
B
R

IC
S

D
S

-03-3
J.S

rba:
D

ecidability
and

C
om

plexity
Issues

for
Infinite-S

tate
P

rocesses

BRICS
Basic Research in Computer Science

Decidability and Complexity Issues
for Infinite-State Processes

Jiř ı́ Srba

BRICS Dissertation Series DS-03-3

ISSN 1396-7002 2003

Copyright c© 2003, Jǐr ı́ Srba.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-
cations. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory DS/03/3/

Decidability and Complexity Issues
for Infinite-State Processes

Jǐŕı Srba

PhD Dissertation

BRICS
Department of Computer Science

University of Aarhus
Denmark

Decidability and Complexity Issues for
Infinite-State Processes

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfilment of the Requirements for the

PhD Degree

by
Jǐŕı Srba

January 31, 2003

Abstract

This thesis studies decidability and complexity border-lines for algorithmic ver-
ification of infinite-state systems. Verification techniques for finite-state pro-
cesses are a successful approach for the validation of reactive programs operat-
ing over finite domains. When infinite data domains are introduced, most of
the verification problems become in general undecidable. By imposing certain
restrictions on the considered models (while still including infinite-state spaces),
it is possible to provide algorithmic decision procedures for a variety of prop-
erties. Hence the models of infinite-state systems can be classified according to
which verification problems are decidable, and in the positive case according to
complexity considerations.

This thesis aims to contribute to the problems mentioned above by studying
decidability and complexity questions of equivalence checking problems, i.e.,
the problems whether two infinite-state processes are equivalent with regard
to some suitable notion of behavioural equivalence. In particular, our interest
is focused on strong and weak bisimilarity checking within classical models of
infinite-state processes.

Throughout the thesis, processes are modelled by the formalism of process
rewrite systems which provides a uniform classification of all the considered
classes of infinite-state processes.

We begin our exposition of infinite-state systems by having a closer look at
the very basic model of labelled transition systems. We demonstrate a simple
geometrical encoding of the labelled systems into unlabelled ones by transform-
ing labels into linear paths of different lengths. The encoding preserves the
answers to the strong bisimilarity checking and is shown to be effective e.g. for
the classes of pushdown processes and Petri nets. This gives several decidability
and complexity corollaries about unlabelled variants of the models.

We continue by developing a general decidability theorem for commutative
process algebras like deadlock-sensitive BPP (basic parallel processes), lossy
BPP, interrupt BPP and timed-arc BPP nets. The introduced technique relies
on the tableau-based proof of decidability of strong bisimilarity for BPP and
we extend it in several ways to provide a wider applicability range of the tech-
nique. This, in particular, implies that all the mentioned classes of commutative
process algebras allow for algorithmic checking of strong bisimilarity.

Another topic studied in the thesis deals with finding tight complexity esti-
mates for strong and weak bisimilarity checking. A novel technique called ex-
istential quantification is explicitly described and used to show that the strong
bisimilarity and regularity problems for basic process algebra and basic parallel

v

processes are PSPACE-hard. In case of weak bisimilarity checking of basic par-
allel processes the problems are shown to be again PSPACE-hard — this time,
however, also for the normed subclass.

Finally we consider the problems of weak bisimilarity checking for the classes
of pushdown processes and PA-processes. Negative answers to the problems
are given — both problems are proven to be undecidable. The proof techniques
moreover solve some other open problems. For example the undecidability
proof for pushdown processes implies also undecidability of strong bisimilarity
for prefix-recognizable graphs.

The thesis is concluded with an overview of the state-of-the-art for strong
and weak bisimilarity problems within the classes from the hierarchy of process
rewrite systems.

vi

Acknowledgements

First of all I would like to thank my advisor Mogens Nielsen for his help and
encouragement throughout my studies. I very appreciated to work under his
supervision and I owe so much to him.

Many thanks go also to my former advisors Ivana Černá and Mojmı́r Kře-
t́ınský for their support and for introducing me into the study of infinite-state
systems.

I would like to thank Marco Carbone, Bartek Klin, Pawel Sobocinski and
Frank Valencia for reading some parts of the thesis.

I thankfully acknowledge the support from Danish National Research Foun-
dation for funding my PhD education at BRICS.

I am very grateful to my parents Jaroslava Srbová and Jǐŕı Srba for their
constant support and encouragement.

Last but not least, I thank to Vanda Jaš́ıková for her love and for accom-
panying me during my studies in Denmark.

Jiř́ı Srba,
Århus, January 31, 2003.

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Verification of Infinite-State Processes 2

1.1.1 Labelled Transition Systems 3
1.1.2 Justification of the Study 5

1.2 Semantics of Processes . 6
1.2.1 Linear vs. Branching Time 6
1.2.2 Interleaving vs. Partial Order 16
1.2.3 Degree of Abstraction from Unobservable Actions 19
1.2.4 Approaches to Infinite Executions 21

1.3 Processes with Infinitely Many States 22
1.3.1 Graph Grammars . 23
1.3.2 Process Algebras . 24

1.4 Control-Flow Analysis . 31
1.5 Studied Problems . 35

1.5.1 Deciding Equivalences . 35
1.5.2 Deciding Equivalences with a Finite-State Process 36
1.5.3 Deciding Regularity . 36

1.6 Key Results and Techniques . 36
1.6.1 Bisimilarity Between Infinite-State Processes 36
1.6.2 Bisimilarity Between Infinite and Finite-State Processes . 38
1.6.3 Regularity Problems . 38
1.6.4 Main Results of the Thesis 38

1.7 Thesis Organization . 38
1.8 Author’s Contribution . 40
1.9 Bibliographical Remarks . 42

2 Basic Definitions 43
2.1 Transition Systems and Processes 43
2.2 Strong and Weak Bisimilarity . 44
2.3 Process Rewrite Systems . 47
2.4 Studied Problems . 50
2.5 Classes from PRS-Hierarchy . 51

ix

2.5.1 Finite-State Processes . 51
2.5.2 Basic Process Algebra . 52
2.5.3 Basic Parallel Processes 54
2.5.4 Pushdown Processes . 55
2.5.5 PA–Processes . 58
2.5.6 Petri Nets . 59
2.5.7 PAD, PAN and PRS Processes 61

2.6 Bibliographical Remarks . 61

3 Unlabelled Transition Systems 63
3.1 Motivation . 63
3.2 From Labelled to Unlabelled Transition Systems 64
3.3 Applications . 67

3.3.1 Petri Nets . 68
3.3.2 Pushdown Processes . 70

3.4 Concluding Remarks . 72
3.5 Bibliographical Remarks . 73

4 Extending Tableau Technique for BPP 75
4.1 Motivation . 75
4.2 Preliminary Definitions . 76
4.3 The Method . 78
4.4 Applications . 81

4.4.1 BPP and Deadlock-Sensitive BPP 81
4.4.2 Lossy BPP . 83
4.4.3 Interrupt BPP . 85
4.4.4 Timed-Arc BPP . 88

4.5 Concluding Remarks . 91
4.6 Bibliographical Remarks . 92

5 Lower Bounds for Weak Bisimilarity 93
5.1 Motivation . 93
5.2 Weak Bisimilarity of Normed BPP 94
5.3 Weak Regularity of Normed BPA and BPP 98
5.4 Concluding Remarks . 101
5.5 Bibliographical Remarks . 101

6 Lower Bounds for Strong Bisimilarity 103
6.1 Motivation . 103
6.2 Existential Quantification Technique 104
6.3 Hardness of Strong Bisimilarity 106

6.3.1 Basic Parallel Processes 107
6.3.2 Basic Process Algebra . 111

6.4 Hardness of Strong Regularity . 117
6.4.1 Basic Parallel Processes 117
6.4.2 Basic Process Algebra . 119
6.4.3 Normed Processes . 121

x

6.5 Concluding Remarks . 122
6.6 Bibliographical Remarks . 123

7 Undecidability of Weak Bisimilarity 125
7.1 Motivation . 125
7.2 Pushdown Processes . 126
7.3 PA-Processes . 136
7.4 Concluding Remarks . 144
7.5 Bibliographical Remarks . 145

8 Conclusion: State-of-the-Art 147
8.1 Motivation . 147
8.2 Studied Problems . 148
8.3 Summary of Known Results . 148

8.3.1 BPA (Basic Process Algebra) 149
8.3.2 BPP (Basic Parallel Processes) 149
8.3.3 PDA (Pushdown Processes) 150
8.3.4 PA (Process Algebra) . 151
8.3.5 PN (Petri Nets) . 151
8.3.6 PAD . 152
8.3.7 PAN . 153
8.3.8 PRS (Process Rewrite Systems) 153

8.4 Bibliographical Remarks . 153

Bibliography 155

xi

Chapter 1

Introduction

The rapid development of computer technologies has resulted in an increasing
number of embedded applications used in present systems. These applications
run concurrently, communicate with each other and continuously interact with
the environment. They are often called reactive systems. Typical examples of
these complex systems are safety-critical, mission-critical and business-critical
applications in a variety of sectors like aerospace, defence, transportation, nu-
clear technology, communication and medicine.

Design invariants of such systems must hold under all circumstances. The
usual verification approaches like simulation and testing do not provide a sat-
isfactory level of reliability since the involved systems are large and all possible
situations cannot be simulated nor exhaustively tested. On the other hand, any
violation of the critical invariants is costly.

From the mechanical point of view the thread of hardware failures is of-
ten minimized by introducing redundancy : single component functionality is
provided by multiple interchangeable devices in order to cope with possible
breakdowns. Redundancy can be also used for detecting and recovering from
corruption of data. A typical example is the cyclic redundancy check which
adds additional information to every manipulated block of data in order to
detect errors and corruption during storage or transmission.

The reliability of software systems can be also increased by introducing re-
dundancy. As an example three independent teams may be asked to develop
a software with the same functionality. The software is then run separately on
independent computers and if different answers for a situation that occurred
are provided by the systems, some kind of majority voting is applied. How-
ever, introduction of such a redundancy can be very pricy and does not always
guarantee increased reliability. Citing [118]: “Software failures are latent de-
sign errors, and hence are very different from hardware failures. Strategies for
mitigating hardware failures, such as duplicative redundancy, are unlikely to
work for software.”.

Another approach to validate reactive systems is by the use of formal meth-
ods. These are mathematics–based techniques for the specification, develop-
ment and verification of software and hardware systems. Nowadays, the need
of formal verification techniques is widely accepted. Citing again [118]: “Math-
ematical verification technology has had a profound effect on commercial digital

1

2 Chapter 1. Introduction

hardware engineering, where finding errors prior to initial fabrication runs in or-
ders of magnitude more cost-effective than discovering these errors afterwards.
This technology includes equivalence checkers for combinatorial aspects of dig-
ital circuits and model checkers for sequential and concurrent aspects of digital
hardware systems.”.

As mentioned in the citation, two main techniques for system verification are
equivalence checking and model checking. In the equivalence checking approach
the intended specification of the system is compared to its actual implementa-
tion and equivalence between them is verified. In the model checking approach
the crucial system properties are formally described (usually by a formula of a
suitable modal or temporal logic) and the implementation (or also the specifica-
tion) is checked against the properties. The general aim is to provide automatic
ways for such system verifications.

This thesis studies the equivalence checking problems for several models of
concurrent and sequential processes, in particular for systems with unbound-
edly many reachable states. The field which is in our focus is also known as
verification of infinite-state processes. Recent overviews of the field are provided
in [34] and [110].

One of the first algebraic theories for communicating processes appeared
due to Milner in [133] where he introduced his “Calculus of Communicating
Systems” (CCS) and provided mathematical foundations for giving semantics
to concurrent processes by means of observational equivalence which was later
refined by Park [146] into bisimulation equivalence.

Bisimulation equivalence (or simply bisimilarity) will also be the main focus
of this thesis. In particular, we shall study decidability and complexity issues
of bisimilarity checking within several classes of infinite-state systems. The
following section provides more details.

1.1 Verification of Infinite-State Processes

Verification of finite-state systems has been an important area with success-
ful applications to e.g. communication protocols, hardware structures, mobile
phones, hi-fi equipment and many others. Powerful verification techniques were
introduced for finite-state systems [47, 48, 199, 102, 144], data structures like
BDDs (binary decision diagrams) [30, 32, 132] providing efficient representa-
tion of large state spaces were developed, and novel approaches like partial
order reduction [192, 147, 62] were invented to deal with the “state explosion”
problem.

Recently infinite-state systems have drawn much attention. There are sev-
eral classes of infinite-state processes for which equivalence and model checking
problems were studied and in some cases they were shown to be decidable.

The introduction of infiniteness is natural and well motivated. There are
many examples of systems that generate infinite-state spaces and these systems
can be classified according to the source of infiniteness.

• Infinite data domains. The considered systems operate over unbounded
data structures like counters, integer variables, lists, trees, stacks and

1.1. Verification of Infinite-State Processes 3

queues.

• Unbounded control structures. The source of infiniteness comes from
a complex control-flow management. This includes control-flow mecha-
nisms like recursive calls of procedures, dynamic process creation and
mobility.

• Real-time features. Systems which take into account real-time pa-
rameters naturally contain computations over infinite (even uncountable)
state spaces. Typical examples are telecommunication protocols, embed-
ded systems and real-time controllers.

• Parametrized reasoning. Even though the considered systems may
be instantiated to finite ones, they can contain a number of parameters
which range over infinite domains (typically integers). These parametric
bounds give rise to infiniteness during process verification. Networks with
an arbitrary number of identical processes and broadcast protocols serve
as characteristic examples.

Out of a wide range of models with infinitely many reachable states let us
mention e.g. Petri nets and vector addition systems, several classes of process
algebras, timed automata, hybrid automata, counter machines and channel
systems.

For such systems that operate over infinite sets new methods must be
proposed since the model/equivalence checking problems become significantly
harder or even undecidable. Nevertheless, a number of algorithmic methods
have been developed for process algebras generating infinite-state systems [137,
37, 34, 110], timed process algebras [204], Petri nets [87], lossy vector addition
systems [27], counter machines [91, 2] and real-time systems [5, 7, 8, 114].

1.1.1 Labelled Transition Systems

Perhaps the most abstract process behaviour can be described as follows: a pro-
cess p performs an action and becomes a process p′. Processes are considered
as agents that can execute actions in order to communicate with their environ-
ment. These actions can be observed by an external observer and determine
the visible behaviour of the process.

This simple idea is formally captured by the notion of labelled transition sys-
tems [151, 137]. Transition systems with labels are perhaps the most common
model within concurrency theory. Processes are understood as nodes of certain
edge-labelled oriented graphs (labelled transition systems) and a change of a
process state caused by performing an action is understood as moving along an
edge labelled by the action name.

Formally, a labelled transition system consists of a set of states (processes),
a set of labels (actions), and a ternary transition relation −→ describing a
change of a process state: if a process p can perform an action a and become a
process p′, we write p a−→ p′.

4 Chapter 1. Introduction

Example 1.1. Let us start with the classical example of a tea/coffee vending
machine. The very simplified behaviour of the process which determines the
interaction of the machine with a costumer can be described as follows. From
the initial state representing the situation “waiting for a request”, (let us call
the state p), two possible actions are enabled. Either the tea button or the
coffee button is pressed (the corresponding action ‘tea’ or ‘coffee’ is executed)
and the state of the control process of the machine changes accordingly to p1

or p2. Formally, this can be described by the transitions

p
tea−→ p1 and p

coffee−→ p2.

Now the customer is asked to insert the corresponding amount of money, let us
say one euro for a cup of tea and two euros for a cup of coffee. This is reflected
in the control state of the vending machine with corresponding changes. It can
be modelled by the transitions

p1
1C=−→ p3 and p2

2C=−→ p3.

Finally, the drink is collected and the machine returns to its initial state p,
ready to accept another customer. This corresponds to the transition

p3
collect−→ p.

We shall often use a graphical representation of labelled transition systems.
The following picture represents the tea/coffee machine described above.

p

•
tea

~~}}
}}

}}
}}

}}
}}

}

coffee

 A
AA

AA
AA

AA
AA

AA

•

1C=

 A
AA

AA
AA

AA
AA

AA
•

2C=

~~}}
}}

}}
}}

}}
}}

}

•

collect

OO

From now on, the notion of a process will be equivalent to a rooted la-
belled transition system: the labelled transition system describes the process
behaviour and the root (a selected node of the transition system) represents the
initial state of the process.
Remark 1.1. Our definition of a process enables also situations like in the fol-
lowing picture.

p

a

��
p1

b

TT

p2

czzdoo

1.1. Verification of Infinite-State Processes 5

This means that the state p2 where the action c can be performed in a loop is
irrelevant for the behaviour of the process p since p2 can never be reached from
p. This may, however, be a desirable situation as explained later. Nevertheless,
processes like p motivate the definition of a set of reachable states. We say that
a state p′ is reachable from p iff there exists an oriented path from p to p′. The
set of all such states is called the set of reachable states. In our example this
set contains exactly two states: p and p1.

So far we were able to describe only finite-state processes. The following
sections of this chapter will show how rooted transition systems with infinitely
many reachable states can be defined.

1.1.2 Justification of the Study

In this subsection we shall summarize the main reasons why we consider the
study of infinite-state systems interesting.

• The study is focused on conceptual problems in concurrency theory. It
isolates a few basic entities and abstracts from secondary features. This
enables to formulate the considered problems in a simple and clear way
while preserving the interesting features like concurrency and communica-
tion. It also provides a deeper understanding of many aspects of parallel
and concurrent computing.

• Techniques and algorithms developed for verification of infinite-state sys-
tems appear to be succesfully applicable to other fields of computer sci-
ence. An example of the range of applicability can be given from the
classical theory of formal languages. The long standing open problem of
language equivalence between deterministic pushdown automata was pos-
itively answered by Sénizergues [162, 164]. However, the complete proof
exposes over 70 pages and is very intricate. Using the techniques devel-
oped in concurrency theory, Stirling [186] significantly simplified the proof
and recently provided even a primitive recursive decision algorithm [188].
Another example where verification techniques for infinite-state systems
find natural application is e.g. control-flow analysis (see [61]).

• Many of the algorithms discovered in the theoretical study provide a good
starting point for a construction of automatic verification tools. A signifi-
cant number of equivalence and model checking tools already exist. They
combine different approaches and have different aims. Some of them are
commercial while other are built for academic purposes only. An online
overview of current verification tools is available e.g. at

http://www.fi.muni.cz/yahoda.

• Last but not least, the studied problems appear to be easily mathemati-
caly described and theoreticaly interesting. The theory provides neat and
short definitions of problems, while the solutions to the problems usually
require novel and involved proof techniques. This is another reason why

6 Chapter 1. Introduction

the study of infinite-state systems is an attractive area for theoretical
research.

1.2 Semantics of Processes

As indicated before, we shall identify the notion of a process with rooted la-
belled transition systems. One of the first questions to be answered is which
transition systems should be considered equivalent. The usual language, trace
or even isomorphism equivalences do not always seem to be the most accurate,
especially when dealing with reactive systems. We need more discriminating
notions of equivalences in order to capture properly the behaviour of systems
that do not exhibit pure input/output or batch executions but require commu-
nication with the environment. In this section we recall some ideas of extending
the usual semantic approaches to include features like reactive behaviours.

As suggested by van Glabbeek in [194], most semantic notions of behavioural
equivalences can be classified along four different lines.

• Linear vs. branching time. The question is to what extend we should
identify processes that differ in the branching structure of their possible
executions?

• Interleaving vs. partial order. The question is to what extend we
should identify processes that differ in the causal dependences between
their executable actions?

• Degree of abstraction from unobservable actions. The question is
to what extend we should identify processes that differ in their behaviours
under unobservable (silent, internal) actions?

• Approaches to infinite executions. The question is to what extend
we should identify processes that differ in their infinite behaviours?

In what follows we shall discuss these fundamental classification lines and
emphasise which of the approaches are in the focus of this thesis.

1.2.1 Linear vs. Branching Time

In this subsection we describe the linear/branching time hierarchy (spectrum)
by van Glabbeek [193, 194]. It contains the most studied behavioural equiva-
lences and illustrates the increasing discriminating power of equivalence notions
when more and more branching aspects are taken into consideration. The clas-
sical linear/branching time hierarchy is presented in Figure 1.1.

Remark 1.2. All the equivalences in this hierarchy (except for bisimulation
equivalence) are usually defined as the symmetric closures of the corresponding
preorders. Hence a similar hierarchy of behavioural preorders also exists.

Remark 1.3. In the rest of this section we will assume that the set of actions
is finite and implicitly given. This is a usual assumption and most of the
process algebras studied in the area of automatic verification obey the finiteness

1.2. Semantics of Processes 7

bisimulation
equivalence

��
2-nested simulation

equivalence

��

����
��

��
��

��
��

��
��

��
��

��
�

ready simulation
equivalence

�� **UUUUUUUUUUUUUUUUUU

possible-futures
equivalence

��@
@@

@@
@@

ready trace
equivalence

����
��

��
�

��@
@@

@@
@@

simulation
equivalence

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
�

readiness
equivalence

��@
@@

@@
@@

failure trace
equivalence

����
��

��
�

failure
equivalence

��
completed trace

equivalence

��
trace

equivalence

Figure 1.1: Linear/branching time hierarchy of behavioural equivalences

restriction on the number of actions. We also say that an action a is enabled in
a process p iff p can perform the action a and become a process p′. Otherwise,
we say that a is disabled.

The coarsest (least discriminating) equivalence in the linear/branching time
hierarchy is trace equivalence, as defined by Hoare [78]. A (partial) trace of a
process (or equivalently of a state in a labelled transition system) is simply
any finite sequence of actions that can be performed from the process. Two
processes are trace equivalent iff the sets of their traces are equal.

A variant of the trace equivalence is called completed trace equivalence, or
also language equivalence. Here we consider also completed traces, i.e., traces
that are maximal in the sense that they cannot be extended to longer ones.
Two processes are completed trace equivalent iff they are trace equivalent and

8 Chapter 1. Introduction

moreover they have the same set of completed traces.
Completed trace equivalence is more discriminating than trace equivalence

as it is demonstrated by the following example.

Example 1.2. Let us consider the following two processes p and q.

p q

•
a

����
��

��
��

•
a

����
��

��
��

a

��7
77

77
77

7

•
a

��

•
a

��

•

• •
Obviously, the set of traces of p is {ε, a, aa} where ε in the empty sequence.
Since q has the same set of traces, p and q are trace equivalent. On the other
hand p and q are not completed trace equivalent because the set of completed
traces of p is {aa} while the set of completed traces of q is {a, aa}.

Failure equivalence as introduced by Brookes, Hoare and Roscoe [29] further
extends the notion of completed trace equivalence with the extra possibility of
checking that after performing a trace sequence, a certain set of actions is dis-
abled. Other equivalences following this idea were also introduced. E.g. testing
equivalence has been investigated by Nicola and Hennessy [53] and it coincides
with failure equivalence on finitely branching labelled transition systems, simi-
larly as do the equivalences of Kennaway [103] and Darondeau [51] — this was
showed in [52]. Failure equivalence is finer than completed trace equivalence as
it is demonstrated by the following example.

Example 1.3. Let us consider two processes p and q.

p q

•
a

����
��

��
��

a

��7
77

77
77

7 •
a

��•
b

��

•
b

����
��

��
��

c

��7
77

77
77

7 •
b

����
��

��
��

c

��7
77

77
77

7

• • • • •
Processes p and q are completed trace equivalent since they are trace equivalent
and have {ab, ac} as the set of completed traces. They are, however, not failure
equivalent. In the process p there is a trace a (taking the left branch) such
that after this trace the action c is disabled. On the other hand, whenever the
action a is performed in the process q, the action c is always enabled.

Olderog and Hoare [143] suggested readiness equivalence: two processes are
ready equivalent iff they have the same set of pairs consisting of a trace and

1.2. Semantics of Processes 9

a set of actions enabled after performing the trace. It is an easy observation
that any two ready equivalent processes are also failure equivalent. Moreover
(as demonstrated in the following example), readiness equivalence strengthens
failure equivalence.

Example 1.4. Let us consider two processes p and q.

p q

•
a

����
��

��
��

a

��7
77

77
77

7 •
a

��

a

����
��

��
��

a

��7
77

77
77

7

•
b

��

•
c

��

•
b

��

•
b

����
��

��
��

c

��7
77

77
77

7 •
c

��• • • •
It is a routine exercise to list the sets of all possible traces from p and q together
with the sets of actions that are disabled after performing the traces, and check
that these two sets are equal. (The mentioned equal sets consist of (ε, S) for any
S ⊆ {b, c}, (a, {a, b}), (a, {a, c}), (a, {a}), (a, {b}), (a, {c}), (a, ∅), and (ab, S),
(ac, S) for any S ⊆ {a, b, c}.) Hence p and q are failure equivalent. On the other
hand, the process q contains a trace a (the middle branch), after which the set
of actions {b, c} is enabled. There is no such a trace in p, after which both b
and c are enabled. This means that p and q are not ready equivalent.

The notion of failure trace equivalence (for finitely branching processes it
is the same as refusal equivalence of Phillips [150]) is slightly more difficult to
explain. The considered traces now include (except for the ordinary actions)
also sets of actions such that a process p can perform a set of action X and
become again the process p iff the set of actions enabled in p is disjoint with X.
Two processes are failure trace equivalent iff they have the same set of extended
traces.

Example 1.5. Let us consider the following two processes p and q.

p q

•
a

����
��

��
��

a

��7
77

77
77

7 •
a

����
��

��
��

a

��7
77

77
77

7

•
b

����
��

��
��

c

��

•
c

��

f

��7
77

77
77

7 •
b

����
��

��
��

c

��

•
c

��

f

��7
77

77
77

7

• •
d

��

•
e

��

• • •
e

��

•
d

��

•

• • • •
Processes p and q are failure equivalent. On the other hand, they are not failure
trace equivalent. The process p contains an extended trace a{f}cd whereas q

10 Chapter 1. Introduction

does not: if the left branch is taken in q then no action d is possible in the
future, and if the right branch is taken in q then after performing a the action
f is not disabled.

Remark 1.4. It is also easy to see that readiness equivalence and failure trace
equivalence are incomparable. Processes p and q from Example 1.5 are ready
equivalent but not failure trace equivalent. Similarly, p and q from Example 1.4
are failure trace equivalent but not ready equivalent.

Ready trace equivalence naturally completes the space above readiness and
failure trace equivalences. It was independently introduced by Pnueli [152]
(called barbed equivalence), Baeten, Bergstra and Klop [11] and Pomello [153]
(called exhibited behaviour equivalence). Again, traces can contain a mixture
of ordinary actions and sets of actions. This time a process p performs a set of
actions X and becomes again the process p iff X contains exactly the actions
enabled in p.

Remark 1.5. Justification of the position of ready trace equivalence above readi-
ness equivalence and failure trace equivalence is provided in [194]. Moreover
processes from Example 1.5 serve for demonstrating that ready trace equiva-
lence is more discriminating than readiness equivalence, and similarly Exam-
ple 1.4 shows the same for ready trace equivalence and failure trace equivalence.

Simulation equivalence is based on the classical notion of simulation (see
e.g. Park [146]) and it is independent of all the equivalences described so far
except for trace equivalence. We say that a process p simulates a process q iff
whenever the process q can perform an action a and become a process q′, the
process p can perform the same action a and become a process p′ such that p′

simulates q′. Two processes p and q are simulation equivalent iff p simulates q,
and q simulates p.

Example 1.6. Let us consider the following two processes p and q.

p q

•
a

����
��

��
��

a

��7
77

77
77

7 •
a

��•
b

��

•
b

��

•
b

����
��

��
��

b

��7
77

77
77

7

•
c

��

•
d

��

•
c

��

•
d

��• • • •
It is easy to see that p and q are ready trace equivalent. They are, however, not
simulation equivalent since p cannot simulate q. The process q can perform the
action a and become q′. Process p has to simulate this step by taking either
the left or right branch in p and becoming p′. Assume that the left branch was
taken (the other situation is symmetric). Now q′ can perform the sequence bd

1.2. Semantics of Processes 11

by taking the right branch and p′ is obviously not able to simulate this sequence.
Hence p and q are not simulation equivalent.

In order to complete the picture, note that processes p and q from Exam-
ple 1.2 are simulation equivalent while they are not completed trace equiva-
lent.

Ready simulation equivalence (proposed by Bloom, Istrail and Meyer [23])
is a finer equivalence than both ready trace equivalence and simulation equiva-
lence. We say that a process p ready simulates q iff the sets of actions enabled
in p and q are the same and whenever the process q can perform an action a and
become a process q′, the process p can perform the same action a and become
a process p′ such that p′ ready simulates q′. Two processes p and q are ready
simulation equivalent iff p ready simulates q, and q ready simulates p.

Remark 1.6. To see that ready simulation is a finer equivalence than ready trace
equivalence, consider Example 1.6: while p and q are ready trace equivalent,
they are not ready simulation equivalent. Similarly, p and q from Example 1.2
are simulation equivalent but not ready simulation equivalent.

For the completeness of the picture we define also the following two equiva-
lences but we do not discuss their positions in Figure 1.1. The interested reader
can find more details in [194].

Possible-futures equivalence was introduced by Rounds and Brookes [158].
Two processes are possible-futures equivalent iff they have the same sets of
pairs consisting of a trace sequence and the entire trace set after performing
the sequence.

Finally, the last equivalence below bisimulation is 2-nested simulation equiv-
alence, defined by Groote and Vaandrager [65]. 2-nested simulation is a simu-
lation contained in a simulation equivalence, i.e., all the pairs in the definition
of simulation must also be simulation equivalent. Symmetric closure of this
preorder gives 2-nested simulation equivalence.

Last but not least, we will discuss bisimulation equivalence. It is perhaps
the equivalence that has attracted most attention in concurrency theory, and it
is also the main interest of this thesis. Two processes p and q are bisimulation
equivalent (or simply bisimilar) iff whenever p can perform an action a and
become a process p′, the process q can perform the same action a and become a
process q′ such that p′ and q′ are bisimilar; and symmetrically whenever q can
perform an action a and become a process q′, the process p can perform the
same action a and become a process p′ such that p′ and q′ are bisimilar.

As originally introduced by Park [146] and Milner [133], bisimilarity ap-
peared to play a prominent role due to many pleasant properties it possesses.
We shall mention some of them in detail since decidability and complexity issues
of bisimilarity checking is the main focus of this thesis.

Game Characterization
Bisimulation equivalence has an elegant characterisation in terms of bisimula-
tion games [190, 183]. A bisimulation game on a pair of processes p and q is
a two-player game between an ‘attacker’ and a ‘defender’. The game is played

12 Chapter 1. Introduction

in rounds. In each round the players change the current processes p and q
according to the following rule.

• The attacker chooses either p or q and performs an action a from the
selected process.

• The defender has to perform the same action a from the other process.

The players reached a new pair of processes p′ and q′ and the game continues
with another round from the current processes p′ and q′.

A play is a maximal sequence of pairs of states formed by the players ac-
cording to the rule described above, and starting from the initial processes p
and q. The defender is the winner in every infinite play. A finite play is lost by
the player who is stuck. Note that the attacker gets stuck in current processes
p′ and q′ if and only if no actions are enabled from these two processes.

The following standard fact highlights the connection between the winning
strategies in bisimulation games and bisimulation equivalence: processes p and
q are bisimilar iff the defender has a winning strategy (and nonbisimilar iff the
attacker has a winning strategy).

The game-theoretic characterization of bisimilarity introduced above is sim-
ple, yet powerful. It provides an intuitive understanding of this notion and will
be frequently applied throughout the rest of the thesis.

Example 1.7. In this example we shall demonstrate that simulation equiva-
lence is not the same as bisimulation equivalence. Let us consider the following
processes p and q.

p q

•
a

��

•
a

����
��

��
��

a

��7
77

77
77

7

a

��•
b

����
��

��
��

c

��7
77

77
77

7 •
b

��

•
b

����
��

��
��

c

��7
77

77
77

7 •
c

��• • • •
It is easy to see that p and q are simulation equivalent. We will define a winning
strategy for the attacker in order to show that p and q are not bisimilar. In
the first round the attacker chooses the action a in the process q by taking the
left-most transition. The defender has only one possible answer from p thus
reaching a process p′. In the second round the attacker switches the processes
and plays from p′ under the action c. The defender does not have the action c
enabled in the other process and hence he loses.

Logical Characterization
There exists a nice correspondence between bisimilarity and a well known modal
logic of Hennessy and Milner [68]. This logic is essentially a propositional logic
without propositional variables and with two constants ‘true’ and ‘false’. For
each action a it moreover contains the modal operator ‘[a]’. Given a process p

1.2. Semantics of Processes 13

and formula φ, we can ask the question whether φ is valid in p (p |= φ), which
can be read also as “p satisfies φ”. The interpretation of ‘true’, ‘false’, and of
the logical connectives is as expected. The formula [a]φ is valid in p if and only
if for all p′ reachable from p under the action a, it is the case that φ is valid in
p′.

Example 1.8. Let p be the following process.

p

•
b

}}||
||

||
||

|

a

��

a

!!B
BB

BB
BB

BB

a
..

• •

b

NN •
b

��•
Let φ be a formula saying that after performing the action a, the action b
becomes enabled. This can be expressed as follows.

φ ≡ [a]¬[b]false

Obviously p satisfies φ. In the usual presentation of this logic, the modal
operator ‘〈a〉’ (the meaning of 〈a〉ψ is that there must be a transition labelled by
a into a process satisfying ψ) is often used. The formula 〈a〉ψ is an abbreviation
for ¬[a]¬ψ. Hence in our case, we can write the formula φ also as [a]〈b〉true.

An important observation of Hennessy and Milner [68] is that two (finitely
branching) processes are bisimilar if and only if they satisfy the same formulae
of the logic introduced above. This result was later extended to a stronger logic
called modal µ-calculus (see [105] and [155]) which is based on Hennessy-Milner
logic and adds the extra power of recursive definitions.

These results show that it is possible to link two different approaches to
formal verification: equivalence checking and model checking.

Example 1.9. Let us consider the processes p and q from Example 1.7. Since p
and q are not bisimilar, there should be a formula distinguishing them. Indeed,
e.g. the formula

φ ≡ 〈a〉[c]false
is valid in q but not in p.

Remark 1.7. For completeness let us mention that it is possible to give logical
characterizations also to other equivalences from the linear/branching time hi-
erarchy [109]. These characterizations are achieved by defining a corresponding
sublogic of Hennessy-Milner logic for a given behavioural equivalence. This pro-
vides a modal characterization of the equivalence in the previously introduced
sense: two processes are equivalent if and only if they satisfy the same formulae
of the sublogic.

14 Chapter 1. Introduction

Computational Feasibility
Another remarkable property of bisimilarity is its computational feasibility. Let
us give a few examples of this. The interested reader is referred e.g. to the
overview note of Moller and Smolka [138].

• The first example is from the well studied class of finite-state processes,
i.e., rooted transition systems with finitely many states. The problem
is to decide whether a pair of finite-state processes is equivalent w.r.t.
some notion of behavioural equivalence. This problem for all equivalences
(save bisimilarity) from the linear/branching time spectrum is PSPACE-
complete (see [102]). On the other hand, bisimilarity has the rare status
of being decidable in polynomial time [102, 144].

• Another example uses (infinite) labelled transition systems generated by
ε-free context-free grammars applying left-most derivations only — this
class is often called Basic Process Algebra (BPA). It is a well known fact
from the formal language theory that completed trace (language) equiv-
alence is undecidable for this class (see e.g. [80]). Moreover, Huynh and
Tian proved [85] that readiness and failure equivalences are also unde-
cidable. These undecidability results were later extended by Groote and
Hüttel [64] to all equivalences in the linear/branching time hierarchy save
bisimilarity. Surprisingly, (strong) bisimulation equivalence is decidable
for BPA [46]. If the grammar has no redundant nonterminals, bisimilar-
ity is decidable even in polynomial time [74], while the other equivalences
remain undecidable [80, 85, 64].

• A similar story as in the previous point is true also for the commutative
version of context-free processes. This class is usually referred to as Ba-
sic Parallel Processes (BPP). Again, (strong) bisimilarity is decidable for
BPP [43]. In the restricted case without redundant nonterminals even in
polynomial time [75]. However, none of the equivalences below bisimilar-
ity are decidable [82].

• The last example we provide deals with the class of transition systems
generated by pushdown automata. From the language point of view there
is no difference between pushdown automata and context-free grammars,
since both formalisms describe the class of context-free languages. On
the other hand the situation is different when considering bisimilarity
as the equivalence relation: pushdown automata describe a larger class
than context-free grammars (see [34]). Nevertheless, Stirling proved de-
cidability of (strong) bisimilarity for normed (from every reachable state
it is possible to empty the stack) pushdown automata [184] and the same
question for the whole class was positively answered by Sénizergues [163].

Categorical Definition of Bisimilarity
The essence of bisimilarity, quoting Hennessy and Milner [68], “is that the be-
haviour of a program is determined by how it communicates with an observer.”

1.2. Semantics of Processes 15

Therefore, the notion of bisimilarity for different models is defined in terms
of their behaviours and observable behaviours.

For example for rooted labelled transition systems it seems natural to iden-
tify their behaviours with (possibly infinite) synchronization trees [133] into
which they unfold, and to take sequences of actions as observations.

Example 1.10. Let us consider the following two processes p and q (we show
only a finite fraction of the process q, however, the infinite behaviour of q is
regular according to the obvious pattern).

p q

•

a

##

b

{{

•
a

xxqqqqqqqqqqq
b

&&MMMMMMMMMMM

•
c
��

•
c
��•

c

OO

•
a

����
��

�� b

��<
<<

<<
< •

a

����
��

�� b

��<
<<

<<
<

•
c
��

•
c
��

•
c
��

•
c
��• • • •

The process q is the unfolding of p, which means that q naturally represents the
essence of behaviour of the process p. Moreover, q is a tree and the intuition is
that whenever the process p makes a choice between the actions a and b, the
futures of such computations are never the same, i.e., the computations in q
never enter the same state. Also note that the unfolding of a finite process can
contain infinitely many reachable states, as demonstrated by our example.

The abstract definition of bisimilarity for arbitrary categories of models
due to Joyal, Nielsen and Winskel [99] formalizes this idea. Given a category of
models where objects are behaviours and morphisms indicate how one behaviour
extends the other one, and given a subcategory of observable behaviours, the
abstract definition yields a notion of bisimilarity for all behaviours with respect
to observable behaviours.

For example, for rooted labelled transition systems, taking synchronization
trees as their behaviours, and sequences of actions as the observable behaviours,
we recover the standard notion of bisimilarity introduced above.

Another abstract definition of bisimilarity is that based on coalgebras. Tran-
sition systems of various kinds can be viewed as coalgebras for appropriate end-
ofunctors. This approach gives rise to a definition of bisimulation as a span of
coalgebras [191, 160].

One more example demonstrating how causality of actions can affect un-
derstanding of process equivalences uses labelled asynchronous transition sys-
tems [18, 166] which unfold into event structures as their behaviours. Assuming
that instead of sequences (linear orders) of actions we can observe partial or-
ders of action occurrences, the categorical approach from [99] yields the abstract

16 Chapter 1. Introduction

definition of hereditary history preserving bisimilarity (hhp-bisimilarity), inde-
pendently introduced and studied by Bednarczyk [19]. The next subsection will
give more details about this partial order semantics.

1.2.2 Interleaving vs. Partial Order

In this subsection we will compare different approaches dealing with concurrent
executions of actions (events). Let us assume that we want to model a process P
which can perform concurrently (independently) actions a and b, and terminate
afterwards.

In the interleaving approach, concurrency is modelled using non-determinism.
This means that the process P can be modelled by the following process p (we
also show the corresponding unfolding q of the process p).

p q

•
a

����
��

��
�

b

��8
88

88
88

•
a

����
��

��
�

b

��8
88

88
88

•
b

��8
88

88
88

•
a

����
��

��
�

•
b

����
��

��
�

•
a

��8
88

88
88

• • •
Hence the process p can perform either the action a followed by the action

b or vice versa. In the interleaving approach there is no apparent way to distin-
guish between a concurrent execution of the two actions and a nondeterministic
choice between them (as shown in the process p). This is supported also by the
fact that in the unfolding q of the process p, we do not reach the same state
after performing the sequences ab and ba, i.e., q is a tree.

In the partial order approach, we specify the distinction between concur-
rency and nondeterminism explicitly. Mazurkiewicz’s traces were suggested as
a suitable semantics for this purpose [130, 131]. Modelling of concurrency is
achieved by introducing an independence alphabet with an explicit indepen-
dence relation.

Example 1.11. In this example we shall explain the main idea of independence
alphabet. Assume that the set of actions is equal to {a, b, c} such that the
actions a and b are mutually independent, but dependent with the action c.

This can be formally defined by introducing an irreflexive and symmetric
independence relation I over the set of actions. In our example we have

I
def= {(a, b), (b, a)}.

The intuition is that whenever during a process execution the actions a and b
appear after one another, the observer of such a system should not be able to
determine in which order they were performed. Hence e.g. the execution of a
sequence caabc should appear the same as e.g. cabac.

This can be formalized by saying that two action sequences are one-step
related whenever one sequence can be obtained from the other by swapping

1.2. Semantics of Processes 17

two neighbouring independent actions. By taking a reflexive and transitive
closure of this one-step relation we get an equivalence relation which identifies
exactly those action sequences that cannot be distinguished.

In our example caabc and cabac are one-step related because in caabc we
have two neighbouring independent actions at positions 3 and 4, and by swap-
ping them we get the sequence cabac. Since also cabac is one-step related to
cbaac, we can conclude that caabc is (in two steps) equivalent to cbaac. In
fact the equivalence class represented by caabc contains exactly the following
sequences of actions: caabc, cabac and cbaac.

Another possible notation is to describe such an equivalence class as a la-
belled partially ordered set (trace). The labelled partial order corresponding to
the sequence caabc is the following one.

c

yy
yy

yy

22
22

22
22

22

a

a

EE
EE

EE b

yy
yy

yy

c

By taking all linearisations of this partial order we obtain exactly the equiva-
lence class of the sequences represented by caabc, i.e., {caabc, cabac, cbaac}.

Many models were suggested to fulfill these ideas, e.g. elementary net sys-
tems, event structures, trace languages and asynchronous transition systems.
For surveys see [203, 142]. We will focus on the model of labelled asynchronous
transition systems since it is a natural generalisation of labelled transition sys-
tems mentioned in the previous sections of this thesis.

Asynchronous transition systems were introduced by Bednarczyk [18] and by
Shields [166]. The idea is that labelled transition systems are extended with an
irreflexive and symmetric independence relation over the actions. Whenever two
actions a and b are independent and can be performed in a sequence (i.e. from a
state s after performing the sequence ab a state t is reached), the asynchronous
transition system must satisfy that from s it is possible to perform also the
sequence ba and reach the same state t.

When modelling the process P that can perform independently the actions a
and b, we get the following asynchronous transition system (to indicate explicitly
the independence between a and b we connect them by an arc).

s

a

����
��

��
��

b

��9
99

99
99

9

•

b
��9

99
99

99
•

a
����

��
��

�

t

18 Chapter 1. Introduction

In order to define a suitable notion of unfolding of the process s above, we
still require that the unfolding is an acyclic labelled transition system but we
do not insist that it has to be a tree. In particular, whenever two independent
actions can be performed in a sequence, the requirement on the asynchronous
transition system mentioned above is reflected also in the unfolding. Hence e.g.
in our picture the unfolding of the asynchronous process s is isomorphic to the
process s itself. On the other hand, nondeterministic choice between dependent
actions does not obey the “diamond” property and unfolds in the usual way into
a tree. This also means that any labelled transition system can be considered
as an asynchronous transition system with the empty independence relation.

Remark 1.8. Let us mention an interesting observation which illustrates how
interleaving and partial order approaches intuitively explain the different un-
derstanding of concurrency. First, we consider the process p from the beginning
of this subsection and its behaviour (unfolding) q. As mentioned before, after
the actions a and b were performed, different states in q are reachable depending
on the order in which these actions were performed. It can be checked by going
back into the history and verifying the last action that was executed (either b
or a). This action is always unique. On the other hand, when considering the
process s (defined above) which unfolds into itself, after the actions a and b
were performed the current situation of the system is represented by the state
t. However, looking back into the history we cannot say whether a or b was per-
formed as the last action since the situation is symmetric for these two actions.
This reflects the intuition that whenever two actions are truly concurrent, one
cannot determine the order in which they were executed.

When defining a notion of behavioural equivalence for asynchronous tran-
sition systems, the independence relation should be taken into account. Such
equivalences are usually defined on the corresponding unfoldings of given asyn-
chronous processes. Considering e.g. bisimilarity, we can extend the rules of
bisimulation games on unfoldings to allow backward moves of the attacker and
the defender. Hence during a bisimulation game the complete history of the
game is remembered and it is possible to backtrack into the history. In case
where the independence relation is empty, the history is uniquely determined
since the unfolding is a tree. If it is not the case, there might be different choices
for going one step back into the history.

Assume again the process s from the previous picture. After performing
the sequence ab the state t is reached. If the attacker now decides to make the
backward move, he has two choices: either to the state reachable from s after
performing the action a (the left branch), or to the state reachable from s after
performing the action b (the right branch).

This gives rise to the notion of hereditary history preserving bisimilarity
(hhp-bisimilarity) that was introduced by Bednarczyk [19] and discovered in-
dependently by Joyal, Nielsen and Winskel [99] using a categorical approach to
bisimilarity.

Remark 1.9. Another equivalence called history preserving bisimilarity was in-
troduced by many authors, among others by Rabinovich and Trakhtenbrot [156],
and van Glabbeek and Goltz [196]. This equivalence is similar to hhp-bisimilarity

1.2. Semantics of Processes 19

but allows only a limited access into the history.

The negative news is that these versions of bisimilarity based on partial
orders are usually intractable for automatic verification. For finite-state asyn-
chronous processes, history preserving bisimilarity remains decidable (proved
by Vogler [200] for a related model of 1-safe Petri nets) but it becomes an
EXPTIME-complete problem (a result by Jategaonkar and Meyer [98]). Even
more, hhp-bisimilarity was shown to be undecidable for labelled finite-state
asynchronous processes and 1-safe Petri nets by Jurdzinski and Nielsen [100].
Recently we extended the result to demonstrate that the problem is undecidable
also for unlabelled asynchronous transition systems [101].

In this thesis we shall adopt the interleaving paradigm: we will assume
that an external observer of a system cannot detect causality between visible
actions of the system (see e.g. [135]). This is a standard approach when studying
complexity and decidability issues for infinite-state systems. The main reason
for this is perhaps the computational hardness (or even undecidability) of partial
order semantics already for finite-state processes.

1.2.3 Degree of Abstraction from Unobservable Actions

During the process of modelling a concurrent system one usually considers two
kinds of actions that the system can perform: visible (observable) actions, and
internal (unobservable) actions. Observable actions often symbolize commu-
nication with the environment, that is, they are supposed to be visible for an
independent observer of such a system. On the other hand, unobservable actions
serve for internal purposes of the process only (such as e.g. synchronization),
and are commonly denoted by τ . The internal action τ is not expected to be
detectable by an external observer.

Several semantic approaches can differ in the way they treat the unobserv-
able action τ . When discussing the role of τ for behavioural equivalences, we
will focus on the notion of bisimilarity because it is the equivalence studied
throughout this thesis.

One extreme when dealing with internal actions is to regard the action
τ as a visible one. In case of bisimilarity this gives rise to so called strong
bisimilarity [146, 133].

Another possibility is to disregard the τ actions and agree that only the
visible actions are observable. Citing Milner [135]: “... we merely require
that each τ action is matched by zero or more τ actions ...”. The notion of
bisimilarity achieved this way is called weak bisimilarity.

In order to define weak bisimilarity one usually introduces so called weak
transition relation. The idea is that a process p performs under the weak tran-
sition relation an action a and becomes a process q whenever it is possible to
perform from p zero or more τ actions and then the action a, followed again by
zero or more τ actions. We also allow that p under the weak transition relation
performs the τ action and becomes p again.

Weak bisimilarity is then a bisimilarity (as defined in Subsection 1.2.1)
where instead of the ordinary transitions we use weak transition relations.

20 Chapter 1. Introduction

Example 1.12. Let us consider three processes p, q and r.

p q r

•
τ

��

•
a

����
��

��
�

b

��:
::

::
::

•
τ

����
��

��
�

b

��:
::

::
::

•
a

����
��

��
�

b

��:
::

::
::

• • •
a

��

•

• • •
When τ is regarded as an ordinary (visible) action then p and q are not bisimilar
(strongly bisimilar). On the other hand it can be easily seen that p and q are
weakly bisimilar.

An interesting observation is that q and r are not even weakly bisimilar.
The process r can use the action τ and the process q can only stay in the same
state. Now it is possible to play along the action b in the process q but there is
no such move in the other process.

In [197] van Glabbeek and Weijland introduced a finer notion of behavioural
equivalence than weak bisimilarity called branching bisimilarity. Their ap-
proach builds on the ideas of weak bisimilarity but it moreover distinguishes
between processes that change their branching properties after the performance
of individual τ actions. This in particular means that if a τ action is performed
in one of the processes then the other process not only has to match this move
by a sequence of τ actions but also all the intermediate states reached during
this sequence have to be bisimilar to the first process.

Example 1.13. Let us consider the following processes p and q.

p q

•
τ

����
��

��
��

�

τ

��

a

��7
77

77
77

77
•
τ

��

a

��7
77

77
77

77

• •
τ

��

b

��7
77

77
77

77
• •

τ

��

b

��7
77

77
77

77
•

• • • •
It can be easily seen that p and q are weakly bisimilar. The reason for this is
that a move under the action τ which uses the left-most branch in the process p
can be simulated by a sequence of two τ actions in the process q. However, since
the state which is reachable after the first τ action performed in the process q
is not bisimilar to p, the processes p and q are not branching bisimilar.

For completeness let us mention that at least two other behavioural equiv-
alences called eta bisimilarity [14] and delay bisimilarity [134] were introduced.
They treat the abstraction from unobservable actions in a slightly different way

1.2. Semantics of Processes 21

than branching bisimilarity and are positioned between weak and branching
bisimilarity, mutually incomparable.

Since in this thesis we study only strong and weak bisimilarity, we shall not
provide further details about the other notions of bisimilarity. The interested
reader is referred to [198].

