
B
R

IC
S

D
S

-03-9
M

.J.Jurik:
E

xtensions
to

the
P

aillierC
ryptosystem

w
ith

A
pplications

to
C

ryptologicalP
rotocols

BRICS
Basic Research in Computer Science

Extensions to the Paillier Cryptosystem with
Applications to Cryptological Protocols

Mads J. Jurik

BRICS Dissertation Series DS-03-9

ISSN 1396-7002 August 2003

Copyright c© 2003, Mads J. Jurik.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/03/9/

Extensions to the Paillier
Cryptosystem with Applications to

Cryptological Protocols

Mads Johan Jurik

PhD Dissertation

Department of Computer Science
University of Aarhus

Denmark

Extensions to the Paillier Cryptosystem with
Applications to Cryptological Protocols

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Mads Johan Jurik
March 19, 2004

Abstract

The main contribution of this thesis is a simplification, a generalization and
some modifications of the homomorphic cryptosystem proposed by Paillier in
1999, and several cryptological protocols that follow from these changes.

The Paillier cryptosystem is an additive homomorphic cryptosystem, mean-
ing that one can combine ciphertexts into a new ciphertext that is the encryp-
tion of the sum of the messages of the original ciphertexts. The cryptosystem
uses arithmetic over the group Z

∗
n2 and the cryptosystem can encrypt messages

from the group Zn. In this thesis the cryptosystem is generalized to work over
the group Z

∗
ns+1 for any integer s > 0 with plaintexts from the group Zns . This

has the advantage that the ciphertext is only a factor of (s + 1)/s longer than
the plaintext, which is an improvement to the factor of 2 in the Paillier cryp-
tosystem. The generalized cryptosystem is also simplified in some ways, which
results in a threshold decryption that is conceptually simpler than other pro-
posals. Another cryptosystem is also proposed that is length-flexible, i.e. given
a fixed public key, the sender can choose the s when the message is encrypted
and use the message space of Zns. This new system is modified using some
El Gamal elements to create a cryptosystem that is both length-flexible and
has an efficient threshold decryption. This new system has the added feature,
that with a globally setup RSA modulus n, provers can efficiently prove various
relations on plaintexts inside ciphertexts made using different public keys.

Using these cryptosystems several multi-party protocols are proposed:

• A mix-net, which is a tool for making an unknown random permutation
of a list of ciphertext. This makes it a useful tool for achieving anonymity.

• Several voting systems:

– An efficient large scale election system capable of handling large
elections with many candidates.

– Client/server trade-offs: 1) a system where vote size is within a con-
stant of the minimal size, and 2) a system where a voter is protected
even when voting from a hostile environment (i.e. a Trojan infested
computer). Both of these improvements are achieved at the cost of
some extra computations at the server side.

– A small scale election with perfect ballot secrecy (i.e. any group of
persons only learns what follows directly from their votes and the
final result) usable e.g. for board room election.

v

• A key escrow system, which allows an observer to decrypt any message
sent using any public key set up in the defined way. This is achieved even
though the servers only store a constant amount of key material.

The last contribution of this thesis is a petition system based on the modified
Weil pairing. This system greatly improves the naive implementations using
normal signatures from using an order of O(tk) group operations to using only
O(t + k), where t is the number of signatures checked, and k is the security
parameter.

vi

Acknowledgements

First I would like to thank my supervisor Ivan B. Damg̊ard for creating a
research environment that has been very inspiring. He always had time to
discuss new ideas and give feedback on early ideas and research problems.

I would also like to thank the cryptology group at BRICS for listening
to all my seminars and providing valuable feedback on the presentations, and
especially to Louis Salvail for making the whole experience a lot funnier than
expected.

A big thanks also goes to Dan Boneh for hosting my stay abroad at Stan-
ford University and to the Ph.D. students at the Security Lab in the Stanford
Computer Science Department, for making the stay both a professional and
social success.

Jan Camenish and Berry Schoenmakers also deserves thanks for providing
alot of insightfull comments on the thesis during the defence. This has helped
improve the overall quality of the thesis.

Finally I would like to thank Kirill Morozov, Anne Grethe Jurik and Bo-
lette Ammitzbøll Madsen for proof reading this dissertation, thereby helping to
reduce the number of errors.

Mads Johan Jurik,
Århus, March 19, 2004.

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1
1.2 List of Publications . 2

1.2.1 A Generalization of Paillier’s Public-Key System with
Applications to Electronic Voting 2

1.2.2 Client/Server Tradeoffs for Online Elections 2
1.2.3 A Length-Flexible Threshold Cryptosystem with Appli-

cations . 3
1.2.4 A Key-Escrow Public-key Cryptosystem 3

1.3 Overview of Chapters . 3

2 Improving the Paillier Cryptosystem 7
2.1 Introduction . 7

2.1.1 Background . 7
2.1.2 Related Work . 8
2.1.3 Contribution . 8

2.2 A Generalization of Paillier’s Probabilistic Encryption Scheme . 9
2.2.1 Security . 13
2.2.2 Adjusting the Block length 16

2.3 Some Optimizations and Implementation Issues 17
2.3.1 An Alternative Encryption Function 17
2.3.2 Optimizations of Encryption and Decryption 18

2.4 Some Building Blocks . 21
2.4.1 A Threshold Variant of the Scheme 21
2.4.2 Some Auxiliary Protocols 25

2.5 Introducing an El Gamal Element 29
2.5.1 Security of the Cryptosystem 30

2.6 An Efficient Length-Flexible Threshold Cryptosystem 33
2.7 A Proof Friendly Variant . 34

2.7.1 Security of the Threshold Cryptosystems 34
2.7.2 Proofs in the Proof Friendly Variant 35
2.7.3 Homomorphic Properties 41

ix

3 Anonymity Using Mix-nets 43
3.1 Introduction . 43

3.1.1 Background . 43
3.1.2 Contribution . 44

3.2 The Mix-net Model . 44
3.3 Adversaries . 45
3.4 Security of the Mix-net . 46
3.5 The System . 46
3.6 Security Proofs . 50

4 Secure On-line Voting 55
4.1 Introduction . 55

4.1.1 Background . 55
4.1.2 Related Work . 58
4.1.3 Contribution . 59

4.2 Efficient Electronic Voting . 61
4.2.1 Model and Notation . 61
4.2.2 A Yes/No Election . 62
4.2.3 A Multi-Candidate Election 63
4.2.4 A variant with smaller vote size 63

4.3 Client/Server Trade-Offs . 66
4.3.1 The Minimal Vote Election Scheme 66
4.3.2 An Alternative System . 70
4.3.3 Protecting Clients Against Hackers 73
4.3.4 Interval Proofs for Paillier Encryptions 76

4.4 Self-Tallying Elections with Perfect Ballot Secrecy 79
4.4.1 Setup Phase . 81
4.4.2 Ballot Casting . 83
4.4.3 Tallying . 86
4.4.4 Efficiency Comparison to Scheme from [47] 88

5 Key Escrow 89
5.1 Introduction . 89

5.1.1 Background . 89
5.1.2 Contribution . 90

5.2 Model . 91
5.3 A Simple Key Escrow System . 92
5.4 Threshold Key Escrow . 93

5.4.1 Removing the Trusted Third Party 95
5.5 Encryption Verification . 95
5.6 Improving Performance for s > 1 96
5.7 Security of the System . 97

6 Efficient Petitions 99
6.1 Introduction . 99

6.1.1 Background . 99
6.1.2 Related Work . 99

x

6.1.3 Contribution . 100
6.2 Model . 100

6.2.1 Properties for Petitions 101
6.3 Standard Petitions . 101
6.4 Threshold Petitions . 102
6.5 An Efficient Petition System . 103

6.5.1 Aggregate Signatures . 103
6.5.2 Using Aggregating Signatures 104
6.5.3 Security of Aggregate Signatures 105
6.5.4 An Aggregate Signature System 107
6.5.5 Petitions based on Aggregate Signatures 109

6.6 Comparison . 110

Bibliography 113

xi

Chapter 1

Introduction

I may not have gone where I intended to go, but I think I have ended up where
I intended to be.

— Douglas Adams

1.1 Motivation

One of the main topics of this thesis is length-flexibility. This is the ability to
extend the plaintext space at encryption time rather than at key generation
time, when the public key is chosen. In the literature this has been available
for symmetric ciphers (where sender and receiver both know the key). In public
key systems it is available by splitting the plaintext into blocks and encrypting
these blocks separately. A typical way to construct a length-flexible system with
the public key properties is to make an encryption of a symmetric key using
the public key system, and then use that symmetric key to make a symmetric
encryption of the message itself.

Another main topic is homomorphic encryption in which it is possible to
combine two encryptions to get an encryption that encrypts some combination
of the two original plaintexts. The most useful variant of these is the addi-
tive homomorphisms, where the new encryption is the sum of the two original
plaintexts. Systems with additive homomorphisms are useful for a lot of crypto-
logical protocols like electronic voting, multi-party computation, etc., providing
that they also support verification protocols.

There is also the question of threshold decryption. In multi-party computa-
tion models, all the actual computations are made inside encryptions using the
homomorphic properties of the specific cryptosystem. However, this implies
that to get the result someone has to decrypt at some point. This is where
threshold decryption is used. It allows servers to decrypt if less than half the
servers are trying to cheat or disrupt the protocol.

All these topics are interesting by themselves, but the real interesting things
start to happen when they are combined. This leads to an additive homomor-
phic length-flexible threshold cryptosystem. This enables one to set up a system
once and for all, and start doing computation on problems of various sizes. This
is especially true in case of electronic voting where the same system might be

1

2 Chapter 1. Introduction

used to hold a local election and a national election. These two forms of election
have very different sizes and in normal cryptosystems it would be necessary to
create two different cryptosystems, or one would risk that the local election
could become very inefficient because it is using a cryptosystem designed for a
national election. This is where length-flexibility comes in handy, in the sense
that now the plaintext space can be adjusted to create both the elections in a
setting that is essentially as efficient as possible for both problems.

1.2 List of Publications

1.2.1 A Generalization of Paillier’s Public-Key System with
Applications to Electronic Voting

The paper A Generalization of Paillier’s Public-Key System with Applications
to Electronic Voting, was published as a technical report [25] and in the pro-
ceedings of a conference [26]. It is accepted in a journal and is currently waiting
to be printed [31].

[25] I. Damg̊ard, and M. Jurik: A Generalisation, a Simplification and some
Applications of Paillier’s Probabilistic Public-Key System, BRICS Report
Series, record 2000/45. BRICS, http://www.brics.dk/Publications/,
December 2000.

[26] I. Damg̊ard, and M. Jurik: A Generalisation, a Simplification and some
Applications of Paillier’s Probabilistic Public-Key System, Public Key
Cryptography (PKC 2001), LNCS 1992, pp. 119-136. Springer Verlag,
2001.

[31] I. Damg̊ard, M. Jurik, and J.B. Nielsen: A Generalization of Paillier’s
Public-Key System with Applications to Electronic Voting, to appear in
special issue on Financial Cryptography, International Journal on Infor-
mation Security (IJIS). Springer Verlag.

The original technical report was rewritten for the proceedings version, which
have afterwards replaced the original technical report. The journal version has
been combined with an unpublished result of Damg̊ard and Nielsen [33]. The
main differences are several implementation details, and the voting section is
extended with a technique to handle a general number of candidates in one of
the voting schemes and not only powers of 2 as in the conference version.

1.2.2 Client/Server Tradeoffs for Online Elections

The paper Client/Server Tradeoffs for Online Elections was published at a
conference [27].

[27] I. Damg̊ard, and M. Jurik: Client/Server Tradeoffs for Online Elections,
Public Key Cryptography (PKC 2002), LNCS 2274, pp. 125-140.
Springer Verlag, 2002.

1.3. Overview of Chapters 3

1.2.3 A Length-Flexible Threshold Cryptosystem with Appli-
cations

The paper A Length-Flexible Threshold Cryptosystem with Applications was
published as a technical report [28] and accepted at a conference [29].

[28] I. Damg̊ard, and M. Jurik: A Length-Flexible Threshold Cryptosystem
with Applications, BRICS Report Series, record 2003/16.
BRICS, http://www.brics.dk/Publications/, March 2003.

[29] I. Damg̊ard, and M. Jurik: A Length-Flexible Threshold Cryptosystem
with Applications, to appear in Information Security and Privacy (ACISP
2003), LNCS. Springer Verlag, 2003.

The conference version is a shorter version of the technical report. The technical
report has a couple of alternative cryptosystems, some optimization observa-
tions and proofs of the various theorems.

1.2.4 A Key-Escrow Public-key Cryptosystem

This paper has only been published as a technical report [30] and have not been
submitted for any conference yet:

[30] I. Damg̊ard, and M. Jurik: Scalable Key-Escrow, BRICS Report Series,
record 2003/22. BRICS, http://www.brics.dk/Publications/, May
2003.

1.3 Overview of Chapters

The papers mostly concern new variants of the Paillier cryptosystem and their
application, so this dissertation has been split up in a chapter with the variants
of the Paillier system and some chapters with various cryptological protocols
based on these variants. This is done to avoid reinventing the wheel in every
chapter and has led to the following chapters:

Chapter 2: This chapter covers the Paillier cryptosystem and the simplifica-
tion, generalization and modification of the cryptosystem. This leads to
several new cryptosystems with various nice properties. The sections on

• Simplifying the encryption and decryption

• Making a threshold version

• Using ns+1 as modulus instead of n2

• Length-flexible encryption

are based on the paper A Generalization of Paillier’s Public-Key System
with Applications to Electronic Voting [31].

The second part of the chapter is about length-flexible threshold cryp-
tosystems. This improves on the length-flexible version proposed in the

4 Chapter 1. Introduction

first part of the chapter at the cost of introducing a new assumption.
The problem with the first threshold version is that it sometimes re-
quires a multi-party computation to update the secret keys. The new
length-flexible threshold system is achieved by introducing an El Gamal
like element in the encryption. The resulting threshold system has some
protocols to prove the correctness of the encryptions. It even allows a
person sending and receiving messages to prove relations on the messages
inside these encryptions. This even holds for messages encrypted using
different public keys. The system requires that an RSA-modulus with
unknown factorization is set up in advance. Assuming a trusted third
party for generating this modulus is more feasible than usual, since this
can be achieved by using a trusted hardware box to create the modulus.
After the modulus has been created the hardware box can be destroyed
to ensure that no information on the factorization can be gained from
it. This is based on the paper A Length-Flexible Threshold Cryptosystem
with Applications [28].

Chapter 3: In this chapter a mix-net is proposed. It has several nice properties
(these will be further explained in the chapter):

• Length-flexibility

• Length-invariance

• Provable security

• Universal verifiability

• Strong correctness

• Order flexibility

This is the first scheme that has all the above attributes, although this
comes at the cost of efficiency compared to hybrid mixes [4, 46]. This is
essentially done by exchanging the El Gamal cryptosystem in [1] with one
of the length-flexible systems from chapter 2. This is one of the applica-
tions presented in the paper A Length-Flexible Threshold Cryptosystem
with Applications [28].

Chapter 4: This chapter contains 3 different flavors of voting.

The first type of voting system is based on the homomorphic properties
in one of the Paillier cryptosystems presented in chapter 2. This leads
to an election protocol which greatly improves previous voting protocols,
especially in the case where a large number of candidates and voters are
participating. It uses zero-knowledge protocols to create a proof of cor-
rectness of the ballot that has size O(log(L)max(k,L log(M))), where L
is the number of candidates, M the number of voters, and k is the secu-
rity parameter. All valid votes can be combined using the homomorphic
property of the cryptosystem and the complete result can be decrypted
using the threshold decryption. This is based on the voting system in the
paper A Generalization of Paillier’s Public-Key System with Applications
to Electronic Voting [31].

1.3. Overview of Chapters 5

The next voting system addresses 2 problems:

Minimizing voter load: The voting system mentioned above has the
problem that the workload of the voters can become quite large, if
there is a lot of candidates and voters. In essence, what we could
hope to achieve is that the voter only has to provide something of
size O(log(L)).

Hostile environments: Sometimes voters have to vote in hostile envi-
ronments. This could be a computer at some library or a home
computer infested with Trojans/worms. This means that some ad-
versary can monitor or even take over the voting ability of the voter.

The first point is addressed by making 2 system, one that is within a
constant of absolute minimal size of a vote O(max(log(L), k)) and one
that has a larger vote size of O(log(L)max(L, k)). To do this, the servers
have to transform the votes into what would have been valid votes in the
first voting system in this chapter. Then the combination and decryption
of the result can be done by following the same procedure. The second
system does not achieve minimal votes, but the amount of work performed
by the servers will be significantly less in most realistic scenarios.

To secure a voter against hostile environments we assume he receives a
permutation in some secure way, which the adversary cannot learn (i.e.
at registration). Then the voter can submit the permuted value of his
choice of candidate, which is transformed at the server side in a similar
manner to the minimal vote system. This results in a system, where the
adversary controlling the hostile environment will gain no information on
the vote. If the adversary takes over the computer, the best it can do is to
submit a vote for a random candidate. This is still a serious attack, but
an improvement over total control of which candidate the vote is for. This
is based on the paper Client/Server Tradeoffs for Online Elections [27].

The final voting system presented is a self-tallying, dispute-free voting
system with perfect ballot secrecy. This type of voting system was intro-
duced by Kiayias and Yung in [47]. We will present a way to use one of the
cryptosystems in chapter 2 to make a more efficient system, that is also
feasible for multi-candidate elections. This is based on one of the appli-
cations presented in the paper A Length-Flexible Threshold Cryptosystem
with Applications [28].

Chapter 5: Two classes of cryptosystems were presented in chapter 2. First
there was the generalization of the Paillier cryptosystem. This was used
to create the second class by adding an El Gamal element. The encryption
function in these two classes are related by this equation:

E′(m, r) = (gr mod n,E(m,hr mod n))

This means, that there are two kinds of secret keys, namely the secret key
for the E′ encryption and the secret key for the E encryption. Both the

6 Chapter 1. Introduction

secret key for E and E′ can be used to decrypt the ciphertext and recover
m.

In this chapter, we present a key escrow system that uses both of these
keys such that a surveillance agency can decrypt messages without reveal-
ing the secret key of the receiving party. The idea is that the key escrow
servers hold the key for the E encryption, and the users of the system
generate different keys for the E′ encryption. This will allow the escrow
servers to decrypt any messages encrypted under the E′ encryption func-
tion with only one secret key - namely the secret key for E encryption
function. This is based on the paper Scalable Key-Escrow [30].

Chapter 6: This chapter concerns the creation of an electronic petition sys-
tem. Two of the three system presented in this chapter are based on
standard techniques. 1) a system using standard signatures, 2) a sys-
tem using threshold signatures, and 3) a system using the new notion of
aggregate signatures.

The first two systems follow directly from standard techniques and are
included to provide a frame of reference. The third system uses the notion
of aggregate signatures which will be presented in the chapter. Aggregate
signatures have the property that two signatures can be combined into
a new signature. This new signature can be checked with a public key,
that can be computed from the two public keys under which the original
signatures could be verified.

We provide an example of a system that supports aggregate signatures
based on the modified Weil pairing. This system has the nice properties
that it can combine two signatures or two public keys using just one
addition over the elliptic curve. Checking a signature can be done using
O(k) additions on the elliptic curve, where k is the security parameter.

This leads to a petition system where a verifier just has to combine t keys
and check one signature. This requires O(t + k) additions on an elliptic
curve, which is very efficient compared to the O(tk) additions used when
checking t standard signatures on an elliptic curve.

This is based on unpublished results made in cooperation with Dan Boneh,
Ben Lynn and Hovav Shacham. These results were never published due
to a concurrent, but independent result by Boldyreva [13], that covered
the cryptological building blocks in the result.

Chapter 2

Improving the Paillier Cryptosystem

Every day you may make progress. Every step may be fruitful. Yet there will
stretch out before you an ever-lengthening, ever-ascending, ever-improving

path. You know you will never get to the end of the journey. But this, so far
from discouraging, only adds to the joy and glory of the climb.

— Winston S. Churchill.

Paillier proposed a new cryptosystem in [52]. It is an efficient and additively
homomorphic cryptosystem, which makes it useful for a lot of things including
for instance voting (although some additional building blocks are needed). In
this chapter we will look at ways to simplify, generalize and change the original
cryptosystem to make it even more useful. Some of the properties achieved in
this chapter are an efficient threshold decryption, length-flexibility (i.e. given
a fixed key any size of plaintext can be encrypted and decrypted), and how
to make zero knowledge proofs over different public keys. During this chapter
we will see several cryptosystems that each have their advantages, and in the
following chapters some of these will be used to improve different cryptological
protocols.

2.1 Introduction

2.1.1 Background

In [52], Paillier proposes a new probabilistic encryption scheme based on com-
putations over the group Z

∗
n2, where n is an RSA modulus. This scheme has

some very attractive properties, in that it is homomorphic, allows encryption
of many bits in one operation with a constant expansion factor, and allows ef-
ficient decryption. This makes it potentially interesting for many cryptological
protocols such as electronic voting and mix-nets.

This scheme is related to an earlier cryptosystem by Okamoto and Uchiyama
[51], in which the group Z

∗
p2q is used, where p and q are large primes. The

main difference is that the homomorphic property of this scheme requires that
the sum of the messages being added is smaller than p, which is unknown.
The Paillier scheme does not suffer from this problem since the homomorphic
computations are simply calculated modulo n.

7

8 Chapter 2. Improving the Paillier Cryptosystem

El Gamal proposed a cryptosystem that makes computations in the group
Z
∗
p using a generator g of a subgroup of size q (where q|p− 1). The good thing

about this is that the order q of g is publicly known, which allows a simple
threshold decryption by simply making a Shamir secret sharing [54] of the
secret over the group Zq. Another advantage of this cryptosystem is that given
the public parameters p, q, g anyone can set up their own secure cryptosystem.

2.1.2 Related Work

In work independent from, but earlier than the result from this chapter, Fouque,
Poupard and Stern [37] proposed the first threshold version of Paillier’s original
scheme. Like the first threshold scheme in this chapter, [37] uses an adaptation
of Shoup’s threshold RSA scheme [57], but apart from this the techniques are
somewhat different, in particular because we construct a threshold version for
our generalized cryptosystem (and not only Paillier’s original scheme).

2.1.3 Contribution

In this chapter we propose a generalization of Paillier’s scheme using computa-
tions modulo ns+1, for any integer s ≥ 1. We also show that the system can
be simplified (without degrading security) such that the public key can con-
sist of only the modulus n. This allows instantiating the system such that the
block length for the encryption can be chosen freely for each encryption, inde-
pendently of the size of the public key (length-flexible) and without losing the
homomorphic property. The generalization also allows reducing the expansion
factor from 2 for Paillier’s original system to almost 1. We prove that the gener-
alization is as secure as Paillier’s original scheme. We also provide a number of
ways to optimize both the encryption and decryption operations, in particular
a new algorithm for encryption which, compared to a naive implementation of
Paillier’s original scheme, saves a factor of 4 in computing time. In general,
it saves a factor of 4s compared to a straightforward implementation of the
generalized system.

We propose a threshold variant of the generalized system, allowing a number
of servers to share knowledge of the secret key, such that any large enough
subset of them can decrypt a ciphertext, while smaller subsets have no useful
information. We prove in the random oracle model that the scheme is as secure
as a standard centralized implementation.

We also propose a zero-knowledge proof of knowledge allowing a prover to
show that a given ciphertext encodes a given plaintext. From this we derive
other tools, such as a protocol showing that a ciphertext encodes one out of a
number of given plaintexts. Finally, we propose a protocol that allows verifica-
tion of multiplicative relations among encrypted values without revealing extra
information.

The threshold decryption of this system, however, has a couple of problems:
1) the decryption servers have to perform work and store key material propor-
tional to the size of messages they decrypt and 2) threshold decryption in the
length-flexible case sometimes need a heavy multi-party computation (when a

2.2. A Generalization of Paillier’s Probabilistic Encryption Scheme 9

message longer than the currently stored key arrives). To fix this we make a
combination of the generalized Paillier and the El Gamal cryptosystem. This
results in a new cryptosystem that inherits the homomorphic property from the
Paillier system and some of the flexibility from the El Gamal cryptosystem. It
is secure under the Paillier (DCRA) and the composite DDH (DDH over an
RSA moduli) assumptions, or - at a moderate loss of efficiency - based only on
the Paillier assumption. It is also related to a Paillier-based scheme presented
in [23], but is more efficient and is also length-flexible.

We achieve two new properties. First, our scheme allows several users to
use the same modulus. This makes it possible to do efficient zero-knowledge
proofs for relations between ciphertexts created under different public keys.

Secondly, we propose a threshold decryption protocol where keys can be set
up so that messages of arbitrary length can be handled efficiently with the same
(fixed size) keys. In addition, the computational work done by each server does
not depend on the message length, only the cost of a final public post-processing
is message dependent. This is in contrast to the system mentioned above where
the threshold decryption requires work from the servers proportional to the size
of the message encrypted and in some cases a heavy multi-party computation.
We also give efficient zero-knowledge protocols for proving various claims on
encrypted values in this cryptosystem.

2.2 A Generalization of Paillier’s Probabilistic En-
cryption Scheme

The public-key cryptosystem we describe here uses computations modulo ns+1,
where n is an RSA modulus and s is a natural number. It contains Paillier’s
scheme [52] as a special case by setting s = 1.

Consider a modulus n = pq, p, q odd primes, where gcd(n,ϕ(n)) = 1. When
p, q are large and randomly chosen, this will be satisfied except with negligible
probability. Such an n will be called admissible in the following. For such an
n, Z

∗
ns+1 as a multiplicative group is a direct product G×H, where G is cyclic

of order ns and H is isomorphic to Z
∗
n. This follows directly from the Chinese

Remainder Theorem and the fact that Z
∗
ps+1 is cyclic of order (p− 1)ps. Thus,

the factor group Ḡ = Z
∗
ns+1/H is also cyclic of order ns. For an arbitrary

element a ∈ Z
∗
ns+1, we let ā = aH denote the element represented by a in the

factor group Ḡ.

Lemma 2.1 For any admissible n and s < p, q, the element n + 1 has order
ns in Z

∗
ns+1.

Proof. Consider the integer (1 + n)i =
∑i

j=0

(i
j

)
nj . This number is 1 modulo

ns+1 for some i if and only if
∑i

j=1

(i
j

)
nj−1 is 0 modulo ns. Clearly, this is the

case if i = ns, so it follows that the order of 1 + n is a divisor in ns, i.e., it is
a number of form pαqβ, where α, β ≤ s. Set a = pαqβ, and consider a term(a
j

)
nj−1 in the sum

∑a
j=1

(a
j

)
nj−1. We claim that each such term is divisible

by a: this is trivial if j > s, and for j ≤ s, it follows because j! cannot have p

10 Chapter 2. Improving the Paillier Cryptosystem

or q as prime factors, and so a must divide
(a
j

)
. Now assume for contradiction

that a = pαqβ < ns. Without loss of generality, we can assume that this means
α < s. We know that ns divides

∑a
j=1

(
a
j

)
nj−1. Dividing both numbers by a,

we see that p must divide the number
∑a

j=1

(
a
j

)
nj−1/a. However, the first term

in this sum after division by a is 1, and all the rest are divisible by p, so the
number is in fact 1 modulo p, and we have a contradiction. 2

Since the order of H is relatively prime to ns, the above lemma implies
immediately that the element 1 + n := (1 + n)H ∈ Ḡ is a generator of Ḡ,
except possibly for s ≥ p, q. So the cosets of H in Z

∗
ns+1 are

H, (1 + n)H, (1 + n)2H, ..., (1 + n)n
s−1H

which leads to a natural numbering of these cosets. The following lemma cap-
tures the structure of Z

∗
ns+1 in a more concrete way:

Lemma 2.2 For any admissible n and s < p, q, the map ψs : Zns×Z
∗
n → Z

∗
ns+1

given by (x, r) 7→ (1 + n)xrns
mod ns+1 is an isomorphism, where ψs(x1 +

x2 mod ns, r1r2 mod n) = ψs(x1, r1)ψs(x2, r2) mod ns+1.

Proof. Let π : Z
∗
n → Z

∗
ns+1 be given by r 7→ ψs(0, r) = rns

mod ns+1. By the
above enumeration of the cosets of H it is enough to prove that π(r1r2 mod n) =
π(r1)π(r2) mod ns+1 and that π maps Z

∗
n injectively to H. First, it is clear that

π(r) ∈ H. By looking at the binomial expansion it is easy to see that rns ≡
(r+n)n

s
mod ns+1. This proves the homomorphic property directly and by the

pigeon hole principle implies that π is injective. 2 Proof. Let π : Z
∗
n → Z

∗
ns+1 be

given by r 7→ ψs(0, r) = rns
mod ns+1. By the above enumeration of the cosets

of H it is enough to prove that π(r1r2 mod n) = π(r1)π(r2) mod ns+1 and that
π maps Z

∗
n injectively to H. First, it is clear that π(r) ∈ H. By looking at the

binomial expansion it can be verified that rns ≡ (r + n)n
s

mod ns+1:

(r + n)n
s

= rns
+

(
ns

1

)
rns−1n+ · · · +

(
ns

s

)
rns−sns = rns

mod ns+1

All the terms except rns
gets a factor of ns from the binomial and a factor of

atleast one n from the expansion of (r + n) and thus they cancel out modulo
ns+1. This proves the homomorphic property of π. 2

This lemma gives us the following encoding of the cosets: (1 + n)i = ψs(i,Z∗
n).

The final technical observation we need is that ψ can be inverted given the
factorization of n. In particular, taking discrete logarithms base n+ 1 in Ḡ is
easy given the factorization.

Theorem 2.1 For any admissible n and s < p, q, the map ψs : Zns × Z
∗
n →

Z
∗
ns+1 given by (x, r) 7→ (1 + n)xrns

mod ns+1 can be inverted in polynomial
time given λ(n), the least common multiple of p− 1 and q − 1.

2.2. A Generalization of Paillier’s Probabilistic Encryption Scheme 11

Proof. We first show how to find i from (1 + n)i mod ns+1 without using λ. If
we define the function L by L(b) = (b− 1)/n then clearly we have

L((1 + n)i mod ns+1) = (i+
(
i

2

)
n+ ...+

(
i

s

)
ns−1) mod ns

We now describe an algorithm for computing i from this number.
The general idea of the algorithm is to extract the value part by part,

so that we first extract i1 = i mod n, then i2 = i mod n2 and so forth (in
the following we’ll use ij = i mod nj to denote these values). It is easy to
extract i1 = L((1 + n)i mod n2) = i mod n. Now we can extract the rest by
the following induction step: In the j’th step we know ij−1. This means that
ij = ij−1 + k ∗ nj−1 for some 0 ≤ k < n. If we use this in

L((1 + n)i mod nj+1) = (ij +
(
ij
2

)
n+ ...+

(
ij
j

)
nj−1) mod nj

we can notice that each term
(ij
t+1

)
nt for j > t > 0 satisfies that

(ij
t+1

)
nt =(ij−1

t+1

)
nt mod nj. This is because the contributions from k ∗nj−1 vanish modulo

nj after multiplication by n. It follows that:

L((1 + n)i mod nj+1) = (ij +
(
ij−1

2

)
n+ ...+

(
ij−1

j

)
nj−1) mod nj

Then we can isolate ij

ij = L((1 + n)i mod nj+1)− (
(
ij−1

2

)
n+ ...+

(
ij−1

j

)
nj−1) mod nj

This equation leads to the following algorithm where a has the form (n+ 1)i:

dLogs(a):
begin
i := 0;
for j := 1 to s do /* i = ij−1 */
begin
t1 := L(a mod nj+1);
t2 := i;
for k := 2 to j do /* t2 = i(i− 1) · · · (i− k + 2) */
begin
i := i− 1;
t2 := t2 ∗ i mod nj;
t1 := t1 − t2∗nk−1

k! mod nj; /* t1 = t1 −
(

i
k

)
nk−1 */

end
i := t1;

end
return i;

end

12 Chapter 2. Improving the Paillier Cryptosystem

Assume now that we are given c = (1 +n)irns
mod ns+1. We show how to find

i and r given λ. To find i compute

cλ = (1 + n)iλ mod ns
rnsλ mod nsλ = (1 + n)iλ mod ns

.

Then using the above algorithm find iλ mod ns and extract i. Now compute
rns

= c(1 + n)−i mod ns+1 and compute a such that aλ+ 1 = 0 mod ns. This
is possible because gcd(λ, ns) = 1. Then

(rns
)

aλ+1
ns mod n = raλ+1 mod n = (rλ)ar mod n = r mod n = r .

2

We are now ready to describe our cryptosystem. In fact, for each natural
number s, we can build a cryptosystem CSs, as follows:

Key Generation: Given the security parameter k as input, choose an admis-
sible RSA modulus n = pq of length k bits1. Also choose an element
g ∈ Z

∗
ns+1 such that g = (1 + n)jx mod ns+1 for a known j relatively

prime to n and x ∈ H. This can be done, e.g. by choosing j, x at random
first and computing g; some alternatives are described later. Let λ be the
least common multiple of p − 1 and q − 1. By the Chinese Remainder
Theorem, choose d such that d mod n ∈ Z

∗
n and d = 0 mod λ. Any such

choice of d will work in the following. In Paillier’s original scheme d = λ
was used, which is the smallest possible value. However, when making
a threshold variant, other choices are better - we expand on this in the
following section.

