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Abstract

Security protocols help in establishing secure channels between communicating sys-
tems. Great care needs therefore to be taken in developing and implementing robust
protocols. The complexity of security-protocol interactions can hide, however, secu-
rity weaknesses that only a formal analysis can reveal. The last few years have seen
the emergence of successful intensional, event-based, formal approaches to reason-
ing about security protocols. The methods are concerned with reasoning about the
events that a security protocol can perform, and make use of a causal dependency
that exists between events. Methods like strand spaces and the inductive method of
Paulson have been designed to support an intensional, event-based, style of reasoning.
These methods have successfully tackled a number of protocols though in an ad hoc
fashion. They make an informal spring from a protocol to its representation and do
not address how to build up protocol representations in a compositional fashion.

This dissertation presents a new, event-based approach to reasoning about security
protocols. We seek a broader class of models to show how event-based models can
be structured in a compositional way and so used to give a formal semantics to
security protocols which supports proofs of their correctness. More precisely, we give
a compositional event-based semantics to an economical, but expressive, language for
describing security protocols (SPL); so the events and dependency of a wide range of
protocols are determined once and for all. The net semantics allows the derivation of
general properties and proof principles the use of which is demonstrated in establishing
security properties for a number of protocols. The NSL public-key protocol, the ISO
5-pass authentication and the Π3 key-translation protocols are analysed for their level
of secrecy and authentication and for their robustness in runs where some session-
keys are compromised. Particularly useful in the analysis are general results that
show which events of a protocol run can not be those of a spy.

The net semantics of SPL is formally related to a transition semantics which can
easily be implemented. (An existing SPL implementation bridges the gap that often
exists between abstract protocol models on which verification of security properties
is carried out and the implemented protocol.) SPL-nets are a particular kind of
contextual Petri-nets. They have persistent conditions and as we show in this thesis,
unfold under reasonable assumptions to a more basic kind of nets. We relate SPL-nets
to strand spaces and inductive rules, as well as trace languages and event structures so
unifying a range of approaches, as well as providing conditions under which particular,
more limited, models are adequate for the analysis of protocols. The relations that
are described in this thesis help integrate process calculi and algebraic reasoning with
event-based methods to obtain a more accurate analysis of security properties of
protocols.
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Chapter 1

Introduction

Regardless of who is involved, to one degree or another, all parties to a
transaction must have confidence that certain objectives associated with
information security have been met. [Handbook of applied cryptography]

The security of information has always been an issue independently of the medium
through which information is conveyed. Nowadays information has prevalently an
electronic form and is transmitted over computer networks. Copying and altering
information therefore becomes easier and security methodologies gain greater impor-
tance. Information security can have several objectives, which depend among other
factors from the importance of the information, the hostility of the communication
environment and the cost of security measures. The parties of a transaction may, for
example, want that the transmitted information stays secret from all but those who
are authorised. The impossibility of altering information without the alteration being
detected is sometimes of great importance and also the ability of corroborating the
source of information. To achieve these and other objectives security methods often
use cryptography.

Several models have been developed to evaluate security methods and gain confi-
dence that security objectives are achieved. Usually these models include an adver-
sary, a malicious user that tries to tamper security. The adversary can be passive
and only listen to network traffic with the hope of getting hold of confidential infor-
mation. Active adversaries, instead, participate actively in the communication for
example through impersonation of agents and manipulation of messages. Often the
level of security has to be such that methods are correct even if an active adversary is
involved, however the computational power of the adversary need not be unlimited.
An information-theoretic measure of security assumes an adversary with unlimited
computational power. This measure expresses whether or not the system has uncon-
ditional security. A complexity theoretic measure instead assumes an adversary with
only polynomial computational power. Yet another measure of security is obtained
when one restricts even more the abilities of the adversary so that it can’t break cryp-
tographic primitives and can’t guess random numbers. In this way one can express
the level of security of the sole interactions between agents that communicate over a
computer network through a security protocol.

Security protocols are sequences of messages that describe how users can commu-
nicate securely over a network. Although simple in appearance, security protocols

1



Chapter 1. Introduction

involve complicated interactions. Unfortunately it is rather common that protocols
have security breaches even if informal security arguments support opposite claims.
A formal approach to the analysis of security protocols helps to determine the precise
conditions under which properties of a protocol hold or to reveal possible attacks to
a protocol’s security. Frequently the assumption that cryptography is unbreakable
simplifies formal reasoning about protocols and their properties. The restrictions and
capabilities of the adversary which are most common for a formal methods approach
to security protocol analysis are those originally described by Dolev and Yao [28].

1.1 Security protocols

Security protocols describe a way of exchanging data over an untrusted medium so
that, for example, data is not leaked and authentication between the participants in
the protocol is guaranteed or, instead, communication is anonymous. A protocol is
often described as a sequence of messages, and usually encryption is used to achieve
security goals.

As a running example, throughout the first chapters of this thesis we consider the
Needham-Schröder-Lowe (NSL) protocol:

(1) A −→ B : {m,A}Pub(B)

(2) B −→ A : {m,n,B}Pub(A)

(3) A −→ B : {n}Pub(B)

This protocol, like many others of its kind, has two roles: one for the initiator, here
played by agent A (say Alice), and one for the responder, here B (Bob). It is a public-
key protocol that assumes an underlying public-key infrastructure, such as RSA [67].
Both agents have their own, secret private key. Public keys in contrast are available
to all participants in the protocol. The NSL protocol makes use of nonces which one
can think of as newly generated, unguessable numbers whose purpose is to ensure
the freshness of messages. As is common practise, if Pub(A) is the public key of an
agent A and M a message, we indicate with {M}Pub(A) the cyphertext obtained by
encrypting M with the key Pub(A).

The protocol describes an interaction between A in the role of initiator and B
in the role of responder: A sends to B a new nonce m together with her own agent
name A, both encrypted with B’s public key. When the message is received by B,
he decrypts it with his secret private key. Once decrypted, B prepares an encrypted
message for A that contains a new nonce together with the nonce received from A and
his name B. Acting as responder, B sends the message to A, who recovers the clear
text using her private key. A convinces herself that this message really comes from
B by checking whether she got back the same nonce sent out in the first message. If
that is the case, she acknowledges B by returning his nonce. B does a similar test.

The NSL protocol is very common in practise, where it is part of a longer message-
exchange sequence; usually, after initiator and responder complete a protocol ex-
change, they will continue communication possibly using the exchanged nonces to
establish a session key. The NSL protocol aims at distributing nonces m and n in a
secure way, so that only initiator and responder know their value. (secrecy). Another
aim of the protocol is, for example, to guarantee Bob that m is indeed the nonce sent
by Alice (authentication).

2



1.1. Security protocols

Formalisation of protocols

Although in the informal explanation of the NSL protocol only two agents in their
respective roles are described, the protocol is really a shorthand for a situation of a
network of distributed agents, each able to participate in multiple concurrent sessions
as both initiator and responder. There is no assurance that they all stick to the
protocol, or indeed that communication goes to the intended agent. An attacker might
dissemble and pretend to be one or several agents, taking advantage of any leaked keys
it possesses in deciphering and preparing the messages it sends. As experience shows,
even if protocols are designed carefully, following established criteria [6], they may
contain flaws. To be useful protocols in fact involve many concurrent runs among a set
of distributed users. Then, for example, the NSL protocol is prone to a “middle-man”
attack violating both secrecy and authentication, if, as in the original protocol, the
name B is not included in the second message – this weakness was first pointed out
by Lowe [47]. Formal analysis of security protocols can both help to prove protocols
correct with respect to a chosen model and to discover flaws.

Formalisation of security properties

There is no common agreement on how to formalise the meaning of security. Prop-
erties such as secrecy or authentication can be defined in a variety of ways [2, 3, 5,
48, 71, 74]. A property, even the formulation of a property, may be more interesting
than another, depending on the protocol and the purpose for which the protocol was
designed. To avoid misunderstandings, when analysing a protocol it is important to
state precisely the properties that are proved and the conditions under which they
hold.

Properties like authentication and secrecy can often be regarded as forms of safety
properties in the sense that they reduce to properties holding of finite histories. In
this thesis we consider them as such. When we talk about secrecy we mean that:

“A message M is secret if it never appears unprotected on the medium.”

This definition is used for example in Paulson’s inductive method [61] and in the
strand-space approach [90] and was already used by Dolev and Yao [28]. A common
definition of authentication is the agreement property defined in Lowe [48]:

“An initiator A agrees with a responder B on same messageM if whenever
A completes a run of the protocol as initiator, using M apparently with B,
then there exists a previous run of the protocol where B acts as responder
using M apparently with A.”

Sometimes one requires in addition that a run of A corresponds to a unique “agreeing”
run of B.

There are other security properties one would like to prove about protocols, such
as integrity, anonymity, non-repudiation, etc. Some of them, like for example non-
interference, cannot be expressed as safety properties. Non interference provides a
different definition of secrecy and is often used in process-algebra approaches [5, 72].
It can be expressed by means of a process equivalence [3]:

“Given a process P (x) with only free variable x, P preserves the secrecy
of x if P (M) and P (N) are equivalent for all closed messages M and N .”

3



Chapter 1. Introduction

We do not study this alternative version of secrecy in this thesis. However we do
propose a process language for reasoning about protocols which might be helpful in
investigating differences between various security-definition styles.

The Dolev Yao model

The assumptions of the Dolev-Yao model are commonly used in modelling security
protocols to simplify reasoning about security properties. Originally introduced by
Dolev and Yao [28], their model underlies a variety of approaches, e.g., [47, 55, 61,
71, 74, 90]. The basic assumptions of the model are:

• Cryptography is treated as a black box; encrypted messages are assumed to be
unforgeable by anyone who does not have the right key to decrypt. Keys are
assumed to be unguessable.

• The adversary is an active intruder; not only capable of eavesdropping on mes-
sages sent over the communication medium but can also modify, replay and
suppress messages, and even participate in the protocol, masquerading as a
trusted user.

In the Dolev-Yao model the question

“Is a given protocol secure?”

is known to be decidable for a very special kind of protocols, namely cascade protocols
and name-stamp protocols [28]. In that context security is essentially secrecy and the
class of protocols for which the security question is decidable is rather restricted –
current protocols do not belong to it. Security is undecidable for a broader class of
protocols [30].

1.2 Events for security protocols

The last few years have seen the emergence of successful intensional, event-based,
approaches to reasoning about security protocols. The methods are concerned with
reasoning about the events that a security protocol can perform, and make use of
a causal dependency that exists between events. For example, to show secrecy in a
protocol it is shown that there can be no earliest event violating a secrecy property;
any such event is shown to depend on some earlier event which itself violates secrecy
– because the behaviour of the protocol does not permit such an infinite regress, the
secrecy property is established. In a similar way, dependency between events is used to
establish forms of authentication by showing that a sequence of communication events
of one agent entails a corresponding sequence of events of the intended participant.

Among others, the method of strand spaces [90] and the inductive method of
Paulson [62] have been designed to support such an intensional, event-based, style
of reasoning. Strand spaces are based on an explicit causal dependency of events,
whereas in Paulson’s method the dependency is implicit in the inductive rules, which
might express, for instance, that the input of a message depends on its previous
output. Both methods have successfully tackled a number of protocols though in an
ad hoc fashion. Both make an informal spring from a protocol to its representation,
as either a strand space or a set of inductive rules. Both methods do not address how
to build up their representation of a protocol in a compositional fashion.

4



1.3. Motivations

1.3 Motivations

The strand-space approach to security protocols and the inductive approach of Paul-
son have proved to be useful models for the analysis of security protocols. In particular
the strand spaces where dependencies among “events” are made more explicit, sug-
gest how security properties can be proved in a relatively easy way. In the Athena
tool [80, 81], an automatic-protocol checker based on the strand-space model, the de-
pendencies among events are exploited to avoid the state explosion problem and make
Athena one of the most efficient security protocol checkers developed so far. Although
proofs of security based on the inductive approach of Paulson seem to require more
work than strand-space based proofs, most of the steps in a proof can be carried out
automatically using a theorem prover like for example Isabelle [59].

A unifying event-based model

Although successfully applied to analysing numerous security protocols, existing event-
based models have been developed in a rather ad-hoc way. The strand-space model,
for example, has been invented specifically for the analysis of security protocols. Paul-
son’s approach instead adapts a more general purpose technique to represent security
protocols as a set of inductive rules. Although both methods are event-based it has
not been clear how they relate to each other and if there are differences that would
make one more suited to the analysis of certain protocols than the other. We seek
a unifying model in which we can both understand and relate various event-based
approaches to security-protocol analysis.

Language for security protocols

Both strand spaces and the inductive method make an informal spring from a protocol
to its representation, as either a strand space or a set of inductive rules. One way
to bridge this gap is by giving formal semantics to a language for describing security
protocols. To be a useful model, the semantics of the language needs to support
reasoning about security properties of the protocols programmed in the language.
Neither the strand-space model, nor the inductive model are well suited to give formal
semantics to a security protocol language directly, nor does the multiset rewriting
method of Mitchell et. al [16] – all these methods lack in compositionality.

Compositionality of the model

The event-based approaches developed so far do not address how to build up the
representation of a protocol in a compositional fashion. The description of how to
represent a protocol from the representation of smaller protocol components could
help and improve reasoning about protocols and suggest better ways to automatise
it. Compositionality is also essential in giving formal semantics to a security protocol
language.

Adequacy of existing approaches

Event-based models appear to have several limitations and therefore their successful
application to a broad range of protocols seems rather surprising. The strand-space
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model, for example, permits only a restricted form of nondeterminism arising only
through the choice as to where input comes from. We try to give a formal justification
to why some of the ad-hoc methods suffice for analysing several security protocols.

Relation to traditional models for concurrency

There are similarities between the event-based models and more traditional models
for concurrent computation. The strands of a security protocol, for example, look like
processes and the configurations (bundles) of a strand space like configurations of an
event structure. Studying the relations between ad-hoc models and more traditional,
well studied models like transition systems, Petri-nets or event structures may help
to develop new methods for analysing security protocols and improve the existing
approaches.

1.4 Contributions

Petri-nets as unifying model

We show that Petri nets provide a common framework in which to understand both
the strand-space and inductive methods, and it seems, although we understand it less
well, the multiset rewriting method of Mitchel et al. We establish precise relationships
between the net semantics and strand spaces and inductive rules and learn that both
methods relate substantially to the same kind of nets. These nets give semantics to
the kind of processes that security protocols usually describe. Strand-space proofs
are claimed to be shorter than the ones carried out in the inductive model. Moreover
they can be done by hand. The usual reason given for the advantage of strands over a
set of rules, is that strands take the dependencies among events of a crypto-protocol
into better account. It seems to us however, that proofs are shorter mainly because
the desired property is not proved directly, but via a “smart” invariant. We believe
that in many cases the same reasoning could be done based in the inductive method.
In fact the premises of a set of rules give the desired dependencies.

A study of nets with persistent conditions

Our Petri-net model for security protocols makes use of a particular kind of nets
in which some conditions are persistent. These nets can be seen as a special kind
of contextual nets. We show how nets with persistent conditions and therefore a
particular kind of contextual nets unfold, under reasonable assumptions, to more a
basic kind of nets. This unfolding appears to be new.

A formal justification to adequacy

The precise relation to our Petri-net model formally backs up the adequacy of strand-
space and inductive-rule representations for broad classes of security protocols and
properties, showing when nothing is lost in moving to these more restrictive models.
For example, a reason for the adequacy of strand spaces lies in the fact that they can
sidestep “conflict” if there are enough replicated strands available, which is the case
for numerous security protocols.
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Correspondence to traditional models for concurrency

We establish precise relationships between the net semantics and more traditional
models for concurrency: transition semantics, trace languages, and event structures.
Event structures are also related directly to strand spaces.

A security-protocol language with compositional semantics

By moving to a broader class of models we can show how event-based models can be
structured in a compositional way and so used to give a formal semantics to security
protocols which supports proofs of their correctness. To make the case, and provide
semantics to a whole range of protocols once and for all, we study the semantics of
SPL (Security Protocol Language). A protocol is a process term of SPL composed
out of process terms for the various protocol roles, including process terms for an
intruder. The model of a protocol is determined by the semantics of the language
and so tight to its syntactic description. First we give a traditional transition-system
semantics to SPL which describes the operational behaviour of security protocols in
a more intuitive way. We then study an event-based semantics of SPL based on Petri
nets which we can formally related to the more intuitive transition semantics. We
demonstrate the usefulness of the net semantics in deriving (in contrast to postulating)
proof principles for security protocols and apply them to prove security properties of
a number of protocols.

Composable strand spaces

In relating strand spaces to the net semantics of SPL we found it useful to extend
strand spaces so that we can compose them and observe the conditions under which
the extended model reduces to original strand spaces. We also address another issue of
compositionality. Because we are only interested in safety properties we can make do
with languages of strand-space bundles as models of process behaviour. We show how
to compose such languages so that they may be used directly in giving the semantics
of security protocols. As a consequence we characterise an interesting congruence
relation which lays the ground for equational reasoning between strand spaces.

Security protocol implementations

The transition semantics of SPL is intuitive and apparently easy. It should therefore
be not too difficult to implement and construct a compiler for the language. Protocols
written in SPL could then be both executed and formally studied. This approach
reduces the gap that normally exists between an abstract model of the protocol and
its actual implementation. Ideally security properties of the protocol model transfer
to the running code, provided the compiler for the language has been implemented
correctly.

To check the viability of an implementation of SPL we constructed a prototype
compiler and used a tuple-space to build an implementation of the language that works
in a distributed setting. We do not explain the details of our implementation in this
thesis and refer to [13, 21] instead. We tested our present implementation, called
χ-Spaces, with the protocols that we study in this thesis. Since SPL is particularly
simple, programs for protocols are short and concise. SPL and therefore χ-Spaces,
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however, need some extensions to be able to treat industrial-strength protocols. We
also started to use χ-Spaces as a testing tool by annotating the protocol roles so that
an execution together with a spy stops when a security breach is found. This is done
in a rather ad-hoc way and further study is needed. The first results, however, are
encouraging.

The main results that we describe in this thesis have been published [13, 21, 22, 23, 24].

1.5 Outline

Chapter 2 summarises existing approaches to security protocol analysis. The
strand-space method and the inductive method of Paulson, that we find are
more related to this thesis, are described in more detail.

Chapter 3 introduces those concepts from the theory of Petri-nets that are used
in this thesis. General nets and their simpler form, basic nets, are described.
We define nets with persistent conditions and discuss how they unfold to basic
nets.

Chapter 4 introduces SPL, a language for security protocols, its syntax, transition
semantics and net semantics. We use the NSL protocol to show how it can
be programmed as an SPL process and list the events of the net associated
with the process. In this chapter we also discuss how a very general spy can
be programmed in the language. The spy process can be added to the process
of a protocol to study the behaviour of the protocol in a hostile environment.
The chapter concludes with a formal proof of correspondence between the net
semantics of SPL and its transition semantics.

Chapter 5 discusses a way of using the net semantics to prove security properties
of a protocol. We explain why the net-semantics is more useful than the tran-
sition semantics in doing so. General proof principles are derived from the net
semantics of SPL and a general result describing when spy events need not be
considered in proofs of security. We demonstrate the use of the net semantics for
analysing security protocols by showing secrecy and authentication properties
for the NSL protocol.

Chapter 6 studies two key-transport protocols based on symmetric-key cryptog-
raphy. We show how to program the protocols in SPL and how to prove them
correct. The first protocol is the ISO 5-pass authentication protocol which makes
use of a trusted authority that distributes a session key. The second protocol
is a key-translation protocol, the Woo and Lam Π3 protocol. In this protocol
a trusted authority translates the cyphertext containing the key chosen by one
agent to one that can be deciphered by the other party. For both protocols
authentication and secrecy properties are studied as well as the robustness of
the protocols with respect to session-key compromise.

Chapter 7 explains some limitations of strand spaces and shows how to extend
strand spaces in order to compose them. Several operations are defined. These
operations form a language for strand spaces. We then describe how to compose
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bundle languages so that they may be used directly in giving the semantics of
security protocols. This allows us to characterise a congruence relation between
terms of the strand-space language based on the underlying bundle languages.
At the end of this chapter we show that, under conditions which are reasonable
in security protocols, the original strand spaces are equivalent to their extended
version and therefore are not unduly restrictive when they are used as a repre-
sentation of a wide range of security protocols.

Chapter 8 shows that a strand space is closely related to event structures, a
traditional model for concurrency. We then show how both strand spaces and
the inductive model relate to SPL and how SPL relates to other models for
concurrent computations.

Chapter 9 concludes and presents some ideas for future work.
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Chapter 2

Formal methods for security
protocols

Security protocols, despite their apparent simplicity, describe complex interactions
between a number of distributed agents. Informal reasoning about their security
properties is therefore error prone. Formal methods have been successfully applied
to security protocol verification. To make formal reasoning simpler, the underlying
cryptography is often assumed to be unbreakable. Nevertheless security weaknesses
for a number of protocols can be pointed out and the conditions under which security
properties hold can be made precise.

In this chapter we recall a number of formal approaches to security protocol veri-
fication without, however, trying to be exhaustive. We do not explain each method in
detail but point to existing literature instead. Both the strand space-method and the
inductive method of Paulson are more related to our work and therefore are explained
in more detail.

2.1 The inductive approach

We briefly summarise the inductive modelling approach of Paulson [11, 61, 62, 63] to
security protocols making use of the NSL-protocol example.

The protocol is modelled by a set of traces, NSL. Traces are sequences of actions.
The action Says A B M , means that agent A sent the message M to B. The action
Gets A M , instead, means that A received the message M . The protocol traces are
built up inductively by a set of rules as shown in Figure 2.1. The trace α t̂ is the trace
t extended with the action α. The inductive definition of Figure 2.1 differs slightly
from the one presented in Paulson [61] – it considers input actions “Gets” explicitly
as done in [62], rather than considering only output actions “Says”. The given rules
are to be thought of as schemata and the parameters A,B as ranging over a set of
agents participating in the protocol. Similarly n,m range over a set of nonces, M over
all possible messages that can be constructed from a set of values, by encryption and
composition of messages into message-tuples. We write set(t) for the set of messages
in the trace t, and parts(S) for the set of sub-components of messages in a set S
defined in the obvious way (see [62] for a formal definition). Each message of the
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λ ∈ NSL (empty)

t ∈ NSL Says A B M ∈ set(t)

(Gets B M )̂ t ∈ NSL
(receive)

t ∈ NSL n 6∈ parts(set(t))

(Says A B {n, A}Pub(B) )̂ t ∈ NSL
(1)

t ∈ NSL Gets B {n, A}Pub(B) ∈ set(t) m 6∈ parts(set(t))

(Says B A {n, m, B}Pub(A))̂ t ∈ NSL
(2)

t ∈ NSL Says A B {n, A}Pub(B) ∈ set(t) Gets A {n, m,B}Pub(A) ∈ set(t)

(Says A B {m}Pub(B) )̂ t ∈ NSL
(3)

t ∈ NSL M ∈ spy(t)

(Says Spy B M )̂ t ∈ NSL
(fake)

Figure 2.1: NSL-protocol rules

informal protocol description corresponds to a rule:

(1) This rule extends a trace with the first output message that appears in the proto-
col description, provided that A’s nonce is new and therefore does not already
appear in the trace to be extended n 6∈ parts(set(t)).

(2) Extending a trace with the second message of the protocol requires both that B’s
nonce is new and A’s message was previously received by B.

(3) To extend a trace with the last message that A sends to B, in addition to similar
preconditions to those of rule (2), the preconditions contain an equality check
on nonces. The nonce sent by A in the first message has to correspond to the
the nonce returned to A. This check is introduced by adding A’s first message
as a rule precondition.

(receive) An agent can get a message only if it has previously been sent to him. The
rule does not require any other precondition, thus the reception of a message is
always possible.

(fake) The last rule models the spy. The set spy(t) contains all the messages the
intruder can build up from past traffic. A typical spy can eavesdrop on all
messages (all messages in t are included in spy(t)), it can build up new messages
or extract parts of messages. Such an active spy may also be able to encrypt
and decrypt with all available keys, typically all public keys and the private
keys of corrupted agents. A precise definition of the set spy(t) can be found in
[61, 62].

NSL traces are closed under “stuttering” – once the premises of a rule hold, the rule
can be applied any number of times. In the following trace for example the rule (1)
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has been applied twice:

(Says A B {n, A}Pub(B))(Gets B {n, A}Pub(B))(Says A B {n, A}Pub(B)) .

One could think of a tighter model with a distinct receive rule for each different
message of the protocol and with premises that enforce events to occur in a sequential
fashion. To prove properties about protocols, it seems that the more “generous” model
described in Figure 2.1 is sufficient. One reason is that we want protocols to be secure
in a hostile environment where a spy can produce stuttering.

Security properties such as secrecy and authentication can be defined on the set
of traces of the protocol. The protocol rules are used to prove properties inductively.
Since proofs of security properties based on rule induction can be long, machine
support, using for example the Isabelle [59] theorem prover, is particularly valuable.

2.2 The strand-space approach

The strand-space model [35, 88, 89, 90, 91] for the analysis of security protocols is
based on sequences of actions called strands. In contrast to the inductive model a
strand is a sequence of actions of an individual agent and not of a global protocol
interaction.

A strand space consists of 〈si〉i∈I , an indexed set of strands. An individual strand
si, where i ∈ I, is a finite sequence of output or input actions of the kind outM or
inM respectively with M a message built up by encryption and pairing from a set of
values. A value whose first appearance in a strand is on an output message, is said to
be originating on that strand. A value is said to be uniquely originating on a strand
space if it is originating on only one of its strands. The concept of unique origination
captures the idea that a nonce or a value is chosen uniformly at random from a large
set and therefore practically unguessable.

The actions of an agentA that initiates an NSL protocol round withB as responder
and where n,m are the nonces involved can be described by the following strand:

(out {n,A}Pub(B))(in {n,m,B}Pub(A))(out {m}Pub(B)) .

The actions of the corresponding responder B instead can be described by the strand:

(in {n,A}Pub(B))(out {n,m,B}Pub(A))(in {m}Pub(B)) .

The NSL protocol as a system composed of initiator and responder runs can be
modelled by an indexed set of strands of the kind described above. Since nonces are
supposed to be unguessable one needs to take care in constructing the strand space for
NSL to keep nonces uniquely originating on the strand space. A spy can be modelled
by adding a number of strands that describe the intruder capabilities (see [88, 90, 91]
for more details).

A strand space has an associated graph whose events (nodes) identify an action of
a strand by strand index and position of the action in that strand. Events associated
to output actions are called output events and those associated to input actions input
events. Edges are between output and input events concerning the same message and
between consecutive events on a same strand. Bundles model protocol runs. A bundle
selects from the events of a strand space those that occur in a run of the protocol and

12



2.3. Other approaches

displays their causal dependencies. A bundle is a finite and acyclic subgraph of the
strand-space graph. Each node in the bundle requires all events that precede it on the
same strand (together with the edges that denote the strand precedence). Moreover
each input node in the bundle has exactly one incoming edge from an output node.
For example, a bundle for the NSL protocol describing a partial run of the protocol
between initiator A and responder B:

out {n,A}Pub(B) in {n,A}Pub(B)

out {n,m,B}Pub(A)

(for simplicity we draw actions associated with nodes instead of the nodes themselves).
Security properties are defined on the set of bundles of a strand space that de-

scribes a protocol. In proving security properties the dependencies among the events
in a bundle can be exploited to reconstruct from a known event the earliest event in
the bundle that violates the property. Proofs often turn out to be shorter than those
carried out using the inductive approach and therefore they can be done by hand.

Various techniques have been studied to make proofs in the strand-space model
even shorter and easier. The work on ideals [88] shows that, regardless of the protocol
under consideration, the “standard” attacker has limited abilities. These results can
be used to cut down the number of cases that arise when establishing which events
belong to a certain bundle to those events concerning trusted protocol participants.
Authentication tests [84, 86] can be applied to a number of protocols to establish
authentication properties analysing the behaviour of each trusted principal indepen-
dently. When an authentication test fails, however, the authentication property might
still hold for the protocol under consideration. The strand-space approach to security
protocols has been automatised to some extent. Athena [80, 81] is a security-protocol
checker based on an extension of the strand-space model. In Athena event depen-
dencies help avoiding state space explosion – a system with concurrent events is not
modelled with all possible event-interleavings but only with those combinations that
respect the event dependencies. Athena has also been used for the automatic genera-
tion of protocols that satisfy certain properties and to implement them in Java [82].

Another application of strand spaces studies the conditions under which two pro-
tocols can be considered independent [85] – the achievement of a security property by
one protocol does not depend on the achievement of a security property of the other
protocol. Independent protocols can therefore be composed without thwarting their
individual security properties. Strand spaces also aid the design of new protocols [36].

2.3 Other approaches

We recall a number of other approaches to the description and analysis of security
protocols.

Multiset rewriting and CAPSL. The multiset rewriting approach to security
protocols [16] is based on linear logic [32] and, similarly to the strand-space approach
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and the inductive approach, it follows the assumptions of Dolev and Yao. A pro-
tocol and a spy are described by a number of rewriting rules. To each action of a
principal corresponds a rule. Pre- and postconditions of a rule are first order logi-
cal formulae that describe both the local state of principals involved in the protocol
and the contents of the network through which principals communicate. Existential
quantification of formulae and the use of existential quantification similar to that of
natural deduction, models values that are freshly chosen during a protocol execution
(for example nonces). In the multiset rewriting approach certain logical formulae play
a role similar to strands and stand for system components [17]. This insight underlies
the connection between linear logic and strand spaces described in [15].

The high level language CAPSL [25] is close to informal protocol descriptions. Its
primary goal is to serve as a common specification language that can be translated
to input for different verification tools. CAPSL is based on the multiset rewriting
model [16]; a CAPSL program is translated to an intermediate language (CIL) from
which code for different verification tools is generated (through so called “connec-
tors”). A number of security properties can then be checked automatically. Not
all connectors have been formally proved correct and therefore it is not always clear
whether or not the verified properties are properties that hold on the multiset rewrit-
ing model of the protocol. The question of how to compose different CAPSL descrip-
tions has not been addressed yet either.

Recent work showed how java code can be generated from CIL code and so
implement protocols [53]. The Java code from CIL allows communication via sockets
to an environment (or network). A demonstration environment that works locally
has been programmed. We do not know if the system has already been tested in a
distributed setting.

Logic approaches. One of the first approaches to formal reasoning about security
protocols is a logic approach. The BAN logic [12] is a belief logic which represents
the believes of agents at various stages in a protocol execution as logical formulae.
The initial beliefs of the protocol participants are the logical formulae that describe
the various protocol steps. With the rules of the logic one derives formulae that
express security properties, typically authentication properties for the protocol. The
BAN logic does not, unfortunately, always provide an accurate analysis of protocols;
several protocols that appear to be secure in the BAN model reveal security breaches
when studied in a different model. For example, the security weakness of the Needham
Schröder protocol pointed out by Lowe [47] was not revealed by the BAN logic. The
logic seems to be more adequate for reasoning about freshness of nonces and keys and
to some extent for reasoning about authentication, than for other properties such as
confidentiality. Confidentiality in the BAN model is studied in a rather informal way
on top of the formulae that can be derived from the initial protocol axioms. There
have been several attempts to improve the BAN logic (see for example [49]) resulting,
however, in more complicated and less intuitive logics. The degree of adequacy of the
BAN logic for the analysis of security protocols has been hidden by its initial lack of
a clear operational semantics. Some of the subtleties of the logic have been clarified
by Abadi and Tuttle [7], we believe however that the logic still lacks an adequate
operationally based semantics. Another attempt to give semantics to the BAN logic
is that of Syverson [83] which is based on strand spaces.
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Process calculi, types, and model checking. The use of process calculi to
model security protocols allows a more operational view of a security protocol which
sometimes is more intuitive. The various protocol roles are modelled as processes that
exchange messages usually through channels. The formal semantics of the language
is then used as basis for the analysis.

Communicating Sequential Processes (CSP) [39], an abstract language for the de-
scription of concurrent systems, whose components interact via message passing, has
proved itself useful in modelling and analysing security protocols [39, 71, 72, 73, 74,
76, 75, 78]. In the CSP approach, not only the agents that participate in the protocol
are described as CSP processes but also the network and the spy. The analysis is
carried out on the trace model, the sequences of actions of processes of a CSP sys-
tem that represents the protocol. Security properties in fact, are often expressible
as safety properties and therefore they reduce to properties holding on finite traces.
Proving security properties by hand is rather lengthy and tedious in the CSP model.
If one restricts the attention to a finite subsystem then model checking techniques
can automatise the analysis. The FDR model checker, for example, has been applied
in a successful to verify “CSP security protocols” [47, 68]. Model checking techniques
are applicable to finite state system but security protocols typically have an infinite
number of states – they may involve an arbitrary number of rounds among the par-
ticipants and generate an arbitrary number of new nonces and keys. Under certain
assumptions the results obtained analysing a finite model, can be extended to the
whole infinite process describing a protocol. Data independence techniques [70] have
been used for that purpose.

Another process algebra that has been used to model and analyse security pro-
tocols is the π-calculus [54] and in particular its extension the Spi calculus [5]. The
Spi calculus extends the π-calculus with cryptographic primitives. The scoping rules
of the π-calculus together with its new name generation mechanism are particularly
useful to model the generation of new and unguessable values such as nonces. Se-
curity properties can be established by showing that certain equivalences between
Spi-calculus processes hold. In this context, there is no need to define a hostile
environment explicitly, the spy is an arbitrary Spi calculus process instead. Expe-
rience with the model has shown that proofs of security properties that are defined
by process equivalences require a lot of work. The work of Abadi [1] has shown that
type-checking techniques can help identifying in a much easier way which protocols
satisfies certain secrecy properties. A protocol that does not type-check, however, is
not said to be flawed. Gordon and Jeffry [34] developed another type system to check
for correspondence assertions, a certain kind of authentication properties (see Woo
and Lam [98]).

Other process calculi have been used to model security protocols and study some
of their security properties – the ambient calculus [14] and the Join calculus [4] for
example. A number of other model checkers and state exploration methods have
been applied to the verification of security protocols as well. To name a few of them,
Murphi [55], SVM [20], SPIN [10] and NRL [51]. The NRL protocol analyser com-
bines theorem proving and model checking – after automatically proving invariants
to reduce the state space it does an exhaustive search of the state space.

Petri-net approach. Petri nets have been applied to the verification of crypto-
graphic protocols [57]. We found that the level of detail of the approach in [57] makes
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the model rather complex and difficult to analyse. We do not see any significant
relationship between our approach and that of [57].

Computational-theoretic approaches. Advances have been made in formal rea-
soning about security protocols where some of the assumptions about the underlying
cryptography are lifted. Mitchel et al. proposes an approach based on the π-calculus
to study the interactions between a protocol and its cryptographic primitives. Cryp-
tography is not treated as a black box anymore and the spy is an arbitrary polynomial-
time process [44, 45, 46]. In [87] Guttman et al. quantify a bound on the divergence
between a protocol analysis carried out with the usual Dolev and Yao assumptions
on a strand-space model and one where the characteristics of concrete cryptographic
primitives are taken into account.
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Petri nets

Petri nets have been first introduced by C. A. Petri in the 60’s, and today are a
well known model for distributed and concurrent computations [8, 42, 66, 95, 97].
They are a so called “non-interleaving” model, where an event occurrence affects
only a neighbourhood of events within a global state. Events that do not affect part
of the same neighbourhood are said to be independent and could potentially occur
simultaneously.

In this thesis we use Petri nets to give semantics to a language specifically designed
for modelling security protocols. In this chapter we introduce the concepts from
Petri nets that we use later in the thesis. We first give a rather general definition
of Petri nets which we then specialise to a more basic kind of nets. Of particular
interest are nets with persistent conditions. We choose nets with persistent conditions
for modelling and analysing security protocols. It turns out that, under reasonable
conditions, nets with persistent conditions are not more expressive than the simpler
basic nets; we show how to unfold persistent conditions and yield a basic net out of
a net with persistence. Even if nets with persistent conditions arose independently
in previous studies, for example in the form of contextual nets or nets with test arcs,
we are not aware of a previous result that shows how to unfold them to basic nets.

3.1 General Petri nets

The explanation of general Petri nets involves a little algebra of multisets (or bags),
which are like sets but where multiplicities of elements matters. It’s convenient to also
allow infinite multiplicities, so we adjoin an extra element ∞ to the natural numbers,
though care must be taken to avoid subtracting ∞. ∞-Multisets support addition +
and multiset inclusion ≤, and even multiset subtraction X − Y provided Y ≤ X and
Y has no infinite multiplicities, in which case we call Y simply a multiset.

A general Petri net (often called a place-transition system) consists of

• a set of conditions (or places), P ,

• a set of events (or transitions), T ,

• a precondition map pre, which to each t ∈ T assigns a multiset pre(t) over P .
It is traditional to write ·t for pre(t).

17



Chapter 3. Petri nets

• a postcondition map post which to each t ∈ T assigns an ∞-multiset post(t)
over P , traditionally written t·.

• a capacity function Cap which is an ∞-multiset over P , assigning a nonnega-
tive number or ∞ to each condition p, bounding the multiplicity to which the
condition can hold; a capacity of ∞ means the capacity is unbounded.

A state of a Petri net consists of a marking which is an ∞-multiset M over P
bounded by the capacity function, i.e.

M≤ Cap .

A marking captures a notion of distributed, global state.
Token game for general nets: Markings can change as events occur, precisely how
being expressed by the transitions

M t→M′

events t determine between markings M and M′. For markings M, M′ and t ∈ T ,
define

M t−→ M′ iff ·t ≤M and M′ = M− ·t+ t· .

An event t is said to have concession (or be enabled) at a markingM iff its occurrence
would lead to a marking, i.e.iff

·t ≤M and M− ·t+ t· ≤ Cap .

There is a widely-used graphical notation for nets in which events are represented
by squares, conditions by circles and the pre- and postcondition maps by directed
arcs carrying numbers or ∞. A marking is represented by the presence of tokens on a
condition, the number of tokens representing the multiplicity to which the condition
holds. When an event with concession occurs tokens are removed from its precon-
ditions and put on its postconditions with multiplicities according to the pre- and
postcondition maps. Because of this presentation, the transition relation on Petri
nets is described as the “token game”.