1.2.4 Approaches to Infinite Executions

In this subsection we shall focus on different approaches to infinite computa-
tions. The phenomenon we have in mind is called divergence. A process is
divergent iff it can perform an infinite sequence of unobservable τ actions.

Divergence has been intensively studied, among others e.g. by Hennessy and
Plotkin [69], Milner [134], Abramsky [3], Stirling [182], Walker [202], Aceto and
Hennessy [4], van Glabbeek [195], and Lohrey, Argenio and Hermanns [117].

Let us consider the following processes p and q.

p q

•
a

00 •
a

00
τ

nn

While p and q are weakly bisimilar, it is the case that q is divergent but p
is not. Often the fact that weak bisimulation equivalence is not sensitive to
the existence of infinite internal computations appears to be useful, however,
sometimes it may be appropriate to take this aspect into account.

Let us mention only some of the studied behavioural equivalences dealing
(to different extend) with divergence. Again, we concentrate in particular on
equivalences based on the notion of bisimilarity.

Two processes are stable weakly bisimilar iff they are weakly bisimilar and
moreover any pair of processes reached during the bisimulation game satisfies:
if in one process the action τ is disabled then the other process can perform a
finite sequence of τ actions such that τ becomes also disabled.

Example 1.14. Let us consider the processes p and q above. It is easy to see
that they are not stable weakly bisimilar because in p the τ action is disabled
but τ is enabled in any state reachable from q (the set of all states reachable
from q is equal to {q}).

Similarly two processes are completed weakly bisimilar iff they are weakly
bisimilar and the extra condition that any pair in the bisimulation game has to
satisfy is the following one: if in one process all actions are disabled then the
other process can perform a finite sequence of τ actions such that all actions
(including τ) become also disabled.

Another behavioural equivalence requiring that the two considered processes
are weakly bisimilar and moreover either both of them or none of them diverge
is called divergent stable weak bisimilarity.

Example 1.15. Again, the processes p and q above are not divergent stable
weakly bisimilar while being weakly and even completed weakly bisimilar.

22 Chapter 1. Introduction

divergent stable
weak bisimilarity

��

''OOOOOOOOOOOOO

stable
weak bisimilarity

��
divergent

weak bisimilarity

''OOOOOOOOOOOOO

completed
weak bisimilarity

��
weak bisimilarity

Figure 1.2: Hierarchy of divergence equivalences

The last notion we shall mention here is known as divergent weak bisimilar-
ity. It is similar to divergent stable weak bisimilarity except that instead of the
condition that the processes simultaneously diverge, we require that they si-
multaneously satisfy the following condition: a process that diverges or is stuck
(no actions enabled) is reachable.

Formal definitions of these equivalences can be found e.g. in [117]. We
restrict ourselves to concluding this subsection with presenting a hierarchy of
the introduced divergence equivalences. The hierarchy is shown in Figure 1.2
and examples demonstrating strictness of this hierarchy together with further
comments are available in [195].

1.3 Processes with Infinitely Many States

The main goal of this thesis is to study infinite-state processes, i.e., rooted
labelled transition systems with infinitely many reachable states. Since we aim
at answering algorithmic and complexity questions, we have to agree first on a
model which provides finite descriptions of such infinite-state systems.

There have been many different approaches to this issue and we will explain
some of them in this section. We start by briefly mentioning graph grammars
and then focus in more detail on formalisms based on process algebras, in
particular on process rewrite systems.

Let us introduce the main question

“how to define a process with infinitely many reachable states in a finite way”

by using the following example. Assume a process p which has an infinite
structure as depicted in Figure 1.3. Our task in the following subsections will
be to show different formalisms which enable to define processes like p.

1.3. Processes with Infinitely Many States 23

p

• a //

b
��

• a //

b
��

• a //

b
��

. . .

• a // • a // • a // . . .

Figure 1.3: Process p with infinitely many reachable states

1.3.1 Graph Grammars

One of the approaches uses the fact that the process p from Figure 1.3 has a
regular structure. We can observe that the following building block repeats
with a regular pattern in the process p.

• a //

b
��

•
b
��• a // •

The idea of graph grammars (see [66, 40, 56]) is based on such regular
repetitions in the graph structure. The definition of a graph grammar uses
hypergraphs, i.e., labelled oriented graphs where every edge is either an ordinary
edge or hyperedge. For each hyperedge there is a hypergraph into which the
edge rewrites. Pairs of hyperedges and the corresponding hypergraphs are called
rules and we assume that all hypergraphs in the rules have finitely many nodes.
A graph grammar is a finite collection of rules plus an initial (finite) hypergraph.

An infinite-state labelled transition system can be generated by a graph
grammar as follows. We start from the initial hypergraph and replace all its hy-
peredges with corresponding hypergraphs according to the rules. This is called
a rewriting step. A new hypergraph is obtained and the rewriting process is re-
peated from this hypergraph until a fixed-point is reached. The fixed-point can
be reached either after finitely many rewriting steps (the resulting hypergraph
contains no hyperedges and is finite) or after infinitely many rewriting steps (in
this case the graph grammar generates an infinite-state system).

Example 1.16. We give a graph grammar which generates the labelled tran-
sition system from Figure 1.3. Consider the following rule

•
A
��

• a //

b
��

•
A
��−→

• • a // •
where the dotted lines represent hyperedges. The other edges in the picture
are ordinary ones. This rule says that the hyperedge A is replaced by the
hypergraph on the right-hand side after the arrow. This is the only rule of the
graph grammar and the initial hypergraphs consists of exactly the hyperedge
A.

Starting from the hyperedge A, after two rewriting steps the hypergraph
looks as follows.

24 Chapter 1. Introduction

• a //

b
��

• a //

b
��

•
A
��• a // • a // •

Finally, after reaching the fixed-point we get exactly the graph from Figure 1.3.

1.3.2 Process Algebras

The idea of process algebras is based on defining a set of basic (atomic) processes
modelling very simple behaviours together with composition operators which
enable to define complex behaviours from the atomic processes by composing
them in different ways. This main idea appears in many variations, let us
mention e.g. the classical process algebras CCS [135], ACP [15] and CSP [79].

In this thesis we shall develop an elegant approach by Mayr [126] called
process rewrite systems (PRS). The basis of this model can be found already
in [137], however, Mayr simplified and slightly extended the existing approaches.
The model of process rewrite systems uses only two composition operators —
sequential and parallel — and it provides a uniform framework, general enough
to describe all the classes of infinite-state processes studied in this thesis.

There are several advantages of this model, among others:

• it has an interesting connection with formal language theory

• it is simple and easy to explain even on an informal level

• it establishes a uniform treatment of the composition operators

• it gives an interesting hierarchy of processes, containing e.g. basic process
algebra, basic parallel processes, pushdown processes and Petri nets.

We start by pointing out the connection between formal language theory and
process rewrite systems. Citing [59]: “The ‘grammars as processes’ research
program proposes to look at grammars from a different point of view; not
as language generators, but as generators of behaviours (formally captured as
labelled transition systems).”

Let us now demonstrate these ideas. We begin with basic process be-
haviours. Take a look at production rules of left-linear grammars like

X −→ aY.

When interpreting X and Y as processes, the production rule above can be
read as:

“process X performs the action a and becomes process Y ”.

It corresponds to the following labelled transition system

X Y

• a // •

1.3. Processes with Infinitely Many States 25

and in the syntax of process rewrite systems it is written as

X
a−→ Y.

Similarly the other possible production rules in left-linear grammars have
the form

X −→ a

which has the following meaning in the process theory:

“process X performs the action a and terminates”.

It corresponds to the labelled transition system

X

• a // ε

where ‘ε’ is the symbol for the empty process that cannot perform any transition.
In the syntax of process rewrite systems this rule is written as

X
a−→ ε.

We can now proceed by taking a look at the first operator for composing
atomic process behaviours: sequential composition. The introduction of this
operator is inspired by context-free production rules like

X −→ aY Z.

The interpretation of this rule is

“process X performs the action a and becomes a sequential composition of
processes Y and Z”.

In process rewrite systems this rule is written as

X
a−→ Y.Z

with the intuition that the computation of Y.Z starts by executing the process
Y first, and only when Y terminates, the computation continues by executing
the process Z. This corresponds to a procedure call. The process X calls a
procedure Y and then continues as a process Z.

In order to define such composed behaviours, we do not use the usual infer-
ence rule for context-free grammars

X −→ w

uXv −→ uwv

but rather the prefix-rewriting rule (already formulated in the PRS-syntax)

X
a−→ w

X.v
a−→ w.v

which reflects the intuition that the execution of the second component in se-
quential composition cannot start before the process in the first component
terminates (by convention we consider the process ε.X equivalent to X).

26 Chapter 1. Introduction

Remark 1.10. Even though context-free grammars with the usual inference rule
and with the prefix-rewriting rule are equivalent (they generate the same lan-
guages), this is not the case for process rewrite systems because their behaviours
are usually compared on different principles.

Example 1.17. Let us consider a process rewrite system with two simple
rewrite rules:

X
a−→ X.X and X

b−→ ε.

The first rule says that the process X can perform the action a and become
a sequential composition of two copies of X. The process X can also perform
the action b and terminate. Hence using the prefix-rewriting rule our system
describes the following process X (i.e. labelled transition system rooted with
X).

X X.X X.X.X X.X.X.X

•
b

��

a
++ •

b

kk
a

++ •
b

kk
a

++ •
b

kk
a

++ · · ·
b

kk

ε

Let us demonstrate e.g. the existence of a transition from the process X.X.X
to X.X labelled by b. Because of the second rewrite rule we know that X b−→
ε. Hence using the prefix-rewriting rule we get that also X.X.X

b−→ ε.X.X.
As noted above, the process ε.X.X is equivalent to X.X. This proves that
X.X.X

b−→ X.X.
This example also demonstrates that a finite description of the process X

(provided by two rewrite rules only) gives rise to a labelled transition system
with infinitely many reachable states.

In our analogy between grammars and process rewrite systems we can go
even further by considering non-context-free production rules like

XY −→ aZ.

In the process terminology this rule represents value passing between processes
and it is written as

X.Y
a−→ Z.

The intuition is that X represents a value returned by some previous computa-
tion and the behaviour of the process Y is affected by this value. The following
example shall demonstrates this.

Example 1.18. We describe a very simple implementation of a while-loop
(without evaluating the body of the while command). Assume that a process X
represents this while-loop in the sense that while performing the visible action
a, the process nondeterministically decides whether the boolean condition is
evaluated to true or false. This can be formally written as

1.3. Processes with Infinitely Many States 27

X
a−→ T.X and X

a−→ F.X.

Now the process X can read the value of the computed boolean condition and
react accordingly: if the value is true then it performs a visible action tt and
becomes X again, otherwise it performs the action ff and terminates. This is
described by two rewrite rules:

T.X
tt−→ X and F.X

ff−→ ε.

A transition system representing the process X follows.

X T.X

•
a

��

a
++ •

tt

kk

F.X •
ff

��
ε

We now proceed by introducing the operator of parallel composition written
as ‘||’. Take a look again at context-free production rules like

X −→ aY Z.

This time we will, however, interpret these rules as introduction of parallel
composition. In our terminology these rules are written as

X
a−→ Y ||Z

with the intuition that

“process X performs the action a and becomes a parallel composition of
processes Y and Z”.

In other words the process X forks into Y and Z. Since the processes Y and
Z should be run in parallel without any specific order of execution, we assume
that the parallel operator ‘||’ is commutative, i.e., we consider Y ||Z and Z||Y as
the same process.

Similarly as for prefix-rewriting, we will have the following rule for parallel
rewriting (keep in mind that ‘||’ is commutative).

X
a−→ w

X||v a−→ w||v
If only context-free rules are considered, new process can be created but

they cannot interact. Interaction is achieved by considering non-context-free
production rules like

XY −→ aZ

28 Chapter 1. Introduction

which are in our terminology written as

X||Y a−→ Z.

These kinds of rules are understood as follows:

“processes X and Y synchronize by jointly executing the action a and
becoming the process Z.”

Example 1.19. Assume that we have two processes X and Y such that under
the action a they evaluate (in parallel) either to true or false, i.e.,

X
a−→ T , X

a−→ F , Y
a−→ T , and Y

a−→ F .

Consider now the process X||Y which should evaluate to a conjunction of the
truth values computed by X and Y . This can be written as

T ||T tt−→ T , T ||F ff−→ F , and F ||F ff−→ F .

Recall that because of the commutativity of ‘||’, we do not have to add the rule
F ||T ff−→ F . The labelled transition system of the process X||Y looks as follows.

X||Y

•

a

wwppppppppppppppppppppppppp

a

��

a

��4
44

44
44

44
44

44

a

''NNNNNNNNNNNNNNNNNNNNNNNNN

T ||Y

a

��4
44

44
44

44
44

4

a

''NNNNNNNNNNNNNNNNNNNNNNNN F ||Y

a

��4
44

44
44

44
44

4

a

''NNNNNNNNNNNNNNNNNNNNNNNN X||T

a

wwpppppppppppppppppppppppp

a

��

X||F

a

wwpppppppppppppppppppppppp

a

��

T ||T

tt

��4
44

44
44

44
44

44
T ||F

ff

��4
44

44
44

44
44

44
F ||F

ff

��

T F

Finally, in the most general cases, we allow a mixture of process expressions
containing the sequential and parallel operators on both sides of the rewrite
rules. It allows rules like

X.Y
a−→ (U ||V).Z.

This particular rule can be interpeted as follows: the process Y receives a return
value X and performs the action a; after this a parallel execution of U and V is

1.3. Processes with Infinitely Many States 29

initiated and when both of the parallel components terminate, the computation
continues with executing the process Z.

To finish the introduction of process rewrite systems we give rewrite rules
that generate the infinite-state process p from Figure 1.3 (in fact they generate
a labelled transition system isomorphic p). There are e.g. the following two
possibilities.

• The rules use the sequential operator only and the root of the system is
the process X.

X
a−→ X.X X

b−→ Y Y
a−→ Y.Y

• The rules use the parallel operator only and the root of the system is the
process X||Y .

X
a−→ X||X Y

b−→ ε

Hierarchy of Process Rewrite Systems
As grammars are classified in the Chomsky hierarchy, a similar hierarchy can be
introduced by restricting the left-hand and right-hand sides of rewrite rules. In
its complete form (as it will be formally defined and discussed in Chapter 2), the
hierarchy of process rewrite systems was introduced by Mayr [126]. Figure 1.4
shows this hierarchy where every class from the hierarchy is represented by the
most general available form of rules.

One of the interesting points about the hierarchy is that most of the classes
in Figure 1.4 have a natural machine characterization (context-free grammars,
pushdown automata, Petri nets). These connections will be in detail discussed
in Chapter 2. Let us now only remark that e.g. rules of the type X a−→ Y.Z
define the class of context-free processes (also called BPA for Basic Process
Algebra), rules of the type X

a−→ Y ||Z correspond to BPP processes (BPP
for Basic Parallel Processes), rules like X.Y a−→ Z.U characterize the class of
pushdown processes (PDA), rules of the type X||Y a−→ Z||U are Petri net ’s
rules, and X

a−→ (Y ||Z).U are characteristic rules of PA-processes (PA for
Process Algebra).

Based on the previous work summarized in [137], Mayr showed that the
hierarchy of process rewrite systems is strict with regard to (strong) bisimu-
lation equivalence. This means that e.g. when adding the possibility of value
passing (rules like X.Y a−→ Z.U) to the rules of the form X

a−→ Y.Z, more
transition systems can be described in the sense that the richer class contains
processes that are not bisimilar to any process from the class lower in the hier-
archy. Nevertheless, e.g. the classes mentioned above (with and without value
passing) are still language equivalent.

The study of algorithmic problems within this hierarchy is the main issue
of this thesis. In order to further motivate the reader, we shall describe a neat
relationship between process rewrite systems and control-flow analysis in the
following section. Before doing that, let us briefly mention similar hierarchies
and models studied by the researchers.

