
B
R

IC
S

D
S

-03-8
J.B

.N
ielsen:

O
n

P
rotocolS

ecurity
in

the
C

ryptographic
M

odel

BRICS
Basic Research in Computer Science

On Protocol Security in the Cryptographic
Model

Jesper Buus Nielsen

BRICS Dissertation Series DS-03-8

ISSN 1396-7002 August 2003

Copyright c© 2003, Jesper Buus Nielsen.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/03/8/

On Protocol Security in the Cryptographic
Model

Jesper Buus Nielsen

Ph.D. Dissertation

Department of Computer Science
University of Aarhus

Denmark

On Protocol Security in the Cryptographic Model

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfillment of the Requirements for the

Ph.D. Degree

by
Jesper Buus Nielsen

June 21, 2003

Abstract

It seems to be a generally acknowledged fact that you should never trust a computer and that
you should trust the person operating the computer even less. This in particular becomes a
problem when the party that you do not trust is one which is separated from you and is one
on which you depend, e.g. because that party is the holder of some data or some capability
that you need in order to operate correctly. How do you perform a given task involving
interaction with other parties while allowing these parties a minimal influence on you and, if
privacy is an issue, allowing them to learn as little about you as possible. This is the general
problem of secure multiparty computation. The usual way of formalizing the problem is to say
that a number of parties who do not trust each other wish to compute some function of their
local inputs, while keeping their inputs as secret as possible and guaranteeing the correctness
of the output. Both goals should be obtained even if some parties stop participating or some
malevolent coalition of the parties start deviating arbitrarily from the agreed protocol. The
task is further complicated by the fact that besides their mutual distrust, nor do the parties
trust the channels by which they communicate. A general solution to the secure multiparty
computation problem is a compiler which given any feasible function describes an efficient
protocol which allows the parties to compute the function securely on their local inputs over
an open network.

Over the past twenty years the secure multiparty computation problem has been the
subject of a large body of research, both research into the models of multiparty computation
and research aimed at realizing general secure multiparty computation. The main approach
to realizing secure multiparty computation has been based on verifiable secret sharing as
computation, where each party holds a secret share of each input and during the execution
computes secret shares of all intermediate values. This approach allows the parties to keep
all inputs and intermediate values secret and to pool the shares of the output values to learn
exactly these values.

More recently an approach based on joint homomorphic encryption was introduced, al-
lowing for an efficient realization of general multiparty computation secure against an eaves-
dropper. A joint encryption scheme is an encryption scheme where all parties can encrypt,
but where it takes the participation of all parties to open an encryption. The computation
then starts by all parties broadcasting encryptions of their inputs and progresses through
computing encryptions of the intermediary values using the homomorphic properties of the
encryption scheme. The encryptions of the outputs can then be jointly decrypted.

In this dissertation we extend this approach by using threshold homomorphic encryption
to provide full-fledged security against an active attacker which might control some of the

parties and which might take over parties during the course of the protocol execution. As
opposed to a joint encryption scheme a threshold encryption scheme only requires that
a given number of the parties are operating correctly for decryption to be possible. In
this dissertation we show that threshold homomorphic encryption allows to solve the secure
general multiparty computation problem more efficiently than previous approaches to the
problem.

Starting from an open point-to-point network there is a long way to general secure multi-
party computation. The dissertation contains contributions at several points along the way.
In particular we investigate how to realize secure channels. We also show how threshold
signature schemes can be used to efficiently realize a broadcast channel and how threshold
cryptography can be used to provide the parties of the network with a source of shared ran-
domness. All three tools are well-known to be extremely powerful resources in a network,
and our principle contribution is to provide efficient realizations.

The dissertation also contains contributions to the definitional part of the field of mul-
tiparty computation. Most significantly we augment the recent model of universally com-
posable security with a formal notion of what it means for a protocol to only realize a given
problem under a given restricted input-output behavior of the environment. This e.g. allows
us to give the first specification of a universally composable zero-knowledge proof of member-
ship which does not at the same time require the proof system to be a proof of knowledge.

Acknowledgments

To Ida Buus and Erik Nielsen

with special thanks

to Ran Canetti, Mogens Nielsen and Rafail Ostrovsky for serving on my Ph.D. com-
mittee. Especially Ran Canetti and Rafail Ostrovsky, their many valuable comments
and suggestions helped improve the dissertation considerably

to the crypto group at BRICS for a great time and a learning time; Ronald Cramer
for his competent ACTS dictatorship, Louis Salvail for always laughing and Serge Fehr
and Peter Høyer for tolerating me as an office mate, and to Jesus Almansa, Kasper
Dupont, Stefand Dziembowski, Jens Groth, Mads Jurik, Eike Kiltz, Maciej Koprowski,
Kirill Morozov and Martijn Stam

to everybody how helps making BRICS an absolute amazing place to do basic research
in computer science

to the crypto group at IBM T.J. Watson for making my stay there such an enjoyable
one. Crypto would not be same without you

to Ran Canetti for sharing so much of his knowledge, about crypto and about New
York restaurants. I still miss the commutes between Hawthorn and Manhattan

to Tal Rabin for the drives and talks to and from Hawthorn — I learned at lot, also
about crypto — and for the Tiramisu

to the crypto group at Bell Labs for a great day, in particular to Juan Garay for the
Danish beverage

to Angelos Keromytis for hosting me as a visiting researcher at Columbia University

to Kim Jersin for discussing many of the ideas in this dissertation with me when we
should have been doing completely different things

to those many others who helped me, by discussing an idea, giving me an idea or
obliviously letting me steal one, for explaining their work or buying me lunch: Jan
Camenisch, David Chaum, Claude Crépeau, Yevgeniy Dodis, Matias Fitzie, Rosario
Gennaro, Shai Halevi, Martin Hirt, Yuval Ishai, Jonathan Katz, Aggelos Kiayias, Hugo
Krawczyk, Peter Landrock, Yehuda Lindell, Anna Lysyanskaya, Philip MacKenzie, Tal
Malkin, Ueli Maurer, Rafael Pass, Omer Reingold, Ove Scavenius, Berry Schoenmakers,
Berit Skjernaa, Rebecca Wright, Shouhuai Xu and Moti Yung

and with very special and grateful thanks to Ivan Damg̊ard for teaching me Crypto, for his
invaluable guidance, for always having a solution when one is needed and for always having
time, for all those half-hour-long har du fem minutter-sessions. Thank you for an amazing
four years.

Jesper Buus Nielsen,
Århus, June 21, 2003.
c9084d2948be6ca8595a24aba4546cbe

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

I Setting the Stages 7

2 Tools 9
2.1 Conventions . 9
2.2 Random Variables and Distribution Ensembles 10
2.3 Function Families, Pseudorandom, One-Way, Trapdoor 12
2.4 Public-Key Encryption Schemes . 15
2.5 Digital Signatures Schemes . 19
2.6 Commitment Schemes . 20
2.7 Some Complexity Theoretic Assumptions . 21

2.7.1 Diffie-Hellman . 21
2.7.2 The Paillier Cryptosystem . 22
2.7.3 The Okamoto-Uchiyama Cryptosystem 23
2.7.4 RSA . 24
2.7.5 The Quadratic Residuosity Assumption 26

2.8 Invertible Sampling . 27
2.9 Σ-Protocols . 29

2.9.1 Σ-Protocols, Basic Definition . 29
2.9.2 Example: Discrete Logarithms in Groups with Known Order 36
2.9.3 Computational Soundness . 37
2.9.4 Example: Discrete Logarithms in RSA Groups 39
2.9.5 Private Reference String Σ-Protocols 42
2.9.6 Example: A PRS Σ-Protocol for All of NP 44
2.9.7 Computational Soundness and Private Reference Strings 49
2.9.8 Monotone Logical Composition . 49
2.9.9 Example: Discrete Logarithms in RSA Groups, Revisited 53

2.10 N -Invertible Group Homomorphisms . 56

2.10.1 Definition . 56
2.10.2 Examples of N -Invertible Group Homomorphisms 58
2.10.3 Encrypting with Cosets . 59
2.10.4 Some Σ-Protocols for N -Invertible Homomorphisms 61

3 Universally Composable Security of Synchronous Protocols 69
3.1 Introduction . 69
3.2 Universally Composable Security of Synchronous Protocols 71
3.3 The Hybrid Models . 75

3.3.1 Multiple Ideal Functionalities . 76
3.4 The Composition Theorem . 79

3.4.1 Composing Protocols . 79
3.4.2 The Composition Theorem . 81
3.4.3 Composing Interfaces . 81
3.4.4 Composing an Interface with an Environment 83
3.4.5 Composing an Environment with a Protocol 86

3.5 Specifying Restricted Input-Output Behavior 89
3.5.1 Changing the Ideal Functionality . 89
3.5.2 Changing the Model . 91
3.5.3 The Difference . 91
3.5.4 Formalizing IO Behavior . 94
3.5.5 The Real-Life Model and the Ideal Process with Restricted IO 96
3.5.6 The Hybrid Model With Restricted IO 97
3.5.7 Multiple Ideal Functionalities with Restricted IO 100
3.5.8 Conjunction and Disjunction of IO Restrictions 101
3.5.9 Composing an Interface with an Environment 101
3.5.10 Composing an Environment with a Protocol 102
3.5.11 Modeling Classes of Adversaries via Restricted IO 106
3.5.12 The Significance of Restricted IO . 107

3.6 Correctness of a Protocol . 109
3.6.1 Arguing Secure Realization via Correct Realization 111

3.7 Rewinding . 113
3.8 Some Functionalities . 114

3.8.1 Conventions . 114
3.8.2 The Secure-Channels Model . 115
3.8.3 Zero-Knowledge Proofs . 115
3.8.4 The Broadcast Model . 118
3.8.5 Signatures . 119
3.8.6 Threshold Signatures . 123
3.8.7 The Common Reference String Model 127
3.8.8 The Private Reference String Model 128

3.9 The Random-Oracle Model . 130
3.9.1 The Non-Programmable Random-Oracle Model 131
3.9.2 The Programmable Random-Oracle Model 131

3.9.3 Implementing the Random-Oracle . 132
3.9.4 Separating the Models . 132

3.10 Multi-Round Functionalities . 135
3.10.1 Multi-Round Functionalities . 135
3.10.2 Multi-Round Protocols . 137
3.10.3 Multi-Round IO Behaviors . 137
3.10.4 The Multi-Round Compilation Theorem 138

3.11 Staggered Functionalities . 142
3.11.1 Staggered Termination and Staggered Activation Go Hand-In-Hand . 143
3.11.2 Staggered Functionalities . 143
3.11.3 Staggered Protocols . 145
3.11.4 Staggered IO Behaviors . 147
3.11.5 The Staggered Compilation Theorem 147

II Basic Protocols 151

4 The Secure-Channels Model 153
4.1 Introduction . 153

4.1.1 Non-Interactive NCE is Impossible . 153
4.1.2 Interactive NCE is Tricky . 154
4.1.3 NCE for the Erasure Model . 155
4.1.4 NCE for the Non-Erasure Model . 155
4.1.5 Some New NCE Schemes . 157
4.1.6 The Rest of the Chapter . 158

4.2 Possibility of Non-Interactive NCE in the RO Model 158
4.2.1 The Intuition . 160
4.2.2 The Formal Treatment . 161

4.3 Impossibility of Non-Interactive NCE in the NPRO Model 162
4.4 Non-Committing Encryption from Simulatable Public-Key Systems 166

4.4.1 Motivating Invertible Sampling . 167
4.4.2 Weak Test for Equality . 167

4.5 Some Simulatable Public-Key Systems . 173
4.5.1 Simulatable Public-Key Systems from Simulatable Trapdoor Permu-

tations . 174
4.6 Non-Committing Encryption from Trapdoor Permutations with Invertible Do-

main Sampling . 176

5 Zero-Knowledge Proofs 179
5.1 Universally Composable Zero-Knowledge Proofs of Membership 179

6 Threshold Function Sharing 187
6.1 Introduction . 187

6.1.1 Threshold Signature Schemes . 188
6.1.2 Threshold Pseudorandom Functions 189

6.2 Distributed Function Evaluation . 191
6.3 Examples of Simple Function Sharing . 199

6.3.1 Shamir Secret Sharing . 199
6.3.2 Interpolation in the Exponent . 200
6.3.3 Threshold RSA . 202

6.4 Additive Sharing . 204
6.5 A Threshold Signature Scheme . 206
6.6 A Distributed Pseudorandom Function . 208

6.6.1 Distributed Evaluation of DDH-Tree 210
6.6.2 Growing a Random Tree . 211
6.6.3 An Efficient and Juicy Unnamed Coin-Flip Protocol 214

7 The Broadcast Model 217
7.1 Introduction . 217

7.1.1 Byzantine Agreement . 217
7.1.2 Multi Byzantine Agreement . 220
7.1.3 Realizing the Broadcast Model . 223
7.1.4 Applications . 224

7.2 The BA Compilation Theorems . 224
7.2.1 The Theorems . 224
7.2.2 Proof Overview . 225

7.3 From (FBA,G)-Hybrid Protocols to (FSMBA,StaggerIO(G, 1))-Hybrid Protocols227
7.3.1 The Staggered MBA Functionality, FSMBA 227
7.3.2 If You Stagger, I Stagger . 228
7.3.3 Compiling (FBA,G)-Hybrid Protocols to (FSMBA,StaggerIO(G, 1))-Hybrid

Protocols . 229
7.3.4 Efficient Reduction of Multivalued BA to Binary BA using Threshold

Signatures . 230
7.4 Realizing MultiRound(FBA) using FMBA and Fsync 232
7.5 Realizing FSGR . 233

7.5.1 Realizing StaggerIO(Fsync, 1) using FSGR 235
7.6 Realizing FSMBA . 236
7.7 Special Phase-King BA Protocols . 237

7.7.1 The Unauthenticated Protocol . 237
7.7.2 The Authenticated Protocol . 242

7.8 Realizing FMBA . 245
7.8.1 Introduction . 245
7.8.2 Unknown Binary Set Consensus . 246
7.8.3 The MBA Protocol . 247
7.8.4 Randomized Mode . 249

7.9 A Trivial Lower Bound on the Round Complexity of an MBA Protocol 250

III Secure Multiparty Computation 251

8 General Multiparty Computation, Static Security 253
8.1 Introduction . 253

8.1.1 Informal Description of the Main Ideas 256
8.1.2 Related Work . 257

8.2 The Arithmetic Black-Box . 257
8.2.1 Specification of the ABB . 258
8.2.2 General Multiplication . 261

8.3 ABB Threshold Homomorphic Encryption Schemes 263
8.3.1 Based on Paillier’s Cryptosystem . 266
8.3.2 Based on QRA and Strong RSA . 268

8.4 From Threshold Homomorphic Encryption to Black-Box Arithmetic 272
8.5 What is New? . 282

9 Universally Composable Commitment Schemes 283
9.1 Introduction . 283

9.1.1 Related Work . 283
9.1.2 Informal Description of the Main Ideas 284

9.2 Mixed Commitment Schemes . 285
9.2.1 Examples of Special Mixed Commitment Schemes 287

9.3 The Commitment Functionality . 288
9.4 UCC with Constant Expansion Factor . 290
9.5 Perfect Hiding or Perfect Binding . 300

10 General Multiparty Computation, Adaptive Security 301
10.1 Introduction . 301

10.1.1 Related Work . 302
10.1.2 Informal Description of the Main Ideas 303

10.2 An Off-Line Single Inconsistent Party . 306
10.3 ABB Threshold Homomorphic Encryption Schemes 309
10.4 Rabin’s Share Backups . 310
10.5 The Protocol . 314

Bibliography 321

Index 335

c
h
a
p
t
e
r
1

Introduction

From his cradle to his grave a man never does a single thing
which has any first and foremost object but one — to secure

peace of mind, spiritual comfort, for himself.
— Mark Twain

The Merriam-Webster Online Dictionary has the following to say on dissertations:

Main Entry: dis?ser?ta?tion
Pronunciation: "di-s&r-’tA-sh&n
Function: noun
: an extended usually written treatment of a subject;
specifically : one submitted for a doctorate

Under this definition, you are reading a dissertation. It is extended, it is written, and its
subject is how to build efficient, secure multiparty protocols using threshold cryptography.
It was submitted for a doctorate at the Faculty of Science of the University of Aarhus on
June 21, 2003.

The dissertation is based on some of the research done during my Ph.D study at BRICS.
Parts of the presented material were already published in [DN00, CDN01, Nie02a, Nie02b,
DN02b,DN03] together with Damg̊ard and Cramer and some parts are unpublished. Some
of the research done during my Ph.D. study did not make it to this dissertation, because it
falls outside the topic. This includes some research on cryptographic primitives, in particular
on the security of encryption schemes. Parts were published in [DJN01, DN02a, CKN03]
together with Damg̊ard, Canetti, Jurik and Krawczyk.

The multiparty computation (MPC) problem is to devise protocols which allow n parties
connected by a complete network of point-to-point channels to securely compute any function
f on their local inputs and to study under which assumptions and how efficiently such
protocols can be devised. Securely compute means preserving the correctness of the outputs
and the privacy of the inputs in the presence of faults. Faults are modeled by a single
entity called the adversary. The adversary controls a set of so-called corrupted parties. If
the adversary is passive it sees all inputs and outputs of the corrupted parties and can view
their internal state. An active adversary is furthermore allowed to send arbitrary messages

2 Introduction

on behalf of the corrupted parties. An adversary has two goals, gathering information about
uncorrupted parties’ inputs and outputs and, if it is active, exerting influence by sending
faulty messages to make the uncorrupted parties terminate with faulty outputs. A protocol
which is only secure against passive adversaries is often called privacy preserving.

There are many proposals on how to model the security of a protocol, but common to
most is that the security of a protocol is defined by requiring that an adversary attacking the
protocol should only be allowed to achieve inevitable goals. This meaning that the adversary
should not be able to achieve more than it would from attacking an ideal evaluation of f . In
the ideal evaluation we imagine that the parties send their inputs to an incorruptible trusted
party over perfectly secure lines. This trusted party then computes the function f on the
inputs and returns the result over the perfectly secure lines. Here certainly the adversary
archives only inevitable goals: Of information it only learns the corrupted parties’ inputs and
outputs and if it is active the only influence it can exert is changing the corrupted parties’
inputs to the function.

The comparison of the protocol execution to the ideal evaluation is made by requiring that
the complete view of an adversary attacking the protocol execution can be simulated given
only the view of a correspondingly powerful adversary attacking the ideal evaluation. This
captures exactly the idea that the information gathering and the influencing capabilities of
the adversary include nothing extra to that of which the adversary is entitled. This approach
to comparing the protocol execution to the ideal evaluation originates in the definition of
zero-knowledge proof by Goldwasser, Micali and Rackoff [GMR85], where the same approach
is used to define that the view of a dishonest verifier does not contain information about the
witness, by showing that the view can be simulated without the witness. We call this kind
of model of security a simulation model. For the MPC setting the simulation model approach
is introduced by Goldreich, Micali and Wigderson [GMW87].

The models used to study MPC vary considerably in the assumptions on the computing
power of the parties, the nature of the communication channels, and the classes of faults
which are considered. Some common choices for these parameters give rise to the crypto-
graphic model and the information theoretical model. In the cryptographic model, the parties
and the adversary are assumed to be probabilistic polynomial time, interactive Turing ma-
chines and the channels are assumed to be authenticated but public, i.e. the communication
over the channels is publicly readable. In [GMW87] Goldreich, Micali, and Wigderson and
independently in [CDG87] Chaum, Damg̊ard, and van de Graaf proved that if less than
n/2 of the parties deviate from the protocol, then any probabilistic polynomial time n-party
function can be computed securely in the cryptographic model. In the information theoretical
model, the parties and the adversary are assumed to be computationally unbounded and the
channels are assumed to be authenticated and private. In [CCD88] Chaum, Crépeau, and
Damg̊ard and independently in [BGW88] Ben-Or, Goldwasser, and Wigderson proved that
if less than n/3 of the parties are corrupted, then any n-party function can be computed
securely. In [RB89] Rabin and Ben-Or and independently in [Bea91] Beaver proved that
in the information theoretical model with a broadcast channel any n-party function can be
computed securely as long as less than n/2 parties are actively corrupted.

We formalize our model of computation and our model of security in Chapter 3. Here we
describe three assumptions that we make about the network throughout our investigation

3

and try to justify why. The assumptions are: the computation is synchronous, the network
is complete, and the channels are authenticated.

The reason for considering a synchronous model is that it simplifies the study without
(hopefully) abstracting away the problems that are essential to secure MPC. The hope is
that tools and methodologies developed in the synchronous model for secure computation
can be adapted to the asynchronous model. There is good evidence that this is the case. If
we do not consider active faults, then any privacy preserving protocol for the synchronous
model can be translated into a privacy preserving protocol for the asynchronous model using
a synchronizer, see Awerbuch [Awe85]. Even though no such construction is known for
the active case, many of the tools developed for the synchronous model have been adopted
to protocol design in the asynchronous setting. One prominent example it the concept of
verifiable secret sharing (VSS), which was defined for the synchronous model in [CGMA85]
by Chor, Goldwasser, Micali and Wigderson, where it was used to construct a so-called
simultaneous broadcast protocol. VSS is an essential part of most MPC protocols. In [CR93]
Canetti and Rabin adapted VSS to the asynchronous model. They build an asynchronous
VSS (AVSS) protocol and used it to construct asynchronous Byzantine agreement. Also Ben-
Or, Canetti and Goldreich [BCG93] and Ben-Or, Kelmer and Rabin [BKR94] used AVSS, as
a sub-protocol in building general MPC protocols for the asynchronous information theoretic
model. The model introduced in [BCG93] builds directly on the definitional work for the
synchronous model begun in [GMW86] and both protocols use the tools and methodologies
from the protocols for synchronous MPC protocols in [CCD88, BGW88, RB89]. It should
be noted that even though most techniques developed for the synchronous model have been
adopted for the asynchronous model, doing so is by far trivial. In particular, the above
mentioned adaptations enjoy considerable extra complications in the asynchronous model.

The motivation for considering complete and authenticated networks is partly the same
as for studying synchronous computation. For these assumptions, the hope that results in the
idealized model apply to more realistic models is even better justified. In [BCK98] Bellare,
Canetti and Krawczyk showed how any protocol for the authenticated channel model can
be translated into a protocol for the unauthenticated channel model in a modular way using
known (and widely applied) techniques for authentication, like authenticated Diffie-Hellman
for key exchange and messages authentication codes (MAC’s) and digital signatures for data
transport. A further discussion of this issue and references to related work can be found
in [BCK98]. A study of which general networks allow for simulating a complete network
has been performed in a number of papers. E.g., in the information theoretical model, if
the network consists of point-to-point channels and t parties might be corrupted, but do
not actively cheat, then t + 1 disjoint paths between each pair of parties are necessary and
sufficient to simulate a complete point-to-point network. If the t corrupted parties may
actively cheat, then 2t + 1 such paths are necessary and sufficient. For more on this subject,
see Franklin and Wright [FW00], which also contains similar result for other communication
models with multicast and broadcast.

It is the hope that studying secure computation in an idealized model will develop efficient
tools and methodologies which have wider applications to protocol design and that it will
clarify what is essential aspects of (efficient) secure computation. Furthermore, secure MPC
is a place for benchmarking existing tools and methodologies for protocol design, which it is

4 Introduction

here our goal to do for threshold cryptography.
The dissertation is structured into three parts. In the first part we set the stages by

introducing some well-known cryptographic tools and developing our model of security.
The tools are presented in Chapter 2. The reason why we include definitions of a number

of more or less standard cryptographic tools is that the literature differ on the definitions
and that it is convenient to phrase the definitions in one common framework, as they will all
need to play together in later chapters.

Chapter 3 contains the formalization of our model of security. We will use the model of
universally composable (UC) security by Canetti [Can01a]. One of the salient properties of
this model is that it guarantees that if a protocol is deemed secure by the model, then the
protocol is secure when run in any context, within the model of course. We say that the
security is preserved under universal composition. In Chapter 3 we present an extension to
the UC framework which allows to specify formally what it means for a protocol to realize
a task under a given input-output behavior from the environment in which it is run. This is
done in such a way that if the model deem a protocol secure for a given input-output behavior,
then it is secure when run in any context exhibiting this input-output behavior. Our main
contribution is that we are able to prove this security preservation for input-output behaviors
which cannot necessarily be checked in polynomial time. This means that the existing proof
that security is preserved under composition in the cryptographic model, where all entities are
restricted to polynomial time, does not carry over directly. The extension will among other
things allow us to define for the first time a notion of universally composable zero-knowledge
proof of membership. The material in Chapter 3 is previously unpublished.

The second part of the dissertation presents a number of basic cryptographic protocols.
In Chapter 4 we investigate how we can add secure channels to our model in a composi-

tional way. The results in this chapter were previously published in [DN00,Nie02a].
In Chapter 5 we present a notion of UC zero-knowledge proof of membership along

with an efficiently realization. Having a notion of universally composable zero-knowledge
proof of membership will greatly simplify proofs in later chapters as it allows us to use the
compositional properties of our security notion. The material in Chapter 5 is previously
unpublished.

In Chapter 6 we will take some well-known techniques from threshold cryptography and
capture them in the UC framework to allow for a modular use in subsequent chapters.
Furthermore, we will show how threshold cryptography can be used to provide the parties
in the network with an efficient source of shared randomness. This technique was previously
published in [Nie02b].

In Chapter 7 we will investigate the problem of efficiently adding a broadcast channel to
our model. This chapter contains several contributions to this area. In particular we will
show how one can efficiently deal with the fact that if one uses a round-efficient broadcast
protocol, then the parties will necessarily lose synchronization. This gives some problems
for protocols in the synchronous model, some of which do not even look as if have been
addressed before in full generality. Our primary contribution is a technique which allows to
deal with the loss of synchronization, a technique which compared to existing techniques is
both more efficient and much simpler. The chapter will also contain a minor optimization of a
recent result about efficient deterministic broadcast for the information theoretic model with

5

amortized constant round complexity, which serves as the most efficient approach to adding
broadcast to the synchronous model. We optimize a sub-protocol known as unknown binary
set consensus. We also show how to realize efficient amortized constant round broadcast
in the cryptographic model, by adopting the above mentioned protocol. The material in
Chapter 7 is previously unpublished.

Having these basic protocols in place we are prepared for the third part of the dissertation,
where we consider the general MPC problem.

In Chapter 8 we present a solution to the MPC problem based on threshold homomorphic
encryption. The communication complexity of the protocol is lower than the best previous
MPC protocols and therefore demonstrates that threshold homomorphic encryption is a
viable approach to MPC. The protocol in Chapter 8 was previously published in [CDN01].

The protocol in Chapter 8 is only secure against a static adversary, which corrupts all
parties before the execution of the protocol. This is an unrealistic model of the adversary.
As a step towards making the protocol in Chapter 8 adaptively secure we will present an
adaptively secure commitment scheme in Chapter 9. The commitment scheme was previously
published in [DN02b].

Using the commitment scheme of Chapter 9 we then show how to introduce adaptive
security. This is done in Chapter 10. The protocol in Chapter 10 was previously published
in [DN03].

Part I

Setting the Stages

c
h
a
p
t
e
r
2

Tools

Have thy tools ready. God will find thee work.
— Charles Kingsley, 1819–1875

In this chapter we treat some tools that will be used in several of the following chapters. Many
of these tools are well-known to the reader and can be skipped. We describe them to have a
fixed formal definition; For completeness and because the literature vary on the definitions.
We have attempted to organize the chapter according to how standard the introduced notions
are, so that the reader confident with most standard cryptographic notions can skip a prefix
of the sections constituting this chapter. The chapter is organized as follows: We first
introduce some notation that we use throughout the dissertation (Section 2.1) and introduce
some definitions for random variables (Section 2.2). In Sections 2.3, 2.4 and 2.5 we define
notions of function families, public key encryption respectively digital signature schemes. In
Section 2.7 we then define some standard complexity theoretic assumptions. In Section 2.8
we define the notion of invertible sampling, which is used in the subsequent Section 2.9,
where we define several notions of Σ-protocols. The notion of invertible sampling is also
used in various other places throughout the dissertation, see the index. In Section 2.10 we
define the notion of N -invertible homomorphisms. That section uses material from both
Section 2.7 and Section 2.9. Finally, in Section 2.6 we define some notions of commitment
schemes. The reason for placing the definition of commitment scheme so late in the chapter
is that it uses material from Section 2.7 and Section 2.10.

2.1 Conventions

In the following we use these conventions:

• N = {0, 1, 2, . . .}, Z = {. . . ,−2, 1, 0, 1, 2, . . .} and Zn = {0, 1, . . . , n − 1} for all n ∈
N. Furthermore, R denotes the real numbers and R+ denotes the non-negative real
numbers.

• k ∈ N denotes the security parameter. All algorithms receive this value as input and
the running time is measured in k.

10 Tools

• By a probabilistic polynomial time (PPT) algorithm A we mean a probabilistic algorithm
which for some c ∈ N on all inputs (k ∈ N, x ∈ {0, 1}∗) always terminates in less than
kc steps. We use a← A(k, x; r) to denote running A on input x and uniformly random
bits r ∈ {0, 1}kc

, producing output a. We will often drop the explicit mentioning of k

as input to A and we write r ∈ {0, 1}∗ to avoid mentioning kc explicitly.

• We use a probabilistic algorithm A to define the set of possible outputs from A. When
we write x ∈ A(y) it means that there exists random inputs r ∈ {0, 1}∗ such that
x = A(y; r).

• We often use [n] to denote the set {1, . . . , n} and sometimes use [n] to denote the set
{0, 1, . . . , n− 1}. The context will reveal what we mean.

• We sometimes use the term uniformly random slightly liberal, to mean statistically
close to uniformly random. This e.g. allows us to say generate a uniformly random
element from Z3, instead of generate an element from Z3 with a distribution statistically
close to uniform, which we would often have to as our probabilistic algorithms were
defined to take random bits as their source of randomness, which means that they
cannot generate a uniformly random element from e.g. Z3 in finite time.

• ε denotes the empty string.

• We use (·, ·) : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ to denote some bijective concatenation which
can be computed in PPT in both directions, and we sometimes use the notation x1‖x2 =
(x1, x2). We require that ε = (ε, ε). This bijection can easily be extended such that
any string can be parsed uniquely as a t-tuple for any t, using the conventions that
(x) = x and (x, y, . . .) = (x, (y, . . .)). We use this convention extensively. E.g., if for an
algorithm taking inputs from {0, 1}∗ we say “on input (x, y, z), where x · · · , do · · · ”,
we mean “on an input X for which x · · · when X = (x, y, z) do · · · using the values
(x, y, z)”. Notice that ε = (ε, . . . , ε).

• We often use the notation {vi}i∈I to mean the object (I, {(i, vi)}i∈I). To distinguish it
from the set {vi}i∈I , we will call this a family.

• By an l-bit number we mean an integer from the interval [2l−1, 2l − 1].

• PRIMES(l) = {x ∈ [2l−1, 2l− 1]|x is a prime}, so PRIMES(l) is the set of l-bit primes.

• We use the definition of interactive Turing machine (ITM) from [Can00].

• A PPT family of sets I = (gen, I) is given by a PPT generator gen, taking as input the
security parameter and outputting i ∈ {0, 1}∗, along with a PPT computable function
I : {0, 1}∗ ×{0, 1}∗ → {0, 1}. For i ∈ gen(k) we define a set Ii by x ∈ Ii iff I(i, x) = 1.

2.2 Random Variables and Distribution Ensembles

We start by defining a notion of negligible function. Basically a negligible function approaches
0 faster than any polynomial.

2.2 Random Variables and Distribution Ensembles 11

Definition 2.1 We say that f : N → R+ is negligible if for all c ∈ N there exists kc ∈ N
such that for all k > kc we have that f(k) ≤ k−c. We say that f : N × {0, 1}∗ → R+ is
negligible if for all c ∈ N there exists kc ∈ N such that for all k > kc and for all z ∈ {0, 1}∗
we have that f(k, z) ≤ k−c.

We prove a lemma, which will come in handy later, that a polynomial sum of negligible
functions is again a negligible function.

Lemma 2.1 Let A = {aj}j∈J and F = {fj}j∈J be sets of functions aj : N → R+ and
fj : N×{0, 1}∗ → R+. Let gA,F (k, z) =

∑
j∈J aj(k)fj(k, z). If J is finite, aj is a polynomial

for j ∈ J and fj is negligible for j ∈ J , then gA,F is negligible.

Proof. Since aj is a polynomial and J is finite we can pick cA ∈ N and kA ∈ N such that
kcA ≥ aj(k) for all j ∈ J and all k > kA. Consider any c ∈ N. For each f ∈ F , using that
it is negligible, there exists kf,c+cA+1 ∈ N such that for all k > kf,c+cA+1 and all z ∈ {0, 1}∗
we have that f(k, z) ≤ k−(c+cA+1). Let kF,c+cA+1 = max{kf,c+cA+1}f∈F . Since F is finite,
and can be assumed to be non-empty without loss of generality, we have that kF,c+cA+1 is
well-defined and that f(k, z) ≤ k−(c+cA+1) for all f ∈ F , all k > kF,c+cA+1 and all z ∈ {0, 1}∗.
For k > max{|J |, kA, kF,c+cA+1} and z ∈ {0, 1}∗ we have that

gA,F (k, z) =
∑
j∈J

aj(k)fj(k, z)

≤
∑
j∈J

kcAk−(c+cA+1)

=
∑
j∈J

k−(c+1)

= |J |k−1k−c

< k−c ,

which proves the lemma with kc = max{|J |, kA, kF,c+cA+1}. 2

For two random variables X and Y over some finite domain D we let the statistical
difference be

SD(X,Y) =
1
2

∑
d∈D

|Pr[X = d]− Pr[Y = d]| .

This is a number between 0 and 1.
A distribution ensemble is a family X = {X(k, z)}k∈N,z∈{0,1}∗ of random variables. We

say that a distribution ensemble has domain D if all X(k, z) have a domain which is included
in D. If D = {0, 1} we call X a Boolean distribution ensemble.

Definition 2.2 For two distribution ensembles X and Y with finite domain D we say that
they are computationally indistinguishable (written X

c≈Y) if (k, z) 7→ SD(X(k, z), Y (k, z)) is
negligible. We say that they are statistically close (written X

s≈Y) if there exists c ∈ R, where
c > 0 and for all k ∈ N and all z ∈ {0, 1}∗ we have that SD(X(k, z), Y (k, z)) < 2−ck for all
k > kc. We say that they are identical (written X = Y) if for all k ∈ N and all z ∈ {0, 1}∗
we have that SD(X(k, z), Y (k, z)) = 0.

12 Tools

It is a simply exercise to show that:

Fact 2.1 If X
c≈Y and Y

c≈Z, then X
c≈Z. If X

s≈Y and Y
s≈Z, then X

s≈Z. If X = Y and
Y = Z, then X = Z. If X = Y , then X

s≈Y , which in turn implies that X
c≈Y .

We use a constant like 0 to denote the distribution ensembles {0}k∈N,z∈{0,1}∗ , so that

we can write X
c≈0. For distribution ensembles X1, . . . ,Xa with domains D1, . . . ,Da and a

function f : D1 × · · · ×Da → D we define a distribution ensemble

f(X1, . . . ,Xa) = {f(X1(k, z), . . . ,Xa(k, z))}k∈N,z∈{0,1}∗

with domain D. If each Xi has a finite domain then f(X1, . . . ,Xa) has a finite domain. This
e.g. allows us to write that if X

c≈0 and Y
c≈0, then X + Y

c≈0 (which is indeed true). We
occasionally misuse this notation, but the meaning will hopefully be clear. The alternative
is having to expand Definition 2.2 on the preceding page too often.

When working with computational indistinguishability we often use the following lemmas:

Lemma 2.2 Let X and Y be two distribution ensembles with domain {0, 1}. For k ∈ N
and z ∈ {0, 1}∗, let d(k, z) = |Pr[X(k, z) = 1] − Pr[Y (k, z) = 1]|. We have that X

c≈Y iff d

is negligible.

Proof. For k ∈ N and z ∈ {0, 1}∗ we have that SD(X(k, z), Y (k, z)) = 1
2

∑
i∈{0,1} |Pr[X(k, z) =

i]−Pr[Y (k, z) = i]| = 1
2(|Pr[X(k, z) = 0]−Pr[Y (k, z) = 0]|+ |Pr[X(k, z) = 1]−Pr[Y (k, z) =

1]|) = 1
2 (|(1 − Pr[X(k, z) = 1]) − (1 − Pr[Y (k, z) = 1])| + |Pr[X(k, z) = 1] − Pr[Y (k, z) =

1]|) = |Pr[X(k, z) = 1]− Pr[Y (k, z) = 1]| = d(k, z). 2

Lemma 2.3 Let X and Y be two distribution ensembles with finite domain D. For d ∈ D

define the function I(d) : D → {0, 1} by I(d)(d′) = 1 iff d′ = d and define the distribution
ensembles X(d) = I(d)(X) and Y (d) = I(d)(Y). We have that X

c≈Y iff ∀d ∈ D(X(d) c≈Y (d)).

Proof. We have that X
c≈Y iff D(k, z) = 1

2

∑
d∈D |Pr[X = d] − Pr[Y = d]| is negligible. By

the above lemma and the definition of X(d) and Y (d) we have that X(d) c≈Y (d) iff Dd(x, z) =
|Pr[X = d]−Pr[Y = d]| is negligible for all d ∈ D. Since D(k, z) =

∑
d∈D

1
2Dd(k, z) we have

from Lemma 2.1 on the page before that D(k, z) is negligible if all Dd(k, z) are negligible.
Furthermore, Dd(k, z) ≤ 2D(k, z), so by the same lemma, Dd(k, z) is negligible if D(k, z) is
negligible. 2

The notion of computational indistinguishability was introduced by Yao, Goldwasser and
Micali in [Yao82b,GM84].

2.3 Function Families, Pseudorandom, One-Way, Trapdoor

The following definition of function families is inspired by similar definitions from [Gol01a,
BDJR97].

2.3 Function Families, Pseudorandom, One-Way, Trapdoor 13

Definition 2.3 A function family is a family F = {Fk}k∈N of random variables, so that the
random variable Fk assumes values which are functions. We say that a function family is a
PPT function family if the following two conditions hold:

PPT indexing:
There exists a PPT algorithm, gen, called the index generator, and a mapping from
strings to functions, φ, so that φ(gen(k)) and Fk are identically distributed. By I we
denote the possible outputs of gen and by fi, for i ∈ I, we denote the function φ(i). For
i ∈ I we use Di to denote the domain of fi and we use Ei to denote the codomain.

PPT evaluation:
There exists a PPT algorithm F such that F (i, x) = fi(x) for i ∈ I and x ∈ Di.

We name some additional properties that a PPT function family might have:

PPT domain sampling:

We say that dom is a PPT domain sampler for F if dom is a PPT algorithm and i ∈ I

and x ∈ dom(i) implies that x ∈ Di.

PPT domain recognition:
We say that dom is a PPT domain recognizer for F if dom is a PPT algorithm and for
i ∈ I it holds that dom(i, x) = 1 iff x ∈ Di.

Let F and G be two function families. We write F ⊆ G if for all k, all functions in the
support of Fk is also in the support of Gk.

Consider two families A = {Ak}k∈N and B = {Bk}k∈N of sets. If all Bk are finite, we
use [A → B] to denote the function family {Fk}k∈N where Fk is uniform over the set of all
functions from Ak to Bk. We say that a function family F maps from A to B if F ⊆ [A→ B].

For even moderately growing |A| and |B| a PPT function family F can only be a negligible
subset of [A → B]. If however a function drawn from F looks as a function drawn from
[A → B] when one is only given the function in a box and can only compute in PPT, then
we say that the function family is a pseudorandom function family from A to B.

Definition 2.4 A PPT function family F ⊆ [D → E], where D can be recognized in PPT
and E can be uniformly sampled in PPT, is said to be pseudorandom if for all PPT algorithm
A it holds that INDprf,0

F,A

c≈ INDprf,1
F,A , where the random variable INDprf,b

F,A (k, z) is defined in

Fig. 2.1 on the following page and INDprf,b
F,A = {INDprf,b

F,A (k, z)}k∈N,z∈{0,1}∗ is the correspond-
ing Boolean distribution ensemble. If F is pseudorandom we call it a pseudorandom function
family.

A PPT function family is said to be one-way for a given distribution on the inputs if given
an evaluation y = f(x) on an element of the given distribution one cannot find x again, or
any other preimage.

Definition 2.5 A PPT function family F with PPT domain sampler dom being one-way
is defined as follows: Let A be an algorithm, called the inverter, and let z ∈ {0, 1}∗ be
an auxiliary input. Generate i ← gen(k) and x ← domi and compute y = fi(x) and

14 Tools

Game INDprf,b
F,A (k, z)

The participants of the game is an adversary A and a PPT function family F ⊆ [D → E]
where D can be recognized in PPT and E can be uniformly sampled in PPT. The input
to the game is the security parameter k ∈ N, a bit b and an auxiliary input z ∈ {0, 1}∗.
The game proceeds as follows.

1. We define a function f : Dk → Ek as follows:

(a) If b = 0, then let f be a uniformly random function from Dk to Ek. The
function f will be lazily defined to ensure that the experiment is running in
PPT.

(b) If b = 1, then generate i← gen(k) and let f = fi.

2. Input (k, z) to A.

3. Run A to produce a value c.

(a) If c = (evaluate, x), where x ∈ Dk, then compute y = f(x), hand y to A and
go to Step 3.

(b) Otherwise interpret c as a bit d and output d.

Figure 2.1: The indistinguishability game for a family of PPT functions.

x′ ← A(k, z, i, y). Output 1 if fi(x′) = fi(x) and otherwise output 0. Let INVA,F (k, z) de-
note the distribution of the output. This defines a Boolean distribution ensemble INVA,F =
{INVA,F (k, z)}k∈N,z∈{0,1}∗ . We call (F, dom) one-way if for all PPT algorithms A it hold

that INVA,F
c≈0. If (F, dom) is one-way we call it a one-way function family.

Definition 2.6 A family of trapdoor permutations is a quadruple (gen, dom, f, f−1) of PPT
algorithms, where

• gen, called the index/trapdoor generator, takes as input the security parameter k and
outputs a pair (i, t), where i is called the index and t is called the trapdoor. In the
following we let geni (respectively gent) denote the algorithm given by running (i, t)←
gen(k) and outputting i (respectively t).

• (geni, f) is a one-way function family with domain sampler dom.

• f−1, called the inverse function, takes as input t ∈ gent and y ∈ domi and outputs a
value x. We write x = f−1

t (y).

• For (i, t) ∈ gen it holds that fi : domi → domi and that f−1
t (fi(x)) = x for x ∈ domi.

The following definition and theorem will often come in handy when working with trap-
door permutations in protocols.

Definition 2.7 Let F = (gen, dom, f, f−1) be a family of trapdoor permutations. Let A

be any PPT ITM and consider the following game, which we call the trapdoor game. The

2.4 Public-Key Encryption Schemes 15

algorithm A is given k ∈ N and z ∈ {0, 1}∗ and can ask for a number of index generations
and element generations, and the goal of A is to invert a permutation for which it does not
know the trapdoor information, on an element it did not generate itself.

• On a index generation request, A is given i for a uniformly random key (i, t)← gen(k, ri)
(here ri denotes the random bits used by gen).

• On a give up request on i, where i was generated in a index generation request, A is
given ri.

• On an element generation request for i, A receives y = fi(x), where x was generated as
x← dom(i; ry).

• On a give up request on y, where y was generated in an element generation request, A

is given ry.

• The ITM A wins the trapdoor game, if it manages to return an element x such that
y = fi(x), where i is an index from a index generation request on which it has not
given up and where y is from an element generation request on which it has not given
up. The output of the trapdoor game is 1 when A wins the game and 0 otherwise.

Let TRAPF,A(k, z) denote the distribution of the output of the trapdoor game. This
defines a Boolean distribution ensemble TRAPF,A = {TRAPF,A(k, z)}k∈N,z∈{0,1}∗ .

Theorem 2.1 If the family F = (gen, dom, f, f−1) is a family of trapdoor permutations,
then for all PPT algorithms A it holds that TRAPF,A

c≈0.

Proof. Assume that we are given a PPT adversary A for the trapdoor game. It has some
running time kc and will therefore make at most kc index generation requests and at most
kc element generation requests. Consider the following adversary B(A) for the inverting
game. It receives (k, z, i, y). Then it picks two uniformly random numbers a and b from
Zkc. Then it it runs INVA,F (k, z) with the only difference that on the a’th index generation
request it gives i to A and on the b’th element generation request for i it gives y to A. If
A does not give up on i and does not give up on y and A outputs x such that y = fi(x),
then B(A) outputs x. Otherwise B(A) outputs ε. It is straight forward to verify that
Pr[TRAPA,F (k, z) = 1] ≥

(
1
kc

)2 INVB(A),F (k, z), which proves the theorem. 2

2.4 Public-Key Encryption Schemes

In this section we formalize the notion of a public-key encryption scheme and the notion of
indistinguishability under chosen-plaintext attack (IND-CPA). These notions were first formal-
ized by Goldwasser and Micali in [GM84]. As usual a public-key encryption scheme consist
of a key generator gen, an encryption function enc and a decryption function dec.

16 Tools

Game INDcpa,b
E,A (k, z)

The input to the game is a public-key encryption scheme E = (gen, enc, dec), an ITM A,
the security parameter k, a bit b and an auxiliary input z. The game proceeds as follows:

1. Run (e, d)← gen(k) and input (k, z, e) to A.

2. Receive an output from A and interpret it as a pair (m0, m1), where m0, m1 ∈Me.

3. Generate c = enc(e, mb) and input c to A.

4. Receive an output from A and interpret it as a bit d.

5. Output d.

Figure 2.2: The CPA indistinguishability game.

Definition 2.8 A public-key encryption scheme consists of three PPT algorithms
E = (gen, enc, dec). On input k the key generator gen computes (e, d) ← gen(k), where
e is the encryption key or public key and d is the decryption key or private key. The encryption
key e defines a plaintext space Me, which can be recognized in PPT. The encryption function
enc takes as input an encryption key e and a plaintext m ∈Me and a randomizer r ∈ {0, 1}∗
and outputs a ciphertext c ∈ {0, 1}∗; We write c← enc(e,m; r). The decryption function dec

takes as input a decryption key d and c ∈ {0, 1}∗ and outputs m, where m is the plaintext
of c. We require that for all (e, d) ∈ gen and m ∈ Me it holds that if c ∈ enc(e,m) and
m′ ∈ dec(d, c), then m′ = m; We call this perfect correctness.

Definition 2.9 Let E be a public-key encryption scheme. The IND-CPA security of E is
defined via the game in Fig. 2.2, as follows: Let A be any ITM and let INDcpa,b

E,A (k, z) denote
the random variable describing the output of the game in Fig. 2.2 when the random bits used
by A and the random bits used by gen and enc are chosen uniformly at random. This defines
a Boolean distribution ensemble INDcpa,b

E,A = {INDcpa,b
E,A (k, z)}k∈N,z∈{0,1}∗ . We say that E is

IND-CPA secure if INDcpa,0
E,A

c≈ INDcpa,1
E,A for all PPT A.

The following theorem sometimes comes in handy when using IND-CPA security.

Theorem 2.2 Let E be a public-key encryption scheme and let A be any ITM and let
RINDcpa,b

E,A (k, z) denote the random variable describing the output of the game in Fig. 2.3 on
the next page when the random bits used by A and the random bits used by gen and enc

are chosen uniformly at random. This defines a Boolean distribution ensemble RINDcpa,b
E,A =

{RINDcpa,b
E,A (k, z)}k∈N,z∈{0,1}∗ . If E is IND-CPA secure, then RINDcpa,0

E,A

c≈RINDcpa,1
E,A for all

PPT A.

Proof. Assume that we are given an adversary A for the repeated IND-CPA game. For k ∈ N,
z ∈ {0, 1}∗ and b ∈ {0, 1}, let P b(k, z) = Pr[RINDcpa,b

E,A (k, z) = 1] and let Q(k, z) = |P 0(k, z)−
P 1(k, z)|. By the definition of repeated IND-CPA security it is enough to prove that Q is
negligible. To prove this we construct an adversary B(A) for the IND-CPA game. Since A is

2.4 Public-Key Encryption Schemes 17

Game RIND-CPA

The input to the game is a public-key encryption scheme E = (gen, enc, dec), an ITM A,
the security parameter k, a bit b and an auxiliary input z. The game proceeds as follows:

1. Input (k, z) to A.

2. Run A to receive an output v and proceed as follows:

(a) If v = (generate), then run (e, d)← gen(k), store e and input e to A.

(b) If v = (test-messages, e, m0, m1), where e has been stored and m0, m1 ∈Me,
then proceed as follows: Compute c = enc(e, mb) and input c to A.

(c) If v = (guess, d) for d ∈ {0, 1}, then output d and halt.

Go to Step 2.

Figure 2.3: The repeated CPA indistinguishability game.

PPT is has a running time kc. This means that it makes at most kc generate-requests and
at most kc test-messages-requests. The adversary B(A) runs in INDcpa,b

E,B(A)(k, z). Initially
it is given (k, z, e). Then it generates two uniformly random integers r, s ∈ Zkc and runs a
variant of the repeated IND-CPA game as follows:

1. Input (k, z) to A.

2. Let R = 0 and let S = 0.

3. Run A to receive an output v and proceed as follows:

(a) If v = (generate), then define a key eR as follows:

• If R 6= r, then run (e′, d′)← gen(k) and let eR = e′.
• If R = r, then let eR = e, where e is the key initially received by B(A) from

INDcpa,b
E,B(A)(k, z).

Store eR, give eR to A and let R← R + 1.

(b) If v = (test-messages, eρ,m0,m1), where eρ has been stored and m0,m1 ∈Meρ ,
then a ciphertext c is defined as follows:

• If ρ < r, then compute c = enc(eρ,m1).
• If ρ = r, then

– If S < s, then compute c = enc(eρ,m1).

– If S = s, then output (test-messages,m0,m1) to the game INDcpa,b
E,B(A)(k, z)

and receive c′ = enc(e,mb) = enc(eρ,mb). Then let c = c′.
– If S > s, then compute c = enc(eρ,m0).

• If ρ > r, then compute c = enc(eρ,m0).

(c) If v = (guess, d), then output (guess, d) and halt.

18 Tools

For b ∈ {0, 1}, let pb(k, z) = Pr[INDcpa,b
E,B(A)(k, z) = 1] and let q(k, z) = |p0(k, z)−p1(k, z)|.

By the IND-CPA security of E we have that q is negligible. To exploit this, we relate q(k, z) to
Q(k, z). For r, s ∈ Zkc and b ∈ {0, 1}, let pr,s,b(k, z) = Pr[INDcpa,b

E,B(A)(k, z) = 1] when B(A) is
using the fixed values r and s. It is straight forward to verify that pr,s,1(k, z) = pr,s+1,0(k, z)
for r ∈ kc − 1 and s ∈ kc − 2. This gives us that

pr,0,0(k, z) − pr,kc−1,1(k, z) =

(
kc−2∑
s=0

(
pr,s,0(k, z) − pr,s+1,0(k, z)

)
+ pr,kc−1,0(k, z)

)
− pr,kc−1,1(k, z)

=
kc−2∑
s=0

(
pr,s,0(k, z) − pr,s,1(k, z)

)
+
(
pr,kc−1,0(k, z) − pr,kc−1,1(k, z)

)
=

kc−1∑
s=0

(
pr,s,0(k, z) − pr,s,1(k, z)

)
.

(2.1)

It is also clear that pr,kc−1,1(k, z) = pr+1,0,0(k, z). This gives us that

p0,0,0(k, z) − pkc−1,kc−1,1(k, z) =

(
kc−2∑
r=0

(
pr,0,0(k, z) − pr+1,0,0(k, z)

)
+ pkc−1,0,0(k, z)

)
− pkc−1,kc−1,1(k, z)

=
kc−2∑
r=0

(
pr,0,0(k, z) − pr,kc−1,1(k, z)

)
+
(
pkc−1,0,0(k, z) − pkc−1,kc−1,1(k, z)

)
=

kc−1∑
r=0

(
pr,0,0(k, z) − pr,kc−1,1(k, z)

)
=

kc−1∑
r=0

kc−1∑
s=0

(
pr,s,0(k, z)− pr,s,1(k, z)

)
=

kc−1,kc−1∑
r=0,s=0

pr,s,0(k, z) −
kc−1,kc−1∑
r=0,s=0

pr,s,1(k, z)

= k2c
(
p0(k, z)− p1(k, z)

)
,

(2.2)

where the third to last equation follows from Eq. 2.1 and the last equation follows from the
fact that r and s are uniformly chosen from Zkc so that pb(k, z) = k−2c

∑kc−1,kc−1
r=0,s=0 pr,s,b(k, z),

for b ∈ {0, 1}. Now observe that P 0(k, z) = p0,0,0(k, z) and P 1(k, z) = pkc−1,kc−1,1(k, z).
By Eq. 2.2 this gives us that Q(k, z) = k2cq(k, z). Since q is negligible it follows from
Lemma 2.1 on page 11 that Q is negligible. 2

2.5 Digital Signatures Schemes 19

Game FORGES,A(k, z)

The input to the game is a digital signature scheme S = (gen, sig, ver), an ITM A, the
security parameter k and an auxiliary input z. The game proceeds as follows:

1. Generate a key-pair (s, v)← gen(k) and give (k, z, v) to A.

2. Run A to generate a command c.

(a) If c = (sign, m) for m ∈ {0, 1}∗, then compute σ ← sig(s, m), return σ to A
and go to Step 2.

(b) If c = (forgery, m, σ) for m, σ ∈ {0, 1}∗, then the game ends with output
b ∈ {0, 1}, where b = 1 iff m never occurred in a (sign, m) command and
ver(v, σ, m) = 1.

Figure 2.4: The forging game.

2.5 Digital Signatures Schemes

Definition 2.10 A digital signature scheme is a triple S = (gen, sig, ver) of PPT algorithms,
where:

• gen is the key generation algorithm which on input the security parameter k outputs
a pair (s, v), where s is called the signing key and v is called the verification key. The
verification key v defines a set Mv of signable messages.

• sig is the signing algorithm which takes as input a signing key s and a message m ∈
{0, 1}∗ and outputs a signature σ. We write σ ← sig(s,m).

• ver is the verification algorithm which takes as input a verification key v ∈ {0, 1}∗, a
message m ∈ {0, 1}∗ and a signature s ∈ {0, 1}∗ and outputs a judgment of validity
j ∈ {0, 1}. We write j ← ver(v, σ,m).

To call a triple S a signature scheme we require that:

completeness:
If (s, v) ∈ gen(k) and m ∈Mv and σ ∈ sig(s,m), then Pr[ver(v,m, σ) = 1] = 1.

universal verifiability:
For all v,m, σ ∈ {0, 1}∗ it holds that Pr[ver(v,m, σ) = 1] ∈ {0, 1}.

The completeness says that a correctly computed signature on a signable message is
always accepted, whereas the universal verifiability say that no matter how v and m was
generated, the judgment ver(v,m, σ) is consistent for all σ. While universal verifiability is
essential for many applications of signature scheme, it is a requirement that is not always
stated explicitly in definitions of signature scheme.

In [GMR88] a definition of security for digital signature schemes is given. Intuitively the
notion says that attacker which sees signatures on messages of its choice cannot afterward
produce a new signature on any message. A slightly relaxed notion can be considered, where

20 Tools

the attacker only wins if it produces a signature on a new message, i.e. a message that was
not previously signed. In particular, ’mauling’ a signature σ on m into a different signature
σ′ on m is not consider an attack. This is the notion we adapt.

Definition 2.11 Let S = (gen, sig, ver) be a digital signature scheme. Let A be any PPT
ITM and consider the forging game in Fig. 2.4 on the page before. This defines a random
variable FORGES,A(k, z) and a Boolean distribution ensemble FORGES,A =
{FORGES,A(k, z)}k∈N,z∈{0,1}∗ . If it holds for all PPT ITM’s A that FORGES,A

c≈0, then
we say that S is existentially unforgeable under chosen-message attack.

2.6 Commitment Schemes

In a commitment scheme, a committer commits to an element m, from some finite set M ,
by releasing some information about m through a commit protocol to a receiver. Later, the
committer may release more information to the receiver to open his commitment, so that
the receiver learns m. Loosely speaking, the basic properties we want are first that the
commitment scheme is hiding, i.e. a cheating receiver cannot learn m from the commitment
protocol, and second that it is binding, i.e. a cheating committer cannot change his mind
about m, the verifier can check in the opening that the value opened was what the committer
had in mind originally. Each of the two properties can be satisfied unconditionally or relative
to a complexity assumption. In the most basic commitment protocols both committing and
opening is non-interactive. To commit the committer sends c = commitK(m; r) to the
receiver, where K is a commitment key and r is a randomizer used for hiding m. Opening
then typically means that the committer sends (m, r) to the receiver who checks that c =
commitK(m; r). The scheme should then have the property that from c one cannot compute
m and that the committer cannot compute two openings (m0, r0) and (m1, r1) such that
m0 6= m1 and commitK(m0; r0) = commitK(m1; r1). For a special flavor of commitment
scheme, called trapdoor commitment scheme, the scheme has the property that for each
commitment key K there exists a special piece of information t, called the trapdoor, such that
given K and t and any commitment c and any message m, one can efficiently compute r such
that c = commitK(m; r). I.e. the commitment scheme is only binding for a committer that
do not know t. We will primarily be interested in trapdoor commitment schemes. Trapdoor
commitment schemes have also been called equivocable commitment schemes [Bea96]. Notice
that a trapdoor commitment scheme can never be perfect binding. Therefore the best we
can hope for is perfect hiding and computational binding. This is therefore the definition we
adapt.

Definition 2.12 A trapdoor commitment scheme consists of two PPT algorithms
(gen, commit). On input k the key/trapdoor generator gen outputs a commitment key K

and a trapdoor t; We write (K, t) ← gen(k). We let the key space be the PPT family of
sets K = {K(k)}k∈N, where K(k) = {K|∃r, t ∈ {0, 1}∗((K, t) = gen(k; r)}. A key K ∈ K
defines a set of commitments CK and a set of messagesMK , both can be recognized in PPT.
The commitment function commit takes as input a commitment key K ∈ K, a message
m ∈ MK and a randomizer r ∈ {0, 1}∗ and outputs a commitment c ∈ CK . We write
c← commitK(m; r). We require the following:

2.7 Some Complexity Theoretic Assumptions 21

perfect (statistical) hiding:
For all K ∈ K and all m0,m1 ∈MK the distributions of commitK(m0) and commitK(m1)
are identical (statistically close) when the randomizer is uniformly random.

computational binding:

Let A be any adversary and consider the following game called the double opening
game. The input is k ∈ N and and an auxiliary string z ∈ {0, 1}∗. Run (K, t) ←
gen(k) and given (k, z,K) to A. Then run A to produce an output (m0, r0,m1, r1).
If m0,m1 ∈ MK and m0 6= m1 and commitK(m0; r0) = commitK(m1; r1), then
the output of the game is 1. Otherwise the output of the game is 0. This defines
a random variable DOUBLE(gen,commit),A(k, z) and a Boolean distribution ensemble
DOUBLE(gen,commit),A = {DOUBLE(gen,commit),A(k, z)}k∈N,z∈{0,1}∗ . We require that

DOUBLE(gen,commit),A
c≈0 for all PPT adversaries A.

trapdoor opening:
Given (K, t) ∈ gen and c ∈ CK and m ∈ MK it is possible to compute r ∈ {0, 1}∗ such
that r is uniformly random among the r for which c = commitK(m; r).

One can construct efficient1 trapdoor commitment schemes based on all the complexity
theoretic assumptions that we use in the remainder. See e.g. the Ph.D. thesis of Fischlin
[Fis01].

If the generator does not output a trapdoor t and the scheme has all the properties from
Definition 2.12 on the facing page except trapdoor opening, we call the scheme a (statistically)
perfect hiding commitment scheme.

2.7 Some Complexity Theoretic Assumptions

In this section we introduce the complexity theoretic assumptions on which we are going to
base the security of our protocols.

2.7.1 Diffie-Hellman

In [DH76] the decisional Diffie-Hellman assumption (DDH assumption) is implicitly made, and
not to forget, public-key cryptography introduced. The DDH assumption was first formalized
in [Bra93] by Brands. We give a formalization along the lines of Brands. Let 〈α〉 be a cyclic
group. The Diffie-Hellman assumption in 〈α〉 basically states that elements of the form
(αx, αy, αz) for uniformly random x, y, z ∈ Zord(α) cannot be distinguished from uniformly
random elements of the form (αx, αy, αxy) for uniformly random x, y ∈ Zord(α).

Assumption 2.1 Let (·, α)← gen(k) be a generator generating a description of a group op-
eration · and an element α of finite order o = |〈α〉|. Let A be any algorithm, let b ∈ {0, 1}, let
z ∈ {0, 1}∗ and consider the following game DDHA,gen(k, z). Run (·, α)← gen(k) and gener-
ate uniformly random X,Y ∈ Zo, for o = |〈α〉|. Let Z = XY if b = 1 and generate uniformly
random Z ∈ Zo otherwise. Input (k, z, ·, α, αX , αY , αZ) to A and receive a bit c. Output c.

1By which we mean committing to k bits using O(k) bits.

22 Tools

This defines a Boolean distribution ensemble DDHb
gen,A = {DDHb

gen,A(k, z)}k∈N,z∈{0,1}∗ .

The DDH assumption for gen is that DDH0
gen,A

c≈DDH1
gen,A.

We will primarily use the DDH assumption in the following group: Let p be a random
k-bit prime p for which q = (p − 1)/2 is also prime. In the following, we let Qp denote the
quadratic residues modulo p and we let g = 4. It can be verified using elementary algebra
that 〈g〉Z∗p = Qp, |Qp| = q and Z∗

p = Qp ∪ (−1)Qp.

2.7.2 The Paillier Cryptosystem

In this section we describe the Paillier cryptosystem [Pai99]. Throughout this section, let p

and q be random dk/2e-bit primes for which p, q > 2, p 6= q and gcd(pq, (p − 1)(q − 1)) = 1.
Let n = pq and let λ = lcm(p − 1, q − 1).

Definition 2.13 By the Paillier group isomorphism we mean the function

Ψ : Zn × Z∗
n → Z∗

n2 ,

Ψ(x, r) = gxrn mod n2 ,

where g = (n+1) and r ∈ Z∗
n is considered as an element of Z∗

n2 using the trivial observation
that for r ∈ {1, . . . , n− 1} it holds that if gcd(r, n) = 1, then gcd(r, n2) = 1.

Lemma 2.4 The Paillier group isomorphism Ψn is an isomorphism of groups which can be
inverted in PPT given n and λ.

Proof. We first prove that Ψn is a homomorphism of groups. Let c1 = gx1rn
1 mod n2 and let

c2 = gx2rn
2 mod n2, for x1, x2 ∈ Zn and r1, r2 ∈ Z∗

n. We want to prove that

c1c2 mod n2 = gx1+x2 mod n(r1r2 mod n)n mod n2 . (2.3)

Use a binomial expansion to see that (r + n)x mod n2 = rx + xrx−1n mod n2, which in
particular implies that g = (1+n) has order n in Z∗

n2 and that (r+n)n mod n2 = rn mod n2

for r ∈ Z∗
n2 , which immediately implies Eq. 2.3. To see that Ψn is a bijection, we show how

to invert it. Let
c = gxrn mod n2

for x ∈ Zn and r ∈ Z∗
n. Let d = λ(λ−1 mod n) and let e = n−1 mod λ;2 Notice that d and

e can be computed from n and λ in polynomial time. Since the order of all elements of Z∗
n2

divides nλ it follows that the order of rn mod n2 divides λ. Therefore (rn mod n2)d mod n2 =
1. Since g has order n in Z∗

n2 it follows that gd mod n2 = g. Therefore cd mod n = gx mod n2.
Since gx mod n2 = 1 + xn, by Eq. 2.3, it follows that

x =
(cd mod n2)− 1

n
.

2Here we used the condition on p and q that gcd(pq, (p− 1)(q − 1)) = 1.

2.7 Some Complexity Theoretic Assumptions 23

Since g mod n = 1 it follows that c mod n = rn mod n. Since (r mod n) ∈ Z∗
n it follows that

the order of (r mod n) in Z∗
n divides λ. Therefore

r = ce mod n .

2

The so-called decisional composite residuosity assumption (DCRA) is that random elements
of the form Ψ(0, r) cannot be distinguished from uniformly random elements from Z∗

n2.

Assumption 2.2 Let gen denote the generator (p, q) ← gen(k) described above. Let A be
any adversary. Consider the following game PAILLIERb

gen,A(k, z). Generate (p, q)← gen(k)
and let n = pq. If b = 0, then generate uniformly random r ∈ Z∗

pq and let rb = rn mod n2.
If b = 1, then generate rb as a uniformly random element from Z∗

n2. Then input (k, z, n, rb)
to A, and run A to obtain a value c ∈ {0, 1}. Then output c. The decisional composite
residuosity assumption is that PAILLIER0

gen,A

c≈PAILLIER1
gen,A for all PPT algorithms A.

It is straight-forward to see that under the DCRA one can IND-CPA securely encrypt
m ∈ Zn as c = En(m; r) = Φn(m; r) for a uniformly random r ∈ Z∗

n. The private key is e.g.
λ. This will also be a corollary of a result in Section 2.10. We will be using this cryptosystem
a lot.

2.7.3 The Okamoto-Uchiyama Cryptosystem

In this section we describe the cryptosystem by Okamoto and Uchiyama [OU98]. The pre-
sentation will be somewhat different from the one in [OU98] as we exploit that we have
just presented the Paillier cryptosystem. Notice that, as opposed our order of presenta-
tion, [OU98] is prior to [Pai99].

Throughout this section, let p and q be random dk/2e-bit primes for which p, q > 2, p 6= q

and gcd(pq, (p − 1)(q − 1)) = 1. Let n = pq, let λ = lcm(p− 1, q − 1) and N = pn.

Definition 2.14 By the Okamoto-Uchiyama group homomorphism we mean the function

Ω : Zp × Z∗
N → Z∗

N ,

Ω(x, r) = gxrN mod N ,

where g = (n + 1) and r ∈ Z∗
N .

Lemma 2.5 The Okamoto-Uchiyama group homomorphism Ω is a homomorphism of groups
and a pre-image from Zq × Z∗

n can be found in PPT given N and λ.

Proof. We first prove that Ω is a homomorphism of groups. Let c1 = gx1rN
1 mod N and let

c2 = gx2rN
2 mod N , for x1, x2 ∈ Zp and r1, r2 ∈ Z∗

N . We want to prove that

c1c2 mod N = gx1+x2 mod p(r1r2 mod N)N mod N . (2.4)

24 Tools

Use a binomial expansion and the equation n2 mod N = 0 to see that (r + n)x mod N =
rx +xrx−1n mod N , which in particular implies that g = (1+n) has order p in Z∗

N and that
(r + n)N mod N = rN mod N for r ∈ Z∗

N , which immediately implies Eq. 2.4 on the page
before. We show how to find a preimage. Let

c = gxrN mod N

for x ∈ ZN and r ∈ Z∗
N . Let d = λ(λ−1 mod p) and let e = N−1 mod λ; Notice that d and

e can be computed from n and λ in polynomial time. Since the orders of all elements of Z∗
N

divides pλ it follows that the order of rN mod N divides λ. Therefore (rN mod N)d mod pn =
1. Since g has order p in Z∗

N it follows that gd mod N = g. Therefore cd mod N = gx mod N .
Since gx mod N = 1 + xn mod N it follows that

x =
(cd mod N)− 1

n
.

Since g mod n = 1 it follows that c mod n = rN mod n. Since (r mod n) ∈ Z∗
n it follows that

the order of (r mod n) in Z∗
n divides λ. Therefore

r mod n = ce mod n .

Let r′ = ce mod n. Above we established that (r + n)N mod N = rN mod N , which implies
that r′N mod N = (r mod n)N mod N = rN mod N . All in all x′ ∈ Zp, r′ ∈ Z∗

n and
c = gx′r′N mod N . 2

In [OU98] the p-subgroup assumption is made, which is that random elements of the
form Ω(0, r) cannot be distinguished from random elements from Z∗

N . This assumption
corresponds to the DCRA in Z(pq)2 .

Assumption 2.3 Let gen denote the generator (p, q) ← gen(k) described above. Let A be
any adversary. Consider the following game OKAMUCHIbgen,A(k, z). Generate (p, q) ←
gen(k) and let N = p2q. Then generate uniformly random r0, r2 ∈ Z∗

N and compute r1 ←
rN
2 mod N . Then input (k, z,N, rb) to A, and run A to obtain a value c ∈ {0, 1}. Then

output c. The p-subgroup assumption is that OKAMUCHI0gen,A

c≈OKAMUCHI1gen,A for all
PPT algorithms A.

In Section 2.10 we show how to build an IND-CPA secure encryption scheme from the
Okamoto-Uchiyama homomorphism and the p-subgroup assumption.

2.7.4 RSA

In this section we formalize the RSA, the strong RSA assumptions and the RSA-sub-group
assumption. The RSA assumption was first suggested in [RSA78] by Rivest, Shamir and
Adleman. The RSA-sub-group assumption was first suggested in [DN00] by Damg̊ard and
Nielsen. Let an RSA generator be a PPT generator gen which on input k generates (p, q)
such that p and q are primes.

2.7 Some Complexity Theoretic Assumptions 25

Assumption 2.4 Let gen be an RSA generator, which in addition generates a value e ∈
Z∗

(p−1)(q−1), and let A be any adversary. Consider the following game RSAgen,A(k, z). We
generate (p, q, e)← gen(k) and generate uniformly random y ∈ Z∗

pq. Then input (k, z, pq, e, y)
to A, and run A to obtain a value x. If y = xe mod pq, then output 1; Otherwise, output 0.
We say that the RSA assumption holds for gen if RSAgen,A

c≈0 for all PPT algorithms A.

Assumption 2.5 Let gen be an RSA generator and let A be any algorithm. Consider the
following game SRSAgen,A(k, z). We generate (p, q) ← gen(k) and generate uniformly ran-
dom x ∈ Z∗

pq. Then input (k, z, pq, y) to A. Then run A to obtain a value (x, e). If e > 1 and
y = xe mod pq, then output 1; Otherwise output 0. We say that the strong RSA assumption

holds for gen if SRSAgen,A
c≈0 for all PPT algorithms A.

We then formalize the RSA-sub-group assumption. Consider the following RSA genera-
tor: It generates random numbers N until it finds n which has two large primefactors3 and
then it outputs (p, q). Furthermore, it picks a large random prime e > N = pq. Since e is
prime and e > n it follows that e ∈ Z∗

(p−1)(q−1) as in Assumption 2.4. The RSA-sub-group
assumption is basically that the RSA assumption hold for this generator, though we will
work in the group Z∗

n, which has the RSA group Z∗
N as a sub-group.

Definition 2.15 We define a family which we call the RSA-sub-group collection:

index/trapdoor generation:
An index will be a uniformly random k log(k)-bit number for which p, q > 2k−1 for the
two largest primefactors p and q of n. The trapdoor will be φ(n).

Furthermore a random element e ∈ PRIMES(2k log(k)) is chosen. The encryption key
is (n, e) and the decryption key is (n, d = e−1 mod φ(n)).

In [Bac88] Bach shows how to sample in PPT a random number with known factoriza-
tion, which immediately yields a PPT algorithm for the key generation: Sample random
k log(k)-bit integers with known factorization until one is found with p, q > 2k−1. To
make the algorithm PPT, give up after k attempts. In [KT76] Knuth and Trabb inves-
tigate the probability that the i’th largest primefactor of a random number n is larger
than nc for a given constant c. It is shown to approach a constant as n approaches in-
finity. In particular, the probability that the second largest primefactor is smaller than
nc is approximately linear for small c, in fact it is about 2c for c ≤ 0.4. It follows
that the probability that a uniformly random 2k log(k)-bit integer has its second largest
primefactor shorter than k bits is O(1/ log(k)). Therefore such a number is found after
k trials except with negligible probability.

domain sampling:
The domain of a public key (n, e) will be Z∗

n. It is described in the proof of Theo-
rem 2.3 on page 28 how to sample this domain in PPT.

function, inverse function:
The function is the usual RSA function f(n,e)(x) = xe mod n, and it is well-known that
the inverse of f(n,e)(x) can be computed in PPT on Z∗

n given just d.

3Large is formalized below where it is also explained how learn the primefactors n efficiently.

26 Tools

Assumption 2.6 The RSA-sub-group assumption is that the RSA-sub-group family is a fam-
ily of trapdoor permutations.

Remark 2.1 We try to justify that Assumption 2.6 holds if the RSA assumption holds
for the more tradition generator, where p and q are uniformly random from PRIMES(2k)
and e is uniformly random from Z∗

(p−1)(q−1). Consider an RSA modulus n = pq, where
the distribution on p and q is defined as follows: We pick a random k log(k)-bit number
for which the two largest prime numbers are larger than 2k−1, and we let p and q be these
prime numbers. Even though we cannot prove it formally, it seems implausible that the RSA
assumption would hold for the generator where p and q are random k-bit numbers and would
not hold when p and q are chosen as above. Consider then e ∈ PRIMES(2k log(k)). Since
n = pq < 22k we have that gcd(n, e) = 1. In the usual definition of the RSA assumption
e is chosen uniformly at random from Z∗

φ(n). To relate our way of picking e to this we
could consider the distribution of e mod φ(n) when e ∈ PRIMES(2k log(k)). There are about
22k log(k)/(2k log(k)) = 22k/(2 log(k)) primes in PRIMES(2k log(k)) and the size of Z∗

φ(n) is
less than 22k. If therefore a significant fraction of the exponents e ∈ PRIMES(2k log(k))
are weak and assuming that the primes are randomly distributed, then {e mod φ(n)}, for the
weak exponents e, would be a significant fraction of Z∗

φ(n). Again it is not clear how to do a
reduction, but it seems implausible that the RSA assumption would hold for one distribution
of the exponents and not the other — note that we can do a reduction to the strong RSA
assumption. We think this justifies the assumption that RSA is one-way with the modulus
picked as described above and e ∈ PRIMES(2k log(k)), at least relative to Assumption 2.4 on
the page before. It is easy to see then that this assumption implies Assumption 2.6, using
the Chinese remainder theorem. Therefore Assumption 2.6 is very closely related to the RSA
assumption for the more standard key generator described above.

The reason why we are at all interested in the RSA-sub-group family is that with high
probability a random number n is a public key for this family. We return to this issue in
Chapter 4.

2.7.5 The Quadratic Residuosity Assumption

The quadratic residuosity assumption for an RSA group Z∗
n states that a random element of

the form x2 mod n cannot be distinguished from a random element from Z∗
N .

Assumption 2.7 Let gen be an RSA generator and let A be any adversary. Consider the
following game QRgen,A(k, z). Generate (p, q) ← gen(k). Then generate uniformly random
r0, r2 ∈ Z∗

pq and compute r1 ← r2
2 mod pq. Then input (k, z, pq, rb) to A, and run A to obtain

a value c ∈ {0, 1}. Then output c. The quadratic residuosity assumption (QRA) for gen is
that QR0

gen,A

c≈QR1
gen,A for all PPT algorithms A.

We only defined the quadratic residuosity assumption for the group Z∗
N . We can defined

the quadratic residuosity for Z∗
N2 in the same way. We will however only use this assumption

2.8 Invertible Sampling 27

for N ’s of the form in Section 2.7.2, for which it is straight forward to verify that the quadratic
residuosity assumption holds for Z∗

N2 iff it holds for Z∗
N .4

2.8 Invertible Sampling

In this section we introduce the notion of invertible sampling, which is closely connected to
adaptive security in simulation models where erasures are not allowed.

Assume that we want to define a flavor of trapdoor permutation where one can generate
a public key without getting to know the matching trapdoor. As it turns out we will indeed
want to do this in a subsequent section, for now we ask the reader to accept the challenge.
So, in addition to the normal key generation algorithm gen, which outputs a public key pk

and a trapdoor t, we assume that there exists another algorithm which we call the oblivious
generator ˜gen which outputs only a public key pk with a distribution similar to public keys
produced by gen. However, this condition is not sufficient to capture what we want. The
oblivious generator ˜gen could satisfy it by just running gen and then outputting pk. We
therefore also ask that there is an efficient algorithm ˜gen−1 that, based only on a public key
pk, comes up with a set of random bits r′ such that (pk, r′) cannot be distinguished from a
normal set of random bits and resulting output from ˜gen, in particular pk = ˜gen(r′). This
ensures that whatever side information you get from producing pk using ˜gen, you could also
compute efficiently from pk itself. In particular, you do not learn t. The property of being
able to reconstruct the random bits of a sampler we call invertible sampling after [DN00].

In [Gol01b] Goldreich defines an enhanced trapdoor permutation to be a trapdoor permu-
tation, where one can sample an element in the domain of the trapdoor permutation in a
way such that even given the random bits used by the sampler it is hard to invert. We could
have used a similar approach to model oblivious public-key generation. We could require
that if we generate pk = ˜gen(r) and give (y = fpk, r) to the adversary, then it is still hard to
compute x. It turns out that the approaches are equivalent. Given a trapdoor permutation
which is ’enhanced’ in the above sense, we can simply let the public key be the random bits
used for sampling. Clearly this would be an invertible sampling. On the other hand, if a
trapdoor permutation has invertible sampling, then any adversary A which works given the
random bits r can be changed into an adversary A′ which works given just the public key:
Given (pk ← ˜gen(r), y) the adversary A′ computes r′ ← ˜gen−1(pk) and runs A on (y, r′). If
A has a significantly lower advantage when run on (y, r′) than when run on (y, r), then it
can distinguish r and r′, contradicting the invertible sampling of ˜gen. In the same way we
can see that the notion of enhanced trapdoor permutation in [Gol01b] could equivalently be
defined by saying that it is a trapdoor permutation where the domain sampler has invertible
sampling. We prefer this approach to the definition as it makes minimal changes to the

4Consider the group isomorphism Ψ : ZN ×Z∗N → Z∗N2 , (m, r) 7→ (N +1)mrN mod N2 from Section 2.7.2.
The quadratic residues in ZN × Z∗N is the elements (m, r)2 = (2m, r2). Since m 7→ 2m mod N is a bijection,
the quadratic residues are ZN × Q∗

N and the quadratic non-residues are ZN × (−1)Q∗
N . Being a group

isomorphism Ψ maps ZN × (−1)bQ∗
N bijectively to (−1)bQ∗

N2 . So, given a random u ∈ (−1)bQ∗
N , we can

produce a random u′ ∈ (−1)bQ∗
N2 as u′ = Ψ(m←R ZN , u). On the other hand, given a random u′ ∈ (−1)Q∗

N2

we know that u′ = (−1)b(N + 1)muN for u ∈ Q∗
N , so we can compute u′ mod N = (−1)buN mod N , which is

a random element from (−1)bQ∗
N as u 7→ uN mod N is bijective.

28 Tools

underlying definition. It makes a ’local’ requirement on the sampler, instead of changing
the definition in which the algorithm is part. Furthermore, invertible sampling is a property
which is in general essential to adaptive security of protocols, see e.g. Section 4.4.1 for an
example. Having the notion of invertible sampling will allow us to redefine a number of
primitives with minimal changes.

Definition 2.16 Let A : X×{0, 1}∗ → Y be a PPT algorithm. We say that A has invertible
sampling and that A is a PPTIS algorithm, if there exists a PPT random-bits-faking algorithm
A−1 : Y × X → {0, 1}∗ such that the following holds: For all input x ∈ X, uniformly
random bits r ← {0, 1}∗, output value y ← A(x; r) and fake random bits r′ ← A−1(y, x) the
random variables (x, y, r′) and (x, y, r) are statistically close. We say that G is an invertible
sampler for a distribution ensemble X = {X(k, z)}k∈N,z∈{0,1}∗ if G is a PPTIS algorithm and

X
s≈{G(k, z)}k∈N,z∈{0,1}∗ . We say that a family of sets {S}k∈N,i∈{0,1}∗ has invertible uniform

sampling if there exists a PPTIS algorithm G such that G(k, i; r) is uniform over S(k, i) for
uniformly random r.

Theorem 2.3 The following domains have invertible uniform sampling:

1. {0, 1}kc
for c ∈ N.

2. Zn for an integer n, where log(n) = poly(k)

3. Z∗
n for an integer n, where log(n) = poly(k).

4. The set PRIMES(k).

Proof. {0, 1}kc
trivially has invertible uniform sampling: Simply take the next kc random

bits on the random tape and output them. The random-bits-faking algorithm on x simply
outputs x.

As for Zn, one sampler could be the following: Let l = dlog2(n)e+ε, where 1
2ε is negligible.

Pick x ∈ {0, 1}l uniformly at random and output x′ = x mod n. The random bits faking
algorithm runs as follows: Given an element x′ ∈ Zn, compute L = 2l mod n and pick y ∈ ZL

uniformly random. Let x = yn + x′ and output x. This gives statistically good fake random
bits.

As for Z∗
n, if n only has exponentially large primefactors one can use the algorithms for

Zn. Otherwise, proceed as follows: Pick x ∈ Zn using an invertible uniform sampling as
that above. Then test whether gcd(x, n) = 1. If so, output x. Otherwise, try again. After
k log(k) failed trials, output 1. Since φ(n) = Θ(n

log log(n)), see e.g. [BS96, Theorem 8.8.7], it
follows that for uniformly random x ∈ Zn we have that gcd(x, n) = 1 with probability at
least Θ(1

log(k)), so gcd(x, n) = 1 occurs with probability as least 1
2 after log(k) trials, and so

gcd(x, n) = 1 occurs with probability at least 1 − (1
2)k after k log(k) trials. The random-

bits-faking algorithm on input x runs as follows: Generate x′ ∈ Z∗
n as described above. Let

r1, x1, r2, x2, . . . , rl, xl, r
′, x′ be the sequence of elements xi tested during the generation of

x′, along with the randomness used to generate them. Use the random bits faking algorithm
above on x to compute r. Output r1, r2, . . . , rl, r.

2.9 Σ-Protocols 29

Now for the set of k-bit primes. We fix some way of sampling the primes. For simplicity,
say that we pick p by drawing random numbers in [2k−1, 2k − 1] until we get a number that
tests to primality by some probabilistic primality test. We assume that the test recognizes a
composite as a prime with exponentially small probability. For the random-bits-faking, we
have to reconstruct, from a given output p, a distribution similar to the prefix of numbers
that were not primes. This can be done by drawing random numbers in [2k−1, 2k − 1] until a
number is found testing prime. Set r to be the prefix of numbers testing non-prime and the
random bits used to test them non-prime. Then run the primality test on p and let rp be
the bits used in the test. Output (r, p, rp). If p tests prime in this last test, then the output
is trivially distributed identically to the bits originally used to pick p. So, by the assumption
that p is composite with exponentially small probability it follows that PRIMES(k) has
invertible sampling. 2

2.9 Σ-Protocols

In this section we define several flavors of Σ-protocols and give some examples. The examples
are given to exemplify the introduces notions, but are also used in subsequent sections.

2.9.1 Σ-Protocols, Basic Definition

Consider an instance language S ⊆ {0, 1}∗ and consider a binary relation R ⊆ S × {0, 1}∗
where (x,w) ∈ R can be determined in polynomial time for (x,w) ∈ S × {0, 1}∗. We call
such a relation a PPT binary relation. By the language of R, L(R) ⊆ S, we mean the set
{x ∈ S|∃w ∈ {0, 1}∗((x,w) ∈ R)}. In the following we call x ∈ S an instance and for
x ∈ {0, 1}∗ we call W (x) = {w ∈ {0, 1}∗|(x,w) ∈ R} the witness set for x and we call
w ∈W (x) a witness for x. Since L(R) = {x ∈ {0, 1}∗|W (x) 6= ∅}, a witness for x is a witness
to the fact that x ∈ L(R).

Recall that we have the convention that the security parameter k is given as input to all
TMs and that they must terminate in time kc for some c ∈ N. This means that we can only
require a PPT TM to work correctly for inputs (x,w) of a given length. When we define
that R is PPT we therefore assume that S and R are given as families S = {Sk}k∈N and
R = {Rk}k∈N and we require that there exists a polynomial time TM which on security
parameter k computes Rk.

Definition 2.17 A polynomially sized family of sets is a family S = {Sk}k∈N for which
there exist c ∈ N such that Sk ⊆ {0, 1}≤kc

for all k ∈ N. A polynomial time family of binary
relations for S is R = {Rk}k∈N where there exists c ∈ N such that Rk ⊆ Sk × {0, 1}≤kc

and
where there exists a TM A and d ∈ N such that A terminates in less that kd steps on all
inputs (k, x,w) ∈ N×{0, 1}∗×{0, 1}∗ and such that on input (k, x,w) ∈ N×{0, 1}∗×{0, 1}∗,
where x ∈ Sk, the output of A is 1 iff (x,w) ∈ Rk.

Notice that with the above definition of polynomial time relation we consider a promise
problem; We require that there exists a PPT algorithm A which given (x,w) ∈ Sk × {0, 1}∗
determines whether (x,w) ∈ Rk. We have no requirements on the output of A when x 6∈ Sk.

30 Tools

3MPR-Protocol (A, l, Z, B)

prover inputs:
The prover has input (x, w) ∈ R and random bits ra ∈ {0, 1}∗.

verifier inputs:
The verifier has input x and randomness e ∈ {0, 1}l.

commit message:
The prover computes a← A(x, w; ra) and sends a to the verifier.

challenge message:
The verifier sends e to the prover.

response message:
The prover computes z ← Z(x, w, ra, e) and sends z to the verifier.

verification:
The verifier computes a bit b ← B(x, a, e, z), where 1 signals accept and 0 signals
reject.

Figure 2.5: The generic three-move public-randomness protocol for binary relation R.

This is essential as we have not required Sk to by polynomial time. Notice that from Rk ⊆
Sk × {0, 1}∗ we have that (x,w) 6∈ Rk whenever x 6∈ Sk.

We will often talk about sets and relations instead of families of sets and families of
relations. This is without loss of generality using the following transformation: Given a
family of sets S and a family of binary relations we define a corresponding set S and binary
relation R as follows: S =

⋃
k∈N{1k‖0} × Sk and R = {(1k‖0‖x,w)|∃k ∈ N((x,w) ∈ Rk)}.

This transformation is injective. The inverse transformation is given as follows: Given a set
S and a binary relation R ⊆ S × {0, 1}∗ we define a family of sets {Sk}k∈N by Sk = {x ∈
{0, 1}∗|1k‖0‖x ∈ S} and we define a family of binary relations {Rk}k∈N by Rk = {(x,w) ∈
{0, 1}∗ × {0, 1}∗|(1k‖0‖x,w) ∈ R}. Notice that if the family of relations is polynomial time,
then we can define a polynomial time algorithm which takes inputs from S × {0, 1}∗ as
follows: Given (k, x,w), parse x = 1k′‖0‖x′ and output 0 if k′ 6= k. Otherwise, run A on
(k, x′, w) and output as A.

A non-erasure Σ-protocol for relation R is a protocol for two parties, called the prover P

and the verifier V . The prover gets as input (x,w) ∈ R, the verifier gets as input x, and
the goal is for the prover to convince the verifier that he knows w such that (x,w) ∈ R,
without revealing information about w. We require that it is done using a so-called three-
move public-randomness protocol (3MPR-protocol). Such a protocol can always be specified
by two algorithms A and Z for computing the first respectively the last message sent by
the prover, an integer l specifying the challenge length, i.e. length of the random challenge
sent by the verifier, along with an algorithm B, which the verifier applies to its view after
the protocol execution to determine whether to accept or reject the proof. The generic form
of such a protocol is given in Fig. 2.5. The output b of the verifier indicates whether to
believe that the prover knows a valid witness w or not. We first proceed to give a formal
definition of the requirements needed from the protocol. After the definition we then discuss
how these correspond to the informal requirements that the verifier is convinced that the

2.9 Σ-Protocols 31

prover knows a witness when b = 1 and that the prover is guaranteed that the protocol leaks
zero information about w.

2.9.1.1 Formally Speaking

A non-erasure Σ-protocol for relation R is a 3MPR-protocol with some extra requirements.
Formally it is a tuple (A, l, Z,B, hvs, rbs, xtr), where l ∈ N and the remaining entries are six
PPT algorithms. The parameter l and the first four algorithms were described above. The
algorithm hvs is called the honest verifier simulator and takes as input x ∈ L(R), e ∈ {0, 1}l
and a uniformly random bit-string rhvs and produces as output (a, z) which is supposed to be
distributed as the (a, z) produced by a honest prover with instance x receiving challenge e —
this is defined formally below. The algorithm rbs is called the random bits simulator. It takes
as input (x,w) ∈ R, a challenge e ∈ {0, 1}l and bits rhvs, which we think of as the random
bits used by hvs in a run (a, z) ← hvs(x, e; rhvs), and it produces as output a bit-string
ra such that a = A(x,w; ra) and z = Z(x,w, ra, e). I.e. if (a, z) is the messages simulated
using hvs given just x ∈ L(R) and e ∈ {0, 1}l, if then w such that (x,w) ∈ R later becomes
known it is possible to construct random bits ra such that it looks as if (a, z) was generated
as a ← A(x,w; ra) and z ← Z(x,w, ra, e) — this is defined formally below. Finally xtr
is a knowledge extractor, which given two correct conversations with the same first message
can compute a witness — again this is defined formally below. Sometimes the extraction
process is not able to compute a witness of the exact form of that of the witnesses which
are used as input to the protocol. We will see an example that in Lemma 2.8 on page 40.
Therefore we introduce the notion of the extraction relation Rxtr. Typically Rxtr = R and
we will not mention it, but we allow that Rxtr ⊃ R, and then we only require that xtr
produces a witness w such that (x,w) ∈ Rxtr. We do however require that L(Rxtr) = L(R),
so that the existence of w for which (x,w) ∈ Rxtr proves that x ∈ L(R). We say that Σ is a
non-erasure Σ-protocol for relation R with extraction relation Rxtr. We now formalize these
requirements along with completeness.

Definition 2.18 A Σ-protocol for relation R is a tuple (A, l, Z,B, hvs, rbs, xtr, Rxtr), where
(A, l, Z,B) is a 3MPR-protocol, hvs, rbs, xtr are PPT algorithms, Rxtr is a PPT binary
relation, where L(Rxtr) = L(R), and where the following requirements hold:

completeness:
For all (x,w) ∈ R, ra ∈ {0, 1}∗ and e ∈ {0, 1}l we have that

B(x,A(x,w; ra), e, Z(x,w, ra, e)) = 1 .

(statistical) special non-erasure honest verifier zero-knowledge:

The following two random variables are (statistically close to) identically distributed for
all (x,w) ∈ R and all e ∈ {0, 1}l:

EXEC(x,w, e) = [a← A(x,w; ra); z ← Z(x,w, ra, e) : (x,w, a, ra, e, z)]

SIM(x,w, e) = [(a, z)← hvs(x, e; rhvs); ra ← rbs(x,w, e, rhvs) : (x,w, a, ra, e, z)]

32 Tools

special knowledge soundness:
For all x ∈ S and (a, e, z) and (a, e′, z′) where e, e′ ∈ {0, 1}l and e 6= e′, B(x, a, e, z) = 1
and B(x, a, e′, z′) = 1, we have that (x, xtr(x, a, e, z, e′, z′)) ∈ Rxtr.5

special membership soundness:
For all x ∈ S, if there exists (a, e, z) and (a, e′, z′) where e, e′ ∈ {0, 1}l and e 6= e′,
B(x, a, e, z) = 1 and B(x, a, e′, z′) = 1, then x ∈ L(R).6

The above definition is in line with the formalization of Σ-protocols in the Ph.D. thesis
of Cramer [Cra96], which contains a brilliant treatment of the theory of Σ-protocols. Slight
variations of the definition occur in the literature. In particular one could consider a definition
where the challenge e is generated by hvs (as opposed to being an input to hvs). We prefer
the adopted definition because it is stronger and can always be obtained (almost for free)
from the weaker definition using a trivial transformation of the protocol.7 Furthermore,
the adopted definition is necessary for certain applications, e.g. the protocol in Chapter 5.
All Σ-protocols known to the author already meet the stronger definition, so the above
transformation has no practical value; It is merely given to show that in choosing between
the definitions of hvs, nothing is lost in adopting the stronger definition.

Notice that if Σ only has special membership soundness, then given (a, e, z) and (a, e′, z′)
where e, e′ ∈ {0, 1}l and e 6= e′, B(x, a, e, z) = 1 and B(x, a, e′, z′) = 1, one has a proof that
x ∈ L(R), but it is not of the right form to be called a witness. We call (x, a, e, z, e′ , z′) a
membership witness.

We call (A, l, Z,B, hvs, xtr) a Σ-protocol if it meets the definition of a non-erasure Σ-
protocol, except that EXEC(x,w, e) = [a ← A(x,w; ra); z ← Z(x,w, ra, e) : (x,w, a, e, z)]
and SIM(x,w, e) = [(a, z) ← hvs(x, e; rhvs) : (x,w, a, e, z)]. I.e. we do not require that the
random bits can be simulated. We say that such a protocol has (statistical) special honest
verifier zero-knowledge.

Below we discuss some aspects of the definition.

2.9.1.2 The Meaning of Special Soundness

The knowledge soundness property of a Σ-protocol is supposed to guarantee the verifier that
the prover indeed knows a witness. This is guaranteed as follows: Assume that we have run
a Σ-protocol in its generic form in Fig. 2.5 on page 30. After this run the verifier knows
the values (x, a, e, z), known as a Σ-conversation. If B(x, a, e, z) = 1, then we claim that the
prover can soundly assume that the prover knows a witness, in the sense that it is written
somewhere in the state of the prover or could be computed in PPT from the state of the

5For simplicity we assume that xtr computes a function.
6Note that special knowledge soundness implies special membership soundness.
7The transformation works as follows: Assume that we have an algorithm hvs′ which given x generates

(a, e, z) such that (x, a, e, z) looks as a real conversation with instance x and uniformly random challenge e
for the protocol (A,Z, B). Consider then the protocol where the first message is computed by computing
a ← A(x,w; ra) and letting a′ = (a, eP) for uniformly random eP ∈ {0, 1}l. Then the verifier chooses a
challenge eV ∈ {0, 1}l and the protocol proceeds as the original protocol, using challenge e = eP ⊕ eV . So,
the response message is z = Z′(x,w, eV , (ra, eP)) = Z(x, w, eP ⊕ eV , ra). To simulate this protocol (in the
stronger sense), on input (x, eV), compute (x, e, z) ← hvs′(x) and let a′ = (a, eP) for eP = e ⊕ eV . Then
(a′, z) is a uniformly random conversation with challenge eV .

2.9 Σ-Protocols 33

prover. Assume namely that the prover does not know a witness. This means that the
prover can answer at most one challenge correctly, call it e0.8 Since the view of the prover is
independent of the randomness of the verifier until e is sent, this means that the probability
that the prover can answer the challenge is 2−l, namely the probability that e = e0. If
e.g. l = k, this means that the prover knows w except with exponentially small probability.
Notice that in the case l = 1, the verifier is only guaranteed that the prover knows w with
probability 1

2 . If the prover wants to be better convinced, then the proof can be repeated
k times in parallel to get probability 1 − 2−k that the prover knows w, see e.g. [Cra96] for
details on this.

2.9.1.3 The Meaning Honest Verifier Zero-Knowledge

The notion honest verifier zero-knowledge refers to the fact that a Σ-protocol in its generic
form in Fig. 2.5 on page 30 guarantees that no information about w is leaked when the verifier
behaves according to the protocol. After the protocol the verifier learned a Σ-conversation
(x, a, e, z). One can argue that these values does not reveal anything to the honest verifier,
which he could not have computed himself before interacting with the prover. Prior to the
protocol execution, the verifier could namely compute (a, z)← hvs(x, e) to obtain a simulated
Σ-conversation (x, a, e, z). By the honest verifier zero-knowledge the resulting simulated Σ-
conversation (x, a, e, z) is distributed statistically close to the real Σ-conversation that the
verifier would see. Whatever the real Σ-conversation would allow the verifier to compute he
can therefore compute from his own simulated Σ-conversation (x, a, e, z).

2.9.1.4 Tolerating Dishonest Verifiers

The above argument only holds for honest verifiers. The aspect of honesty that is essential
is that the prover chooses e independently of a. The reason for this is that in producing the
simulated Σ-conversation, the value e is used to compute a: (a, z) ← hvs(x, e). Consider
e.g. a dishonest verifier, which in Fig. 2.5 on page 30 computes e = f(a) for a one-way
function f . This results in a real Σ-conversation (x, a, e, z), where e = f(a). To simulate
this conversation we could try to compute (a, z) ← hvs(x, e). But, for the simulated Σ-
conversation (x, a, e, z) to be of the same form as the real Σ-conversation, we would need
that e = f(a). If this is the case, then in particular hvs computed a = f−1(e), which we can
only assume is hard. Therefore we cannot argue that the verifier could have computed the
real Σ-conversation himself. In particular, after the run of the protocol he now holds a piece
of data which he could not have computed himself. We cannot in general exclude that this
data contains extractable information about w.

8To see that this is the case, assume that the prover could also answer another challenge e1 correctly.
This means that after receiving e0 or e1 it could compute z0 respectively z1 such that B(x, a, e0, z0) = 1
respectively B(x, a, e1, z1) = 1. But then the prover could also in PPT compute w = xtr(x, a, e0, z0, e1, z1)
such that (x, w) ∈ Rxtr. So, the prover knows a witness. The same line of arguing holds for membership
soundness: If x 6∈ L(R), then by the special membership soundness, only one challenge can be answered.
Notice that for the above argument to go through it is essential that a is sent before e such that the two
Σ-conversations (x, a, e0, z0) and (x, a, e1, z1) have the same commit message a — this is needed to be able to
apply xtr.

34 Tools

Therefore we have no guaranteed that a Σ-protocol in its generic form is (dishonest
verifier) zero-knowledge. But, fortunately, the aspect that the verifier choses e independently
of a is an aspect which we can enforce. There are two generic approaches to this. Both of
them forces the verifier to choose e before he gets any information about a. Notice that the
straight forward approach of sending a after e fails — it was essential for the soundness that
a was sent before e. It seems that we have a dead-lock. We need to send a before e and we
need that e is sent before seeing a.

In come commitment schemes. The notion of commitment scheme is defined exactly to
be able to open the above type of dead-locks. Assume that the prover and the verifier agree
on a key K for a statistically hiding trapdoor commitment scheme. This allows them to open
the dead-lock in one of two ways.

In the first solution the verifier will be the first party to send a message. Before he is
given a he chooses e, computes c ← commitK(e; r) and sends c to the prover. Then the
prover sends a and the verifier sends (e, r). If c 6= commitK(e; r), then the prover stops the
protocol. Otherwise the protocol is completed with the challenge e. Now the verifier chooses
e before a and must always send the chosen challenge e in its second message unless it can
break the computational binding of the commitment scheme. Therefore the zero-knowledge
property is guaranteed. The soundness is not violated, as the prover has no information
about e when he computes a, by the statistical hiding of the commitment scheme.

In the second solution the prover is still the first party to send a message. After computing
a he computes c← commitK(a; r) and sends c to the prover. Then the prover sends e and the
verifier sends (a, r, z). If c 6= commitK(a; r), then the prover stops the protocol. Otherwise
the verifier bases its judgment on the values (x, a, e, z). Now the verifier only receives c

before choosing e. Since the commitment scheme is statistically hiding, the value c contains
no information about a. Therefore the verifier is forced to pick e before receiving (any
information about) e, as desired. Therefore the zero-knowledge property is guaranteed. The
soundness is not violated, as the prover cannot open c in two different ways, so if he can
answer two different challenges, then it must still be for the same a, which guaranteed the
soundness.

Notice that the first solution added a new move to the protocol, whereas the last solution
maintains the generic 3MPR-structure. Therefore the second transformation is often prefer-
able. The transformation was first described in [Dam00]. In Chapter 5 we will explore this
transformation of a Σ-protocol in detail and give a formal proof that it guarantees soundness
and zero-knowledge.

2.9.1.5 The Meaning of Non-Erasure

We discuss the meaning of non-erasure in special non-erasure honest verifier zero-knowledge.
Recall that we argued that a honest verifier learns nothing from a run of a Σ-protocol in
its generic form in Fig. 2.5 on page 30. He could have computed (x, a, e, z) himself as
(a, z) ← hvs(x, e). We claimed that these values are as good as a real Σ-conversation.
Anything the verifier can compute from the real Σ-conversation, he can compute from the
simulated Σ-conversation.

However, a subtle arises, which demonstrates just how slippery cryptography can be. If

2.9 Σ-Protocols 35

we change compute from to do with, the above claim turns out to be false. There might
actually be something that the verifier can do with the real Σ-conversation, which he cannot
do with the simulated one, when time is considered.

Consider the following setting: On any given Monday the prover and the verifier runs
the protocol in Fig. 2.5 on page 30. As a result the verifier has a Σ-conversation (x, a, e, z).
Assume that he is particularly satisfied with this conversations and takes it home with him
and shows it to his wife: Look what a particularly satisfying Σ-conversation I had with Prover
today. The wife agrees that (x, a, e, z) is a particularly satisfying Σ-conversation. Checking
his email on Tuesday Verifier sees the following message from Prover: Hey V, Remember
the Σ-conversation we had yesterday? I found it particularly satisfying. Great stuff. At
first I couldn’t really tell why, but then I had a look at the witness and the randomness
that I used. It turns out that we could actually have as many of these conversations as we
want. I’ve attached the witness and the randomness, have a look at it. P. Prover has a
look at w and ra, but really doesn’t get the point. He takes w and ra home and shows
them to his wife: Look, here is the witness and the randomness from yesterdays particularly
satisfying Σ-conversation. Got them from Verifier, and supposedly they should reveal why
the Σ-conversation was so satisfying, but I really have no clue. I know it is the right values,
look a = A(x,w; ra) and z = Z(x,w, ra, e), but I really don’t get the point!

Now, could Verifier have simulated all this to his wife without having a real Σ-conversation
with Prover? Let us assume that all Verifier gets is x on Monday and w on Tuesday, but no
Σ-conversation with Prover. On Monday he computes (a, z)← hvs(x, e) and takes (x, a, e, z)
with him home: Look what a On Tuesday he receives w. To continue the show he now has
to produce ra such that a = A(x,w; ra) and z = Z(x,w, ra, e). Then he can take w and ra

home and talk to his wife. Verifier exactly needs that the Σ-protocol has special non-erasure
honest verifier zero-knowledge. If it doesn’t he cannot cook up ra. Now that he has w he
could of course do a real conversation with himself: Compute ra, aTuesday ← A(x,w, ra)
and zTuesday ← Z(x,w, a, ra) and take (x, aTuesday, e, zTuesday) and ra with him home. But
no matter how particularly interesting this conversation might be, the values aTuesday and
zTuesday might not match the values he brought home with him on Monday. The wife is
just bound to notice this. So, exactly what is it that the verifier can do with the real Σ-
conversation and not the simulated one? Well, (x, a, e, z) on Monday and ra on Tuesday.
In the simulation he can still produce (x, a, e, z) and ra of the correct form, but not in two
steps, all on Tuesday.

When we reach Chapter 5 the wife will have become the so-called environment in our
definition of protocol security and Prover will not give up the random bits so easily. He
will be forced to leak them to Verifier because Verifier breaks into his machine on Tuesday
and because Prover was not able to erase ra after running the protocol on Monday. As the
wife, the environment will care a lot about at which time values are produced, so to simulate
the behavior of Verifier to the environment we will need that the our Σ-protocols have the
non-erasure property.

36 Tools

Σ-Protocol equality of discrete logarithms

A: Given ((i, u0, v0, u1, v1), r) ∈ R, choose t ←R Zo, and for b ∈ {0, 1}, let ab = ut
b mod

Gi. Let a = (a0, a1).

l: The challenge length is l = blog2(q)c.

Z: Let z = er + t mod o.

B: For b ∈ {0, 1}, check that ub, vb ∈ Gi and uz
b ≡ abv

e
b (mod Gi).

hvs: Given (i, u0, v0, u1, v1) and e, pick z ← Zo and for b ∈ {0, 1}, let ab = uz
bv

−e
b mod Gi.

rbs: Given r such that vb ≡ ur
b (mod Gi), let t = z − er mod o.

xtr: Given ((u0, v0, u1, v1), a0, a1, e, z, e′, z′), compute w = (z − z′)(e− e′)−1 mod o.

Figure 2.6: The Σ-protocol for proving equality of two discrete logarithms in a group with
known order.

2.9.2 Example: Discrete Logarithms in Groups with Known Order

To motivate the definition of Σ-protocols we give an example. This is the well-known proof
of equality of discrete logarithms from [CP92]. Here the setting is as follows: The prover and
the verifier share u0, u1, v0, v1 from a group G and the prover claims to known r such that
v0 = ur

0 and v1 = ur
1. The protocol from [CP92] allows the prover to convince the verifier

that this is indeed the case.

Definition 2.19 Assume that we are given a family of groups G = {Gi}, where given an
index i, specifying a group Gi, one can in PPT compute: 1) The order o ∈ N of Gi, 2) A
lower bound q ∈N on the smallest primefactor of o, 3) Whether x ∈ Gi for any x ∈ {0, 1}∗,
and 4) Group operations in Gi. The relation discrete logarithm in G is defined as follows:
The instance language S is the set {(i, u, v)}, where i specifies a group Gi and u, v ∈ Gi. The
relation is given by ((i, u, v), r) ∈ R iff r ∈ Zo and v ≡ ur (mod Gi), where all computations
are in Gi with multiplicative notation. The relation equality of discrete logarithms is defined
as follows: The instance language S is the set {(i, u0, v0, u1, v1)}, where i specifies a group
Gi and u0, v0, u1, v1 ∈ Gi. The relation is given by ((i, u0, v0, u1, v1), r) ∈ R iff r ∈ Zo and
vb = ur

b for b ∈ {0, 1}. In Fig. 2.6 the Σ-protocol equality of discrete logarithms is
given. The Σ-protocol discrete logarithm is given by dropping all values indexed 1.

Lemma 2.6 The protocol equality of discrete logarithms is a non-erasure Σ-protocol
for the relation equality of discrete logarithms with statistical special non-erasure hon-
est verifier zero-knowledge and special knowledge soundness.

Proof. It is straight forward to check the correctness. We verify the statistical special non-
erasure honest verifier zero-knowledge. Consider the values in the simulation. We have
that ab ≡ uz

bv
−e
b mod Gi, vb ≡ ur

b (mod Gi) and t = z − er mod o. This gives us that
ab ≡ uz

b(u
r
b)
−e ≡ uz−re

b ≡ ut
b (mod Gi) and z ≡ t + er (mod o), exactly as in the execution.

Therefore the relation between all values is the same in the simulation and the execution.

2.9 Σ-Protocols 37

3MPR-Protocol (I, A, l, Z, B)

setup phase:
Generate a random index i← gen(k).

prover inputs:
The prover has (x, w) ∈ R, where x ∈ Ii, and random bits ra ∈ {0, 1}∗.

verifier inputs:
The verifier has input x and randomness e ∈ {0, 1}l.

commit message:
The prover computes a← A(x, w; ra) and sends a to the verifier.

challenge message:
The verifier sends e to the prover.

response message:
The prover computes z ← Z(x, w, ra, e) and sends z to the verifier.

verification:
The verifier computes a bit b ← B(x, a, e, z), where 1 signals accept and 0 signals
reject.

Figure 2.7: The generic three-move public-randomness protocol for binary relation R, with
instances drawn from a set Ii.

We check the distribution. In the execution t is uniformly random. In the simulation z is
uniformly random and t = z − er mod o. This gives the same distribution on t.

To verify the special knowledge soundness, assume that we are given

(u0, v0, u1, v1, a0, a1, e, z0, z1, e
′, z′0, z

′
1) ,

where, for b ∈ {0, 1}, uz
b ≡ abv

e
b mod Gi and uz′

b ≡ abv
e′
b mod Gi. Then uz−z′

b ≡ ve−e′

b mod Gi.
Using that |e − e′| < q it follows that gcd(e − e′, o) = 1. So, compute α, β ∈ N such that
(e − e′)α = 1 + βo, and it follows that u

(z−z′)α
b ≡ v

(e−e′)α
b ≡ vb(v

β
b)o ≡ vb mod Gi. So,

w = (z − z′)α mod o ≡ (z − z′)(e− e′)−1 (mod o) is a correct witness. 2

2.9.3 Computational Soundness

In this section we present a weakening of the notion of Σ-protocol. We define a notion of
computational special knowledge soundness (respectively computational special membership
soundness), which is meant to capture the intuition that the xtr algorithm can compute a
witness, unless some computational assumption was broken. This computational assumption
is associated to the instances considered. The instances are given by some index i. This index
is guaranteed to have a specific distribution and specifies the set of instances that the verifier
is supposed to work for. Since i, and thus the instances, is guaranteed to have a specific
distribution, we can associate computational assumptions to the instances. We will see a use
of this in Lemma 2.8 on page 40.

The distribution on the instances is specified as follows: Let R be a binary relation, let
Σ be a Σ-protocol for R and let I = (gen, I) be a PPT family of sets. The Σ-protocol for

38 Tools

this setting is only intended to be run for random indices and instances x ∈ Ii. The generic
form of such a protocol is given in Fig. 2.7 on the page before. We formalize that no PPT
adversary can break the special soundness of Σ for instances drawn at random from the
family of sets I:

Definition 2.20 A computationally sound Σ-protocol for relation R is a tuple
(I, A, l, Z,B, hvs, rbs, xtr, Rxtr), where (I, A, l, Z,B) is a 3MPR-protocol of the form in
Fig. 2.7 on the preceding page and where the following requirements hold:

completeness:
For all i ∈ gen, (x,w) ∈ R, where x ∈ Ii, ra ∈ {0, 1}∗ and e ∈ {0, 1}l we have that

B(x,A(x,w; ra), e, Z(x,w, ra, e)) = 1 .

(statistical) special non-erasure honest verifier zero-knowledge:
The following two random variables are (statistically close to) identically distributed for
all i ∈ gen, (x,w) ∈ R, where x ∈ Ii, and all e ∈ {0, 1}l:

EXEC(x,w, e) = [a← A(x,w; ra); z ← Z(x,w, ra, e) : (x,w, a, ra, e, z)]

SIM(x,w, e) = [(a, z)← hvs(x, e; rhvs); ra ← rbs(x,w, e, rhvs) : (x,w, a, ra, e, z)]

computational special knowledge soundness:
Given an adversary A, define a Boolean distribution ensemble SKSΣ,I,A =
{SKSΣ,I,A(k, z)}k∈N,z∈{0,1}∗} (the special knowledge soundness game) as follows: Gen-
erate i ← gen(k) and compute v ← A(k, z, i). If v is of the form (x, a, e, z, e′, z′)
for x ∈ Ii and e, e′ ∈ {0, 1}l and e 6= e′, B(x, a, e, z) = 1, B(x, a, e′, z′) = 1, and
(x, xtr(x, a, e, z, e′, z′)) 6∈ Rxtr, then output 1; Otherwise output 0. We say that Σ has
computational special knowledge soundness relative to I if SKSΣ,I,A

c≈0 for all PPT A.

computational special membership soundness:
Given an adversary A, define a Boolean distribution ensemble SMSΣ,I,A =
{SMSΣ,I,A(k, z)}k∈N,z∈{0,1}∗} (the special membership soundness game) as follows: Gen-
erate i ← gen(k) and compute v ← A(k, z, i). If v is of the form (x, a, e, z, e′, z′) for
x ∈ Ii and e, e′ ∈ {0, 1}l and e 6= e′, B(x, a, e, z) = 1, B(x, a, e′, z′) = 1, and x 6∈ L(R),
then output 1; Otherwise output 0. We say that Σ has computational special membership

soundness relative to I if SMSΣ,I,A
c≈0 for all PPT A.

In the context of computational special knowledge soundness, we call a membership
witness (x, a, e, z, e′, z′) for which (x, xtr(x, a, e, z, e′ , z′)) 6∈ Rxtr a break of the extractor.
The computational special knowledge soundness property basically says that, for properly
distributed instances, it is not possible to compute a break of the extractor in polynomial
time. Notice that the game SMSΣ,I,A used to define the computational special membership
soundness is not necessarily PPT, as the test x 6∈ L(R) is typically not PPT.

2.9 Σ-Protocols 39

Σ-Protocol equality of RSA discrete logarithms

A: Given ((N, B, s, u0, v0, u1, v1), r) ∈ R, let L = dlog2(B)+3k/2e and choose a random
L-bit number t, for b ∈ {0, 1}, let ab = ut

b mod Ns+1 and let a = (a0, a1).

l: The challenge length is k/2− 2 bits.

Z: Let z = 2er + t.

B: Given ((N, B, s, u0, v0, u1, v1), a, e, z), for b ∈ {0, 1}, check that ub, vb ∈ Z∗
Ns+1 and

uz
b ≡ abv

2e
b (mod Ns+1).

hvs: Given (N, B, s, u0, v0, u1, v1) ∈ L(R) and e, pick z as a uniformly random L-bit
number and let ab = uz

bv
−2e
b mod Ns+1 for b ∈ {0, 1}.

rbs: Given r such that vb = ur
b mod Ns+1, let t = z − 2er.

xtr: Assume then that we are given ((N, B, s, u0, v0, u1, v1), a0, a1, e, z, e′, z′). Compute
d = gcd(2(e− e′), z − z′) and output w = (z − z′)/d.

Figure 2.8: The Σ-protocol for proving equality of two discrete logarithms in an RSA group.

2.9.4 Example: Discrete Logarithms in RSA Groups

To motivate the definition of a computationally sound Σ-protocol, we give an example of
a Σ-protocol which only has special knowledge soundness in the computational sense. The
prover and the verifier have input (N,B, s, u0, u1, v0, v1), where N is an RSA modulus, and
the prover claims to know r ∈ ZB such that v0 = ur

0 mod N s+1 and v1 = ur
1 mod N s+1. The

Σ-protocol will only have special membership soundness, but will only have computational
special knowledge soundness. The primary reason for this is that the order of the group
Z∗

Ns+1 is not known — knowing it is equivalent to knowing the factorization of N . Therefore
we cannot use the Σ-protocol from Fig. 2.6 on page 36. Since the order of Z∗

Ns+1 is not known
the prover cannot modular reduce its witness r ∈ ZB to Zord(Z∗

Ns+1). This is why B is given;
Its purpose is to give both the prover and the verifier a bound on the size of the witness r.
Since the order of Z∗

Ns+1 has the primefactor 2 we would be forced the use challenges from
Z2 (c.f. Fig. 2.6 on page 36). To avoid this, we set up N so that the sub-group of quadratic
residues only has large primefactors and then do the proof only for the component of u and
v in the quadratic residues.

Definition 2.21 The relation RSA discrete logarithm is defined as follows: The instance
language S is the set {(N,B, s, u, v)}, where N = pq such that p, q ∈ PRIMES(dk/2e) and
(p − 1)/2 and (q − 1)/2 are primes, s ∈ N, B ∈ N, B ≥ ord(Z∗

Ns+1), u, v ∈ Z∗
Ns+1 . The

relation is given by ((N,B, s, u, v), r) ∈ R iff r ∈ ZB and v2 = u2r mod N s+1. The relation
equality of RSA discrete logarithms is defined as follows: The instance language S is the set
{(N,B, s, u0, v0, u1, v1)}, where N , B and s are as above and u0, v0, u1, v1 ∈ Z∗

Ns+1. The
relation is given by ((N,B, s, u0, v0, u1, v1), r) ∈ R iff and r ∈ ZB and, for b ∈ {0, 1},
v2
b = u2r

b mod N s+1. In Fig. 2.8 the Σ-protocol equality of RSA discrete logarithms is
given. The Σ-protocol RSA discrete logarithm is given by dropping all values indexed 1.

We first prove that the protocol has membership soundness.

40 Tools

Lemma 2.7 The protocol equality of RSA discrete logarithms is a non-erasure Σ-
protocol for the relation equality of RSA discrete logarithms with statistical special
non-erasure honest verifier zero-knowledge and special membership soundness.

Proof. Correctness is straight forward. For the statistical zero-knowledge, the protocol and
the simulation are identical except that in the protocol t is a uniformly random number from
[0, 2L − 1) and in the simulation t is a uniformly random number from [−er, 2L − er). Since
er < 2k/2B it follows that the statistical distance is less than 2−k.

To verify the special membership soundness, assume that we are given

(N,B, s, u0, v0, u1, v1, a0, a1, e, z0, z1, e
′, z′0, z

′
1) ,

where, for b ∈ {0, 1}, uz
b ≡ abv

2e
b (mod N s+1) and uz′

b ≡ abv
2e′
b (mod N s+1). Then uz−z′

b ≡
v
2(e−e′)
b (mod N s+1). Using that e and e′ are (k/2−2)-bit values and that N = (2p′+1)(2q′+

1) for (k/2−1)-bit primes p′ and q′, we have that gcd(2(e−e′),N sM) = 1, where M = p′q′ is
the order of QN .9 This means that there exists α ∈ N such that 2(e−e′)α = 1+βN sM , and it
follows that u

(z−z′)α
b ≡ v

2(e−e′)α
b ≡ vb((vb)β)N

sM (mod N). Let ω = ((vb)−β)N
sM mod N s+1.

Since the orders of all elements of Z∗
Ns+1 divide 2N sM , we have that ω2 mod N s+1 = 1.

Therefore, v2
b = u

2(z−z′)α
b mod N s+1. So, v2

b ≡ u2r
b (mod N s+1) for some r < ord(ZNs+1) ≤

B, as desired. 2

Notice that in the proof we used the inverse of e − e′ modulo N sM . Since N sM is as
hard to compute from N s+1 as factoring N , the proof does not specify a PPT extraction
algorithm. If however the distribution of u0 is such that the strong RSA assumption holds
for (N,u0), then the protocol has computational knowledge soundness.

Lemma 2.8 Consider the following PPT family of sets. Consider any generator gen which
for security parameter k generates a k-bit RSA modulus N as specified in Definition 2.21 on
the preceding page and generates s ∈ N and uniformly random u ∈ Q∗

Ns+1. We let (N, s, u)
define the set of all instances of the form (N,B, s, u, v0, u1, v1), where B ∈ N, v0, u1, v1 ∈
{0, 1}∗. This defines a PPT family of sets.

If the strong RSA assumption holds for (N,u) generated by the generator gen, then
the protocol equality of RSA discrete logarithms is a non-erasure Σ-protocol for the
relation equality of RSA discrete logarithms with statistical special non-erasure honest
verifier zero-knowledge and computational special knowledge soundness relative to the above
PPT family of sets. The Σ-protocol is for the extraction relation Rxtr, where we put no
bound on the discrete logarithm r extracted, i.e. we do not require that r ∈ ZB.