3.2 Basic nets

We instantiate the definition of general Petri nets to an important case where in all
the multisets the multiplicities are either 0 or 1, and so can be regarded as sets.
In particular, we take the capacity function to assign 1 to every condition, so that
markings become simply subsets of conditions. The general definition now specialises
to the following.

A basic Petri net consists of

• a set of conditions, B,

• a set of events, E, and

• two maps: a precondition map pre : E→Pow(B) and a postcondition map
post : E → Pow(B). We can still write ·e for the preconditions and e· for the
postconditions of e ∈ E and we require .e ∪ e. 6= ∅.
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Now a marking consists of a subset of conditions, specifying those conditions which
hold.
Token game for basic nets: Markings can change as events occur, precisely how
being expressed by the transitions

M e→M′

events e determine between markings M,M′.
For M,M′ ⊆ B and e ∈ E, define

M e→M′ iff (1) ·e ⊆M & (M\·e) ∩ e· = ∅ (concession), and
(2) M′ = (M\·e) ∪ e· .

Property (1) expresses that the event e has concession at the marking M. Re-
turning to the definition of concession for general nets, of which it is an instance, it
ensures that the event does not load another token on a condition that is already
marked. Property (2) expresses in terms of sets the marking that results from the
occurrence of an event. So, an occurrence of the event ends the holding of its pre-
conditions and begins the holding of its postconditions. (It is possible for a condition
to be both a precondition and a postcondition of the same event, in which case the
event is imagined to end the precondition before immediately restarting it.)

There is contact at a marking M when for some event e

·e ⊆M & (M\·e) ∩ e· 6= ∅.

The occurrence of an event is blocked through conditions, which the event should
cause to hold, holding already. Blocking through contact is consistent with the un-
derstanding that the occurrence of an event should end the holding of its preconditions
and begin the holding of its postconditions; if the postconditions already hold, and
are not also preconditions of the event, then they cannot begin to hold on the occur-
rence of the event. Avoiding contact ensures the freshness of names in the semantics
of name creation.

Basic nets are important because they are related to many other models of con-
current computation, in particular, Mazurkiewicz trace languages (languages subject
to trace equivalence determined by the independence of actions) and event structures
(sets of events with extra relations of causality and conflict) – see [97].

3.3 Coloured nets

We briefly introduce coloured nets following Winskel [95]. Coloured nets have been
first introduced by Jensen [42] and are a useful abbreviation of Petri-nets. We consider
the case of coloured nets where all multisets have multiplicity either 0 or 1, and
therefore can be regarded as sets (see for example [95] for a more general definition).
This simpler case will be enough for the purposes of this chapter.

Our description of coloured nets, like many others, uses the notion of places and
transitions. These have a higher level nature and stand for sets of conditions and
events. Colours are associated to places and transitions so that one can think of a
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condition as of a place in a certain colour and of an event as of a transition in a certain
colour.

A coloured net consists of

• a set of places, P ,

• a set of transitions, T ,

• a colour function ∆ which associates each place p with a set of colours ∆(p) and
each transition t with a set of colours ∆(t),

• two maps: pre, post : E → Pow(B), where

E = {(t, c) | t ∈ T and c ∈ ∆(t)}
B = {(p, c) | p ∈ P and c ∈ ∆(p)} .

If e ∈ E then we abbreviate .e = pre(e) and e. = post(e). We require .e∪ e. 6= ∅
for all e ∈ E.

Markings for coloured nets consist of sets of conditions in B, which in this case are
places possibly instantiated to a particular colour. The token game is the same as for
basic nets:
Token game for coloured nets: For M,M′ ⊆ B and e ∈ E, define

M e→M′ iff (1) ·e ⊆M & (M\·e) ∩ e· = ∅ and
(2) M′ = (M\·e) ∪ e· .

As we mentioned, coloured nets are an abbreviation for ordinary Petri-nets. As
already shown in [95], the following proposition holds:

Proposition 3.3.1 A coloured net (P, T,∆, pre, post) determines a basic Petri-net
(E,B, pre, post) where

E = {(t, c) | t ∈ T and c ∈ ∆(t)}
B = {(p, c) | p ∈ P and c ∈ ∆(p)} .

2

3.4 Nets with persistent conditions

Sometimes we have use for conditions which once established continue to hold and
can be used repeatedly. This is true of assertions in traditional logic, for example,
where once an assertion is established to be true it can be used again and again in
the proof of further assertions. Similarly, if we are to use net events to represent rules
of the kind we find in inductive definitions, we need conditions that persist. In this
thesis, nets with persistent conditions are used for giving semantics to a language for
security protocols. The model of the language abstracts from a network considering it
as a pool of persistent messages which can be read simultaneously by more than one
agent. It can, for example, be convenient to use persistent conditions in modelling
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databases or shared memory systems where more than one user can read the same
data.

Persistent conditions can be understood as an abbreviation for conditions within
general nets which once they hold, do so with infinite multiplicity. Consequently
any number of events can make use of them as preconditions but without their ever
ceasing to hold. Such conditions, having unbounded capacity, can be postconditions
of several events without there being conflict.

To be more precise, we modify the definition of basic net given above by allowing
certain conditions to be persistent. A net with persistent conditions will still consist
of events and conditions related by pre- and postcondition maps which to an event
will assign a set of preconditions and a set of postconditions. But, now among the
conditions are the persistent conditions forming a subset P . A marking of a net with
persistent conditions will be simply a subset of conditions, of which some may be
persistent. Nets with persistent conditions have arisen independently several times
and have been studied for example in contextual nets [56] and as an extension of
coloured nets with test arcs [18, 43].

A net with persistent conditions can be understood on its own terms, or as standing
for a general net with the same sets for conditions and events. The general net’s
capacity function will be either 1 or ∞ on a condition, being ∞ precisely on the
persistent conditions. When p is persistent, p ∈ e· is interpreted in the general net as
(e·)p = ∞, and p ∈ ·e as (·e)p = 1. A marking of a net with persistent conditions will
correspond to a marking in the general Petri net in which those persistent conditions
which hold do so with infinite multiplicity.

Graphically, we’ll distinguish persistent conditions by drawing them as double
circles:

Token game with persistent conditions: The token game is modified to account
for the subset of conditions P being persistent. Let M and M′ be markings (i.e.
subsets of conditions), and e an event. Define

M e→M′ iff ·e ⊆M & (M\ (.e ∪ P )) ∩ e· = ∅ (concession), and
M′ = (M\ ·e) ∪ e· ∪ (M∩ P ) .

The token game fits our understanding of persistence, and specifically it matches
the token game in its interpretation as a general net. In this thesis, these special
contextual nets are used in modelling and analysing security protocols.

The token game of a net with persistent conditions could be generalised to tran-
sitions

M A−→ M′

where A is set or even an ∞-multiset of events. If one permits A to be a multiset then
one might allow an event to occur in the net simultaneously more than once. In basic
nets this would never be the case because all conditions are marked with multiplicity 1.
In nets with persistent conditions however, one might want to permit simultaneous
occurrences of those events whose pre- and postconditions are all persistent.
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3.5 Nets with persistent conditions and basic nets

In this section we show how to unfold a net with persistent conditions to a basic
net. We first construct a coloured net from the net with persistent conditions and
then, through a well known unfolding, a basic net. A run of the net with persistent
conditions relates to a run of the unfolded, basic net provided that any event that
marks a persistent condition does not occur more than once in the run.

It is known how a coloured net with test arcs can be transformed to an equiva-
lent coloured net without test arcs (see [18]). That construction, however, introduces
infinite multiplicities in the unfolded net. Test arcs have a similar function to persis-
tent conditions. If an event has a precondition connected with a test arc then it can
occur only if the condition is marked; when the event fires, however, that condition
is not consumed. If one tries to unfold nets with persistent condition as suggested
in [18] then conditions with infinite capacity replace those with persistence. A gen-
eral Petri-net is the result of the unfolding. In this section we show a much stronger
result; it tells how persistent conditions can be unfolded to yield a basic net where all
multiplicities are either 0 or 1.

In this section we make use of the following notation: Write
.b = {e | b ∈ e.} ∪ {∗}

for all the events that mark the condition b. We add ∗ to indicate that b can be
included in an initial marking and therefore need not be marked by an event. Write

b. = {e | b ∈ .e}
for the set of events that have b as one of their preconditions.

3.5.1 Unfolding persistent conditions

Consider a net with persistent conditions

(B,P,E, pre, post)

it unfolds to the coloured net

(B,E,∆, pre, post)

where ∆ is a colouring function for events and conditions. The colour of an event that
has persistent preconditions is a tuple consisting of all its persistent preconditions and
of a choice of events that marks them. We colour an event that does not have any
persistent preconditions with the default colour δ. More precisely, for every event
e ∈ E

∆(e) =

{ {δ} if .e ∩ P = ∅∏
b∈.e∩P ({b} × .b) otherwise .

The colour of a persistent condition consists of a set of pairs of events that can
mark the condition with the events that require the condition marked. The colour of
ordinary conditions instead is the default colour δ. More precisely, for every condition
b ∈ B

∆(b) =

{ {δ} if b ∈ B \ P
.b× b. otherwise .
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The precondition map of the coloured net is defined for pairs (e, c) of events e and
colours c ∈ ∆(e) as follows:

pre(e, c) = {(b, δ) | b ∈ .e \ P} ∪ {(b, (e′, e)) | (b, e′) ∈ c} .

The postcondition map for pairs (e, c) where e is an event and c ∈ ∆(e) is defined as
follows:

post(e, c) = {(b, δ) | b ∈ e. \ P} ∪
{(b, (e, e′)) | b ∈ e. ∩ P and e′ ∈ b.} ∪
{(b, (e′, e)) | (b, e′) ∈ c} .

As an example of the construction consider the following net with persistent condi-
tions:

bbb
���

��� J
J
J
J
J

b1 b2

b3

b4

e1 e2

e3

e4

It unfolds to the following coloured net, where non-default colours are listed in curly
brackets next to events and conditions:

bbb
���

��� J
J
J
J
J

b1 b2

b3 {(∗, e3), (e1, e3), (e2, e3), (∗, e4), (e1, e4), (e2, e4)}

b4

e1 e2

e3{(b3, ∗), (b3, e1), (b3, e2)}

e4
{(b3, ∗)(b3, e1), (b3, e2)}

As shown in Winskel’s [95] a coloured net determines a Petri-net. In this case the
coloured net obtained from a net with persistent conditions yields the basic net

(B′, E′, pre, post)

with conditions
B′ =

⋃
b∈B

{b} ×∆(b)

and with events
E′ =

⋃
e∈E

{e} ×∆(e) .

If one applies this unfolding to our example one obtains the basic net:
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aaaaaaaaa

b4

b2b1

e1 e2

(b3, (e1, e3))(b3, (∗, e3)) (b3, (e2, e4))

(e3, (b3, e1))

(e4, (b3, e1)) (e4, (b3, e2))

(e3, (b3, e2))

(b3, (e2, e3))

(b3, (∗, e4))

(e4, (b3, ∗))

(e3, (b3, ∗))

(b3, (e1, e4))

The construction that unfolds persistent conditions into ordinary conditions keeps
track of how the conditions can be marked and of what events can consume a condi-
tion.

Persistent conditions in a net can be part of the initial marking and therefore do
not necessarily need an event to mark them. Conditions of the kind (b, (∗, e)) are
introduced so that the behaviour of a net that has the persistent condition b in its
initial marking is still related to the unfolded net where the initial marking contains
(b, (∗, e)). For example consider the net

b

e1

e2

•

and its unfolding:

bbbbb

e1

(b, (e1, e2))

(e2, (b, e1))(e2, (b, ∗))

(b, (∗, e2))
•

If we marked initially condition (b, (e1, e2)) instead of (b, (∗, e2)) the event e1 would not
be able to occur unless (e2, (b, e1)) occurs first. In the net with persistent conditions
however e1 can always occur.

3.5.2 Relating nets with persistent conditions to basic nets

The construction that we described in the previous section, which shows how to
unfold a net with persistent conditions into a basic net, is correct when the runs of
the net it yields are substantially the same to the runs of the original net. Not all
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nets with persistent conditions unfold well if one applies the described construction.
Nets unfold well if they do not have runs where events with persistent postconditions
appear more than once in the same run. The following example illustrates the reasons
for this restriction. Consider the net:

e1

b

e2

•

.

The event e1 can occur more than once in a run of the net, without the event e2
necessarily having to occur. In the unfolding of the net, however, after the event
(e1, (b, ∗)) occurs once, it can occur again only after the event (e2, (b, e1)) has occurred.

###
ccc

(b, (e1, e1))

(b, (e1, e2))

(e1, (b, e1))

(b, (∗, e1))

(e2, (b, ∗)) (e2, (b, e1))

(b, (∗, e2))

(e1, (b, ∗))

•

•

.

Let M ⊆ B and M̄ ⊆ B′ be two markings. Define M ∼ M̄ if all the following
conditions hold:

1. M\ P = {b | (b, δ) ∈ M̄},
2. if b ∈M∩ P then ∃e ∈ .b . ∀e′ ∈ b. . (b, (e, e′)) ∈ M̄,

3. if (b, c) ∈ M̄ and c 6= δ then b ∈M∩ P .

Write M≺ M̄ whenever the first and the third condition above hold but not neces-
sarily the second condition.

Theorem 3.5.1 Let N be a net with persistent conditions and N ′ be the basic net
obtained from it by the described construction.

1. To every finite run
M0

e1−→ · · · ei−1−→ Mi
ei−→ · · ·

in N in which events that carry persistent postconditions occur at most once,
there corresponds a run

M̄0
(e1,c1)−→ · · · (ei−1,ci−1)−→ M̄i

(ei,ci)−→ · · ·
in N ′ such that at every stage i in the run ci ∈ ∆(ei) and Mi ∼ M̄i.

2. To every finite run

M̄0
(e1,c1)−→ · · · (ei−1,ci−1)−→ M̄i

(ei,c1)−→ · · ·
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in N ′ there corresponds a run

M0
e1−→ · · · ei−1−→ Mi

ei−→ · · ·
in N such that at every stage i in the run Mi ≺ M̄i.

Proof.

1. By induction on the length of a run in N . Let M0 be a marking of conditions
in N and define

M̄0 = {(b, δ) | b ∈ M0 \ P} ∪
⋃

b∈M0∩P
{b} × ({∗} × b.) .

Clearly M̄0 is a marking of conditions in N ′ and M0 ∼ M̄0. Suppose that to
a run in N

M0
e1−→ · · · ei−1−→ Mi

corresponds in N ′ the run

M̄0
(e1,c1)−→ · · · (ei−1,ci−1)−→ M̄i

such that Mj ∼ M̄j for all 0 ≤ j ≤ i. If

Mi
ei+1−→ Mi+1

then .ei+1 ⊆Mi and therefore, since by the induction hypothesis Mi ∼ M̄i, it
follows that

.ei+1 \ P ⊆ {b | (b, δ) ∈ M̄i}
and for all b ∈ .ei+1 ∩ P there exists ej ∈ .b such that

(b, (ej , ei+1)) ∈ M̄i .

This yields a colour ci+1 ∈ ∆(ei+1) and therefore an event (ei+1, ci+1) in the
net N ′ such that

.(ei+1, ci+1) ⊆ M̄i .

More precisely, one distinguishes two cases:

If .ei+1 ∩ P = ∅ then

∆(ei+1) = {δ} and .(ei+1, δ) = {(b, δ) | b ∈ .ei+1} .
Since .ei+1 ⊆ {b | (b, δ) ∈ M̄i} clearly

.(ei+1, δ) ⊆ M̄i .

If instead .ei+1 ∩ P 6= ∅ then let

ci+1 ∈ Πb∈.ei+1∩P ({b} ×A)

where A ⊆ .b is the set of events ej such that (b, (ej , ei+1)) ∈ M̄i. It is easy to
check that

.(ei+1, ci+1) ⊆ M̄i .
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The event (ei+1, ci+1) is enabled at the marking M̄i if it does not cause contact,
in other words if

(M̄i \ .(ei+1, ci+1)) ∩ (ei+1, ci+1). = ∅ .

Suppose the contrary. Assume that there exists a condition b and an event
e such that (b, (ei+1, e)) ∈ (ei+1, ci+1).. Then b ∈ e.i+1 ∩ P . Assume also
that (b, (ei+1, e)) ∈ M̄i. The event ei+1 is an event of the net N , therefore
(b, (ei+1, e)) 6∈ M̄0 (otherwise ei+1 would be ∗). It follows from the token game
for basic nets that there is an event occurrence (ej , cj) with j ≤ i such that
(b, (ei, e)) ∈ (ej , cj). and therefore a preceding event occurrence in the run of N
such that b ∈ e.j ∩P . The assumption that in the run of N under consideration
an event with persistent postconditions occurs at most once is contradicted.
One can reach a contradiction in a similar way for the case where one assumes
(b, δ) ∈ (ei+1, ci+1). and (b, δ) ∈ M̄i. Therefore

M̄i
(ei+1,ci+1)−→ M̄i+1

where M̄i+1 is the marking obtained with the token game for basic nets. The
markings

Mi+1 = (Mi \ (.ei+1 \ P )) ∪ e.i+1 and

M̄i+1 = (M̄i \ {(b, δ) | b ∈ .ei+1 \ P})
∪ {(b, δ) | b ∈ e.i+1 \ P}
∪ {(b, (ei+1, e)) | b ∈ e.i+1 ∩ P and e ∈ b.}

are such that Mi+1 ∼ M̄i+1.

2. Consider a marking M̄0 of conditions in N ′ and define

M0 = {b | (b, c) ∈ M̄0} .

Clearly M0 ≺ M̄0. Suppose that to the run in N ′

M̄0
(e1,c1)−→ · · · (ei−1,ci−1)−→ M̄i

corresponds the run
M0

e1−→ · · · ei−1−→ Mi

in N such that Mj ≺ M̄j for all 0 ≤ j ≤ i. If

M̄i
(ei+1,ci+1)−→ M̄i+1

then .(ei+1, ci+1) ⊆ M̄i. From the induction hypothesisMi ≺ M̄i and therefore
.ei+1 ⊆Mi.

The event ei+1 is enabled at the marking Mi if

(Mi \ (.ei+1 ∪ P )) ∩ e.i+1 = ∅ .
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Suppose there is contact, instead. Since N is a net with persistent conditions,
contact can happen only on non-persistent. Suppose therefore that there is
a condition b such that b ∈ ei+1

. \ P and b ∈ Mi \ .ei+1. Clearly (b, δ) ∈
(ei+1, ci+1)

. and (b, δ) ∈ M̄i \. (ei+1, ci+1) since Mi ≺ M̄i. This, however, is
not possible since the event (ei+1, ci+1) is enabled.

Therefore
Mi

ei+1−→ Mi+1

whereMi+1 is the marking obtained with the token game on nets with persistent
conditions. In a similar way to point 1. one can show that Mi+1 ≺ M̄i+1.

2

For simplicity we studied the relation between the runs of a net with persistent
condition and the runs of the unfolded net only when one event at a time can fire.
Petri-nets can describe true concurrent behaviour and so one might want to generalise
the above result to runs in which events can occur simultaneously. Provided some
care is taken, the result can be generalised straightforwardly:

• One can generalise to transitions of the kind M A−→ M′ where A is a set but
not a multiset; simultaneous or concurrent occurrences of events are allowed,
provided they are not occurrences of the same event. The marking of the follow-
ing net, for example, permits the event e to occur simultaneously any number
of times:

b

e

•

.

In its unfolding, however, the event e can occur any number of times but only
once at a time:

(e, (b, ∗))

•
(b, (∗, e))

.

• If one does generalise to transitions M A−→M′ where A is a set then one needs
to impose another restriction: all events in the net with persistent conditions
carry at least one non-persistent condition. Consider the following net with
persistence

###
lll

b

e1 e2

e3

and suppose that both the events e1 and e2 occur in one of its runs. In the
unfolded net
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e1 e2

(e3, (b, e1)) (e3, (b, e2))(e3, (b, ∗))

(b, (e2, e3))(b, (e1, e3))(b, (∗, e3))

,

the events (e3, (b, e1)) and (e3, (b, e2)) can both occur simultaneously. One would
therefore obtain a corresponding run in the net with persistence that contains
two simultaneous occurrences of the event e3. Transitions M A−→ M′ where
A is a set can’t, however, express simultaneous occurrences of e3 – one would
need a multiset instead. If the net with persistent conditions is such that every
event has at least one non-persistent condition then contact on that condition
prevents the previous situation. Consider for example

###
lll

b

e1 e2

e3

and its unfolding

bbbbb

�����

e1 e2

(b, (e2, e3))(b, (e1, e3))(b, (∗, e3))

(e3, (b, e1)) (e3, (b, e2))(e3, (b, ∗))

.
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A Security Protocol Language

The few lines of an informal protocol description appear very simple at first sight.
It is not uncommon to be deceived by this apparent simplicity in thinking that the
protocol satisfies a number of desired security properties, when instead it can take
very little for an attacker to undermine security. Only a rigorous way of reasoning
about the protocol and its properties can give enough guarantees about its correctness
and show the conditions under which security is not compromised.

In order to be more explicit about the activities of participants in a protocol
and those of a possible attacker, and to express these compositionally, we design an
economical process language for the purpose. The language SPL (Security Protocol
Language) that we introduce resembles Linda [31] in some ways: simple primitives
are provided so that distributed agents can interact via a common space to which
messages are sent and from which messages are received via pattern matching.

Security protocols often make use of cryptography to achieve the desired security
goals, therefore messages of the SPL language may contain cyphertext. In SPL an
underlying cryptographic system is assumed, however without fixing a particular one.
Even if SPL abstracts from the the details of concrete cryptographic algorithms the
language provides means of representing public key and symmetric key cryptography
and it could easily be extended to represent other operations such as for example hash-
ing. The main assumption that is made about cryptography is that it is unbreakable
and that random numbers are unguessable.

The space of messages through which communication takes place is, in some cases,
a quite abstract model of a complex network in which communication can be point
to point. However, when studying security properties that are meant to hold for all
possible executions of a protocol, the simple “space model” turns out to be sufficient.
This is certainly the case for security protocols that operate in hostile environments,
where malicious entities have the power to redirect messages. In SPL we chose to
abstract even further and consider all messages in the network (the space) to be
persistent – once sent messages remain available on the network forever. If a malicious
entity has access to the network so that it is able to redirect the communication and
make an arbitrary number of copies of any message that appears on the network then
a space with message persistence conveniently incorporates this form of hostility.

The SPL language is a process language and close to an asynchronous π-Calculus
[54], similar to that adopted in [5], though in its treatment of new names its transition
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semantics will be closer to that in [64] (it separates concerns of freshness from concerns
of scope which are combined in the π-Calculus restriction).

In order to express security proprieties of a protocol programmed in SPL in a
precise way we give a formal semantics to the language. A traditional transition-
semantics allows several security properties to be formalised. However, an obvious
proof strategy based on establishing an invariant property of the transitions that
constitute a protocol run, is badly supported by the SPL transition-semantics. A
different semantics for the language, an event-based semantics in which the events
of a protocol and their dependencies are made explicit, appears more appropriate.
It turns out that the events of SPL and their pre- and postconditions form a Petri-
net [66, 95]. The SPL net is strongly related to t he more traditional transition system
of the language.

This chapter introduces both syntax and semantics of SPL. In Section 4.1 we in-
troduce its syntax together with an informal meaning of the main language constructs
and some conventions that make SPL programs more concise. As a first examples
of SPL programs we show the processes for the Needham-Schröder-Lowe protocol
[47] and for a powerful spy. The system obtained composing protocol and attacker
models an interesting situation of a security protocol operating in a rather hostile
environment and for which security questions don’t find an immediate and obvious
answer. A traditional transition semantics for SPL is described in Section 4.2. The
same section gives reasons for the inadequacy of the transition model which lead to
the net-semantics of Section 4.3. As an example of the reachable events of a process
in the SPL net, the NSL events and the spy events are described graphically.

4.1 The syntax of SPL

In this section we show the syntax of SPL and give an informal explanation of the
main language constructs. Some conventions are introduced to help programming
and to make programs more concise. As an example of how SPL can be used to
formalise security protocols we show how to program the Needham-Schröder-Lowe
(NSL) protocol in SPL – the informal protocol description of Section 1.1 is taken to a
process term giving precise account of the activities of the participants in the protocol.
In addition we give the SPL process for a rather powerful and general attacker which
describes the hostile environment in which security protocols often operate.

4.1.1 Syntactic sets

We start by giving the syntactic sets of the language:

• An infinite set of names N, with elements n,m,A, · · · . Names range over nonces
as well as agent names, and can also include other values. We often use capital
letters for names of agents and reserve small letters for nonces and other values.

• Variables over names x, y, · · · , X, Y, · · · .
• Variables over keys χ, χ′, χ1, · · · .
• Variables over messages ψ, ψ′, ψ1, · · · .
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Name expressions v ::= n,A, · · · | x,X, · · ·
Key expressions k ::= Pub(v) | Priv(v) | Key(~v) | χ, χ′, · · ·
Messages M,M ′ ::= v | k | M,M ′ | {M}k | ψ, ψ′, · · ·
Processes p ::= out new(~x) M.p | in pat ~x~χ~ψ M.p | ‖i∈Ipi

Figure 4.1: Syntax of SPL

• Indices i, j ∈ Indexes with which to index components of parallel compositions.

The other syntactic sets of the language are described by the grammar shown in
Figure 4.1. We use “vector” notation; we assume that vectors of variables consist of
a possibly empty list of distinct variables (for example, the vector ~x abbreviates some
possibly empty list x1, · · · , xl) wheres vectors of name expressions and messages have
at least one element and may contain repetitions.

We use Pub(v), Priv(v) for the public, private keys of v, and we use Key(~v) for
the symmetric key shared by agents with names in ~v. Keys can be used in building
up encrypted messages. A message can be a name or key expression, the composition
of two messages M,M ′, an encryption {M}k representing the message M encrypted
using the key k, or a message variable.

4.1.2 Free variables

In the process terms out new(~x)M.p and in pat ~x~χ~ψM. p, the annotations new(~x)
and pat~x~χ~ψ are binders for the variables in the lists ~x and ~x~χ~ψ respectively. The
occurrence of a variable x, χ or ψ in a process term is said to be bound if it occurs in
the scope of a “new(~x)” or “pat ~x~χ~ψ” with x ∈ ~x or ψ ∈ ~ψ. A variable occurring in
a process term is said to be free if it is not bound. Formally one can define the set of
free variables fv(p) of a process term p on the structure of the term. Let fv(M), the
free variables of a message M , to be the set of variables which appear in M (this set
can be easily defined by induction on the structure of messages) and define:

Definition 4.1.1 (Free variables of a process term)

fv(out new(~x)M.p) = (fv(p) ∪ fv(M))\{~x}
fv(in pat~x~χ~ψM.p) = (fv(p) ∪ fv(M))\{~x, ~χ, ~ψ}
fv(‖i∈Ipi) =

⋃
i∈I fv(pi) .

2

As usual, we say that a process without free variables is closed, as is a message without
variables.

We use standard notation for substitution into the free variables of an expression.
For example p[~x/~n] stands for the process term obtained from p substituting each
free occurrence of a variable in the list ~x with the corresponding value in the list ~n.
We will only be concerned with the substitution of names or closed (variable-free)
messages, obviating the problems of variable capture.
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4.1.3 Informal meaning of processes

As shown in the grammar of Figure 4.1, SPL processes are built up either by pre-
fixing a smaller process with an action or by composing several processes in parallel.
The empty parallel composition is the smallest component and forms the basic case
for building up process terms inductively. SPL actions are very simple; they allow
processes to communicate through a space of messages by sending a message onto the
space or receiving a message from the space whenever a pattern is matched success-
fully. In addition, new name generation is incorporated in the output action.

Process terms are informally explained as follows:

out new(~x)M.p This process chooses fresh, distinct names ~n = n1, · · · , nl and binds
them to the variables ~x = x1, · · · , xl. The message M [~n/~x] is output to the
network and the process resumes as p[~n/~x]. The communication is asynchronous
in the sense that the action of output does not await input. The new construct
is like that of Pitts and Stark [64] and abstracts out an important property of
a value chosen randomly from some large set: such a value is likely to be new.

in pat ~x~χ~ψM.p This process awaits an input that matches the pattern M for some
binding of the pattern variables ~x~χ~ψ and resumes as p under this binding. All
the pattern variables ~x~χ~ψ must appear in the pattern M .

‖i∈Ipi This process is the parallel composition of all components pi for i in the in-
dexing set I. The set I is a subset of Indexes. Indices help distinguish to
what agent, in which role and run a particular action belongs. The process,
written nil, abbreviates the empty parallel composition (where the indexing set
is empty).

4.1.4 Some conventions

It simplifies the writing of process expressions making them more concise, if we adopt
some conventions.

1. We simply write outM.p when the list of “new” variables is empty.

2. We allow ourselves to write
· · · in M . p · · ·

in an expression, to be understood as meaning the expression

· · · in pat ~x~χ~ψ M . p · · ·

where the pattern variables ~x~χ~ψ are precisely those variables left free in M by
the surrounding expression. For example

in ψ . out new(x) ψ, x . in x . nil

For the first input, the variable ψ is free in the whole expression, so by convention
is a pattern variables. On the other hand, in the second input the variable x
is bound by the outer out new(x) · · · and so by the convention is not a pattern
variable, and has to be that value sent out earlier.
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3. Often we won’t write the nil process explicitly, so, for example, omitting its
mention at the end of process term.

4. A parallel composition can be written in infix form via the notation

p1||p2 · · · ||pr ≡ ||i∈{1,··· ,r}pi .

5. Replication of a process, !p, abbreviates ‖i∈ωp, consisting of countably infinite
copies of p set in parallel.

4.1.5 The size of a process

Often definitions and proofs by structural induction won’t suffice, and we would like
to proceed by induction on the “size” of closed process expressions, i.e. on the number
of prefix and parallel composition operations in the process expression. But because
of infinite parallel compositions, expressions may not contain just a finite number of
operations, so we define size(p) of a process term p to be an ordinal as follows:

Definition 4.1.2 The size of a closed process term is an ordinal given by the struc-
tural induction:

size(out new(~x)M.p) = 1 + size(p)

size(in pat~x~χ~ψM.p) = 1 + size(p)
size(‖i∈Ipi) = 1 + supi∈Isize(pi) .

2

The size of a process term does not change if some of its variables are substituted
by names or messages.

Proposition 4.1.3 Let ~x, ~χ, and ~ψ be vectors of name and message variables re-
spectively and let ~n, ~k, and ~M be vectors of names, keys, and messages respectively.
For every process term p

size(p) = size(p[~n/~x,~k/~χ, ~M/~ψ]) .

Proof. By induction on the structure of process terms p and making use of the defi-
nition of size and substitution. 2

4.1.6 The algebra of messages

Messages are built up as described in the grammar of Figure 4.1:

M,M ′ := v | k | M,M ′ | {M}k | ψ, ψ′, . . .
where v stands for any value expression, k stands for any key expression, and ψ, ψ′, . . .
are message variables. The set of messages we are interested in is therefore given by
the free algebra constructed from value and key expressions and message variables by
concatenation of messages and encryption of messages with keys and such that the
operation of message concatenation is associative. No other equations on messages
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are added. We don’t make use of parentheses when writing a message term that is the
concatenation of a number of shorter messages and we say that two messages M and
N are equal and write M = N if they are syntactically the same term. In particular
the following property on message terms holds:

Proposition 4.1.4 (Strong encryption.) For all messages M,N and keys k, k′, if
{M}k = {N}k′ then M = N and k = k′. 2

This means that if two cyphertexts are the same then they were obtained using the
same cleartext and the same key. In other words, a cyphertext can be decrypted only
with the right key. In practise, encryption schemes may not satisfy this property,
like for example the symmetric encryption scheme CBC (see [33]) that uses the DES
block cypher (see [26]) or a public key encryption scheme like RSA (see [67]). In good
encryption schemes, however, it is hard to find messages and keys that violate strong
encryption. The message algebra of SPL is making an assumption, an idealisation
about the underlying cryptography, the strong encryption assumption. This assump-
tion is common in other models like the Spi calculus [5], the inductive approach of
Paulson [61], strand spaces [90] and model checking approaches (e.g. [20]).

Pairing messages through message concatenation does not give any nested struc-
ture to a message tuple so that when matched against a pattern there can be a choice
to how to decompose a tuple. For example consider the message given by the tuple

A,B, n

and consider the following process that inputs a tuple from the space, destructs it in
two subcomponents and sends the two separate components onto the space:

in ψ, ψ′ . out ψ . out ψ′ .

The input action of this process carries a pattern that can match the tuple A,B, n in
two different ways: one where the variable ψ is bound to the agent name A and the
variable ψ′ is bound to the pair B, n, and another one where ψ is bound to A,B and
ψ′ is bound to the name n. The semantics of SPL does not resolve this choice and
therefore nondeterministic behaviour can arise in input actions when concatenated
messages are matched.

4.1.7 A submessage relation

We define a submessage relation among messages belonging to the set of messages
described by the grammar in Figure 4.1 and we write M vM ′ meaning that message
M is a subexpression of message M ′. More precisely:

Definition 4.1.5 The relation v is the smallest binary relation on messages defined
by the following rules:

M vM (1) ,
M v N

M v N,N ′ (2)
,

M v N

M v N ′, N
(3)

,

M v N

M v {N}k (4)
.

2

As expected, the submessage relation that we just defined satisfies the following prop-
erties:
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Proposition 4.1.6 For all messages M,M ′, N and for all keys k the relation v is
such that

1. M,M ′ v N ⇒ M v N and M ′ v N ,

2. {M}k v N ⇒ M v N

Proof. We make use of the inductive definition of v and proceed by rule induction.
Suppose M,M ′ v N has been derived applying one of the rules in Definition 4.1.5,
we distinguish the following cases:

• If axiom (1) was applied then N = M,M ′. Since M v M and M ′ v M ′ we
derive M v N and M ′ v N using rule (2).

• If rule (2) was applied then N = N ′, N ′′ for some messagesN ′, N ′′ and M,M ′ v
N ′. By the induction hypothesis M v N ′ and M ′ v N ′. We can now apply
rule (2) and obtain M v N ′, N ′′ and M ′ v N ′, N ′′ as desired.

• The case of rule (3) is analogous to the one of rule (2).

• If rule (3) was applied then N = {N ′}k for some message N ′ and M,M ′ v N ′.
By the induction hypothesis M v N ′ and M ′ v N ′. Applying rule (4) we
obtain M v {N ′}k and M ′ v {N ′}k as we wanted.

Along the same lines the proof of 2. 2

The size of a message is a natural number and is defined by structural induction
as follows:

size(v) = 1
size(k) = 1
size(M,M ′) = size(M) + size(M ′)
size({M}k) = size(M) + 1 .

Let M,N be messages such that M v N . Their size is size(M) ≤ size(N).

Proposition 4.1.7 The relation v is a partial order among messages.

Proof. The submessage relation is reflexive by definition. We need to show that it is
antisymmetric and transitive.

• Let M,N be messages such that M v N and N v M . Suppose that M v N
follows from rule (2), then N = N1, N2 where N1 and N2 are messages and
M v N1. From Proposition 4.1.6 it follows that N1 vM , a contradiction since

size(M) ≤ size(N1, N2) < size(N1) ≤ size(M) .

One reaches a similar contradiction when M v N follows from rule (3) and (4).
Only rule (1) is admitted and therefore M = N .

• Let M,N, T be messages such that M v N and N v T . By well founded
induction on the size of N and making use of Proposition 4.1.6 one can show
that M v T .

2
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4.1.8 Encryptions and Signatures in SPL

The language SPL includes constructs for both public and symmetric key cryp-
tography. If the underlying encryption scheme is a symmetric-key scheme then
{M}Key(A,B) denotes an encryption of the message M using Key(A,B), a key shared
between agents A and B. We make another idealisation and assume that a symmetric
key encryption is non-malleable – an attacker can’t, given a cyphertext, produce an-
other cyphertext so that both have related cleartexts. In practise non-malleability is
usually achieved by adding a message authentication scheme (MAC) to the encryption
schema (for example the CBC encryption scheme with the DES cypher; although very
common in practise this scheme does not ensure a very high degree of security [33]). If
a public-key encryption scheme is used then {M}Pub(A) denotes an encryption of M
using the key Pub(A), a public key of agent A. We assume that public-key encryption
are non-malleable too. Non-malleable public-key cryptography has been studies for
example in [27]. One writes {M}Priv(A) to denote the signature of M with the private
key Priv(A). Usually the hash code of a message, instead of the message itself, is
encrypted with the private key to produce a signature. One can easily extend the
syntax of SPL to include hashing and MAC’s and treat them in a more explicit way.

The input patterns of SPL provide a convenient way of treating decryption. Let
k be a key then, due to the strong encryption (Property 4.1.4), the process

in {ψ}k . · · ·

can match and receive only messages of the from {M}k, extracting the cleartext M
and binding it to the variable ψ so that it can be used later in the process term.
A decryption is performed even if the process term does not explicitly mention how
decryption happens. In our model, where cryptography is assumed to be unbreakable,
a decryption succeeds only if the right key for deciphering is available. One assumes
that:

Whenever a cyphertext appears on an input pattern, then the right “de-
cryption key” is available to the agent performing that input.

If, for example, k is a public key Pub(A) then the process

in {ψ}Pub(A) . · · ·

can match and receive the cyphertext {n,B,A}Pub(A). It also extracts the cleartext
n,B,A binding it to ψ. The next action publishes the cleartext on the network. The
agent executing this process is in possession of Priv(A), the private key of agent A.

Input patterns not only can denote decryption, they can also stand for signature
verification. If, for example, k is the private key Priv(A), then the process

in {ψ}Priv(A) . · · ·

can match and receive a message of the form {M}Priv(A) and ensures that the message
is signed with the private key of A. Also in this case the way the signature is verified
is not made explicit. As before, the agent executing that input process will be in
possession of the public key Pub(A) so that it can verify the signature in the prescribed
way.

