
BRICS
Basic Research in Computer Science

An Abstract Coalgebraic Approach to
Process Equivalence for Well-Behaved
Operational Semantics

Bartosz Klin

BRICS Dissertation Series DS-04-1

ISSN 1396-7002 May 2004

B
R

IC
S

D
S-04-1

B
.K

lin:A
n

A
bstractC

oalgebraic
A

pproach
to

ProcessE
quivalence

for
W

ell-B
ehaved

O
perationalSem

antics

Copyright c© 2004, Bartosz Klin.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/04/1/

An Abstract Coalgebraic Approach to
Process Equivalence for Well-Behaved

Operational Semantics

Bartosz Klin

PhD Dissertation

Department of Computer Science
University of Aarhus

Denmark

An Abstract Coalgebraic Approach to
Process Equivalence for Well-Behaved

Operational Semantics

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Bartosz Klin

February 25, 2004

Abstract

This thesis is part of the programme aimed at finding a mathematical theory of
well-behaved structural operational semantics. General and basic results shown
in 1997 in a seminal paper by Turi and Plotkin are extended in two directions,
aiming at greater expressivity of the framework.

The so-called bialgebraic framework of Turi and Plotkin is an abstract gener-
alization of the well-known structural operational semantics format GSOS, and
provides a theory of operational semantic rules for which bisimulation equiva-
lence is a congruence.

The first part of this thesis aims at extending that framework to cover
other operational equivalences and preorders (e.g. trace equivalence), known
collectively as the van Glabbeek spectrum. To do this, a novel coalgebraic
approach to relations on processes is desirable, since the usual approach to
coalgebraic bisimulations as spans of coalgebras does not extend easily to other
known equivalences on processes. Such an approach, based on fibrations of test
suites, is presented. Based on this, an abstract characterization of congruence
formats is given, parametrized by the relation on processes that is expected
to be compositional. This abstract characterization is then specialized to the
case of trace equivalence, completed trace equivalence and failures equivalence.
In the two latter cases, novel congruence formats are obtained, extending the
current state of the art in this area of research.

The second part of the thesis aims at extending the bialgebraic framework
to cover a general class of recursive language constructs, defined by (possibly
unguarded) recursive equations. Since unguarded equations may be a source of
divergence, the entire framework is interpreted in a suitable domain category,
instead of the category of sets and functions. It is shown that a class of recursive
equations called regular equations can be merged seamlessly with GSOS opera-
tional rules, yielding well-behaved operational semantics for languages extended
with recursive constructs.

v

Acknowledgements

I want to express my deepest gratitude to my supervisor, Peter D. Mosses, for
all the trust he has given me during my PhD studies in Århus. The fact that I
chose to focus my studies in a field not directly related to his area of research did
not prevent him from giving me much needed encouragement and continuous
guidance. I can only hope I have deserved the freedom and support I have had
for those years.

Most results presented in my thesis were directly or indirectly inspired by
enlightening ideas of Gordon Plotkin. I am grateful to him for inviting me to
Edinburgh for a study visit, and for the support he offered me. In Edinburgh,
Daniele Turi generously spent a lot of his time introducing me to many new
ideas; the discussions about mathematics I had with him were the most exciting
ones I have ever experienced.

Many thanks to Jan Rutten and Marcelo Fiore for having accepted to eval-
uate this thesis. Having them as examiners is certainly a great honour for
me.

I would like to thank all my friends at BRICS (Alex, Branimir, Claus,
Daniele, Darek, Emanuela, Frank, Gabriel, Gosia, Jesus, Jiri, Jooyong, Kirill,
Maciej, Marco, Mikkel, Paulo, Saurabh and Vanda) for the wonderful time I
have had with them. I am especially grateful to Pawe l Sobociński, who was
the first person to get excited about my work on congruence formats, and who
effectively forced me to pursue this line of research.

Many fruitful discussions I have had with Pawe l helped to develop the results
presented in this thesis, and his numerous comments improved its presentation.
I am also grateful to the anonymous referee for the Journal of Logic and Alge-
braic Programming who discovered many inaccuracies in a previous version of
what is now Chapter 7 of the thesis.

My PhD studies would not have been possible without the excellent work
done by Mogens Nielsen, Uffe Engberg, Lene Kjeldsteen, Karen Møller, Janne
Christensen, Hanne Jensen and Ingrid Larsen at BRICS in Århus. I thank the
Danish National Research Foundation for funding my PhD research in BRICS.

Last but not least, I am very grateful to my parents and to my wife Karina.
Without their love and patience, I would not have become who I am now.

Bartek Klin,
Århus, February 25, 2004.

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

2 Preliminaries 13
2.1 Labelled Transition Systems . 13
2.2 Hennessy-Milner Logic and Its Fragments 13
2.3 Simulations and Bisimulations . 15
2.4 Structural Operational Semantics of Processes 16
2.5 Congruence Formats . 17
2.6 Basic Notions of Category Theory 17

2.6.1 Algebras and Monads . 17
2.6.2 Coalgebras . 20

2.7 Abstract GSOS . 22

3 A Fibrational Approach to Relations on Processes 25
3.1 Fibrations . 26

3.1.1 Lifting Basic Universal Constructions 26
3.1.2 Lifting Endofunctors . 28
3.1.3 Lifting Initial Algebras . 28
3.1.4 Lifting Freely Generated Monads 29
3.1.5 Lifting Final Coalgebras 30
3.1.6 Lifting Abstract GSOS . 31

3.2 Fibration of Relations . 32
3.2.1 Bisimulations as Coalgebras in Rel 34
3.2.2 Limited Expressive Power of Rel 35

3.3 Fibration of Test Suites . 36
3.3.1 Specialization Functors 37
3.3.2 Comparing Test Suites . 38
3.3.3 Lifting Functors with Test Constructors 39
3.3.4 Comparing Test Constructors 40

ix

4 Van Glabbeek Spectrum Described by Test Suites 43
4.1 (B,2)-Test Suite Constructors . 44

4.1.1 Relation to Modal Logics 45
4.2 Simulation and Bisimulation Semantics 48
4.3 Decorated Trace Semantics . 52
4.4 Coinduction Principle for Traces 62
4.5 Comparison of Process Preorders and Equivalences 64
4.6 Nested Semantics . 65

5 From Test Suites to Congruence Formats 71
5.1 Lifting Syntax to Test Suites . 71
5.2 Abstract Congruence Formats . 73
5.3 Trace Semantics . 74
5.4 Completed Trace Semantics . 81
5.5 Failures Semantics . 86

6 Test Suites for Bisimulations on CPOs 91
6.1 Preliminaries . 92
6.2 Coalgebra Spans and Their Limitations 95
6.3 Test Suite Approach . 99
6.4 Preorders and Topologies on CPOs 102
6.5 Compact Coalgebras . 105
6.6 CPO-Bisimulations . 107

7 Adding Recursive Constructs to Bialgebraic Semantics 111
7.1 Preliminaries . 113
7.2 Motivating Examples . 116
7.3 Unfolding Rules . 120
7.4 Infinite Unfolding . 123
7.5 Merging Unfolding Rules with Distributive Laws 126
7.6 From Unfolding Rules to Models 129
7.7 Regular Unfolding Rules . 134
7.8 Concluding Remarks . 138

Bibliography 141

Index 147
Concept Index . 147
List of Symbols . 150

x

Chapter 1

Introduction

This thesis contributes to the mathematical theory of well-structured and well-
behaved operational semantics of process algebras and programming languages,
basing on and extending the scope of the abstract approach to process algebra
called bialgebraic semantics.

Process algebra is the area of research concerned with formal descriptions of
complex computational systems, especially those with communicating, concur-
rently executing components. Since the 1980s it has been a well-established and
intensively studied area of theoretical computer science (e.g. [10, 16, 39, 43, 60]).
Traditionally, its main goal was to develop formalisms for the specification and
verification of concurrent and networked computer systems, and to provide
semantics for concurrent programming languages. Among the best-known tra-
ditional process algebras are ACP [15], CCS [59] and CSP [20].

More recently, methods of process algebra have been applied in other areas of
computer science, in formal approaches to distributed, dynamic and mobile sys-
tems (e.g. π-calculus [28, 61], calculus of mobile ambients [21]), security of cryp-
tographic protocols (spi-calculus [1]), web services (languages like XLANG [83])
and even computational molecular biology [25, 74]. It is likely that in our world
of pervasive, distributed and mobile computer systems, specified and imple-
mented with many different languages, the need for formal, process-algebraic
techniques will steadily increase.

When describing systems and processes formally, three key aspects must
be considered: their syntax, behaviour and process (also called behavioural,
observational or operational) equivalence.

Syntax refers to the structure of processes, and reflects the fact that it
is natural and convenient to describe various systems as composed of smaller
subsystems. In the framework of process algebra, processes are represented as
terms built over some set of syntactic constructs. In simple cases, processes
are arbitrary terms over an algebraic signature. More sophisticated syntactic
phenomena include variable binding and structural congruences, where two
syntactically different terms are identified and represent the same process.

Behaviour refers to the kind of actions the processes may take. In tradi-
tional process algebras, processes are allowed to nondeterministically perform
externally observable actions (carrying no specified structure) from a prescribed
set. One also considers deterministic, probabilistic and/or timed behaviour, the

1

2 Chapter 1. Introduction

ability to perform unobservable actions, features related to state, input and out-
put.

Process equivalence describes those processes whose behaviours should be
considered “the same”. Sometimes it is also useful to say that the behaviour
of a process can be “simulated” by another process. This leads to the notion
of process preorder. These notions clearly depend on the chosen notion of be-
haviour of processes, but even for a single kind of behaviour one might consider
many different process equivalences and preorders, suitable for different pur-
poses. These notions are of utmost importance for the formal description of
systems, since a description obtained by considering the full behaviour of a
process is often too concrete and one wants to abstract from some of its details,
to describe the intended meaning of processes adequately.

The most well-established approach to the formal presentation of process
algebras, covering all three aspects mentioned above, is that of structural op-
erational semantics. There, the behaviour of processes is modelled by means
of transition relations on processes, presented as terms over some signature.
The transition relations in turn are induced by inference rules that follow the
syntactic structure of processes. This idea was originally used to give formal
semantics to programming languages [69, 71], and has been widely used for this
purpose [40, 62]. However, the intuitive appeal of this approach and, impor-
tantly, its inherent support for modelling nondeterministic behaviour, made it
a natural framework for the formal description of process algebras (see [5]), and
indeed, the invention of structural operational semantics triggered the devel-
opment of process algebra as a field of research. Today, structural operational
semantics is considered to be the standard way to give formal semantic descrip-
tions of concurrent programs and systems.

Inference rules in operational descriptions take the form

premises
conclusion

A typical example of such a rule is

x
a−→ x′

x; y a−→ x′; y

meaning that if some process p can make a transition to another process p′

performing the action a, then the process p; q can make a similar transition to
the process p′; q for any process q. In general, if all premises of an inference
rule are valid under some substitution, then the conclusion is valid under the
same substitution.

Generally speaking, a set of operational inference rules induces a transi-
tion system, i.e., a set of processes together with a transition relation on it.
Depending on the form of the rules, this can be a simple labelled transition sys-
tem (LTS), an LTS with unobservable steps, a probabilistic transition system,
a timed transition system etc. Based on the structure of the transition relation,
one can define many different equivalences and preorders on processes. The
variety of possible process equivalences has been studied most intensively in

3

the case of LTSs, and includes bisimulation equivalence [64], simulation equiv-
alence, trace equivalence, testing equivalence and many others. It was treated
comprehensively in [36] and is now often referred to as the van Glabbeek spec-
trum. For other notions of transition system and process behaviour, the most
thoroughly studied process equivalences include weak/delay/branching bisimu-
lation equivalences (e.g. [35]), probabilistic bisimulation equivalence [54], timed
bisimulation equivalence [9] and many others.

For a notion of process equivalence to be practically useful, it must be com-
positional (or, in other words, it must be a congruence), i.e., it must be respected
by the syntactic constructs of a chosen process algebra. This is necessary for
any kind of inductive reasoning about processes, for example for specification
and verification of systems component by component, or for verification of soft-
ware refactoring [34] and optimization techniques, where replacing a subsys-
tem/subprogram with an equivalent one should guarantee that the behaviour
of the entire system/program is equivalent to the original one.

Proofs of compositionality of chosen process equivalences with respect to
particular process algebras can be quite demanding. It is therefore desirable to
show general results of this kind that hold on entire classes of process algebras.
In the framework of structural operational semantics, the search for such results
led to the development of various congruence formats. A congruence format is
a restriction on the syntactic form of structural inference rules that guarantees
a particular process equivalence compositional.

One of the most popular congruence formats is GSOS [18]. Operational
descriptions in GSOS format contain only rules of the general form{

xi
aij−→ yij : i ≤ n, j ≤ mi

}
∪
{
xi 6

bik−→ : i ≤ n, k ≤ ni

}
f(x1, . . . , xn) c−→ t

If all inference rules in an operational description are of this form, then bisim-
ulation equivalence on the LTS generated from these rules is guaranteed to be
compositional.

Many other congruence formats have been defined for various notions of be-
haviour and process equivalence (see [5] and references therein, but also [12, 50]).
However, to define a general congruence format for a given notion of process
equivalence is often a difficult task. Given the growing variety of disparate pro-
gramming paradigms and process behaviours, it is desirable to have a general
framework for constructing congruence formats for given notions of syntax, be-
haviour and process equivalence. To provide such a framework, one needs to
employ abstract approaches to these three key aspects of process algebra.

Throughout the field of computer science, abstract approaches to various
phenomena have been developed with the use of category theory1. There exist
abstract, general and well-established approaches to process syntax and be-
haviour, based on categorical methods, and the framework presented in this
thesis builds upon this work. To provide a general framework for deriving con-

1The reader is assumed to have basic knowledge of concepts and methods of category
theory. For the basic terminology unexplained here, see [58].

4 Chapter 1. Introduction

gruence formats, one needs to combine these approaches with a suitable abstract
approach to process equivalence.

Since the development of the initial algebra approach to semantics [37], the
standard method to model syntax of programs and processes is based on (un-
sorted) algebraic signatures, terms and algebras. Signatures are usually repre-
sented categorically as endofunctors. More specifically, a signature Σ consisting
of n language constructs f1, f2, . . . , fn with arities k1, k2, . . . , kn respectively, is
modelled as an endofunctor

ΣX = Xk1 +Xk2 + · · ·+Xkn

on the category of sets and functions Set. Then to equip a set X with a suitable
structure is just to provide a function (called a Σ-algebra)

h : ΣX → X

For any Σ, all Σ-algebras with a suitable notion of algebra morphism form a
category Σ-Alg. For Σ’s constructed as above, this category has an initial
object

ψ : ΣT0 → T0

where T0 is the set of all closed terms over the signature corresponding to Σ.
The construction T can be itself turned into an endofunctor, called the monad
freely generated by Σ.

The abstractness of this approach ensures that it can be interpreted for
many different endofunctors and in different categories.

On the other hand, the behaviour of processes has been successfully modelled
using coalgebras for suitable endofunctors [47, 78, 79]. For example, a finitely
branching labelled transition system 〈X,A,−→〉 (where X is a set of processes,
A a set of actions, and −→ ⊆ X × A×X a transition relation) can be viewed
as a function

h : X → Pf(A×X)

where Pf is the (covariant) finite powerset endofunctor on Set. In this context,
the functor Pf(A × −) is called a behaviour endofunctor, and h is a coalge-
bra for this functor. Varying the behaviour endofunctors, usually denoted B,
one can model different kinds of transition systems, including [78] unlabelled,
deterministic, with input/output, state based [38] and probabilistic [88] ones.
The generality of the coalgebraic approach allows one to use different categories
instead of Set to model transition systems with some structure imposed on the
set of processes. For example, one might insist that processes form a complete
partial order (cpo).

For any endofunctor B, all B-coalgebras with suitably defined coalgebra
morphisms form a category B-Coalg. When this category has a final object,
then every B-coalgebra has a canonical interpretation (called final semantics) in
this final coalgebra. For example, the final semantics of a finitely branching LTS
is equal to its unfolding to a labelled synchronization tree, with bisimulation
equivalent processes identified [79, 78].

5

Central to the coalgebraic theory of processes is an abstract notion of B-
bisimulation, based on spans of coalgebras. Given a coalgebra h : X → BX,
a (span) bisimulation on h is an object R with two morphisms p1, p2 : R → X
such that for some coalgebra r : R→ BR the diagram

X

h
��

R
p1oo p2 //

r

��

X

h
��

BX BR
Bp1

oo
Bp2

// BX

commutes. If the underlying category is Set, then R can be viewed as a binary
relation onX. For various functorsB, this abstract definition specializes to well-
known process equivalences, and in particular to bisimulation equivalence [64]
on labelled transition systems for B = Pf(A×−).

The algebraic and coalgebraic methods were combined in the seminal work
of Plotkin and Turi [86, 84], in bialgebraic semantics (another, similar approach
to syntax and behaviour is that of transition systems with algebraic structure,
e.g. [24]). There, transition systems with syntactic structure on states (pro-
cesses) are modelled as bialgebras, i.e. pairs

ΣX
g−→ X

h−→ BX

for some endofunctors Σ and B. To express the fact that a bialgebra behaves
well accordingly to some operational semantics, a notion of distributive law is
used. Such distributive laws are induced by natural transformations

λ : Σ(Id×B) → BT

(where T is the monad freely generated by Σ). Every natural transformation
of this kind canonically induces a coalgebra

hλ : T0 → BT0

and the central result of [86], specialized to Set as the underlying category
and Σ, T generated from some algebraic signature, says that (under a mild
assumption on B) the largest (span) bisimulation on hλ is compositional (i.e.,
it is a congruence on the initial Σ-algebra).

In the case of B = Pf(A×−), the natural transformations λ correspond to
sets of inference rules in GSOS format, in the sense that the B-coalgebra hλ
induced from λ corresponds to the labelled transition system induced by the
rules corresponding to λ. The abstract results from [86] then say that GSOS is
indeed a congruence format for bisimulation equivalence.

This result can already be seen as a framework for deriving congruence for-
mats. Indeed, it has been used for this purpose [13, 50]. However, its generality
is limited by features of the coalgebra span approach to process equivalence.
Indeed, instead of covering various process equivalences, the coalgebra span ap-
proach concentrates on a single, canonical process equivalence (the respective
(span) bisimulation equivalence) for any notion of behaviour. Therefore, look-
ing for a general framework for deriving congruence formats, one needs to seek
a more flexible abstract approach to process equivalence.

6 Chapter 1. Introduction

Before we sketch the approach taken in this thesis, we briefly mention other
abstract approaches to equivalences on processes known in the literature.

Almost all known equivalences on ordinary labelled transition systems can
be described by appropriate modal logics. The general idea is to define a lan-
guage of formulae that can be interpreted in any LTS, and consider two pro-
cesses equivalent if and only if they satisfy exactly the same formulae. The most
famous logic used for this purpose is the Hennessy-Milner logic [41], which dis-
tinguishes exactly those processes that are not bisimulation equivalent. Other
process equivalences from the van Glabbeek spectrum are described by suitable
fragments of the Hennessy-Milner logic (see [36] for a comprehensive treatment).
Modal characterizations have been also provided for various process equiva-
lences on other kinds of systems, including those with unobservable actions
(see [35] and references therein) and probabilistic transition systems [27, 54].

The logical approach to process equivalence is very general, but it is not
really a consistent, abstract framework. In particular, an abstract notion of a
modal operator, applicable to various notions of behaviour, is not clearly pro-
vided. This problem was solved to large extent in coalgebraic logic [63, 65].
However, another difficulty is a missing link between modal descriptions of pro-
cesses and their syntactic structure. Modal logics have been used to deriving
congruence formats for process equivalences [17, 33], but the formats obtained
were constructed by clever analysis of particular modal logics rather than with
use of some general meta-theorem, parametrized by a notion of process equiv-
alence.

Many well-known process equivalences can be described in the abstract cat-
egorical framework of open maps [23, 48, 27]. Despite its impressive generality,
the syntactic structure of processes has been ignored in this approach. The
relation of the open map framework to coalgebraic methods, although studied
to some extent [55], remains rather unclear.

Similarly, the abstract framework of quantales [4] lacks a systematic treat-
ment of syntactic issues or a relation to coalgebraic methods, therefore it is
difficult to use it for congruence format derivation.

Among abstract coalgebraic approaches to process equivalence, the coalge-
bra span approach described above is the most thoroughly studied. Attempts
have been made to overcome its limited generality and cover multiple notions
of process equivalence for single notions of behaviour. The idea of changing the
underlying category [79, 85] or the notion of coalgebra morphism [72] allowed
one to cover trace equivalence for ordinary LTSs. An interpretation of LTSs as
certain Moore automata allowed the authors of [19] to cover also the testing
equivalence of [26] (equivalent to the failures equivalence in the van Glabbeek
spectrum). However, no other process equivalences have been treated so far.
Yet another modification of the definition of coalgebra morphism in [75] led to
an abstract definition of weak bisimulation for a class of behaviour endofunctors.
However, that approach is tailored to the specific needs of weak bisimulations.

Another coalgebraic approach to process equivalence is based on lifting coal-
gebras (corresponding to transition systems) to the category Rel of binary re-
lations and relation-preserving functions. Such lifting, performed in a canonical
way, allowed the authors of [42] to give an abstract definition of bisimulation

7

equivalence, corresponding to that based on coalgebra spans. This approach
was extended in [46], yielding an abstract definition of simulation equivalence
for any behaviour with suitable additional structure. However, no other process
equivalences have been treated so far, and in this thesis it is argued that this
approach cannot immediately cover the standard notion of trace equivalence on
LTSs, without resorting to techniques analogous to those used in the coalgebra
span approach (e.g., [45]).

In this thesis, a novel abstract coalgebraic approach to process equivalence
is presented. The approach is based on simple and general notions of tests and
test suites. Intuitively, two processes are considered equivalent if they cannot
be distinguished by any test from a given test suite. Varying the test suites
considered, one obtains different notions of process equivalence. The interesting
test suites are constructed from the coalgebraic structure imposed on processes.

A test on an object X of processes is a morphism from X to a fixed object V
of test values. For most purposes it is sufficient to work in the category Set and
let V be the two-element set of logical values {tt, ff}, denoted also 2. Then a
test on a set X can be viewed as a subset of X. A test suite on X is a set θ of
tests on X. Every such test suite induces a specialization equivalence on X:

x ≡θ y ⇐⇒ ∀V ∈ θ. V x = V y

(the name is chosen by the analogy to specialization orders known from general
topology, as indeed a test suite resembles a topology, except that no closure
conditions are imposed). Sets equipped with test suites on them form a category
2-TS, constructed similarly to the category of topological spaces: a function
f : 〈X, θ〉 → 〈Y, ϑ〉 is a valid morphism if the inverse image of each test from ϑ
along f belongs to θ.

Any functor B : Set → Set can be lifted to an endofunctor on 2-TS,
by defining its action on test suites. A particularly well-structured way of such
lifting is based on sets of test constructors, i.e., tests on the set B2, and closures,
i.e., operators that given a test suite, return another test suite obtained in a
structured manner. Any set W of test constructors, together with any closure
Cl, induces a functor BW : 2-TS → 2-TS, acting as B on underlying sets and
defined by

BW 〈X, θ〉 = 〈BX,ClBX{w ◦BV | w ∈ W, V ∈ θ}〉 BWf = Bf

Moreover, for any coalgebra h : X → BX there exists the least (and thus
canonical) test suite θ that lifts h, i.e., such that h : 〈X, θ〉 → BW 〈X, θ〉
is a valid morphism in 2-TS. It turns out that for several choices of test
constructors, the specialization equivalences of these canonical test suites are
exactly the various well-known process equivalences.

Intuitively, the test constructors chosen for particular equivalences corre-
spond to modal operators used to describe these equivalences logically. For
example, if BX = Pf(A ×X), a test constructor w〈a〉 : B2 → 2 corresponding
to the well-known “diamond” modal operator 〈a〉 is defined by

w〈a〉β = tt ⇐⇒ 〈a, tt〉 ∈ β

8 Chapter 1. Introduction

On the other hand, closures intuitively correspond to propositional connec-
tives used in the respective modal logics. For example, to model simulation
equivalence, one needs to close a given set of tests under all intersections, re-
flecting the fact that the modal logic characterizing simulation equivalence is
closed under conjunction.

The test suite framework can be merged with the bialgebraic approach to
operational semantics. Besides behaviour endofunctors B, also the functors
Σ, T representing syntax can be lifted (in a canonical way) to functors Σ∗, T ∗

on 2-TS. An abstract result proved in this thesis states that if a natural trans-
formation

λ : Σ(Id×B) → BT

(where Σ and T are functors representing the syntax of a language, and B is a
behaviour functor) lifts to a transformation

λ : Σ∗(Id×BW) → BWT ∗

then the process equivalence corresponding to the functor BW is a congruence
on the transition system generated by the operational rules corresponding to
λ. Studying the conditions which λ must satisfy for this lifting to exist, one
obtains a syntactic congruence format for the process equivalence considered.
Thus the test suite approach to process equivalence is merged with the bial-
gebraic framework, yielding a general method for deriving congruence formats,
parametrized by notions of syntax, behaviour and process equivalence.

The test suite approach is novel, but it was inspired by previous develop-
ments: most notably, by modal logics (tests play a rôle analogous to that of
formulae in distinguishing processes, and test constructors correspond to modal
operators), the coalgebra lifting approach to bisimulation (indeed, coalgebras
are lifted to test suite categories similarly as in [42]), categorical logic [44] (tests
do not reside in the same category as the tested entities; formally, the category
2-TS is fibred over Set), and even Chu spaces [73] (test suites are essentially
extensional Chu spaces; however, these mathematical entities seem to have not
been used in this context before and this correspondence will not be explored in
this thesis). The relations of test suites to the fibrational coalgebraic framework
of [42, 46] (essentially used also in [66] and [22], in the context of recursively
defined domains) are particularly strong. In fact, both approaches are based
on a general idea of enriching coalgebras with additional properties (relations
in [42, 46], test suites in this thesis), technically by lifting them to total cate-
gories of suitable fibrations.

It is maybe worthwhile here to mention some apparent, but misleading,
connections to some other frameworks. In spite of the same name, our tests
are not related in any obvious way to those considered in the literature on
testing equivalences [20, 26]. Indeed, there a test is a process itself, and it may
(or must) be passed. In the test suite framework, a test is simply a predicate
on processes. Also, the notion of a saturated set is often used to characterize
testing equivalence. Such sets are families of subsets of some given set, and our
test suites can be viewed as such families too. This observation is, however,
misleading. In [20, 26] saturated families of sets of actions are considered,

9

and test suites are families of sets of processes, and it is hard to see any real
connection between these notions.

Since the test suite framework is general, it would be reasonable to expect
that the congruence formats obtained will not be as general as other formats
known in the literature, carefully tailored to particular process equivalences.
However, the concrete results obtained so far for three well-known equivalences
on LTSs are surprisingly good. For trace equivalence, the format obtained
matches exactly the state-of-the-art de Simone format [81]. The format for
completed trace equivalence is the first such format ever published, and in the
Handbook of Process Algebra [5] it had been even speculated that

[...] one cannot really hope to formulate a general congruence format
for completed trace equivalence.

The format for failures equivalence is incomparable with the most general for-
mats known so far.

Encouraged by this, we want to seek other applications of the test suite
approach. One possible choice (among many others: considering various process
equivalences, behaviour endofunctors, syntax with variable binding, etc.) is
to consider process languages with recursive operators, described by recursive
equations such as

loop t = t; loop t

rather than by standard operational rules. To avoid problems related to fit-
ting standard operational descriptions for such operators into the bialgebraic
framework, it is convenient to treat them as abbreviations for their infinite ex-
pansions, as suggested in [70]. This causes infinite terms to come into play,
and to allow inductive reasoning one works in a suitable category of domains
(complete partial orders, cpos) rather than in Set.

Two problems related to this are considered in this thesis. Firstly, one wants
to abstractly represent some useful notion of process equivalence on transition
systems where processes form a cpo rather than a set. The obvious candidate is
the notion of partial bisimulation equivalence considered in [2], since it is well
studied and gives elegant full abstraction results. It turns out that neither the
classical coalgebra span approach nor its ordered version [30, 77] fully covers this
notion of process equivalence; however, the test suite approach does. This can
be seen as a further confirmation of the generality of the test suite framework.

Secondly, a method to integrate recursive equations with structural opera-
tional rules is needed, to formally capture the idea of treating recursive opera-
tors as abbreviations for their infinite expansions. To this end, one considers a
signature Σ (the recursion-free fragment of a language) extended to a signature
Σ′ (the full language). The behaviour of recursive operators is then captured
as a natural transformation

r : T ′ → TT ′

where T and T ′ are the monads freely generated by Σ and Σ′ respectively.
If this transformation satisfies a natural condition called regularity, then it
can be seamlessly merged (using certain fixpoint constructions, available in

10 Chapter 1. Introduction

the underlying category of domains) with the operational semantics for the
recursion-free fragment, modelled bialgebraically as a natural transformation

λ : Σ(Id×B) → BT

yielding a natural transformation

λr : Σ′(Id×B) → BT ′

corresponding to an operational semantics for the full language. This construc-
tion was conceived as an attempt to apply the test suite approach in a new
setting, but it does not involve test suites directly and is of independent in-
terest, as a method of extending the scope of bialgebraic semantics to cover a
general class of recursive equations.

Further steps along this line of research — to provide a concrete description
of a congruence format for the transformations λr, and to pull back this format
along the above construction to obtain a format for λ and r — are the subject
of ongoing work and are not described in this thesis.

Organization

The structure of the thesis is as follows. Chapter 2 contains some standard
definitions and results from the literature, related to labelled transition systems,
the van Glabbeek spectrum, structural operational semantics, algebraic and
coalgebraic modelling and bialgebraic semantics.

In Chapter 3, the test suite approach to process equivalence and congruence
formats is presented. The presentation is aimed at generality, usability and
mathematical elegance, and not simply at covering the immediate applications
we have in mind. As a result, the applications of the framework presented
in the following chapters do not use it in full generality. Moreover, only the
coalgebraic aspects of the test suite approach are used in Chapters 4 and 6. In
Chapter 5, the algebraic (syntactic) aspects are used as well.

The structure of Chapter 3 reflects the similarities between our approach
and that of [42, 46]. In Section 3.1, a very general fibrational approach is
presented, which is then specialized to (a special case of) the relational approach
from [42, 46] and to the test suite approach.

In Chapter 4, the abstract test suite framework is specialized to ordinary
LTSs with Set as the underlying category, and variety of process equivalences
from the van Glabbeek spectrum are characterized by suitable test suites. These
characterizations are useful even when syntactic issues are not considered, as
they lead to novel proof principles for various process equivalences. This appli-
cation of the test suite approach is illustrated on a simple example.

Chapter 5 draws on results from Chapter 4, merged with the algebraic
aspects of the test suite framework, to present congruence formats for three
process equivalences from the van Glabbeek spectrum: trace equivalence, com-
pleted trace equivalence and failures equivalence.

Chapter 6 applies the test suite framework in the category of algebraic cpos,
covering Abramsky’s full abstraction result for coalgebras for the Plotkin pow-
erdomain [2]. To simplify matters, unlabelled transition systems are considered.

11

Chapter 7 is largely independent from other chapters and does not involve
any use of the test suite framework. It describes a formal approach to merging
recursive equations with operational rules modelled in the bialgebraic frame-
work.

Published contribution

Some results presented in this thesis have been published by the author or
are accepted for publication.

• [53] B. Klin, P. Sobocinski. Syntactic formats for free: an abstract ap-
proach to process equivalence. In Proc. CONCUR 2003, volume 2671 of
Lecture Notes in Computer Science, 2003.

In this paper, a rudimentary version of the framework shown in Chap-
ter 3 was described. There, the underlying category is chosen to be Set,
with 2 as the set of test values. Also a few results (albeit simplified) from
Chapter 4 were presented. The main result was the definition of con-
gruence formats for trace equivalence, completed trace equivalence and
failures equivalence on LTSs. The same formats are shown in this the-
sis in Chapter 5, although here they are presented in a different and,
hopefully, simpler manner.

• [51] B. Klin. An abstract approach to process equivalence and a coin-
duction principle for traces. In Proc. CMCS 2004, Electronic Notes in
Theoretical Computer Science, 2004. To appear.

This paper is an extended abstract of Chapter 4.

• [52] B. Klin. Adding recursive constructs to bialgebraic semantics. Jour-
nal of Logic and Algebraic Programming, special issue on Structural Op-
erational Semantics, 2004. To appear.

This paper is included in this thesis as Chapter 7, with only minor changes.

Acknowledgement

Most of the results presented in this thesis are original contributions of the
author, and all due references to previously published work have been made.
However, it must be clearly said that results shown in Section 6.3 and the two
counterexamples from Section 6.2 are entirely based on unpublished ideas of
Gordon Plotkin and they should be credited to him. Obviously, the author is
fully responsible for any possible mistakes in the statement, in proofs and in the
presentation of these results. The original ideas of Plotkin, based on a canonical
lifting of the Plotkin powerdomain to topologies of tests, were slightly modified
to make them fit into the test suite framework.

From this remark, it should be clear that the entire test suite approach
has been directly inspired by Plotkin’s ideas. The main conceptual differences

12 Chapter 1. Introduction

between his original, unpublished approach and the test suite framework are
that he considered:

• topologies of tests only, instead of arbitrary test suites,

• endofunctor liftings based on the canonical choice of all test constructors,
instead of arbitrary sets of constructors,

• no closures,

• canonical, two-element sets of test values, instead of arbitrary objects of
test values,

• the single notion of specialization preorder, instead of arbitrary special-
ization functors.

In short, Plotkin’s approach was aimed at characterizing a single, canonical
notion of process equivalence for every notion of behaviour, and the approach
presented in this thesis aims to cover many other equivalences.

Chapter 2

Preliminaries

In this chapter, we present standard notions and results related to process
algebra and categorical modelling of well-behaved operational semantics.

First, the basic notion of labelled transition system is introduced, followed
by several process preorders and equivalences, known collectively as the van
Glabbeek spectrum. After recalling the basic definitions of structural opera-
tional semantics, including the GSOS rule format, we proceed to present basic
notations and results of category theory, used to model operational rules ab-
stractly in the so-called abstract GSOS.

The definitions and results presented in this chapter are standard, taken
mostly from [5, 36, 58, 84, 86].

2.1 Labelled Transition Systems

Definition 2.1 A labelled transition system (LTS) 〈X,A,−→〉 is a set X of
processes, a set A of actions, and a transition relation −→ ⊆ X × A × X.
Usually instead of 〈x, a, x′〉 ∈ −→ one writes x a−→ x′.

Given an LTS 〈X,A,−→〉, for any Q ⊆ A, one writes x
Q−→ meaning that

x
a−→ x′ for some a ∈ Q, x′ ∈ X. Instead of x A−→ one writes x −→, and

x
a−→ means x

{a}−→. Sometimes a ‘negated’ version of this notation is used. For
example, x 6 Q−→ means that it is not the case that x

Q−→. For any x ∈ X, one
also defines the set of initials I(x) =

{
a ∈ A : x a−→

}
.

An LTS 〈X,A,−→〉 is finitely branching if for every process x ∈ X there are
only finitely many processes x′ ∈ X and actions a ∈ A such that x a−→ x′.

An LTS for which its underlying graph (obtained by ignoring all actions) is
a directed, rooted tree is called a labelled synchronization tree.

2.2 Hennessy-Milner Logic and Its Fragments

Definition 2.2 Given a set of actions A, one considers nine sets of modal
formulae FTr, FCTr, FFl, FFlTr, FRd, FRdTr, FS, FRdS and FBS, given by the

13

14 Chapter 2. Preliminaries

following BNF grammars:

FTr φ ::= > | 〈a〉φ
FCTr φ ::= > | 〈a〉φ | Ã
FFl φ ::= > | 〈a〉φ | Q̃
FFlTr φ ::= > | 〈a〉φ | Q̃ | Q̃ ∧ 〈a〉φ
FRd φ ::= > | 〈a〉φ | Q̌
FRdTr φ ::= > | 〈a〉φ | Q̌ | Q̌ ∧ 〈a〉φ
FS φ ::= > | 〈a〉φ | φ ∧ φ
FRdS φ ::= > | 〈a〉φ | Q̌ | φ ∧ φ
FBS φ ::= > | ⊥ | 〈a〉φ | [a]φ | φ ∧ φ | φ ∨ φ

where a ranges over A, and Q ranges over subsets of A. The above means that,
for example, in FRd there is a constant symbol Q̌ for every Q ⊆ A.

Formulae in FTr are called (partial, finite) traces. Formulae in FCTr \FTr are
called (finite) completed traces. Formulae in FFl \ FTr are called failure pairs.
Formulae in FFlTr are called failure traces. Formulae in FRd \ FTr are called
ready pairs. Formulae in FRdTr are called ready traces.

Definition 2.3 Given an LTS h = 〈X,A,−→〉, the satisfaction relation |=h

between processes and modal formulae is defined inductively as follows:

x |=h > always
x |=h ⊥ never
x |=h 〈a〉φ ⇐⇒ x′ |=h φ for some x′ such that x a−→ x′

x |=h [a]φ ⇐⇒ x′ |=h φ for all x′ such that x a−→ x′

x |=h Q̃ ⇐⇒ x 6 Q−→
x |=h Q̌ ⇐⇒ I(x) = Q
x |=h φ1 ∧ φ2 ⇐⇒ x |=h φ1 and x |=h φ2

x |=h φ1 ∨ φ2 ⇐⇒ x |=h φ1 or x |=h φ2

The set of formulae FBS together with the above interpretation is called the
(finitary) Hennessy-Milner logic.

Definition 2.4 For any W ∈ {Tr,CTr,Fl,FlTr,Rd,RdTr,S,RdS,BS} one con-
siders the corresponding process preorder vW⊆ X ×X and process equivalence
∼=W⊆ X ×X, defined on a given LTS h as follows:

x vW x′ ⇐⇒ (∀φ ∈ FW. x |=h φ =⇒ x′ |=h φ)
x ∼=W x′ ⇐⇒ (∀φ ∈ FW. x |=h φ⇐⇒ x′ |=h φ)

The process preorders and equivalences mentioned above are called oper-
ational. Together with some others, they are known as the van Glabbeek
spectrum and have been extensively studied and described in the literature; for
a comprehensive treatment, see [36].

The preorders vTr, vCTr, vFl, vFlTr, vRd, and vRdTr on a given LTS are
usually called trace preorder, completed trace preorder, failures preorder, failure
trace preorder, readiness preorder and ready trace preorder, respectively. The
corresponding equivalences are named in a similar manner. The preorders vS,
vRdS, vBS and equivalences ∼=S, ∼=RdS and ∼=BS are considered in more detail in
the next section.

2.3. Simulations and Bisimulations 15

2.3 Simulations and Bisimulations

In the following definitions, a given LTS 〈X,A,−→〉 is assumed.

Definition 2.5 A relation R ⊆ X ×X is a simulation if xRy implies that for
any a ∈ A and x′ ∈ X, if x a−→ x′ then there exists y′ ∈ X such that y a−→ y′

and x′Ry′. If, moreover, xRy implies I(x) = I(y), then R is a ready simulation.

Definition 2.6 A relation R ⊆ X×X is a bisimulation if xRy implies that for
any a ∈ A,

• for any x′ ∈ X if x a−→ x′ then there exists y′ ∈ X such that y a−→ y′ and
x′Ry′,

• for any y′ ∈ X if y a−→ y′ then there exists x′ ∈ X such that x a−→ x′ and
x′Ry′.

Definition 2.7 Processes x, y ∈ X are

• in (ready) simulation preorder if there exists a (ready) simulation R such
that xRy,

• (ready) simulation equivalent if there exist (ready) simulations R,R′ such
that xRy and yR′x,

• bisimulation equivalent, or bisimilar, if there exists a bisimulation R such
that xRy.

Proofs of the following well-known results can be found, e.g., in [36]:

Proposition 2.8 (Ready) simulation preorder is indeed a preorder (i.e., a re-
flexive and transitive relation) and it is the largest (ready) simulation on a given
LTS. Bisimulation equivalence is indeed an equivalence relation and it is the
largest bisimulation on a given LTS.

Proposition 2.9 In any LTS, the relation vS is equal to the simulation pre-
order, the relation ∼=S is equal to the simulation equivalence, the relation vRdS

is equal to the ready simulation preorder, the relation ∼=RdS is equal to the ready
simulation equivalence, and the relations vBS and ∼=BS are both equal to the
bisimulation equivalence.

16 Chapter 2. Preliminaries

2.4 Structural Operational Semantics of Processes

In the context of process algebra, processes in labelled transition systems are
usually closed terms over some signature.

A signature Σ is a set Σ̄ of language constructs, together with an arity
function ar : Σ̄ → N. For a given set X of variables, ΣX is the set of expressions
of the form f(x1, . . . , xar(f)), where f ∈ Σ̄ and x1, . . . , xar(f) ∈ X.

Given a signature Σ and a set X, the set TΣX of terms over Σ with vari-
ables X is the least fixed point of the operator (monotonic with respect to set
inclusion)

ΦY = X + ΣY

where + denotes disjoint union of sets. When describing terms from TΣX, the
injections ι1 : X → TΣX and ι2 : ΣTΣX → TΣX will be often omitted, i.e.,
we will write f(x, y) rather than ι2(f(ι1(x), ι1(y))). Also the subscript in TΣX
will be omitted if Σ is irrelevant or clear from the context. Elements of T∅ are
called closed terms over Σ.

For a term t ∈ TX and a function (substitution) σ : X → Y , tσ will denote
the term in TY resulting from t by simultaneously replacing every x ∈ X with
σ(x).

In the following, we assume a fixed, countably infinite set of variables Ξ,
ranged over by x1, x2, . . . , y1, y2, To stress that some terms are built over
variables from Ξ, they will be typeset t, t′ etc., as opposed to the normal
notation t, t′ etc.

Fix an arbitrary set of actions A. For a signature Σ, a positive Σ-literal is
an expression t

a−→ t′, and a negative Σ-literal is an expression t 6 a−→, where
t, t′ ∈ TΞ and a ∈ A. An inference rule ρ over Σ is an expression H

α , where
H is a set of Σ-literals and α is a positive Σ-literal. Elements of H are then
called premises of ρ, and α the conclusion of ρ. The left side and the right side
of the conclusion of ρ are called the source and the target of ρ, respectively. If
the source of a rule ρ is of the form f(x1, x2, . . . , xn), one says that ρ is a rule
for f.

A transition system specification over Σ is a set of rules over Σ.
In the following definition assume a fixed signature Σ.

Definition 2.10 (GSOS) A transition system specification Λ is in GSOS [18]
format if every rule ρ ∈ Λ is of the form{

xi
aij−→ yij : i ≤ n, j ≤ mi

}
∪
{
xi 6

bik−→ : i ≤ n, k ≤ ni

}
f(x1, . . . , xn) c−→ t

with f a language construct in Σ̄ and n = ar(f), such that xi ∈ Ξ and yij ∈ Ξ
are all distinct and are the only variables that occur in ρ. If, moreover, for
every f ∈ Σ̄, Λ contains only finitely many rules with f in the source, then Λ is
image-finite.

Given a transition system specification Λ in GSOS format, one defines a
notion of a provable positive literal in a straightforward way. The set of all

2.5. Congruence Formats 17

provable literals forms an LTS with closed terms over Σ as processes, and with
positive closed literals as transitions. This is called the LTS induced by Λ. If,
moreover, Λ is image-finite, then the induced LTS is finitely branching (for
details, see [5]).

In this thesis only image-finite GSOS specifications will be considered.

2.5 Congruence Formats

Definition 2.11 Let Σ be any signature. A preorder R ⊆ TΣ∅ × TΣ∅ is a pre-
congruence, if for any f ∈ Σ̄ with ar(f) = n, and for any t1, t′1, t2, t

′
2, . . . , tn, t

′
n ∈

TΣ∅, whenever tiRt′i (i = 1, 2, . . . , n) then f(t1, t2, . . . , tn)Rf(t′1, t
′
2, . . . , t

′
n). If,

additionally, R is an equivalence relation, then R is called a congruence.

A congruence format for a process preorder (equivalence) is a syntactic con-
dition imposed on transition system specifications that guarantees the preorder
(equivalence) to be a precongruence (resp. congruence) on the LTS induced by
any specification satisfying the format.

The following result, proved in [18], shows that GSOS is a congruence format
for bisimulation equivalence:

Proposition 2.12 For any transition system specification Λ in GSOS format,
the bisimulation equivalence ∼=BS on the LTS induced by Λ is a congruence.

2.6 Basic Notions of Category Theory

To give an abstract account of labelled transition systems, operational preorders
and equivalences, and transition system specifications, it is useful to apply some
notions of category theory. In this section, standard categorical notions and
results used throughout this thesis are recalled.