Now the public key is pk = (n, g) while the secret key is d.

Encryption: The plaintext set is Zns . Given a plaintext m, choose a random
r ∈ Z

∗
n, and let the ciphertext be

Es,pk(m, r) = gmrns
mod ns+1

Decryption: Given a ciphertext c, first compute cd mod ns+1. Clearly, if c =
Es,pk(m, r), we get

cd = (gmrns
)d = ((1 + n)jmxmrns

)d = (1 + n)jmd mod ns
(xmrns

)d mod λ

= (1 + n)jmd mod ns

Now apply the algorithm from the proof of theorem 2.1 to compute
jmd mod ns. Applying the same method on g clearly produces the value
jd mod ns, so this can either be computed on the fly or be saved as part
of the secret key. In any case we obtain the plaintext by

(jmd) · (jd)−1 = m mod ns

1Strictly speaking, we also need that s < p, q, but this is insignificant since in practice, s
will always be much smaller than p, q.

2.2. A Generalization of Paillier’s Probabilistic Encryption Scheme 13

Clearly, this system is additively homomorphic over Zns , that is the product
of encryptions of messages m,m′ with the random values r, r′ is an encryption
of m+m′ mod ns with the random value r · r′ mod n.

To facilitate comparison with Paillier’s original system, we have kept the
above system description as close as possible to that of Paillier. In particular,
the description allows choosing g in a variety of ways. However, as we shall
see, semantic security of the system is equivalent to a particular computational
assumption, no matter how we choose g. In particular we may as well simplify
matters and choose g = n + 1 always. This also allows for a more efficient
implementation. Therefore, in the following sections, when we refer to CSs, we
usually mean the above system with g = n+ 1.

2.2.1 Security

There are two basic flavors or strengths of security that one may consider,
namely

• Is the scheme one-way, i.e. is it hard to compute the plaintext from the
ciphertext?

• Is the scheme semantically secure, i.e. does any information at all about
the plaintext leak, given the ciphertext?

We first give a short informal discussion on one-wayness, and then look at
semantic security in more detail.

The homomorphic property of the scheme means that the problem of com-
puting the plaintext from the ciphertext (and the public key) is random self-
reducible: given any ciphertext c and public key n, g, one may choose m ∈
Zns , j ∈ Z

∗
ns, r, r′ ∈ Z

∗
n at random and try to decrypt the ciphertext c′ =

cgmrns
mod ns+1 with respect to public key n, g′ where g′ = gjr′n

s

mod ns+1.
If this succeeds, one can find the original plaintext by multiplying by j and sub-
tracting m modulo ns. Note that c′, g′ is a random ciphertext-generator pair,
no matter how c, g were chosen. So any algorithm that can break a non-trivial
fraction of the ciphertexts and choices of g can also break a random instance
with significant probability. This motivates calling our scheme one-way if it
is hard to find the plaintext given a random public key n, g and a random
ciphertext c.

Proposition 2.1 If for some t the scheme CSt is one-way, then CSs is one-
way for any s > t. Especially CSs is one-way for any s if Paillier’s original
scheme CS1 is one-way.

Proof. Assume that s > t and that CSt is one-way. Assume for the sake
of contradiction that CSs is not one-way. Then given a public key n, g and
a ciphertext ct from CSt, we can transform this to a decryption problem in
CSs instead. Concretely, this means we consider ct as a number modulo ns+1

(instead of nt+1), and choose as the public generator a random number g̃ ∈
Z
∗
ns+1 such that g̃ mod nt+1 = g. We then randomize ct (modulo ns+1) as

described above. This produces a random instance of the decryption problem

14 Chapter 2. Improving the Paillier Cryptosystem

in CSs, so by assumption we can find the plaintext m in CSs corresponding to
ct. We have of course that m ∈ Zns , and now clearly m mod nt is the plaintext
corresponding to ct in CSt, so that CSt is not one-way either. 2

If we want to claim that a cryptosystem “hides” the plaintext in any rea-
sonable sense, the one-way assumption is essentially the weakest possible as-
sumption one can make. In [16], Catalano, Gennaro and Howgrave-Graham
show that this assumption for CS1 implies that one can make a semantically
secure system hiding a logarithmic number of bits per ciphertext in the original
system, and that a somewhat stronger assumption implies a system hiding a
linear number of bits per ciphertext. It is easy to generalize these results to
CSs. However, none of the schemes constructed this way will be homomorphic.

The semantic security of our schemes can be based on the following as-
sumption, introduced by Paillier in [52], the decisional composite residuosity
assumption (DCRA):

Conjecture 2.1 Let A be any probabilistic polynomial time algorithm, and
assume A gets n, x as input. Here n has k bits and is chosen as described
above. x is either random in Z

∗
n2 or it is a random n’th power in Z

∗
n2 (i.e.

a random element in the subgroup H defined earlier). A outputs a bit b. Let
p0(A, k) be the probability that b = 1 if x is random in Z

∗
n2, and p1(A, k) the

probability that b = 1, if x is a random n’th power. Then | p0(A, k)− p1(A, k) |
is negligible in k.

Here, “negligible in k” means smaller than 1/f(k) for any polynomial f and
all large enough k as usual.

We now discuss the semantic security of CSs. There are several equivalent
formulations of semantic security. We will use the following:

Definition 2.1 An adversary A against a public-key cryptosystem gets the pub-
lic key pk generated from security parameter k as input and outputs a mes-
sage m. Then A is given an encryption under pk of either m or a message
chosen uniformly in the message space, and outputs a bit. Let p0(A, k) re-
spectively p1(A, k) be the probability that A outputs 1 when given an encryp-
tion of m respectively a random encryption. Define the advantage of A to be
Adv(A, k) = |p0(A, k) − p1(A, k)|. The cryptosystem is semantically secure if
for any probabilistic polynomial time adversary A, Adv(A, k) is negligible in k.

In [52], Paillier showed that his cryptosystem (which is identical to our
CS1) is semantically secure if and only if DCRA holds. This holds for any
choice of g, and follows easily from the fact that given a ciphertext c that is
either random or encrypts a message m, we have cg−m mod n2 is either random
in Z

∗
n2 or a random n’th power. In particular, assuming DCRA, one may choose

g = n + 1 always without degrading security. We now show that security of
CSs is equivalent to DCRA:

Theorem 2.2 For any s, the cryptosystem CSs is semantically secure if and
only if the DCRA is true. This holds even if s is allowed to increase polynomially
in the security parameter.

2.2. A Generalization of Paillier’s Probabilistic Encryption Scheme 15

Proof. From a ciphertext in CSs, one can obtain a ciphertext in CS1 by reducing
modulo n2, this implicitly reduces the message modulo n. It is therefore clear
that if DCRA fails, then CSs cannot be secure for any s.

For the converse, we assume that CSs is not secure and we start by showing
a relation between the security of CSs and that of CSt for values of t < s.

The message space of CSs is Zns . Thus any message m can be written in
radix n notation as an s-tuple (ms,ms−1, ...,m1), where each mi ∈ Zn and m =∑s−1

i=0 mi+1n
i. Let Dn(ms, ...,m1) be the distribution obtained by encrypting

the message (ms, ...,m1) under public key n. If one or more of the mi are
replaced by ∗’s, this means that the corresponding positions in the message are
chosen uniformly in Zn before encrypting.

Now, assume for simplicity that s is even, consider any adversary A against
CSs, and assume that Adv(A, k) ≥ 1/f(k) for some polynomial f and infinitely
many values of k. For any such value, we can assume without loss of generality,
that we have p0(A, k) − p1(A, k) ≥ 1/f(k). Suppose we make a public key n
from security parameter k, show it to A, get a message (ms, ...,m1) from A and
show A a sample of Dn(∗, ..., ∗,ms/2, ...,m1). Let q(A, k) be the probability
that A now outputs 1. We must have

p0(A, k)− q(A, k) ≥ 1
2f(k)

or q(A, k)− p1(A, k) ≥ 1
2f(k)

(2.1)

and one of these cases must be true for infinitely many values of k. In the first
case in (2.1), we can make a successful adversary against CSs/2, as follows:
we get the public key n, show it to A, get (ms, ...,m1) as output from A, and
return (ms, ...,m1+s/2) as our output. We will get a ciphertext c that either
encrypts (ms, ...,m1+s/2) in CSs/2, or is a random ciphertext. If we consider c
as an element in Z

∗
ns+1, we know it is an encryption of some plaintext, which

must have either (ms, ...,m1+s/2) or s/2 random elements in its least significant
positions. Hence cn

s/2
mod ns+1 is an encryption of (ms, ...,m1+s/2, 0, ..., 0) or

(∗, ..., ∗, 0, ..., 0). We then make a random encryption d of (0, ..., 0,ms/2 , ...,m1),
give cn

s/2
d mod ns+1 to A and return the bit A outputs. Now, if c encrypts

(ms, ...,m1+s/2), we have shown to A a sample of Dn(ms, ...,m1), and otherwise
a sample of Dn(∗, ..., ∗,ms/2 , ...,m1). So by assumption on A, this breaks CSs/2

with an advantage of 1/2f(k) for infinitely many k.
In the second case of (2.1), we can also make an adversary against CSs/2, as

follows: we get the public key n, show it to A, and get a message (ms, ...,m1).
We output (ms/2, ...,m1) and get back a ciphertext c that encrypts in CSs/2

either (ms/2, ...,m1) or something random. If we consider c as a number
modulo ns+1, we know that the corresponding plaintext in CSs has either
(ms/2, ...,m1) or random elements in the least significant s/2 positions - and
something unknown in the top positions. We make a random encryption d of
(∗, .., ∗, 0, ..., 0), show cd mod ns+1 to A and return the bit A outputs. If c en-
crypted (ms/2, ...,m1), we have shownA a sample from Dn(∗, .., ∗,ms/2,,m1),
and otherwise a sample from Dn(∗, ..., ∗). So again this breaks CSs/2 with an
advantage of 1/2f(k) for infinitely many k.

To sum up, we have: for any adversaryA against CSs, s even, there exists an
adversary A′ against CSs/2, such that Adv(A′, k) ≥ 1/2f(k) for infinitely many

16 Chapter 2. Improving the Paillier Cryptosystem

k. Similarly, for odd s, we can show existence of an adversary against either
CS(s+1)/2 or CS(s−1)/2 with advantage at least 1/2f(k) for infinitely many k.

Repeated use of this result shows that for any adversary A against CSs,
there exists an adversary against CS1 with advantage at least 1/2sf(k) for
infinitely many k. Thus, since s is polynomially bounded as a function of k,
CS1 is not semantically secure, and this contradicts Paillier’s original result. 2

From the point of view of exact security analysis, one can note that from
the proof above, it follows that the maximal advantage with which CSs can be
broken is at most a factor of 2s larger than the corresponding advantage for
CS1. Thus, there is no great security risk in using polynomially large values of
s, if one believes that CS1 is secure in the first place.

2.2.2 Adjusting the Block length

As mentioned, we may choose g = n + 1 always without losing security, and
the public key may then consist only of the modulus n. This means that we
can decide on a value for s at any point after the keys have been generated, or
even let the sender decide on the fly when he encrypts a message. Concretely,
the length-flexible system CS∗ will work as follows:

Key Generation: Choose an admissible RSA modulus n = pq. Now the
public key is pk = n while the secret key is λ, the least common multiple
of (p− 1) and (q − 1).

Encryption: Given a plaintextm represented as a non-negative integer, choose
s such that m < ns, choose a random r ∈ Z

∗
n, and let the ciphertext be

E∗
pk(m, r) = (1 + n)mrns

mod ns+1

Whenever a certain encryption is made it uses a fixed s and the derived
encryption function will be denoted:

E∗
(s),pk(m, r) = (1 + n)mrns

mod ns+1

Decryption: Given a ciphertext c = E∗
pk(m, r), compute cλ mod ns+1 (note

that from the length of c, one can compute the correct value of s except
with negligible probability). Clearly, if c = E(m, r), we get

cλ = ((1+n)mrns
)λ = (1+n)mλ mod ns

(rns
)λ mod λ = (1+n)mλ mod ns+1

Now apply the algorithm from theorem 2.1 to compute mλ mod ns and
get the message by multiplying by λ−1 modulo ns.

It is an immediate corollary to proposition 2.1 and theorem 2.2 that the
above scheme is one-way, if CS1 is one-way, respectively is semantically secure
if the DCRA holds.

2.3. Some Optimizations and Implementation Issues 17

2.3 Some Optimizations and Implementation Issues

2.3.1 An Alternative Encryption Function

Let ψs : Zns×Z
∗
n → Z

∗
ns+1 be the isomorphism given by (x, r) 7→ (1+n)xrns

mod
ns+1 in lemma 2.2. In the above we encrypt an element m ∈ Zns by a random
element from the coset (1 + n)m = ψs(m,Z∗

n). This element is chosen as c =
ψs(m, r) for random r ∈ Z

∗
n. Note that if we reduce a ciphertext modulo n, we

obtain:
c mod n = (1 + n)xrns

mod n = rns
mod n

The Jacobi symbol modulo n is easy to compute, even without the factors (see
e.g. [12]), and since ns is odd and the Jacobi symbol is multiplicative, we see that
from c = ψs(m, r), we can compute the Jacobi symbol of r efficiently. Further,
by multiplying c by a number of form ψs(0, r̃), where r̃ is an arbitrary constant
with the same Jacobi symbol as r, we obtain a ciphertext c′ = ψs(m, r′) =
ψs(m, rr̃), where r′ is guaranteed to have Jacobi symbol 1. It easily follows
that the cryptosystem is like CSs, except that we restrict r to have Jacobi
symbol 1, is exactly as secure as CSs under any notion of security. We now
exploit this to obtain an alternative and more efficient encryption function.

Using standard techniques we can generate a random RSA modulus n = pq
with known p and q such that p = 3 mod 4, q = 3 mod 4, gcd(p− 1, q − 1) = 2.
This means that the subgroup of quadratic residues Qn is cyclic and has odd
order, say τ . We can also ensure that all elements in this subgroup - except
for a negligible fraction - are generators. This can be done by picking p, q such
that all prime factors in p−1, q−1 except 2 are sufficiently large. One extreme
special case of this is when n is a safe prime product, which is an option we use
later for the threshold version of the scheme.

Let Z
∗
n[+] be the elements with Jacobi symbol 1 in Z

∗
n. We have that Z

∗
n[+]

contains Qn, has order 2τ and is also cyclic. Finally, −1 ∈ Z
∗
n[+]\Qn by choice

of n.
All this implies that if we choose a random x ∈ Z

∗
n and let h = −x2 mod n

then, except with negligible probability, 〈h〉 = Z
∗
n[+]. This then allows us to

generate a uniformly random element from Z
∗
n[+] as hr mod n, where r is a

uniformly random integer from [0, (p− 1)(q− 1)/2). However, since (p− 1)(q−
1)/2 is the secret key, this would allow only the owner of the secret key to
encrypt, which would of course be useless. We can remedy this by using a
result from [42]. Let (n, h) be generated as above. Let r be a uniformly random
integer from [0, (p − 1)(q − 1)/2) and let r′ be a uniformly random element
from [0, 2dk/2e). Then by [42, theorem 3.2] the random variables (n, h, hr mod
n) and (n, h, hr′ mod n) are computationally indistinguishable assuming the
intractability of factoring, which is implied by the DCRA. This means that even
though hr′ mod n is not a uniformly random element from Z

∗
n[+], it cannot be

distinguished from a uniformly random element from Z
∗
n[+] by any polynomial

time algorithm, which suffices for our application. This gives us the following
cryptosystem CS′s.

Key Generation: Choose an admissible RSA modulus n = pq of length k

18 Chapter 2. Improving the Paillier Cryptosystem

bits, where p ≡ q ≡ 3 (mod 4), gcd(p − 1, q − 1) = 2, and such that a
random square generates Qn, except with negligible probability. Choose a
generator h of Z

∗
n[+] as described above. Now the public key is pk = (n, h)

while the secret key is λ = (p− 1)(q− 1)/2, the least common multiple of
(p − 1) and (q − 1).

Encryption: Given a plaintext m ∈ Zns , choose a random r ∈ Z2dk/2e and let
the ciphertext be

E′
s,pk(m, r) = (1 + n)m(hr mod n)n

s
mod ns+1 = Es,pk(m,hr mod n)

Decryption: As before.

The following theorem follows directly from the fact that hr mod n is pseudo-
random in Z

∗
n under DCRA, that h can be generated given just n, and that the

security of CSs is unchanged when restricting the randomness to Jacobi symbol
1.

Theorem 2.3 For any s, the cryptosystem CS′s is semantically secure if and
only if the DCRA is true. This holds even if s is allowed to increase polynomially
in the security parameter.

From an exact security point of view, one should be aware that in order to
argue the security, we are using the DCRA twice: first to argue that CS′s is
as secure as CSs (namely hr mod n is pseudo-random) and then to argue that
CSs is secure. This means that if we want to build instances of CS′s that
can be broken with advantage no larger than instances of CSs with security
parameter k, we need to use moduli that are somewhat longer than k bits.
How much longer depends on exactly how strong assumptions we are willing to
make, and on the complexity of the reduction in the result of [42]. This may
partly eliminate the efficiency advantage we show below for CS′s. On the other
hand, this issue can be completely avoided by using more randomness. We can
choose r as a random number modulo n/2, instead of a random k/2-bit number.
Then hr mod n will be statistically close to a random element in 〈h〉 without
any assumptions, and up to a negligible term we have the same security for this
variant of CS′s as for CSs. This will only cost a factor of 2 in performance of
the encryption. In the following we will use θ to mean a sufficiently large value,
which can be either 2k/2 − 1 or n/2 depending on the scenario.

2.3.2 Optimizations of Encryption and Decryption

Encryption

While encrypting, instead of computing (1 + n)m directly, we can compute it
according to:

(1 + n)m = 1 +mn+
(
m

2

)
n2 + ...+

(
m

s

)
ns mod ns+1

2.3. Some Optimizations and Implementation Issues 19

this trades an exponentiation with an O(ns) size exponent for O(s) multiplica-
tions by calculating the binomials using:

(
m

j

)
=

(
m

j − 1

)
m− j + 1

j
for j > 0

In the j’th step we calculate
(m

j

)
nj mod ns+1, and since there is a multiplication

by nj it is enough to calculate the binomial modulo ns−j+1. To further optimize
the computations the (j!)−1nj can be precomputed. The pseudo algorithm for
calculating the (n+ 1)m part of the encryption looks like this (where precomp
is an array of the precomputed values, precomp[j] := (j!)−1nj mod ns+1):

c := 1 +mn;
tmp := m;
for j := 2 to s do
begin
tmp := tmp · (m− j + 1) mod ns−j+1;

/* tmp = m(m− 1) · · · (m− j + 1) mod ns−j+1 */
c := c+ tmp · precomp[j] mod ns+1;

/* c = 1 +mn+ · · ·+ (m
j

)
nj mod ns+1 */

end

In the cryptosystem CS′s the elements from H are generated as (hr mod
n)n

s
mod ns+1 which, if computed naively, certainly leads to no optimization.

However, a simple observation allows us to reduce the number of steps used in
this computation. Let hs = hns

mod ns+1. Then using the isomorphism from
theorem 2.1, we have

(hr mod n)n
s

mod ns+1 = ψs(0, hr mod n) = ψs(0, h)r = hr
s mod ns+1

It follows that E′
s,pk(m, r) = (1 + n)mhr

s mod ns+1. If we precompute and save
the different 2 powers of hs, then using standard methods for exponentiation
with a fixed base, hr

s mod ns+1 can be computed by an expected number of
k/4 multiplications modulo ns+1, and hence the entire encryption can be done
in k/4 + 2s multiplications. Compared to a straightforward implementation of
CSs with the same k value, where 2 full scale exponentiations are made, this
saves a factor of about 4s in computing time, and in particular this is four times
as fast as Paillier’s original system.

For the length-flexible cryptosystem CS∗ from section 2.2.2 this would mean
that we would have to compute h1, ..., hs′ for some upper bound s′ of the pos-
sible values of s. This results in O(s′2k) extra information passed along with
the public key, and if someone wants to encrypt a message with s > s′ the en-
cryption needs to be performed without the generator. This problem however

20 Chapter 2. Improving the Paillier Cryptosystem

can be helped by the following observation:

hs+1 = hn
s mod ns+2

= (hns
mod ns+1)n mod ns+2

= (hns
+ kns+1)n mod ns+2 for some k

= hns+1
+ (hns

)n−1

(
n

1

)
(kns+1) + (hns

)n−2

(
n

2

)
(kns+1)2 + · · · mod ns+2

= hns+1
mod ns+2

Computing hn
s uses 3k/2 multiplications and to compute hs from hs′ (where

s > s′) an expected (s − s′)3k/2 number of multiplication are needed. There
are several ways to chose which hs′ values to store. First one can simply store
all hs′ values up to a bound s, in which case we have the value hs′ for all s′

smaller than s, but this requires O(ks2) bits of storage. The other extreme is to
store only h1, but this requires an order of O(ks′) multiplications to compute
hs′ . This however only requires O(k) bits of storage. We can also make a
trade-off where we store the values h1, h3, h6, ..., hs (the indeces are the points
of x2+x

2). There are
√
s of these values and for any value s′ < s the distance to

the largest index smaller than or equal to s′ is of the order O(
√
s′). This results

in an order of O(k
√
s′) multiplications to get hs′ with O(ks

√
s) bits of storage.

Decryption

The technique of precomputing factors in binomial coefficients to make encryp-
tion faster also applies to the corresponding computations in decryption (see the
algorithm in the proof of theorem 2.1). Also in the same way as with encryp-
tion, we can exploit the fact that the algorithm involves modular multiplication
of a variable by a power of n, which means the value of that variable only needs
to be known modulo a smaller power of n.

Another thing that can be optimized is the use of the L function. In the
algorithm from theorem 2.1, the L function is calculated once per iteration
of the for-loop. Instead of doing this we can calculate the largest of these:
L(a mod ns+1), where a = (n+1)m, and use the property that L(a mod nj+1) =
L(a mod ns+1) mod nj. This means that we can remove all but 1 of the divisions
and the modular reductions we do are smaller.

The standard trick of splitting up the computations and doing them modulo
relatively prime parts of the modulus can also be used here. In the j’th run of
the outer loop the moduli will be pj and qj . One should be aware that we need
to use different L functions for p and q, namely Lq(a) = ((a− 1 mod qs+1)/q) ·
p−1 mod qs and Lp(a) = ((a− 1 mod ps+1)/p) · q−1 mod ps.

In this case, decryption can be sped up by precomputing pj, qj for 1 ≤ j ≤ s,
and nk−1k!−1 mod pj, nk−1k!−1 mod qj for 2 ≤ k ≤ j ≤ s.

Performance Evaluations

In figures 2.1 and 2.2 the generalized cryptosystem is compared to the El Gamal
and RSA cryptosystems. The table is focused on a fixed plaintext size and vari-

2.4. Some Building Blocks 21

Generalized
El Gamal Paillier RSA
(full size) s = 1 s = 2

Security 2048 2048 1024 2048
Ciphertext size 4096 4096 3072 2048
Expansion factor 2 2 1.5 1
Encryption (ms) 1980 1969 578 8
Decryption (ms) 996 1030 312 272

Figure 2.1: Comparison with 2048 bit plaintext size, using a Java implementa-
tion.

El Gamal Generalized Paillier RSA
(full size) s = 1 s = 2 s = 3 s = 4

Security 4096 4096 2048 1366 1024 4096
Ciphertext size 8192 8192 6144 5462 5120 4096
Expansion factor 2 2 1.5 1.33 1.25 1
Encryption (ms) 15205 15264 4397 2370 1591 32
Decryption (ms) 7611 7779 2290 1281 873 2001

Figure 2.2: Comparison with 4096 bit plaintext size, using a Java implementa-
tion.

able size of security parameter for the generalized cryptosystem. This compar-
ison corresponds to a scenario where you need a certain fixed plaintext size (for
instance a large scale election) and it might be sufficient with a smaller security
parameter. It shows that if the security parameter is not the same size as the
plaintexts encrypted, a significant performance improvement can be achieved.

In figure 2.3 there is a comparison with the number of milliseconds it takes
to encrypt a bit using same security parameter, but a variable block size (the
amount of plaintext encrypted in a single application of the encryption func-
tion). It shows that using El Gamal and the generalized cryptosystem achieves
almost the same rates of encryption. It also shows - as expected - that the
encryption time per bit increases somewhat with larger s values. Thus, if small
ciphertext expansion and large block size is important, this can be achieved at a
reasonable performance penalty; but if speed is the only important parameter,
s = 1 is the best choice.

2.4 Some Building Blocks

2.4.1 A Threshold Variant of the Scheme

What we wish to achieve in this section is a way to distribute the secret key to
a set of servers, such that any subset of at least t+1 of them can do decryption
efficiently, while t or less servers have no useful information. Of course this
must be done without degrading the security of the system.

22 Chapter 2. Improving the Paillier Cryptosystem

Security Generalized Paillier
parameter El Gamal s = 1 s = 2 s = 4 RSA
Encryption
1024 0.264 0.262 0.284 0.387 0.002
2048 0.967 0.955 1.067 1.480 0.004
4096 3.711 3.705 4.146 5.755 0.008
8192 14.467 14.507 16.244 22.617 0.015
Decryption
1024 0.132 0.149 0.153 0.214 0.039
2048 0.489 0.503 0.559 0.780 0.132
4096 1.865 1.898 2.128 2.958 0.486
8192 7.286 7.349 8.244 11.461 1.854

Figure 2.3: ms per bit encrypted/decrypted on a 750 MHz Pentium III using a
java implementation.

In [57] Shoup proposes an efficient threshold variant of RSA signatures. The
main part of this is a protocol that allows a set of servers to collectively and
efficiently raise an input number to a secret exponent modulo an RSA modulus
n. A little more precisely: on input b, each server returns a share of the result,
together with a proof of correctness. Given sufficiently many correct shares,
these can be efficiently combined to compute bd mod n, where d is the secret
exponent.

As we explain below it is quite simple to transform this method to our case,
thus allowing the servers to raise an input number to our secret exponent d
modulo ns+1. So we can solve our problem by first letting the servers help us
compute Es,pk(m, r)d mod ns+1. Then if we use g = n + 1 and choose d such
that d = 1 mod ns and d = 0 mod λ, the remaining part of the decryption is
easy to do without knowledge of d.

We warn the reader that this is only secure for the particular choice of d we
have made. For instance, if we had used Paillier’s original choice d = λ, then
seeing the value Es,pk(m, r)d mod ns+1 would allow an adversary to compute
λ and break the system completely. However, in our case, the exponentiation
result can safely be made public, since it contains no trace of the secret λ.

A more concrete description: Compared to [57] we still have a secret expo-
nent d, but there is no public exponent e, so we will have to do some things
slightly differently toward the end of the decryption process. We will assume
that there are w decryption servers, and a threshold of t < w/2 so that t servers
cannot decrypt, but t+ 1 can decrypt. We will use as modulus n a product of
safe primes, i.e. n = pq, where p, q, p′ = (p− 1)/2, q′ = (q − 1)/2 are primes.

We will need as a subroutine a zero-knowledge proof that for given values
u, ũ, v, ṽ ∈ Z

∗
ns+1 , it holds that logu(ũ) = logv(ṽ). Here, it is guaranteed that all

values are in the group of squares modulo ns+1, and that v generates the entire
group of squares. Note that this group is always cyclic of order nsp′q′, since n
is a safe prime product.

2.4. Some Building Blocks 23

A protocol for this can be easily derived from the corresponding one in [57],
and works as follows:

Protocol for equality of discrete logs:
Input: u, ũ, v, ṽ ∈ Z∗

ns+1 .
Private input for P : y such that y = logu(ũ) = logv(ṽ) (in our application,

the length of y will be at most (s + 1)k bits, where k is the modulus
length).

1. P chooses a number r of length (s+1)k+2k2 bits at random and sends a =
ur mod ns+1, b = vr mod ns+1 to the verifier V . Here, k2 is a secondary
security parameter.

2. V chooses a random challenge e of length k2 bits.

3. P sends to V the number z = r + ey.

4. V checks that uz = aũe mod ns+1, vz = bṽe mod ns+1.

This protocol can be made non-interactive using the Fiat-Shamir heuristic and
a hash function H: the prover computes a, b as above, sets e = H(a, b, u, ũ, v, ṽ),
computes the reply z as above and defines the proof to be (e, z). To verify such
a proof, one checks that e = H(uzũ−e, vz ṽ−e, u, ũ, v, ṽ). Assuming the random
oracle model, i.e. replacing H by a random function, one can show soundness
and zero-knowledge of this protocol. This is done in exactly the same way as
in [57] since, like Shoup, we are working in a cyclic group with only large prime
factors in its order. We leave the details to the reader.

This leads to a threshold version CSt
s of the cryptosystem CSs:

Key generation: Key generation starts out as in [57]: we find 2 primes p and
q that satisfy p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are primes and
different from p and q. We set n = pq and τ = p′q′. We decide on some
s > 0, thus the plaintext space will be Zns . We calculate a d that satisfies
d = 0 mod τ and d = 1 mod ns. Now we make the polynomial f(X) =∑t

i=0 aiX
i mod nsτ , by picking ai (for 0 < i ≤ t) as random values from

{0, · · · , ns ∗ τ − 1} and a0 = d. The secret share of the i’th authority
will be si = f(i) for 1 ≤ i ≤ w and the public key will be (n, s). For
verification of the actions of the decryption servers, we need the following
fixed public values: v, generating the cyclic group of squares in Z

∗
ns+1 and

for each decryption server a verification key vi = v∆si mod ns+1, where
∆ = w!.

Encryption: To encrypt a message m ∈ Zns , a random r ∈ Z
∗
n is picked and

the ciphertext is computed as c = (n + 1)mrns
mod ns+1. As seen in

the previous schemes a generator h can be chosen to improve efficiency.
Since this only affects the encryption it will not affect the security of the
threshold decryption scheme.

24 Chapter 2. Improving the Paillier Cryptosystem

Share decryption: The i’th authority will compute ci = c2∆si , where c is the
ciphertext. Along with this will be a zero-knowledge proof as described
above that logc4(c2i) = logv(vi), which will convince us that he has indeed
raised c to his secret exponent si.

Share combining: If we have the required t+ 1 (or more) number of shares
with a correct proof, we can combine them into the result by taking a
subset S of t+ 1 shares and combine them to

c′ =
∏
i∈S

c
2λS

0,i

i mod ns+1 where λS
0,i = ∆

∏
i′∈S\i

−i′
i− i′

∈ Z

The value of c′ will have the form c′ = c4∆
2f(0) = c4∆

2d. Noting that
4∆2d = 0 mod λ and 4∆2d = 4∆2 mod ns, we can conclude that c′ = (1+
n)4∆

2m mod ns+1, where m is the desired plaintext, so this means we can
compute m by applying the algorithm from theorem 2.1 and multiplying
the result by (4∆2)−1 mod ns.

Compared to the scheme proposed in [37], there are some technical differ-
ences, apart from the fact that [37] only works for the original Paillier version
modulo n2: in [37], an extra random value related to the public element g is
part of the public key and is used in the Share combining algorithm. This is
avoided in our scheme by the way we chose d, and thus we get a slightly shorter
public key and a slightly simpler decryption algorithm.

The system as described requires a trusted party to set up the keys. This
may be acceptable as this is a once and for all operation, and the trusted party
can delete all secret information as soon as the keys have been distributed.
However, using multi-party computation techniques it is also possible to do the
key generation without a trusted party. In particular, ideas from [5] can be
used to give a reasonably efficient solution. An alternative solution is to use a
wider class of moduli by using the result of Damg̊ard and Koprowski [32].

Note that the key generation phase requires that a value of the parameter s
is fixed. This means that the system will be able to handle messages encrypted
modulo ns′+1, for any s′ ≤ s, simply because the exponent d satisfies d =
1 mod ns′ , for any s′ ≤ s. But it will not work if s′ > s. If a completely general
decryption procedure is needed, this can be done as well: if we assume that
λ is secret-shared in the key setup phase, the servers can compute a suitable
d by running a secure protocol that first inverts λ modulo ns to get some x
as result, and then computes the product d = xλ (over the integers). This
does not require generic multi-party computation techniques but can be done
quite efficiently using techniques from [8]. Note that, while this does require
communication between servers, it is not needed for every decryption but only
once for every value of s that is used.

We can now show in the random oracle model that this threshold version is
as secure as a centralized scheme where one trusted player does the decryption2.

2In fact the random oracle will be needed only to ensure that the non-interactive proofs
of correctness of shares will work. Doing these proofs interactively instead would allow us to
dispense with the random oracle.

2.4. Some Building Blocks 25

In particular the threshold version is secure relative to the same complexity
assumption as the basic scheme. This can be done in a model where a static
adversary corrupts up to t players from the start. Concretely, we have:

Theorem 2.4 Assume the random oracle model and a static adversary that
corrupts up to t players from the beginning. Then we have: Given any cipher-
text, the decryption protocol outputs the correct plaintext, except with negligible
probability. Given an oracle that given a ciphertext returns the corresponding
plaintext, the adversary’s view of key generation and of the decryption protocol
can be efficiently simulated with a statistically indistinguishable distribution.

