
BRICS
Basic Research in Computer Science

Honest Verifier Zero-knowledge
Arguments Applied

Jens Groth

BRICS Dissertation Series DS-04-3

ISSN 1396-7002 October 2004

B
R

IC
S

D
S

-04-3
J.G

roth:
H

onestVerifier
Z

ero-know
ledge

A
rgum

ents
A

pplied

Copyright c© 2004, Jens Groth.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/04/3/

Honest Verifier Zero-Knowledge
Arguments Applied

Jens Groth

PhD Dissertation

BRICS
Department of Computer Science

University of Aarhus
Denmark

Honest Verifier Zero-Knowledge
Arguments Applied

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Jens Groth
June 6, 2004

Abstract

We apply honest verifier zero-knowledge arguments to cryptographic protocols for
non-malleable commitment, voting, anonymization and group signatures. For the
latter three the random oracle model can be used to make them non-interactive.
Unfortunately, the random oracle model is in some ways unreasonable, we present
techniques to reduce the dependence on it.

Several voting schemes have been suggested in the literature, among them a
class of efficient protocols based on homomorphic threshold encryption. Voters
encrypt their votes, and using the homomorphic property of the cryptosystem we
can get an encryption of the result. A group of authorities now makes a threshold
decryption of this ciphertext to get the result. We have to protect against voters
that cheat by encrypting something that is not a valid vote. We therefore require
that they make a non-interactive zero-knowledge argument of correctness of the
encrypted vote. Using integer-commitments, we suggest efficient honest verifier
zero-knowledge arguments for correctness of a vote, which can be made non-
interactive using the Fiat-Shamir heuristic. We suggest arguments for single-
voting, multi-way voting, approval voting and shareholder voting, going from the
case where the voter has a single vote to the case where a voter may cast millions
of votes at once.

For anonymization purposes, one can use a mix-net. One way to construct
a mix-net is to let a set of mixers take turns in permuting and reencrypting or
decrypting the inputs. If at least one of the mixers is honest, the input data and
the output data can no longer be linked. For this anonymization guarantee to
hold we do need to ensure that all mixers act according to the protocol. For use in
reencrypting mix-nets we suggest an honest verifier zero-knowledge argument of
a correct reencrypting shuffle that can be used with a large class of homomorphic
cryptosystems. For use in decrypting mix-nets, we offer an honest verifier zero-
knowledge argument for a decrypting shuffle.

For any NP-language there exists, based on one-way functions, a 3-move hon-
est verifier zero-knowledge argument. If we pick a suitable hard statement and
a suitable 3-move argument for this statement, we can use the protocol as a
commitment scheme. A commitment to a message is created by using a special
honest verifier zero-knowledge property to simulate an argument with the mes-
sage as challenge. We suggest picking the statement to be proved in a particular

v

way related to a signature scheme, which is secure against known message attack.
This way we can create many commitments that can be trapdoor opened, yet
other commitments chosen by an adversary remain binding. This property is
known as simulation soundness. Simulation soundness implies non-malleability,
so we obtain a non-malleable commitment scheme based on any one-way func-
tion. We also obtain efficient non-malleable commitment schemes based on the
strong RSA assumption.

We investigate the use of honest verifier zero-knowledge arguments in sig-
nature schemes. By carefully selecting the statement to be proven and finding
an efficient protocol, we obtain a group signature scheme that is very efficient
and has only weak set-up assumptions. Security is proved in the random oracle
model. The group signature scheme can be extended to allow for dynamic join of
members, revocation of members and can easily be transformed into a traceable
signature scheme. We observe that traceable signatures can be built from one-
way functions and non-interactive zero-knowledge arguments, which seems to be
weaker than the assumptions needed to build group signatures.

vi

Acknowledgements

The three years of work leading to this dissertation have been tremendously
interesting. I would like to thank advisors, co-authors and others that I have
interacted with.

First, I would like to thank Ivan Damg̊ard for always taking the time to give
sound advice when needed. I owe this dissertation to him; had it not been for his
encouragement I might not even have embarked on this path in the first place.
Tusind tak!

Thanks also go to Gorm Salomonsen for showing me real life project man-
agement and development. He has the ability to come up with clever ideas and
several of the papers I have authored or co-authored are due to our cooperation
on developing a working voting system.

Many other people helped me in one way or another. Moni Naor invited me
to the Weizmann Institute and I had an enjoyable and productive time there; my
only regret is that I could not stay longer. Jan Camenisch worked and is working
with me on group signatures, he has kindly allowed me to include some of his
ideas in the dissertation. Anders Bjarklev much to my surprise actually read and
commented on my quarterly reports to ATV :-).

Students, staff and visitors at BRICS, students at the Weizmann Institute
and coworkers at Cryptomathic have all been friendly and helpful. In particular
I would like to thank Douglas Wikström for cooperation, and Philip MacKenzie,
Felix Brandt, Helger Lipmaa, Berry Schoenmakers, Mads Jurik, Jesper Buus
Nielsen, Serge Fehr, Maciej Koprowski, Saurabh Agarwal, Kristian Gjøsteen,
Kirill Morozov, Alon Rosen, Adi Akavia, Danny Harnik, Eran Ofek, Udi Wieder,
Boaz Barak, Huafei Zhu, Dörte Rappe, Jesùs F. Almansa, Ronald Cramer, Louis
Salvail and Martijn Stam for interesting discussions.

Jens Groth,
Århus, June 6, 2004.

vii

What to Read in this
Dissertation

You are now sitting with the final version of the dissertation that I successfully
defended on October 15, 2004. I was planning to remove some of the typos and
brush it up a little before sending it to print, but have realized that I will most
likely never have the time to do so. Instead I bring you the original dissertation
with this little guide to what to read and not to read.

Chapter 4: Validating Votes. This chapter appears in an updated version
at ACNS 2005 under the title “Non-interactive Zero-knowledge Arguments for
Voting”. My advice is to download the full paper from my homepage instead of
reading this chapter.

Chapter 5: Verifying Shuffles. I am trying to turn this chapter into a full
paper version of [50]. Several changes and simplifications have already been made.
Before reading this chapter you may want to look at my homepage for a newer
version.

Chapter 6: Non-malleable Commitment. This version is more recent than
[27], so I think this is the only chapter I might actually recommend reading.

Chapter 7: Group Signature. Jan Camenisch and I have published the
results presented in this chapter at SCN 2003 [14]. I recommend getting the full
version of that paper from my homepage instead of reading this chapter.

Jens Groth,
Los Angeles, April 6, 2005.

ix

Contents

Abstract v

Acknowledgements vii

What to Read in This Dissertation ix

1 Introduction 1

2 Preliminaries 7
2.1 Notation . 7
2.2 Commitment . 7

2.2.1 Equivocable Commitment 9
2.3 Public Key Encryption . 10

2.3.1 Threshold Encryption . 11
2.4 Signature . 12
2.5 Special Honest Verifier Zero-Knowledge Argument 13

2.5.1 Argument of Knowledge 14
2.5.2 Σ-protocol . 17

2.5.3 The Random Oracle Model 18

3 A Note on Moving from the Random Oracle Model to the Stan-
dard Model 19
3.1 Introduction . 19
3.2 From Random Oracle Zero-Knowledge to Standard Zero-Knowledge 22

3.2.1 Argument of Knowledge 25
3.3 Bare Bones Non-uniform Zero-Knowledge 28

4 Validating Votes 31
4.1 Voting Based on Homomorphic Encryption 31

4.1.1 Single Vote . 33
4.1.2 Multi-way Vote . 40
4.1.3 Approval Voting . 43

4.1.4 Divisible Voting . 45

xi

5 Verifying Shuffles 49
5.1 Introduction . 49
5.2 Shuffle of Known Content . 51
5.3 Shuffle of Ciphertexts . 55

5.3.1 Using Small Integers to Shuffle. 58
5.4 Shuffle and Decryption . 58
5.5 Optimizations . 61
5.6 Multi-exponentiation . 62
5.7 Correctness of a Priority Vote . 63

6 Non-Malleable Commitment 65
6.1 Introduction . 65
6.2 Definitions . 67

6.2.1 Simulation Soundness . 67
6.2.2 Non-malleable Commitment 68
6.2.3 Comparison with Other Definitions of Non-malleability . . 70
6.2.4 Comparison with Non-reusable NM 71

6.3 A Framework for Constructing Non-malleable Commitment 73
6.3.1 A Non-malleable Commitment Scheme 74
6.3.2 Non-malleable Commitment with Randomness Opening . . 77

6.4 Construction of Non-Malleable Commitment Schemes 78
6.4.1 An Implementation Based on any One-Way Function . . . 78
6.4.2 Unconditional Hiding, Unconditional Binding and Uniform

Random String . 79
6.4.3 An Implementation Based on the Strong RSA Assumption 80

6.5 UC Commitment implies Key Exchange or Oblivious Transfer . . 81
6.6 Application to UC Commitment 84

6.6.1 Damg̊ard-Nielsen UC Commitment 84
6.6.2 Improving the Damg̊ard-Nielsen UC Commitment Scheme 85
6.6.3 Security Proof of the UC Commitment Scheme 86

6.7 Open Problems . 88

7 Group Signature 91
7.1 Introduction . 91
7.2 Definitions . 94
7.3 The Basic Group Signature Scheme 96
7.4 Join and Revoke . 103
7.5 Full Revocation . 105
7.6 Separating Full-Anonymity and Anonymity 106
7.7 Conclusion . 110

Bibliography 113

xii

Chapter 1

Introduction

Honest verifier zero-knowledge arguments have many applications in crypto-
graphic protocols. We suggest efficient honest verifier zero-knowledge (HVZK)
arguments for voting, efficient HVZK arguments for shuffling, use HVZK argu-
ment to construct non-malleable commitments, and use HVZK arguments to
construct efficient group signatures.

Honest verifier zero-knowledge arguments. Consider two parties, a prover
and a verifier. They both have input x, and P wants to prove that x ∈ L, where
L is some NP-language. In other words P knows a witness w for x ∈ L, but he
does not want V to obtain anything else than the single bit of information that
x ∈ L.

To accomplish this they may carry out an interactive protocol. Most honest
verifier zero-knowledge protocols in use are efficient 3-move protocols, called Σ-
protocols. The prover sends an initial message a, the verifier chooses a random
challenge e, and the prover sends an answer z. Given (x, a, e, z) the verifier can
now decide whether to accept or reject. A Σ-protocol has the following three
properties.

Completeness: If indeed x ∈ L and the prover knows a witness w, then the
verifier will accept this at the end of the protocol.

Special soundness: Given acceptable arguments (x, a, e, z) and (x, a, e′, z′),
where e 6= e′ we can extract the witness w for x ∈ L.

Special honest verifier zero-knowledge: Given any challenge e we can sim-
ulate an argument (a, e, z) with this challenge, which is indistinguishable
from a real argument with challenge e.

Special soundness implies both standard soundness and knowledge.
It is possible to make a Σ-protocol non-interactive through the Fiat-Shamir

heuristic. Instead of letting the verifier choose the challenge, we compute e =
hash(x, a). This way the verifier need not be involved at all, the argument is

1

2 Chapter 1. Introduction

non-interactive. We can hope that the argument is still sound and that it does
not reveal any useful information. This hope is expressed in the random oracle
model, a heuristic model where we in security proofs replace the hash-function
with a random oracle. The random oracle assigns to each input (x, a) a random
string e. Furthermore, to argue zero-knowledge we let the simulator program the
random oracle, i.e., the simulator can choose an e to assign to some specific input
(x, a).

Most of the honest verifier zero-knowledge arguments we suggest in this dis-
sertation are Σ-protocols. For shuffling, we do use a 7-move argument though,
and in some cases we do not have the special soundness property. We therefore
define more carefully the notion of an argument of knowledge and the class of
honest verifier zero-knowledge arguments that we are investigating in Chapter 2.

NIZK arguments in voting. In voting we have the seemingly conflicting
requirements of keeping votes secret and at the same time having to count them.
Cramer, Gennaro and Schoenmakers [23] suggest using a homomorphic threshold
cryptosystem to solve this problem. Suppose we consider yes/no-voting, the
voter can then encrypt 1 to vote yes and encrypt 0 to vote no. The homomorphic
property of the cryptosystem states that

Epk(m1 + m2) = Epk(m1)Epk(m2).

Taking the product of all encrypted votes, we get an encryption of the sum of
all votes, i.e., an encryption of the number of yes-votes. We now let a group
of authorities hold a secret sharing of the decryption key for the cryptosystem.
They can use multi-party computation to decrypt the ciphertext and get the
result. We can therefore count the votes if a large enough group of authorities
cooperate, on the other hand no individual vote is revealed if a large enough
group of authorities is honest and does not participate in a decryption protocol
for an individual voter’s ciphertext.

A major problem to resolve in the protocol suggested above is to ensure that
voters do not send in invalid ballots. Suppose a voter sends in Epk(100), then
effectively he has cast a 100 yes-votes. To avoid this kind of attack we demand
that a voter forms a NIZK argument for his ciphertext c containing a valid vote.
General NIZK arguments [38, 56] are very inefficient so in practice we use the
Fiat-Shamir heuristic to make an HVZK argument for the correctness of a vote
non-interactive. We can then argue security in the random oracle model. More
precisely we can show that this type of voting scheme realizes an ideal voting
functionality in the universal composability framework, see [51] for details.

Voting is a touchy subject and we may want to guarantee secrecy of ballots
many years into the future. This means that we have to select very large key
sizes. Carrying out the encryption of the vote itself can therefore be a heavy com-
putation. HVZK arguments for correctness of a vote suggested in [23, 7, 29, 31]

3

rely on the use of multiple encryptions of intermediate values too. The overhead
stemming from the HVZK argument is therefore considerable. Lipmaa, Asokan
and Niemi [59] suggest a more efficient HVZK argument that uses integer com-
mitments instead of encryptions. The advantage is two-fold: A commitment only
has to be computationally binding it can be much smaller than the committed
integer and computationally easier to handle. Since we commit to integers, we
can also take advantage of special properties of the integers, among them the
property that any integer has a unique prime factorization.

In [28] we also use integer commitments for the HVZK arguments of correct-
ness of a vote. [59] use among other things an HVZK argument of a committed
integer being positive, we are able to avoid this argument since we ensure that
any valid vote is a square and thereby automatically positive. Another contribu-
tion of [28] is efficient HVZK arguments for multi-way voting, where each voter
may cast a specified number of votes. In this dissertation, we improve on this
HVZK argument.

Different types of elections exist. In approval voting each voter can vote for
as many of the candidates as he likes. We suggest an HVZK argument for this
kind of election too. Some elections allow weighted votes, the voter orders the
candidates in order of preference and gives 0 votes to the worst candidate, 1 vote
to the second worst, etc. Interestingly, the techniques we use for shuffling allow
us to make an efficient HVZK argument in this kind of election.

In shareholder elections, each voter may have many shares and thus many
votes to cast. If a voter has a million shares, it would be inconvenient to cast a
million single-votes and it would also be inconvenient to use our multi-way HVZK
argument. Ishida, Matsuo and Ogata [53] suggest the notion of divisible voting,
meaning that the voter can divide his million votes one several candidates. Their
scheme does not take advantage of integer commitments though, we suggest a
significantly more efficient scheme for this type of election.

HVZK argument for correctness of a shuffle. Suppose we have a ho-
momorphic cryptosystem, for instance ElGamal encryption. The homomorphic
property means that we can rerandomize a ciphertext. Given a ciphertext c we
can create a new ciphertext C ← Epk(0)c. Now C contains the same plaintext as
c, however this fact may be hard to verify for an outsider. Indeed shuffling builds
on the hardness of linking rerandomized ciphertexts to the original ciphertexts.

In a shuffle, we get as input a set of ciphertexts c1, . . . , cn. We select
a permutation π ∈ Σn at random. We compute a new set of ciphertexts
C1 ← cπ(1)Epk(0), . . . , Cn ← cπ(n)Epk(0). We say c1, . . . , cn have been shuffled
into C1, . . . , Cn. Using a suitable homomorphic cryptosystem for this purpose,
an external party will have no clue about the permutation π that has been used.

Shuffles constitute a building block in many mix-nets. The idea is that a
group of mixers wants to shuffle a set of ciphertexts. To do this they take turns

4 Chapter 1. Introduction

in shuffling the ciphertexts. When the last mixer finishes, we have a shuffle of the
input ciphertexts if all mixers follow the protocol. Furthermore, if at least one of
the mixers is honest and does not reveal the permutation he has used, then the
permutation in the entire mix is secret.

This type of mix-net requires that indeed the parties follow the protocol,
otherwise many attacks exist. HVZK arguments for correctness of a shuffle have
been suggested in [44, 66, 50]. We use techniques related to the latter paper but
are able to obtain a considerable reduction in the size of the HVZK argument.

In a decrypting mix-net, the mixers must both shuffle and decrypt the in-
coming ciphertexts. In the case of ElGamal encryption, a method would be the
following. The mixers share the secret key. Each mixer performs a shuffle of the
ciphertexts and subsequently makes a partial decryption according to its share of
the decryption key. With the fast shuffle arguments mentioned above, the relative
cost of making the decryption argument is significant. [43, 42] therefore propose
arguments that prove directly a correct relation between input ciphertexts and
output shuffled and partially decrypted ciphertexts. Unfortunately, these argu-
ments are not zero-knowledge. We suggest modifying our HVZK shuffle argument
to an HVZK shuffle-and-decrypt argument at virtually no loss of efficiency.

Our approach is very general, we can make HVZK arguments for correct
shuffles for almost any type of homomorphic encryption when we know the order
of the message space. We do suggest a method that can be used also for message
spaces of unknown order and which gives an advantage when using large message
space. The size of this type of HVZK argument is independent of the order of
the message space that we are shuffling.

Non-malleable commitments. Consider the case of fair contract bidding.
Each bidder commits to his bid. When everybody has made a commitment, the
bidders open their commitments and we can determine the winner. Unfortunately
this scheme does not always work. Many commitment schemes are malleable,
seeing the commitment of one party we may make a commitment to a related
value. For instance, if party A bids m then party B may bid to m−1. At the time
of making the commitment B does not know exactly what he bid, however, when
A opens his commitment to m, party B can use this information and open his own
commitment to m − 1. To prevent this kind of attack we can use non-malleable
commitment schemes.

Non-malleability was first introduced in [37]. Essentially the definition com-
pares two protocols and non-malleability is when the adversary cannot gain an
advantage in a man-in-the-middle attack. [37] also suggested an interactive non-
malleable commitment scheme. A few other interactive non-malleable commit-
ment schemes have been suggested [41, 4]. We focus on non-interactive commit-
ment schemes. A non-malleable cryptosystem can often serve as an uncondition-
ally binding non-malleable commitment scheme too. Better options may exist

5

though, both in term of assumptions and efficiency. [35] suggest a non-malleable
commitment scheme based on one-way functions, and [36] suggest an uncondi-
tionally hiding commitment scheme based on a DDH assumption. Both these
latter schemes only give non-malleability in the case where the adversary sees
a single commitment though. In [27], which this dissertation builds upon, we
obtain a scheme which is non-malleable in the case where the adversary sees an
unbounded number of inputs. Actually we present a general construction of a
commitment scheme based on HVZK arguments, which can either be instantiated
using the minimal assumption of one-way functions, or be instantiated efficiently
using stronger assumption, for instance the strong RSA assumption. Indepen-
dently of this work [45, 61] have suggested the related notion of simulation sound
commitments, which implies non-malleability. They use similar techniques to
construct simulation sound commitments. Finally, we should mention the notion
of universally composable commitments [18, 21], which imply non-malleability.
Constructions of these commitments rely on both strong assumptions and are
not so efficient. [32] suggest an interactive universally composable commitment
scheme, it turns out that we can actually apply our non-malleable commitment
scheme to improve their scheme.

Let us describe how this problem has any relation with HVZK arguments.
Consider a hard membership problem x ∈ L. Consider furthermore a Σ-protocol
for membership of this language. It is possible to use this Σ-protocol to make
a commitment. To commit to message m we use the special honest verifier
zero-knowledge property to simulate an argument (a, m, z) for x ∈ L. The com-
mitment consists of (x, a), while we open the commitment by showing (m, z).
The commitment scheme is binding, because if we could open the commitment
to two different messages m, m′, then the special soundness property means that
we can compute a witness w for x ∈ L, which we assumed was a hard language.
On the other hand, it is hiding because just seeing a gives us no clue about which
message m we can answer correctly.

If we select the problem x with care we actually get a reusable non-malleable
commitment scheme. The main idea is to pick it such that the witness for x
is a signature on x. If the signature scheme we choose is secure against known
message attack, we can actually make many different commitments with different
x’s and the problem of finding a signature on a new x will still be hard. We force
the adversary to use a new x when it makes its commitments, and therefore the
adversary’s commitments are binding. They are binding even though we can set
it up such that we know signatures on the x’s of the input and thus can open
those commitments to any message we like. Using rewinding techniques, it is
now simple to extract from the adversary the contents of its commitments.

We find this application of an HVZK argument interesting because here we
do not use the random oracle model to make it non-interactive, something that
we do or at least can do in the other applications in this dissertation.

6 Chapter 1. Introduction

Group signatures from HVZK arguments. The Fiat-Shamir heuristic [39]
was introduced to transform an HVZK argument into a signature scheme. There
is thus a clear link between HVZK arguments and signatures.

We shall look at a complex type of signature scheme, namely a group sig-
nature scheme. A group signature scheme allows members to make signatures
on behalf of the group. such a group signature only shows that somebody from
the group signed the message, not which member of the group actually made
the signature. One reason to use group signatures can be to hide organizational
structure, consider for instance an intelligence agency that does want to ensure
integrity of the information it is getting, however, does not want the enemy to be
able to associate data with particular agents. In special cases of abuse, however,
we want to be able to find out who signed a particular message. Consider for
instance a double agent that continuously supplies false information, we want to
be able to identify that agent and “silence” him. For this purpose, we have a
group manager that holds a master key that allows him to open signatures and
see who actually signed the message. We may require also that the group signa-
ture is dynamic, i.e., the group manager can let new members join and/or revoke
memberships.

To create such a signature scheme we set up a problem x such that only a
member of the group can know the witness w. A group signature then consists of
an HVK argument of knowledge of w. We make this argument non-interactive by
selecting the challenge e = hash(x, a, m), where m is the message that we want
to sign. Let us briefly describe the kind of problem x that the member needs to
make a group signature. It must be a problem that can be randomized such that
x itself does not reveal the identity of the signer. Typically, this is done using
encryption, so the problem is of the nature: “I know that x is an encryption
of...”. The plaintext must also be of a special nature. We want two things from
it: It should contain something known only to the signer, to avoid that the group
manager or somebody else frames the member by making a signature in his name.
It should also contain something that ties the connection with the group. In our
scheme, this is a digital signature created by the group manager. Finally, the
two components must be connected in some way, otherwise a member could start
issuing keys himself.

Several group signature schemes have been suggested in the literature, the
most efficient being [1]. In [15] we suggest a more efficient group signature scheme
using a new type of membership problem x and an efficient HVZK argument for
it. We prove security according to the [10] model but also note that our group
signature has several additional nice properties not covered by this definition. In
particular, we support dynamically joining new members, revocation of member-
ship and can transform it into a traceable signature scheme.

Chapter 2

Preliminaries

2.1 Notation

Unless otherwise noted the algorithms and adversaries we consider are modeled as
probabilistic polynomial time Turing machines or interactive probabilistic poly-
nomial time Turing machines. In general they get a security parameter 1k as
input, however, we will usually not write this explicitly. Whenever we speak of
an adversary or a distinguisher unless otherwise stated they get an auxiliary in-
put that is bounded by some polynomial in the security parameter. This makes
them non-uniform. Also this input we will usually not state explicitly.

A function f of the security parameter is called negligible if for any c > 0
there is a K > 0 so for all k > K we have f(k) < k−c. On occasion, we will just
write negl(k) for some function that is negligible. If we have two functions f, g
we write f(k) ≈ g(k) if |f(k) − g(k)| < negl(k). We call a function that is not
negligible for noticeable.

2.2 Commitment

A commitment scheme consists of a key generation algorithm K, a commitment
algorithm com and a decommitment algorithm dec. The key generation algorithm
produces a public key pk, which specifies a message space Mpk, a randomizer
spaceRpk, an opening space or decommitment space Dpk and a commitment space
Cpk. These may be included in larger spaces Dpk ⊂ QDpk,Rpk ⊂ QRpk, Cpk ⊂
QCpk.

We require that the commitment is hiding and binding.

Hiding: For all adversaries A, we have

Pr[pk ← K(); (m0, m1)← A(pk); (c, d)← compk(m0) : A(c) = 1]

≈ Pr[pk ← K(); (m0, m1)← A(pk); (c, d)← compk(m1) : A(c) = 1].

7

8 Chapter 2. Preliminaries

Binding: For all adversaries A, we have

Pr[pk ← K(); (c, d1, d2)← A(pk); m1 ← decpk(c, d1);

m2 ← decpk(c, d2) :⊥6= m1 6= m2 6=⊥] ≈ 0.

We say the commitment scheme is unconditionally hiding or unconditionally bind-
ing if A is unbounded in the respective experiment.

Randomness revealing commitments. In many cases, the opening of a com-
mitment d consists of the message that we committed to and the randomness we
used. I.e., d = (m, r) ∈Mpk×Rpk. We call a commitment randomness revealing
if the decommitment information is on this form.

Homomorphic property. We say a randomness revealing commitment
scheme is homomorphic if the message space, the randomizer space and the com-
mitment space are abelian groups and

∀(m1, r1), (m2, r2) ∈Mpk ×Rpk :

compk(m1 + m2; r1 + r2) = compk(m1; r1)compk(m2; r2).

Root extraction property. Let abelian groups Rpk ≤ QRpk and Cpk ≤ QCpk

be associated with the public key. We demand that also with respect to these
groups the homomorphic property, as well as the hiding and binding property
holds.

A homomorphic commitment scheme may have the following root extraction
property. There exists and extractor E such that for all adversaries A we have

Pr[pk ← K(); (c, e, M, R)← A(pk); (m, r)← E(c, e, M, R) :

if c ∈ QCpk, M ∈Mpk, R ∈ Rpk, gcd(e, |Cpk|) = 1,

ce = compk(M ; R) then c = compk(m; r)] ≈ 1.

We call an element c ∈ QCpk a quasi-commitment, and (m, r) ∈Mpk×QRpk

a quasi-opening.

Example. Consider a Pedersen commitment with q, p being primes so that
q|p− 1. We have a group Gq ≤ Z

∗
p of order q, and select two random generators

for this group, g, h. We useM(p,q,g,h) = R(p,q,g,h) = Zq and Cpk = Gq. To commit
to m we pick r ∈ Zq at random and compute c = com(m; r) = gmhr mod p. The
opening is d = (m, r). To open c we simply check whether c = com(m; r) and in
that case output m.

To formulate the root extraction property we consider QCpk = Z
∗
p andQRpk =

Zq×Z
∗
p/Gq. Given e which is prime to q and an element c ∈ Z

∗
p, M ∈ Zq, R ∈ Zq so

ce = gMhR mod p, we get c = agmhr, where m = Me−1 mod q, r = Re−1 mod q
and ae = 1 mod p, which shows that a ∈ Z

∗
p/Gq.

2.2. Commitment 9

Example. Consider n = pq where p, q are safe primes with p′|p−1 and q′|q−1.
Reasonable sizes would be |p| = |q| = 512. The public key consists of (n, g, h)
where g, h are randomly chosen generators of QRn. The message space is Z and
the randomizer space is Z×{−1, 1}. To commit to an integer m with randomness
(r, b) we compute c = bgmhr mod n. To open c we simply reveal d = (m, (r, b)).
The commitment scheme is obviously homomorphic and randomness revealing.
The hiding property, the binding property and the root extraction property have
been proved in [26].

Multi-commitment. Quite often, we need to commit to many elements at
once. In the examples above, this is simple. If we have keys g1, . . . , gn, h, we can
let a commitment be computed as gm1

1 · · · gmn
n hr mod p for the Pedersen com-

mitment. We could of course do something similar with respect to the integer
commitment scheme. Of course, this can just be seen as a homomorphic com-
mitment with message space Zq × · · · × Zq. We shall sometimes call such a
commitment a multi-commitment, and we write c ← mcompk(m1, . . . , mn) for a
commitment to n elements.

2.2.1 Equivocable Commitment

Equivocable commitment schemes, also known as trapdoor commitments, are a
special type of commitment schemes where we can generate the public key in a
special way getting some equivocation information about the public key. This
extra information, the equivocation key, allows us to violate the binding property.
With it we are able to generate commitments that we can open as containing any
message we wish, without the adversary being able to notice the deceit.

We generate the public key and the equivocation key ek using a modified key
generator K̂. We create an equivocable commitment by running an algorithm
ĉompk on ek. This produces a commitment c and some associated equivocation
information e. We open c as containing any message m ∈ Mpk by running
equivpk,ek(c, e, m).

Definition 2.1 We say the commitment scheme is equivocable if for any distin-
guisher D we have

Pr[(pk, ek)← K̂() : D
bO(pk) = 1]

< Pr[pk ← K() : DO(pk) = 1] + negl(k).

Here the oracles are the following

• Ô on query m ∈ Mpk returns (c, d), where (c, e) ← ĉompk(ek) and d ←
equivpk,ek(c, e, m).

• O on query m ∈Mpk returns (c, d)← compk(m).

10 Chapter 2. Preliminaries

There are several ways to strengthen the notion of equivocability. We could
for instance require that the distributions of public keys are identical, not just
indistinguishable. Another strengthening would be to require that we can equiv-
ocate using just the equivocation information produced by K̂, i.e., that we do
not need e at all.

2.3 Public Key Encryption

A public key cryptosystem is a triple of algorithms (K, E, D). K is the key gener-
ation algorithm producing a public key pk and a secret key sk. We associate with
the public key a message space Mpk, a randomizer space Rpk and a ciphertext
space Cpk such that

Pr[(pk, sk)← K() : Pr[∀(m, r) ∈Mpk ×Rpk : Dsk(Epk(m; r)) = m]] ≈ 1.

We assume there is a probability distribution associated with Rpk and write
E ← Epk(m) for the process r ← Rpk; E = Epk(m; r).

A public key cryptosystem can be seen as a commitment scheme with an
extraction property. The hiding property of a commitment scheme is usually
called semantic security when we talk about cryptosystems.

We will give a couple of examples of homomorphic cryptosystems with root
extraction.

Example. Let q, p be primes as in the Pedersen commitment scheme. The
message space is Gq, the randomizer space is Zq and the ciphertext space is
Gq ×Gq.

The key generation algorithm outputs two generators g, h for Gq such that
h = gx mod p. The public key is pk = (p, q, g, h) and the secret key is sk = x.
To encrypt a message we compute c = (u, v) = (gr mod p, hrm mod p). The
decryption algorithm outputs m = vu−x mod p.

We define QR(p,q,g,h) = Zq ×Z
∗
p/Gq ×Z

∗
p/Gq and QC(p,q,g,h) = Z

∗
p×Z

∗
p. Given

e which is coprime to q and c ∈ QC(p,q,g,h), R ∈ Zq, M ∈ Gq so ce = (gR mod
p, hRM mod p) we can compute m, r so R = er mod q and M = me mod p. We
then have c = (agr mod p, bhr mod p), where be = ae = 1 mod p, i.e., a, b ∈
Z
∗
p/Gq.

Example. We take the following example of a semantically secure homomor-
phic cryptosystem with root extraction from [30].

Key generation: Choose n = pq = (2p′ + 1)(2q′ + 1) as a product of two safe
primes and let s be a small number. Let g be a generator of QRn and select
h = gnsx mod ns+1 for x chosen at random in Zn.

2.3. Public Key Encryption 11

The public key is pk = (n, s, g, h), the secret key is sk = x.

The message space is Mpk = Zns , the randomizer space is Rpk = Z ×
{−1, 1} × {−1, 1} and the ciphertext space is Zn × Zns+1 .

Encryption: To encrypt m with randomness (r, b0, b1) compute c = (u, v) =
E(n,s,g,h)(m; r, b0, b1) = (b0g

r mod ns+1, b1h
r(1 + n)m mod ns+1). We asso-

ciate the following randomness distribution with Rpk: Pick r as a random
|n|/2-bit integer and use (r, 1, 1) as the randomizer when encrypting.

Decryption: To decrypt ciphertext c ∈ C(n,s,g,h) compute (1 + n)2m =
(vu−x)2 mod ns+1. Computing the discrete logarithm 2m base 1 + n is
easy [29, 70] and then we can output m. If anything fails, output ⊥.

Semantic security of the scheme follows from the DDH assumption in QRn and
the DCR assumption [30]. It is obvious that the cryptosystem has a homomorphic
property. Left is to argue that it has the root extraction property. Suppose the
adversary has generated ce = (ue mod n, ve mod ns+1) = (±gR mod n,±hR(1 +
n)M mod ns+1) for some e coprime to n. Define m = Me−1 mod ns. Furthermore,
from u2e = g2R mod n we get from the strong RSA assumption, see Lemma 7.2,
that R = er. We conclude that (u, v) = (±gr mod n,±hr(1 + n)m mod ns+1).

2.3.1 Threshold Encryption

In a (t, N)-threshold cryptosystem we have N authorities that each get a share of
the secret key. We require that the semantic security property holds even against
an adversary that knows t of the secret shares. On the other hand, t + 1 of the
authorities may run a multi-party computation protocol to decrypt ciphertexts.

Key generation: The key generation algorithm produces N secret shares
sk1, . . . , skN .

Threshold decryption: To decrypt a ciphertext c the authorities compute de-
cryption shares ds1, . . . , dsN . Given just t+1 correctly computed decryption
shares we can extract the plaintext.

Simulated threshold decryption: Given a ciphertext c, a plaintext m, and
t secret shares we can run a simulation algorithm S to get simulated de-
cryption shares for all the remaining authorities that makes it look like c
decrypts to m.

[30] also suggest a threshold version of their cryptosystem.

Key generation: Select n = pq = (2p′ + 1)(2q′ + 1) as a product of two large
random safe primes of equal length. Let s be a small integer. Choose
g as a generator of QRn, for instance choose g = 4. Define ∆ = N !.

12 Chapter 2. Preliminaries

Choose x ∈ Zp′q′ at random and let h = g4∆2ns
mod ns+1. Choose at

random a polynomial f ∈ Zp′q′[X] of degree t such that f(0) = x. Let the
secret shares be s1 = f(1), . . . , sN = f(N). Let the verification keys be
vk1 = gs1 mod n, . . . , vkN = gsN mod n.

The public key is pk = (n, s, g, h, vk1, . . . , vkN), while the secret keys are
sk1 = s1, . . . , skN = sN . The message space, randomizer space and cipher-
text space is as before.

Encryption: Encryption works as in the basic scheme.

Decryption share: Given a ciphertext (u, v) = Epk(m; (r, 1, 1)) we can compute
the decryption share dsi = u2∆si mod n. In addition, the decryption share
may contain a non-interactive zero-knowledge argument that dsj has been
computed correctly. This is an argument that logg(vki) = logu4∆(ds2

i).

Combining shares: Given a ciphertext (u, v) and a set S of t + 1 indices such
that for i ∈ S we have dsi is a correctly computed decryption share, we can
combine them to obtain the plaintext using Lagrange interpolation.

We compute

d =
∏
i∈S

ds
2λS

i
i = u4∆2x mod n, where λS

i =
∏

j∈S\{i}
∆

j

j − i
.

We now have (vd−ns
)2 = (1 + n)2m mod ns+1. From this we can find m.

2.4 Signature

A signature scheme is a triple of algorithms (K, S, V). K is the key generation
algorithm, which outputs a verification key vk and a signing key sk. We associate
a message space Mvk, a randomizer space Rvk and a signature space Svk with
the verification key.

