z3,z4 /∈V (F ′)

z̄4, z1) ∧ F ′ →
(y1, z1, z2) ∧ (ȳ1, y2, w)∧(w̄, y3, y4) ∧ F ′ (7.25)

7.3. The algorithms 61

Lemma 7.7 Reductions (7.16) to (7.25) are sound.

Proof. In (7.16), the zis are either all true or all false or there would be a clause
with two true literals. So all the yis must be false.

In (7.17), if z1 is true z2 must be false, but then also z3 must be false and
the remaining zis must be false; then in the last clause, both z1 and z̄k are true,
which is a contradiction.

Reduction (7.18) is proved with a simple counting argument: let n1 be the
number of yis that are negated and n2 the number of zis occurring negated. In
a satisfying assignment with x true, n1 of the clauses will be satisfied by the
yis, n2 of the clauses will be satisfied by the zis occurring negated, and an even
number of clauses will be satisfied by the zis occurring only unnegated. This is
only possible, if the parities of k and n1 + n2 are the same.

To prove the soundness of (7.19), we prove that all assignments satisfying
the left hand side of the reduction will also satisfy the right hand side (the
opposite is trivial). If y1 is true, z1 and z2 must be false and y2 and y3 must
have different values, so (ȳ1, y2, y3) is satisfied. If y1 is false, z2 = z̄1 and y2 and
y3 are both false by (7.8), so (ȳ1, y2, y3) is also satisfied in this case.

As u is unique in (7.20), the first clause just ensures that z1 and z2 are not
both true, but this is also ensured by the two other clauses, as z1 is in a clause
with z̄3 and z2 with z3, so they cannot both be true.

In (7.21), setting y1 = z̄3 leads to a contradiction: by the first and second
clause z2 is false and by the second and fourth clause y2 is false, which makes
z3 true; now, z1 should both be false (by the third clause) and true (by the
first clause), so in a satisfying assignment y1 = z3; then y2 = z1 by the first
and second clause, z4 = z2 by the second and fourth clause and y3 = z2 by the
second and third clause. With these substitutions all four clauses have become
(z1, z2, z3), and three of the copies are discarded.

In (7.22), setting y to true will set all the zis to false, but then the clause
with only zis is not satisfied; thus, y must be false.

In (7.23), the last clause on the left just ensures that not both z1 and z3 are
true and the last clause on the right that not both ȳ1 and z3 are true. But by
the first two clauses z1 and z3 are both true if and only if ȳ1 and z3 are both
true, so we can replace the last clause on the left by the last clause on the right.

In (7.24), as z2 does not occur elsewhere the first two clauses just ensure,
that exactly one of y1, y2, z1 and z3 is true. This is also achieved by the clauses
(w1, z1, z3) and (w̄1, y1, y2) (w1 is a new variable). Similarly, the last two clauses
can be replaced by (w2, z1, z3) and (w̄2, y3, y4), but then w1 = w2 by (7.14) and
we get the three clauses on the right hand side of (7.24). Similarly in (7.25),
the last three clauses just ensure that exactly one of y2, y3, y4, z1 and z2 is
true, but this can also be expressed by the clauses (w1, z1, z2), (w̄1, y2, w2) and
(w̄2, y3, y4); then w1 = y1 by (7.14), so we get the three clauses on the right
hand side. 2

62 Chapter 7. Algorithms for Exact Satisfiability

General branching

Now, we state our algorithm for X3SAT. If we have an (a, b)-occurrence x
occurring in the clauses in Fig. 7.8, we let Y1 = {y1, y2, . . . } be the set of
variables that occur in a clause with x, Y2 = {y′1, y′2, . . . } those that occur in a
clause with x̄ and Y = Y1 ∪ Y2. We let ys be variables in Y1, y′s be variables

(x, y1, y2) (x̄, y′1, y
′
2)

(x, y3, y4) (x̄, y′3, y
′
4)

...
...

(x, y2a−1, y2a) (x̄, y′2b−1, y
′
2b)

x = true : y1 = y2 = · · · = y2a−1 = y2a = false,
y′2 = ȳ′1, y

′
4 = ȳ′3, . . . , y2b = ȳ′2b−1

x = false : y2 = ȳ1, y4 = ȳ3, . . . , y2b = ȳ2b−1,

y′1 = y′2 = · · · = y′2a−1 = y′2a = false

Figure 7.8. Branching on an (a, b)-occurrence x.

in Y2, zs be variables that are not x and not in Y and ws be variables that are
not x.

If we branch on x as illustrated in Fig. 7.8, we get a branching vector of at
least (2a + b + 1, 2b + a + 1) from the above clauses. If a + b ≥ 5, this yields
a branching vector of at least (11, 6), (10, 7) or (9, 8). For variables occurring
fewer times, we also need to consider the other clauses in which the ys and y′s
occur. We start with a lemma showing some cases, in which we can reduce F .

Lemma 7.8 If a reduced formula F contains a clause with three variables
from Y that is not (ȳ1, y3, y5) or (ȳ′1, y

′
3, y

′
5) or if F contains a clause (ȳ1, ȳ3, z1),

(ȳ′1, ȳ
′
3, z1) or (ỹ1, ỹ

′
1, z1), where at least one of y1 and y′1 is negated, F can be

reduced.

Proof. We only prove the lemma for clauses with at least as many variables
from Y1 as from Y2. The result for clauses with less variables from Y1 than Y2

then follows by looking at x̄ instead of x, as this swaps Y1 and Y2.
If F contains a clause with y1 and y′1 where at least one of them is negated,

it contains the 3-cycle consisting of (x, y1, y2), (x̄, y′1, y
′
2) and (ỹ1, ỹ

′
1, w), which

has two or three negations and we reduce it by (7.16) or (7.17).
If F contains a clause with y1 and y3 where both of them are negated, it

contains the 3-cycle consisting of (x, y1, y2), (x, y3, y4) and (ȳ1, ȳ3, w), which has
two negations and we reduce it by (7.17).

If F contains the clause (y1, y
′
1, y3), then it contains the 3-cycle (x, y1, y2),

(x̄, y′1, y′2) and (y1, y
′
1, y3). We add the clause (y2, y

′
2, ȳ3) by (7.19) and have the

first case. The only case left is if F contains the clause (y1, y3, y5); then, x must
be false by (7.22). 2

If x is a (3, 1)-occurrence or a (2, 2)-occurrence, one of the variables in one
clause with x̄ say y′1 must occur in another clause by Lemma 7.2 and the clause
must be (ỹ′1, w, z1) by Lemma 7.8, since y′1 cannot occur with two other y′s as
x only occurs negated in at most two clauses. From the clauses in Fig. 7.8, we
get a branching vector of at least (8, 6) or (7, 7), but setting x to false, also
removes z1 by (7.1) or (7.4) and we get a branching vector of at least (8, 7).

7.3. The algorithms 63

Now, we have removed all variables occurring at least four times in the formula,
except (4, 0)-occurrences.

Branching on (2, 1)-occurrences

By Lemma 7.2, at least one y from each clause with x and two from one are
in other clauses. We want to show, that in all cases we can either reduce F or
branch on x and get a branching vector of at least (8, 7) or (9, 6). From the
clauses with x, we get a branching vector of at least (6, 5) (see Fig. 7.8). We
want to show, that we can always remove at least four more variables in total
in the two branches from the other clauses with the variables from Y . First, we
prove two lemmas showing, when we can reduce the formula.

Lemma 7.9 If a reduced formula F contains the clause (ỹ1, ỹ
′
1, z1) and a clause

containing z1 and a variable from {y1, y2, y
′
1, y

′
2} and these clauses are not

(y1, y
′
1, z1) and (y2, y

′
2, z̄1), F can be reduced.

Proof. By Lemma 7.8, if the first clause is not (y1, y
′
1, z1), F can be reduced. If

F does not contain the clause (y2, y
′
2, z̄1), we add it by (7.19) (used on (x, y1, y2),

(x̄, y′1, y′2) and (y1, y
′
1, z1)) and since the second clause was not this one we have

two clauses sharing at least two variables and we reduce F by (7.7), (7.8)
or (7.14). 2

(x, y1, y2) (y1, y
′
1, z1)

(x, y3, y4)
(x̄, y′1, y

′
2)

(a)

(x, y1, y2) (ȳ1, y3, z1)
(x, y3, y4)
(x̄, y′1, y

′
2)

(b)

(x, y1, y2) (y1, y3, z1)
(x, y3, y4)
(x̄, y′1, y

′
2)

(c)

Figure 7.9. A (2, 1)-occurrence x and a clause with two variables from Y .

Lemma 7.10 If a reduced formula F contains the clause (ỹ1, ỹ3, z1) and a
clause containing z1 and a variable from {y1, y2, y3, y4} and these clauses are
not (ȳ1, y3, z1) and (y2, ȳ4, z1), F can be reduced.

Proof. By Lemma 7.8, at most one of y1 and y3 is negated. Suppose one is
negated, then we have the clauses in Fig. 7.9(b). If the other clause is not
(y2, ȳ4, z1), we add this clause by (7.19) (used on the three topmost clauses).
Now, the other clause with z1 and one of the ys will share at least two variables
with one of the other two clauses with z1 and we reduce by (7.7), (7.8) or (7.14).

Suppose we have the clauses in Fig. 7.9(c). By symmetry, we can assume
that the second clause with z1 is (ỹ2, z̃1, w). If neither y2 nor z1 is negated,
we have two 3-cycles, which share two clauses and we can reduce F by (7.21)
and if both are negated we have a 3-cycle with two negations, so we reduce F
by (7.17). If only one is negated we have a 3-cycle with one negation and we
add a clause with x, y3 and w by (7.19) (used on (x, y1, y2), (y1, y3, z1) and
(ỹ2, z̃1, w)), where one of x and y3 is negated and then x and y3 occur together

64 Chapter 7. Algorithms for Exact Satisfiability

in two clauses and one of them is negated in one of the clauses, so we can
reduce F by (7.7). 2

Note, that we cannot have a clause with three variables from Y when x is a
(2, 1)-occurrence, and if two variables from Y occur together in a clause with a
z, it must be in one of the combinations in Fig. 7.9 by Lemma 7.8. Now we first
look at the three cases in Fig. 7.9, and then at the case where no two variables
from Y occur together in a clause with a z.

F contains (y1, y
′
1, z1) as in Fig. 7.9(a). Using (7.19) on the 3 clauses

(x, y1, y2), (x̄, y′1, y′2) and (y1, y
′
1, z1), we can transform F to contain one or

both of (y1, y
′
1, z1) and (y2, y

′
2, z̄1).

Now, if there is only one other clause, C, with variables from Y , we can
reduce F : C must contain either y3 or y4 by Lemma 7.2, since they would
otherwise both be unique, but C does not contain both by (7.7), (7.8) and (7.14).
Then C contains at most one of y1, y2, y′1 and y′2 by Lemma 7.8, since x is a
(2, 1)-occurrence, so we can choose to let F contain only one of the above clauses
with z1 such that at most three variables from Y occur in clauses without x.
Then x occurs only in clauses with a unique variable and we can reduce F
by Lemma 7.2.

Suppose that F contains two other clauses with variables from Y and the
first contains z2, the second contains z3 and z1, z2 and z3 are different variables;
then branching on x yields (8, 7) or (9, 6): in both branches, y1 or y′1 is set to
false in (y1, y

′
1, z1), so z1 is removed by (7.4). In each of the two other clauses

with variables from Y , one variable is removed in one of the branches by (7.1)
or (7.4).

Suppose, on the other hand, that F does not contain two such clauses with
variables from Y and different zs, none of which are z1. Now z1 is in no more
clauses with y1, y2, y′1 or y′2 by Lemma 7.9 and if it is in a clause with y3,
the clause contains no other variable from Y . Suppose F contains the clause
(ỹ3, z̃1, z2); then z1 can be in no more clauses with variables from Y : if it is in
a clause with y4 that clause must contain a different z, but that is the previous
case. F must contain another clause with a variable from Y and since it does
not contain z1 or any z3, it must contain z2 and two variables from Y . Using
Lemmas 7.9 and 7.10, we have that these two variables must be one from Y1

and one from Y2 and two that do not already occur together. This clause
must then be (y1, y

′
2, z2), (y1, y

′
2, z̄2), (y2, y

′
1, z2) or (y2, y

′
1, z̄2). All four cases

are symmetric, so assume, we have the first clause, we can then add the last
by (7.19). Now, we have the clauses in Fig. 7.10, but then we have a 3-cycle

(x, y1, y2) (y1, y
′
1, z1) (ỹ3, z̃1, z2) (y1, y

′
2, z2)

(x, y3, y4) (y2, y
′
2, z̄1) (y2, y

′
1, z̄2)

(x̄, y′1, y
′
2)

Figure 7.10. A special case for (2, 1)-occurrence x, in which we can reduce.

with two negations which we remove by (7.17): the 3-cycle contains the bottom

7.3. The algorithms 65

clause in the fourth column, the clause in the third column and one of the
clauses in the second column (which one depends on whether z1 is negated in
(ỹ3, z̃1, z2)).

If the two other clauses with variables from Y do not contain z1 and not two
different zs, they must be of the form (ȳ1, y3, z2) and (y2, ȳ4, z2) or (y3, y

′
1, z2)

and (y4, y
′
2, z̄2) by Lemmas 7.9 and 7.10, but then we remove one of the clauses

by (7.19) and have the previous case with only one other clause with variables
from Y . This completes all cases with the clauses in Fig. 7.9(a).

F contains (ȳ1, y3, z1) as in Fig. 7.9(b). If y1 is only in the clause (ȳ1, y3, z1)
and the one with x, we have a 3-cycle with one negation and we can ap-
ply (7.19) twice; first to add the clause (y2, ȳ4, z1) and then to remove the
clause (ȳ1, y3, z1). Then y1 is unique and occurs in the new 3-cycle with one
negation (on y4) and we can reduce F by (7.20). If y1 is in another clause, it
must be a (2, 1)-occurrence and since x and y3 are in a clause together, we have
the previous case with y1 acting as x.

F contains (y1, y3, z1) as in Fig. 7.9(c). If y2 is unique, we have a 3-cycle
with no negations and a unique variable and we transform F by (7.23) and
replace the clause (x, y1, y2) by (x, z̄1, y2), but then we have the previous case.
Now, y2 and by symmetry also y4 must occur in another clause. If they occur
together in a clause, they must occur unnegated or we have the previous case,
but then we have two 3-cycles without negations, which share two clauses and
we reduce F by (7.21). If they occur in different clauses, their clauses do not
contain z1 by Lemma 7.10 and no y′ or negated y by the two previous cases, so
they must contain two different zs. As before, this yields a branching vector of
at least (9, 6) branching on x: when x is set to true, we remove z1 and the two
different zs occurring with y2 and y4, and either y′1 or y′2 also occurs with some
z, which is removed when x is set to false.

F contains no clauses with two ys and a z. If no two variables from Y
occur in the same clause without x, we get (9, 6) or (8, 7) branching on x: at
least two of the variables in Y1 and at least one of those in Y2 must be in another
clause, which removes at least two extra variables in the true branch and one
in the false branch. Now, at least one more of the variables from Y must be in
another clause, so in total we have four clauses with a variable from Y and two
zs. This means that an extra variable is removed in one branch, unless there
are three clauses with a variable from Y1 and the zs in these three clauses form
a 3-cycle, but then F can be reduced by Lemma 7.11.

Lemma 7.11 If a reduced formula F contains a 3-cycle (ỹ1, z̃1, z2), (ỹ2, z̃2, z3)
and (ỹ3, z̃3, z1), F can be reduced.

Proof. If more than one of the zis are negated, we have a 3-cycle with two
or three negations and F is reduced by (7.16) or (7.17), and if exactly one is
negated, we use (7.19) on these three clauses to add a clause with y1, y2 and
y3, but y1 and y2 are already together in a clause with x, so we can reduce F

66 Chapter 7. Algorithms for Exact Satisfiability

by (7.7), (7.8) or (7.14). If none of the zis are negated we look at whether y1

and y2 are negated. If both are negated the clauses (x, y1, y2), (ȳ1, z1, z2) and
(ȳ2, z2, z3) constitute a 3-cycle with two negations, which we reduce by (7.17)
and if none of them are negated, we have two 3-cycles with no negations sharing
two clauses and the formula is reduced by (7.21). If either y1 or y2 is negated,
we add a clause with x, z1 and z3 by (7.19) (used on (x, y1, y2), (ỹ1, z1, z2) and
(ỹ2, z2, z3)) where one of z1 and z3 is negated, and then we have two clauses
with both z1 and z3 and one of them is negated in the new clause, so we reduce
the formula by (7.7). 2

Branching on (4, 0)-occurrences

To get the desired branching vector for (4, 0)-occurrences, we show that if
there are no variables occurring both unnegated and negated except (1, 1)-
occurrences, we can extend Lemma 7.8 and reduce in all cases with a clause
with three ys.

Lemma 7.12 If a reduced formula F containing only (a, 0)- and (1, 1)-occur-
rences contains a clause (ỹ1, ỹ3, ỹ5) or a clause (ȳ1, ỹ3, w), F can be reduced.