For rudimentary categorical notions of category, functor, natural transfor-
mation etc., unexplained here, see e.g. the textbook by Mac Lane [58].

2.6.1 Algebras and Monads

A common technique to represent syntax of process languages is to represent
signatures as polynomial endofunctors. Then terms of a given language can be
represented using the notions of initial algebra and freely generated monad.

Definition 2.13 Let Σ be an endofunctor on a category C, i.e., a functor
Σ : C→ C. A Σ-algebra 〈X,h〉 is an object X ∈ |C| together with a morphism
h : ΣX → X in C. X is then called the carrier, and h the structure of 〈X,h〉.

As a shorthand notation, a Σ-algebra 〈X,h〉 is usually denoted simply by
its structure h. This never leads to confusion, since X is determined as the
codomain of h.

18 Chapter 2. Preliminaries

Definition 2.14 Given an endofunctor Σ : C → C, a Σ-algebra morphism (or
Σ-homomorphism) from a Σ-algebra g : ΣX → X to a Σ-algebra h : ΣY → Y
is a morphism f : X → Y in C such that the diagram

ΣX
Σf //

g

��

ΣY

h
��

X
f

// Y

commutes.

For any endofunctor Σ on C, Σ-algebras together with Σ-algebra morphisms
form a category, denoted Σ-Alg.

In the context of structural operational semantics, algebras are used to
represent syntax of process languages. In particular, any signature Σ determines
an endofunctor Σ on the category Set of small sets and functions, defined by

ΣX =
∐
f∈Σ̄

Xar(f)

Σ(g : X → Y) =
[
ιf
〈
x1, . . . , xar(f)

〉
∈ ΣX 7→ ιf

〈
gx1, . . . , gxar(f)

〉
∈ ΣY

]
where

∐
denotes disjoint union of sets, and ιf : Xar(f) → ΣX is the coproduct

injection corresponding to f ∈ Σ̄.
Then a Σ-algebra h : ΣX → X corresponds to a model for the signature Σ,

i.e., a set X together with a function fX : Xar(f) → X for every f ∈ Σ̄.
The functor Σ used to represent syntactic entities as algebras is usually

called a syntactic endofunctor. This notion only reflects the context of use of
Σ, and does not restrict the class of functors considered. However, in most
examples (like in the definition of Σ based on a signature above) syntactic
endofunctors are polynomial functors, i.e., they are built only from categorical
products, coproducts, identity and constant functors.

Definition 2.15 Let Σ be an endofunctor. An initial Σ-algebra is an initial
object in Σ-Alg, i.e., a Σ-algebra α : ΣA → A such that for any Σ-algebra
f : ΣX → X there exists a unique Σ-algebra morphism from α to f . This
unique morphism is then called the inductive extension of f .

By the well-known Lambek’s Lemma, for any endofunctor Σ, (structures
of) initial Σ-algebras are isomorphisms.

Definition 2.16 Let Σ be an endofunctor on C, and X be an object of C. The
free algebra generated by Σ on X is the initial (X + Σ−)-algebra.

For any syntactic endofunctor on Set determined by a signature Σ, there
exists a free algebra generated by Σ on X:

[ηX , ψX] : X + ΣTX → TX

with the set TX of terms over Σ with variables X as the carrier. In particular,
the set of all closed terms T0 over Σ (here 0 = ∅ is the initial object in Set),
with the obvious Σ-algebra structure, forms an initial Σ-algebra.

2.6. Basic Notions of Category Theory 19

The notions of precongruence and congruence from Definition 2.11 can be
generalized to arbitrary Σ-algebras for endofunctors Σ obtained from signatures.

Definition 2.17 Let Σ be a signature and h : ΣX → X an algebra for the
corresponding polynomial endofunctor on Set. A preorder R ⊆ X × X is
a precongruence on h if for any coproduct injection f : Xn → ΣX, and
for any x1, y1, x2, y2, . . . , xn, yn ∈ X, whenever xiRyi (i = 1, 2, . . . , n) then
h(f 〈x1, x2, . . . , xn〉)Rh(f 〈y1, y2, . . . , yn〉). If, additionally, R is an equivalence
relation, then R is called a congruence on h.

Precongruences (congruences) on the initial Σ-algebra ψ : ΣT0 → T0 are
exactly precongruences (resp. congruences) in the sense of Definition 2.11.

Free algebras generated by functors are particular examples of monads.

Definition 2.18 A monad 〈T, η, µ〉 is an endofunctor T together with natural
transformations η : Id → T and µ : TT → T such that

µ ◦ Tη = µ ◦ ηT = id
µ ◦ Tµ = µ ◦ µT

The latter condition in the above definition is called associativity of µ.

Let Σ be an endofunctor on C such that for any object X ∈ |C|, free algebras
generated by Σ on X exist. Assume moreover an arbitrary choice of such free
algebras [ηX , ψX] : X+ ΣTX → TX for any X. For any morphism f : X → Y ,
define Tf : TX → TY by initiality in (X + Σ−)-Alg as below:

X

f

��

ηX // TX

Tf
���
�
� ΣTX

ΣTf
��

ψXoo

Y
ηY // TY ΣTY

ψYoo

Moreover, for any object X ∈ |C|, define a morphism µX : TTX → TX by
initiality in (TX + Σ−)-Alg as follows:

TX

HH
HH

HH
HH

H

HH
HH

HH
HH

H
ηTX // TTX

µX

���
�
� ΣTTX

ΣµX

��

ψTXoo

TX ΣTX
ψXoo

A proof of the following standard result can be found, e.g., in [84]:

Proposition 2.19 The triple 〈T, η, µ〉 forms a monad.

In particular, η : Id → T and µ : TT → T are natural transformations. The
monad 〈T, η, µ〉 is called the monad freely generated by Σ.

Algebras for an endofunctor Σ are in 1-1 correspondence with those algebras
for the endofunctor T (obtained as a part of the monad freely generated by Σ),
which satisfy certain additional laws. More concretely:

20 Chapter 2. Preliminaries

Definition 2.20 Let 〈T, η, µ〉 be a monad. A 〈T, η, µ〉-algebra is a T -algebra
h : TX → X such that

• h ◦ ηX = idX , and

• h ◦ µX = h ◦ Th.

Moreover, 〈T, η, µ〉-algebra morphisms are defined to be T -algebra morphisms.

When the natural transformations η and µ are irrelevant or clear from the
context, we will speak of T -algebras instead of 〈T, η, µ〉-algebras. To reconcile
possible confusion, when an endofunctor T is (a part of) a monad, by T -algebras
we will mean algebras for the monad, and not for the endofunctor, unless oth-
erwise stated.

For any monad T on C, T -algebras together with T -algebra morphisms form
a category, denoted T -Alg.

Proposition 2.21 Let Σ be an endofunctor, and T be the monad freely gen-
erated by Σ. The categories Σ-Alg and T -Alg are isomorphic.

Proof. A full proof of this standard proposition can be found e.g. in [84]. Here
we only note that to obtain a Σ-algebra from a T -algebra f : TX → X, one
takes the algebra ΣX

ΣηX−→ ΣTX
ψX−→ TX

f−→ X, where ηX , ψX come from the
structure of T as the monad freely generated by Σ. 2

In particular, if f = µX : TTX → TX, then the corresponding Σ-algebra is
ψX : ΣTX → TX, since the following diagram commutes:

ΣTX
ΣηX //

KKKKKKKKKK

KKKKKKKKKK ΣTTX
ψTX //

ΣµX

��

TTX

µX

��
ΣTX

ψX

// TX

(the square on the right commutes by definition of µX).

2.6.2 Coalgebras

In addition to syntax, which is usually represented by algebras, processes in var-
ious languages are equipped with behaviour, which often can be represented by
the dual categorical entity, coalgebras. In this section, we recall basic definitions
and results regarding coalgebras.

Definition 2.22 Let B be an endofunctor on a category C. A B-coalgebra
〈X,h〉 is an object X ∈ |C| together with a morphism h : X → BX in C. X is
then called the carrier, and h the structure of 〈X,h〉.

Similarly to algebras, a B-coalgebra 〈X,h〉 is usually denoted simply by its
structure h.

2.6. Basic Notions of Category Theory 21

Definition 2.23 Given an endofunctor B : C → C, a B-coalgebra morphism
(or B-cohomomorphism) from a B-coalgebra g : X → BX to a B-coalgebra
h : Y → BY is a morphism f : X → Y in C such that the diagram

X

g

��

f // Y

h
��

BX
Bf

// BY

commutes.

For any endofunctor B on C, B-coalgebras together with B-coalgebra mor-
phisms form a category, denoted B-Coalg.

The use of coalgebras in process algebra has been motivated by an easy 1-1
correspondence between Pf(A×X)-coalgebras, (where A is an arbitrary set and
Pf : Set → Set is the covariant finite powerset functor) and finitely branching
labelled transition systems with A as the set of actions. Indeed, given an LTS
〈X,A,−→〉, consider a function h : X → Pf(A×X) defined by〈

a, x′
〉
∈ hx ⇐⇒ x

a−→ x′

It is easy to check that this gives a 1-1 correspondence.
In the following we will often use the above correspondence silently, identi-

fying finitely branching LTSs with their corresponding coalgebras.
Varying the endofunctor B, one obtains similar correspondences between

coalgebras and deterministic automata, labelled transition systems with state
predicates and many others [78].

The functor B used to represent transition systems as coalgebras is usually
called a behaviour endofunctor. This notion only reflects the context of use of
B, and does not restrict the class of functors considered.

The notion dual to that of initial algebra is that of final coalgebra:

Definition 2.24 Let B be an endofunctor. A final B-coalgebra is a final object
in B-Coalg, i.e., a B-coalgebra φ : Ω → BΩ such that for any B-coalgebra
h : X → BX there exists a unique B-coalgebra morphism from h to φ. This
unique morphism is then called the coinductive extension of h.

Again by Lambek’s Lemma, for any endofunctor B, (structures of) final
B-coalgebras are isomorphisms. This result implies, for example, that the full
powerset functor P : Set → Set does not admit final coalgebras. Indeed, there
exists no set Ω isomorphic to PΩ.

However, the finite powerset functor Pf admits final coalgebras (see [8, 11]).
In particular:

Proposition 2.25 For any set A, the endofunctor BX = Pf(A × X) has a
final coalgebra φ : Ω → BΩ with Ω the set of (possibly infinitely deep) finitely
branching labelled synchronization trees, with elements of A as actions, quo-
tiented by bisimulation equivalence.

22 Chapter 2. Preliminaries

2.7 Abstract GSOS

The cornerstone of the abstract categorical modelling of transition system spec-
ifications is the following theorem by Turi and Plotkin [86]:

Theorem 2.26 There is a correspondence between transition system specifica-
tions (over a signature Σ) in the image finite GSOS format (see Definition 2.10)
and natural transformations

λ : Σ(Id× Pf(A×−)) → Pf(A× T−)

where T is the monad freely generated by (the endofunctor) Σ.

Proof. A full proof of this result can be found (in a marginally different version)
in [84]. Here we only show how to construct a natural transformation λ from
a set of rules Λ. Given a language construct f ∈ Σ̄ with arity n and a set X, a
rule ρ in the GSOS format{

xi
aij−→ yij : i ≤ n, j ≤ mi

}
∪
{
xi 6

bik−→ : i ≤ n, k ≤ ni

}
f(x1, . . . , xn) c−→ t

defines a map ρX : (X × Pf(A × X))n → Pf(A × TX) as follows: 〈c, t〉 ∈
ρX 〈xi, βi〉i≤n iff there exists a substitution σ : Ξ → X satisfying

1. σ(xi) = xi

2. ∀i ≤ n ∀j ≤ mi

〈
aij , σ(yij)

〉
∈ βi

3. ∀i ≤ n ∀k ≤ ni ∀x ∈ X 〈bik, x〉 /∈ βi

4. tσ = t

Then given a set Λ of rules in the image finite GSOS format we can define a
function λX : Σ(X × Pf(A ×X)) → Pf(A × TX) by defining for each f ∈ Σ a
function fX : (X × Pf(A×X))n → Pf(A× TX) as follows:

fX : 〈xi, Ui〉i≤n 7→
⋃
ρ∈Λ

ρ a rule for f

ρX〈xi, βi〉i≤n

Image finiteness of Λ ensures that this function is well defined, i.e. that it
returns only finite sets. Finally, λX is determined uniquely by the fX ’s since it
is a function from a coproduct. 2

The above theorem inspired considerations about natural transformations

λ : Σ(Id×B) → BT

for an arbitrary endofunctor B, and for 〈T, η, µ〉 the monad freely generated by
an arbitrary endofunctor Σ. In the following, transformations of this kind will
be called distributive laws. Indeed, as shown in [57], they are equivalent to the
distributive laws of the monad T over the copointed endofunctor Id × B, i.e.,
to transformations

λ : T (Id×B) → BT

satisfying the laws

2.7. Abstract GSOS 23

• λ ◦ η(Id×B) = Bη ◦ π2 : Id×B → BT

• λ ◦ µ(Id×B) = Bµ ◦ λT ◦ T 〈Tπ1, λ〉 : TT (Id×B) → BT .

A notion closely related to distributive laws is that of bialgebra.

Definition 2.27 Let λ : T (Id × B) → BT be a distributive law of a monad
T over Id × B. A λ-bialgebra is a pair TX h−→ X

g−→ BX satisfying the
“pentagonal law”:

T (X ×BX) λ // BTX

Bh

��
TX

T 〈id,g〉
OO

h
// X g

// BX

A λ-bialgebra morphism from TX
h−→ X

g−→ BX to TX ′ h′−→ X ′ g′−→ BX ′

is a morphism f : X → X ′ which is simultaneously a T -algebra morphism and
a B-coalgebra morphism, i.e. h′ ◦ Tf = f ◦ h and g′ ◦ f = Bf ◦ g.

For a given λ, the category of λ-bialgebras and λ-bialgebra morphisms is
denoted λ-Bialg.

The following theorem is the main result of [84] and [86]. It provides a basis
for the fibrational framework of Chapter 3 and for congruence formats defined
in Chapter 5.

Theorem 2.28 Suppose C is a category with initial objects, final objects and
products, Σ is an endofunctor on C which freely generates a monad T (in
particular, Σ and T admit initial algebras), and B is an endofunctor on C
which admits final coalgebras. Let λ : T (Id×B) → BT be a distributive law of

T over Id×B. Then λ-Bialg has an initial object TT0
µ0−→ T0 hλ−→ BT0 (where

0 is the initial object in C) and a final object TΩ δ−→ Ω
φ−→ BΩ. Moreover,

1. µ0 : TT0 → T0 is the initial object in T -Alg,

2. φ : Ω → BΩ is the final object in B-Coalg,

3. hλ is called the intended operational model of λ, and is defined by hλ =
λ0 ◦ T !, where ! : 0 → (0×B0) is unique by initiality,

4. δ : TΩ → Ω is the unique B-coalgebra morphism making the diagram

TΩ
T 〈id,φ〉//

δ

���
�
� T (Ω×BΩ)

λΩ // BTΩ

Bδ

��
Ω

φ
// BΩ

commute.

In particular, if C = Set, B = Pf(A×−) and Σ is obtained from a signature,
then the intended operational model of λ is the LTS generated by the image
finite GSOS rules associated to λ. The proof of this was left implicit in [86],
and in [84] a slightly different version was shown. A full proof can be found
in [13].

24 Chapter 2. Preliminaries

Chapter 3

A Fibrational Approach to Relations on

Processes

In this chapter, we present a general and abstract approach to well-structured
relations on processes modelled as coalgebras. The main purpose is to introduce
the test suite approach used in the following chapters. However, in order to
illustrate connections with related work, we shall begin with a rather general
and abstract framework, based on lifting coalgebras and the abstract GSOS
construction (see Section 2.7) to total categories of fibrations.

After explaining the basic notions of fibrations, total categories and lifting,
and after some general considerations (in Section 3.1) on when such lifting can
be performed, we show (in Section 3.2) how, given a finitely branching LTS,
i.e., a coalgebra h : X → Pf(A×X) in Set, to represent bisimulations and the
bisimulation equivalence on h as coalgebras for a suitably chosen endofunctor
on the total category Rel of a fibration of relations. This construction, a special
case of the general fibrational approach, coincides with abstract constructions
of Hermida, Jacobs and Hughes [42, 46], who also lifted coalgebras to the cat-
egory of relations. We notice, however, that e.g. the trace preorder and the
trace equivalence on finitely branching LTSs cannot be represented in the same
fashion.

To overcome this problem, we propose (in Section 3.3) another special case
of the general fibrational framework, based on a fibration of test suites, which
have more structure than relations. Roughly, a test on a set X of processes is a
function from X to a fixed set of test values. A test suite is simply a set of tests
with the same domain and codomain. Given a test suite on X, a relation on
X can be obtained by a construction analogous to that of specialisation order
in general topology. By choosing appropriate functors BW on the category of
test suites, various relations on carriers of B-coalgebras can be represented as
specialization relations of BW-coalgebras.

In the next chapter, it will be shown that this approach allows to charac-
terize most of the preorders and equivalences from the van Glabbeek spectrum.

25

26 Chapter 3. A Fibrational Approach to Relations on Processes

3.1 Fibrations

In this section, we present basic definitions of fibrations and show how to lift the
framework of abstract GSOS to the fibrational setting. For a simple example
of the constructions presented here, refer to Section 3.2.

It must be stressed that the definitions and constructions presented in this
section are not fully general. In particular, the notions of fibration and bifibra-
tion shown here are only special cases of the general notions used in fibration
theory. We use the simplified definitions here, since they are general enough to
perform all constructions needed for the purposes of this thesis. For a general
account of fibrations and related topics, see [44].

Definition 3.1 (Grothendieck construction) Assume a category C (called
the base category in this context) and a functor (−)∗ : Cop → Pos (Pos is the
category of partally ordered sets and monotonic functions). The total category
C∗ is defined as follows:

• objects in C∗ are pairs 〈X, θ〉, where X is an object in C and θ ∈ X∗,

• morphisms f : 〈X, θ〉 → 〈Y, ϑ〉 are morphisms f : X → Y in C such that
θ ≤ f∗ϑ.

For a total category C∗ obtained in this manner, the obvious forgetful func-
tor p : C∗ → C is called a (split) fibration, and the poset X∗ is called the
fibre over X. Given a morphism f : X → Y in C, the monotonic function
f∗ : Y ∗ → X∗ is called the reindexing function along f .

Slightly abusing the terminology, we will also call functors (−)∗ : Cop → Pos
fibrations.

Definition 3.2 A fibration (−)∗ : Cop → Pos is a bifibration, if for any f :
X → Y in C, the reindexing function f∗ : Y ∗ → X∗ is a right adjoint or,
equivalently, if it has a left adjoint f! : X∗ → Y ∗, i.e., a monotonic function
such that for any θ ∈ X∗ and ϑ ∈ Y ∗, θ ≤ f∗ϑ if and only if f!θ ≤ ϑ.

Simple examples of fibrations and bifibrations used throughout this thesis
are given in Definitions 3.14 and 3.20.

In the remainder of this section it is shown how to lift the framework of
abstract GSOS from the base category C to the total category C∗ of any bifi-
bration. The culmination of this section is Theorem 3.13 which, in Chapter 5,
will eventually lead to the definition of congruence formats for various process
equivalences.

3.1.1 Lifting Basic Universal Constructions

Theorem 3.3 Let (−)∗ : Cop → Pos be a bifibration. If C has a final object
1, and the fibre 1∗ has a top element >1, then 〈1,>1〉 is a final object in C∗.

Proof. For any object 〈X, θ〉 in C∗ take the unique morphism 1 : X → 1 in
C. Then 1 : 〈X, θ〉 → 〈1,>1〉 is a valid morphism in C∗, since 1!θ ≤ >1, and
(transposing across the adjunction) θ ≤ 1∗>1. 2

3.1. Fibrations 27

Theorem 3.4 Let (−)∗ : Cop → Pos be a bifibration. If C has binary products

X X × Y
π1oo π2 // Y , and each fibre has binary meets ∧, then C∗ has binary

products 〈X, θ〉 × 〈Y, ϑ〉 = 〈X × Y, θ � ϑ〉, where

θ � ϑ = π∗1θ ∧ π∗2ϑ

Proof. The projection π1 : 〈X × Y, θ � ϑ〉 → 〈X, θ〉 is clearly a valid morphism
in C∗, since π∗1θ ∧ π∗2ϑ ≤ π∗1θ. The same for π2.

To show universality, assume two morphisms 〈X, θ〉 〈Z, ζ〉foo g // 〈Y, ϑ〉
and take the unique morphism 〈f, g〉 : Z → X × Y in C arising from univer-
sality of X × Y . Then ζ ≤ f∗θ = 〈f, g〉∗ π∗1θ and ζ ≤ g∗θ = 〈f, g〉∗ π∗2ϑ.
Transposing across the adjunction, one gets 〈f, g〉! ζ ≤ π∗1θ and 〈f, g〉! ζ ≤ π∗2ϑ,
hence 〈f, g〉! ζ ≤ π∗1θ ∧ π∗2ϑ. Again transposing across the adjunction, one gets
ζ ≤ 〈f, g〉∗ (π∗1θ ∧ π∗2ϑ) and, as a consequence,

〈f, g〉 : 〈Z, ζ〉 → 〈X × Y, θ � ϑ〉

is a valid morphism in C∗. 2

Theorem 3.5 Let (−)∗ : Cop → Pos be a fibration. If C has an initial object
0, and the fibre 0∗ has a bottom element ⊥0, then 〈0,⊥0〉 is an initial object in
C∗.

Proof. For any object 〈X, θ〉 in C∗, take the unique morphism 0 : 0 → X in
C. Then 0 : 〈0,⊥0〉 → 〈X, θ〉 is a valid morphism in C∗. 2

Theorem 3.6 Let (−)∗ : Cop → Pos be a bifibration. If C has binary coprod-
ucts X

ι1 // X + Y Y
ι2oo , and each fibre has binary joins ∨, then C∗ has

binary coproducts 〈X, θ〉+ 〈Y, ϑ〉 = 〈X + Y, θ � ϑ〉, where

θ � ϑ = (ι1)!θ ∨ (ι2)!ϑ

Proof. The injection ι1 : 〈X, θ〉 → 〈X + Y, θ � ϑ〉 is a valid morphism in C∗,
since θ ≤ ι∗1(ι1)!θ ≤ ι∗1((ι1)!θ ∨ (ι2)!ϑ). The same for ι2.

To show universality, assume two morphisms 〈X, θ〉 f // 〈Z, ζ〉 〈Y, ϑ〉goo

and take the unique morphism [f, g] : X+Y → Z in C arising from universality
of X + Y . Then θ ≤ f∗ζ = ι∗1[f, g]∗ζ and ϑ ≤ g∗ζ = ι∗2[f, g]∗ζ. Transposing
across the adjunctions, one gets (ι1)!θ ≤ [f, g]∗ζ and (ι2)!ϑ ≤ [f, g]∗ζ, hence
(ι1)!θ ∨ (ι2)!ϑ ≤ [f, g]∗ζ. As a consequence,

[f, g] : 〈X + Y, θ � ϑ〉 → 〈Z, ζ〉

is a valid morphism in C∗. 2

28 Chapter 3. A Fibrational Approach to Relations on Processes

3.1.2 Lifting Endofunctors

Let (−)∗ : Cop → Pos be a fibration, and p : C∗ → C the associated forgetful
functor. An endofunctor F ∗ : C∗ → C∗ lifts an endofunctor F : C → C if
p ◦ F ∗ = F ◦ p.

Endofunctors on C∗ lifting a given functor F : C→ C are bijectively deter-
mined by their actions, i.e., families of monotonic functions

{FX : X∗ → (FX)∗ : X ∈ |C| } .

If, for any f : X → Y in C, the following inequality holds:

Y ∗ FY //

f∗

��
≤

(FY)∗

(Ff)∗

��
X∗

FX

// (FX)∗

then F ∗ defined by

F ∗ 〈X, θ〉 = 〈FX,FXθ〉 F ∗f = Ff

is an endofunctor on C∗ and it lifts F . If the above inequality holds as equality,
we say that F ∗ is fibred.

In the following, given an endofunctor F ∗ lifting some endofunctor F , we
will denote its action on an object X with FX . This will never lead to confusion,
as F ∗ will always be clear from the context.

Given endofunctors F ∗ and G∗ on C∗ lifting endofunctors F and G on C
respectively, the composed endofunctor F ∗G∗ indeed lifts the endofunctor FG
and is defined by the action

{FGX ◦GX : X ∈ |C| }

3.1.3 Lifting Initial Algebras

Let (−)∗ : Cop → Pos be a bifibration. Consider an endofunctor F on C lifted
to an endofunctor F ∗ on C∗.

For any F -algebra h : FX → X, define an operator Ψh : X∗ → X∗ by

Ψhθ = h!FXθ

It is clearly monotonic, since both h! and FX are monotonic.
F ∗-algebras correspond to prefixed points of such operators: an F -algebra

h : FX → X can be lifted to an F ∗-algebra h : 〈FX,FXθ〉 → 〈X, θ〉 if and only
if θ ≥ Ψhθ. In this case, one says that θ lifts h to an F ∗-algebra.

Theorem 3.7 If F has an initial algebra ψ : FA → A, and Ψψ has the least
(pre)fixed point α, then ψ : 〈FA,FAα〉 → 〈A,α〉 is an initial F ∗-algebra.

Proof. First, ψ as above is well defined in C∗, since ψ!FAα = Ψψα ≤ α, hence
(transposing across the adjunction) FAα ≤ ψ∗α.

3.1. Fibrations 29

Consider any F ∗-algebra h : 〈FX,FXθ〉 → 〈X, θ〉 and let k : A → X be
the inductive extension of h : FX → X in C. It is enough to show that
k : 〈A,α〉 → 〈X, θ〉 is a valid morphism in C, i.e., that α ≤ k∗θ. To this end,
one shows that k∗θ is a prefixed point of Ψψ.

Indeed, ψ∗k∗θ = (Fk)∗h∗θ ≥ (Fk)∗FXθ ≥ FAk
∗θ (the first inequality holds

since h is an F ∗-algebra, and the second since F ∗ is a functor, see Section 3.1.2).
Transposing across the adjunction, one gets k∗θ ≥ ψ!FAk

∗θ = Ψψk
∗θ. 2

Reindexing along F -algebra morphisms in the base category C preserves
well-definedeness of F ∗-algebras in the total category C∗:

Theorem 3.8 Consider an F -algebra morphism in C:

FX
Fk //

h
��

FY

g

��
X

k
// Y

and suppose that F lifts to F ∗ on C∗. Then for any lifting of g to an F ∗-algebra
g : 〈FY, FY θ〉 → 〈Y, θ〉, the morphism

h : 〈FX,FXk∗θ〉 → 〈X, k∗θ〉

is a valid F ∗-algebra in C∗.

Proof. Calculate

FX(k∗θ) ≤ (Fk)∗FY θ ≤ (Fk)∗g∗θ = h∗k∗θ

(the first inequality holds since F ∗ is a functor, see Section 3.1.2). 2

3.1.4 Lifting Freely Generated Monads

Let (−)∗ : Cop → Pos be a bifibration and assume that the assumptions of
Theorems 3.6 and 3.7 hold so that, in particular, coproducts and initial algebras
in C lift to C∗.

Theorem 3.9 Consider an endofunctor Σ : C → C which freely generates a
monad T : C → C and lifts to an endofunctor Σ∗ : C∗ → C∗. Then Σ∗ freely
generates a monad T ∗ and T ∗ lifts T .

Proof. For any object 〈X, θ〉 in C∗, the functor 〈X, θ〉+ Σ∗− lifts the functor
X + Σ−, hence it admits initial algebras lifting the initial (X + Σ−)-algebras.
By Theorem 3.7, if [ηX , ψX] : X + ΣTX → TX is an initial (X + Σ−)-algebra,
then

[ηX , ψX] : 〈X + ΣTX, θ � ΣTXTXθ〉 → 〈TX, TXθ〉

is an initial (〈X, θ〉 + Σ∗−)-algebra, where TXθ is the least fixed point of the
operator

Ψ[ηX ,ψX]ϑ = [ηX , ψX]!(θ � ΣTXϑ)

30 Chapter 3. A Fibrational Approach to Relations on Processes

This, as shown in Section 2.6.1, gives a functor T ∗ : C∗ → C∗, which is the
monad freely generated by Σ∗. 2

When T ∗ is the monad freely generated by Σ∗, the categories of T ∗-algebras
and Σ∗-algebras are isomorphic by Proposition 2.21. Moreover, the isomor-
phism is the same as that between T -algebras and Σ-algebras:

Theorem 3.10 Under the assumptions of Theorem 3.9, for any T ∗-algebra
h : 〈TX, TXθ〉 → 〈X, θ〉, the morphism

g : 〈ΣX,ΣXθ〉 → 〈X, θ〉

is a well-defined Σ∗-algebra in C∗, where g : ΣX → X is the algebra corre-
sponding to h : TX → X along the isomorphism between T -Alg and Σ-Alg.

Proof. By Proposition 2.21 one has g = h◦ψX ◦ΣηX , where ψX : ΣTX → TX
and ηX : X → TX come from the structure of the monad T . From the proof
of Theorem 3.9 it is clear that morphisms

ηX : 〈X, θ〉 → 〈TX, TXθ〉
ψX : 〈ΣTX,ΣTXTXθ〉 → 〈TX, TXθ〉

are well-defined in C∗, therefore g : 〈ΣX,ΣXθ〉 → 〈X, θ〉, being a composition
of three well-defined morphisms, is also well-defined. 2

3.1.5 Lifting Final Coalgebras

Let (−)∗ : Cop → Pos be a bifibration. Consider an endofunctor F on C lifted
to an endofunctor F ∗ on C∗.

For any F -coalgebra h : X → FX, define an operator Φh : X∗ → X∗ by

Φhθ = h∗FXθ

It is clearly monotonic, since both h∗ and FX are monotonic.
F ∗-coalgebras correspond to postfixed points of such operators: an F -

coalgebra h : X → FX can be lifted to an F ∗-coalgebra h : 〈X, θ〉 → 〈FX,FXθ〉
if and only if θ ≤ Ψhθ. In this case, one says that θ lifts h to an F ∗-coalgebra.

Theorem 3.11 If F has a final coalgebra φ : Ω → FΩ, and Φφ has the greatest
(post)fixed point ω, then φ : 〈Ω, ω〉 → 〈FΩ, FΩω〉 is the final F ∗-coalgebra.

Proof. First, φ as above is well defined in C, since ω ≤ Φφω = φ∗FΩω.
Consider any F ∗-coalgebra h : 〈X, θ〉 → 〈FX,FXθ〉 and let k : X → Ω be

the coinductive extension of h : X → FX in C. It is enough to show that
k : 〈X, θ〉 → 〈Ω, ω〉 is a valid morphism in C, i.e., that θ ≤ k∗ω, or equivalently,
that k!θ ≤ ω. To this end, one shows that k!θ is a postfixed point of Φφ, or
equivalently, that k∗Φφk!θ ≥ θ.

Indeed, k∗Φφk!θ = k∗φ∗FΩk!θ = h∗(Fk)∗FΩk!θ ≥ h∗FXk
∗k!θ ≥ h∗FXθ ≥ θ

(the first inequality holds since F ∗ is a functor, the second due to the adjunction
k! a k∗, and the third since h is an F ∗-coalgebra). 2

3.1. Fibrations 31

Final F ∗-coalgebras in C∗ are particularly important when F ∗ is fibred, as
they allow to construct, for any F -coalgebra h : X → FX, the greatest element
θ ∈ X∗ that lifts h to an F ∗-coalgebra:

Theorem 3.12 Under the assumptions of Theorem 3.11, suppose moreover
that F ∗ is fibred. Then for any coalgebra h : X → FX, the greatest (post)fixed
point of Φh (or, equivalently, the greatest element of X∗ that lifts h to an
F ∗-coalgebra) exists and is equal to k∗ω, where k : X → Ω is the coinductive
extension of h.

Proof. To show that k∗ω is a postfixed point of Φh, calculate

k∗ω ≤ k∗φ∗FΩω = h∗(Fk)∗FΩω = h∗FXk
∗ω = Φhk

∗ω

(the inequality hold since ω is a postfixed point of Φφ, and the second equality
holds since F ∗ is fibred).

Consider another postfixed point θ for Φh, i.e., an F ∗-coalgebra h : 〈X, θ〉 →
〈FX,FXθ〉. By finality, k : 〈X, θ〉 → 〈Ω, ω〉 is a valid morphism in C∗, hence
θ ≤ k∗ω. 2

In many examples (see Section 3.2.1, Chapters 4, 6), the elements k∗ω will
correspond to well-known process relations on carriers of coalgebras.

3.1.6 Lifting Abstract GSOS

Assume a bifibration where initial objects, products, coproducts, initial algebras
and final coalgebras lift. Consider a functor Σ : C → C that freely generates
a monad T and lifts to a functor Σ∗ : C∗ → C∗. Assume moreover a functor
B : C → C that has a final coalgebra φ : Ω → BΩ and lifts to a fibred functor
B∗ : C∗ → C∗. Assume also a natural transformation

λ : Σ(Id×B) → BT

in C.
If λ lifts to a natural transformation in C∗, then the entire abstract GSOS

construction (see Section 2.7) can be repeated in C∗. For our purposes, the
most important result will be the following:

Theorem 3.13 Under the above notation, if λ lifts to a natural transformation

λ : Σ∗(Id×B∗) → B∗T ∗

in C∗ (where T ∗ is the monad freely generated by Σ∗, see Theorem 3.9) then

ψ : 〈ΣT0,ΣT0k
∗ω〉 → 〈T0, k∗ω〉

is a valid Σ∗-algebra, where ψ : ΣT0 → T0 is the initial Σ-algebra, ω comes
from the final B∗-coalgebra φ : 〈Ω, ω〉 → 〈BΩ, BΩω〉 and k : T0 → Ω is the
coinductive extension of the coalgebraic part of the initial λ-bialgebra.

32 Chapter 3. A Fibrational Approach to Relations on Processes

Proof. By Theorem 2.28, k is the unique morphism from the initial to the final
λ-bialgebra in C:

TT0
µ0 //

Tk
��

T0
γ //

k
���
�
� BT0

Bk
��

TΩ
δ

// Ω
φ

// BΩ

and δ is the unique B-coalgebra morphism making the diagram

TΩ
T 〈id,φ〉//

δ

���
�
� T (Ω×BΩ)

λΩ // BTΩ

Bδ

��
Ω

φ
// BΩ

commute. Since products and the natural transformation λ in C lift to C∗, both
morphisms

T 〈id, φ〉 : 〈TΩ, TΩω〉 → 〈T (Ω×BΩ), TΩ×BΩ(ω �BΩω)〉
λΩ : 〈T (Ω×BΩ), TΩ×BΩ(ω �BΩω)〉 → 〈BTΩ, BTΩTΩω〉

are well defined in C∗, hence λΩ ◦ T 〈id, φ〉 : 〈TΩ, TΩω〉 → 〈BTΩ, BTΩTΩω〉
is a valid B∗-coalgebra. By finality of φ both in C and C∗, δ is the unique
B∗-coalgebra morphism as shown below:

〈TΩ, TΩω〉
λΩ◦T 〈id,φ〉//

δ
���
�
�

〈BTΩ, BTΩTΩω〉

Bδ
��

〈Ω, ω〉
φ

// 〈BΩ, BΩ, ω〉

hence δ : 〈TΩ, TΩω〉 → 〈Ω, ω〉 is a well defined T ∗-algebra. By Theorem 3.8
applied to this T ∗-algebra and to the T -algebra morphism k, the T ∗-algebra

µ0 : 〈TT0, TT0k
∗ω〉 → 〈T0, k∗ω〉

is well defined in C∗. From this it is easy to infer that also

ψ : 〈ΣT0,ΣT0k
∗ω〉 → 〈T0, k∗ω〉

is a valid Σ∗-algebra. Indeed, by the remark made after Proposition 2.21, the
T -coalgebra µ0 : TT0 → T0 is mapped to ψ : ΣT0 → T0 by the isomorphism
between T -Alg and Σ-Alg. Then it is enough to apply Theorem 3.10. 2

Note that for a natural transformation λ in C to lift to C∗ as above, it is
enough to ensure that each component of λ is a well-defined morphism between
the lifted objects in C∗. Naturality then comes for free, since composition in
C∗ is inherited from C. This observation will be of use in Chapter 5.

3.2 Fibration of Relations

As an example of a bifibration and an application of Theorems 3.11–3.12, we
show the fibration of relations on the base category Set. In Section 3.2.1, we

3.2. Fibration of Relations 33

show how to represent bisimulations and bisimulation equivalences on finitely
branching LTSs as coalgebras in this framework. This construction is a special
case of the abstract approach by Hermida, Jacobs and Hughes [42, 46]. A
similar construction was also used by Cattani, Fiore and Winskel [22], and
earlier by Pitts [66] in the context of recursively defined domains. There, even
a counterpart of the operator Φh was defined.

In Section 3.2.2, we show limitations of the relational approach by proving
that trace equivalence cannot be easily represented in the same fashion.

Definition 3.14 Consider a functor (−)∗ : Setop → Pos defined as follows:

• X∗ = 〈{R ⊆ X ×X},⊆〉,

• f∗R = { 〈x, x′〉 ∈ X ×X : (fx)R(fx′) } for f : X → Y , R ∈ Y ∗.

To check functoriality, calculate for any f : X → Y , g : Y → Z and R ∈ Z∗:

(g ◦ f)∗R =
{ 〈
x, x′

〉
∈ X ×X : (gfx)R(gfx′)

}
=

{ 〈
x, x′

〉
∈ X ×X : (fx)(g∗R)(fx′)

}
= f∗g∗R

Monotonicity and preservation of identities is immediate.
In the total category Set∗, a morphism f : 〈X,R〉 → 〈Y, S〉 is valid if and

only if xRy implies (fx)S(fy). Therefore Set∗ is the category Rel of binary
relations and relation-preserving functions.

Theorem 3.15 The functor (−)∗ defined as above is a bifibration.

Proof. Given a function f : X → Y , consider a function f! : X∗ → Y ∗ defined
by

f!R = { 〈fx, fy〉 : x, y ∈ X, xRy }

For any f : X → Y , f! is a left adjoint to f∗, since

R ⊆ f∗S ⇐⇒
R ⊆ { 〈x, y〉 : x, y ∈ X, (fx)S(fy) } ⇐⇒
∀x, y ∈ X.xRy ⇒ (fx)S(fy) ⇐⇒
{〈fx, fy〉 : x, y ∈ X, xRy } ⊆ S ⇐⇒
f!R ⊆ S

2

Since Set has initial and final objects, products and coproducts, and all
fibres of (−)∗ have all joins and meets, also the total category Rel has initial
and final objects, products and coproducts as defined in Theorems 3.3–3.6.

34 Chapter 3. A Fibrational Approach to Relations on Processes

3.2.1 Bisimulations as Coalgebras in Rel

For a given set A, consider the functor B = Pf(A × −) on Set, where Pf

denotes the (covariant) finite powerset functor. As was shown in Section 2.6.2,
B-coalgebras in Set correspond to finitely branching LTSs edge-labelled with
elements of A.

B can be lifted to the total category Rel, using the action BX : X∗ →
(BX)∗ defined by:

BXR = {〈β, γ〉 : ∀ 〈a, x〉 ∈ β. ∃ 〈a, y〉 ∈ γ. xRy
and ∀ 〈a, y〉 ∈ γ. ∃ 〈a, x〉 ∈ β. xRy}

Indeed,

Theorem 3.16 The above action lifts B to a fibred endofunctor B∗ on Rel.

Proof. To show that for every f : X → Y , and any relation R ∈ Y ∗, the
equality BXf∗R = (Bf)∗BYR holds, calculate

(Bf)∗BYR = (Bf)∗{〈β, γ〉 : ∀ 〈a, x〉 ∈ β. ∃ 〈a, y〉 ∈ γ. xRy
and ∀ 〈a, y〉 ∈ γ. ∃ 〈a, x〉 ∈ β. xRy}

= {〈β, γ〉 : ∀ 〈a, x〉 ∈ (Bf)β. ∃ 〈a, y〉 ∈ (Bf)γ. xRy
and ∀ 〈a, y〉 ∈ (Bf)γ. ∃ 〈a, x〉 ∈ (Bf)β. xRy}

= {〈β, γ〉 : ∀ 〈a, x〉 ∈ β. ∃ 〈a, y〉 ∈ γ. (fx)R(fy)
and ∀ 〈a, y〉 ∈ γ. ∃ 〈a, x〉 ∈ β. (fx)R(fy)}

= {〈β, γ〉 : ∀ 〈a, x〉 ∈ β. ∃ 〈a, y〉 ∈ γ. x(f∗R)y
and ∀ 〈a, y〉 ∈ γ. ∃ 〈a, x〉 ∈ β. x(f∗R)y}

= BXf
∗R

2

The following theorem [42, 46] gives a correspondence betweenB∗-coalgebras
and bisimulations, and hints that the fibrational approach can be used to de-
scribe various relations on processes modelled as coalgebras.

Theorem 3.17 Given a B-coalgebra (a finitely branching LTS) h : X → BX,
a binary relation R on X is a bisimulation on h if and only if

h : 〈X,R〉 → 〈BX,BXR〉
is a valid B∗-coalgebra.

Proof. Calculate

h∗BXR = h∗{〈β, γ〉 : ∀ 〈a, x〉 ∈ β. ∃ 〈a, y〉 ∈ γ. xRy
and ∀ 〈a, y〉 ∈ γ. ∃ 〈a, x〉 ∈ β. xRy}

= {〈x, y〉 : ∀
〈
a, x′

〉
∈ hx. ∃

〈
a, y′

〉
∈ hy. x′Ry′

and ∀
〈
a, y′

〉
∈ hy. ∃

〈
a, x′

〉
∈ hx. x′Ry′}

= {〈x, y〉 : ∀x a−→ x′. ∃y a−→ y′. x′Ry′

and ∀y a−→ y′. ∃x a−→ x′. x′Ry′}

3.2. Fibration of Relations 35

Therefore h : 〈X,R〉 → 〈BX,BXR〉 is well defined in Rel if and only if

R ⊆
{
〈x, y〉 : ∀x a−→ x′. ∃y a−→ y′. x′Ry′ and ∀y a−→ y′. ∃x a−→ x′. x′Ry′

}
which is just the definition of a bisimulation (Definition 2.6). 2

Having characterized bisimulations as coalgebras, it is easy to characterize
bisimulation equivalence:

Corollary 3.18 Given an LTS h : X → BX, the largest relation on X that
lifts h to a B∗-coalgebra exists and is equal to the bisimulation equivalence ∼=BS

on h.

Proof. Immediate from Theorem 3.17 and Proposition 2.8. 2

3.2.2 Limited Expressive Power of Rel

Corollary 3.18 hints that it might be possible to develop an abstract theory
of process equivalences in the fibrational setting. However, as the following
simple counterexample shows, it is not possible to represent trace equivalence
in exactly the same way as bisimulation equivalence in the fibration Rel.

Counterexample 3.19 There exists no functor B∗ : Rel → Rel lifting BX =
Pf(A × X) : Set → Set such that for any coalgebra h : X → BX, the trace
equivalence ∼=Tr on h is the greatest relation that lifts h to a B∗-coalgebra.

Proof. Assume that such a functor B∗ exists and consider a set of processes
X = {x1, x2, x3, x4, x5, x6} and a relation R = {〈x1, x2〉} ∪ =X on X. Fix an
arbitrary element a ∈ A and consider two cases.

Case 1: 〈{〈a, x3〉}, {〈a, x4〉 , 〈a, x5〉}〉 6∈ BXR. Then consider h : X → BX
defined by the following LTS:

x1

a

��

x4

b
��

x2
aoo

a

��
x3

b **

c
44 x6 x5c

oo

Here R is the trace equivalence on h, but 〈x1, x2〉 6∈ h∗BXR, hence R does not
lift h to a B∗-coalgebra.

Case 2: 〈{〈a, x3〉}, {〈a, x4〉 , 〈a, x5〉}〉 ∈ BXR. Then consider h : X → BX
defined by the following LTS:

x1

a

��

x4

b
��

x2
aoo

a

��
x3

d
// x6 x5c

oo

Here =X is the trace equivalence on h, but R ⊆ h∗BXR, hence =X is not the
largest relation that lifts h to a B∗-coalgebra. 2

This counterexample hints that to characterize trace equivalence in the re-
lational framework, one probably needs to resort to techniques analogous to
those used in the coalgebra span framework [72], as was recently done in [45].