30 Chapter 1. Introduction

W.(X||Y) a−→ (Z||U).V

~~
~~

~~
~~

~~
~~

~

@@
@@

@@
@@

@@
@@

@

X.Y
a−→ (Z||U).V

~~
~~

~~
~~

~~
~~

~

@@
@@

@@
@@

@@
@@

@
X||Y a−→ (Z||U).V

~~
~~

~~
~~

~~
~~

~

@@
@@

@@
@@

@@
@@

@

X.Y
a−→ Z.U X

a−→ (Y ||Z).U X||Y a−→ Z||U

X
a−→ Y.Z

@@@@@@@@@@@@@@

~~~~~~~~~~~~~
X

a−→ Y ||Z

@@@@@@@@@@@@@

~~~~~~~~~~~~~

X
a−→ Y

@@@@@@@@@@@@@@

~~~~~~~~~~~~~

Figure 1.4: PRS-hierarchy — characteristic rewrite rules

Other Hierarchies
There have been several approaches to clasify infinite-state processes in a uni-
form way. Caucal provided a hierarchy of sequential processes [40] which defines
classes of infinite-state systems by giving restrictions on rewrite rules in prefix
rewriting.

Caucal’s hierarchy starts with type 3 systems which correspond to the class
of finite-state processes. Every rule in these systems is restricted in the following
way: left-hand sides of the rewrite rules are atomic processes (no composition
operators are involved) and right-hand sides are atomic processes or the empty
process ε.

Type 2 systems (also called basic process algebra) capture context-free gram-
mars in Greibach normal form: every rule is of the form X

a−→ β where X is
an atomic process and β is an arbitrary sequential composition of processes.

Systems of type 11
2 and type 0 represent the same class of processes up

to isomorphism [40] and are known as pushdown graphs. Every rule in type
11

2 takes the classical pushdown form pX
a−→ qβ where p and q are control

states, X is a stack symbol and β is a sequential composition of stack symbols.
Type 0 rules are of the form α

a−→ β where α and β are arbitrary sequential
compositions.

So far, the defined classes used only a finite number of rewrite rules obeying
the described forms. Caucal’s hierarchy defines two additional classes which
allow for infinite number of rules. Type −1 systems consist of a finite number
of rewrite meta-rules of the form R

a−→ β where R is a regular language over



1.4. Control-Flow Analysis 31

sequential compositions of processes and β is an arbitrary sequential composi-
tion. Each rule R a−→ β is interpreted as a potentially infinite family of rules
α

a−→ β such that α ∈ R.
Similarly, type −2 systems (also known as prefix-recognizable graphs) have a

finite number of meta-rules of the form R1
a−→ R2 where R1 and R2 are regular

languages over sequential compositions of processes and each such rule defines
a family of rules α a−→ β such that α ∈ R1 and β ∈ R2.

Another hierarchy of infinite-state processes was presented by Moller in [137].
Except for sequential rewriting he introduces also parallel rewriting and pro-
vides a classification of systems with the parallel operator. This includes classes
like basic parallel processes, Petri nets and PA-processes.

Selection of Other Models
There is a number of other infinite-state models which were not mentioned so
far. For completeness, let us mention some of them here.

We start with the classical process algebras CCS (Calculus of Communicat-
ing Systems) [135], ACP (Algebra of Communicating Processes) [15] and CSP
(Communicating Sequential Processes) [79]. These algebras are based on sim-
ilar principles as process rewrite systems: a few primitive process behaviours
are in a structural way composed into more complex ones via a number of com-
position operators. The difference is that a wider variety of these operators is
introduced (including e.g. restriction, relabelling and forced communication).
On the other hand, these models are in general Turing powerful and hence most
of the interesting properties become undecidable.

Even though the classes from the PRS-hierarchy cover many of the infinite-
state processes, a few other subclasses are of particular interest. Processes gen-
erated by one counter automata and nets (a subclass of pushdown processes)
were studied, providing a substantial simplification of verification algorithms
(also with regard to complexity issues) [91, 95, 108] compared to the more
general class of pushdown processes. Another often studied class is the paral-
lel analogue to pushdown processes called multiset automata (and denoted as
PPDA). This is a proper subclass of Petri nets where strong bisimilarity is still
undecidable [34, 97]. More exotic formalisms include e.g. queue processes [33].

From other models let us mention mainly communication protocols [28, 24],
vector addition systems (essentially equivalent to Petri nets) and in particular
lossy vector addition systems [27, 127], lossy channel systems [1], timed process
algebras [204], real-time and hybrid automata [5, 7, 8, 114, 6], and systems for
concurrent constraint programming [161].

1.4 Control-Flow Analysis

This section demonstrates how the simple principles of process rewrite systems
find a natural application in interprocedural [104] control-flow analysis of pro-
grams.

In general, control-flow analysis aims at deciding run-time properties of
programs at the compilation phase, i.e., without actually executing the pro-



32 Chapter 1. Introduction

grams. Since all the interesting properties are in general undecidable (the con-
sidered model is Turing-powerful), we can never provide complete answers to
the questions of interest. The approach of control-flow analysis overcomes this
disadvantage by abstracting from the specific data and by studying the flow of
control only. Hence instead of strict “yes/no” answer to a given question we
may also get the “yes/maybe/no” style of answer. The soundness of the answer
is still preserved, however, it is not always guaranteed that a full answer is
provided. The theory of abstract interpretation [50, 119] is a formal foundation
for considerations like these.

Typical questions in control-flow analysis are focused on program optimisa-
tions like elimination of partially redundant expressions and partially redundant
assignments, partially dead code elimination or strength reduction [139].

In this section we will show that process rewrite systems provide a neat
semantics to sophisticated control mechanisms like recursive procedures, multi-
threading and synchronization.

Let us start with an example demonstrating how a control-flow graph is
obtained from a simple while-loop.

x:=5;
y:=2;
while x>0 do

x:=x-1;
y:=y*2;

endwhile

start
• 1

x:=5
��• 2

y:=2
��

4 •
x:=x-1

88 • 5

y:=y*2

88 • 3

x<=0
��

x>0
tt

• 6

end

In the picture above the given program is assigned a control-flow graph such
that the assignments are considered as atomic operations and the nodes in the
graph (marked 1 to 6) indicate the interesting control points of the program.
An execution of the control-flow graph is any directed path from the start
point to the end point. The abstraction from the concrete data we made in
particular means that executions of the control-flow graph contain except for
real executions of the program also some superfluous executions (e.g. the path
containing the actions x:=5, y:=2, and x<=0). This is caused by the fact that
any branching of the program according to a boolean condition (like in the
“while” and “if” commands) is modelled by a nondeterministic choice.

Nevertheless, the important observation is that any property holding on all
executions of the control-flow graph will in particular hold on the real execu-
tions.

Let us now show how to model such a control-flow graph by means of process
rewrite systems. The idea is that the atomic commands are considered as
actions and each control point of the graph is assigned a process name (in our



1.4. Control-Flow Analysis 33

example let us say X1, . . . ,X6). Then any edge in the control-flow graph of the
form n

v:=e−→ m where n and m and natural numbers gives rise to the rewrite
rule Xn

v:=e−→ Xm. Moreover, whenever n is the end point, we also have the rule
Xn

end−→ ε. In our particular case we get the following rewrite rules.

X1
x:=5−→ X2 X2

y:=2−→ X3 X3
x>0−→ X4 X4

x:=x-1−→ X5

X5
y:=y*2−→ X3 X3

x<=0−→ X6 X6
end−→ ε

Let us now consider an example of a simple procedure call, where the main
program calls a procedure P and when the execution of the procedure termi-
nates, the control-flow returns to the main program.

x:=1;
call P;
y:=x;

procedure P
x:=x*x;
x:=x+1;

end

start start P
• 1

x:=1
��

• 1

x:=x*x
��• 2

call P
��

• 2

x:=x+1
��• 3

y:=x
��

• 3

end P

• 4

end

Such procedure calls can modelled by sequential compositions. Hence every

edge in the control-flow graphs of the form n
call P−→ m has the corresponding

rewrite rule Xn
call P−→ P1.Xm assuming that the process P1 represents the

starting point in the control-flow graph of the procedure P. This means that
the process P1 has to terminate before the execution of the main program
continues from the control point m.

The complete set of rewrite rules looks as follows.

X1
x:=1−→ X2 X2

call P−→ P1.X3 X3
y:=z−→ X4 X4

end−→ ε

P1
x:=x*x−→ P2 P2

x:=x+1−→ P3 P3
end−→ ε

So far we employed only processes with finitely many reachable states (even
though the sequential operator was used). The situation changes when consid-
ering recursive procedures. This is demonstrated by the following example of a
program computing the factorial function.



34 Chapter 1. Introduction

y:=1;
x:=5;
call F;

procedure F
if x>0 then
y:=y*x;
x:=x-1;
call F;

endif
end

start start F
• 1

y:=1
��

• 1

x>0
��

x<=0

��

• 2

x:=5
��

• 2

y:=y*x
��• 3

call F
��

• 3

x:=x-1
��• 4 • 4

call F
��

end

• 5

end F

The rewrite rules for the factorial program follow.

X1
y:=1−→ X2 X2

x:=5−→ X3 X3
call F−→ F1.X4 X4

end−→ ε

F1
x<=0−→ F5 F1

x>0−→ F2 F2
y:=y*x−→ F3 F3

x:=x-1−→ F4

F4
call F−→ F1.F5 F5

end−→ ε

Note that computations like the following one (actions are omitted)

X1 −→ X2 −→ X3 −→ F1.X4 −→ · · · −→ F4.X4 −→ F1.F5.X4 −→ · · ·

−→ F4.F5.X4 −→ F1.F5.F5.X4 −→ · · · −→ F1.F5.F5.F5.X4 −→ · · ·
prove that there are infinitely many reachable states in the process X1.

Let us continue with a brief sketch of how parallel procedure calls, spawning
of processes and synchronization can be modelled.

An edge in the control-flow graph of the form n
call P||Q−→ m represents the

fact that procedures P and Q are called in parallel. This is reflected by the

rewrite rule Xn
call P||Q−→ (P1||Q1).Xm where P1 and Q1 are the starting points

of procedures P and Q, respectively.
Similarly, the action that a process spawns another one is described in the

control-flow graph by the edge n
spawn P−→ m. The corresponding rewrite rule

is Xn
spawn P−→ P1||Xm where P1 is the starting point of the procedure P.

Finally, synchronization can be modelled by rules of the formX||Y a−→ Z||U .
The interested reader is referred to [59] for further details (including discussions
about local and global communication channels).

To sum up, flat while-programs can be modelled by finite-state processes.
When adding procedures, sequential composition pops up on the right-hand



1.5. Studied Problems 35

side of some rules. Parallel threads move us to the type of rules that contain
both sequential and parallel operators on the right-hand side. Synchronization
between threads requires the use of parallel composition on the left-hand side
of the rules, and when procedures are allowed to return values we need the
sequential composition on the left-hand sides as well.

1.5 Studied Problems

In the previous sections we introduced the notions of infinite-state processes
and behavioural equivalences. This section outlines the algorithmic questions
we may ask about the systems. We shall in particular focus on the equivalence
checking problems.

1.5.1 Deciding Equivalences

The intuition is that the implementation of a concurrent process is modelled as
a potentially infinite-state labelled transition system as well as the specification
(intended behaviour) of the process. The correctness of the implementation is
determined by comparing it to the given specification, hopefully in an auto-
matic way. The comparison is done by testing whether the transition systems
of implementation and specification are equivalent with regard to a suitable
notion of behavioural equivalence. Most often we shall use strong and weak
bisimulation equivalence for this purpose.

The decision problem is then formulated as follows.

“Given finite descriptions of two rooted labelled transition system,
the task is to decide whether they are equivalent
with regard to some behavioural equivalence.”

Remark 1.11. It is a nice feature that both the implementation and specification
can often be described within the same class of labelled transition systems (e.g.
within a class from the PRS-hierarchy). In this case it is sometimes more
convenient to redefine the decision problem of equivalence checking as follows.

“Given a labelled transition system together with a pair of states of the
system, the task is to decide whether the two states are equivalent.”

Since two labelled transition systems can be put side-by-side to form a single
transition system (by taking a disjoint union of the systems), the reformulated
decision problem is equivalent to the one defined above.

In general, the equivalence checking problem may become undecidable either
because the model of infinite-state processes is too powerful or by the selection
of the behavioural equivalence. It can happen that for a given class of infinite-
state processes one equivalence is decidable while another one is not. Hence the
decidability question is usually parametrized by two orthogonal dimensions:

• a class of considered transition systems

• a choice of behavioural equivalence.



36 Chapter 1. Introduction

In this thesis the selection of the class of transition systems ranges over the
classes from the PRS-hierarchy and such transition systems will be tested with
regard to strong and weak bisimulation equivalence.

1.5.2 Deciding Equivalences with a Finite-State Process

There are several examples of systems where a complex implementation of the
systems is supposed to exhibit only a finite-state behaviour. In this case we
get a simplified version of equivalence checking where one of the tested la-
belled transition systems comes from a class of infinite-state processes and the
other one represents a given finite-state process. The decision question is again
whether the two transition systems are equivalent with regard to some be-
havioural equivalence.

Questions of this nature are interesting because they relate behaviours of
infinite-state systems with their finite-state specifications. Moreover, recent de-
velopment showed that many of these problems become computationally feasi-
ble and in some instances they are solvable even in polynomial time. A complete
overview is presented in Chapter 8.

1.5.3 Deciding Regularity

The last question we will ask is whether a given infinite-state process can be de-
scribed by an equivalent finite-state process, i.e., whether there exists a process
with finitely many reachable states which is equivalent to the given infinite-state
process. Whenever a process satisfies this property we call it a regular process
with regard to the considered notion of behavioural equivalence.

The interest in regularity checking is based on the fact that e.g. for bisim-
ilarity checking of finite-state processes we already have efficient polynomial
time algorithms [102, 144]. A positive answer to the regularity question for a
given pair of infinite-state processes, together with the possibility of algorithmic
construction of bisimilar finite-state systems, provides an immediate answer to
bisimilarity checking between the original processes.

1.6 Key Results and Techniques

In this section we will briefly mention some of the equivalence checking results
that we consider the most important and influential. Large surveys of the
results and techniques are provided in [137, 34, 110].

1.6.1 Bisimilarity Between Infinite-State Processes

The first positive decidability result for a class of infinite-state processes is by
Baeten, Bergstra and Klop [10, 12]. They exploited periodicity of context-free
grammars without redundant nonterminals (normed BPA processes) to show
that strong bisimilarity is a decidable equivalence in this class. Simpler proofs
relying on structural properties of strong bisimilarity in the class of normed
BPA were later provided by Caucal [38, 39] (he introduced the technique of



1.6. Key Results and Techniques 37

bisimulation bases), Hüttel and Stirling [83] (using the tableau technique), and
Groote [63]. Huynh and Tian [84] gave a nondeterministic algorithm which
relies on NP oracle, and Hirshfeld, Jerrum and Moller [74] presented a polyno-
mial time algorithm. Another fast algorithm solving the problem is by Hirsh-
feld and Moller [76]. Finally, the strong bisimilarity question for the class of
arbitrary BPA processes was positively answered by Christensen, Hüttel and
Stirling [45, 46]; they showed that bisimilarity can be represented by a finite
bisimulation base and the decidability result is obtained as a combination of
two semidecision procedures. Hence the result does not imply any complexity
upper bound. An elementary decision procedure was later given by Burkart,
Caucal and Steffen [35]. The authors claim that straightforward optimizations
yield a doubly exponential algorithm. An interesting observation is that these
results contrast to the fact that all other equivalences from the linear/branching
time hierarchy by van Glabbeek are undecidable even for normed BPA [85, 64].

Considering the parallel case of BPA called BPP, Christensen, Hirshfeld and
Moller [43, 44, 42] designed a tableau technique which gives a positive answer
to decidability of strong bisimilarity (a nice overview of the tableau technique
can be found in [97]). The decidability theorem also follows (as observed by
Hirshfeld in [71]) from the fact that any congruence on a finitely generated
commutative semigroup is finitely generated. For the restricted class of normed
BPP (from every reachable state there is a computation ending in the empty
process) even a polynomial time algorithm exists. This is a result by Hirshfeld,
Jerrum and Moller [75].

Strong bisimilarity problems in the classes of pushdown processes and Petri
nets become significantly harder. Nevertheless, the long standing problem of
deciding strong bisimilarity for PDA was answered positively: for the normed
case by Stirling [184] and for the general case by Sénizergues [163] (other useful
references are [164, 165, 186]). On the other hand, strong bisimilarity of Petri
nets appeared to be undecidable. This result is due to Jančar [88, 90] and it
is by reduction from the halting problem of Minsky counter machines. The
technique developed in his proof has many consequences (see [70, 96]); e.g. the
problem of strong bisimilarity for multiset automata (a proper subclass of Petri
nets) can be proved undecidable [137, 97] by using Jančar’s ideas.

The problem of strong bisimilarity for the whole class of PA-processes is still
open, however, for the normed subclass a doubly exponential nondeterministic
time algorithm exists due to Hirshfeld and Jerrum [73].

As for weak bisimilarity, many problems are still open. Weak bisimilarity
is semilinear for BPP processes [57] and hence semidecidable. Decidability of
the problem is open, however, Jančar [92] recently developed a new technique
for strong bisimilarity of BPP which indicates that the answer to the weak
bisimilarity problem may be also positive. In addition, decidability of weak
bisimilarity was introduced for several restricted subclasses of BPP [72, 187].
The weak bisimilarity problem for BPA is also open, however, a positive answer
for the restricted subclass of totally normed BPA is provided in [72].

On the other hand, weak bisimilarity of Petri nets becomes even highly
undecidable, i.e., it lies beyond the arithmetical hierarchy [89].



38 Chapter 1. Introduction

1.6.2 Bisimilarity Between Infinite and Finite-State Processes

The problem was first studied for strong bisimilarity between Petri nets and
finite-state processes and shown to be decidable by Jančar and Moller [96]. On
the other hand, the weak bisimilarity problem already becomes undecidable
(Jančar and Esparza [93]). Nevertheless, for BPP and finite-state processes
Mayr showed that weak bisimilarity is decidable [120]. This result was later ex-
tended to other classes of systems in [86] and [94]. Kučera and Mayr [111, 113]
moreover showed that weak bisimilarity between (i) BPA and finite-state pro-
cesses and (ii) normed BPP and finite-state processes is solvable in polynomial
time.

1.6.3 Regularity Problems

Jančar and Esparza [93] showed that given a Petri net, it is decidable whether
the net is regular with regard to strong bisimilarity. Burkart, Caucal and Stef-
fen [36] proved the same positive result for the class of BPA processes. On the
other hand, weak regularity of Petri nets is already undecidable — a result of
Jančar and Esparza [93]. The strong regularity problem for normed subclasses
of processes usually corresponds to the boundedness problem (i.e. to the prob-
lem whether the set of reachable states is syntactically finite) and is easier to
handle. This was demonstrated e.g. by Kučera [107] for normed PA-processes
where strong regularity is shown to be decidable in polynomial time. However,
for many other classes from the PRS-hierarchy the regularity problem remains
still open.

1.6.4 Main Results of the Thesis

Let us conclude this section by mentioning what we consider as two main con-
tributions of the thesis.

The first one is an explicit formulation of a novel technique called exis-
tential quantification which enables to give (hopefully) simple and insightful
proofs of complexity lower bounds for several process algebras (see [173]). This
is demonstrated by showing PSPACE-hardness of strong bisimilarity and reg-
ularity for BPA and BPP. Other examples where the technique was already
used are EXPTIME-hardness of weak bisimilarity for normed BPA [128] and
EXPTIME-hardness of strong bisimilarity for normed PDA [112].

The second main contribution is a solution to two open problems: weak
bisimilarity of pushdown processes and weak bisimilarity of PA-processes. Both
problems are shown to be undecidable. The result for PDA also directly implies
undecidability of strong bisimilarity for prefix-recognizable graphs.

1.7 Thesis Organization

In what follows we describe the structure of this thesis. Every chapter usually
starts with a motivation part including the introduction of the considered prob-
lems and relevant references for further study, and concludes with two sections:



1.7. Thesis Organization 39

“Concluding Remarks” where a summary of the chapter and research problems
are provided, and “Bibliographical Remarks” where the author’s contribution
and credits to other sources are stated.

Chapter 2 This chapter offers a formal introduction to the problems studied
in this thesis and gives mathematical definitions of terms (like labelled transi-
tion system, process rewrite system and strong/weak bisimulation equivalence)
which were explained on a semi-formal level in the present chapter. A detailed
discussion about several classes from the process rewrite system hierarchy can
be also found in this chapter.

Chapter 3 In this chapter the basic notion of labels in transition systems is
discussed. A general reduction from labelled transition systems to unlabelled
ones is given. The reduction preserves the answers to the strong bisimilarity
checking and its usefulness is demonstrated on two classes of infinite-state pro-
cesses, namely on the sequential model of pushdown processes and on the fully
parallel model of Petri nets.

Chapter 4 The tableau technique proved to be a useful method for showing
decidability of equivalence checking. In this chapter we extend the technique in
several ways. This generalization enables to demonstrate that strong bisimilar-
ity is a decidable equivalence for a large variety of commutative-based labelled
transition systems. We demonstrate the fact on classes of deadlock sensitive
BPP, lossy BPP processes, BPP with interrupt and timed-arc BPP nets.

Chapter 5 Hardness estimates for weak bisimilarity and regularity checking
are studied in this chapter. Basic techniques for proving complexity lower
bounds of bisimilarity problems are introduced and these are demonstrated on
the classes of BPA and BPP. In particular, we prove that weak bisimilarity
of normed BPP is PSPACE-hard, and show how to reduce weak bisimilarity
questions to weak regularity checking.

Chapter 6 This chapter further develops some of the techniques from Chap-
ter 5 and strengthens the validity of the results to the strong bisimilarity check-
ing. Formal proofs of PSPACE-hardness of strong bisimilarity and regularity
are given for the classes BPA and BPP. NL-completeness of strong regularity
problems for the normed subclasses of BPA and BPP is also established.

Chapter 7 This chapter investigates the decidability borders of weak bisim-
ilarity checking within the PRS-hierarchy. Some of the problems which were
left open are answered and their undecidability is proved. First, undecidabil-
ity of weak bisimilarity for pushdown processes is demonstrated by reduction
from the halting problem of Minsky counter machines. Second, weak bisimi-
larity of PA-processes is also shown to be undecidable, this time by reduction
from Post’s correspondence problem. The proof techniques developed in this
chapter have interesting consequences. They e.g. negatively answer the strong



40 Chapter 1. Introduction

bisimilarity problem for prefix-recognizable graphs, and enable to show that
weak bisimilarity of pushdown processes lies beyond the arithmetical hierarchy
of undecidable problems.

Chapter 8 The last chapter of the thesis gives a comprehensive summary of
bisimilarity checking problems for the classes from the PRS-hierarchy. Both
normed and unnormed processes are considered and accurate references to the
mentioned results are provided.

1.8 Author’s Contribution

The overall contribution of the present author to the theoretical research in
computer science is summarized in this section (not all of the material is, how-
ever, a part of the thesis). As already mentioned before, every chapter of the
thesis contains a section called “Bibliographical Remarks” where the author’s
contribution to the chapter is explicitly stated. This includes relevant references
to published papers, as well as remarks about yet unpublished work.

Journal Articles

1. Strong Bisimilarity of Simple Process Algebras: Complexity Lower Bounds
(by J. Srba). Acta Informatica, 2003. To appear.

2. Roadmap of Infinite Results (by J. Srba). Bulletin of the European As-
sociation for Theoretical Computer Science, pages 163–175, volume 78,
columns: Concurrency, 2002.

3. Undecidability of Domino Games and Hhp-Bisimilarity (by M. Jurdzinski,
M. Nielsen and J. Srba). Information and Computation, 2002. To appear.

4. Complexity of Weak Bisimilarity and Regularity for BPA and BPP (by J.
Srba). Mathematical Structures in Computer Science. To appear.

5. Basic Process Algebra with Deadlocking States (by J. Srba). Theoretical
Computer Science, pages 605–630, volume 266 (1–2), Elsevier Science,
2001.

International Conference and Workshop Proceedings

1. Undecidability of Weak Bisimilarity for PA-Processes (by J. Srba). In
Proceedings of the 6th International Conference on Developments in Lan-
guage Theory (DLT’02). LNCS, Springer-Verlag, 2002. To appear.

2. Undecidability of Weak Bisimilarity for Pushdown Processes (by J. Srba).
In Proceedings of the 13th International Conference on Concurrency The-
ory (CONCUR’02), pages 579–593, volume 2421 of LNCS, Springer-Verlag,
2002.



1.8. Author’s Contribution 41

3. Strong Bisimilarity and Regularity of Basic Process Algebra is PSPACE-
Hard (by J. Srba). In Proceedings of the 29th International Colloquium
on Automata, Languages and Programming (ICALP’02), pages 716–727,
volume 2380 of LNCS, Springer-Verlag, 2002.

4. Note on the Tableau Technique for Commutative Transition Systems (by
J. Srba). In Proceedings of the 5th Foundations of Software Science and
Computation Structures (FOSSACS’02), pages 387–401, volume 2303 of
LNCS, Springer-Verlag, 2002.

5. Strong Bisimilarity and Regularity of Basic Parallel Processes is PSPACE-
Hard (by J. Srba). In Proceedings of the 19th International Symposium
on Theoretical Aspects of Computer Science (STACS’02), pages 535–546,
volume 2285 of LNCS, Springer-Verlag, 2002.

6. Properties of Distributed Timed-Arc Petri Nets (by M. Nielsen, V. Sassone
and J. Srba). In Proceedings of the 21st International Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’01), pages 280–291, volume 2245 of LNCS, Springer-Verlag,
2001.

7. On the Power of Labels in Transition Systems (by J. Srba). In Pro-
ceedings of the 12th International Conference on Concurrency Theory
(CONCUR’01), pages 277–291, volume 2154 of LNCS, Springer-Verlag,
2001.

8. Towards a Notion of Distributed Time for Petri Nets (by M. Nielsen, V.
Sassone and J. Srba). In Proceedings of the 22nd International Confer-
ence on Application and Theory of Petri Nets (ICATPN’01), pages 23–31,
volume 2075 of LNCS, Springer-Verlag, 2001.

9. Complexity of Weak Bisimilarity and Regularity for BPA and BPP (by J.
Srba). In Proceedings of the 7th International Workshop on Expressive-
ness in Concurrency (EXPRESS’00), pages 29–44, 2000.

10. Matching Modulo Associativity and Idempotency is NP-Complete (by O.
Kĺıma and J. Srba). In Proceedings of the 25th International Symposium
on Mathematical Foundations of Computer Science (MFCS’00), pages
456–466, volume 1893 of LNCS, Springer-Verlag, 2000.

11. Pattern Equations and Equations with Stuttering (by I. Černá, O. Kĺıma
and J. Srba). In Proceedings of the 26th Annual Conference on Current
Trends in Theory and Practice of Informatics (SOFSEM’99), pages 369–
378, volume 1725 of LNCS, Springer-Verlag, 1999.

12. Deadlocking States in Context-Free Process Algebra (by J. Srba). In Pro-
ceedings of the 23rd International Symposium on Mathematical Founda-
tions of Computer Science (MFCS’98), pages 388–398, volume 1450 of
LNCS, Springer-Verlag, 1998.



42 Chapter 1. Introduction

Technical Reports

Eight technical reports, mostly extended versions of conference proceedings.

Other Work

• Roadmap of Infinite Results. A project which aims to provide an updated,
online overview of the state-of-the-art in bisimilarity checking of infinite-
state processes. See http://www.brics.dk/∼srba/roadmap/.

• Applications of the Existential Quantification Technique (by J. Srba). In
Proceedings of the 4th International Workshop on Verification of Infinite-
State Systems (INFINITY’02), pages 151–152, 2002. Short presentation.

This thesis is based on journal papers 1,2 and 4 and on conference (or workshop)
proceedings 1,2,3,4,5,7 and 9.

1.9 Bibliographical Remarks

A part of Subsection 1.2.1 introducing the linear/branching time hierarchy is
based on the work of van Glabbeek [193, 194], including examples which dis-
tinguish between the considered behavioural equivalences. The hierarchy of
divergence equivalences described in Figure 1.2 was presented in a paper by
Lohrey, D’Argenio and Hermanns [117]. The correspondence between formal
language theory and process rewrite systems shown in Subsection 1.3.2 is built
on the observations by Esparza [59]. Section 1.4 contains a slightly modified
presentation of interprocedural control-flow analysis by means of process rewrite
systems, originally described by Esparza and Knoop [61]. Good source of ref-
erences for Section 1.6 were overview articles by Burkart, Caucal, Moller and
Steffen [34] and by Kučera and Jančar [110].



Chapter 2

Basic Definitions

This chapter introduces the basic notions studied in the thesis. We define la-
belled transition systems together with the notion of a process, we introduce
process algebras in a uniform way using the formalism of process rewrite sys-
tems, and we formally describe the studied problems.

2.1 Transition Systems and Processes

Semantics to process algebras is usually given in terms of (infinite-state) labelled
transition systems [151]. Processes are understood as nodes of certain labelled
transition systems and the transition relation is defined in a compositional way.

Definition 2.1 (Labelled transition system).
A labelled transition system T is a triple T = (S,Act,−→) where

• S is a set of states (or processes),

• Act is a set of labels (or actions), and

• −→ ⊆ S × Act × S is a transition relation, written α
a−→ β, for

(α, a, β) ∈−→.

As usual we extend the transition relation to the elements of Act∗, i.e.,
α

ε−→ α for every α ∈ S, and α
aw−→ β iff α

a−→ α′ and α′ w−→ β for every
α, β ∈ S, a ∈ Act and w ∈ Act∗. We use the notation α

a−→ meaning that
there is some β ∈ S such that α a−→ β.

We write α −→∗ β iff α
w−→ β for some w ∈ Act∗. We also write α 6 a−→

whenever there is no β such that α a−→ β, and α 6−→ whenever α 6 a−→ for all
a ∈ Act.

We will call a rooted transition system a process. This follows the usual
definition from process algebras where a system ∆ of defining equations or
rewrite rules is given and a process is understood as a state of the transition
system generated by ∆.

Definition 2.2 (Process and its reachable states).
A process is a pair (α, T ) where T = (S,Act,−→) is a labelled transition system
and α ∈ S. We say that β ∈ S is reachable in (α, T ) iff α −→∗ β.

43



44 Chapter 2. Basic Definitions

Definition 2.3. Let T = (S,Act,−→) be a labelled transition system and
α ∈ S. By Tα we denote a labelled transition system restricted to the states of
T reachable from α. More precisely, Tα

def= (Sα,Act,−→α) where Sα
def= {α′ ∈

S | α −→∗ α′} and α1
a−→α α2 iff α1

a−→ α2 and α1, α2 ∈ Sα.

Definition 2.4 (Finite-state process).
Whenever a process (α, T ) has only finitely many reachable states, we call it a
finite-state process.

Let T = (S,Act,−→) be a labelled transition system such that Act contains
a distinguished silent action τ . Actions from Act r {τ} will be called visible
actions. We define a weak transition relation =⇒⊆ S × Act × S such that
=⇒ respects the relation −→ on visible actions but allows to collapse all the
τ -transitions.

a=⇒def=

{
( τ−→)∗◦ a−→ ◦( τ−→)∗ if a 6= τ

( τ−→)∗ if a = τ .

As before we extend the weak transition relation to the elements of Act∗

and use the notation =⇒∗ and 6 a=⇒.

Example 2.1. Let T def= ({s1, s2, s3, s4}, {a, b, τ},−→) such that

s1
τ−→ s2 s2

a−→ s3 s3
τ−→ s4 s3

b−→ s4.

Now e.g. s1
a=⇒ s4, s1

ab=⇒ s4, s2
τ=⇒ s2, s1 =⇒∗ s4, and s1 6 b=⇒.

2.2 Strong and Weak Bisimilarity

In this section we define strong and weak bisimilarity and introduce a game-
theoretic characterization of bisimilarity.

Definition 2.5 (Strong bisimulation).
Let T = (S,Act,−→) be a labelled transition system. A binary relation R ⊆
S × S is a strong bisimulation iff whenever (α, β) ∈ R then for each a ∈ Act:

• if α a−→ α′ then β a−→ β′ for some β′ such that (α′, β′) ∈ R
• if β a−→ β′ then α a−→ α′ for some α′ such that (α′, β′) ∈ R.

Definition 2.6 (Weak bisimulation).
Let T = (S,Act,−→) be a labelled transition system (such that Act possibly
contains the distinguished silent action τ). A binary relation R ⊆ S × S is a
weak bisimulation iff whenever (α, β) ∈ R then for each a ∈ Act:

• if α a−→ α′ then β a=⇒ β′ for some β′ such that (α′, β′) ∈ R
• if β a−→ β′ then α a=⇒ α′ for some α′ such that (α′, β′) ∈ R.

Remark 2.1. It is possible to give an alternative definition of weak bisimilarity
as follows. A binary relation R ⊆ S × S is a weak bisimulation iff whenever
(α, β) ∈ R then for each a ∈ Act:



2.2. Strong and Weak Bisimilarity 45

• if α a=⇒ α′ then β a=⇒ β′ for some β′ such that (α′, β′) ∈ R
• if β a=⇒ β′ then α a=⇒ α′ for some α′ such that (α′, β′) ∈ R.

It is straightforward (see e.g. [135]) to realise the this definition of weak bisim-
ilarity defines the same notion as Definition 2.6.

Processes (α1, T ) and (α2, T ) are strongly (resp. weakly) bisimilar, written
(α1, T ) ∼ (α2, T ) (resp. (α1, T ) ≈ (α2, T )) or simply α1 ∼ α2 (resp. α1 ≈ α2)
if T is clear from the context, iff there is a strong (resp. weak) bisimulation R
such that (α1, α2) ∈ R.

Example 2.2. Let T = (S,Act,−→) be a labelled transition systems such that
S

def= {s, s1, s2, s3, t, t1, t2, t3, t4, u, u1, u2, v, v1}, Act
def= {a, b, c, τ} and where

s
a−→ s1 s1

b−→ s2 s1
c−→ s3

t
a−→ t1 t

a−→ t2 t1
b−→ t3 t2

c−→ t4

u
τ−→ u1 u1

a−→ u2

v
a−→ v1.

The transition system T has the following graphical representation.

s

a

��

t
a

����
��

��
�

a

��=
==

==
==

s1
b

����
��

��
�� c

��=
==

==
==

= t1

b
��

t2

c
��

s2 s3 t3 t4

u τ // u1
a // u2 v a // v1

This is a standard example demonstrating that (s, T ) 6∼ (t, T ) even if the pro-
cesses (s, T ) and (t, T ) exhibit the same sequences of actions, namely {ε, a, ab, ac}.
In order to see that (s, T ) 6∼ (t, T ) it is enough to enumerate all possible binary
relations of S and check that none of these is a strong bisimulation containing
the pair (s, t). In fact, we do not have to consider the states u, u1, u2, v and
v1 since these states are not reachable from s or t. In Definition 2.7 we will in-
troduce a game characterization of bisimilarity which gives a simpler argument
for (s, T ) 6∼ (t, T ).

Let us now consider the processes (u, T ) and (v, T ). Obviously (u, T ) 6∼
(v, T ). On the other hand (u, T ) ≈ (v, T ) because R def= {(u, v), (u1, v), (u2, v1)}
is a weak bisimulation such that (u, v) ∈ R.

Given a pair of processes (α1, T1) and (α2, T2) where T1 = (S1,Act1,−→1)
and T2 = (S2,Act2,−→2) such that S1 ∩ S2 = ∅, we write (α1, T1) ∼ (α2, T2)
(resp. (α1, T1) ≈ (α2, T2)) iff (α1, T ) ∼ (α2, T ) (resp. (α1, T ) ≈ (α2, T )) such
that T def= (S1∪S2,Act1 ∪Act2,−→) where α a−→ β iff α, β ∈ S1 and α a−→1 β,
or α, β ∈ S2 and α a−→2 β.



46 Chapter 2. Basic Definitions

Example 2.3. Let T1 = ({s, t}, {a, b},−→1) and T2 = ({t}, {a, c},−→2) be
labelled transition systems such that s a−→1 t, t

b−→1 t, and t
a−→2 t, t

c−→2 t.
In order to ask questions like (s, T1) ∼ (t, T2) we first have to rename the states
of e.g. T2 such that T 2 = ({t}, {a, c, },−→2) where t a−→2 t and t

c−→2 t. Now
the states of T1 and T 2 are disjoint and we can verify whether (s, T1) ∼ (t, T 2)
by the definition given above.

The following proposition points out the relationship between strong and
weak bisimilarity.

Proposition 2.1 ([135]). Let (α1, T ) and (α2, T ) be a pair of processes. If
(α1, T ) ∼ (α2, T ) then also (α1, T ) ≈ (α2, T ).

Remark 2.2. Example 2.2 shows that the opposite direction of Proposition 2.1
does not hold.

Bisimulation equivalence has an elegant characterisation in terms of bisim-
ulation games.

Definition 2.7 (Strong and weak bisimulation game).
A strong (resp. weak) bisimulation game on a pair of processes (α1, T ) and
(α2, T ) where T = (S,Act,−→) is a two-player game of an ‘attacker’ and a
‘defender’. The game is played in rounds on pairs of states from S × S. In
each round the players change the current states β1 and β2 (initially α1 and
α2) according to the following rule.

1. The attacker chooses i ∈ {1, 2}, a ∈ Act and β′i ∈ S such that βi
a−→ β′i.

2. The defender responds by choosing β′3−i ∈ S such that β3−i
a−→ β′3−i in

case of the strong game (resp. β3−i
a=⇒ β′3−i in case of the weak game).

3. The states β′1 and β′2 become the current states.

A play is a maximal sequence of pairs of states formed by the players according
to the rule described above, and starting from the initial states α1 and α2. The
defender is the winner in every infinite play. A finite play is lost by the player
who is stuck. Note that the attacker gets stuck in current states β1 and β2 if
and only if both β1 6−→ and β2 6−→.

We remind the reader of the fact that if the attacker chooses a move un-
der the action τ in one of the processes (in the weak bisimulation game), the
defender can (as one possibility) simply answer by doing “nothing”, i.e., by
staying in the same state of the other process. The following proposition is a
standard one (see e.g. [183, 190]).

Proposition 2.2. Processes (α1, T ) and (α2, T ) are strongly (resp. weakly)
bisimilar if and only if the defender has a winning strategy in the strong (resp.
weak) bisimulation game starting from α1 and α2 (and nonbisimilar iff the
attacker has a winning strategy in the corresponding game).



2.3. Process Rewrite Systems 47

Example 2.4. Let us consider the processes (s, T ) and (t, T ) from Example 2.2.
In order to show that (s, T ) 6∼ (t, T ) it is enough to demonstrate that the
attacker has a winning strategy in the strong bisimulation game played from
the pair s and t. In the first round the attacker plays e.g. t

a−→ t1 and the
defender can only answer by s

a−→ s1. Now the game continues from the pair
s1 and t1. In the second round the attacker plays s1

c−→ s3 and the defender
loses because t1 6 c−→.

Another important notion is the definition of regularity (finiteness) of a
given process.

Definition 2.8 (Strong and weak regularity).
We say that a process (α, T ) is strongly (resp. weakly) regular iff there exists
some finite-state process strongly (resp. weakly) bisimilar to it.

Example 2.5. Let T = (S,Act,−→) be a labelled transition system such that
S

def= {si | i ∈ N0} ∪ {ti | i ∈ N0} ∪ {u}, Act
def= {a, τ}, and

si
a−→ si+1 for all i ∈ N0

ti
a−→ ti+1 ti+1

τ−→ ti for all i ∈ N0

u
a−→ u.

A picture of a fragment of the transition system T follows.

s0
a // s1

a // s2
a // s3

a // · · ·

t0
a

** t1
a

**

τ
jj t2

a
**

τ
jj t3

a
**

τ
jj · · ·

τ
jj

u
a{{

The process (s0, T ) is strongly regular because it is strongly bisimilar to the
finite-state process (u, T ). The process (t0, T ) is not strongly regular because it
has infinitely many reachable and pairwise nonbisimilar states: (ti, T ) 6∼ (tj, T )
for any i, j ∈ N0 such that i 6= j. On the other hand (t0, T ) is weakly regular
because (t0, T ) ≈ (u, T ).

2.3 Process Rewrite Systems

Let Act and Const be sets of actions and process constants, respectively.

Definition 2.9 (Classes of process expressions).
The classes of process expressions called 1 (process constants plus the empty
process), P (parallel process expressions), S (sequential process expressions),
and G (general process expressions) are defined by the following abstract syntax

1: E ::= ε | X
P : E ::= ε | X | E||E



48 Chapter 2. Basic Definitions

G
��

�� 88
88

S P

1

8888
����

Figure 2.1: Classes of process expressions

S: E ::= ε | X | E.E
G: E ::= ε | X | E||E | E.E

where ‘ε’ is the empty process, X ranges over Const, the operator ‘.’ stands for a
sequential composition and ‘||’ stands for a parallel composition. We shall adopt
the convention that the sequential operator binds tighter than the parallel one.
Thus for example X||Y.Z means X||(Y.Z).

Obviously, 1 ⊂ S, 1 ⊂ P , S ⊂ G and P ⊂ G. The classes S and P are
incomparable and S ∩ P = 1. See Figure 2.1.

Notation 2.1. We use the notation G(Const), S(Const), P(Const) and 1(Const)
whenever we need to explicitly specify from which process constants the expres-
sions are formed.

Definition 2.10 (Structural congruence).
We do not distinguish between process expressions related by a structural con-
gruence ≡, which is the smallest congruence over process expressions such that
the following laws hold:

• ‘.’ is associative,

• ‘||’ is associative and commutative, and

• ‘ε’ is a unit for ‘.’ and ‘||’.
Example 2.6. A process expression X.ε.Y ||Z||Y ||ε is structurally equivalent to
the expression Y ||Z||X.Y .

We can now define the main notion of process rewrite systems following
Mayr’s approach from [126].

Definition 2.11 (Process rewrite system (PRS)).
Let α, β ∈ {1,S,P ,G} such that α ⊆ β. An (α, β)-PRS is a finite set

∆ ⊆ (αr {ε})×Act× β

of rewrite rules, written E
a−→ F for (E, a, F ) ∈ ∆.

Notation 2.2. Let us denote the set of actions and process constants that appear
in ∆ by Act(∆) and Const(∆), respectively. Note that Act(∆) and Const(∆)
are finite sets.



2.3. Process Rewrite Systems 49

(E a−→ E′) ∈ ∆

E
a−→ E′

E
a−→ E′

E.F
a−→ E′.F

E
a−→ E′

E||F a−→ E′||F

Figure 2.2: SOS rules

Example 2.7. Let ∆ be an (S,G)-PRS such that

∆ def= {X.Y a−→ X||Y.Z, Z.Z b−→ ε}.

Then Const(∆) = {X,Y,Z} and Act(∆) = {a, b}.

We give a formal semantics to PRS by means of labelled transition systems.

Definition 2.12 (Transition system T (∆)).
Let ∆ be an (α, β)-PRS. The system ∆ determines a labelled transition system
T (∆) def= (β,Act(∆),−→), where states are process expressions from the class
β (modulo the structural congruence introduced in Definition 2.10), Act(∆) is
the set of labels, and the transition relation is the least relation satisfying the
SOS (structural operational semantics) rules from Figure 2.2 — recall that ‘||’
is commutative.

Definition 2.13 ((α, β)-process).
An (α, β)-process is a process

(
P, T (∆)

)
— see Definition 2.2 — where ∆ is an

(α, β)-PRS and P ∈ β is a process expression.

Remark 2.3. We remind the reader of the fact that process notions like finite-
ness, bisimilarity and regularity introduced in Sections 2.1 and 2.2 define the
corresponding process properties also for (α, β)-processes. Moreover, in the rest
of this thesis we denote an (α, β)-process

(
P, T (∆)

)
by only (P,∆), or even P

if ∆ is clear from the context.

Many classes of infinite-state systems studied so far — e.g. basic process
algebra (BPA), basic parallel processes (BPP), pushdown processes (PDA),
Petri nets (PN) and process algebra (PA) — are contained in the hierarchy of
process rewrite systems presented in Figure 2.3. This hierarchy is strict w.r.t.
strong bisimilarity and we refer the reader to [126] for further discussions. It
is worth mentioning that even the class of (G,G)-PRS is not Turing powerful
since e.g. the reachability problem remains decidable [126].

Definition 2.14 (Normed (α, β)-process).
An (α, β)-process (P,∆) is normed iff from every reachable state E in (P,∆)
there is a computation terminating in the empty process, i.e., for all E such
that P −→∗ E it is the case that E −→∗ ε.

Definition 2.15 (Totally normed (α, β)-process).
An (α, β)-process (P,∆) is totally normed iff it is normed and for every reach-
able state E in (P,∆) such that E 6≡ ε holds that E 6 τ=⇒ ε.



50 Chapter 2. Basic Definitions

(G,G)-PRS
PRS

zz
zz

zz
zz

z

DD
DD

DD
DD

D

(S ,G)-PRS
PAD

zz
zz

zz
zz

z

DD
DD

DD
DD

D

(P ,G)-PRS
PAN

zz
zz

zz
zz

z

DD
DD

DD
DD

D

(S,S)-PRS
PDA

(1,G)-PRS
PA

(P ,P)-PRS
PN

(1,S)-PRS
BPA

DDDDDDDDD

zzzzzzzzz
(1,P)-PRS

BPP

DDDDDDDDD

zzzzzzzzz

(1, 1)-PRS
FS

DDDDDDDDD

zzzzzzzzz

Figure 2.3: Hierarchy of process rewrite systems

Remark 2.4. In some papers, the definition of normedness requires only the
fact that from every reachable state there is a terminating computation, not
necessarily ending in the empty process. However, e.g. for BPA, in order to
achieve a reasonable notion of normedness, it is also assumed that every process
constant used in the system can perform a transition, i.e., it has at least one
rewrite rule associated to it. This alternative definition implies the notion of
normedness introduced in Definition 2.14. Moreover, the definition we gave
becomes more interesting even for the models like PDA, PN, PAD, PAN and
PRS where our notion of normedness guarantees deadlock freedom (here the
empty process is not understood as a deadlock). This means that e.g. in the
case of PDA the stack can always be emptied, and in the case of PN all tokens
in places can be removed. Considering simply the possibility of termination
without reaching the empty process usually does not restrict the power of the
models sufficiently.

2.4 Studied Problems

In this section we define the basic decidability problems studied in this thesis.

Problem: Strong Bisimilarity
Instance: An (α, β)-PRS ∆ and a pair of processes (P1,∆)

and (P2,∆).
Question: (P1,∆) ∼ (P2,∆) ?



2.5. Classes from PRS-Hierarchy 51

Problem: Weak Bisimilarity
Instance: An (α, β)-PRS ∆ and a pair of processes (P1,∆)

and (P2,∆).
Question: (P1,∆) ≈ (P2,∆) ?

Problem: Strong Regularity
Instance: An (α, β)-PRS ∆ and a process (P,∆).
Question: Is there a finite-state process (F,∆′) such that

(P,∆) ∼ (F,∆′) ?

Problem: Weak Regularity
Instance: An (α, β)-PRS ∆ and a process (P,∆).
Question: Is there a finite-state process (F,∆′) such that

(P,∆) ≈ (F,∆′) ?

Problem: Strong Bisimilarity with a Finite-State Process
Instance: An (α, β)-PRS ∆ with a process (P,∆), and a

finite-state process (F,∆′).
Question: (P,∆) ∼ (F,∆′) ?

Problem: Weak Bisimilarity with a Finite-State Process
Instance: An (α, β)-PRS ∆ with a process (P,∆), and a

finite-state process (F,∆′).
Question: (P,∆) ≈ (F,∆′) ?

2.5 Classes from PRS-Hierarchy

In this section we discuss in more detail the classes from the PRS-hierarchy and
emphasize some features relevant for this thesis.

2.5.1 Finite-State Processes

Finite-state processes (FS) — or equivalently (1, 1)-PRS — generate a class of
transition systems with finitely many reachable states. Let ∆ be a FS system.
Every rewrite rule from ∆ is of the form

X
a−→ Y or X

a−→ ε



52 Chapter 2. Basic Definitions

where X,Y ∈ Const(∆) and a ∈ Act(∆). From the finiteness of ∆ it follows
that every FS process (P,∆) has only finitely many reachable states. In fact
the number of reachable states is bounded by |Const(∆)|+ 1.

The FS class is interesting from many points of view. In the context of
decidability of behavioural equivalences, however, many of the studied problems
become trivial. The answer to the regularity question is always positive and
both strong and weak bisimilarity are easily seen to be decidable. There are
even efficient polynomial time algorithms [102, 144]. Moreover, the problem of
strong (and hence also of weak) bisimilarity for FS is known to be P-hard [17].

Example 2.8. Consider a system ∆ where Const(∆) def= {X,Y,X ′, Y ′, Z ′} and
Act(∆) def= {a, b}.

X
a−→ Y Y

a−→ Y Y
b−→ ε

X ′ a−→ Y ′ Y ′ a−→ Y ′ X ′ a−→ Z ′ Z ′ b−→ ε

The system ∆ generates the following labelled transition system.

X
a // Y

b

��

azz
X ′ a //

a
��

Y ′
azz

ε Z ′
boo

We can now show that (X,∆) 6∼ (X ′,∆). The attacker in the strong bisimula-
tion game starting from X and X ′ has e.g. the following winning strategy: in
the first round the attacker plays X ′ a−→ Z ′ and the defender has only one pos-
sible answer X a−→ Y . In the second round played from Y and Z ′ the attacker
performs the action a by using the rule Y a−→ Y and the defender loses since
Z ′ 6 a−→.

In order to see that X and X ′ are not strongly bisimilar it is in fact enough
to realize that (X,∆) is a normed process whereas (X ′,∆) is not (a process
constant Y ′ is reachable from X ′ and Y ′ 6−→∗ ε).

2.5.2 Basic Process Algebra

Basic process algebra (BPA) — or equivalently (1,S)-PRS — represents the