We require the following correctness property for all adversaries A,

Pr[(vk, sk)← K(); (m, r)← A(sk, vk); s← Ssk(m; r) :

(m, r) /∈Mvk ×Rpk or Vvk(m, s) = 1],

where we demand that A does not output a message m that the oracle has signed.
We define security against existential forgery under various attacks by de-

manding that for all adversaries A, we have

Pr[(vk, sk)← K(); (m, s)← AO(vk) : Vvk(m, s) = 0] ≈ 1,

with the oracle and adversary further specified below.

2.5. Special Honest Verifier Zero-Knowledge Argument 13

Known/Chosen message attack: In a chosen message attack, A can input
messages to the oracle and get back signatures on those messages. In a
known message attack, A does not choose the messages. Instead, we have a
message generator M that outputs messages. We run (m, h)← M(vk); s←
Ssk(m) and return (m, h, s) to A. Here h represents some history about the
message m.

Strong signatures: We can strengthen the definition of a signature scheme by
allowing A to output a message m that the oracle has signed but just
demanding that the signature on m has not been generated by the oracle.

One-time signature: We call it a one-time signature scheme if we restrict A
to only make one query to the oracle.

Let us give an example of a strong signature scheme that is secure against
chosen message attack from [77].

Key generation: Pick n = pq as a product of two safe primes. Pick at random
a, g, h ∈ QRn.

The verification key is vk = (n, a, g, h), while the secret key is sk = (p, q).

Signing: To sign a message m ∈ (−2`m; 2`m) we pick at random a `m + 2-bit
prime e. Choose at random r ∈ Ze and compute y = (agmhr)e−1

mod n.

The signature is s = (y, e, r).

Verification: To verify signature s = (y, e, r) on m first check whether e is
an odd t + 1-bit number and that r ∈ Ze. Next check that indeed ye =
agmhr mod n.

2.5 Special Honest Verifier Zero-Knowledge Ar-

gument

Consider a pair of interactive algorithms (P, V) called the prover and the veri-
fier. They may have access to a common reference string σ generated by a key
generation algorithm Σ. We consider a relation R that can be evaluated in poly-
nomial time and which may depend on σ. For an element x we call w a witness
if (σ, x, w) ∈ R. We define a corresponding language Lσ consisting of elements
that have a witness. If σ is the empty string, this is of course the standard defi-
nition of an NP-language. We write view ←< P (x), V (y) > for the public view
produced by P and V when interacting on inputs x and y. This view ends with
V either accepting or rejecting. We sometimes shorten the notation by saying
< P (x), V (y) >= b if V ends by accepting b = 1 or rejecting b = 0.

14 Chapter 2. Preliminaries

Definition 2.2 (Argument) The triple (K, P, V) is called an argument for re-
lation R if for all adversaries A it has the following properties

Completeness:

Pr[σ ← K(); (x, w)← A(σ) :

(σ, x, w) /∈ R or < P (σ, x, w), V (σ, x) >= 1] ≈ 1.

Soundness: Pr[σ ← K(); x← A(σ) : x /∈ Lσ and < A, V (σ, x) >= 1] ≈ 0.

We define special honest verifier zero-knowledge in the following way. We
restrict the verifier to a public coin verifier that generates the challenges oblivi-
ously of the inputs it receives. We define special honest verifier zero-knowledge
as the ability to simulate the view with any set of challenges produced by V , but
without access to the witness.

Definition 2.3 (Special honest verifier zero-knowledge) The quadruple
(K, P, V, S) is called a special honest verifier zero-knowledge argument for R if
for all adversaries A we have

Pr[σ ← K(); (x, w, s)← A(σ); view←< P (σ, x, w), V (σ, x) >:

D(σ, x, view) = 1]

≈ Pr[σ ← K(); (x, w, s)← A(σ); challenges← V (σ, x);

view← S(σ, x, challenges) : D(σ, x, view) = 1],

where require that A does indeed produce (x, w) so (σ, x, w) ∈ R and that S must
use the challenges produced by V when generating the view.

The definition can be strengthened to say that we can simulate given any set of
challenges, not just challenges generated by V . Most of the SHVZK arguments
that we know of actually have this stronger SHVZK property.

2.5.1 Argument of Knowledge

Witness-extended emulation. The standard definition of a system for proof
of knowledge does not work in our setting since we set up some public keys before
making the argument of knowledge. Therefore, a cheating prover may have non-
zero probability of computing some trapdoor from the public keys and use that
information in the argument. In this case, it may be impossible to extract a
witness. But the standard definition calls for 100% probability of extracting the
witness.

We shall define an argument knowledge through what we call witness-extended
emulation, inspired by the eponymous notion in [57]. This definition says that
given an adversary that produces a argument with some probability, there exists

2.5. Special Honest Verifier Zero-Knowledge Argument 15

an extractor that produces a similar argument but also extracts a witness from the
prover with almost the same probability. A strategy for proving security under
this notion is to run the adversary and see if it produces an acceptable argument.
In case it does produce an acceptable argument, we then use rewinding techniques
to extract the witness.

Definition 2.4 (Witness extended emulation) We say the argument has
witness-extended emulation for all deterministic polynomial time P ∗ there ex-
ists an expected polynomial time emulator E such that for all adversaries A and
distinguishers D we have

Pr[σ ← K(); (x, s, h)← A(σ); view←< P ∗(σ, x, s), V (σ, x) >:

D(view, h) = 1]

≈ Pr[σ ← K(); (x, s, h)← A(σ); (view, w)← E(σ, x, s) :

D(view, h) = 1 and (if view is accepting then (σ, x, w) ∈ R)].

Some remarks on the definition are in place. We think of s as being the state of
P ∗, including the randomness. Then we have an argument of knowledge in the
sense that from this state s and the public data σ, x the emulator should be able
to extract a witness whenever P ∗ is able to make a convincing argument. This
shows that the definition implies soundness.

We let the statement x be generated by an adversary A. The string h is the
history of this generation, i.e., it is quite possible that some auxiliary information
about x is made public or otherwise known to somebody. We give this h to the
distinguisher D. The emulator E must produce a correct looking view, and
even with knowledge of h should it be impossible for the distinguisher to tell the
difference.

A generalization of the definition would allow for a different kind of key gen-
erator K̂ in the second probability that also generated a secret key. In that case
we can make straight-line extraction of the witness and E can be independent
P∗. This is the definition in [45]. A possible restriction is to demand that E
runs in polynomial time, using techniques of Barak [4] it is actually possible to
make strict polynomial time extraction. If we remove the key generation step, we
actually have the definition of a proof of knowledge that is presented in [4]. In
comparison with the witness-extended emulation definition [57], our definition is
weaker, since we do not demand that the distribution of the prover’s view is iden-
tical to the distribution of the view produced by E. In the construction we use
it is actually the case that the two views are perfectly indistinguishable though.
The usual definition of an argument of knowledge uses a black-box simulator with
oracle access to P ∗. In the constructions, we provide in the following we actually
prove this stronger statement of black-box emulation.

Damg̊ard and Fujisaki [26] have also suggested a definition of argument of
knowledge in the presence of a public key. Their definition is a black-box def-

16 Chapter 2. Preliminaries

inition. In the following, we will sketch a proof that our definition of witness-
extended emulation implies their definition of argument of knowledge. We start
by restating their definition using our own notation.

Definition 2.5 (Knowledge soundness) A protocol (P, V) with the knowledge
completeness property1 is called a computationally convincing argument of knowl-
edge for the ternary relation R with knowledge error κ(k) and failure probability
ν(k) if there is a polynomial p(k) and a probabilistic machine M such that for
all deterministic polynomial time provers P ∗ and all probabilistic polynomial time
adversaries A we have

Pr[σ ← K(); (x, s)← A(σ) : εP ∗(σ, x, s) > κ(k) and the expected

running time of MP ∗(σ,x,s)(σ, x) is larger than
p(k)

εP ∗(σ, x, s)− κ(k)
] < ν(k),

where εP ∗(σ, x, s) is the probability that P ∗(σ, x, s) makes an honest verifier accept
on input σ, x, and we define the running time of MP ∗(σ,x,s)(σ, x) to be ∞ if there
is non-zero probability that it does not output a witness w such that (σ, x, w) ∈ R.

Theorem 2.1 An argument with black-box witness-extended emulation for
ternary relation R is knowledge sound with negligible knowledge error and negli-
gible failure probability.

Sketch of Proof. First we argue as in the proof of Theorem 4.2 from [8] that
Theorem 3.7 of [8] shows that black-box witness extended emulation implies
that there exists a negligible function δ(k) and an emulator E such that for
all deterministic polynomial time P ∗ we have EP ∗

runs in expected polynomial
time and for all adversaries A and distinguishers D we have

Pr[σ ← K(); (x, s, h)← A(σ); view←< P ∗(σ, x, s), V (σ, x) >:

D(view, h) = 1]

− Pr[σ ← K(); (x, s, h)← A(σ); (view, w)← EP ∗(σ,x,s)(σ, x) :

D(view, h) = 1 and if view is accepting then (σ, x, w) ∈ R)] < δ(k)

Setting D to be an algorithm that outputs 1 if and only if view shows that
the verifier accepts we have

Pr[σ ← K(); (x, s, h)← A(σ) : P ∗(σ, x, s) makes V (σ, x) accept]

− Pr[σ ← K(); (x, s, h)← A(σ) : (view, w)← EP ∗(σ,x,s)(σ, x) :

view is accepting and (σ, x, w) ∈ R)] < δ(k)

We ignore the h in the output of A since it is not used. We can also let E test
itself whether the view it produces is accepting or not. If it is not accepting then

1See [26] for their straightforward definition of knowledge completeness.

2.5. Special Honest Verifier Zero-Knowledge Argument 17

it simply outputs w =⊥. We can now ignore this part of the output. Writing out
the probabilities, we get∑

σ,x,s

Pr[Σ← K(); (X, S)← A(Σ) : Σ = σ, X = x, S = s] · εP ∗(σ, x, s)

−
∑
σ,x,s

Pr[Σ← K(); (X, S)← A(Σ) : Σ = σ, X = x, S = s] ·

Pr[w ← EP ∗(σ,x,s)(σ, x) : (σ, x, w) ∈ R)] < δ(k)

Defining κ(k) = ν(k) =
√

δ(k) and α(σ, x, s) = Pr[Σ← K(); (X, S)← A(Σ) :
Σ = σ, X = x, S = s] and φ(σ, x, s) = Pr[w ← EP ∗(σ,x,s)(σ, x) : (σ, x, w) ∈ R)] we
have ∑

σ,x,s:εP∗(σ,x,s)−φ(σ,x,s)>κ(k)

α(σ, x, s)(εP ∗(σ, x, s)− φ(σ, x, s))

+
∑

σ,x,s:εP∗(σ,x,s)−φ(σ,x,s)≤κ(k)

α(σ, x, s)(εP ∗(σ, x, s)− φ(σ, x, s)) < δ(k)

This implies
∑

σ,x,s:εP∗(σ,x,s)−φ(σ,x,s)>κ(k) α(σ, x, s)κ(k) < δ(k), so the probabil-

ity of A producing σ, x, s where εP ∗(σ, x, s)−Pr[w ← EP ∗(σ,x,s)(σ, x) : (σ, x, w) ∈
R)] > κ(k) is less than δ(k)

κ(k)
= ν(k).

On the other hand, consider σ, x, s where εP ∗(σ, x, s) − κ(k) ≤ Pr[w ←
EP ∗(σ,x,s)(σ, x) : (σ, x, w) ∈ R)]. We define MP ∗(σ,x,s)(σ, x) to be the machine
that repeatedly runs EP ∗(σ,x,s)(σ, x) until it gets a witness w so (σ, x, w) ∈ R.
It takes no more than an expected number of 1

εP∗(σ,x,s)−κ(k)
invocations to make

EP ∗(σ,x,s)(σ, x) output the witness, provided εP ∗(σ, x, s) > κ(k). �

2.5.2 Σ-protocol

Most of the SHVZK arguments in use are 3-move arguments. The prover consists
of two algorithms A, Z. He sends an initial message (a, s) ← A(σ, x), receives a
random challenge e, and answers with z ← Z(e, s). Quite often, these arguments
have a strong soundness property called special soundness. Special soundness
says that there exists an extractor E such that for all adversaries A we have

Special soundness:

Pr[σ ← K(); (x, a, e, z, e′, z′)← A(σ); w← E(σ, x, a, e, z, e′, z′) :

V (σ, x, a, e, z) = 0 or V (σ, x, a, e′, z′) = 0 or (σ, x, w) ∈ R] ≈ 1,

where we demand that e 6= e′.
A Σ-protocol is a 3-move SHVZK argument with the special soundness prop-

erty. It is not hard to see that special soundness implies both soundness and
witness extended emulation, so a Σ-protocol is a 3-move SHVZK argument of
knowledge with witness extended emulation.

18 Chapter 2. Preliminaries

2.5.3 The Random Oracle Model

Special honest verifier zero-knowledge arguments can be made non-interactive
using the Fiat-Shamir heuristic. This means that we choose the challenge e as a
hash-value e = hash(x, a, aux), where aux is some auxiliary input, for instance
the empty string or the identity of the prover. Using a cryptographic hash-
function, we hope that it messes up the input in an intractable way such that
the resulting non-interactive argument is sound. Furthermore, we can also hope
that e chosen this way is sufficiently garbled that the following answer z does not
reveal anything important about the witness w.

To formalize this heuristic the so-called random oracle model [11] replaces the
query to the hash-function with a query to a random oracle that outputs `-bit
strings, for some suitably large `.

Definition 2.6 (Random oracle) A random oracle O works the following way

• On input x it has not seen before, it returns a random value y ← {0, 1}`
and stores (x, y).

• On input x where a pair (x, y) is stored, it returns (x, y).

• In simulations, we can program the random oracle, i.e., for some x not
stored, we can choose a value y and store (x, y).

Combining a SHVZK argument with a random oracleO to compute the challenges
yields a non-interactive zero-knowledge argument.

Chapter 3

A Note on Moving from the Random
Oracle Model to the Standard Model

3.1 Introduction

Non-interactive zero-knowledge. In order to minimize interaction of zero-
knowledge proofs and arguments Blum, Feldman and Micali [12] introduced a
model in which the parties have access to a common reference string (CRS),
sometimes called a uniform random string (URS) if it chosen with a uniform
distribution, that is guaranteed to be drawn from a certain distribution. With
this help, it is possible to make non-interactive zero-knowledge arguments for
membership of any NP-language.

Since then, more sophisticated NIZK proofs and arguments have been intro-
duced. Some salient properties that can be obtained are simulation soundness,
non-malleability and proofs or arguments of knowledge. The existence of trap-
door permutations is sufficient to give us such NIZK arguments and proofs, but
the known constructions are very inefficient.

NIZK arguments in the random oracle model. As we have seen, we can
use the Fiat-Shamir heuristic to make a Σ-protocol non-interactive. We can argue
in the random oracle model that such an argument has several salient properties:
It is a non-interactive zero-knowledge argument. If the Σ-protocol is designed in
such a way that to any challenge there is only one unique answer then the NIZK
argument is simulation sound, meaning that it is sound even if the adversary
has access to simulated arguments. It is a NIZK argument of knowledge, we can
rewind, give the adversary new challenges and use the special soundness property
to extract a witness.1 Finally, since we have access to a random oracle we can
create NIZK arguments without a CRS. Since many Σ-protocols are very efficient,

1See however [74] for a warning that it may cause problems that the witnesses are not
straight-line extractable.

19

20Chapter 3. A Note on Moving from the Random Oracle Model to the Standard Model

these NIZK arguments are also very efficient. Furthermore, since the Σ-protocols
are often statistical zero-knowledge we get statistical NIZK arguments.

Criticism of the random oracle model. It seems strange to replace a de-
terministic hash-function with a random oracle. A range of papers [19, 9, 49, 20]
present protocols that are secure in the random oracle model but not secure when
the random oracle is replaced with any real hash-function. These constructions
use the fact that we cannot predict how a random oracle may react on a given
input, but we can certainly predict a deterministic function’s behavior.

Nielsen [67] demonstrates that the simulator’s ability to program the random
oracle makes it possible to construct a non-interactive non-committing encryption
protocol, yet in real world non-interactive non-committing encryption is impossi-
ble. He suggests that to be more realistic we should work in a non-programmable
random oracle model.

Since the Σ-protocols are only honest verifier zero-knowledge, it may be prob-
lematic that we determine the challenge as a hash-value, which certainly is not
random. Indeed, in many protocols we do not see any way to simulate such a
non-interactive argument. The random oracle method may be said to give some
heuristic argument of a weaker property of hiding the content, one might consider
it a good heuristic argument for witness hiding for instance.

Another problem with the random oracle arises when we use rewinding tech-
niques. This type of argument assumes not only that we can change the be-
havior of a deterministic function but also that we always know the input to
the hash-function. In [76] such a function is called sole-samplable. [67] call this
property evaluation point knowledge. Naor [64] has criticized proposals for sole-
samplable function assumptions due to their non-falsifiable nature. Pass [71]
suggests a method to extract witnesses without rewinding, however, this method
relies heavily on evaluation point knowledge.

[47, 46] show that it is impossible to make zero-knowledge proofs or arguments
in less than 3 moves if we do not have a CRS. This does not rule out that one
might consider the description of the hash-function, which is hidden in the random
oracle model, as the CRS and argue zero-knowledge this way. No such argument
is known though.

Countering the criticism. While [19, 9, 49, 20] present protocols that warn
us about the limitations of the random oracle model, the examples are artificial
and not likely to cause trouble in practice.

With respect to the zero-knowledge property, we can restrict ourselves to
protocols that are real zero-knowledge, not just honest verifier zero-knowledge.
This way the result of applying the Fiat-Shamir heuristic is a non-interactive
zero-knowledge protocol. [25, 54, 45] all suggest methods to turn Σ-protocols
into protocols that really are zero-knowledge.

3.1. Introduction 21

With respect to knowledge, a standard technique solves the problem. We let
the CRS include a key for a public key cryptosystem. Then we let the prover
encrypt his witness w for the statement x he wishes to prove. Instead of proving
x ∈ L directly, he can now prove that he has encrypted w for x ∈ L. This proves
x ∈ L and allows us to set up the CRS in a way such that we can extract the
witness.

Barak and Pass [6] suggest a way to get a non-interactive zero-knowledge
argument that is sound against uniform adversaries and has a simulator that
runs in quasi-polynomial time. This circumvents the theorems of [47, 46].

Our contributions. We suggest a new method, slightly different from [25, 54]
and slightly more efficient, to convert Σ-protocols into real zero-knowledge proto-
cols. Our idea is to form the initial message a and make a trapdoor commitment c
to a nonce e1. We compute e2 = hash(x, a, c) and use e = e1⊕e2 as challenge. We
then open the commitment and answer the challenge. To argue zero-knowledge
we use the trapdoor property of the commitment and therefore we do not need
to program the random oracle, neither do we need the oracle to have any special
output distribution.

We do not see a way to reduce the soundness of the resulting NIZK argument
to a well-known intractability assumption such as computation of discrete loga-
rithms or factoring. On the other hand, for most concrete Σ-protocols it seems
very plausible that we do have soundness. We shall therefore simply for any
concrete instance make an intractability assumption that the scheme is sound.
Under this assumption, we have a NIZK argument. As a heuristic argument, we
can argue soundness in the random oracle model.

If we have a Σ-protocol with a single possible answer to any challenge, and use
a commitment scheme that has a single way to open the commitment, then we can
make the intractability assumption that the resulting non-interactive argument is
a NIZK argument. Also for these assumptions we could as a heuristic argument
use the random oracle model to prove unbounded zero-knowledge and unbounded
simulation soundness.

With respect to an argument of knowledge, we will use the standard technique
of encrypting the witness. This does cause some trouble though since we cannot
argue statistical zero-knowledge then. Indeed the definition of a NIZK proof of
knowledge in [34, 33] does not even allow for such a thing as a statistical zero-
knowledge proof of knowledge. In our opinion this is a flaw in the definition,
we therefore first redefine NIZK argument of knowledge and then suggest NIZK
arguments of knowledge. Using the DDH assumption we obtain a statistical
NIZK argument of knowledge in the URS model.

If one uses the CRS model, a more efficient statistical NIZK argument of
knowledge can be obtained by making the [32] universally composable zero-
knowledge proof non-interactive with the Fiat-Shamir heuristic. Actually, this

22Chapter 3. A Note on Moving from the Random Oracle Model to the Standard Model

gives us a universally composable NIZK argument under reasonable intractabil-
ity assumptions. Due to lack of time, we do not include this in the present
dissertation.

We look at the question of obtaining a NIZK argument in the plain model
where we do not have a CRS. We obtain an efficient non-interactive protocol with
soundness holding against uniform adversaries and with a non-uniform simulator.
Unlike [6] we do not allow the simulator to run in quasi-polynomial time.

3.2 From Random Oracle Zero-Knowledge to

Standard Zero-Knowledge

Non-interactive zero-knowledge.

Definition 3.1 (Zero-knowledge) (K, P, V, S1, S2) is an (unbounded adaptive)
NIZK argument for relation R if (K, P, V) is a non-interactive argument for R
and for all adversaries A and distinguishers D we have

Pr[Σ← K(); s← AP (Σ,·,·)(Σ, z) : D(s) = 1]

≈ Pr[(Σ, τ)← S1(); s← AS′(Σ,τ,·,·)(Σ) : D(s) = 1],

where we define S ′(Σ, τ, x, w) = S2(Σ, τ, x), and demand that A in both expres-
sions only queries (x, w) so (Σ, x, w) ∈ R.

If the equality holds also for unbounded distinguishers D, we say that
(K, P, V, S1, S2) is a statistical NIZK argument for R.

Let (K, A, Z, V, S) be a Σ-protocol for R and (Kcom, com, ĉom, dec, equiv) be
a statistically hiding trapdoor commitment scheme. In Figure 3.1, we present a
NIZK argument (K, P, V, S1, S2) for R based on these primitives.

Theorem 3.1 (K, P, V, S1, S2) described in Figure 3.1 is an unbounded NIZK ar-
gument for R. If the Σ-protocol is statistical zero-knowledge, then (K, P, V, S1, S2)
is statistical zero-knowledge.

Proof.
Completeness. Completeness is obvious.
Soundness. We make the intractability assumption that the scheme is sound.
As a heuristic argument that this assumption is reasonable consider an adversary
A that with noticeable probability produces (x, p) such that the verifier accepts
and x /∈ Lσ. To do so it must make queries e2 = O(x, c, a) and use one of them
in the argument with noticeable probability.

We will construct an algorithm B that can break the commitment scheme. B
runs A and answers the oracle queries that A makes with random values. When
A outputs the argument, B rewinds it to the point where it made the query and

3.2. From Random Oracle Zero-Knowledge to Standard Zero-Knowledge 23

NIZK Argument

Reference string: Generate pk ← Kcom() and σ ← K().

Return Σ = (pk, σ).

Argument: Given input (x, w) so (σ, x, w) ∈ R

Choose at random e1. Set (c, d)← compk(e1). Set (a, s)← A(σ, x, w).
Set e2 ← O(x, c, a). Let e = e1 ⊕ e2. Set z ← Z(s, e).

Return p = (c, d, a, z).

Verification: Given input x and p = (c, d, a, z).

Compute e1 ← decpk(c, d) and e2 = O(x, c, a). Set e = e1 ⊕ e2.

Return V (σ, x, a, e, z).

Simulation: S1 runs (pk, ek)← K̂com(); σ ← K() and sets τ = ek. It returns
(Σ, τ).

S2 on input (Σ, τ, x) selects e at random and simulates an argument
(a, e, z) for (σ, x, w) ∈ R. It sets (c, tk)← ĉompk(ek) and
e2 = O(x, c, a). Now it simulates an opening of the commitment to
e1 = e⊕ e2, d′ ← equivpk,ek(c, tk, e1).

Return p = (c, d′, a, z).

Figure 3.1: NIZK Argument

gives it a different answer e′2. With noticeable probability, A can also use this
query to make a valid argument. However, by the special soundness A cannot
answer two different challenges e and e′ so A must open the commitment c in
two different ways.
Unbounded zero-knowledge. We have to argue that the distinguisher cannot
guess whether arguments are produced by a prover P with access to a witness,
or whether they are produced by the simulator with access to the equivocation
key ek for the equivocable commitment scheme.

The reference string σ is generated the same way by K and S1. Moreover,
since the commitment scheme is statistically hiding we also have statistical in-
distinguishability between pk in the two generations. This means that Σ as
generated by the two algorithms is statistically indistinguishable.

Consider a hybrid algorithm H replacing S2 that takes as input (Σ, ek, x, w).
H selects e at random and forms an argument (a, e, z) using its knowledge of
the witness w. It also forms a commitment (c, tk) ← ĉompk(ek). It computes
e2 = O(x, c, a) and sets e1 = e⊕ e2. Finally, it sets d′ ← equivpk,ek(c, tk, e1) and
returns the proof (c, d′, a, z).

24Chapter 3. A Note on Moving from the Random Oracle Model to the Standard Model

This hybrid experiment is statistically indistinguishable from a real argument,
otherwise we would be able to distinguish a real opening of a commitment from
a simulated opening of a commitment.

On the other hand, we also find the hybrid experiment to be indistinguish-
able from a simulation. If we could distinguish between the hybrid argument
and a simulated argument then that would violate the special honest verifier
zero-knowledge property of the Σ-protocol. If the Σ-protocol is statistical zero-
knowledge then we also get statistical indistinguishability between the hybrid
experiment and the simulation experiment. �

Simulation Soundness

Definition 3.2 (Simulation sound zero-knowledge) (K, P, V, S1, S2) is an
(unbounded) simulation sound NIZK argument for R if for all adversaries A
we have

Pr[(Σ, τ)← S1(); (x, p)← AS2(Σ,τ,·)(Σ) : p /∈ Q ∧ x /∈ LΣ ∧ V (Σ, x, p) = 1] ≈ 0,

where Q is the list of arguments given by the oracle S2(Σ, τ, ·),
Theorem 3.2 (K, P, V, S1, S2) described in Figure 3.1 is a simulation sound
NIZK argument if the Σ-protocol has a unique answer to any challenge and it
is infeasible to construct a commitment with two different valid decommitments,
i.e., we require that the binding property holds for both the message and the de-
commitment. If the Σ-protocol is statistical zero-knowledge, then (K, P, V, S1, S2)
is statistical zero-knowledge too.

Proof. We simply make the intractability assumption that the NIZK argument
is simulation sound.

To give a heuristic argument in the random oracle model imagine A with
noticeable probability produces a new argument (c, d, a, z) for x ∈ Lσ that is
acceptable to the verifier.

Since we have unique opening of the commitment scheme and unique answer
for the Σ-protocol we must have that c or a are new. Furthermore, c is binding
even if A received it in one of the simulation queries, because otherwise it would
be able to distinguish simulated openings from real openings.

Let us look at the oracle query (x, c, a) made by A and which it is going to use
later for the argument. To be successful it must be able to answer a noticeable
fraction of the possible e2’s that O(x, c, a) can produce.

This means that e = e1 ⊕ e2 can attain a large number of possible values.
If x /∈ Lσ then the special soundness of the Σ-protocol implies that A can only
answer the challenge e with negligible probability. �

If the Σ-protocol does not have the property that a challenge has a unique
good answer, then it is easy to modify it into one that does using a strong one-time
signature as shown in [45].

3.2. From Random Oracle Zero-Knowledge to Standard Zero-Knowledge 25

3.2.1 Argument of Knowledge

Definition 3.3 (Argument of knowledge) (K, P, V, E1, E2) is an argument
of knowledge for R if (K, P, V) is a non-interactive argument for R, and for
all adversaries A and distinguishers D we have

- Reference-string indistinguishability:

Pr[Σ← K() : D(Σ) = 1] ≈ Pr[(Σ, τ)← E1() : D(Σ) = 1].

- Witness extractability:

Pr[Σ← K(); (x, p)← A(Σ) : V (Σ, x, p) = 1]

≈ Pr[(Σ, τ)← E1(); (x, p)← A(Σ); w ← E2(Σ, τ, x, p) : (Σ, x, w) ∈ R].

Remark. The usual practice in the literature is to demand that the reference
string generated by E1 is statistically indistinguishable from the reference string
generated by K. Using such a definition it is impossible to make a statistical
NIZK argument of knowledge for a non-trivial language.

To see this, consider an unbounded distinguisher trying to tell whether it is
seeing a simulated argument or a real argument. With statistically indistinguish-
able reference strings, this distinguisher can compute the extraction knowledge τ
and then try to extract a witness from the argument. With a real argument, this
extraction is possible, but in a simulated argument, it is not possible to extract
a witness.

In this paper, we wish to construct statistical NIZK arguments of knowledge
and therefore we deviate from the usual practice.

Extractable commitments. A standard method for arguing knowledge is to
encrypt the witness and prove that the ciphertext contains a witness for x ∈ LΣ.
An extractor can set up the common reference string with a public key for the
cryptosystem and know the corresponding secret key itself. This way a simple
decryption gives the extractor a witness of the statement. We will employ this
trick through the related notion of extractable commitments.

Definition 3.4 (Extractable commitment) We say
(Egen, Ecom, Edec, ExtGen, Extract) is an extractable commitment scheme
if (Egen, Ecom, Edec) is a commitment scheme and we have the following

- Key indistinguishability For all A we have

Pr[pk ← Egen() : A(pk) = 1] ≈ Pr[(pk, ek)← ExtGen() : A(pk) = 1].

- Extraction For all A we have

Pr[(pk, ek)← ExtGen(); (c, d)← A(pk); m← Extractek(c) :

Edecpk(c, d) ∈ {⊥, m}] ≈ 1

26Chapter 3. A Note on Moving from the Random Oracle Model to the Standard Model

Example of an extractable commitment. In the key generation phase we
pick suitable primes q, p such that q|p− 1. We will work in a group Gq ≤ Z

∗
p of

order q. We pick at random elements g1, g2, h1, h2 ∈ Gq.
A commitment to m ∈ Gq is generated by picking r1, r2 at random from Zq

and setting c = (gr1
1 gr2

2 mod p, hr1
1 hr2

2 m mod p). The corresponding opening d is
(m, r1, r2).

This commitment is statistically hiding. To see this let x1, x2 be such that
h1 = gx1

1 mod p and hx2
2 mod p and let y be such that g2 = gy

1 mod p. Now, m can

be described as g
log(m)
1 mod p. We see that given a commitment c constructed as

described above and knowledge of log(m), we may choose any other log(m′) ∈
Zq and open the commitment as (m′, r′1 = r1 + (r2 − r′2)y mod q, r′2 = r2 +
log(m)−log(m′)

y(x2−x1)
mod q).

However, when running ExtGen we may deliberately pick h1, h2 such that
h1 = gx

1 mod p and h2 = gx
2 mod p, with the extraction key ek = x. It follows

from the DDH assumption that this public key is indistinguishable from a real
key. Furthermore, commitment to a message now corresponds to making an
ElGamal encryption, so with knowledge of x it is easy to extract the message.

The protocol in Figure 3.2 is a combination of the idea of making an ex-
tractable commitment to the witness and the simulation sound NIZK argument
presented earlier.

Theorem 3.3 (K, P, V, S1, S2, E1, E2) described in Figure 3.2 is a NIZK argu-
ment of knowledge for R. If the extractable commitment scheme is statistically
hiding and the Σ-protocol for R is statistical zero-knowledge, then (K, P, V, S1, S2)
is statistical zero-knowledge.

Proof. Completeness, soundness and (statistical) zero-knowledge follows from a
proof similar to the one we made for the NIZK argument and the simulation
sound NIZK argument.

By the indistinguishability of public keys produced by Egen and ExtGen we
see that A will output (x, p) that is indistinguishable from (x, p) output by A
with a real CRS. Left is the question of E2 being able to extract a witness for
this x.

Here we make the intractability assumption that it is infeasible to produce a
valid argument unless indeed C has been produced by a valid commitment to the
witness.

As a heuristic argument for the reasonability of this assumption suppose the
argument p is valid. We will argue that the commitment C in the argument is
actually an encryption of w such that (σ, x, w) ∈ R. To see this consider the state
of A when it queries (x, C, c, a) to O. To have noticeable chance of success it must
be able to use a noticeable fraction of all possible responses e2 that O can return,
i.e., in particular it can use two responses e2 and e′2. The trapdoor commitment
c is binding since we only simulate openings to random values. This means that

3.2. From Random Oracle Zero-Knowledge to Standard Zero-Knowledge 27

NIZK Argument of Knowledge

Reference string: Set pk ← Kcom(), PK ← Egen() and σ ← K().

Return Σ = (pk, PK, σ).

Argument: On input (x, w) so (σ, x, w) ∈ R.

Set (C, D)← EcomPK(w). Pick e1 at random and run
(c, d)← compk(e1). Let (a, s)← A(σ, (x, PK, C), (w, D)). Let
e2 = O(x, C, c, a) and compute e = e1 ⊕ e2. The response is z ← Z(s, e).

Return p = (C, c, d, a, z).

Verification: On input x and p = (C, c, d, a, z).

Compute e1 = decpk(c, d) and e2 = O(x, C, c, a, vk). Let e = e1 ⊕ e2.
Verify the argument (a, e, z) for (x, PK, C) being such that
C ∈ EcomPK(w) and (σ, x, w) ∈ R.

Return 1 if everything works out, else return 0.

Simulation: S1 runs (pk, ek)← K̂com() and the rest of the key generation
protocol but returns in addition to Σ also τ = ek.

S2 on input x and τ has to simulate an argument for x ∈ Lσ. First, it
sets (C, D)← EcomPK(0) and (c, tk)← ĉompk(ek). Selecting e at
random it now simulates an argument (a, e, z) for (x, PK, C) being such
that C ∈ Ecom(w), where (σ, x, w) ∈ R. Having done this, it may
compute e2 = O(x, C, c, a) and e1 = e⊕ e2. Finally, it computes
d′ ← equivpk,ek(c, tk, e1).

It returns p = (C, c, d′, a, z).

Extraction: E1 generates
(pk, ek)← K̂com(), (PK, EK)← ExtGen(), σ ← K(). It sets
Σ = (pk, PK, σ) and τ = ek.

We give Σ to A that produces an output (x, p), where p = (C, c, d, a, z).
E2 computes w ← ExtractEK(C).

It returns (x, w, s).

Figure 3.2: NIZK Argument of Knowledge

A can answer two challenges e and e′. By the special soundness property of the
Σ-protocol we have (x, PK, C) such that C ∈ EcomPK(w), where (σ, x, w) ∈ R.

We picked PK as a public key for a commitment scheme where it is possible
to extract the content. Therefore, when E2 computes w = ExtractEK(C) it gets
a witness for x ∈ Lσ. �

28Chapter 3. A Note on Moving from the Random Oracle Model to the Standard Model

Uniform random string. If we set this argument up with the Pedersen com-
mitment scheme and the extractable commitment scheme suggested above, and
σ generated by K is either empty or uniformly random, then we can set up the
entire argument in the uniform random string model.

Non-malleability. Non-malleability [73, 33] is a strong security definition that
in particular implies knowledge of the witness. If the Σ-protocol for commitment
to a witness has unique answer and the commitment scheme has unique decom-
mitment then the scheme above is actually non-malleable. We do not prove that
here.

3.3 Bare Bones Non-uniform Zero-Knowledge

Problems with the bare bones model. In the random oracle model, we
may make NIZK arguments without having a CRS. However, as proved by [46]
it is impossible to make NIZK arguments for languages outside BPP in real life
without a CRS. Sometimes less is needed, for instance, witness hiding may be
sufficient and this may be obtainable in the bare bones model. In this section, we
will try, however, to see whether it is possible to make non-interactive arguments
that have some sort of “zero-knowledge” property.