Proof. The correctness and the statistical zero-knowledge follows as above.
To verify the computational special knowledge soundness, assume for the sake of con-

tradiction that there exists a PPT algorithm A, which given (N, s, u0) ← gen, with non-
negligible probability p, can output ((N,B, s, u0, v0, u1, v1), a0, a1, e, z, e′, z′) such that, e, e′ ∈
{0, 1}l, e 6= e′ and uz

b ≡ abv
2e
b (mod N s+1) and uz′

b ≡ abv
2e′
b (mod N s+1) and v2

0 6= u
2(z−z′)/d
0

modN s+1 (or v2
0 = u

2(z−z′)/d
0 mod N s+1 but v2

1 6= u
2(z−z′)/d
1 mod N s+1).

9We assume that the security parameter is large enough that p, p′, q, q′ > 2.

2.9 Σ-Protocols 41

We prove that if v0 6= u
(z−z′)/d
0 mod N s+1 happens with non-negligible probability p,

then we can compute a non-trivial root of u0 modulo N with probability p. For notational
convenience, let u = u0 and let v = v0. We have that uz−z′ ≡ v2(e−e′) (mod N s+1). We can
compute d = gcd(z − z′, 2(e − e′)), ε = 2(e − e′)/d and σ = (z − z′)/d and we have that
uσd ≡ vεd (mod N s+1). Since d|2(e − e′) and e and e′ are (k/2 − 2)-bit integers it follows
that gcd(d, 2N sM) ∈ {1, 2}. We can therefore compute a ∈ N such that da = 2 + b2MN s

and it follows that uσ2 ≡ vε2 (mod N s+1). By assumption v2 6= uσ2 mod N s+1, so ε > 1.
Let ω = uσv−ε mod N s+1, such that uσ ≡ ωvε (mod N s+1). Notice that ω2 mod N s+1 = 1.

We have that gcd(ε, σ) = 1, so we can compute α, β ∈ N such that αε+βσ = 1. Then u =
uαε+βσ ≡ (uα)ε(uσ)β ≡ (uα)ε(ωvε)β ≡ ωβ(uαvβ)ε (mod N s+1). So, u = ωβxε mod N s+1. If
ε is odd, then ω = ωε mod N s+1 and u = (ωβx)ε mod N s+1, and since ε > 1 we have
contradicted the strong RSA assumption. If ε is even, then u = ωβ(xε′)2 mod N s+1, where
ωβ mod N s+1 is a square root of 1. Assume that this case happens with non-negligible
probability. We can then run A on N and u where u is sampled as u = u′2 mod N s+1,
so that u′ is uniformly random among the four square roots of u and u2 = u′4 mod N s+1.
With non-negligible probability we also have that u2 = (xε′)4 mod N s+1, giving us 1 =
(u′x−ε′)4 mod N s+1. Since u′ was random among the four possible values, u′x−ε′ mod N s+1

is a non-trivial square root of 1 with non-negligible probability, which allows to derive p

and q with non-negligible probability, contradicting, among other things, the strong RSA
assumption.

So, assuming the strong RSA assumption we can assume that v2
0 = u2σ

0 mod N s+1 for
σ = (z−z′)/d, except with negligible probability. Now, by the special membership soundness
we have that there exists r for which v2

0 = u2r
0 mod N s+1 and v2

1 = u2r
1 mod N s+1. From

v2
0 ≡ u2σ

0 (mod N s+1) and v2
0 ≡ u2r

0 (mod N s+1) we get that u2r
0 ≡ u2r

0 (mod N s+1). We
have assumed that u0 is uniformly random from Q∗

Ns+1 , so u0 generates Q∗
Ns+1 except with

negligible probability, so u2
0 mod N s+1 generates Q∗

Ns+1 except with negligible probability.
From (u2

0)
r ≡ (u2

0)
σ (mod N s+1) we therefore get that σ ≡ r (mod N sM), and so u2σ

1 ≡ v2
1

(mod N sM). All in all, v2
0 = u2σ

0 mod N s+1 and v2
1 = u2σ

1 mod N s+1, except with negligible
probability. 2

Notice that r = (z − z′)/d by far is guaranteed to be from ZB. So, we needed the
relaxation with the extraction relation, as we cannot reduce r modular the unknown order
N sM .

Corollary 2.1 Consider any generator gen as defined in Lemma 2.8 on the preceding page.
We let (N, s, u) define the set of all instances (N, s, u, v) where v ∈ {0, 1}∗. This defines a
PPT family of sets.

If the strong RSA assumption holds for the generator gen, then the protocol RSA discrete

logarithm is a non-erasure Σ-protocol for the relation RSA discrete logarithm with statis-
tical special non-erasure honest verifier zero-knowledge and computational special soundness
relative to the above family of sets and extraction relation Rxtr, where we put no bound on
the discrete logarithm r extracted.

42 Tools

4MPRS-Protocol (prs, A, l, Z, B)

prover inputs:
The prover has input (x, w) ∈ R and random bits ra ∈ {0, 1}∗.

verifier inputs:
The verifier has input x and randomness e ∈ {0, 1}l and r ∈ {0, 1}∗.

reference string message:
The verifier computes s← prs(r) and sends s to the prover.

commit message:
The prover computes a← A((x, s), w; ra) and sends a to the verifier.

challenge message:
The verifier sends e to the prover.

response message:
The prover computes z ← Z((x, s), w, ra, e) and sends z to the verifier.

verification:
The verifier computes a bit b← B((x, s), a, e, z), where 1 signals accept and 0 signals
reject.

Figure 2.9: The generic four-move private reference string protocol for binary relation R.

2.9.5 Private Reference String Σ-Protocols

We define the notion of private reference string Σ-protocol (PRS Σ-protocol). This is a tuple
(prs, A, l, Z,B, hvs, rbs, xtr), where basically (A, l, Z,B, hvs, rbs, xtr) is a Σ-protocol, but
with the addition that we allow the verifier to chose a private reference string, which is used
by both parties in the protocol. Before the protocol is run the verifier should generate and
make public a string s ← prs(r), where r ←R {0, 1}∗ and prs is a PPT generator. The
generic structure of such a protocol is given in Fig. 2.9

Since the verifier is allowed to pick s, and knows r, only the verifier should depend on
s being computed correctly and r being unknown. In particular the zero-knowledge should
hold no matter how s is chosen. The knowledge soundness (membership soundness) will
again only be computational and will depend one s being computed as s ← prs(r) for
uniformly random r. Since the soundness protects the verifier, which generates s, it makes
sense to assume that s is chosen at random when verifying soundness. The only restriction
that we put on a dishonest verifier is that it knows r such that s = prs(r). This will allow
us assume that we know r when we argue the zero-knowledge. Remember that the zero-
knowledge simulation of the Σ-conversation is done to demonstrate that the verifier could
have computed the Σ-conversation on its own. Since we assume that the verifier knows r

it can enter into the computation that have the purpose of demonstrating what the verifier
could have computed on its own. Below we will discuss how to ensure that the verifier knows
r and we will give an example to justify the notion of a PRS Σ-protocol.

Definition 2.22 A PRS Σ-protocol for relation R is a tuple (prs, A, l, Z,B, hvs, rbs, xtr, Rxtr),
where (prs, A, l, Z,B) is a 4MPRS-protocol of the form in Fig. 2.9 and where the following
requirements hold:

2.9 Σ-Protocols 43

completeness:
For all s ∈ prs, (x,w) ∈ R, ra ∈ {0, 1}∗ and e ∈ {0, 1}l we have that

B((x, s), A((x, s), w; ra), e, Z((x, s), w, ra, e)) = 1 .

(statistical) special non-erasure honest verifier zero-knowledge:
The following two random variables are (statistically close to) identically distributed for
all r and s = prs(r), (x,w) ∈ R and all e ∈ {0, 1}l:

EXEC(x,w, e)

= [a← A((x, s), w; ra); z ← Z((x, s), w, ra, e) : ((x, s), w, a, ra, e, z)]

SIM(x,w, e)

= [(a, z)← hvs((x, r), e; rhvs); ra ← rbs((x, r), w, e, rhvs) : ((x, s), w, a, ra, e, z)]

computational special knowledge soundness:
Given an adversary A, define a Boolean distribution ensemble SKSΣ,prs,A =
{SKSΣ,prs,A(k, z)}k∈N,z∈{0,1}∗} (the special knowledge soundness game) as follows: Gen-
erate s ← prs(k) and compute v ← A(k, z, s). If v is of the form (x, a, e, z, e′ , z′) and
e, e′ ∈ {0, 1}l and e 6= e′, B((x, s), a, e, z) = 1, B((x, s), a, e′, z′) = 1, and
(x, xtr(x, a, e, z, e′, z′)) 6∈ Rxtr, then output 1; Otherwise output 0. We say that Σ
has computational special knowledge soundness relative to prs if SKSΣ,prs,A

c≈0 for all
PPT A.

computational special membership soundness:
Given an adversary A, define a Boolean distribution ensemble SMSΣ,prs,A =
{SMSΣ,prs,A(k, z)}k∈N,z∈{0,1}∗} (the special knowledge soundness game) as follows: Gen-
erate s ← prs(k) and compute v ← A(k, z, s). If v is of the form (x, a, e, z, e′ , z′) and
e, e′ ∈ {0, 1}l and e 6= e′, B((x, s), a, e, z) = 1, B((x, s), a, e′, z′) = 1, and x 6∈ L(R),
then output 1; Otherwise output 0. We say that Σ has computational special membership

soundness relative to prs if SMSΣ,prs,A
c≈0 for all PPT A.

2.9.5.1 Setting Up the Private Reference String

The notion of Σ-protocol is primarily a technical notion. When Σ-protocols are used for
doing actual zero-knowledge proofs, the protocols are transformed in various ways to make
them appropriate, e.g. making them zero-knowledge as opposed to special honest verifier
zero-knowledge. In particular, when using a private reference string Σ-protocol one needs a
mechanism for setting up the private reference string s. To be appropriate, this mechanism
must somehow guarantee that s ∈ prs and that the verifier knows r such that s = prs(r).
How this is done depends on the context. One possibility is to let s be generated by some
trusted party, which distributes s to the prover and the verifier and keeps r hidden! Another
possibility is to let the verifier generate s ← prs(r) and then prove to the prover in zero-
knowledge it knows r such that s = prs(r).10 The proof given by the verifier should of

10Note that such an approach would be compatible with the definition of private reference string Σ-protocol.
When the verifier is honest he will generate s at random and since he gives a zero-knowledge proof that he

44 Tools

course be appropriate for the context. If we use the private reference string Σ-protocol for
building a protocol which must be secure under concurrent composition, then the proof given
by the verifier probably must be secure under concurrent composition also. A third solution,
which is just a heuristic realization of the second approach, would have the verifier generate
s← prs(r), register s at some certificate authority and at the same time prove that it knows
r. When the prover wants to prove to the verifier he will then retrieve s from the verifier
along with a certificate saying that s belongs to the verifier and that it was proved that
the verifier knows r. Again, the appropriateness of such an approach would depend on the
context. Examples of private reference string Σ-protocols are given in the following section
and in Definition 2.27 on page 54. Chapter 5 contains our main use of Σ-protocols, to build
zero-knowledge protocols, and also covers the use of private reference string Σ-protocols. A
formal model for modeling the setup of the private reference string is given in Section 3.8.8.

2.9.6 Example: A PRS Σ-Protocol for All of NP

To motivate the notion of PRS Σ-protocol, in this section we describe a PRS Σ-protocol for
all of NP. The first zero-knowledge protocol for all of NP was presented by Goldreich, Micali
and Wigderson [GMW86].

Assume that we given any polynomial time relation R ⊆ S ×{0, 1}∗. By definition there
exists a polynomial time TM A which on input (x,w) ∈ Sk×{0, 1}∗ outputs 1 iff (x,w) ∈ Rk.
Since there exists a polynomial kd bounding the running time of A we can without loss of
generality assume that the algorithm for computing Rk is given by a polynomially sized family
of circuits. This is a PPT generator C which on input k and x ∈ Sk outputs a description
of a circuit Ck for computing w 7→ A(k, x,w). The circuit is specified by a value C =
(l, (Gl, . . . , Gl+m−1), L), where l ∈ N is the number of circuit input gates, (Gl, . . . , Gl+m−1)
is the circuit structure and L ∈ {0, 1}4m is the circuit logic. Each of the gates Gi is of the
form (i0, i1), where 0 ≤ {i0, i1} < i are the indices of the input gates of Gi. The circuit logic
L is used to specify the gate logic of each gate. We index L using i ∈ {l, . . . , l + m − 1}
and (b0, b1) ∈ {0, 1} × {0, 1} using the scheme Li,b0,b1 = L4(i−l)+2b0+b1 . In the following we
assume that the circuit structure is fixed and that only the circuit logic L and the input w

are variables. For w ∈ {0, 1}l the circuit evaluation is a value L[w] ∈ {0, 1}l+m, defined as
follows: L[w]i = wi for i = 0, . . . , l − 1, L[w]i = Li,L[w]i0 ,L[w]i1

for i = l, . . . , l + m − 1. The
circuit output is L[w]l+m−1.

We make an observation about the information needed to evaluate a circuit on a given
input. This observation will be essential to our protocol. Assume that you know the structure
of a circuit but does not know the input w or the logic L. To verify that a value E ∈ {0, 1}l+m

is a correct circuit evaluation all you need to know is w and the bit in each gate logic which
specifies the output on the specific gate inputs resulting from evaluating C on w. We call
the specification of these entries a w-path and we call the values in the entries the w-path
logic. For w ∈ {0, 1}l, the w-path in L is defined as follows: Let E = L[w] be the circuit

knows r, he will keep r hidden. This guarantees the special soundness of the Σ-protocol — a property in
which the verifier is interested. If on the other hand the verifier is corrupted, the proof that r is known is
enough to guarantee special honest verifier zero-knowledge of the Σ-protocol — a property in which the prover
is interested.

2.9 Σ-Protocols 45

evaluation E ∈ {0, 1}l+m. The w-path is P = (Pl, . . . , Pl+m−1), where for i = l, . . . , l+m−1
we let Gi = (i0, i1) be the i’th gate structure and let Pi = 4(i− l) + 2Ei0 + Ei1 . The w-path
logic in L is V = (Vl, . . . , Vl+m−1) ∈ {0, 1}m, where Vi = LPi for i = l, . . . , l + m − 1 and P

being the w-path in L. Assume that you are given an input w ∈ {0, 1}∗, a w-path P and
a w-path logic V . To compute a circuit evaluation, let Ei = wi for i = 0, . . . , l − 1. Then
for i = l, . . . , l + m − 1, let Gi = (i0, i1) be the i’th gate structure and let Ei = Li,Ei0

,Ei0
.

Notice that this is possible as, by definition, Li,Ei0
,Ei0

= L4(i−l)+2E0+E1
= LPi = Vi, and Vi

is known.
We describe a technique known as circuit scrambling, which given a circuit logic L and an

input w generates a new uniformly random circuit logic L′ (for the same circuit structure) and
a new uniformly random input w′ with the only relation to L and w that L′[w′]l+m = L[w]l+m.

Assume that we are given a circuit C with l input gates and m gates. Let L be the
circuit logic. A circuit scrambler is a bit string S ∈ {0, 1}l+m. For an input w ∈ {0, 1}l,
we define w′ = S〈w〉 ∈ {0, 1}l by S〈w〉i = Si ⊕ wi for i = 1, . . . , l. For a circuit logic L

we define S〈L〉 ∈ {0, 1}4m by S〈L〉i,b0,b1 = Li,b0⊕Si0
,b1⊕Si1

⊕ Si for i = l, . . . , l + m − 1,
(b0, b1) ∈ {0, 1}×{0, 1} and Gi = (i0, i1) being the i’th gate structure. We make an essential
observation:

Lemma 2.9 For all circuit logics L ∈ {0, 1}4m, all inputs w ∈ {0, 1}l and all circuit scram-
bler S ∈ {0, 1}l+m we have that S〈L〉[S〈w〉] = L[w]⊕ S.

Proof. For i = 0, . . . , l − 1 we have that S〈L〉[S〈w〉]i = S〈w〉i = Si ⊕ wi = wi ⊕ Si =
L[w]i ⊕ Si = (L[w] ⊕ S)i. For i = l, . . . , l + m− 1 we have that

S〈L〉[S〈w〉]i = S〈L〉i,S〈L〉[S〈w〉]i0 ,S〈L〉[S〈w〉]i1
= S〈L〉i,(L[w]⊕S)i0

,(L[w]⊕S)i1

= S〈L〉i,L[w]i0⊕Si0
,L[w]i1⊕Si1

= Li,(L[w]i0⊕Si0
)⊕Si0

,(L[w]i1⊕Si1
)⊕Si1

⊕ Si

= Li,L[w]i0 ,L[w]i1
⊕ Si

= L[w]i ⊕ Si = (L[w]⊕ S)i .

2

The above lemma gives us an alternative way to compute a circuit scrambling. Pick
E′ ∈ {0, 1}l+m uniformly at random and let S = E′ ⊕ L[w]. Since E′ is uniformly random,
this gives a uniformly random scrambler S. Then let E = S〈L〉[S〈w〉]. Using the above
lemma we have that E = L[w] ⊕ S = L[w] ⊕ (E′ ⊕ L[w]) = E′. I.e. E′ = S〈L〉[S〈w〉]. In
this process we first picked the value E′ = S〈L〉[S〈w〉] (without using w) and then (using w)
we isolated the scrambler S. In the normal direction we first pick S (without using w) and
then we compute E′ = S〈L〉[S〈w〉] (using w). This gives us a Σ-protocol where the prover
commits to S and E′, receives a challenge e ∈ {0, 1} and then based on e reveals either S

or E′. The honest verifier simulator and the random bits faking algorithm will use that the
simulator can always compute the one value out of S and E′ which is to be revealed and
that the other value can be computed when w becomes known. The details are given in
Fig. 2.10 on the next page.

46 Tools

A PRS Σ-protocol for all of NP

prover inputs:
The prover has input (x, w) ∈ R.

verifier inputs:
The verifier has input x and randomness e ∈ {0, 1}.

reference string message:
The verifier computes K ← gen(r) and sends K to the prover, where gen is the key
generator for a statistically hiding commitment scheme.

commit message:
The prover computes:

1. S ←R {0, 1}l+m−1 × {0} and CS = commitK(S; rS).

2. w′ = S〈w〉 and Cw = commitK(w′, rw).

3. L′ = S〈L〉 and CL,i = commitK(L′
i, rL,i) for i = 0, . . . , 4m− 1.

4. P ′: the w′-path in L′.

and sends (CS , Cw, {CL,i}4m−1
i=0) to the verifier.

challenge message:
The verifier sends e ∈ {0, 1} to the prover.

response message:

• If e = 0, then the prover sends (S, rS) and {(L′
i, rL,i)}4m−1

i=0 to the verifier.

• If e = 1, then the prover sends (w′, rw), P ′ and (L′
P ′

i
, rL,P ′

i
) for i = l, . . . , l+m−1

to the verifier.

verification:

• If e = 0, then the verifier accepts iff CS = commitK(S, rS), cL,i =
commitK(L′

i, rL,i) for i = 0, . . . , 4m− 1, L′ = S〈L〉 and Sl+m−1 = 0.

• If e = 1, then the prover accepts iff Cw = commitK(w′, rw), CL,P ′
i

=
commitK(L′

P ′
i
, rL,P ′

i
) for i = l, . . . , l + m − 1, E′ = (L′

P ′
l
, . . . , L′

P ′
l+m−1

) is the
evaluation for w′-path P ′ and L′

P ′
l+m−1

= 1.

honest verifier simulator:

• If e = 0, then compute:

1. S ←R {0, 1}l+m−1 × {0} and CS = commitK(S; rS).
2. Cw = commitK(?, r′w).
3. L′ = S〈L〉 and CL,i = commitK(L′

i, rL,i) for i = 0, . . . , 4m− 1.

and let a = (CS , Cw, {CL,i}4m−1
i=0) and z = ((S, rS), {(L′

i, rL,i)}4m−1
i=0).

Figure 2.10(a) (cont. in Fig. 2.10(b) on the facing page): A PRS Σ-protocol for all of NP

2.9 Σ-Protocols 47

A PRS Σ-protocol for all of NP

honest verifier simulator (cont.):

• If e = 1, then compute:

1. E′ ∈ {0, 1}l+m uniformly at random.
2. For i = l, . . . , l + m − 1, let P ′

i = 4(i − l) + 2E′
i0

+ E′
i1

, and let P ′ =
(P ′

l , . . . , P
′
l+m−1).

3. For i = l, . . . , l+m−1, let L′
P ′

i
= E′

i and let CL,P ′
i

= commitK(L′
P ′

i
, rL,P ′

i
).

4. For j = 0, . . . , 4m− 1, where j is not one of the values P ′
i for i = l, . . . , l +

m− 1, let CL,j = commitK(?, r′L,j).
5. For i = 0, . . . , l − 1, let w′

i = E′
i, let w′ = (w′

0, . . . , w
′
l−1) and let Cw =

commitK(w′, rw).
6. CS = commitK(?; r′S).

and let a = (CS , Cw, {CL,i}4m−1
i=0) and z = ((w′, rw), P ′, {(L′

P ′
i
, rL,P ′

i
)}l+m−1

i=l).

random bits faking:
Given w such that (x, w) ∈ R, e, values as generated by the honest verifier above,
and r such that K = gen(r), continue as follows:

• If e = 0, then compute:

1. w′ = S〈w〉 and use r and r′w to compute rw such that Cw =
commitK(w′, rw).

2. P ′: the w′-path in L′.

This defines the remaining internal state of the prover.

• If e = 1, then compute:

1. S = E′ ⊕ L[w] and use r and r′S to compute rS such that CS =
commitK(S; rS).

2. L′ = S〈L〉 and for j = 0, . . . , 4m − 1, where j is not one of the values
Pi for i = l, . . . , l + m − 1, use r and r′L,j to compute rL,j such that
CL,j = commitK(L′

j , rL,j).

This defines the remaining internal state of the prover.

extraction:
Given x, a = (CS , Cw, {CL,i}4m−1

i=0), z0 = ((S, rS), {(L′
i,0, rL,i,0)}4m−1

i=0 and
z1 = ((w′, rw), {(L′

P ′
i ,1, rL,P ′

i ,1)}l+m−1
i=l }), where CS = commitK(S, rS), cL,i =

commitK(L′
i,0, rL,i,0) for i = 0, . . . , 4m − 1, L′

0 = S〈L〉, Sl+m−1 = 0 and Cw =
commitK(w′, rw), CL,P ′

i
= commitK(L′

P ′
i ,1, rL,P ′

i ,1) for i = l, . . . , l + m − 1, E′ =
(L′

P ′
l ,1, . . . , L

′
P ′

l+m−1,1) is the evaluation for w′-path P ′ and L′
P ′

l+m−1,1 = 1, proceed as
follows:

• If L′
P ′

i ,1 6= L′
P ′

i ,0 for some i ∈ {l, . . . , l + m− 1}, then output w = ⊥.

• Otherwise, let w = S〈w′〉.

Figure 2.10(b) (cont. from Fig. 2.10(a) on the facing page): A PRS Σ-protocol for all of NP

48 Tools

Lemma 2.10 The protocol in Fig. 2.10 on page 46 is a PRS Σ-protocol for R.

Proof. The correctness is straight forward to verify.

We verify the special non-erasure honest verifier zero-knowledge. When e = 0 the verifi-
cation is straight forward using that the fake openings of the commitments are distributed
statistically indistinguishable from real commitments: In the honest verifier simulator S and
L′ and the commitments CS and CL,i were computed according to the protocol and when w

is given in the random bits faking, w′ and P ′ are computed according to the protocol and
the fake commitment Cw is opened to w′. For the case e = 1 observe that for S = E′ ⊕L[w]
and S〈L〉[S〈w〉] = L[w] ⊕ S (from Lemma 2.9 on page 45) it follows that S is uniformly
random and E′ = S〈L〉[S〈w〉], from which it follows that S has the same distribution as
in the protocol and all the values P ′

i , L′
P ′

i
and w′ computed in the honest verifier simulator

is computed as in the protocol when the scrambler S is used. Since the random bit faking
algorithm simply finishes the protocol using S and opens the fake commitments accordingly,
the claim follows.

Finally, for the computational special membership soundness, let A be any adversary for
the game SKSΣ,gen,A(k, z). It is given (k, z,K) for K ← gen(k) and, without loss of general-
ity, outputs (x, a, 0, z0, 1, z1). Assume that both (x, a, 0, z0) and (x, a, 1, z1) are accepting and
let w denote the value computed in extraction in Fig. 2.10 on page 46. Let p(k, z) denote the
probability that w = ⊥. When w = ⊥, then L′

P ′
i ,1 6= L′

P ′
i ,0 for some i ∈ {l, . . . , l+m−1}. This

means that for some i ∈ {l, . . . , l + m− 1} we have that CL,P ′
i

= commitK(L′
P ′

i ,1, rL,P ′
i ,1) and

CL,P ′
i

= commitK(L′
P ′

i ,0, rL,P ′
i ,0) for L′

P ′
i ,1
6= L′

P ′
i ,0. In particular we have computed a double

opening of CL,P ′
i
. Let A′ be an adversary which given (k, z,K) runs SKSΣ,gen,A(k, z) using

(k, z,K) as input A and if w = ⊥, then it outputs the double opening described. Otherwise,
it outputs arbitrarily. Clearly Pr[DOUBLE(gen,commit),A′ = 1] ≥ p(k, z). Since (gen, commit)

is computationally binding it follows that DOUBLE(gen,commit),A′
c≈0 and therefore p(k, z)

c≈0.
We can therefore without loss of generality proceed the analysis under the assumption that
x = ⊥ does not happen. Assume therefore that we are given values as specified in extraction
in Fig. 2.10 on page 46 and that L′

P ′
i ,1 = L′

P ′
i ,0

for all i ∈ {l, . . . , l + m− 1}. We then have

values S ∈ {0, 1}l+m, w′ ∈ {0, 1}l, L′
0 ∈ {0, 1}4m and P ′, where L′

0 = S〈L〉, Sl+m−1 = 0 and
E′ = (L′

P ′
l ,0, . . . , L

′
P ′

l+m−1,0) is the w′-path logic and L′
P ′

l+m−1,0 = 1. Let w = S〈w′〉. This

means that w′ = S〈w〉. Therefore L′
0[w

′] = S〈L〉[S〈w〉] = L[w]⊕S. Since Sl+m−1 = 0, this in
particular implies that L′

0[w
′]l+m−1 = L[w]l+m−1. Since (L′

P ′
l ,0, . . . , L

′
P ′

l+m−1,0) is the w′-path

logic in L′
0 and L′

P ′
l+m−1,0 = 1 it follows that L′

0[w
′]l+m−1 = 1. So, L[w]l+m−1 = 1. This in

turn implies that (x,w) ∈ Rk. All in all we have that Pr[SKSΣ,gen,A(k, z) = 1] ≤ p(k, z) and
p(k, z)

c≈0, from which it follows that SKSΣ,gen,A(k, z)
c≈0, as desired. 2

Theorem 2.4 If there exists a statistically hiding trapdoor commitment scheme, then there
exists a PRS Σ-protocol for all polynomial time relations.

2.9 Σ-Protocols 49

2.9.7 Computational Soundness and Private Reference Strings

One can also consider private reference string Σ-protocols with computational soundness
relative to some PPT family of sets I. In defining this notion the game SKSΣ,(I,prs),A or
SMSΣ,(I,prs),A is played with A given (i, s), where i ← gen and s ← prs, and A must
produce a break with an instance from Ii. We will give an example of such a protocol in
Section 2.9.9, but before we can do this we will need some additional tools presented in the
section separating us from Section 2.9.9.

2.9.8 Monotone Logical Composition

In this section we describe how to make monotone logical compositions of PPT binary re-
lations and non-erasure Σ-protocol. The constructions are straight-forward generalizations
of constructions from [CDS94]. The constructions do not seem to appear in any published
work, but their existence was claimed, and used, in [DN02b].

Definition 2.23 Let X = {xi} be a set of variables. The set MBF(X) of monotone Boolean
formula over X is the set of finite Boolean formulas over X for which: If F ∈ MBF(X),
then either F [X] = xi for xi ∈ X or F [X] = F1[X] ∨ F2[X] for F1[X], F2[X] ∈ MBF[X] or
F [X] = F1[X] ∧ F2[X] for F1[X], F2[X] ∈ MBF[X]. We use ‖F [X]‖ to denote the size of
a monotone Boolean formula F [X]. The size is defined by ‖xi‖ = 0 and ‖F1[X] ∨ F2[X]‖ =
‖F1[X] ∧ F2[X]‖ = 1 + ‖F1[X]‖ + ‖F2[X]‖. A monotone Boolean formula family over X

is a family F [X] = {Fk}k∈N, where Fk[X] ∈ MBF[X]. We use ‖F [X]‖ to denote the
size of a monotone Boolean formula family F [X]. The size is defined to be the function
N→ N, k 7→ ‖Fk[X]‖. A polynomial monotone Boolean formula family is a monotone Boolean
formula family F [X], where there exists a PPT machine, which on input k outputs the tree
describing Fk according to the recursive definition of MBF[X]. In particular ‖F [X]‖ is upper
bounded by a polynomial.

Definition 2.24 Let R0 and R1 be PPT binary relations. We define the conjunction respec-
tively the disjunction of R0 and R1 by

(R0 ∧R1)((x0, x1), (w0, w1)) ≡ R0(x0, w0) ∧R1(x1, w1) ,

(R0 ∨R1)((x0, x1), w) ≡ R0(x0, w) ∨R1(x1, w) .

Let R = {Ri} be a set of PPT binary relations. Let X be a set of variables containing
a symbol Ri for each Ri ∈ R. Let F [X] be a monotone Boolean formula over X.11 By
F [R] we mean the PPT binary relation defined by F [R] = Ri when F [X] = Ri and F [R] =
F1[R] ∨ F2[R] (respectively F [R] = F1[R] ∧ F2[R]) when F [X] = F1[X] ∨ F2[X] (respectively
F [X] = F1[X] ∧ F2[X]). Let F [X] be a polynomial monotone Boolean function family over
the set X. We define the PPT binary relation F [R] by ((k, x), w) ∈ F [R] iff (x,w) ∈ Fk[R].

Lemma 2.11 Let R = {Ri} be a finite set of PPT binary relations and let F be a polynomial
monotone Boolean formula over R. Then F [R] is a PPT binary relation.

11Below we often call a monotone Boolean formula over X a monotone Boolean formula over R.

50 Tools

Proof. We describe a PPT algorithm A for evaluating F [R]. Given ((k, x), w) we can use
the PPT machine for F to write out the tree describing Fk in PPT. We then parse x as
(x1, . . . , xl) and parses w as (w1, . . . , wl) according to the description of the tree. For each
leaf F [R] = Ri we then compute vi = Ri(x,w). This can be done in PPT because Ri

is PPT and because we consider a finite set of Ri, which allows us to make the code for
evaluating each Ri part of A. Then the formula for Fk is evaluated in (v1, . . . , vl) using
the tree description of Fk. This can also be done in polynomial time as the size of F is
polynomial. 2

Definition 2.25 Let Σ0 = (A0, l0, Z0, B0, hvs0, rbs0, xtr0) and Σ1 = (A1, l1, Z1, B1, hvs1,

rbs1, xtr1) be non-erasure Σ-protocols. We define the conjunction respectively the disjunction
of Σ0 and Σ1 by Fig. 2.11 on the facing page and Fig. 2.12 on page 52. Let Σ = {Σi}
be a set of Σ-protocols and let F be a monotone Boolean formula over Σ. By F [Σ] we
denote the protocol defined by F [Σ] = Σi for F = Σi, F [Σ] = F1[Σ] ∨ F2[Σ] (respectively
F [Σ] = F1[Σ]∧F2[Σ]) for F = F1 ∨F2 (respectively F = F1 ∧F2). Let F [X] be a polynomial
monotone Boolean function family over Σ and assume that Σ is finite. We define the Σ-
protocol F [Σ] were all algorithms A ∈ {A,Z,B, hvs, rbs, xtr} on input ((k, x), w) runs the
corresponding algorithm Ak from Fk[Σ].

Theorem 2.5 Let Σ0 and Σ1 be a (statistical) non-erasure Σ-protocols for relations R0

respectively R1. Then Σ0∨Σ1 is a (statistical) non-erasure Σ-protocol for relation R0∨R1 and
Σ0 ∧ Σ1 is a (statistical) non-erasure Σ-protocol for relation R0 ∧ R1. And, if for b ∈ {0, 1}
it holds that Σb have computational special soundness relative to I with private reference
string prs, then Σ0∧Σ1 and Σ0∨Σ1 have computational special soundness relative to I with
private reference string prs.

Proof. Following the proof of Lemma 2.11 on the preceding page we can prove that all
algorithms of F [Σ] are indeed PPT. The proof of the first part then follows by a straight-
forward extension of the proof techniques from [CDS94] to consider also the algorithms hvs
and rbs.

We proceed to prove the second part of the lemma. For this purpose, let A be any
adversary against the computational special soundness of F [Σ] for relation F [R]prs. Con-
sider any value k for the security parameter and let lk be the number of leafs in the tree
for Fk. For each j ∈ {1, . . . , lk}, let Σj be the Σ-protocol for that leaf and let R

prs
j be

the relation for Σj. We describe how to construct from A an adversary Aj against the
computational special soundness of Σj for relation R

prs
j . We define the adversary recur-

sively. If F = Σj, then A = A. If F = F0 ∨ F1, then proceed as follows: Pick b ∈ {0, 1}
such that Σj occurs in Fb. We show how to construct an adversary A∨,Fb

against the
computational soundness of Fb[Σ] for relation Fb[R]prs. Then an adversary against the
computational soundness of Σj for the relation R

prs
j can be constructed recursively from

A∨,Fb
. When A∨,Fb

is given (k, z) and (i, s) ∈ (gen, prs) it inputs these values to A and
receives an output v. If v is a break of the computational special soundness of F [Σ]
for F [R], then v is of the form ((x0, x1), (a0, a1), e, (z0, z1, e0, e1), e′, (z′0, z

′
1, e

′
0, e

′
1)), where

2.9 Σ-Protocols 51

Σ-Protocol Σ0 ∨ Σ1

We define (A, l, Z, B, hvs, rbs, xtr) = Σ0 ∨ Σ1 as follows:

• Let l = min{l0, l1}.

• The algorithm a = A((x0, x1), w) runs as follows: Pick the smallest b ∈ {0, 1}
for which (xb, w) ∈ R. Then compute ab ← Ab(xb, w; rb) and (a1−b, z1−b) ←
hvs(x1−b, e1−b; rhvs,1−b) for uniformly random e1−b ∈ {0, 1}l. Let a = (a0, a1). The
random bits used by A are rA = (rA,b, e1−b, rhvs,1−b).

• The algorithm z = Z(x, w, rA, e) runs as follows: Let x = (x0, x1) and pick the
smallest b ∈ {0, 1} for which (xb, w) ∈ R. Let rA = (rA,b, e1−b, rhvs,1−b) and let
eb = e⊕ e1−b. Then compute zb = Zb(xb, w, rA,b, eb) and let z = (e0, e1, z0, z1).

• The algorithm b = B(x, a, e, z) runs as follows: Let x = (x0, x1), let a = (a0, a1)
and let z = (e0, e1, z0, z1). Let b = 1 if e = e0 ⊕ e1 and B(x0, a0, e0, z0) =
B(x1, a1, e1, z1) = 1; Otherwise, let b = 0.

• The algorithm (a, z) ← hvs(x, e) runs as follows: Pick e0 ∈ {0, 1}l uniformly at
random and let e1 = e ⊕ e0. Then compute (ab, zb) ← hvsb(xb, eb; rhvs,b) for b ∈
{0, 1}. Let (a, z) = ((a0, a1), (e0, e1, z0, z1)). The random bits used by hvs are
rhvs = (e0, rhvs,0, rhvs,1).

• The algorithm rA ← rbs(x, w, e, rhvs) runs as follows: Let x = (x0, x1), let rhvs =
(e0, rhvs,0, rhvs,1) and let e1 = e⊕e0. Pick the smallest b ∈ {0, 1} for which (xb, w) ∈ R
and compute rA,b ← rbsb(xb, w, eb, rhvs,b). Let rA = (rA,b, e1−b, rhvs,1−b).

• The algorithm w = xtr(x, a, e, z, e′, z′) runs as follows: Let x = (x0, x1), let a =
(a0, a1), let z = (e0, e1, z0, z1) and let z′ = (e′0, e

′
1, z

′
0, z

′
1). Since e0 ⊕ e1 = e 6=

e′ = e′0 ⊕ e′1 it follows that there exists b ∈ {0, 1} such that eb 6= e′b. Let w =
xtr(xb, ab, eb, zb, e

′
b, z

′
b).

• If Σ0 and Σ1 take a private reference strings, then so does Σ0 ∨Σ1, and it inputs the
same private reference string to both Σ0 and Σ1.

Figure 2.11: The disjunction of two Σ-protocols.

e 6= e′, and for b ∈ {0, 1}: B(xb, ab, eb, zb) = 1, B(xb, ab, e
′
b, z

′
b) = 1, and e0 ⊕ e1 = e,

e′0 ⊕ e′1 = e′ and (xb, xtr(xb, ab, eb, zb, e
′
b, z

′
b)) 6∈ Fb[R] for b ∈ {0, 1}. The adversary A∨,Fb

outputs (xb, ab, eb, zb, e
′
b, z

′
b). Since eb 6= e′b for at least one of the values b ∈ {0, 1} this

means that SKSF0[Σ],(I,prs),A∨,F0
(k, z) + SKSF1[Σ],(I,prs),A∨,F1

(k, z) ≥ SKSF [Σ],(I,prs),A(k, z).
When F = F1 ∧ F1 we can in the same way define from A adversaries A∧,Fb

such that
SKSF0[Σ],(I,prs),A∧,F0

(k, z) + SKSF1[Σ],(I,prs),A∧,F1
(k, z) ≥ SKSF [Σ],(I,prs),A(k, z). Traversing

this recursively we get for each Σi an adversary Ai such that

SKSF [Σ],(I,prs),A(k, z) ≤
lk∑

l=1

SKSΣj ,(I,prs),Aj
(k, z) . (2.5)

Some of the Σ-protocols Σj in the leafs might be the same Σ-protocol, Σi say. We show how
to collapse the adversaries for such Σ-protocols into one adversary for Σi. Let Ji be the set
of indices j, where Σj = Σi. When AΣi is given (k, z) and (i, s) ∈ (gen, prs) it inputs these

52 Tools

Σ-Protocol Σ0 ∧ Σ1

We define (A, l, Z, B, hvs, rbs, xtr) = Σ0 ∧ Σ1 as follows:

• Let l = min{l0, l1}.

• The algorithm a = A(x, w) runs as follows: Let x = (x0, x1) and let w = (w0, w1).
For b ∈ {0, 1}, compute ab = Ab(xb, wb; rA,b). Let a = (a0, a1).

• The algorithm z = Z(x, w, rA, e) runs as follows: Let x = (x0, x1), let w = (w0, w1)
and let rA = (rA,0, rA,1). For b ∈ {0, 1}, compute zb = Z(xb, wb, rA,b, e).

• The algorithm b = B(x, a, e, z) runs as follows: Let x = (x0, x1), let a = (a0, a1) and
let z = (z0, z1). Let b = 1 if B(x0, a0, e, z0) = B(x1, a1, e, z1) = 1; Otherwise, let
b = 0.

• The algorithm (a, z) ← hvs(x, e) runs as follows: Let x = (x0, x1). For b ∈ {0, 1}
compute (ab, zb) ← hvsb(xb, e; rhvs,b). Let (a, z) = ((a0, a1), (z0, z1)). The random
bits used by hvs are rhvs = (rhvs,0, rhvs,1).

• The algorithm rA ← rbs(x, w, e, rhvs) runs as follows: Let x = (x0, x1), let
w = (w0, w1) and let rhvs = (rhvs,0, rhvs,1). For b ∈ {0, 1}, compute rA,b ←
rbs(xb, wb, e, rhvs,b). Let rA = (rA,0, rA,1).

• The algorithm w = xtr(x, a, e, z, e′, z′) runs as follows: Let x = (x0, x1), let
a = (a0, a1), let z = (z0, z1) and let z′ = (z′0, z

′
1). For b ∈ {0, 1}, compute

wb = xtr(xb, ab, e, zb, e
′
b, z

′
b). Let w = (w0, w1).

• If Σ0 and Σ1 take a private reference string, then so does Σ0 ∧Σ1, and it inputs the
same private reference string to both Σ0 and Σ1.

Figure 2.12: The conjunction of two Σ-protocols.

values to each of the adversaries Aj , for j ∈ Ji, and receives an output vj from each. If any
of the vj is a break of the computational special soundness of Σi for Ri, then AΣi outputs
one of these breaks. We have that

SKSΣi,(I,prs),AΣi
(k, z) ≥ max{SKSΣj ,(I,prs),Aj

(k, z)}j∈Ji . (2.6)

For each Σi, let αi = ‖Ji‖. By Eq. 2.6 we have that

αi SKSΣi,(I,prs),AΣi
(k, z) ≥

∑
j∈Ji

SKSΣj ,(I,prs),Aj
(k, z) . (2.7)

Using Eq. 2.5 on the preceding page and Eq. 2.7 we have that

SKSF [Σ],(I,prs),A(k, z) ≤
lk∑

l=1

SKSΣj ,(I,prs),Aj
(k, z)

=
∑
Σi∈Σ

∑
j∈Ji

SKSΣj ,(I,prs),Aj
(k, z)

≤
∑
Σi∈Σ

αi SKSΣi,(I,prs),AΣi
(k, z) .

(2.8)

2.9 Σ-Protocols 53

Let fi(k, z) = SKSΣi,(I,prs),AΣi
(k, z). Using the line of arguing in Lemma 2.11 on page 49

we can argue that AΣi is PPT, so from the premise of the lemma we have that fi(k, z) is
negligible. Since F is a polynomial formula we have that αi is a polynomial. Therefore∑

Σi∈Σ αi(k)fi(k, z) is negligible by Lemma 2.1 on page 11. Using Eq. 2.8 on the facing page
this gives us that SKSF [Σ],(I,prs),A(k, z) is negligible, as desired. 2

2.9.9 Example: Discrete Logarithms in RSA Groups, Revisited

In this section we describe a new Σ-protocol for proving equality of RSA discrete logarithms.
Recall that the Σ-protocol in Section 2.9.4 could prove existence of an r such that v2

0 = u2r
0

and v2
1 = u2r

1 ; This, however, does not guaranteed that there exists r′ such that v0 = ur′
0 and

v1 = ur′
1 . The goal of this section is to improve the Σ-protocol of Section 2.9.4 such that

we can prove existence of r such that v0 = ur
0 and v1 = ur

1. We will need such a proof in
Chapter 6.

Notice that if v2
0 = u2r

0 and v2
1 = u2r

1 and v0, u0, v1 and u1 are quadratic residues,
then because squaring is a bijection in the group of quadratic residues in the RSA groups
we consider, it follows that v0 = ur

0 and v1 = ur
1. We will exploit this fact in improving

the Σ-protocol from Section 2.9.4. As a tool for improving the Σ-protocol we will therefore
need a proof of quadratic residuosity in RSA groups. The very first zero-knowledge proof
ever published was for proving RSA quadratic residuosity. It was published by Goldwasser,
Micali and Rackoff in [GMR85]. Here we will however construct a new proof. The reason
why we insist on constructing a new one is that the proof in [GMR85] communicates k2 bits
per proof and that we need a proof communicating only O(k) bits to obtain some of the
efficiency results in later chapters.

2.9.9.1 An Integer Commitment Scheme

We start by describing a statistically hiding commitment scheme by Fujisaki and Okamoto
[FO97], which we will use to construct an Σ-protocol for proving quadratic residuosity in
RSA groups.

Let (p, q) ← gen′ be an RSA generator as in Definition 2.21 on page 39. Let N = pq,
generate uniformly h ∈ Z∗

N and let g = hα mod N for uniformly random α ∈ Z22k . This
defines the key generator (N,h, g) ← gen for the commitment scheme. The message space
is Z and commitment function is given by

commitN,h,g(m; r) = gmhr mod N ,

for uniformly random r ∈ Z22k . Since gm ∈ 〈h〉 and hr mod N is statistically close to
uniformly random in 〈h〉 it follows that the scheme is statistically hiding. The following
theorem is proved in [FO97]:

Theorem 2.6 If the strong RSA assumption holds for gen′, then the Fujisaki-Okamoto com-
mitment scheme is a statistically hiding commitment scheme.

54 Tools

Σ-Protocol multiplicative relation between committed values

A: Let L = dlog2(B) + 3k/2e. Choose uniformly random y ∈ Z2L , s2 ∈ 2d7k/2e s3 ∈
2L+d7k/2e. Let d2 = gyhs2 mod N and d3 = cy

1h
s3 mod N and let a = (d2, d3).

l: The challenge length is k/2− 2 bits.

Z: Let u = y + 2ex2, v2 = s2 + 2er2 and v3 = s3 + 2e(r3 − x2r1). Then z = (u, v2, v3).

B: Check that c1, c2, c3 ∈ Z∗
N and guhv2 ≡ d2c

2e
2 (mod N) and cu

1hv3 = d3c
2e
3 (mod N).

Figure 2.13: The Σ-protocol for proving a multiplicative relation between committed values
in the Fujisaki-Okamoto scheme.

In [DF02] a Σ-protocol for proving a multiplicative relation between committed values
is given. A related protocol was presented in [FO97], but no full proof of security for the
scheme in [FO97] is known.

Definition 2.26 The relation multiplicative relation between committed values is defined as
follows: The instance language S is the set {(N, g, h)}, where N = pq such that p, q ∈
PRIMES(dk/2e) and (p− 1)/2 and (q − 1)/2 are primes, h ∈ Z∗

N and g ∈ 〈h〉. The relation
is given by ((N, g, h, c1 , c2, c3, B), (x2, r2, r3)) ∈ R iff c1, c2, c3 ∈ Z∗

N , x2 ∈ [−B..B], r2 ∈ 22k,
|r3| ∈ 22k+dlog2(B)e and c2 = gx2hr2 , and c3 = cx2

1 hr3 . The Σ-protocol multiplicative

relation between committed values is defined in Fig. 2.13.

The following theorem is proved in [DF02]:

Theorem 2.7 If the strong RSA assumption holds for gen′, then the Σ-protocol multipli-
cative relation between committed values has computational special knowledge sound-
ness relative to K = (N, g, h) being a random key for the Fujisaki-Okamoto commitment
scheme.

Notice that if an opening c1 = gx1hr1 mod N is known, then given a witness for the
relation in Definition 2.26 we have that c3 = gx1x2hr1x2+r3. Notice that if in particular
c1 = c2, then the witness contains an opening of c1 as c1 = c2 = gx2hr2 mod N . Therefore
c3 = gx2

2hr2x2+r3. We now describe how to use this to obtain a Σ-protocol for proving that
an element y ∈ Z is a square modulo some integer. Because we need it for the modulus being
an RSA modulus, we present the protocol in that setting.

2.9.9.2 A Σ-Protocol for Quadratic Residuosity in RSA Groups

Definition 2.27 The relation RSA quadratic residuosity is defined as follows: The instance
language S is the set {(N, y, s)}, where N = pq such that p, q ∈ PRIMES(dk/2e) and (p−1)/2
and (q − 1)/2 are primes. The relation is given by ((N, y, s), x) ∈ R iff x, y ∈ Z∗

Ns+1 and
y = x2 mod N s+1. The Σ-protocol RSA quadratic residuosity is defined as follows: The
protocol is a private reference string Σ-protocol. The private reference will be a random key
K = (N ′, g, h) for the Fujisaki-Okamoto commitment scheme. Given input ((N, y, s), x),

2.9 Σ-Protocols 55

where y = x2 mod N s+1 and a private reference string K = (N ′, g, h) the prover (the algo-
rithm A) computes q = (x2 − y)/N s+1, c1 = gxhr mod N ′ for r ∈ Z22k , c = gqhs mod N ′

for s ∈ Z22k and lets c3 = gycNs+1
mod N ′ = gy+qNs+1

hsNs+1
mod N ′ = gx2

hsNs+1
mod N ′.

Notice that cx
1 = gx2

hrx. Therefore c3 = cx
1hsNs+1−rx mod N ′. So, let r3 = sN s+1 − rx and

(K, c1, c1, c3, 2(s+1)k) is an instance for the proof of multiplicative relation between committed
values with witness (x, r, r3). The prover sends (c1, c) along with the a message of the proof
of multiplicative relation for (K, c1, c1, c3, 2(s+1)k) and then l, Z, B is just defined to complete
this proof of multiplicative relation. Notice that the verifier can compute c3 = gycNs+1

mod N ′

from c and the instance (N, y, s) for RSA quadratic residuosity. Using the ∧-construction,
at the same time the prover proves knowledge of m and s for which c = gmhs mod N ′ — a
Σ-protocol for this can be derived from the Σ-protocol multiplicative relation between

committed values.

Corollary 2.2 If the strong RSA assumption holds for gen′, then the Σ-protocol RSA qua-

dratic residuosity is a Σ-protocol for the relation RSA quadratic residuosity with sta-
tistical special honest verifier zero-knowledge and computational special knowledge soundness
with a private reference string being a random key for the Fujisaki-Okamoto commitment
scheme.

Proof. Correctness is straight-forward to verify. As for the statistical special honest verifier
zero-knowledge it is enough to observe that the commitment scheme is statistical hiding, so
the proof can be simulated by doing a proof for some dummy witness x′. Notice that the pro-
tocol is not a non-erasure Σ-protocol. The reason for this is that the Fujisaki-Okamoto com-
mitment scheme is not a trapdoor commitment scheme. For computational special knowledge
soundness with a private reference string being a random key for the Fujisaki-Okamoto com-
mitment scheme, observe that for this private reference string we have from Theorem 2.7 on
the facing page that except with negligible probability a witnesses (x, r1, r3) and (m, s) can be
extracted for which c1 = gxhr1 mod N ′ and c3 = gx2

hr1x+r3 mod N ′ and c = gmhs mod N ′.
We furthermore have that c3 = gycNs+1

mod N ′ = gy+mNs+1
hsNs+1

mod N ′. Therefore
y = x2−mN s+1 or a double opening of c3 was computed. Since our private reference string
is a random commitment key, by Theorem 2.6 on page 53 we have that a double opening
is computed only with negligible probability. Therefore we can extract x ∈ N such that
y = x2 mod N s+1 except with negligible probability. 2

2.9.9.3 An Improved Σ-Protocol for Discrete Logarithms in RSA Groups

In this section we present our improved Σ-protocol for equality of discrete logarithms in
RSA groups. We can combine the Σ-protocols equality of RSA discrete logarithms
and RSA quadratic residuosity to obtain a Σ-protocol for proving equality of even
RSA discrete logarithms, where the 2 in v2 = u2r mod N s+1 so to say is moved into the
witness.

Definition 2.28 The relation even RSA discrete logarithm is defined as follows: The instance
language S is the set {(N,B, s, u, v)}, where N = pq such that p, q ∈ PRIMES(dk/2e) and

56 Tools

(p − 1)/2 and (q − 1)/2 are primes. The relation is given by ((N,B, s, u, v), r) ∈ R iff
u, v ∈ Z∗

Ns+1 and r ∈ 2ZB and v = ur mod N s+1, where 2B is some bound on the size of r.
The relation equality of even RSA discrete logarithms is defined as follows: The instance

language S is the set {(N,B, s, u0, v0, u1, v1)}, where N is as above. The relation is given
by ((N,B, s, u0, v0, u1, v1), r) ∈ R iff ub, vb ∈ Z∗

Ns+1 and r ∈ 2ZB and vb = ur
b mod N s+1 for

b ∈ {0, 1}.
The Σ-protocol equality of even RSA discrete logarithms is defined as follows:

Given an instance witness pair ((N,B, s, u0, v0, u1, v1), r) run a proof equality of RSA

discrete logarithms for the instance/witness pair ((N,B, s, u2
0, v0, u

2
1, v1), r/2) and run

two proofs of RSA quadratic residuosity with instance/witness pairs ((N, s, vb), u
r/2
b) for

b ∈ {0, 1}. These are combined with the ∧-construction. A Σ-protocol for the relation even

RSA discrete logarithm can be obtained by dropping all values indexed b = 1.

Notice that given a witness for the three proofs combined with the ∧-construction in
Definition 2.28 on the preceding page we get r′, x0, x1 such that v2

b = (u2
b)

2r′ mod N s+1

and vb = x2
b mod N s+1 for b ∈ {0, 1}, from which it follows that (x2

b)
2 = (u2r′

b)2 mod N s+1

for b ∈ {0, 1}. Since x2
b ∈ QNs+1 and u2r′

b ∈ QNs+1 and squaring is a bijection in QNs+1 , it
follows that x2

b = u2r′
b mod N s+1 for b ∈ {0, 1}. So, let r = 2r′ and use vb = x2

b mod N s+1

and we have that vb = ur
b mod N s+1 for r ∈ 2N, as desired. The following is a corollary to

Lemma 2.8 on page 40, Corollary 2.2 on the preceding page and Theorem 2.5 on page 50.

Corollary 2.3 If the strong RSA assumption holds for gen′, then the protocol equality of

even RSA discrete logarithms (respectively even RSA discrete logarithms) is a Σ-
protocol for the relation equality of even RSA discrete logarithms (respectively equa-

lity of even RSA discrete logarithms) with statistical special honest verifier zero-know-
ledge and computational special knowledge soundness relative to the instances being for ran-
dom N and u0 being a random quadratic residue (Lemma 2.8 on page 40) with the private
reference string being a random key for the Fujisaki-Okamoto commitment scheme. The
extraction relation has B =∞.

2.10 N-Invertible Group Homomorphisms

In this section we introduce the notion of N -invertible group homomorphisms. This will
allow us to give a concise treatment of some common theory for some of complexity theoretic
assumptions introduced in Section 2.7. The presentation here follows the one by Damg̊ard
and Nielsen in [DN02b], where N -invertible homomorphisms are used as a main ingredient
in building universally composable commitments. We return to this in Chapter 9.

2.10.1 Definition

The following definition is given by Cramer and Damg̊ard in [CD98].

Definition 2.29 A group homomorphism generator gen is a PPT algorithm which on input
k outputs (a description of) (G,H, f), where G and H are two finite Abelian groups G and
H and f : G→ H is a homomorphism of groups. We require that elements in G and H can

2.10 N-Invertible Group Homomorphisms 57

be represented as k-bit strings, and that the group operation and inverses in G and H can be
computed in PPT. Finally, f can be computed in PPT and a uniformly chosen element in G

can be generated in PPT.

The following definition is a slight modification of definitions 2.2 and 2.3 in [CD98], the
differences being that here N is generated by the group homomorphism generator and is not
required to be a prime. Instead we require that we know a lower bound b′ on the smallest
primefactor of N . Also, we do not require the homomorphism to be one-way.

Definition 2.30 An N -invertible group homomorphism generator is a PPT algorithm gen

which on input k outputs (G,H, f,N, b′) such that gen restricted to (G,H, f) is a group
homomorphism generator and furthermore

1. b′ is less than or equal to the smallest primefactor of N .

2. There exists a PPT algorithm which on input (G,H, f,N, b′) ∈ gen, y ∈ H computes
x′ ∈ G such that f(x′) = yN .

Let F = f(G) and consider the factor group H/F . Let [K] be an element from H/F

with representative K and let o = ordH/F ([K]) denote the order of [K] in H/F . In the
following, for m ∈ Zo we let [m]K = KmF . I.e. [0]K , . . . , [o − 1]K are the distinct cosets of
the subgroup of H/F generated by [K]. Consider the following function fK : Zo ×G → H

given by fK(m, r) = Kmf(r).

Fact 2.2 fK : Zo ×G→ H, (m, r)→ Kmf(r) is a homomorphism of Abelian groups.

We are going to use these homomorphisms extensively for a variety of homomorphisms
f . But, notice that we cannot necessarily compute efficiently in the group Zo × G, as o,
the order of K in the factor group, not necessarily is efficiently computable. We therefore
look at another homomorphism. Consider the element K ∈ H. By N -invertibility we can
compute x′ ∈ G such that f(x′) = KN . This means for all K ∈ H we have that KN ∈ F . In
other words, the order of all elements in H/F divides N . So, consider the following function
fK : ZN ×G→ H given by fK(m, r) = Kmf(r). Again we have that

Fact 2.3 fK : ZN ×G→ H, (m, r)→ Kmf(r) is a homomorphism of Abelian groups.

We know N from the description of the group homomorphism and so are guaranteed
that we can compute efficiently in ZN × G. By definition we have that fK(m, r) ∈ [m]K .
If m ∈ ZN and r ∈ G and c = fK(m, r) we call (m, r) a K representation of c. Notice that
all elements of the coset [m] have N/o · |f−1(1)| K representations, but all with m ≡ m′

(mod o). One of the reasons why we are so interested in N -invertible homomorphism is
that we can construct efficient Σ-protocols for proving knowledge of K representations and
proving linear and multiplicative relations between K representations, these Σ-protocols will
be non-erasure if the domain of the homomorphism has invertible sampling. We investigate
that in Section 2.10.4, but first we want some examples.

58 Tools

2.10.2 Examples of N-Invertible Group Homomorphisms

We give four examples of N invertible group homomorphisms.

Definition 2.31 We define four group homomorphisms as follows:

exponentiation:
Let H = 〈α〉 be a group of prime order q and let G = {0}. Let f(0) = α and let
N = b′ = q.

Paillier:
Let n = pq be generated as in Section 2.7.2. Let G = Z∗

n, let H = Z∗
n2 and let

f(r) = rn mod n2. Let b′ = 2bk/2c−1 and let N = n.

Okamoto-Uchiyama:
Let N = p2q be generated as in Section 2.7.3. Let G = Z∗

N , let H = Z∗
N and let

f(r) = rN mod N . Let b′ = 2bk/2c−1.

Diffie-Hellman:
Let 〈α〉 be a group of prime order q. Let β = αx for uniformly random x ∈ Z∗

q. Let
G = Zq, let H = 〈α〉 × 〈α〉, let f(r) = (αr, βr) and let N = b′ = q.

Theorem 2.8 The examples in Definition 2.31 are N -invertible group homomorphisms where
the domains have invertible sampling.

Proof. Consider first the Paillier group homomorphism. That f is a homomorphism of
groups follows from Lemma 2.4 on page 22. Since p and q are bk/2c-bit integers it follows
that b′ < p, q, which proves property 1 of Definition 2.30 on the page before. Property 2 of
said definition follows by setting x′ = y. That G = Z∗

N has invertible sampling follows from
Theorem 2.3 on page 28.

Consider the Okamoto-Uchiyama group homomorphism. That f is a homomorphism of
groups follows from Lemma 2.5 on page 23. Since p and q are bk/2c-bit integers it follows
that b′ < p, q, which proves property 1 of Definition 2.30 on the preceding page. Property
2 of said definition follows by setting x′ = y. That G = Z∗

N has invertible sampling follows
from Theorem 2.3 on page 28.

Consider then the Diffie-Hellman group homomorphism. That f is a homomorphism of
groups follows from ord(α) = q. Furthermore, for (x, y) ∈ H we have that (x, y)q = (1, 1).
So, for x′ = 0 we have that f(x′) = yN , proving property 2 of Definition 2.30 on the preceding
page. Property 1 of said definition follows from q being a prime. That G = Zq has invertible
sampling follows from Theorem 2.3 on page 28. The exponentiation based example follows
using a proper subset of this line of argument. 2

The reason for the slightly artificial exponentiation example is that a K representation
of c ∈ 〈α〉 is an element d ∈ ZN = Zq such that c = Kdf(1) = Kd. This means that a K

representation is a discrete logarithm and the Σ-protocols from Section 2.10.4 for proving
linear and multiplicative relations between K representations therefore gives us Σ-protocols
for proving linear and multiplicative relations between discrete logarithms.

2.10 N-Invertible Group Homomorphisms 59

2.10.3 Encrypting with Cosets

We use our last three examples of N -invertible homomorphisms in later chapters. One of the
reasons that we are particularly interested in these examples is that they can encrypt with
cosets, by which we mean the following: Let K ∈ H and consider an encryption function
of the form EK(m; r) = Kmf(r) for m ∈ Zo and o = ordH/F ([K]), and uniformly random
r ∈ G. Clearly this is at least a unique encoding of m. We will also need decryption. For
this purpose we assume that the generator outputs a trapdoor which allows to compute a K

representations of elements c ∈ H. We require the generator to output an element g ∈ H to
use as key. Again we have to keep in mind that the order of g is not necessarily efficiently
computable given just the description of f . Furthermore, if we publish o = ordH/F (g) we
might not be able to encrypt securely with cosets, as |H/F | might be part of the trapdoor.
An example of this is the Uchiyama-Okamoto homomorphism, where |H/F | = p. Therefore
we assume that the generator publishes a bound b such that b ≤ |H/F |. We can then
encrypt as Eg(m; r) = gmf(r) for m ∈ Zb and uniformly random r ∈ G. To be able to set
up the encryption function such that a K representation always exists we will require that
the generator gives us an element g ∈ H such that 〈g〉H/F = H/F . If G is not cyclic one
could just work with a cyclic subgroup of G.

Definition 2.32 We say that (G,H, f,N, b′, g, b, t) ← gen(k) is an N -invertible group ho-
momorphism which can encrypt with cosets, if it is always the case that 〈g〉 = H/F and
the below requirements hold. In the description we let pk = (G,H, f,N, b′, g, b) and we let
sk = (G,H, f,N, b′, g, b, t).

N -invertible:
(G,H, f,N, b′) is an N -invertible homomorphism.

image indistinguishability:
Random elements from F = f(G) cannot be distinguished from random elements from
H given pk. We formalize this as follows: Let A be a TM, and consider the fol-
lowing game IND-IMGc

gen,A(k, z), where k ∈ N, z ∈ {0, 1}∗ and c ∈ {0, 1}: Run
(G,H, f,N, b′, g, b, t)← gen(k) and generate y0 ∈ H uniformly at random and compute
y1 ← f(r) for uniformly random r ∈ G. Input (k, z, (G,H, f,N, b′, g, b), yc) to A to
receive a bit d. Output d. We require that IND-IMG0

gen,A

c≈ IND-IMG1
gen,A for all PPT

A.
trapdoor property:

The trapdoor property comes in two flavors:

trapdoor image distinguishability:
Given sk and c ∈ H one can compute in PPT whether c ∈ F .

trapdoor coset determination:
Given sk and c ∈ H, where c = gmf(r) for m ∈ ZordH/F (g) and r ∈ G, one can
compute m in PPT.

If the homomorphism has trapdoor coset determination, then we can encrypt as c =
Epk(m; r) = gmf(r) for m ∈ Zb. If the homomorphism only has trapdoor image distin-
guishability, then we can only encrypt m ∈ M for some small subset M ⊂ Zb: To decrypt

60 Tools

c = gmf(r) we can test whether cg−m′ ∈ F for all m′ ∈ M until we hit m′ = m. We now
prove that these encryption functions are IND-CPA secure under the image indistinguisha-
bility assumption.

Lemma 2.12 If (G,H, f,N, b′, g, b, t) ← gen(k) is an N -invertible group homomorphisms
which can encrypt with cosets, then the function Epk(m; r) = gmf(r), for m ∈ ZN and
uniformly random r ∈ G, is IND-CPA secure.

Proof. Let A be any IND-CPA adversary against Epk(m; r) = gmf(r). We describe an
adversary B(A) for the IND-IMG game: It receives (k, z, pk, yc) from IND-IMG1

gen,B(k, z)
and has to output a guess w ∈ {0, 1}. This is done as follows: It inputs (k, z, pk) to A to
receive two values m0,m1 ∈ Zb from A. Then it generates a uniformly random bit e ∈ {0, 1}
and gives C = gmeyc to A to receive a bit d. Then it outputs the guess w = e⊕ d. Observe
that if c = 0, then yc is a uniformly random element in H, so in the view of A the value C is
independent of e and so is therefore d. Since e is uniformly random it therefore follows that
w = d⊕ e is uniformly random when c = 0, so Pr[IND-IMG0

gen,B = 1] = 1
2 . From the image

indistinguishability of gen it then follows that Pr[IND-IMG1
gen,B = 1]

c≈1
2 . Consider then c =

1, i.e. consider IND-IMG1
gen,B. Here C = gmeyc is a correctly distributed encryption of me,

so Pr[IND-IMG1
gen,B(k, z) = 1] = 1

2 Pr[INDcpa,0
E,A (k, z) = 1] + 1

2(1 ⊕ Pr[INDcpa,1
E,A (k, z) = 1]) =

1
2 + 1

2 (Pr[INDcpa,0
E,A (k, z) = 1]− Pr[INDcpa,1

E,A (k, z) = 1]). Since Pr[IND-IMG1
gen,B(k, z) = 1]

c≈ 1
2

it follows that 1
2(Pr[INDcpa,0

E,A (k, z) = 1]−Pr[INDcpa,1
E,A (k, z) = 1])

c≈0, which proves the lemma.
2

Definition 2.33 We define three candidates for being N -invertible homomorphisms which
can encrypt with cosets by the following extensions of the N -invertible homomorphisms from
Definition 2.31 on page 58:

Paillier:
Let b = N , g = (N + 1) and let t = (p, q).

Okamoto-Uchiyama:
Let b = 2bk/2c−1, let g = (n + 1)rN for uniformly random r ∈ Z∗

n and let t = (p, q).

Diffie-Hellman:
Let b = q, let g = (1, β) and let t = x.

Theorem 2.9 The Paillier, the Okamoto-Uchiyama and the Diffie-Hellman group homo-
morphism generators, from Definition 2.33, are N -invertible group homomorphisms which
can encrypt with cosets under the DCRA (Assumption 2.2 on page 23), the p-subgroup as-
sumption (Assumption 2.3 on page 24) respectively the DDH assumption (Assumption 2.1 on
page 21) in 〈α〉. The Diffie-Hellman group homomorphism has trapdoor image distinguisha-
bility and the two other examples have trapdoor coset determination.

Proof. The encryption function gmf(r) = (N + 1)mrN mod N2 is the Paillier homomor-
phism, so trapdoor coset determination and the fact that N + 1 generates H/F follows from

2.10 N-Invertible Group Homomorphisms 61

Lemma 2.4 on page 22. The image indistinguishability is by definition the DCRA (Assump-
tion 2.2 on page 23).

For the Okamoto-Uchiyama example, the encryption function gmf(r) = (N +1)mrN mod
N for uniformly random r ∈ Z∗

N is the Okamoto-Uchiyama homomorphism, so trapdoor
coset determination follows from Lemma 2.5 on page 23. The image indistinguishability is
by definition the p-subgroup assumption (Assumption 2.3 on page 24).

Consider then the Diffie-Hellman example. Since x 6= 0 and the order α is prime we have
that the order of β = αx is the same as the order of α. So, the order of (1, β) is q. Since
|f(Zq)| = q it follows that |(〈α〉 × 〈α〉)/f(Zq)| = q. So, (1, β) generates 〈α〉 × 〈α〉)/f(Zq) as
required. The image indistinguishability is almost by definition the DDH assumption. For
the trapdoor image distinguishability observe that (A,B) ∈ f(G) iff B = Ax. 2

2.10.4 Some Σ-Protocols for N-Invertible Homomorphisms

Let F = f(G) and consider the factor group H/F . Let [K] be an element from H/F with
representative K and let o = ordH/F ([K]) denote the order of [K] in H/F . In the following,
for m ∈ Zo we let [m]K = KoF . I.e. [0]K , . . . , [o−1]K are the distinct cosets of H/F generated
by [K]. Consider the following function fK : Zo×G→ H given by fK(m, r) = Kmf(r). We
clearly have that fK(m, r) ∈ [m]K . If c = fK(m, r) we called (m, r) a K representation of c.
Below we construct a non-erasure Σ-protocol for proving knowledge of a K representation.
An instance will be of the form ((G,H, f,N, b′),K, c) and a witness will be m and r such
that c = fK(m, r). Since ordH/F ([K]) is not necessarily computable from K we cannot in
general ask the prover to also prove that m ∈ ZordH/F ([K]). Instead the prover will prove that
m ∈ ZN .

Definition 2.34 The relation known K representation for an N group homomorphism gen-
erator gen is defined as follows: The instance language S is the set {(G,H, f,N, b′),K, c},
where (G,H, f,N, b′) was generated by gen and K, c ∈ H. The relation is given by
(((G,H, f,N, b′),K, c), (m, r)) ∈ R iff m ∈ ZN , r ∈ G and c = Kmf(r). In Fig. 2.14 on the
next page the Σ-protocol known K representation is given.

Lemma 2.13 The protocol known K representation is a non-erasure Σ-protocol for the
relation known K representation.

Proof. For the correctness, do a direct computation:

Km̃f(r̃) = f(x′)ĩf(r)ef(r)

= Km̃+ĩNf(r)ef(r)

= Kem+mf(r)ef(r)

= (Kmf(r))eKmf(r)

= cec .

Special non-erasure honest verifier zero-knowledge follows from the observation that in both
SIM and EXEC it is the case that (m̃,m, r̃, r) is a uniformly random element from ZN ×

62 Tools

Σ-Protocol known K representation

A: Pick m ∈ ZN and r ∈ G using invertible uniform samplersa and let c = Kmf(r).
Output c.

l: Let l = blog2(b′)c, where b′ is the public bound on the smallest primefactor in N .

Z: Let m̃ = em + m mod N and let ĩ = em + m div N (such that em + m = m̃ + ĩN).
Using property 2 from Definition 2.30 on page 57, compute x′ such that f(x′) = KN .
Let r̃ = (x′)ĩrer. Output (m̃, r̃).

B: Output 1 iff Km̃f(r̃) = cec.

hvs: Given c ∈ G and e ∈ {0, 1}l pick m̃ ∈ ZN and r̃ ∈ G uniformly at random and let
c = Km̃f(r̃)c−e.

rbs: Given m ∈ ZN , r ∈ G, c = Kmf(r), e ∈ {0, 1}l, m̃ ∈ ZN , r̃ ∈ G and c = Km̃f(r̃)c−e,
let m = m̃ − em mod N , ĩ = em + mdiv N , r = r̃(x′)−ĩr−e, where x′ is given as in
the description of Z. Then use the random-bits-faking algorithms to compute fake
random bits for m and r. Output these bits.

xtr: Given (c, K, m, c, e, m̃, r̃, e′, m̃′, r̃′), let i = e − e′. Using that e, e′ ∈ Zb′ and e 6= e′

and property 1 from Definition 2.30 on page 57 we have that gcd(e − e′, N) = 1,
so we can in PPT compute α and β such that 1 = αN + β(e − e′). Then using
property 2 from Definition 2.30 on page 57 compute rc, rK ∈ G such f(rc) = cN

and f(rK) = KN . Then compute n = (m̃− m̃′)β, s = (r̃(r̃′)−1)βrα
c , m = n mod N ,

r = srn div N
K . Output (m, r).

aSee Theorem 2.3 on page 28 and Definition 2.29 on page 56 for the existence of these samplers.

Figure 2.14: A Σ-protocol for proving knowledge of a K representation.

ZN ×H × H for which m̃ = em + m mod N , ĩ = em + m div N and r̃ = r(x′)ĩre. Special
knowledge soundness follows from a straight-forward verification of the description of xtr.
2

Definition 2.35 The relation linear relation between K representation for an N -invertible
group homomorphism generator gen is defined as follows: The instance language S is the set

{(G,H, f,N, b′),K1, c1, . . . ,Kl, cl, a0, a1, . . . , al} ,

where (G,H, f,N, b′) was generated by gen and Ki, ci ∈ H for i = 1, . . . , l and ai ∈ ZN for
i = 0, 1, . . . , l. The relation is given by

(((G,H, f,N, b′),K1, c1, . . . ,Kl, cl, a0, a1, . . . , al), (m1, r1, . . . ,ml, rl)) ∈ R

iff mi ∈ ZN , ri ∈ G and
ci = Kmi

i f(ri)

for i = 1, . . . , l and
l∑

i=1

aimi ≡ a0 (mod N) .

2.10 N-Invertible Group Homomorphisms 63

Σ-Protocol linear relation between K representations

An instance for the protocol is

((G, H, f, N, b′), K1, c1, . . . , Kl, cl, a0, a1, . . . , al)

and a witness is of the form
(m1, r1, . . . , ml, rl) .

The protocol proceeds by running in parallel l proofs of known Ki representation for ci,
with some additions to relate these proofs. For the proofs of known Ki representation, let
Σ denote the Σ-protocol known K representation. We run the Σ-protocol ∧l

i=1Σ with
instance

(((G, H, f, N, b′), K1, c1), . . . , ((G, H, f, N, b′), Kl, cl))

and witness
((m1, r1), . . . , (ml, rl)) .

In the following we index the values in the proof ∧l
i=1Σ which naturally corresponds to

instance (Ki, ci) by i. E.g. (mi, ri) is the i’th component of the value generated by A in
∧l

i=1Σ. We make the following additions to the proof ∧l
i=1Σ:

A: Send ∆ =
∑l

i=1 aimi mod N along with (m1, r1, . . . ,ml, rl).

Z: The algorithm Z is left unchanged from ∧l
i=1Σ.

B: Also check that
∑l

i=1 aim̃i ≡ ea0 + ∆ (mod N).

hvs: After generating the m̃i as given in Fig. 2.14 on the facing page, let ∆ =
∑l

i=1 aim̃i−
ea0.

rbs: No more randomness is used by the modifications, so rbs is unchanged.

xtr: A witness is still of the same form, so xtr is unchanged, except that we make sure to
use the same β value in all l sub-instances. Note that this is already enforced if β is
compute from e− e′ and N using a deterministic algorithm.

Figure 2.15: A Σ-protocol for proving a linear relation between K representations.

In Fig. 2.15 the Σ-protocol linear relation between K representations is given.

Lemma 2.14 The protocol linear relation between K representations is a non-era-
sure Σ-protocol for the relation linear relation between K representations.

Proof. Let R denote the relation known K representation. By Theorem 2.5 on page 50
we have that ∧l

i=1Σ is a non-erasure Σ-protocol for relation ∧l
i=1R. We prove that the

additions to ∧l
i=1Σ guarantee correctness, special non-erasure honest-verifier zero-knowledge

and special soundness for linear relation between K representation.
For the correctness, note that m̃i = emi + mi mod N and

∑l
i=1 aimi ≡ a0 (mod N).

Therefore
l∑

i=1

aim̃i ≡ e

l∑
i=1

aimi +
l∑

i=1

aimi ≡ ea0 + ∆ (mod N) ,

64 Tools

as desired.
For special non-erasure honest-verifier zero-knowledge we have to check that the simulated

value ∆ =
∑l

i=1 aim̃i − ea0 gives a ∆ of the correct form. This follows from

l∑
i=1

aimi ≡
l∑

i=1

ai(m̃i − emi) ≡
l∑

i=1

aim̃i − e

l∑
i=1

aimi ≡ (∆ + ea0)− ea0 ≡ ∆ .

Notice that (((G,H, f,N, b′),K1, c1, . . . ,Kl, cl, a0, a1, . . . , al), (m1, r1, . . . ,ml, rl)) is in the
relation linear relation between K representation iff (((G,H, f,N, b′),K1, c1)(mi, ri))
is in R for i = 1, . . . , l and

∑l
i=1 aimi = a0 mod N . To prove special soundness it is therefore

enough to prove that xtr for ∧l
i=1Σ produces m1, . . . ,ml for which

∑l
i=1 aimi = a0 mod N .

Notice that, by Fig. 2.14 on page 62, mi = (m̃i + m̃′
i)β mod N ,12 where

l∑
i=1

aim̃i ≡ ea0 +
l∑

i=1

aimi (mod N)

and
l∑

i=1

aim̃
′
i ≡ e′a0 +

l∑
i=1

aimi (mod N) .

Subtracting these two congruences we get that

l∑
i=1

ai(m̃i − m̃′
i) ≡ (e− e′)a0 (mod N) .

I.e.
l∑

i=1

aimi ≡ (e− e′)a0β (mod N) .

Since (e− e′)β = 1− αN it follows that

l∑
i=1

aimi ≡ a0 (mod N) ,

as desired. 2

Consider the exponentiation example of an N -invertible homomorphism. The Σ-protocol
for proving linear relation with a0 = 0, a1 = 1 and a2 = −1 proves knowledge of m1,m2 ∈ Zq

such that c1 = Km1
1 and c2 = Km2

2 and m1 ≡ m2 (mod q). We denoted this relation by
equality of discrete logarithms in Section 2.9.2 and gave a Σ-protocol for it by Chaum
and Pedersen [CP92]. The Σ-protocol for proving linear relation can be seen as an extension
of the protocol from [CP92]. We now present a further extension using ideas by Damg̊ard
and Jurik [DJ01].

12Here we used that the same β value was used in all sub-instances.

2.10 N-Invertible Group Homomorphisms 65

Σ-Protocol multiplicative relation between K representations

An instance for the protocol is

((G, H, f, N, b′), {Ki}li=1, {Mi}li=1, {Ni}li=1, {Li}mj=1, {Oi}mj=1, {ai}li=1, {bi}li=1, {ci}mj=1) ,

and a witness is of the form

({(mi, ri)}li=1, {(ni, si)}li=1, {(oi, ti)}mj=1) .

The protocol proceeds by running in parallel 2l + m proofs of known K representation for
each of the instances Mi = Kmi

i f(ri) and Ni = Kni

i f(si) for i = 1, . . . , l and Oi = Loi

i f(ti)
for j = 1, . . . , m with some additional checks to relate these proofs.
In the following we index the values in the proof ∧2l+m

i=1 Σ which naturally corresponds to
a given instance by i. E.g. (mi, ri) is the first message sent for the instance (Ki, Mi).

A: In addition, send ∆ =
∑l

i=1(mi − bini

∑m
j=1 cjoj) mod N .

Z: Instead of m̃i, send ∆i = eaimi + mi − bini

∑m
j=1 cj õj mod N .

Let δi be such that ∆i + Nδi = eaimi + mi − bini

∑m
j=1 cj õj .

Compute xi such that that f(xi) = KN
i . Instead of r̃i, send σi =

o
−bi

Pm
j=1(cj õj)

i xδi

i reai

i ri.

B: Also check that ∆ =
∑l

i=1 ∆i mod N , and for i = 1, . . . , l that Maie
i M i =

K∆i

i N
bi

Pm
j=1 cj õj

i f(σi).

hvs: After generating the õi as given in Fig. 2.14 on page 62, pick ∆1, . . . ,∆l ∈ ZN at
random at let ∆ =

∑l
i+1 ∆i mod N . Then let M i = M−aie

i K∆i

i N
bi

Pm
j=1 cj õj

i f(σi)
for uniformly random σi.

rbs: Given a witness compute oi and si as in Fig. 2.14 on page 62. Then let mi =
∆i−eaimi + bini

∑m
j=1(cj õj) mod N . As mi = ∆i−eaimi + bini

∑m
j=1(cj õj) mod N

we can again compute δi such that ∆i + Nδi = eaimi + mi − bini

∑m
j=1(cj õj); Let

ri = o
bi

Pm
j=1(cj õi)

i x−δi

i r−eai

i σi.

xtr: This algorithm is described in the proof of Lemma 2.15 on the next page.

Figure 2.16: A Σ-protocol for proving a multiplicative relation between K representations.

Definition 2.36 The relation multiplicative relation between K representations for an N -
invertible group homomorphism generator gen is defined as follows: The instance language
S is the set of

((G,H, f,N, b′), {Ki}li=1, {Mi}li=1, {Ni}li=1, {Lj}mj=1, {Oj}mj=1, {ai}li=1, {bi}li=1, {cj}mj=1) ,

where (G,H, f,N, b′) was generated by gen and Ki,Mi,Ni, Lj, Oj ∈ H for i = 1, . . . , l and
j = 1, . . . ,m and ai ∈ Z∗

N and bi, ci ∈ ZN for i = 1, . . . , l and j = 1, . . . ,m. A witness is of
the form

({(mi, ri)}li=1, {(ni, si)}li=1, {(oi, ti)}mj=1) ,

66 Tools

and the relation is given by mi, ni, oj ∈ ZN and ri, si, tj ∈ G and

Mi = Kmi
i f(ri),Ni = Kmi

i f(si), Oi = Loi
i f(ti)

for i = 1, . . . , l and j = 1, . . . , t and

l∑
i=1

aimi ≡
l∑

i=1

bini

m∑
j=1

cioi (mod N) .

In Fig. 2.16 on the preceding page the Σ-protocol multiplicative relation between K

representations is given.13

Lemma 2.15 The protocol multiplicative relation between K representations is a
non-erasure Σ-protocol for the relation multiplicative relation between K represent-

ations.

Proof. For the correctness we have that

Maie
i M i = K

ai(emi+mi)
i f(reai

i ri)

= K
∆i+Nδi+bini

Pm
j=1(cj õj)

i f(reai
i ri)

= K∆i
i (Kni

i)bi
Pm

j=1(cj õj)f(s
bi

Pm
j=1(cj õj)

i)f(o
−bi

Pm
j=1(cj õj)

i xδi
i reai

i ri)

= K∆i
i N

bi
Pm

j=1(cj õj)

i f(σi) .

l∑
i=1

∆i = e

l∑
i=1

aimi +
l∑

i=1

mi − bini

m∑
j=1

cj õj

 mod N

= e

l∑
i=1

aimi +
l∑

i=1

mi − bini

m∑
j=1

cj(eoj + oj)

 mod N

= e

 l∑
i=1

aimi −
l∑

i=1

bini

m∑
j=1

cjoj

+
l∑

i=1

mi − bini

m∑
j=1

cjoj

 mod N

= ∆ .

For the special non-erasure honest verifier zero-knowledge, note that the values m and r

are individually distributed as in the protocol — uniformly random — and ∆i = eaimi +

mi − bini
∑m

j=1(cj õj) mod N and σi = o
−bi

Pm
j=1(cj õj)

i xδi
i reai

i ri, as desired.
For the special knowledge soundness, assume that we have

∆ =
l∑

i=1

∆i mod N ,

13We note that it is essential that the ai values are invertible modulo N .

2.10 N-Invertible Group Homomorphisms 67

∆ =
l∑

i=1

∆′
i mod N ,

and for i = 1, . . . , l that

Maie
i M i = K∆i

i N
bi

Pm
j=1 cj õj

i f(σi) ,

Maie′

i M i = K
∆′

i
i N

bi
Pm

j=1 cj õ′j
i f(σi) .

This implies that
l∑

i=1

(∆i −∆′
i) mod N = 0 ,

and
M

ai(e−e′)
i = K

∆i−∆′
i

i N
bi

Pm
j=1 cj(õj−õ′j)

i f(σi/σ
′
i) ,

so
Mai

i M−aiαN
i = M

aiβ(e−e′)
i = K

(∆i−∆′
i)β

i N
bi

Pm
j=1 cj(õj−õ′j)β

i f((σi/σ
′
i)

β) .

By definition oj = (õj − õj)β mod N and aj ∈ Z∗
N and Ni = Kni

i f(si). This allows us, using
techniques from above, to compute ri and γ such that

Mi = K
γ((∆i−∆′

i)β+nibi
Pm

j=1 cjoj) mod N

i f(ri) ,

where aiγ mod N = 1. We can therefore take mi = γ((∆i −∆′
i)β + nibi

∑m
j=1 cjoj) mod N

and we have that Mi = Kmi
i f(ri) as desired. Note that

l∑
i=1

aimi mod N =
l∑

i=1

(∆i −∆′
i)β + nibi

m∑
j=1

cjoj

 mod N

=

(
l∑

i=1

∆i −
l∑

i=1

∆′
i mod N

)
β +

l∑
i=1

nibi

m∑
j=1

cjoj mod N

= (∆−∆)β +
l∑

i=1

nibi

m∑
j=1

cjoj mod N

=
l∑

i=1

nibi

m∑
j=1

cjoj mod N ,

as desired. 2

c
h
a
p
t
e
r
3

Universally Composable
Security of Synchronous
Protocols

A creative artist works on his next composition because he was
not satisfied with his previous one.

— Dimitri Shostakovich

3.1 Introduction

In this chapter we formalize our model of synchronous computation. Except for some sim-
plifying differences in the formulation, the basic model presented in Sections 3.2 through 3.4
is the model of universally composable (UC) security by Canetti in [Can01a,Can01b], special-
ized to the synchronous setting. Following the introduction of the UC framework it has been
further developed by Canetti and Krawczyk [CK02] and Canetti and Rabin [CR03]. Our
presentation here contains elements from these works too.

There have been made several previous suggestions on how how to define formally the se-
curity of cryptographic protocols, see e.g. [GL90,MR91,Bea91,BCG93,HM00,Can00]. Com-
mon to them all is the idea that security means that the adversary’s view can be simulated
efficiently by a machine that has access to only those data that the adversary is entitled
to know. This is an idea which originates in the seminal work by Goldwasser Micali and
Rackoff [GMR85,GMR89] on zero-knowledge proof systems. There a proof system, a pro-
tocol where a prover convinces a verifier about the validity of a formal statement, is called
zero-knowledge if the verifier only learns from a run of the protocol whether the statement
is true or false. In particular the prover should not leak any evidence it has that the claim
is true. If e.g. the prover and the verifier agree on a value n, the claim made by the prover
could be that n is the product of two primes. In such a setting the evidence held by the
prover would be primes p and q such that n = pq. The protocol being zero-knowledge will
at least guarantee that if the verifier itself cannot factor n, then it cannot factor it either
after having seen a proof from the prover that n is indeed the product of two primes. This

70 Universally Composable Security of Synchronous Protocols

is defined by requiring that a simulator given only a statement and the promise that it is
true should be able to simulate values which looks exactly like a conversation between a
real prover and a verifier. This basically says that whatever the verifier is able to compute
from the interaction with the prover, the verifier could have computed on its own without
interacting with the prover.

All later definitions mentioned above build on this idea. They say that a protocol is
secure if it is zero-knowledge relative to its task, i.e. a protocol is secure if the public view
of its run can be reproduced given only the information one is entitled to. This information
could e.g. be the length of the secret inputs or some input values which are not required
to be kept secret, like the statement in a zero-knowledge proof. The difference between
the definitions is then to which extend they guarantee this requirement. Security cannot
be viewed in a vacuum. If we say that a protocol is secure or zero-knowledge relative to
its task we should also say in which environments. What e.g. happens if several copies
of the protocol are run, in sequence, in parallel or arbitrarily composed? Is the combined
protocol still zero-knowledge relative to its task? The principle difference between previous
definitions is in how complex an environment they guarantee that protocols are secure, and
under under which types of composition their security is maintained. The UC framework is
the first to guarantee that security is preserved under what is dubbed universal composition,
which means that security is maintained no matter how protocols are composed, as long as
they interact through message passing. In some sense this is the most general composition
we can hope will preserve security. If in particular protocols were allowed to inspect each
others internal state, it is clear that no general security preservation under composition could
be guaranteed: Compose almost any protocol π with the protocol which reads the internal
state of π and broadcasts that state to everyone who is interested, and you will have an
insecure protocol.

The fact that security is maintained under universal composition by the UC framework
is one of the prime reason why we use it. Furthermore, its model of computation is general
enough to capture in one unified framework the security of all the problems that we are
going study, primarily because the UC framework allows to capture the security of reactive
protocols. This allows for a much easier modularization of the presentation of protocols and
the analysis of their security. In [Yao82a], which is generally considered one of the founding
papers of cryptographic protocol theory, Yao says that It would be desirable to have a unified
framework where all these applications can be related, and where common proof techniques
can be developed for proving the security of protocols. Arriving at the UC framework some
20 years later the author feels that this desire is fulfilled.

As mentioned, we make some simplifying changes to the framework. The simplifications
are made for two reasons. First of all, all protocols presented in later chapters will be
synchronous. Therefore we want to aim the description of the model at this setting; In
particular there is little reason to first describe the asynchronous model in [Can01b] and then
specialize that to the synchronous setting. Second, in Chapter 7 we address the problem
of implementing the so-called broadcast model, which will require us to make non-trivial
transformations on protocols; In doing this it turns out favorable to have an as simplistic
as possible definition of what is a synchronous protocol. The current framework is however
derived directly from the framework in [Can01b] and can be cast in that framework.

3.2 Universally Composable Security of Synchronous Protocols 71

In Section 3.5 we present a new contribution to the UC framework. We present a formal-
ization of what it means for a protocol to be secure only under some specific input-output
pattern. The principle result is that we are able to formalize what it means for a polynomial
time protocol to be secure under an input-output behavior which is not verifiable in polyno-
mial time, or at all verifiable in finite time. Among other things, this will allow us to give the
first formulation of universally composable zero-knowledge proof of membership. We discuss
these results in greater detail in Section 3.5 and Section 3.8.3 when the formal details of the
basic model have been presented.

3.2 Universally Composable Security of Synchronous Proto-

cols

In this section we formalize our model of synchronous computation. Except for some sim-
plifying differences in the formulation it is the model of universally composable (UC) security
by Canetti in [Can01a,Can01b], specialized to the synchronous setting.

A protocol π consists of n parties P1, . . . , Pn, all interactive Turing machines (ITMs).
The execution of a protocol takes place in the presence of an environment Z, also an ITM,
which supplies inputs to and receives outputs from the parties. The environment Z also
models the adversary of the protocol, and so schedules the activation of the parties, corrupts
parties adaptively and controls corrupted parties. Notice that we do not have an explicit
adversary in this description. I.e. we use the approach from [Can01b, Definition 4].

In each round r each party Pi sends a message mi,j,r to each party Pj , including itself;
The message mi,i,r is the state of Pi after round r, and mi,i,0 = (k, ri) will be the security
parameter and the random bits used by Pi in the computation. We model open authenticated
channels by showing the messages {mi,j,r}j∈[n]\{i} to Z. This is a reasonable model of
communication and can be realized in much weaker networks. We will not pursue this issue
further, but refer to the paper by Canetti, Halevi and Herzberg [CHH00], which among other
things discusses the issue of realizing a complete and authenticity network with message
delivery in an incomplete and unauthenticated network. Furthermore, [CHH00] provides
good pointers to related literature. Notice that we do not give mi,i,r to Z. This models that
the environment is not able to inspect the internal state of honest parties. In each round Z
inputs a value xi,r to Pi and receives an output yi,r from Pi. We write the r’th activation of
Pi as ({mi,j,r}j∈[n], yi,r) = Pi({mj,i,r−1}j∈[n], xi,r). Notice that this simplified model does not
allow to specify what is called immediate functionalities in [Can01b], i.e. functionalities which
return an answer to the caller in the same round. Each call to the functionality will take at
least one round; This will sometimes force us to formulate certain ideal functionalities slightly
different than done in [Can01b], e.g. the ideal functionality for signatures in Section 3.8.5.

We model that the parties cannot reliably erase their state by giving ri to Z when Pi

is corrupted. In the following C will denote the set of corrupted parties and H = [n] \ C.
In detail the real-life execution proceeds as in Fig. 3.1 on the next page. The result of
the execution is the bit b output by Z. We denote this bit by REALπ,Z(k,−→r , z). This
defines a random variable REALπ,Z(k, z), where we take −→r to be uniformly random, and
in turn defines a Boolean distribution ensemble REALπ,Z = {REALπ,Z(k, z)}k∈N,z∈{0,1}∗ .

72 Universally Composable Security of Synchronous Protocols

Algorithm REALπ,Z(k,−→r , z)

initialization:
The input is k, random bits −→r = (r1, . . . , rn, rZ) ∈ ({0, 1}∗)n+1 and an auxiliary
input z ∈ {0, 1}∗. Set r = 1 and C = ∅. For i, j ∈ [n], let mi,j,0 = ε and let
mi,i,0 = (k, ri). Then input k, n, z and rZ to Z and activate Z.a

environment activation:
When Z is activated it outputs one of the following commands:

• (activate, i, xi,r, {mj,i,r−1}j∈C) for i ∈ H ;

• (corrupt, i) for i ∈ H ;

• (end round);

• (guess, b) for b ∈ {0, 1}.

Commands are handled as described below and the environment is then activated
again. We require that all honest parties are activated between two (end round)
commands. When a (guess, b) command is given the execution stops.

party activation:
On (activate, i, xi,r, {mj,i,r−1}j∈C), the values {mj,i,r−1}j∈H were defined in the
previous round; Add these to {mj,i,r−1}j∈C and compute ({mi,j,r}j∈[n], yi,r) =
Pi({mj,i,r−1}j∈[n], xi,r). Input {mi,j,r}j∈[n]\{i} to Z.

corrupt:
On (corrupt, i), input ri to Z. Set C = C ∪ {i}.

end round:
On (end round), input {yi,r}i∈H to Z.b Set r = r + 1.

aNotice that we give n to Z to let it know how many parties there are in the protocol. In the
follow we often fail to mention the input n explicitly.

bThe value yi,r was defined in party activation.

Figure 3.1: The real-life execution.

Since Fig. 3.1 hopefully seems rather simple we want to avoid the impression that some
details were hidden, by specifying how certain properties are modeled. In particular, notice
that in Fig. 3.1 we model a rushing environment, which sees the messages of honest parties
before specifying the messages of corrupted parties; This is modeled by the fact that when
(activate, i, xi,r, {mj,i,r−1}j∈C) is output by Z the values {mj,i,r−1}j∈H to be sent by the
honest parties were already specified in the previous round and shown to the environment,
see party activation. Notice furthermore that Z can corrupt in the midst of a round, as
there is no restriction on the order of commands, except that all honest parties are activated
between two end round commands, see environment activation.

The security of a protocol is defined using the notion of an ideal functionality F . An
ideal functionality is an ITM with n input tapes and n output tapes which we think of as
being connected to n parties. The input-output behavior of the ideal functionality defines
the desired input-output behavior of the protocol. To be able to specify protocols which are
allowed to leak certain information F has a special output tape (SOT) on which it writes

3.2 Universally Composable Security of Synchronous Protocols 73

Algorithm IDEALF ,S,Z(k,−→r , z)

initialization:
The input is k, random bits −→r = (rF , rS , rZ) ∈ ({0, 1}∗)3 and an auxiliary input
z ∈ {0, 1}∗. Set r = 1 and C = ∅. Provide S with (k, rS), provide F with (k, rF) and
give k, n, z and rZ to Z and activate Z.

environment activation:
Z is defined exactly as in the real-life model, but now commands are handled by S,
as described below.

party activation:
On (activate, i, xi,r, {mj,i,r−1}j∈C), input (i, xi,r) to F and receive vF on the SOT
of F . Input (activate, i, vF , {mj,i,r−1}i∈C) to S to generate a value {mi,j,r}j∈[n]\{i}.
Input {mi,j,r}j∈[n]\{i} to Z.

corrupt:
On (corrupt, i), input (corrupt, i) on the SIT of F and receive a value vF on the
SOT of F . Input (corrupt, i, vF) to S and receive a value ri. Input ri to Z. Set
C = C ∪ {i}.

end round:
On (end round), input (end round) to S to generate vF . Input (activate, vF) to F
to generate {yi,r}i∈[n]. Input {yi,r}i∈C to S and input {yi,r}i∈H to Z. Set r = r + 1.

Figure 3.2: The ideal process.

this information. The ideal functionality also has the special input tape (SIT). The ideal
functionality is given an input for the party Pi by inputting (i, xi) to F , where the first
component i specifies the input tape and the second component xi specifies the value written
on that tape. Each time F is given an input for Pi it writes some value on the SOT modeling
the part of the input which is not required to be kept secret. The ideal functionality can
also receive the input (activate, v) on the SIT in response to which it produces an output
value for each party, by outputting {(i, yi)}i∈[n] — the value yi is written on the i’th output
tape. The command (activate, v) signals the end of a round. Among other things, the
value v models the inputs from the corrupted parties. We often assume that v is parsed
as ({(i, xi)}i∈C , v′), where C is the indices of the corrupted parties. This allows us to talk
about the input of all parties, honest and corrupted, when describing functionalities. Notice
that with the convention that (activate, v) specifies the inputs of the corrupted parties we
model a rushing environment, which in a given round sees the values sent be honest parties
before it sends messages on behalf of corrupted parties. When a party Pi is corrupted F
receives the input (corrupt, i) on the SIT in response to which it produce some output vF ,
which is written on the SOT; This models information allowed to leak from Pi when it is
corrupted. Unless stated explicitly we assume that vF contains all the inputs xi written on
the i’th input tape during the execution along with all the outputs yi written on the i’th
output tape.

We say that a protocol π realizes an ideal functionality F if there exists an interface, also
called simulator, S which given access to F can simulate (to an environment Z) a run of π

with the same input-output behavior. In the simulation S is given the commands from Z

74 Universally Composable Security of Synchronous Protocols

FF S Zπ πZπ π

Figure 3.3: In the real-life execution REALπ,Z , depicted to the left, the environment Z has
access to a real copy of π. Its limited access to π is depicted by a wall. The double arrow
between π and Z depicts the ability of Z to give inputs to the honest parties of π and to
see their outputs. The symbol π occurring in the wall depicts the limited access that the
environment has to the network of π: It can see all messages sent, it can corrupt a party and
see its internal state and it can send messages on behalf of corrupted parties. In the ideal
process IDEALF ,S,Z , depicted to the right, the environment instead inputs to F and sees
the outputs from F . Then the interface S has access to F , limited to inputting on behalf
of corrupted parties and seeing the output on the SOT of F . Using this access S produces
a simulated version of π. The environment is then given access to this simulated version of
π: It sees all simulated communication, it can corrupt parties and must receive a simulated
internal state and it can send messages on behalf of corrupted parties. The interface S is
said to produce π from F if no environment Z can determine whether it is in the left or the
right setup.

and must then return to Z values looking as if coming from a real-life execution. In doing
this S is only given the inputs of the corrupted parties, and the information leaked on the
SOT of F . The simulator being allowed to see only that information captures secrecy of the
protocol: That the protocol is zero-knowledge relative to the information allowed to leaked
by the specification of F , we say that it is zero-knowledge relative to its task. Finally, S can
input on the SIT of F , and this is the only way that S can influence the outputs given by
F . This models the correctness of the protocol, that an adversary cannot force an erroneous
output except too the extend allowed by the specification of F . In detail the simulation,
called the ideal process, proceeds as in Fig. 3.2 on the preceding page. The result of the ideal
process is the bit b output by Z. We denote this bit by IDEALF ,S,Z(k,−→r , z). This defines
a random variable IDEALF ,S,Z(k, z) and in turn defines a Boolean distribution ensemble
IDEALF ,S,Z = {IDEALF ,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Notice that the interaction of Z with the real-life model and the ideal process has the
same syntax. The goal of the interface S is then to produce the values that it hands to Z
in such a way that Z cannot distinguish whether it is observing the real-life execution or a
simulation of it in the ideal process. The idea is depicted in Fig. 3.3. If it can do this, then
we say that it can produce π given F . We write S : F / π. We say that a protocol π realizes
F if there exists a PPT interface S producing π given F .

Definition 3.1 Let S be an interface, let π be a protocol and let F be an ideal functionality.
We say that π can produce π given F , written S : F / π, if for all PPT environments Z it
holds that IDEALF ,S,Z

c≈REALπ,Z .

Definition 3.2 Let π be a protocol and let F be an ideal functionality. We say that π realizes

3.3 The Hybrid Models 75

F if there exists a PPT interface S such that S : F / π.

3.3 The Hybrid Models

We now describe the synchronous G-hybrid model for an ideal functionality G. Basically
the G-hybrid model is the real-life model where in addition the parties have access to an
ideal functionality G to aid them in the computation. In each round r party Pi will receive
an output ti,r−1 from G from round r − 1 round and will produce an input si,r for G for
round r. This means that the r’th activation of Pi is now given by ({mi,j,r}j∈[n], yi,r, si,r) =
Pi({mj,i,r−1}j∈[n], xi,r, ti,r−1). In the hybrid model, still Z models the adversary. Therefore,
the output from G on the SOT, which models public information, is given to Z, and the inputs
to G on the SIT, which can be thought of as modeling the inputs from corrupted parties,
is provided by Z. In detail the hybrid execution with one ideal-functionality proceeds as
in Fig. 3.4 on the following page. The extension to a constant number of functionalities is
straight-forward, by simply splitting the s and t values into inputs to and outputs from the
individual functionalities. We discuss this in more detail in a subsequent section. Since it is
essential for the protocol which ideal-functionality it has access to, we consider G part of the
protocol π; We use π[G] to denote a hybrid protocol with ideal functionality G.

The result of the hybrid execution is the bit b output by Z. We denote this bit by
HYBG

π,Z(k, r, z). This defines a random variable HYBG
π,Z(k, z) and in turn defines a Boolean

distribution ensemble HYBG
π,Z .

As for an interface S simulating a real-life execution of a protocol π in the ideal process
for ideal functionality F we can define the notion of a hybrid interface T simulating a hybrid
execution of a hybrid protocol π[G] in the ideal process for ideal functionality F . This is
defined equivalently. The only difference is that a hybrid interface T has to return more
values to Z to be successful. For completeness we give the ideal process with a hybrid
interface in detail in Fig. 3.5 on page 77. The symbol G occurring as a superfix in the symbol
IDEALGF ,T ,Z(k, r, z) indicates that T should simulate for a hybrid model with G. The exact
value of G does not matter for how the hybrid execution IDEALGF ,T ,Z(k, r, z) is defined.
The superfix is only used to distinguish the symbol IDEALGF ,T ,Z(k, r, z) from the symbol
IDEALF ,T ,Z(k, r, z) denoting a simulation of a real-life protocol.

Notice that the interaction of Z with the hybrid model and the ideal process has the
same syntax. The goal of the hybrid interface T is then to produce the values that it hands
to Z in such a way that Z cannot distinguish whether it is observing the hybrid execution
or a simulation of it in the ideal process.

Definition 3.3 Let T be a hybrid interface, let π be a protocol for the G-hybrid model and
let F be an ideal functionality. We say that T can produce π[G] given F , written T : F /π[G],
if for all G-hybrid environments Z it holds that IDEALGF ,T ,Z

c≈HYBG
π,Z .

Definition 3.4 Let π be a protocol for the G-hybrid model and let F be an ideal functionality.
We say that π realizes F in the G-hybrid model if there exists a PPT G-hybrid interface T
such that T : F / π[G].

76 Universally Composable Security of Synchronous Protocols

Algorithm HYBG
π,Z(k, r, z)

initialize:
The input is the security parameter k, the random bits r1, . . . , rn ∈ {0, 1}∗ used by
the parties, the random bits rG for G and an auxiliary input z ∈ {0, 1}∗ and random
bits rZ for Z.
Initialize the round counter r = 1 and initialize the set of corrupted parties C = ∅.
Let mi,j,0 = ε for i, j ∈ [n], let mi,i,0 = (k, ri) ti,−1 = ε.
Provide G with rG and input k, n, z and rZ to Z and activate Z.

environment activation:
Z is defined exactly as in the real-life model except that the (end round) command
has the syntax (end round, vG) for some value vG and that Z receives some extra
values in response to the commands as described below.

party activation:
On (activate, i, xi,r, {mj,i,r−1}j∈C), values {mj,i,r−1}j∈H and ti,r−1 were de-
fined in the previous round. Add these to {mj,i,r−1}j∈C and compute
({mi,j,r}j∈[n], yi,r, si,r) = Pi({mj,i,r−1}j∈[n], xi,r , ti,r−1). Input (i, si,r) to G and re-
ceive vG on the SOT of G. Input ({mi,j,r}j∈[n]\{i}, vG) to Z.

corrupt:
On (corrupt, i), input (corrupt, i) on the SIT of G and receive a value vG on the
SOT of G. Input (ri, vG) to Z. Set C = C ∪ {i}.

end round:
On (end round, vG), input (end round, vG) to G to generate {ti,r}i∈[n]. Input
({yi,r}i∈H , {ti,r}i∈C) to Z. The values {ti,r}i∈H are used as input for the honest
parties in the next round. Set r = r + 1.

Figure 3.4: The G-hybrid model.

3.3.1 Multiple Ideal Functionalities

In this section we describe how to deal with hybrid models with multiple functionalities.

Definition 3.5 Let G1 and G2 be two ideal functionalities. The double ideal functionality
G = [G1,G2] is defined as follows: Let m be a variable ranging over {1, 2}. When initialized
with rG the ideal functionality G splits rG into (rG1 , rG2) and initializes Gm with rGm. On
input xi to Pi the ideal functionality G parses xi as (xG1

i , xG2
i) and inputs xGm

i to Gm. Let
vGm denote the value that was written on the SOT of Gm. Then G outputs v = (vG1 , vG2)
on its SOT. On input (corrupt, i) the ideal functionality G inputs (corrupt, i) to Gm. Let
vGm denote the value that was written on the SOT of Gm. Then G outputs v = (vG1 , vG2)
on its SOT. On input (activate, v) the ideal functionality G parses v as (vG1 , vG2) and
inputs (activate, vGm) to Gm. Let {yGm

i }i∈[n] denote the output values produced by Gm.
Let yi = (yG1

i , yG2
i). Then G produces the output values {yi}i∈[n]. Let G1, . . . ,Gl be l ideal

functionalities. The multi ideal functionality G = [G1,G2, . . . ,Gl] is defined as follows: If l = 0,
we write G = [], then we define G to be the trivial ideal functionality Ftriv which ignores all
inputs from the parties and all inputs on its SIT, and which always outputs xi = ε to Pi

3.3 The Hybrid Models 77

Algorithm IDEALGF ,T ,Z(k, r, z)

initialize:
The input to an ideal process is the security parameter k, the random bits rF and
rT used by F and T and an auxiliary input z ∈ {0, 1}∗ and random bits rZ for Z.
Initialize the round counter r = 1 and initialize the set of corrupted parties C = ∅.
Provide T with rT , provide F with rF and give k, z and rZ to Z and activate Z.

environment activation:
Z is defined exactly as in the hybrid model, but now the commands are handled by
T , as described below.

party activation:
On (activate, i, xi,r, {mj,i,r−1}j∈C), input (i, xi,r) to F and receive vF on the SOT
of F . Input (activate, i, vF , {mj,i,r−1}i∈C) to T to generate ({mi,j,r}j∈[n]\{i}, vG).
Input ({mi,j,r}j∈[n]\{i}, vG) to Z.

corrupt:
On (corrupt, i), input (corrupt, i) on the SIT of F and receive a value vF on the
SOT of F . Input (corrupt, i, vF) to T and receive a value (ri, vG). Input (ri, vG) to
Z. Set C = C ∪ {i}.

end round:
On (end round, vG), input (end round, vG) to T to generate vF . Input
(activate, vF) to F to generate {yi,r}i∈[n]. Input {yi,r}i∈C to T to generate
{tGi,r}i∈C . Then input ({yi,r}i∈H , {tGi,r}i∈C) to Z. Set r = r + 1.

Figure 3.5: The ideal process with a hybrid-adversary.

FF T ZZπ π π π

GG G G

Figure 3.6: In the hybrid model HYBG
π,Z , depicted to the left, the environment Z has access

to a real copy of π running with G. In addition to the real-life execution Z can now input to
G on behalf of corrupted parties and sees the output on the SOT of G. In the ideal process
IDEALGF ,T ,Z , depicted to the right, the interface T has access to F . Using this access T
produces a simulated version of π running with G. The environment is then given access
to this simulated version of π running with G: It sees all simulated communication, it can
corrupt parties and must receive a simulated internal state, it can send messages on behalf
of corrupted parties and it can input on the SIT of the simulated G and see the simulated
output on the SOT. The interface T is said to produce π[G] from F if no environment Z
can determine whether it is in the left or the right setup.

and always outputs ε on the SOT; If l = 1, then we let G = G1; If l ≥ 2, then we let
G = [G1, [G2, . . . ,Gl]].

78 Universally Composable Security of Synchronous Protocols

Definition 3.6 Let F , G1, . . . ,Gl be ideal functionalities and let π be a hybrid protocol. We
say that π realizes F in the (G1, . . . ,Gl)-hybrid model if π realizes F in the [G1, . . . ,Gl]-hybrid
model.

Definition 3.7 Let T be a hybrid interface, let F , G1, . . . ,Gl be ideal functionalities and
let π be a hybrid protocol. We say that T can produce π[G1, . . . ,Gl] given F , written T :
F / π[G1, . . . ,Gl] if T : F / π[([G1, . . . ,Gl])].

The following fact is trivial to prove and will come in handy at some points as it allows
us to consider only double ideal functionalities in many cases and allows us to disregard the
order in which ideal functionalities are composed.

Lemma 3.1 Let F , G1,G2 be ideal functionalities and let π be a protocol for the [G1,G2]-
hybrid model. We can consider π a protocol for the [G2,G1]-hybrid model by considering the
protocol π which simply lets si = (sG2

i , sG1
i), when π would have si = (sG1

i , sG2
i), and lets

ti = (tG2
i , tG1

i) when π would have ti = (tG1
i , tG2

i). With this convention we have that π realizes
F in the [G1,G2]-hybrid model iff π realizes F in the [G2,G1]-hybrid model. Let F , G1,G2,G3

be ideal functionalities and let π be a protocol for the [G1, [G2,G3]]-hybrid model. We can
consider π as a protocol for the [[G1,G2],G3]-hybrid model by considering the protocol π which
simply lets si = ((sG1

i , sG2
i), sG3

i)), when π would have si = (sG1
i , (sG2

i , sG3
i)), and which lets

ti = ((tG1
i , tG2

i), tG3
i)), when π would have ti = (tG1

i , (tG2
i , tG3

i)). With this convention π realizes
F in the [G1, [G2,G3]]-hybrid model iff π realizes F in the [[G1,G2],Gl]-hybrid model.

3.3.1.1 Forget the Real-Life Model

By now we have four models of computation: The real-life model, the ideal process, the
hybrid model and the hybrid ideal process. To prune the framework we dispense of the two
first models, by observing that they are special cases of the last two. It is straight-forward
to prove the following theorem.

Theorem 3.1 Let F be an ideal functionality and let π = (P1, . . . , Pn) be a real-life protocol.
We can consider π a hybrid protocol by simply letting Pi ignore ti,r−1 and always letting
si,r = ε. With this convention it holds that π realizes F (in the real-life model) iff π realizes
F in the ()-hybrid model.

Proof. By definition π realizes the protocol π in the ()-hybrid model iff π realizes F in the
Ftriv-hybrid model. Since Ftriv ignores all inputs and have a constant output it is trivial
to simulate. Furthermore π will have the exact same input-output behavior in the real-life
model and the Ftriv-hybrid model. 2

This basically allows us to consider the ()-hybrid model as the real-life model. We can
easily extend the result as follows to allow removing trivial ideal functionalities from a hybrid
model:

Theorem 3.2 Let F , G1, . . . ,Gl ideal functionalities and let π = (P1, . . . , Pn) be a hy-
brid protocol for the (G1, . . . ,Gl)-hybrid model. We can consider π a hybrid protocol for

3.4 The Composition Theorem 79

the (G1, . . . ,Gi,Ftriv,Gi+1, . . . ,Gl)-hybrid model by simply letting Pi ignore tFtriv
i,r−1 and always

letting sFtriv
i,r = ε. With this convention it holds that π realizes F in the (G1, . . . ,Gl)-hybrid

model iff π realizes F in the (G1, . . . ,Gi,Ftriv,Gi+1, . . . ,Gl)-hybrid model.

Proof. For l = 0 and l = 1, this is Theorem 3.1 on the facing page and l = 2 the result
follows as for said theorem. 2

In particular this allows us to consider any (Ftriv, . . . ,Ftriv)-hybrid model as the real-life
model, which will come in handy in some places.

3.4 The Composition Theorem

In this section we describe how to compose synchronous protocols, and we state and prove a
composition theorem saying that security is maintained under this type of composition. Let
π be a (G1, . . . ,Gl)-hybrid protocol and let γ be a (H1, . . . ,Hm)-hybrid protocol realizing Gi

for some i ∈ {1, . . . , l}. The composition operation allows us to construct a protocol π[γ/Gi],
which runs exactly as π, except that all calls from π to Gi are handled by invoking γ instead
and returning the outputs from γ to π as the replies from Gi. Since π no longer uses Gi we
can therefore remove Gi from the hybrid model. Since γ uses (H1, . . . ,Hm) we add these
instead. This results in a protocol π[γ/Gi] for the (G1, . . . ,Gi−1,H1, . . . ,Hm,Gi+1, . . . ,Gl)-
hybrid model. To simplify the treatment we use that we have Lemma 3.1 on the preceding
page. This allows us to move the ideal functionality Gi to be replaced to the front of the list
(G1, . . . ,Gl) and lets us consider the remaining ideal functionalities as one functionality. I.e.,
we consider π as a [Gi, [G1, . . . ,Gi−1,Gi+1, . . . ,Gl]]-hybrid protocol. Furthermore, we consider
the ideal functionalities (H1, . . . ,Hl) as one functionality H = [H1, . . . ,Hl]. All in all this
allows us to consider a (G1,G2)-hybrid protocol π and a H-hybrid protocol γ and show how
to replace G1 by γ to obtain a (H,G2)-hybrid protocol.

3.4.1 Composing Protocols

Assume that we are given two protocols γ[H] = (P γ
1 , . . . , P γ

n) for the H-hybrid model and
π[G1,G2] = (P π

1 , . . . , P π
n) for the (G1,G2)-hybrid model. We describe how to compose such

protocols to obtain a protocol π[γ[H],G2] = (P π
1 [P γ

1 /G1], . . . , P π
n [P γ

n /G1]) for the (H,G2)-
hybrid model. This protocol is intended to be the two protocols run in lock-step while
replacing the ideal functionality access of π to G1 by calls to γ. The protocol γ uses access
to H, so the resulting protocol is for the (H,G2)-hybrid model. The messages sent by the
parties Pi = P π

i [P γ
i] will consist of a message from each of the two protocols. The value sent

to H will be the value sent to H by P γ
i and the output from H will be given to P γ

i . The
value sent to G2 will be the value sent to G2 by P π

i and the output from G2 will be given to
P π

i . The value sent to G1 by P π
i will be used as the input to P γ

i and the output of P γ
i will be

given to P π
i in the following round as the output from G1. For the purpose of concatenating

messages, recall that (·, ·) : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a bijective encoding which can be
computed and inverted in PPT.

The running time of Pi is the sum of the running times of P γ
i and P π

i plus the running
time for some applications of (·, ·) as described below. In particular the random bit string

80 Universally Composable Security of Synchronous Protocols

ri input to Pi can be split into random bit strings sufficiently long for P γ
i and P π

i . The
activation

({mi,j,r}j∈[n], yi,r, si,r)← Pi({mj,i,r−1}j∈[n], xi,r, ti,r−1)

is computed as follows: In round 1, take the input mi,i,0 = (k, ri), split ri into rπ
i and rγ

i and
let mπ

i,i,0 = (k, rπ
i) and let mγ

i,i,0 = (k, rγ
i) and set all other values to ε. In round r > 1, let

(mπ
j,i,r−1,m

γ
j,i,r−1)← mj,i,r−1 for j ∈ [n] \ {i}

((mπ
i,i,r−1,m

γ
i,i,r−1), t

G1
i,r−1)← mi,i,r−1

xπ
i,r ← xi,r

(tHi,r−1, t
G2
i,r−1)← ti,r−1

tπi,r−1 ← (tG1
i,r−1, t

G2
i,r−1) .

Then compute

({mπ
i,j,r}j∈[n], y

π
i,r, s

π
i,r)← P π

i ({mπ
j,i,r−1}j∈[n], x

π
i,r, t

π
i,r−1) .

Then let

(sG1
i,r, s

G2
i,r)← sπ

i,r

xγ
i,r ← sG1

i,r ,

and compute
({mγ

i,j,r}j∈[n], y
γ
i,r, s

H
i,r)← P γ

i ({mγ
j,i,r−1}j∈[n], x

γ
i,r, t

H
i,r−1) .

Then let
tG1
i,r ← yγ

i,r ,

and let

mi,j,r ← (mπ
i,j,r,m

γ
i,j,r) for j ∈ [n] \ {i}

mi,i,r ← ((mπ
i,i,r,m

γ
i,i,r), t

G1
i,r)

yi,r ← yπ
i,r

si,r ← (sHi,r, s
G2
i,r) .

Definition 3.8 Let π be a (G1, . . . ,Gl)-hybrid protocol and let γ be a (H1, . . . ,Hm)-hybrid
protocol. For i ∈ {1, . . . , l} we define π[γ/Gi] by reordering (G1, . . . ,Gl) to consider π a
[Gi,G′]-hybrid protocol for G′ = [G1, . . . ,Gi−1,Gi+1, . . . ,Gl] and consider γ a H-hybrid pro-
tocol for H = (H1, . . . ,Hm). Then we let π[γ/Gi] be the [H,G′]-hybrid protocol π[γ[H],G′]
defined above and reorder the messages to and from [[H1, . . . ,Hm], [G1, . . . ,Gi−1,Gi+1, . . . ,Gl]]
in π[γ/Gi] to [G1, . . . ,Gi−1,H1, . . . ,Hm,Gi+1, . . . ,Gl].

3.4 The Composition Theorem 81

3.4.2 The Composition Theorem

We can prove that the composition of secure protocols yields secure protocols. I.e., if π[G1,G2]
realizes F and γ[H] realizes G1, then π[γ[H],G2] realizes F . The main result needed to
establish this is the following: Assume that there exists an (G1,G2) interface T such that
T : F / π[G1,G2] and that there exists a H-hybrid interface S such that S : G1 / γ[H]. Then
we can consider the (H,G2)-hybrid interface T [S/G1], which given access to F first uses T to
produce π[G1,G2] from F and then uses S to produce γ[H] from the copy of G1 in the produced
π[G1,G2]. Then it composes the view of π[G1,G2] and γ[H] as in the composition π[γ/G1] and
have produced a view of π[γ[H],G2]. This composed interface is depicted in Fig. 3.7 on the
following page. We prove in Lemma 3.4 on page 89 that indeed T [S/G2] : F / π[γ[H],G2].
This clearly implies the claim that the composition of secure protocols yield secure protocol.

Theorem 3.3 Let F be an ideal functionality, let π be a (G1, . . . ,Gl)-hybrid protocol and let
γ by a (H1, . . . ,Hm)-hybrid protocol. Assume that γ realizes Gi in the (H1, . . . ,Hm)-hybrid
model, for i ∈ {1, . . . , l}, and assume that π realizes F in the (G1, . . . ,Gl)-hybrid model.
Then π[γ/Gi] realizes F in the (G1, . . . ,Gi−1,H1, . . . ,Hm,Gi+1, . . . ,Gl)-hybrid model. If in
particular m = 0, then π[γ/Gi] realizes F in the (G1, . . . ,Gi−1,Gi+1, . . . ,Gl)-hybrid model.