The proof follows very closely the corresponding proof in [57]. So here we
only sketch the basic ideas: correctness of the scheme is immediate assuming
that the adversary can contribute incorrect values for the ci’s with only negli-
gible probability. This, in turn, is ensured by soundness of the zero-knowledge
proofs given for each ci.

For the simulation, we start from the public key n. Then we can simulate
the shares si1 , ..., sit of the bad players by choosing them as random numbers
modulo ns+1. This will be statistically indistinguishable from the real values,
which are chosen modulo nsp′q′. Since d is fixed by the choice of n, this means
that the shares of uncorrupted players and the polynomial f are now fixed as
well. In particular we have f(i1) = si1, ..., f(it) = sit, but d, f are not easy for
the simulator to compute.

However, if we simulate v by choosing it as a ciphertext with known plaintext
m0, i.e. v = (n+1)m0r2ns

mod ns+1, we can also compute what vf(0) would be,
namely vf(0) = vd mod ns+1 = (1 +n)m0 mod ns+1. Let S be the set 0, i1, ..., it
of t+ 1 indices, and let

λS
j,i = ∆

∏
i′∈S\i

j − i′

i− i′

be the Lagrange coefficients for interpolating the value of a polynomial in point
j (times ∆) from its values in points in S. Then we can compute correct values
of vj for uncorrupted players as

vj =
∏
i∈S

(vf(i))λ
S
j,i

When we get a ciphertext c as input, we ask the oracle for the plaintext m.
This allows us to compute cd = (1 + n)m mod ns+1. Again this means we
can interpolate and compute the contributions ci from the uncorrupted players.
Finally, the zero-knowledge property is invoked to simulate the proofs that these
ci are correct.

2.4.2 Some Auxiliary Protocols

Suppose a prover P presents a skeptical verifier V with a ciphertext c and
claims that it encodes plaintext m, or more precisely that he knows r such that
c = Es,pk(m, r). A trivial way to convince V would be to reveal also the random

26 Chapter 2. Improving the Paillier Cryptosystem

choice r, then V can verify himself that c = Es,pk(m, r) = (1+n)mrns
mod ns+1.

However, for use in the following, we need a solution where no extra useful
information is revealed.

It is easy to see that this is equivalent to convincing V , that c(1+n)−m mod
ns+1 is an encryption of 0, or equivalently that it is an ns’th power. So we now
propose a protocol for this purpose which is a simple generalization of the one
from [44].

We note that this and the following protocols are not zero-knowledge as
they stand, only honest verifier zero-knowledge. However, first zero-knowledge
protocols for the same problems can be constructed from them using stan-
dard methods, and secondly, in our applications we will always be using them
in a non-interactive variant based on the Fiat-Shamir heuristic, which means
that we cannot obtain zero-knowledge. However, we can obtain security in the
random oracle model. As for soundness, we prove that the protocols satisfy so-
called special soundness (see [20]), which in particular implies that they satisfy
standard knowledge soundness.

Protocol for ns’th powers
Input: n, g, u.
Private input for P : v ∈ Z

∗
n, such that u = Es,pk(0, v).

1. P chooses r at random in Z
∗
n and sends a = Es,pk(0, r) to V .

2. V chooses e, a random k2 bit number, and sends e to P .

3. P sends z = rve mod n to V .

4. V checks that u, a, z are prime to n and that Es,pk(0, z) = aue mod ns+1,
and accepts if and only if this is the case.

It is now simple to show:

Lemma 2.3 The above protocol is complete honest verifier zero-knowledge, and
satisfies that from any pair of accepting conversations (between V and any
prover) of form (a, e, z), (a, e′ , z′) with e 6= e′, one can efficiently compute a
v such that u = Es,pk(0, v), provided 2k2 is smaller than the smallest prime
factor of n.

Proof. For completeness, we just plug into the equation that V checks, by
lemma 2.2 we get

aue = Es,pk(0, r)Es,pk(0, v)e = Es,pk(0, rve mod n)

= Es,pk(0, z) mod ns+1

For honest verifier simulation, the simulator chooses a random z ∈ Z
∗
n, a

random e, sets a = Es,pk(0, z)u−e mod ns+1 and outputs (a, e, z). This is easily
seen to be a perfect simulation.

2.4. Some Building Blocks 27

For the last claim, observe that since the conversations are accepting, we
have Es,pk(0, z) = aue mod ns+1 and Es,pk(0, z′) = aue′ mod ns+1, so we get

Es,pk(0, z/z′ mod n) = ue−e′ mod ns+1

Since e − e′ is prime to n by the assumption on 2k2 , choose α, β such that
αns + β(e − e′) = 1. Let ū = u mod n and set v = ūα(z/z′)β mod n. Notice
that uns

mod ns+1 = Es,pk(0, u mod n) = Es,pk(0, ū). We then get

Es,pk(0, v) = Es,pk(0, ū)αEs,pk(0, z/z′)β = uαns
uβ(e−e′) = u mod ns+1

so that v is indeed the desired ns’th root of u. 2

In our application of this protocol, the modulus n will be chosen by a trusted
party or by a multi-party computation, such that n has two prime factors of
roughly the same size. Hence, if k is the bit length of n, we can set k2 = k/2
or k2 = 160 and be assured that a cheating prover can make the verifier accept
with probability ≤ 2−k2 .

The lemma immediately implies, using the techniques from [20], that we
can build an efficient proof that an encryption contains one of two given values,
without revealing which one it is. Given the encryption C and the two candidate
plaintexts m1,m2, prover and verifier compute u1 = C/gm1 mod ns+1, u2 =
C/gm2 mod ns+1, and the prover shows that either u1 or u2 encrypt 0 and also
proves knowledge of one of the corresponding ns’th roots. This can be done
using the following protocol, where we assume without loss of generality that
the prover knows v1 such that u1 = Es,pk(0, v1), and where M denotes the
honest-verifier simulator for the ns-power protocol above:

Protocol 1-out-of-2 ns’th power
Input: n, g, u1, u2.
Private input for P : v1, such that u1 = Es,pk(0, v1).

1. P chooses r1 at random in Z
∗
n. He invokes M on input n, u2 to get a

conversation a2, e2, z2. He sends a1 = Es,pk(0, r1), a2 to V .

2. V chooses e, a random k2 bit number, and sends e to P .

3. P computes e1 = e − e2 mod 2k2 and z1 = r1v
e1
1 mod n. He then sends

e1, z1, e2, z2 to V .

4. V checks the equations e = e1 + e2 mod 2k2 , Es,pk(0, z1) = a1u
e1
1 mod

ns+1, Es,pk(0, z1) = a2u
e2
2 mod ns+1, and that u1, u2, a1, a2, z1, z2 are rel-

atively prime to n. He accepts if and only if this is the case.

The proof techniques from [20] and lemma 2.3 immediately imply

Lemma 2.4 Protocol 1-out-of-2 ns’th power is complete, honest verifier zero-
knowledge, and satisfies that from any pair of accepting conversations (between
V and any prover) of form (a1, a2, e, e1, z1, e2, z2), (a1, a2, e

′, e′1, z′1, e′2, z′2) with
e 6= e′, one can efficiently compute v, such that either u1 = Es,pk(0, v) or
u2 = Es,pk(0, v), provided 2k2 is less than the smallest prime factor of n.

28 Chapter 2. Improving the Paillier Cryptosystem

Our final building block allows a prover to convince a verifier that three
encryptions contain values a, b and c such that ab = c mod ns. For this, we
propose a protocol inspired by a similar construction found in [18].

Protocol Multiplication-mod-ns

Input: n, g, ea, eb, ec.
Private input for P : values a, b, c, ra, rb, rc such that ab = c mod n and ea =

Es,pk(a, ra), eb = Es,pk(b, rb), ec = Es,pk(c, rc).

1. P chooses random values d ∈ Zns , rd, rdb ∈ Z
∗
n and sends to V encryptions

ed = Es,pk(d, rd), edb = Es,pk(db, rdb).

2. V chooses e, a random k2-bit number, and sends it to P .

3. P opens the encryption eeaed = Es,pk(ea + d, re
ard mod n) by sending

f = ea + d mod ns and z1 = re
ard mod n. Finally, P also opens the

encryption efb (edbe
e
c)−1 = Es,pk(0, r

f
b (rdbr

e
c)−1 mod n) by sending z2 =

rf
b (rdbr

e
c)−1 mod n.

4. V verifies that the openings of encryptions in the previous step were
correct, that all values sent by P are relatively prime to n, and accepts if
and only if this was the case.

Lemma 2.5 Protocol Multiplication-mod-ns is complete, honest verifier zero-
knowledge, and satisfies that from any pair of accepting conversations (between
V and any prover) of form (ed, edb, e, f, z1, z2), (ed, edb, e

′, f ′, z′1, z
′
2) with e 6= e′,

one can efficiently compute the plaintext a, b, c corresponding to ea, eb, ec such
that ab = c mod ns, providing 2k2 is smaller than the smallest prime factor in
n.

Proof. Completeness is clear by inspection of the protocol. For honest ver-
ifier zero-knowledge, observe that the equations checked by V are eeaed =
Es,pk(f, z1) mod ns+1 and efb (edbe

e
c)
−1 = Es,pk(0, z2) mod ns+1. From this it is

clear that we can generate a conversation by choosing first f, z1, z2, e at random,
and then computing ed, edb that will satisfy the equations. This only requires
inversion modulo ns+1, and generates the right distribution because the val-
ues f, z1, z2, e are also independent and random in the real conversation. For
the last claim, note first that since encryptions uniquely determine plaintexts,
there are fixed values a, b, c, d contained in ea, eb, ec, ed, and a value x con-
tained in edb. The fact that the conversations given are accepting implies that
f = ea+d mod ns, f ′ = e′a+d mod ns, fb−x− ec = 0 = f ′b−x− e′c mod ns.
Putting this together, we obtain (f − f ′)b = (e − e′)c mod ns or (e − e′)ab =
(e− e′)c mod ns. Now, since (e− e′) is invertible modulo ns by assumption on
2k2 , we can conclude that c = ab mod ns (and also compute a, b and c). 2

The protocols from this section can be made non-interactive using the stan-
dard Fiat-Shamir heuristic of computing the challenge from the first message
using a hash function. This can be proved secure in the random oracle model.

2.5. Introducing an El Gamal Element 29

Furthermore, although the protocols here have been phrased so they can be
used to prove statements on values encrypted in CSs, they can also be directly
used in the same way for values encrypted under the more efficient variant CS′s.
This follows from the fact that, if for a given u ∈ Z

∗
ns+1 you know m, ṽ such

that u = E′
s,pk(m, ṽ), we have u = Es,pk(m,hṽ mod n). In other words you can

efficiently compute v such that u = Es,pk(m, v). Thus a prover can use u in any
of the above protocols pretending it was encrypted using CSs. Note that this
applies to both ciphertexts that are input to the protocols, and those that are
generated by the prover during executions.

2.5 Introducing an El Gamal Element

In section 2.4.1, a threshold decryption for a fixed s, and a sketch for making
it length-flexible (i.e. work for encryptions using different values of s) were
introduced. However, this requires an expensive multi-party computation each
time a new s is used (assuming the old values are stored). In the following
sections we will add an El Gamal element [35]. This allows us to make a more
efficient threshold decryption, at the cost of an extra assumption:

Conjecture 2.2 (Decisional Diffie-Hellman (composite DDH)) Let A
be any probabilistic polynomial time algorithm, and assume A gets (n, g, ga mod
n, gb mod n, y) as input. Here n = pq is an admissible RSA modulus of length
k bits, g is a element of Qn, the group of squares in Z

∗
n. The values a and b are

chosen uniformly at random in Zϕ(n)/4, and the value y is either random in Qn

or satisfies y = gab mod n. A outputs a bit b. Let p0(A, k) be the probability
that b = 1 if y is random in Qn, and p1(A, k) the probability that b = 1 if
y = gab mod n. Then |p0(A, k)− p1(A, k)| is negligible in k.

Before moving to the threshold system, we will look at what happens when we
combine the ideas from section 2.3.1 of using a generator to create the random
values with the ideas from [35]. This leads to a new cryptosystem CS:

Key Generation: Choose an RSA modulus n = pq of length k bits with
p = 2p′+1 and q = 2q′+1, where p, q, p′, q′ are primes. Select a generator
g ∈ Qn, the group of all squares of Z

∗
n, and α ∈ Zτ , where τ = p′q′ = |Qn|.

The public key is then pk = (n, g, h) with h = gα mod n and the private
key is α.

Encryption: Given a plaintext m ∈ Z
+, choose an integer s > 0 such that

m ∈ Zns and a random r ∈ Zθ (here θ is the value introduced on page
18), and let the ciphertext be

Epk(m, r) = E(s),pk(m, r)

= (gr mod n, (hr mod n)n
s
(n+ 1)m mod ns+1)

= (gr mod n,E∗
(s),n(m,hr mod n))

30 Chapter 2. Improving the Paillier Cryptosystem

Adversary A′:

1. Get public key n, g = n+ 1 and forward it to A.

2. Get message m from A.

3. Pass m to the encryption oracle.

4. Get the encryption c = Es,n(m̂, r), where
- m̂ = m or
- m̂ uniformly random in Zns .

5. Calculate c′ = (c(n + 1)−m)2(n+ 1)m mod ns+1.

6. Send c′ to A.

7. Get the bit b from A.

8. Return b.

Figure 2.4: Algorithm for adversary A′ breaking the cryptosystem CSs from
2.2 using the adversary A.

Decryption: Given a ciphertext c = (G,H) = Epk(m, r), s can be deduced
from the length of c (or it can be attached to the encryption) and m can
be found as (here dLogs() is the function defined on page 11)

m = dLogs(H(Gα mod n)−ns
)

= dLogs((g
αr mod n)n

s
(n+ 1)m(grα mod n)−ns

)

= dLogs((n + 1)m mod ns+1) = m mod ns

Remark 2.1 The key generation above assumes that one knows τ and hence
the factorization when choosing α. However, one can also choose α at random
in Zθ, that is, generate α, h = gα from n, g only. This makes no difference to
security, since the h produced will have an indistinguishable distribution, and it
allows n, g to be system constants used by all users.

2.5.1 Security of the Cryptosystem

Before proving the security of the cryptosystem we prove a lemma stating that
the use of Qn does not degrade the security of the Damg̊ard-Jurik cryptosystem.

Lemma 2.6 The cryptosystem CSs, where r is chosen in Qn, is as seman-
tically secure, with respect to definition 2.1, as the cryptosystem CSs where
r ∈ Z

∗
n.

Proof. To show that the security is equivalent, assume an adversary A exists,
that can break the semantic security of the quadratic cryptosystem. Then the
adversary A′ shown in figure 2.4 breaks the original cryptosystem.

2.5. Introducing an El Gamal Element 31

Given an encryption of the message m, the ciphertext c′ generated by A′

will be a legal encryption of m with uniform distribution of the random r, which
follows from:

(c(n + 1)−m)2(n+ 1)m = (rns
(n+ 1)m−m)2(n+ 1)m

= (r2)n
s
(n+ 1)m

= Es,pk(m, r2) mod ns+1

In the case where m̂ is chosen uniformly random from the message space Zns ,
the resulting c’ is

(c(n + 1)−m)2(n+ 1)m = (rns
(n+ 1)m̂−m)2(n+ 1)m

= r2
ns

(n+ 1)2m̂−m

= Es,pk(2m̂−m, r2) mod ns+1

Because gcd(2, n) = 1, the function 2m̂ − m is a permutation of Zns . So the
new encryption will be uniformly random in Zns , since m̂ is. The probabilities
for A′ are p0(A′, k) = p0(A, k) and p1(A′, k) = p1(A, k), which means that the
advantage of A′ is the same as for A. 2

Given the lemma it is easy to prove that the cryptosystem CS is semantically
secure.

Theorem 2.5 (Semantic Security) Under the conjectures 2.1 (DCRA) and
2.2 (composite-DDH) the cryptosystem CS is semantically secure with respect
to definition 2.1.

Proof. The proof is done in a 3 step hybrid reduction using the composite-DDH
conjecture and the semantic security of the cryptosystem defined in lemma 2.6
(which is secure under the DCRA). Given the public key (n, g, h), the following
4 pairs are indistinguishable under conjecture 2.1 and 2.2:

1. (gk mod n, (hk)n
s
(n+ 1)m mod ns+1)

2. (gk mod n, (r)n
s
(n+ 1)m mod ns+1), where r is uniformly random in Qn

3. (gk mod n, (r)n
s
(n+ 1)m

′
mod ns+1), where m′ is random in Zns

4. (gk mod n, (hk)n
s
(n+ 1)m

′
mod ns+1)

If tuple 1 and 4 are indistinguishable then the CS system is semantically secure
following the definition. If an adversary can distinguish between tuple 1 and 4
with advantage ε > 1

f(k) for some polynomial f(k), there will be an adversary
able to distinguish between a pair of consecutive tuples with a probability larger
than ε′ > 1

3f(k) . Each of the 3 pairs are shown below to be indistinguishable,
thereby showing that an adversary able to distinguish between the tuples 1 and
4 cannot exist.

The pairs 1 and 2 are indistinguishable due to a reduction to composite-
DDH. Assuming an adversary B having a non-negligible advantage of distin-
guishing pairs 1 and 2, an adversary B′ can be built that will break composite-
DDH with the same advantage. The algorithm for the adversary B′ can be seen
in figure 2.5.

32 Chapter 2. Improving the Paillier Cryptosystem

Adversary B′:

1. Get the composite-DDH tuple: (n, g, ga, gb, y).

2. Give the public key (n, g, h := ga) to B.

3. Get message m from B.

4. Give the encryption (gb, yns
(n+ 1)m mod ns+1) to B.

5. Get the bit b from B.

6. Return b.

Figure 2.5: Algorithm for adversary B′ that breaks the composite-DDH given
the adversary B.

The 2 cases of y in the composite-DDH correspond to tuple 1 and 2 respec-
tively:

y = gab: Here y = gab = (ga)b = hb, which is the value used in tuple 1.

y uniformly random in Qn: This is a random value as in tuple 2.

Thereby tuple 1 and 2 are indistinguishable under the composite-DDH assump-
tion.

That pair 2 and 3 are indistinguishable follow directly from lemma 2.6.
This follows since using r ∈ Qn the cryptosystem CSs is still semantically
secure, which implies that the encryption rns

(n + 1)m mod ns+1 of a message
m is indistinguishable from the encryption of a random message m′ ∈ Zns :
rns

(n+ 1)m
′
mod ns+1.

The pairs 3 and 4 are indistinguishable following the same reduction as in
the step from 1 to 2. 2

This cryptosystem may seem to be simply a combination of El Gamal and
Paillier, and hence its security is inherently based on both the above conjectures,
but this is in fact not true. A simple modification makes it possible to show
semantic security based only on conjecture 2.1, using a technique from [23].
Given the same public key (n, g, h), we can set g′ = gns

mod ns+1 (so that g′

generates the subgroup of Z
∗
ns+1 of order τ), and h′ = hns

mod ns+1. Encryption
is Ẽ(s),pk(m, r) = (g′r mod ns+1, h′r(n+ 1)m mod ns+1).

Theorem 2.6 (Semantic Security of modified system) Under conjecture
2.1 (DCRA) the modified cryptosystem is semantically secure with respect to
definition 2.1.

Proof. This was proved for s = 1 in [23], and follows in essentially the same
way for the general system: a ciphertext (G,H) is always of form (G,Gα(n +
1)m mod ns+1). Now, conjecture 2.1 implies that one cannot distinguish the
case where G ∈ 〈g′〉 from the case where it is chosen randomly in Z

∗
ns+1[+] (the

2.6. An Efficient Length-Flexible Threshold Cryptosystem 33

subgroup of Z
∗
ns+1 with elements that have Jacobi symbol 1). In the latter case,

however, one can verify that if α is chosen large enough, the ciphertext contains
no Shannon information on the plaintext. 2

Since our basic system is more efficient, we describe our protocols in the
following in terms of the E(s),pk(,) encryption function, but they can all be
modified to use the Ẽ(s),pk(,) encryption function instead.

2.6 An Efficient Length-Flexible Threshold Crypto-

system

From the basic cryptosystem, a length-flexible threshold cryptosystem CS
t can

be constructed by using a threshold exponentiation based on Shoup’s threshold
signatures [57].

Key Generation: Choose an RSA modulus n = pq and a g ∈ Qn as above.
Pick the secret value a0 = α ∈ Zτ and some random coefficients ai ∈ Zτ

for 1 ≤ i ≤ t, where t < w/2 is the threshold of the system with w servers.
The polynomial f(x) =

∑
0≤i≤t aix

i is created and the secret shares are
calculated as αi = f(i). The public value is h = gα mod n, and the values
for verification are hi = gαi mod n. The public key is pk = (n, g, h), the
verification values (h1, ..., hw), and the private key of server i is αi.

Encryption: Given a plaintext m ∈ Z
+, choose an integer s > 0, such that

m ∈ Zns , and pick a random r ∈ Zθ. The ciphertext is then

E
t
pk(m, r) = E

t
(s),pk(m, r)

= (gr mod n, (h4∆2r mod n)n
s
(n+ 1)m mod ns+1)

Threshold Decryption: Given a ciphertext c = (G,H) = E
t
(s),pk(m, r) each

of the servers releases the value:

di = G2∆αi mod n

and a proof that logg(hi) = logG4∆(d2
i). The proof used for this is shown

in section 2.7.2. The di values, from the set S of servers with valid proofs,
are combined using Lagrange interpolation to create the exponent 4∆2α:

d =
∏

d
2λS

i
i = G4∆2α = h4∆2r mod n where λS

i = ∆
∏

j∈S\{i}

−j
i− j

The reason for the factor ∆ is to ensure λS
i ∈ Z. Now the h4∆2r can be

removed by calculating

H ′ = Hd−ns
= (n+ 1)m mod ns+1

and the plaintext found as m = dLogs(H ′ mod ns+1).

34 Chapter 2. Improving the Paillier Cryptosystem

2.7 A Proof Friendly Variant

The system from the previous section only works as long as legal encryptions are
submitted, so we would like a protocol allowing us to prove in zero-knowledge,
that a ciphertext is well formed. A standard problem with building an efficient
protocol of this type is, that we need all group elements used to have only large
prime factors in their orders. In our case, this can be ensured by squaring them
before we start the proofs, i.e. instead of trying to show that g has some desired
property, we prove that g2 has it. However, as we shall see, this only implies
that g or −g has the desired property. To handle this, we define a slightly
relaxed cryptosystem ĈS

t
:

Key Generation: As above.

Encryption: Given a plaintext m ∈ Z
+, choose an integer s > 0 such that

m ∈ Zns , and pick a random r ∈ Zθ and b0, b1 ∈ {0, 1}. The ciphertext is
then

Êt
pk(m, r, b0, b1) = ((−1)b0gr mod n,

(−1)b1(h4∆2r mod n)n
s
(n+ 1)m mod ns+1)

Threshold Decryption: Given a ciphertext c = (G,H) = Êt
(s),pk(m, r, b0, b1),

it is only decrypted if the Jacobi symbol of G and H is 1. Since G is
squared, the d value can be computed as above. To decrypt, H needs to
be squared, so a slightly different computation is made:

H ′ = H2d−2ns
= (n+ 1)2m mod ns+1

and the plaintext is found as m = dLogs(H ′)/2 mod ns.

Proving properties is now easier, since values can be squared to make sure
they are in Qn during the proof. In section 2.7.2 three proofs are shown: 1) a
proof that something is a legal encryption, 2) a proof that something is a legal
encryption of some publicly known plaintext, and 3) the threshold decryption
proof. Note that the techniques from section 2.3.2 can be used to improve the
complexity of most computations from O(s3k3) to O(s2k3).

2.7.1 Security of the Threshold Cryptosystems

Due to its homomorphic properties, our basic cryptosystem cannot be chosen
ciphertext secure, so we cannot hope to prove that the threshold version is cho-
sen ciphertext secure either. However, we can show a result saying essentially,
that as long as the adversary does not control the ciphertexts being decrypted,
the threshold decryption releases no information other than the plaintext.

Definition 2.2 A chosen plaintext threshold adversary A runs in probabilistic
polynomial time and can statically and actively corrupt t < w/2 of the servers.
In addition, for any efficiently samplable distribution D, he may request that

2.7. A Proof Friendly Variant 35

a message m be chosen according to D, and then to see a random ciphertext
containing m be decrypted using the threshold decryption protocol. A threshold
public-key cryptosystem is secure against such an adversary, if his view can be
simulated in probabilistic polynomial time given only the public key.

Note that since D is arbitrary, this includes the case where the adversary
chooses m himself. This type of security will be sufficient in the mix-net in
chapter 3. Using a more elaborate decryption protocol, where a ciphertext is
randomized before it is decrypted, an even stronger property can be shown,
namely that security of the threshold system is equivalent to security of the
non-threshold version under any attack.

Lemma 2.7 The threshold cryptosystems are semantically secure under Con-
jectures 2.1 and 2.2. They are also secure against any chosen plaintext threshold
adversary as defined above.

Proof. The semantic security follows from theorem 2.5, since an encryption of m
in the basic cryptosystem can be transformed into an encryption of 4∆2m mod
ns in the threshold systems by raising the last component to the 4∆2’th power,
and in the last system by multiplying with (−1)b0 and (−1)b1 .

The proofs of correctness used for the decryption shares are identical to the
Shoup verification proofs for signature shares in [57], where they were proved
sound and statistical zero-knowledge. Furthermore, the secret sharing of the
secret key is identical to the one used in [57]. Hence, it is straightforward to
construct a simulation proof of security along the lines of the proof in [57]. So
here we only sketch the ideas: given the public key, we can simulate the shares
of corrupt players by choosing random values. We can then reconstruct the
verification values of honest servers using Lagrange interpolation “in the expo-
nent”. To simulate the adversary’s view of the decryption protocol, we choose
m according to D and construct a random ciphertext containing m. In partic-
ular, this means we know the relevant value of hr. Given this and the shares
of corrupt players, we can compute, with a statistically close distribution, the
contribution from honest servers to the decryption. Their proofs of correctness
can be simulated. By soundness of the proofs, the adversary will not be able
to contribute bad values, so the decryption will output m as desired. 2

2.7.2 Proofs in the Proof Friendly Variant

Here we show some protocols for proving various claims on encryptions in the
proof friendly cryptosystem. In this system we are working with elements of
the form gr, which pose a problem in the zero-knowledge protocols when we
need to find r. So to get soundness in the zero-knowledge protocols we need
the Strong RSA assumption:

Conjecture 2.3 Let A be any probabilistic polynomial time algorithm, and
assume A gets n, z as input. Here n is a k bit RSA modulus, and z is a random
element in Z

∗
n. A outputs two values y ∈ Z

∗
n, r > 1 such that yr = z mod n or

36 Chapter 2. Improving the Paillier Cryptosystem

failure. Let p(A, k) be the probability that A outputs such a y, r. Then p(A, k)
is negligible in k.

Remark 2.2 Note that this poses a problem with the setup of the system if g
is generated by choosing a random element x ∈ Z

∗
n and setting g = x2. This

gives a non-trivial square root of g, which might be used to break the above
conjecture. However, this can be fixed by choosing x at random in Z

∗
n with the

constraint that it must have Jacobi symbol -1. Because all values in the protocol
have Jacobi symbol 1, the value x cannot be used to create a non-trivial square
root in these. Furthermore if someone creates a square root of g with Jacobi
symbol 1, this together with x can be used to find the factorization of n.

Proof of Legal Encryption

We prove that given an encryption (G,H) there exist an r ∈ Zθ and an m ∈ Zns ,
such that G = ±gr mod n and H = ±(h4∆2r)n

s
(n+ 1)m.

Protocol for legal encryption
Input: n, g, h, c = (G,H).
Private input for P : r ∈ Zθ and m ∈ Zns , such that c = Êt

(s),pk(m, r, b0, b1)
for some b0 and b1.

1. P chooses r′ in {0, ..., 2|θ|+2k2−1}, b′0, b′1 ∈ {0, 1} and m′ ∈ Zns at random,
where k2 is a secondary security parameter (e.g. 160 bits). P sends
c′ = (G′,H ′) = Êt

(s),pk(m
′, r′, b′0, b′1) to V .

2. V chooses e, a random k2 bit number, and sends e to P .

3. P sends r̂ = r′ + er and m̂ = m′ + em mod ns to V .

4. V checks that G,H,G′,H ′ are prime to n, have Jacobi symbol 1 and that
the equation Êt

(s),pk(2m̂, 2r̂, 0, 0) = (G′2G2e mod n,H ′2H2e mod ns+1) =
c′2c2e holds. V accepts if and only if this is the case.

The protocol above can be proven to be sound and complete honest verifier
zero-knowledge. This is enough for the election protocol in section 4.4, since it
will only be used in an non-interactive setting using the Fiat-Shamir Heuristic
and hash function H to generate the challenge e = H(G,H,G′,H ′).

The lemma below uses the Strong RSA assumption to ensure that we can
find m and r. However, if we just need that it is a legal encryption and not
that the prover knows m and r, we do not need the Strong RSA assumption if
2k2 is less than the smallest prime factor of τ . This follows from the fact that
e1− e2 is invertible modulo τ , so the value r can be computed uniquely modulo
τ given knowledge of τ .

Lemma 2.8 Protocol for legal encryption is complete, statistical honest ver-
ifier zero-knowledge, and under the Strong RSA assumption (conjecture 2.3)
it satisfies that from any pair of accepting conversations (between V and any
prover) of form (c′, e1, r̂1, m̂1), (c′, e2, r̂2, m̂2) with e1 6= e2, one can efficiently

2.7. A Proof Friendly Variant 37

compute m, r, such that c = (G,H) = Êt
(s),pk(m, r, b0, b1) (for some b0, b1),

provided 2k2 is less than the smallest prime factor of n.

Proof. For completeness we can verify the formula used in the protocol:

c′2c2e = Êt
(s),pk(m

′, r′, b′0, b
′
1)

2Êt
(s),pk(m, r, b0, b1)

2e

= Êt
(s),pk(2m

′, 2r′, 0, 0)Êt
(s),pk(2em, 2er, 0, 0)

= Êt
(s),pk(2(m

′ + em), 2(r′ + er), 0, 0)

= Êt
(s),pk(2m̂, 2r̂, 0, 0)

For honest verifier simulation pick r̂ ∈ {0, ..., 2|θ|+2k2 − 1}, m̂ ∈ Zns , b0, b1 ∈
{0, 1} and e ∈ {0, ..., 2k2 − 1}. Set c′ = Êt

(s),pk(m̂, r̂, b0, b1)c
−e. This can easily

be seen to be a statistically close simulation.
To prove the claim about recovering m and r we look at the 2 accepting

runs:

Êt
(s),pk(2m̂1, 2r̂1, 0, 0) = c′2c2e1

Êt
(s),pk(2m̂2, 2r̂2, 0, 0) = c′2c2e2

Multiplying the inverse of one of the encryptions on the other gives:

Êt
(s),pk(2(m̂1 − m̂2), 2(r̂1 − r̂2), 0, 0) = c2(e1−e2)

= Êt
(s),pk(2(e1 − e2)m, 2(e1 − e2)r, 0, 0)

Since 2(e1 − e2) is prime to n by assumption, we can set

m̄ = (m̂1 − m̂2)(e1 − e2)−1 mod ns = m

To get the value of r, we have the problem that we do not know the order τ of
g, so we cannot find the inverse of (e1− e2). This leads to two scenarios, where
only the first is possible under the Strong RSA assumption:

(e1 − e2)|(r̂1 − r̂2): Here we can simply divide the numbers and we get that:

r̄ = (r̂1 − r̂2)/(e1 − e2) = r(modτ)

(e1 − e2) 6 | (r̂1 − r̂2): Here we find the value x = gcd(2(e1 − e2), 2(r̂1 − r̂2)).
The equation

Êt
(s),pk(2(m̂1− m̂2), 2(r̂1− r̂2), 0, 0) = Êt

(s),pk(2(e1− e2)m, 2(e1− e2)r, 0, 0)

implies that
g2(r̂1−r̂2) = g2(e1−e2)r = G2(e1−e2)

Now if we set y0 = 2(r̂1 − r̂2)/x and y1 = 2(e1 − e2)/x we have:

gy0 = (−1)bGy1

38 Chapter 2. Improving the Paillier Cryptosystem

for some bit b that can be found by testing the 2 possibilities. Given the
way y0 and y1 was defined, it is clear that they are relatively prime. This
means we can find α, β such that γy0 + βy1 = 1. Given these to values
we can compute:

g = gγy0+βy1 = (gy0)γ(gβ)y1

= ((−1)bGy1)γ(gβ)y1

= (−1)bγ(Gγ)y1(gβ)y1

= (−1)bγ(Gγgβ)y1 mod n

Since (e1 − e2) does not divide (r̂1− r̂2), we have x < 2(e1 − e2) and thus
y1 > 1. This means we have found a non-trivial root of (−1)bγg, which is
a contradiction to the Strong RSA assumption.

This implies that we end up in the first case and thereby we find m̄ and r̄ that
satisfy the equation

c = Êt
(s),pk(m̄, r̄, b0, b1)

for some choice of b0 and b1. 2

Proof of Legal Encryption of Certain Plaintext

The protocol for legal encryptions can be altered to a protocol for proving that
something is a legal encryption of a publicly known plaintext by setting m′ = 0.
This result in the following protocol:

Protocol for legal encryption of message m

Input: n, g, h, c = (G,H),m ∈ Zns .
Private input for P : r ∈ Zθ, such that c = Êt

(s),pk(m, r, b0, b1) for some b0
and b1.