37



Chapter 4. A Security Protocol Language

We mentioned in the introduction that we implemented SPL. In giving an imple-
mentation of the language the availability of keys becomes an issue: it is unrealistic to
assume that all keys that appear on a process term executed by an agent are available.
Keys need to be generated and if necessary distributed before they can be used to
encrypt, decrypt, sign messages or verify signatures (see [13, 21]).

One can express key-generation in an SPL process by generating a new name and
use the name as part of a key-expression, for example as follows:

out new(x) {Key(x)}Pub(A) .

If m was chosen as a new name on the previous output action then the key expression
Key(m) is new as well and stands for a freshly generated key.

4.1.9 NSL as a process

As an illustration, we program the NSL protocol in our language, and so formalise
the description given in the introductory chapter of this thesis. While programming
NSL we are forced to formalise aspects that are implicit in the informal description,
such as the creation of new nonces, the decryption of messages and the matching
of nonces. We assume given a set of agent names, Agents, of agents participating
in the protocol. We program a situation in which agents participating in the NSL
protocol can play two roles, as initiator and responder with any other agent. Let
A,B ∈ Agents.

Abbreviate with Init(A,B) the program of initiator A communicating with B:

Init(A,B) ≡ out new(x) {x,A}Pub(B).

in {x, y,B}Pub(A).

out {y}Pub(B) .

The initiator A first generates a new nonce, encrypts the nonce together with its own
identifier under the public key of B, the intended responder, and sends it to B. The
first action of the initiator’s process,

out new(x) {x,A}Pub(B) . · · · ,
makes all this explicit binding a freshly chosen name denoting a nonce to x. When-
ever an encrypted message appears on an output action, one assumes that the agent
executing the action is in possession of the key, here Pub(B), and can perform the
encryption. In the second action

· · · in {x, y,B}Pub(A) . · · ·
the variable x is bound by an outer new x and so by convention is not a pattern
variable, and has to be that nonce sent out earlier. The variable y instead is a pattern
variable. A message is received only when it matches the pattern of the input action:
it is a cyphertext obtained encrypting a text with the public key of the initiator A and
the text is a triple whose first element is the nonce sent out earlier by A, the second
element is a name, and the third element is the name B. As we mentioned earlier,
the input pattern {x, y,B}Pub(A) should be thought of as a decryption – one assumes
that the agent that executes the action is in possession of the right key to decrypt,
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in this case Priv(A), and therefore can recover a cleartext of the from n,m,B with
n,m names. The last action performed by the initiator in a protocol session is

· · · out {y}Pub(B) .

The initiator sends to B an encryption with B’s public key. It is an encryption of
the nonce which was apparently received from B and bound to the variable y in the
previous input action.

Abbreviate with Resp(B) the program of responder B:

Resp(B) ≡ in {x, Z}Pub(B).

out new(y) {x, y,B}Pub(Z).

in {y}Pub(B) .

The agent B responds to an initiator that produces a message encrypted with the
public key of B and that contains a nonce and the name of an agent. The responder
takes the agent name obtained from the first decryption and bounds it to the variable
Z. The responder treats that name as the name of the initiator with whom to carry
out the rest of the protocol session.

4.1.10 The process for a spy

The Dolev-Yao model (see [28]) describes a powerful attacker that attempts to tamper
the security of a protocol in several ways. It is more interesting to study the behaviour
of a security protocol together with such powerful attacker rather than studying its
behaviour in isolation. The attacker, or “Spy” can be described with an SPL process
term. The spy can eavesdrop all communication that is transmitted over then network
and manipulate messages in several ways:

1. It can compose different messages into a message tuple

Spy1 ≡ in ψ1 . in ψ2 . out ψ1, ψ2 .

2. It can decompose a composite message into more components

Spy2 ≡ in ψ1, ψ2 . out ψ1 . out ψ2 .

The first input action matches any message that is a tuple with at least two
components.

3. It can encrypt any message with the keys that are available. In case of public
key encryption one can assume that all public keys of all agents are known.
Therefore the spy knows the public key as soon as it knows an agent name:

Spy3 ≡ in x . in ψ . out {ψ}Pub(x) .

In case of shared key encryption one can not assume in general that the spy
knows the shared key of other trusted agents. Therefore writing

in x . in y . in ψ . out {ψ}Key(x,y)
would give unwanted power to the spy. The spy can only encrypt if it can
eavesdrop and therefore get hold of a shared key from the network:

Spy4 ≡ in Key(x, y) . in ψ . out {ψ}Key(x,y) .
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4. An attacker can decrypt messages with available keys. As before one can not
assume that the spy knows all secret keys of the agents participating in a pro-
tocol, but it might get hold of one if transmitted in cleartext over the network.
For public key cryptography this can be described as:

Spy5 ≡ in Priv(x) . in {ψ}Pub(x) . out ψ

and for shared key cryptography as:

Spy6 ≡ in Key(x, y) . in {ψ}Key(x,y) . out ψ .

5. A spy can sign with the private keys that are eavesdropped from the network:

Spy7 ≡ in Priv(x) . in ψ . out {ψ}Priv(x) .

6. Other capabilities can be added to a spy. For example the spy can verify any
signature as soon as it knows the name of the agent signing the message

Spy8 ≡ in x . in {ψ}Priv(x) . out ψ

or it can create new (random) values

Spy9 ≡ out new(~n) ~n .

Not much power is added to a spy when one of those two capabilities is explicitly
included in the process of the spy. It may, however, be useful to give explicit
signature verification capabilities to the spy as a way to give the spy access to
the signed message. As for new name generation, the initial message set from
which a protocol run starts may already contain names that can be used by the
spy as if they were new.

There is no need to add message duplication and suppression as explicit spy op-
erations. Messages in SPL are considered as persistent so that once a message is sent
it stays available on the network. There is therefore no need to duplicate messages.
In this thesis we focus on security properties that can be described as properties
of all possible finite behaviours of a protocol – included are behaviours where some
messages are never received and therefore can be understood as suppressed by a spy.
Choosing a different program for the spy means restricting or augmenting its power,
for example to passive eavesdropping or active falsification.

The attacker is described with the parallel composition of various components,
each describing a different capability. The spy uses the network, the space of messages,
as a buffer to store intermediate results and so construct complicated messages or
decompose them into basic values. The various components of a spy are replicated
so that an operation can be applied over and over again to a message. In some
cases, depending on the protocol to be analysed, one might be interested only in
encryption and public key cryptography rather than for example signatures or shared
key cryptography. For the NSL protocol, for example, a spy might have the following
components:

SpyNSL ≡! ‖i∈{1,2,3,5} Spyi .
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4.1.11 NSL in a malicious environment

The NSL protocol system together with an attacker is described by putting all the
components together. Components are replicated, to model multiple concurrent runs
of the protocol. Let A be the set of agents participating in the system. Here we
describe a situation where each agent can engage in the protocol both as initiator and
as responder with any other agent:

Pinit ≡ ‖(A,B)∈A×A ! Init(A,B)
Presp ≡ ‖A∈A ! Resp(A)
Pspy ≡ SpyNSL

NSL ≡ ‖i∈{resp,init,spy} Pi .

4.2 Transition semantics

We first give a, fairly traditional, transition semantics to SPL. It says how input and
output actions affect configurations; a configuration expresses the state of execution
of the process, the messages so far output to the network and the names currently in
use.

4.2.1 Configurations, actions, and transitions

A configuration consists of a triple 〈p, s, t〉 where p is a closed process term, s is a
subset of names N, and t is a subset of closed (i.e., variable-free) messages. We say
that a configuration is proper iff the names in p and t are included in s. A closed
process p when inputting a message or generating a new name acts in the context of
t, the messages that have been output, and s, the names used so far.

Actions are either input actions or output actions, possibly tagged with indices to
keep track of parallel component at which they occur:

α ::= out new(~n) M | inM | i : α

where M is a closed message, ~n are names and i is an index drawn from Indexes.
New names can be generated and included in a message that is sent out – output
actions record the new names that are generated. We write outM for an output
action, outputting a message M , where no new names are generated.

The way configurations evolve is expressed by transitions

〈p, s, t〉 α−→ 〈p′, s′, t′〉
given by the following rules:

(output) Provided the names ~n are all distinct and not in s,

〈out new(~x)M.p, s, t〉 out new(~n)M [~n/~x]−→ 〈p[~n/~x], s ∪ {~n}, t ∪ {M [~n/~x]}〉

(input) Provided M [~n/~x,~k/~χ, ~N/~ψ] ∈ t,

〈in pat~x~χ~ψM.p, s, t〉 inM [~n/~x,~k/~χ, ~N/~ψ]−→ 〈p[~n/~x,~k/~χ, ~N/~ψ], s, t〉
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(parallel composition)

〈pj , s, t〉 α−→ 〈p′j , s′, t′〉
〈‖i∈Ipi, s, t〉 j:α−→ 〈‖i∈Ip′i, s′, t′〉

j ∈ I

where p′i is p′j for i = j, else pi.

Proper configurations evolve through transitions into configurations that are proper
as well.

Proposition 4.2.1 Let α be an action. Suppose that 〈p, s, t〉 and 〈p′, s′, t′〉 are con-
figurations, and that 〈p, s, t〉 is proper. If 〈p, s, t〉 α−→ 〈p′, s′, t′〉, then 〈p′, s′, t′〉 is also
proper.

Proof. Easy rule induction on the transition rules. 2

4.2.2 Security properties and transition semantics

The transition semantics allows us to state formally many security properties. In this
thesis we focus on security properties that are expressible as safety properties. For
a process term p they can therefore be expressed on the set of finite sequences of
configurations and transitions describing runs of the protocol

〈p, s0, t0〉 α1−→ · · · αw−→ 〈pw, sw, tw〉 αw+1−→ · · ·

starting from a proper configuration 〈p, s0, t0〉.
A common security property of a protocol is secrecy of data that is exchanged over

the network – in every run of the protocol the secret is never leaked to undesired,
corrupted or even malicious agents. In our setting to show that a message is secret
it often suffices to show that the message never appears in the clear and by itself on
the network, the space of messages. In fact if the spy gets hold of a secret it can
publish it as a stand alone message. For the NSL protocol, for example, one shows
that for every protocol run the nonce of the responder never appears in cleartext on
the network, provided private keys are not leaked from the start:

Secrecy of the responder’s nonce: Let A0, B0 ∈ A be two names of agents
participating in the protocol. For all runs

〈NSL, s0, t0〉 α1−→ · · · αw−→ 〈pw, sw, tw〉 αw+1−→ · · ·

where 〈NSL, s0, t0〉 is proper and where Priv(A0) and Priv(B0) do not appear as
content of any message in t0, if at some stage w in the run

αw = resp : B0 : i0 : out new(n0) {m0, n0, B0}Pub(A0)

where i0 is an index and n0,m0 are names, then at all stages v in the run n0 6∈ tv.
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Another interesting security property is authentication among the participants in a
protocol. Making use of the SPL-transition semantics one can describe authentication
properties following Lowe’s style (see [47]): Whenever an initiator A0 performs a run
to which apparently agent B0 responds, then agent B0 responded with matching
actions apparently to A0. The NSL protocol, for example, satisfies the following
agreement property:

An authentication guarantee for the initiator: Let A0, B0 ∈ A be two names
of agents participating in the protocol. For all runs

〈NSL, s0, t0〉 α1−→ · · · αw−→ 〈pw, sw, tw〉 αw+1−→ · · ·

where 〈NSL, s0, t0〉 is proper and where Priv(A0) and Priv(B0) do not appear as
content of any message in t0, if at some stage w in the run

αw = init : (A0, B0) : j0 : in {m0, n0, B0}Pub(A0)

where j0 is an index and n0,m0 are names, then at some previous stage v in the run

αv = resp : B0 : i0 : out newn0 {m0, n0, B0}Pub(A0)

where i0 is an index.

The transition semantics, however, does not support directly local reasoning of
the kind one might wish to apply in the analysis of security protocols. To give an
idea of the difficulty, imagine one wanted to prove the secrecy property for the nonce
of an NSL responder. A reasonable way to prove such a property is to find a stronger
invariant, a property which can be shown to be preserved by all the actions of the
process. Equivalently, one can assume that there is an earliest action αv in a run
which violates the invariant, and derive a contradiction by showing that this action
must depend on a previous action, which itself violates the invariant.

An action might depend on another action through being, for example, an input
depending on a previous output, or simply through occurring at a later control point
in a process. A problem with the transition semantics is that it masks such local
dependency, and even the underlying process events on which the dependency rests.
To better support arguments based on local dependency we introduce a more refined
semantics based on events.

4.3 Event-based semantics

In this section we introduce an alternative semantics for SPL which makes events of
a protocol and their dependencies more explicit. We must first address the issue of
what constitutes an event of a security protocol. Here, we follow the lead from Petri
nets (see Chapter 3, [66, 95]), and define events in terms of how they affect conditions.
It turns out that the events of SPL processes together with the conditions and the
pre- and postcondition maps between events and conditions, which are implicit in our
definition of events, from a basic Petri-net where some conditions are persistent (see
Chapter 3).
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4.3.1 Conditions

Conditions are to represent some form of local state and we discern conditions of three
kinds: control, output and name conditions.

The set of control conditions C consists of output or input processes, perhaps
tagged by indexes, and is given by the grammar

b ::= out new(~x)M.p | in pat ~x~χ~ψM.p | i : b

where i ∈ Indexes. A condition in C stands for the point of control in a (single-
thread) process. When C is a subset of control conditions we will write i : C to mean
{i : b | b ∈ C}. We define the initial control conditions of a closed process term p, to
be the subset Ic(p) of C, given by the following structural induction:

Ic(out new(~x) M .p) = {out new(~x) M .p}
Ic(in pat ~x~χ~ψ M . p) = {in pat ~x~χ~ψ M . p}
Ic(‖i∈Ipi) =

⋃
i∈I i : Ic(pi)

where the last case also includes the base case nil , when the indexing set is empty.
We sometimes write index(b) for the index of a control condition b.

Proposition 4.3.1 If p is a closed SPL-process then for all b, b′ ∈ Ic(p) such that
b 6= b′ the index(b) is never prefix of index(b′).

Proof. Obvious induction on the structure of closed process terms. 2

The set of output conditions O consists of closed message expressions. An individ-
ual condition M in O stands for the message M having been output on the network.
Output conditions are persistent; once they are made to hold they continue to hold
forever. This squares with our understanding that once a message has been output
to the network it can never be removed, and can be input repeatedly.

The set of name conditions is precisely the set of names N. A condition n in N
stands for the name n being in use.

4.3.2 Events

We define the set of events Events as a subset of

Pow(C)× Pow(O) × Pow(N)× Pow(C)× Pow(O) × Pow(N) .

So an individual event e ∈ Events is a tuple

e = (ce,oe,ne, ec, eo, en)

where ce is the set of C-preconditions of e, ec is the set of C-postconditions of e,
etc. Write ·e for ce ∪o e ∪n e, all preconditions of e, and e· for all postconditions
ec ∪ eo ∪ en. Earlier in the transition semantics we used actions α to specify the
nature of transitions. An event e is associated with a unique action act(e).

Sometimes it is convenient to represent events graphically:
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����
HHHH

BB ccc
"""

qi

pi

· · · · · ·

· · ·

· · ·

· · · · · ·
mi Mi

ni Ni

act(e)

.

Conditions are drawn as circles and persistent conditions are highlighted as double
circles. The square represents the event itself which is connected to its preconditions
by incoming edges and to its postconditions by outgoing edges.

The set of events associated with SPL is given by an inductive definition. Define
Events to be the smallest set which includes all output, input and indexed events:

Output events
Out(out new(~x)M.p;~n) ,

where ~n = n1, · · · , nl are distinct names to match the variables ~x = x1, · · · , xl,
consist of an event e with these pre- and postconditions:

ce = {out new(~x)M.p} , oe = ∅ , ne = ∅ ,
ec = Ic(p[~n/~x]) , eo = {M [~n/~x]} , en = {n1, · · · , nl} .

The action of an output event is

act(Out(out new(~x)M.p;~n)) = out new(~n)M [~n/~x] .

Output can be graphically represented as following:

�� @@

ccc

outnew(~x) M . p

act(e)

p[~n/~x]

~n

M[~n/~x]

.

An occurrence of the event Out(out new(~x)M.p;~n) affects the control condi-
tions and puts the new names n1, · · · , nl into use, necessarily for the first time
as according to the token game the event occurrence must avoid contact with
names already in use.

The definition includes the special case when ~x and ~n are empty lists, and we
write Out(out M.p) for the output event with no name conditions and action
out M .

Input events
In(in pat ~x~χ~ψM.p;~n,~k, ~L) ,

where ~n is a list of names to match ~x, ~k a list of closed key expressions to match
~χ, and ~L is a list of closed messages to match ~ψ, consist of an event e with these
pre- and postconditions:

ce = {in pat ~x~χ~ψM.p} , oe = {M [~n/~x,~k/~χ, ~L/~ψ]} , ne = ∅ ,
ec = Ic(p[~n/~x,~k/~χ, ~L/~ψ]) , eo = ∅ , en = ∅ .
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The action of an input event is

act(In(in pat ~x~χ~ψM.p;~n,~k, ~L)) = inM [~n/~x,~k/~χ, ~L/~ψ] .

Graphically input events are drawn as following:

��

@@ ��

p[~n/~x,~k/~χ, ~L/~ψ]

in pat~x~χ~ψ M . p

M[~n/~x,~k/~χ, ~L/~ψ]

act(e)

.

Indexed events
i : e ,

where e ∈ Events, i ∈ Indices, and
c(i : e) = i :c e , o(i : e) = oe , n(i : e) = ne ,
(i : e)c = i : ec , (i : e)o = eo , (i : e)n = en .

The action of an indexed event is act(i : e) = i : act(e). When E is a subset of
events we will generally use i : E to mean {i : e | e ∈ E}.

4.3.3 A net from SPL

In defining the set of conditions and, inductively, the set of events, we have in fact
defined a (rather large) net from the syntax of SPL. The SPL-net has:

• conditions C ∪O ∪N,

• events Events,

• precondition map pre : Events → Pow(C ∪O ∪N) such that pre(e) =. e for
every event e ∈ Events,

• and postcondition map post : Events → Pow(C∪O∪N) such that post(e) = e.

for every event e ∈ Events.

Its markings M will be subsets of conditions and so of the form

M = c ∪ s ∪ t
where c ⊆ C, s ⊆ N, and t ⊆ O. By assumption the set of conditions O are persistent
so the net is a basic net with persistent conditions (see Chapter 3).

Definition 4.3.2 (Token game for the SPL net). Letting c ∪ s ∪ t and c′ ∪ s′ ∪ t′ be
two markings,

c ∪ s ∪ t e−→ c′ ∪ s′ ∪ t′ iff

i) ·e ⊆ c ∪ s ∪ t & ec ∩ c = ∅ & en ∩ s = ∅ and

ii) c′ = (c \ce) ∪ ec & s′ = s ∪ en & t′ = t ∪ eo .

2

In particular, observe that the occurrence of e begins the holding of its name post-
conditions en - these names have to be distinct from those already in use to avoid
contact.
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4.3. Event-based semantics

4.3.4 The net of an SPL process

Generally for a process p only a small subset of the events Events can ever come
into play. For this reason it’s useful to restrict the events to those reachable in the
behaviour of a process.

The set Ev(p) of events of a closed process term p is defined by induction on size:

Ev(out new(~x)M.p) =

{Out(out new(~x)M.p;~n) | ~n distinct names}
∪

⋃
{Ev(p[~n/~x]) | ~n distinct names}

Ev(in pat~x~χ~ψM.p) =

{In(in pat~x~χ~ψM.p;~n,~k, ~L) | ~n names , ~k closed keys, ~L closed messages}
∪

⋃
{Ev(p[~n/~x,~k/~χ, ~L/~ψ]) | ~n names , ~k closed keys, ~L closed messages}

Ev(‖i∈Ipi) =
⋃
i∈I

i : Ev(pi)

If an event belongs to the set of events of a closed process term then so do all the
events in Events that share the same control condition.

Proposition 4.3.3 Let e, e′ be events in Events and p a closed process term. If
e ∈ Ev(p) and ce′ = ce then e′ ∈ Ev(p).
Proof. By induction on the size of a closed process and by definition of Events and
Ev(p). 2

A closed process term p denotes a net Net(p) consisting of the global set of condi-
tions C∪O∪N built from SPL, events Ev(p) and initial control conditions Ic(p). We
can define the token game on the net Net(p) exactly as we did earlier for the SPL-net,
but this time events are restricted to being in the set Ev(p). It’s clear that if an event
transition is possible in the restricted net Net(p) then so is it in the SPL-net. The
converse also holds provided one starts from a marking whose control conditions are
conditions of events in Ev(p).

The control conditions of a process term are all control conditions that appear as
preconditions on the events of a process term.

Definition 4.3.4 Let p be a closed process term. Define its control-conditions by
cp =

⋃ {ce | e ∈ Ev(p)}. 2

As expected, the control conditions of a closed process include all initial control
conditions of the process, and all control postconditions of the events of the process.

Proposition 4.3.5 Let p be a closed process term.

1. Ic(p) ⊆ cp,

2. if e ∈ Ev(p) then ec ⊆ cp.
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Proof. The proof of both properties is based on an induction on the size of closed
processes. The size of a close process is defined in Section 4.1.5.

1. With an easy induction on the size of a closed process and making use of the
definition of initial control conditions and events of a closed process one shows
that for every control condition c ∈ Ic(p) there exists an event e ∈ Ev(p) such
that c = ce. Then from the definition of cp, the control conditions of a closed
process, it follows that Ic(p) ⊆ cp.

2. Inductively on the size of a closed process distinguishing the following cases:

Suppose e ∈ Ev(out new(~x) M .p) then either

e ∈ Ev(p[~n/~x]) or e = Out(out new~xM.p;~n)

where ~n is a list of names. Consider the first case, then from the induc-
tion hypothesis it follows that ec ⊆ cp[~n/~x]. Moreover cp[~n/~x] ⊆ cp since
Ev(p[~n/~x]) ⊆ Ev(p). Therefore ec ⊆ cp as desired.

The case where e ∈ Ev(in pat ~x~χ~ψ M . p) is analogous to the previous one.

Suppose e ∈ Ev(‖i∈Ipi) then there exists an index j ∈ I such that e ∈ Ev(pj)
and therefore it follows from the induction hypothesis that ec ⊆ cpj . Moreover
cpj ⊆ c‖i∈Ipi since Ev(pj) ⊆ Ev(‖i∈Ipi) and therefore ec ⊆ c‖i∈Ipi as desired.

2

If the control preconditions of an event are included in the control conditions of a
closed process term then that event is reachable in the behaviour of that process.

Proposition 4.3.6 Let p be a closed process term and e ∈ Events:
ce ⊆ cp iff e ∈ Ev(p) .

Proof. The “if” part follows obviously from the definition of the control conditions
of a closed process.

The “only if” part: Let ce ⊆ cp, then there exists an event e′ ∈ Ev(p) such that
ce′ = ce. From Proposition 4.3.3 it follows that e ∈ Ev(p). 2

Theorem 4.3.7 Let M∩C ⊆ pc. Let e ∈ Events. Then, M e−→M′ in the SPL-net
iff e ∈ Ev(p) & M e−→ M′ in Net(p).

Proof. The “if” part is clear. The “only if” part follows from Proposition 4.3.6. 2

Consequently, in analysing those sequences of event transitions a closed process p can
perform it suffices to study the behaviour of Net(p) with its restricted set of events
Ev(p). This simplification is especially useful in proving invariance properties because
these amount to an argument by cases on the form of events a process can do.

Corollary 4.3.8 Let p be a closed process term and let

M0
e1−→ · · · ew−→ Mw

ew+1−→ · · ·
be a sequence of event transitions in the SPL net such that M0 ∩C ⊆ cp. At every
stage w > 0 in the run ew ∈ Ev(p) and therefore Mw−1

ew−→ Mw is in Net(p).
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Proof. By induction on the sequence of event transitions we show that at every stage
w in the run Mw ∩C ⊆ cp and ew ∈ Ev(p). At stage 0 we assumed M0 ∩ C ⊆ cp
then from Theorem 4.3.7 it follows that e0 ∈ Ev(p). Suppose that at some stage w
in the sequence of event transitions Mw ∩C ⊆ cp and ew ∈ Ev(p). From the token
game on the SPL net (Definition 4.3.2) it follows that

cew ⊆ cp and Mw ∩C = ((Mw−1 ∩C) \ cew) ∪ ecw
ThereforeMw∩C ⊆ cp∪cew. By the induction hypothesis ew ∈ Ev(p), and by Propo-
sition 4.3.5 ecw ⊆ cp. As desired we obtain Mw ∩C ⊆ cp and from Theorem 4.3.7 it
follows that ew ∈ Ev(p). 2

4.3.5 The NSL events

As an example we show the events of the NSL system that we described in Sec-
tion 4.1.11. We distinguish between events for the initiators, the responders and the
spy. The set A is the set of names of agents that are participating in the protocol.
We choose to join spy events together at shared control conditions, to give a better
idea of the dependencies among them. We classify the events Ev(NSL) involved in
the NSL protocol as following:

Initiator events for every agent names A,B ∈ A, names m,n ∈ N, and session
indices j ∈ ω.

init : A,B : j : Out(Init(A,B);m)

�
�

�
@
@
@

c
c

c

init : (A,B) : j : Init(A,B)

out new(m) {m,A}Pub(B)

init : (A,B) : j : in {m, y, B}Pub(A) . · · ·
m

{m,A}Pub(B)

init : A,B : j : In(in {m, y,B}Pub(A) . out {y}Pub(B);n)

�
�

�

l
l

l
�

�
�

init : (A,B) : j : out {n}Pub(B)

init : (A,B) : j : in {m, y, B}Pub(A)

{m,n,B}Pub(A)

in {m,n,B}Pub(A)
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init : A,B : j : Out(out {n}Pub(B))

@
@
@

c
c

c

init : (A,B) : j : out {n}Pub(B)

out {n}Pub(B)

{n}Pub(B)

Responder events for every agent names A,B ∈ A, names m,n ∈ N, and session
indices i ∈ ω

resp : B : i : In(Resp(B);m,A)

�
�

�

l
l

l
�

�
�

resp : B : i : out new(y) {m, y,B}Pub(A)

resp : B : i : Resp(B)

{m,A}Pub(B)

in {m,A}Pub(B)

resp : B : i : Out(out new(y) {m, y,B}Pub(A) . in {y}Pub(B);n)

�
�

�
@
@
@

c
c

c

resp : B : i : out new(y) {m, y, B}Pub(A) . · · ·

out new(n) {m,n,B}Pub(A)

resp : B : j : in {n}Pub(B)

n

{m,n,B}Pub(A)

resp : B : i : In(in {n}Pub(B))

l
l

l
�

�
�

resp : B : i : in {n}Pub(B)

{n}Pub(B)

in {n}Pub(B)
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Spy events for everyM,N messages and names n,m. For simplicity we only display
spy events graphically joining them together at control conditions.

Composition Spy1 ≡ in ψ . in ψ′ . out ψ, ψ′:

bbb

�� QQ !!! QQ ��

QQ """

M N M,N

Decomposition Spy2 ≡ in ψ, ψ′ . out ψ . out ψ′:

bbb

�� QQ !!! QQ ��

"""��

M,N M N

Encryption Spy3 ≡ in x . in ψ . out {ψ}Pub(x):

bbb

�� QQ !!! QQ ��

QQ """

n M {M}Pub(n)

Decryption Spy5 ≡ in Priv(x) . in {ψ}Pub(x) . out ψ:

bbb

�� QQ !!! QQ ��

QQ """

Priv(n) {M}Pub(n) M

Other spy events whenever included in the system need to be considered. They
all are of a similar kind of those described here.
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4.4 Relating transition and event-based semantics

The behaviour of the SPL-net is closely related to the transition semantics given
earlier.

Theorem 4.4.1

i) If
〈p, s, t〉 α−→ 〈p′, s′, t′〉

then
Ic(p) ∪ s ∪ t e−→ Ic(p′) ∪ s′ ∪ t′

for some e ∈ Events with act(e) = α.

ii) If
Ic(p) ∪ s ∪ t e−→ M′

in the SPL-net, then

〈p, s, t〉 act(e)−→ 〈p′, s′, t′〉 and M′ = Ic(p′) ∪ s′ ∪ t′ ,
for some closed process term p′, for some s′ ⊆ N, and t′ ⊆ O.

Proof. Both i) and ii) are proved by induction on the size of p.

i) Consider the possible forms of a closed process p and assume that

〈p, s, t〉 α−→ 〈p′, s′, t′〉 .

Case p ≡ out new(~x) M . q: There must be, by the operational transition rules,
distinct names ~n = n1, · · ·nl, not in s, for which α = out new(~n) M [~n/~x] and
p′ ≡ q[~n/~x]. The initial conditions Ic(p) form the singleton set {p}, therefore
the output event

e = Out(out new~x) M . q;~n)

is enabled at the marking {p} ∪ s ∪ t, its action is α, and

Ic(p) ∪ s ∪ t e−→ Ic(q[~n/~x]) ∪ s′ ∪ t′ .

Case p ≡ in pat ~x~χ~ψ M . q: This case is similar to the one for output.

Case p ≡ ‖i∈Ipi: By the operational rules, there must be

〈pj , s, t〉 α−→ 〈p′j , s′, t′〉
with α = j : β and p′ ≡ ‖i∈Ip′i, where p′i = pi whenever i 6= j. Inductively,

Ic(pj) ∪ s ∪ t e−→ Ic(p′j) ∪ s′ ∪ t′

for some event e such that act(e) = β. It is now easy to check that

Ic(p) ∪ s ∪ t j:e−→ Ic(‖i∈Ip′i) ∪ s′ ∪ t′ .
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ii) Assume that
Ic(p) ∪ s ∪ t e−→ c′ ∪ s′ ∪ t′

for c′ ⊆ C, s′ ⊆ N, and t′ ⊆ O. Consider the possible forms of the closed
process term p.

Case p ≡ out new(~x) M . q: Note that Ic(p) = {p}. By the definition of Events,
the only possible events with concession at {p} ∪ s∪ t, are the ones of the form

e = Out(out new(~x) M . q;~n) ,

for some choice of distinct names ~n not in s. The occurrence of e would, by
the token game (Definition 4.3.2), make c′ = Ic(q[~n/~x]), s′ = s ∪ {~n} and
t′ = t ∪ {M [~n/~x]}. Clearly, from the transition semantics,

〈p, s, t〉 act(e)−→ 〈q[~n/~x], s′, t′〉 .

Case p ≡ in pat ~x~χ~ψ M . q: This case is similar to the one for output.

Case p ≡ ‖i∈Ipi: Note that Ic(p) =
⋃
i∈I i : Ic(pi). From the token game

(Definition 4.3.2) and by the definition of Events, the event e can only have
the form e = j : e′, where

Ic(pj) ∪ s ∪ t e′−→ c′j ∪ s′ ∪ t′

and
c′ =

⋃
i6=j

i : Ic(pi) ∪ j : c′j .

Inductively,

〈pj , s, t〉 act(e
′)−→ 〈p′j , s′, t′〉 and c′j = Ic(p′j)

for some closed process p′j. Thus, according to the transition semantics,

〈p, s, t〉 act(e)−→ 〈‖i∈Ip′i, s′, t′〉

where p′i = pi whenever i 6= j. Hence, c′ = Ic(‖i∈Ip′i).
2

It turns out that all markings reachable in the behaviour of the process have the
form

M = Ic(p) ∪ s ∪ t ,
for some close process term p, names s, and network conditions t. One can adopt the
following definition:

Definition 4.4.2 Let e ∈ Events. Let p be a closed process, s ⊆ N, and t ⊆ O.
Write 〈p, s, t〉 e−→ 〈p′, s′, t′〉 iff Ic(p) ∪ s ∪ t e−→ Ic(p′) ∪ s′ ∪ t′ in the SPL-net.

There is no contact at control conditions, throughout the reachable behaviour of
the net:
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Proposition 4.4.3 Let p be a closed process term. Let e ∈ Events. Then,

ce ⊆ Ic(p) ⇒ ec ∩ Ic(p) = ∅

Proof. By induction on the size of a closed process. 2

Proposition 4.4.4 If

〈p0, s0, t0〉 e1−→ · · · ew−→ 〈pw, sw, tw〉 ew+1−→ · · · ,

is a run in the SPL-net then for any two event occurrences with u 6= w in the run
ceu 6= cew. As a consequence there are no two different stages carrying the same event.

Proof. We first prove the following property:

Let u,w be two stages in the run such that u ≤ w. For all b ∈ Ic(pu)
and for all b′ ∈ Ic(pw) if size(b) < size(b′) then index(b′) is not prefix of
index(b).

Suppose the contrary and let w be the closest stage to u for which there is b′ ∈ Ic(pw)
such that size(b) < size(b′) and index(b′) is prefix of index(b). Obviously b 6= b′

and therefore b′ 6∈ Ic(pu) (Proposition 4.3.1). From the token game it follows that
there exists a stage h such that u < v ≤ w and b′ ∈ ecv. Clearly if b′′ ∈c ev then
b′′ ∈ Ic(pv−1) and index(b′′) is prefix of index(b′), so index(b′′) is prefix of index(b).
Moreover size(b′) < size(b′′) and therefore size(b) < size(b′′). If v− 1 = u then from
Proposition 4.3.1 it follows that b′′ = b yielding a contradiction. If instead u < v − 1
then we found a stage closer to u than w violating the desired property, which yields
another contradiction.

Let u < w and suppose that ceu = cew. Let b′ ∈ ceu and b ∈ ecu. Then we know that
size(b) < size(b′) and index(b′) is prefix of index(b). It follows from the token game
that b ∈ Ic(pu) and b′ ∈ Ic(pw−1). This obviously contradicts the property above. 2
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Chapter 5

Reasoning about security in
the net semantics

To demonstrate the viability of the net semantics as a tool for proving security prop-
erties, we use the semantics to derive general proof principles. The principles capture
the kind of dependency reasoning found in the strand spaces [88, 90] and inductive
methods [61, 62]. To illustrate the principles in action, we apply them to establish
secrecy and authentication guarantee of the NSL protocol. The proofs are simplified
by a result about the occurrence of spy events in a protocol run – it tells precise
conditions under which occurrence of spy events can be excluded. The result is based
on the notion of surroundings of a message inside of another message. It is a general
result that holds for all SPL-protocols and with a similar purpose to the results on
strand-space ideals introduced in [88]. We introduce a diagrammatic style of reason-
ing which we find helpful both in proving some security properties and in showing
where other security properties fail. Diagrams like ours have been used in [89] to
conveniently describe actions in a protocol run and perhaps to display an attack.

5.1 General proof principles

From the net semantics we can derive several principles useful in proving authentica-
tion and secrecy of security protocols.

Convention 5.1.1 In the remaining part of this chapter and in the next chapter
reasoning is based on runs in the net of an SPL process. From now on we assume
that all runs are proper runs: all configurations 〈p, s, t〉 in a proper run are such that
all names appearing on the process p or as part of messages in t are in s.

5.1.1 Well-foundedness

Every run in the net of an SPL process consists of a sequence of transitions starting
from an initial configuration. Clearly, only a finite number of stages in the run sepa-
rates a configuration from any earlier configuration. Therefore the following principle
holds:
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Proposition 5.1.2 (Well-foundedness) Given a property P on configurations, if a
run

〈p0, s0, t0〉 e1−→ · · · ew−→ 〈pw, sw, tw〉 ew+1−→ · · · ,
contains a configurations s.t. P(p0, s0, t0) and ¬P(pw, sw, tw), then there is a stage
v, 0 < v ≤ w, such that P(pu, su, tu) for all u < v and ¬P(pv, sv, tv). 2

5.1.2 Freshness

During their execution processes can choose new (fresh) names. In the SPL semantics
output events mark freshly chosen names. The token game for the SPL net ensures
that once a condition is marked it can’t be marked again unless it is first consumed.
The name conditions that come into play when new names are chosen are never
consumed therefore once a name is marked it can’t be marked again in the same run.
We say that a name m ∈ N is fresh on an event e if m ∈ en and we write Fresh(m, e).

Proposition 5.1.3 (Freshness) Within a run

〈p0, s0, t0〉 e1−→ · · · ew−→ 〈pw, sw, tw〉 ew+1−→ · · · ,

the following properties hold:

i) If n ∈ sw then either n ∈ s0 or there is a previous stage v ≤ w such that
Fresh(n, ev).

ii) Given a name n there is at most one stage w such that Fresh(n, ew).

iii) If Fresh(n, ew) then for all v < w the name n does not appear in 〈pv, sv, tv〉.

Proof.

i) Obvious by the token game on the SPL net (Definition 4.3.2).

ii) Suppose the contrary. Given a name n ∈ N, there exists run stages w, v with
w 6= v such that Fresh(n, ew) and Fresh(n, ev). The name n is such that
n ∈ sw and n 6∈ sv−1. On the other hand if w < v then sw ⊆ sv−1 (the token
game can only increase the set of name conditions), a contradiction. Similarly
for v < w.

iii) Suppose that Fresh(n, ew) and that there exists v < w such that n appears
in 〈pv, sv, tv〉. This configuration is proper (Convention 5.1.1 and Proposi-
tion 4.2.1), therefore n ∈ sv. From point i), either n ∈ s0 and in that case
ew can’t occur since it would cause contact and not have concession (see token
game) or there exists a previous stage u < v such that Fresh(n, eu). Since
u 6= w it contradicts point ii).

2
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5.1.3 Precedence

The events that occur in a run respect the causal dependencies of the SPL net. From
the token game it follows that an event can occur only in a configuration that contains
all the preconditions of the event. The token game describes how configurations
are formed starting from an initial configuration so that at a certain stage in the
run a condition is marked either because it belonged to the initial configuration or
because an earlier event carried it as postcondition. We distinguish two kinds of
precedence. The first one, control precedence, is due to casual dependency given
by control conditions and the second one, output-input precedence, is due to causal
dependency given by output conditions.