class of processes introduced by Bergstra and Klop (see [21]). BPA is a model
of purely sequential process behaviour. This class also corresponds to the tran-
sition systems associated with context-free grammars in Greibach normal form
(GNF), in which only left-most derivations are allowed.

Let ∆ be a BPA system. Every rewrite rule from ∆ is of the form

X
a−→ E

where X ∈ Const(∆), a ∈ Act(∆) and E ∈ S(Const(∆)). It is usually assumed
that for each X ∈ Const(∆) there is at least one rewrite rule in ∆, i.e., that
there is some a ∈ Act(∆) and E ∈ S(Const(∆)

)
such that (X,a,E) ∈ ∆. If it is

not the case, we say that the system contains deadlocks. A study of decidability
problems for BPA with deadlocks is provided in [169].



2.5. Classes from PRS-Hierarchy 53

Notation 2.3. Let m be a natural number and A ∈ Const be a process constant.
Whenever it is clear from the context that the ‘.’ operator is considered, we
use the notation Am for a sequential composition of m occurrences of A, i.e.,
A0 def= ε and Am+1 def= Am.A.

Using the sequential composition we can e.g. model a simple behaviour of
a counter.

Example 2.9. Let Const(∆) def= {Z,C} and Act(∆) def= {zero, inc, dec}. As-
sume that ∆ consists of the rewrite rules:

Z
zero−→ Z Z

inc−→ C.Z C
inc−→ C.C C

dec−→ ε.

The following picture shows a fragment of the transition system generated by
the process (Z,∆).

Z
zero ## inc

++
C.Z

inc ,,

dec

kk C2.Z
inc ,,

dec

kk C3.Z
inc

++

dec

ll · · ·
dec

ll

From the process Z we can increment the value of our counter (represented by
the number of occurrences of the process constant C) by performing the action
‘inc’. The counter can be decremented by the action ‘dec’ and the action ‘zero’
can be used only if the counter is empty.

Another simple BPA system is presented in the following example.

Example 2.10. Let Const(∆) def= {Q1, Q2, . . . , Qk} for a natural number k > 0
and let Act(∆) def= {a}. Consider the following BPA system ∆ containing the
rewrite rules:

Q1
a−→ ε

Qj+1
a−→ Qj for all j, 1 ≤ j < k.

Observe that Qj
aj−→ ε for every j, 1 ≤ j ≤ k, and no other transitions are

possible. Also notice that e.g. (Q5
1,∆) ∼ (Q1.Q

2
2,∆).

Assume now that m1,m2 > 0 are natural numbers. For every `1, 1 ≤ `1 ≤
m1, and every `2, 1 ≤ `2 ≤ m2, let i`1 ∈ {1, 2, . . . , k} and j`2 ∈ {1, 2, . . . , k}. It
is an easy observation that

(Qi1 .Qi2 . · · · .Qim1
,∆) ∼ (Qj1.Qj2 . · · · .Qjm2

,∆)

if and only if
m1∑
`1=1

i`1 =
m2∑
`2=1

j`2 .

This example demonstrates that even though the BPA class is non-commu-
tative, we can achieve a restricted commutative behaviour by assuming that
Act(∆) is a singleton set and by encoding process constants in this unary al-
phabet.



54 Chapter 2. Basic Definitions

2.5.3 Basic Parallel Processes

Basic parallel processes (BPP) — or equivalently (1,P)-PRS — are a fragment
of CCS [135] without restriction, relabelling and communication. It is a parallel
analogue to BPA. BPP class was first studied by Christensen [42], and it is
equivalent to the communication-free subclass of Petri nets (each transition has
exactly one input place). The classes BPA and BPP are also called simple
process algebras.

Let ∆ be a BPP system. Every rewrite rule from ∆ is of the form

X
a−→ E

where X ∈ Const(∆), a ∈ Act(∆) and E ∈ P(Const(∆)). Unlike for BPA,
the presence of deadlocks in BPP systems is not essential. Assume that D ∈
Const(∆) is a deadlock, i.e., D 6−→. Then (E,∆) ∼ (E||D,∆) for any expression
E ∈ P(Const(∆)

)
and we can safely replace all occurrences of such deadlocks

in ∆ by the empty process ε.

Notation 2.4. Let m be a natural number and A ∈ Const be a process constant.
Whenever it is clear from the context that we consider only the ‘||’ operator,
we use the notation Am for a parallel composition of m occurrences of A, i.e.,
A0 def= ε and Am+1 def= Am||A.

We can try to design a system which will model a counter behaviour, simi-
larly as for BPA.

Example 2.11. Let Const(∆) def= {Z,C} and Act(∆) def= {zero, inc, dec}.
Assume that ∆ consists of the rewrite rules:

Z
zero−→ Z Z

inc−→ C||Z C
inc−→ C||C C

dec−→ ε.

A fragment of the transition system generated by the process (Z,∆) follows.

Z
zero ## inc ,,

C||Z
inc ,,

dec

kk

zero


C2||Z

inc ,,

dec

ll

zero


C3||Z

inc
++

dec

ll

zero


· · ·

dec

ll

The counting property of the counter remains the same as for BPA since the
actions ‘inc’ and ‘dec’ correctly add resp. remove the process constant C.
However, the test for zero can be performed anytime, irrelevant whether the
counter is empty or not. We can see that we are missing a test for zero in our
example, and it is a well known fact that it is impossible to model this test even
using Petri nets (a superclass of BPP). Hence we can use only counters without
the explicit test for emptiness.

The following example aims to demonstrate that the operator ‘||’ in BPP
systems allows a parallel access to all process constants contained in the current
state.

Example 2.12. Let Const(∆) def= {Q1, Q2, . . . , Qk} for a natural number k > 0
and let Act(∆) def= {q1, q2, . . . , qk}. The set of rewrite rules ∆ is defined by:



2.5. Classes from PRS-Hierarchy 55

Qj
qj−→ Qj for all j, 1 ≤ j ≤ k.

Assume now that m1,m2 > 0 are natural numbers. For every `1, 1 ≤ `1 ≤ m1,
and every `2, 1 ≤ `2 ≤ m2, let i`1 ∈ {1, 2, . . . , k} and j`2 ∈ {1, 2, . . . , k}. We
conclude that

(Qi1 ||Qi2 || · · · ||Qim1
,∆) ∼ (Qj1||Qj2 || · · · ||Qjm2

,∆)

if and only if
{i1, i2, . . . , im1} = {j1, j2, . . . , jm2}.

In other words, the processes are strongly bisimilar if and only if for all j, 1 ≤
j ≤ k, the process constant Qj appears either in both sides of the processes or
in neither of them. In the first case the number of occurrences of Qj is irrelevant
since (Qmj ,∆) ∼ (Qj ,∆) for any natural numberm > 0 — see Notation 2.4.

2.5.4 Pushdown Processes

Pushdown processes (PDA) — or equivalently (S ,S)-PRS — represent the class
of processes introduced via sequential prefix rewriting with unrestricted rules.

Let ∆ be an (S,S)-PRS. Every rewrite rule from ∆ is of the form

E
a−→ F

where E,F ∈ S(Const(∆)) and a ∈ Act(∆). This seems to be more expressive
than the standard definition of PDA where we assume that Const(∆) is a disjoint
union of control states Q and a stack alphabet Γ, and ∆ ⊆ Q×Γ×Act×Q×Γ∗.
Usually, an element (p,X, a, q, α) ∈ ∆ is written as pX a−→ qα, meaning that
from a configuration in a control state p where the top of the stack contains X
we can execute the action a such that the control state is changed to q and the
top of the stack is replaced with (possibly empty) sequence α. States of such a
PDA system ∆ are then of the form p.α where p ∈ Q and α ∈ Γ∗.

Notation 2.5. Instead of denoting a state as e.g. p.X.Y.X we usually omit the
operator for sequential composition and write simply pXYX. A state pε ∈
Q× {ε}, where ‘ε’ is the symbol for the empty stack, is usually written only as
p.

Obviously, any PDA system ∆ as introduced above is by definition also
an (S ,S)-PRS. Moreover, Caucal [40] showed that an arbitrary unrestricted
(S,S)-PRS can be transformed into a PDA system such that the generated
transition systems are isomorphic up to the names of states. Hence (S,S)-PRS
and PDA are equivalent formalisms.

Remark 2.5. To be more precise about the transformation from (S,S)-PRS to
PDA we must remark that these classes might differ when complexity issues
are involved. The transformation presented in [40] in general requires an expo-
nential blow up in the size of ∆. Hence whenever we provide some complexity
bounds for PDA we always assume that the size of the system is given with
regard to the traditional definition of PDA.



56 Chapter 2. Basic Definitions

We have to provide also some comments about the notion of normedness for
PDA. According to Definition 2.14 a process is normed iff from every reachable
state the empty process ε can be reached. Since we, however, often assume
that a PDA system ∆ is given by rewrite rules of the form pX

a−→ qα, we have
to modify the notion of normedness slightly (otherwise all processes become
unnormed with regard to Definition 2.14).

Definition 2.16 (Normed PDA process).
We say that a PDA process (pα,∆) is normed iff for every reachable state qβ
in (pα,∆) there is a computation which empties the stack, i.e., there is a state
rε ∈ Q× {ε} such that qβ −→∗ rε.

Remark 2.6. Another, and for most of the purposes equivalent way to introduce
normedness for PDA is to assume that the stack contains a distinguished bottom
symbol Z. Let z be a fresh action. After adding the rules pZ z−→ ε for all p ∈ Q,
we can use the notion of normedness from Definition 2.14. In this thesis we will
rely on Definition 2.16.

Notation 2.6. Let i be a natural number and A ∈ Γ. We use the notation Ai for
a sequence of i occurrences of A, i.e., A0 def= ε and Ai+1 def= AiA. For example
pX2Y 3 is an abbreviation for pXXY Y Y .

Example 2.13. Let us consider a PDA system ∆ where the sets of control
states Q and stack alphabet Γ are given by Q

def= {p, q, r} and Γ def= {X},
respectively, the set of actions is given by Act(∆) def= {a, b, c, d}, and ∆ is
defined as follows.

pX
a−→ pXX pX

b−→ q pX
b−→ r qX

c−→ q rX
d−→ r

The following fragment of a transition system is generated by the process
(pX,∆).

q qX
coo qX2coo · · ·coo

pX

b

OO

b

��

a // pX2

b

OO

b

��

a // pX3

b

OO

b

��

a // · · ·

r rX
doo rX2doo · · ·doo

As argued in [137] there is no BPA or BPP system which is strongly bisimilar
to (pX,∆). It is also an easy observation that the process (pX,∆) is normed,
i.e., from every reachable state it is possible to reach a state with the stack
being empty (qε or rε).

Example 2.14. Let Q def= {p, p1, p
′, p′1, p

′
2, p

′
3}, Γ def= {X,Y }, Act

def= {a, b, c, τ},
and let ∆ be the following pushdown process.



2.5. Classes from PRS-Hierarchy 57

pX
a−→ p1X pX

τ−→ p′X p1X
c−→ p1X

p′X a−→ p′1X p′1X
c−→ p′1X

p′X τ−→ p′2X p′2X
c−→ p′3

p′2X
τ−→ p′2YX p′2Y

τ−→ p′2Y Y p′2Y
b−→ p′2

A fraction of the transition system T (∆) is depicted in the following picture.

pX

a

xxrrrrrrrrrrr

τ

��
p1X

c

DD p′X
a

xxrrrrrrrrrrr
τ

��
p′1X

c

DD
p′2X

c
��

τ ,,
p′2YX

τ --

b

ll p′2Y YX
τ

++

b

ll · · ·
b

mm

p′3

Let us consider processes (pX,∆) and (p′X,∆). We show that (pX,∆) ≈
(p′X,∆) by describing a winning strategy for the defender in the bisimulation
game starting from pX and p′X. The attacker has the following four possibilities
in the first round:

1. pX a−→ p1X, or

2. pX τ−→ p′X, or

3. p′X a−→ p′1X, or

4. p′X τ−→ p′2X.

We shall explain defender’s answers to these moves now.

1. The defender answers by playing p′X a=⇒ p′1X. Now the game contin-
ues from p1X and p′1X, however, these two states are obviously weakly
bisimilar and hence the defender has a winning strategy in this case.

2. The defender answers by doing nothing (p′X τ=⇒ p′X). We remind the
reader of the fact that this is a legitimate defender’s move. Now the play-
ers reached the pair p′X and p′X. Since these two states are syntactically
the same, there is an obvious winning strategy for the defender.

3. The defender answers by playing pX a=⇒ p1X or pX a=⇒ p′1X. Either of
these answers is good for the defender.

4. The defender answers by pX τ=⇒ p′2X and this is a winning move for the
defender because the game continues from syntactically equal states.



58 Chapter 2. Basic Definitions

Hence (pX,∆) ≈ (p′X,∆) using Proposition 2.2. In this example we also recall
some of our previous definitions. The process (pX,∆) can terminate (empty
its stack) since pX −→∗ p′3 but it is not normed — it can reach e.g. the state
p1X from which there is no terminating computation. On the other hand the
process (p′2Y

iX,∆) is normed for any i ≥ 0.
Also note that (pX,∆) is not weakly (nor strongly) regular because it has in-

finitely many reachable and weakly (strongly) nonbisimilar states. Consider the
states p′2Y iX and p′2Y jX for i 6= j. Obviously, pX −→∗ p′2Y iX and pX −→∗

p′2Y jX. We leave it to the reader to find a winning strategy for the attacker
in the weak (strong) bisimulation game from the pair p′2Y

iX and p′2Y
jX and

thus show that (p′2Y
iX,∆) 6≈ (p′2Y

jX,∆) and (p′2Y
iX,∆) 6∼ (p′2Y

jX,∆).

2.5.5 PA–Processes

PA-processes (PA for process algebra) — or equivalently (1,G)-PRS — repre-
sent the class of processes originally introduced by Baeten and Weijland [15].
This formalism combines the parallel and sequential operator but allows neither
communication nor global-state control.

Nowadays the word “process algebra” has much broader meaning than just
the specific algebra by Baeten and Weijland and we tend to call their process
algebra PA-processes in order to avoid confusion.

Let ∆ be a (1,G)-PRS. Every rewrite rule from ∆ is of the form

X
a−→ E

where X ∈ Const(∆), a ∈ Act(∆) and E ∈ G(Const(∆)).

Example 2.15. Let us consider a PA system ∆

Ci
inci−→ Ci.Ci Ci

deci−→ ε for 1 ≤ i ≤ 2

Zi
inci−→ Ci.Zi Zi

zeroi−→ Zi for 1 ≤ i ≤ 2

X
a−→ Z1||Z2

where the set of process constants is Const(∆) def= {C1, C2, Z1, Z2,X} and the
set of actions is Act(∆) def= {inc1, inc2, dec1, dec2, zero1, zero2, a}. The process
(X,∆) introduces two counters (similarly as in Example 2.9) which are com-
posed together via the parallel operator. A fragment of the transition system
generated by (Z1||Z2,∆) follows.



2.5. Classes from PRS-Hierarchy 59

zero1 ��
Z1||Z2

inc1 ..

inc2

��

zero2

��
C1.Z1||Z2

inc1 ..

dec1

nn

inc2

��

zero2

��

C2
1 .Z1||Z2

inc1 ..

dec1

nn

inc2

��

zero2

��
· · ·

dec1

nn

zero1 ��
Z1||C2.Z2

inc2

��

dec2

SS

inc1 ..
C1.Z1||C2.Z2

inc2

��

dec2

SS

inc1 ..

dec1

nn C2
1 .Z1||C2.Z2

inc2

��

dec2

SS

inc1 ..

dec1

nn · · ·
dec1

nn

zero1 ��

Z1||C2
2 .Z2

inc2

��

dec2

SS

inc1 ..
C1.Z1||C2

2 .Z2

inc2

��

dec2

SS

inc1 ..

dec1

nn C2
1 .Z1||C2

2 .Z2

inc2

��

dec2

SS

inc1 ..

dec1

nn · · ·
dec1

nn

...

dec2

SS

...

dec2

SS

...

dec2

SS

This means that the two counters can behave independently and e.g. the
following transition sequence is possible.

X
a−→ Z1||Z2

inc1−→ C1.Z1 || Z2
zero2−→ C1.Z1 || Z2

inc1−→ C2
1 .Z1 || Z2 −→ . . .

2.5.6 Petri Nets

Petri nets (PN) — or equivalently (P ,P)-PRS — represent the class of processes
which correspond to the standard notion of labelled place/transition (P/T) nets
as originally proposed by Petri [149] .

Let ∆ be a (P ,P)-PRS. Every rewrite rule from ∆ is of the form

E
a−→ G

where E,G ∈ P(Const(∆)) and a ∈ Act(∆).
In order to see the connection between (P ,P)-PRS and labelled Petri net

let us first introduce P/T nets. A P/T net is a triple N = (P, T, F ) where

• P is a finite set of places,

• T is a finite set of transitions such that T ∩ P = ∅, and

• F ⊆ (P × T ) ∪ (T × P ) is a flow relation.

We define •t def= {p | (p, t) ∈ F} and t• def= {p | (t, p) ∈ F} for a transition t ∈ T ,
and •p def= {t | (t, p) ∈ F} and p• def= {t | (p, t) ∈ F} for a place p ∈ P .

A marking M of a P/T net N = (P, T, F ) is a mapping M : P → N0, i.e.,
each place is assigned a nonnegative number of tokens. We say that t ∈ T is
enabled in a marking M iff ∀p ∈ •t. M(p) > 0. If t is enabled in M then it can
be fired, producing a marking M ′ (written M [t〉M ′) such that:



60 Chapter 2. Basic Definitions

• M ′(p) def= M(p) for all p ∈ (
P r (•t ∪ t•)) ∪ (•t ∩ t•)

• M ′(p) def= M(p)− 1 for all p ∈ •tr t•

• M ′(p) def= M(p) + 1 for all p ∈ t• r •t.

A labelled Petri net is a tuple N = (P, T, F,Act, λ) where (P, T, F ) is a P/T
net, Act is a set of labels (actions) and λ : T → Act is a labelling function.

Remark 2.7. Without loss of generality we assume that ifM [t1〉M ′ andM [t2〉M ′

then λ(t1) 6= λ(t2) for any pair of markings M,M ′ and transitions t1 and t2.

Definition 2.17 (Labelled transition system T (N)).
Let N = (P, T, F,Act, λ) be a labelled Petri net. We define a corresponding
labelled transition system T (N) as T (N) def= ([P → N0],Act,−→) where M a−→
M ′ whenever M [t〉M ′ and a = λ(t) for M,M ′ ∈ [P → N0] and t ∈ T .

Every rewrite rule E a−→ G in a (P ,P)-PRS ∆ corresponds to a transition
t
E

a−→G
in a labelled Petri net

(Const(∆), {t
E

a−→G
| (E, a,G) ∈ ∆}, F,Act(∆), λ

)
such that the number of occurrences of a process constantX ∈ Const(∆) in E (in
G) corresponds to number of tokens consumed (produced) by t

E
a−→G

from (to)

the place X, and λ(t
E

a−→G
) def= a. Similarly any labelled Petri net corresponds

to a certain (P ,P)-PRS.

Remark 2.8. This transformation may in general introduce a slightly more gen-
eral class of labelled Petri nets with multiple arcs (see e.g. [148]) since the
process constant X in E and G can have multiple occurrences. Nevertheless,
all the constructions presented in this thesis rely only on the model of P/T nets
without multiple arcs.

Example 2.16. Let us consider the following system

∆ def= {Y a−→ X, X||X ′ b−→ Y ||Y ′, Y ′ a−→ X ′}

where Const(∆) def= {X,X ′, Y, Y ′} and Act(∆) def= {a, b}. The system ∆ corre-
sponds to a labelled Petri net

N
def=

({X,X ′, Y, Y ′}, {t
Y

a−→Y ′ , tX||X′ b−→Y ||Y ′ , tY ′ a−→X′}, F,Act(∆), λ
)

where λ(t
Y

a−→Y ′)
def= a, λ(t

X||X′ b−→Y ||Y ′)
def= b and λ(t

Y ′ a−→X′)
def= a. The flow

relation F is given by the standard graphical notation.

GFED@ABCX

""E
EE

EE
EE

EE
E

GFED@ABCX ′

||yy
yy

yy
yy

yy

a

<<yyyyyyyyyy
b

||yy
yy

yy
yy

yy

""E
EE

EE
EE

EE
E a

bbEEEEEEEEEE

GFED@ABCY

bbEEEEEEEEEE GFED@ABCY ′

<<yyyyyyyyyy



2.6. Bibliographical Remarks 61

2.5.7 PAD, PAN and PRS Processes

The systems PAD, PAN and PRS correspond to (S ,G)-PRS, (P ,G)-PRS and
(G,G)-PRS, respectively. These classes complete the hierarchy of process rewrite
systems and were introduced by Mayr [126].

The PAD class is the smallest common generalization of PA and PDA [123]
and PAN is a combination of the models PA and PN [121]. The most general
class PRS was introduced in [122] and it subsumes all the previously mentioned
classes. Nevertheless, even the PRS model preserves some interesting properties
with regard to automatic verification techniques: it is not Turing powerful and
some problems such as reachability remain decidable [126].

2.6 Bibliographical Remarks

In this chapter we introduced the basic notation and definitions used in the
thesis. We aimed to define separately the notion of labelled transition systems
(together with the notion of a process, strong/weak bisimilarity and regularity)
and the notion of process rewrite systems (PRS) as a finite description for
certain classes of infinite-state transition systems. The choice of PRS is justified
by several arguments. First of all we think that PRS as introduced in [126]
provide elegant and succinct process definitions. The key features are uniformity
of the description and sufficient generality. This in particular means that all
the infinite-state systems studied in this thesis can be defined as a subclass of
PRS and a uniform treatment of these formalisms is guaranteed.

Moreover, since the strongest notion of behavioural equivalence considered
for the systems is strong bisimilarity, the PRS classes correspond naturally to
the well studied classes from other hierarchies introduced before — see [40, 137,
34]. Taking into account the earlier definitions of BPA and BPP using CCS like
syntax, our definitions of these classes using process rewrite systems correspond
more or less to the original definitions of BPA and BPP given in Greibach
normal form (GNF). It is a well known fact that BPA and BPP systems can
be described (up to strong bisimilarity) in GNF (see [81, 13, 10, 77, 42]). This
gives a certain regime for using action prefixing and nondeterministic choice,
while it still preserves the descriptive power of the systems. Hence the classes
of original process algebras and the classes introduced in the PRS-hierarchy are
equivalent up to strong bisimilarity.

Another issue this thesis heavily relies on is the game-theoretic character-
ization of strong and weak bisimilarity. Probably the best sources for these
kinds of considerations are [190] and [183]. Bisimulation checking is reduced
to finding winning strategies for the players in the bisimulation game. This in
general provides more transparent description of proofs and of the ideas behind
them, and moreover it supports a clear intuitive understanding of the nature of
bisimilarity.





Chapter 3

Unlabelled Transition Systems

In this chapter we discuss the role of labels in transition systems. We suggest a
general reduction from labelled transition systems to unlabelled ones, preserving
strong (and hence also weak) bisimilarity. We apply the reduction to the class of
transition systems generated by Petri nets and pushdown processes, and obtain
several decidability/complexity corollaries for unlabelled systems. Probably the
most interesting result is undecidability of strong bisimilarity for unlabelled
Petri nets.

3.1 Motivation

As shown in Section 2.1, it is possible to define bisimilarity checking prob-
lems irrespective of the concrete syntax of the considered process algebra. The
mathematical structure of labelled transition systems is sufficient to provide
definitions of strong and weak bisimilarity. Hence it appears essential to study
in more detail this notion of transition systems as it provides semantics to e.g.
all the formalisms considered in this thesis.

In this chapter we focus in particular on the role of labels. There are two
aspects of the branching structure described by a labelled transition system.
First, given a state of a labelled transition system, there can be several outgoing
edges with different labels — Figure 3.1 a). Second, given a state and a label,
there can be several outgoing edges under the label — Figure 3.1 b). We claim
that for our purposes only the second property is the essential one.

In other words, given a labelled transition system, we can construct another
transition system where all edges are labelled by the same label, i.e., where the
labels become irrelevant. We call such systems unlabelled transition systems.
What is important is the fact that our construction preserves the answer to the
question of strong (and weak) bisimilarity.

In order to demonstrate usefulness of the transformation we will present
two applications. First for the class of Petri nets and then also for pushdown
processes. Petri nets are a typical example of a fully parallel model of computa-
tion, whereas pushdown processes can model sequential stack-like behaviours.
Both Petri nets and pushdown systems generate (in general infinite) labelled
transition systems. The question is whether the transformed unlabelled transi-

63



64 Chapter 3. Unlabelled Transition Systems

•
a

����
��

��
��

��

b

��

c

��;
;;

;;
;;

;;
; •

a

����
��

��
��

��

a

��

a

��;
;;

;;
;;

;;
;

• • • • • •

a) b)

Figure 3.1: Two aspects of branching in labelled transition systems

tion systems (given by the construction mentioned in the previous paragraph)
are still definable by the formalism of Petri nets resp. pushdown systems. The
answer is shown to be positive for both our models — there are even polynomial
time transformations. This implies several decidability/complexity results for
bisimilarity checking of unlabelled Petri nets and pushdown processes.

Probably the most interesting corollary is the application of the transfor-
mation to Petri nets. We can conclude that strong bisimilarity for unlabelled
Petri nets (where the set of labels is a singleton set) is undecidable. This is a
stronger result than undecidability of strong bisimilarity for labelled Petri nets
given by Jančar [90] where labelling of arcs is essential. The undecidability
theorem for unlabelled Petri nets contrasts to a positive decidability result of
strong bisimilarity for a subclass of Petri nets which are deterministic — for
any marking M and a label a there is at most one outgoing transition from M
labelled by a. In fact there is even a stronger result showing that strong bisim-
ilarity is decidable for Petri nets which are deterministic up to bisimilarity [90],
i.e., F-deterministic nets of Vogler [201]. This again demonstrates that the role
of labels is not important for decidability questions and what is crucial is the
branching structure induced by transitions with the same label.

In the end of this chapter we briefly discuss possible applications of the
transformation to BPA and BPP. Unfortunately, it is sketched that these models
— unlike Petri nets and pushdown systems — are not strong enough to express
deadlock behaviour which is essential for the transformation. In other words,
the corresponding unlabelled transition system of a given BPA (BPP) transition
graph is not necessarily definable in the BPA (BPP) syntax. Nevertheless, we
still think that at least for the case of BPA our approach might bring some
merits e.g. in connection with improving 2-EXPTIME [35] complexity upper
bound of strong bisimilarity checking.

3.2 From Labelled to Unlabelled Transition Systems

In this section we present a transformation from labelled transition systems to
unlabelled ones while preserving strong bisimilarity.

Let us first define the notion of unlabelled transition systems.



3.2. From Labelled to Unlabelled Transition Systems 65

/. -,() *+s a ///. -,() *+s′

⇓

/. -,() *+dns . . .oo /. -,() *+d0
s

oo /. -,() *+d0
s′

// . . . ///. -,() *+dns′

/. -,() *+s

OO

///. -,() *+r0(s,a,s′) //

��

/. -,() *+s′

OO

/. -,() *+r1(s,a,s′) ///. -,() *+r2(s,a,s′) // . . . . . . ///. -,() *+ra(s,a,s′)

Figure 3.2: Transformation of a transition s
a−→ s′

Definition 3.1 (Unlabelled transition system).
Let T = (S,Act,−→) be a labelled transition system. We call T unlabelled
transition system whenever Act is a singleton set, i.e., |Act| = 1.

Remark 3.1. If it is the case that |Act| = 1 then we simply write −→ instead
of a−→. We also omit the second component in the definition of a labelled
transition system, i.e., we can denote an unlabelled transition system simply
by T = (S,−→) where −→⊆ S × S.

Let T = (S,Act,−→) be a labelled transition system. We define a trans-
formed unlabelled transition system T̂

def= (Ŝ,−→). We reuse the relation sym-
bol −→ without causing confusion since in the system T it is a ternary relation
and in T̂ it is a binary relation. Without loss of generality we can assume that
Act = {1, 2, . . . , n} for some n > 0. We define the system T̂ = (Ŝ,−→) as
follows:

Ŝ
def= S ∪ {rk(s,a,s′) | 0 ≤ k ≤ a ∧ s

a−→ s′} ∪
{dks | s ∈ S ∧ 0 ≤ k ≤ n}

−→ def= {(s, r0(s,a,s′)), (r0(s,a,s′), s
′) | s a−→ s′} ∪

{(rk(s,a,s′), rk+1
(s,a,s′)) | s

a−→ s′ ∧ 0 ≤ k < a} ∪
{(s, d0

s) | s ∈ S} ∪
{(dks , dk+1

s ) | s ∈ S ∧ 0 ≤ k < n}.

For a better understanding of the transformation take a look at Figure 3.2
where a way how to transform a transition s a−→ s′ is drawn. The idea consists
in splitting each transition s

a−→ s′ labelled by a ∈ N0 with an intermediate
state (the r0(s,a,s′) state) out of which goes a newly added linear path of length
a. The ds states add a linear path of length n + 1 to each state from S and
serve for distinguishing the r-states from the original ones.

Remark 3.2. Notice that if T is a finite-state system then the size of T̂ is
polynomially bounded by the size of T . In fact, we could add only one linear



66 Chapter 3. Unlabelled Transition Systems

path of length n + 1 with appropriate links into the path from the states in S
and the r0-states. However, for technical convenience in Section 3.3, we use the
previously described construction.

Our aim is to show that for a pair of states s1 and s2 from the labelled
transition system T it holds that (s1, T ) ∼ (s2, T ) if and only if (s1, T̂ ) ∼ (s2, T̂ ).

Let T = (S,Act,−→) be a labelled transition system and let s ∈ S. We
define a set of finite norms of s by

N (s) def= {|w| | ∃s′ ∈ S : s w−→ s′ 6−→}

where |w| is the length of w.
The following proposition is a standard one.

Proposition 3.1. Let T = (S,Act,−→) be a labelled transition system and
let s1, s2 ∈ S. Then (s1, T ) ∼ (s2, T ) implies that N (s1) = N (s2).

Lemma 3.1. Let T = (S,Act,−→) be a labelled transition system and s1, s2 ∈
S be a pair of states. If (s1, T ) ∼ (s2, T ) then (s1, T̂ ) ∼ (s2, T̂ ).

Proof. Suppose that the defender has a winning strategy in T starting from the
pair s1 and s2. We show that the defender in T̂ has also a winning strategy
starting from the pair s1 and s2. Any attacker’s move in T̂ of the form si −→ d0

si

(for i ∈ {1, 2}) can be matched by the defender’s move s3−i −→ d0
s3−i

. The
states d0

s1 and d0
s2 are trivially bisimilar. Let the attacker’s move in T̂ be

si −→ r0(si,a,s′i)
for some i ∈ {1, 2}. Of course, the following attacker’s move is

possible in T as well: si
a−→ s′i. Let the defender’s answer to this move in T be

s3−i
a−→ s′3−i such that

(s′1, T ) ∼ (s′2, T ). (3.1)

The defender’s response in T̂ is then s3−i −→ r0(s3−i,a,s′3−i)
. Now the game

in T̂ continues from the states r0(s1,a,s′1) and r0(s2,a,s′2)
. Given an i ∈ {1, 2},

only two transitions are possible from r0(si,a,s′i)
. Either the attacker can choose

r0(si,a,s′i)
−→ s′i or r0(si,a,s′i)

−→ r1(si,a,s′i)
. If he chooses the second option then

he looses since the defender answers by r0(s3−i,a,s′3−i)
−→ r1(s3−i,a,s′3−i)

and the

states r1(s1,a,s′1) and r1(s2,a,s′2) are easily seen to be strongly bisimilar. Should the
attacker’s choice be r0(si,a,s′i)

−→ s′i then the defender’s answer is r0(s3−i,a,s′3−i)
−→

s′3−i. Since s′1, s
′
2 ∈ S and the defender in T has a winning strategy from these

states because of (3.1), we have established a winning strategy for the defender
in T̂ . 2

Before showing the other implication, we prove the following property.

Property 3.1. The attacker in T̂ has a winning strategy from any pair of states
s1, s2 ∈ Ŝ such that s1 6∈ S and s2 ∈ S, or s1 ∈ S and s2 6∈ S.

Proof. Assume w.l.o.g. that s1 6∈ S and s2 ∈ S. The other case is symmetric.
There are several possibilities for s1 6∈ S.



3.3. Applications 67

• Let s1 = dks for some s ∈ S and 0 ≤ k ≤ n, or s1 = rk(s,a,s′) for some
s, s′ ∈ S, a ∈ Act and 0 < k ≤ a. In both cases n + 1 6∈ N (s1) and
n + 1 ∈ N (s2). Because of Proposition 3.1 we get (s1, T̂ ) 6∼ (s2, T̂ ) and
the attacker in T̂ has a winning strategy.

• Let s1 = r0(s,a,s′) for some s, s′ ∈ S and a ∈ Act. Now the attacker has the

following winning strategy in T̂ . He makes the move r0(s,a,s′) −→ r1(s,a,s′).

Assume a defender’s answer s2 −→ s′2 for an arbitrary s′2 ∈ Ŝ. Obviously
either n ∈ N (s′2) or n+2 ∈ N (s′2). On the other hand max [N (r1(s,a,s′))] <
n. Again, using Proposition 3.1, the attacker has a winning strategy.

2

Lemma 3.2. Let T = (S,Act,−→) be a labelled transition system and s1, s2 ∈
S be a pair of states. If (s1, T̂ ) ∼ (s2, T̂ ) then (s1, T ) ∼ (s2, T ).

Proof. Knowing that the defender has a winning strategy in T̂ from s1 and s2,
we establish a winning strategy for the defender in T from s1 and s2. Suppose
that the attacker’s move in T is si

a−→ s′i for some i ∈ {1, 2}. Then it is
possible to perform a series of two moves si −→ r0(si,a,s′i)

−→ s′i in T̂ . Because

of Property 3.1, the defender in T̂ has a response to these two moves only by
performing s3−i −→ r0(s3−i,b,s′3−i)

−→ s′3−i for some b ∈ Act and s′3−i ∈ S where

(s′1, T̂ ) ∼ (s′2, T̂ ). (3.2)

Notice that a = b, otherwise the attacker has a winning strategy in T̂ from
r0(si,a,s′i)

and r0(s3−i,b,s′3−i)
by performing the move r0(si,a,s′i)

−→ r1(si,a,s′i)
. Using

Property 3.1, the defender must answer by r0(s3−i,b,s′3−i)
−→ r1(s3−i,b,s′3−i)

. How-

ever, the attacker has a winning strategy now since a − 1 ∈ N (r1(si,a,s′i)
) and

a − 1 6∈ N (r1(s3−i,b,s′3−i)
) whenever a 6= b — Proposition 3.1. This implies that

the defender in T can perform s3−i
a−→ s′3−i and because of (3.2), the defender

in T has a winning strategy from s′1 and s′2. Hence (s1, T ) ∼ (s2, T ). 2

We can now state the main theorem of this section.

Theorem 3.1. Let T = (S,Act,−→) be a labelled transition system and let
s1, s2 ∈ S be a pair of states. Let T̂ be the corresponding unlabelled transition
system. Then

(s1, T ) ∼ (s2, T ) if and only if (s1, T̂ ) ∼ (s2, T̂ ).

Proof. From Lemma 3.1 and Lemma 3.2. 2

3.3 Applications

In this section we show that Theorem 3.1 successfully applies to bisimilarity
checking of many infinite-state systems. We have to prove that the class of



68 Chapter 3. Unlabelled Transition Systems

transition systems generated by a given model is closed under the transforma-
tion from labelled to unlabelled systems as presented in the previous section.
We will focus in particular on a typical representative of parallel models —
Petri nets — and sequential processes — pushdown systems.

First of all, note the fact that our transformation works immediately for
finite-state processes.

Corollary 3.1. Let T = (S,Act,−→) be a finite-state labelled transition sys-
tem, i.e., |S|, |Act| < ∞. There is a polynomial time reduction from strong
bisimilarity checking problem for T to strong bisimilarity checking problem for
T̂ , where T̂ is an unlabelled (and finite-state) transition system.

Proof. Immediately from Theorem 3.1. 2

Remark 3.3. We remind the reader of the fact that the transformation from
labelled to unlabelled transition systems does not only preserve the answer
to strong bisimilarity. It moreover preserves the property of being strongly
regular: a process in a labelled transition system is strongly regular iff the
corresponding unlabelled process is strongly regular. This fact follows easily
from our construction.

3.3.1 Petri Nets

In this section we show that the class of transition systems generated by la-
belled Petri nets is closed under the transformation from labelled to unlabelled
systems.

Definition 3.2 (Unlabelled Petri net).
A labelled Petri net N = (P, T, F,Act, λ) is called unlabelled Petri net whenever
|Act| = 1.

Remark 3.4. Whenever |Act| = 1, let us say Act = {a}, we can omit Act and
λ from the definition of the net N and instead of M a−→M ′ in T (N) we simply
write M −→M ′. The net then generates an unlabelled transition system T (N).

Let N = (P, T, F,Act, λ) be a labelled Petri net. Without loss of generality
assume that Act = {1, . . . , n} for some n > 0. We construct an unlabelled Petri
net N ′ = (P ′, T ′, F ′) and a mapping ψ : [P → N0] → [P ′ → N0] from markings
in N to markings in N ′ such that ̂T (N)M1 and T (N ′)ψ(M1) are isomorphic
unlabelled transition systems for any marking M1 of N . Let us recall that

̂T (N)M1 is the unlabelled transition system restricted to markings reachable
from M1 and T (N ′)ψ(M1) is restricted to markings reachable from ψ(M1) — see
Definition 2.3. The net N ′ is defined as follows:



3.3. Applications 69

ONMLHIJKp1

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY ONMLHIJKq1

... t

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYY ...

ONMLHIJKpk1

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ONMLHIJKqk2

⇓

l0 //ONMLHIJKd0 // l1 // . . . //ONMLHIJKdn

ONMLHIJKp1

++VVVVVVVVVVVVVVVVVVVV ONMLHIJKpc

xxqqqqqqqqq

kkVVVVVVVVVVVVVVVVVVVV ONMLHIJKq1

... tin //ONMLHIJKp0
t

//

��

tout

44hhhhhhhhhhhhhhhhhhh

++VVVVVVVVVVVVVVVVVVV

ffMMMMMMMMM
...

ONMLHIJKpk1

33hhhhhhhhhhhhhhhhhhhh
l0t

sshhhhhhhhhhhhhhhhhhhh ONMLHIJKqk2

ONMLHIJKp1
t

// l1t
//ONMLHIJKp2

t
// · · · //ONMLHIJKp

λ(t)
t

Figure 3.3: Transformation of a transition t

P ′ def= P ∪ {pkt | t ∈ T ∧ 0 ≤ k ≤ λ(t)} ∪ {pc} ∪ {dk | 0 ≤ k ≤ n}

T ′ def= {tin, tout | t ∈ T} ∪ {lkt | t ∈ T ∧ 0 ≤ k < λ(t)} ∪ {lk | 0 ≤ k ≤ n}

F ′ def= {(p, tin) | (p, t) ∈ F} ∪ {(tout, p) | (t, p) ∈ F} ∪
{(tin, p0

t ), (p0
t , t

out) | t ∈ T} ∪
{(pkt , lkt ), (lkt , pk+1

t ) | t ∈ T ∧ 0 ≤ k < λ(t)} ∪
{(pc, tin), (tout, pc) | t ∈ T} ∪
{(pc, l0)} ∪ {(lk, dk), (dk, lk+1) | 0 ≤ k < n} ∪ {(ln, dn)}.

In this construction each transition t with input places p1, . . . , pk1 and out-
put places q1, . . . , qk2 is transformed into a set of transitions shown in Figure 3.3.

Now, we give the mapping ψ. Let M ∈ [P → N0]. Then ψ(M) : P ′ → N0 is
defined by

ψ(M)(p) def=


1 if p = pc

M(p) if p ∈ P
0 otherwise.

Lemma 3.3. LetN = (P, T, F,L, λ) be a labelled Petri net andN ′ = (P ′, T ′, F ′)
the unlabelled Petri net defined above. Then ̂T (N)M1 and T (N ′)ψ(M1) are iso-
morphic unlabelled transition systems for any M1 ∈ [P → N0].



70 Chapter 3. Unlabelled Transition Systems

Proof. Assume that ̂T (N)M1 = (S1,−→1) and T (N ′)ψ(M1) = (S2,−→2). Recall
that S1 ⊆ [P → N0] ∪ {rk(M,λ(t),M ′) | M [t〉M ′ ∧ 0 ≤ k ≤ λ(t)} ∪ {dkM | M ∈
[P → N0] ∧ 0 ≤ k ≤ n} and S2 ⊆ [P ′ → N0]. We define a mapping f : S1 → S2

by

f(s1)
def=


ψ(s1) if s1 ∈ [P → N0]
M if s1 = rk(M,λ(t),M ′) such that M [t〉M ′

M if s1 = dkM such that M ∈ [P → N0]

where

M(p) def=


M(p) if p ∈ P r •t
M(p)− 1 if p ∈ •t
1 if p = pkt
0 otherwise

and M(p) def=


M(p) if p ∈ P
1 if p = dk

0 otherwise.

Let s1 −→1 s
′
1 for some s1, s′1 ∈ S1. It can be easily seen that f(s1) −→2 f(s′1).

On the other hand, let M2 −→2 M
′
2 and M2 = f(s1) for some s1 ∈ S1 and

M2,M
′
2 ∈ S2. Then there exists s′1 ∈ S1 such that M ′

2 = f(s′1) and s1 −→1 s
′
1.

Also note that f is injective. Hence, ̂T (N)M1 and T (N ′)ψ(M1) are isomorphic
unlabelled transition systems. 2

Theorem 3.2. Let N be a labelled Petri net and M1,M2 a pair of markings
in N . There is a polynomial time reduction producing an unlabelled Petri net
N ′ and a pair of markings ψ(M1), ψ(M2) in N ′ such that

(M1,N) ∼ (M2,N) if and only if (ψ(M1),N ′) ∼ (ψ(M2,N
′).

Proof. Directly from Lemma 3.3 and Theorem 3.1. 2

Since the strong bisimilarity checking problem for labelled Petri nets is
undecidable [90], we obtain the following undecidability result for unlabelled
Petri nets.

Corollary 3.2. Strong bisimilarity checking problem for unlabelled Petri nets
is undecidable.

Remark 3.5. We mentioned this corollary explicitly because we consider it to be
of a special interest. However, all other undecidability and lower bound results
for (unnormed) Petri nets (see Chapter 8) hold also for unlabelled Petri nets.

3.3.2 Pushdown Processes

In this section we show that the class of PDA transition systems is closed under
the transformation from labelled to unlabelled systems.

Let ∆ be a PDA system where Q is a set of the control states, Γ is the stack
alphabet, Act is the set of actions and ∆ ⊆ Q× Γ×Act×Q× Γ∗.



3.3. Applications 71

Definition 3.3 (Unlabelled pushdown system).
A pushdown system ∆ is called unlabelled whenever |Act| = 1.

Remark 3.6. Whenever |Act| = 1, let us say Act = {a}, we can omit Act from
the definition of a pushdown system ∆ and instead of pA a−→ qα we simply
write pA −→ qα assuming that ∆ ⊆ Q× Γ×Q× Γ∗.

Our aim is to transform a pushdown system ∆ into an unlabelled pushdown
system ∆′ such that strong bisimilarity is preserved. For technical convenience,
we assume from now on (in this chapter) that Γ contains a distinct “dummy”
symbol Z such that pZ 6−→ for any p ∈ Q. Then trivially

(p1β1,∆) ∼ (p2β2,∆) if and only if (p1β1Z,∆) ∼ (p2β2Z,∆) (3.3)

for any p1, p2 ∈ Q and β1, β2 ∈ Γ∗. In particular, all states reachable from pβZ
are of the form qβ′Z where q ∈ Q and β′ ∈ Γ∗.

Let ∆ be a pushdown system with control states Q, stack alphabet Γ and
the set of actions Act. Without loss of generality assume that Act = {1, . . . , n}
for some n > 0. Moreover let Z ∈ Γ be the “dummy” stack symbol.

We will construct an unlabelled pushdown system ∆′ with control states Q
and stack alphabet Γ′ where Γ ⊆ Γ′ such that ̂T (∆)p1α1Z and T (∆′)p1α1Z are
isomorphic unlabelled transition systems for any p1 ∈ Q and α1 ∈ Γ∗. Again,
see Definition 2.3 for the notation of transition systems restricted to reachable
states from p1α1Z. The definitions of Γ′ and ∆′ are as follows:

Γ′ def= Γ ∪ {Xk
(pA,a,qα) | (pA

a−→ qα) ∈ ∆ ∧ 0 ≤ k ≤ a} ∪
{Dk | 0 ≤ k ≤ n}

∆′ def= {(p,A, p,X0
(pA,a,qα)), (p,X0

(pA,a,qα), q, α) | (pA a−→ qα) ∈ ∆} ∪
{(p,Xk

(pA,a,qα), p,X
k+1
(pA,a,qα)) | (pA

a−→ qα) ∈ ∆ ∧ 0 ≤ k < a} ∪
{(p,A, p,D0A) | p ∈ Q ∧ A ∈ Γ} ∪
{(p,Dk, p,Dk+1) | p ∈ Q ∧ 0 ≤ k < n}.

Notice that in particular pXa
(pA,a,qα)βZ 6−→ and pDnβZ 6−→ for any β ∈ Γ′∗.

Graphical representation showing the transformation of pAβZ a−→ qαβZ where
β ∈ Γ∗ and (pA a−→ qα) ∈ ∆ can be seen in Figure 3.4.

Lemma 3.4. Let ∆ be a pushdown system and let ∆′ be the unlabelled push-
down system defined above. Then ̂T (∆)p1α1Z and T (∆′)p1α1Z are isomorphic
unlabelled transition systems for any p1 ∈ Q and α1 ∈ Γ∗.

Proof. Immediately from the construction. Notice that it is important that any
reachable state in T (∆′)p1α1Z ends with Z. In particular, from any state of the
form pβZ where p ∈ Q and β ∈ Γ∗ (even if β = ε) the following transition is
possible in T (∆′): pβZ −→ pD0βZ. 2

Theorem 3.3. Let ∆ be a pushdown system and p1β1, p2β2 a pair of states in
T (∆). There is a polynomial time reduction producing an unlabelled pushdown
system ∆′ (containing the “dummy” stack symbol Z) such that

(p1β1,∆) ∼ (p2β2,∆) if and only if (p1β1Z,∆′) ∼ (p2β2Z,∆′).



72 Chapter 3. Unlabelled Transition Systems

pAβZ
a // qαβZ

⇓

pDnAβZ pD0AβZoo qD0αβZ // qDnαβZ

pAβZ

OO

//pX0
(pA,a,qα)βZ //

��

qαβZ

OO

pX1
(pA,a,qα)βZ //pX2

(pA,a,qα)βZ //pXa
(pA,a,qα)βZ

Figure 3.4: Transformation of a transition pAβZ
a−→ qαβZ

Proof. Directly from Lemma 3.4 together with (3.3), and from Theorem 3.1. 2

Since weak bisimilarity checking problem of pushdown processes is undecid-
able (see Chapter 7), we get the following corollary.

Corollary 3.3. Weak bisimilarity of unlabelled pushdown processes is unde-
cidable.

Remark 3.7. We mentioned explicitly only one corollary which we consider to
be of a special interest. However, all other undecidability and lower bound
results for (unnormed) pushdown systems (see e.g. Chapter 8) hold also for
unlabelled pushdown systems.

3.4 Concluding Remarks

By imposing a special restriction on the number of control states of a pushdown
system to be a singleton set, let us say Q def= {p}, we obtain a BPA system with
deadlocks (see Subsection 2.5.2). The class of BPA systems with deadlocks is
called BPAδ in this section.

In the context of single-state PDA systems a deadlock δ is a stack symbol
which has no defining equation, i.e., pδ 6−→. The class of labelled transition
systems generated by BPAδ is strictly more expressive (w.r.t. strong bisimilar-
ity) than the BPA class without such deadlocks [169]. Observe that the BPAδ

class is closed under the transformation from labelled transition systems to un-
labelled ones — the number of control states of a pushdown system ∆ is the
same as the number of control states of the transformed unlabelled pushdown
system ∆′.

However, the BPA class (without deadlocks) is not closed under the trans-
formation: let Const(∆) def= {A}, Act(∆) def= {a, b} and let ∆ be a BPA system
such that

∆ def= {A a−→ A.A, A
b−→ ε}.



3.5. Bibliographical Remarks 73

The minimal norm of any state from T̂ (∆) is less or equal to 3 where 3 =
|{a, b}| + 1. Moreover (Ak, T̂ (∆)) 6∼ (Ak

′
, T̂ (∆)) for any k, k′ ∈ N0 such that

k 6= k′. On the other hand there are only finitely many (even on the syntactical
level) states with the minimal norm less or equal to 3 in any BPA system
without deadlocks. Hence (A, T̂ (∆)) cannot be bisimilar to any BPA system.

Similarly the BPP class is not closed under the transformation — it is
enough to replace in our system ∆ the sequential composition with the parallel
one. This demonstrates that process algebras BPA (without deadlocks) and
BPP are not strong enough to describe deadlock behaviour which is essential
for our reduction.

On the other hand, the strong bisimilarity checking problem for BPA is in
2-EXPTIME [35] and it is known to be PSPACE-hard (see Chapter 6). In order
to prove the containment of the problem in some lower complexity class (e.g. in
PSPACE), it is enough to demonstrate a decision algorithm (running with the
corresponding complexity) for unlabelled BPAδ systems where moreover from
any reachable state a deadlocked state (starting with δ) can be reached. In other
words (using a construction from [169]) it is enough to show it for unnormed
BPA systems in a very restricted form: there is a distinguished process constant
D such that D d−→ D for a distinguished action d (this is the only rewrite rule
for D and this is the only place where the action d appears); every other rewrite
rule is under a single action a and moreover from any reachable state there is
a computation which ends in some state starting with D.

3.5 Bibliographical Remarks

This chapter is based on the paper “On the Power of Labels in Transition Sys-
tems” [171] (more precisely on the extended version of the paper [172]). In
addition to the results about strong bisimilarity, the paper [171] also contains
discussion about unlabelled transition systems with regard to model checking
problems. In particular, it is shown that the presented transformation preserves
the answers to checking system properties with modal µ-calculus and its sublog-
ics like Hennessy-Milner logic, EF-logic, EG-logic, UB and CTL. This means
that given a process (s, T ) where T is a labelled transition system, and given a
formula φ from one of the mentioned logics we can construct φ̂ (a formula from
the same logic as φ) such that T, s |= φ if and only if T̂ , s |= φ̂, where T̂ is the
unlabelled transition system defined in this chapter.





Chapter 4

Extending Tableau Technique for BPP

In this chapter we define a class of transition systems called effective commuta-
tive transition systems (ECTS) and show, by generalising a tableau-based proof
for BPP, that strong bisimilarity between any two states of such a transition
system is decidable. This gives a general technique for extending decidability
borders of strong bisimilarity for a wide class of infinite-state transition systems.
This is demonstrated for several process formalisms, namely BPP systems, lossy
BPP processes, BPP processes with interrupt and timed-arc BPP nets.

4.1 Motivation

Semantics to various formalisms for description of infinite-state processes is
usually given in terms of labelled transition systems. This provides a common
ground for studying such systems, and the usually considered problems like
model checking and equivalence checking can be defined purely in terms of
labelled transition systems (see Chapter 2). In this chapter we show a general
approach for extending decidability borders of strong bisimilarity checking for
commutative-based process formalisms.

It is known that strong bisimilarity is undecidable for a typical represen-
tative of fully parallel models — Petri nets [90]. Nevertheless, in [42, 43]
Christensen, Hirshfeld and Moller proved (using a tableau technique) that
strong bisimilarity is decidable for an important fragment of Petri nets called
communication-free Petri nets (this fragment was introduced as BPP systems in
Chapter 2). For a detailed overview of the tableau techniques consult e.g. [97].

We will abstract from the specific BPP syntax and generalize the tableau
proof to a class of transition systems called effective commutative transition
systems (ECTS). We give six simple conditions on a transition system to be
an ECTS and if all of them are satisfied then strong bisimilarity between any
two states of the transition system is decidable. There is no need to know the
syntactic description of the system. Moreover, the generalisation is achieved in
several ways: (i) states can be tuples of bounded multisets of natural numbers
and not only tuples of natural numbers, (ii) we do not insist on a specific
computation of successors of a given state — any effectively computable and
finite set of successors is acceptable, and (iii) an auxiliary equivalence relation

75



76 Chapter 4. Extending Tableau Technique for BPP

on states is introduced in order to check invariants of bisimilar pairs.
Semantics of many formalisms can be defined as an ECTS and this yields

immediately decidability of strong bisimilarity. We will demonstrate this on
four examples — BPP process algebra, lossy BPP processes, BPP systems with
interrupt and timed-arc BPP nets — thus extending in several ways the known
decidability border-line which lies somewhere between BPP systems and state-
extended BPP systems (state-extended BPP systems, also called PPDA, are a
strict subclass of Petri nets where strong bisimilarity is still undecidable [34,
97]).

4.2 Preliminary Definitions

Let N0 = {0, 1, . . .} be the set of natural numbers. A multiset of N0 is a function
M : N0 → N0. Let i ∈ N0, then M(i) denotes the number of occurrences of
i in the multiset M . The empty multiset ∅ is a function such that ∅(i) = 0
for all i ∈ N0. The multiset union of two multisets M1 and M2 is defined
by (M1 ]M2)(i) = M1(i) + M2(i) for all i ∈ N0. By B∞ we denote the set
of all multisets of N0. Let m ∈ N0. We define a set Bm of all multisets of
{0, 1, . . . ,m}, i.e., M ∈ Bm iff M ∈ B∞ and M(i) = 0 for all i ∈ N0 such that
i > m. We call a multiset M ∈ B∞ finite if there is some m ∈ N0 such that
M ∈ Bm.

Remark 4.1. For finite multisets we sometimes use an alternative set-like no-
tation: e.g. a multiset {0, 1, 1, 4, 4, 4} is the same as a multiset M such that
M(0) = 1, M(1) = 2, M(4) = 3 and M(i) = 0 for i ∈ N0 r {0, 1, 4}.
Definition 4.1. Let M,N ∈ Bm. We write M ≺` N iff there is k, 0 ≤ k ≤ m,
such that M(k) < N(k) and M(i) = N(i) for all i, 0 ≤ i < k.

The following proposition follows from the definition.

Proposition 4.1. Let M,N ∈ Bm. Then M 6= N implies that either M ≺` N
or N ≺` M .

Definition 4.2. Let M,N ∈ Bm. We write M �c N iff M(i) ≤ N(i) for every
i, 1 ≤ i ≤ m, i.e., iff there is M ′ ∈ Bm such that N = M ]M ′.

Let m,n ∈ N0 and n > 0. We define a structure S = (Bnm,⊕, ∅n) where Bnm
is a set of n-tuples of elements from Bm. Let α = (M1,M2, . . . ,Mn) ∈ Bnm and
β = (N1,N2, . . . ,Nn) ∈ Bnm, then α ⊕ β = (M1 ] N1,M2 ] N2, . . . ,Mn ] Nn).
Of course, α ⊕ β ∈ Bnm. The structure S is a commutative monoid. If α ∈ Bnm
then αi, 1 ≤ i ≤ n, is the i’th coordinate of α. We introduce two orderings on
Bnm.

Definition 4.3. Let α, β ∈ Bnm, then

α <` β iff there is k, 1 ≤ k ≤ n, such that
αk ≺` βk and αi = βi for every i, 1 ≤ i < k

α ≤c β iff αi �c βi for every i, 1 ≤ i ≤ n.



4.2. Preliminary Definitions 77

Observe that <` is a well-founded ordering (there is no infinite sequence
α1, α2, . . . such that α1 >` α2 >` . . .) since ≺` is well-founded. Moreover for
any α 6= β either α <` β or β <` α. Also notice that α ≤c β iff there is α′ ∈ Bnm
such that β = α ⊕ α′. We write α <c β iff α ≤c β and α 6= β. The following
lemma is a simple generalisation of Dickson’s Lemma [54].

Lemma 4.1. Every infinite sequence of elements from Bnm has an infinite non-
decreasing subsequence w.r.t. ≤c.

Now we extend the notion of labelled transition systems introduced is Chap-
ter 2 with an equivalence relation in order to check invariants during strong
bisimulation game. This means that a necessary condition for two states to
be strongly bisimilar is that they are related by the equivalence relation. The