Proof. The first claim follows directly from Lemma 3.4 on page 89, using Lemma 3.1 on
page 78. The second claim then follows from Theorem 3.2 on page 78. 2

The proof of Lemma 3.4 on page 89 is quite technical, so a pictorial prelude is instructive.
Consider again Fig. 3.7 on the following page. We have to prove that no environment can
determine whether it is in Fig. 3.7 or in Fig. 3.12. We prove this by considering a number
of intermediary setting. Consider first the setting in Fig. 3.8 where we run the environment
Z[S/H] with T . Here Z[S/H] just does the job that T [S/G1] was doing in Fig. 3.7 and
shows the resulting view to Z. Then Z[S/H] takes the final output of Z to be its own
output. All values flow in the same way in both setting, it follows that IDEALH,G2

F ,T [S/G1],Z =

IDEALG1,G2

F ,T ,Z[S/H]. Consider then Fig. 3.9. Under the assumption that T : F / π[G1,G2] it

follows that IDEALG1,G2

F ,T ,Z[S/H]

c≈HYBG1,G2

π,Z[S/H]. Consider the setting in Fig. 3.10. Compared
to Fig. 3.9 we just move π and G2 into Z[π,G2] and move S out. All values still flow in
the same way. In particular, HYBG1,G2

π,Z[S/H] = IDEALHG1,S,Z[π,G2]
. Then compare Fig. 3.10 to

Fig. 3.11. If S : G1 / γ[H], then IDEALHG1,S,Z[π,G2]

c≈HYBH
γ,Z[π,G2]

. Finally compare Fig. 3.11
to Fig. 3.12. We just moved π and G2 out of Z[π,G2] and into the real execution. In particular
all values flow in the same way in both and HYBH

γ,Z[π,G2]
= HYBH,G2

π[γ/G1],Z . The claim then
follows by Fact 2.1 on page 12.

In the following sections we flesh out this argument. The reader is encouraged to use the
discussed depictions as a reference when reading the formal details.

3.4.3 Composing Interfaces

We describe how to compose two interfaces. Assume that we are given a H-hybrid interface S
and a (G1,G2)-hybrid interface T . We describe how to construct a new (H,G2)-hybrid inter-
face T [S/G1]. The idea is the following: Assume that T simulates a protocol π[G1,G2] while

82 Universally Composable Security of Synchronous Protocols

G2

H

π[γ/G1]

G1

π

T S
γ

G2

F
H

ZF

T [S/G1]

Figure 3.7: The (H,G2)-hybrid interface obtained by composing the (G1,G2)-hybrid interface
T and the H-hybrid interface S, running in IDEALH,G2

F ,T [S/G1],Z .

G2

H
G2

π[γ/G1]
π

T

G2

G1 G1

π

ZS
γ

H
F F

Z[S/H]

Figure 3.8: The (G1,G2)-hybrid environment Z[S/H] obtained by composing the H-hybrid
interface S and the (H,G2)-hybrid environment Z, running in IDEALG1,G2

F ,T ,Z[S/H].

having access to the ideal functionality F , and assume that S simulates a protocol γ[H] while
having access to G1. We then want U = T [S/G1] to simulate the protocol (π[γ/G1])[H,G2]
while having access to F . This is done as follows: First of all U runs T using U ’s access to F .
This provides U with a simulated version of π[G1,G2] consistent with F , which in particular
provides it with a simulated access to G1. Using the simulated access to G1 it then runs S and
gets a simulated version of γ[H] consistent with the G1 from the simulated π[G1,G2], which
was in turn consistent with F . It then merges the values of the simulated version of π[G1,G2]
and the simulated version of γ[H] as defined by the composition operation on protocols and
obtains a simulated version of (π[γ])[H,G2] consistent with F . The notation used to describe
the composition operation will reflect the above idea. The composed interface works as given

3.4 The Composition Theorem 83

G2

H
G2

π[γ/G1]
π

G2

G1 G1

π

ZS
γ

H

Z[S/H]

Figure 3.9: The (G1,G2)-hybrid environment Z[S/H] obtained by composing the H-hybrid
interface S and the (H,G2)-hybrid environment Z, running in HYBG1,G2

π,Z[S/H].

π[γ/G1]

G2

H
G2

G1 G1 S
γ

H

γ

H
Z

π

Z[π,G2]

Figure 3.10: The H-hybrid environment Z[π,G2] obtained by composing the (H,G2)-hybrid
environment Z with the protocol π[G1,G2] and the ideal functionality G2, running in
IDEALHG1,S,Z[π,G2].

in Fig. 3.13 on page 85.

3.4.4 Composing an Interface with an Environment

We show how to compose a (H,G2)-hybrid environment Z with a H-hybrid interface S (’ex-
pecting’ to run in the G1-hybrid model) to obtain a hybrid environment Z[S/H] for the
(G1,G2)-hybrid model. We construct Z[S/H] such that for all (G1,G2)-hybrid interfaces T
and all (H,G2)-hybrid environments Z it holds that IDEALH,G2

F ,T [S/G1],Z = IDEALG1,G2

F ,T ,Z[S/H] —

we so to say move S from T [S/G1] into Z[S/H]. That IDEALH,G2

F ,T [S/G1],Z = IDEALG1,G2

F ,T ,Z[S/H]

84 Universally Composable Security of Synchronous Protocols

π[γ/G1]

G2

H
G2

γ

H

γ

H
Z

π

Z[π,G2]

Figure 3.11: The H-hybrid environment Z[π,G2] obtained by composing the (H,G2)-hybrid
environment Z with the protocol π[G1,G2] and the ideal functionality G2, running in
HYBH

γ,Z[π,G2].

G2 G2

π[γ/G1]γ

H

π

H
Z

Figure 3.12: The (H,G2)-hybrid environment Z running in the hybrid model with
π[γ[H],G2], running in HYBH,G2

π[γ/G1],Z .

will be straight-forward when the construction of Z[S/H] is compared to the construction of
T [S/G1]. The idea behind the construction is as follows: Assume that in IDEALG1,G2

F ,T ,Z[S/H]

the interface T simulates a protocol π[G1,G2]. This view is given to Z[S/H], which shows
the simulation of G1 to S to make it simulate some protocol γ[H]. Then Z[S/H] composes
the simulation of π[G1,G2] and the simulation of γ[H] according to the composition theorem
for protocols and shows this simulated view of π[γ/G1,G2] to Z. This is exactly the view
that Z sees in IDEALH,G2

F ,T [S/G1],Z ; The only difference is that in IDEALH,G2

F ,T [S/G1],Z the sim-
ulated versions of π[G1,G2] and γ[H] are composed by T [S/G1] and then shown to Z. The
construction is given in Fig. 3.14 on page 87.

3.4 The Composition Theorem 85

Interface U = T [S/G1]

initialize:
U receives k and random bits r. When S or T reads a random bit U gives them the
next random bit from r.

party activation:
U receives {mi,j,r−1}i∈C from Z and vF from F and must provide outputs
{mi,j,r}j∈[n]\{i} and (vH, vG2). This is done as follows:

1. For i ∈ C compute (mπ
i,j,r−1, m

γ
i,j,r−1)← mi,j,r−1.

2. Input {mπ
i,j,r−1}i∈C and vF to T which generates values {mγ

i,j,r}j∈[n]\{i} and
(vG1 , vG2).

3. Input {mγ
i,j,r−1}i∈C and vG1 to S which generates values {mγ

i,j,r}j∈[n]\{i} and
vH.

4. Output {mi,j,r}j∈[n]\{i} and (vH, vG2), where mi,j,r = (mπ
i,j,r, m

γ
i,j,r).

corrupt:
U receives (corrupt, i, vF) and must provide an output (ri, (vH, vG2)). This is done
as follows:

1. Input (corrupt, i, vF) to T to generate (rπ
i , (vG1 , vG2)).

2. Input (corrupt, i, vG1) to S to generate (rγ
i , vH).

3. Output (ri = (rπ
i , rγ

i), (vH, vG2)).

end round:
U receives (end round, (vH, vG2)) and must produce an output vF for F in response
to which it receives {yi,r}i∈C . Then it must produce outputs {(tHi,r, tG2

i,r)}i∈C . This is
done as follows:

1. Activate S on input (end round, vH) and receive as output a value vG1 .

2. Activate T on input (end round, (vG1 , vG2)) and receive as output a value vF .

3. Output vF and receive {yFi,r}i∈C .

4. Hand {yFi,r}i∈C to T and get the output {(tG1
i,r, t

G2
i,r)}i∈C .

5. Hand {tG1
i,r}i∈C to S and get the output {tHi,r}i∈C .

6. Output {(tHi,r, tG2
i,r)}i∈C .

Figure 3.13: The (H,G2)-hybrid interface U obtained by composing the (G1,G2)-hybrid
interface T and the H-hybrid interface S.

Lemma 3.2 For all (H,G2)-hybrid environments Z, all H-hybrid interfaces S, all ideal
functionalities F and all (G1,G2)-hybrid interfaces T it holds that

IDEALH,G1

F ,T [S/G1],Z = IDEALG1,G2

F ,T ,Z[S/H] .

Proof. This follows by construction, as we just moved the execution of S from T [S/G1] into
Z[S/H]. The data-flow is the same in both executions, the only difference being that the

86 Universally Composable Security of Synchronous Protocols

entities are placed at different locations in the two. This is straight-forward to verify by
following the flow of values in Fig. 3.13 on the preceding page and Fig. 3.14 on the next
page. To make this easier Fig. 3.14 has been augmented with comments describing the
data-flow outside Z[S/H]. 2

3.4.5 Composing an Environment with a Protocol

Finally we define a composition of a (G1,G2)-hybrid protocol π with a (H,G2)-hybrid en-
vironment, resulting in a H-hybrid environment Z[π,G2]. We think of Z as an environ-
ment which thinks that it runs π[γ/G1] for a H-hybrid protocol γ. We then construct
Z[π,G2] such that HYBH

γ,Z[π,G2]
= HYBH,G2

π[γ/G1],Z — we so to say move the execution of π

from HYBH,G2

π[γ/G1],Z into Z[π,G2]. To assure that HYBH
γ,Z[π,G2]

= HYBH,G2

π[γ/G1],Z , in the run

HYBH
γ,Z[π,G2]

the environment Z[π,G2] uses the messages from π to G1 (the sG1
i,r value in

({mπ
i,j,r}j∈[n], y

π
i,r, (s

G1
i,r, s

G2
i,r)) = P π

i ({mπ
j,i,r−1}j∈[n], x

π
i,r, (t

G1
i,r−1, t

G2
i,r−1))) to activate γ, and it

returns the output from γ to π as the tG1
i,r value in the next round — exactly as in the compo-

sition of protocols. Furthermore it runs an internal copy of G2 on the sG2
i,r values and returns

the outputs from G2 to P π
i as the tG2

i,r value. It then composes its internal view of π with the
view of γ returned to Z[π,G2] in HYBH

γ,Z[π,G2]
, according to the composition operation on

protocols. Then Z[π,G2] shows Z this view of π[γ/G1]. The details are given in Fig. 3.15 on
page 88.

Lemma 3.3 For all (G1,G2)-hybrid protocols π, all H-hybrid protocols γ and all (H,G2)-
hybrid environments Z, it holds that

HYBH,G2

π[γ/G1],Z = HYBH
γ,Z[π,G2]

.

For all (G1,G2)-hybrid protocols π, all ideal functionalities (G1,G2), all (H,G2)-hybrid envi-
ronments Z and all H-hybrid interfaces S it holds that

HYBG1,G2

π,Z[S/H] = IDEALHG1,S,Z[π,G2]
.

Proof. The first claim is obtained by construction, as we moved the execution of π into Z.
To verify the second claim, consider IDEALHG,S,Z[π,G2]

. Here π is run in the environment Z,

and the sub-protocol calls of π to G2 (the sG2
i,r and tG2

i,r values) are the inputs and outputs of G2

(run inside Z[π,G2]). Furthermore, the sub-protocol calls of π to G1 (the sG1
i,r and tG1

i,r values)
are the inputs and outputs of G1, and S then simulates a view of γ and H given access to G1.
This view is then composed with the view of π (by Z[π,G2]) and shown to Z. In HYBG1,G2

π,Z[S]

the protocol π is run in the environment Z[S], which means that it communicates with Z.
Furthermore, the sub-protocol calls of π are the inputs and outputs of G1 and G2 as above,
and in Z[S] the simulator S simulates a view of γ and H using the access to G1. This view is
then composed with the view of π (by Z[S]) and shown to Z. This means that the data-flow
in both executions is exactly the same, the only difference being that the entities are placed
at different locations in the two. 2

3.4 The Composition Theorem 87

Environment Z[S/H]

initialize:
Z[S/H] receives (k, z, rZ) and picks a section of rZ as random bits r for S. Let r′Z
be the remaining random bits and input (k, z, r′Z) to Z.

environment:
When asked to produce a command, run Z to get a command c. If c = (guess, b),
then output c. Otherwise proceed as described below.

party activation:
If c = (activate, i, xi,r, {mi,j,r−1}i∈C) then:

1. For i ∈ C compute (mπ
i,j,r−1, m

γ
i,j,r−1) ← mi,j,r−1 and output

(activate, i, xi,r, {mπ
i,j,r−1}i∈C).

2. Then in IDEALG1,G2
F ,T ,Z[S/S] the party Pi is activated and the values {mπ

i,j,r−1}i∈C

and vF are input to T which generates values {mγ
i,j,r}j∈[n]\{i} and (vG1 , vG2),

which are given to Z[S/H].

3. Input {mγ
i,j,r−1}i∈C and vG1 to S which generates values {mγ

i,j,r}j∈[n]\{i} and
vH.

4. Input {mi,j,r}j∈[n]\{i} and (vH, vG2) to Z, where mi,j,r = (mπ
i,j,r, m

γ
i,j,r).

corrupt:
If c = (corrupt, i), then output (corrupt, i).

1. In IDEALG1,G2
F ,T ,Z[S/H] the value (corrupt, i, vF) is input to to T to generate

(rπ
i , (vG1 , vG2)), which is given to Z[S/H].

2. Input (corrupt, i, vG1) to S to generate (rγ
i , vH).

3. Input (ri = (rπ
i , rγ

i), (vH, vG2)) to Z.

end round:
If c = (end round, (vH, vG2)), then

1. Activate S on input (end round, vH) and receive as output a value vG1 .

2. Output (end round, (vG1 , vG2)).

3. In IDEALG1,G2
F ,T ,Z[S/H] the interface T is activated on input

(end round, (vG1 , vG2)) to generate vF . Then (activate, vF) is input to F to
generate {yFi,r}i∈[n]. Then {yFi,r}i∈C is input to T to generate {(tG1

i,r, t
G2
i,r)}i∈C ,

and ({yFi,r}i∈H , {(tG1
i,r, t

G2
i,r)}i∈C) is given to Z[S/H].

4. Input {tG1
i,r}i∈C to S to get {tHi,r}i∈C and input ({yFi,r}i∈H , {(tHi,r, tG2

i,r)}i∈C) to
Z.

Figure 3.14: The (G1,G2)-hybrid interface Z[S/H] obtained by composing a (H,G2)-hybrid
environment Z with a H-hybrid interface S.

88 Universally Composable Security of Synchronous Protocols

Environment Z[π,G2]

initialize:
Z[π,G2] receives (k, z, rZ) and picks a section of rZ as random bits rπ

i for P π
i and a

section for G2. Let r′Z be the remaining random bits and input (k, z, r′Z) to Z. For
i, j ∈ [n], let mπ

i,j,0 = ε and let mπ
i,i,0 = (k, rπ

i). For i = 1, 2, let tGi

i,−1 = ε.

environment:
When asked to produce a command, run Z to get a command c. If c = (guess, b),
then output c. Otherwise proceed as described below.

party activation:
If c = (activate, i, xi,r, {mi,j,r−1}i∈C) then:

1. For i ∈ C, let (mπ
i,j,r−1, m

γ
i,j,r−1) ← mi,j,r−1. This defines sets {mπ

i,j,r−1}i∈C

and {mγ
i,j,r−1}i∈C . Values {mπ

j,i,r−1}j∈H and (tG1
i,r−1, t

G2
i,r−1) were defined in the

previous round.a Add these to {mπ
j,i,r−1}j∈C . Then let xπ

i,r = xi,r and compute

({mπ
i,j,r}j∈[n], y

π
i,r, (s

G1
i,r, s

G2
i,r)) = P π

i ({mπ
j,i,r−1}j∈[n], x

π
i,r, (t

G1
i,r−1, t

G2
i,r−1)) .

Then let xγ
i,r ← sG1

i,r and output (activate, i, xγ
i,r, {m

γ
i,j,r−1}i∈C).

2. Receive ({mγ
i,j,r}j∈[n]\{i}, vH) (from HYBH

γ,Z[π,G2]).

3. Input sG2
i,r to G2 and receive a value vG2 on its SOT.

4. Then for j ∈ [n] \ {i}, let mi,j,r ← (mπ
i,j,r, m

γ
i,j,r) and input

({mi,j,r}j∈[n]\{i}, (vH, vG2)) to Z.

corrupt:
If c = (corrupt, i) then:

1. Output (corrupt, i).

2. Receive (rγ
i , vH) (from HYBH

γ,Z[π,G2]).

3. Input (corrupt, i) to G2 and receive vG2 .

4. Input (ri = (rπ
i , rγ

i), (vH, vG2)) to Z.

end round:
If c = (end round, (vH, vG2)), then

1. Output (end round, vH).

2. Receive ({yγ
i,r}i∈H , {tHi,r}i∈H) (from HYBH

γ,Z[π,G2]).

3. Input (activate, vG2) to G2 and receive the output {tG2
i,r}i∈[n].

4. For i ∈ H , let yi,r = yπ
i,r, where yπ

i,r is the value defined in party activation
Step 1.

5. Input ({yi,r}i∈H , {(tHi,r, tG2
i,r)}i∈H) to Z.

6. For i ∈ H , let tG1
i,r ← yγ

i,r.

aThe values tG1
i,r−1 and tG2

i,r−1 were defined in initialize or in end round in Step 6 resp. Step 3.

Figure 3.15: The H-hybrid interface Z[π,G2] obtained by composing a (H,G2)-hybrid envi-
ronment Z with a (G1,G2)-hybrid protocol π.

3.5 Specifying Restricted Input-Output Behavior 89

Lemma 3.4 Let π be a (G1,G2)-hybrid protocol and let γ by a H-hybrid protocol. Let S and
T be hybrid interfaces and assume that 1) S : G1 / γ[H] and 2) T : F / π[G1,G2]. Then
T [S/G1] : F / π[γ[H],G2].

Proof. The lemma follows by

IDEALH,G2

F ,T [S/G1],Z = IDEALG1,G2

F ,T ,Z[S/H]

c≈HYBG1,G2

π,Z[S/H]

= IDEALHG1,S,Z[π,G2]

c≈HYBH
γ,Z[π,G2]

= HYBH,G2

π[γ/G1],Z ,

using transitivity of
c≈ and, in that order, Lemma 3.2 on page 84, the second premise,

Lemma 3.3 on page 86, the first premise, and once again Lemma 3.3 on page 86. 2

3.5 Specifying Restricted Input-Output Behavior

In this section we address the question of how to specify that a protocol is only required to
implement a functionality under a given use. One prominent example is that a protocol only
implements a given functionality if all (honest) parties are activated in the same round with
corresponding inputs. This is also an example of a restricted use of the protocol which cannot
be checked among the parties, and which can be essential for the security of the protocol. It
is therefore important that we have a way to formalize a statement like “π realizes F when
all (honest) parties are activated in the same round”. Surprisingly enough two approaches
to formalizing this, which would seem equivalent at first, turn out to be essentially different.
In the following sections, we demonstrate this, we point to the formalization that we think
is the right one, and argue why. Then we proceed to formalize the chosen notion.

We define an input-output behavior for a protocol to be an ITM IO. We will simply
show the input-output sequence to IO, and if IO ever outputs fail, then by definition the
observed sequence was not allowed, we say that IO was violated.

3.5.1 Changing the Ideal Functionality

The first way to formalize restricted input-output behavior for a protocol will be by using the
functionality to check the input-output sequence. We then let the functionality break down
if the input-output sequence is not allowed. This approach has the advantage that the notion
of restricted input-output behavior for a protocol is captured within the current framework.
Given an ideal functionality F and an IO behavior IO, the functionality F restricted to
IO is given in Fig. 3.16 on the following page. The intuition behind F|IO is that if the
IO restriction IO is violated, then F|IO is completely corrupted. Therefore simulating a
protocol π having access to F|IO is trivial after the violation. One is given all the inputs
to F|IO on the SOT of F|IO and can therefore run π on these inputs, and can make F|IO

90 Universally Composable Security of Synchronous Protocols

Functionality F|IO

correct inputs:
Initially F|IO proceeds as follows:

initialization:
On input (k, r), input (k, r) to F .

party activation:
On input (i, xi), input (i, xi) to IO. If IO outputs fail, then go to incorrect
inputs. Otherwise, input (i, xi) to F , receive a value v from F and output v.
Also, input v to IO.

corrupt:
On input (corrupt, i), input (corrupt, i) to IO.a If IO outputs fail, then go
to incorrect inputs. Otherwise, input (corrupt, i) to F , receive a value r from
F and output r.

end round:
On input (activate, v), input (activate, v) to F and receive a value {ti}i∈[n]

from F . Input {yi}i∈H be IO and output {ti}i∈[n].

incorrect inputs:
If IO ever outputs fail, then break down as follows: First output fail and then
output the entire internal state of F on the SOT, including randomness and all
previous inputs and outputs, and from now on handle commands as follows:

party activation:
On input (i, xi), output (i, xi) on the SOT.

corrupt:
On input (corrupt, i) output ⊥.

end round:
On input (activate, v) interpret v as a set {yi}i∈[n] and output {yi}i∈[n].

aRecall that when party Pi is corrupted, the functionality is given input (corrupt, i).

Figure 3.16: The functionality F restricted to the input-output behavior for a protocol IO.

output the outputs of π to Z by putting the desired outputs on the SIT of F|IO. Notice
that we input the corruption pattern of Z to IO. This will allow to define restrictions on
the corruption patterns of the environment. We return to this issue in Section 3.5.11.

Given a protocol π, an ideal functionality F and an IO behavior IO, we say that π realizes
F under the input-output behavior for a protocol IO, if π realizes F|IO. An example of a
Byzantine agreement functionality which breaks down on invalid input-output behavior is
given in Fig. 3.17 on the next page to exemplify the approach. A Byzantine agreement
basically allows n parties, each starting with an arbitrary input value, to decide on one
common value, with the guarantee that if they started out with the same value, then that
value will be the result. The functionality in Fig. 3.17 basically says that the protocol is only
required to work if the parties start executing each given Byzantine agreement in the same
round.

3.5 Specifying Restricted Input-Output Behavior 91

Functionality FBA

The functionality runs with parties P1, . . . , Pn. All inputs to the functionality are output
on the SOT. The functionality proceeds as follows:

activation:
Let H denote the current set of indices of honest parties. If in some round each
Pi for i ∈ H inputs (baid, mi), where baid ∈ {0, 1}∗ is a BA id and mi ∈ {0, 1}∗
is the message, then output (decide, baid, m) to all parties, where m is defined as
follows: If there exists m ∈ {0, 1}∗ such that m = mi for i ∈ H , then use that value.
Otherwise, let the adversary decide. I.e., in the command (activate, v) at the end
of the round, interpret part of v as a value (baid, m), and use that m value.

incorrect inputs:
If in some round an honest party inputs a value which is not of the form (baid, mi) for
mi ∈ {0, 1}∗ or some honest party inputs (baid, mi) for mi ∈ {0, 1}∗ and some honest
party does not input a value of the form (baid, mj) for mj ∈ {0, 1}∗, then we say that
FBA was activated incorrectly. This defines an IO restriction IOBA. If IOBA is ever
violated, then break down as in incorrect inputs in Fig. 3.16 on the preceding page.

Figure 3.17: The BA functionality.

Definition 3.9 When we instruct an ideal functionality to break down we mean that it should
start behaving as in incorrect inputs in Fig. 3.16 on the facing page.

3.5.2 Changing the Model

We can also capture the notion of restricted IO behavior for a protocol by extending the
model; By saying that π realizes F under the input-output behavior for a protocol IO
if there exists an interface which works for all environments which do not violate the IO
behavior. We can formalize this by making the change to the ideal process that as soon
as IO outputs fail, the ideal process halts with output fail. We then require that the
interface works for all environments Z, where Pr[IDEALF|IO ,S,Z = fail] = 0. In the simple
case of threshold adversaries, which is only allowed to corrupt a certain number of parties, the
definition in [Can01b] already takes this approach (since it quantifies only over environments
Z which corrupt up to t parties).

The problem with the above definition is that if we adopt it, then we have to also extend
the composition theorem to account for this new definition. We would have to somehow
formalize a claim like: If π realizes F in the G-hybrid model and uses G according to the
IO restriction IO and if γ realizes G under the IO behavior IO, then π[γ/G] realizes F in
the real-life model. This is a good reason for being biased towards the definition within the
model. And, as we demonstrate now, we actually do have to pick a choice, as the two notions
are not equivalent.

3.5.3 The Difference

It is fairly straight-forward to give an intuitive argument why the two notions are equivalent:

92 Universally Composable Security of Synchronous Protocols

Environment Z|IO

initialization:
On input (k, z, rZ), input (k, z, rZ) to Z.

environment activation:
When run to produce a command, run Z to produce a command c. If c = (guess, b),
then output (guess, b). Otherwise proceed as below.

party activation:
If c = (activate, i, xi, M), then input (i, xi) to IO. If IO outputs fail, then output
(guess, 1) and terminate. Otherwise, output (activate, i, xi, M), receive a value and
hand it to Z.

corrupt:
If c = (corrupt, i), then input (corrupt, i) to IO. If IO outputs fail, then output
(guess, 1) and terminate. Otherwise, output c, receive a value and hand it to Z.

end round:
If c = (end round) (or c = (end round, v), in the hybrid models), then output c,
receive a value and hand it to Z.
Furthermore, extract from the value handed to Z the values {yi}i∈H and input
(end round, {yi}i∈H) to IO.

Figure 3.18: The environment Z restricted to the input-output behavior for a protocol IO.

Assume first that π realizes F under the IO restriction IO, according to the second
definition. This means that there exists a PPT interface S such that for all PPT environments
Z which does not violate IO it holds that IDEALF ,S,Z

c≈REALπ,Z . To prove security
according to the first definition we have to prove that there exists a PPT interface S such that
for all PPT environments Z it holds that IDEALF|IO ,S,Z

c≈REALπ,Z . To do this consider
any environment Z. Then consider the self-restricting environment ZIO which runs exactly
as Z, except that it runs IO on the outputs of Z and terminates with a fixed output, 1
say, when the internal copy of IO outputs fail. This guarantees that Z|IO never violates
the copy of IO in IDEALF|IO ,S,Z|IO . Therefore Pr[IDEALF|IO ,S,Z|IO = fail] = 0, and we

have that IDEALF|IO ,S,Z|IO
c≈REALπ,Z|IO . Now, as long as Z does not violate IO, clearly

IDEALF|IO ,S,Z = IDEALF|IO ,S,Z|IO and REALπ,Z = REALπ,Z|IO . If however Z violates
IO, then REALπ,Z|IO outputs 1, whereas REALπ,Z might run berserk, so we have to take

care. However, until Z violates IO we have that REALπ,Z
c≈ IDEALF|IO,S,Z , and after Z

violates IO, the simulation IDEALF|IO ,S,Z becomes trivial: All present and future inputs to
and outputs from F|IO are given to S, and S gains complete control over F|IO. Therefore S
can simply run π on the inputs given by Z and deliver the outputs of π back to Z through
F|IO. This means that after Z violates we have that REALπ,Z = IDEALF|IO,S,Z .

The other direction is trivial. Assume namely that there exists a PPT interface S
such that for all PPT environments Z it holds that IDEALF|IO ,S,Z

c≈REALπ,Z . Again,
as long as Z does not violate IO, clearly IDEALF|IO,S,Z = IDEALF ,S,Z|IO and REALπ,Z =
REALπ,Z|IO , and after Z violates IO we have that IDEALF ,S,Z|IO = REALπ,Z|IO , as both

experiments output 1. Therefore IDEALF ,S,Z|IO
c≈REALπ,Z|IO .

3.5 Specifying Restricted Input-Output Behavior 93

As it turns out, the second argument is sound, but the first one is not. The first definition
implies the second, but the second definition does not imply the first, at least not if one-way
permutations exists. The problem with the first line of argument is that even though the
simulator, when IO is violated, learns all inputs to π and can deliver all outputs from π

back to Z, it is not necessarily the case that it can create a copy of π which is consistent
with the values that it showed to Z before IO was violated.

Theorem 3.4 If one-way functions exists, bijectively mapping k-bit strings to k-bits strings,
then there exists a protocol π, a functionality F and an IO restriction IO, such that π realizes
F under the IO restriction IO, in the sense defined immediately above, and such that π does
not realizes F|IO.

Proof. Let f be a one-way permutation mapping k-bit strings to k-bits strings. Consider
the functionality which on input activate from party P1 outputs a uniformly random k-bit
string y to P1. Consider the IO restriction IO that P1 only receives an input once and that P1

is never corrupted. Formally, if IO twice sees an input different from ε or it sees that P1 was
corrupted, then it outputs fail, otherwise it just outputs ε. Consider the protocol π = (P1),
where P1 on input activate generates a uniformly random k-bit string x, computes y = f(x)
and outputs y. Furthermore, if P1 ever receives another input different from ε, it outputs x.
Otherwise it outputs ε in each round.

Clearly π realizes F under the IO restriction IO, in the sense defined immediately above.
Let S be any simulator that does nothing. After the first activation of P1 the environment
Z sees a uniformly random element in both IDEALF ,S,Z and REALπ,Z , so until then the
simulation is perfect. After that all possible outputs from Z make both executions behave
identically. Clearly so for the command (guess, b), and the commands (corrupt, 1) and
(activate, 1, x), for x 6= ε, would make Z violate IO, so we do not have to consider an
environment making such outputs. Finally, the command (activate, 1, ε) makes P1 output
ε in both executions.

We claim that π does not realize F|IO. Assume that there exists a PPT interface S such

that for all PPT environments Z it holds that IDEALF|IO ,S,Z
c≈REALπ,Z . This would in

particular hold for the environment Z which first inputs activate to P1, ends the round and
saves the output y from P1, inputs activate to P1, ends the round and saves the output
x. Then it checks whether y = f(x), and if so it outputs 0, otherwise it outputs 1. Clearly,
REALπ,Z = 0. However, in IDEALF|IO ,S,Z the value y is chosen at random by F and showed
to Z, and when Z violates IO the interface is given y and must compute x such that y = f(x)
and output x to Z. This would contradict the one-wayness of f . 2

We feel that the formalization, where we only quantify over non-violating environments
is the better formalization of restricted input-output behavior for a protocol. First of all, it
is the weaker notion, and it makes sense. The author feels that this is a strong motivation
for adopting it. We get a sound model which deems more protocols secure. Second, and
more importantly, some very intuitive results fails to hold if the other notion is adapted, e.g.
some results about implementing the broadcast model only holds under the notion that we
have adopted. Last, but not least, a slight generalization of the approach allows to define IO
restrictions which are not PPT. This will come in handy later.

94 Universally Composable Security of Synchronous Protocols

3.5.4 Formalizing IO Behavior

In this section we formalize our notion of input-output behavior.

3.5.4.1 IO Behavior for the ST

Until now we only discussed restricted IO behavior for a protocol. For an ideal functionality
we will in addition to putting a restriction on the inputs of honest parties, also put a re-
striction on the inputs and outputs on the special tapes (ST) (modeling a.o.t. the inputs of
the corrupted parties). We will for two reasons formalize this using a separate mechanism.
First of all the inputs to honest parties and the inputs on the SIT are supplied by separate
entities: In the ideal process the inputs to honest parties are supplied by Z, whereas the
inputs on the SIT are supplied by S, and in the hybrid model, the inputs to honest parties
are supplied by π, whereas the inputs on the SIT are supplied by Z. It is therefore separate
parties that should be penalized if the IO restriction is violated. Second, we can allow the
restriction on the ST to be arbitrary, whereas we only know how to prove the composition
theorem for PPT restrictions on the inputs and outputs of the honest parties. We let an IO
restriction for the ST IO be an ITM which is initially given k and is then given all outputs
on the SOT of F and all inputs on the SIT of F in the order in which they appear; Here F
is the ideal functionality F being restricted

For reporting that the IO behavior was violated IO has two reserved symbols ‘‘H F’’
and ‘‘C F’’. Intuitively, outputting ‘‘H F’’ will mean that the IO restriction was
violated by the honest parties and will always be output after seeing the vF value from an
activation of a party. Outputting ‘‘C F’’ will intuitively mean that the IO restriction
was violated by the corrupted parties (being controlled by the environment) and will always
be output after seeing the vF value from an end round-command, as vF specifies the inputs
of the honest parties. If at some point IO outputs ‘‘H F’’ or ‘‘C F’’ we say that
the IO restriction on the ST of F was violated. Formally we let ‘‘H F’’ and ‘‘C F’’
be sets of symbols, which can all equally be output to communicate a violation. This will
become convenient later as we can use the particular symbol output to indicate the type of
violation. If x is a variable ranging over strings, we often use the notation x = ‘‘H F’’
to mean x ∈ ‘‘H F’’.

Definition 3.10 An IO behavior for the ST (of F) is an ITM taking inputs of one of the
following four forms: 1) (k, r), where k is the security parameter and r the random bits
(this is the first input and is only given once), 2) (i, v), where i ∈ N and v ∈ {0, 1}∗,
3) (corrupt, i, v), where i ∈ N and v ∈ {0, 1}∗, or 4) (activate, v), where v ∈ {0, 1}∗.
The ITM delivers outputs from {ε} ∪ ‘‘H F’’ ∪ ‘‘C F’’, where ‘‘H F’’ and
‘‘C F’’ are two disjoint finite sets of reserved symbols not in {0, 1}∗. They only output
values from ‘‘H F’’ after an input of form 2 or 3 and they only output values from
‘‘C F’’ after an input of form 4). We enforce the convention on IO behaviors that if
they ever see the input fail as a v value in (i, v) or (corrupt, i, v), then they always output
a value from ‘‘H F’’.

It is convenient to consider the IO behavior for the ST as part of the ideal functionality.

3.5 Specifying Restricted Input-Output Behavior 95

Functionality 〈F , IO〉

initialization:
On input (k, r), split r into (rF , rIO) and input (k, rF) to F and input (k, rIO) to
F .

party activation:
On input (i, xi), proceed as follows:

1. Input (i, xi) to F and receive a value v from F .

2. Input (i, v) to IO and receive a value w.

3. If w ∈ ‘‘H F’’, then output w. Otherwise, output v.

corrupt:
On input (corrupt, i), proceed as follows:

1. Input (corrupt, i) to F and receive a value v from F .

2. Input (corrupt, i, v) to IO and receive a value w.

3. If w ∈ ‘‘H F’’, then output w. Otherwise, output v.

end round:
On input (activate, v), proceed as follows:

1. Input (activate, v) to F and receive a value {ti,r}i∈[n] from F .

2. Input (activate, v) to IO and receive a value w.

3. If w ∈ ‘‘C F’’, then output w. Otherwise, output {ti,r}i∈[n].

Figure 3.19: The ideal functionality with IO restriction obtained by composing an ideal
functionality F with an IO behavior IO for the ST.

Definition 3.11 An ideal functionality with IO restriction 〈F ,IO〉 is an ITM given by an
ideal functionality F and an IO behavior for the ST IO, as in Fig. 3.19. Given an ideal
functionality with IO restriction 〈F ,IO〉 we call F the core functionality of 〈F ,IO〉 and call
IO the IO restriction of 〈F ,IO〉.

In the following, when the IO restriction is given by the context, we often denote the ideal
functionality with IO restriction 〈F ,IO(F)〉 by F . When F denotes an ideal functionality
with IO restriction we use IO(F) to denote the IO restriction of F .

Jumping ahead a bit, we will later change the definition of the executions, real, hybrid
and ideal so that if an ideal functionality with IO restriction ever outputs ‘‘H F’’ or
‘‘C F’’, then the execution is stopped immediately, with output ‘‘H F’’ respec-
tively ‘‘C F’’.

Notice that an ideal functionality with IO restriction 〈F ,IO〉 not necessarily is an ideal
functionality, as IO and therefore 〈F ,IO〉 need not be PPT. We will later show that this is
not a problem.

96 Universally Composable Security of Synchronous Protocols

3.5.4.2 IO Behavior for a Protocol Via IO Behavior for the ST

Before we do this we will however make an observation which allows us to consider only
the IO restriction of the ST. Assume that we are given an IO restriction for a protocol
IO. This allows us to consider the restricted ideal functionality F|IO, which breaks down
each time IO is violated, see Fig. 3.16 on page 90. Assume that we are furthermore given
an IO restriction for the ST IO′. This allows us to consider the ideal functionality with
IO restriction 〈F|IO,IO′〉. We already discussed that if this ideal functionality with IO
restriction is run in a hybrid model and it outputs ‘‘H F’’ or ‘‘C F’’, because IO′
was violated, then the execution is stopped. We now also have the possibility that IO is
violated and that 〈F|IO,IO′〉 then outputs fail. To avoid having to deal with this extra
case we enforced the convention on IO restrictions for the ST that if they ever see the input
fail as a v value after a party activation or a corruption, then it outputs ‘‘H F’’, and
if they ever see the input fail as a v value after an end round-activation, then it outputs
‘‘C F’’. This means that if IO is ever violated and F|IO outputs fail, then 〈F|IO,IO′〉
will output ‘‘H F’’ or ‘‘C F’’. The intuition for which symbol is output when is as
follows: If fail is output after a party activation or a corruption, then the entity controlling
the honest parties broke the IO behavior, which is reported by outputting ‘‘H F’’. If
fail is output after an end round-activation, then the entity controlling the corrupted parties
broke the IO behavior, which is reported by outputting ‘‘C F’’. Since F|IO is in itself
an ideal functionality (as an IO restriction for a protocol is required to be PPT) we can avoid
dealing further with IO restrictions on the honest parties. We simply allow that in specifying
an ideal functionality F one is allowed to make it output fail to indicate that the expected
IO restriction was violated. In this case the execution in which it takes part will terminate
with output ‘‘H F’’ or ‘‘C F’’.

When considering the IO restriction for the ST on the other hand we are not guaranteed
that 〈F ,IO〉 is again PPT. We therefore have to carefully extend our model of execution
and reprove the composition theorem for the new model.

3.5.5 The Real-Life Model and the Ideal Process with Restricted IO

Let 〈F ,IO〉 be an ideal functionality with IO restriction and let π be a real-life protocol.
We formalize what it means for π to realize 〈F ,IO〉 in the real-life model. For this purpose
we have to extend the real-life model and the ideal process with IO restriction.

Consider first the ideal process IDEALF ,S,Z . We want to detect when IO is violated
and then terminate the simulation when this happens. To do this we simply run the
process IDEAL〈F ,IO〉,S,Z according to Fig. 3.2 on page 73. We then define the output of
IDEAL〈F ,IO〉,S,Z to be b if Z outputs b, but add the rule that if during the process 〈F ,IO〉
outputs v ∈ ‘‘H F’’∪‘‘C F’’, then the output of IDEAL〈F ,IO〉,S,Z is v. This means
that IDEAL〈F ,IO〉,S,Z ∈ {0, 1} ∪ ‘‘H F’’ ∪ ‘‘C F’’.

Recall that for an IO restriction for a protocol IO we preferred the formalization that
only quantified over environments that did not violate IO. We apply the same strategy here.
The output of IDEAL〈F ,IO〉,S,Z is a value from {0, 1} ∪ ‘‘H F’’ ∪ ‘‘C F’’. If the
output is 0 or 1, then IO was not violated. If the output is from ‘‘C F’’, then IO was
violated by S while specifying the inputs of corrupted parties. Therefore an output from

3.5 Specifying Restricted Input-Output Behavior 97

‘‘C F’’ should not be interpreted as a violation of IO by Z. However, if the output is
from ‘‘H F’’, then IO was violated by Z while specifying the inputs of honest parties.
In particular we have that if F outputs fail after seeing the input of an honest party, then
〈F ,IO〉, and therefore IDEAL〈F ,IO〉,S,Z , will output a value from ‘‘H F’’. Therefore
an output from ‘‘H F’’ should be interpreted as a violation of IO by Z. We therefore
only wants to quantify over Z which does not make IO output a value from ‘‘H F’’.
This leads us to the following formalization of security.

Definition 3.12 Let S be an interface, let π be a real-life protocol and let 〈F ,IO〉 be an
ideal functionality with IO restriction. We say that S can produce π given F , written S :
〈F ,IO〉/π, if for all G-hybrid environments Z where Pr[IDEALF ,S,Z ∈ ‘‘H F’’] it holds
that IDEAL〈F ,IO〉,S,Z

c≈REALπ,Z .

The reason why we only required from Z that Pr[IDEAL〈F ,IO〉,S,Z ∈ ‘‘H F’’] c≈0, as
opposed to Pr[IDEAL〈F ,IO〉,S,Z ∈ ‘‘H F’’] = 0, is technical. It gives a slightly stronger
security notion as we quantify over more environments. This strengthening is needed to
prove the composition theorem.

Notice that we did not change the real-life model. In particular we have that REALπ,Z ∈
{0, 1}, so Pr[REALπ,Z ∈ ‘‘C F’’] = 0. This means that if IDEAL〈F ,IO〉,S,Z

c≈REALπ,Z ,

then in particular Pr[IDEAL〈F ,IO〉,S,Z ∈ ‘‘C F’’] c≈0. This means that if S can pro-
duce π from 〈F ,IO〉, then for any environment Z it holds that if Pr[IDEAL〈F ,IO〉,S,Z ∈
‘‘H F’’] c≈0, then Pr[IDEAL〈F ,IO〉,S,Z ∈ ‘‘C F’’] c≈0. In other words, S will never
be the first to violate IO. This is of course a reasonable restriction on the interface.

Definition 3.13 Let π be a real-life protocol and let 〈F ,IO〉 be an ideal functionality with
IO restriction. We say that π realizes F if there exists a PPT G-hybrid interface S such that
S : 〈F ,IO〉 / π.

3.5.6 The Hybrid Model With Restricted IO

We now extend the hybrid models and the hybrid ideal process accordingly. Let 〈F ,IO(F)〉
and 〈G,IO(G)〉 be ideal functionalities with IO restriction and let π be a G-hybrid protocol.
We formalize what it means for π to realize 〈F ,IO(F)〉 in the 〈G,IO(G)〉-hybrid model.

We consider first the 〈G,IO(G)〉-hybrid model. Similar to above we simply consider the
execution HYB〈G,IO(G)〉

π,Z and we say that the output of HYB〈G,IO(G)〉
π,Z is the output of Z, unless

IO(G) ever outputs a value from ‘‘H G’’ or ‘‘C G’’, in which case the output of
HYB〈G,IO(G)〉

π,Z is the value from ‘‘H G’’ respectively ‘‘C G’’. We use ‘‘H G’’
and ‘‘C G’’ as the reserved sets of symbols of G and assume that they are disjoint from
the reserved sets of symbols ‘‘H F’’ respectively ‘‘C F’’ of F .

For the hybrid ideal process for the 〈G,IO(G)〉-hybrid model we consider the execution
IDEAL〈G,IO(G)〉

〈F ,IO(F)〉,S,Z . Remember that for the symbol IDEALGF ,S,Z , the machine G does not

actually occur in the process. This will not be the case for IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,S,Z , where

IO(G) will play an actual part of the process. The reason for this is that a copy of G is being

98 Universally Composable Security of Synchronous Protocols

Algorithm IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,T ,Z(k, r, z)

initialize:
The input to an ideal process is the security parameter k, the random bits
(rF , rIO(F)), rT , rIO(G) used by 〈F , IO(F)〉, T and IO(G) and an auxiliary input
z ∈ {0, 1}∗ and random bits rZ for Z.
Initialize the round counter r = 1 and initialize the set of corrupted parties C = ∅.
Provide the various machines with their random inputs and k and give k, z and rZ
to Z and activate Z.

environment activation:
Z is defined exactly as in the hybrid model in Fig. 3.4 on page 76, but now the
commands are handled by T , as described below.

party activation:
On (activate, i, xi,r, {mj,i,r−1}j∈C), input (i, xi,r) to 〈F , IO(F)〉 and receive vF on
the SOT of F . If vF ∈ ‘‘H F’’, then terminate the execution with output
vF . Input (activate, i, vF , {mj,i,r−1}i∈C) to T to generate ({mi,j,r}j∈[n]\{i}, vG).
Input (i, vG) to IO(G) and receive a value w. If w ∈ ‘‘H G’’, then termi-
nate the execution with output w. Input ({mi,j,r}j∈[n]\{i}, vG) to Z.

corrupt:
On (corrupt, i), input (corrupt, i) on the SIT of 〈F , IO(F)〉 and receive vF on
the SOT of 〈F , IO(F)〉. If vF ∈ ‘‘H F’’, then terminate the execution
with output vF . Input (corrupt, i, vF) to T and receive a value (ri, vG). Give
(corrupt, i, vG) to IO(G) and receive a value w. If w ∈ ‘‘H G’’, then
terminate the execution with output w. Input (ri, vG) to Z. Set C = C ∪ {i}.

end round:
On (end round, vG), input (activate, vG) to IO(G) and receive a value w.
If w ∈ ‘‘C G’’, then terminate the execution with output w. Input
(end round, vG) to T to generate vF . Input (activate, vF) to 〈F , IO(F)〉 to gen-
erate w ∈ ‘‘C F’’ ∪ {{yi,r}i∈[n]}. If w ∈ ‘‘C F’’, then terminate the
execution with output w. Input {yi,r}i∈C to T to generate {tGi,r}i∈C . Then input
({yi,r}i∈H , {tGi,r}i∈C) to Z. Set r = r + 1.

Figure 3.20: The ideal process with a hybrid-adversary.

simulated by S to Z and that Z inputs values to this simulated version of G. Therefore we
have to verify that the simulated version of G is used correctly by Z. The details of how this
is done is given in Fig. 3.20.

Definition 3.14 Let 〈F ,IO(F)〉 and 〈G,IO(G)〉 be ideal functionalities with IO restriction
and let π be a 〈G,IO(G)〉-hybrid protocol. Let T be a hybrid interface. We say that T
can produce π[〈G,IO(G)〉] given 〈F ,IO(F)〉, written T : 〈F ,IO(F)〉 / π[〈G,IO(G)〉], if
for all G-hybrid environments Z where Pr[IDEAL〈G,IO(G)〉

〈F ,IO(F)〉,T ,Z ∈ ‘‘H F’’] it holds that

Pr[IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,T ,Z ∈ ‘‘H G’’] c≈0 and IDEAL〈G,IO(G)〉

〈F ,IO(F)〉,T ,Z
c≈HYB〈G,IO(G)〉

π,Z .

Notice that from Pr[IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,T ,Z ∈ ‘‘H G’’] c≈0 and IDEAL〈G,IO(G)〉

〈F ,IO(F)〉,T ,Z
c≈

3.5 Specifying Restricted Input-Output Behavior 99

HYB〈G,IO(G)〉
π,Z it follows that Pr[HYB〈G,IO(G)〉

π,Z ∈ ‘‘H G’’] c≈0, meaning that π uses G
correctly in HYB〈G,IO(G)〉

π,Z , except with negligible probability. Therefore, if T can produce
π[〈G,IO(G)〉], then π used the ideal functionality G1 correctly.

There might be one surprise in the above definition. Why do we not require from Z that

Pr[IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,T ,Z ∈ ‘‘H F’’ ∪ ‘‘C G’’] c≈0 ,

instead of just

Pr[IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,T ,Z ∈ ‘‘H F’’] c≈0 ,

and why do we not require from T that

Pr[IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,T ,Z ∈ ‘‘C F’’ ∪ ‘‘H G’’] c≈0 ,

instead of just

Pr[IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,T ,Z ∈ ‘‘H G’’] c≈0 .

The second question is the easier one to answer. The experiment HYB〈G,IO(G)〉
π,Z never

outputs ‘‘C F’’, so from

IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,T ,Z

c≈HYB〈G,IO(G)〉
π,Z

it follows that
Pr[IDEAL〈G,IO(G)〉

〈F ,IO(F)〉,T ,Z ∈ ‘‘C F’’] c≈0 .

Then for the first question. What about the condition

Pr[IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,T ,Z ∈ ‘‘C G’’] c≈0 ?

It would seem reasonable to require this as it is Z which inputs to the corrupted parties of
the simulated G in IDEAL〈G,IO(G)〉

〈F ,IO(F)〉,T ,Z , and Pr[IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,T ,Z ∈ ‘‘C G’’] c≈0 does

not follow from IDEAL〈G,IO(G)〉
〈F ,IO(F)〉,T ,Z

c≈HYB〈G,IO(G)〉
π,Z , as HYB〈G,IO(G)〉

π,Z outputs ‘‘C G’’
whenever Z violates IO(G). As of now we allow environments which violates IO(G). There
is a reason for this which we return to below. But notice that it is not a serious problem for
the simulator to consider environments which violates IO(G) as both IDEAL〈G,IO(G)〉

〈F ,IO(F)〉,T ,Z

and HYB〈G,IO(G)〉
π,Z terminate with output ‘‘C G’’ when IO(G) is violated. Therefore the

simulator only has to simulate successfully up to the point where IO(G) is violated.

Definition 3.15 Let 〈F ,IO(F)〉 and 〈G,IO(G)〉 be ideal functionalities with IO restric-
tion and let π be a 〈G,IO(G)〉-hybrid protocol. We say that π realizes 〈F ,IO(F)〉 in the
〈G,IO(G)〉-hybrid model if there exists a PPT hybrid interface T such that T : 〈F ,IO(F)〉/
π[〈G,IO(G)〉].

100 Universally Composable Security of Synchronous Protocols

3.5.7 Multiple Ideal Functionalities with Restricted IO

In this section we describe how to deal with hybrid models with multiple functionalities.
We extend the approach in Section 3.3.1 to also consider IO restrictions. We first extend
Definition 3.5 on page 76.

Definition 3.16 Let IO(G1) and IO(G2) be IO restriction. The double IO restriction IO =
[IO(G1),IO(G2)] is defined as follows: On input (k, r) it splits r into r1 and r2 and inputs
(k, rm) to IO(Gm), where m ranges over 1, 2. On input (i, v) it parses v as (v1, v2) and inputs
(i, vm) to IO(Gm). If IO(G1) outputs x ∈ ‘‘H G1’’, then IO outputs x; Otherwise, if
IO(G2) outputs x ∈ ‘‘H G2’’, then IO outputs x; Otherwise, IO outputs ε. On input
(corrupt, i) it inputs (corrupt, i) to IO(Gm). The output is defined as for (i, v) above.
On input (activate, v) it parses v as (v1, v2) and inputs (activate, vm) to IO(Gm). If
IO(G1) outputs x ∈ ‘‘C G1’’, then IO outputs x; Otherwise, if IO(G2) outputs x ∈
‘‘C G2’’, then IO outputs x; Otherwise, IO outputs ε. We define the multi IO restriction
[IO(G1),IO(G2), . . . ,IO(Gl)] as follows: If l = 0, we write IO = [], then we let IO = IOtriv,
where IOtriv is the trivial IO restriction which always outputs ε, except when it sees the input
fail, in which case it must by definition output a symbol from ‘‘H ·’’ or ‘‘C ·’’ —
we let ‘‘H ·’’ = {2} and ‘‘C ·’’ = {2}, and if fail is seen after a party activation
or a corruption, then we let IOtriv output 2 and if if fail is seen after an end round-
activation, then we let IOtriv output 3. When l = 1 we let IO = IO(G1). And, when l ≥ 2,
we let IO = [IO(G1), [IO(G2), . . . ,IO(Gl)]]. The multi ideal functionality with IO restriction
G = [〈G1,IO(G1)〉, . . . , 〈Gl,IO(Gl)〉] is defined to be the ideal functionality with IO restriction
〈[G1, . . . ,Gl], [IO(G1), . . . ,IO(Gl)]〉.

Definition 3.17 Let F , G1, . . . ,Gl be ideal functionalities with IO restriction and let π be a
hybrid protocol. We say that π realizes F in the (G1, . . . ,Gl)-hybrid model if π realizes F in
the [G1, . . . ,Gl]-hybrid model.

It is straight-forward to verify the following lemma.

Lemma 3.5 Let F , G1,G2 be ideal functionalities with IO restriction and let π be a protocol
for the [G1,G2]-hybrid model. We can consider π a protocol for the [G2,G1]-hybrid model as in
Lemma 3.1 on page 78. With this convention we have that π realizes F in the [G1,G2]-hybrid
model iff π realizes F in the [G2,G1]-hybrid model. Let F , G1,G2,G3 be ideal functionalities
with IO restriction and let π be a protocol for the [G1, [G2,G3]]-hybrid model. We can consider
π as a protocol for the [[G1,G2],G3]-hybrid protocol as in Lemma 3.1 on page 78. With this
convention π realizes F in the [G1, [G2,G3]]-hybrid model if π realizes F in the [[G1,G2],G3]-
hybrid model.

Theorem 3.5 Let F , G1, . . . ,Gl,H1, . . . ,Hm be ideal functionalities with IO restriction,
where the IO restrictions of G1, . . . ,Gi−1,Gi+1,Gl,H1, . . . ,Hm are PPT, for some i ∈ {1, . . . , l}.
Let π be a (G1, . . . ,Gl)-hybrid protocol and let γ by a (H1, . . . ,Hm)-hybrid protocol. Assume
that γ realizes Gi in the (H1, . . . ,Hm)-hybrid model and assume that π realizes F in the
(G1, . . . ,Gl)-hybrid model. Then π[γ/Gi] realizes F in the (G1, . . . ,Gi−1,H1, . . . ,Hm,Gi+1, . . . ,Gl)-
hybrid model.

3.5 Specifying Restricted Input-Output Behavior 101

Proof. The claim follows directly from Lemma 3.8 on page 104, using Lemma 3.5 on the
preceding page. 2

Notice that we allow that the IO restriction of the ideal functionality being substituted,
Gi, has a super-polynomial time complexity.

3.5.8 Conjunction and Disjunction of IO Restrictions

To make it easier to manipulate IO restrictions we define the conjunction IO1∧IO2 and the
disjunction IO1 ∨ IO2 of IO restrictions. We define the compositions such that IO1 ∧ IO2

is not violated iff IO1 is not violated and IO2 is not violated and we want that IO1 ∨ IO2

is not violated iff IO1 is not violated or IO2 is not violated.

Definition 3.18 Let IO(G1) and IO(G2) be IO restrictions. The conjunction of IO restric-
tions IO = IO(G1)∧IO(G2) is defined as follows: Let the set ‘‘H ·’’ for IO(G1)∧IO(G2)
be ‘‘H G1’’ ∪ ‘‘H G2’’ and let the set ‘‘C ·’’ be ‘‘C G1’’ ∪ ‘‘C G2’’.
On input (k, r) it splits r into r1 and r2 and inputs (k, rm) to IO(Gm), where m ranges
over 1, 2. On input (i, v) it inputs (i, v) to IO(Gm). If IO(G1) outputs x ∈ ‘‘H G1’’,
then IO(G1) ∧ IO(G2) outputs x; Otherwise, if IO(G2) outputs x ∈ ‘‘H G2’’, then
IO(G1)∧IO(G2) outputs x; Otherwise, IO(G1)∧IO(G2) outputs ε. The remaining commands
are handled equivalently, checking IO(G1) before IO(G2). The disjunction of IO restrictions
IO = IO(G1) ∨ IO(G2) is defined as follows: Let the set ‘‘H ·’’ for IO(G1) ∨ IO(G2)
be ‘‘H G1’’ × ‘‘H G2’’ and let the set ‘‘C ·’’ be ‘‘C G1’’ × ‘‘C G2’’.
On input (k, r) it splits r into r1 and r2 and inputs (k, rm) to IO(Gm), where m ranges
over 1, 2. On input (i, v) it inputs (i, v) to IO(Gm). If IO(G1) outputs x1 ∈ ‘‘H G1’’

and IO(G2) outputs x2 ∈ ‘‘H G2’’, then IO(G1) ∨ IO(G2) outputs (x1, x2); Otherwise
IO(G1) ∨ IO(G2) outputs ε. The remaining commands are handled equivalently.

3.5.9 Composing an Interface with an Environment

We proceed to prove the composition theorem with IO restriction. For this purpose we modify
our notions of composition of the entities in the framework to deal with IO restriction. Our
definition of what is a protocol and what is an interface have not change, and therefore we can
maintain the definition of composition of protocols π[γ/G1] and the definition of composition
of an interface with and interface T [S/G1]. It turns out that we have to change the definition
of composing an interface with an environment Z[S/H] and the definition of composing an
environment with a protocol Z[π,G]. In this section we redefine the notion of composing
an interface with an environment. Basically we add to the previous definition that Z[S/H]
checks the IO restriction of H and terminates the execution if it is violated. The details are
given in Fig. 3.21 on page 103. Notice that we allow Z[S/〈H,IO(H)〉] to output values from
the finite domain {0, 1} ∪ ‘‘H H’’ ∪ ‘‘C H’’. This means that Z[S/〈H,IO(H)〉] is
not an environment in the sense that environments only output values from {0, 1}. We deal
with this later, using Lemma 2.3 on page 12.

102 Universally Composable Security of Synchronous Protocols

Lemma 3.6 For all (H,G2)-hybrid environments Z, all H-hybrid interfaces S, all ideal
functionalities with restricted IO 〈F ,IO(F)〉, 〈G1,IO(G1)〉 and 〈G1,IO(G1)〉 and all (G1,G2)-
hybrid interfaces T it holds for all c 6∈ ‘‘H G1’’ ∪ ‘‘C G1’’ that

Pr[IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉] = c] ≤ Pr[IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉

〈F ,IO(F)〉,T [S/G1],Z = c] .

In particular, if Pr[IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉] ∈ ‘‘H G1’’ ∪ ‘‘C G1’’]

c≈0, then

IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉]

c≈ IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T [S/G1],Z .

Proof. By definition we have that IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T [S/G1],Z = IDEALH,G2

F ,T [S/G1],Z and that

IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉] = IDEALG1,G2

F ,T ,Z[S/〈H,IO(H)〉] as long as no IO restriction is

violated. By Lemma 3.2 on page 84 we therefore have that IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T [S/G1],Z =

IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉] as long as no IO restriction is violated. We then consider

what happens when an IO restriction is violated. In the processes four different IO restrictions
are present: IO(H),IO(G1),IO(G2) and IO(F). Since the processes are identical until one
of them is violated, the first to be violated is the same in both. We consider for each what
happens if it is violated first. If IO(F) is first, then the output of both processes will be in
‘‘H F’’ or ‘‘C F’’ and will be the same in both as IO(F) is checked by 〈F ,IO(F)〉
in the same way in both processes. If IO(G2) is first, then the output of both processes will
be in ‘‘H G2’’ or ‘‘C G2’’ and will be the same in both as IO(G2) is checked in
the same way in both processes by the rules of Fig. 3.20 on page 98. If IO(H) is the
first, then in IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉

〈F ,IO(F)〉,T [S/G1],Z the output will be in ‘‘H H’’ or ‘‘C H’’.
Since Z[S/〈H,IO(H)〉] is checking IO(H) exactly as is done in IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉

〈F ,IO(F)〉,T [S/G1],Z
it follows that the outputs of the processes are the same. Notice in particular that the
points at which the checks of IO(H) is placed in Z[S/〈H,IO(H)〉] was chosen such that
if both IO(H) and IO(G2) are violated in the same activation, then IO(H) is checked by
Z[S/〈H,IO(H)〉] before it outputs to IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉

〈F ,IO(F)〉,T ,Z[S/H] , where IO(G2) is checked.
This is consistent with the order in which the checks are done in 〈[H,G2], [IOH,IOG2]〉 in
IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉

〈F ,IO(F)〉,T [S/G1],Z . This proves that the processes are different only when IO(G1)
is violated, which established the claim of the lemma. 2

3.5.10 Composing an Environment with a Protocol

In this section we redefine the notion of composing an environment with a protocol. Basically
we add to the previous definition that Z[π,G2] checks the IO restriction of G2 and terminates
the execution if it is violated. We define Z[π, 〈G2,IO(G2)〉] to be the construction Z[π,G′2]
from Fig. 3.15 on page 88, with G′2 = 〈G2,IO(G2)〉 and with the change that if G′2 outputs
w ∈ ‘‘H G2’’∪‘‘C G2’’ in party activation Step 3, corrupt Step 3 or end round Step 3,
then Z[π, 〈G2,IO(G2)〉] terminates the execution with output w. We allowed Z to output
from {0, 1} ∪ ‘‘H G2’’ ∪ ‘‘C G2’’. Later we deal with this using Lemma 2.3 on
page 12.

3.5 Specifying Restricted Input-Output Behavior 103

Environment Z[S/〈H, IO(H)〉]

initialize:
Z[S/〈H, IO(H)〉] receives (k, z, rZ) and picks a section of rZ as random bits r for S.
Let r′Z be the remaining random bits and input (k, z, r′Z) to Z.

environment:
When asked to produce a command, run Z to get a command c. If c = (guess, b),
then output c. Otherwise proceed as described below.

party activation:
If c = (activate, i, xi,r, {mi,j,r−1}i∈C) then:

1. For i ∈ C compute (mπ
i,j,r−1, m

γ
i,j,r−1) ← mi,j,r−1 and output

(activate, i, xi,r, {mπ
i,j,r−1}i∈C).

2. Then in IDEALG1,G2
F ,T ,Z[S/〈H,IO(H)〉] the party Pi is activated and the values

{mπ
i,j,r−1}i∈C and vF are input to T which generates values {mγ

i,j,r}j∈[n]\{i}
and (vG1 , vG2), which are given to Z[S/〈H, IO(H)〉].

3. Input {mγ
i,j,r−1}i∈C and vG1 to S which generates values {mγ

i,j,r}j∈[n]\{i} and
vH.

4. Input (i, vH) to IO(H) and receive a value w. If w ∈ ‘‘H H’’, then
terminate with output w.

5. Then input {mi,j,r}j∈[n]\{i} and (vH, vG2) to Z, where mi,j,r = (mπ
i,j,r, m

γ
i,j,r).

corrupt:
If c = (corrupt, i), then output (corrupt, i) and:

1. In IDEALG1,G2
F ,T ,Z[S/〈H,IO(H)〉] the value (corrupt, ivF) is input to to T to gen-

erate (rπ
i , (vG1 , vG2)), which is given to Z[S/〈H, IO(H)〉].

2. Input (corrupt, i, vG1) to S to generate (rγ
i , vH).

3. Input (corrupt, i, vH) to IO(H) and receive a value w. If w ∈
‘‘H H’’, then terminate with output w.

4. Input (ri = (rπ
i , rγ

i), (vH, vG2)) to Z.

end round:
If c = (end round, (vH, vG2), then:

1. Input (activate, vH) to IO(H) and receive a value w. If w ∈ ‘‘C H’’,
then terminate with output w.

2. Activate S on input (end round, vH) and receive as output a value vG1 .

3. Output (end round, (vG1 , vG2).

4. In IDEALG1,G2
F ,T ,Z[S/〈H,IO(H)〉] T is activated on input (end round, (vG1 , vG2))

and produces a value vF . Then (activate, vF) is input to F and values
{yFi,r}i∈[n] are produced. Then {yFi,r}i∈C are input to T which produces out-
put {(tG1

i,r, t
G2
i,r)}i∈C, which are given to Z[S/〈H, IO(H)〉] along with {yFi,r}i∈H.

5. Input {tG1
i,r}i∈C to S, get {tHi,r}i∈C and input ({yFi,r}i∈H , {(tHi,r, tG2

i,r)}i∈C) to Z.

Figure 3.21: The (G1,G2)-hybrid interface Z[S/〈H, IO(H)〉] obtained by composing a
(H,G2)-hybrid environment Z with a H-hybrid interface S.

104 Universally Composable Security of Synchronous Protocols

Lemma 3.7 For all (G1,G2)-hybrid protocols π, all H-hybrid protocols γ and all (H,G2)-
hybrid environments Z, it holds that

HYB〈H,IO(H)〉,〈G2,IO(G2)〉
π[γ/G1],Z = HYB〈H,IO(H)〉

γ,Z[π,〈G2,IO(G2)〉] .

For all (G1,G2)-hybrid protocols π, all ideal functionalities (G1,G2), all (H,G2)-hybrid envi-
ronments Z and all H-hybrid interfaces S it holds that

HYB〈G1,IO(G1)〉,〈G2,IO(G2)〉
π,Z[S/〈H,IO(H)〉] = IDEAL〈H,IO(H)〉

〈G1,IO(G1)〉,S,Z[π,〈G2,IO(G2)〉] .

Proof. The proof is an extension of Lemma 3.3 on page 86, proceeding as in the proof of
Lemma 3.6 on page 101. The crucial observation for the first claim is that Z[π, 〈G2,IO(G2)〉]
checks IO(G2) exactly as it is done in HYB〈H,IO(H)〉,〈G2,IO(G2)〉

π[γ/G1],Z . For the second claim ob-

serve that Z[π, 〈G2,IO(G2)〉] checks IO(G2) exactly as it is done in HYB〈G1,IO(G1)〉,〈G2,IO(G2)〉
π,Z[S/〈H,IO(H)〉]

and observe that Z[S/〈H,IO(H)〉] checks IO(H) exactly as it is done in
IDEAL〈H,IO(H)〉

〈G1,IO(G1)〉,S,Z[π,〈G2,IO(G2)〉]. Furthermore 〈G1,IO(G1)〉 is present in both executions
and is checked in the same way in both. 2

Lemma 3.8 Let H, G1 and G2 be ideal functionalities and assume that IO(H) and IO(G2)
are PPT. Let π be a (G1,G2)-hybrid protocol and let γ by a H-hybrid protocol.

• Assume that for all H-hybrid environments Z it holds that if

Pr[IDEAL〈H,IO(H)〉
〈G1,IO(G1)〉,S,Z ∈ ‘‘H G1’’]

c≈0 ,

then
Pr[IDEAL〈H,IO(H)〉

〈G1,IO(G1)〉,S,Z ∈ ‘‘H H’’] c≈0

and
IDEAL〈H,IO(H)〉

〈G1,IO(G1)〉,S,Z
c≈HYB〈H,IO(H)〉

γ,Z ;

• And that for all (G1,G2)-hybrid environments Z it holds that if

Pr[IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z ∈ ‘‘H F’’] c≈0 ,

then
Pr[IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉

〈F ,IO(F)〉,T ,Z ∈ ‘‘H G1’’ ∪ ‘‘H G2’’]
c≈0

and
IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉

〈F ,IO(F)〉,T ,Z
c≈HYB〈G1,IO(G1)〉,〈G2,IO(G2)〉

π,Z ;

• Then for all (H,G2)-hybrid environments Z it holds that if

Pr[IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T [S/G1],Z ∈ ‘‘H F’’] c≈0 ,

then

3.5 Specifying Restricted Input-Output Behavior 105

Pr[IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T [S/G1],Z ∈ ‘‘H H’’ ∪ ‘‘H G2’’]

c≈0

and
IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉

〈F ,IO(F)〉,T [S/G1],Z
c≈HYB〈H,IO(H)〉,〈G2,IO(G2)〉

π[γ/G1],Z .

Proof. Let Z be any (H,G2)-hybrid environments and assume that

Pr[IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T [S/G1],Z ∈ ‘‘H F’’] c≈0 . (3.1)

By Eq. 3.1 and Lemma 3.6 on page 101 we have that

Pr[IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉] ∈ ‘‘H F’’] c≈0 . (3.2)

Since IO(H) is assumed to be PPT we have that Z[S/〈H,IO(H)〉] is PPT. So, using Eq. 3.2
and the second premise we get that the following holds:

Pr[IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉] ∈ ‘‘H G1’’ ∪ ‘‘H G2’’]

c≈0 (3.3)

IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉]

c≈HYB〈G1,IO(G1)〉,〈G2,IO(G2)〉
π,Z[S/〈H,IO(H)〉] . (3.4)

Notice that to apply the second premise we need Z[S/〈H,IO(H)〉] to be an environment.
Since Z[S/〈H,IO(H)〉] outputs other values than 0 and 1, formally it is not an environment.
However, Z[S/〈H,IO(H)〉] only has a finite domain D as the sets of symbols for reporting
IO violations are assumed to be finite. Therefore we can use Lemma 2.3 on page 12 and
apply the second premise for each of the environments I(d)(Z[S/〈H,IO(H)〉]), which applies
I(d) to its final output value.

By Lemma 3.7 on the facing page and Eq. 3.4 we have that

IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉]

c≈ IDEAL〈H,IO(H)〉
〈G1,IO(G1)〉,S,Z[π,〈G2,IO(G2)〉] . (3.5)

By Eq. 3.3 and Eq. 3.5 we have that

Pr[IDEAL〈H,IO(H)〉
〈G1,IO(G1)〉,S,Z[π,〈G2,IO(G2)〉] ∈ ‘‘H G1’’]

c≈0 . (3.6)

Since π and 〈G2,IO(G2)〉 are assumed to be PPT, we have that Z[π, 〈G2,IO(G2)〉] is PPT,
which by Eq. 3.6 and the first premise gives us that

Pr[IDEAL〈H,IO(H)〉
〈G1,IO(G1)〉,S,Z[π,〈G2,IO(G2)〉] ∈ ‘‘H H’’] c≈0 (3.7)

IDEAL〈H,IO(H)〉
〈G1,IO(G1)〉,S,Z[π,〈G2,IO(G2)〉]

c≈HYB〈H,IO(H)〉
γ,Z[π,〈G2,IO(G2)〉] . (3.8)

Again we applied Lemma 2.3 on page 12. Lemma 3.7 on the facing page and Eq. 3.8 imply
that

IDEAL〈H,IO(H)〉
〈G1,IO(G1)〉,S,Z[π,〈G2,IO(G2)〉]

c≈HYB〈H,IO(H)〉,〈G2,IO(G2)〉
π[γ/G1],Z . (3.9)

By Eq. 3.5 and Eq. 3.9 we have that

IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉]

c≈HYB〈H,IO(H)〉,〈G2,IO(G2)〉
π[γ/G1],Z . (3.10)

106 Universally Composable Security of Synchronous Protocols

Clearly Pr[HYB〈H,IO(H)〉,〈G2,IO(G2)〉
π[γ/G1],Z ∈ ‘‘H G1’’∪‘‘C G1’’] = 0, which by Eq. 3.10 on

the preceding page gives us that

Pr[IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉] ∈ ‘‘H G1’’ ∪ ‘‘C G1’’]

c≈0 ,

which by Lemma 3.6 on page 101 gives us that

IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T [S/G1],Z

c≈ IDEAL〈G1,IO(G1)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T ,Z[S/〈H,IO(H)〉] . (3.11)

Eq. 3.3 on the preceding page and Eq. 3.11 gives us that

Pr[IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T [S/G1],Z ∈ ‘‘H G2’’]

c≈0 . (3.12)

By Eq. 3.5 on the preceding page and Eq. 3.11 we have that

IDEAL〈H,IO(H)〉,〈G2 ,IO(G2)〉
〈F ,IO(F)〉,T [S/G1],Z

c≈ IDEAL〈H,IO(H)〉
〈G1,IO(G1)〉,S,Z[π,〈G2,IO(G2)〉] ,

which by Eq. 3.7 on the preceding page implies that

Pr[IDEAL〈H,IO(H)〉,〈G2,IO(G2)〉
〈F ,IO(F)〉,T [S/G1],Z ∈ ‘‘H H’’] c≈0 . (3.13)

Eq.s. 3.5, 3.9, 3.11, 3.12 and 3.13 establish the lemma. 2

3.5.11 Modeling Classes of Adversaries via Restricted IO

We have until now only considered adversaries which could adaptively corrupt all parties. In
particular, we did not model static adversaries or adversaries that can only corrupt a bounded
number of parties. We now use our notion of restricted IO to do this. Since an IO restriction
is allowed to depend on the sequence of corruptions, we can use the IO restriction to define
the corruption patterns under which the protocol is realized. We can define the static IO
restriction IOstatic for an ideal functionality F . If IOstatic receives an input of the form
(corrupt, ·) (a corruption) after having received the first input of the form (activate, j, v)
(a party activation), then IOstatic outputs ‘‘H F’’. We also define the t-threshold cor-
ruption restriction IOthresh(t), to restrict the number of corruptions to a given threshold t

of the parties. If IOthresh(t) receives an input of the form (corrupt, ·) more than t times,
then it outputs ‘‘H F’’. Consider now a protocol realizing 〈F ,IOstatic〉 (respectively
〈F ,IOthresh(t)〉) in the real-life model. This means that there exists an interface S such that
for all environments Z it holds that if Pr[IDEAL〈F ,IOstatic〉,S,Z ∈ ‘‘H F’’] = 0 (respec-

tively Pr[IDEAL〈F ,IOthresh〉,S,Z ∈ ‘‘H F’’] = 0), then IDEAL〈F ,IOstatic〉,S,Z
c≈REALπ,Z

(respectively IDEAL〈F ,IOthresh(t)〉,S,Z
c≈REALπ,Z). This means that we do not require that

IDEAL〈F ,IO〉,S,Z
c≈REALπ,Z if Z corrupts a party during the execution (respectively cor-

rupts more than t parties), except with negligible probability. This is exactly what we wanted
to capture.

A subtlety arises in the hybrid models. We describe the subtly using IOstatic as an
example. Consider the ideal process IDEAL〈G,IO(IOstatic)〉

〈F ,IO(IOstatic)〉,T ,Z . If Z ever corrupts a party

3.5 Specifying Restricted Input-Output Behavior 107

during the execution, then both the IO restriction of G and the IO restriction of F are
violated by a corruption. Therefore they will output ‘‘H G’’ respectively ‘‘H F’’.
Which one is taken to be the output of the execution is essential. What we want is that
if IOstatic is violated by Z, then IDEAL〈G,IO(IOstatic)〉

〈F ,IO(IOstatic)〉,T ,Z outputs ‘‘H F’’, so that we

do not require from the simulator that HYB〈G,IO(IOstatic)〉
π,Z

c≈ IDEAL〈G,IO(IOstatic)〉
〈F ,IO(IOstatic)〉,T ,Z when

IOstatic is violated. By inspection of corrupt in Fig. 3.20 on page 98 it can be seen that this
is indeed the case as F is activated before G.

In the following we will be using IOthresh(t) so often that it is convenient to introduce
the following terminology.

Definition 3.19 Let 〈F ,IO(F)〉 and 〈G,IO(G)〉 be ideal functionalities with IO restriction
and let π be a hybrid protocol. We say that π t-realizes 〈F ,IO(F)〉 in the 〈G,IO(G)〉-hybrid
model if π realizes 〈F ,IO(F) ∧ IOthresh(t)〉 in the 〈G,IO(G)〉-hybrid model.

3.5.12 The Significance of Restricted IO

We want to emphasis that restricted IO is primarily significant when efficiency is an issue; It
is not known to change the picture when it comes to established possibility results for which
tasks are realizable.

Restricted IO allows us to specified that a given functionality is only expected to work
for a given restricted set of inputs, which in some cases allows to realize the functionality
more efficiently. Restricted IO is however not known to allow us to realize any functionality
that could not be realized without assuming the restricted IO restriction. As an example, in
Section 3.8.3 we show how to specify a notion of universally composable proof of membership,
which does not at the same time require realizations to be universally composable proofs of
knowledge. This is significant from a practical point of view as universally composable proofs
of membership find many applications and, with our current knowledge, can be realized much
more efficiently than universally composable proofs of knowledge. However, as demonstrated
by Canetti and Fischlin [CF01] universally composable proofs of knowledge can be realized
for all NP relations. Therefore the notion of universally composable proofs of membership
does not allow us to construct universally composable zero-knowledge proof systems for a
larger class of languages.

It seems this could easily be the general picture, that restricted IO does not allow us
to realize more ideal functionalities. Notice that for technical reasons the claim is actually
false. Since the restricted IO behavior allows us to specify functionalities which are not PPT,
the restricted IO behavior trivially allows us to realize a larger class of ideal functionalities
since the prior formalization did not even allow to specify these functionalities. To be able
to compare the models we therefore only consider functionalities which could be specified
in both the model with restricted IO and the model without restricted IO. Therefore we
only consider PPT IO restrictions IO. To be able to compare the models we then consider
realizing F|IO in the model without IO restriction vs. realizing 〈F ,IO〉 in the model with
IO restriction.

To be precise, for any ideal functionality F and PPT IO restriction IO, let Π(F|IO)
denote the set of protocols π which realize F|IO in the model without IO restriction and let

108 Universally Composable Security of Synchronous Protocols

Π(〈F ,IO〉) denote the set of protocols π which realize F in the model with IO restriction.
We clear have that Π(F|IO) ⊆ Π(〈F ,IO〉). The question is whether there exist F and PPT
IO such that Π(F|IO) = ∅ and Π(〈F ,IO〉) 6= ∅.

Notice that by Theorem 3.4 on page 93 at the level of individual protocols there is a
difference in that more protocols might realize 〈F ,IO〉. Theorem 3.4 gives us F for which
Π(F|IO) Π(〈F ,IO〉). Indeed the existence of F and IO for which Π(〈F ,IO〉)\Π(F|IO) 6=
∅ is closely related to our motivation for introducing the notion of restricted IO: The set
Π(〈F ,IO〉) \Π(F|IO) might contain superiorly efficient protocols. However for the example
provided by Theorem 3.4 it is not the case that Π(F|IO) = ∅, and it seems that it could be
the case for all F that if Π(〈F ,IO〉) 6= ∅, then Π(F|IO) 6= ∅.

The author does not know of any ideal functionality F and PPT IO restriction IO where
Π(F|IO) = ∅ and Π(〈F ,IO〉) 6= ∅. Even though this problem is not directly associated to
the main motivation for introducing restricted IO, from a theoretical point of view it might
be interesting to investigate whether such a system exists.

The answer to the problem depends on the model of computation considered, and we
consider some models here. We note that the below treatment only covers some models
of computation and is rather informal. The goal is to justify why restricted IO might not
change the picture when it comes to possibility results, not to give a formal treatment. The
primary reason being that the model of restricted IO was introduced exactly for the purpose
of efficiency and modularity of proof, not to change the classes of realizable tasks. So, we do
not consider the problem a fundamental problem to the issue of restricted IO.

3.5.12.1 The Model without Guaranteed Message Delivery

As demonstrated by Canetti, Lindell, Ostrovsky and Sahai [CLOS02] any PPT ideal func-
tionality can be realized in the asynchronous model without guaranteed message delivery.1

This makes the answer simple. Since all functionalities can already be realized, certainly no
more functionalities can be realized under restricted IO.

3.5.12.2 The Model with Guaranteed Message Delivery

We can then add message delivery to the model. If we guarantee that messages are delivered
in the real-life model and require from a realization that it too terminates and delivers its
results, then no longer can all functionalities be realized. As discussed in Chapter 8, in
this model there exist functionalities which can only be realized if less than a third of the
parties are honest. This opens the possibility that there exist functionalities which cannot
be realized with a dishonest third, but which can be realized with dishonest third under
a restricted IO behavior. This means that the notion of restricted IO behavior might be
interesting from the point of view of completeness results.

As an example we can consider the Byzantine agreement problem. This problem is
discussed in great detail in Chapter 7, so here we only give an informal discussion. Consider
the functionality which receives from each party Pi a bit bi and outputs the majority of the

1In this model, in the real-life execution the messages are not guaranteed to be delivered, but on the other
hand, in the ideal process, the functionality is not required to deliver messages either.

3.6 Correctness of a Protocol 109

values. If the majority value is not defined, the functionality lets the adversary specify a bit
c and outputs c to all parties. This functionality guarantees two important properties. First
of all, all honest parties always output the same value and, second, if the honest parties are
in majority and agree on the input, then the output is the common value of their inputs.
As discussed in Chapter 7, this functionality can only be realized if less than a third of the
parties is corrupted.2 It can however be realized with more than a corrupted third under
a specific IO behavior. Let n denote the number of parties and let t denote the number of
corrupted parties. Without any restriction on the IO behavior we need that t < n/3. If
we consider the restricted IO behavior that at least h of the honest parties always input a
common value, where h > n/2, then the functionality can be realized as long as t < n/2. To
see this consider the following protocol: Each party Pi sends its bit bi to all parties. Then all
parties wait until there exists a value b ∈ {0, 1} for which it has received b = bj from at least
bn/2c+ 1 parties Pj , including itself. Then it outputs b. Notice that since 2(bn/2c+ 1) > n

the value b, and thus the protocol, is well-defined. Since, by the restricted IO behavior, at
least bn/2c + 1 honest parties have the same input value, and all honest parties send their
input to all other parties, all parties will indeed receive at least bn/2c + 1 identical values.
Therefore the protocol terminates, by the guarantee that all sent messages are delivered.

It seems that this allows us to realize a functionality that could not be realized without
restricted IO. This is however not the case, as we should compare to realizing the restricted
functionality: We could have obtained the same result without considering restricted IO, by
specifying a functionality which breaks down unless h > n/2 honest parties input the same
value. We can even consider a slightly stronger formulation of such an ideal functionality:
It works as the BA functionality, but it is only required to guarantee agreement when at
least bn/2c + 1 honest parties input the same value. I.e., consider the following weak BA
functionality: It receives from each party Pi a bit bi and, if at least bn/2c + 1 of the honest
parties input a common value b, then output b to all parties. Otherwise, let the adversary
specify an output value cj for each party Pj and output cj to Pj . It is easy to see that the
protocol described above also realizes this weak BA functionality.

3.6 Correctness of a Protocol

In this section we define a notion of correctness of a protocol in the UC model and we prove
that for a particular class of functionalities correctness implies security. This will make some
proofs simpler in the following sections.

Consider a hybrid protocol π and an ideal functionality G. For any adversary Z the
execution HYBG

π,Z results in some output from the honest parties Pi in π. Informally we
say that π[G] is a correct realization of F if F results in the same outputs from the honest
parties when run in the same environment. Recall that when an ideal functionality F is run,
besides receiving inputs for honest parties, it also expects an input vF on the SIT. This value
models inputs from the corrupted parties and non-deterministic choices of F . To compare
the execution of π to that of F we therefore say that for every possible execution of π, there

2Unless we assume a synchronous network and assume that the parties are able to sign messages. Here we
do not assume either.

110 Universally Composable Security of Synchronous Protocols

Algorithm HYBG,(V,F)
π,Z (k, r, z)

initialize:
As in Fig. 3.4 on page 76, but with an initial input rF and the initialization of F
with (k, rF).

environment activation:
As environment activation in Fig. 3.4.

party activation:
On (activate, i, xi,r, {mj,i,r−1}j∈C), first input (i, xi) to F . If F outputs w ∈
‘‘H F’’, then terminate with output w. Then proceed as in party activation in
Fig. 3.4. If G outputs w ∈ ‘‘H G’’, then terminate with output w. Notice that
the party activation in Fig. 3.4 defines an output value yi,r from Pi.

corrupt:
On (corrupt, i), first input (corrupt, i) to F . If F outputs w ∈ ‘‘H F’’, then
terminate with output w. Then proceed as in corrupt in Fig. 3.4. If G outputs
w ∈ ‘‘H G’’, then terminate with output w.

end round:
On (end round, vG), first proceed as in in end round in Fig. 3.4. If G out-
puts w ∈ ‘‘C G’’, then terminate with output w. Then input the state of
HYBG,(V,F)

π,Z (k, r, z), except for the state of F and Z, to V to generate a value vF .
Then input (end round, vF) to F . If F outputs w ∈ ‘‘C F’’, then terminate
with output w. Otherwise, (when F outputs {yFi,r}i∈[n]) let {yi,r}i∈H be the values
defined in party activation. If yi,r 6= yFi,r for any i ∈ H , then terminate the execution
with output incorrect.

Figure 3.22: The G-hybrid model with an ideal functionality for comparison.

exists efficiently computable inputs vF to F such that π and F have the same outputs for all
honest parties. Formally we require that there exists a PPT algorithm V which given a state
of π and G right after an end round command outputs a value vF with the property that it
makes F output the same as π did in the previous round. In more detail, we consider the
execution HYBG

π,Z and extend the execution to include a copy of F , which is activated on the
same input sequence as π. At each end round command in HYBG

π,Z we then apply V to the
state of π and G to compute a vF . Then vF is input to F . We then require that the outputs
generated by F are identical to those of π. We denote this execution by HYBG,(V,F)

π,Z (k, r, z).
The details are given in Fig. 3.22.

Definition 3.20 We say that π correctly realizes F in the G-hybrid model if there exists a
PPT algorithm V such that for all environment Z it holds that if

Pr[HYBG,(V,F)
π,Z ∈ ‘‘H F’’] c≈0 ,

then
Pr[HYBG,(V,F)

π,Z ∈ ‘‘H G’’ ∪ ‘‘C F’’ ∪ {incorrect}] c≈0 .

According to Definition 3.20, π correctly realizing F means that in any environment
which uses π according to the IO restriction of F it holds that π uses G according to the IO

3.6 Correctness of a Protocol 111

restriction of G and that the outputs of π are identical to those of F , except with negligible
probability. The condition that HYBG,(V,F)

π,Z does not output a element from ‘‘C F’’ is

a restriction on V , that it uses F according to its IO restriction. Notice that if HYBG,(V,F)
π,Z

outputs an element from ‘‘C G’’ because Z violates the IO restriction of G, then in
particular HYBG,(V,F)

π,Z does not output incorrect. So, if Z violates the IO restriction of G
there are no requirements on π or V .

In Definition 3.15 on page 99 we defined a notion of realizing an ideal functionality. To
distinguish this notion from that of correct realization we sometimes say that π securely
realizes F when π realizes F according to Definition 3.15.

3.6.1 Arguing Secure Realization via Correct Realization

Notice that correctly realizing an ideal functionality is by far enough to securely realize it
according to Definition 3.15 on page 99. The reason for this is that the algorithm V , in
computing vF , has access to the entire state of π, which in particular includes all the inputs
of the honest parties. This is more information than an interface is normally given. If
however F has the property that it leaks all inputs on the SOT, then we can prove that a
correct realization of F is also a secure realization.

Definition 3.21 We say that an ideal functionality outputs all inputs on the SOT. If on each
input of the form (i, x) the ideal functionality writes x on the SOT.

Theorem 3.6 Let F and G be ideal functionalities with IO restriction and let π be a hybrid
protocol. If π correctly realizes F in the G-hybrid model and F outputs all inputs on the
SOT, then π securely realizes F in the G-hybrid model.

Proof. Since π correctly realizes F in the G-hybrid model there exists a PPT algorithm V

such that for all hybrid environments Z we have that if

Pr[HYBG,(V,F)
π,Z ∈ ‘‘H F’’] c≈0 , (3.14)

then
Pr[HYBG,(V,F)

π,Z ∈ ‘‘H G’’ ∪ ‘‘C F’’ ∪ {incorrect}] c≈0 . (3.15)

Consider the interface Sπ,G,V in Fig. 3.23 on the following page and consider the ideal process
IDEALGF ,Sπ,G,V ,Z . We define an alternative version IDEALG,incorrect

F ,Sπ,G,V ,Z which is defined exactly

as IDEALGF ,Sπ,G,V ,Z , except that if after an end round command the yi,r values defined in

party activation in Sπ,G,V differ from the yi,r values output by F in IDEALGF ,Sπ,G,V ,Z , then

the output of IDEALG,incorrect
F ,Sπ,G,V ,Z is incorrect. It is straight-forward to verify that

IDEALG,incorrect
F ,Sπ,G,V ,Z = HYBG,(V,F)

π,Z . (3.16)

This follows from the observation that all values are passed identically between the entities G,
F , π, V and G in both and that all values are checked according to the same IO restrictions.
The only difference between IDEALG,incorrect

F ,Sπ,G,V ,Z and HYBG,(V,F)
π,Z is that in IDEALG,incorrect

F ,Sπ,G,V ,Z ,

112 Universally Composable Security of Synchronous Protocols

Interface Sπ,G,V

The interface runs internally a copy of π and G on the inputs of Z. This is possible because
all inputs from Z to F in IDEALGF ,Sπ,G,V ,Z are revealed to Sπ,G,V on the SOT of F . In
detail the simulation proceeds as follows:

initialize:
On input (k, rS) use a section of rS as the random bits r1, . . . , rn ∈ {0, 1}∗ used
by the parties and use a section as the random bits rG for G. For i, j ∈ [n], let
mi,j,0 = ε, let mi,i,0 = (k, ri) and let ti,−1 = ε. The interface then runs a copy of
HYBG,(V,F)

π,Z , where F and Z are the ideal functionality respectively the environment
in IDEALGF ,Sπ,G,V ,Z and G is the core functionality of the ideal functionality with IO
restriction 〈G, IO(G)〉. This is done as described below.

party activation:
On (activate, i, vF , {mj,i,r−1}j∈C), let xi,r = vF . Values {mj,i,r−1}j∈H and ti,r−1

were defined in the previous round. Add these to {mj,i,r−1}j∈C and compute
({mi,j,r}j∈[n], yi,r, si,r) = Pi({mj,i,r−1}j∈[n], xi,r , ti,r−1). Input (i, si,r) to G and re-
ceive vG on the SOT of G. Output ({mi,j,r}j∈[n]\{i}, vG) to Z.

corrupt:
On (corrupt, i, vF), input (corrupt, i) on the SOT of G and receive a value vG on
the SOT of G. Then output (ri, vG). Set C = C ∪ {i}.

end round:
On (end round, vG), input (end round, vG) to G to generate {ti,r}i∈[n].

Then input the state of HYBG,(V,F)
π,Z , except for the state of F and Z (which is not

accessible by G), to V to receive a value vF . Then output vF and receive the input
{yi,r}i∈C . Then output {ti,r}i∈C . The values {ti,r}i∈H are used as input for the
honest parties in the next round. Set r = r + 1.

Figure 3.23: The interface Sπ,G,V used in the proof of Theorem 3.6 on the page before.

the values yi,r given to Z comes from F and that in HYBG,(V,F)
π,Z , the values yi,r given to Z

comes from π. If however these values ever differ, then the output of both experiments is
incorrect. Consider then any environment Z where

Pr[IDEALGF ,Sπ,G,V ,Z ∈ ‘‘H F’’] c≈0 . (3.17)

We prove the lemma by proving that

Pr[IDEALGF ,Sπ,G,V ,Z ∈ ‘‘H G’’] c≈0 . (3.18)

and
IDEALGF ,Sπ,G,V ,Z

c≈HYBG
π,Z . (3.19)

Since IDEALG,incorrect
F ,Sπ,G,V ,Z and IDEALGF ,Sπ,G,V ,Z are identical until IDEALG,incorrect

F ,Sπ,G,V ,Z outputs
incorrect we have that

Pr[IDEALG,incorrect
F ,Sπ,G,V ,Z ∈ ‘‘H F’’] ≤ Pr[IDEALGF ,Sπ,G,V ,Z ∈ ‘‘H F’’] . (3.20)

3.7 Rewinding 113

By Eq.s 3.16, 3.17 and 3.20 we get Eq. 3.14 on page 111 and can therefore conclude Eq. 3.15 on
page 111. By Eq. 3.15 we have that Pr[HYBG,(V,F)

π,Z = incorrect]
c≈0, which by Eq. 3.16

implies that
Pr[IDEALG,incorrect

F ,Sπ,G,V ,Z = incorrect]
c≈0 . (3.21)

Since IDEALG,incorrect
F ,Sπ,G,V ,Z and IDEALGF ,Sπ,G,V ,Z are identical until IDEALG,incorrect

F ,Sπ,G,V ,Z outputs
incorrect, Eq.s 3.16 and 3.21 imply that

IDEALGF ,Sπ,G,V ,Z
c≈HYBG,(V,F)

π,Z . (3.22)

By Eq.s 3.14 and 3.15 we have that

Pr[HYBG,(V,F)
π,Z ∈ ‘‘H F’’ ∪ ‘‘C F’’ ∪ {incorrect}] c≈0 .

Since the experiments HYBG,(V,F)
π,Z and HYBG

π,Z are identical until HYBG,(V,F)
π,Z outputs a value

from ‘‘H F’’ ∪ ‘‘C F’’ ∪ {incorrect} this implies that

HYBG,(V,F)
π,Z

c≈HYBG
π,Z . (3.23)

By Eq.s 3.15 and 3.22 we get Eq. 3.18 on the preceding page, and by Eq.s 3.22 and 3.23 we
get Eq. 3.19 on the facing page. 2

3.7 Rewinding

We now describe a mechanism for capturing a weaker form of security, where the simulator
is allowed to rewind the execution. Rewinding is a technique which has been used to prove
many protocols secure, in particular many zero-knowledge protocols. The main tool which
is always used is to end the simulation if it gets stuck and then try again from an earlier
state. If the simulation has a probability 1/p of succeeding in one run, this approach will
take an expected p trials. Therefore such simulations will at best be expected PPT, which we
keep in mind when we make our definition. It is well-known that proving protocols secure
using rewinding is problematic in many ways, in particular such protocols in general have
poor compositional properties. Running l simulations in parallel, each with a probability of
successful simulation of 1

2 say, will give a protocol with a probability of success which can be
as low as 2−l, which soon renders the rewinding technique useless. Protocols proved secure
with rewinding do compose in sequence, even though one should even be careful in that case,
see Goldreich and Krawczyk [GK90].

Our notion of ’UC security with rewinding’ does not circumvent these well-known prob-
lems. Indeed we cannot reprove the general composition theorem for the new notion. We
will however see that protocols which are only ’UC secure with rewinding’ can be used as
sub-protocols to build protocols which are fully UC secure. The value of the new notion
therefore comes from the fact that it allows us to use ’UC secure with rewinding’ protocols
as sub-protocols in UC secure protocols in a modular manner.

In Chapter 5 we present a zero-knowledge proof system which we only know how to
prove secure using rewinding. We will however use the zero-knowledge proof system in every

114 Universally Composable Security of Synchronous Protocols

subsequent chapter to build universally composable protocols. Used carefully rewinding
proofs can play as prominent a role in the UC framework as in other, weaker frameworks.
This is our main motivation for defining rewinding security within the UC framework.

Consider the usual ideal process IDEALF ,S,Z . We consider an extension which we denote
by IDEALx

F ,S,Z and call the simulation with rewinding. It runs exactly as IDEALF ,S,Z , except
that we allow S to use a special rerun control tape to rewind the execution. The simulator
can output two types of commands, (store, cid) and (rerun-from, cid). In response to a
(store, cid) the current configuration of IDEALF ,S,Z is stored under the configuration id cid;
We do not store the state of S though as S is allowed to maintain state between the reruns.
The stored configuration includes the state of IO restrictions if such are present. In response
to a (rerun-from, cid) command, S is run in the configuration stored under cid. If no such
configuration is stored, the command is ignored. If Z outputs (guess, b), then S is given a
special input indicating that Z terminated, in response to which it must either rerun from
a stored configuration or let the game end. In the later case IDEALx

F ,S,Z terminates with
output b.3 If an IO restriction is ever violated, then IDEALx

F ,S,Z immediately terminates
with the appropriate output — in particular S is not given the possibility of more reruns.
We require that S does an expected polynomial number of reruns.

Definition 3.22 Let S be a hybrid interface, let π be a protocol for the G-hybrid model
and let F be an ideal functionality. We say that S can produce π[G] with rewinding given F ,

written
x

S : F /π[G], if for all G-hybrid environments Z where Pr[IDEALx,G
F ,S,Z ∈ ‘‘H F’’]

it holds that Pr[IDEALx,G
F ,S,Z ∈ ‘‘H G’’] c≈0 and IDEALx,G

F ,S,Z
c≈HYBG

π,Z .

Definition 3.23 Let π be a protocol for the G-hybrid model and let F be an ideal functional-
ity. We say that π realizes F with rewinding in the G-hybrid model if there exists an expected

PPT G-hybrid interface S such that
x

S : F / π[G].

3.8 Some Functionalities

In this section we describe some conventions used in the context of the UC model, and we
specify some ideal functionalities.

3.8.1 Conventions

If in the description of an ideal functionality we write “let the adversary specify an output
round” (to specify when to output a value v), we mean the following: As part of the value
output on the SOT, output (output round, oid) for a unique output round id oid ∈ {0, 1}∗.
If then in a later round a value (oid, term) is input on the SIT, then output v. This allows
us to specify functionalities without guaranteed termination.

Following [CLOS02] we say that an n-party functionality is well formed if it outputs its
entire internal state when n parties are corrupted. In [CLOS02] it is also required that the
functionality do not depend on which parties are corrupted to call it well-formed. Here we

3Of course S does not see b when it makes its decision.

3.8 Some Functionalities 115

Functionality FSMT

The functionality runs with parties P1, . . . , Pn and is parametrized by a round complexity
r for a transmission. The functionality proceeds as follows:

secure message transmission:
On input (mid, Pj , m) from Pi, where m ∈ {0, 1}∗, output (mid, Pj , |m|) on the SOT.
After r rounds, output (mid, Pi, m) to Pj .
If Pi is corrupted and (mid, Pi, Pj , fail) is input on the SIT then drop all messages
from Pi to Pj with message id mid.
If Pi is corrupted and (mid, Pi, Pi, m) is input on the SIT, then output (mid, i, m) to
Pj .a

incorrect inputs:
If an honest party ever uses the same message id mid twice, then output fail on the
SOT and break down.

aNotice that the environment has immediate delivery. This models a rushing environment.

Figure 3.24: The secure message transmission functionality FSMT.

drop this requirement as we will need to consider functionalities depending on the set of
corrupted parties.

3.8.2 The Secure-Channels Model

In Fig. 3.24 a functionality for secure message transmission is given. It allows the party to
transmit a message while only leaking the length of the message. In Chapter 4 we discuss
how to realize FSMT under various assumptions.

3.8.3 Zero-Knowledge Proofs

In Fig. 3.25 on the next page an ideal functionality for zero-knowledge proof of knowledge
is given. If two parties, the prover Pi and the verifier Pj , agree on an instance x, then the
functionality allows Pi to prove to Pj that it knows w such that (x,w) ∈ R for some relation
R, without leaking the witness w. The functionality requires that when an instance x is input
by an honest party, then x is from the instance language S from which instances are supposed
to be drawn. This means that a realization only has to be secure for such inputs. Since it
cannot necessarily be checked in PPT whether x ∈ S we have to capture this condition via
the IO behavior. This is done by letting the IO restriction output ‘‘H FZK-PK’’ if x 6∈ S,
intuitively meaning that the honest parties are considered to have misused the functionality
if an honest party ever inputs x 6∈ S. Notice that because the functionality outputs x on
the SOT along with the identity of the party that input x it is indeed possible for the IO
restriction to check the condition.4

In Fig. 3.26 on page 117 a functionality for zero-knowledge proof of membership is given,
which does not at the same time require proof of knowledge. The difference between a zero-

4The IO restriction is not restricted computationally, but is only given access to the SOT and the SIT.

116 Universally Composable Security of Synchronous Protocols

Functionality FR
ZK-PK

The functionality runs with n parties P1, . . . , Pn. It is parametrized by a round complexity
r and by a PPT binary relation R ⊆ S×{0, 1}∗.a All input values are output on the SOT,
except the witness w.

initialization:
If all honest parties input init in the same round, then in a round specified by the
adversary, output ready to all parties. Until then ignore all inputs.

activation:
If in the same round Pj inputs (pid, Pi, x) and Pi is corrupted or Pi is honest and
inputs (pid, Pj , x, w) for (x, w) ∈ R, then after r rounds output (pid, b) to Pj , where
b ∈ {0, 1} is determined as follows: If Pi is corrupted in the output round, then b = 1
iff a value (pid, Pi, Pj , w

′) for which (x, w′) ∈ Rxtr was input on the SIT before round
r. If Pi is honest in the output round, then b = 1 (we already required that (x, w) ∈ R
when Pi is honest).

IO restriction:
The IO restriction IOZK is defined by requiring that for all x input by honest parties
it holds that x ∈ S. If this is not the case, then output ‘‘H FZK-PK’’. Notice
that this is a legal specification as the value (pid, x) is revealed on the SOT and so
the restriction can be checked given access to just the ST.

aThis also captures the case with several such relations R1, . . . , Rl, using the definition
((i, x), w) ∈ R ≡ (x, w) ∈ Ri.

Figure 3.25: The zero-knowledge proof of knowledge functionality for PPT binary relation
R ⊆ S × {0, 1}∗.

knowledge proof of membership and a zero-knowledge proof of knowledge is that the prover
only proves that x ∈ L(R), i.e. there exists w ∈ {0, 1}∗ such that (x,w) ∈ R. The prover
does not convince the verifier that he knows such a witness. We formalize the loosening that
the prover does not need to know the witness by allowing the environment to simply tell
whether to accept the proof from a corrupted party or not, restricted to specifying acceptance
for x ∈ L(R) of course, to guarantee soundness. The essential difference between FZK-PK

and FZK-PM is that the corrupted parties (inputting via the SIT) does not have to provide a
witness to the functionality to prove that x ∈ L(R). We still give the witness to the honest
parties though, as the witness is needed in the protocols realizing the ideal functionality to
obtain efficient realizations, or actually to obtain realizations at all. As for the condition
x ∈ S discussed above, the condition x ∈ L(R) cannot necessarily be checked in PPT.5

Therefore the IO restriction of FZK-PM is used to check the condition. If the adversary6 ever
instructs FZK-PM to accept an instance x 6∈ L(R), then FZK-PM outputs ‘‘C FZK-PM’’,
intuitively meaning that the corrupted parties misused the functionality. We note that the IO
restriction of FZK-PM can indeed check x ∈ L(R) as the IO restriction is not computationally
bounded.

5If it could, then the language and the realization of FZK-PM would be trivial.
6By the adversary we mean the entity inputting on the SIT. I.e. the environment in the hybrid model

execution and the simulator in the ideal process.

3.8 Some Functionalities 117

Functionality FR
ZK-PM

The functionality runs with n parties P1, . . . , Pn. It is parametrized by a round complexity
r and by a PPT binary relation R ⊆ S×{0, 1}∗.a All input values are output on the SOT,
except the witness w.

initialization:
If all honest parties input init in the same round, then in a round specified by the
adversary, output ready to all parties. Until then ignore all inputs.

activation:
If in the same round Pj inputs (pid, Pi, x) and Pi is corrupted or Pi is honest and
inputs (pid, Pj , x, w) for (x, w) ∈ R, then after r rounds output (pid, b) to Pj , where
b ∈ {0, 1} is determined as follows: If Pi is corrupted in the output round, then b = 1
iff a value (pid, Pi, Pj , 1) was input on the SIT before round r. If Pi is honest in the
output round, then b = 1.

IO restriction:
The IO restriction IOZK-PM is defined by requiring that for all x input by honest
parties it holds that x ∈ S. If this is not the case, then output ‘‘H FZK-PM’’.
Furthermore we require that when (pid, Pi, Pj , 1) is input on the SIT and Pj input
(pid, Pi, x) and Pj is honest, then x ∈ L(R). If this is not the case, then output
‘‘C FZK-PM’’. Notice that this is a legal specification as the value (pid, x) is
revealed on the SOT and so the restriction can be checked given access to just the
ST.

aSee the footnote in Fig. 3.25 on the facing page.

Figure 3.26: The zero-knowledge proof of membership functionality for PPT binary relation
R ⊆ S × {0, 1}∗.

Since the way that soundness is guaranteed might seem somewhat peculiar, we take a
closer look at how the IO restriction guarantees soundness. Assume that Pj is honest and
Pi is corrupted. Consider the situation where Pj inputs (pid, Pi, x) for x 6∈ L(R) (possibly
because Pi sent x to Pj in some outer protocol and claimed that x ∈ L(R)) and where at the
same time the entity that inputs on the SIT inputs (pid, Pi, Pj , 1) on the SIT to make FZK-PM

accept the proof (i.e. to make FZK-PM output (pid, 1) to Pj). This is perfectly allowable by
the description of activation. However, in that case the IO behavior of FZK-PM will output
‘‘C FZK-PM’’ and the execution will terminate. Thereby the entity that inputs on the
SIT will be ’penalized’ by the rules of the given execution, whether ideal or hybrid. This
way of enforcing soundness might seem unnecessarily complicated. However, since the bit

x
?
∈ L(R) cannot (necessarily) be computed in PPT we cannot simply let this check be part

of the code in activation. We know of no approach to defining UC proof of membership which
does not also imply proof of knowledge which does not require that the functionality be able
to perform some arbitrary (as opposed to PPT) computation to check x ∈ L(R).

Remark 3.1 The above definition of zero-knowledge proof of membership can be used to
exemplify how the symbol ‘‘C ·’’ is given the indented meaning. Recall that ‘‘C ·’’
is intended to restrict the corrupted parties. Since the input from the corrupted parties to

118 Universally Composable Security of Synchronous Protocols

an ideal functionality comes from different entities in different contexts this means that the
symbol plays dual roles, restricting the simulator in one context and helping the simulator
in others. The reason being that in the ideal process the corrupted parties receive inputs
from the simulator (or in other words, the simulator inputs on the SIT of FZK-PM) and thus
‘‘C ·’’ restricts the simulator — since the ideal process is compared to the real-life ex-
ecution which never outputs ‘‘C ·’’ the simulator is restricted to behave such that the
ideal functionality never outputs ‘‘C ·’’. But in the FZK-PM-hybrid model, the corrupted
parties receive inputs from the environment (or in other words, the environment inputs on the
SIT of FZK-PM) and so ‘‘C ·’’ restricts the environment — whenever the ideal function-
ality outputs ‘‘C ·’’ the experiment ends with output ‘‘C ·’’ and the environment
has no further chances of distinguishing.

Taking the definition of zero-knowledge proof of membership as an example, it is the
fact that FZK-PM outputs ‘‘C FZK-PM’’ when a false statement is accepted which forces
the simulator to only letting FZK-PM output 1 for true statements. If the simulator lets
FZK-PM output 1 for a false statement, then FZK-PM, and thus the ideal process, outputs
‘‘C FZK-PM’’, and since the ideal process is compared to the real-life execution which
never outputs ‘‘C FZK-PM’’ the simulation fails. Since the simulator is restricted to let-
ting FZK-PM output 1 for true statements it follows that it cannot simulate a protocol which
outputs 1 for a false statement. This guarantees the soundness of the protocol. This shows
how ‘‘C FZK-PM’’ restricts the simulator in the ideal process. On the other hand, in
the FZK-PM-hybrid model the symbol ‘‘C FZK-PM’’ restricts the environment to using
the functionality correctly. If the environment lets FZK-PM accept a false statement, then
FZK-PM outputs ‘‘C FZK-PM’’ and the execution is terminated and the output of the
hybrid execution will be ‘‘C FZK-PM’’. Since the exact same thing happens in the ideal
process to which the hybrid execution is to be compared, this means that the compared exe-
cutions are identical whenever the environment lets FZK-PM accept a false statement. Thus
the behavior of the simulator does not matter when the environment lets FZK-PM accept false
statements. This shows how ‘‘C FZK-PM’’ helps the simulator when FZK-PM occurs in
a hybrid model, and shows why the simulator in a FZK-PM-hybrid model can simulate under
the assumption that the FZK-PM functionality only accepts true statements.

The notion of universally composable zero-knowledge proof of membership (which does
not at the same time requiring proof of knowledge) finds applications in many settings
and can, with our current knowledge, be realized much more efficiently than universally
composable zero-knowledge proofs of knowledge. The notion seems to be hard to define
without the use of arbitrary restricted IO behavior (or some other mechanism for specifying
ideal functionalities which are not PPT). We think that this in itself justifies the trouble of
establishing the restricted IO notion for the UC model. We realize FZK-PM in Chapter 5
and use it several times in subsequent chapters. In Chapter 5 we also realize FR

ZK-PK with
rewinding.

3.8.4 The Broadcast Model

We define the broadcast model to be the (FBA,Fbroadcast)-hybrid model, where FBA is given
in Fig. 3.17 on page 91 and Fbroadcast is the broadcast functionality given in Fig. 3.27 on

3.8 Some Functionalities 119

Functionality Fbroadcast

The functionality runs with parties P1, . . . , Pn and is parametrized by a round complexity
r. All inputs to the functionality are output on the SOT.

broadcast:
If Pi inputs (broadcast, baid, m) then after r rounds output (broadcast, Pi, baid, m)
to all parties. If Pi is corrupted and (baid, fail) is input on the SIT, then drop all
messages with id baid. If Pi is corrupted and (broadcast, Pi, baid, m) is input on the
SIT, then output (broadcast, Pi, baid, m) to all parties.a

incorrect inputs:
If an honest party uses the same baid twice, then output fail on the SOT and break
down.

aNotice that the environment has immediate delivery. This models a rushing environment.

Figure 3.27: The broadcast functionality.

this page. A broadcast simply lets the parties agree on what message a given broadcaster
sent, even if the broadcaster maliciously tries to make the parties accept different message.
Byzantine agreement and broadcast are important tools in secure multiparty computation
as they allow the parties to act consistently.

In Chapter 7 we show how to implement the broadcast model. Of FBA and Fbroadcast

it is enough to realize one, as there exists simple reductions between them. In Chapter 7
we therefore only look at realizing FBA. The reason for looking at FBA instead of Fbroadcast

is that most efficient broadcast protocols also solve the BA problem, and though the func-
tionalities are equivalent under PPT reduction, the reduction of FBA to Fbroadcast requires
n applications of Fbroadcast, whereas the reduction in the other direction can be done with
one application of FBA: Given a broadcast channel, BA can be implemented by all parties
broadcasting their input and then taking majority over the received values — this of course
require that a majority of the parties is honest. Given a BA functionality broadcast can be
implemented by the broadcaster sending the input to all parties and then running a BA on
the values received by the parties.

3.8.5 Signatures

In Fig. 3.28 on the following page an ideal functionality for signature schemes is given and in
Fig. 3.29 on page 121 the natural realization based on a digital signature scheme is given in
the broadcast model. We now prove that if the signature scheme is secure then π

(gen,sig,ver)
sig

is indeed a realization of Fsig. A proof of the a similar theorem appears in [CR03], for a
somewhat different ideal functionality.7 The proof idea is the same.

7The main difference is that our formalization guarantees universal verifiability, i.e that if some party
has accepted a signature, then all parties to which the signature is transfered will also accept the signature.
Universal verifiability is essential in some contexts, e.g. when using digital signatures for realizing broadcast
and Byzantine agreement, which we will do in Chapter 7. Another difference is that our functionality does not
have an explicit command for verifying a signature; Instead we have a command for transferring signatures.
This is so mainly because our UC model does not allow for so-called immediate functionalities. Therefore

120 Universally Composable Security of Synchronous Protocols

Functionality Fsig

The functionality runs with parties P1, . . . , Pn. All inputs are output on the SOT.

initialize:
If all honest parties input init in the same round, then proceed as follows:

1. Initialize a dictionary S mapping from messages m and indices i ∈ {1, . . . , n}
into indices {1, . . . , n}. Initially S(m, i) = ∅. We think of S(m, i) as the indices
of those parties Pj from which Pi has a signature on m, either because Pj signed
m and sent the signature to Pi or because some other party transfered such a
signature to Pi.
Let C denote the set of corrupted parties. We have the convention that for all
i ∈ C and all m ∈ {0, 1}∗ it holds that S(m, i) = C ∪

⋃
l∈H S(m, l). So, the

corrupted parties knows all generated signatures and have exchanged signatures
on all messages under their own keys.

2. In a round specified by the adversary, output ready to all parties. Until having
output ready, ignore all inputs.

sign:
If Pi inputs (sign, j, m), where j ∈ [n], then let S(m, j) = S(m, j) ∪ {i} and output
(transfered, i, i, m) to Pj , unless Pi was honest when inputting (sign, j, m) and was
corrupted during the round. In that case, do nothing.
In the following we use ’input (sign, m)’ as a shorthand for ’input (sign, j, m) for
all j ∈ [n]’.

transfer:
If Pi inputs (transfer, l, j, m), where l ∈ S(m, i), then let S(m, j) = S(m, j) ∪
{l} and output (transfered, i, l, m) to Pj , unless Pi was honest when inputting
(transfer, l, j, m) and was corrupted during the round. In that case, do nothing.

incorrect inputs:
If in the first round where a honest party inputs a non-trivial value some honest party
do not input init, then break down. Also break down if an honest party inputs init
twice or inputs a value not of one of the above forms. On break down, output fail
on the SOT.

Figure 3.28: The signature functionality.

Theorem 3.7 Let (gen, sig, ver) be a digital signature scheme where the set of signable
messages is {0, 1}∗. If (gen, sig, ver) is existentially unforgeable under adaptive chosen-
message attack, then π

(gen,sig,ver)
sig realizes Fsig in the Fbroadcast-hybrid model.

Proof. In the following we use πsig to denote π
(gen,sig,ver)
sig . By Theorem 3.6 on page 111 it

is sufficient to prove that πsig correctly realizes Fsig in the Fbroadcast-hybrid model. So, we
have to prove that there exists a PPT algorithm V such that for all environment Z it holds
that if

Pr[HYBFbroadcast,(V,Fsig)
πsig,Z ∈ ‘‘H Fsig’’]

c≈0 ,

a verification command would necessarily have to take at least one round, which would add an unnecessary
(round) complexity to the functionality.

3.8 Some Functionalities 121

Protocol πgen,sig,ver
sig

The protocol runs in the Fbroadcast-hybrid model with parties P1, . . . , Pn. The party Pi

proceeds as follows:

initialize:
In the very first round (where k and ri is provided), proceed as follows:

1. Generate (v, s)← gen(1) and input (broadcast, v) to Fbroadcast.

2. In round r after having input init, where r is the round complexity ofFbroadcast,
if Fbroadcast outputs a value (broadcast, Pj , vj), then store this value. For Pj

where no (broadcast, Pj , vj) was received, let vj = ε.

The init inputs to Pi is handled as follows:

• On an input init after Fbroadcast has delivered an output, simply output ready
and until having output ready, ignore all inputs but the first init input.

• On an input init before round Fbroadcast has delivered an output, wait until
the round where Fbroadcast delivers an output and then proceed as if having
received init in that round.

sign:
On input (sign, j, m), compute σ ← sig(s, m) and send (transfer, i, m, σ) to Pj .

transfer:
1. On input (transfer, l, j, m), if a value (l, m, σ) is stored, then send

(transfer, l, m, σ) to Pj .

2. On a message (transfer, l, m′, σ′) from Pj , if ver(vl, m
′, σ′) = 1, then output

(transfered, j, l, m′) and store (l, m′, σ′).

Figure 3.29: Realizing Fsig using a digital signature scheme (gen, sig, ver).

then

Pr[HYBFbroadcast ,(V,Fsig)
πsig,Z ∈ ‘‘H Fbroadcast’’ ∪ ‘‘C Fsig’’ ∪ {incorrect}]

c≈0 .

It is straight forward to verify that πsig uses Fbroadcast correctly when πsig is activated cor-
rectly. And, the corrupted parties cannot misuse Fsig. It is therefore enough to construct V

such that Pr[HYBFbroadcast ,(V,Fsig)
πsig,Z = incorrect]

c≈0. This is done below.
The algorithm V proceeds as follows: If in some round all honest parties receive input

init, then V receives some output round id oid from Fsig. When the broadcast of keys in
πsig ends, V inputs (oid, term) on the SIT of Fsig to make it output ready from all parties,
as do the parties in the protocol πsig. This is a perfect simulation of the initialization in the
protocol. When Z delivers (transfer, l,m′, σ′) from corrupted Pj to honest Pi, then proceed
as follows: If ver(vl, σ

′,m′) = 0, then do nothing. If ver(vl, σ
′,m′) = 1, then Pi should output

(transfered, j, l,m′) in the simulation, so V must make Fsig output (transfered, j, l,m′)
too. If Pl is corrupted or Pl ever received the input (sign, ·,m′), then because Pj is corrupted
and because of the convention S(m′, j) = C ∪

⋃
l∈H S(m′, l) we have that l ∈ S(m, j).

122 Universally Composable Security of Synchronous Protocols

Therefore V can input (transfer, l, i,m′) to Fsig on behalf of the corrupted Pj to make Fsig

output (transfered, j, l,m′) to Pi, as desired. So, in that case the simulation is perfect.
If Pl is honest and never received the input (sign, ·,m′), then give up the simulation and
output, “This is a forgery for vl: (m′, σ′)”. In this case the simulation fails.

It is straight-forward to verify that HYBFbroadcast ,(V,Fsig)
πsig,Z 6= incorrect, unless V outputs

“This is a forgery for vl: (m′, σ′)” and terminates. It is therefore enough to prove that
p(k, z) is negligible, where p(k, z) is the probability that V outputs “This is a forgery for vl:
(m′, σ′)” in HYBFbroadcast,(V,Fsig)

πsig,Z (k, z).
Consider the following adversary A designed for running in FORGE(gen,sig,ver),A(k, z). It

receives input (k, z, v). Then it starts running HYBFbroadcast ,(V,Fsig)
πsig,Z (k, z), except that it picks

a uniformly random index s ∈ [n] and sets vs = v. Then it runs HYBFbroadcast,(V,Fsig)
πsig,Z (k, z).

Each time it would normally compute σ ← sig(ss,m), instead it outputs (sign,m) to the
forging game and receives σ ← sig(ss,m). If during the run of HYBFbroadcast ,(V,Fsig)

πsig,Z (k, z) it
happens that V outputs “This is a forgery for vs: (m′, σ′)”, then ver(vs, σ

′,m′) = 1 and
Ps is honest and never received the input (sign, ·,m′), so V never output (sign,m′) to the
forging game. Therefore, output (forgery,m′, σ′) to make FORGE(gen,sig,ver),A(k, z) output

1. If Ps is ever corrupted, then A gives up the run of HYBFbroadcast ,(V,Fsig)
πsig,Z (k, z), as it does

not know the internal state of Ps.
Now, p(k, z) is the probability that C outputs “This is a forgery for vl: (m′, σ′)” for some

i ∈ [n]. Since Pl is honest when this happens and the execution of HYBFbroadcast,(V,Fsig)
πsig,Z (k, z) is

independent of s in the view of Z until Ps is corrupted and A picked s ∈ [n] uniformly at ran-
dom, it follows that the probability that “This is a forgery for vs: (m′, σ′)” is output is at least
p(k,z)

n . So, Pr[FORGE(gen,sig,ver),A(k, z) = 1] ≥ p(k,z)
n . So, Pr[HYBFbroadcast,(V,Fsig)

πsig,Z (k, z) =

incorrect] ≤ n Pr[FORGE(gen,sig,ver),A(k, z) = 1]. Since FORGE(gen,sig,ver),A
c≈0 by the

existential unforgeability under adaptive chosen-message attack of (gen, sig, ver), and n

is polynomial in k, it follows from Lemma 2.1 on page 11 that Pr[HYBFbroadcast ,(V,Fsig)
πsig,Z =

incorrect]
c≈0, as desired. 2

In Chapter 7 we prove that for t < (n− 1)/2 the Fbroadcast-functionality can be realized
in the Fsig-hybrid model, and we discuss a well-known result that Fbroadcast cannot be t-
realized in the real-life model unless t ≥ (n − 1)/3. This shows that the use of Fbroadcast in
πsig is necessary when t ≥ n/3. Notice that πsig only uses one broadcast per party. Therefore
realizing Fbroadcast using πsig is not an absurdity. In practice the initial broadcast could
be realized using a public-key infrastructure (PKI) which allows the parties to retrieve the
public-key of some other party, along with a transferable certificate. Basically the initial
rounds until Fbroadcast has output the broadcast values to all parties models some kind of
setup of the network, and the actual computation does not begin until Fbroadcast delivered
outputs. After this point Fbroadcast is never used again. For later use we give protocols with
this property a name.

