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Abstract

Nondeterminism is modelled in domain theory by the notion of a powerdomain,
while probability is modelled by that of the probabilistic powerdomain. Some
problems arise when we want to combine them in order to model computation in
which both nondeterminism and probability are present. In particular there is
no categorical distributive law between them. We introduce the powerdomain of
indexed valuations which modifies the usual probabilistic powerdomain to take
more detailed account of where probabilistic choices are made. We show the
existence of a distributive law between the powerdomain of indexed valuations
and the nondeterministic powerdomain. By means of an equational theory we
give an alternative characterisation of indexed valuations and the distributive
law. We study the relation between valuations and indexed valuations. Finally
we use indexed valuations to give a semantics to a programming language. This
semantics reveals the computational intuition lying behind the mathematics.

In the second part of the thesis we provide an operational reading of contin-
uous valuations on certain domains (the distributive concrete domains of Kahn
and Plotkin) through the model of probabilistic event structures. Event struc-
tures are a model for concurrent computation that account for causal relations
between events. We propose a way of adding probabilities to confusion free
event structures, defining the notion of probabilistic event structure. This leads
to various ideas of a run for probabilistic event structures. We show a confluence
theorem for such runs. Configurations of a confusion free event structure form
a distributive concrete domain. We give a representation theorem which char-
acterises completely the powerdomain of valuations of such concrete domains in
terms of probabilistic event structures.
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Chapter 1

The Nature of Computation

Computing machines are a fundamental component of the human environment.
Our cars, mobile phones, banks, supermarkets, and therefore our whole everyday
life, rely on computers. It is extremely important that computers do what we
expect from them. The need to understand computation is vital.

In the era of the Internet, computers perform concurrent activities, commu-
nicating continuously with each other. Complex systems of several communi-
cating machines are extremely difficult to understand. On top of the inherent
complexity of the system, we have to deal with the possibility of failure of each
component, with failing and noisy channels of communication and with mali-
cious intrusions.

Often we cannot reasonably hope to understand the exact behaviour of a
complex system, but we may still have enough information to determine the
probability that some behaviour is observed.

Sometimes we can also exploit a probabilistic behaviour to our advantage.
All modern security protocols, for instance, involve the use of randomness, and
it is clear how widespread is the use of computer security, from e-commerce to
military applications.

It is therefore important to understand the nature of computation involving
probability and concurrency. To obtain this, we make use of mathematical
structures, called models. It is crucial that the models are abstract enough to
ignore small details that may hinder our comprehension and yet have enough
complexity to provide useful information.

An essential tool for modelling computation is the mathematical notion of
nondeterminism. Nondeterminism is not a feature of real systems, but is used
to obtain higher levels of abstraction and to compose simple models in order to
build more complex ones.

This thesis is a step towards a better understanding of computation involving
probability, nondeterminism and concurrency.

1.1 Semantics of computation

Semantics is the art of giving computer programs mathematical meaning. At
the most concrete level, programs can be just seen as strings of bits. They are
given as input to computers that perform different actions depending on which
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4 CHAPTER 1. THE NATURE OF COMPUTATION

string has been given. A first rough notion of meaning for a program is simply
the behaviour of the computer. However, just as we cannot understand the
psychology of a person by studying the chemical reactions in their body, we
find the need of higher levels of abstraction, in order to really understand what
programs do.

To obtain this, we give semantics to programs, that is we build mathematical
models, we associate every program to some entity in a model, and then we study
the model. Often we give different semantics to the same program and we study
the relations between them.

The study of semantical models has various aims. First of all, semantical
models can give us information about a specific program. If we want to know
what a program does, we can study its semantics in some model, and obtain
the information we are looking for.

A second use of semantical models is to help us in designing better program-
ming languages. While we give semantics we may realise that, if the language
were organised in a different way, giving semantics would be easier, or clearer.
A programming language with a neat semantics can be easier to reason about.

Finally we can use semantical models to understand the nature of compu-
tation. In some cases we may realise that giving semantics would be easier,
if the model were structured in a different way. Or we may realise that it is
impossible to give semantics using the model we have. Sometimes models seem
appropriate at the first sight, but a more thorough study reveals unexpected
problems. This tells us that our understanding of what we want to model is
flawed or incomplete, and must be reviewed. On the other hand, if we can for-
malise mathematically some intuition we have, we strengthen our belief in that
intuition.

This thesis mainly fits the last approach. We study two mathematical mod-
els for computation involving probability. The first model is an example of how a
pure mathematical notion (the notion of distributive law in category theory) en-
hances our understanding of the nature of computation. The second is a formal
model for probabilistic concurrent computation that confirms some intuitions
we have.

In both cases the main part of the work is purely mathematical, with def-
initions, lemmas, theorems. However, some computational intuition will be
provided along the way.

1.1.1 Operational versus denotational

Among the different semantical models, it is customary to make distinctions be-
tween operational models, and denotational models. Operational models tend to
be built upon some notion of an abstract computer, while denotational models
use other mathematical frameworks. Denotational models are usually charac-
terised by compositionality: the denotation of a complex program is obtained by
composing (in some rigorous mathematical sense) the denotations of the simpler
parts of the program.

Sometimes, though, operational semantics is compositional too. We feel that
the distinction between the two kinds of semantics is blurred, but such, rather
philosophical, discussion is beyond the scope of this thesis. For an introduction
to the topic, we refer to Winskel’s book [Win93].
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1.1.2 Denotational semantics

Denotational semantics originated in the sixties from the work of Dana Scott and
Christopher Strachey [SS71]. Domain theory [Plo83, AJ94, G+03] was mainly
developed as a mathematical foundation for denotational semantics. Domain
theoretic models were used to give semantics to functional programming lan-
guages, from the untyped lambda-calculus [Sco72] to PCF [Plo77, Mil77]. It
was soon discovered that in domain theory it was difficult to model the notion
of sequential evaluation. More complex tools were invented, see for example
[Ong95, HO00].

Labelled transition systems (see [WN95]) are the standard models for con-
current computation, but they are usually considered to belong to the class of
operational models. More denotational in flavour is the notion of event struc-
ture [Win80, Win87]. Event structures and domain theory are related [NPW81].
More recently Winskel proposed the categorical notion of presheaf as suitably
rich denotational model for concurrency [NW03].

1.1.3 Nondeterminism and Concurrency

Nondeterminism is an important semantical concept, often used for abstracting
away from details. When we model a program using nondeterminism, we want to
model the fact that the program can perform different actions, without recording
any further information on which action will be actually performed. As pointed
out by previous authors (see for instance [Seg95, dA97, Sto02]), this feature is
useful in the following situations

• implementation The high level description of a language abstracts away
from implementation details. Different implementations produce different
behaviours. To account for them, nondeterminism is used. Often one
aims to showing that the behaviour is essentially independent from the
implementation details.

• scheduling In concurrent systems, sometimes one wants to abstract away
from the order in which independent components perform their computa-
tions. This can be done using nondeterminism.

• communication with the environment In the compositional semantics
of concurrent systems, one wants to model different components separately
and combine them. When modelling one component we have to account
for the possibility of communicating with other components. Before the
system is put together we do not know which communications will actually
happen. The possibility of performing different communications is dealt
with using nondeterminism.

• competition for communication Even when a concurrent system is
put together, different components may compete for communication. This
competition may be resolved by the scheduling of the components or may
depend on details we want to abstract away from.

• lack of probabilistic information When different behaviours are pos-
sible one can sometimes estimate the relative probabilities. Sometimes,
though, one cannot do this, because the information available is not
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enough to produce a meaningful estimate, and so one must resort to non-
determinism

Most labelled transition systems use nondeterminism to model concurrency.
Such models are called interleaving models. A computation is a linear sequence
of event. When two events are concurrent, they can happen in any order non-
deterministically. Event structures instead provide a non-linear notion of com-
putation. Such models are called causal models, because the order in which two
events happen is recorded only in so far as there is some causal relation between
them. Both event structures and transitions systems still feature nondetermin-
ism.

There are also various possible views of nondeterminism.

1. A nondeterministic system can show different behaviours and sometimes
we have simply to account for all the possibilities.

2. If we consider the various possibilities as a menu from which we can choose
the action we like, we may ignore bad behaviours.

3. If the choice is not under our control but it is made by some external agent,
we usually imagine it as malicious as possible, and we consider only the
worst cases.

The notion of powerdomain [Plo76, Smy78] was introduced to model nonde-
terminism in domain theory. The three different views of nondeterminism de-
scribed above correspond to three different notion of powerdomain, the Plotkin,
the Hoare and the Smyth powerdomain respectively [Win83].

1.1.4 Probabilistic computation

There are various applications of probability theory to computer science. We
can design algorithms which take advantage of random choices during the com-
putation [Sri95]. We can design cryptographic protocols using random choices
to increase security [GM99]. In a distributed setting we can use random choices
to break symmetries [Lyn96, HP00]. On the other hand probabilistic models
allow us to consider phenomena (noise, malfunction, intrusion) which in the real
world can affect computations [Han91]. Probability theory is also a fundamental
ingredient in the theory of quantum computation [Bra, NC00].

Sequential programming languages can feature probabilistic choice explic-
itly as a constructor [Jon90], or via random assignment (if the language is
state-based) [Koz81]. The explicit approach is usually followed for concurrent
languages [vG+90, GJS90, BK00, Low93, Sei95].

Probability has been modelled in domain theory through probabilistic pow-
erdomains [SD80, Jon90, JT98, Eda95a]. Various kinds of probabilistic transi-
tion systems exist [vG+90, LS91]. Often such transition systems model both
probability and nondeterminism [SL95]. The only probabilistic notion of event
structure we are aware of is the one presented in Katoen’s thesis [Kat96].

Sometimes probabilistic choice is considered as a refined version of nonde-
terministic choice. When different behaviours are available, we might decide to
choose by flipping a coin in order to mislead some kind of “adversary”. This
adversary could be the one that finds the worst case for an algorithm, could be
an eavesdropper, or could be a scheduling policy that maintains an undesirable
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symmetry. Alternatively, we might know some information on how the choice
is made by the external agent. In both cases we can tell with which probability
each possible action is performed.

Once “atomic” actions are endowed with probabilities, we can evaluate the
overall probability that some observable event happens. We might want to know
with which probability a value is output, a final state is attained, or a sequence
of actions is performed. Due to well known limitations of measure theory, we
cannot always assign probabilities to all possible observations, and sometimes
we have to restrict to the “measurable” ones.

In some computational models we can keep track of how long it takes to
perform an action. These durations can sometimes be expressed by random
variables. We will not deal with this kind of models in this thesis.

1.1.5 Probability and nondeterminism

Models have been studied which deal with both nondeterminism and probabil-
ity, especially in concurrent systems. Even when we consider probabilistic choice
as refinement of nondeterministic choice, we still want to abstract away from
scheduling policies and we need to model communication. As observed above,
nondeterminism is required for this. There are extensions of CCS [Han91], CSP
[M+94] , and π-calculus [HP00] which combine probability and nondetermin-
ism. There are various operational models of this kind [BSdV03]. One of the
leading models is that of probabilistic automata [SL95, Sto02]. On the domain
theoretic side, some work had already been done to combine the probabilistic
powerdomain with the nondeterministic one [Mis00, Tix99]. We will discuss this
work in Chapter 4.

1.2 Contents and structure of the thesis

I outline here the structure of the thesis. There are three parts: an introductory
part, and one part for each model we study. The last two parts are logically
independent of each other, and can be read in any order.

In Chapter 2 we provide a quick overview of the preliminary notions we need
for the main body of the thesis. There is little original work there, although the
section on domain theory contains some definitions of mine.

In Part II we study the notion of indexed valuation, as a denotational model
for probabilistic computation. This model arises from the need of combining
probabilities and nondeterminism. The probabilistic powerdomain and the non-
deterministic powerdomain do not combine nicely. In technical terms, there is
no distributive law between the two monads. We face this mathematical prob-
lem discovering where the core of the problem lies and we propose our solution
which amounts to a modification of the probabilistic powerdomain. First, we
perform our constructions simply using sets. This provides already most of the
intuitions and is also preparatory to the more involved and technical construc-
tion of domain theory. Finally we use our construction to give denotations to a
simple programming language.

Chapter 3 begins by showing the failure of the distributive law. We then
define indexed valuations in the category of sets. We show that they form a
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monad. We show the existence of a distributive law between the indexed valua-
tion monad and the finite nonempty powerset monad. We provide an equational
characterisation of such construction. Finally we provide a construction for a
different equational theory, inspired by the work of Tix and Mislove. In Chap-
ter 4 we define indexed valuations in the category of continuous domains. We
show the relation between indexed valuations and continuous valuations. We
show the existence of the distributive law between indexed valuations and the
Hoare powerdomain. We propose alternative definitions of indexed valuations
and discuss their merits and limitations. In Chapter 5 we give an operational
and denotational semantics to a programming language with probabilistic prim-
itive. We study the language both with and without recursion, and show ad-
equacy theorems. Then we add nondeterministic choice to the language. We
give operational semantics in terms of probabilistic automata, and we give de-
notational semantics both in terms of indexed valuations and in terms of the
convex powerdomain of Tix and Mislove. Different adequacy theorems show the
computational meaning of the two models.

In part III we study the notion of probabilistic event structures, as a causal
model for probabilistic concurrent computation. We discuss the problems aris-
ing when one wants to add probabilities to event structures. This leads us to
study the restricted notion of confusion free event structure. In this restricted
setting we are able to extend the classic theory of event structures. We show
connections between probabilistic event structures and domain theory. We also
show connections between probabilistic event structures and the standard in-
terleaving models.

In Chapter 6 we define the notion of confusion free event structure. We
then define the notion of valuations on a confusion free event structure. We
first define a notion that assumes probabilistic independence of all choices and
then we generalise it removing this assumption. We show the relation between
valuations on the event structure and continuous valuations on the domain of
configurations. We define a further generalised notion of valuation on a confu-
sion free event structure that uses subprobability distributions. This allows us
to characterise completely continuous valuations in terms of valuations on event
structures. Finally we provide a categorical view of probabilistic event struc-
tures. In Chapter 7 we define various notions of a run of an event structure.
We first define a linear notion, similar to the corresponding notion in the inter-
leaving models. Then we define a notion more sensitive to the causal nature of
event structures. We discuss some of the properties of the latter. In particular
we show a confluence theorem for such runs. Using runs, we give an alternative
characterisation of valuations on an event structure. Finally we characterise the
maximal valuations on the domain of configurations.

1.3 Acknowledgements of collaboration

I acknowledge here the external contributions to my work. Of course, I take
responsibility for the many errors and inelegances still contained in this thesis.

In autumn 2000 I was having difficulties in combining the probabilistic and
nondeterministic monads. Luigi Santocanale had suggested to me to use a
distributive law, but I could not prove the obvious definition correct. Andrzej
Filinski showed me how he had managed to combine the two monads in ML.
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I noticed that his implementation of the probabilistic monad in terms of lists
did not satisfy the law A+p A = A and I decided to exploit this observation. At
the same time, after an email correspondence, Gordon Plotkin proved that there
is no categorical distributive law between the nondeterministic monad and the
usual probabilistic monad. At the beginning I was trying to describe the new
construction in terms of multisets, but Glynn Winskel suggested the better idea
of using indices. We were then able to show the existence of the distributive
law between indexed valuations and powerset in the category of sets. Later I
found out about Gautam’s theorem (3.1.1), which implies the existence of the
distributive law. I worked a lot in the category of continuous domains, but
the lack of concrete representation made it difficult to prove the existence of
the distributive law. Achim Jung suggested the idea of exploiting the bases,
although I’m still not able to produce a nice, short, elegant proof based on that.
Later I had the idea of using Beck’s theorem instead.

At the beginning of 2002 I was trying to study a probabilistic version of the
language SPL of Federico Crazzolara and Glynn Winskel [CW01]. This language
has a semantics in terms of Petri nets, so I was looking for a suitable notion
of probabilistic Petri nets. I could not find any, therefore in the spring 2002 I
talked with Mogens Nielsen about it, we came up with a nice definition and we
produced a paper [VN03]. Mogens observed that confusion free Petri nets were
particularly well behaved and he had the idea that led to the first formulation
of the confluence theorem in terms of Mazurkievicz equivalence. The original
proof I gave of that theorem was extremely technical and unfortunately the
referees were not impressed. The notion of probabilistic Petri nets we present in
[VN03] corresponds to that of event structure together with a local valuation.
At the same time Glynn suggested the idea of building probabilistic models out
of a simple process language and defined the notion of global valuation with
independence. This notion was later generalised, removing the independence
assumption.

My original notion of run was the one that is now called ‘inductive test’.
Later Glynn saw that the right definition for a run would be the one of finitary
test, and suggested the characterisation of global valuations in terms of tests
(Theorem 7.4.1) I had the idea that every global valuation with independence
would extend to a continuous valuation and I proved it. The statements of the
two combinatorial lemmas are mine. The proof of the first is due to Glynn while
the BSV lemma was proved by Moritz Becker, Gareth Stoyle and myself, during
a hot afternoon in room FE22 of the William Gates Building.
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Chapter 2

Preliminary Notions

This chapter introduces the notions we need in the next two parts. Most of the
material is not original. We assume little previous knowledge from the reader:
basically some set theory and some category theory. For everything else we
aim at giving a self contained, although quick, introduction to the subject mat-
ter. In the first section we fix some notational convention. Section 2.2 is on
category theory, mainly monads and adjunctions. We also define the notion of
distributive law and present the notion of monad as model for computational
effects. Section 2.3 is on domain theory, mainly continuous domains, and it
contains some definitions of mine, that I did not find in the literature. Section
2.4 introduces some notions of universal algebra and the notion of nondeter-
ministic powerdomain. Section 2.5 presents the relevant notions of measure
theory, with particular focus on the notion of valuation for a topology. Section
2.6 introduces various notions of transition systems, with particular focus on
probabilistic automata.

All sections introduce the relevant notation. The reader can find pointers
to the most important symbols and key words in the index at the end of the
thesis.

2.1 Notation

In this thesis we will refer to more entities than there are letters in the Greek
and Latin alphabets combined. Some overloading of the notation is therefore
inevitable. We will try to respect the following general guidelines.

Capital letters A, B, C, X, Y, Z usually denote sets. They are sometimes
decorated with indices, dashes, tildes. Elements of such sets are denoted by
lowercase letters a, b, c, x, y, z, possibly decorated. When a set is used to index
a family, it is denoted by letters from the middle of the alphabet I, J, K. Its
elements are denoted by i, j, k. Sometimes we will use calligraphic letters S, T
to denote sets of sets.

If Φ(x) is some predicate and X is a set, we write {x ∈ X | Φ(x)} to
denote the set of elements of X which satisfy Φ. We write {x | Φ(x)} when
X is understood to be some kind of “universe”. We will use |X | to denote the
cardinality of X .

When f : X → Y is a function, and A ⊆ X we denote by f(A) the image

11
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of A under f , i.e. the set {y ∈ Y | ∃a ∈ A.f(a) = y}. If B ⊆ Y , we denote by
f−1(B) the inverse image of B under f , i.e. the set {x ∈ X | ∃b ∈ B.f(x) = b}.
If f is a partial function, the domain of f is the subset of X where f is defined.

If ≡ is an equivalence relation on a set X , we denote the set of its equivalence
classes by X/ ≡.

If X is a set, the powerset of X will be denoted by P(X). The finite and
nonempty powerset will be denoted by P (X), while the finite powerset (includ-
ing the empty set) will be denoted by P⊥(X). When Y is a finite set and Y ⊆ X
we write Y ⊆fin X . If I is a set, functions f : I → X are sometimes called
families indexed by I. A family indexed by I is sometimes denoted by (xi)i∈I or
simply (xi). Families indexed by the set of natural numbers are called sequences.
Sometimes, we use the word ‘family’ also to denote a set of sets.

As usual X∪Y denotes union, X∩Y denotes intersection and X \Y denotes
the set {x ∈ X | x 6∈ Y }. If S is a set of sets, we write

⋃
S to denote {x | ∃X ∈

S.x ∈ X} and
⋂
S to denote {x | ∀X ∈ S.x ∈ X}. If (Xi)i∈I is a family of

sets, we write
⋃

i∈I Xi to denote {x | ∃i ∈ I.x ∈ Xi} and
⋂

i∈I Xi to denote
{x | ∀i ∈ I.x ∈ Xi}. We write X ] Y to denote X ∪ Y when X ∩ Y = ∅.

Sometimes we use the lambda notation to denote functions. If exp(x) is an
expression such that for every z ∈ X , exp(z) ∈ Y we write λx.exp(x) to denote
the function f : X → Y such that f(z) = exp(z).

When we want to define a term t using an expression exp we use the “as-
signment” notation t := exp.

We will use the symbol N to denote the set of natural numbers {0, 1, 2, . . .}.
The cardinality of N is denoted by ℵ0. A set of cardinality ℵ0 is called countable.
With the notation In we denote the set {1, 2, . . . , n} ⊆ N. Note that in this thesis
In begins with 1.

The symbol Q denotes the rational numbers, while R denotes the real num-
bers. We use the usual interval notation for real numbers, with [x, y[ for example
denoting the set {z ∈ R | x ≤ z < y}. With R+ we denote the set of nonnega-
tive real numbers. With R+ we denote the set R+ ∪ {+∞} where +∞ is a new
element and the order relation is extended so as to make +∞ the maximum.
Addition and multiplication are extended to R+ by

∞+ x = ∞; ∞ · x =
{
∞ if x > 0;
0 if x = 0.

Let X be a set and let f : X → R+. For every Y ⊆ X we define

f [Y ] :=
∑
y∈Y

f(y) := sup
Z⊆finY

∑
z∈Z

f(z) .

I like to point out the following, possibly not very well known, fact.

Proposition 2.1.1. If f [Y ] < +∞ then |Y | ≤ ℵ0.

Proof: [Pro70] For every n ∈ N consider the set Yn := {y ∈ Y | f(y) ≥ 1
n}.

Clearly |Yn| ≤ n · f [Y ], that is Yn is finite. Notice that Y =
⋃

n∈N
Yn. Since the

countable union of finite sets is at most countable, Y is at most countable. �

If X is a set, the set of finite strings over X is denoted by X∗, the set of
countable sequences is denoted by Xω and X∞ := X∗ ∪Xω.

Other conventions will be introduced along with the introduction of new
concepts.
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2.2 Category theory

Category theory is recognised to be one of the most important mathematical
tools in theoretical computer science. Its abstractness and expressiveness allow
us to see connections between different subjects, and provide fruitful insights. It
is way beyond the scopes of this introduction to support this argument. Some
interesting reading on this can be found in [WN95, AJ94, Mog91, C0́3] and
elsewhere.

2.2.1 Basic notions and notation

We refer, for the basic definitions to [Mac71], a good elementary introduction
is also [CHW02]. We assume the reader knows the notions of category, functor,
natural transformation, adjunction.

We use the following notation: A
f−→B[C] means that f is an arrow between

A, B in the category C. Also we write A ∈ C when A is an object of C. Often
we write A

f−→B or f : A → B when the category is clear from the context. The
identity on an object A is denoted by IdA. Commutative diagrams are used in
the standard way, as graphical representation of equalities between arrows.

Natural transformations are arrows in the functor category. We usually use
Greek letters for natural transformations. Sometimes we will denote them with
the dot notation: α : F

·−→G. We denote horizontal composition by juxtaposi-
tion: if α : F

·−→G and β : F ′ ·−→G′, then βα : F ′F ·−→G′G. In this context we
denote the identity natural transformation on a functor F by the letter F as
well. We denote an adjunction F a G by (F, G, η, ε) : C → D where F : C → D
and η, ε are the unit and the counit. A standard theorem that we use is the
following, characterising adjunction in term of universality.

Theorem 2.2.1 ([Mac71]). Let G : D → C be a functor. Suppose for every
object A ∈ C there exists an object F (A) ∈ D and a morphism A

ηA−→G(F (A))[C]

satisfying the following universal property: for every A
f−→G(X)[C] there exists

a unique g, F (A)
g−→X [D] such that

A
ηA //

f ((QQQQQQQQQQQQQQQ G(F (A))

G(g)

��
G(X) .

Then F can be uniquely extended to a functor F : C → D such that F a G and
η is the unit of such adjunction.

Note that it is not required that F be a functor: it is a consequence of
universality. If X

f−→Y [C] then F (f) is defined as the unique arrow such that

X
ηX //

((QQQQQQQQQQQQQQQ

f

��

G(F (X))

G(F (f))

��
Y ηY

// G(F (Y )) .

This also shows that η is automatically natural.
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2.2.2 Algebras and coalgebras

An algebra for an endofunctor F : C → C is simply an object A ∈ C together
with an arrow F (A) k−→A. The object A is called the carrier, while the arrow k
is called the structure. The dual concept is called coalgebra.

Algebras form a category CF , where a morphism (X, k)
φ−→(X ′, k′)[CF ] is

given by an arrow X
φ−→X ′[C] such that the following diagram commutes.

F (X)

k

��

F (φ) // F (X ′)

k′

��
[C]

X
φ

// X ′

The initial object in the category of algebras, when it exists, is called initial
algebra. The dual notion is that of final coalgebra.

Coalgebras are an important tool in theoretical computer science. Transition
systems and bisimulations of different kinds can be defined using coalgebras
[RT94]. A bisimulation between two coalgebras (X, k), (X ′, k′) is an object R

together with arrows R
p−→X, R

p′−→X ′[C] such that there exists a coalgebraic
structure r on R which makes p, p′ coalgebra morphisms. Two coalgebras are
bisimilar if there exists a bisimulation between them.

The leading example are labelled transition systems [RT94]. Consider the
functor X 7→ P(A×X) in the category SET of sets and functions. A coalgebra
for this functor is a A-labelled transition system. Two transition systems are
coalgebraically bisimilar if and only if they are bisimilar in the sense of Park
and Milner [Mil89].

2.2.3 Monads

A monad on a category C is an endofunctor T : C → C together with two
natural transformations, ηT : IdC → T , the unit, and µT : T 2 → T , the
multiplication, satisfying the following axioms.

T
TηT

//

IdT   A
AA

AA
AA

A T 2

µT

��

T
ηT Too

IdT~~}}
}}

}}
}}

T

T 3
TµT

//

µT T

��

T 2

µT

��
T 2

µT

// T

If T is a monad and if f : X → T (Y ), the Kleisli extension f † : T (X) → T (Y ) is

defined as T (X)
T (f) //T (T (Y ))

µT
Y //T (Y ) . The Kleisli Category of the monad

T , denoted by CT has the same objects as C and X
f−→Y [CT ] if and only if
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X
f−→T (Y )[C]. The identity is the unit of the monad, while composition is

defined using the Kleisli extension.
Monads can equivalently be defined using the Kleisli extension as a primitive

notion and deriving the multiplication by µT
X := Id†T (X).

2.2.4 Monads as computational notion

Eugenio Moggi [Mog91] introduced the idea of using monads to represent com-
putational effects in denotational semantics. The semantics of a typed program-
ming language can be given in terms of category theory. Types are interpreted
by objects, while terms in context are interpreted by morphisms. Composition
of morphisms corresponds to substitution of variables for terms. Categorical
product is used to model terms with more than one free variable. If the lan-
guage admits function types, the model is required to be a cartesian closed
category. Recursion is usually modelled by using a category of domains. For
instance if x : τ1 ` t : τ2 is a term in context, its interpretation is a morphism
[[t]] : [[τ1]] → [[τ2]]. Intuitively the program t takes in input values of type τ1 and
returns values of types τ2. This intuition does not take into account different
computational features such as nondeterminism, probabilistic choice, nontermi-
nation, exceptions and so on. A program may fail to return any value, or may
return many values, etc... The notion of a monad is a way to embrace all these
possibilities.

Suppose T : C → C is a monad. The general idea is that if an object [[τ ]]
represents values of type τ , then T ([[τ ]]) represents computations of type τ . The
unit ηT

X : X → T (X) interprets values as computations, while the multiplication
µT

X : T (T (X)) → T (X) “flattens” computations over computations. Terms of
the language are not interpreted in the category C but in the Kleisli category
CT . Intuitively a program takes values as input but returns computations.
The powerset (or powerdomain) monad is used to model nondeterminism, the
powerdomain of valuations is used to model probabilities, and so on.

In many cases the monad is freely generated by the operations we want to
model. The nondeterministic powerdomains are generated by the nondetermin-
istic choice operator ∪– . The normalised probabilistic powerdomain is generated
by the probabilistic choice operator ⊕p. A recent account of this point of view
can be found in [PP02]. See also Section 2.4.

2.2.5 Algebras for monads

An algebra for a monad (T, ηT , µT ) is an algebra (A, k) for the functor T ,
satisfying the following compatibility axioms.

A
ηT

A //

IdA !!B
BB

BB
BB

BB
T (A)

k

��

T 2(A)
µT

A //

T (k)

��

T (A)

k

��
A T (A)

k
// A

When (T, ηT , µT ) is a monad on C, we denote the category of algebras for
T by CT . It will be clear from the context whether we talk of the algebras for
the functor or the algebras for the monad.
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Every adjunction (F, G, η, ε) : C → D generates a monad on GF : C → C,
with ηGF := η and µGF := GεF . Conversely, given a monad T , there is an
adjunction FT a UT : C → CT , where UT is the forgetful functor sending an
algebra to its carrier

UT :

(X, k)

φ

��

X

φ

��
(X ′, k′)

7→

X ′

while FT sends an object to its multiplication (the free algebra)

F T :

X

φ

��

(TX, µT
X)

T (φ)

��
X ′

7→

(TX ′, µT
X′) .

This adjunction generates precisely the monad (T, ηT , µT ).
Suppose we have an adjunction (F, G, η, ε) : C → D generating a monad

(T, ηT , µT ). Such a monad generates the adjunction (FT , UT , ηT , εT ). There is
a “comparison” functor K : D → CT , defined as

K:

D

f

��

(G(D), G(εD))

G(f)

��
D′

7→

(G(D′), G(εD′ ))

satisfying UT K = G and KF = FT .

2.2.6 Beck’s monadicity theorem

The following fundamental theorem characterises the so called monadic adjunc-
tions, that is the adjunctions freely generated by monads. To understand its
statements we need to recall the definition of creation and of split coequaliser.
A functor F : C → D creates the limit for a functor D : I → C when, if F ◦D
has a limit (L, (fi)i∈I) in D then there is a D-cone (L′, (f ′i)i∈I) in C such that
(F (L′), (F (f ′i))i∈I) is a limit in D and all such D-cones are limiting for D. More
simply, in order for F to create the limit for D it is enough that if (L, (fi)i∈I)
is a limit for F ◦D in D then there exists a D-cone (L′, (f ′i)i∈I) in C such that
(F (L′), (F (f ′i))i∈I) = (L, (fi)i∈I) and all such cones are limits for D.

A split coequaliser for a parallel pair of arrows C
f //
g

//D is an arrow D
e−→E

such that there exist two arrows E
s−→D and D

t−→C satisfying ef = eg, es =
1E, tf = 1D, tg = se.

As the name suggests, split coequalisers are indeed coequalisers. More than
this, they are absolute coequalisers, that is they are preserved by any functor
whatever. We can now state the theorem.

Theorem 2.2.2 (Beck). The comparison functor K defined above is an equiv-
alence if and only if the functor G : D → C creates coequalisers for those parallel
arrows f, g for which the pair Gf, Gg has a split coequaliser in C.
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This is the form in which we will use this theorem. Further details can be
found in Maclane’s book [Mac71].

2.2.7 Distributive laws

A general tool for combining two monads is the notion of distributive law [Bec69].
Suppose we have two monads (T, ηT , µT ), (S, ηS , µS) on some category. A dis-
tributive law of S over T is a natural transformation d : ST

·−→TS satisfying
the following axioms:

T
ηST

~~||
||

||
|| TηS

  B
BB

BB
BB

B S
SηT

~~||
||

||
|| ηT S

  B
BB

BB
BB

B

ST
d

// TS ST
d

// TS

SST
Sd //

µST

��

STS
dS // TSS

TµS

��
ST

d
// TS

STT
dT //

SµT

��

TST
Td // TTS

µT S

��
ST

d
// TS .

With a distributive law we can define a monad on the functor TS. If d :
ST

·−→TS is a distributive law, then
(
TS, ηT ηS , (µT µS) ◦ TdS

)
is a monad.

TSTS
TdS

· // TTSS
µT µS

· // TS

A monad morphism between T and S is a natural transformation α : T
·−→S

which suitably commutes with units and multiplications. A lifting of the monad
T to the category of S-algebras is a monad (T̃ , ηT̃ , µT̃ ) on CS , such that, if
US : CS → C is the forgetful functor then

• UST̃ = TUS;

• USηT̃ = ηT US;

• USµT̃ = µT US .

Beck has proved the following theorem [Bec69].

Theorem 2.2.3. Suppose we have two monads (T, ηT , µT ), (S, ηS , µS) on some
category C. Then the following are equivalent

1. distributive laws d : ST
·−→TS;

2. multiplications µ : TSTS
·−→TS, such that

• (TS, ηT ηS , µ) is a monad;
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• the natural transformations ηT S : S
·−→TS and TηS : T

·−→TS, are
monad morphisms;

• the following middle unit law holds:

TS
TηSηT S //

IdT S

%%LLLLLLLLLLLLLL TSTS

µ

��
TS

3. liftings T̃ of the monad T to CS.

The way to obtain (2) from (1) has been sketched above. To obtain a lifting
from a distributive law we define T̃ (A, σ) as the S-algebra

ST (A)
dA // TS(A)

T (σ) // T (A) .

Conversely if we have the multiplication µ we can define d by

ST
ηT TSηS

// TSTS
µ // TS .

If we have a lifting T̃ , we define d by

ST
TSηS

//

d
''OOOOOOOOOOOOO STS USFSTUSFS USFSUST̃FS

USεT̃F S

��
TS TUSFS UST̃FS ,

where ε is the counit of the adjunction FS a US

The correctness of the above constructions is shown by several diagram
chases [Bec69].

2.3 Domain theory

Domain Theory is the earliest mathematical foundation for denotational seman-
tics. It is based on the idea of modelling recursion via fixed points. An early
but still valid overview can be found in [Plo83], while the standard references
are [AJ94], and the very recent account [G+03]. We introduce here only the
notions we use.

2.3.1 Partial orders

A preorder on a set X is a reflexive and transitive relation on X . We will use
the term preorder also to denote a structure (X,≤), where ≤ is a preorder on
X . An antisymmetric preorder is called a partial order. If what follows (X,≤)
is a partial order. We also write x < x′ to mean x ≤ x′ and x 6= x′.

An element x ∈ X is maximal, if for all y ∈ X , x ≤ y =⇒ x = y. An element
x ∈ X is a maximum if for all y ∈ X , y ≤ x. Clearly there is at most one
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maximum. Dually one defines minimal and minimum elements. The maximum
is sometimes called top and it is denoted by >. The minimum is sometimes
called bottom and it is denoted by ⊥.

When Y ⊆ X , an element x ∈ X is an upper bound for Y , denoted by Y ≤ x,
if y ∈ Y =⇒ y ≤ x. Any element is an upper bound of the empty set. If the
set of all upper bounds of Y has a minimum, this is called the supremum or the
least upper bound of Y , sometimes abbreviated as lub. The lub of Y , when it
exists, is denoted by

⊔
Y .

A subset Y of X is downward closed or lower if y ∈ Y and x ≤ y implies
x ∈ Y . The dual concept is that of upward closed or upper set. If Y is any subset
of X , the downward closure of Y is the set ↓Y := {z ∈ Y | ∃y ∈ Y, z ≤ y}. The
notion of upward closure ↑Y is defined dually.

A subset Y of X is directed if for every finite set F ⊆ Y , there exists y ∈ Y
such that F ≤ y. The dual concept is that of filtered set. Note that a directed
subset is not empty (consider the case F = ∅). The lub of a directed subset Y
is denoted by

⊔ ↑Y .
A lower directed set is called an ideal . The dual concept is that of a filter.
If x ∈ X the set ↓ x := ↓{x} = {y ∈ X | y ≤ x} is an ideal. It is called

the principal ideal generated by x. The dual notion, denoted by ↑ x is that of
principal filter.

A subset Y of a partial order (X,≤), is a chain if for every y, y′ ∈ Y , either
y ≤ y′ or y′ ≤ y. If X is a chain then (X,≤) is a total order.

A partial order is well founded if every nonempty chain has a minimum. Well
founded partial orders provide a notion of induction. If X is well founded and
if Y ⊆ X we have that Y = X if and only if for every x ∈ X , if z < x =⇒ z ∈ Y
then x ∈ Y

If (X,≤), (X ′,≤) are two preorders, a function f : X → X ′ is called mono-
tonic 1, or covariant if x ≤ y =⇒ f(x) ≤ f(y). It is called contravariant2 if
x ≤ y =⇒ f(x) ≥ f(y). If X is a set, Y is a preorder and f, g : X → Y are two
functions, then we say f ≤ g if for every x ∈ X , f(x) ≤ g(x).

Finally we present a definition, which is the dual of the more famous notion
of embedding projection pair.

Definition 2.3.1. Let X, Y be partial orders, and let i : X → Y , c : Y → X .
We say that (i, c) is a insertion closure pair if i ◦ c = IdY and c ◦ i ≥ IdX .

Note that if (i, c) is an insertion closure pair, then c is injective, while i is
surjective.

2.3.2 Domains

A directed complete partial order (DCPO) is a partial order (D,v) such that
every directed subset of D has a lub. If D, E are two DCPOs, a function
f : D → E is continuous if it is monotonic and for every directed subset X ⊆ D,
f
⊔ ↑X =

⊔ ↑ f(X).
DCPOs will be usually denoted with the letters D, E. The order relation on

a DCPO will be usually denoted by v.

1This is the standard name for that concept. A more precise denomination would be
isotonic.

2Or antitonic.
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In every DCPO D an approximation relation � is definable (also known as
the way-below relation). We say that x � y if y v

⊔ ↑Z =⇒ ∃z ∈ Z.x v z.
When x ∈ D we write ↓↓x to denote the set {y ∈ D | y � x}, and dually for ↑↑ x.
An element x is compact if x � x. Let B be a subset of a DCPO domain D.
For every x ∈ D, we define Bx = ↓↓x ∩B. A subset B of a DCPO D is a basis
if for every x ∈ D, x =

⊔ ↑Bx. A DCPO D with a basis is called a continuous
domain. It is called ω-continuous if it has a countable basis. If B is a basis for
D and B ⊆ B′ then B′ is also a basis for D. A DCPO D is an algebraic domain
if its compact elements form a basis. It is called ω-algebraic if it has a countable
basis.

An example of a continuous domain is (R+,≤). Its way-below relation is

p � q iff (p < q or p = 0) .

A basis of R+ is Q+ := Q ∩ R+. Therefore R+ is actually ω-continuous. It is
not algebraic, though, as the only compact element is 0. Another example is the
set S∞ of finite and infinite words on a finite alphabet S, with the prefix order.
The finite words form a basis of compact elements, so that S∞ is ω-algebraic.

The category of DCPOs and continuous functions is called DCPO. Similarly
we have the categories CONT,ALG, ωCONT, ωALG.

One way of interpreting the order on a DCPO is by saying that greater ele-
ments provide more information. One interpretation of the way-below relation
is the following: if x � y then the information provided by x is an essential
part of the information provided by y. More discussion on this subject can be
found in [AJ94].

The main theorem that justifies the use of domain theory in computer science
is the following.

Theorem 2.3.2. Let D be a DCPO with bottom, and let f : D → D be con-
tinuous. Then f has a minimum fixed point, that is the set of d ∈ D for which
f(d) = d is nonempty and has a minimum.

Fixed points are used to give denotations to recursive programs.

2.3.3 Abstract bases

The properties of the way-below relation suggest the following definition.

Definition 2.3.3. A relation / on a set X is an AB-relation if it is transitive
and satisfies the finite interpolation property: for every F ⊆fin X and for every
x ∈ X , F / x =⇒ ∃y ∈ X. F / y / x. The structure (X, /) is called an abstract
basis .

Indeed, for every continuous domain D, with basis B, the structure (B,�) is
an abstract basis. A preorder is also an abstract basis. For AB-relations we shall
use the same terminology as for preorders. We therefore speak of monotonic
functions, lower sets, directed sets, and so on. In particular we recall that an
ideal is a lower directed set. The set of ideals of X is called Idl (X). For any
x ∈ X the set ιX(x) := ⇓x := {y | y / x} is an ideal. Notice that directedness
implies the following property, that we call roundness : if I is an ideal of (X, /),
then for every x ∈ I there exists x′ ∈ I such that x / x′.
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The structure (Idl (X),⊆) is a continuous domain with basis ιX(X). It is
called the ideal completion of X . The function ιX : X → Idl(X) preserves the
AB-relation, but it is not injective in general. Conversely if D is a continuous
domain with basis B, then (B,�) is an abstract basis whose ideal completion is
isomorphic to D. The isomorphism βB : D → Idl (B) is defined by βB(d) = Bd.
If we consider D as a basis of itself, then βD is ιD : D → Idl (D).

When the AB-relation is a preorder, (Idl (X),⊆) is algebraic. Conversely, if
D is an algebraic domain, then the way below relation is a partial order on the
set of compact elements.

Let (X, /) be an abstract basis, (D,v) be a (not necessarily continuous)
DCPO, and f : X → D be a function mapping / to v (“monotonic”). The
function f ] : Idl (X) → D defined as

f ](I) =
⊔ ↑

x∈I

f(x)

is continuous. We have that f ](ι(x)) v f(x). The converse inequality does not
hold in general.

2.3.4 Weakly monotonic functions

We are going to introduce some new concepts, which cannot be found in [AJ94].
We will need them in Chapter 4.

Suppose f : D → D′ is a continuous function. And suppose that it restricts
to a function f : B → B′ between two bases of D, D′. Then f does not
necessarily preserve the way below relation. However it satisfies the following
property.

Definition 2.3.4. If (X, /), (Y, /) are two abstract bases and if f : X → Y is
a function, we say that f is weakly monotonic, if x / x′ =⇒ ⇓ f(x) ⊆ ⇓ f(x′).

That is, a function f : X → Y is weakly monotonic if ιY ◦ f : X → Idl (Y ) is
monotonic. Therefore we can define the extension ext(f) to be the continuous
function (ι ◦ f)] : Idl(X) → Idl (Y ).

In particular f : X → Y is weakly monotonic if it is strongly monotonic,
that is, if it preserves the AB-relation.

Weakly monotonic functions do not compose in general, we have to add some
hypothesis.

Definition 2.3.5. Let f : (X, /) → (Y, /) be a weakly monotonic function
between abstract bases. We say that f is complete if whenever y / f(x) there
exists x′ / x such that y / f(x′).

Proposition 2.3.6. Let f : X → Y and g : Y → Z be weakly monotonic
functions between abstract bases. Then

• if f is strongly monotonic, then g ◦ f is weakly monotonic;

• if g is complete, then g ◦ f is weakly monotonic;

• if f, g are both complete, then g ◦ f is also complete.