1. P chooses a random r′ in {0, ..., 2|θ|+2k2}, where k2 is a secondary security
parameter (e.g. 160 bits). P sends c′ = (G′,H ′) = Êt

(s),pk(0, r
′, 0, 0) to V .

2. V chooses e, a random k2 bit number, and sends e to P .

3. P sends r̂ = r′ + er to V .

4. V checks that G,H,G′,H ′ are prime to n, have Jacobi symbol 1 and that
the equation Êt

(s),pk(2em, 2r̂, 0, 0) = (G′2G2e mod n,H ′2H2e mod ns+1) =
c′2c2e holds. V accepts if and only if this is the case.

This protocol is also sound and complete honest verifier zero-knowledge,
which follows directly from the protocol above and the observation, that if c′

is not the encryption of the plaintext 0, there is at most one e that can satisfy
the last equation.

2.7. A Proof Friendly Variant 39

Lemma 2.9 Protocol for legal encryption of m is complete, statistical honest
verifier zero-knowledge, and under the Strong RSA assumption (conjecture 2.3)
it satisfies that from any pair of accepting conversations (between V and any
prover) of form (c′, e1, r̂1), (c′, e2, r̂2) with e1 6= e2, one can efficiently compute
r, such that c = Êt

(s),pk(m, r, b0, b1) (for some b0, b1), provided 2k2 is less than
the smallest prime factor of n.

Decryption Proof

To make the decryption share, the server calculates the value

di = G2∆αi mod n

The server needs to prove that this was indeed what it submitted, but we have
to allow a possible factor of −1, so we accept that di = ±G2∆αi , which is why
the value d2

i is used in the Lagrange interpolation. What needs to be proven is
that

αi = logg(hi) = logG4∆(d2
i) mod p′q′

This can be done using a proof identical to that of Shoup’s RSA threshold
signatures [57] and therefore similar to the proof of correct decryption in section
2.4.1.

Proof: Given a hash function H that outputs a k2 bit hash, pick a random
r ∈ {0, ..., 2|n|+2k2 − 1} and calculate

ĝ = gr mod n, Ĝ = G4∆r mod n,

c = H(g,G4∆, hi, d
2
i , ĝ, Ĝ), z = αic+ r

The proof is the pair (c, z).

Verification: For a proof to be accepted the following equation has to hold

c = H(g,G4∆, hi, d
2
i , h

−c
i gz mod n, d−2c

i G4∆z mod n)

This proof of correctness is sound and statistical zero-knowledge under the
random oracle model. This is proven in Shoup’s paper on practical threshold
signatures [57] and is therefore omitted here.

Cross Public Key Proofs

Now we explore the possibility of proving relations on the plaintexts inside
ciphertexts, that are either received or sent in the proof friendly cryptosystem.
For the proofs to work, however, we require that the encryptions are valid in the
proof friendly system. This means that all ciphertexts used in the proof have
at some point been proven to be legal encryptions using one of the protocols
above. Given an encryption:

c = Êt
(s),pk(m, r, b0, b1) = (G,H) = ((−1)b0gr, Es,(n,n+1)(m, (−1)b1hr))

40 Chapter 2. Improving the Paillier Cryptosystem

If we can find the m′ and the r′ such that

H = Es,(n,n+1)(m
′, r′)

then we can use the protocols from section 2.4.2 to prove various claims about
the message or any linear combination of the messages by simply looking at the
second value of the encryption.

For a sender it is easy to compute these values simply because he knows the
m, b1 and r used in the encryption and can calculate the two values as:

m′ = m

r′ = (−1)b1hr

For a receiver that receives c it is easy to compute m′ simply by decrypting the
message to get m. However, to compute the r′ we need to use the trapdoor α
to create the value:

r̄ = G4∆2α = (gr)4∆
2α = (gα)4∆

2r = h4∆2r mod n

Now we can find r′ by testing whether r′ = r̄ or r′ = −r̄ satisfies the equation:

(r′)n
s
(n+ 1)m

′
= H mod ns+1

this will detemine the bit b1 used in the encryption.
Now lets assume a player has two lists of ciphertexts: 1) a list of ciphertexts

c1, ..., ct sent by the prover under different public keys pk1, ..., pkt (here pki =
hi = gαi) and 2) a list ct+1, ..., ct+u of received ciphertexts under the provers
public key pk = hα. Then the above 2 computations can be used to find the
values m′

i, r
′
i for all 0 < i ≤ t + u such that Hi = Es,(n,n+1)(m′

i, r
′
i), where

(Gi,Hi) = ci. This also means that the prover can use the proofs from section
2.4.2 on any linear combination of the plaintexts in c1, ..., ct+u:

m = a1m
′
1 + · · ·+ at+um

′
t+u

by creating the two values

m′ = a1m
′
1 + · · ·+ at+um

′
t+u

r′ = (r′1)
a1 · · · (r′t+u)at+u

It can easily be verified that:

Es,(n,n+1)(m
′, r′) = Ha1

1 · · ·Hat+u
t+u mod ns+1

an so the player can complete any of the protocols in section 2.4.2 using values
on this form.

Using the multiplication proof from section 2.4.2 this can be extended to
prove relations of any polynomial over m1, ...,mt+u. This is done by creating
some intermediate encryptions with different multiplications of the messages.

2.7. A Proof Friendly Variant 41

2.7.3 Homomorphic Properties

The three cryptosystems CS, CSt, and ĈS
t

defined above are all additive ho-
momorphic, which means that two encryptions can be combined to create a
new encryption of the sum of the plaintexts in the original encryptions. The
proof friendly cryptosystem can be shown to be additive homomorphic by mul-
tiplying the values in ciphertexts pairwise (this also works for the other two
cryptosystems):

Êt
(s),pk(m0, r0, b00, b01)Êt

(s),pk(m1, r1, b10, b11)

= (G0,H0)(G1,H1)
= (G0G1,H0H1)

= Êt
(s),pk(m0 +m1, r0 + r1, b00 ⊕ b10, b01 ⊕ b11)

It is also easy to multiply constants into the encryption by computing:

Êt
(s),pk(m, r, b0, b1)

c = (Gc
0,H

c
0) = Êt

(s),pk(cm, cr, cb0, cb1)

The additive homomorphic property also provides an easy way to re-randomize
encryptions:

Êt
(s),pk(m, r, b0, b1)Ê

t
(s),pk(0, r

′, b′0, b
′
1) = Êt

(s),pk(m, r + r′, b0 ⊕ b′0, b1 ⊕ b′1)

The homomorphism only works when the 2 encryptions use the same s. To get
around this, one of the following transformations can be used either to increase
or to decrease the s used for the encryption. However, both will change the
message inside the encryption.

Given an encryption (G,H) = Êt
(s),pk(m, r, b0, b1), we can transform it into

an encryption using s′ > s by doing the following transformation:

(G′,H ′) = (G,Hns′−s
mod ns′+1)

= ((−1)b0gr, ((−1)b1(hr)n
s
(n+ 1)m)n

s′−s
mod ns′+1)

= ((−1)b0gr, (−1)b1(hr)n
s′
(n+ 1)mns′−s

mod ns′+1)

= Êt
(s′),pk(mn

s′−s, r, b0, b1)

If the encryption (G,H) = Êt
(s),pk(m, r, b0, b1) needs to be transformed into

an encryption using s′ < s, we can do the following:

(G′,H ′) = (Gns−s′
mod n,H mod ns′+1)

= (((−1)b0gr)n
s−s′

mod n, (−1)b1(hr)n
s
(n+ 1)m mod ns′

mod ns′+1)

= ((−1)b0grns−s′
mod n, (−1)b1(hrns−s′

)n
s′
(n+ 1)m mod ns′

mod ns′+1)

= Êt
(s′),pk(m mod ns′, rns−s′ , b0, b1)

Since the order of g is relatively prime to n the value rns−s′ will span just as
big a subgroup of 〈g〉 as r alone.

Chapter 3

Anonymity Using Mix-nets

Privacy lost can never be regained
— David Chaum, Summer school in Cryptology ’98, University of Aarhus.

In this chapter we look at a publicly verifiable length-flexible mix-net. This
is achieved by using one of the cryptosystems from chapter 2 instead of El
Gamal in one of the existing mix-nets. This results in a system that is both
length-flexible and universally verifiable thereby improving previous results.

3.1 Introduction

3.1.1 Background

One possible application of homomorphic encryption is to build mix-nets. These
are protocols used to provide anonymity for senders by collecting encrypted
messages from several users and have a collection of servers process these, such
that the plaintext messages are output in a randomly permuted order. A useful
property for mix-nets is length-flexibility, which means that the mix-net is able
to handle messages of arbitrary size. More precisely: all messages submitted to
a single run of the mix-net must have the same length in order not to break the
anonymity, this common length can be decided freely for each run of the mix-net
without having to change any public-key information. This is especially useful
for providing anonymity for e.g. e-mails. One way to achieve length-flexibility
is to use hybrid mix-nets. These mix-nets use a public key construction to
create keys for a symmetric cipher that is used for encrypting the bulk of the
messages.

Two length-flexible hybrid mix-nets have been proposed. Ohkubo and Abe
proposed a scheme in [4] in which verification of server behavior relies on a
generic method by Desmedt and Kurosawa [34]. This results in a system, that
is robust when at most the square root of the number of mix servers are corrupt.
After this Juels and Jakobsson suggested in [46] that verification can be added
by using message authentication codes (MACs), which are appended to the
plaintext for each layer of encryption. This allows tolerating more corruptions at
the expense of efficiency - for instance, the length of the ciphertext now depend
on the number of mix servers as opposed to [4], and each server has to store

43

44 Chapter 3. Anonymity Using Mix-nets

more secret material. Although the system is verifiable, it is not universally
verifiable, which means that external observers cannot verify that everything
was done correctly.

In [2] (with some minor pitfalls corrected in [3]), Abe introduced verifiable
mix-nets based on a network of binary switching gates. This binary network was
introduced Waksman [58] and can perform any permutation of the inputs. This
mix-network is robust with up to half of the mix servers being controlled by an
active and malicious adversary. One approach to make this length-flexible would
be to exchange El Gamal with a verifiable length-flexible encryption scheme.
The proof friendly cryptosystem in chapter 2 has the required properties.

3.1.2 Contribution

We combine the proof friendly cryptosystem from 2.7 with ideas from [2, 4] to
construct a mix-net that has several desirable properties at the same time:

• Length-flexibility: The public key does not limit the size of plaintexts
that can be encrypted and mixed efficiently. The length of ciphertexts in
a specific mix have to be fixed or anonymity will be compromised.

• Length-invariance: The lengths of the keys and ciphertexts do not
depend on the number of mix servers.

• Provable security: The system is provably secure in the random oracle
model under the Decisional Composite Residuosity Assumption (conjec-
ture 2.1) and composite DDH (conjecture 2.2).

• Universal verifiability: Anyone can verify the correctness of the output
from the mix-net.

• Strong correctness: Messages submitted by malicious users cannot be
changed once they have been submitted. This holds even in the case of
helping malicious mix servers.

• Order flexibility: The mix servers do not need to be invoked in a certain
order. This improves resilience to temporary server unavailability.

We note that all this is achieved by using public key encryption everywhere,
which in the passive adversary case makes it less efficient than the Hybrid mix-
nets that use symmetric key cryptography to encrypt the messages.

3.2 The Mix-net Model

The model used in this chapter relies on a secure bulletin board B. The bulletin
board is assumed to function as follows: every player can write to B, and a
message cannot be deleted once it is written. All players can access all messages
written, and can identify which player each message comes from. This can all
be implemented in a secure way, for instance using an already existing public
key infrastructure and server replication to prevent denial of service attacks.

3.3. Adversaries 45

Besides the bulletin board there are some users U1, · · · , Uu, where u is the
number of users. These users will post messages to B in an encrypted form. The
purpose of the protocol is then to retrieve the plaintexts of these encryptions
in such a way, that no one is able to see who posted it. This means that there
should be no way to link the original encryptions with the plaintexts output by
the protocol.

The last group of players in the mix-net model are the authorities (mix
servers) A1, · · · , Aw, where w is the number of servers. The purpose of these
authorities is to read a number of encryptions from B, perform a random per-
mutation of these, and output the plaintexts of the encryptions. This is done
in such a way, that unless all servers (or most in some schemes) cooperate, no
one can link the input encryptions to the output plaintexts.

If we want to mix messages of different sizes (i.e. length-flexible) we have to
ensure that for any single mix of messages, the messages posted on B have the
same length. Otherwise one could match the sizes of the inputs and outputs
to find some information on the permutation. For practical applications this
means, that a fixed upper bound on the size of the plaintext space is decided
for each mix, and all input messages for that mix have to be from the chosen
message space. However, this bound can be chosen freely for each mix.

3.3 Adversaries

An adversary in [4] is defined by (tu, ts)∗∗, where the ∗ is either A for an
active adversary or P for a passive adversary. The thresholds tu and ts are the
maximal number of users and servers respectively, that can be controlled by the
adversary. For example (tu, ts)AP -adversary means, that the adversary can read
and change any value for up to tu users and view any value inside ts servers.
A passive adversary only observes the values passing a server or user, but does
not try to induce values into the process or disrupt it. An active adversary can
attack the protocol by changing any value or refuse to supply results in any
part of the protocol. The adversary is assumed to be static, meaning that the
users and servers being controlled by the adversary are decided in advance.

The mix-net in this chapter is safe against these adversaries of increasing
strength (u is the number of users and w the number of servers):

• (u− 2, w− 1)PP -adversary: Here the adversary can see any value passing
through all but 1 server and all but 2 of the users.

• (u − 2, w − 1)AP -adversary: The adversary can see any value passing
through all but 1 server and see and change any value inside all but 2
users.

• (u−2, b(w−1)/2c)AA-adversary: This is the strongest adversary that can
see and change any value passing through all but 2 users and less than
half of the servers.

Compared to the length-flexible mix-net in [4], the first 2 adversaries are the
same. However, in the case of an active adversary controlling the servers our
scheme is improved from (u− 2,O(

√
w))AA to (u− 2, b(w − 1)/2c)AA.

46 Chapter 3. Anonymity Using Mix-nets

3.4 Security of the Mix-net

We will use a strong version of correctness, so even if users are working together
with servers, they will not be able to change the message once the mix has
started.

Definition 3.1 (Strong Correctness) Given x encrypted messages as input,
where y of the encryptions are malformed, the mix-net will output a permutation
of the x − y messages with correct decryption, and discard all y malformed
encryptions.

Definition 3.2 (Anonymity) Given a mix of x messages, and an (tu, ts)∗∗-
adversary, the adversary should be unable to link any of the x − tu messages
with any of the x− tu uncorrupted users, who sent them.

Definition 3.3 (Universal Verifiability) Given the public view of the pro-
tocol being all the information written to the bulletin board, there exists a poly-
time algorithm V that accepts only if the output of the protocol is correct, and
otherwise rejects.

Definition 3.4 (Robustness) Given an (tu, ts)∗A-adversary the mix-net pro-
tocol should always output a correct result.

The mix-network presented can be shown to satisfy these definitions under the
different adversaries.

Theorem 3.1 The basic mix-network provides strong correctness and anony-
mity (and robustness) against an (u − 2, w − 1)∗P -adversary, where u is the
number of users and w the number of servers.

Theorem 3.2 The mix-network with threshold decryption provides strong cor-
rectness, anonymity, universal verifiability and robustness against an (u − 2,
b(w− 1)/2c)∗A-adversary, where u is the number of users and w the number of
servers.

3.5 The System

The mix-network can be built using the threshold cryptosystem ĈS
t
from sec-

tion 2.7. In the definition of the protocol a trusted third party (TTP) will
be used, but this can be replaced with a distributed protocol by using the re-
sult from [5]. Since each mix uses a fixed s the specific encryption function
Êt

(s),pk(·, ·, ·, ·) is used and not the general length-flexible Êt
pk(·, ·, ·, ·).

Key Generation: The TTP generates an RSA modulus n = pq of length k
bits, with p = 2p′ + 1 and q = 2q′ + 1, where p, q, p′, q′ are primes. It also
selects a generator g ∈ Qn, the group of all squares of Z

∗
n. Depending on

the model, the server picks the secrets the following way.

3.5. The System 47

• Passive adversary model: For each mix server (0 < i ≤ w) the
TTP picks a random value αi ∈ Zτ and sets α =

∑
0<i≤w αi mod τ .

The public value is computed as h = gα mod n. The public key
posted to B is pk = (n, g, h) and the private key of Ai is αi.

• Active adversary model: Here, the key generation takes place
exactly as described for the threshold cryptosystem ĈS

t
defined in

section 2.7. The public key pk = (n, g, h) and the verification values
(h1, ..., hw) are posted to B. The private key αi is given to Ai in a
secure way.

Encryption: The s has to be fixed for each mix, so given a user Ui, that wants
to submit a message mi ∈ Zns , we do the following. Pick random values
r ∈ Zθ, b0, b1 ∈ {0, 1}. The ciphertext posted to B is

Êt
(s),pk(m, r, b0, b1) = ((−1)b0gr mod n,

(−1)b1(h4∆2r mod n)n
s
(n+ 1)m mod ns+1)

The encryption needs to be non-malleable for the mix-net to satisfy the
privacy requirements. To make this encryption non-malleable the user
also submits a proof of knowledge of the values inside the encryption (i.e.
the proof of correct encryption from section 2.7.2). Futhermore each mix
needs to have a unique identifier that is included in the hash used to create
the challenge for the non-interactive proof. This prevents an adversary
from replaying the proof at some later mix.

Mixing phase: Before the mixing begins, any ciphertext (G,H) where either
G or H has Jacobi symbol -1 will be discarded as being incorrect. Futher-
more any ciphertext that has an invalid proof of knowledge or that appears
twice in the input is discarded. While I 6= ∅ pick an i ∈ I and let Ai make
its permutation (mix) on the last correct output posted on B:

• Passive adversary model: Since the adversary is passive, Ai just
does a random permutation and outputs a re-encryption for each of
the ciphertexts (G,H) using random values b0, b1, r:

(G′,H ′) = (G(−1)b0gr mod n,

H(−1)b1(h4∆2r mod n)n
s

mod ns+1)

= (G,H)Êt
(s),pk(0, r, b0, b1)

• Active adversary model: Here verification is needed to satisfy
the universal verifiability, correctness and robustness of the system.
To do this, Ai picks a random permutation and creates a network
of binary gates using the Waksman construction [58]. This network
consists of O(u log(u)) binary gates and can create any permutation
of the inputs. An example for the case u = 8 can be seen in figure
3.1. To make a proof that a complete permutation is done correctly,
we just need to prove that each binary gate in the network has done

48 Chapter 3. Anonymity Using Mix-nets

Figure 3.1: A network of binary gates that can be used to make any permutation
of 8 inputs.

a permutation of the 2 inputs correctly. For each binary gate a bit
B is defined (and B̄ = 1 − B), determining if the gate should pass
the encryptions straight through the gate or switch them, depending
on the permutation chosen for all the inputs. Each gate also has 2
ciphertexts (G0,H0) and (G1,H1) as input. The server chooses 6
random values: x0, x1 ∈ ZN and b00, b01, b10, b11 ∈ {0, 1}, and sets
the 2 output ciphertexts for the gate to

(G′
B ,H

′
B) = (G0(−1)b00gx0 ,H0(−1)b10(h4∆2x0)n

s
)

= (G0,H0)Êt
(s),pk(0, x0, b00, b10)

(G′
B̄ ,H

′̄
B) = (G1(−1)b01gx1 ,H1(−1)b11(h4∆2x1)n

s
)

= (G1,H1)Êt
(s),pk(0, x1, b01, b11)

To prove this is done correctly the server needs to prove that the B,
satisfying the 2 equations above, really exist. This can be done by
showing that the difference between (G′

B ,H
′
B) and (G0,H0) is a legal

encryption of 0 (and likewise for (G′
B̄
,H ′̄

B
) and (G1,H1)) for some

B ∈ {0, 1}. The proof can be done using 4 concurrent runs of the
legal encryption of the message 0 protocol from section 2.7.2. To tie
the values together the technique from [20] is used, which simulates
the one of the 2 statements it is unable to answer truthfully:

(G′
0G

−1
0 ,H ′

0H
−1
0) and (G′

1G
−1
1 ,H ′

1H
−1
1)

are legal encryptions of 0

or

(G′
1G

−1
0 ,H ′

1H
−1
0) and (G′

0G
−1
1 ,H ′

0H
−1
1)

are legal encryptions of 0

These proofs are posted to B along with the final outputs and inter-
mediate encryptions. If the proof of the mix is incorrect orAi refuses

3.5. The System 49

to post a complete mix, any output from Ai is simply ignored, and
the input used for Ai is used again for the next mix server.

When Ai has either posted a mix or refused to do so, it is removed:
I := I\{i}.

Decryption: After the mixing has been performed, the decryption of each of
the output ciphertexts (G,H) needs to be performed. The removal of
the hr part is different depending on the model and is achieved in the
following way:

• Passive adversary model: Each Ai makes a decryption share as
di = Gαi mod n. The di values are posted to B and removed from
the encryption in public:

H ′ = (H(
∏

0<i≤w

di)−ns
)2 = (n+ 1)2m mod ns+1

• Active adversary model: Each Ai checks that at least t+1 servers
have performed a legal mix, in which case at least 1 of them is honest,
and it is safe to decrypt the encryptions. The value H ′ is computed
in the same way as in ĈS

t
from section 2.7. Each Ai computes:

di = G2∆αi mod n

and a proof that logg(hi) = logG4∆(d2
i), using the proofs from section

2.7.2. Each Ai posts di and the proof on B. A set S of the values di

with a legal proof is chosen, and the di’s are combined using Lagrange
interpolation to create the exponent 4∆2α:

d =
∏

d
2λS

i
i = G4∆2α = h4∆2r mod n where λS

i =
∏

j∈S\{i}
∆
−j
i− j

and the h4∆2r can be removed:

H ′ = H2d−2ns
= (n+ 1)2m mod ns+1

In both the passive and active model the value H ′ has the form (n+1)2m

and the message is decrypted as m = Ls(H ′ mod ns+1)/2 mod ns.

Remark 3.1 In the above decription each server has been assigned one permu-
tation network each. This is done for simplicity, while in practice only t + 1
permutation networks are need. When using t + 1 networks, any single server
can only help with one of the t+1 permutation networks. This ensures that there
is atleast one permutation network in which an adversary is not participating.

The order of the mix servers can be chosen arbitrarily, which means that if Ai

is unavailable when it is supposed to mix, Aj can do its mix. When Ai gets
back again, it can perform its mix on the last output from one of the other mix
servers as if nothing has happened.

The techniques from section 2.3.2 can be used to optimize all computations,
except the last public exponentiation used to get H ′, from using O(s3k3) time
to only O(s2k3).

50 Chapter 3. Anonymity Using Mix-nets

3.6 Security Proofs

Before we prove the theorem lets introduce an alternative notion of semantic
security:

Definition 3.5 An adversary A against a public-key cryptosystem gets the pub-
lic key pk, generated from security parameter k as input, and outputs two mes-
sages m0,m1. Then A is given an encryption under pk of either m0 or m1,
and outputs a bit. Let p0(A, k), respectively p1(A, k), be the probability that
A outputs 1 when given an encryption of m0, respectively an encryption of
m1. Define the advantage of A to be Adv(A, k) = |p0(A, k) − p1(A, k)|. The
cryptosystem is semantically secure if for any probabilistic polynomial time ad-
versary A, Adv(A, k) is negligible in k.

This definition is equivalent to definition 2.1, but for the proof below it is
sufficient that it is implied by definition 2.1. This follows from a standard
hybrid argument, where it is used that encryptions of m0 and m1 are both
indistinguishable from encryptions of random messages.

Proof of theorem 3.1 and 3.2.
Robustness is a result of the setup of the threshold decryption. If any

server refuses to do the mix, it is simply ignored, and the result can always be
decrypted using the threshold decryption. The use of the bulletin board model
with verification proofs at all steps of the protocol ensures universal verifiability.
Strong correctness follows from the proof of correct encryption, which ensures
that only valid encryptions are mixed, and from the binary gate proof, which
forces the two input and the two output encryption to contain the same two
messages. That only leaves anonymity:

Anonymity:
This is proven in two steps. First we show that if an adversary B can distinguish
between C = 0 and C = 1 (here C̄ = 1−C) such that:

yC = Êt
(s),pk(0, r, b0, b1)

yC̄ = Êt
(s),pk(x, r

′, b′0, b
′
1)

where x is a message of B’s choice, then we can build an adversary A that can
break the semantic security defined in definition 3.5, which implies an adversary
against the semantic security from definition 2.1. Secondly we show that if an
adversary C controlling the two input ciphertexts to a binary gate can guess
the B used in the binary gate, then it is essentially solving the same problem
as adversary B.

Figure 3.2 is an adversary against the semantic security (as defined above)
of the cryptosystem. We just need to verify its correctness. There are two
possible values returned in step 4 of the algorithm in figure 3.2:

c = Êt
(s),pk(0, r, b0, b1):

3.6. Security Proofs 51

Adversary A:

1. Get public key pk = (n, g, h) and forward it to B.

2. Get message x from B.

3. Pass 0, x to the encryption oracle.

4. Get the encryption c = Êt
(s),pk(m, r, b0, b1), where

- m = 0 or
- m = x.

5. Calculate c′ = Êt
(s),pk(x, r

′, b′0, b′1)c−1 mod ns+1 for
random values r′, b′0, b′1.

6. Send c, c′ to B.

7. Get the bit b from A.

8. Return b.

Figure 3.2: Algorithm for an adversary A breaking the semantic security using
the adversary B that can guess a permutation of two encryptions.

In this case we have:

c′ = Êt
(s),pk(x, r

′, b′0, b
′
1)c

−1

= Êt
(s),pk(x, r

′, b′0, b
′
1)Ê

t
(s),pk(0, r, b0, b1)

−1

= Êt
(s),pk(x, r

′, b′0, b
′
1)Ê

t
(s),pk(−0,−r, b0, b1)

= Êt
(s),pk(x, r

′ − r, b′0 ⊕ b0, b
′
1 ⊕ b1)

This is a random encryption of x and the encryptions we pass to B contains
the plaintexts: 0, x. So B is correct if b = C = 0 and so is A.

c = Êt
(s),pk(x, r, b0, b1):

In this case we have:

c′ = Êt
(s),pk(x, r

′, b′0, b
′
1)c

−1

= Êt
(s),pk(x, r

′, b′0, b
′
1)Ê

t
(s),pk(x, r, b0, b1)

−1

= Êt
(s),pk(x, r

′, b′0, b
′
1)Ê

t
(s),pk(−x,−r, b0, b1)

= Êt
(s),pk(0, r

′ − r, b′0 ⊕ b0, b
′
1 ⊕ b1)

This is a random encryption of 0 and the encryptions we pass to B contains
the plaintexts: x, 0. So B is correct if b = C = 1 and so is A.

Now we can look at an adversary against the binary gates. We will assume
the adversary knows the values m0,m1, r0, r1, b00, b01, b10, b11 of the two input
ciphertexts:

c0 = (G0,H0) = Êt
(s),pk(m0, r0, b00, b01)

52 Chapter 3. Anonymity Using Mix-nets

c1 = (G1,H1) = Êt
(s),pk(m1, r1, b10, b11)

The binary gate outputs two ciphertexts:

c′0 = (G′
0,H

′
0) = Êt

(s),pk(mB , r2, b20, b21)

c′1 = (G′
1,H

′
1) = Êt

(s),pk(mB̄ , r3, b30, b31)

Given these two pairs of ciphertexts we can define the 4 differences as:

y0 = c′0c
−1
0 y1 = c′1c

−1
0

y2 = c′1c
−1
1 y3 = c′0c

−1
1

(3.1)

If we have B = 0 we have (where x = m1 −m0):

y0 = Êt
(s),pk(0, r

′
0, b

′
00, b

′
01) y1 = Êt

(s),pk(x, r
′
1, b

′
10, b

′
11)

y2 = Êt
(s),pk(0, r

′
2, b

′
20, b

′
21) y3 = Êt

(s),pk(−x, r′3, b′30, b′31)

and if B = 1 we have:

y0 = Êt
(s),pk(x, r

′
0, b

′
00, b

′
01) y1 = Êt

(s),pk(0, r
′
1, b

′
10, b

′
11)

y2 = Êt
(s),pk(−x, r′2, b′20, b′21) y3 = Êt

(s),pk(0, r
′
3, b

′
30, b

′
31)

In the case where B = 0, the encryption y0 is clearly a random encryption of 0
chosen by the mix server. Looking at this equation

y1 = c′1c
−1
0 = (y2c1)c−1

0 = y2(c1c−1
0)

we can see that y1 is the combination of a random encryption of 0 chosen by
the mix server and the fixed encryption (c1c−1

0) is chosen by the adversary. The
encryption (c1c−1

0) is an encryption of the value x, and since this is multiplied
with a random encryption of 0, the value y1 will be a random encryption of x
that the adversary cannot control.

In the case where B = 1, we get that y1 is a random encryption of 0. From
equation 3.1 we get the following relation between y0 and y3:

y0 = c′0c
−1
0 = (y3c1)c−1

0 = y3(c1c−1
0)

This means that y0 is a random encryption of the message that was in the
encryption (c1c−1

0). So the two encryption y0 and y1 are random encryptions,
with respect to c0 and c1, of 0 and x respectively. Here x is difference between
the messages that the adversary controls, which means that he can choose any
value of x. Given c0, c1, y0 and y1 the rest of the values in the binary gate are
fixed:

c′0 = y0c0

c′1 = y1c0

y2 = c′1c
−1
1 = y1c0c

−1
1

y3 = c′0c
−1
1 = y0c0c

−1
1

3.6. Security Proofs 53

The difference between B and C is that B submits x, and C submits an encryp-
tion of x in the form of (c1c−1

0). Both get back 2 encryptions y0 and y1 that
are random encryptions with the restriction that one encrypts 0 and the other
encrypts x. The goal for both of them is to guess which plaintext belong to
which encryption. The only difference between the two adversaries is whether
the encryption oracle get the message x or an encryption, but in both cases
it responds with a random encryption of 0 and x, so this is irrelevant for the
security.

If the adversary C does not control the input to the binary gate in the first
place it will have strictly less information, and so it will have a smaller chance
of succeeding.

This means that an adversary cannot gain any information on the permu-
tation from the binary gates, and therefore his only chance is to break the
encryption system. Decryption however can’t be simulated, so in theory it
might leak some information one the bits. For a way to change the protocol
such that decryption can be simulated, see remark 3.2 below.

2

Remark 3.2 Decryption cannot be simulated as described in the protocol above,
however there are two ways to fix this: 1) rerandomize the encryptions before de-
cryption and 2) use the Cramer-Shoup variant [23] mentioned in section 2.5.1.
The first option seems to require publicly verifiable secret sharing of some sort,
so in most cases option 2 will be the most efficient choice of the two.

Chapter 4

Secure On-line Voting

A citizen of America will cross the ocean to fight for democracy, but won’t
cross the street to vote in a national election.

— Bill Vaughan

This chapter concerns various on-line voting schemes. The general model
uses a bulletin board which ensures that anyone can verify that everything is
done correctly. During the chapter we will look at two flavors of elections,
namely efficient large scale elections, which are useful for national elections
with a large number of candidates and voters. The second flavor is board room
elections. They are mostly useful for small groups of voters since messages have
to be passed between each pair of voters. However, it does not require servers to
decrypt the result, rather it becomes available as a result of the computations
the voters perform. It is also possible to get perfect ballot secrecy in this setting,
which means that any group of voters only learns what follows directly from
their votes and the final result (which is clearly optimal in terms of privacy).

4.1 Introduction

4.1.1 Background

Voting schemes are one of the most important examples of advanced crypto-
graphic protocols with immediate potential for practical applications. The most
important goals for such protocols are

Privacy: only the final result is made public, no additional information about
votes will leak.

Robustness: the result correctly reflects all submitted and well-formed bal-
lots, even if some voters and/or possibly some of the entities running the
election cheat.

Universal Verifiability: after the election, the result can be verified by any-
one.

55

56 Chapter 4. Secure On-line Voting

Other properties may be considered as well, such as receipt-freeness, i.e. voters
are not able to prove the fact, that they voted for a particular candidate, thereby
discouraging vote-buying or coercing.

Various fundamentally different approaches to voting are known in the lit-
erature: one may use blind signatures and anonymous channels [39], where the
anonymous channels can be implemented using mix-nets (see [1,4] for instance)
or based on some physical assumption. Another approach is to use several
servers to count the votes and have voters verifiably secret share votes among
the servers [21, 53]. Finally, one may use homomorphic encryption, where a
voter simply publishes an encryption of his vote. Encryptions can be combined
into an encryption of the result, and finally a number of decryption servers can
cooperate to decrypt the result [22], assuming the private key needed for this
is secret-shared among them.

Since anonymous channels are quite difficult to implement in practice, and
verifiable secret sharing requires communication between a voter and all servers,
the third method seems the most practical, and this chapter deals only with
variants of this approach.