Proof. The only case not covered by Lemma 7.8 is if F contains the clause
(ȳ1, y3, w), where w is either y5 or a z. Now, y1 must be a (1, 1)-occurrence,
and we have a 3-cycle with one negation, so we apply (7.19) twice and replace
this clause by (y2, ȳ4, w) and then y1 is unique and occurs in the new 3-cycle
with one negation and we reduce F by (7.20). 2

If x is a (4, 0)-occurrence, branching on x yields a branching vector of at
least (9, 5) from the clauses in Fig. 7.8. At least five of the ys must occur
in another clause by Lemma 7.2, but then they must occur with at least two
different zs or we reduce F by Lemmas 7.10 or 7.12. When we set x to true all
the ys are false and at least two zs are removed, so we get a branching vector
of at least (11, 5).

Branching on (3, 0)-occurrences

When we look at a (3, 0)-occurrence x, we know by Lemma 7.12 that no three
variables from Y occur together and if two occur together they must both occur
unnegated.

F contains a clause with two ys and a z. Suppose F contains the clause
(y1, y3, z1) and two of y2, y4 and z1 are unique, then we have a 3-cycle with
no negations and a unique variable and we use (7.23) (with the other unique
variable as y2 in (7.23)) to get a 3-cycle with one negation and a unique variable
and we remove one of the unique variables by (7.20). If only one of y2, y4 and
z1 is unique, we use (7.23) and get a (2, 1)-occurrence, which is a previous case.
If z1 is in a clause with any of the variables y1, y2, y3 or y4, we reduce F by
Lemma 7.10. If two of y1, y2, y3 and y4 occur together in a second clause they

7.3. The algorithms 67

must both be unnegated by Lemma 7.12, but then we can also reduce F : if
two ys, which already occur together in a clause with x, also occur together
in a second clause, we reduce by (7.14). If two ys, which occur in different
clauses with x, occur together we have two 3-cycles without negations sharing
two clauses, and we reduce by (7.21) or (7.22). In the last case, we must
have the clauses in Fig. 7.11, where z2 is a new variable, and w can be either

(x, y1, y2) (y1, y3, z1)
(x, y3, y4) (ỹ2, w, z2)
(x, y5, y6)

y2 = true : x = y1 = false, y4 = ȳ3, y6 = ȳ5, z1 = ȳ3

y2 = false : y1 = x̄, y3
(7.7)
= false, y4 = x̄, z1 = ȳ1

ỹ2 = true : w = z2 = false
ỹ2 = false : z2 = w̄

Figure 7.11. A clause with two ys. We branch on y2.

y5 (it cannot be negated by Lemma 7.12) or z3 (another new variable). The
algorithm branches on y2. Let us first look at what happens in the first four
clauses; setting y2 to true removes the six variables depicted in Fig. 7.11, and
setting y2 to false makes y1 = x̄. Then we have the two clauses (x, y3, y4) and
(x̄, y3, z1) which makes y3 false by (7.7) and we remove the last two variables
shown in the second line in Fig. 7.11 for at total of five variables. Now, we look
at what happens with the clause (ỹ2, w, z2); when ỹ2 is set to false, we remove
z2, and when ỹ2 is set to true, both w and z2 are set to false. This removes two
additional variables in this branch: w is either y5 or z3, but neither has gotten
a value in any of the branches. If w is y5, the clause has two ys and z2 cannot
be unique, as this is the previous case. Now, either z2 is in another clause or w
is z3 and is in another clause. This clause can at most contain one of y1, y2, y3,
y4 or z1 by Lemma 7.10, so we remove an extra variable from this clause when
z2 or z3 is set to false. In total, we remove three variables in one branch and
one in the other. This yields a branching vector of at least (9, 6) or (8, 7).

Cycles. At this point, the only clauses containing ys, except the clauses
with x, contain only one y. By Lemma 7.2, at least four of the ys are not
unique, so there must be at least four such clauses. We want to branch on x;
when we set it to true, all the ys are set to false and the literals from clauses
with unnegated ys are set to the negation of each other and the ones from
clauses with negated ys are set to false. This removes at least as many extra
variables as there are clauses with ys, unless some of these clauses form a cycle
as in Fig. 7.12. We are only concerned with 3-, 4- and 5-cycles; we cannot have
2-cycles, as these would have been removed by (7.7), (7.8) or (7.14) and if we
have at least a 6-cycle, we remove at least five zs, when we set x to true, but
this yields a branching vector of at least (12, 4), which is what we are after.

Lemma 7.13 If a reduced formula does not satisfy any of the previous cases,
the same y cannot occur twice in a 3-, 4- or 5-cycle.

Proof. If a y occurs twice in a 3-, 4- or 5-cycle, it occurs at least three times in F
so it must be a (3, 0)-occurrence. It cannot occur in two neighbouring clauses

68 Chapter 7. Algorithms for Exact Satisfiability

(x, y1, y2) (ỹ1, z̃1, z2)
(x, y3, y4) (ỹi, z̃2, z3)
(x, y5, y6) (ỹj, z̃3, z1)

(a) 3-cycle.

(x, y1, y2) (ỹ1, z̃1, z2)
(x, y3, y4) (ỹi, z̃2, z3)
(x, y5, y6) (ỹj , z̃3, z4)

(ỹk, z̃4, z1)

(b) 4-cycle.

(x, y1, y2) (ỹ1, z̃1, z2)
(x, y3, y4) (ỹi, z̃2, z3)
(x, y5, y6) (ỹj , z̃3, z4)

(ỹk, z̃4, z5)
(ỹl, z̃5, z1)

(c) 5-cycle.

Figure 7.12. Cycles.

in the cycle by (7.7) and (7.14); since we are dealing with at most 5-cycles, it
must then occur in two clauses (y1, z̃1, z2) and (y1, z̃3, z4), where z2 and z3 are
together in another clause in the cycle. Then y1 is a (3, 0)-occurrence with two
of the variables it occurs with occurring together in another clause, but that is
a previous case. 2

Lemma 7.14 If a reduced formula F containing only (a, 0)- and (1, 1)-occur-
rences contains two clauses (ỹi, z1, z2) and (ỹj , z̃2, z3), where at least two of yi,
yj and z2 are negated, we can reduce F .

Proof. If yi and yj are from the same clause with x, that clause and the two
clauses in the lemma form a 3-cycle with two or three negations, so we can
reduce F by (7.16) or (7.17). If yi and yj are from different clauses with x,
the clauses form a 4-cycle with two or three negations together with the two
clauses where yi and yj occur with x. If there are three negations we reduce F
by (7.17), and if there are two we reduce F by (7.24) or (7.25), since we do not
have (2, 1)-occurrences. 2

In the following, we show how to deal with the remaining cases of 3-, 4- and
5-cycles.

3-cycles. If F contains a 3-cycle as in Fig. 7.12(a), the ys must be from differ-
ent clauses with x by Lemma 7.11. If the cycle contains more than one negated
zi, the formula is reduced by (7.16) or (7.17) and if there is exactly one negated
zi, we add a clause with three ys by (7.19). If this clause does not contain
exactly one negation, we reduce F by Lemma 7.8; otherwise, the negated y has
become a (2, 1)-occurrence, which is a previous case. Now, suppose that none
of the zis are negated; if at least two of the ys are negated, we reduce F by
Lemma 7.14 and if none of the ys are negated we have a 3-cycle with no nega-
tions, and each of the ys occurring with x, so we reduce F by (7.18). So assume
the cycle consists of the clauses in Fig. 7.13; then we branch on y1 and get a
branching vector of at least (9, 7), as shown in the figure. The (7.7) above the
equality means, that this follows from (7.7): since z2 = z̄1, we get two clauses
with z1 and z3 and z1 is negated in one of them.

4-cycles. Suppose F contains a 4-cycle as in Fig. 7.12(b). If there are two
or more negated zis, we reduce the formula by (7.16), (7.17), (7.24) or (7.25),

7.3. The algorithms 69

(x, y1, y2) (ȳ1, z1, z2)
(x, y3, y4) (y3, z2, z3)
(x, y5, y6) (y5, z3, z1)

y1 = true : x = y2 = false, y4 = ȳ3, y6 = ȳ5, z2 = z̄1,

z3
(7.7)
= false, z2 = ȳ3, z1 = ȳ5

y1 = false : y2 = x̄, z1 = z2 = false, z3 = ȳ5 = ȳ3,

y4
(7.14)
= y6

Figure 7.13. A 3-cycle with only y1 negated. We branch on y1.

since F contains no (2, 1)-occurrences. If there is only one negated zi, the two
ys in the clauses with the negated variable must be unnegated by Lemma 7.14;
let these clauses be (y1, z1, z2) and (yi, z̄2, z3). If an even number of the ys in
the cycle are negated, we reduce the formula by (7.18); otherwise, there must
be exactly one negated y and the cycle looks like the one in Fig. 7.14(a), but
then x = z1. Suppose x = z̄1; then we replace z1 by x̄ and get that both y1

(x, y1, y2) (y1, z1, z2)
(x, y3, y4) (yi, z̄2, z3)
(x, y5, y6) (ȳj, z3, z4)

(yk, z4, z1)

(a) x = z1.

(x, y1, y2) (y1, z1, z2)
(x, y3, y4) (y2, z2, z3)
(x, y5, y6) (y3, z3, z4)

(yi, z4, z1)

(b) z2 = z4.

(x, y1, y2) (y1, z1, z2)
(x, y3, y4) (y3, z2, z3)
(x, y5, y6) (y2, z3, z4)

(y4, z4, z1)

(c) Branch on x.

Figure 7.14. 4-cycles.

and yk are in clauses with both x and x̄, so they must be false by (7.7), but
then z2 = x, so yi must also be false by (7.7). Now, both z3 and z4 must be
equal to x, but then x must be false by (7.5) and yj must also be false. This is
a contradiction: since none of the ys are the same by Lemma 7.13, at least two
of them are from the same clause with x, but they are all false and so is x.

Suppose that none of the zis in the 4-cycle are negated. If an odd number
of the ys in the cycle are negated we reduce F by (7.18) and if two ys in
neighbouring clauses are negated, we reduce F by Lemma 7.14. If two ys in
“opposite” clauses in the cycle are negated, x must be false: if x is true, all
ys are set to false and by the two clauses with negated ys all the zis are set to
false, but then the other two ys must be true, a contradiction, so x must be
false. In the remaining cases, none of the ys in the cycle are negated. If two ys
in neighbouring clauses are from the same clause with x we have the cycle in
Fig. 7.14(b), but then z2 = z4: suppose z2 = z̄4; then z1 and z3 must be false
by (7.7), but then y1 = y2 = z̄2 = z4 = ȳ3. Then y1 and y2 must be false, but
then both x and y3 must be true, a contradiction.

Lemma 7.15 If a reduced formula F contains a 4-cycle as in Fig. 7.14(c),
F is satisfiable iff F with the last clause in the cycle removed is satisfiable.

Proof. It is trivially true, that if F is satisfiable, so is F with the last clause
removed. Suppose that F without the last clause is satisfied. If x is true, all
the ys are false, so from the other three clauses, we have that z1 = z̄2 = z3 = z̄4

70 Chapter 7. Algorithms for Exact Satisfiability

so the fourth clause is satisfied. If x is false, y1 = ȳ2, so exactly one of the zis
are true; if it is one of z1 or z4, y3 must be true by the second clause in the
cycle so y4 must be false and if it is one of z2 or z3, y3 must be false and hence
y4 must be true by their common clause with x. In both cases, the last clause
is satisfied. 2

The only remaining 4-cycles have no negations and no y occurring more
than once. Then at least two of the ys must be from the same clause with x
and they are not in neighbour clauses in the cycle.

If the other two ys in the cycle are not from the same clause with x the
4-cycle must look like the one in Fig. 7.14(c), except y4 is replaced by y5. Then
we add the clause (y4, z4, z1) by Lemma 7.15 and get that y4 = y5 by (7.14).

If the other two ys in the cycle are also from the same clause with x, we have
the 4-cycle in Fig. 7.14(c). Now y5 or y6 (say y5) must also occur in a clause
with two zs. If both these two zs are one of z1, z2, z3 and z4 they must be z1 and
z3 or z2 and z4 by Lemma 7.2, but then we have a 3-cycle, which is a previous
case. So y5 must occur with a new variable z5. If neither y1 nor y2 occurs in
other clauses than the ones in the figure, our algorithm branches on x. Setting
x to true removes all the ys and three of z1, z2, z3 and z4 plus another variable
from the clause with y5 for a total of eleven variables. When setting x to false
the four clauses in the cycle turn into (y1, z1, z2), (y3, z2, z3), (ȳ1, z3, z4) and
(ȳ3, z4, z1). The first of these can be removed by (7.19) and then y1 is unique
and the third can be removed by (7.23), which removes y1 from the formula.
This removes five variables for a branching vector of at least (11, 5). If on the
other hand y1 occurs in another clause, the clause cannot contain z1 and z2 by
Lemma 7.2 and if it contained z3 or z4, y1 would be a (3, 0)-occurrence, with
two of its ys occurring together (z2 and z3 or z1 and z4), which is a previous
case. The third clause with y1 may contain z5, but must also contain another
variable z6. Branching on x then yields a branching vector of at least (12, 4),
as three of z1, z2, z3 and z4 as well as a variable from each of the clauses with
y1 and y5 are removed when x is set to true.

F contains a clause with a negated variable from Y . There must be
at least four clauses with variables from Y other than the ones with x. We
branch on x; setting it to false removes four variables and setting it to true
sets all the ys to false and in each of the other clauses with ys either sets one
of the zs to the negation of the other or both to false. This removes at least
twelve variables, as at least one y is negated and the zs do not form a 3- or
4-cycle, so we get a branching vector of at least (12, 4).

5-cycles. If F contains a 5-cycle as in Fig. 7.12(c), then none of the ys are
negated by the previous case; also, none of the ys in the cycle are the same
by Lemma 7.13, so there must be four clauses in the 5-cycle, as in Fig. 7.15,
that contain only ys from two clauses with x. The ys will always satisfy an
even number of these clauses: if x is true, they satisfy zero and if x is false
they satisfy two, as they pairwise become each others negation, since they were
from only two different clauses with x. Now, let us look at z2, z3 and z4. The

7.3. The algorithms 71

(x, y1, y2) (y1, z1, z2)
(x, y3, y4) (yi, z̃2, z3)
(x, y5, y6) (yj , z̃3, z4)

(yk, z̃4, z5)

An even number of the zis are negated : z1 = z5

An odd number of the zis are negated : z1 = z̄5

Figure 7.15. Four clauses from a 5-cycle.

negated ones will always satisfy exactly one of the clauses and the unnegated
will either satisfy zero or two; thus, if the number of negated zis is odd, z1 and
z5 must satisfy an odd number of the clauses for F to be satisfiable, so z1 = z̄5

and if the number of negated zis is even, z1 = z5 by the same argument. In
both cases, we have reduced F .

F contains at least five clauses with ys and zs. Since the clauses do not
form 3-, 4- or 5-cycles at this point, branching on x yields at least (12, 4).

F contains exactly four clauses with ys and zs. As at least four variables
from Y occur in clauses without x and no two variables from Y occur together
(in a clause with a z), there must be exactly four clauses with a y and two zs.
Furthermore, two of the variables from Y are unique, and the others are (2, 0)-
occurrences; otherwise, there would be more than four clauses with variables
from Y . Since there are no cycles, we have already seen how to get (11, 4)
branching on x. If the formula is (15/2)-sparse, we can solve the remaining
formula in time O(22n/15) = O(20.13333n). We want to branch on formulas with
too many (3, 0)-occurrences; we either prove that we remove an extra variable
when branching on x or we branch on a different variable.

Suppose x1 is a (3, 0)-occurrence occurring in the three first clauses in
Fig. 7.16. The other clause with y3 contains no unique variable by Lemma 7.2.
If it contains a variable x2, that only occurs in other clauses with unique vari-
ables as in Fig. 7.16, we branch on x1; setting it to true removes eleven variables

(x1, y1, y2) (x2, y3, z)
(x1, y3, u1)
(x1, y5, u2)

All other clauses with x2

contain a unique variable.

Figure 7.16. Unique variables.

and setting it to false removes x1, y2, u1 and u2, but then y3 is unique, so all
clauses with x2 contain a unique variable and we set x2 to false by (7.15). Then
also z = ȳ3 and we get a branching vector of at least (11, 6).