Moreover, in all cases above ext(g) ◦ ext(f) = ext(g ◦ f).
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Proof: We want to prove that when x / x′ then ⇓ g(f(x)) ⊆ ⇓ g(f(x′)). If
f is strongly monotonic then f(x) / f(x′) and since g is weakly monotonic we
conclude ⇓ g(f(x)) ⊆ ⇓ g(f(x′)).

If g is complete, take z /g(f(x)). By completeness there exists y′ /f(x) such
that z / g(y′). Since f is weakly monotonic, then y′ / f(x′). Since g is weakly
monotonic, then ⇓ g(y′) ⊆ ⇓ g(f(x′)), hence z / g(f(x′)).

If f also is complete, take z / g(f(x)). By completeness of g there exists
y′ / f(x) such that z / g(y′). By completeness of f there exists x′ / x such that
y′ / f(x′). Since f is weakly monotonic, then z / g(f(x′)).

To prove the final statement, let I be an ideal in Idl(X). We have to show
that ext(g)(ext(f)(I)) = ext(g◦f)(I). By definition ext(f)(I) =

⊔ ↑
x∈I i(f(x))=⋃

x∈I ⇓ f(x). Also

ext(g)(ext(f)(I)) =
⊔ ↑

y∈ext(f)(I)

i(g(y)) =
⋃

y∈ext(f)(I)

⇓ g(y) .

Therefore z ∈ ext(g)(ext(f)(I)) if and only if there exist x′ ∈ I, y / f(x′) such
that z / g(y). Similarly z ∈ ext(g ◦ f)(I) if and only if there exists x ∈ I such
that z / g(f(x)). Since g is weakly monotonic we have that if y / f(x′), then
z / g(y) =⇒ z / g(f(x′)), so that ext(g)(ext(f)(I)) ⊆ ext(g ◦ f)(I). To show
the other inclusion, assume first that f is strongly monotonic. Let x ∈ I such
that z / g(f(x)), by roundness there exists x′ ∈ I such that x / x′. Since f is
strongly monotonic, then f(x) / f(x′), and for y = f(x) we have the result. If
g is complete there exists y / f(x) such that z / g(y), and again we are done. �

It is also interesting to note the following:

Proposition 2.3.7. Let f : (X, /) → (Y, /) be a weakly monotonic function
between abstract bases. Consider the extension ext (f) : Idl(X) → Idl(Y ). We
have ext(f)(ιX(x)) = ιY (f(x))

X
f //

ιX

��

Y

ιY

��
Idl(X)

ext(f)
// Idl(Y )

if and only if f is complete.

2.4 Free constructions

As pointed out in Section 2.2, computational monads often arise as free algebras
for suitable equational theories. We present here some results in the theory of
universal algebra and their connections with category theory and domain theory.
A standard reference is [Coh81]. A good short introduction is in the handbook
chapter [AJ94], which we will follow closely.

2.4.1 Signatures and equational theories

A signature Σ is a pair (Ω, α) where Ω is a set of operation symbols and α : Ω →
N assigns to every symbols its arity. An absolute Σ-algebra for Σ is an algebra k
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for the functor FΣ : Y 7→ ]f∈ΩY α(f) in the category SET. For every operation
symbol f , the f -th component of k is a function fk : Y α(f) → Y . Morphisms of
Σ-algebras are functions that respect (or commute with) the operations. That
is, if h is a Σ-algebra morphism then

h(fk(y1, . . . , yα(f))) = fk(h(y1), . . . , h(yα(f))) .

For any set X consider the functor Y 7→ Σ(Y )]X . Its initial algebra exists and
its carrier T (X) is the set of terms over X . Initiality amounts to saying that if
(Y, h) is a Σ-algebra, then every function j : X → Y can be extended uniquely
to a Σ-morphism j] : T (X) → Y .

Terms can be described inductively in the usual way by:

• if x ∈ X then x is a term;

• if t1, . . . , tn are terms, f ∈ Ω and α(f) = n then f(t1, . . . , tn) is a term.

The operator T is indeed a monad in SET whose unit interprets elements of X
as terms while the multiplication flattens terms of terms into terms (removing
parentheses, so to speak).

Fix a countable set V of variables. An equational theory is a set of pairs
E ⊆ T (V ) × T (V ). Every pair of terms 〈t1, t2〉 is interpreted as an equation
t1 = t2. If (Y, k) is a Σ-algebra, and if j : V → Y is a function, we have the
extension j] : T (V ) → Y . An algebra (Y, k) satisfies an equational theory E
if for every equation 〈t1, t2〉 ∈ E and every j : V → Y , j](t1) = j](t2). Such
algebras are called (Σ, E)-algebras.

The category of (Σ, E)-algebras is denoted by SET(Σ, E), or SET(Σ), if E
is empty. Using the general adjoint functor theorem and Beck’s theorem, it can
be proved that the forgetful functor U : SET(Σ, E) → SET is monadic. Its left
adjoint functor is called the free algebra functor for (Σ, E).

2.4.2 Domains and monadicity

All definitions above can be recast in different categories of domains, giving rise
to “domain-algebras” where all the operations are continuous. The difference
is that pairs in T (V ) × T (V ) are interpreted as inequations (equations can be
encoded via antisymmetry). We have for example the categories DCPO(Σ, E)
and CONT(Σ, E). Again it can be proved that the forgetful functor has a left
adjoint. The proof that the forgetful functor is monadic is also straightforward,
but I have not seen it in the literature, so I present it here.

Proposition 2.4.1. The forgetful functor U : DCPO(Σ, E) → DCPO is
monadic.

Proof: Let C
f //
g

//D be two morphisms in DCPO(Σ, E) and suppose

C
f //
g

//D
e //X is a split equaliser in DCPO. We have to define the Σ-

operations on X and show that they satisfy the inequations in E. For every
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operation symbol op of arity n consider the diagram

Cn

opC

��

fn

//
gn

// Dn

opD

��

en
// Xn

���
�
�

C
f //
g

// D
e // X.

Since e is an absolute coequaliser and the n-folded product is a functor in
DCPO, en is also a coequaliser. Thus there exists a unique arrow Xn → X
which makes the diagram commute. We take this as the definition of opX . This
also shows that e is a morphism in DCPO(Σ, E). To show that the inequations
are still satisfied consider an inequation (t1, t2) over variables x1, . . . , xm. The
interpretations of the terms are operations of arity m.

Dm

tD
1

��
tD
2

��

em
// Xm

tX
1

��
tX
2

��
D

e // X

Note that both e and em are split epic. In the category DCPO split epics are
always surjective.

Pick an m-tuple x̄ ∈ Xm. We want to prove that tX1 (x̄) v tX2 (x̄). Con-
sider a m-tuple d̄ ∈ Dm such that em(d̄) = x̄. Notice that D satisfies the
inequations, therefore tD1 (d̄)) v tD2 (d̄). Then tX1 (x̄) = tX1 (em(d̄)) = e(tD1 (d̄)) v
e(tD2 (d̄)) = tX2 (em(d̄)) = tX2 (x̄). Finally we show that e is a coequaliser in

DCPO(Σ, E). Consider the diagram C
f //
g

//D
k //Y where fk = gk in the

category DCPO(Σ, E) (that is k is a continuous homomorphism). Since e is a
coequaliser in DCPO there is a unique continuous function h : X → Y such
that he = k. We have to argue that h is a homomorphism too. For every
operation op of arity n:

Xn

opX

��

hn
// Y n

opY

��
X

h // Y.

Consider

Dn

opD

��

en
//

kn

,,
Xn

opX

��

hn
// Y n

opY

��
D

e //

k

33X
h // Y.

Since k is a homomorphism, then opY ◦kn = k◦opD. Using he = k we can write
opY ◦ hn ◦ en = h ◦ e ◦ opD Since e is homomorphism, then opX ◦ en = e ◦ opD.
So that opY ◦ hn ◦ en = h ◦ opX ◦ en. Since en is epic, opY ◦ hn = h ◦ opX . �

The composition of a free algebra functor F with the forgetful functor U
gives rise to a monad UF . In the sequel we follow the usual convention and
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we will drop the mention of the forgetful functor when this does not create
confusion.

2.4.3 Nondeterministic powerdomains

We present here some well known results that we use later. Consider the fol-
lowing equational theory over the signature ({ ∪– }, α), where α( ∪– ) = 2. We call
the operation represented by ∪– formal union. (A, B, C are variables and the
infix notation is used)

• A ∪– B = B ∪– A;

• A ∪– (B ∪– C) = (A ∪– B) ∪– C;

• A ∪– A = A.

Since ∪– will always denote a commutative and associative operation, we
introduce the following convention. If X is a set where ∪– is defined, and
(xi)i∈I is a finite family of elements of X , we write

à
⋃
i∈I

xi

to denote the formal union of all xi’s. A similar convention will be used for the
operation ⊕ (formal sum) which will also always be associative and commuta-
tive.

A model for the above theory is a semilattice. The category of semilattices
is denoted by SLAT. It is well known that the free semilattice functor can
be concretely represented as (is natural isomorphic to) the finite nonempty
powerset functor P : SET → SLAT where the symbol ∪– is interpreted as
union. If X is a set, Z is a semilattice and f : X → Z is a function, the unique
extension f : P (X) → Z is defined by

f(Y ) = à
⋃
y∈Y

f(y) .

The corresponding monad P : SET → SET has the following unit and multi-
plication

ηP
X(x) = {x};

µP
X(S) =

⋃
S.

The free algebra functor for the same equational theory in the categories
DCPO and CONT is known as the Plotkin powerdomain or convex power-
domain PP . No concrete representation of this functor for the above category
is known, although it can be given for some restricted categories [AJ94]. The
name “convex” comes from the fact that such representations involve order
convex sets.

In the categories of domains, we can add an extra inequation to the theory.
If we add

• A v A ∪– B;
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we obtain the theory of join-semilattices. The category of continuous join-
semilattice is denoted by JSL. Note that a continuous join-semilattice contains
the least upper bound of all nonempty set defined as follows.⊔

X :=
⊔ ↑

Z⊆finX

à
⋃

Z .

A join-semilattice morphism f preserves all such least upper bounds as

f(
⊔

X) = f(
⊔ ↑

Z⊆finX

à
⋃

Z) =
⊔ ↑

Z⊆finX

f( à
⋃

Z)

=
⊔ ↑

Z⊆finX

à
⋃

f(Z) =
⊔ ↑

Y⊆finf(X)

à
⋃

Y =
⊔

f(X).

The free join-semilattice functor is known as the Hoare powerdomain or lower
powerdomain PH . This functor has a nice concrete representation as

PH(D) = ({∅ 6= O ⊆ D | O Scott closed},⊆)} .

(We define Scott closed sets in the next section.) The symbol ∪– is interpreted
as binary union.

If D is a continuous domain, E is a continuous join-semilattice and f : D →
E is a continuous function, the unique extension f : PH(D) → E is defined by

f(O) =
⊔

d∈O

f(d) .

The free join-semilattice monad in CONT has the following unit and mul-
tiplication

ηPP

X (d) = ↓{d};

µPP

X (S) =
⋃
S.

If instead we add the inequality

• A ∪– B v A;

we obtain the theory of meet-semilattices. The corresponding free algebra func-
tor is known as the Smyth powerdomain or upper powerdomain PS . This functor
has a concrete representation in the category CONT, using “compact satu-
rated” sets.

2.5 Topology and measure theory

Formal topology arises as a purely mathematical concept, but recently it has
found several applications to theoretical computer science. One of the intuitions
is that open sets represent semidecidable properties and continuous functions
represent computable functions. Open sets are also thought of as representing
observations. Good discussions on these ideas can be found in [Smy83, Abr87,
Vic96, Esc03] and elsewhere. Various topologies are definable on domains, the
most famous one being the Scott topology [Sco72].

Probability theory is formally studied via the notion of measure. A good
reference for measure theory is [Hal50]. Often, measures are defined on topolo-
gies under the name of valuations [Bir67, SD80, Jon90]. A good overview of the
connections between measures and valuations is [AM00].
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2.5.1 Topology

A topological space is a structure (X, τ), where τ ⊆ P(X) is a family of subsets
of X satisfying.

• ∅, X ∈ τ ;

• if F ⊆ τ then
⋃

F ∈ τ ;

• if O1, O2 ∈ τ then O1 ∩O2 ∈ τ .

The family τ is a topology on X . The elements of τ are called open. If O is open,
then X \ O is called closed. A family B ⊆ P(X) is a basis for the topology τ
if for every O ∈ τ there exists C ⊆ B such that O =

⋃
C. The whole powerset

P(X) is an example of a topology on X . It is called the discrete topology.
Let (D,v) be a DCPO. Let τ be the family of subsets of D defined as follows:

O ∈ τ if and only if O is upward closed and for every directed set Y , if
⊔ ↑Y ∈ O

then there exists y ∈ Y such that y ∈ O.

Theorem 2.5.1 ([AJ94]). With the above definition, (D, τ) is a topological
space.

The topology τ is called the Scott topology, as it was introduced by Dana
Scott [Sco72]. If d ∈ D is compact, then it is the case that ↑ d is open. In an
algebraic domain, the sets of the form ↑ d, with d compact, form a basis of the
Scott topology.

The sets of the form ↓ d are closed for every element d ∈ D.
When X is a subset of a topological space, we define its closure X as the

smallest closed set containing X . In continuous domains, Scott-closure can be
characterised as follows.

Lemma 2.5.2. If X is a subset of a continuous domain, then

X = {
⊔ ↑Y | Y ⊆ ↓X directed} .

2.5.2 Valuations on a lattice

Definition 2.5.3. A lattice is an algebra for the following theory in the category
of partial orders.

• A ∪– B = B ∪– A;

• A ∪– (B ∪– C) = (A ∪– B) ∪– C;

• A ∪– A = A;

• A v A ∪– B

• A ∩– B = B ∩– A;

• A ∩– (B ∩– C) = (A ∩– B) ∩– C;

• A ∩– A = A;

• A ∩– B v A.
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A lattice is distributive if it further satisfies

• (A ∪– B) ∩– C = (A ∩– C) ∪– (B ∩– C).

Definition 2.5.4. A valuation on a lattice with bottom X is a function ν :
X → R+ satisfying

• (Strictness)
ν(⊥) = 0;

• (Monotonicity)
A v B =⇒ ν(A) ≤ ν(B);

• (Modularity)
ν(A) + ν(B) = ν(A ∪– B) + ν(A ∩– B).

The above definition originates from [Bir67], where a valuation is only re-
quired to be modular. It is well known that in lattices of sets, modularity implies
the inclusion-exclusion principle [BD95]:

Proposition 2.5.5. If (X, ∪– , ∩– ) is a distributive lattice, and f : X → R is a
modular function, then for every n ∈ N,

f

(
à
⋃

i∈In

xi

)
=

∑
∅6=I⊆In

(−1)|I|−1f

(
à
⋂
i∈I

xi

)
.

2.5.3 Continuous valuations on a topology

Note that the open sets of a topological space form a distributive lattice with
bottom.

Definition 2.5.6. A continuous valuation on a topological space (X, τ) is a
valuation on τ satisfying:

• (Continuity) whenever J is a directed subset of (τ,⊆)

ν
(⋃

J
)

= sup
U∈J

ν(U) .

We will use Greek letters ν, ξ to denote continuous valuations. Two opera-
tions of sum and scalar product of valuations are defined pointwise:

ν ⊕ ξ(O) = ν(O) + ξ(O);

pν(O) = p(ν(O)), p ∈ [0, +∞].

For each x ∈ X , the function ηx such that

ηx(U) =
{

1 x ∈ U ;
0 x 6∈ U ;

is a continuous valuation and it is called point valuation or Dirac’s delta (some-
times denoted as δx). A simple valuation is a linear combination of point valu-
ations, that is a valuation of the form⊕

x∈Y

pxηx

for some Y ⊆fin X .
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2.5.4 Discrete valuations

Continuous valuations on the discrete topology deserve a special treatment.

Definition 2.5.7. A discrete valuation on a set X is a function ν : X → R+.

A discrete valuation defines uniquely a continuous valuation on the discrete
topology by

ν[Y ] =
∑
y∈Y

ν(y) .

The support of a discrete valuation ν on X is the set

Supp(ν) := {x ∈ X | ν(x) > 0} .

The set of discrete valuations on X is denoted by V∞(X).
Discrete valuations taking values in [0, +∞[ are called weightings [JLY01].

A finite valuation is a weighting whose support is finite.

2.5.5 Valuations as a free construction

We can characterise finite valuations as a free algebra for a suitable equational
theory.

Definition 2.5.8. A real cone is an algebra for the following theory in the
category SET.

1. A⊕B = B ⊕A;

2. A⊕ (B ⊕ C) = (A⊕B)⊕ C;

3. A⊕ 0 = A;

4. 0A = 0;

5. 1A = A;

6. p(A⊕B) = pA⊕ pB p ∈ R+;

7. p(qA) = (pq)A p, q ∈ R+.

13. (p + q)A = pA⊕ qA p, q ∈ R+.

(We will see later why we use this strange enumeration.) We call RCONE the
category of real cones and homomorphisms.

The definition in [Var02, Kir93] is slightly different, in that it allows “scalar”
values in [0, +∞]. There is not much difference, though, as every real cone in
the extended definition, is a real cone in the restricted sense. Vice versa if R
is a real cone in the restricted sense, we can define an “extended” real cone on
R ] {∞} by putting +∞ · x = ∞.

If X is a set, the set of finite valuations over X (denoted by V (X)) can be
endowed with a real cone structure, the operations being defined pointwise:

(pν)(x) := p · ν(x) ;

(ν ⊕ ξ)(x) := ν(x) + ξ(x) .

We have the following:
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Proposition 2.5.9. The finite valuations are the free real cone.

Proof: It is easy to see that V (X) is a real cone. To prove the universal
property, let f : X → R be a function, where R is a real cone. We define a
real cone homomorphism f : V (X) → R which extends f . The homomorphism
condition forces us to define it as follows:

f(ν) =
⊕

x∈Supp(ν)

ν(x)f(x) .

The extension respects the sum (and 0) because of laws (1),(2),(3),(4),(13). It
respects the scalar multiplication because of laws (6),(7). It extends f because
of law (5).

The freely generated monad has the unit defined as: ηV
X(x) = ηx (the Dirac’s

delta). The multiplication is defined as:

µV
X(Ξ)(x) =

⊕
ν∈Supp(Ξ)

Ξ(ν)ν(x) .

2.5.6 The powerdomain of continuous valuations

A continuous valuation on a DCPO D is a continuous valuation on its Scott
topology. The set V(D) of continuous valuations on D ordered pointwise is
again a DCPO.

The operator V extends to a functor V : DCPO → DCPO. Jones showed
that it is also a functor CONT→ CONT:

Theorem 2.5.10 ([Jon90]). If D is a continuous domain, V(D) is a contin-
uous domain with basis the set of simple valuations.

The order relation on the simple valuations in V(D) is characterised by the
following theorem.

Theorem 2.5.11 (Splitting Lemma). Let ν :=
∑

b∈B rbηb and ξ :=
∑

c∈C scηc

be two simple valuations. We have that ν v ξ if and only if there exist “transport
numbers” tb,c such that

•
∑

c∈C tb,c = rb;

•
∑

b∈B tb,c ≤ sc;

• tb,c > 0 =⇒ b v c.

The way-below relation is characterised by the following propositions

Lemma 2.5.12. For two simple valuations ν :=
∑

b∈B rbηb and ξ :=
∑

c∈C scηc,
we have that ν � ξ if and only if there exists “transport numbers” tb,c such that

•
∑

c∈C tb,c = rb;

•
∑

b∈B tb,c � sc;

• tb,c > 0 =⇒ b � c.

Also,
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Lemma 2.5.13 ([Kir93]). If ξ is a continuous valuation, then
∑

b∈B rbηb � ξ
if and only for every nonempty A ⊆ B∑

b∈A

rb < ξ(↑↑A)

Definition 2.5.14 ([Tix99]). A continuous d-cone is a structure (D,v,⊕,�)
such that

• (D,v) is a continuous domain;

• ⊕ : D ×D → D is continuous;

• � : [0, +∞[×D → D is continuous3;

• the equations (1)–(7)(13) hold.

The corresponding category is called CCONE.

Alternatively we can say that a continuous d-cone is an algebra for the theory
(1)–(7),(13) in the category CONT with the extra requirement that the scalar
multiplication be continuous in the first argument.

Theorem 2.5.15 ([Jon90, Kir93]). The powerdomain of valuations is the
free continuous d-cone.

Therefore the functor V is in fact a monad in CONT. The unit takes on
point valuations, while an explicit definition of the multiplication requires the
definition of integration [Jon90].

2.5.7 Normalised valuations

A valuation ν on a topological space (X, τ) is normalised if ν(X) = 1. It is called
sub-normalised if ν(X) ≤ 1. We write V 1∞(X) and V ≤1∞ (X) for the set of nor-
malised and subnormalised discrete valuations on a set X . Elements of V 1

∞(X)
are also called probability distributions over X , while elements of V ≤1∞ (X) are
also called subprobability distributions. They all form monads in SET with the
multiplication defined as for V . The set of normalised valuations on a domain
D is denoted by V1(D). When D has a bottom element ⊥, then V1(D) has
a bottom element η⊥. The way-below relation has a different characterisation
than the one in V(D) [Eda95a].

Lemma 2.5.16. For two simple valuations ν :=
∑

b∈B rbηb and ξ :=
∑

c∈C scηc

in V1(D) we have that ν � ξ if and only if ⊥ ∈ B with r⊥ 6= 0 and there exists
“transport numbers” tb,c such that

• t⊥,c 6= 0;

•
∑

c∈C tb,c = rb;

•
∑

b∈B tb,c � sc;

• tb,c > 0 =⇒ b � c.

3The symbol � is used here for clarity. Everywhere else the scalar multiplication is denoted
simply by juxtaposition of its arguments.
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Sub-normalised valuations are sufficient for semantics of probabilistic pro-
cesses. They also are freely generated by an equational theory. Nevertheless,
we choose to deal with a more general notion of valuation, because the corre-
sponding equational theory is nicer while the other fundamental properties are
the same [Kir93].

2.5.8 Measure spaces

Traditionally, probability theory has been studied via measure theory, rather
than topology. We sketch here the relevant notions. A σ-algebra on a set Ω
is a family of subsets of X which is closed under countable union and com-
plementation and which contains ∅. The intersection of an arbitrary family
of σ-algebras is again a σ-algebra. In particular if S ⊆ P(Ω), and Ξ :=
{F | F is a σ-algebra & S ⊆ F}, then

⋂
Ξ is again a σ-algebra and it belongs

to Ξ. We call
⋂

Ξ the smallest σ-algebra containing S.
If S is a topology, the smallest σ-algebra containing S is called the Borel σ-

algebra of the topology. Note that although a topology is closed under arbitrary
union, its Borel σ-algebra need not be.

A measure space is a triple (Ω,F , ν) where F is a σ-algebra on Ω and ν is a
measure on F that is a function ν : F → R+ satisfying:

• (Strictness)
ν(∅) = 0;

• (Countable additivity) if (An)n∈N is a countable family of pairwise disjoint
sets of F , then
ν(
⋃

n∈N
An) =

∑
n∈N

ν(An) .

Finite additivity follows by putting An = ∅ for all but finitely many n.
Among the various results of measure theory we state two that we will need

in Chapter 7.

Theorem 2.5.17 ([Hal50] Theorem 9.E). Let ν be a measure on a σ-algebra
F , and let An be a decreasing sequence of sets in F , that is An+1 ⊆ An, such
that ν(A0) < ∞. Then

ν

(⋂
n∈N

An

)
= lim

n→∞ ν(An) .

One may ask when it is possible to extend a valuation on a topology to a
measure on the Borel σ-algebra. This problem is discussed in Mauricio Alvarez-
Manilla’s thesis [AM00]. The result we need is the following. It can also be
found in [AMESD00], as Corollary 4.3.

Theorem 2.5.18. Any normalised continuous valuation on a continuous DCPO
extends uniquely to a measure on the Borel σ-algebra.

2.6 Probabilistic Automata

Probabilistic transition systems come in different flavours. The literature goes
back to the probabilistic finite automata of Rabin [Rab63]. More recently, Vardi
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introduced the notion of labelled concurrent Markov chain [Var85] which com-
bines probability and nondeterminism. Larsen and Skou [LS91] studied a model
which is now known as the reactive model. This name was first introduced in a
paper by vanGlabbek et al. [vG+90] where the notions of generative models and
reactive models are also studied. Desharnais et. al [BDEP97, DEP98] gener-
alise the reactive model allowing continuous state spaces. Hansson and Jonsson
[HJ89] study a model which combines probability and nondeterminism, similar
to the one of Vardi. Segala and Lynch introduce the notion of probabilistic
automaton, and a corresponding notion of bisimulation [SL95, Seg95]. All these
notions were introduced, oblivious to the fact that in the mathematical com-
munity the notion of Markov Decision Process [Put94] had long existed. Luca
de Alfaro [dA97] brought this notion to the attention of the computer science
community. Other models were introduced in [PZ93]. A full overview can be
found in [BSdV03], where a coalgebraic point of view allows to compare formally
all different models. This is the approach we follow in the rest of this section.
For the details of the theory of probabilistic automata à la Segala, we follow the
overview by Mariëlle Stoelinga [Sto02].

2.6.1 Coalgebraic Definitions

A deterministic automaton on a set A of labels is a coalgebra A for the functor
−A : SET → SET. A transition system on a set A is a coalgebra A for the
functor P⊥(A × −). Every deterministic automaton can be seen as a transi-
tion system via the inclusion XA → P⊥(A ×X). With the usual notation for
transition systems we write x

a−→Ax′ when (a, x′) ∈ A(x).
A generative probabilistic transition system on A is a coalgebra for the func-

tor V 1
∞(A×−)⊥. A reactive probabilistic transition system on A is a coalgebra

for the functor (V 1∞(−)⊥)A. Reactive systems are also known as Markov de-
cision processes, in which case the elements of A are called actions. Reactive
systems owe this name to the following intuition. Labels represent offers from
the environment. At every state, given an offer, the process probabilistically
chooses the next state. It therefore reacts to the offer of the environment. In
generative systems, the probabilistic choice is over the next state and the label.
Intuitively the process generates that label.

A simple probabilistic automaton on A is a coalgebra for the functor P⊥(A×
V 1
∞(−)). A general probabilistic automaton on A is a coalgebra for the functor

P⊥(V 1
∞(A×−)). Markov decision processes can be seen as simple probabilistic

automata via the inclusion XA
⊥ → P⊥(A ×X). Simple probabilistic automata

can be seen as general probabilistic automata via the natural transformation α
defined as αX({〈a, ν〉}) = λ〈a, x〉.νa(x). For a simple probabilistic automaton,
we write x

a−→Aν when (a, ν) ∈ A(x).
Probabilistic automata are more general than reactive systems in that, even

given the offer from the environment, they can, nondeterministically, choose
different probability distributions over the next states.

Deterministic automata can be seen as reactive systems via the natural trans-
formation ηV 1

∞ : IdSET → V 1
∞. Transition systems can be seen as simple prob-

abilistic automata via the same transformation.
All the above definitions can be generalised to subprobabilities by using V ≤1

∞ .
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2.6.2 Paths and Schedulers

Often it is useful to endow the coalgebra with an initial state x0 ∈ X . The
behaviour of a system is usually defined using the notion of initial state.

A path of a nondeterministic automaton A : X → P⊥(A × X) with initial
state x0 is a finite or infinite sequence in (X ×A)∞X , denoted as x0a1x1a2 . . .

such that xi
ai+1−→Axi+1.

Traditionally the notion of path for a probabilistic automaton is obtained
via the notion of a scheduler, also known as a policy.

A path of a simple probabilistic automaton A is a sequence in (X × A ×
V 1
∞(X))ωX , denoted as x0, a1, ν1, . . . , xn, an+1, νn+1, . . ., such that xi

ai−→Aνi,
and νi(xi) > 0. The weight of a path h is defined as Π(h) :=

∏
i νi(xi+1). The

paths of A are denoted by B(A). If h := x0, a0, ν0, . . . , xn, an, νn, xn+1, is a
finite path then l(h) := xn+1. The set of finite paths is denoted by Bfin(A). A
path is maximal if it is infinite or if A(l) = ∅.

A probabilistic scheduler is a function S : Bfin(A) → V 1
∞(A × V 1

∞(X)) ∪
{∂} such that Supp(S(h)) ⊆ A(l(h)). Here ∂ denotes the possibility that the
scheduler stops the computation. A deterministic scheduler is a function S :
Bfin(A) → (A × V 1

∞(X)) ∪ {∂} such that S(h) ∈ A(l(h)). A deterministic
scheduler can be thought of as a probabilistic scheduler choosing Dirac’s deltas
only. The scheduler is a device to resolve the nondeterminism present in the
model. It decides taking into account the whole history of the process and it
resolves both internal and external nondeterminism (when this distinction is
present). What we are left with is a purely probabilistic process.

The probability of a finite path h under a probabilistic scheduler S is defined
recursively by

ΠS(x0) = 1;

ΠS(hanνnxn+1) = ΠS(h) · S(h)(an, νn) · νn(xn+1).

For a deterministic scheduler S, by B(A,S) we denote the subset of B(A)
whose elements x0a1ν1 . . . satisfy

(an, νn) = S(x0a1ν1 . . . xn−1).

For a deterministic scheduler S,

ΠS(h) =
{

Π(h) if h ∈ B(A,S);
0 otherwise.

We define a measure space over the set of maximal paths maxm(A). Let X
be the sets of cones generated by finite paths, that is the sets of the form
Ch := {h′ ∈ maxm(A) | h ⊆ h′}. Let F be the smallest σ-algebra containing
X . Let vs : X → [0, 1] be defined as vS(Ch) := ΠS(h). It can be proved that vS
extends to a unique measure νS on F [Seg95].

If we are interested in the labels only, we can remove states and valuations
from the paths and get a probability space over the set of sequences Aω.

A slightly different approach will be taken in Chapter 5 and in Chapter 7.
There we will not use the above notions formally, but only as inspiration.



Part II

Probability and
Nondeterminism

35





Chapter 3

Indexed Valuations

In this part we analyse combinations of the nondeterministic monad and the
probabilistic monad.

There are various ways of combining two monads. If the monads arise from
equational theories, we can first combine the equational theories in some way and
then generate a new monad. In [HPP02] three main ways of combining theories
are identified: sum, commutative combination, distributive combination. In the
first case the two equational theories are combined by joining the operations
and the equations, without adding new equations. In the second case, one adds
equations expressing that every operation of one theory commutes with every
operation in the other theory. In the third case, one adds equations expressing
distributivity of every operation of one theory over every operation in the other
theory. This last way can sometimes be followed more categorically using the
notion of distributive law (see 2.2.7). The leading example is given by the theory
of abelian groups and the theory of monoids. Their distributive combination
(distributing the monoid over the group) is the theory of rings. The free ring
monad can also be obtained by giving a categorical distributive law between the
free abelian group monad and the free monoid monad [Bec69].

The study of the operational semantics of systems combining probability
and nondeterminism suggests that, in some cases, probabilistic choice should
distribute over nondeterministic choice [M+94, M+95]. It turns out, though,
that there is no categorical distributive law between the nondeterministic monad
and the probabilistic monad. Two solutions are possible at this point.

We can still form the distributive combination of the equational theories
and generate a new monad. This is the path followed by Tix [Tix99, Tix00] and
Mislove [Mis00], who, independently, define the notion of geometrically convex
powerdomain PTM . When X is a subset of a real cone, PTM (X) is, roughly
speaking, the set of all convex subsets of X . The nondeterministic choice is
interpreted as union followed by convex closure. We will briefly recall this
construction at the end of this and of the following chapter.

The other possibility is to modify the definition of one of the monads, so as
to allow the existence of a categorical distributive law. Analysing the reasons
behind the failure of the distributive law, we are led to modify the probabilistic
monad, defining the notion of indexed valuation. Mathematically, indexed valu-
ations arise as a free algebra for an equational theory obtained from the theory
of real cones by removing one equation. Besides their categorical justification,

37
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indexed valuations have a computational meaning, which we will present by
giving semantics to an imperative language containing both random assignment
and nondeterministic choice.

In this chapter we first show the failure of the distributive law. We then
define the indexed valuations monad in the category SET. We show the ex-
istence of the distributive law between the indexed valuation monad and the
finite nonempty powerset monad. We characterise indexed valuations as a free
construction and we show that the categorical distributive law corresponds to an
equational distributive law. Finally we discuss the notion of finitely generated
convex powerset, inspired by the work of Tix and Mislove.

The notions introduced in this chapter are also necessary in the next chapter
where we carry out similar constructions in the category of continuous domains.

3.1 Failure of the distributive law

Assume that ⊕p is a probabilistic choice operator: A ⊕p B is choosing A with
probability p and B with probability (1 − p). This operator usually satisfies
A⊕pA = A, because the choice between two equivalent possibilities is considered
to be the same as not making any choice at all. Note that this assumes that the
act of making the choice is invisible: the coin is always flipped behind one’s back.
Assume also that ∪– represents some kind of nondeterministic choice operator:
A ∪– B offers to the environment the choice between A and B. Distributing one
operator over the other amounts to the following law:

A⊕p (B ∪– C) = (A⊕p B) ∪– (A⊕p C) .

Intuitively this means that it is indifferent whether the environment chooses
before or after the probabilistic choice is made. Clearly this is not true in all
situations, but if we assume that the environment cannot see the probabilistic
choice, it is at least plausible.

Once we accept the distributive law, then the extra convexity law [BS01]

A ∪– B = A ∪– B ∪– (A⊕p B) ∪– (B ⊕p A)

must be also accepted, because

A ∪– B = (A ∪– B)⊕p (A ∪– B) = (A⊕p A) ∪– (B ⊕p B) ∪– (A⊕p B) ∪– (B ⊕p A).

If the equational distributive law corresponded to a categorical distributive
law, by Theorem 2.2.3 the nondeterministic monad would lift to the category
of algebras for the probabilistic monads. In the category SET this means that
the powerset monad would lift to the category of real cones. The convexity law
suggests that this is not possible as sets, in general, do not satisfy it. In fact
the following theorem says that the obvious definition of the operations for the
powerset cannot satisfy A ⊕p A = A. Suppose we have an equational theory.
Take a model X for it. We can extend every operation f of arity n to the subsets
of X by

f(X1, . . . , Xn) = {f(x1, . . . , xn) | xi ∈ Xi, i ∈ In}.

Theorem 3.1.1 ([Gau57]). A necessary and sufficient condition for the opera-
tions defined in P(X) to satisfy an equation of the theory is that each individual
variable occurs at most once on both sides of the equation.
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The equation A ⊕p A = A does not satisfy the above requirement. This
would not exclude the possibility of lifting the operations in a different way,
thus obtaining another distributive law. However, it turns out that there is
no distributive law at all between the two monads. If (P, ηP , µP ) is the finite
nonempty powerset monad, and (V, ηV , µV ) is the finite valuation monad in the
category SET, we have

Proposition 3.1.2. There is no distributive law of V over P .

Proof: The idea for this proof is due to Gordon Plotkin. Assume that
d : V P

·−→PV is a distributive law. Consider the set X := {a, b, c, d}. Take
Ξ := 1

2η{a,b} + 1
2η{c,d} ∈ V P (X). We try to find out what R := dX(Ξ) is.

Let Y := {a, b}. Consider:

f : X → Y f :


a 7→ a
b 7→ b
c 7→ a
d 7→ b

f ′ : X → Y f ′ :


a 7→ a
b 7→ b
c 7→ b
d 7→ a .

Consider the naturality diagram for f :

Ξ � dX //
_

V P (f)

��

R_

PV (f)

��
ηY

�
dY

// S.

One of the unit laws for d tells us that S := dY (ηY ) = {ηa, ηb}. Therefore,
considering the functorial action of PV , we must have that

∅ 6= R ⊆
{
pηa + (1− p)ηc | p ∈ [0, 1]} ∪ {qηb + (1 − q)ηd | q ∈ [0, 1]

}
Consider the same diagram for f ′:

Ξ � dX //
_

V P (f ′)
��

R_

PV (f ′)
��

ηY
�

dY

// S.

This tells us that

∅ 6= R ⊆
{
p′ηa + (1 − p′)ηd | p′ ∈ [0, 1]} ∪ {q′ηb + (1− q′)ηc | q ∈ [0, 1]

}
.

Combining these pieces of information we conclude that R must be a nonempty
subset of {ηa, ηb, ηc, ηd}.



40 CHAPTER 3. INDEXED VALUATIONS

Now let Z := {a, c}. Consider

f ′′ : X → Z f ′′ :


a 7→ a
b 7→ a
c 7→ c
d 7→ c .

Let us look at the naturality diagram for f ′′:

Ξ � dX //
_

V P (f ′′)
��

R_

PV (f ′′)

��
1
2η{a} + 1

2η{c}
�

dZ

// T.

Since T = PV (f ′′)(R), then T must be a nonempty subset of {ηa, ηc}. But
the other unit law for d tells us that T = d(1

2η{a} + 1
2η{c}) = { 1

2ηa + 1
2ηc}.

Contradiction. �

A very similar argument can be applied to prove the dual.

Proposition 3.1.3. There is no distributive law of P over V .

Similar statements are true for the corresponding monads in the category
CONT of continuous domains and continuous functions. If P is some power-
domain monad and V is the powerdomain of valuations monad, then there is no
distributive law between them.

Our solution consists in changing the definition of probabilistic monad by
removing the law A ⊕p A = A. In our presentation, the probabilistic monad is
generated by the theory of real cones. The probabilistic choice is defined there
by A ⊕p B = pA ⊕ (1 − p)B. We remove the equation pA ⊕ qA = (p + q)A
from the theory of real cones. In the category SET, the monad freely generated
by the new equational theory is called the finite indexed valuation monad IV .
We give a concrete characterisation of this monad. By Theorem 3.1.1, we can
lift the operations to the powerset, thus obtaining a distributive law. We give
explicitly the definition of the distributive law between the finite nonempty
powerset monad and the finite indexed valuation monad. The computational
intuition of this construction will be discussed in Chapter 5.

3.2 Indexed valuations in the category of sets

In this section we present the definition of the indexed valuation monad in the
category SET, and we show the existence of the categorical distributive law
between indexed valuations and the finite nonempty powerset.

3.2.1 Definition

We first introduce the concrete characterisation of our construction and show
its functoriality.

Definition 3.2.1. Let X be a set. A discrete indexed valuation (DIV) on X is
a pair (Ind ,Weight) where Ind : I → X is a function and Weight is a discrete
valuation on I, for some set I.
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Note that we do not require that Ind be injective. This is indeed the main
point of this construction: we want to divide the probability of an element
among its indices. One possible interpretation is that indices in I represent
computations, while elements of X represent observations. The semantics we
present in Chapter 5 will confirm this intuition.

We shall also write xi for Ind(i) and pi for Weight(i). A discrete indexed
valuation ξ := (Ind ,Weight) will also be denoted as (xi, pi)i∈I .

We are now going to define an equivalence relation on the class of DIVs. It
is the transitive closure of two simpler equivalence relations.

Definition 3.2.2. We set

(xi, pi)i∈I ∼1 (yj , qj)j∈J

if and only if there exists a bijection h : I → J such that

∀i ∈ I. yh(i) = xi ,

∀i ∈ I. qh(i) = pi .

This says that two DIVs are equivalent up to renaming of the indices. If we
interpret indices as computations, we may say that we do not care about the
identity of a single computation. We only care how many different computations
there are, and how they relate to observations.

Given a DIV (xi, pi)i∈I , let I0 := {i ∈ I | pi = 0}.

Definition 3.2.3. We set

(xi, pi)i∈I ∼2 (yj , qj)j∈J

if and only if
I \ I0 = J \ J0 ,

∀i ∈ I \ I0. xi = yi & pi = qi .

This says that only indices in the support matter. Intuitively, computations
with probability 0 do not happen, so we may as well ignore them.

Definition 3.2.4. The equivalence relation ∼ is the transitive closure of ∼1

∪ ∼2.

¿From now on we will use the term “discrete indexed valuations” to denote
equivalence classes under ∼.

Given a set X and an infinite cardinal number α we define the set IVα(X)
as follows:

IVα(X) := {(xi, pi)i∈I | |I| < α}/ ∼ .

It is easy to realise that IVα(X) is indeed a set. For every cardinal number
β < α choose a set Iβ such that |Iβ | = β. The class {Iβ | β < α} is a set. And

clearly IVα(X) is a quotient of
⋃

β<α XIβ ×R+
Iβ . In particular IVℵ0(X) is the

set of discrete indexed valuations whose indexing set is finite.

Definition 3.2.5. A finite indexed valuation on X is an element of IVℵ0(X) for
which Weight(i) < +∞ for all indices i ∈ I. The set of finite indexed valuations
on X is denoted by IV (X).
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The construction above can be extended to a functor IV : SET → SET as
follows. If f : X → Y then

IV (f)([(xi, pi)i∈I ]∼) := [(f(xi), pi)i∈I ]∼ .

It is easy to check that this construction is well defined (i.e. does not depend
on the representative).

3.2.2 The monad of indexed valuations

The functor IV extends to a monad, with the following unit and multiplication
(we drop the mention of equivalence classes to simplify the reading):

ηIV
X : X → IV (X) ,

ηIV
X (x) := (x, 1)∗∈{∗} ;

µIV
X : IV (IV (X)) → IV (X) ,

µIV
X (((xiλ

, piλ
)iλ∈Iλ

, πλ)λ∈Λ) := (xj , qj)j∈J

where
J =

⊎
λ∈Λ

Iλ , qj = pjπλ if j ∈ Iλ .

To simplify the definition of µ, recall that a DIV is in fact an equivalence
class. We can therefore assume that Iλ = I for every λ ∈ Λ because we can
always reindex and add indices with probability 0. Therefore

((xiλ
, piλ

)iλ∈Iλ
, πλ)λ∈Λ ∼ ((xλ

i , pλ
i )i∈I , πλ)λ∈Λ .

And
µIV

X

(
((xλ

i , pλ
i )i∈I , πλ)λ∈Λ

)
:= (xλ

i , πλpλ
i )(i,λ)∈I×Λ .

Proposition 3.2.6. The triple (IV, ηIV , µIV ) defined above is a monad.

Proof: It is easy to check that η, µ are well defined and are natural trans-
formations. Let us now check the diagrams for the monad laws:

1.
IV (X)

IV (ηX )

��

IdIV (X)

%%JJJJJJJJJ

IV 2(X) µX

// IV (X)

IV (ηX)
(
(xi, pi)i∈I

)
= ((xi, 1)∗∈{∗}, pi)i∈I ;

µX

(
((xi, 1)∗∈{∗}, pi)i∈I

)
= (xi, 1pi)(i,∗)∈I×{∗} ∼ (xi, pi)i∈I .

2.
IV (X)

ηIV (X)

��

IdIV (X)

yyttttttttt

IV (X) IV 2(X)µX

oo
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ηIV (X)

(
(xi, pi)i∈I

)
= ((xi, pi)i∈I , 1)∗∈{∗};

µX

(
((xi, pi)i∈I , 1)∗∈{∗}

)
= (xi, 1pi)(∗,i)∈{∗}×I ∼ (xi, pi)i∈I .