A large number of such schemes are known, but the most efficient one, at
least in terms of the work needed from voters, is by Cramer, Gennaro and
Schoenmakers [22]. This protocol in fact provides a general framework that
allows usage of any probabilistic encryption scheme for encryption of votes, if
the encryption scheme has a set of ”nice” properties. In particular it must be
homomorphic. The basic idea of this is straightforward: each voter broadcasts
an encryption of his vote (by sending it to a bulletin board) together with a
proof that the vote is valid. All the valid votes are then combined to produce
an encryption of the result, using the homomorphic property of the encryption
scheme. Finally, a set of trustees (who share the secret key of the scheme in a
threshold fashion) can decrypt and publish the result.

Paillier pointed out already in [52], that since his encryption scheme is
homomorphic, it may be applicable to electronic voting. In order to apply it
in the framework of [22], however, some important building blocks are missing:
one needs an efficient proof of validity of a vote, and also an efficient threshold
variant of the scheme, so the result can be decrypted without allowing a single
entity the possibility of learning how single voters voted.

In the following, we let L be the number of candidates, M the number
of voters, w the number of decryption servers, and k the security parameter
for the cryptosystem used. We assume for simplicity that each voter can vote
for one candidate. In [22] a solution was given that may be based on any
homomorphic threshold encryption scheme, if the scheme comes with certain
associated efficient protocols. One example of this is El Gamal encryption. The
ballot size in this scheme is O(logM + b), where b is the block size (the size
of the plaintext space) that the encryption scheme is set up to handle. The
scheme was designed for the case of L = 2, and the generalization to general
L given in [22] has complexity exponential in L for the decryption of the final
result. Even for L = 2, a search over all possible election results is required
to compute the final result. Therefore, this scheme does not scale well to large
elections with many candidates.

4.1. Introduction 57

In [10] and some of the solutions below use a variant of the approach from
[22], but based on Paillier’s cryptosystem. These are the first solutions that
scale reasonably well to large elections, still the most efficient of these protocols
produce ballots of size O(k·log(L)). As long as k > L·log(M), this is logarithmic
in L, but for larger values of L and M it becomes linear in L, and each voter
has to do Ω(log(L)) exponentiations using a modulus of length L · log(M) bits.
In a real application, one must assume, that voters typically have only rather
limited computing power available (not state of the art), so the computation
and communication needed for each voter is a rather critical parameter. On
the other hand, decryption servers can be expected to be high-end machines
connected by high-speed networks.

Thus for a large scale election, it is reasonable to consider the possibility of
moving work away from voters at the expense of increased load on the servers.
The central issue here is how much we can expect to reduce the size of bal-
lots, since both communication and computational complexity for the voter is
directly linked to this parameter. A moments reflection will show, that there is
no fundamental reason why the size of a ballot should depend on M or be linear
in L. Of course, a ballot must be at least log(L) bits long, since otherwise we
cannot distinguish between the L candidates. Also, it would be unreasonable to
expect the encryption to be secure, if the size of an encryption (a ballot) did not
increase with the security parameter k. Thus a ballot size of O(k+log(L)) bits
would be essentially optimal. In principle, this is easy to achieve: each voter
Vi publishes an encryption of vi (the id of the candidate he votes for), and the
decryption servers use generic multi-party computation [41] to securely produce
the result. This is always possible because the encryptions and the decryption
key, which is shared among the servers, together determine the result and could
be used to compute it efficiently, if they were public. Such a solution, however,
would be much too inefficient to have any practical value. It would increase
the complexity for the servers by a factor corresponding to at least the size of
a Boolean circuit computing the decryption.

In [47] Kiayias and Yung introduced a new paradigm for electronic voting,
namely protocols that are self-tallying, dispute-free and have perfect ballot
secrecy (STDFPBS for short). This paradigm is suitable for e.g. boardroom
elections where a (small) group of users want a maximally secure vote without
help from external authorities. The main property is perfect ballot secrecy,
which means that any coalition of voters (even a majority) can only get the
information they can compute from the result of the election and their own
votes, namely the tally of honest users votes. This is the best we can hope
for, and it is the type of privacy that is actually achieved by paper based
elections. Self-tallying means that as soon as all votes have been cast, no further
interaction is needed to compute the result. It can be efficiently computed by
just looking at all ballots, which can be done, even by a (casual) third party.
Dispute-freeness means that no disputes between players can arise, because all
faults are detected in public.

In [47] it is argued that STDFPBS elections cannot be achieved efficiently
by traditional methods. For instance, large scale solutions are typically not
of this type, because they assume that some set of authorities is available to

58 Chapter 4. Secure On-line Voting

help with the election. The authorities typically share a secret key that can be
reconstructed by a majority. In a small scale scenario we could let each voter
play the role of an authority himself, but this would not give perfect ballot
secrecy because a corrupt majority would know how every single voter voted.
If we try to repair this by setting the threshold of the secret sharing scheme to
be the total number of voters, then even a single fault will mean that the secret
key is lost, and an expensive key generation phase would be needed.

In [47] STDFPBS elections are achieved for a yes/no vote by using constructs
based on discrete log modulo a prime. This results in a tallying phase that needs
to find a discrete log, which requires O(

√
u) work when there are u voters. It

also implies, that generalization to multi-way elections either results in larger
ballots or much worse complexity for the tallying phase. Given earlier work on
electronic voting, it is natural to speculate that this could be solved simply by
using Paillier encryption instead. However, as noted in [47] this does not work,
we would lose some essential properties of the scheme.

4.1.2 Related Work

In [37] voting was pointed out as a potential application for their cryptosystem.
However, no suggestion was made for protocols to prove that an encrypted vote
is correctly formed, something that is of course necessary for a secure election
in practice.

In work done concurrently with and independent from ours, Stern, Baudron,
Fouque, Pointcheval and Poupard [10] propose a voting scheme somewhat simi-
lar to ours. Their work can be seen as being complementary to ours in the sense,
that their proposal is more oriented toward the system architectural aspects of
a large scale election, and less toward optimization of the building blocks. To
compare with their scheme, we first note that their modulus length k must be
chosen such that k > L · log(M). The scheme produces ballots of size O(k ·L).
An estimate with explicit constants is given in [10], in which the dominating
term in our notation is 9kL.

Because our voting scheme uses the generalized Paillier cryptosystem, k
can be chosen independently from L,M . In particular the scheme can scale to
any size of election, even after the keys have been generated. However, if we
choose k as in [10], i.e. k > L · log(M), then the ballots we produce have size
O(k · log(L)). Working out the concrete constants involved, one finds that our
complexity is dominated by the term 10k log(L). So already for moderate size
elections we have gained a significant factor in complexity compared to [10].

In [45] Hirt and Sako propose a general method for building receipt-free
election schemes, i.e. protocols where vote-buying or -coercing is not possible,
because voters cannot prove to others how they voted. Their method can be
applied to make a receipt-free version of the scheme from [22]. It can also be
applied to our scheme, with the same efficiency gain as in the non-receipt-free
case.

When using the threshold version of our scheme, we assume for simplicity a
trusted dealer for setting up the keys initially, and we assume that the modulus
used is a safe prime product, similar to what is done in Shoup’s paper [57].

4.1. Introduction 59

In [32] Damg̊ard and Koprowski propose techniques by which one can drop
these restrictions from Shoup’s scheme at the expense of an extra intractability
assumption. The same idea can be easily applied to our scheme, thus producing
a scheme without a trusted dealer and using a general RSA modulus. The
threshold version of our scheme can also be used for general secure multi-party
computation as shown by Cramer, Damg̊ard and Nielsen in [19].

4.1.3 Contribution

The building blocks needed for the Paillier cryptosystem to be applicable to
electronic voting were given in chapter 2. Thus we immediately get a voting
protocol. In this protocol, the work needed from the voters is of the same
order as in the original version of [22]. However, the work needed to produce
the result is reduced dramatically, as we now explain. With the El Gamal
encryption used in [22], the decryption process after a yes/no election produces
gR mod p, where p is prime, g is a generator and R is the desired result. Thus
one needs to solve a discrete log problem in order to find the result. Since R
is bounded by the number of voters M , this is feasible for moderate size M ’s.
However, it requires Ω(

√
M) multiplications and may certainly be something

one wants to avoid for large scale elections. The problem becomes worse, if we
consider an election where we choose between L candidates, L ≥ 2. The method
given for this in [22] is exponential in L in that it requires time Ω(

√
M

L−1
),

and so is prohibitively expensive for elections with large L.
In the scheme we propose below, this work can be removed completely. Our

decryption process produces the desired result directly. Moreover, we can easily
scale to larger values of M and L without choosing new keys, just by going to
a larger value of s.

We also give ways to efficiently implement constraints on voting that occur
in real elections, such as allowing to vote for precisely l out of the L candidates,
or to vote for up to l of them. In each of these schemes, the size of a single
ballot is O(k ·L), where k is the bit length of the modulus used1. We propose a
variant using a different technique, where ballots have size O(max(k,L·log(M))·
log(L)). Furthermore, this scheme requires only 1 decryption operation, even
when L > 2.

In this chapter we also present a solution, that achieves ballot size O(k +
log(L)) bits at the cost of each server having to broadcast O(M · L · (k + L ·
log(M))) bits. Most of this work can be done in a preprocessing phase, and only
O(M · (k + L · log(M))) bits need to be sent while the election is running. We
assume the random oracle model, and that a static adversary corrupts less than
w/2 servers and any number of voters. Then the protocol can be proved to be
private, robust and verifiable, based on the semantic security of Paillier’s public
key system and the strong RSA assumption. We also present a variant with
somewhat larger voter load, where the ballot size is log(L) · (k+L) bits. This is
still less than the previous Paillier-based solutions, as the communication per

1All complexities given here assume that the length of challenges for the zero-knowledge
proofs is at most k.

60 Chapter 4. Secure On-line Voting

server is O(M · log(log(M))(k + L · log(M))) bits. Also here, preprocessing is
possible leading to the same on-line cost as before. This variant can be proved
secure in the random oracle model in the same sense as the previous variant, but
assuming only semantic security of Paillier’s public key system. Both variants
can be executed in constant-round. None of the variants are receipt-free as
they stand, but under an appropriate physical assumption, they can be made
receipt-free using the techniques of [45].

Previous solutions based on the same assumption require each server to
read each voters encrypted vote, process this, and broadcast a single piece of
data. This results in communication that is linear in M , like in the systems
we propose here. Thus, the extra cost for servers in our solution is that more
rounds of interaction are required, and that the amount of communication is
increased by a factor of L or log(log(M)) .

The main new technique we use is to have voters work with a cryptosystem
with block size max(k, log(L)). The servers then securely transform this to
encryptions in a related cryptosystem with block size max(k,L · log(M)), and
compute the result using this second system. On top of this, we borrow some
techniques from [19].

We note that optimal ballot size can also be achieved using the approach
mentioned above based on anonymous channels, where the channels can be
implemented using a mix-network. The mix-net hides the origin of a ballot.
Therefore all ballots can be decrypted after mixing and vote counting becomes
trivial. For some mix-net implementations we get communication complexity
for the servers comparable to what we achieve here. Moreover, and perhaps
more importantly, it seems to be inherent in the mix-net approach that mix
servers do their work sequentially, i.e. each mix server can only act after the
previous one has completed (part of) its work. By contrast, the threshold
cryptography approach we use allows servers to complete the protocol in a
constant number of rounds. Finally, using a mix-net, it is not clear that one
can push most of the server work into a preprocessing phase, as we do here.

The final trade-off we present is of a completely different type. It relates
more to practical security of elections. One of the worst potential weaknesses of
electronic voting in practice is, that voters are likely to be non-expert computer
users and most likely will use their own machines, home PCs, to cast votes, say
over the Internet. Tools such as SSL plus signed applets, can be used to give
reasonable assurance that the client software used for this is genuine. However,
it is very difficult (some would say impossible) to make sure, that the user’s
machine is not infected by a virus. Such a virus could be used to monitor key
strokes etc., and later transmit these to an adversary, who could then easily
find out who the voter voted for. By contrast, it seems like a more reasonable
assumption, that for instance a high-security server placed at some neutral site
is not corrupted.

Motivated by this, we propose a solution with the following properties:
privacy for the voter is ensured, even if his machine is completely monitored
by an adversary, who can follow key strokes, screen image, mouse events, etc.
Correctness of the result is ensured, assuming that a particular trusted party,
who takes part in registering voters, behaves correctly (cheating will not allow

4.2. Efficient Electronic Voting 61

him to break the privacy, however). Whereas this party can in principle be
held accountable and can be caught if he cheats, such verification is rather
cumbersome. Hence, in practice, this solution trades trust in client machines
against some amount of trust in a designated party. We note that a natural
candidate for such a player often exists anyway in traditional manual voting
schemes, and so in fact no “new” trust is needed - we discuss this in more detail
later.

The basic idea of this solution is quite general. It can be combined with our
first trade-off without significant loss of efficiency, but can also be applied to
a very simple multi candidate election protocol, that can be based on Paillier
encryption or on El Gamal, and requires the servers to do only L decryptions.

The last contribution in this chapter is to apply one of the cryptosystem
from chapter 2 to construct STDFPBS elections. This results in a system,
where the tallying phase reveals the result with a small number of additions,
instead of O(

√
u) multiplications as in [47]. This also shows that STDFPBS

elections with all the essential properties can be based on Paillier encryption,
thus solving a problem left open in [47]. Finally, it implies a natural and efficient
generalization to multi-way elections.

4.2 Efficient Electronic Voting

4.2.1 Model and Notation

In [22], a general model for elections was used, which we briefly recall here:
we have a set of voters V1, ..., VM , a bulletin board B, and a set of tallying
authorities A1, ..., Aw . The bulletin board is assumed to function as follows:
every player can write to B, and a message cannot be deleted once it is written.
All players can access all messages written, and can identify which player each
message comes from. This can all be implemented in a secure way, for instance
using an already existing public key infrastructure and server replication to
prevent denial of service attacks. We assume that the purpose of the vote is to
elect a winner among L candidates, and that each voter is allowed to vote for
l < L candidates.

In the following, H will denote a fixed hash function used to make non-
interactive proofs according to the Fiat-Shamir heuristic. Also, we will assume
throughout that an instance of the threshold cryptosystem CSt

s, defined in
section 2.4.1, is set up with a public key pk = (n, s). The authorities Ai’s are
acting as decryption servers. We will assume that ns > ML, which can always
be made true by choosing s or n large enough.

The notation ProofP (S), where S is some logical statement, will denote a bit
string created by player P as follows: P selects the appropriate protocol from
section 2.4.2 that can be used to interactively prove S. He computes the first
message a in this protocol, computes e = H(a, S, ID(P)) where ID(P) is his
user identity in the system and, taking the result of this as the challenge from
the verifier, computes the answer z. Then ProofP (S) = (e, z). The inclusion of
ID(P) in the input to H is done in order to prevent vote duplication. To check
such a proof, note that all the auxiliary protocols are such, that from S, z, c

62 Chapter 4. Secure On-line Voting

one can easily compute what a should have been, had the proof been correct.
For instance, for the protocol for ns powers, the statement consists of a single
number u modulo ns+1, and the verifier checks that zns

= aue mod ns+1, so
we have a = zns

u−e mod ns+1. Once a is computed, one checks that e =
H(a, S, ID(P)).

4.2.2 A Yes/No Election

A protocol for the case L = 2 is now simple to describe. This is equivalent to a
yes/no vote and so each vote can be thought of as a number equal to 0 for no
and 1 for yes:

1. Each voter Vi picks his vote vi ∈ {0, 1}, he calculates ci = Et
s,pk(vi, ri),

where ri is randomly chosen in Z
∗
n. He also creates

ProofVi(ci or ci/(1 + n) is an encryption of 0)

based on the 1-out-of-2 ns’th power protocol from section 2.4.2. He writes
the encrypted vote and proof to B.

2. Each Aj does the following:

(a) Set c = 1.

(b) For all voters Vi:

• Check the proof written by Vi on B.

• If it is valid set c := cci mod ns+1.

(c) Calculate the decryption share using c as input ciphertext according
to the threshold decryption in section 2.4.1. The decryption share is
written to B.

3. From the messages written by the Aj ’s, anyone can now reconstruct the
plaintext corresponding to c (possibly after discarding invalid messages).
Assuming for simplicity that all votes are valid, it is evident that

c =
∏

i

Et
s,pk(vi, ri) = Et

s,pk(
∑

i

vi mod ns,
∏

i

ri mod ns+1)

So the decryption result is
∑

i vi mod ns, which is
∑

i vi since ns > ML.

Security of this protocol (in the random oracle model) can be proved based
on the security results we have shown for the sub-protocols used, and based on
semantic security of Paillier’s encryption scheme. A more formal proof can be
seen in [43], where Groth presents a full proof of security for the voting scheme
according to the definition of Canetti [15].

4.2. Efficient Electronic Voting 63

4.2.3 A Multi-Candidate Election

There are several ways to generalize this to L > 2. Probably the simplest way
is to hold L parallel yes/no votes as above. A voter votes 1 for the candidates
he wants, and 0 for the others. This means that Vi will send L votes of the
following form (where j = 0, · · · , L− 1):

cij = Et
s,pk(vij , rij),

ProofVi(cij or cij/(n+ 1) is an encryption of 0)

To prove that he voted for exactly l candidates, he also writes to B the number∏L−1
j=0 rij mod n. This allows the talliers to verify that

∏L−1
j=0 E

t
s,pk(vij , rij) is an

encryption of l. This check is sufficient, since all individual votes are proved
to be 0 or 1. It is immediate that decryption of the L results will immediately
give the number of votes each candidate received.

The size of a vote in this protocol is seen to be O(Lsk), where k is the
bit length of n, by simple inspection of the protocol. The protocol requires L
decryption operations. As a numeric example, suppose we have k = 1000,M =
64000, L = 64, s = 1 and we use challenges of 80 bits in the proofs. Then a
vote in the above system has size about 32 Kbyte.

We note that this easily generalizes to cases where voters are allowed to
vote for up to l candidates: one simply introduces l ”dummy candidates” in
addition to the actual L. We then execute the protocol as before, but with
l + L candidates. Each voter places the votes he does not want to use on
dummy candidates.

A more efficient method for large l is to add only 1 dummy candidate who
is to receive all unused votes. Each voter must still prove that the product
of all his encryptions decrypts to l. So given this proof, it is sufficient to
prove that the number of votes on the dummy candidate is small enough. The
number has to be small enough, so that a reduction modulo ns cannot take
place when the votes of this voter are added. This can be done by taking the
bit string, representing the number of votes on the dummy candidate: b0...bm
where 2m ≤ l < 2m+1. The voter then makes encryptions eij = Et

s,pk(bj2
j , rij)

for all 0 ≤ j ≤ m and makes a proof for each of these:

ProofVi(eij or eij/(1 + n)2
j

is an encryption of 0)

The votes for the dummy candidate can then be calculated as ciL =
∏m

j=0 eij .
Then it is verified as above that

∏L
j=0 cij is the encryption of l. This only uses

L+ 1 blocks and L+ log(l) proofs.

4.2.4 A variant with smaller vote size

If the parameters are such that ML < ns and l = 1, then we can do significantly
better than above. These conditions will be satisfied in many realistic situations,
such as for instance in the numeric example above.

The basic idea is the following: a vote for candidate j, where 0 ≤ j < L,
is defined to be an encryption of the number M j . Each voter will create such

64 Chapter 4. Secure On-line Voting

an encryption and prove its correctness as detailed below. When all these
encryptions are multiplied we get an encryption of a number of the form a =∑L

j=0 ajM
j mod ns, where aj is the number of votes cast for candidate j. Since

ML < ns, this relation also holds over the integers, so decrypting and writing a
in M -ary notation will directly produce all the aj ’s. It remains to describe how
to produce an encryption hiding a number of form M j , for some 0 ≤ j < L,
and prove it is correctly formed. We do this in the following two subsections.

We note that this idea generalizes to l > 1, at some loss of efficiency. We
simply allow each voter to cast l votes, each of the form just described. If we
want to prevent voters from voting for the same candidate l times, we can use
the homomorphic property to compute encryptions of all pairwise differences
of votes, and the voter must prove that these are all non-zero. To show that m
is non-zero, given the encryption Et

s,pk(m, r), the voter provides an encryption
Et

s,pk(m
−1 mod ns, r′) and uses the multiplication-mod-ns protocol from section

2.4.2 to prove that the product of the two plaintexts is 1.

The case of L = 2m+1

For simplicity, we will first describe how to prove correctness of a vote in the
case where L is of the form L = 2m+1 for some m, and treat the general
case below. Let b0, ..., bm be the bits in the binary representation of j, i.e. j =
b020+b121+· · ·+bm2m. Then clearly we have M j = (M20

)b0 ·...·(M2m
)bm . Each

factor in this product is either 1 or a power of M . This is used in the following
algorithm for producing the desired proof (where P denotes the prover):

1. P computes encryptions c0, ..., cm of (M20
)b0 , ..., (M2m

)bm . For each i =
0, ...,m he also computes

ProofP (ci/(1 + n) or ci/(1 + n)M
2i

is an encryption of 0)

2. Let Fi = (M20
)b0 · ... · (M2i

)bi , for i = 0, ...,m. P computes an encryption
fi of Fi, for i = 1, ...,m. We set f0 = c0. Now, for i = 1, ...,m, P computes

ProofP (Plaintexts corr. to fi−1, ci, fi satisfy

Fi−1 · (M2i
)bi = Fi mod ns),

based on the multiplication-mod-ns protocol. The encryption fm is the
desired encryption of the vote M j .

It is straightforward to verify from ci, fi and all the proofs computed, that fm

is an encryption of a number of form M j. Furthermore, simply because there
are m + 1 encryptions c0, .., cm each determining one bit of j, it is clear that
0 ≤ j < 2m+1 = L.

It is straightforward to see that a vote in this system will have length O(sk ·
log(L)) bits (still assuming, of course, that ML < ns).

With parameter values as in the numeric example before, a vote will have
size about 7 Kbyte, a factor of almost 5 better than the previous system. More-
over, we need only 1 decryption operation as opposed to L before.

4.2. Efficient Electronic Voting 65

The case of general L

If L is not of the nice form we assumed above, we may attempt to adapt the
above solution as follows: first define m by: 2m+1 is the smallest 2-power with
2m+1 > L, and then run the above protocol with no further changes. There
are two drawbacks to this idea: first, it allows voters to vote for non-existing
candidates, namely j’s for which L ≤ j < 2m+1, and second this also implies
that we must have M2m+1

< ns, otherwise we may get overflow when votes are
added, and the result will be incorrect. If we could prevent voters from voting
for non-existing candidates, we would only need ML < ns, so this simple-
minded solution may force us to have a block length larger than what is strictly
necessary, in the worst case almost twice as large.

One way to get around this is to add an extra step to the verification of a
vote where, given the encryptions c0, ..., cm determining the bits of j, the voter
proves in zero-knowledge that j < L.

To this end, first recall that we defined j = b020 + b121 + · · · + bm2m, and
that for each encryption ci that is provided, it is shown that it encrypts M bi2i

.
Define βi = (M2i − 1)−1 mod ns. It is now easy to see that

c′i = ((ci(1 + n)−1)βi mod ns+1) mod n2

= (ci(1 + n)−1)βi mod n mod n2

is an encryption of bi in CSt
1. Furthermore a verifier can compute this value

without interaction from already public information. Going to CSt
1 means, that

the complexity of the protocol to follow becomes independent of s. From this
point there are several ways to proceed. We sketch one simple option here:

Let L be represented by bits B0, ..., Bm. We can now exploit the following
fact:

j < L iff ∃ i, such thatBm = bm, · · · , Bi+1 = bi+1, Bi = 1, bi = 0

Notice that di = ((2Bi− 1)(2bi− 1)+ 1)/2 is a binary value that is 1, if Bi = bi
and 0 otherwise. Since Bi is public, the verifier can compute an encryption of
di from c′i without interaction. Clearly, the product Di = dm · · · di+1Bi(1− bi)
is 1 precisely if i is an index confirming that L > j. It is also easy to see that
by providing encryptions of the values (dmdm−1), (dmdm−1dm−2), ..., (dm · · · d1)
and of the Di’s, the prover can show that the encryptions of the Di’s contain
correct values, using 2mmultiplication proofs. Finally, the prover needs to show
that one of the Di = 1 for some i. This can be done by a trivial generalization
of the one-of-two protocol, we showed earlier, to a one-of-(m − 1) protocol. In
total, this solution will have size O(k · log(L)) bits (assuming that ML < ns).
This is asymptotically the same as before, but with a larger constant. We note
that in [6] Lipmaa et al. have recently proposed a conceptually simpler solution
for general L, which is more efficient than ours by a constant factor.

66 Chapter 4. Secure On-line Voting

4.3 Client/Server Trade-Offs

4.3.1 The Minimal Vote Election Scheme

In this section we introduce a scheme in which ballots are of essentially minimal
size. This requires that a transformation of the votes is performed by the tally
servers to a larger representation of the vote. From the transformed vote the
result of the election can be found using the homomorphic properties as seen
in the previous section and in [22].

Needed Properties

In the reduction of the voter load we need a pair of public key cryptosystems
CS1 and CS2 with their respective encryption and decryption functions E1, E2,
D1, and D2. An encryption of m in CSi under public key pk using random input
r will be denoted Ei(m, r). The public key is left out, because it is kept fixed
at all times once generated. We will also often suppress r from the notation for
simplicity. N1 and N2 will denote the size of the plaintext space for CS1 and
CS2. The two cryptosystems should satisfy:

• Semantically secure: Both CS1 and CS2 are semantically secure.

• CS2 is a threshold system: The private key in CS2 can be shared
among w decryption servers, such that any minority of servers have no
information on the key, whereas any majority of servers can cooperate
to decrypt a ciphertext while revealing no information other than the
plaintext.

• CS2 is homomorphic: There exists an efficiently computable operation
that can be applied to two ciphertexts to yield an encryption of the sum
of the two plaintexts, that is, we have:

E2(m1 mod N2)E2(m2 mod N2) = E2(m1 +m2 mod N2)

Furthermore, given α ∈ ZN2, E2(m) it is easy to compute an encryption
E2(αm mod N2).

• CS2 supports MPC multiplication: There exists an interactive pro-
tocol, denoted MPC (Multi-Party Computation) multiplication, that the
decryption servers can execute on two encryptions. The protocol produces
securely a random encryption containing the product of the correspond-
ing plaintexts, in other words, we can produce E2(m1m2 mod N2, r3) from
E2(m1 mod N2, r1) and E2(m2 mod N2, r2) without revealing information
about m1 or m2.

• Interval Proofs: There exists a zero-knowledge proof of knowledge (that
can be made non-interactive in the random oracle model), such that hav-
ing produced Ei(m), a player can prove in zero-knowledge that m is in
some given interval I. For optimal efficiency we will need that the length
of the proof corresponds to a constant number of encryptions. For the

4.3. Client/Server Trade-Offs 67

special case of I = 0, ...,Ni (i = 1, 2), this just amounts to proving that
you know the plaintext corresponding to a given ciphertext.

• Transformable: There exists a numberB ≤ N1, s.t. given an encryption
E1(m, r), where it is guaranteed that m ≤ B, there is an interactive
protocol for the decryption severs producing as output E2(m, r), without
revealing any extra information.

• Random Value Generation: The decryption servers can cooperate to
generate an encryption E2(R), where R is a random value unknown to all
servers.

• Vote size: L ≤ B ≤ N1 so that votes for different candidates can be
distinguished and encryptions be transformed.

• Election size: Let j = dlog2(M)e. We need that (2j)L < N2 to ensure
that we do not get an overflow, when the final result is computed.

• Factorization of N2: All prime factors of N2 are super-polynomially
large in the security parameter.

We do not want to give the impression this set-up is more general than it
really is. We know only one efficient example of a system with the above prop-
erties, this example is described below. However, we stick to the above abstract
description to shield the reader from unnecessary details, and to emphasize the
essential properties we use.

Example 1

If we pick CS1 = CSt
s and CS2 = CSt

s′ such that s ≤ s′, the above properties
are satisfied. This means that N1 = ns and N2 = ns′ .

Theorem 4.1 Given CS1 = CSt
s and CS2 = CSt

s′, the above properties are
satisfied under the DCRA assumption (conjecture 2.1).

Proof.

• Semantically secure: under the DCRA both CS1 and CS2 are seman-
tically secure.

• CS2 Homomorphic: CSt
s′ is homomorphic and we have that

E(m)α mod ns′+1 = E(αm mod ns′)

• CS2 supports MPC multiplication: an efficient protocol is shown in
[19], requiring each server to broadcast a constant number of encryptions.

• Interval proofs: the proof construction in section 4.3.4 constructs the
required proof using communication equivalent to a constant number of
encryptions.

68 Chapter 4. Secure On-line Voting

• Random value generation: the decryption servers do the following:
each server 0 < i ≤ w chooses a random Ri ∈ ZN2. The values E2(Ri)
are published, followed by zero-knowledge proofs that Ri is known by
server i. These proofs can be done using the multi-party Σ-protocol tech-
nique from section 6 of [19] allowing the zero-knowledge proofs to be done
concurrently in a non malleable way.

We then form E2(R) = E2(
∑

iRi) = E2(R1) · · · E2(Rw). Thus R is random
and unknown to all servers.

• Transformable: an encryption in CS1 can be transformed to an encryp-
tion in CS2 by using the method described below. This method requires
that the bound B on the input message satisfies log(B) ≤ log(N1)− k2−
log(w) − 2, where k2 is a secondary security parameter (k2 = 128 for
instance).

• Vote size: we need L ≤ B, which as mentioned above means log(L) ≤
log(N1)− k2− log(w)− 2. For most realistic values of k, k2, L,w this will
be satisfied even with s = 1, but otherwise s can always be increased.

• Election size: ML < N2 = ns′ can always be satisfied by choosing s′

large enough.

• Factorization of N2: we have N2 = ns′ = (pq)s
′
, and p, q must of course

be large to have any security at all.

2

We now show how to transform the ciphertext E1(m) from CS1 to CS2, where
it is known that 0 ≤ m ≤ B. Our transformation will work if log(B) ≤
log(N1)− k2 − log(w)− 2.

The crucial observation is that a ciphertext E1(m) in CS1 can always be
regarded as a ciphertext in CS2, simply by thinking of it as a number modulo
ns′+1. It is not hard to see that as a CS2 encryption, it is an encryption of
a number m′ ∈ Zns′ with m′ = m mod ns. This is not good enough since we
want m = m′ mod ns′ . All we know is that m′ = m+ tns mod ns′ for some t we
cannot directly compute. To get around this, we mask m with some random
bits so that we can find t by decryption, as detailed below.

The masking can be done in 2 ways:

• Trusted Third Party: A trusted third party generates a random value
R of size log(B) + k2. The trusted third party reveals the value E2(R).

• MPC approach: The servers each generate a value Ri of length log(B)+
k2 bits, reveal E2(Ri) and prove they have done so using an interval proof.
This should be done using the multi-party Σ-protocol technique of [19].
All encryptions with correct proofs are combined using the homomorphic
property to get

E2(R) = Πi∈IE2(Ri) = E2(Σi∈IRi)

4.3. Client/Server Trade-Offs 69

where I is the set of servers that supplied a correct proof. This means
that R is at most w2log(B)+k2 .

Note that the condition on B and R ensures that m+R < N1.

1. We consider the encryption c = E1(m) as a ciphertext c in CS2. As noted
above, this will be the encryption E2(m + tns mod ns′ , r) for unknown t
and r.

2. Now let c′ = c · E2(R).

3. The servers decrypt c′ to get a message m + R + tns mod ns′ . Since we
have m+R < N1, we can find m+R and t just by integer division. And
if at least one server has chosen its Ri at random, information on m will
be statistically hidden from the servers, since R is at least k2 bits longer
than m.

4. We now set c′′ = cE2(−tns, 1). Due to the homomorphic properties this
is equal to E2(m).

Preparation

The preparation phase requires the generation of the 2 cryptosystems CS1, CS2

with key distribution for threshold decryption in CS2. We also need a publicly
known polynomial of degree L− 1 which satisfies the equation:

f(i) = M i mod N2 ∀i : 0 ≤ i < L

By assumption N2 has only very large prime factors. Hence any difference of
form i− j where 0 ≤ i, j < L is invertible modulo N2, and this is sufficient to
ensure that f can be constructed using standard Lagrange interpolation.

The next and last part of the preparation has to be done once for each
election. For each voter, the servers generate a random encryption E2(R) as
described earlier. Then we execute L−2 MPC multiplications to get encryptions
E2(Rj) for j = 1, ..., L − 1.

Voting

The voter generates a vote for candidate i by making an encryption E1(i) and
an interval proof, that it is the encryption of a value in the interval {0, ..., L−1}.

Transformation

When the servers receive the vote as a ciphertext in CS1, they have to transform
it into a corresponding vote in CS2, that can be added together to give a
meaningful result. This is done by transforming E1(i) to E2(M i). This has to
be done for each vote and can be done in the following way:

1. We transform E1(i) into E2(i).

70 Chapter 4. Secure On-line Voting

2. The servers decrypt c = E2(i)E2(R) to get z = i + R. It follows that
ij = (z − R)j, and this can be rewritten using the standard binomial
expansion. The result is that ij = α0 + α1R + ... + αjR

j for publicly
known values α0, ..., αj . Hence encryptions E2(ij) can be computed with-
out interaction from the encryptions E2(Rj) from the preparation phase,
using the homomorphic property. From these encryptions, we can, us-
ing the polynomial f computed in the preparation, construct an encryp-
tion E2(f(i)), still with no further interaction. The result of this satisfies
E2(f(i) mod N2, r) = E2(M i mod N2, r).