If another (3, 0)-occurrence x2 occurs with one of the variables from Y it
must be either y1 or y2: suppose x2 is in a clause with y3. Now, y3 is a (2, 0)-
occurrence with a unique variable in its clause with x1, so its other clause
cannot contain unique variables; then the remaining clauses with x2 must con-
tain unique variables, but that is the previous case. Suppose y1 is in a clause
with x2, then that clause cannot contain a unique variable, as this would also

72 Chapter 7. Algorithms for Exact Satisfiability

be the previous case (by looking at x2 instead of x1). The two other clauses
with x2 must then contain a unique variable, so they do not contain y3 or y5

and if they contain y2, we have a (3, 0)-occurrence with two of the variables it
occurs with occurring together in another clause, which is a previous case. So
we must have the clauses in Fig. 7.17 (to easier distinguish variables occurring
with different (3, 0)-occurrences, we use y′ and y′′ to denote variables occur-
ring with other (3, 0)-occurrences than x1 in the rest of this section). Then we

(x1, y1, y2) (y1, x2, y
′
2) (x2, y

′
3, u

′
1)

(x1, y3, u1) (y2, z3, z4) (x2, y
′
5, u

′
2)

(x1, y5, u2) (y3, z5, z6)
(y5, z7, z8)

y2 = true : x1 = y1 = z3 = z4 = false,
u1 = ȳ3, u2 = ȳ5, y

′
2 = x̄2

y2 = false : y1 = x̄1, z4 = z̄3, x2
(7.15)

= false,
y′2 = ȳ1, u

′
1 = ȳ′3, u

′
2 = ȳ′5

Figure 7.17. One variable from Y occurs with another (3, 0)-occurrence.

branch on y2; setting it to true removes eight variables as shown in Fig. 7.17
and setting it to false, we get z4 = z̄3 and y1 = x̄1 as shown in the figure.
Then we have x̄1 in a clause with x2 and both of them only occur unnegated
in clauses with unique variables elsewhere, so x2 is set to false by (7.15), and
we remove the remaining variables shown in the second case in the figure for a
branching vector of at least (8, 7).

Now, no variable from Y occurs with another (3, 0)-occurrence. Suppose F
contains a (3, 0)-occurrence x1 occurring in the clauses in the first two columns
in Fig. 7.18. If both z5 and z6 occur with a (3, 0)-occurrence, then z5 and z6

cannot be negated, as a (3, 0)-occurrence where one of the variables it occurs
with occurs negated in another clause is a previous case; also, the clause with z5

and z6 contains y3, which is only in one other clause and that clause contains a
unique variable, so if the clause with z5 (or z6) and the (3, 0)-occurrence contains
a unique variable, we have the case in Fig. 7.16 (with the (3, 0)-occurrence as x1

and z5 as y3), which we have handled. Now, z5 and z6 cannot occur in another
clause together, so we must have all the clauses in Fig. 7.18. We branch on z6;

(x1, y1, y2) (y1, z1, z2) (x2, z5, y
′
2) (x3, z6, y

′′
2)

(x1, y3, u1) (y2, z3, z4) (x2, y
′
3, u

′
1) (x3, y

′′
3 , u′′1)

(x1, y5, u2) (y3, z5, z6) (x2, y
′
5, u

′
2) (x3, y

′′
5 , u′′2)

(y5, z7, z8)

z6 = true : y3 = z5 = x3 = y′′2 = false, u1 = x̄1, y
′
2 = x̄2, u

′′
1 = ȳ′′3 , u′′2 = ȳ′′5

z6 = false : z5 = ȳ3, y
′′
2 = x̄3, x2

(7.15)
= false, y′2 = z̄5, u

′
1 = ȳ′3, u

′
2 = ȳ′5

Figure 7.18. Both z5 and z6 occur with a (3, 0)-occurrence.

setting it to true removes nine variables as shown in the figure, and setting z6

to false sets y′′2 = x̄3 and z5 = ȳ3. Now, x2 is in a clause with ȳ3 and both
variables only occur unnegated in clauses with unique variables elsewhere, so we

7.4. Conclusion 73

set x2 to false by (7.15) and remove y′2, u′1 and u′2. In total, we get a branching
vector of at least (9, 7).

Sparse formulas. Now, no y can occur with another (3, 0)-occurrence, so
there are at least six variables occurring at most twice for each (3, 0)-occurrence.
Also, as z5 and z6 (and by symmetry z7 and z8) do not both occur with a (3, 0)-
occurrence, we can assume that neither z5 nor z7 occurs with a (3, 0)-occurrence.
As they both occur at most twice, they are in clauses with at most four different
variables; thus, we count each of them as one fourth of a variable for each of the
(3, 0)-occurrences, whose y they occur with. This means, that there are at least
six and a half variables occurring at most twice for each (3, 0)-occurrence; thus,
the formula is (15/2)-sparse and we solve it in time O(22n/15) = O(20.13333n).

7.4 Conclusion

The main result of this paper is the following theorem.

Theorem 7.1 The algorithms for XSAT and X3SAT run in time O(20.2325n)
and O(20.1379n), respectively.

Proof. When our algorithms are applied to a formula F with m clauses and n
variables, the sizes of the intermediate formulas are never larger than the max-
imum of |F | and 2mn: they are never larger during the reduction procedures
by Lemma 7.4 and after the reduction procedures have run, the formula has
size at most mn. In some of the branches we add a clause, but when we call
the algorithm recursively, the reduction procedure will remove a clause, so the
size is never larger than max(|F |, 2mn), which is polynomial in the size of the
original formula. Also, no reduction or branching adds variables. The number
of recursive calls are at most O(20.2325n) and O(20.1379n), respectively, by Sec-
tions 7.3.2 and 7.3.3. For each recursive call, the reduction procedure runs in
polynomial time in the size of the formula by Lemma 7.5 and we can in poly-
nomial time decide, which case to branch on. Since we ignore the polynomial
factors, we get the stated running times. 2

Both our algorithms are extensions of known branch-and-reduce algorithms.
One important addition to the algorithms are new reductions, which limit the
number of possible structures of the formula. The other important addition is
the concept of sparse formulas, which in certain situations enables us to simply
enumerate all possible assignments to the variables we would otherwise branch
on and leaves us with a problem that is solvable in polynomial time. One could
hope that the concept of sparse formulas is also useful in other algorithms.

Acknowledgements

We would like to thank the anonymous referees for many helpful comments.
We are also grateful to our supervisors Peter Bro Miltersen and Sven Skyum
for their help with this paper.

Chapter 8

Automated Generation of Branching

Algorithms

This chapter contains the paper “Automated Generation of Branching Algo-
rithms with Upper Bound Proofs for Variants of SAT” [52].

Abstract

Automated generation of algorithms and corresponding upper bound
proofs for NP-complete problems is a very new topic in computer science.
In this paper we present a program generating algorithms and correspond-
ing upper bound proofs for variants of Satisfiability with our main focus on
Exact Satisfiability, the variant of Satisfiability where a clause is satisfied
if exactly one of its literals is true. We describe several new techniques
which we use in the program, e.g. a technique to avoid duplicate cases and
a technique to find new reductions, and we present some results which we
have obtained with the program.

8.1 Introduction

In recent years there has been an increased interest in algorithms generating
algorithms and upper bound proofs of the corresponding running time for differ-
ent problems in NP. In 2003 Nikolenko and Sirotkin [41] presented an automated
proof of an upper bound of O(20.5284m), where m is the number of clauses, of
an algorithm solving SAT. As Hirsch [27] had previous shown an algorithm
with an upper bound of O(20.3090m) this was not an improvement for solving
SAT, but they obtained the bound for a much simpler algorithm, which as the
only reduction used pure literal elimination. Also in 2003, Gramm et al. [25]
made automated generation of algorithms and corresponding upper bounds for
various graph modification problems. For several of the problems they con-
sider, the upper bound the program computes is better than the previous best
known upper bound for the problem. In 2004 Fedin and Kulikov [23] considered
the problems SAT, MAXSAT and (n, 3)-MAXSAT, the variant of MAXSAT
where each variable occurs at most thrice, and made automatically generated
algorithms and corresponding upper bound proofs. For (n, 3)-MAXSAT they
improve the previous best known bound to O(20.3620n), where n is the number
of variables in the formula.

75

76 Chapter 8. Automated Generation of Branching Algorithms

In this paper we consider variants of SAT, and especially Exact Satisfiability
(XSAT). XSAT is the variant of SAT where a clause is satisfied if exactly one
literal is true. For more information on XSAT see e.g. [10]. We take a different
approach than all the previous programs generating algorithms and proofs. In
all previous programs the reductions they use are fixed. In this paper the
program starts without any predefined reductions and instead the program
finds reductions by itself. The program of Nikolenko and Sirotkin [41] and the
program of Fedin and Kulikov [23] tries to prove a predetermined upper bound,
and the program by Gramm et al. uses fixed sized graphs in the case analysis.
The program presented in this paper on the other hand will run infinitely,
and will always try to improve one of the worst known cases, outputting an
algorithm whenever it finds an algorithm which it can prove better than the
previous outputted algorithms. The main new ideas in the program is thus to
automatically generate reductions, and to always improve the worst case in the
analysis. Furthermore we present a technique to avoid solving cases which are
subcases of already solved cases.

8.1.1 Definitions

We are given a set of variables, which we will denote by using the letters x
and y. A literal is either a variable x or the negation of a variable x̄; we use
the letter l to denote a literal. A clause is a collection of literals, written as
(l1, l2, . . . , l3); we use the letter C to denote clauses. Sometimes, we will think
of a clause as a set of literals (actually a multiset, since a clause can contain
more than one of each literal). A formula is a set of clauses usually written as
C1 ∧C2 ∧ · · · ∧ Cm; we use the letter F to denote formulas.

We will use three different measures in the upper bounds. The number of
variables, which we denote n, the number of clauses, m, and the number of
literals, l. For an integer k, we will use [k] to denote the set {1, 2, . . . , k}.

We will use O(f) to denote a function that is of the same order as f ,
ignoring polynomial factors. Note that when used on exponential functions
this only differs from the normal definition if exact numbers are used, as we
with the normal definition have: O(p(n) · cαn) ⊆ O(c(α+ε)n).

8.1.2 Branching vectors

The algorithms the program in this paper produces are branching algorithms.
This is also the case for all the previous programs mentioned in the introduc-
tion. Branching algorithms solves a problem by branching into several smaller
problems in such a way that the solution to the original problem can be com-
puted in polynomial time, given the solutions to the smaller problems. Thus,
the algorithm recursively solves each of the smaller problems, and combines the
solutions to get a solution for the original problem. We let µ(F) be a measure
of the size of the formula F .

If the algorithm when finding the solution for F constructs the formulas
F1, F2, . . . , Fk, we let ti = µ(F)−µ(Fi) for i ∈ [k] and we call t = (t1, t2, . . . , tk)
the branching vector of this branch. We then get a recursion for the running

8.2. Algorithm 77

time of the form T (µ(F)) = T (µ(F)− t1)+T (µ(F)− t2)+ · · ·+T (µ(F)− tk)+
O(1), which has the solution T (µ(F)) = α

µ(F)
t , where αt is the positive root

of 1 − 1/xt1 − 1/xt2 − · · · − 1/xtk . We call αt the branching value of t. The
running time of the whole algorithm is O(2log2 α·µ(F)), where α is larger than
αt, for every branch vector t occurring in the algorithm. Proofs of these results
can be found in a manuscript by Kullmann and Luckhardt [32].

8.2 Algorithm

8.2.1 class of formulas

Fedin and Kulikov [23] introduced the concepts of a clause with unfixed length
and a class of formulas. In this paper we will extend the latter and we will use
the term open clause instead of clause with unfixed length. An open clause con-
taining the literals l1, l2, . . . , lk is written (l1, l2, . . . , lk, . . .) (e.g. (x1, x2, x̄3, . . .))
and describes a clause containing l1, l2, . . . , lk and possible some additional lit-
erals. We thus say that a formula contains a specific open clause if it contains a
clause containing all the literals in the open clause. An open clause is a gener-
alisation of the normal notion of clause, and we will in the following use clause
to denote either a normal clause or an open clause. If we want to emphasise
that a clause is normal we will describe it as a closed clause.

A pattern is a set of clauses C1, C2, . . . , Ck and it matches all formulas
which contain all the clauses (some of which can be open). We write a pattern
as C1 ∧ C2 ∧ · · · ∧ Ck · · · . A class of formulas is defined by a tuple where the
first component is a set of variables, and the second component is a pattern.
The variables in the set of variables will be called closed and all other variables
occuring in the pattern will be called open. The formulas belonging to a class
of formulas defined by a set of variables and a pattern, are all formulas that
match the pattern and where the closed variables only occur as specified by
the pattern. More formally a formula C ′

1 ∧ C ′
2 ∧ · · · ∧ C ′

k′ belongs to the class
of formulas (V,C1 ∧ C2 ∧ · · · ∧ Ck · · ·) if and only if there exists a surjective
function, f , mapping [k] to [k′] (corresponding to a mapping from the clauses
of the patterns to the clauses of the formula) such that

• Ci ⊆ C ′
f(i) for all i ∈ [k] where Ci is an open clause,

• Ci = C ′
f(i) for all i ∈ [k] where Ci is a closed clause,

• (Ci \ C ′
f(i)) ∩ V = ∅ for all i ∈ [k] and

• C ′
i ∩ V = ∅ for all i ∈ [k′] \ Img(f), where Img(f) denotes the image of

f i.e. the set {f(i)|i ∈ [k]}.

When comparing classes of formulas, we will ignore variable naming, i.e.
(∅, (x, x, y)) describes the same class as (∅, (x, y, y)). As classes of formulas are
sets of formulas we will use set terminology. If one class of formulas is contained
in another class of formulas we will say that it is a subclass of the other.

78 Chapter 8. Automated Generation of Branching Algorithms

The classes of formulas Fedin and Kulikov [23] use are a special case of the
classes described above, as they only have the pattern, and variables occurring
in the pattern are not allowed to occur elsewhere in the formulas belonging
to the class. This corresponds to choosing the first component of a class of
formulas to be the set of all variables occurring in the pattern.

8.2.2 The overall structure

The program works by building a tree where each node is a class of formulas, and
a corresponding branching value, i.e. the branching value which the program is
able to obtain for all formulas in the class. The branching value will be set to
one, if all formulas in the class can be reduced to smaller formulas in polynomial
time. The structure of the program is shown in Solve.

Solve():
Tree root = new Tree
Priority Queue pq = new Priority Queue
Real worst = ∞
root.data = new Pair(new Class of Formulas(∅, (x1 , . . .)),∞)
pq.insert(root)
while true do

Tree node = pq.removeLargest()
if node.data.second < worst then

OutputAlgorithm(root)
worst = node.data.second

end if
node.children = Split(node)
for all Tree child in node.children do

child.data.second = Value(child.data.first)
if child.data.second > 1 then

pq.insert(child)
end if

end for
end while

The program repeatedly takes the class of formulas which has the maximum
corresponding branching value. The function then splits the class of formulas
into several smaller classes of formulas. The smaller classes are not necessarily
disjoint, but their union are equal to the original class. The strategy used by
Split to split the class of formulas, may depend on the problem, and we will
go into details in Section 8.4.

After the class has been split, the program calculates the corresponding
branching values for each subclass, and if the class can not be reduced it is
added to the priority queue.

This approach differs from the approach by Fedin and Kulikov in the way
it builds the tree. They have a fixed branching value which they want to prove,

8.3. Deciding the branching value 79

and then build the tree in a depth first manner, going deeper until they have a
class of formulas for which they can prove the wanted branching value.

The function OutputAlgorithm outputs all the cases the program has
met, and for each it also outputs how to branch in order to get the worst case
branching value, which have just been found.

8.3 Deciding the branching value

In this section we describe the implementation of Value. Value takes a class
of formulas and first tries to decides if all formulas in the class can be reduced
in polynomial time, i.e. all formulas can be replaced with smaller formulas
without changing the satisfiability of them. If it determines that all formulas in
the class can be reduced it returns this, and otherwise it gives an upper bound
on the best branching value that can be obtained for all formulas in the class.

For simplicity we will call the variables occurring in the pattern x1, x2, . . . , xv

and let the closed variables be x1, x2, . . . , xc, where c ≤ v. We use full assign-
ment to describe an assignment to all the variables occurring in the pattern. An
assignment which does not make any clause in the pattern unsatisfied, is called
a non-conflicting assignment. Note that an open clause which is not unsatisfied
is not necessarily satisfied (e.g. for XSAT (false, false, . . .) is not unsatisfied but
is not satisfied either).

First the program builds a data structure containing all full non-conflicting
assignments. The data structure is just a binary tree, and nodes at level i (the
root is level 0) corresponds to variable xv−i. The left subtree corresponds to an
assignment with xv−i true and the right subtree corresponds to an assignment
with xv−i false. If there are any non-conflicting full assignments the tree has
height v + 1, and each leaf corresponds to such an assignment. The algorithm
FindAssignment shows the overall structure of the algorithm used to build
the binary tree.

Tree FindAssignment(Pattern pattern, Partial Assignment pa, int var):
if var = 0 then

return new Leaf
end if
Tree tree = new Tree;
if not Unsatisfiable(pattern, pa[xvar ← true]) then

tree.left = FindAssignment(pattern, pa[xvar ← true], var-1)
end if
if not Unsatisfiable(pattern, pa[xvar ← false]) then

tree.right = FindAssignment(pattern, pa[xvar ← false], var-1)
end if
if tree.left = null and tree.right = null then

return null
end if
return tree

80 Chapter 8. Automated Generation of Branching Algorithms

The function Unsatisfiable(Pattern, Partial Assignment) returns whether
there is a clause in the pattern which is unsatisfied by the partial assignment.
If FindAssignment is called with the pattern, the empty assignment and v
it will return a binary tree with all assignments which do not make a clause
unsatisfied.