Trying to overcome the lack of a CRS, we may try the following. Suppose
we use some well-known number, which seemingly does not have anything to do
with our problem at hand as common reference string. We could for instance
pick the binary expansion of π or e, or we could expand a known number with
a pseudorandom number generator hoping that it does not have a “malicious
structure”.

The problem is that we since we do not pick the CRS according to our own
desire we cannot plant trapdoors in it; we work in a model with no programma-
bility at all. It might be that the string already has trapdoors in it, but we just
do not know how to find them.

Non-interactive uniform soundness non-uniform zero-knowledge.
Finding the trapdoors is only a problem when running a uniform algorithm.
Indeed non-uniform algorithms may simply have the trapdoor information built
into them. This gap of uniformity and non-uniformity may be used to our advan-
tage. More specifically, we will hint at the possibility of making arguments that
are sound against uniform adversaries and which have a non-uniform simulator.

Using ideas in the paper, this is easy to implement. Consider the unbounded
zero-knowledge argument in Figure 3.1 with the Pedersen commitment. This
argument needs a short CRS consisting of (q, p, g, h) where q|p − 1 are primes,
h = gx mod p and g is an element of order q in Z

∗
p. Making some reasonable in-

tractability assumption about, say, the SHA-1 hash-function, we may construct

3.3. Bare Bones Non-uniform Zero-Knowledge 29

some interesting zero-knowledge arguments on this basis. Consider now the bi-
nary expansion of π. It is easy to come up with an encoding such that the first
bits of π can be interpreted as elements q, p, g, h of suitable lengths depending
on the security parameter. It is reasonable to assume that a uniform algorithm
cannot find x such that h = gx mod p. On the other hand, it is also easy to see
that a non-uniform algorithm with x hardwired into it may prove anything it
wants to.

Definition 3.5 (NUISNUZK argument) (K, P, V, S1, S2) is a non-
interactive uniform soundness non-uniform zero-knowledge argument for R
if it is complete, sound against uniform adversaries and is zero-knowledge
against non-uniform adversaries. S1 is allowed to be non-uniform.

Caveat. To evaluate the potential usefulness of this notion we first note that
care must be taken when employing NIUSNUZK arguments. Assume that we
use the bits of π to give us elements (q, p, g, h,) for a Pedersen commitment as
suggested above. Consider now a problem (u, v) where we want to prove that
there exists some r ∈ Zq and m belonging to some set S, such that (u, v) =
(gr mod p, hrm mod p). Since there exists a non-uniform simulator that knows x
it is easy for this simulator to decrypt the ciphertext and obtain m. Therefore, as
part of the non-interactive argument the prover may send m in clear. However,
intuitively this seems like a violation of the essence of zero-knowledge. The lesson
is that we must take care not to use this method on problems closely related to
the fixed CRS.

Example of using NIUSNUZK arguments. On the other hand, there may
be scenarios where the notion is useful. Consider as a toy example the Naor-
Yung [65] construction of IND-CCA1 secure encryption. In this construction,
the public key consists of two randomly chosen keys for a semantically secure
cryptosystem and a CRS. To encrypt a value the sender makes two ciphertexts
corresponding to the two public keys and gives a NIZK argument that both of
them hold the same plaintext. A hybrid argument is used to argue that this
cryptosystem is secure against lunch-break attacks.

Suppose we let the public keys be selected at random as ElGamal keys (g, h1 =
gx1 mod p) and (g, h2 = gx2 mod p) where x1, x2 are the secret keys known only to
the receiver. We encrypt a message m by encrypting it under both keys and use a
NIUSNUZK argument to prove that both ciphertexts contain the same message.
Under the DDH assumption against non-uniform adversaries, we can argue that
no uniform adversary can break this cryptosystem under a lunch-break attack.

Chapter 4

Validating Votes

4.1 Voting Based on Homomorphic Encryption

Election parameters M, L, N . In this section, we describe efficient voting
schemes based on homomorphic encryption. We will throughout the section as-
sume that we have a group of voters that can choose between L candidates, which
may include choices such as a blank vote or an invalid vote. A drawback of this
type of election scheme is that the number of candidates is fixed, we do not allow
write-in votes. We denote by M a strict upper bound on the number of votes
any candidate can receive. In particular, if each voter has one vote then M is a
strict upper bound on the number of voters. A third parameter characterizing
the elections is the number of votes the voter can cast, denoted by N . We will
suggest four types of schemes, depending on the size of N . First we consider the
simple case where N = 1, second we consider the case where N is small but may
be larger than 1. Third, we consider approval voting where the voter may vote
for as many candidates as he wishes. Finally, we consider elections where voters
have many votes to cast, as it is the case in shareholder elections for instance.

Encoding votes. In the introduction we sketched how to base voting protocols
on homomorphic encryption. Let us offer some more details. The basic ingredient
is a homomorphic threshold public-key cryptosystem. We will generate a public
key pk for this cryptosystem, and the secret key sk will be threshold secret shared
between a group of n authorities.

We assume that the message space Mpk is on the form Zn. We require that
n does not have prime factors smaller than 2t and that ML ≤ n. We represent
candidates with numbers 0, . . . , L− 1 and encode a vote on candidate j as M j .1

Summing many such encodings gives us an M-addic representation of the result,∑L−1
j=0 vjM

j , where vj is the number of votes on candidate j.

Representing votes this way, it is straightforward to encrypt a vote on candi-

1As an alternative Lipmaa [58] has suggested to encode votes as Lucas numbers.

31

32 Chapter 4. Validating Votes

date j as Epk(M
j). Having received many such encrypted votes we may by the

homomorphic property of the cryptosystem multiply all the ciphertexts and get
a new ciphertext E = Epk(

∑L−1
j=0 vjM

j). We threshold decrypt this ciphertext
and now it is straightforward to extract the result from the plaintext.

Setup and parameters. In this chapter, we will make use of a homomorphic
threshold cryptosystem. We assume that Mpk = Zn and Rpk = Z. The latter
assumption is purely out of notational convenience, there would be no problem
in using a cryptosystem where the randomness is some finite group, for instance
to use threshold Paillier encryption.

We also make use of a homomorphic integer commitment scheme. In ad-
dition, we assume that the randomizer space is Z. Actually, we only know of
homomorphic commitment schemes with randomizer space Z, but it would not
be a problem to use a finite randomizer space if such a thing exists.

We define the following parameters. `M = 2`m = dL log(M)e is the maximal
bit-length of a vote. We assume that the distribution of the randomizer space
of the cryptosystem is to pick a random `R-bit randomizer. Similarly for integer
commitments we pick a random `r-bit number as randomizer. We will also need
a couple of extra security parameters. The verifier will pick a random `e-bit
number e. Furthermore, we need a security parameter `s, such that for any
value a we have that a + r and r are indistinguishable, where r is a random
|a| + `s-bit number. It is quite common to let `e = 160, the output-length of
some cryptographic hash-functions. We may suggest `s = 40.

Proving correctness of encrypted votes. As already mentioned in the in-
troduction we need to ensure that only valid votes are submitted. We therefore
demand that each voter submits a zero-knowledge argument of the ciphertext
containing a valid vote. Damg̊ard and Jurik [29, 31] and Baudron et al. [7] pro-
pose Σ-protocols that achieve this goal, and using the Fiat-Shamir heuristic, the
arguments can be made non-interactive.

Unfortunately the zero-knowledge arguments in [31] and [7] are not very ef-
ficient. They both prove that the vote is correct by encrypting each bit of j,
and then proving that the vote can be written as M j = M j0 · · ·M jk , where
k = blog(L− 1)c.

Efficiency is further hampered if we demand that the voting scheme must be
universally verifiable. In a universally verifiable voting scheme, the encrypted
votes as well as the zero-knowledge arguments are public, making it possible for
anybody to verify that the votes have been tallied correctly. Supposing that we
want the votes to be secret for many years to come, this forces us to use a very
large security parameter. Each encryption is therefore an expensive operation.

Lipmaa, Asokan and Niemi [59] suggest a more efficient method for proving
the correctness of a vote using integer commitments. Namely, commit to the

4.1. Voting Based on Homomorphic Encryption 33

vote and prove that the ciphertext and the commitment have the same content.
Now, if we can prove knowledge of the integer commitment holding a valid vote,
then we are done. The advantage of this technique is that commitments can
be statistically hiding, therefore they do not reveal anything about the vote no
matter how sophisticated cryptanalytic techniques may be in the future. Since the
zero-knowledge arguments are checked right away, we don’t need a large security
parameter, we only have to worry about present day cryptanalytic techniques
for soundness. From a situation where the zero-knowledge arguments were very
heavy to carry out, we can therefore move to a situation where the expensive
part of casting a vote is to encrypt it. The rest of this section is dedicated to
demonstrating some very efficient zero-knowledge arguments for correct votes
using integer commitments.

4.1.1 Single Vote

[59] suggests setting M to be a prime. So we have a commitment to M j and have
to prove that j is on the correct form. To do so we also commit to ML−j−1 and
using a multiplication argument we show that the product of the contents of the
two commitments is ML−1. Since we are working over the integers this shows
that the vote is on the form ±M j , with 0 ≤ j < L. What is left is to prove that
the vote is a positive integer. This can be done using the argument from Boudot
[13] or the method suggested in [58].

We improve the efficiency of this zero-knowledge argument through the ob-
servation that a square is always positive. Instead of selecting M as a prime we
can select it as the square of a prime, M = p2. We still commit to M j , but we
also commit to pj and pL−j−1. Then we show that the contents of the two latter
commitment when multiplied give pL−1. The verifier concludes that the second
commitment must therefore contain ±pj , with 0 ≤ j < L. The second step is to
show that the content of the first commitment is the square of the content of the
second commitment. It is on the form M j = p2j , with 0 ≤ j < L. This way we
do not have to perform the expensive part of the [59]-argument, namely to show
that a committed number is non-negative.

It turns out that there are several ways to implement the zero-knowledge
argument. For completeness, we give three different protocols that differ in the
detail. Depending on a variety of parameters one or another of them may be the
most efficient choice for a particular election.

Theorem 4.1 The protocol in Figure 4.1 is a 3-move public coin special honest
verifier zero-knowledge argument of knowledge with witness extended emulation
for E encrypting a ciphertext on the form M j where 0 ≤ j < L. If the commit-
ment scheme is statistically hiding, then the argument is statistical honest verifier
zero-knowledge.

34 Chapter 4. Validating Votes

Zero-Knowledge Argument for Correctness of a Vote I

Common input: Ciphertext E and public keys.

Private input: 0 ≤ j < L and R ∈ {0, 1}`R such that E = Epk(M
j ; R).

Initial message: Choose ra, rb ∈R {0, 1}`r and set ca = com(pj; ra) and
cb = com(pL−j−1; rb). Choose d ∈R {0, 1}`m+`e+`s and choose
D ∈R {0, 1}`M+`e+`s. Choose rd ∈R {0, 1}`r+`e+`s and
rdb, rD ∈R {0, 1}`m+`r+`e+2`s . Set
cd = com(d; rd), cdb = com(−dpL−j−1; rdb), cD = com(D − dpj; rD).
Choose RD ∈R {0, 1}`R+`e+`s and set ED = Epk(D; RD).

Send ca, cb, cd, cdb, cD, ED to the verifier.

Challenge: Select e ∈R {0, 1}`e.

Answer: Send
f = epj + d, za = era + rd, zb = frb + rdb, zD = fra + rD, F = eM j + D
and Z = eR + RD to the verifier.

Verification: Verify that
ce
acd = com(f ; za), c

f
b cdb = com(epL−1; zb), c

f
acD = com(F ; zD) and

EeED = Epk(F ; Z).

Figure 4.1: Single-Vote Argument I.

Proof. It is easy to see that we have a 3-move public coin protocol. It is straight-
forward to verify that the protocol is complete. Left is to argue special honest
verifier zero-knowledge and witness extended emulation.

Special honest verifier zero-knowledge. Given a challenge e we simulate
an argument in the following way. Set ca ← com(0), cb ← com(0). Pick
f, za, zb, zD, Z at random. Set cd = com(f ; za)c

−e
a , cdb = com(epL−1; zb)c

−f
b , cD =

com(F ; zD)c−f
a and ED = Epk(F ; Z)E−e.

To see that the simulated argument is indistinguishable from a real argument,
consider the following hybrid argument. We proceed as in the simulation expect
we set ca ← com(pj), cb ← com(pL−j−1). The hybrid argument is statistically
indistinguishable from a real argument, the only difference is in the order and
manner we compute the elements. On the other hand, the hiding property of
the commitment scheme implies that the hybrid argument is indistinguishable
from a simulated argument. Moreover, if the commitment scheme is statistically
hiding then we have statistical indistinguishability between the hybrid argument
and the simulated argument.

4.1. Voting Based on Homomorphic Encryption 35

Witness-extended emulation. We start by running the adversarial prover
P ∗ with a random challenge e. This is the argument we output. If it is not an
accepting argument then we halt. However, if it is an accepting argument then we
must extract a witness. To do so we run P ∗ with randomly chosen challenges until
we obtain a new accepting argument. The obtainment of these two arguments
takes expected polynomial time.

Consider the two arguments ca, cb, cd, cdb, cD, ED, e, f, za, zb, zD, Z and
ca, cb, cd, cdb, cD, ED, e′, f ′, z′a, z

′
b, z

′
D, Z ′. With overwhelming probability, we have

e 6= e′. This gives us Ee−e′ = Epk(F − F ′; Z − Z ′). Using the root extraction
property of the cryptosystem we can therefore with overwhelming probability
extract m, R such that E = Epk(m; R). If m = M j then it is easy to compute j
and output the witness.

Left is to argue that indeed m = M j for some 0 ≤ j < L. We have ce
acd =

com(f ; za) and ce′
a cd = com(f ′; za). This gives us ce−e′

a = com(f − f ′; za− z′a) and
by the root extraction property we then have e − e′|f − f ′. Let a = f−f ′

e−e′ . Now

cf−f ′
b = com((e−e′)pL−1; zb−z′b) and the root extraction property gives us a|pL−1.

Next we look at com(F −F ′; zD − z′D) = cf−f ′
a = c

(e−e′)a
a = com(a2(e− e′); a(za−

z′a)), so F −F ′ = (e− e′)a2. Finally, note that Ee−e′ = Epk((e− e′)a2; Z −Z ′) so
the root extraction property gives us that the plaintext of E is a2. This shows
that with overwhelming probability the witness we extracted is on the right form.
�

Theorem 4.2 The protocol in Figure 4.2 is a 3-move public coin special honest
verifier zero-knowledge argument of knowledge with witness-extended emulation
for E encrypting a valid vote. If the commitments are statistically hiding then
the argument is statistical honest verifier zero-knowledge.

Proof. It is obvious that we have a 3-move public coin protocol. It is straight-
forward to verify that the protocol is complete. Left is to argue special honest
verifier zero-knowledge and witness-extended emulation.

Special honest verifier zero-knowledge. Given challenge e, we can sim-
ulate an argument as follows. Choose c ← mcom(0, 0). Pick f, fb, z, zD, Z
at random. Set cd = mcom(f, fb; z)c−e and cD = mcom(F, epL−1; zD)c−f . Set
ED = Epk(F ; Z)E−e.

To argue that the simulated argument is indistinguishable from a real argu-
ment, consider the hybrid argument where we pick c ← mcom(pj, pL−j−1) and
otherwise follow the simulation above. The hybrid argument is statistically indis-
tinguishable from a real argument. On the other hand, the hiding property of the
commitment scheme implies that the hybrid argument is indistinguishable from
a simulated argument. If the commitment scheme is statistically hiding, then
the hybrid argument is actually statistically indistinguishable from a simulated
argument.

36 Chapter 4. Validating Votes

Zero-Knowledge Argument for Correctness of a Vote II

Common input: Ciphertext E and public keys.

Private input: 0 ≤ j < L and R ∈ {0, 1}`R such that E = Epk(M
j ; R).

Initial message: Choose r ∈R {0, 1}`r and set c = mcom(pj , pL−j−1; r).
Choose d, db ∈R {0, 1}`m+`e+`s and choose D ∈R {0, 1}`M+`e+`s. Choose
rd ∈R {0, 1}`r+`e+`s and rD ∈R {0, 1}`m+`r+`e+s`s. Set
cd = mcom(d, db; rd), cD = mcom(D − dpj ,−dpL−j−1; rD). Choose
RD ∈R {0, 1}`R+`e+`s and set ED = Epk(D; RD).

Send c, cd, cD, ED to the verifier.

Challenge: Select e ∈R {0, 1}`e.

Answer: Send
f = epj + d, fb = epL−j−1 + db, z = er + rd, zD = fr + rD, F = eM j + D
and Z = eR + RD to the verifier.

Verification: Verify that cecd = mcom(f, fb; z), cfcD = mcom(F, epL−1; zD)
and EeED = Epk(F ; Z).

Figure 4.2: Single-Vote Argument II.

Witness-extended emulation. The emulator runs P ∗ with a randomly cho-
sen challenge e. It outputs the resulting argument. If the argument is not accept-
able then we can stop here, otherwise we have to extract a witness j, R. To find
the witness we run P ∗ again on randomly chosen challenges until an accepting ar-
gument occurs. This takes expected polynomial time. Call the two acceptable ar-
guments c, cd, cD, ED, e, f, fb, z, zD, F, Z and c, cd, cD, ED, e′, f ′, f ′b, z

′, z′D, Z ′. We
have Epk(F − F ′; Z − Z ′) = Ee−e′. With overwhelming probability e 6= e′ and
we can use the root extraction property of the cryptosystem to extract (m, R)
such that E = Epk(m; R). Now we just need to show that m = M j for some
0 ≤ j < L.

We have ce−e′ = mcom(f − f ′, fb − f ′b; z − z′), implying e − e′|f − f ′ and

e−e′|fb−f ′b. Define a = f−f ′
e−e′ and b =

fb−f ′b
e−e′ . Now mcom(F−F ′; (e−e′)pL−1; zD−

z′D) = cf−f ′ = c(e−e′)a = mcom((e− e′)a2, (e− e′)ab; a(zd − z′d)) so ab = pL−1 and
(e− e′)a2 = F − F ′. This implies that a2 = M j for some 0 ≤ j < L. Finally, we
have Ee−e′ = Epk((e− e′)a2; Z−Z ′) which by the root extraction property shows
that E has a2 as plaintext. �

Theorem 4.3 The protocol in Figure 4.3 is a 3-move public coin special honest
verifier zero-knowledge argument of knowledge with witness-extended emulation
for E containing a valid vote. If the commitment scheme is statistically hiding,

4.1. Voting Based on Homomorphic Encryption 37

Zero-Knowledge Argument for Correctness of a Vote III

Common input: Ciphertext E and public keys.

Private input: 0 ≤ j < L and R ∈ {0, 1}`R such that E = Epk(M
j ; R).

Initial message: Choose d, db ∈R {0, 1}`m+`e+`s and D ∈R {0, 1}`M+`e+`s.
Choose r ∈R {0, 1}`r at random from RK and set
c = mcom(pj, pL−j−1, pjdb + pL−j−1d, 2pjd−D; r). Choose
rd ∈R {0, 1}`r+`e+`s. Set cd = mcom(d, db, ddb, d

2; rd). Choose
RD ∈R {0, 1}`R+`e+`s and set ED = Epk(D; RD).

Send c, cd, ED to the verifier.

Challenge: Select e ∈R {0, 1}`e.

Answer: Send f = epj + d, fb = epL−j−1 + db, fδ =
e(pjdb +pL−j−1d)+ddb, f∆ = e(2pjd−D)+d2, z = er + rd, F = eM j +D
and Z = eR + RD to the verifier.

Verification: Verify that cecd = mcom(f, fb, fδ, f∆; z) and
EeED = Epk(F ; Z). Check that ffb = e2pL−1 + fδ and f 2 = eF + f∆.

Figure 4.3: Single-Vote Argument III.

then the argument is statistical honest verifier zero-knowledge.

Proof. Obviously, we have a 3-move public coin protocol. It is straightforward
to see that the protocol is complete. It remains to argue special honest verifier
zero-knowledge and witness-extended emulation.

Special honest verifier zero-knowledge. Given challenge e, let us describe
how to simulate the argument. We set c ← mcom(0, 0, 0, 0). We choose
f, fb, z, F, Z at random. From that we can compute fδ = ffb − e2pL−1 and
f∆ = f 2 − eF . We set cd = mcom(f, fb, fδ, f∆; z)c−e and ED = Epk(F ; Z)E−e.

To argue that the simulated argument is indistinguishable from a real argu-
ment, consider the following hybrid argument. We proceed as in the simulation
except we compute d = f − epj, db = fb − epL−j−1, D = F − eM j and set
c ← mcom(pj, pL−j−1, pjdb + pL−j−1d, 2pjd − D). The hybrid argument is sta-
tistically indistinguishable from a real argument. On the other hand, the hiding
property of the commitment scheme implies that the hybrid argument is indistin-
guishable from a simulated argument. If the commitment scheme is statistically
hiding then the hybrid argument is statistically indistinguishable from a simu-
lated argument.

38 Chapter 4. Validating Votes

Witness-extended emulation. The emulator starts by running P ∗ with
a randomly chosen challenge e. We output this argument. If the argu-
ment is acceptable then we have to extract a witness (j, R). To do so we
run P ∗ with randomly chosen challenges until we get an acceptable argu-
ment. This takes expected polynomial time. Call the two acceptable argu-
ments c, cd, ED, e, f, fb, fδ, f∆, z, F, Z and c, cd, ED, e′, f ′, f ′b, f

′
δ, f

′
∆, F ′, Z ′. There-

fore Ee−e′ = Epk(F −F ′; Z −Z ′). With overwhelming probability we have e 6= e′

and we can use the root extraction property of the cryptosystem to get (m, R)
such that E = Epk(m, R).

It remains to argue that m is on the form M j for some 0 ≤ j < L. From
ce−e′ = mcom(f−f ′, fb−f ′b, fδ−f ′δ, f∆−f ′∆; z−z′) we get elements a, b, δ, ∆, r so
c = mcom(a, b, δ, ∆; r). From cd = mcom(f, fb, fδ, f∆; z)c−e, we then get values
d, db, dδ, d∆, rd so that f = ea + d, fb = eb + db, fδ = eδ + dδ, f∆ = e∆ + d∆, z =
er + rd. These values constitute a quasi-opening of cd. Similarly we have F =
em + D, Z = eR + RD, where ED = Epk(D; RD).

Consider now an adversarial P ∗ with noticeable chance of producing an ac-
ceptable argument. Given a random challenge it must use f = ea + d, fb =
eb + db, fδ = eδ + dδ, f∆ = e∆ + d∆, z = er + rd, F = em + D, Z = eR + RD. The
equation ffb = e2pL−1+fδ then becomes e2ab+e(adb+bd)+ddb = e2pL−1+eδ+dδ.
By the few polynomial roots assumption we conclude that to have noticeable
chance of succeeding in this we have that the two polynomials are identical, in
particular ab = pL−1. This shows that a|pL−1. The equation f 2 = eF + f∆

becomes e2a2 + e(2ad) + d2 = e2m + e(D + ∆) + d∆. Again to have noticeable
chance of success it must be the case that m = a2. �

Optimizing the Arguments

Size of arguments. All the arguments have size O(k + L log M). To be more
precise when making estimates let us look at a concrete example. We assume there
are a hundred candidates, L = 100, and less than a million voters M = 1, 000, 000.
We use Damgaard-Fujisaki [26] integer commitments with a security parameter
of 1500 bits. To encrypt votes we use the ElGamal-style cryptosystem from [28]
with a security parameter of 3000 bits. Using these parameters, we have public
keys of size around 2kB for all three schemes. The votes, consisting of ciphertext
E and the argument, have sizes around 3kB. Some improvements can be made,
for instance in scheme III we can compute fδ, f∆ from f, fb, F and therefore
we do not need to transmit it. Furthermore, when we make the argument non-
interactive by computing e as a hash-value, we could send just e and then compute
cd = mcom(f, fb, fδ, f∆; z)c−e and ED = Epk(F ; Z)E−e. Using the hash-function,
we can check whether it is the correct e that has been sent. Therefore, if memory
was short we could avoid transmitting cd and ED. This latter technique might
make verification more cumbersome from a computational point of view, though.
For realistic settings, a total of 5kB, for transmitting the vote makes it possible

4.1. Voting Based on Homomorphic Encryption 39

to use even low bandwidth devices. There is therefore not really much need to
make efforts in terms of reducing the size of the arguments and we do not see this
as a distinguishing feature when having to select, which of the schemes to use.

The voter’s computation. On first glance, we might consider scheme II the
best since it uses one less exponentiation than the other two. When we take into
account the length of the exponents, the picture becomes less clear. All three
schemes share the same computational complexity when it comes to computing
the ciphertexts E and ED. With the parameters above it corresponds to making
four exponentiations of roughly 2000 bits over a modulus of size 6000 bits (which
is a square of an RSA-modulus of 3000 bits). The three schemes differ in the
commitments but the sum of the lengths of the exponents is approximately the
same, 14000 bits - 17000 bits. If we do not have access to multi-exponentiation
techniques, for instance if we use the Java bigInteger class to make the computa-
tions, then the three schemes are pretty similar. The tendency is that the larger
the election, the less does the randomness matter and the better does scheme I
become. On the other hand, the smaller the election the more does randomness
matter and the better does scheme III become. If we use multi-exponentiation
techniques then scheme III has additional advantages over schemes I and II. The
expensive computation, however, is the computation of the ciphertexts and there-
fore in most scenarios it does not make much difference to the voter whether he
must use scheme I, II or III.

Verifying a vote. Using the cryptosystem from [28] we have ciphertexts E =
(U, V) and ED = (UD, VD) in Z

∗
n2 × Z

∗
n2. Instead of verifying UeUD = GZ mod

n2, V eVD = HZ(1 + n)F mod n2 we can pick s as small random exponent, say
80 bits, and verify that (U sV)eUs

DVD = (GsH)Z(1 + n)F mod n2. This way we
almost halve the computation needed for these verifications.

We can use similar randomization techniques on the commitments to reduce
the computational effort needed in schemes I and II. Using integer commitments
over modulus n′ we can replace the three equations in scheme I with choosing s1, s2

at random and checking whether (cs1
a cs2

b)f(ce
acd)

s1cs2
dbcD = com(s1f + s2ep

L−1 +
s3F ; s1za+s2zb+zD) mod n′. This almost halves the computational effort needed.

Fixed-base comb techniques [62] make it possible to compute exponentiations
of G, H and g, h with great efficiency. In comparison, it can be expensive to com-
pute exponentiations of new elements, like the exponentiation to f . Therefore,
even though scheme III uses more exponentiations than the randomized versions
of schemes I and II, it may be more efficient. Actually, using fixed-base comb
techniques the most expensive operation may be the large exponentiation of a
variable base in schemes I and II.

40 Chapter 4. Validating Votes

Verifying many votes. When we have many votes to ver-
ify we can use randomization techniques to even greater
effect. Consider for instance scheme III with votes
{(E1, c1, cd,1, ED,1, e1, f1, fb,1, fδ,1, f∆,1, z1, F1, Z1)}ni=1. We can pick s1, . . . , sn

at random and verify that
∏n

i=1(E
ei
i ED,i)

si = Epk(
∑n

i=1 siFi;
∑n

i=1 siZi) and∏n
i=1(c

ei
i cd,i)

si = mcom(
∑n

i=1 sifi,
∑n

i=1 sifb,i,
∑n

i=1 sifδ,i,
∑n

i=1 sif∆,i;
∑n

i=1 sizi).
This way we share the expenses for encrypting and committing between all the
verifications. The price for each vote to be verified is now only a few exponentia-
tions of small size, and even this price can be reduced using multi-exponentiation
techniques.

4.1.2 Multi-way Vote

In some elections, voters are allowed to vote multiple times, say N times. It may
be a requirement that they use all their votes on different candidates, or alterna-
tively they may be permitted to spend several votes on the same candidates. We
will present a protocol for the former case, it is easy to modify the protocol into
one that handles the latter case.

The voter will encode his vote as M j1 + · · ·+M jN , where 0 ≤ j1 < . . . < jN <
L. We can use the method from before, encrypt the vote and make an integer
commitment to it as well. Since we can prove that the integer commitment
and the ciphertext contain the same plaintext, we are now left with the task of
showing that the integer commitment contains a legal vote.

We will again choose M = p2, where p is a prime. As before the strat-
egy is to show that the committed vote is on the form p2j1 + · · · + p2jN . Note
that ppj1pj2−j1−1 = pj2, . . . , ppjN pL−jN−1 = pL. We can therefore commit to
pj1, pj2−j1−1, . . . , pjN , pL−jN−1, and then prove the relationship that the content
of the first commitment, multiplied with p and multiplied with the contents of
the second commitment gives the contents of the third commitment, etc. This
proves that the contents of the penultimate commitment contains something that
when multiplied with p divides, pL. I.e., a commitment on the form ±pjN where
0 ≤ jN < L. It furthermore shows that the fourth-last commitment contains
±pjN−1 where 0 ≤ jN−1 < jN , etc.

This idea shows how to prove the correctness of a multi-way vote. What is
left is to cut away redundant commitments. We will suggest a protocol where we
commit to all the pj1 , pj2−j1−1, . . . , pjN , pL−jN−1 at the same time and prove in a
direct way that the encrypted vote is one the correct form. In comparison with
the protocol in [28] this allows us to save several exponentiations.

Theorem 4.4 The protocol in Figure 4.4 is a 3-move public coin special honest
verifier zero-knowledge argument of knowledge with witness-extended emulation
for E encrypting a correctly formed multi-way vote. If the commitment scheme is
statistically hiding then the argument is statistical honest verifier zero-knowledge.

4.1. Voting Based on Homomorphic Encryption 41

Zero-Knowledge Argument for Correctness of a Multi-way Vote

Common input: Ciphertext E and public keys.

Private input: 0 ≤ j1 < · · · < jN < L and R ∈ {0, 1}`R such that
E = Epk(

∑N
i=1 M ji ; R).

Initial message: Choose D ∈R {0, 1}`M+`e+`s and
d1, . . . , dN , d̂1, . . . , d̂N ∈R {0, 1}`m+`e+`s . Define jN+1 = L and dN+1 = 0.
c = mcom(pj1, pj2−j1−1, d1p

j2−j1+d̂1p
j1+1−d2, . . . , p

jN , pL−jN−1, dNpL−jN +
d̂NpjN+1 − dN+1, 2d1p

j1 + · · ·+ 2dNpjN −D; r).

cd = mcom(d1, d̂1, d1d̂1, . . . , dN , d̂N , dN d̂N , d2
1 + · · ·+ d2

N ; rd).

Choose RD ∈R {0, 1}`R+`e+`s and set ED = Epk(D; RD).

Send c, cd, ED to the verifier.

Challenge: Select e ∈R {0, 1}`e.

Answer: Send f1 = epj1 + d1, f̂1 = epj2−j1−1 + d̂1, fδ1 =
e(d1p

j2−j1 + d̂1p
j1+1 − d2) + pdjd̂j, . . . , fN = epjN + dN , f̂N =

epL−jN−1 + d̂N , fδN
= e(dNpL−jN + d̂NpjN+1 − dN+1) + pdN d̂N ,

f∆ = e(2d1p
j1 + · · ·+ 2dNpjN −D) + d2

1 + · · ·+ d2
N , z = er + rd,

F = e
∑N

i=1 M ji + D and Z = eR + RD to the verifier.

Verification: Define fN+1 = epL.
Verify that cecd = mcom(f1, f̂1, fδ1 , . . . , fδN

, f∆; z) and

EeED = Epk(F ; Z). Check for j = 1, . . . , N that pfj f̂j = efj+1 + fδj
.

Check that f 2
1 + · · ·+ f 2

N = eF + f∆.

Figure 4.4: Multi-way Vote Argument.

Proof. Obviously, we have a 3-move public coin protocol. It is straightforward to
verify that it is complete. Left is to argue special honest verifier zero-knowledge
and witness-extended emulation.

Special honest verifier zero-knowledge. Given a challenge e we make a
simulation like this. We pick at random f1, f̂1, . . . , fN , f̂N , z, F, Z. We compute
fδ1 , . . . , fδN

such that for all j = 1, . . . , N we have pfj f̂j = efj+1 + fδj
. We pick

f∆ such that f∆ = f 2
1 + · · · + f 2

N − eF . We set c ← mcom(0, . . . , 0). Then we

compute cd = mcom(f1, f̂1, fδ1, . . . , fδN
, f∆; z)c−e and ED = Epk(F ; Z)E−e.

To argue that the simulated argument is indistinguishable from a real argu-
ment, consider the following hybrid argument. We proceed as in the simula-
tion but define d1 = f1 − epj1, d̂1 = f̂1 − epj2−j1−1, . . . , dN = fN − epjN , d̂N =
f̂N − epjN and D = F − e

∑N
i=1 M ji . We set c ← mcom(pj1, pj2−j1, d1p

j2−j1 +

42 Chapter 4. Validating Votes

d̂1p
j1+1, . . . , pjN , pL−jN−1, dNpL−jN + d̂NpjN+1, 2d1p

j1 + · · · + 2dNpjN − D). The
rest of the hybrid argument is carried out as in the simulation.

The hybrid argument is statistically indistinguishable from a real argument,
all that is changed is the order in which elements are chosen. On the other
hand, the only difference from a simulated argument is in the computation of the
commitment c. The commitment scheme’s hiding property shows that the hybrid
argument is statistically indistinguishable from a simulated argument. Moreover,
if the commitment scheme is statistically hiding then the hybrid argument is
statistically indistinguishable from the simulated argument.

Witness-extended emulation. The emulator starts by running P ∗ on
a random challenge e. It outputs the resulting argument. If the
argument is acceptable then we have to extract a witness. To do
so we feed P ∗ with random challenges until we get a new accept-
able argument. This takes expected polynomial time. Let us call the
two acceptable arguments c, cd, ED, e, f1, f̂1, fδ1 , . . . , fN , f̂N , fδN

, f∆, z, F, Z and

c, cd, ED, e′, f ′1, f̂
′
1, f

′
δ1

, . . . , f ′N , f̂ ′N , f ′δN
, f ′∆, z′, F ′, Z ′. This gives us Ee−e′ =

Epk(F − F ′; Z − Z ′). With overwhelming probability we have e 6= e′ and using
the root extraction property of the cryptosystem we can try to extract (m, R) so
E = Epk(m; R).

It remains to argue that m is a message on the form
∑N

i=1 M ji for 0 ≤ j1 <

· · · jN < L. From ce−e′ = mcom(f1 − f ′1, f̂1 − f̂ ′1, fδ1 − f ′δ1 , . . . , fN − f ′N , f̂N −
f̂ ′N , fδN

−f ′δN
, f∆−f ′∆; z−z′) we get a quasi-opening (a1, b1, δ1, . . . , aN , bN , δN , ∆, r)

of c. From cd = mcom(f1, f̂1, fδ1 , . . . , fδN
, f∆; z)c−e we then get a quasi-opening

(d1, d̂1, dδ1, . . . , dN , d̂N , dδN
, d∆, rd) of cd. Additionally, define D = F − em, RD =

Z − eR and we have ED = Epk(D; RD).