3.

IV 3(X)

IV (µX )

��

µIV (X)// IV 2(X)

µX

��
IV 2(X) µX

// IV (X)

µX ◦ IV (µX)
(
(((xj,l

i , pj,l
i )i∈I , r

l
j)j∈J , ql)l∈L

)
=

= µX

(
((xj,l

i , pj,l
i rl

j)(i,j)∈I×J , ql)l∈L

)
= (xj,l

i , pj,l
i rl

jql)(i,j,l)∈I×J×L

= µX

(
((xj,l

i , pj,l
i )i∈I , r

l
jql)(j,l)∈J×L

)
= µX ◦ µIV (X)

(
(((xj,l

i , pj,l
i )i∈I , r

l
j)j∈J , ql)l∈L

)
.

Note that we make essential use of the fact that the exact identity of the indices
does not matter. �

3.2.3 The distributive law

We now define the categorical distributive law between the indexed valuation
monad IV and the nonempty finite powerset monad P . Recall that the monad
on P is defined as follows:

ηP
X : X → P (X) ,

ηP (x) = {x} ;

µP
X : P (P (X)) → P (X) ,

µP
X(S) =

⋃
S .

For every set X define the function dX : IV (P (X)) → P (IV (X)) as follows:

dX ((Si, pi)i∈I) = {(h(i), pi)i∈I | h : I → X, h(i) ∈ Si}

We first note (omitting the easy proof) that the definition of dX does not depend
on the representative.

Theorem 3.2.7. Let IV : SET → SET be as above, and P : SET → SET
be the covariant nonempty finite powerset monad. Then the family of functions
(dX)X∈SET defines a distributive law

d : IV ◦ P → P ◦ IV .
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Proof: First we have to show that d is a natural transformation.

X

f

��

IV (P (X))
dX //

IV (P (f))

��

P (IV (X))

P (IV (f))

��
Y IV (P (Y ))

dY // P (IV (Y ))

Take a function f : X → Y . Take Ξ ∈ IV (P (X)), Ξ = (Si, pi)i∈I . We have
IV (P (f))(Ξ) = (f(Si), pi)i∈I . Then

dY (f(Si), pi)i∈I =
{
(h′(i), pi)i∈I | h′ : I → Y, h′(i) ∈ f(Si)

}
=: A .

On the other hand consider

P (IV (f))
({

(h(i), pi)i∈I | h : I → X, h(i) ∈ Si

})
.

This is equal to{
(f(h(i)), pi)i∈I | h : I → X, h(i) ∈ Si

}
=: B .

We have to show that A = B. Clearly B ⊆ A, by setting h′ = f ◦ h. Take now
an element (h′(i), pi)i∈I of A. This means that h′(i) = f(xi) for some xi ∈ Si.
For every Si, we select one such xi and then we define h(i) = xi. Thus we have

(f(h(i)), pi)i∈I = (h′(i), pi)i∈I

so that (h′(i), pi)i∈I belongs to B.
Now we have to check the four diagrams characterising the distributive law:

1.
P

ηIV P

||zz
zz

zz
zz PηIV

""D
DD

DD
DD

D

IV P
d

// PIV

dX

(
(S, 1)∗∈{∗}I

)
=

{
(h(∗), 1)∗∈{∗} | h : {∗} → X, h(∗) ∈ S

}
=

{
(x, 1)∗∈{∗} | x ∈ S

}
.

2.
IV

IV ηP

||xx
xxxx

xx
ηP IV

##F
FFFFFF

F

IV P
d

// PIV

dX

(
({xi}, pi)i∈I

)
=

{
(h(i), pi)i∈I | h : I → X, h(i) ∈ {xi}

}
=

{
(xi, pi)i∈I

}
.
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3.

IV IV P
IV d //

µIV P

��

IV PIV
dIV // PIV IV

PµIV

��
IV P

d
// PIV

Let X := (Ξλ, πλ)λ∈Λ ∈ IV (IV (P (X))), where Ξλ := (Siλ
, piλ

)iλ∈Iλ
. As

before we can assume that Iλ = I for every λ ∈ Λ. Therefore Ξλ =
(Sλ

i , pλ
i )i∈I . We have that

µIV
P (X) (X ) = (Sλ

i , pλ
i πλ)(i,λ)∈I×Λ .

If we apply dX to this term we get{
(h(i, λ), pλ

i πλ)(i,λ)∈I×Λ | h : I × Λ → X, h(i, λ) ∈ Sλ
i

}
:= A .

Consider now IV (dX)(X ). It is

(dX(Ξλ), πλ)λ∈Λ

where

dX(Ξλ) =
{
(hλ(i), pλ

i )i∈I | hλ : I → X, hλ(i) ∈ Sλ
i

}
.

Now apply dIV (X). We get{
(H(λ), πλ)λ∈Λ |H : Λ → IV (X), H(λ) ∈ dX(Ξλ)

}
:= B .

The function H is choosing an element in dX(Ξλ). We can think of H as
choosing a function hλ : I → X, hλ(i) ∈ Sλ

i . Therefore we can equivalently
define B as follows:

B =
{
((H(λ)(i), pλ

i )i∈I , πλ)λ∈Λ |H : Λ → (I → X), H(λ)(i) ∈ Sλ
i

}
.

Now we have to show that the flattening (through µIV ) of every valuation
in B gives a valuation in A, and that every valuation in A can be obtained
by flattening a valuation in B. We have

µIV
X

(
((H(λ)(i), pλ

i )i∈I , πλ)λ∈Λ

)
= (H(λ)(i), pλ

i πλ)i∈I .

Now it is enough to observe that “uncurrying” H we get an h : I × Λ →
X , satisfying h(i, λ) ∈ Sλ

i . So P (µIV
X )(B) ⊆ A. The other inclusion is

obtained by “currying” h to get H .

4.

IV PP
dP //

IV µP

��

PIV P
Pd // PPIV

µP IV

��
IV P

d
// PIV

Remember that µP
X(S) =

⋃
S. Let X := (Si, pi)i∈I ∈ IV (P (P (X))). We

have that
IV (µP

X)(X ) = (
⋃
Si, pi)i∈I .
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If we apply dX to this term we get{
(h(i), pi)i∈I | h : I → X, h(i) ∈

⋃
Si

}
:= A .

Consider now dP (X)(X ). It is{
(h′(i), pi)i∈I | h′ : I → P (X), h′(i) ∈ Si

}
:= D .

The function h′ is choosing a set in Si for every i. Now two steps in
one. First step: we apply P (dX) to D and we obtain a set C of sets of
valuations. Second step: we flatten C to a set B of valuations defined as:{

(h′′(i), pi)i∈I | h′′ : I → X, h′′(i) ∈ h′(i), h′ : I → P (X), h′(i) ∈ Si

}
.

We claim that A = B. Clearly B ⊆ A because h′′(i) ∈
⋃
Si. But also

A ⊆ B. We build h′ as follows: for every i we choose Si ∈ Si such that
h(i) ∈ Si. Then h′′ = h does the job.

�

3.3 Equational characterisation

In this section we characterise the monad IV as a free construction and we show
the correspondence between categorical and equational distributive laws.

3.3.1 Real quasi-cones

We define two operations on discrete indexed valuations.

Definition 3.3.1. Let ν := (Ind ,Weight) = (xi, pi)i∈I , ξ := (Ind ′,Weight ′) =
(yj , qj)j∈J be DIVs on X . Assume that I∩J = ∅ (this is not restrictive, because
we can always reindex).

We define ν ⊕ ξ to be (Ind ∪ Ind ′,Weight ∪Weight ′). For p ∈ R+ we define
pν to be (xi, ppi)i∈I . With 0 we denote the DIV whose indexing set is empty.

Note, in particular, that when p 6= 0, 1, pν ⊕ (1 − p)ν 6∼ ν, because the
indexing sets do not have the same cardinality.

Consider the following equational theory:

1. A⊕B = B ⊕A;

2. A⊕ (B ⊕ C) = (A⊕B)⊕ C;

3. A⊕ 0 = A;

4. 0A = 0;

5. 1A = A;

6. p(A⊕B) = pA⊕ pB p ∈ R+;

7. p(qA) = (pq)A p, q ∈ R+.
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These axioms are almost the ones defining a real cone (see Section 2.5). The
only difference is that we drop the axiom (p + q)A = (pA⊕ qA).

Definition 3.3.2. A real quasi-cone is an algebra for the equational theory
(1)–(7) in the category SET.

Proposition 3.3.3. The finite indexed valuations are the free real quasi-cone.

Proof: For any set X , it is clear that IV (X) with the operations defined
above is a quasi-cone. Let Q be a quasi-cone and let f : X → Q a function. We
have to show that there is a unique quasi-cone homomorphism f : IV (X) → Q
such that f(x, 1) = f(x). The homomorphism condition forces us to define

f(xi, pi)i∈I =
⊕
i∈I

pif(xi) .

Associativity, commutativity, and the two 0-laws guarantee that the defini-
tion does not depend on the representative for (xi, pi)i∈I . The unit law guar-
antees that f(x, 1) = f(x). The homomorphism condition for the sum (and 0)
is obvious, while for the scalar product we have to use the laws (6) and (7). �

3.3.2 The distributive law, equationally

Recall that a semilattice is a model of the following theory.

8. A ∪– B = B ∪– A;

9. A ∪– (B ∪– C) = (A ∪– B) ∪– C;

10. A ∪– A = A.

We have seen in chapter 2 that the finite nonempty powerset is the free
semilattice.

Consider now the combined equational theory (1)–(10) augmented with the
following axioms.

11. p(A ∪– B) = pA ∪– pB;

12. A⊕ (B ∪– C) = (A⊕B) ∪– (A⊕ C).

Equations (11)–(12) express that the probabilistic operators distribute over
the nondeterministic one.

Theorem 3.3.4. The monad on P ◦IV obtained via the categorical distributive
law defined above is the free algebra for the equational theory (1)–(12).

Proof: First we show that P ◦ IV is left adjoint to the forgetful functor.
Let’s start by observing that P (IV (X)) is indeed a model of (1)–(12), where
∪– is interpreted as union, addition and scalar multiplication are the standard

extensions to subsets of the corresponding operations in IV (X), and 0 is the
singleton of the empty indexed valuation. Now let Q be a model of (1)–(12), and
let f : X → Q be a function. We have to show that there is a unique function
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f : P (IV (X)) → Q which respects the operations and such that f{(x, 1)} =
f(x). The homomorphism condition forces us to define

f{(xi, pi)i∈I} =
⊕
i∈I

pif(xi) ;

f(A) =
⋃
ν∈A

f({ν}) .

Laws (1)–(4) again guarantee that the definition in the first line does not
depend on the representative for (xi, pi)i∈I . Laws (8),(9) guarantee that the
second line is well defined. Law (5) guarantees that f{(x, 1)} = f(x). The
function respects the sum (and 0) because of law (12). It respects the product
because of laws (6),(7),(11). It respects the union because of law (10).

Note that the unit of the adjunction (which is also the unit of the corre-
sponding monad) is just ηP ηIV

We have to show that the monad generated by this adjunction is the same as
the monad generated by the distributive law. The functor and the unit are the
same. Instead of showing that the multiplication is the same, we equivalently
show that the Kleisli extension operators are the same.

Let f : X → P (IV (Y )) be a function. Consider a finite set of finite indexed
valuations A ∈ P (IV (X)). Since A is finite it is not restrictive to assume that
all its elements are indexed by the same set I. So we can write

A =
{
(xρ

i , p
ρ
i )i∈I | ρ ∈ R

}
,

with the convention that for two different ρ, ρ′ the corresponding indexed valu-
ations are different. Analogously, we write

f(xρ
i ) =

{
(yσi,ρ

j , qσi,ρ

j )j∈J |σi,ρ ∈ Si,ρ
}

,

with a similar convention as above for any fixed (i, ρ), and also assuming that the
Si,ρ are all disjoint. Again it is not restrictive to assume that all the valuations
are indexed by the same set J .

We want to evaluate f(A), the Kleisli extension of the monad generated by
the universal property:

f
({

(xρ
i , p

ρ
i )i∈I | ρ ∈ R

})
=
⋃
ρ∈R

⊕
i∈I

pρ
i f(xρ

i ) .

Now it can be proved by induction on the size of I that⊕
i∈I

pρ
i

{
(yσi,ρ

j , qσi,ρ

j )j∈J |σi,ρ ∈ Si,ρ
}

=
{
(ykρ(i)

j , pρ
i q

kρ(i)
j )(j,i)∈J×I | kρ : I →

⋃
i∈I

Si,ρ, kρ(i) ∈ Si,ρ
}

.

Therefore:

f
({

(xρ
i , pρ

i )i∈I | ρ ∈ R
})

=
{
(ykρ(i)

j , pρ
i q

kρ(i)
j )(j,i)∈J×I | kρ : I →

⋃
i∈I

Si,ρ, kρ(i) ∈ Si,ρ, ρ ∈ R
}

.
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Let’s now look at f †(A), the Kleisli extension of the monad obtained via the
distributive law.

f †
({

(xρ
i , pρ

i )i∈I | ρ ∈ R
})

= µP µIV ◦ PdIV
({

(f(xρ
i ), p

ρ
i )i∈I | ρ ∈ R

})
= µP µIV

({{
(hρ(i), pρ

i )i∈I |hρ : I → IV (Y ), hρ(i) ∈ f(xρ
i )
}
|ρ ∈ R

})
By the conventions we have assumed, choosing an element in f(xρ

i ) is the same
as choosing a σi,ρ ∈ Si,ρ, therefore it is equivalent to think of hρ as a function
hρ : I →

⋃
i∈I Si,ρ, hρ(i) ∈ Si,ρ. Then we can continue the chain of equalities

= µP µIV
({{

((yhρ(i)
j , q

hρ(i)
j )j∈J , pρ

i )i∈I |hρ : I →
⋃
i∈I

Si,ρ, kρ(i) ∈ Si,ρ
}
|ρ ∈ R

})
= µP

({{
(yhρ(i)

j , pρ
i q

hρ(i)
j )(j,i)∈J×I |hρ : I →

⋃
i∈I

Si,ρ, hρ(i) ∈ Si,ρ
}
| ρ ∈ R

})
=
{

(yhρ(i)
j , pρ

i q
hρ(i)
j )(j,i)∈J×I |hρ : I →

⋃
i∈I

Si,ρ, hρ(i) ∈ Si,ρ, ρ ∈ R
}

.

�

We can see finite indexed valuations and finite sets as (equivalence classes
of) terms. In this way we can give a syntactic interpretation of the categorical
distributive law: it takes a term where there are no probabilistic operators inside
a nondeterministic one and transforms it into a term where all the nondeter-
ministic operators have been pushed outside. In other words we can interpret
the equations (11)–(12) as rewriting rules, from left to right.

3.4 The convex powerset

Another solution for combining the nondeterministic and probabilistic monad
consists in forming the distributive combinations of the theories thus freely
generating a new monad. The convexity law suggests a way of representing
this construction concretely. This section is inspired by the work of Tix and
Mislove, although they are only concerned with DCPOs, while we work here in
the category SET.

3.4.1 Finitely generated convex sets

Recall that a real cone is a real quasi-cone satisfying the extra axiom

13. (p + q)A = pA⊕ qA.

Definition 3.4.1. A subset X of a real cone is convex if for every x, y ∈ X, p ∈
[0, 1], we have px ⊕ (1 − p)y ∈ X . Given a set X , its convex closure X is the
smallest convex set containing X . A convex set X is finitely generated if there
exists a finite set X0 such that X = X0. Given a finite set I, elements xi, i ∈ I
of a real cone and nonnegative real numbers pi, i ∈ I such that

∑
i∈I pi = 1, the

element
⊕

i∈I pixi is said to be a convex combination of the xi.
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The following result is standard.

Proposition 3.4.2. For a set X, we have that X is the set of convex combi-
nations of elements of X.

Definition 3.4.3. For a real cone Z we define

PTM (Z) = {Y ⊆ Z |Y convex, finitely generated} .

We define

• pY = {py | y ∈ Y };

• Y ⊕ Y ′ = {y ⊕ y′ | y ∈ Y, y′ ∈ Y ′};

• 0 = {0};

• Y ∪– Y ′ = Y ∪ Y ′ = {py ⊕ (1− p)y′ | p ∈ [0, 1], y ∈ Y, y′ ∈ Y ′}.

3.4.2 Equational characterisation

We characterise the functor PTM as a free construction.

Definition 3.4.4. A real cone-semilattice is a model for the theory (1)–(13).
The corresponding category is called RCS.

Proposition 3.4.5. The operator PTM with the operations as above defines a
functor RCONE → RCS which is left adjoint of the forgetful functor.

Proof: First we have to show that the operations are well defined and satisfy
the axioms. If Y, Y ′ are convex, it is easy to show that pY, Y ⊕ Y ′, Y ∪– Y are
convex. If Y0, Y

′
0 are finite generators for Y, Y ′ then pY0 is a finite generator for

pY , Y0 ⊕ Y ′
0 is a finite generator for Y ⊕ Y ′ and Y0 ∪ Y ′

0 is a finite generator for
Y ∪– Y ′. As for the axioms the only nontrivial ones are (12)-(13): here is where
convexity is needed.

Then we have to show the universal property characterising freeness. For
every real cone Z and real cone-semilattice H and real cone homomorphism
f : Z → H , there exists a unique RCS-morphism f : PTM (Z) → H such that
f({z}) = f(z). Now for every Y ∈ PTM (Z) let Y0 be one of its finite generators,
then

f(Y ) = à
⋃

y∈Y0

f(y) .

The homomorphism condition implies uniqueness. We have to show that
this function is well defined and that it is indeed a homomorphism. First we
need to show that the definition does not depend on the chosen finite generator.

Lemma 3.4.6. Let H be a real cone-semilattice, let Y0, Z0 be finite subsets of
H. If Y0 = Z0, then à

⋃
Y0 = à

⋃
Z0

Proof: We prove this for the simple case where Y0 = {y, y′}, Z0 = {z, z′}.
The general case can be proved in a similar way. We want to prove that
y ∪– y′ = z ∪– z′. We will prove that y ∪– y′ = y ∪– y′ ∪– z ∪– z′ (which, by symme-
try, implies our result). Note that, from the assumption, z, z′ must be convex
combinations of y, y′. The statement is thus a consequence of the following
proposition.
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Proposition 3.4.7. In a real cone-semilattice, if w is a convex combination of
y, y′ then

y ∪– y′ = y ∪– y′ ∪– w .

Proof: Let w = py ⊕ (1− p)y′. Then

y ∪– y′ = p(y ∪– y′)⊕ (1− p)(y ∪– y′)
= y ∪– y′ ∪– (py ⊕ (1− p)y′) ∪– (py′ ⊕ (1− p)y) .

The statement of the proposition follows from

Lemma 3.4.8. In a semilattice, if x = x ∪– x′ ∪– x′′, then x = x ∪– x′.

Proof:
x ∪– x′ = x ∪– x′ ∪– x′′ ∪– x′ = x ∪– x′ ∪– x′′ = x .

�

Finally it is easy to verify that f respects the operation, using the distributive
law (11-12), and the fact that f is already a homomorphism of real cones. �

The combination of the two adjunctions

SET
//

⊥ RCONEoo
//

⊥ RCSoo

gives rise to a monad in SET.
Note that the the monad PTM on RCONE is not a lifting of the monad P ,

because, in general, convex sets are not finite. Therefore the monad PTM ◦ V
on SET is not obtained by any distributive law V ◦ P → P ◦ V .

3.4.3 The Kleisli extension

Let’s look concretely at the Kleisli extension of the monad PTM ◦ V .
Take f : X → PTM (V (Y )), say f(x) = Bx. We have that f † : PTM (V (X)) →

PTM (V (Y )) is defined as

f †(A) = à
⋃

ξ∈A0

∑
x∈X

ξ(x)Bx .

In chapter 5 we will need the following proposition.

Proposition 3.4.9.

f †(A) =
⋃
ξ∈A

⊕
x∈X

ξ(x)Bx =

{⊕
x∈X

ξ(x)h(x) |h : X → V (Y ), h(x) ∈ Bx, ξ ∈ A

}
.

Proof: Let’s call

• V :=
⋃

ξ∈A0

⊕
x∈X ξ(x)Bx;

• U := à
⋃

ξ∈A0

⊕
x∈X ξ(x)Bx;

• W :=
⋃

ξ∈A

⊕
x∈X ξ(x)Bx.
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Remember that U = V .
Clearly V ⊆ W . Moreover W is convex:

p
⊕
x∈X

ξ(x)h(x) ⊕ (1− p)
⊕
x∈X

ξ′(x)h′(x)

=
⊕
x∈X

pξ(x)h(x) ⊕ (1− p)ξ′(x)h′(x) .

Define ξ′′ = pξ ⊕ (1− p)ξ′ ∈ A, and h′′(x) = pξ(x)
ξ′′(x)h(x) + (1−p)ξ′(x)

ξ′′(x) h′(x). Since
Bx is convex , then h′′(x) ∈ Bx. (If ξ′′(x) = 0 then h′′(x) can be set equal to
any element of Bx.) We have

ξ′′(x)h′′(x) = pξ(x)h(x) ⊕ (1− p)ξ′(x)h′(x) .

Therefore U ⊆ W .
For the other direction take

⊕
x∈X ξ(x)h(x). We know that ξ =

⊕
i∈I piξi

with ξi ∈ A0. So⊕
x∈X

ξ(x)h(x) =
⊕
x∈X

⊕
i∈I

piξi(x)h(x) =
⊕
i∈I

pi

⊕
x∈X

ξi(x)h(x)

which is a convex combination of elements of V . �



Chapter 4

Indexed Valuations and
Domains

In this chapter we define various notions of indexed valuations on continuous
domains. We make use of the theory of abstract bases seen in 2.3.3. All construc-
tions we perform start by defining an AB-relation on the set of finite indexed
valuations, and then consider its ideal completion.

This allows us to characterise equationally all our constructions. In the
category CONT, we have three choices for modifying the theory of real cones:
we can remove the equation pA⊕qA = (p+q)A completely, or we can substitute
an inequation for it. Our first choice, the reason for which we discuss later, is
to substitute the inequation pA⊕ qA v (p + q)A. The monad freely generated
by such inequational theory is called Hoare indexed valuation monad IV .

We show the relations between Hoare indexed valuations and continuous
valuations. Specifically we show the existence of a insertion-closure pair between
them.

We define a categorical distributive law between Hoare indexed valuations
and the Hoare powerdomain and show the correspondence with the equational
distributive law. We discuss why we were not able to define analogous distribu-
tive laws involving the Plotkin powerdomain or the Smyth powerdomain.

We discuss the other two choices of an equational theory. Removing the
equation pA ⊕ qA = (p + q)A completely gives rise to the Plotkin indexed val-
uations, while substituting for it the inequation pA⊕ qA w (p + q)A gives rise
to the Smyth indexed valuations. We briefly study them and their relation with
the powerdomains. In particular we show that there is no insertion-closure pair
between either of them and continuous valuations.

Unfortunately we are not able to provide concrete characterisations of these
constructions yet, and we will discuss the difficulties we have encountered. This
discussion leads us to propose another definition of indexed valuations that may
overcome some of the problems.

Finally we briefly present the convex powerdomain of Tix and Mislove.

53
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4.1 Hoare indexed valuations

In this section we define the Hoare indexed valuations as ideal completion of an
abstract basis (see 2.3.3).

The definition of the abstract basis is inspired by the Splitting Lemma 2.5.11.

4.1.1 The AB-relation

Let (X, /) be an abstract basis. We define a relation ≺ on IV (X) in such a way
that (IV (X),≺) is an abstract basis:

Definition 4.1.1. For (xi, pi)i∈I , (yj , qj)j∈J ∈ IV (X)

(xi, pi)i∈I ≺ (yj , qj)j∈J

if and only if there exists a partial surjective function f : J → I, such that

xf(j) / yj ,

pi �
∑

f(j)=i

qj .

We call such an f a witness for the relation.
The above definition uses representatives of equivalence classes. It should

be read as: “ν ≺ ξ if there is a representative (xi, pi)i∈I of ν, a representative
(yj , qj)j∈J of ξ and a witness f”. We could therefore restrict to total witnesses:
suppose ν ≺ ξ and f is a witness on the representatives (xi, pi)i∈I , (yj , qj)j∈J .
If f is partial, consider the set J0 ⊆ J where f is not defined. For every j ∈ J0

let zj ∈ X be such that zj / yj. Such elements exist because of the interpolation
property instantiated with |F | = 0. Let K := I ] J0 and for every k ∈ K let

p′k :=
{

pk if k ∈ I
0 if k ∈ J0,

x′k :=
{

xk if k ∈ I
zk if k ∈ J0.

Clearly (xi, pi)i∈I ∼ (x′k, p′k)k∈K , because we added only indices with weight
0. Now define f ′ : J → K by

f ′(j) :=
{

f(j) if j 6∈ J0

j if j ∈ J0.

It is easy to see that f ′ satisfies the conditions for being a witness, and moreover
it is total.

We choose to deal with partial functions as witnesses, because this gives us
more versatility.

There are three reasons for Definition 4.1.1. Firstly, this definition is an
“indexed” version of the splitting lemma (2.5.11). Secondly, it has an interesting
computational interpretation. We will discuss it in Section 4.7, and in Section
5.4, where we will make use of the notion of scheduler for a probabilistic and
nondeterministic operational model (see Section2.6). Finally, this definition
corresponds to an inequational theory that allows us to match equational and
categorical distributive laws, as we did in the category of sets.
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Proposition 4.1.2. (IV (X),≺) is an abstract basis.

Proof: To show transitivity we show that if f is a witness for (xi, pi)i∈I ≺
(yj , qj)j∈J and g is a witness for (yj , qj)j∈J ≺ (zl, rl)l∈L then f ◦ g is a witness
for (xi, pi)i∈I ≺ (zl, rl)l∈L. Clearly it is surjective.

• xf(g(l)) / yg(l) / zl. And / is transitive.

• pi �
∑

f(j)=i qj �
∑

f(j)=i

∑
g(l)=j rl =

∑
(f(g(l))=i rl.

We have now to show the finite interpolation property. It is enough to consider
the cases for which |F | = 0, 2. The case |F | = 0 is straightforward.

Now, let (xi, pi)i∈I , (yj, qj)j∈J ≺ (zl, rl)l∈L with witnesses f and g. For
every l ∈ L consider the set Zl := {xf(l) | l ∈ L} ∪ {yg(l) | l ∈ L}. Since f, g are
witnessing functions, we have Zl / zl. Since (X, /) is an abstract basis, and Zl

is finite, by the interpolation property there exists a z′l such that Zl / z′l / zl.
Let s :=

∑
l∈L rl. Let 2sε be the minimum among all the numbers of the

form  ∑
f(l)=i

rl

− pi,

 ∑
g(l)=j

rl

− qj .

Consider (z′l, (1 − ε)rl)l∈L. The identity function on L is a witness for (z′l, (1−
ε)rl)l∈L ≺ (zl, rl)l∈L while f, g are witnesses for (xi, pi)i∈I , (yj , qj)j∈J ≺ (z′l, (1−
ε)rl)l∈L:  ∑

f(l)=i

(1− ε)rl

− pi =

 ∑
f(l)=i

rl

− ε

 ∑
f(l)=i

rl

− pi

≥

 ∑
f(l)=i

rl

− ε

(∑
l∈L

rl

)
− pi

=

 ∑
f(l)=i

rl

− sε− pi

�

 ∑
f(l)=i

rl

− 2sε− pi ≥ 0 .

�

4.1.2 Indexed valuation as ideal completion

Definition 4.1.3. If D is a continuous domain generated by the abstract basis
B, let IV(D) be the ideal completion of (IV (B),≺). Its elements are called
Hoare indexed valuations or simply indexed valuations.

We will see later why the name of Hoare appears here.
Apparently the definition depends on the choice of a basis for D. We will

show in the next Section that different choices of the basis give rise to isomorphic
constructions.

As a corollary of the proof of Proposition 4.1.2 we have the following propo-
sition.
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Proposition 4.1.4. If

(bi, pi)i∈I ≺ (cj , qj)j∈J ,

then for every j there exist c′j � cj and q′j � qj such that

(bi, pi)i∈I ≺ (c′j , q
′
j)j∈J ≺ (cj , qj)j∈J .

Recall the definition of the function ιB : B → Idl (B) defined as ιB(b) = ⇓ b.
It is interesting to make the following observation.

Proposition 4.1.5. If ιB : B → D is injective, then ιIV (B) : IV (B) → IV(D)
is injective.

This is in contrast to what happens, for instance, with powerdomains.
In order to prove Proposition 4.1.5 we need some lemmas. The first two are

easily proved by contraposition.

Lemma 4.1.6. If ιB : B → D is injective, and ι
(
(b, p)∗∈{∗}

)
= ι
(
(b′, p′)∗∈{∗}

)
,

then b = b′ and p = p′.

Lemma 4.1.7. If ιB : B → D is injective, and ι
(
(bi, pi)i∈I

)
= ι
(
(b′j , p

′
j)j∈J

)
,

then |I| = |J |.

Proposition 4.1.5 is consequence of the following lemma.

Lemma 4.1.8. If ι
(
(bi, pi)i∈I

)
= ι

(
(b′i, p

′
i)i∈I

)
, then there exists a bijection

f : I → I, such that for all i ∈ I, bi = b′f(i) and pi = p′f(i).

Proof: For every i ∈ I, pick (ai, qi)∗∈{∗} such that (ai, qi)∗∈{∗} ≺ (bi, pi)∗∈{∗}
and such that whenever (ai, qi)∗∈{∗} ≺ (b′j , p

′
j)∗∈{∗} then ι

(
(bi, pi)∗∈{∗}

)
⊆

ι
(
(b′j , p

′
j)∗∈{∗}

)
.

We have to show that such element exists. Let Ii be the set of j ∈ I
such that ι

(
(bi, pi)∗∈{∗}

)
6⊆ ι
(
(b′j , p

′
j)∗∈{∗}

)
. For every j ∈ Ii we can thus find

(aj
i , q

j
i )∗∈{∗} ≺ (bi, pi)∗∈{∗}, such that (aj

i , q
j
i )∗∈{∗} 6≺ (b′j , p

′
j)∗∈{∗}. By the

interpolation property we find ai such that aj
i � ai � bi and qi such that

qj
i � qi � pi. Clearly (ai, qi)∗∈{∗} ≺ (bi, pi)∗∈{∗}, and if j ∈ Ii, (ai, qi)∗∈{∗} 6≺

(b′j , p
′
j)∗∈{∗}.

Since by hypothesis we have ι
(
(bi, pi)i∈I

)
= ι
(
(b′i, p

′
i)i∈I

)
, then it must be

(ai, qi)i∈I ≺ (b′i, p
′
i)i∈I . Let f : I → I be the witness, which is necessarily a

bijection. Therefore (af(i), qf(i))∗∈{∗} ≺ (b′i, p
′
i)∗∈{∗} for all i ∈ I, and hence

ι
(
(bf(i), pf(i))∗∈{∗}

)
⊆ ι
(
(b′i, p

′
i)∗∈{∗}

)
.

Symmetrically, there is g : I → I, such that ι
(
(b′g(f(i)), p

′
g(f(i)))∗∈{∗}

)
⊆

ι
(
(bf(i), pf(i))∗∈{∗}

)
.

Since gf is a permutation, then if n = |I|, (gf)n(i) = i. So that

ι
(
(b′i, p

′
i)∗∈{∗}

)
= ι
(
(b′(gf)n(i)), p

′
(gf)n(i)))∗∈{∗}

)
⊆ ι
(
(bf((gf)n−1(i)), pf((gf)n−1(i)))∗∈{∗}

)
⊆ . . . ⊆ ι

(
(bf(i), pf(i))∗∈{∗}

)
⊆ ι
(
(b′i, p

′
i)∗∈{∗}

)
Therefore, for every i ∈ I we have ι

(
(bf(i), pf(i))∗∈{∗}

)
= ι
(
(b′i, p

′
i)∗∈{∗}

)
,

which by lemma 4.1.6 implies the thesis. �
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4.2 Equational characterisation

In this section we characterise Hoare indexed valuations as a free construction.

4.2.1 Continuous quasi-cones

Recall the equational theory (1)–(7) of section 3.3. We add only one more
axiom, which corresponds to definition 4.1.1 of the AB-relation on finite indexed
valuations.

• HV: (p + q)A v (pA⊕ qA)

Definition 4.2.1. A continuous Hoare quasi-cone, or simply continuous quasi-
cone, is a structure (D,v,⊕,�) such that

• (D,v) is a continuous domain;

• ⊕ : D ×D → D is continuous;

• � : [0, +∞[×D → D is continuous;

• axioms (1)–(7) + (HV) are satisfied.

We can extend the definition of the scalar multiplication to +∞ by continu-
ity. The defining axioms (1)–(7) + (HV) are still valid for this extended set of
scalars.

Let CONT be the category of continuous domains, and QCONT be the
category of continuous quasi-cones and continuous homomorphisms. (In fact,
in what follows, we will always mention bases. Therefore CONT will be the
category of abstract bases and continuous functions between their completions.
This is clearly equivalent to the category of continuous domains and continuous
functions. Similar considerations apply to all the other categories we will define.)

Proposition 4.2.2. If D is a continuous domain then IV(D) is a continuous
quasi-cone.

Proof: By construction IV(D) is a continuous domain. We have to define
the operations. We put

• I ⊕ J = ↓{ν ⊕ ξ | ν ∈ I, ξ ∈ J };

• pI = {pν | ν ∈ I};

• 0 = {( , )i∈∅}.

The operations are well defined: the sum of two ideals is downward closed
by construction, while downward closedness of the other two and directedness
follow from the fact that the operations on IV (X) respect the AB-relation:

Lemma 4.2.3. If ν, ξ, ν′, ξ′ are finite indexed valuation on X,

a) If ν ≺ 0 then ν = 0;

b) if ν ≺ ν′ then pν ≺ pν′;

c) if ν ≺ ν′ & ξ ≺ ξ′ then ν ⊕ ξ ≺ ν′ ⊕ ξ′.
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Proof:

a) The empty function is a witness for 0 ≺ ν. If (xi, pi)i∈I is a representative
for 0, then pi = 0 for all i ∈ I. If ν = (yj , qj)j∈J and if f : I → J is
a witness for ν ≺ 0 then qj �

∑
f(i)=j pi = 0. Therefore for all j ∈ J ,

qj = 0.

b) A witness for ν ≺ ν′ is also a witness for pν ≺ pν′.

c) If f is a witness for ν ≺ ν′ and g is a witness for ξ ≺ ξ′, then, assuming
that dom(f)∩dom(g) = ∅, we have that f∪g is a witness for ν⊕ξ ≺ ν′⊕ξ′.

� (4.2.3)

It is easy to see that the operations satisfy axioms (1)–(7). The fact that
they satisfy (HV) follows from the roundness of the ideals and the following
lemma.

Lemma 4.2.4. If ν ≺ ξ and p � q1 + q2 then pν ≺ q1ξ ⊕ q2ξ.

Proof: Let ν := (ai, pi)i∈I , ξ := (bj , rj)j∈J . Since ν ≺ ξ, by definition there
exists f : J � I, s.t.:

af(j) / bj ;

pi �
∑

f(j)=i

rj .

We want to prove that pν ≺ q1ξ ⊕ q2ξ, i.e. that.

(ai, ppi)i∈I ≺ (bj , qkrj)(j,k)∈J×{1,2} .

We need a function f ′ : J × {1, 2} � I, s.t.:

1. af ′(j,k) / bj;

2. ppi �
∑

f ′(j,k)=i qkrj .

Define f ′ as follows: f ′(j, k) := f(j). First f ′ is clearly surjective. Secondly, the
expression (1) is obviously satisfied. As for (2) notice first that ppi � (q1+q2)pi;
since pi �

∑
f(j)=i rj , then for k = 1, 2, qkpi �

∑
f(j)=i qkrj . So (q1 + q2)pi �∑

f(j)=i q1rj +
∑

f(j)=i q2rj =
∑

f ′(j,1)=i q1rj +
∑

f ′(j,2)=i q2rj =
∑

f ′(j,k)=i qkrj .
� (4.2.4)

It is easy to show that the operations are continuous. The scalar multipli-
cation is also continuous in the first argument. It is monotonic: if ν ∈ pI by
roundness there exists pξ ∈ pI such that ν ≺ pξ with witness f . If p ≤ q then
the same witness shows that ν ≺ qξ. It preserves lubs: take an ideal I ∈ IV(D).
We want to prove that ⋃

p�q

pI = qI ,

that is for every ν, we have ν ∈ qI if and only if there exist p � q s.t. ν ∈ pI.
The “if” direction follows from monotonicity. It remains to prove the other
inclusion.

Take ν ∈ qI. By roundness there is ν′ ∈ qI s.t. ν ≺ ν′. There exists ε such
that the witness for ν ≺ ν′ is also a witness for ν ≺ (1 − ε)ν′. But ν′ ∈ qI,
therefore ν ∈ (1 − ε)qI. �
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4.2.2 Indexed valuations as a free construction

Proposition 4.2.5. The operator IV extends to a functor CONT→ QCONT
which is left adjoint to the forgetful functor.

Proof: We show the universal property, which proves both that IV is a
functor and that it is left adjoint. The fact that IV is a functor implies also
that if B, B′ are two abstract bases generating D then the ideal completions of
IV (B), IV (B′) are isomorphic. For every continuous function g : D → E where
E ∈ QCONT there is a unique g† : IV(D) → E (in the category QCONT) s.t.

D

η

��

g

##F
FFF

FFF
FF

IV(D)
g†

//___ E .

where η(d) = {(b, p)∗∈{∗} | b ∈ d, p < 1}. We also claim that the assignment
g 7→ g† is continuous.

Note first that η is continuous. Then take the “restriction” of g to BD, de-
fined as g(b) = g(ιB(b)). It has a unique homomorphic extension g : IV (BD) →
E , defined by

g ((bi, pi)i∈I) :=
⊕
i∈I

pig(bi) .

We claim that g is monotonic, in the following sense.

Lemma 4.2.6. If ν ≺ ξ, then g(ν) v g(ξ).

Proof: First suppose that (b, p)∗∈{∗} ≺ (cj , qj)j∈J , and that the witness f
for this is total. Then p �

∑
j∈J qj =: q and for every j, b � cj . Notice also

that p =
∑

j∈J
qj

q p. Applying iteratively the inequation (HV), we can show
that:

g
(
(b, p)∗∈{∗}

)
= pg(b) v

⊕
j∈J

qj

q
pg(b) .

Then, by monotonicity of the operations, of g and of ιB ,⊕
j∈J

qj

q
pg(b) v

⊕
j∈J

qjg(cj) = g ((cj , qj)j∈J ) .

Now suppose (bi, pi)i∈I ≺ (cj , qj)j∈J with again a total witness f . Let Ji =
f−1(i). Clearly (bi, pi)∗∈{∗} ≺ (cj , qj)j∈Ji for every i ∈ I. Therefore

g
(
(bi, pi)∗∈{∗}

)
v g ((cj , qj)j∈Ji) .

Notice that (bi, pi)i∈I =
⊕

i∈I(bi, pi)∗∈{∗} and (cj , qj)j∈J =
⊕

i∈I(cj , qj)j∈Ji .
Monotonicity of the sum, and the homomorphism condition on g imply that

g ((bi, pi)i∈I) v g ((cj , qj)j∈J ) .

Finally, for the case where f is not total, let J0 be the domain of f and J1 be
its complement. Clearly (cj , qj)j∈J = (cj , qj)j∈J0 ⊕ (cj , qj)j∈J1 . Moreover

g ((bi, pi)i∈I) v g ((cj , qj)j∈J0) .
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Equations (4)-(5) together with the monotonicity of the scalar multiplication
imply 0 v A. Therefore

0 = g (( , )) v g ((cj , qj)j∈J1) .

And finally

g ((bi, pi)i∈I) = g ((bi, pi)i∈I ⊕ ( , )) v g ((cj , qj)j∈J ) .

� (4.2.6)

Let us call g† the extension of g to IV(D) , the ideal completion of (IV (BD).
We recall that g†(I) :=

⊔ ↑
ν∈I g(ν). We know that the function g† is continuous.

The continuity of the operations implies that g† is also an homomorphism. Thus
it is a morphism of the category.

It remains to show that g†
(
{(b, p)∗∈{∗} | b ∈ d, p < 1}

)
= g(d)

Now
g†
(
{(b, p)∗∈{∗} | b ∈ d, p < 1}

)
=

⊔ ↑

b∈d, p<1

g((b, p)∗∈{∗})

=
⊔ ↑

b∈d, p<1

pg(b) =
⊔ ↑

p<1

pg(d) = g(d) .

The last two equalities follow from the continuity of g and of the scalar
multiplication. We also use that

⊔ ↑
b∈d ιB(b) = d.

To prove uniqueness we need the following lemma.

Lemma 4.2.7. If ν, ξ are finite indexed valuations on B,

a) ιIV (B)(0) = 0 ;

b) p(ιIV (B)(ν)) = ιIV (B)(pν) ;

c) ιIV (B)(ν) ⊕ ιIV (B)(ξ) = ιIV (B)(ν ⊕ ξ) .

Proof: Equation a) holds by definition. Equation b) is easily proved using
the definitions. Equation c) is a consequence of Proposition 4.1.4. � (4.2.7)

As a consequence, for every ν ∈ IV (BD), g(ν) = g†(ι(ν)).

IV (BD)

ι

��

g

##G
GG

GG
GGG

G

IV(D)
g†

//___ E .

Let h : IV(D) → E be a continuous homomorphism such that for every
d ∈ D, h(η(d)) = g(d). Since h is an homomorphism, we have that for every
(bi, pi)i∈I ∈ IV (BD)

h(ι
(
(bi, pi)i∈I

)
) =

⊕
i∈I

pih(ι
(
(bi, 1)∗∈{∗}

)
) =

⊕
i∈I

pih(η(bi)) =
⊕
i∈I

pig(bi)

= g
(
(bi, pi)i∈I

)
= g†

(
↓(bi, pi)i∈I

)
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Since h and g† coincide on the basis, they are equal.
Continuity of the operations and an exchange of suprema proves continuity

of the assignment g 7→ g†. �

We want to give a meaning to the expression (di, pi)i∈I even when di ∈ D
but not necessarily di ∈ B. We stipulate that

(di, pi)i∈I :=
⊕
i∈I

piη(di) .

Proposition 4.2.8.

(di, pi)i∈I = ↓
{
(bi, qi)i∈I | bi � di & qi � pi

}
.

Omitting the mention of the forgetful functor, we can say that IV is a monad
in CONT. The unit ηIVD : D → IV(D) is the extension of ηIV

B : B → IV (B);
the multiplication µIVD : IV2(D) → IV(D) is the extension of µIV

B : IV 2(B) →
IV (B) defined as in the category SET.

4.3 Relationship with continuous valuations

The fact that the definition of the abstract basis is similar to the Splitting
Lemma is reflected by the following theorem which shows the tight relationship
between Hoare indexed valuations and continuous valuations.