8.3.1 Reducing

If the call to FindAssignment returns the empty tree all formulas in the class
of formulas are unsatisfied (as all assignments to the variables in the pattern
makes a clause in the pattern unsatisfied), and we return that the formulas
in the class can be reduced. In this section all full assignments will be non-
conflicting unless stated otherwise, and we will thus just write full assignment
instead of full non-conflicting assignment.

While building the binary tree we collect some auxiliary information, which
can be used to decide whether all formulas in the class can be reduced.

1. For each variable, does there exists a full assignment with this variable
set to true and does there exists a full assignment with this variable set
to false.

2. For each pair of variables, does there exists a full assignment where these
variables are equal and does there exists a full assignment where these
variables are different.

3. For each closed variable, can every assignment to the open variables which
can be extended to a full assignment, be extended to a full assignment
with this closed variable set to true and/or false.

4. For each pair of variables, of which at least one is closed, can every assign-
ment to the open variables which can be extended to a full assignment
be extended to a full assignment where these variables are equal and/or
different.

5. For each closed clause, does there exist an unsatisfying full assignment
such that this clause is the only clause in the pattern which is unsatisfied.

In order to calculate (1) and (2) we update two tables each time we reach
a leaf. After the binary tree has been build, we look at all variables and pairs.
If there is a variable which in all full assignments has the same value, we can
reduce all formulas in the class by setting this variable to this value. If there is
a pair of variables which in all full assignments either are equal or are different,
we can reduce the formula by replacing one of the variables with the other or
the negation of the other.

We use the information from (3) to decide if we can set one of the closed
variables to a constant, without changing whether the formulas can be satisfied
or not. If all closed variables only occur in closed clauses and for some closed
variable every assignment to the open variables which can be extended to a full
assignment can be extended to a full assignment with the closed variable set

8.3. Deciding the branching value 81

to e.g. true, we can set the closed variable to true without changing whether
the formulas can be satisfied: take any formula in the class and any satisfying
assignment to the formula. If we discard the assignments to the variables that
are closed in the pattern, we know that we can set the closed variable to true
and extend the assignment, such that none of the clauses in the pattern are
unsatisfied. As a closed clause where all variables has been assigned is either
satisfied or unsatisfied, all the closed clauses in the pattern are satisfied. As we
have only changed the assignment to closed variables and they only occur in
closed clauses in the formula, and all such clauses still are satisfied, all clauses in
the formula must be satisfied, and we thus have a satisfying assignment, where
the closed variable is true.

We use the information from (4) in the same way as we use the information
from (3), by setting two variables equal or different instead of setting one to
true or false, so we will not describe this in detail. Similarly calculating (4)
is done the same way as (3) just using two dimensional tables instead of one
dimensional, so for simplicity we will only describe how we calculate (3).

Calculating (3) is a bit more complicated than calculating (1) and (2). We
use two tables to calculate (3), one which keeps the overall result and one which
is used locally. In the global table each variable is initially marked as being able
to be set to both true and false. For each node in level v − c (corresponding
to the first closed variable, and each node thus corresponds to an assignment
to the open variables which can be extended to a full assignment) we use the
local table to calculate information similar to the information in (1). Thus
for each assignment to the open variables which can be extended to a full
assignment, we calculate which values each of the closed variables can have in
the full assignments. We use this information to update the global table. If a
closed variable can have both values we do not change the entry in the global
table, but if it can only have one value, we mark in the table that it can not be
set to the opposite value. When the binary tree has been build, we can decide
(3) from the global table.

We use (5) to decide if we can discard a clause. If there is a closed clause such
that every unsatisfying full assignment which makes this clause unsatisfied also
makes another clause unsatisfied we can remove this clause without changing
the set of valid assignments to the formulas.

For efficiency reasons we do not actually calculate (5), but only a conser-
vative approximation of the answer. If the answer for a clause is yes, then we
decide this, but if the answer is no the program may find the answer to be yes.
This is not a problem for the correctness as we only reduce if the answer is no,
so it never makes an invalid reduction, but may miss a possible reduction.

We calculate the approximation of (5), by keeping a table with an entry
per clause. Initially the answer is marked as no for each clause. Each time
Unsatisfiable finds that the pattern has an unsatisfied clause with some par-
tial assignment, and it only is one clause that is unsatisfied, it marks that the
answer is yes for this clause. This will correctly mark all clauses for which the
answer is yes, but for a clause there can be a partial assignment which only
makes that clause unsatisfied, even though there are no full assignment only
making that clause unsatisfied, thus incorrectly marking the clause as a clause

82 Chapter 8. Automated Generation of Branching Algorithms

where the answer is yes.

Reducing to another case

Fedin and Kulikov points out several problems and possible extensions to their
program. One problem is that they may solve the same classes of formulas
more than once, as several of the generated classes may be identical, just by
variable renaming. This is a problem for short proofs which potentially could
be readable by humans, but suddenly becomes bloated because of duplicate
cases, but is an even greater problem for large proofs as the size of the proof
and thus the time required to compute it explodes in repeated calculations.

It is not difficult to show that deciding whether two classes of formulas
are identical is computationally equivalent to deciding Graph Isomorphism and
deciding if one class of formulas is a subclass of another class of formulas is
computationally equivalent to deciding Subgraph Isomorphism, which is NP-
complete. It is thus computationally very expensive to compare a class of
formulas with all previously seen classes of formulas.

When we have a class of formulas, c, we want to check if the class is a
subclass of any of the classes which are to the left of it in the tree. We first
note that we do not have to compare c to every class of formulas which are left
of it in the tree, as if c is a subclass of some class of formulas, c′, then it is also
a subclass of the parent of c′ in the tree. We can thus check if c is a subclass
of any of the classes left of it, by for each node on the path from c to the root,
checking if c is a subclass of any of the siblings left of the node. If we find that
c is a subclass of any of the classes which are left of it in the tree, we return
that the formula can be reduced to another case. As the reductions always are
to a case left of the current in the tree this does not lead to cyclic arguments
in the proof produced.

The effect of these reductions to other cases are that the classes returned
by Split are interpreted as being disjoint. If Split splits a class of formulas
into c1, c2, . . . , ck it gets interpreted as c1, c2 \ c1, . . . , ck \

⋃k−1
i=1 ci because of the

reductions.

8.3.2 Finding branching vectors

First phase

If we are unable to reduce, we try to find the best branching vector which can
be achieved for all formulas in the class. This part of the program consists of
two phases. In the first phase we calculate for each variable an upper bound
on the branching value when branching on the variable and for each pair of
variables an upper bound on the branching value when branching on whether
the variables are equal or different. If this gives a better branching value than
the worst case in the priority queue, we return this branching value.

We use the binary tree of full assignments not making any clause in the
pattern unsatisfied to calculate the upper bounds. For each branch we traverse
the binary tree, disregarding subtrees for which the partial assignment at the
root of the subtree contradicts the branch. During the traversal we calculate

8.3. Deciding the branching value 83

similar information to (1), (2), (3) and (4) and after the traversal we can use
this information to calculate which variables we can set to constants, and which
variables we can replace by other variables. If we are finding the branching
values with respect to the number of variables, we use this information directly,
and otherwise we us the information and the class of formulas to decide the
number of literals or clauses which are removed by the assignment.

Second phase

If we did not find a branching vector better than the worst in the priority queue
we go to the second phase, where we try to refine the branches by going into
branch depth two. Thus for each branch from the first phase we try to branch
further; thus getting branches where we either set two variables to a constant,
one variable to a constant and two variables to be either equal or different or
two pairs of variables either equal or different. Every branch can be described
by one of the following cases:

(a) xi = true/false and xj = true/false, where i < j,

(b) xi = true/false and xj1 =/ 6= xj2, where i 6= j1, i 6= j2 and j1 < j2,

(c) xi1 =/ 6= xi2 and xj1 =/ 6= xj2, where i1 < i2, i1 < j1 < j2 and i2 6= j1.

The last condition in (c), i2 6= j1, can be made, as a case with i2 = j1 is
identical to a case where i2 = j2 instead (e.g. xi1 = xi2 and xi2 6= xj2, where
i1 < i2 < j2, is the same as xi1 6= xj2 and xi2 6= xj2). The number of variables,
literals or clauses the branch removes are calculated in the same way as for the
simple branches. If the two conditions in a branch contradicts each other, i.e.
there are no leafs in the binary tree for which both conditions hold true, we set
the value to infinite, as infinite entries in a branching vector do not effect the
value of the branching vector.

A lot of work can be saved by not just naively calculating all possible
branches. Many branches can be found by looking at the calculated values
for other branches. The conditions stated in (a) - (c) ensures that we do not
have cases which are symmetrical, and neither cases which are also covered by
a previous case. As each branch consists of two conditions, it may be the case
that one condition implies something about the other condition, so there are
four special cases of (a), eight of (b) and 15 of (c), where we can use the result
from some other case instead of calculating it. We will not go in detail with all
the special cases but only take one example from each of the three cases above.

(a) If we in the first phase found that xj = true implies xi = false, the value
of the branch xi = true and xj = true is infinite, and the value of the
branch xi = false and xj = true is the same as the value for the branch
xj = true which we calculated in the first phase.

(b) If xi = true implies xj2 = false the branch xi = true and xj1 = xj2 has
the same value as the branch xi = true and xj1 = false.

84 Chapter 8. Automated Generation of Branching Algorithms

(c) If xi1 = xi2 implies xi1 = xj1, the value for the branch xi1 = xi2 and
xj1 = xj2 is, if j2 < i2, the same as the value for the branch xi1 = xi2 and
xj2 = xi2 , and if j2 > i2 the same as the value for the branch xi1 = xj2

and xi2 = xj2.

When the number of variables, literals or clauses each branch removes
has been calculated, the values of all branching vectors which correspond to
branches where we first branch on either a variable or a pair of variables, and
in one of the branches branch further on a variable or a pair of variables are
calculated. If any of the branching values are better than the worst case in the
priority queue we return the corresponding branching. Otherwise we calculate
the values of all vectors which corresponds to branches where we first branch on
either a variable or a pair of variables, and in both branches branch further on a
variable or a pair of variables (not necessarily the same in both branches). We
then return the branching corresponding to the best branching value we have
seen (i.e. not only branching values found in the last phase). As the second
phase is very computationally expensive, the program provides the option of
disabling it.

8.4 Strategy for Split

The strategy which should be used for splitting a class of formulas into sub-
classes depends on the problem. In our implementation of Split for XSAT and
X3SAT we use the following strategy:

• If any clause is open, take such a clause (in fact there can be at most
one) and split it into one class where the clause is closed, and one class
for every possible addition of a literal (either a literal already occurring
in the class or a new one) to the open clause.

• If all clauses are closed, we split in one class where the open variable with
the smallest index is closed, one class where we add an open clause with
the open variable with the smallest index, and one class where we add
an open clause with the negation of the open variable with the smallest
index.

The primary property of Split is that the union of all the subclasses equals
the original class, and in both of these cases this is clearly the case. In order
to optimise the program we actually break this property of Split by removing
some of the subclasses in the first case. The subclasses we remove will all occur
elsewhere in the tree which we build in Solve. We order the subclasses such
that the first subclasses are the ones where the added literal has the smallest
index, and the last subclass is the one where we add a new literal (which is
assigned the next available index). With this ordering, we know that if we add
a literal to the open clause, and the index of the literal is smaller than the index
of another literal in the clause, the class is a subclass of some class which is
to the left of this clause in the tree, and the subclass will thus be removed in

8.5. Results 85

the next step of the program. There is thus no need to add the classes, so in
the first case above we only add literals which have index larger or equal to the
other literals in the open clause.

A strategy which works well for one problem, can work arbitrarily bad for
another. If we used the strategy above for Split while trying to prove a bound
with respect to the number of clauses on 3SAT the program would always have
a bad case on the form (x∨ y1 ∨ y2)∧ (x∨ y3 ∨ y4)∧ · · · ∧ (x∨ y2i−1 ∨ y2i). For
this case the best branching vector it can prove is (i, 1, 1), which has branching
value greater than 2, and it is thus not able to prove anything better than
O(2m), which is trivial to obtain. In order to avoid this, Split should either
not only add clauses with the variable with the smallest index or it should
use the knowledge that all variables can be assumed to occur both negated and
unnegated. For SAT it would not be able to prove any bound at all with respect
to the number of clauses, as there would always be a worst case on the form
(x1, x2, x3, . . . , xi, . . .).

8.5 Results

We have mainly tested the program on X3SAT, where the best known result is
an algorithm from 2003 by Byskov, Madsen and Skjernaa [10] with upper bound
O(20.137n) (branching vector (12,4)). When our program only tries simples
branches (branch depth one) it finds an algorithm for which it can prove an
upper bound of O(20.1450n), corresponding to a branching vector of (11,4), in
4.3 seconds. If we use the full algorithm, which uses branch depth two, it
takes 114 seconds to prove this bound, and no case actually uses the ability to
branch in depth two. In recent years there have been a lot of papers improving
the upper bound (e.g. [18], [30], [42], [13]) and even though the algorithm our
program finds does not improve the algorithm by Byskov et al., it does improve
on all previous algorithms. For X3SAT there is no difference in giving an
upper bound on the running time with respect to the number of clauses and
giving an upper bound with respect to the number of literals, as in a reduced
formula every clause contains exactly three literals. We are not aware of any
previous results on upper bounds with respect to either of these measures. Our
program is capable of making an algorithm with an upper bound of O(20.2124m)
corresponding to a branching vector of (7,3). It reaches this result in just over
one minute.

For XSAT our program proves an upper bound of O(20.2600n) corresponding
to a branching vector of (10,1). The currently best known algorithm by Byskov,
Madsen and Skjernaa has an upper bound of O(20.2441n), corresponding to a
branching vector of (8,2).

There is no trivial upper bound with respect to the number of clauses on
solving XSAT. Madsen [35,53] has shown an upper bound of O(m!), and Skjer-
naa [53] have improved it to O(2m) at the cost of also using O(2m) space.

Neither with respect to the number of literals are any bound known, but
it is not very hard to obtain (19,3). Our program has only proven a bound
of (19,2), and it seems like another strategy for splitting is needed in order to

86 Chapter 8. Automated Generation of Branching Algorithms

improve this in reasonable time.
We have also made the program generate an upper bound on solving Satis-

fiability with respect to the number of literals, but is has only proved a branch-
ing vector of (9,6), which is worse than the best upper bound by Hirsch [27],
O(20.1030l), corresponding to (21,18,21,18). Fedin and Kulikov [23] have ob-
tained the same bound as we do. Also here another strategy for splitting could
be useful.

8.6 Limitations and future work

Although we believe that the approach we have taken in this paper can find
improved bounds for several variants of SAT, it does have some limitations in
the kind of reductions it is able to find. One of the reductions in the paper by
Byskov, Madsen and Skjernaa [10] is (a reduction for X3SAT, reduction (24)):

(y1, z1, z2) ∧ (y2, z̄2, z3) ∧ (y3, z3, z4) ∧ (y4, z̄4, z1)
z2,z4 /∈V (F ′)

∧ F ′ →
(w, z1, z3) ∧ (w̄, y1, y2) ∧ (w̄, y3, y4) ∧ F ′.

Such a reduction can not be found by the program in this paper as it in-
volves changing some clauses. In order to find such reductions the program
would need to, given a class of formulas, search for a pattern which restricts
the open variables in exactly the same way as the original pattern, but by
using fewer closed variables. Doing this for even small formulas is extremely
computationally expensive.

Also reductions like the unique literal rule (a reduction for SAT)

F
l∈Lit(F) and l̄ /∈Lit(F)

→ F [l← true]

can not be found, as the left hand side of the reduction can not be described
by a pattern. The program will of course be able to reduce such cases if l only
occurs in closed clauses, but it will spend a lot of effort on such cases. If the
program should handle such reductions it could be done by making Split avoid
classes of formulas which is known to be reducible.

In this paper we have taken one extreme, in the sense that we did not teach
the program any reductions, but let it find them by itself. As has been shown
there are reductions which the program can not find, so it would be an obvious
idea to extend the program with some predefined reductions, and see if it would
make the program run faster (i.e. reach more cases in the same time as the
original), have fewer cases or prove better bounds.

The algorithms for XSAT and X3SAT by Byskov, Madsen and Skjernaa use
the concept of sparse formulas. A k−sparse formula is a formula where the
number of variables which occur more than twice is at most n/k. If a formula
is k−sparse it can be solved in time O(2n/k). It would be interesting to extend
our program such that it takes sparseness into consideration, in order to see if
this can improve the bounds proven.