Calculating the Result

Now we can combine all the transformed votes using the homomorphic property
of CS2 and decrypt the result. This will give a value of the form:∑

viM
i ∀i : 0 ≤ vi < M

SinceM is the number of voters, an overflow of vi mod M cannot have occurred,
and since ML < N2, the number of votes on the i’th candidate will be vi.

Complexity

From the voters point of view the computational (modular multiplications) and
communicational complexity (bits) of this protocol will be O(log(L) + k). This
is within a constant of the smallest possible.

The decryption servers work depends on the cryptosystems used, and can
only really be compared in the number of usages of the primitives: transforma-
tions (from CS1 to CS2), decryptions, MPC multiplications, and random value
generations.

In the preparation, we generate M random values and do M(L − 2) MPC
multiplications. During the election we do M transformations from CS1 to CS2

and M decryptions. An additional decryption is needed to get the result. To
calculate the powers of R in the preprocessing, O(L) rounds of communication
are needed. Constant round solutions can also be devised using techniques
from [8], but the total communication will be larger. The protocol for the
election itself is constant round.

4.3.2 An Alternative System

Here we look at an alternative scheme that requires more work for the voter,
but the work required by the tallying servers can be reduced compared to the
previous scheme for some parameter values.

Needed Properties

In this trade off scheme we also need a pair of cryptosystems CS1 and CS2 with
properties as described earlier, except for two changes:

4.3. Client/Server Trade-Offs 71

• Zero-knowledge proofs: Interval proofs are not needed for this scheme.
Instead we need that a player can generate an encryption E1(v) and prove
in zero-knowledge that v ∈ {20, 21, ..., 2L−1}. For the example of Paillier
based encryption, a protocol for this purpose is given in section 4.2.4.

• Vote Size: In this scheme, we need 2L ≤ B ≤ N1 instead of L ≤ B.

Preparation

The preparation phase requires the generation of the 2 cryptosystems CS1, CS2

with key distribution for threshold decryption in CS2.
In preparation of each election, a pair of values has to be generated for each

voter (recall that we defined j to be minimal, such that 2j > M):

• An encryption of some random R: E2(R mod N2).

• The inverse of R raised to the j’th power: E2(R−j mod N2).

These values are generated before the election so that the result of the election
is more efficiently computed, when the votes start to arrive. The values can be
generated with one of these 2 methods:

• Trusted third party: The trusted third party generates the 2 encryp-
tions.

• MPC approach: The servers cooperate on generating a random en-
cryption E2(R). Using the inversion method from [8] the value E2(R−1) is
generated2. Then the servers use the MPC multiplication O(log(j)) times
to get E2(R−j).

Voting

The voter generates a vote for candidate i by setting v = 2i, making E1(v) and
a proof, that it is the encryption of a message from the set {20, ..., 2L−1}.

Transformation

The goal of the transformation is to compute E2((v)j) from E1(v) and can be
done as follows:

1. The encryption of the vote v is transformed to c = E2(v) in CS2.

2. The servers perform an MPC multiplication of c = E2(v) and E2(R) to
get c′ = E2(vR mod N2).

3. The servers decrypt c′ to get vR mod N2, which reveals no information
of v since R is chosen at random (note that by assumption on N2, both v
and R are prime to N2 except with negligible probability).

2This is done by generating another encryption of a random value R′ in the same way as
the first. Then compute the MPC multiplication of the 2 and decrypt it to get RR′ mod N2.
This is inverted and encrypted again. Then this is MPC multiplied with E2(R

′) again to get
E2((RR′)−1R′ mod N2) = E2(R

−1 mod N2)

72 Chapter 4. Secure On-line Voting

4. The servers raise vR to the j’th power in public and make an encryption
of this, c′′ = E2((vR)j mod N2, 1) (we use a default value of 1 for the
random input to encryption, no randomness is needed here).

5. The servers make an MPC multiplication of c′′ and E2(R−j mod N2) to
get the transformed encryption of the vote

E2(vj mod N2, r) = E2((2j)i mod N2, r)

Calculating the Result

To calculate the result the transformed votes are combined using the homomor-
phic property of CS2, and the resulting ciphertext is decrypted. The plaintext
from the decryption will have the form:

∑
vi(2j)i ∀i : 0 ≤ vi < 2j

Since 2j > M , where M is the number of voters, an overflow cannot have
occurred for a single candidate, and the whole election cannot have caused a
overflow since (2j)L < N2. The number of votes on the i’th candidate is vi.

Complexity

The communication needed from the voter is now O(L+k), plus the size of the
proof of correctness for the encryption (which in the Damg̊ard-Jurik scheme
will have size O(log(L)) encryptions using the techniques from [26]).

If a trusted third party is used, then there is no precomputation for the tally
servers, but otherwise they have to generate the pair of values. To generate
the inverses we need 1 random value generation, 2 MPC multiplications and
1 decryption, and for calculating the j’th power we need at most 2 log2(j)
multiplications, which means that we use a total of M(log2(log2(M))+2) MPC
multiplications, M decryptions and M random values.

For the election itself, the number of transformations we need from CS1 to
CS2 is M . In the protocol we use a decryption when raising each vote to the
j’th power, so we need M + 1 decryptions. And finally we need a total of 2M
MPC multiplications.

The preparation can be done in O(log(log(M))) rounds, while the protocol
after preparation is constant round.

In comparison with the first scheme, we see that the voters do more work
here, and the complexity of the election after preparation is comparable, but
slightly lower in the first scheme. The main difference is that the complexity
of the preparation is O(ML) MPC multiplications in the first scheme, and
O(M · log(log(M))) in the second. Another difference is that the first scheme
requires ML encryptions to be stored between preparation and election, while
the second scheme requires only 2M encryptions.

4.3. Client/Server Trade-Offs 73

4.3.3 Protecting Clients Against Hackers

How can a voter be protected against a curious person who has full access to
his computer during an election? In this section we look at a way to trade trust
in the security of the client computer against trust in a third party. We first
describe the basic idea on a high level and then give two ways to implement the
idea.

We assume that we have a trusted third party (TTP) (we discuss later
in which sense he has to be trusted). The TTP will for each voter choose a
random permutation π permuting the set 0, 1, ..., L− 1. He then privately (and
possibly by non-electronic means) sends a list containing for each candidate i,
the candidate’s name and π(i). When using his own (or any) client machine to
cast his vote, the voter decides on a candidate - say candidate number i, finds
his name on the list, and tells the client software that he votes for candidate
π(i). The client software could simply present a list of numbers from 0 to L−1
to choose from, without any corresponding names. The client software sends
an encryption of π(i) to the tally servers.

At the same time as π is generated, the TTP also sends to the tally servers an
encryption of π. Using this encryption, the servers can transform the encryption
of π(i) into an encryption of i, and the election result can then be computed
using the homomorphic properties as usual.

As for security of this, consider first correctness: as we have described the
system, we clearly have to trust that the TTP encrypts the correct permuta-
tion for each voter to the servers. If not, the result will be incorrect. Note,
however, that the TTP cannot decrypt the encryption of π(i) sent from the
client machine, so it cannot manipulate the permutation and be certain to fa-
vor a particular candidate. If the TTP was suspected of foul play against a
particular voter, the information held by the voter could be verified against the
encryption of π, and then cheating would always be caught. However, since
this is a rather cumbersome procedure, it shouldn’t happen very often, and so
some amount of trust has to be invested in the TTP.

As for privacy, clearly an attacker monitoring the client machine gets no in-
formation on who the voter voted for, by the random choice of π. Furthermore,
even if the TTP pools its information with a minority of the severs, they cannot
break the privacy of the voter, unless they break the encryption. A breach of
privacy would require both that the TTP is corrupt, and that it participates in
an attack where client machines are infected.

In practice, who might play the role of the TTP? As an example, in many
countries, there is an authority which, prior to elections and referendums, sends
by private paper mail a card to every eligible voter, and this card must be used
when casting a vote. Such an authority could naturally play the role of the
TTP and simply print the information about π on the card sent out. In other
countries voters must contact a government office to get registered. In this case
the permutation could be generated on the fly, and the information handed
directly to the voter.

For the first implementation of this idea, we use a cryptosystem CS with
encryption and decryption functions E ,D and plaintext space of size N .

74 Chapter 4. Secure On-line Voting

Needed Properties

Here we need less assumptions because we do not need to transform the votes
between different cryptosystems.

• Semantically secure: CS is semantically secure.

• CS is a threshold system: as defined earlier.

• CS is homomorphic: as defined earlier.

• CS supports MPC multiplication: as defined earlier.

• Zero-Knowledge proofs: we need that a player can generate an en-
cryption E(v) and prove in zero-knowledge that v ∈ {M0, ...,ML−1}. For
the example of Paillier based encryption, a protocol for this purpose is
given in section 4.2.4.

• Election size: To ensure that the final result is correct we needML < N .

• Factorization of N : We assume that N has only very large prime fac-
tors, so that factoring N is infeasible.

Preparation

The TTP picks a random permutation π for each voter and gives the π(i) values
to the voter as described above. Then the TTP generates a polynomial of degree
L− 1 for each of the voters with the property that

f(M i) = Mπ−1(i) mod N ∀i : 0 ≤ i < L

If doing this by Lagrange interpolation fails, this can only be because some
number less than N was found to be non-invertible modulo N , which implies N
can be factored. Since this was assumed infeasible, the construction fails with
negligible probability. The L coefficients of the polynomial are then encrypted
to produce encryptions c0, ..., cL−1, and these are given to the tallying servers.

The tally servers for each voter generates a random encryption E(R) and
compute encryptions of the powers E(R2), ..., E(RL−1).

Voting

To vote for candidate i the voter gives π(i) to the client machine, which
makes an encryption E(Mπ(i)) and appends a zero-knowledge proof, that one
of M0, ...,ML−1 was encrypted.

Transformation

We need to transform the vote E(Mπ(i)). First we use the encryptions of powers
of R from the preparation to compute encryptions E(M2π(i)), ..., E(M (L−1)π(i)).
This is done the same way as in the minimal vote scheme in section 4.3.1 and
requires only one decryption and local computation. From this and c0, ..., cL−1,

4.3. Client/Server Trade-Offs 75

the servers can clearly use the homomorphic property and O(L) MPC multipli-
cation to make an encryption E(f(Mπ(i))). If the TTP participates, it can be
done much more efficiently. Since the TTP knows the coefficients of f , it can
produce E(f(Mπ(i))) from E(M2π(i)), ..., E(M (L−1)π(i)) by only local computa-
tion and prove in zero-knowledge to the servers, that this was correctly done.
The proof is straightforward to construct using techniques from [19]3.

We then have

E(f(Mπ(i))) = E(Mπ−1(π(i))) = E(M i)

which is what we wanted.

Combination

The result can then be found using the homomorphic addition of the trans-
formed votes to get a number of the form:∑

viM
i ∀i : 0 ≤ vi < M

SinceM is the number of voters andML < N an overflow cannot have occurred,
and the number of votes on the i’th candidate will be vi.

Complexity

Since we do not have any reduction in the size of the cryptosystem the voters
communication and computational complexities are O(L logM + k) plus the
size of the proof that the vote has the right form.

For the tallying servers, the complexity of both preparation and election is
comparable to the minimal scheme in case the TTP participates in the election.
Otherwise we will need O(ML) MPC multiplications during the election itself.

Combination with Minimal Votes

Since the scheme we just presented is similar to the minimal vote scheme, it is
straightforward to combine the two. This only adds the cost of transforming
the vote from CS1 to CS2. The polynomial must now have the form

f(i) = Mπ−1(i) mod N

and the voter sends an encryption of form E1(π(i)) as his encrypted vote.

An Alternative Implementation

A very simple way to implement multi candidate elections from homomorphic
encryption is as follows: the voter produces encryptions c1, ..., cL, where ci =
E(1), if he votes for candidate i and all other encryptions contain 0. He proves

3In [19], a zero-knowledge protocol was given by which a player can prove that a committed
constant was correctly “multiplied into” a given encryption, and this is exactly what we need
here.

76 Chapter 4. Secure On-line Voting

in zero-knowledge that each cj encrypts 0 or 1, and opens c = c1 · · · cL to reveal
1, in order to prove he voted for one candidate. The tally servers can then
combine all 0/1 votes for each candidate separately using the homomorphic
property and decrypt. This method places a quite large workload on voters,
but on the other hand it can be based on El Gamal encryption as well as on
Paillier, and it is the only known way in which elections with large L can be
efficiently based on El Gamal encryption (the method from [22] is exponential
in L).

It is straightforward to apply the client protection method to this voting
scheme. The trusted third party TTP generates and communicates a permu-
tation to each voter as described above. Then to encrypt a permutation π for
the tally servers, the TTP will generate an L × L permutation matrix Mπ,
representing π−1 in the standard way, and publish encryptions of each entry in
Mπ. We let E(Mπ) denote this (ordered) set of encryptions. The voter will now
send a set of encryptions c1, ..., cL, where cπ(i) = E(1). Since the TTP knows
the entries of Mπ, he can, using only local computations and the homomorphic
property, produce random encryptions c′1, ..., c′L, such that c′i = E(1) and all
the others contain 0. This is done by applying Mπ to the vector of encryptions
and multiplying by random encryptions of 0. Since E(Mπ) was made public, he
can then prove in zero-knowledge to the servers, that this was correctly done
using techniques from [19]. Finally the computation of the final result can be
completed as above.

4.3.4 Interval Proofs for Paillier Encryptions

Given a Paillier encryption E(m, r) (computed modulo ns+1), we sketch here
an efficient method to prove in zero-knowledge that m is in some given interval
I. The protocol in section 4.2.4 provides an interval proof, but it needs to
supply an encryption of every bit in the binary expansion of m. We want a
more efficient method, where only a constant number of encryptions need to be
send. In the following, opening an encryption E(m, r) means revealing m, r.

In [9] Boudot gives an efficient method for proving that a committed number
lies in a given interval. The protocol requires sending only a constant number
of commitments and is zero-knowledge in the random oracle model that we
also use here. It assumes that the number has been committed to, using a
commitment scheme with some specific properties. The scheme proposed by
Fujisaki and Okamoto [40] will suffice, assuming the strong RSA assumption
(see conjecture 2.3). See [9] for a short description of the commitment scheme
and associated protocols. It should be noted, that there are some technical
problems with the proof of soundness for the associated protocols given in [40],
but these problems have recently been fixed in [24]. The modulus n used for
Paillier encryption can also serve as part of the public key for the commitment
scheme in Boudot’s protocol. In addition, we need two elements g, h ∈ Z

∗
n of

large order, such that g is in the group generated by h. The prover must not
know the discrete logarithm of g base h or vice versa. We assume that g, h
are generated as part of the procedure that sets up n and shares the private
key among the decryption servers. A commitment to m in this scheme using

4.3. Client/Server Trade-Offs 77

random input r is Com(m, r) = gmhr mod n.
Now, the basic idea is the following: given E(m, r1), the prover provides

a commitment Com(m, r2), proves that the commitment contains the same
number as the encryption, and then uses Boudot’s protocol to prove that m ∈ I.
The only missing link here is how to show, that the same numberm is contained
in encryption and commitment. This can be done using the following protocol:

Protocol for equality of message
Input: n, g, h, c1, c2.
Private input for P : m ∈ I, r1 ∈ Z

∗
n, r2 ∈ Zθ, such that c1 = E(m, r1) and

c2 = Com(m, r2).

1. Let T be the maximal bit-length of m (based on the interval I). P chooses
at random u, an integer of length T+2k2, where k2 is a secondary security
parameter. P also chooses r′1 ∈ Z

∗
n and r′2 a |θ| + 2k2 bit number. He

sends a1 = E(u, r′1) and a2 = Com(u, r′2) to V .

2. V chooses e, a random k2 bit number, and sends e to P .

3. P opens the encryption a1 ·ce1 mod ns+1 and the commitment a2 ·ce2 mod n
by revealing zm = u+ em, z1 = re

1r
′
1 mod n and z2 = er2 + r′2.

4. V checks that a1 ·ce1 = E(zm, z1) mod ns+1 and a2 ·ce2 = Com(zm, z2) mod
n. V accepts if and only if this is the case.

This protocol can be made non-interactive in the standard way using a hash
function and the Fiat-Shamir heuristic. Then it is also statistically zero-know-
ledge in the random oracle model.

What we have done is combine two already known protocols for proving
knowledge of the contents of an encryption and a commitment, respectively.
When we prove soundness of this protocol using a standard rewinding argument,
the fact that we use the same challenge e and the same response zm in both
cases will ensure, that the prover must know one single value, which is inside
both the encryption and the commitment.

Lemma 4.1 Protocol for equality of message is complete, statistical honest
verifier zero-knowledge, and under the Strong RSA assumption (conjecture 2.3)
it satisfies that from any pair of accepting conversations (between V and any
prover) of form (a1, a2, e, zm, z1, z2), (a1, a2, e

′, z′m, z′1, z′2) with e 6= e′, one can
efficiently compute m, r1, r2, such that c1 = E(m, r1) and c2 = Com(m, r2),
provided 2k2 is less than the smallest prime factor of n.

Proof. For completeness we can verify the equations tested by the verifier:

a1 · ce1 = E(u, r′1)E(m, r1)e = E(u+ em, r′1r
e
1) = E(zm, z1) mod n2

and

a2 · ce2 = Com(u, r′2) · Com(m, r2)e = guhr′2(gmhr2)e = gu+emhr′2+er2

= Com(u+ em, r′2 + er2) = Com(zm, z2) mod n

78 Chapter 4. Secure On-line Voting

The values em and er2 are statistically hidden by the values u and r′2,
respectively. We can make a statistically close simulation by picking zm ∈
{0, ..., 2T+2k2 − 1}, z1 ∈ Z

∗
n, and z2 ∈ {0, ..., 2|θ|+2k2 − 1} at random. Then we

can make a1, a2 as

a1 = E(zm, z1)c−e
1

a2 = Com(zm, z2)c−e
2

This can easily be verified to be statically close to the usual distribution.
For the claim that we can recover m, r1, and r2 we can look at:

E(zm, z1) = a1 · ce1
E(z′m, z

′
1) = a1 · ce′1

dividing these out and reducing modulo n we get:

E(zm − z′m, z1/z
′
1) = ce−e′

1 = E((e− e′)m, re−e′
1) mod ns+1 (4.1)

This means that:
(z1/z′1)

ns
= (re−e′

1)n
s

mod n

Since e − e′ is prime to n by the assumption on 2k2 , choose α, β such that
αns + β(e− e′) = 1. Let c̄1 = c1 = rns

1 mod n and set r̄1 = c̄1
α(z1/z′1)β mod n.

We get that

(r̄1)n
s

= (c̄1α(z1/z′1)
β)n

s
= (rαns

1 (r1)β(e−e′))n
s

= (r1)n
s

= c1 mod n

So we have found the random value used in the encryption.
Using formula 4.1 we can find m as m̂ = (zm− z′m)(e− e′)−1 mod ns, which

follows from zm− z′m = (e− e′)m. In fact, e− e′ will have to divide zm− z′m or
we can get a non-trivial root in exactly the same way as it is done for r2 below.

To find r2 we need to use the Strong RSA assumption. We have the following
two equations:

Com(zm, z2) = a2 · ce2
Com(z′m, z

′
2) = a2 · ce′2

We can remove the message from the commitments by computing

hz2−z′2 = Com(0, z2 − z′2) = Com(zm − z′m, z2 − z′2)g
z′m−zm

= ce−e′
2 gz′m−zm = (hr2)e−e′ = h(e−e′)r2

The proof can now be split into two cases, one where e− e′ divides z2 − z′2 and
one where it does not. Only the first case can happen, or we get a contradiction
to the Strong RSA assumption. The two cases goes as follows:

(e− e′)|(z2 − z′2): Here we can simply divide the numbers to get:

r̄2 = (z2 − z′2)/(e − e′) = r2

4.4. Self-Tallying Elections with Perfect Ballot Secrecy 79

(e− e′) 6 | (z2 − z′2): Here we find the value x = gcd(e − e′, z2 − z′2). If we set
y0 = (z2 − z′2)/x and y1 = (e− e′)/x we have that:

hy0 = hy1r2 = Com(0, r2)y1 = ĉy1
2

Given the way y0 and y1 were defined, it is clear that they are relatively
prime. This means we can find α, β such that αy0 +βy1 = 1. Given these
two values we can compute:

h = hαy0+βy1 = (hy0)α(hβ)y1 = (ĉy1
2)α(hβ)y1 = (ĉα2)y1(hβ)y1

= (ĉα2h
β)y1 mod n

Since (e − e′) does not divide (z2 − z′2), we have that x < (e − e′) and
thus that y1 > 1. This means that we have found a non-trivial root of h,
which is a contradiction to the Strong RSA assumption.

2

4.4 Self-Tallying Elections with Perfect Ballot Se-

crecy

In this section, we will show how to make more efficient self-tallying elections
with perfect ballot secrecy based on the cryptosystem ĈS

t
introduced in section

2.7. The values b0 and b1, that are used in the encryption, have been omitted
in this section for simplicity, and the encryption is changed slightly because we
don’t need the threshold decryption. The power of h don’t need the factor 4∆2,
which leads to this encryption:

Êt
(s),(n,g,h)(m, r) = (G,H) = (±gr mod n,±hr(n+ 1)m mod ns+1)

The decryption function is simply

m = dLogs(G
−2αH2)/2 mod ns

Here we briefly sketch the main properties of the scheme, but for a more in-
depth explanation the reader is referred to [47]:

Correctness: the result output is the correct result with respect to the cor-
rectly formed input ballots.

Privacy: the vote contained in each ballot is kept secret. This is usually
achieved by trusting in some threshold setup of servers or by voter to
voter communication.

Fairness: no part of the tally is revealed to anyone before the election is com-
pleted. This requires some trust in the bulletin board.

Universal Verifiability: anyone can verify the result of the election given
access to the bulletin board. This even holds for casual third parties who
have not participated in the protocol.

80 Chapter 4. Secure On-line Voting

Self-Tallying: there are no decryption servers that do a threshold decryption
at the end of the protocol. Instead the result becomes known as a result
of the computations the voters made on the bulletin board.

Dispute-Freeness: dispute-freeness simply means that no parties can get into
a fight about who is dishonest. This follows from the bulletin board model
and the universal verifiability, since everyone will see every message posted
and can verify the values themselves.

Perfect Ballot Secrecy: perfect ballot secrecy is the strongest type of privacy
available in an election. It means, that any group of voters will only learn
what is computable from their own votes and the final result. To find out
who an honest voter voted for, requires all the remaining voters to team
up (or at least enough voters so that the remaining votes are all for the
same candidate).

Corrective Fault-Tolerance: in the case of a fault, it is possible to correct
the current computation to get around the fault. This means, that if a
player is caught trying to cheat, it is possible to remove him from the
computation and finish the computation.

The system uses the bulletin board model described in section 3.2, and it
is assumed that a safe prime product n and a generator g ∈ Qn is set up in
advance, so that the cryptosystem ĈS

t
from section 2.7 can be used.

The modulus n can be generated once and for all. One option is to let a
trusted third party do this. Note, that since the factorization of n is never
needed, not even in shared form, a trusted party solution can be quite accept-
able. This could be achieved using a secure hardware box, which is destroyed
after n has been generated.

Another option is to use a distributed protocol such as [5] or a generic multi-
party computation. Note that protocols for this purpose can be set up such
that no proper subset of the players can find the factors of n. In other words,
we still ensure perfect ballot secrecy even if the players generate n themselves.
This comes at the expense of possibly having to restart the key generation if
faults occur, but this cost cannot be avoided if we need to handle dishonest
majorities and is consistent with the way corrective fault tolerance is defined
in [47].

The element g can be generated by jointly generating some random value
x ∈ Z

∗
n (with Jacobi symbol -1 according to remark in section 2.7.2) and then

defining g as g = x2 mod n, which will be in Qn.
The bulletin board also participates in the protocol to ensure that none of

the actual voters will know the result before they vote. With a self-tallying
scheme, this type of fairness cannot be achieved without such trust (see [47]).
One may think of the bulletin board as a party that must vote 0 (so it will not
influence the result), and is trusted to submit its vote only after all players have
voted. The bulletin board, however, does not have to participate in every step
of the protocol. It will only participate in: 1) the registration phase, where it
registers its public key, 2) the error correction of the ballot casting, where it has

4.4. Self-Tallying Elections with Perfect Ballot Secrecy 81

some encrypted values it needs to reveal (this step can actually be skipped if
the protocol is modified as described in the remark in section 4.4.3), and 3) the
post ballot casting step, where it reveals its 0 vote, thereby enabling everyone
to calculate the result.

4.4.1 Setup Phase

The setup phase consists of two tasks. First the voter registration and then
the initialization of the voting system itself. In the registration phase voters
that want to participate in the election register on the bulletin board. After
all voters are registered, the voters need to set up the values to be used in the
protocol. Since voters can be malicious in this part of the protocol, there is an
error correction step to correct any problems encountered.

Voter Registration

Voter i chooses the private key αi at random in Zθ, where θ is the value defined
in section 2.3.1. Then voter i computes the value hi = gαi mod n. The voter
registers by posting the public key pki = (g, hi) on the bulletin board. Let
R be the set of all registered voters and for simplicity let’s assume that R =
{1, 2, ..., u}. To ensure fairness, the bulletin board also generates a public key
pk0 and posts it on the bulletin board (we set R0 = R ∪ {0}).

Initialization

Each voter i ∈ R picks random values sij ∈ Zns for each j ∈ R and random
rij ∈ Zθ for each j ∈ R0. The value si0 is set to −∑

j∈R sij mod ns, which
ensures that

∑
j∈R0

sij = 0 mod ns.
The voter i publishes the encryptions

cij = (Gij ,Hij) = Êt
(s),pkj

(sij , rij)

for all j ∈ R0 along with a proof, that these are indeed legal encryptions and
the sum of the plaintexts is 0 modulo ns.

To prove these are legal encryptions, the proof from section 2.7.2 is used. To
prove that the sum of the plaintexts in the encryptions (Gi0,Hi0), ..., (Giu,Hiu)
is 0, it is enough to look at the product Hi0 · · ·H0u. The resulting value is

Hi0 · · ·Hiu = (hri0
0 · · · hriu

u)n
s
(n+ 1)si0+···+siu

which is an ns’th power iff
∑

j∈R0
sij = 0 mod ns. The protocol for ns’th powers

from section 2.4.2 can be used to prove this, since the voter knows an ns’th root
of this number, namely hri0

0 · · · hriu
u .

Error Correction of the Initialization

Let B1 be the set of voters, that either do not supply all the encryptions or
supply invalid proofs. Any values submitted by voters in B1 are simply ignored.
The values that the honest voters created for the voters in B1 will remain

82 Chapter 4. Secure On-line Voting

unused, which is a problem since the numbers should sum to 0. To correct this,
the honest voters open all encryptions assigned to voters in B1.

More formally, for all i ∈ R\B1 the voter i releases the values sij , rij for all
j ∈ B1. Since these values are uniquely determined by the encryption, this step
can be verified by checking that cij = Êt

(s),pkj
(sij, rij). Should a voter refuse to

publish this information he is simply added to B1 and his values are revealed.

Correctness and Security of the Setup Phase

Now we can prove several properties about the initialization phase that are
useful for proving the correctness and security of the complete protocol.

Lemma 4.2 The error correction step can always be completed if there are
honest voters. After the completion of the initialization step and the error
correction of this, the following will hold:

1. Any third party can verify that cij is a correct encryption for any i ∈ R\B1

and j ∈ R0.

2. Any third party can verify that
∑

j∈R0
sij = 0 mod ns for any i ∈ R\B1.

3. If any voter i ∈ R\B1 chooses the value sij at random, the value tj =∑
i∈R\B1

sij is a random element in Zns and
∑

j∈R0
tj = 0 mod ns.

4. Any third party can verify that the value sij released during error cor-
rection is indeed the plaintext inside cij for all i ∈ R\B1 and j ∈ B1.

Proof.
The error correction phase only requires the voter to show that he knows

the values inside the ciphertexts. So, if there are any honest voters, this process
will terminate at some point, and the honest voters can always provide all the
values needed to complete this error correction step.
1) This is an implication of lemma 2.8, and the fact that voters submitting bad
proofs are added to B1 during the error correction.
2) The proof performed shows that the value Hi0 · · ·Hiu is a ns’th power. This
is true iff

∑
j∈R0

sij = 0 mod ns and it follows from lemma 2.3 that the proof
has the desired effect.
3) Given a voter k that chose the element at random we have that:

tj = skj +
∑

i∈R\(B1∪{k})
sij

the value
∑

i∈R\(B1∪{k}) sij can be seen as some fixed element in Zns . Now since
skj is chosen at random in Zns , the element tj can be any element in Zns . This
implies, that given a random sij , the value tj can be seen as a random element
in Zns .
4) No power of h can make any contribution to (n + 1)sij . This means that if
an incorrect s′ij is released, there will be no chance of providing a value r′ij such
that

cij = Êt
(s),pkj

(s′ij , r
′
ij)

2

4.4. Self-Tallying Elections with Perfect Ballot Secrecy 83

4.4.2 Ballot Casting

Ballot Casting

Each voter j ∈ R\B1 retrieves the encryptions cij for all i ∈ R\B1 and combines
them:

cj =
∏

i∈R\B1

cij = Êt
(s),pkj

(
∑

i∈R\B1

sij, r)

for some value of r. Voter j decrypts cj using the private key αj to get tj =∑
i∈R\B1

sij.

Voter j then submits the values dj = Êt
(s),pkj

(vj, rj) and xj = vj + tj, where
vj is the value representing the candidate that voter j votes for, say 0 or 1 for
a yes/no election or Mvj in a multi candidate election (where M = u+ 1); the
value rj ∈ Zθ is chosen at random. The easiest way to understand this is to
note, that if we ignore the error correction (i.e. assume that no faults occur),
then the tj ’s will be a set of random numbers that sum to 0. So, if we can ensure
that xj was formed by adding an allowable value of vj to tj, then res =

∑
j xj

will be the election result, i.e. the sum of the vj’s. Moreover, the randomness
of the tj ensures that given the xj ’s, all possible sets of vj ’s summing to res are
equally likely.

To prove that dj is a legal encryption of an allowable value of vj, the proof
from section 3.3 can be used to ensure that it is a correct encryption, and the
proof of a legal vote value (which is logarithmic in the number of candidates)
from section 4.2.4 can be used on the second value in the encryption to prove
that a legal vj have been encrypted. To prove that dj is an encryption of the
same vj, which was used to make xj, the voter proves that

djcjÊ
t
(s),pkj

(xj , 0)−1 = Êt
(s),pkj

(0, r′)

for some given r′ using the ns’th power proof from section 2.4.2 and sends this
proof to the bulletin board. This time the required ns’th root can be computed
as: hrj

j · (∏G
4∆2αj

ij) · 1. This holds iff the same vj is used in dj and xj since

djcj(Êt
(s),pkj

(vj + tj , 0))−1 = Êt
(s),pkj

(vj , rj)Êt
(s),pkj

(tj , r)Êt
(s),pkj

(−(xj), 0)

= Êt
(s),pkj

(vj + tj − (vj + tj), r′)

= Êt
(s),pkj

(0, r′)

Error Correction of Ballot Casting

Let B2 be the set of voters disqualified during the ballot casting. Again there
are some values that will not be used by the voters in B2, and these are simply
published on the bulletin board as in the error correction of the initialization.

However, this time the values created by voters in B2 have been used by the
honest voters (for any i ∈ B2 the value of sii is only know by i, and all honest
voters j have used sij). To correct this, the values have to be published, but
the secret values rij used in cij are unknown to voter j. So, for all i ∈ B2 each

84 Chapter 4. Secure On-line Voting

j ∈ R0\(B1∪B2) (voters and bulletin board) decrypts and reveals the plaintext
of cij, which is sij , and proves that

cijÊ
t
(s),pkj

(sij , 0)−1 = Êt
(s),pkj

(0, r)

using the ns’th power proof from section 2.4.2. This time the required ns’th
root is: G4∆2αj

ij · 1. Should anyone refuse to participate in the error correction,
they are simply added to B2 and their values published as before.

Now let Bbad = B1 ∪ B2 denote all voters that have been removed in the
error correction steps, and let Rgood = R\Bbad be the voters that completed the
whole protocol honestly.

Post Ballot Casting

When the ballot phase is over, and all parties have either submitted their vote
or been removed using the error correction, the bulletin board computes

c0 =
∏

i∈R\B1

ci0 = Êt
(s),pk0

(
∑

i∈R\B1

si0, r)

for some r and gets the plaintext t0 =
∑

i∈R\B1
si0 by decrypting c0. The

bulletin board then posts t0 along with a proof that the second element in
c0Ê

t
(s),pk0

(t0, 0)−1 is an ns’th power according to the proof in section 2.4.2 (the

root is calculated as (
∏
G4∆2α0

i0) · 1).

Correctness and Security of the Ballot Casting Phase

After the ballot casting phase and the error correction phase, we want to ensure
that the voter did indeed submit the right value, and that no one can learn
anything on vj given xj .