36 Chapter 3. A Fibrational Approach to Relations on Processes

3.3 Fibration of Test Suites

Counterexample 3.19 suggests that the fibration of relations is not structured
enough to represent all relations in the van Glabbeek spectrum. In this section,
another fibration is proposed, based on the notion of tests and test suites.
Intuitively, any test suite on some set X induces some relation on X, depending
on the distinguishing power of this test suite. As it turns out, however, test
suites carry significantly more structure than relations, and using them one can
represent a wide spectrum of relations on processes.

Definition 3.20 Fix any object V (called the object of test values) in a cate-
gory C and consider a functor TV : Cop → Pos defined as follows:

• TVX = 〈PC(X,V),⊇〉

• (TVf)θ = {V ◦ f | V ∈ θ} for f : X → Y , θ ∈ TVY

where P denotes the powerset construction. A morphism from X to V in C is
called a V-test on X, and a set of such tests is called a V-test suite on X. Then
TVX is a set of all V-test suites on X, ordered by reverse inclusion. To say that
θ is a V-test suite on X (i.e., θ ∈ TVX), we will write θ : X ⇒ V.

To check that the above indeed defines a functor, calculate

(TV(g ◦ f))θ = {V ◦ (g ◦ f) | V ∈ θ} = {(V ◦ g) ◦ f | V ∈ θ} = (TVf)(TVg)θ

for any f : X → Y , g : Y → Z and θ : Z ⇒ V. Monotonicity and preservation
of identities is immediate.

In the following, if V will be clear from the context or irrelevant, we will
speak just of tests and test suites instead of V-tests and V-test suites. To keep
the notation from Section 3.1, if V is irrelevant or clear from the context, and
if no other fibration is around, we will often write f∗ instead of TVf to denote
reindexing functions. The omission of V in this notation will never lead to
confusion since the definition of TVf looks the same independently of V.

The total category arising from the above fibration along the lines of Defi-
nition 3.1 will be denoted V-TS.

Theorem 3.21 For any object V, the functor TV is a bifibration.
Proof. Given a morphism f : X → Y in C, consider the monotonic function
f! : TVX → TVY defined by

f!θ = {V : Y → V : V ◦ f ∈ θ }

Then f! is a left adjoint to f∗, since for any θ : X ⇒ V and ϑ : Y ⇒ V,

θ ⊇ f∗ϑ ⇐⇒
θ ⊇ {V ◦ f | V ∈ ϑ} ⇐⇒
∀V ∈ ϑ. V ◦ f ∈ θ ⇐⇒
f!θ ⊇ ϑ

2

To prove existence of initial algebras and final algebras of endofunctors on
V-TS, the following lemma will be useful.

3.3. Fibration of Test Suites 37

Lemma 3.22 All fibres TVX in V-TS are complete lattices with joins
⋂

and
meets

⋃
, and for any f : X → Y , the reindexing function f∗ and its left adjoint

f! are continuous with respect to the complete lattice structure.

Proof. f∗, being a right adjoint, preserves arbitrary meets. From this, by
general properties of complete lattices, it follows that f∗ preserves also arbitrary
joins. Similarly for f!. 2

Remark 3.23 In the context of test suite fibrations, the discussion presented in
Sections 3.1.3–3.1.5 may be a little confusing, since the ordering in the fibres is
the reverse of the intuitive inclusion order on test suites. For example, the least
fixed points (with respect to the ordering in fibres) of certain operators discussed
in Section 3.1.3 are the greatest fixed points of the same operators with respect
to inclusion. To avoid confusion, we will always clearly mark whether the least
(greatest) fixed points considered are with respect to the fibre ordering or the
set-theoretic inclusion ordering. (The latter, more intuitive interpretation will
be normally used).

3.3.1 Specialization Functors

Fix a test suite fibration TV over a category C, and consider another bifibration
(−)∗ : C → Pos with total category C∗. Assume that all fibres in C∗ have
arbitrary meets.

Definition 3.24 Any object 〈V, R〉 ∈ |C∗| gives rise to a specialization functor
SpecR : V-TS → C∗, defined as follows:

• SpecR 〈X, θ〉 = 〈X, SpR θ〉, where SpR θ =
∧
V ∈θ V

∗R

• SpecR f = f

To check functoriality, the only thing to show is that for any morphism
f : 〈X, θ〉 → 〈Y, ϑ〉 in V-TS,

f : 〈X, SpR θ〉 → 〈Y,SpR ϑ〉

is a valid morphism in C∗. To this end, assume θ ⊇ (TVf)ϑ = {V ◦ f | V ∈ ϑ}
and calculate

SpR θ =
∧
V ∈θ

V ∗R ≤
∧
V ∈ϑ

(V ◦ f)∗R =
∧
V ∈ϑ

f∗V ∗R = f∗
∧
V ∈ϑ

V ∗R = f∗ SpR ϑ

(the last but one equality holds since f∗, being a right adjoint, preserves meets).

Example 3.25 Consider C = Set, C∗ = Rel and V = 2 = {tt, ff}. Then a 2-
test V on a set X corresponds to a subset of X defined by {x ∈ X | V x = tt}.
Similarly, a 2-test suite on X corresponds to a family of subsets of X. For
example, every topology with carrier X can be seen as a 2-test suite on X.

38 Chapter 3. A Fibrational Approach to Relations on Processes

Now consider the equality relation =2 on 2, and the linear order relation
≤2= {〈ff, tt〉}∪ =2. Then for any θ : X ⇒ 2,

Sp=2
θ = {〈x, y〉 ∈ X ×X | ∀V ∈ θ. V x = V y}

Sp≤2
θ = {〈x, y〉 ∈ X ×X | ∀V ∈ θ. V x = tt⇒ V y = tt}

In the following, the relations Sp=2
θ and Sp≤2

θ will be denoted by ≡θ and ≤θ,
and called the specialization equivalence and the specialization preorder of θ,
respectively.

For example, if a 2-test suite θ on X is a T0-topology, then ≤θ is the well-
known specialization order of θ.

Example 3.26 Consider any test suite category V-TS over the base category
C, and take C∗ = W-TS for some object W ∈ |C|. For any θ : V ⇒ W, the
specialization functor Specθ : V-TS →W-TS acts on objects as follows:

Specθ 〈X,ϑ〉 = 〈X, Spθ ϑ〉 , where

Spθ ϑ =
∧
V ∈ϑ

V ∗θ

=
⋃
V ∈ϑ

{W ◦ V |W ∈ θ}

= {W ◦ V |W ∈ θ, V ∈ ϑ}

3.3.2 Comparing Test Suites

It is sometimes possible to compare the values of a specialization functor (e.g.,
specialization relations) for two given test suites simply by looking at the test
suites. In simple cases, the following obvious result is useful, saying that spe-
cialization functors are (reverse) monotonic:

Proposition 3.27 Consider a specialization functor SpecR : V-TS → C∗ for
an object 〈V, R〉 in C∗. For any V-test suites θ, ϑ on the same object X, if
θ ⊆ ϑ then SpR θ ≥ SpR ϑ.

Proof. Immediate by the definition of SpR. 2

However, often it is possible to compare test suites based on different test
values.

Indeed, consider two objects 〈V, R〉 and 〈W, S〉 in the total category C∗
of some bifibration where all fibres have arbitrary meets. Along the lines of
Definition 3.24, these objects give rise to two specialization functors SpecR :
V-TS → C∗ and SpecS : W-TS → C∗, respectively. Assume also a test suite
ζ : V ⇒ W, which gives rise to a specialization functor Specζ : V-TS →W-TS,
as shown in Example 3.26. Furthermore, consider any object X ∈ |C| and two
test suites θ : X ⇒ V, ϑ : X ⇒ W.

The following result allows to compare results of different specialization
functors on θ and ϑ:

3.3. Fibration of Test Suites 39

Theorem 3.28 Under the above notation,

• if R ≤ SpS ζ and ϑ ⊆ Spζ θ, then SpR θ ≤ SpS ϑ,

• if R = SpS ζ and ϑ = Spζ θ, then SpR θ = SpS ϑ,

• if R ≥ SpS ζ and ϑ ⊇ Spζ θ, then SpR θ ≥ SpS ϑ,

Proof. To prove the first statement, calculate

SpR θ =
∧
V ∈θ

V ∗R ≤
∧
V ∈θ

V ∗ SpS ζ =
∧
V ∈θ

V ∗
∧
W∈ζ

W ∗S =

=
∧
V ∈θ
W∈ζ

V ∗W ∗S =
∧

U∈Spζ θ

U∗S ≤
∧
U∈ϑ

U∗S = SpS ϑ

(for the second equality in the second line, cf. Example 3.26). Proofs of the
remaining statements are entirely analogous. 2

Proposition 3.27 is an easy corollary from Theorem 3.28. Indeed, it is enough
to consider V = W, R = S and ζ = {idV}. However, Theorem 3.28 has also
other implications.

Example 3.29 Consider C = Set, C∗ = Rel, V = W = 2, R = =2 and S = ≤2

as in Example 3.25, and let ζ = {id2} contain just the identity function on 2.
It is then immediate that R ≤ S = SpS ζ. The first statement of Theorem 3.28
implies that for any θ, ϑ : X ⇒ 2, if ϑ ⊆ θ then ≡θ ⊆ ≤ϑ (see Example 3.25).

3.3.3 Lifting Functors with Test Constructors

Any functor B : C → C may be lifted to a fibred endofunctor on the total
category of test suites V-TS in possibly many ways. However, for the purpose
of describing operational relations on processes (coalgebras), one particular way
is especially useful. This well-structured method of lifting endofunctors is based
on notions of test constructors and closures.

Definition 3.30 Let B be an endofunctor on C, and V an object in C. Mor-
phisms from BV to V (i.e., V-tests on BV) are called (B,V)-test constructors.

Where B and V are clear from the context, we will sometimes speak simply
of test constructors.

Definition 3.31 Let V be an object in C. A V-closure (or simply closure, if V
is clear from the context) on test suites is a family (indexed by objects X ∈ |C|)
of monotonic functions

ClX : PC(X,V) → PC(X,V)

such that for any morphism f : X → Y in C, and for any θ : Y ⇒ V, the
equality

ClX f∗θ = f∗ ClY θ

holds.

40 Chapter 3. A Fibrational Approach to Relations on Processes

A V-closure can be viewed as an action that lifts the identity functor on C
to a fibred functor on V-TS (cf. Section 3.1.2).

Theorem 3.32 Let B be an endofunctor on C and V an object in C. Any set
W : BV ⇒ V of (B,V)-test constructors with any V-closure Cl induce a lifting
of B to a fibred endofunctor BW on V-TS, defined by the action

BW
X θ = ClBX{w ◦BV | w ∈ W, V ∈ θ}

Proof. To check that the mapping BW defined by

BW(〈X, θ〉) =
〈
BX,BW

X θ
〉

BWf = Bf

is a fibred endofunctor on V-TS, calculate, for any f : X → Y in C and for any
θ : Y ⇒ V,

BXf
∗θ = ClBX{w ◦BV | w ∈ W, V ∈ f∗θ}

= ClBX{w ◦BV ◦Bf | w ∈ W, V ∈ θ}
= ClBX(Bf)∗{w ◦BV | w ∈ W, V ∈ θ}
= (Bf)∗ ClBY {w ◦BV | w ∈ W, V ∈ θ}
= (Bf)∗BW

Y θ

2

Recall from Theorem 3.11 that if B has a final coalgebra φ : Ω → BΩ, then
BW has a final coalgebra φ : 〈Ω, ω〉 →

〈
BΩ, BW

Ω ω
〉
, where ω is the least (with

respect to set inclusion, see Remark 3.23) (pre)fixed point of the operator Φφ.
It is easy to see that the actions BW

X from Theorem 3.32 are monotonic with
respect to set inclusion. As closures are monotonic by definition, also operators
Φφ are monotonic and, as monotonic functions on complete lattices, they have
the least (pre)fixed points.

Moreover, by Theorem 3.12 (since BW is fibred), for any coalgebra h : X →
BX, the test suite k∗ω (where k : X → Ω is the coinductive extension of h) is
the least (pre)fixed point of the operator Φh and the least test suite that lifts h
to a BW-coalgebra in V-TS.

Note that every action BW
X as in Theorem 3.32 in fact preserves unions of

increasing chains of sets if the corresponding closure preserves them. If this
happens, then the least (pre)fixed point of the operator Φh is characterized by

k∗ω =
⋃
n∈N

Φn
h∅

3.3.4 Comparing Test Constructors

Often it is possible to relate two endofunctors generated by different sets of test
constructors, even if they involve different test set values. More specifically,
given any coalgebra for one endofunctor one might try to construct a related
coalgebra for another one, provided some kind of correspondence between the
two endofunctors.

3.3. Fibration of Test Suites 41

Formally, consider a functor B : C→ C and two objects V,V ′ ∈ C. Assume
sets of test constructors W : BV ⇒ V and W′ : BV ′ ⇒ V ′. Fix also a V-closure
Cl and a V ′-closure Cl′. As shown in Section 3.3.3, W together with Cl induce
a fibred endofunctor BW on V-TS. Similarly, W′ together with Cl′ induce a
fibred endofunctor BW′

on V ′-TS.
Furthermore, assume a test suite ζ : V ⇒ V ′, which gives rise to a specializa-

tion functor Specζ : V-TS → V ′-TS, as shown in Example 3.26. The following
theorem shows how one may relate coalgebras for BW and BW′

using the test
suite ζ.

Theorem 3.33 Under the above notation, assume that

• for any test suite θ : X ⇒ V,

Cl′X Spζ θ ⊆ Spζ(ClX θ)

• for every w′ ∈ W′ and z′ ∈ ζ there are w ∈ W and z ∈ ζ such that
z ◦ w = w′ ◦Bz′.

Then for any BW-coalgebra

h : 〈X, θ〉 →
〈
BX,BW

X θ
〉

the morphism
h :
〈
X, Spζ θ

〉
→
〈
BX,BW′

X Spζ θ
〉

is a well-defined BW′
-coalgebra in V ′-TS.

Proof. Calculate

h∗BW′
X Spζ θ = h∗BW′ {

z′ ◦ V : z′ ∈ ζ, V ∈ θ
}

= h∗ Cl′BX
{
w′ ◦Bz′ ◦BV : w′ ∈ W′, z′ ∈ ζ, V ∈ θ

}
= Cl′X h

∗ {w′ ◦Bz′ ◦BV : w′ ∈ W′, z′ ∈ ζ, V ∈ θ
}

= Cl′X
{
w′ ◦Bz′ ◦BV ◦ h : w′ ∈ W′, z′ ∈ ζ, V ∈ θ

}
⊆ Cl′X { z ◦ w ◦BV ◦ h : z ∈ ζ, w ∈ W, V ∈ θ }
= Cl′X Spζ {w ◦BV ◦ h : w ∈ W, V ∈ θ }
⊆ Spζ ClX {w ◦BV ◦ h : w ∈ W, V ∈ θ }
= Spζ h

∗BW
X θ

⊆ Spζ θ

2

Theorem 3.33 allows one to compare, similarly as in Section 3.3.2, the val-
ues of specialization functors (e.g., specialization relations) on two test suites
induced as final coalgebras from two different sets of test constructors, simply
by looking at the test constructors.

42 Chapter 3. A Fibrational Approach to Relations on Processes

Under the notation introduced before Theorem 3.33, consider two objects
〈V, R〉 and 〈V ′, S〉 in a total category C∗ of some bifibration where all fibres
have arbitrary meets. Along the lines of Definition 3.24, these objects give rise
to two specialization functors SpecR : V-TS → C∗ and SpecS : V ′-TS → C∗,
respectively.

For a given B-coalgebra h : X → BX, let k∗ω : X ⇒ V denote the least
test suite such that h : 〈X, k∗ω〉 →

〈
BX,BW

X k
∗ω
〉

is a valid BW-coalgebra.
Similarly, let k∗ω′ : X ⇒ V ′ denote the least test suite such that h : 〈X, k∗ω′〉 →〈
BX,BW′

X k∗ω′
〉

is a valid BW′
-coalgebra. Both k∗ω and k∗ω′ are assumed to

exist and be characterized by Theorem 3.12.

Corollary 3.34 Under the above notation, assume that the conditions of The-
orem 3.33 hold. If, moreover,

R ≤ SpS ζ

then
SpR k

∗ω ≤ SpS k
∗ω′

Proof. As known from Theorem 3.33,

h :
〈
X, Spζ k

∗ω
〉
→
〈
BX,BW′

X Spζ k
∗ω
〉

is a well-defined BW′
-coalgebra, hence

k∗ω′ ⊆ Spζ k
∗ω

The corollary now follows from Theorem 3.28. 2

A useful special case of Theorem 3.33 and Corollary 3.34 is

Corollary 3.35 For any functor B : C→ C, an object V ∈ C, two sets of test
constructors W,W′ : BV ⇒ V and corresponding V-closures Cl,Cl′, if W′ ⊆ W,
and if for any θ : X ⇒ V, Cl′X θ ⊆ ClX θ, then for any BW-coalgebra

h : 〈X, θ〉 →
〈
BX,BW

X θ
〉

the morphism
h : 〈X, θ〉 →

〈
BX,BW′

X θ
〉

is a BW′
-coalgebra. If, moreover, R ≤ S, then

SpR k
∗ω ≤ SpS k

∗ω′

where k∗ω and k∗ω′ are defined as before Corollary 3.34.

Proof. Apply Theorem 3.33 and Corollary 3.34 with V = V ′ and ζ = {idV}. 2

Several simple applications of Theorem 3.33 and Corollaries 3.34–3.35 are
shown in Sections 4.5 and 4.6.

Chapter 4

Van Glabbeek Spectrum Described by Test

Suites

In this chapter, we specialize the general test suite framework described in
Chapter 3 to describe various notions of process equivalences and preorders
from the van Glabbeek spectrum (see Chapter 2).

For this purpose, fix the category C = Set, and the behaviour functor
BX = Pf(A×X) for a fixed set A.

In most of this chapter, we will only consider the test value set V = 2 =
{tt, ff} together with the test suite category 2-TS and its associated fibration.
We will also consider two specialization functors: Spec=2

,Spec≤2
: 2-TS →

Rel. Recall from Example 3.25 that for any 2-test suite θ, the relations Sp=2
θ

and Sp≤2
θ are denoted ≡θ and ≤θ, respectively.

As mentioned in Example 3.25, every 2-test on X can be identified with a
subset of X. However, to avoid confusion, we introduce special notation for
this correspondence.

Notation 4.1 Given a 2-test V : X → 2 on X, the set {x ∈ X | V x = tt} will
be denoted V . Similarly, given a set Y ⊆ X, the test

−→
Y : X → 2 is defined by

−→
Y x =

{
tt if x ∈ Y
ff otherwise

We will also speak of unions and intersections of 2-tests, denoted and defined
as follows:

V ∨ V ′ =
−−−−→
V ∪ V ′

V ∧ V ′ =
−−−−→
V ∩ V ′

This notation extends in the obvious way to unions and intersections of arbitrary
families of 2-tests.

In the following sections, various liftings BW of B to 2-TS will be pro-
posed, based on different choices of W : B2 ⇒ 2. For various choices of W,
BW-coalgebras will be related, by means of specialization functors, to process
equivalences and preorders described in Definition 2.4.

43

44 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

4.1 (B,2)-Test Suite Constructors

We begin by defining some (B, 2)-test constructors, useful to represent most of
relations from the van Glabbeek spectrum.

Definition 4.2 For any a ∈ A, Q ⊆ A, define functions

w〈a〉, w[a], w̃Q, w̃aQ, w̌Q, w̌aQ : B2 → 2

as follows:

w〈a〉β =
{

tt if 〈a, tt〉 ∈ β
ff otherwise

w[a]β =
{

ff if 〈a, ff〉 ∈ β
tt otherwise

w̃Qβ =
{

tt if β ∩ (Q× 2) = ∅
ff otherwise

w̃aQβ =
{

tt if w̃Qβ = tt and w〈a〉β = tt
ff otherwise

w̌Qβ =
{

tt if { a ∈ A : 〈a, tt〉 ∈ β or 〈a, ff〉 ∈ β } = Q
ff otherwise

w̌aQβ =
{

tt if w̌Qβ = tt and w〈a〉β = tt
ff otherwise

The following sets of test constructors will be useful:

Definition 4.3 Define

Tr =
{
w〈a〉 : a ∈ A

}
CTr = Tr ∪ {w̃A}

Fl = Tr ∪ { w̃Q : Q ⊆ A }
FlTr = Fl ∪ { w̃aQ : a ∈ A,Q ⊆ A }
Rd = Tr ∪ { w̌Q : ⊆ A }

RdTr = Rd ∪ { w̌aQ : a ∈ A,Q ⊆ A }
BS = Tr ∪

{
w[a] : a ∈ A

}
We will also consider three different 2-closures:

Definition 4.4 2-closures Cl>, Cl∧ and Cl∨∧ are defined by

Cl>X θ = θ ∪ {
−→
X}

Cl∧X θ =

{
n∧
i=1

Vi : n ∈ N, Vi ∈ θ

}

Cl∨∧X θ =


n∨
i=1

m∧
j=1

Vij : n,m ∈ N, Vij ∈ θ



4.1. (B,2)-Test Suite Constructors 45

To check that Cl>, Cl∧ and Cl∨∧ indeed are closures (cf. Definition 3.31),
take any function f : X → Y and any test suite θ : Y ⇒ 2, observe that

−→
Y ◦ f =

−→
X

(V1 ∧ V2) ◦ f = (V1 ◦ f) ∧ (V2 ◦ f)
(V1 ∨ V2) ◦ f = (V1 ◦ f) ∨ (V2 ◦ f)

for any V1, V2 : Y → 2, and calculate

Cl>X f
∗θ = {V ◦ f : V ∈ θ } ∪ {

−→
Y ◦ f} = f∗ Cl>Y θ

Cl∧X f
∗θ = {

∧n
i=1(Vi ◦ f) : n ∈ N, Vi ∈ θ } =

= { (
∧n
i=1 Vi) ◦ f : n ∈ N, Vi ∈ θ } = f∗ Cl∧Y θ

Cl∨∧X f∗θ =
{∨n

i=1

∧m
j=1(Vij ◦ f) : n,m ∈ N, Vij ∈ θ

}
=

=
{

(
∨n
i=1

∧m
j=1 Vij) ◦ f : n,m ∈ N, Vij ∈ θ

}
= f∗ Cl∨∧Y θ

Note that for any test suite θ on X, one has
−→
∅ =

∨0
i=1 V ∈ Cl∨∧ θ. Also

Cl> θ ⊆ Cl∧ θ ⊆ Cl∨∧ θ, and Cl∨∧ is simply the closure under finite unions and
intersections of tests.

Finally, sets of (B, 2)-test constructors from Definition 4.3, together with
suitably chosen closures, induce liftings of B to fibred endofunctors on 2-TS
along the lines of Theorem 3.32:

Definition 4.5 For W ∈ {Tr,CTr,Fl,FlTr,Rd,RdTr}, the endofunctor on 2-TS
induced by the set of (B, 2)-test constructors W and by the 2-closure Cl> is de-
notedBW. The endofunctors on 2-TS induced by sets of (B, 2)-test constructors
Tr and Rd and by the 2-closure Cl∧ are denoted BS and BRdS, respectively. The
endofunctor on 2-TS induced by the set of (B, 2)-test constructors BS and by
the 2-closure Cl∨∧ is denoted BBS.

Given a B-coalgebra h : X → BX, the operator on T2X corresponding
to BW as defined in Section 3.1.5 is denoted ΦW

h . Note that the closures
Cl>,Cl∧,Cl∨∧ preserve unions of increasing chains of test suites, therefore the
least fixed points of the operators ΦW

h can be characterized as remarked in
Section 3.3.3.

4.1.1 Relation to Modal Logics

It is not difficult to notice that test constructors shown in Definitions 4.2 and 4.3
are related to syntactic constructors for the BNF grammars shown in Defini-
tion 2.2. This is not a coincidence, and indeed modal logics defined in Sec-
tion 2.2 inspired Definition 4.3. This subsection is devoted to give a formal
correspondence between the two definitions.

Definition 4.6 For any W ∈ {Tr,CTr,Fl,FlTr,Rd,RdTr,S,RdS,BS}, and any
B-coalgebra h : X → BX, define a function [[−]]h : FW → (X → 2) inductively

46 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

as follows:

[[>]]h =
−→
X

[[⊥]]h =
−→
∅

[[〈a〉φ]]h = w〈a〉 ◦B[[φ]]h ◦ h
[[[a]φ]]h = w[a] ◦B[[φ]]h ◦ h

[[Q̃]]h = w̃Q ◦B[[>]]h ◦ h
[[Q̌]]h = w̌Q ◦B[[>]]h ◦ h

[[φ1 ∧ φ2]]h = [[φ1]]h ∧ [[φ2]]h
[[φ1 ∨ φ2]]h = [[φ1]]h ∨ [[φ2]]h

The correspondence between modal formulae and 2-tests is given in:

Theorem 4.7 Let W ∈ {Tr,CTr,Fl,FlTr,Rd,RdTr,S,RdS,BS} and let h : X →
BX be a B-coalgebra. For any formula φ ∈ FW and any x ∈ X,

[[φ]]hx = tt ⇐⇒ x |=h φ

Proof. By straightforward structural induction on modal formulae. Indeed,

[[>]]hx = tt ⇐⇒ x |=h > (both sides hold for all x)
[[⊥]]hx = tt ⇐⇒ x |=h ⊥ (both sides hold for no x)

[[〈a〉φ]]hx = tt ⇐⇒ w〈a〉(B[[φ]]h(hx)) = tt ⇐⇒ 〈a, tt〉 ∈ B[[φ]]h(hx) ⇐⇒
⇐⇒ ∃

〈
a, x′

〉
∈ hx. [[φ]]hx′ = tt ⇐⇒

⇐⇒ ∃
〈
a, x′

〉
∈ hx. x′ |=h φ ⇐⇒ x |=h 〈a〉φ

[[[a]φ]]hx = ff ⇐⇒ w[a](B[[φ]]h(hx)) = ff ⇐⇒ 〈a, ff〉 ∈ B[[φ]]h(hx) ⇐⇒
⇐⇒ ∃

〈
a, x′

〉
∈ hx. [[φ]]hx′ = ff ⇐⇒

⇐⇒ ∃
〈
a, x′

〉
∈ hx. x′ 6|=h φ ⇐⇒ x 6|=h [a]φ

[[Q̃]]hx = tt ⇐⇒ w̃Q(B[[>]]h(hx)) = tt ⇐⇒ B[[>]]h(hx) ∩ (Q× 2) = ∅
⇐⇒ I(x) ∩Q = ∅ ⇐⇒
⇐⇒ x |=h Q̃

[[Q̌]]hx = tt ⇐⇒ w̌Q(B[[>]]h(hx)) = tt ⇐⇒
⇐⇒ { a ∈ A : 〈a, tt〉 ∈ B[[>]]h(hx) or 〈a, ff〉 ∈ B[[>]]h(hx) } = Q

⇐⇒ I(x) = Q ⇐⇒ x |=h Q̌

[[φ1 ∧ φ2]]hx = tt ⇐⇒ [[φ1]]hx = tt and [[φ2]]hx = tt ⇐⇒
⇐⇒ x |=h φ1 and x |=h φ1 ⇐⇒ x |=h φ1 ∧ φ2

[[φ1 ∨ φ2]]hx = tt ⇐⇒ [[φ1]]hx = tt or [[φ2]]hx = tt ⇐⇒
⇐⇒ x |=h φ1 or x |=h φ1 ⇐⇒ x |=h φ1 ∨ φ2

2

The above correspondence maps modal logics to the least test suites lifting
coalgebras to endofunctors BW:

4.1. (B,2)-Test Suite Constructors 47

Theorem 4.8 Let h : X → BX be a B-coalgebra and k : X → Ω the coinduc-
tive extension of h (see Proposition 2.25). For W ∈ {Tr,CTr,Fl,FlTr,Rd,RdTr,
S,RdS,BS},

{ [[φ]]h : φ ∈ FW } = k∗ωW

where ωW is taken from the final BW-coalgebra φ :
〈
Ω, ωW

〉
→
〈
BΩ, BW

Ω ω
W
〉
.

Note that until now we have been a little sloppy with the use of the symbol
W. In Definition 2.4, it ranged over a fixed set of notions of process equivalence,
and in Definition 4.5 it ranged over sets of test constructors. This theorem, and
its Corollary 4.9, mean that this cannot really lead to any confusion.
Proof. We prove the theorem for W = Tr, the other cases are similar. By
Theorem 3.11, k∗ωTr is the least (with respect to set inclusion, see Remark 3.23)
(pre)fixed point of the operator

ΦTr
X θ = h∗BTr

X θ = {w ◦BV ◦ h | w ∈ Tr, V ∈ θ} ∪
−→
X

First, { [[φ]]h : φ ∈ FTr } is a prefixed point of ΦTr
X , since by Definition 4.6

−→
X = [[>]]h

and for any φ ∈ FTr, a ∈ A,

w〈a〉 ◦B[[φ]]h ◦ h = [[〈a〉φ]]h

To prove that any prefixed point of ΦTr
X contains { [[φ]]h : φ ∈ FTr }, proceed by

straightforward structural induction on FTr. 2

Theorem 4.8 allows one to describe operational preorders and equivalences
on a given coalgebra h : X → BX as specialization relations of the least
test suites which lift h to coalgebras of various endofunctors on 2-TS, as the
following easy corollary shows.

Corollary 4.9 Let h : X → BX be a B-coalgebra and k : X → Ω the coin-
ductive extension of h. For W ∈ {Tr,CTr,Fl,FlTr,Rd,RdTr,S,RdS,BS},

vW = ≤k∗ωW and ∼=W = ≡k∗ωW

where ωW is as in Theorem 4.8.

Proof. Compare Definition 2.4 with Example 3.25 and use Theorems 4.8 and
4.7. 2

This important corollary gives a coalgebraic characterization of preorders
and equivalences from the van Glabbeek spectrum. It is also a basis for the
search of congruence formats for those preorders and equivalences, as will be
shown in Chapter 5. However, an even stronger correspondence between BW-
coalgebras and process relations can be shown, providing a full characterization
of BW-coalgebras. In Sections 4.2–4.3 we present this correspondence, followed
by an application of it to deriving coinductive proof principles in Section 4.4.

48 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

4.2 Simulation and Bisimulation Semantics

We begin by characterizing the operational preorders and equivalences for BS,
BRdS and BBS-coalgebras. The remaining functors BW from Definition 4.5 are
treated in the next section.

The following two theorems show that the specialization preorders of BS-
coalgebras are exactly reflexive and transitive simulations (see Definition 2.5).

Theorem 4.10 For any BS-coalgebra h : 〈X, θ〉 →
〈
BX,BS

Xθ
〉
, the specializa-

tion preorder ≤θ is a reflexive, transitive simulation on h : X → BX.

Proof. To show that ≤θ is a simulation on h, assume any a ∈ A, x, x′, y ∈ X
such that x a−→ x′ and x′ 6≤θ y′ for all y′ ∈ X such that y a−→ y′. This means
that for every such y′ there exists a test Vy′ ∈ θ such that Vy′x′ = tt but
Vy′y

′ = ff.
Consider a test

V = w〈a〉 ◦B(
∧
y′

Vy′) ◦ h

where the intersection occurs over all y′ ∈ X such that y a−→ y′. Since θ lifts
h to a BS-coalgebra, and h is finitely branching, V ∈ θ. However, it is easy to
check that V x = tt and V y = ff, hence x 6≤θ y and ≤θ is a simulation.

Reflexivity and transitivity of ≤θ is immediate by definition. 2

Theorem 4.11 For any coalgebra h : X → BX in Set, and any reflexive,
transitive simulation R on h, there exists a test suite θR : X ⇒ 2 such that
≤θR

= R and h : 〈X, θR〉 →
〈
BX,BS

XθR
〉

is a valid BS-coalgebra.

Proof. Assume any reflexive, transitive simulation R on h : X → BX and
consider the 2-test suite on X:

θR =
{
V : X → 2 : V is R-upper

}
where V is R-upper means that for any x, y ∈ X, if xRy and x ∈ V then y ∈ V .

To show that R ⊆ ≤θR
, assume any x, y ∈ X such that xRy and take any

V ∈ θR such that V x = tt. Since V is R-upper, also V y = tt. Since V was
chosen arbitrarily, x ≤θR

y.
To show that R ⊇ ≤θR

, assume any x, y ∈ X such that xR/ y and consider
the test V =

−−−−−−−−−−−→
{ z ∈ X : xRz }. It is easy to check (using transitivity of R) that

V is R-upper, hence V ∈ θR. However, V y = ff and (by reflexivity of R)
V x = tt, hence x 6≤θR

y.
To prove that θR lifts h to a BS-coalgebra, one has to show that

•
−→
X ∈ θR,

• for any V ∈ θR, also w〈a〉 ◦BV ◦ h ∈ θR,

• for any V1, . . . , Vn ∈ θR, also
∧n
i=1 Vi ∈ θR.

4.2. Simulation and Bisimulation Semantics 49

The first condition holds obviously, since X is R-upper for any relation R.
For the second condition, assume any V ∈ θR, x, y ∈ X such that xRy

and (w〈a〉 ◦ BV ◦ h)x = tt. The latter assumption means that there exists an
x′ ∈ X such that x a−→ x′ and V x′ = tt. Since R is a simulation, there exists
a y′ ∈ X such that y a−→ y′ and x′Ry′, hence V y′ = tt. This means that
(w〈a〉 ◦BV ◦ h)y = tt, and w〈a〉 ◦BV ◦ h is R-upper.

For the third condition, it is easily checked that for any relation R, inter-
section of any family of R-upper sets is again R-upper. 2

Corollary 4.12 Specialization preorders ≤θ for BS-coalgebras h : 〈X, θ〉 →〈
BX,BS

Xθ
〉

are exactly reflexive, transitive simulations on h : X → BX. The
simulation preorder vS is the largest such relation.

Proof. Immediate from Theorems 4.10 and 4.11, and from Proposition 2.8. 2

Corollary 4.13 Specialization equivalences ≡θ for BS-coalgebras h : 〈X, θ〉 →〈
BX,BS

Xθ
〉

are exactly the equivalence relations R∩R−1 associated to reflexive,
transitive simulations R on h : X → BX. The simulation equivalence ∼=S is the
largest such relation.

Proof. See Example 3.25 and Definition 2.4 to see that ≡θ = ≤θ ∩(≤θ)−1 and
∼=S = vS ∩(vS)−1. 2

We proceed to give a similar characterization of BRdS-coalgebras.

Theorem 4.14 For any BRdS-coalgebra h : 〈X, θ〉 →
〈
BX,BRdS

X θ
〉
, the spe-

cialization relation≤θ is a reflexive, transitive ready simulation on h : X → BX.

Proof. By Theorem 4.10, ≤θ is a reflexive, transitive simulation, since if θ lifts
h to a BRdS-coalgebra then it also lifts h to a BS-coalgebra, by Corollary 3.35.
Thus it is enough to assume any x, y ∈ X and prove that x ≤θ y implies
I(x) = I(y).

To this end, assume I(x) 6= I(y) and consider a test

V = w̌I(x) ◦B(
−→
X) ◦ h

Since θ lifts h to a BRdS-coalgebra, V ∈ θ. However, it is easy to check that
V x = tt and V y = ff, hence x 6≤θ y and ≤θ is a ready simulation. 2

Theorem 4.15 For any coalgebra h : X → BX in Set, and any reflexive,
transitive ready simulation R on h, there exists a test suite θR : X ⇒ 2 such
that ≤θR

= R and h : 〈X, θR〉 →
〈
BX,BRdS

X θR
〉

is a valid BRdS-coalgebra.

Proof. Assume any reflexive, transitive ready simulation R on h : X → BX
and consider the 2-test suite on X:

θR =
{
V : X → 2 : V is R-upper

}
For a proof that ≤θR

= R, see the proof of Theorem 4.11.

50 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

To prove that θR lifts h to a BRdS-coalgebra, one has to show that

• θR lifts h to a BS-coalgebra,

• for any Q ⊆ A, V ∈ θR, also w̌Q ◦BV ◦ h ∈ θR.

The first condition holds by Theorem 4.11, sinceR, being a ready simulation,
is also a simulation.

For the second condition, assume any Q ⊆ A, V ∈ θR, x, y ∈ X such
that xRy and (w̌Q ◦ BV ◦ h)x = tt. The latter assumption means I(x) = Q.
Since R is a ready simulation, also I(y) = Q, hence (w̌Q ◦ BV ◦ h)y = tt and
w̌Q ◦BV ◦ h is R-upper. 2

Corollary 4.16 Specialization preorders ≤θ for BRdS-coalgebras h : 〈X, θ〉 →〈
BX,BRdS

X θ
〉

are exactly reflexive, transitive ready simulations on h : X → BX.
The ready simulation preorder vRdS is the largest such relation.

Proof. Immediate from Theorems 4.14 and 4.15, and from Proposition 2.8. 2

Corollary 4.17 Specialization equivalences≡θ forBRdS-coalgebras h : 〈X, θ〉 →〈
BX,BRdS

X θ
〉

are exactly the equivalence relations R∩R−1 associated to reflex-
ive, transitive ready simulations R on h : X → BX. The ready simulation
equivalence ∼=RdS is the largest such relation.

Proof. See Example 3.25 and Definition 2.4 to see that ≡θ = ≤θ ∩(≤θ)−1 and
∼=RdS = ≤RdS ∩(≤RdS)−1. 2

Finally, we give a characterization of BBS-coalgebras.

Theorem 4.18 For any BBS-coalgebra h : 〈X, θ〉 →
〈
BX,BBS

X θ
〉
, the special-

ization relation ≤θ is a reflexive, transitive bisimulation on h : X → BX.

Proof. Reflexivity, transitivity and the first condition in the definition of bisim-
ulation (Definition 2.6) hold for ≤θ by Theorem 4.10, since if θ lifts h to a
BBS-coalgebra then it also lifts h to a BS-coalgebra, by Corollary 3.35.

To show the second condition, assume any a ∈ A, x, y, y′ ∈ X such that
y

a−→ y′ and x′ 6≤θ y′ for all x′ ∈ X such that x a−→ x′. This means that for
every such x′ there exists a test Vx′ ∈ θ such that Vx′x′ = tt but Vx′y′ = ff.

Consider a test
V = w[a] ◦B(

∨
x′

Vx′) ◦ h

where the union occurs over all x′ ∈ X such that x a−→ x′. Since θ lifts h to a
BBS-coalgebra, and h is finitely branching, V ∈ θ. However, it is easy to check
that V x = tt and V y = ff, hence x 6≤θ y and ≤θ is a bisimulation. 2

Theorem 4.19 For any coalgebra h : X → BX in Set, and any reflexive,
transitive bisimulation R on h, there exists a test suite θR : X ⇒ 2 such that
≤θR

= R and h : 〈X, θR〉 →
〈
BX,BBS

X θR
〉

is a valid BBS-coalgebra.

4.2. Simulation and Bisimulation Semantics 51

Proof. Assume any reflexive, transitive bisimulation R on h : X → BX and
consider the 2-test suite on X:

θR =
{
V : X → 2 : V is R-upper

}
For a proof that ≤θR

= R, see the proof of Theorem 4.11.
To prove that θR lifts h to a BBS-coalgebra, one has to show that

• θR lifts h to a BS-coalgebra,

•
−→
∅ ∈ θR,

• for any V ∈ θR, also w[a] ◦BV ◦ h ∈ θR,

• for any V1, . . . , Vn ∈ θR, also
∨n
i=1 Vi ∈ θR.

The first condition holds by Theorem 4.11, since R, being a bisimulation, is
also a simulation.

The second condition holds obviously, since ∅ is R-upper for any relation R.
For the third condition, assume any V ∈ θR, x, y ∈ X such that xRy and

(w[a]◦BV ◦h)y = ff. The latter assumption means that there exists y′ ∈ X such
that y a−→ y′ and V y′ = ff. Since R is a bisimulation, there exists x′ ∈ X such
that x a−→ x′ and x′Ry′, hence V x′ = ff. This means that (w[a]◦BV ◦h)x = ff

and w[a] ◦BV ◦ h is R-upper.
For the fourth condition, it is easily checked that for any relation R, union

of any family of R-upper sets is again R-upper. 2

Corollary 4.20 Specialization preorders ≤θ for BBS-coalgebras h : 〈X, θ〉 →〈
BX,BBS

X θ
〉

are exactly reflexive, transitive bisimulations on h : X → BX.
The bisimulation preorder vBS is the largest such relation.

Proof. Immediate from Theorems 4.18 and 4.19, and by Proposition 2.8. 2

Corollary 4.21 Specialization equivalences≡θ forBBS-coalgebras h : 〈X, θ〉 →〈
BX,BBS

X θ
〉

are exactly the equivalence relations R∩R−1 associated to reflex-
ive, transitive bisimulations R on h : X → BX. The bisimulation equivalence
∼=BS is the largest such relation.

Proof. See Example 3.25 and Definition 2.4 to see that ≡θ = ≤θ ∩(≤θ)−1 and
∼=BS = ≤BS ∩(≤BS)−1. 2

Recall from Proposition 2.8 that bisimulation preorder (hence, by Proposi-
tion 2.9, also bisimulation equivalence) is characterized as the largest bisimula-
tion. This gives rise to the so-called coinduction proof principle used to show
that certain operations behave well with respect to bisimulation equivalence.
Indeed, to show that two processes in an LTS are bisimulation equivalent, it is
enough to show any bisimulation that relates them. Many examples of proofs
using this principle are shown, e.g., in [78, Section 12]. Similar characteriza-
tions of simulation and ready simulation preorders are given in Proposition 2.8,

52 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

but the remaining preorders from the van Glabbeek spectrum have not been
characterized in this fashion.

As is shown in Corollary 4.9, bisimulation preorder on a finitely branching
LTS h : X → BX is the specialization preorder of the least test suite on X that
lifts h to a BW-coalgebra. More generally however, specialization preorders on
BW-coalgebras are bisimulations on the underlying B-coalgebras. Therefore,
the characterization of bisimulation equivalence by bisimulations corresponds
to the characterization of the corresponding BW-coalgebra as the least BW-
coalgebra lifting the underlying B-coalgebra.

This, together with the characterization of various preorders given in Corol-
lary 4.9, hints that a characterization of specialization preorders of BW-co-
algebras for various W might lead to proof principles for other equivalences in
the van Glabbeek spectrum. Such a characterization is presented in the next
section, and an example of the resulting proof principle is shown in Section 4.4.

4.3 Decorated Trace Semantics

In this section, we characterize operational preorders and equivalences of BW-
coalgebras for W ∈ {Tr,CTr,Fl,FlTr,Rd,RdTr}. This fragment of the van
Glabbeek spectrum is called collectively decorated trace semantics.

To give a full characterization of (the specialization relations ≤θ and ≡θ of)
BW-coalgebras, we first need a few technical definitions and results.

Definition 4.22 A relation S ⊆ X × PX is called a quasi-preorder on X if

• for any x ∈ X, xS{x} and xS/ ∅,

• for any x, y ∈ X, ξ, χ ⊆ X, if xSξ, y ∈ ξ and ySχ then xS((ξ \ {y})∪ χ).

Definition 4.23 Let S be a quasi-preorder on X. A set V ⊆ X is called quasi-
S-upper, if for any x ∈ V , ξ ⊆ X such that xSξ, the intersection V ∩ ξ is not
empty.

Lemma 4.24 Let S be a quasi-preorder on X, and fix arbitrary elements x, y ∈
X. If for every quasi-S-upper set Y ⊆ X, x ∈ Y implies y ∈ Y , then xS{y}.

Proof. Assume y ∈ Y for every quasi-S-upper Y such that x ∈ Y . Define
y↓= { z ∈ X : zS{y} }, and consider

Y0 = X \ y↓

To show that Y0 is quasi-S-upper, take any z ∈ Y0, ξ ⊆ X such that zSξ.
Assume that ξ ⊆ y ↓. Since S is a quasi-preorder, this implies that z ∈ y ↓,

which contradicts the assumption that z ∈ Y0. Therefore ξ 6⊆ y ↓ and one may
consider an element v ∈ ξ such that v 6∈ y↓, hence Y0 is quasi-S-upper.

Since S is a quasi-preorder, yS{y}, hence y 6∈ Y0 and (by the assumption,
since Y0 is quasi-S-upper) x 6∈ Y0. As a consequence, xS{y}. 2

4.3. Decorated Trace Semantics 53

Now we proceed to define various kinds of trace-aware relations, that are
well-structured with respect to decorated trace semantics. They are based on
auxiliary relations called one-by-many simulations.

Definition 4.25 Consider a finitely branching LTS h : X → BX. A relation
S ⊆ X × PX is called a one-by-many simulation on h if for any a ∈ A, if xSξ
and x

a−→ x′, then x′S{y′ ∈ X : ∃y ∈ ξ. y
a−→ y′}. A relation R ⊆ X ×X is

called trace-aware on h if there exists a one-by-many simulation S on h such
that xRy ⇐⇒ xS{y}. If, moreover, S is a quasi-preorder, then R is called a
trace-aware preorder.