Proposition 5.1.4 (Control precedence) Within a run

〈p0, s0, t0〉 e1−→ · · · ew−→ 〈pw, sw, tw〉 ew+1−→ · · · ,

if b ∈ cew at stage w then either b ∈ Ic(p0) or there is an earlier stage v, v < w, such
that b ∈ evc.

Proof. Clear by the token game (Definition 4.3.2). 2

Proposition 5.1.5 (Output-input precedence) In a run

〈p0, s0, t0〉 e1−→ · · · ew−→ 〈pw, sw, tw〉 ew+1−→ · · · ,

if M ∈ oew at stage w then either M ∈ t0 or there is an earlier stage v, v < w, such
that M ∈ evo.

Proof. Clear by the token game (Definition 4.3.2). 2

We won’t make much use of output-input precedence in this thesis. It remains
a useful principle in some situations, however. In our examples we make use of the
token game and a property on message surroundings instead.

5.2 On the power of the spy

A common step in the proof of a security property consists in determining the first
event in a run of the protocol that violates a certain property of a message appearing
on the network. Let, for example, m be a nonce and consider the property

∀M ∈ tu . m vM ⇒ {n,m,B}Pub(A) vM . (5.1)

Suppose the property holds at all stages u such that u < w but does not hold at stage
w in a run. The event ew is therefore an output event such that

m v eow but {n,m,B}Pub(A) 6∈ eow .

The question is: Which event, among those of the protocol and the spy, could be the
event ew?
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Properties like the one above often are expressed by means of a submessage re-
lation. Their proof usually requires a case analysis on the events of the protocol to
determine which events violate them. It is sometimes possible to formulate a stronger
property for which it is easier to find the events that violate the property. For example:

At stage u nonce m can appear on the network only inside {n,m,B}Pub(A), (5.2)

is a stronger property than (5.1). If the network contains the message

m, {n,m,B}Pub(A)

then (5.1) holds but not (5.2).

5.2.1 Message surroundings

First we introduce the notion of surroundings of a message within a larger message
to conveniently express properties like Property 5.2. Then, we characterise a class
of properties of the surroundings of messages in a protocol run, that can never be
violated by spy events.

Given messagesM andN the surroundings ofN inM are the smallest submessages
of M containing N under one level of encryption. So for example the surroundings
of Key(A) in

(A, {B,Key(A)}k, {Key(A)}k′ )
are {B,Key(A)}k and {Key(A)}k′ . If N is a submessage of M but does not appear
under an encryption in M then we take the surroundings of N in M to be N itself.
For example the surroundings of Key(A) in

(A, {B,Key(A)}k,Key(A))

are {B,Key(A)}k and Key(A). More precisely:

Definition 5.2.1 (Surroundings of a message). Let M and N be two messages.
Define σ(N,M) the surroundings of N in M inductively as follows:

σ(N, v) =

{
{ v } if N = v

∅ otherwise

σ(N, k) =

{
{ k } if N = k

∅ otherwise

σ(N, (M,M ′)) =

{
{ (M,M ′) } if N = M,M ′

σ(N,M) ∪ σ(N,M ′) otherwise

σ(N, {M}k) =

{
{ {M}k } if N ∈ σ(N,M) or N = {M}k
σ(N,M) otherwise

σ(N,ψ) =

{
{ψ } if N = ψ

∅ otherwise

2
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Clearly the surroundings of message M inside message N are sets of messages of
the following form:

Proposition 5.2.2 Let M,N be messages. There exist messages N1, . . . Nl and keys
k1, . . . kl such that

σ(M,N) ⊆ {M, {N1}k1 , . . . , {Nl}kl
} .

2

As a shorthand write σ(N, t) =
⋃
M∈t σ(N,M). Using the surroundings of a

message one can, for example, rewrite Property 5.2 as follows:

σ(m, tu) ⊆ {{n,m,B}Pub(A)} .

If this property holds at some stage w in the run but fails at the next stage w + 1
then w + 1 is the first stage in the run where it fails, thus ew+1 is the first event in
the run that violates it.

Proposition 5.2.3 Within a run

〈p0, s0, t0〉 e1−→ · · · ew−→ 〈pw, sw, tw〉 ew+1−→ · · · ,
at every stage σ(N, tw) ⊆ σ(N, tw+1).

Proof. Message conditions are persistent, therefore from the token game it follows
that at every stage w in a run tw ⊆ tw+1. 2

5.2.2 A limitation on the power of the spy

Consider a spy with all the capabilities that we described in Section 4.1.10:

pspy ≡ ! ‖i∈{1,...9}Spyi
and if k is a key expression then define k as follows:

Pub(v) = Priv(v), P riv(v) = Pub(v), Key(~v) = Key(~v) .

Suppose that at a certain stage in the run of a protocol the surroundings of a
secret message on the network are a number of cyphertexts. Suppose that the spy
does not have access to any of the decryption keys and so cannot decipher any of the
surroundings of the secret. In that situation (configuration) it is not too surprising
that none of the events of the spy can change the surroundings of the secret.

Theorem 5.2.4 Let N be a closed name or key expression. Consider a run

〈p0 ‖ pspy, s0, t0〉 e1−→ · · · ew−→ 〈pw, sw, tw〉 ew+1−→ · · · .

If at stage w for closed messages M1, . . . ,Ml and closed symmetric and public keys
k1, . . . , kl

∅ ⊂ σ(N, tw) ⊆ {{M1}k1 , . . . , {Ml}kl
} and σ(N, tw+1) 6⊆ {{M1}k1 , . . . , {Ml}kl

}
and at every stage v in the run k1 6∈ tv, . . . , kl 6∈ tv then

ew+1 6∈ spy : Ev(pspy) ,

meaning that the event ew+1 is not a spy event.
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Proof. Suppose that ew+1 ∈ spy : Ev(pspy). The event ew+1 is the first output event
in the run such that

σ(N, eow+1) 6⊆ {{M1}k1 , . . . , {Ml}kl
} .

We consider all the possible shapes for the spy output events and prove that ew+1

can’t have the shape of any spy event. Let i be a session index, M,M ′ messages and
k a key. Distinguish the following cases:

Composition:
ew+1 = spy : i : 1 : Out(out ψ1, ψ2;M,M ′) .

By control precedence, and the token game M ∈ tw and M ′ ∈ tw and therefore (since
N is a name or a key and not a message tuple)

σ(N, tw+1) = σ(N, tw) ∪ σ(N,M) ∪ σ(N,M ′)
= σ(N, tw)
⊆ {{M1}k1 , . . . , {Ml}kl

} .
Decomposition:

ew+1 = spy : i : 2 : Out(out ψ . out ψ′;M) or ew+1 = spy : i : 2 : Out(out ψ;M) .

Similar to the previous case.

Encryption and signature:

ew+1 = spy : i : u : Out(out {ψ}k;M)

for u = 3 or u = 4 (encryption) or u = 7 (signature). By control precedence, and the
token game M ∈ tw and therefore

σ(N,M) ⊆ σ(N, tw) ⊆ {{M1}k1 , . . . , {Ml}kl
} .

From the definition of surroundings it follows that σ(N, {M}k) = σ(N,M), thus

σ(N, tw+1) = σ(N, tw) ⊆ {{M1}k1 , . . . , {Ml}kl
}

(since N is a name or a key and not an encryption or signature).
Decryption:

ew+1 = spy : i : u : Out(out ψ;M)

for u = 5, u = 6 or u = 8. By control precedence, and the token game {M}k ∈ tw
and k ∈ tw. Therefore

σ(N, {M}k) ⊆ σ(N, tw) ⊆ {{M1}k1 , . . . , {Ml}kl
} .

By definition of surroundings, either

σ(N, {M}k) = {{M}k}
and from the assumptions of the theorem it follows that k 6∈ tw or

σ(N, {M}k) = σ(N,M) 6⊆ {{M1}k1 , . . . , {Ml}kl
} .
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In both cases one reaches a contradiction.
Signature verification:

ew+1 = spy : i : 8 : Out(out ψ;M) .

By control precedence, and the token game {M}k ∈ tw with k some private key and
therefore

σ(N, {M}k) ⊆ σ(N, tw) ⊆ {{M1}k1 , . . . , {Ml}kl
} .

This, however, is not possible since by assumption k can’t be a private key.
New name generation:

ew+1 = spy : i : p : Out(out new(x)ψ;n,M) .

In this case N = n, however, by freshness σ(N, tw) = ∅ which contradicts the assump-
tion that σ(N, tw) 6= ∅. 2

The spy has limitations also regarding the possibility to forge digital signatures.
If the spy does not have access to the private key of some agent then it can’t produce
a message signed with that key. Therefore if at some stage in a run the surroundings
of a message reveal a signature that was not present at the previous stage then that
signature was not produced by a spy event. A similar case is that of encrypting
a message with a symmetric key that is not known to the spy – recall that in our
idealised setting we assumed symmetric-key encryptions to be non-malleable.

Theorem 5.2.5 Let N be a closed name or key expression. Consider a run

〈p0 ‖ pspy, s0, t0〉 e1−→ · · · ew−→ 〈pw, sw, tw〉 ew+1−→ · · · .

If at stage w for a closed message M and a closed private or symmetric key k

{M}k ∈ σ(N, tw+1) \ σ(N, tw)

and at every stage v in the run k 6∈ tv then ew+1 6∈ spy : Ev(pspy).

Proof. Suppose that ew+1 ∈ spy : Ev(pspy). The event ew+1 is the first output event
in the run such that

{M}Priv(n) ∈ σ(N, eow+1) .

We consider all the possible shapes for the spy output events and prove that ew+1

can’t have the shape of any spy event. Let i be a session index, M ′ message, and k
key. Similarly to what we showed in the previous proof for the cases of composition
and decomposition of messages, σ(N, tw+1) = σ(N, tw). Moreover the case of new
name generation is clearly excluded. Consider the remaining cases:

Encryption and signature:

ew+1 = spy : i : u : Out(out {ψ}k′ ;M ′)

for u = 3 or u = 4 (encryption) or u = 7 (signature). By control precedence and the
token game M ′ ∈ tw and k′ ∈ tw. Obviously

σ(N, tw+1) = σ(N, tw) ∪ σ(N, {M ′}k′)
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where {M}k ∈ σ(N, {M ′}k′). From the definition of surroundings it follows that
either

M ′ = M and k′ = k

therefore k ∈ tw or
{M}k ∈ σ(N,M ′)

and therefore {M}k ∈ σ(N, tw).

Decrypting and Signature verification:

ew+1 = spy : i : 5 : Out(out ψ;M ′)

for u = 5 or u = 6. Obviously

σ(N, tw+1) = σ(N, tw) ∪ σ(N,M ′)

where {M}k ∈ σ(N,M ′). From the definition of surroundings (and the assumption
that N is a name or a key expression) it follows that

{M}k ∈ σ(N, {M ′}k′)
for any key k′. By control precedence, and the token game {M ′}k′ ∈ tw for some key
k′, thus {M}k ∈ σ(N, tw).

2

The two previous results can be generalised, with some care, to arbitrary closed
messages. For simplicity we restricted to messagesN that are closed name expressions
or key expressions, which is enough for the examples that are studied in this thesis.

Our results, based on the notion of surroundings are similar the results based
on the notion of honest ideals [88] in the strand-space model, as well as Schneider’s
rank functions [77] in the CSP model of a security protocol. Honest ideals and rank
functions are known to be closely related [38]. An ideal in the strand-space model
expresses the set of all messages containing a particular submessage when encryption
is restricted to a certain set of keys. A honest ideal for a bundle is an ideal such that
no penetrator node in the bundle contributes to the ideal, except for a lucky guess
of a nonce or a key. The main theorem in [88] gives general conditions under which
an ideal is honest. Our approach and in particular Theorem 5.2.4 has a dual flavor.
Instead of giving conditions under which a penetrator can not contribute to an ideal,
we give conditions under which a penetrator can not extend the surroundings of a
message.

5.3 Diagrammatic style of reasoning

We often describe precedence among events in a run in a diagrammatic way. If we
know that in a run an event e has to precede the event e′ then we draw

e e′ .

The precedence relation among e and e′ is due to control precedence, output-input
precedence, freshness or any other precedence among events that can be established.
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We sometimes write a message on a link between two events – if eo = {M} and
oe′ = {M} where M is a message and if e precedes e′ in the run under consideration
then we sometimes draw

e
M

e′ .

Note that this does not necessarily mean that the message sent by e is directly received
by e′. There could be other events that consume and mark that message in between,
for example events from a spy. Sometimes a message is sent on the network and
we don’t care about the event receiving it and sometimes a message is received and
we don’t care what event produced it. We describe this situation drawing a •. For
example

• M
e

stands for a run in which the event e received the message M without saying anything
about the origin of message M in that run. We can build more complex diagrams to
show the different dependencies among events in a run. For example

e e′

e′′
M • .

In the run under consideration the event e precedes both the events e and e′′. The
diagram however does not say whether e′ precedes or follows e′′ in the run. The
diagrams that we draw are a graphic representation of some of the causal dependencies
among events in a run. In proofs we may add events and links between events as we
establish them. This kind of diagrams has already been introduced to describe bundles
of a strand space [89]. They are also a convenient way of displaying the events in a
run leading to an attack.

5.4 Security properties of NSL

We use the net semantics to formalise security properties for NSL. Typically security
properties are properties of all runs of the protocol. If t0 is the network state given
by the set of messages on the network from which a protocol execution starts then
for the NSL protocol we are interested in proper runs of the kind

〈NSL, s0, t0〉 e1−→ · · · ew−→ 〈pw, sw, tw〉 ew+1−→ · · · .

In the remaining part of this section, a run of this kind is meant whenever we refer
to a run of NSL.

Each security theorem comes with precise conditions under which it holds. A
common pattern can be recognised throughout proofs of security theorems:

If a property of configurations holds at some stage in the run and does
not hold in a later stage then there is a first event e in between the two
stages that makes the property fail.
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A crucial step in our proof strategy is to determine which event, among those in the
protocol net, is the event e. The proof principles of Section 5.1, the token game for
nets with persistent conditions and Theorem 5.2.4 are used in determining what event
e is. Our proof strategy is closely related to that of strand-space arguments (see for
example [90, 88]).

5.4.1 Secrecy

A value is secret or confidential withing a group of agents if it is not disclosed to
others outside the group. The leakage of a secret can happen for example if an agent
belonging to the group with access to the secret value spontaneously decides to publish
it or to hand it over to strangers, with perhaps a malicious intention. We are not
interested in considering this possibility in our analysis, which is hard to prevent. We
focus our attention to the security of the protocol instead, and assume that principals
follow the protocol. The malicious environment is represented by a spy, a stranger
to which secrets might be leaked. For example when the spy gets hold of the right
decryption key of an agent that sends an encrypted value over the network, the spy
can recover that value and publish it in cleartext on the network. One can therefore
model confidentiality of a value by asking that the value never appears in cleartext
on the network.

In the NSL protocol both initiator and responder choose and exchange fresh
nonces. Once exchanged, the two nonces could be used to establish a common session
key for further secure communication. It is therefore desirable that the protocol does
not leak any of the two nonces but keeps them secret instead.

The first secrecy theorem for NSL regards the private keys of principals. If private
keys are not corrupted from the start and principals behave according to the protocol
then the keys are not leaked during a protocol run. If one assumes Priv(A0) 6v t0,
where A0 ∈ A, then the initial network state clearly does not expose the private
key of A0 to any danger of corruption – that key is not appearing anywhere as part
of messages in t0. We will make use of the following theorem in establishing more
security properties for NSL.

Theorem 5.4.1 Given a run of NSL and A0 ∈ A, if Priv(A0) 6v t0 then at each
stage w in the run Priv(A0) 6v tw.

Proof. Suppose there is a run of NSL in which Priv(A0) appears on a message sent
over the network. This means, since Priv(A0) 6v t0, that there is a stage w > 0 in
the run such that

Priv(A0) 6v tw−1 and Priv(A0) v tw .

The event ew is an event in the set

Ev(NSL) = init : Ev(pinit) ∪ resp : Ev(presp) ∪ spy : Ev(pspy)

and, by the token game of nets with persistent conditions, is such that

Priv(A0) v eow .

As can easily be checked, the shape of every initiator or responder event

e ∈ init : Ev(pinit) ∪ resp : Ev(presp)
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is such that
Priv(A0) 6v eo.

The event ew can therefore only be a spy event. If ew ∈ spy : Ev(pspy), however, by
control precedence and the token game one would find an earlier stage u in the run,
u < w, such that Priv(A0) v tu and therefore reach a contradiction. We show that
ew can’t be the spy output event of a decryption, the other cases are similar. Suppose
that ew carries action

act(ew) = spy : i : 5 : outM

where i is a round index and M is a message such that Priv(A0) v M . By control
precedence there exists an event eu+1 such that 0 ≤ u < w and

act(eu+1) = spy : i : 5 : in {M}Pub(B0)

for some agent name B0 ∈ A. Clearly Priv(A0) v {M}Pub(B0). From the token game
it follows that {M}Pub(B0) ∈ tu and therefore Priv(A0) v tu. 2

The second secrecy property that we prove for NSL, is the secrecy of a nonce gen-
erated by the initiator. NSL-protocol exchanges keep initiator nonces secret provided
private keys are not corrupted initially. We are interested in proving the secrecy of a
new nonce that has been chosen on an initiator event, and thus in runs which contain
such initiator events.

Theorem 5.4.2 Given a run of NSL and A0, B0 ∈ A, if Priv(A0), P riv(B0) 6v t0
and the run contains an initiator event a1 labelled with action

act(a1) = init : (A0, B0) : i0 : out newm0 {m0, A0}Pub(B0) ,

where i0 is a session index and m0 a name, then at every stage w in the run m0 6∈ tw.

Proof. We show a stronger property. Consider the property of configurations 〈p, s, t〉
and names n

Q(p, s, t, n) ⇔ σ(m0, t) ⊆ {{m0, A0}Pub(B0), {m0, n, B0}Pub(A0)} .

If we can show that

there exists n ∈ N such that at every stage w in the run Q(pw, sw, tw, n)

then clearly m0 6∈ tw for every stage w in the run. Suppose the contrary. Let
n0 be a name such that n0 6= m0 and suppose that at some stage in the run the
property Q does not hold. By freshness clearly Q(NSL, s0, t0, n0). Let v, by Well-
foundedness, be the first stage in the run such that ¬Q(pv, sv, tv, n0). From the
Freshness Principle 5.1.3 it follows that

a1 ev

and from the token game {m0, A0}Pub(B0) ∈ σ(m0, tv−1) (messages on the network
are persistent). The event ev is an event in

Ev(NSL) = init : Ev(pinit) ∪ resp : Ev(presp) ∪ spy : Ev(pspy)
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and, from the token game of nets with persistent conditions, is such that

σ(m0, e
n
v ) 6⊆ {{m0, A0}Pub(B0), {m0, n0, B0}Pub(A0)} . (5.3)

Clearly ev can only be an output event since en = ∅ for all input events e. We examine
the possible output events of Ev(NSL) and conclude that ev 6∈ Ev(NSL), reaching
a contradiction.
Initiator output events. We distinguish two cases:
Case 1:

act(ev) = init : (A,B) : j : out newm {m,A}Pub(B)

where A,B ∈ A, and so A,B ∈ s0 and where m is a name and j is an index. Prop-
erty (5.3) and the definition of message surroundings imply that m0 v {m,A}Pub(B).
If m = m0 then one reaches a contradiction to Property (5.3) because from the Fresh-
ness Principle 5.1.3 it follows that env = {{m0, A0}Pub(B0)}. Since A ∈ s0 freshness
also implies that A 6= m0. Therefore ev can’t be an initiator event with the above
action.
Case 2:

act(ev) = init : (A,B) : j : out {n}Pub(B)

where A,B ∈ A, and so A,B ∈ s0, and where n is a name and j is an index. As
before, from the definition of message surroundings and Property (5.3) it follows that
n = m0. By Control-precedence 5.1.4, there exists an event eu in the run such that

eu ev

and
act(eu) = init : (A,B) : j : in {m,m0, B}Pub(A)

for some name m. By the token game

{m,m0, B}Pub(A) ∈ tu−1

where m0 6= n0 and so ¬Q(pu−1, su−1, tu−1, n0) which is a contradiction since u < v.
Responder output events. There is only one possible case:

act(ev) = resp : B : j : out new n {m,n,B}Pub(A)

where A,B ∈ A, and so A,B ∈ s0, m,n are names and j an index. From the freshness
principle it follows that n 6= m0 and B 6= m0. Therefore, since Property (5.3) holds
and by the definition of message surroundings,m = m0 and either B 6= B0 or A 6= A0.
By Control-precedence 5.1.4, there exists an event eu in the run such that

eu ev

and
act(eu) = resp : B : j : in {m0, A}Pub(B) .

By the token game
{m0, A}Pub(B) ∈ tu−1

and ¬Q(pu−1, su−1, tu−1, n0) since either B 6= B0 or A 6= A0. A contradiction follows
because u < v.
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Spy output events. An assumption of the theorem is that the private keys of the two
agents A0 and B0 are not leaked, meaning that Priv(A0), P riv(B0) 6v t0. At every
stage w in the run Priv(A0), P riv(B0) 6∈ tw (Theorem 5.4.1). Since σ(m0, tv−1) 6= ∅,
Q(pv−1, sv−1, tv−1, n0), and ¬Q(pv, sv, tv, n0), Theorem 5.2.4 can be applied and one
concludes that ev is not a spy event. 2

It is easy to see how a spy, as the one shown in Section 4.1.10, can get hold of the
secret nonce if either Priv(A0) or Priv(B0) are corrupted. For example suppose a
run of NSL containing the events

act(a1) = init : (A0, B0) : j0 : out newm0 {m0, A0}Pub(B0)

act(b2) = resp : B0 : i0 : out newn0 {m0, n0, B0}Pub(A0)

and suppose Priv(A0) ∈ t0. One can easily extend the run to an NSL run such that
at some stage v in the run m0 ∈ tv. For example

a1
{m0,A0}Pub(B0)

b1 s1

b2
{m0,n0,B0}P ub(A0)

s2

s3
m0,n0,B0 s4

s5
m0 •

where b1 and b2 are the obvious responder events and s1, . . . , s5 are spy event with
actions

act(s1) = spy : 5 : l0 : in Priv(A0)
act(s2) = spy : 5 : l0 : in {m0, n0, B0}Pub(A0)

act(s3) = spy : 5 : l0 : out m0, n0, B0

act(s4) = spy : 2 : r0 : in m0, n0, B0

act(s5) = spy : 2 : r0 : out m0 .

The third secrecy property that we prove for NSL, is the secrecy of a nonce gener-
ated by the responder. As for initiator nonces, NSL-protocol exchanges keep respon-
der nonces secret provided private keys are not corrupted initially. We are interested
in those NSL runs that contain an NSL-responder event on which a new nonce is
chosen and then sent out.

Theorem 5.4.3 Given a run of NSL and A0, B0 ∈ A, if Priv(A0), P riv(B0) 6v t0
and if the run contains a responder event b2 labelled with action

act(b2) = resp : B0 : i0 : out new n0 {m0, n0, B0}Pub(A0)

for some round index i0 then at every stage w in the run n0 6∈ tw.
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Proof. We show a stronger property. Consider the following property on configura-
tions 〈p, s, t〉

Q(p, s, t) ⇔ σ(n0, t) ⊆ {{n0}Pub(B0), {m0, n0, B0}Pub(A0)} .

From the freshness principle it follows that Q(NSL, s0, t0). Suppose that at some
stage in the run the property does not hold. Let v, by Well-foundedness, be the first
stage in the run such that ¬Q(pv, sv, tv). From the Freshness Principle 5.1.3 it follows
that

b2 ev

and from the token game {m0, n0, B0}Pub(A0) ∈ σ(n0, tv−1) (messages on the network
are persistent). The event ev is an event in

Ev(NSL) = init : Ev(pinit) ∪ resp : Ev(presp) ∪ spy : Ev(pspy) .

From the token game of nets with persistent conditions the event ev is such that

σ(n0, e
n
v ) 6⊆ {{n0}Pub(B0), {m0, n0, B0}Pub(A0)} . (5.4)

Clearly ev can only be an output event since en = ∅ for all input events e. We examine
the possible output events of Ev(NSL) and conclude that ev 6∈ Ev(NSL), reaching
a contradiction.
Initiator output events. We distinguish two cases:
Case 1:

act(ev) = init : (A,B) : j : out newm {m,A}Pub(B)

where A,B ∈ A, and so A,B ∈ s0, m a name and j an index. Because of Prop-
erty (5.4) and the definition of surroundings, n0 v {m,A}Pub(B). From the freshness
principle it follows that m 6= n0 and since A ∈ s0 it also follows that A 6= n0. There-
fore ev can’t be an initiator event of carrying the above action.
Case 2:

act(ev) = init : (A,B) : j : out {n}Pub(B)

where A,B ∈ A, and so A,B ∈ s0, and where n is a name and j is an index. As
before, by the definition of message surroundings and the Property (5.4), n = n0 and
B 6= B0. By Control-precedence 5.1.4, there exists an event eu in the run such that

eu ev

and
act(eu) = init : (A,B) : j : in {m,n0, B}Pub(A)

for some name m. From the token game it follows that

{m,n0, B}Pub(A) ∈ tu−1 .

Therefore ¬Q(pu−1, su−1, tu−1), since B 6= B0. A contradiction since u < v.
Responder output events. There is only one possible case:

act(ev) = resp : B : j : out new n {m,n,B}Pub(A)
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where A,B ∈ A, and so A,B ∈ s0, and where m,n are names and j is an index. From
the freshness principle it follows that n 6= n0 and B 6= n0. Property (5.4) holds and
by the definition of surroundings, m = n0. By Control-precedence 5.1.4, there exists
an event eu in the run such that

eu ev

and
act(eu) = resp : B : j : in {n0, A}Pub(B) .

By the token game,
{n0, A}Pub(B) ∈ tu−1

and ¬Q(pu−1, su−1tu−1). A contradiction follows because u < v.
Spy output events. As an assumption the private keys of the two agents A0 and
B0 are not leaked, meaning that Priv(A0), P riv(B0) 6v t0. Therefore at every stage
w in the run Priv(A0), P riv(B0) 6∈ tw (Theorem 5.4.1). Since σ(n0, tv−1) 6= ∅,
Q(pv−1, sv−1, tv−1) and ¬Q(pv, sv, tv), Theorem 5.2.4 can be applied and one con-
cludes that ev is not a spy event. 2

5.4.2 Authentication

An NSL protocol exchange between an initiator and a responder achieves mutual
authentication. The authentication properties that hold for NSL are of a strong
kind. They are agreement properties (see Lowe [48]) saying that, for example, to a
protocol session completed by the initiator there corresponds a protocol session of the
responder which agrees on the exchanged nonces. The initiator can then be sure it
interacted with the right agent. This kind of properties however do not exclude the
possibility of a spy as a middleman which simply forwards messages. For the NSL
protocol this can indeed be the case, and it is arguable whether or not this is an
attack. This stronger kind of authentication has been studied by Roscoe in [69].

The first authentication theorem is a guarantee for the responder. We are inter-
ested in those runs of NSL that contain responder events for a completed protocol
session. It turns out that the following theorem needs the assumption that the private
key of the initiator is not corrupted.

Theorem 5.4.4 If a run of NSL contains responder events b2, b3 with actions

act(b2) = resp : B0 : i0 : out new n0 {m0, n0, B0}Pub(A0)

act(b3) = resp : B0 : i0 : in {n0}Pub(B0)

for some round index i0 and Priv(A0) 6v t0, then the run contains initiator events
a1, a2, a3 with actions

act(a1) = init : (A0, B0) : j0 : out newm0 {m0, A0}Pub(B0)

act(a2) = init : (A0, B0) : j0 : in {m0, n0, B0}Pub(A0)

act(a3) = init : (A0, B0) : j0 : out {n0}Pub(B0)

where j0 is a round index and such that a3 b3 .
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Proof. By control precedence we obtain

b2

b3 .

Consider the property of configurations 〈p, s, t〉

Q(p, s, t) ⇔ σ(n0, t) ⊆ {{m0, n0, B0}Pub(A0)}

By freshness the property Q holds immediately after b2, but clearly not immediately
before b3. By well-foundedness there is an earliest stage v in the run such that
¬Q(pv, sv, tv). The event ev is an output event such that

σ(n0, e
o
v) 6⊆ {{m0, n0, B0}Pub(A0)} (5.5)

and it follows b2 but precedes b3 in the run

b2

b3 ev .

We inspect the output events of NSL to determine which action the event ev
carries.
Initiator output events. We distinguish two cases:
Case 1:

act(ev) = init : (A,B) : j0 : out newm {m,A}Pub(B)

where A,B ∈ A, and so A,B ∈ s0, and where m is a name and j0 is an index.
Property 5.5 holds and by the definition of message surroundings, n0 v {m,A}Pub(B).
The Freshness Principle 5.1.3 implies that m 6= n0 and since A ∈ s0 it also implies
that A 6= n0. Therefore ev can’t be an initiator event of carrying the above action.
Case 2:

act(ev) = init : (A,B) : j0 : out {n}Pub(B)

where A,B ∈ A, and so A,B ∈ s0, and where n is a name and j0 is an index. As
before, by the definition of message surroundings and the Property (5.5), n = n0. By
Control-precedence 5.1.4, there exists an event eu in the run such that

eu ev

and
act(eu) = init : (A,B) : j0 : in {m,n0, B}Pub(A)

for some name m. This, however, is only possible if B = B0, A = A0, and m = m0,
since u < v. Therefore Q(pu−1, su−1, tu−1).
Responder output events. There is only one case possible:

act(ev) = resp : B : j0 : out newn {m,n,B}Pub(A)
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where A,B ∈ A, and so A,B ∈ s0, and where m,n are names and j0 is an index.
From the freshness principle it follows that n 6= n0 and B 6= n0. Property (5.5) holds
and by the definition of message surroundings, m = n0. By Control-precedence 5.1.4,
there exists an event eu in the run such that

eu ev

and
act(eu) = resp : B : j0 : in {n0, A}Pub(B) .

By the token game,
{n0, A}Pub(B) ∈ tu−1

and ¬Q(pu−1, su−1tu−1). A contradiction follows, since u < v.
Spy output events. An assumption of the theorem is that the private key of agent A0

is not leaked, meaning that Priv(A0) 6v t0. Then that key is not corrupted by the pro-
tocol – at every stage w in the run Priv(A0) 6∈ tw (Theorem 5.4.1). Observe that due
to message persistence {m0, n0, B0}Pub(A0) ∈ σ(n0, tv−1). Since Q(pv−1, sv−1, tv−1)
and ¬Q(pv, sv, tv), Theorem 5.2.4 can applies and one concludes that ev is not a spy
event.

From the above inspection of NSL events it follows that ev is an initiator event
with action

act(ev) = init : (A0, B0) : j0 : out {n0}Pub(B0)

and that, in the run, it is preceded by another initiator event eu with action

act(eu) = init : (A0, B0) : j0 : out {m0, n0, B0}Pub(A0) .

Let a3 be the event ev and a2 the event eu, yielding the diagram:

b2 a2

b3 a3 .{n0}P ub(A0)

Since Fresh(b2, n0) the event b2 precedes a2:

b2
{m0,n0,B0}P ub(B0)

a2

b3 a3 .{n0}P ub(A0)

By control precedence the run contains an event a1 labelled with the desired action:

a1

b2
{m0,n0,B0}P ub(B0)

a2

b3 a3 .{n0}P ub(A0)
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By control precedence there is an event b1 carrying action

act(b1) = resp : B0 : i0 : in {m0, A0}Pub(B0)

and yielding the diagram:

b1 a1

b2
{m0,n0,B0}P ub(A0)

a2

b3 a3 .{n0}P ub(B0)

Since Fresh(a1,m0) the event a1 precedes b1 and one obtains the following diagram
which completes the proof:

b1 a1

{m0,A0}P ub(B0)

b2
{m0,n0,B0}P ub(A0)

a2

b3 a3 .{n0}P ub(B0)

2

We have seen the form of authentication that NSL guarantees to the responder,
now we study a similar guarantee for the initiator. This time, both private keys of
initiator and responder should not be corrupted. We show later how authentication
fails when one of the two keys becomes corrupted at some stage a the protocol run.

Theorem 5.4.5 If a run of NSL contains an initiator event a2 with action

act(a2) = init : (A,B) : i0 : in {m0, n0, B0}Pub(A0)

for some round index i0 and Priv(A0), P riv(B0) 6v t0, then the run contains respon-
der events b1, b2 with actions

act(b1) = resp : B0 : j0 : in {m0, A0}Pub(B0)

act(b2) = resp : B0 : j0 : out new n0 {m0, n0, B0}Pub(A0) .

where j0 is a round index and such that b2 a2 .

Proof. By control precedence we obtain

a1

a2
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where
act(a1) = init : (A,B) : i0 : out newm0 {m0, A0}Pub(B0) .

Consider the property of configurations 〈p, s, t〉

Q(p, s, t) ⇔ σ(m0, t) ⊆ {{m0, A0}Pub(B0)}∪{{m0, n, B0}Pub(A0) | n ∈ N\{m0, n0}} .

By freshness the property Q holds immediately after a1 but not immediately before
a2. By well-foundedness there is an earliest stage v in the run such that ¬Q(pv, sv, tv).
The event ev is an output event such that

σ(m0, e
o
v) 6⊆ {{m0, A0}Pub(B0)} ∪ {{m0, n, B0}Pub(A0) | n ∈ N \ {m0, n0}} (5.6)

and it follows a1 but precedes a2 in the run:

a1

a2 ev

We inspect the output events of NSL to determine which event ev is.
Initiator output events. We distinguish two cases:
Case 1:

act(ev) = init : (A,B) : j0 : out newm {m,A}Pub(B)

where A,B ∈ A, and so A,B ∈ s0, and where m is a name and j0 is an index.
Property 5.6 holds and by the definition of message surroundings,m0 v {m,A}Pub(B).
Freshness 5.1.3 implies that m 6= m0 and since A ∈ s0 it also implies that A 6= m0.
Therefore ev can’t be an initiator event carrying the above action.
Case 2:

act(ev) = init : (A,B) : j0 : out {n}Pub(B)

where A,B ∈ A, and so A,B ∈ s0, and where n is a name and j0 is an index. As
before, from the definition of surroundings and Property (5.6) it follows that n = m0.
By Control-precedence 5.1.4, there exists an event eu in the run such that

eu ev

and
act(eu) = init : (A,B) : j0 : in {m,m0, B}Pub(A)

for some name m. This, however, is not possible since u < v and Q(pu−1, su−1, tu−1).
Responder output events. There is only one possible case:

act(ev) = resp : B : j0 : out newn {m,n,B}Pub(A)

where A,B ∈ A, and so A,B ∈ s0, and where m,n are names and j0 is an index.
From the freshness principle it follows that n 6= m0 and B 6= m0. Therefore, since
Property (5.6) holds and by the definition of message surroundings, m = m0. By
Control-precedence 5.1.4, there exists an event eu in the run such that

eu ev
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and
act(eu) = resp : B : j0 : in {m0, A}Pub(B) .

By the token game,
{m0, A}Pub(B) ∈ tu−1

and since Q(pu−1, su−1tu−1) it follows that A = A0 and B = B0. Moreover, n = n0

since ¬Q(pv, sv, tv).
Spy output events. An assumption of the theorem is that the private keys of A0 and
B0 are not leaked, meaning that Priv(A0), P riv(B0) 6v t0. At every stage w in the
run Priv(A0), P riv(B0) 6∈ tw (Theorem 5.4.1). Observe that due to message persis-
tence {m0, A0}Pub(B0) ∈ σ(m0, tv−1). Since Q(pv−1, sv−1, tv−1) and ¬Q(pv, sv, tv),
Theorem 5.2.4 can be applied and one can conclude that ev can not be a spy event.

From the inspection of NSL events above, it follows that ev is a responder event
with action

act(ev) = resp : B : j0 : out new n0 {m0, n0, B0}Pub(A0)

for some round index j0. Let therefore b2 = ev and by control precedence the run
contains a responder event b1 with action

act(b1) = resp : B : j0 : in {m0, A0}Pub(B0)

which precedes b2:
a1 b1

a2 b2 .
{m0,n0,B0}P ub(A0)

By freshness:

a1
{m0,A0}P ub(B0)

b1

a2 b2 .
{m0,n0,B0}P ub(A0)

2

Sometimes it is convenient to use already established security results as lemmas
for other security theorems. We have seen, for example, how the secrecy of the pri-
vate keys is used in proving secrecy of the nonces. The authentication theorem for
the initiator could be proved in a more concise way if one used the secrecy property
established for initiator nonces. An alternative proof goes as follows:

Proof. (An alternative proof for the initiator’s authentication guarantee)
The proof is along the same lines of the previous one. We choose, however, a simpler
property of configurations and make use of the secrecy Theorem 5.4.2.

By control precedence we obtain

a1

a2
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where
act(a1) = init : (A0, B0) : i0 : out newm0 {m0, A0}Pub(B0) .

Consider the property of configurations 〈p, s, t〉

Q(p, s, t) ⇔ σ(m0, t) ⊆ {{m0, A0}Pub(B0)} .

By freshness the property Q holds immediately after a1 but not immediately before
a2. By well-foundedness there is an earliest stage v in the run such that ¬Q(pv, sv, tv).
The event ev is an output event such that

σ(m0, e
o
v) 6⊆ {{m0, A0}Pub(B0)} .

In proving the secrecy Theorem 5.4.2 for the initiator’s nonce we showed that there
is a name n ∈ N such that for every stage w in an NSL run containing event a1

σ(tw ,m0) ⊆ {{m0, A0}Pub(A0), {m0, n, B0}Pub(B0)} ,

provided that Priv(A0), P riv(B0) 6∈ t0. The event a2 is also included in the run, and
so n = n0. Therefore

σ(m0, e
o
v) = {{m0, n0, B0}Pub(A0)} .

Clearly ev follows a1 but precedes a2 in the run.

a1

a2 ev .