definition of strong bisimilarity is then also appropriately generalized.

Definition 4.4 (Generalized labelled transition system).
A (generalized) labelled transition system is a 4-tuple (S,Act,−→, Eqv) where

• S is a set of states (or processes),

• Act is a set of labels (or actions),

• −→⊆ S ×Act× S is a transition relation, and

• Eqv ⊆ S × S is an equivalence relation on states.

Remark 4.2. Our definition of labelled transition systems is a generalisation of
labelled transition systems with final states — see the overview papers [137]
and [34]. Let F ⊆ S be a set of final states. In order to recover the definition
from [137, 34] we define (α, β) ∈ Eqv iff α ∈ F and β ∈ F , or α 6∈ F and β 6∈ F .

Definition 4.5 (Generalized strong bisimilarity).
Let T = (S,Act,−→, Eqv) be a labelled transition system. A binary relation
R ⊆ S × S is a (generalized) strong bisimulation iff whenever (α, β) ∈ R then
for each a ∈ Act:

• if α a−→ α′ then β a−→ β′ for some β′ such that (α′, β′) ∈ R
• if β a−→ β′ then α a−→ α′ for some α′ such that (α′, β′) ∈ R
• (α, β) ∈ Eqv.
States α, β ∈ S are strongly bisimilar, written (α, T ) ∼ (β, T ), iff (α, β) ∈ R

for some strong bisimulation R. If T is clear from the context, we write only
α ∼ β instead of (α, T ) ∼ (β, T ).

In this chapter we will also need the notion of bisimulation approxima-
tions [135].

Definition 4.6. Let T = (S,Act,−→, Eqv) be a labelled transition system.
The stratified bisimulation relations ∼k⊆ S × S for k ∈ N0 are defined as
follows:



78 Chapter 4. Extending Tableau Technique for BPP

• α ∼0 β for all α, β ∈ S such that (α, β) ∈ Eqv, i.e., ∼0= Eqv
• α ∼k+1 β iff for each a ∈ Act:

– if α a−→ α′ then β a−→ β′ for some β′ such that α′ ∼k β′
– if β a−→ β′ then α a−→ α′ for some α′ such that α′ ∼k β′
– (α, β) ∈ Eqv.

Remark 4.3. We remind the reader of the fact that ∼k is an equivalence relation
for every k ∈ N0.

Given a labelled transition system T = (S,Act,−→, Eqv) we define the
set next(α, a) def= {β ∈ S | α a−→ β} for α ∈ S and a ∈ Act. We also de-
fine next(α, ∗) def=

⋃
a∈Act next(α, a). The system T is image-finite iff the set

next(α, a) is finite for every α ∈ S and a ∈ Act. The following proposition is a
standard one.

Proposition 4.2. Let T = (S,Act,−→, Eqv) be an image-finite labelled tran-
sition system and α, β ∈ S. Then α ∼ β if and only if α ∼k β for all k ∈ N0.

Example 4.1. We demonstrate that image-finiteness of T is a necessary con-
dition for validity of Proposition 4.2. Let us consider a transition system
T

def= (S,Act,−→, S×S) where S
def= {s, t, t′} ∪ {ui | i ∈ N0}, Act

def= {a}
and −→ is given by

ui+1
a−→ ui for all i ∈ N0

s
a−→ ui for all i ∈ N0

t
a−→ ui for all i ∈ N0

t
a−→ t′ t′ a−→ t′.

A fragment of T is presented in the following picture. Observe that T is not
image-finite since e.g. next(s, a) = {ui | i ∈ N0} is not a finite set.

s

a

��

a

##F
FF

FF
FF

FF
FF

FF

a

))SSSSSSSSSSSSSSSSSSSSSSSS

a

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

t′
a ##

u0 u1
aoo u2

aoo u3
aoo · · ·aoo

t

a

ccFFFFFFFFFFFFF

a

OO

a

;;xxxxxxxxxxxxx

a

55kkkkkkkkkkkkkkkkkkkkkkkk

a

33gggggggggggggggggggggggggggggggggggg

It is now easy to see that s ∼k t for all k ∈ N0 but still s 6∼ t.

4.3 The Method

In this section we introduce the class of effective commutative transition systems
and show that strong bisimilarity is decidable for any pair of processes from this
class.



4.3. The Method 79

Definition 4.7 (Effective commutative transition system). A labelled
transition system T = (S,Act,−→, Eqv) is an effective commutative transition
system (ECTS) iff there exist n,m ∈ N0, n > 0 such that the following condi-
tions are satisfied:

(1) S = Bnm,

(2) Act is a finite set,

(3) given α, β ∈ S it is decidable whether (α, β) ∈ Eqv,
(4) next(α, a) is effectively constructible for every α ∈ Bnm and a ∈ Act,

(5) T is image-finite, i.e., next(α, a) is finite for every α ∈ Bnm and a ∈ Act,

(6) stratified bisimulation relations ∼k are congruences on (Bnm,⊕, ∅n) for all
k ∈ N0, i.e., if α ∼k β then (α⊕ γ) ∼k (β ⊕ γ) for every α, β, γ ∈ Bnm.

Since any ECTS is image-finite (5), the fact that ∼k are congruences (6)
together with Proposition 4.2 implies:

(6’) if α ∼ β then (α⊕ γ) ∼ (β ⊕ γ) for every α, β, γ ∈ Bnm.

We can now state the main theorem of this chapter.

Theorem 4.1 (Decidability of strong bisimilarity for ECTS).
Let T = (Bnm,Act,−→, Eqv) be an ECTS. Given A,B ∈ Bnm, it is decidable
whether (A,T ) ∼ (B,T ).

Proof. The proof is by tableau-technique and it is a generalisation of the tableau-
based proof used by Christensen, Hirshfeld and Moller in order to demonstrate
decidability of strong bisimilarity for BPP [42, 43].

A tableau for (A,B) ∈ B2n
m is a maximal proof tree rooted with (A,B) and

built according to the following rules. Let (α, β) be a node in the tree. The
node (α, β) is either terminal (leaf) or nonterminal. The following nodes are
terminal:

• (α,α) is a successful leaf for any α ∈ Bnm (note that always (α,α) ∈ Eqv),
• (α, β) is a successful leaf if next(α, ∗) ∪ next(β, ∗) = ∅ and (α, β) ∈ Eqv,
• (α, β) is an unsuccessful leaf if for some a ∈ Act it is the case that

next(α, a) ∪ next(β, a) 6= ∅, and either next(α, a) = ∅ or next(β, a) = ∅,
• (α, β) is an unsuccessful leaf if (α, β) 6∈ Eqv.

We say that a node is an ancestor of (α, β) if it is on the path from the root to
(α, β) and at least one application of the rule EXPAND (defined later) separates
them. If (α, β) is not a leaf then we reduce it using the following RED rules as
long as possible.

REDL
(α, β)

(γ ⊕ ω, β)
if there is an ancestor (γ, δ) or (δ, γ) of (α, β) such
that γ <` δ and α = δ ⊕ ω for some ω ∈ Bnm



80 Chapter 4. Extending Tableau Technique for BPP

REDR
(α, β)

(α, γ ⊕ ω)
if there is an ancestor (γ, δ) or (δ, γ) of (α, β) such
that γ <` δ and β = δ ⊕ ω for some ω ∈ Bnm

If no other reduction RED is applicable and the resulting node is not a leaf,
we apply the rule EXPAND for a set of relations Sa, a ∈ Act, where Sa ⊆
next(α, a) × next(β, a) such that ∀α′ ∈ next(α, a).∃β′ ∈ next(β, a). (α′, β′) ∈ Sa
and ∀β′ ∈ next(β, a).∃α′ ∈ next(α, a). (α′, β′) ∈ Sa.

EXPAND
(α, β)

{(α′, β′) | a ∈ Act ∧ (α′, β′) ∈ Sa}

The set notation used in the rule EXPAND means that each element (α′, β′)
in the conclusion of the rule becomes a new child in the proof tree. Now, we
start again applying the RED-rules to every child which is not a leaf as long as
possible. Note that reduction rules are applicable to a node iff the node is not
a terminal one.

Lemma 4.2. Any tableau for (A,B) is finite and there are only finitely many
tableaux.

Proof. Observe that any tableau for (A,B) is finitely branching because of the
assumption (5) and the condition that Act is finite (2), which implies that for a
given a ∈ Act any relation Sa is finite and there are finitely many such relations.
Should the tableau be infinite, there is an infinite branch which gives an infinite
sequence of vectors from B2n

m . Since the rules RED can be used only finitely
many times in a sequence (they decrease the <` order, which is well founded),
there must be an infinite subsequence of vectors on which the rule EXPAND was
applied. Using Lemma 4.1, this sequence must contain an infinite nondecreasing
subsequence p1 ≤c p2 ≤c . . .. However, the rule EXPAND cannot be applied
on p2 since one of the rules RED is applicable. This is a contradiction.

Since there are only finitely many relations Sa (where a ∈ Act) available for
the EXPAND rule and finitely many possibilities for applications of the RED
rules, there are always finitely many possibilities how to extend already existing
partial tableau. Suppose that there are infinitely many tableaux starting from
(A,B). Then there must be a tableau for (A,B) with an infinite branch, which
contradicts that every tableau is finite. 2

We call a tableau for (A,B) successful if it is maximal (no further rules are
applicable) and all its leaves are successful.

Lemma 4.3 (Completeness). If A ∼ B then there is a successful tableau for
(A,B).

Proof. We shall construct a tableau from the root (A,B) such that every node
(α, β) in the tableau satisfies α ∼ β. Hence this tableau cannot contain any
unsuccessful leaf and it must be finite because of Lemma 4.2. Suppose that
(α, β) is already a node in the tableau such that α ∼ β and consider the rule
REDL applied on (α, β). We may assume that γ ∼ δ, which means using (6’)
that (γ ⊕ ω) ∼ (δ ⊕ ω) = α ∼ β. Hence (γ ⊕ ω) ∼ β. Similarly for REDR.
From the definition of ∼ follows that the rule EXPAND is also forward sound,



4.4. Applications 81

i.e., if α ∼ β then we can choose for every a ∈ Act a relation Sa such that
(α′, β′) ∈ Sa implies that α′ ∼ β′. 2

Lemma 4.4 (Soundness). If there is a successful tableau for (A,B) then
A ∼ B.

Proof. For the sake of contradiction assume that there is a successful tableau
for (A,B) and A 6∼ B. We will show that we can construct a path from the
root (A,B) to some leaf such that for any pair (α, β) on this path α 6∼ β.

If A 6∼ B then using Proposition 4.2 there is a minimal k such that A 6∼k B.
Notice that if α 6∼k β such that k is minimal and we apply the rule EXPAND
on (α, β), then at least one of its children (α′, β′) satisfies that α′ 6∼k−1 β

′. We
choose such a child to extend our path from the root.

If we apply REDL on (α, β) where α 6∼k β and k is minimal, then the cor-
responding ancestor (γ, δ) is separated by at least one application of EXPAND
and so γ ∼k δ. This implies that (γ ⊕ω) 6∼k β, otherwise using the assumption
(6) we get that α = (δ ⊕ ω) ∼k (γ ⊕ ω) ∼k β, which is a contradiction with
α 6∼k β. The same is true for REDR. Thus there must be a path from the root
(A,B) to some leaf such that for any pair (α, β) on this path α 6∼ β. This is a
contradiction with the fact that the path contains a successful leaf. 2

We proved that it is decidable whether A ∼ B, since it is the case iff there
is a successful tableau for (A,B). There are only finitely many tableaux and
all of them are finite, moreover the conditions (3) and (4) ensure that they are
effectively constructible. 2

4.4 Applications

In this section we consider several specific classes of commutative transition
systems. We study in particular BPP and lossy BPP processes, interrupt BPP
systems and timed-arc BPP nets.

4.4.1 BPP and Deadlock-Sensitive BPP

It is a well known fact that strong bisimilarity is decidable for BPP [42, 43].
As our first application we reprove this result in a slightly more general way.
Let us consider a BPP system ∆ (as defined in Chapter 2). In addition let us
recall that P(Const(∆)) is the set of parallel process expressions over Const(∆),
and that ≡ is the structural congruence over P(Const(∆)) as introduced in
Definition 2.10. Given a process expression E by [E]≡ we denote the equivalence
class represented by E, and P(Const(∆))/≡ stands for the set of ≡-equivalence
classes of parallel process expressions over Const(∆).

We extend now the notion of T (∆), i.e., of the transition system generated
by ∆, by defining the equivalence relation Eqv (in what follows we explicitly
treat the states of T (∆) as equivalence classes w.r.t. ≡).



82 Chapter 4. Extending Tableau Technique for BPP

There are two possibilities for defining the equivalence relation Eqv. In the
usual setting

Eqv def= (P(Const(∆))/≡)× (P(Const(∆))/≡)

is the universal relation (thus it is in fact unused) and this is the notion of
ordinary BPP systems. Another possibility is to define Eqv by

Eqv def= {(E,F ) ∈ (P(Const(∆))/≡)×(P(Const(∆))/≡) | E = [ε]≡ iff F = [ε]≡}.

We call this class deadlock-sensitive BPP. A study of strict (deadlock-sensitive)
and nonstrict (deadlock-nonsensitive) bisimilarity for a sequential analogue of
BPP — Basic Process Algebra (BPA) — is provided in [169].

Example 4.2. Let us consider a BPP system

∆ def= {X a−→ ε, Y
a−→ Z}.

Obviously (X,∆) and (Y,∆) are strongly bisimilar when ∆ is interpreted as or-
dinary (deadlock-nonsensitive) BPP. When ∆ is considered as deadlock-sensitive,
(X,∆) and (Y,∆) are not strongly bisimilar any more since Z is a deadlock and
it is not bisimilar to the empty process ‘ε’.

We show that given a BPP system ∆, we can interpret its semantics as a
commutative transition system such that states are elements of Bn−1 = B1

n−1

where n = |Const(∆)|. Because of the structural congruence ≡, any process ex-
pression E over Const(∆) can be written as a vector of n natural numbers. Sup-
pose a fixed ordering on Const(∆) = {X0,X1, . . . ,Xn−1}. Then the correspond-
ing vector contains on i’th coordinate the number of occurrences of the process
constant Xi in E. Formally, we define a mapping φ : P(Const(∆)) → B1

n−1 by

φ(ε) def= ∅
φ(Xi)

def= M such that M(i) = 1 and M(j) = 0 for j 6= i

φ(E1||E2)
def= φ(E1)⊕ φ(E2).

The following proposition is an easy observation.

Proposition 4.3. Let ∆ be a BPP system and E,F ∈ P(Const(∆)). Then
E ≡ F iff φ(E) = φ(F ).

Hence any rule (X a−→ E) ∈ ∆ can be represented by φ(X) a−→ φ(E). The
system ∆, where n = |Const(∆)|, generates a commutative labelled transition
system T c(∆) def= (B1

n−1,Act(∆),−→, Eqv), where α a−→ β iff there exists a rule
(X a−→ E) ∈ ∆ such that α = φ(X)⊕ ω and β = φ(E)⊕ ω for some ω ∈ B1

n−1.
The relation Eqv for BPP and deadlock-sensitive BPP is defined in the same
fashion as above, i.e., Eqv def= B1

n−1 × B1
n−1 or Eqv def= {(α, β) ∈ B1

n−1 × B1
n−1 |

α = ∅ iff β = ∅}.



4.4. Applications 83

Example 4.3. Let us consider the following system ∆ where Const(∆) def=
{X0,X1,X2} and Act(∆) def= {a, b, c}.

X0
a−→ X0||X1||X2||X1, X0

a−→ ε, X1
b−→ ε, X2

c−→ ε

Then n = 3 and e.g. φ(X0) = {0}, φ(X0||X1||X2||X1) = {0, 1, 1, 2} and φ(ε) = ∅.
A sequence of transitions

X0
a−→ X0||X1||X2||X1

a−→ X0||X1||X2||X1||X1||X2||X1
b−→

X0||X2||X1||X1||X2||X1
c−→ X0||X1||X1||X2||X1

has a straightforward analogue in B1
2:

{0} a−→ {0, 1, 1, 2} a−→ {0, 1, 1, 1, 1, 2, 2} b−→

{0, 1, 1, 1, 2, 2} c−→ {0, 1, 1, 1, 2}.

Obviously, T (∆) and T c(∆) are isomorphic labelled transition systems. We
can now apply Theorem 4.1 in order to show that strong bisimilarity for BPP
is decidable.

Theorem 4.2. Given a BPP system ∆ (or a deadlock-sensitive BPP system ∆)
and a pair of processes (P1,∆) and (P2,∆), it is decidable whether (P1,∆) ∼
(P2,∆).

Proof. It can be easily verified that T c(∆) defined above is an ECTS. Since
T (∆) and T c(∆) are isomorphic labelled transition systems, we can use Theo-
rem 4.1. 2

4.4.2 Lossy BPP

The notion of unreliability, in particular lossiness, has been intensively studied
with a number of interesting results. Let us mention e.g. models like lossy
channel systems [1] or lossy vector addition systems [27, 127]. Lossy BPP
systems were studied in [127] in the context of model checking problems. In
lossy BPP we allow process constants disappear spontaneously at any time. We
give a formal definition of lossy BPP systems first.

A lossy BPP system ∆ is defined as an ordinary BPP system. Only the
semantics to ∆ is given in a different way: a lossy BPP system ∆ determines a
labelled transition system T (∆) def= (P(Const(∆))/≡,Act(∆)∪{drop},−→, Eqv)
where states are ≡-equivalence classes of process expressions over Const(∆),
Act(∆) ∪ {drop} is the set of labels with a distinguished label drop 6∈ Act(∆)
modelling lossiness, the transition relation −→ is defined by the SOS rules in
Figure 4.1 (we slightly abuse the notation and write only E instead of [E]≡) and
Eqv for lossy BPP can be defined as in the case of BPP — deadlock sensitive
or deadlock nonsensitive.



84 Chapter 4. Extending Tableau Technique for BPP

(X a−→ E) ∈ ∆

X
a−→ E

E
a−→ E′

E||F a−→ E′||F E
drop−→ F

if ∃F ′6=ε s.t. E = F ||F ′

Figure 4.1: SOS rules for lossy BPP

Example 4.4. Let ∆ be the following lossy BPP system such that Const(∆) def=
{X0} and Act(∆) def= {a, b}.

X0
a−→ X0||X0, X0

b−→ ε

Then X0 −→∗ Xk
0 for any k ∈ N0 where X0

0
def= ε and Xk+1

0
def= X0||Xk

0 . Also,

Xk
0
drop−→ Xk′

0 for any k′, 0 ≤ k′ < k, in particular, Xk
0
drop−→ ε and ε 6−→. This

means that any reachable state in (X0,∆) has norm at most 1. Moreover,
Xk

0 6∼ Xk′
0 for any k 6= k′. Hence there cannot be any BPP process bisimilar

to X0 (there are only finitely many strongly nonbisimilar BPP states of norm
less or equal to 1). On the other hand this property in general disallows to find
a bisimilar lossy BPP process for a given BPP process. Thus the classes BPP
and lossy BPP are, as expected, incomparable w.r.t. strong bisimilarity.

We are now ready to define semantics of lossy BPP in terms of commutative
transition systems, similarly as for BPP. Let ∆ be a lossy BPP system, where
n = |Const(∆)|. By T c(∆) def= (B1

n−1,Act(∆) ∪ {drop},−→, Eqv) we denote
a commutative transition system, where α a−→ β iff either (i) there is a rule
(X a−→ E) ∈ ∆ such that α = φ(X)⊕ ω and β = φ(E)⊕ ω for some ω ∈ B1

n−1,
or (ii) β <c α and a = drop. The relation Eqv for lossy BPP can be defined in
the same fashion as above (deadlock sensitive or deadlock nonsensitive).

Obviously, T (∆) and T c(∆) are isomorphic labelled transition systems. This
implies the following theorem for lossy BPP systems.

Theorem 4.3. Given a lossy BPP system ∆ (either deadlock sensitive or dead-
lock nonsensitive) and a pair of processes (P1,∆) and (P2,∆), it is decidable
whether (P1,∆) ∼ (P2,∆).

Proof. We show that T c(∆) is an ECTS and then we use Theorem 4.1 and the
isomorphism between T (∆) and T c(∆).

To verify conditions (1) – (5) of Definition 4.7 is easy. Let us now examine
the condition (6). Assume that α ∼k β and let γ ∈ B1

n−1. By induction on k
we show that also α⊕ γ ∼k β ⊕ γ.
Base case: If k = 0 then it is enough to show that if (α, β) ∈ Eqv then also
(α⊕ γ, β ⊕ γ) ∈ Eqv. This is true for both deadlock sensitive and nonsensitive
Eqv.
Inductive step: Let k > 0 and α ∼k β. Of course, (α ⊕ γ, β ⊕ γ) ∈ Eqv.
We will analyse the transitions from α ⊕ γ only (the arguments for β ⊕ γ are
symmetric).



4.4. Applications 85

Let α ⊕ γ
a−→ κ and a 6= drop. Then either κ = α′ ⊕ γ and α

a−→ α′, or
κ = α ⊕ γ′ and γ

a−→ γ′. In the first case, because of our assumption that
α ∼k β, also β a−→ β′ such that α′ ∼k−1 β

′. Thus β ⊕ γ
a−→ β′ ⊕ γ and using

the induction hypothesis α′⊕ γ ∼k−1 β
′⊕ γ. The second case where κ = α⊕ γ′

is analogical.

Let α ⊕ γ
drop−→ κ. Then κ = α′ ⊕ γ′ such that α′ ≤c α and γ′ ≤c γ, and

α′ ⊕ γ′ <c α ⊕ γ. If α′ = α then β ⊕ γ
drop−→ β ⊕ γ′ and using the induction

hypothesis and the fact that α ∼k−1 β we get that α ⊕ γ′ ∼k−1 β ⊕ γ′. Let

α <c α
′. Since α ∼k β and α

drop−→ α′, also β
drop−→ β′ such that α′ ∼k−1 β

′.
Hence β ⊕ γ

drop−→ β′ ⊕ γ′ and using the induction hypothesis we know that
α′ ⊕ γ′ ∼k−1 β

′ ⊕ γ′. 2

4.4.3 Interrupt BPP

In this subsection we investigate mode transfer operators in BPP systems, in
particular the interrupt operator. Quoting [9]:“A useful feature in programming
languages and specification languages is the ability to denote mode switches.
In particular, most languages have means to describe the disrupt and interrupt
of the normal execution of a system.” Various mode transfer operators were
considered in the literature [16, 9, 22, 49, 55]. We define interrupt BPP systems
that extend the pure BPP systems with an interrupt vector and a mechanism
for handling the interrupt. The motivation is that every state is annotated with
a set of allowed interrupts and if no interrupt appears, a normal execution of
the process is performed. At any time an interrupt can be raised by performing
the action int. A normal execution of the process is interrupted and the raised
interrupt is handled. During this all interrupts are disallowed. After the inter-
rupt handling has been completed, the action iret is performed and a normal
execution of the interrupted process continues.

Formally, an interrupt BPP system ∆ is a pair (∆1,∆2) such that ∆1 is a
finite set ∆1 ⊆ Const×Act×P × 2Const(∆2) and ∆2 is a BPP system, where
P is the class of parallel process expressions over Const and 2Const(∆2) is the
powerset of Const(∆2). We write (X a−→ E, enable) for (X,a,E, enable) ∈ ∆1.
By Const(∆1) we denote the set of process constants that occur in the first and
the third component of ∆1.

An interrupt system ∆ = (∆1,∆2) determines a labelled transition system
T (∆) def= (S,Act,−→, Eqvu) such that

S
def=

(P(Const(∆1))/≡
)× 2Const(∆2) × {0, 1} × (P(Const(∆2))/≡

)
Act

def= Act(∆1) ∪Act(∆2) ∪ {int, iret}
where states are 4-tuples (E1, IV, IF,E2) such that E1 is a BPP process, IV is
an interrupt vector, IF is an interrupt flag (0 means normal execution and 1
means interrupt call) and E2 is ε if IF = 0 or it contains the interrupt handling
process in case IF = 1. We assume that int, iret 6∈ Act(∆1) ∪ Act(∆2). The
SOS rules for −→ are defined in Figure 4.2 (E again represents [E]≡ and ‘||’



86 Chapter 4. Extending Tableau Technique for BPP

(X a−→ E1, enable) ∈ ∆1

(X, IV, 0, ε) a−→ (E1, IV ∪ enable, 0, ε)
(E1, IV, 0, ε)

a−→ (E′1, IV ′, 0, ε)
(E1||F1, IV, 0, ε)

a−→ (E′1||F1, IV
′, 0, ε)

X ∈ IV
(E1, IV, 0, ε)

int−→ (E1, IV, 1,X) (E1, IV, 1, ε)
iret−→ (E1, IV, 0, ε)

(X a−→ E2) ∈ ∆2

(E1, IV, 1,X) a−→ (E1, IV, 1, E2)

(E1, IV, 1, E2)
a−→ (E1, IV, 1, E′2)

(E1, IV, 1, E2||F2)
a−→ (E1, IV, 1, E′2||F2)

Figure 4.2: SOS rules for interrupt BPP

is commutative) and for the sake of simplicity let us assume that Eqvu is the
universal relation on states.

Example 4.5. Let ∆ def=({
(X0

a−→ X0||X0, {Y0}), (X0
b−→ ε, {Y1})

}
,

{
Y0

c−→ ε, Y1
d−→ Y1

})
.

Consider the initial state (X0, ∅, 0, ε). Then the following sequence of transitions
is possible in T (∆):

(X0, ∅, 0, ε) a−→ (X0||X0, {Y0}, 0, ε) b−→ (X0, {Y0, Y1}, 0, ε) int−→

(X0, {Y0, Y1}, 1, Y0)
c−→ (X0, {Y0, Y1}, 1, ε) iret−→ (X0, {Y0, Y1}, 0, ε) int−→

(X0, {Y0, Y1}, 1, Y1)
d−→ (X0, {Y0, Y1}, 1, Y1)

d−→ · · · .
It is an easy observation that there is no BPP process strongly bisimilar to the
initial state (X0, ∅, 0, ε) of T (∆) — we use similar arguments as in Example 4.4.

We remind the reader of the fact that for any BPP system we can find a
bisimilar interrupt BPP system simply by disallowing interrupts at all — we
define enable = ∅ in every rule of the BPP system. Hence the class of interrupt
BPP is strictly more expressive (w.r.t. strong bisimilarity) than the class of
BPP.

We demonstrate now how to give an alternative semantics in terms of a
commutative transition system T c(∆). The idea is that a normal process ex-
ecution is simulated one-to-one, and the interrupt calls are checked using the
relation Eqv — thus there are no actions int and iret. Let ∆ = (∆1,∆2)
be an interrupt BPP system such that Const(∆1) = {X0, . . . ,Xn1−1} and
Const(∆2) = {Y0, . . . , Yn2−1}. In what follows we denote by T (∆2) the dead-
lock sensitive transition system generated by the BPP system ∆2. Since strong
bisimilarity in T (∆2) is decidable (Theorem 4.2), we may assume w.l.o.g. that
(Yi,∆2) 6∼ (Yj ,∆2) for all i, j such that 0 ≤ i < j ≤ n2 − 1. Let n def=
max{n1 − 1, n2 − 1}.



4.4. Applications 87

We define T c(∆) def= (B2
n,Act(∆1)∪Act(∆2),−→, Eqv). The intuition is that

in the first component of a state (M,N) ∈ B2
n we remember a BPP expression

of normal process execution and in the second component we remember the
interrupt vector IV in the following sense: N(i) = 0 if Yi 6∈ IV , and N(i) > 0 if
Yi ∈ IV . For α = (M,N) ∈ B2

n, let IV (α) def= {Yi | 0 ≤ i ≤ n2 − 1 ∧ N(i) > 0}
and let cut(α) def= (M,N ′) ∈ B2

n such that

N ′(i) def=

{
0 if N(i) = 0
1 if N(i) > 0

for all i ∈ N0. We define

α = (M,N) a−→ (M ′,N ′) = α′

iff (E, IV (α), 0, ε) a−→ (E′, IV (α′), 0, ε) such that a 6∈ {int, iret}, φ(E) = M ,
φ(E′) = M ′, and cut(α′) = α′. The last condition (cut(α′) = α′) ensures that
T c(∆) becomes image-finite. Finally we define Eqv as such a relation that for
states α, β ∈ B2

n: (α, β) ∈ Eqv iff IV (α) = IV (β).
The following property is an immediate consequence of the definition.

Property 4.1. Let α ∈ B2
n. Then (α, T c(∆)) ∼ (cut(α), T c(∆)).

Proposition 4.4. Let ∆ = (∆1,∆2) be an interrupt BPP system. For any
E,F ∈ P(Const(∆1)) it holds that (E, ∅, 0, ε) ∼ (F, ∅, 0, ε) in T (∆) if and only
if (φ(E), ∅) ∼ (φ(F ), ∅) in T c(∆).

Proof. It is obvious that any transition under a where a 6∈ {int, iret} in T (∆)
can be simulated naturally in the system T c(∆) and vice versa. An interrupt call
in T (∆) is checked using the relation Eqv and whenever (α, β) 6∈ Eqv in T c(∆)
then we can distinguish the corresponding states in T (∆) by an appropriate
interrupt call. 2

We can now present the following theorem for interrupt BPP.

Theorem 4.4. Given an interrupt BPP process rewrite system ∆ and a pair
of states (E, ∅, 0, ε) and (F, ∅, 0, ε) in T (∆), it is decidable whether (E, ∅, 0, ε) ∼
(F, ∅, 0, ε).
Proof. Because of Proposition 4.4 it is enough to show that T c(∆) is an ECTS
and then we use Theorem 4.1. The validity of conditions (1) – (5) of Defini-
tion 4.7 is straightforward. Remains to verify condition (6). Let α ∼k β and
γ ∈ B2

n. We show that α⊕ γ ∼k β ⊕ γ. We proceed by induction on k.
Base case: If k = 0 then it is enough to show that if (α, β) ∈ Eqv then also
(α⊕ γ, β ⊕ γ) ∈ Eqv. This is trivially true.
Inductive step: Let k > 0 and α ∼k β. Of course, (α ⊕ γ, β ⊕ γ) ∈ Eqv.
We will analyse the transitions from α ⊕ γ only (the arguments for β ⊕ γ are
symmetric).

Let α⊕γ a−→ κ. Then either κ = cut(α′⊕γ) and α a−→ α′, or κ = cut(α⊕γ′)
and γ

a−→ γ′. In the first case, because of our assumption that α ∼k β, also



88 Chapter 4. Extending Tableau Technique for BPP

β
a−→ β′ such that α′ ∼k−1 β′. Hence β ⊕ γ

a−→ cut(β′ ⊕ γ). Using the
induction hypothesis we get α′⊕γ ∼k−1 β

′⊕γ and by Property 4.1 this implies
that cut(α′ ⊕ γ) ∼k−1 cut(β′ ⊕ γ). The second case where κ = cut(α ⊕ γ′) is
similar. 2

Remark 4.4. We used BPP processes for interrupt handling (the system ∆2).
In fact, any process algebra where strong bisimilarity is decidable can be used.

4.4.4 Timed-Arc BPP

In this subsection we shall establish decidability of strong bisimilarity for a time
extension of BPP systems, called timed-arc BPP.

It is worth mentioning other positive results for timed BPP. The authors
in [20] show that performance equivalence (a version of timed bisimilarity) is
decidable in polynomial time for BPP systems where actions have certain time
durations. However, their definition of timed BPP does not allow to interpret
ordinary BPP systems as timed ones since a duration of an action cannot be
equal to 0 and must be strictly positive. Recently Lasota in [115] further ex-
tended this result in such a way that his notion of timed BPP subsumes the
version with strictly positive time durations and even plain BPP systems. He
proved that strong bisimilarity remains decidable. Our notion of time in BPP
is, however, different from timed BPP used by Lasota, and it is inspired by
a well studied model of timed-arc Petri nets. We define timed-arc BPP as a
natural subclass of timed-arc Petri nets where time (age) is associated to tokens
and transitions are labelled by time intervals which restrict the age of tokens
available for firing a transition (see e.g. [25, 67]). Our definition implies that
timed-arc BPP are a strict extension (w.r.t. strong bisimilarity) of ordinary
BPP systems, as it is demonstrated later.

First, we introduce labelled timed-arc Petri nets, following definitions from
[159] and then we define timed-arc BPP as its subclass where each transition
has exactly one input place. A labelled timed-arc Petri net (LTAPN) is a tuple
N = (P, T, F, c, L, λ,Σ), where

• P is a finite set of places,

• T is a finite set of transitions such that T ∩ P = ∅,
• F ⊆ (P × T ) ∪ (T × P ) is a flow relation,

• c : F |P×T → N0 × (N0 ∪ {∞}) is a time constraint on transitions such
that for each arc (p, t) ∈ F holds that t1 ≤ t2 where c(p, t) = (t1, t2),

• L is a finite set of labels (actions),

• λ : T → L is a labelling function, and

• Σ ⊆ N0 is a recursive set of allowed time-elapsing steps.

Let x ∈ N0 and c(p, t) = (t1, t2). We write x ∈ c(p, t) whenever t1 ≤ x ≤ t2.
We also define •t = {p | (p, t) ∈ F} and t• = {p | (t, p) ∈ F}. A marking is a



4.4. Applications 89

function M : P → B where B denotes the set of all finite multisets on N0. Each
place is thus assigned a certain number of tokens, and each token is annotated
with a natural number (age). Let x ∈ B and a ∈ N0. We define x <+ a such
that we add the value a to every element of x, i.e., x <+ a = {b+ a | b ∈ x}.

Let us now define the dynamics of LTAPNs. We introduce two types of tran-
sition rules: firing of a transition and time-elapsing. LetN = (P, T, F, c, L, λ,Σ)
be a LTAPN, M a marking and t ∈ T . We say that t is enabled in M iff

∀p ∈ •t. ∃x ∈M(p). x ∈ c(p, t).
If t is enabled in M then it can be fired, producing a marking M ′ (written
M [t〉M ′) such that

∀p ∈ P. M ′(p) =
(
M(p) r C−(p, t)

)
∪ C+(t, p)

where C− and C+ are chosen to satisfy the following equations (note that there
may be more possibilities and that all the operations are on multisets):

C−(p, t) =
{ {x} such that x ∈M(p) and x ∈ c(p, t) if p ∈ •t

∅ otherwise

C+(t, p) =
{ {0} if p ∈ t•

∅ otherwise.

Note that the tokens added to places t• are of age 0. We define also time-elapsing
transitions τk, k ∈ Σ, as follows:

M [τk〉M ′ iff ∀p ∈ P. M ′(p) = M(p)<+ k.

Let N = (P, T, F, c, L, λ,Σ) be a LTAPN. We define the corresponding la-
belled transition system T (N) def= ([P → B], L∪ {τk | k ∈ Σ},−→, Eqvu), where
states are markings of N , actions are labels from L together with symbols for
time-elapsing, and M

a−→ M ′ iff either M [t〉M ′ and a = λ(t), or M [τk〉M ′

and a = τk for some k ∈ Σ. For simplicity we define Eqvu to be the universal
relation.

Definition 4.8 (Timed-arc BPP).
A timed-arc BPP is a LTAPN (P, T, F, c, L, λ,Σ) such that |•t| = 1 for all t ∈ T .

Example 4.6. Consider a timed-arc BPP net

N
def= ({p1, p2}, {t1, t2}, F, c, {a, b}, λ, {1})

where F , c and λ are defined in Figure 4.3. Names of places (circles) are p1 and
p2 (from left to right) and names of transitions (squares) are t1 and t2 (from
left to right) such that λ(t1) = a and λ(t2) = b. Notice that •t1 = {p1} and
•t2 = {p2}, so the net is indeed a timed-arc BPP net. Let ({0}, ∅) be an initial
marking — since |P | = 2 we can identify any marking M : P → B with a pair
(M(p1),M(p2)). Now e.g.

({0}, ∅) a−→ ({0}, {0}) a−→ ({0}, {0, 0}) b−→



90 Chapter 4. Extending Tableau Technique for BPP

ONMLHIJK0
[0,0]

++
akk //ONMLHIJK [0,0] // b

Figure 4.3: A timed-arc BPP net N

({0}, {0}) τ1−→ ({1}, {1}) τ1−→ ({2}, {2}) τ1−→ . . . .

Using similar arguments as in Example 4.4, there cannot be any BPP process
bisimilar to the initial marking. On the other hand, for any BPP process there
is a timed-arc BPP net bisimilar to it — we use the fact that any BPP process
can alternatively be viewed as a Petri net where |•t| = 1 for every transition t

and then we define all the time constrains as [0,∞] and set Σ def= ∅. So the class
of timed-arc BPP is strictly more expressive (w.r.t. strong bisimilarity) than
the BPP class.

Assuming a fixed ordering on P = {p1, . . . , pn}, there is a natural one-to-
one correspondence between [P → B] and Bn. Let M : P → B then we define
(N1, . . . ,Nn) ∈ Bn by Ni = M(pi) for 1 ≤ i ≤ n and vice versa. In what follows
we freely interchange these equivalent notations.

The system T (N) is almost an ECTS. There are only two problems:

• states are not elements from Bnm for some fixed m ∈ N0 and

• the set of actions can be infinite.

The following arguments show how to avoid these problems.

Definition 4.9. Let N = (P, T, F, c, L, λ,Σ) be a LTAPN. We define its max-
imal guard mg(N) ∈ N0 as the maximal time constraint that appears in N ,
i.e.,

mg(N) def= max
(
{t1, t2 | ∃f ∈ F |P×T . c(f) = (t1, t2)}r {∞}

)
.

Let M ∈ [P → B]. We define a compression of M , CM ∈ [P → Bmg(N)+1], by

CM (p)(k) def=


M(p)(k) if k < mg(N) + 1∑∞

i=mg(N)+1M(p)(i) if k = mg(N) + 1
0 if k > mg(N) + 1.

Lemma 4.5. Let N = (P, T, F, c, L, λ,Σ) be a LTAPN and M1,M2 ∈ [P → B].
If CM1 = CM2 then (M1, T (N)) ∼ (M2, T (N)).

Proof. It is a routine exercise to verify that

R
def= {(M1,M2) ∈ [P → B]× [P → B] | CM1 = CM2}

is a strong bisimulation. 2

Let N = (P, T, F, c, L, λ,Σ) be a LTAPN. By m we denote the number
mg(N)+1. We define a commutative transition system T c(N) = (Bnm, L∪{τk |



4.5. Concluding Remarks 91

k ∈ Σ ∧ k < m} ∪ Tm,−→, Eqvu) where Tm = {τm} if there is k ∈ Σ such
that k ≥ m, otherwise Tm = ∅ (note that the construction of Tm is effective
since Σ is a recursive set). We define M a−→ M ′ for M,M ′ ∈ Bnm iff either (i)
M [t〉M ′ and a = λ(t), or (ii) M [τk〉M ′′ where m > k ∈ Σ or τk ∈ Tm, such that
M ′ = CM ′′ and a = τk.

Proposition 4.5. Let N be a LTAPN and M1,M2 a pair of markings in N .
Then (M1, T (N)) ∼ (M2, T (N)) if and only if (CM1 , T

c(N)) ∼ (CM2 , T
c(N)).

Proof. From Lemma 4.5. Also note that in T (N) for any k ≥ m = mg(N) + 1
holds that if M τm−→M ′ and M τk−→M ′′, then CM ′ = CM ′′ . 2

We are now ready to show decidability of strong bisimilarity for timed-arc
BPP nets.

Theorem 4.5. Given a timed-arc BPP net N = (P, T, F, c, L, λ,Σ) and a pair
of markings M1,M2 on N , it is decidable whether (M1, T (N)) ∼ (M2, T (N)).

Proof. By Proposition 4.5 it is enough to prove that T c(N) is an ECTS. To
verify conditions (1) – (5) of Definition 4.7 is easy. Let us now examine the
condition (6). Let α ∼k β and γ ∈ Bnm. We show that α ⊕ γ ∼k β ⊕ γ. We
proceed by induction on k.
Base case: If k = 0 then it is enough to show that if (α, β) ∈ Eqvu then also
(α⊕ γ, β ⊕ γ) ∈ Eqvu. This is trivially true.
Inductive step: Let k > 0 and α ∼k β. Of course, (α ⊕ γ, β ⊕ γ) ∈ Eqvu.
We will analyse the transitions from α ⊕ γ only (the arguments for β ⊕ γ are
symmetric).

Let α ⊕ γ
a−→ κ such that a 6= τl for l ∈ N0. Then either κ = α′ ⊕ γ and

α
a−→ α′, or κ = α⊕γ′ and γ a−→ γ′. (Note that there are not more possibilities

since |•t| = 1 for any t ∈ T .) In the first case, because of our assumption that
α ∼k β, also β

a−→ β′ such that α′ ∼k−1 β
′. Hence β ⊕ γ

a−→ β′ ⊕ γ. Using
the induction hypothesis we get α′ ⊕ γ ∼k−1 β

′ ⊕ γ. The second case where
κ = α⊕ γ′ is similar.

Let α ⊕ γ
τl−→ α′ ⊕ γ′ for some l, m ≥ l. Of course, α τl−→ α′ and since

α ∼k β also β
τl−→ β′ such that α′ ∼k−1 β

′. Hence β ⊕ γ
τl−→ β′ ⊕ γ′ and using

the induction hypothesis we get α′ ⊕ γ′ ∼k−1 β
′ ⊕ γ′. 2

Remark 4.5. It remains an open problem whether strong bisimilarity is decid-
able for timed-arc BPP with continuous time, i.e., if we allow e.g. Σ = R+

0 .
On the other hand, if we keep the discrete time setting and consider distributed
timed-arc BPP nets, bisimilarity remains decidable. For the definition of dis-
tributed timed-arc Petri nets see [140].

4.5 Concluding Remarks

We suggested a subclass of labelled transition systems called effective commu-
tative transition systems (ECTS) where strong bisimilarity is decidable, and we
showed that semantics of many extensions of BPP process algebra can be de-
fined within the ECTS class. This approach seems to be feasible also for other



92 Chapter 4. Extending Tableau Technique for BPP

natural extensions of BPP: the crucial condition to be satisfied is probably (6),
saying that ∼k are congruences. This condition fails e.g. for Petri nets, and
indeed strong bisimilarity becomes undecidable [90].

Decidability of weak bisimilarity of BPP is still a well known open problem,
however, there is a promising approach to the problem recently introduced by
Jančar [92]. In case of weak bisimilarity for BPP the problematic condition is
(5), stating that the transition system is image-finite, which is not the case for
weak bisimilarity. Nevertheless, we can still instead of potentially infinite set
of successors next(α, a) examine only its finite subset such that soundness and
completeness of the tableau system is preserved. This possibility was exploited
by Stirling in [187] for weak bisimilarity of normed BPP, however, with ad-
ditional technical restrictions. To design finite subsets of next(α, a) preserving
soundness and completeness even in the general case might be a reasonable way
to attack this problem.

4.6 Bibliographical Remarks

The content of this chapter is based on the paper “Note on the Tableau Tech-
nique for Commutative Transition Systems” [175] and on the technical re-
port [170]. The notion of timed-arc Petri nets (including several ideas for more
advanced time distribution over the net) was further studied in [141] and [140]
as a joint research with Mogens Nielsen and Vladimiro Sassone. This work is,
however, beyond the focus of this thesis and is not included.



Chapter 5

Lower Bounds for Weak Bisimilarity

In this chapter we address the problems of weak bisimilarity and regularity
checking for BPA and BPP. We prove several complexity lower bounds for
these problems with a particular focus on deriving results valid for normed
processes. Some ideas described here will be further developed in Chapter 6
in order to adopt the techniques to the case of strong bisimilarity and strong
regularity. However, during this process we have to sacrifice the validity of
the lower bounds for normed systems. This should justify the inclusion of the
hardness results for weak bisimilarity and regularity into this chapter — the
presented lower bounds hold even for normed processes.

5.1 Motivation

Despite the fact that BPA and BPP are quite restricted classes, it appears
nontrivial to introduce completeness of weak bisimilarity and regularity prob-
lems in some complexity class, or even to show decidability of these problems
— decidability issues are still open1. Weak bisimilarity is known to be semi-
decidable for BPP [57] and there are partial results by Hirshfeld [72] showing
decidability of weak bisimilarity for restricted classes of totally normed BPA
and BPP. Recently, Stirling [187] showed that weak bisimilarity is decidable for
a large subclass of normed BPP. Unfortunately, the result does not immediately
imply decidability of weak bisimilarity for the whole class of normed BPP.

There has also been some effort to provide at least hardness results. A
PSPACE lower bound for weak bisimilarity of unnormed BPA and NP lower
bound for weak bisimilarity of totally normed BPP were demonstrated by
Sťŕıbrná [189]. In case of BPA Sťŕıbrná used a reduction from the totality prob-
lem for finite nondeterministic automata and hence unnormed process constants
were needed. Mayr recently achieved a result, saying that weak bisimilarity of
(unnormed) BPP is ΠP

2 -hard [124] (in the polynomial hierarchy). In the same
paper he also provided a construction showing that weak regularity of BPP
is ΠP

2 -hard. No lower bound was previously established for weak regularity of
BPA.

1Very recently Jančar indicated [92] that he invented a new technique for strong bisimilarity
of BPP which might be possibly used to prove also decidability of weak bisimilarity.

93



94 Chapter 5. Lower Bounds for Weak Bisimilarity

This chapter aims to contribute to the understanding of complexity issues
of weak bisimilarity checking on simple process algebras. In Section 5.2 we
improve Mayr’s ΠP

2 lower bound for weak bisimilarity of BPP to PSPACE, and
show that this hardness result is valid even for the restricted subclass of normed
BPP. The proof is by reduction from a PSPACE-complete problem of quanti-
fied satisfiability (also called quantified boolean formula, see e.g. [145]) which
appears to be very useful for showing complexity lower bounds of bisimilarity.
This problem will also be used in Chapter 6 in the context of strong bisimilarity.
Concerning hardness results for BPA we announced [173] that weak bisimilarity
of normed (and regular) BPA is PSPACE-hard. However, we do not include
the proof in this thesis since very recently Mayr improved the result for normed
(but non-regular) BPA even to EXPTIME [128].

The hardness results for regularity checking are usually derived from the
lower bounds of bisimilarity problems. As first noticed by Mayr in [124], it is
possible to reduce weak bisimilarity between a pair of regular BPP processes to
weak regularity of BPP. In Section 5.3 we explicitly formulate this fact for BPP
and moreover (using similar ideas as from [124]) we further extend this reduc-
tion also to BPA. An important observation is that these reductions preserve
normedness. Hence weak regularity problems for normed BPP and normed
BPA become PSPACE-hard. Mayr recently showed that weak regularity of
(unnormed) BPA is even EXPTIME-hard [128].

The reader may wonder why we show PSPACE-hardness results for weak
bisimilarity and regularity of BPP, and in Chapter 6 we further strengthen the
results to the case of strong bisimilarity and regularity. The reason is that the
techniques used in Chapter 6 require introduction of unnormed process con-
stants and hence the results cannot be transfered to weak bisimilarity and reg-
ularity of normed processes. Moreover, it is unlikely (unless P=PSPACE) that
strong bisimilarity and strong regularity of normed BPA and BPP are PSPACE-
hard because there are polynomial time algorithms solving these problems, both
for normed BPA [74, 106] and normed BPP [75, 106].

5.2 Weak Bisimilarity of Normed BPP

In this section we show that weak bisimilarity of normed BPP is PSPACE-hard.
We prove it by reduction from the problem of quantified satisfiability (QSAT),
which is known to be PSPACE-complete [145].

Problem: QSAT
Instance: A natural number n and a Boolean formula φ in

conjunctive normal form with Boolean variables
x1, . . . , xn and y1, . . . , yn.

Question: Is ∀x1∃y1∀x2∃y2 . . . ∀xn∃yn.φ true?

A literal is a variable or the negation of a variable. Let

C ≡ ∀x1∃y1∀x2∃y2 . . . ∀xn∃yn.C1 ∧ C2 ∧ . . . ∧Ck



5.2. Weak Bisimilarity of Normed BPP 95

be an instance of QSAT, where each clause Cj, 1 ≤ j ≤ k, is a disjunction of
literals. We will define BPP processes (P1,∆) and (P2,∆), where

Const(∆) def= {Q1, . . . , Qk,X1, . . . ,Xn, Y1, . . . , Yn}
and

Act(∆) def= {q1, . . . , qk, x1, . . . , xn, x1, . . . , xn, y}.
Our aim is to define ∆ such that (P1,∆) ≈ (P2,∆) if and only if C is true. For
each i, 1 ≤ i ≤ n, let

αi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where xi occurs positively,

αi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where xi occurs negatively,

βi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where yi occurs positively, and

βi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where yi occurs negatively.

Example 5.1. Let us consider a quantified boolean formula

∀x1∃y1∀x2∃y2. (x1 ∨ ¬y1 ∨ y2) ∧ (¬x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2 ∨ ¬y2)

where n = 2, k = 3, C1 = x1 ∨ ¬y1 ∨ y2, C2 = ¬x1 ∨ y1 ∨ y2 and C3 =
x1 ∨ y1 ∨ y2 ∨ ¬y2. Then

α1 = Q1||Q3 α1 = Q2 β1 = Q2||Q3 β1 = Q1

α2 = ε α2 = ε β2 = Q1||Q2||Q3 β2 = Q3.

The intuition is that αi contains all the clauses that become satisfied when xi
is set to true, and αi contains all the clauses that become satisfied when xi is
set to false. Similarly for βi and βi.

The set of transition rules ∆ is given by

Xi
xi−→ Yi||αi Xi

xi−→ Yi||αi for 1 ≤ i ≤ n

Yi
y−→ Xi+1||βi Yi

y−→ Xi+1||βi for 1 ≤ i ≤ n− 1
Yn

y−→ βn Yn
y−→ βn

Xi
qj−→ Xi Yi

qj−→ Yi for 1 ≤ i ≤ n and 1 ≤ j ≤ k

Qj
qj−→ Qj Qj

τ−→ ε for 1 ≤ j ≤ k.



96 Chapter 5. Lower Bounds for Weak Bisimilarity

X1
?>=<89:;•

}}{{{
{{

��?
??

?

x1

!!C
CC

C

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
x1

����
��

$d
$d

$d
$d

q1

Y1
?>=<89:;

}}{{
{{

��>
>>

>
?>=<89:;• ~~

>>||||

  B
BB

B Q1

y

  A
AA

AA

3s3s3s3s3s3s3s3s3s3s3s y

����
��

/o/o/o τ

X2
?>=<89:; ...

... qk

Xn
?>=<89:;

}}{{
{{

��>
>>

>
?>=<89:;• ��

@@�����

  B
BB

B Qk

xn

!!C
CC

C

3s3s3s3s3s3s3s3s3s3s3s
xn

����
��

J

J


J

J

J


J

J


J

J


J

J


J

J


J

J


τ

Yn ?>=<89:;
}}{{

{{
��>

>>
>

y

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�

y

KK
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�

X1
?>=<89:;•

}}{{{
{{

��?
??

?

x1

!!C
CC

C

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
�Y

�Y
x1

����
��

$d
$d

$d
$d

q1

Y1
?>=<89:;

}}{{
{{

��>
>>

>
?>=<89:;}}

==||||

!!B
BB

B Q1

y

  A
AA

AA

3s3s3s3s3s3s3s3s3s3s3s y

����
��

/o/o/o τ

X2
?>=<89:; ...

... qk

Xn
?>=<89:;

}}{{
{{

��>
>>

>
?>=<89:;��

@@�����

!!B
BB

B Qk

xn

!!C
CC

C

3s3s3s3s3s3s3s3s3s3s3s
xn

����
��

J

J


J

J

J


J

J


J

J


J

J

J


J

J


J


τ

Yn ?>=<89:;
}}{{

{{
��>

>>
>

y

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�
D�

D�

y

K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�
K�

Figure 5.1: The processes (P1,∆) and (P2,∆) as Petri nets

Finally, let

P1
def= X1||Q1||Q2|| . . . ||Qk and P2

def= X1.

We can see the processes P1 and P2 using Petri net notation in Figure 5.1.
This figure is only illustrative, and some transitions, namely Xi

qj−→ Xi and
Yi

qj−→ Yi for 1 ≤ i ≤ n, 1 ≤ j ≤ k are missing. The curly lines stand for the
corresponding sets of arrows for αi, αi, βi resp. βi. The intuition is that the
attacker will be forced to play only in the process P1 and if C is true then the
defender will have the possibility to add all the process constants {Q1, . . . , Qk}.

Let γ be a parallel composition of elements from Const(∆). We define
the set of process constants that occur in γ as set(γ) def= {X ∈ Const(∆) |
X occurs in γ} and we also define setQ(γ) def= set(γ) ∩ {Q1, . . . , Qk}. The fol-
lowing proposition is an immediate consequence of the definition of ∆.

Proposition 5.1. Let γ and γ′ be parallel compositions of some process con-
stants from {Q1, . . . , Qk}. Then setQ(γ) = setQ(γ′) if and only if (γ,∆) ≈
(γ′,∆).

We need to show that C is true if and only if (P1,∆) ≈ (P2,∆).

Lemma 5.1. If (P1,∆) ≈ (P2,∆) then C is true.



5.2. Weak Bisimilarity of Normed BPP 97

Proof. We show that (P1,∆) 6≈ (P2,∆) assuming that C is false. If C is false
then C ′ def= ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn.¬(C1 ∧C2 ∧ . . .∧Ck) is true and from this
we claim that the attacker has a winning strategy in the bisimulation game for
(P1,∆) and (P2,∆). The attacker plays only in the process P1 (without using
τ actions) performing the following sequence of actions

x̃1, y, x̃2, y, . . . , x̃n, y

where x̃i, 1 ≤ i ≤ n, corresponds to either xi or xi, depending on the truth val-
ues for which the formula C ′ is true. It does not matter how the choice of the rule
for the action y is done. The defender can only respond by performing the same
actions x̃1, y, x̃2, y, . . . , x̃n, y (possibly using also some τ actions). The actions
x̃1, . . . , x̃n are forced. For the action y there are always two possibilities, corre-
sponding to assigning a truth value for yi, 1 ≤ i ≤ n. Finally the processes P1

and P2 are in states P ′1 and P ′2, respectively, such that set(P ′1) = {Q1, . . . , Qk}
and set(P ′2) ⊆ {Q1, . . . , Qk}. Since we assume that C ′ is true, the attacker
can ensure that there is a clause Cj , 1 ≤ j ≤ k, which is not satisfied. Hence
Qj 6∈ set(P ′2) and P ′2 cannot perform qj. However, qj is enabled in P ′1 and thus
the attacker has a winning strategy. This implies that (P1,∆) 6≈ (P2,∆). 2

For the proof of the opposite direction let us first observe the following prop-
erty of (P1,∆) and (P2,∆). Let δ be some state such that set(δ)∩{Q1, . . . , Qk} =
∅ and let γ and γ′ be parallel compositions of some process constants from
{Q1, . . . , Qk} satisfying the condition that setQ(γ) ⊇ setQ(γ′). Let us consider
the processes δ||γ and δ||γ′. Whenever the attacker chooses any move in the sec-
ond one, the defender has an answer which makes these two processes weakly
bisimilar (using τ actions to eliminate the extra process constants Qj from the
first process and then by Proposition 5.1). We are now ready to prove the
following lemma.

Lemma 5.2. If C is true then (P1,∆) ≈ (P2,∆).

Proof. Let P ′1 and P ′2 denote successors of P1 and P2, respectively, in the bisim-
ulation game. The defender’s strategy is to satisfy the following conditions
during the game:

• setQ(P ′1) ⊇ setQ(P ′2) and

• never delete (using τ actions) any process constant Qj , 1 ≤ j ≤ k, in the
process P ′2, unless it is necessary for satisfying the first condition.

Of course these conditions are true at the beginning of the game. Using the
argument above this lemma, we can see that whenever the attacker makes a
move in the process P ′2, he immediately loses since the defender can make the
resulting processes weakly bisimilar. This means that the only possible winning
strategy for the attacker is to keep playing in P ′1. However, now the defender
can always fulfill the conditions of his strategy. On a move under xi resp. xi
there is only one possible response for the defender. Whenever the attacker
makes a move under y, the defender chooses one of the rules Yi

y−→ Xi+1||βi



98 Chapter 5. Lower Bounds for Weak Bisimilarity

and Yi
y−→ Xi+1||βi, such that the formula ∀xi+1∃yi+1 . . . ∀xn∃yn.C1 ∧ . . . ∧ Ck

is still true. Since we have the rules Xi
qj−→ Xi and Yi

qj−→ Yi for any i, j such
that 1 ≤ i ≤ n and 1 ≤ j ≤ k, the only possibility for the attacker to win is to
perform a sequence

x̃1, y, x̃2, y, . . . , x̃n, y

possibly including also some τ actions and then reach a state P ′1 such that
set(P ′1) ⊆ {Q1, . . . , Qk}. Since C is true the defender can always reach a
corresponding state P ′2 where set(P ′2) = {Q1, . . . , Qk} and then using τ ac-
tions he ensures that set(P ′1) = set(P ′2). Hence (using Proposition 5.1) the
attacker loses again. This means that the defender has a winning strategy and
(P1,∆) ≈ (P2,∆). 2

Theorem 5.1. Weak bisimilarity of normed BPP is PSPACE-hard.

Proof. Observe that all the process constants in ∆ are normed and that the
reduction is in polynomial time. The theorem is then an immediate consequence
of Lemma 5.1 and Lemma 5.2. 2

Remark 5.1. Theorem 5.1 can be easily extended to 1-safe Petri nets where each
transition has exactly one input place (for the definition of 1-safe Petri nets see
e.g. [98]). It is enough to introduce for each αi/αi and βi/βi, 1 ≤ i ≤ n, a new
set of process constants {Q1, . . . , Qk} to ensure that in each reachable marking
there is at most one token in every place. Related results about 1-safe Petri
nets can be found in [98].

5.3 Weak Regularity of Normed BPA and BPP

In this section we analyze the problem of weak regularity of BPP and BPA
processes. Mayr proved that weak regularity of BPP is ΠP

2 -hard [124] by giv-
ing a reduction from the weak bisimilarity problem between a pair of special
processes with finitely many reachable states. It can be easily seen that his
proof works also for a general pair of weakly regular processes and moreover it
preserves normedness.

Theorem 5.2 ([124]). Let (P1,∆) and (P2,∆) be weakly regular BPP pro-
cesses. We can construct in polynomial time a BPP process (P,∆′) such that

(P1,∆) ≈ (P2,∆) if and only if (P,∆′) is weakly regular.

Moreover, if (P1,∆) and (P2,∆) are normed, so is (P,∆′).