Let’s call FlatD : IV(D) → V(D) the extension of ηVD : D → V(D). This
makes sense since V is a continuous d-cone, and then, a fortiori, is continuous
quasi-cone. The function FlatD “forgets” the indices. It “flattens” an indexed
valuation down to a valuation. For a finite indexed valuation ν := (bi, pi)i∈I ,
we have that

Flat(ι(ν)) =
⊕
i∈I

piηbi .

This operation has an adjoint defined as

SatDν = {ξ ∈ IV (BD) | Flat(ι(ξ)) � ν} .

The function SatD, takes a continuous valuation and returns a corresponding
indexed valuation “with the most possible indices”.

Theorem 4.3.1. Let V be Jones’ powerdomain of valuations functor. The func-
tions FlatD,SatD are continuous homomorphisms of real quasi-cones, natural
in D and form a continuous insertion-closure pair IV(D) → V(D).

In particular the function FlatD is surjective: every continuous valuation
has an indexed representative. The fact that Sat is an adjoint implies that its
definition does not depend on the choice of the basis.

Proof: To simplify the notation, we assume that ι : BD → D is injective, so
as to drop the mention of ι. The proof does not rely on this assumption. We first
prove that SatD is well defined. It is enough to prove that for every ν ∈ V(D)
the set W = {ξ ∈ IV (BD) | Flat(ξ) � ν} is an ideal in IV(D). It is clearly
downward closed, because Flat is monotonic. Take ξ1, ξ2 ∈ W . By directedness
of the set of valuations way below ν, there exists a simple valuation ζ such that
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Flat(ξ1),Flat(ξ2) � ζ � ν. We want to build a finite indexed valuation ξ such
that ξ1, ξ2 ≺ ξ and Flat(ξ) = ζ � ν. This proves the directedness of W . Let
ξ1 := (ai, pi)i∈I , ξ2 := (bj , qj)j∈J . Assume that i 6= i′ =⇒ ai 6= ai′ and similarly
for ξ2. We will argue that this is not a restriction.

Therefore we can write ξ1 = (a, pa)a∈A and ξ2 = (b, qb)b∈B. Since Flat
is a homomorphism, Flat(ξ1) =

∑
a∈A pbηb, Flat(ξ2) =

∑
b∈B qbηb. Let ζ :=∑

c∈C scηc. By the splitting lemma we know that there are t1a,c, and t2b,c, such
that ∑

c∈C

t1a,c = pa,
∑
c∈C

t2b,c = qb,

∑
a∈A

t1a,c < sc,
∑
b∈B

t2b,c < sc,

with t1a,c > 0 =⇒ a � c and t2b,c > 0 =⇒ b � c .
Define ξ := (xa,b,c, ta,b,c)(a,b,c)∈A×B×C where xa,b,c := c and

ta,b,c :=
sct

1
a,ct

2
b,c∑

a,b∈A×B t1a,ct
2
b,c

.

We have Flat(ξ) = ζ.
Then consider f(a, b, c) := a, defined for all (a, b, c) for which t1a,c > 0.

Similarly g(a, b, c) := b defined for all (a, b, c) for which t2b,c > 0. We show that
f is a witness for ξ1 ≺ ξ (and similarly for g and ξ2). For every a we have pa > 0
and pa =

∑
c∈C t1a,c. Therefore some of the t1a,c > 0 and f is surjective. For the

(a, b, c) where f is defined we have a � c = xa,b,c because t1a,c > 0. Finally we
have to show that

pa <
∑

f(a,b,c)=a

ta,b,c =: ra .

Let’s go:

ra =
∑

f(a,b,c)=a

ta,b,c =
∑

b∈B,t1a,c>0

sct
1
a,ct

2
b,c∑

a,b∈A×B t1a,ct
2
b,c

.

Adding the t1a,c = 0 we have that

ra =
∑

b∈B,c∈C

sct
1
a,ct

2
b,c∑

a,b∈A×B t1a,ct
2
b,c

=
∑
c∈C

sct
1
a,c

∑
b∈B t2b,c∑

a∈A t1a,c

∑
b∈B t2b,c

=
∑
c∈C

sct
1
a,c

∑
b∈B t2b,c

(
∑

a∈A t1a,c)(
∑

b∈B t2b,c)
=
∑
c∈C

sct
1
a,c∑

a∈A t1a,c

.

Since
∑

a∈A t1a,c < sc we have that

ra >
∑
c∈C

sct
1
a,c

sc
=
∑
c∈C

t1a,c = pa .

The assumption that i 6= i′ =⇒ ai 6= ai′ is not restrictive: let’s try to suggest
why. Suppose ν = (a, p)∗∈{∗} ≺ ξ = (yj , qj)j∈J . Now we split the index in ν:
take ν′ := (ak, rkp)k∈{1,2} where ak = a for k = 1, 2 and r1 + r2 = 1. Consider
then ξ′ := (yj,k, rkqj)(j,k)∈J×{1,2}. It should be clear that ν′ ≺ ξ′. Moreover,
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although ξ 6≺ ξ′, for every ζ ≺ ξ we have ζ ≺ ξ′. Thus if we find an upper bound
ξ for an indexed valuation satisfying the restriction, we find a suitable upper
bound ξ′ for the more general ones.

Monotonicity and continuity of SatD are obvious. We have to check that
SatD is a homomorphism. Clearly Sat(0) = 0. Also Sat(pν) = pSat(ν). To
show that Sat(ν1 ⊕ ν2) = Sat(ν1) ⊕ Sat(ν2), we first notice that, since Flat is
a homomorphism and since � respects ⊕ in V(D), then Sat(ν1) ⊕ Sat(ν2) ⊆
Sat(ν1 ⊕ ν2). Take now ζ ∈ Sat(ν1 ⊕ ν2). To prove that ζ ∈ Sat(ν1)⊕ Sat(ν2)
it is enough to show that there are ζ1, ζ2 such that Flat(ζ1) � ν, Flat(ζ2) � ξ
and ζ ≺ ζ1 ⊕ ζ2.

Consider the sets ↓↓ ν1 and ↓↓ ν2. Since the addition preserves the way-below
relation (proposition 2.22 in [Tix99]) we have that ↓↓ ν1 +↓↓ ν2 ⊆ ↓↓ ν1 +ν2. Notice
that ↓↓ ν1 + ↓↓ ν2 is directed with lub ν1 + ν2. Thus for every χ � ν1 + ν2 there
exists χ1 +χ2 ∈ ↓↓ ν1 + ↓↓ ν2 such that χ � χ1 +χ2. With enough indices we can
find ζ1, ζ2, such that Flat(ζ1) = χ1, Flat(ζ2) = χ2 and ζ ≺ ζ1 ⊕ ζ2.

We now prove that FlatD◦SatD is the identity on V(D). Take a valuation ν ∈
V(D). We know (Theorem 2.5.10) that it is the directed supremum of the set ↓↓ ν
of all way-below simple valuations. Now SatD(ν) = {ξ ∈ IV (BD) | Flat(ξ) �
ν}. By definition of FlatD, we have that FlatD(SatD(ν)) =

⊔ ↑
ξ∈SatD(ν) Flat(ξ).

And since Flat is surjective onto the set of simple valuations, we have that⊔ ↑
ξ∈SatD(ν) Flat(ξ) =

⊔ ↑
ζ�ν ζ = ν.

It is easy to see that SatD ◦ FlatD is above the identity on IV(D).

We now prove naturality of FlatD. We have to show that for every continuous
f : D → E the following diagram commutes.

IV(D)
FlatD //

IV(f)

��

V(D)

V(f)

��
IV(E)

FlatE // V(E)

We prove this by showing that both sides of the squares are equal to the
extension of ηVE ◦ f .

D
ηIVD //

f ��?
??

??
??

? IV(D)

���
�
�
�
�
�
�

E

ηVE ""F
FF

FF
FF

FF

V(E)

In the following diagram
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D
ηIVD //

f

��

IV(D)

���
�
�
�
�
�
�

IV(f)

zzuuuuuuuuu

IV(E)

FlatE $$I
IIIIIIII

E

ηIVE

<<yyyyyyyyy

ηVE

// V(E)

the upper left triangle commutes because of the naturality of ηIV . The lower tri-
angle commutes by definition of FlatE . The right triangle commutes by unique-
ness.

In the following diagram

D
ηIVD //

f

��

ηVD !!C
CC

CC
CC

C IV(D)

���
�
�
�
�
�
�

FlatD

zzvvv
vv

vv
vv

V(D)

V(f) $$H
HH

HH
HH

HH

E
ηVE

// V(E)

the upper triangle commutes by definition of FlatD. The lower left triangle
commutes because of the naturality of ηV . The right triangle commutes by
uniqueness.

The naturality of SatD,

V(D)
SatD //

V(f)

��

IV(D)

IV(f)

��
V(E)

SatE // IV(E)

can be proved with some pain using the following observations (which we have
already used implicitly).

Proposition 4.3.2. If ξ, ζ ∈ IV (BD) and ξ ≺ ζ, then FlatD(ξ) � FlatD(ζ).
If ξ, ζ ∈ IV (BD) and FlatD(ξ) � FlatD(ζ), then there exists ζ′ ∈ IV (BD) such
that ξ ≺ ζ′ and FlatD(ζ′) = FlatD(ζ).

The idea being that ζ′ can contain more indices than ζ. �

4.4 The distributive law

We now show that there is a categorical distributive law between the indexed
valuations monad, and the Hoare powerdomain monad. We will first show this
by showing that the Hoare powerdomain monad lifts to the category of algebras
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for IV in the category CONT. We then propose an alternative proof using
the abstract bases. This second proof is less insightful and more technical than
the previous one, but has the advantage that it is possible to apply the same
technique for the Smyth and the Plotkin powerdomains, for which a concrete
characterisation is less forthcoming.

4.4.1 The distributive law via Beck’s theorem

First, using Beck’s monadicity theorem, we prove that the category of IV-
algebras is equivalent to QCONT. This proof is basically the one in Section
2.2, although it has to be recast in the context where scalar multiplication is
continuous in the first argument, which is straightforward.

We have then to define the lifting of the Hoare powerdomain to the category
QCONT. That is, when E is a Hoare continuous quasi-cone, we have to define
a Hoare continuous quasi-cone structure on PH(E). Then we show a universal
property for this operator, showing that it lifts the monad in CONT. Recall
that when D is a continuous domain, the Hoare powerdomain PH(D) is the free
join-semilattice on D and it is concretely characterised as the set of nonempty,
Scott-closed subsets of D, ordered by inclusion (see Section 2.4).

Let’s define the operations on PH(E). We put

• 0 := {0};

• pC := {pν |ν ∈ C};

• C ⊕ C′ := {ν ⊕ ν′ |ν ∈ C, ν′ ∈ C′}.

We have to show that these operations are well defined and satisfy the axioms.
0 is closed, and if C is closed then pC is closed. Finally C ⊕ C′ is closed by
definition.

The operations are obviously monotonic.
We show that the operations are continuous in the stronger sense that they

preserve all suprema, even non-directed ones. The scalar multiplication is con-
tinuous in the second argument: take a family of closed sets (Ci)i∈I . We have
to check that p

⋃
Ci =

⋃
pCi. This follows from the fact that for every set X ,

pX = pX, which in turn follows from the fact that multiplying by p > 0 is a
homeomorphism. The scalar multiplication is continuous in the first argument.
Let (pi)i∈I be a chain in R+, and let p := supi∈I pi. If pν ∈ pC then clearly
pν = supi∈I piν ∈

⋃
piC. The other direction follows from monotonicity. To

prove continuity of the addition let (Ci)i∈I be a family of closed sets. We have
to prove that ⋃

i∈I

Ci ⊕ C ⊆
⋃
i∈I

(Ci ⊕ C)

To do that it is enough to show that⋃
i∈I

Ci ⊕ C ⊆
⋃
i∈I

(Ci ⊕ C)

Take ν ∈
⋃

i∈I Ci ⊕ C. Let’s say ν = ξi ⊕ ξ with ξi ∈ Ci and ξ ∈ C. But then
ν ∈ Ci ⊕ C.
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We omit the simple proofs of most of the axioms. To prove axiom (HV), pick
(p+q)ν ∈ (p+q)C. We have to show that (p+q)ν ∈ pC⊕qC. But pν ∈ pC and
qν ∈ qC, so that pν⊕ qν ∈ pC⊕ qC. By definition pC⊕ qC is downward closed.
Since E is satisfies (HV) then (p + q)ν v pν ⊕ qν so that (p + q)ν ∈ pC ⊕ qC.

I want to draw the reader’s attention to this last paragraph. We use the fact
that the sets in the Hoare powerdomain are downward closed. If we tried to lift
one of the other powerdomains, the proof would break down here. In the next
section we will we give an alternative proof of the distributive law and we will
again draw the reader’s attention when we reach the crucial point.

We now show the universal property that at once shows that PH is a monad
in QCONT, and that it lifts the monad in CONT. First we notice that
ηPH

E : E → PH(E) lifts to a morphism in QCONT. We have to check that
η(0) = {0} which is true. Secondly η(pν) = {pν} = pν = pη(ν). Finally
η(ν ⊕ ξ) = {ν ⊕ ξ} = {ν′ ⊕ ξ′ | ν′ v ν, ξ′ v ξ} = {ν} ⊕ {ξ} = η(ν) ⊕ η(ξ). The
second equality holds because of monotonicity of ⊕ in E .

We need to define the category QCJ-algebras QCJ.(QCJ stands for quasi-
cone join-semilattice).

Definition 4.4.1. A continuous QCJ-algebra is a continuous domain algebra
over the theory (1)–(12) + (HV) + (HP), with the extra requirement that the
scalar multiplication be continuous in the first argument.

The category QCJ has QCJ-algebras as objects and continuous homomor-
phisms as arrows.

The universal property is the following: for every morphism g : E → J in
QCONT, with J ∈ QCJ there is a unique g† : PH(E) → J (in the category
QCJ) s.t.

E
η

��

g

##F
FFFFFFFF

PH(E)
g†

//___ J .

We first have to observe that PH(E) is an object of the category. We
have seen it satisfies axioms (1)–(7),(HV) and we know it satisfies axioms (8)–
(10),(HP), because the definition of ∪– is the same as in the category CONT.
We have only to show the distributive axioms (11)–(12), which is straightfor-
ward.

Finally we have to observe that the extension obtained by the universal
property of the Hoare powerdomain preserves sum, scalar product and 0.

g†({0}) = g†(η(0)) = g(0) = 0

g†(pC) =
⊔

ν∈pC

g(ν) =
⊔

ν∈C

g(pν) = p
⊔

ν∈C

g(ν) = pg†(C)

g†(C ⊕ C′) =
⊔

ν∈C⊕C′
g(ν)

Now C ⊕ C′ is the Scott-closure of the set W := {ν ⊕ ν′ | ν ∈ C, ν′ ∈ C′}. We
argue that

⊔
ξ∈W g(ξ) =

⊔
ξ∈W g(ξ).

The hard direction is showing that
⊔

ξ∈W g(ξ) v
⊔

ν⊕ν′∈W g(ν ⊕ ν′). Take
ξ ∈ W , by Lemma 2.5.2, ξ =

⊔ ↑
zeta∈Z ζ for some directed Z ⊆ ↓W . Since g is
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continuous, g(ξ) =
⊔ ↑

ζ∈Z g(ζ) v
⊔

ν⊕ν′∈W g(ν ⊕ ν′). Since this is true for any
ξ ∈ W , our claim is proved. Therefore

g†(C ⊕ C′) =
⊔

ν∈C,ν′∈C′
g(ν ⊕ ν′)

Since g is a homomorphism of quasi-cones, we have
⊔

ν⊕ν′∈W g(ν ⊕ ν′) =⊔
ν∈C,ν′∈C′ g(ν) ⊕ (ν′). Equation (12) tells us that ⊕ is a homomorphism of

join-semilattices and therefore preserves all least upper bounds (not only the
directed ones). Thus⊔

ν∈C,ν′∈C′
g(ν)⊕ g(ν′) =

⊔
ν∈C

g(ν)⊕
⊔

ν′∈C′
g(ν′) = g†(C)⊕ g†(C′)

The way the extension is defined is exactly the same as the way as in the
monad in CONT. This automatically implies that the multiplication lifts. We
have thus proved the following theorem.

Theorem 4.4.2. The Hoare powerdomain monad lifts to a monad in the cate-
gory of continuous Hoare quasi-cones.

By Beck’s theorem on distributive laws (Theorem 2.2.3), we obtain the exis-
tence of the distributive law. Note also that we have obtained the lifted monad
via an adjunction involving the category QCJ. This shows the coincidence of
the equational and the categorical distributive laws.

4.4.2 The distributive law via the bases

We provide an alternative proof of the existence of the distributive law. We will
use some notions defined in Section 2.3.

Given a continuous domain D with basis B, consider the set P (B) of non-
empty finite subsets of B, endowed with the Hoare AB-relation:

X ≺ Y ⇐⇒ ∀x ∈ X.∃y ∈ Y.x � y .

It is known (see [AJ94]) that (P (B),≺) is a basis for the Hoare powerdomain
PH(D) (in the sequel we write P for PH).

To define a distributive law we need to give a family αD of continuous
functions IV ◦ P(D) → P ◦ IV(D). Our approach is to define a function be-
tween the bases and take the extension as our candidate. Consider the function
aB : IV (P (B)) → P (IV (B)) :

aB

(
(Si, pi)i∈I

)
=
{
(h(i), pi)i∈I |h : I → B, h(i) ∈ Si

}
.

Lemma 4.4.3. The function aB is strongly monotonic and complete.

Proof: Take (Si, pi)i∈I ≺ (Tj , qj)j∈J . Let f : J � I be a witness for that.
Therefore:

• pi �
∑

f(j)=i q(j);

• Sf(j) ≺ Tj .
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The second formula is by definition equivalent to saying that for every b ∈ Sf(j)

there exists c ∈ Tj such that b � c.
To prove strong monotonicity we have to prove that{

(h(i), pi)i∈I |h : I → B, h(i) ∈ Si

}
≺
{
(k(j), qj)j∈J | k : J → B, k(j) ∈ Tj

}
.

We have to show that for every h : I → B, h(i) ∈ Si there exist a k : J →
B, k(j) ∈ Tj such that (h(i), pi)i∈I ≺ (k(j), qj)j∈J . How is k defined? For every
j, consider h(f(j)). It is an element of Sf(j). Therefore there exists some c ∈ Tj

with h(f(j)) � c. Let k(j) be one such c. Now we claim that f is a witness
of (h(i), pi)i∈I ≺ (k(j), qj)j∈J . We have already pi �

∑
f(j)=i q(j). And by

construction h(f(j)) � k(j), so we are done.
To prove completeness take S ≺

{
(h(i), pi)i∈I |h : I → B, h(i) ∈ Si

}
.

We are going to find sets Ti and numbers qi such that (Ti, qi)i∈I ≺ (Si, pi)i∈I

and S ≺
{
(k(i), qi)i∈I | k : I → B, k(i) ∈ Ti

}
. For every ν ∈ S there exists

h : I → B such that ν ≺ (h(i), pi)i∈I . By Proposition 4.1.4 there are bi � h(i)
and ri � pi such that ν ≺ (bi, ri)i∈I ≺ (h(i), pi)i∈I . Let Ti be the collection of
all such bi’s and qi be the maximum of all the ri’s. Clearly Ti ≺ Si and qi � pI .
Moreover by defining k(i) = bi (choosing one such) we get ν ≺ (k(i), qi)i∈I , so
that S ≺

{
(k(i), qi)i∈I | k : I → B, k(i) ∈ Ti

}
. �

Note that it is essential the way the AB-relation is defined. Had we used the
Egli-Milner or the Smyth AB-relation on finite sets, aB would not be strongly
monotonic. As we observed in the previous section, we are not able to find a
distributive law between the Hoare indexed valuations, and either the Plotkin
or the Smyth powerdomain and here is where the candidate proof breaks down.

Define αD to be the extension of aB.

Theorem 4.4.4. The family αD : IV(P(D)) → P(IV(D)) defined above is a
distributive law.

Proof: We prove naturality relying on the naturality of aB in the category
of sets. The proof is conceptually simple, but rather technical. Working with
bases has its price.

We first state some lemmas, of which we omit the proofs. In the following
B, B′ will be abstract basis, D, D′ their ideal extension, P (B) will be endowed
with the Hoare AB-relation, and IV (B) will be endowed with the AB-relation
of definition 4.1.1.

Lemma 4.4.5. The following hold:

• ηP
B : B → P (B) is strongly monotonic and complete;

• µP
B : P (P (B)) → P (B) is strongly monotonic and complete;

• ηIV
B : B → IV (B) is weakly monotonic and complete;

• µIV
B : IV (IV (B)) → IV (B) is strongly monotonic and complete;

and moreover

• ηPD = ext(ηP
B);

• µPD = ext(µP
B);
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• ηIVD = ext(ηIV
B );

• µIVD = ext(µIV
B ).

Lemma 4.4.6. Let f : B → B′ be weakly monotonic and complete. Then

• ext(P (f)) = P(ext(f));

• ext(IV (f)) = IV(ext(f)).

Finally we recall one of the statements of Proposition 2.3.6. Let B, B′, B′′

be abstract bases. Let f : B → B′ and g : B′ → B′′ be weakly monotonic and
complete. Then g◦f is also weakly monotonic and complete and ext(g)◦ext(f) =
ext(g ◦ f).

Now, let f : D → D′ be a continuous function. First suppose there exists a
function f r : B → B′ (the “restriction” of f to the bases) such that

B

fr

��

ιB // D

f

��
B′

ιB′
// D′.

Then f r is weakly monotonic and complete. We have

Lemma 4.4.7. Let B, B′ be two abstract bases, and let f : B → B′ be weakly
monotonic and complete. Then

• P (f) : P (B) → P (B′) is weakly monotonic and complete;

• IV (f) : IV (B) → IV (B′) is weakly monotonic and complete.

Therefore the two functions IV (P (f r)) : IV (P (B)) → IV (P (B′)) and
P (IV (f r) : P (IV (B)) → P (IV (B′)) are also weakly monotonic and complete.
The following diagram commutes, because it is the naturality diagram for the
distributive law in SET.

IV (P (B))

IV (P (fr))

��

aB // P (IV (B))

P (IV (fr))

��
IV (P (B′)) aB′

// P (IV (B′)).

Because of Proposition 2.3.6 the commutativity of the diagram carries over to
the diagram

IV(P(D))

IV(P(f))

��

αD // P(IV(D))

P(IV(f))

��
IV(P(D′))

αD′
// P(IV(D′)).

For the general case, when the restriction to the bases cannot be found,
we notice that a continuous domain is a basis for itself. We make explicit the
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difference between a domain D and its ideal completion as abstract basis D̄.
Notice that the isomorphism ιD : D → D̄ is the extension of ιB : B → D as

B

ιB

��

ιB // D

ιD

��
D ιD

// D̄

and ιB is weakly monotonic and complete. Therefore the following diagram
commutes

DOO
ιD

��

f // D′
OO
ιD′
��

D̄
f̄

// D̄′

The commutativity of the diagram

IV (P (B))

IV (P (ιB))

��

aB // P (IV (B))

P (IV (ιB))

��
IV (P (D))

IV (P (f))

��

aD // P (IV (D))

P (IV (f))

��
IV (P (D′)) aD′

// P (IV (D′))

IV (P (B′))

IV (P (ιB′ ))

OO

aB′ // P (IV (B′))

P (IV (ιB′))

OO

carries over to the diagram

IV(P(B))GF

@A

IV(P(f))

//

OO

IV(P(ιD))

��

αD // P(IV(B)) ED

BC

IV(P(f))

oo

OO

P(IV(ιD))

��
IV(P(D̄))

IV(P(f̄))

��

αD̄ // P(IV(D̄))

P(IV(f̄))

��
IV(P(D̄′)) α

D̄′
// P(IV(D̄′))

IV(P(D′))
��

IV(P(ιD′))

OO

αD′ // P(IV(D′))
��
P(IV(ιD′ ))

OO

The four conditions defining a distributive law are proved using the same
idea: we use the commutativity of a diagram in the category of sets and func-
tions, which carries over to the diagram constituted by their extensions.
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For instance to prove that the diagram

IV(IV(P(D)))

IV(αD)

��

µIVP(D) // IV(P(D))

αD

��

IV(P(IV(D)))

αIV(D)

��
P(IV(IV(D)))

P(µIVD )

// P(IV(D))

commutes, it is enough to prove that the following diagram commutes

IV (IV (P (B)))

IV (aB)

��

µIV
P (B) // IV (P (B))

aB

��

IV (P (IV (B)))

aIV (B)

��
P (IV (IV (B)))

P (µIV
B )

// P (IV (B))

which we have already proved in the category SET.
All the other diagrams are proved in the same way. �

4.4.3 Relations with other powerdomains

The above proof could be applicable to other AB-relations on both P (B) and
IV (B). The key point is that the function aB : IV (P (B)) → P (IV (B)) be
weakly monotonic and complete. All other conditions come almost for free. If,
for example we put the Smyth AB-relation on P (B):

X ≺ Y if ∀y ∈ Y ∃x ∈ X. x / y

then the function aB is not weakly monotonic. To show this, let X = {x0, x1}
and Y = {y0, y1} with xi / yi, so that X ≺ Y . Suppose moreover that xi//
y1−i and that for i = 0, 1 there is x′i such that x′i / xi and x′i// y1−i (this
is true when, for example, the AB-relation / is a preorder). Then consider
ν := (X, 1

2 )∗∈{∗} and ξ := (Y, 1
2 )j∈{0,1}, so that ν ≺ ξ. Consider aB(ν) ={

(x0,
1
2 )∗∈{∗}, (x1,

1
2 )∗∈{∗}

}
. And aB(ξ) =

{
(θ(j), 1

2 )j∈{0,1} | θ : {0, 1} → Y
}

Therefore we have
{
(x′0,

1
3 )∗∈{∗}, (x′1,

1
3 )∗∈{∗}

}
≺ aB(ν). Also we have that

(yi,
1
2 )i∈{0,1} ∈ aB(ξ). But (x′i,

1
3 )∗∈{∗} 6≺ (yj ,

1
2 )j∈{0,1} for any i.

The same counterexample shows that aB is not weakly monotonic also when
we put the Egli-Milner AB-relation on P (B):

X ≺ Y if ∀y ∈ Y ∃x ∈ X. x / y & ∀x ∈ X∃y ∈ Y. x / y

Recall the the Smyth AB-relation generates the Smyth powerdomain, while
the Egli-Milner AB-relation generates the Plotkin powerdomain. Consequently,
we are not able with our techniques to show there are distributive laws between
(Hoare) indexed valuations and either the Smyth or the Plotkin powerdomains.
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4.5 Plotkin and Smyth indexed valuations

What happens if we remove the axiom (HV) from our equational theory? Or if
we replace it with its dual (SV)? We can still perform analogous constructions,
with the interesting exception of Theorem 4.3.1.

4.5.1 Plotkin indexed valuations

We are going to define a different AB-relation on IV (X). This relation corre-
sponds to an equational theory without the axiom (HV).

Definition 4.5.1. Let (X, /) be an abstract basis. For (xi, pi)i∈I , (yj , qj)j∈J ∈
IV (X) define

(xi, pi)i∈I ≺P (yj , qj)j∈J

if and only if there exists a bijection f : J → I, s.t.:

xf(j) / yj ,

pf(j) � qj .

This is essentially the same as definition 4.1.1, except that we require a wit-
ness to be injective as well. An alternative definition makes use of the possibility
of changing the names of the indices. For (xi, pi)i∈I , (yj , qj)j∈J ∈ IV (X) we
have that (xi, pi)i∈I ≺P (yj , qj)j∈J if and only if I = J and xi / yi and pi � qi.

Proposition 4.5.2. (IV (X),≺P ) is an abstract basis.

Proof: To show transitivity, suppose f is a witness for (xi, pi)i∈I ≺P

(yj , qj)j∈J and g is a witness for (yj , qj)j∈J ≺P (zl, rl)l∈L. Then we know, by
Proposition 4.1.2, that g ◦ f is a witness for (xi, pi)i∈I ≺P (zl, rl)l∈L. Moreover
if both f, g are injective, then g ◦ f is also injective.

We have now to show the finite interpolation property. Again we omit the
case |F | = 0.

Now, let (xi, pi)i∈I , (yi, qi)i∈I ≺P (zi, ri)i∈I (without loss of generality).
Then xi, yi / zi and pi, qi � ri. Since (X, /) is an abstract basis, for every i ∈ I
there exist z′i such that xi, yi / z′i / zi. Let s :=

∑
i∈I ri. Let 2sε be the mini-

mum among all the numbers ri − pi, ri − qi. Consider (z′i, (1− ε)ri)i∈I . Clearly
(z′i, (1−ε)ri)i∈I ≺P (zi, ri)i∈I . But also (xi, pi)i∈I , (yi, qi)i∈I ≺P (z′i, (1−ε)ri)i∈I

�

Definition 4.5.3. If D is a continuous domain with basis B, let IVP (D) be
the ideal completion of (IV (B),≺P ). Its elements are called Plotkin indexed
valuations.

Proposition 4.5.4. If

(bi, pi)i∈I ≺P (cj , qj)j∈J ,

then for every j there exist c′j � cj and q′j � qj such that

(bi, pi)i∈I ≺P (c′j , q
′
j)j∈J ≺P (cj , qj)j∈J .
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The operations on IV (X) respect the AB-relation

Lemma 4.5.5. If ν, ξ, ν′, ξ are finite indexed valuation on B,

a) if ν ≺P 0 then ν = 0;

b) if ν ≺P ν′ then pν ≺P pν′;

c) if ν ≺P ν′ & ξ ≺P ξ′ then ν ⊕ ξ ≺P ν′ ⊕ ξ′.

4.5.2 Plotkin indexed valuations as a free construction

We present the equational theory characterising Plotkin indexed valuations.

Definition 4.5.6. A continuous Plotkin quasi-cone is a structure (D,v,⊕,�)
such that

• (D,v) is a continuous domain;

• ⊕ : D ×D → D is continuous;

• � : [0, +∞[×D → D is continuous

• axioms (1)–(7) are satisfied.

Let CONT be the category of continuous domains, and QPCONT be the
category of continuous Plotkin quasi-cones and continuous homomorphisms.

Proposition 4.5.7. If D is a continuous domain then IVP (D) is a continuous
Plotkin quasi-cone.

Proposition 4.5.8. The operator IVP extends to a functor
CONT→ QPCONT which is left adjoint to the forgetful functor.

Proof: For every continuous function g : D → E where E ∈ QPCONT
there is a unique g† : IVP (D) → E (in the category QPCONT) s.t.

D

η

��

g

##F
FFF

FFF
FF

IV(D)
g†

//___ E .

where η(d) = {(b, p)∗∈{∗} | b � d, p < 1}.
Take the restriction of g to BD. It has a unique homomorphic extension

g : IV (BD) → E , defined by

g
(
(b, 1)∗∈{∗}

)
:= g(b) ;

g ((bi, pi)i∈I) :=
⊕
i∈I

pig(bi) .

We claim that g is monotonic, in the sense that if ν ≺P ξ, then g(ν) v g(ξ).
First suppose that (b, p)∗∈{∗} ≺P (c, q)∗∈{∗}. Then p � q and b � c. By
monotonicity of scalar multiplication and of g,

g
(
(b, p)∗∈{∗}

)
= pg(b) v qg(c) = g

(
(c, q)∗∈{∗}

)
.
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Now suppose (bi, pi)i∈I ≺P (ci, qi)i∈I . Clearly (bi, pi)∗∈{∗} ≺P (ci, qi)∗∈{∗} for
every i ∈ I. Therefore

g
(
(bi, pi)∗∈{∗}

)
v g

(
(ci, qi)∗∈{∗}

)
.

Notice that (bi, pi)i∈I =
⊕

i∈I(bi, pi)∗∈{∗} and (ci, qi)i∈I =
⊕

i∈I(ci, qi)∗∈{∗}.
Monotonicity of the sum, and the homomorphism condition on g imply that

g ((bi, pi)i∈I) v g ((ci, qi)i∈I) .

Let us call g† the extension of g to IV(D) (the ideal completion of (IV (BD)).
We recall that g†(I) :=

⊔ ↑
ν∈I g(ν). We know that the function g† is continuous.

The continuity of the operations implies that g† is also an homomorphism. Thus
it is a morphism of the category.

It remains to show that g†
(
{(b, p)∗∈{∗} | b � d, p < 1}

)
= g(d)

Now

g†
(
{(b, p)∗∈{∗} | b � d, p < 1}

)
=

⊔ ↑

b�d, p<1

g((b, p)∗∈{∗})

=
⊔ ↑

b�d, p<1

pg(b) =
⊔ ↑

p<1

pg(d) = g(d) .

The last two equalities being a consequence of the continuity of g and of the
scalar multiplication.

To prove uniqueness we need the following lemma

Lemma 4.5.9. If ν, ξ are finite indexed valuation on B,

a) ι(0) = 0 ;

b) p(ι(ν)) = ι(pν) ;

c) ι(ν) ⊕ ι(ξ) = ι(ν ⊕ ξ) .

As a consequence, for every ν ∈ IV (BD), g(ν) = g†(ι(ν)).

IV (BD)

ι

��

g

##G
GG

GG
GGG

G

IV(D)
g†

//___ E .

Let h : IVP (D) → E be a continuous homomorphism such that for every
d ∈ D, h(η(d)) = g(d). Since h is an homomorphism, we have that when for
every (bi, pi)i∈I ∈ IV (BD)

h(ι
(
(bi, pi)i∈I

)
) =

⊕
i∈I

pih(ι
(
(bi, 1)∗∈{∗}

)
) =

⊕
i∈I

pih(η(bi)) =
⊕
i∈I

pig(bi)

= g
(
(bi, pi)i∈I

)
= g†

(
↓(bi, pi)i∈I

)
Since h and g† coincide on the basis, they are equal. �
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4.5.3 Failure of surjectivity

The universal property proved above gives us the function FlatD : IVP (D) →
V(D) as the extension of η : D → VP (D).

Interestingly, in this case FlatD is not surjective in general, and therefore
there is no insertion-closure pair. To show this, let D be the domain of finite
and infinite sequences over a two letter alphabet D := {a, b}∞. It is an alge-
braic domain, whose compact elements are the finite sequences. Consider the
following chain of continuous valuations on D.

ν0 = ηε

ν1 =
1
2
ηa +

1
2
ηb

νn =
∑
|σ|=n

1
2n

ησ

The limit of this chain is a valuation ν∞ such that for every open set of the
form ↑σ, ν∞(↑ σ) = 1

2|σ| . Suppose, by contradiction, that I is an ideal such
that Flat(I) = ν∞. Then ν∞ =

⊔ ↑
ζ∈I Flat(ζ). This means that for every

ξ � ν∞ there exists ζ ∈ I such that ξ v Flat(ζ) v ν∞. Let ξ1 := (1 − ε)ηε.
We have that ξ1 � ν∞. Let ζ1 ∈ I such that ξ1 v Flat(ζ1) v ν∞. Say
ζ1 = (τi, pi)i∈I , with pi > 0 for all i. Notice that Flat(ζ)(D) =

∑
i∈I pi.

Therefore 1 ≥
∑

i∈I pi ≥ (1 − ε). Let n be such that mini∈I pi > 1
2n . This

implies that |I| < 2n.
Consider now

ξ2 :=
∑

|σ|=n+1

(1− ε)
2n+1

ησ

We have that ξ2 � ν∞. Let ζ2 ∈ I such that ξ2 v Flat(ζ2) v ν∞. Say
ζ2 = (τ ′j , p

′
j)j∈J , with p′j > 0 for all j ∈ J . We must have that |J | ≥ 2n+1.

This is because for every |σ| = n there must exist some j ∈ J with τ ′j w σ.
(And for different σ the corresponding τ ′j must be different). If there were
a σ̄ contradicting this, then Flat(ζ2)(↑ σ̄) = 0, while ξ2(↑ σ̄) = (1−ε)

2n+1 , which
contradicts ξ2 v Flat(ζ2). For the same reason, if Jσ := {j ∈ J | τ ′j w σ}, then

∑
j∈Jσ

p′j ≥
(1− ε)
2n+1

Notice also that J =
⋃

σ Jσ. Since I is an ideal, there is ζ ∈ I such that
ζ1, ζ2 ≺P ζ. Notice that since ζ ∈ I, we must have Flat(ζ) v ν∞. Pick one such
ζ, say ζ = (τ ′′k , p′′k)k∈K with p′′k > 0 for all k ∈ K.

Rename the indices of ζ1, ζ2 and add indices with weight 0 so that we have

ζ1 = (τk, pk)k∈K

ζ2 = (τ ′k, p′k)k∈K

ζ = (τ ′′k , p′′k)k∈K

with p′′k > p′k, pk for all k ∈ K.
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Define K1 := {k ∈ K | pk > 0} and K2 := {k ∈ K | p′k > 0}. Finally define
Kσ := {k ∈ K2 |τ ′k w σ}. Modulo the renaming we have K1 = I, K2 = J and
Kσ = Jσ. In particular |K1| < 2n, |K2| ≥ 2n + 1,∑

k∈Kσ

p′′k >
∑

k∈Kσ

p′k ≥
(1− ε)
2n+1

and ∑
k∈K1

p′′k >
∑

k∈K1

pk ≥ (1− ε) .

Now we have

1 ≥
∑
k∈K

p′′k

≥
∑

k∈K1

p′′k +
∑

k∈K2\K1

p′′k

=
∑

k∈K1

p′′k +
∑
|σ|=n

∑
k∈Kσ\K1

p′′k

Since |K1| < 2n, and all Kσ are pairwise disjoint, for more than 2n many σ’s,
we have that Kσ \K1 = Kσ. Therefore∑

|σ|=n

∑
k∈Kσ\K1

p′′k

≥
∑

Kσ\K1=Kσ

∑
k∈Kσ\K1

p′′k

≥
∑

Kσ\K1=Kσ

(1− ε)
2n+1

≥ 2n (1− ε)
2n+1

=
(1− ε)

2

Continuing the main chain of inequalities we have

1 ≥
∑

k∈K1

p′′k +
(1− ε)

2

≥ (1− ε) +
(1− ε)

2
=

3
2
− 2ε

And for ε small enough this is a contradiction.

4.5.4 Smyth indexed valuations

We can define a third notion of AB relation. Let (X, /) be an abstract basis.

Definition 4.5.10. Let (X, /) be an abstract basis. For (xi, pi)i∈I , (yj , qj)j∈J ∈
IV (X)

(xi, pi)i∈I ≺S (yj , qj)j∈J

if and only if there exists a function f : I → J , s.t.:

xi / yf(i) ,∑
f(i)=j

pi � qj .
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Proposition 4.5.11. (IV (X),≺S) is an abstract basis.

Definition 4.5.12. If D is a continuous domain with basis B, let IVS(D) be
the ideal completion of (IV (B),≺S). Its elements are called Smyth indexed
valuations.

Definition 4.5.13. A continuous Smyth quasi-cone is a structure (D,v,⊕,�)
such that

• (D,v) is a continuous domain;

• ⊕ : D ×D → D is continuous;

• � : [0, +∞[×D → D is continuous;

• axioms (1)–(7) are satisfied;

• the following axiom (SV) is satisfied: pA⊕ qA v (p + q)A.

Let CONT be the category of continuous domains, and QSCONT be the
category of continuous Smyth quasi-cones and continuous homomorphisms.

Proposition 4.5.14. If D is a continuous domain then IVS(D) is a continuous
Smyth quasi-cone.

Proposition 4.5.15. The operator IVS extends to a functor
CONT→ QSCONT which is left adjoint to the forgetful functor.

Again, the transformation Flat : IV → V is not surjective, the counterex-
ample being the one shown above.

4.5.5 Comparing different indexed valuations

Plotkin and Smyth indexed valuations are less interesting than Hoare indexed
valuations, because not all continuous valuations have a Plotkin or Smyth “rep-
resentative”.

How about the distributive law? We just observe in which cases the function
aB : IV (P (B)) → P (IV (B)) is strongly monotonic and complete. This is the
core of the proof of the existence of the distributive law. The other details are
basically the same.

Lemma 4.5.16. Let 〈B, /〉 be an abstract basis and IV (B) be endowed with ≺P .
Let P (B) be endowed with one of the three AB-relations: Hoare, Egli-Milner,
Smyth. In all three cases the function aB : IV (P (B)) → P (IV (B)) is strongly
monotonic and complete.

Lemma 4.5.17. Let 〈B, /〉 be an abstract basis and IV (B) be endowed with
≺S. Let P (B) be endowed with the Smyth AB-relation. Then the function
aB : IV (P (B)) → P (IV (B)) is strongly monotonic and complete. If P (B) is
endowed with the Hoare or the Egli-Milner AB-relation, then aB is not weakly
monotonic.

The following table shows in which cases aB is strongly monotonic and com-
plete.
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Hoare Plotkin Smyth
Indexed Valns. Indexed Valns. Indexed Valns.

Hoare
Powerdomain Y Y N

Plotkin
Powerdomain N Y N

Smyth
Powerdomain N Y Y

We can conclude by saying that the case we have studied in detail is the
most interesting, because:

• Hoare indexed valuations are the only ones that project surjectively onto
continuous valuations.

• We can prove a distributive law only between Hoare indexed valuations
and the Hoare powerdomain.

We have not ruled out the possibility that other distributive laws exist be-
tween Hoare indexed valuations and the other two powerdomains, but even if
they existed, we feel they would not correspond to the equational distributivity.

4.6 In search of a concrete characterisation

The Hoare powerdomain, and the powerdomain of valuations are freely gener-
ated by an equational theory, but they have also an alternative, more concrete,
characterisation. It would be interesting to find an analogous characterisation
of indexed valuations. Unfortunately our attempts have not been successful so
far. We outline in this section the ideas we had and the difficulties we have
encountered.

4.6.1 The leading idea

Our intuition is the following. Finite valuations on a set X are in fact continuous
valuations on the discrete topology of X . A finite indexed valuation is an
indexing function together with a finite valuation on the indexing set. We could
then generalise this and provide the indexing set with a topology. An indexed
valuation on a topological space X would then be a continuous indexing function
together with a continuous valuation on the indexing set. Remember, though,
that finite indexed valuations are defined up to the equivalence relation ∼. We
have to define a analogous relation on general indexed valuations. Bijective
renaming is not a problem. More problematic is the irrelevance of indices with
weight 0. One possibility is to define the support of a valuation and then to
identify valuations with homeomorphic supports.

If a ν is a continuous valuation on the topological space (X, τ), we define
the irrelevance set to be the union of all open sets of weight 0. We denote it by
Irr(ν). The irrelevance set is open. The set of open sets of weight 0 is directed,
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because if O, O′ have weight 0, then O∪O′ has also weight 0 by modularity. By
continuity the irrelevance set has also weight 0, so that it is the biggest open
set of weight 0. The support of ν is the complement of its irrelevance set. We
denote it by Supp(ν). An open set O of Supp(ν) is of the form O′ ∩ Supp(ν)
for some O′ ∈ τ . The restriction of ν to its support is the function ν̂ defined
by ν̂(O) = ν(O ∪ Irr(ν)). Note that O ∪ Irr(ν) is open in τ because for any O′

with O = O′ ∩ Supp(ν) we have that O ∪ Irr(ν) = O′ ∪ Irr(ν). It is easy to
check that ν̂ is a valuation on Supp(ν).