We inspect the output events of NSL to determine which event ev is. It is immediate
to see that ev can’t be an initiator event. The spy output events can be excluded
for a reason similar to the one we saw in the previous proof. It remains to check the
responder output events. There is only one possible case:

act(ev) = resp : B : j0 : out new n0 {m0, n0, B0}Pub(A0)

for some round index j0. Let b2 = ev. By control precedence, the run contains a
responder event b1 which precedes b2 and carries the action

act(b1) = resp : B : j0 : in {m0, A0}Pub(B0) .

Therefore, using the freshness principle as in the previous proof, one obtains

a1
{m0,A0}P ub(B0)

b1

a2 b2 .
{m0,n0,B0}P ub(A0)

2

75



Chapter 5. Reasoning about security in the net semantics

It is worth observing that to guarantee authentication to a responder it is only
required that the private key of the initiator is not corrupted. Even if the responder
uses a corrupted private key for decryption, it does not affect the level of authentica-
tion achieved. The authentication property that we showed for the initiator, however,
fails when the private key of the initiator is corrupted. 1 Assume that Priv(B0) 6∈ t0
but Priv(A0) ∈ t0 and assume that the run contains initiator events a1 and a2. When
we try to redo the proof of authentication we encounter the following difficulty: The
property on message surroundings that we are considering is of the form

σ(m0, t) ⊆ {{m0, A0}Pub(B0), {m0, n, B0}Pub(A0), . . . }
and therefore when examining the spy events, Theorem 5.2.4 can only be applied
if both Priv(A0) and Priv(B0) are not corrupted. The spy is therefore able to
change the surroundings of m0 when it listens to a message {m0, n, B0}Pub(A0) and
can produce fake surroundings for m using the available public keys. Suppose that
n0 is a name that the spy knows in addition to agent names A0, B0 and the public
key Pub(A0) – suppose, for example, that these names and key are in cleartext on
the network. The following attack is possible:

a1
{m0,A0}P ub(B0)

b1

a2 〈spy〉{m0,n0,B0}P ub(A0)
b2{m0,n,B0}P ub(A0)

where 〈spy〉 is the following diagram:

s1 •
Priv(A0)

b2
{m0,n,B0}P ub(A0)

s2

s3
m0 s4

• n0,B0 s5 s7 •Pub(A0)

s6
m0,n0,B0 s8

s9
{m0,n0,B0}Pub(A0)

a2

The dotted lines involve more steps from the spy, these however are elementary and
just involve composing or decomposing message tuples.

1 This observation is not new. It can for example be found in [90].
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The attack shows how the initiator can be tricked into believing that a certain
nonce is the nonce of B0 even if, in reality, it is some other value chosen by the
spy. The authentication property that we can show when both private keys are not
corrupted is clearly violated. A weaker form of authentication still holds even if
Priv(A0) is corrupted. It says that to a run of the initiator there corresponds a run
of the responder. The two runs, however, not necessarily agree on the chosen values.
For some applications this weaker form of authentication might be enough.

The nonces that initiator and responder exchange during an NSL session could be
used to generate a common session key. It would be a security breach if nonces that are
exchanged during a protocol session appear in any other protocol session, especially
in a session which involves different agents. The authentication properties for NSL
that have been studied earlier in the chapter ensure non-injective agreement [48] –
they do not guarantee that to an initiator run corresponds a unique responder run
that agrees on nonces. The following theorems show that injective agreement holds
for NSL runs.

Theorem 5.4.6 Let m0, n0 be names. In every run of NSL there exists at most one
initiator event a2 carrying an action

act(a2) = init : (A,B) : i : in {m0, n0, B}Pub(A)

or an action

act(a2) = init : (A,B) : i : in {n0,m0, B}Pub(A)

where A,B are agent names such that Priv(A), P riv(B) 6v t0 and i a round index.

Proof. Suppose that there exists a run of NSL containing two events a2 and a′2
carrying actions

act(a2) = init : (A,B) : i : in {m0, n0, B}Pub(A)

act(a′2) = init : (A′, B′) : i′ : in {m0, n0, B
′}Pub(A′) .

The events a2 and a′2 need to be distinct (Proposition 4.4.4). By control precedence
and the token game, there exist two distinct events a1 and a′1 in the run such that
Fresh(m0, a1) and Fresh(m0, a

′
1). This, however, is a contradiction to the freshness

principle.
Suppose instead, that there exists a run of NSL containing two events a2 and a′2

with actions

act(a2) = init : (A,B) : i : in {m0, n0, B}Pub(A)

act(a′2) = init : (A′, B′) : i′ : in {n0,m0, B
′}Pub(A′)

and where Priv(A), P riv(B), P riv(A′), P riv(B′) 6v t0. By control precedence there
exist two initiator events a1, a

′
1 in the run such that Fresh(m0, a1) and Fresh(n0, a

′
1).

On the other hand, from Theorem 5.4.5 it follows that the run contains two responder
events b2, b′2 such that Fresh(n0, b2) and Fresh(m0, b

′
2). From the freshness principle

follows a contradiction since responder and initiator events are different events. 2

Similarly one can show that:
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Theorem 5.4.7 Let m0, n0 be names. In every run of NSL there exists at most one
responder event b2 carrying an action

act(b2) = resp : B : i : out newn0 {m0, n0, B}Pub(A)

or an action

act(b2) = resp : B : i : out newm0 {n0,m0, B}Pub(A)

where A,B are agent names, i a round index and where Priv(B) 6v t0. 2

One could also try to extend the analysis and study the consequences of nonces
getting corrupted at some stage during a protocol run. A corrupted session key
should, if possible, not compromise the security of later sessions. The issue of session-
key compromise is studied in more detail for the ISO protocol in the next chapter.
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Examples

The protocols that we study in this chapter are examples of how security protocols
can be written and analysed in SPL. Protocol verification is based on the SPL net.

A class of security protocols concerns the establishment of secret shared keys
between a number of agents. Agents can use the established keys for a variety of
purposes – typically as session keys for further secure communication, for example to
ensure confidentiality and authentication of transmitted data. One can distinguish
between two main approaches to secret-key establishment [52]. The key-transport ap-
proach, where one of the agents or a trusted third party chooses the key and sends
it to the other agents. In the key-agreement approach, instead, agents derive a com-
mon key from information that they already have. The examples that we study in
this chapter are protocols of the first kind. Their objective is the distribution of a
secret key in a way that the key is shared only among the legitimate parties (key au-
thentication) and, perhaps, ensure the key’s freshness to prevent re-play attacks [52].
Key-transport protocols usually make use of cryptography to achieve their objectives.
The NSL protocol that we studied earlier is a key-transport protocol that makes use
of public-key cryptography. Symmetric-key cryptography can be used for key dis-
tribution as an alternative to public-key cryptography. Symmetric-key cryptography
can be the preferred choice for time-critical applications since public-key encryption
algorithms are rather slow (up to 1000 times slower than conventional symmetric-key
cryptography [79]).

The ISO 5-pass authentication protocol [40, 19] and the Π3 key-translation pro-
tocol [100, 99, 19] that we study in this chapter are both based on a symmetric-key
cryptographic system.

6.1 The ISO 5-pass authentication protocol

Two agents, Alice and Bob want to establish a shared session key that can be used
for encrypting confidential data. If they both share a key with a trusted third party,
a server, they can ask the server to issue and send the session key to them. The ISO
5-pass protocol [40, 19] is a symmetric key authentication mechanism that allows to
do so.
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6.1.1 Informal description

At an informal level the protocol is described by the following sequence of actions:

(1) A→ B : ra, T 1

(2) B → S : rbs, ra,A, T2

(3) S → B : T 5, {rbs,Key(ab), A, T4}K(B,S), {ra,Key(ab), B, T3}K(A,S)

(4) B → A : T 7, {ra,Key(ab), B, T3}K(A,S), {rba, ra, T6}Key(ab)
(5) A→ B : T 9, {ra, rba, T8}Key(ab) .

Agents that engage in the protocol can take two roles; the initiator, here A and
the responder, here B. The server S is a fixed trusted entity. When A initiates
the protocol (message (1)) it sends to B a random number ra, a challenge for the
server. This challenge, when encrypted with the key shared by A and S, aims at
providing authentication 1 of S to A and freshness of the cyphertext in which it is
contained. After receiving the request from A, the responder B interacts with the
server to request a session key – together with A’s challenge and identifier, it sends
a random number rbs, his own challenge for S (message (2)). Upon receiving the
message from B, the server sets up a session key Key(ab) for the two principals and
prepares two encryptions: one in which the session key Key(ab) and B’s challenge
rbs are encrypted with the key S shares with B and another in which the session
key Key(ab) and A’s challenge ra are encrypted with the key S shares with A. This
compound message is sent to the responder (3). The responder decrypts the first part
and checks whether it got back the same random number he chose in step (2). If so,
B concludes that the message received is fresh and was indeed sent by S. To make
sure that the session key is shared only with A, the responder exchanges two more
messages with the initiator. In (4) B forwards to A part of the message received from
S and an encryption using the session key and containing rba, a challenge for A. After
receiving the message, the initiator decrypts the first part, extracts the new key and
then checks whether it got back the challenge sent in (1). If so, A decrypts the second
part of the message and authenticates B checking for ra. If all checks are successful
the initiator concludes that it got a good session key which is shared only with B. In
step (5) the initiator acknowledges the responder so that B can authenticate A and
equally conclude that the session key is shared only with A.

The protocol should guarantee that session keys stay secret to initiator, responder
and the server that issued them, and that there is mutual authentication between
initiator and responder.

6.1.2 Programming the ISO-5 pass authentication in SPL

In the above informal description of the protocol, T1-T9 stand for any text that one
might want to include in the communication between the principals. To keep the
messages shorter and make the proofs of correctness of the protocol more readable

1As mentioned earlier, we assume symmetric-key encryptions to providing message authentication
– to achieve this a MAC is used together with encryption.

80



6.1. The ISO 5-pass authentication protocol

we omit the texts T1-T9 entirely. We assume given a set of agent names A. Let
A,B, S ∈ A. We can program the three different protocol roles as SPL-processes as
follows:

Init(A,B) ≡ out new(x) x.
in {x, χ,B}Key(A,S), {y, x}χ.
out {x, y}χ

Resp(A,B) ≡ in x.

out new(z) z, x,A.
in {z, χ,A}Key(B,S), ψ.

out new(y) ψ, {y, x}Key(B,S).

in {x, y}χ

Server(A,B) ≡ in z, x,A.

out new(z′) {z,Key(z′), A}Key(B,S), {x,Key(z′), Y }Key(A,S) .

The generation of a new key can be described conveniently with new name gener-
ation. If ab is a new name then Key(ab) is a new term that we use to denote a new
key. Therefore the session key-generation of the server is expressed by:

out new(z′) {· · ·Key(z′) · · · }Key(B,S), · · · .

Suppose that A is the set of agents that can participate in the protocol and suppose
that each agent can be both initiator and responder with any other agent. This
rather general protocol system can be described by the following parallel composition
of processes. We don’t, however, want to study the protocol in isolation, instead we
analyse its executions in a hostile environment. Therefore, as we did for NSL, we
add a spy. The process Spy has all the components describe in Section 4.1.10. The
ISO protocol system is described by the following SPL-process term:

Pinit ≡ ‖A,B∈A×A ! Init(A,B)
Presp ≡ ‖A,B∈A×A ! Resp(A,B)
Pserver ≡ ‖A,B∈A×A ! Server(A,B)
Pspy ≡ Spy

ISO ≡ ‖i∈{resp,init,server,spy} Pi .

6.1.3 The events of the protocol

We classify the events Ev(ISO) of the ISO protocol:
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Initiator events for every agent name A,B ∈ A, names ra, rba ∈ N, key k, and
indices i ∈ ω.

init : (A,B) : i : Out(Init(A,B); ra)

�
�

�
@
@
@

c
c

c

init : (A,B) : i : Init(A,B)

init : (A,B) : i : out new(ra) ra

init : (A,B) : i : in {ra, χ,B}Key(A,S), {y, ra}χ . · · ·
ra

ra

init : (A,B) : i : In(in {ra, χ,B}Key(A,S), {y, ra}χ . · · · ; rba, k)

�
�

�

l
l

l
�

�
�

init : (A,B) : i : out {ra, rba}k

init : (A,B) : i : in {ra, χ,B}Key(A,S), {y, ra}χ . · · ·

{ra, k,B}Key(A,S), {rba, ra}k

init : (A,B) : i : in {ra, k,B}Key(A,S), {rba, ra}k

init : (A,B) : i : Out(out {ra, rba}k)

@
@
@

c
c

c

init : (A,B) : i : out {ra, rba}k

init : (A,B) : i : out {ra, rba}k

{ra, rba}k

Responder events for every agent name A,B ∈ A, names ra, rba, rbs ∈ N, key k,
and indices j ∈ ω.

resp : (A,B) : j : In(Resp(A,B); ra)

�
�

�

l
l

l
�

�
�

resp : (A,B) : j : out new(z) z, ra, A . · · ·

resp : (A,B) : j : Resp(A,B)

ra

resp : (A,B) : j : in ra
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resp : (A,B) : j : Out(out new(z) z, ra,A . · · · ; rbs)

�
�

�
@
@
@

c
c

c

resp : (A,B) : j : out new(z) z, ra, A

resp : (A,B) : j : out new(rbs) rbs, ra, A

resp : (A,B) : j : in {rbs, χ,A}Key(B,S).ψ . · · ·
rbs

rbs, ra, A

resp : (A,B) : j : In(in {rbs, χ,A}Key(B,S), ψ . · · · ; k,M)

�
�

�

l
l

l
�

�
�

resp : (A,B) : j : out new(y) M, {y, ra}Key(B,S) . · · ·

resp : (A,B) : j : in {rbs, χ,A}Key(B,S), ψ . · · ·

{rbs, k,A}Key(B,S),M

resp : (A,B) : j : in {rbs, k,A}Key(B,S),M

resp : (A,B) : j : Out(out new(y) M, {y, ra}Key(B,S) . · · · ; rba)

�
�

�
@
@
@

c
c

c

resp : (A,B) : j : out new(y) M, {y, ra}Key(B,S) . · · ·

resp : (A,B) : j : out new(rba) M, {rba, ra}Key(B,S)

resp : (A,B) : j : in {ra, rba}k
rba

M, {rba, ra}Key(B,S)

resp : (A,B) : j : In(in {ra, rba}k)

l
l

l
�

�
�

resp : (A,B) : j : in {ra, rba}k

{ra, rba}k

resp : (A,B) : j : in {ra, rba}k
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Server events for every agent name A,B ∈ A, names ra, rbs, ab ∈ N, and indices
l ∈ ω.

server : (A,B) : l : In(Server(A,B); rbs, ra)

�
�

�

l
l

l
�

�
�

server : (A,B) : l : out new(z′) {rbs,Key(z′), A}Key(B,S), {ra,Key(z′), B}Key(A,S)

server : (A,B) : l : in z, x,A

rbs, ra, A

server : (A,B) : l : in rbs, ra,A

server : (A,B) : l :
Out(out new(z′) {rbs,Key(z′), A}Key(B,S), {ra,Key(z′), B}Key(A,S); ab)

@
@
@

c
c

c

server : (A,B) : l :
out new(z′) {rbs,Key(z′), A}Key(B,S), {ra,Key(z′), B}Key(A,S)

server : (A,B) : l :
out new(ab) {rbs,Key(ab), A}Key(B,S), {ra,Key(ab), B}Key(A,S)

ab

{rbs,Key(ab), A}Key(B,S), {ra,Key(ab), B}Key(A,S)

6.1.4 Security properties

We formalise and prove a number of security properties for the ISO protocol. In this
case we are interested in proper runs of the kind

〈ISO, s0, t0〉 e1−→ · · · ew−→ 〈pw, sw, tw〉 ew+1−→ . . .

where t0 is a network state, the messages on the network in which a protocol execution
starts. Whenever we refer to a run of ISO in the following section we mean a run of
this kind.

Secrecy of long-term keys and session keys. The ISO protocol makes use of
long-term shared keys among agents and the server to distribute the session key and
maintain it confidential. The protocol should not leak this shared keys otherwise all
the communication is thwarted.

Theorem 6.1.1 Let A0 ∈ A be an agent name. Given a run of ISO, if the key
Key(A0, S) 6v t0 then at every stage w in the run Key(A0, S) 6v tw.
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Proof. Suppose there is a run of ISO in which Key(A0, S) appears on the network.
Since Key(A0, S) 6v t0 there is a stage v > 0 in the run such that

Key(A0, S) 6v tv−1 and Key(A0, S) v tv .

From the token game of nets with persistent conditions it follows that the event
ev ∈ Ev(ISO) is such that

Key(A0, S) v eov .

It can easily be checked that the shape of initiator events e ∈ init : Ev(pinit)
and of server events e ∈ server : Ev(pserver) is such that Key(A0, S) 6v eo. Even if
messages sent by the server contain a key, the key is of the form Key(ab) where ab is
a name. Therefore Key(ab) is syntactically different to Key(A0, S).

If ev ∈ resp : Ev(presp) then it carries action

act(e) = resp : (A,B) : i : outnew(rba) M, {rba, ra}k
where A,B ∈ A, i an index, rba, ra ∈ N, k is key and M is a message such that

Key(A0, S) vM .

By Control precedence there exists an event eu such that

act(eu) = resp : (A,B) : i : in {rbs, k, A}Key(B,S),M

where rbs ∈ N and
eu ev .

By the token gameM v tu−1 and therefore Key(A,S) v tu−1 which is a contradiction
since u < v.

The event ev can’t be a spy event. This can easily be checked using control prece-
dence and the token game in a similar way as we did in the proof of secrecy for NSL
private keys. 2

It is desirable that the session keys distributed by the server remain secret. Only
the agents that requested a session key, and of course the server that issued it, should
have access to the key. In our setting secrecy of session keys is ensured by the following
theorem:

Theorem 6.1.2 If a run of ISO contains a server event s2 such that

{rbs0,Key(ab0), A0}Key(B0,S) v so2

and if Key(A0, S),Key(B0, S) 6v t0 then at every stage w in the run Key(ab0) 6∈ tw.

Proof. We show a stronger property. We show that the key Key(ab0) never ap-
pears on the network in different surroundings than the ones prepared by the server.
Consider the property on configurations 〈p, s, t〉

Q(p, s, t) ⇔ σ(Key(ab0), t) ⊆ σ(Key(ab0), so2) .

The event s2 is a server event such that

{rbs0,Key(ab0), A0}Key(B0,S) v so2
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and therefore

σ(Key(ab0), so2) = {{ra,Key(ab0), B0}Key(A0,S), {rbs0,Key(ab0), A0}Key(B0,S)}
for some name ra. If a run contains the event s2 and if one can show that at every
stage w in the run Q(pw, sw, tw) then Key(ab0) 6∈ tw for every stage w in that run.
Suppose the contrary. Suppose that at some stage in the run the property Q does not
hold. Let v, by well-foundedness, be the first stage in the run such that ¬Q(pv, sv, tv).
Since Fresh(ab0, s2) it follows from the Freshness Principle 5.1.3 that

s2 ev .

Clearly ev ∈ Ev(ISO) and from the token game of nets with persistent conditions

σ(Key(ab0), eov) 6⊆ σ(Key(ab0), so2) .

The event ev can only be an output event since eo = ∅ for all input events e. We
examine the possible output events of Ev(ISO) and conclude that ev = s2 which is
a contradiction.
Initiator output events. If ev ∈ init : Ev(pinit) then σ(Key(ab0), eov) = ∅.
Responder output events. If ev ∈ resp : Ev(presp) then it carries an action

act(ev) = resp : (A,B) : i : out new(rbs) M, {rbs, ra}k
where A,B ∈ A, i an index, rbs, ra ∈ N, k a key, and M a message such that

σ(Key(ab0),M) 6⊆ σ(Key(ab0), so2) .

By Control precedence there exists an event eu such that

act(eu) = resp : (A,B) : i : in {rba, k, A}Key(B,S),M

where rba ∈ N and
eu ev .

By the token game
σ(Key(ab0), tu) 6⊆ σ(Key(ab0), so2)

which is a contradiction since u < v.
Server output events. If ev ∈ server : Ev(pserver) and σ(Key(ab0), eov) 6= ∅, then
Fresh(ab, ev). By Freshness it follows that ev = s2.
Spy output events. Since messages are persistent and v is a stage that follows the
occurrence of s2 in the run, σ(Key(ab0), tv−1) 6= ∅. Theorem 5.2.4 applies and so
ev 6∈ spy : Ev(pspy). 2

Authentication. The ISO 5-pass protocol should guarantee some degree of authen-
tication between the principals. We first prove a useful lemma.

Lemma 6.1.3 If a run of ISO is such that

{rbs0, k0, A0}Key(B0,S) 6∈ σ(k0, t0)
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and Key(B0, S) 6v t0 and if there exists a stage w in the run such that

{rbs0, k0, A0}Key(B0,S) ∈ σ(k0, tw)

then the run contains a server event s2 such that

{rbs0, k0, A0}Key(B0,S) v so2

and s2 ew+1 .

Proof. Let w, by Well-foundedness, be the first stage in the run such that

{rbs0, k0, A0}Key(B0,S) ∈ σ(k0, tw) .

By the token game
{rbs0, k0, A0}Key(B0,S) ∈ σ(k0, e

o
w) .

Clearly ew can only be an output event. We examine the possible output events of
Ev(ISO) and conclude that ew = s2 and that

s2 ew+1 .

Initiator output events. If ew ∈ init : Ev(pinit) then σ(k0, e
o
w) = ∅.

Responder output events. If ew ∈ resp : Ev(presp) then it carries an action

act(ew) = resp : (A,B) : i : out new(rbs) M, {rbs, ra}k
where A,B ∈ A, i an index, rbs, ra ∈ N, and M a message such that

{rbs0, k0, A0}Key(B0,S) ∈ σ(k0,M) .

By Control precedence there exists an event ev such that

act(ev) = resp : (A,B) : i : in {rbs, k, A}Key(B,S),M

with rbs a name and
ev ew .

By the token game {rbs0, k0, A0}Key(B0,S) ∈ σ(k0, tv) which is a contradiction since
v < w.
Spy output events. Since Key(B0, S) 6v t0 Theorem 6.1.1 ensures that at every stage
v in the run Key(B0, S) 6∈ tv. Theorem 5.2.5 applies and so ew 6∈ spy : Ev(pspy).
Server output events. Since it is the only remaining case there must exist a server
event s2 in the run such that {rbs0, k0, A0}Key(B0,S) v so2. 2

In an ISO 5-pass protocol exchange three participants are involved: the initiator,
the responder and the server. The initiator relies on the responder to interact with
the server and to get a session key. The interaction between responder and server is
transparent to the initiator. From the responder point of view, however, a certain
degree of authentication with the server is desired to ensure that the session keys
are not obtained from some malicious intruder. Therefore one expects that to events
of a responder which apparently show a communication with the server correspond
matching events of the server.
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Theorem 6.1.4 If a run of ISO contains the responder event b3 with action

act(b3) = resp : (A0, B0) : i0 : in S,B0, {rbs0, k0, A0}Key(B0,S),M0

and if Key(B0, S) 6v t0 then the run contains a server event s2 such that

{rbs0, k0, A0}Key(B0,S) v so2

where k0 is a freshly created session key, i.e. k0 = Key(ab0) with Fresh(ab0, s2) and
such that s2 b3 .

Proof. By control precedence there exists an event b2 with action

act(b2) = resp : (A0, B0) : i0 : out new(rbs0) rbs0, ra, A0

for some name ra and such that

b2 b3 .

Therefore Fresh(rbs0, b2) and by freshness

{rbs0, k0, A0}Key(B0,S) 6∈ σ(k0, t0) .

From Lemma 6.1.3 it follows that there is a server event s2 such that

{rbs0, k0, A0}Key(B0,S) v so2

and such that
s2 b3 .

From the shape of server output events it follows that k0 = Key(ab0) for some name
ab0 such that Fresh(ab0, s2). 2

One expects for example that when the responder B0 finishes a session of the
protocol apparently with the initiator A0 then there was a session where A0 executed
the protocol as initiator apparently with B0, and the events of the two participants
agree on values of the exchanged messages such as for example the session key and
the exchanged random challenges. This expectation is formalised as an authentication
property of the responder with respect to the initiator.

Theorem 6.1.5 If a run of ISO contains the responder event b5 with action

act(b5) = resp : (A0, B0) : i0 : in {ra0, rba0}k0
and if Key(A0, S),Key(B0, S) 6v t0 then the run contains initiator events a1, a2, a3

carrying actions

act(a1) = init : (A0, B0) : j : out new(ra0) ra0

act(a2) = init : (A0, B0) : j : in {ra0, k0, B0}Key(A0,S), {rba0, ra0}k0
act(a3) = init : (A0, B0) : j : out {ra0, rba0}k0 .

for some index j and a3 b5 .
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Proof. From control precedence it follows that

b3

b4

b5

where
act(b4) = resp : (A0, B0) : i0 : out new(rba0) M, {rba0, ra0}k0
act(b3) = resp : (A0, B0) : i0 : in {rbs0, k0, A0}Key(B0,S),M

for some name rbs0 and message M . Since the run contains the event b3 and since
Key(B0, S) 6∈ t0 it follows from Theorem 6.1.4 that the run also contains a server
event s2 such that

{rbs0, k0, A0}Key(B0,S) v so2 .

Thus:
b3 s2

b4

b5 .

Consider the property of configurations 〈p, s, t〉

Q(p, s, t) ⇔ σ(rba0, t) ⊆ {{rba0, ra0}k0} .

By freshness the property Q holds immediately after b4, but clearly not immediately
before b5. By Well-foundedness there is an earliest stage v in the run such that
¬Q(pv, sv, tv). The event ev is an output event such that

σ(rba0, e
o
v) 6⊆ {{rba0, ra0}k0}

and it follows b4 but precedes b5 in the run.

b3 s2

b4

ev b5 .

We inspect the output events of ISO to determine which event ev is.
Spy output events. Since messages are persistent σ(rba0, tv−1) 6= ∅. Theorem 5.2.4
applies and so ev 6∈ spy : Ev(pspy).
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Server output events. If ev ∈ server : Ev(psever) then it carries an action of the
form

act(ev) = server : (A,B) : j :
out new(ab) {rbs,Key(ab), A}Key(B,S), {ra,Key(ab), B}Key(A,S)

such that σ(rba0, e
o
i ) 6= ∅, where A,B ∈ A, j an index, ra, rbs, ab ∈ N. The agent

names A,B are such that A,B ∈ s0. Since Fresh(rba0, b4), by the freshness principle
A,B 6= rab0. It follows that rbs = rba0 or ra = rba0. By control precedence there
exists an event eu with action

act(eu) = server : (A,B) : j : in rbs, ra,A

such that
eu ev .

Since rbs = rba0 or ra = rba0, by the token game,

σ(rba0, tu−1) 6⊆ {{rba0, ra0}k0}
which contradicts our hypothesis.
Responder output events. If ev ∈ resp : Ev(presp) then we distinguish two cases.
Case 1:

act(ev) = resp : (A,B) : j : out new(rbs) rbs, ra,A

such that
σ(rba0, rbs, ra,A) 6⊆ {{rba0, ra0}k0} ,

where A,B ∈ A, j an index, and ra, rbs ∈ N. In this case, by freshness, rbs 6= rba0.
Therefore ra = rba0. By control precedence there exists an event eu with action

act(eu) = resp : (A,B) : j : in rba0

such that
eu ev .

Clearly, by the token game,

σ(rba0, tu−1) 6⊆ {{rba0, ra0}k0}
which contradicts our hypothesis.
Case 2:

act(ev) = resp : (A,B) : j : outnew(rba) M, {rba, ra}k
where A,B ∈ A, j an index, rba, ra ∈ N, k a key and M a message. If

σ(rba0,M) 6⊆ {{rba0, ra0}k0}
then, by control precedence there exists an event eu with action

act(eu) = resp : (A,B) : j : in N,M

for some message N and such that

eu ev .
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By the token game,
σ(rba0, tu−1) 6⊆ {{rba0, ra0}k0}

which contradicts our hypothesis.
If

σ(rba0, {rab, ra}k) 6⊆ {{rba0, ra0}k0}
then by freshness rab 6= rba0 and therefore ra = rba0. In this case, by control
precedence one reaches a contradiction as in Case 1.
Initiator output events. If ev ∈ init : Ev(pinit) then we distinguish two cases:
Case 1:

act(ev) = init : (A,B) : j : out new(rba0) rba0

whereA,B ∈ A and j an index. This case is excluded by freshness since Fresh(rba0, b4).
Case 2:

act(ev) = init : (A,B) : j : out {ra, rba}k0
where A,B ∈ A, j an index, and ra, rba ∈ N. This case is the only possible case
remaining. Note that rba0 v {ra, rba}k0 .

From the previous case analysis it follows that

b3 s2

b4

a3 b5

where
act(a3) = init : (A,B) : j : out {ra, rba}k0 .

By control precedence
a1 b3 s2

a2 b4

a3 b5

where

act(a1) = init : (A,B) : j : outnew(ra) ra
act(a2) = init : (A,B) : j : in {ra, k0, B}Key(A,S), {rba, ra}k0 .

Clearly by freshness ra 6= rba0, therefore rba = rba0 since rba0 v {ra, rba}k0 . More-
over ra = ra0 since

a2 a3

and a3 is the first event such that σ(rba0, a3) 6∈ {rba0, ra0}k0 . In the run there is an
event s2 such that

{rbs0, k0, A0}Key(B0,S) v so2 .
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From the proof of Theorem 6.1.2 (secrecy of session keys), it follows that at every
stage w in the run

σ(k0, tw) ⊆ {{ra, k0, B0}Key(A0,S), {rbs0, k0, A0}Key(B0,S)}

for some name ra, therefore B = B0 and A = A0. We conclude that

act(a1) = init : (A0, B0) : j : outnew(ra0) ra0

act(a2) = init : (A0, B0) : j : in {ra0, k0, B0}Key(A0,S), {rba0, ra0}k0
act(a3) = init : (A0, B0) : j : out {ra0, rba0}k0

and by freshness
a1 b3 s2

a2 b4

a3 b5 .

2

The protocol also guarantees authentication of the server to the initiator. Despite
initiator and server not interacting directly, one can show that when the initiator gets
a session key, there was a run of the server that generated that key. This property
turns out to be of central importance later in this section, in proving authentication
of the initiator with respect to the responder.

Theorem 6.1.6 If a run of ISO contains the initiator event a2 with action

act(a2) = init : (A0, B0) : i0 : in {ra0, k0, B0}Key(A0,S), {rba0, ra0}k0
and if Key(A0, S) 6v t0 then the run contains the server event s2 such that

s2 a2

and such that
{ra0, k0, B0}Key(A0,S) v so2

where k0 is a freshly created session key, i.e. k0 = Key(ab0) with Fresh(s2, ab0).

Proof. Since Key(A0, S) 6v t0, from Lemma 6.1.1 it follows that at every stage w in
the run Key(A0, S) 6v tw. Moreover by control precedence there exists an event a1

with action
act(a1) = Resp : (A0, B0), i0 : out new(ra0) ra0

and such that
a1

a2 .
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Therefore Fresh(ra0, a1) and by freshness

{ra0, k0, B0}Key(A0,S) 6∈ σ(k0, t0) .

From Lemma 6.1.3 it follows that there is a server event s2 such that

{ra0, k0, B0}Key(A0,S) v so2

and such that
s2 a2 .

From the shape of the server output events it follows that k0 = Key(ab0) for some
name ab0 such that Fresh(s2, ab0). 2

The protocol should guarantee authentication of the responder to the initiator.

Theorem 6.1.7 If a run of ISO contains the initiator event a2 with action

act(a2) = init : (A0, B0) : i0 : in {ra0, k0, B0}Key(A0,S), {rba0, ra0}k0
and if Key(A0, S),Key(A0, S) 6v t0 then the run contains responder events b1 and b4
with actions

act(b1) = resp : (A0, B0) : j : in ra0

act(b4) = resp : (A0, B0) : j : out new(rba0) {ra0, k0, B0}Key(A0,S), {rba0, ra0}k0 .

for some index j and such that b4 a2 .

Proof. From control precedence it follows that

a1

a2

where
act(a1) = init : (A0, B0) : i0 : out new(ra0) ra0 .

Consider the property of configurations 〈p, s, t〉
Q(p, s, t) ⇔ {rba0, ra0}k0 6∈ σ(ra0, t) and {ra0, rba0}k0 6∈ σ(ra0, t) .

By freshness the property Q holds immediately after a1, but clearly not immediately
before a2. By well-foundedness there is an earliest stage v in the run such that
¬Q(pv, sv, tv). The event ev is an output event such that

{rba0, ra0}k0 ∈ σ(ra0, e
o
v) or {ra0, rba0}k0 ∈ σ(ra0, e

o
v)

and occurs after a1 but precedes a2 in the run.

a1

a2 ev .
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We inspect the output events of ISO to determine which event ev is.
Spy output events. Theorem 5.2.5 applies and so ev 6∈ spy : Ev(pspy).
Server output events. If ev ∈ server : Ev(psever) clearly {rba0, ra0}k0 6∈ σ(ra0, e

o
v)

and {ra0, rba0}k0 6∈ σ(ra0, e
o
v).

Initiator output events. If ev ∈ init : Ev(pinit) distinguish the following cases:
Case 1:

act(ev) = init : (A,B) : j : out new(ra0) ra0

where A,B ∈ A and j is an index. Obviously

{rba0, ra0}k0 6∈ σ(ra0, e
o
v) and {ra0, rba0}k0 6∈ σ(ra0, e

o
v) .

Case 2:
act(ev) = init : (A,B) : j : out {rba0, ra0}k0

where A,B ∈ A and j an index. By Control precedence there an event eu with action

act(eu) = init : (A,B) : j : in {rba0, k0, B}Key(A,S), {ra0, rba0}k0
an by the token game

{ra0, rba0}k0 ∈ σ(ra0, tu−1)

which is a contradiction.
Case 3:

act(ev) = init : (A,B) : j : out {ra0, rba0}k0
where A,B ∈ A and j an index. This case is excluded in a similar way as is Case 2.
Responder output events. If ev ∈ resp : Ev(presp) distinguish the following cases:
Case 1:

act(ev) = resp : (A,B) : j : out new(rbs) rbs, ra,A

where A,B ∈ A, j an index, and rbs, ra ∈ N. Clearly this case is not possible.
Case 2:

act(ev) = resp : (A,B) : j : out new(ra0) {rba0, k0, B}Key(A,S), {ra0, rba0}k0
where A,B ∈ A and j an index. This case is not possible by freshness.
Case 3:

act(ev) = resp : (A,B) : j : out new(rba0) {ra0, k0, B}Key(A,S), {rba0, ra0}k0
where A,B ∈ A and j an index. Since the run contains the event a2 it also contains
the a server event s2 such that

{ra0, k0, B0}Key(A0,S) v so2 .

(Theorem 6.1.6). From the proof of Theorem 6.1.2 (secrecy of session keys), it follows
that at every stage w in the run

σ(k0, tw) ⊆ {{ra0, k0, B0}Key(A0,S), {rbs, k0, A0}Key(B0,S)}

for some name rbs, therefore B = B0 and A = A0.
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From the previous case analysis and control precedence it follows that

a1 b1

a2 b4

where

act(b1) = resp : (A0, B0) : j : in ra0

act(b4) = resp : (A0, B0) : j : out new(rba0) {ra0, k0, B0}Key(A0,S), {rba0, ra0}k0 .
as desired. 2

Key compromise. It can happen that a session key, which is used by the initiator
and the responder to perform “secure” communications after it has been distributed,
gets corrupted. The session keys that are distributed with the ISO protocol satisfy a
nice property. If they get corrupted, only the session in which they got corrupted is
thwarted. The spy can’t trick participants in the protocol in accepting the corrupted
key as if it was a recently generated session key to be used again for another session –
clearly this can only be true when none of the session participants is corrupted. Key
compromise has been studied successfully for some protocols using the BAN Logic [12],
the inductive method of Paulson [63] and strand spaces [35]. The approach that we
use, is event based, and has similarities to the one suggested for the strand-space
model even if we don’t define, in this thesis, a notion of recentness as done for the
strand-space model.

The inability of the spy to convince an initiator or a responder to use a corrupted
session key for a different session to the session in which the key got corrupted, is
ensured if the protocol runs adhere to a certain shape: runs don’t contain more than
one responder and one initiator event concerning the acceptance of the same session
key. To model the corruption of a session key we add one more capability to the spy:

Spy10 ≡ in {ψ}Key(z′) . out Key(z′) .

This is clearly a very strong capability, that in fact allows all session keys to be
corrupted. We show that any corrupted key will be accepted as a ”good” key only
once, namely in the session in which it got corrupted.

Observe that we can safely make use of previous theorems in proving the following
results, even if the spy now has the Spy10 component. In all previous theorems and
lemmas the limitation results of the spy are used only with respect to long-term keys
of the form Key(A,S) and Key(B,S) – encryptions with these long-term keys are
not made accessible by the term Spy10.

The responder guarantee goes as follows:

Theorem 6.1.8 Let k0 be a key. Every run of ISO contains at most one occurrence
of a responder event with action

resp : (A,B) : i : in {rbs, k0, A}Key(B,S),M

where A,B ∈ A such that Key(B,S) 6v t0, rbs ∈ N, M a message, and index i.
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Proof. Suppose that there exist two distinct event occurrences of the responder
events b3 and b′3 in the run carrying actions

act(b3) = resp : (A0, B0) : i0 : in {rbs0, k0, A0}Key(B0,S)

act(b′3) = resp : (A1, B1) : i1 : in {rbs1, k0, A1}Key(B1,S)

and suppose that Key(B0, S),Key(B1, S) 6v t0. From Control precedence it follows
that

b2 b3 and b′2 b′3

where the events b2 and b′2 are such that Fresh(rbs0, b2) and Fresh(rbs1, b′2). Clearly
b2 and b′2 are not the same event, else b3 and b′3 would be the same event which
contradicts Proposition 4.4.4 (an event never occurs more than once in a run). It
follows, by freshness, that rbs0 6= rbs1.