Lemma 4.3 The error correction step can always be completed if there are
honest voters. After the completion of the initialization step and the error
correction afterwards, the following will hold:

1. Any third party can verify that a submitted vote xj has the form tj + vj,
where vj is a legal vote and tj =

∑
i∈R\B1

sij.

2. The ballot xj for j ∈ Rgood is equally likely for any legal vote if just one
voter i ∈ Rgood chooses sij at random.

3. Any third party can verify that the value sij released during the first part
of the error correction is indeed the plaintext inside cij for all i ∈ Rgood

and j ∈ B2.

4. Any third party can verify that the value sij released during the second
part of the error correction is indeed the plaintext inside cij for all i ∈ B2

and j ∈ (R ∪ {0})\Bbad.

4.4. Self-Tallying Elections with Perfect Ballot Secrecy 85

Proof. The first values released in the error correction can always be revealed
following the argument in the proof of lemma 4.2. The second values are values
that are received by the voter j. The values revealed here are the messages in
the encryptions cij , where i ∈ B2 ⊂ R\B1 and j ∈ Rgood. It follows from point
1 of lemma 4.2 that, for these values of i and j, the encryption cij is correct.

This means that voter j can decrypt and find the value G4∆2αj

ij it needs to
complete the proof of correct disclosure. So, as long as there are honest voters,
the error correction phase can always be completed.
1) The proofs presented in section 4.2.4 and 2.7.2 will ensure that the encryption
dj contains a legal encryption of a legal vote. The encryption

djcjÊ
t
(s),pkj

(xj , 0)−1 = Êt
(s),pkj

(0, r′)

will have a second entry that is an ns’th power iff xj is the sum of the encryptions
inside dj and cj . The value cj is the combination of the encryptions that defined
tj and dj contains a correct vote vj . So, xj will have to be the sum of tj and
vj .
2) This follows from lemma 4.2, point 3 that implies tj is a random value.
Given xj this means that any value xj − vj for all legal votes vj are equally
likely, so xj cannot be used to distinguish which vj was chosen. Furthermore,
the encryptions dj and cij ’s do not reveal any information due to the semantic
security of the cryptosystem.
3) This follows the exact same argument as point 4 in lemma 4.2.
4) This follows from the fact that the value

cijÊ
t
(s),pkj

(s′ij, 0)
−1

is an ns’th power iff sij = s′ij. So, if an incorrect value has been released the
proof cannot be completed according to lemma 2.3.

2

We also need to prove some properties on the correctness and fairness of
the Post Ballot Casting:

Lemma 4.4 The following properties hold

1. Without the value t0 a voter doesn’t know anything about the outcome if
just one voter i chooses si0 at random.

2. Any third party can verify that the value t0 released by the bulletin board
is the value inside c0.

Proof.
1) Follows directly from the semantic security of the cryptosystem (i.e. no one
can guess t0 from the encryption) and from point 3 of lemma 4.2.
2) This is an immediate consequence of the correctness of the ns’th power proof,
which is proven correct in lemma 2.3, and the fact that c0 is the combination
of legal encryptions.

2

86 Chapter 4. Secure On-line Voting

4.4.3 Tallying

At this point the result can be computed as:

res = t0 +
∑

j∈Rgood

xj +
∑

i∈Rgood,j∈Bbad

sij −
∑

i∈B2,j∈Rgood∪{0}
sij

=
∑

j∈Rgood

vi mod ns

The first sum is all the xj values that have been posted on the bulletin board
according to protocol. The values in the second sum are the values of the
disqualified voters, that were revealed in the error correction of the initialization
and the first value revealed in the error correction of the ballot casting. The
third sum is the sum of the second values revealed in the error correction of the
ballot casting. Now we can prove the following result:

Theorem 4.2 The protocol described above is a voting system that satisfies cor-
rectness, privacy, fairness, universal verifiability, self-tallying, dispute-freeness,
perfect ballot secrecy, and corrective fault-tolerance.

Proof.

Correctness: We have that Rgood, {0}, B1 and B2 are disjoint and that

Bbad = B1 ∪B2 and R = Rgood ∪Bbad and R0 = R ∪ {0}

Given point 3 of lemma 4.2 (
∑

j∈R0
tj = 0 mod ns) we get that

t0 +
∑

j∈Rgood

xj

=
∑

j∈Rgood

vj +
∑

j∈Rgood∪{0}
tj

=
∑

j∈Rgood

vj −
∑

j∈Bbad

tj mod ns

Using the way tj is defined we get

t0 +
∑

j∈Rgood

xj +
∑

i∈Rgood,j∈Bbad

sij

=
∑

j∈Rgood

vj −
∑

j∈Bbad

tj +
∑

i∈Rgood,j∈Bbad

sij

=
∑

j∈Rgood

vj −
∑

i∈B2,j∈Bbad

sij mod ns

Using point 2 from lemma 4.2 (
∑

j∈R0
sij = 0 mod ns for any i ∈ R\B1)

and that B2 ⊂ R\B1, this immediately implies the correctness of the

4.4. Self-Tallying Elections with Perfect Ballot Secrecy 87

result

res = t0 +
∑

j∈Rgood

xj +
∑

i∈Rgood,j∈Bbad

sij −
∑

i∈B2,j∈Rgood∪{0}
sij

=
∑

j∈Rgood

vj −
∑

i∈B2,j∈R0

sij

=
∑

j∈Rgood

vj mod ns

as long as the sum of vj ’s is less than ns.

Privacy: follows directly from point 2 in lemma 4.3, which implies the vote is
hidden.

Fairness: direct consequence of lemma 4.4 point 1.

Universal Verifiability: comes from using the bulletin board and that every
step of the protocol is verifiable (lemma 4.2 (1, 2, 4), lemma 4.3 (1, 3, 4)
and lemma 4.4 (2)).

Self-Tallying: this follows from the correctness and that the result is com-
puted using only values posted on the bulletin board by the voters.

Dispute-Freeness: all communication goes through the bulletin board, and
all encryptions are proved to be legal. This means that no dispute can
arise due to bad encryptions, and the values posted to the bulletin board
can be verified by anyone.

Perfect Ballot Secrecy: we can ignore those encryptions that remain un-
opened, due to the semantic security of the cryptosystem. What remains
are the public numbers: xj ’s, and the numbers revealed during error cor-
rection. Now for any given subset Y ⊂ Rgood we have, if just one voter i
in Rgood\Y chooses sij at random the value tj will be random from the
view of Y . This means that the vote vj cannot be guessed given just xj .

Corrective Fault-Tolerance: lemma 4.2 and 4.3 imply that the error correc-
tion phase can always be performed, so we can always correct any faults
that occur.

2

Remark 4.1 The bulletin board does not have to participate in the error cor-
rection phase of the ballot casting. This can be achieved by making the bulletin
board release the value t′0 that is inside:

c′0 =
∏

i∈R\Bbad

ci0 = Êt
(s),pk0

(
∑

i∈R\Bbad

si0, r)

This means that
t0 = t′0 +

∑
i∈R\B2

si0 mod ns

88 Chapter 4. Secure On-line Voting

To get the result, the bulletin board has already removed the values from the bad
votes in B2 and the result can be computed as:

res = t′0 +
∑

j∈Rgood

xj +
∑

i∈Rgood,j∈Bbad

sij −
∑

i∈B2,j∈Rgood

sij

=
∑

j∈Rgood

vi mod ns

4.4.4 Efficiency Comparison to Scheme from [47]

For the case of a yes/no election, the work of the 2 schemes are comparable in
all steps of the protocol except in the tallying phase. Here the protocol of [47]
needs to do an exhaustive search in a space of size 2u, which can be optimized
to O(

√
u) multiplications. However, the protocol above obtains the result of

the election by simply adding the values posted to the bulletin board.
This scheme generalizes to multi-candidate elections in exactly the same

way as in section 4.2.3. In particular, the tallying phase remains at the same
number of additions. For the scheme from [47], the search for the result would
take Ω((

√
u)L) multiplications for L candidates. Furthermore, the proofs of

correctness used in the ballot casting phase will have size O(log(L)) as opposed
to O(L) in [47].

Chapter 5

Key Escrow

I appreciate their willingness to make some of that crypto research available to
a public which has paid so much for it, but I’m afraid that I would never trust

an algorithm which was given to me by any government.
— John Perry Barlow - On-line debate on Clipper

In chapter 2 we saw two kinds of cryptosystems. The El Gamal variant
assumed that a modulus with unknown factorization was set up in advanced.
However, if anyone knows the factorization they are able to decrypt encryptions
from the non El Gamal variant in chapter 2. The second entry in the encryption
of the El Gamal variant is exactly such an encryption. This means that a person
who knows the factorization of the modulus can decrypt any ciphertext that was
encrypted using a public key generated in the El Gamal variant based on this
modulus. Using this we can create a key escrow system by having the escrow
authority know the factorization of the modulus. Then anyone can create their
own key using this modulus. This is a significant improvement to previous
proposals, where the escrow authority has to hold one piece of information for
every key used in the system.

5.1 Introduction

5.1.1 Background

During the last decade there has been a large growth in communication over
the Internet. This has lead to an increased focus on privacy and other forms
of security. However, sending messages encrypted poses a problem for law en-
forcement agencies (LEAs), which have relied on their ability to make wiretaps
to solve crimes. With encrypted communication the LEA will be unable to
monitor communication.

This has led to several key escrow proposals, in which the persons commu-
nicating will reveal their keys (or part of these) to the LEAs. This enables
the LEA to decrypt messages, but poses the problem that it can also decrypt
messages that it is not supposed to. Two ways have been proposed to combat
this problem: 1) partial key escrow where the LEA only receives part of the key
and has to do an exhaustive search to find the rest, and 2) introducing a Key

89

90 Chapter 5. Key Escrow

Escrow Agency (KEA), that handles the secret keys and helps the LEAs in the
case of a lawful request. Partial key escrow relies on the assumption that the
LEA cannot do a massive decryption of messages because of the work involved
in finding the last portion of the key. However, this does not prevent a LEA
to pick a few number of persons that it is not entitled to monitor and decrypt
their communication. In both cases, there is a problem if the escrowed keys are
reused. This will enable the LEA to keep monitoring the communication after
the duration of the warrant has expired. However, this can be fixed by only
escrowing session keys which are typically short lived.

In [55] Shamir proposed a scheme with partial key escrow. The idea behind
partial key escrow is that the user escrows (reveals) for instance 8 bit of a DES
key to the LEA. If the LEA at some point want to wiretap the user they will
have to do an exhaustive search on the last 48 bits. This means that recovering
a single key is cumbersome, but definitely possible, whereas recovering a lot of
keys at the same time is hard due to the work load.

Concurrently to the result of Shamir, a similar idea was proposed by Micali
in [49], which handled partial escrow of public keys. The schemes in [55] and [49]
were later merged into a joint paper [50].

In [11] Bellare and Goldwasser proposed a verifiable partial key escrow
scheme, which makes it possible for the receiver to check that the sender has
escrowed the correct bits and not some random bits. If random bits where used
the escrow agency would not have any help in guessing the key, and it would
become infeasible to find it. They also address problems from [49] with early
recovery, which means that the LEA is able to do the computation before re-
ceiving the key escrow information and thus get the key quickly upon receiving
the escrow information.

Mao introduced a scheme in [48] where escrowed values could be publicly
verified. This has the advantage that the escrowing authorities, the senders,
and other interested parties can verify that encryptions are indeed subject to
escrow.

A scheme proposed by Shaoquan and Yufeng [56] used a different setup, in
which the LEA does not hold the escrow values. Instead a KEA holds shares
of the escrowed values and discloses these to the LEA upon request. This
setup is more like the existing power structures, where the different LEAs are
independent from the judiciary system. The usual way to get a search warrant
is that the LEA presents its case to a judge, who makes the decision whether to
allow the search or not. It seems logical that the same should hold for electronic
information, in which case the KEA should be a separate unit under e.g. the
department of justice.

5.1.2 Contribution

We introduce a new cryptosystem that has two kinds of secret keys. First, there
are several normal keys as introduced in section 2.5. Secondly, there is a global
master key that is able to decrypt any message encrypted with the normal keys.
This master key is a key similar to the keys for the generalized Paillier defined in
section 2.2. Using the master key to reveal the decryption information will not

5.2. Model 91

reveal any information on the normal private key that could also have decrypted
the message.

This can be used to make key escrow by having the global master key shared
between the escrow servers in a threshold fashion. Note, that since there is just
one master key, the escrow servers do not have to keep a secret sharing of the
secret keys of all the different users, as opposed to all other schemes to date.

The setup used in this paper is a setup similar to [56], since we have: 1)
some users sending encrypted messages to each other, 2) a Key Escrow Agency
(KEA) holding the escrow key, and 3) the Law Enforcement Agencies (LEAs)
being agencies like FBI, CIA, county sheriff department, etc.

For a LEA to decrypt a message it will ask the KEA servers to provide a
decryption value. The KEA generates the random value used in the encryption
and sends it privately to the LEA. The LEA can then remove the random part
from the encryption and get the message from the resulting value.

The system has the added advantage over existing protocols, that the users
do not have to perform an expensive key escrow protocol with the KEA (or
LEA) when setting up the system. The KEA simply generates some global
parameters, and all the users generate a key pair in this global setup. This
allows the KEA to “decrypt” without even knowing the public key of the user.

5.2 Model

The model consists of three kinds of players: 1) the users, 2) the KEA servers
and 3) the LEAs.

The adversary model is two-sided. The players want to try and cheat the
LEA so they are not able to decrypt their messages, and the LEAs try to decrypt
messages they are not supposed to. The KEA works as a buffer between the two
by providing decryptions to the LEA when it gets a valid request, and refuse
when the LEA is trying to cheat.

The users are assumed to be able to mount several attacks, namely: 1)
flooding: the user floods the channels with a lot of illegal encryptions and one
legal encryption to make the LEA waste a lot of resources, trying to find the
single legal encryption, 2) collude with some of the KEA servers to make the
KEA servers unable to make the decryption value for the LEA, and 3) decrypt
messages of other users by colluding with some KEA servers.

We will assume a LEA adversary that can control up to t KEA servers and
a number of users (informants). The goal of this adversary is to achieve one of
the following: 1) find the decryption of a ciphertext, 2) find the private key of a
user, or 3) find the secret shared between the KEA servers. The third attack is
the most dangerous attack, since it will enable the LEA to decrypt all messages,
without help from the KEA servers at all.

For the threshold version of the KEA servers we will assume, that the KEA
servers have a bulletin board they can access to make decryptions. This is used
for distributing their decryption values during decryption and is not required
to be kept secret.

92 Chapter 5. Key Escrow

5.3 A Simple Key Escrow System

The idea in this section is to let the KEA server set up the global values for the
proof friendly cryptosystem ĈS

t
from section 2.7. This means that the KEA

will know the factorization of n, which will allow it to compute the random
value hr mod n (or h4∆2r mod n depending on which system is used), used in
the encryption with the technique from theorem 2.1. This is done by iterating
the technique from theorem 2.1 s times using n instead of ns. The reason for
this is to allow an easier transition to a threshold system.

In section 5.4, the simple system is changed into a threshold system with
several KEAs and verification between the KEA servers and the LEA. The
problem of users trying to flood LEAs are addressed in section 5.5 by adding
proofs of legal encryption to the encryption step. In most cases s = 1 will be
sufficient for the key escrow scenario, but for completeness we will describe it
for a general s, and in section 5.6 we will address some of the efficiency issues
arising from using larger s values.

Global Setup (KEA):

1. Pick 2 primes p, q of size k/2 bits each, where k is the security pa-
rameter. They should also satisfy that p = 2p′ + 1 and q = 2q′ + 1
for primes p′, q′ (i.e. p and q are safe primes).

2. Set n = pq and τ = p′q′.

3. Pick g ∈ Qn, the group of squares.

4. Release the parameters: (n, g).

5. Store the escrow key: d = n−1 mod τ .

Key Generation (user i):

1. Pick αi ∈ Zθ, where θ is the value introduced in section 2.3.1.

2. Set hi = gαi mod n.

3. Release the public key: pki = (n, g, hi).

4. Store the secret key: αi.

Encryption (using pki):
To encrypt message m ∈ Zns, choose r ∈ Zθ and b0, b1 ∈ {0, 1}:

Êt
pki

(m, r, b0, b1) = (G,H)

= ((−1)b0gr mod n,

(−1)b1(hr
i mod n)n

s
(n+ 1)m mod ns+1

Note that this is not the exact same function as in section 2.7. In general
the escrow will work if the encryption is of the form

((−1)b0gr mod n, (−1)b1(hβr
i mod n)n

s
(n+ 1)m mod ns+1)

where β is some fixed value. In section 2.7 the value of β was 4∆2.

5.4. Threshold Key Escrow 93

Decryption (using αi):
To decrypt (G,H):

m = dLogs((G
αi mod n)−2ns

H2 mod ns+1)/2 mod ns

Key Escrow (KEA):
Given (G,H):

1. Abort if either G or H is malformed (i.e. gcd(G,n) 6= 1, gcd(H,n) 6=
1 or either G or H has Jacobi symbol −1 wrt. n).

2. Compute: xs = H mod n = ±(hr
i)

ns
mod n.

3. Compute x0 using s repetitions of:

xk−1 = (xk)d = (±(hr
i)

nk
)n

−1
= ±(hr

i)
nkn−1

= ±(hr
i)

nk−1
mod n

4. Send x0 securely to the LEA.

Escrowed Decryption (LEA):
Given (G,H) and x0, compute:

m = dLogs((x0)−2ns
H2 mod ns+1)/2 mod ns

The work of the KEA server is of the order O(sk3), where k is the security
parameter (size) of the modulus n, and the work of the LEA is O((sk)3). If the
server keeps τ instead of d it can generate d′ = n−s mod τ . Using this it can
compute x0 directly:

x0 = (xs)d
′

The work used in this case is only O(sk2 + k3).
Note, that the key generation of the users can be made in a threshold way to

create a threshold decryption key. The escrow decryption will still work, even
if the cryptosystem is changed slightly to accommodate the threshold version
from section 2.6.

The above scheme, however, only works in the passive case. In the ac-
tive case there are a lot of problems. When the LEA cannot decrypt (that is
(x0)−2ns

H2 mod ns+1 is not a power of (n + 1)) there is no way to tell if it is
because the user submitted a bad encryption (see 5.5) or if the KEA gave it a
wrong value.

5.4 Threshold Key Escrow

To make the system threshold, we have to share the decryption value d and set
up some verification values. Furthermore, the decryption phase has to provide
verification proofs, so that KEAs cannot cheat the LEA and ruin the decryption
at some point.

The protocol uses a Trusted Third Party (TTP) to set up the protocol, but
in section 5.4.1 we show how to setup the system without a TTP.

94 Chapter 5. Key Escrow

Global Setup (TTP):

1. Pick 2 primes p, q, such that p = 2p′ + 1 and q = 2q′ + 1 for primes
p′, q′ (i.e. p and q are safe primes).

2. Set n = pq and τ = p′q′.
3. Pick g, v ∈ Qn, the group of squares.
4. Compute: d = (4∆2n)−1 mod τ , where ∆ = w! for w KEA servers.
5. Pick random ai ∈ Zτ for i ∈ {1, · · · , t}, where t < w/2 is the thres-

hold of the system.
6. Set a0 = d and create the polynomial f(x) =

∑t
i=0 aix

i mod τ
(Shamir secret sharing [54]).

7. Release the parameters: (n, g).
8. Send dj = f(j) to the j’th KEA server.
9. Calculate: vj = vdj mod n, for j ∈ {1, · · · , w}.

10. Release the verification values: (v, v1, · · · , vw).

Key Generation (user i): As above.

Encryption (using pki): As above.

Decryption (using αi): As above.

Key Escrow (each KEA server):
Given (G,H) we do as above, except the method for calculating xk−1 is
now a distributed protocol:

1. Given xk, each server j computes: xj
k = x

2∆dj

k .
2. Server j makes a proof that:

logx4∆
k

((xj
k)2) = logv vi

which is the same proof as in section 2.7.2.
3. Server j sends xj

k and the proof to the KEA bulletin board.
4. The servers check the proofs of the submitted values and picks a

qualified set S with legal proofs and computes:

xk−1 =
∏
j∈S

(xj
k)

2λS
j mod n

where λS
j is the slightly modified Lagrange coefficient:

λS
j = ∆

∏
i∈S\{j}

−i
j − i

This means that:

xk−1 =
∏
j∈S

(xk)
4∆djλS

j = (xk)4∆
2f(0) = (xk)n

−1 mod τ mod n

which is what we want.

5.5. Encryption Verification 95

The decryption share xj
1, and the proof is not posted to the bulletin board

by server j, but is sent directly to the LEA using a secure authenticated
channel.

Escrowed Decryption (LEA):
The LEA checks the proofs on the bulletin board, checks the proofs of the
shares xj

1, which were sent to it, and picks a set S with correct proofs. It
performs the Lagrange combination as in step 4 of the key escrow to get
x0, and m is computed using x0 as it was done in section 5.3.

5.4.1 Removing the Trusted Third Party

In the protocol above we made use of a trusted third party to set up the global
values, the secret sharing of d and the verification values. This can be done in a
distributed fashion, so that the KEA servers can perform the setup themselves
without affecting the security of the system.

To generate a product of safe primes the technique from [5] can be used.
Although this is somewhat expensive this is an operation that only needs to be
done once at the setup of the protocol. This generates an additive sharing of p
and p′ and tests for the primality of both (and likewise for q and q′). A secret
sharing of the modulus n is then created from the sharing of p and q and then
opened. To get a sharing of τ the sharing of p′ and q′ can be combined in the
same way.

To generate the random values ai, the servers can simply choose sufficiently
large random numbers (about k + k2 bits, where k2 is e.g. 160 bits) using the
technique for creating the prime candidates p′, q′. Then the protocol for reduc-
ing a shared secret modulo a shared secret can be used to reduce the random
number modulo τ to create a value in {0, · · · , τ}, which will be statistically
close to a uniform value.

The values g and v can be generated by generating two random elements
y, y′ ∈ Z

∗
n, using e.g. commitments. The values can then be set to g = y2 mod n

and v = y′2 mod n, which are both in Qn.
Now all values used in the setup phase are either public or secret shared,

and we can compute the rest using the general computation framework of [5].

5.5 Encryption Verification

The escrowed decryption cannot distinguish legal encryptions from illegal en-
cryptions, since it computes the randomness used for the second part of the
encryption. This means that a malicious sender could generate a lot of encryp-
tions on the form:

(G,H) = (r1, (r2)n
s
(n+ 1)m

∗
mod ns+1)

The values r2,m∗ might not be known by the adversary, but 2 such values
exists. The decryption by a user will show, that it is an illegal encryption and
it will be discarded, whereas the escrow decryption will result in the value r2
being passed to LEA and the message m∗ being output. The above encryption

96 Chapter 5. Key Escrow

Scheme]d] verification] exponentiations] exponentiations
values when s ≤ s′ when s > s′

Only 1 1 w + 1 s s
All s′ s′w + 1 1 s/s′

2 powers log2(s′) log2(s′)w + 1 ∼ log2(s)/2 ∼ s/s′ + log2(s′)

Figure 5.1: Different values when using upper bound s′ to set up the system

cannot be distinguished from a normal encryption (by conjecture 2.2). So the
KEA or LEA servers can be overloaded by sending just 1 correct encryption
and a lot of illegal encryptions as above. The receiver will discard all the illegal
encryptions and accept the single correct encryption, whereas the LEA will
have a lot of plaintexts of which only one is actually received.

To take care of this the sender makes a proof of legal encryption according
to the protocol in section 2.7.2. The proof is made non-interactive by using
a hash function to create the challenge. The challenge is made non-malleable
by including some identifier of the sender and receiver in the hash, such that
substituting the sender or the receiver will invalidate the correctness of the
proof. Note that the proof does not use the fact that it is h4∆2r and not hr

that is used, so it will work for any hβr where β is some fixed number.

5.6 Improving Performance for s > 1

The calculation of x0 require s rounds of exponentiation in the previous sche-
mes. In the case where many messages use an s > 1, it might be an advantage
to decrease the number of needed exponentiations in the escrow part of the
protocol. To do this, extra decryption values can be computed:

ds := 4∆2n−s mod τ

This will allow the servers to remove s powers of n in a single exponentiation
step. To be able to verify correctness each of these new decryption values
require an extra set of verification values against which the exponentiations are
verified.

When there are only a few number of s’s that are frequently used, these
values can be computed in advance together with the verification values. If the
KEA servers keep the sharing of τ they can compute new values after the setup
phase is done.

If s is arbitrary in general, there are different strategies that can be used to
reduce space (number of values kept by the KEAs and size of all verification
values), time and communication (number of rounds of exponentiation to com-
pute x0). In figure 5.1 three different approaches are given some upper bound
s′: 1) only d1 is used, 2) use all the d1, d2, · · · , ds′ , and 3) use only the powers
of 2: d20 , d21 , · · · , d2log2(s′/2) .

5.7. Security of the System 97

5.7 Security of the System

Here is an informal argumentation about why this scheme is secure. This is
based on the correctness of the different proofs used and the semantic security
of the cryptosystem:

Theorem 5.1 Senders cannot flood any LEAs.

Proof sketch. This follows from the correctness of the proof of correct encryp-
tion. Since the sender has to create a correct proof it will be unable to fool a
LEA into decrypting bad messages. 2

Theorem 5.2 Users cannot prevent decryption when controlling less than w/2
servers.

Proof sketch. The exponentiation of the KEA servers uses proof of correct
behavior, which means that the user cannot inject bad values without being
noticed with all but a negligible chance.

The secret d is shared between w servers with a threshold of t < w/2. If the
user controls less than w/2 servers there will be at least t+1 honest servers left
which is enough to perform the exponentiation. This means that the servers
will be able to finish the protocol and give the correct value to the LEA. 2

Theorem 5.3 A user cannot decrypt messages from other users when t or less
KEA servers are helping.

Proof sketch. This follows directly from the semantic security of the cryptosys-
tem and the fact that t or less KEAs have no information on the shared secret.
2

Theorem 5.4 The LEA cannot decrypt messages encrypted by users without
getting the decryption value from KEA.

Proof sketch. This is the same as for theorem 5.3, except that LEAs can ask for
getting messages decrypted. There are 2 reasons for granting such a decryption,
namely if either sender or receiver is considered suspicious. Now, if the original
sender/receiver pair is not considered suspicious, the LEA will have to create a
related ciphertext where either the sender or receiver is a suspicious person.

However, if the sender or receiver is changed the input to the hash function
is changed and another challenge will be used for the proof of a legal encryption.
This means that the message cannot be changed to look like it is to/from some
suspicious person. 2

Theorem 5.5 A LEA learns no non-trivial information on the private key of
the user during decryption.

98 Chapter 5. Key Escrow

Proof sketch. The signature scheme in [57] by Shoup is proven secure in the
random oracle model. This means, that since each exponentiation step in the
escrow protocol is exactly the same as a Shoup threshold signature computation,
they are by themselves secure.

The different results after each exponentiation offer no information either,
since such tuples can be generated by the adversary himself. This can be done
by picking r and then computing (gr, hr, (hr)n, · · · , (hr)n

s
). 2

Theorem 5.6 Users, LEAs and t or less KEA servers cooperating are unable
to calculate d.

Proof sketch. Firstly t or less KEA servers have no information on d, since it
is secret shared with a threshold of t.

Users can only get correctly constructed ciphertexts decrypted. This means
that the values the KEA servers raise to the secret exponent dj is on the form:

(hr)βns
mod n

which is in Qn. However, this is the exact same type of values that are ex-
ponentiated in [57]. If an adversary exists against this step then an adversary
exist against Shoup’s scheme, which was proven secure in the random oracle
model.

The rest follows from the proof of theorem 5.5, namely that the rest of the
values can be simulated by the LEAs themselves, without help from the KEA
servers. 2

Chapter 6

Efficient Petitions

In science it often happens that scientists say, ’You know that’s a really good
argument; my position is mistaken,’ and then they actually change their minds

and you never hear that old view from them again. They really do it. It
doesn’t happen as often as it should, because scientists are human and change
is sometimes painful. But it happens every day. I cannot recall the last time

something like that happened in politics or religion.
— Carl Sagan, 1987 CSICOP keynote address

In this chapter we look at petitions. These protocols can be used to collect
signatures and hand them over to some verifier who verifies the signatures. It
is simple to create such a protocol using any standard signature scheme, so
in this chapter we look at some alternative ways to collect signatures. One of
these greatly improves the performance compared to using standard signatures
by combining several signatures into just one signature that the verifier has to
check.

6.1 Introduction

6.1.1 Background

In [14] Boneh, Lynn, and Shacham proposed a signature scheme based on the
Weil pairing with very short signatures (120-265 bits depending on the security
parameter). The signature scheme is based on Gap Diffie Hellman groups (of
which the Weil pairing is one). These are groups where the Computational
Diffie Hellman problem (i.e. computing discrete logs) is assumed hard, but
where the Decisional Diffie Hellman problem is easy.

6.1.2 Related Work

In work independent from, but concurrent to ours, Boldyreva proposed the
notion of threshold signatures, aggregate signatures and blind signatures based
on Gap Diffie Hellman groups. This result covers the basic building blocks in
our scheme (threshold and aggregate signatures). The paper does not consider
the application to petitions, which is presented in this chapter.

99

100 Chapter 6. Efficient Petitions

Signer

Signer

Petitioner

Signature

Signature

Verifier
Master

Signature

Figure 6.1: The general setup of a petition system.

6.1.3 Contribution

Petitions are a multi-party protocol consisting of 3 kinds of participants: A
Petitioner who wants to convince a Verifier, that it has received a certain
amount of signatures from different Signers.

In this chapter we will look at 3 different petition systems: 1) a system built
using any normal signature system, 2) a system based on threshold signatures,
and 3) a system using aggregate signatures. The first two systems follow directly
from normal and threshold signature schemes, respectively. The third system,
however, uses a new concept of aggregate signatures, which is presented here.

6.2 Model

The model consists of a Petitioner P , a Verifier V and some Signers S1, ..., Sw.
P has an Issue I that he collects signatures for. Once he has collected enough
he presents them to V in order to try and persuade V to take some action. V
checks the result from the petitioner to see if the petitioner has collected the
claimed signatures.

The role of the petitioner is to collect the signatures and remove all illegal
entries (invalid signatures and double signatures), such that the burden on the
verifier is minimized. The reason for this is twofold: 1) the petitioner needs to
keep track of how many signatures he has collected so far, and 2) the petitioner
usually works on a few petitions whereas the verifier might be some government
office that receives a lot of petitions. It is therefore more important to reduce
the load placed on the verifier than on the petitioner. When all the signatures
have been collected, a master signature is sent to the verifier. The structure
of the master signature can be very different, ranging from a list of signatures
(and the identities of the signers) to just a single signature. Given the master
signature, the verifier checks this and accepts the parts of it that are correct.
A sketch of this setup can be seen in figure 6.1.

So given this setup what can we hope to achieve in terms of communication
and computational complexity?

Each signer has to generate a signature of some kind and send it to the
petitioner. This means, that a lower bound on computation for the signer is

6.3. Standard Petitions 101

generating 1 signature, and the communication complexity is at least the size
of a signature.

From the petitioner to the verifier, the best we can hope for is, that only
one signature is sent. However, sending only one signature will require some
sort of combination of all the signatures by the petitioner.

The verifier has to check the master signature, which is received from the
petitioner. The best we can hope for is that the verifier only has to check one
signature.

6.2.1 Properties for Petitions

One aspect of petitions is whether there is some threshold that needs to be
achieved to convince V or whether it is a question about providing as many
signatures as possible to appear “convincing”, i.e. show that people care about
the issue in question. This leads to 2 classifications:

Exact: In these the exact number of legal signatures will be known. This is
useful for petitions that are used to convince politicians that an issue is
important for a lot of people (e.g. save the whales).

At least: Here the exact number of signatures made is not known, but only
that more than a certain threshold of signers have signed the petition.
This can be used to show that a certain amount of people have signed the
petition (e.g. getting a party accepted on the ballot in certain national
elections).

6.3 Standard Petitions

Any signature scheme can be used in the obvious way. The signer creates a
signature on H(I) and sends it to the petitioner. The petitioner collects all the
signatures in a list along with the identity of the signer. When the petition is
over P sends the list to V . V checks the petition result by verifying all the
signatures in the list with the public key of the signers.

If n signatures have been submitted and n′ of these are legal and unique,
we get the following complexities:

Computation:

Each signer: 1 signature.

Petitioner: n verifications.

Verifier: n′ verifications.

Total communication:

Each signer to Petitioner: 1 signature.

Petitioner to Verifier: n′ signatures with the identity of the signer at-
tached to each signature.

102 Chapter 6. Efficient Petitions

Storage space needed:

Petitioner: n′ signatures.

Classification: Exact.

This is optimal for the signer, but the communication between the petitioners
and the verifier is far from minimal. Furthermore, the verifier is burdened with
checking all the signatures.

6.4 Threshold Petitions

Petitions can also be built using threshold signatures. The idea is that all
signers have a share of the signing key. If a signer wants to sign a petition
on I, it provides a signature share on H(I). When the petitioner has enough
signatures, it combines the signature shares to get a signature on H(I). This
signature is sent to the verifier, who checks the single signature.