Consider now P ∗ having noticeable probability of making an acceptable ar-
gument. It must use f1 = ea1 + d1, f̂1 = eb1 + d̂1, fδ1 = eδ1 + dδ1 , . . . , fN =
eaN + dN , f̂N = ebN + d̂N , fδN

= eδN + dδN
, f∆ = e∆ + d∆ and F = em + D. For

j = 1, . . . , N we have equations pfj f̂j = efj+1 + fδj
implying e2pajbj + ep(djbj +

d̂jaj) + pdjd̂j = e2aj+1 + eδj + dδj
. Unless ajbjp = aj+1 this has negligible

chance of being true. Since aj+1 = pL we see that paN |pL, paN−1|aN , . . . , pa1|a2.
In other words, there exists 0 ≤ j1 < . . . < jN < L such that a1 =
±pj1 , . . . , aN = ±pjN . From the last equation f 2

1 + · · ·+f 2
N = eF +f∆ we see that

e2(a2
1 + · · ·+a2

N)+ e(2a1d1 + · · ·+2aNdN)+(d2
1 + · · · d2

N) = e2m+ e(D+∆)+d∆.
P ∗ can only have noticeable chance of success in constructing a valid argument
if indeed m = a2

1 + · · · + a2
N = p2j1

1 + · · · + p2jN = M j1 + · · · + M jN with
0 ≤ j1 < · · · < jN < L. �

Potential speedup with many votes. Instead of using M = p2, use M = p4,
or even higher even powers. This way we reduce the computational effort in

4.1. Voting Based on Homomorphic Encryption 43

proving that 0 ≤ j1 < · · · < L but increase computational effort where we prove
that the plaintext contains sums of quartics. If each voter has many votes to
spend, this trade-off may be good.

4.1.3 Approval Voting

Increasing the number of votes a voter may cast, we come to approval voting
where the voter can vote for as many different candidates as he likes. The ad-
vantage of this kind of voting system is that the voter does not waste votes by
selecting all the candidates he likes. In instant-runoff voting it may be foolish
business to cast a vote for the candidate you prefer if the chances of the candidate
winning the election are slim. Note, in this kind of election the number Ni of
votes cast by voter i may be anywhere between 0 and L.

Define δj = 1 if the voter wishes to vote for candidate j and δj = 0 if he does

not. The vote is then on the form
∑L−1

j=0 δjM
j . Again we can form a commitment

to
∑L−1

j=0 δjM
j , and then we have to prove that the commitment is on the right

form. To do so we can let c0, . . . , cL−1 be commitments to δ0, . . . , δL−1. We then
have a bunch of commitment and have to prove that all of them contain 0 or 1.
The method we will use for this purpose is to show for each of them that the
content equals the square of the contents. Since the only solution to the equation
x2 = x are 0 and 1 this gives us the required result. The homomorphic property
then gives us that

∏L−1
j=0 cMj

j contains
∑L−1

j=0 δjM
j . By committing to all the δj’s

in one commitment instead of committing to them all at once we may save some
computational effort.

Theorem 4.5 The protocol in Figure 4.5 is a 3-move public coin special honest
verifier zero-knowledge argument of knowledge with witness extended emulation
for E containing a correctly formed approval vote. If the commitment scheme is
statistically hiding then the argument is statistical honest verifier zero-knowledge.

Proof. Obviously, we have a 3-move public coin protocol. It is straightforward
to verify completeness. Left is to argue that it is special honest verifier zero-
knowledge and has witness-extended emulation.

Special honest verifier zero-knowledge. Given challenge e, we simulate an
argument as follows. We pick f0, . . . , fL−1, z, Z at random and compute f =∑L−1

j=0 f 2
j − e

∑L−1
j=0 fj and F =

∑L−1
j=0 fjM

j . We set c ← mcom(0, . . . , 0). We
compute cd = mcom(f0, . . . , fL−1, f ; z)c−e and ED = Epk(F ; Z)E−e.

To argue that the simulated argument is indistinguishable from a real ar-
gument, consider the following hybrid argument. We generate f0, . . . , fL−1 at
random and define d0 = f0 − eδ0, . . . , dL−1 = fL−1 − eδL−1. We set c ←
mcom(δ0, . . . , δL−1, (2δ0 − 1)d0 + · · · + (2δL−1 − 1)dL−1). The rest of the hybrid
argument is generated as in the simulation.

44 Chapter 4. Validating Votes

Zero-Knowledge Argument for Correctness of an Approval Vote

Common input: Ciphertext E and public keys.

Private input: δ0, . . . , δL−1 ∈ {0, 1} and R ∈R {0, 1}`R such that
E = Epk(

∑L−1
j=0 δjM

j ; R).

Initial message: Choose d0, . . . , dL−1 ∈R {0, 1}`e+`s. Choose r ∈R {0, 1}`r at
random. Set
c = mcom(δ0, . . . , δL−1, (2δ0 − 1)d0 + · · ·+ (2δL−1 − 1)dL−1; r). Choose
rd ∈R {0, 1}`r+`e+`s and set cd = mcom(d0, . . . , dL−1, d

2
0 + · · ·+ d2

L−1; rd).
Define D = d0M

0 + · · ·+ dL−1M
L−1. Choose RD ∈R {0, 1}`R+`e+`s. Set

ED = Epk(D; RD).

Send c, cd, ED to the verifier.

Challenge: Select e ∈R {0, 1}`e.

Answer: Send f0 = eδ0 + d0, . . . , fL−1 = eδL−1 + dL−1,
f = e((2δ0− 1)d0 + · · ·+ (2δL−1− 1)dL−1) + d2

0 + · · ·+ d2
L−1, z = er + rd,

F = e
∑L−1

j=0 δjM
j + D and Z = eR + RD to the verifier.

Verification: Verify that cecd = mcom(f0, . . . , fL−1, f ; z) and
EeED = Epk(F ; Z). Check that

∑L−1
j=0 f 2

j = f + e
∑L−1

j=0 fj and∑L−1
j=0 fjM

j = F .

Figure 4.5: Approval Vote Argument.

The hybrid argument is statistically indistinguishable from a real argument.
On the other hand, the only difference from a simulated argument is in the gen-
eration of the commitment c. By the hiding property of the commitment scheme,
we get indistinguishability between the hybrid argument and the simulated argu-
ment. Moreover, if the commitment scheme is statistically hiding then the hybrid
argument is statistically indistinguishable from a simulated argument.

Witness-extended emulation. The emulator runs P ∗ on a random chal-
lenge e. It outputs the resulting argument. If the argument is not accept-
able then we are done, otherwise we must extract a witness (δ0, . . . , δL−1, R).
We run P ∗ with random challenges until we get an acceptable argument.
This takes expected polynomial time. Call the two acceptable arguments
c, cd, ED, e, f0, . . . , fL−1, f, z, F, Z and c, cd, ED, e′, f ′0, . . . , f

′
L−1, f

′, z′, F ′, Z ′. We
have Ee−e′ = Epk(F − F ′; Z − Z ′). With overwhelming probability e 6= e′ and
we can use the root extraction property of the cryptosystem to find (m, R) so
E = Epk(m; R).

4.1. Voting Based on Homomorphic Encryption 45

The remaining question is whether m =
∑L−1

j=0 δjM
j for δ0, . . . , δL−1 ∈ {0, 1}.

From ce−e′ = mcom(f0 − f ′0, . . . , fL−1 − f ′L−1, f − f ′; z − z′) we can extract a
quasi-opening (δ0, . . . , δL−1, ∆, r) of c. Then d0 = f0 − eδ0, . . . , dL−1 = fL−1 −
eδL−1, d∆ = f − e∆, rd = z − er constitute a quasi-opening of cd. We also have
D = F − em, RD = Z − eR satisfying ED = Epk(D; RD).

P ∗ with noticeable chance of producing acceptable arguments must therefore
on a random challenge e use f0 = eδ0 + d0, . . . , fL−1 = eδL−1 + dL−1, f = e∆ +
d∆, F = em+D. The first equation

∑L−1
j=0 f 2

j = f +e
∑L−1

j=0 fj can be rewritten as

e2(δ2
0 + · · ·+ δ2

L−1)+ e(2δ0d0 + · · ·+2δL−1dL−1)+ (d2
0 + · · ·+ d2

L−1) = e2(δ0 + . . .+
δL−1) + e(∆ + d0 + . . . + dL−1) + d∆. Only if the two polynomials in e are equal
can P ∗ have noticeable chance of success, so

∑L−1
j=0 (δ2

j − δj) = 0. This implies

δj ∈ {0, 1} for j = 0, . . . , L−1. The second equation says
∑L−1

j=0 fjM
j = F , which

means e
∑L−1

j=0 δjM
j +

∑L−1
j=0 djM

j = em + D. Again, to have noticeable chance

of success in creating an acceptable argument we conclude that m =
∑L−1

j=0 δjM
j .

�

Multi-way vote with large N . It is easy to add another condition so we can
verify that

∑L−1
j=0 δj = N for some known N . It is therefore also possible to use

the above argument as a multi-way vote argument.

In comparison with the multi-way vote argument, the fj ’s are of small size,
while the multi-way vote argument may use very large exponents when we have
many candidates. The multi-way vote argument is thus suitable when N is very
small in comparison with L, while for large N it is better to use a variation of
the above argument.

4.1.4 Divisible Voting

Left is the case where each voter may have an enormous amount of votes. Con-
sider for instance a company where each share gives the right to cast a vote. It
would be highly impractical for the shareholders to use the before-mentioned tech-
niques since it would force them to make a huge number of encryptions. Rather
we want to be able to prove in a direct manner that the ciphertext contains a
vote on the form

∑L−1
j=0 vjM

j , where vj is the number of votes on candidate j.

In [53] they call this divisible voting and they suggest a protocol. We will
suggest an alternative protocol here that takes full advantage of integer commit-
ments. In comparison with [53] we save a factor log(Ni) in complexity, and we
carry out the protocol using integer commitments instead of encryptions giving
a further substantial saving.

The idea is very simple. Commit to v0, . . . , vL−1. We then prove that all these
elements are positive, and furthermore we prove that their sum is Ni, where Ni

is the number of votes that voter i may cast.

46 Chapter 4. Validating Votes

To prove that an element is positive we could use Boudot’s argument that
essentially writes 2T vj as the sum of a square and a small number. With T large
enough, this proves that vj must be positive. Or we could use [59]’s argument
where vj is proven to a sum of four squares, using Lagrange’s theorem that any
non-negative integer can be written as the sum of four squares.

We offer a variation over the latter idea. It is a well-known fact from number
theory that the only numbers that cannot be written as the sum of three squares
are on the form 4n(8k + 7). It therefore suffices to show that 4vj + 1 is a sum
of three squares, which would imply that vj is non-negative. Rabin and Shallit
[72] offer an efficient algorithm for finding three such squares. This algorithm
does rely on some non-standard assumptions though. However, in our case the
numbers are still fairly small for a computer, i.e., we cannot imagine elections
where voters would have more than, say, a million votes. It is therefore possible
to find the three squares using brute force.

Theorem 4.6 The protocol above is a 3-move public coin special honest verifier
zero-knowledge argument of knowledge with witness-extended emulation for a ci-
phertext containing a specified number of votes. If the commitment scheme is
statistically hiding then the argument is statistical honest verifier zero-knowledge.

Proof. Obviously, we have a 3-move protocol that is public coin. It is straightfor-
ward to verify completeness. Left is to argue that the protocol is special honest
verifier zero-knowledge and has witness-extended emulation.

Special honest verifier zero-knowledge. Given challenge e, we have to sim-
ulate an argument. Pick f0, fx0, fy0, fz0 , . . . , fL−1, fxL−1

, fyL−1
, fzL−1

, z, Z at ran-
dom. For j = 0, . . . , L − 1 compute f∆j

= 4(fj + e) − f 2
xj
− f 2

yj
− f 2

zj
. Set

F =
∑L−1

j=0 fjM
j . Set c ← mcom(0, . . . , 0). Let d = f0 + · · · + fL−1 − eN . Set

cd = mcom(f0, . . . , f∆L−1
; z)c−e and ED = Epk(F ; Z)E−e.

To argue that the simulated argument is indistinguishable from a real ar-
gument, we consider the following hybrid argument. For j = 0, . . . , L − 1
we find xj, yj, zj so 4vj + 1 = x2

j + y2
j + z2

j in the same manner as we do
in a real argument. For j = 0, . . . , L − 1 we pick fj , fxj

, fyj
, fzj

at ran-
dom and define dj = fj − evj , dxj

= fxj
− exj , dyj

= fyj
− eyj , dzj

=
fzj
− ezj . We now compute c ← mcom(v0, x0, y0, z0, 4d0 − 2x0dx0 − 2y0dy0 −

2z0dz0, . . . , vL−1, xL−1, yL−1, zL−1, 4dL−1− 2xL−1dxL−1
− 2yL−1dyL−1

− 2zL−1dzL−1
).

We then proceed as when creating a simulated argument.
The hybrid argument is statistically indistinguishable from a real argument,

since the only difference is in the order in which we pick the elements. On the
other hand, the only difference between the hybrid argument and the simulated
argument is in the formation of c. By the hiding property of the commitment
scheme we therefore get that the hybrid argument is indistinguishable from a
simulated argument. If the commitment scheme is statistically hiding then the
hybrid argument and the simulated argument are statistically indistinguishable.

4.1. Voting Based on Homomorphic Encryption 47

Zero-Knowledge Argument for Correctness of a Divisible Vote

Common input: Ciphertext E, a number of votes N and public keys.

Private input: 0 ≤ v0, . . . , vL−1 and R ∈ {0, 1}`R such that N =
∑L−1

j=0 vj

and E = Epk(
∑L−1

j=0 vjM
j ; R).

Initial message: Find x0, y0, z0, . . . , xL−1, yL−1, zL−1 such that
4vj + 1 = x2

j + y2
j + z2

j for all j. Choose

dj, dxj
, dyj

, dzj
∈R {0, 1}log(N)+2+`e+`s. Choose r ∈R {0, 1}`r and set

c = mcom(v0, x0, y0, z0, 4d0 − 2x0dx0 − 2y0dy0 −
2z0dz0, . . . , vL−1, xL−1, yL−1, zL−1, 4dL−1 − 2xL−1dxL−1

− 2yL−1dyL−1
−

2zL−1dzL−1
; r). Choose rd ∈R {0, 1}`r and set

cd = mcom(d0, dx0, dy0, dz0, d
2
x0

+ d2
y0

+
d2

z0
, . . . , dL−1, dxL−1

, dyL−1
, dzL−1

, d2
xL−1

, d2
yL−1

, d2
zL−1

; rd). Define

D = d0M
0 + · · ·+ dL−1M

L−1. Choose RD ∈R {0, 1}`R+`e+`s. Set
ED = Epk(D; RD). Define d = d0 + · · ·+ dL−1.

Send c, cd, ED, d to the verifier.

Challenge: Select e ∈R {0, 1}`e.

Answer: Send fj = evj + dj, fxj
= exj + dxj

, fyj
= eyj + dyj

, fzj
=

ezj + dzj
, fδj

= e(4dj − 2xjdxj
− 2yjdyj

− 2zjdzj
)− d2

xj
− d2

yj
− d2

zj
to the

verifier for all j. Send also
z = er + rd, F = e

∑L−1
j=0 vjM

j + D, Z = eR + RD to the verifier.

Verification: Verify that cecd = mcom(f0, . . . , f∆L−1
; z) and

EeED = Epk(F ; Z). Check for all j that

e(4fj + e) = f 2
xj

+ f 2
yj

+ f 2
zj

+ f∆j
. Check that

∑L−1
j=0 fj = eN + d. Check

that
∑L−1

j=0 fjM
j = F .

Figure 4.6: Divisible Vote Argument.

Witness-extended emulation. We first run P ∗ on a random challenge
e. We output the resulting argument. If the argument is acceptable
then we have to compute a witness (v0, . . . , vL−1, R). We run P ∗ on ran-
domly chosen challenges e′ until we get another acceptable argument. This
takes expected polynomial time. We call the two accepting arguments
c, cd, ED, d, e, f0, fx0, fy0, fz0 , f∆0, . . . , fL−1, fxL−1

, fyL−1
, fzL−1

, f∆L−1
, z, F, Z and

c, cd, ED, d, e′, f ′0, f
′
x0

, f ′y0
, f ′z0

, f ′∆0
, . . . , f ′L−1, f

′
xL−1

, f ′yL−1
, f ′zL−1

, f ′∆L−1
, z′, F ′, Z ′.

Since the arguments are acceptable we have Ee−e′ = Epk(F − F ′; Z − Z ′). With
overwhelming probability we have e 6= e′ and we can use the root extraction
property of the cryptosystem to extract (m, R) so E = Epk(m; R).

48 Chapter 4. Validating Votes

Now we need to argue that m =
∑L−1

j=0 vjM
j and 0 ≤ v0, . . . , vL−1

and N =
∑L−1

j=0 vj. From ce−e′ = mcom(f0 − f ′0, . . . , f∆L−1
− f ′∆L−1

; z −
z′) we can use the root extraction property to get a quasi-opening
(v0, x0, y0, z0, ∆0, . . . , vL−1, xL−1, yL−1, zL−1, ∆L−1, r) of c. Defining d0 = f0 −
ev0, . . . , d∆L−1

= f∆L−1
−e∆L−1, rd = z−er we get a quasi-opening of cd. Setting

D = F − em, RD = Z − eR we get ED = Epk(D; RD).
For any randomly chosen challenge e that P ∗ has noticeable chance of creating

a successful argument we therefore have f0 = ev0+d0, . . . , f∆L−1
= e∆L−1+d∆L−1

and F = em + D. Consider first the equation eN + d =
∑L−1

j=0 fj = e
∑L−1

j=0 vj +∑L−1
j=0 dj. With overwhelming probability over e this does not old unless N =∑L−1
j=0 vj as we wanted. Consider then for j = 0, . . . , L−1 the equation e(4fj+e) =

f 2
xj

+ f 2
yj

+ f 2
zj

+ f∆j
, which can be rewritten as e2(4vj + 1) + edj = e2(x2

j + y2
j +

z2
j)+e(2xjdxj

+2yjdyj
+2zjdzj

+∆)+d2
xj

+d2
yj

+d2
zj

+d∆. By the few polynomial
roots assumption this has only negligible chance of being satisfied unless the two
polynomials in e are identical, in particular 4vj + 1 = x2

j + y2
j + z2

j . This shows

that for j = 0, . . . , L − 1 we have 0 ≤ vj . Finally, we have
∑L−1

j=0 fjM
j = F ,

which can be rewritten as e
∑L−1

j=0 vjM
j +

∑L−1
j=0 djM

j = em + D. Again, with

overwhelming probability over e this can only happen if m =
∑L−1

j=0 vjM
j . �

Chapter 5

Verifying Shuffles

5.1 Introduction

Shuffles and mix-nets. A shuffle of ciphertexts e1, . . . , en is a new set of ci-
phertexts E1, . . . , En so that both sets of ciphertexts have the same plaintexts.
If we are working with a homomorphic cryptosystem with encryption algorithm
Epk(·), we may shuffle e1, . . . , en by selecting a permutation π ∈ Σn and setting
E1 ← eπ(1)Epk(0), . . . , En ← eπ(n)Epk(0). If the cryptosystem is semantically se-
cure, nothing is revealed about the permutation by publishing E1, . . . , En. On
the other hand, this also means that nobody else can verify directly whether we
shuffled correctly. Our goal in this chapter is to construct an efficient honest
verifier zero-knowledge argument for the correctness of a shuffle.

Shuffles can be used to build mix-nets. A mix-net is a multi-party protocol to
shuffle elements so that neither of the parties knows the permutation linking the
input and output. To shuffle ciphertexts we may let the parties one after another
make a shuffle with a random permutation and prove correctness of it. The
arguments of correctness allow us to catch any cheater, and if at least one party
is honest, it is impossible to link the input and output. In this role, shuffling
constitute an important building block in anonymization protocols and voting
schemes.

Another type of mix-net is a decrypting mix-net. Here the input is a set of
ciphertexts, and the output is the corresponding plaintexts in random order. We
must of course assume that the parties performing the mix have a secret sharing
of the decryption key. To implement a decrypting mix-net we could of course first
perform the mix and then do decryption afterwards. However, it can be more
efficient to implement the mix-net by letting the parties take turns in shuffling
and doing their part of the decryption. This way, each party only has to be
activated once. While it is possible to let each party shuffle first, then do its
partial decryption and prove correctness of both of them separately, it is more
practical to do both in one step. This means that we need a zero-knowledge
argument for shuffle-decryption.

49

50 Chapter 5. Verifying Shuffles

Related work. Efficient schemes for proving the correctness of a shuffle of
ElGamal ciphertexts can be found in [44, 66]. In [50] a slightly more general
approach is taken by suggesting a method for shuffling that works with most
homomorphic cryptosystems. This latter scheme is also the most efficient scheme
for proving the correctness of a shuffle.

Since zero-knowledge arguments for shuffles are now reasonably efficient, the
computational cost of proving correctness of a decryption has become relatively
more important in decrypting mix-nets. Recent work [43, 42] has aimed at prov-
ing correctness of shuffle and decryption in one go. Combining the arguments
saves some effort and allows us to cut out the intermediate ciphertexts between
shuffling and decryption. Unfortunately, these arguments are not zero-knowledge,
instead they have a weaker property called complete permutation hiding. Fur-
thermore, a clever observation in [42] gives good performance but restricts the
relevant class of ElGamal encryption to those over groups with order 2 mod 3. In
some cases this may actually matter, for instance it is always the case that the
product of two safe primes is 1 mod 3.

Our contribution. In this chapter, we improve on the work in [50] to sug-
gest an honest verifier zero-knowledge arguments for shuffling and for shuffle-
decryption. Both zero-knowledge arguments are statistical special honest verifier
zero-knowledge, use seven moves, and require only few exponentiations and very
little communication. They are designed such that randomization and multi-
exponentiation techniques are very useful in improving performance further.

The papers mentioned before suggest using ElGamal encryption with a sub-
group Gq ≤ Z

∗
p of order q. Here q is a 160-bit prime and p a 1024-bit prime.

Nowadays, these security parameters seem too small, in particular when used for
voting where privacy must last for many years. However, to make comparison
easy we will use these parameters when analyzing performance of our schemes.
We compare the most efficient schemes for shuffling n ElGamal ciphertexts in
Table 5.1.

Furu.-Sako Groth Furukawa proposed
Shuffle P (expo.) 8n 6n 6n
Shuffle V (expo.) 10n 6n 6n
Shuffle-decrypt P (expo.) 8n 7n
Shuffle-decrypt V (expo.) 6n 6n
Communication (bits) 5280n 1344n 1504n 480n
Rounds 3 7 5 7
Privacy SHVZK SHVZK Perm. hiding SHVZK

Table 5.1: Comparison of shuffle arguments

For voting the arguments will often be made non-interactive using the Fiat-

5.2. Shuffle of Known Content 51

Shamir heuristic, this way anybody can verify them. This implies that efficiency
in verification matters more than efficiency in proving. It also means that we do
not need to transmit the challenges, so all computational complexities should be
reduced with 160n bits.

Setup and parameters. We assume we have public keys for a cryptosystem
and a multi-commitment scheme. There are many ways to select these and our
arguments work for a wide range of parameters. For notational purposes, we
will in our choice of parameters think about them as ElGamal encryption and
Pedersen multi-commitment, with parameters p, q, where q|p−1. The randomizer
space for both encryption and commitment is then Zq. We also use a couple of
other security parameters `e is the bit-length of some challenges that the verifier
selects. `s is a parameter such that for any value a we have a + r and r are
indistinguishable when we pick r as a |a|+ `s-bit random number.

Shuffling encryptions of large messages. The estimates above works with
a small message space of 160 bits. In real life one does, however, often encounter
homomorphic ciphertexts with messages spaces of large order or unknown or-
der. Consider for instance Paillier encryption [69], which has message space Zn,
where n is an RSA-modulus or Okamoto-Uchiyama [68] encryption where the
message space is Zp for an unknown p. Our shuffling technique can be modified
to handle these message spaces at a limited cost, in particular the communication
complexity is independent of the size of the message space.

An application. To demonstrate that shuffling is also interesting in other con-
texts than mix-nets we offer a SHVZK argument of the correctness of a vote in an
election where candidates are given points according to their order of preference.

5.2 Shuffle of Known Content

Committing to a permutation of values. Before looking into the question
of shuffling ciphertexts, we will look at a simpler problem. Imagine we have a
set of messages m1, . . . , mn. It is easy enough to pick a permutation π and a
randomizer r and set c = mcom(mπ(1), . . . , mπ(n); r). Can we prove knowledge of
the permutation π and the randomizer r such that indeed c has been computed
this way?

In this section, we present an argument for a multi-commitment containing a
permutation of a set of messages. The main idea is from Neff [66], namely that
a polynomial p(X) =

∏n
i=1(mi − X) is stable under permutation of the roots,

i.e., for any permutation π we have p(X) =
∏n

i=1(mπ(i) − X). A way to test
whether two polynomials p(X), q(X) are identical is to choose a random point x

52 Chapter 5. Verifying Shuffles

and evaluate whether p(x) = q(x). Going the other direction, if two polynomials
are identical over a field Zq then they have the same roots.

Using this idea, what we will do to prove that c contains a shuffle of the
messages m1, . . . , mn is to prove that for a randomly chosen x we have that∏n

i=1(mi − x) is equal to the product of the messages in c subtracted by x.
This argument of knowledge can be performed using standard honest verifier
zero-knowledge argument of multiplication of committed values. We suggest an
efficient argument in Figure 5.1.

Theorem 5.1 The protocol in Figure 5.1 is a 5-move public coin special honest
verifier zero-knowledge argument of knowledge with witness extended emulation
for c being a commitment to a permutation of the messages m1, . . . , mn. If the
commitment scheme is statistically hiding then the argument is statistical honest
verifier zero-knowledge.

Proof. It is obvious that we are dealing with a 5-move public coin protocol.
Completeness is trivial to verify. Remaining is to prove special honest verifier
zero-knowledge and witness extended emulation.

Special honest verifier zero-knowledge. We first describe how to sim-
ulate an argument given challenges x, e. Pick f1, . . . , fn, z at random, and
pick f∆1 , . . . , f∆n−1 , z∆ at random. Let ca ← mcom(0, . . . , 0). Set cd =
mcom(f1, . . . , fn; z)c−e and c∆ = mcom(f∆1, . . . , ∆n−1; z∆)c−e

a . The simulated
argument is cd, c∆, x, ca, e, f1, . . . , fn, z,
f∆1 , . . . , f∆n−1 , z∆.

To see that the simulated argument is indistinguishable from a real argu-
ment, consider the following hybrid argument. We proceed as in the simulation
choosing f1, . . . , fn, z, f∆1 , . . . , f∆n−1 , z∆ at random. Now compute d1 = f1 −
emπ(1), . . . , dn = fn−emπ(n). Compute F1, . . . , Fn such that Fn = e

∏n
i=1(mi−x),

F1 = f1 and for i = 1, . . . , n − 1 we have eFi+1 = Fi(fi+1 − ex) + f∆i
. Define

∆i = Fi− eai. Now pick ra at random and set ca = mcom(∆2− (mπ(1) − x)∆1 −
a1d2, . . . , ∆n− (mπ(n)−x)∆n−1−an−1dn; ra). Continue the simulation by setting
cd = mcom(f1, . . . , fn; z)c−e and c∆ = mcom(f∆1, . . . , f∆n−1 ; z∆)c−e

a .
The hybrid argument is statistically indistinguishable from a real argument,

since everything is generated the same way. On the other hand, in comparison
with the simulated argument the only difference is the content of commitment
ca. The hiding property of the commitment scheme therefore gives us indistin-
guishability between the hybrid argument and the simulated argument. If the
commitment scheme is statistically hiding then the argument is statistical honest
verifier zero-knowledge.

Witness extended emulation. The emulator first runs P ∗ with the algorithm
of the real verifier. This is the view that E outputs. If the view is rejecting, then

5.2. Shuffle of Known Content 53

Shuffle of Known Content Argument

Common input: c, m1, . . . , mn and public keys.
Prover’s input: A permutation π ∈ Σn and a randomizer r ∈ Zq such that
c = mcom(mπ(1), . . . , mπ(n); r).

Initial message: Pick d1, . . . , dn and rd at random from Zq and let
cd = mcom(d1, . . . , dn; rd).

Pick ∆2, . . . , ∆n−1 ∈R Zq and define ∆1 = d1, ∆n = 0. Choose r∆ ∈R Zq

and set c∆ = mcom(−d2∆1, . . . ,−dn∆n−1; r∆).

Send cd, c∆ to the verifier.

First challenge: x ∈ {0, 1}`e.

First answer: For j = 1, . . . , n define aj =
∏j

i=1(mπ(i) − x).

Pick ra ∈ Zq and set ca =
mcom(∆2−(mπ(1)−x)∆1−a1d2, . . . , ∆n−(mπ(n)−x)∆n−1−an−1dn; ra).

Send ca to the verifier.

Final challenge: e ∈R {0, 1}`e.

Final answer: Set f1 = e(mπ(1)) + d1, . . . , fn = e(mπ(n)) + dn. Set
z = er + rd. Let f∆1 = e(∆2− (mπ(2)−x)∆1−a1d2)−∆1d2, . . . , f∆n−1 =
e(∆n − (mπ(n) − x)∆n−1 − an−1dn)−∆n−1dn and z∆ = era + r∆.

Send f1, . . . , fn, z, f∆1 , . . . , f∆n−1, z∆ to the verifier.

Verification: Check that mcom(f1, . . . , fn; z) = cecd.

Check that mcom(f∆1 , . . . , f∆n−1; z∆) = ce
ac∆.

Define F1, F2, . . . , Fn as the elements such that
F1 = f1− ex, eF2 = F1(f2− ex)+ f∆1, . . . , eFn = Fn−1(fn− ex)+ f∆n−1.

a

Verify that Fn = e
∏n

i=1(mi − x).

aThe idea is that the identity Fj =
∏j

i=1(mπ(i) − x) + ∆j holds for all j.

Figure 5.1: Argument of Knowledge of Shuffle of Known Content.

E halts with w =⊥. However, if the view is accepting then E must try to find a
witness itself.

To extract a witness E samples another acceptable argument.
Call the two arguments cd, c∆, x, ca, e, f1, . . . , fn, z, f∆1 , . . . , f∆n−1 , z∆

and cd, c∆, x′, c′a, e
′, f ′1, . . . , f

′
n, z′, f ′∆1

, . . . , f ′∆n−1
, z′∆. If e 6= e′ we have

mcom(f1, . . . , fn; z) = cecd and mcom(f ′1, . . . , f
′
n; z′) = ce′cd. This gives us

54 Chapter 5. Verifying Shuffles

mcom(f1 − f ′1, . . . , fn − f ′n; z − z′) = ce−e′. E now runs the root extraction
algorithm in an attempt to learn a quasi-opening µ1, . . . , µn, r of c. If successful
E can deduce a quasi-opening d1, . . . , dn, rd of cd too.

Let us at this stage argue that E runs in expected polynomial time. If P ∗ is
in a situation where it has probability ε of making the verifier accept, then the
expected number of runs to get an acceptable view is 1

ε
. Of course if P ∗ fails,

then we do not need to sample a second run. We therefore get a total expectation
of 1 query to the oracle P ∗. A consequence of E using an expected polynomial
number of queries to P ∗ is that it only has negligible probability of ending in a
run where e′ = e or any other event with negligible probability occurs.

The next step is to argue that with overwhelming probability µ1, . . . , µn is a
permutation of m1, . . . , mn, i.e., E has indeed found a witness. More precisely, if
E is not a witness extended emulator then there is a polynomial in the security
parameter poly(k), such that the difference between the probabilities is larger
than 2

poly(k)
for an infinite number of k’s.

Assume therefore that µ1, . . . , µn is not a permutation of m1, . . . , mn

and P ∗ has more than 1
poly(k)

chance of producing a convincing argument.
In that case we can pick a challenge x at random, and thereafter pick
three random final challenges e, e′, e′′. With probability at least 1

poly(k)3

does P ∗ manage to create accepting arguments on all three of these chal-
lenges. Call the first two arguments cd, c∆, x, ca, e, f1, . . . , fn, z, f∆1 , . . . , f∆n−1 , z∆

and cd, c∆, x, ca, e
′, f ′1, . . . , f

′
n, z, f ′∆1

, . . . , f ′∆n−1
, z′∆. We get mcom(f∆1 −

f ′∆1
, . . . , f∆n−1 − f ′∆n−1

; z∆ − z′∆) = ce−e′
a . From this we can extract an opening

α1, . . . , αn−1, ra. Using the homomorphic property this also gives us an opening
δ1, . . . , δn−1, r∆ of c∆.

Consider now the third challenge e′′. Since we know openings of ca and c∆,
we can deduce that we have found a value e′′ such that (e′′)n

∏n
i=1(µi − x) =

(e′′)n
∏n

i=1(mi−x)+ f(e′′), where f(X) is a polynomial of degree n− 1. Since e′′

is chosen at random this implies with overwhelming probability that
∏n

i=1(µi −
x) =

∏n
i=1(mi − x). Furthermore, since x was chosen at random we have two

polynomials evaluating to the same value in a random point. With overwhelming
probability, they are identical. This in turn implies with overwhelming probability
that µ1, . . . , µn is a permutation of m1, . . . , mn as we wanted to show. �

Single commitments. We remark that we do not need to use the same
public keys for the multicommitments c, cd and ca, c∆. We could therefore
make a combination, where we used a multi-commitment for ca, c∆, while us-
ing a bunch of single commitments to commit to the mi’s and di’s. I.e., let
c1 = com(mπ(1); r1), . . . , cn = com(mπ(n); rn). In some applications, this separa-
tion of the commitments to the mi’s may be useful.

5.3. Shuffle of Ciphertexts 55

5.3 Shuffle of Ciphertexts

The idea. As mentioned in the introduction it is easy to shuffle a set
of homomorphic ciphertexts e1, . . . , en into a new set of ciphertexts E1 ←
eπ(1)Epk(0), . . . , En ← eπ(n)Epk(0), where π is some permutation. The question is
whether we can argue having done so in zero-knowledge.

We describe the idea in the protocol, which resembles the idea in [50]. Make
a commitment cs ← mcom(π(1), . . . , π(n)). We send cs to the verifier. This way
we have committed to the permutation π. Of course the verifier does not yet
know that we did the correct thing, we will demonstrate that later.

The second step consists in the verifier choosing at random t1, . . . , tn
and sending them to the prover. We make another commitment ct ←
mcom(tπ(1), . . . , tπ(n)) and send it to the verifier. We will try to convince the
verifier that the ti’s have been shuffled in exactly the same way as 1, . . . , n.

Now, what we will actually do is to let the verifier pick a challenge λ at
random. We will then use the argument of the previous section to show that cλ

sct

contain a shuffle of the elements λ+t1, . . . , λn+tn. Unless we did indeed commit to
a permutation of 1, . . . , n and t1, . . . , tn, and used the same permutation for both
sets, there is overwhelming probability over λ that we cannot create a convincing
argument.

The final step is to prove that E
λπ(1)+tπ(1)

1 · · ·Eλπ(n)+tπ(n)
n contains the same

plaintext as eλ+t1
1 · · · eλn+tn

n . Since the verifier committed to a permutation π
before knowing λ and the ti’s, this forces him to raise the ciphertexts to ran-
dom elements λi + ti completely beyond his control. Unless indeed e1, . . . , en

and E1, . . . , En have the same set of plaintexts there is only negligible chance of
succeeding with the argument.

Theorem 5.2 The scheme in Figure 5.2 is a public coin 7-move special honest
verifier zero-knowledge argument of knowledge with witness extended emulation
for a correct shuffle. If the commitments are statistically hiding then the argument
is statistical special honest verifier zero-knowledge.

Proof. It is easy to see that we are dealing with a 7-move public coin protocol.
Completeness follows by straightforward verification. We need to demonstrate
that the protocol is special honest verifier zero-knowledge and we need to show
that it has the witness-extended emulation property.