Definition 3.24 A protocol with a setup functionality I for the G-hybrid model is a protocol
π for the (G,I)-hybrid model, where π is of the following form: In the very first round of the

3.8 Some Functionalities 123

protocol (where k and ri is supplied to Pi), the party Pi inputs init to I. Then Pi waits until
I has output a value and until this happens, Pi ignores all inputs, except for the first init
input. If Pi receives an init input while waiting for I, then, in the round where I delivers
an output, Pi proceeds as if having received init in that round. After I has delivered the first
output to Pi, Pi never inputs anything but the empty string to I and ignores all outputs from
I. We require from the ideal functionality I that it delivers the first output to all parties
in the same round when activated in the same round by all honest parties. We call I the
initializing functionality of π and we call the round where I delivers outputs to all parties the
actual start of the protocol.

3.8.6 Threshold Signatures

In Fig. 3.30 on the following page an ideal functionality for threshold signature is given. A
threshold signature has the defining quality that the ability to sign is shared between the
parties and that a signature on a message m is not generated unless at least c parties allowed
to signed it. We say that c parties gave a signature share and we call c the construction
threshold. The 2 in the name of F2T-sig refers to the functionality being a so-called dual-
threshold signature functionality, because it allows to meaningfully set the corruption threshold
lower than c − 1. We contrast this to the functionality FT-sig which is defined exactly like
F2T-sig, except that we have the convention that if any honest party input (sign, j,m), then
T (m, i) = 1 for all corrupted parties Pi. I.e. as soon as just one honest party allowed to sign
m, all corrupted parties receive a signature on m. In particular, if there is a maximal set of t

corrupted parties, then as soon as t+1 parties allowed to sign m, at least one honest party did
so, and therefore all corrupted parties obtain a signature on m. It is therefore not meaningful
to set the construction threshold to c > t + 1. For FT-sig we therefore always assume that
c = t + 1. The dual-threshold signature functionality is named so following [Sho00].

One trivial way of realizing the dual-threshold signature functionality is to use a standard
signature scheme for each party and then let a threshold signature consist of c individual
signatures. Seeing c signature on m, it follows that at least c parties must have signed m.

Theorem 3.8 For all 0 < c ≤ n the protocol πc
tsig-triv realizes Fc

2T-sig in the Fsig-hybrid
model with signing round complexity 1.

Proof. By Theorem 3.6 on page 111 it is sufficient to prove that πc
tsig-triv correctly realizes

Fc
2T-sig in the Fsig-hybrid model. So, we have to prove that there exists a PPT algorithm V

such that for all environment Z it holds that if

Pr[HYB
Fsig,(V,Fc

2T-sig)

πc
tsig-triv,Z ∈ ‘‘H Fc

2T-sig’’]
c≈0 ,

then

Pr[HYB
Fsig,(V,Fc

2T-sig)

πc
tsig-triv,Z ∈ ‘‘H Fsig’’ ∪ ‘‘C Fc

2T-sig’’ ∪ {incorrect}]
c≈0 .

The algorithm V is defined as follows: In each activation, where Z inputs vFsig
= ready to

Fsig, V outputs vFc
2T-sig

= ready. If Z inputs a vFsig
value to Fsig with the input (sign, j,m)

to corrupted Pi, then V specifies the input (sign, j,m) to corrupted Pi in its vFc
2T-sig

value.

124 Universally Composable Security of Synchronous Protocols

Functionality Fgen
2T-sig

The functionality runs with parties P1, . . . , Pn. It is parameterized by a signing round
complexity r and a construction threshold c. All inputs are output on the SOT.

initialize:
If all honest parties input init in the same round, then proceed as follows:

1. Initialize a dictionary SS mapping from messages m and indices i ∈ {1, . . . , n}
into indices {1, . . . , n}. Initially SS(m, i) = ∅. Furthermore, let T be a dic-
tionary mapping from indices and messages into {0, 1}. Initially T (m, i) = 0.
We think of SS(m, i) as the indices of those parties Pj from which Pi has a
signature share on m and we think of T (m, i) as indicating whether Pi has a
signature on m.
We have the convention that for all i ∈ [n] and all m ∈ {0, 1}∗, if |SS(m, i)| ≥ c,
then T (m, i) = 1.
Let C denote the set of corrupted parties. We have the convention that for all
i ∈ C and all m ∈ {0, 1}∗ it holds that SS(m, i) = C ∪

⋃
l∈H SS(m, l).

2. In a round specified by the adversary, output ready to all parties. Until having
output ready, ignore all inputs.

sign:
If Pi inputs (sign, j, m), where j ∈ [n], then let SS(m, j) = SS(m, j)∪{i}, unless Pi

was honest when inputting (sign, j, m) and was corrupted within r rounds. In that
case, do nothing.
If during this T (m, j) = 1 then output (signed, m) to Pj after r rounds. The output
round is specified by the adversary.
In the following we use ’input (sign, m)’ as a shorthand for ’input (sign, j, m) for
all j ∈ [n]’.

transfer:
If Pi inputs (transfer, j, m), where T (m, i) = 1, then let T (m, j) = 1 and output
(transfered, i, m) to Pj , unless Pi was honest when inputting (transfer, j, m) and
was corrupted during the round. In that case, do nothing.

incorrect inputs:
If in the first round were a honest party inputs a non-trivial value some honest party
do not input init, then break down. Also break down if an honest party inputs init
twice or inputs a value not of one of the above forms. On break down, output fail
on the SOT.

Figure 3.30: The dual-threshold signature functionality.

If Z inputs a vFsig
value to Fsig with the input (transfer, l, j,m) to corrupted Pi for all

l ∈ L ⊆ S(m, i), where |L| = c, then V specifies the input (transfer, j,m) to Pi in its
vFc

2T-sig
value. All other types of correctly formed inputs to corrupted parties in Fsig are

ignored. If Z give an input which is not of the correct form to a corrupted party in Fsig,
then V will just output vFc

2T-sig
= ε.

Clearly V is a PPT algorithm. We argue that V maintains the invariant in HYB
Fsig,(V,Fc

2T-sig)

πc
tsig-triv,Z

3.8 Some Functionalities 125

Protocol πtsig-triv

The protocol runs with parties P1, . . . , Pn in the Fsig-hybrid model. The protocol is pa-
rameterized by a construction threshold c. Party Pi proceeds as follows:

initialize:
On input init, input init to Fsig and wait for the output ready. Then output
ready. Until having output ready, ignore all inputs.
Let S(m, i) = ∅.

sign:
On input (sign, j, m), input (sign, j, m) to Fsig.
On output (transfered, j, j, m′), let S(m, i) = S(m, i) = ∪{j}. If during this it
happens that |S(m′, i)| ≥ c, then output (signed, m).

transfer:
On input (transfer, j, m), where |S(m, i)| ≥ c, let L be some subset of S(m, i) of
size c and input (transfer, l, j, m) to Fsig for l ∈ L.
If there ever arrives exactly c transfers from some Pl in the same round, then output
(transfered, l, m′). If less than c or more than c transfers arrive, then ignore these.

Figure 3.31: Realizing F2T-sig using a signature functionality Fsig.

that as long as Z only activates honest parties Pi on inputs of the correct form and only spec-
ifies inputs on behalf of corrupted parties in Fsig of the correct form it holds that |S(m, i)| ≥ c

iff T (m, i) = 1. But first we argue that this is enough to prove the theorem. It is straight-
forward to verify that as long as Z only activates honest parties Pi on inputs of the correct
form and only specifies inputs on behalf of corrupted parties in Fsig of the correct form, it
will be the case that the parties of πc

tsig-triv only gives correct inputs to Fsig and that V only
gives correct inputs on behalf of corrupted parties to Fc

2T-sig. Therefore Z is always the first
to violate an IO restriction. In particular

Pr[HYB
Fsig,(V,Fc

2T-sig)

πc
tsig-triv,Z ∈ ‘‘H Fsig’’ ∪ ‘‘C Fc

2T-sig’’] = 0 .

It is therefore sufficient to prove that as long as Z only activates honest parties Pi on inputs
of the correct form and only specifies inputs on behalf of corrupted parties in Fsig of the
correct form it holds that

Pr[HYB
Fsig,(V,Fc

2T-sig)

πc
tsig-triv,Z = incorrect] = 0 .

We have to argue that honest parties in πc
tsig-triv and Fc

2T-sig have identical outputs. By the
invariant we have that as long as Z only activates honest parties Pi on inputs of the correct
form and only specifies inputs on behalf of corrupted parties in Fsig of the correct form it
holds that |S(m, i)| ≥ c iff T (m, i) = 1. We argue that this means that πc

tsig-triv and Fc
2T-sig

deliver identical outputs. There are two types of output, (signed,m) and (transfered, i,m).
Assume first that honest Pi in πc

tsig-triv outputs (signed,m) in round r. This means that in
round r it happened for the first time that |S(m, i)| ≥ c. In particular |S(m, i)| < c in round
r− 1. By the invariant this means that T (m, i) = 0 in round r− 1 and T (m, i) = 1 in round

126 Universally Composable Security of Synchronous Protocols

r. By inspection of Fc
2T-sig this means that Fc

2T-sig output (signed,m) in round r. Assume
then that Fc

2T-sig output (signed,m) in round r on behalf of honest Pi. By inspection of
Fc

2T-sig this happens when T (m, i) = 0 in round r − 1 and T (m, i) = 1 in round r. By the
invariant this implies that |S(m, i)| < c in round r − 1 and |S(m, i)| ≥ c in round r. By
inspection of πc

tsig-triv, this implies that Pi output (signed,m) in round r. Assume then that
honest Pi in πc

tsig-triv outputs (transfered, j,m) in round r. This means that Pj got the
input (transfer, i,m) and that |S(m, j)| ≥ c. By the invariant this means that T (m, j) = 1.
Since Pj gets the input (transfer, j,m) in πc

tsig-triv iff Pj gets the input (transfer, j,m)
in Fc

2T-sig it follows by inspection of Fc
2T-sig that Pi output (transfered, j,m) in Fc

2T-sig, as
desired. Assume then that honest Pi output (transfered, j,m) in Fc

2T-sig. By inspection
of Fc

2T-sig this implies that Pj got the input (transfer, i,m) and that T (m, j) = 1. By the
invariant this means that |S(m, j)| ≥ c. Since Pj gets the input (transfer, j,m) in πc

tsig-triv

iff Pj gets the input (transfer, j,m) in Fc
2T-sig it follows by inspection of πc

tsig-triv that Pi

will receive c transfers from Pj and will then output (transfered, j,m), as desired.

We proceed to prove the invariant. To allow an easier argument we prove a slightly

stronger invariant. We prove for HYB
Fsig,(V,Fc

2T-sig)

πc
tsig-triv,Z that as long as Z only activates honest

parties Pi on inputs of the correct form and only specifies inputs on behalf of corrupted
parties in Fsig of the correct form it holds that |S(m, i)| ≥ c iff T (m, i) = 1 and that if
|SS(m, i)| < c, then SS(m, i) = S(m, i). This is trivially the case in the beginning, where
both dictionaries are uninitialized. If at some point all honest parties are activated on input
init by Z, then Fc

2T-sig initializes SS. And, in πc
tsig-triv all honest parties input init to Fsig,

which then initializes S. By inspection of Fc
2T-sig and Fsig it can be seen that SS and S are

initialized identically.

We then consider what happens on the various commands from Z. Consider first the
command (corrupt, i). By inspection of Fsig and Fc

2T-sig we get for all m ∈ {0, 1}∗ that
SS(m, i) = C ∪

⋃
l∈H SS(m, l) and S(m, i) = C ∪

⋃
l∈H S(m, l). Assume first that for

|SS(m, l)| < c for all l ∈ H. Then by the invariant SS(m, l) = S(m, l) for all l ∈ H and
therefore SS(m, i) = S(m, i), which clearly implies that the invariant is maintained.

Consider then the activation of a honest party Pi on (sign, j,m). In πc
tsig-triv, the party

Pi inputs (sign, j,m) to Fsig, which makes the update S′(m, j) = S(m, j) ∪ {i}. In Fc
2T-sig

we also get the update SS′(m, j) = SS(m, j) ∪ {i} on input (sign, j,m). Furthermore, in
both functionalities, if Pi is corrupted before the end round command, then the update is
not made. We prove that this maintains the invariant. Clearly so if no updates are made.
Assume then that SS′(m, j) = SS(m, j) ∪ {i} and S′(m, j) = S(m, j) ∪ {i}. Assume that
T ′(m, j) = 1. If T (m, j) = 1, then |SS(m, j)| ≥ c and therefore |SS′(m,k)| ≥ c, as desired.
If T (m, j) = 0, then T ′(m, j) was set to 1 because SS(m, j) = c − 1 and SS′(m, j) = c.
Since SS(m, j) = c − 1 < c we have, by the invariant, that S(m,k) = SS(m, j). Since
SS′(m, j) = SS(m, j)∪{i} and S′(m, j) = S(m, j)∪{i} this means that S′(m, j) = SS′(m, j).
In particular, |S′(m, j)| = c, as desired. If |SS′(m, j)| < c, we also have that |SS(m, j)| < c,
which by the invariant means that SS(m, j) = S(m, j). Since SS′(m, j) = SS(m, j)∪{i} and
S′(m, j) = S(m, j)∪{i} this means that SS′(m, j) = S′(m, j), as desired. Consider then the
command (sign, j,m) to corrupted Pi in Fsig. By definition of V we have that (sign, j,m)
is given to the corrupted Pi in Fc

2T-sig. The analysis then proceeds as for (sign, j,m) to a

3.8 Some Functionalities 127

Functionality Fgen
CRS

The functionality runs with parties P1, . . . , Pn and is parametrized by a PPT generator
gen.

initialize:
On input init from all honest parties, run crs← gen(k) and output crs on the SOT,
let the adversary specify an output round, and in the specified round, output crs to
all parties.

Figure 3.32: The common reference string functionality with generator gen.

honest party.
Consider then the activation of a honest party on (transfer, j,m). In πc

tsig-triv, if
|S(m, i)| < c nothing happens. By the invariant |S(m, i)| < c implies that T (m, i) = 0.
This means that in Fc

2T-sig nothing happens either. If |S(m, i)| ≥ c, then Pi transfers c signa-
tures to Pj . In particular S′(m, j) = S(m, j)∪L. By the invariant |S(m, i)| ≥ c implies that
T (m, i) = 1. So, in Fc

2T-sig we get that T ′(m, j) = 1. Since |S′(m, j) = S(m, j)∪L| ≥ |L| = c

and T ′(m, j) = 1, clearly the invariant is maintained.
Consider then the commands of the form (transfer, l, j,m) to corrupted Pi in Fsig. Let

L be the indices l ∈ S(m, i) for which Z input a (transfer, l, j,m) command to Pi. If
|L| = c, then, by definition, V inputs (transfer, j,m) to Fc

2T-sig. The analysis of this case
proceeds as for input (transfer, j,m) to honest Pi. If |L| 6= c, then V inputs nothing to the
corrupted Pi in Fc

2T-sig. This is sound as Pj in πc
tsig-triv will receive d transfers from Pi, for

d 6= c, and will therefore ignore these. 2

Notice that if the guaranteed number of honest parties is less than the construction
threshold, i.e. n − t < c, then even if all honest parties sign the same message m they are
not guaranteed to get a signature on m. Therefore n ≥ 2t+1 is needed to guarantee signing.
Furthermore, if n ≥ 2t + 1 and all honest parties sign m in round R, then all honest parties
will receive a signature no later than in round R+r, where r is the signing round complexity
of F2T-sig.

We have seen that we can realize the dual-threshold signature functionality given the
signature functionality. The threshold signature functionality is in some respect weaker than
what the realization using signatures give us. Given a threshold signature on m one knows
that c parties signed m, but given c signatures from individual parties on m, one in addition
knows which c parties signed m. This overkill in the realization has the price that a threshold
signature has the size of c individual signatures. In Chapter 6 we will see that we can exploit
the fact that a threshold signature does not have to carry c identities to construct a realization
where a threshold signature has the size of one individual signature. This is indeed the very
reason for looking at threshold signatures.

3.8.7 The Common Reference String Model

It was proved in [Can01a,CF01] that a number of important two-party functionalities, such
as e.g commitment and zero-knowledge proof, cannot be realized in the real-life model by

128 Universally Composable Security of Synchronous Protocols

Functionality Fgen
PRS

The functionality runs with parties P1, . . . , Pn and is parametrized by a PPT generator
gen.

initialize:
In the first round, generate Ki ← gen(k; ti) for each party Pi and output Ki on the
SOT. If Pi is ever corrupted, then output ti on the SOT.

key request:
On input (rid, Pi) from Pj , output (rid, Pj , Pi) on the SOT. Let the adversary specify
an output round, and in the specified round output (rid, K ′

i) to Pj , where K ′
i is

determined as follows: If Pi is corrupted, then proceed as follows: If the SIT contains
a value (rid, K, t), then K ′

i = gen(k; t). Otherwise K ′
i = ⊥. If Pi is honest, then

K ′
i = Ki.

Figure 3.33: The private reference string functionality with generator gen.

a two-party protocol. Since it is clearly important for practical applications to have two-
party protocols realizing these two-party functionalities we cannot just give up because of
the bad news. The way out of the misery is to consider some realistic hybrid model where
the functionalities can be realized. One such model is the common reference string (CRS)
model, where we assume that that a common reference string with a prescribed distribution
is available to the players. If a CRS is available, then two-player solutions do exist, as
demonstrated in [CF01]. The common reference string model is discussed in more detail
in [Can01b] and [CR03]. The CRS can be modeled using the ideal functionality in Fig. 3.32 on
the preceding page.

When we say that a functionality can be realized in the CRS model we silently assume
that it is for a CRS of size O(k) bits. If a protocol requires a larger CRS, Θ(nk) bits say, we
will mention this explicitly.

3.8.8 The Private Reference String Model

Another hybrid-model that we use a number of times is what we call the private reference string
(PRS) model. As the CRS model it is a model which allows to realize some functionalities
which cannot be realized in the bare model. It is different from the CRS model in that
each party has its own ’reference string’ and that no guarantee on the distribution of this
string is guaranteed when the party is corrupted, even though we are guaranteed that it is
at least of the right form. As discussed in Remark 3.2 on the next page one advantage of
the PRS model over the CRS model is that it can be realized using the current Internet PKI
environment.

As for the CRS model, the PRS model is parametrized by a generator gen, giving the
distribution of the PRS’s (of the honest parties). When initialized it generates a key Ki ←
gen for each honest party Pi, and when queried for the key of Pi it forwards Ki. To model
that corrupted parties must at least choose a key of the correct form, we require that a
corrupted party Pj specifies Kj by specifying tj ∈ {0, 1}∗ such that Kj = gen(tj). The ideal
functionality is given in Fig. 3.33.

3.8 Some Functionalities 129

Notice that the keys forwarded for corrupted parties need not be the same for all parties
or have any particular distribution. Furthermore, the keys of corrupted parties might depend
on the keys of honest parties, as these are revealed on the SOT. All that is guaranteed is
that the trapdoors for all keys are known by FPRS.

The functionality FPRS has some similarity to a PKI, letting K be the public key and
letting t be the private key, with the important difference from a PKI that the honest parties
do not know t. This has some important implications as no protocol using FPRS can ’misuse’
it in a way revealing t. This will in many settings allow protocols to use the same FPRS in
a secure manner. At the time of writing, this is ongoing research and will not be discussed
further here.

Remark 3.2 In practice, the functionality Fig. 3.33 on the preceding page could be realized
by having each party Pi generate a key Ki ← gen(ti), ti ←R {0, 1}∗ and approach a certificate
authority (CA) to register Ki. This would model the initialize command. The command key
request would then be realized by Pj requesting the key from Pi, Pi sending the key Ki along
with the certificate and Pj verifying the certificate. If the verification fails, Pj outputs Ki = ⊥.

The fact that corrupted parties can specify arbitrary tj in Fig. 3.33 on the facing page
then corresponds to the fact that we cannot enforce that corrupted parties generate their keys
at random. The fact that FPRS allows corrupted parties to return different keys in different
requests corresponds to the fact that corrupted parties might register several keys.

The fact that FPRS learns the random bits used to produce the registered keys means that
FPRS cannot be realized by just any CA. We need that the CA verifies that the key registrant
(KR) actually knows the random bits used to generate the registered key.

This corresponds directly to what is known as a proof of Possession of Private key in
current PKI lingo [CFS+03]. This denotes the practice that a key registrant (KR) which
registers a public key pk must prove that he possesses the private key sk corresponding to pk.

Even though it is not necessarily the case in the current Internet PKI environment that
a CA checks that the KR has PoP, it is however recommended that the certification practice
statement (CPS) of the CA states [i]f and how the subject [KR] must prove possession of the
companion private key for the public key being registered [CFS+03]. Therefore one should
be able to determine from the CPS of the CA and the certificate policy extension fields of an
X.509 certificate whether and how the CA checked PoP.

As discussed in [CFS+03, Note 4], [t]he subject [KR] may not need to prove to the CA
that the subject has possession of the private key corresponding to the public key being
registered if the CA generates the subject’s key pair on the subject’s behalf. A CPS stating
that the PoP is guaranteed by having the CA generate the key corresponds directly to our
functionality FPRS.

The PRS model could e.g. be instantiated to associate to each party a key of a trapdoor
commitment scheme. In that case K ← gen(t) would be the key generator of the trapdoor
commitment scheme and t would be the trapdoor.8 In that case Fgen

PRS would guarantee that

8We could e.g. have K = (P, Q, g, h = gx mod P) and t = x for a prime P , an element g of prime order
Q and uniformly random x ∈ ZQ. Then commitK(m) = hmgr mod P for uniformly random r ∈ ZQ is
unconditionally hiding and computationally binding for m ∈ ZQ, if computing discrete logarithms base g is

130 Universally Composable Security of Synchronous Protocols

the key K of an honest party is random, so that commitK is computational binding. Fur-
thermore, since the hiding property is unconditional it holds for arbitrary keys, so commitK

is always unconditionally hiding. If therefore in a given protocol for the Fgen
PRS-hybrid model

a party Pi wants to commit to a value m to the party Pj , this can be done by Pi request-
ing the commitment key Kj of Pj and sending c = commitKj(m) to Pj . Since commitKj

is unconditionally hiding even if Pj is corrupted this is ’secure’ for Pi. Furthermore, since
Kj is correctly generated when Pj is honest, Pj is guaranteed that Pi can only open c to
one value. This is an example where it does not matter that a corrupted Pj can chose Kj

according to another distribution than gen. The randomness of Kj is only used to guarantee
the computational binding of commitKj and the computation binding is in the interest of
Pj only.9 For a further discussion of setting up the private reference string, using e.g. a
certificate authority, see Section 2.9.5.

It is easy to see that the PRS model can be realized in the CRS model, using a CRS
consisting of the concatenation of the PRS of each party. Another approach would have
each party Pi generate Ki ← gen(ti) and on request of the key send Ki to the requester
and then prove knowledge of ti. This proof of knowledge would however have to be a
universally composable zero-knowledge proof of knowledge, which again requires e.g. the
CRS model. But since zero-knowledge proof of knowledge can be realized with a short CRS,
see e.g. [CF01], the later approach might be preferable. We note that the other direction
holds too: The CRS model can be realized in the PRS model for an appropriate generator
gen and considering a modified formulation of FPRS, which does not reveal ti when Pi is
corrupted. Again this is ongoing research and will not be discussed further here.

3.9 The Random-Oracle Model

In this section we describe how to model the random-oracle model within our model of secure
protocols. Informally, the random-oracle model for a hash-function h is the model where h

is replaced by a uniformly random function. The rational behind the random-oracle model
is that by modeling primitives as DES, MD5 or SHA using the strong assumption that they
(properly used/modified) behave like random functions, one can build efficient and secure
protocols based on these primitives. The model has been used to argue the security of a
number of constructions. Examples are the OAEP encryption mode for RSA [BR95,Sho01],
the Fiat-Shamir heuristic [FS86], and the efficient Byzantine agreement protocol of Cachin,
Kursawe, and Shoup [CKS00]. To distinguish the random-oracle devoid model from the
random-oracle model, we will call it the first the complexity-theoretic model (CT model).

We define the RO model to be the real-life execution model where additionally the par-
ties have access to a uniformly random function H : {0, 1}k → {0, 1}k . This can be modeled
within the framework in [Can01a] using a hybrid model with an ideal functionality for eval-
uating H. Because our formulation of the UC framework does not allow for immediate
functionalities this approach is not immediately applicable, but we can take a similar ap-

hard. To guarantee that commitK(m) = hmgr mod P is unconditionally hiding it is enough that Q is prime
and that the order of g in Z∗P is Q and that h ∈ 〈g〉Q. Therefore also keys registered by corrupted parties
define unconditionally hiding trapdoor commitment schemes

9Assuming that no other party accepts commitments under Kj .

3.9 The Random-Oracle Model 131

proach: A protocol for the random-oracle model is as usual n ITMs π = (P1, . . . , Pn), but with
the change that the machine Pi is an ITM with oracle access. I.e. we assume that it has an
oracle input tape, an oracle output tape and an oracle state. An ITM with oracle access P

is executed in the presence of some oracle O, also an ITM; We write PO. When P enters
the oracle state, the contents of the oracle output tape is written to the input tape of O

and O is run to produce an output which is written to the oracle input tape of P . Then P

resumes normal execution, i.e. its transition function is applied to the new state with the
updated oracle input tape. The protocol will then simply be run while giving the parties
access to a common uniformly random function H; We write REALπH ,Z . When Z corrupts
a party Pi in π, then Z takes over the powers of Pi, e.g. it can now send messages on behalf
of Pi. To be able to run Pi we need that Z has access to H. This access can be provide
in two different ways. We can either let Z be an ITM with oracle access and then simply
run Z with access to H. Another approach is to let Z access H through the command
system by outputting commands of the form (RO-query, x) in response to which it receives
H(x). The principal difference between the approaches is whether the interface is allowed
to simulate the replies to Z in the ideal world, and the two choices lead to models with
different strength, named the programmable random-oracle model (PRO model) respectively
the non-programmable random-oracle model (NPRO model) in [Nie02a]

3.9.1 The Non-Programmable Random-Oracle Model

We describe the non-programmable random-oracle model in more detail. In this model, when
Z wants to query H it outputs a value (RO-query, x) and will be returned H(x). This way
of modeling the random oracle basically corresponds to an execution HYBH

π,Z in the hybrid
model, where H is a functionality for evaluating a uniformly random function and where Z
is allowed to request evaluations on the SIT of H.

The changes to the definitions of security are straight-forward. E.g., we say that πH

realizes F in the NPRO model if there exists an interface S such that for all environments
Z it holds that IDEALF ,S,Z

c≈REALπH ,Z when H is chosen as a uniformly random function
H : {0, 1}k → {0, 1}k . Notice that no function H is present in IDEALF ,S,Z , so along with
all the other commands issued by Z, the simulator must also simulate H. This is the reason
why we call the random oracle programmable. When simulating, S is free to pick the replies
H(x) to the commands (RO-query, x) from Z as it desires. We say that S can program the
random-oracle H.

3.9.2 The Programmable Random-Oracle Model

We describe the programmable random-oracle model in more detail. In this model we let the
environment Z and the interface S be ITMs with oracle access and we say that πH realizes
F in the NPRO model if there exists an interface S such that for all environments Z it
holds that IDEALF ,SH ,ZH

c≈REALπH ,ZH , when H is chosen as a uniformly random function
H : {0, 1}k → {0, 1}k .

The reason for calling this model the non-programmable random-oracle model has to do
with the power of the interface S when simulating. Assume that S runs internally a simu-
lated copy of π. Consider again the programmable random-oracle model. In the execution

132 Universally Composable Security of Synchronous Protocols

IDEALF ,S,Z the simulated copies of P1, . . . , Pn will make oracle calls to evaluate H. Since
π is being run inside the interface S, it is free to choose the value H(x) to return to Pi

when Pi queries on x. Contrast this to the non-programmable random-oracle model, where
the execution IDEALF ,SH ,ZH is considered. Here Z has access to H and therefore has the
opportunity of verifying that the observed communication is consistent with H. This is of
course always the case in REALπH ,ZH , so in IDEALF ,SH ,ZH the interface S is forced to
simulate an execution of π which is consistent with the supplied H. This means that S is no
longer free to define H(x) as desired. The first formalization of the difference between the
PRO and the NPRO models appears in [Nie02a]. The distinction between these RO models
has e.g been used by Ishai, Kilian, Nissim and Petrank [IKNP03] in the context of extending
oblivious transfers efficiently in the NPRO model.

3.9.3 Implementing the Random-Oracle

To obtain an efficient implementation of a protocol for the random-oracle model, the function
H can be implemented using e.g. a cryptographic hash-function or in some cases using a
so-called probabilist hash-function [Can97]. In the paper [BR93] where Bellare and Rogaway
introduce the RO model it is said about the methodology of proving schemes secure in the
random-oracle model and then instantiating the oracle with a carefully chosen function in
practice that ‘It is our thesis that this method, when carried out, leads to secure and efficient
protocols. Indeed, protocols constructed under this paradigm have so far proved “secure”
in practice. But we stress that all claims of provable security are claims made within the
random-oracle model, and instantiating the oracle with h is only a heuristic whose success
we trust from experience.’ This is an important point to observe. That πH realizes F
when H is a uniformly random function does not guarantee that πh realizes F for a hash-
function h. This point was seriously stressed in [CGH98] by Canetti, Goldreich and Halevi
by constructing an encryption scheme which is secure in the RO model, but is not secure in
the CT model, no matter the instantiation of the RO. Their scheme is constructed as to try
to “detect” whether it is in the RO model or not, and then reveal the secret key if it is not
in the RO model.

3.9.4 Separating the Models

Above we gave two different RO models. It turns that the choice between these two ways of
modeling a hash-function using a random oracle is an essential one. Being able to program
the oracle is a very powerful tool to have in the simulation, and it is used by almost all
applications of the random-oracle model, including the above mentioned result from [BR95,
Sho01,FS86,CKS00] — and it is used essentially, i.e. without the ability to program the oracle
most of these results do not stand. In Sections 4.2 and 4.3 we give a formal proof that the
models are essentially different. What we show there is that there exists a natural protocol
problem which has a simple solution in the RO model and which has no solution in the NPRO
model, namely the problem of constructing a non-interactive communication protocol secure
against adaptive adversaries a.k.a. non-interactive non-committing encryption. This means
that the PRO model is stronger than the NPRO model in terms of which problems can be
solved. This separation result first appeared in [Nie02a].

3.9 The Random-Oracle Model 133

3.9.4.1 Previous Separation Results.

Other examples of constructions secure in the RO model and not secure in weaker models
were known prior to [Nie02a]. Most prominently is the mentioned result from [CGH98] that
there exists an encryption scheme which is secure in the RO model, but is not secure in the
CT model, no matter the instantiation of the RO. This result showed that the RO is stronger
than the CT model in the sense that the exists realizations which are secure in the RO and
which are not secure in the CT model.

One strength of the result from [CGH98] is that it is the semantic security of the en-
cryption scheme that is violated in the CT model, whereas it in our example it is the less
standard non-committing property that is violated. Their result thus establishes that even
standard security properties do not carry over from the RO model to the CT model. Another
strength of the result from [CGH98] is that their encryption scheme can be proved secure
in the NPRO model, as they do not use the programmability of random-oracle. This means
that their result separates the CT model and the NPRO model.10

Another separation result is that the Fiat-Shamir [FS86] methodology can be proved
secure in the RO model. This can be viewed as being a separation result, as it is proved
in [GK90] that in the CT model there does not exist zero-knowledge protocols for NP with
less than four rounds unless NP is in BPP. And the above observation is indeed a separation if
one insists that the RO must be realized using a fixed function h. However, it would anyway
be naive to expect this to be more than ’heuristically secure’, as noted by the initiators of
the RO model in [BR93], where it is said that ’We stress that the protocol problem Π and
protocol P must be “independent” of the hash function we are to use. It is easy to construct
unnatural problems or protocols whose description and goals depend explicitly on h so that
the protocol is secure in the RO model but fails when the RO is instantiated with the hash
function. The notion of “independence” will not be formalized in this paper.’ Therefore the
oracle should at least be implemented by a random function h drawn from some function
family, say, by a trusted party, and handed to both the prover and the verifier. But h is then
a de facto common random string and the existence of one-round zero-knowledge proofs is
no longer ruled out [BFM88]. It does in particular not follow that in some preprocessing
model there does not exist some kind of non-interactive instantiation of the RO which makes
the methodology secure. The (in)security of the Fiat-Shamir methodology is investigated in
great detail in [GT03] by Goldwasser and Tauman.

A recent separation result is that of Bellare, Boldyreva and Palacio [BBP03], where a
uninstantiable scheme for IND-CPA-preserving asymmetric encryption is proved secure in
the RO model. This separation result is more serious than previous results in that the
proposed scheme is very natural and by inspection shows no signs of being constructed as
to frustrated the RO model or being insecure for other reasons. This example seems to be

10The scheme from [CGH98] uses the non-interactive CS proofs of Micali [Mic00] for the RO model, and
so for their non-interactive encryption scheme to be secure it should be verified that these CS proofs are
secure in the NPRO model, which is done fairly straight-forwardly, as the proof in [Mic00] does not use the
programmability of the oracle. We will however not prove this here, as under all circumstances, if the CS
proofs for the RO model are replaced by interactive CS proofs (which can be constructed in the CT model
under the assumption that collision resistant hash functions exits [Mic00]), then it is trivial to verify that the
scheme in [CGH98] is secure in the NPRO model.

134 Universally Composable Security of Synchronous Protocols

the first one seriously contradicting the thesis in [BR93] that the random oracle paradigm
leads to secure schemes when one does not deliberately try to frustrate it. Their example
does however not seem to be a separation between the NPRO model and the CT model.

More recently Maurer, Renner and Holenstein [MRH04] introduced a generalized notion
of indistinguishability, called indifferentiability, along with its theory. This theory allows to
demonstrate in a simple and precise manner the separation between the NPRO model and
the CT model first demonstrated in [CGH98].

We mention one last separation result. In [Pas03] Pass formalized a notion of deniability
of zero-knowledge proofs and proved that it is possible to obtain in the RO model but not
in the CRS model. This in particular rules out realizing the deniable zero-knowledge in the
model where a random hash-function drawn from a function family is given to all parties.
As the separation result in Sections 4.2 and 4.3, the result of Pass provides a separation at
the level of which problems can be realized.

To the best of our knowledge the only known results separating the NPRO model and the
CT model is the results of [CGH98,MRH04]. This means that all known separation result
between the NPRO model and the CT model to some extend is of the form anticipated
by the initiators of the RO model: Though the scheme in [CGH98] does not depend on a
single function or function family it uses essentially the description of the specific function
or function family used, and [MRH04] does not provide separating schemes, but derives the
separation result from a general theory of indifferentiability. It would be interesting to see
if it is possible to construct examples of cryptographic schemes separating the NPRO model
and the CT model, which is not of the form anticipated by the above quotation from [BR93].

3.9.4.2 The ’Right’ Formulation

We have provided two formulations of the random-oracle model and claimed that we prove
that they are essentially different. So, there seems to be a choice to be made. Which is the
’right’ formulation? First of all, clearly the question does not make sense. But should one
prefer any of the formulations, probably it would be the PRO model. From the separation
between the PRO model and the NPRO model, one might get the idea that the NPRO model
is ’safer’ to use. However, we know from [CGH98] that the NPRO model is not sound, so the
NPRO model is safer than the PRO model in the same way that jumping out the window
on the tenth floor is safer than jumping out the window on the eleventh floor. With both
models one has to keep in mind that ’[...] all claims of provable security are claims made
within the random-oracle model, and instantiating the oracle with h is only a heuristic whose
success we trust from experience.’ So, on that front little is obtained from using the NPRO
model. A lot is lost however, as most interesting applications of the random-oracle model
needs the programmability. So, since the motivation for introducing the RO model was to
be able to model e.g. hash-functions in a way strong enough to prove more schemes secure,
and none of the models are sound, the PRO model is clearly preferable. For any problem
where it is not provably necessary to use a RO model one should of course prefer not to use
it at all.

3.10 Multi-Round Functionalities 135

3.10 Multi-Round Functionalities

When specifying an ideal functionality G it is often convenient to specify it such that it takes
an input from each party in each round and then delivers the desired results to all parties
in the same round. This makes the functionality easy to use. However, in many cases this
results in a functionality G which cannot be realizes because the desired result cannot be
computed by any protocol in one round. Therefore one will have to specify a functionality G′
which takes an input from each party and then in some subsequence round, either given by
some round-complexity parameter or specified by the adversary, delivers the desired results
to the parties. Such multi-round ideal functionalities are however less convenient to use as a
helping functionality in a hybrid model, because the protocol using the multi-round ideal
functionality G′ must constantly deal with the fact that G′ might be delayed. In this section
we therefore establish a general framework which allows to prove a protocol secure in the
G-hybrid model and then transform it, using a generic transformation, into a secure protocol
for the G′-hybrid model.

As mentioned, many functionalities G which delivers the result in one round cannot be
realized. We can however still take a protocol π for the G-hybrid model and replace calls to G
with calls to a protocol γ which realizes G except that the protocol uses multiple rounds for
computing the results — during the rounds until γ delivers a result the parties in π just wait.
We then obtain a protocol which except for the round complexity has the same input-output
behavior as π. We will formalize what it means for this to be secure and then prove that
indeed it is. We do this in three steps. First we show how to transform any functionality
F into a multi-round functionality MultiRound(F), where MultiRound(F) is a functionality
which basically runs F , except that each original round of F is allowed to take a number of
rounds determined by the adversary. Then we show how to change a protocol π for the G-
hybrid model into a protocol MultiRound(π) for the MultiRound(G)-hybrid model. We then
show that if π realizes F in the G-hybrid model, then MultiRound(π) realizes MultiRound(F)
in the MultiRound(G)-hybrid model.

3.10.1 Multi-Round Functionalities

In the following we will need to talk about rounds where the parties, and the functionalities,
do not output any value. Since our framework requires all parties, and all functionalities, to
send a value to all parties in all rounds, we add a value ⊥ 6∈ {0, 1}∗ to the messages that can
be send and introduce the convention that ⊥ means ’no value’.

Definition 3.25 Let V ∈ {0, 1}∗ and let (·, ·) : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be the encoding
from Section 2.1. Parse V as (b, V ′) ← V for bi ∈ {0, 1} and V ′ ∈ {0, 1}∗. If b = 0 then
we say that V is a trivial value and if b = 1, then we say that V is a non-trivial value. We
consider all trivial values (0, V ′) as an encoding of the symbol ⊥ 6∈ {0, 1}∗ used to indicate
no value and we consider the non-trivial value (1, V ′) as an encoding of V ′ ∈ {0, 1}∗.

Using this convention we can then define a multi-round version MultiRound(F) of any
functionality F . This functionality is given in Fig. 3.34 on the next page. A value with b = 0
in end round results in a trivial activation, which is not meant to activate F . We call the

136 Universally Composable Security of Synchronous Protocols

Functionality MultiRound(F)

The functionality MultiRound(F) runs with parties P1, . . . , Pn and proceeds as follows:

initialization:
On input (k, r) input (k, r) to F .

party activation:
On input (i, xi), parse xi as (bi, x

′
i). If bi = 0, then output (0, xi) on the SOT;

Otherwise, input (i, x′i) to F to receive a value v on the SOT of F . Then output
(1, v) on the SOT.

end round:
On input (activate, v), parse v as (b, v′). If b = 0, then output (0, ε) to all parties. If
b = 1, then input (activate, v′) to F to receive the outputs {yi}i∈[n]. Then output
(1, yi) to Pi in this round.

Figure 3.34: The multi-round version of a synchronous ideal functionality.

Party MultiRound(Pi)

The algorithm MultiRound(Pi) can be consider an ITM saving its state in mi,i,r. We
describe the party MultiRound(Pi) using ITM terminology. It proceeds as follows:

1. Receive (k, ri). Let r ← 0 be a round counter. Let mj,i,0 = ε for j ∈ [n], let
mi,i,0 = (k, ri) and let si,0 = ε. Wait until the first round where Z inputs a value of
the form (1, xi,1).

2. Let r← r + 1. Then run

({mi,j,r}j∈[n], yi,r, ti,r) = Pi({mj,i,r−1}j∈[n], xi,r, si,r−1)

and output ({mi,j,r}j∈[n], yi,r, (1, ti,r)). I.e. in intuitive terms, send mi,j,r to Pj and
input (1, ti,r) to MultiRound(G).

3. In the next round, save the incoming messages {mj,i,r}j∈[n] and wait until the first
round where MultiRound(G) outputs a message (1, si,r). In the rounds until this
happens, output (0, ε) to Z, input (0, ε) to MultiRound(G) and send ε to all parties,
and if Z inputs anything in these rounds, then simply ignore. In the round where
MultiRound(G) outputs (1, si,r), output (1, yi,r) to Z. Then wait until the first
round where Z inputs a value of the form (1, xi,r+1) and goto Step 2.

Figure 3.35: MultiRound(Pi).

activations which results in F being activated the non-trivial activations. Notice that if all
parties get to input exactly one non-trivial value to MultiRound(F) between each non-trivial
activation, then F is activated on a sequence of inputs which is possible when F is run in
the F-hybrid model or the ideal process for F .

3.10 Multi-Round Functionalities 137

3.10.2 Multi-Round Protocols

We then present a transformation of a G-hybrid protocol into a corresponding MultiRound(G)-
hybrid protocol. Let π = (P1, . . . , Pn) be a protocol for the broadcast model, i.e. Pi is a
PPT algorithm

({mi,j,r}j∈[n], yi,r, si,r) = Pi({mj,i,r−1}j∈[n], xi,r, ti,r−1) ,

where ti,r−1 is the output from G in the previous round and si,r is the input to G in the
next round. The party MultiRound(Pi) is given in Fig. 3.35 on the facing page, and we let
MultiRound(π) = (MultiRound(P1), . . . ,MultiRound(Pn)).

3.10.3 Multi-Round IO Behaviors

Since a multi-round functionality MultiRound(F) requires that all parties inputs non-trivial
inputs between each non-trivial activation, we have to put a restriction on the IO behavior.

Definition 3.26 The non-overlapping synchronous IO behavior IOMultiRound is defined as
follows:

• For the IO behavior of the honest parties we have the following restrictions: On input
(i, xi), i.e. input xi to party Pi, parse xi as (bi, x

′
i) for bi ∈ {0, 1}. If in some round

some honest party receives an input of the form (1, · · ·) and some honest party receives
an input of the form (0, · · ·), then output fail as soon as this is detected. Furthermore,
if some honest party receives an input of the form (1, · · ·) in two rounds r1 < r2 and
Pi did not output a value of the form (1, . . .) in any of the rounds r1, . . . , r2 − 1, then
output fail when this is detected, i.e. in round r2. Notice that because MultiRound(F)
outputs the bit bi in the SOT this IO behavior can be checked given just the values on
the SIT and SOT, as required.

• For the IO behavior on the ST we have the following restrictions: If in two rounds
values of the form v = (1, v′) are input on the SIT without all honest parties having
output a value of the form (1, v) on the SOT in between these two rounds, then output
fail. Notice that an honest party outputting a value of the form (1, v) means that it
got a non-trivial input, see Fig. 3.34 on the preceding page, and notice that this IO
behavior can be checked given just the values on the SIT and SOT, as required.

The IOMultiRound behavior basically requires from the honest parties that MultiRound(F)
is activated in synchronous rounds, and it requires from the entity inputting on the SIT that
MultiRound(F) is not (non-trivially) activated until all honest parties have been given a
fresh non-trivial input. Notice that it is not essential for the correctness of MultiRound(F)
that the honest parties receive (non-trivial) inputs in synchronous rounds. This part of
the non-overlapping synchronous IO behavior is for ensuring the correctness of the protocol
MultiRound(π).

As for an ideal functionality and a protocol we can define a multi-round variant of an
IO behavior IO. We can consider the IO behavior MultiRound(IO), which can be de-
fined via Fig. 3.34 on page 136, by just considering IO an ITM to which we apply the

138 Universally Composable Security of Synchronous Protocols

MultiRound construction in Fig. 3.34. We let IO′ = MultiRound(IO) denote the construc-
tion in Fig. 3.34 on page 136 applied to IO— with the one difference that in initialization only
k is given to an IO behavior — and we then define MultiRound(IO) = IO′ ∧ IOMultiRound.
Intuitively this means that MultiRound(IO) requires that a given IO sequence IO is ac-
cording to IOMultiRound. This allows to defined a sound IO sequence which F would see if
MultiRound(F) saw IO, and MultiRound(IO) then requires that this pruned IO sequence
is in accordance with IO. For an ideal-functionality with (a possibly empty) IO restriction,
〈F ,IO〉, we then define the multi-round version to be the core-functionality MultiRound(F)
with IO restriction MultiRound(IO).

Definition 3.27 MultiRoundIO(〈F ,IO〉) = 〈MultiRound(F),MultiRound(IO)〉.

3.10.4 The Multi-Round Compilation Theorem

We then prove that if π realizes F in the G-hybrid model, then MultiRoundIO(π) realizes
MultiRoundIO(F) in the MultiRoundIO(G)-hybrid model.

Notice that if a protocol MultiRound(π) is run in an environment Z with non-overlapping
synchronous IO behavior, then basically π is run on the input sequence from Z which is la-
beled (1, · · ·). All parties MultiRound(Pi) are activated with an input of the form (1, xi,r) in
the same round, so all parties MultiRound(Pi) execute Step 2 in the same round, i.e. execute
the parties Pi in the same round. Then the messages of Pi are sent and the value for G is
given to MultiRound(G). Therefore all the parties MultiRound(Pi) will receive a non-trivial
value from MultiRound(G) in the same round and will output (1, yi,r) to Z in the same round.
By IOMultiRound the environment only inputs values of the form (0, · · ·) during these rounds
and MultiRound(Pi) outputs (0, ε). In a subsequent round all parties MultiRound(Pi) are
activated with an input of the form (1, xi,r+1) in the same round (under IOMultiRound), so
the parties simultaneously go to Step 2, and another round of π is executed. Basically Z is
running π, but stretched so that in between rounds of π the protocol MultiRound(π) and
Z are exchanging empty messages, we call these rounds IO-silent rounds. Therefore, as long
as Z has the IOMultiRound IO behavior it cannot obtain anything against MultiRound(Pi)
which it could not have obtained against π. We formalize this as follows. From Z with
the IOMultiRound IO behavior we can construct an environment UnMultiRound(Z), which
is basically Z with all the IO-silent rounds pruned. The only difference between running π

in UnMultiRound(Z) and running MultiRound(π) in Z will be the IO-silent rounds. There-
fore, letting UnMultiRound(Z) simulate these IO-silent rounds11 to Z we will have that
HYBG

π,UnMultiRound(Z) = HYBMultiRound(G)
MultiRound(π),Z . The exact details of UnMultiRound(Z) are

given in Fig. 3.36 on the facing page.

Lemma 3.9 For all environments Z, all k ∈ N, all z ∈ {0, 1}∗ and all random bits r it
holds that

HYBG
π,UnMultiRound(Z)(k, r, z) = HYBMultiRoundIO(G)

MultiRound(π),Z|IOMultiRound

(k, r, z) ,

where Z|IOMultiRound
is the environment which itself checks whether it violates IOMultiRound

and outputs 1 in case this happens.
11The IO-silent rounds are simulated until Z non-trivially activates MultiRound(G).

3.10 Multi-Round Functionalities 139

Environment UnMultiRound(Z)

initialize:
Receive (k, z) and input (k, z) to Z. Let O = 0, let Ii = 0 for i ∈ [n] and let H = [n].

environment activation:
Activate Z to obtain a command c. If the output is (guess, b), then output c.
Otherwise the commands are handled as described below.

party activation:
If c = (activate, i, xi,r, {mj,i,r−1}j∈C), then parse xi,r as (bi, x

′
i,r) and do one of the

following:

1. If bi = 0 or Ii = O +1 (meaning that Pi already received O +1 inputs and only
output O times), then simulate to Z that Pi outputs (0, ε), sends ε to all parties,
and inputs ε to MultiRoundIO(G) (Formally, hand vMultiRoundIO(G) = (0, ε) and
{mi,j,r = ε}j∈[n]\{i} to Z). This simulates an activation of Step 3 in Fig. 3.35 on
page 136. Then go to environment activation.

2. If bi = 1 and Ii = O (meaning the Pi completed O rounds
and Z gave a non-trivial input), then let Ii ← Ii + 1 and output
(activate, i, x′i,r, {mj,i,r−1}j∈C). In HYBG

π,UnMultiRound(Z) the party Pi is then
activated to compute ({mi,j,r}j∈[n], yi,r, ti,r) = Pi({mj,i,r−1}j∈[n], xi,r, si,r−1).
Then ti,r is given to G which either results in the IO restriction of G producing
an error or a value vi,r on the SOT of G. In the last case UnMultiRound(Z)
receives vi,r along with {mi,j,r}i∈[n]\{i}. Input (1, vi,r) to Z to simulate an ac-
tivation of MultiRoundIO(G) and hand {mi,j,r}i∈[n]\{i} to Z to simulate the

sending of these messages in HYBMultiRoundIO(G)
MultiRound(π),Z . This simulates an activation

of Step 2 in Fig. 3.35 on page 136.

Figure 3.36(a) (cont. in Fig. 3.36(b) on the following page): UnMultiRound(Z)

Proof. It is straight-forward to verify that as long as Z maintains IOMultiRound, then

HYBG
π,UnMultiRound(Z)(k, r, z) = HYBMultiRoundIO(G)

MultiRound(π),Z|IOMultiRound

(k, r, z)

and that if Z violates IOMultiRound, then

HYBG
π,UnMultiRound(Z)(k, r, z) = 1 = HYBMultiRoundIO(G)

MultiRound(π),Z|IOMultiRound

(k, r, z) .

This verification is elaborated on as part of the construction in Fig. 3.36. 2

We have now argued that if MultiRound(Z) is required to stick to IOMultiRound, then it
cannot obtain anything against MultiRound(π) which it could not have obtained against π.
We are however not satisfied with this way of arguing. We want to capture the idea in terms
of realizing MultiRoundIO(F). For this we need yet a lemma:

Lemma 3.10 For all hybrid interfaces T , there exists a hybrid interface MultiRound(T)
such that for all functionalities F and all hybrid interfaces Z it holds that

IDEALGF ,T ,UnMultiRound(Z) = IDEALMultiRoundIO(G)

MultiRoundIO(F),MultiRound(T),Z|IOMultiRound

.

140 Universally Composable Security of Synchronous Protocols

Environment UnMultiRound(Z)

corrupt:
If c = (corrupt, i), then output (corrupt, i), and receive the random bits ri used in
MultiRound(Pi) to run Pi, and hand ri to Z. Furthermore, hand ε to Z to simulate
the (empty) value from MultiRoundIO(G) to Z when Pi is corrupted. Notice that if
an IO restriction is violated in G or F it results in the same output as when broken
in MultiRoundIO(G) or MultiRoundIO(F).

end round:
If c = (end round, v), then parse v as (b, v′), and do one of the following:

1. If Ii 6= Ij for honest Pi and Pj , then IOMultiRound was violated by Z, so
terminate with output (guess, 1). Otherwise, let I be the common value of the
Ii for i ∈ H .

2. If b = 0 or I = O, then give the values {yi,r = ε}i∈H to Z to simulate the
output of the parties in Step 3 in Fig. 3.35 on page 136 when MultiRoundIO(G)
does not output a value. Then go to environment activation.

3. If b = 1 and I = O + 1, then let O ← O + 1 and output (end round, v′)
and receive the output values {yi,I}i∈H of honest parties and receive the out-
put v on the SOT of G. Then input {(1, yi,I)}i∈H to Z to simulate the
outputs of MultiRound(Pi), and input (1, v) to Z to simulate the output of
MultiRoundIO(G). Notice that in HYBG

π,UnMultiRound(Z) the functionality G
has received an input ti,I ∈ {0, 1}∗ from all honest parties and is now activated
on a value v′ ∈ {0, 1}∗, resulting in G outputting a value si,I to all parties. From
the view of Z, believing it runs the parties MultiRound(Pi), these parties should
be in Step 3 in Fig. 3.35 on page 136 and should just have received (1, si,I) from
MultiRoundIO(G). This should result in the party MultiRound(Pi) outputting
(1, yi,I), as simulated correctly above.

Figure 3.36(b) (cont. from Fig. 3.36(a) on the preceding page): UnMultiRound(Z)

Proof. The idea behind the construction of MultiRound(T) is as follows: In

IDEALGF ,T ,UnMultiRound(Z)

the interface T sees F and simulates some view to UnMultiRound(Z). Then UnMultiRound(Z)
adds some IO-silent rounds to this view, depending on when Z non-trivially activates (the
simulated view of) MultiRoundIO(G). The IO-silent rounds output by Z are pruned by
UnMultiRound(Z) and only the non-trivial inputs are relayed to F . In

IDEALMultiRoundIO(G)

MultiRoundIO(F),MultiRound(T),Z|IOMultiRound

the functionality MultiRoundIO(F) actually has IO-silent rounds. Since T does not expect
to see IO-silent rounds, these are pruned by MultiRound(T) and the remaining view, of F ,
is presented to T . Then T produces the same view as in

IDEALGF ,T ,UnMultiRound(Z) .

3.10 Multi-Round Functionalities 141

To this view MultiRound(T) then adds simulated IO-silent rounds as do MultiRound(Z) in

IDEALGF ,T ,UnMultiRound(Z) .

This will then be the view presented to Z in

IDEALMultiRoundIO(G)

MultiRoundIO(F),MultiRound(T),Z|IOMultiRound

.

By construction the data-flows in

IDEALGF ,T ,UnMultiRound(Z)

and
IDEALMultiRoundIO(G)

MultiRoundIO(F),MultiRound(T),Z|IOMultiRound

are identical, the only difference being that the code for adding and pruning IO-silent rounds
are placed in different entities in the two. 2

Theorem 3.9 If π realizes F in the G-hybrid model, then MultiRound(π) realizes
MultiRoundIO(F) in the MultiRoundIO(G)-hybrid model.

Proof. By the premise of the theorem we have that there exists a hybrid interface T such
that for all environments Z where

Pr[IDEALGF ,T ,UnMultiRound(Z)
∈ ‘‘H F’’] c≈0 (3.24)

it holds that
Pr[IDEALGF ,T ,UnMultiRound(Z) ∈ ‘‘H G’’] c≈0 (3.25)

and
IDEALGF ,T ,UnMultiRound(Z)

c≈HYBG
π,UnMultiRound(Z) . (3.26)

We then claim that for all hybrid environments Z were

Pr[IDEALMultiRoundIO(G)

MultiRoundIO(F),MultiRound(T),Z ∈ ‘‘H MultiRoundIO(F)’’]
c≈0 (3.27)

it holds that

Pr[IDEALMultiRoundIO(G)

MultiRoundIO(F),MultiRound(T),Z ∈ ‘‘H MultiRoundIO(G)’’] c≈0 (3.28)

and
IDEALMultiRoundIO(G)

MultiRoundIO(F),MultiRound(T),Z
c≈HYBMultiRoundIO(G)

MultiRound(π),Z , (3.29)

proving the theorem. That MultiRound(π) uses MultiRoundIO(G) according to IOMultiRound

under IOMultiRound is straight-forward to verify. So, it is enough to prove that

Pr[IDEALMultiRoundIO(G)

MultiRoundIO(F),MultiRound(T),Z ∈ ‘‘H G’’] c≈0 (3.30)

142 Universally Composable Security of Synchronous Protocols

and Eq. 3.29 on the preceding page. From Eq. 3.27 on the page before and Lemma 3.10 on
page 140 we get Eq. 3.24 on the page before which allows us to conclude Eq. 3.25 on the
preceding page and Eq. 3.26 on the page before. From Eq. 3.25 on the preceding page and
Lemma 3.10 on page 140 we get Eq. 3.30. By Lemma 3.9 on page 138, Eq. 3.26 on the
preceding page and Lemma 3.10 on page 140, in that order, we have that

HYBMultiRoundIO(G)
MultiRound(π),Z|IOMultiRound

= HYBG
π,UnMultiRound(Z)

c≈ IDEALGF ,T ,UnMultiRound(Z)

= IDEALMultiRoundIO(G)

MultiRoundIO(F),MultiRound(T),Z|IOMultiRound

,

from which Eq. 3.29 on the preceding page easily follows. 2

3.11 Staggered Functionalities

In the previous section we showed how to compile single-round protocols and single-round
ideal functionalities into multi-round protocols respectively single-round ideal functionalities
and we showed a theorem about the maintenance of security. The motivation was that some
single-round ideal functionalities cannot be realized. In this section we take the approach
a step further and consider ideal functionalities which in addition to using several rounds
might not deliver the output to all parties in the same round. The motivation here is that
some functionalities can be realized much more efficiently, both in terms of communication
complexity and round complexity, if allowed to deliver the output in different rounds, as
compared to when the output must be delivered to all parties in the same round. We
call an ideal-function which might deliver the output to different parties in different rounds
a staggered termination ideal functionality and say that it has staggered termination. One
prominent example is the BA problem, were it is known that any protocol realizing the
multi-round version of FBA and which always delivers the output to all parties in the same
round must have a worst-case round complexity of t + 1, where t is the number of tolerated
corrupted parties, independent of how many parties are actually corrupted. In particular,
the protocol will have runs in which all parties were honest and in which t + 1 rounds were
used. If on the other hand the protocol is allowed to deliver the output in different rounds,
then there exist protocols with worst-case round complexity f + 2, where f is the actual
number of corrupted parties.12 This makes a huge difference when only a few parties are
actually corrupted, which is typically the case for most real-life system in typical use, as a
high corruption level would generally only be observed under some exceptional event as e.g.
the presence of an intruder in the network.

3.11.1 Staggered Termination and Staggered Activation Go Hand-In-Hand

The dual of staggered termination is staggered activation, where we allow that for a given
activation of the ideal functionality that different parties provide inputs in different rounds.

12These results are discussed in much more detail in Chapter 7.

3.11 Staggered Functionalities 143

Functionality Stagger(F , l)

The functionality Stagger(F , l) runs with parties P1, . . . , Pn and proceeds as follows:

initialization:
On input (k, r) input (k, r) to F .

party activation:
On input (i, xi), parse xi as (bi, x

′
i). If bi = 0, then output (i, xi) on the SOT;

Otherwise, input (i, x′i) to F to receive a value v on the SOT of F . Then output
(1, v) on the SOT.

end round:
On input (activate, v), parse v as (b, v′, S0, . . . , Sl−1), where S0, . . . , Sl−1 are disjoint
sets for which H = ∪l−1

i=0Si. If b = 0, then output (0, ε) to all parties.a If b = 1, then
input (activate, v′) to F to receive the outputs {yi}i∈[n]. Then for i = 0, . . . , l − 1,
in round r + i (the current round being indexed r) output (1, yi) to Pi for all i ∈ Si

and output (0, ε) to Pi for i ∈ H \ Si.

aA value with b = 0 is a trivial activation which is not meant to activate F .

Figure 3.37: The staggered version of a synchronous ideal functionality.

When reactive protocols13 are considered it makes little sense to allow staggered termination
if we do not allow staggered activation. The reason is that if the parties have a sequence of
activations of the protocol, where the i’th activation depends on the output of the (i− 1)’th
activation, then in the cases where the termination of the (i− 1)’th activation has staggered
termination the i’th activation will also be staggered. Unless of course the parties run a
protocol to synchronize before the next i’th activation. But as a corollary of the above-
mentioned results about BA protocols it can be seen that synchronizing has a worst-case
round complexity of t + 1, even when no parties are corrupted. Therefore, resynchroniz-
ing after each activation would be inefficient and, furthermore, it would make it useless to
allow staggered termination as the resynchronization done before each call of the protocol
could equally well have been done by the sub-protocol to avoid staggering in the first place.
Therefore, staggered termination and staggered activation must go hand-in-hand. We reflect
this in the transformation of ideal functionalities by allowing the same staggering gap in
activation and termination.

3.11.2 Staggered Functionalities

Given any functionality F we can define a version of F , called Stagger(F , l), which allows
parties to input up to l rounds apart and returns outputs such that two honest parties receive
their outputs at most l rounds apart.

We define the notion of non-overlapping staggered execution of a synchronous function-
ality. What we keep in mind is a given functionality F . It receives in each round r from
each party Pi a value xi and delivers back a value yi to Pi. The non-overlapping staggered

13A reactive protocol is one which might be called several times by the parties to solve several instances of
the problem that the protocol solves.

144 Universally Composable Security of Synchronous Protocols

execution of F is a functionality where each synchronous round of F is stretched into several
rounds and where activation and termination of the round is allowed to have a l-round stag-
gering gap. The functionality collects inputs from parties during its own synchronous rounds
— again we introduce the notion that an input of the form (0, ·) corresponds to no input
and (1, v) corresponds to input v. Each time all parties have given a non-trivial input, F ′
activates F on that round of inputs and outputs the values produced to the parties, allowing
the adversary to specify in which round and allowing the adversary to specify a l-round stag-
gering. In the rounds where F ′ outputs no value, it will formally output a value (0, ·), and
to output v, it outputs (1, v). We require from the parties that they input the r’th round of
inputs to F ′ during l consecutive rounds, and that this is done after the (r − 1)’th round of
outputs have been given by F ′. We denote this functionality by Stagger(F). The details are
given in Fig. 3.37 on the next page and the described IO behavior is defined formally below.

Notice that the parties receive output at most l rounds apart. If in particular l = 0, then
S0 = H and all parties receive outputs in round r.

Definition 3.28 The non-overlapping l-round staggering IO behavior IOstagger(l) is defined
as follows:

• For the IO behavior of the honest parties we have the following restrictions: Initially,
let Ii ← Oi ← 0 for all parties. On input (i, xi), i.e. input xi to party Pi, parse xi as
(bi, x

′
i) for bi ∈ {0, 1}. If bi = 1, then let Ii ← Ii + 1. And in the same way, each time

Pi outputs a value of the form (1, yi), let Oi ← Oi +1. If ever Ii > Oi +1 for honest Pi,
then output fail. This defines the non-overlapping IO behavior. Furthermore, initially,
let r ← 0 and increase r by 1 each time all honest parties received an input, trivial or
not. For I ∈ N, let r(I) be the first round, r, in which some honest party had Ii = I.
If in the round r(I)+ l it holds that Ij < I for some honest party Pj , then output fail.
This defines the l-round staggering IO behavior. Notice that because MultiRound(F)
outputs the bit bi on the SOT, this IO behavior can be checked given just the values on
the SIT and SOT, as required.

• For the IO behavior on the ST we have the following restrictions: If in two rounds
values of the form v = (1, v′) are input on the SIT without all honest parties having
output a value of the form (1, v) on the SOT in between these two rounds, then output
fail. Notice that an honest party outputting a value of the form (1, v) means that it
got a non-trivial input, see Fig. 3.37, and notice that this IO behavior can be checked
given just the values on the SIT and SOT, as required.

Notice that Stagger(F) is actually identical to MultiRound(F) from Fig. 3.34 on page 136
except for the staggered termination, and notice that the l-round staggering IO behavior is
not essential for Stagger(F). As long as all parties have received a new non-trivial input
before each non-trivial activation, the execution of F inside Stagger(F) will be sound.14

Again the IO behavior is specified to make it possible to actually realize Stagger(F).

14Here, by sound we mean that each honest party is given exactly one input between each activation of the
functionality.

3.11 Staggered Functionalities 145

Functionality FST(l)

The functionality runs with parties P1, . . . , Pn and proceeds as follows:

send:
If a party inputs (stid, {mi,j}j∈[n]) in round r,a then let ri(stid) = r, let si(stid) =
ri(stid) + 2(l + 1) and in round si(stid) output (stid, {m′

j,i}i∈[n]) to Pi, where m′
j,i

is determined as follows:

• If Pj was honest in round ri(stid)+ l + 1 and input (stid, {mj,k}k∈[n]) in round
rj(stid) and |rj(stid)− ri(stid)| ≤ l, then let m′

j,i = mj,i.

• If Pj was honest in round ri(stid) + l + 1 and the above case does not apply,
then let mj,i = ε.

• If Pj was corrupted in round ri(stid) + l + 1 then interpret part of the value on
the SIT in round ri(stid) + l + 1 as a message mj,i and let m′

j,i = mj,i.

incorrect inputs:
If an honest party ever uses the same staggered transmission id stid twice, then break
down.

aThe corrupted parties input on the SIT.

Figure 3.38: The Staggered Transmission functionality.

Protocol πST(l)

The protocol runs with parties P1, . . . , Pn in the real-life model, and proceeds as follows:

send:
On input (stid, {mi,j}j∈[n]), let ri(stid) = r, let si(stid) = ri(stid) + 2(l + 1) and
send (stid, mi,j) to Pj . In round si(stid) output (stid, {m′

j,i}i∈[n]), where m′
j,i is

defined as follows: If a message of the form (stid, mj,i) was received from Pj in one
of the rounds ri(stid)− l + 1, . . . , ri(stid)+ l + 1, then let m′

j,i = mj,i. Otherwise, let
m′

j,i = ε.

Figure 3.39: The Staggered Transmission protocol.

3.11.3 Staggered Protocols

We then present the staggered version, Stagger(π), of a protocol π, but first we will present
a simple functionality FST(l) from [LLR02b] for sending messages between parties with a
known staggering gap l. The functionality is given in Fig. 3.38. A realization of FST(l) is
given in Fig. 3.39.

Theorem 3.10 πST(l) realizes FST(l).

Proof. By Theorem 3.6 on page 111 it is enough to prove that the behavior of the protocol
πST(l) is a possible15 behavior of the ideal functionality FST(l). This is straight-forward
to verify: All values of the form (stid,mj,i) sent in rounds ri(stid) − l, . . . , ri(stid) + l are

15And computable in PPT.

146 Universally Composable Security of Synchronous Protocols

received in rounds ri(stid) − l + 1, . . . , ri(stid) + l + 1 and are therefore considered by Pi,
exactly as in FST(t).16 Assume on the other hand that Pi considers a message (stid,mj,i).
Then this message was sent by an honest party in rounds ri(stid)− l, . . . , ri(stid) + l or sent
by the environment no later than in round ri(stid)+ l+1.17. Therefore such a message would
be consider by FST(l) when coming from honest Pj and FST(l) can be forced to consider it
from a corrupted Pj by inputting mj,i on the SIT of FST(l) in round ri(stid) + l + 1, were
mj,i is known. 2

An essential observation, from [LLR02b], about FST(l) is the following: Assume that
the parties are synchronized except for an l-round staggering gap and that the parties are
simulating a synchronous protocol using FST(l) for message transmission. In detail, assume
that party Pi computes round R of the synchronous protocol in round ri(R), of the staggered
protocol. This is done by sending the messages, mi,j,R of round R of the synchronous protocol
via FST(l) with stid = R. Since by assumption |ri(R) − rj(R)| ≤ l for all honest parties
Pi and Pj the output of FST(l) to Pi in round si(R) will contain all the messages mj,i,R

sent be honest parties. Therefore Pi can compute the round (R + 1) messages, mi,j,R+1, of
the synchronous protocol and send these in round ri(R + 1) = si(R). Equally important,
let rlast(R) = maxi∈H{ri(R)}i∈H and let rfirst(R) = mini∈H{ri(R)}. Then the last honest
party computed round R messages in round rlast(R) and the first honest party sent round
(R+1) messages in round rfirst(R+1). By the assumption of at most l-round staggering, we
have that rfirst(R+1)+l ≥ rlast(R+1) ≥ rlast(R)+2(l+1), so rfirst(R+1) > rlast(R)+l+1.
In words, the first message from a honest party in round R+1 is sent more than l+1 rounds
after the last message from a honest party in round R. We say that a round R message is
consider in round r if an honest party at some point receives (R, {mj,i}) from FST(l), where
mj,i 6= ε and (R,mj,i) was input to FST(l) in round r. We let clast(R) be the last round in
which a round R message was considered. Since a party only considers round R messages
received no later than in round ri(R) + l + 1 it follows that rlast(R) + l + 1 ≥ clast(R). In
words, the last message of round R is considered by an honest party no later than l+1 rounds
after the last message of round R was sent by any party, honest or corrupted. Combining the
two observations we get that rfirst(R + 1) > rlast(R)+ l + 1 ≥ clast(R). So, the first message
from a honest party in round R+1 is sent at least one round after the last message of round
R was considered by an honest party. This in particular implies that the environment must
decide on all message to send in round R before it sees any message sent in round R+1. This
is essential, and sufficient, for the security of the synchronous protocol to be maintained.

We are then ready to describe the protocol Stagger(π). Let π = (P1, . . . , Pn) be a protocol
for the G-hybrid model, i.e. Pi is a PPT algorithm

(mi,1,r, . . . ,mi,n,r, yi,r, si,r) = Pi(m1,i,r−1, . . . ,mn,i,r−1, xi,r, ti,r−1) ,

where ti,r−1 is the output from G in the previous round and si,r is the input to G in
the next round. The party Stagger(Pi) is given in Fig. 3.40, and we let Stagger(π, l) =
(Stagger(P1), . . . ,Stagger(Pn))[πST(l)/FST(l)].

16The environment might have sent messages from corrupted parties as late as in round ri(stid) + l + 1 as
it is rushing. Still these messages are consider by Pi.

17And it might have been sent that late as the environment is rushing

3.11 Staggered Functionalities 147

Party Stagger(Pi)

The algorithm specifying party Stagger(Pi) can be considered an ITM saving its state in
mi,i,r. We describe the party Stagger(Pi) using ITM terminology. The party is for the
(FST(l), Stagger(G))-hybrid model and proceeds as follows.

1. Receive (k, ri). Let R ← 0 be a round counter. Let mj,i,0 = ε for j ∈ [n], let
mi,i,0 = (k, ri) and let ti,0 = ε. Wait until the first round where Z inputs a value of
the form (1, xi,1). In all rounds send ε to all parties — all communication will take
place over FST(l).

2. Let R← R + 1. Then run

({mi,j,R}j∈[n], yi,R, si,R) = Pi({mj,i,R−1}j∈[n], xi,R, ti,R−1)

and input (R, {mi,j,R}j∈[n]) to FST(l) and input (1, si,R) to Stagger(G).

3. Then wait until the first round where FST(l) have output (R, {mj,i,R}j∈[n]) and
Stagger(G) have output a message of the form (1, ti,R). In the rounds until both
events have taken place output ⊥a to Z and input ⊥ to Stagger(G), and if Z inputs
anything in these rounds, then simply ignore. When (R, {mj,i,R}j∈[n]) and ti,R have
been received, output (1, yi,R) to Z, wait until the first round where Z inputs a value
of the form (1, xi,R+1), and goto Step 2.

aWe use the notation ⊥ = (0, ε).

Figure 3.40: Stagger(Pi).

3.11.4 Staggered IO Behaviors

As for an ideal functionality and a protocol we can define a staggered variant of an IO
behavior IO. We can consider the IO behavior Stagger(IO), which can be defined via
Fig. 3.37 on page 144, by considering IO an ITM. We let IO′ = Stagger(IO) denote the
construction in Fig. 3.37 on page 144 applied to IO — with the one difference that in
initialization only k is given to an IO behavior — and we then define Stagger(IO, l) = IO′ ∧
IOstagger(l). Intuitively this means that Stagger(IO, l) requires that a given IO sequence
IO is according to IOstagger(l), which allows to defined a sound IO sequence which F would
see if Stagger(F) saw IO, and Stagger(IO) then requires that this pruned IO sequence is in
accordance with IO.

Definition 3.29 StaggerIO(〈F ,IO〉, l) = 〈Stagger(F),Stagger(IO, l)〉.

3.11.5 The Staggered Compilation Theorem

We will now prove that if π realizes F in the G-hybrid model, then Stagger(π, l) realizes
StaggerIO(F , l) in the StaggerIO(G, l)-hybrid model. We will also relate the communication
complexity (the total number of bits sent over the point-to-point lines) and the round com-
plexity of the two protocols. Since the environment might refuse to let StaggerIO(G, l) ever
terminate and might never input the next round of non-trivial inputs, we will not count the
rounds where all parties received messages from all parties for the round they are simulating

148 Universally Composable Security of Synchronous Protocols

and are only waiting for outputs from StaggerIO(G, l) or the next round of non-trivial inputs.
These rounds are completely inactive and we therefore call this notion of round complexity
the active-round complexity.

Lemma 3.11 If π realizes F in the G-hybrid model, then Stagger(π, l) realizes StaggerIO(F , l)
in the StaggerIO(G, l)-hybrid model. Furthermore, the total number of bits communicated by
Stagger(π, l) on a given sequence of non-trivial inputs and random bits (r1, . . . , rn) for the
parties (P ′

1, . . . , P
′
n) is the same as for π on the same sequence of inputs and random bits

(r1, . . . , rn) for the parties (P1, . . . , Pn) and the active-round complexity is the same up to a
constant factor 3(l + 1).

Proof. Using that the parties are at most l rounds apart and that the last activated party uses
2(l +1) rounds to simulate one round of π, the claims about the complexity is easy to verify.
By Theorem 3.5 on page 100 and Theorem 3.10 on page 145 it is therefore enough to prove
that (Stagger(P1), . . . ,Stagger(Pn)) realizes StaggerIO(F , l) in the (FST(l),StaggerIO(G, l))-
hybrid model. The proof follows the proof of Theorem 3.9 on page 141. The most impor-
tant difference between Stagger(Pi) and MultiRound(Pi) is that Stagger(Pi) can be l-rounds
away from the other parties Stagger(Pj) in the protocol, as it starts executing on the first
non-trivial input from Z, which is allowed to arrive with l-round staggering according to
IOstagger(l). We have however argued above that when the messages of the synchronous pro-
tocol is sent using FST(l), then a l-round staggering can be tolerated. That the construction
of Stagger(π) is sound therefore follows using a simple inductive argument that the parties
always have at most l-round staggering unless Z violated IOstagger(l). Assume that for a
given value of R the parties reach Step 2 in Fig. 3.40 on the page before with at most l-round
staggering, the basis of the induction being R = 1. Then they call FST(l) and StaggerIO(G, l).
Let rfirst(R) (rlast(R)) be the first (last) round where a party received outputs from both
FST(l) and StaggerIO(G, l); Let rfirst,G(R) (rlast,G(R)) be the first (last) round where a
party received output from StaggerIO(G, l); And let rfirst,FST

(R) (rlast,FST
(R)) be the first

(last) round where a party received output from FST(l); Because StaggerIO(G, l) and FST(l)
maintain l-round staggering we have that rlast,G(R) ≤ rfirst,G(R) + l and rlast,FST

(R) ≤
rfirst,FST

(R). Since a party received output from both G and FST(l) in round rfirst(R) we
have that max{rfirst,G(R), rfirst,FST

(R)} ≤ rfirst(R). Since a party received a value from G
or FST(l) in round rlast(R) we have that rlast(R) = max{rlast,G(R), rlast,FST

(R)}. Combining
these observations we get that rlast(R) = max{rlast,G(R), rlast,FST

(R)} ≤ max{rfirst,G(R) +
l, rfirst,FST

(R) + l} = max{rfirst,G(R), rfirst,FST
(R)} + l ≤ rfirst(R) + l. Therefore the par-

ties output (1, yi,r) to Z with l-round stagger, so the parties are not the first to violate
IOstagger(l) and Z must input the next round of non-trivial inputs with l-round stagger to
not violate IOstagger(l). Therefore the parties go to Step 2 with at most l-round stagger,
which establishes the induction step. 2

We then consider the case with several ideal functionalities. For this purpose we prove a
lemma.

Lemma 3.12 There exists a protocol γ realizing StaggerIO([G1, . . . ,Gm], l) (with no com-
munication) in the [StaggerIO(G1, l), . . . ,StaggerIO(Gm, l)]-hybrid model.

3.11 Staggered Functionalities 149

Proof. When a party in the protocol γ is given an input (x1, . . . , xm) for the ideal functional-
ity StaggerIO([G1, . . . ,Gm], l) it inputs (x1, . . . , xm) to [StaggerIO(G1, l), . . . ,StaggerIO(Gm, l)].
Then it waits until it received outputs yi from all StaggerIO(Gi, l). In the round where the
last yi was received it outputs (y1, . . . , ym). The security of this protocol is a simple conse-
quence of the fact that parallel composition of l-stagger protocols yield l-stagger protocols.
Let rlast be the last round where a party outputs. Then some StaggerIO(Gi, l) output in that
round. Therefore all other parties received their outputs from StaggerIO(Gi, l) no earlier
than in round rlast − l. So, no party output earlier than in round r − l, which proves that
the l-round staggering is maintained. 2

Lemma 3.13 If π realizes F in the (G1, . . . ,Gm)-hybrid model, then there exists a proto-
col π′ realizing StaggerIO(F , l) in the (StaggerIO(G1, l), . . . ,StaggerIO(Gm, l))-hybrid model.
Furthermore, the total number of bits communicated by π′ on a given sequence of non-trivial
inputs and random bits (r1, . . . , rn) for the parties (P ′

1, . . . , P
′
n) is the same as for π on the

same sequence of inputs and random bits (r1, . . . , rn) for the parties (P1, . . . , Pn) and the
active-round complexity is the same up to a constant factor 3(l + 1).

Proof. The claims for the complexity follows as for Lemma 3.11 on the facing page and the
rest of the claim follows from Lemmas 3.11 and 3.12 using the composition theorem. 2

We consider a final extension of the result to consider protocols with initializing function-
alities. Formally a protocol for the (G1, . . . ,Gm)-hybrid model with initializing functionality
I is just a protocol for the (G1, . . . ,Gm,I)-hybrid model, so we know how to compile it into
the (StaggerIO(G1, l), . . . ,StaggerIO(Gm, l),StaggerIO(I, l))-hybrid model. We can however
do better and compile to the (StaggerIO(G1, l), . . . ,StaggerIO(Gm, l),I))-hybrid model. The
reason is that I is only called in the very first round, which is still guaranteed to be syn-
chronous. Consider in particular the protocol where the parties simultaneously input init
to I in the very first activation of the parties (the round where k and ri is supplied to Pi)
and then waits for I to output a value, at which point they start running the protocol of
Lemma 3.13. Since I, by definition of an initializing functionality, delivers outputs to all
honest parties in the same round (which we called the actual start of the protocol), it is
straight-forward to verify that:

Theorem 3.11 If π realizes F in the (G1, . . . ,Gm)-hybrid model with initializing function-
ality I, then there exists a protocol π′ realizing StaggerIO(F , l) in the (StaggerIO(G1, l), . . . ,
StaggerIO(Gm, l))-hybrid model with initializing functionality I. Furthermore, the total num-
ber of bits communicated by π′ on a given sequence of non-trivial inputs and random bits
(r1, . . . , rn) for the parties (P ′

1, . . . , P
′
n) is the same as for π on the same sequence of inputs

and random bits (r1, . . . , rn) for the parties (P1, . . . , Pn) and the active-round complexity is
the same up to a constant factor 3(l + 1).

Part II

Basic Protocols

c
h
a
p
t
e
r
4

The Secure-Channels Model

I don’t like to commit myself about heaven and hell – you see, I
have friends in both places.

— Mark Twain

4.1 Introduction

One way of constructing a secure protocol for the cryptographic model is to take a protocol
which is secure in the secure-channels model, where secure channels are assumed, and then
compile this protocol for the cryptographic model by adding encryption to the channels. This
can significantly simplify the design process as the underlying protocol can be designed under
the assumption that the adversary does not see the communication between honest parties.
As it turns out, the advantage of using the secure-channels model is greatest when adap-
tive security is considered as a number of technical problems regarding invertible sampling
vanishes in the secure channels model. When adapting an adaptively secure secure-channels
protocol for the cryptographic model, the goal is to replace the secure channels of the by
open channels using non-committing encryption (NCE), which by definition is an adaptively
secure protocol for encrypting communication in a multiparty setting, i.e. an adaptively
secure realization of the secure message transmission functionality FSMT. In this chapter we
look at realizations of FSMT and we look at a lower bounds on the round complexity of such
realizations.

4.1.1 Non-Interactive NCE is Impossible

To realize FSMT, assume that we let each party Pi have a private key for a public-key encryp-
tion scheme, secure against adaptively chosen ciphertext attack, where the public key pki is
known by all other parties. If we encrypt all communication to Pi under pki (including in the
messages the identity of the sender), then we will have a statically secure implementation,
see [Can01b]. However, no encryption scheme exists for which this protocol is adaptively
secure. This follows from a general result that no non-interactive communication protocol
is adaptively secure — throughout the dissertation we will let non-interactive communica-
tion protocol denote a communication protocol with the property that after a pre-processing

154 The Secure-Channels Model

phase which might involve interaction (e.g. the receiver sending a public key to the sender),
the sender can send an unbounded number of bits to the receiver without there being any
communication from the receiver to the sender. The result that non-interactive NCE is
impossible appears to have been folklore for some time; A formalization and a proof first
appeared in [Nie02a]. We note that the impossibility result holds in much weaker models
than the one from Chapter 3. E.g., even if we give the parties the possibility of reliably
erasing their internal state, still non-interactive NCE is impossible. We will prove this result
in Section 4.3. This result have been used by Canetti, Halevi and Katz [CHK03] to argue
the necessity of key-evolving in non-interactive forward-secure public-key encryption.

4.1.2 Interactive NCE is Tricky

The above impossibility result tells us that any non-committing encryption protocol must
be interactive. So, let us consider a two-move protocol. Here the receiver PR of the FSMT

functionality sends the first message and the sender PS of the FSMT functionality sends the
second message. Using the terminology of public-key encryption schemes, we can think of
the first message as a public-key pk, of which the receiver of the FSMT functionality knows
the secret key sk, and the second message as an encryption c ← Epk(m) of the message m

to be sent. This protocol is identical to the solution sketched above, except that the receiver
can now generate a new key-pair (pk, sk) for each transfer. Small as the difference might
seem, it turns out that this approach allows to realize FSMT w.r.t. adaptive adversaries.
The solution however turns out to be more involved than one might expect — no standard
encryption scheme is known for which this protocol is adaptively secure.

To see what the problem with standard encryption schemes is, consider the environment
Z which activates PS with an arbitrary message m and then corrupts no party but just waits
for PR to send pk to PS and for PS to send a ciphertext c to PR. Then the environment
corrupts PR (before c arrives) to learn sk (in general sk just denotes an internal state of PR

which would allow to decipher c). This is possible even in a model where the parties can
reliably erase data, as PR must keep the value of sk at least until c arrives. By the security
of the encryption scheme the environment will observe that m = Dsk(c) except possibly with
negligible probability. Now, by the definition of security there should exist a simulator S
such that the simulator executed in the ideal process for FSMT with the same environment Z
produces an output indistinguishable from what Z just observed. But, in the ideal process
the simulator does not see m during the execution as long as both parties are uncorrupted,
and the simulator must therefore generate c given just |m|. Then on the corruption of PR,
the simulator sees m and computes sk to give to the environment. Since the definition
of security requires that the environment cannot tell the difference between the real-life
execution and the simulation it follows that m = Dsk(c) except with negligible probability.
Since no secret key can make c decrypt to two different values, both with probability close
to 1, this means that there exists an injective map from messages m to secret keys skc,m for
which m = Dskc,m(c). Such a map does not exist for standard encryption schemes which
typically has unique decryption given the public-key pk, which was already shown to the
environment. Another consequence of the existence of this map, and its being injective, is
that the length of the messages sent under a fixed value of sk cannot exceed the length of

4.1 Introduction 155

sk — this is the clue to the impossibility result for non-interactive NCE mentioned above.

4.1.3 NCE for the Erasure Model

These issues were first solved by Beaver and Haber in [BH92]. Their solution is to set up the
protocol such that PR gets the opportunity of erasing sk before the encryption of m arrives.
In their protocol PR sends to PS the public key pk. Then PS generates a uniformly random
message p and sends c = Epk(p) to PR. Then PR computes p = Dsk(c) and erases everything
except p. When m later becomes known to PR he computes c′ = p ⊕ m, where ⊕ denotes
bitwise xor, and sends c′ to PR who can then compute m = p ⊕ c′. Since at no point PR

knows both sk and the encryption c′ of m, the attacker cannot obtain both, which preempts
the problem that for fixed c′ there should be an injective map from sk to messages m. Since
sk is deleted a new key-pair must be generated for each message — or each time PS has sent
a total of |p| bits. This means that the scheme is interactive.

4.1.4 NCE for the Non-Erasure Model

The solution described above depends essentially on the use of erasure. However, in many
settings, trusting the parties to be able to erase parts of their state might be unrealistic,
due to e.g. physical limitations on erasure and weak operating systems. The first adaptively
secure realization of FSMT in the non-erasure model is by Canetti Canetti, Feige, Goldreich
and Naor [CFGN96] who coin the term non-committing encryption scheme. They construct
a solution based on what they call common domain trapdoor systems, which is basically a
trapdoor system, where one given a permutation can sample a uniformly random permutation
with the same domain (along with its trapdoor). They show how to build non-committing
encryption based on the RSA and the DDH assumption. Their scheme has expansion factor
Ω(k2), i.e. the communication complexity of their scheme is Ω(k2) bits per plaintext bit to be
communicated. The protocols based on the RSA and DH assumptions are the most efficient
in terms of rounds. They are both two-round protocols, which is optimal. In the first round
the receiver sends a public key and in the second round the sender sends an encryption of
the message under the public key. The protocol based on common-domain trapdoor systems
uses an interactive protocol to set up the public keys and uses three more rounds. Later
Beaver [Bea97] proposed a simpler and more efficient scheme based on the DDH assumption.
His scheme has expansion factor Θ(k) and is a three-round protocol.

4.1.4.1 Oblivious Instance Generation

An important tool in both protocols is to be able to generate instances of hard problems in
two ways. The first method generates (x, s) ← gen(r), where x is a random instance and s

is a solution. The second method generates x ← g̃en(r), where x is a random instance and
the random bits used by G̃(r) will not help in finding the solution to x.1 If the random bits
used by g̃en does not help in finding a solution to the generated random instance we call g̃en

an oblivious generator. We will define this notion formally later.
1Therefore letting ggen work by first running gen and then outputting just x will not do as the random

bits used by ggen to run gen allows to find a solution s to x by rerunning gen.

156 The Secure-Channels Model

The usefulness of oblivious generation is in general that if we in the protocol specifies
that the parties should generate a random instance obliviously, then in the simulation the
simulator is free to generate the instance using the normal generator. If the honest party
is later corrupted the simulator hands to the adversary only the instance, which is what
the adversary would have seen in a real execution. This allows for the simulator to run
the honest parties in a semi-honest way, while at the same time learning solutions to hard
instances, which the adversary will have a hard time computing given just the instances.
This might potentially give the simulator the necessary advantage that allows it to cheat
the adversary. Oblivious generation has the same effect as when the protocol generates the
instances along with a solution, but erases the solution right after the generation. Also
there will the simulator get the solution while the adversary will not. In this sense oblivious
generation replaces erasure.

In [CFGN96] the normal generation is the generation of a trapdoor permutation along
with its trapdoor. The oblivious generation generates a permutation without learning the
corresponding trapdoor. In [Bea97] the normal generation generates a pair (ga, a), where g

is a fixed generator of the quadratic residues in Zp for an appropriate prime p. Here x = ga is
the instance and the solution is the g-logarithm of x. The oblivious generation then generates
x by drawing a uniformly random quadratic residue.

4.1.4.2 Sketch of the NCE Protocols

The protocols [Bea97,CFGN96] have some common structure. They consider the situation,
where one bit is sent. The sender picks a bit c, generates two instances x0 and x1 such that
xc is generated along with a solution and such that x1−c is generated obliviously. The bit
c is in some sense the bit to be sent: In [CFGN96] it is set to be the bit to be sent and
in [Bea97] it is picked uniformly random and later used to one-time-pad encrypt the bit to
be sent. The simulators ability to learn both solutions and therefore not decide on c until
the corruption takes place is what allows for the simulation.

In fact one of the generators in [CFGN96] is a sub-protocol having the same effect as the
above described oblivious generators. This protocol is used to realize FSMT assuming only
trapdoor permutations. The goal is to let a party R (who is to receive a message from S)
generate two permutations f0 and f1 such that he learns the trapdoor of fc and does not
know the trapdoor of f1−c (the permutations are to be used by S as the public key of R).
The protocol is an n-party protocol with n > 2 and is secure as long as one party remains
honest. First each party Pi generates two permutations along with their trapdoors, (gi

0, t
i
0)

and (gi
1, t

i
1). All permutations are generated to have the same domain. Then all parties

send (gi
0, g

i
1) to R, which by the common domain assumption can define two permutations

f0 = g1
0 ◦g2

0 ◦· · ·◦gn
0 and f1 = g1

1 ◦g2
1 ◦· · ·◦gn

1 . Now R should learn the trapdoor of fc without
learning the trapdoor of f1−c. He does this by engaging in a 1-out-of-2-OT with each of the
other parties — in an (1-out-of-2) oblivious transfer (OT) the sender inputs two values v0

and v1, the receiver inputs a bit c, the sender learns nothing about c and the receiver only
learns vc. The parties offer ti0 and ti1 and R chooses to learn tic. We can assume that along
with the trapdoors are sent the random bits used to generate them such that R can validate
their correctness. Let A ⊂ {1, . . . , n} denote the subset corresponding to correct trapdoors.

4.1 Introduction 157

Then R composes fi of gj
i for j ∈ A and sends A as part of the public key to S. Obviously,

if just one trapdoor tji of the composed trapdoor ti is unknown to a party, then fi cannot
be inverted by that party. Therefore the protocol achieves the desired goals as long as just
one party remains honest. The OT-scheme used is actually only secure against the sender
learning the bit c. It is such that the cheating receiver can learn both trapdoors without
being detected. This gives a simulator the ability to learn both trapdoors as in the case
where an oblivious generator had been used. Thereby the protocol fully replaces the role of
oblivious generation.

4.1.5 Some New NCE Schemes

In Section 4.4 we present a new non-committing encryption scheme for the non-erasure model.
It can be based on any simulatable public-key encryption scheme, which is an ordinary
IND-CPA secure public-key encryption scheme with some additional oblivious generation
properties. More precisely it should be possible to generate a public key without learning
the corresponding private key and it should be possible to generate a ciphertext without
learning the corresponding plaintext. The scheme is a three-round protocol and in the
expectation communicates 4 public keys and 4 encryptions per plaintext bit. Based on
encryption schemes with key and message sizes linear in k this gives an expansion factor of
Θ(k) as for the DDH scheme in [Bea97].

We provide two examples of non-committing encryption schemes, based on the DDH
assumption and the RSA assumption. Our protocol instantiated with the DDH scheme
is similar to the DDH scheme from [Bea97] and our general protocol may be viewed as a
generalization of Beaver’s DDH scheme to the more general assumption of existence of IND-
CPA secure encryption schemes with oblivious generators. Our protocol instantiated with
the RSA scheme is completely new. Its improvement over the previously best known RSA
scheme from [CFGN96] is by a factor of k in the expansion factor.

The RSA simulatable encryption scheme is build using the following general methodol-
ogy. Call a trapdoor permutation system simulatable if the permutations can be obliviously
generated and an element in the domain can be invertibly sampled — recall that this infor-
mally means that an element can be sampled in a way such that the random bits used to
sample it (or similarly distributed bits) can be reconstructed from the element itself. We
prove that if one starts from a simulatable trapdoor system and applies the construction
of IND-CPA secure public-key encryption schemes by Blum and Goldwasser [BG85], then
one gets a simulatable encryption scheme. We then construct a simulatable trapdoor system
based on the RSA assumption.

Finally we prove that if one has a trapdoor system with the only extra condition that the
domains can be invertibly sampled, then one can still build non-committing encryption. This
is done by replacing the oblivious key-generation in the scheme based on simulatable trapdoor
systems by the key-generation protocol from [CFGN96] described above. In doing this we
identify an issue in the key-generation protocol from [CFGN96], which makes it insecure. We
correct this issue using a technique which is of interest in itself as it provides an example that
rewinding zero-knowledge proofs can be used in the UC framework. We also apply a small
twist to the key-generation protocol to get rid of the common-domain assumption. The exis-

158 The Secure-Channels Model

tence of trapdoor systems with invertible domain sampling is the weakest general assumption
under which non-committing encryption is known to exist; the scheme in [CFGN96], besides
the common domain property, also needs that the domains have invertible sampling.

No introduction to non-committing encryption is complete without mentioning the no-
tion of a deniable encryption scheme [CDNO97] introduced by Canetti, Dwork, Naor and
Ostrovsky. Basically a deniable encryption scheme allows e.g. the encryptor to compute
an encryption c = Epk(m; r) and send it to the decryptor which is capable of retrieving m.
However, if the sender is ever asked to reveal which message he sent, he can for some alter-
native message m′ compute random bits r′ such that c = Epk(m′; r′) and such that it really
looks as if c was an encryption of m′. This concept is very similar to that of non-committing
encryption, but observe that while a deniable encryption scheme allows e.g. the sender to lie
in the real world a non-committing encryption scheme is only required to allow the sender
to do this in the simulation.

4.1.6 The Rest of the Chapter

The rest of chapter contains five sections. In Section 4.2 we will start by constructing non-
committing encryption for the RO model. With respect to the flow of the presentation ,
the main reason for this section is that the construction in the RO model is very simple
and so exemplifies the ’non-committing’ property of an encryption scheme elegantly. There-
fore Section 4.2 provides some intuition before Section 4.4, where we show how to construct
non-committing encryption in the CT model. The non-committing encryption scheme in
Section 4.2 is non-interactive, so in addition, along with Section 4.3 were it is proved that
non-interactive non-committing encryption is impossible in the NPRO model, the section
establishes the separation result discussed in Section 3.9. In Section 4.4 we introduce the no-
tion of simulatable public-key encryption scheme and show how to construct non-committing
encryption given an instantiation of this notion. In Section 4.5 we then show how to con-
struct simulatable public-key encryption scheme based on the DDH assumption and the
RSA assumption. Finally, in section Section 4.6 we show how to construct non-committing
encryption based on any family of trapdoor permutations, where the domain sampler has
invertible sampling.

4.2 Possibility of Non-Interactive NCE in the RO Model

In this section we prove that if trapdoor permutations exists, then non-interactive NCE exists
in the PRO model, where non-interactive non-committing encryption is defined as follows:

Definition 4.1 Consider a version F ′SMT of FSMT, where we restrict the functionality to
two parties P1 and P2, add a parameter s ∈ N being the initialization round complexity, and
add the command:

initialize:
On input init to either P1 or P2 output init on the SOT and after s rounds output
ready to P1 and P2. Until having output ready ignore all other inputs than the first
init value.

4.2 Possibility of Non-Interactive NCE in the RO Model 159

A two-party non-interactive non-committing encryption protocol is a G-hybrid protocol π =
(P1, P2) realizing F ′SMT of the following form: The communication pattern between P1 and
P2 can be arbitrary in the s rounds following the first init input to either of the parties, and
the parties might access G in these s rounds. But, after P1 and P2 have output ready, then
on each activation of the form (mid, Pj ,m), Pi sends one message (mid, c) to Pj , which when
receiving (mid, c) outputs (mid, Pi,m

′) for some m′ ∈ {0, 1}∗; I.e. the round complexity for
transmission is r = 1. Furthermore, no other messages are sent after having output ready.
I.e. a party Pj only sends a message to Pi if activated on some value (mid, Pi,m) and the
parties are specified such that they ignore all messages from G after having output ready.

Remark 4.1 Notice that in specifying that the protocol is non-interactive we required that
it only uses one round. Alternatively we could just have required that the communication
is uni-directional, i.e. that there is only messages from Pi to Pj , and have disregarded the
round complexity. The reason why we do not do this is that we want the definition to be
independent of the whether we consider synchronous or asynchronous protocols, and whereas
uni-directional asynchronous protocols, with respect to security, are equivalent to one-round
uni-directional asynchronous protocols, for synchronous protocols already a two-round uni-
directional protocol should be considered interactive.

To see why this is the case, consider first asynchronous protocols. In the asynchronous
model any secure uni-directional protocol can be transformed into a secure uni-directional
one-round protocol by having Pi collect all the messages it wants to send to Pj into one
message and then send it to Pj when all communication has been generated. Therefore
in the asynchronous model it is no restriction to consider only one-round protocols in the
definition. To see why the above transformation is secure, notice that even when Pi sends
the messages in different rounds, the environment might decide to collect the message and
deliver them in the same round.2 Therefore the communication pattern of the transformed
protocol is a possible communication pattern of the original protocol. So, any attack against
the transformed protocol is also an attack against the original protocol. This transformation
does not work for synchronous protocols, as the communication pattern of the transformed
protocol is not guaranteed to be a communication complexity of the original protocol. Indeed
we will see that no such transformation exists, as NCE can be realized by a two-round uni-
directional synchronous protocol but not by a non-interactive synchronous protocol (i.e. a
one-round uni-directional protocol).

To see why two-move uni-directional synchronous protocols should be considered inter-
active, we relate them to asynchronous protocols. Any secure r-round uni-directional syn-
chronous protocol can be transformed into a secure 2r − 1 asynchronous protocol as follows:
Assume that only Pi sends messages to Pj . In the transformed protocol, let Pj send an ac-
knowledge message to Pi after each of the r−1 first messages and let Pi send message R only
after having received R−1 acknowledgments. An attack on the transformed protocol can eas-
ily be transformed into an attack on the synchronous protocol by letting the attacker simulate
the acknowledgment on its own. The above transformation takes any r-round uni-directional
protocol into a bi-directional protocol when r > 1. This is of course not the same a saying
that any secure transformation must do so. However, since two-round uni-directional syn-

2In the asynchronous model, the environment has the power to decide when to deliver a given message.

160 The Secure-Channels Model

chronous protocols are stronger than one-round uni-directional synchronous protocols, any
security preserving transformation of two-round uni-directional synchronous protocols into
asynchronous protocols must generate some bi-directional protocols.3 Therefore the extra
round corresponds to interaction when the synchronous model is realized in the asynchronous
model. All in all, the model-independent definition of non-interactive protocols is to consider
one-round uni-directional protocols.

4.2.1 The Intuition

Our protocol is reminiscent of a construction of chosen ciphertext secure encryption in
[BR93]. In the pre-processing phase the receiver PR sends a description f of a trapdoor per-
mutation to the sender PS . Each message from PS to PR is transmitted as (f(x),H(x)⊕m),
where x is a uniformly random element in the domain of f and H is the uniformly random
oracle. To prove the scheme secure we construct a simulator S. The simulator works by
running internally a copy of the protocol. It tries to make the internal protocol consistent
with the values of m input to the ideal process (knowing only the length of m). The simula-
tion proceeds as follows: Run the pre-processing as in the real-life model. Then simulate the
message transfers as follows: The parties of the protocol will request to evaluate the RO H

on some values x. To simulate the RO, we return a uniformly random element r — if queried
on the same x twice, we return the same r. To simulate the sending of m we generate random
x and send (f(x),H(x)⊕0l), where l is the length of m and 0l is the all-zero string of length l

— if the simulated oracle H was not defined on x we set it to be a uniformly random element
r as above. Assume that after simulating the sending of an arbitrary number of message the
environment corrupts PR. The simulator then receives from the ideal evaluation, for each
(f(x),H(x) ⊕ 0l) sent in the simulation, the real value m which should have been sent, and
the simulator must then come up with an internal state of PR consistent with m. Assume
that the simulator defined H(x) = r, i.e. that (f(x), r) was the message sent. The simulator
then simulates by simply claiming that H(x) = m ⊕ r. This is a perfect simulation as we
get that H(x) is uniformly random and (f(x), r) = (f(x), (r⊕m)⊕m) = (f(x),H(x)⊕m).
However, there are two ways this simulation can fail. First of all, if the same x was used
twice the simulator might be in the situation that it needs to define H(x) to both r⊕m1 and
r⊕m2 for m1 6= m2. However, this happens with negligible probability as the x’s are chosen
uniformly at random by the simulator. Second, it might be that the environment queried H

on x and therefore knows that H(x) was defined to r, which commits the simulator to this
choice and makes the simulation fail. However, if the environment queried H on x the envi-
ronment intuitively had to invert the trapdoor function f on a uniformly random element:
Z returned x given only f(x). This would contradict the hardness of inverting f on random
elements.

Intuitively we obtained the non-committing property as follows: The simulator is not
required to define H(x) until queried on x by Z. Therefore, an encryption c = m⊕H(x) can

3Otherwise, the resulting secure asynchronous uni-directional protocol can always be transformed into
a secure one-round asynchronous uni-directional protocol, which in turn can be transformed into a secure
one-round synchronous protocol contradicting that two-rounds is stronger than one-round in the synchronous
model.

4.2 Possibility of Non-Interactive NCE in the RO Model 161

Protocol πF
NCE

The protocol runs with parties P1, . . . , Pn in the PRO model and is parametrized by a
family of trapdoor permutations F with generator gen and domain sampler dom for which
the domains Dpk can be recognized in PPT given the public key pk. The protocol proceeds
as follows:

preprocessing phase:
When activated the first time each party Pi generates (pki, ski)← gen(k) and sends
pki to all other parties.

send:
On input (send, mid, j, m) party Pi generates a uniformly random element x ←
dom(pkj), computes (mid, fpkj (x), H(mid‖i‖j‖x)⊕m), and sends this value to Pj .a

receive:
If Pj receives (mid, y, R) from Pi, where y ∈ Dpkj ,b then Pj computes x = f−1

skj
(y)

and m = R⊕H(mid‖i‖j‖x) and outputs (receive, mid, i, m).

aRecall that we use ‖ to denote some injective and easily parsable encoding {0, 1}∗×{0, 1}∗ →
{0, 1}∗.

bWe have require from the family of trapdoor permutations, that one can efficiently check
y ∈ Dpkj . Intuitively this is needed for security because a corrupt party Pi might use an honest
Pj to determine whether y ∈ Dpkj by observing Pj ’s behavior on the message (mid, y, R). So, to
be sure this leaks no information we require that Pi could have computed this information itself.

Figure 4.1: The non-committing encryption protocol for a family of trapdoor permuta-
tions F .

always be opened to another plaintext m′, by redefining H(x)′ := c⊕m′, until the simulator
is queried on x, at which point it is forced to commit on a value for H(x). To hide x from
Z it is enough to send f(x) for a random x, as the one-wayness of f , by definition, prevents
the environment from querying on x after having seen only f(x).

4.2.2 The Formal Treatment

The protocol is given in Fig. 4.1. Notice that restricted to P1 and P2, the protocol is a
non-interactive protocol.

Theorem 4.1 The protocol πF
NCE realizes FSMT in the PRO model.

Proof. Let Z be any PPT environment. We construct a simulator S, which running in the
ideal process will simulate an execution of πF

NCE to Z. Since the protocol runs in the PRO
model, S will also have to simulate a RO H. It does this by defining H(h) to be some
uniformly random value r ∈ {0, 1}k , when H(h) is needed. The simulator S will simulate the
preprocessing phase by generating random keys as in the protocol. In fact, to make the proof
of security easier we will assume that S, besides running in the ideal process, participates
in a trapdoor game (see Definition 2.7 on page 14). The public keys pki for the parties will
then be obtained from the trapdoor game using n key generation requests. The trapdoors
will therefore not be known to S.

162 The Secure-Channels Model

To be able to simulate without the trapdoors we represent H in a particular way using
two dictionaries raw and img. At the beginning of the simulation both dictionaries are empty,
and H is undefined on all values. We record a new definition H(h) := r as follows:

• If h can be parsed as mid‖i‖j‖x, where i and j are indices of parties and x ∈ Dpkj
,

then the entry (mid‖i‖j‖y, r), where y = fpkj
(x), is added to img.

• If h cannot be parsed as described above, then (h, r) is added to raw.

We say that H(h) is defined and H(h) = r iff h = mid‖i‖j‖x (for x ∈ Dpkj
) and

(mid‖i‖j‖fpkj
(x), r) ∈ img or h cannot be parsed as specified and (h, r) ∈ raw. Because

fpkj
is a permutation, this representation is consistent — H(h) = r will become defined

iff recorded. Equally important, this representation allows to define and evaluate H on
h = mid‖i‖j‖x, where x ∈ dom(pkj) given only mid‖i‖j‖y, where y = fpkj

(x). We call
these manipulations oblivious and they proceed as follows: Given pkj, h = mid‖i‖j‖y and
r, where y ∈ dom(pkj), we do an oblivious record of H(mid‖i‖j‖f−1

pkj
(y)) := r by adding

(mid‖i‖j‖y, r) to img; Given pkj and h = mid‖i‖j‖y, where y ∈ dom(pkj), we do an
oblivious lookup of H(mid‖i‖j‖f−1

pkj
(y)) as follows: If there exists (mid‖i‖j‖y, r) ∈ img,

then H(mid‖i‖j‖f−1
pkj

(y)) = r. Notice that in the neither case do we know the point

mid‖i‖j‖f−1
pkj

(y), but can still define and lookup H(mid‖i‖j‖f−1
pkj

(y)). The simulation pro-
ceeds as specified in Fig. 4.2 on the facing page.

It is easy to see that if the simulation is not given up, then it is distributed exactly as a
real-life execution. It is therefore enough to prove that the probability that the simulation
is given up is negligible. Assume for the sake of contradiction that the simulation is given
up with non-negligible probability. This means that with non-negligible probability

1. The simulator obtained y = fpkj
(x) from the trapdoor game and sent (mid, y,R) from

honest Pi to honest Pj .

2. The dictionary was defined on the value mid‖i‖j‖x before S needed to define it on
that value.

Since Pi is guaranteed to be honest up to the point in the simulation where S needs to define
the dictionary on the value mid‖i‖j‖x, we can exclude the probability that the simulator
has defined H on mid‖i‖j‖x twice, as it would involve choosing the same value y in the
image of fpkj

twice under the uniform distribution, which happens with negligible probability.
Therefore the other definition of H on mid‖i‖j‖x was made by the environment in RO query.
The first definition of H on mid‖i‖j‖x was therefore not oblivious, and thus x = f−1

skj
(y) is

known. Since both Pi and Pj are honest up to the point where the simulation is given up,
the simulator has not given up on y or pkj . This allows the simulator to win the trapdoor
game with non-negligible probability, a contradiction to Theorem 2.1 on page 15. 2

4.3 Impossibility of Non-Interactive NCE in the NPRO Model

In this section we prove that non-interactive non-committing encryption is impossible in the
NPRO model. In particular this implies that the protocol πNCE from the previous section is

4.3 Impossibility of Non-Interactive NCE in the NPRO Model 163

Interface SNCE

RO query:
If Z asks for an evaluation of the RO on some string h, then if H(h) is defined,
return H(h), otherwise generate uniformly random r ∈ {0, 1}k, record H(h) := r,
and return r.

send:
On input (send, mid, i, j, |m|) from FSMT we know that Pi received input
(send, mid, j, m) for some m ∈ {0, 1}|m| on FSMT, which will then output
(receive, mid, i, m) to Pj .

• If Pj is corrupt, then S learns m from FSMT and will then simulate by following
the protocol using m as the message.

• If Pj is honest, then S simulates the protocol to Z by sending the message
(mid, y, R), where y is obtained as a uniformly random element in the image of
fpkj from the trapdoor game and R ∈ {0, 1}k is chosen uniformly at random.
If at a later point Pi or Pj is corrupted, then:

– If Pi was corrupted, then S learns m from FSMT. The simulator then gives
up on y in the trapdoor game and learns x, r such that y = fpkj (x) and
x = dom(pkj ; r). The simulator then gives up on pki and learns ski, r such
that (pki, ski) = gen(k; r). Then the simulator gives this internal view of
Pi to Z and records H(mid‖i‖j‖x) := R⊕m.

– If Pj was corrupted, then S learns m from FSMT. The simulator then gives
up on pkj and learns skj , r such that (pkj , skj) = gen(k; r). Then the
simulator gives this internal view of Pj to Z and records H(mid‖i‖j‖x) :=
R⊕m.

If H(mid‖i‖j‖x) was already defined in either of the above cases (to a value
different from R⊕m), then the simulator gives up the simulation.

receive:
On the message (mid, y, R) from Pi to Pj , where y ∈ dom(pkj), the simulator S needs
to make FSMT output (receive, mid, i, m) to Pj , where m = R⊕H(mid‖i‖j‖f−1

skj
(y)).

• If Pi is honest, then (mid, y, R) was sent by S itself and in that case the message
(receive, mid, i, m) will already been sent to Pj in the ideal process.

• If Pi is corrupt, then decrypt as follows: If H is not defined on mid‖i‖j‖f−1
skj

(y),
then obliviously define it to a uniformly random value. Then obliviously
look up H(mid‖i‖j‖f−1

skj
(y)) and let m = R ⊕ H(mid‖i‖j‖f−1

skj
(y)). Then in-

put (send, mid, i, j, m) on the SIT of FSMT to make it deliver the message
(receive, mid, i, m) to Pj .

Figure 4.2: The interface SNCE used in the proof of Theorem 4.1 on page 161.

not a realization of FSMT in the NPRO model (or the real-life mode for that sake) if H is
instantiated without interaction. We start with a definition and a lemma.

Definition 4.2 Let S(·) be a probabilistic ITM with oracle access, let D(·) be a probabilistic
TM with oracle access, and let lm, lsk : N→ N. We say that S(·) is a NPRO non-committing

164 The Secure-Channels Model

cryptosystem simulator with private key-length lsk, message length lm, and decryption algo-
rithm D(·) if the following holds: On input k ∈ N and access to a RO RO the ITM S(·) out-
puts a string c ∈ {0, 1}∗, which we think of as a ciphertext. Then on input m ∈ {0, 1}lm(k)

the ITM S(·) outputs a string sk ∈ {0, 1}≤lsk(k), which we think of as a private key. For
all m ∈ {0, 1}lm(k), let PrS,m[c, sk, r] denote the joint probability distribution of the values
(c, sk, r) when c, sk are generated by SRO on inputs (k,m) and r is a uniformly random
string. Let PrS [c, r] be the distribution of the values (c, r), which are independent of m. We
require that there exists k0 such that for all k > k0 and all m ∈ {0, 1}lm(k),

PrS,m[DRO(sk, c; r) = m] ≥ 3
4

. (4.1)

I.e., we require that the private key sk output by S makes c decrypt to m with probability at
least 3

4 .

Lemma 4.1 If S(·) is a NPRO non-committing cryptosystem simulator with private key-
length lsk, message length lm, and decryption algorithm D(·), then for all k > k0 it holds that
lsk(k) + 2 ≥ lm(k).

Proof. Assume for the sake of contradiction that there exists k > k0 such that lsk(k) + 2 <

lm(k). For all c ∈ {0, 1}∗ and all m ∈ {0, 1}lm(k) define

SK(c,m) = {sk ∈ {0, 1}≤lsk(k)|PrS [DRO(sk, c; r) = m] >
1
2
}

Xm =
∑

c∈{0,1}∗
PrS [c]|SK(c,m)|

X =
∑

m∈{0,1}lm(k)

Xm .

Here SK(c,m) is the set of private keys that make c decrypt to m with probability higher
than 1

2 , for fixed c and m. So, |SK(c,m)| is the number of such keys and Xm is the expected
number of keys making c decrypt (with probability higher than 1

2) to a fixed m when c is
generated by S. Therefore the variable X is the expected number of messages that c can be
decrypted to with probability higher than 1

2 . If sk ∈ SK(c,m1) ∩ SK(c,m2) and m1 6= m2,
then PrS [DRO(sk, c; r) ∈ {m1,m2}] > 1. So, for fixed c each sk ∈ {0, 1}≤lsk(k) belongs to
only one of the sets SK(c,m). In words, a given private key sk can make c decrypt to at
most one m with probability higher than 1

2 . Therefore

X =
∑

c∈{0,1}∗
PrS[c]

∑
m∈{0,1}lm(k)

|SK(c,m)|

≤
∑

c∈{0,1}∗
PrS[c](2lsk(k)+1 − 1) = 2lsk(k)+1 − 1 .

(4.2)

In words, the expected number of messages that c can be decrypted to with probability
higher than 1

2 is bounded by 2lsk(k)+1 − 1. Since all c must be decryptable to all m, we can
use this bound to bound the number of possible messages: If Xm ≥ 1

4 for all m ∈ {0, 1}lm(k),
then by Eq. 4.2 we have that 2lsk(k)+1 − 1 ≥ X ≥ 2lm(k) 1

4 contradicting lsk(k) + 2 < lm(k).

4.3 Impossibility of Non-Interactive NCE in the NPRO Model 165

So, there exists m ∈ {0, 1}lm(k) s.t. Xm < 1
4 . In particular, by the Markov inequality

PrS [|SK(c,m)| ≥ 1] < 1
4 and

PrS,m[DRO(sk, c; r) = m]

= PrS,m[|SK(c,m)| ≥ 1] · PrS,m[DRO(sk, c; r) = m||SK(c,m)| ≥ 1]+

PrS,m[|SK(c,m)| = 0] · PrS,m[DRO(sk, c; r) = m||SK(c,m)| = 0]

<
1
4
· 1 + 1 · 1

2
=

3
4

contradicting (4.1). 2

Theorem 4.2 There exists no non-interactive protocol realizing FSMT in the NPRO model
with erasure.4

Proof. Consider the execution of a non-interactive NCE protocol with two parties P
(·)
S and

P
(·)
R . Let sk(k) denote the random variable describing the internal state of P

(·)
R after the pre-

processing phase and before receiving the first encryption. Since this state is independent of
the inputs to be sent — it is defined given the code of PR — there exists a polynomial lsk(k)
s.t. the expected value of |sk(k)| is bounded by lsk(k)

6 for large enough k. So, by the Markov
inequality Pr[|sk(k)| ≥ l(k)] < 1

6 for large enough k.
Consider the following environment Z(·): It first activates P

(·)
S on the message init and

waits s rounds. Then it activates P
(·)
S on a message m ∈ {0, 1}lm(k), where lm(k) = lsk(k)+3

and m is a prefix of the auxiliary string z. Let E1 denote the event that P
(·)
S sends a value

c ∈ {0, 1}∗ to P
(·)
R . If does not occur, the environment terminates with output 0. If E1 occurs,

the environment corrupts P
(·)
R before c arrives. Let E2 be the event that Z(·) as response to

this corruption receives a value sk ∈ {0, 1}≤lsk(k). If E2 does not occur, Z(·) outputs 0. If E2

does occur, Z(·) generates uniformly random bits r and computes m′ by running the code of
P

(·)
R from internal state sk with input c and random bits r and using the random oracle RO

— since PR does not access any ideal functionalities during decryption and Z(·) has access
to the same oracle RO as P

(·)
R , the environment can actually carry out this computation. If

m′ = m then Z outputs 1, otherwise Z outputs 0.
Let E be the event that E1 and E2 occurs. Note that in HYBG

πRO,ZRO(k, z), where we
let G be any ideal functionality, the event E occurs with probability at least 5

6 for large
enough k. Furthermore, by the security (which implies correctness) of the protocol, the
probability that m′ 6= DRO(sk, c; r) for uniformly random r is bounded by a negligible
function δ(k). Therefore Pr[HYBG

πRO ,ZRO(k, z) = 1] ≥ 5
6 − δ(k) > 4

5 for large enough

k. Since the protocol is secure there exists S(·) and k0 such that for all k > k0 we have
that Pr[IDEALGFSMT,SRO,ZRO(k, z) = 1] ≥ 3

4 . We use this to construct a NPRO non-

committing cryptosystem simulator S(·) as follows: On input k and access to oracle RO run
4We have not defined the erasure model formally, but the environment is simply given the current internal

state of a party instead of its initial random bits, and the parties can erase values at desire during the
computation.

166 The Secure-Channels Model

IDEALGFSMT,SRO,ZRO(k, ?) on a message of length lm(k). Note that as long as no party is cor-
rupted the execution does not require that we know the value of the message, which is the rea-
son for the ?-notation. If during the execution the event E does not occur, S(·) uses arbitrary
values for c and sk. If E occurs, S(·) proceeds as follows: Run IDEALGFSMT,SRO,ZRO(k, ?) until

S outputs c and then output c. Then on input m ∈ {0, 1}lm(k) run IDEALGFSMT,SRO,ZRO(k,m)

until P
(·)
R is corrupted, give S(·) the value m, and run IDEALGFSMT,SRO,ZRO(k,m) until S(·)

outputs sk. Then output sk. Let D(·) be the TM which on input c, sk and access to or-
acle RO runs PRO

R from internal state sk and input c using uniformly random bits. By
Pr[IDEALGFSMT,SRO,ZRO(k, z) = 1] ≥ 3

4 we have that S is an NPRO non-committing cryp-
tosystem simulator with private key-length lsk, message length lm, and decryption algorithm
D, contradicting Lemma 4.1. 2

In the above proof we used essentially that PS could send an arbitrary-length message to
PR and that we could corrupt PR before this message arrived. If we changed the functionality
FSMT such that only fixed-length messages could be sent and such that PS can only send
a message after the previous message was received by PR, then the proof fails as PR might
delete or change sk between the received messages. In that case we can only prove that
the internal state sk of PR must be at least the size of the message that can be sent in
one invocation. A scheme where PR is only sent fixed-length messages and is given the
possibility of deleting between messages is called a key-evolving public-key encryption scheme.
This notion was coined in the context of forward-secure public-key encryption [And97]. In a
forward-secure public-key encryption scheme exposure of the secret key will not allow the
adversary to decrypt previous ciphertexts. Theorem 4.2 on the page before was used by
Canetti, Halevi and Katz [CHK03] to argue the necessity of key-evolving in non-interactive
forward-secure public-key encryption schemes.