Chapter 9

Maximal Bipartite Subgraphs of a Graph

This chapter contains the paper “On the Number of Maximal Bipartite Sub-
graphs of a Graph” [11]. The paper is co-authored by Jesper M. Byskov and
Bolette A. Madsen, and is to appear in Journal of Graph Theory. Minor typo-
graphical changes have been made compared to the original paper.

Abstract

We show new lower and upper bounds on the maximum number of
maximal induced bipartite subgraphs of graphs with n vertices. We present
an infinite family of graphs having 105n/10 ≈ 1.5926n such subgraphs, show
an upper bound of O(12n/4) = O(1.8613n) and give an algorithm that finds
all maximal induced bipartite subgraphs in time within a polynomial factor
of this bound. This algorithm is used in the construction of algorithms for
checking k-colourability of a graph.

9.1 Introduction

In this paper, we show new lower and upper bounds on the maximum number
of maximal bipartite subgraphs of a graph (all subgraphs in this paper are
induced subgraphs). We provide an infinite family of graphs showing a lower
bound of 105n/10 ≈ 1.5926n improving an earlier bound of 10n/5 ≈ 1.5849n

by Schiermeyer [47]. Schiermeyer also claims an upper bound of 10n/5, which
is invalidated by our new lower bound. Instead, we prove an upper bound of
O(12n/4) = O(1.8613n) and present an algorithm finding all maximal bipartite
subgraphs in time within a polynomial factor of this bound. This can be used
in an algorithm for deciding 4-colourability of graphs, and the running time is
the same as that for finding all maximal bipartite subgraphs, as already noted
by Schiermeyer [47]. For 5-colourability we match the best known running time
of O(2.1592n) by Byskov [7].

9.2 Lower bound

We show a lower bound on the maximum number of maximal bipartite sub-
graphs in any graph by providing an infinite family of graphs with many maxi-
mal bipartite subgraphs. The infinite family consists of disconnected copies of a

87

88 Chapter 9. Maximal Bipartite Subgraphs of a Graph

Figure 9.1. Generating graph with a pair marked.

(a) (b) (c)

Figure 9.2. The three different types of maximal bipartite subgraphs.

single graph, the k’th member having k copies. A maximal bipartite subgraph
of a disconnected graph is exactly the union of one maximal bipartite subgraph
of each connected component. Their number thus equals the product of the
number of maximal bipartite subgraphs of each component. Schiermeyer [47]
uses K5 (having ten maximal bipartite subgraphs) to generate his infinite family
resulting in a lower bound of 10n/5 ≈ 1.5849n.

Theorem 9.1 There exists an infinite family of graphs all having 105n/10 ≈
1.5926n maximal bipartite subgraphs of size 2n/5.

Proof. The generating graph for our infinite family of graphs is given in Fig-
ure 9.1.1 Let a pair denote a vertex on the outer 5-cycle and the nearest vertex
on the inner 5-cycle (see Figure 9.1). The graph has 5 · 24 = 80 maximal bipar-
tite subgraphs containing one vertex from four of the pairs (see Figure 9.2(a)),
5·22 = 20 containing one pair and one vertex from each of the opposite pairs (see
Figure 9.2(b)) and five containing two pairs (see Figure 9.2(c)). In total it has
105 maximal bipartite subgraphs and yields a lower bound of 105n/10 ≈ 1.5926n

using multiple copies. 2

9.3 Upper bound

To show the upper bound, we first prove a lemma characterising maximal
k-colourable subgraphs.

1This graph is also found in a list of counterexamples to graph conjectures [22] made by
Graffiti [21], a program generating such conjectures automatically. We could not find any
information about which conjecture it disproved.

9.3. Upper bound 89

Lemma 9.1 Let M be a maximal k-colourable subgraph of a graph G = (V,E).
Then the vertices of M can be split into colour classes C1, C2, . . . , Ck of non-
increasing sizes, such that for all i, j with 0 ≤ i < j ≤ k, G[Ci+1∪Ci+2∪· · ·∪Cj]
is a maximal (j − i)-colourable subgraph of G[V \ (C1 ∪ C2 ∪ · · · ∪Ci)].

Proof. Look at all possible k-colourings of M having the colour classes sorted
in non-increasing order. Label each with a list of the sizes of the colour classes
in reverse order, i.e. the smallest one first. We pick one of the lexicographi-
cally smallest labelled colourings C1, C2, . . . , Ck and claim that it satisfies the
conditions of the lemma.

Suppose conversely that there exist i, j with 0 ≤ i < j ≤ k, such that
G[Ci+1 ∪Ci+2 ∪ · · · ∪Cj] is not a maximal (j− i)-colourable subgraph of G[V \
(C1 ∪ C2 ∪ · · · ∪ Ci)]. Since it is (j − i)-colourable, there exists a vertex v in
G[V \ (C1 ∪ C2 ∪ · · · ∪ Cj)], such that G[Ci+1 ∪ Ci+2 ∪ · · · ∪ Cj ∪ {v}] remains
(j − i)-colourable. Now, v ∈ M ; otherwise, M ∪ {v} is k-colourable, and this
contradicts the maximality of M , so v ∈ Cl for some l > j. Pick a (j −
i)-colouring of G[Ci+1 ∪ Ci+2 ∪ · · · ∪ Cj ∪ {v}] together with the colouring
C1, . . . , Ci, Cj+1, . . . , Cl−1, Cl \ {v}, Cl+1, . . . , Ck of G[V \ (Ci+1 ∪ Ci+2 ∪ · · · ∪
Cj∪{v})]. They form a k-colouring of M in which the l’th colour class is smaller
than in the original colouring, and the succeeding ones are of the same size; thus
the list of the sizes of the colour classes in reverse order is lexicographically
smaller than the label of the original colouring. Since sorting the list only
makes it smaller, the label of the new colouring is lexicographically smaller
than the label of the original colouring. This is a contradiction, and therefore
the lemma is proved. 2

Theorem 9.2 Any graph contains at most O(12n/4) = O(1.8613n) maximal
bipartite subgraphs. Moreover, there is an algorithm that takes as input a graph
and outputs all its maximal bipartite subgraphs in time O(1.8613n).

Proof. Let G be an arbitrary graph and M a maximal bipartite subgraph
thereof. Using Lemma 9.1 twice, first with i = 0 and j = 1 and second with
i = 1 and j = 2, we can assume that the vertices of M consist of a maximal
independent set I1 in G and a maximal independent set I2 in G[V \ I1] hav-
ing |I2| ≤ |I1|. To find all maximal bipartite subgraphs our algorithm finds
all maximal independent sets in G and for each finds all no larger maximal
independent sets in the remaining graph. If their union is a maximal bipartite
subgraph the algorithm outputs it.2 Let Ik(G) denote the set of all maximal
independent sets of size at most k in G. Then the number of maximal bipartite
subgraphs of G is at most

n∑
k=1

∑
I∈Ik(G)
|I|=k

|Ik(G[V \ I])| ≤
n∑

k=1

|Ik(G)| ·max
I⊆V
|I|=k

|Ik(G[V \ I])|.

2The union is not necessarily a maximal bipartite subgraph. In the 6-cycle, two opposite
vertices form a maximal independent set, but their union with a maximal independent set in
the remaining graph does not form a maximal bipartite subgraph.

90 Chapter 9. Maximal Bipartite Subgraphs of a Graph

Eppstein [20] shows that |Ik(G)| ≤ 34k−n4n−3k, and Moon and Moser [40] show
that any graph can have at most 3n/3 maximal independent sets in total. Split-
ting the sum in two and using the minimum of these two bounds, we get that
the sum is at most

bn
4
c∑

k=1

34k−n4n−3k34k−(n−k)4(n−k)−3k +
n∑

k=bn
4
c+1

34k−n4n−3k3(n−k)/3.

Moving the terms not depending on k outside the sums and using the fact that
the sums are geometric series we get that the whole expression is O(12n/4) =
O(1.8613n).

All maximal independent sets in a graph can be found in time within a
polynomial factor of their number, see e.g. Tsukiyama et al. [55]. Those of size
at most k can be found in time O(34k−n4n−3k) as shown by Eppstein [20]. Our
algorithm uses these two algorithms to find all maximal independent sets in the
graph, and for those of size k ≤ n/4 it finds all maximal independent sets of
size at most k in the remaining graphs, and for those of size k > n/4 it finds
all maximal independent sets in the remaining graphs. The algorithm runs in
time O(1.8613n). 2

9.4 Colouring

Following Schiermeyer [47], we design an algorithm for deciding k-colourability
of a graph. Suppose that G = (V,E) is k-colourable. By setting M = V , i = 0
and j = 2 in Lemma 9.1 we obtain that the graph can be partitioned into a max-
imal bipartite subgraph and a (k − 2)-colourable subgraph; thus the algorithm
checks k-colourability of a graph by finding all maximal bipartite subgraphs and
checking whether any of the remaining graphs are (k− 2)-colourable. The time
complexity of checking k-colourability is proportional to the time complexity of
finding all maximal bipartite subgraphs times the time complexity of checking
(k − 2)-colourability of the remaining graphs.

The time complexity of checking 4-colourability using the above algorithm
is within a polynomial factor of the time complexity of finding all maximal
bipartite subgraphs, since 2-colourability can be checked in polynomial time.
By Theorem 9.2, this is O(1.8613n). This is not competitive as Byskov [7] has
a 4-colouring algorithm running in time O(1.7504n). To improve the running
time of our 4-colouring algorithm we need a smaller upper bound on the number
of maximal bipartite subgraphs and a fast algorithm for finding them.

Byskov [7] also shows that 5-colourability can be checked in time O(2.1592n).
This is done (correctness follows from Lemma 9.1) by first finding a maximal
independent set I1 of size at least n/5 in G, then finding a maximal independent
set I2 in G[V \I1] of size at least (n−|I1|)/4 and finally checking 3-colourability
of G[V \ (I1 ∪ I2)] using the fastest algorithm, which is by Eppstein [19]. This
can be replaced by finding a maximal bipartite subgraph of the graph of size at
least 2n/5 and checking 3-colourability of the remaining graph which yields the
same running time. A calculation similar to the one in the proof of Theorem 9.2

9.5. Conclusion 91

shows that the worst terms correspond to maximal bipartite subgraphs of size
2n/5, and that there are at most 20n/5 ≈ 1.8206n of these. This means that
better 5-colouring algorithms can be obtained by improving the bound on the
number of maximal bipartite subgraphs of size 2n/5 arbitrarily for instance
by showing that the total number of maximal bipartite subgraphs is at most
o(20n/5). Since the time complexity of 5-colouring is O(2.1592n), we do not
need to be able to find the maximal bipartite subgraphs faster to get better
time bounds.

9.5 Conclusion

We have shown that there can be at least 105n/10 ≈ 1.5926n and at most
O(12n/4) = O(1.8613n) maximal bipartite subgraphs of a graph, and they can
be found in time within a polynomial factor of our upper bound. Maximal
bipartite subgraphs can be used in k-colouring algorithms, but to be competitive
better upper bounds are needed.

We think that the true bound is in fact lower than our upper bound. The
worst case graphs in the proof of our upper bound are those having 4n/4 max-
imal independent sets of size n/4. The only graphs achieving this are graphs
consisting of a union of disconnected K4s (by Eppstein [20]), and these have
only 6n/4 maximal bipartite subgraphs. Also, if we use the same approach as
in the proof of Theorem 9.2 to prove an upper bound on the number of maxi-
mal 3-colourable subgraphs of a graph we get a bound of O(2.2680n), which is
clearly too high.

To prove our upper bound we use bounds on the number of maximal inde-
pendent sets in a graph. These bounds are tight at least for the values where
our expression attains its maximum. We found our lower bound by testing all
graphs of size n ≤ 10 on a computer. This becomes infeasible even for slightly
larger n, since the number of graphs grows extremely fast. New ideas are thus
needed to prove better lower and upper bounds.

Acknowledgements

We thank our supervisors Peter Bro Miltersen and Sven Skyum for many helpful
comments and insights.

Chapter 10

Graph Distinguishability Problems

This chapter contains the paper “Reductions among Graph Distinguishability
Problems” [54].

Abstract

The problem DISTk is the problem of, given a graph, determining
if there exists a colouring of the graph with at most k different colours
such that no nontrivial automorphism preserves the colouring. In this
paper, we prove how to reduce DISTl to DISTk for various values of l
and k by showing that if there exists a graph which can be coloured in
l “different” ways using k colours we can reduce DISTl to DISTk. From
this we conclude that DIST1 (which is also called RIGID) can be reduced
to DISTk for any k > 0. Furthermore, we present different ways for
constructing graphs with certain l and k values from smaller graphs and
show that DISTl can be reduced to DIST2 for l equal to 1, 2, 4, 6, 8, 10,
12, 14, 15, 16, 18, 20, 22, 24, 27, 28, 30, 32, 36 and 40.

10.1 Introduction

A classical problem presented by Frank Rubin [43] goes:

A blind man keeps his keys on a circular ring. There are s distinct
handle shapes that he can tell apart by feel, and he can purchase
any key with any desired handle shape. Assume that all keys are
symmetrical so that a rotation of the key ring about an axis in its
plane is undetectable from examination of a single key. How many
keys can he keep on the ring and still be able to select the proper
key by feel?

In this paper we will consider a generalised version of this problem called
Graph Distinguishability. A graph is said to be k-distinguishable if it is possible
to assign one of k different colours to each vertex of the graph in such a way
that no non-trivial automorphism preserves the colour of all vertices. The
above problem is the special case where k = s and the graphs are cycles. The
distinguishing number of a graph is the smallest number, k, for which the graph
is k-distinguishable.

93

94 Chapter 10. Graph Distinguishability Problems

Definition 10.1 Let G = (V,E) be a graph and let k be a positive integer. A
k-colouring of G is a function mapping V to {1, 2, . . . , k}. A legal k-colouring
c is a k-colouring which destroys all non-trivial automorphisms:

∀φ ∈ Aut(G) \ {id(V)} : c 6= c ◦ φ.

The set of legal k-colourings of a graph G will be denoted LCk(G).

Definition 10.2 The problem DISTk (k ≥ 0) is: Given a graph G = (V,E),
are there any legal k-colourings of G, i.e., is LCk(G) 6= ∅? DIST1 is also called
RIGID.

There has been considerable interest in the computational complexity of
the problem of deciding the distinguishing number of a graph. DIST0 is trivial
as it only contains the empty graph and RIGID is in coNP as a graph can be
shown to be nonrigid by giving a nontrivial automorphism on the graph. For
k > 1, DISTk is not known to be in neither NP nor coNP. It is easy to see that
DISTk is in ΣP

2 .
In 1996, Albertson and Collins [2] decided the distinguishing number for

certain classes of graphs and in 1998, Russell and Sundaram [44] proved that
DISTk lies in ΣP

2 ∩ AM and that if it is coNP-hard the polynomial hierarchy
collapses1. Recently Arvind and Nikhil [3] proved that for planar graphs the
distinguising number can be determined in polynomial time.

In the rest of this introduction, we will only consider legal colourings, but
will omit the word legal. In section 10.3, we introduce the notion of unique
colourings of a graph. This captures the fact that different colourings of a
graph may be indistinguishable in the sense that there exists an automorphism
of the graph taking one colouring to another. The unique colourings of a graph
is thus only the colourings that can be distinguished. The first result in this
paper is that we can add a “handle” (a number of new vertices connected to
all vertices in the original graph) to a graph without changing the number of
unique colourings. Adding a handle to a graph makes the graph connected and
in the construction used in the proof of our main result we use multiple copies
of a graph and the handle to ensure that vertices from different copies of the
graph are not mixed.

Our main result states that if there exists a graph which have l unique k-
colourings, then it is possible to reduce DISTl to DISTk. We use this result to
prove that RIGID can be reduced to DISTk for any k > 0.

In section 10.5, we present two methods for constructing graphs with a
certain number of unique colourings. The first constructs a graph with l1 · l2
unique colourings from two graphs with respectively l1 and l2 unique colourings
and the second constructs from a graph which has l unique colourings a graph
with

(l
a

)
unique colourings, where 1 ≤ a ≤ l.

1Note that Russell and Sundaram repeatedly state that the problem lies in AM ⊂ ΣP
2 ∩ΠP

2 .
This statement is somewhat misleading as it is a well known open problem if AM is in ΣP

2

(see, e.g., [26]). What they do show is that the problem is in AM and since it is clearly in ΣP
2 ,

it is in ΣP
2 ∩AM and as AM ⊂ ΠP

2 thus in ΣP
2 ∩ ΠP

2 .

10.2. Notation 95

As our results depend on graphs having a specific number of unique k-
colourings for some value of k, we take a closer look at the case k = 2 in section
10.6. In particular we show that we can construct graphs with 1, 2, 4, 6, 8, 10,
12, 14, 15, 16, 18, 20, 22, 24, 27, 28, 30, 32, 36 and 40 unique 2-colourings. We
furthermore conjecture that it is not possible to construct a graph with 3 unique
two-colourings. We conclude this paper by presenting some open problems.

As several of the proofs in this paper are quite large even though the ideas
behind are simple, we try to sketch the idea of the proofs before actually stating
the proofs. On a first read one might want to skip the proofs and this should
not cause any trouble.