Special Honest Verifier Zero-Knowledge. We are given t1, . . . , tn, λ, x, e
as input, and wish to produce something that is indistinguishable from a real
argument.

Choose cs ← mcom(0, . . . , 0), ct = mcom(0, . . . , 0), ca = mcom(0, . . . , 0). Pick
f1, . . . , fn at random and F2, . . . , Fn−1 at random. Let F1 = f1 − ex and Fn =
e
∏n

i=1(λi + ti − x). Pick z, z∆ and Z at random.

56 Chapter 5. Verifying Shuffles

Shuffle of Ciphertexts Argument

Common input: e1, . . . , en and E1, . . . , En and public keys.
Prover’s input: A permutation π ∈ Σn and randomizers R1, . . . , Rn satisfying
E1 = eπ(1)Epk(0;R1), . . . , En = eπ(n)Epk(0;Rn).

Initial message: Pick rs ∈R Zq at random and set cs = mcom(π(1), . . . , π(n); rs).

Select d1, . . . , dn ∈R Zq. Select rd ∈R Zq and set cd = mcom(d1, . . . , dn; rd).

Select ∆2, . . . ,∆n−1 ∈R Zq and define ∆1 = d1,∆n = 0. Select r∆ ∈R Zq at
random and set c∆ = mcom(−d2∆1, . . . ,−dn∆n−1; r∆).

Select R ∈r Zq and set E = Epk(0;R)Ed1
1 · · ·Edn

n .

Send cs, cd, c∆, E to the verifier.

First challenge: t1, . . . , tn ∈R {0, 1}`e .

First answer: Select rt ∈r Zq and set ct = mcom(tπ(1), . . . , tπ(n); rt).

Send ct to the verifier.

Second challenge: Choose λ, x ∈R {0, 1}`e at random.

Second answer: For j = 1, . . . , n let aj =
∏j

i=1(λπ(i) + tπ(i) − x).

Select ra ∈R Zq and set ca = mcom(∆2 − (λπ(2) + tπ(2) − x)∆1 −
a1d2, . . . ,∆n − (λπ(n) + tπ(n) − x)∆n−1 − an−1dn; ra).

Send ca to the verifier.

Third challenge: Select e ∈R {0, 1}`e .

Final answer: Set f1 = e(λπ(1) + tπ(1)) + d1, . . . , fn = e(λπ(n) + tπ(n)) + dn. Set
z = e(λrs + rt) + rd. Let
f∆1 = e(∆2 − (λπ(2) + tπ(2) − x)∆1 − a1d2)−∆1d2, . . . , f∆n−1 =
e(∆n − (λπ(n) + tπ(n) − x)∆n−1 − an−1dn)−∆n−1dn and z∆ = era + r∆.

Set Z = R− e(λπ(1) + tπ(1))R1 − · · · − e(λπ(n) + tπ(n))Rn.

Send f1, . . . , fn, z, f∆1 , . . . , f∆n−1 , z∆, Z to the verifier.

Verification: Check that mcom(f1, . . . , fn; z) = (cλ
s ct)ecd.

Check that mcom(f∆1, . . . , f∆n−1; z∆) = ce
ac∆.

Define F1, F2, . . . , Fn as the elements such that
F1 = f1 − ex, eF2 = F1(f2 − ex) + f∆1, . . . , eFn = Fn−1(fn − ex) + f∆n−1 .
Verify that Fn = e

∏n
i=1(λi + ti − x).

Check that Epk(0;Z)Ef1
1 · · ·Efn

n = (eλ1+t1
1 · · · eλn+tn

n)eE.

Figure 5.2: SHVZK argument of knowledge of a shuffle of ciphertexts.

5.3. Shuffle of Ciphertexts 57

Compute f∆1 = eF2 − F1(f2 − ex), . . . , f∆n−1 = eFn − Fn−1(fn − ex). Define
cd = (cλ

sct)
−emcom(f1, . . . , fn; z) and c∆ = c−e

a mcom(f∆1, . . . , f∆n−1 ; z∆). Set

E = Epk(0; Z)Ef1
1 · · ·Efn

n (eλ+t1
1 · · · eλ+tn

n)−e.

The simulated argument is (cs, cd, c∆, E, t1, . . . , tn, ct, λ, x, ca, e, f1, . . . , fn, z,
f∆1 , . . . , f∆n−1 , z∆, Z).

To see that the simulated argument is indistinguishable from a real argument,
consider the following hybrid argument. We do everything as in the simulation
except when computing cs, ct, ca. Let cs ← mcom(π(1), . . . , π(n); rs) and ct ←
mcom(tπ(1), . . . , tπ(n)). Define di = fi − e(π(i) + tπ(i) and ∆i = Fi − eai for
i = 1, . . . , n. Let ca ← mcom(∆2 − (λπ(2) + tπ(2) − x)∆1 − a1d2, . . . , ∆n −
(λπ(n) + tπ(n) − x)∆n−1 − an−1dn).

The hybrid argument is statistically indistinguishable from a real argument
since we have only changed the order in which we compute the things. The hybrid
argument is also indistinguishable from the simulated argument since the only
difference is in the commitments cs, ct, ca. If the commitments are statistically
hiding then the hybrid argument and the simulated argument are statistically
indistinguishable.

Witness extended emulation. First, note that as in the proof of Theorem 5.1
we can from a couple of samples with the same t1, . . . , tn and the same λ extract
the contents of cλ

sct. As in that proof, we can then argue that we know how to
open cλ

sct as containing a permutation of λ+ t1, . . . , λn + tn. With overwhelming
probability over λ, the permutation π is uniquely defined.

Second, we wish to argue that cs contains π(1), . . . , π(n). To argue this sample
yet another argument, this time with a different λ′ but the same e as we have
used before. This gives us (cλ−λ′

s)e = mcom(f1 − f ′1, . . . , fn − f ′n, z − z′) and we
can extract an opening of cs. If that opening is not π(1), . . . , π(n), then there
would be overwhelming probability over λ for the contents of cλ

s ct not being a
permutation of λ + t1, . . . , λn + tn.

Third, we sample n+1 arguments cs, cd, c∆, E, t
(i)
1 , . . . , t

(i)
n , c

(i)
t , λ(i), x(i), c

(i)
a , e(i),

f
(i)
1 , . . . , f

(i)
n ,

z(i), f
(i)
∆1

, . . . , f
(i)
∆n−1

, z
(i)
∆ , Z(i) for i = 0, . . . , n. This takes an expected number of

n + 1 queries to P ∗.
The n vectors (e(0)(λ(0) + t

(0)
1) − e(i)(λ(i) + t

(i)
n), . . . , e(0)(λ(0)n + t

(0)
n) −

e(i)(λ(i)n + t
(i)
n) are with overwhelming probability linearly independent.

This means that from the n vectors (Z(0) − Z(i), f
(0)
1 − f

(i)
1 , . . . , f

(0)
n −

f
(i)
n , e(0)(λ(0) + t

(0)
1) − e(i)(λ(i) + t

(i)
n), . . . , e(0)(λ(0)n + t

(0)
n) − e(i)(λ(i)n + t

(i)
n),

we can for any j = 1, . . . , n find a linear combination giving us the vector
(−Ri, 0 . . . , 0, 1j+1, 0, . . . , 0, 0, . . . , 0, 1π(j)+n+1, 0, . . . , 0). This in turn gives us
Epk(0;−Ri)Ej = eπ(j) for j = 1, . . . , n. In other words, we have found a wit-
ness. �

58 Chapter 5. Verifying Shuffles

5.3.1 Using Small Integers to Shuffle.

When we work with small message spaces, say Zq with |q| = 160 the schemes
suggested above work fine. However, with larger message spaces we loose effi-
ciency because the commitments have a message space of the same size. Another
problem is when we are dealing with a message space of unknown size in which
case the known shuffle techniques do not suffice.

Here we will suggest a variation of the argument in Figure 5.2 that handle large
message spaces or message spaces of unknown size. The observation is that no
matter what the message space, as long as it does not have small prime factors di-

viding its order, it is sufficient to prove that Epk(0; Z)E
λπ(1)+tπ(1)

1 · · ·Eλπ(n)+tπ(n)
n =

eλ+t1
1 · · · eλn+tn

n E for integers λ, t1, . . . , tn of small size, say 80 bits for an interac-
tive argument and 160 bits for a non-interactive argument using the Fiat-Shamir
heuristic.

Now if we use a commitment scheme with message space Zq′, where q′ is a
prime with |q′| > 3t, then e(λi+ ti)+di are unlikely to be larger than q′, we have
no overflow. This means that we actually have a shuffle of small integers.

The consequence is that we can use a commitment scheme with relatively
short message space to prove a shuffle of ciphertext that use an entirely different
message space. This also has the advantage that we may use a scheme with
keys that can be easily generated in a distributed way and verified efficiently,
for instance Pedersen commitments over Z

∗
p′, no matter the message space of the

cryptosystem.

5.4 Shuffle and Decryption

As mentioned in the introduction some efficiency gain can be achieved by com-
bining the argument of a shuffle and a decryption. Here we shall look at an
ElGamal-style cryptosystem. Consider a key (G, h1, . . . , hk) for the cryptosystem,
where a group of parties hold individual shares s1, . . . , sk such that for all i we
have hi = Gsi. We can encrypt a message under those keys as (Gr, (

∏k
i=1 hi)

rm).

Party 1 can peel of a layers of encryption to give us (Gr, (
∏k

i=2 hi)
rm), party 2

can peel of another layer to get (Gr, (
∏k

i=3 hi)
rm), etc. After party k has peeled

of a layer, we have the message.
We can combine this technique with the shuffling to get a decrypting shuffle.

I.e., suppose (G, h, H) are publicly known where we know s such that h = Gs.
Intuitively H is the product of the hi’s of the remaining parties. Furthermore,
assume we get as input ciphertexts (u1, v1), . . . , (un, vn) encrypted under (G, hH).
We can shuffle and decrypt by picking at random a permutation π and randomiz-
ers R1, . . . , Rn and compute (U1 = GR1uπ(1), V1 = HR1vπ(1)u

−s
π(1)), . . . , (Un, Vn) =

(GRnuπ(n), H
Rnvπ(n)u

−s
π(n)). If the parties one after another perform this shuffle-

and-decrypt operation, we get a decrypting mix-net. What we need is of course

5.4. Shuffle and Decryption 59

a guarantee for them following the protocol, i.e., a zero-knowledge argument for
the shuffle-and-decrypt operation.

Shuffle-and-Decrypt Argument

Common input: (u1, v1), . . . , (un, vn), (U1, V1), . . . , (Un, Vn) and public keys, including
G, H, h.
Prover’s input: A permutation π ∈ Σn, an exponent s and randomizers R1, . . . , Rn

satisfying Gs = h and
(U1, V1) = (GR1uπ(1), H

R1vπ(1)u
−s
π(1)), . . . , (Un, Vn) = (GRnuπ(n), H

Rnvπ(n)u
−s
π(n)).

Initial message: Pick rs ∈r Zq and set cs = mcom(π(1), . . . , π(n); rs).
Select d1, . . . , dn ∈R Zq. Select rd ∈R Zq and set cd = mcom(d1, . . . , dn; rd).
Select ∆2, . . . ,∆n−1 ∈ Zq and set ∆1 = d1, ∆n = 0. Select r∆ ∈r Zq and set
c∆ = mcom(−d2∆1, . . . ,−dn∆n−1; r∆).
Select d ∈R Zq and set D = Gd. Select R at random. Set U = GRUd1

1 · · ·Udn
n .

Send cs, cd, c∆, D, U to the verifier.

First challenge: t1, . . . , tn ∈ {0, 1}`e.

First answer: Select rt ∈R Zq and set ct = mcom(tπ(1), . . . , tπ(n); rt).
Send ct to the verifier.

Second challenge: Choose λ, x ∈r {0, 1}`e.

Second answer: For j = 1, . . . , n let aj =
∏j

i=1(λπ(i) + tπ(i) − x).
Select ra ∈R Zq and set ca =
mcom(∆2−(λπ(2)+tπ(2)−x)∆1−a1d2, . . . ,∆n−(λπ(n)+tπ(n)−x)∆n−1−an−1dn; ra).

Set V = HR(uλ+t1
1 · · ·uλn+tn

n)d(V d1
1 · · ·V dn

n).
Send ca, V to the verifier.

Third challenge: Select at random e ∈R {0, 1}`e.

Final answer: Set f1 = e(λπ(1) + tπ(1)) + d1, . . . , fn = e(λπ(n) + tπ(n)) + dn. Set
z = e(λrs + rt) + rd. Let
f∆1 = e(∆2 − (λπ(2) + tπ(2) − x)∆1 − a1d2)−∆1d2, . . . , f∆n−1 =
e(∆n − (λπ(n) + tπ(n) − x)∆n−1 − an−1dn)−∆n−1dn and z∆ = era + r∆.
Set Z = R− e(λπ(1) + tπ(1))R1 − · · · − e(λπ(n) + tπ(n))Rn. Set f = es + d.
Send f1, . . . , fn, z, f∆1, . . . , f∆n−1, z∆, Z, f to the verifier.

Verification: Check that mcom(f1, . . . , fn; z) = (cλ
s ct)ecd. Check that

mcom(f∆1 , . . . , f∆n−1; z∆) = ce
ac∆.

Define F1, F2, . . . , Fn as the elements such that
F1 = f1 − ex, eF2 = F1(f2 − ex) + f∆1 , . . . , eFn = Fn−1(fn − ex) + f∆n−1. Verify
that Fn = e

∏n
i=1(λi + ti − x).

Check that GZUf1
1 · · ·Ufn

n = (uλ+t1
1 · · ·uλn+tn

n)eU . Verify that Gf = heD. Check
that HZV f1

1 · · ·V fn
n = (vλ+t1

1 · · · vλn+tn
n)e(uλ+t1

1 · · ·uλn+tn
n)−fV .

Figure 5.3: Argument of knowledge for a shuffle-and-decrypt operation.

Theorem 5.3 The protocol in Figure 5.3 is a 7-move public coin special honest

60 Chapter 5. Verifying Shuffles

verifier zero-knowledge argument with witness extended emulation. If the commit-
ment scheme is statistically hiding, then the argument is statistical honest verifier
zero-knowledge.

Proof. It is easy to see that it is a 7-move public coin protocol. Completeness is
straightforward to verify. Left is to argue special honest verifier zero-knowledge
and witness-extended emulation.

Special honest verifier zero-knowledge. Given challenges
t1, . . . , tn, λ, x, e we want to simulate an argument. To that end,
we pick f1, . . . , fn, z, f∆1 , . . . , f∆n−1, z∆, f, Z at random. We set
cs ← mcom(0, . . . , 0), ct ← mcom(0, . . . , 0), ca ← mcom(0, . . . , 0).
We then compute cd = mcom(f1, . . . , fn; z)(cλ

s ct)
−e, c∆ =

mcom(f∆1, . . . , f∆n−1 ; z∆)c−e
a , D = Gfh−e, U = GZUf1

1 · · ·Ufn
n (uλ+t1

1 · · ·uλn+tn
n)−e

and V = HZV f1

1 · · ·V fn
n (vλ+t1

1 · · · vλ+tn
n)−e.

The simulated argument is (cs, cd, c∆, D, U, t1, . . . , tn, λ, x, ca, V, , f1, . . . , fn, z,
f∆1 , . . . , f∆n−1 , z∆, f, Z).

To argue that this is a good simulation consider the hybrid argument that
carries out the simulation procedure except generating cs, ct, ca as the hybrid
argument in the proof of Theorem 5.2. The hybrid argument is statistically
indistinguishable from a real argument, since the only difference is in the order
in which we generate the different elements. It is also indistinguishable from a
simulated argument because of the hiding property of the commitments. If the
commitments are statistically hiding, then the hybrid argument is statistically
indistinguishable from a simulated argument.

Witness-extended emulation. To argue witness-extended emulation first
note that from a couple of convincing arguments with challenge e 6= e′ we may
extract the exponent s such that h = Gs.

We then proceed as in the proof of Theorem 5.2 and find lin-
ear combination of vectors giving us for j = 1, . . . , n a vector
(Rj , 0 . . . , 1j+1, 0 . . . , 0, 0, . . . , 0, 1π(j)+n+1, 0, . . . , 0). This gives us GRjUj = uπ(j).

At this point, we have a permutation π, randomizers R1, . . . , Rn and the secret
exponent s. All that remains is to argue that HR1V1 = vπ(1)u

−s
π(1), . . . , H

RnVn =

vπ(n)u
−s
π(n). First, since we know R, d1, . . . , dn, λ, t1, . . . , tn, s, d we see

that the adversary has negligible chance of success unless indeed V =
HR(uλ+t1

1 · · ·uλn+tn
n)dV d1

1 · · ·V dn
n . In successful arguments we therefore have

HZV f1

1 · · ·V fn
n = ((v1u

−s
1)λ+t1 · · · (vnu−s

n)λn+tn)e(HRV d1
1 · · ·V dn

n). Using the same
vectors as above we get for j = 1, . . . , n that HRjVj = vπ(j)u

−s
π(j), just as we

wanted to show. �

5.5. Optimizations 61

5.5 Optimizations

Generating the first challenge. One trick is to generate t1, . . . , tn using a
pseudorandom generator. This way, the verifier does not need to send all of them.
Instead, he simply selects a seed and sends it to the prover. This trick is worth
remembering especially when there are multiple verifiers that generate challenges
jointly. In that case generating n random numbers could be a burden when n is
large, but all they need to do is to jointly generate a random seed.

Reducing the size of the public key. As noted in [50] we can implement
multi-commitments over n elements by choosing a smaller l and then combine sev-
eral multi-commitments to l elements to give a multi-commitment to n elements.
By doing this we use slightly more computational effort, but we can reduce the
size of the public key by a factor n

l
. In cases where we have to jointly generate

the public key for the commitment schemes, this may be worthwhile. Further-
more, we may get an advantage out of it when we use randomized verification as
described below.

Using different size groups. Another trick from [50] is to use different groups
for the commitments and the ciphertexts. Consider shuffling ElGamal cipher-
texts, where we operate over a group Gq ≤ Z

∗
p, where |p| = 3000 and |q| = 300.

In electronic voting such parameters are realistic since the encryption has to hold
in many years to come. Instead of making Pedersen-commitments over the group
Gq, we can instead use another group G′

q ≤ Zp′ , of order q where |p′| = 1000.
This is because the arguments are statistical zero-knowledge so we only need that
they are sound at the time of verification, we do not need long term protection.

Unconditional soundness. [66] suggests unconditional soundness. If we use
unconditionally binding commitments we get an argument with unconditional
soundness and computational zero-knowledge. The price we pay in terms of
reduced performance is considerable.

Parallel shuffling. [66] also suggests reusing the first rounds of the protocol in
case many sets of ciphertexts need to be shuffled in the same order. This remark
also applies to our shuffle argument as well as the shuffle and decrypt argument.

Randomizing the verification. Instead of using a deterministic verification
step, we may use randomization to our advantage.

Replace the first step of the verification with the following: Pick α as
a random exponent of size, say, 80 bits. Define f∆n = 0. Check that
mcom(αf1 + f∆1 , . . . , αfn + f∆n ; αz + z∆) = ((cλ

sct)
ecd)

αce
ac∆.

62 Chapter 5. Verifying Shuffles

If we are checking many shuffle arguments at the same time, we may repeat
this trick to get down to spending no exponentiations on the first step of the
verification.

If the group is of a large size, i.e., |q| >> |α|, it may also pay of to use
randomization in the last step. Suppose for instance that we have an argument
for a correct shuffle of ElGamal ciphertexts. Then we just need to verify that
(GαH)Z(Uα

1 V1)
f1 · · · (Uα

n V1)
fn = ((uα

1v1)
λ+t1 · · · (uα

nvn)λn+tn)eUαV .
In other words, we can get close to using only 3 exponentiations in the verifi-

cation, and down to 2 exponentiations if we are checking multiple arguments at
the same time.

5.6 Multi-exponentiation

Consider some election with a huge number of voters. In that case, we may
have many votes to mix, i.e., we have to make shuffles of thousands or even mil-
lions of encrypted votes. We offer a few thoughts on some multi-exponentiation
techniques that offer good performance in this scenario.

The setting is the following. We work in some abelian group with ele-
ments g1, . . . , gn and exponents e1, . . . , en of length t. We want to compute
h = ge1

1 · · · gen
n .

Let s be some small number dividing t, i.e., t = su. A suitable size of s is
something like blog(n)c. We divide the ei’s into s-bit blocks: ei = ei,u−1|| · · · ||ei,0.

We have gei
i = g

ei,u−12
s(u−1)

i · · · gei,02
0

i .
The observation is now that

h =
n∏

i=1

gei
i =

n∏
i=1

u−1∏
j=0

g
ei,j2sj

i =
u−1∏
j=0

(
n∏

i=1

g
ei,j

i)2sj

.

The inner expression can be computed in a fast way by sorting the elements
according to their ei,j-block. We have

n∏
i=1

g
ei,j

i =
2s−1∏
k=1

(
∏

i:ei=k

gi)
k.

Combining the two we get

h =

u−1∏
j=0

(

2s−1∏
k=1

(
∏

i:ei=k

gi)
k)2sj

.

Further optimizations of the loop
∏2s−1

k=1 (. . .)k are possible since here we can
easily find groups of exponents that share many bits. Due to time constraints
writing this dissertation, we do not explore this further.

5.7. Correctness of a Priority Vote 63

If we are a bit rough and count a modular squaring as a modular multipli-
cation, we get the following estimate. To compute h we need to use approxi-
mately t(3

2
2s + n

s
) multiplications. In comparison, a single exponentiation costs

around 3
2
t multiplications. Setting s = log(n) − log2(n) we therefore only use

the computational equivalent of O(n
log(n)

) exponentiations to compute h. As a

concrete example, take the parameters from the voting mix-net of [43]. Let
n = 100, 000, t = 160, s = 10, then we use the equivalent of 7691 single expo-
nentiations to compute h. Using our mix-net multiply that with 6 for ElGamal
encryption shuffling to get a price of 0.7n single exponentiations for the prover
and using randomization 0.6n single exponentiations for the verifier. In com-
parison the best parameters for the multi-exponentiation algorithm in [62] are
n = 100, 000, t = 160, s = 6 which gives approximately 20,000 single exponentia-
tions to compute h.

5.7 Correctness of a Priority Vote

Let us work with the election scheme of the previous chapter but look at another
way to form valid votes. Each voter ranks the candidates in order of preference,
then he assigns 0 votes to the worst candidate, 1 vote to the second-worst can-
didate, . . ., L− 1 votes to the best candidate. We need a SHVZK argument for
correctness of this kind of vote.

The idea is the following. A correct vote is an assignment of votes 0, . . . , L−1
to the L candidates. I.e., a permutation π ∈ Σn uniquely determines a valid
vote by assigning π(0) votes to the first candidate, π(1) votes to the second
candidate, etc. We can commit to the vote by forming the commitment c ←
mcom(π(0), . . . , π(L− 1)).

Using our standard techniques we can then get out f1 = eπ(0)+d0, . . . , fL−1 =
eπ(L−1)+dL−1. Defining D = M0d0+· · ·+ML−1dL−1 we then have F = M0f0+
· · ·ML−1fL−1. Using the standard technique we can deduce that a ciphertext E
contains the content hidden in F , i.e., E has plaintext

∑L−1
j=0 π(j)M j . This means

that E contains a valid vote.
This argument can be optimized such that we do not need the intermediate

commitment c but use the techniques from the known shuffle argument directly
to show that E contains a valid priority vote. We have already seen plenty
arguments of valid votes in the previous chapter so we will leave the idea at this
sketchy state here without going into the details.

Chapter 6

Non-Malleable Commitment

6.1 Introduction

For some applications of commitments, the properties hiding and binding do
not suffice. An example of an additional property is non-malleability, a concept
introduced by Dolev, Dwork and Naor [37]. We considered in the introduction the
problem of fair contract bidding. In particular, we noted that for the Pedersen
commitment Bob can consistently underbid Alice, even though Bob at the time
of commitment does not know exactly what Alice is bidding.

Several NM commitment schemes have been suggested to prevent such an
attack. While the first [37] was highly interactive, the scheme by Di Crescenzo,
Ishai and Ostrovsky [35] is the only previous scheme that is non-interactive and
can be based on the minimal assumption of existence of one-way functions. This
scheme, and later more efficient ones based on special assumptions [36, 41] are all
in the common reference string (CRS) model, where it is assumed that players
all have access to a string that is guaranteed to be selected with a prescribed
distribution. A special case of this is a uniformly random CRS; we call this the
uniform reference string (URS) model. Barak [5] has suggested an interactive non-
malleable commitment scheme in the plain model without a CRS. It is unknown if
non-interactive NM commitment with minimal assumptions is possible without a
CRS, but since part of our goal is to look at the relation to universally composable
commitments where a CRS is necessary (see below for details) we only consider
the CRS model here.

The constructions from [35, 36, 41] were all proven secure according to a defi-
nition where the adversary sees one commitment from an honest player and then
tries to make his own (related) commitment. However, if we consider the moti-
vating example, it is clearly more natural to require non-malleability, even if the
adversary gets any polynomial number of commitments as input (the adversary’s
goal might be to underbid everyone else, for instance). We call this notion of se-
curity reusability, referring to the fact that in the CRS model, it means that the
same CRS can be reused for several commitments from any number of players.

65

66 Chapter 6. Non-Malleable Commitment

We show that reusability is a strictly stronger notion, for both unconditionally
hiding and unconditionally binding schemes. This may be slightly surprising
since it was argued in [37] that the corresponding notions for NM encryption
are equivalent. Unfortunately, the security proofs of [35, 36] break down in the
more general setting, and so it might seem that to get reusability, one would
have to either use several rounds of interaction [37] or use stronger, non-minimal,
assumptions [21].

This chapter builds on the work in [27] where we offered a general technique
for constructing reusable, non-interactive NM commitments in the CRS model.
The main new technical idea is a way to use any digital signature scheme (even
one with rather weak security properties) as a basis for NM commitments. They
can therefore be based on any one-way function, but can also be instantiated
more efficiently, for instance based on the strong RSA assumption. The version
based on general one-way functions also extends to the URS model.

Independently [45] introduced the notion of simulation sound commitments
and presented a construction based on the assumption that DSA is secure against
chosen message attack. MacKenzie and Yang introduce a weaker notion, tag-
based simulation soundness and tag-based non-malleability in [61], and show that
the two notions are closely related. They too use signatures in their constructions.
While we did not formulate the notion of simulation soundness in [27] the notion
is indirectly used, our techniques resemble those of [45] and [61].

Universally composable (UC) commitment is a notion introduced by Canetti
in [17], with the first such scheme being suggested by Canetti and Fischlin in [18].
An efficient interactive scheme based on a specialized assumption was suggested
by Damg̊ard and Nielsen in [32], while a scheme based on any trapdoor one-way
permutation can be found in [21]. In a UC scheme, making a commitment is
“equivalent” to giving in private the committed value to a trusted third party,
who will then later reveal it on request from the committer. This is a very
strong security notion: it implies (reusable) non-malleability, and security against
concurrent composition and adaptive adversaries. In fact, there provably does
not exist a 2-party UC commitment scheme in the “bare” model where no extra
resources are given a priori. However, 2-party schemes are possible in the CRS
model, and all the schemes mentioned above work in this scenario.

It is easy to see that non-interactive UC commitment implies key exchange
[21], but previously no consequences of UC commitments in general were known.
In this paper, we show that any 2-party UC commitment scheme secure against
passive adversaries in the CRS model (interactive or not) implies key exchange,
and if it is secure in the URS model then we get oblivious transfer. Key exchange
and oblivious transfer are generally regarded as a stronger primitive than one-
way functions. For instance, Impagliazzo and Rudich [52] show a relativized
separation between them. So, our results can be seen as an indication that UC
commitment is a strictly stronger primitive than NM commitment – even if we
require the NM scheme to be non-interactive and reusable.

6.2. Definitions 67

Our last result is an application of our efficient NM commitment scheme to
improve the efficient UC commitment scheme from [32], where the size of the
CRS must grow linearly with the number of players involved. We show that by
combining the two, we obtain an equally efficient UC scheme where the size of
the CRS can be independent of the number of players. To prove this we rely on
the underlying properties of the commitment scheme that were also used in the
proof of NM.

6.2 Definitions

6.2.1 Simulation Soundness

Consider a Pedersen commitment, c. Now, if we see a couple of equivocations of
this commitment (m, r) and (m′, r′), then we have gmhr = gm′

hr′ mod p. This

gives us g = h
r′−r

m−m′ mod p, i.e., we have learned the equivocation key. But this
means that we can create commitments ourselves that we can equivocate.

[45, 61] note this problem and suggest simulation sound commitments where
access to equivocated commitments does not allow one to equivocate other com-
mitments. The definition can be varied in a couple of ways, we can strengthen it
to say that any commitment that has been equivocated at most one time is still
binding, this is the definition from [45]. Here we adopt the simpler definition of
body-based simulation sound commitments from [61]. Unfortunately, our con-
struction does not satisfy this definition for randomness revealing commitments,
so we also define a weaker notion that we call static simulation soundness. This
latter notion covers the case where the adversary must choose the commitment
to equivocate before getting access to an equivocation oracle.

To define simulation soundness we consider the following two oracles.

Com(pk, ek): Store (c, e)← ĉompk(ek). Return c.

Dec(pk, ek, c, m): Check if Com has stored a pair (c, e). In that case, return
d← equivpk,ek(c, e, m).

Definition 6.1 (Simulation soundness) A commitment scheme is simula-

tion sound if for all adversaries A we have Pr[(pk, ek) ← K̂(); (c, d1, d2) ←
ACom(pk,ek),Dec(pk,ek,·,·)(pk, z); m1 ← decpk(c, d1); m2 ← decpk(c, d2) :⊥6= m1 6=
m2 6=⊥] ≈ 0, where we demand that c has not been produced by Com(pk, ek).

Definition 6.2 (Static simulation soundness) A commitment scheme
is static simulation sound if for all adversaries A we have Pr[(pk, ek) ←
K̂(); (c, d1, d2) ← ACom(pk,ek)(pk); (d1, d2) ← ADec(pk,ek,·,·)(); m1 ←
decpk(c, d1); m2 ← decpk(c, d2) :⊥6= m1 6= m2 6=⊥] ≈ 0, where we require
that c was not produced by Com.

68 Chapter 6. Non-Malleable Commitment

6.2.2 Non-malleable Commitment

Non-malleability is a security notion concerned with man-in-the-middle attacks.
With respect to commitments, the intuition is that the execution of some commit-
ment protocols should not affect the execution of other commitment protocols.
We capture this in a notion of non-malleability where the adversary does not
get an advantage from having access to the execution of commitment protocols
compared with the case where the adversary has no such access. In the latter
case, we simply let the adversary specify the messages rather than first forming
commitments and then opening them later on.

We consider two games. In the first game, we generate a tuple of messages
according to some distribution. An adversary receives commitments to these
messages and outputs a tuple of commitments himself. After receiving openings of
the original commitments, the adversary then tries to open his own commitments
in a way such that the contents are related to the original messages. It wins if
indeed the messages are related.

In the second game, we generate a tuple of messages according to the same
distribution as in the first game. However, this time we do not give the adversary
the commitments to the messages. The adversary in the second game must try to
output related messages without knowing anything about the original messages.

We wish that for any adversary playing the first game we can find one that
fares (almost) as well in the second game. In this case, we will consider the
commitment scheme non-malleable. In our case, the fact that we use the CRS
model allows us to give some help to the adversary in the second game (without
which we could not prove security). More specifically, in the second game we
produce the public key for the commitment scheme with an algorithm that also
provides some extra information that the adversary can use to its advantage (in
this dissertation the extra information will enable it to equivocate commitments).

Let us describe the two games more accurately. In both games, there is a
message generator, M . The message generator receives the public key, pk, for
the commitment scheme as input and it also gets some auxiliary input z. M
returns a value s and a vector of messages ~m.

In the first game, we model the adversary A as a probabilistic polynomial
time interactive Turing machine. It learns pk and z. In its firsts invocation A
receives a tuple of commitments ~c to the messages in ~m. It responds with ~c ′,
a tuple of elements from Cpk. We do not allow A to directly copy any of the
commitments in ~c into ~c ′. Later A is activated again, this time receiving a tuple
~d of decommitments to the commitments in ~c. It must now try to produce a
tuple of decommitments ~d ′ to its own commitments.

In the second game, we run a modified key generator K̂ to generate the public
key pk. This key must be indistinguishable from a real key. In addition to the key
pk, the modified key generator also produces some extra information spk about
the key.

6.2. Definitions 69

The adversary in the second game B is only invoked once. Like A, it learns
pk and z. It also gets spk as input. However, it will not receive any information
about the tuple of messages ~m except for the number of messages in the tuple,
t = |~m|. It returns a tuple ~m′ of messages fromMpk ∪ {⊥}.

We compare the outcome of the two games by running a polynomial time
distinguisher D. This distinguisher gets as input s, ~m, ~m′, where in the first
game ~m′ is the resulting vector of messages when running the decommitment
algorithm on the tuples ~c ′, ~d ′. Note, s contains information from M possibly
including the public key pk. The distinguisher returns a single bit, where we
interpret 1 as being a success. We demand that the probability of D outputting
1 cannot be increased by changing a message in ~m′ to ⊥. This way the adversary
A cannot get an advantage by deliberately refusing to open its commitments.

Let us write down the probabilities of success in the two games. For the first
game we define

SuccA,M,D(k, z) = Pr[pk ← K(); (s, ~m)←M(pk, z);

(~c, ~d)← compk(~m);~c ′ ← A(pk,~c, z);

~d ′ ← A(~d); ~m′ ← decpk(~c, ~d) :

D(s, ~m, ~m′) = 1],

where we demand that neither of the commitments in ~c is contained in ~c ′.
In the second game the success probability is given by

ŜuccB,M,D(k, z) = Pr[(pk, spk)← K̂(); (s, ~m)←M(pk, z);

~m′ ← B(pk, spk, t, z) : D(s, ~m, ~m′) = 1],

where t = |~m|, and where we interpret commitments and decommitments of
vectors in the natural way.

Definition 6.3 (Non-malleable commitment) We say a commitment

scheme is non-malleable if it has a modified key generator K̂ such that for all
A, M there exists a B, such that for all D we have

SuccA,M,D(k, z)− ŜuccB,M,D(k, z) < negl(k)

for all z with lengths bounded by some polynomial in k.
We say a commitment scheme is ε-non-malleable if for every A and ε, there

exists B running in time polynomial in k and ε−1, such that the above difference
is at most ε + negl(k).

We will later construct ε-non-malleable commitment schemes, where ε−1 may
be any positive polynomial in k.

70 Chapter 6. Non-Malleable Commitment

Remark. Our definition does not allow the adversaries to receive any “history”,
i.e., side information about the messages they receive commitment to. Like [35]
and [36] we do not know how to achieve such security. However, in all cases
where messages consistent with the side information can be sampled efficiently,
our security proofs remain valid.

6.2.3 Comparison with Other Definitions of Non-
malleability

As mentioned before non-malleability is a concept introduced in [37]. Their goal
is to avoid man-in-the-middle attacks. Therefore, they define a protocol as being
non-malleable if the adversary seeing a commitment cannot commit to a related
value. [41] call this non-malleability with respect to commitment.

Unfortunately, this definition does not make much sense when considering
unconditionally hiding commitments since such a commitment does not define
any content by itself. Following the definition of [35, 36], we choose to consider
the content of a commitment as what it is opened to. Such a definition is called
non-malleability with respect to opening in [41]. For unconditionally binding
commitments, non-malleability with respect to commitment is a stronger notion
than non-malleability with respect to opening.