Since Fresh(rbs0, b2), by freshness

{rbs0, k0, A0}Key(B0,S) 6∈ σ(k0, t0) .

From Lemma 6.1.3 it follows that there is a server event s2 in the run such that

{rbs0, k0, A0}Key(B0,S) v so2

and k0 = Key(ab0) for some name ab0 such that Fresh(ab0, s2). Similarly one can
show that the run contains another server event s′2 such that

{rbs1, k0, A1}Key(B1,S) v s′2
o

and k0 = Key(ab0) such that Fresh(ab0, s2). Therefore, by freshness it follows that
s2 and s′2 are the same event. This, however is a contradictions since rbs0 6= rbs1. 2

A similar theorem guarantees that the initiator is never tricked in using a corrupted
session key:

Theorem 6.1.9 Let k0 be a key. Every run of ISO contains at most one occurrence
of an initiator event with action

init : (A,B) : i : in {ra, k0, B}Key(A,S), {rba, ra}k0
for every A,B ∈ A such that Key(A,S),Key(B,S) 6v t0, ra, rba names and index i.

2

Observation. The proofs of the security theorems for the ISO 5-pass authentication
mechanism reveal some weak points in the protocol: the server has no authentication
guarantee; when the server gets a request for a new session key, it could have been
made up by a stranger. Another weakness is that the strong agreement that exists
between responder and initiator cannot be achieved between responder and server.
Only a weaker authentication property holds (Theorem 6.1.4); if B in a protocol
run acts as a responder and A as initiator then there is a corresponding run of the
server. The server, however, can confuse initiator with responder and believe A is
the responder in the protocol and not B. A spy as a middle man between responder
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and server can easily cause such confusion. Depending on the use one makes of this
protocol, these weaknesses could constitute a security concern. To enforce strong
agreement of the server and of the principals with respect to the server one could
replace

B −→ S : rbs, ra,A, T2

with B −→ S : {rbs, ra,A, T2}Key(B,S)

Alternatively if one is concerned only about strengthening the authentication guar-
antee of the initiator and responder with respect to the server, the addition of two
different shapes of messages T3 and T4 can achieve agreement – for example when
the text T3 is the name of the initiator and T4 is omitted.

6.2 Woo-Lam key-translation protocol

Agent Alice wants to send a session key to Bob in a confidential way and so that
some degree of authentication is ensured. To do so, if Alice does not already share a
key with Bob but, instead, both Alice and Bob share keys with a trusted server, they
could use a key translation protocol. In this section we study the Π3 key translation
protocol [100].

6.2.1 Informal decryption of the Π3 protocol

The original Π3 protocol is obtained from a more complex one via a number of sim-
plifications and is slightly different from the protocol that we study, which we still
call Π3. To rule out an easy and well known attack [19] to the original version of the
protocol (recalled at the end of this section) we add the name of the responder in the
last massage exchanged in a protocol round.

Informally, the Π3 protocol is described by the following sequence of actions:

(1) A→ B : A

(2) B → A : n

(3) A→ B : {n,Key(ab)}K(A,S)

(4) B → S : {A, {n,Key(ab)}K(A,S)}K(B,S)

(5) S → B : {B,A, n,Key(ab)}K(B,S)

The protocol has an initiator role, here A, a responder role, here B, and a trusted
server that performs the translation, here S. The value n sent by the responder to
the initiator in message (2) is a random challenge, a nonce, that has the purpose of
ensuring “newness” of the distributed session key.

The session key Key(ab) should remain confidential to the initiator, the respon-
der and the trusted server. The protocol aims at providing the following form of
authentication:

“Whenever a responder finishes a round of the protocol, the initiator of
that protocol round is in fact the principal claimed in step (1) of the
protocol” [100].
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6.2.2 Programming the Π3 protocol in SPL

Let A be the set of agents participating in the protocol and let A,B, S ∈ A. The
different roles of the protocol can be programmed as SPL processes in the following
way:

Init(A) ≡ out A.

in x.

out new(z) {x,Key(z)}Key(A,S)

Resp(A,B) ≡ in A.

out new(x) x.
in ψ.

out {A,ψ}Key(B,S).

in {B,A, x, χ}Key(B,S)

Server ≡ in {X, {ψ′}Key(X,S)}Key(Y,S)

out {Y,X, ψ′}Key(Y,S)

The protocol system that we study is the following parallel composition of SPL-
process terms:

Pinit ≡ ‖A∈A ! Init(A)

Presp ≡ ‖B∈A ‖A∈A\{B} ! Resp(A,B)

Pserver ≡ ! Server

Pspy ≡ Spy

Π3 ≡ ‖i∈{init,resp,server,spy} Pi

In this system every agent can be initiator of the protocol and every agent can respond
to a protocol initiation done by any other agent. We exclude, however, the case
where an agent B responds to a protocol initiation done by itself. If one would add
Resp(B,B) to the system, then an attack would go through. The attack is of the same
kind of the one we exclude by adding the name of the responder in the last message
exchanged in a protocol round – we recall this attack at the end of this section. The
system contains a fixed server and, as done earlier for the ISO protocol, the system
contains the general spy process Spy that we described in Section 4.1.10.

6.2.3 The events of the protocol

We classify the events Ev(Π3) of the Π3 protocol. We don’t list the spy events which
belong to the Π3 system – they have already been described earlier.

Initiator events for every agent name A ∈ A, names n, ab, and index i ∈ ω.
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init : A : i : Out(Init(A))

�
�

�
@
@
@

c
c

c

init : A : i : Init(A)

out A

init : A : i : in x . · · ·

A

init : A : i : In(in x . out new(z) {x,Key(z)}Key(A,S);n)

�
�

�

l
l

l
�

�
�

init : A : i : out new(z) {n,Key(z)}Key(A,S)

init : A : i : in x . · · ·

n

init : A : i : in n

init : A : i : Out(out new(z) {n,Key(z)}Key(A,S); ab)

@
@
@

c
c

c

init : A : i : out new(z) {n,Key(z)}Key(A,S)

init : A : i : out new(ab) {n,Key(ab)}Key(A,S)

ab

{n,Key(ab)}Key(A,S)

Responder events for every agent names A,B ∈ A, names n, messages M , keys k
and indices j ∈ ω.

resp : (A,B) : j : In(Resp(A,B))

�
�

�

l
l

l
�

�
�

resp : (A,B) : j : out new(x) x . · · ·

resp : (A,B) : j : Resp(A,B)

A

resp : (A,B) : j : in A
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resp : (A,B) : j : Out(out new(x) x . · · · ;n)

�
�

�
@
@
@

c
c

c

resp : (A,B) : j : out new(x) x . · · ·

resp : (A,B) : j : out new(n) n

resp : (A,B) : j : in ψ . · · ·
n

n

resp : (A,B) : j : In(in ψ . · · · ;M)

�
�

�

l
l

l
�

�
�

resp : (A,B) : j : out {A,M}Key(B,S) . · · ·

resp : (A,B) : j : in ψ . · · ·

M

resp : (A,B) : j : in M

resp : (A,B) : j : Out(out {A,M}Key(B,S) . · · · )

�
�

�
@
@
@

c
c

c

resp : (A,B) : j : out {A,M}Key(B,S) . · · ·

resp : (A,B) : j : out {A,M}Key(B,S)

resp : (A,B) : j : in {B, A, n, χ}Key(B,S)

{A,M}Key(B,S)

resp : (A,B) : j : In(in {B,A, n, χ}Key(B,S); k)

l
l

l
�

�
�

resp : (A,B) : j : in {B, A, n, χ}Key(B,S)

{B,A, n, k}Key(B,S)

resp : (A,B) : j : in {B, A, n, k}Key(B,S)
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Server events for every agent names A,B ∈ A, messages M and indices l ∈ ω.

server : l : In(in {X, {ψ′}Key(X,S)}Key(Y,S) . · · · ;A,B,M)

�
�

�

l
l

l
�

�
�

server : l : out{B,A,M}Key(B,S)

server : l : in {X, {ψ′}Key(X,S)}Key(Y,S)

{A, {M}Key(A,S)}Key(B,S)

server : l : in {A, {M}Key(A,S)}Key(B,S)

server : l : Out(out {B,A,M}Key(B,S))

@
@
@

c
c

c

server : l : out {B,A,M}Key(B,S)

server : l : out {B, A,M}Key(B,S)

{B,A,M}Key(B,S)

6.2.4 Security properties

We study secrecy and authentication properties for the Π3 protocol. We are interested
in proper runs of the kind

〈Π3, s0, t0〉 e1−→ · · · ew−→ 〈pw, sw, tw〉 ew+1−→ . . .

where t0 is a network state, the set of messages on the network in which a protocol
execution starts. Whenever we refer to a run of Π3 in the following section we mean
a run of this kind.

Secrecy of long-term keys and session keys. The Π3 protocol should not leak
the long-term keys shared among the agents and the server.

Theorem 6.2.1 Let A0 ∈ A. Given a run of Π3, if Key(A0, S) 6v t0 then at any
stage w in the run Key(A0, S) 6v tw.

Proof. Suppose there is a run of Π3 in which Key(A0, S) appears on the network.
Since Key(A0, S) 6v t0 there is a stage v > 0 in the run such that

Key(A0, S) 6v tv−1 and Key(A0, S) v tv .

From the token game of nets with persistent conditions it follows that the event
ev ∈ Ev(Π3) is such that

Key(A0, S) v eov .
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The shape of initiator events e ∈ init : Ev(pinit) is such that Key(A0, S) 6v eo.
Even if messages sent by the initiator contain a key, the key is of the form Key(ab)
where ab is a name. Therefore Key(ab) is syntactically different to Key(A0, S).

If ev ∈ resp : Ev(presp) then it carries an action

act(ev) = resp : (B,A) : i : out {A,M}Key(B,S)

where A,B, S ∈ A, i an index, and M is a message such that

Key(A0, S) vM .

By control precedence there exists an event eu such that

act(eu) = resp : (B,A) : i : in M

and
eu

ev .

By the token game Key(A0, S) v tj , which is a contraddiction since u < v.
Similarly to the responder case, if ev ∈ server : Ev(pserver) then one reaches a

contraddiction by control precedence and the token game.
The event ev can’t be a spy event. This can easily be checked using control prece-

dence and the token game in a similar way as done in the proof of secrecy for NSL
private keys. 2

It is desriable that the session keys distributed by the initiator remain secret. In
our setting secrecy of session keys is ensured by the following theorem.

Theorem 6.2.2 If a run of Π3 contains an initiator event a3 with action

act(a3) = init : A0 : i0 : out new(ab0) {B0,Key(ab0)}Key(A0,S)

and if Key(A0, S),Key(B0, S) 6v t0 then at every stage w in the run Key(ab0) 6∈ tw.

Proof. We show a stronger property. We show that the key Key(ab0) never appears
on the network in different surroundings than the ones prepared by the initiator and
the server. Consider the property on configurations 〈p, s, t〉

Q(p, s, t) ⇔
σ(Key(ab0), t) ⊆ {{B0,Key(ab0)}Key(A0,S), {B0, A0,Key(ab0)}Key(B0,S)} .

If a run contains the event a3 and one can show that at every stage w in the run
Q(pw, sw, tw) then Key(ab0) 6∈ tw for every stage w in that run. Suppose the con-
trary. Suppose that at some stage in the run the property Q does not hold. Let
v, by well-foundedness, be the first stage in the run such that ¬Q(pv, sv, tv). Since
Fresh(ab0, a3) it follows from the Freshness Principle 5.1.3 that

a3 ev
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and a3 6= ev. Clearly ev ∈ Ev(Π3) and from the token game of nets with persistent
conditions it follows that

σ(Key(ab0), eov) 6⊆ {{B0,Key(ab0)}Key(A0,S), {B0, A0,Key(ab0)}Key(B0,S)} .

The event ev can only be an output event since eo = ∅ for all input events e. We
examine the possible output events of Ev(Π3).
Initiator output events. If ev ∈ server : Ev(pinit) and σ(Key(ab0), eov) 6= ∅, then
Fresh(ab0, ev). By Freshness it follows that ev = a3 which is a contraddiction.
Responder output events. If ev ∈ resp : Ev(presp) then it carries an action

act(ev) = resp : (B,A) : i : out {A,M}Key(B,S)

where A,B ∈ A, i an index, and M a message such that

σ(Key(ab0),M) 6⊆ {{B0,Key(ab0)}Key(A0,S), {B0, A0,Key(ab0)}Key(B0,S)} .

By Control precedence there exists an event eu such that

act(eu) = resp : (B,A) : i : in M

and
eu

a3 ev .

By the token game

σ(Key(ab0), tu) 6⊆ {{B0,Key(ab0)}Key(A0,S), {B0, A0,Key(ab0)}Key(B0,S)}

which is a contraddiction since u < v.
Server output events. Similarly to the responder case, if ev ∈ server : Ev(pserver)
then one reaches a contraddiction by control precedence and the token game.
Spy output events. Messages are persistent and the occurence of the event ev follows
that of the event a3 in the run, therefore σ(Key(ab0), tv−1) 6= ∅. Theorem 5.2.4 ap-
plies and so ev 6∈ spy : Ev(pspy). 2

Authentication The rather informal authentication requirement for Π3 can easily
be made precise in the Petri-net model. The property should hold for each run of
the protocol. We are particularly concerned about those runs in which the responder
completes a protocol round.

The informal correctness requirement we recalled above can be seen as an agree-
ment property in the style suggested by Lowe (see [47]): To a completed responder
round of B done apparently with A as initiator, should correspond in that protocol
run a completed initiator round of A done apparently with B as responder. The
messages that are exchanged should agree on their values. Formally, one can prove
the following correctness property for the Π3 protocol:
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Theorem 6.2.3 If a run of Π3 contains the responder event b5 with action

act(b5) = resp : (B0, A0) : i0 : in {B0, A0, n0, k0}Key(B0,S)

and if Key(A0, S),Key(B0, S) 6v t0 then the run contains the initiator event a3 with
action

act(a3) = init : A0 : j : out new(ab0) {n0,Key(ab0)}Key(A0,S))

with j an index and such that a3 b5 and k0 = Key(ab0). 2

Proof. From control precedence it follows that

b2

b5

where b2 is the responder event with action

act(b2) = resp : (B0, A0) : i0 : out new(n0) n0

and such that Fresh(n0, b2). Consider the property on configurations

Q(p, s, t) ⇔ {B0, A0, n0, k0}Key(B0,S) 6∈ σ(n0, t) .

By freshness the property Q holds immediately after b2 but not immediately before
b5. By well-foundedness there is an earliest stage v in the run such that ¬Q(pv, sv, tv).
The event ev is an output event such that

{B0, A0, n0, k0}Key(B0,S) ∈ σ(n0, e
o
v)

and it follows b2 but it precedes b5 in the run.

b2

b5 ev .

We inspect the output events of Π3 to determine which event ev is.
Spy output events. Theorem 5.2.5 applies and so ev 6∈ spy : Ev(pspy).
Initiator output events. If ev ∈ init : Ev(pinit) then

{A0, B0, n0, k0}Key(B0,S) 6∈ σ(n0, e
o
v) .

Responder output events. If ev ∈ resp : Ev(presp) then

act(ev) = resp : (B,A) : j : out {A,M}Key(B,S)

and {A0, B0, n0, k0}Key(B0,S) ∈ σ(n0,M). By control precedence there exists an event
eu with action

act(eu) = resp : (B,A) : j : in M
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where A,B ∈ A, j and index and M a message. By the token game

{A0, B0, n0, k0}Key(B0,S) ∈ σ(n0, tu−1)

which is a contradiction. Observe that the case with A = A0 and with M = B0, n0, k0

is excluded since Resp(B0, B0) is not included in the Π3 system.
Server output events are the only possible events that remain to be considered. If
ev ∈ server : Ev(psever) then ev = s2 the server event with action

act(s2) = server : l : out {A0, B0, n0, k0}Key(B0,S)

where l is an index.
Therefore

b2

b5 s2

and by control precedence and freshness

b2 s1

b5 s2

where s1 is the server event carrying action

act(s1) = server : l : in {A0, {n0, k0}Key(A0,S)}Key(B0,S) .

Consider the property on configurations

Q′(p, s, t) ⇔ {A0, {n0, k0}Key(A0,S)}Key(B0,S) 6∈ σ(n0, t) .

By freshness the property Q′ holds immediately after b2 but not immediately before
s1. By well-foundedness there is an earliest stage u in the run such that ¬Q(pu, su, tu).
The event eu is an output event such that

{A0, {n0, k0}Key(A0,S)}Key(B0,S) ∈ σ(n0, e
o
u)

and it follows b2 but it precedes s1 in the run:

b2

eu s1

b5 s2

In a similar way as we did before, we inspect the output events of Π3 and determine
that the event eu is the responder event b′4 with action

act(b′4) = resp : (B0, A0) : h : out {A0, {n0, k0}Key(A0,S)}Key(B0,S)
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for some index h. By control precedence and freshness

b2

b′3

b′4 s1

b5 s2

where b′3 is the responder event with action

act(b′3) = resp : (B0, A0) : h : in {n0, k0}Key(A0,S) .

Consider the property on configurations

Q′′(p, s, t) ⇔ {n0, k0}Key(A0,S) 6∈ σ(n0, t) .

By freshness the property Q′′ holds immediately after b2 but not immediately be-
fore b′3. By well-foundedness there is an earliest stage w in the run such that
¬Q(pw, sw, tw). The event ew is an output event such that

{n0, k0}Key(A0,S) ∈ σ(n0, e
o
w)

and it follows b2 but it precedes b′3 in the run. Finally, the shape of all possible events
of the system determines ew to be the initiator event a3 carrying action

act(a3) = init : A0 : j : out new(ab0) {n0, k0}Key(A0,S)

where j is an index and where k0 = Key(ab0).

b2 a3

b′3

b′4 s1

b5 s2

2

Even if the statement of the authentication theorem above starts from the final
event of the responder and asks for the final event of the initiator, it fits the shape
of the agreement property that we discussed earlier. The complete responder and
initiator rounds can be reconstructed from those two events:
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• Whenever a sequence of configurations and events obtained from the net of
Π3 contains an event corresponding to the last action of the responder one
can recognise that the responder indeed completed the round and who was
claimed as initiator in the first step of the protocol. From the dependency
among responder events in a protocol run it follows that if a run of the protocol
contains the responder event b5 with action

act(b5) = resp : (B0, A0) : i0 : in {A0, B0, n0, k0}Key(B0,S)

it also contains the responder event b1 with action

act(b1) = resp : (B0, A0) : i0 : in A0

and such that
b1

b5

Therefore B0 believes that he responded to a request initiated by A0.

• As before, whenever a run contains an initiator a3 with action

act(a3) = init : A0 : j : out new(ab0) {n0,Key(ab0)}Key(A0,S))

one can construct from the event dependencies the complete initiator round
obtaining

a1

a2

a3

where the events a1 and a2 have actions

act(a1) = init : A0 : j : out A0

act(a2) = init : A0 : j : in n0 .

Therefore in that round A0 believes that it was engaged in the protocol together
with agent B0 as responder.

Key compromise. As for the ISO protocol, key compromise does not affect more
than one session. We do not report the details in this case but only remark that to
model a session key getting corrupted one would extend the capabilities of the spy
as done for the ISO protocol and add one more step in the protocol to represent a
session, after key exchange, where initiator and responder use the exchanged key. For
example

(6) A→ B : {A}Key(ab) .
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Observation. As we recalled earlier, the Π3 protocol that we studied is a slight
modification of the original protocol and includes the name of the responder in the
last message exchanged in a protocol round. This modification prevents the following
attack which would go through if we didn’t include the name of the responder in the
last message but considered

(5) S → B : {A, n,Key(ab)}K(B,S)

instead:
a1

A
b1

b2 n
< spy >

n,k

b3

b4

{A,n,k}Key(B,S)

b5 .
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Composing Strand Spaces

The last few years have seen the emergence of successful intensional, event-based,
approaches to reasoning about security protocols. As is the case for the more explicit
event-based model illustrated in the previous chapters, these more intentional methods
are concerned with reasoning about the events that a security protocol can perform,
and make use of a causal dependency that exists between events. The method of
strand spaces [90, 88, 84] has been designed to support such an intensional, event-
based, style of reasoning and has successfully been applied to a broad number of
security protocols. However the strand spaces model of a protocol has some appar-
ent limitations: Strand spaces don’t compose readily, not using traditional process
operations at least. Their form doesn’t allow prefixing by a single event. Nondeter-
minism only arises through the choice as to where input comes from, and there is
not a recognisable nondeterministic sum of strand spaces. Even an easy definition of
parallel composition by juxtaposition is thwarted if “unique origination” is handled
as a global condition on the entire strand space. That strand spaces are able to tackle
a broad class of security protocols may therefore seem surprising. A reason for the
adequacy of strand spaces lies in the fact that they can sidestep conflict if there are
enough replicated strands available, which is the case for a broad range of security
protocols.

This chapter has four main objectives. Firstly it extends the strand-space formal-
ism to allow several operations on strand spaces to be defined. The operations form
a strand-space language. Secondly the wide applicability of strand spaces to numer-
ous security protocols and properties is backed up formally by showing that under
reasonable conditions the extended model reduces to the original strand-space model.
This result underpins the relation between nets and strand spaces discussed in the
next chapter. Thirdly we address another issue of compositionality. Because we are
only interested in safety properties we can make do with languages of strand-space
bundles as models of process behaviour. We show how to compose such languages so
that they may be used directly in giving the semantics of security protocols. Strand
spaces that have substantially the same bundles can be regarded as equivalent and
are congruent if they exhibit substantially the same open bundles. This congruence
lays the ground for equational reasoning between strand spaces.
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7.1 Some limitations of strand spaces

We discuss why strand spaces are hard to compose. Consider for example the ISO
symmetric key two-pass unilateral authentication protocol (see [19]):

A→ B : n
B → A : {n,A}k .

Agents can engage in a protocol exchange under two different roles. The initiator,
here A and the responder, here B. In a protocol round the initiator A chooses a
fresh name n and sends it to the responder B. After getting the value, B encrypts
it together with the initiator’s identifier using a common shared key k. After getting
the answer to her challenge, A can decrypt using the shared key and check whether
the value sent matches the value received. In that case A can conclude that B is in
fact operational.

out n0 in n0

in {n0, A0}k out {n0, A0}k

. . . out ni in ni

in {ni, A0}k out {ni, A0}k

. . .

Figure 7.1: ISO protocol

The strand-space graph in Figure 7.1 describes the simple case of only two agents,
A0 and B0, acting as initiator and responder respectively. For simplicity the graph has
been drawn using the actions labelling the events in place of the events themselves.
In this simple case the strand-space graph of the ISO protocol itself forms a bundle.

7.1.1 Unique origination

In the strand-space example above, all names ni are uniquely originating – for each
ni there is only one strand in which the first action containing ni is an output action.
Unique origination intends to describe a name as fresh, perhaps chosen at random,
and under the assumptions of Dolev and Yao [28], unguessable. For a construction of
parallel composition of strand spaces it is therefore reasonable to require that names
uniquely originating on components remain so on the composed strand space. Simple
juxtaposition of strand spaces does not ensure this. For example consider a strand
space for the ISO protocol which allows both agents A0 and B0 to engage in the
protocol in any of the two possible roles. In Figure 7.2 the strand space formed out
of two copies of the one in Figure 7.1. Figure 7.3 shows a possible bundle on such
strand space. It describes a protocol run with two complete rounds. One in which A0

is initiator and B0 responder and another where the roles are inverted. Though the
name n0 is no longer uniquely originating on that strand space. A name’s freshness is
with respect to a run of a protocol more than to the whole set of possible executions.
A notion of unique origination “on the bundle” seems more appropriate.
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out n0 in n0

in {n0, A0}k out {n0, A0}k

out n0 in n0

in {n0, B0}k out {n0, B0}k

. . . out ni in ni

in {ni, A0}k out {ni, A0}k

out ni in ni

in {ni, B0}k out {ni, B0}k

Figure 7.2: ISO protocol - symmetric roles

out n0 in n0

in {n0, A0}k out {n0, A0}k

out n0 in n0

in {n0, B0}k out {n0, B0}k

Figure 7.3: A possible bundle

7.1.2 Nondeterminism and strand-sequentiality

Nondeterminism in strand spaces arises only through the choice in a bundle of where
input comes from. There is no recognisable way of modelling situations in which
bundles may be taken either only over one strand space or over another. Juxtaposing
strands as we did for example in Figure 7.2 allows bundles to include events of both
components as is the case for the bundle in Figure 7.3.

One seems to encounter even more difficulties in the attempt to define a con-
struction of prefixing a strand space with an action. Strands can’t branch to parallel
sub-strands and prefixing each strand of the space with an action would cause as
many repetitions of that action as there are strands participating in a bundle. So for
example if one prefixed each strand of the strand space of Figure 7.1 with the action
outm then bundles like the following are permitted:

outm outm

out n0 in n0

out {n0, A0}k .
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Another attempt to define the prefixing operation would be to consider a separate
strand containing only the prefixing action. However this does not force actions of
the strands that are meant to be prefixed by that action to causally depend on that
action.

7.2 An extension of strand spaces

In this section we extend the definition of strand space introducing a notion of conflict
which we adapt from event structures (see e.g.[96]). We differ from the original
definition of strand spaces in the treatment of unique origination which is taken care
of in the definition of bundle rather than being a condition on the entire strand space –
the “parametric strand spaces” of [17] achieve a similar effect as to unique origination
and are related.

7.2.1 Strand spaces with conflict

The strands of a strand space consist of sequences of output and input actions. Actions
are

Act = {out new~nM | M msg, ~n distinct names} ∪ {inM | M msg}.
In out new~nM , the list ~n contains distinct names that are intended to be fresh
(“uniquely originating”) at the event.

Definition 7.2.1 A strand space with conflict (〈si〉i∈I ,#) consists of:

(i) 〈si〉i∈I an indexed set of strands. An individual stand si, where i ∈ I, is a finite
sequence of output or input actions in Act.

(ii) # ⊆ I × I a symmetric, irreflexive binary conflict relation on strand indices.

Strand spaces with an empty conflict relation correspond to those of the standard
definition of [90]. We denote by ε the empty strand space with no strands and with
an empty conflict relation. 1 The empty strand space is different to a strand space
(〈λ〉i∈I ,#) where each strand is the empty sequence of actions λ. We write |s| for the
length of the sequence s.

7.2.2 The graph of a strand space

For a strand space (〈si〉i∈I ,#) define the strand-space graph (E,⇒,→, act) associated
with it as usual (see [90]). It is the graph with nodes (events)

E = {(i, l) | i ∈ I , 1 ≤ l ≤ |si|} ,

actions labelling events act(i, h) = si[h] and two edge relations. The first expresses
precedence among events on the same strand,

(i, k) ⇒ (i, k + 1) iff (i, k), (i, k + 1) ∈ E ,

1We won’t make much use of this particular strand space; it is however the identity for the
operations of parallel composition and nondeterministic sum of strand spaces.
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and the second expresses all possible communication,

(i, l) → (j, h) iff act(i, l) = out new~nM and act(j, h) = inM .

An event is an input event if its action is an input action and an event is an
output event if its action is an output. The names names(e) of an event e are all
the names appearing on the action associated with e – the ones that are marked as
“new”, denoted by new(e), together with those in the message of the action.

7.2.3 Bundles

Bundles of a strand space describe runs in a computation.

Definition 7.2.2 A bundle b of a strand space with conflict # is a finite subgraph
(Eb,⇒b,→b, actb) of the strand-space graph (E,⇒,→, act) such that:

(i) if e⇒ e′ and e′ ∈ Eb then e⇒b e
′, (control precedence)

(ii) if e ∈ Eb and actb(e) = inM then there exists a unique e′ ∈ Eb such that
e′ →b e, (output-input precedence)

(iii) if e, e′ ∈ Eb such that actb(e) = out new~nM and n ∈ ~n∩names(e′) then either
e⇒∗

b e
′ or there exists an input event e′′ such that n ∈ names(e′′) and e′′ ⇒∗

b e
′,

(freshness)

(iv) if (i, h), (j, k) ∈ Eb then ¬(i# j), (conflict freeness)

(v) the relation ⇒b ∪ →b is acyclic. (acyclicity)

The empty graph, denoted by λ, is a bundle. It will be clear from the context whether
λ stands for the empty bundle or whether it denotes the empty sequence of actions.
The empty strand space has only one bundle, the empty bundle.

Points (i), (ii), (v) of the definition of bundle for a strand space with conflict
match the standard definition of [90]. Point (iii) ensures freshness of “new” values
in a bundle. Point (iv) doesn’t allow events from conflicting strands to appear in a
bundle. Write ≤b for the reflexive and transitive closure of ⇒b ∪ →b.

Proposition 7.2.3 If b is a bundle then ≤b is a partial order on Eb.

Proof. A bundle is an acyclic subgraph of the strand-space graph. 2

The relation ≤b determines the partial order on events occurring in a computation
described by b. Names introduced as “new” don’t appear on events preceding their
introduction and are never introduced as “new” more than once.

Proposition 7.2.4 Let b be a bundle of a strand space and let e, e′ ∈ Eb bundle
events such that actb(e) = out new~nM . If n ∈ ~n ∩ names(e′) then e ≤b e′ and if
actb(e′) = out new ~mM ′ then n 6∈ ~m.
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Proof. Suppose that e 6≤b e′ and therefore e 6⇒∗ e′. There exists an input event e′′ ∈ b
such that n ∈ names(e′′) and e′′ ⇒∗

b e
′ (freshness). The bundle b is acyclic and each

input event in b is preceded by a matching output event (output-input precedence).
Therefore there exists an output event e1 ∈ Eb such that n ∈ names(e1) and such
that for every input event e2 if e2 ⇒∗

b e1 then n 6∈ names(e2). The event e can’t
precede e1 on the same strand (e 6⇒∗

b e1), otherwise e ≤b e′. The events e and e1 are
both in b thus contradicting the freshness property of b.

If actb(e′) = out new ~mM ′ and n ∈ ~m then e ≤b e′ and e′ ≤b e, and therefore
e = e′. 2

There are other possible choices for the freshness condition (iii). A weaker condi-
tion could be the following:

if e, e′ ∈ Eb are bundle events such that actb(e) = out new~nM and such
that n ∈ ~n ∩ names(e′) then e ≤b e′.

This condition however would allow bundles of the kind

out new nM inm

outm out n

If the two strands are distinct processes, the second strand is not supposed to send the
name n without receiving it first from somewhere. Graphs like that are not considered
bundles in the original treatment of strand spaces [90] and are also excluded by the
slightly more involved freshness condition of Definition 7.2.2.

7.2.4 Re-indexing of strand spaces

We regard two strand spaces as substantially the same if they differ only on the indices
of their strands and therefore one strand space can be obtained from the other by a
simple “re-indexing” operation. 2

Definition 7.2.5 Given (〈si〉i∈I ,#) and (〈tj〉j∈J ,#′) two strand spaces write

(〈si〉i∈I ,#) ∼= (〈tj〉j∈J ,#′)

if there exists a bijection π : I → J such that:

(i) ∀i ∈ I . si = tπ(i) and

(ii) ∀i, j ∈ I . i# j ⇔ π(i)#′ π(j).

The relation ∼= is an equivalence relation on strand spaces. A bijection π which
establishes such equivalence is called a re-indexing of strand spaces. Moreover take
(〈si〉i∈I ,#) a strand space, J a set, and π : I → J a bijection. We define the strand
space (〈tj〉j∈J , π(#)) where

2If the indices carry structure (some might involve agent names for example) we might refine the
permissible re-indexings.
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• ∀j ∈ J . tj = sπ−1(j) and

• ∀j, j′ ∈ J . j π(#) j′ iff π−1(j)#π−1(j′).

The relation π(#) is irreflexive and symmetric and establishes the equivalence

(〈sπ(i)〉i∈I , π(#)) ∼= (〈si〉i∈I ,#) .

Proposition 7.2.6 Let (〈si〉i∈I ,#) and (〈tj〉j∈J ,#′) be two strand spaces such that
(〈si〉i∈I ,#) ∼= (〈tj〉j∈J ,#′) for a bijection π : I → J . Given b a bundle of (〈si〉i∈I ,#)
then π(b) obtained from b by changing all strand indices according to π is a bundle of
(〈tj〉j∈J ,#′).

Proof. The proposition follows from the assumption that b is a bundle and from the
definition of re-indexing on bundles. 2

7.3 Constructions on strand spaces

The extension of the strand-space formalism with a conflict relation and the different
treatment of unique origination as illustrated in the previous section allow operations
such as prefixing, parallel composition, and sum of strand spaces to be defined in
terms of traditional process operations.

7.3.1 Prefixing

The operation of prefixing a strand space with an action is complicated by the strand-
space formalism not permitting strands to branch. Only if the strand space to be
prefixed is such that every two different strands are in conflict can each strand be
prefixed with the action. Then the conflict relation disallows repetitions of the pre-
fixing action in bundles. Given α ∈ Act and a strand space (〈si〉i∈I ,#) such that for
all i, j ∈ I if i 6= j then i#j, define

α.(〈si〉i∈I ,#)
def
= (〈αsi〉i∈I ,#) .

We understand the special case of prefixing the empty strand space with an action,
to yield the empty strand space

α.ε = ε .

When prefixing a strand space consisting of only empty strands one obtains

α.(〈λ〉i∈I ,#) = (〈α〉i∈I ,#) .

7.3.2 Parallel composition

The operation of parallel composition of two strand spaces is the disjoint union of
their sets of strands and conflict relations. Disjoint union is achieved by tagging the
first space with index 0 and the second with index 1. Given strand spaces (〈s0i 〉i∈I ,#0)
and (〈s1j 〉j∈J ,#1) define

(〈s0i 〉i∈I ,#0) || (〈s1j〉j∈J ,#1)
def
= (〈sh〉h∈H ,#)
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where
H = ({0} × I) ∪ ({1} × J), s(0,i) = s0i and s(1,i) = s1i .

Two strands are in conflict only if they belong to the same component and are in
conflict within that component. More precisely for k either 0 or 1 define

h#h′ iff h = (k, i), h′ = (k, j) and i#k j .

The relation # is irreflexive and symmetric.
We extend the definition of parallel composition to an operation indexed over a

set. Given a collection of strand spaces (〈ski 〉i∈Ik
,#k) indexed by k in a set K, define

||k∈K(〈ski 〉i∈Ik
,#k)

def
= (〈sh〉h∈H ,#) ,

where

H =
∑
k∈K

Ik, s(k,i) = ski , and where (k, i)# (k′, i′) iff k = k′ and i#k i′ .

In particular if K = ∅ then the parallel composition yields the empty strand space.
As a special case of parallel composition of strand spaces consider the strand space

obtained by composing infinitely many but equal strand spaces. Abbreviate

||k∈ω(〈si〉i∈I ,#)
def
= ! (〈si〉i∈I ,#) .

One easily observes that

! (〈si〉i∈I ,#) = (〈s(n,i)〉(n,i)∈ω×I , !#)

where !# is the binary relation over ω × I such that

(n, i) !# (m, i′) iff n = m and i# i′ .

7.3.3 Nondeterministic sum

The nondeterministic sum and the parallel composition of strand spaces construct
the same indexed set of strands. The conflict relation of a summed space, in addition
to the existing conflicts, imposes conflict between every two strands that belong to
different components. Given strand spaces (〈s0i 〉i∈I ,#0) and (〈s1j 〉j∈J ,#1) define

(〈s0i 〉i∈I ,#0) + (〈s1j 〉j∈J ,#1)
def
= (〈sh〉h∈H ,#)

where
H = ({0} × I) ∪ ({1} × J), s(0,i) = s0i and s(1,i) = s1i .

Two strands are in conflict only if they belong to different components or are already
in conflict within a component. More precisely for k and k′ either 0 or 1 define

(k, i)# (k′, j) iff k 6= k′ or if k = k′ and i#k j .

The relation # is irreflexive and symmetric.
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The sum of strand spaces extends to an operation indexed over a set similarly to
the parallel composition operation. Define∑

k∈K
Sk

def
= (〈sh〉h∈H ,#)

where H =
∑

k∈K Ik, s(k,i) = ski , and where

(k, i)# (k′, i′) iff either k 6= k′ or (k = k′ and i#k i′) .

7.3.4 Re-indexing and strand-space constructions

The operations that we definied on strand spaces, satisfy the following properties:

Proposition 7.3.1 Let S0 , S1, and S2 be strand spaces.

1. S0||ε ∼= S0

2. S0||(S1||S2) ∼= (S0||S1)||S2

3. S0||S1
∼= S1||S0

and similarly for +.

Proof. Let S0 = (〈s0i 〉i∈I ,#0), S1 = (〈s1j 〉j∈J ,#1), and S2 = (〈s2k〉k∈K ,#2).

1. The strand space S0||ε has the same strands as S0, but indexing set {0}×I. Let
σ : {0}×I → I be the projection to the second component, which is a bijection.
One obtains an equivalence between the two strand spaces. Every s(0,i) in S0||ε
is equal to si, therefore s(0,i) = sσ(0,i). Let # be the conflict relation of S||ε. If
(0, i)# (0, i′) then there is conflict i#0 i′, therefore σ(0, i)#0 σ(0, i′).

2. Both spaces have the same strands but the first has indexing set

H = ({0} × I) ∪ ({1} × (({0} × J) ∪ ({1} ×K)))

while the second has indexing set

H ′ = ({0} × (({0} × I) ∪ ({1} × J))) ∪ ({1} ×K) .

The following function σ : H → H ′

σ(h) =




(0, (0, i)) if h = (0, i)
(0, (1, j)) if h = (1, (0, j))
(1, k) if h = (1, (1, k))

is a bijection and establishes the equivalence.

3. Follows easily.

2

The equivalence S + S ∼= S does not exist for every strand space S. For example
consider the strand space S composed out of one single strand with index i. The
indexing set of S + S is {(0, i), (1, i)}. There is no bijection between a set of one
element and a set of two elements.
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Strands are not permitted to branch and the prefixing operation prefixes each
single strand of the space. The following proposition holds:

Proposition 7.3.2 Let S0 and S1 be strand spaces and α an action. Then

α.(S0 + S1) = α.S1 + α.S0 .