4.4 Non-Committing Encryption from Simulatable Public-Key

Systems

In this section we describe how to construct non-committing encryption from so-called sim-
ulatable public-key cryptosystems. These are standard cryptosystems with the additional
properties that a public-key can be invertibly sampled and that a ciphertext with the same
distribution as an encryption of a random plaintext can be invertibly sampled.

Definition 4.3 We call (K, K̃, E ,D,M, C) a simulatable public-key cryptosystem if (K, E ,D,M)
is a semantic secure public-key cryptosystem (according to Definition 2.8 on page 16 and Def-
inition 2.9 on page 16), and the following holds:

oblivious public-key generation:
K̃, called the oblivious public-key generator, is a PPT invertible sampler for the distri-
bution given by running (P, S)← K and outputting P .

oblivious ciphertext generation:
C, called the oblivious ciphertext generator, is a PPTIS algorithm and the distribution

4.4 Non-Committing Encryption from Simulatable Public-Key Systems 167

obtained by running
[(P, S)← K;C ← CP : (P, S,C)]

is statistically indistinguishable from the distribution obtained by running

[(P, S)← K;M ←MP ;C ← EP (M) : (P, S,C)] .

4.4.1 Motivating Invertible Sampling

As mentioned in Section 2.8, invertible sampling is closely connected to adaptive security in
models where security is defined by requiring that an adversary’s view of a real-life execution
of a protocol can be efficiently simulated (i.e in PPT) given just the data the adversary is
entitled to, and where erasures are not allowed. We are now ready to explain why. The
example also motivates why we require invertible sampling in Definition 4.3 on the facing
page for the encryption scheme that we will soon use to build an adaptively secure protocol,
namely to avoid problems as the following: Consider the functionality which on input gen
from P1 outputs a uniformly random y ∈ {0, 1}l to P1. Let f be a permutation on {0, 1}l and
consider the protocol where a party P1 on input gen outputs y = f(x) for uniformly random
x ∈ {0, 1}l. All other parties do nothing. The output of the protocol is a uniformly random
string y and therefore seems to be secure. However, in the real-life execution, after Z inputs
gen to P1 it sees output y ∈ {0, 1}l. If Z then corrupts P1 it sees x such that y = f(x). By
definition of security there should exist a simulator which is given y when P1 is corrupted
and then computes x to show to the environment to simulate the internal state of P1. It
should of course be the case that y = f(x), otherwise the environment could distinguish.
Since the simulator is PPT it follows that the protocol is secure iff f has invertible sampling.
Notice that if f is a one-way function, then indeed f does not have invertible sampling. So,
if there exists one-way functions, then there exists 1-party protocols with no input (and no
communication) and with correct output distribution, which are not adaptively secure in the
cryptographic model. Notice that the above protocol is static secure and that any 1-party
protocols with no input (and no communication) and with correct output distribution is
static secure. This shows that the considered problem is closely related to the internal state
shown to the adversary after a corruption.

4.4.2 Weak Test for Equality

We will realize the functionality in Fig. 3.24 on page 115 for secure message transmission given
any simulatable public-key cryptosystem. We will use the UC framework to give a modular
construction of and proof of security for our scheme: We first realize the functionality FWTE

in Fig. 4.3 on the following page and then show how FWTE can be used to realize FSMT.
The functionality FWTE allows two parties, Pi and Pj say, both of them holding a bit,

c and d say, to test whether c = d without revealing c (or d) to the environment — the
outcome of the test is however public. We call such a protocol a test for equality. In the
ideal functionality FWTE, if the outcome of the test is c 6= d, then in addition to learning
this, the environment will also learn c (and thus d). I.e. the functionality only hides c and
d when c = d. We call this a weak test for equality.

168 The Secure-Channels Model

Functionality FWTE

The functionality runs with parties P1, . . . , Pn.

first bit:
On input (id, 1, j, c) for c ∈ {0, 1} from any Pi, output (id, i) to Pj and output (id, i, j)
to the adversary. Store (id, 1, i, j, c). If Pi is corrupted in this round, then let the
environment decide whether to delete (id, 1, i, j, c) and drop the message (id, i) to Pj .

comparison:
On input (id, 2, i, d) from any Pj , where d ∈ {0, 1}, if (id, 1, i, j, c) is stored, then delete
(id, 1, i, j, c), store (id, 2, i, j, c, d), output s = c ⊕ d to Pi and output (id, s, s ∧ c) to
the adversary. If Pj is corrupted in this round, then Z can send another message as
follows: If the environment inputs (id, i, j, s) and Pj is corrupted and (id, 2, i, j, c, d)
is stored, then output s to Pi.

incorrect inputs:
If an honest Pi ever uses the same id id twice, then break down. If an honest Pj ever
inputs (id, 2, i, d), where (id, 1, i, j, c) is not stored for some c ∈ {0, 1}, then break
down.

Figure 4.3: The functionality for Weak Test for Equality.

Before showing how to realize FWTE, we motivate by showing how to reduce FSMT to
FWTE. Consider the protocol in Fig. 4.4 on the next page. Since all ci and di are chosen
uniformly at random and 4(|m| + k) indices are used it follows directly from the Markov
inequality that |m| indices will have ci = dj , except with negligible probability exp(−k

2).
And, for those indices the environment only see the information si = 0 about ci and di,
telling it that ci = di. Therefore, ci is a uniformly random bit stochastically independent of
the view of the environment, which the parties can safely use for one-time pad encryption.
In terms of simulators, when ci = di then the simulator is not committed to ci before one of
the parties is corrupted. Specifying a simulator for πWTE is straight-forward and is left to
the reader.

Theorem 4.3 The protocol πSMT realizes FSMT in the FWTE-hybrid model.

A realization of FWTE is given in Fig. 4.5 on page 170. We give an intuitive sketch
of the security. The bit d is encoded by which of the tuples (P0,M0, C0) and (P1,M1, C1)
match in the sense that Cd = EPd

(Md). Because the secret key Sc is known to Pi it can
compute the bit d: If DSc(Cc) 6= Mc, then c 6= d and if DSc(Cc) = Mc, then, except
with negligible probability, c = d (we require that the size of the message space is super-
polynomial). Therefore, except with negligible probability, s = c ⊕ d. This guarantees the
correctness. For the secrecy, observe that the values (P0,M0, C0) and (P1,M1, C1) observed
by a passive adversary are computationally independent of c, almost by the definition of
IND-CPA security (see Definition 2.9 on page 16). The protocol is therefore a secure test
for equality against an eavesdropper. This then leaves us with the question whether it is a
secure test for equality against an adversary corrupting the parties, adaptively. The answer
is negative. It is only a secure weak test for equality.

4.4 Non-Committing Encryption from Simulatable Public-Key Systems 169

Protocol πSMT

The protocol runs with parties P1, . . . , Pn in the FWTE-hybrid model.

1. Pi on input (id, j, m) proceeds as follows:

(a) Let l = 4(|m|+ k).

(b) Generate uniformly random c ∈ {0, 1}l.
(c) Send (id, |m|) to Pj and for o = 1, . . . , l, input (id‖o, 1, j, co) to FWTE.

2. Pj , on a message (id, p) from Pi and on receiving (id‖o, i) from FWTE for o = 1, . . . , l,
where l = 4(|m|+ k), proceeds as follows:

(a) Generate uniformly random d ∈ {0, 1}l.
(b) For o = 1, . . . , l, input (id‖o, 2, i, do) to FWTE.

3. Pi on receiving (id‖o, j, so) from FWTE for o = 1, . . . , l, proceed as follows:

(a) Pick (o1, . . . , o|m|) such that {o1, . . . , o|m|} ⊂ [l], |{o1, . . . , o|m|}| = |m| and
soh

= 0 for h = 1, . . . , |m|. If no such value exists, then allow soh
= 1 for some

oh.

(b) For h = 1, . . . , |m|, let fh ← mh ⊕ coh
.

(c) Send ((id, 2), {(oh, fh)}h∈[|m|]) to Pj .

4. Pj on receiving ((id, 2), {(oh, fh)}h∈[|m|]) from Pi computes mh ← fh ⊕ doh
for h ∈

[|m|] and outputs (id, i, m)

Figure 4.4: The protocol πSMT reducing secure message transmission to weak test for equal-
ity.

To see why it is a secure weak test for equality, consider the following simulator: It
runs both parties according to the protocol with the following exceptions: When s = 1 the
simulator simulates by following the protocol; When s = 0 the key P1−c is generated as
(P1−c, S1−c) ← K(r1−c) and the ciphertext C1−d is generated as C1−d ← EP1−d

(M1−d, e1−d)
for random M1−d. Note that when s = 1 the simulator knows all inputs to the parties, so the
simulation is trivial, and when s = 0 the keys P0 and P1 is generated in the same way and C0

and C1. Therefore the simulator does not have to know c and d. We assume in the following
treatment that both parties are corrupted after all the communication has been simulated.
The other cases are treated similarly. When s = 0 the communication of the simulation is
of the form (P0,M0, C0) and (P1,M1, C1), where both triples are such that Ci = EPi(Mi).
However, as long as no secret keys are known to the adversary this cannot be observed, by the
IND-CPA security. Now assume that the adversary breaks into both parties. The simulator
then learns the bit c = d to be communicated (the cases where only one party is corrupted
is a special case because no matter which party is corrupted the simulator will learn c or
d = c). Now that c and d become known the random bits of the parties are simulated as
follows: To be convinced that it is observing the state of parties from a real-life execution
the adversary should be given random values r′c, r

′
1−c, e

′
d, e

′
1−d which looks uniformly random

170 The Secure-Channels Model

Protocol πWTE

The protocol runs in the real-life model with parties P1, . . . , Pn.

1. Pi on input (id, 1, j, c), where j ∈ [n], proceeds as follows:

(a) Generate a public-key/secret-key pair (Pc, Sc)← K(rc).

(b) Generate a public-key obliviously P1−c ← K̃(r1−c).

(c) Store (id, j, c, Sc) and send (id, 1, P0, P1) to Pj .

(d) Pj on receiving (id, 1, P0, P1) from Pi stores (id, i, P0, P1) and outputs (id, i).

2. Pj on input (id, 2, i, d), where i ∈ [n] and (id, i, P0, P1) is stored, proceeds as follows:

(a) For b ∈ {0, 1}, generate two random plaintexts Mb ←MPb
.

(b) Generate an encryption Cd ← EPd
(Md; ed).

(c) Generate a random ciphertext C1−d ← CP1−d
(e1−d).

(d) Send (id, 2, M0, M1, C0, C1) to Pi.

3. Pi on a message (id, 2, M0, M1, C0, C1) from Pj , where some (id, j, c, Sc) is stored,
proceeds as follows: If DSc(Cc) = Mc, then s← 0. Otherwise s← 1. Output s.

Figure 4.5: The protocol for weak test for equality.

and for which is holds that

(Pc, Sc) = K(r′c) (4.3)

P1−c = K̃(r′1−c) (4.4)

Cd = EPd
(Md, ed) (4.5)

C1−d = CP1−d
(e1−d) . (4.6)

Eq.s. 4.3 and 4.5 are easily handled by setting r′c = rc and e′d = ed. Eq.s. 4.4
and 4.6 are handled using the random bits fakers given by the definition of invertible
sampling. By Definition 2.16 on page 28 there exists algorithms K̃−1 and C−1 such that
r′1−c ← K̃−1(P1−c) and e′1−d ← C−1(P1−d, C1−d) has exactly the desired properties except for
a statistical error. Observe that as opposed to the protocol it holds for (P1−c,M1−c, C1−c)
that C1−c = EP1−c(M1−c). However, the adversary was not given S1−c, so this difference will
not be observed.

To see why the protocol is not necessarily a secure test for equality, consider an execution
where c 6= d. If the adversary breaks into Pi after the execution he learns Sc and using
Sc he can check that DSc(Cc) 6= Mc. When he breaks into Pj he learns ed and can check
that Cd = EPd

(Md, ed). I.e. exactly one of the tuples (P0,M0, C0) and (P1,M0, C0) match
Ci = EPi(Mi, ei) and as these tuples are defined before the corruption, the simulator will
be committed to the value of c (and d) before the corruption takes place. If not it can
generate values (P, S,M, e,C) such that P , S, M , and e looks random and C = EP (M,e)
and DS(C) 6= M . None of the encryption schemes that we construct later have this property.

4.4 Non-Committing Encryption from Simulatable Public-Key Systems 171

Interface SWTE

1. On a value (id, i, j) from FWTE proceeds as follows:

(a) For c′ ∈ {0, 1}, generate a public-key/secret-key pair (Pc′ , Sc′)← K(rc′).

(b) Store (id, j, S0, S1) and simulate a send of (id, 1, P0, P1) to Pj .

(c) If Z delivers (id, 1, P0, P1),a then in the ideal process deliver the message (id, i)
sent from FWTE to Pj to make Pj output (id, i).b

If Pi is corrupted after this step we learn c ∈ {0, 1} and patch the random bits of Pi

as follows:

• r′1−c ← K̃−1(P1−c).

• r′c ← rc.

2. On a value (id, i, j, s, f) from FWTE proceeds as follows:

• If s = 1, then

(a) Let c = f and let d = 1− c.
(b) Patch the random bits of Pi as described in Step 1.
(c) Run Pj as in the protocol on input (id, 2, i, d). If Z delivers the message

(id, 2, M0, M1, C0, C1) to Pi, then in the ideal process deliver the message
(id, j, 1, c) sent from FWTE to Pi.

• If s = 0, then

(a) For b ∈ {0, 1}, generate two random plaintexts Mb ←MPb
.

(b) For b ∈ {0, 1}, generate an encryption Cb ← EPb
(Mb; eb).

(c) Simulate a send of (id, 2, M0, M1, C0, C1) to Pi. If Z delivers the message
(id, 2, M0, M1, C0, C1) to Pi, then in the ideal process deliver the message
(id, j, 0, 0) sent from FWTE to Pi.

If Pi or Pj is corrupted after this step we learn c or d. Since s = 0 we have
c = d. Patch the random bits of Pi and Pj as follows:

(a) Patch the random bits of Pi as described in Step 1.
(b) e′1−d ← C−1(P1−c, C1−c).
(c) e′d ← ed.

If Z corrupts Pj and delivers another message of the form (id, 2, M0, M1, C0, C1)
to Pi, then we learn s from FSMT, patch Pi as described in Step 1, and then
run Pi on (id, 2, M0, M1, C0, C1) to determine an output value s. Then input
(id, i, j, s) to FWTE to make it deliver the message (id, j, s) to Pi.

aIt could corrupt Pi and send another message.
bI.e., specify to FWTE not drop the message (id, i) to Pj .

Figure 4.6: The interface SWTE used in the proof of Lemma 4.2 on the following page.

172 The Secure-Channels Model

Adversary AWTE

The adversary runs as part of the RIND-CPA in Fig. 2.3 on page 17 with S = (G, E ,D). It
generates oblivious keys and random ciphertexts by access to the RIND-CPA game. The
first input to the adversary is k ∈ N and z ∈ {0, 1}∗. Start running REALπWTE,Z(k, z),
but with the following changes to πWTE:

1. Pi on input (id, 1, j, c), where j ∈ [n], proceeds as follows:

(a) Generate a public-key/secret-key pair (Pc, Sc)← K(rc).

(b) Output (generate) to the RIND-CPA game and receive a public-key P1−c.
Then compute r1−c ← K̃−1(P1−c).a

(c) Store (id, j, c, Sc) and send (id, 1, P0, P1) to Pj .

(d) Pj on receiving (id, 1, P0, P1) from Pi stores (id, i, P0, P1) and outputs (id, i).

2. Pj on input (id, 2, i, d), where i ∈ [n] and (id, i, P0, P1) is stored, proceeds as follows:

(a) For b ∈ {0, 1}, generate two random plaintexts Mb ←MPb
.

(b) Generate an encryption Cd ← EPd
(Md; ed).

(c) i. If c 6= d, then generate a random ciphertext C1−d ← CP1−d
(e1−d).

ii. If c = d, then generate a random plaintext M ′ ← MP1−d
and output

(test-messages, P1−d, M
′, M1−d) to the RIND-CPA game and receive a

ciphertext C1−d. Then let e1−d ← C−1(P1−d, C1−d).b

(d) Send (id, 2, M0, M1, C0, C1) to Pi.

3. Pi on a message (id, 2, M0, M1, C0, C1) from Pj , where some (id, j, c, Sc) is stored,
proceeds as follows: If DSc(Cc) = Mc, then s← 0. Otherwise s← 1. Output s.

When Z stops with some output bit b, output (guess, b) to the RIND-CPA game.

aHere we used that eK−1 does not use the bits used to generate P1−c.
bHere we used that C−1 does not use the bits used to generate C1−d.

Figure 4.7: The RIND-CPA adversary used in the proof of Lemma 4.2.

Lemma 4.2 Based on a simulatable public-key cryptosystem (K, K̃, E ,D,M, C) with super-
polynomial plaintext space, the protocol πWTE realizes FWTE.

Proof. We prove that REALπWTE,Z
c≈ IDEALFWTE,SWTE,Z for all environments Z, where

SWTE is given in Fig. 4.6 on the preceding page. We prove REALπWTE,Z
c≈ IDEALFWTE,SWTE,Z

using a hybrids arguments. Consider the RIND-CPA adversary AWTE in Fig. 4.7. Let
REALπ′WTE,Z denote the copy of REALπWTE,Z executed in AWTE, and for c ∈ {0, 1}, let
REALπ′WTE(c),Z denote the distribution of REALπ′WTE,Z when b = c in the RIND-CPA game.
It is straight-forward to verify that REALπ′WTE(0),Z , is statistically indistinguishable from
REALπWTE,Z . To see this observe that in REALπ′WTE(0),Z we have that C1−d is an encryp-
tion of a random element as in the protocol REALπWTE,Z and e1−d and r1−c are statisti-
cally close to the distribution in REALπWTE,Z by Definition 4.3 on page 166. Furthermore,

4.5 Some Simulatable Public-Key Systems 173

REALπ′WTE(1),Z , is identical distributed to IDEALFWTE,SWTE,Z . To see this observe that in
REALπ′WTE(1),Z we have that C1−d is an encryption of M1−d as in IDEALFWTE,SWTE,Z and
e1−d and r1−c are computed in the same manner in both. The lemma then follows by the
IND-CPA security of S and Theorem 2.2 on page 16. 2

4.5 Some Simulatable Public-Key Systems

In this section we describe two simulatable public-key cryptosystems, one based on the DDH
assumption and one based on the RSA assumption.

Definition 4.4 The ElGamal encryption scheme in Qp is defined as follows:

key generation:
Generate a random k-bit prime p for which q = (p− 1)/2 is a prime. In the following,
let Qp denote the quadratic residues modulo p and let g = 4. It is easy to verify that
|Qp| = q and 〈g〉Z∗p = Qp. Let h = gx mod p for uniformly random x ∈ Zq. The public
key is (p, h) and the private key is (p, x).

oblivious public-key generation:
To obliviously generate a public key, generate p as in the key generation above, generate
h′ ∈ Z∗

p uniformly at random and let h = h2 mod p. The oblivious public-key is (p, h).

plaintext sampling:
The plaintext space is Zq, which can be invertibly sampled by Theorem 2.3 on page 28.

encryption:
Let (p, h) be a public-key and let m ∈ Zq be a plaintext. We encrypt as follows: If
m ∈ Qp, then let m′ = m; Otherwise, let m′ = p − m. Generate uniformly random
r ∈ Zq and let enc((p, h),m; r) = (α, β) = (gr mod p,m′hr mod p).

decryption:

Given a private key (p, x) and a ciphertext (α, β), let m′ = α−xβ mod p. If m′ ∈ Zq,
then let m = m′; Otherwise, let m = p−m′. Then dec((p, x), (α, β)) = m.

oblivious ciphertext generation:
To obliviously generate a ciphertext for public key (p, h), generate α′, β′ ∈ Z∗

p uniformly
at random and let α = α′2 mod p and β = β′2 mod p. The oblivious ciphertext is (α, β).

Theorem 4.4 The ElGamal encryption scheme in Qp is simulatable and is IND-CPA secure
(Definition 2.9 on page 16) if the DDH assumption (Assumption 2.1 on page 21) holds.

Proof. That all algorithms in the encryption scheme is PPT is well-known and the correctness
is easy to verify. That the oblivious public-key generator has the correct distribution follows
from the fact that both gx mod p and h′2 are random elements from Qp. That the oblivious
public-key generator has invertible sampling follows from Theorem 2.3 on page 28 and the fact
that x 7→ x2 mod p is 2-to-1 in Z∗

p and that a random preimage can be found in PPT. That the
oblivious ciphertext generator has invertible sampling follows from the same observation. The

174 The Secure-Channels Model

IND-CPA security of the ElGamal encryption scheme in Qp relative to the DDH assumption
in Qp is well-known, here using that m′ as defined in the encryption algorithm always is an
element of Qp. 2

4.5.1 Simulatable Public-Key Systems from Simulatable Trapdoor Per-
mutations

In this section we construct a simulatable encryption scheme based on the RSA assumption.
We do this in two step. First we define the notion of simulatable family of trapdoor permu-
tations and show that a standard construction of IND-CPA secure encryption schemes from
families of trapdoor permutations maintain the simulatability. We then construct simulatable
family of trapdoor permutations based on the RSA assumption.

Definition 4.5 We call (gen, g̃en, dom, f, f−1) a simulatable family of trapdoor permutations
if (gen, dom, f, f−1) is a family of trapdoor permutations and

oblivious index generation:
g̃en, called the oblivious index-generator, is a PPT invertible sampler for the distribution
obtained by running (i, ti)← gen and outputting i.

invertible domain sampling:
dom is a PPTIS algorithm.

Definition 4.6 We define an encryption scheme, which we will call the Blum-Goldwasser
scheme with fixed plaintext length. Given a simulatable family of trapdoor permutations
(gen, g̃en, dom, f, f−1), let B be a hard-core predicate of the family of trapdoor permutations.
If no such B exists one can construct a new simulatable family of trapdoor permutations
which has one, following the construction in [GL89] (which trivially preserves simulata-
bility). We construct an encryption scheme (gen′, g̃en′, enc, dec, pla, cip). The (oblivious)
key-generator is gen′ = gen (g̃en′ = g̃en). The message space can be {0, 1}p(k) for any
polynomial p(k), and the ciphertext space for P = i is {0, 1}p(k) ×Di, where Di is the do-
main of fi. For (i, t) ∈ gen, let X(i, x, n) = B(x)B(fi(x))B(f2

i (x)) . . . B(fn−1
i (x)) be an

n-bit pseudorandom string generated from x ∈ Di. Then the encryption of m ∈ {0, 1}p(k)

under i is (m ⊕ X(i, x, |m|), f |m|
i (x)) for random x ← dom(i). The decryption is trivial

given t. To pick a ciphertext obliviously for a given public key i, generate m′ ∈ {0, 1}p(k)

uniformly at random, generate x ← gen(i) and let cip(i) = (m′, x). This will be distributed
exactly as enc(i,m) for uniformly random m ∈ {0, 1}p(k). Invertible sampling is given by
cip−1(i,m′, x) = (m′, dom−1(i, x)).

Theorem 4.5 The Blum-Goldwasser scheme with fixed plaintext space is a IND secure sim-
ulatable encryption scheme.

Proof. This is straight-forward to verify. The oblivious index generation directly implies the
oblivious public-key generation, the invertible domain sampling implies the oblivious cipher-
text generation, and the IND-CPA security was proved by Blum and Goldwasser [BG85].
2

4.5 Some Simulatable Public-Key Systems 175

We proceed to construct a simulatable family of trapdoor permutations based on the RSA
assumption. We cannot use the standard family of RSA-permutations, as we cannot prove
that it has oblivious public-key generation. If the oblivious public-key generation learns
the factorization of n, the random-bits-faking algorithm would have to factor n, which is
hopefully hard. If the oblivious public-key generation does not learn the factorization of n it
would have to test in PPT whether n is a factor of two large primes, which we do not know
how to do. We therefore need a modification. As a starting point we take the RSA sub-group
collection (Assumption 2.6 on page 26). We do not know whether the RSA-sub-group family
is simulatable either, but we can use the RSA-sub-group family to construct a simulatable
family secure relative to Assumption 2.6 on page 26.

As discussed in Section 2.7.4, if we draw a random number from Zk log(k), then it will have
two primefactors larger than 2k except with probability at most 1/c log(k) for some constant
c. This means that if we pick l = k/(log log(k)+ log(c)) random numbers from Zk log(k), then
at least one of them will have two primefactors larger than 2k except with probability at
most 2−k. This gives rise to the following family.

Definition 4.7 We define a family which we call the simulatable RSA-sub-group family:

index/trapdoor generation:

An index will be l uniformly random k log(k)-bit numbers n = (n1, . . . , nl) and the
trapdoor will be be φ(n) = (φ(n1), . . . , φ(nl)). Furthermore a random element e ∈
PRIMES(2k log(k)) is chosen. The encryption key is (n, e) and the decryption key is
(n, d = (d1, . . . , dl) = (e−1 mod φ(n1), . . . , e−1 mod φ(nl)).

domain sampling:
The domain of a public key (n, e) will be Z∗

n1
× · · · × Z∗

nl
.

function, inverse function:
The function is given by f(n,e)(x1, . . . , xl) = (xe

1 mod n1, . . . , x
e
2 mod nl), and it is well-

known that the inverse of f(n,e)(x1, . . . , xl) can be computed in PPT on Z∗
n1
× · · · ×Z∗

nl

given just d.

Theorem 4.6 The simulatable RSA-sub-group family is a simulatable family of trapdoor
permutations relative to Assumption 2.6 on page 26.

Proof. The invertible sampling requirements follow directly from Theorem 2.3 on page 28.
We sketch how to reduce the one-wayness to the one-wayness of the RSA-sub-group family.
Assume that we are given (n′, e) as defined in the index/trapdoor generation in Assump-
tion 2.6 on page 26. Then generate an index as defined in the index/trapdoor generation
in Definition 4.7. Let I ⊆ [l] be the index of those ni where the second largest primefactor
is larger than 2k. Pick i ∈ I uniformly at random (we have already observed that |I| ≥ 1
except with negligible probability). Let n′i = n′ and for j ∈ [l] \ {i}, let n′i = ni. Then
(n′1, . . . , n

′
l, e) is distributed exactly as specified in Definition 4.7, and inverting f(n′1,...,n′l,e)

involves inverting f(n,e). 2

In [CFGN96] a similar family of trapdoor permutations is constructed, using the following
observation: A random 2k-bit number is a product of two k-bit primes with probability

176 The Secure-Channels Model

approximately 1
k2 . Therefore the permutation x 7→ xe mod n (for a prime e > n) is a

weak trapdoor permutation, and they then appeal to a general results to obtain a family
of trapdoor permutations [Yao82b,GIL+90]. To obtain the same level of security as for the
simulatable RSA-subgroup family, where we have a good ’sub index’ with probability 1−2−k,
such an amplification involves choosing Θ(k3) ’sub indices’, giving a total index length of
Θ(k4) bits, where the index length of the simulatable RSA-sub-group family is O(k2 log(k)).
Another improvement over the RSA based scheme in [CFGN96] is that in the protocol we
only send a constant number of (descriptions of) trapdoor permutations, where Θ(k) are sent
in [CFGN96]. All in all this yields an improvement of a factor k3/ log(k) in communication
complexity. The price for some if this is that we use an extra round of communication.

4.6 Non-Committing Encryption from Trapdoor Permutations

with Invertible Domain Sampling

We now describe how one can replace the oblivious index generation by essentially the key-
generation protocol from [CFGN96] described in Section 4.1. Since the approach is described
in [CFGN96], we will only provide a sketch, and the reason for sketching at all is that we
want to describe an attack against the protocol as described in [CFGN96] and provide a fix,
and we want to apply a small twist to get rid of the requirement of the common-domain
assumption.

4.6.0.1 The Attack and a Fix

Recall the protocol from [CFGN96] as sketched in Section 4.1. If the receiver, R say, of the
permutations (also the receiver of the communication protocol) is honest, but a sender Pi

of the permutations is corrupt, the adversary may choose to let Pi use as inputs to the OT
a correct trapdoor for gi

0 and garbage for gi
1. When the adversary sees the set A as part of

the permutations sent from R to S he can then determine the value of c, the bit indicating
for which of the permutations R learns the trapdoors. If i 6∈ A, then the sender must have
c = 1 and have detected Pi’s fraud. If i ∈ A the sender must have c = 0. In any case the
adversary learns c and with probability 1

2 even without being detected. But the bit c is a
piece of information that the adversary should not be able to get. The simulator’s freedom
to set c after corruption is exactly what makes the simulation go through.

We solve this by requiring that a sender Pi in an OT always proves in zero-knowledge
to the receiver that he inputs correct information to the OT. I.e. prove that there exists r0

and r1 such that (gi
0, t

i
0) = gen(r0) and (gi

1, t
i
1) = gen(r1) and that there exists a bitstring r′

such that (t0, t1, r′) is the inputs to the OT (r′ being the random bits used in the OT). This
will imply that except with negligible probability, Pi will have to supply correct trapdoors
to both permutations or be disqualified. Since what has to be proved is an NP statement
and R knows both witnesses r and r′ we can use the protocol from Section 2.9.6. We use the
protocol in its generic form in Fig. 2.9 on page 42. Notice that this means that the protocol is
only zero-knowledge against an honest verifier. This is however sufficient in our case, as it is
the honest parties that are interested in not learning the witnesses (the trapdoors). Normally,
the use of ZK proofs like that in Section 2.9.6 leads to problems against adaptive adversaries

4.6 Non-Committing Encryption from Trapdoor Permutations with Invertible
Domain Sampling 177

because of the rewinding needed to simulate the proofs. However, in this protocol, it happens
to be the case that the simulator never needs to prove a statement for which it doesn’t know a
witness, and so rewinding is not needed. The simulator will always provide correct inputs for
honest parties and as discussed above, it does not matter that a cheating verifier can learn
the witnesses — the witnesses are the trapdoors, which the cheating verifier can already
learn by cheating in the OTs. Furthermore, the simulator does not have to extract witnesses
(which would again require rewinding): We are only interested in membership soundness as
the witnesses can be learned by cheating in the OT.

4.6.0.2 The Twist

Having executed all the OTs, R would in the protocol from [CFGN96] compose the permuta-
tions from honest parties to obtained two permutations, one with a known trapdoor and one
with an unknown trapdoor. This requires and produces common-domain trapdoors. Instead
of composing we simply concatenate.

Let g1
c , . . . , gl

c be the permutations that was correctly received and for which the cor-
responding trapdoor was received. From these permutations R defines a permutation fc,
where fc(x1, . . . , xl) = (g1

c (x1), . . . , gl
c(xl)). Let B be a hard-core predicate [GL89] for the

family of trapdoor permutations used. Then we use the hard-core predicate B(x1, . . . , xl) =⊕l
i=1 B(xi) for fc for encryption using the construction in [BG85].

4.6.0.3 Using the Key Generation in Our Protocol

After an execution of the key generation protocol an honest receiver R has two public keys
where he knows the private key to exactly one of them, but where the adversary cannot tell
which one he knows. This is exactly the scenario that the first round in the πWTE creates.
Thus, the πWTE protocol can be run with the described protocol instead of oblivious index
generation.

4.6.0.4 The NCE Scheme in [CFGN96] also Needs Invertible Domain Sampling

Finally we argue that the protocol in [CFGN96] also needs invertible domain sampling. The
OT scheme used in [CFGN96] is from [GMW87] and proceeds as follows: The sender has
bits b0 and b1 and the receiver has a bit c. The sender generates an index and trapdoor (i, t)
for a family of trapdoor permutations and sends i to the receiver. The receiver computes
xc ← domi, yc ← fi(xc) and y1−c ← domi and sends (y0, y1) to the sender. The sender
returns (c0, c1), where cj = B(f−1

i (yj))⊕ bj and B is a hard-core predicate for fi. Obviously
this scheme has the desired properties. The simulator learns both bits by choosing both y0

and y1 as yj = fi(xj). Note however, that on corruption of the receiver the simulator must
show to the adversary random bits rc and r1−c such that rc looks as bits used to sample
xc (which is easy) and r1−c looks as bits used to sample y1−c (which is only possible if the
domain of f has invertible sampling). Therefore, the scheme in [CFGN96] based on trapdoor
permutations also needs invertible sampling of the domains of the trapdoors. This means
that trapdoor permutations with invertible domain sampling currently is the most general
assumption under which non-committing encryption is known to exist.

178 The Secure-Channels Model

Theorem 4.7 If there exists families of trapdoor permutations with invertible domain sam-
pling, in the sense of Definition 4.5 on page 174, then FSMT can be realized by an n-party
protocol secure against a adversary corrupting at most n− 1-parties.

c
h
a
p
t
e
r
5

Zero-Knowledge Proofs

Information is not knowledge.
— Albert Einstein

5.1 Universally Composable Zero-Knowledge Proofs of Mem-

bership

In this section we present an efficient protocol which realizes the functionality FZK-PM for
zero-knowledge proof of membership and realizes the functionality FZK-PK for proof of knowl-
edge with rewinding. Our notion of zero-knowledge proof of knowledge with rewinding basi-
cally generalizes the notion of concurrent zero-knowledge [DNS98] by Dwork, Naor and Sahai
to consider an adaptive adversary and considering being verifier for many provers at the same
time. Both generalizations give additional challenges with respect to simulating the internal
state of corrupted parties respectively extracting witnesses for interleaved proofs.1 Notice
that we do not claim that a realization of the ideal functionality FZK-PK proved secure using
rewinding composes concurrently (while preserving security). As discussed in Section 3.7
this is indeed most likely not the case. However, the functionality FZK-PK explicitly allows
to carry out many proofs at the same time. This means that any protocol realizing FZK-PK

will allow this too. Notice that a realization of FZK-PK could use some coordination between
proofs. This is a relaxation w.r.t the model in [DNS98], where all proofs are assumed to be
run independently.

The purpose of presenting the protocol is primarily to capture precisely the security of it
in a manner that will be used in all subsequent chapters, as to allow for more modular proofs.
In particular, our realization is by a known protocol by Damg̊ard [Dam00]. This protocol is
based on Σ-protocols, and it turns out to be a universally composable zero-knowledge proof
of membership when based on non-erasure Σ-protocols. The same protocol realizes FZK-PK

with rewinding. In the protocol we require that the length l of the challenges is such that 2l

1This last point can be stated as follows: Where as [DNS98] only consider preservation of zero-knowledge
under concurrent composition, we also consider the preservation of proof of knowledge under concurrent
composition. We later discuss why this is not property is not trivially guaranteed.

180 Zero-Knowledge Proofs

Protocol πΣ
DAM-ZK

The protocol runs with two partiesa, the prover P and the verifier V , in the Fcommit,prs
PRS -

hybrid model,b with P acting as the requester of the key of V for a trapdoor commitment
scheme commit — K will be the key and t the trapdoor — and the private reference string
s for the Σ-protocol.

activation:
When a party is activated for the first time, it request the commitment key and
private reference string for Σ of V and waits for output (K, s). Until this happens,
ignore all inputs.
Activated on (x, w) ∈ R (we drop the proof id’s pid in the presentation) the protocol
proceeds as follows:

1. The prover generates a← A(x, s, w; rA) for uniformly random bits rA.

2. The prover generates c← commitK(a; rc) and sends c to the verifier.

3. The verifier sends uniformly random e ∈ {0, 1}l to the prover.

4. The prover computes z ← Z(x, s, w, rA, e) and sends (a, rc, z) to the verifier.

5. The verifier accept iff c = commitK(a; rc) and B(x, s, a, e, z) = 1.

If the protocol is run as a proof of knowledge we require that V does not output (pid, b)
for any proof as long as there are ongoing proofs. For the n party version, we require
that no honest party outputs (pid, b) as long as any honest party has an on-going
proof!

aThe extension to n parties is trivial as all pairs of parties act independently
bHere we use commit, prs to denote the generator which generates a key for the commitment

scheme and runs the generator for the PRS prs of the Σ-protocol. Notice that by Definition 2.12 on
page 20 we are guaranteed statistical hiding and trapdoor opening for the keys of corrupted parties
even though they might not be random. This is a vital point.

Figure 5.1: The protocol πΣ
DAM-ZK.

is super-polynomial. The protocol proceeds as described in Fig. 5.1.2

Theorem 5.1 If commit is a trapdoor commitment scheme and Σ = (A, l, Z,B, hvs, rbs,

xtr, prs) is a non-erasure Σ-protocol with special membership soundness with private refer-
ence string prs and super-polynomial challenge space, for a relation R, then πΣ

DAM-ZK realizes
FR

ZK-PM in the Fcommit,prs
PRS -hybrid model. If the Σ-protocol has special knowledge soundness

with prs and the protocol is run as a proof of knowledge, then πΣ
DAM-ZK realizes FZK-PK with

rewinding in the Fcommit,prs
PRS -hybrid model.

Proof. To prove the first part of the claim, we construct an interface SDAM-ZK for the exe-

2In Fig. 5.1 the private reference string s is mentioned explicitly. For the rest of the chapter we only
mention s when we need it explicitly. In all other situation it will be implicitly present as x := (x, s).

5.1 Universally Composable Zero-Knowledge Proofs of Membership 181

cution IDEALF
commit,prs
PRS

FR
ZK-PM,SDAM-ZK,Z with an environment Z for which

Pr[IDEALF
commit,prs
PRS

FR
ZK-PM,SDAM-ZK,Z = ‘‘H FR

ZK-PM’’]
c≈0 .

In other words, let us assume that x ∈ L(R) for all honest parties and x ∈ S(R) for all
corrupted parties.

The simulator is given in Fig. 5.2 on the following page. This simulator is almost identical
to the simulator in [Dam00], but some modifications are introduced as to not use the trapdoor
t until the verifier is corrupted. It was not necessary to consider this issue in [Dam00] as
only static security was considered.

It is straightforward to prove that the simulation of the communication in the pro-
tocol is (statistically close to) perfect, using the properties of the non-erasure Σ-protocol
and the trapdoor commitment scheme. What remains to show is that the probability that

IDEALF
commit,prs
PRS

FR
ZK-PM,SDAM-ZK,Z halts with output ‘‘C FR

ZK-PM’’ is negligible. This comes down

to proving that SDAM-ZK only inputs (pid, 1) to FZK-PM if V was activated on (pid, x) and
x ∈ L(R).

When (pid, 1) is input on the SIT of FZK-PM it is always the case that a proof was accepted
by SDAM-ZK for the instance x in (pid, x). We prove that x ∈ L(R) in that case. We do the
proof of the second part of the theorem first, by proving that we can extend SDAM-ZK to a
rewinding simulator which can extract a witness and input (pid,w) to FZK-PK. We denote
it by SDAM-ZK

x.
When SDAM-ZK accepts a proof for (pid, x), then SDAM-ZK has just received a value

(pid, a, rc, z) for an activation on (pid, x) started while the prover was corrupted and where
c = commitK(a; rc) and B(x, a, e, z) = 1. Then SDAM-ZK

x proceeds as follows: It rewinds
the state of the simulation to the point where (pid, e) was sent by SDAM-ZK (on behalf of
the honest V) and sends a new random challenge e′ ∈ {0, 1}l. Formally SDAM-ZK

x outputs
(store, pid) just before sampling and sending the challenge e for a proof with proof id
pid. Rewinding then means outputting (rerun-from, pid). Then it runs until one of the
following three events occur: 1) A value (pid, a′, r′c, z

′) is received, 2) V is corrupted, or 3)
Z outputs a guess. It repeats this experiment with fresh e′ until the event 1) occurs and
c = commitK(a′; r′c) and B(a′, e′, z′) = 1. When this happens, if for the newly generated
(a′, r′c, z

′) we have that e 6= e′ and a′ = a, then we are done, as we know that x ∈ S(R) (by the
required IO restriction from Z) and we have computed a membership witness (x, a, e, z, e′ , z′)
from which we can then extract a witness using xtr — if not, then (x, a, e, z, e′, z′) is a value
which allows us to win in the game SKSΣ,prs,B′ (see Section 2.9) for an adversary B′ which
we describe below. Therefore, give up the simulation and output the break of the extractor
(x, a, e, z, e′, z′). If a′ 6= a, then SDAM-ZK

x gives up and outputs (c, a, rc, a
′, r′c), which is a

double opening of the commitment c. If e = e′ and a′ = a, then SDAM-ZK
x gives up too and

outputs ⊥.
Notice that during the reruns there might by other accepted proofs pid′. If this happens,

then we first have to extract witness for pid′ before we continue. In particular, we have to
stop before we observed one of the three specified conditions for stopping for the proof pid. If
we do not extract a witness for pid′ to input to FZK-PK, then FZK-PK outputs (pid′, 0), where

182 Zero-Knowledge Proofs

Interface SDAM-ZK

initialization:
Simulate Fcommit,prs

PRS as follows: For a corrupt verifier, receive (K, t) and (s, ts) from
Z and for a honest verifier, generate (K, t) and (s, ts) honestly. We will not use t
until V is corrupted and we never use ts, except to show to Z when the party is
corrupted. We will not mention s below, but use the convention that x := (x, s).

activation:
The honest verifier is always simulated according to the protocol. If a proof with proof
id pid is accepted from a corrupted prover, then SDAM-ZK simply inputs (pid, 1) to
FR

ZK-PM to make it output (pid, 1) to V .a

As long as the prover is honest each activation, on x ∈ L(R), is simulated as follows:

1. Generate a random challenge e ∈ {0, 1}l and generate (a, z) ← hvs(x, e; rhvs)
for uniformly random bits rhvs. Note that the internal state rA is not defined
yet.

2. Compute c = commitK(a; rc) for uniformly random bits rc and send c to the
verifier. If Z corrupts P after this round the simulator proceeds as follows: It
is given w such that (x, w) ∈ R (from the conversation between P and FR

ZK-PM)
and computes rA ← rbs(x, w, e, rhvs) and presents the internal state (rA, rc) to
Z. Note that a = A(x, w; rA) and c = commitK(a; rc) as desired.

3. If the verifier is honest it is simulated by sending the challenge e = e. If the
verifier is corrupted the simulator receives a challenge e ∈ {0, 1}l from Z.

4. We look at two cases:

(a) If the verifier is honest, then e = e and then the prover will send (a, rc, z)
as generated in the first round. If P is corrupted by Z after this round,
then the simulator proceeds as in Step 2 to simulate the internal state.

(b) If the verifier is corrupted, then except with negligible probability e 6= e and
we cannot proceed as above. Therefore the simulator generates (a, z) ←
hvs(x, e; rhvs). Since the verifier is corrupted we now start using the trap-
door t of K, which is used to compute rc such that c = commitK(a; rc).
Then send (a, rc, z) to the verifier. If P is corrupted by Z after this round
the simulator gets as input w such that (x, w) ∈ R. It then computes
rA ← rbs(x, w, e, rhvs) and presents the internal state (rA, rc) to Z.

aThis might of course also result in IDEAL
Fcommit,prs

PRS
FR

ZK-PM,SDAM-ZK,Z halting with output

‘‘C FR
ZK-PM’’. We return to that point later.

Figure 5.2: The interface SDAM-ZK for the proof of Theorem 5.1 on page 180.

the protocol would have output (pid′, 1) when the proof was accepted. Therefore Z will
catch us simulating, so the run after that will not be distributed as the first run, rendering
the rerunning useless. But, we cannot start extracting for pid′.3 Clearly this would start a

3The necessity to extract witnesses of proof accepted during the rewindings is what makes it none trivial to
maintain the proof of knowledge property under concurrent composition. In [DNS98] the case of maintaining
the zero-knowledge property under concurrent composition is treated and a comment is made to the effect

5.1 Universally Composable Zero-Knowledge Proofs of Membership 183

nasty regression. We could of course give up, output (rerun-from, pid) and try again until
one of the three specified conditions is observed for pid. It is however easy to construct a
scheduling of messages that would render that approach impossible.

The solution to this apparent problem is that if the protocol is run as a proof of knowledge,
then V does not output (pid, b) for any proof as long as there are ongoing proofs. This ensures
that from a challenge e is sent until one of the three specified conditions occur, no other proof
is accepted. So, if SDAM-ZK

x does not give up, then it always computes a witness to input
to FZK-PK to make it output (pid, 1) to V . It is therefore enough to prove that SDAM-ZK

x

is expected PPT and gives up only with negligible probability.
We prove the last claim first, assuming that the simulation with rewinding

IDEALx,Fcommit,prs
PRS

FR
ZK-PK,SDAM-ZK

x ,Z is expected PPT. If the simulation with rewinding is expected

PPT, then in particular the expected number of challenges e′ generated during the reruns is
bounded by a polynomial. Since 2l is required to be super-polynomial this means that the
probability that e′ = e for any of the challenges is negligible, if e is independent of the e′’s.
Since the sampling of e′ does not depend on e and the reruns are independent of e, because
e was originally sampled independently of the simulation after the configuration was stored,
this is indeed the case. Therefore, if there is a non-negligible probability that SDAM-ZK

x can-
not compute a witness, then with a non-negligible probability SDAM-ZK

x outputs a double
opening under commit or a break of the extractor. Since the reruns performed by SDAM-ZK

x

are stopped if V is corrupted, SDAM-ZK
x never uses the trapdoor of K or s up till the double

opening is output. This means that from the simulation with rewinding we can construct an
expected PPT algorithm which takes K and s as input, runs with those keys as the keys K

and s used by the honest V , and outputs a double opening under K or a break of the ex-
tractor with non-negligible probability, a contradiction to either the computational binding
of the trapdoor commitment scheme or the computational special knowledge soundness of Σ
with private reference string prs.

Notice that the reduction to the computational binding of the commitment scheme (or
the computational special knowledge soundness) is expected PPT, as it involves rerunning for
an expected polynomial number of times. The definitions of security requires the adversary
to be (strict) PPT. We can however deal with this as follows: The success of the constructed
adversary, let us call the adversary B, is bounded away from 0 by some polynomial q(k) on
infinitely many k. Since B is expected PPT there exists a polynomial p(k) bounding the
expected running time of B(k). Let B′(k) be the adversary which runs B(k) for 2d 1

q(k)p(k)e
steps and outputs as follows: If B(k) outputs within said number of steps, then use the
output of B(k). Otherwise output a dummy value. Let r(k) be the probability that B(k) do
not output in 2d 1

q(k)p(k)e steps. Since r(k) · 2d 1
q(k)p(k)e ≤ p(k) it follows that r(k) ≤ 1

2q(k),

that proof of knowledge is trivially maintained. Though the authors of [DNS98] do not formalize what is
meant by this, the comment shows that what is considered is not the notion that we consider here, where also
witnesses for all proofs accepted in the rewindings must be produced by the simulator. That the stronger
notion considered here is indeed the desired notion in some contexts is demonstrated by Chapter 8, where
πDAM-ZK is used for proving plaintext knowledge. This is done in a manner such that the witnesses (plaintexts)
are needed to simulate the outer protocol which πDAM-ZK is run as a part of. Therefore, to rewind and rerun
πDAM-ZK in the particular context one has to produce the witnesses of proofs accepted during the rerunning,
to be able to rerun the outer protocol.

184 Zero-Knowledge Proofs

so the probability that B′(k) outputs a double opening or break of the extractor is at least
q(k)− 1

2q(k) = 1
2q(k) for infinitely many k, and 1

2q(k) is a polynomial.
To prove that the simulation with rewinding runs in expected PPT we define a number of

events and corresponding probabilities associated to the main simulation done by SDAM-ZK.
We divide the execution into periods. Period l is defined to begin with the simulator SDAM-ZK

sending the l’th challenge to Z, and the period ends when the environment replies with a
correct value (a, rc, z) or the entire execution halts because Z terminates, whatever comes
first.

Let El denote the event that the l’th challenge is answered correctly by the environment
— and that the reruns begin. Let (s, l) denote the event that the execution is in state s when
the l’th challenge is sent by SDAM-ZK. Let Tl(s) be the expected running time of period l

given that it is in state s at the beginning of period l, let Tl,−(s) denote the expected running
time of period l given that the l’th challenge is not answered correctly by the environment,
and let Tl,+(s) denote the expected running time of period l given that the l’th challenge
is answered correctly by the environment. Given that El occurs the expected time spend
rerunning for the l’th challenge is no more than∑

s

Pr[(s, l)|El]

(∞∑
i=1

(1− Pr[El|(s, l)])i−1 Pr[El|(s, l)]((i − 1)Tl,−(s) + Tl,+(s))

)

=
∑

s

Pr[(s, l)|El] Pr[El|(s, l)]
1− Pr[El|(s, l)]

∞∑
i=1

(iTl,−(s) + (Tl,+(s)− Tl,−(s)))(1 − Pr[El|(s, l)])i

=
∑

s

Pr[(s, l)|El]
(

Tl,−(s)
Pr[El|(s, l)]

+ (Tl,+(s)− Tl,−(s))
)

=
∑

s

Pr[(s, l)|El]
Pr[El|(s, l)]

((1− Pr[El|(s, l)])Tl,−(s) + Pr[El|(s, l)]Tl,+(s))

=
∑

s

Pr[(s, l)|El]
Pr[El|(s, l)]

Tl(s) =
1

Pr[El]

∑
s

Pr[(s, l)]Tl(s) =
1

Pr[El]
Tl ,

where the second equation follows by a standard series.
This means that the expected running time for each challenge l is Pr[El](1

Pr[El]
Tl) = Tl.

In particular it will be smaller than the expected running time T of IDEALF
commit,prs
PRS

FR
ZK-PM,SDAM-ZK,Z .

Since Z is required to be (strict) PPT the total number of proofs is bounded by a polynomial
p(k), and so the total expected running time is bounded by p(k)T , which is polynomial.

To prove the first part of the theorem it is then enough to observe that we proved above
that if SDAM-ZK could rewind then it could compute a membership witness for each accepted
proof. By definition this implies that x ∈ L(R) as we know that x ∈ S(R). The reason why
we do not need the protocol to be run as a proof of knowledge for the first result is that in
the reruns — which are run off-line for the sake of proof — we do not need witnesses for
proofs accepted in the rewinding, we just input (pid, 1) to FZK-PM as SDAM-ZK would have
done, and the fact that we could have extracted a witness guarantees that this is sound. 2

Arguing the soundness of the interface SDAM-ZK in the above proof we had to argue that
if it input (pid, 1) to FZK-PM, then pid is the proof id for a true statement. We did this

5.1 Universally Composable Zero-Knowledge Proofs of Membership 185

by arguing that when a proof from a corrupted party is accepted, it holds that if we could
rewind the entire execution of πΣ

DAM-ZK and rerun it, then we could extract a witness for
the statement. This is somewhat stronger than just proving that only true statements are
accepted. This property comes in handy later on, so we give it a name. We say that πΣ

DAM-ZK

is a zero-knowledge proof of membership with off-line extraction. We call this property off-line
extraction to oppose it to on-line extraction, where the interface can extract a witness for all
accepted proofs during the simulation. Notice that an interface with on-line extraction can
be used to prove that a protocol realizes FZK-PK.

In the following we let SDAM-ZK denote both the simulator for IDEALF
commit,prs
PRS

FR
ZK-PM,SDAM-ZK,Z

and the rewinding simulator for IDEALx,Fcommit,prs
PRS

FR
ZK-PK,SDAM-ZK

x ,Z . Which is meant will always be
clear from the context. Assume that a Σ-protocol Σ only has special knowledge soundness

relative to some I. When running IDEALx,Fcommit,prs
PRS

FR
ZK-PK,SDAM-ZK,Z for Σ it might then happen that

a membership witness is computed, but xtr cannot cash it in for a witness. We will however
recall for later use that if SDAM-ZK fails, then at least it can present us with a break of the
extractor xtr of Σ. We capture this as a corollary.

Corollary 5.1 Under the conditions on Σ in Theorem 5.1 on page 180, except possibly that
Σ has soundness relative to I, if

Pr[IDEALF
commit,prs
PRS

FR
ZK-PM,SDAM-ZK,Z = ‘‘H FR

ZK-PM’’]
c≈0 ,

then
IDEALx,Fcommit,prs

PRS

FR
ZK-PK,SDAM-ZK,Z

c≈ IDEALF
commit,prs
PRS

FR
ZK-PM,SDAM-ZK,Z ,

or with a non-negligible probability IDEALx,Fcommit,prs
PRS

FR
ZK-PK,SDAM-ZK,Z outputs a break of the extractor

of Σ, where the instance of the break is one of the instances input by Z.4

Proof. Assume first that IDEALx,Fcommit,prs
PRS

FR
ZK-PK,SDAM-ZK,Z outputs break of the extractor xtr for one

of the instances input by Z with a non-negligible probability. Then we are done. If not,

consider the execution IDEALx,Fcommit,prs
PRS

FR
ZK-PK,SDAM-ZK,Z . It is defined by running a main copy of

IDEALF
commit,prs
PRS

FR
ZK-PM,SDAM-ZK,Z which defines the output of IDEALx,Fcommit,prs

PRS

FR
ZK-PK,SDAM-ZK,Z if it reaches ter-

mination. Each time a proof is accepted, some reruns are done. Since Z is not allowed to
terminate by SDAM-ZK in these reruns (Z terminating is exactly one of the criteria for rerun-
ning) and SDAM-ZK does not input to FR

ZK-PK in the reruns, the only way that the reruns can
change the output distribution is that SDAM-ZK gives up or that Z violates the IO behavior

of FR
ZK-PK (which makes IDEALx,Fcommit,prs

PRS

FR
ZK-PK,SDAM-ZK,Z terminate with output ‘‘H FR

ZK-PK’’).
We have assumed that SDAM-ZK does not give up, except with negligible probability. It

4It is not a mistake that we do not require Pr[IDEAL
x,Fcommit,prs

PRS
FR

ZK-PM,SDAM-ZK,Z = ‘‘H FR
ZK-PM’’]

c≈0 in the

premise. It is part of the result.

186 Zero-Knowledge Proofs

is therefore enough to prove that Pr[IDEALx,Fcommit,prs
PRS

FR
ZK-PK,SDAM-ZK,Z = ‘‘H FR

ZK-PM’’]
c≈0. We

claim that this follows from Pr[IDEALFcommit,prs
PRS

FR
ZK-PM,SDAM-ZK,Z = ‘‘H FR

ZK-PM’’]
c≈0. This is so

because the view Z has of each rerun in IDEALx,Fcommit,prs
PRS

FR
ZK-PK,SDAM-ZK,Z is identical to the view it

has in IDEALF
commit,prs
PRS

FR
ZK-PM,SDAM-ZK,Z , as fresh random bits are used for each rerun. Therefore the

probability of any event5 in IDEALx,Fcommit,prs
PRS

FR
ZK-PK,SDAM-ZK,Z is at most a polynomial factor higher

than in IDEALF
commit,prs
PRS

FR
ZK-PM,SDAM-ZK,Z , the factor being given by the number of reruns. Since a

polynomial times a negligible function is a negligible function, the claim follows. 2

By inspection of the proof of Theorem 5.1 on page 180 we see that rbs is only used
when a party is corrupted after simulating a proof. Since all parties are corrupted before the
protocol execution when run under IOstatic it follows that rbs is never used by the simulator,
so the Σ-protocol does not need to be non-erasure.

Corollary 5.2 If commit is a trapdoor commitment scheme and Σ = (A, l, Z,B, hvs, xtr, prs)
is a Σ-protocol with special membership soundness with private reference string prs and
super-polynomial challenge space, for a relation R, then πΣ

DAM-ZK realizes FR
ZK-PM under

IOstatic. If the Σ-protocol has special knowledge soundness with prs and the protocol is run
as a proof of knowledge, then πΣ

DAM-ZK realizes FZK-PK with rewinding under IOstatic.

Corollary 5.3 Under the conditions on Σ in Theorem 5.2, except possibly that Σ has sound-
ness relative to I, if

Pr[IDEALF
commit,prs
PRS

〈FR
ZK-PM,IOstatic〉,SDAM-ZK,Z ∈ ‘‘H FR

ZK-PM’’ ∪ ‘‘H IOstatic’’]
c≈0 ,

then
IDEALx,Fcommit,prs

PRS

〈FR
ZK-PK,IOstatic〉,SDAM-ZK,Z

c≈ IDEALF
commit,prs
PRS

〈FR
ZK-PM,IOstatic〉,SDAM-ZK,Z ,

or with a non-negligible probability IDEALx,Fcommit,prs
PRS

〈FR
ZK-PK,IOstatic〉,SDAM-ZK,Z outputs a break of the

extractor of Σ, where the instance of the break is one of the instances input by Z.

5Even one that cannot be detected in PPT.

c
h
a
p
t
e
r
6

Threshold Function Sharing

If liberty and equality, as is thought by some, are chiefly to be
found in democracy, they will be best attained when all persons

alike share in government to the utmost.
— Aristotle

6.1 Introduction

In this section we are going to introduce some well-known techniques from threshold cryp-
tography and prove that they are secure in the UC framework. Assume that we have some
function family (gen, f), where gen generates a public key pk and a secret key sk and f for
each secret key defines a PPT computable function fsk. A simple function sharing scheme
for (gen, f) for n parties is basically made out of a key sharing algorithm, an algorithm for
generating evaluation shares and an algorithm for combining evaluation shares. For a key
pair (pk, sk) ∈ gen the key-sharing algorithm will break sk up into n key shares sk1, . . . , skn.
There is a threshold t associated to the scheme, with the property that if one is given t of
the key shares ski, then one has absolutely no information about sk, but if one is given t + 1
key shares, then one can compute or, as it is called, reconstruct sk. This means that the
key is perfectly hidden from an adversary which can corrupt at most t parties and that if at
least t + 1 parties stay honest, then the key will not be lost. But we also want to use the
key. We want that if at least t + 1 parties are honest and they agree on evaluating fsk on an
input x ∈ {0, 1}∗, then they will all learn fsk(x). This should be done without revealing sk,
so they cannot just reconstruct sk among them. If one of them is under the control of the
adversary, or one of them is later broken into, that would reveal the key to the adversary.
This is what the algorithm for generating evaluation shares is for. It takes as input ski and
x and computes a so-called evaluation share yi = fski

(x). These evaluation shares have the
property that given t + 1 of them from distinct parties, and for the same x, one can com-
pute y = fsk(x) efficiently. Therefore the parties can compute y = fsk(x) by all computing
yi = fski

(x) and exchanging shares. Again t+1 honest parties are enough. These evaluation
shares have the salient property that given the result y = fsk(x) it is possible to compute all
n evaluation shares y1 = fsk1(x), . . . , yn = fskn(x), while knowing the key shares ski for only

188 Threshold Function Sharing

t parties! Since the result and t key shares is what we allow the adversary to know — we
assumed that t shares contain no information about sk and that all parties learn y = fsk(x)
— this shows that given the information the adversary is entitled to it can compute all other
values that it sees on its own. Intuitively this means that the above approach to evaluating
fsk is zero-knowledge relative to its task.

Depending on what we let fsk be we obtain one of several standard objects from threshold
cryptography. If sk is a signature key and pk a verification key, we have a threshold signature
scheme, where it takes t + 1 parties to sign and where t parties cannot sign on their own
— unless the signature scheme itself is insecure of course. Threshold signature schemes play
a prominent role in Chapter 7 in realizing Byzantine agreement efficiently. If we let sk be
a decryption key and let pk be an encryption key, then we have a threshold encryption
scheme, which play a prominent role in Chapter 8 and Chapter 10. If we let sk be the key
for a pseudorandom function, in which case pk has no role, we get a threshold pseudorandom
function, which can e.g. be used to realize efficient common coin-flip. We remark that
threshold signatures and threshold encryption schemes can be realized without threshold
computing any given function. Indeed any threshold realization of ElGamal signatures would
not realize a function as ElGamal signatures are inherently probabilistic. Since we will not
need to share any probabilistic functions in the following chapters we stick to the framework
of simple function sharing.

In this chapter we present two techniques in detail, a threshold RSA technique by Shoup
[Sho00] and a threshold pseudorandom function by Naor and Reingold [NR97]. Furthermore,
as a contribution we show how to use the pseudorandom function by Naor and Reingold to
efficiently provide the parties in a network with a shared source of randomness. threshold
pseudorandom function in its original form is not efficient.

6.1.1 Threshold Signature Schemes

The field of threshold cryptography was founded by Desmedt [Des87] and in [DF89] Desmedt
and Frankel presented the first threshold signature scheme, for ElGamal signatures. The
scheme was however not secure against an active adversary. Later Gennaro, Jarecki, Krawczyk
and Rabin [GJKR96b,GJKR96a] presented DSS and RSA threshold signature schemes secure
against an active adversary. Later again Shoup [Sho00] presented a different threshold RSA
signature scheme. We have several reasons for choosing this scheme to use in the following,
one being that it is a simple function sharing scheme, which allows for a simple presentation,
and others being mentioned below. Notice that in principle any threshold scheme could
be realized using a general MPC protocol like [GMW87]. Such a solution is however very
inefficient compared to the above mentioned specialized protocols.

6.1.1.1 Adaptive Security

All the above mentioned schemes are only secure against a static adversary. In [CGJ+99]
Canetti, Gennaro, Jarecki, Krawczyk and Rabin presented threshold signature schemes which
are adaptively secure. These signature schemes are presented in the so-called single inconsis-
tent party framework and it can be verified that they are, therefore, also adaptively secure

6.1 Introduction 189

realizations of FT-sig in the UC framework. We introduce the single inconsistent party frame-
work in Chapter 10, and if it is not already so, by the time we reach Lemma 10.1 on page 307
it will be trivial that the threshold signature schemes in [CGJ+99] are adaptively secure re-
alizations of FT-sig in the UC framework. However, as mentioned above, we will primarily be
interested in threshold signature schemes for realizing Byzantine agreement efficiently. Since
the techniques in [CGJ+99] make extensive use of a broadcast channel, we can therefore not
use these schemes. In fact, the unfortunate situation seems to be that all adaptively secure
threshold schemes make extensive use of a broadcast channels, except of course the trivial
scheme presented in Section 3.8.6. However, this scheme has signatures of size kt, which
invalidates all applications with the purpose of efficiency if t is large. Notice however that
even this scheme might be efficient for a very small t. It is an interesting open problem to
construct adaptively secure efficient threshold signature schemes without using broadcast.

Even though we have no realization of FT-sig which is at the same time efficient and
adaptively secure, in the remaining chapters we will still prefer the threshold signature func-
tionality FT-sig over Fsig. Every time we use signatures as part of an adaptively secure
protocol this will then leave us with a choice when we realize FT-sig. We can realize it using
e.g. the statically secure threshold signature scheme from [Sho00] and obtain a composed
protocol which is only statically secure, or we can realize FT-sig using the trivial scheme in
Section 3.8.6 and maintain adaptive security, at a considerable loss of efficiency. The reason
that we prefer FT-sig is that in none of the contexts where we use signatures can we obtain
anything with respect to efficiency by exploiting that we are using individual signatures.
The use of individual signatures through the use of the trivial threshold signature realization
always gives us the optimal solutions, as far as our understanding of e.g. the Byzantine
agreement problem stretches. We will not repeat this discussion each time we use FT-sig.

The above is by far a thorough survey on the work on on threshold signature schemes,
for such see e.g. [Des97,CGJ+99,Sho00].

6.1.2 Threshold Pseudorandom Functions

The notion of pseudorandom function (Definition 2.4 on page 13) was introduced by Gol-
dreich, Goldwasser and Micali [GGM86] and the notion has found innumerable applications.
Remember that a pseudorandom function family is a function F taking as input a key K

and an element x, we write FK(x), where for a random key the output of FK cannot be
distinguished from uniformly random values if one does not know the key.

One immediate application of pseudorandom functions is using them for implementing the
random oracle model (Section 3.9): Consider a protocol setting with n parties. A random
oracle with domain D can be thought of as an ideal functionality. After a party inputs
(evaluate, x), where say x ∈ {0, 1}∗, the functionality returns a uniformly random value
rx ∈ D to the party, and uses rx for all queries on x. This functionality defines a uniformly
random function from {0, 1}∗ to D. Numerous protocol constructions are known that can
be proved secure assuming that a random oracle is available. However, any implementation
of such a protocol must also provide an implementation of the oracle. As discussed in
Section 3.9, in practice, a hash function is often used to replace a random oracle, but then
the implementation is only secure if an adversary can do no better with the hash function

190 Threshold Function Sharing

than he could with the oracle. This is something that in general cannot be proved, but must
be a belief based on heuristics — in fact, as discussed in Section 3.9, for some protocols, this
belief is always wrong.

In contrast, pseudorandom functions can be used to implement random oracles without
loss of security. This can be done by generating K at the beginning of the protocol and letting
rx = FK(x) when rx is needed. It is however clearly necessary that no party should know the
key K, since the output of a pseudorandom function only looks random to parties who do
not have the key. Therefore the key — and therefore also the ability to evaluate the function
— must be distributed among the parties. We are going to realize a pseudorandom function
which allows for particular efficient use in many contexts. The key is a prime Q, where
P = 2Q + 1 is also a prime, a random value x from the subgroup of quadratic residues QP ,
along with 2l random values {αj,b}j=1,...,l,b=0,1 from ZQ. The function family maps from the
set of strings of length at most l to QP , and given σ = (σ1, . . . , σm) ∈ {0, 1}≤l, the output is
x

Qm
i=1 αi,σi mod P . In Section 6.6, we prove that this function family is pseudorandom under

the DDH assumption.

Using a simple function sharing scheme for evaluating the exponentiations x 7→ xα mod
P , with α being the secret key, this pseudorandom function can be realized with communi-
cation complexity O(ln2k) bits per evaluation, where k is the security parameter (for each
exponent each party sends to each other party k bits). However, if used correctly, in many
uses the communication complexity will be O(n2k) bits per evaluation. The clue is that
the domain of the function is {0, 1}≤l. Therefore one can obtain an efficient solution by
always evaluating on strings σ = σ′|b, where b ∈ {0, 1} and where we already evaluated on
σ′. Thereby each evaluation will only cost one distributed exponentiation. In particular, this
can be used to implement a coin-flip protocol, which allows the parties to learn a common
random value in each round.

6.1.2.1 Related Work

The coin-flip protocol described above is from [Nie02b] and is the currently most efficient coin-
flip protocol for the standard model. A protocol with the same communication complexity
was proposed by Cachin, Kursawe and Shoup in [CKS00], but the security of this protocol
relies on the random-oracle assumption, an assumption that we would like to avoid, especially
when, as we demonstrate here, the assumption is not necessary.

Also Canetti and Rabin [CR03] considers universally composable protocols for coin-flip
which does not rely on random oracles. Our protocol is more efficient than their protocols,
but as opposed to their protocols it is only statically secure. Our protocol meets the lower
bound proved in [CR03].

Sharing pseudorandom functions has also been considered by Micali and Sidney [MS95].
Their protocol is however only efficient for a small number of parties. The notion of ver-
ifiable pseudorandom functions was introduced by Micali, Rabin and Vadhan [MRV99] and
Dodis [Dod03] presented the first efficient realization of a distributed verifiable pseudorandom
function.

6.2 Distributed Function Evaluation 191

6.2 Distributed Function Evaluation

We present a simple framework for distributed function evaluation. The section has two
purposes. First it introduces multiparty computation in a simple setting and in a very
crisp manner it further develops the quintessential idea behind our model of security, that
of simulating a protocol given the information one is entitled to. Besides this the section
introduces a functionality, which we will be using a lot, along with a realization of it using
a simple function sharing scheme.

We introduce the concept of distributed function evaluation. We assume that we are given
a function family (gen, f), where gen is a PPT generator which on input k generates a pair
of values (pk, sk) ← gen(k) called the public key and the secret key and f is function which
can be computed in PPT. We could also consider letting let f take some randomness as
input. We will not need this is the presentation, so we let f be deterministic for simplicity.
The goal is to give a protocol for distributed evaluation of fsk. We want to distribute sk

between n servers, each of them receiving a secret share svi, in such a way that sk is kept
secret, while the servers can cooperate to evaluate fsk on any point x. The value pk is
given to all parties to allow them to compute fpk, which will typically be the inverse of fsk.
The function fpk might however be arbitrary. Such a protocol has two so-called thresholds
associated to it, the construction threshold c and the corruption threshold t. The construction
threshold is basically the number of honest parties which is needed in order for the protocol
to guarantee termination. The corruption threshold is the number of corrupted parties which
can be tolerated without leaking any information about the secret key.

We require of the protocol for distributed evaluation of f that it is zero-knowledge relative
to its task, namely that when it is invoked to compute y = fsk(y), then only y is revealed.
In particular, sk is kept secret. It turns out that this is not always obtainable efficiently.
We might allow the protocol to leak some insignificant information besides y. So to say
allow the corrupted parties to learn more information than the honest parties, as long as it
is not harmful for the application of the protocol. We call this information the allowable side
information. We therefore let gen and f be of the following forms: (pk, sk, sk0) ← gen(k)
and (y, y0) ← fsk(x), where sk0 and y0 is the extra information learned by the corrupted
parties. The functionality is given in Fig. 6.1 on the following page.

The extra information sk0 and y0 is allowed to leak to allow for more efficient implemen-
tations, or implementations at all, but should of course be of a form such that it does not
compromise the usability of the functionality. If e.g. sk0 = sk, we would hardly have any
use of Fgen,f,c

thresh . In Section 6.3.3 we will give an example of a function which we only know
how to distribute efficiently if we allow some side information.

The termination conditions of the evaluation command deserves a few comments. We will
be using such ideal functionalities in synchronous protocols. Therefore it seems unfortunate
that the evaluate does not guarantee that the honest parties terminate in the same round. The
current formulation is chosen because it allows to use the functionality in more protocols and
because the parties can enforced simultaneous termination if desired. If the honest parties
can guarantee to input in the same round, then they can simply wait for r rounds before
they continue. At this point they are guaranteed that all other honest parties are ready to
continue too. Furthermore, we do not guarantee termination if c ≥ n − t. The reason for

192 Threshold Function Sharing

Functionality Fgen,s,c
thresh

The functionality runs with parties P1, . . . , Pn and is parametrized by a key generator
gen and a construction threshold 0 < c ≤ n. Furthermore it is parametrized by round
complexity r for evaluations. All inputs to the functionality is revealed on the SOT. The
functionality proceeds as follows:

key generation:
If in some round all honest parties input init, then generate (pk, sk, sk0)← gen(k)
and output (pk, sk0) on the SOT. In a round determined by the adversary, output
pk to all parties.

evaluation:
If in some round any honest party inputs (eid, x), where eid ∈ {0, 1}∗ is an evaluation
id and x ∈ {0, 1}∗, then compute (y, y0)← f(x) and output (eid, i, y, y0) on the SOT,
and in the first round where (eid, i) is input on the SIT, output (eid, y) to Pi.
If n − t ≥ c and if in some round c honest parties have input (eid, x), then output
(eid, y) to all honest parties no later than after r rounds, i.e. behave as if the input
(eid, i) is input on the SIT for all honest Pi after r rounds.

incorrect inputs:
If in the first round were an honest party inputs a non-trivial value some honest party
do not input init, then break down. Also break down if an honest party inputs init
twice or uses an evaluation id eid twice.

Figure 6.1: The threshold functionality for evaluating a function f with construction thresh-
old c.

this of course is that n − t is the maximal number of parties which are guaranteed to be
honest and participating, and c is the number of participating parties needed to guarantee
construction. If therefore c ≥ n−t, clearly the adversary can always make the protocol hang.

Notice that the input to evaluation is x ∈ {0, 1}∗. This is done for simplicity. If f

has some domain where the input is required to be in, the parties can simply extend f to
some dummy value, ⊥ say, outside this domain and realize evaluations on such points by
just outputting ⊥. If the domain of f cannot be recognized in PPT, then one would have
to extend the functionality with an IO restriction. Since we know of now application of
threshold function sharing requiring this, it has been avoided for simplicity. We will look at
realizations of Fthresh of a particular form described now.

Definition 6.1 We call (SingleToThresh, sf,R,Σ,Combine) a simple function sharing scheme
if SingleToThresh and Combine are PPT algorithm, sf is a PPT function, R is a PPT binary
relation, Σ is a Σ-protocol for R, and the following hold:

key sharing:
The component SingleToThresh is an algorithm for sharing the secret key between the
servers. It is given as input a key (pk, sk, sk0) ∈ gen and a construction threshold
c and outputs a value (pv, sv1, . . . , svn) = SingleToThresh(pk, sk, sk0), where pv is a
public value and svi is the secret value of server Pi.

6.2 Distributed Function Evaluation 193

evaluation sharing:
The component sf is a function which takes as input pv and svi, an element x ∈ {0, 1}∗
and outputs an evaluation share yi = sf(pv, svi, x), where we again assume that sf is a
function for simplicity.

The use of this function will be that each server computes yi = sf(pv, svi, x) and sends
yi to all other servers. The evaluation shares will then have the property that given c

of them one can compute y = fsk(x) using the function Combine, which we return to
below.

share verification:
We are considering a setting where some servers might be corrupted. Therefore some of
the shares sent by the servers might be incorrect. It is essential for a server to be able
to root out such evaluation shares, so that they do not enter the computation of y. This
is the purpose of R and Σ. The component R is for verifying that an evaluation share
was computed correctly and Σ is a Σ-protocol for R with special membership soundness.

We require that when yi = sf(pv, svi, x), then ((pv, x, i, yi), svi) ∈ R. Where
((pv, x, i, yi), svi) ∈ R basically expressed that yi is a correctly computed evaluation
share for server i and for the secret key corresponding to the public value pv. The in-
tended use is that after Pi has sent yi to Pj , then Pi gives a proof to Pj using Σ and
the witness svi. The receiver Pj uses the instance (pv, x, i, yi). As usual we let L(R) be
the set of (pv, x, i, yi) for which there exists svi such that ((pv, x, i, yi), svi) ∈ R.

The Σ protocol is allowed to have special soundness relative to the key being randomly
generated as in key sharing and the Σ-protocol is allowed to be a private reference string
Σ-protocol.

share combining:
The component Combine allows to take c correct evaluation shares for the same input
point x and construct the output y = fsk(x). We require that if one has (pv, x, i, yi) ∈
L(R) for i ∈ C, where |C| = c, then fsk(x) = Combine({yi}i∈C).

We now show how these components are combined into a protocol for realizing Fgen,c
thresh.

The protocol will run in the hybrid model with a functionality which distributes the key
between the parties. Nothing of course prevents one from realizing this functionality and
then plugging in the realization using the composition theorem. The functionality is given
in Fig. 6.2 on the next page. It should not require any comments. We present the realization
in the hybrid model with the ideal functionality FR

ZK-PM, which we realized in Chapter 5.
One can always plug in the realization from that chapter to obtain a realization for the
(Fgen,c

thresh,Fcommit,prs
PRS)-hybrid model, where commit is a trapdoor commitment scheme and

prs is the possible private reference string for the Σ-protocol for share verification. The
realization is given in Fig. 6.3 on page 195.

The realization follows the intuition given above for the various components. The protocol
is clearly correct, and this is of course very fine. But we are equally interested in secrecy or
zero-knowledge. We want to prove that the protocol do not leak any information except for
what is it designed for, which is f(x). This is what is modeled by the ideal functionality in

194 Threshold Function Sharing

Functionality Fgen,c,SingleToThresh
key-dist

The functionality runs with parties P1, . . . , Pn and is parametrized by a key generator
gen, an algorithm SingleToThresh for sharing a secret key and a construction threshold
0 < c ≤ n.

generate:
If all honest parties inputs init in the same rounds, then run (pk, sk, sk0)← gen(k)
and (pv, sv1, . . . , svn) ← SingleToThresh(pk, sk, sk0) and output pv and svi, for all
corrupted parties Pi, on the SOT. If Pi is corrupted later, then output svi on the
SOT. In a round specified by the adversary, output (pv, svi) to each Pi.

incorrect inputs:
If in the first round were an honest party inputs a non-trivial value some honest party
do not input init, then break down. Also break down if an honest party inputs init
twice or any other value than init.

Figure 6.2: The functionality Fkey-dist for distributing a threshold key for gen, with con-
struction threshold c, shared using SingleToThresh.

Fig. 6.1 on page 192 only outputting f(x) — again except for the allowable side information
given on the SOT.

We describe two criteria which allow us to argue that the protocol in Fig. 6.3 on the
facing page is a realization of Fgen,f,c

thresh . We assume that there exist two PPT algorithms
Skeydist and Seval, called the key distribution simulator respectively the evaluation simulator.
The existence of these algorithms is used to argue that the communication in the protocol
contains no information extra to what the protocol is allowed to leak, which is pk and sk0

in the key generation and y and y0 in an evaluation. Besides this the corrupted parties of
course see their own svi values. We require that all other public values can be generated
given just those said.

Definition 6.2 We say that a simple function sharing scheme (SingleToThresh, sf,R,

Σ,Combine) is statistically secure for corruption threshold t if there exist PPT algorithms
Skeydist and Seval for which the following hold:

key distribution simulation:
The algorithm Skeydist takes as input (pk, sk0, C), where C ⊆ [n] is a set with |C| = t

which denotes the indices of the corrupted parties. The output is (pv, {svi}i∈C) ←
Skeydist(pk, sk0, C).

We require that if we generate values as follows

(pk, sk, sk0)← gen(k)

(pv, {svi}i∈C)← Skeydist(pk, sk0, C) ,

then the distribution of the value (pk, pv, {svi}i∈C) is statistically close to the distribu-
tion of (pk, pv, {svi}i∈C) when the values are generated as

(pk, sk, sk0)← gen(k)

(pv, sv1, . . . , svn)← SingleToThresh(pk, sk, sk0) .

6.2 Distributed Function Evaluation 195

Protocol πgen,f,c
thres

The protocol runs in the (FR
ZK-PM,Fgen,c,s

key-dist)-hybrid model with parties P1, . . . , Pn and is
parametrized by a generator gen and a construction threshold 0 < c ≤ n. We assume that
FR

ZK-PM has a round complexity of r − 1 per proof. Party Pi proceeds as follows:

key generation:
On input init the party Pi inputs init to FR

ZK-PM and Fgen,c,SingleToThresh
key-dist and

waits until FR
ZK-PM has output ready and Fgen,SingleToThresh,c

key-dist has output (pk, pv, svi).
Then output pk.

evaluation:
1. On input (eid, x) the server Pi computes the evaluation share yi ← sf(pv, svi, x)

and sends (eid, x, yi) to all parties.

2. In the next round Pi then inputs ((eid, i), Pi, (pv, x, i, yi), svi) to FR
ZK-PM.

3. When Pi receives a message (eid′, x′, y′j) from Pj , then Pi inputs
((eid′, j), Pj , (pv, x′, j, yj)) to FR

ZK-PM and waits for an output of the form
(eid′, b). If b = 1, then Pi adds (j, y′j) to a set Shareseid′,x′ , if there was
not already a pair of the form (j, y′′j) in Shareseid′,x′ . These sets are initially
all empty.
If during this |Shareseid′,x′ | = c, then let {yj}j∈I be the evaluation shares in
Shareseid′,x′ and then output (eid, Combine({yj}j∈I).
Notice that if FR

ZK-PM outputs (eid′, 1), then (pv, x′, j, yj) ∈ L(R) by the
share verification property. So, we will always without failure have that
Combine({yj}j∈I) = fsk(x′), by the share combining property.

Figure 6.3: The threshold protocol for key generator gen, function f and construction
threshold c.

And this should be true for all C with |C| = t.

The existence of Skeydist basically says that the values seen by t (corrupted) parties could
have been generated from (pk, sk0) alone, which is the information allowed to leak by
Fthresh.

evaluation simulation:
The algorithm Seval takes as input (pk, sk0, pv, {svi}i∈C , x, y, y0), which except for x, y

and y0, are the values seen by t parties after key distribution, including the allowable
side information. The output is {yi}i∈[n]\C .

We require for all C with |C| = t and all x ∈ {0, 1}∗ that if we generate

(pk, sk, sk0)← gen(k)

(pv, sv1, . . . , svn)← SingleToThresh(pk, sk, sk0)

(y, y0)← fsk(x)

{yi}i∈[n]\C ← Seval(pk, sk0, pv, {svi}i∈C , x, y, y0) ,

then for i ∈ [n] \ C it holds that

yi = sf(pv, svi, x) .

196 Threshold Function Sharing

The existence of Seval basically say that if one knows the values that t parties are entitled
to see, plus the adversary’s allowed side information, and if one knows y = fsk(x), again
including the allowable side information y0, then one can compute the evaluation share
of all parties! It is of course trivial to compute yi = sf(pv, svi, x) for the t values svi

one knows, but the condition says that one can also compute yi = sf(pv, svi, x) for the
svi one does not know. By inspection of Fig. 6.3 on the page before one can see that this
means that one could generate all the information of the protocol given just the result
and the values t parties are entitled to see.

Intuitively Definition 6.2 on page 194 should guarantee the security against t corrupted
parties, as argued during the definition. We now verify this.

Theorem 6.1 If the simple function sharing scheme (gen, f,SingleToThresh, sf,R,

Σ,Combine) is statistically secure with corruption threshold t, then the protocol πthres in
Fig. 6.3 on the page before statistically secure realizes the functionality Fthresh from Fig. 6.1 on
page 192 under IOstatic(t).

Proof. In the following we only consider environments Z which corrupts at most t parties
and we drop the explicit mentioning of IOstatic(t) in the notation. We construct a simulator
Sthresh for which

IDEALFkey-dist,FR
ZK-PM

Fthresh,Sthresh,Z
s≈HYBFkey-dist,FR

ZK-PM
πthres,Z

for all PPT environments Z where Pr[IDEALFkey-dist,FR
ZK-PM

Fthresh,Sthresh,Z = ‘‘H Fthresh’’]
s≈0. The

simulator is given in Fig. 6.4 on the next page.
Assume that we are given any set of values X = (pv, {svi}i∈C) and consider the following

experiment: Run IDEALFkey-dist,FR
ZK-PM

Fthresh,Sthresh,Z , but at Eq. 6.1 on the facing page in Fig. 6.4 on the
next page where the simulator computes (pv, {svi}i∈C)← Skeydist(pk, sk0, C), insert X. If the
values in X = (pv, {svi}i∈C) are generated as (pv, sv1, . . . , svn)← SingleToThresh(pk, sk, sk0),

where (pk, sk0) is the values generated by Fthresh in IDEALFkey-dist,FR
ZK-PM

Fthresh,Sthresh,Z , then the distri-

bution of all the values generated by Sthresh is distributed exactly as in HYBFkey-dist,FR
ZK-PM

πthres,Z
by the evaluation simulation property. If on the other hand the values are generated as
(pv, {svi}i∈C) ← Skeydist(pk, sk0, C), then the distribution of all the values generated by

Sthresh is distributed exactly as in IDEALFkey-dist,FR
ZK-PM

Fthresh,Sthresh,Z .
By the key generation simulation property it therefore follows that the statistical difference

between the values generated by Sthresh in IDEALFkey-dist,FR
ZK-PM

Fthresh,Sthresh,Z and the values generated in
the protocol is exponentially small. Therefore it remains to argue that the outputs of the par-
ties simulated by Sthresh are actually consistent with those output by Fthresh. In the protocol
HYBFkey-dist,FR

ZK-PM
πthres,Z the outputs seen by Z are those of the parties. In IDEALFkey-dist,FR

ZK-PM
Fthresh,Sthresh,Z

on the other hand, the outputs that Z sees come from Fthresh. So, they might be different
from those of the simulated parties, which would allow Z to distinguish.

To verify that the outputs of the simulated parties are consistent with the output of
Fthresh basically involves checking that if no honest party inputs (eid, x), then no honest
party will output (eid, y) and that if n− t ≥ c and c honest parties have input (eid, x), then

6.2 Distributed Function Evaluation 197

Interface Sthresh

key generation:
The simulator first waits for Z to do the at most t static corruptions. Let C denote
the set of corrupted parties. We have that |C| ≤ t; For notational convenience assume
that |C| = t.
Then the environment starts activating, and if in some round it inputs init to all
honest parties, then S receives (pk, sk0) from Fthresh and computes

(pv, {svi}i∈C)← Skeydist(pk, sk0, C) . (6.1)

In that round it simulates inputs init to the simulated ideal functionalities Fkey-dist

and FR
ZK-PM, and simulates output (pv, {svi}i∈C) on the SOT of Fkey-dist.

Instruct Fthresh to terminate when Z has specified that the simulated ideal function-
alities Fkey-dist and FR

ZK-PM should terminate. If the simulated Fkey-dist terminates,
then simulate output (pk, svi) to Pi for i ∈ C and simulate an output to all honest
Pi. Notice that Z does not see which value is output and therefore does not see that
there was not a correct svi in the output of the honest parties.

evaluation:
Evaluations are handled equivalently. The first time the environment inputs (eid, x)
to an honest party, Sthresh receives (y, y0) = f(x) from Fthresh. Then it computes

{yi}i∈[n]\C ← Seval(pk, sk0, pv, {svi}i∈C , x, y, y0) ,

and simulates Pi sending (eid, x, yi) to all parties. If another honest Pj later receives
the input (eid, x) then use the yj value computed above.
In the following round Sthresh then simulates the output ((eid, i), Pi, (pv, x, i, yi))
on the SOT of FR

ZK-PM. This is what Z expects to see as the witness svi is not
leaked by FZK-PM. Fortunately, because we do not know any witness. If Z ever
inputs a value of the form (eid, term, Pi, (pv, x, i, yi), b′) to the simulated FR

ZK-PM,
then simulate output (eid, Pi, 1) from FR

ZK-PM. By the evaluation simulation property
we are guaranteed that (pv, x, i, yi) ∈ L(R), so this will not violate IOZK-PM — which
would prematurely end the simulation with output ‘‘H FZK-PM’’.

Figure 6.4: The interface used in the proof of Theorem 6.1 on the preceding page.

all honest parties will output (eid, fsk(x)) within r rounds. Both checks are straight-forward.
The fact that if the honest parties input (eid, x) and some honest party outputs (eid, y), then
y = fsk(x) trivially follows from the fact that we are running in the FR

ZK-PM-hybrid model
and was argued in Fig. 6.3 on page 195. 2

Notice that in the simulation we used essentially that the simulator gets y = fsk(x) when
the first honest party inputs (eid, x), to be able to run Seval to produce the value to send
on behalf of the party. At a first thought it might seem that a functionality where the
value y = fsk(x) is not leaked on the SOT until t − f honest parties have received input
(eid, x) should be secure, where f is the number of actual corrupted parties in the execution
and t is the maximal number of corrupted parties tolerated — we could just consider the
t− f honest parties having contributed a share corrupt and then the environment only has

198 Threshold Function Sharing

information from t ’corrupted’ parties, which should be secure. A proof of this would however
require a substantially different proof relying on a computational assumption to allow the
honest parties to send wrong evaluation shares in the simulation. The problem is that the
environment determines which honest parties should send their share first, so in the above
argument the simulator so to say adaptively ’corrupted’ t− f parties. Therefore we run into
problems from constructing adaptively secure threshold cryptosystem. To deal with the fact
that that the environment determines which honest party should send it share first it namely
has to be able to simulate a correct share for all honest parties. But that clearly implies that
the simulator can compute the result using Combine. Therefore, knowing the result when
the first simulated share is sent is a necessary requirement, and, as we saw above, a sufficient
requirement.

As a corollary to Theorem 5.1 on page 180, Theorem 6.1 on page 196 and Theorem 3.5 on
page 100 we get that.

Corollary 6.1 If the simple function sharing scheme (gen, f,SingleToThresh, sf,R,

Σ,Combine) is statistically secure with corruption threshold t and the soundness of Σ is
not relative to a PPT family of sets, then the protocol πthres[πΣ

DAM-ZK/FZK-PM] realizes the
functionality Fthresh from Fig. 6.1 on page 192 under IOstatic(t) in the (Fkey-dist,Fcommit,prs

PRS)-
hybrid model, where prs is the possible private reference string of Σ.

Addressing the case where Σ only has computational soundness relative the key being
randomly generated is considerably more involved. The reason is that in that case we do not
have Theorem 5.1 on page 180, so we cannot apply Theorem 3.5 on page 100. The following
theorem is however still true.

Theorem 6.2 If the simple function sharing scheme (gen, f,SingleToThresh, sf,R,

Σ,Combine) is statistically secure with corruption threshold t, then the protocol
πthres[πΣ

DAM-ZK/FZK-PM] realizes the functionality Fthresh from Fig. 6.1 on page 192 under
IOstatic(t) in the (Fkey-dist,Fcommit,prs

PRS)-hybrid model, where prs is the possible private ref-
erence string of Σ.

Proof. In the following we only consider environments Z which corrupts at most t parties
and we drop the explicit mentioning of IOstatic(t) in the notation. We have to prove that
there exists a simulator S such that

IDEALFkey-dist,Fcommit,prs
PRS

Fthresh,S,Z
c≈HYBFkey-dist,Fcommit,prs

PRS

πthres[π
Σ
DAM-ZK/FZK-PM],Z , (6.2)

for all environments Z for which Pr[IDEALFkey-dist,Fcommit,prs
PRS

Fthresh,S,Z = ‘‘H Fthresh’’]
c≈0. We

claim that this holds for S = Sthresh[SDAM-ZK], where Sthresh is given in Fig. 6.4 on the
preceding page and SDAM-ZK is given in Fig. 5.2 on page 182. The intuitive reason is that in
the protocol the key is distributed using Fkey-dist and is therefore exactly randomly generated
and that all instances input to πDAM-ZK is for this randomly generated key. Therefore the
computational soundness of the Σ-protocol relative to randomly generated keys should be
enough. Formally, one observes that in the simulation the key is generated by Fthresh and

6.3 Examples of Simple Function Sharing 199

therefore randomly generated. Furthermore, only the public key is handed to S from Fthresh

— exactly the value it would receive in the game SMS in Section 2.9 if trying to break the
computational soundness of the Σ-protocol relative to randomly generated keys. If therefore
Eq. 6.2 on the facing page do not hold, we can use Corollary 5.3 on page 186 to construct an
expected PPT algorithm which takes as input a random public key and then outputs a break
of the extractor with the given random key in the instance, contradicting the computational
soundness of Σ relative to randomly generated keys.

The above proof sketch needs to have many details filled in. The techniques used to give
a formal proof are almost identical to those used in the proof of Theorem 8.4 on page 275,
which contains a detailed application of Corollary 5.3 on page 186 in a more complex setting.
We therefore do not provide details here. 2

6.3 Examples of Simple Function Sharing

In the above section we gave an abstract treatment of simple function sharing schemes. We
defined what they are, gave criteria for calling them statically secure and showed that if they
meet these criteria, then they can be used to realize Fthresh. In the section we give some
examples of statically secure simple function sharing schemes.

6.3.1 Shamir Secret Sharing

In Section 6.3.2 we will give an example of a function sharing scheme, but first we review
a little algebra. The basic idea behind virtually all threshold protocols was introduced by
Shamir in [Sha79]. It is based on the basic algebraic fact that if one knows t + 1 evaluations
yi = f(i), for i ∈ C say, of a polynomial of degree at most t, then one can determine f(j)
in any other point j, as long as the difference between any two distinct points from C is
invertible.

As described in [Sha79], this allows to share a secret value s between n servers in such a
way that if any t of the servers get together, they have no information about s and if t + 1
servers get together, then they can always reconstruct s. It is done as follows: Let R be ring
such that s ∈ R and let R∗ denote the invertible elements of the multiplicative group of R.
Let

f(X) = a0 +
t∑

i=1

aiX
i (6.3)

be a polynomial over R of degree at most t. Let I ⊆ R be n points for which i, j ∈ I and
i 6= j implies that (i− j) ∈ R∗. Let C ⊂ I be any subset for which |C| = t + 1. Since i, j ∈ I

and i 6= j implies that (i − j) ∈ R∗ this allows us to define for each i ∈ C the following
polynomial over R of degree at most t

λi,C(X) =
∏

j∈C\{i}

j −X

j − i
. (6.4)

200 Threshold Function Sharing

Notice that λi,C(i) = 1 and λi,C(h) = 0 for j ∈ C \ {i}. Given any t + 1 points yi for i ∈ C

we can then define the following polynomial of degree at most t

F (X, {yi}i∈C) =
∑
i∈C

yiλi,C(X) . (6.5)

By construction we have that F (i) = yi for i ∈ C. If in particular we let yi = f(i) for i ∈ C,
then F (i) = f(i) for i ∈ C. The fact that F and f have degree at most t, that |C| = t + 1
and (i− j) ∈ R∗ for distinct i, j ∈ I then imply that

F (X) = f(X) , (6.6)

see e.g. [CF02].
We exploit this fact as follows: To share s ∈ R, generate a random polynomial as in

Eq. 6.3 on the preceding page with f(0) = s. I.e. let a0 = s and pick ai ∈ R uniformly
at random for i = 1, . . . , t. Then for i ∈ I, give yi = f(i) to server Pi. If t + 1 servers get
together, let C be their indices, then they can pool their shares and compute

F (0; {yi}i∈C) = f(0) = s .

The above technique is called Lagrange interpolation and has exactly the flavor that we
are after in Definition 6.2 on page 194, with construction threshold c = t + 1.

6.3.2 Interpolation in the Exponent

We now show how to distribute the exponentiation function x 7→ xα mod p for a prime
p = 2q + 1, where q is also a prime. We have that |Z∗

p| = 2q. The subgroup Qp of order q

is the quadratic residues and g = 4 is a generator. We describe a simple function sharing
scheme for the following function

expp,α :Qp → Qp

x 7→xα mod p .

The public key is p and the secret key is α ∈ Zq. No side information is necessary. Notice
that the domain Qp can be recognized in PPT. We can simply define the function to the
identity outside Qp.

key sharing:
Given a key (p, α) and a construction threshold c we distribute a key as follows:

• y ← gα mod p.

• Let f(X) ∈ Zq[X] be a uniformly random polynomial of degree at most c− 1, for
which f(0) = α.

• For i = 1, . . . , n let αi = f(i) and let yi = gαi mod p.

Then pv = (p, y, y1, . . . , yn) and svi = αi.

6.3 Examples of Simple Function Sharing 201

evaluation sharing:
Server Pi computes an evaluation share on x ∈ Qp as zi = xαi mod p.

share verification:
Notice that zi = xα mod p iff the discrete logarithm of zi base x is identical to the
discrete logarithm of yi base g. Since g and yi are public value we can therefore simply
let R be the relation equality of discrete logarithms in Qp from Section 2.9.2. A
Σ-protocol for this relation is given in the same section.

share combining:
Assume then that we have zi for i ∈ C, where (pv, x, zi, i) ∈ R and |C| = c. Since
(pv, x, yi, i) ∈ R there exists w such that zi = xw mod p and yi = gw mod p. Since
yi = gf(i) mod p it follows that zi = xf(i) mod p. Therefore∏

i∈C

z
λi,C(0)
i mod p =

∏
i∈C

xf(i)λi,C (0) mod p

= x
P

i∈C f(i)λi,C (0) mod p

= x
P

i∈C f(i)λi,C (0) mod q mod p

= xf(0) mod p = xα mod p ,

as desired. Notice that the servers can indeed compute this value as

λi,C(0) =
∏

j∈C\{i}

j

j − i
mod q

is a constant from Zq, which is trivial to compute when q is known.

The share combining algorithm exploits that Lagrange interpolation is linear and there-
fore can be done in the exponent of x modulo the order of x. This technique is known as
interpolation in the exponent. We have already argued that we have a simple function sharing
scheme. Let us call it the threshold exponentiation in Qp scheme. We prove it secure.

Theorem 6.3 For all 0 < c ≤ n the distributed exponentiation in Qp scheme is sta-
tistically secure for corruption threshold t = c− 1.

Proof. Assume that we are given a public key (p, y = gα mod p) and a set C where |C| = c−1.
We pick αi ∈ Zq uniformly at random for i ∈ C and compute yi = gαi mod p. We then define
f(0) = α and let f(i) = αi for i ∈ C. Letting y0 = y we then have yi = gf(i) mod p for
i ∈ |C ∪ {0}| = c and can compute yi = gf(j) mod p for i ∈ [n] \ C using interpolation
in the exponent as in share combination, using λi,C∪{0}(j) instead of λi,C(0). Then all yi

values are of the right form. It is therefore enough to prove that f is a uniformly random
polynomial of degree at most t for which f(0) = α. This follows from the fact that for all
distinct i, j ∈ C ∪ {0} we have that (i− j) ∈ Z∗

q = Zq \ {0}. Therefore each of the qt sets of
t values (αi)i∈C ∈ Zt

q give rise to a distinct polynomial f of degree at most t, by the claim
right above Eq. 6.6 on the facing page. Since there are exactly qt polynomials of degree at
most t for which f(0) = α, we have exactly sampled a uniformly random one.

202 Threshold Function Sharing

Assume then that we are given an evaluation z = xα mod p and αi = f(i) for i ∈ C, where
|C| = c− 1. From αi we can compute zi = xαi mod p for i ∈ C. Let z0 = z. Since α = f(0)
we therefore have zi = xf(i) mod p for i ∈ C ∪{0}, and we can compute zj = xf(j) mod p for
i ∈ [n] using interpolation in the exponent as in share combining. 2

6.3.3 Threshold RSA

Our second example of a function sharing scheme is a distributed evaluation of the RSA
function. Let p = 2p′ + 1 and q = 2q′ + 1 be safe primes and let N = pq and M = p′q′.
The distribution is done along the lines of the distributed exponentiation in Qp. Here we
also work in the sub-group of quadratic residues QN , which has order M . However, a subtly
arises because M cannot be made public — given N and M it is trivial to compute p and
q. Therefore we do not know the ring ZM that we interpolate in. Substantial research
has been aimed at solving this issue. Without exhausting the list we mention the results
by Rabin [Rab98], Damg̊ard and Koprowski [DK01] and Shoup [Sho00] which all represent
different approaches. We are going to adapt the scheme by Shoup and in later chapters use
some of the ideas by Rabin.

In [Sho00] Shoup showed how n servers can share between them a secret RSA modulus
d ∈ ZM and securely raise any given x ∈ Z∗

N to the power 4∆2d, where ∆ = n!. The presence
of 4∆2 has to do with the fact that we do not know the order of the group we interpolate
in. The technique was presented for the setting where d = e−1 mod M for a public value e.
Here we present a modification allowing to use an arbitrary value d and work in Z∗

Ns+1 for
any s ∈ N. The last modification allows use with Paillier’s cryptosystem and was observed
in several papers, by Fouque, Poupard and Stern [FPS00], for s = 2, and independently by
Damg̊ard and Jurik [DJ01]. We use this protocol in all but one of the following chapters, so
even though the protocol is almost identical to the protocol in [Sho00], we will present it, for
completeness and to verify that the protocol is universally composable.

The protocol by Shoup allows to distribute an RSA exponentiation function for an RSA
modulus which is a product of safe primes. The technique requires that some side information
is allowed. To be precise we make a definition.

Definition 6.3 An RSA function for Shoup’s threshold technique is a generator gen, which
on input k outputs (p, q, e, d, v, w, sk0), where p and q are dk/2e-bit primes for which also
p′ = (p − 1)/2 and q′ = (q − 1)/2 are primes, d ∈ N is a secret exponent, e ∈ {0, 1}∗ is
some arbitrary public information, v generates QNs+1, where N = pq, w = v∆2d mod N s+1

and sk0 = vd mod N s+1. The public key is (N, e, v, w), the secret key is (p, q, d) and sk0 is
some allowable side information. The function considered is x 7→ x4∆2d mod N s+1 with side
information y0 = x2d mod N s+1.

Notice that sk0 and y0 might actually be extra information. Whereas it is always possible
to compute x4∆2d mod N s+1 from x2d mod N s+1, given N , the other direction is not easily
computable, as the order of x is not known. This discrepancy in the information learned
by the parties and the adversary seems to be essential for the realization to be statistically
secure.

6.3 Examples of Simple Function Sharing 203

We start by describing the solution to the problem that we cannot interpolate modulo
N sM , when we do not know it. Let I ⊂ [n] ∪ {0} be such that |I| = c. The orders of all
elements of QNs+1 divide psqsp′q′ = MN s. This means that if we do interpolation in the
exponent of an element from QNs+1 , then we compute modulo N sM . Consider the value in
Eq. 6.4 on page 199 in that case. This is then a polynomial modulo N sM , especially the
divisions should be computed modulo N sM . Since N sM is a secret value it seems that the
parties cannot do interpolation. Consider instead the value

Λi,C(X) = n!λi,C(X) = n!
∏

j∈C\{i}

j −X

j − i
. (6.7)

It is well-known that
(n

j

)
= n!

(n−j)!j! , so it follows from
(n

j

)
being an integer that (n − j)!j!

divides n!, from which it easily follows that Λi,C(X) is an integer for X ∈ N. The divisions
are simply canceled out. Using Eq. 6.5 on page 200 and Eq. 6.6 on page 200 it then follows
that

F∆(X, {yi}i∈C) :≡
∑
i∈C

yiΛi,C(X) ≡ ∆
∑
i∈C

yiΛi,C(X) ≡ ∆f(X) (mod N sM) , (6.8)

for yi = f(i). We can then describe the distribution of the RSA function.

key sharing:
Given a key (p, q, e, d, v, w, sk0) and a construction threshold c, let N = pq, let M = p′q′.
We distribute a key as follows:

• Let f(X) ∈ ZMNs [X] be a uniformly random polynomial of degree at most c− 1,
for which f(0) = d.

• For i = 1, . . . , n let si = f(i) mod MN s and let vi = v∆si mod N s+1.

Then pv = (N, v, e, v1, . . . , vn) and svi = si.

evaluation sharing:
Server Pi computes an evaluation share on x ∈ Z∗

Ns+1 as yi = x2∆si mod N s+1.

share verification:
Let R′ denote the relation equality of RSA discrete logarithms. The relation R

for verifying an evaluation share is given by ((N, yi, x
2∆ mod N s+1, vi, v), si) ∈ R′.

Notice that yi = (x2∆)si mod N s+1 and vi = vsi mod N s+1, so si is a correct witness.

share combining:
Assume then that we have yi for i ∈ C, where (pv, x, yi, i) ∈ R and |C| = c. Since
(pv, x, yi, i) ∈ R there exists w such that y2

i = (x2∆)2w mod N s+1 and v2
i = v2w mod

N s+1.

Since vi = vsi mod N s+1 it follows that v2
i = v2si mod N s+1. Together with v2

i =
v2w mod N s+1 and the fact that v2 generates QN when v generates QN it then follows

204 Threshold Function Sharing

that w = si mod N sM , which implies that y2
i = (x2∆)2si mod N s+1. Combine as∏

i∈C

(y2
i)

Λi,C(0) ≡
∏
i∈C

((x4∆)si)Λi,C(0)

≡
∏
i∈C

(x4∆)siΛi,C(0)

≡ (x4∆)
P

i∈C siΛi,C(0)

≡ (x4∆)∆f(0) ≡ x4∆2f(0) ≡ x4∆2d (mod N s+1) .

Call this scheme the distributed RSA scheme.

Theorem 6.4 For all 0 < c ≤ n the distributed RSA scheme is statistically secure for
corruption threshold t = c− 1.

Proof. Assume that we are given a public key (N, e, v, w, sk0) with side information sk0 =
vd mod N s+1, and a set C where |C| = c − 1. For i ∈ C, generate uniformly random
si ∈ ZbN/4cNs and define a unique polynomial f by requiring that the degree is at most t and
that f(0) = d mod MN s and f(i) = si mod MN s for i ∈ C, and define sj = f(j) mod MN s

for i ∈ [n]\C. We know si for i ∈ C, so we can compute vsi mod N s+1 = vf(i) mod N s+1 for
i ∈ C. Furthermore, we received sk0 = vd mod N s+1 = vf(0) mod N s+1 as side information.
So, for j ∈ [n] we can compute vj = v∆f(j) mod N s+1 using interpolation in the exponent
as in share combining, using vi instead of y2

i and using Λi,C(j) instead of Λi,C(0). Then
pv = (N, v, e, v1, . . . , vn) and svi = si for i ∈ C. We prove that the distribution of the
generated values is statistically close to that of a real key. Consider the distribution of the
si in the real key. As in Theorem 6.3 on page 201 it follows that these values are uniformly
random. Since M = p′q′ = (p−1)(q−1)/4 = N/4− (p+q)/2+1/4 and p and q are dk/2e-bit
primes it follows that the uniform distribution on ZMNs is statistically close to the uniform
distribution on bN/4cN s, which proves the claim.

Evaluations are handled equivalently. We receive y = x2d mod N s+1 as side information.
We can then compute x2si mod N s+1 for i ∈ C and then, using that x2 ∈ QNs+1 , compute
yi = (x2)∆sj mod N s+1 using interpolation in the exponent as in share combining. 2

6.4 Additive Sharing

For later use we describe how to construct a threshold RSA scheme without side information.
We will need it in a context where the side information leaked by the Shoup scheme cannot
be allowed — it would break the IND-CPA security of an encryption scheme.

The observation is that if we take the construction threshold to be c = n, then we do not
need to do interpolation in the reconstruction, which rids of the ∆ factors. Then we use the
Σ-protocol for equality of even RSA discrete logarithms, which rids of a 2 factor.

Definition 6.4 An RSA function for additive sharing without side information is a generator
gen, which on input k outputs (p, q, e, d, v, w, sk0), where p and q are dk/2e-bit primes for

6.4 Additive Sharing 205

which also p′ = (p− 1)/2 and q′ = (q − 1)/2 are primes, d ∈ 2N is an even secret exponent,
e ∈ {0, 1}∗ is some arbitrary public information, v generates QNs+1, where N = pq, w =
vd mod N s+1 and sk0 is the empty string. The public key is (N, e, v, w), the secret key is
(p, q, d). The function considered is x 7→ xd mod N s+1 with no side information.

key sharing:
Given a key (p, q, e, d, v, w) and a construction threshold c, let N = pq, let M = p′q′

and let d = 2d′. We distribute a key as follows:

• Let s1, . . . , sn ∈ ZNsM be uniformly random elements for which d′ ≡
∑n

i=1 si

(mod N sM).

• For i = 1, . . . , n let vi = v2si mod N s+1.

Then pv = (N, v, e, v1, . . . , vn) and svi = si.

evaluation sharing:
Server Pi computes an evaluation share on x ∈ ZN as yi = x2si mod N s+1.

share verification:
Let R′ denote the relation equality of even RSA discrete logarithms. The rela-
tion R for verifying an evaluation share is given by ((N, yi, x, vi, v), 2si) ∈ R′.

share combining:
Assume then that we have yi for i ∈ C, where (pv, x, yi, i) ∈ R and |C| = c = n. Since
(pv, x, yi, i) ∈ R there exists w such that yi = x2w mod N s+1 and vi = v2w mod N s+1.

Since vi = v2si mod N s+1 and v generates QN it follows that w ≡ si (mod N sM),
which implies that yi ≡ x2si (mod N s+1). Therefore∏

i∈[n]

yi ≡ x2
P

i∈[n] si

≡ (x2)
P

i∈[n] si mod NsM

≡ (x2)d
′

≡ x2d′ (mod N s+1) .

It is straight-forward to check the below theorem along the lines of the proof of The-
orem 6.4 on the preceding page. The main, and essential, difference being that given the
result y = x2d mod N s+1 and n−1 evaluation shares yi = x2si mod N s+1, the last evaluation
share, yj say, is simulated as yj = y

∏
i∈[n]\{j} y−1

i mod N s+1.

Theorem 6.5 For all 0 < c ≤ n the distributed even RSA scheme is statistically secure
for corruption threshold t = n− 1.

206 Threshold Function Sharing

6.5 A Threshold Signature Scheme

In this section we present the RSA signature scheme from [Sho00]. Let gen be a generator
which generates (p, q, e, d), where p and q are as in Definition 6.3 on page 202 and where
gcd(e, n!) = 1 and gcd(e, φ(pq)) = 1 and d = e−1 mod φ(pq). As suggested in [Sho00] we
can e.g. pick e as a prime larger than n. The public key is (N = pq, e) and the secret
key is d. The function in consideration is x 7→ xd mod N . To distribute d we generate a
uniformly random generator v ∈ QN and use SingleToThresh from distributed RSA above
on (p, q, e, d, v). Evaluation sharing and share verification is done as in distributed RSA
and share combination is done as in distributed RSA until the value y′ = x4∆2d mod N

is computed. Then we use that gcd(e, 4∆2) = 1 to compute integers α and β such that
αe + β4∆2 = 1. Then we set y = y′βxα mod N . We then have that ye ≡ (x4∆2de)βxαe ≡
xαe+β4∆2 ≡ x (mod N), which implies that indeed y = xd mod N as desired. Let is call this
scheme the distributed RSA signature scheme.

We claim that this simple function sharing scheme is statistically secure. This follows
almost directly from Theorem 6.4 on page 204. Consider namely instead the generator
(p, q, e, d, v, w, sk0), where (p, q, e, d) are as for gen, v is a random generator of QN and
w = v∆2d mod N and sk0 = vd mod N . Since this is exactly the distribution we chose
for v in SingleToThresh for gen we know that the described generator would be secure if
extended that way. The result then follows from the observation that the three values v, w

and sk0 can be generated given just the public key, which then allows to reuse Skeydist from
Theorem 6.4 on page 204. Assume namely that we are given a public key (N, e) for gen.
We compute a public key (N, e, v, w, sk0) for the extended generator as follows: Simply pick
sk0 ∈ QN uniformly at random and let v = ske

0 mod N and w = sk∆2

0 mod N . Since sk0

generates QN except with exponentially small probability, let us assume that it does. In that
case also v = ske

0 mod N is a uniformly random generator of QN as e ∈ Z∗
φ(N). Furthermore

sk0 ≡ sked
0 ≡ vd (mod N) and w = sk∆2

0 mod N = vd∆2
mod N as required. The generated

key (N, e, v, w, sk0) therefore has exactly the right distribution and can then be used as input
to Skeydist. We have argued that.

Theorem 6.6 The simple function sharing scheme distributed RSA signature scheme

is statistically secure for corruption threshold t = c− 1.

Using Theorem 6.1 on page 196 we then get a realization of Fc,RSA
thresh for distributed RSA

signature scheme, which we can in turn use to realize the functionality FT-sig. In Fig. 6.5 on
the facing page a realization of FT-sig is given in the Fc,RSA

thresh -hybrid model for distributed
RSA signature scheme. Because of a discrepancy between our specifications of FT-sig and
Fthresh, we have to require a particular input-output behavior. The ideal functionality FT-sig

allows sending signature shares to individual parties, whereas an evaluation share in Fthresh

is sent to all parties. We could fix this in the realization by sending some dummy message
to parties indicating who the signature share is for. This would however be a very artificial
realization, so we will instead simply require the IO restriction that when (sign, j,m) is
input to Pi for some j ∈ [n], then (sign, j,m) is input to Pi for all j ∈ [n]. We write the
input as (sign,m).

6.5 A Threshold Signature Scheme 207

Protocol πc,RSA
tsig

The protocol runs with parties P1, . . . , Pn in the Fc,RSA
thresh -hybrid model for distributed

RSA signature scheme. Party Pi proceeds as follows:

initialize:
On input init, input init to Fc,RSA

thresh and wait for the output (N, e). Then output
ready.

sign:
On input (sign, m), if m was not input before, input (m, H(m)) to Fc,RSA

thresh .

If Fc,RSA
thresh ever outputs (m, y), then store (m, y) and output (signed, m).

transfer:
• On input (transfer, j, m), if (m, y) is stored, then send (m, y) to Pj .

• The party Pj checks whether H(M) = ye mod N . If so it stores (m, y) and
outputs (transfered, i, m).

Figure 6.5: Realizing FT-sig using the simple function sharing scheme distributed RSA
signature scheme.

Theorem 6.7 If there exists an RSA generator (N, e, d) ← gen and a hash-function H :
{0, 1}∗ → Z∗

N such that the signature scheme given by signature algorithm σ = sigH,N,d(m) =
H(m)d mod N and verification algorithm verH,N,e(σ,m) = 1 iff σe mod N = H(m) is exis-
tentially unforgeable under chosen-message attack, then πc,RSA

tsig (c − 1)-realizes Fc
T-sig under

the IO restriction that signature shares are not sent to specific parties.

Proof. We describe an interface S such that

IDEALF
c,RSA
thresh

Fc
T-sig,S,Z

c≈HYBFc,RSA
thresh

π,Z

for all environments Z for which Pr[IDEALF
c,RSA
thresh

Fc
T-sig,S,Z = ‘‘H Fc

T-sig’’]
c≈0. The proof will

be very similar to the proof of Theorem 3.7 on page 120, so we will be rather brief in our
description.

The interface S simply generates a key (N, e, d) ← gen(k) for the signature scheme and
simulates the output (N, e) on the SOT of Fc,RSA

thresh . Let us actually assume that S receives
the key (N, e) from the forging game in Definition 2.11 on page 20. This is fine as it only
has to simulate output (N, e). Then it simply simulates by following the protocol, except
that each time where Fc,RSA

thresh would have computed σ = sigH,N,d(m), instead S outputs
(sign,m) to the forging game and receives σ = sigH,N,d(m) from the game. Following the
line of reasoning in the proof of Theorem 3.7 on page 120 it can be seen that the simulation
is perfect until the point where the environment sends a message (m, y) to an honest Pi

where H(m) = ye mod N and where no honest party input (sign,m) at any point. In
that case Pi outputs (transfered, j,m) in the simulation, but S cannot make Fc

T-sig output
(transfered, j,m). However, since no honest party input (sign,m) it follows that S did not
ask the forging game for a signature on m. Therefore it can output (forgery,m, y) and win

208 Threshold Function Sharing

DDH-Tree

x000 x001

α3,0 α3,1

x00 = x
α2,0
0

x010 x011

α3,0 α3,1

x01 = x
α2,1
0

α2,0 α2,1

x0 = x
α1,0
ε

x100 x101

α3,0 α3,1

x10 = x
α2,0
1

x110 x111

α3,0 α3,1

x11 = x
α2,1
1

α2,0 α2,1

x1 = x
α1,1
ε

α1,0 α1,1

xε

Figure 6.6: The DDH-Tree.

the forgery game. It follows that the simulation is perfect, except with negligible probability.
2

6.6 A Distributed Pseudorandom Function

In this section we show how to distribute a pseudorandom function. We start by realizing
what we call the growing pseudorandom tree (GRAT) functionality. One should think of the
GPRAT functionality as a DDH-Tree as that in Fig. 6.6 sitting inside the functionality.
Initially the parties know xε, and at any point the parties know some sub-tree of the tree
rooted in xε, and can learn the value of a node in the tree if the node is adjacent to the
known sub-tree and c parties agree that the node should become known.

Definition 6.5 The DDH-Tree function family is indexed i = (Q, {αj,b}j∈{1,...,l},b∈{0,1}, xε),
where Q is a random k-bit prime s.t. P = 2Q + 1 is also a prime, l is some polynomial in
k, the elements αj,b are random in Z∗

Q, and xε is random in QP . For an index i we define
a function

fi : {0, 1}≤l → QP , fi(σ) = x
Qm

i=1 αi,σi
ε mod P ,

where σ = (σ1, . . . , σm) ∈ {0, 1}≤l. We sometimes use the notation xσ to mean fi(σ), when
i is clear from the context. Note that in particular, we have fi(ε) = xε.

We would like to extend the function fi such that it outputs pseudorandom bit-strings,
instead of elements in QP . To this end, given an element y ∈ QP , let byc = min(y, P − y).
Consider then an index i as above except that Q is a (k + δ)-bit prime, where log(k)/δ ∈ o(1)
(e.g. δ = log2(k)). We define the function

gi : {0, 1}≤l → {0, 1}k , gi(σ) = bfi(σ)c mod 2k .

The DDH-Tree function family is given by the functions gi.

6.6 A Distributed Pseudorandom Function 209

A salient property of the pseudorandom function is that is it pseudorandom for the
domain {0, 1}≤l. This is exactly what allows us to use it efficiently, by basically traversing
the tree using a distributed evaluation of each step. Before turning our attention to this, let
us prove that the construction is indeed a pseudorandom function.

Theorem 6.8 Under the DDH assumption (Assumption 2.1 on page 21), the DDH-Tree
function family is pseudorandom (according to Definition 2.4 on page 13).

Proof. Let i = (Q, {αj,b}j∈{1,...,l},b∈{0,1}, xε) be a random index. Since −1 is not a square
in Z∗

P , the map b·c is bijective. Since Q is a (k + δ)-bit prime, for a uniformly random
value x ∈ ZQ, the value x mod 2k is statistically close to uniformly random in {0, 1}k . It is
therefore enough to prove that the output of fi for random i cannot be distinguished from
uniformly random values from QP . For this purpose define for j ∈ {1, . . . , l} and b ∈ {0, 1}
a function

fj,b : QP → QP , fj,b(x) = xαj,b mod P

and a function
gj,b : QP → QP

which is uniformly random from QP to QP . Then for m ∈ {0, . . . , l} let hm
j,b = fj,b if j ≥ m

and let hm
j,b = gj,b otherwise. Finally let

hm
i (σ) = hm

l,σl
◦ · · · ◦ hm

1,σ1
(xε) .

Then fi = h0
i and hl

i is statistically close to a uniformly random function from {0, 1}≤l to
QP .1

It is therefore enough to prove that h0
i and hl

i cannot be distinguished, which can be done
by a hybrids argument. Assume namely that h0

i and hl
i can be distinguished. This means that

there exists m ∈ {1, . . . , l} such that the functions hm−1
i and hm

i can be distinguished by a
PPT distinguisher D having black-box access to the functions. We show that this contradicts
the DDH assumption. For this purpose, assume that we have access to a black-box o which
returns random values of the form (x, fj,0(x), fj,1(x)) if b = 0 and returns random values
of the form (x, gj,0(x), gj,1(x)) if b = 1. By a simple application of the DDH assumption it
can be seen that no PPT algorithm can guess b with anything but negligible advantage. We
reach our contradiction by using D to guess b. To be able to do this we show how to generate
values {xσ}σ∈{0,1}≤l distributed as those defined by hm−1+b

i given oracle access to o: Pick
all the values xσ for σ ∈ {0, 1}≤m−1 as uniformly random values with the only restriction
that they are consistent with random functions, i.e. if |σ1| = |σ2| and xσ1 = xσ2 , then for
all suffixes σ make sure xσ1‖σ = xσ2‖σ. When a value xσ where |σ| = m − 1 is generated,
then instead of generating xσ directly, query o and receive a random evaluation (x, x1, x2),
where x is uniformly random from QP . Then let xσ = x, let xσ‖0 = x1, and let xσ‖1 = x2.
Then generate the remaining values xσ where |σ| > m as done in hm−1

i and hm
i using random

1Only statistically close as collisions will distinguish hl
i from a uniformly random function: If |σ1| = |σ2| and

hl
i(σ1) = hl

i(σ2), then for all suffixes σ, hl
i(σ1‖σ) = hl

i(σ2‖σ). However such collisions occur with exponentially
small probability.