The problem is now to put an order on indexed valuations and obtain a
continuous domain. On finite indexed valuations the order is defined using wit-
nesses, which are surjective functions satisfying some properties. In the topo-
logical context we can define the witnesses to be surjective continuous functions
satisfying some properties. Let’s try to formalise these ideas.

An indexed valuation on a topological space D is given by a valuation ν on
a topological space 〈X, τ〉 together with a continuous function f : X → D. If
ζ = (ν, X, f) and ζ = (ν′, X ′, f ′) are two indexed valuations on D we say that
ζ v ζ′ if there exists a continuous surjective function h : X ′ → X such that for
every open subset O of X ,

• f(O) ⊇ f ′(h−1(O));

• ν(O) ≤ ν′(h−1(O)).

Clearly this defines a preorder, but is it a DCPO? What is the limit of a chain
of indexed valuations? The idea is to construct the topological space by taking
the limit in the category TOP of topological spaces and similarly define the
valuation at the limit. Unfortunately a chain of indexed valuations could be
witnessed by different functions. We should be able to prove that the limits of
two different witnessing chains are, in some sense, equivalent. We argue next
why this is not possible.

4.6.2 A counterexample

Consider the following counterexample. The topological space D is just a sin-
gleton. We build a chain of finite indexed valuations νn (defined on discrete
finite topologies). Since the indexing function is always trivial in this case, we
will not mention it. For every n we have Xn = In ∪ {∗}, with p(n) = 1

2n and
p(∗) = 1. Clearly νn v νn+1 but there are two choices of witness. The first
choice is fn : Xn+1 → Xn defined as fn(n) = n, fn(∗) = ∗, fn(n + 1) = n.

���
�
�

���
�
�

���
�
�

���
�
�

���
�

�
�

���
�
�

1

��

2

��

3

��

4

����
��

��
�

∗

��
1

��

2

��

3

����
��

��
�

∗

��
1

��

2

����
��

��
�

∗

��
1 ∗



80 CHAPTER 4. INDEXED VALUATIONS AND DOMAINS

The second choice is gn : Xn+1 → Xn defined as gn(n) = n, gn(∗) = ∗, gn(n+
1) = ∗.
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The limit of the chain fn is N ∪ {∗} with the discrete topology, while the
limit of the chain gn is N ∪ {∗}, where the open neighbours of ∗ are the sets of
the form {m | m > n} ∪ {∗}. In both cases the limit valuation is (basically)
defined as p∞(n) = 1

2n , p∞(∗) = 1, so that every non empty set has positive
weight. The two limit valuations do not have homeomorphic support. Note,
though, that they generate the same Borel measures.

One idea could be to use measures instead of valuations, but this may force
us to work in a smaller category than CONT as it is not known whether all
continuous valuations on a continuous domain extend to Borel measures.

4.7 Layered indexed valuations

An indexed valuation ν = (xi, pi)i∈I is less than ξ = (yj , qj)j∈J if the indices
in ν split into the indices of ξ, the corresponding elements increase, and the
weights increase. In giving semantics to the language, we never use the latter
feature. Notice also that the counterexample at the end of the previous section
uses the possibility of increasing the weights.

Achim Jung observed that, while the splitting of indices and the increment
of the value has an intuitive interpretation, the increment of weights has not.
Indices represent computations, and the order relation represents the amount of
information we have. One way of obtaining more information is by letting the
computation progress. Splitting indices represents the forking of a computation
into several more, because we have performed some probabilistic choice. The
probability of a computation is split among all its possible futures, but it does
not increase as a whole.

When we use normal valuations we must allow the increase of weights, be-
cause different computations may take different paths, or progress at different
speed, and yet give the same observation. Therefore the weight of the observa-
tion may increase in time. But the weight of the computation does not increase
as time progresses.

The possibility of increasing the weights is matched, equationally, by the
continuity in the first argument of the scalar multiplication. Removing this
requirement generates a different functor, which has the extra nice property of
preserving the category of algebraic domains.
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4.7.1 Definition

Let (X, /) be an abstract basis. We define a relation ≺ on IV (X) in such a way
that (IV (X),≺) is an abstract basis:

Definition 4.7.1. For (xi, pi)i∈I , (yj , qj)j∈J ∈ IV (X)

(xi, pi)i∈I ≺ (yj, qj)j∈J

if and only if there exists a total surjective function f : J → I, s.t.:

xf(j) / yj ,

pi =
∑

f(j)=i

qj .

Note that in this case it is not equivalent to use partial functions, because
we cannot increase the weights of indices, hence we cannot add dummy indices
with 0 weight to transform a partial function into a total function.

Proposition 4.7.2. (IV (X),≺) is an abstract basis.

Definition 4.7.3. If D is a continuous domain generated by the abstract basis
B, let IV l(D) be the ideal completion of (IV (B),≺). Its elements are called
Layered indexed valuations.

Note that, if (B, /) is a partial order, then so is (IV (B)),≺). Therefore the
functor IV l(D) preserves the category of algebraic domains.

Definition 4.7.4. A layered continuous quasi-cone is a structure (D,v,⊕,�)
such that

• (D,v) is a continuous domain;

• ⊕ : D ×D → D is continuous;

• for every p ∈ [0, +∞[ the function λd ∈ D.pd is continuous;

• axioms (1)–(7) + (HV) are satisfied.

Let CONT be the category of continuous domains, and LQCONT be the
category of layered continuous quasi-cones and continuous homomorphisms.

Proposition 4.7.5. If D is a continuous domain then IV l(D) is a layered
continuous quasi-cone.

Proposition 4.7.6. The operator IV l extends to a functor
CONT→ LQCONT which is left adjoint to the forgetful functor.

Proof: For every continuous function g : D → E where E ∈ LQCONT
there is a unique g† : IV(D) → E (in the category LQCONT) s.t.

D

η

��

g

##F
FFF

FFF
FF

IV(D)
g†

//___ E .
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where η(d) = {(b, 1)∗∈{∗} | b ∈ d}.
Take the “restriction” of g to BD, defined as g(b) = g(ιB(b)). It has a unique

homomorphic extension g : IV (BD) → E . Defined by

g
(
(b, 1)∗∈{∗}

)
:= g(b) ;

g ((bi, pi)i∈I) :=
⊕
i∈I

pig(bi) .

Lemma 4.7.7. if ν ≺ ξ, then g(ν) v g(ξ).

Proof: (of the lemma) First suppose that (b, p)∗∈{∗} ≺ (cj , qj)j∈J . Then
p =

∑
j∈J qj and for every j, b / cj . Applying iteratively the inequation (HV),

we can show that:

g
(
(b, p)∗∈{∗}

)
= pg(b) v

⊕
j∈J

qjg(b) .

Then, by monotonicity of the operations, of g and of ιB ,⊕
j∈J

qjg(b) v
⊕
j∈J

qjg(cj) = g ((cj , qj)j∈J ) .

Now suppose (bi, pi)i∈I ≺ (cj , qj)j∈J with witness f . Let Ji = f−1(i). Clearly
(bi, pi)∗∈{∗} ≺ (cj , qj)j∈Ji for every i ∈ I. Therefore

g
(
(bi, pi)∗∈{∗}

)
v g ((cj , qj)j∈Ji) .

Notice that (bi, pi)i∈I =
⊕

i∈I(bi, pi)∗∈{∗} and (cj , qj)j∈J =
⊕

i∈I(cj , qj)j∈Ji .
Monotonicity of the sum, and the homomorphism condition on g imply that

g ((bi, pi)i∈I) v g ((cj , qj)j∈J ) .

�(lemma)

Note again that we cannot derive 0 v A, so the domain IV(D) does not
have a minimum, in general.

Let us call g† the extension of g to IV l(D) (the ideal completion of (IV (BD)).
We recall that g†(I) :=

⊔ ↑
ν∈I g(ν). We know that the function g† is continuous.

The continuity of the operations implies that g† is also an homomorphism. Thus
it is a morphism of the category.

It remains to show that g†
(
{(b, 1)∗∈{∗} | b ∈ d}

)
= g(d).

Now
g†
(
{(b, 1)∗∈{∗} | b ∈ d}

)
=
⊔ ↑

b∈d

g((b, 1)∗∈{∗})

=
⊔ ↑

b∈d

g(b) = g(d) .

Uniqueness is proved in the usual way. �

We observe that

Lemma 4.7.8. If 〈B, /〉 is an abstract basis P (B) is endowed with the Hoare
AB-relation and IV (B) is endowed with ≺, then the function aB : IV (P (B)) →
(P (IV (B)) is strongly monotonic and complete.

We therefore have a distributive law between IV l and PH .
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4.7.2 Relation with Normalised Valuations

The domain of layered indexed valuations is structured in layers. Every layer is
characterised by the weight assigned to the whole domain. Elements belonging
to different layers are not comparable. It therefore makes sense to study only
the “normal” layer, because the others are obtained by scalar multiplication.
In [Eda95a], Edalat studies the notion of normalised valuations. We can com-
pare normalised layered indexed valuations with normalised valuations and ask
whether a result holds which correspond to theorem 4.3.1. We can still define
FlatD : IV l(D) → V(D). Is such a function surjective onto V1(D)? The an-
swer is no in general. Take an infinite set X with the flat order. Then every
normalised layered indexed valuation has finite support.

If the domain has a bottom, the answer could be yes. The idea is that instead
of increasing the weights of the indices, we could generate new indices that take
their weight from the bottom. Note though that the way below relations don’t
match.

Recall that the way below relation on V1(D) has the following property.
Suppose D has a bottom element ⊥. Then For two simple valuations ν :=∑

b∈B rbηb and ξ :=
∑

c∈C scηc in V1(D) we have that ν � ξ if and only if
⊥ ∈ B with r⊥ 6= 0 and there exists “transport numbers” tb,c such that

• t⊥,c 6= 0;

•
∑

c∈C tb,c = rb;

•
∑

b∈B tb,c � sc;

• tb,c > 0 =⇒ b v c.

Therefore in general ν ≺ ξ does not imply Flat(ν) � Flat(ξ).

4.8 The Hoare convex powercone of Tix and
Mislove

Recall the theory (1)–(12)+(HV)+(HP), which corresponds to the combination
of the Hoare indexed valuation with the Hoare powerdomain. If instead of the
axiom (HV) we include the more standard

13. (p + q)A = (pA⊕ qA)

the resulting free construction is the one of Tix [Tix99] and Mislove [Mis00],
which still includes the equational distributive laws, but without any corre-
sponding categorical distributive law.

We recall that a continuous d-cone is a continuous quasi-cone satisfying
(p + q)A = pA⊕ qA. The corresponding category is called CCONE.

Definition 4.8.1. A continuous join TM-cone is a continuous domain algebra
for the theory (1)–(13)+(HP) for which the scalar multiplication is continuous
also in the first argument. The corresponding category is called CJTM. A
subset X of a continuous d-cone is convex if for every x, y ∈ X and for every
p ∈ [0, 1], we have that px⊕(1−p)y ∈ X . If H is a continuous d-cone, we define

PTM (H) := {X ⊆ H |X 6= ∅, convex, Scott closed}
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Tix calls this construction the convex Hoare powercone.

With the sets ordered by inclusion, the addition and multiplication defined
(essentially) pointwise, and the union defined as union followed by convex closure
and by topological closure, it is shown that PTM (H) is a continuous TM-cone.
In fact, Tix defines the A ∪– B as the least upper bound of {A, B}. But her
definition is equivalent to ours. On the one hand, the least upper bound opera-
tion is associative, commutative, idempotent, continuous and satisfies the Hoare
inequality. On the other hand, if ∪– is defined as an associative, commutative,
idempotent, continuous operation satisfying the Hoare inequality, then A ∪– B
is indeed the least upper bound of {A, B}.

Jones (and Kirch for our setting) showed that the powerdomain of valuations
functor V : CONT → CCONE is left adjoint of the forgetful functor. Tix in
her thesis showed that the functor PTM : CCONE→ CJTM is left adjoint of
the forgetful functor. Therefore the functor PTM ◦V : CONT→ CJTM is left
adjoint of the forgetful functor.

We observe that if B is a basis for D, finite valuations on B with the AB-
relation induced by the splitting lemma are a basis for V(D). If B is a basis
for the continuous d-cone H , finitely generated convex subsets of B with a
Hoare-like AB-relation are a basis for PTM (H). We are now going to prove that
formally.

Let B be a basis for the continuous domain D. Consider the set V (B)
endowed with the standard addition and scalar multiplication. Note that every
finite valuation ν can be written as

ν =
⊕

b∈Supp(ν)

ν(b)ηb .

Define ν ≺ ξ if for every b ∈ Supp(ν), c ∈ Supp(ξ) there exist tb,c ∈ R+ such
that ∑

c∈Supp(ξ)

tb,c = ν(b) ,

∑
b∈Supp(ν)

tb,c � ξ(c) ,

and tb,c 6= 0 =⇒ b � c.

Proposition 4.8.2. The structure 〈V (B),≺〉 is an abstract basis. Its ideal com-
pletion Idl(V (B)) is isomorphic to V(D) in CCONES. Moreover ι : V (B) →
Idl(V (B)) is an homomorphism of real cones.

Proof: Consider the set of simple valuations in V(D) which are defined
using elements of B only. We call this set S(D). The function

j(ν) =
⊕

b∈Supp(ν)

ν(b)ηb ,

define a bijection j between V (B) and S(D) such that j(ν) � j(ξ) if and only
if ν ≺ ξ. Bijectivity is straightforward, while the second property follows from
the splitting lemma. The extension of j defines a continuous bijection between
Idl(V (B)) and V(D). We have just to check that it is a homomorphism. First
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we notice that j is an homomorphism. Then j† is an homomorphism because
of the continuity of the operations in V(D). Indeed

j†
(
I ⊕ J

)
=

⊔ ↑

ζ∈(I⊕J)

j(ζ)

Recall that j preserves the AB-relation. This, and the roundness of I, J imply
that the upper bounds of {j(ζ) | ζ ∈ (I ⊕ J)} are exactly the same as the upper
bounds for {j(ν)⊕ j(ξ) | ν ∈ I, ξ ∈ J}. Therefore⊔ ↑

ζ∈(I⊕J)

j(ζ) =
⊔ ↑

ν∈I,ξ∈J

j(ν)⊕ j(ξ)

By continuity of ⊕ we have that⊔ ↑

ν∈I,ξ∈J

j(ν)⊕ j(ξ) =
⊔ ↑

ν∈I

j(ν)⊕
⊔ ↑

ξ∈J

j(ξ) = j†(I)⊕ j†(J)

Similarly for the scalar multiplication and 0.
We observe also that the construction PTM (V(D)) can be obtained via ab-

stract bases. Consider a basis B for D. We define an AB-relation on PTM (V (B))
as follows

X ≺ Y if ∀ν ∈ X∃ξ ∈ Y. ν ≺ ξ

We can prove, similarly to the previous work, that the ideal completion of such
AB-basis is the free functor CONT → CJTM and therefore it is natural
isomorphic to PTM (V(D)). Also the function ι : PTM (V (B)) → PTM (V(D))
preserves all operations. �

Tix and Mislove define analogous notion of Plotkin and Smyth convex pow-
erdomains. We refer the interested reader to their work.

4.9 Conclusions and future work

We have presented a denotational model for probabilistic computation designed
to be combined with nondeterminism. In the category of sets and functions we
have the full picture: we characterise indexed valuations both as a free con-
struction for an equational theory, and we give a more concrete representation.
Finally we show the existence of a categorical distributive law between indexed
valuations and the powerset. This categorical distributive law corresponds to
an equational distributive law.

In the category of continuous domains the work is not completed yet. We
have characterised indexed valuations as free construction for different equa-
tional theories, we have discussed the relations between different versions of
indexed valuations and continuous valuations. We have shown the existence
of some categorical distributive laws between indexed valuations and powerdo-
mains, and we have presented the cases in which we could not prove such laws
exist.

Future work should mainly address the problem of a concrete characterisa-
tion of indexed valuations. Besides its intrinsic interest, a concrete notion would
allow us to work in a less tedious environment than that of abstract bases. To
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this aim, layered indexed valuations deserve to be studied further. It would also
be interesting to have a definitive proof that, in the cases where we were not
able to define a distributive law, such a law does not actually exist. It may also
be interesting to study the other distributive combinations of the monads. We
have said that there is no distributive law PV → V P either, but the use of mul-
tisets instead of sets could provide a solution. What could be the operational
reading of this model?



Chapter 5

Semantics of Programs

We give an example of how to use the constructions of the previous chapters
by giving a denotational semantics to a simple imperative language with prob-
abilistic and nondeterministic primitives. We first introduce the language with
only probabilistic primitives. We present an operational semantics, a deno-
tational semantics and we show an adequacy theorem that relates them. We
then extend the language with a nondeterministic choice operator. We give the
extended language an operational semantics in terms of a simplified version of
probabilistic automata. We present two denotational semantics: one in terms of
indexed valuations and standard powerdomains, the other in term of standard
valuations and the convex powerdomain. We show adequacy theorems relat-
ing the first semantics to deterministic schedulers, and the second semantics to
probabilistic schedulers. Finally we discuss the computational intuition lying
behind the mathematics.

5.1 A purely probabilistic language

In this section we give an operational and a denotational semantics to a small
imperative language. It is the language IMP of [Win93] extended with a random
assignment. The denotational semantics is a simplified version of the one in
[Jon90] where it was used in relation to a probabilistic Hoare logic. A similar
language was given a probabilistic semantics in the early work [Koz81].

The language, which we call PL, has the following (abstract) syntactic cat-
egories:

• locations Loc, ranged over by X ;

• subprobability distributions over the integers, ranged over by χ;

• arithmetical expressions Aexp, ranged over by a;

• boolean expressions Bexp, ranged over by b;

• commands Comm, ranged over by c.

The (abstract) BNF for the last three syntactic categories are as follows:

a ::= n ∈ N | X | a + a | a− a | a ∗ a

87
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b ::= true | false | a ≤ a | ¬b | b ∧ b

c ::= skip | X := a | X := χ| c; c | if b then c else c | while b do c .

During the proof of the adequacy theorem, we will find it useful to have
another command, which we call “tagged” or “bounded” while:

c ::= . . . | whilei b do c (i = 0, 1, 2, . . .) .

We also need the notion of state. A state is any function Loc→Num. We call
Σ the set of states, ranged over by σ. We call any pair 〈c, σ〉 a configuration.
We denote the set of all configurations by Γ. The set Γ is ranged over by γ.

To make the notation more uniform we introduce the symbol ε representing
the “empty command”. We use it with the following meaning:

〈ε, σ〉 ≡ σ ,

ε; c ≡ c; ε ≡ c .

We extend consequently the notion of configuration so that a state σ is a con-
figuration 〈c, σ〉 where c = ε.

When σ is a state, by σ[n/X ] we denote a state such that:

σ[n/X ](X ′) =
{

σ(X ′) if X ′ 6= X
n if X ′ = X

5.1.1 The operational semantics

The operational semantics for expressions is completely standard. The relations
for expression evaluation have the following form:

〈a, σ〉 → n ∈ N ;

〈b, σ〉 → t (t = true, false) .

The intended meaning is that the expression a in state σ evaluates to the number
n, and similarly for booleans. We skip their defining rules because they are
exactly as in [Win93], and behave as expected.

As for commands, we give a semantics in terms of unlabelled generative tran-
sition systems, whose states are configurations. Transitions have the following
form:

〈c, σ〉 p−→ 〈c′, σ′〉

where p ∈ [0, 1]. The intended meaning is: in state σ the command c produces
the state σ′ and passes the control to the command c′ (the “residual” program)
with probability p. When the residual command is ε, the execution terminates,
producing a (final) state σ′.

The rules to derive transitions are as follows:

〈skip, σ〉 1−→σ

The command skip has a deterministic behaviour, does not change the state
and stops after the execution.
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〈a, σ〉 → n

〈X := a, σ〉 1−→σ[n/X ]

The usual assignment is deterministic, and stops after the execution.

〈X := χ, σ〉χ(n)−→σ[n/X ]

The random assignment has a probabilistic behaviour, and stops after execution.

〈c0, σ〉
p−→〈c′0, σ′〉

〈c0; c1, σ〉
p−→〈c′0; c1, σ′〉

Note that for c′0 = ε the rule reads:

〈c0, σ〉
p−→σ′

〈c0; c1, σ〉
p−→〈c1, σ′〉

In a sequence, the first command releases the control after terminating the
execution.

〈b, σ〉 → true

〈if b then c0 else c1, σ〉 1−→〈c0, σ〉
〈b, σ〉 → false

〈if b then c0 else c1, σ〉 1−→〈c1, σ〉

〈b, σ〉 → true

〈while b do c, σ〉 1−→〈c;while b do c, σ〉
〈b, σ〉 → false

〈while b do c, σ〉 1−→σ

The conditional and the while are deterministic.
Finally the tagged while. It behaves like the while, except that every loop

decreases the tag, unless the tag is 0, where it blocks.

〈b, σ〉 → false

〈whilei b do c, σ〉 1−→σ

〈b, σ〉 → true

〈whilei+1 b do c, σ〉 1−→〈c;whilei b do c, σ〉

Note that the last rule does not apply for the case of while0. In this case the
program does not correctly terminate, but cannot continue either. This is a
blocked configuration. The above rules are deterministic in the following sense:

if γ
p−→γ′ and γ

p′−→γ′ then p = p′. Moreover such a transition has a unique
derivation.

Given a configuration 〈c, σ〉 we represent the computations it yields as paths.
Every path is obtained by gluing together derivable transitions.

〈c0, σ0〉
p0 //〈c1, σ1〉

p1 //〈c2, σ2〉
p2 // . . .

If s is a path, with l(s) we indicate the last configuration of the path. A path
is maximal if it is either infinite, or it is not further extensible. (This is the case,
for example, when the last configuration is a final state.) Finite maximal paths
ending in a configuration represent blocked computations. The set of maximal
paths starting from γ is called B(γ). Assuming probabilistic independence of
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all random assignments, for every s ∈ B(γ) we define the weight or probability
of s, Π(s), as the product of all the probability labels in s.

We can evaluate the probability of reaching a final state σ′, by summing
up the probabilities of all paths ending in σ′. We therefore give the following
definition.

Definition 5.1.1. Let γ := 〈c, σ〉. Then:

c(σ, σ′) :=
∑

s∈B(γ)
l(s)=σ′

Π(s) .

Thus c(σ, σ′) represents the probability that the program c in state σ yields
state σ′. The following result shows the behaviour of σ′ 7→ c(σ, σ′) with respect
to the sequential composition.

Theorem 5.1.2. For every c0, c1, σ, σ′

(c0; c1)(σ, σ′) =
∑

σ′′∈Σ

c0(σ, σ′′) · c1(σ′′, σ′) .

Proof: For the sake of clarity let us put

γ := 〈c0; c1, σ〉, γ0 := 〈c0, σ〉, γ1(σ′′) := 〈c1, σ′′〉 .

First we show that

(c0; c1)(σ, σ′) ≤
∑

σ′′∈Σ

c0(σ, σ′′) · c1(σ′′, σ′).

For this to hold it is enough to show that∑
s∈B(γ)
l(s)=σ′

Π(s) ≤
∑

σ′′∈Σ

∑
s′∈B(γ0)
l(s′)=σ′′

∑
s′′∈B(γ1(σ′′))

l(s′′)=σ′

Π(s′)Π(s′′) .

Every path s ∈ B(γ) is obtained by “concatenating” a path s′ ∈ B(γ0) and
a path s′′ ∈ B(γ1(σ′′)) for some σ′′ ∈ Σ. To be precise we should say that
it is a concatenation together with a change of labels in s′: every label 〈c, σ̃〉
in s′ becomes 〈c; c1, σ̃〉. Note that 〈c, σ〉 p−→〈c′, σ′〉 is derivable if and only if
〈c; c1, σ〉

p−→〈c′; c1, σ
′〉.

In this case obviously Π(s) = Π(s′)Π(s′′). Thus for every member of the
left-hand side summation there is a corresponding identical member in the right-
hand side summation.

To prove the converse inequation we have to argue that a path s ∈ B(γ) is
generated in a unique way as a concatenation of paths s′, s′′ as above. Suppose
there are two maximal paths t′, t′′ whose concatenation gives us s. If the length
of t′ is the same as the length of s′, then clearly t′ = s′ (and t′′ = s′′). If the
length of t′ is, say, smaller than the length of s′ then t′ is a prefix of s′. But no
maximal path can be prefix of another path. �

The following result shows that σ′ 7→ c(σ, σ′) has the actual property of a
probability distribution.
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Proposition 5.1.3. For every c, σ∑
σ′∈Σ

c(σ, σ′) ∈ [0, 1] .

This is a consequence of the adequacy theorem (Theorem 5.1.4).

5.1.2 The denotational semantics

Given an arithmetic expression a, its denotation [[a]] is a function Σ → N.
Similarly the denotation of a boolean expression b is a function [[b]] : Σ →
{true, false}. It is defined by

[[a]]σ = n ⇐⇒ 〈a, σ〉 → n ,

[[b]]σ = t ⇐⇒ 〈b, σ〉 → t .

(Alternatively they could be defined by structural induction and the above def-
initions would be an easy theorem)

We recall here that V ≤1
∞ defines a monad in SET. Its Kleisli extension

is defined as follows. Given f : X → V ≤1∞ (Y ), the function f † : V ≤1∞ (X) →
V ≤1
∞ (Y ) is defined as

f †(ν)(y) :=
∑
x∈X

ν(x) · f(x)(y) .

We are now ready to define the denotation of commands in PL. For every
c ∈ Comm we define the denotation [[c]] : Σ → V ≤1∞ (Σ) as follows.

[[skip]]σ = ησ

[[X := a]]σ = ησ[n/X] where n = [[a]]σ

[[X := χ]]σ = ξ where ξ(σ′) =
{

p if σ′ = σ[n/X ] & χ(n) = p
0 otherwise

[[c0; c1]] = [[c1]]† ◦ [[c0]]

[[if b then c0 else c1]]σ =
{

[[c0]](σ) if [[b]]σ = true
[[c1]](σ) if [[b]]σ = false

[[while0 b do c]]σ =
{

ησ if [[b]]σ = false
λσ′ ∈ Σ.0 if [[b]]σ = true

[[whilei+1 b do c]]σ =
{

ησ if [[b]]σ = false
[[c;whilei b do c]](σ) if [[b]]σ = true

We can prove that [[c]] is well defined by well founded induction. The well
order is defined as follows. Let maxt(c) be the maximum tag in a while command
occurring in c (0 if there are no while commands). We say that c0 � c1 if (1)
maxt(c0) < maxt(c1) or if (2) maxt(c0) = maxt(c1) and c0 is a subterm of c1.

To define the denotation of the un-tagged while we observe that for any set
X , the set V ≤1

∞ (X) with the pointwise order is a DCPO with bottom element the
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distribution constant on 0. It is easy to check that the combinators used in the
definition of the semantics correspond to continuous functions for this DCPO.
The DCPO structure carries over to the set of functions f : X → V ≤1∞ (X).
We denote this set by [X → V ≤1

∞ (X)], with the order defined as f v g if for
every x ∈ X , f(x) v g(x). The bottom element is the function that sends every
element to the bottom of V ≤1∞ (X).

We have seen (Theorem 2.3.2) that a continuous function [X → V ≤1
∞ (X)] →

[X → V ≤1∞ (X)] has a (least) fixed point. Let us define a continuous function
Φ : [Σ → V ≤1

∞ (Σ)] → [Σ → V ≤1
∞ (Σ)] as follows:

Φ(f)(σ) =
{

ησ if [[b]]σ = false ,
(f † ◦ [[c]])σ if [[b]]σ = true .

This function is continuous because all the operations involved in its definition
are. In particular the function (−)† is continuous as a function [Σ → V ≤1

∞ (Σ)] →
[V ≤1∞ (Σ) → V ≤1∞ (Σ)].

We use such fixed point to define the denotation of the while command, by
putting:

[[while b do c]] = Fix(Φ) .

5.1.3 The equivalence of the semantics

Theorem 5.1.4 (Adequacy). For every command c of PL, and for every pair
of states σ, σ′ ∈ Σ,

c(σ, σ′) = [[c]]σσ′ .

In order to prove the result for the full language, we first prove adequacy for
the language PL− which is the original language without the un-tagged while.

Definition 5.1.5. The language PL− has the same syntax as PL except that it
does not include the constructor while b do c. the operational and denotational
semantics of PL− are defined as for PL, removing all the rules which refer to
while b do c.

Lemma 5.1.6. If c is a command of PL− then for every σ, σ′ ∈ Σ,

c(σ, σ′) = [[c]]σσ′ .

Proof: By well founded induction using the same well order as defined in
the previous section.

The interesting case is the sequencing c0; c1: by induction hypothesis we
have that

ci(σ, σ′) = [[ci]]σσ′ for i ∈ {0, 1}, σ, σ′ ∈ Σ (∗) .

By Theorem 5.1.2

(c0; c1)(σ, σ′) =
∑

σ′′∈Σ

c0(σ, σ′′) · c1(σ′′, σ′) .

By (∗) ∑
σ′′∈Σ

c0(σ, σ′′) · c1(σ′′, σ′) =
∑

σ′′∈Σ

[[c0]]σσ′′ · [[c1]]σ′′σ′ .
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By the definition of the Kleisli extension and the definition of the denotation of
the sequencing∑

σ′′∈Σ

[[c0]]σσ′′ · [[c1]]σ′′σ′ = [[c1]]† ◦ [[c0]]σσ′ = [[c0; c1]]σσ′ .

�

Definition 5.1.7. 1 Let c be a command of PL. Then c(i) is the command we
obtain substituting in c all the occurrences of while b do c′ with whilei b do c′.

Clearly c(i) is a command of PL−, for every i. Therefore, by Lemma 5.1.6,
we have:

Observation 5.1.8. For every c, σ, σ′

c(i)(σ, σ′) = [[c(i)]]σσ′ .

Next we observe that:

Proposition 5.1.9. For every c, σ, σ′

sup
i∈N

[[c(i)]]σσ′ = [[c]]σσ′ .

Proof: By structural induction. It works because all combinators used in
defining the denotational semantics are continuous (continuity in the sense of
real numbers implies Scott-continuity). The only non-trivial case is the untagged
while.

Define
e := sup

i∈N

[[whilei b do c(i)]] .

By continuity we have that

e = sup
i∈N

sup
j∈N

[[whilei b do c(j)]] .

By induction hypothesis and by continuity,

e = sup
i∈N

[[whilei b do c]] .

Now we recall the definition of the operator Φ:

Φ(f)(σ) =
{

ησ if [[b]]σ = false ,
(f † ◦ [[c]])σ if [[b]]σ = true .

By induction on i one can prove that:

[[whilei b do c]] = Φi+1(λσ ∈ Σ.0)

which gives us the final result:

e = Fix(Φ) = [[while b do c]] .

�

Furthermore we have:
1This informal definition can be turned into a definition by structural induction.
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Theorem 5.1.10. For every c, σ, σ′

sup
i∈N

c(i)(σ, σ′) = c(σ, σ′) .

Proof: Let us give the following definition:

c[k](σ, σ′) :=
∑

s∈B(〈c,σ〉), l(s)=σ′
length(s)≤k

Π(s) .

It is clear that
sup
k∈N

c[k](σ, σ′) = c(σ, σ′) .

Therefore we have just to show that the two increasing sequences c(i)(σ, σ′)
and c[k](σ, σ′) are cofinal. Since the max length of a path in B(〈c(i), σ〉) is finite,
there exists k such that c(i)(σ, σ′) ≤ c[k](σ, σ′). For the other direction take any
k ∈ N. We have to find i such that c[k](σ, σ′) ≤ c(i)(σ, σ′). In a maximal path of
length k there cannot be more that k different occurrences of a while command.
Since during every step the tag decreases at most of 1, we can simulate the same
computation using while commands with tag k. This means that putting i = k
we get just c[k](σ, σ′) ≤ c(i)(σ, σ′).

Combining all the previous results we get

c(σ, σ′) = [[c]]σσ′ .

�

5.2 Nondeterministic and probabilistic choice

We now extend the language with a nondeterministic choice operator. We will
give an operational semantics in terms of probabilistic automata. We will give
a denotational semantics in terms of indexed valuation. We show an adequacy
theorem relating the two semantics.

5.2.1 Probabilistic automata

Probabilistic automata were introduced in Section 2.6. We are going to adapt
that general framework to our needs. We recall that if Y is a subset of V 1

∞(X),
by Y we denote the set of convex combinations of elements of Y .

In general a probabilistic automaton is a coalgebra for the functor P⊥(A ×
V 1∞(−)) : SET → SET. In this chapter will not make use of labels, therefore
a probabilistic automaton on a set of states X will be a function k : X →
P⊥(V 1∞(X)) together with an initial state x0 ∈ X . We will use the notation of
[HP00]. Whenever ν ∈ k(x) we will write

x(
pi−→xi)i∈I

where xi ∈ X , i 6= j =⇒ xi 6= xj , and ν(xi) = pi. A finite path of a probabilistic
automaton is an element in (X × V 1

∞(X))∗X , written as x0ν0 . . . xn−1νn−1xn,



5.2. NONDETERMINISTIC AND PROBABILISTIC CHOICE 95

such that νi(xi+1) > 0. The path is deterministic if νi ∈ k(xi). It is probabilistic
if νi ∈ k(xi). The last state of a path s is denoted by l(s). The probability of a
path s := x0ν0 . . . xn−1νn−1xn is defined as

Π(s) =
∏
i<n

νi(xi+1) .

We do not want to allow schedulers to block a computation, therefore we
use a slightly different definition, than the one of section 2.6.

A probabilistic scheduler for a probabilistic automaton k is a partial function
S : (X × V 1

∞(X))∗X → V 1
∞(X) such that

• if k(l(r)) 6= ∅ then S(r) is defined;

• S(r) ∈ k(l(r));

Equivalently we could define a probabilistic scheduler to be a partial function
S : (X × V 1∞(X))∗X → V 1(V 1∞(X)), requiring that Supp(S(r)) ⊆ k(l(r)).

A deterministic scheduler is a probabilistic scheduler that does not make
use of the convex combinations. That is for a deterministic scheduler we have
S(r) ∈ k(l(r)).

Now given a state x ∈ X and a scheduler S for k, we consider the set B(k,S)
of maximal paths, obtained from k by the action of S. That is the paths
x0ν0 . . . xn−1νn−1xn such that νi = S(x0ν0 . . . xi). A deterministic scheduler
generates deterministic paths, a probabilistic scheduler generates probabilistic
paths.

A good way of visualising probabilistic automata is by using alternating
trees [Han91]. Black nodes represent states, hollow nodes represent probability
distributions. The use of trees instead of graphs is a way of keeping track of the
paths: a deterministic scheduler is thus a function that, for every black node,
chooses one of its hollow sons.
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5.2.2 The operational semantics

The language NPL has the same syntax as PL with one more constructor.

c ::= . . . | c or c .

The operational semantics is given in terms of unlabelled probabilistic au-
tomata on the set of configurations (and final states). For every configuration
γ0 we have the probabilistic automaton M(γ0) = (Γ, k, γ0) where the steps in
k are derived inductively using the following rules.
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We write
p−→σ for (

p−→σ)i∈{∗}.

〈skip, σ〉 1−→σ

〈a, σ〉 → n

〈X := a, σ〉 1−→σ[n/X ]

〈X := χ, σ〉(χ(n)−→σ[n/X ] )n∈Num

〈c, σ〉( pi−→〈ci, σi〉)i∈I

〈c; c′, σ〉( pi−→〈ci; c′, σi〉)i∈I

where some ci could be ε.

〈b, σ〉 → false

〈if b then c0 else c1, σ〉 1−→〈c1, σ〉
〈b, σ〉 → true

〈if b then c0 else c1, σ〉 1−→〈c0, σ〉

〈b, σ〉 → false

〈whilei b do c, σ〉 1−→σ

〈b, σ〉 → true

〈whilei+1 b do c, σ〉 1−→〈c;whilei b do c, σ〉

〈b, σ〉 → false

〈while b do c, σ〉 1−→σ

〈b, σ〉 → true

〈while b do c, σ〉 1−→〈c;while b do c, σ〉

〈c, σ〉( pi−→γi)i∈I

〈c or c′, σ〉( pi−→γi)i∈I

〈c′, σ〉( pj−→γj)j∈J

〈c or c′, σ〉( pj−→γj)j∈J

Definition 5.2.1. Le S be a scheduler for M(〈c, σ〉). We define B(〈c, σ〉,S) to
be the set of finite paths s ∈ B(M(〈c, σ〉)) such that l(s) is a state. We define
V al(S, c, σ) to be the probability distribution such that

V al(S, c, σ)(σ′) =
∑

s∈B(〈c,σ〉,S)
l(s)=σ′

Π(s) .

We define Ival(S, c, σ) to be the discrete indexed valuation

(l(s), Π(s))s∈B(〈c,σ〉,S) .

Note that V al(S, c, σ) = Flat
(
Ival(S, c, σ)

)
. Paths in B(〈c, σ〉,S), are paths

that end properly. We assume we cannot observe blocked computations.

5.2.3 Adequacy for the finite fragment

In the sequel we shall write (xi, pi)i∈I also to denote ι
(
(xi, pi)i∈I

)
∈ IV(X).

We will use this notation even when I is not finite, to denote the lub of all its
finite “truncations”.
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Definition 5.2.2. The language NPL− has the same syntax as NPL except
that it does not include the constructor while b do c and all valuations χ
involved have finite support. Operational semantics of NPL− is defined like for
NPL.

The denotational semantics

F [[c]] : Σ → P (IV (Σ))

is defined as follows. The indexed valuation (σ, p)∗∈{∗} will be denoted as (σ, p).

F [[skip]]σ = {(σ, 1)}

F [[X := a]]σ = {(σ[n/X ], 1)} where n = [[a]]σ

F [[X := χ]]σ = {(σ[n/X ], χ(n))n∈Supp(χ)}

F [[c0; c1]] = F [[c1]]† ◦ F [[c0]]

F [[c0 or c1]]σ = F [[c1]]σ ∪ F [[c0]]σ

F [[if b then c0 else c1]]σ =
{
F [[c0]](σ) if [[b]]σ = true
F [[c1]](σ) if [[b]]σ = false

F [[while0 b do c]]σ =
{
{(σ, 1)} if [[b]]σ = false
{0} if [[b]]σ = true

F [[whilei+1 b do c]]σ =
{
{(σ, 1)} if [[b]]σ = false
F [[c;whilei b do c]](σ) if [[b]]σ = true

We now show that there is a very tight correspondence between the deno-
tational and the operational semantics. In the sequel we write S is a scheduler
for 〈c, σ〉 to mean that S is a scheduler for M(〈c, σ〉).

Theorem 5.2.3 (Adequacy). Let c be a command of NPL− and ν be a
finite indexed valuation ∈ IV (Σ). Then ν ∈ F [[c]]σ if and only if there exists a
scheduler S for M(〈c, σ〉) s.t. ν = Ival(S, c, σ).

Proof: By well founded induction, the ordering being essentially the one
defined in section 5.1.2 (lexicographic on tags×structure). The nontrivial case
is the sequential composition. A path in B(M(〈c0; c1, σ〉)) is the concatenation
of a path r in B(M(〈c0, σ〉)) together with a path t in B(M(〈c1, l(t)〉)), renam-
ing the configurations of the first part. Therefore a scheduler S for 〈c0; c1, σ〉
can be thought of as a scheduler S0 for 〈c0, σ〉 together with schedulers Sr for
〈c1, l(r)〉 for every finite r ∈ B(M(〈c0, σ〉)). (In the sequel we write B(c0, σ,S)
for B(〈c0, σ〉,S)).

By the induction hypothesis (l(r), Π(r))r∈B(c0 ,σ,S0) ∈ F [[c0]]σ and for every
r, (l(t), Π(t))t∈B(c1,l(r),Sr) ∈ F [[c1]]l(r). We have to show that

(l(s), Π(s))s∈B(c0;c1,σ,S) ∈ F [[c1]]†(F [[c0]]σ) .
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Recalling the definition of f †, it is enough to show that

(l(s), Π(s))s∈B(c0;c1,σ,S) ∈ F [[c1]]†
(
{ (l(r), Π(r))r∈B(c0,σ,S0) }

)
.

Let us define h : B(c0, σ,S0) → IV (Σ) as

h(r) = (l(t), Π(t))t∈B(c1,l(r),Sr) ∈ F [[c1]]l(r) .

Therefore by definition of f †:

(l(t), Π(r)Π(t)) r∈B(c0,σ,S0)
t∈B(c1 ,l(r),Sr)

∈ F [[c1]]†
(
{ (l(r), Π(r))r∈B(c0,σ,S0) }

)
.

Since a path in B(c0; c1, σ,S) is the concatenation of a path r in B(M(〈c0, σ〉))
together with a path t in B(M(〈c1, l(t)〉)), we have

(l(t), Π(r)Π(t)) r∈B(c0,σ,S0)
t∈B(c1 ,l(r),Sr)

=

= (l(s), Π(s))s∈B(c0;c1,σ,S) .

Conversely suppose (σi, pi)i∈I ∈ F [[c1]]†(F [[c0]]σ). By definition of the Kleisli
extension, there exist (τj , qj)j∈J ∈ F [[c0]]σ and h : J → IV (Σ) such that h(j) ∈
F [[c1]]τj and

(σi, pi)i∈I = µIV ((h(j), qj)j∈J ) .

By the induction hypothesis there exists a scheduler S0, such that

J = B(c0, σ,S0), qr = Π(r), τr = l(r) .

And for every r ∈ B(c0, σ,S0), there is a scheduler Sr such that

h(r) = (l(t), Π(t))t∈B(c1,l(r),Sr) .

Combining S0 with the Sr we obtain a scheduler S for 〈c0; c1, σ〉. In order
to obtain an overall scheduler S, formally we have to define it also for the
paths not in B(c0, σ,S0). But this choice can be arbitrary, because it does not
influence the definition B(c0; c1, σ,S). Recalling the definition of µIV we get
(σi, pi)i∈I = (l(s), Π(s))s∈B(c0;c1,σ,S). �

5.2.4 Adequacy for the full language

The adequacy theorem we are going to prove states that, if the denotation of
a configuration contains a valuation, then there is a scheduler that (almost)
realises that valuation, or perhaps does better.

Theorem 5.2.4. Let c be a command of NPL and let ν ∈ IV(Σ). Then ν ∈
[[c]]σ iff for every ξ � ν there exists a scheduler S for (c, σ) s.t. Ival(S, c, σ) w ξ.

We need some preliminary lemmas.

Lemma 5.2.5. Let c be a command of NPL−. Then [[c]]σ = ι(F [[c]]σ).