10.2 Notation

If f : S → T is a function mapping some set S into another set T and S′ ⊆ S,
then f(S′) is the set {f(s) : s ∈ S′}. The function f |S′ : S′ → T , where S′ ⊆ S,
denotes f restricted to the domain S′ (i.e., ∀s ∈ S′ : f |S′(s) = f(s)). In this
paper, it will always be the case that if f |S′ is used and S = T then f(S′) = S′

(if f : S → S then f |S′ : S′ → S′).
We will use f [s 7→ t] where s ∈ S and t ∈ T to denote a function that acts

as f except that s is mapped to t. If multiple values are redefined we will use
f [s1 7→ t1, . . . , sk 7→ tk], or if S′ ⊂ S f [∀s ∈ S′ : s 7→ g(s)]. If g(s) is not just
an expression but a function g : S′ → T we will also use the shorthand f [g] to
denote the latter.

If g is a function mapping some set S′ into another set T ′ and S ∩ S′ = ∅,
then f ∪ g : S ∪ S′ → T ∪ T ′ will denote the function which acts as f on S and
acts as g on S′:

∀s ∈ S ∪ S′ : (f ∪ g)(s) =

{
f(s) s ∈ S,

g(s) s ∈ S′.

By [k] we will denote the set {1, 2, . . . , k}. If S is a set, id(S) : S → S
will denote the identity function defined on S and ΣS will be the set of all
permutations on S. If G = (V,E) is a graph, we will let V(G) be the vertex set
V and deg(v), where v ∈ V , will denote the degree of v in G. Aut(G) will be
the set of automorphisms of G, i.e., φ ∈ Aut(G) ⇔ (φ ∈ ΣV ∧ ((v1, v2) ∈ E ⇔
(φ(v1), φ(v2)) ∈ E)). Note that if φ ∈ ΣV and (v1, v2) ∈ E ⇒ (φ(v1), φ(v2)) ∈ E
then φ ∈ Aut(G). Aut(G) will be called trivial if Aut(G) = {id(V(G))}.

For simplicity, we will assume that graphs do not contain self loops and are
not oriented, but all results are valid even for graphs with orientation and/or
self loops.

10.3 Unique colourings

In this section we present formal definitions of unique colourings and handles
and prove that adding handles does not change the number of unique colourings.

96 Chapter 10. Graph Distinguishability Problems

Definition 10.3 For any graph G where Aut(G) is nontrivial some of the legal
k-colourings of G are indistinguishable. We can thus define an equivalence
relation on LCk(G):

c1 ∼ c2 ⇔ ∃φ ∈ Aut(G) : c1 = c2 ◦ φ.

In order to look only at distinguishable colourings we define the set ULCk(G)
(unique legal k-colourings) to be the equivalence classes of LCk(G):

ULCk(G) = {[c]G : c ∈ LCk(G)}
where [c]G = {c ◦ φ : φ ∈ Aut(G)}. In most cases G will be obvious from the
context and we will just write [c] (this should not be confused with the set [k],
where k is an integer).

If φ1, φ2 ∈ Aut(G) and c ◦ φ1 = c ◦ φ2, we get that c = c ◦ φ2 ◦ φ−1
1 and as

c ∈ LCk(G) we get that φ2 ◦ φ−1
1 = id(V(G)) which implies φ1 = φ2 and thus∣∣[c]∣∣ = |Aut(G)|. From this we get that |ULCk(G)| = |LCk(G)|

|Aut(G)| .

Definition 10.4 Let G = (V,E) be an arbitrary graph and k a positive integer.
Define the graph handle(G, k) = (V ′, E′) to be G with k extra vertices, each
connected to all the original vertices:

V h =
{
hi : i ∈ [k]

}
,

V ′ = V ∪ V h,

E′ = E ∪ V × V h.

Note that G can easily be found from handle(G, k) if k is known.

Lemma 10.1 The number of legal k-colourings of handle(handle(G, k), k) is
zero for any graph G. On the other hand, if G 6= handle(G′, k) for all graphs
G′, the number of unique legal k-colourings of G and handle(G, k) is the same:

|ULCk(G)| = |ULCk(handle(G, k))|.

Intuitively, the lemma is correct since we can colour the handle and the
rest of the graph separately. As the handle can only be legally coloured in one
unique way (all k vertices have to have different colours), the number of unique
legal colourings is the same for the handle graph as for the original graph. If
a graph has two handles of size k they can not be distinguished with k colours
and thus there are no legal k-colourings of the graph.
Proof. Let G′ = (V ′, E′) = handle(handle(G, k), k). By construction of G′ there
exists V h

1 and V h
2 with |V h

i | = k such that

V ′ = V ∪ V h
1 ∪ V h

2 ,

E′ = E ∪ V × V h
1 ∪ V × V h

2 ∪ V h
1 × V h

2

where G = (V,E). In a legal k-colouring of G′ the vertices of V h
i must have

different colours as two vertices, v,w ∈ V h
i , with the same colour would be

10.4. Reductions 97

indistinguishable. Then there is no way to distinguish V h
1 from V h

2 . Each uses
all colours exactly once, so there exists an automorphism which maps V h

1 to
V h

2 and vice versa and preserves the colouring. This contradicts the definition
of legal colouring and proves the first part of the lemma.

In the following let G = (V,E) be such that G 6= handle(G′, k) for all
graphs G′. Let H,W and F be such that H = (W,F) = handle(G, k) =
(V ∪ V h, E ∪Eh). First we prove a property of the automorphisms of H:

∀φ ∈ Aut(H) : φ(V) = V ∧ φ(V h) = V h. (10.1)

If φ(V) = V then also φ(V h) = V h and it thus suffices to prove the former.
Assume there exists a φ ∈ Aut(H) and a v ∈ V such that φ(v) ∈ V h. Let W h

be the vertices which φ maps to V h. The vertices in V h are not connected to
each other but are connected to all other vertices, and as φ is an automorphism
this is also true for all vertices in W h. From this we can conclude W h ⊂ V . By
setting V ′ = V \W h we get that

E =
(
E ∩ (V ′ × V ′)

) ∪ (V ′ ×W h).

This shows that G = (V ′ ∪W h, E) = handle
(
(V ′, E ∩ (V ′ × V ′)), k

)
which

contradicts the assumption.
From this property of Aut(H) we get that if φ ∈ Aut(H) then φ|V ∈ Aut(G).

On the other hand we get from the structure of H that if φ ∈ Aut(G) and
π ∈ ΣV h then (φ ∪ π) ∈ Aut(H). From the last part we get that if c ∈ LCk(H)
then c|V ∈ LCk(G).

Next we will prove

∀c1, c2 ∈ LCk(H) : [c1]H = [c2]H ⇔ [c1|V]G = [c2|V]G. (10.2)

Let c1, c2 ∈ LCk(H) with [c1]H = [c2]H . By definition, there exists φ ∈
Aut(H) such that c1 = c2 ◦ φ and thus c1|V = c2|V ◦ φ|V . As φ|V ∈ Aut(G)
we get that [c1|V]G = [c2|V]G. On the other hand, if c1, c2 ∈ LCk(H) are
such that [c1|V]G = [c2|V]G then by definition there exists φ ∈ Aut(G) such
that c1|V = c2|V ◦ φ. As the k vertices in V h are indistinguishable, c1 and
c2 both assign them different colours. We can thus define a permutation π =
(c2|V h)−1 ◦ c1|V h ∈ ΣV h , and get that c1 = c2 ◦ (φ ∪ π), which concludes the
proof of (10.2).

From (10.2) we get directly that |ULCk(G)| ≥ |ULCk(H)|. Any k-colouring
of G can be extended to a k-colouring of H by assigning the handle vertices k
different colours (i.e., ∀c ∈ LCk(G) ∃c′ ∈ LCk(H) : c′|V = c) and from (10.2) we
can thus also conclude |ULCk(G)| ≤ |ULCk(H)|. Thus the number of unique
legal k-colourings are the same for G and H. 2

10.4 Reductions

In this section we will state and prove our primary result, but first we present
one concrete result which can be obtained from the general result:

98 Chapter 10. Graph Distinguishability Problems

Theorem 10.1 RIGID is not harder than any other DISTk, k ≥ 1:

RIGID ≺ DISTk.

We will postpone the proof, to after we have proved our primary result:

Theorem 10.2 If there exists a graph H = (W,F) such that l = |ULCk(H)|
then DISTl can be reduced to DISTk:

DISTl ≺ DISTk.

The idea in the reduction is simple: By replacing each vertex with a copy
of H, we can simulate l colours with k colours. We use the handle construction
to ensure that any automorphism of the graph maps each copy of H to a copy
of H, and thus does not mix the vertices of different copies of H.
Proof. By Lemma 10.1 we can assume that H = handle(H ′, k), for some graph
H ′. If H ′ = handle(H ′′, k) for some graph H ′′, the reduction is trivial, because
it is a reduction from DIST0, which only contains the empty graph: If the input
is the empty graph output the empty graph and otherwise output (V, ∅) where
|V | = k +1. This graph does not have a legal k-colouring, so it will be rejected.
In the following we will thus assume that H ′ 6= handle(H ′′, k) for all graphs
H ′′. Let W h = {h1, . . . , hk} = W \ V(H ′) be the handle vertices of H, and
W nh = W \W h be the non-handle vertices of H.

Given a graph G = (V,E) let G′ = (V ′, E′) be the graph consisting of one
copy of H for each vertex of G, and furthermore have all edges between the non-
handle vertices of two copies of H if there is an edge between the corresponding
vertices of G:

Vv = {vv,w : w ∈W} v ∈ V,

V ′ =
⋃
v∈V

Vv = {vv,w : v ∈ V,w ∈W} ,

V nh
v =

{
vv,w : w ∈W nh

}
v ∈ V,

Ev = {vv,w1vv,w2 : (w1, w2) ∈ F} v ∈ V,

E(v1,v2) = V nh
v1
× V nh

v2
(v1, v2) ∈ E,

E′ =
⋃
v∈V

Ev ∪
⋃

(v1,v2)∈E

E(v1,v2).

For simplicity we also define the handle-vertices V h
v = Vv \V nh

v for all v ∈ V .
In Figure 10.1 is an illustration of the construction of G′. The remainder of
this proof will be used to show that G ∈ DISTl if and only if G′ ∈ DISTk.

In the proof, we will use v to denote variables in V , v′ to denote variables
in V ′ and w to denote variables in W . If multiple variables from a set is needed
we will use subscripts. Similarly, φ will denote an element from Aut(G), φ′ an

10.4. Reductions 99

G

H’

G’

H H H

HHH

v2

v6

v3v1

v4
vv3,w3

vv3,w5

vv3,w4
vv3,w2

vv3,w1

v4

v1 v2

v5

v3

v6

w1 w2 w3

v5

Figure 10.1. An example of the reduction in Theorem (10.2). Note that H =
handle(H ′, 2).

element from Aut(G′) and τ an element from Aut(H). Finally, c will denote an
l-colouring of G and c′ and d respectively will denote k-colourings of G′ and H.
We will let d1, . . . , dl be such that ULCk(H) = {[d1], . . . , [dl]}. The following
functions will be used to determine which vertices in V and W a vertex from
V ′ origins from:

G(vv,w) = v,

H(vv,w) = w.

The following properties follows directly from the construction of G′ and
the definitions of G(v′) and H(v′).

∀v′ ∈ V ′ : v′ ∈ VG(v′), (10.3)

∀v1, v2 ∈ V : Vv1 ∩ Vv2 6= ∅ ⇒ v1 = v2, (10.4)

deg(v′) =

{∣∣W nh
∣∣ (= deg(H(v′))) if H(v′) ∈W h,

deg(H(v′)) + deg(G(v′)) · |W nh| if H(v′) ∈W nh.
(10.5)

The idea in the first part of the proof is to show that every automorphism
of G′ keeps the copies of H together (property (10.6) below). The reason this is
true is that the handles are kept together and they ensure that the rest of each H
is kept together. We can thus look at the automorphisms as permutations of the
vertices of G and we prove that these permutations are in fact automorphisms
of G (property (10.7)). On the other hand if we look at a copy of H then
an automorphism of G′ maps it into another copy of H and this can be seen
as a permutation on H. We prove that this permutation is an automorphism
on H (property (10.8)). Finally we use this to prove that if we have a legal
l-colouring of G we can colour G′ legally by using di to colour the copies of H
which correspond to vertices of G with colour i.

∀φ′ ∈ Aut(G′) ∀v′1, v′2 ∈ V ′ : G(v′1) = G(v′2)⇔ G(φ′(v′1)) = G(φ′(v′2)), (10.6)
∀φ′ ∈ Aut(G′) ∃φ ∈ Aut(G) ∀v′ ∈ V ′ : φ(G(v′)) = G(φ′(v′)), (10.7)

∀φ′ ∈ Aut(G′) ∀v ∈ V ∃τ ∈ Aut(H) ∀v′ ∈ Vv : τ(H(v′)) = H(φ′(v′)). (10.8)

100 Chapter 10. Graph Distinguishability Problems

In order to show (10.6) we will show

∀φ′ ∈ Aut(G′) ∀v′ ∈ V ′ : H(v′) ∈W h ⇔ H(φ′(v′)) ∈W h, (10.6a)
∀φ′ ∈ Aut(G′) ∀v′ ∈ V ′ : φ′(VG(v′)) = VG(φ′(v′)). (10.6b)

For any automorphism φ′ of G′ and v′ ∈ V ′ with H(v′) ∈ W h we have that
deg(v′) = deg(φ′(v′)) and from (10.5) that deg(v′) = |W nh|. If H(φ′(v′)) ∈
W nh then by (10.5) we get that deg(φ′(v′)) = deg(H(φ′(v′))) + deg(G(φ′(v′))) ·
|W nh| and since deg(w) > 0 for all vertices w ∈ W then deg(G(φ′(v′))) = 0.
Thus VG(φ′(v′)) is an isolated copy of H in G′ and as H is connected, VG(v′)
must also be an isolated copy of H. Then φ′(VG(v′)) = VG(φ′(v′)) and thus
τ = [∀w ∈ W : w 7→ H(φ′(vG(v′),w))] is a permutation of H. If (w1, w2) ∈
F then we have from the construction of G′ that (vG(v′),w1

, vG(v′),w2
) ∈ E′

and thus (φ′(vG(v′),w1
), φ′(vG(v′),w2

)) ∈ E′. Using that φ′(VG(v′)) = VG(φ′(v′))
we get that the edge is within a copy of H and from the construction of G′

we then get that (τ(w1), τ(w2)) ∈ F , which shows that τ ∈ Aut(H). But
τ(H(v′)) = H(φ′(vG(v′),H(v′))) = H(φ′(v′)) which contradicts (10.1), and thus
proves H(φ′(v′)) ∈W h and we have proved the implication in (10.6a) from left
to right. From right to left then follows from this and the fact that (φ′)−1 is
also an automorphism of G′.

Let φ′ ∈ Aut(G′) and v′1 ∈ V h
v for some v ∈ V , then the neighbours of

v′1 are V nh
v and thus the vertices φ′(v′1) have edges to are φ′(V nh

v). By (10.3)
and (10.6a) φ′(v′1) ∈ V h

G(φ′(v′1)) and the vertices it has edges to are V nh
G(φ′(v′1))

so φ′(V nh
G(v′1)) = V nh

G(φ′(v′1)). On the other hand the only vertices that only have

edges to V nh
G(v′1) are V h

G(v′1) and thus φ′(V h
G(v′1)) must be the only vertices that

only have edges to φ′(V nh
G(v′1)) = V nh

G(φ′(v′1)). But the vertices that only have

edges to V nh
G(φ′(v′1)) are V h

G(φ′(v′1)) so φ′(V h
G(v′1)) = V h

G(φ′(v′1)). Putting these two
equalities together we get that φ′(VG(v′1)) = VG(φ′(v′1)). This shows (10.6b) when
v′ ∈ V h

v for some v ∈ V . Now, let v′2 ∈ V nh
v . As v′2 ∈ VG(v′2) and G(v′1) = G(v′2)

we have that φ′(v′2) ∈ φ′(VG(v′2)) = φ′(VG(v′1)) = VG(φ′(v′1)) and from (10.3)
φ′(v′2) ∈ VG(φ′(v′2)). By (10.4) we have that G(φ′(v′1)) = G(φ′(v′2)). This shows
that φ′(VG(v′2)) = VG(φ′(v′2)), which concludes the proof of (10.6b).

Let φ′ ∈ Aut(G′) and v′1, v
′
2 ∈ V ′ with G(v′1) = G(v′2). By (10.6b) we have

that VG(φ′(v′1)) = φ′(VG(v′1)) = φ′(VG(v′2)) = VG(φ′(v′2)) and from (10.4) we get
that G(φ′(v′1)) = G(φ′(v′2)), which shows (10.6) from left to right. As in the
proof of (10.6a) from right to left follows from the fact that (φ′)−1 is also an
automorphism of G′ and we have proved (10.6).