210 Threshold Function Sharing

Functionality Fc
GDDH-Tree

The functionality runs with parties P1, . . . , Pn and is parametrized by a construction thresh-
old 0 < c ≤ n and a round complexity r for the evaluate command. All inputs are output
on the SOT. It proceeds as follows:

initialize:
On input init from all honest parties, generate a random DDH-Tree index i =
(Q, {αj,b}j∈{1,...,l},b∈{0,1}, xε) as defined in Definition 6.5 on page 208 and output xε

to all parties.
Initialize a dictionary S mapping from σ ∈ {0, 1}≤l and indices i ∈ {0, 1, . . . , n} into
indices {1, . . . , n}. We write S(i, σ). Initially S(i, ε) = [n] and S(i, σ 6= ε) = ∅. We
think of S(m, i) as the index of those parties allowing Pi to learn fi(σ). Here i = 0
indexes the adversary, which inputs on the SIT.

evaluate:
If Pi inputs (evaluate, j, σ‖b), where j ∈ [n], σ ∈ {0, 1}≤l−1, b ∈ {0, 1} and
|S(i, σ)| ≥ c, then proceed as follows: First output (evaluate, i, j, σ‖b, fi(σ‖b)) on
the SOT. If after r rounds Pi is honest or (interrupt, i, j, σ‖b) was not input on the
SIT, then let S(j, σ) = S(j, σ)∪{i} (In the following we use (evaluate, m) as a short-
hand for (evaluate, j, m) for all j ∈ [n]). If during this |S(j, σ‖b)| ≥ c, for j ∈ [n],
then output (evaluated, σ‖b, fi(σ‖b)) to Pj in a round specified be the adversary
and no later than r rounds after the last honest party input (evaluate, j, σ‖b).

incorrect inputs:
If in the first round were an honest party inputs a non-trivial value some honest party
do not input init, then break down. Also break down if an honest party inputs init
twice.

Figure 6.7: The Growing DDH-Tree functionality with construction threshold c.

exponents. It is straightforward to verify that the values thus defined are distributed as in
hm−1

i if b = 0 and as in hm
i if b = 1.

To use D to distinguish, run it, and when it queries on σ ∈ {0, 1}≤l return xσ. To make
the process efficient, the values xσ are generated when needed. When D makes a guess at b,
we output the same guess. 2

6.6.1 Distributed Evaluation of DDH-Tree

In this section we show how to distribute the evaluation of the DDH-tree. We present the
protocol for the (FGDDH,c

key-dist ,FZK-PM)-hybrid model, where FGDDH,c
key-dist is the ideal functionality

in Fig. 6.8 on the facing page for distributing a key for the DDH-Tree function family. We
then appeal to the composition theorem and ’plug in’ the zero-knowledge proof of membership
from Chapter 5 to get a protocol for the (FGDDH,c

key-dist ,Fcommit
PRS)-hybrid model, which only uses

the ideal functionalities for setting up keys.

Theorem 6.9 For 0 < c ≤ n and t = c − 1 the protocol πc
GDDH-Tree realizes Fc

GDDH-Tree

under IOstatic(t).

6.6 A Distributed Pseudorandom Function 211

Functionality FGDDH,c
key-dist

The functionality runs with parties P1, . . . , Pn and is by a construction threshold 0 < c ≤ n.

generate:
If all honest parties inputs init in the same rounds, output as described below in a
round determined by the adversary:

• p = 2q + 1, where p is a random k-bit safe prime.

• g = 4, a generator of Qp, where Qq is the sub-group of quadratic residues.

• For j = 1, . . . , l and b = 0, 1:

– αj,b ∈ Z∗
q , a uniformly random element.

– yj,b = gαj,b mod p.
– fj,b(X) ∈ Zq[X], a uniformly random polynomial with degree at most c−1

for which fj,b(0) = αj,b.
– For i = 1, . . . , n:
∗ αj,b,i = fj,b(i).
∗ yj,b,i = gαj,b,i mod p.

• xε ∈ Qp, a uniformly random element.

The values (q, g, xε, {yj,b}l,1j=1,b=0, {yj,b,i}l,1,n
j=1,b=0,i=1) are output to all parties and the

adversary, and the values {αj,b,i}l,1j=1,b=0 are output to Pi only. The values to the
adversary is output on the SOT when the first honest party inputs init and the
values to the parties are output in a round specified by the adversary.

incorrect inputs:
If in the first round were an honest party inputs a non-trivial value some honest party
do not input init, then break down. Also break down if an honest party inputs init
twice or any other value than init.

Figure 6.8: The functionality Fkey-dist for distributing a threshold key for DDH-Tree, with
construction threshold c.

Proof. The protocol for evaluating one node is the protocol from Fig. 6.3 on page 195 for the
scheme distributed exponentiation in Qp for which the claim follows from Theorem 6.3
on page 201 and Theorem 6.1 on page 196. Except for the fact that all 2l instances of the
protocol use the same prime we could therefore have realized the protocol in the hybrid
model with 2l ideal functionalities Fthresh for the scheme the distributed exponentiation
in Qp and then plugged in the realization from Fig. 6.3 on page 195. It is straight-forward
to verify that using the same prime in all instances does not serve a problem. 2

6.6.2 Growing a Random Tree

We now make the obvious observation that if the DDH-Tree function family is pseudorandom
then Fc

GDDH-Tree might as well return random values. No PPT environment can see the
difference. We formalize this by specifying a functionality with exactly this behavior. It is

212 Threshold Function Sharing

Protocol πGDDH-Tree

The protocol runs in the (FGDDH,c
key-dist ,FR

ZK-PM)-hybrid model, where R is the relation
equality of discrete logarithms. The protocol proceeds as follows:

initialize:
On input init the party Pi inputs init to FR

ZK-PM and FGDDH,c
key-dist and waits

until FR
ZK-PM have output ready and FGDDH,c

key-dist have output the public val-
ues (q, g, xε, {yj,b}l,1j=1,b=0, {yj,b,i}l,1,n

j=1,b=0,i=1) along with the secret exponent shares
{αj,b,i}l,1j=1,b=0. Say that the value xε received as part of the public values is defined.

evaluation:
On input (evaluate, j, σ‖b) to Pi, where σ ∈ {0, 1}≤l−1 and xσ is defined, party Pi

computes the evaluation share

xσ‖b,i = x
α|σ|+1,b,i
σ mod p

and sends the value to Pj and proves to Pj that logxσ
(xσ‖b,i) = logg(y|σ|+1,b,i) by

inputting (pid, x, w) to FR
ZK-PM, where we use the proof id pid = (σ‖b, i, j), instance

x = (p, xσ , xσ‖b,i, g, y|σ|+1,b,i) and witness w = α|σ|+1,b,i. The party Pj inputs pid
and x.
If a party has received evaluation shares and acceptable proofs from all i ∈ C, where
|C| = c, the party computes

xσ‖b ←
∏
i∈C

x
λi,C(0)

σ‖b,i mod p ,

outputs bxσc mod 2k and says that xσ‖b is defined.

Figure 6.9: The protocol πGDDH-Tree.

given in Fig. 6.10 on the next page and grows a random tree.

Theorem 6.10 For 0 < c ≤ n and t = c − 1 the protocol πc
GDDH-Tree realizes Fc

GDDH-Tree

under IOstatic(t) if the DDH assumption in Qp holds (Assumption 2.1 on page 21).

Proof. By Theorem 6.9 on page 210 we have that there exists an interface S such that

IDEAL
(FGDDH,c

key-dist ,FR
ZK-PM)

FGDDH-Tree,S,Z|IO(FGDDH-Tree)

c≈HYB
(FGDDH,c

key-dist ,FR
ZK-PM)

πc
GDDH-Tree,Z|IO(FGDDH-Tree)

for all environments Z. Where we can consider the self-restricting Z|IO(FGDDH-Tree) instead

of making the condition that Pr[IDEAL
(FGDDH,c

key-dist ,FR
ZK-PM)

FGDDH-Tree,S,Z = ‘‘H FGDDH-Tree’’]
c≈0, as

IO(FGDDH-Tree) can be checked in PPT. We claim that

IDEAL
(FGDDH,c

key-dist ,FR
ZK-PM)

FGRAN-Tree,S,Z|IO(FGRAN-Tree)

c≈HYB
(FGDDH,c

key-dist ,FR
ZK-PM)

πc
GDDH-Tree,Z|IO(FGRAN-Tree)

6.6 A Distributed Pseudorandom Function 213

Functionality Fc
GRAN-Tree

The functionality runs with parties P1, . . . , Pn and is parametrized by a construction thresh-
old c, a round complexity r for the evaluate command and a depth l. It proceeds as follows:

initialize:
On input init from all honest parties, generate a random k-bit string xε and output
it to all parties. Say that xε is defined.
Initialize a dictionary S mapping from σ ∈ {0, 1}≤l and indices i ∈ {0, 1, . . . , n} into
indices {1, . . . , n}. We write S(i, σ). Initially S(i, ε) = [n] and S(i, σ 6= ε) = ∅. We
think of S(m, i) as the index of those parties allowing Pi to learn the random node
xσ. Here i = 0 indexes the adversary, which inputs on the SIT.

evaluate:
If Pi inputs (evaluate, j, σ‖b), where j ∈ [n], σ ∈ {0, 1}≤l−1, b ∈ {0, 1}
and |S(i, σ,)| ≥ c, then proceed as follows: If after r rounds Pi is honest or
(interrupt, i, j, σ‖b) was not input on the SIT, then let S(j, σ) = S(j, σ) ∪ {i} and
output (evaluate, i, j, σ‖b) on the SOT. (In the following we use (evaluate, m) as
a shorthand for (evaluate, j, m) for all j ∈ [n]). If during this |S(j, σ‖b)| > t, for
j ∈ [n], then output (evaluated, σ‖b, xσ‖b) to Pj in a round specified be the adver-
sary and no later than r rounds after the last honest party input (evaluate, j, σ‖b),
where if xσ‖b is not already defined, we define it to be a uniformly random k-bit
string.

incorrect inputs:
If in the first round were an honest party inputs a non-trivial value some honest party
do not input init, then break down. Also break down if an honest party inputs init
twice.

Figure 6.10: The Growing RANdom Tree functionality with construction threshold c.

for all environments Z, which proves the theorem. Since IO(FGRAN-Tree) = IO(FGDDH-Tree)
it is enough to prove that

IDEAL
(FGDDH,c

key-dist ,FR
ZK-PM)

FGDDH-Tree,S,Z|IO(FGRAN-Tree)

c≈ IDEAL
(FGDDH,c

key-dist ,FR
ZK-PM)

FGRAN-Tree,S,Z|IO(FGRAN-Tree)
. (6.9)

By the premise of the theorem we can assume the DDH assumption in Qp. By Theorem 6.8 on
page 209 this applies that the function in Definition 6.5 on page 208 is a PRF according the
Definition 2.4 on page 13. Consider the following PRF adversary A, designed to run in the
game in Fig. 2.1 on page 14, with F being the function from Definition 6.5 on page 208.

It receives (k, z). Then it starts running IDEAL
(FGDDH,c

key-dist ,FR
ZK-PM)

FGRAN-Tree,S,Z|IO(FGRAN-Tree)
(k, z) except that

we replace the instruction “if xσ‖b is not already defined, we define it to be a uniformly
random k-bit string” with the following instruction “if xσ‖b is not already defined, we output
(evaluate, σ‖b) in the game in Fig. 2.1 on page 14 and define xσ‖b to be the k-bit string we
receive from the game”. Notice that if b = 0 in Fig. 2.1 on page 14, then

INDprf,0
F,A = IDEAL

(FGDDH,c
key-dist ,FR

ZK-PM)

FGRAN-Tree,S,Z|IO(FGRAN-Tree)

214 Threshold Function Sharing

as xσ‖b is still defined to be a random k-bit string in that case. If one the other hand b = 1,
then

INDprf,1
F,A = IDEAL

(FGDDH,c
key-dist ,FR

ZK-PM)

FGDDH-Tree,S,Z|IO(FGRAN-Tree)
.

Since A is PPT it follows from Definition 2.4 on page 13 that

INDprf,0
F,A

c≈ INDprf,1
F,A ,

which proves Eq. 6.9 on the preceding page, as desired. 2

6.6.3 An Efficient and Juicy Unnamed Coin-Flip Protocol

We now show how the parties can use FGRAN-Tree to efficiently flip coins. The functionality
returns a uniformly random k-bit string to all parties when they have all input flip. The
value of this string is not chosen until the first honest party has input flip. To obtain an
efficient realization we consider unnamed coin flip. In a named coin-flip, the parties input
(flip, name), where name ∈ {0, 1}∗. In response to this the functionality generates a
uniformly random string cname and outputs (name, cname). We require that the parties do
not use the same name twice. In an unnamed coin-flip, after all parties have input flip for
the r’t time they receive the r’th random value. Notice that a named coin-flip is basically just
a random oracle, whereas an unnamed coin-flip is weaker. Basically, an unnamed coin-flip
functionality provides the parties with a fresh random value in each round, a value which the
adversary did not know in the previous round. This turns out to be an extremely powerful
resource to have in a network, as we discuss in much more detail in Chapter 7. Here we show
how to realize it efficiently. The reader of course already knows how. We simply traverse the
tree and output the random values in the nodes. We do this in a manner such that each new
value comes from a node we never visited before. If e.g. we do a left-depth-first traversal,
then we only use one evaluation per new value. Therefore we have an unnamed coin-flip
protocol with communication complexity O(n2k) and constant round complexity (using the
protocol πDAM-ZK from Fig. 5.1 on page 180 for realizing FZK-PM).

In [CR03] Canetti and Rabin introduced the notion of universal composition with joint
state (JUC), pronounced juicy. The idea is the following. Certain functionalities either
require an expensive initial setup phase or have to completely rely on an ideal functionality
for example for distributing keys.2 It would therefore be convenient if all protocols could
share the realization, so that each protocol would not have to run a separate setup phase. An
example of such a protocol is the realization of FGRAN-Tree in Fig. 6.9 on page 212. Another
prominent example is the realization of Fsig in Fig. 3.29 on page 121, which requires an initial
broadcast. The case of signatures is treated in detail in [CR03]. We show that FGRAN-Tree

allows for an efficient realization of the so-called multi-session extension of the unnamed
coin-flip functionality. The concept of multi-session extension of a given functionality is
introduced in [CR03]. Basically it runs internally many copies of the given functionality
and all messages are then tagged with the id of the copy they are coming from respectively

2In practice an ideal functionality for distributing keys would probably have to be realized by common
trust in some third party which could generate and distribute the keys.

6.6 A Distributed Pseudorandom Function 215

Protocol πaccess

The protocol runs with parties P1, . . . , Pn in the FGRAN-Tree-hybrid model. Party Pi pro-
ceeds as follows:
initialize:

On input init, input init to FGRAN-Tree and wait for output xε from FGRAN-Tree.
Say that xε is computed and is being computed.

evaluate:
On input (access, σ), let σ[j] denote the j-bit prefix of σ. Let l be the largest integer
l ≤ |σ| for which σ[l] is being computed. Then say that σ[m] for m = l + 1, . . . , |σ|
are being computed. For m ∈ {l + 1, . . . , |σ|}, when σ[m − 1] is computed, input
(evaluate, σ[m]) to FGRAN-Tree and when FGRAN-Tree outputs (σ[m], xσ[m]), say that
xσ[m] was computed. When xσ is computed, output (access, xσ).

Figure 6.11: The protocol for accessing a given node.

Functionality Fcoin

The functionality runs with parties P1, . . . , Pn. It is parametrized by a session id length l1
and a round complexity r1 for initialization and a round complexity r2 for coin-flips. All
inputs are output on the SOT. The functionality proceeds as follows:

initialize:
If all honest parties input (init, sid) in the same round, then set Rsid,i = 0 for i ∈ [n].
Then for r1 rounds, ignore all messages of the form (sid, . . .).

flip: When a party Pi inputs (flip, sid), then let Rsid,i = Rsid,i + 1.
For all R > 0 and sid ∈ {0, 1}l, the first time Rsid,i = R for any honest party,
generate a uniformly random string csid,R ∈ {0, 1}k and output (sid, R, csid,R) on the
SOT.
If in some round (sid, R′, i) is input on the SIT and R′ ≤ Rsid,i and (sid, R′, csid,R′)
was not output to Pi, then output (sid, R′, csid,R′) to Pi. Do this no later than r2

rounds after Ri ≥ R′ for all honest parties Pi.

incorrect inputs:
If in the first round were an honest party inputs (init, sid) some honest party do not
input (init, sid), then break down on session sid. I.e. ignore all inputs of the form
(sid, · · ·) and allow the adversary to deliver outputs out the form (sid, · · ·). Also
break down on session sid if |sid| > l1 or an honest party inputs (init, sid) twice.

Figure 6.12: The multi-session functionality for unnamed coin-flip.

heading to. Instead of first specifying the unnamed coin-flip protocol and then taking the
multi-session extension, we have specified the multi-session extension directly in Fig. 6.12.
Notice that we have divided the IO restriction into an IO restriction for each session. This
means that if one protocol using the functionality violates the IO restriction, it will not bring
down the whole system.

We sketch how one can realize Fcoin efficiently in the FGRAN-Tree-hybrid model. We
assume that the depth of the tree we use is l = 2l1 + l2 and we realize Fcoin with session id

216 Threshold Function Sharing

length l1 and depth l2 of the tree in each session.
We are going to separate the nodes of the main-tree into two structures. The main-tree

and the sub-trees. For a string sid ∈ {0, 1}≤l1 , let main-tree(sid) = sid10sid20 · · · sidm−10sidm,
where m = |sid| and sidi is the i’th bit of sid. In particular, main-tree(ε) = ε. Furthermore,
let sub-tree(sid) = main-tree(sid)1.

We call the nodes indexed by main-tree(sid) for some sid ∈ {0, 1}≤l1 the main-tree nodes
and we call the sub-tree rooted at the node indexed by sub-tree(sid) the sid-sub-tree. We
call the nodes indexed by main-tree(sid)0 the junk nodes. Note that each node of the DDH-
tree is exclusively either a main-tree node, a junk node or a node of some sid-sub-tree for
sid ∈ {0, 1}≤l1 . If we eliminate the junk nodes, what is left is essentially a binary tree, where
in addition each node sid also holds a binary tree, being the sid-sub-tree. Clearly, each of
the sid-sub-trees have depth at least l2.

We can now access nodes in tree using (sid, σ) ∈ {0, 1}≤l1 × {0, 1}≤l2 as follows: On
input (sid, σ), let γ be the longest prefix of sub-tree(sid)σ for which the node indexed by γ

is defined. For each node on the path from γ to sub-tree(sid)σ, evaluate that node. Then
output the value of the node indexed by sub-tree(sid)σ. We call this protocol πaccess, see
Fig. 6.11 on the page before. Since the sid-sub-trees are non-overlapping, the value of any
node sub-tree(sid)σ in the sid-sub-tree is unrevealed until some party has input (sid, σ′),
where σ is a prefix of σ′. This actually realizes a multi-session extension of FGRAN-Tree. The
parties can then realize Fcoin by simply doing a left-depth-first traversal of the sid-sub-tree
in the sid session.

Clearly, reaching the root of the sid-sub-tree might require as many as 2|sid|+1 evaluate-
calls to FGRAN-Tree. So, the initialization of the multi-session extension of unnamed coin-flip
is not in general constant round. However, if also the session ids makes up an interval , or
are dense in an interval, then initialization will be efficient too. If we plug in the realization
of FZK-PM from Fig. 5.1 on page 180, then the round-complexity of each proof is 3. The
trapdoor commitment scheme needed for Fcommit

ZK-PM -hybrid model in which πDAM-ZK runs can
be constructed based on the DH assumption which is implied by the DDH assumption that
we already need, see Section 2.6. Since the evaluation share can be sent with the first message
in the proof, we have argued the following:

Theorem 6.11 If the DDH assumption (Assumption 2.1 on page 21) holds, then for all
0 < c ≤ n and l1, l2 ∈N, there exists a protocol which under IOstatic(c− 1) realizes Fcoin in
the (FGDDH,c

key-dist ,Fcommit
PRS)-hybrid model with session id length l1, sub-tree depth l2 and round-

complexity 3 for evaluations and round-complexity 6l1 + 3 for initialization.

c
h
a
p
t
e
r
7

The Broadcast Model

Stand upright, speak thy thoughts, declare
The truth thou hast, that all may share;

Be bold, proclaim it everywhere:
They only live who dare.

— Voltaire

7.1 Introduction

In this chapter we consider the Byzantine agreement problem and a generalization of the
problem called the multi Byzantine agreement problem. We will give an efficient solution to
the multi Byzantine agreement problem and show how to use it for realizing the broadcast
model efficiently. In this introduction we first describe the Byzantine agreement problem
an review some previous work on the problem. Then we introduce and motivate the multi
Byzantine agreement problem. We then describe our contributions and compare them to
previous work.

7.1.1 Byzantine Agreement

The Byzantine agreement (BA) problem [LSP82] is one of the fundamental problems in re-
liable distributed systems. The problem generalizes a number of problems in keeping a
distributed system consistent when some parts might malfunction or even act according to
some malevolent plan. The Byzantine agreement problem is an extensively studied and well
understood problem.

A Byzantine agreement protocol consists of n parties. Parties take one input of the form
vi, where vi ∈ {0, 1}∗, and produces at most one output of the form wi, where wi ∈ {0, 1}∗.
The correctness notions for Byzantine agreement is divided into agreement and validity.
Agreement specifies that if two honest parties output wi respectively wj , then wi = wj .
Validity specifies that if all honest parties have the same input vi = v, then no honest party
outputs wi for wi 6= v. For now we assume that the honest parties are simultaneously activated,
i.e. they all receive their input vi in the same round. We say that the BA is decided in round
r if all honest parties have output some wi by round r.

218 The Broadcast Model

7.1.1.1 Known Bounds

It was proved in [LSP82] that for an asynchronous network no solution to the BA problem
exists when n ≤ 3t. If however one assumes that the parties proceed in synchronized rounds
of communication and that they can sign messages, then the situation improves somewhat;
In that model solutions to the BA problem exists as long as n > 2t. A BA protocol where the
parties have access to signing messages is usually called an authenticated BA protocol. The
synchronization assumption is essential: If the parties are not synchronized, still n < 3t is re-
quired even for an authenticated BA protocol. As for the worst-case round complexity it was
proved by Fischer, Lynch and Paterson [FLP85] that no asynchronous protocol solving the
BA problem in the presence of even one corrupt party can have a bounded round-complexity.
Since, as discussed below, we are here primarily interested in the worst-case complexities, we
will therefore only be interested in the synchronous model. For the synchronous model, Fis-
cher and Lynch [FL82] proved that any BA protocol must have worst-case round complexity
at least t + 1, and Garay and Moses [GM93] presented the first polynomial unauthenticated
protocol with optimal resilience (n− 1)/3 which met this bound.

The result in [FLP85] was shown to hold also for authenticated BA by Dolev and Strong
[DS82] and independently by DeMillo, Lynch and Merritt [DLM82]. The t+1 bound is rather
pessimistic. It says that the price for a high resilience is a high worst-case round complexity.
There is however some granularity. The bound does not say that a protocol which can
tolerate t faults must use t + 1 rounds in all runs. Dolev, Reischuk and Strong [DRS90]
proved that any BA protocol with resilience t must have some runs where f < t parties
were corrupted and the last honest party terminates in round f + 2. This is somewhat less
pessimistic as the bound says that even with a high resilience one might get by paying only a
price proportional to the actual corruption level. It is proved in [DRS90] that if one imposes
the extra condition on the BA protocol that all honest parties terminates in the same round,
known as simultaneous BA, then the protocol will have runs with t+1 rounds where no parties
were corrupted. It follows that any protocol beating the t + 1 bound must accept that in
some runs honest parties will terminate in different rounds — we say that the protocol has
a staggered termination.

As touched upon already, another way to beat the pessimistic t + 1 bound is in the
expectation. The t + 1 bound was first beaten in the expectation by Rabin [Rab83] and
independently by Ben-Or [Ben83]. In [Rab83] authenticated BA protocols for both the
synchronous and asynchronous models are presented, both with a constant expected round
complexity. For the synchronous model the resilience is (n − 1)/4. For the asynchronous
model the resilience is (n−1)/10. In [Ben83] an asynchronous BA protocol is presented with
resilience (n − 1)/5. Whereas the protocols from [Rab83] have a constant expected round
complexity for the mentioned resiliences, the protocol from [Ben83] is only constant expected
round when t is O(

√
n).

The protocols from [Rab83, Ben83] have a similar structure, which we call the polling-
lottery-decision (PLD) structure following [Rab83]. The source of the efficiency of the proto-
cols from [Rab83] is the introduction of the notion of a common coin. A common coin can
be thought of as a network resource which at the desire of the parties gives all parties access
to a random bit with the properties that all honest parties agree on the value and that no

7.1 Introduction 219

corrupted party could predict the value prior to the common coin-toss. We will use essential
ideas from the PLD paradigm in our protocols, so we review it here.

7.1.1.2 The Polling-Lottery-Decision Paradigm

In general a PLD BA protocol proceeds as follows: Initially every party holds a bit. The
protocol then proceeds in PLD phases. In the polling step each party sends to every other
party a value thought of as indicating what that party currently thinks the outcome of the
protocol should be, initially its input value. In the lottery step the parties toss a common
coin. In the decision step each party then updates its bit as follows: A party which saw a
large enough majority for either 0 or 1 in the polling updates its bit to that majority value.
This step is constructed such that if any honest party sees a large enough majority for 0,
then no honest party sees a large enough majority for 1. The parties that do not see a large
enough majority takes the value of the common coin as its new bit. This means that in each
round there is at least one good coin value which makes all parties agree: All parties that
do not adopt the common coin value saw a majority vote for the same value. If therefore in
some phase the coin hits this value, all parties will have the same vote after that phase. We
say that the state of the protocol is perfectly biased. The protocol then contains a mechanism
that allows the parties to terminate from such a perfectly biased state.

Bracha [Bra84] was first to obtain optimal resilience for constant (requiring that t is
O(
√

n)) expected round asynchronous BA. Independently Toueg [Tou84] presented optimally
resilient synchronous and asynchronous authenticated BA protocols. These protocols are
PLD protocols. An important contribution of [Tou84] is the introduction of what we will
call vote justifiers following [CKS00]. In [Tou84] the parties sign the vote sent in the polling
step, and a party has to send along signatures from enough other parties from the previous
step to justify its vote. This technique basically forces the corrupted parties to follow the
decision step or abstain from sending a bit. Still, in [Tou84], as in [Rab83], the common coin
is assumed to be a resource provided by the environment.

Feldman and Micali [FM97] were the first to present an instantiation of the PLD paradigm
with optimal resilience (n− 1)/3 for the unauthenticated synchronous model. Another main
contribution of [FM97] was to implement the common coin within the network. This is done
using so-called verifiable secret sharing (VSS) techniques [CGMA85]. Later Canetti and Ra-
bin [CR93] presented an instantiation of the PLD paradigm for the asynchronous model with
optimal resilience (n− 1)/3, and later again Cachin, Kursawe and Shoup [CKS00] presented
a constant expected round and optimally resilient instantiation of the PLD paradigm for the
authenticated asynchronous model. Their protocol is the first protocol to obtain an expected
communication complexity of O(n2k) bits, where k is the length of a signature. They use the
idea of vote justifiers from [Tou84]. The gain in efficiency primarily comes from a novel use
cryptography to implement the common coin and compact the vote justifiers. The coin is
implemented using a distributed pseudorandom function by Naor and Reingold [NR97] based
on the decisional Diffie-Hellman assumption. The vote justifiers in [Tou84] have bit-length
Θ(nk), as they consist of Θ(n) signatures on votes from the previous PLD phase. In [CKS00]
the vote justifiers are compacted using a threshold signature scheme from [Sho00] based on
the RSA assumption and the random-oracle assumption. Remember that in a threshold

220 The Broadcast Model

signature scheme there is some threshold t such that it takes precisely t + 1 signatures on a
message m from distinct parties to construct a threshold signature on m. Using the scheme
from [Sho00] the length of the threshold signature is the same as of an individual signature.
Therefore the vote justifications sent by the parties will only have the length of one individual
signature. This gives a communication complexity of O(n2k) bits for each phase.

7.1.2 Multi Byzantine Agreement

In this chapter we consider a less studied variation of the Byzantine agreement problem,1

which we call the multi Byzantine agreement (MBA) problem, and give near optimal protocols
for the synchronous models. Studying the multi Byzantine agreement problem can be seen
as the problem of realizing the broadcast model, while allowing to obtain a relatively higher
efficiency per BA, by exploiting that many BAs might be carried out in the same session.

A multi Byzantine agreement protocol consists of n parties. Parties take inputs of the
form (baid, bi), where baid if a BA id and bi ∈ {0, 1}, and produces outputs of the form
(decide, baid, ci) where ci ∈ {0, 1}.2 A given baid will occur as input to a given party
at most once and we require that it occurs in an output at most once. The correctness
notions for Byzantine agreement generalize straight-forwardly to give the following cor-
rectness notions for multi Byzantine agreement: Agreement: If two honest parties output
(decide, baid, v) respectively (decide, baid,w), then v = w. Validity: If any honest party
outputs (decide, baid, v) in round r, then in some round r′ ≤ r an honest party received
(baid, v) as input.3 For now we assume that if any honest party receives (baid, ·) in round
r, then all honest parties receive (baid, ·) in round r — we say that baid is simultaneously
activated in round r. We say that a BA baid is decided in round r if all honest parties have
output (decide, baid, ·) by round r.

We define a notion of round-complexity. We say that a round is activating if some BA
was activated in that round, and we say that a round is active if there exists some BA which
was activated in that round or an earlier round and which was not decided. A round is also
considered active if any party sent or received a message. The round-complexity of a protocol
is the number of active rounds. We will express the round-complexity of a run as a function
of t, f and A, where t is the maximal number of corruptions tolerated by the protocol, f is
the actual number of corruptions during the run and A is the number of activating rounds.
As for the BA problem, the resilience is the maximal number of corrupted parties which can
be tolerated and the communication complexity is the total number of bits sent by honest
parties.

Since a MBA protocol can be used for running one BA it follows that the worst-case
round-complexity is at least min(f + 2, t + 1). This of course does not mean that a run
with A activations must have round-complexity Amin(f + 2, t + 1). Indeed, the only bound
easily obtainable using [DRS90] is the bound min(f + 2A, t + 2A − 1), see Section 7.9. We

1The only work we know of considering the problem is [BDGK95]. We relate our work to [BDGK95] below.
2For simplicity, we consider the binary BA problem — the multivalued BA problem reduces efficiently

to the binary case. For the unauthenticated model see Turpin and Coan [TC84], and for the authenticated
model, see Section 7.3.4.

3Notice that since we consider binary inputs this condition is equivalent to saying that if all honest parties
receive the same input, then no honest party decides on a value different from the common input.

7.1 Introduction 221

will obtain an upper bound which is only a small constant factor off this lower bound. The
cmin(f + 2A, t + 2A − 1) upper bound makes a deterministic MBA protocols practical in
many settings. If A > f , then even though some individual BAs might take c(f + 2) rounds,
the amortized round complexity per BA will be no more that 3c. This means that if the MBA
protocol is used by a protocol which is not reactive, but outputs to its environment only after
having run all of the sequential BAs, then the use of a deterministic MBA protocol for all
purposes has the same effect as having used a BA protocol with a constant round complexity
of 3c. There are two advantages of this approach as compared to using a BA protocol
with only constant expected round complexity. First, the round complexity of the protocol
using the BA protocol as sub-protocol will have a worst-case bound unless this protocol is
itself randomized, and probably more important, the deterministic MBA protocols are very
efficient w.r.t. communication complexity, as compared to known randomized BA protocols.

For the authenticated model another strong motivation exists for considering the MBA
problem: In [LLR02a] Lindell, Lysyanskaya and Rabin showed that to obtain resilience
t ≥ (n − 3)/2, in the authenticated model, one must use an independent signature scheme
for each BA, which reduces to using a unique session id for each BA. Therefore, some non-
trivial coordination between BAs is needed under all circumstances. One might therefore
consider the MBA problem as the problem of choice for the authenticated model. Coordi-
nation between BAs is needed anyway, so one might as well gain what is possible from this
requirement, namely efficiency.

7.1.2.1 Our Contribution and Related Work

We present several contributions within the area of MBA, most of which have not yet been
published.

Our Contribution First we present a solution to the MBA problem for the unauthenti-
cated synchronous model and the authenticated synchronous model. Both protocol can be
run in either a deterministic mode or a randomized mode. For the unauthenticated deter-
ministic protocol, the resilience is (n − 1)/3, the round-complexity is O(A + f), where A is
the number of activating rounds and f is the number of actual faults, and the communica-
tion complexity is O(nt(B + f)), where B is the number of BAs. For the unauthenticated
randomized protocol, the resilience is (n − 1)/3, the round-complexity is O(A + f), the ex-
pected round complexity is O(A), the communication complexity is O(nt(B+f)+ t4(A+f)),
where the t4(A + f) term comes from using the coin from [FM97] in each round, and the
expected communication complexity is O(ntB + t4A). For the authenticated deterministic
protocol, the resilience is (n−1)/2, the round-complexity is O(A+f) and the communication
complexity is O(knt(B + f)), where k is the length of a signature. For the authenticated
randomized protocol, the resilience is (n − 1)/2, the round-complexity is O(A + f), the ex-
pected round complexity is O(A), the communication complexity is O(knt(B +f)), when the
coin from [CKS00] is used, and the expected communication complexity is O(kntB).

Parallel Broadcast Previously Ben-Or and El-Yaniv [BE03] studied the problem of run-
ning n BAs in parallel with constant expected round complexity. This is a problem which

222 The Broadcast Model

occurs naturally in a protocol where BA is used to simulate broadcast. They showed how to
use a PLD protocol to do n BAs in a constant expected number of rounds, while paying only
a factor log(n) in overhead when compared to plainly running n copies of the PLD protocol
in parallel.4 In particular they consider the Feldman-Micali protocol which gives a commu-
nication complexity of n log(n)(nt + t4) = O(n5 log(n)). As a corollary to our result (with
A = 1 and B = n) we get that the problem can be solved with communication complexity
O(n2t + t4) = O(n4). The improvement comes from the fact that we use only one coin,
instead of one coin per instance of the protocol, and that we do not carry out a factor log(k)
’extra’ BAs. We note that [BE03] also present a protocol for running many BA in parallel
in the asynchronous model, a problem that we do not consider here.

Both Optimal Worst-Case and Optimal Expected Round-Complexity In [GP90]
Goldreich and Petrank showed how to compose a PLD protocol and a deterministic BA
protocol with optimal worst-case round complexity to obtain a BA with constant expected
round complexity and near optimal worst-case round complexity. First the PLD protocol
is run for at most log(t) phases and if not terminated the protocol is finished by running
the deterministic BA protocol for min(f + 2, t + 1) rounds. This gives a worst-case round
complexity of c log(t) + f + 2. This is near optimal, but if f = ω(log(t)) it is more than a
constant factor off. If our MBA protocol is used in place of the PLD protocol in [GP90] we
obtain a bound of cmin(f +2, log(t))+f +2, which is never more that a constant factor from
optimal and which equals the bound from [GP90] when f + 2 ≥ log(t). This is of theoretical
interest, as it proves that the log(t) term in the worst-case round complexity is not inherent
for a BA protocol with constant expected round complexity. The improvement might also be
of practical interest as the optimal worst-case round complexity min(f +2, t+1) is arguably
most interesting exactly when f is very small, 1 say, where the protocol in [GP90] already
has worst-case round complexity log(t).

Previous Work on Amortized MBA In [BDGK95] Bar-Noy, Deng, Garay and Kameda
study a problem similar to the MBA problem — in [BDGK95] only the unauthenticated
model is studied. The protocol in [BDGK95] has resilience (n−1)/3, round complexity O(A+
f) and communication complexity O(ntB + nt3), where our protocol has communication
complexity O(ntB + ntf), an improvement of at least a factor t when B = O(t). Another
improvement over [BDGK95] is that our protocol has an optimal message size. In particular,
in any round where B BAs are running the message size will be O(B), whereas the protocol
from [BDGK95] can in the worst case send messages of size O(t) even when only one BA is
running. Our protocol builds on ideas from [BDGK95] and is in many respects similar to
the protocol from [BDGK95], which we be discussed more elaborate when our protocol has
been presented.

Besides improving on the efficiency of the protocol from [BDGK95] we identify an is-
sue with their formulation of the problem, which is basically the one we have adapted in
the introduction, and which we will change accordingly after describing the problem. The
problem with the current formulation of the MBA problem is the following: Whereas the

4In which case the expected round complexity is log(n).

7.1 Introduction 223

FMBA can be efficiently realized — here we let FMBA denote a functionality that captures
the MBA problem — it cannot be efficiently used! The problem with the functionality is
rather simple and stand out the first time one tries to use it. The problem is this: If one
has to activate several dependent BAs5 on the functionality, then there will be runs where
they are activated with at least t + 1 rounds between any two BAs, even in an execution
where no party is corrupted, and even if each individual BA terminates in, say, expected
constant round. We sketch why this is the case. Because we require the BAs to be activated
simultaneously the claim follows directly from the result in [DRS90] on simultaneous BA.
Since the BAs are dependent, at the least the l’th BA is activated after the (l − 1)’th BA
decided. So, we can let the (l − 1)’th BA terminate when the l’th BA is activated, which
by the requirement that the l’th activation is simultaneous would guarantee simultaneous
termination of the (l − 1)’th BA. In other words, any protocol which is able to use a MBA
protocol correctly can be used as a sub-protocol for simultaneous termination. We notice
that this is not a problem which is by any means associated to the fact that we consider
deterministic protocols; Remember that, any BA protocol terminating in less than t + 1
rounds must have a staggered termination.

We solve the problem that the MBA functionality cannot be used efficiently by formulat-
ing an alternative functionality which allows for staggered activation, i.e. it allows that the
parties supply inputs in different rounds. This immediately invalidates the line of argument
that showed that FMBA cannot be used efficiently, and indeed the functionality, which we
will call FSMBA (for ’staggered multi BA’), can be used efficiently. Summarizing, we allow
staggered termination to facilitate efficient realization and we allow staggered activation to
facilitate efficient use.

7.1.3 Realizing the Broadcast Model

There is one problem left however, namely that the functionality by far is as interesting
to have access to as the abstract BA functionality FBA from Fig. 3.17 on page 91, because
FSMBA has staggered termination. Having to control the staggering gap in the protocol using
FSMBA is tedious. This motivates our second contribution. We show how to execute any
protocol for the FBA-hybrid model, in the FSMBA-hybrid model, with one call to FSMBA per
call to FBA. Since FBA cannot be realized efficiently, we cannot appeal to the composition
theorem. Instead, we will provide a ’compilation result’ which takes any protocol for the
FBA-hybrid model and compiles it into a protocol for FSMBA-hybrid model with the same
input-output behavior, except for one-round staggered activation and termination.

7.1.3.1 Related Work on Staggered MBA

The compilation result improves on a result by Lindell, Lysyanskaya and Rabin [LLR02b]
who showed how to securely sequentially compose protocols with a known upper bound on the
termination staggering gap, while maintaining the round complexity of the protocols, except
for a small constant factor. This was then used to argue that any non-reactive protocol
for the broadcast model could be implemented using staggered BA. Here we establish this

5By dependent we mean that the input of the l’th BA depends on the output of the (l − 1)’th BA.

224 The Broadcast Model

result for reactive protocols. Besides improving the generality of the result we improve
the efficiency and the complexity of the techniques considerable. This is done using some
simple observations about staggering gaps: That fixed staggering gaps efficiently reduce to
one-round staggering gaps and that sequential and parallel composition of protocols with one-
round staggering gap yields protocols with one-round staggering gaps. These observations
allow a trivial solution to the problem of composing protocols with staggering gaps. As a
result we can do without the so-called synchronizing BAs done in the protocol from [LLR02b],
which adds most of the complexity in [LLR02b], in bits communicated and techniques.

7.1.4 Applications

We use the FBA-hybrid model several times in the remaining chapters, and we will rely on the
fact that it can be implemented efficiently. Let us however already mention one application
of our results to motivation the reader. In [HM01] Hirt and Maurer presented the currently
most efficient secure general multiparty computation protocol for the information theoretic
model. In [HM01] it was proved that if, over a finite field, the function to be computed can
be specified as an arithmetic circuit with m multiplication gates and multiplicative depth
d, then the function can be securely evaluated with communication complexity O(mnt) and
round-complexity O(nt + d). The term nt in the round complexity comes from the fact that
the computation is done in n layers and that after each layer a BA is done to detect errors.
Since we have A = n activating rounds, it follows that if the BAs are carried out using
FSMBA then the round complexity can be reduced to O(n + d), while maintaining the same
communication complexity.

7.2 The BA Compilation Theorems

In the subsequent sections we prove that any secure protocol π for the BA model can be
turned into a corresponding protocol π′ realizing the BAs over point-to-point channels. The
protocol π′ has communication complexity and round complexity in the order of the protocol
π plus three additional terms: A term of O(n2) communicated bits per bit on which a BA is
done;6 A term O(f) rounds, where f is the number of parties corrupted during the execution;
And a term O(n2f) bits communicated. The results are stated in more details in the following
section.

7.2.1 The Theorems

Theorem 7.1 If π d(n− 1)/3e-realizes F in the (FBA,G)-hybrid model, then there exists a
protocol π′ d(n − 1)/3e-realizing StaggerIO(F , 1) in the StaggerIO(G, 1)-hybrid model. The
communication complexity and active-round complexity of any run of π′ is only a constant
factor higher than the communication complexity respectively the round complexity of π on the
same sequence of commands, plus a term of O((C +f)n2k) bits in communication complexity

6If the parties inputs {(baid, mi)}i∈H to the BA protocol we say that a BA was done on max{|mi|}i∈H

bits.

7.2 The BA Compilation Theorems 225

and a term of O(f) rounds in round complexity, where C is the total number of bits on which
a BA is done and f is the total number of parties which were corrupted during the run.

Theorem 7.2 If π d(n − 1)/2e-realizes F in the (FBA,G)-hybrid model and there exists
an protocol πtsig with initializing functionality I for the real-life model d(n − 1)/2e-realizing
FT-sig,7 then there exists a protocol π′ d(n − 1)/2e-realizing StaggerIO(F , 1) in the
StaggerIO(G, 1)-hybrid model with initializing functionality I. Assuming that πtsig has com-
munication complexity O(k) per command and round complexity O(1) per command, the
communication complexity and active-round complexity of any run of π′ is only a constant
factor higher than the communication complexity respectively the round complexity of π on
the same sequence of commands, plus a term of O((B + f)n2k + n2C) in communication
complexity and a term O(f) in round complexity, where B is the total number of BAs.

7.2.2 Proof Overview

The proof is divided into several parts.

7.2.2.1 Compiling (FBA,G)-Hybrid Protocols to (FSMBA,StaggerIO(G, 1))-Hybrid
Protocols

In this part of the proof we observe that, using Section 3.11, any protocol π realizing F in the
(FBA,G)-hybrid model can be turned into a protocol Stagger(π, 1) realizing StaggerIO(F , 1)
in the (StaggerIO(FBA, 1),StaggerIO(G, 1))-hybrid model, with a communication complexity
and a round complexity in the order of that of π. To obtain the stated results it is therefore
enough to sufficiently efficiently realize StaggerIO(FBA, 1). What is sufficiently efficient
depends on the corrupting threshold: For the threshold t = d(n − 1)/3e it is sufficient to
show that StaggerIO(FBA, 1) can be realized with communication complexity O((C + f)n2)
bits and round complexity O(A+f), where A is the total number of different rounds where a
BA was activated; The reason being that the protocol π will already have round complexity at
least A. For the threshold t = d(n−1)/2e it is sufficient to show that StaggerIO(FBA, 1) can
be realized with communication complexity O((B +f)n2k+n2C) bits and round complexity
O(A + f). We can then appeal to the composition theorem and get the stated results.
This part of the proof is discussed in more detail in Section 7.3, where we also introduce
a functionality FSMBA which is StaggerIO(FBA, 1) except for some insignificant syntactical
details. This functionality is introduced to have a full specification of StaggerIO(FBA, 1).
The remaining parts of the proof then focus on realizing FSMBA sufficiently efficient.

7.2.2.2 Realizing MultiRound(FBA) using FMBA and Fsync

In this part of the proof we let FMBA be the ideal functionality FSMBA with the restriction
that parties must deliver inputs in the same round8, we let Fsync be an ideal functionality

7Candidates for this realization of FT-sig are the protocol πtsig-triv in Fig. 3.31 on page 125 (with Fsig

replaced by πsig from Fig. 3.29 on page 121) or the protocol from Section 6.5.
8I.e. FMBA has simultaneous activation and one-round staggered termination.

226 The Broadcast Model

which allows staggered parties to synchronize9 and we show that by first running FMBA and
then Fsync we get a realization of the functionality MultiRound(FBA).10 This part of the
proof is done in Section 7.4.

7.2.2.3 Realizing FMBA

In this part of the proof we show how to efficiently realize FMBA. This is done in two
steps: In Section 7.7 we show how to efficiently realize a so-called special phase-king BA
functionality. We show how to do this for the threshold d(n − 1)/3e in the real-life model
and for the threshold d(n − 1)/2e in the FT-sig-hybrid model. In Section 7.8 we then show
how to t-realize FMBA using a t-realization of a special phase-king BA protocols.

7.2.2.4 Realizing FSMBA using FSGR

In this part of the proof we basically combine the above two parts and apply the staggered
compilation theorem. Having a realization of MultiRound(FBA) using FMBA and Fsync

and a realization of FMBA we get a realization of MultiRound(FBA) in the Fsync-hybrid
model by appealing to the composition theorem. Then appealing to the staggered compila-
tion theorem in Section 3.11 we get a realization of StaggerIO(MultiRound(FBA), 1) in the
StaggerIO(Fsync, 1)-hybrid model. We then observe that except for insignificant syntactical
differences, StaggerIO(MultiRound(FBA), 1) and FSMBA are identical; Both solve the BA
problem, both allow one-round staggered activation and both allow one-round staggered ter-
mination. This gives us a realization of FSMBA in the StaggerIO(Fsync, 1)-hybrid model. We
then observe that StaggerIO(Fsync, 1) is a functionality which given inputs from staggered
parties terminates with some fixed output to all parties with at most one-round staggering.
So, instead of synchronizing, StaggerIO(Fsync, 1) reduces a staggering gap to a staggering gap
of 1. We give an explicit formulation of this functionality called the staggering gap reduction
functionality, FSGR, and note that we have a realization of FSMBA in the FSGR-hybrid model.
This part of the proof is done in Section 7.6.

7.2.2.5 Realizing FSGR

In this part of the proof we show how to realize FSGR. We show how to do this for the
threshold d(n − 1)/3e in the real-life model and for the threshold d(n − 1)/2e in the FT-sig-
hybrid model. Combined with the above part of the proof, this gives us a realization of
FSMBA. For the threshold d(n − 1)/3e the realization is for the real-life model and for the
threshold d(n − 1)/2e the realization is for the FT-sig-hybrid model. Finally we can then
replace FT-sig by any protocol realizing it, e.g. the protocol πtsig-triv based on standard
signatures or the threshold signature scheme in Section 6.5. This part of the proof is done
in Section 7.5.

9I.e. after being activated by all parties, Fsync terminates with some fixed output value in the same round
at all parties.

10The functionality MultiRound(FBA) requires parties to input in the same round and delivers outputs in
the same round to all parties.

7.3 From (FBA,G)-Hybrid Protocols to (FSMBA,StaggerIO(G, 1))-Hybrid Protocols 227

Functionality FSMBA

The functionality runs with parties P1, . . . , Pn and outputs all input values on the SOT.
It proceeds as follows:

activation:
Let H denote the set of indices of honest parties, and let Running be a set, which is
initially empty. If in two consecutive rounds each Pi for i ∈ H inputs (baid, bi) for
bi ∈ {0, 1}, then add B = (baid, {(i, bi)}i∈H) to Running and output B on the SOT.

decision:
If in any round a value (baid, S, b) is input on the SIT and B = (baid, I) ∈ Running,
then remove B from Running, let the adversary specify an output round and a one-
round staggering along with a bit b, and output (decide, baid, b′) to each party, where
b′ is determined as follows: If for all (i, bi) ∈ I it holds that bi 6= b, then let b′ ← 1−b,
otherwise let b′ = b.

incorrect inputs:
Output fail and break down as soon as one of the following conditions hold:

• In some round an honest party inputs a value which is not of the form ⊥ or
(baid, bi) for bi ∈ {0, 1}.

• Some honest party input a value of the form (baid, ·) and there does not exists
two consecutive rounds during which each Pi for i ∈ H input (baid, bi) for
bi ∈ {0, 1}.

• Some honest party used the same BA is baid twice.

• Two BAs are activated in different orders at two honest parties.

Figure 7.1: The Staggered Multi BA functionality.

7.3 From (FBA,G)-Hybrid Protocols to (FSMBA, StaggerIO(G, 1))-

Hybrid Protocols

7.3.1 The Staggered MBA Functionality, FSMBA

As was discussed in the introduction, any protocol implementing a BA functionality with
simultaneous termination in the real-life model must use t + 1 rounds per activation. If we
want an efficient implementation of the broadcast model we therefore have to take another
approach. In this section we introduce the staggered MBA functionality, FSMBA, which
allows both staggered activation and staggered termination. The ideal functionality is given
in Fig. 7.1. The functionality was formulated to allow only one-round staggering. The reason
for this is that one-round staggering is sufficient to obtain an efficient realization.

Notice that we allow the functionality to use several rounds per activation, letting the
adversary decide the running time. The reason for not capturing guaranteed termination
in the general ideal functionality is that in the synchronous UC framework the ideal func-
tionality can capture the exact round behavior of a protocol, and the precise formulation of
guaranteed termination is therefore best seen as a specific of a given protocol, as opposed
to a part of the general statement of the problem. Notice that even though the ideal func-

228 The Broadcast Model

tionality does not guarantee termination, it guarantees that if any party decides, then all
honest parties decide within a gap of at most one round. An IO behavior is defined by the
conditions in incorrect inputs. The last condition turns out to be essential for us here. We
can realize FSMBA almost optimally under IOSMBA, defined by incorrect inputs in Fig. 7.1 on
the preceding page, but have no equally efficient realization under the IO behavior without
the requirement that the BAs are activated in the same order at all parties.

As staggered termination is sufficient to facilitate an efficient realization of the MBA
problem we discuss why we allow staggered activation.

7.3.2 If You Stagger, I Stagger

As mentioned in the introduction, allowing for a staggering gap allows for more efficient
implementations: worst-case f + 2 rounds, where f is the number of actual faults and
expected constant round. If one is not careful, the problem however remains. The reason
is that after the first run of the BA protocol the parties will not be synchronized anymore.
This means that if we require that the parties have the IO behavior IOMultiRound, then
they cannot activate the next BA when the previous one terminates. This means that if we
formulate a functionality which is allowed to have staggered termination, but does not allow
for staggered activation, then the functionality cannot be used round efficiently even though
each activation might return in expected or amortized constant round.

In a bit more detail, assume that a BA functionality is used to carry out l dependent
BAs in sequence, all with simultaneous activation, where we define dependent by the minimal
requirement that a party cannot input the next BA before the current one has decided at
that party. We argue that then there are contexts where there are t+1 rounds between each
activation. Consider namely a run of the protocol, where the i’th BA is activated in round ri,
and where the i’th BA terminates in round ti ≤ ri+1. Possibly some parties terminate before
round ti, but we can transform the protocol into one where, for i = 1, . . . , l − 1, all parties
terminate the i’th BA simultaneously in round ri+1 — simply by letting the parties run until
round ri+1 ≥ ti without sending any values. Since the first l−1 BAs are simultaneous BAs it
follows from the result in [DRS90], using an argument similar to the one given in Section 7.9,
that with significant probability each of these BAs will run for at least t + 1 rounds in some
execution where there are no corruptions. Therefore we will not have any use of the fact that
each individual BA might terminate quickly — the parties still have to wait t + 1 rounds to
activate the next one.

Intuitively the problem is that if a BA terminates quickly, here meaning in less than t+1
rounds, then there will be a staggering gap with significant probability, so the parties cannot
just activate the next BA when the current one terminates. This then suggests the solution,
namely to allow a staggering gap in the activation. When the protocol itself delivers a gap
in the termination, it is only fair that it can expect one in the next activation. Since any
fixed staggering gap can be efficiently reduced to staggering gaps of one round as shown in
the Section 7.5, we use a one-round staggering gap in the definitions.

7.3 From (FBA,G)-Hybrid Protocols to (FSMBA,StaggerIO(G, 1))-Hybrid Protocols 229

7.3.3 Compiling (FBA,G)-Hybrid Protocols to (FSMBA, StaggerIO(G, 1))-Hybrid
Protocols

In this section we show how to compile (FBA,G)-hybrid protocols to (FSMBA,StaggerIO(G, 1))-
hybrid protocols with essentially the same complexity. As a corollary to Theorem 3.11 on
page 149 we get that:

Corollary 7.1 If π = (P1, . . . , Pn) realizes F in the (FBA,G)-hybrid model with initializing
functionality I, then there exists a protocol π′ = (P ′

1, . . . , P
′
n) realizing StaggerIO(F , 1) in

the (StaggerIO(FBA, 1),StaggerIO(G, 1))-hybrid model with initializing functionality I. The
communication complexity and the active-round complexity of any run of π′ on a given se-
quence of inputs and using random bits (r1, . . . , rn) for the parties (P1, . . . , Pn) is only a
constant factor higher than the communication complexity respectively the round complex-
ity of π on the same sequence of inputs and using random bits (r1, . . . , rn) for the parties
(P1, . . . , Pn).

Lemma 7.1 There exists a protocol, with communication complexity O(n2C) and active-
round complexity O(A),11 d(n−1)/3e-realizing StaggerIO(FBA, 1) in the FSMBA-hybrid model
and if there exists a realization of FT-sig with the properties specified in Theorem 7.2 on
page 225, then there exists a protocol, with communication complexity n2kB + n2C,12 d(n−
1)/2e-realizing StaggerIO(FBA, 1) in the FSMBA-hybrid model with initializing functionality
I.

Proof. We first show the claim for a version of FSMBA which takes inputs bi ∈ {0, 1}∗. For
this version of FSMBA, the protocol simply relays the inputs to the protocol to FSMBA and
uses the outputs from FSMBA as the outputs of the protocol. Since the interfaces of the
ideal functionalities StaggerIO(FBA, 1) and FSMBA are the same and the environment has
the same power over the two ideal functionalities13 it follows that the protocol is secure. It
is therefore enough to realize (with the above complexities) FSMBA with arbitrary inputs
using FSMBA (and for the threshold t = d(n − 1)/2e, the initializing functionality I). For
the threshold t = d(n − 1)/3e this is straight-forward using the techniques in Turpin and
Coan [TC84], and for the threshold t = d(n− 1)/2e this is done in Theorem 7.4 on page 231
below. 2

Putting the above to results together we get that:

Theorem 7.3 If π = (P1, . . . , Pn) realizes F in the (FBA,G)-hybrid model with initializing
functionality I and if there exists a realization of FT-sig with the properties specified in Theo-
rem 7.2 on page 225, then there exists a protocol π′ = (P ′

1, . . . , P
′
n) realizing StaggerIO(F , 1)

in the (FSMBA,StaggerIO(G, 1))-hybrid model with initializing functionality I. The commu-
nication complexity and the active-round complexity of any run of π′ on a given sequence

11As above A denotes the total number of rounds where a BA is activated and C denotes the total number
of bits on which a BA is done.

12As above B denotes the total number of BAs.
13The only difference being the syntax of the messages input by the environment to control the ideal

functionalities.

230 The Broadcast Model

Protocol πSBA

The protocol runs with party P1, . . . , Pn in the (F t+1
T-sig,FBA)-hybrid model, where F t+1

T-sig

has round complexity r for signing. On input (baid, mi), for mi ∈ {0, 1}∗, the party Pi

proceeds as follows:

1. Input (sign, (baid, mi,−1)) to F t+1
T-sig and wait r rounds.

2. If F t+1
T-sig outputs (signed, (baid, mi,−1)), then input (transfer, (baid, mi,−1)) to

F t+1
T-sig.

3. If F t+1
T-sig output (signed, (baid, mi,−1)) in Step 2 and F t+1

T-sig does not output
(transfered, (baid, m,−1)) for m 6= mi in this step, then input (sign, (baid, mi, 0))
to F t+1

T-sig and wait r rounds.

4. If F t+1
T-sig outputs (signed, (baid, mi, 0)), then input (transfer, (baid, mi, 0)) to

F t+1
T-sig.

5. Let M be the set of m for which F t+1
T-sig outputs (transfered, (baid, m, 0)). If F t+1

T-sig

output (signed, (baid, mi, 0)) in the previous step, then set Gi = 1. Otherwise set
Gi = 0. Then input (baid, Gi) to FBA.

6. Let (decide, baid, v) be the output from FBA. If v = 0, then output
(decide, baid,⊥), and if v = 1, then pick m ∈M and output (decide, baid, m).

Figure 7.2: The multivalued BA protocol.

of inputs and using random bits (r1, . . . , rn) for the parties (P1, . . . , Pn) is only a constant
factor higher than the communication complexity respectively the round complexity of π on
the same sequence of inputs and using random bits (r1, . . . , rn) for the parties (P1, . . . , Pn),
plus a term O(n2kB + n2C) in communication complexity.

7.3.4 Efficient Reduction of Multivalued BA to Binary BA using Thresh-
old Signatures

In this section we show that in the FT-sig-hybrid model, multivalued BA can be efficiently
reduced to binary BA. That this is also the case in the unauthenticated model was proved
by Turpin and Coan [TC84] and we will not review the construction here. The reduction of
multivalued BA to binary BA is given in Fig. 7.2. Notice that we use FBA as the underlying
BA functionality.

Excluding the binary BA the round complexity is 2r + 2 and the communication com-
plexity in bits is O(n2l) bits and O(n2) accesses to F t+1

T-sig, where l is a bound on the length
of the mi for honest Pi. We start the analysis by proving two lemmas about πSBA.

Lemma 7.2 If at most t parties are corrupted and two honest parties Pi and Pj output
(decide, baid, vi) respectively (decide, baid, vj), then vi = vj and Pi and Pj output in the
same round.

Proof. If FBA outputs (decide, baid, v) to some party Pj , then by specification it outputs
(decide, baid, v) at all honest parties Pj in the same round, as the parties are clearly syn-

7.3 From (FBA,G)-Hybrid Protocols to (FSMBA,StaggerIO(G, 1))-Hybrid Protocols 231

chronized until the call of FBA given that F t+1
T-sig has round complexity r. Assume first that

v = 0. Then all honest parties output ⊥. Assume then that v = 1. This means that at
least one honest party input (baid, 1) to the binary BA, so some honest party had a signa-
ture on some (baid,m, 0) in Step 4. This in turn implies that at least one honest party, Pi

say, input (sign, (baid,m, 0)) in Step 3 as the construction threshold is t + 1 and at most
t parties were corrupted. This means that Pi input (transfer, (baid,m,−1)) in Step 2,
which implies that in Step 3 all honest parties received output (transfered, (baid,m,−1)).
Therefore, by the requirements for inputting (sign, (baid,mi, 0)) in Step 3, no honest party
input (sign, (baid,m′, 0)) for m′ 6= m in Step 3. Furthermore, no honest party inputs
(sign, (baid,m′, 0)) in any step but Step 3. Therefore, no party receives (transfered,
(baid,m′, 0)) for any m′ 6= m, so M = {m} for all honest parties, which proves the the-
orem. 2

Lemma 7.3 If at most t ≤ (n− 1)/2 parties are corrupted and all honest parties start with
the same input (baid,m), then all honest parties that output (decide, baid,m′) have m′ = m.

Proof. In Step 1 at least n−t ≥ t+1 parties input (sign, (baid,m,−1)) to F t+1
T-sig. So, in Step

2 all honest parties will see F t+1
T-sig output (signed, (baid,m,−1)). Furthermore, no honest

party input (sign, (baid,m′, −1)) for m′ 6= m. Therefore F t+1
T-sig will not output (signed,

(baid,m′,−1)) for m′ 6= m. Therefore, in Step 3 the honest parties, of which there are at
least t+1, will input (sign, (baid,m, 0)), and no honest party inputs (sign, (baid,m′, 0)) for
m′ 6= m. Therefore, all honest parties will in Step 4 see F t+1

T-sig output (signed, (baid,m, 0))
and will set Gi = 1. Therefore, the result of the BA will be 1 and all honest parties which
output will output (decide, baid,m). 2

The following lemma follows from the above lemmas.

Lemma 7.4 For t ≤ (n − 1)/2 the protocol πSBA, with no communication, t-realizes
MultiRound(FBA) in the (F t+1

T-sig,FBA)-hybrid model, while giving only binary inputs to FBA.

We can then use Theorem 3.11 on page 149 to get the desired result.

Theorem 7.4 For t ≤ (n − 1)/2, if there exists a realization of F t+1
T-sig with the properties

in Theorem 7.2 on page 225, then there exists a protocol t-realizes FSMBA in the FSMBA-
hybrid model with initializing functionality I, while giving only binary inputs to FSMBA. The
communication complexity is O(n2kB + n2C) and the active-round complexity is O(A).

Proof. As a starting point we take the protocol in Lemma 7.4. Then we replace F t+1
T-sig with

the realization for the real-life model with initializing functionality I and get a realization of
MultiRound(FBA) in the FBA-hybrid model with initializing functionality I. It is straight-
forward to check the claims about the complexities for this protocol. Using Theorem 3.11 on
page 149 we then get that there exists a protocol t-realizing StaggerIO(MultiRound(FBA), 1)
in the StaggerIO(FBA, 1)-hybrid model with initializing functionality I, with the same
complexities up to a constant factor. Except for insignificant syntactical differences

232 The Broadcast Model

Functionality Fsync

ready:
A party Pi can input (syncid, ready), where syncid is a synchronizing id. The mean-
ing of this message is that Pi is ready for the synchronization with id sgid. How the
message affects the functionality is described below.

all ready:
A party Pi can input (syncid, all-ready). The meaning of this message is that Pi

thinks that all honest parties have by now input (syncid, ready).
output:

If in some round 1) some honest party have input (syncid, all-ready) and
the value (syncid, term) occurs on the SIT, or 2) all honest parties have input
(syncid, all-ready), then output (syncid, term) to all honest parties.

incorrect inputs:
If some honest party inputs (syncid, all-ready) and the last honest party to into
(syncid, ready) did so in the previous round or later or some honest party used the
same synchronization id syncid twice, then break down.

Figure 7.3: A functionality for synchronizing.

StaggerIO(MultiRound(FBA), 1), StaggerIO(FBA, 1) and FSMBA are identical, which proves
the theorem. 2

7.4 Realizing MultiRound(FBA) using FMBA and Fsync

In this section we show how to realize MultiRound(FBA) using a MBA functionality FMBA

with simultaneous activation and one-round staggered termination plus an ideal functionality
Fsync for synchronizing.

Definition 7.1 We define the functionality FMBA to be the FSMBA functionality with the
modification that it requires simultaneous activation. I.e. if two honest parties input (baid, bi)
and (baid, bj) is different rounds, it breaks down.

The functionality FMBA is the functionality which we discussed in the introduction,
having the problem that though it can be efficiently realized it can not be efficiently used.
This is not a problem here, as the section mainly serves as a technical step towards a higher
goal.

The synchronizing functionality is given in Fig. 7.3. Notice that we require that when
an honest party inputs all-ready, then all parties are not just ready, but were ready in the
previous round. The reason for this requirement is that it guarantees that the ready and
all-ready commands do not overlap in a valid input sequence of StaggerIO(Fsync, 1). We
return to this point in Section 7.5.

Consider the protocol in Fig. 7.4 on the next page. We clearly have that:

Theorem 7.5 πSSBA realizes MultiRound(FBA) in the (FMBA,Fsync)-hybrid model.

7.5 Realizing FSGR 233

Protocol πSSBA

The protocol runs with party P1, . . . , Pn in the (FMBA,Fsync)-hybrid model. On input
(baid, mi), for mi ∈ {0, 1}∗, the party Pi proceeds as follows:

1. Input (baid, mi) to FMBA.

2. On output (decide, m) from FMBA, input (baid, ready) to Fsync.

3. Wait one round.

4. Input (baid, all-ready) to Fsync.

5. On output (baid, term) from Fsync, output (decide, m).

Figure 7.4: A simple simultaneous BA protocol.

7.5 Realizing FSGR

Before we consider staggered multi BA, we consider the problem of reducing a known stag-
gering gap.

In several of the following functionalities we allow the functionalities to have a staggered
termination. We model this by letting the input on the SIT determine which parties terminate
first. We make the following definition: Assume that a set of outputs {(id, yi)}i∈H is defined
for the honest parties. When we say “output {(id, yi)}i∈H , letting the adversary specify the
output round and a one round termination gap” we mean the following: Output (specify, id)
on the SOT. Then in the first round where a value (id, S) occurs on the SIT, interpret S as
a set S ⊆ [n]. Then output (id, yi) to Pi for i ∈ [n]\S in the round where (id, S) arrived and
output (id, yi) to Pi for i ∈ S in the following round. To model guaranteed termination we
sometimes required that the adversary specifies the output round within r rounds, by which
we mean that if r rounds after (specify, id) was output no value (id, S) arrived, then behave
as if (id, ∅) arrived.

In Fig. 7.5 on the following page a functionality for reducing a staggering gap with known
bound to a staggering gap of one round is given. In Fig. 7.6 on the next page a realization
in the real-life model is given (appears in [BE03]) and in Fig. 7.5 on the following page a
realization in the F t+1,r

T-sig -hybrid model is given, where F t+1,r
T-sig is the FT-sig functionality with

construction threshold t + 1 and round complexity r for signing.

Theorem 7.6 For t ≤ (n − 1)/3 the protocol πUSGR t-realizes FSGR in the real-life model
with round-complexity r = 1.

Proof. We consider one staggering gap id sgid. Define Rmin to be the round where the last
honest party inputs (sgid, ready) and let Rmax be the round where the last honest party
input (sgid, all-ready), plus 1. It is enough to argue that if the case incorrect inputs do not
apply to sgid, then it holds for sgid that no honest party outputs (terminate, sgid) before
round Rmin or after Rmax and that the staggering gap is one round.

To see that no honest party outputs (terminate, sgid) before round Rmin observe that
because at most t parties are corrupted, no party receives (terminate, sgid) from t+1 distinct

234 The Broadcast Model

Functionality FSGR

The functionality FSGR runs with parties P1, . . . , Pn and is parameterized by a round
complexity r. It proceeds as follows:

ready:
A party Pi can input (sgid, ready), where sgid is a staggering gap id. The meaning
of this message is that Pi is ready for the staggering gap with id sgid to be closed.
How the message affects the functionality is described below.

all ready:
A party Pi can input (sgid, all-ready). The meaning of this message is that Pi

thinks that all honest parties have by now input (sgid, ready).a

output:
If in some round 1) all honest parties have input (sgid, ready) and the value
(sgid, term) occurs on the SIT, or 2) all honest parties have input (sgid, all-ready),
then output (sgid, term) to all honest parties, letting the adversary specify the output
round (within r rounds) and a one-round termination gap.

incorrect inputs:
If some honest party inputs (sgid, all-ready) before all honest parties have input
(sgid, ready) or some honest party uses the same staggering gap id sgid twice, then
and break down.

aWe sometime use inputs of the form (sgid,∆) to FSGR, for an integer ∆, as a ’macro’ for the fol-
lowing input behavior: First input (sgid,ready), then wait ∆ rounds and input (sgid,all-ready).

Figure 7.5: A functionality for reducing a staggering gap with known bound to a staggering
gap of one round.

Protocol πUSGR

The protocol runs with parties P1, . . . , Pn in the real-life model. Each party Pi executes
the following rules in parallel:

1. On input (sgid, all-ready), send (terminate, sgid) to all parties.

2. Upon receiving a message (terminate, sgid) from t + 1 distinct parties, send
(terminate, sgid) to all parties.

3. Upon receiving (terminate, sgid) from n− t distinct parties, terminate with output
(terminate, sgid).

Figure 7.6: The unauthenticated staggering gap reduction protocol.

parties before an honest party sent (terminate, sgid), because of Rule 1, and the first honest
party sends (terminate, sgid) according to Rule 1 no earlier then in round Rmin, as incorrect
inputs would otherwise apply. In particular, no honest party receives (terminate, sgid) from
n− t parties before round Rmin. We then argue that all parties terminates no later than in
round Rmax. This follows by the fact that the last honest party sends (terminate, sgid) in
round Rmax−1 and so all honest parties received at least n−t such messages by round Rmax.
Finally, we argue that the staggering gap is one round. Let R be the first round in which any

7.5 Realizing FSGR 235

Protocol πASGR

The protocol runs with parties P1, . . . , Pn in the F t+1,r
T-sig -hybrid model. Each party Pi

executes the following rules in parallel:

1. On input (sgid, all-ready), input (sign, sgid) to F t+1,r
T-sig .

2. Upon F t+1,r
T-sig outputting (signed, sgid) or (transfered, sgid), input

(transfer, sgid) to F t+1,r
T-sig and output (terminate, sgid).

Figure 7.7: The authenticated staggering gap reduction protocol.

honest party Pi outputs (terminate, sgid). This means that Pi received (terminate, sgid)
from n − t distinct parties by round R. Since at most t of these parties are corrupted
n − t − t ≥ t + 1 of them sent (terminate, sgid) to all parties, so by round R all honest
parties received (terminate, sgid) from at least t + 1 distinct parties. Therefore all honest
parties sent (terminate, sgid) to all honest parties by the end of round R, implying that all
honest parties terminate no later than in round R + 1. 2

Theorem 7.7 For t ≤ (n − 1)/2 the protocol πASGR t-realizes FSGR in the F t+1,r
T-sig -hybrid

model with round complexity r.

Proof. Define Rmin as in the above proof and let Rmax be the round where the last honest
party inputs (sgid, all-ready), plus r. It is enough to argue that if the case incorrect inputs
do not apply to sgid, then it holds for sgid that no honest party outputs (terminate, sgid)
before round Rmin or after Rmax and that the staggering gap is one round.

To see that no honest party outputs (terminate, sgid) before round Rmin observe that
the first honest party inputs (sign, sgid) to F t+1,r

T-sig in round Rmin and the construction
threshold is t + 1 > t, where t is the maximal number of corrupted parties. So, F t+1,r

T-sig will
not output (signed, sgid) or (transfered, sgid) before round Rmin and no party terminates
before receiving (signed, sgid) or (transfered, sgid) from F t+1,r

T-sig . We then argue that all
parties terminate no later than in round Rmax. This follows by the fact that the last honest
party inputs (sign, sgid) to F t+1,r

T-sig in round Rmax − r and so F t+1,r
T-sig outputs (signed, sgid)

to all parties no later than in round Rmax. That the staggering gap is one round is trivial,
given that the transfer command on F t+1,r

T-sig has round complexity 1. 2

7.5.1 Realizing StaggerIO(Fsync, 1) using FSGR

Before proceeding we observe that one can trivially realize StaggerIO(Fsync, 1) using FSGR.
The construction StaggerIO(Fsync, 1) basically makes two changes to Fsync: First of all, what
was synchronous rounds before are allowed to have one-round staggering and the output
round is now specified by the adversary. Since functionality Fsync only has few restrictions
on the order of the inputs the first change does not matter much. Notice however, that
because we have required that there is a margin of a round from the last honest party inputs
ready until the first honest party inputs all-ready, the added one-round staggering will not

236 The Broadcast Model

allow that some honest party inputs all-ready before all honest parties have input ready,
or to be more precise: If any honest party do this, then StaggerIO(Fsync, 1) breaks down,
as would FSGR. The second change introduced by the one-round staggering is that what
was before synchronous output rounds with guaranteed delivery are now an output round
specified by the adversary along with a one-round staggering, as in FSGR. Using the above
observations, it is straight-forward to verify the following theorem:

Theorem 7.8 There exists a protocol with no communication realizing StaggerIO(Fsync, 1)
in the FSGR-hybrid model using one call to FSGR per call to StaggerIO(Fsync, 1).

7.6 Realizing FSMBA

In the previous section we gave a protocol realizing the ideal functionality MultiRound(FBA)
in the (FMBA,Fsync)-hybrid model. Assume then that we have a protocol πMBA which t-
realizes FMBA in the real-life model (with initializing functionality I) and we have that
πSSBA[πMBA/FMBA] t-realizes MultiRound(FBA) in the Fsync-hybrid model (with initial-
izing functionality I). Using Theorem 3.11 on page 149 we then have that the composed
protocol StaggerIO(πSSBA[πMBA/FMBA], 1) t-realizes StaggerIO(MultiRound(FBA), 1) in the
StaggerIO(Fsync, 1)-hybrid model (with initializing functionality I). Using Theorem 7.8 and
the composition theorem we then get a protocol StaggerIO(πSSBA[πMBA/FMBA], 1) t-realizing
StaggerIO(MultiRound(FBA), 1) in the FSGR-hybrid model (with initializing functionality
I).14 Finally, let πSGR be a protocol which t-realizes FSGR in the real-life model (with ini-
tializing functionality J)15 and we have that StaggerIO(πSSBA[πMBA/FMBA], 1)[πSGR/FSGR]
t-realizes StaggerIO(MultiRound(FBA), 1) in the real-life model (with initializing functional-
ity [I,J]). Since StaggerIO(MultiRound(FBA), 1) and FSMBA are identical except for some
insignificant syntactical differences.

Notice that the construction StaggerIO(πSSBA[πMBA/FMBA], 1)[πSGR/FSGR] does not
have much overhead. Compared to running πMBA there will be one call to πSGR, the com-
plexity of which is within our stated goal for the complexity of one BA for the candidates
in Fig. 7.6 on page 234 and Fig. 7.7 on the preceding page, and there is a small constant
blowup in round complexity, but only the original messages of πMBA and πSGR are sent in
the protocol. We already have sufficiently efficient candidates for πSGR, so our goal from now
on will be to realize FMBA sufficiently efficient.

Theorem 7.9 Assume that there exist protocols πMBA and πSGR which t-realizes FMBA in
the real-life model (with initializing functionality I) respectively t-realize FSGR in the real-
life model (with initializing functionality J). Then there exists a protocol t-realizing FSMBA

in the real-life model (with initializing functionality J) with communication complexity and
round complexity being the sum of the communication complexities and round complexities
of πMBA and πSGR, within a constant factor.

14Here we also use StaggerIO(πSSBA[πMBA/FMBA], 1) to denote the version of
StaggerIO(πSSBA[πMBA/FMBA], 1) using FSGR instead of StaggerIO(Fsync, 1).

15Possible candidates appear in Fig. 7.6 on page 234 and Fig. 7.7 on the preceding page

7.7 Special Phase-King BA Protocols 237

7.7 Special Phase-King BA Protocols

In this section we present the so-called special phase-king BA protocols which will be the basis
for our MBA protocol. A special phase-king BA protocol proceeds in phases of phase-len
rounds, and in round king-round in each phase the action of the protocol might depend
on the index of some party, called the king. The ’quality’ of this king will have an ef-
fect on the termination guarantee of the protocol, but not its correctness, so we shall not
be concerned with how the king is chosen yet — we assume that in each round r, where
(r mod phase-len) = king-round, some king Kph,i is supplied as input to each Pi — here
ph denotes the phase (r div phase-len). The unauthenticated phase-king BA protocol in
Fig. 7.9 on page 240 runs in the real-life model and the authenticated phase-king BA pro-
tocol in Fig. 7.9 on page 240 runs in the F t+1

T-sig-hybrid model. For both protocols we prove
that they are correct BA protocols with the following three additional properties:

all-zero-non-participation-resilient:
By which we mean that if all honest parties which enter the BA do so with value 0,
then the protocol decides on 0 even if some honest parties do not enter the BA.

In the following we say that the protocol was activated correctly if all honest parties that
enter the BA do so in the same round and if some honest parties enter the BA with
value 1, then all honest parties enter the BA. The following requirements are for BAs
activated correctly.

decision-after-consensus-on-good-king:
By which we mean that if for some phase ph it holds that Kph,i = Kph,j for all honest
parties Pi and Pj , and if PKph

(where Kph denotes the common value of the Kph,i) was
honest in round king-round− 1, then all honest parties that entered the BA already
decided or will decide before the end of the current phase.

one-phase-staggering:
By which we mean that if phase p is the first phase in which an honest party that
entered the BA decides, then no honest party which entered the BA decides later than
in phase p + 1.

agreement-cheap:
By which we mean that if all honest parties that enter the BA do so with the same
value, then all honest parties which entered the BA decides in the first phase.

To be precise we formalize these requirements by requiring that the protocols implement
the functionality in Fig. 7.8 on the next page.

7.7.1 The Unauthenticated Protocol

The unauthenticated special phase-king BA protocol in Fig. 7.9 on page 240 is derived from
the Feldman-Micali [FM97] protocol. The main reason for using the Feldman-Micali protocol
is that it is trivial to make all-zero-non-participation-resilient. The observation is that if in
the Feldman-Micali protocol all honest parties start with value 0, then all honest parties
will send only 0-bits during the protocol. Therefore the convention that a silent processor

238 The Broadcast Model

Functionality FSPHAKIBA

The functionality runs with parties P1, . . . , Pn and is parameterized by a phase length
phase-len ∈ N, a phase length of the initial phase init-len ∈ N and a king round
0 ≤ king-round < phase-len.a

all-zero-non-participation-resilient, agreement-cheap:
Throughout the description, let H denote the set of indices of honest parties.
If in some round an honest party input (baid, bi) for bi ∈ {0, 1}, let I be the indices
of those honest parties that input (baid, bj) for bi ∈ {0, 1} in that round. If I 6= H
and bi = 1 for some i ∈ I, then break down. Furthermore, if any honest party used
the BA id baid in an earlier round, then break down. Below we describe how the
functionality deals with this one specific activation. All other activations are dealt
with independently and in the same way.
Let roundbaid ← −init-len and let last-term-roundbaid ← ∞ — for notational
convenience we do not index variables by the BA id baid in the following.

• If bi = 0 for all i ∈ I, let result← 0 and last-term-round← phase-len.

• If bi = 1 for all i ∈ I, let result← 1 and last-term-round← phase-len.b

• If none of the above rules apply, then let result← ⊥.

do round:
If in some round all Pi for i ∈ I ∩ H input (do round, baid), then let round ←
round+ 1.
If in some round some honest party inputs (do round, baid) and some Pi for i ∈ I∩H
do not input (do round, baid), then break down.

decision-after-consensus-on-good-king:
If in some round, where round ≥ 0 and (round mod phase-len) = king-round,
a value (king, baid, K) is input to Pi for i ∈ H ∩ I, and K ∈ [n] and PK were
honest in the previous round, then let last-term-round ← phase-len · ph, where
ph = dround/phase-lene denotes the current phase.

decision rule, one-phase-staggering:
If in any round a value (decide, baid, b) is input on the SIT and result = ⊥, then
let result← b.
If in any round (term, baid, i) is input on the SIT for i ∈ I∩H , then proceed as follows:
If result = ⊥, then let result← 0. Then output (decide, baid, result) to Pi, let
I ← I\{i} and let last-term-round← min{round+phase-len, last-term-round}.
If in any round round = last-term-round, then proceed as if (term, baid, i) was
received for i ∈ I.

aHere init-len is the length of some possible initial phase, typically for an initial round for
distributing the parties’ inputs.

bAs by definition |I | > 0, the last two rules are exclusive.

Figure 7.8: The special-phase king BA functionality with phase length phase-len and king-
round king-round.

7.7 Special Phase-King BA Protocols 239

’sends’ 0-bits makes the protocol all-zero-non-participation-resilient. To provide an intuition
about the correctness of the protocol we describe how it is derived from the Feldman-Micali
protocol. In the polling phase of the Feldman-Micali protocol party Pi holds a bit ai, initially
its input, which it sends to all parties. Then Pi tally incoming 1’s, let Ai denote this tally.
Then Pi computes its new bit as follows: If Ai ∈ [0, n/3), then set bi = 0; If Ai ∈ [2n/3, n],
then set bi = 1; And if Ai ∈ [n/3, 2n/3), then set bi = coini, where coini is a bit which Pi

considers the coin value of the round where the new bit is computed. It is well-known and
straight-forward to verify that if all honest parties start with the same ai, then all honest
parties end up with bi = ai. Furthermore, it is always the case that |Ai − Aj| < n/3 for
all pairs of honest parties Pi and Pj , which in particular implies that if some honest party
set bi = b, in the update, then all honest parties set bi = b or set bi = coini. This means
that if coini = b for all honest parties, then all honest parties will have bi = b; We say
that there is at least one good coin value, which, if the parties agree on it, will stabilize the
network. The idea is then to replace the common coin-flip in [FM97] by a leader election.
The elected leader, which we call the phase-king following [BGP89], will try to determine a
good coin value and send it to all parties. If the phase-king, PK say, has AK ∈ [0, n/3) or
AK ∈ [2n/3, n] it is straight-forward to determine a good coin value, coinK = 0 respectively
coinK = 1. If AK ∈ [n/3, 2n/3) the task is less straight-forward, but at least one of the coin
values are good, so if another round of polling was done with this good coin value, let BK be
the tally, then the network would be stable and so BK 6∈ [n/3, 2n/3). Therefore the phase-
king could pick a good coin value in the next phase. The rational is therefore to do a round
of polling from the bits bi, but using both the coin value 0 and the coin value 1 in parallel.
This gives the phase-king two tallies B0

K and B1
K , one from each of the parallel runs. In one

of these, B
coinK,1

K say, the phase-king can determine a good coin value coinK,2 ∈ {0, 1}. The
phase-king then sends (coinK,1, coinK,2) to all parties which set Bi = B

coinK,1

i and computes
a bit ci, using the coin coinK,2 if Bi ∈ [n/3, 2n/3). If the phase-king is honest this stabilizes
the network. It is interesting to note that if the parties computed ci by rerunning from the
values ai using two rounds of polling with coin coinK,1 and then coin coinK,2, then not even
an honest phase-king would guarantee stabilizing the network. The two parallel runs serve
as more than information gathering for the phase-king. They also commit the corrupted
parties to a particular behavior on the first coin. With an eye on obtaining a randomized
BA protocol with constant expected round complexity we let all parties act as phase-king
before the phase-king is actually elected. This ensures that the adversary must corrupt a
phase-king in the round before it is elected to avoid termination of the protocol, and this
can be prevented by using a fair leader election protocol. We note that the protocol derived
as described above is in some respects reminiscent of the ESPK protocol in [BDGK95].

We only give the part of the proof of correctness of πUSPHAK which differs essentially
from the proof in [FM97]. The following lemma extends Claim T4-2 in [FM97].

Lemma 7.5 If all honest parties are participating in phase p and have ai = a for a ∈ {0, 1}
at the beginning of the phase, then ei = a for all honest parties at the end of the phase.

Proof. Assume first that ai = 0 for all honest parties. This means that Ai ≤ (n−1)/3 < n/3
for all honest parties, so bi = 0 for all honest parties. This implies that B0

i < n/3 and

240 The Broadcast Model

Protocol πUSPHAK

The protocol runs with parties P1, . . . , Pn in the real-life model. The party Pi proceeds as
follows for each baid:a

input:
Party Pi receives a bit ai. In the following Pi executes one of the below rounds each
time it receives input do round.

initial phase:
Let a = ai and send a to all parties.

polling:
Let A be the number of 1’a received.b

• If A ∈ [0, n/3), then set b = 0.

• If A ∈ [n/3, 2n/3), then set b = ⊥.

• If A ∈ [2n/3, n], then set b = 1.

Send b to all parties.

election:

king commit:
Let B0 be the number of 1’a received and let B1 be the number of 1’a and ⊥’a
received.c Then compute two coin values as follows:

1. If B0 6∈ [n/3, 2n/3), then set coin1 = 0. Otherwise set coin1 = 1.d

2. If Bcoin1 ∈ [0, n/3), then set coin2 = 0. Otherwise set coin2 = 1.

Send (coin1, coin2) to all parties.
king-round:

Expect an input (king, K) from the environment. If such input does not arrive,
then terminate.

aIn the unauthenticated model the BA ids are only used to associate transfered data to specific
instances of the protocol, and we drop the BA id baid in the description for clarity.

bWhenever Pi should receive a value from Pj according to the protocol and no value arrives,
Pi will define the received value to equal the last bit ever received from Pj (0 if no bit was ever
received).

cBv would be the number of 1’s received if before the last polling the coin value ⊥ = v had
been used.

dIt is always the case that Bcoin1 6∈ [n/3, 2n/3).

Figure 7.9(a) (cont. in Fig. 7.9(b) on the facing page): The Unauthenticated Special PHAse-
King BA Protocol

B1
i < n/3 for all honest parties. In particular Bi < n/3 for all honest parties, which in turn

gives us that ei = 0 for all honest parties. The case where ai = 1 for all honest parties follows
equivalently. 2

The following lemma is the equivalent to Claim T4-4 in [FM97].

Lemma 7.6 πUSPHAK has decision-after-consensus-on-good-king.

7.7 Special Phase-King BA Protocols 241

Protocol πUSPHAK

decision:
Let (COIN1, COIN2) denote the two bits received from PK in king commit.
Let B = BCOIN1 .

• If B ∈ [0, n/3), then set c = 0.

• If B ∈ [n/3, 2n/3), then set c = COIN2.

• If B ∈ [2n/3, n], then set c = 1.

Send c to all parties.

test for stable:
1. Let C be the number of 1’s received.

• If C ∈ [0, n/3), then set d = 0.
• If C ∈ [n/3, 2n/3), then set d = 1.
• If C ∈ [2n/3, n], then set d = 1, output (decide, 1) and terminate after

having sent d to all parties.

Send d to all parties.

2. Let D be the number of 1’s received.

• If D ∈ [0, n/3), then set e = 0, output (decide, 0) and terminate after
having sent a to all parties.

• If D ∈ [n/3, 2n/3), then set e = 0.
• If D ∈ [2n/3, n], then set e = 1.

Let a = e and send a to all parties.

3. Go to Step polling.

Figure 7.9(b) (cont. from Fig. 7.9(a) on the facing page): The Unauthenticated Special
PHAse-King BA Protocol

Proof. We first prove the following claims: 1) For all pairs (Pi, Pj) of honest parties |Σi−Σj| <
n/3 for Σ ∈ {A,B,B0, B1, C,D}; 2) B

coini,1

i 6∈ [n/3, 2n/3). To prove Claim 1 observe that
since Σi and Σj are tallies of received 1s (and possibly ⊥s) and all honest parties always send
the same value to all parties it follows that |Σi−Σj| ≤ (n−1)/3 < n/3. We note that honest
parties sending the same bit to all honest parties includes the case where an honest party
Pl is not participating because it terminated, in which case all honest parties defines the bit
received from Pl to the same value. We then prove Claim 2. If coini,1 = 0, then by the
way coini,1 is defined B

coini,1

i 6∈ [n/3, 2n/3). Assume then that coini,1 = 1. If Aj 6∈ [0, n/3)
for all honest parties Pj , then B0

i ≥ n − (n − 1)/3 > 2n/3, a contradiction to coini,1 = 1.
So, we can assume that Aj ∈ [0, n/3) for some honest party. By Claim 1 this implies that
Aj < 2n/3 for all honest parties Pj, so all honest Pj sends bj ∈ {0,⊥}. This implies that
B1

i ≤ (n− 1)/3 < n/3, which completeness the proof of the claims.

Now, let K denote the common value of Ki for honest Pi. Since PK was honest when
(coinK,1, coinK,2) was sent and Ki = K, for some common value K ∈ [n], for all honest

242 The Broadcast Model

parties, it follows that (COINi,1, COINi,2) = (COIN1, COIN2) for all honest parties, for
some (COIN1, COIN2) ∈ {0, 1}2. Assume that COIN1 = 0. By Claim 2 this means that
B0

K 6∈ [n/3, 2n/3). Assume first that B0
K ∈ [0, n/3) (which implies that COIN2 = 0). By

Claim 1 this implies that BCOIN1
i = B0

i < 2n/3 for all honest parties. Therefore ci ∈
{0, COIN2} = {0} for all honest parties. Assume then that B0

K ∈ [2n/3, n] (which implies
that COIN2 = 1). By Claim 1 this implies that B0

i > n/3 for all honest parties. Therefore
ci ∈ {1, COIN2} = {1} for all honest parties. It follows that if COIN1 = 0, then ci = cj for
all pairs Pi and Pj of honest parties. Using Claim T4-5 of [FM97] this implies that by the
end of the phase all parties will have terminated. Assume then that COIN1 = 1. By Claim
2 this means that B1

K 6∈ [n/3, 2n/3), and the proof then proceeds as for COIN1 = 0. 2

Theorem 7.10 For t ≤ (n− 1)/3 the πUSPHAK protocol is a special phase-king BA protocol
(t-realizes FSPHAKIBA) with the following complexities for one phase: 5 rounds, 6n2 bits of
communication and message size 2 bits.

Proof. Using Lemma 7.5 on page 239 and Lemma 7.6 on page 240 the proof in [FM97] can
be extended to prove that πUSPHAK is a BA protocol with termination staggering gap at
most one phase. Consider then the case where all honest parties have ai = 0 as input. It
is straight-forward to verify that in that case all honest parties will never send any value
which is different from 0. By the way honest parties define a non-received bit it follows
that if an honest party Pi is not participating in the protocol, then all participating honest
parties will always defined the values received from Pi to be 0. Therefore πUSPHAK has all-
zero-non-participation-resilience. It follows from inspection of the protocol that πUSPHAK is
agreement-cheap. 2

7.7.2 The Authenticated Protocol

We now describe an authenticated special phase-king protocol. It uses ideas from two previ-
ous BA protocols. As a basis we use the authenticated protocol from [Tou84]. As discussed
in the introduction the parties sign the votes sent in the polling step, and a party has to send
along signatures from enough other parties from the previous phase to justify its vote. There
is one problem with this as we want the protocol to be all-zero-non-participation-resilient.
We cannot as for the unauthenticated protocol just say that a non-participating party is
virtually sending 0-bits, as the participating parties need the non-participating party’s sig-
nature on these bits to justify its own vote. We therefore leave the polling framework and use
the vote justifiers more in the spirit of how signatures are used in the BA protocol by Dolev
and Strong from [DS82]. There, a party which holds a message m along with signatures from
enough distinct honest parties can send the message and signatures to another party forcing
that party to ’accept’ the message as a potential outcome of the BA. We contrast this use
to the justified-polling use of signatures by calling it ’influencing’.

The protocol is given in Fig. 7.10 on the next page. It is fairly straight-forward to
check the agreement-cheap and the all-zero-non-participation-resilient properties. W.r.t.
agreement and one-phase-staggering, the main observations to make is that for two honest
parties Pi and Pj it holds that |Hi−Hj| ≤ 1. This implies that if any honest party outputs 0

7.7 Special Phase-King BA Protocols 243

Protocol πASPHAK

The protocol runs with parties P1, . . . , Pn in the F t+1
T-sig-hybrid model, where F t+1

T-sig has
round complexity init-len for initialization and round complexity r for signing. The
party Pi proceeds as follows:

input:
Party Pi receives an input (baid, bi). In the following Pi executed one of the below
rounds each time it receives input do round.

initial distribution:
If bi = 1, then input (sign, (baid, 0)) to FT-sig. Set p← 0.

influence:
Wait r rounds. If FT-sig outputs (signed, (baid, p)), then input (transfer, (baid, p))
to FT-sig and let G← 1. Otherwise, let G← 0.

election:

king commit:
1. If FT-sig outputs (transfered, (baid, p)), then input (transfer, (baid, p))

to FT-sig.
2. Let J be the set of j for which FT-sig output (transfered, j, (baid, p)).

king-round:
Expect an input (king, K) from the environment. If such input does not arrive,
then terminate.

decision:
If K ∈ J , then let G← G + 1. If G ≥ 1, then input (sign, (baid, 2, p)) to FT-sig.

test for stable:
1. If FT-sig outputs (signed, (baid, 2, p)), then input (transfer, (baid, 2, p)) to
FT-sig and let H ← 1. Otherwise, let H ← 0.

2. Repeat twice: If FT-sig outputs (transfered, (baid, 2, p)), then input
(transfer, (baid, 2, p)) to FT-sig and let H ← H + 1.

3. If H ≥ 2, then input (sign, (baid, p + 1)) to FT-sig.

4. If H = 0, then output (decide, baid, 0) and terminate.

5. If H = 3, then input (sign, (baid, 2, p + 1)) to FT-sig, output (decide, baid, 1)
and terminate.

6. Go to Step influence.

Figure 7.10: The Authenticated Special PHAse-King BA Protocol.

in phase p, then no honest party signed (baid, p+1) and therefore all honest parties output 0
in the following phase, and if any honest party outputs 1 in phase p, then all honest parties
signed (baid, p + 1) and therefore, if all honest parties are participating, all honest parties
output 1 in the following phase. To see that the protocol has decision-after-consensus-on-
good-king, observe that if K ∈ J , then all parties will have G ≥ 1 and will sign (baid, 2, p),
so all parties will decide on 1 in the current phase. If on the other hand K 6∈ J , then PK did
not receive (transfered, (baid, p)) in Step 2 in Step king commit, which implies that Gi = 0
for all honest parties before (and thus also after) Step decision. Therefore all parties will

244 The Broadcast Model

decide on 0 in the current phase.
We introduce some notation used in the analysis. Let p′ denote a possible value of the

value of the variable p at Pi. For each variable Σ in the protocol we let Σp′

i denote the value
of Σ in Pi in the phase where pi = p′. If Σp′

i was not explicitly assigned we let Σp′

i = ⊥.

Lemma 7.7 πASPHAK is a valid BA protocol and has one-phase-staggering.

Proof. Let p be the first phase in which an honest party decides and let Pi be a party that
decides in that phase. It is straight-forward to verify that |Hp

i −Hp
j | ≤ 1 for all pairs Pi and

Pj of honest parties. Let p be the first phase in which an honest party outputs.
If some honest Pi decides on 0 in phase p, then Hp

i = 0, which implies that Hp
j ≤ 1 for all

honest parties Pj . Therefore no honest party decides on 1 in phase p and no honest party ever
inputs (sign, (baid, p+1)) to FT-sig. Therefore FT-sig will never output (signed, (baid, p+1)),
which implies that all honest parties decide on 0 no later than in phase p + 1.

If some honest Pi decides on 1 in phase p, then Hp
i = 3, which implies that Hp

j ≥ 2 for all
honest parties Pj . Therefore no honest party decides on 0 in phase p and all honest parties
input (sign, (baid, p+1)) to FT-sig in phase p. Therefore FT-sig will output (signed, (baid, p+
1)) in Step 1 of Step influence in phase p+1, which implies that all honest parties which reach
that step will have Gp+1

i ≥ 1 in Step decision and will input (sign, (baid, 2, p + 1)) to FT-sig.
As concluded above, all honest parties not reaching Step decision in phase p + 1 terminated
in phase p with output 1, and therefore also input (sign, (baid, 2, p+1)) to FT-sig. Therefore
all honest parties reaching Step 1 in Step test for stable in phase p + 1 sees FT-sig output
(signed, (baid, 2, p + 1)). It is easy to verify that this implies that those parties terminate
with output (decide, baid, 1) in phase p + 1. 2

Lemma 7.8 πASPHAK has decision-after-consensus-on-good-king.

Proof. Assume that in phase p the king is good, i.e. Kp
i = Kp

j = K for all honest parties Pi

and Pj , and PK was honest in Step 3 in Step king commit in phase p. We have to prove that
honest parties terminate no later than by the end of phase p. If some honest party terminated
before phase p, the claim follows by one-phase-staggering. We can therefore assume that all
honest parties reach phase p.

Assume first that after Step decision in phase p we have that Gi = 0 for all honest parties
Pi. This clearly implies that all honest parties terminate with output 0 in phase p. Assume
therefore that some honest party Pi has Gi > 0 after Step decision in phase p. We look at
two cases. Case 1: If Pi had Gi = 0 before Step decision in phase p, then Kp

i ∈ Jp
j . Since

Kp
i = Kp

j = K and PK was honest in Step 3 in Step king commit in phase p it follows that
Kp

j ∈ Jp
j for all honest Pj . Therefore Gp

j ≥ 1. Case 2: If Pi had Gi ≥ 1 before Step decision
in phase p, then Pi had Gi ≥ 1 in Step 1 in Step king commit in phase p. Therefore Pi input
(transfer, (baid, p)) to FT-sig in that Step and PK received (transfered, (baid, p)) in Step
2 in Step king commit in phase p. Since PK was honest in that Step this implies that PK

input (transfered, (baid, p)) to FT-sig which implies that Gp
j ≥ 1 after Step decision for all

honest Pj . In both cases we have that Gp
j ≥ 1 after Step decision in phase p for all honest Pj .

It is straight-forward to verify that this implies that all parties will terminate with output
(decide, baid, 1) in phase p. 2

7.8 Realizing FMBA 245

Theorem 7.11 For t ≤ (n− 1)/2 the πASPHAK protocol is a special phase-king BA protocol
(t-realizes FSPHAKIBA) with the following complexities for one phase (when FT-sig is realized
with a protocol with communication complexity k bits and round complexity r for signing):
6 + r rounds, 8kn2 bits of communication and message size k bits.

Proof. That the πASPHAK protocol is a special phase-king authenticated BA protocol follows
from Lemma 7.7 on the facing page and Lemma 7.8 on the preceding page and the observation
that the πASPHAK protocol is trivially all-zero-non-participation-resilient and agreement-
cheap. 2

7.8 Realizing FMBA

We are now ready to realize the FMBA functionality. We start by sketching the main idea
behind the protocol, assuming that we have at our disposal any special phase-king BA
protocol — i.e. we run in the FSPHAKIBA-hybrid model.

7.8.1 Introduction

Consider first the following protocol: Let all parties hold a round counter r. Each time a
party receives input (baid, b) it inputs (baid, b) to FSPHAKIBA and in the first round r, where
r + init-len mod phase-len = 0, the party adds baid to a set Running. Then in each
round, input (do round, baid) to FSPHAKIBA for baid ∈ Running. In each round r, where
r mod phase-len = king-round the party inputs (king, baid,K) to FSPHAKIBA, for some
phase king K. The parties can use a fixed predetermined schedule of kings, say a round-robin
schedule 1, 2, . . . , n, 1, 2, . . . to make sure to agree on the king in all phases. If FSPHAKIBA

ever outputs (decide, baid, b) then the party outputs (decide, baid, b) and removes baid from
Running.

This protocol already goes a long way. In each round where PK is honest all BAs in
Running will terminate in their current phase. This means that no BA runs for more than
f +1 phases, where f is the number of corrupted parties in the execution. Unfortunately, the
worst case is that all BAs run for f+1 phases. Assume namely that the parties P1, . . . , Pf are
corrupted and that all BAs are activated in a phase where K = 1. Then the adversary can
force all BAs to run for f + 1 phases. There is no trivial solution to this attack. The parties
cannot just start the round-robin schedule of kings from where they left of in the previous
activation: Because of the staggered termination, they do not agree on which party was the
last king. On the other hand, if the parties make too long skips in the schedule, exactly the
honest parties might be skipped, as above. A solution to this problem is given in [BDGK95]:
Simply run a BA after each activation to determine where to start the round-robin in the
next activation.

Actually, a BA will not do as the parties do not hold a bit as input. When the parties
terminate a given BA, each party Pi observed an integer pi being the number of phases that
the BA took to terminate at Pi. The parties know that |pi − pj | ≤ 1 for all honest parties
Pi and Pj and the parties essentially want to pick one of these integers. The problem is
that even though Pi knows that |pi − pj | ≤ 1 for all honest Pj , it does not know whether

246 The Broadcast Model

pj = pi − 1 or pj = pi + 1. So, it is not clear from Pi’s view which bit it is that should be
input to the BA. And, it does not help to do a BA on say all three values pi − 1, pi, pi + 1
— if pj = pi + 1 then Pj will be running other BAs. There seems to be a nasty regression
here. The solution taken in [BDGK95] is based on the observation that 1 ≤ pi ≤ f +1, as all
parties are guaranteed to terminate in the phase where the first honest party is king, which
happens no later than in phase f + 1. Since f ≤ t, the parties can solve the problem by
running t+1 BAs, with id’s (baid, 0), (baid, 1), . . . , (baid, t) say. We could e.g. let each party
Pi input 1 to the BAs with index (baid, pi− 1) and (baid, pi) and then let each party pick as
output the largest p for which (baid, p) output 1. By the agreement condition on each BA
the parties will agree on p. Let pmin = mini{pi} and let pmax = max{pi}i. We know that
pmin ≥ pmax − 1. Therefore all parties input 1 to (baid, pmin), so p ≥ pmin. Furthermore, no
honest party input 1 to (baid, p′) for p′ > pmax, so p ≤ pmax. So, p was the input of one of
the parties. Each party started out with an input pi and the promise that |pi − pj| ≤ 1 and
picked an input of one of the honest parties. This problem was dubbed the Unknown Binary
Set Consensus (UBC) problem in [BDGK95].

Given the outcome of the UBC the parties can determine a phase where an honest party
terminated. Let Pi be the king of that phase; Clearly Pi was not too bad, so the parties start
the next schedule from Pi, .

There is one issue with this, however: Running the UBC after the BA will not do, as the
output of the UBC should then actually be a round where an honest party terminated the
UBC as to not reuse the sequence of kings used in running the UBC when the next BA is
run. In [BDGK95] this is handled by starting the UBC when the next BA is activated. Then
two independent round robin schedules, R0 and R1, are used, running RA mod 2 during the
A’th activation, which includes a UBC resolving where R(A−1) mod 2 was terminated. This is
essentially the protocol from [BDGK95].

We present the protocol along with an optimization. The optimization is obtained by
constructing a UBC protocol which runs only a constant number of BAs. To the best of the
author’s knowledge the previously most efficient UBC protocol for the optimal resiliences,
3t < n for the unauthenticated model and 2t < n for the authenticated model, was the
one described above.16 This is a significant improvement. First of all the communication
complexity drops from being linear dependent on the size of the a priori set {1, . . . , t + 1},
from which parties might receive inputs, to being constant in this set. Equally important,
from a theoretical stand point it is interesting to resolve what is the lower bound on the
complexity of the UBC problem, in BAs say. From the viewpoint of each party at most three
outcomes are possible, so there is nothing which excludes a reduction from the UBC problem
to two BAs. We use four.

7.8.2 Unknown Binary Set Consensus

In [BDGK95] the Unknown Binary Set Consensus (UBC) problem is introduced. Each honest
party Pi starts with a value mi ∈ N and it is guaranteed that |mi −mj| ≤ 1 for all honest
parties Pi and Pj. As in the BA problem we require that all honest parties output the same
value, and that the output value was the input of some honest party. In [BDGK95] a solution

16This has been acknowledged by the third author of [BDGK95] in a private correspondence.

7.8 Realizing FMBA 247

to the problem is given for n > 4t and n > 3t. Both protocols are phase-king protocol; The
solution for n > 4t, using techniques from [BGP92], uses messages of size log(m), where m is
the largest input of an honest party, and the solution for n > 3t uses messages of size b, where
b is an a priori bound on the size of mi. Both results are basically obtained by reducing the
UBC problem to log(m) respectively b BA problems. In this section we improve on these
solutions by presenting a reduction of the UBC problem to 4 BA problems.

Definition 7.2 The functionality FUBC is defined as FBA, see Fig. 3.17 on page 91, with the
modification that it breaks down if two honest parties input (baid,mi) respectively (baid,mj),
where |mi −mj| > 1 when mi and mj are interpreted as integers..

Theorem 7.12 FUBC can be realized in the FBA-model with 4 calls to FBA per call to FUBC.

Proof. The party Pi proceeds as described below. Given input (baid,mi) for mi ∈ {0, 1}∗,
let vi be the value of mi when interpreted as an integer. Compute wi = vi mod 4. Then
the parties enter four BAs with indices (baid, 0), . . . , (baid, 3). Party Pi enters (baid,wi) and
(baid,wi − 1 mod 4) with value 1 and enters (baid,w1 + 1 mod 4) and (baid,w1 + 2 mod 4)
with value 0. Receive (decide, (baid, l), dl) for l ∈ {0, . . . , 3}. Each party Pi computes the
largest integer r for which ri ∈ {vi − 1, vi, vi + 1} and dri mod 4 = 1, and outputs ri.

Let Vi denote the set of v ∈ {vi − 1, vi, vi + 1} for which dv mod 4 = 1. Let vmin be the
smallest integer such that some honest party has vi = vmin. We know that vi ∈ {vmin, vmin+1}
for all honest Pi, so vmin ∈ {vi − 1, vi}, which implies that each honest party Pi enters
(baid, vmin mod 4) with input 1 and enters (baid, vmin + 2 mod 4) with input 0. So, dvmin

= 1
and dvmin mod 2 = 0. From dvmin

= 1 and vmin ∈ {vi−1, vi} it follows that vmin ∈ Vi. Therefore
ri ≥ vmin. From dvmin+2 mod 4 = 0 it then follows that vmin ≤ ri ≤ vmin + 1. Assume that no
party has ri = vmin + 1. Then ri = vmin for all parties and agreement and validity follows.
Assume then that some party has ri = vmin + 1. This means that dvmin+1 = 1. Since all
parties have vi ∈ {vmin, vmin +1} it follows that vmin +1 ∈ Vi, so that ri ≥ vmin +1. Together
with ri ≤ vmin + 1 it then follows that ri = vmin + 1 for all honest Pi. From this agreement
follows. Validity follows from the observation that if no honest party has vi = vmin + 1, then
all honest parties have vi = vmin and the result will trivially be ri = vmin. 2

7.8.3 The MBA Protocol

In this section we present a protocol realizing FMBA, see Fig. 7.11 on the following page. It
is similar to, and inspired by, the MULTI-CONSENSUS protocol in [BDGK95]. The changes
made are to allow it to run also for t = b(n−1)/2c, where the protocol in [BDGK95] assumes
that t = b(n− 1)/3c.

Theorem 7.13 πMBA realizes FMBA in the (FSPHAKIBA,FSGR)-hybrid model and the round
complexity is at most 4A + 2f phases in FSPHAKIBA, where A is the number of activating
rounds and f is the number of corrupted parties.

Proof. Following the rational given above for the protocol it is straight-forward to verify that
it actually realizes FMBA. We verify that the round complexity is as claimed.

248 The Broadcast Model

Protocol πMBA

The protocol runs with parties P1, . . . , Pn in the (FSPHAKIBA,FSGR)-hybrid model, and
we use FSPHAKIUBC to denote a sub-protocol using four calls to FSPHAKIBA for solving the
UBC problem, see the proof of Theorem 7.12 on the page before for details. The party Pi

proceeds as follows:

initializing:
On the first message:

1. Let LastKing(−1)← 1 and LastKing(0)← 1.

2. Let activation← 0.

activation:
On input {(baid, bbaid)} let Running← {(baid, bbaid)}, let Decided← ∅ and proceed
as follows:

1. activation← activation+ 1.

2. round← −init-len.
3. Let king(activation)← LastKing(activation− 2) + 1 mod n.

4. Input (activation, king(activation− 1)) to FSPHAKIUBC and for (baid, bi) ∈
Running, input (baid, bi) to FSPHAKIBA.

5. Until FSPHAKIUBC has output some (decide, activation, K) and |Running| =
∅, do:

(a) If round ≥ 0 and (round mod phase-len) = king-round, then in-
put (king(activation) mod n) to FSPHAKIUBC and FSPHAKIBA and let
king(activation)← king(activation) + 1.

(b) Input (do round, baid) to FSPHAKIBA for (baid, ·) ∈ Running and input
(do round, activation) to FSPHAKIUBC.
If FSPHAKIBA outputs (decide, baid, b) for (baid, ·) ∈ Running, then let
Decided← Decided∪ {(baid, b)} and remove (baid, ·) from Running.

6. Let LastKing(activation− 1)← K.

7. Input (activation, phase-len) to FSGR.

8. When FSGR outputs (activation, term), then output (baid, decide, b) for
(baid, b) ∈ Decided.

Figure 7.11: The MBA Protocol.

We consider one of the two ongoing round-robin schedules. Let A′ be the number of
activations run with this schedule. Observe first that because of the one-phase-staggering
of the special phase-king functionality FSPHAKIBA and the fact that one-phase-staggering
composes in parallel, the parties will input consecutive values to the UBC protocol, namely
the king of the round in which they terminated. Notice that the value king is not reduced
modulo n until after it was input to the UBC. This is to make sure that the values are
indeed consecutive. By the definition of UBC it then follows that the output K of the UBC
is the index of a party which was king in one of the two consecutive rounds in which parties

7.8 Realizing FMBA 249

terminated two activations earlier.
If the parties terminated with a staggering, then call the party which was king in the last

phase where parties terminated the last last king and call the previous king the first last king.
Notice that there are at most one last last king per activation. Call a king which is king in
a phase where there is a BA in which all parties are active an influential king. Notice that
because of the one-phase staggering, a king which is not influential is a last last king. We
will be interested in the sequence of influential kings, and want to argue that it is a round
robin except for a few omissions called skipped last last kings.

Consider again the output K of the UBC. Assume first that it is the index of the first last
king, including the case where all parties terminated the same round. Because the parties
start from K +1 mod n this means that the last last king start as king in the next activation.
This means that the round-robin of influential kings is kept. If K is the index of the last last
king, then the last last king is skipped in the round-robin of influential kings. We call such
a king a skipped last last king.

Assume that r phases of FSPHAKIBA is executed. If we look at the sequence of in-
fluential kings in these phases and insert the skipped last last kings, then it is of the
form 1, 2, . . . , n, 1, 2, . . . , n, 1, Therefore, out of the total of r of these kings, at most
(r − f)/2 + f were corrupted, so at least 1

2r − 1
2f were honest. Of these at most A′ were

skipped last last kings. The remaining 1
2r − 1

2f −A′ were influential honest kings. Because
of the decision-after-consensus-on-good king, each of these terminated a distinct activation.
Therefore 1

2r − 1
2f − A′ ≤ A′. This implies that r ≤ 4A′ + f . We have that A′′ = A − A′

activations were run with the other round-robin schedule, giving rise to at most another
4A′′ + f phases. A total of 4A + 2f phases, as claimed. 2

7.8.4 Randomized Mode

Even though the above realization of the FMBA protocol, when f = O(A), has a constant
amortized round-complexity, some activations might take Θ(f +2) rounds. In the worst case,
this is close to optimal, but it might in some cases be desirable to have, in addition, a better
expected round-complexity, especially because we consider reactive functionalities. This can
be obtained by using a coin-flip for choosing the king in some phases, every second phase
say. Running in the Fcoin-hybrid model the parties can generate the coin by all inputting
flip. Because of the special property of the phase-king protocols that they terminate if the
elected king was honest in the round before the round where the king is input — the round
called king commit in Fig. 7.9 on page 240 and Fig. 7.10 on page 243 — it follows that the
probability that the protocol terminates in a phase with a random king is at least n−f

n > 1
2 .

Therefore the expected round complexity will indeed be constant.
For the authenticated model the coin-flip protocol from Section 6.6.3 can be used. Using

this protocol, the round complexity of one coin-flip is constant, and the communication
complexity is O(n2k) bits. For the unauthenticated model the protocol from [FM97] can
be used. Using this protocol, the round complexity of one coin-flip is constant, and the
communication complexity is O(n4) bits.

Note however that if in πMBA the parties input flip to Fcoin in each phase, including
those where no BA is active, then we cannot maintain the worst-case complexities — all

250 The Broadcast Model

rounds will be active even when no BA is active. The obvious solution is to let the parties
only input flip when they are active in a BA, and then continue where they left of when a
BA is activated again. However, the parties must take care to input flip the same number
of times to see the same coin. A simple solution is to use the multi-session functionality.
In activation activation the parties use input (flip, activation). Since this gives session
id’s which is a sequence, the initialization and the coin-flip will both be constant round, see
Section 6.6.3.

7.9 A Trivial Lower Bound on the Round Complexity of an

MBA Protocol

Theorem 7.14 Any MBA protocol for the unauthenticated or the authenticated model which
tolerates t faults, will for all f < t and all A have executions with A activating rounds and
f faults which has min(2A + f, 2A + t− 1) active rounds.

Proof. Consider the following adversarial strategy: Run the first A− 1 BAs non-overlapping
and without corrupting any parties (f = 0), but on carefully chosen inputs and random
bits and then use full force in the last BA. By the results in [DRS90] we know that the
adversary can pick a set of inputs and random bits so that the protocol runs for at least
min(f + 2, t + 1) = 2 active rounds in the first BA. Now save the state of all parties, denote
the state by (P 1

1 , . . . , Pn
1). We have that (P 1

1 , . . . , Pn
1) defines a BA protocol: On any input

party i will simply run from the saved state P i
1. Therefore, by the results in [DRS90], we

know that the adversary can pick a set of inputs and random bits so that this protocol runs
for at least min(f + 2, t + 1) = 2 active rounds. In particular the MBA protocol must in
some cases use 4 rounds for the first 2 BAs. Continue this way to see that the first A − 1
BAs must use 2(A − 1) active rounds. Now use the same argument on the protocol defined
by the parties’ state after A− 1 BAs and get a last term min(f + 2, t + 1), and then add. 2

Part III

Secure Multiparty Computation

c
h
a
p
t
e
r
8

General Multiparty
Computation, Static Security

The less secure a man is, the more likely he is to have extreme
prejudice.

— Clint Eastwood

8.1 Introduction

In this chapter we present a solution to the so-called multiparty computation problem. The
problem of multiparty computation (MPC) dates back to the papers by Yao [Yao82a] and
Goldreich, Micali and Wigderson [GMW87]. What was proved there was basically that a
collection of n players can efficiently compute the value of any n-input function, such that
everyone learns the correct result, but no other new information. This is known as secure
function evaluation. These protocols are proved secure against static PPT adversaries which
corrupts a set of less than n/2 players. The protocols are proved secure in a weaker model of
security than that in Chapter 3. In particular, they are not UC secure. Later, unconditionally
secure MPC protocols were proposed by Ben-Or, Goldwasser and Wigderson and Chaum,
Crépeau and Damg̊ard [BGW88, CCD88] for the information theoretic model where private
channels are assumed between every pair of players. The solution that we are going to present
is for the cryptographic model.

Over the years, several protocols have been proposed which, under specific computational
assumptions, improve the efficiency of general MPC, see for instance [BB89,CDM00,GRR98,
CDD00]. Virtually all proposals have been based on some form of verifiable secret sharing
(VSS), i.e., a protocol allowing a dealer to securely distribute a secret value s among the
players as described in Section 6.3.1. But in the malicious case, where both the dealer
and/or some of the players may be cheating. The protocol must then guarantee that after
the sharing protocol terminates, a unique secret is defined and can be reconstructed. Then
the parties manipulate these shared inputs to compute some function of them. The basic
paradigm that has been used is to ensure that all inputs and intermediate values in the
computation are VSS’ed. The idea of using VSS for computation has received an immense

254 General Multiparty Computation, Static Security

attention, some of it mentioned above, but will not be covered further. See e.g. [GM95] as a
starting point.

In all these earlier protocols, the total number of bits broadcast was Ω(n2k|C|), where n

is the number of players, k is a security parameter, and |C| is the size of a circuit computing
the desired function. Here, C may be a Boolean circuit, or an arithmetic circuit over a
finite field, depending on the protocol. We note that all complexities mentioned here and in
the next section are for computing deterministic functions. Handling probabilistic functions
introduces some overhead for generating secure random bits, but this will be the same for
all protocols we mention here, and so does not affect any comparisons we make.

In [FH96] Franklin and Haber propose a protocol for passive adversaries which achieves
complexity O(nk|C|). This protocol is not based on VSS (there is no need since the adversary
is passive) but instead on a so-called joint encryption scheme, where a ciphertext can only
be decrypted with the help of all players, but still the length of an encryption is independent
of the number of players.

In this chapter we show how this new approach can be used to building multiparty
computation protocols with active security. We start from any secure threshold encryption
scheme with certain extra homomorphic properties. Input values are then encrypted under
this scheme and the computation proceeds by manipulation of the ciphertexts. This allows
us to avoid the need to VSS all values handled in the computation, and therefore leads to
more efficient protocols, as detailed below. In [CDN01], some of the results presented in this
chapter were presented in preliminary form.

Also Canetti and Gennaro [CG96] consider an approach to MPC where inputs are en-
crypted under a public key with the corresponding secret key shared among to parties. They
do however not consider homomorphic schemes, but carry out the computation on ciphertexts
using a general MPC. As a consequence their protocol is very inefficient compared to ours.
However, their goal is not efficiency, but to demonstrate feasibility of so-called incoercible
MPC.

The MPC protocols we construct here can be proved secure against an active and static
adversary who corrupts any minority of the players. Like the protocol of [FH96], our con-
struction requires once and for all an initial phase where keys for the threshold cryptosystem
are set up. This can be done by a trusted party, or by any general purpose MPC. We stress,
however, that unlike some earlier proposals for preprocessing in MPC, the complexity of this
phase does not depend on the number or the size of computations to be done later. It is even
possible to do a computation only for some subset of the players that participated in the first
phase, provided the subset is large enough compared to the threshold that the cryptosystem
was set up to handle. Moreover, since supplying input values to the computation consists
essentially of just sending encryptions of these values, we can easily handle scenarios where
one (large) group of players supply inputs, whereas a different (smaller) group of players does
the actual computation.

In the following we therefore focus on the complexity of the actual computation. In
our protocol the computation can be done only by broadcasting a number of messages, no
encryption is needed to set up private channels. Most complexities we give in the following
are therefore simply the number of bits broadcast, we refer to this as broadcast complexity.
This does not invalidate comparison with earlier protocols because first, the same measure

8.1 Introduction 255

was used in [FH96] and second, the earlier protocols with active security have complexity
quadratic in n even if one only counts the bits broadcast. Our protocol has broadcast
complexity O(nkM + kI) bits, where M is the number of multiplication gates in the circuit
and I is the number of input gates in the circuit. The protocol requires O(d) rounds, where
d is the multiplicative depth of C. To the best of our knowledge, this is the most efficient
general MPC protocol tolerating up to n/2 active cheaters proposed to date.

Here, C is an arithmetic circuit over a ring R determined by the cryptosystem used,
e.g., R = Zn for an RSA modulus n, or R = GF(2k). While such circuits can simulate
any Boolean circuit with a small constant factor overhead, this also opens the possibility
of building an ad-hoc circuit over R for the desired function, possibly exploiting the fact
that with a large R, we can manipulate many bits in one arithmetic operation. In [LP01]
Lysyanskaya and Peikert used this property of our protocol to construct an efficient adap-
tively secure threshold signature scheme, by replacing a previously more inefficient step in a
known threshold signature scheme by our protocol.