Note that any trace-aware preorder is indeed a preorder. Reflexivity and
transitivity immediately follow from Definition 4.22.

Definition 4.26 Consider a finitely branching LTS h : X → BX. A relation
S ⊆ X × PX is called a one-by-many completed simulation on h if

• S is a one-by-many simulation on h, and

• if xSξ and x 6−→, then for some y ∈ ξ, y 6−→.

A relation R ⊆ X × X is called completed trace-aware on h if there exists
a one-by-many completed simulation S on h such that xRy ⇐⇒ xS{y}.
If, moreover, S is a quasi-preorder, then R is called a completed trace-aware
preorder.

Definition 4.27 Consider a finitely branching LTS h : X → BX. A relation
S ⊆ X × PX is called a one-by-many failure simulation on h if

• S is a one-by-many simulation on h, and

• for any Q ⊆ A, if xSξ and x 6 Q−→, then for some y ∈ ξ, y 6 Q−→.

A relation R ⊆ X × X is called failures-aware on h if there exists a one-by-
many failure simulation S on h such that xRy ⇐⇒ xS{y}. If, moreover, S is
a quasi-preorder, then R is called a failures-aware preorder.

Definition 4.28 Consider a finitely branching LTS h : X → BX. A relation
S ⊆ X × PX is called a one-by-many failure trace simulation on h if

• S is a one-by-many failure simulation on h, and

• for any a ∈ A, Q ⊆ A, if xSξ, x a−→ x′ and x 6 Q−→,
then x′S

{
y′ ∈ X : ∃y ∈ ξ. y a−→ y′, y 6 Q−→

}
.

A relation R ⊆ X×X is called failure trace-aware on h if there exists a one-by-
many failure trace simulation S on h such that xRy ⇐⇒ xS{y}. If, moreover,
S is a quasi-preorder, then R is called a failure trace-aware preorder.

54 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

Definition 4.29 Consider a finitely branching LTS h : X → BX. A relation
S ⊆ X × PX is called a one-by-many ready simulation on h if

• S is a one-by-many simulation on h, and

• if xSξ then for some y ∈ ξ, I(y) = I(x).

A relation R ⊆ X ×X is called readiness-aware on h if there exists a one-by-
many ready simulation S on h such that xRy ⇐⇒ xS{y}. If, moreover, S is
a quasi-preorder, then R is called a readiness-aware preorder.

Definition 4.30 Consider a finitely branching LTS h : X → BX. A relation
S ⊆ X × PX is called a one-by-many ready trace simulation on h if

• S is a one-by-many readiness simulation on h, and

• for any a ∈ A, if xSξ and x
a−→ x′,

then x′S
{
y′ ∈ X : ∃y ∈ ξ. y a−→ y′, I(y) = I(x)

}
.

A relation R ⊆ X ×X is called ready trace-aware on h if there exists a one-by-
many ready trace simulation S on h such that xRy ⇐⇒ xS{y}. If, moreover,
S is a quasi-preorder, then R is called a ready trace-aware preorder.

The following series of theorems and corollaries characterize the special-
ization preorders of BW-coalgebras (where W ∈ {Tr,CTr,Fl,FlTr,Rd,RdTr}) as
corresponding trace-aware preorders.

Theorem 4.31 For any BTr-coalgebra h : 〈X, θ〉 →
〈
BX,BTr

X θ
〉
, the special-

ization relation ≤θ is a trace-aware preorder on h : X → BX.

Proof. First, recall that saying that h : 〈X, θ〉 →
〈
BX,BTr

X θ
〉

is aBTr-coalgebra
is equivalent to saying that θ ⊇ h∗BTr

X θ. Equivalently,
−→
X ∈ θ and for any V ∈ θ

and a ∈ A, also 〈a〉 ◦BV ◦ h ∈ θ.
Define S ⊆ X × PX as follows:

xSξ iff ∀V ∈ θ. V x = tt⇒ ∃y ∈ ξ. V y = tt

Obviously x ≤θ y if and only if xS{y}, hence it is enough to show that S is
a quasi-preorder and a one-by-many simulation.

To check that S is a quasi-preorder, consider the conditions in Definition 4.22
in turn.

• Assume xSξ. Since
−→
X ∈ θ and

−→
Xx = tt, by definition of S, ξ 6= ∅. The

fact that xS{x} is immediate by definition of S.

• Assume xSξ, y ∈ ξ and ySχ. Consider any test V : X → 2 such that
V x = tt. Then, by definition of S, there exists an element z ∈ ξ such
that V z = tt.

If z 6= y then z ∈ ((ξ \ {y})∪χ). On the other hand, if z = y, then (since
ySχ) there exists an element u ∈ χ such that V u = tt, and obviously
u ∈ ((ξ \ {y}) ∪ χ).

As a result, since V was chosen arbitrarily, xS((ξ \ {y}) ∪ χ).

4.3. Decorated Trace Semantics 55

To show that S is a one-by-many simulation, consider any x ∈ X, ξ ⊆ X.
Assume x a−→ x′ and x′S/ {y′ ∈ X | ∃y ∈ ξ. y a−→ y′}. By definition of S, there
exists a test V ∈ θ such that

• V x′ = tt, and

• V y′ = ff for all y ∈ ξ, y a−→ y′.

Consider a test V ′ = w〈a〉 ◦ BV ◦ h. Obviously V ′x = tt, but for every
y ∈ ξ, V ′y = ff. Since V ∈ θ, also V ′ ∈ θ, hence xS/ ξ. 2

Theorem 4.32 For any coalgebra h : X → BX in Set, and any trace-aware
preorder R on h, there exists a test suite θR : X ⇒ 2 such that ≤θR

= R and
h : 〈X, θR〉 →

〈
BX,BTr

X θR
〉

is a valid BTr-coalgebra.

Proof. Assume a quasi-preorder and one-by-many simulation S on h such that
xRy if and only if xS{y}. Define

θR =
{
V : X → 2 : V is quasi-S-upper

}
To check that R ⊆ ≤θR

, assume xRy, or equivalently, xS{y}. Consider any
V ∈ θR such that V x = tt. Since V is quasi-S-upper, also V y = tt.

To check that ≤θR
⊆ R, assume that for every V : X → 2 such that V is

quasi-S-upper, if V x = tt then V y = tt. By Lemma 4.24, xS{y}, hence xRy.
To check that h : 〈X, θ〉 →

〈
BX,BTr

X θR
〉

is a valid BTr-coalgebra, it is
enough to check that

•
−→
X ∈ θR, and

• for any V ∈ θR, also w〈a〉 ◦BV ◦ h ∈ θR.

The first condition is easy, since X is quasi-S-upper for any quasi-preorder
S on X.

For the second condition, assume any V ∈ θR and denote V ′ = w〈a〉◦BV ◦h.
Take any x ∈ X, ξ ⊆ X such that xSξ and V ′x = tt. The latter assumption
means that there exists an x′ ∈ X such that x a−→ x′ and V x′ = tt.

Since S is a one-by-many simulation, this means that

x′S
{
y′ ∈ X : ∃y ∈ ξ. y a−→ y′

}
and there exist y, y′ ∈ X such that y ∈ ξ, y a−→ y′ and V y′ = tt. Then
V ′y = tt. Since xSξ were chosen arbitrarily, V ′ is quasi-S-upper. 2

Corollary 4.33 Specialization preorders ≤θ for BTr-coalgebras h : 〈X, θ〉 →〈
BX,BTr

X θ
〉

are exactly trace-aware preorders on h : X → BX.
The trace preorder vTr on h is the largest trace-aware relation on h.

56 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

Proof. The first statement follows immediately from Theorems 4.27 and 4.28.
For the second statement, use Corollary 4.9, Theorem 3.12 and Proposition 3.27
to notice that vTr is the largest trace-aware preorder on h. Then observe that
the reflexive and transitive closure of any trace-aware relation is again trace-
aware. 2

Corollary 4.34 Specialization equivalences ≡θ for BTr-coalgebras h : 〈X, θ〉 →〈
BX,BTr

X θ
〉

are exactly the equivalence relations R ∩ R−1 associated to trace-
aware preorders R on h : X → BX.

The trace equivalence ∼=Tr on h is the largest such relation on h.

Proof. See Example 3.25 and Definition 2.4 to see that ≡θ = ≤θ ∩(≤θ)−1 and
∼=Tr = ≤Tr ∩(≤Tr)−1. 2

We proceed to consider the case of BCTr-coalgebras, extending Theorems
and Corollaries 4.31-4.34.

Theorem 4.35 For any BCTr-coalgebra h : 〈X, θ〉 →
〈
BX,BCTr

X θ
〉
, the spe-

cialization relation ≤θ is a completed trace-aware preorder on h : X → BX.

Proof. First, observe that h : 〈X, θ〉 →
〈
BX,BCTr

X θ
〉

is a valid BCTr-coalgebra
if and only if h : 〈X, θ〉 →

〈
BX,BTr

X θ
〉

is a valid BTr-coalgebra and for any
V ∈ θ, also w̃A ◦BV ◦ h ∈ θ.

To check that ≤θ is a completed trace-aware preorder, consider S ⊆ X×PX
defined as in the proof of Theorem 4.31:

xSξ iff ∀V ∈ θ. V x = tt⇒ ∃y ∈ ξ. V y = tt

It is enough to check that S is a one-by-many completed simulation and a quasi-
preorder. Since θ lifts h to a BTr-algebra, by Theorem 4.31 S is a one-by-many
simulation and a quasi-preorder, hence it is enough to assume arbitrary x ∈ X,
ξ ⊆ X such that xSξ and hx = ∅ and prove that hy = ∅ for some y ∈ ξ.

To this end, take V = w̃A ◦ B
−→
X ◦ h ∈ θ. Since hx = ∅, one has V x = tt,

hence (by definition of S) for some y ∈ ξ, V y = tt and hy = ∅. 2

Theorem 4.36 For any coalgebra h : X → BX in Set, and any completed
trace-aware preorder R on h, there exists a test suite θR : X ⇒ 2 such that
≤θR

= R and h : 〈X, θR〉 →
〈
BX,BCTr

X θR
〉

is a valid BCTr-coalgebra.

Proof. Assume a quasi-preorder and one-by-many completed simulation S on
h such that xRy if and only if xS{y}. Define, as in the proof of Theorem 4.32,

θR =
{
V : X → 2 : V is quasi-S-upper

}
Since R is completed trace-aware, it is also trace-aware and by Theorem 4.32,
≤θR

= R and h : 〈X, θR〉 →
〈
BX,BTr

X θR
〉

is a valid BTr-coalgebra. It is therefore
enough to assume arbitrary V ∈ θR and prove that w̃A ◦BV ◦ h ∈ θR.

4.3. Decorated Trace Semantics 57

To this end, denote V ′ = w̃A ◦BV ◦h and take any x ∈ X, ξ ⊆ X such that
xSξ and V ′x = tt. The latter assumption means that x 6−→.

Since S is a one-by-many completed simulation, this means that y 6−→ for
some y ∈ ξ. Then V ′y = tt. Since xSξ were chosen arbitrarily, V ′ is quasi-S-
upper. 2

Corollary 4.37 Specialization preorders ≤θ for BCTr-coalgebras h : 〈X, θ〉 →〈
BX,BCTr

X θ
〉

are exactly completed trace-aware preorders on h : X → BX.
The completed trace preorder vCTr on h is the largest completed trace-aware

relation on h.
Specialization equivalences≡θ forBCTr-coalgebras h : 〈X, θ〉 →

〈
BX,BCTr

X θ
〉

are exactly the equivalence relations R ∩ R−1 associated to completed trace-
aware preorders R on h : X → BX.

The completed trace equivalence ∼=Tr on h is the largest such relation on h.

Proof. Analogous to Corollaries 4.33-4.34, using Theorems 4.35-4.36. 2

We proceed to consider the case of BFl-coalgebras.

Theorem 4.38 For any BFl-coalgebra h : 〈X, θ〉 →
〈
BX,BFl

Xθ
〉
, the special-

ization relation ≤θ is a failures-aware preorder on h : X → BX.

Proof. First, observe that h : 〈X, θ〉 →
〈
BX,BFl

Xθ
〉

is a valid BFl-coalgebra
if and only if h : 〈X, θ〉 →

〈
BX,BTr

X θ
〉

is a valid BTr-coalgebra and for any
Q ⊆ A, V ∈ θ, also w̃Q ◦BV ◦ h ∈ θ.

To check that ≤θ is a failures-aware preorder, consider S ⊆ X×PX defined
as in the proof of Theorem 4.31:

xSξ iff ∀V ∈ θ. V x = tt⇒ ∃y ∈ ξ. V y = tt

It is enough to check that S is a quasi-preorder and a one-by-many failure
simulation. Since θ lifts h to a BTr-algebra, by Theorem 4.31 S is a quasi-
preorder and a one-by-many simulation, hence it is enough to assume arbitrary
Q ⊆ A, x ∈ X, ξ ⊆ X such that xSξ and x 6 Q−→ and prove that y 6 Q−→ for some
y ∈ ξ.

To this end, take V = w̃Q ◦ B
−→
X ◦ h ∈ θ. Since x 6 Q−→, one has V x = tt,

hence (by definition of S) for some y ∈ ξ, V y = tt and x 6 Q−→. 2

Theorem 4.39 For any coalgebra h : X → BX in Set, and any failures-aware
preorder R on h, there exists a test suite θR : X ⇒ 2 such that ≤θR

= R and
h : 〈X, θR〉 →

〈
BX,BFl

XθR
〉

is a valid BFl-coalgebra.

Proof. Assume a quasi-preorder and one-by-many failure simulation S on h
such that xRy if and only if xS{y}. Define, as in the proof of Theorem 4.32,

θR =
{
V : X → 2 : V is quasi-S-upper

}

58 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

Since R is failures-aware, it is also trace-aware and by Theorem 4.32, ≤θR
= R

and h : 〈X, θR〉 →
〈
BX,BTr

X θR
〉

is a valid BTr-coalgebra. It is therefore enough
to assume arbitrary Q ⊆ A, V ∈ θR and prove that w̃Q ◦BV ◦ h ∈ θR.

To this end, denote V ′ = w̃Q ◦BV ◦h and take any x ∈ X, ξ ⊆ X such that

xSξ and V ′x = tt. The latter assumption means that x 6 Q−→.
Since S is a one-by-many failure simulation, this means that y 6 Q−→ for some

y ∈ ξ. Then V ′y = tt. Since xSξ were chosen arbitrarily, V ′ is quasi-S-upper.
2

Corollary 4.40 Specialization preorders ≤θ for BFl-coalgebras h : 〈X, θ〉 →〈
BX,BFl

Xθ
〉

are exactly failures-aware preorders on h : X → BX.
The failures preorder vFl on h is the largest failures-aware relation on h.
Specialization equivalences ≡θ for BFl-coalgebras h : 〈X, θ〉 →

〈
BX,BFl

Xθ
〉

are exactly the equivalence relations R ∩ R−1 associated to failures-aware pre-
orders R on h : X → BX.

The failures equivalence ∼=Fl on h is the largest such relation on h.

Proof. Analogous to Corollaries 4.33-4.34, using Theorems 4.38-4.39. 2

We proceed to consider the case of BFlTr-coalgebras.

Theorem 4.41 For any BFlTr-coalgebra h : 〈X, θ〉 →
〈
BX,BFlTr

X θ
〉
, the spe-

cialization relation ≤θ is a failure trace-aware preorder on h : X → BX.

Proof. First, observe that h : 〈X, θ〉 →
〈
BX,BFlTr

X θ
〉

is a valid BFlTr-coalgebra
if and only if h : 〈X, θ〉 →

〈
BX,BFl

Xθ
〉

is a valid BFl-coalgebra and for any
Q ⊆ A, a ∈ A, V ∈ θ, also w̃aQ ◦BV ◦ h ∈ θ.

To check that ≤θ is a failure trace-aware preorder, consider S ⊆ X × PX
defined as in the proof of Theorem 4.31:

xSξ iff ∀V ∈ θ. V x = tt⇒ ∃y ∈ ξ. V y = tt

It is enough to check that S is a quasi-preorder and a one-by-many failure trace
simulation. Since θ lifts h to a BFl-algebra, by Theorem 4.38 S is a quasi-
preorder and a one-by-many failure simulation, hence it is enough to assume
arbitrary Q ⊆ A, a ∈ A, x, x′ ∈ X, ξ ⊆ X such that x a−→ x′ and x 6 Q−→ and
prove that if xSξ then x′S

{
y′ ∈ X : ∃y ∈ ξ. y a−→ y′, y 6 Q−→

}
.

To this end, assume the opposite x′S/
{
y′ ∈ X : ∃y ∈ ξ. y a−→ y′, y 6 Q−→

}
.

By definition of S, there exists a test V ∈ θ such that

• V x′ = tt, and

• V y′ = ff for all y ∈ ξ, y a−→ y′ such that y 6 Q−→.

Consider three tests
V ′ = w̃aQ ◦BV ◦ h
V ′′ = w̃Q ◦BV ◦ h
V ′′′ = w〈a〉 ◦BV ◦ h

4.3. Decorated Trace Semantics 59

Since x 6 Q−→, one has V ′′x = tt. Also V x′ = tt and x
a−→ x′, hence

V ′′′x = tt. This, by definition of w̃aQ, means that V ′x = tt.
On the other hand, by properties of V , for each y ∈ ξ such that V ′′y = tt

one has V ′′′y = ff, hence V ′y = ff.
Since V ∈ θ, also V ′ ∈ θ, hence xS/ ξ. 2

Theorem 4.42 For any coalgebra h : X → BX in Set, and any failure trace-
aware preorder R on h, there exists a test suite θR : X ⇒ 2 such that ≤θR

= R
and h : 〈X, θR〉 →

〈
BX,BFlTr

X θR
〉

is a valid BFlTr-coalgebra.

Proof. Assume a quasi-preorder and one-by-many failure trace simulation S
on h such that xRy if and only if xS{y}. Define, as in the proof of Theorem
4.32,

θR =
{
V : X → 2 : V is quasi-S-upper

}
Since R is failure trace-aware, it is also failures-aware and by Theorem 4.39,
≤θR

= R and h : 〈X, θR〉 →
〈
BX,BFl

XθR
〉

is a valid BFl-coalgebra. It is therefore
enough to assume arbitrary Q ⊆ A, a ∈ A, V ∈ θR and prove that w̃aQ◦BV ◦h ∈
θR.

To this end, denote V ′ = w̃aQ ◦ BV ◦ h and take any x ∈ X, ξ ⊆ X such
that xSξ and V ′x = tt. By definition of w̃aQ, the latter assumption means

that x 6 Q−→ and x
a−→ x′ for some x′ ∈ X such that V x′ = tt.

Since S is a one-by-many failure trace simulation, this means that

x′S
{
y′ ∈ X : ∃y ∈ ξ. y a−→ y′, y 6 Q−→

}
and there exist y, y′ ∈ X such that y ∈ ξ, y a−→ y′, y 6 Q−→ and V y′ = tt. Then
V ′y = tt. Since xSξ were chosen arbitrarily, V ′ is quasi-S-upper. 2

Corollary 4.43 Specialization preorders ≤θ for BFlTr-coalgebras h : 〈X, θ〉 →〈
BX,BFlTr

X θ
〉

are exactly failure trace-aware preorders on h : X → BX.
The failure trace preorder vFlTr on h is the largest failure trace-aware rela-

tion on h.
Specialization equivalences≡θ forBFlTr-coalgebras h : 〈X, θ〉 →

〈
BX,BFlTr

X θ
〉

are exactly the equivalence relations R ∩R−1 associated to failure trace-aware
preorders R on h : X → BX.

The failure trace equivalence ∼=Fl on h is the largest such relation on h.

Proof. Analogous to Corollaries 4.33-4.34, using Theorems 4.41-4.42. 2

We proceed to consider the case of BRd-coalgebras.

Theorem 4.44 For any BRd-coalgebra h : 〈X, θ〉 →
〈
BX,BRd

X θ
〉
, the special-

ization relation ≤θ is a readiness-aware preorder on h : X → BX.

60 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

Proof. First, observe that h : 〈X, θ〉 →
〈
BX,BRd

X θ
〉

is a valid BRd-coalgebra
if and only if h : 〈X, θ〉 →

〈
BX,BTr

X θ
〉

is a valid BTr-coalgebra and for any
Q ⊆ A, V ∈ θ, also w̌Q ◦BV ◦ h ∈ θ.

To check that ≤θ is a readiness-aware preorder, consider S ⊆ X × PX
defined as in the proof of Theorem 4.31:

xSξ iff ∀V ∈ θ. V x = tt⇒ ∃y ∈ ξ. V y = tt

It is enough to check that S is a quasi-preorder and a one-by-many ready
simulation. Since θ lifts h to a BTr-algebra, by Theorem 4.31 S is a quasi-
preorder and a one-by-many simulation and it is enough to assume arbitrary
x ∈ X, ξ ⊆ X such that xSξ and prove that I(y) = I(x) for some y ∈ ξ.

To this end, take V = w̌I(x) ◦ B
−→
X ◦ h ∈ θ. By definition of w̌I(x) one has

V x = tt, hence (by definition of S) for some y ∈ ξ, V y = tt and I(y) = I(x).
2

Theorem 4.45 For any coalgebra h : X → BX in Set, and any readiness-
aware preorder R on h, there exists a test suite θR : X ⇒ 2 such that ≤θR

= R
and h : 〈X, θR〉 →

〈
BX,BRd

X θR
〉

is a valid BRd-coalgebra.

Proof. Assume a quasi-preorder and one-by-many ready simulation S on h
such that xRy if and only if xS{y}. Define, as in the proof of Theorem 4.32,

θR =
{
V : X → 2 : V is quasi-S-upper

}
Since R is readiness-aware, it is also trace-aware and by Theorem 4.32, ≤θR

= R
and h : 〈X, θR〉 →

〈
BX,BTr

X θR
〉

is a valid BTr-coalgebra. It is therefore enough
to assume arbitrary Q ⊆ A, V ∈ θR and prove that w̌Q ◦BV ◦ h ∈ θR.

To this end, denote V ′ = w̃Q ◦BV ◦h and take any x ∈ X, ξ ⊆ X such that
xSξ and V ′x = tt. The latter assumption means that I(x) = Q.

Since S is a one-by-many ready simulation, this means that I(y) = Q for
some y ∈ ξ. Then V ′y = tt. Since xSξ were chosen arbitrarily, V ′ is quasi-S-
upper. 2

Corollary 4.46 Specialization preorders ≤θ for BRd-coalgebras h : 〈X, θ〉 →〈
BX,BRd

X θ
〉

are exactly readiness-aware preorders on h : X → BX.
The readiness preorder vRd on h is the largest readiness-aware relation on

h.
Specialization equivalences ≡θ for BRd-coalgebras h : 〈X, θ〉 →

〈
BX,BRd

X θ
〉

are exactly the equivalence relations R∩R−1 associated to readiness preorders
R on h : X → BX.

The readiness equivalence ∼=Rd on h is the largest such relation on h.

Proof. Analogous to Corollaries 4.33-4.34, using Theorems 4.44-4.45. 2

Finally, we consider the case of BRdTr-coalgebras.

4.3. Decorated Trace Semantics 61

Theorem 4.47 For any BRdTr-coalgebra h : 〈X, θ〉 →
〈
BX,BRdTr

X θ
〉
, the spe-

cialization relation ≤θ is a ready trace-aware preorder on h : X → BX.

Proof. First, observe that h : 〈X, θ〉 →
〈
BX,BRdTr

X θ
〉

is a validBRdTr-coalgebra
if and only if h : 〈X, θ〉 →

〈
BX,BRd

X θ
〉

is a valid BRd-coalgebra and for any
Q ⊆ A, a ∈ A, V ∈ θ, also w̌aQ ◦BV ◦ h ∈ θ.

To check that ≤θ is a ready trace-aware preorder, consider S ⊆ X × PX
defined as in the proof of Theorem 4.31:

xSξ iff ∀V ∈ θ. V x = tt⇒ ∃y ∈ ξ. V y = tt

It is enough to check that S is a quasi-preorder and a one-by-many ready trace
simulation. Since θ lifts h to a BRd-algebra, by Theorem 4.44 S is a quasi-
preorder and a one-by-many readiness simulation and it is enough to assume
arbitrary a ∈ A, x, x′ ∈ X, ξ ⊆ X such that x a−→ x′ and prove that if xSξ
then

x′S
{
y′ ∈ X : ∃y ∈ ξ. y a−→ y′, I(y) = I(x)

}
To this end, assume the opposite

x′S/
{
y′ ∈ X : ∃y ∈ ξ. y a−→ y′, I(y) = I(x)

}
By definition of S, there exists a test V ∈ θ such that

• V x′ = tt, and

• V y′ = ff for all y ∈ ξ, y a−→ y′ such that I(y) = I(x).

Consider three tests

V ′ = w̌aI(x) ◦BV ◦ h
V ′′ = w̌I(x) ◦BV ◦ h
V ′′′ = w〈a〉 ◦BV ◦ h

By definition of w̌I(x), one has V ′′x = tt. Also V x′ = tt and x
a−→ x′,

hence V ′′′x = tt. This, by definition of w̌aI(x), means that V ′x = tt.
On the other hand, by properties of V , for each y ∈ ξ such that V ′′y = tt

one has V ′′′y = ff, hence V ′y = ff.
Since V ∈ θ, also V ′ ∈ θ, hence xS/ ξ. 2

Theorem 4.48 For any coalgebra h : X → BX in Set, and any ready trace-
aware preorder R on h, there exists a test suite θR : X ⇒ 2 such that ≤θR

= R
and h : 〈X, θR〉 →

〈
BX,BRdTr

X θR
〉

is a valid BRdTr-coalgebra.

Proof. Assume a one-by-many ready trace simulation S on h such that xRy
if and only if xS{y}. Define, as in the proof of Theorem 4.32,

θR =
{
V : X → 2 : V is quasi-S-upper

}
Since R is ready trace-aware, it is also readiness-aware and by Theorem 4.45,
≤θR

= R and h : 〈X, θR〉 →
〈
BX,BRd

X θR
〉

is a valid BRd-coalgebra. It is

62 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

therefore enough to assume arbitrary Q ⊆ A, a ∈ A, V ∈ θR and prove that
w̌aQ ◦BV ◦ h ∈ θR.

To this end, denote V ′ = w̌aQ ◦ BV ◦ h and take any x ∈ X, ξ ⊆ X such
that xSξ and V ′x = tt. By definition of w̌aQ, the latter assumption means
that I(x) = Q and x

a−→ x′ for some x′ ∈ X such that V x′ = tt.
Since S is a one-by-many simulation, this means that

x′S
{
y′ ∈ X : ∃y ∈ ξ. y a−→ y, I(y) = I(y)

}
and there exist y, y′ ∈ X such that y ∈ ξ, y a−→ y′, I(y) = I(x) and V y′ = tt.
Then V ′y = tt. Since xSξ were chosen arbitrarily, V ′ is quasi-S-upper. 2

Corollary 4.49 Specialization preorders ≤θ for BRdTr-coalgebras h : 〈X, θ〉 →〈
BX,BRdTr

X θ
〉

are exactly ready trace-aware preorders on h : X → BX.
The ready trace preorder vRdTr on h is the largest ready trace-aware relation

on h.
Specialization equivalences≡θ forBRdTr-coalgebras h : 〈X, θ〉 →

〈
BX,BRdTr

X θ
〉

are exactly the equivalence relations R ∩ R−1 associated to ready trace-aware
preorders R on h : X → BX.

The ready trace equivalence ∼=RdTr on h is the largest such relation on h.

Proof. Analogous to Corollaries 4.33-4.34, using Theorems 4.46-4.47. 2

4.4 Coinduction Principle for Traces

One of the most useful applications of coalgebraic semantics of processes is the
coinduction proof principle, based on the fact that the bisimulation equivalence
on any LTS is the largest bisimulation on it (Proposition 2.8). Therefore to
prove that two processes are bisimulation equivalent, it is enough to provide
any bisimulation that relates them. The rich structure of bisimulation relations
allows to use this proof principle in a very convenient fashion. Many examples
of its use can be found e.g. in [78, Section 12].

Results shown in Section 4.3 allow to apply similar reasoning to other equiva-
lences from the van Glabbeek spectrum. Corollaries 4.33, 4.34, 4.37, 4.40, 4.43,
4.46 and 4.49 characterize decorated trace preorders and equivalences as the
largest trace-aware relations of a suitable kind. As it turns out, the trace-aware
relations have enough structure to play a similar rôle in reasoning about deco-
rated trace equivalences to that of bisimulations in reasoning about bisimulation
equivalence.

We show an example of use of such a “coinduction principle for traces” for
the case of trace equivalence.

Example 4.50 Consider a final B-coalgebra φ : Ω → BΩ (recall Proposi-
tion 2.25). On the set Ω, define the associative, idempotent and commutative
binary operation + by

p+ q = φ−1(φp ∪ φq)

4.4. Coinduction Principle for Traces 63

Now define a function glue : Ω → Ω as the coinductive extension of the
B-coalgebra α : Ω → BΩ defined by

αp =
{〈

a,
∐
〈a,p′〉∈φp p

′
〉

: a ∈ I(p)
}

where
∐

denotes the obvious extension of + to finite subsets of Ω.
Using the “operational rule” notation for coinductive definitions as intro-

duced in [78, Section 11], one may write alternatively

p1, . . . , pn(n > 0) are exactly the processes for which p
a−→ pi

glue(p) a−→ glue(p1 + · · ·+ pn)

for any a ∈ A.
For example, if Ω is the set of all finitely branching labelled synchronisation

trees quotiented by bisimulation equivalence, one has

glue(•
•

•

•

•
!!!
aaa

a

a

b

c
) = • •

•

•
!!!
aaa

a
b

c

Theorem 4.51 The operation glue preserves and respects traces. In other
words, for any process p ∈ Ω, p and glue(p) are trace equivalent.

Proof. A standard way of proving this theorem is to use induction on the
length of traces. Instead, we use the coinduction proof principle for traces, as
expressed in Corollaries 4.33 and 4.34, and saying that the trace preorder is the
largest trace-aware relation on any finitely branching LTS.

First, we show that the relation { 〈glue(p), p〉 : p ∈ Ω } is a trace-aware
relation. Consider S ⊆ Ω× PΩ defined by

pS{q1, . . . , qn} ⇐⇒ glue
(∐

i∈I qi
)

= p for some I ⊆ {1, . . . , n}.

To show that S is a one-by-many simulation, consider any a ∈ A, p, p′ ∈ Ω,
ξ ∈ Ω such that pSξ and p

a−→ p′. By definition of S, p = glue
(∐

i∈I qi
)

for
some index set I such that qi ∈ ξ for every i ∈ I. By definitions of glue and∐

, there is
p′ = glue

(∐
i∈I,qi

a−→q′i
q′i

)
hence

p′S
{
q′ ∈ Ω : ∃q ∈ ξ. q a−→ q′

}
This concludes the first part of the proof.

Next, we show that the relation { 〈p, glue(p)〉 : p ∈ Ω } is contained in a
trace-aware relation. Consider S ⊆ Ω× PΩ defined by

pSξ ⇐⇒ glue(p+ q) ∈ ξ for some q ∈ Ω.

To show that S is a one-by-many simulation, consider any a ∈ A, p, p′ ∈ Ω,
ξ ∈ Ω such that pSξ and p

a−→ p′. This means that also p + q
a−→ p′, where

64 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

glue(p+ q) ∈ ξ. Then, by definition of glue, glue(p+ q) a−→ glue(p′ + q′) for
some q′ ∈ Ω. From this it follows that

glue(p′ + q′) ∈
{
r′ ∈ Ω : ∃r ∈ ξ. r a−→ r′

}
hence

p′S
{
r′ ∈ Ω : ∃r ∈ ξ. r a−→ r′

}
and S is a one-by-many simulation, which concludes the proof.

2

4.5 Comparison of Process Preorders and Equiva-
lences

This section contains some applications of results from Section 3.3.4, allowing
one to compare specialization preorders and equivalences induced from different
liftings of the same behaviour endofunctor.

It must be stressed that the results presented here are not novel. In fact,
they were all proved in e.g. [36]. The purpose of this section is to show that
Theorem 3.33 and its corollaries are powerful enough to prove many simple
comparisons between process preorders and equivalences, even though they in-
volve only test constructors, and not any more explicit representation of these
preorders and equivalences. On the other hand, as is shown below, these results
have some limitations: they do not allow one to prove all known containment
relations between process preorders in the van Glabbeek spectrum.

Theorem 4.52 For W ∈ {Tr,CTr,Fl,FlTr,Rd,RdTr,S,RdS,BS}, for any h :
X → BX,

∼=W ⊆ vW

Proof. A simple consequence of Corollary 3.35 (see also Example 3.29 and
Corollary 4.9). 2

Theorem 4.53 The following relations hold for any coalgebra h : X → BX:

• vFlTr ⊆ vFl ⊆ vCTr ⊆ vTr,

• vRdTr ⊆ vRd ⊆ vCTr,

• ∼=FlTr ⊆ ∼=Fl ⊆ ∼=CTr ⊆ ∼=Tr,

• ∼=RdTr ⊆ ∼=Rd ⊆ ∼=CTr.

Proof. For the former two statements, consider Corollary 3.35 with V = 2,
S = R =≤2, Cl = Cl′ = Cl> and ζ = {id2}. In all cases mentioned above the
condition W′ ⊆ W holds (see Definitions 4.3, 4.5). In particular, for the case
vRd ⊆ vCTr, observe that w̃A = w̌∅.

For the latter two statements, proceed analogously with S = R = =2. 2

4.6. Nested Semantics 65

Theorem 4.54 For any coalgebra h : X → BX, one has vS ⊆ vTr and
∼=S ⊆ ∼=Tr.

Proof. Recall Definition 4.5 and consider Corollary 3.35 with V = 2, S =
R =≤2,=2, ζ = {id2}, W = W′ = Tr, Cl = Cl∧, Cl′ = Cl>. It is easy to check
that all conditions in Corollary 3.35 hold. 2

Theorem 4.55 For any coalgebra h : X → BX, one has vBS ⊆ vS and
∼=BS ⊆ ∼=S.

Proof. Recall Definition 4.5 and consider Corollary 3.35 with V = V ′ = 2,
S = R =≤2,=2, ζ = {id2}, W = BS, W′ = Tr, Cl = Cl∨∧, Cl′ = Cl∧. It is easy
to check that all conditions in Corollary 3.35 hold. 2

Note that we have not proved all known relations between operational pre-
orders and equivalences from the van Glabbeek spectrum. In particular, from
Theorem 3.33 one cannot easily conclude that ∼=Rd ⊆ ∼=Fl, which is a well known
result [36].

It is likely possible to extend Theorem 3.33 to an abstract result which,
when specialized to the special case considered in this chapter, would allow to
prove this and other missing relations. It is not our purpose, however, since it
is highly unlikely that such an abstract result would lead to novel corollaries,
impossible or difficult to obtain by syntactic manipulations on modal formulae.
The purpose of this section is rather to hint at the usage and the scope of
Theorem 3.33, for potential use in other settings.

4.6 Nested Semantics

In previous sections, not all preorders and equivalences from the van Glabbeek
spectrum as described in [36] were treated. The equivalences left aside are 2-
nested simulation equivalence, possible futures equivalence, and possible worlds
equivalence. Indeed, it turns out that these three equivalences (and correspond-
ing preorders) cannot be easily described in the test suite framework as shown
in this chapter so far, with the test value set V = 2.

Intuitively, this is related to the fact that the modal formulae used to char-
acterize the three equivalences cannot be described by BNF grammars with
single nonterminal symbols. Indeed, if one insists that the (B, 2)-test construc-
tors chosen to lift the endofunctor B to 2-TS correspond to the modal operators
in the corresponding modal logic (as we indeed insisted in Definition 4.3), then
the tests constructed by means of these constructors correspond to completely
arbitrary formulae built of the modal operators. However, BNF grammars with
multiple nonterminal symbols can impose syntactic restrictions on the formulae
considered, not reflected in the set of tests induced by test constructors.

A general solution to this problem would be to extend the framework pre-
sented in Chapter 3, allowing tests to be described syntactically as terms over
some multi-sorted algebraic signature, as used in theory of algebraic specifi-
cations (e.g. [80]), and only then mapped to proper tests (i.e., functions to a

66 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

set of test values) by means of some semantic function. This, however, would
complicate the entire framework considerably.

Fortunately, the lack of syntactic restrictions on tests can be circumvented
even in the simple framework shown in Chapter 3, by choosing a different set
of test values rather that 2. Roughly, instead of the simple set of logical values
{tt, ff}, one considers a set containing multiple copies of the logical values,
corresponding to different ‘sorts’ of tests. This way, information about the
‘sort’ of a given test is stored in its values when applied to processes, and it
can be used by the test constructors to recognize the ‘syntactically ill-formed’
tests. Technically, one also needs a special ‘error’ test value, to represent the
ill-formed tests. An appropriate notion of specialization relation then ensures
that the ill-formed tests, i.e. those that take the ‘error’ test value when applied
to a process, are not given any distinguishing power.

In this section this approach is illustrated on the example of 2-nested simula-
tion semantics. The other two problematic examples can be treated in analogous
fashion.

Definition 4.56 Given a set of actions A, the set of modal formulae F2S is
defined by the BNF grammar (with the starting nonterminal symbol φ)

φ ::= > | 〈a〉φ | φ ∧ φ | 23φ¬
φ¬ ::= ⊥ | [a]φ¬ | φ¬ ∨ φ¬

For convenience, the set of formulae generated by the nonterminal symbol
φ¬ is also considered, and denoted F¬S.

Given a finitely branching LTS h = 〈X,A,→〉 (equivalently, a B-coalgebra
h : X → BX), the satisfaction relation |=h ⊆ (F2S ∪ F¬S) × X is defined
inductively as in Definition 2.3, with the additional clause

x |=h 23φ ⇐⇒ x |=h φ

Clearly the operator 23 does not contribute much to the semantics of formulae.
It is introduced here to clarify the presentation by making a clear syntactic
distinction between formulae in F2S and F¬S.

As in Definition 2.4, one considers a preorder v2S and an equivalence ∼=2S,
defined on a given LTS h as follows:

x v2S x
′ ⇐⇒ (∀φ ∈ F2S. x |=h φ =⇒ x′ |=h φ)

x ∼=2S x
′ ⇐⇒ (∀φ ∈ F2S. x |=h φ⇐⇒ x′ |=h φ)

Assuming a given finitely branching LTS 〈X,A,→〉, the relations v2S and ∼=2S

are characterized by a notion of 2-nested simulation, similar to those of simu-
lation and bisimulation (Definitions 2.5–2.7):

Definition 4.57 A relation R ⊆ X × X is a 2-nested simulation if it is a
simulation contained in the simulation equivalence ∼=S. Processes x, y ∈ X are

• in 2-nested simulation preorder if there exists a 2-nested simulation R
such that xRy,

4.6. Nested Semantics 67

• 2-nested simulation equivalent if there exist 2-nested simulations R, R′

such that xRy and yR′x.

As shown in [36], formulae from F2S characterize 2-nested simulation pre-
order and equivalence:

Proposition 4.58 In any finitely branching LTS, the relation v2S is equal to 2-
nested simulation preorder, and the relation ∼=2S is equal to 2-nested simulation
equivalence.

To describe the 2-nested simulation semantics coalgebraically, we specialize
the framework described in Chapter 3 with the category C = Set and the
behaviour functor BX = Pf(A×X) for a fixed set A, as before in this chapter.
However, instead of V = 2, we choose

V = 5 = {tt, ff, tt¬, ff¬, err}

Note that 5-tests on X cannot be identified with subsets of X, hence the con-
venient Notation 4.1 does not apply here.

On the set 5, define a binary relation R by

xRy ⇐⇒ (x = tt =⇒ y = tt)

The pair 〈5, R〉 is an object in the category Rel and induces a specialization
functor SpecR : 5-TS → Rel along the lines of Definition 3.24. For any test
suite θ : X ⇒ 5, the relation SpR θ ⊆ X ×X can be described by

x(SpR θ)y ⇐⇒ ∀V ∈ θ.(V x = tt =⇒ V y = tt)

Note that SpR θ is always a preorder.
To lift the endofunctor B to the category 5-TS, we define an appropriate

set of (B, 5)-test constructors.

Definition 4.59 For any a ∈ A, define functions

u〈a〉, u[a] : B5 → 5

as follows (compare Definition 4.2):

u〈a〉β =


tt if 〈a, tt〉 ∈ β
err otherwise, if for some a ∈ A, v ∈ {err, tt¬, ff¬}, 〈a, v〉 ∈ β
ff otherwise

u[a]β =


ff¬ if 〈a, ff¬〉 ∈ β
err otherwise, if for some a ∈ A, v ∈ {err, tt, ff}, 〈a, v〉 ∈ β
tt¬ otherwise

We also define a test suite closure, based (for a given set X) on the following
two test constants:

Tx = tt

Fx = ff¬

68 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

the unary test operator

(23V)x =


tt if V x = tt¬
ff if V x = ff¬
err otherwise

and two binary test operators

(V u V ′)x =


tt if V x = tt and V ′x = tt
ff otherwise, if V x, V ′x ∈ {tt, ff}
err otherwise

(V t V ′)x =


ff¬ if V x = ff¬ and V ′x = ff¬
tt¬ otherwise, if V x, V ′x ∈ {tt¬, ff¬}
err otherwise

Definition 4.60 Let θ : X ⇒ 5 be a test suite. The test suite Cl2SX θ is the
smallest test suite ϑ that contains θ and such that

• T, F ∈ ϑ,

• if V ∈ ϑ then 23V ∈ ϑ,

• if V, V ′ ∈ ϑ then V t V ′, V u V ′ ∈ ϑ.

It is straightforward to check that the operations Cl2SX for all sets X form a
test suite closure (henceforth denoted Cl2S) according to Definition 3.31. The
proof is entirely analogous to that for closures Cl∧,Cl∨∧ in Section 4.1.

Definition 4.61 The endofunctor on 5-TS induced by the set of (B, 5)-test
suite constructors {

u〈a〉 : a ∈ A
}
∪
{
u[a] : a ∈ A

}
together with the closure Cl2S, is denoted B2S. Given a B-coalgebra h :
X → BX, the operator corresponding to B2S as defined in Section 3.1.5 is
denoted Φ2S

h .

Analogously to Definition 4.6, one inductively defines a function [[−]]h : (F2S∪
F¬S) → (X → 5) as follows:

[[>]]h = T

[[⊥]]h = F

[[〈a〉φ]]h = u〈a〉 ◦B[[φ]]h ◦ h
[[[a]φ]]h = u[a] ◦B[[φ]]h ◦ h
[[23φ]]h = 23[[φ]]h

[[φ1 ∧ φ2]]h = [[φ1]]h u [[φ2]]h
[[φ1 ∨ φ2]]h = [[φ1]]h u [[φ2]]h

All 5-tests obtained this way are particularly well-behaved. Indeed,

4.6. Nested Semantics 69

Lemma 4.62 For any formula φ ∈ F¬S, and for any x ∈ X, there is [[φ]]hx ∈
{tt¬, ff¬}. For any formula φ ∈ F2S, and for any x ∈ X, there is [[φ]]hx ∈
{tt, ff}.

Proof. Straightforward induction on formulae. 2

Then, analogously to Theorem 4.7, one obtains a correspondence between
formulae and 5-tests.

Theorem 4.63 Let h : X → BX be a coalgebra. For any formula φ ∈ F¬S

and any x ∈ X,
[[φ]]hx = tt¬ ⇐⇒ x |=h φ

For any formula φ ∈ F2S and any x ∈ X,

[[φ]]hx = tt ⇐⇒ x |=h φ

Proof. Again, straightforward induction on formulae, much the same as in the
proof of Theorem 4.7, using Lemma 4.62. 2

The last missing item in the coalgebraic characterization of the 2-nested
simulation preorder is a counterpart of Theorem 4.8. Technical reasons force
us to restrict attention only to LTSs with no stuck processes:

Theorem 4.64 Let h : X → BX be a coalgebra with hx 6= ∅ for all x ∈ X.
The test suite

θ2S = { [[φ]]h : φ ∈ F2S } ∪ { [[φ]]h : φ ∈ F¬S } ∪ {E}

(where E is the test constantly equal err) is the least fixed point of the operator
Φ2S
h .