Proof: By structural induction. Notice that the definitions for [[c]] and F [[c]]
go in parallel with each other, and that ι preserves all the operations.
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Proposition 5.2.6. Let c be a command of NPL−. Then ν ∈ [[c]]σ iff there
exists ν′ ∈ F [[c]]σ s.t. ν v ι(ν′).

Proof: By the previous lemma and the characterisation of the Hoare pow-
erdomain in terms of Scott closed sets. �

Definition 5.2.7. Let χ ∈ V ≤1∞ (N). With χ(i) we denote the element of V ≤1∞ (N)
such that

χ(i)(n) :=
{

χ(n) if n < i
0 otherwise

All valuations of the form χ(i) have finite support.

Definition 5.2.8. Let c be a command of NPL. Then c(i) is the command
we obtain by substituting in c all the occurrences of while b do c′ with
whilei b do c′ and all occurrences of χ with χ(i).

Clearly c(i) is a command of NPL−, for every i. Therefore we have:

Proposition 5.2.9. Let c be a command of NPL and ν be a finite indexed
valuation ∈ IV (Σ). For every i we have:
ι(ν) ∈ [[c(i)]]σ iff there exists a scheduler S for (c, σ) s.t. Ival(S, c, σ) w ν.

Proof: Clearly a scheduler S for (c, σ) restricts to a scheduler Si for (c(i), σ).
Moreover Ival(S, c, σ) w Ival(Si, c

(i), σ). Conversely a scheduler Si for (c(i), σ)
can be extended (possibly in many different ways) to a scheduler S for (c, σ),
with the same inequality as above. This together with Proposition 5.2.6, gives
us the statement. �

Proposition 5.2.10. For every c, σ

sup
i∈N

[[c(i)]]σ = [[c]]σ .

Proof: By structural induction, using the continuity of the operators defin-
ing the semantics. �

Coming to the proof of Theorem 5.2.4, we show the “only if” direction. For
ν ∈ [[c]]σ there are two cases.

1. There is ν′ ∈ F [[c(i)]]σ for some i, such that ν v ι(ν′). Then we invoke
Proposition 5.2.9, and we are done.

2. There is a sequence νi ∈ [[c(i)]]σ converging to ν. By Proposition 5.2.6 it is
no restriction to assume that νi = ι(ν̃i) for some ν̃i ∈ F [[c(i)]]σ. Then we
have a sequence of schedulers Si such that ν̃i = (l(si), Π(si))si∈B(〈c(i),σ〉,Si).
So ν̃i = Ival(Si, c

(i), σ).

Therefore Ival(Si, c
(i), σ) converges to ν. And since ξ � ν there is a k

such that (Ival(Sk, c(k), σ)) w ξ. Now we can extend Sk to an S for (c, σ)
with (Ival(S, c, σ)) w ξ.
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The “if” direction is similar. �

We cannot hope that there always exists a scheduler which attains the limit
valuation as the following example shows.

Let χ be the probability distribution s.t. χ(n) = 1/2n+1. Assume also a 6= 0.
Define

loop ≡ while true do skip ;

c ≡ Y := 0; Z := 0;while Z = 0 do c0 ;

c0 ≡ (X := χ; if X ≤ Y then Z := a else loop) or (Y := Y + 1) .
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Here there is no scheduler S for which Ival(S, c, σ) assigns probability 1 to
a state where Z = a, but we can get as close to this as we want.

5.3 Randomised schedulers

The main feature of the above adequacy theorem is that it uses deterministic
schedulers. A semantics in terms of the convex powerset functor is adequate
with respect to probabilistic schedulers.

We first have to define F [[c]] : Σ → PTM (V (Σ)).

F [[skip]]σ = {ησ}
F [[X := a]]σ = {ησ[n/X]1} where n = [[a]]σ

F [[X := χ]]σ = λσ′ ∈ Σ.

{
χ(n) if σ′ = σ[n/X ]
0 otherwise

F [[c0; c1]] = F [[c1]]† ◦ F [[c0]]

F [[c0 or c1]]σ = F [[c1]]σ ∪– F [[c0]]σ
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F [[if b then c0 else c1]]σ =
{
F [[c0]](σ) if [[b]]σ = true
F [[c1]](σ) if [[b]]σ = false

F [[while0 b do c]]σ =
{
{ησ} if [[b]]σ = false
{0} if [[b]]σ = true

F [[whilei+1 b do c]]σ =
{
{(σ, 1)} if [[b]]σ = false
F [[c;whilei b do c]](σ) if [[b]]σ = true

Theorem 5.3.1 (Adequacy). Let c be a command of NPL− and ν be a
discrete valuation in V (Σ). Then ν ∈ F [[c]]σ if and only if there exists a proba-
bilistic scheduler S for M(〈c, σ〉) s.t. ν = V al(S, c, σ)

Proof: By well founded induction. Note that the probabilistic schedulers
are necessary for the semantics of the nondeterministic choice, because the op-
erator ∪– is defined as union followed by convex closure.

Again the nontrivial case is sequential composition. Take a scheduler S for
〈c0; c1, σ〉. Such an S can be thought of as a scheduler S0 for 〈c0, σ〉 together
with schedulers Sr for 〈c1, l(r)〉 for every finite r ∈ B(〈c0, σ〉,S0).

By the induction hypothesis we have that V al(S0, c0, σ) ∈ [[c0]]σ and for
every r, V al(Sr, c1, l(r)) ∈ [[c1]]l(r).

We have to show that

λσ′.
∑

l(s)=σ′
s∈B(c0;c1,σ,S)

Π(s) ∈ [[c1]]†([[c0]]σ) .

Recall the statement of Proposition 3.4.9 characterising the Kleisli extension: if
f : X → PTM (V (Y )), then

f †(A) =

{∑
x∈X

ξ(x)h(x) | h : X → V (Y ), h(x) ∈ f(x), ξ ∈ A

}

To prove our claim it is then enough to show that

λσ′.
∑

l(s)=σ′
s∈B(c0;c1,σ,S)

Π(s) ∈ [[c1]]† ( { V al(S0, c0, σ) }) .

Let us define h : Σ → V (Σ) as

h(σ′′) =
∑

l(r)=σ′′
r∈B(c0,σ,S0)

Π(r)
V al(S0, c0, σ)(σ′′)

V al(Sr, c1, σ
′′) .

Remember that, by definition:∑
l(r)=σ′′

r∈B(c0,σ,S0)

Π(r) = V al(S0, c0, σ)(σ′′) .
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Therefore ∑
l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)
V al(S0, c0, σ)(σ′′)

= 1

Since [[c1]]σ′′ is convex, then h(σ′′) ∈ ([[c1]]σ′′). Therefore by Proposition 3.4.9:∑
σ′′∈Σ

V al(S0, c0, σ)(σ′′)h(σ′′) ∈ [[c1]]† ( { V al(S0, c0, σ) }) .

But ∑
σ′′∈Σ

V al(S0, c0, σ)(σ′′)h(σ′′)(σ′)

=
∑

σ′′∈Σ

 ∑
l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)

 ∑
l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)
V al(S0, c0, σ)(σ′′)

V al(Sr, c1, σ
′′)(σ′)




=
∑

σ′′∈Σ

 ∑
l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)
V al(S0, c0, σ)(σ′′)

 ∑
l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)V al(Sr, c1, σ
′′)(σ′)




=
∑

σ′′∈Σ

 ∑
l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)
V al(S0, c0, σ)(σ′′)


 ∑

l(r)=σ′′
r∈B(c0,σ,S0)

Π(r)V al(Sr, c1, σ
′′)(σ′)



=
∑

σ′′∈Σ

 ∑
l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)V al(Sr, c1, σ
′′)(σ′)



=
∑

σ′′∈Σ

 ∑
l(r)=σ′′

r∈B(c0,σ,S0)

Π(r)

 ∑
l(t)=σ′

t∈B(c1,σ′′,Sr)

Π(t)




=
∑

r∈B(c0,σ,S0)

Π(r)

 ∑
l(t)=σ′

t∈B(c1,l(r),Sr)

Π(t)


=

∑
l(s)=σ′

s∈B(c0;c1,σ,S)

Π(s) ,

and the claim is proved. For the last step, note that a path s ∈ B(c0; c1, σ,S) is
the concatenation of a path r ∈ B(c0, σ,S0) together with a path t ∈ B(c1, l(r),Sr).
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Vice versa suppose that ν ∈ [[c1]]†([[c0]]σ). Then there exist ξ ∈ [[c0]]σ and h :
Σ → V (Σ) such that h(σ′′) ∈ [[c1]]σ′′ and ν =

∑
σ′′ ξ(σ

′′)h(σ′′). By the induction
hypothesis there exist schedulers S0, Sσ′′ such that ξ = V al(S0, c0, σ), and
h(σ′′) = V al(Sσ′′ , c1, σ

′′). Similar to what we did with deterministic schedulers,
we combine them to get a scheduler S such that ν = V al(S, c0; c1, σ). Notice
that in this case the combined scheduler has some memoryless character: it
behaves the same for every subautomata starting at a configuration 〈c1, σ

′′〉,
regardless of the previous history.

�

We can interpret the semantics for the full language as being of the form

[[c]] : Σ → PTM (V(Σ))

Using the characterisation of the convex Hoare powercone as ideal extension
of the convex powerset we can show an adequacy result similar to the previous
one, which makes use of probabilistic schedulers.

Theorem 5.3.2. Let c be a command of L and let ζ ∈ V(Σ). Then ζ ∈
[[c]]σ iff for every ε > 0 there exists a probabilistic scheduler S for (c, σ) s.t.
V al(S, c, σ) w (1− ε)ζ.

5.4 Discussion

Using probabilistic automata and schedulers we can give another motivation for
our axiom (HV) and corresponding definition 4.1.1, which implies

ηx v 1
2ηx + 1

2ηx .

Consider the following example.
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The figure represents two probabilistic processes. The process P1 allows two
different ways of resolving the nondeterminism. The corresponding probability
valuations are ηT and ηF . The process P2 allows four different ways of resolving
the nondeterminism, two of which give the probability valuations 1

2ηT + 1
2ηF .

The process P2 offers more opportunities, so in a Hoare fashion, we consider it
better than P1. Formally this is implied by 1ηx v 1

2ηx + 1
2ηx.

This assumes that

• probabilistic choice is visible: in our language every probabilistic choice
entails the assignment of some variable. Even if we then decide to ignore
that variable, an omniscient scheduler sees the difference;

• the schedulers are deterministic. A probabilistic scheduler for P1 can
simulate a deterministic scheduler for P2.
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The example above shows why Hoare indexed valuations combine well with
the Hoare powerdomain. More indices give more power to a deterministic sched-
uler, therefore more indices provide more information when the scheduler is
under our control.

We have seen the mathematical reasons why there is no distributive law
between the functors P and V . We can exemplify this with a program in our
language. Suppose the denotation of a command c is to be defined as a function
[[c]] : Σ → P (V (Σ)). If we want it to be compositional, we have to define [[c1; c2]]
in terms of [[c1]], [[c2]]. The first intuitive idea would be to define it as

[[c1; c2]](σ) =
{
λσ′.

∑
σ′′∈Σ

h(σ′′)[[c2]](σ′′)(σ′) |h : Σ → P (Σ), h(σ′′) ∈ [[c1]](σ′′)
}

This definition makes the sequential composition non-associative. Let

• c1 be the command X := χ, where χ(0) = 1/2, χ(1) = 1/2;

• c2 be the command X := 0 or X := 1;

• c3 be the command if X = 0 then skip else X := χ1 or X := χ2, where
χ1(0) = 1/2, χ1(1) = 1/2, χ2(0) = ε, χ2(1) = 1− ε;

and consider the program c1; c2; c3.
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ε
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In this example we can assume that there are only two states: Σ = {0, 1}
We have

• [[c1]](i) = { 1
2η0 + 1

2η1} for i = 0, 1;

• [[c2]](i) = {η0, η1} for i = 0, 1;

• [[c1; c2]](n) = {η0,
1
2η0 + 1

2η1, η1} for i = 0, 1 ∈ N;

• [[c3]](0) = {η0}, [[c3]](1) = { 1
2η0 + 1

2η1, εη0 + (1− ε)η1};

• [[c2; c3]](i) = {η0,
1
2η0 + 1

2η1, εη0 + (1− ε)η1} for i = 0, 1.
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If we read c1; c2; c3 as c1; (c2; c3), then

[[c1; c2; c3]](i)

= {η0,
1
2η0 + 1

2η1, εη0 + (1− ε)η1,
3
4η0 + 1

4η1,
1+ε
2 η0 + 1−ε

2 η1,
1+ε
4 η0 + 3−ε

4 η1} .

If we read c1; c2; c3 as (c1; c2); c3, then

[[c1; c2; c3]](i)

= {η0,
1
2η0 + 1

2η1, εη0 + (1− ε)η1,
3
4η0 + 1

4η1,
1+ε
2 η0 + 1−ε

2 η1} .

In the second case the function h (which roughly speaking does the job of
the scheduler), when choosing a valuation in [[c3]](1) does not “remember” that
the process has reached the state 1 by two different paths. Therefore we miss
one valuation in the final set. When the denotation is given in terms of indexed
valuations, the function h is given enough information to remember this. Indeed
in the case of indexed valuations, h chooses looking at the paths, rather than
only at the state.

However, a memoryless scheduler can simulate the combination of sched-
ulers with memory by flipping a coin. That is why the semantics in terms of
probabilistic schedulers does not need to be given in terms of indexed valuations.

5.5 Conclusions and future work

In this chapter we have shown the computational intuition behind the notion
of indexed valuations by giving semantics to an imperative language with non-
deterministic and probabilistic primitives. We have compared a denotational
semantics in terms of indexed valuations with an operational semantics in terms
of deterministic schedulers. We have argued that a compositional semantics in
terms of deterministic schedulers requires them to make their decisions knowing
the whole history of the process. This feature is reflected in the denotation by
the use of indices to represent the histories.

A semantics in terms of probabilistic scheduler does not require the use of
indices, but requires all the sets involved to be geometrically convex.

5.5.1 Coalgebra and bisimulation

Which notion of bisimulation is induced if we use indexed valuation to define
transition systems?

Definition 5.5.1. An indexed probabilistic automaton on a set of labels A is
a coalgebra for the functor X 7→ P⊥(IV (A×X)) in the category SET.

In order to define the notion of bisimulation, we first need the notion of
lifting of a relation to indexed valuations.

Definition 5.5.2. Let R ⊆ X × Y be a relation. Let ν = (xi, pi)i∈I ∈
IV (X), ξ = (yj , qj)j∈J ∈ IV (Y ). We say that νRξ if I = J and for every
i ∈ I, pi = qi and xiRyi.

Definition 5.5.3. A bisimulation between two indexed probabilistic automata
(X, α), (Y, β) is a relation R ⊆ X × Y such that whenever (x, y) ∈ R.
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• for all ν ∈ α(x) there exists ξ ∈ β(x) such that νRξ.

• and symmetrically

Two states x ∈ X, y ∈ Y are bisimilar if they are related by some bisimulation.

Using standard techniques ([BSdV03, RT94]) one can show the following.

Theorem 5.5.4. Two states of two indexed probabilistic automata (X, α), (Y, β)
are bisimilar iff they are coalgebraic bisimilar.

Indexed probabilistic automata look very much like standard probabilistic
automata. The difference is that an IPA that flips a coin and then chooses
regardless of the outcome of the coin is NOT equivalent to an IPA that does
not flip the coin at all.

Bisimilarity between IPAs seems thus to be too fine an equivalence. We
don’t try too escape this criticism. However one one could argue that probabilis-
tic bisimulation is too fine already for probabilistic automata (see [DGJP99]).
Moreover, distinctions of the kind seen above appear in the literature [HV99].

Note also that indexed valuations were introduced in order to define a com-
putational monad. Although most of the functors used to define transition
systems coalgebraically are monads too, this feature is not used in the stan-
dard literature (I am indebted to Bartek Klin for this observation). It should
not be completely surprising then, if indexed valuations do not provide a good
coalgebraic model.

5.5.2 Semantics of a functional language

We would like to use our construction to give a semantics to a functional lan-
guage, an extension of PCF with probabilistic and nondeterministic choice. In
order to do that we need to work in a cartesian closed category. Unfortunately
the category CONT is not cartesian closed [AJ94]. The powerdomain of valu-
ation does not preserve some important cartesian closed category of continuous
domains, and it is not known to preserve any cartesian closed category besides
DCPO.

We did not try to prove that the indexed valuations functor preserves any
cartesian closed of continuous domains. This is still an interesting problem to
work on, although Jung and Tix ([JT98]) warn us that it is not an easy problem.

5.5.3 Presheaf models

We could also try to find other denotational models beyond domain theory. The
notion of indexed valuation, with its explicit reference to computational paths,
seems to lead toward a presheaf semantics, known to be a nice framework for
concurrent and higher order processes [NW03]. Can the notions studied in this
thesis help in defining a probabilistic semantics in terms of presheaves?
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Concurrency
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Chapter 6

Valuations on Event
Structures

The vast majority of models for probabilistic concurrent computation follow
the interleaving approach. The only exception, to our knowledge, are Katoen’s
probabilistic event structures [Kat96]. The model we are going to present here
is, in some sense, a special case of Katoen’s. First of all Katoen builds on
the notion of bundle labelled event structures, while our model is based on the
more primitive notion of prime event structures, and does not contain labels.
More importantly we restrict our attention to the class of confusion free event
structures.

However, in this restricted setting, we are able to produce many interesting
original contributions. In Katoen’s model, as in every interleaving model, all
probabilistic choices are assumed to be (probabilistically) independent. We are
able to go beyond this limitation by constructing a model that accounts for
correlation between choices.

Then we show a connection between our notion of probabilistic event struc-
ture and domain theory, extending the classic result of [Win80, NPW81]. This
result can be interpreted as a representation theorem for continuous valuations
on a certain class of domains.

We are able to define a notion of run for a probabilistic event structure,
which encompasses and extends the corresponding notion in the interleaving
framework. Finally we are able to show a confluence result for such runs, which
also generalise classic results in the theory of event structures.

At the end we will discuss more on the implications and limitations of our
work.

In this chapter we introduce the notions of event structure and of config-
uration of an event structure. We define the notion of confusion free event
structure, arguing that they are suitable to be endowed with probability. We
introduce probabilities on confusion free event structures using the notion of
global valuation. A global valuation is a function assigning a weight to every fi-
nite configuration. The name is chosen because every global valuation generates
a normalised continuous valuation on the domain of configurations. We start by
defining a notion of global valuation which assumes probabilistic independence
of all choices. We then remove this assumption and prove the main theorem

109
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relating global valuation and continuous valuations. We further generalise the
definition of global valuation in order to include subprobability distributions.
This allows us to characterise completely the normalised continuous valuations
on the domain of configurations. Finally we perform an analysis of our defini-
tions using the notion of morphism of event structures.

6.1 Event structures

Event structures were introduced by Nielsen, Plotkin and Winskel [NPW81,
Win80, Win87] as a model for concurrency. Their main feature, which distin-
guishes them from transition systems, is the ability of recording causality and
concurrency of events. States of event structures are represented by the notion
of configuration. The set of configurations of an event structure form a DCPO.

6.1.1 Prime Event Structures

Definition 6.1.1. A prime event structure is a triple E = 〈E,≤, #〉 such that

• E is a countable set of events ;

• 〈E,≤〉 is a partial order;

• for every e ∈ E, ↓ e is finite;

• # is an irreflexive and symmetric relation satisfying the following: for
every e1, e2, e3 ∈ E if e1 ≥ e2 and e2#e3 then e1#e3.

The relation # is called the conflict relation. Two events e1, e2 are concurrent ,
written e1 ./ e2, if ¬e1 ≤ e2,¬e2 ≤ e1,¬e1#e2.

Since prime event structures are the only kind of event structures we deal
with in this thesis, we will refer to them simply as event structures.

The order relation of an event structure represents causality: an event e must
happen before another event e′ can occur (e ≤ e′). Nondeterministic choice
is represented by the conflict relation(e#e′). Concurrency between events is
represented by absence of causality and conflict.

In what follows, the set of events of an event structure E will always be
denoted by E, possibly carrying indices or dashes.

6.1.2 Configurations of an Event Structure

A state of an event structure is a set of events that have happened. If an event
has happened, so must have all the events that it causally depends on. If two
events are in conflict, at most one of them has happened.

Definition 6.1.2. A configuration x of an event structure E is a conflict-free
downward closed subset of E, that is a subset x of E satisfying:

• whenever e ∈ x and e′ ≤ e then e′ ∈ x.

• for every e, e′ ∈ x, it is not the case that e#e′

The set of configurations of E , partially ordered by inclusion, is denoted as L(E).
The set of finite configurations is denoted as Lfin(E).
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The following is a well known fact that connects event structures with do-
main theory [NPW81].

Theorem 6.1.3. The partial order 〈L(E),⊆〉 is an algebraic DCPO, whose
compact elements are the finite configurations.

This theorem can be refined by saying that such a DCPO is in fact a coherent
dI-domain. Conversely every coherent dI-domain can be represented as the set
of configurations of a prime event structure. Details can be found in [Win80].

Sometimes, in order to avoid ambiguity, we will use lattice notation for
configurations. That is, we will write x ≤ y for x ⊆ y, x∨ y for x∪ y, and ⊥ for
the empty configuration.

If x is a configuration and e is an event such that e 6∈ x and x ∪ {e} is a
configuration, then we say that e is enabled at x. Two configurations x, x′ are
said to be compatible if x∪x′ is a configuration. A special kind of configuration
is the principal lower set generated by one event.

Definition 6.1.4. For every event e of an event structure E , we define [e] := ↓ e,
and [e) := [e] \ {e}.

It is easy to see that both [e] and [e) are configurations for every event e.
An event e is enabled at x if [e) ⊆ x and for every e′ ∈ x, e′ is not in conflict
with e.

An useful observation is the following:

Lemma 6.1.5. Let x be a configuration of an event structure and let e be a
maximal event in x. Then x′ := x \ {e} is a configuration and e is enabled in
x′?

Proof: Any subset of a conflict free set is conflict free. Moreover, since e is
maximal, then x′ is still downward closed. �

The depth of an event e is defined as follows. If [e) = ∅ then depth(e) = 0.
Otherwise depth(e) = max{depth(e′) | e′ < e} + 1. Since ↓ e is finite, it is
clear that every event has a finite depth. This allows us to perform proofs by
induction on the depth.

6.1.3 Linear Runs

Configurations represent both a state and a “non linear” run of an event struc-
ture, where the order in which concurrent events have happened is not recorded.
We can also give a linear notion of a run.

Definition 6.1.6. Let x, x′ be two configurations of an event structure. We
write x

e−→x′ when e 6∈ x, and x′ = x ∪ {e}. A sequence σ = e1 . . . en ∈ E∗ is a
string of the event structure E , if there exist x1, . . . , xn such that

∅ e1−→x1
e2−→· · · en−1−→xn−1

en−→xn .

We define Conf (σ) := xn. Notice that Conf (σ) = {e1, . . . , en}. The language
of an event structure E is the set of its strings, and it is denoted by Str(E).
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6.1.4 Immediate Conflict

Two events of an event structure may be in conflict by inheriting the conflict
from previous events. We want to characterise the “minimal” conflicts that
generate all other conflicts by inheritance.

Definition 6.1.7. The immediate conflict relation #µ on an event structure
E = 〈E,≤ #〉 is defined as follows: for every e, e′ ∈ E, e#µe′ iff e#e′ and
[e] ∪ [e′), [e) ∪ [e′] are configurations.

Trivially the immediate conflict relation is symmetric.

6.2 Confusion free event structures

The idea for adding probabilities to event structures is to resolve the conflicts
probabilistically. Whenever there is a set of events in immediate conflict, a die
is rolled and, depending on the outcome, one of the events is chosen. However
there are event structures where things do not go so smoothly. Consider the
event structure Esym = 〈Esym,≤, #〉 where Esym = {a, ā, τ}, the order relation
is trivial, and a#τ , ā#τ .

Using a standard notation, we represent the partial order with the usual
Hasse diagrams, while immediate conflict is represented by a curly line.

a /o/o/o τ /o/o/o ā

Note that a, ā are concurrent. Which conflict do we resolve? If we flip a coin to
choose between a and τ , the outcome also involves ā, contradicting the intuition
that a and ā are concurrent, and therefore unable to interfere with each other.
This is an example of symmetric confusion. The first requirement we add is
that the immediate conflict be transitive, so as to rule out symmetric confusion.

Next consider the event structure E = 〈E,≤, #〉 where E = a, b, c, with
a ≤ b, and b#c.

c /o/o/o b

a

at the empty configuration c is enabled, but b is not, so there is no conflict to
resolve between them. Once a has happened, though, b is also enabled, and a
coin must be flipped. Again, the happening of a interferes with the concurrent
event c. This is an example of asymmetric confusion. To rule out asymmetric
confusion we require that whenever an event e is enabled, all the events in
immediate conflict with e are enabled as well.

6.2.1 Confusion Freeness

The combination of the above requirements is known as confusion freeness.
This notion originates from the theory of Petri Nets. For a discussion of its
importance we refer also to [RT86].
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Definition 6.2.1. An event structure E is confusion free if the following con-
ditions are satisfied:

• #µ ∪ 1E (the reflexive closure of immediate conflict) is an equivalence;

• whenever e#µe′, then [e) = [e′).

Confusion free event structures are also known as concrete data structures
[KP93] and are studied as a computational model in relation with the notion of
dataflow networks [Kah74, KM77] and as a datatype to characterise sequential-
ity [Ong95].

The equivalence classes of #µ ∪ 1E are called cells. The set of cells of E is
denoted by cell(E). If c is a cell and e ∈ c then we say that e is located at c.
The second condition in the definition implies that whenever an event e located
at c is enabled at a configuration x, all the events located at c are enabled as
well. In such a case we say that the cell c is enabled. The depth of a cell is the
depth of its events. We say that a configuration x fills a cell c if there exists
e ∈ x such that e ∈ c. We say that the cell c is accessible at x if c is enabled
at x but not filled by x. The set of accessible cells at x is denoted by Acc(x).
We extend the partial order notation by writing e < c′ if for some event e′ ∈ c′

(and therefore for all such) e < e′. We write c < c′ if for some (unique) event
e ∈ c, e < c′. By [c) we denote the set of events e such that e < c.

Lemma 6.2.2. In an event structure, e#e′ if and only if there exist e0, e
′
0 such

that e0 ≤ e, e′0 ≤ e′, e0#µe′0.

Proof: Consider the set ([e]× [e′]) ∩# consisting of the pairs of conflicting
events, and order it componentwise. Consider a minimal such pair (e0, e

′
0). By

minimality any event in [e0) is not in conflict with any event in [e′0]. Since they
are both lower sets we have that [e0) ∪ [e′0] is a configuration. Analogously for
[e0]∪ [e′0). By definition e0#µe′0. The other direction follows from the definition
of #. �

This allows us to characterise compatibility of configurations as follows.

Proposition 6.2.3. In a confusion-free event structure, two configurations x, x′

are compatible if and only if for every e0 ∈ x, e′0 ∈ x′, if e0, e
′
0 are located at the

same cell, they are equal.

Proof: The configuration x, x′ are incompatible if and only if there are
e ∈ x, e′ ∈ x′ such that e#e′. By Lemma 6.2.2 this happens if and only if
there are e0, e

′
0 such that e0 ≤ e, e′0 ≤ e′, e0#µe′0. When the event structure is

confusion-free, e0, e
′
0 belong to the same cell. �

The domain of configurations of a confusion free event structure is a distribu-
tive concrete domain [KP93]. Conversely every distributive concrete domain can
be represented as the domain of configurations of a confusion free event struc-
ture.
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6.2.2 Coverings

We will need the following notions.

Definition 6.2.4. Given two configurations x, x′ ∈ L(E) we say that x′ covers
x (written x C x′) if there exists e ∈ E such that x′ = x ∪ {e}.

For every finite configuration x of a confusion-free event structure, a covering
at x is a set C of configurations such that:

• for every x′ ∈ C, x C x′;

• for every x′, x′′ ∈ C, x′, x′′ are incompatible;

• for every configuration y, if x C y then there is x′ ∈ C such that y, x′ are
compatible.

Coverings are a device to define cells without referring to events.

Proposition 6.2.5. If C is a covering at x, then c = {e |x′ ∈ C, x′ = x ∪ {e}}
is a cell accessible at x. Conversely if c ∈ Acc(x), then C := {x∪ {e} | e ∈ c} is
a covering.

Proof: Let C be a covering at x, and let c be defined as above. Then for
every distinct e, e′ ∈ c, we have e#e′, otherwise x ∪ {e} and x ∪ {e′} would
be compatible. Moreover as [e), [e′) ⊆ x, we have that [e] ∪ [e′) ⊆ x ∪ {e} so
that [e]∪ [e′) is a configuration. Analogously [e)∪ [e′] is a configuration so that
e#µe′. Now take e ∈ c and suppose there is e′ 6∈ c such that e#µe′. Since #µ

is transitive, then for every e′′ ∈ c, e′#µe′′. Therefore x ∪ {e′} is incompatible
with every configuration in C, and x C x ∪ {e′}. Contradiction.

Conversely, take a cell c ∈ Acc(x), and define C as above. Then clearly for
every x′ ∈ C, x Cx′ and also for every x′, x′′ ∈ C, x′, x′′ are incompatible. Now
consider a configuration y, such that x C y. This means y = x ∪ {e} for some
e. If e ∈ c then y ∈ C and y is compatible with itself. If e 6∈ c then for every
e′ ∈ c, e, e′ are not in immediate conflict. Suppose e#e′, then, by lemma 6.2.2
there are d ≤ e, d′ ≤ e′ such that d#µd′. Suppose d < e then [e) ∪ [e′] would
not be a conflict free. But that is not possible as [e) ∪ [e′] ⊆ x ∪ {e′} and the
latter is a configuration. Analogously it is not the case that d′ < e′. Therefore
e#µe′ contradiction. Therefore for every x ∈ C, y and x are compatible. �

Because of the previous lemma, every covering C uniquely determines a cell
c. In this case we say that C is a c-covering.

For more details on event structures, one possible reference is [Win87].

6.3 Valuations on Event Structures

We define two notions of global valuation on a confusion free event structure.
The first one assuming independence of all random choices, the second, more
general one, removing this assumption.

6.3.1 Valuations with independence

In a confusion free event structure, every choice is localised at some cell. We
can resolve such choice by a probability distribution over the events in that cell.
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Definition 6.3.1. A local valuation on a confusion-free event structure E :=
〈E,≤, #〉 is a function p : E →]0, 1] such that for every cell c,

∑
e∈c p(e) = 1.

Note that no event gets probability 0. Intuitively this is justified by the fact
that an event with probability 0 cannot happen, so we may as well dispense
with it.

If we assume that all the probabilistic choices are independent, the proba-
bility of a configuration is the product of the probabilities of its events. Given
a local valuation p we can define a function vp : Lfin(E) →]0, 1] by putting
vp(x) =

∏
e∈x p(e). We are now going to characterise more abstractly the func-

tions arising in this way.

Definition 6.3.2. A global valuation with independence on a confusion free
event structure E is a function v : Lfin(E) →]0, 1] such that:

a) v(∅) = 1;

b) if C is a covering at x, then
∑

x′∈C v(x′) = v(x);

c) if x, y are compatible, then v(x ∪ y) = v(x) · v(y)/v(x ∩ y).

The following lemma points out an important feature of global valuations
with independence. Its statement applies to more general notions, and we will
use it later.

Lemma 6.3.3. If v : Lfin(E) → [0, 1] satisfies condition b) above, then it is
contravariant, i.e.:

x ⊆ x′ =⇒ v(x) ≥ v(x′)

Proof: By induction on the cardinality of x′\x. If x = x′ then v(x) = v(x′).
Take x ⊆ x′ and consider a maximal event e in x′ \ x. Let x′′ := x′ \ {e}. By
induction hypothesis v(x) ≥ v(x′′). Let c be the cell of e and C be the c-covering
of x′′. By condition b),

∑
y∈C v(y) = v(x′′). Since for every y ∈ C we have

that v(y) ≥ 0, then it must also be that v(y) ≤ v(x′′). But x′ ∈ C so that
v(x′) ≤ v(x′′) ≤ v(x). �

Proposition 6.3.4. Let E be a confusion free event structure. Then

i) a local valuation p on E determines a global valuation with independence
v by taking vp(x) = Πe∈xp(e);

ii) a global valuation with independence v on E determines a local valuation
by taking pv(e) = v([e])/v([e)).

Moreover, the operations of (i) and (ii) are mutually inverse.

Proof: Part i) is straightforward. As for part ii), because of contravariance
we have that v([e]) ≤ v([e)), so that pv(e) ∈]0, 1]. Consider now a cell c. Then
the set C := {[c)∪{e} | e ∈ c} is a covering at [c). Remember that if e ∈ c, then
[e) = [c). Therefore ∑

e∈c

pv(e) =
∑
e∈c

v([e])/v([e))

=
∑
e∈c

v([e])/v([c)) =
∑
x∈C

v(x)/v([c)) = 1 .
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We want now to show that pvp = p. Take an event e.

pvp(e) = vp([e])/vp([e))

=
∏

e′∈[e]

p(e′)/
∏

e′∈[e)

p(e′) = p(e) .

In order to show that vpv = v we proceed by induction on the size of the
configurations. Because of property a), we have that

vpv (∅) =
∏
e∈∅

pv(e) = 1 = v(∅) .

Now assume that for every configuration y of size n, vpv (y) = v(y), take a
configuration x of size n + 1. Take a maximal event e ∈ x so that y := x \ {e}
is still a configuration. Since x is a configuration, it must be that [e] ⊆ x and
thus [e) ⊆ y. Therefore [e) = y ∩ [e]. Now

vpv (x) =
∏
e′∈x

pv(e′) = pv(e) ·
∏
e′∈y

pv(e′)

=
(
v([e])/v([e))

)
· vpv (y)

By induction hypothesis this is equal to

=
(
v([e])/v([e))

)
· v(y) = v([e]) · v(y)/v([e))

= v([e]) · v(y)/v(y ∩ [e])

And because of property c) this is equal to

= v(y ∪ [e]) = v(x) .

�

We show an example. Take the following confusion-free event structure Ea,b:
Ea,b = {a1, a2, b1, b2} with the flat ordering and with a1#a2 and b1#b2.

a1 /o/o/o a2 b1
/o/o/o b2

Then L(Ea,b) is as follows

{a1, b1} {a1, b2} {a2, b1} {a2, b2}

{a1}

sssssssss
{a2}

lllllllllllllll

gggggggggggggggggggggggggggg {b1}

WWWWWWWWWWWWWWWWWWWWWWWWWWWW {b2}

WWWWWWWWWWWWWWWWWWWWWWWWWWWW

⊥

TTTTTTTTTTTTTTTTTTTT

GGGGGGGGG

wwwwwwwww

jjjjjjjjjjjjjjjjjjjj

We define a local valuation on Ea,b by p(a1) = 1/3, p(a2) = 2/3, p(b1) =
1/4, p(b2) = 3/4. The corresponding global valuation is defined as

vp(⊥) = 1
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vp({a1}) = 1/3, vp({a2}) = 2/3, vp({b1}) = 1/4, vp({b2}) = 3/4

vp({a1, b1}) = 1/12, vp({a2, b1}) = 1/6, vp({a1, b2}) = 1/4, vp({a2, b2}) = 1/2

In the above example, a covering at ⊥ is {a1}, {a2}. A covering at {a1} is
{a1, b1}, {a1, b2}.

Definition 6.3.5. A probabilistic event structure with independence is a con-
fusion free event structure together with a global valuation with independence
(or, equivalently, a local valuation).

6.3.2 Valuations without independence

We will see later that every global valuation with independence v on E can be
extended to a continuous valuation ν on L(E) with the property that for every
finite configuration x, v(x) = ν(↑ x). Not every continuous valuation arises in
this way. As an example, consider the following continuous valuation on Ea,b.
Define

• ν(↑ ∅) = 1

• ν(↑{a1}) = ν(↑{a2}) = ν(↑{b1}) = ν(↑{b2}) = 1/2

• ν(↑{a1, b1}) = ν(↑{a2, b2}) = 0

• ν(↑{a1, b2}) = ν(↑{a2, b1}) = 1/2

and extend ν to all open sets by modularity. Define a function v : Lfin(E) →
[0, 1] by v(x) := ν(↑ x). This is clearly not a global valuation with independence.
For a start it takes on the value 0. More importantly it does not satisfy condition
c). If we consider the compatible configurations x := {a1}, y := {b1} then
v(x ∪ y) = 0 < 1/4 = v(x) · v(y)/v(x ∩ y).

Condition c) characterises independence. In the example above, the prob-
abilistic choices in the two cells are not independent: there is a positive corre-
lation between the occurrence of a1 and the occurrence of b1. We can think of
the above probabilistic event structure as representing two entangled bits. Once
one of them is observed, we also know the state of the other.

This observation leads us to a more general definition of probabilistic event
structure.

Definition 6.3.6. A global valuation on a confusion-free event structure E is a
function v : Lfin(E) → [0, 1] such that:

a) v(∅) = 1;

b) if C is a covering at x, then
∑

x′∈C v(x′) = v(x).

Note, in particular, that a global valuation can take the value 0. This more
general notion is not reducible to a function on events only.

Definition 6.3.7. A probabilistic event structure is a confusion free event struc-
ture together with a global valuation.

This is now a good level of generality in a sense to be justified in the next
section.
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6.4 Probabilistic Event Structures and Domains

Theorem 6.1.3 showed a connection between event structures and domain the-
ory. The main result of this chapter extends that theorem drawing a connection
between global valuations and continuous valuations on the domain of configu-
rations of an event structure.

In order to give a continuous valuation, we have to give a weight to open
sets. Intuitively, open sets represent observations. (A good discussion of this
point of view can be found, for example, in [Abr87].) A principal open set ↑ x
represents the observation of x. A global valuation provides a weight for finite
configurations. It is reasonable to ask that the weight of ↑x be the weight of x.
It turns out that this assignment can be extended in a unique way to all open
sets.

Theorem 6.4.1. For every global valuation v on E there is a unique continuous
valuation ν on L(E) such that for every finite configuration x, ν(↑ x) = v(x).

We will characterise later the continuous valuations arising in this way as
the maximal elements of V1(L(E)).

The proof of Theorem 6.4.1 will require various intermediate results. In the
following proofs we will write x̂ for ↑ x. To avoid complex case distinctions we
also introduce a special element > representing an impossible configuration. If
x, y are incompatible, the expression x∨ y will denote >. Also, for every global
valuation v, v(>) = 0, finally >̂ = ∅. The finite configurations together with >
form a ∨-semilattice.

We have to define a function from the Scott open sets of L(E) to the unit
interval. This value of ν on the principal open sets is determined by ν(x̂) = v(x).
We first define ν on finite unions of principal open sets. Since L(E) is algebraic,
such sets form a basis of the Scott topology of L(E). We will then be able to
define ν on all open sets by continuity.

Let Pn be the set of principal open subsets of L(E). That is

Pn = {x̂ | x ∈ Lfin(E)} ∪ {∅} .

Notice that Pn is closed under finite intersection because x̂∩ ŷ = x̂ ∨ y. (If x, y

are not compatible then x̂ ∩ ŷ = ∅ = >̂ = x̂ ∨ y.) The family Pn is, in general,
not closed under finite union.

Let Bs be the set of finite unions of elements of Pn. That is

Bs = {x̂1 ∪ . . . ∪ x̂n | x̂i ∈ Pn, 1 ≤ i ≤ n} .

Using distributivity of intersection over union it is easy to prove the following.

Lemma 6.4.2. The structure 〈Bs,∪,∩〉 is a distributive lattice with top and
bottom.

Since the ν has to be modular, it will also satisfy the inclusion-exclusion
principle (Proposition 2.5.5). We exploit this to define ν. Let us define ν0 :
Bs → R as follows

ν0 (x̂1 ∪ . . . ∪ x̂n) =
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
.
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We have first to make sure that ν0 is well defined: If two expressions x̂1 ∪
. . . ∪ x̂n and ŷ1 ∪ . . . ∪ ŷm represent the same set, then

∑
∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
=

∑
∅6=J⊆Im

(−1)|J|−1v

∨
j∈J

yj

 .

Lemma 6.4.3. We have x̂ ⊆ x̂1 ∪ . . .∪ x̂n if and only if there exists i such that
xi ≤ x.

Proof: Straightforward. �

Lemma 6.4.4. If xn ≤ xn+1 then

∑
∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
=

∑
∅6=I⊆In+1

(−1)|I|−1v

(∨
i∈I

xi

)
.

Proof: When xn ≤ xn+1 we have that xn ∨ xn+1 = xn+1. Now

∑
∅6=I⊆In+1

(−1)|I|−1v

(∨
i∈I

xi

)

=
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)

+
∑

I⊆In+1
n,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)

+
∑

I⊆In+1
n 6∈I,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)
.

We claim that

∑
I⊆In+1
n,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)
+

∑
I⊆In+1

n 6∈I,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)
= 0

and this would prove our lemma.
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To prove the claim

∑
I⊆In+1
n,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)

=
∑

I⊆In−1

(−1)|I|−1v

(∨
i∈I

xi ∨ xn ∨ xn+1

)

=
∑

I⊆In−1

(−1)|I|−1v

(∨
i∈I

xi ∨ xn+1

)

= −
∑

I⊆In−1

(−1)|I|v

(∨
i∈I

xi ∨ xn+1

)

= −
∑

I⊆In+1
n 6∈I,n+1∈I

(−1)|I|−1v

(∨
i∈I

xi

)

�

Therefore we can safely remove “redundant” components from a finite union
until we are left with a minimal expression. The next lemma says that such
minimal expression is unique, up to the order of the components.

Lemma 6.4.5. Let x̂1 ∪ . . . ∪ x̂n = ŷ1 ∪ . . . ∪ ŷm, and let such expressions
be minimal. Then n = m and there exists a permutation σ of In such that
xi = yσ(i).

Proof: By lemma 6.4.3, for every i ∈ In there exist some j ∈ Im such that
yj ≤ xi. Let σ : In → Im be a function choosing one such j. Symmetrically let
τ : Im → In be such that xτ(j) ≤ yj . Now I claim that for every i, τ(σ(i)) = i.
In fact xτ(σ(i)) ≤ yσ(i) ≤ xi. The minimality of the xi’s implies the claim.
Symmetrically σ(τ(j)) = j, so that σ is indeed a bijection. �

Finally we observe that in the definition of ν0, the order of the xi does not
matter. This concludes the proof of that ν0 is well-defined.

Next we state a lemma saying that ν0 : Bs → R is a valuation on the lattice
〈Bs,∪,∩〉. This is the crux of the proof of Theorem 6.4.1.

Lemma 6.4.6. The function ν0 : Bs → R satisfies the following properties:

• (Strictness)
ν0(∅) = 0;

• (Monotonicity)
U ⊆ V =⇒ ν0(U) ≤ ν0(V );

• (Modularity)
ν0(U) + ν0(V ) = ν0(U ∪ V ) + ν0(U ∩ V ).