Our definition is stronger than the one in [35, 36]. Any commitment scheme
that is non-malleable according to our definition is also non-malleable accord-
ing to their definition. The main reason for our modification, reusability, was
mentioned in the introduction: rather than just mauling one commitment the
adversary may very well be attempting to maul many commitments at the same
time. We show later that our definition is strictly stronger, there are schemes
secure according to the [35, 36] definitions that are not secure according to our
definition.

Increasing the number of commitments the adversary may see and may pro-
duce is not the only modification we have made. We give the message generator
access to the public key for the commitment scheme. In our opinion, this is rea-
sonable since in real life messages may indeed depend on this key. It does turn
out that we pay a price for this though, since it forces us to give B access to some
side information about the public key. In [35, 36, 61] this was not needed since
they could simply let B choose a completely new public key and still work within
the same message space since it was independent of the key.

We have also changed the notation. [35, 36, 61] speak of a distribution D
instead of a messages generator M , and a relation approximator R instead of a
distinguisher D. This change is purely cosmetic, but our notation seems to be
more in line with other cryptographic literature.

Other definitions [41, 5] deal with interactive commitments. Barak [5] deals
with a general method of setting up a URS interactively in a way such that a

6.2. Definitions 71

subsequent execution of a non-malleable commitment scheme based on a URS
will lead to a non-malleable interactive commitment. One variation of our scheme
is set in the URS model and can therefore be used with Barak’s compiler.

We note that the most secure version of commitment is universally composable
commitments [18, 21, 32]. The scheme presented in [21] is both non-interactive
and universally composable. However, it is based on the assumption that trap-
door permutations exist. We provide some evidence in Section 6.5 that UC
commitment must be based on stronger assumptions than NM commitment.

6.2.4 Comparison with Non-reusable NM

In this section we will be informal and call a commitment scheme (t, u)-NM if it
is non-malleable (or ε-non-malleable for small ε’s) in the case where the message
generator produces a message vector of length t and the adversary produces a
message of length u.

We will argue that (1, 1)-NM implies neither (t > 1, 1)-NM nor (1, u > 1)-
NM. We give counterexamples both in the unconditionally hiding case and the
unconditionally binding case.

Consider the unconditionally hiding commitment scheme from [36], which was
proven (1, 1)-NM. This scheme is actually (1, u)-NM for any u > 1. However, for
(t, 1)-NM the security proof fails for t > 1. It is not known whether the scheme
is even (2, 1)-NM.

We can construct a variant of the scheme that is provably not (2, 1)-NM. We
simply select two keys pk1, pk2 for the scheme, and a commitment to a message m
now consists of the pair (compk1(m), compk2(m)). By running the proof from [36]
“twice in parallel”, we can prove that this commitment scheme is unconditionally
hiding and (1, 1)-NM. However, consider a message generator M that simply
outputs a message vector (m, m). Given commitments (c1, c2) and (c′1, c

′
2) to this

message vector we may form the commitment (c1, c
′
2). After seeing openings to

the original commitments, it is easy to open this commitment to the message
m. In the first game, the adversary may therefore have success probability 1 in
trying to commit to the same message. In the second game, however, we do not
get any help in producing the message, and we can only try to guess m. The
scheme is therefore not (2, 1)-NM.

All (1, 1)-NM commitment schemes we know of in the literature are in fact
(1, u)-NM. However, we can also construct an example showing that this need
not be the case. Again, we pick two public keys pk1, pk2 for the commitment
scheme in [36]. A commitment to message m is formed as (compk1(r), compk2(m⊕
r)), where r is chosen at random. Again, it can be shown that this scheme is
an unconditionally hiding (1, 1)-NM commitment scheme. Consider, however,
an adversary in the first game getting such a commitment (c1, c2). He form
the commitments (compk1(0), c2) and (c1, compk2(0)). Later when receiving an
opening of (c1, c2), he can open his commitments to m1 = r, m2 = r ⊕m. The

72 Chapter 6. Non-Malleable Commitment

exclusive-OR of these messages is m. On the other hand, any adversary in the
second game has to guess m to form a pair of messages m1, m2 with m = m1⊕m2.

To show that for unconditionally binding commitment schemes (1, 1)-NM does
not imply (t > 1, 1)-NM we use a semantically secure encryption scheme with
errorless decryption. We construct a (1, 1)-NM commitment scheme the following
way. As public key, we generate 2k public keys pk1,0, pk1,1, . . . , pkk,0, pkk,1. When
having to commit to a message m the sender selects a k-bit public key vk for
a one-time signature scheme. For each i = 1, . . . , k he encrypts m using pki,vki

,
where vki is the i’th bit of vk. The commitment now consists of the k ciphertexts,
the public verification key for the signature scheme, and a signature on all of it.

To see that this scheme is (1, 1)-NM for any u, consider an adversary A that
upon seeing a commitment to some message m generates a commitment to a
related message m′. Certainly, he cannot use the same public verification key
since he does not know how to make signatures with this key. Therefore, he must
produce at least one ciphertext with a previously unused public key.

We may now use A to break the semantic security of the cryptosystem. Given
k ciphertexts under keys pk1, . . . , pkk of a message m (this is still semantically
secure) we may select at random public keys pk′1, . . . , pk

′
k, where we know the

corresponding secret keys. We then generate a key vk for the signature scheme
and arrange the keys pk1, . . . , pkk, pk

′
1, . . . , pk

′
k in a pattern so that pki,vki

= pki,
while pki,1−vki

= pk′i. This way we can transform the ciphertexts into what looks
like a commitment. Giving the adversary the commitment and the public key
just constructed we let him form a commitment. Since his commitment uses
one of the keys we formed ourselves, we may decrypt his commitment. If this
commitment has any relation to the original ciphertexts, this means that we have
broken the semantic security of the cryptosystem. Therefore, the commitment
scheme must be non-malleable.

The commitment scheme is not (k, 1)-NM though. If the message generator
outputs a message vector with k identical messages, then with overwhelming prob-
ability we will know encryptions of the message under all 2k keys, and therefore
we may easily pick a new one-time signature key ourselves and form a commit-
ment to the message. An adversary without access to commitments does not
have the same easy time creating a commitment to the message in the message
vector from the message generator.

Finally, we may argue as in [37] that (1, 1)-NM does not imply (1, 2)-NM
for unconditionally binding commitment schemes. Here we simply take a non-
malleable cryptosystem with errorless encryption, pick two public keys pk1 and
pk2, and form a commitment to m as (Epk1(r), Epk2(m ⊕ r)). It can be proved
that this commitment scheme is (1, 1)-NM. However, by the same argument as
in the unconditionally hiding case it is not (1, 2)-NM.

6.3. A Framework for Constructing Non-malleable Commitment 73

6.3 A Framework for Constructing Non-

malleable Commitment

Instead of aiming directly for non-malleability, we try to construct a static simu-
lation sound commitment scheme. Theorem 6.1 below states that this is sufficient
for obtaining ε-non-malleability.

Theorem 6.1 A static simulation sound commitment scheme is ε-non-malleable
for any ε−1 polynomial in k.

Proof. We let the modified key generator K̂ be the same as the modified key
generator used for equivocation. In other words, along with the public key pk
it also provides as side information the equivocation key ek. Static simulation
soundness says that the adversary A cannot generate a commitment that it can
open in two different ways, even when being able to see equivocations of other
commitments after it has generated its own commitment. We use this fact when
constructing B and later proving that B fares as well as A.

First, let us look at the experiment with the real commitment key and the
adversary A. We modify this experiment by letting the public key be generated
by K̂ and forming equivocable commitments instead of real commitments. We
then use the equivocation information to open the commitments to the messages
chosen by M . By definition of equivocability, these two experiments are indistin-
guishable. Our task is therefore reduced to find an algorithm B that can make
ŜuccB,M,D at least as high as the success probability in the modified experiment
minus ε.

We now describe the algorithm B. It runs a copy of A and starts by giving a
vector of t equivocable commitments to A. As a response, A produces a vector
of commitments. As mentioned. the intuition is that A cannot open the commit-
ments he produced in more than one possible way. Our goal is therefore to find
out the contents of as many of A’s commitments as possible, and we will then
submit this information to D.

To this end B runs M(pk, z) 4ktimeM(k)timeA(k)/ε2 times. It picks out the
first 2ktimeA(k)/ε of the message vectors that have length t. We note that in case
there is more than ε/(2 · timeM(k)) chance that M will output a vector of length
t there is also overwhelming chance that B samples enough vectors of length t.
The probability of being in a situation where B cannot sample enough vectors of
length t is therefore less than ε/2 + negl(k) since timeM(k) is an upper bound
on t. In the following, we only investigate the experiment conditioned on having
sampled enough message vectors.

For each message tuple ~m sampled from M , B now equivocates the commit-
ments it gave to (its copy of) A, such that ~m is opened. For each of its own
commitments A may or may not in each run produce an opening to a message

74 Chapter 6. Non-Malleable Commitment

m′ 6=⊥. For each commitment, B takes the first opening different from ⊥. Fi-
nally, B hands the message vector ~m∗ found to the distinguisher (putting ⊥ in
unopened positions).

This ends the description of B. We observe that A simulated by B sees exactly
the same distribution as A does in the modified experiment, where we condition
both experiments on M outputting a message vector with a length t (and where
t is such that the probability of getting length t is at least ε/2timeM(k)). More
precisely, the two games behave in exactly the same way up to the point where
A is about to receive the decommitment of ~m. At this point, we can either play
the modified experiment, i.e., give A the “right” ~d and have him produce ~m′. Or
we can execute B’s algorithm producing ~m∗.

Now fix a “snapshot” of all variables known to A just after it has formed
its commitments. Consider any single commitment A made. If the probability
(taken over the choice of ~m) that A will open it is smaller than ε/(2·timeA(k)), we
say the commitment is bad, otherwise it is good. Since timeA(k) is an upper bound
on the number of commitments A can produce, the probability that ~m′ contains
non-⊥ values for any of the bad commitments is at most ε/2. On the other hand,
since B uses a total of 2ktimeA(k)/ε samples of ~m-values, the probability that
~m∗ contains non-⊥ values for all good commitments is overwhelming (it may
contain more non-⊥ values, but this does not matter since the probability of
the distinguisher outputting success cannot be decreased by replacing ⊥’s with
messages).

Summarizing what we have so far, except with probability ε+negl(k), B man-
ages to sample enough ~m-values, A does not open any of the bad commitments
in the modified real life game, and B learns a way to open all good commitments.
Hence, the only way in which B could do worse than A is if, even assuming all
the above, D outputs 1 with significantly larger probability when seeing ~m′, than
when seeing ~m∗. In particular this means that for at least one good commitment
~m′ contains m′, and ~m∗ contains m∗ such that m′ 6= m∗ and m′, m∗ 6=⊥. This
contradicts the static simulation soundness property.

Overall, B does worse than A in the real experiment only in case of events
that occur with total probability at most ε + negl(k). �

6.3.1 A Non-malleable Commitment Scheme

We make use of two signature schemes. One of them is a signature scheme that
is secure against known message attack, where the distribution of messages is
the verification keys of the other signature scheme. The other signature scheme
is a one-time signature scheme secure against known message attack, where the
distribution of messages consists of initial messages a for knowledge of a signature
under the first signature scheme.

We present the general structure of a commitment scheme in Figure 6.1.
This commitment scheme is binding. If we could open a commitment in two

6.3. A Framework for Constructing Non-malleable Commitment 75

Key Generation: Generate keys (vk, sk) for a standard signature scheme
secure against known message attack.

If needed generate also a common reference string σ for the Σ-protocol
for proving knowledge of a signature.

Let h be a collision-free function.

The public key is pk = (vk, σ, h).

Commitment: To commit to a message m we first choose keys (vkOT , skOT)
for the one-time signature scheme. Then we simulate an argument of
knowledge of a signature on vkOT with h(m) being the challenge. I.e.,
we set (a, z) ← S(σ, (vkOT , vk), h(m)). Finally, we make a one-time
signature sOT on a.

The commitment is c = (vkOT , a, sOT), while the decommitment infor-
mation is (m, z).

Decommitment: We verify the signature sOT on a. Next we verify that the
argument (σ, a, h(m), z) is acceptable. If both checks succeed we output
m, otherwise we output ⊥.

Figure 6.1: Non-malleable Commitment Scheme

different ways, then we could by the special soundness of the Σ-protocol find a
signature on h(m), which is infeasible since we do not know the signature key.

The commitment scheme is also hiding. The only possible link to information
about m is a. Since the Σ-protocol is special honest verifier zero-knowledge this a
is indistinguishable from the corresponding value occurring in a real conversation
– but in real conversations, a is independent of m.

Remark. The only part of the commitment scheme that can contain any in-
formation about m is the initial message a of the simulated proof. Therefore, if
the proof system is statistically or perfectly special honest verifier zero-knowledge
then the commitment is unconditionally hiding.

Theorem 6.2 The commitment scheme in Figure 6.1 is equivocable.

Proof. We let the modified key generator K̂ be one that runs K but as side
information outputs the signature key sk associated with the verification key.
This means that we can sign any message.

With this information, we can of course sign any vkOT . This means, no matter
the vkOT we can, in a real zero-knowledge argument, answer the challenge h(m) in
the Σ-protocol. Therefore, we simply modify the commitment procedure to pick
a according to the Σ-protocol and to return also the equivocation information s,
a signature on vkOT .

76 Chapter 6. Non-Malleable Commitment

When having to produce the decommitment information we then open as
usual, except we compute the answer z to the challenge h(m) with our knowledge
of the signature on vkOT .

To see that this gives us the algorithms needed for the commitment scheme
note first that the public keys generated by K and K̂ are identically distributed.

Imagine now that we could distinguish real commitments and equivocated
commitments. By a hybrid argument, we can reduce this to distinguishing two
scenarios that only differ in one commitment being equivocated instead of being
formed and opened according to the commitment scheme.

But this means that we can distinguish simulated and real arguments using
the Σ-protocol, since this is the only difference between equivocable and real
commitments. We thus arrive at a contradiction with the special honest verifier
zero-knowledge property of the Σ-protocol. �

Theorem 6.3 The commitment scheme in Figure 6.1 is simulation sound.

Proof. Consider a commitment (vkOT , a, sOT) produced by the adversary. If the
adversary can open this commitment to two different messages m1 and m2, then
it can answer the two challenges h(m1) and h(m2). By the collision-freeness of the
hash-function, h(m1) and h(m2) are different. The special soundness property
of the Σ-protocol therefore gives us a signature on vkOT . If vkOT has not been
output by Com, then we have produced a signature on a new vkOT . But Com only
forms signatures on correctly generated vkOT ’s it has selected itself. Therefore,
we have formed a new signature under a known message attack, which by our
assumption is infeasible.

We are left to consider vkOT ’s that have been produced by Com. However,
then A must produce a one-time signature on a. If A is to produce a non-trivial
one-time signature, then it must have seen at least two signatures already. If Dec
has been invoked at most once on (vkOT , a) we are therefore safe from double
openings. �

Corollary 6.1 The commitment scheme in Figure 6.1 is ε-non-malleable.

Strong simulation soundness. A slight modification of the scheme in Figure
6.1 yields stronger notions of simulation soundness. Namely, instead of using the
strong one-time signature to sign a when making the commitment, we wait until
the opening phase and sign the entire opening. We do not need the one-time
signature to be strong in this case, on the other hand we do need it to be secure
against a one-time chosen message attack. Now, the adversary cannot equivocate
a commitment even if it has been equivocated once by the decommitment oracle.
This construction therefore satisfies the stronger variation of simulation soundness
suggested in [45]. If we let the initial signature scheme be secure against general
adaptive chosen message attack we can even equivocate a commitment as many
times as we want without the adversary being able to open it to a new message.

6.3. A Framework for Constructing Non-malleable Commitment 77

6.3.2 Non-malleable Commitment with Randomness
Opening

Unfortunately, if we strengthen the requirement on the commitment scheme to
demand that the opening reveals all the randomness used then Theorem 6.3
does not hold any more. One of the problems is that if we reveal the randomness
used to generate the one-time signature key, then the adversary can sign anything
under this key. It can therefore query Com for a commitment, ask Dec for a couple
of equivocations and from the special soundness property of the Σ-protocol it now
knows a signature on vkOT . With knowledge of a signature on vkOT as well as the
corresponding signing key skOT it is easy to generate commitments that can be
opened in many ways. A similar attack suggested to us by MacKenzie and Yang
[60] shows that Lemma 5 as originally stated in [27] is false, the construction in
that paper is not simulation sound.

Not all is lost though. In the following, we suggest a similar commitment
scheme that does include the entire randomness in the opening. We place a re-
striction on the Σ-protocol used in Figure 6.1. Consider an argument (a, h(m), z)
generated by a real prover who knows the witness w. By the special honest
verifier zero-knowledge property, this argument is indistinguishable from an ar-
gument made by the simulator. We require that it is also possible to simulate
the randomness used by the simulator. I.e., the prover can generate the argu-
ment (a, h(m), z) and generate randomness r, such that the simulator running
with r and challenge h(m) would end up producing the argument (a, h(m), z).
The tuples (a, h(m), z, r) generated by either the prover or the simulator must be
indistinguishable. For the Σ-protocols we can think of this property does hold,
in particular it holds for the Σ-protocols used in this chapter.1

Theorem 6.4 Instantiating the commitment scheme in Figure 6.1 with a Σ-
protocol that has simulatable randomness for the simulator yields a static simu-
lation sound commitment scheme.

Proof. Let us look at a commitment c = (vkOT , a, sOT) produced by A, which is
different from any commitment produced by Com. We first argue that vkOT must
be different from the vkOT ’s of the equivocable commitments the adversary has
seen. Com only generates signatures on initial messages a that are chosen with
a distribution that is indistinguishable from the distribution of simulated initial
messages a. Therefore, essentially we have access to a known one-time signature
attack through Com. Any reuse of vkOT would therefore imply a violation of the
strong security against existential forgery that the signature scheme is supposed
to have.

1It is easy to come up with probable counterexamples though. Consider for instance a
simulator that uses its randomizer as a seed to a pseudo-random number generator and then
uses pseudo-random numbers to generate the simulated argument.

78 Chapter 6. Non-Malleable Commitment

Suppose now that A could open c to two different messages m1 and m2.
By the collision-freeness property, h(m1) and h(m2) are different. The special
soundness property of the Σ-protocol therefore gives us a signature on vkOT . In
Com we have generated signatures on different public keys for the strong one-time
signature scheme, however, by construction of Com these have all been correctly
generated. In other words, we have forged a signature on vkOT under a known
message attack. �

Corollary 6.2 The randomness revealing commitment scheme obtained by in-
stantiating Figure 6.1 with a Σ-protocol that has simulatable randomness for the
simulator is ε-non-malleable.

Comparison with the scheme in [27]. The construction of a non-malleable
commitment in [27] bears much resemblance with the randomness revealing com-
mitment just suggested, and in a similar manner it is proven static simulation
sound. Instead of using a strong one-time signature in [27] we commit to an au-
thentication key and simulate an argument of knowledge of a signature on that
commitment. Using the authentication key we then form a message authentica-
tion code on the initial message a. Once the commitment is opened, anybody
can verify the message authentication code. On the other hand, before opening
the commitment the hiding property of the commitment scheme makes it impos-
sible for an adversary to reuse the initial commitment since he does not know the
authentication key inside it and thus cannot form a message authentication code
on some simulated initial message a.

6.4 Construction of Non-Malleable Commit-

ment Schemes

6.4.1 An Implementation Based on any One-Way Func-
tion

We let h be the identity-function. Since it is injective, it is also collision-free.
Signatures can be based on one-way functions. For instance, we may modify

the Merkle one-time signature scheme the following way. We form a balanced
binary tree of height k. Our public key consists of a key for a one-time signature
on the root of the tree. A message to be signed is placed at a previously unused
leaf, and the signature consists of one-time signatures and public keys on the path
up to the root. At all internal nodes, we sign the public one-time signature keys
of the children. Finally, for any internal node we have used we store the public
keys chosen for the two children and always use these keys when passing by a
node again. This signature scheme is existential forgery secure against adaptive
chosen message attack, more than enough for our purpose. To avoid storing the

6.4. Construction of Non-Malleable Commitment Schemes 79

state we can use pseudorandom functions to compute the keys in the nodes of
the tree.

A Σ-protocol exists for this signature scheme, simply because the known zero-
knowledge protocols for NP-complete problems have the right form: since decid-
ing validity of a signature is in NP, we can transform our problem to, say, a
Hamiltonian path problem and use Blum’s zero-knowledge interactive proof sys-
tem for this language. As a building block, we need bit-commitment, which we
can get from any one-way function [63]. Although this commitment scheme is
originally interactive, it can be made non-interactive in the CRS model, following
[35]. In its basic form, this is a 3-move protocol with soundness error 1/2, and
we repeat this in parallel k times. It is easy to see (and well-known) that this
will satisfy our conditions for the Σ-protocol.

The commitment scheme in [63] has commitments that are indistinguishable
from a random string. In other words, we can obliviously choose something
which looks like a commitment but which we cannot open to anything. In our
case, this is interesting because it means that the Σ-protocol has simulatable
randomness for the simulator. For any commitment in the Σ-protocol above
that is not opened, we can simply claim that it is a string chosen at random
by the simulator. With the implementation described here, we therefore get a
randomness revealing ε-non-malleable commitment.

Remark. Most cryptographic tools based on simpler primitives are black-box
constructions. It is therefore worth noting that our construction is not a black-
box construction. The reason for this is that we use general reduction techniques
to form an NP problem and then create a Σ-protocol for this. This reduction
depends on the one-way function that we use.

6.4.2 Unconditional Hiding, Unconditional Binding and

Uniform Random String

It is not known whether unconditionally hiding commitment schemes can be con-
structed from one-way functions. Marc Fischlin has recently shown that there
is no proof of one-way functions implying unconditionally hiding commitments
that relativizes [40]. However, assuming the minimal possible, namely that we
have an unconditionally hiding bit-commitment scheme, we note that it can be
transformed into an unconditionally hiding non-malleable and equivocable bit-
commitment scheme. This is done by using the unconditionally hiding commit-
ment scheme to make all the commitments in the Σ-protocol in the previous
section. This way, even a computationally unbounded adversary seeing a, has no
idea about how the sender is capable of opening the commitments, and thus no
idea about the bits of m.

Since we can make unconditionally binding commitment schemes from one-

80 Chapter 6. Non-Malleable Commitment

way functions, an obvious question is whether we can use our construction to
get an unconditionally binding non-malleable commitment scheme. The answer
to this question is yes.2 The idea is to modify the commitment scheme we con-
structed before so the public key now also includes an unconditionally binding
commitment to a bit b = 0. We may from one-way functions construct a Σ-
protocol for proving that the commitment contains b = 1 with challenge m in
addition to the proof of knowledge of a signature. Obviously, this is a false state-
ment, so it is impossible for even a computationally unbounded sender to find a
witness for this. Therefore, by the special soundness of the Σ-protocol he can-
not open the commitment to reveal two different messages. However, since the
commitment to b is hiding, there is no problem in simulating a proof for b = 1,
nobody will notice that anything is wrong. For non-malleability we let the mod-
ified key-generator output a public key with a commitment to b = 1. Now we
may equivocate commitments and therefore the simulation proof where we use
rewinding to make the adversary open his commitments goes through.

The CRS used in the one-way function based commitment scheme is not
uniformly random in its basic form, but we can modify the scheme so it can use
the URS model instead. By backtracking through the papers constructing the
tools we use we note that all of them can be built from a one-way function and
uniformly random bits. The only exception is the signature scheme, where we
do not know whether the verification key can be chosen uniformly at random.
Nevertheless, we can get by with interpreting some of the uniformly random bits
as an unconditionally binding commitment to a verification key. We can modify
the Σ-protocol to the case where we prove that we know an opening of the bits
to a public verification key and can sign vkOT with this key. In reality we do not
have such a key, however, since the commitment scheme is hiding the security
proof goes through.

6.4.3 An Implementation Based on the Strong RSA As-
sumption

Based on the RSA assumption we can construct a strong one-time signature in
the following way. We let q be a large prime and we let n be an RSA modulus. We
use a universal one-way hash-function hOT that maps its inputs to Zq. We select
at random elements g, h in Zn and set G = gq mod n, H = hq mod n. The public
key is (n, q, G, H). A signature on message a is the element Z = ghOT (a)h mod n.
To verify a signature check that Zq = GhOT (a)H mod n.

The signature can be seen as an honest verifier zero-knowledge argument of
knowledge of a q-root of G. To argue security against known message attack
consider an adversary that can find a signature Z ′ on a message m′ after having

2Of course, the non-malleability cannot hold against a computationally unbounded adver-
sary. Only the binding property holds against a computationally unbounded adversary.

6.5. UC Commitment implies Key Exchange or Oblivious Transfer 81

seen a known message attack giving him signature (m, Z). We can use this
adversary to break the RSA-assumption in the following way. We let G be the
challenge that we wish to find a q-root of. We select a message a at random
from the distribution and choose Z at random. We set H = ZqG−hOT (a) mod n.
Now we have Zq = GhOT (a)H mod n and (Z ′)q = GhOT (a′)H giving us (Z/Z ′)q =
GhOT (a′)−hOT (a) mod n. We have gcd(hOT (a′)−hOT (a), q) = 1 since q is prime and
larger than both hOT (a) and hOT (a′) and since it is infeasible for the adversary
to find a collision with a. Pick α, β so α(hOT (a) − hOT (a′)) + βq = 1. We have
(Gβ(Z/Z ′)α)q = G mod n, i.e., we have broken the RSA assumption.

We also need to suggest a signature scheme secure against known message
attack. Here we let the signature scheme be the following. We select an RSA-
modulus n and random elements x, g. We also select a hash-function hsign that
maps its inputs down to `-bit messages. A signature on vkOT then consists of
(y, e) where e is chosen as a random `+1-bit prime and ye = xghsign(vkOT) mod n.
The signature can be verified by checking that e is an odd ` + 1 bit number
and ye = xghsign(vkOT) mod n. Using techniques from [40] it is straightforward to
see that the strong RSA assumption implies that the signature scheme is secure
against existential forgery under known message attack.

We are not going to hide e. What we need then is an honest verifier zero-
knowledge argument of knowledge of a signature on vkOT using exponent e. We
can do this by picking α at random and setting a = αe mod n. On challenge
hsign(vkOT) we answer with z = yhsign(vkOT)α mod n. To simulate the argument
with challenge h(m) we pick z at random and set a = ze(xghsign(vkOT))−h(m) mod
n.

To save some computations we can use the same n for both the strong one-
time signature and standard signature secure against known message attacks.

If we pick the hash-functions as injective functions then we get a non-malleable
commitment scheme for k-bit messages with security based on the strong RSA
assumption. In comparison with the somewhat similar scheme in [27], we do
not have to rely on an additional assumption on the maximal distance between
consecutive primes.

If we pick the hash-functions as cryptographic hashes that hash down to,
say, 160 bits, then we have a very efficient non-malleable commitment scheme.
It takes five short exponentiations to form a commitment and similarly 5 short
exponentiations to decommit.

6.5 UC Commitment implies Key Exchange or

Oblivious Transfer

We briefly recall how the UC framework [17] is put together. The framework
allows us to say that a protocol π securely implements an ideal functionality F .

82 Chapter 6. Non-Malleable Commitment

In the case of UC commitment, F will be a trusted party that receives in private
the committed value m, and later reveals it to the receiver on request from the
sender. The real-life protocol π is attacked by an adversary A who schedules
communication and adaptively corrupts players and controls their actions, while
an attack in the ideal setting (where F is present) is limited to corrupting players
and submit inputs on their behalf to F , and block/observe the outputs from F .
Security of π now means that for every efficient real-life adversary A, there is
an efficient ideal model adversary S who can obtain “the same” as A. To define
what this means, an environment machine Z is used. Z may communicate with
the adversary (A or S) at any point during the attack, and it may specify inputs
for the honest players and see the results they obtain. Security more precisely
means that it is infeasible for Z to tell if it is talking to A in a real-life attack,
or to S in an ideal model attack. So to prove UC security, one must construct,
given A, a suitable S. It is important to note that, in order to ensure robustness
against concurrent composition and adaptive security, the model explicitly forbids
rewinding of Z, so S is forced to go through the entire game in the same time
sequence as in real life.

Theorem 6.5 If there exists a UC commitment scheme in the CRS model secure
against non-adaptive passive adversaries, then there exists a key exchange protocol
secure against passive attacks. Furthermore, if there exists a UC commitment
scheme in the URS model secure against non-adaptive passive adversaries then
there exists an oblivious transfer protocol secure against passive adversaries.

Sketch of proof. Assume we have a UC commitment scheme for committer C
and recipient R, and let π be the protocol used when C commits to, say, a bit b.
Let A be the adversary that first corrupts C, it then sends the CRS to Z, and
now (through its communication with Z) lets Z decide the actions of C. Let Z
be the environment that expects the behavior we just specified for the adversary
(this means that Z gets to play C’s part of the protocol). Z follows the honest
protocol for C, in order to commit to some bit b. Once this is over, it asks to have
the commitment opened, again Z plays honestly C’s part of the opening, and it
receives as a result of this the bit that R gets as output (which should normally
be equal to b). Finally, Z tries to distinguish whether it is in the real-life model
or the ideal process by outputting a bit.

UC security guarantees that there exists a good ideal model adversary S for
this A. Of course, S must send a CRS to Z and then play in an indistinguishable
way R’s part of π against Z – otherwise Z could immediately distinguish. More-
over, after completing π, S must be able to compute the bit b that Z “committed
to”, since this bit must be given to F before opening can take place in the ideal
model. If this bit is not correct, R at opening time receives a bit different from
b in the ideal model. This would allow Z to distinguish.

This observation immediately implies a secure key exchange protocol for par-
ties A, B: B starts an instance of S and sends the CRS it produces to A, who

6.5. UC Commitment implies Key Exchange or Oblivious Transfer 83

then chooses a random bit b and runs the commitment protocol acting as the
sender. B lets S play the receivers part, and can now extract b by the obser-
vation above. An eavesdropper is clearly in a situation that is no better than
that of an honest receiver in the non-adaptive UC commitment scheme, and so
he cannot distinguish b = 0 from b = 1.

If we are in the URS3 model, we can build an OT protocol for sender A with
input bits b0, b1 and receiver B with selection bit c. The goal is for B to learn bc

and nothing else, whereas A should learn nothing new. The OT protocol goes a
follows

1. B computes and sends to A strings CRS0, CRS1, where he runs S to get
CRSc and chooses CRS1−c at random.

2. A executes the commitment protocol π twice, playing the role of C using
CRS0, respectively CRS1 as reference string and b0 respectively b1 as the
bit to commit to. B follows the protocol for R in the instance that uses
CRS1−c, and lets S conduct the protocol in the other case, i.e., he simply
relays messages between A and S.

3. When S outputs a bit (to give to F), B uses this as his output.

From A’s point of view, the two instances of π are indistinguishable, since
otherwise S would not satisfy the conditions in the UC definition, as we discussed.
Hence, A learns nothing new. On the other hand, we also argued that S must
output the bit committed to, so B does indeed learn bc. With respect to b1−c, B
is in exactly the same position as party R when receiving a commitment. Since
UC commitments are hiding, B does not learn b1−c. �

Consequences of adaptive UC commitment. If we have UC commitment
secure against passive adaptive adversaries in the URS model, then by a similar
argument to the one above we get oblivious transfer secure against passive adap-
tive adversaries. This in turn means that any well-formed ideal functionality can
be securely realized against adaptive passive adversaries in the URS model [21].

Furthermore, if we have a UC commitment secure against active adaptive
adversaries, then we can use it to build UC zero-knowledge proof of knowledge
as in [18]. As shown in [21] UC zero-knowledge proof of knowledge implies UC
combined commitment and zero-knowledge proof of knowledge. The construction
in [21] that combines the commit and prove functionality with UC oblivious
transfer secure against passive adaptive adversaries can then be used to realize
any well-formed ideal functionality in the URS model against adaptive and active
adversaries.

3We need to ensure that B can generate the CRS without getting any information from the
key generation that allows it to break the OT protocol. Since it is easy to generate a URS at
random, we certainly are guaranteed this in the URS model.

84 Chapter 6. Non-Malleable Commitment

6.6 Application to UC Commitment

6.6.1 Damg̊ard-Nielsen UC Commitment

Let us briefly sketch why the scheme of [32] get a CRS that grows linearly with
the number of players.

The UC commitment scheme is based on a mixed commitment scheme. This
is a commitment scheme where we first generate a master key N that defines the
message spaceMN of the commitment scheme. Knowing N we may now generate
a public key K for the commitment scheme. This key will belong to a group KN .
If chosen at random, this key with overwhelming probability will be an extraction
key X-key. However, we may also select the key as an equivocation key E-key.
X-keys and E-keys are indistinguishable. Knowing a trapdoor tN associated to
the master key, we may extract the contents of commitments formed under X-
keys. On the other hand, if we use an E-key K to commit, with some associated
trapdoor information tK we may equivocate the commitment to anything.

The UC commitment scheme is interactive. The sender and receiver run a two
round coin-flip protocol to determine a public key K for the mixed commitment
scheme. For this purpose, they have an equivocable commitment scheme. The
sender commits to K1 ∈R KN , the receiver sends back K2 ∈R KN , and the sender
in the third round opens his initial commitment so both the sender and receiver
now knows the key K = K1 + K2. In the third round, the sender also sends
a commitment to the message m under key K. To open the commitment the
sender just has to open the mixed commitment to m.

In the UC commitment scheme the ideal process adversary S runs a simulated
real life execution where it uses A as a black box to produce communication with
Z. It faces two problems: When a message is submitted to F it must simulate
this without knowing the actual message. And when A sends a UC commitment
on behalf of a corrupted party, then it must figure out which message to give to
F . These problems can be solved if we commit to the message using an E-key
whenever sending a UC commitment on behalf of an honest party, and force A
to use an X-key whenever it makes a UC commitment. We enable S to put itself
in this situation by giving it equivocation information for the initial commitment
scheme used in the coin-flip protocols. This way it may bias the coin-flip protocols
and thus always end up with the right type of key K.

The problem in the commitment scheme above is that in [32] each player
must have an individual key for the initial commitment scheme. Otherwise, A
might be able to use the fact that S is equivocating commitments to equivocate
commitments on his own. He could possibly even select E-keys for his own
commitments and then ruin the entire simulation since S could no longer extract
messages.

This is exactly the kind of problem that the commitment schemes in this pa-
per can solve: they allow us to create a situation where for a fixed size public

6.6. Application to UC Commitment 85

key, a simulator can make any number of commitments and equivocate them,
while the adversary cannot do so. This is the essential property that implies
non-malleability and it is also useful here. So instead of letting each participant
have his own commitment key on the CRS, we let a public key for a uncondition-
ally hiding and randomness revealing commitment scheme with the structure in
Figure 6.1 be on the CRS.

6.6.2 Improving the Damg̊ard-Nielsen UC Commitment
Scheme

In the following, we describe the ideal functionality F , the UC commitment
scheme and the ideal process adversary S.

The Ideal Functionality

We label the dummy parties in the ideal process P̃1, . . . , P̃n to distinguish them
from the parties P1, . . . , Pn in the real-life model.

Generating the key: Generate a public key (pk, N) for the commitment
scheme. Send (sk, tN) to S.

Committing: On (commit, sid, cid, Pi, Pj, m) from P̃i send

(receipt, sid, cid, Pi, Pj) to S and P̃j. Ignore all subsequent
(commit, sid, cid, . . .) messages.

Opening: On (open, sid, cid, Pi, Pj) from P̃i where (commit, sid, cid, Pi, Pj, m)

has been recorded, send (verify, sid, cid, Pi, Pj, m) to S and P̃j .