The complexities given here assume existence of sufficiently efficient threshold cryptosys-
tems. We give two examples of such systems with the right properties. One is based on
Paillier’s cryptosystem [Pai99], the other one is an extension of Franklin and Haber’s cryp-
tosystem [FH96]. It is secure assuming that both the QRA and the strong RSA assumption
are true. Essentially the same scheme was also presented in [CDN01], but proved secure
based on the QRA and the DDH assumption. This is essentially the same as the assump-
tion made in [FH96]. While the first example is known (from [DJ01] and independently
in [FPS00]), the second is new and may be of independent interest. In [KY02] Katz and
Yung have presented a threshold homomorphic encryption scheme, which also supports our
construction. Their scheme too can be based on the QRA assumption and the strong RSA
assumption.

Franklin and Haber [FH96] left as an open problem to study the communication require-
ments for active adversaries. With the results presented in this chapter we can now say that
under the same assumption as theirs, protection against active adversaries comes essentially
for free. In Chapter 10 we then show how the protocol can be made adaptively secure. The
main reason for this separation is that a complete proof of security is challenging enough
without considering an adaptive adversary and will be used to build some intuition for the
security of the approach. In Chapter 9 we then introduce an adaptively secure universally
composable commitment scheme which will be an essential tool in making the protocol in
this chapter adaptively secure.

We prove our protocols secure in the UC framework from Chapter 3. The framework
allows to consider a more general problem than the secure function evaluation problem, as
it allows to define the security of general reactive tasks. This allows us to prove that our
protocol is equivalent to what we call an arithmetic black box (ABB). An ABB can be thought
of as a secure general-purpose computer. Every player can in private specify inputs to the
ABB, and any majority of players can ask it to perform any feasible computational task
and make the result (and only the result) public. Moreover the ABB can be invoked several
times and keeps an internal state between invocations. This point of view allows for easier
and more modular proofs, and also makes it easier to use our protocols as tools in other
constructions.

256 General Multiparty Computation, Static Security

8.1.1 Informal Description of the Main Ideas

In this section, we give a completely informal introduction to some main ideas. All the
concepts introduced here will be treated more formally in subsequent sections. We assume
that from the start the following scenario has been established: We have an IND-CPA secure
threshold public-key system given, i.e., there is a public encryption key pk known by all
players, while the matching private decryption key has been shared among the players using
e.g. a simple function sharing scheme (Definition 6.2 on page 194) for the decryption function.

The message space of the cryptosystem is assumed to be a ring R. In practice R might
be Zn for some RSA modulus n. For a plaintext a ∈ R, we let a denote an encryption of a.
We then require certain homomorphic properties: From encryptions a, b, anyone can easily
compute (deterministically) an encryption of a+b, which we denote by a�b. We also require
that from an encryption a and a constant α ∈ R, it is easy to compute an encryption of αa,
which we denote by α� a. This immediately gives us an algorithm � for subtracting.

Finally we assume that three secure (and sufficiently efficient) sub-protocols are available:

proving you know a plaintext:
If Pi has created an encryption a, he can give a zero-knowledge proof of knowledge that
he knows a (or more accurately, that he knows a and a witness to the fact that the
plaintext is a).

proving multiplications correct:
Assume Pi is given an encryption a, chooses a constant α, computes a random encryp-
tion αa and broadcasts α,αa. He can then give a zero-knowledge proof that indeed αa

contains the product of the values contained in α and a.

threshold decryption:
For the third sub-protocol, we have common input pk and an encryption a. In addition
every player also uses his share of the private key as input. The protocol computes
securely a as output for everyone.

We can then sketch how to perform securely a computation specified as a circuit doing
additions and multiplications in R. Note that this allows us to simulate a Boolean circuit in
a straightforward way using 0/1 values in R.

The MPC protocol would simply start by having each player publish encryptions of his
input values and give zero-knowledge proofs that he knows these values and also that the
values are 0 or 1 if we are simulating a Boolean circuit.1 Then any operation involving
addition or multiplication by constants can be performed with no interaction: If all players
know encryptions a, b of input values to an addition gate, all players can immediately compute
an encryption of the output a + b. This leaves only the following problem:

Given encryptions a, b (where it may be the case that no players knows a nor b), compute
securely an encryption of c = ab. This can be done by the following protocol (which is a
slightly optimized version of the protocol from [CDN01]):

1The purpose of having each party prove that he knows the plaintext is to prevent corrupted parties from
copying the ciphertext of a honest party and thereby inputting the same value. This will be discussed i more
detail in the technical section.

8.2 The Arithmetic Black-Box 257

1. Each player Pi chooses at random a value di ∈ R and broadcasts encryptions di and
dib.

2. All players prove, using the first and second sub-protocol, that they know their respec-
tive values of di, and that dib encrypts the correct value. Let N be the subset of the
parties succeeding both proofs.

3. All parties can now compute a�(�i∈Ndi). This ciphertext is decrypted using the third
sub-protocol, so all players learn a +

∑
i∈N di.

4. All parties set c = (a +
∑

i∈N di)� b� (�i∈Ndib).

At the final stage we know encryptions of the output values, which we can just decrypt.
Intuitively this is secure if the encryption is secure because, other than the outputs, only
random values and values already known to the adversary are ever decrypted. We give proofs
of this intuition in the following.

8.1.2 Related Work

In [SYY99] Sander Young and Yung also use homomorphic encryption for secure computa-
tion. What is considered there is the so-called crypto-computing, where an input party sends
its encrypted inputs to a crypto-computing server which evaluates a circuit on the encrypted
inputs and its own local inputs and deliver an encrypted version of the output back to the
input party, which can decrypt to learn the output. In doing this the server learns nothing
about the encrypted input of the input party. In [SYY99] a round optimal protocol for do-
ing this (two moves) is presented for the class of circuits NC1. Some of the work on using
homomorphic encryption for crypto-computing is surveyed in [SYY99].

In concurrent independent work, Jacobson and Juels [JJ00] use an idea somewhat related
to ours, the so-called mix-and-match approach which is also based on threshold encryption
(with extra algebraic properties, similar to, but different from the ones we use). Beyond
this, the techniques are completely different. For Boolean circuits and in the random oracle
model, they get the same broadcast complexity as we obtain here (without using random
oracles). The round complexity is larger than ours (namely O(n + d)). Another difference
is that mix-and-match is inherently limited to circuits where all gates can be specified by
constant size truth-tables. This introduces a considerable overhead when e.g. evaluating an
arithmetic circuit over a large ring.

8.2 The Arithmetic Black-Box

In this section we define the arithmetic black-box (ABB). We think of the arithmetic black-
box as a tamper resistant computer to which each party has a secure terminal. The computer
allows parties to load their private values into variables and manipulate them using commands
like (x ← x1 + x2) to add variables and (output, x) to reveal the value of a variable to all
parties. The machine will not execute any command unless all honest parties have instructed
it to execute that command. We then realize the ABB in the following sections.

258 General Multiparty Computation, Static Security

This approach to studying secure general MPC has been chosen for several reasons. First
of all it possesses several advantages over the function evaluation approach which has been
the typical one applied when studying general secure MPC. Most importantly, it allows for
more modular proofs and the ABB functionality is easier to use as part of another protocol,
mostly due to the fact that the ABB functionality is stateful, whereas a function evaluation
functionality is stateless. The ABB allows to do some computations on secret variables,
reveal some partial knowledge about the variables and then continue to manipulate the
secret variables based on this revealed information. The ABB does not force you to specify
the sub-tasks to be handled by the functionality as functions. A similar approach is taken by
Canetti, Lindell, Ostrovsky and Sahai in [CLOS02], where it is showed how to realize any well-
formed functionality. Compared to our approach this is more general, as we realize a specific
functionality. However, our functionality is easily seen to be universal — any functionality
can be formulated using addition and multiplication over a ring and then evaluated via
FABB. Our reason for choosing the specific functionality FABB is that it generalizes the
formulation of threshold homomorphic encryption scheme in a natural manner and therefore
is closely coupled to the way we are going to realize to functionality. This simplifies the
proofs considerable.

8.2.1 Specification of the ABB

Formally, the ABB is an ideal functionality. On initialization with security parameter k the
ABB generates a uniformly random public key pk. The key defines the ring Rpk that the ABB
does arithmetic over. In each activation it expects a command from each party and carries
out the command if all honest parties agreed on the command to be carried out. Typically
agreement means that all honest parties gave the same command, e.g. (x ← x1 + x2), but
this does not always make sense. If e.g. party Pi wants to load a secret value s using the
command (Pi, x← s), then of course the other parties cannot acknowledge this by giving the
same command. In this case they acknowledge by giving the command (Pi, x ← S), where
S is (a description of) some subset of Rpk. The intended meaning is that Pi is allowed to
define x using a secret value from S.

Definition 8.1 A PPT family of rings is a PPT algorithm gen, which on input k outputs
pk ∈ {0, 1}∗, where pk is a description of a ring (Rpk,+pk, ·pk). We require that we can do
the following in PPT given pk ∈ gen: 1) Sample a uniformly random element from Rpk, 2)
Compute strings representing 0pk and 1pk, 3) Compute a +pk b and a ·pk b given a, b ∈ Rpk,
4) Given a ∈ {0, 1}∗, compute whether a ∈ Rpk, 5) Compute a−1 ∈ R∗

pk for a ∈ R∗
pk. The

arithmetic black-box (ABB) over a family of rings is the ideal functionality FABB given in
Fig. 8.1 on the next page. The requirements in incorrect inputs defines an IO behavior IOABB.
By the basic arithmetic black-box (BABB) we mean the ideal functionality FBABB which is
FABB without the multiplication command.

We give some clarifying remarks on the formulation of FABB.

Remark 8.1 The value r which is output on the SOT in initialization basically models that
it is not a part of the functionality to be a secure distributed evaluation of gen. The value

8.2 The Arithmetic Black-Box 259

Functionality Fgen
ABB

The functionality Fgen
ABB runs with parties P1, . . . , Pn and is parameterized by a family of

rings gen. All inputs to the parties are parsed in one of the forms init or (cid, · · ·) for
cid ∈ {0, 1}∗. All input values are output on the SOT, except for s in load.

initialization:
If all honest parties input init in the same round, then generate a random key
pk ← gen(k; r) and output pk to all parties and output r to the adversary. Let val
be a dictionary mapping from variable names x ∈ {0, 1}∗ into Rpk ∪ {⊥}. Initially
val(x) = ⊥ for all x ∈ {0, 1}∗.
Output ready to all parties in a round specified by the adversary, and ignore all
inputs until this has been done.

load:
On input (cid, Pi, x ← S), possibly S = Rpk, in the same round from all honest
parties except Pi, if Pi inputs (cid, Pi, x← s, S) for s ∈ S in the same round or Pi is
corrupted, then:

• If in some round (cid, term, s′) is input on the SIT for s′ ∈ S, then proceed
as follows: If Pi is honest in that round, then set val(x) = s. Otherwise, set
val(x) = s′. Then output (cid, defined) to all parties

• If in some round Pi is corrupted and (cid, fail) is input on the SIT, then output
(cid, fail) to all parties.

And then ignore all subsequent (cid, ·) inputs on the SIT.

linear combination:
On input (cid, x ← a0 +

∑l
j=1 ajxj) in the same round from all honest parties, if

aj ∈ Rpk for j = 0, . . . , l and val(xj) 6= ⊥ for j = 1, . . . , l, then define val(x) =
a0 +

∑l
j=1 aj val(xj) and output (cid, defined) to all parties.

Figure 8.1(a) (cont. in Fig. 8.1(b) on the next page): The Arithmetic Black-Box

pk is only output to specify the ring to do arithmetic over. Furthermore, outputting r in the
initialization command guarantees that FABB is a well-formed functionality. It might seem
puzzling that the values pk and r occur as part of the initialization of the functionality FABB,
as these values are part of the realization of the functionality. This might in particular
seem puzzling for the value r, which in the realization might specify also the secret key sk

corresponding to pk (and in our realizations sk is not even known by the honest parties).
The point, however, is that the ring that FABB computes over is specified by pk. In the
case of Paillier e.g. the value N must be output to the parties using FABB to tell them that
input values should be from ZN , that output values are from ZN and that additions and
multiplications are in ZN . If the plaintext ring is independent of the public key (as is the
case when it is Z2) then it is true that pk and r can be dropped in the initialization. We
will however not discuss this, simpler, case further. This discussion only argues why pk is
part of the initialization. Why then is r (and thereby possibly sk) given to the adversary
S on the SOT? If Paillier encryption is used r would e.g. contain the factorization of N .

260 General Multiparty Computation, Static Security

Functionality Fgen
ABB

multiplication:
On input (cid, x← x1 · x2) in the same round from all honest parties, if val(x1) 6= ⊥
and val(x2) 6= ⊥, then define val(x) = val(x1) · val(x2) and output (cid, defined) to
all parties in a round specified by the adversary.

private multiplication:
On input (cid, Pi, x← x1 ·x2) in the same round from all honest parties, if Pi loaded
x1, i.e the command (cid′, Pi, x← S) was executed at some point, and val(x2) 6= ⊥,
then:

• If in some round (cid, term) is input on the SIT, then set val(x) = val(x1)·val(x2)
and output (cid, defined) to all parties.

• If in some round Pi is corrupted and (cid, fail) is input on the SIT, then output
(cid, fail) to all parties.

And then ignore all subsequent (cid, ·) inputs on the SIT.
output:

On input (cid, output, x) in the same round from all honest parties, if val(x) 6=
⊥, then output (cid, output, x, val(x)) on the SOT. Then output (cid, val(x)) to all
parties in a round determined by the adversary.

aligned output:
If more than one commands is activated in the same round, then the outputs are
delivered when all the commands have terminated.

incorrect inputs:
If the first non-trivial input from all honest parties is not init or two honest parties
input init in different rounds or any honest party inputs init twice, then break
down. If in some round any honest party inputs a value of the form (cid, . . .) and
some honest party does not, then break down. If any honest party uses the same
command id cid twice, then break down. This allows to divide the inputs in all rounds
into commands, where each honest party contributed a value to each command. If
any of these commands cannot be parsed on one of the above forms, then break
down. If a variable name is defined by several commands, then break down. Finally
we require non-overlapping IO behavior, meaning that the next round of commands
is not delivered until the last round of commands terminated, see Definition 3.28 on
page 144 for a formalization.

Figure 8.1(b) (cont. from Fig. 8.1(a) on the preceding page): The Arithmetic Black-Box

The intuitive reason is that this renders pk ’insecure’ outside the functionality when used
in a FABB-hybrid model: Since sk is allowed to leak to the environment, the parties cannot
both use FABB and in addition use pk for doing, says, encryptions or commitments outside
FABB.2 It is necessary to prevent this as such encryptions or commitments could be replayed
in the realization of FABB when the functionality is replaced by a realization. This could
make the outer protocol and the realization of FABB interact in an adverse way, so that in
particular it would not be secure to use any realization in any context. Since UC security

2At least not if these encryptions or commitments depend on sk being hidden.

8.2 The Arithmetic Black-Box 261

guarantees that it is indeed so, it is actually the strong UC security notion which forces us
to reveal r in the hybrid model and render pk useless outside FABB. The way this intuitive
reason pops up in the technicalities of the proof is through the fact that if we do not reveal r

on the SOT, then in the ideal process, where the simulator is given the output on the SOT,
the simulator cannot simulate, see Footnote 8 on page 275

Remark 8.2 An alternative formulation of the FABB functionality might let the adversary S
choose pk and/or r to model that the functionality might specify any key pk and thereby any
ring. Our realization would still be secure for this formulation, but the adversary S (being
the simulator in the proof of security) would in all cases just pick pk at random anyway to
get semantic security. Therefore nothing would be obtained by changing the formulation. On
the other hand, when using FABB in the FABB-hybrid model the parties would receive an
adversely chosen pk instead of a random one. Therefore something might conceivably be lost.
Choosing between a case where by guarantee nothing is lost and one where something might
be lost we pick the first.

Remark 8.3 The load commands appears to be slightly more involved than one would ex-
pect. There are however good reasons for all the complications. The functionality says that
an honest party must know from the beginning of the protocol what its input is, but that a
corrupted party need not be bound to its input before the end of the load protocol and can
of course start the protocol honestly and then abort. However, if the load command termi-
nates, then honest parties will learn whether or not val(x) was defined and if they receive
(cid, defined), then Pi is committed to val(x). The reason that honest parties must know
the value at the beginning of the protocol is of course that the value is needed in the protocol
realizing the command. The reason why we allow that that the corrupted parties are not
committed until after the command is that it allows more, and more efficient, realizations.

Remark 8.4 The private multiplication command allows a party that loaded x1 to multiply it
with some other variable. The reason for having both private multiplication and multiplication
is that private multiplication can be realized more efficiently than multiplication and that we
will realize the multiplication command via private multiplication commands.

8.2.2 General Multiplication

We later give several realizations of FABB, but first we prove that the multiplication command
can be reduced to the other commands in a black-box manner, i.e. FABB can be realized in
the FBABB-hybrid model. This then leaves us with the problem of realizing FBABB for the
rings in question. The protocol is given in Fig. 8.2 on page 264.

Theorem 8.1 πABB n-realizes FABB in the FBABB-hybrid model.

Proof. That πABB uses FBABB according to IOABB under IOABB follows by inspection. To
prove the theorem it is therefore enough to prove that there exists a hybrid interface T such
that IDEALFBABB

FABB,T ,Z|IOABB
= HYBFBABB

πABB,Z|IOABB
for all environments Z.3

3Since IOABB is PPT we can consider the self-restricting environment Z|IOABB .

262 General Multiparty Computation, Static Security

We sketch how T can simulate the values seen during the protocol given access to the
values on the SOT of FABB. When the command given by Z is not the multiplication
command the simulation is trivial. But, for the multiplication protocol FABB basically just
tells us that a multiplication with command id cid took place, whereas what we have to
simulate is the values of the multiplication protocol.

Observe that the only value which is not trivial to simulate is the value v output in Step
4 (it is output to the parties in Step 5, but should be simulated as output on the SOT in
Step 4, when the output-command is given), all other values can be computed given just cid.
If no parties are honest, there is nothing to simulate. Assume then that at least one party
Pj is honest. Let A denote

∑
j∈J2

aj , so that v = val(x1) + A. We simulate val(x1) + A by
giving a uniformly random value v ∈ Rpk to Z. We argue that this is a perfect simulation:
Clearly j ∈ J2, so in HYBFBABB

πABB,Z|IOABB
we would have that the value A is uniformly random

and independent of the view of the environment. This is so because the environment learns
no information about aj when it is loaded, so the ai values loaded by the environment on
behalf of the corrupted parties are independent of aj . Since addition by an element in a ring
is a bijection, the claim follows. So, if just one party is honest, then in HYBFBABB

πABB,Z|IOABB

the value v = val(x1) + A is a uniformly random value in the view of the environment.
If a honest party Pi is later corrupted, then simply simulate the internal ai value of Pi

honestly, using a uniformly random element from Rpk.4 When the last honest party Pj is
corrupted, we learn the true value of val(x1) from FBABB

5 and can simulate the aj value by
aj = v − val(x2) −

∑
i∈J2\{j} ai. Since v was chosen as a uniformly random value it follows

that aj is a uniformly random value for which v = val(x2) +
∑

j∈J2
aj , as desired.

We have argued that we can simulate the view of the communication of protocol per-
fectly. What remains is to argue that the output Z sees from FBABB in HYBFBABB

πABB,Z|IOABB

is distributed as the output from FABB in IDEALFBABB
FABB,T ,Z|IOABB

. For all commands except
output, this is straight-forward. To see this we take multiplication as an example. Assume
first that the simulated multiplication protocol does not terminate. This T simulates by not
specifying an output round for the multiplication command on FABB. Assume then that the
multiplication protocol does terminate. This T simulates by inputting cid to FABB, which
causes it to define val(x) = val(x1) · val(x2) and output (cid, defined) to all parties, as de-
sired. So, consider the output-command. To see that the output from the output-command
is the same in the protocol and the simulation basically involves proving the multiplication
protocol correct.

We consider HYBFBABB
πABB,Z|IOABB

. Let

A =
∑
j∈J2

val(aj) ,

4The ai value is not a value which is defined on the functionality FABB in IDEALFBABB
FABB,T ,Z|IOABB

; It is

a value internal to the simulated multiplication protocol. The fact that we separated the name spaces using
the (0, x) and (1, x) convention ensures that Z has had no opportunity of viewing ai before. Therefore S is
now free to set ai as it desires.

5When all parties are corrupted, T will know the inputs of all parties and can compute val(x1).

8.3 ABB Threshold Homomorphic Encryption Schemes 263

where val(aj) denotes the values of aj in FBABB. Since aj was defined for all j ∈ J1 ⊃ J2, A

is well-defined. Let
B =

∑
j∈J2

val(bj) ,

where val(bj) denotes the values of bj in FBABB. Since bj was defined for all j ∈ J2, B is
well-defined. We have that

val(c) = v = val(x1) + A ,

so

val(x) = v val(x2)−
∑
j∈J2

val(aj) val(x2)

= (val(x1) + A) val(x2)−A val(x2)

= val(x1) val(x2) ,

which concludes the proof. 2

8.3 ABB Threshold Homomorphic Encryption Schemes

We present a static secure realization of FBABB based on threshold homomorphic encryption
schemes with some special properties. In lack of a better name we call a scheme which has
the properties that allow us to realize FABB w.r.t static adversaries a static ABB threshold
homomorphic encryption scheme.

Definition 8.2 A static ABB t-threshold homomorphic encryption scheme T HE is an IND-
CPA secure encryption scheme (gen,E,D) with the following properties:

plaintext ring:
The plaintext space is a ring. Formally there exists a PPT family of rings (Defini-
tion 8.1 on page 258) with the generator defined by running (pk, sk)← gen(k) and then
outputting pk. We denote this generator by genpk and denote the ring by (Rpk,+pk, ·pk).

perfect correctness:
For all (pk, sk) ∈ gen and all m ∈ Rpk and r ∈ {0, 1}∗ it holds that m = Dsk(Epk(m; r)).

additive homomorphic:
There exists a PPT algorithm, which given public key pk and encryptions m1 ∈ Epk(m1)
and m2 ∈ Epk(m2) outputs a uniquely determined encryption m ∈ Epk(m1 +pk m2). We
write m← m1 �pk m2.

multiplication by constant:
There exists a PPT algorithm, which on input pk, m1 ∈ Rpk and m2 ∈ Epk(m2) outputs
a uniquely determined encryption m ∈ Epk(m1 ·pk m2). We write m← m1 �pk m2.

264 General Multiparty Computation, Static Security

Protocol πABB

The protocol runs in the FBABB-hybrid model with parties P1, . . . , Pn.

multiplication:
On input (cid, x← x1 · x2) party Pi proceeds as described below. In the description
the protocol keeps reusing cid, which would violate IOABB. To avoid this, when cid
is input in round r, instead input (cid, 0, r), and for the load for Pj and the private
multiplication command for Pj use (cid, j, r). Furthermore, for all variable names
x input from the environment, use the name (0, x) on FBABB and for all internal
variable names x use the name (1, x) instead. This prevents the environment from
ever accessing internal values via e.g. output-commands.

1. Generate uniformly random ai ← Rpk and input

(cid, Pi, ai ← ai, Rpk)

to FBABB. Furthermore, input (cid, Pi, aj ← Rpk) for j ∈ [n] \ {i}.
2. Wait until defined or fail is output by FBABB for all j ∈ [n]. Let J1 ⊆ [n] be

those indices j for which defined was output. Then input

(cid, bj ← aj · x2)

to FBABB for j ∈ J1.

3. Wait until defined or fail is output by FBABB for all j ∈ J1. Let J2 ⊆ J1 be
those indices j for which defined was output. Then input

(cid, c← x1 +
∑
j∈J2

aj)

to FBABB.

4. Wait until defined is output by FBABB. Then input

(cid, output, c)

to FBABB.

5. Wait until (cid, v) is output by FBABB. Then input

(cid, x← v · x2 −
∑
i∈J2

bi)

to FBABB.

6. Wait until defined is output by FBABB. Then output (cid, defined).

6=multiplication:
On all other inputs of the form (cid, V) for some value V , input ((cid, 0, 0), V) to
FBABB. Then wait until FBABB outputs some value of the form ((cid, 0, 0), W), and
output (cid, W). Translate all variable names x in the command to (0, x).

Figure 8.2: Realizing FABB in the FBABB-hybrid model.

8.3 ABB Threshold Homomorphic Encryption Schemes 265

blinding:
There exists a PPT algorithm, called the blinding algorithm, which on input pk and
c ∈ Epk(m) and uniformly random bits r2, called the randomizer, outputs a random
encryption c′ distributed exactly as Epk(m; r) for uniformly random bits r. We write
c′ ← Blindpk(c; r).

proof of plaintext knowledge:
There exists a Σ-protocol Σ1 for the relation R1 ⊆ ({0, 1}∗)2 × ({0, 1}∗)2 given by

(pk, y) ∼ (x, r)⇔ x ∈ Rpk ∧ y = Epk(x; r) ∧ r ∈ Rpk .

Where Rpk is the domain from which random bits are chosen in the encryption. The
set S(R1) for the relation is given by pk being a correct public key, i.e. pk ∈ genpk.

proof of conditioned plaintext:
The scheme might also include a number of Σ-protocols for proving that the plaintext
of a ciphertext is in some subset S of Rpk. Formally, there exists a Σ-protocol ΣS for
the relation RS ⊆ ({0, 1}∗)2 × ({0, 1}∗)2 given by

(pk, y) ∼ (x, r)⇔ x ∈ S ∧ y = Epk(x; r) ∧ r ∈ Rpk .

The set S(RS) of the relation is given by pk ∈ genpk.

It is enough that the proof of plaintext knowledge and proof of conditioned plaintext Σ1

has computational special knowledge soundness relative to pk being a correctly generated
random public key,6 but the membership soundness should not be relative to any PPT
family of sets.7 Furthermore we allow for r ∈ {0, 1}∗ in the extraction relation and that
the Σ-protocols are private reference string Σ-protocols.

proof of correct multiplication:
There exists a Σ-protocol Σ2 for the relation R2 ⊆ ({0, 1}∗)4 × ({0, 1}∗)3 given by

(pk, x, y, z) ∼ (d, r1, r2)⇔ y = Epk(d; r1) ∧ z = Blindpk(d�pk x; r2) .

It is enough that the Σ-protocol has special membership soundness and it is allowed
to be a private reference string Σ-protocol. The set S(R2) of the relation is given by
pk ∈ genpk.

threshold decryption:

There exists a protocol πTHE t-realizing Fgen,E,D
THE from Fig. 8.3 on the following page

(possibly in a G-hybrid model) under IOstatic.

We present two examples of static threshold homomorphic encryption schemes. The first
scheme is based on the QRA and the strong RSA assumption. The second scheme is based
on Paillier’s cryptosystem. Katz and Yung [KY02] have presented a scheme which can be
verified to also meet Definition 8.2 on page 263. Their scheme can also be based on the QRA
and strong RSA, using techniques described below.

6Formally specified by the generator pk← genpk and the set of instances where the public key equals pk.
7It is discussed in Footnote 11 on page 282, exactly where in the proof it is used that the membership

soundness in unconditional.

266 General Multiparty Computation, Static Security

Functionality Fgen,E,D
THE

The functionality runs with parties P1, . . . , Pn and is parameterized by a public-key en-
cryption scheme (gen, E, D). The functionality proceeds as follows:

key generation:
On input init from all honest parties in the same round, generate (pk, sk)← gen(k)
and output pk to all parties and output pk on the SOT.

decryption:
If in some round all honest parties input (did, C), then output (did, C, Dsk(C)) on
the SOT and output (did, C, Dsk(C)) to all honest parties in a round specified by the
adversary.

incorrect inputs:
If the first non-trivial input from all honest parties is not init or two honest parties
input init in different rounds or any honest party inputs init twice, then break
down. If in some round any honest party inputs a value (did, C) and some honest
party does not input (did, C), then break down. If any honest party uses the same
decryption id did twice, then break down. If any honest party inputs (did, C), where
C is not a valid ciphertext, then break down. Notice that this last check cannot
necessarily be checked in PPT given just the inputs and outputs of FTHE, as we have
not required that we can check whether a string is a ciphertext given just the public
key.a

aAn alternative approach would be to realize the function {0, 1}∗ → {0, 1}∗, C 7→ Dsk(C)
which e.g. outputs invalid when the input is not a valid ciphertext. Let’s call this the strong
functionality. The reason why we do not realize the strong functionality is that it might be harder
and that we do not need this extended functionality. To see that realizing {0, 1}∗ → {0, 1}∗, C 7→
Dsk(C) might be harder than realizing the function Csk → {0, 1}∗, C 7→ Dsk(C), where Csk is
the set of valid ciphertexts, consider a set of ciphertexts Csk and extend it to be, by definition,
some set which cannot be recognized in PPT, even if sk is given. Then let all ciphertexts in the
extension which is not also in the original set decrypt to a special symbol ⊥, which is different
from invalid. Then a realization of the strong functionality is not possible as the problem of
determining whether to return ⊥ or invalid is hard even given sk. Since in all contexts where
we use the functionality we know that the input is a correct ciphertext when the decryption
functionality is called it therefore makes sense to realize only the weaker functionality. Since in
the cases where there is a difference the set Csk must be hard to recognize we have to use the IO
restriction to do the test, as the core functionality can only do PPT computations.

Figure 8.3: The threshold functionality for a public-key encryption scheme (gen, E, D).

8.3.1 Based on Paillier’s Cryptosystem

In this section we present a static ABB threshold homomorphic encryption scheme based on
Paillier’s cryptosystem.

key generation:
Let (p, q) ← gen(k) be an RSA generator for which p′ = (p − 1)/2 and q′ = (q − 1)/2
are primes and gcd(N,λ) = 1, where λ = 2p′q′.

To generate a key-pair (pk, sk), run (p, q)← gen(k). Let N = pq and let d = λ(λ−1 mod
N). Let pk = N and let sk = (N, d). The plaintext space is ZN and the ciphertext

8.3 ABB Threshold Homomorphic Encryption Schemes 267

space is Z∗
N2 .

encryption:
To encrypt, generate uniformly random r ∈ Z∗

N and let

EN (m; r) = gmrN mod N2 ,

where g = N + 1.

decryption:
Given c ∈ Z∗

N2 , let

m =
(cd mod N)− 1

N
.

See Section 2.7.2 for details, from where it also follows that the scheme has perfect
correctness.

additive homomorphic:
For C1 = EN (m1; r1) and C2 = EN (m2; r2) let C1 �N C2 = C1C2 mod N2. Then by
Section 2.7.2 we have that C1 �N C2 = EN (m1 + m2 mod N ; r1r2 mod N).

multiplication by constant:
For C1 = EN (m1; r1) and m ∈ ZN , let m �N C1 = Cm

1 mod N = EN (mm1 mod
N ; rm

1 mod N).

blinding:
For C1 = EN (m1; r1) and r ∈ Z∗

N , let BlindN (C1; r) = C1r
N mod N2 = EN (m; r1r mod

N).

proof of plaintext knowledge, correct multiplication:
To construct the proof of plaintext knowledge and correct multiplication we use that EN

is an N -invertible homomorphism as defined in Section 2.10. For the proof of plaintext
knowledge one can use the proof of known K representation (with K = g). To prove
correct multiplication one has to prove that y = gdrN

1 mod N2 and z = xdrN
2 mod N2

for which one can use the proof of linear relation between K representations, with
K1 = g, c1 = y, K2 = x and c1 = z and a0 = 0, a1 = 1 and a2 = −1.

proof of Boolean plaintext:
Finally we construct a proof of conditioned plaintext for all small sets S ⊂ ZN — we
are mostly interested in S = {0, 1}. Given a ciphertext c = gmrN mod N2 a Σ-protocol
Σm0 for proving knowledge of m and proving that m has a fixed constant value m0, is
given by the proof of linear relation between K representations, with K1 = g, c1 = c and
a0 = m0 and a1 = 1. Then

∨
m0∈S Σm0 is a Σ-protocol for proving restricted plaintext

for S. See Section 2.9.8 for details.

threshold decryption:
A realization of the threshold functionality can be constructed using Theorem 6.1 on
page 196 and Theorem 6.4 on page 204. Let (p, q, e, d, v, w, sk0) ← gen′ denote the
generator from Definition 6.3 on page 202, letting s = 2 and letting e be the empty
string and letting d = λ(λ−1 mod N). The public key output to the parties from

268 General Multiparty Computation, Static Security

Fgen′

thresh in Fig. 6.1 on page 192 is (N, v,w), where v is a random generator of QN and
w = v∆2d mod N . We only need N , as the public key.

On input c = EN (m; r) ∈ Z∗
N2 to Fgen′

thresh it returns c4∆2d mod N2. Since c4∆2 ∈
EN (m4∆2 mod N ; r4∆2

mod N) we can compute m4∆2 mod N = c4∆
2d mod N2−1

N , from
which we can then compute m, as 4∆2 ∈ Z∗

N except for small values of k.

Theorem 8.2 The Paillier scheme is a static ABB threshold homomorphic encryption scheme
assuming the DCRA assumption for moduli N distributed as in key generation above.

Proof. Except for the IND-CPA security of the encryption scheme all required properties
were argued in the description of the scheme, or are straight-forward.

Proving that the IND-CPA security of the Paillier scheme reduces to the DCRA assump-
tion for moduli N distributed as in key generation above is trivial, as the IND-CPA security
is almost by definition equivalent to the DCRA.

Note that in the threshold decryption the ideal functionality FTHE, that we claim to
realize, outputs the public key N , whereas the ideal functionality Fthresh, which we use to
realize FTHE, outputs (N, v,w), where v is a random generator of QN2 and w = vd mod N2.
Therefore, proving the security of the reduction involves showing how to simulate values
v and w given N . Notice however that the random generator of QN2 can be sampled,
statistically close, by v = EN (m; r2 mod N) for uniformly random m ∈ ZN and uniformly
random r ∈ Z∗

N , and then w = EN (m; r2 mod N)d mod N2 = mN +1. The side information
from evaluations is simulated in the same way. 2

8.3.2 Based on QRA and Strong RSA

As our second example of a static ABB threshold homomorphic encryption scheme we present
a scheme based on the QRA (Assumption 2.7 on page 26) and the strong RSA assumption
(Assumption 2.5 on page 25). The encryption scheme is a simplified variant of Franklin
and Haber’s system [FH96], extended with various protocols that we need for our purposes.
A somewhat similar (but non-threshold) variant was suggested by Cramer and appears in
[FH96]. In [CDN01] it was argued that a variant of the present scheme could be based
on the QR and DDH assumptions. We feel that the version we give here based on the
QRA and the strong RSA assumption is somewhat cleaner because we only use assumptions
related to factoring and because the semantic security can be proved based only on the QRA.
This follows from observations made by Cramer and Shoup [CS01] which was not known
when [CDN01] was written. The strong RSA assumption is used to argue the computational
soundness of the Σ-protocols. Let us call the scheme QRSRSA. It basically encrypts a bit b

by the quadratic residuosity of the ciphertext in Z∗
N . One is given a random generator h of

QN and computes an encryption β = (−1)bhr mod N for uniformly random r. Since −1 is
not a quadratic residue, this is a quadratic residue iff b = 0. To be able to do a threshold
decryption the value gr mod N is given as part of the ciphertext, where h = gx mod N for
uniformly random x. The value x is the secret key. To decrypt (α, β) = (gr, (−1)bhr) mod N

one computes β(αx)−1 mod N , computing αx using a function sharing of α 7→ αx mod N .

8.3 ABB Threshold Homomorphic Encryption Schemes 269

This scheme is slightly different from the scheme in [CDN01], where the form of an encryption
was (gr mod N,h4∆2x) mod N to allow for threshold decryption using a function sharing of
α 7→ α4∆2x mod N using Theorem 6.4 on page 204. This however turns out not to be secure
in our setting, because of the side information leaked to the adversary. Given a ciphertext
(α, β) = (gr, (−1)bh4∆2r) mod N , knowing α4∆2x mod N = h4∆2r mod N is equivalent to
knowing b as h4∆2r mod N = (−1)β mod N . If one in addition is given hr mod N , then
one learns additional information, because hr mod N cannot be computed efficiently from
h4∆2

mod N . In fact, given β′ = hr mod N and b one can check that β = (−1)bβ′4∆
2

mod N ,
which is a proof that (α, β) encrypts b. The reason being that β′4∆

2

mod N trivially is a
quadratic residue, so that b is guaranteed to be the quadratic residuosity of β, which is in
turn the plaintext value. Therefore one has in addition to the plaintext value obtain a proof
of what the plaintext value is. Therefore the protocol is not zero-knowledge relative to its
task. This would actually turn out to be a problem in the proof of Theorem 8.4 on page 275,
and the author does not know a proof of security for the protocol using the original scheme
in [CDN01].

key generation:
Let (p, q) ← gen(k) be a generator for which the QR assumption and the strong RSA
assumption hold, and for which p′ = (p − 1)/2 and q′ = (q − 1)/2 are dk/2 − 2e-bit
primes. Let J1 = QN ∪ (−1)QN and let M = p′q′.

To generate a key-pair (pk, sk), run (p, q)← gen(k). Let N = pq, let g = y2 mod N for
a uniformly random element y ∈ Z∗

N , so that except with negligible probability g is a
random generator of QN and let h = gx mod N for a uniformly random even number
x ∈ 2Z22k . Let pk = (N, g, h) and let sk = (N, g, x).

encryption:
To encrypt b ∈ {0, 1}, generate uniformly random r ∈ 2Z22k and let

EN,g,h(b; r) = (gr mod N, (−1)bhr mod N) .

Notice that because M is odd, r mod M is statistically close to uniformly random in
ZM , which is the reason for picking r from a large domain. The only reason for picking r

even is to given the encryptor a witness that α = gr mod N and hr mod N are quadratic
residues.

decryption:
Given (α, β) = EN,g,h(b; r), let

DN,g,x(α, β) =
1
2
(1− (βα−x mod N)) .

additive homomorphic:
Given ciphertexts (α1, β1) and (α2, β2), let (α1, β1)�N (α2, β2) = (α1α2 mod N,β1β2 mod
N). Then clearly EN,g,h(b1; r1)�N EN,g,h(b2; r2) = EN,g,h(b1 + b2 mod 2; r1 + r2).

multiplication by constant:
Given a ciphertext C = (α, β), let 1� C = C and let 0� C = (1, 1).

270 General Multiparty Computation, Static Security

blinding:
Given a ciphertext C = (α, β), let BlindN,g,h(C; r) = C �N EN,g,h(0; r) for uniformly
random r ∈ 2Z22k .

proof of plaintext knowledge:
To prove plaintext knowledge for (α, β) it suffice to prove knowledge of a value r for
which α ≡ gr (mod N) and β2 ≡ h2r (mod N), as this proves that α = gr mod N

and β = ±hr mod N . Given a witness for this, one can quickly find b ∈ {0, 1} such
that (α, β) = (gr, (−1)bhr) (mod N). Since r is even the proof can be done using the
Σ-protocol equality of even RSA discrete logarithms.

proof of correct multiplication:
First notice that proving equality of even RSA discrete logarithms for the instance
(N, 1, g, α, h, β, 22k) proves that (α, β) encrypts 0, and proving equality of even RSA
discrete logarithms for (N, s, g, α, h,−β, 22k) proves that (α, β) encrypts 1. Now assume
that y = EN,g,h(d; r) and z = Blind(d� x; r2). Notice that if d = 0, then z = Blind(0�
x; r2) = EN,g,h(0; r2); And, if d = 1, then z = Blind(1� x; r2) = x�N EN,g,h(0; r2). To
prove knowledge of (d, r, r2) it is therefore enough to prove that either y = EN,g,h(0; r)
and z = EN,g,h(0; r2) or y = EN,g,h(1; r) and z �N x = EN,g,h(0; r2). This can be done
with the above proofs and the ∧-construction and the ∨-construction. See Section 2.9.8
for details.

threshold decryption:
A realization of the threshold functionality can be constructed using Theorem 6.1 on
page 196 and Theorem 6.5 on page 205. Let (p, q, e, d, v, w, sk0) ← gen′ denote the
generator from Definition 6.4 on page 204, letting s = 1 and letting e be the empty
string and letting d ∈ 2Z22k be uniformly random. The public key output to the
parties from Fgen′

thresh in Fig. 6.1 on page 192 is (N, v,w), where v is a random generator
of QN and w = vd mod N . Let g = v, x = d and h = w mod N and (N, g, h) is
exactly a public key of the here scheme with private key x. Furthermore, on input α

the functionality Fgen′

thresh returns αd mod N from which one can trivially compute the
decryption b = 1

2(1− (βα−x mod N)).

Notice that this way we only obtained a realization for the construction threshold c = n

(corruption threshold t = n−1), meaning that all parties have to participate to decrypt.
Using the so-called share backup technique by Rabin [Rab98] one can however obtain
any other construction threshold. Since we have a separate section dedicated to this
technique, (Section 10.4), we do not give the details here, but simply claim that we can
obtain a realization of FTHE for all c.

Independent of the work in [CDN01], Katz and Yung proposed another threshold ho-
momorphic encryption scheme which can also be based on the QRA and the strong RSA.
In the terminology we have set up here, they use a function sharing of β 7→ βx mod N

over Z∗
N , where x = M = p′q′. Therefore βx mod N = βM mod N ∈ {−1, 1}, depending

on the quadratic residuosity of β. Therefore the element α is not needed. In [KY02] an
additive sharing is used and validity of shares is proved using equality of RSA discrete
logarithms or a technique by Gennaro, Jarecki, Krawczyk and Rabin [GJKR00] based on

8.3 ABB Threshold Homomorphic Encryption Schemes 271

the so-called information checking technique. However, both techniques are insufficient as
they only prove that the shares are correct up to a factor ±1. As an example equality
of RSA discrete logarithms proves knowledge of si such that y2

i mod N = x2si mod N ,
where si is the secret share. This proves that yi = ±xsi mod N . But, that shares are correct
up to a factor of ±1 is clearly not sufficient when the result is ±1. It is therefore necessary
to use a proof of discrete RSA logarithms which also gets the quadratic residuosity correct,
as e.g. the proof of even RSA discrete logarithms used above. This issue and has been
acknowledged by the first author of [KY02] who also verifies that using even RSA discrete
logarithm will take care of this issue for the scheme in [KY02]. The scheme in [KY02] can
be extended to meet Definition 8.2 on page 263 using the techniques above.

Theorem 8.3 The QRSRSA scheme is a static ABB threshold homomorphic encryption
scheme assuming the QRA for moduli N distributed as described in key generation for QRSRSA
and assuming the strong RSA assumption.

Proof. Except for the correctness and the IND-CPA security of the encryption scheme all
required properties were argued in the description of the scheme, or are straight-forward.

Notice that for the Σ-protocol equality of even RSA discrete logarithms to have
computational knowledge soundness we have to assume the strong RSA assumption for mod-
uli N and g as generated by gen, see Corollary 2.3 on page 56. Notice furthermore that it is
not a problem that the Σ-protocol for equality of even RSA discrete logarithms has
a larger extraction relation. The relation in proof of plaintext knowledge in Definition 8.2 on
page 263 allows for a larger extraction relation.

Observe furthermore that having access to Fgen′

thresh we do not need to simulate any side
information. For a ciphertext (α, β) = (gr, (−1)bhr), in the simulation the simulator is given
b from FTHE and must simulate Fthresh outputting αx mod N . But αx = (−1)bβ mod N ,
so knowing b is equivalent to knowing αx. Notice that it would be a completely differ-
ence story if αx(2∆2)−1

mod N was leaked to the adversary as for the generator in Defi-
nition 6.3 on page 202. Knowing b is equivalent to knowing αx, but one cannot efficiently
compute αx(2∆2)−1

mod N from αx mod N and therefore cannot simulate Fgen′

thresh given access
to FTHE.

We now prove that the IND-CPA security of the QRSRSA encryption scheme reduces to
the QRA for moduli N distributed as for the key generator of QRSRSA. Assume that we are
given a random element B ∈ J1, and that we are to compute a bit b ∈ {0, 1}, where c = 0
iff B ∈ QN . The idea is to place B as part of an encryption (A,B), letting the quadratic
residuosity of B determine the plaintext value.

Pick uniformly random A ∈ QN and let

g = A2 mod N ,

h = B2 mod N .

Except with an exponentially small probability A generates QN , in which case g generates
QN . So, assume that g generates QN and define x ∈ ZM by

h = gx mod N .

272 General Multiparty Computation, Static Security

By the choice of A, the defined x is uniformly random in ZM . Therefore the defined key
(N, g, h, x) is distributed statistically close to a real key.

Furthermore, using h = gx mod N , h = B2 mod N and g = A2 mod N we get that

B2 ≡ A2x (mod N) .

Since Ax mod N ∈ QN and B ∈ J1 = QN ∪ (−1)QN it follows that

B ≡ (−1)bAx .

Then define r ∈ ZM by
A = gr mod N .

It follows that
B ≡ (−1)bAx ≡ (−1)bgrx ≡ (−1)bhr (mod N) ,

so it follows that (A,B) ≡ (gr, (−1)bhr) (mod N) is an encryption of b under (N, g, h). Then
let (α, β) = Blind((A,B); r) to get a uniformly random encryption of b. It follows that the
semantic security reduces to the QRA. 2

8.4 From Threshold Homomorphic Encryption to Black-Box

Arithmetic

We now show that if we are given any static ABB threshold homomorphic encryption scheme
T HE = (gen,E,D) we can realize Fgenpk

BABB, where the PPT family of rings genpk is given by
running (pk, sk)← gen(k) and outputting pk.

We describe the protocol in the (FR1,RS ,R2

ZK-PM ,FT HETHE)-hybrid model, where R1, RS , R2 de-
note the relations of T HE . During the execution each party Pi maintains a dictionary enci

mapping from variable names x ∈ {0, 1}∗ into encryptions under pk. Initially enci(x) = ⊥
for all x ∈ {0, 1}∗. The dictionary is maintained such that for any two honest parties Pi

and Pj , we have that enci = encj . This invariant will be evident from the implementation
and we therefore skip the sub-fix on enc in most cases. The dictionary enci(x) is basically
an encrypted version the dictionary val(x) held by FBABB. We say that the variable x is
defined if enc(x) 6= ⊥. For each defined variable x which Pi loaded, it keeps the information
vali(x) ∈ Rpk and rndi(x) ∈ {0, 1}∗ such that enc(x) = Epk(vali(x); rndi(x)). In the descrip-
tion of the protocols we assume that the inputs are according to IOABB. What happens
when this is not the case is not essential. The protocol is given in Fig. 8.4 on the facing page.

We would like to argue that if T HE is a static ABB t-threshold homomorphic encryp-
tion scheme, according to Definition 8.2 on page 263, then πT HEBABB t-realizes Fgenpk

BABB in the
(FR1,RS ,R2

ZK-PM ,FT HETHE)-hybrid model and then plug in the realization of FR1,RS ,R2

ZK-PM from Chap-
ter 5 and the realization of FT HETHE , from Definition 8.2 on page 263. But we can not do
this. The problem is that we are using the zero-knowledge proof of membership function-
ality FR1,RS ,R2

ZK-PM , and a proof of membership is in general not enough in the load command.
We need a proof of knowledge to guarantee independence of inputs. I.e. to guaranteed that
a corrupted party does not copy a ciphertext broadcast by an honest party and broadcasts

8.4 From Threshold Homomorphic Encryption to Black-Box Arithmetic 273

Protocol πT HEBABB

The protocol runs with parties P1, . . . , Pn in the (FR1,RS ,R2
ZK-PM ,FT HETHE)-hybrid model where

R1, RS and R2 are the relations for plaintext knowledge, conditioned plaintext respectively
correct multiplication for T HE . The protocol proceeds as follows:

initialization:
On input init, input init to FR1,RS ,R2

ZK-PM and FT HETHE . Wait until FR1,RS ,R2
ZK-PM outputs

ready and FT HETHE outputs pk and ignore all inputs until this happens. Then output
ready.

load:
1. On input (cid, Pi, x ← s, S) party Pi sets val(x) = s, generates uniformly ran-

dom bits rnd(x) for encryption and sets enc(x) = Epk(val(x); rnd(x)). It then
broadcasts enc(x).

2. The other parties, of which the honest by assumption all have received the input
(Pi, x← S), receive and store enc(x).

3. Then all parties input (cid, RS , Pi, (pk, enc(x))) to FZK-PM and Pi inputs
(cid, RS , Pi, (val(x), rnd(x))) to FZK-PM.

4. The parties wait for output (cid, b) from FZK-PM.
If party Pj receives (Pi, x ← S), but does not receive a broadcast message from Pi

in the next round or b = 0, then set enc(x)← ⊥ and output (cid, fail). Otherwise,
output (cid, defined).

linear combination:
If Pi receives the input (cid, x ← a0 +

∑l
j=1 ajxj), then it computes enc(x) ←

a0 � (�l
j=1aj � enc(xj)).

Figure 8.4(a) (cont. in Fig. 8.4(b) on the next page): The basic arithmetic black-box protocol
for a threshold homomorphic encryption scheme T HE

that encryption as his own. Notice that the FR1,RS ,R2

ZK-PM -hybrid model actually allows a cor-
rupted party to do this without being caught. If a ciphertext c is broadcast by an honest
party, a corrupted party Pj can randomize c into c′ and broadcast c′. When Pj has to prove
plaintext ’knowledge’ with R1 the environment will simply instruct FR1,RS ,R2

ZK-PM to accept c′.
It can safely do this: The value c was broadcast by an honest party and is therefore guar-
anteed to be a ciphertext. Therefore Z would not violate IOZK-PM by letting FR1,RS ,R2

ZK-PM

accept c′ for the relation R1. This allows a corrupted party to always input the same value
to the computation as a given honest party. This is a behavior which we do not want to be
possible, and it is certainly a behavior which is not possible in the ideal process with FBABB.
Therefore the ability to copy inputs would be an accomplishment of the real-life corrupted
parties extra to that of any ideal process adversary, showing that such a protocol would be
insure.

If on the other hand we used the zero-knowledge proof of knowledge functionality FR1,RS ,R2

ZK-PK

for realizing πT HEBABB, then we could indeed prove the protocol secure, but we would not know
how to efficiently realize FR1,RS ,R2

ZK-PK . Unfortunate we are caught somewhere in-between. What
we will do is to plug in the realization of FR1,RS ,R2

ZK-PM from Chapter 5 and then prove that the

274 General Multiparty Computation, Static Security

Protocol πT HEBABB

private multiplication:
1. If Pi receives the input (cid, Pi, x ← x1 · x2), where enc(x1) =

Epk(vali(x1); rndi(x1)), then it computes enc(x) ← Blindpk(val(x1) �
enc(x2); r2) for uniformly random bits r2 for the blinding algorithm. It then
broadcasts enc(x).

2. The other parties, of which the honest parties under IOABB have received the
input (cid, Pi, x← x1 · x2), receive and store enc(x).

3. Then Pj for j 6= i inputs (cid, R2, Pi, (pk, enc(x1), enc(x2), enc(x))) to FZK-PM

and Pi inputs (cid, R2, Pi, (val(x1), rnd(x1), r2)) to FZK-PM. This is possible by
the invariant as val(x1) and rnd(x1) are known to Pi.

4. The parties wait for output (cid, b) from FZK-PM.
If party Pj receives (cid, Pi, x ← x1 · x2) and does not receive a broadcast message
from Pi or b = 0, then Pj sets enc(x) ← ⊥ and outputs (cid, fail). Otherwise Pj

outputs (cid, defined).
output:

If Pi receives the input (cid, output, x) it inputs (cid, enc(x)) to FTHE. If FTHE ever
outputs (cid, m) then Pi outputs (cid, m).

aligned output:
If more than one commands is activated in the same round, then the outputs are
delivered when all the commands have terminated.

Figure 8.4(b) (cont. from Fig. 8.4(a) on the page before): The basic arithmetic black-box
protocol for a threshold homomorphic encryption scheme T HE

composed protocol t-realizes Fgenpk

BABB in the FT HETHE -hybrid model. The main reason why we
can do this when we cannot prove πT HEBABB secure in the (FR1,RS ,R2

ZK-PM ,FT HETHE)-hybrid model is
that the realization of FR1,RS ,R2

ZK-PM from Chapter 5 has a salient property extra to realizing
FR1,RS ,R2

ZK-PM , namely off-line extraction.

We give the main idea of how we are going to exploit the off-line extraction. Recall that
πT HEBABB only having off-line extraction, as opposed to on-line extraction, means that whereas
the simulator from the proof of Theorem 5.1 on page 180, let us call it S, can simulate
the proof of honest parties without knowing the witnesses, it cannot extract the witnesses
of the accepted proofs of corrupted parties, unless it is allowed to rewind the environment.
Therefore the simulator is not sufficient for a case as the load command, where we need to
extract the plaintext. And, we do need the plaintext: The simulator that we construct, let
us call it S, will be running in the ideal process with FBABB and must simulate πBABB. This
means that if a corrupted party Pi broadcasts an encryption c and gives an acceptable proof
of plaintext knowledge, then the environment Z expects to see the honest parties output
(cid, defined). To make them do that the simulator has to input some value s to FBABB, on
behalf of Pi, to define val(x) = s. If the simulation and FBABB is to be consistent, then this
value should indeed be the plaintext of c. If we input any other value s′ 6= Dsk(c) and the
environment Z later inputs (cid′, output, x), then FBABB will output (cid′, s′) to Z from all

8.4 From Threshold Homomorphic Encryption to Black-Box Arithmetic 275

honest parties and it will be obvious to Z that it is viewing the simulation — in the protocol
the parties would have decrypted c and output Dsk(c).

A very simple observation lets us do without the on-line extraction: We are proving
statements about ciphertexts and the witnesses that we are interested in are the plaintexts.
There is a more prosaic approach to obtaining plaintexts than rewinding zero-knowledge
proofs, namely decryption. So, that is what we will do. Each time the environment broadcast
a ciphertext c on behalf of a corrupted party and gives an acceptable proof of knowledge, we
decrypt c to obtain the value s to input to FBABB on behalf of Pi.

This approach leaves two technical questions: First of all, where does the simulator get
the private key from? And second, when the simulator is using the private key, how can we
rely on the semantic security of the encryption scheme? The answer to the first question
is simple: Because the whole setup was carefully designed to reveal sk to the simulator.8

The simulator has access to the SOT of Fgenpk

BABB, and the first thing Fgenpk

BABB ever does is to
generate a public key pk ← genpk(k; r) which is used to define the ring which FBABB does
arithmetic over and then output r on the SOT. By definition, the generator genpk runs
(pk, sk) ← gen(k; r) and outputs pk. So, S takes r, reruns (pk, sk) ← gen(k; r) and has sk.
The answer to the second question is to use a hybrid, the clue being that the view which Z
sees in IDEALFR1,RS,R2

BABB ,S,Z can be generated without using the private key. Define namely a
hybrid distribution H as follows: Take IDEALFR1,RS,R2

BABB ,S,Z and start running it, but without
giving sk to S. Each time Z gives an acceptable proof S will then be stuck, but we can then
rewind the whole experiment IDEALFR1,RS,R2

BABB ,S,Z and extract a witness from the accepted
proof instead. We then give the witness to S, which continues the simulation where it gave
up. The view which Z has in H is indistinguishable from its view in IDEALFR1,RS,R2

BABB ,S,Z , so
it is enough to prove that H is indistinguishable from the protocol. And, since H does not
use sk we can now appeal to the IND-CPA security of the encryption scheme. We also use
this trick in the following chapters, so we might as well give it a name. We dub it pushing
the rewinding to the analysis.

The proof of the following theorem will be carried out in great detail. This is because
it is the first time we use the pushing the rewinding to the analysis techniques. We use
the technique again in the two following chapters. Throughout the proof, the reader should
appreciate that the intuition build by the detailed application of the pushing the rewinding
to the analysis technique will allow us to use the technique in a more colloquial way in later
chapters and therefore focus on the extra challenges that we encounter in this chapters.

Theorem 8.4 Let T HE = (gen,E,D) be a static ABB t-threshold homomorphic encryption
scheme, with Σ-protocols Σ1, ΣS and Σ2 for the relations R1, RS respectively R2. Let
πΣ1,ΣS ,Σ2

DAM-ZK be the realization of FR1,RS ,R2

ZK-PM from Fig. 5.1 on page 180, being run as a proof
of knowledge. For all t < (n − 1)/2, the protocol πT HEBABB[πΣ1,ΣS ,Σ2

DAM-ZK /FR1,RS ,R2

ZK-PM] t-realizes

Fgenpk

BABB in the (FT HETHE ,Fcommit,prs
PRS)-hybrid model under IOstatic(t), where prs is the possible

private reference string for Σ1, ΣS and Σ2.

Proof. In the following we use πBABB as a replacement for the delightful, but slightly clumsy
8This is the issue discussed in Remark 8.1 on page 258.

276 General Multiparty Computation, Static Security

Interface SBABB

Before anything else, parties are corrupted. Let C denote the set of corrupted parties.

initialize:
Initialize the simulator SDAM-ZK, given by Fig. 5.2 on page 182, for the πDAM-ZK pro-
tocol, by inputting the security parameter k and some random bits for its execution.
I.e. SBABB will be of the form SBABB

′[SDAM-ZK], see Fig. 3.13 on page 85.
All parties have received the init command and FBABB has output r on its SOT.
Compute (pk, sk) = gen(k; r). Simulate that all honest parties input init to FTHE

and then simulate the output pk on the SOT of FTHE and the output pk from all
parties.

load:
On the load command, if i ∈ C, then all honest parties have input (cid, Pi, x ← S).
We simulate the protocol to Z as follows: First Z broadcasts a message enc(x)
(on behalf of Pi). We use SDAM-ZK

RS to simulate the run of πRS

DAM-ZK, with input
(cid, (pk, enc(x))) to all honest parties. If SDAM-ZK

RS accepts, then let val(x) =
Dsk(enc(x)) and store enc(x) and val(x). Then input (cid, term, val(x)) on the SIT
of FBABB on behalf of Pi to define val(x) in FBABB. If Pi fails the protocol, then
input (cid, fail) on the SIT of FBABB. This simulates successfully, except in the
case where s 6∈ S, where the load is rejected.
If i ∈ H , then Pi, in the ideal evaluation, have received (cid, Pi, x ← s, S) for some
s ∈ S. Therefore we should set enc(x) to be a random encryption of s in SBABB,
and show this encryption to Z to simulate a broadcast. However, since SBABB does
not learn the value of s, it cannot do this. Instead it sets enc(x) to be a random
encryption of s0, where s0 ∈ S is some fixed dummy value, e.g. s0 = 0 if S = Rpk.
Then SBABB shows enc(x) to Z to simulate a broadcast. Then use SDAM-ZK

RS to
simulate the run of πRS

DAM-ZK, with input (cid, (pk, enc(x))) to all honest parties Pj .
Provide this input to SDAM-ZK simulating that it came from an ideal functionality
FZK-PM — notice that indeed SDAM-ZK

RS does not expect to receive the witness from
the honest Pi and that (pk, enc(x)) ∈ L(RS). This simulates successfully except that
enc(x)← Epk(s0) instead of enc(x)← Epk(s).

linear combination:
On input (cid, x← a0 +

∑l
j=1 ajxj), compute enc(x) as in the protocol. This simu-

lates successfully.

Figure 8.5(a) (cont. in Fig. 8.5(b) on the facing page): The interface SBABB used in the
proof of Theorem 8.4 on the page before

symbol πT HEBABB[πΣ1,ΣS ,Σ2

DAM-ZK /FR1,RS ,R2

ZK-PM], and we use FBABB to denote Fgenpk

BABB. We will not carry
the IO behavior IOstatic with us in the notation either.

To prove the theorem we construct a PPT simulator SBABB such that

IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB,Z
c≈HYBFTHE,Fcommit,prs

PRS
πBABB,Z (8.1)

for all environments Z for which Pr[IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB,Z = ‘‘H FBABB’’]
c≈0. The

simulator is given in Fig. 8.5. It is straight-forward to verify that SBABB is PPT, using that
SDAM-ZK is PPT.

8.4 From Threshold Homomorphic Encryption to Black-Box Arithmetic 277

Interface SBABB

private multiplication:
On input (cid, Pi, x ← x1 · x2), if i ∈ C, then receive enc(x) from Z. Then use
SDAM-ZK

R2 to simulate the run of πR2
DAM-ZK. If SDAM-ZK

R2 accepts the proof, then
store enc(x) and input (cid, term) on the SIT of FBABB to define val(x) = val(x1) ·
val(x2) in FBABB. If Z fails the protocol, then input (cid, fail) on the SIT of FBABB.
This simulates successfully.
If i ∈ H then handle it similar to the load command by setting enc(x) = Blindpk(0�
enc(x2); r2). This simulates successfully except that enc(x) encrypts 0 instead
of Dsk(enc(x1)) · Dsk(enc(x2)). Notice that indeed (pk, enc(x1), enc(x2), enc(x)) ∈
L(R2).

output:
On seeing the value (cid, output, x, val(x)) on the SOT of FBABB, simulate the input
of (cid, enc(x)) to FTHE from all honest parties. If Z terminates the call to FTHE

in the simulation, then simulate this by outputting (cid, val(x)) to all parties from
FTHE. This simulates successfully except if val(x) 6= Dsk(enc(x)).

Figure 8.5(b) (cont. from Fig. 8.5(a) on the facing page): The interface SBABB used in the
proof of Theorem 8.4 on page 275

The simulator SBABB holds internally a list of defined variables and stores at each variable
the value enc(x), and at some variables the value val(x). The goal of the simulation is that
after each activation the variables defined in SBABB are the same as those defined in the

copy of FBABB in IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB,Z . Besides this, if Pi loaded x, i.e. the command
(cid, Pi, x← S) was carried out at some point, and Pi is corrupted, then SBABB also knows
the value val(x) which x is defined to in FBABB. We now prove Eq. 8.1 on the preceding
page using a hybrids argument.

We first exploit that SBABB can be divided into SDAM-ZK and the part using SDAM-ZK,
let us call it SBABB

′. For proof technical reasons, arrange these parts on a form such that
SBABB = SBABB

′[SDAM-ZK] for the composition operation in Fig. 3.13 on page 85. This is
possible because SBABB

′ provides the instances to SDAM-ZK simulating that they come from
an ideal functionality FZK-PM. We use this to construct an environment Y for which

IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[SDAM-ZK],Z

c≈ IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,Y . (8.2)

The environment Y runs as follows: On input (k, z) it runs IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[SDAM-ZK],Z(k, z)

with the difference that whenever SBABB
′ is about to access its copy of SDAM-ZK, instead the

copy of SDAM-ZK in IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,Y is used. We therefore write IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[·],Z

to stress the SBABB
′ does not have direct access to SDAM-ZK. Notice that the value provided to

SDAM-ZK by SBABB
′ in initialize in Fig. 8.5 on the preceding page is provided by the execution

in IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,Y . So far so good. When SDAM-ZK is simulating honest parties re-

ceiving proofs, Y simply observes the communication in IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,Y and merges
this communication (which is simulated by SDAM-ZK) with that simulated by SBABB

′ in

278 General Multiparty Computation, Static Security

IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[·],Z . This is done as in Fig. 3.13 on page 85. In the load command, when

SBABB
′ would use SDAM-ZK

RS to simulate the proof with instance (cid, (pk, enc(x))), the en-

vironment Y instead inputs (cid, (pk, enc(x)), (s0, r0)) to Pi in IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,Y , where
r0 is the random bits used when enc(x) was computed. Since ((pk, enc(x)), (s0, r0)) ∈ RS this

results in SDAM-ZK receiving (cid, (pk, enc(x))), exactly as in IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[SDAM-ZK],Z .

The private load command is dealt with in the same way, using that we know a witness of
enc(x1) as x1 was loaded by P1 — and if not, then Pi simply terminates the execution of the

command. When IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[·],Z outputs a guess, then output the same guess. This

ends the description of Y and establishes Eq. 8.2 on the page before. The reason why we do

not get IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[SDAM-ZK],Z = IDEALF

commit,prs
PRS

FZK-PM,SDAM-ZK,Y is that there is a negligible

probability that IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[SDAM-ZK],Z outputs ‘‘H FBABB’’.9 We then prove

that
IDEALF

commit,prs
PRS

FZK-PM,SDAM-ZK,Y
c≈ IDEALx,Fcommit,prs

PRS
FZK-PK,SDAM-ZK,Y (8.3)

or that with a non-negligible probability IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y outputs a break of the
extractor for an instance input by Y. This follows from Corollary 5.3 on page 186 and the

fact that Pr[IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,Y ∈ ‘‘H FZK-PM’’] = 0, by construction of Y.

Assume first that with a non-negligible probability IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y outputs a
break of the extractor for an instance input by Y. We use this to reach a contradiction
to the computational special knowledge soundness of Σ1 or ΣS. The Σ-protocol Σ2 is only
required to have membership soundness, and is not extracted. To reach a contradiction
we must be able to take as input a random public key, see proof of conditioned plaintext in
Definition 8.2 on page 263, and produce a break of the extractor for an instance containing

that key. This means that we should be able to run IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y on a given
public key pk and a given private reference string s. Notice that the simulator already does
not use the trapdoor ts of s, so running on a given s is no problem. However, the secret
key sk of pk is used by the simulator, so we cannot simply run on a given public key pk.
To facilitate this we run the ideal process in a particular way: In the following when we

say that IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y is to be run on a given public key pk we mean that we run

IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y with the following changes:

1. Do not run the check of the IO behavior of FZK-PK as the test whether the inputs are
ciphertexts not necessarily is PPT. It does not matter either whether the test is run, as

Pr[IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y = ‘‘H FZK-PK’’] = 0. This modification does not affect
the distribution, neither the view of Z or the probability that a break of the extractor
is produced.

2. When FBABB, in the copy of IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[·],Z inside Y, is about to run gen to

9By construction of SDAM-ZK we have that Pr[IDEAL
Fcommit,prs

PRS
FZK-PM,SDAM-ZK,Y = ‘‘C FZK-PM’’] = 0.

8.4 From Threshold Homomorphic Encryption to Black-Box Arithmetic 279

create a key-pair, instead use the given public key pk, and in SBABB use the same
key. Now that we do not know sk, when the execution gets to the place in load where
Dsk(enc(x)) is computed, find Dsk(enc(x)) as follows instead: Since SBABB

′ needs
to compute Dsk(enc(x)), it accepted a proof of plaintext knowledge for enc(x) from

a corrupted party. We are running IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y(k, z), so by definition of
FZK-PK the proof was accepted because SDAM-ZK input a correct witness (m, r) on the
SIT of FZK-PK to make it accept. The adversary S simply reads this witness off the
SIT of FZK-PK instead of decrypting. We then have m ∈ Rpk and enc(c) = Epk(m; r).
By the perfect decryption requirement, see Definition 8.2 on page 263, we have found
m = Dsk(enc(x)) as required. This modification does not affect the view of Z or the
probability that a break of the extractor is produced.

Now we can generate the distribution IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y without using sk. Consider
then the following adversary A against the computational special knowledge soundness of
R1 and RS under random keys. See Section 2.9 for details. The adversary A is given (k, z, i)
where i specified the legal instances. In our case i = pk is a random public key, specifying

the set of instances with this key in them. Then start running IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y(k, z)
on the given public key pk as described above. Because the probability that a break of the
extractor is produced was not changed, with non-negligible probability we receive a break
of the extractor for an instance input by Y, which by construction of Y all contain pk.
So, we output this break. This means that we break the computational special knowledge
soundness of R1 and RS under random keys. A contradiction. This allow us to conclude
Eq. 8.3 on the preceding page. Notice that the adversary A was expected PPT as it ran

IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y . We show how to deal with this in Footnote 10 on the following
page.

We then prove that

IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y
c≈ IDEALx,Fcommit,prs

PRS
FZK-PK,SDAM-ZK,X , (8.4)

where X behaves exactly as Y except for the following modification: During the execution

of IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[·],Z, when at the second “except” SBABB

′ is about to set enc(x) to
be a random encryption of s0, instead inspect the communication between Z and FBABB in

IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[·],Z to determine the correct value s. Then let enc(x) be an encryption

of s, as in the protocol. Also, at the third “except” in the private multiplication, use the
correct value instead of 0. The correct value is defined to be Dsk(enc(x1)), which can be
found without using sk as follows: When Pi is given the command (cid, Pi, x← x1 ·x2), then
Pi also loaded x1 and therefore knows the decryption of enc(x1) by the above argument. And
if Pi did not load x1, and the private multiplication command is invalid according to IOABB,
then Pi terminates and the plaintext of enc(x1) is not needed. Notice that by construction

of X we have that Pr[IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,X = ‘‘H FZK-PK’’] = 0.
We use the IND-CPA security (Definition 2.9 on page 16) of T HE to prove Eq. 8.4.

Consider the following IND-CPA adversary A against T HE , see Fig. 2.2 on page 16 for
details on the IND-CPA game. The adversary A receives as input k ∈ N, z ∈ {0, 1}∗ and a

280 General Multiparty Computation, Static Security

public-key pk. It then picks test messages 0 and 1 and receives an encryption Y = Epk(b).

Then it starts running IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y(k, z) with the following modifications:

1. Run on the given public key pk.

2. When SBABB
′, in load and private multiplication is about to compute enc(x) = Epk(s0)

respectively Epk(0), determine the correct values as in IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,X (k, z).
Let m denote the correct value and then let enc(x) = Blindpk(m ·Y � s0� (1� Y); r2)
for a uniformly random randomizer. This change surely affects the distribution of the
view of Z.

3. Now that A do not know a witness for enc(x) anymore, it cannot input it to FRS
ZK-PK

along with (pid, (pk, enc(x))). Instead, just input (pid, (pk, enc(x))) and simulate an
output (pid, 1) to all parties. The private multiplication is dealt with in the same way.
This does not affect the view of Z.

Notice that of all the modifications only the switch from dummy to correct plaintexts
affect the view of Z. When Z outputs a guess c, output the same guess. Let Hb′ denote the
distribution of c when b = b′ in the IND-CPA game. By the definition of IND-CPA security
it follows that H0 c≈H1.10 But, we have that Y = Epk(b), so enc(x) is a uniformly random en-
cryption of mb+s0(1−b). This means that if b = 0, then enc(x) is a uniformly random encryp-

tion of s0 as in IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y(k, z), and if b = 1, then enc(x) is a uniformly random

encryption of m, as in IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,X (k, z). So, H0 = IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,Y(k, z)

and H1 = IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,X (k, z). So, Eq. 8.4 on the page before follows from H0 c≈H1.
We now use correct inputs from honest parties, so we got rid of the second and the third

“except” in Fig. 8.5 on page 276. From Corollary 5.3 on page 186 and the observation that

Pr[IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,X = ‘‘H FZK-PM’’] = 0 we now get that

IDEALx,Fcommit,prs
PRS

FZK-PK,SDAM-ZK,X
c≈ IDEALF

commit,prs
PRS

FZK-PM,SDAM-ZK,X . (8.5)

Using again that Pr[IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,X = ‘‘H FZK-PM’’] = 0, we get from The-
orem 5.1 on page 180 that

IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,X
c≈HYBFcommit,prs

PRS
πDAM-ZK,X . (8.6)

10If not we have from INDcpa,0
E,A (k, z) = H0(k, z) and INDcpa,1

E,A (k, z) = H1(k, z) that there exists a polynomial

q(k) and an auxiliary input z ∈ {0, 1}∗ such that |Pr[INDcpa,0
E,A (k, z) = 1]− Pr[INDcpa,1

E,A (k, z) = 1]| > 1
q(k)

for

infinitely many k. Since A is expected PPT there exists a polynomial p(k) bounding the expected running
time of A. Let A′(k) be the adversary which runs A(k) for q(k)p(k) step and outputs as follows: If A(k)
outputs within q(k)p(k) steps, then use the output of A(k). Otherwise output a uniformly random bit.
Let r(k) be the probability that A(k) do not output in q(k)p(k) steps. Since r(k) · q(k)p(k) ≤ p(k) it
follows that r(k) ≤ 1

q(k)
, so |Pr[INDcpa

E,A′(k, z) = 1] − Pr[INDcpa

E,A(k, z) = 1]| = 1
2
r(k) ≤ 1

2q(k)
, so by the

triangle inequality |Pr[INDcpa,0
E,A′(k, z) = 1]−Pr[INDcpa,1

E,A′(k, z) = 1]| > 1
2q(k)

for infinitely many k, proving that

INDcpa,0
E,A′(k, z)

c

6≈ INDcpa,1
E,A′(k, z). This contradicts Definition 2.9 on page 16 as A′ is clearly PPT.

8.4 From Threshold Homomorphic Encryption to Black-Box Arithmetic 281

Our last move is to prove that

HYBFcommit,prs
PRS

πDAM-ZK,X
c≈HYBFTHE,Fcommit,prs

PRS
πBABB,Z . (8.7)

Recall that X is running IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[·],Z(k, z), but using correct input for honest

parties, and when X is run in HYBFcommit,prs
PRS

πDAM-ZK,X it is run with the protocol πDAM-ZK instead of

the simulator. This means that in HYBFcommit,prs
PRS

πDAM-ZK,X , SBABB is actually running the protocol.

Outputs to Z are still delivered by FBABB though. Therefore HYBFcommit,prs
PRS

πDAM-ZK,X is distributed

identical to HYBFTHE,Fcommit,prs
PRS

πBABB,Z , except that in HYBFcommit,prs
PRS

πDAM-ZK,X , in the output command, the

result is val(x) from the copy of FBABB in IDEALFTHE,Fcommit,prs
PRS

FBABB,SBABB
′[SDAM-ZK],Z(k, z) (in X), and

in HYBFTHE,Fcommit,prs
PRS

πBABB,Z the result is the decryption of enc(x) (this is the mis-simulation an-
ticipated by the fourth “except” in Fig. 8.5 on page 276). In case the first “except” from
Fig. 8.5 on page 276 should apply, the parties of the protocol will output defined. whereas
FBABB outputs nothing.

Therefore, proving that HYBFcommit,prs
PRS

πDAM-ZK,X
c≈HYBFTHE,Fcommit,prs

PRS
πBABB,Z comes down to proving that

in HYBFcommit,prs
PRS

πDAM-ZK,X these two possibilities of error do not occur. Observe first that honest
parties always will have their loads and private multiplications accepted, using that πDAM-ZK

is correct. And that val(x) = Dsk(enc(x)) for the x’s loaded by corrupted parties follows by
the fact that val(x) is computed as Dsk(enc(x)), by definition of X . If therefore there exists
x such that val(x) 6= Dsk(enc(x)) then there is a first point in the simulation where this
occurs and at that point Z broadcast a ciphertext enc(x) with val(x) 6= Dsk(enc(x)). This
either happens in a load command, where Dsk(enc(x)) 6∈ S will result in val(x) = ⊥, or it
happened in a private multiplication command with Dsk(enc(x)) 6= val(x) = val(x1) · val(x2).
In both cases Z proved a false instance. In the first case because Z proved that there
exists m and r such that m ∈ S and enc(x) = Epk(m; r), which by the perfect correctness
implies that Dsk(enc(x)) 6∈ S. In the second case, because we look at the first point where
Dsk(enc(x)) = val(x) fails we have that val(x1) = Dsk(enc(x1)) and val(x2) = Dsk(enc(x2)),
which by Dsk(enc(x)) 6= val(x) = val(x1) · val(x2) and the perfect correctness implies that
there does not exist at witness for (pk, enc(x), enc(x1), enc(x2)) ∈ L(R2). So, if Eq. 8.7 does

not hold, then with non-negligible probability Z proves a false instance in HYBFcommit,prs
PRS

πDAM-ZK,X .
Because X knows sk it can detect this: Look at a version of X , let us call it X ′, which runs
like X but decrypts all instances successfully proved by Z and outputs 1 as soon as Z is

detected proving a false instance. Otherwise X ′ outputs 0. We have that HYBFcommit,prs
PRS

πDAM-ZK,X ′

c
6≈0.

By definition of FZK-PM we clearly have that IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,X ′
c≈0. So,

IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,X ′

c
6≈HYBFcommit,prs

PRS
πDAM-ZK,X ′ . (8.8)

Using that X ′ and X are identical until X ′ outputs it follows from the above observation that

Pr[IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,X = ‘‘H FZK-PM’’] = 0 that also Pr[IDEALF
commit,prs
PRS

FZK-PM,SDAM-ZK,X ′ =

282 General Multiparty Computation, Static Security

‘‘H FZK-PM’’] = 0. Therefore Eq. 8.8 on the preceding page contradicts Theorem 5.1 on
page 180.11 This concludes the proof of Eq. 8.7 on the preceding page.

It is fairly straight-forward to verify that if Z lets the ideal functionalities FT HETHE and
Fcommit,prs

PRS terminate, then each command terminates in constant round. The most essential
observation to make is that it is not a problem that FZK-PM is run as a proof of knowledge.
The non-overlapping IO behavior of IOABB will prevent the situation where new proofs keep
arriving (a situation which would prevent FZK-PM from terminating). 2

8.5 What is New?

We have showed that it is possible to do general secure MPC by broadcasting encryptions of
the inputs under a threshold homomorphic encryption (THE) scheme and then computing on
these encryptions, while keeping a consistent view of this encrypted state of the computation.
This is an essentially different approach to MPC than the secret sharing approach, where the
parties compute on a shared state. In the THE approach only the key is shared. Conceptually,
this is of course interesting in its own right, as the techniques are essentially different. But,
does it buy us anything to compute on an encrypted state instead of a shared state, in terms
of efficiency say? The discussion of the efficiency of our realization is deferred to Chapter 10,
but here we mention one example where computing on an encrypted state buys us at lot in
terms of efficiency. If we are satisfied with passive security, we can obtain a protocol with
communication complexity O(nk) bits per operation.

In fact, we only need that we are given one party, PS say, which is only passively cor-
rupted. We can then simply let PS , drive the computation. When a party loads a values,
instead of broadcasting enc(x) it sends it to PS and proves plaintext knowledge. If the proof
is accepted, then PS sends enc(x) to all parties. Private multiplication is done in the same
way and the linear combination is done as in the current protocol. If the decryption protocol
is of the form in Fig. 6.3 on page 195, then output can be realized by PS sending enc(x)
to all parties which respond by sending their decryption shares to PS along with proofs of
correctness. Then PS combines and sends the result to the parties. This realizes FBABB if
PS follows the protocol. Adding robustness to this more efficiently than by running it over
a broadcast channel, which is basically what πBABB does, is the subject of current research.

The communication complexity O(nk) is a factor n better than what it seems any ap-
proach based on a secret sharing scheme can obtain — collecting the shares at one party
would completely jeopardize the security.

11Notice that the definition of X ′ uses sk. It is therefore essential to the proof that the special membership
soundness of Σ1, ΣS and Σ2 is not relative to the PPT family of sets defined by a random public key.

c
h
a
p
t
e
r
9

Universally Composable
Commitment Schemes

The follies which a man regrets the most in his life are those
which he didn’t commit when he had the opportunity.

— Helen Rowland

9.1 Introduction

In this section we show how to realize the commitment functionality efficiently based on
various standard complexity assumptions. The notion of a universally composable commit-
ment scheme was first published, and realized, by Canetti and Fischlin [CF01]. The notion
is very strong: It guarantees that security is maintained even when an unbounded number
of copies of the scheme are running concurrently and asynchronous. It also guarantees non-
malleability [DDN00,DCIO98,DG02], independence of inputs and maintains security even if
an adversary can decide adaptively to corrupt some of the players and make them cheat.

9.1.1 Related Work

It is clearly important for practical applications to have solutions where only the two main
players need to be active. However, in [CF01] it is proved that universal composability is so
strong a notion that no universally composable commitment scheme for only two players exist.
However, if one assumes the common reference model, then two-player solutions do exist
and two examples are given in [CF01] based on specific complexity theoretic assumptions.
Later [CLOS02] gave a solution based only on the existence of trapdoor permutations.

The commitment scheme from [CF01,CLOS02] use Ω(k) bits to commit to one bit, where
k is a security parameter, and they guarantee only computational hiding and binding. In
fact, as detailed later, one might even get the impression that perfect hiding, respectively
binding cannot be achieved. Here, by perfect, we mean that an unbounded receiver gets zero
information about m, respectively an unbounded committer can change his mind about m

with probability zero.

284 Universally Composable Commitment Schemes

Our contribution is a new construction of universally composable commitment schemes,
which uses O(k) bits of communication to commit to k bits. The scheme can be set up such
that it is perfectly binding, or perfectly hiding, without loosing efficiency.1 The construction
is based on a new primitive which we call a mixed commitment scheme, which we can in
turn construct from the N -invertible homomorphisms from Section 2.10. Our commitment
protocol has three moves, where the protocols in [CF01, CLOS02] are non-interactive. So,
with our current knowledge about universally composable commitments, the price for a low
communication complexity in bits is a higher round complexity.

In addition to assuming the common reference string we use the PRS model, which we
introduced in Section 3.8.8. I.e. we assume that the parties have a mechanism for learning
the other parties’ public keys and that the owner of the public key is guaranteed to know
the corresponding private key. Opposed to the CRS model, no guarantee is given on the
distribution of the public key. Alternatively, it can be done without the PRS model, but
then the CRS will be of length O(nk), as discussed in Section 3.8.8.

As a final contribution we show that if a mixed commitment scheme comes with non-
erasure Σ-protocols for proving relations among committed values, the resulting UC commit-
ment scheme ’inherits’ these protocols, such that usage of these is also universally compos-
able. For our concrete schemes, this results in efficient protocols for proving binary Boolean
relations among committed values and also (for the version based on Paillier encryption)
additive and multiplicative relations modulo N .

Our commitment scheme commits to k bits, which also means that when the commitment
is opened, all k bits are reveal. This in some applications makes it impossible to exploit
the fact that the expansion factor is constant for efficiency. Some protocols requires that
individual bits can be opened independently. Very prominent examples are many zero-
knowledge proof protocols, e.g. the zero-knowledge proof protocol for Hamiltonian-Cycle
(HC) given and proved secure in the FCOM-hybrid model in [CF01]. This problem can
however be solved using a standard technique, presented by Kilian, Micali and Ostrovsky
[KMO89], for transforming a multi-bit commitment scheme into a multi-bit commitment
scheme with the property that individual bits can be opened independently, without any loss
of efficiency, except for a small constant factor. This allow us to improve the communication
complexity of the HC protocol in [CF01] by a factor k.

9.1.2 Informal Description of the Main Ideas

Recall that in a standard commitment scheme, both committing and opening are non-
interactive, so that committing just consists of running an algorithm commitK , keyed by
a public key K, taking as input the message m to be committed to and a uniformly random
string r. The committer computes c ← commitK(m; r) and sends c to the receiver. To
open, the committer sends m and r to the receiver, who checks that c = commitK(m; r).
For this type of scheme, hiding means that given just c the receiver does not learn m

and binding means that the committer cannot change his mind by computing m′, r′, where
c = commit(m′; r′) and m′ 6= m.

1 [CF01] also contains a scheme which is statistically binding and computationally hiding, the scheme
however requires a new setup of the common reference string per commitment.

9.2 Mixed Commitment Schemes 285

In a trapdoor scheme however, to each public key K a piece of trapdoor information tK is
associated which, if known, allows the committer to change his mind. We call such schemes
equivocable. One may also construct schemes where a different type of trapdoor information
dK exists, such that given dK , one can efficiently compute m from commitK(m; r). We call
such schemes extractable. Note that equivocable schemes cannot be perfect binding and that
extractable schemes cannot be perfect hiding.

As mentioned, the scheme in [CF01] guarantees only computational binding and compu-
tational hiding. Actually, this is important to the construction: To prove security, we must
simulate an adversary’s view of the real scheme with access to the idealized functionality
only. Now, if the committer is corrupted by the adversary and sends a commitment c, the
simulator must find out which message was committed to, and send it to the idealized func-
tionality. As discussed several times we cannot rewind in the UC framework. So, we cannot
use rewinding for extracting the message. A solution is to use an extractable scheme, have
the public key K in the reference string, and set things up such that the simulator knows the
trapdoor dk. A similar consideration leads to the conclusion that if instead the receiver is
corrupt, the scheme must be equivocable with trapdoor tK known to the simulator, because
the simulator must generate a commitment on behalf of the honest committer before finding
out from the idealized functionality which value was actually committed to. So, to build
universally composable commitments it seems we must have a scheme that is simultaneously
extractable and equivocable, and all without rewinding. This is precisely what Canetti’s and
Fischlin’s ingenious construction provides.

In this chapter, we propose a different technique for universally composable commitments
based on what we call a mixed commitment scheme. A mixed commitment scheme is basically
a commitment scheme which on some of the keys is perfectly hiding and equivocable, we call
these keys the E-keys, and on some of the keys is perfectly binding and extractable, we call
these keys the X-keys. Clearly, no key can be both an X- and an E-key, so if we were to
put the entire key in the common reference string, either extractability or equivocability
would fail and the simulation could not work. We remedy this by putting only a part of the
key, the so-called system key, in the reference string. The rest of the key is set up once per
commitment using a two-move coin-flip protocol. This allows the simulator to force the key
used for each commitment to be an E-key or an X-key depending on whether equivocability
or extractability is needed.

Our basic construction is neither perfectly binding nor perfectly hiding because the set-up
of keys is randomized and is not guaranteed to lead to any particular type of key. However,
one may add to the reference string an extra key that is guaranteed to be either an E-key
or an X-key. Using this in combination with the basic scheme, one can obtain either perfect
hiding or perfect binding.

9.2 Mixed Commitment Schemes

We now give a more formal description of mixed commitment schemes. The most important
difference from the intuitive discussion above is that the system key N comes with a trapdoor
tN that allows efficient extraction for all X-keys. The E-keys, however, each come with their
own trapdoor for equivocability.

286 Universally Composable Commitment Schemes

Definition 9.1 By a mixed commitment scheme we mean a commitment scheme commitK

with some global system key N , which determines the message space MN and the key space
KN of the commitments. The key space contains two sets, the E-keys and the X-keys, for
which the following holds:

key generation:
One can in PPT generate a system key N , defining a message spaceMN , along with the
so-called X-trapdoor tN . One can given the system key N generate random keys from
KN in PPT and given tN one can sample random X-keys in PPT. Given the system
key, one can in PPT generate an E-key K along with the so-called E-trapdoor tK .

key indistinguishability:
Random E-keys and random X-keys are both computationally indistinguishable from
random keys from KN as long as the X-trapdoor tN is not known.

equivocability:
Given E-key K and E-trapdoor tK one can given any commitment c = commitK(m; r),
along with m and r, and any message m′ ∈MN compute uniformly random r′ for which
c = commitK(m′; r′).

extraction:
Given a commitment c = commitK(m; r), where K is an X-key, one can given the
X-trapdoor tN compute m in PPT.

We furthermore require that given N one can sample random elements from MN and
recognize MN and KN in PPT.

Note that the indistinguishability of random E-keys, random X-keys, and random keys
from KN implies that as long as the X-trapdoor is not known the scheme is computation-
ally hiding for all keys and as long as the E-trapdoor is not known either the scheme is
computationally binding for all keys.

For the construction in the next section we need a few special requirements on the mixed
commitment scheme. First of all we assume that the message space MN and the key space
KN are finite groups in which we can compute in PPT. We denote the group operation by
+. Second we need that the number of X-keys over the total number of keys is negligibly
close to 1. Finally we need that the key space KN can be sampled in PPTIS, a requirement
derived from the fact that we are considering adaptive security. We call a mixed commitment
scheme with these properties a special mixed commitment scheme.

We say that the commitment scheme has a Σ-protocol for a given (a + 1)-ary relation
R if (m1, . . . ,ma,N) ∈ R can be checked given (m1, . . . ,ma,N) ∈ ({0, 1}∗)a+1 and if there
exists a non-erasure Σ-protocol for the relation with instances x = (N,L, c1, . . . , ca) and
witnesses w = ((m1, r1), . . . , (ma, ra)) given by N being a system key, L being a commitment
key and ci = commitL(mi; ri) for i = 1, . . . , a and (m1, . . . ,ml) ∈ R.2 To say that the
commitment scheme has a Σ-protocol for any relation at all we also require that there exists

2It is not a mistake that we did not require that mi ∈MN . If this is guaranteed by ci = commitK(mi; r),
that is fine, otherwise one can add the requirement to R if one needs it.

9.2 Mixed Commitment Schemes 287

a non-erasure Σ-protocol for the relation with instances x = (N,L, cL,K, cK) and witnesses
w = ((mL, rL), (mK , rK)) given by N being a system key, L and K being commitment keys
and cL = commitL(mL; rL) and cK = commitK(mK ; rK) and mL = mK . We call this
relation equality of committed values.

9.2.1 Examples of Special Mixed Commitment Schemes

We give three examples of special mixed commitment schemes, all based on N -invertible ho-
momorphisms which can encrypt with cosets. Specifically, we can construct mixed commit-
ment schemes from the examples in Definition 2.31 on page 58, excluding the exponentiation
example.

Let (G,H, f,N, b′, g, b, t) ← gen(k) be an N -invertible homomorphisms which can en-
crypt with cosets. The system key is N = (G,H, f,N, b′, g, b) and tN = t. The key space
is KN = H and the message space is MN = Zb; Both can be sampled in PPT as required
by Definition 9.1 on the preceding page. We need that H has invertible sampling, as Defini-
tion 9.1 on the facing page requires that the key space has invertible sampling. That this is
the case for the Paillier and the Okamoto-Uchiyama examples from Definition 2.31 on page 58
is trivial. For the Diffie-Hellman example we need that 〈α〉 can we invertibly sampled.

If we let p be a random k-bit prime for which q = (p − 1)/2 is also prime and let α = 4
be a generator of the quadratic residues, then a random element from 〈α〉 can be sampled
as x = y2 mod p for uniformly random y ∈ Z∗

p. That this is an invertible sampling follows
from the fact that square roots can be computed in Qp in PPT.

We commit as commitK(m, r) = Kmf(r), where r is uniformly random in G — actually
r is the uniformly random bits used to sample an element from G, but since G has invertible
sampling we will not distinguish.

The E-keys will be the set F = f(G) and the E-trapdoor will be f−1(K). Clearly
a random E-key can be sampled along with its trapdoor in PPT as require, namely as
K = f(tK) for uniformly random tK ∈ G; Since f is a homomorphism is follows that K is
uniformly random in F .

For equivocability assume that we have K = f(rK) and c = Kmf(r) and that we are
given m′ ∈ Zb. Then compute r′ = rm−m′

K r and r′ is a uniformly random element from G and
commitK(m′; r′) = Km′

f(rm−m′

K r) = Km′
f(rK)m−m′

f(r) = Km′
Km−m′

f(r) = Kmf(r) = c,
as desired — again, formally we should use the random bits faking algorithm for the sampler
of G to construct random bits making it look like r′ was sampled from G.

If the group homomorphism has trapdoor coset determination, then the X-keys will be the
keys of the form K = gif(r), where i is invertible modulo ordH/F (g). We need that this is the
entire key space except for a negligible fraction. That this is indeed the case for the Paillier
and the Okamoto-Uchiyama examples in Definition 2.31 on page 58 is straight-forward to
verify. Definition 9.1 on the preceding page requires that one can sample X-keys in PPT
when tN = t is known, that this is possible follows from the fact that ordH/F (g) = |H/F | is
computable from N and tN and that Z∗

ordH/F (g) can be sampled in PPT by Theorem 2.3 on
page 28. To see that |H/F | is computable from N and tN , observe that N -invertibility allows
us to compute x′ ∈ G such that f(x′) = gN . Therefore the order of g divides N . So, use
the trapdoor coset determination to determine the coset of g−1 to obtain ordH/F (g) − 1.

288 Universally Composable Commitment Schemes

Using trapdoor coset determination we extract a commitment c = Kmf(s) = (gif(r))mf(s)
as follows: From c compute im mod ord(g) and from K compute i mod ord(g). Since i is
invertible modulo ord(g) we can then compute m mod ord(g) = m.

If the group homomorphism has trapdoor image distinguishability, then the X-keys will
be H \ F . For this to work we need that the size of H/F is super-polynomial. Notice that
this is indeed the case for the Diffie-Hellman example in Definition 2.31 on page 58. By
the trapdoor image distinguishability the X-keys can be efficiently sampled given tN . For
extraction, note that commitK(0; r) ∈ F and commitK(1; r) 6∈ F and use the trapdoor image
distinguishability.

9.2.1.1 Proofs of Relation

We now construct some proofs of relation for our examples of mixed commitment schemes.
Since our examples are all based on N -invertible homomorphisms we can use the proofs from
Section 2.10.4.

A commitment is of the form c = Kmf(r), i.e. the witness is a K representation,
which immediately gives us efficient Σ-protocols for proving linear and multiplicative relations
between committed values. For the Paillier example, where the message space is also ZN ,
this is fine, as we can then e.g. prove knowledge of committed values m1, . . . ,ml ∈ ZN in
a given linear relation

∑l
i=1 aimi ≡ a0 (mod N). This in particular allows to prove that

m1 = m2, which was required to say that the commitment scheme has any proof of relation
at all.

It is however less obvious what use we have of proving relation modulo N in the Okamoto-
Uchiyama example and the Diffie-Hellman example, where N = p2q respectively N = q, but
where the message space is Z2dk/2e−1 respectively small subsets of Zq. We have however
not required that the proofs of relations also prove that the message of which one proves
knowledge is from the message space, so it is at least sound to use these proofs. And, there
is one important application of the proof of linear relation, namely with a1 = 1, a2 = N − 1
and a0 = 0, which proves knowledge of m1,m2 ∈ ZN for which m0 = m1. This gives us the
proof that we need to say that the commitment scheme has any proof of relation at all.

We can also construct proofs for small Boolean relations. We can do use the proof of
linear relation with a1 = 1 and a0 = 0 or a1 = 1. This allows to prove knowledge that
a committed value is 0 and to prove knowledge that a committed value is 1. Using the
∧-construction from Section 2.9 we can then for l commitments (c1, . . . , cl) prove knowledge
of (m1, . . . ,ml) for which (m1, . . . ,ml) = (b1, . . . , bl) for some constant (b1, . . . , bl) ∈ {0, 1}l.
Using the ∨-construction this then allows to prove knowledge of (m1, . . . ,ml) ∈ {0, 1}l for
which (m1, . . . ,ml) ∈ R for any relation R ⊆ {0, 1}l. In particular, we can prove a = b∧c for
three committed values, by using R = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)} and a = ¬b, using
R = {(0, 1), (1, 0)}.

9.3 The Commitment Functionality

We now specify the task that we want to realize as an ideal functionality. We look at a slightly
different version of the commitment functionality than the one in [CF01]. The functionality in

9.3 The Commitment Functionality 289

Functionality Fcom
COM-PR

The functionality runs with parties P1, . . . , Pn and is parameterized by a special mixed
commitment scheme com. It proceeds as follows:

initialize:
On input init from all parties, generate a uniformly random system key N for com
along with the X-trapdoor tN and output (N, tN) on the SOT; We assume that tN
contains all random bits used by the generator to guarantee that the functionality is
well-formed. Then let the adversary specify an output round, and output N to all
parties in the specified round.

commit:
Upon receiving (commit, cid, Pi, Pj , m) from Pi, where m ∈ MN , record
(cid, Pi, Pj , m) and output (commit, cid, Pi, Pj) on the SOT, let the adversary specify
an output round and, in the specified round, output (receipt, cid, Pi, Pj) to Pj . If Pi

is corrupted before the output round and the SIT contains a value (fail, cid), then
do not output anything to Pj and record nothing. If Pi is corrupted before the output
round and the value (change, cid, m′) is on the SIT, then record (cid, Pi, Pj , m

′).

opening:
Upon receiving a message (open, cid, Pi, Pj) from Pi, where (cid, Pi, Pj , m) has been
recorded, output (cid, Pi, Pj , m) on the SOT, let the adversary specify an output
round and, in the specified round output (open, cid, Pi, Pj , m) to Pj . If before the
output round Pi is corrupted and the SIT contains a value (fail, cid), then output
nothing to Pj .

proof of relation:
If Pj is honest and inputs (prove, cid, Pi, Pj , R, cid1, . . . , cida) and Pi inputs
the same value in the same round or Pi is corrupted, and if further-
more (cid1, Pi, Pj , m1), . . . , (cida, Pi, Pj , ma) have been recorded and R is an
(a + 1)-ary relation of the special mixed commitment scheme, then output
(prove, cid, Pi, Pj , R, cid1, . . . , cida, b) on the SOT, where b ∈ {0, 1} and b = 1 iff
(N, m1, m2, . . . , ma) ∈ R. Then let the adversary specify an output round, and in
the specified round output (cid, b) to Pj . If before the output round Pi is corrupted
and the SIT contains a value (fail, cid), then output (cid, 0) to Pj .

incorrect inputs:
If an honest party uses the same commitment id cid for committing or proving
more than once or some honest party inputs m 6∈ MN or some honest party in-
puts (id, Pi, Pj , . . .), in proof of relation or opening, for which no values are recorded
or where the corresponding party is honest and did not input the corresponding value,
then break down.

Figure 9.1: The functionality for COMmitment with Proof of Relation.

[CF01] is only for committing to one bit. Here we generalize. The domain of our commitments
will be the domain of the special mixed commitment used in the implementation. Therefore
the ideal functionality must specify the domain by initially giving a system key N . In
addition, the X-trapdoor of N is revealed to the simulator. This is no problem in the
ideal process since here the X-trapdoor cannot be used to find committed values — the
ideal functionality stores committed values internally and reveals nothing before opening

290 Universally Composable Commitment Schemes

time. The simulator, however, needs the X-trapdoor in order to do the simulation of our
implementation — for pushing some rewinding to the analysis.3 The implementation on the
other hand will of course keep the X-trapdoor of N hidden. An additional extension of the
functionality is the addition of the proof of relation command, which allows the committer
to prove relations between committed values. A similar functionality was independently
presented by Canetti, Lindell, Ostrovsky and Sahai [CLOS02]. They consider a version
where the proof of relation takes as input a constant known to both the committer and the
receiver. This allows them to do away with the opening command, as it can be realized by a
proof of relation (with the relation being the identity relation and the known constant being
the value committed to). One could consider simplifying FCOM-PR using this idea. However,
since the opening command can be realized non-interactively and our realization of the proof
of relation is interactive, it would make a difference in efficiency which solution is used to
reveal a committed value. We have therefore chosen to maintain both commands. The ideal
functionality for commitments with proofs of relation is given in Fig. 9.1 on the page before.

It should be noted that a version of the functionality where N and tN are not specified
by the ideal functionality could be used. We would then let the domain of the commitments
be a domain determined by k and which is contained in (or easy to encode in) the domain of
all the system keys for security parameter k. In the description it is not a mistake that we
do not require m′ ∈MN when the environment inputs on behalf of corrupted parties in the
change command. The adversary can commit to any value. He will of course be caught when
he opens the commitment; If the application needs that any opened commitment opens to a
value inMN , then the parties can define any value outsideMN to be some fixed value from
MN or define that an opening to a value outside MN does not count as a correct opening.

9.4 UCC with Constant Expansion Factor

Given a special mixed commitment scheme we can construct a universally composable com-
mitment scheme. The construction is given in Fig. 9.2 on the facing page. It is a simplified
version of a protocol first published in [DN02b]. The main simplifying difference is that
in [DN02b] the special mixed commitment scheme was transformed as to equip it with two
independent trapdoors before it was used to construct the universally composable commit-
ment scheme. Without having to go into details, this is avoided in the current version by
sending the cL commitment in the initial round. This commitment has however not been
added for that purpose. The reason for adding it is to bind the committing party from the
first message. Without the cL commitment we do not know how to prove the protocol secure.
We discuss this during the analysis when we use that cL is there (see Footnote a in Fig. 9.3(c)
on page 294). The initial commitment was not part of the protocol in [DN02b], and as a
consequence we do not know how to prove the protocol in [DN02b] secure, opposed to what
is claimed in that paper. The flaw in the proof of [DN02b] was pointed to by Groth [Gro02].

3See Remark 8.1 on page 258 for a more detailed discussion of this type of functionality.

9.4 UCC with Constant Expansion Factor 291

Protocol πCOMPR

The protocol runs with parties P1, . . . , Pn in the (FN
CRS,FZK-PM,Fgen,Rgen

PRS)-hybrid model,
where FN

CRS generates a random system key N along with a random key L, and gen is the
key-generator for a trapdoor commitment scheme.a

initialization:
On input init, input init to FCRS and FZK-PM and request the key of all parties
from FPRS. Then wait for a value (N, L) from FCRS, the value ready from FZK-PK

and a value Ki for each Pi from FPRS. Then output ready. Until outputting ready,
ignore all inputs but the first init input.

committing:
C.1 On input (commit, cid, Pi, Pj , m) party Pi generates a random commitment key

K1 for system key N and commits to it as c1 = commitKj
(K1; r1). Then Pi

computes cL = commitL(m; rL) and sends (com1, cid, c1, cL) to Pj .

R.1 Pj replies with (com2, cid, K2) for a random commitment key K2.

C.2 Pi computes K = K1 + K2 and c2 = commitK(m; r2), records
(cid, Pj , K, m, r2, rL) and sends the message (com3, cid, K1, r1, c2) to Pj .

R.2 Pj checks that c1 = commitKj
(K1; r1), and if so computes K = K1 + K2,

records (cid, Pi, K, c2, cL), and outputs (receipt, cid, Pi, Pj).

opening:
C.3 On input (open, cid, Pi, Pj), Pi sends (open, cid, m, r2, rL) to Pj .

R.3 Pj checks that c2 = commitK(m; r2) and cL = commitL(m; r2), and if so out-
puts (open, cid, Pi, Pj , m).

proving relation:
On input (prove, cid, Pi, Pj , R, cid1, . . . , cida), where (cid1, Pj , K1, m1, r1, rL,1), . . .,
(cida, Pj , Ka, ma, ra, rL,a) are recorded commitments, if (m1, . . . , ma) ∈
R, party Pi inputs (cid, Pi, Pj , R, x, w) to FR

ZK-PM, where x =
(N, L, commitL(m1; rL,1), . . . , commitL(ma; rL,a)) and w = (m1, rL,1, . . . , ma, rL,a).
If party Pj receives input (prove, cid, Pi, Pj , R, cid1, . . . , cida), where for l = 1, . . . , a
a commitment (cidl, Pi, Kl, c2,l, cL,l) was stored, then Pj inputs (cid, Pi, Pj , R, x) to
FZK-PM, where x = (N, L, cL,1, . . . , cL,a). Then Pj waits for output (cid, b) from
FR

ZK-PM and outputs (cid, b).
The first time a given commitment (cid, Pi, K, c2, cL) is used in any proof it is also
proved that (L, cL) and (K, c2) commits to the same value.

aThis could be the mixed commitment scheme, but any trapdoor commitment scheme will do.

Figure 9.2: The protocol for COMmitment with Proof of Relation.

Theorem 9.1 If com is a special mixed commitment scheme, then πcom
COMPR[πR

DAM-ZK/FR
ZK-PM]

realizes Fcom
COM-PR in the (FN

CRS,Fcommit
PRS)-hybrid model.

Proof. We do the proof using the simulator SCOM-PR in Fig. 9.3 on the following page. We
would now like to argue that

Pr[IDEALF
com
CRS,Fcommit

PRS
Fcom

COM-PR,SCOM-PR,Z ∈ ‘‘H FCRS’’ ∪ ‘‘H FPRS’’]
c≈0

292 Universally Composable Commitment Schemes

Interface SCOM-PR

The interface SCOM-PR tries to run internally a copy of πCOMPR on the inputs of Z.
For the inputs not known to SCOM-PR this is done in a non-committing way, so that all
commitments can later be opened to arbitrary values. The communication of πR

DAM-ZK is
simulated using SDAM-ZK

R. The individual commands are handled as follows:

initializing:
Simulate the value (N, L), by obtaining the system key N (along with its X-trapdoor
tN) from the ideal functionality Fcom

COM-PR and generating L as a random E-key with
known E-trapdoor tL. The keys Ki are generated correctly as E-keys, learning their
trapdoors ti.

committing:
On input (commit, cid, Pi, Pj) from FCOM-PR, where Pi is honest, we know that Z
has given Pi input (commit, cid, Pi, Pj , m) on FCOM-PR for some m ∈MN . We have
to simulate Pi’s behavior on the input (commit, cid, Pi, Pj , m) without knowing m.
To facilitate this, generate K as a uniformly random E-key with known E-trapdoor
tK ; We call K the hitting key and we will make K the key used by Pi, which then
allows to open the commitment to m, if m is later learned. We do this as follows:

C.1 Let c1 = commitKj
(K ′

1; r
′
1) for a random commitment key K ′

1 and let cL =
commitL(m′; r′L) for some dummy value m′. Then proceed as in the protocol.
If Pi is later corrupted, then let K1 = K ′

1 and let r1 = r′1. And, if m′ = m,
then let rL = r′L; Otherwise, use tL (the E-trapdoor of L) to compute rL for
which cL = commitL(m; rL), where m is the correct value of m′, learned from
FCOM-PR.

C.2 On a message (com2, cid, K2) from Pj , if K2 = K −K ′
1, where K is the hitting

key, then let K1 = K ′
1 and let r1 = r′1. If not, let K1 = K − K2 and use tj

to compute r1 such that c1 = commitKj
(K1; r1). Then use that KN can be

sampled in PPTIS to make it look as if K1 was sampled uniformly at random
from KN . In both cases we now have that K = K1 +K2, where K is the hitting
key, and c1 = commitKj

(K1; r1). Finally, let c2 = commitK(m′′; r′2) for some
second dummy valuea m′′ and send (com3, cid, K1, r1, c2) to Pj .
If Pi is corrupted after this step and before Step C.3, then we learn m. If
m′ = m, let r2 = r′2, otherwise, use tK (the E-trapdoor of the hitting key) to
compute r2 for which c2 = commitK(m; r2).

aThe reason for introducing symbols for the dummy value and this second dummy value is only
for easy reference in the following analysis, they could both have been 0.

Figure 9.3(a) (cont. in Fig. 9.3(b) on the facing page): The interface SCOM-PR used in the
proof of Theorem 9.1 on the page before

and that
HYBFcom

CRS,Fcommit
PRS

πcom
COMPR[πR

DAM-ZK/FR
ZK-PM],Z

c≈ IDEALF
com
CRS,Fcommit

PRS
Fcom

COM-PR,SCOM-PR,Z

for all Z where

Pr[IDEALF
com
CRS,Fcommit

PRS
Fcom

COM-PR,SCOM-PR,Z = ‘‘H Fcom
COM-PR’’]

c≈0 .

9.4 UCC with Constant Expansion Factor 293

Interface SCOM-PR

opening (C.3):
On input (open, cid, Pi, Pj , m) from FCOM-PR, where Pi is honest, we know that Z
has given Pi input (open, cid, Pi, Pj) on FCOM-PR. To simulate this construct r2 and
rL as specified in step C.2 and send (open, cid, m, r2, rL) to Pj .

receiving a commitment:
This is how to simulate an honest receiver Pj receiving a commitment.

R.1 If Pi is corrupt, then generate K2 as in the protocol. Otherwise, let K2 = K−K1

and us that KN can be sampled in PPTIS to make it look as if K1 was sampled
uniformly at random from KN .

R.2 On receiving message (com3, cid, K1, r1, c2, cL) from Pi (and having received
(receipt, cid, Pi, Pj) from FCOM-PR two rounds ago), continue as follows: If
c1 6= commitKj

(K1; r1), then Pi is corrupted and we can input (fail, cid)
on the SIT, which makes FCOM-PR not act further on the commitment with
id cid. If c1 = commitKj

(K1; r1), we have to make Pj output the value
(receipt, cid, Pi, Pj) on FCOM-PR and make FCOM-PR commit to an appro-
priate value under the id cid.

(a) If the com1-message with id cid received by Pj was sent by SCOM-PR,
then it was sent because SCOM-PR received a (commit, cid, Pi, Pj)-
message from FCOM-PR, meaning that Pi, while honest, received in-
put (receipt, cid, Pi, Pj , m) on FCOM-PR. Therefore, unless we instruct
FCOM-PR otherwise, it will store m under cid and output (receipt, cid) to
Pj , which is what we desire. Observe that when Pi was corrupted SCOM-PR

learned m, and SCOM-PR knows an opening of cL to m. This will become
essential.

(b) If the com1-message was sent by Z and K is an X-key, then use tN (the
X-trapdoor of N) to decrypt c2 and let m′ denote the resulting value and
input (change, cid, m′) on the SIT of FCOM-PR.

(c) If the com1-message was sent by Z and K is not an X-key, then intuitively
the coin-flip protocol for generating K was broken. This should not happen,
so let us give up. We let SCOM-PR terminate with output “coin-flip broken”.

receiving an opening (R.3):
This is how to simulate an honest receiver Pj receiving an opening. On receiving
a message (open, cid, m′, r′2, r

′
L) from Pi, check whether c2 = commitK(m′, r′2) and

cL = commitL(m′; r′L). If not, then Pi is corrupt, and we can input (cid, fail) on the
SIT of FCOM-PR to prevent FCOM-PR from taking further actions on the commitment
with id cid. If the check succeeds, we must make Pj output (open, cid, Pi, Pj , m

′) on
FCOM-PR.

Figure 9.3(b) (cont. from Fig. 9.3(a) on the preceding page, cont. in Fig. 9.3(c) on the
following page): The interface SCOM-PR used in the proof of Theorem 9.1 on page 291

That Pr[IDEALF
com
CRS,Fcommit

PRS
Fcom

COM-PR,SCOM-PR,Z ∈ ‘‘H FCRS’’∪‘‘H FPRS’’]
c≈0 is straight-forward

to verify, so we proceed to prove the second claim.

294 Universally Composable Commitment Schemes

Interface SCOM-PR

receiving an opening (R.3) (cont.):
(a) If the open-message was sent by SCOM-PR (in opening (C.3)), then input cid on

the SIT of FCOM-PR to make it output (open, cid, Pi, Pj , m
′) to Pj .

(b) If the open-message was sent by Z, then Pi is corrupt and we can input
(open, cid, Pi, Pj) on behalf of Pi to the ideal functionality and then input cid
on the SIT to make it output (open, cid, Pi, Pj , m

′′) to Pj .
As a result SCOM-PR receives a message (open, cid, Pi, Pj , m) from FCOM-PR. If
m 6= m′, which only happens in case (b), then SCOM-PR sent the com1-message
in the commit protocol with id cid: If not, when the commitment was received by
SCOM-PR, the simulator would have executed case R.2(b) or case R.2(c). Clearly
not case R.2(c), or the simulation would not have reached this point. So, case (b)
must have been executed, meaning that SCOM-PR decrypted c2 and put the resulting
value m into FCOM-PR. Since K is an X-key and c2 = commitK(m′; r′2) it follows
that m = m′, a contradiction. So, SCOM-PR did send the com1-message in the com-
mit protocol with id cid, so SCOM-PR have executed R.2(a) and therefore knows an
opening cL = commitK(m; r), see the remark in R.2(a). Since Z sent an opening
cL = commitK(m′; r′2) above and m 6= m′, we have a double-opening. This should
not, so let give up. We let SCOM-PR terminate with output “here is a double-opening
(N, K, cL, m, r, m′, r′)”.a

proving relation:
On input (prove, cid, Pi, Pj , R, cid1, . . . , cida) from FCOM-PR, input
(cid, Pi, Pj , (N, L, cL,1, . . . , cL,a)) to SDAM-ZK

R to make it simulate a proof
from Pi to Pj with the specified instance, where cL,i is the commitment under L
from the commitment with id cidi. Then proceed as follows:

1. If Pi is honest and if Pi is later corrupted we learn m1, . . . , ma and compute, as
described in committing, values ri such that ci = commitL(mi; ri). Then input
(m1, r1, . . . , ma, ra) to SDAM-ZK

R to make it patch the internal state of Pi to
these values.

2. If Pi is corrupted and Pj is honest, then SDAM-ZK
R simulates Pj . The result

is (cid, b). If b = 0, then input (fail, cid) on the SIT of FCOM-PR. This
makes FCOM-PR output (cid, 0) to Pj . If Z outputs (cid, 1), then simulate Pj

outputting (cid, 1) in the simulation and input cid on the SIT of FCOM-PR, which
makes FCOM-PR output (cid, c), where c = 1 unless the values stored under
cid1, . . . , cida are not in R. If FCOM-PR outputs (cid, 0), then the simulation
failed, so let’s just give up. We let SCOM-PR terminate with output “failure in
proving relation”.

aNotice how the presence of cL in the first message was used essentially to compute a double
opening when the simulation fails because of m 6= m′. Without cL we would just have a failed
simulation.

Figure 9.3(c) (cont. from Fig. 9.3(b) on the preceding page): The interface SCOM-PR used
in the proof of Theorem 9.1 on page 291

9.4 UCC with Constant Expansion Factor 295

The intuition is the following: First of all, that L in the simulation is a random E-key
and not a random X-key, and that the keys K for honest parties are random E-keys and
not random keys, should not matter by the key-indistinguishability assumption. Second, the
commitment keys K for corrupted parties are generated via coin-flips, so corrupted parties
will get random K, which by the assumption that the X-key constitute the entire key space
except for a negligible fraction implies that K is an X-key, except with negligible probability.
However, this intuition fails under more careful scrutiny of the simulator. Consider namely
the case where Pi is honest until Step C.2, so that SCOM-PR generates K as a random E-key
and sends the message as specified in the simulation. Then Z corrupts Pi, which allows Z to
send a new message on behalf of the now corrupt Pi — we have a rushing environment. We
say that Z captures an E-key. After the capture Z can commit under an E-key. So, what could
happen? Well, if Z computes c2 as a commitment to another value m′, then we cannot learn
the value m′ by decrypting c2. Therefore the simulator does not know which value to input
to FCOM-PR to make it consistent with c2. Potentially, this means that if the commitment
is later opened, the output of Pj in the simulation, m′, and the output of FCOM-PR, are not
the same, which makes the two trivial to distinguish. This is the role of the commitment cL

sent with the com1-message. To later open the commitment Z must open both c2 and cL to
the same value. This means that if Z captures an E-key, which it must do by corrupting in
Step C.2, then the com1-message was sent by SCOM-PR and opened as cL = commitL(m; rL),
where m is the value input to FCOM-PR under the id cid. By inspection of the simulation this
is exactly the value input to FCOM-PR by SCOM-PR, so this leaves three possibilities: Either
Z opens both c2 and cL to m, or Z opens c2 and cL to different values, or Z opens cL to
a value different from m. In the two first cases the simulation and FCOM-PR are consistent,
resulting in output (open, cid,m) respectively no output. In the last case the computational
binding of commitL was broken, which happens only with negligible probability.

Above we appealed to the computational binding of commitL. There is one serious
problem with that, namely that SCOM-PR uses the E-trapdoor of L. We can however still
obtain a contradiction to the computational binding of commitL, though some care must be
taken, which there will be in the more formal proof following this intuitive sketch. Here we
sketch the approach. We basically want to get rid of the use of tN and tL — i.e. we want to
generate a distribution identical to the simulation given as input a random N and a random
L with unknown trapdoor — after which we can appeal to the computational binding of
commitL. To get rid of the use of tL we simply run the simulation, but cheating by letting
the dummy value m′ in C.1 be equal to the correct value m. By inspection of the simulator,
now tL is not used anymore. Then to get rid of the use of tN , instead of decrypting c2 we
use m′ = 0, and if Z ever opens the corresponding commitment to some value m′′, instead
of letting FCOM-PR output m′ = 0, we simply patch the execution and let it output m′′ to
force the simulation and FCOM-PR to be consistent. This experiment does not use tN nor
tL and is identical to the simulation, at least until the computational binding of commitL is
broken, which happens with negligible probability as we do not use any of the trapdoors tN
or tK .

We now proceed with a more careful proof, via a hybrids argument. The hybrids used for
pushing the rewinding to the analysis will be similar of those in the proof of Theorem 8.4 on
page 275, and the formal details can be developed along the exact same lines. We consider

296 Universally Composable Commitment Schemes

the following hybrids:

1. To produce H1
SCOM-PR,Z(k, z) we execute the simulation IDEALF

com
CRS,Fcommit

PRS
FCOM-PR,SCOM-PR,Z(k, z),

but without using tL. Instead we compute cL as in the protocol. This is done as follows:
We are running IDEALF

com
CRS,Fcommit

PRS
FCOM-PR,SCOM-PR,Z(k, z) and by inspection of SCOM-PR it can be

seen that when SCOM-PR is about to compute cL = commitL(m′; r′L), the party Pi is
honest and have received an input (commit, cid, Pi, Pj ,m) on FCOM-PR. So, by inspect-

ing the communication between Z and FCOM-PR in IDEALF
com
CRS,Fcommit

PRS
FCOM-PR,SCOM-PR,Z(k, z) we

can easily determine m. We then simply let m′ = m, where m′ is the dummy value
mentioned in C.1 in the simulation. Now, by inspection of the simulation it can be
verified that the value tL is no longer used.

By the assumption that trapdoor openings are distributed statistically close to real
openings, we have that H1

SCOM-PR,Z(k, z)
s≈ IDEALF

com
CRS,Fcommit

PRS
FCOM-PR,SCOM-PR,Z(k, z).

2. To produce H2
SCOM-PR,Z(k, z) we execute H1

SCOM-PR,Z(k, z), but without using tN . As
we cannot do the decryption in R.2(b) and we cannot determine whether we are in case
R.2(b) or case R.2(c), we always use m = ⊥ to indicate that the value is undefined.
Then in R.3(b) (in receiving an opening (R.3)), when FCOM-PR is about to output
(open, cid, Pi, Pj ,⊥) to Pj , we patch the simulation and deliver (open, cid, Pi, Pj ,m

′)
to Z, where m′ is the value to which Z opens c2 and cL in the open-message.

Furthermore, in receiving an opening (R.3), when SCOM-PR is about to output “here is
a double-opening (N,K, cL,m, r,m′, r′)”, instead deliver (open, cid, Pi, Pj ,m

′) to Z.

Notice that because some of the values in FCOM-PR are undefined (⊥), if supplied by a
corrupted party, we cannot run FCOM-PR on inputs (prove, cid, Pi, Pj , R, cid1, . . . , cida)
for corrupted Pi. Instead we simulate it by returning (cid, b) to Pj iff Pj returns (cid, b)
in the simulation. So, we simply force FCOM-PR to be consistent with the simulation
on the inputs (prove, cid, Pi, Pj , R, cid1, . . . , cida) for corrupted parties.

That H1
SCOM-PR,Z(k, z)

c≈H2
SCOM-PR,Z(k, z) is argued after the presentation of the remain-

ing hybrids.