In particular, since ⊥̂ = L(E), for every U ∈ Bs, we have 0 = ν0(∅) ≤
ν0(U) ≤ ν0(L(E)) = ν0(⊥̂) = v(⊥) = 1. So in fact ν0 : Bs → [0, 1].



6.4. PROBABILISTIC EVENT STRUCTURES AND DOMAINS 121

Proof: Strictness is obvious.
We prove monotonicity in steps. First we prove a special case. That is for

every n-tuple of finite configurations (xi) and for every finite configuration y, if
x̂1 ∪ . . .∪ x̂n ⊆ ŷ, then ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0(ŷ). We will do it by induction on
n. The basis requires that 0 = ν0(∅) ≤ ν0(ŷ) = v(y) which is true.

Suppose now that x̂1 ∪ . . . ∪ x̂n+1 ⊆ ŷ. Fix y and consider all n + 1-tuples
(zi) such that ẑ1 ∪ . . . ∪ ẑn+1 ⊆ ŷ and order them componentwise. That is
(zi) ≤ (z′i) if for every i, zi ≤ z′i. Note that if (zi) > (z′i) then some of the (z′i)
must be strictly smaller than some of the zi. As every zi is finite this order is
well founded.

Suppose by contradiction that there exist an n + 1-tuples for which

ν0

(
ẑ1 ∪ . . . ∪ ẑn+1

)
> ν0(ŷ)

and take a minimal such. If this is the case, then all zi must be strictly greater
than y. We argue that there is a cell c, such that y does not fill c, some of the
zi’s fill c and for all zi that do, the event e ∈ c ∩ zi is maximal in zi. Consider
a maximal event e1 ∈ z1 \ y. If the cell c1 of e1 is maximal in all zj that fill c1,
then we are done. Otherwise consider the first zj that fills c1 but for which c1

is not maximal. Consider a maximal event in zj lying above c1. Consider its
cell c2. Since c2 is above c1, clearly c2 cannot be filled by any of the zi for i < j
because, either they do not fill c1, or if they do, then c1 is maximal. Continue
this process until you reach zn+1 at which point we will have found a cell c with
the properties above.

Consider all the events e1, . . . , eh, . . . ∈ c.1 For every h ≥ 1 let Ih = {i ∈
In+1 | eh ∈ zi}. Since c is maximal and it is not filled by y, then we have that
for every i ∈ Ih, z′i := zi \ {eh} is still a configuration and it is still above y.

For every i ∈ In+1 let wi be z′i if i belongs to some Ih, and otherwise let wi be
zi. For what we have said, all wi are greater than y so that ŵ1 ∪ . . .∪ ŵn+1 ⊆ ŷ.
Also the tuple (wi) is strictly below (zi) in the well order defined above. We
now show that

ν0

(
ŵ1 ∪ . . . ∪ ŵn+1

)
> ν0(ŷ)

which contradicts minimality.
To do that we show that

ν0

(
ŵ1 ∪ . . . ∪ ŵn+1

)
≥ ν0

(
ẑ1 ∪ . . . ∪ ẑn+1

)
.

That is

∑
∅6=I⊆In+1

(−1)|I|−1v

(∨
i∈I

wi

)
≥

∑
∅6=I⊆In+1

(−1)|I|−1v

(∨
i∈I

zi

)
.

We can start erasing summands that do not change. Let Ĩ = In+1 \
⋃

h≥1 Ih

For every i ∈ Ĩ, wi = zi, thus if I ⊆ Ĩ then
∨

i∈I wi =
∨

i∈I zi. So that

v

(∨
i∈I

wi

)
= v

(∨
i∈I

zi

)
.

1Cells can be finite or countable. We do the proof for the countable case, the finite case
being analogous and, in fact, simpler.
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Removing the summands of the above shape, it is enough to prove that

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

wi

)
≥

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

zi

)
.

Also note that if for two different h, h′ ≥ 1 we have that, if I ∩ Ih 6= ∅ and
I ∩ Ih′ 6= ∅ then

∨
i∈I zi = >, that is v

(∨
i∈I zi

)
= 0, because it is the join of

incompatible configurations. Therefore we can rewrite the right-hand member
of the inequation above as

∑
h≥1

∑
∅6=I\Ĩ⊆Ih

(−1)|I|−1v

(∨
i∈I

zi

)
.

For every i 6∈ Ĩ we can define zh
i to be wi ∪ {eh}. All such zh

i are indeed
configurations because if i 6∈ Ĩ then c is accessible at wi. For every I such that
∅ 6= I \ Ĩ we have that

∨
i∈I zh

i = > if and only if
∨

i∈I wi = > as eh is the
only event in its cell appearing in any configuration, so its introduction cannot
cause an incompatibility that was not already there. Now condition b) in the
definition of global valuation says exactly that

v

(∨
i∈I

wi

)
=
∑
h≥1

v

(∨
i∈I

zh
i

)
.

(Where both members may be 0 if
∨

i∈I wi is already >.) Therefore

∑
∅6=I⊆In+1

I\Ĩ 6=∅

∑
h≥1

(−1)|I|−1v

(∨
i∈I

zh
i

)
=

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

wi

)
.

Now, the left hand member is absolutely convergent, because v is a nonnegative
function and ∑

∅6=I⊆In+1

I\Ĩ 6=∅

∑
h≥1

v

(∨
i∈I

zh
i

)
=

∑
∅6=I⊆In+1

I\Ĩ 6=∅

v

(∨
i∈I

wi

)
< +∞ .

Therefore we can rearrange the terms as we like, in particular we can swap the
two summations symbols. Thus

∑
h≥1

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

zh
i

)
=

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

wi

)
.

So to prove our claim it is enough to show that

∑
h≥1

∑
∅6=I\Ĩ⊆Ih

(−1)|I|−1v

(∨
i∈I

zi

)
≤
∑
h≥1

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

zh
i

)
.
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Note that if I \ Ĩ ⊆ Ih then
∨

i∈I zi =
∨

i∈I zh
i . Therefore we can rewrite the

inequation as:

∑
h≥1

∑
∅6=I\Ĩ⊆Ih

(−1)|I|−1v

(∨
i∈I

zh
i

)
≤
∑
h≥1

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

zh
i

)
.

To prove the inequation holds, it is then enough to show that for any h ≥ 1.

∑
∅6=I\Ĩ⊆Ih

(−1)|I|−1v

(∨
i∈I

zh
i

)
≤

∑
∅6=I⊆In+1

I\Ĩ 6=∅

(−1)|I|−1v

(∨
i∈I

zh
i

)
.

Subtracting the same quantity from both members we get equivalently

0 ≤
∑

∅6=I⊆In+1
I\(Ĩ∪Ih)6=∅

(−1)|I|−1v

(∨
i∈I

zh
i

)
.

Let Ĩh :=
⋃

l6=h I l. We can rewrite the sum above as

∑
∅6=J⊆Ĩh

∑
H⊆Ĩ∪Ih

(−1)|H|+|J|−1v

( ∨
i∈H∪J

zh
i

)

=
∑

∅6=J⊆Ĩh

(−1)|J|−1
∑

H⊆Ĩ∪Ih

(−1)|H|v

( ∨
i∈H∪J

zh
i

)
.

Using BSV lemma (6.App.2) we can rewrite this as

∑
∅6=K⊆Ĩh

∑
K⊆J⊆Ĩh

(−1)|J|+|K| ∑
H⊆Ĩ∪Ih

(−1)|H|v

( ∨
i∈H∪J

zh
i

)

=
∑

∅6=K⊆Ĩh

∑
K⊆J⊆Ĩh

∑
H⊆Ĩ∪Ih

(−1)|K|+|J∪H|v

( ∨
i∈H∪J

zh
i

)

Fix K. Consider a set I such that K ⊆ I ⊆ In+1. Since Ĩh, Ĩ∪Ih are a partition
of In+1, we have that H := I ∩ (Ĩ ∪ Ih) and J := I ∩ Ĩh are a partition of I. We
use this to rewrite the term above.

=
∑

∅6=K⊆Ĩh

∑
K⊆I⊆In+1

(−1)|I|+|K|v

(∨
i∈I

zh
i

)
.
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For every K, and defining L := I \K, we have that

∑
K⊆I⊆In+1

(−1)|I|+|K|v

(∨
i∈I

zh
i

)

=
∑

L⊆In+1\K
(−1)|L|+2|K|v

∨
i∈K

zh
i ∨

∨
j∈L

zh
j


= (−1)0+2|K|v

(∨
i∈K

zh
i

)
+

∑
∅6=L⊆In+1\K

(−1)|L|+2|K|v

∨
j∈L

(zh
j ∨

∨
i∈K

zh
i )


= v

(∨
i∈K

zh
i

)
+

∑
∅6=L⊆In+1\K

(−1)|L|v

∨
j∈L

(zh
j ∨

∨
i∈K

zh
i )


= v

(∨
i∈K

zh
i

)
−

∑
∅6=L⊆In+1\K

(−1)|L|−1v

∨
j∈L

(zh
j ∨

∨
i∈K

zh
i )

 .

If
∨

i∈K zh
i = > then the whole sum is equal to 0. Otherwise it is equal to

ν0

( ∨̂
i∈K

zh
i

)
− ν0

 ⋃
j∈In+1\K

̂
zh

j ∨
∨
i∈K

zh
i

 .

Note that for every j is

̂
zh

j ∨
∨
i∈K

zh
i ⊆

∨̂
i∈K

zh
i

so that ⋃
j∈In+1\K

( ̂
zh

j ∨
∨
i∈K

zh
i ) ⊆

∨̂
i∈K

zh
i .

Moreover observe that |In+1 \K| < n + 1. By induction hypothesis

ν0

( ∨̂
i∈K

zh
i

)
− ν0

 ⋃
j∈In+1\K

̂
zh

j ∨
∨
i∈K

zh
i

 ≥ 0 .

Thus we have proved that for every n-tuple of finite configurations (xi) and
for every finite configuration y, if x̂1 ∪ . . . ∪ x̂n ⊆ ŷ, then ν0 (x̂1 ∪ . . . ∪ x̂n) ≤
ν0(ŷ).

Monotonicity now follows from the following lemma:

Lemma 6.4.7. If x1, . . . , xn+1 are finite configurations

ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0

(
x̂1 ∪ . . . ∪ x̂n ∪ x̂n+1

)
.
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Proof:

ν0

(
x̂1 ∪ . . . ∪ x̂n ∪ x̂n+1

)
=

∑
∅6=I⊆In+1

(−1)|I|−1v

(∨
i∈I

xi

)

=
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
+ v(xn+1)−

∑
∅6=I⊆In

(−1)|I|−1v

(
xn+1 ∨

∨
i∈I

xi

)

=
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
+ v(xn+1)−

∑
∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xn+1 ∨ xi

)

= ν0 (x̂1 ∪ . . . ∪ x̂n) + ν0

(
x̂n+1

)
− ν0

(
̂xn+1 ∨ x1 ∪ . . . ∪ ̂xn+1 ∨ xn

)
≥ ν0 (x̂1 ∪ . . . ∪ x̂n) .

Therefore, by induction on m,

ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0 (x̂1 ∪ . . . ∪ x̂n ∪ ŷ1 ∪ . . . ∪ ŷm) .

Finally, to show monotonicity of ν0, suppose that

x̂1 ∪ . . . ∪ x̂n ⊆ ŷ1 ∪ . . . ∪ ŷm .

Then
ŷ1 ∪ . . . ∪ ŷm = x̂1 ∪ . . . ∪ x̂n ∪ ŷ1 ∪ . . . ∪ ŷm .

By the above observation we have

ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0 (x̂1 ∪ . . . ∪ x̂n ∪ ŷ1 ∪ . . . ∪ ŷm)

= ν0 (ŷ1 ∪ . . . ∪ ŷm) .

�(6.4.7) To prove modularity take x̂1 ∪ . . . ∪ x̂n and ŷ1 ∪ . . . ∪ ŷm, we want to

prove that
ν0 (x̂1 ∪ . . . ∪ x̂n) + ν0 (ŷ1 ∪ . . . ∪ x̂m)

= ν0 (x̂1 ∪ . . . ∪ x̂n ∪ ŷ1 ∪ . . . ∪ x̂m) + ν0 ((x̂1 ∪ . . . ∪ x̂n) ∩ (ŷ1 ∪ . . . ∪ x̂m)) .

By distributivity we have that

(x̂1 ∪ . . . ∪ x̂n) ∩ (ŷ1 ∪ . . . ∪ x̂m)

= (x̂1 ∩ ŷ1) ∪ (x̂1 ∩ ŷ2) ∪ . . . ∪ (x̂n ∩ ŷm) .

Using the definitions, we have to prove that

R :=
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
+

∑
∅6=J⊆Im

(−1)|I|−1v

(∨
i∈I

yj

)
is equal to

L :=
∑
∅6=I]J

I⊆In,J⊆Im

(−1)|I]J|−1v

∨
i∈I

xi ∨
∨
j∈J

yj



+
∑

∅6=K⊆In×Im

(−1)|K|−1v

 ∨
(i,j)∈K

(xi ∨ yj)
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We can split the various I ] J in three classes: when J is empty, when I is
empty, and when both are not empty. So we can rewrite L as

L =
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)

+
∑

∅6=J⊆Im

(−1)|I|−1v

∨
j∈J

yj


+

∑
∅6=I⊆In
∅6=J⊆Im

(−1)|I]J|−1v

∨
i∈I

xi ∨
∨
j∈J

yj


+

∑
∅6=K⊆In×Im

(−1)|K|−1v

 ∨
(i,j)∈K

(xi ∨ yj)


The first two summands of this expression are equal to R, so we have just to
prove that the last two are equal to 0.

For every ∅ 6= I ⊆ In, ∅ 6= J ⊆ Im consider all K ⊆ In × Im such that
π1(K) = I, π2(K) = J . We argue that for all such K,∨

(i,j)∈K

(xi ∨ yj) =
∨
i∈I

xi ∨
∨
j∈J

yj

In fact using commutativity, associativity and idempotency of the join, we can
group all the xi and yj on the left hand member. So that∨

(i,j)∈K

(xi ∨ yj) =
∨

i∈π1(K)

xi ∨
∨

j∈π2(K)

yj

We can rewrite the the last two summands of the above expression as

∑
∅6=I⊆In
∅6=J⊆Im

(−1)|I]J|−1v

∨
i∈I

xi ∨
∨
j∈J

yj


+

∑
∅6=I⊆In
∅6=J⊆Im

∑
∅6=K⊆In×Im

π1(K)=I,π2(K)=J

(−1)|K|−1v

 ∨
(i,j)∈K

(xi ∨ yj)


=

∑
∅6=I⊆In
∅6=J⊆Im

(−1)|I]J|−1v

∨
i∈I

xi ∨
∨
j∈J

yj


+

∑
∅6=I⊆In
∅6=J⊆Im

∑
∅6=K⊆In×Im

π1(K)=I,π2(K)=J

(−1)|K|−1v

∨
i∈I

xi ∨
∨
j∈J

yj



=
∑

∅6=I⊆In
∅6=J⊆Im

v

∨
i∈I

xi ∨
∨
j∈J

yj


(−1)|I]J|−1 +

∑
∅6=K⊆In×Im

π1(K)=I,π2(K)=J

(−1)|K|−1
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So it is enough to prove that for every finite sets I, J

(−1)|I]J|−1 +
∑

∅6=K⊆In×Im
π1(K)=I,π2(K)=J

(−1)|K|−1 = 0

which is the statement of Lemma 6.App.1, to be proved in the appendix. �

Now we are ready to define ν on all Scott open sets.

Lemma 6.4.8. For every Scott open O ⊆ L(E), we have

O =
⊔ ↑

U⊆O
U∈Bs

U .

Proof: Directedness is straightforward. Moreover, since L(E) is algebraic,
Pn is a basis for the Scott topology (and so is, a fortiori, Bs). �

Now, for every Scott open set O, define

ν(O) = sup
U⊆O
U∈Bs

ν0(U) .

We then have the following proposition, which concludes the proof of Theorem
6.4.1.

Proposition 6.4.9. The function ν is a valuation on the Scott-topology of L(E)
such that for every finite configuration x, ν(↑ x) = v(x).

Continuity follows from an exchange of suprema, strictness and monotonicity
are obvious. Modularity follows from the modularity of ν0 and continuity of the
addition. Finally, because of the monotonicity of ν0, we have that ν(↑ x) =
ν0(↑x) = v(x). �

6.5 A representation theorem

Using the results of the previous section, we are now going to characterise com-
pletely the normalised valuations on the domain of configurations on an event
structure. We first note that not all normalised continuous valuations arise from
global valuation. To overcome this problem we define the notion of an event
structure with “invisible events”. This notion allows us to state the representa-
tion theorem for continuous valuations.

6.5.1 Leaking valuations

Some continuous valuations “leak” probability. The simplest example of that is
the event structure composed of one event ∗ only, and the continuous valuation
defined as ν(∅) = 0, ν(↑⊥) = 1, ν(↑{∗}) = 1/2. The above continuous valu-
ation is not generated by any global valuation. This suggests that we should
generalise the definition of global valuation, allowing the use of subprobability
distributions. At a first sight it seems that it is enough to relax condition b) to
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the following

b’) If C is a covering at x, then
∑

x′∈C v(x′) ≤ v(x).

It turns out that this is not the right generalisation, as the following example
shows. Consider the event structure E where E = {d, e} with the flat ordering
and no conflict. Define a “leaking global valuation” on E by,

• v(∅) = 1

• v({d}) = v({e}) = 1

• v({d, e}) = 0

The function v satisfy conditions a) and b’), but it cannot be extended to
a continuous valuation on the domain of configurations. Suppose it did, and
call such valuation ν. Then ν is modular so that ν(↑{a} ∪ ↑{b}) = ν(↑{a}) +
ν(↑{b})− ν(↑{a, b}) = 1 + 1 − 0 = 2. This would contradicts monotonicity, as
ν(↑⊥) = 1.

6.5.2 Invisible events

In fact, the leaking of probability can be attributed to an “invisible” event, as
we are now going to show.

Definition 6.5.1. Consider a confusion free event structure E = 〈E,≤, #〉.
Let cell(E) be the set of the cells of E . For every c ∈ cell(E) we consider a
new “invisible” event ∂c such that ∂c 6∈ E and if c 6= c′ then ∂c 6= ∂c′ . Let
∂ = {∂c | c ∈ cell(E)}. We define E∂ to be 〈E∂ ,≤∂ , #∂〉, where

• E∂ = E ∪ ∂;

• ≤∂ is ≤ extended by e ≤∂ ∂c if for all e′ ∈ c, e ≤ e′;

• #∂ is # extended by e#∂∂c if there exists e′ ∈ c, e′ ≤ e.

Roughly speaking E∂ is E where every cell contains an extra invisible event
which does not enable anything. Invisible events, like kitchen paper, suck up
all leaking probability, as the following theorem shows.

Definition 6.5.2. A pre-valuation on a confusion-free event structure E is a
function v : Lfin(E) → [0, 1] such that v(∅) = 1.

Theorem 6.5.3. Let E be the confusion-free event structure. Let v be a pre-
valuation on E. A necessary and sufficient condition for there to be a unique
normalised continuous valuation ν on L(E) with v(x) = ν(↑ x), is that v can be
extended to a global valuation v∂ on E∂.

Proof: Sufficiency. During the proof of Theorem 6.4.1, we have used con-
dition b) only to prove monotonicity of ν0. In particular we only use it to prove
that for every n-tuple of configurations (xi) and for every configuration y, if
x̂1 ∪ . . . ∪ x̂n ⊆ ŷ, then ν0 (x̂1 ∪ . . . ∪ x̂n) ≤ ν0(ŷ).

Note that this statement can be formulated without referring to open set.
It is equivalent to saying that if y ≤ x1, . . . , xn then

v(y) ≥
∑

∅6=I⊆In

(−1)|I|−1v

(∨
i∈I

xi

)
.
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Since v∂ is a global valuation on E∂ , we can prove the above statement for it.
That is for every configuration y, x1, . . . , xn, if y ≤ x1, . . . , xn then

v∂(y) ≥
∑

∅6=I⊆In

(−1)|I|−1v∂

(∨
i∈I

xi

)
.

Now, restricting our attention to the configurations not involving the invisible
events, we get the result for E . The rest of the proof of Theorem 6.4.1 does not
make use of property b) nor of contravariance. �

To prove necessity we proceed in steps using some accessory lemmas. Con-
sider a normalised continuous valuation ν on L(E). If we define v : Lfin(E) →
[0, 1] by v(x) = ν(↑ x), clearly we have v(∅) = 1. We need to show that such
function can be extended to a global valuation on E∂ . Note that if such extension
exists, it is unique.

We need some notation. For a configuration x, let c1, . . . , cn be distinct cells
accessible at x. Let ci = {e1

i , . . . , e
mi

i }. Consider a subset J ⊆ In and consider
the set XJ of functions f : J → N such that f(j) ∈ Imj . Roughly speaking a
function in XJ chooses an event for every cell whose index is in J . For every
f ∈ XJ we define xf to be x ∪

⋃
j∈J{e

f(j)
j }. Thus xf is simply x augmented

with the events chosen by f . Clearly xf is a configuration. For every J ⊆ In, we
define x∂J to be x ∪

⋃
j∈J{∂cj}. We have that x∂J ∈ Lfin(E∂). Moreover every

configuration in Lfin(E∂) has this form for some x, because the invisible events
are always maximal. Notice that if J ∩ J ′ = ∅ then, for f ∈ XJ we can write
both xf∂J′ and x∂J′f and that they denote the same configuration of Lfin(E∂),
that is

x ∪
⋃
j∈J

{ef(j)
j } ∪

⋃
j′∈J′

{∂cj′ } .

To extend v to configurations of the form x∂J , we start by observing what
happens when J is a singleton. What is the value of v∂(x∪{∂c})? Since we want
this extension to be a global valuation, we must have v∂(x∪{∂c})+

∑
e∈c v∂(x∪

{e}) = v∂(x). This implies v∂(x ∪ {∂c}) = v(x) −
∑

e∈c v(x ∪ {e}), which we
take as definition. Generalising:

Lemma 6.5.4. If v∂ is a global valuation on E∂, x a finite configuration of E
and c1, . . . , cn distinct cells accessible at x, then

v∂(x∂In ) =
∑

J⊆In

(−1)|J|
∑

f∈XJ

v∂(xf )


Proof: By induction on n. �

This also can be taken as definition of the extension of v to E∂ . The next
lemma shows that in order for this extension to be a global valuation, it is
enough that

∑
J⊆In

(
(−1)|J|

∑
f∈XJ

v(xf )
)

belong always to [0, 1].
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Lemma 6.5.5. Suppose v is a pre-valuation on E. Then v∂ as defined above is
a global valuation on E∂ if and only if:

b”) for every x finite configuration of E and c1, . . . , cn distinct cells accessible
at x,

0 ≤
∑

J⊆In

(−1)|J|
∑

f∈XJ

v∂(xf )

 ≤ 1 .

Lemma 6.5.5 could be used to define “leaking global valuations”.
Proof: Clearly v∂ : Lfin(E∂) → [0, 1] and v∂(∅) = 1. It remains to show

condition b).
Take a configuration x∂J ∈ Lfin(E∂) (where J could be empty, so that

x∂J ∈ Lfin(E)). Say J = In. Consider a cell cn+1 accessible at x∂In . We want
that

v∂(x∂In ) = v∂(x∂In+1 ) +
∑

g∈X{n+1}

v∂(x∂In g) .

Notice that x∂In g = xg∂In . Using the definition of v∂ we have to show that

∑
J⊆In

(−1)|J|
∑

f∈XJ

v(xf )



=
∑

J⊆In+1

(−1)|J|
∑

f∈XJ

v(xf )

+
∑

g∈X{n+1}

∑
J⊆In

(−1)|J|
∑

f∈XJ

v(xgf )

 .

Notice that

∑
g∈X{n+1}

∑
J⊆In

(−1)|J|
∑

f∈XJ

v(xgf )

 =
∑

n+1∈J⊆In+1

(−1)|J|−1
∑

f∈XJ

v(xf )

 .

If we move this term to the left we have to show

∑
J⊆In

(−1)|J|
∑

f∈XJ

v(x
f )

+
∑

n+1∈J⊆In+1

(−1)|J|
∑

f∈XJ

v(x
f )



=
∑

J⊆In+1

(−1)|J|
∑

f∈XJ

v(x
f )


which is true as we can partition the subsets of In+1 in two classes: the ones
that are included in In and the ones containing n + 1. �

To conclude the proof of Theorem 6.5.3 we have to show that a normalised
continuous valuation restricts to a pre-valuation satisfying condition b”). This
follows from modularity and monotonicity.

Let ν be a continuous valuation on L(E). Consider a finite configuration x
of E and c1, . . . , cn distinct cells accessible at x. Then for every i ∈ In and every
fi ∈ X{i} x ≤ xfi so that

⋃
i∈In

⋃
fi∈X{i}

x̂fi ⊆ x̂. By monotonicity it must
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be ν
(⋃

i∈In

⋃
fi∈X{i}

x̂fi

)
≤ ν(x̂). Modularity implies the inclusion-exclusion

formula so that

ν

⋃
i∈In

⋃
fi∈X{i}

x̂fi

 =
∑

∅6=J⊆In

∑
∅6=X⊆XJ

(−1)|J×X|−1v

 ∨
f∈X

xf

 .

Notice that when X ⊆ XJ is not a singleton, then
∨

f∈X xf = > as two
different f ’s choose at least two different events in one of the cells, making the
configurations incompatible. Those terms can therefore be removed, leaving the
expression

R :=
∑

∅6=J⊆In

∑
f∈XJ

(−1)|J|−1v
(
xf
)

Since it denotes the value of ν on some open set R ≥ 0. By the observation
above, we have that R ≤ v(x). Remember that for J = ∅, XJ contains only the
empty function f : ∅ → N so that x = xf . We have then

0 ≤ v(x) −
∑

∅6=J⊆In

∑
f∈XI

(−1)|I|−1v
(
xf
)
≤ 1 .

Which, after some obvious changes becomes

0 ≤
∑

J⊆In

(−1)|J|
∑

f∈XJ

v
(
xf
) ≤ 1 .

�

6.5.3 A representation theorem

Recall that we can characterise the domains arising as sets of configurations of
a confusion free event structure. These are precisely the distributive concrete
domains.

The results shown so far allow us to characterise completely the continuous
valuations on a coherent dI-domains.

Definition 6.5.6. Let E be a confusion free event structure. A generalised
global valuation on E is a pre-valuation on E that can be extended to a global
valuation on E∂ .

The representation theorem is the following.

Theorem 6.5.7. Let v : Lfin(E) → [0, 1] be a pre-valuation. Then there exists
a normalised continuous valuation ν on L(E) satisfying ν(↑ x) = v(x) if and
only if v is a generalised global valuation.

In the next chapter we will also be able to characterise the normalised con-
tinuous valuations that corresponds to global valuations. They are precisely the
maximal elements in V1(L(E)).
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6.6 Categorical analysis

We might ask whether the correspondence between valuations on event struc-
tures and continuous valuations on the domains of configurations is natural, in
the sense of Category Theory. The answer is yes as we will now show.

First, we have to make precise the terms of our question.

Definition 6.6.1. [Win82, WN95] Given two confusion-free event structures
E , E ′, a morphism f : E → E ′ is a partial function f : E → E′ such that

• whenever x ∈ L(E) then f(x) ∈ L(E ′)

• for every x ∈ L(E), for all e1, e2 ∈ x if f(e1), f(e2) are both defined and
f(e1) = f(e2), then e1 = e2.

Such morphisms define a category CFES. The operator L extends to a
functor CFES → ALG by L(f)(x) = f(x).

For every confusion free event structure E , let V (E) be the set of generalised
global valuations on E . We want to extend this operator to a functor on CFES.
This is easily done, via continuous valuations.

E

f

��

V (E) oo //

���
�
� V1(L(E))

V1(L(f))

��
E ′ V (E ′) oo // V1(L(E ′))

The use of morphisms allows us to make interesting observations.
Consider the following event structures E = 〈E,≤, #〉, E ′ = 〈E′,≤, #〉 where

• E = {a1, a2, b1, b2, c1, c2, d1, d2, e1, e2};

• a1 ≤ b1, c1, d1, e1, a2 ≤ b2, c2, d2, e2;

• a1#µa2, b1#µc1, b2#µc2, d1#µe1, d2#µe2;

b1
/o/o/o c1 d1

/o/o/o e1 b2
/o/o/o c2 d2

/o/o/o e2

a1

PPPPPPPPPPPPPP

AAAAAAAA

}}}}}}}}
/o/o/o/o/o/o/o/o/o/o/o/o/o/o a2

AAAAAAAA

}}}}}}}}

nnnnnnnnnnnnnnn

and

• E′ = {a, b, c, d, e};

• a ≤ b, c, d, e;

• b#µc, d#µe;

b /o/o/o c d /o/o/o e

a

OOOOOOOOOOOOOO

>>>>>>>>

��������

oooooooooooooo

The map f : E → E′ defined as f(xi) = x, x = a, b, c, d, e and i = 1, 2, is a
morphism of event structures.
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Now suppose we have a global valuation with independence v on E . We can
equivalently consider a local valuation p. Let ν be the corresponding continuous
valuation on L(E). Let’s now look at v′ := V (f)(v). First we observe

v′({a}) = V(f)(ν)(↑{a}) = ν(↑{a1} ∪ ↑{a2})
= ν(↑{a1}+ ν(↑{a2})
= v({a1}) + v({a2}) = p(a1) + p(a2) = 1 .

Then

v′({a, b}) = V(f)(ν)(↑{a, b}) = ν(↑{a1, b1} ∪ ↑{a2, b2})
= ν(↑{a1, b1}+ ν(↑{a2, b2})
= p(a1) · p(b1) + p(a2) · p(b2) .

Suppose v′ were also independent, then it would correspond to a local valua-
tion p′. In that case V(f)(ν)(↑{a, b}) must be equal to v′({a, b}) = p′(a)·p′(b) =
p′(b), so that p′(b) = p(a1) ·p(b1)+p(a2) ·p(b2). Similarly p′(d) = p(a1) ·p(d1)+
p(a2) · p(d2). Now on the one hand

V(f)(ν)(↑{a, b, d}) = ν(↑{a1, b1, d1} ∪ ↑{a2, b2, d2})
= ν(↑{a1, b1, d1}) + ↑ ν({a2, b2, d2})
= p(a1) · p(b1) · p(d1) + p(a2) · p(b2) · p(d2) .

On the other hand

V(f)(ν)(↑{a, b, d}) = v′({a, b, d})
= p′(a) · p′(b) · p′(d) = p′(b) · p′(d)
= [p(a1) · p(b1) + p(a2) · p(b2)] · [p(a1) · p(d1) + p(a2) · p(d2)] .

But in general it is not true that

[p(a1) · p(b1) + p(a2) · p(b2)] · [p(a1) · p(d1) + p(a2) · p(d2)]
= p(a1) · p(b1) · p(d1) + p(a2) · p(b2) · p(d2) .

The valuation v′ is not with independence: in fact the correlation between
the cell {b, c} and the cell {d, e} can be interpreted by saying that it is due to
a hidden choice between a1 and a2. The question arises whether every global
valuation is the projection of a global valuation with independence in a similar
way. Presently, we do not know the answer.

The use of morphisms allows us also to relate the notion of conflict and
the notion of probabilistic correlation. Consider the following event structures
E = 〈E,≤, #〉, E ′ = 〈E′,≤, #〉 where

• E = {a, b}, a#µb;

• E′ = {a′, b′} with no conflict;

a /o/o/o b a′ b′

The map f : E → E′ defined as f(a) = a′, f(b) = b′ is a morphism of event
structures.
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Consider the global valuation v on E defined as v({a}) = v({b}) = 1/2. The
valuation v′ = V (f)(v) is as follows: v′({a′}) = v′({b′}) = 1/2, v′({a′, b′}) = 0.
Although v is non-leaking, v′ is. By theorem 6.5.3, we can extend v′ to a
non-leaking global valuation on E∂ :

∂a′ /o/o/o a′ ∂b′ /o/o/o b′

The (unique) extension is defined as follows:

• v′({∂a′}) = v′({∂b′}) = v′({a′}) = v′({b′}) = 1/2;

• v′({∂a′ , ∂b′}) = v′({a′, b′}) = 0;

• v′({∂a′ , b
′}) = v′({a′, ∂b′}) = 1/2.

The conflict between a and b in E is seen in E ′ as a correlation between the cells
of a′ and b′. We cannot observe a′ and b′ together.

6 Appendix Two Combinatorial Lemmas

We prove here two lemmas used during the proof of Theorem 6.4.1.

Lemma 6.App.1. For every finite sets I, J with |I| = n, |J | = m∑
∅6=K⊆I×J

π1(K)=I,π2(K)=J

(−1)|K| = (−1)n+m−1 .

Proof: Without loss of generality we can think of I = {1, . . . , n} and J =
{1, . . . , m}. Also we observe that a subset K ⊆ I × J such that π1(K) =
I, π2(K) = J is in fact a surjective and total relation between the two sets.

n

OOOOOOOOOOOOO

??
??

??
?

m

�������

Let
tn,m :=

∑
∅6=K⊆I×J

π1(K)=I,π2(K)=J

(−1)|K| ;

ton,m := |{∅ 6= K ⊆ I × J | |K| odd, π1(K) = I, π2(K) = J}| ;

ten,m := |{∅ 6= K ⊆ I × J | |K| even, π1(K) = I, π2(K) = J}| .

Clearly tn,m = ten,m − ton,m. We want to prove that tn,m = (−1)n+m+1. We
do this by induction on n. It is easy to check that this is true for n = 1. In this
case, if m is even then te1,m = 1 and to1,m = 0, so that te1,m− to1,m = (−1)1+m+1.
Similarly if m is odd.

Now let’s assume that for every p, tn,p = (−1)n+p+1 and let’s try to compute
tn+1,m. To evaluate tn+1,m we count all surjective and total relations K between
I and J together with their“sign”. Consider the pairs in K of the form (n+1, h)
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for h ∈ J . What do you get if you remove them? You get a total surjective
relation between {1, . . . , n} and a subset JK of {1, . . . , m}.

n

TTTTTTTTTTTTTTTTTTT •

��
��

��
�

m s

ppppppppppppp

Consider first the case where JK = {1, . . . , m}. What is the contribution
of such K’s to tn+1,m? There are

(
m
s

)
ways of choosing s pairs of the form

(n + 1, h). And for every such choice there are tn,m (signed) relations. Adding
the pairs (n + 1, h) possibly modifies the sign of such relations. All in all the
contribution amounts to

∑
1≤s≤m

(
m

s

)
(−1)stn,m .

Suppose now that JK is a proper subset of {1, . . . , m} leaving out r elements.

n

NNNNNNNNNNNNN •

ppppppppppppp

s r

ppppppppppppp

Since K is surjective, all such elements h must be in a pair of the form
(n + 1, h). Moreover there can be s pairs of the form (n + 1, h′) with h′ ∈ JK .
What is the contribution of such K’s to tn,m? There are

(
m
r

)
ways of choosing

the elements that are left out. For every such choice and for every s such that
0 ≤ s ≤ m − r there are

(
m−r

s

)
ways of choosing the h′ ∈ JK . And for every

such choice there are tn,m−r (signed) relations. Adding the pairs (n + 1, h) and
(n + 1, h′) possibly modifies the sign of such relations. All in all, for every r
such that 1 ≤ r ≤ m− 1, the contribution amounts to(

m

r

) ∑
1≤s≤m−r

(
m

s

)
(−1)s+rtn,m−n .

The (signed) sum of all these contribution will give us tn+1,m. Now we use
the induction hypothesis and we write (−1)n+p+1 for tn,p.

Thus:

tn+1,m =
∑

1≤s≤m

(
m

s

)
(−1)stn,m

+
∑

1≤r≤m−1

(
m

r

) ∑
0≤s≤m−r

(
m− r

s

)
(−1)s+rtn,m−r

=
∑

1≤s≤m

(
m

s

)
(−1)s+n+m+1

+
∑

1≤r≤m−1

(
m

r

) ∑
0≤s≤m−r

(
m− r

s

)
(−1)s+n+m+1
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= (−1)n+m+1

 ∑
1≤s≤m

(
m

s

)
(−1)s

+
∑

1≤r≤m−1

(
m

r

) ∑
0≤s≤m−r

(
m− r

s

)
(−1)s

 .

By the binomial formula, for 1 ≤ r ≤ m− 1 we have

0 = (1− 1)m−r =
∑

0≤s≤m−r

(
m− r

s

)
(−1)s .

So we are left with

tn+1,m = (−1)n+m+1

 ∑
1≤s≤m

(
m

s

)
(−1)s


= (−1)n+m+1

 ∑
0≤s≤m

(
m

s

)
(−1)s −

(
m

0

)
(−1)0


= (−1)n+m+1 (0− 1)

= (−1)n+1+m+1 .

Which is what we wanted to prove. �

Lemma 6.App.2 (BSV lemma). Let X be a finite set and let f : P (X) → R.
Then ∑

∅6=J⊆X

(−1)|J|−1f(J) =
∑

∅6=K⊆X

∑
K⊆J⊆X

(−1)|J|+|K|f(J) .

Proof: By induction on |X |. The base is obvious. Let X ′ = X ∪ {∗}, with
∗ 6∈ X . Consider ∑

∅6=K⊆X′

∑
K⊆J⊆X′

(−1)|J|+|K|f(J)

We can split the sum in two, according to whether K contains or does not
contain ∗.

=
∑

∅6=K⊆X

∑
K⊆J⊆X′

(−1)|J|+|K|f(J) +
∑

∗∈K⊆X′

∑
K⊆J⊆X′

(−1)|J|+|K|f(J)

We now rewrite the second part of the expression, singling out the case where
K = {∗}. In all the other cases we can write K as H ∪ {∗} for some nonempty
H ⊆ X .

=
∑

∅6=K⊆X

∑
K⊆J⊆X′

(−1)|J|+|K|f(J)

+
∑

∅6=H⊆X

∑
H∪{∗}⊆J⊆X′

(−1)|J|+|H|+1f(J) +
∑

∗∈J⊆X′
(−1)|J|+1f(J)
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We now split each of the inner sums in the first line according to whether J
contains or does not contain ∗. We have then

=
∑

∅6=K⊆X

 ∑
K⊆J⊆X

(−1)|J|+|K|f(J) +
∑

K∪{∗}⊆J⊆X′
(−1)|J|+|K|f(J)


+

∑
∅6=H⊆X

∑
H∪{∗}⊆J⊆X′

(−1)|J|+|H|+1f(J) +
∑

∗∈J⊆X′
(−1)|J|+1f(J)

=
∑

∅6=K⊆X

∑
K⊆J⊆X

(−1)|J|+|K|f(J) +
∑

∅6=K⊆X

∑
K∪{∗}⊆J⊆X′

(−1)|J|+|K|f(J)

+
∑

∅6=H⊆X

∑
H∪{∗}⊆J⊆X′

(−1)|J|+|H|+1f(J) +
∑

∗∈J⊆X′
(−1)|J|+1f(J)

Now the second and the third member of the expression above cancel out.

=
∑

∅6=K⊆X

∑
K⊆J⊆X

(−1)|J|+|K|f(J) +
∑

∗∈J⊆X′
(−1)|J|+1f(J)

We now use the induction hypothesis on the first member

=
∑

∅6=J⊆X

(−1)|J|−1f(J) +
∑

∗∈J⊆X′
(−1)|J|+1f(J)

=
∑

∅6=J⊆X

(−1)|J|−1f(J) +
∑

∗∈J⊆X′
(−1)|J|−1f(J)

Which can be finally joined.

=
∑

∅6=J⊆X′
(−1)|J|−1f(J) .

�
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Chapter 7

Probabilistic Runs of Event
Structures

In this chapter we define different notions of run of a probabilistic event struc-
ture. The leading idea is that a run of a probabilistic event structure be a
probability distribution over nonprobabilistic runs. We define the notion of test
as a set of configurations which is suitable to represent a probabilistic run. Us-
ing tests we can give an alternative characterisation of global valuations. The
use of tests allows us also to characterise the continuous valuations arising from
global valuations as the maximal elements in V1(L(E)).

Finally we prove a confluence theorem showing that in some sense, proba-
bilistic event structures do not feature nondeterminism.

7.1 Event structures as Markov decision pro-
cesses

We first introduce a notion of “sequential” run for a probabilistic event struc-
ture. We do that by seeing an event structure as a Markov decision process.
Configurations are the states. At every state, the actions are the accessible cells.
A scheduler is a function choosing, at every state, one of the accessible cells.

Instead of following the general framework devised in Section 2.6, we choose
to present here an alternative semantics, using ideas from [dAHJ01].

7.1.1 Probabilistic words

Let S be an set. In the following elements of S are called symbols, elements of
S∗ are called strings.

Definition 7.1.1. A (probabilistic) letter over S is a probability distribution
over symbols, i.e. a function α : S → [0, 1] such that α[S] = 1. A (probabilistic)
word of length n is a probability distribution β over strings of length n.

We find it useful to introduce the following notation. We denote a letter α
also as (α(a))a∈W where W = Supp(α). We denote a word β of length n also
as (β(σ))σ∈W where W = Supp(β). We identify letters with words having only

139
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strings of length 1 in the support. To ease the reading we will write (β(σ))W ,
or (β)W for (β(σ))σ∈W , when this does not create confusion.

This notation allows us to define a notion of composition between words.

Definition 7.1.2. Let (β(σ))W be a word, let (γσ(τ))W
Zσ

be a family of words of
the same length indexed by W . The composition of these two objects, denoted
by β; (γσ)W is the word ζ, such that ζ(σ; τ) = β(σ)γσ(τ), where by σ; τ we
mean the usual composition of strings.

It is easy to check that the operation is well defined. If β, (γσ)W are words,
then β; (γσ)W is a word. We write β; γ to mean β; (γσ)W when for every σ ∈ W ,
γσ = γ. The neutral element on the left is the word assigning probability 1 to
the string of length 0. We call this word ε, as the only string in its support.
The neutral elements on the right are the families with all elements equal to ε.

Definition 7.1.3. A word β is prefix of a word β′ if there exists a family (γσ)W

such that β; (γσ)W = β′. We denote this by β � β′. A language is a set of words.
A language L is prefix-closed iff β′ ∈ L and β � β′ implies that β ∈ L.

Proposition 7.1.4. Let β, β′ be two probabilistic words over S. We have β � β′

if and only if for every σ ∈ Supp(β)

β(σ) =
∑
σ≤σ′

β′(σ′) .

7.1.2 Schedulers

For simplicity of exposition we will consider only event structures such that at
every configuration there is at least one accessible cell. This restriction can be
easily avoided by adding a countable chain of independent “idling” events.

Definition 7.1.5. A fragment scheduler of a confusion free event structure
〈E,≤, #〉 is a partial function f : Str(E) → cell(E) such that f(σ) is accessible
at Conf (σ). A finite scheduler f of length n is a fragment scheduler defined on
words of length l < n. The length of f is denoted by |f |. A fragment scheduler
f ′ extends a finite scheduler f , if Dom(f) ∩Dom(f ′) = ∅ and f ∪ f ′ is a finite
scheduler. In that case we write f ; f ′ for f ∪ f ′.