The Commitment Scheme4

We call the public key and equivocation key for the unconditionally hiding and
randomness revealing commitment scheme with structure as in Figure 6.1 pk
and sk. Like above we use N, tN , K, tK for the keys and trapdoors in the mixed
commitment scheme. The CRS for the commitment scheme is (pk, N).

Commitment: Player Pi makes a commitment to a message m and sends it to
Pj by doing the following:

Initial Commitment: Pi selects K1 ∈ KN randomly and sets (c, d) ←
compk(sid, cid, Pi, Pj, m, K1). He sends (init, sid, cid, Pi, Pj, c) to Pj.

4This protocol is modified slightly compared with [32], since in their proof they allowed S
to block commitments from being submitted to F , something which is not possible under the
standard UC model [17]. The idea and the proof of security is the same as in [32] though.

86 Chapter 6. Non-Malleable Commitment

Commitment Response: Pj on incoming message (init, sid, cid, Pi, Pj, c)
selects K2 ∈ KN at random. He sends (response, sid, cid, Pi, Pj, K2) to
Pi and ignores subsequent (init, sid, cid, . . .) messages.

Final Commitment: Pi on incoming message (response, sid, cid, Pi, Pj, c)
from Pj checks that he has sent an initial commitment and not sent a
final commitment in this run of the protocol. In that case he sets K =
K1+K2 and (C, D)← comK(m). He sends (final, sid, cid, Pi, Pj, K, C)
to Pj.

Receival: Pj on (final, sid, cid, Pi, Pj, K, C) from Pi checks that he has
earlier sent out a (response, sid, cid, . . .) message to Pi. He outputs
(receipt, sid, cid, Pi, Pj). He ignores subsequent (final, sid, cid, . . .)
messages from Pi.

Opening: To open the commitment Pi sends (open, sid, cid, Pi, Pj, d, D) to Pj.

Verification: Pj on (open, sid, cid, Pi, Pj, d, D) from Pi checks that he has sent
out a receipt (receipt, sid, cid, . . .). He sets K1 = K −K2 and checks that
(sid, cid, Pi, Pj, m, K1) = decpk(c, d) and m = decK(C, D). In that case, he
outputs (verify, sid, cid, Pi, Pj, m).

The Ideal Process Adversary

S runs a copy of A trying to simulate everything A would see in a real-life
execution of the commitment protocol. Messages between A and Z are simply
forwarded.

Whenever commitments are made using F , S will not know the content but
knowing the equivocation keys it can select the commitments for simulated honest
parties so that they are equivocable. This way it can make the simulation for
honest parties work out by making appropriate equivocations.

If A decides to corrupt a simulated party Pi, then S corrupts the correspond-
ing ideal-process party P̃i and learns all messages it has committed to. It can
then perform suitable equivocations and give A those equivocations. Here it is
important that both the initial commitment scheme and the mixed-commitment
scheme from [32] have decommitment information d, D that contain all random-
ness r, R used in forming the commitments, so A can see all the randomness it
would when corrupting a party in the real-life model. In case A corrupts a party
after sending the initial commitment but before sending the final commitment,
we equivocate to a randomly chosen K1.

6.6.3 Security Proof of the UC Commitment Scheme

Theorem 6.6 The commitment scheme described above securely realizes the
commitment functionality.

6.6. Application to UC Commitment 87

Proof. We show that Z cannot distinguish the real-life protocol and the ideal
process model. For this purpose we look at the following distributions of Z’s
(binary) output:

• REAL is the real-life execution.

• HY B1 is a modified real-life experiment: Instead of the usual CRS, we
select the CRS with equivocable keys. We then equivocate both initial and
final commitments. In particular, this means that for honest parties about
to send the final commitment we equivocate the initial commitment so K
becomes an E-key.

• HY B2 is a modified ideal process. When A makes a commitment where he
is involved in both the initial phase and the final phase of committing we
do not extract the message m. Instead, we submit 0 to F if A later opens
this commitment to contain m, then we patch F by inserting m in place of
0.5

• IDEAL is the ideal process.

REAL and HY B1 are indistinguishable. To see this let us modify the real-
life model step by step into the hybrid model. First, we select the CRS with
equivocable key pk, ek and trapdoor tN associated with N . Second we form the
initial commitments in an equivocable manner and equivocate when we have to
open. Whenever an honest party has to make the final commitment, we let it
select K1 at random at this point and equivocate the initial commitment to K1.
By definition of equivocability, this change cannot be noticed by Z. However, now
we may instead simply choose K as a random E-key and set K1 = K−K2. Since
E-keys are indistinguishable from random keys, this change cannot be noticed.
Finally, this enables us to equivocate when the party’s commitment has to be
opened without Z being able to notice it.

HY B1 and HY B2 are the same experiment phrased in two different ways.
HY B2 and IDEAL are indistinguishable. The difference between them con-

sists in the opening from the adversary that is patched. There are three possibil-
ities for the message that is patched:

1. The final commitment uses X-key K. Then S extracts the correct message
m.

2. The final commitment uses E-key K made by S. The initial (equivocated)
commitment has been opened to contain some m. Due to the binding
property of the commitment scheme, A cannot open the commitment oth-
erwise so the patching is correct. This binding property holds even though

5Of course modifying F like this is illegal in the ideal process but those restrictions do not
apply in a hybrid model.

88 Chapter 6. Non-Malleable Commitment

we equivocate some commitments, because otherwise we could distinguish
whether we were in the REAL experiment or the HY B2 experiment.

3. The final commitment does not use an X-key K and K has not been selected
by S.

Let us look at the initial commitment thatA uses. If the one-time signature
key vkOT has not been generated by S then A cannot know a signature on
vkOT . This means that the commitment is binding, so when A gets the
randomly chosen challenge K2 there is overwhelming probability that the
resulting K is indeed an X-key.

Another possibility is that vkOT has been generated by S and used in an
initial commitment, however, this commitment has not yet been opened. In
that case A does not know how to make one-time signatures, so it must re-
cycle the entire initial commitment made by S. By the indistinguishability
from the REAL experiment, A does not know how to open the commit-
ment. If S opens the commitment, then A must open it the same way.
Again, we therefore have with overwhelming probability that K is an X-
key. This argument also shows that if A corrupts the party making the
commitment, then it is bound by the opening that S hands it.

Left is the case where A reuses vkOT from a commitment made by S, and
this commitment has been opened to something. If A makes an exact copy
of the commitment from before, it is again stuck with opening it the same
way as S. However, we could imagine that A makes a different initial
commitment (vkOT , a′, s′OT). However, if this has noticeable probability of
happening we could have guessed the vkOT that it was going to do this
with in advance. If we go back to the real experiment, we could make a
real initial commitment to (sid, Pi, Pj , m, K1) without knowing a signature
on vkOT . When A creates a different commitment using one-time signature
key vkOT , then this commitment is binding. No matter which K2 we give
as challenge A always opens the commitment the same way. By the indis-
tinguishability of the REAL and the HY B2 experiment this must also hold
when we equivocate the initial commitment. Therefore, with overwhelming
probability we get an X-key.

Overall, we have negligible probability of ending up in this third situation.
�

6.7 Open Problems

It is easy to form commitments in the plain model without any CRS. For instance
by creating a public key for an ElGamal cryptosystem and then forming an
ElGamal encryption of the message we want to commit to. This commitment is

6.7. Open Problems 89

computationally hiding under the DDH assumption and unconditionally binding.
However, this commitment scheme is also malleable. It is an interesting question
whether it is possible to create non-malleable commitments in the plain model.

A non-malleable public key cryptosystem automatically gives us a commit-
ment scheme that is non-malleable also when we allow the adversary to get some
history about the messages we committed to. However, when encrypting a mes-
sage the ciphertext is larger than the plaintext.6 It is an open problem to find
a commitment scheme that has commitments that are shorter than the mes-
sage we commit to and at the same time is non-malleable against history-aware
adversaries. The black-box rewind and extract method we used to prove non-
malleability in this chapter does not work against such adversaries, because the
history may be some one-way function of the message and in that case we cannot
sample messages to equivocate the commitments to.

It is worth noting that the problem of history-aware adversaries is not the fact
that a commitment shorter than the message cannot be unconditionally bind-
ing. We can create unconditionally binding commitments that are non-malleable
against history-aware adversaries. Consider for instance the following modifica-
tion of the Cramer-Shoup cryptosystem [24]. The Cramer-Shoup cryptosystem
has a public key consisting of elements (p, q, g1, g2, h, c, d). To encrypt a message
m ∈ Gq with randomness r ∈ Zq we compute u1 = gr

1 mod p, u2 = gr
2 mod p, v =

hrm mod p and set α = (cdhash(u1,u2,v))r mod p. The ciphertext is (u1, u2, v, α).
This cryptosystem is secure against adaptive chosen ciphertext attacks and there-
fore it is a non-malleable commitment scheme secure against history-aware adver-
saries. We first modify the scheme in the following way, we pick at random x and
set G1 = gx

1 mod p, G2 = gx
2 mod p, H = hx mod p, C = cx mod p, D = dx mod p.

To encrypt we set u1 = gr
1G

R
1 mod p, u2 = gr

2G
R
2 , v = hrHR mod p and compute

α = (cdhash(u1,u2,v))r(CDhash(u1,u2,v))R mod p. It is still basically the same cryp-
tosystem, so it is secure against adaptive chosen ciphertext attack and therefore
non-malleable. Consider now the following further modification. We compute
H = hX mod p, where x 6= X. Now we have an unconditionally hiding com-
mitment scheme. At the same time the commitment scheme must still be secure
against history-aware adversaries, because if it was not, then we could distinguish
between H computed as hx mod p or hX mod p and that would violate the DDH
assumption.

6Or more correctly, the ciphertext is larger than the entropy of the plaintext.

Chapter 7

Group Signature

7.1 Introduction

Group signatures. Recall from the introduction that a group signature allows
members to anonymously sign messages on behalf of the group, except the group
manager can break the anonymity and identify a signer. Let us give this loose
description a little more flesh.

We have three types of parties: members, non-members and a group manager.
The group manager creates a public verification key. Individual members and the
group manager cooperate to generate secret keys that members can use to sign
messages. We have some functional requirements and some security requirements
that we place on group signatures.

Functional Requirements. Some algorithms that can be associated with a
group signature scheme are the following.

KeyGen: This algorithm is used to set up the system. It produces (vk, gmsk)←
KeyGen() as output, where vk is a public verification key, while gmsk is the
group managers secret verification key. If the group of members is fixed,
we may assume that the algorithm also outputs a vector ~sk of secret keys
to be used by the members.

Join: If the group of members is dynamic, we use this protocol to let non-
members join the group. A prospective member joins the group by running
the interactive protocol Join with the group manager. We assume the
communication takes place over a secure channel, though this requirement
can sometimes be skipped. As a result, she receives a secret key ski.

Sign: To sign a message m the member runs σ ← Sign(ski, m).

Verify: To verify a signature σ on message m we compute Verify(vk, m, σ).

91

92 Chapter 7. Group Signature

Open: Given a signature σ on m it can be opened by the group manager by
computing Open(gmsk, m, σ), which outputs the identity of the member
who created the signature.

Revoke: There may be one or more methods to revoke a member’s membership.

We do of course require that the verification algorithm accept correctly formed
signatures by members in good standing.

Security requirements.

Unforgeability: Without a member’s signature key, it is impossible to sign any
message.

Anonymity: Without the group manager’s secret key, it is impossible to learn
who signed a particular message.

Unlinkability: It is impossible to see whether two signatures have been created
by the same member.

No-framing: The group manager cannot falsely accuse a member of having
made a signature.

Traceability and Coalition-resistance: Even if a coalition of members coop-
erates to create a signature, at least one of the coalition members will be
identified by the group manager.

Bellare, Micciancio and Warinschi [10] simplified all these security requirements
into two: full-anonymity and full-traceability. We present the definitions in Sec-
tion 7.2.

Revocation of membership. One tricky question pertains to revocation of
membership. Since the signatures are anonymous, they do not contain a cer-
tificate that can be placed in a revocation list. Furthermore, depending on the
context we may wish to do different types of revocation.

Consider the intelligence agency example from the introduction. If a smart
card containing a member’s secret key is stolen then we do of course want to
revoke the certificate. However, all signatures made before the theft (possibly
enforced through time-stamping) should still be considered valid. They can re-
main anonymous and unrevoked.

Consider on the other hand a spook that turns out to be a double agent. Here
we want to call back all signatures made in the past by this agent. Furthermore,
depending on the situation we may or may not want to reveal the identity of the
signer with respect to all these revoked signatures.

7.1. Introduction 93

Opening. Another question is who should be allowed to open a signature and
break the anonymity. In some cases, it is the same authority who accepted
the member into the group. However, we may also imagine instead that it is a
law enforcement agency that should be able to trace the abuser in case of law
violations.

In our scheme, a simple modification makes it possible to separate the issuing
of certificates and the opening of signatures completely. This means that the
issuer is not able to open or link any signatures, on the other hand the opening
authority is unable to enroll new members. This property can be achieved in a
flexible manner such that the same public key of the opening authority can be
used by different issuers.

State of the art. The current state of the art group signature scheme is due
to Ateniese, Camenisch, Joye and Tsudik [1]. While being reasonably efficient,
this scheme does not support certificate revocation.

An extension by Ateniese, Song and Tsudik [3] implements the full revocation
mentioned before, i.e., all bad signatures by the revoked member are revealed.
Unfortunately, this scheme is rather inefficient. Camenisch and Lysyanskaya [16]
and Tsudik and Xu [75] propose schemes with dynamic revocation. This means
that after a certificate has been revoked the member cannot any longer make
signatures. Both schemes are less efficient than [1]. [75] is more efficient than
[16], but relies on a trusted third party to generate some of the data, and need to
update the key both when members join and leave the group. [16] can easily be
modified to only updating the verification key when memberships are revoked.

Security assumptions. All the schemes mentioned here include in their as-
sumptions the strong RSA assumption and the random oracle model. Ateniese
and de Medeiros [2] suggest a scheme that does not rely on knowledge of the
factorization of the modulus, but this scheme is much less efficient than [1]. [10]
suggest a scheme based on any trapdoor permutation and without the random
oracle model. This scheme is only a proof of concept; it is very inefficient.

Anonymity. The security requirement of anonymity can be interpreted in dif-
ferent ways. In [10] full-anonymity implies that even if a member’s secret key
is exposed it is still not possible to recognize which signatures are made by this
member. The schemes in [1] and [16] have this strong anonymity property. Other
papers, however, are less demanding, they just require anonymity as long as a
member’s secret key is not exposed. [22, 2, 75] are examples of such schemes.
One positive effect of not requiring anonymity is that potentially it makes it pos-
sible for the member to claim a signature he made, i.e., prove that he signed a
particular signature, without having to store specific data such as randomness,

94 Chapter 7. Group Signature

etc., used to generate the signature. This latter property is called claiming in
[55].

Our contributions. We present a new practical group signature scheme. We
prove that it satisfies a strong security definition very similar to [10]. Security
is proved in the random oracle model under the strong RSA assumption and a
couple of DDH assumptions.

Our scheme is considerably faster than the state of the art scheme in [1].
Moreover, in our scheme the Join protocol only takes two rounds. The prospective
member sends a join request to the group manager. The group manager sends a
certificate back to the member.

The scheme supports dynamically joining new members to the group without
changing the public key. Furthermore, it is possible to revoke a secret key such
that it can no longer be used to sign messages. Revocation of a membership does
require the public key to be modified. However, the modification is of constant
size and allows group members in good standing to update their secret keys easily.
To accomplish this goal we use methods similar to those of [16] and [75]. Their
schemes are not as efficient as our scheme.

We present a modification of our scheme that with only a small loss of effi-
ciency also allows us to make a full revocation, i.e., reveal all signatures signed
with a revoked key. This scheme does not satisfy the [10] definition of secu-
rity though. The problem is that given a private signature key it is possible to
determine which signatures belong to the member in question.

As a separate theoretical contribution, we show that the existence of one-
way functions and NIZK arguments can be used to construct a group signature
scheme. Again, we obtain a scheme that does not satisfy the [10] definition
because a member’s secret key does make it possible to identify signatures made
by this member. We propose how to define security of group signature schemes
when compromise of members’ secret keys does matter.

We prove that the [10] definition implies IND-CCA2 secure public key bit-
encryption. The existence of one-way functions and NIZK arguments does to
our knowledge not entail the existence of public key encryption. Therefore, it
seems that to satisfy [10] one must use stronger security assumptions than what
is needed for just making a group signature scheme.

7.2 Definitions

[10] propose two properties, full-traceability and full-anonymity, that capture the
security requirements mentioned in the introduction.

Full-traceability. The short description of full-traceability is that without a
member’s secret key it must be infeasible to create a valid signature that frames

7.2. Definitions 95

this member. This must hold even if the group manager’s secret key and an
arbitrary number of the members’ secret keys are exposed.

Formally, we say that the group signature scheme has full-traceability if the
expectation of the following experiment is negligible.

Expf−trace
A (k) :

(vk, gmsk, ~sk)← KeyGen(k)
(m, σ)← ASign(sk·,·),Corrupt(·)(vk, gmsk)
If Verify(vk, m, σ) = 1, i = Open(gmsk, m, σ) ∈ [k], i was not queried
Corrupt(·) and (i, m) was not queried to Sign(sk·, ·) then return 1
If Verify(vk, m, σ) = 1 and i = Open(gmsk, m, σ) /∈ [k] then return 1
Else return 0

Here Corrupt(·) is an oracle that on query i ∈ [k] returns ski.

[10] argue that full-traceability implies what is meant by the more informal
notions of unforgeability, no-framing, traceability and coalition resistance.

Full-anonymity. We want to avoid that signatures can be linked to group
members or other signatures. For this purpose, we define full-anonymity as the
notion that an adversary cannot distinguish signatures from two different mem-
bers. This must hold even when we give the secret keys to the adversary. In
other words, even if a member’s key is exposed, then it is still not possible for the
adversary to see whether this member signed some messages in the past, neither
is it possible to see if any future messages are signed by this member.

Expf−anon
A (b, k) :

(vk, gmsk, ~sk)← KeyGen(k)

(i0, i1, m)← AOpen(gmsk,·,·)(vk, ~sk); σ ← Sign(skib , m)
d← AOpen(gmsk,·,·)(σ)
If A did not query m, σ return d, else return 0

We say the group signature scheme has full-anonymity if Pr[Expf−anon
A (1, k) =

1] - Pr[Expf−anon
A (0, k) = 1] is negligible.

[10] argue that full-anonymity entails what is meant by the more informal
notions of anonymity and unlinkability.

Anonymity. As we mentioned in the introduction the [10] model is strict in
its anonymity requirements. It demands that even if a member’s secret key is
exposed it must still be impossible to tell which signatures are made by the
member in question. This is a good definition of security in a threat model where
parties may be corrupted adaptively but can erase data.

96 Chapter 7. Group Signature

In other threat models, this may be aiming too high. Consider for instance
a static adversary, then the key is exposed before any messages are signed or it
is never exposed. Or consider an adaptive adversary where parties cannot erase
data, in this case full-anonymity does not buy us more security. We therefore
define a weaker type of anonymity that is satisfied if both the group manager’s
secret key and the member’s secret key are not exposed.

Expanon
A (b, k) :

(vk, gmsk, ~sk)← KeyGen(k)
(i0, i1, m)← AOpen(gmsk,·,·),Sign(sk·,·),Corrupt(·)(vk); σ ← Sign(skib , m)
d← AOpen(gmsk,·,·),Sign(sk·,·)(σ)1

If A did not query m, σ to Open and did not query i0, i1 to Corrupt(·) then
return d, else return 0

We say the group signature scheme is anonymous if Pr[Expanon
A (1, k) = 1] -

Pr[Expanon
A (0, k) = 1] is negligible.

As in [10] we can argue that anonymity implies the informal notions of
anonymity and unlinkability mentioned in Section 7.1.

7.3 The Basic Group Signature Scheme

CL-signatures. Recall the signature scheme from Section 2.4 where we choose
n as a safe-prime product of length `n, and have a, g, h ∈R QRn as part of the
public key. Camenisch and Lysyanskaya [16] suggest a similar signature scheme
where the signature is on the form (y, e, r), but r can be large, and both m and
r are allowed to be negative. It is clear that if ye = agmhr mod n, then we also
have (yh)e = agmhr+e mod n, so this signature scheme is not strong. It is secure
against chosen message attack though.

The CL-signature scheme makes it possible to sign a committed message. One
party computes the commitment gmhr′ mod n, where r′ ∈R Zn such that m is
statistically hidden. This party also proves knowledge of m, r′. The signer now
picks e as a random `e-bit prime, and picks r′′ ∈ Ze. He then computes y so
ye = agmhr′+r′′ mod n and returns (y, e, r′′). Now the party has a signature on
m without the signer having any knowledge about which message was signed.
Camenisch and Lysyanskaya suggest parameters `n = 1024, |r| = 1346, but we
can get by with |r| = 1024 and still have statistical hiding of m.

1We do not allow A to corrupt member’s in the second phase. This is simply because
we WLOG may assume that it corrupts all other members than i0 and i1 before getting the
challenge signature.

7.3. The Basic Group Signature Scheme 97

The ideas underlying our group signature scheme. We base our group
signature scheme on the Fiat-Shamir heuristic. The signer will prove knowledge
of some secret information to sign a message. We proceed to describe the problem
to which the signer knows a solution.

In our group signature scheme the group manager will compute a CL-signature
on some element xi and give this signature to member i. In other words, the
member gets a signature (yi, Ei, ri) such that yEi

i = agxihri mod n. Since nobody
can compute CL-signatures on their own, any signer who can argue that she
knows a CL-signature on something must be part of the group.

To remain anonymous the member must make this argument in zero-
knowledge, and therefore transmit her identity secretly. We rely on public key
encryption to achieve that. The group manager holds the secret key of the cryp-
tosystem. This means that he may open up a group signature and see who the
member is. Note that we do not know in advance, which signatures the group
manager will open, so we do need the encryption to be semantically secure against
adaptive chosen ciphertext attack.

It is inherent in the model that the group manager can always issue a phony
membership and sign any message he wants. We want to avoid that the group
manager frames members by claiming that they signed something that they did
not sign. To accomplish this we let the element xi that the member gets a
signature on be an exponent in Gxi mod P and ensure that the group manager
does not know xi. The member includes in her signature an argument that she
knows the discrete logarithm of Gxi mod P . The group manager does not know
xi and can therefore not make such an argument.

The protocol itself is described in Figure 7.1. We remark that better and
more efficient group signatures exist for the static case with no join or revoke.
We present this particular scheme because it is easy to extend to have advanced
properties like dynamic join and revocation.

Parameters. We use `s as a bit-length such that for any integer a when we
pick r as a |a| + `s-bit random number then a + r and r are statistically indis-
tinguishable. `c is the length of the output of the hash-function. `e is a number
large enough that we can assign all members different numbers and make the Ei’s
prime.

It must be the case that `c, `e < `Q < `c + `e + `s < `n/2.
A suggestion for parameters is `n = `P = 1024, `Q = `c = 160, `e = `s = 40.

Security.

Theorem 7.1 The basic group signature scheme has full-traceability and full-
anonymity.

Proof. The theorem follows from Lemma 7.3 and Lemma 7.4. �

98 Chapter 7. Group Signature

Basic Group Signature Scheme

KeyGen(k): Choose an `n-bit RSA modulus n = pq as a product of two safe
primes p = 2p′ + 1, q = 2q′ + 1. Select at random a, g, h ∈ QRn.

Select at random `Q-bit and `P -bit primes Q,P such that Q|P − 1. Let F be
an element of order Q in Z

∗
P . Choose at random XG,XH ∈ ZQ and set

G = FXG mod P,H = FXH mod P .

Select at random x1, . . . , xq ∈ ZQ and select also at random r1, . . . , rk ∈ Zn.

Choose different random `e-bit numbers e1, . . . , ek such that
E1 = 2`e+`c+`s + e1, . . . , Ek = 2`e+`c+`s + ek are primes. Compute y1, . . . , yk

such that yE1
1 = agx1hr1 mod n, . . . , yEk

k = agxkhrk mod n.

Public key: vk = (n, a, g, h,Q, P, F,G,H).

Group managers private key: gmsk = (vk,XG, Gx1 mod P, . . . , Gxk mod P).

Member i’s private key: ski = (vk, xi, yi, ei, ri).

Sign(ski,m): Select at random r ∈ {0, 1}`n/2, s ∈ {0, 1}`n+`c+`s , dx ∈
{0, 1}`c+`Q+`s , de ∈ {0, 1}`c+`e+`s , R, S ∈ ZQ.

Set u = hryi mod n, v = hs−rdegdxy−de
i mod n.a

Let furthermore U1 = FR mod P,U2 = GRGxi mod P,U3 = HRHei mod P
and V1 = FS mod P, V2 = GSGdx mod P, V3 = HSHde mod P .

Compute a challenge c = hash(m,u, v, U1, U2, U3, V1, V2, V3).

Set ze = cei + de, zE = c2`e+`c+`s + ze, zr = cri + zEr + s, zx = cxi + dx and
ZR = cR + S mod Q.

Signature: σ = (c, u, U1, U2, U3, zr, zx, ze, ZR).

Verify(vk,m, σ): Check that all elements are in the correct intervals and
respectively belong to Zn and Z

∗
P . Let zE = c2`e+`c+`s + ze.

Compute v = acgzxhzru−zE mod n and
V1 = FZRU−c

1 mod P, V2 = GZR+zxU−c
2 mod P, V3 = HZR+zeU−c

3 mod P .

Verify that c = hash(m,u, v, U1, U2, U3, V1, V2, V3).

Open(gmsk,m, σ): Verify that the signature is valid.

Using XG decrypt (U
P−1

Q

1 mod P,U
P−1

Q

2 mod P) to get G
P−1

Q
xi mod P and

return i.
aGoldreich and Rosen [48] show that to someone not knowing the factorization of n, the

element hr mod n is indistinguishable from a random element in QRn. This means u hides
yi.

Figure 7.1: The Basic Group Signature Scheme.

7.3. The Basic Group Signature Scheme 99

Lemma 7.1 Let n = pq, where p = 2p′ + 1 and q = 2q′ + 1 are safe primes.
We assume the strong RSA assumption holds for Z

∗
n. Let s, t ∈ Z

∗
n and d > 1 be

produced by an adversary A such that sd = td mod n. If d is odd we have s = t
and if d is even we have s = ±t.

Proof. Assume to start with that d is odd. Then we have (s/t)d = 1 mod n. If
p′q′|d then we can break the strong RSA assumption, since for any h we have
h = h2d+1 mod n. If p′|d and q′ 6 |d then gcd(n, 22d− 1) = p and we have factored
n. Likewise we get a non-trivial factorization of n if p′ 6 |d and q′|d. Finally,
if p′ 6 |d and q′ 6 |d then we are looking at a normal RSA-exponentiation and
therefore s = t.

If d is even, then we can use the theorem to take care of the odd part. Assume
therefore WLOG that d = 2e. Since gcd(2, p′q′) = 1 we get (s/t)2e

= 1 mod n
implies (s/t)2 = 1 mod n. Then (s/t)2 − 1 = ((s/d)− 1)((s/d) + 1) mod n gives
us s = ±t or a non-trivial factorization of n. �

Lemma 7.2 Let n = pq, where p = 2p′ + 1 and q = 2q′ + 1. We will assume
the strong RSA assumption holds. Pick g1, . . . , gl at random from QRn. Let an
adversary produce u ∈ Z

∗
n and x, x1, . . . , xl such that ux = gx1

1 · · · gxl
l mod n. Then

with overwhelming probability x|x1, . . . , x|xl.

Proof. We will transform a successful adversary into one that finds a non-trivial
root of a random h ∈ QRn. Choose α1, . . . , αl at random from Zn2 and set
g1 = hα1 mod n, . . . , gl = hαl mod n. These are statistically indistinguishable
from randomly chosen g1, . . . , gl. We run the adversary on these elements.

Assume WLOG that x 6 |xl. Let r be a prime such that r|x and r 6 |xl. Since
αl from the point of view of the adversary is indistinguishable from αl − p′q′, we
have with at least 50% probability that r 6 |∑l

i=1 αixi. From now on, we assume
this is the case.

Let d = gcd(x,
∑l

i=1 αixi). Let y = x
d

and σ =
(
Pl

i=1 αixi)

d
. By Lemma 7.1

have uy = ±hσ mod n. Since h ∈ QRn then uy = −hσ mod n would imply that y
is odd and (−u)y = hσ mod n. WLOG we therefore assume uy = hσ mod n.

Choose γ, δ such that γy+δσ = 1. We then have h = hγy+δσ = (hγuδ)y mod n.
Since r|y, this gives us a non-trivial root of h. �

Lemma 7.3 The basic group signature scheme has full-traceability.

Proof. First note that in any signature (U1, U2) define a unique x such that

G
P−1

Q
x = (U2U

−XG
1)

P−1
Q mod P , where XG is such that G = F XG mod P . A

group signature contains an argument of knowledge of this x and an argument of
knowledge of a signature on x.

We will first argue in Claim 7.1 that we can use the group manager’s secret
key to make perfect simulations of signatures without knowing the xi’s. This

100 Chapter 7. Group Signature

means that the signing oracle does not reveal anything about the xi belonging to
a member.

Next, we will argue in Claim 7.2 that if an adversary successfully produces a
signature on a new message m not queried before, and this signature has (U1, U2)
encrypting xi, then this implies knowledge of xi. This means that we can use A
in an algorithm to break the DDH problem in < F >.

Finally, we will argue in Claim 6.2 that any valid signature must contain
(U1, U2) pointing to one of the xi’s.

Claim 7.1 Given Gxi mod P, ei, yi we can make a perfect simulation of a group
signature for member i.

Proof. Pick r at random and set u = hryi mod n. Choose R at random and set
U1 = F R mod P, U2 = GRGxi mod P, U3 = HRHei mod P .

Choose c at random and choose ZR, zx, ze, zr at random. Set v =
acgzxhzru−ze mod n and V1 = F ZRU−c

1 mod P, V2 = GZR+zxU−c
2 mod P, V3 =

HZR+ze mod P .
Define the random oracle to output c on query (m, u, v, U1, U2, U3, V1, V2, V3).

Claim 7.2 If the xi of an uncorrupted member is inside the group signature, then
the group signature contains an argument of knowledge of xi.

Suppose (U2U
−XG
1)

P−1
Q = G

P−1
Q

xi mod P . In a valid signature we have, among
other things, V1 = F ZRU−c

1 mod P and V2 = GZR+zxU−c
2 mod P .

The c matches that of the hash-function evaluated in, among other things,
U1, U2, V1, V2. Modeling the hash-function as a random oracle the adversary can
only have negligible chance of guessing this, so we can assume that the adversary
actually at some point made a query containing U1, U2, V1, V2. As an answer to
this query it received a random challenge c and was able to successfully produce
ZR and zx. To have noticeable chance of success it should also have had noticeable
chance of answering another challenge c′, i.e., produce satisfactory Z ′

R, z′x such
that V1 = F Z′

RU−c′
1 mod P and V2 = GZ′

R+z′xU−c
2 mod P .

We deduce that U c−c′
1 = F ZR−Z′

R mod P and U c−c′
2 = GZR−Z′

RGzx−z′x mod P .

This implies that ((U2U
−XG
1)

P−1
Q)c−c′ = G

P−1
Q

(zx−z′x) mod P . So, if (U1, U2) point

to xi, then we must have xi = zx−z′x
c−c′ mod Q. Thus, we have successfully computed

the discrete logarithm xi of Gxi mod P .

Claim 7.3 A valid group signature contains one of the Gxi’s inside (U1, U2).

Proof. Define x as the element from ZQ such that (U2U
−XG
1)

P−1
Q = G

P−1
Q

x mod P .
We will show that the strong RSA assumption implies that a valid group signature
with x not being one of the xi’s implies that the adversary is capable of an
existential forgery attack on the CL-signature.

7.3. The Basic Group Signature Scheme 101

First, we have to make sure that the key generation algorithm does not reveal
anything about the factorization of n, otherwise we cannot use the strong RSA
assumption in the proof.

We choose abase, gbase, hbase at random from QRn, and choose E1, . . . , Ek

as random primes with the correct distribution. We may now compute a =

a
Qk

j=1 ej

base mod n, g = g
Qk

j=1 ej

base mod n, h = h
Qk

j=1 ej

base mod n. This means that we do
not need the factorization of n to produce the signatures (yi, Ei, ri) on xi that we
give to the members.

Consider now A trying to form a valid signature that does not point to one of
the members. From correct answers to two different challenges c, c′ we have v =
acgzxhzru−zE mod n and v = ac′gz′xhz′ru−z′E mod n. This implies that uzE−z′E =

a
(c−c′)

Qk
j=1 Ej

base g
(zx−z′x)

Qk
j=1 Ej

base h
(zr−z′r)

Qk
j=1 Ej

base mod n. By Lemma 7.2, this implies that

zE−z′E|(c−c′)
∏k

j=1 Ej . Considering the sizes of zE−z′E , E1, . . . , Ek, c−c′ that are
respectively `e +2`c +`s, `e +`c +`s, `c we get that zE−z′E = ±Ei(c−c′) for some
Ei. Furthermore, considering the sizes of Ei, c− c′, zx − z′x we get c− c′|zx − z′x
and we can define x as zx−z′x

c−c′ . Finally, we may define r = zr−z′r
c−c′ . Removing the

c− c′ factor in the exponent we get (±u±1)Ei = u±Ei = agxhr mod n, which is a
CL-signature on x.

In a real execution we do not set up the protocol with known Ei-roots of
a, g, h. Rather we just reveal a set of signatures. What we have shown above is
that the adversary will generate a CL-signature on x. This means that we have
an existential forgery on the CL-signature scheme unless x = xi for some i.

At the same time we have already seen in Claim 7.2 that a signature contains

an argument of knowledge of x such that (U2U
−XG
1)

P−1
Q = G

P−1
Q

x mod P , where

x = zx−z′x
c−c′ mod Q. Since zx−z′x

c−c′ = xi we therefore deduce that a valid group
signature does indeed point out a member i ∈ [k]. �

It is worth noting that Claim 7.1 and Claim 7.2 hold even if we know the
factorization of n. This matters when we consider scenarios where the group
manager generates n and therefore may generate it maliciously and with knowl-
edge of a lot of extra information about it.

Lemma 7.4 The basic group signature scheme has full-anonymity.

Proof. The intuitive reason that we have full-anonymity is that since everything
is encrypted and proved in zero-knowledge, a signature does not reveal anything
about the signer’s secret key. The obstacle is that the adversary can ask the group
manager to open messages. Essentially this gives a chosen ciphertext attack on
the cryptosystem used to hide the identities. We will argue that a signature
actually is a CCA2 secure encryption of the identity of the signer. To do this
we follow the standard method of [65, 24, 73] to argue CCA2 security, namely
attaching an argument of (U1, U2) and (U1, U3) decrypting to the same.

102 Chapter 7. Group Signature

Consider an adversary that recycles (m, u, v, U1, U2, U3, V1, V2, V3) from a sim-
ulated signature. Let us start with the expectation of Expf−anon

A (1, k). We may
set up a, g, h as in Claim 7.3, such that we do not reveal the factorization of
n. By Claim 7.1, we may simulate the signature when generating the challenge
signature and still have the same expected outcome.

Since we are simulating the argument, we may form (U1, U3) as a ciphertext
encrypting Hei0 mod P instead of Hei1 mod P . If A can notice the difference,
then it means that it can break the semantic security of the ElGamal encryption.