This gives the following complexities, if t is the threshold of the signature
system and n signature shares have been submitted before t legal proofs are
found:

Computation:

Each signer: 1 signature share and a proof of correctness.

Petitioner: n proof checks and the Lagrange interpolation of t shares.

Verifier: 1 signature check.

Total communication:

Each signer to Petitioner: 1 signature share with a proof of correct-
ness.

Petitioner to Verifier: 1 signature.

Storage space needed:

Petitioner: Up to t signature shares.

Classification: At least.

The work performed by the verifier and the communication from the petitioner
to the verifier is minimal. The signer and the petitioner on the other hand have
to do some more work, and the petition will only show that at least the required
amount of people have signed the petition.

Note that, unlike the others systems in this chapter, it is problematic to
include new signers. This essentially requires creating a new share of the secret
each time a new signer is added. This is not trivial and at best a prohibitively
expensive operation.

6.5. An Efficient Petition System 103

6.5 An Efficient Petition System

In this section a petition system is presented which uses the notion of aggre-
gate signatures to greatly reduce the computational complexity of the verifier.
Aggregate signatures are introduced in section 6.5.1 and used in section 6.5.5
to create a petition scheme that improves the standard signatures presented in
section 6.3.

6.5.1 Aggregate Signatures

Aggregate signatures can be created given a signature scheme that supports the
three normal functions KeyGen, Sign, and Verify and three aggregate functions
ComSign, ComPK, and RemSign.

In aggregate signatures we are given two signatures ssk1(m) and ssk2(m) of
the same message m, but under different keys. The goal is to create a signature
sf ′(sk1,sk2)(m), that can be verified using a combination f(pk1, pk2) of the two
public keys under which the original two signatures could be verified. For this to
work, the combination of signatures (ComSign) and the combination of public
keys (ComPK) needs to be efficiently computable.

There are 4 sets used in the following, namely: 1) secret keys (SK), 2) public
keys (PK), 3) messages (M) and 4) signatures (S). Using these spaces we can
define the 6 functions mentioned above as:

1. Key generator: KeyGen : {0, 1}∗ × {0, 1}∗ → SK × PK.
Given some global information and a random string, it creates a secret
key sk and a public key pk that satisfies:

Verify(Sign(m, sk),m, pk) = ACCEPT ∀m ∈M

2. Signature: Sign : M×SK → S.
Taking a message and a secret key it provides a signature under the given
secret key.

3. Verify: Verify : S ×M×PK → {ACCEPT,REJECT}.
Given a message, a signature and a public key, it returns whether the
signature is a correct signature of the message given the public key.

4. Combine PK: ComPK : PK × PK → PK.
Combines 2 public keys into a new public key.

5. Combine signature: ComSign : S × S → S.
Combines 2 signatures s1 and s2 on the message m into a new signature
s on the same message m. The function should satisfy:

Verify(ComSign(s1, s2),m,ComPK(pk1, pk2)) = ACCEPT

The function ComSign has to be associative and commutative.

104 Chapter 6. Efficient Petitions

6. Remove signature: RemSign : S × S → S.
This function takes 2 signatures, where the first signature is of the form
ComSign(s1, s2) and the second signature is s2. The result of applying
this function should be the signature s1. The reason for this function is
in the security analysis. The associative and commutative requirement
for ComSign, allows RemSign to remove any signature from the aggregate
signature and not just the last signature.

The following notation will be used when having several application of the same
function:

f(x1, x2, x3, ..., xn) := f(...f(f(x1, x2), x3)..., xn)

6.5.2 Using Aggregating Signatures

The idea is, that given a list of signatures (si1 , si2, .., sin) on the same message
m, a single signature s can be made instead. To be able to check this signature,
the public keys corresponding to the original signatures are combined into a
single public key, that can be used to verify s. So in general an aggregate
signature will have the form (m, s,X), meaning all members of the set X have
signed the message m and the combined signature is s. X has to be a multi-set,
or signatures with X1

⋂
X2 6= ∅ cannot be joined without removing a signature

representing X1
⋂
X2 first. The basic ideas of the aggregate signatures can be

summarized as follows:

Setup: Fix the global parameters if any, and then each participant can use the
KeyGen algorithm to create a public/secret key pair. Each user is also
assigned a public identifier, so public keys can be distinguished using this
identifier.

Signing: The user i signs a message m by calculating:

si,m := Sign(m, ski)

The signature is (m, si,m, {i}) meaning the message m is signed by i.

Combining: Given 2 signature pairs on the same message: (m, sX1,m,X1) and
(m, sX2,m,X2), a new signature can be created using

sX,m := ComSign(sX1,m, sX2,m)

where X = X1
⋃
X2 is a multi-set union. The new signature tuple is

(m,SX,m,X). This works because the ComSign function is assumed to
be associative and commutative. The two signatures should be tested
before the combination, or one could end up with an illegal signature,
thereby loosing information about legal signatures.

Verify: Given (m,SX,m,X), where X = {i1, ..., in}, verification can be done
by computing

pk = ComPK(pki1 , pki2 , ..., pkin)

and then performing the test

Verify(SX,m,m, pk)

6.5. An Efficient Petition System 105

6.5.3 Security of Aggregate Signatures

For analyzing the security it is assumed that the final signature is on some fixed
set X (n = |X|) for which the adversary has to create a signature of a message
m of his choice. Security of normal signatures and aggregate signatures can be
defined as follows.

Definition 6.1 A forger algorithm F (t, q, ε)-breaks a signature scheme if F
runs in time t, makes q queries to a signing oracle S and is able to forge a
signature s on a message m (for which it has not received a signature) with
probability higher than ε (here r is the seed for key generation):

Pr
[
Verify(m, s, pk) = ACCEPT

∣∣∣∣ (pk, sk) := KeyGen(r)
(m, s) := FS(pk)

]
≥ ε

A signature scheme is (t, q, ε)-secure against existential forgery by an adaptive
chosen-message attack if no forger (t, q, ε)-breaks it.

In aggregate signatures we also have a set X of signers in the aggregate signa-
ture. So defining an adversary against an aggregate signature scheme, we will
allow it to ask for signatures on the message it outputs, as long as it does not
ask for signatures for all i ∈ X.

Definition 6.2 A forger algorithm F (t, n, q, ε)-breaks an aggregate signature
scheme if F runs in time t, makes q queries (m′, i) to a signing oracle S getting
Sign(m′, ski), and is able to forge a signature (m, s,X) with probability higher
than ε for which there exists an i ∈ X, such that F has not asked for (m, i)
from S (here r is the seed for key generation and g is the global information):

Pr
[
Verify(m, s, pkX) = ACCEPT

∣∣∣∣ ∀i : (pki, ski) := KeyGen(g, ri)
(m, s,X) := FS(pk1, ..., pkn)

]
≥ ε

An aggregate signature scheme is (t, n, q, ε)-secure against existential forgery by
an adaptive chosen-message attack if no forger (t, n, q, ε)-breaks it.

Using cKeyGen, cSign, and cRemSign to represent the running time of KeyGen,
Sign, and RemSign respectively, we can prove the following theorem:

Theorem 6.1 Given an underlying signature scheme that is (t′, q′, ε′)-secure,
aggregate signatures based on this will be (t, n, q, ε)-secure against existential
forgery by an adaptive chosen-message attack, where

q ≥ q′ and ε > nε′ and

t ≥ t′ − ((n− 1) ∗ (cKeyGen + cRemSign) + (q + n− 1) ∗ cSign)

Proof. Given an adversary A against the aggregate signature scheme we can
construct an adversary A′ against the underlying signature scheme. The ad-
versary A′ is shown in figure 6.2.

106 Chapter 6. Efficient Petitions

Adversary A′:

1. A′ gets the public key pk and any global information
g.

2. A′ picks a random index i ∈ X and sets pki := pk.

3. For each j ∈ X\{i}, A′ sets

(pkj , skj) := KeyGen(g, rj)

where rj is some random value.

4. A′ gives the public information X, pk1, ..., pkn to the
adversary A.

5. When A asks for a signature on (m, j), A′ checks
whether j = i.

• If j = i, A′ asks the signing oracle for a signature
s on the message m.

• If j 6= i, then A′ knows the secret key and can
generate the signature s under skj .

The signature (m, s, {j}) is returned to A.

6. If A outputs failure then A′ also outputs failure. Oth-
erwise, A outputs a legal signature (m, s,X), and A′

checks if A has received a signature on (m, i). If this
is the case A′ outputs failure, otherwise it iterates for
each j ∈ X\{i}:

s := RemSign(s,Sign(M,skj))

A′ then returns (m, s) as a legal signature.

Figure 6.2: Algorithm for adversary A′ breaking the underlying signature sys-
tem given an adversary A against the aggregate signature system.

It follows from the associative and commutative properties of ComSign and
the fact that RemSign removes the signatures one by one, that the signature
generated in step 6 will be a signature verifiable under the public key pk.

The chance for success is equal to that of the original scheme times the
chance that the signatures A has not asked for is of the form (m, i). Since all
the public keys are indistinguishable the chance that j = i in step 5 is at least
the chance of picking a random element from X. The probability of this is 1/n
and thus the error probability is

ε > nε′

6.5. An Efficient Petition System 107

The number of queries made to the signing oracle is the number of times A′

has been asked to sign a message with user i’s private key. This means that A′

uses at most the same number of queries to the oracle as A.
Running the adversary algorithm A′ takes time equal to running A plus the

time needed for computations. To set up the extra keys A′ needs to do n − 1
calls to KeyGen. Up to q calls to Sign are made to generate signatures in the
cases where j 6= i. For generating the output signature the adversary A′ needs
to do (n − 1) calls to Sign and RemSign. This means that A′ takes time at
most:

t′ ≤ t+ ((n− 1) ∗ (cKeyGen + cRemSign) + (q + n− 1) ∗ cSign)

Conversely, if there does not exist an algorithm that (t′, q′, ε′)-breaks the nor-
mal signature scheme there cannot exist an algorithm that (t, n, q, ε)-breaks the
aggregate signature scheme where

t ≥ t′ − ((n− 1) ∗ (cKeyGen + cRemSign) + (q + n− 1) ∗ cSign)

This concludes the proof. 2

This also holds for signatures on a subset of the given set X, since the
signature has to contain at least one signature (m, s, {j}) that A has not asked
for. The chance of this happening is still the chance that he picked the i that
A′ picked at random in figure 6.2, i.e. 1/n.

6.5.4 An Aggregate Signature System

The signature scheme proposed by Boneh et. al in [14] almost satisfies the re-
quirements needed for an aggregate signature scheme. The only change needed
is that the signature of a message m should be a point on the Elliptic curve,
not the x-coordinate of a point.

It is based on the modified Weil pairing which is a function e that satisfies:

a = b mod q ⇐⇒ e(P, bQ) = e(aP,Q)

when working over an elliptic curve with a point P of order q (which is the
largest prime factor of the order of the curve), and where Q ∈ 〈P 〉. The
signature scheme in [14] uses a slightly modified Weil pairing by using an au-
tomorphism on the second argument to make it applicable to Decisional Diffie
Hellman. The automorphism defined in [14] satisfies that:

φ(aP) = aφ(P)

Using this in the Weil pairing we have:

e(P, φ(aH(m))) = e(P, aφ(H(m))) = e(aP, φ(H(m)))

The idea in the signature scheme is that a is the secret key and s = aH(m) is a
signature on message m, where H is the full domain hash defined in [14]. Then
given the public key R = aP one can check the signature by checking that:

e(P, φ(s)) = e(R,φ(H(m)))

108 Chapter 6. Efficient Petitions

This requires one use of the hash function H, and two applications of the Weil
pairing. Computing the Weil pairing uses work equivalent to O(k) additions
over the elliptic curve, where k denotes the bit size of q. The dominant compu-
tation in creating the hash of the message is a multiplication over the elliptic
curve. This requires O(k) additions, and so the total complexity of checking a
signature is O(k) additions.

The signature system from [14] can be extended with the extra functions
needed for the aggregate signature scheme. The KeyGen function and the setup
are identical to those found in [14]. The functions Sign and Verify are almost
identical, but with the modification that Sign returns a point P instead of just
the x coordinate of P . Verify checks that P satisfies the Weil pairing equation
instead of checking the two candidates with x coordinate equal to the received
signature.

Setup: Find an elliptic curve E/F3l , as suggested in [14, section 3.4], and find
the largest prime factor q of the order of the curve. Find a point P on
E/F3l with order q, and let H be a full domain hash from {0, 1}∗ to 〈P 〉
as defined in [14]. The global information is (l, q, P,H).

KeyGen: Given the global parameters a key pair is made by choosing a random
αi ∈ Z

∗
q and setting Ri = αiP . The public key is Ri and the private key

is αi.

Sign: To sign a messagem compute the hash Pm := H(m) and let the signature
be si := αiPm.

Verify: To verify a signature pair (si,m) compute u := e(P, φ(si)) and v :=
e(Ri, φ(H(m))), where e is the Weil pairing and φ is the automorphism,
both mentioned above. If v = u then ACCEPT is returned, otherwise
REJECT.

ComPK: To compute the combination of 2 public keys pkX1 and pkX2 simply
compute:

RX1
S

X2
:= RX1 +RX2 = (αX1 + αX2)P, where αXj =

∑
i∈Xj

αi

ComSign: To combine 2 signatures sX1 and sX2 of the same message m com-
pute:

sX1
S

X2
:= sX1 + sX2 = (αX1 + αX2)Pm

This satisfies the associative and commutative requirements because the
+ operator does.

RemSign: To remove a signature si from the combined signature sX compute:

sX\{i} := sX − si = (αX − αi)Pm

6.5. An Efficient Petition System 109

It’s easy to see using the properties of the modified Weil pairing described
above that ComPK and ComSign actually create a corresponding public key
and signature pair.

The complexity of the functions KeyGen, Sign, and Verify are of the order
of O(k) additions over the elliptic curve. However, the 3 new functions ComPK,
ComSign, and RemSign only use one addition.

6.5.5 Petitions based on Aggregate Signatures

Given a petition on the issue I, we can make the following petition system:

Setup: Given the global setup (l, q, P,H) each signer uses KeyGen to generate
the private key αi and the public key Ri.

Signing: For the i’th signer to sign I, it sets PI = H(I) and computes si,I :=
αiPI . The signature (I, si,I , {i}) is sent to the petitioner.

Collecting: All the valid signatures are combined into an aggregate signature
(I, sX,I , {X}) using ComSign. When all signatures have been collected
and added to (I, sX,I , {X}), it is sent to the verifier.

Verifying: To test an aggregate signature (I, sX,I ,X), the verifier creates the
public key pkX as (for simplicity X = {1, ..., n}):

pkX = ComPK(pk1, pk2, ..., pkn)

and tests the signature by calculating

Verify(I, sX,I , pkX)

If the signature is valid the number of signatures on the petition is the
number of unique signers in X.

This improves the standard petition system from section 6.3 significantly
because the verifier only has to combine the public keys of the signers (which
is cheap compared to checking a signature) and then check one signature. The
signer has the same amount of work, since the signer just needs to create a
signature. The only one who has to do more work is the petitioner, who has to
combine the signatures into a single master signature, but this is cheap com-
pared to the work it has to do to verify the signatures in the first place. Given
n signatures where n′ of these are unique and correct we have the following
complexities:

Computation:

Each signer: 1 signature.

Petitioner: Check n signatures and combine the n′ signatures.

Verifier: Combine n′ public keys and check 1 signature.

110 Chapter 6. Efficient Petitions

Standard Threshold Aggregate
Signatures Signatures Signatures

Work performed (additions)
Signer O(k) O(k) +O(k) O(k)
Petitioner O(nk) O(nk) +O(tk) O(nk) +O(n′)
Verifier O(n′k) O(k) O(k) +O(n′)
Communication needed (bits)
Signer-Petitioner O(k) O(k) +O(k) O(k)
Petitioner-Verifier O(n′k) O(k) O(k) +O(n′)
Space needed (bits)
Petitioner O(n′k) O(tk) O(k) +O(n′)
Attributes
Classification Exact At least Exact

Figure 6.3: Comparison between the 3 petition systems

Total communication:

Each signer to Petitioner: 1 signature.

Petitioner to Verifier: 1 signature and a list of the n′ signers.

Storage space needed:

Petitioner: 1 signature and a list of the n′ signers.

Classification: Exact.

The number of additions performed by the verifier is O(n′ + k), where k is
the security parameter. This is the result of n′ applications of ComPK (n′ − 1
additions) and one application of Verify (O(k) additions). The work performed
by the petitioner is O(n′k) + n′ additions, which is O(n′k).

6.6 Comparison

Figure 6.3 shows a comparison of the performance in the 3 protocols. Here
k denotes the bit size of the q used in the elliptic curve, n the number of
signatures submitted, n′ the number of unique valid signatures submitted, and
t the threshold in the threshold signature system. This is based on simple
implementations of both standard and threshold signatures over an elliptic curve
to make it comparable to the aggregate signatures. There are a couple of notes
for the table:

• The reason for the O(tk) work of the petitioner in the threshold signature
scheme is that typically the threshold t will be large. This results in
the Lagrange coefficients that will essentially be numbers modulo q. The
computation of the Lagrange coefficients is not included in the complexity,
since they are computed over the integers and not on the elliptic curve.

6.6. Comparison 111

• It is assumed that the identifier of a signer is some constant size. This is
used in the size of the message from the petitioner to the verifier in the
standard and the aggregate signature schemes.

• The complexities in the aggregate signature scheme are based on the sce-
nario where the petitioner adds the signatures to the aggregate signature
upon receiving them. This is done after the signature has been verified
as a legal signature and if it is not on the list of signatures already in the
signature. The petitioner can ignore the test of whether the signature is
in the list. Ignoring the test will create a slightly larger list of signers (n
instead of n′).

The comparison shows that the threshold signatures are the most efficient
signatures with regard to the verifier. This, however, comes at the cost of
only being an At Least petition, and the problems with adding new signers
to the system. The aggregate signature system is better than the standard
signatures on all accounts except petitioner work, but the extra work needed
by the petitioner here is very small compared to the mandatory work needed in
both cases. This means that the aggregate signature system is the best for all
scenarios except those where the limitations of the threshold signature system
are acceptable.

Bibliography

[1] M. Abe: Universally Verifiable Mix-Net with Verification Work Independent
of the Number of Mix-Servers, Advances in Cryptology - EUROCRYPT ’98,
LNCS volume 1403, pp. 437-447. Springer Verlag, 1998.

[2] M. Abe: Mix-networks on Permutation Networks, Advances in Cryptology
- ASIACRYPT ’99, LNCS volume 1716, pp. 258-273. Springer Verlag, 1999.

[3] M. Abe, and F. Hoshino: Remarks on Mix-network Based on Permutation
Networks, Public Key Cryptography (PKC 2001), LNCS 1992, pp. 317-324.
Springer Verlag, 2001.

[4] M. Abe, and M. Ohkubo: A Length-Invariant Hybrid Mix, Advances in
Cryptology - ASIACRYPT 2000, LNCS volume 1976, pp. 178-191. Springer
Verlag, 2000.

[5] J. Algesheimer, J. Camenisch, and V. Shoup: Efficient Computation Modulo
a Shared Secret with Application to the Generation of Shared Safe-Prime
Products Advances in Cryptology - CRYPTO 2002, LNCS volume 2442, pp.
417-432. Springer Verlag, 2002.

[6] N. Asokan, H. Lipmaa, and V. Niemi: Secure Vickrey Auctions without
Threshold Trust, Cryptology ePrint archive, record 2001/095.
http://eprint.iacr.org/, November 2001.

[7] E. Bach, and J. Shallit: Algorithmic Number Theory, Volume I: Efficient
Algorithms, Foundations of Computing Series. MIT Press, August 1996.

[8] J. Bar-Ilan, and D. Beaver: Non-Cryptographic Fault-Tolerant Computing
in a Constant Number of Rounds, Proceedings of the Eighth Annual ACM
Symposium on Principles of Distributed Computing (PODC ’89), pp. 201-
209. ACM Press, 1989.

[9] F. Boudot: Efficient Proofs that a Committed Number Lies in an Interval,
Advances in Cryptology - EUROCRYPT 2000, LNCS volume 1807, pp.
431-444. Springer Verlag, 2000.

[10] O. Baudron, P.-A. Fouque, D. Pointcheval, G. Poupard, and J. Stern:
Practical Multi-Candidate Election System, Proceedings of the Twentieth
Annual ACM Symposium on Principles of Distributed Computing (PODC
’01), pp. 274-283. ACM Press, 2001.

113

114 Bibliography

[11] M. Bellare and S. Goldwasser: Verifiable Partial Key Escrow, Proceedings
of the 4th ACM Conference on Computer and Communications Security,
pp. 78-91. ACM Press, 1997.

[12] L. Blum, M. Blum, and M. Shub: A simple secure unpredictable pseudo-
random number generator, SIAM Journal on Computing, volume 15, issue
2, pp. 364-383. ACM Press, May 1986.

[13] A. Boldyreva: Efficient threshold signatures, multisignature and blind sig-
nature schemes based on the Gap-Diffie-Hellman-group signature scheme,
Cryptology ePrint archive, record 2002/118. http://eprint.iacr.org/,
August 2002.

[14] D. Boneh, B. Lynn, and H. Shacham: Short Signatures from the Weil
Pairing, Advances in Cryptology - ASIACRYPT 2001, LNCS volume 2248,
pp. 514-532. Springer Verlag, 2001.

[15] R. Canetti: Security and Composition of Multiparty Cryptographic Proto-
cols, Journal of Cryptology, volume 13, issue 1, pp. 143-202. Springer Verlag,
2000.

[16] D. Catalano, R. Gennaro, and N. Howgrave-Graham: The bit security and
Paillier’s encryption scheme and its applications, Advances in Cryptology
- EUROCRYPT 2001, LNCS volume 2045, pp. 229-243. Springer Verlag,
2001.

[17] D. Chaum, and T. Pedersen: Wallet Databases with observers, Advances in
Cryptology - CRYPTO ’92, LNCS volume 740, pp. 89-105. Springer Verlag,
1992.

[18] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin: Effi-
cient Multiparty Computations Secure against an Adaptive Adversary, Ad-
vances in Cryptology - EUROCRYPT ’99, LNCS volume 1592, pp. 311-326.
Springer Verlag, 1999.

[19] R. Cramer, I. Damg̊ard, and J. Nielsen: Multiparty Computation from
Threshold Homomorphic Encryption, Advances in Cryptology - EURO-
CRYPT 2001, LNCS volume 2045, pp. 280-300. Springer Verlag, 2001.

[20] R. Cramer, I. Damg̊ard, and B. Schoenmakers: Proofs of Partial Knowl-
edge and Simplified Design of Witness Hiding Protocols, Advances in Cryp-
tology - CRYPTO ’94, LNCS volume 839, pp. 174-187. Springer Verlag,
1994.

[21] R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung: Multi-authority
Secret-Ballot Elections with Linear Work, Advances in Cryptology - EURO-
CRYPT ’96, LNCS volume 1070, pp. 72-83. Springer Verlag, 1996.

[22] R. Cramer, R. Gennaro, and B. Schoenmakers: A secure and optimally
efficient multi-authority election scheme, Advances in Cryptology - EURO-
CRYPT ’97, LNCS volume 1233, pp. 103-118. Springer Verlag, 1997.

Bibliography 115

[23] R. Cramer, and V. Shoup: Universal Hash Proofs and a Paradigm for
Adaptive Chosen Ciphertext Secure Public-Key Encryption, Advances in
Cryptology - EUROCRYPT 2002, LNCS volume 2332, pp. 45-64. Springer
Verlag, 2002.

[24] I. Damg̊ard, and E. Fujisaki: A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order, Advances in Cryptology -
ASIACRYPT 2002, LNCS volume 2501, pp. 125-142. Springer Verlag, 2002.

[25] I. Damg̊ard, and M. Jurik: A Generalisation, a Simplification and some
Applications of Paillier’s Probabilistic Public-Key System, BRICS Report
Series, record 2000/45. BRICS, http://www.brics.dk/Publications/,
December 2000.

[26] I. Damg̊ard, and M. Jurik: A Generalisation, a Simplification and some
Applications of Paillier’s Probabilistic Public-Key System, Public Key Cryp-
tography (PKC 2001), LNCS 1992, pp. 119-136. Springer Verlag, 2001.

[27] I. Damg̊ard, and M. Jurik: Client/Server Tradeoffs for Online Elections,
Public Key Cryptography (PKC 2002), LNCS 2274, pp. 125-140. Springer
Verlag, 2002.

[28] I. Damg̊ard, and M. Jurik: A Length-Flexible Threshold Cryptosys-
tem with Applications, BRICS Report Series, record 2003/16. BRICS,
http://www.brics.dk/Publications/, March 2003.

[29] I. Damg̊ard, and M. Jurik: A Length-Flexible Threshold Cryptosystem with
Applications, to appear in Information Security and Privacy (ACISP 2003),
LNCS. Springer Verlag, 2003.

[30] I. Damg̊ard, and M. Jurik: Scalable Key-Escrow, BRICS Report Se-
ries, record 2003/22. BRICS, http://www.brics.dk/Publications/, May
2003.

[31] I. Damg̊ard, M. Jurik, and J.B. Nielsen: A Generalization of Paillier’s
Public-Key System with Applications to Electronic Voting, to appear in spe-
cial issue on Financial Cryptography, International Journal on Information
Security (IJIS). Springer Verlag.

[32] I. Damg̊ard, and M. Koprowski: Practical Threshold RSA Signatures With-
out a Trusted Dealer, Advances in Cryptology - EUROCRYPT 2001, LNCS
volume 2045, pp. 152-165. Springer Verlag, 2001.

[33] I. Damg̊ard, and J.B. Nielsen: An Efficient Pseudo-Random Generator
with Applications to Public-Key Encryption and Constant-Round Multiparty
Computation, Manuscript.
Available from http://www.brics.dk/∼buus/papers.html

[34] Y. Desmedt, and K. Kurosawa: How to Break a Practical MIX and Design
a New One, Advances in Cryptology - EUROCRYPT 2000, LNCS volume
1807, pp. 557-572. Springer Verlag, 2000.

116 Bibliography

[35] T. El Gamal: A public-key cryptosystem and a signature scheme based on
discrete logarithms, IEEE Transactions on Information Theory, volume 31,
issue 4, pp. 469-472. IEEE, July 1985.

[36] A. Fiat, and A. Shamir: How to Prove Yourself: Practical solutions to
identification and signature problems, Advances in Cryptology - CRYPTO
’86, LNCS volume 263, pp. 186-194. Springer Verlag, 1987.

[37] P.-A. Fouque, G. Poupard, and J. Stern: Sharing Decryption in the Context
of Voting or Lotteries, Financial Cryptography (2000), LNCS volume 1962,
pp. 90-104. Springer Verlag, 2001.

[38] Y. Frankel, P. MacKenzie, and M. Yung: Robust Efficient Distributed RSA-
key Generation, Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing (STOC 98), pp. 663-672. ACM Press, 1998.

[39] A. Fujioka, T. Okamoto, and K. Ohta: A Practical Secret Voting Scheme
for Large Scale Elections, Advances in Cryptology - AUSCRYPT ’92, LNCS
volume 718, pp. 244-251. Springer Verlag, 1993.

[40] E. Fujisaki, and T. Okamoto: Statistical Zero Knowledge Protocols to Prove
Modular Polynomial Relations, Advances in Cryptology - CRYPTO ’97,
LNCS volume 1294, pp. 16-30. Springer Verlag, 1997.

[41] O. Goldreich, S. Micali, and A. Wigderson: How to play ANY mental game
or A Completeness Theorem for Protocols with Honest Majority Proceed-
ings of the Nineteenth Annual ACM Symposium on Theory of Computing
(STOC 87), pp. 218-229. ACM Press, 1987.

[42] O. Goldreich and V. Rosen: On the security of modular exponentiation
with application to the construction of pseudorandom generators, Cryptol-
ogy ePrint archive, record 2000/064. http://eprint.iacr.org/, December
2000.

[43] J. Groth: Extracting Witnesses From Proofs of Knowledge in the Random
Oracle Model, BRICS Report Series, record 2001/52.
BRICS, http://www.brics.dk/Publications/, December 2001.

[44] L. Guillou, and J.-J. Quisquater: A Practical Zero-Knowledge Protocol
fitted to Security Microprocessor Minimizing both Transmission and Mem-
ory, Advances in Cryptology - EUROCRYPT ’88, LNCS volume 330, pp.
123-128. Springer Verlag, 1988.

[45] M. Hirt, and K. Sako: Efficient Receipt-Free Voting based on Homomorphic
Encryption, Advances in Cryptology - EUROCRYPT 2000, LNCS volume
1807, pp. 539-556. Springer Verlag, 2000.

[46] M. Jakobsson, and A. Juels, An optimally robust hybrid mix network, Pro-
ceedings of the Twentieth Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC ’01), pp. 284-292. ACM Press, 2001.

Bibliography 117

[47] A. Kiayias, and M. Yung: Self-Tallying Elections and Perfect Ballot Se-
crecy, Public Key Cryptography (PKC 2002), LNCS 2274, pp. 141-158.
Springer Verlag, 2002.

[48] W. Mao: Publicly Verifiable Partial Key Escrow, Information and Com-
munications Security (ICICS’97), LNCS 1334, pp. 409-413. Springer Verlag,
1997.

[49] S. Micali: Guaranteed Partial Key Escrow, MIT laboratory of computer
science, Technical Memo 537. MIT Press, September 1995.

[50] S. Micali and A. Shamir: Partial Key Escrow, Manuscript. February 1996.

[51] T. Okamoto, and S. Uchiyama: A New Public-Key Cryptosystem as Secure
as Factoring, Advances in Cryptology - EUROCRYPT ’98, LNCS volume
1403, pp. 308-318. Springer Verlag, 1998.

[52] P. Paillier: Public-Key Cryptosystems based on Composite Degree Residue
Classes, Advances in Cryptology - EUROCRYPT ’99, LNCS volume 1592,
pp. 223-238. Springer Verlag, 1999.

[53] B. Schoenmakers: A Simple Publicly Verifiable Secret Sharing Scheme and
Its Application to Electronic Voting, Advances in Cryptology - CRYPTO
’99, LNCS volume 1666, pp. 148-164. Springer Verlag, 1999.

[54] A. Shamir: How to Share a Secret, Communications of the ACM, volume
22, issue 11, pp. 612-613. ACM Press, November 1979.

[55] A. Shamir: Partial Key Escrow: A New Approach to Software Key Escrow,
Key Escrow Workshop. National Institute of Standards and Technology,
September 15, 1995.

[56] J. Shaoquan and Z. Yufeng: Partial Key Escrow Monitoring Scheme, Cryp-
tology ePrint archive, record 2002/039. http://eprint.iacr.org/, March
2002.

[57] V. Shoup: Practical Threshold Signatures, Advances in Cryptology - EU-
ROCRYPT 2000, LNCS volume 1807, pp. 207-220. Springer Verlag, 2000.

[58] A. Waksman: A Permutation Network, Journal of the ACM, volume 15,
issue 1, pp. 159-163. ACM Press, January 1968.

Recent BRICS Dissertation Series Publications

DS-03-9 Mads J. Jurik. Extensions to the Paillier Cryptosystem with Ap-
plications to Cryptological Protocols. August 2003. PhD thesis.
xii+117 pp.

DS-03-8 Jesper Buus Nielsen.On Protocol Security in the Cryptographic
Model. August 2003. PhD thesis. xiv+341 pp.

DS-03-7 Mario Jośe Cáccamo.A Formal Calculus for Categories. June
2003. PhD thesis. xiv+151.

DS-03-6 Rasmus K. Ursem. Models for Evolutionary Algorithms and
Their Applications in System Identification and Control Opti-
mization. June 2003. PhD thesis. xiv+183 pp.

DS-03-5 Giuseppe Milicia. Applying Formal Methods to Programming
Language Design and Implementation. June 2003. PhD thesis.
xvi+211.

DS-03-4 Federico Crazzolara. Language, Semantics, and Methods for
Security Protocols. May 2003. PhD thesis. xii+160.

DS-03-3 Jǐr ı́ Srba. Decidability and Complexity Issues for Infinite-State
Processes. 2003. PhD thesis. xii+171 pp.

DS-03-2 Frank D. Valencia.Temporal Concurrent Constraint Program-
ming. February 2003. PhD thesis. xvii+174.

DS-03-1 Claus Brabrand. Domain Specific Languages for Interactive
Web Services. January 2003. PhD thesis. xiv+214 pp.

DS-02-5 Rasmus Pagh.Hashing, Randomness and Dictionaries. Octo-
ber 2002. PhD thesis. x+167 pp.

DS-02-4 Anders Møller. Program Verification with Monadic Second-
Order Logic & Languages for Web Service Development.
September 2002. PhD thesis. xvi+337 pp.

DS-02-3 Riko Jacob. Dynamic Planar Convex hull. May 2002. PhD
thesis. xiv+110 pp.

DS-02-2 Stefan Dantchev.On Resolution Complexity of Matching Prin-
ciples. May 2002. PhD thesis. xii+70 pp.

DS-02-1 M. Oliver Möller. Structure and Hierarchy in Real-Time Sys-
tems. April 2002. PhD thesis. xvi+228 pp.

DS-01-10 Mikkel T. Jensen.Robust and Flexible Scheduling with Evolu-
tionary Computation. November 2001. PhD thesis. xii+299 pp.