Proof. To show that θ2S is a prefixed point of Φ2S
h , one needs to check that

it is closed under all operations mentioned in Definitions 4.59–4.60. The only
problematic cases are those of u〈a〉 and u[a]. For any test V : X → 5, assume
V ∈ θ2S and denote V ′ = u〈a〉 ◦ BV ◦ h. If V = [[φ]]h for some φ ∈ F2S, then
V ′ = [[〈a〉φ]]h. If V = E or V = [[φ]]h for some φ ∈ F¬S, then it is straightforward
to check, by definition of u〈a〉 and by Lemma 4.62, that V ′ = E (here the
assumption that always hx 6= ∅ is used). The proof for u[a] is entirely analogous.

To check that θ2S is the least fixed point of Φ2S, proceed by straightforward
structural induction on formulae. 2

Finally, analogously to Corollary 4.9,

Corollary 4.65 Let h : X → BX be a B-coalgebra where hx 6= ∅ for all x ∈ X,
and let k : X → Ω be the coinductive extension of h. Consider k∗ω2S : X ⇒ 5,
the least 5-test suite lifting h to a B2S-coalgebra. Then

v2S= SpR(k∗ω2S)

70 Chapter 4. Van Glabbeek Spectrum Described by Test Suites

Proof. By Theorem 3.12, k∗ω2S is equal to θ2S from Theorem 4.64. Now use
Lemma 4.62, compare the definition of SpR with the definition of v2S and use
Theorem 4.63. 2

The required restriction to LTSs with no stuck processes admittedly gives
the entire construction shown in this section a rather unnatural feeling. Nev-
ertheless, the construction characterizes 2-nested simulation preorder coalge-
braically, and shows that test suites based on test value sets different from 2
can be of use.

A full characterization of B2S-coalgebras analogous to those given in Sec-
tions 4.3 and 4.4 is missing, but it is worthwhile to prove a partial result, as it
is an example of the use of Theorem 3.33 in its full generality, unlike the simple
examples from Section 4.5.

Theorem 4.66 For every B2S-coalgebra

h : 〈X, θ〉 →
〈
BX,B2S

X θ
〉

the relation SpR θ is a reflexive, transitive simulation on h : X → BX.

Proof. Instead of characterizing SpR θ directly, we use Theorem 3.33 with V =
5, V ′ = 2, W = 2S, W′ = Tr, Cl = Cl2S, and Cl′ = Cl∧. To this end, consider
the function z : 5 → 2 defined by

z(x) = tt ⇐⇒ x = tt

and let ζ : 5 ⇒ 2 be {z}.
Two conditions from the statement of Theorem 3.33 must be checked. First,

consider any test suite θ : X ⇒ 5. Elements of Cl∧X Spζ θ are of the form

V = (z ◦ V1) ∧ . . . ∧ (z ◦ Vk) : X → 2

where V1, . . . , Vk ∈ θ. Given such a test V , consider the test V ′ : X → 2 defined
by

V ′ = z ◦ (V1 u . . . u Vk)
and check that V x = tt if and only if V ′x = tt, i.e., V = V ′. Therefore,
Cl∧X Spζ θ ⊆ Spζ Cl2S

X θ.
For the second condition, take any w〈a〉 ∈ Tr. It is straightforward to check

that
z ◦ u〈a〉 = w〈a〉 ◦Bz

This, by Theorem 3.33, means that

h :
〈
X, Spζ θ

〉
→
〈
BX,BS

X Spζ θ
〉

is a valid BS-coalgebra (see Definition 4.5), therefore, by Theorem 4.10 ≤Spζ θ

is a reflexive, transitive simulation on h : X → BX.
On the other hand, it is easy to check that for the relation R ⊆ 5 × 5

defined before, one has R = ≤ζ = Sp≤2
ζ, hence, by the second statement of

Theorem 3.28,
SpR θ = Sp≤2

Spζ θ =≤Spζ θ

which concludes the proof. 2

Chapter 5

From Test Suites to Congruence Formats

In Chapter 4, it was described how to represent various known process pre-
orders and equivalences using coalgebras for suitably chosen endofunctors on
the test suite category 2-TS. To achieve that, only the coalgebraic aspects of
the framework presented in Chapter 3 were used.

In this chapter, solutions presented in Chapter 4 are combined with the
algebraic aspects of the fibrational framework to obtain syntactic formats for
GSOS specifications that guarantee various preorders and equivalences to be
(pre)congruences. The main tool used for this purpose is Theorem 3.13.

In Section 5.1, we show how to lift polynomial syntactic endofunctors to the
category 2-TS in a structured way. This, together with a given lifting of the
behaviour endofunctor, allows to lift the entire GSOS framework along the lines
of Section 3.1.6. In Section 5.2, Theorem 3.13 is rephrased for the special case
of specialization preorders and equivalences for coalgebras in 2-TS, showing a
way to define syntactic formats for various notions of equivalence of processes.
Finally, in Sections 5.3-5.5, this technique is used to derive congruence formats
for the trace, completed trace and failures preorders and equivalences.

5.1 Lifting Syntax to Test Suites

To lift the bialgebraic abstract GSOS framework to the total category 2-TS
along the lines presented in Section 3.1.6, one needs a way to lift the syntactic
and the behaviour endofunctors Σ and B together with the natural transfor-
mation λ. Various ways to lift the behaviour BX = Pf(A × X) were shown
in Chapter 4, now we proceed to show a lifting of polynomial endofunctors,
usually used to model syntax of processes.

We begin by giving concrete descriptions of products and coproducts in
2-TS (see Theorems 3.4 and 3.6).

Lemma 5.1 For any test suites θ : X ⇒ 2, ϑ : Y ⇒ 2,

θ � ϑ =
{

[V, V ′] : V ∈ θ, V ′ ∈ ϑ
}

θ � ϑ = {V ◦ π1 : V ∈ θ } ∪
{
V ′ ◦ π2 : V ′ ∈ ϑ

}
71

72 Chapter 5. From Test Suites to Congruence Formats

Proof. Calculate

θ � ϑ = π∗1θ ∪ π∗2ϑ = {V ◦ π1 : V ∈ θ } ∪
{
V ′ ◦ π2 : V ′ ∈ ϑ

}
θ � ϑ = (ι1)!θ ∩ (ι2)!ϑ = {V : X + Y → 2 : V ◦ ι1 ∈ θ, V ◦ ι2 ∈ ϑ } =

=
{

[V, V ′] : V ∈ θ, V ′ ∈ ϑ
}

2

In the following, it will also be useful to consider another construction on
test suites:

Definition 5.2 Consider any test suites θ : X ⇒ 2, ϑ : Y ⇒ 2. The test suite
θ 1 ϑ : X × Y ⇒ 2 is defined by

θ 1 ϑ =
{
∧ ◦ (V × V ′) : V ∈ θ, V ′ ∈ ϑ

}
where ∧ : 2× 2 → 2 is the logical-and operator.

It is easy to see that 1 is associative, therefore we will omit parentheses
around its use when appropriate.

Intuitively, given test suites θ : X ⇒ 2 and ϑ : Y ⇒ 2, θ�ϑ is the test suite
on X + Y obtained by taking (disjoint) unions of tests from θ on X and ϑ on
Y , θ � ϑ contains the tests on X × Y which consist of either a test from θ on
X or a test from θ on Y ; finally, θ 1 ϑ is the test suite on X × Y consisting of
tests built by performing a test from θ on X and simultaneously performing a
test from ϑ on Y and accepting when both tests accept.

Now we show a structured way of lifting polynomial syntactic endofunctors
to 2-TS.

Definition 5.3 Given a polynomial endofunctor Σ on Set:

ΣX = Xn1 + · · ·+Xnk

define an endofunctor Σ∗ on 2-TS by the following action ΣX : T2X → T2ΣX
for any set X (see Section 3.1.2):

ΣXθ = Cl∨ΣX(θ1ni � · · ·� θ1nk)

where Cl∨ is the closure under all unions of tests (compare Definition 4.4) and
θ1ni denotes θ 1 θ 1 · · · 1 θ︸ ︷︷ ︸

ni times

; in particular θ10 = Set(1, 2) = {−→1 ,
−→
∅ }.

It is easy to check that Cl∨ is indeed a closure according to Definition 3.31.
To check functoriality of Σ∗ (see Section 3.1.2), since Cl∨ is a closure and �
the action of the categorical coproduct on 2-TS, it is enough to check that the
action (−)12 induces an endofunctor, i.e., that for any f : X → Y in Set, and

5.2. Abstract Congruence Formats 73

any 2-test suite θ on Y , one has (f∗θ) 1 (f∗θ) ⊇ (f × f)∗(θ 1 θ). Indeed,
calculate

(f × f)∗(θ 1 θ) = (f × f)∗
{
∧ ◦ (V × V ′) : V, V ′ ∈ θ

}
=

=
{
∧ ◦ (V × V ′) ◦ (f × f) : V, V ′ ∈ θ

}
=

=
{
∧ ◦ ((V ◦ f)× (V ′ ◦ f)) : V, V ′ ∈ θ

}
=

=
{
∧ ◦ (V × V ′) : V, V ′ ∈ f∗θ

}
=

= (f∗θ) 1 (f∗θ)

The following theorem is a crucial property of Σ∗ defined above, and it will
allow to define various congruence formats in later sections. Indeed, varying
the definition of Σ∗ in our framework would lead to the definition of various
formats, but only as long as the following property holds.

Theorem 5.4 For any Σ∗-algebra h : 〈ΣX,ΣXθ〉 → 〈X, θ〉, the specialization
preorder ≤θ is a precongruence, and the specialization equivalence ≡θ a con-
gruence on h : ΣX → X (see Definition 2.17).

Proof. To prove the first statement, let f : Xn → ΣX be one of the coproduct
injections to ΣX, and consider elements x1, y1, . . . , xn, yn ∈ X such that there
is xi ≤θ yi for i = 1, . . . , n. This means that

〈x1, . . . , xn〉 ≤θ1n 〈y1, . . . , yn〉

Observe that the closure operator Cl∨ does not change specialization pre-
orders: for any test suite θ, one has ≤Cl∨ θ=≤θ. Hence

f 〈x1, . . . , xn〉 ≤ΣXθ f 〈y1, . . . , yn〉

Now since h is a morphism 2-TS, we know that h∗θ ⊆ ΣXθ, hence

f 〈x1, . . . , xn〉 ≤h∗θ f 〈y1, . . . , yn〉

and
h(f 〈x1, . . . , xn〉) ≤θ h(f 〈y1, . . . , yn〉)

To prove the second statement, proceed identically, replacing ≤ by ≡ through-
out. 2

Note that by Theorem 3.9, the monad T freely generated by Σ lifts to a
monad T ∗ freely generated by Σ∗.

5.2 Abstract Congruence Formats

The following corollary, based on several results shown previously in this thesis,
expresses abstract conditions on GSOS specifications that guarantee various
operational preorders and equivalences from the van Glabbeek spectrum to be
precongruences (resp. congruences).

74 Chapter 5. From Test Suites to Congruence Formats

Corollary 5.5 Let W ∈ {Tr,CTr,Fl,FlTr,Rd,RdTr,S,RdS,BS} as in Defini-
tion 4.5. Let Λ be an image finite GSOS specification and λ : Σ(Id×B) → BT
(where B = Pf(A × −)) the natural transformation corresponding to Λ along
the lines of Theorem 2.25. If λ lifts to a well-defined natural transformation

λ : Σ∗(Id×BW) → BWT ∗

then the operational preorder vW (the operational equivalence ∼=W) on the LTS
generated by Λ is a precongruence (resp. congruence, see Definition 2.11).

Proof. By Theorem 3.13,

ψ :
〈

ΣT0,ΣT0k
∗ωW

〉
→
〈
T0, k∗ωW

〉
is a valid Σ∗-algebra, where ψ : ΣT0 → T0 is the initial Σ-algebra, k : T0 → Ω
is the coinductive extension of the coalgebraic part of the initial λ-bialgebra
(i.e., by Theorem 2.28, the LTS generated by Λ), and ωW is taken from the
final BW-coalgebra

φ :
〈

Ω, ωW
〉
→
〈
BΩ, BW

Ω ω
W
〉

As a consequence, by Theorem 5.4, the specialization preorder ≤k∗ωW (the
specialization equivalence ≡k∗ωW) is a precongruence (resp. congruence) on
ψ : ΣT0 → T0 (see Definition 2.17). The theorem follows from Corollary 4.9.
2

This result expresses congruence formats for relations from the van Glabbeek
spectrum in an abstract fashion. In the following sections, we provide concrete
syntactic restrictions on GSOS specifications that ensure these abstract require-
ments for W = {Tr,CTr,Fl}.

5.3 Trace Semantics

In this section, based on Corollary 5.5 specialized to the case of W = Tr, we
show a congruence format for trace preorder and equivalence.

Format 5.6 (Tr-format) An image finite set of GSOS rules Λ is in Tr-format,
if for each ρ ∈ Λ:

• all premises of ρ are positive,

• no variable occurs more than once in the left-hand sides of premises and
in the target.

It is easy to see that this format coincides with the well-known de Simone
format [81]. The fact that this syntactic format ensures the trace preorder to
be a precongruence was first proved in [87].

The following standard example, on which all examples in the following
sections will be based, is taken from [5].

5.3. Trace Semantics 75

Example 5.7 Assuming a finite set A of actions, the syntax Σ of the basic
process algebra BPA is defined by the BNF grammar

t ::= 0 | αt | t+t

and the transition system specification BPA over Σ is a collection of rules

αx
α−→ x

x
α−→ x′

x + y
α−→ x′

y
α−→ y′

x + y
α−→ y′

where α ranges over A. When presenting terms over the above syntax, the
trailing 0’s are omitted. It is easy to see that BPA is in the image finite GSOS
format and in the Tr-format.

The following theorem, together with Corollary 5.5, shows that Tr-format
is a precongruence format for trace preorder and a congruence format for trace
equivalence.

Theorem 5.8 Let Λ be an image finite GSOS specification and λ : Σ(Id×B) →
BT the corresponding natural transformation. If Λ is in Tr-format, then

λ : Σ∗(Id×BTr) → BTrT ∗

is a natural transformation in 2-TS.

Proof. It is enough to ensure that given an object 〈X, θ〉 in 2-TS,

λX : Σ∗(〈X, θ〉 ×BTr 〈X, θ〉) → BTrT ∗ 〈X, θ〉

is a morphism in 2-TS; in other words, that for every test V ∈ BTr
TXTXθ, the

test V ◦ λX is an element of the test suite ΣX×BX(θ �BTr
X θ).

To do this, it will be useful to understand the nature of tests in ΣXθ, TXθ
and BTr

TXTXθ, for a given 〈X, θ〉.

Definition 5.9 For a polynomial endofunctor Σ, a set X and a test suite θ :
X ⇒ 2, a basic flat θ-check on ΣX is a term

γ ∈ Σθ

A term t ∈ ΣX passes a basic flat θ-check γ, if t can be obtained from γ by
replacing every V ∈ θ by some x ∈ V .

The test υ(γ) : ΣX → 2 corresponding to a basic flat θ-check γ is defined
by

υ(γ)t =
{

tt if t passes γ
ff otherwise

Tests of this kind will be called basic flat θ-tests on ΣX.

Lemma 5.10 For any Σ, 〈X, θ〉, tests from ΣXθ are exactly all unions of basic
flat θ-tests on ΣX.

76 Chapter 5. From Test Suites to Congruence Formats

Proof. Recall Definition 5.3 and take any test

V ∈ θ1n1 � · · ·� θ1nk

By Lemma 5.1, V = [V1, · · · , Vk], where Vi ∈ θ1ni . Then for every 1 ≤ i ≤ k,

Vi = ∧ ◦ (U1 × · · · × Uni) where Uj ∈ θ

Note that γi = fi 〈U1, . . . , Uni〉 is a basic flat τ -check, and

υ(γi) = [
−→
∅ ,
−→
∅ , . . . , Vi, . . . ,

−→
∅] (Vi on the i-th place)

where fi : Xni → ΣX is the i-th coproduct injection into ΣX. Then

V = [V1, V2, . . . , Vk] = υ(γ1) ∨ υ(γ2) ∨ · · · ∨ υ(γk)

which completes the presentation of V as a union of basic flat θ-tests.
Also any union of basic flat θ-tests belongs to ΣXθ. Indeed, for any basic

flat θ-check γ = fi 〈U1, . . . , Uni〉 one has

v(γ) = [
−→
∅ ,
−→
∅ , . . . ,∧ ◦ (U1 × · · · × Uni), . . . ,

−→
∅] ∈ ΣXθ

and closure under unions is guaranteed by the definition of ΣXθ. 2

Definition 5.11 For a polynomial endofunctor Σ with the freely generated
monad T , a set X and a test suite θ : X ⇒ 2, a basic term θ-check on TX is a
term

γ ∈ Tθ

A term t ∈ TX passes a basic term θ-check γ, if t can be obtained from γ by
replacing every V ∈ θ by some x ∈ V .

The 2-test υ(γ) on TX corresponding to a basic term θ-check γ is defined
by

υ(γ)t =
{

tt if t passes γ
ff otherwise

Tests of this kind will be called basic term θ-tests on ΣX.

Lemma 5.12 For any Σ, 〈X, θ〉, every test in TXθ is a union of basic term
θ-tests on TX.

Proof. Recall from Theorem 3.9 that TXθ is the greatest (with respect to set
inclusion, see Remark 3.23) fixed point of the operator Ψ:

Ψν = [ψX , ηX]!(ΣTXν � θ)

where ψX : ΣTX → TX and ηX : X → TX arise from the free monad structure
of T .

5.3. Trace Semantics 77

Note that in general, the closure Cl∨ in the definition of Σ∗ does not pre-
serve intersections of decreasing ω-chains of test suites. Therefore, it is not
immediately clear whether TXθ can be characterized as

TXθ =
⋂
n∈N

Ψn(Set(TX, 2))

However, this characterization is not needed here. For our purposes, it is enough
to observe that

TXθ ⊆
⋂
n∈N

Ψn(Set(TX, 2))

and this is a general property of the greatest fixed points of monotonic functions
on complete lattices.

The proof proceeds by constructing for all n ∈ N and for any test V ∈
Ψn(Set(TX, 2)), a family Γn(V) of basic term θ-checks from Tnθ such that

V ∧
−−→
TnX =

∨
γ∈Γn(V)

υ(γ)

where TnX denotes the set of Σ-terms of depth at most n.
Given this construction, for any test V ∈ TXθ ⊆

⋂
n∈N Ψn(Set(TX, 2)) one

has
V = V ∧ (

∨
n∈N

−−→
TnX) =

∨
n∈N

(V ∧
−−→
TnX) =

∨
n∈N

∨
γ∈Γn(V)

υ(γ)

which will complete the proof.
The families Γn(V) are constructed by induction on n. For the base case,

take Γ0(V) = ∅ for any V . Indeed,

V ∧
−−→
T0X = V ∧

−→
∅ =

−→
∅ =

∨
γ∈∅

υ(γ)

For the induction step, take a test V ∈ Ψn(Set(TX, 2)). By definition of Ψ
and [ψX , ηX]!,

V ◦ [ψX , ηX] ∈ ΣTXΨn−1(Set(TX, 2)) � θ

therefore, by definition of �, one has V ◦ηX ∈ θ and V ◦ψX ∈ ΣTXΨn−1(Set(TX, 2)).
Note that ηθ(V ◦ ηX) ∈ Tθ is a basic term θ-check on X, and that

υ(ηθ(V ◦ ηX)) = [
−→
∅ , V ◦ ηX]

By Lemma 5.10, for some indexing set I,

V ◦ ψX =
∨
i∈I

υ(δi)

where each δi is a basic flat Ψn−1(Set(TX, 2))-check on ΣTX, i.e.

δi ∈ Σ(Ψn−1(Set(TX, 2)))

78 Chapter 5. From Test Suites to Congruence Formats

For every i ∈ I, assume without any loss of generality that δi = f 〈U1, . . . , Um〉
for some f : Xm → ΣX, m ∈ N and Uj ∈ Ψn−1(Set(TX, 2)) for j = 1, . . . ,m.

By the inductive assumption, for each Uj there exist a family Γn−1(Uj) ⊆
Tn−1θ of basic term θ-checks such that

υ(Uj) ∧
−−−−→
Tn−1X =

∨
u∈Γn−1(Uj)

υ(u)

for j = 1, . . . ,m.
Consider the family of basic term θ-checks

Θi = { f 〈u1, . . . , um〉 ∈ Tθ : uj ∈ Γn−1(Uj) for j = 1, . . . ,m } ⊆ Tnθ

and calculate⋃
γ∈Θi

υ(γ) =
{
f 〈t1, . . . , tm〉 ∈ Tθ : for j = 1, . . . ,m,

tj ∈ υ(uj) for some uj ∈ Γn−1(Uj)
}

=

 f 〈t1, . . . , tm〉 ∈ Tθ : for j = 1, . . . ,m, tj ∈
⋃

u∈Γn−1(Uj)

υ(u)


=
{
f 〈t1, . . . , tm〉 ∈ Tθ : for j = 1, . . . ,m, tj ∈ υ(Uj) ∩ Tn−1X

}
=
{
f 〈t1, . . . , tm〉 ∈ Tθ : for j = 1, . . . ,m, tj ∈ υ(Uj)

}
∩ TnX

= [υ(δi),
−→
∅] ∩ TnX

Now take
Γn(V) =

⋃
i∈I

Θi ∪ {ηθ(V ◦ ηX)}

and check that

V ∧
−−→
TnX = [V ◦ ψX , V ◦ ηX] ∧

−−→
TnX

= ([V ◦ ψX ,
−→
∅] ∧

−−→
TnX) ∨ [

−→
∅ , V ◦ ηX]

=
(∨
i∈I

[υ(δi),
−→
∅] ∧

−−→
TnX

)
∨ υ(ηθ(V ◦ ηX))

=
(∨
i∈I

∨
γ∈Θi

υ(γ)
)
∨ υ(ηθ(V ◦ ηX))

=
∨

γ∈Γn(V)

υ(γ)

This completes the induction step, and the proof of Lemma 5.12. 2

Definition 5.13 For a test suite θ : X ⇒ 2, a positive θ-check on BX is an
expression of the form a I V , where a ∈ A and V ∈ θ. A set β ∈ BX passes
such a check, if there is some 〈a, x〉 ∈ β such that x ∈ V . As in Definition 5.9,

5.3. Trace Semantics 79

the 2-test on BX associated to a positive θ-check c is denoted υ(c) and is called
a positive θ-test.

Similarly, for a given test suite θ on X, a positive term θ-check on BTX is
an expression of the form a I γ, where a ∈ A and γ is a basic term θ-check
on TX. The definition of passing and of the positive term θ-test υ(a I γ) is
as above.

Lemma 5.14 A test in BTr
TXTXθ is either the always true test

−−−→
BTX, or a union

of positive term θ-tests.

Proof. By Definition of BTr, if a test V ∈ BTr
TXTXθ is not equal to

−−−→
BTX, then

V = w〈a〉 ◦BV ′ =
{
β ∈ BTX : 〈a, t〉 ∈ β for some t ∈ V ′

}
for some a ∈ A and V ′ ∈ TXθ. But then, by Lemma 5.12, V ′ is a union of basic
term θ-tests:

V ′ =
∨
i∈I

υ(γi)

hence

V =
⋃
i∈I

{
β ∈ BTX : 〈a, t〉 ∈ β, t ∈ υ(γi)

}
=
⋃
i∈I

υ(a I γi)

2

We are now ready to prove Theorem 5.8. By Lemmas 5.14 and 5.10, it is
enough to show that for any set X and test suite θ : X ⇒ 2, and for any positive
term θ-check a I γ on BTX, there exists a family { δi : i ∈ I } of basic flat
(θ �BTr

X θ)-checks such that

υ(a I γ) ◦ λX =
∨
i∈I

υ(δi)

To achieve this, fix a positive term θ-check a I γ. As shown in the proof
of Theorem 2.26, λX is obtained from functions fX : (X × BX)n → BTX
corresponding to coproduct injections f : Xn → ΣX. A function fX for a given
f is in turn obtained from functions ρX : (X × BX)n → BTX induced from
rules ρ ∈ Λ for f.

For any f ∈ Σ̄, and for any rule ρ ∈ Λ with the conclusion of the form

f(x1, . . . xn) c−→ t

(where c ∈ A, t ∈ TΞ and n is the arity of f), we will construct a family of
basic flat (θ �BTr

X θ)-checks δi such that

υ(a I γ) ◦ [∅,∅, . . . , ρX , . . . ,∅] =
∨
i∈I

υ(δi)

where ∅ denotes the function to BTX constantly equal ∅. By construction of
λX from Theorem 2.26, this will complete the proof of Theorem 5.8.

Consider two cases:

80 Chapter 5. From Test Suites to Congruence Formats

a) c 6= a or t cannot be obtained from γ by replacing each V ∈ θ with some
x ∈ Ξ. This means that the set

ρX(〈〈x1, β1〉 , . . . , 〈xn, βn〉〉)

does not pass the check a I t for any arguments x1, . . . , xn ∈ X and
β1, . . . , βn ∈ BX. Therefore it is enough to take I = ∅ and the empty
family of checks.

b) c = a and t can be obtained from γ by replacing each V ∈ θ with some
x ∈ Ξ. Since by definition of Tr-format no variable occurs in t more than
once, this gives a function ς : Ξ → θ such that γ = tς. Without loss of
generality, assume that ς(x) =

−→
X if x does not occur in t.

Now for each 1 ≤ i ≤ n construct a test Vi ∈ θ �BXθ as follows:

– If xi does not occur in any premise of ρ, then take Vi = ς(xi) ◦ π1.

– If xi occurs on the left side of a positive premise xi
bi−→ yi, then take

Vi = υ(bi I ς(yi)) ◦ π2.

Note that the syntactic restrictions of the Tr-format ensure that the above
definition is complete and unambiguous.

Having defined the tests Vi, consider a basic flat θ �BXθ-check

δρ = f 〈V1, . . . , Vn〉

We will show that

υ(a I γ) ◦ [∅,∅, . . . , ρX , . . . ,∅] = υ(δρ)

To this end, take any

r = 〈〈x1, β1〉 , . . . , 〈xn, βn〉〉 ∈ (X ×BX)n

and check that the following are equivalent:

v(δρ)(fr) = tt

⇐⇒ Vi 〈xi, βi〉 = tt for all 1 ≤ i ≤ n

⇐⇒ For each 1 ≤ i ≤ n, either xi does not occur in any premise and
xi ∈ ς(xi), or xi occurs in a premise xi

bi−→ yi and 〈bi, yi〉 ∈ βi for
some yi ∈ ς(yi)

⇐⇒ The function σ : Ξ → X mapping each xi to xi, and yi to yi (note that
this definition is unambiguous, due to syntactic restrictions of GSOS
format) satisfies the first three of the four conditions described in the
proof of Theorem 2.26 (in particular, due to syntactic restrictions of
Tr-format, all ni = 0 and all mi ∈ {0, 1}). Moreover, σ(x) ∈ ς(x) for
all x ∈ Ξ.

⇐⇒ 〈a, tσ〉 ∈ ρXr. Moreover, υ(γ)(tσ) = tt.
⇐⇒ υ(a I γ)(ρXr) = tt.

This completes the proof of Theorem 5.8. 2

5.4. Completed Trace Semantics 81

5.4 Completed Trace Semantics

In this section, based on Corollary 5.5 specialized to the case of W = CTr, we
show a congruence format for trace preorder and equivalence. Most proofs are
extended versions of analogous proofs from Section 5.3.

First, some useful technical definitions.

Definition 5.15 Let Λ be a set of GSOS rules with the same source. A minimal
blocking set for Λ is a set of literals obtained by choosing a single premise from
each rule in Λ.

Note that if some rules in Λ have no premises then Λ has no minimal blocking
sets.

Definition 5.16 A set B of literals is a CTr-blocking set if either:

• for some x, y ∈ Ξ, a ∈ A, both x
a−→ y and x 6 a−→ belong to B, or

• both conditions below hold:

– for every x, y ∈ Ξ, a ∈ A, if x a−→ y ∈ B then for every b ∈ A there
is some y′ ∈ Ξ such that x b−→ y′ ∈ B, and

– for every x ∈ Ξ, a ∈ A, if x 6 a−→ ∈ B then for every b ∈ A different
from a, x 6 b−→ 6∈ B.

If the first of the above conditions does not hold, the blocking set is called
satisfiable.

In the remainder of this chapter, Λf denotes the set of all rules from Λ
(Λ will be always understood from context) for the construct f, with possibly
renamed variables so that they all have the same source. Similarly, for a set
Q ⊆ A, by ΛfQ we denote those rules in Λf which have an element of Q as the
action in the rule conclusion. Obviously ΛfA = Λf.

Format 5.17 A set of image finite GSOS rules Λ is in CTr-format, if:

1. For each rule ρ ∈ Λ:

• if ρ has a negative premise x 6 a−→, then for every label b ∈ A, ρ has
also the negative premise x 6 b−→,

• no variable occurs more than once in the target of ρ,

• no variable occurs simultaneously in the left-hand side of a premise
and in the target of ρ,

• no variable occurs simultaneously in the left-hand side of a positive
premise and in the left-hand side of any other premise of ρ.

2. For each construct f of the language, every minimal blocking set for Λf

is a CTr-blocking set.

82 Chapter 5. From Test Suites to Congruence Formats

Proposition 5.18 BPA (see Example 5.7) is in CTr-format.

Proof. It is clear that all rules of BPA satisfy condition 1 of CTr-format. For
condition 2, consider a language construct a− corresponding to a ∈ A. Since
the only rule for a−:

ax
a−→ x

has no premises, it does not have any minimal blocking set. For the binary
construct +, the only minimal blocking set for Λ+ is{

x
a−→ x′ : a ∈ A

}
∪
{
y

a−→ y′ : a ∈ A
}

and it is a CTr-blocking set. 2

The following example is taken from [5].

Example 5.19 Assume A = {a, b}, and extend BPA with an operational rule
for the encapsulation operator ∂{b}:

x
a−→ y

∂{b}(x) a−→ ∂{b}(y)

It is easy to check that the above extension of BPA does not respect com-
pleted traces. Indeed, aa + ab ∼=CTr a(a + b) but that ∂{b}(aa + ab) 6vCTr

∂{b}(a(a + b)), since 〈a〉 Ã is a completed trace of ∂{b}(aa + ab), but not of
∂{b}(a(a+ b)).

Proposition 5.20 The semantics for the encapsulation operator ∂ is not in
CTr-format.

Proof. The rule for the encapsulation operator fails to satisfy condition 2 of
CTr-format. Indeed, the set {x a−→ y} is a minimal blocking set for Λ∂{b} , but
it is not a CTr-blocking set. 2

Another example of simple GSOS rules that do not respect completed traces
was described in [87]. Together with Example 5.19, it led the authors of [5] to
speculate that one cannot hope for a general syntactic congruence format for
completed trace equivalence:

Example 5.21 Assume A = {a, b}, and extend BPA with a collection of rules
for binary synchronous composition ×:

x
α−→ x′ y

α−→ y′

x× y
α−→ x′ × y′

where α ranges over A.

Here it is easy to see that aa× (aa+ ab) 6vCTr aa× a(a+ b), since 〈a〉 Ã is
a completed trace of aa× (aa+ ab), but not of aa× (a(a+ b)).

5.4. Completed Trace Semantics 83

Proposition 5.22 The semantics for the synchronous composition is not in
CTr-format.

Proof. The rules for synchronous composition fail to satisfy condition 2 of
CTr-format. Indeed, the set {x a−→ x′, y

b−→ y′} is a minimal blocking set for
Λ×, but it is not a CTr-blocking set. 2

A non-trivial example of a transition system specification in CTr-format is
that of sequential composition.

Example 5.23 Extend BPA with a collection of rules for binary sequential
composition ;:

x
α−→ x′

x; y α−→ x′; y

x 6 a−→ for all a ∈ A y
α−→ y′

x; y α−→ y′

where α ranges over A.

Proposition 5.24 BPA extended with sequential composition is in CTr-format.

Proof. Condition 1 of CTr-format is checked easily. For condition 2, by Propo-
sition 5.18, it is enough to check it for the sequential composition operator.
First, observe that for any minimal blocking set B for Λ; one has{

x
a−→ x′ : a ∈ A

}
⊆ B

Then realize that the only minimal blocking set B that does not contain x 6 a−→
for any a ∈ A (and if it does, it is necessarily CTr-blocking) is{

x
a−→ x′ : a ∈ A

}
∪
{
y

a−→ y′ : a ∈ A
}

which is also CTr-blocking. 2

CTr-format cannot be compared with any other congruence format for com-
pleted trace equivalence, since it is, to the author’s best knowledge, the first
such format published. Note, however, that there are natural examples of
GSOS specifications that behave well with respect to completed trace seman-
tics, but are not in CTr-format, as the following example (pointed out by Rob
van Glabbeek) shows.

Example 5.25 Extend Example 5.23 with a collection of rules for binary
Kleene star ?:

x
α−→ x′

x ? y
α−→ x′; (x ? y)

y
α−→ y′

x ? y
α−→ y′

It is straightforward to check that completed trace equivalence is a congru-
ence for the above rules. However,

Proposition 5.26 BPA extended with the Kleene star is not in CTr-format.

84 Chapter 5. From Test Suites to Congruence Formats

Proof. The first rule in Example 5.25 does not satisfy the third part of condi-
tion 1 of CTr-format. Indeed, the variable x occurs both on the left side of the
premise and in the target of the rule. 2

The following theorem, together with Corollary 5.5, shows that CTr-format
is a precongruence format for completed trace preorder and a congruence format
for completed trace equivalence.

Theorem 5.27 Let Λ be a GSOS specification and λ : Σ(Id × B) → BT the
corresponding natural transformation. If Λ is in CTr-format, then

λ : Σ∗(Id×BCTr) → BCTrT ∗

is a natural transformation in 2-TS.

Proof. Similarly as in the proof of Theorem 5.8, we show that for any 2-test
suite θ on a set X, for every test V ∈ BCTr

TXTXθ there exists a test V ′ ∈ ΣX(θ 1

BCTr
X θ) such that V ◦ λX = V ′.

To this end, recall the characterization of tests in ΣXθ and TXθ given in
Lemmas 5.10 and 5.12.

Definition 5.28 For any set Q ⊆ A, the Q-failure check is denoted Q6 I.
Instead of A6 I, we will often write 6 I. For any set X, a set β ∈ BX passes
the Q-failure check if

β ∩ { 〈a, x〉 : a ∈ Q, x ∈ X } = ∅

For any X, the test on BX associated to the Q-failure check will be denoted
υ(Q6 I), and will be called the Q-failure test.

Lemma 5.29 A test V ∈ BCTr
TXTXθ is either the always true test

−−−→
BTX, or the

A-failure test υ(6 I), or a union of positive term θ-tests.

Proof. By definition of BCTr (see Definition 4.5), if a test V ∈ BCTr
TXTXθ is not

equal to
−−−→
BTX, then either V = w〈a〉◦BV ′ for some V ′ ∈ TXθ, or V = w̃A◦BV ′

for some V ′ ∈ TXθ. In the former case, V is a union of positive term θ-tests,
as shown in Lemma 5.14. In the latter case,

w̃A ◦BV ′ =
−→
{∅} = υ(6 I)

2

To prove Theorem 5.27, it is enough to consider single positive term θ-tests
on BTX, and the A-failure test on BTX. For the positive term tests, proceed
as in the proof of Theorem 5.8, except that when constructing the tests Vi in
case b) consider one additional case:

• If xi occurs in ρ in a negative premise xi 6
a−→ (and hence, it occurs in a

premise xi 6
b−→ for any b ∈ A), then take Vi = υ(6 I) ◦ π2.

5.4. Completed Trace Semantics 85

The syntactic restrictions of condition 1 of CTr-format ensure that the def-
inition of Vi’s extended this way is complete and unambiguous.

The final reasoning following the definition of the Vi’s is changed accord-
ingly:

v(δρ)(fr) = tt

⇐⇒ Vi 〈xi, βi〉 = tt for all 1 ≤ i ≤ n

⇐⇒ For each 1 ≤ i ≤ n, either xi does not occur in any premise and xi ∈ ς(xi),
or xi occurs in a premise xi

bi−→ yi and 〈bi, yi〉 ∈ βi for some yi ∈ ς(yi), or
xi occurs in negative premises xi 6

a−→ for all a ∈ A and βi = ∅

⇐⇒ The function σ : Ξ → X mapping each xi to xi, and yi to yi (note that
this definition is unambiguous, due to syntactic restrictions of the GSOS
format) satisfies the first three of the four conditions described in the
proof of Theorem 2.26 (in particular, due to syntactic restrictions of CTr-
format, all ni ∈ {0, |A|} and all mi ∈ {0, 1}). Moreover, σ(x) ∈ ς(x) for
all x ∈ Ξ.

⇐⇒ 〈a, tσ〉 ∈ ρXr. Moreover, υ(γ)(tσ) = tt.

⇐⇒ υ(a I γ)(ρXr) = tt.

The rest of the argument remains as in the case of Tr-format.
For theA-failure test υ(6 I) onBTX, for any language construct f(x1, . . . , xn)

take any minimal blocking set B for Λf. By condition 2 of the CTr-format, B is
a CTr-blocking set. Assume that B is satisfiable. For each i = 1, . . . , n, define
a test Vi ∈ θ �BCTr

X θ as follows:

• If for no a ∈ A, xi
a−→ y nor xi 6

a−→ belong to B, then take Vi =
−−→
BX ◦ π2.

• If, for all a ∈ A, xi
a−→ y ∈ B, and if for all b ∈ A, xi 6

b−→6∈ B, then take
Vi = υ(6 I) ◦ π2.

• If, for all a ∈ A, xi
a−→ y 6∈ B, and if for some b ∈ A, xi 6

b−→∈ B, then
take Vi = υ(b I

−→
X) ◦ π2.

Note that the definition of a CTr-blocking set ensures that the above definition
is complete and unambiguous.

Now consider the basic flat θ �BCTr
X θ-check

δfB = f 〈Vi, . . . , Vi〉

Recall the definition of the function fX in the proof of Theorem 2.26. We will
now show that ∨

B
υ(δfB) = υ(6 I) ◦ fX

where the union occurs over all satisfiable minimal blocking sets for Λf.

86 Chapter 5. From Test Suites to Congruence Formats

To this end, consider any r ∈ Σ(X ×BX) of the form

r = f 〈〈x1, β1〉 , . . . , 〈xn, βn〉〉

and check that

υ(6 I)fXr = tt

⇐⇒ fXr = ∅

⇐⇒ There is no substitution σ : Ξ → X such that for some rule ρ ∈ Λf,

σxi = xi
∀i ≤ n∀j ≤ mi. 〈aij , σ(yij)〉 ∈ βi
∀i ≤ n∀j ≤ ni∀x ∈ X. 〈bij , x〉 6∈ βi

where mi, ni, aij , bij , yij are taken from ρ.

⇐⇒ There exists a minimal blocking set B for Λf for which there is no substi-
tution σ : Ξ → X such that

σxi = xi, and either
for some xi

a−→ y ∈ B, 〈a, σ(y)〉 ∈ βi, or
for some xi 6

a−→ ∈ B, ∀x ∈ X. 〈a, x〉 6∈ βi

Note that such B is necessarily satisfiable.

⇐⇒ There exists a satisfiable minimal blocking set B for Λf such that for each
i = 1, . . . , n there is Vi(xi, βi) = tt.

⇐⇒ There exists a satisfiable minimal blocking set B for Λf such that υ(δfB) =
tt.

From this, by definition of λ as in the proof of Theorem 2.25,∨
f∈Σ̄

∨
B
υ(dfi) = υ(6 I) ◦ λX

where the inner unions occur over all satisfiable minimal blocking sets for Λf.
This completes the proof of Theorem 5.25. 2

5.5 Failures Semantics

In this section, based on Corollary 5.5 specialized to the case of W = Fl, we
show a congruence format for failures preorder and equivalence. Most proofs
are extended versions of analogous proofs from Sections 5.3 and 5.4.

First, we modify Definition 5.16.

Definition 5.30 A set B of literals is an Fl-blocking set if either

• for some x, y ∈ Ξ, a ∈ A, both x
a−→ y and x 6 a−→ belong to B, or

5.5. Failures Semantics 87

• for every x ∈ Ξ, a ∈ A, if x 6 a−→ ∈ B then no other literal with x on the
left side belongs to B.

If the first of the above conditions does not hold, the blocking set is called
satisfiable.

It is straightforward to check that every CTr-blocking set is an Fl-blocking
set.

Format 5.31 An image finite set of GSOS rules Λ is in Fl-format, if

1. For each rule ρ ∈ Λ:

• no variable occurs more than once in the target of ρ,

• no variable occurs simultaneously in the left-hand side of a premise
and in the target of ρ,

• no variable occurs simultaneously in the left-hand side of a positive
premise and in the left-hand side of any other premise of ρ.

2. For each construct f of the language and for every set Q ⊆ A, every
minimal blocking set for ΛfQ is an Fl-blocking set.

Proposition 5.32 BPA is in Fl-format.

Proof. Again, clearly all rules of BPA (see Example 5.7) satisfy condition 1
of Fl-format. For condition 2, consider a language construct a− corresponding
to a ∈ A. For any Q ⊆ A, if a ∈ Q then take Λa−Q has no minimal blocking
set. If a 6∈ Q, then Λa−Q = ∅ and it has the unique empty minimal blocking
set, which is an Fl-blocking set. For the binary construct +, for any Q ⊆ A,
the only minimal blocking set for Λ+Q is{

x
a−→ x′ : a ∈ Q

}
∪
{
y

a−→ y′ : a ∈ Q
}

and it is a Fl-blocking set. 2

The similar structure of CTr-format and Fl-format might be misleading. In
fact, these formats are quite different, as the following two propositions show
(compare Propositions 5.22 and 5.24).

Proposition 5.33 For A = {a, b}, the semantics for synchronous composition
(see Example 5.21) is in Fl-format.

Proof. Condition 1 of Fl-format is obviously satisfied, and it is enough to check
Condition 2 for the synchronous composition operator ×. Simple analysis of all
minimal blocking sets for any Λ×Q shows that they are all Fl-blocking sets. For
example, if Q = {a} then there are two minimal blocking sets: {x a−→ x′} and
{y a−→ y′}, both Fl-blocking. 2

In [17] it was shown that the failures preorder is not a precongruence for
BPA extended with sequential composition (Example 5.23).

88 Chapter 5. From Test Suites to Congruence Formats

Proposition 5.34 If A contains at least two different labels a, b, then BPA
extended with sequential composition is not in Fl-format.

Proof. Condition 2 of Fl-format fails for the sequential composition operator.
Indeed, take Q = {a}. Then Λ;Q contains two rules and one of its minimal
blocking sets:

{x a−→ x′, x 6 b−→}

is not Fl-blocking. 2

The Fl-format excludes many examples of transition system specifications
that behave well with respect to the failures preorder. Many of these examples
are covered by the ‘failure trace format’ introduced in [17]. However, the latter
format excludes also some examples covered by Fl-format. Indeed, assume
a, b ∈ A and extend BPA with two unary constructs g, h and operational rules

x
α−→ x′

g(x) α−→ h(x′)

x 6 a−→

h(x) b−→ 0

where α ranges over A.

Proposition 5.35 BPA extended with g and h as above, is in Fl-format.

Proof. Condition 1 of Fl-format is obviously satisfied, and it is enough to check
condition 2 for constructs g and h only.

For g, for any Q ⊆ A the only minimal blocking set for ΛgQ is the set{
x

a−→ x′ : a ∈ Q
}

, which is an Fl-blocking set. For h, for any Q ⊆ A, if

b ∈ Q then the only minimal blocking set for ΛhQ is {x 6 a−→}, which is an
Fl-blocking set. If b 6∈ Q, then ΛhQ is empty and its unique empty minimal
blocking set is Fl-blocking. 2

This means that Fl-format is incomparable with the ‘failure trace format’
shown in [17].

The following theorem, together with Corollary 5.5, shows that Fl-format
is a precongruence format for failures preorder and a congruence format for
failures equivalence.

Theorem 5.36 Let Λ be a GSOS specification and λ : Σ(Id × B) → BT the
corresponding natural transformation. If Λ is in Fl-format, then

λ : Σ∗(Id×BFl) → BFlT ∗

is a natural transformation in 2-TS.

Proof. As in Theorems 5.8 and 5.25, we show that for any 2-test suite θ on a
set X, for every test V ∈ BFl

TXTXθ there exists a test V ′ ∈ ΣX(θ 1 BFl
Xθ) such

that V ◦ λ = V ′.
As before, we begin with a characterisation of tests in BFl

TXTXθ:

5.5. Failures Semantics 89

Lemma 5.37 A test V ∈ BFl
TXTXθ is either the always true test

−−−→
BTX, or the

Q-failure test υ(Q6 I) for some Q ⊆ A, or a union of positive term θ-tests.