Proof. Follows from the definition of the prefixing operation and sum of strand
spaces. 2

7.4 A process language for strand spaces

The constructions we have shown in the previous section form a language S of strand
spaces with the following grammar:

S ::= L |
∑
j∈J

Sj | ||j∈JSj

where L ∈ L, the language of “sequential strand spaces” given by

L ::= 〈λ〉 | α.L |
∑
j∈J

Lj .

The strand space 〈λ〉 has only one strand which is the empty sequence of actions and
with the empty conflict relation.3 The bundles of strand spaces in L form linearly
ordered sets of events, and therefore can be thought of as runs of a sequential process.

A strand-space term of language S is a “par” process in the sense that parallel
composition is only at the top level and therefore consists of a parallel composition
and sum of sequential processes. Of particular interest are “!-par” processes which are
those terms of S of the form !S. As shown in Section 7.7 conflict can be eliminated
from such strand spaces.

7.5 Open bundles and open-bundle languages

The usual semantics of a strand space is in terms of its set of bundles. In this section
we show how, by broadening to open bundles, the bundle space can be constructed
in a compositional way from bundle spaces. As shown in Section 7.6 an interesting
congruence relation between strand spaces is based on open bundles rather than
bundles and the compositional account of the bundle space presented here is useful
in showing that such relation is indeed a congruence.

7.5.1 Open bundles

It will be useful to weaken the definition of bundle to the one of open bundle, so that
bundles can be composed. An open bundle is a graph with the same structure of a
bundle, but where input events need not necessarily be related to output events. In

3Let the index of the empty strand in 〈λ〉 be a distinguished index ∗.
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7.5. Open bundles and open-bundle languages

this sense the open bundle is “open” to the environment for communication on input
events that are not already linked to output events. An open bundle needs to be such
that it can always be transformed into a bundle of perhaps a larger strand space.

Definition 7.5.1 An open bundle b of a strand space with conflict # is a finite
subgraph (Eb,⇒b,→b, actb) of the strand-space graph (E,⇒,→, act) such that:

(i) if e⇒G e′ and e′ ∈ Eb then e⇒b e
′, (control precedence)

(ii) if e′ →b e and e′′ →b e then e′ = e′′, (output-input correspondence)

(iii) if e, e′ ∈ Eb s.t. act(e) = out new~nM and n ∈ ~n∩names(e′) then either e⇒∗
b e

′

or there exists an input event e′′ ∈ Eb such that n ∈ names(e′′), and e′′ ⇒∗
b e

′,
(freshness)

(iv) if (i, h), (j, k) ∈ Eb then ¬(i# j), (conflict freeness)

(v) the relation ⇒b ∪ →b ∪ ↪→ is acyclic, where e ↪→ e′ if new(e)∩ names(e′) 6= ∅
and if e 6= e′. (acyclicity)

In an open bundle “freshness” dependencies need not be caught through ⇒b and
→b. Point (v) takes account of additional freshness dependencies and excludes graphs
like

in n inm

out newm m out new n n .

7.5.2 Control graphs

Our constructions for open bundles take us through the intermediary of control graphs
(which are similar to pomsets [65] and message sequence charts [41]).

Definition 7.5.2 A control graph, with indices I, is a graph (E,→, act) where

• E ⊆ I × IN such that if (i, h) ∈ E and h > 1 then (i, h− 1) ∈ E (when we write
(i, h− 1) ⇒ (i, h)), and

• →⊆ E × E, and act : E → Act.

Denote by ind(g) the set of indices of a control graph g. Control graphs can be
ordered by inclusion, more precisely if g, g′ are control graphs write g ⊆ g′ whenever
Eg ⊆ Eg′ , →g⊆→g′ and actg ⊆ actg′ .

Strand-space graphs, bundles and open bundles are examples of control graphs.
We say a control graph is an open bundle when it is finite and satisfies axioms (ii),
(iii) and (v) of Definition 7.5.1 above. We say the control graph is an open bundle
of a certain strand space if in addition it is subgraph of that strand-space graph and
satisfies axiom (iv).

Prefixing extends a control graph with new initial control nodes (i, 1) where i is
an index. Every event in the original graph that has index i is shifted one position
later in the control structure while keeping its causal dependencies. For i, j indices
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and h ∈ IN , define (j, h)/i = (j, h + 1) if j = i and (j, h)/i = (j, h) otherwise. For a
set of indices I, α ∈ Act and g a control graph, define the control graph

(α, I) . g = (E,→, act)

where

• E = {(i, 1) | i ∈ I} ∪ {e/i | e ∈ Eg & i ∈ I},

• e/i→ e′/i whenever e→g e
′, and

• take act(i, 1) = α and act(e/i) = actg(e) for every e ∈ Eg and i ∈ I.

Deletion removes from a control graph the initial control nodes with certain com-
ponent indices. When a node (i, 1) is removed, every event in the original graph that
has index i is shifted one position earlier in the control structure while keeping its
causal dependencies. For i, j indices and h ∈ IN , define (j, h)\i = (j, h − 1) if j = i
and h > 1 and define (j, h)\i = (j, h) otherwise. For a set of indices I, and g a control
graph, define the control graph

g\I = (E,→, act)

where

• E = {e\i | e ∈ Eg \ {(i, 1) | i ∈ I} & i ∈ I},

• e\i→ e′\i whenever e→g e
′, and

• act(e\i) = actg(e) for every e ∈ Eg \ {(i, 1) | i ∈ I} and i ∈ I.

Control graphs can be composed by tagging components to keep them disjoint and
by juxtaposing them. For i, j indices and h ∈ IN , define j : (i, h) = ((j, i), h). For a
control graph g and index j define

j : g = (E,→, act)

where E = {j : e | e ∈ Eg}, j : e→ j : e′ whenever e →g e
′, and act(j : e) = actg(e).

Let J be a set of indices and gj control graphs for every j ∈ J . Define

‖j∈Jgj =
⋃
j∈J

j : gj .

Control graphs can be restricted to only those nodes that concern a particular
component. For a control graph g and index j define

g|j = (E,→, act)

where E = {e | j : e ∈ Eg}, e→ e′ whenever j : e→g j : e′, and act(e) = actg(j : e).
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7.5.3 From open bundles to bundles

The definition of open bundle ensures that b extends to a bundle over a (bigger)
strand space. Let g, g′ be control graphs. Define

g � g′ iff Eg = Eg′ , →g⊆→g′ , and actg = actg′ .

Write
g↑= {b | g � b and b an open bundle} .

Proposition 7.5.3 Let b, d be two control graphs such that b � d. If d is an open
bundle then b is an open bundle.

Proof. Observe that if b � d then ↪→b=↪→d and therefore if ⇒d ∪ →d ∪ ↪→d is acyclic
so is ⇒b ∪ →b ∪ ↪→b. If d is an open bundle then it also satisfies (ii) and (iii) of the
definition of open bundle and therefore so does b. 2

Open bundles can always be extended to form a bundle as is shown by the following
theorem. Its proof shows a way to construct a bundle from an open bundle. The crux
of the construction is that of adding an output action corresponding to every open
input action and a communication edge from the output event to the input event.
Care has to be taken when names of open-input actions are introduced as “new”
somewhere in the open bundle – the output action that is added in correspondence
to the open input requires preceding input actions that bind the names in question
so that open-bundle freshness is not violated. Such input actions are introduced
when necessary. Additionally, our construction introduces a new name generation on
a dummy output event which precedes all other events that are added. This more
technical detail is not important here but is central later, in characterising the greatest
congruence relation inside bundle equivalence (see proof of Theorem 7.6.5).

Theorem 7.5.4 Let b be an open bundle of a strand space S. There exists a strand
space T and an open bundle t of T such that there is b′ ∈ (t||b)↑ and b′ is a bundle of
T ||S.

Proof. Given an open bundle b we construct an open bundle t so that when composed
with b, communication edges can be added to form a bundle of a bigger strand space.
Let I be the set of open input actions in b. For every i ∈ I let ni be a name such that
ni 6∈ names(b) and ni 6= nj if i 6= j. Consider the following strand space

T = 〈si〉inM∈I

such that
si = out newni D . in N1 . · · · . inNl . outM

where D is a dummy message and {N1, . . . , Nl} is the smallest, possibly empty, set of
messages such that for every e ∈ Eb if act(e) = out new~n N and ~n ∩ names(M) 6= ∅
then N ∈ {N1, . . . , Nl}.

Let GT be the strand-space graph of T and let t be an open bundle such that
t � GT (for example the one with no communication edges). Let b′ be the graph
obtained from t || b by connecting the open inputs of b to the corresponding output
events in t and the input events of t to those output events that introduce new names
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which appear on the open inputs of b. By construction, b′ ∈ (t || b) ↑ and b′ does not
have any open inputs. Output-input correspondence (ii) is clearly respected by b′.
Freshness (iii) holds for b and names marked as new in t do not appear in b. Suppose
there is an event in b on which the new name n is chosen and suppose n appears on an
output event in t. As required from (iii), by construction of b′ there is an input event
on which n appears and which precedes the output event. The relation →b′ ∪ ⇒b′ is
acyclic (v). If it was not acyclic then the construction of b′ would induce a cycle on
⇒b⊆→b ∪ ↪→b, which clearly is not possible. The graph b′ is therefore a bundle of
T || S. 2

7.5.4 Open-bundle languages

The language of open bundles of a strand-space term is defined as follows:

Definition 7.5.5 Let L ∈ L and S ∈ S. Define

O(〈λ〉) = {λ}
O(α.L) = {λ} ∪ {(α, {i}) . λ | i ∈ ind(GL)} ∪⋃

{(α, ind(b)) . b ↑ | b ∈ O(L) \ {λ}}

O(
∑
j∈J

Sj) = {j : b | b ∈ O(Sj)}

O(||j∈JSj) =
⋃
{(

⋃
i∈I

i : bi) ↑ | I ⊆ J & I finite & ∀i ∈ I . bi ∈ O(Si)} .

Theorem 7.5.6 If S is a strand-space term in S then the elements of O(S) are
exactly the open bundles of the strand space denoted by S.

Proof. Let S be the strand-space term and GS the strand-space graph of the strand
space denoted by S. The proof has two parts.

The first part shows, by induction on the structure of strand space terms, that if
b is an open bundle of the strand space denoted by S then b ∈ O(S).

Case S = 〈λ〉. The only open bundle of S is λ and clearly λ ∈ O(S).
Case S = α.L. If b = λ then b ∈ O(S) by definition. Let b 6= λ be an open bundle

of S and therefore b ⊆ Gα.L. Clearly

b\ind(GL) ⊆ Gα.L\ind(GL) = GL .

The control graph b\ind(GL) is an open bundle of L – it is a subgraph of the strand-
space graph of L and conditions (ii), (iv), (v) are satisfied because they hold for b.
Because of the “sequential” shape of b open bundle of L ∈ L, deletion does not affect
Freshness (iii). Since b\ind(GL) is an open bundle of L, the induction hypothesis
applies and therefore

b\ind(GL) ∈ O(L) .

Observe that
b\ind(GL) = b\ind(b) and actb(ind(b), 1) = α
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and therefore
(α, ind(b)).(b\ind(b)) � b .

If b\ind(b) = λ then b = (α, ind(b)).λ ∈ O(L). Suppose instead that b\ind(b) 6= λ
then ind(b\ind(b)) = ind(b), since b is an open bundle of the sequential strand space
L. It follows that

(α, ind(b\ind(b)).(b\ind(b)) � b .

The control graph b is an open bundle, therefore

b ∈ (α, ind(b\ind(b)).(b\ind(b)) ↑
and b ∈ O(α.L).

Case S =
∑
j∈J Sj . Let b be an open bundle of S and therefore b ⊆ GP

j∈J Sj
.

Clearly
b|j ⊆ (GP

j∈J Sj
)|j = GSj

for every index j ∈ J . By conflict freeness there exists an index i ∈ J such that
b = i : b|i. It follows that b|i is an open bundle of Si. By the induction hypothesis
b|i ∈ O(Si) and therefore b ∈ O(

∑
j∈J Sj).

Case S = ||j∈JSj . Let b be an open bundle of S and therefore b ⊆ G‖j∈JSj
.

Clearly
b|j ⊆ (G‖j∈JSj

)|j = GSj

for every j ∈ J . It is easy to check that the control graph b|j is an open bundle of
Sj since b is an open bundle of S. By the induction hypothesis b|j ∈ O(Sj) for every
j ∈ J . Observe that ⋃

j∈J
b|j � b .

Since b is an open bundle it follows that

b ∈ (
⋃
j∈J

b|j) ↑

and therefore b ∈ O(||j∈JSj).

The second part shows inductively on the structure of strand-space terms that
every b ∈ O(S) is an open bundle of the strand space denoted by S.

Case S = 〈λ〉. If b ∈ O(〈λ〉) then b = λ. The empty graph λ is an open bundle of
every strand space.

Case S = α.L. Let b ∈ O(α.L). If b = λ then it is an open bundle of S. Let

b = (α, {i}) . λ

with i ∈ ind(GL). Observe that

(α, {i}) . λ ⊆ (α, ind(L)) . GL = Gα.L .

and therefore b is an open bundle of α.L. Suppose instead that

b ∈ ((α, ind(b′)) . b′) ↑
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for some b′ ∈ O(L) \ {λ}. Clearly b is an open bundle. We need to check that it is
an open bundle of α.L. By the induction hypothesis b′ is a open bundle of L and
therefore b′ ⊆ GL. It follows that

(α, ind(b′)) . b′ ⊆ (α, ind(GL)) . GL = Gα.L ,

thus b ⊆ Gα.L. Conflict freeness (iv) of b follows from that of b′.
Case S =

∑
j∈J Sj . If b ∈ O(

∑
j∈J Sj) then there exists j ∈ J such that b = j : b′

and b′ ∈ O(Sj). By the induction hypothesis b′ is an open bundle of Sj , thus j : b′ is
clearly an open bundle of

∑
j∈J Sj .

Case S = ||j∈JSj . If b ∈ O(||j∈JSj) then there exists a finite set I ⊆ J such that
b ∈ (

⋃
i∈I bi)↑ and bi ∈ O(Si) for every i ∈ I. The control graph b is an open bundle

of the same strand space for which ||i∈Ibi is an open bundle. From the induction
hypothesis it follows that for every i ∈ I the graph bi is an open bundle of Si and
therefore bi ⊆ GSi . Since I ⊆ J it follows that⋃

i∈I
bi ⊆

⋃
j∈J

GSj � GS

and therefore b is an open bundle of S as desired. 2

7.6 Strand-space equations

We have seen an equivalence relation that relates two strand spaces if, via re-indexing,
they become the same space. It is easy to check that this relation is a congruence
with respect to the operations of the strand-space language we introduced earlier
in this chapter. It is however a very concrete relation and too discriminating for a
model in which security properties are expressed as safety properties on the language
of bundles of a strand space. One doesn’t want to distinguish between strand spaces
that have isomorphic bundle languages. Unfortunately the equivalence relation ≈ on
strand-space terms, obtained by taking term equivalence iff they denote strand spaces
with essentially the same bundles, is not a congruence. In this section we study a
finer equivalence that takes account of the open bundles of a strand space rather than
bundles. This relation turns out to be an interesting congruence, in fact the largest
congruence within ≈.

7.6.1 A strand-space equivalence

Let b, b′ be two bundles. Write b ∼= b′ iff there exists a bijection φ : Eb → Eb′ such
that

(i) if e→b e
′ then φ(e) →b′ φ(e′),

(ii) if e⇒b e
′ then φ(e) ⇒b′ φ(e′),

(iii) actb(e) = actb′(φ(e)).

Definition 7.6.1 Let S and S′ be two strand-space terms in S. Define ≈ the sym-
metric relation such that S ≈ S′ iff for every bundle b of S there exists a bundle b′ of
S′ such that b ∼= b′.
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Proposition 7.6.2 The relation ≈ is an equivalence relation. 2

The equivalence relation≈ is not a congruence relation. Consider, for example, the
strand-space terms inM . ε and inN . ε where N and M are two different messages.
These two strand-space terms are in the relation ≈ – they both have only one bundle,
the empty bundle and they can be easily distinguished in a simple context when, for
example, composed in parallel with outM . ε. Then

inM . ε || outM . ε 6≈ inN . ε || outM . ε .

The parallel composition on the left hand side has a bundle of the form

inM outM ,

that on the right only λ.

7.6.2 A strand-space congruence

A context for a strand-space term in the language S is defined as follows:

C ::= [ ] | α.C | ||i∈ITi | Σi∈ITi

where for each context of the form ||i∈ITi or Σi∈ITi there is exactly one i ∈ I such
that Ti is a context C and Tj ∈ S for all j ∈ I \ {i}. The context [ ] is a placeholder
for a strand-space term. We write C[S] for the term obtained by replacing the strand-
space term S for [ ] in the context C in the obvious way. An equivalence relation on
strand-space terms is a congruence if it respects all contexts.

Definition 7.6.3 Let S and S′ be two strand-space terms in S. Define ≈O to be the
symmetric relation such that S ≈O S′ if for every open bundle b of S there exists an
open bundle b′ of S′ such that b ∼= b′.

Proposition 7.6.4 The relation ≈O is a congruence.

Proof. The relation ≈O is obviously an equivalence relation. We show by induction
on the structure of contexts that if S ≈B S′ then C[S] ≈B C[S′] for every context C.
We show that for every open bundle b of C[S] there exists an open bundle b′ of C[S′]
such that b ∼= b′.

Case C = [ ]. Obvious.
Case C = α.C′ for some context C′. Let

b ∈ O(α.C[S]) .

From Definition 7.5.5 of bundle space it follows that b is one of the following graphs:

• b = λ and therefore clearly belongs to O(α.C[S′]).

• b = (α, {i}) . λ where i ∈ ind(C[S]) thus for every j ∈ ind(C[S′])

b ∼= (α, {j}) . λ ∈ O(α.C[S′]) .
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• b ∈ ((α, ind(b′)) . b′) ↑ where b′ ∈ O(C[S]) \ {λ}. By the induction hypothesis
there exists b′′ ∈ O(C[S′]) such that b′ ∼= b′′ and therefore

(α, ind(b′)) . b′ ∼= (α, ind(b′′)) . b′′

and
((α, ind(b′′)) . b′′)↑ ⊆ O(α.C[S′]) .

Let φ be a bijection such that φ((α, ind(b′)) . b′) = (α, ind(b′′)) . b′′. Clearly

b ∼= φ(b) ∈ ((α, ind(b′′)) . b′′)↑ .

Case C = Σi∈ITi where the term Tj is a context C for the index j in I. Let

b ∈ O(Σi∈ITi[S]) .

From Definition 7.5.5 of bundle space it follows that the open bundle b = i : bi for
some i ∈ I and for some bi ∈ O(Ti[S]). If i 6= j then i : bi ∈ O(Σi∈ITi[S′]). If instead
i = j then by the induction hypothesis there exists b′i ∈ O(C[S′]) such that bi ∼= b′i
and therefore

i : bi ∼= i : b′i ∈ O(Σi∈ITi[S′]) .

Case C = ||i∈ITi such that only the term Tj is a context where j ∈ I. If

b ∈ O(||i∈ITi[S])

then
b ∈ (

⋃
i∈J

bi)↑

where bi ∈ O(Ti) when i 6= j and bj ∈ O(C[S]). By the induction hypothesis there
exists

b′j ∈ O(C[S′])

such that bj ∼= b′j . Let b′i = bi for all i 6= j. It follows that

(
⋃
i∈J

b′i)↑ ⊆ O(||i∈ITi[S′]) .

Moreover
⋃
i∈J bi ∼=

⋃
i∈J b

′
i. Let φ is the bijection such that φ(

⋃
i∈J bi) =

⋃
i∈J b

′
i.

Clearly
b ∼= φ(b) ∈ (

⋃
i∈J

b′i) ↑ .

2

Theorem 7.6.5 The relation ≈O is the largest congruence relation inside ≈.

Proof. Consider the set

D = {R | R congruence relation and R ⊆≈}
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Clearly
⋃
D is a congruence relation and the largest congruence inside ≈. It remains

to show that
≈O =

⋃
D .

By Proposition 7.6.4 the relation ≈B is a congruence and since ≈O⊂≈ it follows that
≈O⊆

⋃
D. Let S and S′ be two strand-space terms and let b be an open bundle

of S such that b 6∼= b′ for all open bundles b′ of S′. If no congruence relation in D
contains the pair (S, S′) then

⋃
D ⊆≈O. Let R ∈ D and suppose (S, S′) ∈ R. We

find a context C such that (C[S], C[S′]) 6∈ R and therefore R is not a congruence
relation. Consider the strand space T as defined in the construction we saw in the
proof of Theorem 7.5.4. Consider the context T || [ ]. Let t be an open bundle of T
and b′′ ∈ (t || b) ↑ be the bundle of T || S as defined in the proof of Theorem 7.5.4.
Since

(T || S, T || S′) ∈ R
there exists a bundle d of T || S′ such that

b′′ ∼= d .

Let φ be an isomorphism between the two bundles. Clearly b′′|2 = b and

φ(2 : b)|2

is an open bundle since b is. Observe that φ(2 : b)|2 ⊆ GS′ and therefore is an
open bundle of S′ – otherwise, if φ(2 : b)|2 6⊆ GS′ there would be an event of b
that introduces as new the same name that is introduced in t (strands of T all start
with the generation of a new name not belonging to b), which by construction is not
possible. Clearly b ∼= φ(2 : b)|2 and we reach a contradiction.

2

7.7 Eliminating conflict

An agent that participates in a security protocol is often thought of as executing a
sequential program during which it sends messages and chooses from a number of
available messages which one to input. If one doesn’t restrict the number of rounds
of the protocol an agent can do one can hope to model the protocol with a strand
space with conflict of the form ! (〈si〉i∈I ,#). In this section we show that under
these conditions a simpler model, obtained by dropping the conflict relation, exhibits
substantially the same behaviour as the more complex strand space with conflict.

Consider a conflict relation # on a set I and consider the relation !# on ω × I
such that (n, i) !# (m, j) iff n = m and i# j. The form of the !# conflict relation
suggests the following lemma:

Lemma 7.7.1 Given I a set of indices, a finite set A ⊆ ω × I, and # a conflict
relation over I then there exists a bijection π : ω×I → ω×I where for all (n, i) ∈ ω×I
there exists m ∈ ω such that π(n, i) = (m, i) and ¬(π(u) !# π(v)) for all u, v ∈ A.
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Proof. By induction on the size of the set A.
The basic case A = ∅: take π for example to be the identity function.
The induction step: Given a set A suppose there is a bijection π satisfying the

desired property and such that A is conflict free with respect to π−1(!#). Take
A′ = A∪ {(n′, i′)} with (n′, i′) 6∈ A. Let π(n′, i′) = (m′, i′) and distinguish two cases:

If m 6= m′ for all (m, j) ∈ π(A) then A′ is conflict free with respect to π−1(!#).
Suppose the contrary. Suppose there is (n, i) ∈ A such that π(n, i) !#π(n′, i′). If
π(n, i) = (m, i) then m = m′ by definition of !#.

If there exists (m, j) ∈ π(A) such that m = m′, then consider the following
function:

π′(n, i) =




(m′′, i′) if (n, i) = (n′, i′)
(m′, i′) if (n, i) = π−1(m′′, i′)
π(n, i) otherwise

where m′′ ∈ ω such that m 6= m′′ for all (m, j) ∈ π(A). Since A is a finite set,
such m′′ exists. This function is as π but swaps the new element (n′, i′), that could
introduce conflict, with one that doesn’t. It is easy to check that π′ is a bijection
and that it satisfies the required property. It remains to check that A′ is conflict free
with respect to π′−1(!#). First observe that π′(A) = π(A) because (n′, i′) 6∈ A and
π−1(m′′, i′) 6∈ A (we chose m′′ so that (m′′, i′) 6∈ π(A)). It follows that A is conflict
free with respect to π′−1(!#). Since π′−1(!#) is irreflexive and symmetric we require:

∀(n, i) ∈ A .¬(π′(n, i) !#π′(n′, i′)).

Suppose instead that there exists (n, i) ∈ A such that π(n, i) !#π(n′, i′). Let π(n, i) =
(m, i), then (m, i) !# (m′′, i′). From the conflict relation !# it follows that m = m′′.
On the other hand (m, i) ∈ π(A). Therefore m 6= m′′.

2

The previous lemma and the observation that two different copies of the same
strand space have the same strands at corresponding positions, yield:

Theorem 7.7.2 Consider strand spaces ! (〈si〉i∈I , ∅) and ! (〈si〉i∈I ,#). Let b be a
bundle of ! (〈si〉i∈I , ∅). There exists a strand space S such that b is a bundle of S and
S ∼= ! (〈si〉i∈I ,#).

Proof. Given b a bundle of ! (〈si〉i∈I , ∅) take A the set of indices of strands participating
with nodes in b. The set A is finite because so is b and A ⊆ ω × I. By Lemma 7.7.1
there is a bijection π : ω × I → ω × I such that

∀(n, i) ∈ ω × I . π(n, i) = (n′, i)

for some n′ ∈ ω and A is conflict free with respect to π−1(!#). Consider the strand
space with conflict

S = (〈t(m,i)〉(m,i)∈ω×I , π−1(!#))

where t(m,i) = si for all m ∈ ω. The equivalence S ∼=!(〈si〉i∈I ,#) stands. In fact π is
a bijection such that

(i) t(m,i) = sπ(m,i) since sπ(m,i) = s(n′,i) = si = t(m,i)

128



7.7. Eliminating conflict

(ii) (m, i)π−1(!#) (u, j) iff π(m, i) !#π(u, j).

The two strand spaces ! (〈si〉i∈I , ∅) and S have the same strand-space graph, there-
fore since b is a bundle over !(〈si〉i∈I , ∅), and since A is conflict free with respect to
π−1(!#) it follows that b is a bundle of S. 2

To summarise, the behaviour in terms of bundles of a replicated strand space
with conflict corresponds, modulo re-indexing, to that of the strand space we obtain
dropping the conflict relation.

Corollary 7.7.3 Consider strand spaces !(〈si〉i∈I , ∅) and !(〈si〉i∈I ,#).

1. If b is bundle of ! (〈si〉i∈I ,#) then b is bundle of ! (〈si〉i∈I , ∅).
2. If b is bundle of ! (〈si〉i∈I , ∅) then there exists a re-indexing π such that π(b) is

a bundle of ! (〈si〉i∈I ,#).

Proof. The first point is obvious, the second point follows directly from Theorem 7.7.2
and Proposition 7.2.6. 2

Consequently, the strand space with conflict denoted by a “!-par” process has the
same bundles up to re-indexing as a strand space without conflict.

Independently from the work described in this thesis, another treatment of strand
spaces with conflict is due to Halpern and Pucella [37]. The previous section, which
shows that conflict can be eliminated for a broad range of protocols, is an advance
over their results. Conflict elimination appears to follow from a basic design principle
for cryptographic protocols. Principals usually are not required to maintain state
across different sessions but execute protocol sessions in a purely local way. Denial-
of-Service attacks that are based on the state that would have to be maintained can
so be avoided.
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Chapter 8

Relating models

A number of security-protocol models exist. Some of them have been compared
and formally related. For example the strand-space method has been related to the
multiset-rewriting method [17] and to linear logic [15]. For many other methods,
however, formal comparisons have not been studied yet. One can get a better un-
derstanding of various security-protocol models when one compares them to other
models. In this chapter we relate a number of event-based approaches to security
protocol analysis.

This Chapter starts by showing how strand spaces [90] relate to event struc-
tures [94]. This result is an example of how models that have been developed for
a special purpose, the verification of security protocols, are often more traditional
general-purpose models for concurrency in disguise. Later in this Chapter we study
the relation of SPL with other security-protocol models. We are particularly inter-
ested in comparing SPL with the strand-spaces and Paulson’s inductive approach [61]
since these two more intentional event-based models inspired the design of SPL. As
a side result of our comparison, a link between the traditional transition-system se-
mantics of process languages and strand spaces. The Chapter ends with a comparison
between SPL and other traditional models for concurrency: basic and coloured Petri-
nets [66, 95, 42], event-structures and Mazurkiewicz trace languages [50].

Security properties such as secrecy and authentication or even anonymity can be
expressed as safety properties, properties which stand or fall according to whether
they hold for all finite behaviours. The results in this chapter relate models with
respect to the languages, i.e., sets of finite behaviours, they generate. This is not
unduly restrictive, however, as in security protocols we are mainly interested in safety
properties.

8.1 Event structures from strand spaces

In this section we show how strand spaces relate to event structures. Recall that a
bundle of a strand space is a graph and therefore a set of edges and nodes. It turns
out that the bundles of a strand space ordered by inclusion correspond to the finite
configurations of a prime event structure. Prime event structures are a particularly
simple kind of event structure where the enabling of events can be expressed as a
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global partial order of causal dependency. Event structures as a model of concurrent
processes were introduced in [58, 92] – see also [93, 94, 96, 97].

8.1.1 Prime event structures

Definition 8.1.1 A prime event structure (E,#,≤) consists of a set E of events par-
tially ordered by the causal dependency relation≤ and a binary, symmetric, irreflexive
conflict relation # ⊆ E × E, which satisfy

(i) {e′ | e′ ≤ e} is finite for all e ∈ E, and

(ii) if e# e′ ≤ e′′ then e# e′′ for all e, e′, e′′ ∈ E.

Definition 8.1.2 The configurations of an event structure E = (E,#,≤) consist of
those subsets x ⊆ E which are

(i) conflict free: ∀e, e′ ∈ x .¬(e# e′) and

(ii) left closed: ∀e, e′.e′ ≤ e ∈ x⇒ e′ ∈ x.
Write F(E) for the set of configurations of an event structure and Ffin(E) for its
finite configurations.

8.1.2 A prime event structure from a strand space

For a strand space S write B for the set of bundles of S. Consider the partial order
(B,⊆). Bundles are here viewed as sets of nodes and edges. Say a subset X of B is
compatible iff

∃b ∈ B . ∀b′ ∈ X . b′ ⊆ b .

We will say X is pairwise compatible if for every two bundles b1, b2 ∈ X there exists
a bundle b ∈ B such that b1 ⊆ b and b2 ⊆ b.

Proposition 8.1.3 Let S be a strand space and B the set of bundles of S. The partial
order (B,⊆) satisfies the following properties:

1. if X ⊆ B, X is finite and pairwise compatible, then
⋃
X ∈ B.

(coherence )

2. if X ⊆ B and X is compatible, then
⋂
X ∈ B. (stability)

Proof. Let G be the strand space graph of S.

1. The graph
⋃
X is obviously a finite subgraph of G since X is finite and each

element in X is finite. We check that the graph
⋃
X satisfies all the other

requirements of Definition 7.2.2:

(i) Consider an event e ∈ ⋃
X . There is a bundle b ∈ X with e ∈ b. By

control precedence on b, if e′ ⇒G e then e′ ⇒b e. From b ⊆ ⋃
X it follows

that e′ ⇒S

X e.
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(ii) Output-input precedence holds. Let e be an input event in
⋃
X . There

is a bundle b ∈ ⋃
X with e ∈ b. An output event e′ exists such that

e′ →b e (output-input precedence on b) and therefore e′ →S

X e. There
is a unique such output event. Suppose the contrary. Suppose there are
two output events e′, e′′ such that e′ →S

X e and e′′ →S

X e. Then two
distinct bundles b, b′ ∈ X exist such that e′ →b e and e′′ →b′ e. On the
other hand X is pairwise compatible and so there is a bundle containing
both b and b′ which would however contradict output-input precedence on
that bigger bundle.

(iii) Let e, e′ be two events in
⋃
X such that

act(e) = out new~nM and n ∈ ~n ∩ names(e′) .
Since X is pairwise compatible, there exists a bundle b′ in X that contains
both e and e′. The bundle b′ respects freshness and so either e ⇒∗

b′ e
′ or

there exists an input event e′′ such that n ∈ names(e′′) and e′′ ⇒∗
b′ e

′.
Consequently freshness holds on

⋃
X .

(vi) The graph
⋃
X does not contain conflicting events since X is pairwise

compatible.

(v) Let e be an event in
⋃
X . The set X is pairwise compatible therefore there

exists b ∈ X with e ∈ b and such that if e′ →S

X e then e′ →b e. Since b
is a bundle if e′ ⇒S

X e then e′ ⇒b e (control precedence). Therefore

{e′ | e′ ≤S

X e} = {e′ |e′ ≤b e}
and it follows that the relation ⇒S

X ∪ →S

X is acyclic.

Therefore
⋃
X ∈ B.

2. Every element of X is a bundle in B. Therefore
⋂
X forms a finite subgraph

of G. We check that the graph
⋂
X satisfies all the other requirements of

Definition 7.2.2.

(i) Let e ∈ ⋂
X . Every b ∈ X is such that e ∈ b. For each b ∈ X if e′ ⇒G e

then e′ ⇒b e (control precedence on b). It follows that e′ ⇒T

X e.

(ii) If e ∈ ⋂
X and e is an input event then every bundle b ∈ X contains the

event e and contains an output event eb such that eb →b e. The set X is
compatible and therefore there exists b′ ∈ B such that eb →b′ e for every
b ∈ X . Since b′ is a bundle, there exists an event e′ such that e′ = eb for
every b ∈ X . The event e′ is the unique event such that e′ →T

X e.

(iii) Let e, e′ be two events in
⋂
X such that

act(e) = out new~nM and n ∈ ~n ∩ names(e′) .
The events e, e′ belong to every bundle in X . Freshness holds on each
bundle b in X . Thus either e⇒∗

b e
′ or there exists an input event e′′ such

that n ∈ names(e′′) and e′′ ⇒∗
b e

′. If e⇒∗
b′ e

′ for some bundle b′ in X then
e ⇒∗

G e and therefore e ⇒∗
b e

′ for every bundle b in X . The other case of
a bundle b′ where e′′ ⇒∗

b e
′ is similar. Freshness holds on

⋂
X .
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(vi) The elements of X are bundles and therefore conflict free. Consequently⋂
X is conflict free.

(v) Every element of X is a bundle in B therefore the relation ⇒T

X ∩ →T

X

is acyclic.

Therefore
⋂
X ∈ B.

2

Given a bundle b ∈ B and an event e ∈ Eb define

deeb def=
⋂
{b′ ∈ B | e ∈ b′ ∧ b′ ⊆ b} .

Proposition 8.1.4 Let B be the bundles of a strand space. For every bundle b ∈ B
and every event e ∈ Eb the set deeb is a bundle in B. For every finite and compatible
subset X ⊆ B

if deeb ⊆
⋃
X then ∃b′ ∈ X . deeb ⊆ b′

We call a bundle deeb a prime of (B,⊆).

Proof. For ever b ∈ B and every e ∈ b the set

{b′ ∈ B | e ∈ b′ ∧ b′ ⊆ b}

is compatible. It follows from the stability property of (B,⊆) (Proposition 8.1.3) that
the elements deeb are bundles in B.

Let X ⊆ B be finite and compatible. If deeb ⊆
⋃
X then e ∈ b′ for some b′ ∈ X .

The two bundles b′ and deeb in B are compatible (they are both included in
⋃
X),

therefore from the stability property of (B,⊆) it follows that b′ ∩ deeb ∈ B. We know
that e ∈ b′ and that b′ ∩ deeb ⊆ b. Therefore deeb ⊆ b′ ∩ deeb ⊆ b′. 2

The primes form a basis for the partial order (B,⊆) as the following proposition
shows.

Proposition 8.1.5 Let S be a strand space and B its bundles. Every bundle b ∈ B
can be obtained as the union of the primes included in b

b =
⋃
{p | p ⊆ b, p prime}.

Proof. Obviously ⋃
{p | p ⊆ b, p prime} ⊆ b .

On the other hand, if e ∈ b then e ∈ deeb. The prime deeb is a bundle included in b
and therefore if e′ ⇒b e then e′ ⇒deeb

e, and if e′ →b e then e′ →deeb
e. Thus

b ⊆
⋃
{deeb | e ∈ b} .

2
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Let B the set of bundles of a strand space S. Consider the following structure

Pr(B)
def
= (P,#,⊆)

where P is the set of primes of B and where p# p′ iff the two primes p and p′ are not
compatible.

Theorem 8.1.6 The structure Pr(B) is a prime event structure.

Proof. It is easy to check that Pr(B) is a prime event structure. The relation ⊆ is
a partial order of primes. Bundles and in particular primes are finite sets. Thus for
each prime p the set {p′ | p′ ⊆ p} is finite. Moreover if p, p′, p′′ are primes such that
p# p′ ⊆ p′′ then p# p′′ – otherwise p and p′′ would be compatible and therefore p
and p′ would be compatible too. 2

8.1.3 Relating strand spaces and prime event structures

Theorem 8.1.7 The map

φ : (B,⊆) ∼= (FfinPr(B),⊆)

such that
φ(b) = {p | p ⊆ b, p prime}

is an isomorphism of partial orders with inverse map θ : FfinPr(B) → B given by
θ(x) =

⋃
x.

Proof. The map φ is obviously well-defined and so is θ. If x is a finite configuration of
Pr(B), it is then a finite set of bundles in B which is conflict free and left closed. Since
it is conflict free it is pairwise compatible. Therefore from the coherence property of
Proposition 8.1.3 it follows that

⋃
x ∈ B.

It is clear that both maps φ and θ are order preserving. We show that they are
mutual inverses and therefore give the required isomorphism. From Proposition 8.1.5
it follows that θ(φ(b)) = b for all b ∈ B. Let x be a finite configuration of Pr(B). We
require that φ(θ(x)) = x, i.e.,

{p | p ⊆
⋃
x, p prime} = x .

If p is a prime such that p ⊆ ⋃
x, then there exists a bundle p′ in x (another prime)

such that p ⊆ p′ (Proposition 8.1.4). The configuration x is left-closed, thus p ∈ x.
On the other hand, x is a set of primes and therefore

x ⊆ {p | p ⊆
⋃
x, p prime} .