The next step we will take is to switch the key we are using to decrypt. We
might have set up the signature scheme with knowledge of XH instead of XG, and
use decryption of (U1, U3) to find out who signed the message. Since a argument
that (U1, U2) and (U1, U3) point to the same member is included in the signatures
A queries to Open(gmsk, ·, ·) this oracle answers the same on all queries where
(m, u, v, U1, U2, U3, V1, V2, V3) is not the same as in the challenge signature. In
other words, A does not learn from the openings whether it is XG or XH that we
use to decrypt.

The only thing we have to guard against is that A reuses
(m, u, v, U1, U2, U3, V1, V2, V3) from the challenge signature. Call the an-
swers used in the simulated signatures for ZR, zx, ze, zr, and let the answers
produced by A be Z ′

R, z′x, z
′
e, z

′
r.

Since U c
1V1 = F ZR mod P we must have that Z ′

R = ZR. U c
2V2G

−ZR = Gzx =
Gz′x mod P implies that zx = z′x mod Q. U c

3V3H
−ZR = Hzr = Hz′r mod P implies

that ze = z′e mod Q. Since ze and z′e are rather small this shows that ze = z′e.

v = acgzxhzru−zE = acgz′xhz′ru−zE mod n shows that 1 = gz′x−zxhz′r−zr mod n.
Unless z′x − zx = 0 this gives a discrete logarithm of g base h. 1 = hzr−z′r mod n
implies p′q′|zr − z′r. Therefore zr = z′r because otherwise we could break the
strong RSA assumption since for any element z we have z = z1+zr−z′r mod n.

Overall, we therefore see that the adversary cannot recycle
(m, u, v, U1, U2, U3, V1, V2, V3) without recycling the entire challenge signa-
ture. Therefore, the adversary cannot tell the difference between using XG and
XH to decrypt.

We now have a hybrid signature with simulated argument and Gxi1 mod P
in (U1, U2) and Hei0 mod P in (U1, U3) and we use XH to reveal the identity of
parties. We now consider the experiment where we use U2 = GRGxi0 mod P . By
the semantic security of ElGamal encryption, this is not something that A will
notice.

Finally, we notice that the experiment has now been modified so much that
it is simply Expf−anon

A (0, k) with simulated argument and simulated signatures.
�

7.4. Join and Revoke 103

7.4 Join and Revoke

Flexible Join. It may be unpractical to set up the signature scheme with all
members in advance. Often groups are more dynamic and we may have members
joining after the public keys have been generated. The recent schemes [1, 16, 75]
support members joining at arbitrary points in time. The schemes [16, 75] require
that the public key be updated when a new member joins. However, they can
easily be modified to the more attractive solution where the public key does not
need to be updated when a member joins.

Our scheme supports members joining throughout the protocol. The idea is
that the member generates Gxi mod P herself, so only she knows the discrete
logarithm. Jointly the group manager and the member generate agxihri mod n,
where ri is so large that xi is statistically hidden. Then she gives it to the group
manager who generates (yi, ei) and gives them to the member. Here we use that
the CL-signature scheme is secure against adaptive chosen message attack such
that members cannot forge signatures and thereby falsely join themselves.

Revocation. On occasions, it may be necessary to revoke a member’s secret
key. Since signatures are anonymous, the standard approach of using certificate
revocation lists cannot be used. Following [16] we suggest using roots of some ele-
ment w to implement revocation. A signature contains an argument of knowledge
of a pair (wi, Ei) such that w = wEi

i mod n. If we want to revoke a membership
we update the public key to contain w ← wi. Now this member may no longer
prove knowledge of a root of w and thus she cannot sign messages any more.2

When changing the public key we need to communicate to the remaining
members how they should update their secret keys. In our scheme, we do this by
publishing ei corresponding to the revoked member. Members in good standing
may use this to obtain a root of the new w through a simple computation. This
means that the change in the public key is of constant size, and old members
may update their secret keys by downloading only a constant amount of public
information.

The protocol is described in Figure 7.2.

Performance. The signer can of course precompute Gxi mod P, Hei mod P
and reuse them to many signatures. We are then left with 12 exponentiations to
compute a signature, but most of the exponents are small. Only r is of length
`n/2 and s of length `n + `c + `s. To verify a signature we use 10 exponentiations.
Again, most of them are small, only zs is of size `n +`c +`s. With the parameters

2A member with a revoked key can still sign messages under the old verification key and
claim that they were signed when this key was valid. Whether such an attack makes sense
depends on the application of the group signature scheme and is beyond the scope of the
dissertation. One obvious solution is of course to add a time-stamp.

104 Chapter 7. Group Signature

Join and Revoke

KeyGen(): Run KeyGen(0) of the basic scheme. Choose also at random w ∈ QRn and
include it in the public key vk. Set gmsk = (vk, p, q, XG) where n = pq.

Join: The member selects at random xi ← ZQ and computes Gxi mod P . She also forms a
commitment to xi, gxihr′i mod n with r′i ∈r Zn and makes a non-interactive
zero-knowledge argument of knowledge of x′i, r

′
i fitting the above. She sends

Gxi mod P , gxihr′i and the argument to the group manager.
The group manager selects an `e-bit number ei so Ei = 2`e+`c+`s + ei is prime. He
computes wi = wE−1

i mod n. He selects at random r′′i ∈R ZEi and sets
yi = (agxihr′i+r′′i)E−1

i mod n. He sends wi, yi, ei, r
′′
i back to the new member.

The member sets ri = r′i + r′′i . Her secret key is ski = (vk, wi, xi, ri, yi, ei).

Sign(vk, ski, m): Select at random
r ∈ {0, 1}`n/2, s ∈ {0, 1}`n+`e+`s , dx ∈ {0, 1}`c+`Q+`s , de ∈ {0, 1}`c+`e+`s , R, S ∈ ZQ.
Set u = hryiwi mod n, v = hs−rdegdx(yiwi)−de mod n.
Let furthermore U1 = FR mod P, U2 = GRGxi mod P, U3 = HRHei mod P and
V1 = FS mod P, V2 = GSGdx mod P, V3 = HSHde mod P .
Compute a challenge c = hash(m, u, v, U1, U2, U3, V1, V2, V3).
Set ze = cei + de, zE = c2`e+`c+`s , zr = cri + zEr + s, zx = cxi + dx and
ZR = cR + S mod Q.
Signature: σ = (c, u, U1, U2, U3, zr, zx, ze, ZR).

Verify(vk, m, σ): Check that all elements are in the correct intervals and respectively
belong to Z

∗
n and Z

∗
P .

Compute v = (aw)cgzxhzru−zE mod n and
V1 = FZRU−c

1 mod P, V2 = GZR+zxU−c
2 mod P, V3 = HZR+zeU−c

3 mod P .
Verify that c = hash(m, u, v, U1, U2, U3, V1, V2, V3).

OpenProof(gmsk, i, m, σ): Notice that in a valid signature from member i there are
among other things (U1, U2) containing Gxi mod P . Since the group manager knows
Gxi mod P with a digital signature from member i on it, it is easy for the group
manager to prove in zero-knowledge that member i signed the message. This means
that the group manager can open individual messages in a verifiable manner without
making further compromises to a member’s data.

Revoke(gmsk, i): Publish ei. Replace in vk the element w with wi.
Any member in good standing may update her secret key skj as follows. She selects
α, β such that αEi + βEj = 1. Then she computes the new wj ← wβEi

i w
αEj

j mod n.

Figure 7.2: Protocol for Dynamic Join and Revoke.

suggested before the longest exponent is 1224 bits and we work with 1024 bit
moduli.

Let us compare this with the [1] group signature scheme. In this scheme, the
member gives Bi = axia0 mod n to the group manager, and the member’s secret
is xi. The group manager, however, knows the factorization of n and thus he has
an advantage when trying to compute the discrete logarithm. To prevent that,

7.5. Full Revocation 105

the modulus n must be very large, say 2048 bits. Moreover, the scheme requires
raising elements to very large powers, typically of length higher than 4000 bits.
Therefore, our scheme gains more than an order of magnitude in efficiency in
comparison with [1].

Security. As in the proof of Claim 7.3, we could have generated the elements
w, a, g, h independently of the factorization of n such that we could still make
signatures. Therefore, the adversary does not gain anything extra from the abil-
ity to adaptively join members and revoke members. In other words, the group
signature satisfies suitable extensions of full-traceability and full-anonymity that
take joining and revocation into account. Furthermore, without the group man-
agers secret key the adversary cannot make a signature on an xi that does not
belong to one of the members, so it cannot frame the group manager.

Separating issuer and opener. As we discussed in the introduction there
may be cases where we want to separate the process of granting membership and
being able to break the anonymity. A simple modification allows this.

The idea is that n is generated by the group manager who can produce the
needed CL signatures that we use in our scheme. On the other hand, we let the
opener generate G, H . The opener registers Gxi mod P and Hei mod P with the
opener and gets a signature on it. He shows the opener’s signature on Gxi mod P
and Hei mod P to the member and creates the CL-signature on xi as well as
computes the Ei-root of w, which he gives to the member.

Now, if the member that wants to sign a message picks r and s large enough,
then in the group QRn everything is statistically hidden and in Z

∗
P everything

is encrypted. Therefore, the issuer cannot see who signs a particular message.
The issuer should prove that g, wi ∈< h >, otherwise the side classes might leak
information.

On the other hand, the opener can verify signatures and decrypt the cipher-
texts. It is therefore easy to open messages. He cannot issue membership certifi-
cates because he does not have the ability to produce CL-signatures.

It is interesting to note that it is possible for many issuers to use the same
opener and the same public key of that opener. Also interesting is that the
ElGamal style encryption used for the opener can easily be made into a threshold
encryption scheme.

7.5 Full Revocation

Revocation revisited. The current method of revocation does not allow us
to revoke signatures valid under an old key. It would be highly unpractical
to demand that all members re-sign messages when the public key is updated.
Instead, we would prefer a solution parallel to that of certificate revocation lists

106 Chapter 7. Group Signature

that allow us to publish information that marks signatures signed by the now
distrusted member. Nevertheless, of course we still want to preserve the privacy
of all other members so we cannot simply reveal the group manager’s secret key.

We propose an addition that solves this problem. The idea is to pick a random
element si ∈ ZQ when the member joins. The member can now form F R mod
P and F Rsi mod P and include them in a group signature. According to the
DDH assumption, this will just look like two random elements. However, if the
group manager releases si, then all signatures suddenly become clearly marked
as belonging to said member.

We do need to force the member to use si, otherwise the member could create
group signatures that could not be full-revoked. Therefore, we include a random
element f ∈ QRn in the public key and give the member a CL-signature on the
form (yi, Ei, ri), where yEi

i = af sigxihri mod n. The member will form U4, V4

as U4 = F Rsi mod P and V4 = F ds mod P , when making the signature and
argues correctness of this together with an argument that si is included in the
CL-signature that she knows.

The protocol is described in Figure 7.3.

Security. A member’s secret key contains si. Therefore, if the secret key is
exposed it is easy to link the member with the signatures she has made. We can
therefore not hope to have full anonymity but must settle for anonymity.

In theory, it is possible to construct a signature scheme that supports
full revocation and full-anonymity. One idea could be that the group man-
ager selects elements Ai, Bi with Bi = AXi

i mod P and signs these elements.
Then the member must produce in addition to the standard signature a pair
(AR

i mod P, BRXi
i mod P) and prove in zero-knowledge that it has been properly

formed. Once the group manager wants to make a full revocation, he publishes
Xi. However, the member’s secret key does not include Xi so exposure of this
key does not reveal which messages she has signed. This method is not very effi-
cient though. It is an open problem to come up with an efficient group signature
scheme that has full-anonymity and supports full revocation.

On the flip side we note that it may be seen as a positive thing that the mem-
bers key reveals which messages he signed. In [55]’s notion of traceable signatures
it is a requirement that the member should be able to claim his signature. When
the member’s secret key links him to her signatures then this can be done easily
without her having to store old randomness used in specific signatures that she
might later want to claim.

7.6 Separating Full-Anonymity and Anonymity

Full-anonymity implies IND-CCA2 public key bit-encryption. To ap-
preciate the strength of the [10] definition of security of a group signature scheme,

7.6. Separating Full-Anonymity and Anonymity 107

Group Signature with Full Revocation

KeyGen(): As in the basic scheme except now we also include a random
element f from QRn in the public key, as well as w ∈R QRn.

Join: The Join protocol remains the same except now the member chooses a
random element si ∈ ZQ and gets yi = (af sigxihr′i+r′′i)E−1

i mod n.

Sign(vk, ski, m): Proceed as in the Join and Revoke scheme and select at
random ds ∈ {0, 1}`c+`Q+`s.

Set u = hryiwi mod n, v = hs−rdefdsgdx(yiwi)
−de mod n.

Let furthermore U1 = F R mod P, U2 = GRGxi mod P, U3 =
HRHei mod P, U4 = F Rsi mod P and V1 = F S mod P, V2 =
GSGdx mod P, V3 = HSHde mod P, V4 = F Rds mod P .

Compute a challenge c = hash(m, u, v, U1, U2, U3, U4, V1, V2, V3, V4).

Set ze = cei + de, zE = c2`e+`c+`s + ze, zr = cri + zEr + s, zx =
cxi + dx, zs = csi + ds and ZR = cR + S mod Q.

Signature: σ = (c, u, U1, U2, U3, U4, zr, zx, ze, zs, ZR).

Verify(vk, m, σ): Check that all elements are in the correct intervals and
respectively belong to Z

∗
n and Z

∗
P .

Compute v = (aw)cf zsgzxhzru−zE mod n and V1 = F ZRU−c
1 mod P, V2 =

GZR+zxU−c
2 mod P, V3 = HZR+zeU−c

3 mod P, V4 = Uzs
1 U−c

4 mod P .

Verify that c = hash(m, u, v, U1, U2, U3, U4, V1, V2, V3, V4).

Open(gmsk, m, σ): The opening protocol remains the same.

Revoke(gmsk, i): The revocation protocol remains the same.

FullRevoke(gmsk, i): Look up si and publish it on the certificate revocation
list. Execute Revoke(gmsk, i).

Since si is now public anybody may check in old signatures whether

U
P−1

Q

4 = U
P−1

Q
si

1 mod P and therefore whether the signatures have been
formed by the fully revoked member.

Figure 7.3: Group Signature with Full Revocation.

let us see that full-anonymity implies CCA2 secure public key bit-encryption.

Theorem 7.2 If a group signature scheme satisfying full-anonymity exists, then
an IND-CCA2 public key cryptosystem for encrypting bits exists.

108 Chapter 7. Group Signature

Sketch of proof. We set the group signature scheme up with just two identities
i0, i1. The secret keys corresponding to these two members is published, they are
the public key of the cryptosystem. To encrypt a bit b, we use skib to sign the
message m = 0. The group manager’s key gmsk corresponds to the secret key of
the cryptosystem. With gmsk, it is possible to open the signature to see whether
it was signed with ski0 or ski1 . This means that the bit b can be recovered.

Let us now restrict ourselves to adversaries that output (i0, i1, 0) in the
first phase. Then the definition of full-anonymity corresponds exactly to the
definition of IND-CCA2 security. �

[2] speculate whether it is possible to construct a group signature scheme
based only on one-way functions. Following [52] we believe it is not possible to
construct public key encryption from one-way functions, and therefore not pos-
sible to construct a group signature scheme from one-way functions that satisfies
the security definition of [10].

A group signature scheme based on one-way functions and NIZK ar-
guments. We will present a group signature scheme with full-traceability and
anonymity based on the assumptions that one-way functions exist and that non-
interactive zero-knowledge arguments exist.

Recall that one-way functions imply the existence of pseudorandom functions,
signature schemes secure against existential forgery under adaptive chosen mes-
sage attack and statistically binding commitment to any string. As shown in [35]
the statistically binding commitment scheme based on one-way functions from
[63] can be made non-interactive.

The central idea in the group signature scheme we are going to present is that
a member can demonstrate membership by producing a signature on the message
under an authorized verification key that is part of the public key.

There is the question how the group manager will be able to tell the members
apart. We let the public key contain a commitment to a seed si for a pseudoran-
dom function. By evaluating this function on a randomly chosen element r, the
member allows the group manager to identify him. On the other hand, nobody
else can tell the pseudorandom string apart from a random string, and therefore
cannot tell who signed the message. To force the member to use a correct seed
we require him to produce a NIZK argument of correctness.

The protocol. The protocol is described in Figure 7.4. For simplicity and to
facilitate comparison with the [10] definition we do not include the join protocol
in this description.

Security.

7.6. Separating Full-Anonymity and Anonymity 109

Group Signature Based on One-Way Functions and NIZK
Arguments

KeyGen: Generate (vkGM , skGM) as the public keys for a one-time signature
scheme. Let pk be a public key for an unconditionally binding
commitment scheme. Select at random a seed sGM and let cGM be a
commitment to sGM using randomness rGM .

For each member generate signature keys (vki, ski). Select also a seed si

for the pseudorandom function. Let ci be a commitment to si using
randomness ri.

The public key is vk = (vk, pk, cGM , vkGM , c1, vk1, . . . , ck, vkk). The
group manager’s secret key is gmsk = (s1, . . . , sk).

Member i’s secret key is ski = (vk, vki, ski, si, ri).

Sign: The member wishing to sign message m does the following.

She generates a strong one-time signature key pair (vkOT , skOT). She
then forms σOT = Sign(ski, vkOT). She picks at random point r. She sets
e = PRFsi

(r)⊕ σOT . Let p be a NIZK argument that e is indeed the
pseudorandom function evaluated in r under a seed si in one of the
commitments, XORed with a valid signature on vkOT under key vki, or
it is the pseudorandom function evaluated in r under seed sGM XORed
with vkOT signed under key vkGM . Having done all this she computes a
one-time signature σall = Sign(skOT , m, vkOT , r, e, p).

The signature consists of σ = (vkOT , r, e, p, σall).

Verify: The verifier wishing to verify a signature (vkOT , r, e, p, σall) on
message m checks the signature σall and that the argument p is valid.

Open: The group manager, wishing to open a signature (vkOT , r, e, p, σall) on
message m first verifies the signature. Then he goes through the list of
seeds si that he has given members computing PRFsj

(r). When he
reaches j = i he can extract a signature σOT on vkOT . Then he knows
that i is the member and he may demonstrate this by revealing σOT

together with the key vki.

Figure 7.4: Group signature based on any one-way function and any general
NIZK argument

Theorem 7.3 The group signature scheme described in Figure 7.4 has full-
traceability and anonymity.

Sketch of proof.
Full-traceability. The zero-knowledge argument implies that either a valid

110 Chapter 7. Group Signature

signature points to one of the members or e contains a signature under vkGM .
But if the latter is the case then we would be able to forge signatures. Therefore,
e must be such that it points to one of the members.

Suppose now that the adversary is able to generate a valid signature pointing
to member i, without corrupting party i or querying (i, m) to the signing oracle.
We will use the adversary to forge a signature under vki or vkGM . First, note that
since we are using a strong one-time signature scheme the adversary cannot reuse
a public key vkOT that it has received from Sign(sk·, ·). By the NIZK argument
p we have e = PRFsi

(r) ⊕ σOT , where σOT is a signature under vki or vkGM .
However, with the knowledge of si and s, we may then extract this signature and
therefore we have made a forgery.

Anonymity. Imagine the two experiments defining anonymity where we use
respectively ski0 or ski1 to generate the signature are distinguishable. In that
case, the two experiments where we first guess i0, i1 at random, then run the two
experiments but only output d if we guessed correctly and the adversary did not
query m, σ to Open or i0, i1 to Corrupt, are also distinguishable. Now, set these
two experiments up such that instead of using si and vki in forming the e’s when
making signatures under the Sign oracle we instead simulate the arguments.
By the zero-knowledge property of the NIZK arguments, this means that we
still have two distinguishable experiments. Imagine further, that we form ci0

and ci1 as commitments to 0 but still use si0 and si1 when making signatures.
By the hiding property of the commitment scheme, the two experiments are
again indistinguishable. Now, modify further the experiments such that we use
e = PRFs(r)⊕Sign(skGM , vkOT) whenever Sign outputs a signature. Since PRF
is a pseudorandom function, the two experiments are still indistinguishable.
Finally, instead of simulating arguments make instead arguments using vk and
s. Now, the two experiments are both distinguishable and identical, a clear
contradiction. �

We do not know of any construction of public key encryption from one-way
functions and non-interactive zero-knowledge arguments. Theorems 7.2 and 7.3
therefore indicate that a group signature scheme having full-anonymity may re-
quire stronger assumptions than what is needed to obtain anonymity.

The scheme in Figure 7.4 can easily be extended to a traceable signature
scheme [55]. Theorems 7.2 and 7.3 can then be seen as indications that group
signatures require stronger assumptions than traceable signature schemes.

7.7 Conclusion

We have contributed in two directions. On the practical side we have suggested
a new group signature scheme which is efficient and can be extended to support

7.7. Conclusion 111

revocation and full revocation. Of a more theoretical nature, we have noted that
full-anonymity may require stronger assumptions than what is needed to achieve
anonymity.

This leaves an interesting open problem of suggesting a group signature
scheme that supports full revocation but at the same time has full-anonymity.

Another obvious problem is to suggest a good security model for group sig-
natures that includes revocation. We have shown that in the static model, our
group signature realizes security model of [10], but for the dynamic case, our
security proofs are more of the hand-waving nature.

Bibliography

[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure group signature scheme. In proceedings of CRYPTO ’00, LNCS series,
volume 1880, pages 255–270, 2000.

[2] G. Ateniese and B. de Medeiros. Efficient group signatures with-
out trapdoors. In proceedings of ASIACRYPT ’03, LNCS series,
volume 2894, pages 246–268, 2003. Revised paper available at
http://eprint.iacr.org/2002/173.

[3] G. Ateniese, D. X. Song, and G. Tsudik. Quasi-efficient revocation in group
signatures. In proceedings of Financial Cryptography ’02, pages 183–197,
2002.

[4] B. Barak. How to go beyond the black-box simulation barrier. In proceedings
of FOCS ’01, pages 106–115, 2001.

[5] B. Barak. Constant-round coin-tossing with a man in the middle or realizing
the shared random string model. In proceedings of FOCS ’02, pages 345–355,
2002.

[6] B. Barak and R. Pass. On the possibility of one-message weak zero-
knowledge. In proceedings of TCC ’04, LNCS series, volume 2951, pages
121–132, 2004.

[7] O. Baudron, P.-A. Fouque, D. Pointcheval, G. Poupard, and J. Stern. Prac-
tical multi-candidate election scheme. In proceedings of PODC ’01, pages
274–283, 2001.

[8] M. Bellare. A note on negligible functions. Journal of Cryptology, 15(4):271–
284, 2002.

[9] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-
model scheme for a hybrid encryption problem. In proceedings of EURO-
CRYPT ’04, LNCS series, volume 3027, pages 171–188, 2004. Full paper
available at http://eprint.iacr.org/2003/077.

113

114 Bibliography

[10] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signa-
tures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In proceedings of EUROCRYPT ’03, LNCS series,
volume 2656, pages 614–629, 2003.

[11] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS ’93, pages 62–73, 1993.

[12] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and
its applications. In proceedings of STOC ’88, pages 103–112, 1988.

[13] F. Boudot. Efficient proofs that a committed number lies in an interval. In
proceedings of EUROCRYPT ’00, LNCS series, volume 1807, pages 431–444,
2002.

[14] J. Camenisch and J. Groth. Group signatures: Better efficiency and new
theoretical aspects. In proceedings of SCN ’04, LNCS series, 2004.

[15] J. Camenisch and J. Groth. Group signatures: Revisiting definitions, as-
sumptions and revocation, 2004. Manuscript.

[16] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application
to efficient revocation of anonymous credentials. In proceedings of CRYPTO
’02, LNCS series 2442, volume, pages 61–76, 2002.

[17] R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In proceedings of FOCS ’01, pages 136–145, 2001. Full
paper available at http://eprint.iacr.org/2000/067.

[18] R. Canetti and M. Fischlin. Universally composable commitments. In pro-
ceedings of CRYPTO ’01, LNCS series, volume 2139, pages 19–40, 2001.
Full paper available at http://eprint.iacr.org/2001/055.

[19] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology,
revisited. In proceedings of STOC ’98, pages 209–218, 1998.

[20] R. Canetti, O. Goldreich, and S. Halevi. On the random-oracle methodology
as applied to length-restricted signature schemes, 2004.

[21] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally com-
posable two-party and multi-party secure computation. In proceed-
ings of STOC ’02, pages 494–503, 2002. Full paper available at
http://eprint.iacr.org/2002/140.

[22] D. Chaum and E. van Heyst. Group signatures. In proceedings of EURO-
CRYPT ’91, LNCS series, volume 547, pages 257–265, 1991.

Bibliography 115

[23] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally
eficient multi-authority election scheme. In proceedings of EUROCRYPT
’97, LNCS series, volume 1233, pages 103–118, 1997.

[24] R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. In proceedings
of CRYPTO ’98, LNCS series, volume 1462, pages 13–25, 1998. Full paper
available at http://eprint.iacr.org/2001/108.

[25] I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string
model. In proceedings of EUROCRYPT ’00, LNCS series, volume 1807,
pages 418–430, 2000.

[26] I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment
scheme based on groups with hidden order. In proceedings of ASIACRYPT
’02, LNCS series, volume 2501, pages 125–142, 2002.

[27] I. Damg̊ard and J. Groth. Non-interactive and reusable non-malleable com-
mitment schemes. In proceedings of STOC ’03, pages 426–437, 2003.

[28] I. Damg̊ard, J. Groth, and G. Salomonsen. The theory and implementation
of an electronic voting system. In D. Gritzalis, editor, Secure Electronic
Voting, pages 77–100. Kluwer Academic Publishers, 2003.

[29] I. Damg̊ard and M. J. Jurik. A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system. In proceedings of
PKC ’01, LNCS series, volume 1992, 2001.

[30] I. Damg̊ard and M. J. Jurik. A length-flexible threshold cryptosystem with
applications. In proceedings of ACISP ’03, LNCS series, volume 2727, pages
350–364, 2003.

[31] I. Damg̊ard, M. J. Jurik, and J. B. Nielsen. A generalization of paillier’s
public-key system with applications to electronic voting. Manuscript, 2003.
http://www.brics.dk/∼ivan/GenPaillierfinaljour.ps.

[32] I. Damg̊ard and J. B. Nielsen. Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In pro-
ceedings of CRYPTO ’02, LNCS series, volume 2442, pages 581–596, 2002.
Full paper available at http://www.brics.dk/RS/01/41/index.html.

[33] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai.
Robust non-interactive zero knowledge. In proceedings of CRYPTO ’01,
LNCS series, volume 2139, pages 566–598, 2002.

[34] A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without
interaction. In proceedings of FOCS ’92, pages 427–436, 1992.

116 Bibliography

[35] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-
malleable commitment. In proceedings of STOC ’98), pages 141–150, 1998.

[36] G. Di Crescenzo, J. Katz, R. Ostrovsky, and A. Smith. Efficient and non-
interactive non-malleable commitment. In proceedings of EUROCRYPT ’01,
LNCS series, volume 2045, pages 40–59, 2001.

[37] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM J.
of Computing, 30(2):391–437, 2000. Earlier version at STOC ’91.

[38] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive zero knowl-
edge proofs based on a single random string. In proceedings of FOCS ’90,
pages 308–317, 1990.

[39] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In proceedings of CRYPTO ’86, LNCS
series, volume 263, pages 186–194, 1986.

[40] M. Fischlin. On the impossibility of constructing non-interactive
statistically-secret protocols from any trapdoor one-way function. In pro-
ceedings of CT-RSA ’02, LNCS series, volume 2271, pages 79–95, 2002.

[41] M. Fischlin and R. Fischlin. Efficient non-malleable commitment schemes.
In proceedings of CRYPTO ’00, LNCS series, volume 1880, pages 413–431,
2000.

[42] J. Furukawa. Efficient, verifiable shuffle decryption and its requirement of
unlinkability. In proceedings of PKC ’04, LNCS series, volume 2947, pages
319–332, 2004.

[43] J. Furukawa, H. Miyauchi, K. Mori, S. Obana, and K. Sako. An implemen-
tation of a universally verifiable electronic voting scheme based on shuffling.
In proceedings of Financial Cryptography ’02, LNCS series, volume 2357,
pages 16–30, 2002.

[44] J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In
proceedings of CRYPTO ’01, LNCS series, volume 2139, pages 368–387,
2001.

[45] J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-
knowledge protocols using signatures. In proceedings of EUROCRYPT ’03,
LNCS series, volume 2656, pages 177–194, 2003. Full paper available at
htpp://eprint.iacr.org/2003/037.

[46] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof
systems. SIAM Journal of Computation, 25(1):169–192, 1996.

Bibliography 117

[47] O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology, 7(1):1–32, 1994.

[48] O. Goldreich and V. Rosen. On the security of modular exponentiation
with application to the construction of pseudorandom generators. Journal
of Cryptology, 16(2):71–93, 2003.

[49] S. Goldwasser and Y. T. Kalai. On the (in)security of the fiat-shamir
paradigm. In proceedings of FOCS ’03, pages 102–, 2003. Full paper available
at http://eprint.iacr.org/2003/034.

[50] J. Groth. A verifiable secret shuffle of homomorphic encryptions. In pro-
ceedings of PKC ’03, LNCS series, volume 2567, pages 145–160, 2003.

[51] J. Groth. Evaluating security of voting schemes in the universal compos-
ability framework. In proceedings of ACNS ’04, LNCS series, volume 3089,
pages 46–60, 2004.

[52] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-
way permutations. In proceedings of STOC ’89, pages 44–61, 1989.

[53] N. Ishida, S. Matsuo, and W. Ogata. Divisible voting scheme. In ISC ’03,
LNCS series, volume 2851, pages 137–150, 2003.

[54] S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography:
Introducing concurrency, removing erasures. In proceedings of EUROCRYPT
’00, LNCS series, volume 1807, pages 221–242, 2000.

[55] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. Cryptology
ePrint Archive, Report 2004/007, 2004. http://eprint.iacr.org/.

[56] J. Kilian and E. Petrank. An efficient noninteractive zero-knowledge proof
system for np with general assumptions. Journal of Cryptology, 11(1):1–27,
1998.

[57] Y. Lindell. Parallel coin-tossing and constant round secure two-party com-
putation. In proceedings of CRYPTO ’01, LNCS series, volume 2139, pages
408–432, 2001. Full paper available at http://eprint.iacr.org/2001/107.

[58] H. Lipmaa. On diophantine complexity and statistical zero-knowledge ar-
guments. In proceedings of ASIACRYPT ’03, LNCS series, volume 2894,
pages 398–415, 2003.

[59] H. Lipmaa, N. Asokan, and V. Niemi. Secure vickrey auctions without
threshold trust. In proceedings of Financial Cryptography ’02, LNCS series,
volume 2357, pages 87–101, 2002.

118 Bibliography

[60] P. MacKenzie. Personal communication, 2003.

[61] P. D. MacKenzie and K. Yang. On simulation-sound trapdoor commitments.
In proceedings of EUROCRYPT ’04, LNCS series, volume 3027, pages 382–
400, 2004. Full paper available at http://eprint.iacr.org/2003/252.

[62] A. J. Menezes, P. C. van Oorschoot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[63] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):151–158, 1991.

[64] M. Naor. On cryptographic assumptions and challenges. In proceedings of
CRYPTO ’03, LNCS series, volume 2729, pages 96–109, 2003.

[65] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In proceedings of STOC ’90, pages 427–437, 1990.

[66] A. C. Neff. A verifiable secret shuffle and its application to e-
voting. In CCS ’01, pages 116–125, 2001. Full paper available at
http://www.votehere.net/vhti/documentation/egshuf.pdf.

[67] J. B. Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In proceedings of CRYPTO
’02, LNCS series, volume 2442, pages 111–126, 2002.

[68] T. Okamoto and S. Uchiyama. A new public-key cryptosystem as secure as
factoring. In proceedings of EUROCRYPT ’98, LNCS series, volume 1403,
pages 308–318, 1998.

[69] P. Paillier. Public-key cryptosystems based on composite residuosity classes.
In proceedings of EUROCRYPT ’99, LNCS series, volume 1592, pages 223–
239, 1999.

[70] P. Paillier. Composite-residuosity based cryptography - an overview. Cryp-
tobytes, 5(1):20–26, 2002.

[71] R. Pass. On deniability in the common reference string and random oracle
model. In proceedings of CRYPTO ’03, LNCS series, volume 2729, pages
316–337, 2003.

[72] M. Rabin and J. Shallit. Randomized algorithms in number theory. Com-
mun. Pure and Appl. Math, 39, suppl.:S240–S256, 1986.

[73] A. Sahai. Non-malleable non-interactive zero-knowledge and adaptive
chosen-ciphertext security. In proceedings of FOCS ’01, pages 543–553, 2001.

Bibliography 119

[74] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen
ciphertext attack. Journal of Cryptology, 15(2):75–96, 2002.

[75] G. Tsudik and S. Xu. Accumulating composites and improved group signing.
In proceedings of ASIACRYPT ’03, LNCS series, volume 2894, pages 269–
286, 2003.

[76] Y. Zheng and J. Seberry. Immunizing public key cryptosystems against cho-
sen ciphertext attacks. IEEE Journal on Selected Areas in Communications,
11(5):715–724, 1993.

[77] H. Zhu. A formal proof of zhu’s signature scheme. Cryptology ePrint Archive,
Report 2003/155, 2003. http://eprint.iacr.org/.

Recent BRICS Dissertation Series Publications

DS-04-3 Jens Groth. Honest Verifier Zero-knowledge Arguments Ap-
plied. October 2004. PhD thesis. xii+119 pp.

DS-04-2 Alex Rune Berg. Rigidity of Frameworks and Connectivity of
Graphs. July 2004. PhD thesis. xii+173 pp.

DS-04-1 Bartosz Klin. An Abstract Coalgebraic Approach to Process
Equivalence for Well-Behaved Operational Semantics. May
2004. PhD thesis. x+152 pp.

DS-03-14 Daniele Varacca. Probability, Nondeterminism and Concur-
rency: Two Denotational Models for Probabilistic Computation.
November 2003. PhD thesis. xii+163 pp.

DS-03-13 Mikkel Nygaard. Domain Theory for Concurrency. November
2003. PhD thesis. xiii+161 pp.

DS-03-12 Paulo B. Oliva. Proof Mining in Subsystems of Analysis.
September 2003. PhD thesis. xii+198 pp.

DS-03-11 Maciej Koprowski.Cryptographic Protocols Based on Root Ex-
tracting. August 2003. PhD thesis. xii+138 pp.

DS-03-10 Serge Fehr. Secure Multi-Player Protocols: Fundamentals,
Generality, and Efficiency. August 2003. PhD thesis. xii+125 pp.

DS-03-9 Mads J. Jurik. Extensions to the Paillier Cryptosystem with Ap-
plications to Cryptological Protocols. August 2003. PhD thesis.
xii+117 pp.

DS-03-8 Jesper Buus Nielsen.On Protocol Security in the Cryptographic
Model. August 2003. PhD thesis. xiv+341 pp.

DS-03-7 Mario Jośe Cáccamo.A Formal Calculus for Categories. June
2003. PhD thesis. xiv+151.

DS-03-6 Rasmus K. Ursem. Models for Evolutionary Algorithms and
Their Applications in System Identification and Control Opti-
mization. June 2003. PhD thesis. xiv+183 pp.

DS-03-5 Giuseppe Milicia. Applying Formal Methods to Programming
Language Design and Implementation. June 2003. PhD thesis.
xvi+211.

DS-03-4 Federico Crazzolara. Language, Semantics, and Methods for
Security Protocols. May 2003. PhD thesis. xii+160.

DS-03-3 Jǐr ı́ Srba. Decidability and Complexity Issues for Infinite-State
Processes. 2003. PhD thesis. xii+171 pp.