To prove (10.7) we first show that for any φ′ ∈ Aut(G′) there exists a
function φ from V to V such that

V ′ φ′−−−−→ V ′

G

y yG

V −−−−→
φ

V

10.4. Reductions 101

commutes, i.e. such that ∀v′ ∈ V ′ : φ(G(v′)) = G(φ′(v′)). If no such function
exist it must be the case that ∃v′1, v′2 ∈ V ′ : G(v′1) = G(v′2) ∧ G(φ′(v′1)) 6=
G(φ′(v′2)), but (10.6) states that this can not be the case.

Let φ be a function making the diagram commute. As φ′ ∈ ΣV ′ and G is
surjective we get that φ ∈ ΣV . To prove that φ ∈ Aut(G) it thus suffices to
prove that ∀(v1, v2) ∈ E : (φ(v1), φ(v2)) ∈ E. Let (v1, v2) ∈ E. By construction
of G′ we have that V nh

v1
× V nh

v2
⊆ E′ and as φ′ ∈ Aut(G′) we get that φ′(V nh

v1
)×

φ′(V nh
v2

) ⊆ E′. Let v′1 ∈ V nh
v1

and v′2 ∈ V nh
v2

. As there are no self loops in G we
have that v1 6= v2 and thus G(v′1) 6= G(v′2) and by (10.6) G(φ′(v′1)) 6= G(φ′(v′2)).
As (φ′(v′1), φ′(v′2)) ∈ E′ and G(φ′(v′1)) 6= G(φ′(v′2)) we get from the construction
of G′ that (G(φ′(v′1)),G(φ′(v′2))) ∈ E, and from the definition of φ we can
conclude that (φ(G(v′1)), φ(G(v′2))) ∈ E and thus (φ(v1), φ(v2)) ∈ E, which
finishes the proof of (10.7).

The proof of (10.8) is structurally very similar to the proof of (10.7). Let
φ′ ∈ Aut(G′) and v ∈ V , and choose φ ∈ Aut(G) such that it satisfies (10.7).
As H|Vv is a bijection there exists a function τ from W to W such that

Vv
φ′−−−−→ Vφ(v)

H

y yH

W −−−−→
τ

W

commutes, i.e. such that ∀v′ ∈ Vv : τ(H(v′)) = H(φ′(v′)). As (H|Vv)−1, φ′|Vv :
Vv → Vφ(v) and H|Vφ(v)

are all bijections then τ is a bijection, i.e., τ ∈ ΣW .
Let (w1, w2) ∈ F . Then (vv,w1 , vv,w2) ∈ Ev and by construction all edges be-

tween vertices in Vφ(v) are in Eφ(v) we thus get that (φ′(vv,w1), φ
′(vv,w2)) ∈ Eφ(v).

From the definition of Eφ(v) we get that (H(φ′(vv,w1)),H(φ′(vv,w2))) ∈ F and
by definition of τ : (H(φ′(vv,w1)),H(φ′(vv,w2))) = (τ(H(vv,w1)), τ(H(vv,w2))) =
(τ(w1), τ(w2)). This shows that (w1, w2) ∈ F ⇒ (τ(w1), τ(w2)) ∈ F , which
proves that τ ∈ Aut(H) and thus completes the proof of (10.8).

We now prove the first part of the theorem

G ∈ DISTl ⇒ G′ ∈ DISTk. (10.9)

Let c ∈ LCl(G) and define a colouring c′ of G′:

c′(v′) = dc(G(v′))(H(v′)) v′ ∈ V ′. (10.10)

Remember that d1, . . . , dl is chosen such that ULCk(H) = {[d1], . . . , [dl]},
and thus c′ is a k-colouring of G′. If we assume that c′ is not a legal k-colouring of
G′ there exists a nontrivial automorphism φ′ of G′ such that c′ = c′ ◦ φ′. By
(10.7) we know that there exists an automorphism φ of G such that ∀v′ ∈ V ′ :
φ(G(v′)) = G(φ′(v′)). Let φ be such an automorphism. If φ = id(V) we have
that ∀v ∈ V : φ′(Vv) = Vv and there must be a v ∈ V such that φ′|Vv 6= id(Vv).
If φ = id(V) take such a v and otherwise let v be such that c(v) 6= c(φ(v)). Let

102 Chapter 10. Graph Distinguishability Problems

τ be as in (10.8), and note that if φ = id(V) then by the choice of v we know
that τ 6= id(W). We have that

∀w ∈W : dc(v)(w) = c′(vv,w) = c′(φ′(vv,w)) = dc(G(φ′(vv,w)))(H(φ′(vv,w)))

= dc(φ(G(vv,w)))(τ(H(vv,w))) = dc(φ(v))(τ(w))

= (dc(φ(v)) ◦ τ)(w).

If φ = id(V) this contradicts that dc(v) ∈ LCk(H). On the other hand, if
φ 6= id(V) then c(v) 6= c(φ(v)) and by definition of d1, . . . , dl, we have that
dc(v) and dc(φ(v)) belongs to different equivalence classes, and this is also a
contradiction. This completes the proof of (10.9).

The idea in the second part of the proof is that we first show that an
automorphism on H can be taken to any of the copies of H in G′ and is then
an automorphism on G′ (property (10.11)). We then use this to show that for a
legal colouring of G′ each copy of H is also coloured legally (property (10.12)).
If we have a legal colouring of G′ we then have that for each vertex of G, the
corresponding copy of H is coloured with a legal colouring from [di] for some
i. We end the proof by showing that if we colour each vertex of G with the
corresponding i we get a legal colouring of G.

As in the first part we will start the second part by proving some properties
of G′:

∀τ ∈ Aut(H) ∀v ∈ V : id(V ′)[∀w ∈W : vv,w 7→ vv,τ(w)] ∈ Aut(G′), (10.11)

∀c′ ∈ LCk(G′) ∀v ∈ V ∃d ∈ LCk(H) ∀w ∈W : d(w) = c′(vv,w). (10.12)

Let φ = id(V ′)[∀w ∈ W : vv,w 7→ vv,τ(w)] for some τ ∈ Aut(H) and v ∈ V .
As τ ∈ ΣW we get that φ ∈ ΣV ′ . Every edge not containing a vertex from Vv

is of course preserved by φ. Edges between vertices from Vv are also preserved
as (Vv , Ev) are a copy of H and τ ∈ Aut(H). Edges with one vertex from Vv

must be an edge between the non-handle vertices of two copies of H. Then all
edges between the non-handle vertices of the two copies are present in E′ and
by (10.1) τ maps V nh

v to itself, so φ also preserves such edges. This completes
the proof of (10.11).

Let c′ ∈ LCk(G′) and v ∈ V . Define a function d : W → [k]:

d(w) = c′(vv,w) w ∈W.

If d is not a legal k-colouring, i.e. d 6∈ LCk(H), there exists a nontrivial auto-
morphism τ ∈ Aut(H) \ {id(W)} such that d = d ◦ τ . By (10.11) we get that
φ = id(V ′)[∀w ∈ W : vv,w 7→ vv,τ(w)] is a (nontrivial) automorphism of G′, but
for all vv1,w ∈ V ′ we get that :

c′(φ(vv1,w)) =

{
c′(vv1,w) if v1 6= v,

c′(vv1,τ(w)) = d(τ(w)) = d(w) = c′(vv1,w) if v1 = v.

This shows that c′ = c′ ◦φ′ which contradicts c′ ∈ LCk(G′), so d ∈ LCk(H) and
(10.12) is proved.

10.4. Reductions 103

For all legal k-colourings c′ of G′ and v ∈ V we can thus define d(c′, v) to
be the legal k-colouring of H such that (d(c′, v))(w) = c′(vv,w) for all w ∈ W .
Furthermore, we can define a l-colouring of G, c(c′), such that

(c(c′))(v) = i ⇔ d(c′, v) ∈ [di]. (10.13)

This is well-defined as d(c′, v) is in exactly one of the unique colour classes of
H. Finally, we will for all legal k-colourings c′ of G′ and all v ∈ V define τ(c′, v)
such that

d(c(c′))(v) = d(c′, v) ◦ τ(c′, v).

We will let τ−1(c′, v) be the inverse element of τ(c′, v). Intuitively, we have
for all legal k-colourings c′ of G′ and all v ∈ V that c′ restricted to Vv corre-
sponds to d(c′, v), c(c′) is the colouring of G where v has colour i if d(c′, v) is
in the i’th equivalence class of ULCl(H), and τ(c′, v) is the automorphism of
H that takes d(c′, v) to the representative of the i’th equivalence class.

Next, we want to prove the existence of a certain automorphism of G′. The
definition of the automorphism is somewhat awkward but it is the automor-
phism that will make the proof go through.

∀c′ ∈ LCk(G′) ∀φ ∈ Aut(G) ∃φ′ ∈ Aut(G′) ∀vv,w ∈ V ′ :
φ′(vv,w) = vφ(v),(τ(c′,φ(v))◦τ−1(c′,v))(w). (10.14)

Let c′ ∈ LCk(G′) and φ ∈ Aut(G). For readability we will let τv be a
shorthand for τ(c′, φ(v)) ◦ τ−1(c′, v). Define φ′ : V ′ → V ′ by:

∀vv,w ∈ V ′ : φ′(vv,w) = vφ(v),τv(w)

As φ ∈ ΣV and τv ∈ ΣW for all v ∈ V it follows that φ′ ∈ ΣV ′ . Let
(vv1,w1, vv2,w2) ∈ E′. If v1 6= v2 then (v1, v2) ∈ E and (vv1,w1, vv2,w2) ∈
V nh

v1
× V nh

v2
. As φ is an automorphism of G, we have that (φ(v1), φ(v2)) ∈ E

and from (10.1) we get that ∀τ ∈ Aut(H) : τ(w1), τ(w2) ∈ W nh, and thus
(φ′ (vv1,w1) , φ′ (vv2,w2)) = (vφ(v1),τv1 (w1), vφ(v2),(τv2 (w2)) ∈ V nh

φ(v1) × V nh
φ(v2) ⊆ E′.

If, on the other hand, v1 = v2 we get from the construction of G′ that
(w1, w2) ∈ F . As τv1 ∈ Aut(H) we get that (τv1(w1), τv1(w2)) ∈ F , and thus
(φ′(vv1,w1), φ

′(vv2,w2)) =
(
vφ(v1),τv1 (w1), vφ(v1),τv1 (w2)

)
∈ E′. This completes the

proof of (10.14).

We are now ready to prove the second part of the theorem:

G′ ∈ DISTk ⇒ G ∈ DISTl. (10.15)

Let c′ ∈ LCk(G′), and let c = c(c′) be as defined in (10.13). If c is not a
legal l-colouring of G, there must exist a nontrivial automorphism φ of G such
that c = c ◦ φ. If this is the case let φ′ be as in (10.14). We then get

104 Chapter 10. Graph Distinguishability Problems

∀vv,w ∈ V ′ : c′(vv,w) = (d(c′, v))(w)

=
(
dc(v) ◦ τ−1(c′, v)

)
(w)

=
(
dc(φ(v)) ◦ τ−1(c′, v)

)
(w)

=
(
d(c′, φ(v)) ◦ τ(c′, φ(v)) ◦ τ−1(c′, v)

)
(w)

=
(
d(c′, φ(v))

)((
τ(c′, φ(v)) ◦ τ−1(c′, v)

)
(w)
)

= c′(vφ(v),(τ(c′,φ(v))◦τ−1(c′,v))(w))

= c′(φ′(vv,w)).

So c′ = c′ ◦ φ′, which contradicts that c′ ∈ LCk(G′), so c must be a legal
l-colouring of G and the proof of the theorem is complete. 2

With this result the proof of Theorem 10.1 is now easy.
ProofProof of Theorem 10.1. Consider the full graph on k vertices, Kk =
(V,E). In a legal k-colouring c of Kk, c must use all k colours, as if v1 ∈ V and
v2 ∈ V are assigned the same colour, then c = c ◦ id(V)[v1 7→ v2, v2 7→ v1], and
id(V)[v1 7→ v2, v2 7→ v1] is a nontrivial automorphism of Kk as Aut(Kk) = ΣV .
Thus c must use every colour exactly once. But as Aut(Kk) = ΣV all the legal
k-colourings of Kk are in the same equivalence class, and |ULCk(Kk)| = 1.
Theorem 10.2 then states that DIST1 ≺ DISTk. 2

10.5 Constructing graphs

In this section we present some constructions to make graphs with certain num-
bers of unique colourings from other graphs.

Theorem 10.3 If |ULCk(G1)| = l1 and |ULCk(G2)| = l2 for two graphs G1

and G2, then there exists a graph G′ with |ULCk(G′)| = l1 · l2.

The idea in the construction in this proof is to make a graph that consists
of the two graphs without any edges between. We can then colour each graph
independently.
Proof. We can assume that l1, l2 > 0 as the statement otherwise is trivial. If we
have two graphs G1 = (V1, E1) and G2 = (V2, E2) with |ULCk(G1)| = l1 and
|ULCk(G2)| = l2, we can, by Lemma (10.1), assume that G1 = handle(G′

1, l1)
for some graph G′

1 and G2 6= handle(G′
2, l2) for all graphs G′

2, and furthermore
that |V (G1)| > |V (G2)| (if |V (G1)| ≤ |V (G2)| then handle(G2, l2) and G′

1 would
satisfy the conditions). We want to prove that the graph G′ = (V1∪V2, E1∪E2)
has |ULCk(G′)| = l1 · l2.

As G1 consists of just one connected component and |V1| > |V |/2 all au-
tomorphisms φ′ of G′ must satisfy that φ′(V1) = V1 and thus φ′|V1 ∈ Aut(G1)
and φ′|V2 ∈ Aut(G2). From this follows that if c1 ∈ LCk(G1) and c2 ∈
LCk(G2) then (c1 ∪ c2) ∈ LCk(G′). On the other hand, if φ1 ∈ Aut(G1)
and φ2 ∈ Aut(G2) then (φ1 ∪ φ2) ∈ Aut(G′) and from this follows that if

10.5. Constructing graphs 105

c ∈ LCk(G′) then c|V1 ∈ LCk(G1) and c|V2 ∈ LCk(G2). This shows that
|Aut(G′)| = |Aut(G1)| · |Aut(G2)| and |LCk(G′)| = |LCk(G1)| · |LCk(G2)|. Now,
from the note after Definition 10.3 we get that

|ULCk(G′)| = |LCk(G′)|
|Aut(G′)|

=
|LCk(G1)| · |LCk(G2)|
|Aut(G1)| · |Aut(G2)|

= |ULCk(G1)| · |ULCk(G2)| = l1 · l2.

2

Theorem 10.4 Let G be a graph with |ULCk(G)| = l, then for any integer a
with 1 ≤ a ≤ l there exists a graph G′ with |ULCk(G′)| = (l

a

)
.

The idea is to make G′ consist of a independent copies of G. We can then
colour each copy independently, but two copies are not allowed to be coloured
in the same way and two colourings of G′ can not be distinguished if they use
the same colourings for the copies. Thus the number of unique legal colourings
of G′ is the number of ways we can choose a out of l unique legal colourings of
G, ignoring the order.
Proof. Let G = (V,E) be such that |ULCk(G)| = l. We can assume that l > 0
as the claim in the theorem is otherwise empty. Also, we can assume that G is
connected (otherwise just use handle(G, k)). Given an integer a with 1 ≤ a ≤ l
let G′ = (V ′, E′) be the graph consisting of a copies of G:

V ′
i = {vv,i : v ∈ V } i ∈ [a],

E′
i = {(vv1,i, vv2.i) : (v1, v2) ∈ E} i ∈ [a],

V ′ =
⋃

i∈[a]

V ′
i ,

E′ =
⋃

i∈[a]

E′
i.

We will prove the theorem by proving

|Aut(G′)| = a! · |Aut(G)|a, (10.16)

|LCk(G′)| =
(

l

a

)
· a! · |Aut(G)|a. (10.17)

As G is connected and there are no edges between the copies of G in G′,
any automorphism of G′ will map each copy of G to a copy of G. Thus, if
we consider how an automorphism of G′ works on a single copy of G it will
correspond to an automorphism of G. This shows that any automorphism of
G′ can be characterised by a permutation of the a copies of G and a list (thus,
the order of the elements matters) with a automorphisms of G. On the other
hand it is clear that any permutation of the a copies of G and list with a

106 Chapter 10. Graph Distinguishability Problems

automorphisms of G describes an automorphism of G′ and for different choices
of permutation and automorphisms of G the described automorphisms of G′

are different. This proves (10.16).
From the characterisation of automorphisms of G′ also follows that for c′ ∈

LCk(G′) each copy of G is coloured legally. Otherwise the automorphism of
G′ which is trivial except that it maps an illegally coloured copy into itself
by an automorphism of G proving that it is not legally coloured, would prove
that c′ 6∈ LCk(G′). Furthermore, two of the copies can not be coloured with
colourings from the same colour class of G, e.g. c1 and c2 where c1 = c2 ◦ φ, as
there would then be an automorphism of G′ mapping one copy to the other and
vice versa. From this we get that any legal k-colouring of G′ can be defined by
a list with a legal k-colourings of G from different colour classes. On the other
hand if we colour the copies with a legal k-colourings of G from different colour
classes it is a legal k-colouring of G′. If this was not the case there would be
a nontrivial automorphism of G′, which would preserve the colouring. Such an
automorphism would either map one copy of G to another and the colourings of
the two copies would thus be from the same colour class, or would nontrivially
map one copy into itself, which can not be the case as the copy is itself legally
couloured.