Proof. As in the proof of Lemma 5.27. 2

The proof proceeds much the same as in Theorem 5.25. For the positive
term tests V on BTX, we proceed as in the proof of Theorem 5.8, except that
when constructing the tests Vi we consider one additional case:

• If xi occurs in ρ in some negative premises, then take Vi = υ(Qi6 I) ◦ π2,
where Qi =

{
a ∈ A : xi 6

a−→ is a premise in ρ
}

.

Again, the syntactic restrictions of condition 1 of Fl-format ensure that the
definition of Vi’s extended this way is complete and unambiguous.

The rest of the argument remains as in the case of Tr-format.
For the Q-failure test υ(Q6 I) for some Q ⊆ A, we proceed as in the proof

of Theorem 5.25, except that we construct the tests Vi in a slightly different
manner:

• If for no a ∈ A xi
a−→ y nor xi 6

a−→ belong to B, then take Vi =
−−→
BX ◦ π2.

• If, for some a ∈ A, xi
a−→ y ∈ B, and if for all b ∈ A, xi 6

b−→6∈ B, then
take Vi = υ(Qi6 I) ◦ π2, where Qi =

{
a ∈ A : ∃y ∈ Ξ. xi

a−→ y ∈ B
}

.

• If, for all a ∈ A, xi
a−→ y 6∈ B, and if for some b ∈ A, xi 6

b−→∈ B, then
take Vi = υ(b I

−→
X) ◦ π2.

(note that the first and the third case are as in the case of CTr-format).
The definition of Fl-blocking set ensures that the above definition is complete

and unambiguous.
The rest of the argument remains the same as in the proof of Theorem 5.25,

except that Λf is replaced with ΛfQ throughout. 2

90 Chapter 5. From Test Suites to Congruence Formats

Chapter 6

Test Suites for Bisimulations on CPOs

In this chapter, the test suite approach is realized in a category of complete
partial orders (cpos) to give a coalgebraic characterization of a version of bisim-
ulation. The use of cpos instead of sets is motivated by semantic considerations
involving recursive operators in process algebras and programming languages.
To give a formal operational description of recursive operators, a simple and
natural idea [70] is not to add them to the language syntax formally, but rather
consider them as abbreviations for their infinite expansions. For example, in
presence of the sequential composition operator ; in the language, the term
loop a might be considered as an abbreviation for the infinite term a; a; a; . . .
This simplifies the semantic description of the language in question, since one
does not need to give any other semantics to the construct loop besides its
definition in terms of the sequential composition operator. However, this comes
for a price: infinite syntactic terms must be considered, and to allow any kind of
inductive reasoning on terms (for example, any kind of denotational semantics),
one needs to consider them as elements of a cpo rather than of a set.

In Chapter 7, we shall investigate how recursive operators can be formally
defined by recursive equations and combined with bialgebraic semantics for the
recursion-free fragment of a language to obtain bialgebraic semantics for the
full language. In this chapter, we focus on applying the test suite approach to
transition systems based on cpos, in order to obtain a coalgebraic character-
ization of a canonical notion of process equivalence. To simplify matters, we
consider unlabelled transition systems.

More specifically, we consider coalgebras for the functor (P0−)⊥ on the
category Acpo⊥ of algebraic, pointed cpos, where P0 is the Plotkin powerdo-
main with empty set. The final coalgebra S for this endofunctor is a simplified
(with labels removed) version of Abramsky’s “domain for bisimulation”. In [2],
Abramsky showed how to interpret any transition system with divergence in S.
He also defined a notion of partial bisimulation and showed that the interpre-
tation in S is fully abstract with respect to the largest partial bisimulation,
i.e. that for any transition system with divergence h with set of processes X,
two processes x, y ∈ X are related by a partial bisimulation if and only if they
have the same interpretation in S. (P0−)⊥-coalgebras are a particular case
of transition systems with divergence, and Abramsky’s interpretation of them
coincides with their coinductive extensions. Therefore, Abramsky’s notion of

91

92 Chapter 6. Test Suites for Bisimulations on CPOs

partial bisimulation provides full abstraction for the final semantics of them.
In this chapter, we shall show that the test suite approach is expressive

enough to abstractly represent the full abstraction result. More specifically, in
Section 6.3 we shall show a lifting of the endofunctor (P0−)⊥ to an endofunctor
PBS on an appropriate test suite category O-TS, such that for any coalgebra h :
D → (P0D)⊥, processes x, y ∈ D are related by an appropriate specialization
preorder of the least test suite lifting h to a PBS-coalgebra if and only if k(x) ≤
k(y), where k : D → S is the coinductive extension of h.

This full abstraction result confirms the expressivity of the test suite frame-
work, and in Section 6.2, we argue that the most popular abstract approach
to coalgebraic bisimulation, the coalgebra span approach, fails to cover full
abstraction for (P0−)⊥-coalgebras.

Encouraged by this, in Sections 6.4–6.6 we show a relational characteriza-
tion of specialization preorders for PBS-coalgebras as cpo-bisimulations. The
characterization is partial, i.e. it does not work for all PBS-coalgebras, but the
full abstraction result can be phrased in terms of this characterization provided
the underlying (P0−)⊥-coalgebra is compact.

6.1 Preliminaries

In this section, we recall some standard notions related to complete partial
orders (cpos) and transition systems with divergence, taken mostly from [2, 68].

Definition 6.1 An (ω-)complete partial order (cpo) is a partial order 〈D,≤〉
(often denoted just D) where all increasing ω-chains x0 ≤ x1 ≤ x2 ≤ · · · have
least upper bounds (lubs), denoted

⊔
D xn (the subscript is omitted where D

is understood). A continuous function between cpos is a monotonic function
that preserves lubs. A cpo with a least element (denoted ⊥) is called pointed.
A continuous function is called strict if it preserves the least element, and very
strict if it preserves and reflects the least element.

Alternative definition of cpo requires lubs of all directed sets, and not only
ω-chains, to exist (e.g. [3]). In the case of countable partial orders, the two
definitions coincide. In the following, we will only consider countable, pointed
cpos.

Definition 6.2 Let D be a cpo. The Scott topology σD contains, as open sets,
subsets X ⊆ D such that

• for any x, y ∈ D, if x ∈ X and x ≤ y then y ∈ X, and

• for any ω-chain x1 ≤ x2 ≤ · · · , if
⊔
xn ∈ X then xn ∈ X for some n ∈ N.

A simpler topology can be defined on any preordered set:

Definition 6.3 Let 〈D,≤〉 be a preorder. The Alexandrov topology A≤ con-
tains, as open sets, subsets X ⊆ D such that for any x, y ∈ D, if x ∈ X and
x ≤ y then y ∈ X. A set X ⊆ D is called ≤-upper if it is open in A≤.

6.1. Preliminaries 93

It is easy to check that both of the above indeed define topologies.

Definition 6.4 Let D be a cpo. An element a ∈ D is called finite if for any
increasing chain x1 ≤ x2 ≤ · · · , if a ≤

⊔
xn then a ≤ xn for some n ∈ N. The

cpo D is algebraic if every element x ∈ D is a lub of some increasing chain of
finite elements.

The set of all finite elements of a cpo D is denoted K(D).

Proposition 6.5 Algebraic, pointed cpos together with continuous, strict func-
tions form a category, in the following denoted Acpo⊥.

Algebraic cpos are closed under many useful constructions [68]. For the
purposes of this chapter, however, it is enough to consider lifting and the Plotkin
powerdomain with empty set [67, 2].

Definition 6.6 Let D be a cpo. The cpo D⊥ is the set {up(d) : d ∈ D }∪{⊥}
with the ordering

x ≤ y ⇐⇒ (x = ⊥) or (∃u, v ∈ D. u ≤ v ∧ x = up(u) ∧ y = up(v))

It is easy to see how this definition extends to a functor (−)⊥ : Acpo⊥ →
Acpo⊥.

We now define the Plotkin powerdomain [67], which is a counterpart of the
powerset construction on sets.

First, for any algebraic cpo D, define a closure operation (−)? on subsets of
D:

X? = { y ∈ D : (∃x ∈ X. x ≤ y) ∧ (∀a ∈ K(D). a ≤ y =⇒ ∃x ∈ X. a ≤ x) }

Subsets of D can be ordered by a modified version of the Egli-Milner ordering
as follows: X .EM Y if and only if

∀x ∈ X. ∀a ∈ K(D). (a ≤ x =⇒ ∃y ∈ Y. a ≤ y) and
∀y ∈ Y. ∃x ∈ X.x ≤ y

Note that the empty set is not related to anything except itself by the ordering
relation .EM.

Finally, we define the Plotkin powerdomain with empty set [2]:

Definition 6.7 Let D be an algebraic cpo. The cpo P0(D) has as elements all
subsets X ⊆ D compact in the Scott topology σD and such that X? = X, with
the ordering relation

X ≤ Y ⇐⇒ X = {⊥} or X .EM Y

In, e.g., [68] it is proved that P0(D) is indeed an algebraic and pointed cpo
(in particular, {⊥} is the least element). It can also be extended to a functor
P0 : Acpo⊥ → Acpo⊥ by putting, for a strict, continuous f : D → E,

(P0f)(X) = { f(x) : x ∈ X }?

94 Chapter 6. Test Suites for Bisimulations on CPOs

When speaking about elements of cpos of the form (P0D)⊥, to simplify the
notation, we will skip the constructor up coming from the lifting functor. This
will not lead to any confusion, as all elements of P0D are presented as sets and
thus are different from ⊥.

From general properties of Acpo⊥ (more specifically, from the fact that
Acpo⊥ is Cppo⊥-enriched and Cpo-algebraically compact (see [29]), from the
limit/colimit coincidence theorem [82], and from local continuity of P0 [68]) it
follows that the endofunctor (P0−)⊥ admits a final coalgebra φ : S → (P0S)⊥,
which is the initial solution to the “domain equation” X ' (P0X)⊥ in the
spirit of [2]. As follows from [68, Chapter 5], the finite elements of S can be
characterized inductively as follows (see also [2, Proposition 3.10]):

Proposition 6.8 The setK(S) of finite elements of the final (P0−)⊥-coalgebra
φ : S → (P0S)⊥ is defined inductively by

• ⊥ = φ−1(⊥) ∈ K(S)

• φ−1(∅) ∈ K(S)

• if a1, . . . , an ∈ K(S) then φ−1({a1, . . . , an}?) ∈ K(S)

In the following, we will consider very strict coalgebras for the endofunctor
(P0−)⊥. Such coalgebras are special instances of the following general notion:

Definition 6.9 A transition system with divergence 〈X,−→, ↑〉 is a set X of
processes, a transition relation −→ ⊆ X ×X and a divergence predicate ↑ ⊆ X.
If for a process x ∈ X it is not the case that x ∈ ↑ (denoted x ↑), we write x ↓.

Any very strict coalgebra h : D → (P0D)⊥ in Acpo⊥ can be viewed as a
transition system with divergence, by taking D \ {⊥} as the set of processes
(with ordering on D ignored), the transition relation defined by

x −→ y ⇐⇒ y ∈ h(x), y 6= ⊥

and the divergence predicate

x ↑ ⇐⇒ ⊥ ∈ h(x)

Along the lines of [2], every transition system with divergence can be canoni-
cally interpreted in the final coalgebra φ : S → (P0S)⊥. For a transition system
obtained from a (P0−)⊥-coalgebra h as above, this interpretation coincides with
the coinductive extension of h. In [2], Abramsky showed a general full abstrac-
tion result, based on the notion of partial bisimulation.

Definition 6.10 A partial bisimulation on a transition system with divergence
〈X,−→, ↑〉 is a relation R ⊆ X ×X such that for every x, y ∈ X, xRy implies:

• ∀x −→ x′. ∃y −→ y′. x′Ry′, and

• x ↓=⇒ y ↓ ∧ ∀y −→ y′. ∃x −→ x′. x′Ry′.

6.2. Coalgebra Spans and Their Limitations 95

The full abstraction theorem proved in [2] says essentially

Proposition 6.11 Take h : D → (P0D)⊥ as a transition system with diver-
gence. If h is finitary, then for any x, y ∈ D, kx ≤ ky (where k : D → S is the
coinductive extension of h) if and only if xRy for some partial bisimulation R
on h.

This characterization works only under the mild condition of finitarity,
which concerns satisfaction of certain axioms in a modal logic, and which we
leave unexplained here. Without this assumption (and not all coalgebras for the
Plotkin powerdomain satisfy it), the characterization is a bit more complicated
(see [2] for details).

The remainder of this chapter attempts to cover this full abstraction result
by a few abstract approaches to bisimulation.

6.2 Coalgebra Spans and Their Limitations

The coalgebra span framework [8, 78] and its ordered version [30, 77] are the
classical abstract coalgebraic approaches to bisimulation. It is therefore tempt-
ing to give an abstract account of the full abstraction result by Abramsky by
analysis of this abstract approach. In this section we briefly recall the coalgebra
span approach (for a comprehensive treatment, see [78, 30]) and observe that
it is not entirely appropriate for our purposes.

Definition 6.12 Let F be any endofunctor on a category C, and let h : X →
FX be a coalgebra. A (span) bisimulation on h is an object R together with
two morphisms p, q : R → X such that there exists a coalgebra structure
r : R→ FR that makes p and q into coalgebra morphisms:

X

h
��

R

r

��

poo q // X

h
��

FX FR
Fp

oo
Fq

// FX

With the assumption that F admits final coalgebras, general results about
(span) bisimulations say that the final semantics (the coinductive extension)
is always sound with respect to the above notion of bisimulation. Speaking
more concretely, in the case of C = Acpo⊥, bisimulations R on a coalgebra
h : X → BX can be seen as binary relations on X, with p, q being projections
on X. The soundness result then means that if two elements x, y ∈ X are
related by any bisimulation, then kx = ky, where k : X → Ω is the coinductive
extension of h.

If, moreover, C has kernel pairs (which is the case for C = Acpo⊥) and if
weak kernel pairs are preserved by F , then the kernel pair of k is a bisimulation
and the final semantics is fully abstract. For C = Acpo⊥, this means that for
any x, y ∈ X, if kx = ky then x and y are related by some (span) bisimulation
(indeed, by the kernel pair of k).

96 Chapter 6. Test Suites for Bisimulations on CPOs

Unfortunately, it turns out that endofunctors P0, (P 0−)⊥ : Acpo⊥ →
Acpo⊥ do not preserve weak kernel pairs due to convexity phenomena. In-
deed, as was probably discovered by Plotkin,

Counterexample 6.13 There exists a coalgebra h : X → (P0X)⊥ such that
the kernel pair of the coinductive extension k : X → S of h is not a span
bisimulation.

Proof. To simplify the notation, define the following (finite) elements of S:

x1 = φ−1({⊥})
x2 = φ−1({x1})
x3 = φ−1({x2})
z = φ−1({x1, x2, x3}?)

Note that x1 ≤ x2 ≤ x3 in S, hence {x1, x3}? = {x1, x2, x3}?.
Now define a cpo D as the set

{⊥, a, b, a1, a2, a3, b1, b3}

with the ordering
x ≤ y ⇐⇒ x = ⊥ ∨ x = y

(i.e., D is flat).
Consider the (very strict) coalgebra structure h : D → (P0D)⊥ defined by

⊥ 7→ ⊥
a 7→ {a1, a2, a3}
b 7→ {b1, b3}
a1 7→ {⊥}
a2 7→ {a1}
a3 7→ {a2}
b1 7→ {⊥}
b3 7→ {a2}

Let k : D → S be the coinductive extension of h. It is easy to check that
k(a1) = k(b1) = x1, k(a3) = k(b3) = x3 and k(a2) = x2. Also k(a) =
φ−1({k(a1), k(a2), k(a3)}?) = z and k(b) = φ−1({k(b1), k(b3)}?) = z (note how
convexity comes into play here).

Consider the kernel relation R of k and assume a coalgebra structure r :
R → (P0R)⊥ such that makes the projections π1, π2 : R → D into coalgebra
morphisms:

R
π1 //
π2

//

r
��

D
k //

h
��

S

φ
��

(P0R)⊥
(P0π1)⊥//

(P0π2)⊥

// (P0D)⊥
(P0k)⊥

// (P0S)⊥

Note that 〈a, b〉 ∈ R and

(P0π1)⊥r 〈a, b〉 = h(π1 〈a, b〉) = {a1, a2, a3}
(P0π2)⊥r 〈a, b〉 = h(π2 〈a, b〉) = {b1, b3}

6.2. Coalgebra Spans and Their Limitations 97

This implies that 〈a2, b1〉 ∈ r 〈a, b〉 or 〈a2, b3〉 ∈ r 〈a, b〉. On the other hand,
r 〈a, b〉 ∈ (P0R)⊥, hence r 〈a, b〉 ⊆ R. This means that 〈a2, b1〉 ∈ R or 〈a2, b3〉 ∈
R, which gives a contradiction, since k(a2) 6= k(b1), k(b3). 2

This counterexample shows that the original coalgebra span approach does
not lead to the full abstraction result for the final semantics of (P0−)⊥-coalgebras.

In the ordered setting, another version of the coalgebra span approach has
been considered, based on the notion of ordered bisimulation [79, 30, 77]. There,
one works in a Pos-enriched category, i.e., a category where all homsets carry
a partial order structure and where composition is monotonic (for a general
treatment of enriched category theory, see [49]). Obviously Acpo⊥ is such a
category.

In Pos-enriched categories, the standard notion of kernel pair can be gen-
eralized to the notion of ordered kernel pair. We define this notion after [30]:

Definition 6.14 In a Pos-enriched category C, an object C with two mor-
phisms p, q : C → D is a ordered kernel pair of a morphism k : D → E if
k ◦ p ≤ k ◦ q and if for any p′, q′ : C ′ → D such that k ◦ p′ ≤ k ◦ q there exists
a unique r : C ′ → C such that p′ ◦ r ≥ p and q′ ◦ r = q. If the uniqueness
condition is dropped, then C, p, q is a weak ordered kernel pair of k.

In Acpo⊥ all ordered kernel pairs exist, and the ordered kernel pair of a
continuous k : D → E is the set of pairs 〈x, y〉 ∈ D ×D such that kx ≤ ky in
E, ordered by the componentwise order inherited from D.

The notion of span bisimulation from Definition 6.12 can be generalized, in
the ordered setting, to

Definition 6.15 Let F be a locally monotonic (i.e., monotonic on homsets)
endofunctor on a category C, and let h : X → FX be a coalgebra. An ordered
bisimulation on h is an object R together with two morphisms p, q : R→ X such
that there exists a coalgebra structure r : R → FR that makes the following
diagram commute:

X

≤h
��

R

r

��

poo q // X

h
��

FX FR
Fp

oo
Fq

// FX

An abstract theorem from [77] states that if C has ordered kernel pairs and
if F preserves weak ordered kernel pairs, then the ordered kernel pair of the
inductive extension k of any F -coalgebra h : D → FD is an ordered bisimulation
on h. For C = Acpo⊥ this means that for any x, y ∈ D, kx ≤ ky if and only if
x and y are related by some ordered bisimulation.

This result seems quite similar to the Abramsky’s full abstraction theorem
(Proposition 6.11). Unfortunately, contrary to what was speculated in [77], the
Plotkin powerdomain functor does not preserve weak ordered kernel pairs due
to a limiting phenomenon, and indeed:

98 Chapter 6. Test Suites for Bisimulations on CPOs

Counterexample 6.16 There exists a coalgebra h : X → (P0X)⊥ such that
the ordered kernel pair of the coinductive extension k : X → S of h is not an
ordered bisimulation.

Proof. To simplify the notation, define the following infinite sequence of ele-
ments x1, x2, x3, . . . of S:

x1 = φ−1({⊥})
x2 = φ−1({x1})
x3 = φ−1({x2})
...

These elements form an increasing chain: x1 ≤ x2 ≤ x3 ≤ · · · . Moreover,
denote

xω =
⊔
n∈N xn

z = φ−1({⊥, x1, x2, x3, . . . , xω}?)

Note that {⊥, x1, x2, x3, . . .}? = {⊥, x1, x2, x3, . . . , xω}?.
Now define a cpo D as the set

{⊥, a, b, c1, c2, c3, . . . , cω}

with the ordering
x ≤ y ⇐⇒ x = ⊥ ∨ x = y

(i.e., D is again flat).
Consider the (very strict) coalgebra structure h : D → (P0D)⊥ defined by

⊥ 7→ ⊥
a 7→ {⊥, c1, c2, c3, . . .}
b 7→ {⊥, c1, c2, c3, . . . , cω}
c1 7→ {⊥}
cn 7→ {cn−1} for n > 1
cω 7→ {cω}

Let k : D → S be the coinductive extension of h, and let R denote the relation
on D corresponding to the ordered kernel pair of k (i.e., xRy iff k(x) ≤ k(y).)

As observed in [30], ordered bisimulations on P0-coalgebras with flat carriers
are partial bisimulations on the respective transition systems with divergence.
However, here R is not a partial bisimulation. Indeed, it is easy to see that:

k(cn) = xn for n ∈ N
k(cω) = xω
k(a) = z
k(b) = z

In particular, bRa. However, cω ∈ h(b) and there is no element x ∈ h(a) such
that xRcω, therefore the first condition in Definition 6.10 fails for R.

As a side remark, this means that the above coalgebra h is not finitary in
the sense of [2], since the simple characterization from Proposition 6.11 does
not work for it. 2

6.3. Test Suite Approach 99

This counterexample shows that the ordered coalgebra span approach does
not lead to a full abstraction result for the final semantics of (P0−)⊥-coalgebras
either. Note that the counterexample does not contradict the abstract charac-
terizations given by Pitts in [66], as they only concern the “internal full ab-
straction” of the final coalgebra, with no regard to the final semantics of other
coalgebras.

In the remainder of this chapter, we show how the test suite approach
described in Chapter 3 can be used for the abstract treatment of bisimulations
on cpos.

6.3 Test Suite Approach

To define an appropriate notion of bisimulation on cpos abstractly, we use the
test suite framework described in Chapter 3, specialized to the case C = Acpo⊥.
We let the test value object V be the Sierpinski space O, defined by

O = {ff, tt} with the ordering ff ≤ tt

This gives rise to the category of O-test suites O-TS, along the lines of Defini-
tion 3.1.

For a specialization functor construction, consider the partial order R on O
equal to the ordering relation of O. When considered as an object of a suitable
relation category, this yields a specialization preorder construction along the
lines of Theorem 3.24. In elementary terms, the specialization preorder ≤θ for
a test suite θ : D ⇒ O is defined by

x ≤θ y ⇐⇒ ∀V ∈ θ. V x = tt =⇒ V y = tt

(compare Example 3.25).
To lift the endofunctor (P0−)⊥ to the category O-TS we provide a set of

((P0−)⊥,O)-test constructors (i.e. continuous, strict functions from (P0O)⊥ to
O) and a closure, as described in Section 3.3.3.

First, recall that (P0O)⊥ is the cpo
{tt}

∅ {ff, tt}

OO

{ff}

``AAAAAAAA

::uuuuuuuuu

⊥

OO

For any pointed cpo D, O-tests on D correspond to Scott-open subsets of the
(not necessarily pointed) cpo D \ {⊥} (note that strictness of O-tests prevents
the entire cpo D from being identified with any test). As in Notation 4.1, we

100 Chapter 6. Test Suites for Bisimulations on CPOs

introduce a special notation for this correspondence:

V = {x ∈ D : V x = tt } for V : D → O strict
−→
Xx =

{
tt if x ∈ X
ff otherwise

for X D Scott-open

We will be, however, more sloppy when speaking about entire test suites, and we
will not distinguish between test suites and families of the corresponding sets.
In particular, we will sometimes say that a set (rather than the corresponding
test) belongs to a test suite. This should not lead to any confusion.

Consider the following test constructors, i.e. strict functions from (P0O)⊥
to O:

w2 =
−−−−−−→
{∅, {tt}}

w3 =
−−−−−−−−−−−→
{{ff, tt}, {tt}}

Since O-tests on D correspond to Scott-open subsets of D \ {⊥}, it is valid
to consider for any D the closure operator CltD, that given an O-test suite θ on
D, returns the smallest topology on D \ {⊥} that contains θ. Since elements of
θ are guaranteed to be Scott-open, the topology CltD θ is always a subtopology
of the Scott topology σD\{⊥}.

It is easy to verify that the operators CltD form a test suite closure Clt in
the sense of Definition 3.31. Indeed, the proof proceeds exactly as in the case of
Cl∨∧ on sets, in Section 4.1. Now we are ready to lift the endofunctor (P0−)⊥
to the category O-TS:

Definition 6.17 The endofunctor on O-TS induced by the set of ((P0−)⊥,O)-
test constructors {w2, w3} and by the closure Clt is denoted PBS.

This particular lifting of (P0−)⊥ to O-TS might seem a bit arbitrary, but is
well motivated by the following results. From Theorem 3.11 it follows that the
final (P0−)⊥-coalgebra φ : S → (P 0S)⊥ can be lifted to a final PBS-coalgebra
φ : 〈S, ω〉 →

〈
(P 0S)⊥,PBS

S ω
〉
, where ω is the least (with respect to inclusion)

fixed point of the operator Φφθ = φ∗PBS
S θ.

Theorem 6.18 Under the above notation, ω = σS\{⊥}.

Proof. The inclusion ω ⊆ σS\{⊥} is trivial. For the other inclusion use the
fact that ω is a topology and that sets of the form a↑= {x ∈ S : a ≤ x } for
a ∈ K(S) form a basis for the Scott topology σS . It is therefore enough to show
that all such sets (except S itself) are contained in ω. To this end, we proceed
by structural induction on finite elements of S, using Proposition 6.8.

For a = φ−1(∅), consider the test

W = w2 ◦ (P0−→∅)⊥ ◦ φ

Note that (w2◦(P0
−→
∅)⊥)z = tt if and only if z = ∅, hence φ−1(∅) = W . Clearly

W ∈ ω.

6.3. Test Suite Approach 101

For a = φ−1{⊥, a1, . . . , an}?, assume tests V1, . . . , Vn ∈ ω such that Vi = ai↑
for i = 1, . . . , n and consider the test

W =
n∧
i=1

(w3 ◦ (P0Vi)⊥ ◦ φ)

Observe that Wx = tt if and only if for every i = 1, . . . , n there is some
x′ ∈ φ(x) such that ai ≤ x′. Since all ai’s are finite, this amounts exactly to
saying that {⊥, a1, . . . , an}? ≤ φ(x) in (P0S)⊥.

For a = φ−1{a1, . . . , an}?, where ai 6= ⊥, V1, . . . , Vn ∈ ω such that Vi = ai↑
for i = 1, . . . , n and consider the test

W =

(
n∧
i=1

(w3 ◦ (P0Vi)⊥ ◦ φ)

)
∧

(
w2 ◦ (P0

n∨
i=1

Vi)⊥ ◦ φ

)
Here, Wx = tt if and only if

• for every i = 1, . . . , n there is some x′ ∈ φ(x) such that ai ≤ x′, and

• for every x′ ∈ φ(x) there is some i = 1, . . . , n such that ai ≤ x′.

Again, this is equivalent to saying that {a1, . . . , an}? ≤ φ(x) in (P0S)⊥. This
concludes the inductive step. 2

Note how the constructions used in this proof resemble the logical construc-
tions used in the Definability Theorem 4.9 in [2].

Recall from Theorem 3.12 that for any coalgebra h : D → (P 0D)⊥ with the
coinductive extension k : D → S, the test suite k∗ω is the least test suite that
lifts h to a PBS-coalgebra. On the other hand,

Lemma 6.19 For any elements x, y ∈ D, x ≤k∗σS\{⊥} y if and only if k(x) ≤
k(y).

Proof. It is routine to show that for (any) cpo S, the specialization preorder
≤σS is equal to the ordering relation on S. Since S 6= {⊥}, this also applies to
≤σS\{⊥} . Now

x ≤k∗σS\{⊥} y ⇐⇒
∀V ∈ k∗σS\{⊥}. V x = tt =⇒ V y = tt ⇐⇒
∀V ′ ∈ σS\{⊥}. V (k(x)) = tt =⇒ V (k(y)) = tt ⇐⇒
k(x) ≤σS\{⊥} k(y) ⇐⇒
k(y) ≤ k(y)

2

Theorem 6.18 and Lemma 6.19 show that final semantics is indeed fully
abstract with respect to the abstract notion of “bisimulation” defined as the
specialization preorder of a PBS-coalgebra.

This chapter might well end here; it has been shown that the test suite ap-
proach is expressive enough to cover a canonical (i.e. leading to full abstraction
of the final semantics) process equivalence on transition systems based on cpos.

102 Chapter 6. Test Suites for Bisimulations on CPOs

However, for a better understanding of our abstract notion of process equiv-
alence we look for a concrete, relational description of PBS-coalgebras. The
remainder of this chapter is devoted to finding such a characterization.

6.4 Preorders and Topologies on CPOs

We begin with a general characterization of those relations on cpos that are
specialization preorders of subtopologies of Scott topologies.

We will consider preorders R on D, where 〈D,≤〉 is an algebraic cpo. We
will always assume that ≤ ⊆ R. This will not cause any loss of generality, since
specialization preorders of subtopologies of Scott topologies are neccessarily
coarser than the ordering relations of the underlying cpos.

Some basic notation will be useful:

x↑R = {y ∈ D | xRy}
x↓R = {y ∈ D | yRx}

In the following definition always x, y ∈ D and a, b ∈ K(D).

Definition 6.20 A preorder R is called finitary, if

∀x, y.(∀a.aRx⇒ aRy) =⇒ xRy

It is called strongly finitary, if

∀x, y.(∀a ≤ x.aRy) =⇒ xRy

It is called weakly algebraic, if

∀a, y.aRy =⇒ ∃b ≤ y.aRb

It is called algebraic, if

∀x, y.(xRy ⇐⇒ ∀a ≤ x.∃b ≤ y.aRb)

Lemma 6.21 The properties of finitarity (F), strong finitarity (SF), weak al-
gebraicity (WA) and algebraicity (A) are related by the following implications:

F ⇐= SF ⇐= (F ∧WA) ⇐⇒ A

Proof. The implication SF =⇒ F is obvious, since ≤ ⊆ R. To show that
F ∧WA =⇒ SF, fix x, y ∈ D and assume that for all finite a ≤ x we have aRy.
Take any finite b such that bRx. By weak algebraicity, there is a finite a ≤ x
such that bRa, hence by the above assumption and by transitivity of R, bRy.
This works for arbitrary finite b such that bRx, hence by finitarity, xRy.

For the equivalence F∧WA ⇐⇒ A, note that by the previous implications,
in presence of weak algebraicity, finitarity is equivalent to strong finitarity. It
therefore enough to prove that SF ∧WA ⇐⇒ A.

6.4. Preorders and Topologies on CPOs 103

For the right-to-left implication, assume R algebraic. It is then obviously
weakly algebraic (take x = a in the definition of algebraicity). To prove strong
finitarity, assume ∀a ≤ x.aRy. Applying algebraicity for every finite a ≤ x, one
gets

∀a ≤ x.∃b ≤ y.aRb

hence by algebraicity, xRy.
For the left-to-right implication, assume R strongly finitary and weakly

algebraic, and for all x, y ∈ D show both directions of

xRy ⇔ ∀a ≤ x.∃b ≤ y.aRb)

⇒: Assume xRy. Take any a ≤ x. Since ≤ ⊆ R, by transitivity aRy. By
weak algebraicity there exists b ≤ y such that aRb.

⇐: Assume ∀a ≤ x.∃b ≤ y.aRb. Since ≤ ⊆ R, by transitivity of R there is

∀a ≤ x.aRy

which, by strong finitarity, gives xRy. 2

Any preorder R on D can be canonically extended to the least strongly
finitary preorder that contains R, as follows from

Lemma 6.22 For any family {Ri}i∈I of strongly finitary preorders on D, the
relation

R =
⋂
i∈I

Ri

is a strongly finitary preorder.

Proof. Reflexivity and transitivity of R is straightforward. So is strong fini-
tarity:

∀a ∈ K(D).(a ≤ x⇒ aRy) =⇒
∀i ∈ I.∀a ∈ K(D).(a ≤ x⇒ aRiy) =⇒ (Ri strongly finitary)
∀i ∈ I.xRiy =⇒
xRy

2

From this it easily follows that for any preorder R on D, the intersection of
all strongly finitary preorders R′ such that R ⊆ R′ is the least strongly finitary
extension of R.

We proceed to characterize those preorders on cpos that are specialization
preorders of subtopologies of the Scott topology, as strongly finitary preorders.
Also for any preorder R on a cpo D, we find a topology θR for which the
specialization preorder is somehow related to R (more precisely, it is the least
strongly finitary extension of R).

In the following, by a topology we mean a subtopology of the Scott topology
on a given algebraic cpo.

104 Chapter 6. Test Suites for Bisimulations on CPOs

Lemma 6.23 For any topology θ on D, the specialization preorder ≤θ is
strongly finitary.

Proof. Take any x, y ∈ D and assume for all finite a ≤ x, a ≤θ y. Take any
V ∈ θ such that x ∈ V . Since V is Scott-open (and D is algebraic), it contains
some finite a ≤ x, so by the assumption it also contains y. 2

Definition 6.24 For any preorder R on D, let θR denote the intersection of
the Scott topology on D \ {⊥} and the Alexandrov topology of R.

Obviously θR is a topology in our sense, i.e., a subtopology of the Scott
topology on D.

Lemma 6.25 If R on D is strongly finitary then ≤θR
= R.

Proof. ⊇: Assume xRy and take any V ∈ θR such that x ∈ V . Since V is
by definition R-upper, also y ∈ V . Note that strong finitarity of R is not used
here.

⊆: First note that strong finitarity of R amounts to saying that for any
y ∈ D, the set y↓R is Scott-closed.

Now take x, y ∈ D such that xR/ y. It is enough to exhibit a Scott-open,
R-upper set V such that x ∈ V and y 6∈ V . Take V = D \y↓R. It is Scott-open,
because y↓R is Scott-closed. It is also obviously R-upper, and y 6∈ V . Since
xR/ y, also x ∈ V , hence x 6≤θR

y. 2

Lemmas 6.23 and 6.25 give a correspondence between topologies on D and
strongly finitary preorders on D. This correspondence is in fact even stronger:

Theorem 6.26 For any preorder R on D, ≤θR
is the least strongly finitary

extension of R.

Proof. First, note that the construction of θR from θ is reverse monotonic, i.e.,
if R ⊆ R′ then θR ⊇ θR′ . (It is enough to observe that if R ⊆ R′ then every
R′-upper set is R-upper.) Also the construction of specialization preorder ≤θ
from a topology θ is reverse monotonic, as is easily checked. As a conclusion,
the construction of ≤θR

from R is monotonic.
Now for any R, the preorder ≤θR

is strongly finitary by Lemma 6.23 and
extends R (see the first half of the proof of Lemma 6.25). Now let S be the
least strongly finitary extension of R (it exists by Lemma 6.22). Obviously
S ⊆≤θR

. On the other hand, since R ⊆ S, by the above monotonicity observa-
tions ≤θR

⊆≤θS
= S (the last equality holds by Lemma 6.25). 2

If R is weakly algebraic, ≤θR
can be characterized without explicit use of

topologies:

Theorem 6.27 For any weakly algebraic preorder R on D, the preorder RF

defined by
xRF y ⇐⇒ (∀a ∈ K(D). aRx⇒ aRy)

is the least strongly finitary extension of R and is algebraic.

6.5. Compact Coalgebras 105

Proof. Reflexivity and transitivity of RF is obvious. To show that R ⊆ RF ,
check

xRy ⇒ (∀a ∈ K(D). aRx⇒ aRy) ⇐⇒ xRF y

To show that RF is algebraic (and strongly finitary), check that it is finitary
and weakly algebraic and use Lemma 6.21. For finitarity, consider any x, y ∈ D
and assume that aRFx ⇒ aRF y for all a ∈ K(D). Then if bRx for some
b ∈ K(D), also bRFx (see above) and, by the assumption, bRF y. Now let
x = a = b in the definition of RF to see that bRy. This works for arbitrary
b ∈ K(D), hence by definition, xRF y and RF is finitary.

For weak algebraicity of RF , consider any a ∈ K(D) and y ∈ D such that
aRF y. In particular, as a is finite, one has aRy (take x = a in the definition
of RF). Since R is weakly algebraic, there exists a finite b ≤ y such that aRb,
and since R ⊆ RF , also aRF b.

It remains to be checked RF is the least strongly finitary extension of R.
To this end, consider any strongly finitary preorder S such that R ⊆ S and
calculate, for any x, y ∈ D,

xRF y ⇐⇒ (∀a.aRx⇒ aRy) =⇒ (∀a.a ≤ x⇒ aSy) =⇒ xSy

using the assumption that ≤ ⊆ R ⊆ S. 2

6.5 Compact Coalgebras

In the previous section, we obtained a characterization of those preorders on
algebraic cpos that are specialization preorders of subtopologies of the Scott
topology. This is the first step of a characterization of the specialization pre-
orders of test suites taken from PBS-coalgebras (these test suites are necessarily
subtopologies of the Scott topology).

When looking for such a characterization in the next section, we will decide
to restrict our attention only to those topologies for which the specialization
preorders are weakly algebraic, leaving other topologies not treated. This leads
to an important question: what conditions should be imposed on a coalgebra h
that would guarantee the specialization preorder of the topology k∗σS (where
S is the final coalgebra and k is the coinductive extension of h) to be weakly
algebraic? This question must be tackled, as the topology k∗σS is the source of
full abstraction for the final semantics (see Lemma 6.19). To this end, we give
some simple definitions.

Definition 6.28 A coalgebra h : D → (P0D)⊥ is compact if the coinductive
extension k of h preserves finite elements.

The name compact was borrowed from the study [6] on cpo models for GSOS
languages.

Definition 6.29 A topology θ on an algebraic cpo D is closed under finitary
intersections, if for any finite a ∈ D, we have a↑≤θ∈ θ.

106 Chapter 6. Test Suites for Bisimulations on CPOs

Note that, by definition, a↑≤θ is the intersection of all V ∈ θ such that
a ∈ V . This justifies the name “closed under finitary intersections”. The two
notions defined above are linked by

Lemma 6.30 If h : D → (P0D)⊥ is compact then k∗σ is closed under fini-
tary intersections, where σ is the Scott topology on S and k : D → S is the
coinductive extension of h.

Proof. Recall that k∗σ can be viewed as an O-test suite on D. Now

a↑≤k∗σ = {x ∈ D | a ≤k∗σ x}
= {x ∈ D | ∀V ∈ k∗σ.V (a) ≤ V (x)}
= {x ∈ D | ∀V ′ ∈ σ.V ′(k(a)) ≤ V ′(k(x))}
= {x ∈ D | k(a) ≤ k(x)}
= {x ∈ D | k(x) ∈ k(a)↑}

=
−−−→
k(a)↑ ◦ k

Since k preserves finite elements, k(a) is finite, hence

k(a)↑∈ σ
−−−→
k(a)↑ ◦ k ∈ k∗σ

2

The following easy lemmas show that topologies closed under finitary inter-
sections correspond to weakly algebraic preorders:

Lemma 6.31 If a topology θ on D is closed under finitary intersections then
the specialization preorder ≤θ is weakly algebraic.

Proof. Assume θ closed under finitary intersections. In particular, for any
finite a ∈ D, the set a ↑≤θ is Scott-open. Weak algebraicity of ≤θ is now
straightforward. 2

Lemma 6.32 If a preorder R on D is weakly algebraic, then for every a ∈
K(D), x ∈ D,

a ≤θR
x ⇐⇒ aRx

Proof. Assume R weakly algebraic.
⇐=: see proof of Lemma 6.25.
=⇒: Assume a ≤θR

x. It means that for any V ∈ θR, if a ∈ V then x ∈ V .
Consider the set a↑R. It is obviously R-upper, and by weak algebraicity of R,
also Scott-open, so it belongs to θR, hence x ∈ a↑R and aRx. 2

Lemma 6.33 If a preorder R on D is weakly algebraic then the topology θR
is closed under finitary intersections.

6.6. CPO-Bisimulations 107

Proof. We need to show that for any finite a ∈ D, the set a↑≤θR is Scott-open
and R-upper. Since R is weakly algebraic, by Lemma 6.32 there is

a↑≤θR = a↑R

The set on the right hand side is clearly R-upper, and its Scott-openness is
straightforward by weak algebraicity of R. 2

6.6 CPO-Bisimulations

Now we proceed to give a relational characterization of those topologies θ on D
which lift a given coalgebra h : D → (P0D)⊥ to a PBS-coalgebras on O-TS. To
simplify matters, we restrict attention only to topologies closed under finitary
intersections. This restriction, by Lemma 6.30, does not prevent the topology
k∗σ from being characterized if h is a compact coalgebra.

Definition 6.34 A preorder R on D is a cpo-bisimulation on a very strict
coalgebra h : D → (P0D)⊥ if ≤ ⊆ R and if for all x, y ∈ D if xRy then

• ∀x′ ∈ hx.∀a ∈ K(D).(a ≤ x′ =⇒ ∃y′ ∈ hy.aRy′)

• if ⊥ 6∈ hx then

– ⊥ 6∈ hy
– ∀y′ ∈ hy.∃x′ ∈ hx.x′Ry′

Lemma 6.35 If R is a cpo-bisimulation on h : D → (P0D)⊥ then the topology
θR lifts h to a PBS-coalgebra.

Proof. Assume R a cpo-bisimulation and take any O-test V ∈ θR. By defini-
tion of PBS, it is enough to check that w2◦(P0V)⊥◦h ∈ θR and w3◦(P0V)⊥◦h ∈
θR.

First consider the test W2 = w2 ◦ (P0V)⊥ ◦ h. By definition it is strict and
continuous, hence W2 is Scott-open on D \ {⊥} and it is enough to check that
it is R-upper. Take x, y ∈ D such that W2x = tt and xRy. By definition of
W2, for all x′ ∈ hx there is V x = tt. In particular, ⊥ 6∈ hx. Since R is a
cpo-bisimulation, this means that ⊥ 6∈ hy and for every y′ ∈ hy there exists
x′ ∈ hx such that x′Ry′. Now V is R-upper and V x′ = tt for any x′ ∈ hx, so
also V y′ = tt for any y′ ∈ hy, hence W2y = tt.

Now consider the test W3 = w3 ◦ (P0V)⊥ ◦ h. Again, it is enough to show
that W3 is R-upper. Take x, y ∈ D such that W3x = tt and xRy. By definition
of W3, there exists an x′ ∈ hx such that V x′ = tt. Since V is Scott-open, there
is an a ≤ x′ such that V a = tt. Now R is a cpo-bisimulation, so there is a
y′ ∈ hy such that aRy′. But V is R-upper, hence V y′ = tt and W3y = tt. 2

Lemma 6.36 Consider a very strict coalgebra h : D → (P0D)⊥. For any
topology θ on D \ {⊥}, if θ is closed under finitary intersections and if θ lifts h
to a PBS-coalgebra, then ≤θ is a cpo-bisimulation.

108 Chapter 6. Test Suites for Bisimulations on CPOs

Proof. Assume θ lifts h to a PBS-coalgebra and that θ is closed under finitary
intersections. To prove that ≤θ is a cpo-bisimulation, assume any x ≤θ y
consider three cases:

1. Assume that there is x′ ∈ hx and a finite a ≤ x′ such that for all y′ ∈ hy
there is a 6≤θ y′. Since θ is closed under finitary intersections, one has
a↑≤θ∈ θ. Consider the test

W3 = w3 ◦ (P0(
−−→
a↑≤θ))⊥ ◦ h

The coalgebra h lifts to θ, hence W3 ∈ θ. Now for any y′ ∈ hy one has
y′ 6∈ a↑≤θ , hence W3y = ff. On the other hand, obviously a ∈ a↑≤θ ,
hence x′ ∈ a↑≤θ and W3 = tt. As a result, x 6≤θ y.

2. Assume ⊥ 6∈ hx and ⊥ ∈ hy. Consider the test

W = w2 ◦ (P0(
−−−−−→
D \ {⊥}))⊥ ◦ h

Since θ is a topology on D \ {⊥} and lifts h to a PBS-coalgebra, one has
W ∈ θ. Moreover, Wx = tt and Wy = ff, hence x 6≤θ y.

3. Assume ⊥ 6∈ hx and that there is y′ ∈ hy such that for all x′ ∈ hx there
is x′ 6≤θ y′. This means that for every x′ ∈ hx there exists a test Vx′ ∈ θ
such that Vx′x′ = tt and Vx′y

′ = ff. Consider the test

W2 = w2 ◦ (P0(
∨
x′∈γx

Vx′))⊥ ◦ h

The coalgebra h lifts to θ, hence W2 ∈ θ (in particular, note that θ is
closed under arbitrary unions). Obviously W2x = tt but W2y = ff,
hence x 6≤θ y.

2

We are now ready to give a characterization of PBS-coalgebras:

Theorem 6.37 For a very strict coalgebra h : D → (P0D)⊥, specializa-
tion preorders of those topologies closed under finitary intersections that lift
h to a PBS-coalgebra are exactly the preorders RF for weakly algebraic cpo-
bisimulations R on h.