2

Observation 8.1.8 Since Pr(B) is a prime event structure the partial order

(FPr(B),⊆)
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is a Scott domain of information, in particular a prime algebraic domain (see [58, 94,
96]). This domain however can include configurations which are infinite and therefore
are not bundles in the usual sense.

The prime event structure Pr(B) underlies the strand space semantics Syverson
gave to the BAN logic [83].

8.2 Strand spaces from SPL

The behaviour of a strand space expressed in terms of bundles is closely related to
the runs of an SPL net and to that of a more traditional model, the SPL-transition
semantics. For “par” processes and strand spaces with conflict, and for “!par” pro-
cesses and traditional strand spaces one can show that the events, or actions in a run
of the process are those appearing in a “linearisation” of a bundle of a certain strand
space.

8.2.1 “Par” processes

Agents that participate in a protocol, execute a program that implements a pro-
tocol role. In many cases (see for example the protocols listed in the Clark-Jacob
library [19]) the program consists of a sequence of instructions that send messages
onto the network or receive messages from the network. Then a security protocol is
a distributed program that can be conveniently described as a parallel composition
of sequential processes, a “par” process. Usually the components of a “par” process
describing a protocol are replicated – no restrictions are imposed on the number of
rounds an agent can engage in the same protocol role. We call the replicated “par”
processes “!par”.

The set of SPL-“par” processes is described by the following grammar:

sp ::= nil | out new~x M . sp | in pat ~x~χ~ψ M . sp
p ::= sp | ‖i∈Ipi

Recall that the process term nil in SPL is an abbreviation for the empty parallel
composition. The “par” processes clearly form a subset of SPL processes.

The examples of security protocols that we studied in this thesis are “!par” pro-
cesses.

8.2.2 A strand space from a “par” process

The components of a “par” process denote a set of strands, a strand for each maximal
sequence of events of that component coinciding at control points. For example to an
initiator component of the NSL system

out new x {x,A}Pub(B) . in {x, y,B}Pub(A) . out {y}Pub(B)

correspond maximal event sequences

Out(out newx {x,A}Pub(B);n) In(in {n, y,B}Pub(A);m) Out(out {m}Pub(B))

for each n,m ∈ N \ {A,B} which denote strands

out new n {n,A}Pub(B) in {m,n,B}Pub(A) out {m}Pub(B) .
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Chapter 8. Relating models

The strand space associated to an SPL-“par” process that we construct in this section
consists of all the strands obtained from all components of the process.

More precisely, let p be a closed process term. Define I(p) the set of maximal
sequences e1 · · · el of events in Ev(p) such that

1. ce1 ⊆ Ic(p),

2. eni ∩ names(p) = ∅ for all 1 ≤ i ≤ l, and

3. eci = cei+1 for all 1 ≤ i < l.

Note that if p is a “par” process, all the events in a sequence u ∈ I(p) have the same
index that we denote with index(u). If the events in u do not carry an index then let
index(u) = ∗ where ∗ is a distinguished index.

Proposition 8.2.1 Let e1 · · · el ∈ I(p). If i 6= j then cei 6=c ej.

Proof. The size of control conditions decreases strictly along a sequence of events in
I(p) – each control postcondition of an event is smaller in size to the control precon-
dition of the event. 2

The events that appear in a sequence of I(p) can be seen as events of a strand-
space graph, with precedence edges defined by the precedence among events of a
sequence and by all possible communication edges between matching output and
input messages. The actions associated to the nodes are those of the events. From
an SPL-“par” process one can construct a strand space as follows:

Definition 8.2.2 (A strand space from an SPL-“par” process). Given a closed “par”
process p define

S(p) = (〈su〉u∈I(p),#)

to be the strand space where

1. su[j] = act(u[j]) for every u ∈ I(p) and j such that 1 ≤ j ≤ |u|,
2. u#v iff index(u) = index(v) and u 6= v.

2

The graph of a strand space S(p) has nodes of the from (u, i) with u ∈ I(p) and
1 ≤ i ≤ |u|. Since u is a sequence of events in Ev(p) each node in the graph denotes
the event u[i] ∈ Ev(p). For this reason we will sometimes make no distinction between
nodes of a strand-space graph and the events that they may denote.

8.2.3 Relating SPL-net semantics and strand spaces

The behaviour of a strand space obtained from a “par” process is closely related to its
net semantics. Bundles can be linearised into sequences of events, so that the casual
dependencies among events in a bundle determines how events precede each other in
a linearisation of the bundle. Clearly there are many ways to linearise a bundle. It
turns out that there is a one to one correspondence between runs in the net of a “par”
process and linearisations of all possible bundles of the strand space obtained from
that process.
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Definition 8.2.3 (Linearisation). Given a bundle b of a strand space, a linearisation
of b is a sequence of nodes e1 · · · el such that {e1, . . . , el} are all the nodes of b and
for all ei, ej ∈ b if ei ⇒b ej or ei →b ej then ei precedes ej in the sequence.

In a strand space S(p) a linearisation of a bundle denotes a sequence of events in
Ev(p) in the obvious way, that we call event-linearisation of the bundle. 2

The set of linearisations of bundles of a strand space is prefix closed – given a
strand space and a linearisation of one of its bundles we find that every prefix of the
linearisation is a linearisation of a bundle of the strand space.

Proposition 8.2.4 Let L be a sequence of nodes and e a node such that Le is a
linearisation of a bundle of a strand space S. The sequence L is a linearisation of a
bundle of S.

Proof. Let b be the bundle of S that has as one of its linearisations the sequence Le.
Removing from b the node e and all edges incident to e results in another bundle of S.
In fact the graph that one obtains is clearly finite and acyclic and conflict free. The
sequence Le is a linearisation of b thus b does not contain any outgoing edges of e so
that removing e from b does not violate neither control, nor output-input precedence,
nor freshness and L is clearly a linearisation of the reduced bundle. 2

Let p0 be a closed “par” process. We construct a set of bundles of S(p0) from a
proper run in Net(p0) such such that the events in the run form an event-linearisation
of every bundle in the set. A bundle of S(p0) is a subgraph of its strand-space graph
and has nodes (u, i) where u ∈ I(p0) and 1 ≤ i ≤ |u|. Consider an event in the run
and suppose it has index r. The subsequence of the run composed by all the events
that have index r is a prefix of a sequence u in I(p0). If the length of the prefix
is j then the nodes (u, i) with i ≤ j should belong to one of the bundles that we
constructed from the run. There can be more than one sequence in I(p0) which has a
prefix formed out of all the events of a run with a common index. A run determines
a set of bundles rather than a single bundle.

Let v = e1 · · · en be the sequence of events in a finite and proper run

〈p0, s0, ∅〉 e1−→ · · · en−→ 〈pn, sn, tn〉

in the SPL-net, where p0 is a closed “par” process. Denote with v|r the subsequence
of v consisting of all those output and input events that have index r.

Proposition 8.2.5 Let r be an index of an event in the sequence v. There exists
u ∈ I(p0) such that v|r is prefix of u.

Proof. We show that the sequence v|r = a1 · · · is such that

1. ca1 ⊆ Ic(p0),

2. ani ∩ names(p) = ∅ for all 1 ≤ i ≤ |v|r|, and

3. aci = cai+1 for all 1 ≤ i < |v|r|,
and therefore, since it is composed out of events in Ev(p0) it is clearly a prefix of a
sequence in I(p0).
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Among the events that carry index r, the event a1 is the first to appear in v,
an SPL run, and therefore a1 has no preceding event that would mark its control
condition – a1 necessarily has index r. It follows from the token game that

ca1 ⊆ Ic(p0) .

The events in v form a proper run of Net(p) for which the Freshness Principle 5.1.3
holds. Therefore ani ∩ names(p) = ∅ for all 1 ≤ i ≤ |v|r|.

Suppose that aci 6= cai+1 at some stage i in v|r. Let i be the first stage at which
this happens. From the token game it follows that either cai+1 ∈ Ic(p0) or there
exists a previous event in the run such that acj = cai+1. If cai+1 ∈ Ic(p0) then
Proposition 4.3.1 is contradicted since Ic(p0) would contain two different control con-
ditions that share the same index. In fact ca1 6= cai+1 (Proposition 4.4.4) and a1, ai1
have both the same index. If, instead, acj = cai+1 where aj is an event that precedes
ai+1 in the run then caj+1 = cai+1 which contradicts Proposition 4.4.4 since j < i. 2

Theorem 8.2.6 The sequence v is an event linearisation of a bundle of S(p0).

Proof. Given v the sequence of events in a finite and proper run of Net(p0) the
following proof explicitly constructs a bundle that has v as one of its linearisations.

Let I ⊆ I(p0) such that

• for every u ∈ I the subsequence v|index(u) is a non-empty prefix of u,

• for all i ∈ {index(e) | e ∈ v} there exists a unique u ∈ I with prefix v|i where
index(e) is the index of e.

As Proposition 8.2.5 says, we can find a set with those properties for every sequence
of events in a run in the SPL-net. Consider the control graph

G(I, v) = (E,→, act)

with

• nodes E = {(u, j) | u ∈ I and 1 ≤ j ≤ |v|i|},
• communication edges (w, h) → (u, j) for every (u, j) ∈ E such that u[j] is an

input event and where w[h] is the first event in v such that w[h]o =ou[j], and

• actions act(u, j) = act(u[j]).

The → relation among nodes of the graph is well defined. Since v is a sequence of
events in a run in the SPL-net starting from the configuration 〈p0, s0, ∅〉, for every
input event of a message in the run there exists a previous output event that marks
that message (see Output-input Principle 5.1.5).

The sequence v is an event-linearisation of G(I, v). The set

{u[j] | (u, j) ∈ E}
contains exactly all the events that appear in v. Suppose that (w, h) → (u, j). The
event w[h] is the first event in v that marks ou[j] and therefore it has to precede u[j]
in v. Suppose that (w, h) ⇒ (u, j). There is a subsequence v|i of v such that

v|i = · · ·w[h]u[j] · · ·
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and so w[h] precedes u[j] in v.
It remains to show that the control graph G(I, v) is a bundle of S(p0). The set

I is a finite set of sequences therefore G(I, v) is finite. Moreover I ⊆ I(p0), making
G(I, v) a subgraph of the strand-space graph of S(p0). We need now to check the
other requirements of the definition of bundle (see Definition 7.2.2):

(i) Control precedence holds since G(I, v) is a control graph.

(ii) Output-input precedence follows from the definition of G(I, v).

(iii) Freshness holds. Let (u, j) and (w, h) be two nodes in the bundle such that

act(u[j]) = out new~n M and n ∈ ~n ∩ names(w[h]) .

Suppose (u, j) 6⇒∗ (w, h). As for any event of Ev(p0) so for w[h]

if n ∈ names(w[h]) then n ∈ w[h]n ∪ names(ow[h]) ∪ names(cw[h]) .

From the Freshness Principle 5.1.3 of the SPL-net it follows that n 6∈ w[h]n. If
n ∈ names(ow[h]) then w[h] is an input event and clearly

(w, h) ⇒∗ (w, h) .

If n ∈ names(cw[h]) then there must be an event e ∈ v with the same index as
w[h] such that n ∈ names(ec). Let e be the first such event in v. The event
u[j] is in v, sequence of events of a run from configuration 〈p0, s0, ∅〉, therefore
n 6∈ s0 and n 6∈ names(ce). Clearly

e⇒∗ (w, h)

and n 6∈ en (Freshness Principle 5.1.3), therefore e is an input event as desired.

(iv) Conflict freeness holds since each sequence of I has a different index.

(v) The relation ⇒ ∪ → is acyclic. Suppose it is not. Then there is a cycle in
G(I, v) and therefore a finite path of → and ⇒ edges that from a node (u, i)
leads back to it. Given that v is an event-linearisation of G(I, v), the event u[i]
appears more than once in v, contradicting Proposition 4.4.4.

2

Observe that v is the sequence of events in a run from an initial marking that
does not include any output conditions. This is a necessary restriction when relating
to strand spaces whose behaviour is in terms of bundles. It is likely that one can
lift the condition on the initial marking if one related to open bundles instead (see
Chapter 7).

On the other hand one can construct a run in the net of a “par” process from any
event-linearisation of any bundle of the strand space of that process.

Theorem 8.2.7 Every event-linearisation of every bundle of S(p0) is the sequence
of events of a run in Net(p0).
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Proof. Inductively on the number of nodes in a bundle of S(p0).
A bundle is a control graph, therefore if it has only one node it has to be a node of

the form (u, 1) where u ∈ I(p0). Its even-linearisation is u[1]. From the output-input
precedence it follows that for a bundle with a single node

u[1] = i : Out(out new ~x M . p ; ~n)

where i is an index, M is a message, p a process, and ~n are distinct names. Since
u ∈ I(p0),

out newx M . p ∈ Ic(p0) and ~n ∩ names(p0) = ∅ .

Let s0 = names(p0) then

〈p0, s0, ∅〉 u[1]−→ 〈p0[~x/~n], s0 ∪ ~n, {M [~x/~n]}〉

is a proper run in Net(p0). Note that the occurrence of the event u[1] does not cause
contact (see Proposition 4.4.3).

Consider a bundle of S(p0) with n ≥ 2 nodes and e1 · · · en−1en one of its event-
linearisations. The sequence e1 · · · en−1 is an event-linearisation of a bundle of S(p0)
with n− 1 nodes (see Proposition 8.2.4). By the induction hypothesis, there exists a
run

〈p0, s0, t0〉 e1−→ · · · en−1−→ 〈pn−2, sn−2, tn−2〉
in Net(p0). From the definition of I(p0) it follows that either cen ⊆ Ic(p0) or ecj =c en
for some preceding event ej in the event linearisation.

We show that
cen ⊆ Ic(pn−2) .

Suppose the contrary. The sequence e1 · · · en−1 are the events of a run in Net(p0)
therefore if cen 6⊆ Ic(pn−2) there exists an event eh with h < n such that ceh =c en.
Clearly eh 6= en since they both belong to a linearisation of a bundle. The events
eh, en have the same indices thus belong to the same sequence in I(p0). This, however,
contradicts Proposition 8.2.1.

The event en is either an input or an output event. Let

en = i : Out(out new ~x M . p ; ~n) .

We need to show that ~n ∩ sn−2 = ∅. Suppose that ~n ∩ sn−2 6= ∅. The events in the
sequence e1 · · · en−1 are the events of a proper run in Net(p0). Either ~n ∩ s0 6= ∅
which can’t be the case since en belongs to a sequence in I(p0) or ~n ∩ enj 6= ∅ where
ej is in e1 · · · en−1. In this second case the bundle would contain ej 6= en such that
enj ∩enn 6= ∅, contradicting Proposition 7.2.4, and so contradicts the freshness condition
of the bundle. Therefore the event en is enabled at 〈pn−2, sn−2, tn−2〉 and does not
cause contact (see Proposition 4.4.3). The sequence of transitions

〈p0, s0, t0〉 e1−→ · · · en−1−→ 〈pn−2, sn−2, tn−2〉 en−→ 〈pn−1, sn−1, tn−1〉

is a proper run in Net(p0). If instead

en = i : In(input ~x~ψ M . p ; ~n, ~L)
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it follows form the definitions of bundle and linearisation of a bundle that there exists
a preceding event ej in the sequence e1 · · · en such that eoj =o en. Therefore oen ⊆ tn−2

and the event en is enabled at configuration 〈pn−2, sn−2, tn−2〉 (and does not cause
contact – see Proposition 4.4.3), so

〈p0, s0, t0〉 e1−→ · · · en−1−→ 〈pn−2, sn−2, tn−2〉 en−→ 〈pn−1, sn−1, tn−1〉
is a run in Net(p0). 2

We related the net-behaviour of a “par” process with that of a strand space with
conflict. Conflict can be eliminated obtaining a traditional strand space whenever
enough replication is at hand (see Section 7.7). There is enough replication in “!par”
processes which therefore can be related to strand spaces of the traditional kind.

Corollary 8.2.8 Let p be a “par” process and let s be a set of names containing all
names in p. Let S(!p) = (〈su〉u∈I(!p),#) be the strand space obtained from the process
term !p.

1. The sequence of events in a finite and proper run in Net(!p) from the initial
configuration 〈!p, s, ∅〉 is an event linearisation of a bundle over (〈su〉u∈I(!p), ∅).

2. Every bundle over (〈su〉u∈I(!p), ∅) can be re-indexed so that any of its event-
linearisations is a proper run in Net(!p).

Proof.

1. If v the sequence of events of a finite run in Net(!p) then it is an event-
linearisation of a bundle b of S(!p) (Theorem 8.2.6). Clearly b is also a bundle
of (〈su〉u∈I(!p), ∅).

2. Let S(p) = (〈sv〉v∈I(p),#′) There exists a re-indexing π such that

S(!p) ∼= !S(p) .

If b is a bundle of (〈su〉u∈I(!p), ∅) then the graph π(b) is a bundle of !(〈sv〉v∈I(p), ∅).
Form Corollary 7.7.3 it follows that there is a further re-indexing π′ such that
π′π(b) is a bundle of the strand space with conflict !S(p), thus yielding ππ′π(b)
a bundle of S(!p). By Theorem 8.2.7 any of the event-linearisations of ππ′π(b)
is a sequence of events of a run in Net(!p).

2

8.2.4 Relating SPL-transition semantics and strand spaces

More traditional process-language models such as transition systems are strongly
related to the strand space model for security protocols. From the discussion of the
previous section (Corollary 8.2.8) and the relation that exists between the transition
semantics of SPL and its event-based semantics (Theorem 4.4.1) it follows that:

Corollary 8.2.9 Let p be a “par” process and let s be a set of names containing all
names in p. Let S(!p) = (〈su〉u∈I(!p),#) be the strand space obtained from the process
term !p.
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• The sequence of actions in a finite transition sequence from 〈!p, s, ∅〉, a proper
configuration, is the sequence of actions in an event-linearisation of a bundle in
(〈su〉u∈I(!p), ∅).

• Every bundle of (〈su〉u∈I(!p), ∅) can be re-indexed so that the sequence of actions
in any of its event-linearisations is that of a proper sequence of transitions of p.

2

8.3 Inductive rules from SPL

Paulson’s inductive rules for a security protocol capture the actions it and a spy
can perform [61, 62]. Through allowing persistent conditions, we can represent a
collection of inductive rules as a net in which the events stand for rule instances
and runs for sequences of rule instances which form a derivation from the rules. In
particular, instances of inductive rules for security protocols can be represented as
events in a net for which all but the name conditions are persistent. According to
such a semantics, once a protocol can input it can do so repeatedly. Once it can
output generating new names it can do so repeatedly, provided this doesn’t lead to
clashes with names already in use. Paulson’s traces and the associated runs of the
net will necessarily include such “stuttering”. In this section we first describe how to
obtain a net of rule instances from a net of an SPL process and show that they relate
provided enough “replication” is introduced.

8.3.1 Rule instances from SPL

The net of SPL-rule instances has:

• rule conditions C′ ∪O ∪N where N are name conditions and O are persistent
output conditions, as before, but now with additional persistent conditions C′ ⊂
Contc consisting of closed input and output process terms (all indexed process
terms are omitted),

• rule instances which are all the output and input events in Events that do not
carry indices.

Let r be a function from SPL-conditions to rule-conditions which removes the indices
tagging control conditions and leaves output and name conditions unchanged. For
example:

r(i : j : out new M . p) = out new M . p .

Extend r to SPL events: let r replace all the control conditions of an SPL-event by
their images under r – intuitively, an event e is replaced by a rule instance r(e):

r(ce,oe,ne, ec, eo, en) = (r(ce),oe,ne, r(ec), eo, en) .

The following properties clearly hold for the function r:

Proposition 8.3.1

1. Given two sets of conditions A,B ⊆ C, r(A ∪B) = r(A) ∪ r(B).
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2. Given an event e ∈ Events, r(ce) =c r(e) and r(ec) = r(e)c.

2

The net of rule instances R(p) of a closed process term p is the net with rule
conditions and events rEv(p). For a closed process term p let p∗ be the process term
obtained by inserting a replication before every input and output process sub-term in
p. For example

(in M . out new x N) = ! in M . ! out new x N .

Proposition 8.3.2 If p is a closed process term then R(p∗) = R(p).

Proof. Inductively on the structure of p. 2

8.3.2 Relating SPL-net semantics and rule instances

The replication in front of each input and output process sub-term ensures that at
each stage of a run of a process p∗ each control condition is marked infinitely many
times though carrying each time a different index – in this sense control conditions
become persistent. The following lemma explains this more formally:

Lemma 8.3.3 Let Mi be a marking in a run in Net(p∗). For every finite subset C
of the control conditions marked in Mi

r(Mi \ C) = r(Mi) .

Proof. The control conditions marked in M0 are

Ic(p∗) =
⋃
i∈ω

i : B

where B is a set of control conditions. Therefore r(Ic(p∗)) = r(B). Since C is
a finite subset of Ic(p∗) there exists j ∈ ω such that j : B ∩ C = ∅ and clearly
r(Ic(p∗) \ C) = r(B).

Consider
· · ·Mi

ei+1−→ Mi+1 .

It follows from the token game that if B are the control conditions of Mi then the
ones of Mi+1 are

(B \cei+1) ∪
⋃
i∈ω

i : B′

where B′ is a set of control conditions. From the induction hypothesis it follows that

r(B \cei+1) = r(B \ (cei+1 ∪ C)) = r(B)

and clearly
r(

⋃
i∈ω

i : B′) = r(
⋃
i∈ω

i : B′ \ C) = r(B′) .

Therefore r(Mi+1 \ C) = r(Mi+1). 2

Now having restricted to a process with sufficient replication we can establish a
close relation between the behaviours of Net(p∗) and R(p∗).
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Theorem 8.3.4 Let p be a close process term.

• A proper run
M0

e1−→ · · · en−→ Mn

in Net(p∗) yields a run

rM0
r(e1)−→ · · · r(en)−→ rMn

in R(p∗).

• To a run in R(p∗)

M′
0

e′1−→ · · · e′n−→ M′
n

with M′
0 = rM0 proper, there is a run

M0
e1−→ · · · en−→ Mn

in Net(p∗), with r(ei) = e′i and rMi = M′
i for all 0 < i ≤ n.

Proof.

• By induction on the length of a run in Net(p∗). Suppose a finite run

M0
e1−→ · · · en−→ Mn

ei+1−→ (Mn \cen+1) ∪ e.n+1

in Net(p∗) and suppose a corresponding run

rM0
r(e1)−→ · · · r(en)−→ rMn

in R(p∗). Clearly r(cen+1) ⊆ rMn and given that r(cen+1) =c (r(en+1)) the
event r(en+1) is enabled yielding

rM0
r(e1)−→ · · · r(en)−→ rMn

r(en+1)−→ rMn ∪ r(en+1).

in R(p∗) (there is no contact at control conditions since in R(p∗) control condi-
tions are persistent). From Lemma 8.3.3 and Proposition 8.3.1 it follows that

r((Mn \cen+1) ∪ e.n+1) = rMn ∪ r(en+1). .

• By induction on the length of a run in R(p∗). Assume a finite run

M′
0

e′1−→ · · · e′n−→ M′
n

e′n+1−→ M′
n ∪ e′.n+1

in R(p∗) with M′
0 = rM0 and assume a corresponding run

M0
e1−→ · · · en−→ Mn

in Net(p∗) with M′
i = rMi and e′i = r(ei) for all 0 < i ≤ n. Let {c′} =c e′n+1.

The control condition c′ is in rM′
n therefore there exists a control condition c

such that r(c) = c′ and c ∈ Mn. Therefore there exists an event e ∈ Ev(p∗)
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such that c =c e (From the token game and Proposition 4.3.5, c ∈c p∗. Apply
Proposition 4.3.6). From Proposition 4.3.3 it follows that all the events in
Events with c as control precondition belong to Ev(p∗). In particular there is
an event en+1 ∈ Ev(p∗) such that r(en+1) = e′n+1. The event en+1 is clearly
enabled at the marking Mn yielding

M0
e1−→ · · · en−→ Mn

en+1−→ (Mn \cen+1) ∪ e.n+1

in R(p∗) (by Proposition 4.4.3 there is no contact at control conditions). As
before it is easy to check that rMn+1 = M′

n+1.

2

8.4 Other models from SPL

Because strand spaces can easily be turned into event structures, Sections 8.2 and
8.1 yield an event structure for each “!-par” process. But, without any restrictions,
we can relate the net semantics to traditional independence models such as event
structures and Mazurkiewicz trace languages. The crux of the construction is that of
eliminating the persistent conditions from the Net(p), of a closed process term p, in
an initial marking of control conditions Ic(p) to produce a basic net. In Chapter 3
we have described how to unfold a net with persistent conditions to one of the basic
kind. Here we specialise that construction and the correctness result to Net(p) – we
first unfold to a coloured net and then to a basic net. It is well-known how to unfold
a basic net to a Mazurkiewicz trace language and event structure [97].

Recall that
.b = {e | b ∈ e.} ∪ {∗}

and that
b. = {e | b ∈ .e} .

Write In for the set of input events in Net(p) and Out for the set of output events
in Net(p).

8.4.1 Coloured nets from SPL

Let p be a closed process term. Recall

Net(p) = (C ∪O ∪N,O, Ev(p), pre, post)

where pre and post are pre- and postcondition maps for the SPL net as defined in
Chapter 3. Its persistent conditions are O and its start in an initial marking with
control conditions Ic(p). The net Net(p) unfolds to the coloured net:

(C ∪O ∪N, Ev(p),∆, pre, post) .

The colouring function ∆ associates colours to events and conditions. One can attach
simpler colours to events than the colours attached to events in the more general
construction. The only events with persistent preconditions are input events, which
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carry exactly one persistent condition, therefore the colouring function ∆ on events
is simplified to the following:

∆(e) =
{ {e′ | e′o = oe} ∪ {∗} if e ∈ In
{δ} if e ∈ Out .

Recall that δ is the default colour. Conditions are coloured as following:

∆(b) =
{

.b× b. if b ∈ O
{δ} otherwise .

The pre and postcondition maps in the coloured net are as follows:

pre(e, c) = ((ce ∪ne)× {δ}) ∪ (oe× {(c, e)})
post(e, c) = ((ec ∪ en)× {δ}) ∪ (eo × {(e, e′) | eo =o e′}) .

where (e, c) are pairs of events e and colours c ∈ ∆(e). The pre and postcondition
maps specialises those of the general construction in Chapter 3 where the postcondi-
tion map is slightly simpler: postconditions do not include the coloured preconditions
of an event. Events never occur more than once in a run of Net(p) and therefore
coloured conditions obtained from the unfolding of persistent conditions need to hold
only once for each event that requires them as preconditions.

As an example of the construction of a coloured net from a closed SPL process,
consider the process:

out M ‖ out M ‖ in ψ

and its net with persistent conditions (where we draw only the relevant conditions)
in an initial marking:

ZZZ
���

%
%

%

Z
Z

Z
\
\
\

aaaaaaa

• •

•
M

· · ·

1 : outM 2 : outM

3 : inψ

e1 e2

e3

In the net above

e1 = 1 : Out(outM)
e2 = 2 : Out(outM)
e3 = 3 : In(in ψ;M) .

The net unfolds to the following coloured net:

146



8.4. Other models from SPL

ZZZ
���

%
%

%

Z
Z

Z
\
\
\

aaaaaaa

• •

•

· · ·

1 : outM 2 : outM

3 : inψ

e1 e2

e3

M

{∗, e1, e2}

{(∗, e3), (e1, e3), (e2, e3)}

where the set of colours of events and conditions is indicated when it is not the default
colour δ.

8.4.2 Basic nets from SPL

The coloured net that we just obtained from Net(p) unfolds in the usual way yielding
the basic net

N (p) = (B,E, pre, post)

with conditions
B =

⋃
b∈B

{b} ×∆(b)

and events

E = Out× {δ} ∪ {(e, ∗) | e ∈ In} ∪ {(e, e′) | e ∈ In & e′ ∈ Out & e′o =o e} .

Pre- and postcondition maps are as before. Assume that this net starts in an ini-
tial marking whose control conditions are Ic(p), the same to those of the net with
persistent conditions Net(p).

When we apply this unfolding to the example above we obtain the basic net:

%
%

%
\
\
\

aaaaaaa
TTT

BBB

!!!!!!!

������������

• •
1 : outM 2 : outM

e1 e2

(M, (e2, e3))(M, (e1, e3)) •

· · ·

3 : inψ(M, (∗, e3))

(e3, e2) (e3, ∗)(e3, e1)

Define the map σ : E → Out∪In that leaves events in Out unchanged and project
pairs (e, ∗), (e, e′) to the component e.

Corollary 8.4.1

1. If e1 · · · ek is the event sequence of a run in Net(p) from the initial marking
Ic(p) ∪ s ∪ t, where s ⊆ N and t ⊆ O, then the net N (p) has a run with event
sequence e′1 · · · e′k where e1 · · · ek = σ(e′1) · · ·σ(e′k).
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2. If N (p) has a run with event sequence e′1 · · · e′k then there is a run of Net(p)
with the event sequence σ(e′1) · · ·σ(e′k).

Proof. From Proposition 4.4.4 events never occur more than once in a run of Net(p)
therefore Theorem 3.5.1 applies. 2

8.4.3 Mazurkiewicz trace languages from SPL

A Mazurkiewicz trace language (see [50, 97]) is a language in which the alphabet has
a relation of independence.

Definition 8.4.2 A Mazurkiewicz trace language consists of

(M,L, I)

where L is a set, I ⊆ L×L is a symmetric, irreflexive relation called the independence
relation, and M is a nonempty subset of strings L∗ such that

(i) prefix closed: ∀u ∈ L∗ . ∀a ∈ L if ua ∈M then u ∈M ,

(ii) I closed: ∀u, v ∈ L∗ . ∀a, b ∈ L if uabv ∈M and aIb then ubav ∈M ,

(iii) coherent: ∀u ∈ L∗ . ∀a, b ∈ L if ua ∈M and ub ∈M and aIb then uab ∈M .

2

It is well known that the sequences of events of runs of a basic net form a
Mazurkiewicz trace language (see [97]). In particular this is the case for the basic
net N (p) obtained from the net with persistent conditions Net(p) of a closed process
term p. More precisely define

T (p) = (R,E, I)

where

• R is the set of event sequences of proper and finite runs in N (p),

• E is the set of events of N (p), and

• I ⊆ E × E is such that eIe′ iff .e. ∩ .e′. = ∅.
Corollary 8.4.3 Let p be a closed process term then T (p) is a Mazurkiewicz trace
language.

Proof. Instance of the result in [97]. 2

We have seen previously how to obtain a basic net from a net with persistent
conditions of an SPL process. Corollary 8.4.1 and Corollary 8.4.3 yield:

Corollary 8.4.4 Given a closed process term p there exists a Mazurkiewicz trace
language (M,L, I) such that

1. If e1 · · · ek is the sequence of the events of a run in Net(p) then there is a string
of events e′1 · · · e′k ∈M such that e1 · · · ek = σ(e′1) · · ·σ(e′k).
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2. If e′1 · · · e′k ∈M then there is a run of Net(p) with event sequence σ(e′1) · · ·σ(e′k).

2

Let (M,L, I) be a Mazurkiewicz trace language. Define the relation w among
strings of the language to be the smallest equivalence relation such that

uabv w ubav if aIb

for uabv, ubav ∈ M . An equivalence class {u}w for u ∈ M is called a trace. For
u, v ∈M define

u . v iff ∃w . uw w v

It turns out that (see [97]) the quotient . / w is a partial order on traces.

8.4.4 Event structures from SPL

The partial order of a trace language that we defined previously is associated to a
partial order of casual dependency among events in an event structure. In the this
section we use this fact to obtain an event structure from any closed SPL process
term. The event structure that one obtains is a prime event structure, the kind of
event structure that we introduced earlier in Section 8.1.1.

Firstly we define a notion of events of a Mazurkiewicz trace language T (p) for a
closed process term p. Let R be the strings of T (p). Following [97], events are taken
to be the equivalence classes with respect to ∼, the smallest equivalence relation on
nonempty strings such that for ue, ue′e, ve ∈ R

1. ue ∼ ue′e if .e′. ∩ .e. = ∅ and

2. ue ∼ ve if u w v.

Write
ev(u) = {{v}∼ | v nonempty prefix of u}

and define the following event structure:

tle(T (p)) = (E ,≤,#)

where

• E = {{u}∼ | u ∈ R}
• e ≤ e′ iff ∀u ∈ R . e′ ∈ ev(u) ⇒ e ∈ ev(u)
• e#e′ iff ∀u ∈ R . e ∈ ev(u) ⇒ e′ 6∈ ev(u)
The representation theorem for trace languages into event structures shown in [97]

can be specialised to one for trace languages of a closed process term of SPL.

Corollary 8.4.5 Let p be a closed process term and T (p) trace language associated
with it with strings R. There is an order isomorphism

φ : (R|w,. /w) ∼= (Ffintle(T (p)),⊆)

where φ({u}w) = ev(u).
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Proof. Special case of the result presented in [97]. 2

Corollary 8.4.1 and Corollary 8.4.5 clearly yield:

Corollary 8.4.6 For a closed process term p the prime event structure tle(T (p)) is
such that

1. If e1 · · · ek is the sequence of events of a run in Net(p) then there is a run in the
basic net N (p) with event sequence e′1 · · · e′k such that e1 · · · ek = σ(e′1) · · ·σ(e′k).
The set ev(e′1 · · · e′k) is a configuration of tle(T (p)).

2. For every finite configuration x of tle(T (p)) there exists a run in the basic net
N (p) with event sequence e′1 · · · , e′k such that ev(e′1 · · · e′k) = x. The sequence
σ(e′1) · · ·σ(e′k) is the event sequence of a run in Net(p).

2
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Conclusion

Communication security is becoming central today, at a time when computation be-
comes more and more a collaboration between distributed entities. Not all systems
have the same security goals. A number of methodologies have been developed to
achieve different degrees of security and many new and better techniques are to come.
In deciding which security measures to adopt one needs assurance that the “bought”
technology indeed does achieve the desired security goals. Equally important is a
precise description of scenarios where things can go wrong and attacks can succeed.
Informal arguments too often give wrong assurances and therefore are not enough.
Formal methods attempt to make security guarantees precise. Formal results, how-
ever have sometimes been misunderstood; it can happen that a protocol studied in
one formal model appears to be secure while an attack can be easily found in a differ-
ent model. Little research has been done so far to compare different formal methods
for security and more needs to be done in making formal reasoning for security easier
and more accessible. One reason for a certain reluctance toward the formal-methods
approach to security is the gap that often exists between a formal model and the
actual implementations of security mechanisms. It is not always clear whether or not
a formal property transfers to a particular implementation.

This thesis contributes to the formal methods approach for security protocols.
The thesis can be divided into two parts. The first chapters introduce a new language
and semantics for security protocols. The Petri-net semantics of the language SPL
captures properties that aid formal reasoning about the security of a protocol. A
number of examples underpin this argument. The Petri-net model of security proto-
cols is shown to be closely related to a more traditional transition semantics which
can easily be implemented.

We have implemented SPL as a prototype language for security protocols. Ideally,
if our implementation is correct, the properties that hold for the Petri-net model of a
protocol are properties of the “running” protocol. We did not report about our proto-
type implementation in this thesis but point to some published papers instead [13, 21].

The second part of the thesis shows how our approach relates to a number of
other methods for security-protocol verification. Connections are established also to
more traditional, general purpose models for concurrency. These relations give new
insights that suggest how to improve special purpose methods for security protocols,
for example by turning them into compositional models. We hope that this part of
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our research can contribute to adapting more established verification techniques such
as those used for verifying properties of Petri-nets to the analysis of security protocols
– the hope is to make reasoning simpler and protocol checkers more automatic.

The following are some directions for future work:

Language extensions. The SPL language is very simple and contains only few
constructs. Despite its minimality, it suffices to describe numerous security protocols
that are important building blocks of industrial-strength protocols. To be able to pro-
gram an entire, more complex, protocol some extensions to the language are helpful.
Message expressions could be extended so that one can describe other cryptographic
functions such as hash functions. A couple of basic message operations like message
addition should also be possible. Recursive process definitions would be useful to
model recursively defined protocols (see for example [60] or group key-exchange pro-
tocols [9]). We used input patterns to perform positive tests on the network contents
and negative tests on names are handled by not allowing contact on name conditions.
Special non-persistent message conditions could be introduced to have negative tests
on messages. We expect the language extensions that we mentioned to be easy and
not to substantially affect the net semantics of SPL.

More on security properties. Other properties of protocols can be studied using
SPL and its event-based semantics. We started to investigate anonymity properties
which can conveniently be described on the sequences of events describing protocol
runs. We are currently investigating methods and principles that help in proving
anonymity properties.

Proof methods based on equivalence relations. We have introduced a con-
gruence relation on strand spaces – two strand spaces are equivalent if they have
substantially the same open bundles. It would be interesting to try to make use of
the relation to show security properties along the lines of what has initially been done
in proving properties of protocols modelled as Spi-calculus processes [5]. The congru-
ence relation on strand spaces appears however to be too fine grained. To turn it into
a more useful relation one might have to introduce a “hiding” to hide those actions
of protocols which should be internalised when analysing their security.

Logics. We hope our work helps towards a more high-level analysis of security
protocols. To this end, we see the net semantics of SPL as giving a potentially useful,
concrete model theory for logics for security protocols. The net runs are histories on
which to interpret security properties, perhaps expressed in the style of BAN logic.
On another tack, Petri nets form models of linear logic [29], close it seems to the
linear logic for security protocols based on multiset rewriting [15].

More on unifying research. A role of the language SPL, is that it can support,
and so help relate, different semantics useful in the analysis of security protocols - we
have seen several examples. Many more security protocol methods exists and there-
fore close relations between SPL and other methods might exist. For instance, the
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“authentication by typing” approach of Gordon and Jeffrey [34] annotates the syntax
of the Spi calculus process to mark events of a protocol in correspondence assertion.
This seems close to what is done in our and other event-based approaches. Future
goals are to relate to a probabilistic semantics, moving away from the perfect cryp-
tography assumption, and to study what equivalences and compositional reasoning
fit with the rather intensional event-based methods dealt with here.
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