3. To produce H3
SCOM-PR,Z(k, z) we execute H2

SCOM-PR,Z(k, z), but with the difference that
we let L be a random key instead of a random E-key.

That H3
SCOM-PR,Z(k, z)

c≈H2
SCOM-PR,Z(k, z) follows from key indistinguishability as we no

longer use tN .

4. To produce H4
SCOM-PR,Z(k, z) we execute H3

SCOM-PR,Z(k, z), but we start committing to
the correct value m under the key K. I.e. we let m′′ = m, where m′′ is the second
dummy value defined in C.2. Notice that we do not use tK anymore.

That H4
SCOM-PR,Z(k, z) = H3

SCOM-PR,Z(k, z) follows from fact that the keys K are E-keys
and therefore perfect hiding.

5. To produce H5
SCOM-PR,Z(k, z) we execute H4

SCOM-PR,Z(k, z), but we do not generate the
keys K as random E-keys anymore. Instead we let the hitting keys in committing be

9.4 UCC with Constant Expansion Factor 297

random keys. Notice that this is indeed possible as, from H4
SCOM-PR,Z(k, z), we commit

to correct values under K.

That H5
SCOM-PR,Z(k, z)

c≈H4
SCOM-PR,Z(k, z) follows from key indistinguishability, using

the fact that we do not use tN .

6. To produce H6
SCOM-PR,Z(k, z) we execute H5

SCOM-PR,Z(k, z), but we start generating the
keys K as in the protocol. I.e., instead of hitting a random key, we flip a key.

That H6
SCOM-PR,Z(k, z) = H5

SCOM-PR,Z(k, z) follows from the fact that +, as in K1 +K2,
is a group operation on the set of keys, and therefore K1 + K2 is a random key when
Pi is honest: The commitment c1 is perfect hiding, so K2 is independent of K1. Since
K1 is chosen uniformly at random when Pi is honest, the claim follows.

7. To produce H7
SCOM-PR,Z(k, z) we execute H6

SCOM-PR,Z(k, z), but instead of the simulator
SDAM-ZK we run the protocol πDAM-ZK from Fig. 5.1 on page 180. This is possible as
we are using correct inputs for all honest parties now, so all witnesses are known.

That H7
SCOM-PR,Z(k, z)

c≈H6
SCOM-PR,Z(k, z) follows from Theorem 5.1 on page 180.

8. That HYBFN
CRS,Fcommit

PRS

πcom
COMPR[πR

DAM-ZK/FR
ZK-PM],Z

s≈H7
SCOM-PR,Z(k, z) follows by inspection. In the

experiment H7
SCOM-PR,Z(k, z), the output of an opening by a corrupted party is always

the value to which that corrupted party opened cL, see the definition of H2. As for an
honest party (when the com1 message was sent by Z) the output is the value m input to

FCOM-PR. We argue that the same is the case in HYBFN
CRS,Fcommit

PRS

πcom
COMPR[πR

DAM-ZK/FR
ZK-PM],Z : Since L

is a random key, and therefore a random X-key, except with a probability statistically
close to 0, and the commitment cL was sent by Pi (as part of the com1-message) it
follows that cL is a perfect binding commitment to m. Since cL must be opened to m′

for the output to be m′, it follows that the output of an opening is always m. Since
we also force the output of FCOM-PR to be consistent with the simulation on proofs of
relation the above argument extends to show the claim.

What remains is to argue that H2
SCOM-PR,Z(k, z)

c≈H1
SCOM-PR,Z(k, z).

There is only one case where the first modification (patching at the time of output
instead of decrypting) gives a difference in the output from FCOM-PR in H1 and H2 when a
commitment is opened, namely when the com1-message was sent by Z and K is an E-key, i.e.
when the simulation is given up with output “coin-flip broken”. To see this observe that if
the com1-message was sent by SCOM-PR, then we are in case R.2(a), which is identical in the
two distributions, and if the com1-message was sent by Z and K is an X-key, then in H1 the
output of FCOM-PR after an opening is always the value m′ obtained by decrypting c3, as this
value is handed to FCOM-PR by SCOM-PR as the committed value in the change-command.
In H2 the output is also the value (which could have been) obtained by decryption as K is an
X-key and so c3 is perfect binding, to m′, and must be opened to a value m′′ for the output
of the simulation to be m′′. Therefore the output of the simulation is m′, which proves the
claim, as we force FCOM-PR to be consistent with the simulation in H2.

298 Universally Composable Commitment Schemes

The only way the second modification (of forcing the output from the open commands to
be consistent with the simulation instead of outputting “here is a double-opening (N,K, cL,m,

r,m′, r′)”) can make a difference is that in H1 “here is a double-opening (N,K, cL,m, r,m′, r′)”
is output with a non-negligible probability. Since H1 and H2 are identical until this happens
this would imply that a double openings under L is computed in H2 with a non-negligible
probability. Since H2 c≈H3 and L is a binding key in H3, clearly double openings under L

are computed with negligible probability in H2. We can therefore ignore the possibility that
“here is a double-opening (N,K, cL,m, r,m′, r′)” is output.

The only way the third modification (of forcing the output from a proof of relation to
be consistent with the simulation) can make a difference is that in H1 the simulation and
FCOM-PR have different outputs on an input (prove, cid, Pi, Pj , R, cid1, . . . , cida), i.e. when
“failure in proving relation is output” is output.

We now prove that the first and the third modifications do not matter either. Let p1 be
the probability, in H1, that “coin-flip broken” is output and let p2 be the probability that
“failure in proving relation” is output. By the above analysis it is enough to prove that p1

and p2 are negligible.
Assume first that p1 is not negligible. This means that with non-negligible probability,

in H1, the simulator outputs “coin-flip broken”. Since H1 and H2 are identical until this
happens, it happens in H2 with probability at least p1 that the simulator should have output
“coin-flip broken”, but did not — we consider H2 here because it does not use tN . Consider
the following experiment: Run H2 until it happens that c1 was opened correctly and K =
K1 + K2 ∈ E for a key generated by a committer Pi which was corrupted when the com1-
message was sent, and a receiver Pj which was honest when the com3-message was received.
Here E denotes the set of E-keys, and the test K ∈ E can be done e.g. by running through all
possible choices of (m1, r1,m2, r2) and testing whether commitK(m1; r1) = commitK(m2; r2)
for some m1 6= m2. It happens with non-negligible probability at least p1 that K ∈ E.
Then rewind until the point where K2 was sent and rerun until it happens again that c1 was
opened correctly and K = K ′

1 + K ′
2 ∈ E and that Pj was honest when the com3-message

was received. Exactly as in the proof of Theorem 5.1 on page 180 we can prove that the
expected time used in rerunning the protocol is polynomial (of course the time used in the
tests K ∈ E is not). Since only expected polynomial time is used rerunning, the probability
that any of the challenges K ′

2 generated in the reruns belong to (E − K1) is negligible.
Therefore, except with negligible probability K ′

2 + K1 6∈ E. Together with K1 + K2 ∈ E

and K ′
1 + K ′

2 ∈ E this implies that K ′
1 6= K1, so a double opening of c1 is generated.

This happens with a probability at most negligibly smaller than p1. The problem is that
the experiment is not PPT, but we can deal with that. Let p3 be a polynomial such that
running the above experiment for p3(k) steps, still not counting the test K ∈ E, gives a
double opening with probability at least 1/p3(k). Then the test K ∈ E is not needed in the
rerunning anymore, as we can simply rerun until either a double opening is produced or p3(k)
steps were used. To get rid of the first test K ∈ E for when to start the reruns, we do as
follows: Since H2

SCOM-PR,Z(k, z) is PPT there is a polynomial upper bound b on the number
of keys K generated in a run. Pick i ∈ Zb uniformly at random and let it index a run of
the commitment protocol. Run H2

SCOM-PR,Z(k, z) until the execution of this instance of the
commitment protocol has terminated. If Pi was corrupted when the com1-message was sent

9.4 UCC with Constant Expansion Factor 299

and Pj was honest when the com3-message was received, and Pi opened the commitment c1

correctly, then save c1,K1, r1 and start rerunning until a double opening is produced or p3(k)
steps used. Since b is a polynomial and there is a non-negligible probability that K ∈ E for
some K, it follows that there is a non-negligible probability p4 that we start rerunning for
the first K ∈ E as we would if we did the tests K ∈ E. So, with non-negligible probability
p4p3 we produce a double opening, but now in PPT. Since we do not use tN nor tKj

, this
contradicts the computational binding of commitKj

. We have proved that p1 is negligible
and we proceed under the assumption that all keys K generated in a run are X-keys when
the com1-message is sent by Z.

Assume then that p2 is not negligible. Observe that in H1
SCOM-PR,Z(k, z), when (pid, Pi, Pj ,

(N,L, c1, . . . , ca)) is input to the simulator SDAM-ZK and Pi is corrupted, then for each of
the commitments ci under Ki corresponding to cL,i it holds that Ki is either an X-key, if the
com1-message was sent by SCOM-PR, or Ki is an E-key and SCOM-PR knows mi, ri such that
cL,i = commitL(mi; ri), when the com1-message was sent by SCOM-PR.

Furthermore, since SDAM-ZK accepted the proof, we can use rewinding to extract a witness
(m′

1, r
′
1, . . . ,m

′
a, r

′
a) such that cL,i = commitL(m′

i; r
′
i) and (m′

1, . . . ,m
′
a) ∈ R. And from the

proof that ci and cL,i commits to the same values we can extract a witness (m′′
i , r

′′
i , r′′′i) such

that cL,i = commitL(m′′
i ; r

′′
i) and ci = commitKi(m

′′
i ; r

′′′
i). To do the extraction we note that

SCOM-PR is of the form SCOM-PR = SCOM-PR
′[SDAM-ZK] and only uses SDAM-ZK to simulate

instances that are in the relation. This follows from the fact that all involved keys are E-keys
and can therefore be opened to arbitrary values, in particular values in the relation. Using
the techniques used to prove Eq. 8.2 on page 277 and Eq. 8.3 on page 278 we can then argue
that we can indeed extract witnesses except with negligible probability.

For the indices where Ki is an X-key, it holds that the value m′′
i was found by decrypting

and then input to FCOM-PR by SCOM-PR and is therefore the value stored under cidi, see
R.2(b). For the indices where Ki is an E-key, the value mi for which SCOM-PR knows ri such
that cL,i = commitL(mi; ri) is the value stored by FCOM-PR, see R.2(a).

Assume for notational convenience that the E-keys are the first j keys. It follows from
the fact that FCOM-PR did not accept the proof that (m1, . . . ,mj,m

′′
j+1, . . . ,m

′′
a) 6∈ R and

we have that (m′
1, . . . ,m

′
a) ∈ R, so clearly (m1, . . . ,mj ,m

′′
j+1, . . . ,m

′′
a) 6= (m′

1, . . . ,m
′
a).

Assume that mi 6= m′
i for some 1 ≤ i ≤ j. The simulator knows an opening cL,i =

commitL(mi; ri), as SCOM-PR sent the com1-message (see R.2(a)). Furthermore, SCOM-PR

knows cL,i = commitL(m′
i; r

′
i) from the witness extraction. In that case we have a double-

opening of cL,i. Assume that m′
i 6= m′′

i for some j < i ≤ a. The simulator knows an opening
cL,i = commitL(m′

i; r
′
i) and an opening cL,i = commitL(m′′

i ; r
′′
i) from the witness extraction.

Again we have a double opening of cL,i.
This means that if we run H1 and extract all witnesses using xtr, then if the probability

of computing a double opening under L is negligible, then p2 is negligible. Since H1 and
H2 are identical until “failure in proving relation” is (respectively should have been) output,
it follows that if we run H2 and extract all witnesses using xtr, then the probability of
computing a double opening under L is negligible. So, since we can generate H2 given N

and L as input it follows from the computational binding of commitL that p2 is negligible.
There is one apparent problem with this argument, we have not required that πDAM-ZK

is run as a proof of knowledge! So, how can we extract all witnesses? We can not, and we

300 Universally Composable Commitment Schemes

do not have to. Recall that in the proof of Theorem 5.1 on page 180 we used the condition
that πDAM-ZK is run as a proof of knowledge to guarantee that during the extraction of one
witness, we would not accept another proof which we would then have to extract a witness
for before we could continue the ongoing extraction. In the above argument we need not run
into this problem. We are not extracting the witnesses to be able to continue the simulation,
but only to get our hands on the witnesses for the purpose of comparing them to the openings
we already have. Therefore, during the reruns, we simply ignore all other accepted proofs.
We only need to extract witnesses for the ’main copy’. In fact, if with a non-negligible
probability there is a proof which would give us a double opening if extracted, then as we
did in the proof that p1 is negligible, we could just guess which proof it is, with a polynomial
probability, and then extract that one proof, ignoring even all other accepted proofs in the
main copy. 2

9.5 Perfect Hiding or Perfect Binding

The scheme described above is not guaranteed to be perfect binding nor perfect hiding. Here
we sketch how to construct a version of the commitment scheme with perfect hiding.

First notice that if we simply require L to be a random X-key, then the scheme is perfect
binding, as the commitment under L is perfect binding. Letting L be a random X-key instead
of a random key makes no difference because of the key indistinguishability.

To allow for perfect hiding commitments, include two random E-keys L2 and P in the
common reference string. To do a perfect hiding commitment the committer computes a
uniformly random padding message p ∈ MN and commits with c2 = commitK(p + m; r2),
cL2 = commitL2(p + m; rL2) and cP = commitP (p; rP), This is perfect hiding. The commit-
ments cL2 and cP are perfect hiding, so given even p+m the receiver would get no information
about m. To open to m the committer must then send openings of the above form.

To do the simulation simply let the simulator make the excusable mistake of letting L

be a random E-key, which is also the distribution of L in the current simulation, and letting
P be a random X-key. Consider then a commitment of the form c2 = commitK(p + m; r2),
cL2 = commitLE

(p + m; rL2) and cP = commitP (p; rP) in the simulation. When it is given
by an honest party K is an E-key. Therefore, as also L2 is an E-key, the simulator is not
committed to p+m and therefore not committed to m. When the environment commits, and
sends the com1-message, the key K is an X-key except with negligible probability. Since P

is also an X-key the environment is committed. Assume then that the environment captures
an E-key K by corrupting while the com3-message is in transit. Even if the environment
sends a new c′2 commitment it must under all circumstances open it to the same value as cL2

which is sent in the com1-message. So, L2 servers exactly the same role L does in the current
protocol, to protect against double openings under captured E-keys.

c
h
a
p
t
e
r
1
0

General Multiparty
Computation, Adaptive
Security

The reasonable man adapts himself to the world; the
unreasonable one persists in trying to adapt the world to himself.

Therefore, all progress depends on the unreasonable man.
— George Bernard Shaw

10.1 Introduction

In this section we present an adaptive secure realization of FBABB. That a protocol is se-
cure against environments which might corrupt parties during the computation does not
follow from the static security of the protocol. In general, constructing adaptive secure
protocols is considerably more involved than constructing static secure ones, as already ex-
emplified in Chapter 4 by the difference between ordinary IND-CPA secure encryption and
non-committing encryption. Another example is given by Cramer, Damg̊ard, Dziembowski,
Hirt and Rabin [CDD+99]. They give an example of a protocol which is secure against com-
putationally unbounded adversaries, but is insecure against PPT adaptive adversaries! Yet
another example is provided by Beaver [Bea96] who showed that the protocol in [GMW87],
which was proved statically secure, is not adaptive secure, unless factoring is not intractable
or the polynomial time hierarchy collapses. The issue of adaptive security vs. static security
has been studied in detail by Canetti, Damg̊ard, Dziembowski, Ishai and Malkin [CDD+01].

Our protocol will show that the threshold homomorphic encryption based approach to
MPC can be used to realize adaptively secure general MPC for the cryptographic model
without realizing non-committing encryption. Indeed, the protocol will be as efficient as the
statically secure realization from Chapter 8. It is therefore the first general MPC solution
for the cryptographic model where going to adaptive security does not cause a major loss
in efficiency (or costs an extra assumption, such as secure erasures). In particular it seems

302 General Multiparty Computation, Adaptive Security

to be the first protocol which does not either realize non-committing encryption or assume
erasures.1

We note that even though the protocol in [CLOS02] is not for the private channels model,
it still uses non-committing encryption in an essential manner, namely for building adaptive
secure oblivious transfer. That non-committing encryption is used for realizing adaptive se-
cure OT is not a coincidence of course: If the sender inputs b0 = b1 = b, the OT functionality
is reduced to an FSMT functionality, so adaptive secure OT implies non-committing encryp-
tion with the same complexity. One consequence of this is that the protocol in [CLOS02]
suffers the non-committing encryption overhead of a factor at least k, as all protocol real-
izing adaptive secure two-party computation will, unless of course one is willing to assume
that parties can be trusted to securely erase certain critical data or one is able to realize
non-committing encryption with a constant expansion factor.

10.1.1 Related Work

An adaptive secure MPC protocol is not a novelty though. Indeed, the very first general
MPC protocols in [BGW88,CCD88] for the secure channels model are adaptive secure. And,
as discussed in Chapter 4, this immediately implies adaptive secure protocols for the crypto-
graphic model: We can start from an adaptive secure protocol for the secure channels model
and realize the channels using non-committing encryption.

10.1.1.1 Reactive Security

One can consider an even more powerful adversary than the adaptive one. An adversary
which is allowed to break into all parties, as long as it is only broken into a certain threshold
of the parties during a given period of time — it can move around between the parties. This
can e.g. be a realistic model of how viruses attack a network, at the same time spreading to
new machines and being deleted on old ones. The studied of such adversaries was initiated
by Ostrovsky and Yung [OY91] who called them mobile adversaries. Later Canetti and
Herzberg [CH94] dubbed security against mobile adversaries proactive security. Proactive
security has spawned a large amount of research in the context of threshold cryptosystems,
in particular threshold signature schemes. We will not consider mobile adversaries in this
chapter.

10.1.1.2 Separating Security and Termination

Independent of our work Canetti, Lindell, Ostrovsky and Sahai [CLOS02] published a uni-
versally composable adaptive secure general multiparty computation protocol. This protocol
stands out in several respects compared to the adaptive secure MPC protocol mentioned

1The adaptively secure MPC protocol from [CG96] does not realize non-committing encryption either or
use it to realize secure channels. The protocol, however, uses deniable encryption [CDNO97], which is harder
to realize than non-committing encryption. It is not even known whether deniable encryption could exists.
At the time of writing no realization of deniable encryption is known based on standard complexity theoretic
assumptions.

10.1 Introduction 303

above: It is not designed for the secure channels model and then augmented with non-
committing encryption and second, it tolerates the corruption of all parties. The protocol
basically follows the approach from [GMW87] but this time realizing all the primitives used
in building the MPC protocol in [GMW87] in a universally composable way. Since the MPC
problem contains the BA problem as a special case, it is clear of course that a protocol which
allows more than half the parties to be corrupted cannot guarantee termination. However,
as discussed in [GMW87], if termination is desired it can be added at the price that now
only a minority of corrupted parties can be tolerated. Other work on protocols tolerating
more than a minority of corrupted parties include the work by Beaver, Goldwasser and
Levin [BG89,GL90].

We note that by a trivial simplification of our protocol we can obtain a protocol with-
standing n− 1 corrupted parties. Compared to the protocol from [CLOS02] this is however
not particularly interesting. Even though tolerating n− 1 and not n corruptions might not
seem as a big difference, it is huge when n = 2. Opposed to the protocol in [CLOS02] we
cannot do two-party computation secure against the corruption of both parties. This dif-
ference comes from the fact that our protocol will not realize non-committing encryption,
which is exactly a secure two-party computation! However, what we lose in resilience, we
win in efficiency.

10.1.2 Informal Description of the Main Ideas

We give an informal sketch of how we make the protocol from Chapter 8 adaptively secure.

10.1.2.1 Sender Non-Committing Encryption

We start by giving a sketch of how we avoid using non-committing encryption. As in Chap-
ter 8 we assume that from the start the following scenario has been established: We have a
IND-CPA secure threshold homomorphic encryption scheme given with public-key pk known
by all parties and the matching private decryption key shared among the parties. We take as
a starting point the protocol in Chapter 8 and consider the additional problems that needs
to be dealt with to obtain adaptive security.

First of all, during the simulation the simulator has to show the environment encryptions
that are claimed to contain the inputs of honest parties. At this time the simulator does
not know these inputs, so it must encrypt some arbitrary values. Because of the semantic
security, this is fine for the time being, but if one of the honest parties are later corrupted,
the simulator learns the real inputs of this party and must reveal them to the adversary
along with a simulation of all internal data of the party. The simulator is now stuck, since
the real inputs most likely are not consistent with the arbitrary values encrypted earlier.

We handle this problem using a combination of two tricks: First, we include in the public
key an encryption K = Epk(1). Then, we redefine the encryption method, and fix the rule
that to encrypt a value a, one computes Blind(a�K). Under normal circumstances, this will
be an encryption of a. The point, however, is that in the simulation, the simulator can decide
what K should be, and will set K = Epk(0). Then all encryptions used in the simulation
will contain 0. We then require from the encryption scheme used that the simulator can
compute C as an encryption of 0, store the random coins used for this and later make it

304 General Multiparty Computation, Adaptive Security

seem as if C was computed as C = a � K for any a it desires — i.e. we require that
commitK(m) = Blind(m�K) is a trapdoor commitment scheme when K ∈ Epk(0).

Notice that this encryption method has the flavor of non-committing encryption: In the
simulation we can construct ciphertexts which can later be open arbitrarily. There is one big
difference from non-committing encryption though: If one is given the decryption key, then
it is trivial to distinguish simulated ciphertexts from real ones, as the simulated ciphertexts
are all encryptions of 0. Therefore, the scheme is only non-committing to a party which does
not know the decryption key — we say that the scheme is sender non-committing. Since no
party knows the decryption key in our setting (it is shared between the parties) a sender
non-committing encryption scheme will turn out to be sufficient.

10.1.2.2 Sender Non-Committing Encryption, Extraction

By letting K be an encryption of 0, we removed one problem and introduced another: The
simulator must also be able to find the input values the adversary supplies, immediately as
the encryptions are made public. This is not possible anymore as we now only see encryptions
of 0. We therefore redefine the way inputs are supplied: For each input value x of party Pi,
Pi uses the UC commitment scheme of Chapter 9 to make a commitment commitKi(x) to x,
with a freshly flipped key Ki, and proves in zero-knowledge that commitKi(x) contains the
same value as C. Since the commit phase in the protocol from Chapter 9 already contains
for each commitment a commitment under the common key L, we can simply let L take the
role of K in our protocol. Since Ki is an X-key except with negligible probability it follows
that we can extract the plaintext of corrupted parties by decrypting the commitment under
Ki, and fake the load of honest parties by letting Ki be an E-key.

Notice that for this approach to work we need commitK(m) = Blind(m � K) to be a
mixed commitment scheme. Since we use Epk both as an encryption scheme and a mixed
commitment scheme, for the same key, we cannot do a modular proof in say the FCOM-PR-
hybrid model and then plug in the UC commitment scheme from Chapter 9. We have to do
the proof over again to verify that this dual use of Epk is actually sound. In doing this we
will however use the intuition hopefully build in the proofs of Theorem 8.4 on page 275 and
Theorem 9.1 on page 291.

10.1.2.3 Cheating in Decryption

Another problem that we face stems partially from the fact that our encryption scheme is
only sender non-committing: The simulator will not be able to “cheat” in the threshold
decryption protocol by decrypting a given ciphertext to any desired value. The key setup
for the decryption protocol fixes the shares of the private key even in the simulation, so a
ciphertext can only be decrypted to the value it actually contains. Of course, when decrypting
the outputs, the correct results should be produced both in simulation and real life, and so we
have a problem since we just said that all ciphertexts in the simulation really contain 0. We
solve this by randomizing all ciphertexts before they are decrypted: We include another fixed
encryption R = Epk(0) in the public key. Then, given ciphertext C, the parties cooperate to
create an encryption r�R, where r is a (secret) randomly chosen value that depends on input
from all parties. Then we compute C � (r � R) and decrypt this ciphertext. Under normal

10.1 Introduction 305

circumstances, it will of course contain the same plaintext as C. But in the simulation, the
simulator will set R = Epk(1), and “cheat” in the process where r is chosen, s.t. r = a,
where a is the value the simulator wants the decryption to return. This works, since in the
simulation any C actually encrypts 0, so that C� (r�R) turns out to be an encryption of a.
Then we simply decrypt this value by honestly running the threshold decryption protocol,
which ensures a perfect simulation of the decryption.

10.1.2.4 Simulating Threshold Decryption Only in the Analysis

A final problem that we face is that the threshold decryption protocol that we used in
Chapter 8 is only statically secure. This was already discussed in Chapter 6. This is the
second reason for setting up the output protocol as we did. We set it up so that we could
decrypt honestly. This means that we only need to simulate the decryption protocol in the
analysis of the simulator, at the point where we need to appeal to the IND-CPA security
of the encryption scheme — at these points in the analysis we clearly cannot both use sk

for running the decryption protocol correctly and at the same time assume that encryptions
cannot be distinguished.2 Since we only have to simulate the decryption protocol in the
analysis, we can yet again use the weaker off-line notion of security — in doing the analysis
we are free to rewind the environment as an imaginary experiment. This allow us to use
an idea from the single inconsistent party framework.3 What we will do is to share the
secret key between the parties with corruption threshold t = n− 1, using the protocol from
Section 6.3.3 instantiated with construction threshold c = n. Clearly this implies that if
just one party refuses to send a decryption share, then the protocol hangs. We ignore this
problem at first to obtain a protocol which do not guarantee termination, but which on the
other hand can tolerate n− 1 corrupted parties.

By sharing the key with corruption threshold n − 1, we are able to simulate all public
values and the secret key shares of n−1 parties and only have one party for which we cannot
simulate the internal state if it is corrupted, thereby the name, single inconsistent party.
Denote this party by Ps. Since all public values and n − 1 of the secret key shares can be
simulated statistically close to those of the protocol, if we pick the single inconsistent party
uniformly at random and assume that the environment corrupts at most n − 1 parties, the
probability that Ps is not corrupted is at least 1

n , which is polynomial. Furthermore, when
Ps is not corrupted, then the simulation is statistically close to the simulation where we
decrypted honestly. By repeating the simulation until Ps is not corrupted, we can therefore

2To see that we do indeed need to simulate the decryption protocol in the analysis, and to see where it is
used, consider the following problem: Even though we cheat in such a way that we always decrypt to ’correct’
values, this only deals with the simulation of the decryption protocol. We also have to simulate the shares of
the decryption key. When we use the IND-CPA security of the encryption scheme in the analysis (and we do
need to use the IND-CPA security at some point, as the encryptions of the honest parties contain 0) we can
only simulate c− 1 of the decryption key shares, if shared with construction threshold c. This gives problems
in the presence of an adaptive adversary if c < n for most simple schemes, see e.g. [CGJ+99]. Therefore we
need to do an additive sharing and use Rabin’s backup shares. Specifically the fact that we have an additive
sharing will be used to apply the single inconsistent party framework at the first hybrid in the analysis to get
rid of the use of sk in the simulation. Thereby IND-CPA security can be used in the remaining hybrids.

3The single inconsistent party framework was developed in the context of adaptive secure cryptosystems
and signature schemes by Canetti, Gennaro, Jarecki, Krawczyk and Rabin [CGJ+99].

306 General Multiparty Computation, Adaptive Security

in expected PPT produce a distribution statistically close to the simulation, but without
using the secret key. This is then the distribution that we prove indistinguishable from the
real-life execution, now being able to use semantic security.

10.1.2.5 A Subtlety in the Single Inconsistent Party Framework

Interestingly the above line of reasoning is false. There can be an almost arbitrary bias
between the two views obtained by using the secret key and the view obtained by rerunning.
This has to do with the fact that we are looking at distinguishers and not adversaries which
are e.g. breaking cryptosystems or signature schemes as in [CGJ+99]. In Section 10.2 we
discuss why this is so and prove a technical lemma which allows us to cope with it. We soon
return to how we add termination to the protocol.

10.2 An Off-Line Single Inconsistent Party

We discussed the concept of an off-line single inconsistent party in the introduction. The basic
idea was the following: Create the setting where the simulator can learn enough trapdoor
information to get through the simulation without rewinding. This could e.g. be the secret
key of an encryption scheme, the security of which the protocol depends on. Then design an
off-line experiment where this sensitive trapdoor information is not needed, by introducing a
single inconsistent party whose internal state cannot be simulated. Make sure that this single
inconsistent party is chosen uniformly at random by the simulator before the simulation and
that the single inconsistent party is simulated such that its communication is perfectly, or
statistically, indistinguishable from the communication of the consistent parties. In other
words, make sure that s is stochastically independent of Z. This means that if Z is required
to corrupt at most n − 1 parties, then with probability at least 1

n it will not corrupt Ps.
On the runs where Ps is not corrupted Z will have seen a run perfectly identical to, or
statistically close to, the experiment where the trapdoor information was used. By rerunning
an expected n times we can therefore produce the view of Z on the experiment where the
trapdoor information was used, but without using it! As mentioned, this way of arguing is
actually false, as demonstrated by the below example.

Consider e.g. an environments Z trying to distinguish REALπ,Z and IDEALF ,S,Z . And

assume that it is successful in doing so. I.e. REALπ,Z
c
6≈ IDEALF ,S,Z . Assume that we intro-

duce a single, perfectly hidden,4 inconsistent party and let us define IDEALF ,S,Zx to be the
distribution obtained by rerunning IDEALF ,S,Z until it does not corrupt Ps. We construct

a situation where REALπ,Z
c
6≈ IDEALF ,S,Z but REALπ,Z = IDEALF ,S,Zx . Assume that

we have a protocol for two parties (P1, P2) and that Z can perfectly distinguish REALπ,Z
and IDEALF ,S,Z , without corrupting any parties at all. We let Z output as follows: If it
detects that it is in REALπ,Z , then it outputs a uniformly random bit. If it detects that it
is in IDEALF ,S,Z , then it flips a bit b. If b = 0, then it outputs 1 and corrupts a party. If
b = 1, then it outputs 1 with probability 1

4 and it outputs 0 with probability 3
4 . This means

that Z outputs 1 with probability 5
8 , so it clearly distinguishes. But, assume that Ps is the

4I.e. the simulated communication is independent of the identity of the single inconsistent party.

10.2 An Off-Line Single Inconsistent Party 307

single inconsistent party for uniformly random s. It is not hard to see that the probability
that Z outputs 1 in IDEALF ,S,Z conditioned on Ps not being corrupted is 1

31 + 2
3

1
4 = 1

2 .
Therefore IDEALF ,S,Zx = REALπ,Z . This shows that when one uses the single inconsistent
party framework in the context of distinguishers, one has to take care. We show that the

above subtlety is not a problem. Basically, one can show that if REALπ,Z
c
6≈ IDEALF ,S,Z and

REALπ,Z = IDEALF ,S,Zx , then the corruption pattern of Z must be significantly different
in REALπ,Z and IDEALF ,S,Z , which allows to massage Z into another environment Z ′ for

which REALπ,Z′
c
6≈ IDEALF ,S,Z′x .

To be able to apply the idea of an off-line single inconsistent party in a concise manner in
later analysis — in particular without rewinding — we prove a technical lemma. This lemma
will at the same time deal with the issue mentioned above. The lemma basically says that
to prove UC security against environments corrupting at most n − 1 parties it is enough to
prove security against all environments which at the beginning of the protocol pick the index
of a random party Ps and commit to never corrupting Ps. Of course the interface trying to
simulate a protocol execution to Z will not know s and cannot exploit that Z has restricted
itself, which is the clue to proving that it is enough to consider this class of environments.

Definition 10.1 Let Z be any environment. From Z we define a new environment ZSIP, as
follows: On input (k, n, z) it picks uniformly random s ∈ [n]. Then it inputs (k, n, z) to Z
and starts running exactly like Z, except that when Z outputs (guess, b), if Ps was corrupted,
then ZSIP outputs (guess, 0). We call Ps the off-line single inconsistent party (OSIP).

In a simulation IDEALF ,S,ZSIP, if the simulator S actually knew the identity of Ps, then
the simulator could safely do a simulation where the internal state of Ps could not be con-
structed — when it is asked to reveal this state ZSIP always outputs 0, so its value does
not matter. However, since the behavior of IDEALF ,S,ZSIP is exactly identical to that of
IDEALF ,S,Z from the view of S, it has no information about s. But, since s can be read
off ZSIP, when one runs the simulation IDEALF ,S,ZSIP in an off-line experiment, e.g. when
defining a hybrid, then one can exploit that Ps is never corrupted.5 Therefore we call Ps the
off-line single inconsistent party. Off-line it is easier to simulate a protocol to an environment
of the form ZSIP. It is therefore interesting that it is enough to consider these environments
when proving security.

Lemma 10.1 Assume that for all environments Z, where Pr[IDEALGF ,S,Z ∈ ‘‘H F’’] c≈0,

it holds that Pr[IDEALGF ,S,ZSIP ∈ ‘‘H G’’] c≈0 and

IDEALGF ,S,ZSIP

c≈HYBG
π,ZSIP .

Then for all environments Z, where

Pr[IDEALGF ,S,Z ∈ ‘‘H F’’] c≈0 ,

5Or technically, that the output of Z is fixed when Ps is corrupted. The difference is that the current
formalization does not change the probability that IO restrictions are violated, as the protocol is allowed to
run to the end.

308 General Multiparty Computation, Adaptive Security

it holds that
Pr[IDEALGF ,S,Z ∈ ‘‘H G’’] c≈0

and
IDEALGF ,S,Z

c≈HYBG
π,Z .

Proof. Remember the subtlety discussed above that the distribution of the output of Z might
be different from the distribution of the output of Z conditioned on Ps not being corrupted.

This means that we might have that IDEALGF ,S,Z
c
6≈HYBG

π,Z and IDEALGF ,S,ZSIP

c≈HYBG
π,ZSIP .

The proof exploits that this can only be the case if there is a non-negligible difference in
the corruption pattern of Z in IDEALGF ,S,Z and HYBG

π,Z . In particular there will exist
j ∈ {0, 1, . . . , n − 1} such that the probability that Z corrupts j parties is significantly
different in the two executions. We exploit this difference to obtain a new environment,

called Zj below, such that IDEALGF ,S,(Zj)SIP

c
6≈HYBG

π,(Zj)SIP
.

Let Z be any environment for which

Pr[IDEALGF ,S,Z ∈ ‘‘H F’’] c≈0 . (10.1)

By the assumption that IDEALGF ,S,ZSIP

c≈HYBG
π,ZSIP we in particular have that

Pr[IDEALGF ,S,ZSIP = ⊥]
c≈Pr[HYBG

π,ZSIP = ⊥]

for all ⊥ 6∈ {0, 1}. Since we defined ZSIP to run Z until it outputs its guess, it follows that
Pr[IDEALGF ,S,Z = ⊥]

c≈Pr[HYBG
π,Z = ⊥] for all ⊥ 6∈ {0, 1}. To prove the lemma, it is therefore

enough to prove that Pr[IDEALGF ,S,Z(k, z) = 1]
c≈Pr[HYBG

π,Z = 1] for all environments Z.
Consider the following version Zj of Z. On input (k, z) it inputs (k, z) to Z and then

runs exactly as Z until Z outputs (guess, b). Then Zj outputs (guess, b) if exactly j parties
were corrupted. Otherwise it outputs 0. For an execution IDEALGF ,S,Z(k, z; r), let f(k, z, r)
denote the number of parties corrupted by Z when it outputs its guess. If the execution is
terminated earlier because a party violates an IO restriction, then we do not need a value of
f . Let Pr[] denote a probability evaluation with r uniformly random. We have that

Pr[IDEALGF ,S,(Zj)SIP
(k, z; r) = 1]

=
n− j

n
Pr[IDEALGF ,S,Z(k, z; r) = 1 ∧ f(k, z, r) = j] .

Because at most n− 1 parties are corrupted by Z we therefore get that

Pr[IDEALGF ,S,Z(k, z; r) = 1]

=
n−1∑
j=0

Pr[IDEALGF ,S,Z(k, z; r) = 1 ∧ f(k, z, r) = j]

=
n−1∑
j=0

n

n− j
Pr[IDEALGF ,S,(Zj)SIP

(k, z; r) = 1] .

10.3 ABB Threshold Homomorphic Encryption Schemes 309

In the same way we get that

Pr[HYBG
π,Z(k, z; r) = 1] =

n−1∑
j=0

n

n− j
Pr[HYBG

π,(Zj)SIP
(k, z; r) = 1] .

From Eq. 10.1 on the facing page we trivially have that Pr[IDEALGF ,S,Zj ∈ ‘‘H F’’] c≈0.
So, by the premise of the theorem we have that

IDEALGF ,S,(Zj)SIP
c≈HYBG

π,(Zj)SIP
.

Using this and the fact that n is polynomial we get that

Pr[IDEALGF ,S,Z(k, z; r) = 1] =
n−1∑
j=0

n

n− j
Pr[IDEALGF ,S,(Zj)SIP

(k, z; r) = 1]

c≈
n−1∑
j=0

n

n− j
Pr[HYBG

π,(Zj)SIP
(k, z; r) = 1]

= Pr[HYBG
π,Z(k, z; r) = 1] ,

as desired. 2

10.3 ABB Threshold Homomorphic Encryption Schemes

In this section we formalize the requirements we need on the homomorphic encryption scheme
to be able to realize FBABB in the presence of adaptive adversaries. We basically need that
it is both a static ABB (n − 1)-threshold homomorphic encryption scheme (gen,E,D) and
a special mixed commitment scheme with the commitment function commitpk,K(m; r) =
Blindpk(m�K; r). To be more precise:

Definition 10.2 Let T HE = (gen,E,D) be a static ABB threshold homomorphic encryp-
tion scheme. The commitment scheme derived from T HE is defined as follows: Let (pk, sk)←
gen be the key generator. The system key is N = pk, the X-trapdoor is tN = sk, and the
message space is the plaintext ring of Epk,MN = Rpk. The key space is the ciphertext space,
KN = Cpk. The commitment function is given by commitK(m; r) = Blindpk(m �pk K; r).
The X-keys are the keys K ∈ KN , where Dsk(K) is invertible in Rpk and the E-keys are the
keys of the form K = Epk(0; r).

This setup will basically allow us to realize FBABB along the lines of the protocol in
Chapter 8, but replacing the proofs of knowledge there with the proof of relation between
committed values from Chapter 9. Actually, what we will do is simply to run the commitment
protocol in Fig. 9.2 on page 291 with L being an encryption of 1. Thereby the commitment
cL = commitL(m; r) = Blindpk(m�L; r) ∈ Epk(m) will end up being an encryption of m. We
then run a proof as in Fig. 9.2 on page 291 that cL and the commitment c2 under the flipped

310 General Multiparty Computation, Adaptive Security

key K commit to identical values. For this reason we need a Σ-protocol for proving that
two commitments commit to identical values. This will be our proof of plaintext knowledge.
We then run the protocol from Chapter 8 on the cL values. We also need that given a
commitment c ∈ Epk(0), one can compute r such that c = Epk(0; r) given sk. Denote
this property by E-trapdoor extraction. We also need that given a ∈ Rpk and random bits
r1 and r2 one can compute r� and r� such that Epk(0; r�) = Epk(0; r1) � Epk(0; r2) and
Epk(0; r�) = a � Epk(0; r1). Let us denote this property by E-trapdoor preservation. For
randomizing ciphertext we need to do interpolation through the homomorphism, by which we
mean that we are able to generate in PPT n elements e1, . . . , en ∈ Rpk such that they are
all invertible and their pairwise differences are invertible, see Section 6.3.1. In the following
we assume that these elements are 1, . . . , n for notational convenience. Finally, we also need
that the realization of FT HETHE is of a particular form lending itself to SIPification.

Definition 10.3 We say that T HE = (gen,E,D) is an adaptive ABB threshold homomorphic
encryption scheme if T HE is a static ABB (n−1)-threshold homomorphic encryption scheme
where all Σ-protocols are non-erasure Σ-protocols and where the commitment scheme derived
from T HE is a special mixed commitment scheme with a Σ-protocol for the relation equality

of committed values and the realization of FT HETHE is given by a statistically secure simple
function sharing scheme with gen being the key generator of T HE and the function being
C 7→ Dsk(C). We also require that we can do interpolation through the homomorphism and
that the scheme has E-trapdoor extraction and is E-trapdoor preserving.

The Paillier threshold homomorphic encryption scheme meets this definition. This is
a simple corollary to the results in Theorem 8.2 on page 268 and Section 8.3.1. That the
scheme has E-trapdoor extraction and is E-trapdoor preserving follows from Lemma 2.4 on
page 22. The author is not aware of other examples.

Corollary 10.1 The threshold homomorphic encryption scheme in Section 8.3.1 is an adap-
tive ABB threshold homomorphic encryption scheme.

10.4 Rabin’s Share Backups

Before presenting the protocol we show how we can realize FT HETHE so that it can be simulated
with a single inconsistent party Ps. As hinted by Definition 10.3 we are going to distribute
the secret key with construction threshold n. This actually means that the simulators Skeydist

and Seval from Definition 6.2 on page 194 can simulate the internal values of all parties but
one. The only problem is of course, that with a construction threshold of n, if just one honest
party refuses to participate, then we cannot decrypt. We solve this problem by using the
so-called share backups of Rabin [Rab98]. Basically we distribute a sharing of each of the
secret values svi between the parties, but with construction threshold c, where t = c − 1 is
the corruption threshold we want for the protocol. If then a party Pj refuses to give away
his evaluation share, the honest parties simply reconstruct his secret value svj by exchanging
shares, and then from then on compute his evaluation share on their own. We say that the
party is reconstructed. If c ≥ n − t, i.e 2t + 1 ≤ n, then the honest parties can always

10.4 Rabin’s Share Backups 311

Functionality Fgen,SingleToThresh,c,SIP
key-dist

The functionality runs with parties P1, . . . , Pn and is parametrized by a key generator gen,
an algorithm SingleToThresh for sharing a secret key with construction threshold n and a
perfect hiding commitment scheme (gencom, commit).

generate:
If all honest parties inputs init in the same rounds, then run (pk, sk)← gen(k) and
(pv, sv1, . . . , svn)← SingleToThresh(pk, sk) and output pv and svi, for all corrupted
parties Pi, on the SOT. If Pi is corrupted later, then output svi on the SOT.
Generate a key-pair for the commitment scheme (K, t)← gencom(k).
Then for i ∈ [n] do:

1. Compute a sharing of svi with construction threshold c. A sharing over a large
enough prime field e.g., see Section 6.3.1. Denote the shares by (svi,1, . . . , svi,n).
We call svi,j the backup share of svi given to server j.

2. For j = 1, . . . , n, compute ci,j ← commitK(svi,j ; ri,j).

3. In a round specified by the adversary, output
((pv, K, {ci,j}i,j∈[n]), (svi, {(svj,i, rj,i)}j∈[n])) to Pi.
For corrupted parties these value are output on the SOT as soon as they are
generated.

incorrect inputs:
If in the first round were an honest party inputs a non-trivial value some honest party
do not input init, then break down. Also break down if an honest party inputs init
twice or any other value than init.

Figure 10.1: The functionality FSIP
key-dist for distributing a threshold key for gen, with con-

struction threshold n and with backup shares.

reconstruct the needed secret values. Since we do not know the secret values svs of the single
inconsistent party Ps, we simply share some dummy value, svs = 0 say, instead. Since an
environment corrupting at most t parties only sees t of these shares and the construction
threshold is c = t + 1, this will go unnoticed as long as Ps is not corrupted. To prevent
corrupted parties from contributing wrong backup shares when reconstructing the secret
value of a cheater we make a verifiable secret sharing. Since we are not going to address
proactive security here, we do not have to concern ourself with what particular verifiable
secret sharing scheme is used. We therefore simply commit the parties to their shares with
any perfect hiding commitment. This gives us the key distribution ideal functionality in
Fig. 10.1. Let SingleToThreshSIP denote the algorithm which given (pk, sk) generates values
as in Fig. 10.1, with pv′ = (pv,K, {ci,j}i,j∈[n]) and sv′i = (svi, {(svj,i, rj,i)}j∈[n]).

We have to settle for a mechanism for reconstructing parties that are caught cheating.
What we will do is to let the parties broadcast their evaluation shares and then give individual
proofs to each party that the share is correct. All parties which do not accept the proof from
Pj then sends their backup share of svj. There are two possibilities then: Either some honest
party accepts the proof it got from Pj or all honest parties reject the proof. In the last case

312 General Multiparty Computation, Adaptive Security

Protocol πT HE,SIP,c
THE

The protocol runs in the (FR
ZK-PM,Fgen,SingleToThresh,c,SIP

key-dist ,Fbroadcast)-hybrid model with
parties P1, . . . , Pn and is parametrized by a generator gen and a construction threshold
0 < c ≤ n. We assume that FR

ZK-PM has a round complexity of r − 1 per proof. Party Pi

proceeds as follows:

key generation:
On input init the party Pi inputs init to FR

ZK-PM and Fgen,SingleToThresh,c,SIP
key-dist

and waits until FR
ZK-PM has output ready and Fgen,SingleToThresh,c,SIP

key-dist has output
((pv, K, {ci,j}i,j∈[n]), (svi, {(svj,i, rj,i)}j∈[n])). Then output pk.

decryption:
1. On input (did, x) the server Pi computes the evaluation share yi ← sf(pv, svi, x)

and broadcasts (did, yi).

2. Let yj be the value broadcast by Pj .
Then Pi inputs ((did, i), Pj , (pv, x, i, yi), svi) to FR

ZK-PM for j ∈ [n] and inputs
((did, j), Pj , (pv, x, j, yj)) to FR

ZK-PM for j ∈ [n].

3. Then wait for an output of the form ((did, j), bj).

4. For each Pj where bj = 0, if not done previously, send (backup, j, svj,i, rj,i) to
all parties.

5. If a value (backup, j, svj,l, rj,l) is received from Pl and cj,l = commitK(svj,l; rj,l),
then add (l, svj,l) to a set BACKUP(j), if there was not already a value of the
form (l, sv′) in BACKUP(j). These sets are initially empty. If during this
it happens that |BACKUP(j)| = c, then let {(l, svl,j)}l∈L be the shares in
BACKUP(j) and use these to reconstruct svj .

6. Then for all j ∈ [n], if svj is known, compute yj ← sf(pv, svj , x); Otherwise
use the yj value received from Pj in Step 2. This gives values {yj}j∈[n]. Then
output (did,Combine({yj}j∈[n])).

Figure 10.2: The SIP threshold protocol for T HE with construction threshold c.

at least c honest parties send they backup share of svj to all parties, meaning that the parties
can reconstruct svj and compute a correct evaluation share. In the first case, the broadcast
evaluation share yj is correct, so the parties can use yj. In other words, if a party cannot
reconstruct svj then it knows that the broadcast evaluation share yj is correct. This gives
us the realization in Fig. 10.2. We denote the protocol in decryption by πSIP

dec .
We sketch how to simulate this protocol with a single inconsistent party Ps and corruption

threshold t = c − 1. I.e. given all public values and the internal state of any C ⊆ [n] \
{s} with |C| = t, these values are distributed statistically close to the real protocol. We
show this by giving the necessary extensions to Skeydist and Seval. We first describe an
extension Skeydist

SIP to Skeydist: Given pk we first run Skeydist with C = [n] \ {s}. Notice
that except for the values ({(svj,i, rj,i)}j∈[n], {ci,j}i,j∈[n]), Skeydist already simulates all the
necessary values with a single inconsistent party, Ps. We show how we can simulate the
values ({(svj,i, rj,i)}j∈[n], {ci,j}i,j∈[n]): Simply let svs = 0 and then generate all the values
({(svj,i, rj,i)}j∈[n], {ci,j}i,j∈[n]) for i ∈ [n] as done in Fig. 10.1 on the preceding page. These

10.4 Rabin’s Share Backups 313

Protocol πABABB

The protocol runs in the (FR
ZK-PM,FSIP

key-dist,Fbroadcast,Fcommit
PRS)-hybrid model with parties

P1, . . . , Pn. It proceeds as follows:

initialize:
On input init, input init to FR

ZK-PM, FSIP
key-dist, and Fbroadcast and request the key

of all parties from Fcommit
PRS . Wait for a value (pv′, sv′i) from Fkey-dist and the value

ready from FR
ZK-PM and Fbroadcast. The value pv contains a public-key N for the

encryption scheme. We assume that Fkey-dist at the same time outputs two random
encryptions K = Epk(1) and R = Epk(0), also on the SOT. The key K will be used
as the key L in Fig. 9.2 on page 291 and the key R will also be used as L, but for
committing to a special value in the output command. We sometimes denote K by L
when discussing the commit protocol in Fig. 9.1 on page 289. Furthermore, wait for
a key Kj from Fcommit

PRS for j ∈ [n]; The key Kj which is used for committing to the
K1 value in the commit protocol. When all values are received, output ready. Until
outputting ready, ignore all inputs but the first init input.

load:
1. For j 6= i party Pi commits to s to Pj (using the commit protocol in

Fig. 9.1 on page 289), with the modification that it uses the same value
cL = commitL(s; rL) in all proofs, and instead of sending cL individually to
all parties, it broadcasts cL. Let (Kj , c2,j, r2,j) denote the commitment under
the flipped key Kj in the commitment to Pj . I.e. c2,j = commitKj

(s; r2,j).

2. Then Pi proves to Pj that cL and c2,j commit to the same value. The instance
is x = (N, L, cL, Kj, c2,j) and the witness is (s, rL, s, r2,j).

3. Then the parties run a BA to determine whether the proof should be accepted,
each inputting its output value from the proof.

4. If the BA outputs 1, then let enc(x) = cL and then output (defined, x).

linear combination:
Set enc(x) = a0 � (�l

j=1aj � enc(xj)) and output (defined, x).

Figure 10.3(a) (cont. in Fig. 10.3(b) on the next page): The Adaptive secure realization of
the Basic Arithmetic Black-Box

values are clearly perfectly simulated except for those where svs enter in the computation.
Of those {cs,j}j∈[n] are public, and furthermore the adversary learns {(svj,i, rj,i)}j∈C , where
|C| = t and s 6∈ C. Since the values {svj,i}i∈[n] are a sharing of svs = 0 with construction
threshold c = t + 1 it follows that when |C| = t, then the values {svj,i}j∈C are distributed
exactly as if svs had had any other value, especially the right one. Furthermore, the values
{cs,j}i∈[n] are all perfectly hiding commitments and therefore contain no information about
svs. As for Seval, it already simulates the necessary values, perfectly. Therefore, what remain
is to make a trivial extension to Seval which simulates the step where evaluation shares are
broadcast and commitments to backup shares are opened. This is done following the protocol.
We call the result Sdec

SIP.

314 General Multiparty Computation, Adaptive Security

Protocol πABABB

private multiplication:
We assume that Pi knows (s, rs) such that enc(x1) = commitK(s; rs).

1. Pi computes X = commitenc(x2)(s; rX) = Blindpk(s � enc(x2); rX) and broad-
casts X .

2. For j 6= i party Pi proves to Pj that this was done correctly, with instance
x = (N, K, enc(x1), enc(x2), X) and witness (s, rS , s, rX).

3. Then the parties run a BA to determine whether the proof should be accepted.

4. If the BA outputs 1, then set enc(x) = X and output (defined, x).

output:
1. Party Pi generates random ri ∈ RN and loads it into variable xi. Let

(Kj , c2,i, r2,i) denote the commitment used in the load.

2. Party Pi computes enc(yi)← commitR(ri; rnd(yi)) and broadcasts enc(yi).

3. Then Pi proves to all Pj that enc(yi) commits to the same value as c2,i. The
instance is x = (N, K, enc(xi), Ki, c2,i) and the witness is (ri, rnd(xi), r2,i).

4. Then the parties run a BA to determine whether the proof should be accepted.

5. Let J2 be the indices of Pj having the proof accepted. In some fixed way, pick
a subset I ⊆ J2 where |I| = t+1. E.g. the t+1 lowest indices. Since all honest
parties are participating we have that we can indeed pick such a subset. Then
compute S = �i∈I(λi,I(0)� enc(yi)) and T = enc(x) � S, where λi,I(0) is the
Lagrange coefficient defined in Eq. 6.4 on page 199, with all computations done
in M.a

6. The parties run the πSIP
dec protocol to decrypt T and take as their output the

value v returned by πSIP
dec.

aThis is well-defined as we required that we can interpolation through the homomorphism in
Definition 10.3 on page 310.

Figure 10.3(b) (cont. from Fig. 10.3(a) on the page before): The Adaptive secure realization
of the Basic Arithmetic Black-Box

10.5 The Protocol

In this section we present a realization of FBABB from any adaptive ABB threshold homomor-
phic encryption scheme. The realization is adaptive secure against an adversary corrupting
at most (n− 1)/2 parties.

We present the protocol in the (FR
ZK-PM,FSIP

key-dist,Fbroadcast,Fcommit
PRS)-hybrid model, where

R is the relation equality of committed value from Definition 10.3 on page 310. We then
plug in the realization of FR

ZK-PM from Fig. 5.1 on page 180. Needless to say that the trapdoor
commitment scheme needed by the realization in Fig. 5.1 on page 180 can be constructed
based on the assumptions that we have already made.

Theorem 10.1 Let T HE = (gen,E,D) be an adaptive ABB threshold homomorphic en-
cryption scheme. Let πΣ

DAM-ZK be the realization of FR
ZK-PM from Fig. 5.1 on page 180. Let

10.5 The Protocol 315

c = d(n−1)/2e. The protocol πT HEABABB[πΣ
DAM-ZK/FR

ZK-PM, πSIP,c
THE/FSIP,c

THE] (c−1)-realizes Fgenpk

BABB

in the (FSIP,c
key-dist,Fbroadcast,Fcommit

PRS)-hybrid model.

Proof. In the following we use FBABB to denote Fgenpk

BABB and we use πABABB to denote
πT HEABABB[πΣ

DAM-ZK/FR
ZK-PM, πSIP,c

THE/FSIP,c
THE].

We prove the theorem by giving an interface SABABB simulating πABABB in the ideal

process IDEAL
FSIP,c

key-dist,Fbroadcast ,Fcommit
PRS

FBABB,SABABB,Z . The simulator will run a copy of the protocol πABABB

and carry out the environment’s commands on this copy. It keeps it consistent with the

inputs and outputs that FBABB has in IDEAL
FSIP,c

key-dist,Fbroadcast,Fcommit
PRS

FBABB,SABABB,Z . In simulating πABABB,
SABABB must provide inputs to FBABB on behalf of the corrupted parties. By specification
of FBABB the inputs from SABABB do not matter in most cases. For all commands except
load and private multiplication the input on the SIT is not considered by FBABB. However,
for a load (Pi, x← S) and a private multiplication (Pi, x← x1 · x2) the input from SABABB

matters if Pi is corrupted. In the first case SABABB must provide an input (Pi, x← s) for x

to be defined and in the second case SABABB must provide the input (Pi, x← x1 ·x2) for x to
be defined (to val(x1) · val(x2)). Whether the simulator supplies these inputs, and if it does,
the value of s, will depend on the messages requested delivered by Z on behalf of corrupted
parties — if Z lets Pi participate in πABABB in a way which results in the honest parties
defining enc(x) to hold some encryption, then SABABB will provide the input to FBABB and
in the case of a load it will determine an appropriate value of s.

The simulator will mostly be build out of parts we already constructed. It will be using
the simulator SCOM-PR from the proof of Theorem 9.1 on page 291 for simulating the com-
mitment protocol, and will also be using the simulator SDAM-ZK for the protocol πDAM-ZK

for simulating the proofs of knowledge. It uses SingleToThreshSIP for simulating a key dis-
tribution given a secret key to hit. Later, when specifying hybrids we will also be using
the simulator Skeydist

SIP, for simulating a key distribution given just the public key, and the
simulator Sdec

SIP, for simulating the decryption protocol given a ciphertext and its plaintext
value. When using Sdec

SIP we will not make all the input values explicit and we will not input
a set C ⊂ [n] of size n−1 as required in the definition in Definition 6.2 on page 194. The input
values will be given by the context, and we represent C by s ∈ [n], where {s} = [n] \ C. In
the description of the simulator marks of the form (ski) occur. These mark places where the
private key is used by the simulator and is for easy reference in the analysis. The simulator
is given in Fig. 10.4 on the following page.

It is straight-forward to verify that the protocol uses the ideal functionalities of the hybrid
model correctly. Using the OSIP lemma, Lemma 10.1 on page 307, it is therefore enough to
prove that

IDEAL
FSIP,c

key-dist,Fbroadcast,Fcommit
PRS

FBABB,SABABB,ZSIP

c≈HYB
FSIP,c

key-dist,Fbroadcast ,Fcommit
PRS

πABABB,ZSIP

for all environments Z where Pr[IDEAL
FSIP,c

key-dist,Fbroadcast,Fcommit
PRS

FBABB,SABABB,ZSIP ∈ ‘‘H FBABB’’]
c≈0. In

316 General Multiparty Computation, Adaptive Security

Interface S

The interface proceeds as follows:

initialize:
In the initialization the simulator simulates the ideal functionalities as follows:
It receives (pk = N, sk = tN) from FBABB. To simulate FSIP,c

key-dist it computes
(pv′, sv′1, . . . , sv

′
n) = SingleToThreshSIP(pk, sk).sk1 Then it computes K ← Epk(0; tK)

and R ← Epk(1; rR). Then it simulates the output (sk′i, pv′, K, R) to party Pi and
simulates output (pv′, K, R) on the SOT of FSIP,c

key-dist. It simulate Fcommit
PRS as in ini-

tializing in SCOM-PR.

load:
On the value (Pi, x← Rpk) from FBABB, if Pi is honest we proceed as follows:

1. The commitments are simulated as in commit in SCOM-PR. If Pi is later cor-
rupted, then we learn s from FBABB and open the commitments to this value.

2. The proof that cL commits to the same value as c2,j is simulated as in proof of
relation in SCOM-PR.

For corrupted Pi the simulator inputs (Pi, x← 0) to FBABB on behalf of Pi and then
simulates the honest parties by following the protocol. If any of the simulated honest
parties output (defined, x), then the simulator must at the end of the load input
(change, s) on the SIT of FBABB to define x. The value of s is determined as follows:
Since the honest party output (defined, x), the BA must have output 1. This means
that some honest party Pj input 1 to the BA meaning that Pj accepted the proof
of plaintext knowledge. Let (Ki,j , c2,i,j) be the commitment received by Pj from Pi.
Decryptsk2 this commitment as in receiving a commitment in SCOM-PR. If we end up
in case R.2(c) in SCOM-PR, then we terminate and output “coin-flip failed”.
In all cases, if enc(x) is accepted, the simulator uses E-trapdoor extractionsk3 to learn
random bits rnd(x) such that enc(x) = commitK(0; rnd(x)).

linear combination:
Compute enc(x) as in the protocol, and using that the scheme is E-trapdoor preserv-
ing, compute rnd(x) such that enc(x) = Epk(0; rnd(x)).

private multiplication:
All honest parties Pj for j 6= i just follow the protocol. If Pi is honest it is simulated
as follows:

1. Pi computes X = commitK(0; r0) and broadcasts X .
If Pi is corrupted after this step the simulator learns s. Using rnd(x2)
and r0 it uses equivocability to compute random bits rX such that X =
commitenc(x2)(s; rX) = Blindpk(s � enc(x2); rX) and uses rX as the internal
state of Pi.

Figure 10.4(a) (cont. in Fig. 10.4(b) on the next page): The interface S used in the proof
of Theorem 10.1 on page 314

10.5 The Protocol 317

Interface S

private multiplication (cont.):
2. For each party Pj where j 6= i party Pi runs SDAM-ZK with instance x =

(N, K, enc(x1), enc(x2), X).
If Pi is corrupted after this step, then as x1 was loaded by Pi we learn from
the patching of the load a value rS such that enc(x1) = commitK(s; rS) and
in Step 1 we computed rX such that X = commitenc(x2)(s; rX) = Blindpk(s �
enc(x2); rX). Then w = (s, rS , rX) is a witness to the instance x. Give this
witness to SDAM-ZK to patch the state of the proof of correct multiplication.

3. Then follow the protocol, and if enc(x) is defined, then let rnd(x) = r0.
output:

On input (output, x = v) from FBABB we know that all honest parties got the input
(output, x). Notice that the commitment enc(x) ∈ Epk(0), so we cannot just decrypt
enc(x) using πSIP

dec. This is where the randomization of enc(x) will come into play. It
will allow us to make T an encryption of v, so that we can ’simulate’ the decryption
protocol by running it honestly:

1. Simulate the load commands as specified in load in SCOM-PR, using for Pi as the
dummy value m′ and the second dummy value m′′ a uniformly random value
m′ = m′′ = r′i. If a party Pi is corrupted, then let ri = r′i, so that the internal
state of Pi need no patching.a As for the load command, learn the values ri

loaded by the corrupted parties.

2. Let J1 be the indices j of corrupted parties for which the load into xj succeeded.
If |J1| < t, then add the indices of some uniformly random honest parties until
|J1| = t and for those honest parties now fix ri = r′i. Then pick a random degree
t + 1 polynomial f(X) ∈ MN [X] such that f(j) = rj for j ∈ J1 and f(0) = v.
Then for the remaining honest parties set ri = f(i) and patch the load into xi

done in the previous step to be consistent with ri.
Then proceed according to the protocol — this is possible as the previous load
is now consistent with ri and so all witnesses are known.

3. This step is simulated by following the protocol. Notice that R is an encryption
of 1, so unless a corrupted party Pj was able to load different value into xj and
yj, including giving a proof of a false instance, we will have that enc(yi) is an
encryption of ri for all parties Pi. Therefore S = �j∈I(λj,I(0) � enc(yj)) ∈
Epk(

∑
j∈I λj,I(0)f(j)) = Epk(f(0)) = Epk(v). Therefore T ∈ Epk(v) as enc(x)

is an encryption of 0.sk4

4. Run πSIP
dec as in the protocol.

aThis is done as not to use the E-trapdoor of the key Ki so that we can reduce to the compu-
tational binding of commitKi .

Figure 10.4(b) (cont. from Fig. 10.4(a) on the preceding page): The interface S used in the
proof of Theorem 10.1 on page 314

318 General Multiparty Computation, Adaptive Security

the proof, seven distribution ensembles H1, . . . ,H7 are specified and it is then proved that

IDEAL
FSIP,c

key-dist,Fbroadcast,Fcommit
PRS

FBABB,SABABB,Z
s≈H1 c≈H2 c≈H3 =

H4 c≈H5 c≈H6 c≈H7 s≈HYB
FSIP,c

key-dist,Fbroadcast ,Fcommit
PRS

πABABB,ZSIP .

As opposed to the sequence of hybrids in the proof of Theorem 9.1 on page 291 we cannot
take as the first hybrid the one where we start supplying correct inputs to the commitment
scheme from all honest parties. This is because we also use the commitment scheme in
the first step of the output protocol to load ri under R, which is an encryption of 1, so we
cannot just start following the protocol and supplying uniformly random ri values on behalf
of corrupted parties before we get to the hybrid where sk is not used anymore — it requires
semantic security to argue that this is not noticed by the environment. Therefore, what we
will do is to get rid of the use of sk, then let R be an encryption of 0 so that both K and R

are encryptions of 0, and then do the hybrids from the proof of Theorem 9.1 on page 291.

Define the first hybrid H1 by running IDEAL
FSIP,c

key-dist,Fbroadcast ,Fcommit
PRS

FBABB,SABABB,ZSIP with the modification
that the simulators Skeydist

SIP and Sdec
SIP are used instead of SingleToThreshSIP and πSIP

dec .
This is done by running Skeydist

SIP(pk, s) at (sk1) to produce (pv′, sv′1, . . . , sv
′
n) and running

Sdec
SIP(T,Dsk(T), s) at (sk4) instead of πdec(T). Here s is the off-line single inconsistent

party defined by ZSIP. Doing this we got rid of the use of sk = tN at (sk1), but introduced
a new use of sk at (sk4). By construction of Skeydist

SIP(pk, s) and Sdec
SIP(T,Dsk(T), s) we

have that IDEAL
FSIP,c

key-dist,Fbroadcast,Fcommit
PRS

FBABB,SABABB,ZSIP

s≈H1.
We define a second hybrid H2 by running H1 with the modification that tN is not used

anymore. Instead, each time a proof has been given, we use SDAM-ZK to extract a witness
for the proof. This rids of the use of the secret key sk = tN at (sk2) as Pi gave a proof to
Pj that enc(x) and c2,j commit to identical values, so indeed the witness contains openings
of enc(x) = cL and c2,j , as needed in the simulation, including the random bits. If this
is not an opening to 0, as required at the end of open, then equivocability can be used to
compute an opening to 0 as needed. To do the extraction we note that H1 is of the form

IDEAL
FSIP,c

key-dist,Fbroadcast,Fcommit
PRS

FBABB,SABABB
′[SDAM-ZK],ZSIP and that SABABB

′ only uses SDAM-ZK to simulate instances
that are in the relation. This follows from the fact that L and all flipped Kj keys for honest
parties are E-keys and that the load under the X-key R in Step 2 in output is done with
the correct values. Using the techniques used to prove Eq. 8.2 on page 277 and Eq. 8.3 on
page 278 we can then argue that we can indeed extract witnesses except with negligible
probability. In addition, we start running Sdec

SIP(T, v, s) instead of Sdec
SIP(T,Dsk(T), s) at

(sk4). To see that H2 c≈H1, observe that we can prove that the probability that “coin-flip
broken” is output (respectively should have been output) in H1 (respectively H2) is negligible
and that the probability that some witness is not extracted is negligible, following the proof

of Theorem 9.1 on page 291. If therefore H2
c
6≈H1, then Dsk(T) 6= v with a non-negligible

probability. We argue that this contradicts the fact that we extract witnesses except with
negligible probability. To see this, consider a simulation of output. Assume that from the
loads into xj we have witnesses (rj , rnd(xj), r2,j) for which enc(xj) = commitK(rj; rnd(xj))

10.5 The Protocol 319

and c2,j = commitKj(rj ; r2,j) for all parties Pj. By construction of Step 2 in output we have
that v =

∑
j∈I λj,I(0)rj . Assume furthermore that from the loads into yj we know witnesses

(r′j , rnd(x′j), r
′
2,j) for which enc(yj) = commitR(r′j ; rnd(xj)′) and c2,j = commitKj(r

′
j ; r

′
2,j) for

all Pj . Since R ∈ E(1) it follows that T ∈ Epk(
∑

j∈I λj,I(0)r′j). So, except with negligible
probability we have that

∑
j∈I λj,I(0)r′j 6=

∑
j∈I λj,I(0)rj , which implies that rj 6= r′j for some

j ∈ I. Clearly rj = r′j for all j ∈ I where Pj is still honest when S is computed. Second,
for the parties which were corrupted before the load into xj we have that Kj is an X-key
except with negligible probability. Therefore, rj 6= r′j for a party which was honest when the
com1-message of the protocol for generating Kj was sent. So, we did not use the trapdoor of
Kj in output.6 Therefore we computed a double-opening of c2,j under a random E-key Kj

for which we did not use the trapdoor. We can easily show that this is in contradiction with
the computational binding of the E-keys.7

We define a third hybrid H3 by running H2 with the modification that we use R = Epk(0)
instead of R = Epk(1). This is possible because the simulator does not use R as anything
but a key. Since we do not use the secret key in generating H2 or H3 it follows via IND-CPA
security that H3 c≈H2.

The fourth hybrid H4 is defined by running H3 except that we use correct inputs to all
honest parties and pick the ri values uniformly at random for all honest parties, i.e. without
patching ri to f(i). Notice that this means that we provide known correct inputs to all runs
of the commitment protocol. It can be seen that H4 = H3. This is so because K,R ∈ Epk(0),
so no information is leaked about the inputs and because the environment sees at most t of
the ri values and so cannot distinguish uniformly random values from values consistent with
a uniformly random polynomial of degree at most t.

Define a fifth hybrid H5 by running H4, but with K = Epk(1). This is possible as we are
now providing correct inputs for all loads under K, including the loads into xi in output. By
the IND-CPA security of Epk we have that H5 c≈H4.

Then define H6 by running H5 and starting to use sk at (sk2) again. As for H1 c≈H2 we
get that H6 c≈H5.

Define H7 as H6 but at (sk4) run Sdec
SIP(T,Dsk(T)) instead of Sdec

SIP(T, v). To prove
that H7 c≈H6 it is sufficient to prove that v = Dsk(T) except with negligible probability,
which basically comes down to proving the protocol correct. This can be done using that
except with negligible probability, witnesses can be extracted for all proofs and all keys are
X-keys. This means that for all commitments entering several proofs, the extracted witnesses
are the same. It is straightforward to verify that when all keys are X-keys and all witnesses
are extracted, then v = Dsk(T), which proves the claim. Notice that the argument does not
need the computational binding of the commitments, as they are perfectly binding under
the X-keys. This is essential as we are again using sk, so commitments under E-keys would
not be guaranteed to be binding. Since we are again using sk we are also using essentially
that the membership soundness of all the applied Σ-protocols is unconditional, so that in
particular the soundness still holds when sk is known.

The only difference between H7 and HYB
FSIP,c

key-dist,Fbroadcast,Fcommit
PRS

πABABB,ZSIP is between the use of

6See Footnote a in Fig. 10.4(b) on page 317.
7As we do not use sk = tN anymore.

320 General Multiparty Computation, Adaptive Security

Skeydist
SIP(pk) instead of SingleToThreshSIP and the use of Sdec

SIP(T,Dsk(T)) instead of

πdec(T). So, H7 s≈HYB
Fcommit

PRS ,FSIP,c
key-dist,Fbroadcast

πABABB,ZSIP follows as IDEAL
FSIP,c

key-dist,Fbroadcast,Fcommit
PRS

FBABB,SABABB,ZSIP

s≈H1.
2

Go on, get out. Last words are for fools who haven’t said enough.
— Karl Marx

Bibliography

[And97] Ross Anderson. Two remarks on public key cryptology.
http://www.cl.cam.ac.uk/ftp/users/rja14/forwardsecure.pdf, 1997.
Invited Lecture, ACM-CCS.

[Awe85] Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM,
32(4):804–823, 1985.

[Bac88] Eric Bach. How to generate factored random numbers. SIAM Journal on Com-
puting, 17(2):179–193, April 1988.

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing
in constant number of rounds of interaction. In Proc. ACM PODC’89, pages
201–209, 1989.

[BBP03] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An un-instantiable
random-oracle-model scheme for a hybrid-encryption problem. Obtainable from
the Cryptology ePrint Archive, record 2003/077, http://eprint.iacr.org/,
April 2003.

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure com-
putation (extended abstract). In Proceedings of the Twenty-Fifth Annual ACM
Symposium on the Theory of Computing, pages 52–61, San Diego, California,
16–18 May 1993.

[BCK98] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the
design and analysis of authentication and key exchange protocols. In Proceedings
of the Thirtieth Annual ACM Symposium on the Theory of Computing, pages
419–428, Dallas, TX, USA, 24–26 May 1998.

[BDGK95] Amotz Bar-Noy, Xiaotie Deng, Juan A. Garay, and Tiko Kameda. Optimal
amortized distributed consensus. Information and Computation, 120(1):93–100,
1995.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete security
treatment of symmetric encryption. In 38th Annual Symposium on Foundations
of Computer Science, Miami Beach, FL, 19–22 October 1997. IEEE.

322 BIBLIOGRAPHY

[BE03] Michael Ben-Or and Ran El-Yaniv. Resilient-optimal interactive consistency in
constant time. Distributed Computing, 16(4):249–262, 2003.

[Bea91] Donald Beaver. Secure multi-party protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, 4(2):75–122, 1991.

[Bea96] Donald Beaver. Adaptive zero knowledge and computational equivocation. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, pages 629–638, Philadelphia, Pennsylvania, 22–24 May 1996.

[Bea97] Donald Beaver. Plug and play encryption. In Burt Kaliski, editor, Advances
in Cryptology - Crypto ’97, pages 75–89, Berlin, 1997. Springer-Verlag. Lecture
Notes in Computer Science Volume 1294.

[Ben83] Michael Ben-Or. Another advantage of free choice (extended abstract): Com-
pletely asynchronous agreement protocols. In Proceedings of the second annual
ACM symposium on Principles of distributed computing, pages 27–30, 1983.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications (extended abstract). In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, pages 103–112, Chicago, Illinois, 2–4
May 1988.

[BG85] Manuel Blum and Shafi Goldwasser. An efficient probabilistic public key en-
cryption scheme which hides all partial information. In G. R. Blakley and David
Chaum, editors, Advances in Cryptology: Proceedings of Crypto ’84, pages 289–
302, Berlin, 1985. Springer-Verlag. Lecture Notes in Computer Science Volume
196.

[BG89] Donald Beaver and Shafi Goldwasser. Multiparty computation with faulty ma-
jority (extended announcement). In 30th Annual Symposium on Foundations of
Computer Science, pages 468–473, Research Triangle Park, North Carolina, 30
October–1 November 1989. IEEE.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal dis-
tributed consensus. In 30th Annual Symposium on Foundations of Computer
Science, pages 410–415, Research Triangle Park, North Carolina, 30 October–1
November 1989. IEEE.

[BGP92] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Optimal early stopping
in distributed consensus. In Proceedings of the sixth International Workshop on
Distributed Algorithms, pages 221–237, 1992.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation (extended
abstract). In Proceedings of the Twentieth Annual ACM Symposium on Theory
of Computing, pages 1–10, Chicago, Illinois, 2–4 May 1988.

BIBLIOGRAPHY 323

[BH92] Donald Beaver and Stuart Haber. Cryptographic protocols provably secure
against dynamic adversaries. In Rainer A. Rueppel, editor, Advances in Cryp-
tology - EuroCrypt ’92, pages 307–323, Berlin, 1992. Springer-Verlag. Lecture
Notes in Computer Science Volume 658.

[BKR94] Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computa-
tion with optimal resilience. In Proc. ACM PODC’94, pages 183–192, 1994.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In First ACM Conference on Computing and
Communications Security, pages 62–73. ACM, 1993.

[BR95] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In Al-
fredo De Santis, editor, Advances in Cryptology - EuroCrypt ’94, pages 92–111,
Berlin, 1995. Springer-Verlag. Lecture Notes in Computer Science Volume 950.

[Bra84] Gabriel Bracha. An asynchronous d(n − 1)/3e-resilient consensus protocol. In
Proceedings of the third annual ACM symposium on Principles of distributed
computing, pages 154–162, 1984.

[Bra93] Stefan Brands. An efficient off-line electronic cash system based on the rep-
resentation problem. Technical Report CS-R9323, CWI, Computer Science,
Department of Algorithmics and Architecture, CWI, P.O. Box 4079, 1009 AB
Amsterdam, The Netherlands, 1993.

[BS96] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, Volume I: Efficient
Algorithms. MIT Press, August 1996.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all
partial information. In Burt Kaliski, editor, Advances in Cryptology - Crypto
’97, pages 455–469, Berlin, 1997. Springer-Verlag. Lecture Notes in Computer
Science Volume 1294.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, winter 2000.

[Can01a] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42th Annual Symposium on Foundations of Computer
Science. IEEE, 2001.

[Can01b] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. Obtainable from the Cryptology ePrint Archive,
record 2000/067, http://eprint.iacr.org/. Preliminary version appeared as
[Can01a], October 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, pages 11–19, Chicago, Illinois, 2–4
May 1988.

324 BIBLIOGRAPHY

[CD98] Ronald Cramer and Ivan Damgaard. Zero-knowledge proofs for finite field arith-
metic, or: Can zero-knowledge be for free. In Hugo Krawczyk, editor, Advances
in Cryptology - Crypto ’98, pages 424–441, Berlin, 1998. Springer-Verlag. Lec-
ture Notes in Computer Science Volume 1462.

[CDD+99] Ronald Cramer, Ivan Damg̊ard, Stefand Dziembowski, Martin Hirt, and Tal
Rabin. Efficient multiparty computations secure against an adaptive adversary.
In Jacques Stern, editor, Advances in Cryptology - EuroCrypt ’99, pages 311–
326, Berlin, 1999. Springer-Verlag. Lecture Notes in Computer Science Volume
1592.

[CDD00] Ronald Cramer, Ivan Damg̊ard, and Stefan Dziembowski. On the complexity
of verifiable secret sharing and multiparty computation. In Proceedings of the
Thirty-Second Annual ACM Symposium on the Theory of Computing, pages
325–334, Portland, OR, USA, 21–23 May 2000.

[CDD+01] Ran Canetti, Ivan Damg̊ard, Stefan Dziembowski, Yuval Ishai, and Tal Malkin.
On adaptive vs. non-adaptive security of multiparty protocols. In Advances
in Cryptology - EuroCrypt 2001, pages 262–279, Berlin, 2001. Springer-Verlag.
Lecture Notes in Computer Science Volume 2045.

[CDG87] David Chaum, Ivan Damg̊ard, and Jeroen van de Graaf. Multiparty computa-
tions ensuring privacy of each party’s input and correctness of the result. In Carl
Pomerance, editor, Advances in Cryptology - Crypto ’87, pages 87–119, Berlin,
1987. Springer-Verlag. Lecture Notes in Computer Science Volume 293.

[CDM00] Ronald Cramer, Ivan Damg̊ard, and Ueli Maurer. General secure multi-party
computation from any linear secret-sharing scheme. In Bart Preneel, editor,
Advances in Cryptology - EuroCrypt 2000, pages 316–334, Berlin, 2000. Springer-
Verlag. Lecture Notes in Computer Science Volume 1807.

[CDN01] Ronald Cramer, Ivan Damgaard, and Jesper B. Nielsen. Multiparty computation
from threshold homomorphic encryption. In Advances in Cryptology - EuroCrypt
2001, pages 280–300, Berlin, 2001. Springer-Verlag. Lecture Notes in Computer
Science Volume 2045.

[CDNO97] Ran Canetti, Cynthia Dwork, Moni Naor, and Rafail Ostrovsky. Deniable en-
cryption. In Burt Kaliski, editor, Advances in Cryptology - Crypto ’97, pages
90–104, Berlin, 1997. Springer-Verlag. Lecture Notes in Computer Science Vol-
ume 1294.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Yvo Desmedt, ed-
itor, Advances in Cryptology - Crypto ’94, pages 174–187, Berlin, 1994. Springer-
Verlag. Lecture Notes in Computer Science Volume 839.

BIBLIOGRAPHY 325

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In J. Kil-
ian, editor, Advances in Cryptology - Crypto 2001, pages 19–40, Berlin, 2001.
Springer-Verlag. Lecture Notes in Computer Science Volume 2139.

[CF02] Ronald Cramer and Serge Fehr. Optimal black-box secret sharing over arbitrary
abelian groups. In M. Yung, editor, Advances in Cryptology - Crypto 2002, pages
272–287, Berlin, 2002. Springer-Verlag. Lecture Notes in Computer Science
Volume 2442.

[CFGN96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure
multi-party computation. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on the Theory of Computing, pages 639–648, Philadelphia, Pennsyl-
vania, 22–24 May 1996.

[CFS+03] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu. RFC 3647 - inter-
net X.509 public key infrastructure certificate policy and certification practices
framework, November 2003.

[CG96] Ran Canetti and Rosario Gennaro. Incoercible multiparty computation (ex-
tended abstract). In 37th Annual Symposium on Foundations of Computer Sci-
ence, pages 504–513, Burlington, Vermont, 14–16 October 1996. IEEE.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, pages 209–218, Dallas, TX, USA, 24–
26 May 1998.

[CGJ+99] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal
Rabin. Adaptive security for threshold cryptosystems. In Michael Wiener, edi-
tor, Advances in Cryptology - Crypto ’99, pages 98–115, Berlin, 1999. Springer-
Verlag. Lecture Notes in Computer Science Volume 1666.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Verifiable
secret sharing and achieving simultaneity in the presence of faults (extended
abstract). In 26th Annual Symposium on Foundations of Computer Science,
pages 383–395, Portland, Oregon, 21–23 October 1985. IEEE.

[CH94] Ran Canetti and Amir Herzberg. Maintaining security in the presence of tran-
sient faults. In Yvo Desmedt, editor, Advances in Cryptology - Crypto ’94, pages
425–438, Berlin, 1994. Springer-Verlag. Lecture Notes in Computer Science Vol-
ume 839.

[CHH00] Ran Canetti, Shai Halevi, and Amir Herzberg. Maintaining authenticated com-
munication in the presence of break-ins. Journal of Cryptology, 13(1):61–106,
winter 2000.

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key
encryption scheme. In Eli Biham, editor, Advances in Cryptology - EuroCrypt

326 BIBLIOGRAPHY

2003, pages 255–271, Berlin, 2003. Springer-Verlag. Lecture Notes in Computer
Science Volume 2656.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key ex-
change and secure channels. In L. Knudsen, editor, Advances in Cryptology -
EuroCrypt 2002, pages 337–351, Berlin, 2002. Springer-Verlag. Lecture Notes in
Computer Science Volume 2045.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper B. Nielsen. Relaxing chosen-ciphertext
security. In D. Boneh, editor, Advances in Cryptology - Crypto 2003, Berlin,
2003. Springer-Verlag. Lecture Notes in Computer Science.

[CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in con-
stantinople: Practical asynchronous Byzantine agreement using cryptography.
In Proceedings of the 19th ACM Symposium on Principles of Distributed Com-
puting (PODC 2000), pages 123–132. ACM, July 2000.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In Proceedings of
the Thirty-Fourth Annual ACM Symposium on the Theory of Computing, pages
494–503, Montreal, Quebec, Canada, 2002.

[CP92] David Chaum and Torben P. Pedersen. Wallet databases with observers. In
Ernest F. Brickell, editor, Advances in Cryptology - Crypto ’92, pages 89–105,
Berlin, 1992. Springer-Verlag. Lecture Notes in Computer Science Volume 740.

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous Byzantine agreement with op-
timal resilience (extended abstract). In Proceedings of the Twenty-Fifth Annual
ACM Symposium on the Theory of Computing, pages 42–51, San Diego, Cali-
fornia, 16–18 May 1993.

[CR03] Ran Canneti and Tal Rabin. Universal composition with joint state. In D. Boneh,
editor, Advances in Cryptology - Crypto 2003, Berlin, 2003. Springer-Verlag.
Lecture Notes in Computer Science.

[Cra96] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols.
PhD thesis, CWI and University of Amsterdam, 1996.

[CS01] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. Research Series RS-
01-37, BRICS, Department of Computer Science, University of Aarhus, October
2001.

[Dam00] Ivan Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model.
In Bart Preneel, editor, Advances in Cryptology - EuroCrypt 2000, pages 418–
430, Berlin, 2000. Springer-Verlag. Lecture Notes in Computer Science Volume
1807.

BIBLIOGRAPHY 327

[DCIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and
non-malleable commitment. In Proceedings of the Thirtieth Annual ACM Sym-
posium on the Theory of Computing, pages 141–150, Dallas, TX, USA, 24–26
May 1998.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-maleable cryptography.
SIAM Journal on Computing, 30(2):391–437, 2000.

[Des87] Yvo Desmedt. Society and group oriented cryptography: A new concept. In
Carl Pomerance, editor, Advances in Cryptology - Crypto ’87, pages 120–127,
Berlin, 1987. Springer-Verlag. Lecture Notes in Computer Science Volume 293.

[Des97] Yvo Desmedt. Some recent research aspects of threshold cryptography. In
M. Mambo, E. Okamoto, and E. Davida, editors, Information Security, First
International Workshop ISW ’97, volume 1196 of Lecture Notes in Computer
Science, pages 158–173. Springer-Verlag, 1997.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, ed-
itor, Advances in Cryptology - Crypto ’89, pages 307–315, Berlin, 1989. Springer-
Verlag. Lecture Notes in Computer Science Volume 435.

[DF02] Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commitment
scheme based on groups with hidden order. In Y. Zheng, editor, Advances in
Cryptology - ASIACRYPT 2002, pages 125–142, Berlin, 2002. Springer. Lecture
Notes in Computer Science Volume 2501.

[DG02] Ivan Dangaard and Jens Groth. Non-interactive and reusable non-maleable com-
mitment schemes. In Proceedings of the Thirty-Fourth Annual ACM Symposium
on the Theory of Computing, Montreal, Quebec, Canada, 2002.

[DH76] Whitefield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22:644–654, 1976.

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some ap-
plications of Paillier’s probabilistic public-key system. In Kwangjo Kim, editor,
Public Key Cryptography, 4th International Workshop on Practice and Theory
in Public Key Cryptography, pages 110–136, Berlin, 2001. Springer. Lecture
Notes in Computer Science Volume 1992.

[DJN01] Ivan Damg̊ard, Mads J. Jurik, and Jesper B. Nielsen. A generalization of Pail-
lier’s public-key system with applications to electronic voring. Accepted for
publication in the special issue on Financial Cryptography, International Jour-
nal on Information Security (IJIS). Obtainable from the authors, 2001.

[DK01] Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures with-
out a trusted dealer. In Advances in Cryptology - EuroCrypt 2001, pages 152–
165, Berlin, 2001. Springer-Verlag. Lecture Notes in Computer Science Volume
2045.

328 BIBLIOGRAPHY

[DLM82] Richard A. DeMillo, Nancy A. Lynch, and Michael J. Merritt. Cryptographic
protocols. In Proceedings of the Fourteenth Annual ACM Symposium on Theory
of Computing, pages 383–400, San Francisco, CA, 5–7 May 1982.

[DN00] Ivan Damg̊ard and Jesper B. Nielsen. Improved non-committing encryption
schemes based on a general complexity assumption. In Mihir Bellare, editor,
Advances in Cryptology - Crypto 2000, pages 432–450, Berlin, 2000. Springer-
Verlag. Lecture Notes in Computer Science Volume 1880.

[DN02a] Ivan Damg̊ard and Jesper B. Nielsen. Expanding pseudorandom functions; or:
From known-plaintext security to chosen-plaintext security. In M. Yung, editor,
Advances in Cryptology - Crypto 2002, pages 449–464, Berlin, 2002. Springer-
Verlag. Lecture Notes in Computer Science Volume 2442.

[DN02b] Ivan Damg̊ard and Jesper B. Nielsen. Perfect hiding and perfect binding uni-
versally composable commitment schemes with constant expansion factor. In
M. Yung, editor, Advances in Cryptology - Crypto 2002, pages 581–596, Berlin,
2002. Springer-Verlag. Lecture Notes in Computer Science Volume 2442.

[DN03] Ivan Damg̊ard and Jesper B. Nielsen. Universally composable efficient mul-
tiparty computation from threshold homomorphic encryption. In D. Boneh,
editor, Advances in Cryptology - Crypto 2003, Berlin, 2003. Springer-Verlag.
Lecture Notes in Computer Science.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Com-
puting, pages 409–418, Dallas, TX, USA, 24–26 May 1998.

[Dod03] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random func-
tions. In Yvo Desmedt, editor, Public Key Cryptography, 6th International
Workshop on Practice and Theory in Public Key Cryptography, pages 1–18,
Berlin, 2003. Springer. Lecture Notes in Computer Science Volume 2567.

[DRS90] Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. Early stopping
in Byzantine agreement. ACM Transactions on Programming Languages and
Systems, 37(4):720–741, October 1990.

[DS82] Danny Dolev and Raymond H. Strong. Polynomial algorithms for multiple pro-
cessor agreement. In Proceedings of the Fourteenth Annual ACM Symposium on
Theory of Computing, pages 401–407, San Francisco, CA, 5–7 May 1982.

[FH96] Matthew Franklin and Stuart Haber. Joint encryption and message-efficient
secure computation. Journal of Cryptology, 9(4):217–232, Autumn 1996.

[Fis01] Marc Fischlin. Trapdoor Commmitment Schemes and Their Applications. PhD
thesis, Fachbereich Mathematik, Johann Wolfgang Goethe-Universität, Frank-
furt am Main, 2001.

BIBLIOGRAPHY 329

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure
interactive consistency. Information Processing Letters, 14(4):183–186, June
1982.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–
382, 1985.

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for syn-
chronous Byzantine agreement. SIAM Journal on Computing, 26(4):873–933,
August 1997.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero-knowledge protocols
to prove modular polynomial relations. In Burt Kaliski, editor, Advances in
Cryptology - Crypto ’97, pages 16–30, Berlin, 1997. Springer-Verlag. Lecture
Notes in Computer Science Volume 1294.

[FPS00] Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing decryp-
tion in the context of voting or lotteries. In Proceedings of Financial Crypto
2000, 2000.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In A. M. Odlyzko, editor, Advances in Cryp-
tology - Crypto ’86, pages 186–194, Berlin, 1986. Springer-Verlag. Lecture Notes
in Computer Science Volume 263.

[FW00] Matthew Franklin and Rebecca N. Wright. Secure communication in minimal
connectivity models. Journal of Cryptology, 13(1):9–30, winter 2000.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, 1986.

[GIL+90] Oded Goldreich, Russell Impagliazzo, Leonid Levin, Ramarathnam Venkatesan,
and David Zuckerman. Security preserving amplification of hardness. In 31st
Annual Symposium on Foundations of Computer Science, volume I, pages 318–
326, St. Louis, Missouri, 22–24 October 1990. IEEE.

[GJKR96a] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. On fast
and provably secure message authentication based on universal hashing. In Neal
Koblitz, editor, Advances in Cryptology - Crypto ’96, pages 157–172, Berlin,
1996. Springer-Verlag. Lecture Notes in Computer Science Volume 1109.

[GJKR96b] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
threshold DSS. In Ueli Maurer, editor, Advances in Cryptology - EuroCrypt
’96, pages 354–371, Berlin, 1996. Springer-Verlag. Lecture Notes in Computer
Science Volume 1070.

330 BIBLIOGRAPHY

[GJKR00] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust
and efficient sharing of RSA functions. Journal of Cryptology, 13(2):273–300,
2000.

[GK90] Oded Goldreich and Hugo Krawczyk. On the composition of zero knowledge
proof systems. In Proceedings of ICALP 90, Berlin, 1990. Springer-Verlag. Lec-
ture Notes in Computer Science Volume 443.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In Proceedings of the Twenty First Annual ACM Symposium on Theory
of Computing, pages 25–32, Seattle, Washington, 15–17 May 1989.

[GL90] Shafi Goldwasser and Leonid Levin. Fair computation of general functions in
presence of immoral majority. In Alfred J. Menezes and Scott A. Vanstone, ed-
itors, Advances in Cryptology - Crypto ’90, pages 77–93, Berlin, 1990. Springer-
Verlag. Lecture Notes in Computer Science Volume 537.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270–299, April 1984.

[GM93] Juan A. Garay and Yoram Moses. Fully polynomial Byzantine agreement in
t + 1 rounds. In Proceedings of the Twenty-Fifth Annual ACM Symposium on
the Theory of Computing, pages 31–41, San Diego, California, 16–18 May 1993.

[GM95] Rosario Gennaro and Silvio Micali. Verifiable secret sharing as secure compu-
tation. In Louis C. Guillou and Jean-Jacques Quisquater, editors, Advances
in Cryptology - EuroCrypt ’95, pages 168–182, Berlin, 1995. Springer-Verlag.
Lecture Notes in Computer Science Volume 921.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems (extended abstract). In Proceedings of the Seven-
teenth Annual ACM Symposium on Theory of Computing, pages 291–304, Prov-
idence, Rhode Island, 6–8 May 1985.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ron Rivest. A digital signature scheme
secure against chosen message attacks. SIAM Journal on Computing, 17(2):281–
308, 1988.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing
but their validity and a methodology of cryptographic protocol design (extended
abstract). In 27th Annual Symposium on Foundations of Computer Science,
pages 174–187, Toronto, Ontario, Canada, 27–29 October 1986. IEEE.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In Proceedings of

BIBLIOGRAPHY 331

the Nineteenth Annual ACM Symposium on Theory of Computing, pages 218–
229, New York City, 25–27 May 1987.

[Gol01a] Oded Goldreich. The Foundations of Cryptography, volume 1. Cambridge Uni-
versity Press, 2001.

[Gol01b] Oded Goldreich. The Foundations of Cryptography, volume 2. Cambridge Uni-
versity Press, 2001.

[GP90] Oded Goldreich and Erez Petrank. The best of both worlds: Guaranteeing
termination in fast randomized Byzantine agreement protocols. Information
Processing Letters, 36(1):45–49, 1990.

[Gro02] Jens Groth. personal communication, 2002.

[GRR98] Rosario Gennaro, Michael Rabin, and Tal Rabin. Simplified VSS and fast-track
multi-party computations with applications to threshold cryptography. In Proc.
ACM PODC’98, 1998.

[GT03] Shafi Goldwasser and Yael Taumann. On the (in)security of the Fiat-Shamir
paradigm. In 44th Annual Symposium on Foundations of Computer Science,
pages 102–115, Cambridge, MA, 11–14 October 2003. IEEE.

[HM00] Martin Hirt and Ueli Maurer. Player simulation and general adversary structures
in perfect multiparty computation. Journal of Cryptology, 13(1):31–60, winter
2000.

[HM01] Martin Hirt and Ueli Maurer. Robustness for free in unconditional multi-party
computation. In J. Kilian, editor, Advances in Cryptology - Crypto 2001, pages
101–118, Berlin, 2001. Springer-Verlag. Lecture Notes in Computer Science
Volume 2139.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In D. Boneh, editor, Advances in Cryptology - Crypto 2003,
Berlin, 2003. Springer-Verlag. Lecture Notes in Computer Science.

[JJ00] Markus Jakobsson and Ari Juels. Mix and match: Secure function evalua-
tion via ciphertexts. In Tatsuaki Okamoto, editor, Advances in Cryptology -
ASIACRYPT 2000, pages 162–177, Berlin, 2000. Springer. Lecture Notes in
Computer Science Volume 1976.

[KMO89] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-
knowledge proofs (extended abstract). In 30th Annual Symposium on Foun-
dations of Computer Science, pages 474–479, Research Triangle Park, North
Carolina, 30 October–1 November 1989. IEEE.

[KT76] Donald E. Knuth and Pardo L. Trabb. Analysis of a simple factorization algo-
rithm. Theoretical Computer Science, 3(3):321–348, 1976.

332 BIBLIOGRAPHY

[KY02] Jonathan Katz and Moti Yung. Threshold cryptosystems based on factoring. In
Y. Zheng, editor, Advances in Cryptology - ASIACRYPT 2002, pages 192–205,
Berlin, 2002. Springer. Lecture Notes in Computer Science Volume 2501.

[LLR02a] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of au-
thenticated Byzantine agreement. In Proceedings of the Thirty-Fourth Annual
ACM Symposium on the Theory of Computing, pages 514–523, Montreal, Que-
bec, Canada, 2002.

[LLR02b] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. Sequential composition of
protocols without simultaneous termination. In Proceedings of the twenty-first
annual symposium on Principles of distributed computing, pages 203–212. ACM
Press, 2002.

[LP01] Anna Lysyanskaya and Chris Peikert. Adaptive security in the threshold setting:
From cryptosystems to signature schemes. In C. Boyd, editor, Advances in
Cryptology - ASIACRYPT 2001, pages 331–350, Berlin, 2001. Springer. Lecture
Notes in Computer Science Volume 2248.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems, 4(3):381–
401, July 1982.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

[MR91] Silvio Micali and Phillip Rogaway. Secure computation. In Joan Feigenbaum, ed-
itor, Advances in Cryptology - Crypto ’91, pages 392–404, Berlin, 1991. Springer-
Verlag. Lecture Notes in Computer Science Volume 576.

[MRH04] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impos-
sibility results on reductions, and applications to the random oracle methodol-
ogy. In The First Theory of Cryptography Conference, TCC 2004, volume 2951
of Lecture Notes in Computer Science, pages 21–39, Cambridge, MA, USA,
February 2004. Springer-Verlag.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In
40th Annual Symposium on Foundations of Computer Science, New York City,
NY, 17–19 October 1999. IEEE.

[MS95] Silvio Micali and Ray Sidney. A simple method for generating and sharing
pseudo-random functions, with applications to clipper-like escrow systems. In
Don Coppersmith, editor, Advances in Cryptology - Crypto ’95, pages 185–196,
Berlin, 1995. Springer-Verlag. Lecture Notes in Computer Science Volume 963.

[Nie02a] Jesper B. Nielsen. Separating random oracle proofs from complexity theoretic
proofs: The non-committing encryption case. In M. Yung, editor, Advances in
Cryptology - Crypto 2002, pages 111–126, Berlin, 2002. Springer-Verlag. Lecture
Notes in Computer Science Volume 2442.

BIBLIOGRAPHY 333

[Nie02b] Jesper B. Nielsen. A threshold pseudorandom function construction and its
applications. In M. Yung, editor, Advances in Cryptology - Crypto 2002, pages
401–416, Berlin, 2002. Springer-Verlag. Lecture Notes in Computer Science
Volume 2442.

[NR97] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient
pseudo-random functions (extended abstract). In 38th Annual Symposium on
Foundations of Computer Science, pages 458–467, Miami Beach, FL, 19–22 Oc-
tober 1997. IEEE.

[OU98] Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as
secure as factoring. In K. Nyberg, editor, Advances in Cryptology - EuroCrypt
’98, pages 308–318, Berlin, 1998. Springer-Verlag. Lecture Notes in Computer
Science Volume 1403.

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks (ex-
tended abstract). In Proc. ACM PODC’91, pages 51–59, 1991.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residue
classes. In Jacques Stern, editor, Advances in Cryptology - EuroCrypt ’99, pages
223–238, Berlin, 1999. Springer-Verlag. Lecture Notes in Computer Science
Volume 1592.

[Pas03] Rafael Pass. On deniability in the common reference string and random oracle
model. In D. Boneh, editor, Advances in Cryptology - Crypto 2003, Berlin, 2003.
Springer-Verlag. Lecture Notes in Computer Science.

[Rab83] Michael O. Rabin. Randomized Byzantine generals. In 23th Annual Symposium
on Foundations of Computer Science, pages 403–409, Los Alamitos, CA, 1983.
IEEE.

[Rab98] Tal Rabin. A simplified approach to threshold and proactive RSA. In Hugo
Krawczyk, editor, Advances in Cryptology - Crypto ’98, pages 89–104, Berlin,
1998. Springer-Verlag. Lecture Notes in Computer Science Volume 1462.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty pro-
tocols with honest majority. In Proceedings of the Twenty First Annual ACM
Symposium on Theory of Computing, pages 73–85, Seattle, Washington, 15–17
May 1989.

[RSA78] Ronald Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21:120–126, 1978.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

334 BIBLIOGRAPHY

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, Advances
in Cryptology - EuroCrypt 2000, pages 207–220, Berlin, 2000. Springer-Verlag.
Lecture Notes in Computer Science Volume 1807.

[Sho01] Victor Shoup. OAEP reconsidered. In J. Kilian, editor, Advances in Cryptology
- Crypto 2001, pages 239–259, Berlin, 2001. Springer-Verlag. Lecture Notes in
Computer Science Volume 2139.

[SYY99] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing
for NC1. In 40th Annual Symposium on Foundations of Computer Science, New
York City, NY, 17–19 October 1999. IEEE.

[TC84] Russell Turpin and Brian A. Coan. Extending binary Byzantine agreement to
multivalued Byzantine agreement. Information Processing Letters, 18(2):73–76,
February 1984.

[Tou84] Sam Toueg. Randomized Byzantine agreements. In Proceedings of the third
annual ACM symposium on Principles of distributed computing, pages 163–178,
1984.

[Yao82a] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract).
In 23rd Annual Symposium on Foundations of Computer Science, pages 160–164,
Chicago, Illinois, 3–5 November 1982. IEEE.

[Yao82b] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended
abstract). In 23rd Annual Symposium on Foundations of Computer Science,
pages 80–91, Chicago, Illinois, 3–5 November 1982. IEEE.

Index

K representation of c, 57, 61
N -invertible, 59
N -invertible group homomorphism gener-

ator, 57
Σ-conversation, 32
Σ-protocol, 29, 31

monotone Boolean composition, 50
l-bit number, 10
l-round staggering IO behavior, 144
p-subgroup assumption, 24
sid-sub-tree, 216
t-threshold IO restriction, 106
w-path in L, 44
w-path logic in L, 45
(statistical) special honest verifier zero-knowledge,

32
(statistical) special non-erasure honest ver-

ifier zero-knowledge, 31, 38, 43
F2T-sig, 123, 124, 124, 125–127
FABB, 258, 259, 259, 260, 260, 261–264
FBA, 91, 91, 118, 119, 142, 223–226, 229–

232, 236, 247
FBABB, 258, 261–264, 272–279, 281, 282,

301, 309, 314–318, 320
FCOM, 284
FCOM-PR, 289, 290–299, 304
FCRS, 127, 291–293, 296, 297
FGDDH-Tree, 210, 210, 211–214
FGRAN-Tree, 212, 213, 213, 214–216
FMBA, 223, 223, 225, 226, 232, 233, 236,

245, 247, 249
FPRS, 128, 129, 130, 180–186, 193, 198,

210, 216, 275–282, 291–293, 296,
297, 313–316, 318–320

FSGR, 226, 233, 234, 234, 235, 236, 247,
248

FSMBA, 223–227, 227, 228, 229, 231, 232,
236

FSMT, 115, 115, 153–156, 158, 159, 161,
163, 165–168, 171, 178, 302

FSPHAKIBA, 238, 242, 245, 247–249
FSPHAKIUBC, 248, 248
FST, 145, 145, 146–148
FT-sig, 123, 123, 189, 206, 207, 225, 226,

229–231, 233, 235, 237, 243–245
FTHE, 265, 266, 266, 268, 270–279, 281,

282, 310, 315
FUBC, 247, 247
FWTE, 167, 168, 168, 169, 171–173
FZK-PK, 115, 116, 116, 118, 179–181, 183,

185, 186, 273, 278–280, 291
FZK-PM, 116, 117, 117, 118, 179–182, 184–

186, 193, 195–198, 210, 212–214,
216, 272–278, 280–282, 291, 292,
297, 312–315

Fbroadcast, 118, 119, 119, 120–122, 312–
315, 318–320

Fcoin, 215, 215, 216, 249
Fkey-dist, 194, 194, 195–198, 210, 211, 211,

212–214, 216, 311, 311, 312–316,
318–320

Fsig, 119, 120, 120, 121–127, 189, 214, 225
Fsync, 225, 226, 232, 232, 233, 235, 236
Fthresh, 191, 192, 192, 193–199, 206, 207,

211, 268, 270, 271
Ftriv, 76, 78, 79
IOABB, 258, 261, 262, 264, 272, 274, 279,

282
IOBA, 91, 91
IOMultiRound, 137, 137, 138–142, 228
IOSMBA, 228
IOZK, 116

336 INDEX

IOZK-PM, 117, 197, 273
IOstagger, 144, 147, 148
IOstatic, 106, 106, 107, 186, 196, 198, 210,

212, 216, 265, 275, 276
IOthresh, 106, 106, 107
IOtriv, 100, 100
πABABB, 313, 314, 315, 318–320
πABB, 261, 262, 264
πASGR, 235, 235
πASPHAK, 243, 244, 245
πBABB, 272, 273, 273, 274, 274, 275, 276,

281, 282
πCOMPR, 291, 291, 292, 297
πDAM-ZK, 180, 180, 183, 185, 186, 198,

214, 216, 275–277, 280, 281, 291,
292, 297, 299, 300, 314, 315

πGDDH-Tree, 210, 212, 212
πMBA, 236, 247, 248, 249
πNCE, 161, 161, 162
πSBA, 230, 230, 231
πSGR, 236, 236
πSMT, 168, 169, 169
πSSBA, 232, 233, 236
πST, 145, 145, 146, 147
πTHE, 265, 312, 315
πUSGR, 233, 234
πUSPHAK, 239, 240, 240, 241, 242
πWTE, 168, 170, 172, 173, 177
πaccess, 215, 216
πdec, 312, 314, 317, 318, 320
πsig, 119–121, 121, 122, 225
πthres, 195, 196, 198
πtsig, 207, 207, 225
πtsig-triv, 123–125, 125, 126, 127, 225, 226
SABABB, 315, 315, 318, 320
SBABB, 276, 276, 277, 277, 278–281
SCOM-PR, 291, 292, 292, 293, 293, 294,

294, 295–299, 315–317
SDAM-ZK, 180–182, 182, 183–186, 198, 276–

281, 292, 294, 297, 299, 315, 317,
318

SNCE, 163, 163
SWTE, 171, 171, 172, 173
Sdec, 313, 315, 318–320

Seval, 194, 194, 195–197, 310, 312, 313
Skeydist, 194, 194, 195–197, 206, 310, 312,

315, 318, 320
Sthresh, 196, 197, 197, 198
Z|IO, 91
3MPR-protocol, see three-move public-ran-

domness protocol

ABB, see arithmetic black-box
activated correctly, 237
active, 1
active-round complexity, 148, 224, 225
actual start of the protocol, 123, 149
adaptive ABB threshold homomorphic en-

cryption scheme, 310
additive homomorphic, 263
adversary, 1
agreement-cheap, 237
all-zero-non-participation-resilient, 237
allowable side information, 191
arithmetic black-box, 255, 258
authenticated BA, 218

BA, see Byzantine agreement
BABB, see basic arithmetic black-box
backup share of svi given to server j, 311
basic arithmetic black-box, 258
being computed, 215
bijective concatenation, 10
binding, 20
blinding, 265
blinding algorithm, 265
Blum-Goldwasser scheme with fixed plain-

text length, 174
Boolean distribution ensemble, 11
break down, 91
break of the extractor, 38
broadcast, 118
broadcast complexity, 254
broadcast model, 118
broadcaster, 119
Byzantine agreement, 217

captures an E-key, 295, 300
challenge length, 30

INDEX 337

ciphertext, 16
circuit evaluation, 44
circuit input gates, 44
circuit logic, 44
circuit output, 44
circuit scrambling, 45
circuit structure, 44
commitment, 20
commitment key, 20
commitment scheme derived from T HE ,

309
committer, 20
common domain trapdoor systems, 155
common reference string, 128
completeness, 19, 31, 38, 43
complexity-theoretic model, 130
computational binding, 21
computational special knowledge soundness,

38, 43
computational special membership sound-

ness, 38, 43
computationally indistinguishable, 11
computationally sound Σ-protocol, 38
computed, 215
conjunction of IO restrictions, 101
construction, 123
construction threshold, 191
core functionality, 95
correctly realizes, 110
correctness, 74
correctness of a protocol, 109
corrupted parties, 1
corruption threshold, 191
CRS, see common reference string
CT model, see complexity-theoretic model

DCRA, see decisional composite residuos-
ity assumption

DDH assumption, see decisional Diffie-Hellman
assumption

DDH-Tree function family, 208
decision-after-consensus-on-good-king, 237
decisional composite residuosity assump-

tion, 23

decisional Diffie-Hellman assumption, 21
decryption function, 16
decryption key, 16
deniable encryption scheme, 158
digital signature scheme, 19
discrete logarithm in G, 36
disjunction of IO restrictions, 101
distributed function evaluation, 191
distribution ensemble, 11
domain sampler, 14
double ideal functionality, 76
double IO restriction, 100
double opening game, 21
dual-threshold signature functionality, 123
dummy value, 292, 317

E-trapdoor extraction, 310
E-trapdoor preservation, 310
ElGamal encryption scheme in Qp, 173
encryption function, 16
encryption key, 16
enhanced trapdoor permutation, 27
equality of committed values, 287, 310,

314
equality of discrete logarithms, 36, 64
equality of even RSA discrete logarithms,

56
equality of RSA discrete logarithms, 39
equivocability, 286
equivocable, 285
equivocable commitment schemes, 20
evaluation share, 187, 193
evaluation sharing, 193
evaluation simulation, 195
even RSA discrete logarithm, 55
exerting influence, 2
existentially unforgeable under chosen-message

attack, 20
extractable, 285
extraction, 286
extraction relation, 31, 271

fake random bits, 28
family, 10
family of trapdoor permutations, 14

338 INDEX

forward-secure public-key encryption, 166
function family, 13

one-way, 13
pseudorandom, 13

gate logic, 44
gates, 44
gathering information, 2
genpk, 263
good coin value, 239
GRAT, see growing pseudorandom tree
group homomorphism generator, 56
growing pseudorandom tree, 208

hiding, 20
hitting key, 292, 296
honest verifier simulator, 31
hybrid protocol, 75

ideal functionality, 72
outputs all inputs on the SOT, 111
with IO restriction, 95

ideal process, 74
identical, 11
image indistinguishability, 59
immediate functionalities, 71
IND-CPA, see indistinguishability under chosen-

plaintext attack
independence of inputs, 272, 283
index, 14
index generator, 13
index/trapdoor generator, 14
IND, 16
indistinguishability under chosen-plaintext

attack, 15, 16
information theoretic model, 253
initializing functionality, 123, 149, 229, 231,

236
input-output behavior, 94

for a protocol, 89, 89, 91, 93
violated, 89

instance, 29
instance language, 29, 36, 39, 54, 55, 61,

62, 65, 115
interactive Turing machine, 10

interpolation in the exponent, 201
interpolation through the homomorphism,

310, 314
inverse function, 14
inverter, 13
invertible domain sampling, 174, 178
invertible sampler, 28, 166, 174
invertible sampling, 28, 29, 57, 58, 153,

158, 158, 167, 173–175, 177, 287
invertible uniform sampling, 28, 62
IO behavior for the ST, 94
IO restriction for the ST, 94
IO-silent rounds, 138
ITM, see interactive Turing machine
ITM with oracle access, 131

JUC, see universal composition with joint
state

junk nodes, 216

key distribution simulation, 194
key generation, 19, 286
key generator, 16
key indistinguishability, 286, 296, 297
key sharing, 192
key space, 20
key-evolving public-key encryption scheme,

166
key/trapdoor generator, 20
knowledge extractor, 31
known K representation, 61

Lagrange interpolation, 200
language of R, 29
letting the adversary specify the output

round and a one round termina-
tion gap, 233

linear relation between K representation,
62

main-tree nodes, 216
MBA, see multi Byzantine agreement
membership witness, 32
mixed commitment scheme, 286
mobile adversaries, 302

INDEX 339

monotone Boolean composition
Σ-protocol, 50
PPT binary relation, 49

monotone Boolean formula, 49
monotone Boolean formula family, 49
MPC, see multiparty computation
multi Byzantine agreement, 220
multi ideal functionality, 76

with IO restriction, 100
multi IO restriction, 100
multi-round ideal functionalities, 135
multi-session extension, 214
multiparty computation, 1, 253
multiplication by constant, 263
multiplicative relation between K repre-

sentations, 65
multiplicative relation between committed

values, 54

NCE, see non-committing encryption
negligible, 11
no value, 135
non-committing encryption, 153
non-overlapping l-round staggering IO be-

havior, 144
non-overlapping IO behavior, 144
non-overlapping synchronous IO behavior,

137
non-programmable random-oracle model,

131
non-trivial activations, 136
non-trivial value, 135
NPRO model, see non-programmable random-

oracle model
NPRO non-committing cryptosystem sim-

ulator, 164

oblivious ciphertext generation, 166
oblivious ciphertext generator, 166
oblivious generator, 155
oblivious index generation, 174
oblivious index-generator, 174
oblivious lookup, 162
oblivious public-key generation, 166
oblivious public-key generator, 166

oblivious record, 162
oblivious transfer, 156
off-line extraction, 185, 274
off-line single inconsistent party, 306, 307,

307, 318
Okamoto-Uchiyama group homomorphism,

23
on-line extraction, 185, 274, 275
one-phase-staggering, 237
one-way function family, 14
opening, 20
oracle input tape, 131
oracle output tape, 131
oracle state, 131
OSIP, see off-line single inconsistent party
OT, see oblivious transfer
output round id, 114
outputs all inputs on the SOT, see ideal

functionality

Paillier group isomorphism, 22
passive, 1
perfect (statistical) hiding, 21
perfect correctness, 16, 263
phase-king, 239
PKI, see public-key infrastructure
plaintext, 16
plaintext ring, 263
polynomial monotone Boolean formula fam-

ily, 49
PPT, see probabilistic polynomial time
PPT binary relation, 29

monotone Boolean composition, 49
PPT domain recognition, 13
PPT domain sampling, 13
PPT evaluation, 13
PPT family of rings, 258, 263, 272
PPT family of sets, 10, 20, 37, 40, 41, 49,

198, 265, 282
PPT function family, 13
PPT indexing, 13
PPTIS, 28
privacy preserving, 2
private key, 16

340 INDEX

private reference string, 128
private reference string Σ-protocol, 42
PRO model, see programmable random-

oracle model
proactive security, 302
probabilistic polynomial time, 10
program the random-oracle, 131
programmable random-oracle model, 131
proof of conditioned plaintext, 265
proof of correct multiplication, 265
proof of plaintext knowledge, 265
protocol for the random-oracle model, 131
protocol with a setup functionality, 122
PRS, see private reference string
PRS Σ-protocol, 42
pseudorandom, 13
pseudorandom function family, 13
public key, 16, 191
public value, 192
public-key encryption scheme, 15, 16
public-key infrastructure, 122
pushing the rewinding to the analysis, 275,

290, 295

QRA, see quadratic residuosity assump-
tion

QRSRSA, 268
quadratic residues modulo p, 22
quadratic residuosity assumption, 26

random bits simulator, 31
random-bits-faking algorithm, 28
random-oracle model, 130
randomizer, 16, 20, 265
realize

correctly, 110, 111
in the hybrid model, 75
in the hybrid model with IO restric-

tion, 99
in the multi-hybrid model, 78
in the multi-hybrid model with IO re-

striction, 100
in the NPRO model, 131
in the PRO model, 131
in the real-life model, 75

in the real-life model with IO restric-
tion, 97

securely, 111, 111
with rewinding, 114

receiver, 20
reconstruct, 187
rerun control tape, 114
restricted input-output, 107, 118
rewind, 113
RIND, 16
RSA assumption, 25
RSA discrete logarithm, 39
RSA function for additive sharing without

side information, 204
RSA function for Shoup’s threshold tech-

nique, 202
RSA generator, 24
RSA quadratic residuosity, 54
RSA-sub-group assumption, 26
RSA-sub-group collection, 25
run as a proof of knowledge, 180, 183, 275,

282, 299
run on a given public key, 278, 279, 280
rushing environment, 72, 73, 115, 119, 295

second dummy value, 292, 296, 317
secrecy, 74
secret key, 191
secret value of server Pi, 192
secure function evaluation, 253
securely realizes, 111
security parameter, 9
self-restricting environment, 92
sender non-committing, 304
share backups, 310
share combining, 193
share verification, 193
signable messages, 19
signature, 19
signature share, 123
signing algorithm, 19
signing key, 19
simple function sharing scheme, 192

INDEX 341

simulatable family of trapdoor permuta-
tions, 174

simulatable public-key cryptosystem, 166
simulatable RSA-sub-group family, 175
simulated Σ-conversation, 33
simulation with rewinding, 114
simultaneous BA, 218
size of a monotone Boolean formula, 49
size of a monotone Boolean formula family,

49
sound, 145
special knowledge soundness, 32
special knowledge soundness game, 38, 43
special membership soundness, 32
special membership soundness game, 38
special mixed commitment scheme, 286
staggered activation, 143, 223
staggered termination, 142, 218
staggered termination ideal functionality,

142
static IO restriction, 106
statistical difference, 11
statistically close, 11
strong RSA assumption, 25

the forging game, 20
the trapdoor game, 14
three-move public-randomness protocol, 30
threshold, 106, 187
threshold decryption, 265
threshold exponentiation in Qp, 201
threshold signature, 123
trapdoor, 14, 20
trapdoor commitment scheme, 20
trapdoor coset determination, 59
trapdoor image distinguishability, 59
trapdoor opening, 21
trapdoor property, 59
trivial activation, 135, 144
trivial ideal functionality, 76
trivial IO restriction, 100
trivial value, 135
trusted party, 2

two-party non-interactive non-committing
encryption protocol, 159

UBC, see Unknown Binary Set Consensus
UC, see universally composable
uni-directional, 159
universal composition, 70
universal composition with joint state, 214
universal verifiability, 19
universally composable, 69, 71, 71
Unknown Binary Set Consensus, 246
UnMultiRound(Z), 138
unnamed coin flip, 214

verifiable pseudorandom functions, 190
verifiable secret sharing, 253
verification algorithm, 19
verification key, 19
VSS, see verifiable secret sharing

well formed, 114
wins the trapdoor game, 15
witness for x, 29
witness set for x, 29

zero-knowledge proof of knowledge, 115
zero-knowledge relative to its task, 70, 70,

74, 188, 191, 269

Recent BRICS Dissertation Series Publications

DS-03-8 Jesper Buus Nielsen.On Protocol Security in the Cryptographic
Model. August 2003. PhD thesis. xiv+341 pp.

DS-03-7 Mario Jośe Cáccamo.A Formal Calculus for Categories. June
2003. PhD thesis. xiv+151.

DS-03-6 Rasmus K. Ursem. Models for Evolutionary Algorithms and
Their Applications in System Identification and Control Opti-
mization. June 2003. PhD thesis. xiv+183 pp.

DS-03-5 Giuseppe Milicia. Applying Formal Methods to Programming
Language Design and Implementation. June 2003. PhD thesis.
xvi+211.

DS-03-4 Federico Crazzolara. Language, Semantics, and Methods for
Security Protocols. May 2003. PhD thesis. xii+159.

DS-03-3 Jǐr ı́ Srba. Decidability and Complexity Issues for Infinite-State
Processes. 2003. PhD thesis. xii+172 pp.

DS-03-2 Frank D. Valencia.Temporal Concurrent Constraint Program-
ming. February 2003. PhD thesis. xvii+174.

DS-03-1 Claus Brabrand. Domain Specific Languages for Interactive
Web Services. January 2003. PhD thesis. xiv+214 pp.

DS-02-5 Rasmus Pagh.Hashing, Randomness and Dictionaries. Octo-
ber 2002. PhD thesis. x+167 pp.

DS-02-4 Anders Møller. Program Verification with Monadic Second-
Order Logic & Languages for Web Service Development.
September 2002. PhD thesis. xvi+337 pp.

DS-02-3 Riko Jacob. Dynamic Planar Convex hull. May 2002. PhD
thesis. xiv+110 pp.

DS-02-2 Stefan Dantchev.On Resolution Complexity of Matching Prin-
ciples. May 2002. PhD thesis. xii+70 pp.

DS-02-1 M. Oliver Möller. Structure and Hierarchy in Real-Time Sys-
tems. April 2002. PhD thesis. xvi+228 pp.

DS-01-10 Mikkel T. Jensen.Robust and Flexible Scheduling with Evolu-
tionary Computation. November 2001. PhD thesis. xii+299 pp.

DS-01-9 Flemming Friche Rodler. Compression with Fast Random Ac-
cess. November 2001. PhD thesis. xiv+124 pp.