Proof.
=⇒: Let θ be closed under finitary intersections and assume that it lifts h

to a PBS-coalgebra. Then

• ≤θ is a cpo-bisimulation, by Lemma 6.35,

• ≤θ is weakly algebraic, by Lemma 6.31,

• ≤θ is finitary, by Lemmas 6.21 and 6.23, hence (as is easily checked)
≤Fθ =≤θ.

6.6. CPO-Bisimulations 109

⇐=: Take R a weakly algebraic cpo-bisimulation on h. Then

• θR is closed under finitary intersections, by Lemma 6.33,

• h lifts to θR, by Lemma 6.36,

• ≤θR
= RF , by Theorems 6.26 and 6.27.

2

Theorem 6.37 gives a characterization of those PBS-coalgebras

h : 〈D, θ〉 →
〈

(P 0D)⊥,PBS
D θ
〉

for which θ is a topology closed under finitary intersections. This leaves some
PBS-coalgebras not characterized, but if h : D → (P0D)⊥ is compact, then
the least θ lifting h to a PBS-coalgebra is indeed characterized and the full
abstraction result can be stated in terms of this characterization:

Corollary 6.38 Let h : D → (P0D)⊥ be compact, and let k : D → S be the
coinductive extension of h. For any x, y ∈ D,

k(x) ≤ k(y) ⇐⇒ xRF y

where R is the largest weakly algebraic cpo-bisimulation on h.

Proof. By Theorems 6.37, 6.18 and Lemma 6.19. 2

Remark 6.39 When coalgebras with flat carriers are considered, the state-
ment of Theorem 6.37 can be simplified. Indeed, then K(D) = D, all preorders
are weakly algebraic and finitary, and the definition of cpo-bisimulation (Defi-
nition 6.34) simplifies to the definition of partial bisimulation (Definition 6.10)
on the transition system with divergence corresponding to the coalgebra in
question.

Two problems remain open. Firstly, the author is not able to find any cpo-
bisimulation on a compact coalgebra that would not be weakly algebraic. If all
such cpo-bisimulations are weakly algebraic, Theorem 6.37 and Corollary 6.38
can be simplified, by replacing weakly algebraic cpo-bisimulations by simply
cpo-bisimulations. Secondly, a relational characterization of all PBS-coalgebras
is presently missing. The results of Abramsky [2], who obtained a relational
characterization of the full abstraction result for all transition systems with
divergence, suggest that a satisfactory characterization may indeed exist.

110 Chapter 6. Test Suites for Bisimulations on CPOs

Chapter 7

Adding Recursive Constructs to Bialgebraic

Semantics

In Chapter 6, the interpretation of processes and transition systems in a cat-
egory of cpos was briefly motivated by issues related to recursive operators in
process languages. It was also mentioned that one can conveniently describe the
behaviour of such operators treating them as syntactic abbreviations of their
infinite expansions.

In this chapter, we elaborate on this issue, considering problems related
to the interpretation of recursive operators in the framework of bialgebraic
semantics. More specifically, we show how to merge systems of (possibly un-
guarded) recursive equations, modelled as certain natural transformations, with
structural operational rules modelled as distributive laws, as in the bialgebraic
framework of abstract GSOS.

This chapter is not directly related to the test suite framework developed
in Chapters 3-6, and can be read largely independently, except for occasional
references to Chapter 2 and to preliminaries in Chapter 6.

The elegant framework of abstract GSOS (see Section 2.7) covers many
interesting examples of simple languages [86, 85, 13, 50]. However, it is not
immediately clear how to extend it to cover variable binding and/or recursive
constructs. The problem with variable binding shows already on the syntactic
level: signatures with variable binding constructs are not as easily expressed
as endofunctors as are ordinary basic constructs of process languages. As was
shown in [32] and [31], this can be remedied by interpreting operational rules
in a suitable presheaf category. At the expense of making the framework con-
siderably more complex, the authors were able to formalize the operational
semantics for name-passing and value-passing constructs.

The problem with recursive constructs is of somewhat different nature. Even
when variable binding is not around, it is not clear how to interpret such con-
structs in the bialgebraic framework. As an example, consider an unary lan-
guage construct loop designed to repeat some computation infinitely. Tradi-
tionally, there are two ways of writing operational rules for this construct. One
possibility is to write (in the presence of a sequential composition operator ‘;’
in the language)

loop t→ t; loop t

111

112 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

This rule is structural and accurately describes the intended meaning of the
looping construct. However in certain situations, e.g., where the intended op-
erational model of the language should be a labelled transition system, and not
an unlabelled one, this rule is a source of problems. To merge this rule with
other rules that generate a labelled transition system, one has to change the
behaviour functor of the intended operational model. More importantly, the
coinductive extension of the derived model does not ignore the ‘silent’ transi-
tions associated with the above rule. As a result, programs like loop a and
a;loop a are mapped differently by the final coalgebra semantics, which con-
tradicts the intended meaning of the looping construct.

To remedy this problem on an abstract level, a general coalgebraic theory of
weak bisimulation is needed. Some work in this direction has been done [75, 76],
but no satisfactorily abstract results have been obtained yet. This means that
the above rule is hard to fit into the bialgebraic framework so far.

Another option to describe the looping construct is to give the rule

t; loop t
a→ t′

loop t
a→ t′

This rule does not introduce any unwelcome silent transitions. However, it is
not structural: to compute the intended operational model for a language with
this rule, one uses a fixpoint construction rather than induction. This makes it
impossible to fit this rule directly into the bialgebraic framework.

Here we consider another approach. Following general guidelines from [70],
recursive constructs are treated separately from the recursion-free ones, and de-
scribed not with operational rules, but with recursive equations. The equations
are then merged with the bialgebraic models obtained for the recursion-free
fragment of the language.

This general approach was first used in [85] for the case of guarded recursion.
However, unguarded equations like

loop t = t; loop t

have not been treated so far.
In this chapter, the approach introduced in [85] is modified and extended

to deal with a wide range of recursive equations, including many unguarded
ones. However, to keep things simple only constructs without variable binding
are considered, to avoid moving to a sophisticated presheaf category.

Since unguarded recursive equations may be a source of partiality (diver-
gence), it is convenient to interpret the operational rules and the recursive
equations in a suitable category of domains rather than in the category of sets.
The examples aimed to explain the constructions introduced in the paper use
the category Cppo⊥ of pointed cpos and continuous, strict functions. However,
all the constructions used can be interpreted in any Cppo⊥-enriched category
equipped with the usual structure needed to interpret the bialgebraic framework
of [86].

The structure of the chapter is as follows. Section 7.1 introduces some cat-
egorical preliminaries together with certain fixpoint constructions used in the

7.1. Preliminaries 113

following. In Section 7.2, two motivating examples are shown, and the develop-
ments of the remaining sections is introduced on informal level. The examples
shown use Cppo⊥ as the underlying category. One of the examples deals with
a looping construct loop, and another one with a more sophisticated construct
unfolding, which corresponds roughly to the general recursive construct µ re-
stricted to a single recursive variable.

In Section 7.3 recursive equations are formalized abstractly as unfolding
rules, and in Sections 7.4–7.6 it is shown how to merge unfolding rules with the
bialgebraic framework.

In the developments presented in Sections 7.4–7.6 it repeatedly appears
that the recursive equation for the construct unfolding considered in one of
the examples is far less structured than the one for the construct loop. This
motivates the definition of a regular unfolding rule in Section 7.7, which is
satisfied by the latter but not by the former. Regular unfolding rules have
some useful properties: in particular, they allow to construct a distributive law
(abstract operational rules) for the full language from a distributive law for the
recursion-free fragment.

7.1 Preliminaries

This section contains standard definitions and results used in this chapter. The
reader is also advised to refer to Chapter 2 for definitions related to the bialge-
braic framework, and to Section 6.1 for basic definitions concerning cpos.

A pointed endofunctor 〈T, η〉 on a category C is an endofunctor T on C
together with a natural transformation η : Id → T . For every monad 〈T, η, µ〉
(see Definition 2.18), the pair 〈T, η〉 is obviously a pointed endofunctor. We
often omit the names of the above natural transformations and speak of a
pointed endofunctor T , or of a monad T .

An algebra for a pointed endofunctor T is an algebra h : TX → X for the
endofunctor T such that h ◦ ηX = idX .

If T is a (part of a) monad (a pointed endofunctor) then by a T-algebra we
will mean an algebra for the monad (the pointed endofunctor), unless otherwise
stated.

A monad morphism between monads 〈T, η, µ〉 and 〈T ′, η′, µ′〉 is a natural
transformation t : T → T ′ such that

η′ = t ◦ η
t ◦ µ = µ′ ◦ tT ′ ◦ Tt = µ′ ◦ T ′t ◦ tT

A copointed endofunctor (H,π) is an endofunctor H together with a natural
transformation π : H → Id.

A coalgebra for a copointed endofunctor (H,π) is a coalgebra k : X → HX
for the endofunctor H such that πX ◦ k = idX .

Any endofunctor B on a category with binary products cofreely generates a
copointed endofunctor H = Id×B with π = π1. Obviously then H-coalgebras
are in one-to-one correspondence with B-coalgebras.

114 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

A distributive law of a pointed endofunctor T over a copointed endofunctor
H is a natural transformation λ : TH → HT such that

λ ◦ ηH = Hη
Tπ = πT ◦ λ

If, moreover, T is a monad and

λ ◦ µH = Hµ ◦ λT ◦ Tλ

then λ is called a distributive law of the monad T over the copointed endofunctor
H.

If H = Id × B is the copointed endofunctor cofreely generated by an
endofunctor B, then distributive laws of the pointed endofunctor (monad) T
over H are equivalent to natural transformations λ : TH → BT such that
λ ◦ ηH = Bη ◦ π2 (and respectively, λ ◦ µH = Bµ ◦ λT ◦ T (Tπ1, λ)). With
a slight abuse of language, such natural transformations will also be called
distributive laws of the copointed endofunctor (monad) T over H.

For a distributive law λ : TH → BT of the pointed endofunctor T over the
copointed endofunctor H, a λ-model with carrier X is a pair TX h−→ X

k−→ BX
of a T -algebra and B-coalgebra, satisfying the pentagonal law:

k ◦ h = Bh ◦ λX ◦ T (id, k)

If, additionally, T is a monad and λ is a distributive law of the monad over H,
then the λ-model is called a λ-bialgebra (see Definition 2.27).

A category is called Cppo⊥-enriched, if its homsets are pointed cpos (see
Definition 6.1) and if composition is continuous and strict in each argument.
Since composition is strict, the collection of bottom elements of homsets may
be viewed as a natural transformation ⊥ between any two given endofunctors.

In the following sections many morphisms in a Cppo⊥-enriched category
will be defined as fixpoints of certain continuous functions on homsets. In many
applications the least fixpoints are the ones of most interest. However, for our
purposes it will be more useful to consider only fixpoints that satisfy certain
conditions (for example, that factorize through some given morphism) and then
take the least fixpoint from this class. This section presents some techniques
aimed at defining and reasoning about such morphisms.

First, a straightforward generalization of Tarski’s Fixpoint Theorem:

Theorem 7.1 (Tarski) Consider a cppo V and a continuous function Φ :
V → V . For every f ∈ V such that Φf ≥ f , there exists the least fixpoint of Φ
greater or equal to f , denoted by Φ∗(f). Moreover,

Φ∗(f) =
⊔
n∈N

Φnf

Note that for any continuous Φ : V → V , the set VΦ of those elements f ∈ V
for which Φf ≥ f , is a sub-cppo of V , i.e., it contains the bottom element ⊥ and
it is closed under lubs. It is easy to observe that Φ∗ : VΦ → V is a continuous
operation (hence the notation).

7.1. Preliminaries 115

In the following sections we shall prove many properties of morphisms de-
fined as fixpoints. Most of these properties have a form of the commuting
diagram involving two such morphisms. In particular, this pattern appears
when proving naturality of families of morphisms defined as fixpoints. To prove
such properties the following two lemmas will be used.

Lemma 7.2 Consider the following shape in a Cppo⊥-enriched category C:

X
k1 //

k2
��

Y1
f1 // Y ′

1

l1

��
Y2 f2

// Y ′
2 l2

// Z

and two continuous functions

Φ1 : C(Y1, Y
′
1) → C(Y1, Y

′
1) Φ2 : C(Y2, Y

′
2) → C(Y2, Y

′
2)

such that Φ1(f1) ≥ f1 and Φ2(f2) ≥ f2. If

• l1 ◦ f1 ◦ k1 = l2 ◦ f2 ◦ k2

• l1 ◦ x ◦ k1 = l2 ◦ y ◦ k2 implies l1 ◦ Φ1(x) ◦ k1 = l2 ◦ Φ2(y) ◦ k2

then l1 ◦ Φ∗
1(f1) ◦ k1 = l2 ◦ Φ∗

2(f2) ◦ k2.

Proof. First show by induction that for any n, l1◦Φn
1 (f1)◦k1 = l2◦Φn

2 (f2)◦k2.
Then use continuity of composition. 2

In other cases, another proof principle will be more useful:

Lemma 7.3 In the setting like in Lemma 7.2, if

• l1 ◦ f1 ◦ k1 ≤ l2 ◦ Φ∗
2(f2) ◦ k2

• l1 ◦ x ◦ k1 ≤ l2 ◦ y ◦ k2 implies l1 ◦ Φ1(x) ◦ k1 ≤ l2 ◦ Φ2(y) ◦ k2

• l1 ◦ Φ∗
1(f1) ◦ k1 ≥ l2 ◦ f2 ◦ k2

• l1 ◦ x ◦ k1 ≥ l2 ◦ y ◦ k2 implies l1 ◦ Φ1(x) ◦ k1 ≥ l2 ◦ Φ2(y) ◦ k2

then l1 ◦ Φ∗
1(f1) ◦ k1 = l2 ◦ Φ∗

2(f2) ◦ k2.

Proof. To prove l1 ◦Φ∗
1(f1) ◦ k1 ≤ l2 ◦Φ∗

2(f2) ◦ k2, show by induction from the
first two assumptions that for any n, l1 ◦ Φn

1 (f1) ◦ k1 ≤ l2 ◦ Φ∗
2(f2) ◦ k2. Then

use continuity of composition.
The proof of l1 ◦ Φ∗

1(f1) ◦ k1 ≥ l2 ◦ Φ∗
2(f2) ◦ k2 proceeds analogously using

the last two assumptions. 2

The above lemmas can be used to prove naturality of families of morphisms
defined as fixpoints, by taking both k1 and l2 to be identities. This method of
proving naturality will be called square commutation by fixpoint induction.

Finally, a special class of monomorphisms will be considered in any Cppo⊥-
enriched category:

116 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

Definition 7.4 A morphism f : A → B in a Cppo⊥-enriched category is an
upper section, if there exists a morphism g : B → A (called left inverse to f)
such that

g ◦ f = idA and f ◦ g ≤ idB

To prove various properties involving upper sections, the following easy
lemma will be used:

Lemma 7.5 Assume f : A → B is an upper section with left inverse g. For
any h : B → C, k : A→ C, if k ◦ g ◦ f ≤ h ◦ f (or, equivalently, k ≤ h ◦ f), then
k ◦ g ≤ h.

Proof. k ◦ g = k ◦ (g ◦ f) ◦ g ≤ h ◦ f ◦ g ≤ h 2

For our purposes, especially interesting examples of upper sections will be
units of some monads:

Definition 7.6 A variable classifier for a monad (T, η, µ) on a Cppo⊥-enriched
category C is a natural transformation υ : T → Id such that

• all ηX are upper sections with υX left inverses,

• all υX are algebras for the monad T .

In particular, if T is freely generated by some endofunctor Σ (see Sec-
tion 2.6.1), then T can be equipped with a variable classifier:

υ = [id,⊥] ◦ ι

where ι : T → Id + ΣT is the isomorphism given by the structure of freely
generated monad, and ⊥ : ΣT → T is the natural transformation composed of
the least elements of the respective homsets.

7.2 Motivating Examples

Consider a language with the following simple syntax:

t ::= 0 | a | t;t | t+t

(where a ranges over some fixed set of actions A), equipped with the following
standard small-step operational semantics:

a
a→ 0

x
a−→ x′

x; y a−→ x′; y

x 6−→ y
a−→ y′

x; y a−→ y′

x
a−→ x′

x + y
a−→ x′

y
a−→ y′

x + y
a−→ y′

In [85] it was shown how such simple languages can be interpreted in the
bialgebraic framework in an arbitrary category with enough structure. For the

7.2. Motivating Examples 117

purposes of the example here, the category Cppo⊥ of pointed cpos and strict
continuous functions will be used.

The syntax of the simple language mentioned above corresponds to an endo-
functor Σ on Cppo⊥:

ΣX = 1⊥ ⊕A⊥ ⊕ (X⊥ ⊗X⊥)⊕ (X⊥ ⊗X⊥) = (1 +A+X ×X +X ×X)⊥

where ⊕ and ⊗ are the coalesced sum and the smash product of pointed cpos
(see [68]), + and × are the disjoint sum and the Cartesian product of cpos, and
()⊥ is the lifting operation on cpos. This functor freely generates a monad T
on Cppo⊥. Elements of TX are (possibly infinite) terms built over (a pointed
cpo of) variables X, with some sub-terms replaced by the bottom element ⊥,
and with the ordering induced from the ordering on X, with the remark that
⊥ is smaller than any other term.

One possible behaviour endofunctor B for interpreting the operational rules
shown above is

BX = P0(A⊥ ⊗X⊥) = P0((A×X)⊥)

where P0 is the Plotkin powerdomain with the empty set adjoined (see Chapter
6). As it turns out, the above operational semantics corresponds to a natural
transformation

ρ : Σ(Id×B) → BT

defined by cases as follows:

ρX(ι1(0)) = ∅
ρX(ι2(a)) = {(a, 0)}

ρX(ι3(x1, β1, x2, β2)) =
{
{(a, ι3(x′1, x2)) | (a, x′1) ∈ β1} if β1 6= ∅
β2 otherwise

ρX(ι4(x1, β1, x2, β2)) = β1 ∪ β2

where X is a pointed cpo (of variables), x and β range over X and BX respec-
tively, and the ιi are the coproduct injections to ΣX. It is easy to see that ρX
is continuous and, when suitably extended to act on bottom elements, it is also
strict. Obviously, ρ is also natural in X.

In [57] it was shown that a natural transformation ρ of the type as above is
equivalent to a distributive law λ : TH → BT of the monad T freely generated
by Σ over the copointed endofunctor H cofreely generated by B. As shown
in [84, 86], ρ also induces a lifting Tλ of the monad T to the category of B-
coalgebras, i.e., an endofunctor on the category of B-coalgebras such that for
every B-coalgebra k : X → BX the following diagram commutes:

X
ηX //

k
��

TX

Tλk
��

TTX
µXoo

TλTλk
��

BX
BηX

// BTX BTTX
BµX

oo

Moreover, for any B-coalgebra k : X → BX, we have

Tλk = λX ◦ T (id, k)

118 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

When used in diagrams as above, in certain situations the notation Tλk
might lead to some confusion. One way to read it is to silently convert a
morphism k ∈ C(X,BX) to an object in the category of B-coalgebras, apply
the object part of the functor Tλ to it and silently convert the result back to
a morphism in C. Another way might be to treat k as a morphism between
some B-coalgebras and apply the morphism part of the functor Tλ to it. In this
chapter, only the former interpretation is used.

Let us extend the example shown above in two independent ways, adding
some simple recursive constructs to it.

Example A: The unary looping construct loop. This is done by extending
the syntax as follows:

t ::= . . . | loop t

with the intended meaning captured by the recursive equation

loop t = t; loop t

Example B: The unary construct unfolding, inspired by a similar con-
struct from Mosses’s action semantics [56]. This is a version of the general
recursive construct µ, restricted to only one fixed recursive variable, which is
hence treated as a constant (we use the constant 0 for this purpose). The
appropriate syntax extension is

t ::= . . . | unfolding t

with the intended meaning captured by the recursive equation

unfolding t = t[0 7→ unfolding t]

where t[r 7→ s] is the standard notation for substitution on terms.
The reuse of the constant 0 for the semantics of unfolding makes this

recursive construct rather useless in practice. However, this does not formally
change its semantic features, and makes further developments a bit simpler to
present, since now the syntactic extensions in both examples correspond to the
same extension of the endofunctor Σ to a new signature endofunctor Σ′:

Σ′X = ΣX ⊕X⊥

The syntactic monad freely generated by Σ′ will be called T ′.
Note that neither of the recursive equations mentioned here are guarded,

and any of the above constructs is a potential source of divergence. Indeed,
both terms loop 0 and unfolding 0 are immediately diverging. This explains
the decision to interpret the language in a category of cpos, rather than in the
category of sets.

The remainder of this section is devoted to an informal presentation of the
technical developments of the following sections. This is to provide the reader
with some intuition about the results presented in this chapter.

In both examples above, the recursive equation given might be seen as a
natural transformation

r : T ′ → TT ′

7.2. Motivating Examples 119

which, given a term in T ′X, performs one step of syntactic unfolding so that
some recursion-free constructs appear on top of it, and splits the resulting term
in two ‘layers’. For instance, in example A,

loop a ; (;)[a, loop a]

where ; describes the action of r on terms. The notation (t)[t1, . . . , tn] (where
t is recursion-free and may contain some place-holders) is to represent a term
split in two ‘layers’, i.e., an element of TT ′X.

In example B, one can have for instance

unfolding(a; 0) ; (;)[a, unfolding(a; 0)]
unfolding a ; (a)[]
unfolding 0 ; ()[unfolding 0]

In a sense, natural transformations r : T ′ → TT ′ may be viewed as recur-
sive specifications in the sense of, e.g., [7] or [14], that is, as sets of recursive
equations with terms from T ′X playing the rôle of recursion variables.

A question arises how r should act on constructs from the recursion-free
fragment of the language. Several options are available here. Until the end of
Section 7.6, it will not be specified if, for example

a;(b; c) ; (;)[a, b; c], or
a;(b; c) ; (a;(b;))[c], or even
a;(b; c) ; (a;(b; c))[]

It will only be required (in the definition of a decomposition structure in Sec-
tion 7.3) that after repeating many steps of such ‘unfolding’ of a recursion-free
term, eventually the entire term will appear in the top ‘layer’. In other words,
the option a;(b; c) ; ()[a;(b; c)] will be excluded.

In Section 7.7, when considering regular unfolding rules, the first of the
above options (as small a portion of syntax is unfolded as possible) will be
specifically required.

However, all the above options have something in common: all recursion-free
constructs are left unchanged when unfolded. This will be properly formalized
in the definition of an unfolding rule in Section 7.3.

It is reasonable to expect that if a term is built of some variables, then
‘unfolding’ a variable leaves it intact.

Given an ‘unfolding rule’ r, one can repeat its action many times. In the
limit, all recursive constructs are wiped out from a given term. This construc-
tion is formalized as a natural transformation r̄ : T ′ → T in Section 7.4. This
transformation replaces recursive constructs with their infinite expansions, and
leaves the remaining constructs unchanged.

Given operational rules for the recursion-free fragment of the language
(formalized as a distributive law λ : TH → BT), and an unfolding rule
r : T ′ → TT ′, one can define operational rules for the full language (formalized
as a distributive law λr : T ′H → BT ′ in Section 7.5). Somewhat informally

120 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

speaking, the new operational rules are defined by the following fixpoint con-
struction: if t ; (s)[s1, . . . , sn] and if

Γ1

s1
a1→s′1

. . . Γn

sn
an→s′n

...
... Γ

s[s1, . . . , sn] a→ t′

(where Γ,Γi are some sets of premises) is a correct derivation (where the vertical
dots represent a derivation using only the rules for the recursion-free fragment),
then

Γ ∪ Γ1 ∪ · · · ∪ Γn
t
a→ t′

is a valid rule.
Note the difference between this approach (formalized in Section 7.5) and

the second traditional approach shown in the introduction to this chapter. Here
the burden of a fixpoint construction is shifted to the definition of operational
rules, but the rules themselves are structural, and the intended operational
model can be derived from them inductively. This will allow to merge recursive
equations with the bialgebraic framework.

The intended operational model is derived from T ′λr , the lifting of the
pointed endofunctor T ′ to B-algebras which is associated with the distribu-
tive law λr. Intuitively, the operational model unfolds a given term according
to the rule r, until the resulting term exhibits some behaviour according to the
rules λ. For instance, in the example A above, the intended operational model
T ′λr(0) maps a term loop(a; b) to a term b; loop(a; b) together with the action
a.

In the remainder of this chapter the constructions hinted above are defined
formally.

7.3 Unfolding Rules

The ideas presented in the preceding section can be formalized in an arbitrary
Cppo⊥-enriched category C with products and freely generated monads of
syntactic endofunctors.

From now on assume that all endofunctors on C introduced here are locally
continuous (i.e., continuous as functions on homsets).

Assume we are given bialgebraic operational semantics for (the recursion-
free fragment of) a language, in the sense of [86], i.e.,

• A monad 〈T, η, µ〉 on C,

• A behaviour endofunctor B : C → C, with the copointed endofunctor
H = Id×B cofreely generated by it,

• A set of abstract GSOS rules, i.e., a distributive law of the monad T over
the copointed endofunctor H:

λ : TH → BT

7.3. Unfolding Rules 121

To introduce recursive equations, consider additionally

• A monad 〈T ′, η′, µ′〉 (the full language),

• A monad morphism t : T → T ′.

Assume moreover, that monads T and T ′ come with variable classifiers υ
and υ′ respectively, and that υ′ ◦ t = υ.

For any morphism γX : TX → TTX, one can define a function between
cppos Φ̃X : C(TX, TX) → C(TX, TX) as follows:

Φ̃X
TX

f // TX

TX γX

// TTX
Tf

// TTX µX

// TX

It is easy to see that Φ̃X is continuous on the cppo C(TX, TX), since T is
locally continuous and C is Cppo-enriched.

Assume moreover that γX ◦ ηX = TηX ◦ ηX , and define ẽX = ηX ◦ υX . It is
easily checked that ẽX ◦ηX = Φ̃X(ẽX)◦ηX , hence, by Lemma 7.5, ẽX ≤ Φ̃X(ẽX)
and an ‘infinite decomposition’ map γ̄X : TX → TX can be defined as follows:

γ̄X = Φ̃∗
X(ẽX)

Definition 7.7 A decomposition structure on T is a natural transformation
γ : T → TT such that

• γ ◦ η = Tη ◦ η

• µ ◦ γ = id

• γ̄X = idTX for any object X

The last requirement in the above definition says intuitively that after re-
peating many steps of decomposition, eventually entire decomposed term will
appear in the top ‘layer’ of the decomposition. This requirement, in particular,
prevents the natural transformation ηT : T → TT from being a decomposition
structure in the examples considered.

Examples ctd. A decomposition structure γ : T → TT for the simple
syntax T shown in Section 7.2 can be derived from a natural transformation
γ0 : Σ → TT , defined by cases as follows:

γ0
X(0) = (0)[]
γ0
X(a) = (a)[]

γ0
X(x1;x2) = (;)[x1, x2]

γ0
X(x1+x2) = (+)[x1, x2]

Then γ : T → TT defined as

γX = [TηX ◦ ηX , TµX ◦ γ0
TX] ◦ ψX

122 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

(where ψX : TX → X + ΣTX is the isomorphism arising from the free monad
structure of T) is a decomposition structure for T .

As the informal discussion in Section 7.2 suggests, an ‘unfolding rule’ from
the ‘full’ language T ′ to its ‘recursion-free fragment’ T might be viewed as a
natural transformation r : T ′ → TT ′. This is formalized as follows.

Definition 7.8 An unfolding rule from T ′ to T (based on a decomposition
structure γ on T) is a natural transformation

r : T ′ → TT ′

such that the following diagram commutes:

TT ′
Tr //

tT ′

��

TTT ′
µT ′ // TT ′

γT ′ // TTT ′

TtT ′

��
T ′T ′

µ′

��

TT ′T ′

Tµ′

��
T ′ r

// TT ′

Id

η′

OO

η
// T

Tη′

OO

Intuitively, the bottom part of the above diagram means that variables are
unfolded trivially. The top part means that the action of r on parts of terms
built from syntax T is defined by γ. In particular, the following result holds:

Lemma 7.9 For any unfolding rule r : T ′ → TT ′ based on γ : T → TT ,

r ◦ t = Tt ◦ γ

Proof. Everything in the following diagram commutes:

T
Tη

//

Tη′

��

GF ED
id

GF

@A

t

//

TT µ
//

TTη′

��

T
γ //

Tη′

��

TT

TTη′

��

ED

BC

Tt

oo

TT ′
Tr

//

tT ′

��

TTT ′
µT ′

// TT ′
γT ′

// TTT ′

TtT ′

��
T ′T ′

µ′

��

TT ′T ′

Tµ′

��
T ′ r

// TT ′

2

Example A ctd. To define an unfolding rule r : T ′ → TT ′, one only
needs to define its action on terms where the top construct is not present in the
recursion-free syntax T . The action on other terms can be defined canonically,

7.4. Infinite Unfolding 123

using the decomposition structure γ on T . Having defined γ from γ0 as above,
this is particularly easy: take rX(ι2(t)) = Tµ′X ◦ γ0

T ′X(t), where ι2 : ΣT ′X →
T ′X. For other terms, one can take e.g.,

rX(loop t) = (;)[t, loop t]

Example B ctd. As before, one only has to define r on terms with new
constructs at the top. Here take e.g.,

rX(unfolding t) = ()[t[0 7→ unfolding t]]

7.4 Infinite Unfolding

Given an unfolding rule r : T ′ → TT ′ one can translate any term built over the
monad T ′ to a term over the monad T using a certain fixpoint construction,
which intuitively corresponds to performing infinitely many unfolding steps.

Formally, given r, for any fixed object X in C, one can define a function
ΦX : C(T ′X,TX) → C(T ′X,TX) acting as follows:

ΦX
T ′X

f // TX

T ′X rX
// TT ′X

Tf
// TTX µX

// TX

It is easy to see that ΦX is continuous on the cppo C(T ′X,TX), since T is
locally continuous and C is Cppo⊥-enriched.

Given an object X, the ‘infinite unfolding’ map r̄X : T ′X → TX is defined
as follows:

r̄X = Φ∗
X(eX)

where eX = ηX ◦ υ′X .
Intuitively speaking, this map unfolds a term from T ′X performing infinitely

many steps of unfolding as defined by r, and leaving the variables from X
unchanged.

Note that r̄X is properly defined, since ΦX(eX) ≥ eX . This follows from
Lemma 7.5, since it is easily checked that ΦX(eX) ◦ η′X = eX ◦ η′X .

Example A ctd. With definition of r as shown at the end of Section 7.3,
one has for example

r̄0(loop a) = a; a; a; a; a; . . .
r̄0(loop 0) = ⊥

Example B ctd. With definition of r as shown at the end of Section 7.3,
here one has

r̄0(unfolding a) = a

r̄0(unfolding(a; 0)) = a; a; a; a; a; . . .
r̄0(unfolding 0) = ⊥

The maps r̄X are in fact natural in X:

124 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

Lemma 7.10 The family (r̄X : T ′X → TX)X∈C derived from r : T ′ → TT ′

forms a natural transformation r̄ : T ′ → T .

Proof. Using square commutation by fixpoint induction.
Base case: The family (eX : T ′X → TX)X∈C is a natural transformation.
Induction step: Assume that the family (fX : T ′X → TX)X∈C is a

natural transformation. Then everything in the definition of ΦX(fX) is natural
in X, so the family (ΦX(fX) : T ′X → TX)X∈C is also a natural transformation.

The lemma follows by square commutation by fixpoint induction (Lemma 7.2).
2

Lemma 7.11 For any natural transformation r : T ′ → TT ′, r̄ ◦ η′ = η.

Proof. Componentwise by fixpoint induction on ΦX .
Base case: Obvious by definition of eX .
Induction step: Assume that for some f : T ′X → TX, f ◦η′X = ηX . Then

also ΦX(f) ◦ η′X = ηX , since everything in the following diagram commutes.

X
ηX //

η′X

zzuuuuuuuuu TX
Tη′X

zzttttttttt
TηX

��

id

##HH
HH

HH
HH

H

T ′X rX
// TT ′X

Tf
// TTX µX

// TX

2

Remark 7.12 The latter result shows that r̄ satisfies one of the axioms of a
monad morphism from T ′ to T . However, in general r̄ is not a monad morphism:
it is not the case that

r̄ ◦ µ′ = µ ◦ T r̄ ◦ r̄T ′

Indeed, recall the example B presented in Section 7.2 (with definition of r given
in Section 7.3) and consider a term

s = (unfolding)[a; 0] ∈ T ′T ′0

Then µ0(T r̄0(r̄T ′0(s))) = a; 0, but r̄0(µ′0(s)) is the infinite term a; a; a;
This problem will be addressed in Section 7.7.

For any unfolding rule r, the unfolding transformation r̄ : T ′ → T is a left
inverse to t : T → T ′:

Lemma 7.13 For any unfolding rule r, r̄ ◦ t = id.

Proof. (componentwise) Recall that r is based on some decomposition struc-
ture γ on T , and that id = γ̄X = Φ̃∗

X(ẽX).
To prove that Φ∗

X(eX) ◦ tX = Φ̃∗
X(ẽX), proceed by simultaneous fixpoint

induction on ΦX and Φ̃X .
Base case: eX ◦ tX = ηX ◦ υ′X ◦ tX = ηX ◦ υX = ẽX

7.4. Infinite Unfolding 125

Induction step: Assume f ◦ tX = g for some f : T ′X → TX, g : TX →
TX. Then

ΦX(f) ◦ tX = µX ◦ Tf ◦ rX ◦ tX = (Lemma 7.9)
µX ◦ Tf ◦ TtX ◦ γ =

µX ◦ Tg ◦ γX = Φ̃X(g)

The lemma follows from Lemma 7.2. 2

In the following sections, the following technical lemma will be often used:

Lemma 7.14 For any unfolding rule r, the diagram

TT ′
T r̄ //

tT ′

��

TT

µ

��

T ′T ′

µ′

��
T ′ r̄

// T

commutes.

Proof. Proceed componentwise using Lemma 7.3.
Base case 1: To see that eX ◦ µ′X ◦ tT ′X ≤ µX ◦ T r̄X , chase the following

diagram:

≤

TT ′X
Tυ′X

//

tT ′X
��

GF ED
T r̄X

��
TX

TηX

//

tX
��

υX

��

TTX

µX

��

≤T ′T ′X

µ′X
��

T ′υ′X

// T ′X

υ′X
��

T ′X
υ′X

// X ηX

// TX

In particular, the lower left square commutes since υ′X is a T ′-algebra, and
the upper region by definition of r̄.

Base case 2: Note that locally continuous functors preserve upper sections
and their left inverses. This means that Tη′X is an upper section, and to check
that r̄X ◦ µ′X ◦ tT ′X ≥ µX ◦ TeX , by Lemma 7.5 it is enough to check that
r̄X ◦ µ′X ◦ tT ′X ◦ Tη′X = µX ◦ TeX ◦ Tη′X . To see this, chase the diagram

TT ′X
TeX //

tT ′X
��

TTX

µX

��

T ′T ′X

µ′X
��

TX

Tη′X
ddIIIIIIIII TηX

;;wwwwwwwww

tXzzvvvvvvvvv

T ′X r̄X
// TX

126 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

In particular, the lower right square commutes by Lemma 7.13.
Induction step 1: Consider two morphisms f : T ′X → TX, g : T ′X →

TX such that f ◦µ′X ◦ tT ′X ≤ µX ◦Tg. Then the following diagram commutes:

TT ′X
TrX //

tT ′X

��

TTT ′X
TTg //

µT ′X
��

TTTX
TµX //

µTX

��

TTX

id

��

TT ′X
Tg //

γT ′X
��

TTX

γTX

��

id

%%JJJJJJJJJJ

T ′T ′X

µ′X

��

TTT ′X
TTg

//

TtT ′X
��

≤

TTTX

TµX

��

µTX

// TTX

µX

��

TT ′T ′X

Tµ′X
��

T ′X rX
// TT ′X

Tf
// TTX µX

// TX

(the upper right square commutes only when postcomposed with µX).
Induction step 2: Proceed like in Induction step 1, changing all ≤ to ≥.
The lemma follows from Lemma 7.3. 2

7.5 Merging Unfolding Rules with Distributive Laws

Operational semantics formalized as a distributive law λ : TH → BT of a
monad T over a copointed endofunctor H gives rise to an operational inter-
pretation of the language T . Given an unfolding rule r : T ′ → TT ′, one can
extend λ to a distributive law λr : T ′H → BT ′, thus providing an operational
interpretation of terms built from syntax T ′.

More formally, for a given distributive law λ : TH → BT and an unfold-
ing rule r : T ′ → TT ′, one defines the function ΨX : C(T ′HX,BT ′X) →
C(T ′HX,BT ′X) as follows:

ΨX
T ′HX

f // BT ′X

T ′HX rHX

// TT ′HX
T (T ′π1,f)

// THT ′X
λT ′X

// BTT ′X
BtT ′X

// BT ′T ′X
Bµ′X

// BT ′X

It is easy to see that ΨX is continuous, since T and B are locally continuous,
and C is Cppo-enriched.

Based on this function, the morphism λrX : T ′HX → BT ′X is defined as
follows:

λrX = Ψ∗
X(dX)

where dX = Bη′X ◦ π2 ◦ υ′HX
Note that this map is well defined, because

ΨX(dX) ≥ dX

This follows from Lemma 7.5, since (as is easily checked) ΨX(dX) ◦ η′HX =
dX ◦ η′HX .

7.5. Merging Unfolding Rules with Distributive Laws 127

Example A ctd. The map λrX , given a term (together with the behaviour
of all variables from X), unfolds it using rule r until the resulting term can
show some behaviour according to the distributive law λ. With the definition
of r as shown at the end of Section 7.3, one has for example

λr0(loop a) = {(a, loop a)}
λr0(loop(a + b)) = {(a, loop(a + b)), (b, loop(a + b))}

λr0(loop 0) = ⊥

(note that no variables appear here).

Example B ctd. With definition of r as shown at the end of Section 7.3,
here one has

λr0(unfolding(a; a)) = {(a, a)}
λr0(unfolding(a; 0)) = {(a, unfolding(a; 0))}

λr0(unfolding 0) = ⊥

Lemma 7.15 The family (λrX : T ′HX → BT ′X)X∈C is a natural transfor-
mation from T ′H to BT ′. Moreover, it is a distributive law of the pointed
endofunctor T ′ over the copointed endofunctor H.

Proof. Naturality is shown using square commutation by fixpoint induction
(Lemma 7.2). For the base case, d is a natural transformation. For the induction
step, assume a family (fX : T ′HX → BT ′X)X∈C to be natural in X. Then
everything in the definition of ΨX(f) is natural in X, so the family (ΨX(f) :
T ′HX → BT ′X)X∈C is also natural in X.

The distributive law axiom

λrX ◦ η′HX = Bη′X ◦ π2

is shown by ordinary fixpoint induction on ΨX . The base case follows directly
from definition of dX . For the induction step, take a morphism f : T ′HX →
BT ′X, such that

f ◦ η′HX = Bη′X ◦ π2

Then everything in the diagram

128 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

HX
η′HX //

ηHX

��

GF

@A

π2

//

T ′HX

rHX

��

ED

BC

ΨX(f)

oo

THX

T (π1,π2)

Tη′HX// TT ′HX

T (T ′π1,f)
��

THX
THη′X

//

λX

��

THT ′X

λT ′X
��

BTX
BTη′X

// BTT ′X

BtT ′X
��

BT ′T ′X

Bµ′X
��

BX

BηX

OO

Bη′X

// BT ′X

commutes. 2

Remark 7.16 In general λr is not a distributive law of the monad T over the
copointed endofunctor H (for a counterexample, see Remark 7.12).

The natural transformation λr induces a mapping T ′λr on B-coalgebras. For
a B-coalgebra k : X → BX, define

T ′λr(k) = λrX ◦ T ′(id, k)

Lemma 7.17 T ′λr is an endofunctor lifting the pointed endofunctor T ′ to B-
coalgebras.

Proof. Functoriality follows easily from naturality of λr. The structure of
pointed endofunctor follows from Lemma 7.15. 2

The functor T ′λr may be also defined independently. For any object X,
define the function ΥX : C(T ′X,BT ′X) → C(T ′X,BT ′X) as follows:

ΥX
T ′X

f // BT ′X

T ′X rx
// TT ′X

Tλf
// BTT ′X

BtT ′X

// BT ′T ′X
Bµ′X

// BT ′X

It is easy to see that ΥX is continuous on the cppo C(T ′X,BT ′X), since Tλ
acts as a continuous function on C(T ′X,BT ′X) and C is Cppo-enriched.

For a given H-coalgebra k : X → BX, define k↓ : T ′X → BT ′X

k↓ = dX ◦ T ′(id, k)

The following result gives an independent characterization of T ′λr :

7.6. From Unfolding Rules to Models 129

Theorem 7.18 For any B-coalgebra k : X → BX,

T ′λr(k) = Υ∗
X(k↓)

Proof. By simultaneous fixpoint induction on ΨX and ΥX . For the base case,
one has to show that

dX ◦ T ′(id, k) = k↓

which is just the definition of k↓.
For the induction step, consider two maps f : TH ′X → BT ′X, g : T ′X →

BT ′X such that f ◦ T ′(id, k) = g. Then the following diagram commutes:

T ′X
T ′(id,k) //

rX
��

GF

@A

ΥX(g)

//

T ′HX

rHX

��

ED

BC

ΨX(f)

oo

TT ′X
TT ′(id,k) //

T (id,f) ((RRRRRRRRRRRRR

@A
Tλf //

TT ′HX

T (T ′π1,g)
��

THT ′X

λT ′X
��

BTT ′X

BtT ′X
��

BT ′T ′X

Bµ′X
��

BT ′X
2

Intuitively, for a given B-coalgebra k : X → BX, the coalgebra T ′λrk :
T ′X → BT ′X unfolds a given term from T ′X according to the unfolding map
r, until the resulting term exhibits some behaviour according to the distributive
law λ, assuming that variables in the terms show behaviour as defined by k.

Remark 7.19 From Remark 7.16 it follows that in general T ′λr does not lift
the monad T ′ to the category of B-coalgebras: it is not always the case that
the diagram

T ′T ′X
µ′X //

T ′λrT
′
λrk

��

T ′X

T ′λrk

��
BT ′T ′X

Bµ′X

// BT ′X

commutes. This problem will be addressed in Section 7.7.

7.6 From Unfolding Rules to Models

In the preceding sections it was shown how, given a distributive law λ of a
monad T over a copointed endofunctor H, a translation t : T → T ′, and an
unfolding rule r : T ′ → TT ′, one can derive the infinite unfolding r̄ : T ′ → T

130 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

and the distributive law λr of the pointed endofunctor T ′ over the copointed
endofunctor H. This section shows how the two latter notions are related, and
how they allow to construct λr-models from λ-bialgebras and vice versa.

First, two theorems showing how λ, λr, t and r̄ relate:

Theorem 7.20 The diagram

T ′H
λr

//

r̄H
��

BT ′

Br̄
��

TH
λ

// BT

commutes.

Proof. First, prove that Br̄X ◦ λrX ≤ λX ◦ r̄HX by fixpoint induction on ΨX .
Base case: Br̄X ◦ dX ≤ λX ◦ r̄HX follows from definition of dX and from

Lemma 7.5, since (as is easily checked) Br̄X ◦ dX ◦ η′HX = λX ◦ r̄HX ◦ η′HX .
Induction step: Assume Br̄X ◦f ≤ λX ◦r̄HX for some f : T ′HX → BT ′X.

Then the same inequality holds with f replaced by ΨX(f), since the following
diagram commutes:

T ′HX
r̄HX //

rHX

��

GF

@A

ΨX(f)

//

THX ED

BC

λX

oo

TT ′HX
T r̄HX //

T (T ′π1,f)
��

≤

TTHX

µHX

OO

T (Tπ1,λX)

��
THT ′X

THr̄X
//

λT ′X
��

THTX

λTX

��
BTT ′X

BT r̄X
//

BtT ′X
��

BTTX

BµX

��

BT ′T ′X

Bµ′X
��

BT ′X
Br̄X

// BTX

(The four regions in the middle of the diagram commute, counting from the
top: by definition of r̄X , by the inductive assumption, by naturality of λ and
by Lemma 7.14. The region to the right commutes since λ is a distributive law
of the monad T over H.)

Then proceed to prove that Br̄X ◦ λrX ≥ λX ◦ r̄HX by fixpoint induction on
ΦHX .