Using schedulers, we can give semantics to probabilistic event structures
with independence in terms of probabilistic words.

Definition 7.1.6. The word of a probabilistic event structure with indepen-
dence 〈E , p〉 under the scheduler f , denoted by b(f), is the probabilistic word
defined by induction on the length as follows: If |f | = 0,

b(f)(σ) =
{

1 if σ = ε
0 otherwise .

If |f | = n + 1 we can write f = f ′; g with |f ′| = n and with g defined only over
words of length n. Consider a string σ. If |σ| 6= n + 1 we put b(f)(σ) = 0. If
|σ| = n + 1, say σ = σ′; e we put

b(f)(σ′; e) =
{

b(f ′)(σ′) · p(e) if e ∈ g(σ)
0 if e 6∈ g(σ) .
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The probability of a sequence σ; e, in B(f), is the probability of σ in the
bundle generated by f ′ times the probability of the last event e, under the
condition that e belongs to the cell chosen by f . It is easy to show that b(f) is
indeed a probabilistic word. Moreover if g = f ; f ′, then w(f) � w(g).

Definition 7.1.7. The language B(E) of a probabilistic event structure E is the
set of its words.

7.2 Tests

The semantics of the previous section models parallelism by interleaving. We
are now going to define a different notion of run, which makes use of configura-
tions. Consequently this notion is more sensitive to the causal nature of event
structures, and it does not use interleaving. Moreover it can be given to general
probabilistic event structures, without the independence requirement.

7.2.1 Definition

We want the run of an event structure to be a probability distribution over
configurations. Which sets of configurations are suitable? Let’s look at the
interleaving semantics first. A probabilistic word is a probability distribution
over strings of the same length. Therefore any two strings in the support are
incomparable. This is the first condition we require to our notion of run.

Definition 7.2.1. A partial test C of an event structure E is a set of configu-
rations of E such that for every x, x′ in C, x and x′ are incompatible.

Clearly this is not enough. In order to represent a probabilistic run, a set C
of configuration must have the property that

∑
x∈C v(x) = 1. A singleton is a

partial test, but it does not, in general, have the above property. It turns out
that we need to require completeness. In the sequel we will be able to justify
this requirement. For the moment we ask the reader to accept the following
definition.

Definition 7.2.2. A set C of configurations of an event structure E is complete
if for every y ∈ L(E) there exists x ∈ C such that x, y are compatible.

Proposition 7.2.3. Let C be set of configurations of an event structure E. The
set C is complete if and only if for every maximal configuration z ∈ L(E), there
exists x ∈ C such that x ≤ z.

Proof: =⇒) Take a maximal configuration z. By completeness there exists
x ∈ C such that x, z are compatible. This means that x ∪ z is a configuration.
But since z is maximal, x ∪ z = z, that is x ≤ z.

⇐=) Take any configuration y. Take a maximal configuration z such that
y ≤ z (it exists by Zorn’s Lemma – we could also build it directly by induction
using just dependent choice). By hypothesis there exists x ∈ C such that x ≤ z.
Since z is a common upper bound for x, y, then x, y are compatible. �

Definition 7.2.4. A test C of an event structure E is a complete partial test.
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For a partial test C, completeness amounts to saying that no configuration
x can be added to C, so that C ∪ {x} is still a partial test.

Definition 7.2.5. A set C of configurations of an event structure is finitary is
all its members are finite.

Since we will use tests to represent runs, we also need a notion of extension
of a run. For this aim, the Egli-Milner ordering is the appropriate one.

Definition 7.2.6. Let C, C′ be sets of configurations of an event structure. We
say that C ≤ C ′ if for every x ∈ C there exists x′ ∈ C′ with x ≤ x′ and for
every x′ ∈ C′ there exists x ∈ C with x ≤ x′.

7.2.2 Tests as probabilistic runs

When we endow the event structure with a valuation, tests represent probabilis-
tic runs of the event structure. The partial order relation on tests represents
the extension of a probabilistic run. Indeed

Theorem 7.2.7. If v is a global valuation, and if C is a finitary test, then,∑
x∈C

v(x) = 1 .

It is possible to give a simple proof of this fact for valuations with inde-
pendence, using elementary measure theory. However, in order to prove the
theorem in full generality, we need to develop some tools. We will make use
of theorem 6.4.1, relating valuations on event structures and on domains. The
first results interpret the above notions within the domain of configurations.

Definition 7.2.8. Let C be a finitary set of configurations of an event structure
E . We define ↑ (C) as the set

⋃
x∈C ↑x.

Clearly ↑ (C) is Scott open. All the following properties are straightforward.

Proposition 7.2.9. Let C be a finitary partial test of E, then the Scott open
subsets of L(E) of the form ↑x, for x ∈ C are pairwise disjoint. If C, C′ are two
finitary sets of configurations of E and C ≤ C′ then ↑ (C) ⊇↑ (C′). If C be a
finitary complete set of configurations of E, then for every maximal configuration
y ∈ L(E), we have that y ∈↑ (C).

Less trivially,

Proposition 7.2.10. Let C, C ′ be finitary tests. Then C ≤ C′ if and only if
↑ (C) ⊇↑ (C′).

Proof: of the non-trivial direction. Suppose ↑ (C) ⊇↑ (C′). If y ∈ C′ then
y ∈↑ (C) which means that there exists x ∈ C such that x ≤ y. Vice versa if
x ∈ C then by completeness there exists y ∈ C ′ such that x, y are compatible.
We have just argued that there exists x′ ∈ C such that x′ ≤ y, which implies
that x, x′ are compatible. Since C is a test, we have that x = x′ and x ≤ y. �

Corollary 7.2.11. Let ν be a continuous valuation on L(E). If C is a fini-
tary partial test, then ν(↑ (C)) =

∑
x∈C ν(↑ x). If C, C′ are finitary sets of

configurations and C ≤ C′ then ν(↑ (C)) ≥ ν(↑ (C ′)).
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7.3 Inductive tests

We introduce a restricted notion of test, more closely related to the interleaving
semantics and the theory of probabilistic languages. They will also have a
technical role in the proof of Theorem 7.2.7.

7.3.1 Inductive tests and probabilistic words

Definition 7.3.1. Let E be a confusion-free event structure. If x is a con-
figuration of E , and c is a cell accessible at x we define x + c do be the set
{x∪{e} |e ∈ c}. Let Y, Y ′ be two sets of configurations of a confusion-free event
structure. We write

Y
X,(cx) //Y ′

when X ⊆ Y , for every x ∈ X , cx is a cell accessible at x, and

Y ′ = Y \X ∪
⋃

x∈X

x + cx .

We write Y → Y ′ if there are X, (cx) such that Y
X,(cx) //Y ′ . As usual →∗

denotes the reflexive and transitive closure of →.

Definition 7.3.2. An inductive test of a confusion-free event structure is a set
C of configurations such that

{∅} →∗ C .

The idea is that we start the computation with the empty configuration,
and, at every step, we choose accessible cells to “activate” and we collect all
the resulting configurations. It is easy to see a connection between probabilistic
words and inductive tests. Remember we define the semantics in terms of words
only for probabilistic event structure with independence.

Proposition 7.3.3. Let 〈E , p〉 be a probabilistic event structure with indepen-
dence. For every word β ∈ B(E), Conf (Supp(β)) is an inductive test of E and
for every σ ∈ Supp(β), β(σ) = vp(Conf (σ)). If β � γ then Conf (Supp(β)) ≤
Conf (Supp(γ)).

Proof: By induction on the length of β: the only word of length 0 corre-
sponds to the test {∅}. Take a scheduler f of length n and consider the scheduler
f ; χ of length n + 1. Let X := Supp(b(f)). For every σ ∈ X , χ(σ) is an action
at σ, that is a cell accessible at Conf (σ). Then

Conf (X)
X,χ(σ) //Conf (Supp(γ)) .

As for the probabilities, clearly β(σ) and vp(Conf (σ)) always coincide, being
just the product of the probabilities of the constituting events. In order to
prove the last statement, first note that β � γ implies Conf (Supp(β)) →∗

Conf (Supp(γ)). As a consequence of the forthcoming Proposition 7.3.4, we
have Conf (Supp(β)) ≤ Conf (Supp(γ)). �

The next proposition is a sanity check for our definitions
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Proposition 7.3.4. If C, C′ are inductive tests

C ≤ C′ ⇐⇒ C →∗ C′ .

The direction ⇐=) is proved by induction on the derivation C →∗ C′. The
direction =⇒) is by induction on the derivation {∅} →∗ C and is postponed to
the Appendix.

7.3.2 Inductive tests are tests

As the choice of the name suggests we have the following result.

Proposition 7.3.5. Every inductive test is a finitary test.

Proof: By induction on the derivations. The singleton of the empty config-
uration is a test. Take an inductive test C, a set X ⊆ C and for every x ∈ X

a cell (cx) accessible at x. Let C
X,(cx) //C′ . We want to show that C′ is a

test.
First consider two distinct configurations x′, y′ ∈ C′. If x′, y′ ∈ C then they

are incompatible by induction hypothesis. If x′ ∈ C, and y′ = y ∪ e for some
y ∈ C, then x′ 6= y, so that x′, y are incompatible. Thus x′, y′ are incompatible.
If x′ = x ∪ ex and y′ = y ∪ ey for x, y ∈ C there are two possibilities. If
x 6= y, then they are incompatible and so are x′, y′. If x = y, then ex 6= ey, but
they both belong to they same cell, therefore they are in conflict, and x′, y′ are
incompatible.

Now take any configuration z. By induction hypothesis there exists x ∈ C
such that x, z are compatible. If x ∈ C′ we are done. If x 6∈ C′ then there are
two possibilities. Either z does not fill cx, but then for every e ∈ cx, z, x ∪ e
are compatible. Or z fills cx with and event ē which implies that z, x ∪ ē are
compatible. �

Not all test are inductive as the following example shows. Consider the event
structure E = 〈E,≤, #〉 where E = {a1, a2, b1, b2, c1, c2}, the order is trivial and
a1#a2, b1#b2, c1#c2. Let’s call the three cells a, b, c.

a1 /o/o/o a2 b1
/o/o/o b2 c1 /o/o/o c2

Consider the following set C of configurations{
{a1, b2}, {b1, c2}, {a2, c1}, {a1, b1, c1}, {a2, b2, c2}

}
.

The reader can easily verify that C is a test. If it were an inductive test, we
should be able to identify a cell that was chosen at the first step along the
derivation. Because of the symmetry of the situation, we can check whether
it is a. If a were the first cell chosen, every configuration in C would contain
either a1 or a2. But this is not the case.

It is now easy to show the following

Proposition 7.3.6. If v is a global valuation, and if C is an inductive test,
then, ∑

x∈C

v(x) = 1 .



7.4. PROOF OF THEOREM 7.2.7 145

Proof: By induction on the derivation

Suppose C
X,cx //C′ and

∑
x∈C v(x) = 1. Consider

∑
x′∈C′ v(x′). We can

split this in ∑
x∈C\X

v(x) +
∑
x∈X

∑
e∈cx

v(x ∪ {e}) .

Since v is a global valuation, property (b) tells us that for every x ∈ X ,∑
e∈cx

v(x ∪ {e}) = v(x). Therefore∑
x∈C\X

v(x) +
∑
x∈X

∑
e∈cx

v(x ∪ {e})

=
∑

x∈C\X
v(x) +

∑
x∈X

v(x) =
∑
x∈C

v(x) = 1 .

�

Alternatively we could obtain Proposition 7.3.6 as a corollary of Proposition
7.3.3.

7.4 Proof of theorem 7.2.7

We recall the statement of the theorem: If v is a global valuation, and if C is a
finitary test, then, ∑

x∈C

v(x) = 1 .

We show that there exists an enumeration of the cells (cn)n∈N, such that if
cm < cn, then m < n. We build it as follows. Since the cells are countably many,
they come equipped already with some enumeration. We start by picking the
first cell c. We enumerate all the cells c′ < c, by layers: first the cells of depth
0, then the cells of depth 1 and so on. There are only finitely many such c′, so
we stop at some point. Finally we enumerate c. For all the cells enumerated so
far cm < cn implies m < n

At every step, choose the next cell c (in the old enumeration) that has not
been enumerated. Repeat the procedure above, enumerating the cells c′ < c
that have not yet been enumerated. Finally enumerate c. The invariant cm <
cn =⇒ m < n is preserved.

With this enumeration at hand, consider the following chain of inductive

tests: C0 = {∅}, Cn
X,cn // Cn+1 , where X is the set of configurations x ∈ Cn

such that cn is accessible at x. We have the following properties:

1. for every Cn, maxm(L(E)) ⊆↑ (Cn);

2. ↑ (Cn) ⊇↑ (Cn+1);

3. if x ∈ Cn and x fills cm then m < n;

4. if x ∈ Cn then every cell cm with m < n enabled at x is filled by x;

5. for every non maximal configuration z there exists n such that z 6∈↑ (Cn).



146 CHAPTER 7. PROBABILISTIC RUNS OF EVENT STRUCTURES

Property (1) comes for the fact the Cn is a test. Property (2) comes from
Proposition 7.2.10. Property (3) is by construction. Property (4) is shown by
induction on n, using the defining property of the enumeration. Take x ∈ Cn+1

and consider a cell cm with m < n + 1 enabled at x. If m < n then cn 6< cm

therefore cm is enabled at x′ := x \ cn ∈ Cn. By induction hypothesis cm is
filled by x′, and therefore is filled by x. If m = n then x has just been obtained
by adding an event in cm (otherwise cm would not be enabled). To show (5),
take a non maximal configuration z. There exists a cell c which is accessible
at z. Suppose it’s cm. Consider Cm+1. Suppose there exists x ∈ Cm+1 such
that x ≤ z. Then cm is not filled by x. By property (4), c is not enabled at x.
Consider a minimal event e in [c) \ x, and say ch = cell(e). Since ch < c = cm,
then h < m. By minimality of e, every event in [ch) is in x. Therefore ch is
enabled at x. By property (4) ch is filled by x. Since [c) ⊆ z we have that e ∈ z.
Thus the only event in the cell of e that can be in x is e itself. Contradiction.

Therefore, combining (1) and (5)⋂
n∈N

↑ (Cn) = maxm(L(E)) , .

By Theorem 2.5.18, the valuation ν extends to a Borel measure ν̄. We have
that ν̄(maxm(L(E))) = limn→∞ ν̄(↑ (Cn)). But ν̄(↑ (Cn)) = ν(↑ (Cn)) = 1
because Cn is an inductive test. By Theorem 2.5.17 we have ν̄(maxm(L(E))) =
1. This implies that for every finitary test C

1 ≥ ν(↑ (C)) = ν̄(↑ (C)) ≥ ν̄(maxm(L(E))) = 1

which finally implies that
∑

x∈C v(x) = 1. �

We can characterise global valuations using tests, by inverting theorem 7.2.7.

Theorem 7.4.1. Let E be a confusion-free event structure. Let v be a function
Lfin(E) → [0, 1]. Then v is a global valuation if and only if for every finitary
test C, v[C] = 1.

Proof: First of all v(∅) = 1, because {∅} is a finitary test. Next we want to
show that for every finite configuration x and every covering Dc at x, v[Dc] =
v(x). Take a test C containing x. It is not difficult to build an inductive such,
by firing in sequence all the cells filled by x. Consider the test C ′ = C \{x}∪Dc.

Notice that C
{x},c //C′ . Therefore C′ is a test. So that v[C′] = 1. But v[C′] =

v[C]− v(x) + v[Dc]. �

7.5 Confluence

The interleaving semantics introduces some nondeterminism in the choice of the
cell to fire. Intuitively this choice in inessential, in that it only determines the
order of concurrent events. The causal semantics allows us to formalise this
intuition, in terms of a confluence property: every two runs are part of a longer
run. There is no real nondeterministic branching.
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7.5.1 Confluence of tests

Theorem 7.5.1. Let E be a probabilistic event structure. For every C, C′ tests
of E there exists a test C ′′ with C, C′ ≤ C′′.

Proof: Take two tests C, C′ and consider the set

C′′ :=
{
x ∪ y | x ∈ C, y ∈ C′, x, y compatible

}
.

We claim that C′′ is a test. First consider two different elements of C′′: x ∪ y
and x′ ∪ y′. We can assume that x 6= x′. Then, since C is a test, we have that
x, x′ are incompatible. This means that there is a cell c and two different events
e, e′ ∈ c such that e ∈ x and e′ ∈ x′. This implies that x∪ y and x′ ∪ y′ are also
incompatible. As for maximality, consider any configuration z. Since C is a test
there exists x ∈ C such that z, x are compatible. Then z ∪ x is a configuration.
Since C′ is a test, there exists y ∈ C′ such that x∪z and y are compatible. This
implies that y and x are compatible. Therefore x ∪ y ∈ C′′. Now, since both x
and y are compatible with z, we have that x ∪ y is compatible with z.

To show that C ≤ C ′′, take x ∈ C. Since C′ is a test there exists y ∈ C′

such that x, y are compatible, so that x ∪ y ∈ C′′ and clearly x ⊆ x ∪ y. The
other direction of the definition is obvious. �

The theorem above is carries over to inductive tests as

Proposition 7.5.2. If C, C ′ are inductive tests of E, then C′′ :=
{
x ∪ y | x ∈

C, y ∈ C ′, x, y compatible
}

is an inductive test.

By induction on the derivation of C, C′. When they both are the singletons

of the empty configuration, the statement is true. Suppose C0

Z,(cz) //C .
Let C ′′

0 :=
{
z ∪ y | z ∈ C0, y ∈ C′, z, y compatible

}
. Cy induction hypothesis,

it is an inductive test. For every z ∈ Z consider the configurations of the form
z ∪ y ∈ C′′

0 . Let Yz be the set of configurations y ∈ C′ compatible with z and
not filling the cell cz. Then y ∈ Yz if and only if cz is accessible at z ∪ y.

Let W =
⋃

z∈Z,y∈Yz
{z ∪ y}, by the previous observation we have that, for

some D,

C′′
0

W,(cz) //D .

Claim: D = C′′.
Take w ∈ D. If w ∈ C′′

0 , then w = z ∪ y for some z ∈ C0, y ∈ C′, and such
that, if z ∈ Z, then y 6∈ Yz. If z 6∈ Z, then z ∈ C and so z ∈ C′′. If z ∈ Z and
y 6∈ Yz, then y fills cz, so that for exactly one event e ∈ cz, z∪{e} is compatible
with y. In that case z ∪ {e} ∪ y = z ∪ y = w, so that again z ∈ C′′.

If w 6∈ C′′
0 , then there exist z ∈ Z, y ∈ Yz, e ∈ cz such that w = z ∪ y ∪ {e}.

Cut then z ∪ {e} ∈ C so that again w ∈ C′′.
Conversely, suppose w ∈ C′′, then w = x ∪ y for some x ∈ C, y ∈ C′. If

x ∈ C0, this means that x ∈ Z, so that x ∪ y ∈ D. (Notice that if z 6= z′, then
for all y′ ∈ C′, z ∪ y 6= z′ ∪ y′.) If x 6∈ C0, this means that there is z ∈ Z,
e ∈ cz, such that x = z ∪ {e}. If y ∈ Yz , then x∪ y = z ∪ {e}∪ y and x∪ y ∈ D.
If y 6∈ Yz , then y fills cz, and since x, y are compatible, it must be that e ∈ y.
Therefore x ∪ y = z ∪ y, and again x ∪ y ∈ D. �
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7.5.2 Confluence of words

To interpret the confluence property in the context of probabilistic words we
need an extension of the notion of Mazurkiewicz equivalence. We are now going
to extend the notion of Mazurkiewicz equivalence to probabilistic words. Let
./ be an irreflexive and symmetric relation on S. The pair (S, ./) is called a
concurrent alphabet.

Definition 7.5.3. [Maz86] Let (S, ./) be a concurrent alphabet. We define the
Mazurkiewicz equivalence ≡ to be the least congruence on the monoid of strings
S∗ such that

a ./ b =⇒ ab ≡ ba .

If 〈E,≤, #〉 is a confusion free event structure, we define an irreflexive and
symmetric relation on E, by

eIe′ ⇐⇒ e 6≤ e′ & e′ 6≤ e & ¬e#e′ .

One of the fundamental results we need is the following, which is an adap-
tation of a theorem in [Maz86].

Proposition 7.5.4. Let σ, σ′ be two strings of E, then σ ≡ σ′ if and only if
Conf (σ) = Conf (σ′).

We propose two possible ways of extending Mazurkiewicz equivalence to
probabilistic words. The first definition is a standard extension of a relation to a
probabilistic framework. However, we also need a stronger notion of equivalence
to carry out the proof of our main result.

Definition 7.5.5. Let β = (β(σ))W and γ = (γ(τ))Z be two words of the same
length over a concurrent alphabet (S, ./). We say that they are Mazurkiewicz
equivalent and write β ≡p γ, if for every ≡-equivalence class C, β[C] = γ[C].
We say that they are strongly Mazurkiewicz equivalent and write β ≡s γ, if
there exists a bijection φ : W → Z such that for every σ ∈ W ,

• σ ≡ φ(σ);

• β(σ) = γ(φ(σ)).

We call such φ a witness of the equivalence. Clearly ≡s⊆≡p, but not vice
versa.

Theorem 7.5.6. For all schedulers f, g there exist two schedulers f ′, g′ such
that b(f) � b(f ′), b(g) � b(g′) and b(f ′) ≡p b(g′).

We observe that proposition 7.3.3 can be inverted. In the sequel, when f is
a scheduler, we will write Conf (f) to denote Conf (Supp(b(f))).

Lemma 7.5.7. Let b(f) ∈ B(E), let C be an inductive test such that Conf (f) ≤
C. Then there exists a partial scheduler f ′ such that Conf (f ; f ′) = C.

Corollary 7.5.8. For every inductive test C there exist a probabilistic word
b(f) ∈ B(E) such that Conf (f) = C.

Proof: By induction on the derivation of C.
Finally:
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Proposition 7.5.9. If f, g are schedulers of the same length such that Conf (f) =
Conf (g) then b(f) ≡s b(g).

Now we can prove Theorem 7.5.6.
Take f, g consider Conf (f),Conf (g). By theorem 7.5.1 and Proposition

7.5.2 there exists an inductive test C such that Conf (f),Conf (g) ≤ C, by
lemma 7.5.7 there exist f ′, g′ such that Conf (f : f ′) = Conf (g; g′) = C. By the
proposition 7.5.9 f ; f ′ ≡s g; g′.

7.6 More on non-leaking valuations

We are now going to study in more detail the continuous valuations arising from
global valuations.

Definition 7.6.1. A normalised continuous valuation ν on a DCPO D is non-
leaking if for every open set O such that O contains all maximal elements of D,
we have that ν(O) = 1

Theorem 7.6.2. There is a bijection between global non-leaking valuations on
an event structure E and non-leaking continuous valuations on L(E).

Proof: We have seen that a continuous valuation generated by a global
valuation is non-leaking, because it is supported on the set of maximal config-
urations. Vice versa, suppose we have a non-leaking continuous valuation ν on
L(E). Define a pre-valuation on E by v(x) = ν(↑ x). If C is a finitary test, we
have that v[C] = ν(↑ (C)) = 1. By theorem 7.4.1, v is a global valuation on E .
�

For the domain of configurations of an event structure, we are able to char-
acterise non-leaking valuations as maximal valuations. We divide this into two
steps.

Proposition 7.6.3. Let E be a confusion free event structure. A non-leaking
valuation on L(E) is maximal in V1(L(E)).

Proof: Take a non-leaking valuation ν on V1(L(E)). It corresponds to a
global valuation v on E . Suppose ν is not maximal and consider a normalised
valuation ξ such that ν < ξ. Then this must be witnessed on a principal open set
(if they coincided on principal open sets they would coincide everywhere). Note
that ν < ξ implies that ξ is also non-leaking, and thus generated by a global
valuation w. Let x be a minimal finite configuration for which ν(↑ x) < ξ(↑ x),
that is v(x) < w(x). Consider a maximal element e of x. Let x′ := x \ e. By
minimality v(x′) = w(x′). If c is the cell of e we have

∑
e′∈c v(x′ ∪ e′) = v(x′) =

w(x′) =
∑

e′∈c w(x′ ∪ e′). Since v(x′ ∪ e) < w(x′ ∪ e) there must be also e′′ such
that S v(x′ ∪ e′′) > w(x′ ∪ e′′). Call x′′ := x′ ∪ e′′. From v(x′′) > w(x′′) we get
ν(↑ x′′) > ξ(↑ x′′) which contradicts ν < ξ. �

Theorem 7.6.4. Let E be a confusion free event structure. A maximal contin-
uous valuation in V1(L(E)) is non-leaking.

Proof: We will show that a leaking continuous valuation is not maximal.
For any leaking continuous valuation ν we will build another continuous valu-
ation ν′ with ν < ν′. Consider the pre-valuation v : Lfin(E) → [0, 1] defined
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as v(x) = ν(↑x). Consider its unique extension v∂ : Lfin(E∂) → [0, 1] as in
theorem 6.5.3. Since v is not a global valuation, there exists a cell c̄ and a
configuration x such that v∂(x∂c̄ ) > 0. By contravariance we have in particular
that v∂([c̄)∂c̄) > 0. Choose an event ē ∈ c̄. For every event a ∈ ↑ ē we consider
a distinct “copy” a′. For a = ē we put ē′ = ∂c̄.

We build a new event structure E ′∂ as follows (we drop in the sequel the
subscript ∂). We essentially copy the structure of ↑ ē above ē′ = ∂c̄.

• E′ = E ∪ {a′ | a ∈ ↑ ē};

• ≤′ is ≤ extended with the following clauses

– if a, b ∈ ↑ ē then a′ ≤′ b′ if and only if a ≤ b;

– if a 6∈ ↑ ē, b ∈ ↑ ē, then a ≤′ b′ if and only if a ≤ b;

• #′ is # extended with the following clause: if a, b ∈ ↑ ē then a′#′
µb′ if and

only if a#µb.

We first observe that E ′ is confusion free: clearly #′ ∪ 1E′ is an equivalence.
Suppose a′#′

µb′ and take d ∈ ↑ ē. Note that by definition a#µb. Then d′ ≤′ a′

if and only if d ≤ a if and only if d ≤ b if and only if d′ ≤′ b′. Take now d 6∈ ↑ e.
Then d ≤′ a′ if and only if d ≤ a if and only if d ≤ b if and only if d ≤′ b′.

For every cell c such that c > ē, we have a cell c′ = {a′ | a ∈ c}.
In general, for every subset z ⊆ E we define z′ to be z\↑ ē∪{a′ | a ∈ ↑ ē∩x}.

We have that x is a configuration if and only if x′ is a configuration. Consider
a′ ∈ x′. Pick b ∈ ↑ ē. If b′ ≤′ a′ then b ≤ a so b ∈ x and therefore b′ ∈ x. Pick
b 6∈ ↑ ē. If b ≤′ a′ then b ≤ a then b ∈ x and therefore b ∈ x′. Therefore x′ is
downward closed if x is. Similarly one shows that x is downward closed if x′ is.

If a, b ∈ ↑ ē, we have that a′#′b′ if and only if a#b, because they inherit the
conflict from events above e. Now take a 6∈ ↑ ē, b ∈ ↑ ē, and suppose a#′b′. Then
there exist a0 ≤′ a and b0 ≤′ b′ such that a0#′

µb0. Since a 6∈ ↑ ē then a0 6∈ ↑ ē.
There are two cases. The first case is b0 = ē′. Note that a0 6= ē so that a0#µē
and then a#b. The second case is b0 6∈ ↑ ē so that a0#µb0. We also have that
b0 ≤ b so that a#b. Similarly if a#b then a#′b′. Therefore x is conflict free if
and only if x′ is conflict free.

Now we pick a “local valuation” defined on the new events, that is a function
p : {a′ | a > ē} →]0, 1] such that for every new cell c′,

∑
a′∈c′ p(a′) = 1. This

allows us to define a global valuation v′ on E ′. If x′ is a finite configuration of
E ′,

v′(x′) = v(x′ \ ↑ ē′ ∪ {ē′}) ·
∏

a′∈x′∩↑ ē′
p(a′) .

We have to argue that this defines a global valuation on E ′. Consider a finite
configuration x′ and a c-covering C at x′. If ē′ 6∈ x′ and c 6= c̄ then x = x′ and

v′(x′) = v(x′) =
∑
y′∈C

v(y′) =
∑
y′∈C

v′(y′) .

If c = c̄, then again x = x′

v′(x′) = v(x′) =
∑
y′∈C

v(y′) =
∑
y′∈C

v′(y′) .
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If ē′ 6∈ x′ and c 6≥ ē′ then

v′(x′) = v(x′ \ ↑ ē′ ∪ {ē′}) ·
∏

a′∈x′∩↑ ē′
p(a′)

=
∑
e∈c

v(x′ \ ↑ ē′ ∪ {ē′} ∪ {e}) ·
∏

a′∈x′∩↑ ē′
p(a′)

=
∑
e∈c

v(x′ ∪ {e} \ ↑ ē′ ∪ {ē′}) ·
∏

a′∈x′∩↑ ē′
p(a′) =

∑
e∈c

v′(x′ ∪ {e}) .

If ē′ 6∈ x′ and c ≥ ē′, then

v′(x′) = v(x′ \ ↑ ē′ ∪ {ē′}) ·
∏

a′∈x′∩↑ ē′
p(a′)

= v(x′ \ ↑ ē′ ∪ {ē′}) ·
∏

a′∈x′∩↑ ē′
p(a′) ·

∑
e′∈c

p(e′)

=
∑
e′∈c

v(x′ \ ↑ ē′ ∪ {ē′}) ·
∏

a′∈x′∩↑ ē′
p(a′) · p(e′)

=
∑
e′∈c

v((x′ ∪ e′) \ ↑ ē′ ∪ {ē′}) ·
∏

a′∈(x′∪e′)∩↑ ē′
p(a′)

=
∑
e′∈c

v′(x′ ∪ e′) .

Now we go back to E∂ . We want to transfer the weight of ∂c̄ onto ē. We define
a new valuation v′′ as follows.

• If ∂c̄ ∈ x then v′′(x) = 0.

• If ē 6∈ x then v′′(x) = v(x).

• If ē ∈ x then v′′(x) = v(x) + v′(x′)

By a case analysis similar to the one above one checks that v′′ is a global
valuation on E∂ . Note that v′′([c̄)∂c̄) = 0 < v([c̄)∂c̄), thus v′′ 6= v. The global
valuation v′′ generates a continuous valuation ν′′ on L(E). We finally argue
that ν < ν′′. Clearly ν 6= ν′′. To show ν ≤ ν′′ i t is enough to check it on the
elements of Bs. Consider n configurations of x1, . . . xn ∈ Lfin(E). We want to
show that ∑

∅6=I⊆In

1|I|−1v

(∨
i∈I

xi

)
≤

∑
∅6=I⊆In

1|I|−1v′′
(∨

i∈I

xi

)
.

Consider the second member. Let J be the set of i ∈ In such that ē 6∈ xi. Then

∑
∅6=I⊆In

1|I|−1v′′
(∨

i∈I

xi

)

=
∑

∅6=I⊆J

1|I|−1v

(∨
i∈I

xi

)
+

∑
∅6=I\J⊆In

1|I|−1v′′
(∨

i∈I

xi

)
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=
∑

∅6=I⊆J

1|I|−1v

(∨
i∈I

xi

)
+

∑
∅6=I\J⊆In

1|I|−1v

(∨
i∈I

xi

)
+

∑
∅6=I\J⊆In

1|I|−1v′
(∨

i∈I

x′i

)

=
∑

∅6=I⊆In

1|I|−1v

(∨
i∈I

xi

)
+

∑
∅6=I\J⊆In

1|I|−1v′
(∨

i∈I

x′i

)
.

It is enough to show that

∑
∅6=I\J⊆In

1|I|−1v′
(∨

i∈I

x′i

)
≥ 0 .

Call ν′ the continuous valuation corresponding to v′. Then ν′(
⋃

i∈J ↑xi) ≥
ν′(
⋃

i∈In
↑ xi). That is:

∑
∅6=I⊆J

1|I|−1v′
(∨

i∈I

x′i

)
≥

∑
∅6=I⊆In

1|I|−1v′
(∨

i∈I

x′i

)
.

The difference between the two is exactly

∑
∅6=I\J⊆In

1|I|−1v′
(∨

i∈I

x′i

)

which is positive. �

Abbas Edalat [Eda95b] studied non-leaking continuous valuations in is do-
main theoretic presentation of integration. His Proposition 5.18 is similar to
our Proposition 7.6.3. He also conjectures an analogous of Theorem 7.6.4 but
he is not able to prove it.

7.7 Discussion and Future Work

We have presented a way to add probabilities to confusion free event structures,
by means of global valuations. We have shown the relation between global val-
uations and continuous valuations on the domain of configurations. We have
completely characterised the normalised continuous valuations on such domain
as global valuations on event structures with “invisible” events. We have char-
acterised the maximal normalised valuation, partially answering a question by
Edalat. We have defined various notions of a run for probabilistic event struc-
tures and proved a confluence theorem.

The main drawback of the work presented here is that it applies to a re-
stricted class of event structures. Which kind of distributed systems can be mod-
elled with them? If we were to model languages with communication regimes
like CCS, confusion free event structures would not be sufficient.

A first informal inspection seems to suggest that a language featuring the
restricted (linear) communication regime of Kahn-MacQueen networks could
be modelled by confusion-free event structures. We have recently designed such
language, using a linear typing system for CCS analogous to the type system for
π-calculus presented in [KPT99]. Interestingly [KPT99] contains a confluence
result very similar to our Theorem 7.5.6.
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As observed in the introduction of this thesis, general communication regimes
require the use of nondeterminism, especially when different processes may com-
pete to communicate on the same “channel”. In the interleaving approach to
probabilistic concurrent systems, this form of nondeterminism is not distinguish-
able from the nondeterminism arising from the interleaving. What the model we
have presented does, however, is to factor out this second form of nondetermin-
ism. The confluence result is saying exactly that when the only nondeterminism
arises from interleaving, then this nondeterminism is illusory. As intuitive as
this statement may be, ours is the first formal probabilistic models in which one
can prove it.

The confluence result may also be interesting from the point of view of
model checking. All the model checking tools for probabilistic concurrency (see
for example [KNP02]) use the interleaving models. Modelling concurrency by
interleaving has the effect of blowing up the size of the state space on which
the checking is performed. The confluence theorem tells us that, in systems
modelled by confusion free event structures, there is essentially only one possible
probabilistic run. This may allow us to reduce the size of the state space. With
this applications in mind, a study of our model in the presence of fairness
assumptions may also provide useful insights.

A future line of work would also consist in generalising our definition, fol-
lowing the line of Katoen’s work, and trying to generalise the result connecting
event structures and domains. The presence of nondeterminism suggests that
the introduction of powerdomains may be necessary. Such work would thus be
a perfect conclusion for this thesis, but life is short and we are old and lazy.
May another lonely wanderer pick up the map we have drawn, and continue the
exploration.

7 Appendix Proof of Proposition 7.3.4

We recall the statement of the proposition. If C, C′ are inductive tests, then

C ≤ C′ ⇐⇒ C →∗ C′

Proof: ⇐=) by induction on the derivation C →∗ C′.

=⇒) by induction on the derivation {∅} →∗ C. Suppose {∅} →∗ C
X,(cx) //C̃ .

And suppose C̃ ≤ C ′. First of all we then have that C ≤ C′. By induction
hypothesis C →∗ C′, say

C = C0
l0−→C1

l1−→C2 . . .
lk−1−→Ck = C′

Where li = Xi, (ci
xi

). We are going to build a derivation

C̃ = C̃0
l̃0−→C̃1

l̃1−→C̃2 . . .
l̃k−1−→C̃k = C′

Notice that X ⊆ C. We can define the sequence

X = Z0

X0∩Z0,(c0
x0

)
// Z1

X1∩Z1,(c1
x1

)
// Z2 . . .

Xk−1∩Zk−1,(ck−1
xk−1

)
// Zk



154 CHAPTER 7. PROBABILISTIC RUNS OF EVENT STRUCTURES

For every i we have Zi ⊆ Ci. Notice that for all i, X ≤ Zi which implies that
for every xi ∈ Zi there exists a (unique) x ∈ X with x ≤ xi, which we call
past(xi).

The Zi’s represent the evolution of X .
Now, we partition every Zi in three sets

• the set Yi of the configurations xi which do not fill cpast(xi) and such that
if xi ∈ Xi, then ci

xi
6= cpast(xi).

• the set Vi of the configurations xi which do not fill cpast(xi) and such that
xi ∈ Xi & ci

xi
= cpast(xi).

• the set Wi of the configurations xi which fill cpast(xi).

We also define Ui := Yi ∪ Vi.
We argue that Wk = Zk. Recall that C̃ ≤ Ck. Take a configuration xk of

Zk and consider the unique z ∈ C̃ such that z ≤ xk. Then z and past(xk) are
compatible. For all e ∈ cpast(xk), we have that past(xk) ∪ e ∈ C̃. Reasoning
like in the proof of Proposition 6.2.5, we argue that z must be compatible with
past(xk)∪ e for one of the e ∈ cpast(xk). Since C̃ is a test, then past(xk)∪ e = z,
which implies that xk fills cpast(xk).

So every configuration xk ∈ Zk fills past(xk). This filling must happen
sometime along the derivation C →∗ C′.

• Yi is the set of configurations such that the filling has not happened yet
and it is not going to happen at step i;

• Vi is the set of configurations such that the filling has not happened yet
and it is going to happen at step i;

• Wi is the set of configurations such that the filling has already happened.

To build the derivation C̃ →∗ C′ we follow C →∗ C′ step by step, keeping in
mind that all the filling has already happened before we even start.

Therefore: the configurations in Wi are OK, and they are activated as ex-
pected; the configurations in Vi do not need to be activated; the configurations
in Yi are not in C̃i, so they have to be modified (by filling the suitable cell), and
after that they can be activated.

For every xi in Ui, cpast(xi) is accessible at xi. Let Y ′ be such that

Xi ∩ Yi

Xi∩Yi,(cpast(xi)) // Y ′
i .

Define X̃i as (Xi \ Ui) ∪ Y ′
i , and define l̃i as X̃i, (ci

k(x̃i)
), where k(x̃i) = x̃i if

x̃i 6∈ Y ′
i while k(x̃i) = x̃i \ cpast(x̃i) if x̃i ∈ Y ′

i .
Now, for i > 0, define C̃i by

Ci

Ui,(cpast(xi)) // C̃i .

Then for every 0 ≤ i ≤ k

C̃i
l̃i−→C̃i+1
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Once we have showed this, we are done. Indeed, since Uk = ∅, we have that
C̃k = Ck = C′. We have to prove that the following diagram “commutes”:

Ci

Xi,(c
i
xi

)
//

Ui,(cpast(xi))

��

Ci+1

Ui+1,(cpast(xi+1))

��
C̃i

X̃i,(c
i
k(x̃i)

)
// C̃i+1 .

Let C∗ be such that

C̃i

X̃i,(ck(x̃i)) // C∗ .

We show that C∗ = C̃i+1 by arguing that they are both equal to

Ci \Xi \ Yi ∪
⋃

x∈Yi∩Xi

x + ci
x + cpast(x) ∪

⋃
x∈Xi\Yi

x + ci
x ∪

⋃
x∈Yi\Xi

x + cpast(x)

where x+ c1 + c2 denotes {x∪{e1, e2} | e1 ∈ c1, e2 ∈ c2}. Let’s start from C̃i+1.
We first observe that Vi ⊆ Xi. Also if xi+1 ∈ Ui+1, then

• either xi+1 ∈ Yi \Xi;

• or xi+1 ∈ xi + ci
xi

for some xi ∈ Yi ∩Xi.

This is because if xi+1 ∈ Ui+1 then xi+1 does not fill cpast(xi+1). The rest comes
by observing that Ui+1 ⊆ Zi+1 and

Zi

Xi∩Zi,(c
i
xi

)
// Zi+1 .

Note also that if xi+1 ∈ xi + ci
xi

, then past(xi+1) = past(xi). Therefore

C̃i+1 = Ci+1 \ Ui+1 ∪
⋃

xi+1∈Ui+1

xi+1 + cpast(xi+1)

= Ci \Xi ∪
⋃

xi∈Xi

xi + ci
xi
\ Ui+1

∪
⋃

xi+1∈Ui+1

xi+1 + cpast(xi+1)

= Ci \Xi \ Yi ∪
⋃

xi∈Xi\Yi

xi + ci
xi

∪
⋃

xi∈Xi∩Yi

xi + ci
xi

+ cpast(xi)

∪
⋃

xi∈Yi\Xi

xi + cpast(xi) .
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Now for C∗. Recall that X̃i is defined as Xi \ Ui ∪ Y ′
i , where

Xi ∩ Yi

Xi∩Yi,(cpast(xi)) // Y ′
i .

We have that if x̃i ∈ X̃i then

• either x̃i ∈ Xi \ Ui;

• or x̃i ∈ xi + cpast(xi) for some xi ∈ Yi ∩Xi.

In the first case we have k(x̃i) = x̃i, in the second case we have k(x̃i) = xi

Recall also that if xi ∈ Vi then ci
xi

= cpast(xi). Therefore

C∗ = C̃i \ X̃i ∪
⋃

x̃i∈X̃i

x̃i + ci
k(x̃i)

= Ci \ Ui ∪
⋃

xi∈Ui

xi + cpast(xi) \ X̃i

∪
⋃

x̃i∈X̃i

x̃i + ci
k(x̃i)

= Ci \ Ui \Xi ∪
⋃

xi∈Xi∩Yi

xi + cpast(xi) + ci
xi

∪

 ⋃
xi∈Xi\Ui

x̃i + ci
x̃i
∪
⋃

xi∈Vi

xi + ci
xi


∪

⋃
xi∈Yi\Xi

cpast(xi)

= Ci \Xi \ Yi ∪
⋃

xi∈Xi∩Yi

xi + ci
xi

+ cpast(xi)

∪
⋃

xi∈Xi\Yi

xi + ci
xi

∪
⋃

xi∈Yi\Xi

xi + cpast(xi) .

�

Addendum

Few weeks before the date of the defense of this thesis, we discovered a paper
by Hagen Völzer [V0̈1], which considerably overlaps with our work on event
structures. In particular Theorem 6.4.1 could be proved more easily as conse-
quence of his Theorem 1. It is not here the place to unravel the details of this
observation. This is the subject of future work.
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DS-03-3 Jǐr ı́ Srba. Decidability and Complexity Issues for Infinite-State
Processes. 2003. PhD thesis. xii+172 pp.

DS-03-2 Frank D. Valencia.Temporal Concurrent Constraint Program-
ming. February 2003. PhD thesis. xvii+174.

DS-03-1 Claus Brabrand. Domain Specific Languages for Interactive
Web Services. January 2003. PhD thesis. xiv+214 pp.

DS-02-5 Rasmus Pagh.Hashing, Randomness and Dictionaries. Octo-
ber 2002. PhD thesis. x+167 pp.