We can thus conclude that the number of legal k-colourings of G′ are the
same as the number of lists with a legal k-colourings of G from different colour
classes. As each colour class has size |Aut(G)| we get

|LCk(G′)| =
a−1∏
i=0

(|LCk(G)| − i|Aut(G)|) =
a−1∏
i=0

(l|Aut(G)| − i|Aut(G)|)

= |Aut(G)|a ·
a−1∏
i=0

(l − i) = |Aut(G)|a · l!
(l − a)!

=
(

l

a

)
· a! · |Aut(G)|a,

and we have thus proved (10.17). By combining (10.16) and (10.17) we get

|ULCk(G′)| = |LCk(G′)|
|Aut(G′)| =

(l
a

) · a! · |Aut(G)|a
a! · |Aut(G)|a =

(
l

a

)
,

which completes the proof of the theorem. 2

10.6 Concrete reductions

In this section we will take a closer look at which reductions are actually possi-
ble. We will primarily focus on reductions to DIST2. We will use Rk to denote
the set {|ULCk(G)| : G is a graph}, i.e., l ∈ Rk exactly if we by the method
presented in this paper can reduce DISTl to DISTk. It should be noted that
this does of course not imply that if l 6∈ Rk it is not possible to reduce DISTl

to DISTk, just that it is not possible by the method presented in this paper.

10.6. Concrete reductions 107

We have from Theorem (10.1) that we can reduce RIGID to DISTk for any
k > 0, so ∀k > 0 : 1 ∈ Rk. As a single vertex graph has k unique k-colourings,
we also get that ∀k ≥ 0 : k ∈ Rk.

In the following we will examine R2, and primarily focus on the small num-
bers (below 40) of R2. As 2 ∈ R2 we get from Theorem (10.3) that ∀i > 0 : 2i ∈
R2. As

(
4
2

)
= 6 we get from (10.4) that {(42), (62), (63), (82)} = {6, 15, 20, 28} ⊂ R2,

and then by Theorem (10.3) that {12, 24, 30, 40} ⊂ R2. It is easy to see that
these in fact are all the numbers below 40 that Theorem (10.3) and (10.4)
implies from 2 ∈ R2.

l Graph Proof

1 Theorem (10.1)

2 k ∈ Rk

4 Theorem (10.3) : 2 · 2
6 Theorem (10.4) :

(4
2

)
8 Theorem (10.3) : 2 · 4
10

12 Theorem (10.3) : 2 · 6
14

15 Theorem (10.4) :
(6
2

)
16 Theorem (10.3) : 2 · 8

18

20 Theorem (10.4) :
(6
3

)
22

24 Theorem (10.3) : 2 · 12
27

28 Theorem (10.4) :
(8
2

)
30 Theorem (10.3) : 2 · 15
32 Theorem (10.3) : 2 · 16
36 Theorem (10.3) : 6 · 6
40 Theorem (10.3) : 2 · 20

Table 10.1: Graphs used in reductions to DIST2

Table (10.1) contains numbers (below 40) in R2 for which we have been able
to find a graph proving that the number is in R2. One could have hoped that
Theorem (10.3) and (10.4) did describe how to get all possible reductions, but

108 Bibliography

as can be seen in the table this is not the case.
It should be mentioned that the graphs in Table (10.1) are all minimal with

respect to the number of vertices, and thus not necessarily the graphs that come
from the constructions in Theorem (10.3) and (10.4). When looking at the table
one notices that graphs for most equal numbers can be created (the first we
have not been able to create a graph for is 26), and that there are very few odd
numbers. We do not believe this is a coincident and conjecture that 3 6∈ R2.
One could also get the suspicion that there are no primes (except for 2) in R2,
but this is not the case as the 12-cycle C12 has 127 unique legal 2-colourings.

The only numbers below 40 we have been able to prove to lie in R3 are 1, 3,
9, 12 (C5), 27, 36 and 37 (C6). This makes us believe that R3 is much sparser
than R2, but it may also just be an indication that the graphs needed to prove
numbers in R3 are generally larger (and thus more difficult to find and test)
than the ones needed to find numbers in R2.

10.7 Conclusion and open problems

In this paper we have provided a tool for making reductions from DISTl to
DISTk for various values of l and k. We gave some methods for constructing
graphs with certain properties from smaller graphs.

Some of the graphs in Table (10.1) were found by generating all graphs [36]
with at most 10 vertices and calculating the number of unique legal 2-colourings
of each, but this method can of course only give a partial characterisation of
R2. A complete characterisation of R2 (and Rk in general) would be of great
interest. As we conjecture that the method can not be used for reducing DIST3

to DIST2, it would be very interesting to find other methods of reducing, in
order to know whether for every l ≥ 0 DISTl can be reduced to DIST2. Except
when l = 0 or l = 1 all reductions one can obtain with the method presented
in this paper have k ≤ l so it would also be interesting to know if it is possible
to reduce DISTl to DISTk for some values l and k where 1 < l < k.

Acknowledgements

I would like to thank V. Arvind for presenting the problem to me during his
visit at the University of Aarhus and my supervisors Sven Skyum and Peter
Bro Miltersen. I would also like to thank Bolette A. Madsen and Jesper M.
Byskov for many useful discussions and proofreading.

Bibliography

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of
Computer Algorithms. Addison Wesley, 1974.

[2] M. O. Albertson and K. L. Collins. Symmetry breaking in graphs. Elec-
tronic Journal of Combinatorics, 3 (#R18), 1996.

[3] V. Arvind and N. D. R. Symmetry breaking in trees and planar graphs by
vertex coloring. To appear in J. of Algorithms.

[4] S. Baumer and R. Schuler. Improving a probabilistic 3-SAT algorithm
by dynamic search and independent clause pairs. In E. Giunchiglia and
A. Tacchella, editors, Proc. 6th Conf. SAT 2003, volume 2919 of LNCS,
pages 150–161. Springer-Verlag, 2004.

[5] R. Beigel and D. Eppstein. 3-coloring in time O(1.3446n): a no-MIS al-
gorithm. In Proc. 36th Symp. Foundations of Computer Science, pages
444–453. IEEE, Oct. 1995.

[6] R. B. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interac-
tive proofs? Inf. Process. Lett., 25(2):127–132, 1987.

[7] J. M. Byskov. Algorithms for k-colouring and finding maximal independent
sets. In Proc. 14th Symp. Discrete Algorithms, pages 456–457. ACM and
SIAM, Jan. 2003.

[8] J. M. Byskov. Enumerating maximal independent sets with applications to
graph colouring. Operations Research Letters, 32(6):547–556, Nov. 2004.

[9] J. M. Byskov and D. Eppstein. An algorithm for enumerating maximal
bipartite subgraphs. Unpublished, 2004.

[10] J. M. Byskov, B. A. Madsen, and B. Skjernaa. New algorithms for exact
satisfiability. Theoretical Comput. Sci., 2004. To appear.

[11] J. M. Byskov, B. A. Madsen, and B. Skjernaa. On the number of maximal
bipartite subgraphs of a graph. J. Graph Theory, 2004. In press.

[12] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, pages 151–
158. ACM Press, 1971.

109

110 Bibliography

[13] V. Dahllöf, P. Jonsson, and R. Beigel. Algorithms for four variants of the
exact satisfiability problem. Theoretical Comput. Sci., 320(2–3):373–394,
June 2004.

[14] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. H.
Papadimitriou, P. Raghavan, and U. Schöning. A deterministic (2−2/(k+
1))n algorithm for k-SAT based on local search. Theoretical Comput. Sci.,
289(1):69–83, Oct. 2002.

[15] E. Dantsin, A. Goerdt, E. A. Hirsch, and U. Schöning. Deterministic algo-
rithms for k -SAT based on covering codes and local search. In Automata,
Languages and Programming, pages 236–247, 2000.

[16] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, July 1962.

[17] M. Davis and H. Putnam. A computing procedure for quantification theory.
J. ACM, 7(3):201–215, 1960.

[18] L. Drori and D. Peleg. Faster exact solutions for some NP-hard problems.
Theoretical Comput. Sci., 287(2):473–499, Sept. 2002.

[19] D. Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and con-
straint satisfaction. In Proc. 12th Symp. Discrete Algorithms, pages 329–
337. ACM and SIAM, Jan. 2001.

[20] D. Eppstein. Small maximal independent sets and faster exact graph col-
oring. J. Graph Algorithms & Applications, 7(2):131–140, 2003.

[21] S. Fajtlowicz. Written on the wall.

[22] S. Fajtlowicz and S. Skiena. A database of counterexamples to conjectures
by graffiti.

[23] S. S. Fedin and A. S. Kulikov. Automated proofs of upper bounds on the
running time of splitting algorithms. In F. Dehne, R. Downey, and M. Fel-
lows, editors, Proc. Int. Worksh. Parameterized and Exact Computation,
volume 3162 of LNCS. Springer-Verlag, Sept. 2004.

[24] W. Feller. An introduction to Probability Theory and its Applications.
Wiley, New York, 1968.

[25] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation
of search tree algorithms for graph modification problems. Algorithmica,
39(4):321–347, May 2004.

[26] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. Uniform hardness vs. ran-
domness tradeoffs for arthur-merlin games. In Eighteenth Annual IEEE
Conference on Computational Complexity, pages 33–47, 2003.

[27] E. A. Hirsch. New worst-case upper bounds for SAT. J. Autom. Reason.,
24(4):397–420, 2000.

Bibliography 111

[28] E. A. Hirsch and A. S. Kulikov. A 2n/6.15-time algorithm for X3SAT, 2002.

[29] T. Hofmeister, U. Schöning, R. Schuler, and O. Watanabe. A probabilis-
tic 3-sat algorithm further improved. In Proceedings of the 19th Annual
Symposium on Theoretical Aspects of Computer Science, pages 192–202.
Springer-Verlag, 2002.

[30] A. S. Kulikov. An upper bound O(20.16254n) for exact 3-satisfiability: A
simpler proof. Zapiski nauchnyh seminarov POMI, 293:118–128, 2002. En-
glish translation to appear in J. Mathematical Sciences. http://logic.
pdmi.ras.ru/~kulikov/.

[31] O. Kullmann. New methods for 3-SAT decision and worst-case analysis.
Theoretical Comput. Sci., 223(1–2):1–72, July 1999.

[32] O. Kullmann and H. Luckhardt. Deciding propositional tautologies: Algo-
rithms and their complexity, 1997. Available at http://cs-svr1.swan.
ac.uk/~csoliver/tg.ps.gz.

[33] O. Kullmann and H. Luckhardt. Algorithms for SAT/TAUT decision based
on various measures. Preprint, 71 pages, Feb. 1998.

[34] E. L. Lawler. A note on the complexity of the chromatic number problem.
Inf. Process. Lett., 5(3):66–67, Aug. 1976.

[35] B. A. Madsen. Personal communication, 2003.

[36] B. D. McKay. Nauty v. 2.2. Nauty contains a program geng to generate all
graphs with certain properties. It can be found at http://cs.anu.edu.
au/people/bdm/nauty/.

[37] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps.
Discrete Appl. Math., 10:287–295, 1985.

[38] B. Monien, E. Speckenmeyer, and O. Vornberger. Upper bounds for cov-
ering problems. Bericht 7, Universität Paderborn, 1980.

[39] B. Monien, E. Speckenmeyer, and O. Vornberger. Upper bounds for cov-
ering problems. Methods of Operations Research, 43:419–431, 1981.

[40] J. W. Moon and L. Moser. On cliques in graphs. Israel J. Mathematics,
3:23–28, 1965.

[41] S. I. Nikolenko and A. V. Sirotkin. Worst-case upper bounds for SAT:
automated proof. In B. ten Cate, editor, Proc. 8th ESSLLI Student Session,
pages 225–232, Aug. 2003. http://logic.pdmi.ras.ru/~sergey/.

[42] S. Porschen, B. Randerath, and E. Speckenmeyer. Exact 3-satisfiability
is decidable in time O(20.16254). Annals of Mathematics and Artificial
Intelligence, 2004. In press.

[43] F. Rubin. Problem 729. the blind man’s keys. Journal of Recreational
Mathematics, 11(2):128, 1979. (solution in volume 12(2), 1980).

112 Bibliography

[44] A. Russell and R. Sundaram. A note on the asymptotics and computa-
tional complexity of graph distinguishability. Electronic Journal of Com-
binatorics, 5 (#R23), 1998.

[45] T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th
Symp. Theory of Computing, pages 216–226. ACM, 1978.

[46] I. Schiermeyer. Deciding 3-colourability in less than O(1.415n) steps. In
J. van Leeuwen, editor, Proc. 19th Int. Worksh. Graph-Theoretic Con-
cepts in Computer Science, volume 790 of LNCS, pages 177–188. Springer-
Verlag, 1994.

[47] I. Schiermeyer. Fast exact colouring algorithms. Tatra Mountains Mathe-
matical Publications, 9:15–30, 1996.

[48] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfac-
tion problems. In Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science, New York, NY, USA, pages 410–414.
IEEE Press, 1999.

[49] R. Schroeppel and A. Shamir. A T = O(2n/2), S = O(2n/4) algorithm for
certain NP-complete problems. SIAM J. Comput., 10(3):456–464, Aug.
1981.

[50] R. Schuler, U. Schöning, and O. Watanabe. An improved randomized
algorithm for 3-sat. Technical Report TR-C146, Dept. of Mathematical
and Computing Sciences, Tokyo Inst. of Tech., 2001.

[51] U. Schöning. A probabilistic algorithm for k-SAT based on limited local
search and restart. Algorithmica, 32(4):615–623, Jan. 2002.

[52] B. Skjernaa. Automated generation of branching algorithms with upper
bound proofs for variants of SAT. Unpublished, 2004.

[53] B. Skjernaa. Exact Algorithms for Variants of Satisfiability and Colouring
Problems. PhD thesis, University of Aarhus, 2004.

[54] B. Skjernaa. Reductions among graph distinguishability problems. Un-
published, 2004.

[55] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for
generating all the maximal independent sets. SIAM J. Comput., 6(3):505–
517, Sept. 1977.

[56] R. Williams. A new algorithm for optimal constraint satisfaction and its
implications. In Proc. 31st Int. Coll. Automata, Languages and Program-
ming, volume 3142 of LNCS, pages 1227–1237. Springer-Verlag, July 2004.

Recent BRICS Dissertation Series Publications

DS-04-5 Bjarke Skjernaa. Exact Algorithms for Variants of Satisfia-
bility and Colouring Problems. November 2004. PhD thesis.
x+112 pp.

DS-04-4 Jesper Makholm Byskov.Exact Algorithms for Graph Colour-
ing and Exact Satisfiability. November 2004. PhD thesis.

DS-04-3 Jens Groth. Honest Verifier Zero-knowledge Arguments Ap-
plied. October 2004. PhD thesis. x+112 pp.

DS-04-2 Alex Rune Berg. Rigidity of Frameworks and Connectivity of
Graphs. July 2004. PhD thesis. xii+173 pp.

DS-04-1 Bartosz Klin. An Abstract Coalgebraic Approach to Process
Equivalence for Well-Behaved Operational Semantics. May
2004. PhD thesis. x+152 pp.

DS-03-14 Daniele Varacca. Probability, Nondeterminism and Concur-
rency: Two Denotational Models for Probabilistic Computation.
November 2003. PhD thesis. xii+163 pp.

DS-03-13 Mikkel Nygaard. Domain Theory for Concurrency. November
2003. PhD thesis. xiii+161 pp.

DS-03-12 Paulo B. Oliva. Proof Mining in Subsystems of Analysis.
September 2003. PhD thesis. xii+198 pp.

DS-03-11 Maciej Koprowski.Cryptographic Protocols Based on Root Ex-
tracting. August 2003. PhD thesis. xii+138 pp.

DS-03-10 Serge Fehr. Secure Multi-Player Protocols: Fundamentals,
Generality, and Efficiency. August 2003. PhD thesis. xii+125 pp.

DS-03-9 Mads J. Jurik. Extensions to the Paillier Cryptosystem with Ap-
plications to Cryptological Protocols. August 2003. PhD thesis.
xii+117 pp.

DS-03-8 Jesper Buus Nielsen.On Protocol Security in the Cryptographic
Model. August 2003. PhD thesis. xiv+341 pp.

DS-03-7 Mario Jośe Cáccamo.A Formal Calculus for Categories. June
2003. PhD thesis. xiv+151.

DS-03-6 Rasmus K. Ursem. Models for Evolutionary Algorithms and
Their Applications in System Identification and Control Opti-
mization. June 2003. PhD thesis. xiv+183 pp.