Base case: Br̄X ◦ λrX ≥ λX ◦ eHX follows from definition of eX and from
Lemma 7.5, since (as is easily checked) Br̄X ◦ λrX ◦ η′HX ≥ λX ◦ eHX ◦ η′HX

Induction step: Assume Br̄X ◦ λrX ≥ λX ◦ f for some f : T ′X → TX.
Then the same inequality holds with f replaced by ΦHX(f). To prove this,
consider the diagram

7.6. From Unfolding Rules to Models 131

T ′HX
rHX //

GF ED
ΦHX(f)

��

GF

@A
λr

X

//

TT ′HX
Tf //

T (id,λr
X)

��

TTHX
µX //

T (id,λX)

��

THX

λX

��

BT ′T ′X

Bµ′X
��

THT ′X

λT ′X
��

THr̄X
//

≥

THTX

λTX

��
BT ′X@A BC

Br̄X

OOBTT ′X
BT r̄X //

BtT ′X

ffMMMMMMMMMM

BTTX
BµX // BTX

Here everything commutes (in particular, the large region to the left commutes
by definition of λr, and the bottom region commutes by Lemma 7.14).

This completes the proof of Theorem 7.20. 2

Theorem 7.21 The diagram

TH
λ //

tH
��

BT

Bt
��

T ′H
λr

// BT ′

commutes.

Proof. To prove this, it is convenient to represent λX : HTX → BTX as a
fixpoint of a certain function, resembling the function ΨX used to define λrX in
Section 7.5. The appropriate function Ψ̃X : C(THX,BTX) → C(THX,BTX)
acts as follows:

Ψ̃X
THX

f // BTX

THX γHX

// TTHX
T (Tπ1,f)

// THTX
λTX

// BTTX
BµX

// BTX

It is easy to see that Ψ̃X is continuous, since T is locally continuous, and C
is Cppo-enriched.

Having defined d̃X = BηX ◦ π2 ◦ υHX , the following lemma holds:

Lemma 7.22 Ψ̃∗
X(d̃X) = λX .

Proof. First, prove that Ψ̃∗
X(d̃X) ≤ λX by fixpoint induction on Ψ̃X .

Base case: d̃X ≤ λX follows from definition of d̃X and from Lemma 7.5,
since (as is easily checked) d̃X ◦ ηHX = λX ◦ ηHX .

Induction step: Assume f ≤ λX for some f : THX → BTX. Then also
Ψ̃X(f) ≤ λX . To prove this, chase the diagram

THX

γHX

�� MMMMMMMMMM

MMMMMMMMMM

TTHX

T (Tπ1,f)

��
T (Tπ1,λX)

��
≤

µHX // THX
λX

%%KKKKKKKKKK

THTX
λTX

// BTTX
BµX

// BTX

132 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

To prove that Ψ̃∗
X(d̃X) ≥ λX , recall from Section 7.3 that Φ̃∗

X(ẽX) = idTX
for any object X and prove Ψ̃∗

X(d̃X) ≥ λX ◦ Φ̃∗
HX(ẽHX) by simultaneous induc-

tion on Ψ̃X and Φ̃HX .

Base case: Immediate by definition of ẽHX and d̃X .

Induction step: Take two morphisms f : THX → BTX, g : THX →
THX such that f ≥ λX ◦ g. Without any loss of generality, assume that
g ≤ Φ̃∗

HX(ẽHX) = idTHX . Then chase the diagram

THX γHX

// TTHX

≥@A
T (Tπ1,f)

//

Tg // TTHX

T (Tπ1,λX)

��

µHX // THX
λX

%%KKKKKKKKKK

THTX
λTX

// BTTX
BµX

// BTX

The show the middle triangle commutes use the fact that g ≤ idTHX , hence
Tπ1 ◦ g ≤ Tπ1.

The lemma follows from Lemma 7.2. 2

The proof of Theorem 7.21 proceeds componentwise by induction on Ψ̃X

and ΨX .

Base case: See definitions of dX and d̃X , and chase the diagram

THX
υHX

$$IIIIIIIII

tHX

��

BTX

BtX

��

HX
π2 // BX

BηX

::uuuuuuuuu

Bη′X $$IIIIIIIII

T ′HX

υ′HX

::uuuuuuuuu
BT ′X

Induction step: Take two morphisms f : THX → BTX, g : T ′HX →
BT ′X such that g ◦ tHX = BtX ◦ f . Then the following diagram commutes:

THX
γHX //

tHX

��

TTHX
T (Tπ1,f)//

TtHX

��

THTX
λTX //

THtX
��

BTTX
BµX //

BTtX
��

BTX

BtX
��

T ′HX rX
// TT ′HX

T (T ′π1,g)
// THT ′X

λT ′X

// BTT ′X
BtT ′X

// BT ′T ′X
Bµ′X

// BT ′X

In particular, the leftmost square commutes by Lemma 7.9.

This, by Lemma 7.2, completes the proof of Theorem 7.21. 2

From Theorems 7.20 and 7.21, a few important corollaries can be drawn:

Corollary 7.23 For any B-coalgebra k : X → BX, the following diagram
commutes:

7.6. From Unfolding Rules to Models 133

TTX
TtX //

µX

��

TT ′X
T r̄X //

tT ′X
��

TTX

µX

��

T ′T ′X

µ′X
��

TX
tX //

Tλk

��

T ′X
r̄X //

T ′λrk

��

TX

Tλk

��
BTX

BtX
// BT ′X

Br̄X
// BTX

Proof. The bottom left square commutes by Theorem 7.21, the bottom right
square by Theorem 7.20, the top right region by Lemma 7.14, and the top left
region since t is a monad morphism. 2

The coalgebraic part of Corollary 7.23 means that interpreting a term from
T ′X by unfolding it infinitely with r̄X , and then by any λ-bialgebra morphism
from TX, is adequate with respect to the operational model T ′λrk, which unfolds
a given term only until it exhibits some behaviour. The algebraic part of the
corollary means that the map r̄X is compositional with respect to syntax T (it
is a T -algebra morphism).

Remark 7.24 Note that r̄X is not fully compositional in general (for a coun-
terexample, see Remark 7.12). This problem will be addressed in Section 7.7.

Remark 7.25 The structure

TT ′X
tT ′X // T ′T ′X

µ′X // T ′X
T ′λrk // BT ′X

is not a λ-bialgebra in general. Therefore Corollary 7.23 cannot be read as
showing that tX and r̄X are λ-bialgebra morphisms.

Corollary 7.26 For any λr-model T ′X h //X
k //BX ,

TX
tX // T ′X

h // X
k // BX

is a λ-bialgebra.

Proof. The diagram

TX
tX //

T (id,k)

��

T ′X
h //

T ′(id,k)
��

X
k // BX

THX
tHX

//

@A
λX //

T ′HX
λr

X

// BT ′X

Bh

OO

BTX

BC
BtX

OO

commutes by Theorem 7.21, and by naturality of t. 2

Corollary 7.27 For any λ-bialgebra TX
h // X

k // BX ,

T ′X
r̄X // TX

h // X
k // BX

134 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

is a λr-model. (It is not a λr-bialgebra, since λr is not a distributive law of the
monad T ′).

Proof. The diagram

T ′X
r̄X //

T ′(id,k)
��

TX
h //

T (id,k)

��

X
k // BX

T ′HX r̄HX

//

@A
λr

X //

THX
λX

// BTX

Bh

OO

BT ′X

BC
Br̄X

OO

commutes by Theorem 7.20 and by naturality of r̄. 2

Corollaries 7.26 and 7.27 mean that any bialgebraic model of the recursion-
free fragment of a language can be used to interpret the full language, and vice
versa, along syntactic translations of r̄ and t respectively.

The fact that λr is not a distributive law of the monad T ′ over H is the
only reason that prevents t and r̄ from being morphisms of distributive laws in
the sense of [89].

7.7 Regular Unfolding Rules

In the preceding sections, recursive constructs were added to languages by
means of unfolding rules r : T ′ → TT ′. This notion is quite general, cover-
ing rather strange examples, e.g., the unfolding construct. This generality
also led to some technical problems:

• λr : T ′H → BT ′ is not a distributive law of the monad T ′ over the
copointed endofunctor H,

• r̄ : T ′ → T is not a monad morphism,

• the maps r̄X are not compositional.

In this section these problems will be remedied by considering a special class
of regular unfolding rules. These exclude the example B shown throughout this
chapter, but still cover many examples of recursive equations, including many
unguarded ones (in particular, the example A).

For this purpose, the general framework described so far is specialized with
the following additional assumptions:

• T is the monad freely generated by an endofunctor Σ,

• T ′ is the monad freely generated by an endofunctor Σ′,

• t : T → T ′ is the monad morphism generated by a natural transformation
t : Σ → Σ′,

7.7. Regular Unfolding Rules 135

• r : T ′ → TT ′ is freely induced from a natural transformation

r0 : Σ′ → TT ′

such that
r0 ◦ t = Tη′ ◦ φ

where φ : Σ → T is the inclusion arising from the free monad structure of
T .

Given such r0, the transformation r is derived according to the formula

r = [(ηT ′ ◦ η′), (Tµ′ ◦ r0T ′)] ◦ ι′

where ι′ : T ′ → Id + Σ′T ′ is the isomorphism arising from the free monad
structure of T ′.

It is easy to check that r defined this way satisfies the definition of an
unfolding rule, presented in Section 7.3, and is based on the decomposition
structure γ : T → TT defined as

γ = [ηT ◦ η, φT] ◦ ι

Unfolding rules r derived as above will be called regular.
Note that since T ′ is freely generated by Σ′, its unit η′ is an upper section

and it can be canonically equipped with a left inverse υ′ : T ′ → Id:

υ′ = [id,⊥] ◦ ι′

The same holds for T .
Example A ctd.: Definition of an appropriate r0 is immediately derived

from definitions of γ0 and r given in Example A in Section 7.3.
Example B ctd.: Note that the intended recursive equation for the con-

struct unfolding cannot be captured as a regular unfolding rule. Indeed, con-
sider two terms t1, t2. If an unfolding rule r is derived from a natural trans-
formation r0 : Σ′ → TT ′ as above, then the term r(unfolding t2) should be
obtained from r(unfolding t1) just by replacing every copy of t1 with t2. This
is, however, not the intended behaviour of unfolding: as a counterexample,
consider t1 = a; 0, t2 = a; a, where r(unfolding t1) = a; unfolding t1 and
r(unfolding t2) = t2.

To remedy the technical problems encountered in previous sections, some
technical lemmas are needed:

Lemma 7.28 The following diagram commutes:

Σ′T ′
r0T ′ //

ψ′

��

TT ′T ′

Tµ′

��
T ′ r

// TT ′

where ψ′ : Σ′T ′ → T ′ is the inclusion arising from the free monad structure of
T ′.

136 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

Proof. Immediate by definition of r from r0. 2

Lemma 7.29 For a regular r, the square as in the following diagram is made
commute by the map ψ′T ′:

Σ′T ′T ′
ψ′T ′ // T ′T ′

rT ′ //

µ′

��

TT ′T ′

Tµ′

��
T ′ r

// TT ′

Proof. Everything in the following diagram commutes.

T ′T ′
rT ′ //

µ′

��

TT ′T ′

Tµ′

��

Σ′T ′T ′
ψ′T ′

ddIIIIIIIII
r0T ′T ′//

Σµ′

��

TT ′T ′T ′
Tµ′T ′

99rrrrrrrrrr

TT ′µ′

��
Σ′T ′

ψ′

zzuuu
uuu

uuu
u r0T ′

// TT ′T ′

Tµ′

&&LLLLLLLLLL

T ′ r
// TT ′

The top and the bottom squares commute by Lemma 7.28, the middle square
by naturality of r0, and the left square by the inductive definition of µ′ in the
freely generated monad T ′. 2

Theorem 7.30 For a regular r, the transformation r̄ is a monad morphism
from T ′ to T .

Proof. One of the laws for the monad morphism for r̄ was proved to hold in
Lemma 7.11. The remaining law is

T ′T ′
r̄T ′ //

µ′

��

TT ′

T r̄
��

TT

µ

��
T ′ r̄

// T

To prove this, proceed componentwise using square commutation by fixpoint
induction (Lemma 7.2).

For the base case, it must be shown that that the diagram

T ′T ′X
eT ′X //

µ′X

��

TT ′X

T r̄X
��

TTX

µX

��
T ′X eX

// TX

7.7. Regular Unfolding Rules 137

commutes. Given that T ′ is freely generated by Σ′, it is enough to show
that the diagram commutes when precomposed with η′T ′X : T ′X → T ′T ′X
or with ψ′T ′X : Σ′T ′T ′X → T ′T ′X. Both cases are checked easily (in the latter
case, both sides of the diagram are equal to the bottom element of the homset
C(Σ′T ′T ′X,TX)).

For the induction step, take two morphisms f : T ′T ′X → TT ′X, g : T ′X →
TX and assume that the diagram

T ′T ′X
f //

µ′X

��

TT ′X

T r̄X
��

TTX

µX

��
T ′X g

// TX

commutes. Then the diagram

T ′T ′X
rT ′X //

µ′X

��

TT ′T ′X
Tf //

Tµ′X

��

TTT ′X

TT r̄X
��

µT ′X // TT ′X

T r̄X
��

TTTX µTX

//

TµX

��

TTX

µX

��
T ′X rX

// TT ′X
Tg

// TTX µX

// TX

commutes when precomposed with η′T ′X : T ′X → T ′T ′X or with ψ′T ′X :
Σ′T ′T ′X → T ′T ′X. In particular, the left square commutes when precomposed
with ψ′T ′X : Σ′T ′T ′X → T ′T ′X by Lemma 7.29.

This completes the proof of Theorem 7.30. 2

Theorem 7.31 For a regular r, λr is a distributive law of the monad T ′ over
the copointed endofunctor H.

Proof. One of the laws for the distributive law for λr was proved to hold in
Lemma 7.15. The remaining law is

T ′T ′H
T ′(T ′π1,λr) //

µ′H
��

T ′HT ′
λrT ′ // BT ′T ′

Bµ′

��
T ′H

λr
// BT ′

To prove this, proceed componentwise by induction on ΨT ′X and ΨX using
Lemma 7.2.

Base case: It is enough to show that the following diagram commutes:

T ′T ′HX
T ′(T ′π1,λr

X)
//

µ′HX

��

T ′HT ′X
dT ′X // BT ′T ′X

Bµ′X
��

T ′HX
dX

// BT ′X

As in Theorem 7.30, it is enough to show that this diagram commutes when
precomposed with η′T ′HX or with ψ′T ′HX . Both cases are checked easily, by

138 Chapter 7. Adding Recursive Constructs to Bialgebraic Semantics

definition of d.
Induction step: Take two morphisms f : T ′HX → BTX and g : T ′HT ′X →

BT ′T ′X such that f ◦ µ′HX = Bµ′X ◦ g ◦ T ′(T ′π1, λ
r
X). Then chase the diagram

T ′T ′HX
T ′(T ′π1,λr

X)
//

µ′HX

��

rT ′HX))SSSSSSSSSSSSSSS T ′HT ′X
rHT ′X // TT ′HT ′X

T (T ′π1,g)
��

TT ′T ′HX

TT ′(T ′π1,λr
X)

77oooooooooooo

Tµ′HX

��

THT ′T ′X

THµ′X
��

λT ′T ′X

// BTT ′T ′X

BTµ′X
��

T ′HX rX
// TT ′HX

T (T ′π1,f)
// THT ′X

λT ′X

// BTT ′X

precomposing it with η′T ′HX : T ′HX → T ′T ′HX and with ψ′T ′HX : Σ′T ′T ′HX →
T ′T ′HX. In particular, the bottom left square precomposed with ψ′T ′HX com-
mutes by Lemma 7.29. The middle pentagon commutes by the inductive as-
sumption, and the upper square — by naturality of r.

This, by Lemma 7.2, completes the proof. 2

Theorems 7.30 and 7.31 allow to rephrase many results from previous sec-
tions in a more structured fashion, provided the unfolding rule r is regular.
Theorems 7.21 and 7.20 say now that t and r̄ are morphisms of distributive
laws in the sense of [89]. In Corollaries 7.26 and 7.27 one can replace λr-models
with λr-bialgebras. Also the functor T ′λr lifts the monad structure of T ′ to the
category of B-coalgebras, as an easy corollary from Theorem 7.31.

Moreover, for regular r the map r̄ is fully compositional:

Corollary 7.32 If r is regular, then for any B-coalgebra k : X → BX, the
map r̄X is a λr-bialgebra morphism as shown in the diagram:

T ′T ′X
µ′X //

T ′r̄X
��

T ′X
T ′λrk //

r̄X
��

BT ′X

Br̄X
��

T ′TX r̄TX

// TTX µX

// TX
Tλk

// BTX

Proof. The algebraic part follows from Theorem 7.30, and the coalgebraic part
from Corollary 7.23. 2

7.8 Concluding Remarks

We have seen how to fit a rather general class of recursive constructs into the
bialgebraic semantic framework developed by Turi and Plotkin. The behaviour
of recursive constructs is not modelled with operational rules, but with separate
recursive equations, formalised as certain natural transformations called unfold-
ing rules. These equations are then merged, using certain fixpoint constructions,
with natural transformations corresponding to the operational semantics of the
recursion-free fragment of the language in question. The result is particularly
well-structured if the original unfolding rules satisfy an additional property,
called regularity. Regular unfolding rules, when merged with distributive laws

7.8. Concluding Remarks 139

emerging from operational rules, yield new distributive laws, giving bialgebraic
semantics to the language extended with recursive constructs.

The framework presented here is quite general and covers many examples of
recursive equations, including many unguarded ones. As such equations can be
a source of partiality (divergence), it is convenient to interpret them in a suitable
Cppo⊥-enriched category. This allows to perform the fixpoint constructions
needed to merge the equations with recursion-free operational rules.

Working in enriched categories makes dealing with recursive constructs sim-
pler, but there is a valid question whether and to what extent a similar frame-
work can be realized in the category of sets and functions, without imposing
any additional structure on the programs considered. A particularly interest-
ing option is to interpret recursive equations using completely iterative monads
generated by syntactic functors [7], rather than usual freely generated monads.
In this framework, one can find solutions to recursive equations, under the mild
assumption that the equations are ideal. This makes it rather straightforward,
given an ideal recursive equation formalized as an unfolding rule r : T ′ → TT ′,
to construct the infinite unfolding map r̄ using universal properties of final coal-
gebras rather than existence of fixpoints. Therefore it seems that the framework
presented in Section 7.4 can be realized in the category of sets, using completely
iterative monads.

However, it is much less clear how to apply the same idea to the develop-
ments presented in Sections 7.5 and 7.6. This is due to divergence that may
arise from unguarded recursive equations. Indeed, consider a rather unusual
looping construct loop2 with the intended behaviour captured by the (ideal)
recursive equation

loop2 t = (loop2 t); t

formalised as an appropriate unfolding rule r. Using properties of iterative
monads, one can then define the infinite unfolding map r̄ and, e.g.,

r̄0(loop2 a) = (((. . . ; a); a); a); a)

However, it is much harder to define the action of the distributive law λr0 on the
term loop2 a, since this term can never show any real behaviour. It is an open
problem whether this drawback can be avoided and whether all developments
presented in this paper can be realized without resorting to enriched categories.

Bibliography

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. In 4th ACM Conference on Computer and Communications
Security, pages 36–47. ACM Press, 1997.

[2] S. Abramsky. Domain equation for bisimulation. Information and Com-
putation, 92:161–218, 1991.

[3] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 3. Oxford University Press, 1995.

[4] S. Abramsky and S. Vickers. Quantales, observational logic and process
semantics. Mathematical Structures in Computer Science, 3:161–227, 1993.

[5] L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics.
In J. A. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process
Algebra. Elsevier, 2002.

[6] L. Aceto and A. Ingólfsdóttir. CPO models for compact GSOS languages.
Information and Computation, 129:107–141, 1996.

[7] P. Aczel, J. Adamek, and J. Velebil. A coalgebraic view of infinite trees and
iteration. In Proc. CMCS’01, volume 44 of Electronic Notes in Theoretical
Computer Science, 2001.

[8] P. Aczel and N. Mendler. A final coalgebra theorem. In Proc. CTCS’89,
volume 389 of Lecture Notes in Computer Science, pages 357–365, 1989.

[9] H. H. Andersen and M. Mendler. An asynchronous process algebra with
multiple clocks. In Proc. ESOP ’94, volume 788 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1994.

[10] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge Univer-
sity Press, 1990.

[11] M. Barr. Terminal coalgebras for endofunctors on sets. Theoretical Com-
puter Science, 114:299–315, 1993.

[12] F. Bartels. GSOS for probabilistic transition systems. In L. Moss, editor,
Proc. CMCS’02, volume 65 of Electronic Notes in Theoretical Computer
Science. Elsevier, 2002.

141

142 Bibliography

[13] F. Bartels. On Generalised Coinduction and Probabilistic Specification
Formats. PhD dissertation, CWI, Amsterdam, 2004.

[14] J. A. Bergstra, W. J. Fokkink, and A. Ponse. Process algebra with recursive
operators. In J. A. Bergstra, A. Ponse, and S. Smolka, editors, Handbook
of Process Algebra. Elsevier, 2002.

[15] J. A. Bergstra and J. W. Klop. Process algebra for synchronous commu-
nication. Information and Control, 60:109–137, 1984.

[16] J. A. Bergstra, A. Ponse, and S. Smolka. Handbook of Process Algebra.
Elsevier, 2002.

[17] B. Bloom, W. J. Fokkink, and R. J. van Glabbeek. Precongruence formats
for decorated trace semantics. ACM Transactions on Computational Logic,
5:26–78, 2004.

[18] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal
of the ACM, 42:232–268, 1995.

[19] M. Boreale and F. Gadducci. Denotational testing semantics in coinduc-
tive form. In Proc. MFCS’03, volume 2747 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[20] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communi-
cating sequential processes. Journal of the ACM, 31:560–599, 1995.

[21] L. Cardelli and A. D. Gordon. Mobile ambients. In Proc. FOSSACS ’98,
volume 1378 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

[22] G. L. Cattani, M. P. Fiore, and G. Winskel. A theory of recursive domains
with applications to concurrency. In Proc. LICS ’98, pages 214–225. IEEE
Computer Society Press, 1998.

[23] A. Cheng and M. Nielsen. Open maps at work. In Proc. FSTTCS’95,
volume 1026 of Lecture Notes in Computer Science, 1995.

[24] A. Corradini, R. Heckel, and U. Montanari. Compositional SOS and be-
yond: a coalgebraic view of open systems. Theoretical Computer Science,
280:163–192, 2002.

[25] V. Danos and J. Krivine. Formal molecular biology done in CCS. In Proc.
BioCONCUR’03, 2003.

[26] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theo-
retical Computer Science, 34:83–133, 1984.

[27] J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labelled
Markov processes. Information and Computation, 179:163–193, 2002.

[28] U. Engberg and M. Nielsen. A calculus of communicating systems with
name-passing. Technical Report DAIMI PB-208, Computer Science De-
partment, Aarhus University, 1986.

Bibliography 143

[29] M. P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps.
Distinguished Dissertations in Computer Science. Cambridge University
Press, 1996.

[30] M. P. Fiore. A coinduction principle for recursive data types based on
bisimulation. Information and Computation, 127:186–198, 1996. Extended
abstract appeared in Procs. LICS ’93.

[31] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax with variable
binding. In Proc. LICS’99, pages 193–202. IEEE Computer Society Press,
1999.

[32] M. P. Fiore and D. Turi. Semantics of name and value passing. In Proc.
LICS’01, pages 93–104. IEEE Computer Society Press, 2001.

[33] W. J. Fokkink, R. J. van Glabbeek, and P. de Wind. Compositionality of
Hennessy-Milner logic through structural operational semantics. In Proc.
FCT’03, volume 2751 of Lecture Notes in Computer Science, pages 412–
422. Springer Verlag, 2003.

[34] M. Fowler, K. Beck, et al. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[35] R. J. van Glabbeek. The linear time – branching time spectrum II. In
E. Best, editor, Proc. CONCUR’93, volume 715 of Lecture Notes in Com-
puter Science, pages 66–81, 1993.

[36] R. J. van Glabbeek. The linear time – branching time spectrum I. In J. A.
Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process Algebra.
Elsevier, 1999.

[37] J. A. Goguen, J. W. Thatcher, et al. Initial algebra semantics and contin-
uous algebras. Journal of the ACM, 24:68–95, 1977.

[38] H. P. Gumm. State based systems are coalgebras. Cubo – Matemática
Educacional, 5:239–262, 2003.

[39] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[40] M. Hennessy. The semantics of programming languages: An elementary
introduction using structural operational semantics. Wiley, 1990.

[41] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and con-
currency. Journal of the ACM, 32:137–161, 1985.

[42] C. Hermida and B. Jacobs. Structural induction and coinduction in a
fibrational setting. Information and Computation, 145(2):107–152, 1998.

[43] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[44] B. Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in
Logic and the Foundations of Mathematics. North Holland, 1999.

144 Bibliography

[45] B. Jacobs. Trace semantics for coalgebras. In Proc. CMCS 2004, Electronic
Notes in Theoretical Computer Science, 2004. To appear.

[46] B. Jacobs and J. Hughes. Simulations in coalgebra. Electronic Notes in
Theoretical Computer Science, 82, 2003.

[47] B. Jacobs and J. J. M. M. Rutten. A tutorial on (co)algebras and
(co)induction. Bulletin of the European Association for Theoretical Com-
puter Science, 62, 1996.

[48] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps.
Information and Computation, 127(2):164–185, 1996.

[49] G. M. Kelly. Basic Concepts of Enriched Category Theory. Cambridge
University Press, 1982.

[50] M. Kick. Rule formats for timed processes. In Proc. CMCIM’02, volume 68
of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

[51] B. Klin. An abstract approach to process equivalence and a coinduction
principle for traces. In Proc. CMCS 2004, Electronic Notes in Theoretical
Computer Science, 2004. To appear.

[52] B. Klin. Adding recursive constructs to bialgebraic semantics. Journal
of Logic and Algebraic Programming, 2004. Special issue on structural
operational semantics, to appear.

[53] B. Klin and P. Sobocinski. Syntactic formats for free: An abstract approach
to process equivalence. In Proc. CONCUR 2003, volume 2671 of Lecture
Notes in Computer Science, 2003.

[54] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing.
Information and Computation, 94:1–28, 1991.

[55] S. Lasota. Coalgebra morphisms subsume open maps. Theoretical Com-
puter Science, 280:123–135, 2002.

[56] S. B. Lassen, P. D. Mosses, and D. A. Watt. An introduction to AN-2, the
proposed new version of action notation. In Proc. 3rd Workshop on Action
Semantics, BRICS NS-00-6. Aarhus University, 2000.

[57] M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors,
pointed and co-pointed endofunctors, monads and comonads. In Proc.
CMCS’00, volume 33 of Electronic Notes for Theoretical Computer Science.
Elsevier, 2000.

[58] S. Mac Lane. Categories for the Working Matematician. Springer-Verlag,
second edition, 1998.

[59] R. Milner. A calculus of communicating systems. Journal of the ACM,
1980.

Bibliography 145

[60] R. Milner. Communication and Concurrency. Prentice Hall, 1988.

[61] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cam-
bridge University Press, 1999.

[62] R. Milner and M. Tofte. The definition of Standard ML. MIT Press, revised
edition, 1997.

[63] L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:177–317,
1999.

[64] D. M. Park. Concurrency and automata on infinite sequences. Lecture
Notes in Computer Science, 140:195–219, 1981.

[65] D. Pattinson. Semantical principles in the modal logic of coalgebras. In
Proc. STACS 2001, volume 2010 of Lecture Notes in Computer Science.
Springer Verlag, 2001.

[66] A. M. Pitts. A co-induction principle for recursively defined domains.
Theoretical Computer Science, 124(2):195–219, 1994.

[67] G. D. Plotkin. A powerdomain construction. SIAM Journal of Computing,
5:452–487, 1976.

[68] G. D. Plotkin. Lecture notes in domain theory (the Pisa notes). 1981.

[69] G. D. Plotkin. A structural approach to operational semantics. DAIMI
Report FN-19, Computer Science Department, Aarhus University, 1981.

[70] G. D. Plotkin. Bialgebraic semantics and recursion (extended abstract). In
Proc. CMCS’01, volume 44 of Electronic Notes on Theoretical Computer
Science, 2001.

[71] G. D. Plotkin. The origins of structural operational semantics. Journal
of Logic and Algebraic Programming, 2004. Special issue on structural
operational semantics, to appear.

[72] J. Power and D. Turi. A coalgebraic foundation for linear time semantics.
Electronic Notes in Theoretical Computer Science, 29, 1999.

[73] V. R. Pratt. Chu spaces. Course notes for the School in Category Theory
and Applications, Coimbra, Portugal, July 1999.

[74] A. Regev, W. Silverman, and E. Shapiro. Representation and simulation
of biochemical processes using the π-calculus process algebra. In Proc.
Pacific Symposium of Biocomputing, 2001.

[75] J. Rothe and D. Mašulović. Towards weak bisimulations for coalgebras. In
Procs. CMCS’02, volume 68 of Electronic Notes in Theoretical Computer
Science, 2002.

[76] J. J. M. M. Rutten. A note on coinduction and weak bisimilarity for while
programs. Report SEN-R9826, CWI, Amsterdam, 1988.

146 Bibliography

[77] J. J. M. M. Rutten. A structural co-induction theorem. In Proc. MFPS’93,
volume 802 of Lecture Notes in Computer Science, 1994.

[78] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249:3–80, 2000.

[79] J. J. M. M. Rutten and D. Turi. Initial algebra and final coalgebra se-
mantics for concurrency. In J. de Bakker et al., editor, Proc. of the REX
workshop A Decade of Concurrency – Reflections and Perspectives, volume
803 of LNCS, pages 530–582. Springer-Verlag, 1994.

[80] D. Sannella and A. Tarlecki. Algebraic preliminaries. In E. Astesiano,
H.-J. Kreowski, and B. Krieg-Brückner, editors, Algebraic Foundations of
System Specification. Springer-Verlag, 1999.

[81] R. de Simone. Higher-level synchronising devices in Meije-SCCS. Theoret-
ical Computer Science, 37:245–267, 1985.

[82] M. Smyth and G. D. Plotkin. The category-theoretic solution of recursive
domain equations. SIAM J. Comput., 11:761–783, 1982.

[83] S. Thatte. XLANG: web services for business process design. Microsoft
document. Available at
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm.

[84] D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD
thesis, Vrije Universiteit, Amsterdam, 1996.

[85] D. Turi. Categorical modeling of structural operational rules: case studies.
In Proc. CTCS’97, volume 1290 of Lecture Notes in Computer Science,
pages 127–146. Springer-Verlag, 1997.

[86] D. Turi and G. D. Plotkin. Towards a mathematical operational semantics.
In Proc. LICS’97, pages 280–291. IEEE Computer Society Press, 1997.

[87] F. W. Vaandrager. On the relationship between process algebra and in-
put/output automata. In Proc. LICS’91, pages 387–398, 1991.

[88] E. de Vink and J. J. M. M. Rutten. Bisimulation for probabilistic transition
systems: a coalgebraic approach. Theoretical Computer Science, 221:271–
293, 1999.

[89] H. Watanabe. Well-behaved translations between structural operational
semantics. Electronic Notes in Theoretical Computer Science, 65, 2002.

CONCEPT INDEX 147

Concept Index

action, 13
of a functor, 28
unobservable, 2

adjoint
left, 26
right, 26

Alexandrov topology, 92
algebra, 17

carrier, 17
for a monad, 20
for a pointed endofunctor, 113
free, 18
initial, 18
morphism, 17
structure, 17

arity, 16

behaviour, 1, 20
deterministic, 1
endofunctor, 21
probabilistic, 1
timed, 1

bialgebra, 23, 114
morphism, 23

bialgebraic semantics, 5
bifibration, 26
bisimulation, 15, 34, 50

cpo-, 107
equivalence, 15, 35, 51
from coalgebra spans, 95, 97
ordered, 97
partial, 94
preorder, 51
weak, 6

BPA, 74

categorical logic, 8
category, 17

base, 26
enriched, 97
total, 26

category theory, 3, 17–23
check

basic flat, 75

basic term, 76
failure, 84
positive, 78
positive term, 79

Chu space, 8
closure, 39
coalgebra, 20

carrier, 20
compact, 105
final, 21
for a copointed endofunctor, 113
morphism, 20
structure, 20

coalgebraic logic, 6
coinduction principle, 51

for traces, 62
coinductive extension, 21
complete partial order, see cpo
congruence, 17

format, 17
on an algebra, 19
structural, 1

continuous function, 92
cpo, 92

algebraic, 93
pointed, 92

CTr-blocking set, 81
satisfiable, 81

CTr-format, 81

de Simone format, 74
decomposition structure, 121
distributive law, 22, 113

Egli-Milner order, 93
endofunctor, 17

behaviour, 21
copointed, 22, 113
pointed, 113
polynomial, 18, 72
syntactic, 18

failure
equivalence, 14, 58, 86
pair, 14

148 Index

preorder, 14, 58, 86
failure trace format, 88
failures-aware relation, 53
fibration, 26

of relations, 32
of test suites, 35

fibre, 26
final semantics, 4
finite element, 93
Fl-blocking set, 86

satisfiable, 86
Fl-format, 87
functor, 17

fibred, 28

van Glabbeek spectrum, 14
Grothendieck construction, 26
GSOS, 16

abstract, 21, 31
image finite, 16

Hennessy-Milner logic, 14

inductive extension, 18
initial semantics, 4
input/output, 2

kernel pair, 95
ordered, 97

labelled synchronization tree, 13
labelled transition system, see LTS
Lambek lemma, 18, 21
language construct, 16
lifting

abstract GSOS, 31
algebras, 28
coalgebras, 30
coproducts, 27
endofunctors, 27

polynomial, 72
final objects, 26
freely generated monads, 29
initial objects, 27
products, 26

lifting functor, 93
lifting monads to coalgebras, 117
literal, 16

negative, 16
positive, 16

LTS, 13
finitely branching, 13
induced by Λ, 17

minimal blocking set, 81
modal logic, 13
λ-model, 114
monad, 19

freely generated, 19
morphism, 113

natural transformation, 17

one-by-many simulation, 52
completed, 53
failure, 53
failure trace, 53
ready, 53
ready trace, 54

open maps, 6
operational equivalence, 14
operational preorder, 14
operational semantics, 2, 15

pentagonal law, 23
Plotkin powerdomain, 93
possible futures equivalence, 65
possible worlds equivalence, 65
precongruence, 17

on an algebra, 19
preorder, 15

algebraic, 102
finitary, 102
strongly finitary, 102
weakly algebraic, 102

process, 13
algebra, 1
equivalence, 2, 14
preorder, 2, 14

quantales, 6
quasi-preorder, 52
quasi-upper set, 52

readiness-aware relation, 53
ready

CONCEPT INDEX 149

equivalence, 14, 60
pair, 14
preorder, 14, 60

reindexing, 26
rule, 16

conclusion, 16
for f, 16
premise, 16
source, 16
target, 16

Scott topology, 92
Sierpinski space, 99
signature, 16
simulation, 15, 48

2-nested, 66
equivalence, 65, 66
preorder, 66

equivalence, 15, 49
preorder, 15, 49
ready, 15, 49

equivalence, 15, 50
preorder, 15, 50

specialization
equivalence, 38
functor, 37
preorder, 38, 99

square commutation by fixpoint in-
duction, 115

state, 2
strict function, 92
syntax, 1

Tarski theorem, 114
term, 16

closed, 16
test, 36

basic flat, 75
basic term, 76
failure, 84
intersection, 43
positive, 79
positive term, 79
suite, 36
union, 43

test constructor, 39
topology, 7

Alexandrov, 92
closed under finitary intersections,

105
Scott, 92

Tr-format, 74
trace, 14

completed, 14
equivalence, 14, 57
preorder, 14, 57

decorated, 52
equivalence, 14, 35, 56, 63
failure, 14

equivalence, 14, 59
preorder, 14, 59

preorder, 14, 55
ready, 14

equivalence, 14, 62
preorder, 14, 62

trace-aware relation, 52
completed, 53
failure, 53
ready, 54

transition
relation, 13
system

labelled, see LTS
probabilistic, 2
specification, 16
timed, 2
with divergence, 94
with unobservable steps, 2

unfolding rule, 122
upper set, 48

van Glabbeek spectrum, 14
variable binding, 1
variable classifier, 116
very strict function, 92

150 Index

List of Symbols

[a]
modal operator, 14, 66

1

test suite construction, 72⊔
D

least upper bound, 92
⊥

bottom element
in a cpo, 92
in a fibre, 27

logical constant, 14, 66
�

coproduct in a total category,
27, 71

�
product in a total category, 26,

71
∼=W

process equivalence, 14, 66
23

5-test operator, 68
logical operator, 66

≡θ
specialization equivalence, 38, 43

∧
logical function, 72
logical operator, 14, 66
meet in a fibre, 26
test intersection, 43

≤θ
specialization preorder, 38, 43,

99
.EM

Egli-Milner order, 93
∨

join in a fibre, 27
logical operator, 14, 66
test union, 43

|=h

satisfaction relation, 14, 66
⇒

test suite notation, 36
6 I

failure check, 84

⊕
coalesced sum, 117

⊗
smash product, 117

[[−]]h
semantics of formulae, 46, 68

u,t
5-test operators, 68

vW

process preorder, 14, 66
>

logical constant, 14, 66
top element in a fibre, 26

〈a〉
modal operator, 14, 66

a I
positive check, 79

x 6 Q−→
negated transition, 13

2
test value set, 37, 43

5
test value set, 67

γ

decomposition structure, 121
η

monad unit, 19
Φ∗

fixpoint, 114
Φh,Ψh

operators on fibres, 28, 30
Λf,ΛfQ

sets of rules, 81
λ-Bialg

category of bialgebras, 23
λr

distributive law, 126
µ

monad multiplication, 19
ΣX

set of terms, 16
Σ

LIST OF SYMBOLS 151

functor, 18
signature, 16, 18

Σ-Alg
category of algebras, 18

Σ̄
set of constructs, 16

σD
Scott topology, 92

θR
test suite, 48, 55
topology, 104

θ2S

test suite, 69
υ

variable classifier, 121
υ(−)

test for a check, 75, 76, 79, 84
Ξ

set of variables, 16
ζ

test suite, 38, 40

Acpo⊥
category, 93

ar
arity function, 16

B2S

functor, 68
BTr, BCTr, BFl, BFlTr, BRd, BRdTr,

BS, BRdS, BBS

functors, 45
BW

functor, 40
B-Coalg

category of coalgebras, 21
Clt

closure, 100
Cl2S

closure, 68
Cl∨

closure, 72
Cl>,Cl∧,Cl∨∧

closures, 44
Cppo⊥

category, 117
D⊥

lifted cpo, 93

E, T, F
constant 5-tests, 67, 69

FX , BX ,ΣX

functor actions, 28, 34, 72
f∗

reindexing function, 26, 33, 36
f!

left adjoint to f∗, 26
FW

modal formulae, 13, 66
hλ

intended operational model, 23
I(x)

set of initials, 13
K(D)

set of finite elements, 93
k∗ω

test suite, 40
the least lifting, 31

O
Sierpinski space, 99

P
powerset functor, 21

P0

Plotkin powerdomain with empty
set, 93

Pf

finite powerset functor, 21
Pf(A×−)

behaviour functor, 21
Pos

category of posets, 26
Q̌

modal operator, 14
Q̃

modal operator, 14
RF

finitary preorder, 104
Rel

category of relations, 33
r̄

infinite unfolding, 123
r

unfolding rule, 122
Set

category of sets, 18
SpR

152 Index

specialization functor action, 37
SpecR

specialization functor, 37
TΣX

set of terms, 16
Tλ

lifting of a monad, 117
Tr,CTr,Fl,FlTr,Rd,RdTr,BS

test constructor sets, 44
T -Alg

category of algebras, 20
tt, ff

test values, 37, 43, 99
tt, ff, tt¬, ff¬, err

test values, 67
〈T, η, µ〉

monad, 19
t

monad morphism, 121
TV

functor, 36
u〈a〉, u[a]

5-test constructors, 67
V-TS

category of test suites, 36
V,W

sets of test values, 36
V

set from a test, 43, 100
W

set of test constructors, 40
symbol, 14

w2, w3

O-test constructors, 100
w〈a〉, w[a], w̃Q, w̃aQ, w̌Q, w̌aQ

2-test constructors, 44
X∗

fibre, 26, 33
X?

closure in a cpo, 93−→
X

test from a set, 43, 100

Recent BRICS Dissertation Series Publications

DS-04-1 Bartosz Klin. An Abstract Coalgebraic Approach to Process
Equivalence for Well-Behaved Operational Semantics. May
2004. PhD thesis. x+152 pp.

DS-03-14 Daniele Varacca. Probability, Nondeterminism and Concur-
rency: Two Denotational Models for Probabilistic Computation.
November 2003. PhD thesis. xii+163 pp.

DS-03-13 Mikkel Nygaard. Domain Theory for Concurrency. November
2003. PhD thesis. xiii+161 pp.

DS-03-12 Paulo B. Oliva. Proof Mining in Subsystems of Analysis.
September 2003. PhD thesis. xii+198 pp.

DS-03-11 Maciej Koprowski. Cryptographic Protocols Based on Root Ex-
tracting. August 2003. PhD thesis. xii+138 pp.

DS-03-10 Serge Fehr. Secure Multi-Player Protocols: Fundamentals,
Generality, and Efficiency. August 2003. PhD thesis. xii+125 pp.

DS-03-9 Mads J. Jurik. Extensions to the Paillier Cryptosystem with Ap-
plications to Cryptological Protocols. August 2003. PhD thesis.
xii+117 pp.

DS-03-8 Jesper Buus Nielsen. On Protocol Security in the Cryptographic
Model. August 2003. PhD thesis. xiv+341 pp.

DS-03-7 Mario José Cáccamo. A Formal Calculus for Categories. June
2003. PhD thesis. xiv+151.

DS-03-6 Rasmus K. Ursem. Models for Evolutionary Algorithms and
Their Applications in System Identification and Control Opti-
mization. June 2003. PhD thesis. xiv+183 pp.

DS-03-5 Giuseppe Milicia. Applying Formal Methods to Programming
Language Design and Implementation. June 2003. PhD thesis.
xvi+211.

DS-03-4 Federico Crazzolara. Language, Semantics, and Methods for
Security Protocols. May 2003. PhD thesis. xii+160.

DS-03-3 Jiřı́ Srba. Decidability and Complexity Issues for Infinite-State
Processes. 2003. PhD thesis. xii+171 pp.

DS-03-2 Frank D. Valencia. Temporal Concurrent Constraint Program-
ming. February 2003. PhD thesis. xvii+174.

DS-03-1 Claus Brabrand. Domain Specific Languages for Interactive
Web Services. January 2003. PhD thesis. xiv+214 pp.

	Abstract
	Acknowledgements
	Introduction
	Preliminaries
	Labelled Transition Systems
	Hennessy-Milner Logic and Its Fragments
	Simulations and Bisimulations
	Structural Operational Semantics of Processes
	Congruence Formats
	Basic Notions of Category Theory
	Algebras and Monads
	Coalgebras

	Abstract GSOS

	A Fibrational Approach to Relations on Processes
	Fibrations
	Lifting Basic Universal Constructions
	Lifting Endofunctors
	Lifting Initial Algebras
	Lifting Freely Generated Monads
	Lifting Final Coalgebras
	Lifting Abstract GSOS

	Fibration of Relations
	Bisimulations as Coalgebras in Rel
	Limited Expressive Power of Rel

	Fibration of Test Suites
	Specialization Functors
	Comparing Test Suites
	Lifting Functors with Test Constructors
	Comparing Test Constructors

	Van Glabbeek Spectrum Described by Test Suites
	(B,2)-Test Suite Constructors
	Relation to Modal Logics

	Simulation and Bisimulation Semantics
	Decorated Trace Semantics
	Coinduction Principle for Traces
	Comparison of Process Preorders and Equivalences
	Nested Semantics

	From Test Suites to Congruence Formats
	Lifting Syntax to Test Suites
	Abstract Congruence Formats
	Trace Semantics
	Completed Trace Semantics
	Failures Semantics

	Test Suites for Bisimulations on CPOs
	Preliminaries
	Coalgebra Spans and Their Limitations
	Test Suite Approach
	Preorders and Topologies on CPOs
	Compact Coalgebras
	CPO-Bisimulations

	Adding Recursive Constructs to Bialgebraic Semantics
	Preliminaries
	Motivating Examples
	Unfolding Rules
	Infinite Unfolding
	Merging Unfolding Rules with Distributive Laws
	From Unfolding Rules to Models
	Regular Unfolding Rules
	Concluding Remarks

	Bibliography
	Index
	Concept Index
	List of Symbols