Observe that the processes (P1,∆) and (P2,∆) from the proof of PSPACE-
hardness of weak bisimilarity for BPP (Theorem 5.1) are weakly regular (they
are even finite-state processes). Moreover the processes are normed. This gives
the following theorem.

Theorem 5.3. Weak regularity of normed BPP is PSPACE-hard.



5.3. Weak Regularity of Normed BPA and BPP 99

Let us now consider the problem of weak regularity for BPA. There was
no lower bound known before. We show that there is a reduction from weak
bisimilarity of regular BPA to weak regularity. The idea of the proof is similar
to the case of BPP mentioned above from [124].

Theorem 5.4. Let (P1,∆) and (P2,∆) be weakly regular BPA processes. We
can construct in polynomial time a BPA process (P,∆′) such that

(P1,∆) ≈ (P2,∆) if and only if (P,∆′) is weakly regular.

Moreover, if (P1,∆) and (P2,∆) are normed, so is (P,∆′).

Proof. Assume that (P1,∆) and (P2,∆) are weakly regular BPA processes. We
construct a BPA process (P,∆′) with

Const(∆′) def= Const(∆) ∪ {A,B,C,B1, B2}

and
Act(∆′) def= Act(∆) ∪ {a}

where A,B,C,B1, B2 are new process constants and a is a new action. Then
∆′ def= ∆∪∆1∪∆2, where ∆1 and ∆2 are defined as follows. The set of transition
rules ∆1 is given by

A
a−→ A.B A

τ−→ ε

B
a−→ ε B

τ−→ ε

C
a−→ B1 C

a−→ P1

B1
a−→ B1 B1

a−→ P1

and ∆2 is given by

C
a−→ B2 C

a−→ P2

B2
a−→ B2 B2

a−→ P2.

Let P def= A.C. Observe that if (P1,∆) and (P2,∆) are normed, so is (P,∆′).
We show now that our reduction is correct.

Lemma 5.3. If (P1,∆) 6≈ (P2,∆) then (P,∆′) is not weakly regular.

Proof. Suppose that (P1,∆) 6≈ (P2,∆). Then we demonstrate that there are
infinitely many weakly nonbisimilar states reachable from P . Let us consider
Bi.C for any natural number i. Of course P −→∗ Bi.C and we claim that
(Bi.C,∆′) 6≈ (Bj.C,∆′) for any i 6= j. Without loss of generality assume that
i < j. The attacker has the following winning strategy (playing only in the
second process — see Figure 5.2). He performs a sequence of j actions a in
Bj.C, thus reaching C. Since Bi cannot do this sequence, the defender has to
reach C eventually (let us say after i′ rounds where i′ ≤ i). As neither P1 nor
P2 can perform a, he has only two choices when responding to the action a.
He can play either C a−→ B1 or C a−→ B2. Assume that he chooses B1 (the



100 Chapter 5. Lower Bounds for Weak Bisimilarity

Bi.C

ai
′

��

≈? Bj.C

ai
′

��
C

a
��

Bj−i′.C
a

��
B1

aj−i′−1
��

Bj−i′−1.C

aj−i′−1

��
B1

a
��

C

a
��

P1 6≈ P2

Figure 5.2: Winning strategy for the attacker (i < j)

other case is symmetric). Now the defender’s only possibility is to stay in B1

for another aj−i′−1 moves of the attacker. After the attacker has reached C (in
the second process), he chooses to go to P2 in the next round. If the defender
stays in B1 he loses immediately and if he moves to P1 he loses as well, since
(P1,∆′) 6≈ (P2,∆′). 2

Lemma 5.4. If (P1,∆) ≈ (P2,∆) then (P,∆′) is weakly regular.

Proof. Assume that (P1,∆) ≈ (P2,∆) which implies that (P,∆′) ≈ (P,∆′′)
where ∆′′ = ∆′ r ∆2. Notice that (B1,∆′′) is weakly regular, so it is enough to
show that (A.C,∆′′) ≈ (B1,∆′′). Obviously (C,∆′′) ≈ (B1,∆′′) which implies
that for any n ≥ 0, (Bn.C,∆′′) ≈ (B1,∆′′) since Bn τ∗−→ ε.

This gives that (A.Bn.C,∆′′) ≈ (B1,∆′′) for any n ≥ 0, which in particular
means that (A.C,∆′′) ≈ (B1,∆′′). 2

Theorem 5.4 is an immediate consequence of Lemma 5.3 and Lemma 5.4. 2

In the paper by Sťŕıbrná [189] it is shown (Theorem 2.5) that weak bisim-
ilarity of totally normed BPA is NP-hard. The proof is by reduction from a
variant of the bin-packing (knapsack) problem and the processes in this proof
have finitely many reachable states (and so they are weakly regular). Thus we
can use Theorem 5.4 to obtain the following result.

Theorem 5.5. Weak regularity of normed BPA is NP-hard.

Remark 5.2. We announced [173] that weak bisimilarity of normed BPA is
PSPACE-hard. Since a reduction from QSAT can be given such that the
processes are weakly regular, we get that weak regularity of normed BPA is
also PSPACE-hard. Recently Mayr achieved EXPTIME lower bound for weak
bisimilarity of regular (but unnormed) BPA [128], which means that the prob-
lem of weak regularity for unnormed BPA is EXPTIME-hard.



5.4. Concluding Remarks 101

5.4 Concluding Remarks

The results proved in this chapter indicate that weak bisimilarity and regu-
larity checking problems for normed process algebras are significantly (unless
P=PSPACE) more difficult than those for strong bisimilarity and regularity.

We proved that weak bisimilarity of normed BPP is PSPACE-hard by de-
scribing a reduction from the problem of quantified satisfiability (QSAT). By
another reduction from QSAT (using different techniques) we can prove [173]
that the weak bisimilarity problem is PSPACE-hard also for normed BPA. Nev-
ertheless, Mayr recently improved the result to EXPTIME [128] and hence we
did not include our PSPACE-hardness proof into this thesis.

In the following chapter we will further extend the ideas of reducing QSAT
to the strong bisimilarity problems for BPA and BPP. We will develop so called
existential quantification technique which enables the defender to choose truth
values of variables during the process of assignment generation. The crucial dif-
ference is that this technique for strong bisimilarity requires unnormed process
constants whereas in case of weak bisimilarity we showed that normed processes
are sufficient for obtaining PSPACE-hardness.

Concerning weak regularity questions, we explicitly formulated a reduction
from weak bisimilarity of regular processes to weak regularity. The reduction
idea for BPP is due to Mayr [124]. We modified this idea and showed that it
works also for BPA. An important observation is that the reductions preserve
normedness.

This allows to transfer the hardness results for weak bisimilarity checking
to weak regularity checking, provided that the involved processes are weakly
regular.

5.5 Bibliographical Remarks

This chapter is based on the paper “Complexity of Weak Bisimilarity and Reg-
ularity for BPA and BPP” [167]. The paper is available also as a technical
report [168] and an extended journal version [174] will appear in Mathematical
Structures in Computer Science. The journal version also contains techniques
for proving DP-hardness of weak bisimilarity for BPA and strong bisimilarity
for BPP. These results are, however, not included because in Chapter 6 we
further improve the DP lower bounds to PSPACE.





Chapter 6

Lower Bounds for Strong Bisimilarity

In this chapter we study strong bisimilarity problems for simple process alge-
bras. In particular, we show PSPACE-hardness of the following problems: (i)
strong bisimilarity of basic parallel processes (BPP), (ii) strong bisimilarity of
basic process algebra (BPA), (iii) strong regularity of BPP, and (iv) strong reg-
ularity of BPA. A novel technique called existential quantification is developed
for this purpose.

We also demonstrate NL-hardness of strong regularity problems for the
normed subclasses of BPP and BPA, thus introducing NL-completeness of the
problems.

6.1 Motivation

It is a well known fact that unlike all other equivalences in van Glabbeek’s
linear/branching time spectrum (see [64, 82]), strong bisimilarity is decidable
for BPA [46] and BPP [43]. This challenging phenomenon was a motivation for
further investigation of strong bisimilarity in the class of simple process alge-
bras. Restricted classes of normed processes were studied, with the surprising
results that even though language equivalence is still undecidable for normed
BPA [80] and BPP [82], strong bisimilarity becomes decidable even in poly-
nomial time [74, 75]. The situation is, however, different for the unrestricted
classes of simple process algebras.

Despite the fact that strong bisimilarity of BPA is decidable in 2-EXPTIME
[35], it is still an open problem whether there exists an elementary decision
algorithm for BPP1. The conjecture that strong bisimilarity of unnormed BPP
is decidable (like in the normed case) in polynomial time was only recently
proved false (unless P=NP) by Mayr. He showed that strong bisimilarity of
BPP is co-NP-hard [124]. No nontrivial lower bound was known for unnormed
BPA.

We will improve Mayr’s co-NP lower bound for BPP and show that the com-
plexity of bisimilarity checking of BPA is indeed different (unless P=PSPACE)
from the case of normed BPA by demonstrating that strong bisimilarity of

1Very recently Jančar indicated [92] that he invented a new technique for strong bisimilarity
of BPP which will probably imply the containment of the problem in PSPACE.

103



104 Chapter 6. Lower Bounds for Strong Bisimilarity

BPA and BPP is PSPACE-hard. In order to show that we describe polynomial
time reductions from the quantified satisfiability (QSAT) problem to the strong
bisimilarity checking problems of BPA and BPP. Given an instance C of QSAT,
we construct a pair of BPA (BPP) processes P1 and P2 such that P1 and P2

are strongly bisimilar if and only if C is true.
Except for the PSPACE-hardness results, a new contribution achieved in

these reductions is a general technique which enables to imitate a generation of
quantified assignments of boolean formulas in the context of bisimulation games
of an attacker and a defender. While the truth value of a variable prefixed by the
universal quantifier is being chosen, the attacker has the possibility to decide
between two alternatives in the continuation of the bisimulation game. On
the other hand, while choosing the truth value of an existentially quantified
variable, the defender can force the attacker to continue the bisimulation game
according to his decision — we call this technique existential quantification
technique. (Similar ideas (not explicitly formulated) appeared independently
due to Jančar in the context of high undecidability of weak bisimilarity for
Petri nets [89].) Satisfied clauses of a given formula are remembered by means
of process constants that are present in the current states of BPA and BPP
systems. After the whole assignment of boolean variables was generated, the
attacker can make a final check whether all clauses are indeed satisfied. This
is easier to verify for BPP because we have a parallel (and thus simultaneous)
access to all process constants contained in the current state. To achieve the
same result for BPA, we will have to encode satisfied clauses in a unary way.

Another decidability problem that has attracted much attention is that of
regularity checking. Strong regularity checking is decidable in 2-EXPTIME for
BPA [36, 35] and in polynomial time for normed BPA and BPP [106] where it
coincides with boundedness. Decidability of strong regularity for BPP follows
from the fact that the problem is decidable even for Petri nets [93], a proper
superclass of BPP. However, no elementary upper bound has been established
so far. It is known that strong regularity is co-NP-hard for BPP [124] and
no hardness result was available for BPA. We will describe polynomial time
reductions from strong bisimilarity of regular BPA (BPP) processes to strong
regularity checking of BPA (BPP), using Mayr’s idea from [124]. By applying
our PSPACE-hardness of strong bisimilarity for BPA and BPP, and by the fact
that the involved processes are strongly regular, we can conclude that strong
regularity of BPA and BPP are PSPACE-hard problems.

Finally, we will investigate the complexity of regularity checking problems
for normed BPA and BPP and show their NL-completeness.

6.2 Existential Quantification Technique

In this section we explain the basic idea of the PSPACE-hardness proofs pre-
sented in this chapter, namely the existential quantification technique. Our aim
is to make the rewrite rules defined in the following sections more readable, by
demonstrating a general pattern of existential quantification used heavily (with
small modifications) later on.



6.2. Existential Quantification Technique 105

X

a

����
��
��
��
��
��
��

a

��'
''
''
''
''
''
''

a

��7
77

77
77

77
77

77
77

Y choice

one

����
��
��
��
��
��
�

two

��7
77

77
77

77
77

77
77

Y one Y two

Z⊕αone Z⊕αtwo

X ′

a

��


























a

��4
44

44
44

44
44

44
44

Y one

one



��
��
��
��
��
��
�

two

��*
**

**
**

**
**

**
Y two

two



��
��
��
��
��
��
�

one

��*
**

**
**

**
**

**

Z ′⊕αone Z⊕αtwo Z ′⊕αtwo Z⊕αone

Figure 6.1: Processes (X,∆) and (X ′,∆)

The existential quantification technique in its simplest form can be explained
as follows: the defender can force the attacker to perform a certain move by
threatening to enter bisimilar states otherwise. Take a look at processes s and
t such that

s
a−→ s′, t

a−→ t′, and t
a−→ t′′,

where s′ and t′ are assumed to be bisimilar.

s
a

����
��

��
�

t
a

����
��

��
�

a

��=
==

==
==

s′ t′ t′′

In the bisimulation game played from s and t, the only option for the at-
tacker is to play t a−→ t′′. Should the attacker choose any other move, he would
lose immediately since s′ and t′ are bisimilar.

Let us now consider the following process rewrite system ∆ where αone and
αtwo are some fixed process expressions and⊕ is either a sequential or parallel
composition.

X
a−→ Y choice

X
a−→ Y one X ′ a−→ Y one

X
a−→ Y two X ′ a−→ Y two

Y choice one−→ Z⊕αone Y one one−→ Z ′⊕αone
Y choice two−→ Z⊕αtwo Y two two−→ Z ′⊕αtwo
Y one two−→ Z⊕αtwo Y two one−→ Z⊕αone

The transition systems generated by the processes (X,∆) and (X ′,∆) are
depicted in Figure 6.1.



106 Chapter 6. Lower Bounds for Strong Bisimilarity

The intuition behind the construction can be nicely explained in terms of
bisimulation games. Consider a strong bisimulation game starting from the pair
X and X ′.

The attacker is forced to make the first move by playing X
a−→ Y choice

because in all other possible moves, either from X or X ′, the defender can make
the resulting processes syntactically equal and hence bisimilar. The defender’s
answer to the move X a−→ Y choice is either (i) X ′ a−→ Y one or (ii) X ′ a−→ Y two.

In the next round starting from (i) Y choice and Y one or (ii) Y choice and Y two,
the attacker can use either the action one or two — obviously it is irrelevant
whether the chosen action is performed in the first or in the second process. In
case (i), if the attacker chooses the action one then the players reach the pair
Z⊕αone and Z ′⊕αone. If he chooses the action two then the players reach a
pair of syntactically equal states, namely Z⊕αtwo and Z⊕αtwo, from which the
defender has an obvious winning strategy. In case (ii), if the attacker chooses
the action two then the players reach the pair Z⊕αtwo and Z ′⊕αtwo. If he
chooses the action one then he loses as in case (i).

Now, either the defender won by reaching syntactically equal states, or the
resulting processes after two rounds are (i) Z⊕αone and Z ′⊕αone or (ii) Z⊕αtwo
and Z ′⊕αtwo. Note that it was the defender who had the possibility to decide
between adding αone or αtwo.

We can repeat this construction several times in a row, which is explained
in more detail in the following sections.

6.3 Hardness of Strong Bisimilarity

The hardness results are proved again by polynomial reductions from a PSPACE-
complete problem of quantified satisfiability (QSAT) [145].

In this section we will use the version where the prefix of quantifiers starts
with the existential one.

Problem: QSAT
Instance: A natural number n > 0 and a boolean formula

φ in conjunctive normal form with boolean vari-
ables x1, . . . , xn and y1, . . . , yn.

Question: Is ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn.φ true?

A literal is a variable or the negation of a variable. An instance of QSAT is a
formula C of the form

C ≡ ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn. C1 ∧ C2 ∧ . . . ∧ Ck

where each clause Cj, 1 ≤ j ≤ k, is a disjunction of literals.



6.3. Hardness of Strong Bisimilarity 107

6.3.1 Basic Parallel Processes

In this subsection we show that strong bisimilarity of BPP is a PSPACE-hard
problem. We prove it by reduction from QSAT. Let

C ≡ ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn. C1 ∧ C2 ∧ . . . ∧ Ck
be an instance of QSAT.

We define the following BPP processes (X1,∆) and (X ′
1,∆) where

Const(∆) def= {Q1, . . . , Qk} ∪
{X1, . . . ,Xn+1, Y

choice
1 , . . . , Y choice

n , Z1, . . . , Zn} ∪
{X ′

1, . . . ,X
′
n+1, Y

tt
1 , . . . , Y tt

n , Y
ff
1 , . . . , Y ff

n , Z
′
1, . . . , Z

′
n}

and Act(∆) def= {q1, . . . , qk, a, tt, ff}.

For each i, 1 ≤ i ≤ n, let

αi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where xi occurs positively,

αi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where xi occurs negatively,

βi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where yi occurs positively, and

βi be a parallel composition Qi1 ||Qi2 || · · · ||Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where yi occurs negatively.

Example 6.1. Let us consider a quantified boolean formula

∃x1∀y1∃x2∀y2. (x1 ∨ ¬y1 ∨ y2) ∧ (¬x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2 ∨ ¬y2)

where n = 2, k = 3, C1 = x1 ∨ ¬y1 ∨ y2, C2 = ¬x1 ∨ y1 ∨ y2 and C3 =
x1 ∨ y1 ∨ y2 ∨ ¬y2. Then

α1 = Q1||Q3 α1 = Q2 β1 = Q2||Q3 β1 = Q1

α2 = ε α2 = ε β2 = Q1||Q2||Q3 β2 = Q3.

The set ∆ is given by the following rewrite rules:

• for all j such that 1 ≤ j ≤ k:

Qj
qj−→ Qj



108 Chapter 6. Lower Bounds for Strong Bisimilarity

• for all i such that 1 ≤ i ≤ n:

Xi
a−→ Y choice

i

Xi
a−→ Y tt

i X ′
i

a−→ Y tt
i

Xi
a−→ Y ff

i X ′
i

a−→ Y ff
i

Y choice
i

tt−→ Zi||αi Y tt
i

tt−→ Z ′i||αi
Y choice
i

ff−→ Zi||αi Y ff
i

ff−→ Z ′i||αi
Y tt
i

ff−→ Zi||αi Y ff
i

tt−→ Zi||αi

Zi
tt−→ Xi+1||βi Z ′i

tt−→ X ′
i+1||βi

Zi
ff−→ Xi+1||βi Z ′i

ff−→ X ′
i+1||βi

• and
Xn+1

a−→ Q1||Q2|| . . . ||Qk−1||Qk X ′
n+1

a−→ ε.

We can see the processes (X1,∆) and (X ′
1,∆) in Figure 6.2 (if we set i = 1

and γ1 = ε). The intuition behind the construction will be explained in terms
of bisimulation games and follows the main idea from Section 6.2. Consider a
strong bisimulation game starting from the pair of processes X1 and X ′

1.
The attacker is forced to make the first move by playing X1

a−→ Y choice
1

because in all other possible moves, either fromX1 orX ′
1, the defender can make

the resulting processes syntactically equal and hence bisimilar. The defender’s
answer to the move X1

a−→ Y choice
1 is either (i) X ′

1
a−→ Y tt

1 (this corresponds to
setting the variable x1 to true) or (ii) X ′

1
a−→ Y ff

1 (this corresponds to setting
the variable x1 to false).

In the next round the attacker is forced to take the action (i) tt or (ii) ff,
according to the defender’s choice in the first round. Otherwise the attacker
loses. The defender can only imitate the same action in the other process. The
resulting processes after two rounds are (i) Z1||α1 and Z ′1||α1 or (ii) Z1||α1 and
Z ′1||α1. Note that it was the defender who had the possibility to decide between
adding α1 (i.e. setting x1 to true) or α1 (i.e. setting x1 to false).

In the third round the attacker has the choice of playing either along the
action tt or ff, which corresponds to the universal quantifier in front of y1. It
does not matter in which process the attacker performs the move. The defender
has only one possibility how to answer to this move — he must imitate the
corresponding move in the other process. The resulting processes are X2||γ2 and
X ′

2||γ2 such that γ2 = α̃1||β̃1 where α̃1 ∈ {α1, α1} and β̃1 ∈ {β1, β1} according
to the truth values chosen for x1 (by the defender) and for y1 (by the attacker).
Now the game continues in a similar way from X2||γ2 and X ′

2||γ2. Playing some
of the actions q1, . . . , qk cannot make the attacker win since the defender has
always the possibility to imitate the same move in the other processes.

Hence if the attacker wants to win he has to reach eventually the states
Xn+1||γn+1 and X ′

n+1||γn+1, and then he performs the move Xn+1||γn+1
a−→



6.3. Hardness of Strong Bisimilarity 109

Xi||γi

a

����
��

��
��

��
��

a

��3
33

33
33

33
33

3

a

''NNNNNNNNNNNNNNNNNNNNNNNN

Y choice
i ||γi

tt

����
��

��
��

��
��

ff

''NNNNNNNNNNNNNNNNNNNNNNNN Y tt
i ||γi Y ff

i ||γi

Zi||γi||αi

tt

����
��

��
��

��
��

ff

��3
33

33
33

33
33

3 Zi||γi||αi

tt

����
��

��
��

��
��

ff

��3
33

33
33

33
33

3

Xi+1||γi||αi||βi Xi+1||γi||αi||βi Xi+1||γi||αi||βi Xi+1||γi||αi||βi

X ′
i||γi

a

||xx
xxx

xx
xx

xx
xx

xx
xx

a

""F
FF

FF
FF

FF
FF

FF
FF

FF

Y tt
i ||γi

tt

����
��

��
��

��
��

ff

��3
33

33
33

33
33

3 Y ff
i ||γi

ff

����
��

��
��

��
��

tt

��3
33

33
33

33
33

3

Z ′i||γi||αi

tt

��

ff

""F
FFF

FF
FF

FF
FF

FF
FF

F Zi||γi||αi Z ′i||γi||αi

tt

��

ff

""F
FF

FF
FF

FF
FF

FF
FF

FF
Zi||γi||αi

X ′
i+1||γi||αi||βi X ′

i+1||γi||αi||βi X ′
i+1||γi||αi||βi X ′

i+1||γi||αi||βi

Figure 6.2: Processes (Xi||γi,∆) and (X ′
i||γi,∆)

Q1||Q2|| . . . ||Qk−1||Qk||γn+1 to which the defender has only one answer, namely
X ′
n+1||γn+1

a−→ γn+1. From the states Q1||Q2|| . . . ||Qk−1||Qk||γn+1 and γn+1 the
attacker has the possibility to check whether every clause Cj, 1 ≤ j ≤ k, in
C is indeed satisfied under the generated truth assignment by using the rule
Qj

qj−→ Qj in the first process. If the clause Cj is not satisfied then Qj does
not appear in γn+1 and the defender loses. If all the clauses in C are satisfied
then Q1||Q2|| . . . ||Qk−1||Qk||γn+1 ∼ γn+1 and the defender wins.



110 Chapter 6. Lower Bounds for Strong Bisimilarity

In what follows we formally prove that C is true iff (X1,∆) ∼ (X ′
1,∆).

Lemma 6.1. If (X1,∆) ∼ (X ′
1,∆) then the formula C is true.

Proof. We show that (X1,∆) 6∼ (X ′
1,∆) under the assumption that C is false.

If C is false then C ′ defined by

C ′ def= ∀x1∃y1∀x2∃y2 . . . ∀xn∃yn. ¬(C1 ∧C2 ∧ . . . ∧ Ck)

is true and we claim that the attacker has a winning strategy in the bisimulation
game starting from (X1,∆) and (X ′

1,∆). The attacker’s strategy starts with
performing a sequence of actions

a, x̃1, ỹ1, . . . , a, x̃i, ỹi, . . . , a, x̃n, ỹn, a

where x̃i, ỹi ∈ {tt, ff} for all i, 1 ≤ i ≤ n. The attacker is playing only in
the first process (X1,∆). The choice of x̃i is done by the defender and of
ỹi by the attacker — see the discussion above. This means that whatever
values for x̃1, . . . , x̃n are chosen by the defender, the attacker can still decide on
values for ỹ1, . . . , ỹn such that the generated assignment satisfies the formula
¬(C1 ∧ C2 ∧ . . . ∧ Ck). Hence there must be some j, 1 ≤ j ≤ k, such that the
clause Cj is not satisfied. This implies that Qj does not occur in the second
process. However, the attacker can perform the action qj in the first process
by using the rule Qj

qj−→ Qj. Thus the attacker has a winning strategy in the
bisimulation game and (X1,∆) 6∼ (X ′

1,∆). 2

Lemma 6.2. If the formula C is true then (X1,∆) ∼ (X ′
1,∆).

Proof. Let us define sets ASi, corresponding to the assignments of variables
from x1, y1 to xi, yi, 1 ≤ i ≤ n, such that the formula

∃xi+1∀yi+1 . . . ∃xn∀yn. C1 ∧C2 ∧ . . . ∧ Ck

is still true.
For i ∈ {1, . . . , n} let ASi def={

α̃1||β̃1||α̃2||β̃2|| . . . ||α̃i||β̃i |

such that for all j, 1 ≤ j ≤ i, it holds that α̃j ∈ {αj , αj}
and β̃j ∈ {βj , βj}, and under the assignment

xj =

{
tt if α̃j = αj

ff if α̃j = αj
and yj =

{
tt if β̃j = βj

ff if β̃j = βj

the formula ∃xi+1∀yi+1 . . . ∃xn∀yn. C1 ∧ C2 ∧ . . . ∧ Ck
is true

}
.



6.3. Hardness of Strong Bisimilarity 111

By definition AS0
def= {ε}. In particular, ASn contains all the assignments

for which the unquantified formula C1 ∧ C2 ∧ . . . ∧ Ck is true. The following
relation is a strong bisimulation (assuming that the index i ranges over the set
{1, . . . , n}).

{(Xi||γi,X ′
i||γi) | γi ∈ ASi−1} ∪

{(Y choice
i ||γi, Y tt

i ||γi) | γi||αi||βi ∈ ASi ∧ γi||αi||βi ∈ ASi} ∪
{(Y choice

i ||γi, Y ff
i ||γi) | γi||αi||βi ∈ ASi ∧ γi||αi||βi ∈ ASi} ∪

{(Zi||γi||αi, Z ′i||γi||αi) | γi||αi||βi ∈ ASi ∧ γi||αi||βi ∈ ASi} ∪
{(Zi||γi||αi, Z ′i||γi||αi) | γi||αi||βi ∈ ASi ∧ γi||αi||βi ∈ ASi} ∪
{(Xn+1||γn+1,X

′
n+1||γn+1) | γn+1 ∈ ASn} ∪

{(Q1||Q2|| . . . ||Qk−1||Qk||γn+1, γn+1) | γn+1 ∈ ASn} ∪
{(E,E) | E ∈ P(Const(∆)

)}
Since AS0 = {ε}, we get that the pair (X1,X

′
1) is an element of this relation.

Hence we proved that (X1,∆) ∼ (X ′
1,∆). 2

Theorem 6.1. Strong bisimilarity of BPP is PSPACE-hard.

Proof. By Lemma 6.1 and Lemma 6.2. 2

Remark 6.1. Notice that there are only finitely many reachable states from
(X1,∆) and (X ′

1,∆). Hence (X1,∆) and (X ′
1,∆) are strongly regular processes.

Remark 6.2. Theorem 6.1 can be easily extended to 1-safe Petri nets where each
transition has exactly one input place (for related results about 1-safe Petri nets
see e.g. [98]). It is enough to introduce for each αi, αi, βi and βi, 1 ≤ i ≤ n,
a new set of process constants {Q1, . . . , Qk} to ensure that in each reachable
marking there is at most one token in every place.

6.3.2 Basic Process Algebra

In this subsection we show that strong bisimilarity of BPA is PSPACE-hard.
The proof is again by reduction from QSAT, using the main idea from Sec-
tion 6.2. However, there is a substantial difference from the proof for BPP
explained in the previous subsection.

In case of BPP it is easier to check which clauses of a given boolean for-
mula are satisfied because we have a parallel (and thus simultaneous) access
to all process constants contained in the current state. This technique has to
be modified to work for BPA since we have only a sequential access to the
process constants contained in the current state, and there is no possibility of
remembering any information in e.g. a finite-state control unit as in pushdown
systems. Hence we have to encode the information about satisfied clauses in a
unary way to achieve our result.



112 Chapter 6. Lower Bounds for Strong Bisimilarity

Let
C ≡ ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn. C1 ∧ C2 ∧ . . . ∧ Ck

be an instance of QSAT. Assume that Q1, . . . , Qk are process constants.

For each i, 1 ≤ i ≤ n, let

αi be a sequential composition Qi1.Qi2 . · · · .Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where xi occurs positively,

αi be a sequential composition Qi1.Qi2 . · · · .Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where xi occurs negatively,

βi be a sequential composition Qi1.Qi2 . · · · .Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where yi occurs positively, and

βi be a sequential composition Qi1.Qi2 . · · · .Qi` such that
1 ≤ i1 < i2 < · · · < i` ≤ k and
Ci1 , Ci2 , . . . , Ci` are all the clauses where yi occurs negatively.

Example 6.2. Let us consider a quantified formula

∃x1∀y1∃x2∀y2. (x1 ∨ ¬y1 ∨ y2) ∧ (¬x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ y2 ∨ ¬y2)

where n = 2, k = 3, C1 = x1 ∨ ¬y1 ∨ y2, C2 = ¬x1 ∨ y1 ∨ y2 and C3 =
x1 ∨ y1 ∨ y2 ∨ ¬y2. Then

α1 = Q1.Q3 α1 = Q2 β1 = Q2.Q3 β1 = Q1

α2 = ε α2 = ε β2 = Q1.Q2.Q3 β2 = Q3.

Let SF(γ) be the set of all suffixes of a given sequential composition γ ∈
S({Q1, . . . , Qk}), i.e., SF(γ) def= {γ′ | ∃γ′′ such that γ′′.γ′ = γ}. Let M be the
least natural number such that M ≥ 2n + 1 and M = 2K for some natural
number K > 0. Of course, M > 1.

We will define processes (X1.S,∆) and (X ′
1.S,∆) such that Const(∆) def=

{A0, A1, A2, . . . , AkK−1} ∪ {Q1, . . . , Qk} ∪
{V γ

i , V
γ,choice
i | 1 ≤ i ≤ n ∧ γ ∈ SF(αi) ∪ SF(αi)} ∪

{V ′γ
i , V

γ,yes
i , V γ,no

i | 1 ≤ i ≤ n ∧ γ ∈ SF(αi) ∪ SF(αi)} ∪
{W γ

i ,W
γ,choice
i | 1 ≤ i ≤ n ∧ γ ∈ SF(βi) ∪ SF(βi)} ∪

{W ′γ
i ,W

γ,yes
i ,W γ,no

i | 1 ≤ i ≤ n ∧ γ ∈ SF(βi) ∪ SF(βi)} ∪
{Xi, Y

choice
i , Zi,X

′
i, Y

tt
i , Y

ff
i , Z

′
i | 1 ≤ i ≤ n} ∪ {Xn+1,X

′
n+1, S}



6.3. Hardness of Strong Bisimilarity 113

and Act(∆) def= {a, c, tt, ff, yes, no, s}. The first part of the rewrite system ∆
consists of the rewrite rules:

A0
c−→ ε

A`
c−→ A`−1.A`−2. · · · .A1.A0 for all `, 1 ≤ ` ≤ kK − 1

Qj
c−→ AjK−1.AjK−2. · · · .A1.A0 for all j, 1 ≤ j ≤ k.

Remark 6.3. Notice that the size of the previously introduced rewrite rules is

polynomial w.r.t. the size of the formula C. Moreover A`
c2

`

−→ ε for all `,

0 ≤ ` ≤ kK − 1, which implies by using the equation 2jK = M j that Qj
cM

j

−→ ε
for all j, 1 ≤ j ≤ k. Hence Qj can perform exactly M j transitions labelled by
the “counting” action c and then disappears.

The intuition is that each clause Cj, 1 ≤ j ≤ k, is coded by the process
constant Qj, which enables to perform exactly M j of c actions. The key idea
of our proof is then that the defender and the attacker will choose truth values
for the variables x1, . . . , xn and y1, . . . , yn, respectively. During this process
some of the clauses C1, . . . , Ck become satisfied, and the defender will have the
possibility to add the corresponding process constants Q1, . . . , Qk to the current
state.

Moreover, the defender will be able to select which of the process constants
(corresponding to the satisfied clauses) appear in the current state in such a
way that each of them appears there exactly once.

The following lemma shall be essential for proving our reduction correct.

Lemma 6.3. Assume that M and k are the constants introduced above, i.e.,
M > 1 and k > 0. Let aj , 1 ≤ j ≤ k, be natural numbers such that 0 ≤ aj ≤
M − 1 for all j. The following two statements are equivalent:

(i)
k∑
j=1

ajM
j =

k∑
j=1

M j (ii) aj = 1 for all j, 1 ≤ j ≤ k.

Proof. By uniqueness of M -ary representations.
Obviously (ii) implies (i). By induction on k we prove the other direction. If

k = 1 then a1M = M immediately gives that a1 = 1. Let
k+1∑
j=1

ajM
j =

k+1∑
j=1

M j .

Since aj ≤M − 1 for all j, 1 ≤ j ≤ k + 1, we get that

k∑
j=1

ajM
j ≤

k∑
j=1

(M − 1)M j = (M − 1)M ·
k−1∑
j=0

M j =

(M − 1)M · M
k − 1

M − 1
= Mk+1 −M < Mk+1.

Let us now consider the equation

k∑
j=1

ajM
j + ak+1M

k+1 =
k∑
j=1

M j +Mk+1.



114 Chapter 6. Lower Bounds for Strong Bisimilarity

The fact that
k∑
j=1

ajM
j < Mk+1 gives that ak+1 ≥ 1. On the other hand

k∑
j=1

M j = M ·
k−1∑
j=0

M j = M · M
k − 1

M − 1
< Mk+1,

which implies that ak+1 ≤ 1.
Hence ak+1 = 1 and the following equation must be satisfied

k∑
j=1

ajM
j =

k∑
j=1

M j.

By induction hypothesis aj = 1 also for all j, 1 ≤ j ≤ k. 2

We continue with the definition of the set of rewrite rules ∆. For all i,
1 ≤ i ≤ n, and Q.γ ∈ SF(αi) ∪ SF(αi) where Q ∈ {Q1, . . . , Qk} and γ ∈
S({Q1, . . . , Qk}), ∆ contains the rules:

V Q.γ
i

a−→ V Q.γ,choice
i

V Q.γ
i

a−→ V
Q.γ,yes
i V

′Q.γ
i

a−→ V
Q.γ,yes
i

V Q.γ
i

a−→ V Q.γ,no
i V

′Q.γ
i

a−→ V Q.γ,no
i

V Q.γ,choice
i

yes−→ V γ
i .Q V

Q.γ,yes
i

yes−→ V
′γ
i .Q

V Q.γ,choice
i

no−→ V γ
i V Q.γ,no

i
no−→ V

′γ
i

V
Q.γ,yes
i

no−→ V γ
i V Q.γ,no

i

yes−→ V γ
i .Q.

Similarly, for all i, 1 ≤ i ≤ n, and Q.γ ∈ SF(βi) ∪ SF(βi) where Q ∈
{Q1, . . . , Qk} and γ ∈ S({Q1, . . . , Qk}), ∆ contains the rules:

WQ.γ
i

a−→ WQ.γ,choice
i

WQ.γ
i

a−→ W
Q.γ,yes
i W

′Q.γ
i

a−→ W
Q.γ,yes
i

WQ.γ
i

a−→ WQ.γ,no
i W

′Q.γ
i

a−→ WQ.γ,no
i

WQ.γ,choice
i

yes−→W γ
i .Q W

Q.γ,yes
i

yes−→W
′γ
i .Q

WQ.γ,choice
i

no−→W γ
i WQ.γ,no

i
no−→W

′γ
i

W
Q.γ,yes
i

no−→W γ
i WQ.γ,no

i

yes−→W γ
i .Q.

Assume now a strong bisimulation game starting from the pair (V αi
i ,∆)

and (V
′αi
i ,∆). As shown in Section 6.2, either in some round the states become

syntactically equal, or the defender has the possibility to choose in the first
round the next states (i) V αi,choice

i and V
αi,yes
i or (ii) V αi,choice

i and V αi,no
i .

This means that in the next round a process constant Q such that αi = Q.α′i
for some α′i is either (i) added to the current state or (ii) left out.

Now the game continues either from (i) V α′i
i .Q and V

′α′i
i .Q or from (ii) V α′i

i

and V
′α′i
i . This repeats in similar fashion until the states V ε

i .γi and V
′ε
i .γi are

reached, such that γi is some subsequence of αi (in a reverse order) and it was



6.3. Hardness of Strong Bisimilarity 115

the defender who had the possibility to decide which of the process constants
contained in αi appear also in γi.

The same happens if we start playing the strong bisimulation game from
(V αi
i ,∆) and (V

′αi
i ,∆), or (W βi

i ,∆) and (W
′βi
i ,∆), or (W βi

i ,∆) and (W
′βi
i ,∆).

We finish the definition of ∆ by adding the rules:

• for all i, 1 ≤ i ≤ n:

Xi
a−→ Y choice

i

Xi
a−→ Y tt

i X ′
i

a−→ Y tt
i

Xi
a−→ Y ff

i X ′
i

a−→ Y ff
i

Y choice
i

tt−→ V αi
i Y tt

i
tt−→ V

′αi
i

Y choice
i

ff−→ V αi
i Y ff

i
ff−→ V

′αi
i

Y tt
i

ff−→ V αi
i Y ff

i
tt−→ V αi

i

V ε
i

a−→ Zi V
′ε
i

a−→ Z ′i

Zi
tt−→W βi

i Z ′i
tt−→W

′βi
i

Zi
ff−→W βi

i Z ′i
ff−→W

′βi
i

W ε
i

a−→ Xi+1 W
′ε
i

a−→ X ′
i+1

• and

Xn+1
a−→ Q1.Q2. . . . .Qk−1.Qk.S X ′

n+1
a−→ ε S

s−→ S.

Lemma 6.4. If (X1.S,∆) ∼ (X ′
1.S,∆) then the formula C is true.

Proof. We show that (X1.S,∆) 6∼ (X ′
1.S,∆) under the assumption that C is

false. If C is false then C ′ defined by

C ′ def= ∀x1∃y1∀x2∃y2 . . . ∀xn∃yn. ¬(C1 ∧C2 ∧ . . . ∧ Ck)

is true and we claim that the attacker has a winning strategy in the bisimulation
game starting from (X1.S,∆) and (X ′

1.S,∆). As mentioned in Section 6.2, in
the first round the attacker is forced to perform the move X1.S

a−→ Y choice
1 .S.

The defender can respond either by (i) X ′
1.S

a−→ Y tt
1 .S (which corresponds to

setting the variable x1 to true) or by (ii) X ′
1.S

a−→ Y ff
1 .S (which corresponds to

setting the variable x1 to false). In the second round the attacker performs the
action (i) tt or (ii) ff, and the defender must answer by the same action in the
other process. Now the game continues from (i) V α1

1 .S and V
′α1
1 .S or (ii) V α1

1 .S

and V
′α1
1 .S. Within the next (i) 2 · |α1| or (ii) 2 · |α1| rounds (where |w| is the

length of w) the defender has the possibility to choose some subsequence of (i)
α1 or (ii) α1 and add it in a reverse order to the current state. Then the game
continues either from (i) V ε

1 .γ1.S and V
′ε
1 .γ1.S or (ii) V ε

1 .γ1.S and V
′ε
1 .γ1.S, such



116 Chapter 6. Lower Bounds for Strong Bisimilarity

that (i) γ1 is a subsequence (in a reverse order and chosen by the defender) of
α1 or (ii) γ1 is a subsequence (in a reverse order and chosen by the defender) of
α1. The players have only one possible continuation of the game by using the
rewrite rules V ε

1
a−→ Z1 and V

′ε
1

a−→ Z ′1, thus reaching the states (i) Z1.γ1.S
and Z ′1.γ1.S or (ii) Z1.γ1.S and Z ′1.γ1.S.

Now, it is the attacker who has the possibility of making a choice between
the rewrite rules Z1

tt−→ W β1
1 or Z1

ff−→ W β1
1 in the first process. This cor-

responds to setting the variable y1 to true or false. The defender can only
imitate the same action by using the rules Z ′1

tt−→ W
′β1
1 or Z ′1

ff−→ W
′β1
1 in

the other process. From the current states starting with W β1
1 and W

′β1
1 , or

W β1
1 and W

′β1
1 , the same happens as before: the defender has the possibility of

choosing a subsequence δ1 (in a reverse order) of β1 or a subsequence δ1 (in a
reverse order) of β1. So precisely after 2 · |β1| or 2 · |β1| rounds the following
four possible pairs of states can be reached: (1) W ε

1 .δ1.γ1.S and W
′ε
1 .δ1.γ1.S,

or (2) W ε
1 .δ1.γ1.S and W

′ε
1 .δ1.γ1.S, or (3) W ε

1 .δ1.γ1.S and W
′ε
1 .δ1.γ1.S, or (4)

W ε
1 .δ1.γ1.S and W

′ε
1 .δ1.γ1.S. We have now only one possible continuation of the

game in the next round, reaching the states (1)X2.δ1.γ1.S andX ′
2.δ1.γ1.S, or (2)

X2.δ1.γ1.S and X ′
2.δ1.γ1.S, or (3) X2.δ1.γ1.S and X ′

2.δ1.γ1.S, or (4) X2.δ1.γ1.S
and X ′

2.δ1.γ1.S.
We remind the reader of the fact that the defender had the possibility to set

the variable x1 to true or false, and the attacker decided on the truth value for
the variable y1. In the meantime, all the process constants from {Q1, . . . , Qk}
corresponding to the clauses that became satisfied by this assignment could
have been potentially added to the current state, but it was the defender who
had the possibility to filter some of them out.

In the next rounds the same schema of the game repeats, until we reach the
states Xn+1.ω.S and X ′

n+1.ω.S. The defender decides on the truth values for
each of the variables x2, . . . , xn, and the attacker has the possibility to respond
by choosing the truth values for the variables y2, . . . , yn. During this some of
the clauses appear to be satisfied and ω consists of a selection (made by the
defender) of process constants corresponding to these clauses.

Since we assume that the formula C ′ is true, the attacker can decide on
the truth values for y1, . . . , yn in such a way that at least one of the clauses
C1, . . . , Ck is not satisfied. Let us suppose that it is Cm for some m, 1 ≤ m ≤ k,
that is not satisfied. Hence Qm cannot appear in ω and the attacker has the
following winning strategy. He plays Xn+1.ω.S

a−→ Q1.Q2. . . . .Qk−1.Qk.S.ω.S,
to which the defender can only answer by X ′

n+1.ω.S
a−→ ω.S.

The state Q1.Q2. . . . .Qk−1.Qk.S.ω.S can perform exactly
∑k

j=1M
j of ac-

tions c (see Remark 6.3) followed by an infinite sequence of actions s. On the
other hand, ω.S can never perform exactly

∑k
j=1M

j of actions c and then
the infinite sequence of actions s. This follows from the fact that Qm does
not appear in ω and from Lemma 6.3 — obviously, any process constant from
{Q1, . . . , Qk} can occur at most 2n times in ω (2n ≤ M − 1), which satisfies
the assumption of Lemma 6.3.

Hence the attacker has a winning strategy which implies that (X1.S,∆) 6∼
(X ′

1.S,∆). 2



6.4. Hardness of Strong Regularity 117

Lemma 6.5. If the formula C is true then (X1.S,∆) ∼ (X ′
1.S,∆).

Proof. Consider a strong bisimulation game starting from the pair (X1.S,∆)
and (X ′

1.S,∆). We show that the defender has a winning strategy. As men-
tioned in Section 6.2 and in the proof above, the attacker is forced to play
according to a strictly defined strategy, otherwise the defender can make the
resulting processes immediately syntactically equal and hence bisimilar. As
shown before the defender can make the choices between setting the variables
x1, . . . , xn to true or false, whereas the attacker can decide on truth values for
y1, . . . , yn. Thus the defender can play the bisimulation game such that finally
every clause C1, . . . , Ck in C is satisfied. The defender has the possibility to
add the corresponding process constants Q1, . . . , Qk to the current state in such
a way that when reaching the states Xn+1.ω.S and X ′

n+1.ω.S, the sequential
composition ω contains every Qj exactly once for each j, 1 ≤ j ≤ k. This
can be easily achieved by following the strategy: “add Qj to the current state
if and only if it is not already present there”. After performing the moves
Xn+1.ω.S

a−→ Q1.Q2. . . . .Qk−1.Qk.S.ω.S and X ′
n+1.ω.S

a−→ ω.S, the defender
wins since S.ω.S ∼ S and both Q1.Q2. . . . .Qk−1.Qk and ω can perform the
same number of actions c and then become ε. Hence (X1.S,∆) ∼ (X ′

1.S,∆). 2

Theorem 6.2. Strong bisimilarity of BPA is PSPACE-hard.

Proof. By Lemma 6.4 and Lemma 6.5. 2

Remark 6.4. Notice that there are only finitely many reachable states from
(X1.S,∆) and (X ′

1.S,∆). Hence (X1.S,∆) and (X ′
1.S,∆) are strongly regular

processes.

6.4 Hardness of Strong Regularity

As already mentioned in Chapter 5, the idea to reduce bisimilarity to regularity
first appeared in the literature due to Mayr [124]. He showed a technique for
reducing weak bisimilarity of regular BPP to weak regularity of BPP. However,
in his reduction τ actions are used.

Building upon Mayr’s approach we will provide polynomial time reductions
from strong bisimilarity of regular BPP (BPA) to strong regularity of BPP
(BPA).

6.4.1 Basic Parallel Processes

Theorem 6.3 (Reduction from bisimilarity to regularity).
Let (P1,∆) and (P2,∆) be strongly regular BPP processes. We can construct
in polynomial time a BPP process (P,∆′) such that

(P1,∆) ∼ (P2,∆) if and only if (P,∆′) is strongly regular.



118 Chapter 6. Lower Bounds for Strong Bisimilarity

X||Ai||Bc
ai

′
��

∼? X||Aj ||Bc
ai

′
��

P ′1||Ai−i
′+1||Ac||Bc
aj−i′

��

X||Aj−i′ ||Bc
aj−i′

��
P ′1||Ai

′′ ||Ac||Bc
a

��

X||Bc
a

��
P1||Ai′′ ||Ac||Bc 6∼ P2||Ac||Bc

Figure 6.3: Winning strategy for the attacker (i < j)

Proof. Assume that (P1,∆) and (P2,∆) are strongly regular. We construct a
BPP process (P,∆′) with

Const(∆′) def= Const(∆) ∪ {X,A,Ac, Bc, P ′1, P ′2}

and
Act(∆′) def= Act(∆) ∪ {a, b}

where X,A,Ac, Bc, P ′1, P ′2 are new process constants and a, b are new actions.

We define ∆′ def= ∆ ∪∆1 ∪∆2 where the set of rewrite rules ∆1 is given by

X
b−→ X||A A

a−→ ε Ac
a−→ Ac Bc

b−→ Bc
X

a−→ P ′1||Ac X
a−→ P1||Ac P ′1

a−→ P1

and ∆2 is given by

X
a−→ P ′2||Ac X

a−→ P2||Ac P ′2
a−→ P2.

Let P def= X||Bc.
Lemma 6.6. If (P1,∆) 6∼ (P2,∆) then (P,∆′) is not strongly regular.

Proof. Let (P1,∆) 6∼ (P2,∆). For simplicity (and without loss of generality)
we assume that P1 6∼ ε and P2 6∼ ε. We demonstrate that there are infinitely
many strongly nonbisimilar states reachable from (P,∆′).

Let us consider an infinite number of states of the formX||Ai||Bc for any nat-
ural number i. Of course P −→∗ X||Ai||Bc and we claim that (X||Ai||Bc,∆′) 6∼
(X||Aj ||Bc,∆′) for any i 6= j. Without loss of generality assume that i < j. The
attacker has the following winning strategy (playing only in the second process
— see Figure 6.3).

He performs a sequence of j actions a from X||Aj ||Bc, thus reaching a state
X||Bc. The defender playing from X||Ai||Bc cannot do this sequence of a-actions
without using some rule for X. This is because Bc 6 a−→ and Ai can perform
at most i a-actions (i < j). As we assume that P1 6∼ ε and P2 6∼ ε, process



6.4. Hardness of Strong Regularity 119

constants P1 and P2 cannot appear in the defender’s process during the first j
rounds, otherwise he loses immediately. So the defender has to make a choice
between the rules X a−→ P ′1||Ac and X

a−→ P ′2||Ac sometime within the first
j moves (let us say in round i′ where i′ ≤ i + 1). Assume that the defender
chooses X a−→ P ′1||Ac — the other case is symmetric. Now, the defender must
perform j − i′ of a-actions by using the rules Ac

a−→ Ac or A a−→ ε.
After j rounds the resulting states are P ′1||Ai

′′ ||Ac||Bc for i′′ ≤ i− i′ + 1, and
X||Bc. The attacker wins by performing the move X||Bc a−→ P2||Ac||Bc. Again,
since we assume that P2 6∼ ε the defender has to answer with P ′1||Ai

′′ ||Ac||Bc a−→
P1||Ai′′ ||Ac||Bc. The attacker has now a winning strategy from P1||Ai′′ ||Ac||Bc
and P2||Ac||Bc: the fact that P1 6∼ P2 and that the actions a and b are fresh
ones implies that P1||Ai′′ ||Ac||Bc 6∼ P2||Ac||Bc. 2

Lemma 6.7. If (P1,∆) ∼ (P2,∆) then (P,∆′) is strongly regular.

Proof. Assume that (P1,∆) ∼ (P2,∆) which implies that (P,∆′) ∼ (P,∆′′)
where ∆′′ def= ∆′ r ∆2. It is enough to show that (P,∆′′) is strongly regular.
Observe that (Ai||Ac,∆′′) ∼ (Ac,∆′′) for any i such that 0 ≤ i. Then also
(P1||Ai||Ac||Bc,∆′′) ∼ (P1||Ac||Bc,∆′′) and (P ′1||Ai||Ac||Bc,∆′′) ∼ (P ′1||Ac||Bc,∆′′)
for any i such that 0 ≤ i. This implies that

(X||Ai||Bc,∆′′) ∼ (P ′1||Ac||Bc,∆′′) (6.1)

for any i such that 0 ≤ i. Since (P1,∆) is a strongly regular process then
(P ′1||Ac||Bc,∆′′) is also strongly regular. This by using (6.1) in particular gives
that (X||A0||Bc,∆′′) = (X||Bc,∆′′) = (P,∆′′) is strongly regular. 2

Theorem 6.3 follows from Lemma 6.6 and Lemma 6.7. 2

Theorem 6.4. Strong regularity of BPP is PSPACE-hard.

Proof. By Theorem 6.1, Remark 6.1 and Theorem 6.3. 2

6.4.2 Basic Process Algebra

Theorem 6.5 (Reduction from bisimilarity to regularity).
Let (P1,∆) and (P2,∆) be strongly regular BPA processes. We can construct
in polynomial time a BPA process (P,∆′) such that

(P1,∆) ∼ (P2,∆) if and only if (P,∆′) is strongly regular.

Proof. Assume that (P1,∆) and (P2,∆) are strongly regular BPA processes
such that ∆ contains no deadlocks (if ∆ contains deadlocks, we can use deadlock
elimination technique from [169]).

We construct a BPA process (P,∆′) with

Const(∆′) def= Const(∆) ∪ {X,A,C, S, P ′1, P ′2}



120 Chapter 6. Lower Bounds for Strong Bisimilarity

and
Act(∆′) def= Act(∆) ∪ {a, s}

where X,A,C, S, P ′1, P ′2 are new process constants and a, s are new actions. We

define ∆′ def= ∆ ∪∆1 ∪∆2 where the set of transition rules ∆1 is given by

X
a−→ X.A X

a−→ ε A
a−→ ε S

s−→ S

A
a−→ P ′1.S A

a−→ P1.S P ′1
a−→ P ′1 P ′1

a−→ P1

X
a−→ P ′1.S X

a−→ P1.S

C
a−→ P ′1.S C

a−→ P1.S

and ∆2 is given by

A
a−→ P ′2.S A

a−→ P2.S P ′2
a−→ P ′2 P ′2

a−→ P2

X
a−→ P ′2.S X

a−→ P2.S

C
a−→ P ′2.S C

a−→ P2.S.

Let P def= X.C.

Lemma 6.8. If (P1,∆) 6∼ (P2,∆) then (P,∆′) is not strongly regular.

Proof. Let (P1,∆) 6∼ (P2,∆). Without loss of generality assume that P1 6∼ ε
and P2 6∼ ε. We show that there are infinitely many strongly nonbisimilar states
reachable from (P,∆′). Consider the states of the form Ai.C for any natural
number i. Of course, P −→∗ Ai.C. In order to prove that (P,∆′) is not strongly
regular, it is enough to show that (Ai.C,∆′) 6∼ (Aj .C,∆′) for any i < j. The
next paragraph describes attacker’s winning strategy from the states Ai.C and
Aj .C.

The attacker is playing only in the second process Aj .C. He performs a
sequence of actions a of length j by using the rule A a−→ ε and reaches the
state C. By examining all possible moves of the defender from the process
Ai.C, we get that a rule different from A

a−→ ε must be used within the first j
rounds since i < j. Using the assumption that P1 6∼ ε and P2 6∼ ε we derive that
only four types of states (reachable by the defender from Ai.C after j rounds)
must be considered. Namely

• P ′1.S.Ai
′
.C for some i′, 0 ≤ i′ < i

• P ′2.S.Ai
′
.C for some i′, 0 ≤ i′ < i

• P ′1.S or

• P ′2.S.

Notice that S.α ∼ S for any process expression α, which in particular means
that P ′1.S.Ai

′
.C ∼ P ′1.S and P ′2.S.Ai

′
.C ∼ P ′2.S. Hence it is enough to examine

only the states P ′1.S and P ′2.S. Let us consider the bisimulation game continuing
from the pair of states P ′1.S and C — the other case (from states P ′2.S and C)
is symmetric. The attacker wins by performing the move C

a−→ P2.S. The



6.4. Hardness of Strong Regularity 121

defender has to answer by P ′1.S
a−→ P1.S since the move P ′1.S

a−→ P ′1.S means
an immediate loss for the defender (we assume that P1 6∼ ε and P2 6∼ ε). Now
the resulting states after j + 1 rounds are P1.S and P2.S. The attacker has a
winning strategy from this pair by our assumption that P1 6∼ P2 and by the
fact that S s−→ S is the only rewrite rule for S and the action s is a fresh one.

2

Lemma 6.9. If (P1,∆) ∼ (P2,∆) then (P,∆′) is strongly regular.

Proof. Assume that (P1,∆) ∼ (P2,∆) which implies that (P,∆′) ∼ (P,∆′′)
where ∆′′ def= ∆′ r ∆2 (here the assumption that ∆ contains no deadlocks in
necessary). It is enough to show that (P,∆′′) is strongly regular. In what
follows we often use (without explicitly mentioning it) the fact that S.α ∼ S
for any process expression α.

Let us first observe that (C,∆′′) ∼ (P ′1.S,∆′′) which implies that also
(Ai.C,∆′′) ∼ (P ′1.S,∆′′) for all i ≥ 0. Using this fact we get that

(X.Ai.C,∆′′) ∼ (P ′1.S,∆
′′) (6.2)

for all i ≥ 0. Recall that (P1,∆) is a strongly regular process. It is easily seen
now that (P ′1.S,∆′′) is also a strongly regular process. Hence (6.2) in particular
gives that (X.A0.C,∆′′) = (X.C,∆′′) = (P,∆′′) is strongly regular. 2

Theorem 6.5 follows from Lemma 6.8 and Lemma 6.9. 2

Theorem 6.6. Strong regularity of BPA is PSPACE-hard.

Proof. By Theorem 6.2, Remark 6.4 and Theorem 6.5. 2

6.4.3 Normed Processes

In this subsection we show that under the condition of normedness, strong regu-
larity of BPA and BPP are complete problems for nondeterministic logarithmic
space (NL). Kučera in [106] argues that strong regularity of BPA and BPP is
decidable in polynomial time but it is easy to see that a test whether a BPA
(BPP) process contains an accessible and growing process constant (a condition
equivalent to regularity) can be performed even in nondeterministic logarith-
mic space. In [107] the previous results are extended to normed PA processes,
and again it can be shown that the decision algorithm for strong regularity of
normed PA can be implemented in NL.

Theorem 6.7. Strong regularity of normed BPA and normed BPP is NL-hard.

Proof. In order to prove NL-hardness, we reduce the reachability problem for
directed acyclic graphs (for NL-completeness see e.g. [145]) to strong regularity
checking of normed BPA (BPP).



122 Chapter 6. Lower Bounds for Strong Bisimilarity

Problem: Reachability for directed acyclic graphs
Instance: A directed acyclic graph G = (V,E) such that

V = {v1, . . . , vn}, 1 ≤ n, and E ⊆ V × V .
Question: Is it the case that (v1, vn) ∈ E∗ where E∗ is the

reflexive and transitive closure of E?

Let G = (V,E) be an instance of the reachability problem for acyclic di-
rected graphs. For u ∈ V we define its out-degree by

u+ def= |{v ∈ V | (u, v) ∈ E}|
and without loss of generality assume that v+

1 , v
+
n > 0. Let ∆ be a finite-state

system where Const(∆) def= {Xu | u ∈ V ∧ u+ > 0} ∪ {X}, Act(∆) def= {a} and

∆ def= {Xu
a−→ Xv | (u, v) ∈ E ∧ v+ > 0} ∪

{Xu
a−→ ε | (u, v) ∈ E ∧ v+ = 0} ∪

{Xvn

a−→ X}.
Obviously, (v1, vn) ∈ E∗ if and only if Xv1 −→∗ X. Let us define a BPA system

∆1
def= ∆ ∪ {X a−→ X.X, X

a−→ ε}
and a BPP system

∆2
def= ∆ ∪ {X a−→ X||X, X a−→ ε}.

It is an easy observation that (X,∆1) and (X,∆2) are normed and nonregular
processes. This implies that (Xv1 ,∆1) and (Xv1 ,∆2) are also normed processes
(G is acyclic) such that (v1, vn) ∈ E∗ iff (Xv1 ,∆1) is not strongly regular, and
(v1, vn) ∈ E∗ iff (Xv1 ,∆2) is not strongly regular. Recall that NL=co-NL (see
e.g. [145]). Hence the problems of strong regularity for normed BPA and BPP
are NL-hard (our reductions are obviously in logarithmic space). 2

6.5 Concluding Remarks

We have shown that the strong bisimilarity and regularity problems for BPA and
BPP are PSPACE-hard. Our proofs are done by reduction from the problem of
quantified satisfiability (QSAT). The general idea (Section 6.2) for generating
quantified instances of QSAT applies to both BPA and BPP. However, the
proofs for BPA and BPP differ in the method of checking that all clauses are
indeed satisfied. This is due to the fact that BPP enables parallel access to all
process constants contained in the current state whereas BPA does not.

An interesting observation is that only one unnormed process constant (na-
mely S) is used in the hardness proofs for BPA. In contrast, the hardness
proofs for strong bisimilarity of BPP (see [124] and Subsection 6.3.1) require a
polynomial number of unnormed process constants.



6.6. Bibliographical Remarks 123

We claim that the existential quantification technique can be used in sim-
ilar contexts. As we pointed out in [173], there are several applications of the
existential quantification technique. The technique is beneficial for e.g. show-
ing PSPACE-hardness of weak bisimilarity for normed and regular BPA, and
PSPACE-hardness of strong bisimilarity for normed and regular PDA. The sec-
ond result for normed PDA was recently improved even to EXPTIME [112] —
again using the existential quantification technique.

The usefulness of the main idea of existential quantification will be demon-
strated also in the following chapter where we prove that weak bisimilarity
problems for PDA and PA are undecidable. The technique of existential quan-
tification brings surprisingly highly understandable (we hope) proofs of these
results.

6.6 Bibliographical Remarks

This chapter is based on the technical report “Strong Bisimilarity of Simple
Process Algebras: Complexity Lower Bounds” [179]. The report is an extended
and unified version of two papers: “Strong Bisimilarity and Regularity of Basic
Process Algebra is PSPACE-Hard” [178] and “Strong Bisimilarity and Regu-
larity of Basic Parallel Processes is PSPACE-Hard” [177].





Chapter 7

Undecidability of Weak Bisimilarity

In this chapter we prove undecidability of weak bisimilarity for pushdown pro-
cesses and PA-processes. The existential quantification technique introduced
before will be useful also in this chapter.

In case of PDA, we reduce the halting problem of 2-counter Minsky ma-
chines to weak bisimilarity checking. Here the existential quantification tech-
nique enables to rearrange stack contents so that we have an access to both
the counters stored on the stack. Moreover, we argue that weak bisimilarity is
highly undecidable (outside of the arithmetical hierarchy of undecidable prob-
lems) even for a restricted subclass of normed PDA. One application of the
presented reduction is a proof of high undecidability of strong bisimilarity for
prefix-recognizable graphs.

In case of PA, we reduce Post’s correspondence problem to weak bisimilarity
checking. The existential quantification technique makes possible to generate
arbitrarily long solutions of Post’s correspondence problem. However, decid-
ability of weak bisimilarity for normed PA-processes still remains open. It is
also unclear whether weak bisimilarity of unnormed PA-processes lies inside the
arithmetical hierarchy or not.

7.1 Motivation

Strong bisimilarity is decidable for basic process algebra [46] and basic parallel
processes [43], two basic models of purely sequential, respectively parallel, com-
putations. There are even polynomial time algorithms for normed subclasses
of BPA and BPP [74, 75]. The techniques used to show the results are quite
involved and exploit nice structural properties of these simple process algebras.

The answers to the strong bisimilarity problems for processes generated by
pushdown systems are even more involved than those for BPA and BPP. A
pushdown process can be seen as a BPA process extended with a finite-state
control unit. Let us recall that from the language point of view, there is no
difference between PDA and BPA since both formalisms describe the class of
context-free languages.

On the other hand the situation is different when considering strong bisim-
ilarity as the equivalence relation. The PDA class is strictly more expressive

125



126 Chapter 7. Undecidability of Weak Bisimilarity

than BPA w.r.t. strong (and weak) bisimilarity, and hence the decidability
problems are more difficult to handle. Nevertheless, Stirling proved decidabil-
ity of strong bisimilarity for normed PDA [184] and the same question for the
whole class of PDA was positively answered by Sénizergues [163].

Similar extension of BPP with finite-state control unit defines the class of
parallel PDA (PPDA), a strict subclass of Petri nets. However, strong bisimi-
larity is still undecidable for PPDA [34, 97].

Another extension of BPA and BPP is simply by considering PA, the algebra
that contains both sequential and parallel operator. In this case the problem
of strong bisimilarity is open, however, for the normed subclass it is decidable
in 2-NEXPTIME [73].

Let us now draw our attention to weak bisimilarity. The positive develop-
ment in strong bisimilarity checking for many classes of infinite-state systems
had led to the hope that extending the existing techniques to the case of weak
bisimilarity might be a feasible step. Some of the recent results, however, con-
tradict this hope.

Opposed to the fact that strong bisimilarity is decidable between Petri nets
and finite-state systems [96], Jančar and Esparza proved in [93] that weak bisim-
ilarity is undecidable. Similarly, strong bisimilarity is decidable for pushdown
processes (PDA) [163], whereas weak bisimilarity will be shown undecidable in
this chapter. Strong bisimilarity of Petri nets is undecidable [90], however, it
is at the first level of the arithmetical hierarchy (Π0

1-complete). On the other
hand, weak bisimilarity of Petri nets lies beyond the arithmetical hierarchy [89].
In this chapter we also prove that weak bisimilarity of PA-processes is undecid-
able. Since PA allows neither communication nor global-state control, the proof
is more difficult than for PDA and PN: the undecidability argument for PDA
uses a finite-state control unit and the proof for PN relies on the possibility of
communication.

The situation appears slightly more promising on the second level of the
PRS-hierarchy. Decidability of weak bisimilarity for BPA and BPP are well
known open problems. The issues are open even for normed BPA and BPP.
However, some partial positive results were achieved e.g. in [72, 187], and the
technique of Jančar [92] may give a positive answer for the whole class of BPP. It
is also known that weak bisimilarity is decidable for deterministic PDA (follows
from [162] as mentioned in [125]).

7.2 Pushdown Processes

In this section we provide an evidence of high undecidability of weak bisimilarity
for normed PDA. The proof technique is based on an effective encoding of the
halting problem for 2-counter Minsky machines [136] into the bisimilarity check-
ing problem of a pair of pushdown processes. We use again the game-theoretic
characterization of weak bisimilarity to make the proof more understandable.
The intuition of our encoding is that a configuration of a Minsky machine, con-
sisting of an instruction label and the values of counters, is represented by a
pair of pushdown processes. In each process the label is remembered in the



7.2. Pushdown Processes 127

control state and the values of counters are stored in the stack. The problem is,
of course, that we have only sequential access to the stack but we need to enable
(at least a limited) parallel access to both counters. The key idea is a technique
how to manage these stack contents in such a way that the players faithfully
simulate the computation of the Minsky machine. The goal is to establish that
the attacker has a winning strategy in the bisimulation game iff the machine
halts, or equivalently that the defender has a winning strategy iff the machine
diverges. The technique of existential quantification will be used to show this.

Definition 7.1 (Minsky machine with two counters).
A Minsky machine R with two counters c1 and c2 is a finite sequence

R = (L1 : I1, L2 : I2, . . . , Ln−1 : In−1, Ln : halt)

where n ≥ 1, L1, . . . , Ln are pairwise different labels, and I1, . . . , In−1 are in-
structions of the following two types:

• increment:

cr := cr + 1; goto Lj

• test and decrement:

if cr = 0 then goto Lj else cr := cr − 1; goto Lk

where 1 ≤ r ≤ 2 and 1 ≤ j, k ≤ n.

A configuration of a Minsky machine R is a triple (Li, v1, v2) where Li is
the instruction label (1 ≤ i ≤ n), and v1, v2 ∈ N0 are nonnegative integers
representing the values of counters c1 and c2, respectively. Let Conf be the set
of all configurations of R. The transition relation ↪→ ⊆ Conf × Conf between
configurations is defined in the obvious and natural way. We remind the reader
of the fact that the computation of the machine R is deterministic, i.e., if c↪→d
and c↪→e then d = e for all c, d, e ∈ Conf.

It is a well known fact that the problem whether a Minsky machine R halts
with the initial counter values set to zero (in other words the problem whether
(L1, 0, 0)↪→∗(Ln, v1, v2) for some v1, v2 ∈ N0) is undecidable [136]. If R does not
halt we say that it diverges.

Our aim is to show that there is an effective construction such that given
a Minsky machine R it defines a pushdown automaton ∆ and a pair of pro-
cesses p1α1 and p2α2 with the property that R halts if and only if (p1α1,∆) 6≈
(p2α2,∆). This proves that weak bisimilarity of pushdown processes is an un-
decidable problem.

Let us fix a Minsky machine

R = (L1 : I1, L2 : I2, . . . , Ln−1 : In−1, Ln : halt).

We construct ∆ in stages. First, we define the sets of control states, stack sym-
bols and actions. Let Inc

def= {i | 1 ≤ i < n and Ii is of the type ‘increment’}
and Dec

def= {i | 1 ≤ i < n and Ii is of the type ‘test and decrement’}.



128 Chapter 7. Undecidability of Weak Bisimilarity

Q
def= {equal, equal1, equal2, empty1, empty2, empty′1, empty′2} ∪⋃

i∈Inc
{pi, p′i} ∪ ⋃

i∈Dec
{pi, p′i, ui, u′i, qi, q′i, ti, t′i} ∪ {pn, p′n}

Γ def= {C1, C2, S}

Act
def= {a, b, c, d, e, c1 , c2, c′1, c′2, halt, τ}

The intuition is that a configuration (Li, v1, v2) ∈ Conf is represented by a
pair of processes piγS and p′iγ

′S where γ, γ′ ∈ {C1, C2}∗ such that the number of
occurrences of C1 and C2 in γ (and also in γ′) is equal to v1 and v2, respectively.
Using this representation, our task is now to design rewrite rules to simulate
step by step the computation of R. Let us define formally a mapping value :
{C1, C2}∗ → N0 × N0 by the following inductive definition (the operation of
addition is component-wise).

value(ε) def= (0, 0)

value(C1γ)
def= value(γ) + (1, 0) for all γ ∈ {C1, C2}∗

value(C2γ)
def= value(γ) + (0, 1) for all γ ∈ {C1, C2}∗

As a part of the bisimulation game we will find useful the following rewrite
rules which enable to check whether two given stacks contain the same num-
ber of occurrences of C1 and C2. In the rules below X ranges over the set
{C1, C2, S}.

equal X
a−→ equal1 X equal X

b−→ equal2 X

equal1 C1
c1−→ equal1 equal1 C2

τ−→ equal1
equal2 C2

c2−→ equal2 equal2 C1
τ−→ equal2

Proposition 7.1. Let γ, γ′ ∈ {C1, C2}∗. Then

equal γS ≈ equal γ′S iff value(γ) = value(γ′).

Proof. Easy. 2

We continue by defining further rewrite rules to check whether the number
of occurences of C1 (or C2) is zero.

empty1 C1
c1−→ empty1 empty1 C2

c2−→ empty1

empty′1 C1
c′1−→ empty′1 empty′1 C2

c2−→ empty′1

empty2 C1
c1−→ empty2 empty2 C2

c2−→ empty2

empty′2 C1
c1−→ empty′2 empty′2 C2

c′2−→ empty′2



7.2. Pushdown Processes 129

piγS

a

��

p′iγ
′S

a

��
pjCrγS p′jCrγ

′S

Figure 7.1: Instruction Li: cr := cr + 1; goto Lj

Proposition 7.2. Let γ, γ′ ∈ {C1, C2}∗ be such that value(γ) = value(γ′) =
(v1, v2) for some v1, v2 ∈ N0. Let r ∈ {1, 2}. Then

emptyr γS ≈ empty′r γ
′S iff vr = 0.

Proof. Easy. 2

Let us now define the rewrite rules that are connected with the increment
instructions of R. Assume again that X ranges over the set {C1, C2, S}. For
all i ∈ Inc such that Ii is of the type

Li: cr := cr + 1; goto Lj

where 1 ≤ j ≤ n and 1 ≤ r ≤ 2, we add the following two rules.

piX
a−→ pjCrX p′iX

a−→ p′jCrX

Lemma 7.1. Let (Li, v1, v2) ∈ Conf be such that Ii is the ‘increment’ in-
struction and (Li, v1, v2)↪→(Lj , v′1, v′2). Let γ, γ′ ∈ {C1, C2}∗ be such that
value(γ) = value(γ′) = (v1, v2). There is a unique continuation of the bisimula-
tion game from the pair piγS and p′iγ

′S such that after one round the players
reach the pair pjγS and p′jγ′S satisfying value(γ) = value(γ′) = (v′1, v′2).

Proof. Obvious — see Figure 7.1. 2

We proceed by giving the rules for the ‘test and decrement’ instructions.
For all i ∈ Dec such that Ii is of the type

Li: if cr = 0 then goto Lj else cr := cr − 1; goto Lk

where 1 ≤ j, k ≤ n and 1 ≤ r ≤ 2, we define the rewrite rules in three parts.
The intuitive meaning is that if vr 6= 0 and the stacks γS and γ′S contain on
their tops the symbol Cr, we can do immediately the branching according to
the rules defined later in the third part. However, if it is not the case, the
first two parts of the rewrite rules enable the defender to rearrange the stack
contents (while preserving the number of occurrences of C1 and C2) in such a
way that Cr will appear as the first symbol on the stacks. Recall that X ranges
over the set {C1, C2, S}.



130 Chapter 7. Undecidability of Weak Bisimilarity

piX
a−→ qiX piX

a−→ u′iX

p′iX
a−→ u′iX u′iX

τ−→ q′iX u′iX
e−→ u′iX

u′iC1
τ−→ u′i u′iC2

τ−→ u′i
u′iX

τ−→ u′iC1X u′iX
τ−→ u′iC2X

qiX
c−→ equal X q′iX

c−→ equal X

Consider a bisimulation game played from piγS and p′iγ
′S. The purpose of

the previously defined rules is to enable the defender to rearrange the sequence
of C1 and C2 in γ′. Details are discussed in the proof of Lemma 7.2, here we give
only a short description. If the attacker plays piγS

a−→ qiγS, the defender must
answer by p′iγ

′S a=⇒ q′iγ′S for some γ′ ∈ {C1, C2}∗. Now the attacker can check
the invariant that value(γ) = value(γ′) by using the rules qiX

c−→ equal X and
q′iX

c−→ equal X.

q′iX
a−→ t′iX q′iX

a−→ uiX

qiX
a−→ uiX uiX

τ−→ tiX uiX
e−→ uiX

uiC1
τ−→ ui uiC2

τ−→ ui
uiX

τ−→ uiC1X uiX
τ−→ uiC2X

tiX
c−→ equal X t′iX

c−→ equal X

These rules are completely symmetric to the previous ones. In the bisimu-
lation game starting from qiγS and q′iγ′S, if the attacker plays q′iγ′S

a−→ t′iγ′S,
the defender must choose some γ ∈ {C1, C2}∗ and play qiγS

a=⇒ tiγS. The
attacker can again check whether value(γ) = value(γ′). The current states
become tiγS and t′iγ′S satisfying value(γ) = value(γ′) = value(γ) = value(γ′).

The third part of the rewrite rules defined below is here to perform a branch-
ing according to whether Cr occurs in γ and γ′ or not. The correctness is
discussed later.

tiCr
a−→ pk t′iCr

a−→ p′k

tiC3−r
b−→ pjC3−r t′iC3−r

b−→ p′jC3−r
tiS

b−→ pjS t′iS
b−→ p′jS

tiC3−r
d−→ emptyr C3−r t′iC3−r

d−→ empty′r C3−r

Finally, we add one extra rule to distinguish whether the last instruction
halt was reached. Recall that X ranges over the set {C1, C2, S}.

pnX
halt−→ pnX

Lemma 7.2. Let (Li, v1, v2) ∈ Conf be such that Ii is the ‘test and decrement’
instruction



7.2. Pushdown Processes 131

piγS

a

��

p′iγ
′S

a

��
qiγS

a

��

c // equal γS q′iγ′S

a

��

c // equal γ′S

tiγS
c // equal γS t′iγ′S

c // equal γ′S

Figure 7.2: Instruction ‘test and decrement’ — first two rounds

Li: if cr = 0 then goto Lj else cr := cr − 1; goto Lk

and let γ, γ′ ∈ {C1, C2}∗ be such that value(γ) = value(γ′) = (v1, v2). Consider
a bisimulation game played from the pair

piγS and p′iγ
′S.

a) The attacker has a strategy such that he either wins, or after three rounds
the players reach the states

1. pkγS and p′kγ′S — if vr 6= 0 and (Li, v1, v2)↪→(Lk, v′1, v′2) — where
value(γ) = value(γ′) = (v′1, v′2), or

2. pjγS and p′jγ′S — if vr = 0 and (Li, v1, v2)↪→(Lj, v1, v2) — where
value(γ) = value(γ′) = (v1, v2).

b) The defender has a strategy such that he either wins, or after three rounds
the players reach the states

1. pkγS and p′kγ′S — if vr 6= 0 and (Li, v1, v2)↪→(Lk, v′1, v
′
2) — where

value(γ) = value(γ′) = (v′1, v
′
2), or

2. pjγS and p′jγ′S — if vr = 0 and (Li, v1, v2)↪→(Lj, v1, v2) — where
value(γ) = value(γ′) = (v1, v2).

Proof. We begin with part a). First two rounds of the bisimulation game
are depicted in Figure 7.2. The game starts from piγS and p′iγ

′S such that
value(γ) = value(γ′) = (v1, v2). We show that after two attacker’s moves the
players either reach a pair tiγS and t′iγ′S such that γ, γ′ ∈ {C1, C2}∗ and
value(γ) = value(γ′) = (v1, v2), or the attacker has an immediate winning
strategy. The attacker starts by playing piγS

a−→ qiγS. The defender must
respond by playing p′iγ

′S a=⇒ q′iγ′S for some γ′ ∈ {C1, C2}∗ because of the
following remark.

Remark 7.1. The defender’s a=⇒-answer must start with the transition p′iγ
′S a−→

u′iγ
′S, followed by a finite number of τ -labelled transitions using the rules that



132 Chapter 7. Undecidability of Weak Bisimilarity

tiCrγS

a

��

t′iCrγ′S

a

��

pkγS p′kγ′S

Figure 7.3: Case vr 6= 0, i.e., (Li, v1, v2)↪→(Lk, v′1, v′2)

enable to remove an arbitrary part of the stack γ′S and add an arbitrary se-
quence from the symbols C1 and C2. Thus the defender can reach the state
u′iγ′S for any sequence γ′ ∈ {C1, C2}∗. Also note that he must finish the
sequence of τ -moves by u′iγ′S

τ−→ q′iγ′S. If not, then the attacker has an im-
mediate winning move in the next round by playing u′iγ′S

e−→ u′iγ′S to which
the defender has no answer because there is no e=⇒-move from qiγS.

The bisimulation game continues from the states qiγS and q′iγ′S. Whenever
value(γ) 6= value(γ′) then the attacker plays qiγS

c−→ equal γS to which the
defender has only one possible answer q′iγ′S

c−→ equal γ′S. Now the attacker
has a winning strategy because of Proposition 7.1.

Let us so assume that value(γ) = value(γ′). In the second round the at-
tacker switches the states and performs the move q′iγ′S

a−→ t′iγ′S. The game
is now completely symmetric to the situation in the first round. The de-
fender must answer with qiγS

a=⇒ tiγS for some γ ∈ {C1, C2}∗ such that
value(γ) = value(γ′) = (v1, v2).

In the third round played from tiγS and t′iγ′S the attacker’s strategy splits
into two parts, according to whether vr 6= 0 or vr = 0.

1. Let vr 6= 0 and hence (Li, v1, v2)↪→(Lk, v′1, v′2). See Figure 7.3.

– If γ = Crγ for some γ then the attacker plays tiγS
a−→ pkγS and

the defender must answer by t′iγ′S
a−→ p′kγ′S where γ′ = Crγ′. (If

γ′ = C3−rγ′ then the attacker wins immediately since t′iγ′S cannot
perform any a=⇒-move.) Now the players reached the pair pkγS and
p′kγ′S as required. Obviously value(γ) = value(γ′) = (v′1, v′2).

– If γ = C3−rγ for some γ then the attacker plays tiγS
d−→ emptyr γS

to which the defender has only one possible answer (if any), namely
t′iγ′S

d−→ empty′r γ′S. Since value(γ) = value(γ′) = (v1, v2) and vr 6=
0, the attacker has a winning strategy because of Proposition 7.2.

– The case γ = ε is impossible since we assume that vr 6= 0.

2. Let vr = 0 and hence (Li, v1, v2)↪→(Lj , v1, v2). See Figure 7.4. The as-
sumption vr = 0 implies that γ, γ′ ∈ {C3−r}∗. Hence the attacker can
play tiγS

b−→ pjγS and the defender has only one answer t′iγ′S
b−→ p′jγ′S.

The players reached the pair pjγS and p′jγ′S as required. Recall that
value(γ) = value(γ′) = (v1, v2).



7.2. Pushdown Processes 133

tiγS

b

��

d // emptyr γS t′iγ′S

b

��

d // empty′rγ′S

pjγS p′jγ′S

Figure 7.4: Case vr = 0, i.e., (Li, v1, v2)↪→(Lj , v1, v2)

Let us now prove part b). First two rounds can be seen again in Figure 7.2.
The initial states are piγS and p′iγ

′S such that value(γ) = value(γ′) = (v1, v2).
We claim that the defender has a strategy such that he either wins, or after two
rounds the players reach the states tiCvr

r C
v3−r

3−r S and t′iC
vr
r C

v3−r

3−r S (for definitions
of Cvr

r and Cv3−r

3−r see Notation 1). In the first round the attacker has three pos-
sible moves: (i) piγS

a−→ qiγS, (ii) piγS
a−→ u′iγS or (iii) p′iγ

′S a−→ u′iγ
′S. The

moves (ii) and (iii) are good for the defender since he can immediately win by
playing (ii) p′iγ

′S a=⇒ u′iγS or (iii) piγS
a=⇒ u′iγ

′S. Obviously, two syntactically
equal states are also weakly bisimilar. Hence we can assume that the attacker’s
first move is piγS

a−→ qiγS. The defender answers by p′iγ
′S a=⇒ q′iC

vr
r C

v3−r

3−r S.
Recall that value(γ) = (v1, v2) and thus the attacker loses by taking (i) qiγS

c−→
equal γS or (ii) q′iC

vr
r C

v3−r

3−r S
c−→ equal Cvr

r C
v3−r

3−r S as his next move since the
defender can respond by playing (i) q′iC

vr
r C

v3−r

3−r S
c−→ equal Cvr

r C
v3−r

3−r S or (ii)
qiγS

c−→ equal γS. The pair of states equal γS and equal Cvr
r C

v3−r

3−r S is weakly
bisimilar because of Proposition 7.1 and the defender has a winning strategy.

From the pair qiγS and q′iC
vr
r C

v3−r

3−r S we have a symmetric situation to the
previous one. So after the second round either the defender can win, or he can
force the attacker to reach the states tiCvr

r C
v3−r

3−r S and t′iC
vr
r C

v3−r

3−r S. Now the
game splits into two parts according to whether vr 6= 0 or vr = 0.

1. Let vr 6= 0 and hence (Li, v1, v2)↪→(Lk, v′1, v′2). See Figure 7.3. Then there
is a unique continuation of the game reaching the states pkCvr−1

r C
v3−r

3−r S
and p′kC

vr−1
r C

v3−r

3−r S. Obviously value(Cvr−1
r C

v3−r

3−r ) = (v′1, v′2).

2. Let vr = 0 and hence (Li, v1, v2)↪→(Lj , v1, v2). See Figure 7.4. Consider
the game starting from tiC

v3−r

3−r S and t′iC
v3−r

3−r S (note that Cvr
r = C0

r is the
empty string here). There is either a continuation of the game such that
the players reach the states pjC

v3−r

3−r S and p′jC
v3−r

3−r S, and value(Cv3−r

3−r ) =

(v1, v2) — or the attacker performs the d−→-move but then the defender
wins because of Proposition 7.2.

2

We arrived at the point where we are ready to prove our main theorem.

Theorem 7.1. Weak bisimilarity of pushdown processes is undecidable.

Proof. Let R be a Minsky machine and let ∆ be the pushdown system con-
structed above. We prove that R halts if and only if p1S 6≈ p′1S.



134 Chapter 7. Undecidability of Weak Bisimilarity

Assume that R halts, i.e., (L1, 0, 0)↪→∗(Ln, v1, v2) for some v1, v2 ∈ N0.
Then the attacker has a winning strategy starting from p1S and p′1S. Using
repeatedly Lemma 7.1 and part a) of Lemma 7.2 we can easily see that the
attacker either wins, or the players reach the states pnγS and p′nγ′S for some
γ, γ′ ∈ {C1, C2}∗ such that value(γ) = value(γ′) = (v1, v2). From the pair pnγS

and p′nγ′S the attacker immediately wins by playing pnγS
halt−→ pnγS to which

the defender has no answer from p′nγ′S. Hence p1S 6≈ p′1S.
On the other hand if R diverges, i.e., there is an infinite computation start-

ing from (L1, 0, 0), the defender has a winning strategy. Using repeatedly
Lemma 7.1 and part b) of Lemma 7.2 he can force the attacker to simulate
the computation of R in the bisimulation game. Because the computation of
R is infinite, so is the bisimulation game starting from p1S and p′1S. Since any
infinite bisimulation game is won by the defender (Definition 2.7), we get that
p1S ≈ p′1S. 2

Let us now study the rewrite rules defined above to see whether we can
prove even a stronger undecidability result for the normed subclass of pushdown
processes. As it can be observed, the pushdown processes p1S and p′1S are
almost normed. There are only a few exceptions: computations of the pushdown
automaton from p1S and p′1S can get stuck with nonempty stacks by reaching
e.g. the states p′nγ′S, equal1S, equal2S, empty1S, or there is an infinite loop
where only the increment instructions appear.

It would be easy to fix these problems by adding some extra rules but
we didn’t want to confuse the reader by mentioning these rules during the
development of the undecidability proof. In fact, we can derive undecidability
of weak bisimilarity for normed pushdown processes from the following lemma.

Lemma 7.3. Let ∆ be a pushdown automaton, and (p1α1,∆) and (p2α2,∆) a
pair of processes. We can construct in polynomial time a pushdown automaton
∆′ and a pair of normed processes (p1α

′
1,∆

′) and (p2α
′
2,∆

′) such that

(p1α1,∆) ≈ (p2α2,∆) if and only if (p1α
′
1,∆

′) ≈ (p2α
′
2,∆

′).

Proof. Let ∆ be a pushdown automaton with the set of control states Q, stack
symbols Γ and actions Act. We define ∆′ with the corresponding sets Q′ def=
Q ∪ {pd}, Γ′ def= Γ ∪ {D} and Act′ def= Act ∪ {f} such that pd, D and f are new
symbols. In particular, D is the symbol for a new bottom of the stack. Let ∆′ def=
∆ ∪ {pX f−→ pd | p ∈ Q and X ∈ Γ′} ∪ {pdX τ−→ pd | X ∈ Γ′}. We define
α′1

def= α1D and α′2
def= α2D. Obviously, (p1α

′
1,∆

′) and (p2α
′
2,∆

′) are normed
processes. The validity of (p1α1,∆) ≈ (p2α2,∆) iff (p1α

′
1,∆

′) ≈ (p2α
′
2,∆

′) is
easy to see from the fact that (pdγ,∆′) ≈ (pdγ′,∆′) for any γ, γ′ ∈ Γ′∗. 2

Corollary 7.1. Weak bisimilarity of normed pushdown processes is undecid-
able.

Proof. Immediately from Theorem 7.1 and Lemma 7.3. 2



7.2. Pushdown Processes 135

Remark 7.2. Observe that the construction in Lemma 7.3 gives immediately a
polynomial time reduction from weak bisimilarity between pushdown processes
and finite-state processes to the normed instances of the problems. It is also
easy to see that it preserves the property of being weakly regular, i.e., (p1α1,∆)
is weakly regular iff (p1α

′
1,∆

′) is weakly regular.

Remark 7.3. It is obvious that the presented reduction from 2-counter machines
to weak bisimilarity of pushdown processes can be extended to work for an
arbitrary number of counters and hence weak bisimilarity of normed PDA lies
beyond the arithmetical hierarchy: the technique of Jančar [89] for showing
high undecidability of weak bisimilarity for Petri nets can be adapted also to
our case.

In the rest of this section we investigate seemingly unrelated problem of
strong bisimilarity for prefix-recognizable graphs [40] (also called type−2 graphs).
It is known that monadic second order theory is decidable for prefix-recognizable
graphs [41]. Strong bisimilarity checking of prefix-recognizable graphs was
stated as an open problem e.g. in [184]. Using the result for PDA presented in
this section, we can easily derive undecidability this problem.

Definition 7.2 (Prefix-recognizable graph).
Prefix-recognizable system ∆ is a finite set of rules of the form R1

a−→ R2

where R1 and R2 are regular languages over Const, and a ∈ Act. The system
∆ determines a prefix-recognizable graph (labelled transition system) T (∆) def=
(S,Act,−→) defined as follows.

S
def= S(Const)

−→ def= {(α.γ, a, β.γ) | (R1
a−→ R2) ∈ ∆ ∧

α ∈ R1 ∧ β ∈ R2 ∧ γ ∈ S(Const)}
States of T (∆) are sequential process expressions over Const and a rule R1

a−→
R2 is interpreted as a possibly infinite set of rules α a−→ β such that α ∈ R1

and β ∈ R2.

As remarked by Stirling in [185], whenever a PDA system with control states
Q and stack alphabet Γ satisfies

if pX τ−→ for p ∈ Q and X ∈ Γ, then pX 6 a−→ for all a ∈ Act r {τ} (7.1)

then the collapsed PDA graph (i.e. the graph where the weak transitions a=⇒
for a ∈ Act are considered as single-step transitions and all τ transitions are
omitted) is a prefix-recognizable graph.

Notice that the PDA system ∆ from the proof of undecidability of weak
bisimilarity can be easily modified to satisfy condition (7.1). The only prob-
lematic situation is that u′iX

τ−→ and also u′iX
e−→ u′iX, and similarly uiX

τ−→
and also uiX

e−→ uiX. It is e.g. enough to replace the rules u′iX
e−→ u′iX and

uiX
e−→ uiX with u′iX

τ−→ pX and uiX
τ−→ pX where p is a newly added state

such that pX e−→ pX. Hence also weak bisimilarity of PDA systems satisfying
condition (7.1) is highly undecidable and we can conclude with the following
corollary.



136 Chapter 7. Undecidability of Weak Bisimilarity

Corollary 7.2. Strong bisimilarity of prefix-recognizable graphs is highly un-
decidable.

There is even a direct (polynomial time) reduction from weak bisimilarity
of PDA (without any restrictions) to strong bisimilarity of prefix-recognizable
graphs. The idea is to interpret weak transition relations a=⇒ as possibly infinite
sets of strong transition relations by collapsing all the τ moves.

Theorem 7.2. Weak bisimilarity of PDA is in polynomial time reducible to
strong bisimilarity of prefix-recognizable graphs (the size of the description of
such a graph includes the sizes of finite automata recognizing the regular sets
used in the rules).

Proof. Given a PDA system ∆ with control states Q, stack alphabet Γ and the
set of actions Act, we define four sets pre1(pX, a), post1(pX, a), pre2(pX, a)
and post2(pX, a) for every p ∈ Q, X ∈ Γ and a ∈ Act as follows.

pre1(pX, a) def= {qω | qω τ=⇒ pX}
post1(pX, a) def= {qω | pX a=⇒ qω}
pre2(pX, a) def= {qω | qω a=⇒ pX}
post2(pX, a) def= {qω | pX τ=⇒ qω}

It is a standard result that the set of reachable states of a PDA system forms a
regular set [31]. It is then easy to see that pre1(pX, a), post1(pX, a), pre2(pX, a)
and post2(pX, a) are also regular languages over Act, and the corresponding
finite-state automata recognizing these languages can be constructed in poly-
nomial time w.r.t. the size of the given PDA system (see [26, 60]). Let us now
define a prefix-recognizable graph ∆′ consisting of the following rules:

pre1(pX, a) a−→ post1(pX, a) for all p ∈ Q, X ∈ Γ and a ∈ Act,
pre2(pX, a) a−→ post2(pX, a) for all p ∈ Q, X ∈ Γ and a ∈ Act.

Since the sets Q, Γ and Act are finite sets, the system ∆′ contains only finitely
(in fact only polynomially) many rules.

Let p1α1 and p2α2 be a pair of states in T (∆). It is a routine exercise to
check that (p1α1,∆) ≈ (p2α2,∆) if and only if (p1α1,∆′) ∼ (p2α2,∆′). 2

7.3 PA-Processes

In this section we further confirm the inherent complexity of weak bisimilarity
by showing its undecidability for PA-processes. The proof is by reduction from
Post’s Correspondence Problem (PCP). For a given instance of PCP we con-
struct a pair of PA processes that are weakly bisimilar if and only if the PCP
instance has a solution. We use again the game-theoretic characterization of
weak bisimilarity and combine several techniques to achieve our result.

• The first technique uses the ideas of existential quantification as intro-
duced in Chapter 6. In case of weak bisimilarity it moreover provides a
technique for generating arbitrarily long sequences of process constants
(representing solutions of a given PCP instance).



7.3. PA-Processes 137

• The second technique, used by Mayr in [124] and called the masking
technique, deals with the following phenomenon. Assume that X is an
unnormed process constant that performs an action a and becomes X
again. Whenever X is added via parallel composition to any process
expression γ, it is capable of masking every possible occurrence of the
action a in γ.

• Finally, we adapt the technique of deadlock elimination from [169] into
our context, in order to make the proofs more transparent.

In this section we will also frequently use the following proposition.

Proposition 7.3. Let (E,∆) and (F,∆) be a pair of PA-processes. If the
defender has a winning strategy from E and F then he also has a winning
strategy from E||γ and F ||γ for any process expression γ ∈ G(Const(∆)

)
.

Proof. Easy. 2

Let us now define Post’s correspondence problem and then we describe the
reduction. For technical convenience we use the power of deadlocks to design
the reduction, however, at the end of this section we discuss a simple technique
for deadlock elimination. Thus the undecidability result is valid also for PA-
processes without deadlocks.

Definition 7.3 (Post’s correspondence problem).
An instance of Post’s correspondence problem (PCP) is a nonempty alphabet
Σ and two lists

A = [u1, . . . , un] and B = [v1, . . . , vn]

where n > 0 and uk, vk ∈ Σ+ for all k, 1 ≤ k ≤ n. The question is to decide
whether the (A,B)-instance has a solution, i.e., whether there is an integer
m ≥ 1 and a sequence of indices i1, . . . , im ∈ {1, . . . , n} such that

ui1ui2 . . . uim = vi1vi2 . . . vim .

According to the classical result due to Post, this problem is undecid-
able [154]. Let us consider an (A,B)-instance of PCP where

A = [u1, . . . , un] and B = [v1, . . . , vn].

We construct a PA system ∆ and a pair of processes (P1,∆) and (P2,∆) such
that the (A,B)-instance has a solution if and only if (P1,∆) ≈ (P2,∆).

Let SF(α) denote the set of all suffixes of a sequence α ∈ Σ∗, i.e., SF(α) def=
{α′ ∈ Σ∗ | ∃α′′ ∈ Σ∗ such that α = α′′α′}. Note that ε ∈ SF(α) for any α. We
can now define the set of process constants Const(∆) and actions Act(∆) by

Const(∆) def= {Uuk | 1 ≤ k ≤ n} ∪ {V vk | 1 ≤ k ≤ n} ∪
{Tw | w ∈

n⋃
k=1

SF(uk) ∪
n⋃
k=1

SF(vk)} ∪
{X,X ′,X ′

1, Y, Y
′, Y1, Z,C,C1, C2,W,D}

Act(∆) def= {a | a ∈ Σ} ∪ {ιk | 1 ≤ k ≤ n} ∪
{x, y, z, c1, c2, τ}.



138 Chapter 7. Undecidability of Weak Bisimilarity

Remark 7.4. In what follows D will be a distinguished process constant with
no rules associated to it (deadlock). Hence in particular α.D.β || γ ≈ α || γ
for any process expressions α, β and γ.

To make the rewrite rules introduced in this section more understandable,
we define the system ∆ in four stages. It is important to remark here that
whenever we define the rules for some process constant Q ∈ Const(∆), we
always give all the rules for Q at the same stage. Our ultimate goal is to show
that (X||C,∆) ≈ (X ′||C,∆) if and only if the given (A,B)-instance of PCP has
a solution. The first part of the system ∆ is given by the following rules:

Uuk
ιk−→ ε Uuk

τ−→ T uk for all k ∈ {1, . . . , n}
V vk

ιk−→ ε V vk
τ−→ T vk for all k ∈ {1, . . . , n}

T aw
a−→ Tw T aw

τ−→ Tw for all a ∈ Σ and w ∈ Σ∗ such that

aw ∈
n⋃
k=1

SF(uk) ∪
n⋃
k=1

SF(vk)

T ε
τ−→ ε.

This means that for a given k ∈ {1, . . . , n} the process constants Uuk and V vk

can perform e.g. the following transitions (or transition sequences): Uuk
ιk−→ ε,

V vk
ιk−→ ε, Uuk

uk=⇒ ε, V vk
vk=⇒ ε, Uuk

τ=⇒ ε, V vk
τ=⇒ ε. The intuition is that a

solution i1, . . . , im ∈ {1, . . . , n} of the (A,B)-instance is represented by a pair
of processes Uui1 .Uui2 . · · · .Uuim and V vi1 .V vi2 . · · · .V vim . These processes can
perform the sequences of visible actions ui1ui2 . . . uim and vi1vi2 . . . vim, respec-
tively, or they can perform the actions corresponding to the indices, namely
ιi1ιi2 . . . ιim . Moreover, since there is no global state control, the processes can
produce also a combination of the actions from Σ and {ι1, . . . , ιn}. In order to
avoid this undesirable behaviour, we add (via parallel composition) a process
constant C1 or C2 such that C1 masks all the actions from Σ and C2 masks all
the actions testing the indices. The reason for adding Z will become clear later.

The rewrite rules for C1, C2 and Z are given by:

C1
a−→ C1 for all a ∈ Σ

C2
ιk−→ C2 for all k ∈ {1, . . . , n}

Z
z−→ ε Z

τ−→ D.

Lemma 7.4. It holds that

Z.Uui1 .Uui2 . · · · .Uuim || C1 ≈ Z.V vj1 .V vj2 . · · · .V vj
m′ || C1

if and only if

m = m′ and i` = j` for all `, 1 ≤ ` ≤ m = m′.

Proof. “⇒”: Assume that (i) m 6= m′, or (ii) m = m′ and let `, 1 ≤ ` ≤
m = m′, be the smallest number such that i` 6= j`. It is easy to show that



7.3. PA-Processes 139

Z.Uui1 .Uui2 . · · · .Uuim || C1 6≈ Z.V vj1 .V vj2 . · · · .V vj
m′ || C1. In case (i), assuming

w.l.o.g. that m > m′, the attacker can perform in the first process a sequence
of actions zιi1ιi2 . . . ιim of length m+ 1 and the defender cannot answer by any
corresponding sequence of the same length from the second process (m > m′).
Hence the attacker wins. In case (ii), the attacker again performs the sequence
zιi1ιi2 . . . ιim in the first process. The only appropriate sequence of the same
length that the defender can perform in the second process is zιj1ιj2 . . . ιjm′ —
obviously no τ rules can be used otherwise the defender loses (his sequence gets
shorter). The attacker wins because ιi` 6= ιj` .
“⇐”: We show that Z.Uui1 .Uui2 . · · · .Uuim || C1 ≈ Z.V vi1 .V vi2 . · · · .V vim || C1.
Let U(`) def= Uui` .Uui`+1 . · · · .Uuim and V (`) def= V vi` .V vi`+1 . · · · .V vim for all `,
1 ≤ ` ≤ m. By definition U(m + 1) def= ε and V (m + 1) def= ε. Let us consider
the following relation R.

{ ( Z.U(1)||C1 , Z.V (1)||C1 ) } ∪
{ ( D.U(1)||C1 , D.V (1)||C1 ) } ∪
{ ( U(`)||C1 , V (`)||C1 ) | 1 ≤ ` ≤ m+ 1 } ∪
{ ( Tw.U(`)||C1 , V (`)||C1 ) | 2 ≤ ` ≤ m+ 1 ∧ w ∈ SF(u`−1)} ∪
{ ( U(`)||C1 , Tw.V (`)||C1 ) | 2 ≤ ` ≤ m+ 1 ∧ w ∈ SF(v`−1)}

It is a routine exercise to check that R is a weak bisimulation. Moreover, it
satisfies that (Z.Uui1 .Uui2 . · · · .Uuim || C1, Z.V

vi1 .V vi2 . · · · .V vim || C1) ∈ R. 2

Lemma 7.5. It holds that

Z.Uui1 .Uui2 . · · · .Uuim || C2 ≈ Z.V vj1 .V vj2 . · · · .V vj
m′ || C2

if and only if

ui1ui2 . . . uim = vj1vj2 . . . vjm′ .

Proof. “⇒”: Let σ def= Uui1 .Uui2 . · · · .Uuim and ω
def= V vj1 .V vj2 . · · · .V vj

m′ , and
let u def= ui1ui2 . . . uim and v

def= vj1vj2 . . . vjm′ . Hence σ u=⇒ ε and ω
v=⇒ ε, and

u and v are the longest sequences (and unique ones among the sequences of the
length |u| resp. |v|) of visible actions from Σ that σ and ω can perform. From
the assumption that u 6= v it is easy to see that Z.σ||C2 6≈ Z.ω||C2.
“⇐”: We show that Z.Uui1 .Uui2 . · · · .Uuim || C2 ≈ Z.V vj1 .V vj2 . · · · .V vj

m′ || C2

assuming that ui1ui2 . . . uim = vj1vj2 . . . vjm′ . Let α ∈ SF(ui1ui2 . . . uim) =
SF(vj1vj2 . . . vjm′ ). We define two sets U(α) and V (α). The intuition is that
U(α) contains all the states reachable from Uui1 . · · · .Uuim such that α is the
longest sequence of visible actions from Σ that these states can perform, and
similarly for V (α).

Let us fix the following notation: Uum+1 . · · · .Uum
def= ε, V vm′+1 . · · · .V vm′ def= ε

(here ‘ε’ stands for the empty process), and um+1 . . . um
def= ε, vm′+1 . . . vm′

def= ε
(here ‘ε’ means the empty sequence of actions).



140 Chapter 7. Undecidability of Weak Bisimilarity

U(α) def= {Uui` .Uui`+1 . · · · .Uuim | 1 ≤ ` ≤ m ∧ ui`ui`+1
. . . uim = α} ∪

{Tw.Uui` .Uui`+1 . · · · .Uuim | 2 ≤ ` ≤ m+ 1 ∧ w ∈ SF(ui`−1
) ∧

wui`ui`+1
. . . uim = α}

V (α) def= {V vj` .V vj`+1 . · · · .V vjm′ | 1 ≤ ` ≤ m′ ∧ vj`vj`+1
. . . vjm′ = α} ∪

{Tw.V vj` .V vj`+1 . · · · .V vj
m′ | 2 ≤ ` ≤ m′ + 1 ∧ w ∈ SF(vj`−1

) ∧
wvj`vj`+1

. . . vjm′ = α}.

We remind the reader of the fact that 1 ≤ |U(α)|, |V (α)| ≤ 3 for all α. For
example if m ≥ 2 then U(uim) = {Uuim , T ε.Uuim , T uim}. Moreover, if E ∈
U(α) and F ∈ V (α) then E α=⇒ ε and F α=⇒ ε, and α is the longest sequence of
actions from Σ satisfying this property. Let us consider the following relation
R where U(1) def= Uui1 .Uui2 . · · · .Uuim , V (1) def= V vj1 .V vj2 . · · · .V vj

m′ , and β
def=

ui1ui2 . . . uim = vj1vj2 . . . vjm′ .

{ ( Z.U(1)||C2 , Z.V (1)||C2 ) } ∪
{ ( D.U(1)||C2 , D.V (1)||C2 ) } ∪
{ ( E||C2 , F ||C2 ) | E ∈ U(α) ∧ F ∈ V (α) ∧ α ∈ SF(β)} ∪
{ ( C2 , C2 ) }

As in the previous lemma, it is easy to check that R is a weak bisimulation.
Moreover (Z.Uui1 .Uui2 . · · · .Uuim || C2, Z.V

vj1 .V vj2 . · · · .V vj
m′ || C2) ∈ R. 2

We continue with the definition of ∆ by adding rules which enable the
defender to generate a solution of the (A,B)-instance (if it exists).

X
x−→ Y X ′ x−→ X ′

1

X
x−→ X ′

1

X ′
1

τ−→ X ′
1.V

vk for all k ∈ {1, . . . , n}
X ′

1
τ−→ Y ′.V vk for all k ∈ {1, . . . , n}

Y
y−→ Y1 Y ′ y−→ Z

Y ′ y−→ Y1.D

Y1
τ−→ Y1.U

uk for all k ∈ {1, . . . , n}
Y1

τ−→ Z.Uuk for all k ∈ {1, . . . , n}

See Figure 7.5 for fragments of transition systems generated by (X,∆) and
(X ′,∆). The following lemma explains the purpose of the rules defined above.

Lemma 7.6. Consider a bisimulation game from (X,∆) and (X ′,∆). The
defender has a strategy such that after two rounds the players reach a pair of
states Z.σ and Z.ω where σ = Uui1 .Uui2 . · · · .Uuim and ω = V vj1 .V vj2 . · · · .V vj

m′

(m,m′ ≥ 1), and where σ and ω were chosen by the defender; or the defender
wins by reaching a pair of weakly bisimilar states.

Proof. In the first round of the bisimulation game played from (X,∆) and
(X ′,∆) the attacker has only one possible move: X

x−→ Y . If the attacker



7.3. PA-Processes 141

X

x

��

x

$$H
HHH

HH
H X ′

x
��

X ′
1 X ′

1

τ
��

Y
y
��

Y ′.ω

y

��

y

$$H
HHHHH

Y1

τ
��

Y1.D.ω (≈ Y1)

Z.σ
τ

zzvvv
vvv

v z

$$H
HHH

HHH
H Z.ω

τ

zzvvv
vvv

v z

$$H
HHH

HHH
H

D.σ (≈ ε) σ D.ω (≈ ε) ω

Figure 7.5: Fragments of transition systems generated by (X,∆) and (X ′,∆)

plays any other move (X x−→ X ′
1 or X ′ x−→ X ′

1) then the defender can make
the resulting processes syntactically equal and he wins. The defender’s answer
to the move X x−→ Y is by X ′ x=⇒ Y ′.ω for some ω = V vj1 .V vj2 . · · · .V vj

m′ such
that m′ ≥ 1.

In the next round played from Y and Y ′.ω the attacker is forced to continue
by Y ′.ω y−→ Z.ω. Similarly as in the first round: if the attacker chooses any
other move, the defender can make the resulting processes weakly bisimilar
(here we use the fact that Y1 ≈ Y1.D.ω). The defender can now choose some
σ = Uui1 .Uui2 . · · · .Uuim such that m ≥ 1 and plays Y

y
=⇒ Z.σ. Hence the

defender either won or he chose nonempty σ and ω and forced the attacker in
two rounds to reach the pair Z.σ and Z.ω. 2

We finish the definition of ∆ by adding the rules:

C
c1−→ C1 C

c2−→ C2 C
z−→ C||W

W
τ−→ W.Uuk W

τ−→W.V vk for all k ∈ {1, . . . , n}
W

τ−→ ε.

The intuition is that while playing a bisimulation game from X||C and
X ′||C, the defender can generate a solution of the (A,B)-instance by forcing the
attacker to reach the states Z.σ||C and Z.ω||C (see Lemma 7.6) such that σ =
Uui1 .Uui2 . · · · .Uuim and ω = V vi1 .V vi2 . · · · .V vim where i1, . . . , im is a solution
of the (A,B)-instance (if it exists). The attacker waits with using the rule
C

c1−→ C1 or C c2−→ C2 until the pair Z.σ||C and Z.ω||C is reached and then he
can check that the sequence i1, . . . , im is indeed a solution: from Z.σ||C1 and
Z.ω||C1 he checks whether the defender generated the same indices in both σ and
ω, and from Z.σ||C2 and Z.ω||C2 he checks whether ui1ui2 . . . uim = vi1vi2 . . . vim .
The purpose of the rules for the process constant W is explained later.

Lemma 7.7. If (X||C,∆) ≈ (X ′||C,∆) then the (A,B)-instance has a solution.



142 Chapter 7. Undecidability of Weak Bisimilarity

Proof. Assume that the (A,B)-instance has no solution, i.e., for every sequence
of indices i1, . . . , im ∈ {1, . . . , n} where m ≥ 1 it is the case that ui1ui2 . . . uim 6=
vi1vi2 . . . vim . We show that the attacker has a winning strategy from the pair
X||C and X ′||C. In the first round the attacker plays X||C x−→ Y ||C. The
defender can only answer by X ′||C x−→ X ′

1||C followed by a finite number of τ
actions, thus reaching a state X ′

1.ω||C or Y ′.ω||C for some ω. In the first case
the attacker switches the processes and uses e.g. the rule X ′

1
τ−→ Y ′.V v1 . Since

Y ||C 6 τ−→, the defender can only stay at the state Y ||C. In the second case the
state is already of the form Y ′.ω||C.

The game now continues from the pair of states Y ||C and Y ′.ω||C for some
ω. The attacker chooses the move Y ′.ω||C y−→ Z.ω||C. The defender has to
answer by Y ||C y−→ Y1||C followed by a finite number of τ actions. This means
that he can reach a state Y1.σ||C, or Z.σ||C, or D.σ||C for some σ. The attacker
wants to force the defender to reach the second possibility. We show later that
if the defender reaches D.σ||C then he loses. Moreover, if the defender reaches
Y1.σ||C then the attacker can use e.g. the rule Y1

τ−→ Z.Uu1 and the defender
can only respond by staying in Z.ω||C, or by the move Z.ω||C τ−→ D.ω||C. As
we want the game to continue from Z.σ||C and Z.ω||C, it is enough to show
that the attacker has a winning strategy from D.σ||C and Z.ω||C, and from
Z.σ||C and D.ω||C. We show how the attacker wins from D.σ||C and Z.ω||C
(the situation from Z.σ||C and D.ω||C is completely symmetric). The attacker
plays in the second state: Z.ω||C c1−→ Z.ω||C1. The defender can only respond
by D.σ||C c1−→ D.σ||C1. Now, Z.ω||C1

z−→ ω||C1 but D.σ||C1 6 z=⇒. Hence the
attacker wins.

To sum up, either the attacker wins or the game continues from the pair
Z.σ||C and Z.ω||C for some σ = Uui1 .Uui2 . · · · .Uuim and ω = V vj1 .V vj2 . · · · .V vj

m′

where m,m′ ≥ 1. There are two cases.

• If m = m′ and i` = j` for all `, 1 ≤ ` ≤ m = m′, then using our as-
sumption that the (A,B)-instance has no solution and by the fact that
m,m′ ≥ 1 we get that ui1ui2 . . . uim 6= vi1vi2 . . . vim . The attacker plays
Z.σ||C c2−→ Z.σ||C2 and the defender has to answer by Z.ω||C c2−→ Z.ω||C2

or Z.ω||C c2=⇒ D.ω||C2. From the pair Z.σ||C2 and Z.ω||C2 the attacker
has a winning strategy because of Lemma 7.5 and the attacker’s strat-
egy from the pair Z.σ||C2 and D.ω||C2 is obvious: Z.σ||C2

z−→ σ||C2 but
D.ω||C2 6 z=⇒.

• If it is not the case that m = m′ and i` = j` for all `, 1 ≤ ` ≤ m = m′,
the attacker plays Z.σ||C c1−→ Z.σ||C1 and the defender must respond by
Z.ω||C c1−→ Z.ω||C1 or Z.ω||C c1=⇒ D.ω||C1. By Lemma 7.4 the attacker
has a winning strategy from Z.σ||C1 and Z.ω||C1. The argument for the
attacker’s winning strategy from Z.σ||C1 and D.ω||C1 is as in the previous
case.

2

Lemma 7.8. If the (A,B)-instance has a solution then (X||C,∆) ≈ (X ′||C,∆).



7.3. PA-Processes 143

Proof. Let i1, . . . , im ∈ {1, . . . n} where m ≥ 1 be a solution of the (A,B)-
instance. We show that the defender has a winning strategy from the pair X||C
and X ′||C.

As it was already proved in Lemma 7.6, in the bisimulation game played
from X and X ′ the defender can force the attacker to reach the pair Z.σ and
Z.ω, or the defender has a winning strategy. In particular, the defender can
make sure that the players reach the pair Z.σ and Z.ω where σ and ω correspond
to the solution of the (A,B)-instance, i.e., σ = Uui1 .Uui2 . · · · .Uuim and ω =
V vi1 .V vi2 . · · · .V vim .

The situation in this lemma, however, requires that the players start playing
from X||C and X ′||C. We have to extend the defender’s strategy by defining his
responses to the attacks from the process constant C, or more generally from
any context γ reachable from C (see the last part of the definition of ∆). To any
attacker’s move X||γ −→ X||γ′ or X ′||γ −→ X ′||γ′ the defender answers simply
by imitating the same move in the other process. The bisimulation game then
continues from the pair X||γ′ and X ′||γ′. Since any infinite game is a winning
one for the defender, the attacker must eventually use some rules for X or X ′.
In this case the defender uses the strategy from Lemma 7.6. The attacker is
forced to play X||γ x−→ Y ||γ and the defender answers by X ′||γ x=⇒ Y ′.ω||γ
where ω = V vi1 .V vi2 . · · · .V vim . From the states Y ||γ and Y ′.ω||γ, again the
defender imitates any attacks from the context γ. Thus the attacker must
eventually play Y ′.ω||γ y−→ Z.ω||γ and the defender answers by Y ||γ y

=⇒ Z.σ||γ
where σ = Uui1 .Uui2 . · · · .Uuim .

By inspecting the rules for C we can see that the context γ always contains
either the process constant (i) C, (ii) C1, or (iii) C2. Hence γ can be written as
(i) C||γ′, (ii) C1||γ′, or (iii) C2||γ′ for some context γ′. In case (ii) the bisimulation
game continues from the pair Z.σ||C1||γ′ and Z.ω||C1||γ′, and the defender has
a winning strategy because of Lemma 7.4 and Proposition 7.3. In case (iii) the
bisimulation game continues from the pair Z.σ||C2||γ′ and Z.ω||C2||γ′, and the
defender has a winning strategy because of Lemma 7.5 and Proposition 7.3. It
remains to demonstrate that the defender has a winning strategy also in case
(i). Hence assume that the game continues from Z.σ||C||γ′ and Z.ω||C||γ′. By
Proposition 7.3 it is enough to show that Z.σ||C ≈ Z.ω||C. We will analyze
the attacker’s moves from Z.σ||C. The arguments for the moves from Z.ω||C
are completely symmetric. The attacker has the following moves available.

(i) Z.σ||C c1−→ Z.σ||C1

(ii) Z.σ||C c2−→ Z.σ||C2

(iii) Z.σ||C z−→ Z.σ||C||W
(iv) Z.σ||C τ−→ D.σ||C
(v) Z.σ||C z−→ σ||C

In case (i) the defender answers by Z.ω||C c1−→ Z.ω||C1 and wins because of
Lemma 7.4. In case (ii) the defender answers by Z.ω||C c2−→ Z.ω||C2 and wins be-
cause of Lemma 7.5. In case (iii) the defender answers by Z.ω||C z−→ Z.ω||C||W .
By Proposition 7.3 this case is already covered by the discussion of the de-
fender’s strategy from Z.σ||C and Z.ω||C. In case (iv) the defender answers by



144 Chapter 7. Undecidability of Weak Bisimilarity

Z.ω||C τ−→ D.ω||C and he wins since D.σ||C ≈ C ≈ D.ω||C. Case (v) is the
only case where we need the rules for the process constant W . The defender
answers by the following sequence:

Z.ω||C τ−→ D.ω||C z−→ D.ω||C||W τ=⇒ D.ω||C||σ.

This can be written in one step as Z.ω||C z=⇒ D.ω||C||σ. Now the game contin-
ues from the pair σ||C and D.ω||C||σ, however, σ||C ≈ D.ω||C||σ. This implies
that the defender has a winning strategy also in this case. 2

Theorem 7.3. Weak bisimilarity of PA-processes with deadlocks is undecid-
able.

Proof. Immediately from Lemmas 7.7 and 7.8. 2

In the rest of this section we show that the presence of the deadlock D in
∆ is not an essential requirement. We build upon the technique of deadlock
elimination described (for the case of BPA) in [169].

Lemma 7.9. There is a (polynomial time) reduction from weak bisimilarity of
PA with deadlocks to weak bisimilarity of PA without deadlocks.

Proof. Let ∆ be a PA system. By D(∆) we denote the set of all process con-
stants which have no rewrite rule in ∆, i.e., D(∆) = {X ∈ Const(∆) | X 6−→}.
Let us consider a PA system ∆′ such that Const(∆′) def= Const(∆)rD(∆)∪{D}
and Act(∆′) def= Act(∆) ∪ {d} where D is a new process constant and d is a
new action. Let ∆′ def= {X a−→ E | (X a−→ E) ∈ ∆} ∪ {D d−→ D} such
that ε def= ε, X def= X if X 6∈ D(∆), X def= D if X ∈ D(∆), E.F def= E.F , and
E||F def= E||F , where X is a process constant and E,F are process expressions.
Obviously D(∆′) = ∅ and it is easy to verify that (E,∆) ≈ (F,∆) if and only
if (E||D,∆′) ≈ (F ||D,∆′) for any process expressions E and F . 2

Hence the undecidability result is valid also for PA-processes without dead-
locks.

Corollary 7.3. Weak bisimilarity of PA-processes (without deadlocks) is un-
decidable.

7.4 Concluding Remarks

We proved that weak bisimilarity of pushdown processes and PA-processes is
undecidable. These results confirm that decidability issues for weak bisimilarity
are more complex than those for strong bisimilarity, even though not many ex-
amples of infinite-state systems which give similar conclusions have been found
so far.

In case of PDA we saw that the undecidability result holds also for the
normed subclass. Using arguments from [89] we can moreover conclude that the



7.5. Bibliographical Remarks 145

problem is beyond the arithmetical hierarchy of undecidable problems. An in-
teresting corollary of this result is that strong bisimilarity of prefix-recognizable
graphs is also highly undecidable (we described a polynomial time reduction
from weak bisimilarity of PDA to strong bisimilarity of prefix-recognizable
graphs).

The undecidability result of weak bisimilarity for PA-processes contrasts
to the situation of strong bisimilaririty for normed PA, which is known to be
decidable in 2-NEXPTIME [73]. The problems of strong bisimilarity for un-
normed PA and of weak bisimilarity for normed PA remain still open. Another
question to be considered is, whether the problem of weak bisimilarity for PA
is highly undecidable. In particular, we do not know whether it lies inside the
arithmetical hierarchy, or whether it is beyond the hierarchy.

Another interesting problems left open are decidability of strong/weak reg-
ularity for PDA and PA.

7.5 Bibliographical Remarks

The content of this chapter is based on two papers. Results from Section 7.2
appeared in the paper “Undecidability of Weak Bisimilarity for Pushdown Pro-
cesses” [181], except for Corollary 7.2 which was not published yet (we thank
Colin Stirling for pointing out this fact). Section 7.3 is based on the paper
“Undecidability of Weak Bisimilarity for PA-Processes” [180].





Chapter 8

Conclusion: State-of-the-Art

This chapter provides a comprehensive summary of equivalence checking results
for infinite-state processes from the PRS-hierarchy.

8.1 Motivation

The growing interest in verification of infinite-state systems during the last
decade led to the situation where many new results and novel approaches were
invented. The first attempt to map the fundamental techniques and results for
the equivalence checking problems was done by Moller in his overview paper
“Infinite Results” [137], followed by the paper “More Infinite Results” [37] by
Burkart and Esparza focusing on the model checking problems.

A large survey of equivalence and model checking techniques “Verification
on Infinite Structures” appeared in the handbook of process algebra [34] due to
Burkart, Caucal, Moller and Steffen. Yet another overview paper “Equivalence-
Checking with Infinite-State Systems: Techniques and Results” [110] by Kučera
and Jančar contains some recent techniques for simulation and bisimulation
checking.

Although these comprehensive survey papers provide a valuable overview
of proof techniques, the state-of-the-art advances so rapidly that many papers
contain outdated information even before they are published.

The main objective of this chapter is to conclude the thesis by offering an
updated overview of known decidability and complexity results for equivalence
checking in the classes of process rewrite systems.

The most recent version of this chapter is available from the web-page
http://www.brics.dk/∼srba/roadmap and we will promptly incorporate any
improvements in the presented results and display them on the mentioned web-
page.

We hope that the overview we provide will stimulate further research on
fundamental equivalence checking problems for infinite-state systems and it
will eventually lead towards a definitive closing of all the gaps in the mosaic of
infinite results.

147



148 Chapter 8. Conclusion: State-of-the-Art

8.2 Studied Problems

In the overview tables presented in the following section we consider all the
classes from the PRS-hierarchy as introduced in Chapter 2.

We include decidability and complexity results of the following problems:

• Strong/Weak Bisimilarity (∼/≈).

• Strong/Weak Bisimilarity with Finite-State Systems (∼ FS/≈ FS).

• Strong/Weak Regularity (∼ reg/≈ reg).

We deal with both unnormed and normed systems and for each decision
problem we provide the best complexity bounds achieved so far. Results pre-
sented in this thesis have a reference pointing to the published papers where
the proofs were first described.

The following remark1 will be relevant for many results in the overview
tables and that is why we include it into this section.

Remark 1. In the hierarchy of process rewrite systems there is a very close and
obvious relationship between strong regularity checking of normed processes
and the boundedness problem: a normed process is strongly regular if and only
if it has only finitely many (on the syntactical level) reachable states.

Example 8.1. This examle illustrates that the property mentioned in Remark 1
for strong bisimilarity is not valid for weak bisimilarity. Consider the following
BPA system ∆ with Const(∆) def= {X,Y } and Act(∆) def= {a}.

X
a−→ X.X X

τ−→ ε

Y
a−→ Y Y

τ−→ ε

Obviously, the process (X,∆) in normed and it has infinitely many reachable
states of the form Xi for i ∈ N0. On the other hand, it is still weakly regular
since (X,∆) ≈ (Y,∆).

8.3 Summary of Known Results

Each box in the tables below contains the information whether the considered
problem is decidable or not, and in the positive case we present the best known
upper bound in the upper part of the box and lower bound in the lower part.

1In order to enable quick orientation throughout this chapter, we will drop the chapter
number when refering to remarks. We also use e.g. R.1 instead of the full reference Remark 1.



8.3. Summary of Known Results 149

8.3.1 BPA (Basic Process Algebra)

BPA normed BPA

∼ ∈ 2-EXPTIME [35]
PSPACE-hard [178]

∈ P [74]
P-hard [17]

≈ ?
EXPTIME-hard [128]

?
EXPTIME-hard [128]

∼ FS
∈ P [113]

P-hard [17]
∈ P [74]

P-hard [17]

≈ FS
∈ P [113]

P-hard [17]
∈ P [113]

P-hard [17]

∼ reg
∈ 2-EXPTIME [36, 35]

PSPACE-hard [178]
∈ NL [106]

NL-hard [178]

≈ reg
?

EXPTIME-hard [128]
?

NP-hard [174, 189]

8.3.2 BPP (Basic Parallel Processes)

BPP normed BPP

∼ decidable [43], R.2
PSPACE-hard [177]

∈ P [75]
P-hard [17]

≈ ?, R.2
PSPACE-hard [174]

?, R.2
PSPACE-hard [174]

∼ FS
∈ PSPACE [94]

P-hard [17]
∈ P [75]

P-hard [17]

≈ FS
∈ PSPACE [94]

P-hard [17]
∈ P [113]

P-hard [17]

∼ reg
decidable [93]

PSPACE-hard [177]
∈ NL [106]

NL-hard [177]

≈ reg
?

PSPACE-hard [174]
?

PSPACE-hard [174]

Remark 2. Jančar announced [92] that strong bisimilarity of BPP is in PSPACE
and he also conjectured that the method might be used to show decidability of
weak bisimilarity for BPP.



150 Chapter 8. Conclusion: State-of-the-Art

8.3.3 PDA (Pushdown Processes)

PDA normed PDA

∼ decidable [163], R.3
EXPTIME-hard [112]

decidable [184]
EXPTIME-hard [112]

≈ undecidable [181] undecidable [181]

∼ FS
∈ PSPACE [112]

PSPACE-hard [125]
∈ PSPACE [112]

PSPACE-hard [125], R.4

≈ FS
∈ PSPACE [112]

PSPACE-hard [125]
∈ PSPACE [112]

PSPACE-hard [125], R.5

∼ reg
?

EXPTIME-hard [112, 178],R.6
∈ P [60], R.7
NL-hard [178]

≈ reg
?

EXPTIME-hard [112, 178],R.6
?

EXPTIME-hard [112, 178],R.5,6

Remark 3. Additional useful references concerning deterministic PDA are [164],
[165] and [186].

Remark 4. The reduction from [125] (Theorem 8) uses unnormed processes but
can be modified to work also for the normed case. An important observation is
that the stack size of the PDA from Theorem 8 is bounded by the number of
variables in the instance of quantified satisfiability from which the reduction is
done.

Remark 5. Lemma 3 in [181] gives a polynomial time reduction from weak
bisimilarity between two pushdown processes (and between a pushdown process
and a finite-state process) to the normed instance of the problem. The reduction
moreover preserves the property of being weakly regular. See also Remark 7.2
in Chapter 7.

Remark 6. In [112] a polynomial time reduction from the acceptance problem
of alternating linear-bounded automata to strong bisimilarity of normed PDA
is provided. Even though there are infinitely many reachable configurations in
the constructed PDAs, one can observe that only a fixed part from the top of
the stack is relevant for the construction. Hence it is possible to ensure that
the PDAs are strongly regular and Theorem 2 from [178] can be applied.

Remark 7. Strong regularity of normed PDA is equivalent to the boundedness
problem (Remark 1). Boundedness (even for unnormed PDA) is decidable in
polynomial time using the fact that the set of all reachable configurations of
a pushdown process is a regular language L [31] and a finite automaton A
recognizing L can be constructed in polynomial time (see e.g. [60]). The check
whether A generates a finite language can also be done in polynomial time.



8.3. Summary of Known Results 151

8.3.4 PA (Process Algebra)

PA normed PA

∼ ?
PSPACE-hard [177]

2-NEXPTIME [73]
P-hard [17]

≈ undecidable [180]
?

EXPTIME-hard [128]

∼ FS
decidable [86]
P-hard [17]

2-NEXPTIME [73]
P-hard [17]

≈ FS
decidable [94]
P-hard [17]

decidable [94]
P-hard [17]

∼ reg
?

PSPACE-hard [177]
∈ NL [107]

NL-hard [177]

≈ reg
?

EXPTIME-hard [128]
?

PSPACE-hard [174]

8.3.5 PN (Petri Nets)

PN normed PN

∼ undecidable [90] undecidable [90], R.8

≈ undecidable [90] undecidable [90], R.8

∼ FS
decidable [96]

EXPSPACE-hard [116], R.9
decidable [96]
P-hard [17]

≈ FS undecidable [93]
?

EXPSPACE-hard [116], R.9

∼ reg
decidable [93]

EXPSPACE-hard [116], R.10
∈ EXPSPACE [157], R.1

EXPSPACE-hard [116], R.10

≈ reg undecidable [93]
?

EXPSPACE-hard [116], R.10

Remark 8. The technique for proving undecidability of strong bisimilarity for
Petri nets from [90] can be slightly modified to ensure that the constructed nets
are normed. Essentially, it is enough to add extra transitions which enable to
remove all tokens from places. Moreover, whenever such an extra transition is
fired the two nets are forced to become bisimilar.

Remark 9. The problem whether a given place p of a PN can ever become
marked is EXPSPACE-hard (follows from Lipton’s construction [116], for a



152 Chapter 8. Conclusion: State-of-the-Art

more accessible proof see e.g. [58]). We can now easily see that this problem is
reducible in polynomial time to strong nonbisimilarity between PN and FS.

All transitions in a given Petri net N are assigned the same label a and we
add one more place q (initially marked) and an extra transition labelled by a
which takes a token from the place q and returns it back. Moreover we add
another transition labelled by b which can be fired whenever there is a token in
the place p. Let P be a finite-state process defined by P a−→ P . The following
property is immediate: the place p can become marked iff N is not strongly
bisimilar to P .

This reduction works also for normed PN and weak bisimilarity: we take
our modified net N and for each its place we add one extra transition labelled
by τ such that the transition takes a token from the place and removes it.
To the finite-state process P we add the rewrite rule P τ−→ ε. The net N is
now normed and moreover it is weakly bisimilar to P iff the place p can never
become marked.

Remark 10. Regularity of normed PN is equivalent to the boundedness problem
(Remark 1). Boundedness of PN is decidable in EXPSPACE, more precisely in
space 2cn logn for some constant c [157]. Moreover, the boundedness problem of
normed PN is EXPSPACE-hard because it can be easily seen to be polynomially
equivalent to the boundedness problem of general (unnormed) PN and this
problem is EXPSPACE-hard [116] (see also [58]).

8.3.6 PAD

PAD normed PAD

∼ ?
EXPTIME-hard [112]

?
EXPTIME-hard [112]

≈ undecidable [181] undecidable [181]

∼ FS
decidable [86]

PSPACE-hard [125]
decidable [86]

PSPACE-hard [125], R.4

≈ FS
decidable [94]

PSPACE-hard [125]
decidable [94]

PSPACE-hard [125], R.5

∼ reg
?

EXPTIME-hard [112, 178],R.6
decidable [129], R.1

NL-hard [178]

≈ reg
?

EXPTIME-hard [112, 178],R.6
?

EXPTIME-hard [112, 178],R.5,6



8.4. Bibliographical Remarks 153

8.3.7 PAN

PAN normed PAN

∼ undecidable [90] undecidable [90], R.8

≈ undecidable [90] undecidable [90], R.8

∼ FS
?

EXPSPACE-hard [116], R.9
decidable [129], R.1

P-hard [17]

≈ FS undecidable [93]
?

EXPSPACE-hard [116], R.9

∼ reg
?

EXPSPACE-hard [116], R.10
decidable [129], R.1

EXPSPACE-hard [116], R.10

≈ reg undecidable [93]
?

EXPSPACE-hard [116], R.10

8.3.8 PRS (Process Rewrite Systems)

PRS normed PRS

∼ undecidable [90] undecidable [90], R.8

≈ undecidable [90] undecidable [90], R.8

∼ FS
?

EXPSPACE-hard [116], R.9
decidable [129], R.1

PSPACE-hard [125], R.4

≈ FS undecidable [93]
?

EXPSPACE-hard [116], R.9

∼ reg
?

EXPSPACE-hard [116], R.10
decidable [129], R.1

EXPSPACE-hard [116], R.10

≈ reg undecidable [93]
?

EXPSPACE-hard [116], R.10

8.4 Bibliographical Remarks

The content of this chapter is based on the overview paper “Roadmap of In-
finite Results” [176]. We also designed a project which aims to update the
information about the mentioned results according to the current development
in equivalence checking of infinite-state systems. The updated version of the
document is available from



154 Bibliography

http://www.brics.dk/∼srba/roadmap.
Possible inclusion into a mailing list enables to inform interested researchers
about any new results within the area.



Bibliography

[1] P. Abdulla and B. Jonsson. Verifying programs with unreliable channels.
Information and Computation, 127(2):91–101, 1996.

[2] P. A. Abdulla and K. Cerans. Simulation is decidable for one-counter
nets. In Proceedings of the 9th International Conference on Concurrency
Theory (CONCUR’98), volume 1466 of LNCS, pages 253–268, 1998.

[3] S. Abramsky. Observation equivalence as a testing equivalence. Theoret-
ical Computer Science, 53(2-3):225–241, 1987.

[4] L. Aceto and M. Hennessy. Termination, deadlock, and divergence. Jour-
nal of the ACM, 39(1):147–187, 1992.

[5] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time sys-
tems. Proceedings of the 5th Symposium on Logic in Computer Science
(LICS 90), pages 414–425, 1990.

[6] R. Alur, C. Courcoubetis, T. Henzinger, and P.-H. Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid
systems. In R. Grossman, A.Nerode, A. Ravn, and H. Rischel, editors,
Hybrid Systems, volume 736 of LNCS, pages 209–229. Springer-Verlag,
1993.

[7] R. Alur and D. Dill. Automata for modelling real-time systems. In Pro-
ceedings of the 17th International Colloquium on Algorithms, Languages
and Programming (ICALP’90), volume 443 of LNCS, pages 322–335,
1990.

[8] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. Theo-
retical Computer Science, 126(2):183–236, 1994.

[9] J. Baeten and J. Bergstra. Mode transfer in process algebra. Technical
report CSR 00-01, Vakgroep Informatica, Technische Universiteit Eind-
hoven, 2000.

[10] J. Baeten, J. Bergstra, and J. Klop. Decidability of bisimulation equiva-
lence for processes generating context-free languages. In Proceedings of the
Conference on Parallel Architectures and Languages Europe (PARLE’87).
Volume II: Parallel Languages, volume 259 of LNCS, pages 94–113.
Springer-Verlag, 1987.

155



156 Bibliography

[11] J. Baeten, J. Bergstra, and J. Klop. Ready-trace semantics for concrete
process algebra with the priority pperator. Computer Journal, 30(6):498–
506, 1987.

[12] J. Baeten, J. Bergstra, and J. Klop. Decidability of bisimulation equiv-
alence for processes generating context-free languages. Journal of the
ACM, 40(3):653–682, 1993.

[13] J. Baeten, J. Bergstra, and J. Klop. Decidability of bisimulation equiv-
alence for processes generating context-free languages. Journal of the
Association for Computing Machinery, 40:653–682, 1993.

[14] J. Baeten and R. van Glabbeek. Another look at abstraction in process al-
gebra. In Proceedings of the 14th International Colloquium on Automata,
Languages and Programming (ICALP’87), volume 267 of LNCS, pages
84–94. Springer-Verlag, 1987.

[15] J. Baeten and W. Weijland. Process Algebra. Number 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
1990.

[16] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Syntax and defining
equations for an interrupt mechanism in process algebra. Fundamenta
Informaticae, IX(2):127–168, 1986.

[17] J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is P-
complete. Formal Aspects of Computing, 4(6A):638–648, 1992.

[18] M. A. Bednarczyk. Categories of Asynchronous Systems. PhD thesis,
University of Sussex, 1988.

[19] M. A. Bednarczyk. Hereditary history preserving bisimulations or what
is the power of the future perfect in program logics. Technical report
— http://www.ipipan.gda.pl/∼marek, Polish Academy of Sc., Gdansk,
1991.

[20] B. Berard, A. Labroue, and P. Schnoebelen. Verifying performance equiv-
alence for timed basic parallel processes. In Proceedings of the 3rd Interna-
tional Conference on Foundations of Software Science and Computation
Structures (FOSSACS’00), volume 1784 of LNCS, pages 35–47. Springer-
Verlag, 2000.

[21] J. Bergstra and J. Klop. Algebra of communicating processes with ab-
straction. Theoretical Computer Science, 37:77–121, 1985.

[22] J. A. Bergstra. A mode transfer operator in process algebra. Technical
report P8808b, University of Amsterdam, The Netherlands, 1989.

[23] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal
of the ACM, 42(1):232–268, 1995.



Bibliography 157

[24] G. V. Bochmann. Finite state description of communication protocols.
Computer Networks and ISDN Systems, 2:361–372, 1985.

[25] T. Bolognesi, F. Lucidi, and S. Trigila. From timed Petri nets to timed
LOTOS. In Proceedings of the IFIP WG 6.1 Tenth International Sympo-
sium on Protocol Specification, Testing and Verification (Ottawa 1990),
pages 1–14. North-Holland, Amsterdam, 1990.

[26] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Application to model-checking. In Proceedings of the 8th
International Conference on Concurrency Theory (CONCUR’97), volume
1243 of LNCS, pages 135–150. Springer-Verlag, 1997.

[27] A. Bouajjani and R. Mayr. Model checking lossy vector addition systems.
In Proceedings of the 16th Annual Symposium on Theoretical Aspects of
Computer Science (STACS’99), volume 1563 of LNCS, pages 323–333.
Springer-Verlag, 1999.

[28] D. Brand and P. Zafiropulo. On communicating finite-state machines.
Journal of the ACM, 30(2):323–342, 1983.

[29] S. Brookes, C. Hoare, and A. Roscoe. A theory of communicating sequen-
tial processes. Journal of the ACM, 31(3):560–599, 1984.

[30] R. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

[31] J. Büchi. Regular canonical systems. Arch. Math. Logik u. Grundlagen-
forschung, 6:91–111, 1964.

[32] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation,
98(2):142–170, 1992.

[33] O. Burkart. Queues as processes. In Proceedings of MFCS’98 Workshop
on Concurrency — Algorithms and Tools, volume 18 of Electronic Notes
in Theoretical Computer Science. Elsevier Science Publishers, 2000.

[34] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite
structures. In J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of
Process Algebra, chapter 9, pages 545–623. Elsevier Science, 2001.

[35] O. Burkart, D. Caucal, and B. Steffen. An elementary decision procedure
for arbitrary context-free processes. In Proceedings of the 20th Inter-
national Symposium on Mathematical Foundations of Computer Science
(MFCS’95), volume 969 of LNCS, pages 423–433. Springer-Verlag, 1995.

[36] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the
process taxonomy. In Proceedings of the 7th International Conference on
Concurrency Theory (CONCUR’96), volume 1119 of LNCS, pages 247–
262. Springer-Verlag, 1996.



158 Bibliography

[37] O. Burkart and J. Esparza. More infinite results. Bulletin of the European
Association for Theoretical Computer Science, 62:138–159, June 1997.
Columns: Concurrency.

[38] D. Caucal. Graphes canoniques de graphes algebriques. Rapport de
Recherche 872, INRIA, 1988.

[39] D. Caucal. Graphes canoniques de graphes algébriques. Theoretical In-
formatics and Applications, 24(4):339–352, 1990.

[40] D. Caucal. On the regular structure of prefix rewriting. Theoretical Com-
puter Science, 106(1):61–86, 1992.

[41] D. Caucal. On infinite transition graphs having a decidable monadic
theory. In Proceedings of the 23th International Colloquium on Automata,
Languages and Programming (ICALP’96), volume 1099, pages 194–205.
Springer-Verlag, 1996.

[42] S. Christensen. Decidability and Decomposition in Process Algebras. PhD
thesis, The University of Edinburgh, 1993.

[43] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation is decidable for
basic parallel processes. In Proceedings of the 4th International Confer-
ence on Concurrency Theory (CONCUR’93), volume 715 of LNCS, pages
143–157. Springer-Verlag, 1993.

[44] S. Christensen, Y. Hirshfeld, and F. Moller. Decomposability, decidability
and axiomatisability for bisimulation equivalence on basic parallel pro-
cesses. In Proceedings of the 8th Annual IEEE Symposium on Logic in
Computer Science (LICS’93), pages 386–396. IEEE Computer Society
Press, 1993.

[45] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is
decidable for all context-free processes. In Proceedings of the 3rd Inter-
national Conference on Concurrency Theory (CONCUR’92), volume 630
of LNCS, pages 138–147. Springer-Verlag, 1992.

[46] S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is
decidable for all context-free processes. Information and Computation,
121:143–148, 1995.

[47] E. Clarke and E. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In D. Kozen, editor, Proceed-
ings of the Workshop on Logics of Programs, volume 131 of LNCS, pages
52–71. Springer-Verlag, 1981.

[48] E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transac-
tions on Programming Languages and Systems, 8(2):244–263, 1986.



Bibliography 159

[49] T. Cobben and A. Engels. Disrupt and interrupt in MSC: Possibilities
and problems. In Proceedings of the 1st Workshop of the SDL Forum
Society on SDL and MSC, number 104 in Informatik-Berichte, pages 75–
83. Humboldt-Universität zu Berlin, 1998.

[50] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal
of Logic and Computation, 2(4):511–547, 1992.

[51] P. Darondeau. An enlarged definition and complete axiomatisation of
observational congruence of finite processes. In Proceedings of the 5th
International Symposium on Programming, volume 137 of LNCS, pages
47–62. Springer-Verlag, 1982.

[52] R. de Nicola. Extensional equivalences for transition systems. Acta In-
formatica, 24(2):211–237, 1987.

[53] R. de Nicola and M. Hennessy. Testing equivalences for processes. Theo-
retical Computer Science, 34(1-2):83–133, 1984.

[54] L. Dickson. Finiteness of the odd perfect and primitive abundant num-
bers with distinct factors. American Journal of Mathematics, 35:413–422,
1913.

[55] B. Diertens. New features in PSF I: Interrupts, disrupts, and priori-
ties. Technical report P9417, University of Amsterdam, The Netherlands,
1994.

[56] F. Drewes, A. Habel, and H. Kreowski. Hyperedge replacement graph
grammars. In G. Rozenberg, editor, Handbook of Graph Grammars and
Computing by Graph Transformation. Vol. I: Foundations, chapter 2,
pages 95–162. World Scientific, 1997.

[57] J. Esparza. Petri nets, commutative context-free grammars, and basic
parallel processes. In Proceedings of the 10th International Conference on
Fundamentals of Computation Theory (FCT’95), volume 965 of LNCS,
pages 221–232. Springer-Verlag, 1995.

[58] J. Esparza. Decidability and complexity of Petri net problems – an in-
troduction. In Lectures on Petri Nets I: Basic Models, volume 1491 of
LNCS, pages 374–428. Springer-Verlag, 1998.

[59] J. Esparza. Grammars as processes. In W. Brauer, H. Ehrig,
J. Karhumäki, and A. Salomaa, editors, Formal and Natural Computing,
volume 2300 of LNCS, pages 277–297. Springer-Verlag, 2002.

[60] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algo-
rithms for model checking pushdown systems. In Proceedings of the 12th
International Conference on Computer Aided Verification (CAV’00), vol-
ume 1855 of LNCS, pages 232–247. Springer-Verlag, 2000.



160 Bibliography

[61] J. Esparza and J.Knoop. An automata-theoretic approach to interpro-
cedural data-flow analysis. In Proceedings of the 2nd International Con-
ference on Foundations of Software Science and Computation Structures
(FOSSACS’99), volume 1578 of LNCS, pages 14–30. Springer-Verlag,
1999.

[62] P. Godefroid. Partial-order methods for the verification of concurrent sys-
tems: an approach to the state-explosion problem, volume 1032 of LNCS.
Springer-Verlag, 1996.

[63] J. Groote. A short proof of the decidability of bisimulation for normed
BPA processes. Information Processing Letters, 42(3):167–171, 1992.

[64] J. Groote and H. Hüttel. Undecidable equivalences for basic process al-
gebra. Information and Computation, 115(2):353–371, 1994.

[65] J. Groote and F. Vaandrager. Structural operational semantics and
bisimulation as a congruence (extended abstract). In Proceedings of the
16th International Colloquium on Automata, Languages and Program-
ming (ICALP’89), volume 372 of LNCS, pages 423–438. Springer-Verlag,
1989.

[66] A. Habel. Hyperedge Replacement: Grammars and Languages. PhD the-
sis, University of Bremen, 1992.

[67] H. Hanisch. Analysis of place/transition nets with timed-arcs and its
application to batch process control. In Proceedings of the 14th Interna-
tional Conference on Application and Theory of Petri Nets (ICATPN’93),
volume 691 of LNCS, pages 282–299, 1993.

[68] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and
concurrency. Journal of the Association for Computing Machinery,
32(1):137–161, 1985.

[69] M. Hennessy and G. Plotkin. A term model for CCS. In Proceedings of the
9th International Symposium on Mathematical Foundations of Computer
Science (MFCS’80), volume 88 of LNCS, pages 261–274. Springer-Verlag,
1980.

[70] Y. Hirshfeld. Petri nets and the equivalence problem. In Proceedings of
the 7th Workshop on Computer Science Logic (CSL’93), volume 832 of
LNCS, pages 165–174. Springer-Verlag, 1993.

[71] Y. Hirshfeld. Congruences in commutative semigroups. Technical report
ECS-LFCS-94-291, Department of Computer Science, University of Ed-
inburg, 1994.

[72] Y. Hirshfeld. Bisimulation trees and the decidability of weak bisimula-
tions. In Proceedings of the 1st International Workshop on Verification
of Infinite State Systems (INFINITY’96), volume 5 of Electronic Notes
in Theoretical Computer Science. Springer-Verlag, 1996.



Bibliography 161

[73] Y. Hirshfeld and M. Jerrum. Bisimulation equivalence is decidable for
normed process algebra. In Proceedings of 26th International Colloquium
on Automata, Languages and Programming (ICALP’99), volume 1644 of
LNCS, pages 412–421. Springer-Verlag, 1999.

[74] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for decid-
ing bisimilarity of normed context-free processes. Theoretical Computer
Science, 158(1–2):143–159, 1996.

[75] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial-time algorithm
for deciding bisimulation equivalence of normed basic parallel processes.
Mathematical Structures in Computer Science, 6(3):251–259, 1996.

[76] Y. Hirshfeld and F. Moller. A fast algorithm for deciding bisimilarity
of normed context-free processes. In Proceedings of the 5th International
Conference on Concurrency Theory (CONCUR’94), volume 836 of LNCS,
pages 48–63. Springer-Verlag, 1994.

[77] Y. Hirshfeld and F. Moller. Decidability results in automata and process
theory. In Logics for Concurrency: Automata vs. Structure, volume 1043
of LNCS, pages 102–148. F. Moller and G. Birtwistle, 1996.

[78] C. Hoare. Communicating sequential processes. In On the construction
of programs – an advanced course, pages 229–254. Cambridge University
Press, 1980.

[79] C. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[80] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

[81] H. Hüttel. Decidability, Behavioural Equivalences and Infinite Transition
Graphs. PhD thesis, The University of Edinburgh, 1991.

[82] H. Hüttel. Undecidable equivalences for basic parallel processes. In Pro-
ceedings of the 2nd International Symposium on Theoretical Aspects of
Computer Software (TACS’94), volume 789 of LNCS, pages 454–464.
Springer-Verlag, 1994.

[83] H. Hüttel and C. Stirling. Actions speak louder than words: Proving
bisimilarity for context-free processes. In Proceedings of the 6th Annual
IEEE Symposium on Logic in Computer Science (LICS’91), pages 376–
386. IEEE Computer Society Press, 1991.

[84] D. Huynh and L. Tian. Deciding bisimilarity of normed context-free
processes is in Σp

2. Theoretical Computer Science, 123(2):183–197, 1994.

[85] D. Huynh and L. Tian. On deciding readiness and failure equivalences for
processes in ΣP

2 . Information and Computation, 117(2):193–205, 1995.



162 Bibliography

[86] P. Jančar and A. Kučera. Bisimilarity of processes with finite-state sys-
tems. In Proceedings of the 2nd International Workshop on Verification
of Infinite State Systems (INFINITY’97), volume 9 of Electronic Notes
in Theoretical Computer Science, 1997.

[87] P. Jančar. Decidability of a temporal logic problem for Petri nets. Theo-
retical Computer Science, 74(1):71–93, 1990.

[88] P. Jančar. Decidability questions for bisimilarity of Petri nets and some
related problems. In Proceedings of the 11th Symposium on Theoretical
Aspects of Computer Science (STACS’94), volume 775 of LNCS, pages
581–592. Springer-Verlag, 1994.

[89] P. Jančar. High undecidability of weak bisimilarity for Petri nets. In Pro-
ceedings of Colloquium on Trees in Algebra and Programming (CAAP’95),
volume 915 of LNCS, pages 349–363. Springer-Verlag, 1995.

[90] P. Jančar. Undecidability of bisimilarity for Petri nets and some related
problems. Theoretical Computer Science, 148(2):281–301, 1995.

[91] P. Jančar. Bisimulation equivalence is decidable for one-counter processes.
In Proceedings of the 24th International Colloquium on Automata, Lan-
guages and Programming (ICALP’97), volume 1256 of LNCS, pages 549–
559. Springer-Verlag, 1997.

[92] P. Jančar. New results for bisimilarity on basic parallel processes. In
Proceedings of the 4th International Workshop on Verification of Infinite-
State Systems (INFINITY’02), page 153. Technical report, Faculty of
Informatics, Masaryk University Brno, FIMU-RS-2002-04, 2002. Short
presentation.

[93] P. Jančar and J. Esparza. Deciding finiteness of Petri nets up to bisim-
ulation. In Proceedings of 23rd International Colloquium on Automata,
Languages, and Programming (ICALP’96), volume 1099 of LNCS, pages
478–489. Springer-Verlag, 1996.

[94] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equiva-
lences with finite-state processes. Theoretical Computer Science, 258(1–
2):409–433, 2001.

[95] P. Jančar, A. Kučera, and F. Moller. Simulation and bisimulation over
one-counter processes. In Proceedings of the 17th International Sympo-
sium on Theoretical Aspects of Computer Science (STACS’00), volume
1770 of LNCS, pages 334–345. Springer-Verlag, 2000.

[96] P. Jančar and F. Moller. Checking regular properties of Petri nets. In
Proceedings of the 6th International Conference on Concurrency Theory
(CONCUR’95), volume 962 of LNCS, pages 348–362. Springer-Verlag,
1995.



Bibliography 163

[97] P. Jančar and F. Moller. Techniques for decidability and undecidability
of bisimilarity – an invited tutorial. In Proceedings of the 10th Interna-
tional Conference on Concurrency Theory (CONCUR’99), volume 1664
of LNCS, pages 30–45. Springer-Verlag, 1999.

[98] L. Jategaonkar and A. R. Meyer. Deciding true concurrency equivalences
on safe, finite nets. Theoretical Computer Science, 154(1):107–143, 1996.

[99] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps.
Information and Computation, 127(2):164–185, 1996.

[100] M. Jurdzinski and M. Nielsen. Hereditary history preserving bisimilarity
is undecidable. In Proceedings of the 17th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS’00), volume 1770 of LNCS.
Springer-Verlag, 2000.

[101] M. Jurdzinski, M. Nielsen, and J. Srba. Undecidability of domino games
and hhp-bisimilarity. Information and Computation, 2002. To appear.

[102] P. Kanellakis and S. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. Information and Computation, 86(1):43–
68, 1990.

[103] J. Kennaway. Formal Semantics of Nondeterminism and Parallelism.
PhD thesis, University of Oxford, 1981.

[104] J. Knoop. Optimal Interprocedural Program Optimization: A New Frame-
work and its Application, volume 1428 of LNCS. Springer-Verlag, 1998.

[105] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer
Science, 27:333–354, 1983.

[106] A. Kučera. Regularity is decidable for normed BPA and normed BPP pro-
cesses in polynomial time. In Proceedings of the 23th Annual Conference
on Current Trends in Theory and Practice of Informatics (SOFSEM’96),
volume 1175 of LNCS, pages 377–384. Springer-Verlag, 1996.

[107] A. Kučera. Regularity is decidable for normed PA processes in polynomial
time. In Proceedings of the 16th International Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS’96),
volume 1180 of LNCS, pages 111–122. Springer-Verlag, 1996.

[108] A. Kučera. Efficient verification algorithms for one-counter processes.
In Proceedings of the 27th International Colloquium on Automata, Lan-
guages, and Programming (ICALP’00), volume 1853 of LNCS, pages 317–
328. Springer-Verlag, 2000.

[109] A. Kučera and J. Esparza. A logical viewpoint on process-algebraic quo-
tients. In Proceedings of the 8th Annual Conference of the European As-
sociation for Computer Science Logic (CSL’99), volume 1683 of LNCS,
pages 499–514. Springer-Verlag, 1999.



164 Bibliography

[110] A. Kučera and P. Jančar. Equivalence-checking with infinite-state sys-
tems: Techniques and results. In Proceedings of the 29th Annual Con-
ference on Current Trends in Theory and Practice of Informatics (SOF-
SEM’02), volume 2540 of LNCS, pages 41–73. Springer-Verlag, 2002.

[111] A. Kučera and R. Mayr. Weak bisimilarity with infinite-state systems
can be decided in polynomial time. In Proceedings of the 10th Interna-
tional Conference on Concurrency Theory (CONCUR’99), volume 1664
of LNCS. Springer-Verlag, 1999.

[112] A. Kučera and R. Mayr. On the complexity of semantic equivalences
for pushdown automata and BPA. In Proceedings of the 27th Inter-
national Symposium on Mathematical Foundations of Computer Science
(MFCS’02), volume 2420 of LNCS, pages 433–445. Springer-Verlag, 2002.

[113] A. Kučera and R. Mayr. Weak bisimilarity between finite-state systems
and BPA or normed BPP is decidable in polynomial time. Theoretical
Computer Science, 270:667–700, 2002.

[114] K. Larsen, P. Pettersson, and W. Yi. Model-checking for real-time sys-
tems. In Proceedings of the 10th International Conference on Fundamen-
tals of Computation Theory (FCT’95), number 965 in LNCS, pages 62–88,
1995.

[115] S. Lasota. Decidability of strong bisimilarity for timed bpp. In Proceed-
ings of the 13th International Conference on Concurrency Theory (CON-
CUR’02), volume 2421 of LNCS, pages 562–578. Springer-Verlag, 2002.

[116] R. Lipton. The reachability problem requires exponential space. Technical
Report 62, Department of Computer Science, Yale University, 1976.

[117] M. Lohrey, P. D’Argenio, and H. Hermanns. Axiomatising divergence.
In Proceedings of the 29th International Colloquium on Automata, Lan-
guages and Programming (ICALP’02), volume 2380 of LNCS, pages 585–
596, 2002.

[118] M. Lowry. Software construction and analysis tools for future space mis-
sions. In Proceedings of the 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’02),
volume 2280, pages 1–19. Springer-Verlag, 2002.

[119] K. Marriott. Frameworks for abstract interpretation. Acta Informatica,
30(2):103–129, 1993.

[120] R. Mayr. Weak bisimulation and model checking for basic paral-
lel processes. In Proceedings of the 16th International Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’96), volume 1180 of LNCS, pages 88–99. Springer-Verlag, 1996.



Bibliography 165

[121] R. Mayr. Combining Petri nets and PA-processes. In Proceedings of the
3rd International Symposium on Theoretical Aspects of Computer Soft-
ware (TACS’97), volume 1281 of LNCS, pages 547–561. Springer-Verlag,
1997.

[122] R. Mayr. Process rewrite systems. In Proceedings of the 4th International
Workshop on Expressiveness in Concurrency (EXPRESS’97), volume 7
of Electronic Notes in Theoretical Computer Science, 1997.

[123] R. Mayr. Decidability and Complexity of Model Checking Problems for
Infinite-State Systems. PhD thesis, TU-München, 1998.

[124] R. Mayr. On the complexity of bisimulation problems for basic parallel
processes. In Proceedings of 27st International Colloquium on Automata,
Languages and Programming (ICALP’00), volume 1853 of LNCS, pages
329–341. Springer-Verlag, 2000.

[125] R. Mayr. On the complexity of bisimulation problems for pushdown au-
tomata. In Proceedings of IFIP International Conference on Theoreti-
cal Computer Science (IFIP TCS’00), volume 1872 of LNCS. Springer-
Verlag, 2000.

[126] R. Mayr. Process rewrite systems. Information and Computation,
156(1):264–286, 2000.

[127] R. Mayr. Undecidable problems in unreliable computations. In Proceed-
ings of Latin American Theoretical Informatics (LATIN’00), volume 1776
of LNCS. Springer-Verlag, 2000.

[128] R. Mayr. Weak bisimilarity and regularity of BPA is EXPTIME-hard.
Technical Report No. 181, Department of Computer Science, Freiburg
University, Germany, 2002.

[129] R. Mayr and M. Rusinowitch. Reachability is decidable for ground AC
rewrite systems. In Proceedings of 3rd International Workshop on Veri-
fication of Infinite State Systems (INFINITY’98), volume TUM-I9825 of
Technical Report, Technishe Universität München, pages 53–64, 1998.

[130] A. Mazurkiewicz. Concurrent program schemes and their interpretations.
DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977.

[131] A. Mazurkiewicz. Trace theory. In Petri Nets, Applications and Rela-
tionship to other Models of Concurrency, number 255 in LNCS, pages
279–324. Springer-Verlag, 1987.

[132] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Norwell Massachusetts, 1993.

[133] R. Milner. A calculus of communicating systems. LNCS, 92, 1980.



166 Bibliography

[134] R. Milner. A modal characterization of observable machine-behaviour. In
Proceedings of the 6th Colloquium on Trees in Algebra and Programming
(CAAP’81), volume 112 of LNCS, pages 25–34. Springer-Verlag, 1981.

[135] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[136] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall,
1967.

[137] F. Moller. Infinite results. In Proceedings of the 7th International Con-
ference on Concurrency Theory (CONCUR’96), volume 1119 of LNCS,
pages 195–216. Springer-Verlag, 1996.

[138] F. Moller and S. Smolka. On the computational complexity of bisimula-
tion. ACM Computing Surveys, 27(2):287–289, 1995.

[139] S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

[140] M. Nielsen, V. Sassone, and J. Srba. Properties of distributed timed-
arc Petri nets. In Proceedings of the 21st International Conference on
Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’01), volume 2245 of LNCS, pages 280–291. Springer-Verlag,
2001.

[141] M. Nielsen, V. Sassone, and J. Srba. Towards a notion of distributed
time for Petri nets. In Proceedings of the 22nd International Conference
on Application and Theory of Petri Nets (ICATPN’01), volume 2075 of
LNCS, pages 23–31. Springer-Verlag, 2001.

[142] M. Nielsen and G. Winskel. Petri nets and bisimulation. Theoretical
Computer Science, 153(1–2):211–244, 1996.

[143] E. Olderog and C. Hoare. Specification-oriented semantics for communi-
cating processes. Acta Informatica, 23(1):9–66, 1986.

[144] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM
Journal of Computing, 16(6):973–989, 1987.

[145] C. Papadimitriou. Computational Complexity. Addison-Wesley, New
York, 1994.

[146] D. Park. Concurrency and automata on infinite sequences. In Proceedings
of the 5th GI Conference, volume 104 of LNCS, pages 167–183. Springer-
Verlag, 1981.

[147] D. Peled. All from one, one for all: On model checking using representa-
tives. In Proceedings of the 5th International Computer Aided Verification
Conference (CAV’93), volume 697 of LNCS, pages 409–423, 1993.

[148] J. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-
Hall, 1981.



Bibliography 167

[149] C. Petri. Kommunikation mit Automaten. PhD thesis, Darmstadt, 1962.

[150] I. Phillips. Refusal testing. Theoretical Computer Science, 50(3):241–284,
1987.

[151] G. Plotkin. A structural approach to operational semantics. Technical
Report Daimi FN-19, Department of Computer Science, University of
Aarhus, 1981.

[152] A. Pnueli. Linear and branching structures in the semantics and logics
of reactive systems. In Proceedings of the 12th International Colloquium
on Automata, Languages and Programming (ICALP’85), volume 194 of
LNCS, pages 15–32. Springer-Verlag, 1985.

[153] L. Pomello. Some equivalence notions for concurrent systems. an
overview. In Advances in Petri Nets 1985, volume 222 of LNCS, pages
381–400. Springer-Verlag, 1986.

[154] E. Post. A variant of a recursively unsolvable problem. Bulletion of the
American Mathematical Society, 52:264–268, 1946.

[155] V. Pratt. A decidable mu-calculus. In Proceedings of the 22nd IEEE
Symposium on Foundations of Computer Science (FOCS’81), pages 421–
427. IEEE Computer Society Press, 1981.

[156] A. Rabinovich and B. Trakhtenbrot. Behaviour structures and nets of
processes. Fundamenta Informaticae, 11:357–404, 1988.

[157] C. Rackoff. The covering and boundedness problems for vector addition
systems. Theoretical Computer Science, 6(2):223–231, 1978.

[158] W. Rounds and S. Brookes. Possible futures, acceptances, refusals, and
communicating processes. In Proceedings of the 22nd Annual Symposium
on Foundations of Computer Science (FOCS’81), pages 140–149. IEEE
Computer Society Press, 1981.

[159] V. V. Ruiz, D. de Frutos Escrig, and O. M. Alonso. Decidability of prop-
erties of timed-arc Petri nets. In Proceedings of the 21st International
Conference on Application and Theory of Petri Nets (ICATPN’00), vol-
ume 1825 of LNCS, pages 187–206. Springer-Verlag, 2000.

[160] J. Rutten. Universal coalgebra: A theory of systems. Theoretical Com-
puter Science, 249(1):3–80, 2000.

[161] V. Saraswat. Concurrent Constraint Programming. MIT Press, Cam-
bridge, MA, 1993.

[162] G. Sénizergues. The equivalence problem for deterministic pushdown au-
tomata is decidable. In Proceedings of the 24th International Colloquium
on Automata, Languages and Programming (ICALP’97), volume 1256 of
LNCS, pages 671–681. Springer-Verlag, 1997.



168 Bibliography

[163] G. Sénizergues. Decidability of bisimulation equivalence for equational
graphs of finite out-degree. In Proceedings of the 39th Annual Symposium
on Foundations of Computer Science(FOCS’98), pages 120–129. IEEE
Computer Society, 1998.

[164] G. Sénizergues. L(A)=L(B)? decidability results from complete formal
systems. Theoretical Computer Science, 251(1–2):1–166, 2001.

[165] G. Sénizergues. L(A)=L(B)? a simplified decidability proof. Theoretical
Computer Science, 281(1–2):555–608, 2002.

[166] M. Shields. Concurrent machines. Computer Journal, 28:449–465, 1985.

[167] J. Srba. Complexity of weak bisimilarity and regularity for BPA and
BPP. In Proceedings of the 7th International Workshop on Expressive-
ness in Concurrency (EXPRESS’00), volume 39 of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 2000. To ap-
pear.

[168] J. Srba. Complexity of weak bisimilarity and regularity for BPA and
BPP. Technical report RS-00-16, BRICS Research Series, 2000.

[169] J. Srba. Basic process algebra with deadlocking states. Theoretical Com-
puter Science, 266(1–2):605–630, 2001.

[170] J. Srba. Note on the tableau technique for commutative transition sys-
tems. Technical Report RS-01-50, BRICS Research Series, 2001.

[171] J. Srba. On the power of labels in transition systems. In Proceedings of the
12th International Conference on Concurrency Theory (CONCUR’01),
volume 2154 of LNCS, pages 277–291. Springer-Verlag, 2001.

[172] J. Srba. On the power of labels in transition systems. Technical Report
RS-01-19, BRICS Research Series, 2001.

[173] J. Srba. Applications of the existential quantification technique. In Pro-
ceedings of the 4th International Workshop on Verification of Infinite-
State Systems (INFINITY’02), pages 151–152. Technical report, Faculty
of Informatics, Masaryk University Brno, FIMU-RS-2002-04, 2002. Short
presentation.

[174] J. Srba. Complexity of weak bisimilarity and regularity for BPA and
BPP. Mathematical Structures in Computer Science, 2002. To appear.

[175] J. Srba. Note on the tableau technique for commutative transition sys-
tems. In Proceedings of the 5th International Conference on Foundations
of Software Science and Computation Structures (FOSSACS’02), volume
2303 of LNCS, pages 387–401. Springer-Verlag, 2002.

[176] J. Srba. Roadmap of infinite results. Bulletin of the European Associa-
tion for Theoretical Computer Science, 78:163–175, Oct. 2002. Columns:
Concurrency.



Bibliography 169

[177] J. Srba. Strong bisimilarity and regularity of basic parallel processes is
PSPACE-hard. In Proceedings of the 19th International Symposium on
Theoretical Aspects of Computer Science (STACS’02), volume 2285 of
LNCS, pages 535–546. Springer-Verlag, 2002.

[178] J. Srba. Strong bisimilarity and regularity of basic process algebra is
PSPACE-hard. In Proceedings of the 29th International Colloquium on
Automata, Languages and Programming (ICALP’02), volume 2380 of
LNCS, pages 716–727. Springer-Verlag, 2002.

[179] J. Srba. Strong bisimilarity of simple process algebras: Complexity lower
bounds. Technical Report RS-02-16, BRICS Research Series, 2002.

[180] J. Srba. Undecidability of weak bisimilarity for PA-processes. In Pro-
ceedings of the 6th International Conference on Developments in Laguage
Theory (DLT’02), LNCS. Springer-Verlag, 2002. To appear.

[181] J. Srba. Undecidability of weak bisimilarity for pushdown processes. In
Proceedings of the 13th International Conference on Concurrency Theory
(CONCUR’02), volume 2421 of LNCS, pages 579–593. Springer-Verlag,
2002.

[182] C. Stirling. Modal logics for communicating systems. Theoretical Com-
puter Science, 49(2-3):311–347, 1987.

[183] C. Stirling. Local model checking games. In Proceedings of the 6th Inter-
national Conference on Concurrency Theory (CONCUR’95), volume 962
of LNCS, pages 1–11. Springer-Verlag, 1995.

[184] C. Stirling. Decidability of bisimulation equivalence for normed pushdown
processes. Theoretical Computer Science, 195(2):113–131, 1998.

[185] C. Stirling. Decidability of bisimulation equivalence for pushdown pro-
cesses. 2000. Submitted for publication.

[186] C. Stirling. Decidability of DPDA equivalence. Theoretical Computer
Science, 255(1–2):1–31, 2001.

[187] C. Stirling. Decidability of weak bisimilarity for a subset of basic parallel
processes. In Proceedings of the 4th International Conference on Foun-
dations of Software Science and Computation Structures (FOSSACS’01),
volume 2030 of LNCS, pages 379–393. Springer-Verlag, 2001.

[188] C. Stirling. Deciding DPDA equivalence is primitive recursive. In Pro-
ceedings of the 29th International Colloquium on Automata, Languages
and Programming (ICALP’02), volume 2380 of LNCS, pages 821–832.
Springer-Verlag, 2002.

[189] J. Sťŕıbrná. Hardness results for weak bisimilarity of simple process al-
gebras. In Proceedings of the MFCS’98 Workshop on Concurrency, vol-
ume 18 of Electronic Notes in Theoretical Computer Science. Springer-
Verlag, 1998.



170 Bibliography

[190] W. Thomas. On the Ehrenfeucht-Fräıssé game in theoretical computer
science (extended abstract). In Proceedings of the 4th International Joint
Conference CAAP/FASE, Theory and Practice of Software Development
(TAPSOFT’93), volume 668 of LNCS, pages 559–568. Springer-Verlag,
1993.

[191] D. Turi and J. Rutten. On the foundations of final coalgebra seman-
tics: non-well-founded sets, partial orders, metric spaces. Mathematical
Structures in Computer Science, 8(5):481–540, 1998.

[192] A. Valmari. Stubborn sets for reduced state space generation. In Proceed-
ings of the 10th International Conference on Applications and Theory of
Petri Nets (ICATPN’90): Advances in Petri Nets, volume 483 of LNCS,
pages 491–515. Springer-Verlag, 1991.

[193] R. van Glabbeek. Comparative Concurrency Semantics and Refinement
of Actions. PhD thesis, CWI/Vrije Universiteit, 1990.

[194] R. van Glabbeek. The linear time—branching time spectrum. In Pro-
ceedings of the 1st Internatinal Conference on Theories of Concurrency:
Unification and Extension (CONCUR’90), volume 458 of LNCS, pages
278–297. Springer-Verlag, 1990.

[195] R. van Glabbeek. The linear time – branching time spectrum II (the
semantics of sequential systems with silent moves). In Proceedings of
the 4th International Conference on Concurrency Theory (CONCUR’93),
volume 715 of LNCS, pages 66–81. Springer-Verlag, 1993.

[196] R. van Glabbeek and U. Goltz. Equivalence notions for concurrent sys-
tems and refinement of actions (extended abstract). In Proceedings of
the 14th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS’89), volume 379 of LNCS, pages 237–248. Springer-
Verlag, 1989.

[197] R. van Glabbeek and W. Weijland. Branching time and abstraction in
bisimulation semantics. Information Processing Letters, 89:613–618, 1989.

[198] R. van Glabbeek and W. Weijland. Branching time and abstraction in
bisimulation semantics. Journal of the ACM, 43(3):555–600, 1996.

[199] M. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proceedings of the 1st Annual IEEE Symposium
on Logic in Computer Science (LICS’86), pages 332–344. IEEE Computer
Society Press, 1986.

[200] W. Vogler. Deciding history preserving bisimilarity. In Proceedings of the
18th International Colloquium on Automata, Languages and Program-
ming (ICALP’91), volume 510 of LNCS, pages 493–505. Springer-Verlag,
1991.



Bibliography 171

[201] W. Vogler. Modular construction and partial order semantics of Petri
nets, volume 625 of LNCS. Springer-Verlag, 1992.

[202] D. Walker. Bisimulation and divergence. Information and Computation,
85(2):202–241, 1990.

[203] Winskel and M. Nielsen. Models for concurrency. In Handbook of Logic in
Computer Science, volume 4, Semantic Modelling, pages 1–148. Oxford
University Press, 1995.

[204] W. Yi. Real–time behaviour of asynchronous agents. In Proceedings of the
1st Internatinal Conference on Theories of Concurrency: Unification and
Extension (CONCUR’90), number 458 in LNCS. Springer–Verlag, 1990.



Recent BRICS Dissertation Series Publications

DS-03-3 Jǐr ı́ Srba. Decidability and Complexity Issues for Infinite-State
Processes. 2003. PhD thesis. xii+171 pp.

DS-03-2 Frank D. Valencia.Temporal Concurrent Constraint Program-
ming. February 2003. PhD thesis. xvii+174.

DS-03-1 Claus Brabrand. Domain Specific Languages for Interactive
Web Services. January 2003. PhD thesis. xiv+214 pp.

DS-02-5 Rasmus Pagh.Hashing, Randomness and Dictionaries. Octo-
ber 2002. PhD thesis. x+167 pp.

DS-02-4 Anders Møller. Program Verification with Monadic Second-
Order Logic & Languages for Web Service Development.
September 2002. PhD thesis. xvi+337 pp.

DS-02-3 Riko Jacob. Dynamic Planar Convex hull. May 2002. PhD
thesis. xiv+110 pp.

DS-02-2 Stefan Dantchev.On Resolution Complexity of Matching Prin-
ciples. May 2002. PhD thesis. xii+70 pp.

DS-02-1 M. Oliver Möller. Structure and Hierarchy in Real-Time Sys-
tems. April 2002. PhD thesis. xvi+228 pp.

DS-01-10 Mikkel T. Jensen.Robust and Flexible Scheduling with Evolu-
tionary Computation. November 2001. PhD thesis. xii+299 pp.

DS-01-9 Flemming Friche Rodler. Compression with Fast Random Ac-
cess. November 2001. PhD thesis. xiv+124 pp.

DS-01-8 Niels Damgaard.Using Theory to Make Better Tools. October
2001. PhD thesis.

DS-01-7 Lasse R. Nielsen. A Study of Defunctionalization and
Continuation-Passing Style. August 2001. PhD thesis.
iv+280 pp.

DS-01-6 Bernd Grobauer.Topics in Semantics-based Program Manipu-
lation. August 2001. PhD thesis. ii+x+186 pp.

DS-01-5 Daniel Damian. On Static and Dynamic Control-Flow Infor-
mation in Program Analysis and Transformation. August 2001.
PhD thesis. xii+111 pp.

DS-01-4 Morten Rhiger. Higher-Order Program Generation. August
2001. PhD thesis. xiv+144 pp.


